diff --git "a/12848/metadata.json" "b/12848/metadata.json" new file mode 100644--- /dev/null +++ "b/12848/metadata.json" @@ -0,0 +1,50462 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12848", + "quality_score": 0.903, + "per_segment_quality_scores": [ + { + "start": 78.14, + "end": 79.2, + "probability": 0.0179 + }, + { + "start": 79.2, + "end": 80.88, + "probability": 0.5063 + }, + { + "start": 81.84, + "end": 84.6, + "probability": 0.6172 + }, + { + "start": 85.28, + "end": 86.86, + "probability": 0.6692 + }, + { + "start": 88.76, + "end": 90.48, + "probability": 0.3253 + }, + { + "start": 91.36, + "end": 93.48, + "probability": 0.989 + }, + { + "start": 94.84, + "end": 99.54, + "probability": 0.9262 + }, + { + "start": 100.52, + "end": 105.58, + "probability": 0.9577 + }, + { + "start": 106.64, + "end": 111.52, + "probability": 0.9862 + }, + { + "start": 112.36, + "end": 116.32, + "probability": 0.8392 + }, + { + "start": 116.82, + "end": 118.76, + "probability": 0.9788 + }, + { + "start": 118.88, + "end": 119.8, + "probability": 0.8521 + }, + { + "start": 119.92, + "end": 121.18, + "probability": 0.9946 + }, + { + "start": 121.56, + "end": 122.06, + "probability": 0.4313 + }, + { + "start": 123.22, + "end": 125.56, + "probability": 0.9844 + }, + { + "start": 127.82, + "end": 131.98, + "probability": 0.981 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 133.13, + "end": 135.94, + "probability": 0.967 + }, + { + "start": 136.0, + "end": 136.06, + "probability": 0.4934 + }, + { + "start": 136.16, + "end": 137.8, + "probability": 0.7935 + }, + { + "start": 137.8, + "end": 140.2, + "probability": 0.6275 + }, + { + "start": 140.36, + "end": 140.96, + "probability": 0.7912 + }, + { + "start": 141.02, + "end": 144.82, + "probability": 0.9944 + }, + { + "start": 145.1, + "end": 147.38, + "probability": 0.6313 + }, + { + "start": 148.0, + "end": 150.32, + "probability": 0.9913 + }, + { + "start": 151.02, + "end": 156.02, + "probability": 0.7319 + }, + { + "start": 156.62, + "end": 157.56, + "probability": 0.0275 + }, + { + "start": 157.56, + "end": 160.94, + "probability": 0.8011 + }, + { + "start": 161.04, + "end": 163.16, + "probability": 0.9579 + }, + { + "start": 163.52, + "end": 168.94, + "probability": 0.9664 + }, + { + "start": 169.1, + "end": 169.74, + "probability": 0.2705 + }, + { + "start": 170.06, + "end": 170.82, + "probability": 0.2103 + }, + { + "start": 171.0, + "end": 173.34, + "probability": 0.3946 + }, + { + "start": 173.82, + "end": 176.18, + "probability": 0.5555 + }, + { + "start": 177.08, + "end": 177.7, + "probability": 0.4743 + }, + { + "start": 177.7, + "end": 178.4, + "probability": 0.9032 + }, + { + "start": 178.7, + "end": 179.8, + "probability": 0.456 + }, + { + "start": 180.12, + "end": 181.72, + "probability": 0.8541 + }, + { + "start": 181.96, + "end": 184.56, + "probability": 0.9805 + }, + { + "start": 185.2, + "end": 189.58, + "probability": 0.9891 + }, + { + "start": 190.42, + "end": 194.64, + "probability": 0.9309 + }, + { + "start": 195.3, + "end": 196.68, + "probability": 0.8171 + }, + { + "start": 197.56, + "end": 200.08, + "probability": 0.9231 + }, + { + "start": 200.56, + "end": 204.01, + "probability": 0.8071 + }, + { + "start": 205.44, + "end": 208.04, + "probability": 0.9785 + }, + { + "start": 209.16, + "end": 214.94, + "probability": 0.6587 + }, + { + "start": 216.12, + "end": 218.02, + "probability": 0.8641 + }, + { + "start": 218.6, + "end": 224.7, + "probability": 0.9683 + }, + { + "start": 225.26, + "end": 226.68, + "probability": 0.9265 + }, + { + "start": 227.18, + "end": 228.78, + "probability": 0.936 + }, + { + "start": 231.04, + "end": 231.12, + "probability": 0.0755 + }, + { + "start": 231.12, + "end": 231.5, + "probability": 0.5577 + }, + { + "start": 231.98, + "end": 235.88, + "probability": 0.9618 + }, + { + "start": 236.56, + "end": 239.62, + "probability": 0.9668 + }, + { + "start": 240.04, + "end": 240.52, + "probability": 0.5032 + }, + { + "start": 240.54, + "end": 241.74, + "probability": 0.5015 + }, + { + "start": 242.16, + "end": 243.5, + "probability": 0.5694 + }, + { + "start": 244.28, + "end": 245.7, + "probability": 0.3491 + }, + { + "start": 247.02, + "end": 253.64, + "probability": 0.7666 + }, + { + "start": 253.64, + "end": 257.54, + "probability": 0.9103 + }, + { + "start": 258.92, + "end": 262.2, + "probability": 0.9038 + }, + { + "start": 263.54, + "end": 265.38, + "probability": 0.8234 + }, + { + "start": 265.9, + "end": 272.28, + "probability": 0.9384 + }, + { + "start": 272.96, + "end": 276.1, + "probability": 0.9842 + }, + { + "start": 276.68, + "end": 278.87, + "probability": 0.5497 + }, + { + "start": 281.72, + "end": 283.4, + "probability": 0.8545 + }, + { + "start": 287.2, + "end": 290.9, + "probability": 0.5436 + }, + { + "start": 291.58, + "end": 293.88, + "probability": 0.7733 + }, + { + "start": 295.02, + "end": 296.76, + "probability": 0.9314 + }, + { + "start": 298.34, + "end": 302.04, + "probability": 0.912 + }, + { + "start": 302.62, + "end": 307.5, + "probability": 0.9132 + }, + { + "start": 307.5, + "end": 311.66, + "probability": 0.8454 + }, + { + "start": 313.71, + "end": 321.54, + "probability": 0.9509 + }, + { + "start": 322.24, + "end": 325.44, + "probability": 0.5922 + }, + { + "start": 326.65, + "end": 332.1, + "probability": 0.96 + }, + { + "start": 332.28, + "end": 332.66, + "probability": 0.8184 + }, + { + "start": 332.86, + "end": 335.18, + "probability": 0.8501 + }, + { + "start": 336.04, + "end": 340.55, + "probability": 0.6181 + }, + { + "start": 341.74, + "end": 345.58, + "probability": 0.665 + }, + { + "start": 346.58, + "end": 348.22, + "probability": 0.925 + }, + { + "start": 348.36, + "end": 349.1, + "probability": 0.7454 + }, + { + "start": 349.46, + "end": 351.96, + "probability": 0.7451 + }, + { + "start": 352.44, + "end": 356.28, + "probability": 0.8915 + }, + { + "start": 357.92, + "end": 362.75, + "probability": 0.6951 + }, + { + "start": 363.54, + "end": 366.12, + "probability": 0.9154 + }, + { + "start": 367.14, + "end": 367.92, + "probability": 0.1741 + }, + { + "start": 368.58, + "end": 373.42, + "probability": 0.9411 + }, + { + "start": 373.94, + "end": 375.78, + "probability": 0.5288 + }, + { + "start": 376.1, + "end": 378.18, + "probability": 0.8869 + }, + { + "start": 379.46, + "end": 382.26, + "probability": 0.9167 + }, + { + "start": 382.76, + "end": 385.52, + "probability": 0.8372 + }, + { + "start": 385.52, + "end": 389.38, + "probability": 0.7808 + }, + { + "start": 389.38, + "end": 393.1, + "probability": 0.9931 + }, + { + "start": 393.78, + "end": 395.78, + "probability": 0.7267 + }, + { + "start": 395.88, + "end": 396.88, + "probability": 0.7005 + }, + { + "start": 397.28, + "end": 398.12, + "probability": 0.7454 + }, + { + "start": 398.22, + "end": 398.82, + "probability": 0.7422 + }, + { + "start": 399.62, + "end": 403.86, + "probability": 0.9606 + }, + { + "start": 403.88, + "end": 406.2, + "probability": 0.9783 + }, + { + "start": 406.46, + "end": 409.64, + "probability": 0.8558 + }, + { + "start": 409.64, + "end": 413.12, + "probability": 0.8969 + }, + { + "start": 413.4, + "end": 416.28, + "probability": 0.8422 + }, + { + "start": 417.24, + "end": 418.36, + "probability": 0.788 + }, + { + "start": 418.44, + "end": 419.72, + "probability": 0.8322 + }, + { + "start": 419.88, + "end": 420.64, + "probability": 0.7432 + }, + { + "start": 421.14, + "end": 424.42, + "probability": 0.5386 + }, + { + "start": 424.72, + "end": 429.44, + "probability": 0.8173 + }, + { + "start": 429.58, + "end": 433.0, + "probability": 0.9628 + }, + { + "start": 433.42, + "end": 435.78, + "probability": 0.7909 + }, + { + "start": 435.88, + "end": 439.4, + "probability": 0.731 + }, + { + "start": 439.94, + "end": 444.0, + "probability": 0.9865 + }, + { + "start": 445.38, + "end": 447.5, + "probability": 0.7999 + }, + { + "start": 448.12, + "end": 452.46, + "probability": 0.8909 + }, + { + "start": 453.28, + "end": 453.58, + "probability": 0.6413 + }, + { + "start": 453.66, + "end": 459.46, + "probability": 0.9868 + }, + { + "start": 459.46, + "end": 464.98, + "probability": 0.9536 + }, + { + "start": 465.46, + "end": 471.62, + "probability": 0.9622 + }, + { + "start": 471.94, + "end": 474.48, + "probability": 0.9763 + }, + { + "start": 474.6, + "end": 476.6, + "probability": 0.946 + }, + { + "start": 477.38, + "end": 479.72, + "probability": 0.9777 + }, + { + "start": 479.72, + "end": 482.08, + "probability": 0.8306 + }, + { + "start": 482.42, + "end": 486.9, + "probability": 0.883 + }, + { + "start": 487.3, + "end": 489.96, + "probability": 0.8136 + }, + { + "start": 499.82, + "end": 505.6, + "probability": 0.6345 + }, + { + "start": 506.42, + "end": 508.06, + "probability": 0.5899 + }, + { + "start": 508.64, + "end": 510.86, + "probability": 0.6889 + }, + { + "start": 513.26, + "end": 517.74, + "probability": 0.7995 + }, + { + "start": 518.32, + "end": 519.44, + "probability": 0.8597 + }, + { + "start": 519.48, + "end": 519.68, + "probability": 0.639 + }, + { + "start": 519.84, + "end": 522.36, + "probability": 0.787 + }, + { + "start": 522.6, + "end": 523.88, + "probability": 0.9599 + }, + { + "start": 524.0, + "end": 526.98, + "probability": 0.8477 + }, + { + "start": 527.08, + "end": 528.6, + "probability": 0.9446 + }, + { + "start": 529.22, + "end": 532.52, + "probability": 0.8054 + }, + { + "start": 533.18, + "end": 534.5, + "probability": 0.7752 + }, + { + "start": 534.54, + "end": 538.52, + "probability": 0.9085 + }, + { + "start": 538.58, + "end": 539.48, + "probability": 0.5775 + }, + { + "start": 539.48, + "end": 543.98, + "probability": 0.6552 + }, + { + "start": 547.12, + "end": 548.72, + "probability": 0.5889 + }, + { + "start": 548.82, + "end": 550.77, + "probability": 0.793 + }, + { + "start": 551.85, + "end": 554.66, + "probability": 0.9775 + }, + { + "start": 554.72, + "end": 555.14, + "probability": 0.824 + }, + { + "start": 555.42, + "end": 556.84, + "probability": 0.9057 + }, + { + "start": 557.16, + "end": 558.3, + "probability": 0.8893 + }, + { + "start": 558.72, + "end": 560.18, + "probability": 0.7522 + }, + { + "start": 561.3, + "end": 563.76, + "probability": 0.9954 + }, + { + "start": 564.28, + "end": 569.89, + "probability": 0.979 + }, + { + "start": 571.16, + "end": 571.96, + "probability": 0.9832 + }, + { + "start": 572.56, + "end": 573.18, + "probability": 0.6558 + }, + { + "start": 573.74, + "end": 578.06, + "probability": 0.9642 + }, + { + "start": 578.1, + "end": 581.38, + "probability": 0.8994 + }, + { + "start": 581.74, + "end": 585.94, + "probability": 0.8734 + }, + { + "start": 586.7, + "end": 586.9, + "probability": 0.3398 + }, + { + "start": 587.04, + "end": 590.44, + "probability": 0.8029 + }, + { + "start": 590.94, + "end": 597.02, + "probability": 0.9902 + }, + { + "start": 597.02, + "end": 600.18, + "probability": 0.9419 + }, + { + "start": 600.58, + "end": 601.9, + "probability": 0.918 + }, + { + "start": 602.78, + "end": 603.66, + "probability": 0.5484 + }, + { + "start": 608.1, + "end": 608.1, + "probability": 0.2508 + }, + { + "start": 608.1, + "end": 609.72, + "probability": 0.6515 + }, + { + "start": 610.62, + "end": 611.68, + "probability": 0.9276 + }, + { + "start": 612.02, + "end": 614.94, + "probability": 0.9554 + }, + { + "start": 615.0, + "end": 615.7, + "probability": 0.9254 + }, + { + "start": 616.5, + "end": 617.5, + "probability": 0.9901 + }, + { + "start": 618.72, + "end": 619.38, + "probability": 0.6567 + }, + { + "start": 619.48, + "end": 620.42, + "probability": 0.9735 + }, + { + "start": 620.68, + "end": 621.88, + "probability": 0.9941 + }, + { + "start": 622.24, + "end": 625.78, + "probability": 0.9795 + }, + { + "start": 626.62, + "end": 628.54, + "probability": 0.9395 + }, + { + "start": 628.88, + "end": 632.32, + "probability": 0.9829 + }, + { + "start": 633.26, + "end": 636.44, + "probability": 0.9855 + }, + { + "start": 636.6, + "end": 639.4, + "probability": 0.9965 + }, + { + "start": 639.46, + "end": 640.14, + "probability": 0.9148 + }, + { + "start": 640.18, + "end": 640.96, + "probability": 0.6771 + }, + { + "start": 641.78, + "end": 643.56, + "probability": 0.6773 + }, + { + "start": 643.62, + "end": 645.56, + "probability": 0.6405 + }, + { + "start": 645.88, + "end": 646.74, + "probability": 0.9288 + }, + { + "start": 646.86, + "end": 649.1, + "probability": 0.9582 + }, + { + "start": 650.48, + "end": 651.88, + "probability": 0.5371 + }, + { + "start": 652.8, + "end": 656.12, + "probability": 0.9873 + }, + { + "start": 656.58, + "end": 661.56, + "probability": 0.9386 + }, + { + "start": 661.88, + "end": 663.94, + "probability": 0.9885 + }, + { + "start": 664.56, + "end": 666.74, + "probability": 0.7151 + }, + { + "start": 667.32, + "end": 669.94, + "probability": 0.9924 + }, + { + "start": 669.94, + "end": 673.12, + "probability": 0.9967 + }, + { + "start": 673.96, + "end": 674.58, + "probability": 0.5451 + }, + { + "start": 674.66, + "end": 677.66, + "probability": 0.5374 + }, + { + "start": 677.68, + "end": 678.5, + "probability": 0.278 + }, + { + "start": 678.6, + "end": 679.46, + "probability": 0.7179 + }, + { + "start": 679.54, + "end": 682.04, + "probability": 0.6518 + }, + { + "start": 682.14, + "end": 684.16, + "probability": 0.7948 + }, + { + "start": 684.96, + "end": 690.24, + "probability": 0.5014 + }, + { + "start": 690.94, + "end": 692.4, + "probability": 0.9832 + }, + { + "start": 692.82, + "end": 693.44, + "probability": 0.5269 + }, + { + "start": 693.78, + "end": 695.34, + "probability": 0.7545 + }, + { + "start": 695.98, + "end": 697.46, + "probability": 0.7633 + }, + { + "start": 697.68, + "end": 700.5, + "probability": 0.9434 + }, + { + "start": 700.94, + "end": 704.62, + "probability": 0.8814 + }, + { + "start": 705.68, + "end": 709.2, + "probability": 0.4362 + }, + { + "start": 710.0, + "end": 713.66, + "probability": 0.8975 + }, + { + "start": 713.72, + "end": 714.76, + "probability": 0.7119 + }, + { + "start": 715.22, + "end": 718.34, + "probability": 0.8974 + }, + { + "start": 719.18, + "end": 720.94, + "probability": 0.7751 + }, + { + "start": 721.48, + "end": 722.76, + "probability": 0.8877 + }, + { + "start": 723.36, + "end": 725.36, + "probability": 0.6274 + }, + { + "start": 726.36, + "end": 728.4, + "probability": 0.7438 + }, + { + "start": 729.06, + "end": 730.62, + "probability": 0.9957 + }, + { + "start": 731.3, + "end": 733.04, + "probability": 0.8867 + }, + { + "start": 733.12, + "end": 736.54, + "probability": 0.9701 + }, + { + "start": 736.9, + "end": 738.48, + "probability": 0.6451 + }, + { + "start": 738.48, + "end": 738.84, + "probability": 0.3661 + }, + { + "start": 739.4, + "end": 740.68, + "probability": 0.9898 + }, + { + "start": 741.3, + "end": 742.9, + "probability": 0.9669 + }, + { + "start": 742.96, + "end": 746.14, + "probability": 0.816 + }, + { + "start": 746.28, + "end": 748.9, + "probability": 0.658 + }, + { + "start": 749.56, + "end": 750.58, + "probability": 0.8244 + }, + { + "start": 751.64, + "end": 752.67, + "probability": 0.8728 + }, + { + "start": 752.86, + "end": 755.92, + "probability": 0.8407 + }, + { + "start": 756.48, + "end": 758.6, + "probability": 0.7213 + }, + { + "start": 759.2, + "end": 761.26, + "probability": 0.8832 + }, + { + "start": 761.3, + "end": 763.82, + "probability": 0.8742 + }, + { + "start": 764.58, + "end": 769.04, + "probability": 0.5015 + }, + { + "start": 769.18, + "end": 769.72, + "probability": 0.6888 + }, + { + "start": 769.9, + "end": 771.84, + "probability": 0.6202 + }, + { + "start": 772.76, + "end": 777.56, + "probability": 0.7557 + }, + { + "start": 777.98, + "end": 780.28, + "probability": 0.6966 + }, + { + "start": 780.4, + "end": 782.54, + "probability": 0.7495 + }, + { + "start": 782.62, + "end": 786.0, + "probability": 0.9601 + }, + { + "start": 786.18, + "end": 786.4, + "probability": 0.662 + }, + { + "start": 787.12, + "end": 790.66, + "probability": 0.8798 + }, + { + "start": 791.4, + "end": 793.52, + "probability": 0.9554 + }, + { + "start": 793.84, + "end": 797.48, + "probability": 0.847 + }, + { + "start": 800.54, + "end": 801.46, + "probability": 0.6537 + }, + { + "start": 803.07, + "end": 807.1, + "probability": 0.9046 + }, + { + "start": 807.72, + "end": 810.88, + "probability": 0.8767 + }, + { + "start": 812.62, + "end": 814.46, + "probability": 0.6935 + }, + { + "start": 815.88, + "end": 819.1, + "probability": 0.7901 + }, + { + "start": 819.44, + "end": 822.84, + "probability": 0.9803 + }, + { + "start": 823.8, + "end": 824.34, + "probability": 0.7747 + }, + { + "start": 827.26, + "end": 828.6, + "probability": 0.6986 + }, + { + "start": 830.56, + "end": 835.64, + "probability": 0.8123 + }, + { + "start": 835.78, + "end": 836.15, + "probability": 0.9448 + }, + { + "start": 836.78, + "end": 838.78, + "probability": 0.9922 + }, + { + "start": 839.4, + "end": 843.72, + "probability": 0.9853 + }, + { + "start": 843.74, + "end": 844.38, + "probability": 0.6881 + }, + { + "start": 844.46, + "end": 845.18, + "probability": 0.8046 + }, + { + "start": 846.78, + "end": 848.34, + "probability": 0.7785 + }, + { + "start": 848.82, + "end": 848.88, + "probability": 0.5199 + }, + { + "start": 848.88, + "end": 849.46, + "probability": 0.5944 + }, + { + "start": 850.78, + "end": 854.18, + "probability": 0.8084 + }, + { + "start": 855.31, + "end": 861.2, + "probability": 0.5979 + }, + { + "start": 862.29, + "end": 865.24, + "probability": 0.9223 + }, + { + "start": 865.76, + "end": 867.94, + "probability": 0.9212 + }, + { + "start": 868.06, + "end": 870.86, + "probability": 0.999 + }, + { + "start": 871.32, + "end": 872.2, + "probability": 0.7172 + }, + { + "start": 873.04, + "end": 873.8, + "probability": 0.0416 + }, + { + "start": 874.26, + "end": 876.44, + "probability": 0.7469 + }, + { + "start": 876.84, + "end": 877.14, + "probability": 0.2831 + }, + { + "start": 877.14, + "end": 877.42, + "probability": 0.6731 + }, + { + "start": 877.46, + "end": 878.64, + "probability": 0.6303 + }, + { + "start": 878.72, + "end": 881.86, + "probability": 0.7578 + }, + { + "start": 881.9, + "end": 882.68, + "probability": 0.954 + }, + { + "start": 883.7, + "end": 885.04, + "probability": 0.6079 + }, + { + "start": 885.08, + "end": 888.36, + "probability": 0.8327 + }, + { + "start": 888.82, + "end": 889.66, + "probability": 0.7831 + }, + { + "start": 891.58, + "end": 892.8, + "probability": 0.7469 + }, + { + "start": 893.4, + "end": 897.48, + "probability": 0.8151 + }, + { + "start": 898.36, + "end": 903.86, + "probability": 0.8213 + }, + { + "start": 903.86, + "end": 908.68, + "probability": 0.993 + }, + { + "start": 909.82, + "end": 915.6, + "probability": 0.9872 + }, + { + "start": 915.82, + "end": 916.82, + "probability": 0.7793 + }, + { + "start": 917.94, + "end": 922.28, + "probability": 0.991 + }, + { + "start": 923.98, + "end": 925.42, + "probability": 0.6557 + }, + { + "start": 926.18, + "end": 929.56, + "probability": 0.9603 + }, + { + "start": 930.78, + "end": 931.74, + "probability": 0.7983 + }, + { + "start": 932.58, + "end": 936.02, + "probability": 0.9391 + }, + { + "start": 936.02, + "end": 941.49, + "probability": 0.9862 + }, + { + "start": 945.58, + "end": 946.16, + "probability": 0.7571 + }, + { + "start": 947.6, + "end": 952.68, + "probability": 0.7991 + }, + { + "start": 953.56, + "end": 954.36, + "probability": 0.8315 + }, + { + "start": 955.18, + "end": 957.38, + "probability": 0.9967 + }, + { + "start": 957.38, + "end": 960.74, + "probability": 0.9965 + }, + { + "start": 961.6, + "end": 965.94, + "probability": 0.875 + }, + { + "start": 966.16, + "end": 968.8, + "probability": 0.8542 + }, + { + "start": 969.86, + "end": 970.32, + "probability": 0.0094 + }, + { + "start": 970.76, + "end": 976.5, + "probability": 0.9506 + }, + { + "start": 978.16, + "end": 982.1, + "probability": 0.9416 + }, + { + "start": 983.14, + "end": 984.4, + "probability": 0.6207 + }, + { + "start": 985.14, + "end": 990.5, + "probability": 0.9098 + }, + { + "start": 990.66, + "end": 991.32, + "probability": 0.8836 + }, + { + "start": 992.38, + "end": 995.8, + "probability": 0.9967 + }, + { + "start": 995.8, + "end": 999.94, + "probability": 0.9788 + }, + { + "start": 1001.46, + "end": 1003.9, + "probability": 0.7953 + }, + { + "start": 1003.98, + "end": 1004.9, + "probability": 0.5961 + }, + { + "start": 1004.98, + "end": 1009.62, + "probability": 0.9641 + }, + { + "start": 1011.0, + "end": 1015.22, + "probability": 0.9797 + }, + { + "start": 1015.8, + "end": 1016.22, + "probability": 0.7606 + }, + { + "start": 1016.36, + "end": 1018.0, + "probability": 0.8098 + }, + { + "start": 1018.04, + "end": 1019.45, + "probability": 0.861 + }, + { + "start": 1020.14, + "end": 1022.06, + "probability": 0.953 + }, + { + "start": 1024.48, + "end": 1025.43, + "probability": 0.9181 + }, + { + "start": 1025.76, + "end": 1029.84, + "probability": 0.9442 + }, + { + "start": 1030.6, + "end": 1036.0, + "probability": 0.9967 + }, + { + "start": 1037.0, + "end": 1039.42, + "probability": 0.8154 + }, + { + "start": 1039.42, + "end": 1043.52, + "probability": 0.8379 + }, + { + "start": 1044.64, + "end": 1051.72, + "probability": 0.9961 + }, + { + "start": 1051.72, + "end": 1054.6, + "probability": 0.5184 + }, + { + "start": 1056.12, + "end": 1058.68, + "probability": 0.8959 + }, + { + "start": 1058.72, + "end": 1061.2, + "probability": 0.934 + }, + { + "start": 1061.78, + "end": 1065.8, + "probability": 0.9694 + }, + { + "start": 1066.44, + "end": 1068.78, + "probability": 0.9931 + }, + { + "start": 1069.38, + "end": 1069.82, + "probability": 0.5494 + }, + { + "start": 1069.88, + "end": 1074.74, + "probability": 0.9494 + }, + { + "start": 1075.4, + "end": 1077.48, + "probability": 0.8964 + }, + { + "start": 1080.74, + "end": 1084.2, + "probability": 0.9922 + }, + { + "start": 1084.2, + "end": 1086.68, + "probability": 0.9966 + }, + { + "start": 1086.9, + "end": 1089.32, + "probability": 0.8879 + }, + { + "start": 1090.96, + "end": 1098.2, + "probability": 0.9912 + }, + { + "start": 1099.24, + "end": 1103.28, + "probability": 0.9084 + }, + { + "start": 1103.38, + "end": 1107.58, + "probability": 0.9719 + }, + { + "start": 1107.66, + "end": 1108.08, + "probability": 0.5552 + }, + { + "start": 1108.18, + "end": 1110.6, + "probability": 0.7385 + }, + { + "start": 1111.26, + "end": 1114.84, + "probability": 0.9638 + }, + { + "start": 1115.96, + "end": 1119.24, + "probability": 0.8989 + }, + { + "start": 1119.96, + "end": 1123.06, + "probability": 0.9781 + }, + { + "start": 1124.9, + "end": 1127.78, + "probability": 0.9775 + }, + { + "start": 1127.78, + "end": 1130.66, + "probability": 0.9753 + }, + { + "start": 1130.8, + "end": 1131.1, + "probability": 0.2782 + }, + { + "start": 1131.8, + "end": 1135.72, + "probability": 0.9854 + }, + { + "start": 1136.74, + "end": 1141.56, + "probability": 0.9706 + }, + { + "start": 1144.66, + "end": 1145.22, + "probability": 0.3607 + }, + { + "start": 1145.28, + "end": 1145.92, + "probability": 0.5313 + }, + { + "start": 1148.06, + "end": 1152.42, + "probability": 0.9075 + }, + { + "start": 1152.42, + "end": 1157.16, + "probability": 0.9482 + }, + { + "start": 1159.98, + "end": 1166.28, + "probability": 0.995 + }, + { + "start": 1170.5, + "end": 1171.34, + "probability": 0.2832 + }, + { + "start": 1171.34, + "end": 1174.5, + "probability": 0.9949 + }, + { + "start": 1175.18, + "end": 1178.68, + "probability": 0.8911 + }, + { + "start": 1179.62, + "end": 1181.82, + "probability": 0.9064 + }, + { + "start": 1182.3, + "end": 1184.8, + "probability": 0.9512 + }, + { + "start": 1184.88, + "end": 1187.36, + "probability": 0.9695 + }, + { + "start": 1188.66, + "end": 1189.18, + "probability": 0.3694 + }, + { + "start": 1189.28, + "end": 1192.02, + "probability": 0.9301 + }, + { + "start": 1192.76, + "end": 1194.32, + "probability": 0.7743 + }, + { + "start": 1195.66, + "end": 1202.14, + "probability": 0.9308 + }, + { + "start": 1203.12, + "end": 1206.5, + "probability": 0.9767 + }, + { + "start": 1208.66, + "end": 1215.04, + "probability": 0.9868 + }, + { + "start": 1215.4, + "end": 1217.54, + "probability": 0.9954 + }, + { + "start": 1218.12, + "end": 1227.08, + "probability": 0.9829 + }, + { + "start": 1228.08, + "end": 1231.14, + "probability": 0.9834 + }, + { + "start": 1231.14, + "end": 1234.06, + "probability": 0.9969 + }, + { + "start": 1234.18, + "end": 1242.26, + "probability": 0.997 + }, + { + "start": 1243.92, + "end": 1250.36, + "probability": 0.9789 + }, + { + "start": 1251.66, + "end": 1254.28, + "probability": 0.8978 + }, + { + "start": 1255.04, + "end": 1258.54, + "probability": 0.9105 + }, + { + "start": 1259.18, + "end": 1260.72, + "probability": 0.9358 + }, + { + "start": 1261.4, + "end": 1264.42, + "probability": 0.8765 + }, + { + "start": 1264.42, + "end": 1268.58, + "probability": 0.5424 + }, + { + "start": 1268.96, + "end": 1273.54, + "probability": 0.9562 + }, + { + "start": 1273.54, + "end": 1274.42, + "probability": 0.4013 + }, + { + "start": 1276.14, + "end": 1276.14, + "probability": 0.0451 + }, + { + "start": 1276.14, + "end": 1276.88, + "probability": 0.4388 + }, + { + "start": 1277.5, + "end": 1280.12, + "probability": 0.7948 + }, + { + "start": 1280.2, + "end": 1280.68, + "probability": 0.2803 + }, + { + "start": 1280.86, + "end": 1281.74, + "probability": 0.9412 + }, + { + "start": 1282.52, + "end": 1283.98, + "probability": 0.654 + }, + { + "start": 1284.06, + "end": 1286.16, + "probability": 0.4058 + }, + { + "start": 1286.4, + "end": 1287.84, + "probability": 0.8997 + }, + { + "start": 1290.66, + "end": 1295.02, + "probability": 0.9933 + }, + { + "start": 1295.02, + "end": 1298.78, + "probability": 0.9977 + }, + { + "start": 1301.08, + "end": 1302.68, + "probability": 0.9896 + }, + { + "start": 1303.52, + "end": 1304.13, + "probability": 0.802 + }, + { + "start": 1304.72, + "end": 1306.42, + "probability": 0.9976 + }, + { + "start": 1306.62, + "end": 1309.0, + "probability": 0.8874 + }, + { + "start": 1309.22, + "end": 1311.86, + "probability": 0.9583 + }, + { + "start": 1312.18, + "end": 1314.42, + "probability": 0.958 + }, + { + "start": 1314.86, + "end": 1319.52, + "probability": 0.9054 + }, + { + "start": 1319.58, + "end": 1319.92, + "probability": 0.7339 + }, + { + "start": 1320.02, + "end": 1321.65, + "probability": 0.8516 + }, + { + "start": 1322.28, + "end": 1323.44, + "probability": 0.6167 + }, + { + "start": 1323.82, + "end": 1325.92, + "probability": 0.9131 + }, + { + "start": 1326.04, + "end": 1332.32, + "probability": 0.9907 + }, + { + "start": 1332.82, + "end": 1334.2, + "probability": 0.7263 + }, + { + "start": 1334.3, + "end": 1335.64, + "probability": 0.597 + }, + { + "start": 1336.76, + "end": 1338.94, + "probability": 0.4076 + }, + { + "start": 1339.5, + "end": 1340.12, + "probability": 0.6818 + }, + { + "start": 1340.6, + "end": 1343.78, + "probability": 0.9876 + }, + { + "start": 1345.76, + "end": 1348.54, + "probability": 0.9509 + }, + { + "start": 1348.64, + "end": 1351.12, + "probability": 0.9995 + }, + { + "start": 1351.24, + "end": 1357.12, + "probability": 0.92 + }, + { + "start": 1357.48, + "end": 1359.04, + "probability": 0.8962 + }, + { + "start": 1359.12, + "end": 1360.08, + "probability": 0.762 + }, + { + "start": 1361.62, + "end": 1362.1, + "probability": 0.6544 + }, + { + "start": 1362.28, + "end": 1363.5, + "probability": 0.4966 + }, + { + "start": 1364.7, + "end": 1366.04, + "probability": 0.2652 + }, + { + "start": 1366.04, + "end": 1368.86, + "probability": 0.8771 + }, + { + "start": 1369.42, + "end": 1373.29, + "probability": 0.9973 + }, + { + "start": 1373.5, + "end": 1374.12, + "probability": 0.7383 + }, + { + "start": 1374.62, + "end": 1375.92, + "probability": 0.8292 + }, + { + "start": 1376.58, + "end": 1377.52, + "probability": 0.9956 + }, + { + "start": 1377.56, + "end": 1380.16, + "probability": 0.9867 + }, + { + "start": 1380.28, + "end": 1382.14, + "probability": 0.9344 + }, + { + "start": 1382.66, + "end": 1383.08, + "probability": 0.5175 + }, + { + "start": 1383.18, + "end": 1387.08, + "probability": 0.9539 + }, + { + "start": 1387.08, + "end": 1391.6, + "probability": 0.8678 + }, + { + "start": 1391.76, + "end": 1393.2, + "probability": 0.7761 + }, + { + "start": 1394.21, + "end": 1399.54, + "probability": 0.9907 + }, + { + "start": 1399.98, + "end": 1401.9, + "probability": 0.9894 + }, + { + "start": 1403.84, + "end": 1406.0, + "probability": 0.7783 + }, + { + "start": 1406.82, + "end": 1408.28, + "probability": 0.7487 + }, + { + "start": 1408.48, + "end": 1410.49, + "probability": 0.5136 + }, + { + "start": 1410.76, + "end": 1410.78, + "probability": 0.4752 + }, + { + "start": 1410.78, + "end": 1412.44, + "probability": 0.5147 + }, + { + "start": 1412.92, + "end": 1414.32, + "probability": 0.8601 + }, + { + "start": 1414.82, + "end": 1415.2, + "probability": 0.277 + }, + { + "start": 1415.32, + "end": 1416.0, + "probability": 0.6573 + }, + { + "start": 1416.08, + "end": 1417.0, + "probability": 0.9851 + }, + { + "start": 1417.86, + "end": 1418.46, + "probability": 0.8488 + }, + { + "start": 1419.28, + "end": 1425.78, + "probability": 0.9917 + }, + { + "start": 1426.32, + "end": 1431.8, + "probability": 0.9108 + }, + { + "start": 1432.32, + "end": 1437.26, + "probability": 0.9951 + }, + { + "start": 1437.76, + "end": 1439.22, + "probability": 0.9121 + }, + { + "start": 1439.94, + "end": 1440.67, + "probability": 0.9972 + }, + { + "start": 1441.1, + "end": 1441.94, + "probability": 0.5464 + }, + { + "start": 1442.26, + "end": 1442.46, + "probability": 0.4593 + }, + { + "start": 1442.52, + "end": 1442.92, + "probability": 0.8739 + }, + { + "start": 1443.02, + "end": 1443.34, + "probability": 0.0505 + }, + { + "start": 1443.46, + "end": 1443.84, + "probability": 0.337 + }, + { + "start": 1444.68, + "end": 1448.98, + "probability": 0.9924 + }, + { + "start": 1448.98, + "end": 1452.78, + "probability": 0.7104 + }, + { + "start": 1453.0, + "end": 1453.64, + "probability": 0.9979 + }, + { + "start": 1454.54, + "end": 1454.98, + "probability": 0.999 + }, + { + "start": 1455.72, + "end": 1457.66, + "probability": 0.9435 + }, + { + "start": 1457.82, + "end": 1459.5, + "probability": 0.0873 + }, + { + "start": 1459.76, + "end": 1462.34, + "probability": 0.6958 + }, + { + "start": 1462.5, + "end": 1463.14, + "probability": 0.1819 + }, + { + "start": 1463.36, + "end": 1466.14, + "probability": 0.9949 + }, + { + "start": 1466.62, + "end": 1467.21, + "probability": 0.9674 + }, + { + "start": 1467.52, + "end": 1468.7, + "probability": 0.7065 + }, + { + "start": 1469.2, + "end": 1473.12, + "probability": 0.9907 + }, + { + "start": 1473.98, + "end": 1474.08, + "probability": 0.4197 + }, + { + "start": 1474.2, + "end": 1476.67, + "probability": 0.8679 + }, + { + "start": 1477.46, + "end": 1478.36, + "probability": 0.2619 + }, + { + "start": 1478.52, + "end": 1479.16, + "probability": 0.5643 + }, + { + "start": 1479.54, + "end": 1480.92, + "probability": 0.7869 + }, + { + "start": 1481.0, + "end": 1482.6, + "probability": 0.8375 + }, + { + "start": 1482.9, + "end": 1484.14, + "probability": 0.8693 + }, + { + "start": 1484.84, + "end": 1485.8, + "probability": 0.7067 + }, + { + "start": 1485.92, + "end": 1488.46, + "probability": 0.9352 + }, + { + "start": 1488.6, + "end": 1489.18, + "probability": 0.9448 + }, + { + "start": 1489.6, + "end": 1490.58, + "probability": 0.9614 + }, + { + "start": 1491.38, + "end": 1491.62, + "probability": 0.839 + }, + { + "start": 1491.74, + "end": 1493.4, + "probability": 0.9763 + }, + { + "start": 1493.56, + "end": 1493.8, + "probability": 0.4815 + }, + { + "start": 1494.3, + "end": 1495.6, + "probability": 0.6472 + }, + { + "start": 1496.7, + "end": 1499.3, + "probability": 0.9092 + }, + { + "start": 1499.64, + "end": 1503.12, + "probability": 0.873 + }, + { + "start": 1503.24, + "end": 1503.9, + "probability": 0.8324 + }, + { + "start": 1504.68, + "end": 1506.02, + "probability": 0.8114 + }, + { + "start": 1506.12, + "end": 1507.02, + "probability": 0.9575 + }, + { + "start": 1507.32, + "end": 1508.26, + "probability": 0.7856 + }, + { + "start": 1510.06, + "end": 1510.58, + "probability": 0.9756 + }, + { + "start": 1511.86, + "end": 1513.28, + "probability": 0.9976 + }, + { + "start": 1513.92, + "end": 1515.52, + "probability": 0.7711 + }, + { + "start": 1515.7, + "end": 1517.7, + "probability": 0.9334 + }, + { + "start": 1518.36, + "end": 1521.34, + "probability": 0.9751 + }, + { + "start": 1521.84, + "end": 1525.22, + "probability": 0.9878 + }, + { + "start": 1525.72, + "end": 1526.68, + "probability": 0.7006 + }, + { + "start": 1527.24, + "end": 1531.46, + "probability": 0.9757 + }, + { + "start": 1531.46, + "end": 1534.72, + "probability": 0.9822 + }, + { + "start": 1535.18, + "end": 1536.64, + "probability": 0.4298 + }, + { + "start": 1538.08, + "end": 1540.6, + "probability": 0.354 + }, + { + "start": 1540.66, + "end": 1541.62, + "probability": 0.649 + }, + { + "start": 1541.86, + "end": 1542.46, + "probability": 0.7926 + }, + { + "start": 1542.7, + "end": 1548.4, + "probability": 0.9706 + }, + { + "start": 1548.56, + "end": 1549.7, + "probability": 0.6075 + }, + { + "start": 1549.72, + "end": 1550.72, + "probability": 0.6515 + }, + { + "start": 1551.66, + "end": 1551.66, + "probability": 0.315 + }, + { + "start": 1551.66, + "end": 1553.9, + "probability": 0.9679 + }, + { + "start": 1553.96, + "end": 1556.99, + "probability": 0.8828 + }, + { + "start": 1557.88, + "end": 1558.22, + "probability": 0.7581 + }, + { + "start": 1558.4, + "end": 1559.24, + "probability": 0.9505 + }, + { + "start": 1559.5, + "end": 1564.28, + "probability": 0.8853 + }, + { + "start": 1564.42, + "end": 1573.34, + "probability": 0.9606 + }, + { + "start": 1573.56, + "end": 1581.34, + "probability": 0.6827 + }, + { + "start": 1582.02, + "end": 1582.28, + "probability": 0.4169 + }, + { + "start": 1582.3, + "end": 1588.56, + "probability": 0.6296 + }, + { + "start": 1588.56, + "end": 1592.36, + "probability": 0.9671 + }, + { + "start": 1592.46, + "end": 1592.78, + "probability": 0.7167 + }, + { + "start": 1593.36, + "end": 1593.6, + "probability": 0.5855 + }, + { + "start": 1593.74, + "end": 1595.32, + "probability": 0.9644 + }, + { + "start": 1604.04, + "end": 1604.6, + "probability": 0.3375 + }, + { + "start": 1604.6, + "end": 1605.14, + "probability": 0.3854 + }, + { + "start": 1605.5, + "end": 1608.1, + "probability": 0.8297 + }, + { + "start": 1608.9, + "end": 1611.44, + "probability": 0.9392 + }, + { + "start": 1612.12, + "end": 1620.6, + "probability": 0.9368 + }, + { + "start": 1621.74, + "end": 1623.44, + "probability": 0.6556 + }, + { + "start": 1624.08, + "end": 1630.4, + "probability": 0.9818 + }, + { + "start": 1630.94, + "end": 1635.58, + "probability": 0.6412 + }, + { + "start": 1637.06, + "end": 1641.58, + "probability": 0.8954 + }, + { + "start": 1641.58, + "end": 1645.24, + "probability": 0.961 + }, + { + "start": 1646.1, + "end": 1648.06, + "probability": 0.6934 + }, + { + "start": 1648.7, + "end": 1650.52, + "probability": 0.9406 + }, + { + "start": 1650.98, + "end": 1652.95, + "probability": 0.9316 + }, + { + "start": 1653.68, + "end": 1656.34, + "probability": 0.9839 + }, + { + "start": 1656.9, + "end": 1661.88, + "probability": 0.9912 + }, + { + "start": 1662.04, + "end": 1662.96, + "probability": 0.9821 + }, + { + "start": 1663.12, + "end": 1663.56, + "probability": 0.7102 + }, + { + "start": 1663.68, + "end": 1668.04, + "probability": 0.9846 + }, + { + "start": 1668.46, + "end": 1672.14, + "probability": 0.6934 + }, + { + "start": 1672.68, + "end": 1674.0, + "probability": 0.581 + }, + { + "start": 1674.16, + "end": 1676.96, + "probability": 0.9908 + }, + { + "start": 1677.38, + "end": 1680.82, + "probability": 0.9702 + }, + { + "start": 1681.2, + "end": 1683.88, + "probability": 0.9546 + }, + { + "start": 1684.16, + "end": 1684.34, + "probability": 0.6795 + }, + { + "start": 1684.34, + "end": 1684.52, + "probability": 0.5334 + }, + { + "start": 1684.82, + "end": 1685.18, + "probability": 0.438 + }, + { + "start": 1685.87, + "end": 1687.48, + "probability": 0.6728 + }, + { + "start": 1687.58, + "end": 1691.96, + "probability": 0.7488 + }, + { + "start": 1692.76, + "end": 1697.68, + "probability": 0.9976 + }, + { + "start": 1698.2, + "end": 1701.14, + "probability": 0.985 + }, + { + "start": 1701.22, + "end": 1701.46, + "probability": 0.5476 + }, + { + "start": 1702.12, + "end": 1709.06, + "probability": 0.7505 + }, + { + "start": 1709.92, + "end": 1711.76, + "probability": 0.7545 + }, + { + "start": 1711.76, + "end": 1714.68, + "probability": 0.9953 + }, + { + "start": 1715.1, + "end": 1720.56, + "probability": 0.9926 + }, + { + "start": 1721.56, + "end": 1724.76, + "probability": 0.996 + }, + { + "start": 1725.62, + "end": 1726.5, + "probability": 0.798 + }, + { + "start": 1726.62, + "end": 1727.78, + "probability": 0.6672 + }, + { + "start": 1727.86, + "end": 1729.62, + "probability": 0.821 + }, + { + "start": 1730.7, + "end": 1732.78, + "probability": 0.9839 + }, + { + "start": 1734.96, + "end": 1740.0, + "probability": 0.9987 + }, + { + "start": 1745.02, + "end": 1748.84, + "probability": 0.7524 + }, + { + "start": 1750.08, + "end": 1751.06, + "probability": 0.5497 + }, + { + "start": 1751.34, + "end": 1754.82, + "probability": 0.9659 + }, + { + "start": 1755.48, + "end": 1757.8, + "probability": 0.7937 + }, + { + "start": 1760.42, + "end": 1762.38, + "probability": 0.4127 + }, + { + "start": 1763.24, + "end": 1770.7, + "probability": 0.9995 + }, + { + "start": 1771.64, + "end": 1772.74, + "probability": 0.999 + }, + { + "start": 1774.0, + "end": 1776.62, + "probability": 0.5468 + }, + { + "start": 1776.8, + "end": 1782.52, + "probability": 0.9535 + }, + { + "start": 1785.72, + "end": 1787.36, + "probability": 0.9943 + }, + { + "start": 1789.3, + "end": 1790.14, + "probability": 0.8745 + }, + { + "start": 1792.18, + "end": 1795.44, + "probability": 0.9319 + }, + { + "start": 1796.6, + "end": 1799.58, + "probability": 0.8418 + }, + { + "start": 1799.58, + "end": 1801.4, + "probability": 0.7018 + }, + { + "start": 1802.12, + "end": 1804.86, + "probability": 0.9369 + }, + { + "start": 1805.1, + "end": 1806.82, + "probability": 0.995 + }, + { + "start": 1807.76, + "end": 1811.08, + "probability": 0.9949 + }, + { + "start": 1813.6, + "end": 1820.94, + "probability": 0.9908 + }, + { + "start": 1821.42, + "end": 1824.94, + "probability": 0.9463 + }, + { + "start": 1826.78, + "end": 1826.94, + "probability": 0.4268 + }, + { + "start": 1827.6, + "end": 1829.62, + "probability": 0.6206 + }, + { + "start": 1830.08, + "end": 1832.72, + "probability": 0.6219 + }, + { + "start": 1833.28, + "end": 1835.28, + "probability": 0.4438 + }, + { + "start": 1835.48, + "end": 1836.38, + "probability": 0.5123 + }, + { + "start": 1836.38, + "end": 1836.38, + "probability": 0.5495 + }, + { + "start": 1836.38, + "end": 1837.74, + "probability": 0.9609 + }, + { + "start": 1837.76, + "end": 1838.18, + "probability": 0.8963 + }, + { + "start": 1840.78, + "end": 1841.36, + "probability": 0.977 + }, + { + "start": 1843.92, + "end": 1850.14, + "probability": 0.9987 + }, + { + "start": 1851.2, + "end": 1853.68, + "probability": 0.9998 + }, + { + "start": 1854.3, + "end": 1855.72, + "probability": 0.8824 + }, + { + "start": 1856.86, + "end": 1861.54, + "probability": 0.987 + }, + { + "start": 1862.12, + "end": 1863.12, + "probability": 0.7852 + }, + { + "start": 1863.94, + "end": 1867.88, + "probability": 0.863 + }, + { + "start": 1868.56, + "end": 1871.28, + "probability": 0.9898 + }, + { + "start": 1872.54, + "end": 1875.99, + "probability": 0.998 + }, + { + "start": 1876.32, + "end": 1879.82, + "probability": 0.8732 + }, + { + "start": 1879.88, + "end": 1883.26, + "probability": 0.7231 + }, + { + "start": 1884.56, + "end": 1886.46, + "probability": 0.996 + }, + { + "start": 1887.06, + "end": 1890.16, + "probability": 0.9609 + }, + { + "start": 1890.62, + "end": 1893.04, + "probability": 0.9963 + }, + { + "start": 1894.02, + "end": 1896.36, + "probability": 0.9917 + }, + { + "start": 1900.24, + "end": 1902.26, + "probability": 0.9987 + }, + { + "start": 1906.52, + "end": 1911.54, + "probability": 0.9991 + }, + { + "start": 1912.22, + "end": 1916.38, + "probability": 0.9956 + }, + { + "start": 1917.06, + "end": 1919.04, + "probability": 0.9956 + }, + { + "start": 1920.48, + "end": 1921.48, + "probability": 0.7539 + }, + { + "start": 1922.76, + "end": 1925.28, + "probability": 0.9971 + }, + { + "start": 1925.58, + "end": 1928.34, + "probability": 0.9956 + }, + { + "start": 1928.62, + "end": 1930.54, + "probability": 0.897 + }, + { + "start": 1931.56, + "end": 1934.46, + "probability": 0.9218 + }, + { + "start": 1935.04, + "end": 1938.34, + "probability": 0.9257 + }, + { + "start": 1939.46, + "end": 1940.88, + "probability": 0.943 + }, + { + "start": 1941.04, + "end": 1944.12, + "probability": 0.9764 + }, + { + "start": 1944.26, + "end": 1945.24, + "probability": 0.8853 + }, + { + "start": 1945.6, + "end": 1946.88, + "probability": 0.9906 + }, + { + "start": 1947.64, + "end": 1951.6, + "probability": 0.8521 + }, + { + "start": 1951.7, + "end": 1955.98, + "probability": 0.9075 + }, + { + "start": 1956.04, + "end": 1959.4, + "probability": 0.9849 + }, + { + "start": 1961.36, + "end": 1963.64, + "probability": 0.6734 + }, + { + "start": 1964.08, + "end": 1965.8, + "probability": 0.7756 + }, + { + "start": 1966.02, + "end": 1966.38, + "probability": 0.8617 + }, + { + "start": 1967.14, + "end": 1969.46, + "probability": 0.756 + }, + { + "start": 1970.4, + "end": 1971.94, + "probability": 0.8758 + }, + { + "start": 1972.04, + "end": 1976.81, + "probability": 0.9925 + }, + { + "start": 1977.14, + "end": 1981.4, + "probability": 0.9807 + }, + { + "start": 1981.76, + "end": 1986.14, + "probability": 0.9563 + }, + { + "start": 1986.76, + "end": 1989.42, + "probability": 0.9955 + }, + { + "start": 1990.36, + "end": 1993.42, + "probability": 0.7954 + }, + { + "start": 1994.14, + "end": 1995.1, + "probability": 0.8211 + }, + { + "start": 1995.24, + "end": 1998.04, + "probability": 0.8611 + }, + { + "start": 1998.18, + "end": 1999.49, + "probability": 0.8766 + }, + { + "start": 2000.2, + "end": 2003.62, + "probability": 0.9857 + }, + { + "start": 2004.2, + "end": 2004.76, + "probability": 0.8453 + }, + { + "start": 2004.88, + "end": 2009.12, + "probability": 0.491 + }, + { + "start": 2011.3, + "end": 2018.08, + "probability": 0.9731 + }, + { + "start": 2018.86, + "end": 2022.62, + "probability": 0.9918 + }, + { + "start": 2023.54, + "end": 2024.12, + "probability": 0.4536 + }, + { + "start": 2025.38, + "end": 2026.92, + "probability": 0.7307 + }, + { + "start": 2027.8, + "end": 2029.02, + "probability": 0.9155 + }, + { + "start": 2030.22, + "end": 2033.48, + "probability": 0.9643 + }, + { + "start": 2034.0, + "end": 2036.26, + "probability": 0.9888 + }, + { + "start": 2036.46, + "end": 2037.19, + "probability": 0.8677 + }, + { + "start": 2037.84, + "end": 2039.19, + "probability": 0.9606 + }, + { + "start": 2039.92, + "end": 2041.02, + "probability": 0.8926 + }, + { + "start": 2042.54, + "end": 2044.78, + "probability": 0.844 + }, + { + "start": 2046.06, + "end": 2046.86, + "probability": 0.699 + }, + { + "start": 2047.74, + "end": 2048.14, + "probability": 0.6852 + }, + { + "start": 2050.86, + "end": 2053.46, + "probability": 0.9058 + }, + { + "start": 2054.7, + "end": 2059.22, + "probability": 0.8538 + }, + { + "start": 2059.22, + "end": 2061.9, + "probability": 0.9894 + }, + { + "start": 2064.38, + "end": 2066.48, + "probability": 0.9989 + }, + { + "start": 2067.02, + "end": 2068.38, + "probability": 0.9993 + }, + { + "start": 2069.58, + "end": 2072.12, + "probability": 0.691 + }, + { + "start": 2072.66, + "end": 2074.68, + "probability": 0.9893 + }, + { + "start": 2075.72, + "end": 2078.64, + "probability": 0.9953 + }, + { + "start": 2079.2, + "end": 2083.16, + "probability": 0.9951 + }, + { + "start": 2083.4, + "end": 2085.04, + "probability": 0.9849 + }, + { + "start": 2085.68, + "end": 2087.1, + "probability": 0.5331 + }, + { + "start": 2089.2, + "end": 2092.66, + "probability": 0.9819 + }, + { + "start": 2092.9, + "end": 2095.58, + "probability": 0.9946 + }, + { + "start": 2095.82, + "end": 2099.98, + "probability": 0.9936 + }, + { + "start": 2102.94, + "end": 2103.68, + "probability": 0.728 + }, + { + "start": 2104.28, + "end": 2107.98, + "probability": 0.9353 + }, + { + "start": 2108.86, + "end": 2113.26, + "probability": 0.9355 + }, + { + "start": 2113.86, + "end": 2115.92, + "probability": 0.8983 + }, + { + "start": 2116.72, + "end": 2119.98, + "probability": 0.9506 + }, + { + "start": 2120.62, + "end": 2128.8, + "probability": 0.9896 + }, + { + "start": 2128.8, + "end": 2134.66, + "probability": 0.9371 + }, + { + "start": 2135.14, + "end": 2135.26, + "probability": 0.1165 + }, + { + "start": 2137.9, + "end": 2141.94, + "probability": 0.9951 + }, + { + "start": 2142.26, + "end": 2144.64, + "probability": 0.968 + }, + { + "start": 2145.72, + "end": 2147.78, + "probability": 0.9336 + }, + { + "start": 2147.88, + "end": 2150.54, + "probability": 0.842 + }, + { + "start": 2151.44, + "end": 2154.72, + "probability": 0.9773 + }, + { + "start": 2155.44, + "end": 2157.98, + "probability": 0.7629 + }, + { + "start": 2158.92, + "end": 2161.16, + "probability": 0.9564 + }, + { + "start": 2161.16, + "end": 2165.22, + "probability": 0.8903 + }, + { + "start": 2165.86, + "end": 2173.88, + "probability": 0.8793 + }, + { + "start": 2175.24, + "end": 2181.18, + "probability": 0.9001 + }, + { + "start": 2182.26, + "end": 2185.92, + "probability": 0.8232 + }, + { + "start": 2186.44, + "end": 2188.54, + "probability": 0.7313 + }, + { + "start": 2189.96, + "end": 2189.96, + "probability": 0.8159 + }, + { + "start": 2193.04, + "end": 2196.26, + "probability": 0.9971 + }, + { + "start": 2197.02, + "end": 2200.08, + "probability": 0.9575 + }, + { + "start": 2200.08, + "end": 2203.34, + "probability": 0.9993 + }, + { + "start": 2205.52, + "end": 2207.36, + "probability": 0.7936 + }, + { + "start": 2207.98, + "end": 2215.92, + "probability": 0.958 + }, + { + "start": 2216.6, + "end": 2217.35, + "probability": 0.5124 + }, + { + "start": 2218.32, + "end": 2222.7, + "probability": 0.9953 + }, + { + "start": 2223.08, + "end": 2225.38, + "probability": 0.9964 + }, + { + "start": 2225.38, + "end": 2228.06, + "probability": 0.9972 + }, + { + "start": 2228.68, + "end": 2228.92, + "probability": 0.944 + }, + { + "start": 2229.22, + "end": 2235.32, + "probability": 0.99 + }, + { + "start": 2236.08, + "end": 2238.94, + "probability": 0.9779 + }, + { + "start": 2241.08, + "end": 2241.66, + "probability": 0.9174 + }, + { + "start": 2241.76, + "end": 2242.94, + "probability": 0.8374 + }, + { + "start": 2243.1, + "end": 2247.3, + "probability": 0.8596 + }, + { + "start": 2247.68, + "end": 2249.06, + "probability": 0.8853 + }, + { + "start": 2249.94, + "end": 2251.86, + "probability": 0.8449 + }, + { + "start": 2252.18, + "end": 2253.88, + "probability": 0.9897 + }, + { + "start": 2254.2, + "end": 2255.48, + "probability": 0.835 + }, + { + "start": 2256.42, + "end": 2261.4, + "probability": 0.9971 + }, + { + "start": 2262.24, + "end": 2264.28, + "probability": 0.9302 + }, + { + "start": 2264.86, + "end": 2266.58, + "probability": 0.8366 + }, + { + "start": 2270.28, + "end": 2273.76, + "probability": 0.9411 + }, + { + "start": 2273.9, + "end": 2275.38, + "probability": 0.8442 + }, + { + "start": 2275.56, + "end": 2277.1, + "probability": 0.9136 + }, + { + "start": 2277.22, + "end": 2278.74, + "probability": 0.8454 + }, + { + "start": 2279.46, + "end": 2284.08, + "probability": 0.9886 + }, + { + "start": 2284.46, + "end": 2287.68, + "probability": 0.991 + }, + { + "start": 2288.16, + "end": 2289.26, + "probability": 0.9407 + }, + { + "start": 2289.66, + "end": 2290.28, + "probability": 0.982 + }, + { + "start": 2290.98, + "end": 2291.74, + "probability": 0.974 + }, + { + "start": 2292.54, + "end": 2296.72, + "probability": 0.999 + }, + { + "start": 2297.28, + "end": 2300.7, + "probability": 0.9987 + }, + { + "start": 2301.5, + "end": 2303.2, + "probability": 0.9979 + }, + { + "start": 2303.78, + "end": 2305.22, + "probability": 0.9995 + }, + { + "start": 2306.2, + "end": 2306.88, + "probability": 0.587 + }, + { + "start": 2307.44, + "end": 2309.06, + "probability": 0.6424 + }, + { + "start": 2310.32, + "end": 2310.95, + "probability": 0.0346 + }, + { + "start": 2313.14, + "end": 2314.78, + "probability": 0.9449 + }, + { + "start": 2314.8, + "end": 2318.92, + "probability": 0.9751 + }, + { + "start": 2319.0, + "end": 2319.54, + "probability": 0.9283 + }, + { + "start": 2320.22, + "end": 2322.96, + "probability": 0.6883 + }, + { + "start": 2323.68, + "end": 2327.3, + "probability": 0.6468 + }, + { + "start": 2328.02, + "end": 2331.67, + "probability": 0.8471 + }, + { + "start": 2332.12, + "end": 2334.94, + "probability": 0.981 + }, + { + "start": 2335.94, + "end": 2340.16, + "probability": 0.8831 + }, + { + "start": 2341.76, + "end": 2343.56, + "probability": 0.8602 + }, + { + "start": 2344.12, + "end": 2344.78, + "probability": 0.4972 + }, + { + "start": 2344.88, + "end": 2351.2, + "probability": 0.9882 + }, + { + "start": 2351.2, + "end": 2355.5, + "probability": 0.992 + }, + { + "start": 2355.98, + "end": 2357.92, + "probability": 0.9307 + }, + { + "start": 2358.0, + "end": 2359.12, + "probability": 0.9487 + }, + { + "start": 2359.56, + "end": 2360.42, + "probability": 0.9771 + }, + { + "start": 2360.6, + "end": 2360.94, + "probability": 0.6975 + }, + { + "start": 2361.76, + "end": 2364.82, + "probability": 0.9802 + }, + { + "start": 2364.82, + "end": 2367.36, + "probability": 0.9973 + }, + { + "start": 2367.84, + "end": 2370.66, + "probability": 0.9017 + }, + { + "start": 2371.34, + "end": 2376.48, + "probability": 0.8616 + }, + { + "start": 2377.04, + "end": 2377.66, + "probability": 0.7434 + }, + { + "start": 2379.3, + "end": 2382.82, + "probability": 0.9961 + }, + { + "start": 2383.1, + "end": 2383.62, + "probability": 0.8677 + }, + { + "start": 2383.78, + "end": 2384.2, + "probability": 0.9307 + }, + { + "start": 2384.9, + "end": 2385.44, + "probability": 0.7184 + }, + { + "start": 2387.08, + "end": 2387.92, + "probability": 0.8041 + }, + { + "start": 2388.54, + "end": 2392.7, + "probability": 0.9856 + }, + { + "start": 2393.86, + "end": 2395.25, + "probability": 0.9471 + }, + { + "start": 2396.92, + "end": 2397.4, + "probability": 0.9452 + }, + { + "start": 2397.48, + "end": 2398.36, + "probability": 0.9654 + }, + { + "start": 2398.38, + "end": 2402.24, + "probability": 0.9995 + }, + { + "start": 2402.24, + "end": 2405.2, + "probability": 0.9983 + }, + { + "start": 2405.68, + "end": 2405.68, + "probability": 0.5845 + }, + { + "start": 2405.76, + "end": 2406.84, + "probability": 0.7872 + }, + { + "start": 2407.2, + "end": 2410.64, + "probability": 0.8403 + }, + { + "start": 2410.64, + "end": 2413.72, + "probability": 0.9481 + }, + { + "start": 2414.74, + "end": 2415.71, + "probability": 0.9878 + }, + { + "start": 2415.98, + "end": 2419.22, + "probability": 0.8715 + }, + { + "start": 2419.82, + "end": 2421.2, + "probability": 0.9879 + }, + { + "start": 2421.48, + "end": 2422.64, + "probability": 0.461 + }, + { + "start": 2423.34, + "end": 2424.66, + "probability": 0.9556 + }, + { + "start": 2425.32, + "end": 2425.72, + "probability": 0.9138 + }, + { + "start": 2425.84, + "end": 2426.9, + "probability": 0.8219 + }, + { + "start": 2427.36, + "end": 2430.14, + "probability": 0.9956 + }, + { + "start": 2430.64, + "end": 2433.26, + "probability": 0.7978 + }, + { + "start": 2433.84, + "end": 2436.28, + "probability": 0.973 + }, + { + "start": 2437.15, + "end": 2438.68, + "probability": 0.984 + }, + { + "start": 2439.24, + "end": 2439.9, + "probability": 0.6858 + }, + { + "start": 2440.7, + "end": 2441.22, + "probability": 0.7404 + }, + { + "start": 2441.36, + "end": 2443.26, + "probability": 0.6709 + }, + { + "start": 2444.32, + "end": 2445.22, + "probability": 0.9866 + }, + { + "start": 2446.14, + "end": 2451.9, + "probability": 0.7543 + }, + { + "start": 2452.72, + "end": 2454.9, + "probability": 0.925 + }, + { + "start": 2455.2, + "end": 2457.06, + "probability": 0.9257 + }, + { + "start": 2458.08, + "end": 2461.2, + "probability": 0.9387 + }, + { + "start": 2461.86, + "end": 2464.08, + "probability": 0.8607 + }, + { + "start": 2464.66, + "end": 2467.31, + "probability": 0.9225 + }, + { + "start": 2467.38, + "end": 2468.64, + "probability": 0.9858 + }, + { + "start": 2468.82, + "end": 2469.26, + "probability": 0.6451 + }, + { + "start": 2469.4, + "end": 2471.34, + "probability": 0.6785 + }, + { + "start": 2471.46, + "end": 2473.41, + "probability": 0.9843 + }, + { + "start": 2473.68, + "end": 2474.32, + "probability": 0.6994 + }, + { + "start": 2475.08, + "end": 2476.12, + "probability": 0.5041 + }, + { + "start": 2476.44, + "end": 2478.08, + "probability": 0.6142 + }, + { + "start": 2478.24, + "end": 2479.3, + "probability": 0.7257 + }, + { + "start": 2479.36, + "end": 2479.46, + "probability": 0.3454 + }, + { + "start": 2480.9, + "end": 2483.14, + "probability": 0.8082 + }, + { + "start": 2483.18, + "end": 2484.04, + "probability": 0.797 + }, + { + "start": 2484.5, + "end": 2486.6, + "probability": 0.9888 + }, + { + "start": 2486.68, + "end": 2487.2, + "probability": 0.6758 + }, + { + "start": 2487.9, + "end": 2487.9, + "probability": 0.003 + }, + { + "start": 2487.9, + "end": 2489.01, + "probability": 0.5214 + }, + { + "start": 2489.26, + "end": 2491.56, + "probability": 0.9423 + }, + { + "start": 2491.9, + "end": 2492.38, + "probability": 0.6768 + }, + { + "start": 2493.3, + "end": 2493.94, + "probability": 0.9612 + }, + { + "start": 2494.86, + "end": 2498.36, + "probability": 0.8734 + }, + { + "start": 2498.5, + "end": 2499.28, + "probability": 0.1669 + }, + { + "start": 2499.32, + "end": 2501.02, + "probability": 0.7978 + }, + { + "start": 2501.08, + "end": 2501.52, + "probability": 0.6938 + }, + { + "start": 2501.84, + "end": 2502.24, + "probability": 0.5079 + }, + { + "start": 2502.98, + "end": 2503.98, + "probability": 0.8503 + }, + { + "start": 2504.8, + "end": 2506.12, + "probability": 0.9093 + }, + { + "start": 2506.3, + "end": 2507.36, + "probability": 0.808 + }, + { + "start": 2507.54, + "end": 2509.64, + "probability": 0.9729 + }, + { + "start": 2509.72, + "end": 2510.04, + "probability": 0.3409 + }, + { + "start": 2510.54, + "end": 2511.81, + "probability": 0.4994 + }, + { + "start": 2511.98, + "end": 2518.3, + "probability": 0.8979 + }, + { + "start": 2518.68, + "end": 2519.44, + "probability": 0.5355 + }, + { + "start": 2520.38, + "end": 2524.88, + "probability": 0.9517 + }, + { + "start": 2524.96, + "end": 2525.98, + "probability": 0.7959 + }, + { + "start": 2526.1, + "end": 2527.38, + "probability": 0.9161 + }, + { + "start": 2527.48, + "end": 2528.56, + "probability": 0.6577 + }, + { + "start": 2528.68, + "end": 2532.18, + "probability": 0.9303 + }, + { + "start": 2532.32, + "end": 2535.76, + "probability": 0.7632 + }, + { + "start": 2535.86, + "end": 2539.24, + "probability": 0.957 + }, + { + "start": 2539.84, + "end": 2541.04, + "probability": 0.9971 + }, + { + "start": 2541.1, + "end": 2547.62, + "probability": 0.9785 + }, + { + "start": 2548.22, + "end": 2551.54, + "probability": 0.6795 + }, + { + "start": 2552.04, + "end": 2552.74, + "probability": 0.6357 + }, + { + "start": 2552.92, + "end": 2554.16, + "probability": 0.8521 + }, + { + "start": 2554.22, + "end": 2557.72, + "probability": 0.9556 + }, + { + "start": 2557.86, + "end": 2559.74, + "probability": 0.6713 + }, + { + "start": 2560.44, + "end": 2565.42, + "probability": 0.7098 + }, + { + "start": 2565.95, + "end": 2569.44, + "probability": 0.8204 + }, + { + "start": 2569.6, + "end": 2572.05, + "probability": 0.9486 + }, + { + "start": 2572.86, + "end": 2573.36, + "probability": 0.6696 + }, + { + "start": 2573.38, + "end": 2574.78, + "probability": 0.9849 + }, + { + "start": 2575.22, + "end": 2576.88, + "probability": 0.9831 + }, + { + "start": 2577.18, + "end": 2577.86, + "probability": 0.6454 + }, + { + "start": 2578.26, + "end": 2579.22, + "probability": 0.7239 + }, + { + "start": 2579.76, + "end": 2583.46, + "probability": 0.7079 + }, + { + "start": 2583.52, + "end": 2585.14, + "probability": 0.6746 + }, + { + "start": 2585.28, + "end": 2587.16, + "probability": 0.9153 + }, + { + "start": 2587.82, + "end": 2589.86, + "probability": 0.876 + }, + { + "start": 2590.95, + "end": 2593.92, + "probability": 0.8479 + }, + { + "start": 2594.3, + "end": 2595.9, + "probability": 0.9399 + }, + { + "start": 2596.5, + "end": 2596.9, + "probability": 0.7692 + }, + { + "start": 2597.26, + "end": 2597.84, + "probability": 0.8682 + }, + { + "start": 2598.04, + "end": 2600.92, + "probability": 0.9676 + }, + { + "start": 2601.04, + "end": 2601.82, + "probability": 0.5582 + }, + { + "start": 2602.0, + "end": 2603.0, + "probability": 0.6505 + }, + { + "start": 2603.52, + "end": 2606.14, + "probability": 0.8748 + }, + { + "start": 2606.44, + "end": 2607.51, + "probability": 0.3787 + }, + { + "start": 2608.1, + "end": 2609.19, + "probability": 0.5831 + }, + { + "start": 2610.12, + "end": 2610.32, + "probability": 0.2846 + }, + { + "start": 2610.48, + "end": 2611.02, + "probability": 0.7823 + }, + { + "start": 2611.18, + "end": 2613.54, + "probability": 0.4221 + }, + { + "start": 2614.22, + "end": 2614.86, + "probability": 0.3319 + }, + { + "start": 2617.06, + "end": 2617.06, + "probability": 0.313 + }, + { + "start": 2617.06, + "end": 2617.84, + "probability": 0.6746 + }, + { + "start": 2618.44, + "end": 2619.82, + "probability": 0.6657 + }, + { + "start": 2620.3, + "end": 2621.96, + "probability": 0.8247 + }, + { + "start": 2621.98, + "end": 2622.42, + "probability": 0.7655 + }, + { + "start": 2624.12, + "end": 2624.66, + "probability": 0.45 + }, + { + "start": 2624.8, + "end": 2629.26, + "probability": 0.6759 + }, + { + "start": 2629.86, + "end": 2633.74, + "probability": 0.9844 + }, + { + "start": 2634.24, + "end": 2636.12, + "probability": 0.9418 + }, + { + "start": 2636.42, + "end": 2639.8, + "probability": 0.9836 + }, + { + "start": 2639.92, + "end": 2641.04, + "probability": 0.365 + }, + { + "start": 2641.98, + "end": 2642.52, + "probability": 0.3122 + }, + { + "start": 2642.92, + "end": 2643.42, + "probability": 0.4931 + }, + { + "start": 2643.52, + "end": 2644.44, + "probability": 0.9426 + }, + { + "start": 2645.3, + "end": 2645.9, + "probability": 0.6381 + }, + { + "start": 2645.96, + "end": 2647.22, + "probability": 0.9747 + }, + { + "start": 2654.02, + "end": 2656.6, + "probability": 0.7121 + }, + { + "start": 2658.16, + "end": 2664.38, + "probability": 0.9917 + }, + { + "start": 2665.14, + "end": 2668.14, + "probability": 0.3246 + }, + { + "start": 2668.76, + "end": 2669.52, + "probability": 0.5123 + }, + { + "start": 2670.5, + "end": 2678.82, + "probability": 0.9629 + }, + { + "start": 2679.68, + "end": 2686.44, + "probability": 0.9727 + }, + { + "start": 2687.14, + "end": 2689.24, + "probability": 0.5406 + }, + { + "start": 2693.98, + "end": 2697.34, + "probability": 0.8002 + }, + { + "start": 2699.78, + "end": 2700.26, + "probability": 0.6593 + }, + { + "start": 2700.26, + "end": 2700.26, + "probability": 0.1168 + }, + { + "start": 2700.26, + "end": 2700.26, + "probability": 0.3765 + }, + { + "start": 2700.26, + "end": 2701.76, + "probability": 0.8465 + }, + { + "start": 2701.9, + "end": 2703.66, + "probability": 0.9483 + }, + { + "start": 2703.94, + "end": 2704.42, + "probability": 0.6743 + }, + { + "start": 2705.74, + "end": 2710.64, + "probability": 0.8796 + }, + { + "start": 2711.44, + "end": 2713.86, + "probability": 0.9922 + }, + { + "start": 2714.54, + "end": 2717.58, + "probability": 0.9645 + }, + { + "start": 2718.22, + "end": 2723.08, + "probability": 0.984 + }, + { + "start": 2723.08, + "end": 2728.12, + "probability": 0.8682 + }, + { + "start": 2728.6, + "end": 2732.52, + "probability": 0.8921 + }, + { + "start": 2734.28, + "end": 2738.56, + "probability": 0.7678 + }, + { + "start": 2739.6, + "end": 2743.76, + "probability": 0.886 + }, + { + "start": 2744.7, + "end": 2749.04, + "probability": 0.9849 + }, + { + "start": 2749.98, + "end": 2752.3, + "probability": 0.8441 + }, + { + "start": 2752.84, + "end": 2756.98, + "probability": 0.9771 + }, + { + "start": 2757.72, + "end": 2761.72, + "probability": 0.9487 + }, + { + "start": 2762.6, + "end": 2766.52, + "probability": 0.9746 + }, + { + "start": 2767.64, + "end": 2770.08, + "probability": 0.9706 + }, + { + "start": 2770.76, + "end": 2774.44, + "probability": 0.8326 + }, + { + "start": 2775.62, + "end": 2776.32, + "probability": 0.9178 + }, + { + "start": 2776.96, + "end": 2780.28, + "probability": 0.976 + }, + { + "start": 2781.34, + "end": 2786.66, + "probability": 0.9902 + }, + { + "start": 2787.54, + "end": 2794.52, + "probability": 0.9984 + }, + { + "start": 2795.0, + "end": 2800.94, + "probability": 0.9231 + }, + { + "start": 2802.08, + "end": 2806.41, + "probability": 0.9498 + }, + { + "start": 2807.2, + "end": 2808.66, + "probability": 0.9756 + }, + { + "start": 2810.64, + "end": 2811.82, + "probability": 0.7743 + }, + { + "start": 2814.62, + "end": 2816.34, + "probability": 0.8698 + }, + { + "start": 2816.94, + "end": 2821.91, + "probability": 0.944 + }, + { + "start": 2822.04, + "end": 2827.86, + "probability": 0.9588 + }, + { + "start": 2829.0, + "end": 2832.2, + "probability": 0.9042 + }, + { + "start": 2832.84, + "end": 2833.12, + "probability": 0.4383 + }, + { + "start": 2833.7, + "end": 2837.4, + "probability": 0.9088 + }, + { + "start": 2837.96, + "end": 2839.62, + "probability": 0.9108 + }, + { + "start": 2840.34, + "end": 2842.92, + "probability": 0.9709 + }, + { + "start": 2843.32, + "end": 2846.02, + "probability": 0.9976 + }, + { + "start": 2847.38, + "end": 2847.9, + "probability": 0.6149 + }, + { + "start": 2848.84, + "end": 2849.22, + "probability": 0.8419 + }, + { + "start": 2850.3, + "end": 2850.68, + "probability": 0.8197 + }, + { + "start": 2851.26, + "end": 2851.94, + "probability": 0.7841 + }, + { + "start": 2852.9, + "end": 2853.96, + "probability": 0.9731 + }, + { + "start": 2854.8, + "end": 2857.68, + "probability": 0.8615 + }, + { + "start": 2858.28, + "end": 2863.86, + "probability": 0.9937 + }, + { + "start": 2864.38, + "end": 2870.08, + "probability": 0.9897 + }, + { + "start": 2870.74, + "end": 2875.46, + "probability": 0.9736 + }, + { + "start": 2883.56, + "end": 2889.2, + "probability": 0.9961 + }, + { + "start": 2890.08, + "end": 2891.06, + "probability": 0.8837 + }, + { + "start": 2892.42, + "end": 2897.2, + "probability": 0.7138 + }, + { + "start": 2898.24, + "end": 2903.76, + "probability": 0.907 + }, + { + "start": 2904.14, + "end": 2905.52, + "probability": 0.9727 + }, + { + "start": 2905.62, + "end": 2910.28, + "probability": 0.7566 + }, + { + "start": 2910.98, + "end": 2913.0, + "probability": 0.9823 + }, + { + "start": 2913.19, + "end": 2916.04, + "probability": 0.9987 + }, + { + "start": 2916.44, + "end": 2916.9, + "probability": 0.5859 + }, + { + "start": 2917.26, + "end": 2921.62, + "probability": 0.968 + }, + { + "start": 2921.92, + "end": 2923.8, + "probability": 0.7366 + }, + { + "start": 2923.9, + "end": 2926.22, + "probability": 0.963 + }, + { + "start": 2926.34, + "end": 2927.26, + "probability": 0.6782 + }, + { + "start": 2927.36, + "end": 2928.5, + "probability": 0.7423 + }, + { + "start": 2928.94, + "end": 2929.84, + "probability": 0.8421 + }, + { + "start": 2930.64, + "end": 2931.8, + "probability": 0.4059 + }, + { + "start": 2931.88, + "end": 2934.08, + "probability": 0.8062 + }, + { + "start": 2934.24, + "end": 2935.18, + "probability": 0.6919 + }, + { + "start": 2935.6, + "end": 2938.02, + "probability": 0.7741 + }, + { + "start": 2938.14, + "end": 2939.36, + "probability": 0.956 + }, + { + "start": 2939.58, + "end": 2940.78, + "probability": 0.9943 + }, + { + "start": 2940.92, + "end": 2946.68, + "probability": 0.9902 + }, + { + "start": 2950.6, + "end": 2951.36, + "probability": 0.3919 + }, + { + "start": 2951.54, + "end": 2953.36, + "probability": 0.5073 + }, + { + "start": 2953.64, + "end": 2959.34, + "probability": 0.508 + }, + { + "start": 2959.78, + "end": 2962.68, + "probability": 0.5326 + }, + { + "start": 2962.7, + "end": 2963.68, + "probability": 0.8315 + }, + { + "start": 2963.74, + "end": 2965.56, + "probability": 0.7154 + }, + { + "start": 2965.58, + "end": 2968.1, + "probability": 0.7663 + }, + { + "start": 2968.38, + "end": 2969.38, + "probability": 0.7429 + }, + { + "start": 2970.32, + "end": 2972.08, + "probability": 0.9222 + }, + { + "start": 2972.36, + "end": 2974.3, + "probability": 0.8511 + }, + { + "start": 2974.3, + "end": 2977.2, + "probability": 0.7232 + }, + { + "start": 2977.56, + "end": 2978.58, + "probability": 0.4206 + }, + { + "start": 2978.94, + "end": 2980.02, + "probability": 0.7398 + }, + { + "start": 2980.1, + "end": 2981.48, + "probability": 0.8231 + }, + { + "start": 2981.52, + "end": 2981.52, + "probability": 0.3747 + }, + { + "start": 2981.56, + "end": 2983.36, + "probability": 0.5753 + }, + { + "start": 2983.42, + "end": 2984.28, + "probability": 0.8623 + }, + { + "start": 2984.34, + "end": 2986.8, + "probability": 0.9421 + }, + { + "start": 2986.88, + "end": 2988.78, + "probability": 0.9957 + }, + { + "start": 2989.04, + "end": 2990.44, + "probability": 0.981 + }, + { + "start": 2991.61, + "end": 2995.94, + "probability": 0.1556 + }, + { + "start": 2996.04, + "end": 2998.64, + "probability": 0.7102 + }, + { + "start": 2998.86, + "end": 2999.28, + "probability": 0.6677 + }, + { + "start": 2999.66, + "end": 3000.36, + "probability": 0.7296 + }, + { + "start": 3000.42, + "end": 3003.02, + "probability": 0.8352 + }, + { + "start": 3003.54, + "end": 3007.32, + "probability": 0.9613 + }, + { + "start": 3007.66, + "end": 3008.8, + "probability": 0.8139 + }, + { + "start": 3008.86, + "end": 3011.64, + "probability": 0.9267 + }, + { + "start": 3012.64, + "end": 3013.1, + "probability": 0.0779 + }, + { + "start": 3013.3, + "end": 3014.36, + "probability": 0.0154 + }, + { + "start": 3014.36, + "end": 3014.44, + "probability": 0.1165 + }, + { + "start": 3014.44, + "end": 3014.44, + "probability": 0.2897 + }, + { + "start": 3014.44, + "end": 3014.54, + "probability": 0.0168 + }, + { + "start": 3015.1, + "end": 3017.42, + "probability": 0.7523 + }, + { + "start": 3018.36, + "end": 3021.88, + "probability": 0.9932 + }, + { + "start": 3022.46, + "end": 3024.92, + "probability": 0.8221 + }, + { + "start": 3025.48, + "end": 3029.98, + "probability": 0.9935 + }, + { + "start": 3030.36, + "end": 3034.6, + "probability": 0.9893 + }, + { + "start": 3035.38, + "end": 3039.78, + "probability": 0.985 + }, + { + "start": 3039.96, + "end": 3040.3, + "probability": 0.6703 + }, + { + "start": 3040.34, + "end": 3040.88, + "probability": 0.5958 + }, + { + "start": 3041.2, + "end": 3043.48, + "probability": 0.9083 + }, + { + "start": 3044.38, + "end": 3045.68, + "probability": 0.478 + }, + { + "start": 3045.78, + "end": 3048.1, + "probability": 0.7669 + }, + { + "start": 3048.9, + "end": 3050.48, + "probability": 0.8872 + }, + { + "start": 3052.04, + "end": 3052.74, + "probability": 0.3057 + }, + { + "start": 3052.9, + "end": 3057.5, + "probability": 0.6662 + }, + { + "start": 3057.5, + "end": 3057.5, + "probability": 0.0406 + }, + { + "start": 3060.24, + "end": 3064.56, + "probability": 0.9985 + }, + { + "start": 3065.16, + "end": 3072.0, + "probability": 0.8282 + }, + { + "start": 3072.12, + "end": 3072.4, + "probability": 0.6718 + }, + { + "start": 3072.48, + "end": 3073.92, + "probability": 0.4947 + }, + { + "start": 3073.92, + "end": 3075.94, + "probability": 0.9096 + }, + { + "start": 3076.26, + "end": 3078.12, + "probability": 0.7414 + }, + { + "start": 3078.2, + "end": 3080.2, + "probability": 0.9985 + }, + { + "start": 3080.6, + "end": 3081.3, + "probability": 0.933 + }, + { + "start": 3081.4, + "end": 3082.76, + "probability": 0.9902 + }, + { + "start": 3083.18, + "end": 3085.76, + "probability": 0.97 + }, + { + "start": 3086.12, + "end": 3087.94, + "probability": 0.8906 + }, + { + "start": 3088.46, + "end": 3089.36, + "probability": 0.6783 + }, + { + "start": 3089.44, + "end": 3090.54, + "probability": 0.9573 + }, + { + "start": 3090.68, + "end": 3094.88, + "probability": 0.916 + }, + { + "start": 3094.96, + "end": 3095.58, + "probability": 0.4966 + }, + { + "start": 3096.38, + "end": 3099.66, + "probability": 0.9744 + }, + { + "start": 3100.24, + "end": 3103.46, + "probability": 0.9465 + }, + { + "start": 3103.46, + "end": 3106.32, + "probability": 0.9756 + }, + { + "start": 3106.8, + "end": 3108.22, + "probability": 0.9203 + }, + { + "start": 3108.48, + "end": 3110.84, + "probability": 0.8927 + }, + { + "start": 3112.09, + "end": 3112.71, + "probability": 0.1186 + }, + { + "start": 3112.8, + "end": 3114.24, + "probability": 0.4031 + }, + { + "start": 3114.32, + "end": 3114.78, + "probability": 0.7095 + }, + { + "start": 3114.94, + "end": 3115.32, + "probability": 0.4896 + }, + { + "start": 3115.46, + "end": 3118.58, + "probability": 0.8016 + }, + { + "start": 3118.74, + "end": 3119.66, + "probability": 0.5251 + }, + { + "start": 3119.72, + "end": 3120.14, + "probability": 0.8164 + }, + { + "start": 3120.26, + "end": 3122.64, + "probability": 0.8406 + }, + { + "start": 3122.74, + "end": 3123.62, + "probability": 0.9834 + }, + { + "start": 3124.64, + "end": 3124.78, + "probability": 0.6436 + }, + { + "start": 3124.78, + "end": 3125.46, + "probability": 0.5556 + }, + { + "start": 3125.74, + "end": 3128.12, + "probability": 0.7762 + }, + { + "start": 3128.24, + "end": 3129.0, + "probability": 0.9435 + }, + { + "start": 3129.1, + "end": 3130.26, + "probability": 0.8427 + }, + { + "start": 3130.6, + "end": 3131.24, + "probability": 0.7112 + }, + { + "start": 3132.74, + "end": 3138.1, + "probability": 0.9276 + }, + { + "start": 3139.76, + "end": 3143.42, + "probability": 0.8523 + }, + { + "start": 3144.12, + "end": 3144.28, + "probability": 0.4879 + }, + { + "start": 3144.32, + "end": 3145.62, + "probability": 0.7892 + }, + { + "start": 3145.88, + "end": 3149.96, + "probability": 0.9939 + }, + { + "start": 3150.42, + "end": 3152.68, + "probability": 0.886 + }, + { + "start": 3153.62, + "end": 3154.62, + "probability": 0.4033 + }, + { + "start": 3155.3, + "end": 3156.76, + "probability": 0.9515 + }, + { + "start": 3157.1, + "end": 3158.12, + "probability": 0.6453 + }, + { + "start": 3158.24, + "end": 3158.78, + "probability": 0.6825 + }, + { + "start": 3159.14, + "end": 3159.82, + "probability": 0.9132 + }, + { + "start": 3159.92, + "end": 3160.5, + "probability": 0.3303 + }, + { + "start": 3175.99, + "end": 3178.4, + "probability": 0.1575 + }, + { + "start": 3180.44, + "end": 3182.32, + "probability": 0.8077 + }, + { + "start": 3182.44, + "end": 3184.6, + "probability": 0.742 + }, + { + "start": 3185.12, + "end": 3188.83, + "probability": 0.1634 + }, + { + "start": 3190.88, + "end": 3191.42, + "probability": 0.1112 + }, + { + "start": 3192.86, + "end": 3193.54, + "probability": 0.0273 + }, + { + "start": 3196.78, + "end": 3196.86, + "probability": 0.1863 + }, + { + "start": 3197.28, + "end": 3197.6, + "probability": 0.0161 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.0, + "end": 3271.0, + "probability": 0.0 + }, + { + "start": 3271.4, + "end": 3271.4, + "probability": 0.1488 + }, + { + "start": 3271.4, + "end": 3272.58, + "probability": 0.4004 + }, + { + "start": 3273.1, + "end": 3274.97, + "probability": 0.812 + }, + { + "start": 3275.6, + "end": 3276.32, + "probability": 0.6891 + }, + { + "start": 3283.7, + "end": 3286.48, + "probability": 0.6389 + }, + { + "start": 3287.28, + "end": 3290.68, + "probability": 0.9866 + }, + { + "start": 3290.8, + "end": 3292.34, + "probability": 0.8438 + }, + { + "start": 3294.98, + "end": 3297.6, + "probability": 0.9507 + }, + { + "start": 3298.86, + "end": 3303.4, + "probability": 0.9979 + }, + { + "start": 3304.2, + "end": 3308.56, + "probability": 0.7837 + }, + { + "start": 3309.44, + "end": 3312.54, + "probability": 0.989 + }, + { + "start": 3313.86, + "end": 3315.42, + "probability": 0.976 + }, + { + "start": 3316.24, + "end": 3317.64, + "probability": 0.9933 + }, + { + "start": 3318.5, + "end": 3319.56, + "probability": 0.9965 + }, + { + "start": 3320.16, + "end": 3321.28, + "probability": 0.9314 + }, + { + "start": 3321.8, + "end": 3327.2, + "probability": 0.9861 + }, + { + "start": 3327.88, + "end": 3331.74, + "probability": 0.9979 + }, + { + "start": 3331.84, + "end": 3334.1, + "probability": 0.9056 + }, + { + "start": 3334.38, + "end": 3340.22, + "probability": 0.9391 + }, + { + "start": 3341.72, + "end": 3345.38, + "probability": 0.9941 + }, + { + "start": 3346.64, + "end": 3350.96, + "probability": 0.9058 + }, + { + "start": 3351.58, + "end": 3355.46, + "probability": 0.9437 + }, + { + "start": 3355.56, + "end": 3356.97, + "probability": 0.7388 + }, + { + "start": 3357.6, + "end": 3361.2, + "probability": 0.8982 + }, + { + "start": 3364.24, + "end": 3365.89, + "probability": 0.9812 + }, + { + "start": 3368.08, + "end": 3373.0, + "probability": 0.749 + }, + { + "start": 3373.64, + "end": 3374.78, + "probability": 0.5986 + }, + { + "start": 3376.38, + "end": 3379.56, + "probability": 0.9876 + }, + { + "start": 3380.66, + "end": 3383.7, + "probability": 0.9623 + }, + { + "start": 3384.38, + "end": 3390.74, + "probability": 0.9949 + }, + { + "start": 3392.06, + "end": 3394.28, + "probability": 0.9968 + }, + { + "start": 3395.46, + "end": 3397.0, + "probability": 0.9974 + }, + { + "start": 3397.6, + "end": 3399.9, + "probability": 0.9565 + }, + { + "start": 3401.28, + "end": 3402.72, + "probability": 0.9379 + }, + { + "start": 3403.36, + "end": 3404.84, + "probability": 0.9701 + }, + { + "start": 3405.62, + "end": 3408.92, + "probability": 0.9518 + }, + { + "start": 3409.7, + "end": 3410.68, + "probability": 0.9946 + }, + { + "start": 3411.38, + "end": 3412.68, + "probability": 0.9865 + }, + { + "start": 3413.58, + "end": 3414.34, + "probability": 0.3754 + }, + { + "start": 3415.98, + "end": 3418.16, + "probability": 0.9883 + }, + { + "start": 3419.62, + "end": 3421.34, + "probability": 0.7611 + }, + { + "start": 3422.24, + "end": 3423.94, + "probability": 0.998 + }, + { + "start": 3424.74, + "end": 3426.62, + "probability": 0.9974 + }, + { + "start": 3427.84, + "end": 3429.42, + "probability": 0.9241 + }, + { + "start": 3430.04, + "end": 3431.7, + "probability": 0.9578 + }, + { + "start": 3433.18, + "end": 3434.56, + "probability": 0.7156 + }, + { + "start": 3435.02, + "end": 3438.84, + "probability": 0.9885 + }, + { + "start": 3439.48, + "end": 3441.04, + "probability": 0.8363 + }, + { + "start": 3442.74, + "end": 3443.44, + "probability": 0.7644 + }, + { + "start": 3443.44, + "end": 3446.44, + "probability": 0.9695 + }, + { + "start": 3446.58, + "end": 3447.38, + "probability": 0.8229 + }, + { + "start": 3448.24, + "end": 3450.32, + "probability": 0.9146 + }, + { + "start": 3450.5, + "end": 3451.12, + "probability": 0.8681 + }, + { + "start": 3451.22, + "end": 3452.22, + "probability": 0.7962 + }, + { + "start": 3452.72, + "end": 3455.56, + "probability": 0.9777 + }, + { + "start": 3457.26, + "end": 3458.02, + "probability": 0.6928 + }, + { + "start": 3459.02, + "end": 3459.2, + "probability": 0.5153 + }, + { + "start": 3459.92, + "end": 3460.74, + "probability": 0.7787 + }, + { + "start": 3460.9, + "end": 3464.28, + "probability": 0.9416 + }, + { + "start": 3466.06, + "end": 3468.96, + "probability": 0.8441 + }, + { + "start": 3469.14, + "end": 3472.84, + "probability": 0.5977 + }, + { + "start": 3473.86, + "end": 3479.06, + "probability": 0.8416 + }, + { + "start": 3479.26, + "end": 3480.9, + "probability": 0.9666 + }, + { + "start": 3481.1, + "end": 3481.6, + "probability": 0.5564 + }, + { + "start": 3482.66, + "end": 3484.52, + "probability": 0.8095 + }, + { + "start": 3485.0, + "end": 3488.34, + "probability": 0.9875 + }, + { + "start": 3489.36, + "end": 3495.48, + "probability": 0.9487 + }, + { + "start": 3496.04, + "end": 3499.46, + "probability": 0.995 + }, + { + "start": 3501.3, + "end": 3503.96, + "probability": 0.9302 + }, + { + "start": 3504.8, + "end": 3511.3, + "probability": 0.9633 + }, + { + "start": 3512.16, + "end": 3514.98, + "probability": 0.8819 + }, + { + "start": 3516.52, + "end": 3518.18, + "probability": 0.8826 + }, + { + "start": 3518.88, + "end": 3523.8, + "probability": 0.8403 + }, + { + "start": 3523.88, + "end": 3524.78, + "probability": 0.9462 + }, + { + "start": 3525.16, + "end": 3526.16, + "probability": 0.8283 + }, + { + "start": 3527.18, + "end": 3533.86, + "probability": 0.9768 + }, + { + "start": 3533.92, + "end": 3534.5, + "probability": 0.8431 + }, + { + "start": 3534.92, + "end": 3536.16, + "probability": 0.8736 + }, + { + "start": 3536.64, + "end": 3537.88, + "probability": 0.9589 + }, + { + "start": 3537.98, + "end": 3540.16, + "probability": 0.979 + }, + { + "start": 3540.78, + "end": 3542.16, + "probability": 0.9931 + }, + { + "start": 3543.04, + "end": 3544.98, + "probability": 0.9159 + }, + { + "start": 3545.64, + "end": 3547.54, + "probability": 0.9889 + }, + { + "start": 3548.48, + "end": 3551.26, + "probability": 0.9919 + }, + { + "start": 3552.06, + "end": 3552.82, + "probability": 0.7869 + }, + { + "start": 3555.0, + "end": 3558.26, + "probability": 0.8225 + }, + { + "start": 3558.82, + "end": 3560.5, + "probability": 0.9428 + }, + { + "start": 3560.76, + "end": 3561.26, + "probability": 0.8297 + }, + { + "start": 3561.32, + "end": 3561.74, + "probability": 0.9533 + }, + { + "start": 3561.8, + "end": 3562.16, + "probability": 0.9211 + }, + { + "start": 3562.18, + "end": 3563.88, + "probability": 0.9593 + }, + { + "start": 3564.22, + "end": 3568.16, + "probability": 0.9729 + }, + { + "start": 3568.16, + "end": 3573.58, + "probability": 0.9988 + }, + { + "start": 3574.54, + "end": 3575.86, + "probability": 0.3466 + }, + { + "start": 3576.4, + "end": 3578.4, + "probability": 0.8044 + }, + { + "start": 3579.66, + "end": 3583.58, + "probability": 0.8919 + }, + { + "start": 3583.74, + "end": 3584.76, + "probability": 0.9492 + }, + { + "start": 3585.98, + "end": 3588.52, + "probability": 0.8796 + }, + { + "start": 3589.12, + "end": 3590.76, + "probability": 0.7466 + }, + { + "start": 3591.88, + "end": 3595.1, + "probability": 0.9432 + }, + { + "start": 3595.82, + "end": 3597.74, + "probability": 0.9781 + }, + { + "start": 3598.16, + "end": 3603.38, + "probability": 0.9911 + }, + { + "start": 3603.94, + "end": 3605.22, + "probability": 0.6355 + }, + { + "start": 3605.72, + "end": 3606.62, + "probability": 0.6049 + }, + { + "start": 3606.94, + "end": 3609.86, + "probability": 0.9734 + }, + { + "start": 3610.3, + "end": 3614.34, + "probability": 0.9778 + }, + { + "start": 3614.94, + "end": 3617.28, + "probability": 0.9941 + }, + { + "start": 3617.82, + "end": 3620.8, + "probability": 0.8608 + }, + { + "start": 3621.44, + "end": 3623.2, + "probability": 0.9556 + }, + { + "start": 3623.7, + "end": 3627.64, + "probability": 0.9965 + }, + { + "start": 3628.16, + "end": 3632.06, + "probability": 0.9888 + }, + { + "start": 3632.2, + "end": 3633.19, + "probability": 0.9912 + }, + { + "start": 3633.78, + "end": 3635.92, + "probability": 0.9932 + }, + { + "start": 3636.38, + "end": 3636.92, + "probability": 0.9206 + }, + { + "start": 3637.46, + "end": 3637.52, + "probability": 0.3361 + }, + { + "start": 3637.52, + "end": 3640.5, + "probability": 0.644 + }, + { + "start": 3640.9, + "end": 3642.32, + "probability": 0.8667 + }, + { + "start": 3655.46, + "end": 3656.66, + "probability": 0.5791 + }, + { + "start": 3656.66, + "end": 3657.96, + "probability": 0.4273 + }, + { + "start": 3657.96, + "end": 3658.18, + "probability": 0.4406 + }, + { + "start": 3658.46, + "end": 3660.16, + "probability": 0.6418 + }, + { + "start": 3660.24, + "end": 3663.9, + "probability": 0.9839 + }, + { + "start": 3664.44, + "end": 3665.54, + "probability": 0.915 + }, + { + "start": 3666.12, + "end": 3668.02, + "probability": 0.8004 + }, + { + "start": 3668.16, + "end": 3669.96, + "probability": 0.9737 + }, + { + "start": 3670.82, + "end": 3674.04, + "probability": 0.9683 + }, + { + "start": 3674.72, + "end": 3677.08, + "probability": 0.9739 + }, + { + "start": 3677.6, + "end": 3680.58, + "probability": 0.9794 + }, + { + "start": 3680.98, + "end": 3683.24, + "probability": 0.9865 + }, + { + "start": 3683.64, + "end": 3685.62, + "probability": 0.7425 + }, + { + "start": 3686.1, + "end": 3690.02, + "probability": 0.988 + }, + { + "start": 3690.88, + "end": 3696.02, + "probability": 0.8955 + }, + { + "start": 3696.12, + "end": 3698.1, + "probability": 0.8597 + }, + { + "start": 3699.38, + "end": 3702.66, + "probability": 0.8906 + }, + { + "start": 3702.66, + "end": 3706.2, + "probability": 0.9813 + }, + { + "start": 3706.64, + "end": 3707.92, + "probability": 0.798 + }, + { + "start": 3708.34, + "end": 3711.12, + "probability": 0.9834 + }, + { + "start": 3712.0, + "end": 3714.6, + "probability": 0.8998 + }, + { + "start": 3715.38, + "end": 3719.06, + "probability": 0.8647 + }, + { + "start": 3719.78, + "end": 3721.78, + "probability": 0.7916 + }, + { + "start": 3722.46, + "end": 3726.38, + "probability": 0.9803 + }, + { + "start": 3726.9, + "end": 3727.44, + "probability": 0.3191 + }, + { + "start": 3727.56, + "end": 3732.36, + "probability": 0.9395 + }, + { + "start": 3732.9, + "end": 3736.16, + "probability": 0.9785 + }, + { + "start": 3737.7, + "end": 3741.44, + "probability": 0.984 + }, + { + "start": 3741.94, + "end": 3744.7, + "probability": 0.994 + }, + { + "start": 3744.7, + "end": 3748.12, + "probability": 0.7867 + }, + { + "start": 3748.92, + "end": 3750.86, + "probability": 0.6557 + }, + { + "start": 3751.64, + "end": 3752.7, + "probability": 0.7612 + }, + { + "start": 3753.44, + "end": 3755.88, + "probability": 0.9876 + }, + { + "start": 3756.44, + "end": 3758.88, + "probability": 0.9592 + }, + { + "start": 3759.5, + "end": 3760.66, + "probability": 0.8363 + }, + { + "start": 3761.28, + "end": 3763.66, + "probability": 0.9863 + }, + { + "start": 3764.08, + "end": 3765.52, + "probability": 0.5313 + }, + { + "start": 3765.64, + "end": 3766.36, + "probability": 0.7365 + }, + { + "start": 3766.66, + "end": 3768.04, + "probability": 0.906 + }, + { + "start": 3768.5, + "end": 3772.82, + "probability": 0.9786 + }, + { + "start": 3772.82, + "end": 3776.0, + "probability": 0.9917 + }, + { + "start": 3776.9, + "end": 3779.66, + "probability": 0.8911 + }, + { + "start": 3780.1, + "end": 3784.06, + "probability": 0.8919 + }, + { + "start": 3784.18, + "end": 3787.66, + "probability": 0.8484 + }, + { + "start": 3787.8, + "end": 3788.76, + "probability": 0.6826 + }, + { + "start": 3789.0, + "end": 3789.6, + "probability": 0.8678 + }, + { + "start": 3789.82, + "end": 3789.94, + "probability": 0.3365 + }, + { + "start": 3790.22, + "end": 3793.6, + "probability": 0.6635 + }, + { + "start": 3793.78, + "end": 3795.76, + "probability": 0.8171 + }, + { + "start": 3796.1, + "end": 3801.54, + "probability": 0.9762 + }, + { + "start": 3802.06, + "end": 3804.56, + "probability": 0.8972 + }, + { + "start": 3805.12, + "end": 3807.72, + "probability": 0.9767 + }, + { + "start": 3808.26, + "end": 3810.98, + "probability": 0.9137 + }, + { + "start": 3811.12, + "end": 3814.14, + "probability": 0.9302 + }, + { + "start": 3814.18, + "end": 3817.22, + "probability": 0.2123 + }, + { + "start": 3817.5, + "end": 3820.58, + "probability": 0.6337 + }, + { + "start": 3820.78, + "end": 3821.84, + "probability": 0.1654 + }, + { + "start": 3821.84, + "end": 3822.32, + "probability": 0.6769 + }, + { + "start": 3822.52, + "end": 3822.98, + "probability": 0.5955 + }, + { + "start": 3822.98, + "end": 3822.98, + "probability": 0.4156 + }, + { + "start": 3823.22, + "end": 3825.22, + "probability": 0.6418 + }, + { + "start": 3826.24, + "end": 3829.28, + "probability": 0.3701 + }, + { + "start": 3830.34, + "end": 3830.62, + "probability": 0.6617 + }, + { + "start": 3830.74, + "end": 3833.28, + "probability": 0.5726 + }, + { + "start": 3833.56, + "end": 3834.64, + "probability": 0.5837 + }, + { + "start": 3835.02, + "end": 3835.54, + "probability": 0.8154 + }, + { + "start": 3835.54, + "end": 3836.64, + "probability": 0.921 + }, + { + "start": 3837.68, + "end": 3839.36, + "probability": 0.9896 + }, + { + "start": 3839.76, + "end": 3843.34, + "probability": 0.9931 + }, + { + "start": 3843.72, + "end": 3844.66, + "probability": 0.8303 + }, + { + "start": 3845.4, + "end": 3846.8, + "probability": 0.9711 + }, + { + "start": 3847.24, + "end": 3848.79, + "probability": 0.7847 + }, + { + "start": 3850.2, + "end": 3851.42, + "probability": 0.9415 + }, + { + "start": 3851.68, + "end": 3854.32, + "probability": 0.9513 + }, + { + "start": 3854.5, + "end": 3856.46, + "probability": 0.7432 + }, + { + "start": 3857.26, + "end": 3862.06, + "probability": 0.7041 + }, + { + "start": 3862.16, + "end": 3864.32, + "probability": 0.5919 + }, + { + "start": 3864.36, + "end": 3865.4, + "probability": 0.6846 + }, + { + "start": 3867.56, + "end": 3868.8, + "probability": 0.0458 + }, + { + "start": 3868.92, + "end": 3870.34, + "probability": 0.047 + }, + { + "start": 3876.4, + "end": 3877.52, + "probability": 0.0083 + }, + { + "start": 3879.3, + "end": 3880.0, + "probability": 0.0186 + }, + { + "start": 3880.0, + "end": 3880.0, + "probability": 0.0852 + }, + { + "start": 3880.0, + "end": 3881.96, + "probability": 0.4838 + }, + { + "start": 3882.52, + "end": 3885.66, + "probability": 0.9742 + }, + { + "start": 3885.66, + "end": 3889.72, + "probability": 0.9437 + }, + { + "start": 3890.78, + "end": 3892.18, + "probability": 0.6667 + }, + { + "start": 3894.01, + "end": 3896.48, + "probability": 0.8728 + }, + { + "start": 3896.74, + "end": 3897.54, + "probability": 0.6228 + }, + { + "start": 3897.54, + "end": 3897.92, + "probability": 0.4033 + }, + { + "start": 3898.26, + "end": 3899.06, + "probability": 0.8983 + }, + { + "start": 3899.14, + "end": 3899.88, + "probability": 0.7879 + }, + { + "start": 3899.88, + "end": 3902.22, + "probability": 0.9924 + }, + { + "start": 3902.76, + "end": 3903.46, + "probability": 0.6518 + }, + { + "start": 3903.92, + "end": 3905.28, + "probability": 0.519 + }, + { + "start": 3905.54, + "end": 3905.8, + "probability": 0.307 + }, + { + "start": 3905.96, + "end": 3906.82, + "probability": 0.2724 + }, + { + "start": 3906.82, + "end": 3907.74, + "probability": 0.5616 + }, + { + "start": 3907.86, + "end": 3913.96, + "probability": 0.4304 + }, + { + "start": 3914.54, + "end": 3914.54, + "probability": 0.0127 + }, + { + "start": 3914.54, + "end": 3914.54, + "probability": 0.1325 + }, + { + "start": 3914.54, + "end": 3914.54, + "probability": 0.0444 + }, + { + "start": 3914.54, + "end": 3914.54, + "probability": 0.1923 + }, + { + "start": 3914.54, + "end": 3914.54, + "probability": 0.0958 + }, + { + "start": 3914.54, + "end": 3915.98, + "probability": 0.4171 + }, + { + "start": 3916.42, + "end": 3919.24, + "probability": 0.9253 + }, + { + "start": 3919.24, + "end": 3923.5, + "probability": 0.9727 + }, + { + "start": 3923.82, + "end": 3925.28, + "probability": 0.4728 + }, + { + "start": 3925.58, + "end": 3929.48, + "probability": 0.8868 + }, + { + "start": 3930.16, + "end": 3934.02, + "probability": 0.9858 + }, + { + "start": 3934.02, + "end": 3936.38, + "probability": 0.7607 + }, + { + "start": 3936.76, + "end": 3937.98, + "probability": 0.8903 + }, + { + "start": 3938.12, + "end": 3943.52, + "probability": 0.8867 + }, + { + "start": 3945.0, + "end": 3945.24, + "probability": 0.3865 + }, + { + "start": 3946.09, + "end": 3949.74, + "probability": 0.7797 + }, + { + "start": 3950.4, + "end": 3953.32, + "probability": 0.7277 + }, + { + "start": 3954.62, + "end": 3960.24, + "probability": 0.7439 + }, + { + "start": 3962.85, + "end": 3967.34, + "probability": 0.9554 + }, + { + "start": 3967.82, + "end": 3968.06, + "probability": 0.7305 + }, + { + "start": 3968.14, + "end": 3969.56, + "probability": 0.7078 + }, + { + "start": 3970.02, + "end": 3974.24, + "probability": 0.8981 + }, + { + "start": 3974.36, + "end": 3974.62, + "probability": 0.5134 + }, + { + "start": 3975.12, + "end": 3975.52, + "probability": 0.8517 + }, + { + "start": 3979.74, + "end": 3982.76, + "probability": 0.5037 + }, + { + "start": 3983.38, + "end": 3984.91, + "probability": 0.7448 + }, + { + "start": 3986.16, + "end": 3988.32, + "probability": 0.7217 + }, + { + "start": 3989.06, + "end": 3993.04, + "probability": 0.8766 + }, + { + "start": 3993.04, + "end": 3997.54, + "probability": 0.9606 + }, + { + "start": 3998.34, + "end": 4006.42, + "probability": 0.8834 + }, + { + "start": 4007.12, + "end": 4010.7, + "probability": 0.8079 + }, + { + "start": 4011.26, + "end": 4013.8, + "probability": 0.748 + }, + { + "start": 4013.9, + "end": 4021.14, + "probability": 0.8659 + }, + { + "start": 4022.02, + "end": 4028.16, + "probability": 0.9801 + }, + { + "start": 4028.24, + "end": 4034.56, + "probability": 0.9732 + }, + { + "start": 4035.04, + "end": 4037.34, + "probability": 0.9553 + }, + { + "start": 4038.8, + "end": 4043.78, + "probability": 0.9424 + }, + { + "start": 4044.36, + "end": 4046.44, + "probability": 0.8365 + }, + { + "start": 4047.5, + "end": 4050.44, + "probability": 0.7198 + }, + { + "start": 4051.06, + "end": 4053.94, + "probability": 0.6473 + }, + { + "start": 4055.44, + "end": 4060.9, + "probability": 0.8364 + }, + { + "start": 4061.38, + "end": 4065.62, + "probability": 0.9795 + }, + { + "start": 4066.32, + "end": 4070.06, + "probability": 0.9695 + }, + { + "start": 4070.06, + "end": 4074.3, + "probability": 0.9958 + }, + { + "start": 4074.48, + "end": 4075.3, + "probability": 0.8228 + }, + { + "start": 4075.54, + "end": 4078.1, + "probability": 0.718 + }, + { + "start": 4078.94, + "end": 4081.36, + "probability": 0.672 + }, + { + "start": 4081.9, + "end": 4083.84, + "probability": 0.8031 + }, + { + "start": 4084.88, + "end": 4087.14, + "probability": 0.8871 + }, + { + "start": 4087.58, + "end": 4089.18, + "probability": 0.7386 + }, + { + "start": 4089.82, + "end": 4091.52, + "probability": 0.6565 + }, + { + "start": 4092.22, + "end": 4097.0, + "probability": 0.8567 + }, + { + "start": 4097.94, + "end": 4106.12, + "probability": 0.9888 + }, + { + "start": 4107.14, + "end": 4107.52, + "probability": 0.421 + }, + { + "start": 4107.6, + "end": 4113.64, + "probability": 0.9923 + }, + { + "start": 4113.78, + "end": 4118.18, + "probability": 0.9982 + }, + { + "start": 4122.94, + "end": 4124.04, + "probability": 0.3431 + }, + { + "start": 4124.36, + "end": 4130.22, + "probability": 0.9793 + }, + { + "start": 4130.8, + "end": 4134.34, + "probability": 0.982 + }, + { + "start": 4135.12, + "end": 4139.48, + "probability": 0.7954 + }, + { + "start": 4140.78, + "end": 4146.3, + "probability": 0.7012 + }, + { + "start": 4146.46, + "end": 4150.98, + "probability": 0.9806 + }, + { + "start": 4151.56, + "end": 4152.4, + "probability": 0.8046 + }, + { + "start": 4153.42, + "end": 4162.1, + "probability": 0.9145 + }, + { + "start": 4162.72, + "end": 4167.72, + "probability": 0.9858 + }, + { + "start": 4167.72, + "end": 4172.48, + "probability": 0.6703 + }, + { + "start": 4173.1, + "end": 4175.64, + "probability": 0.8837 + }, + { + "start": 4175.92, + "end": 4176.84, + "probability": 0.6508 + }, + { + "start": 4177.34, + "end": 4179.72, + "probability": 0.8289 + }, + { + "start": 4180.26, + "end": 4182.3, + "probability": 0.9233 + }, + { + "start": 4184.14, + "end": 4189.12, + "probability": 0.9025 + }, + { + "start": 4189.86, + "end": 4191.66, + "probability": 0.8778 + }, + { + "start": 4192.18, + "end": 4198.5, + "probability": 0.9208 + }, + { + "start": 4199.16, + "end": 4203.88, + "probability": 0.9891 + }, + { + "start": 4204.76, + "end": 4209.34, + "probability": 0.8205 + }, + { + "start": 4210.5, + "end": 4211.96, + "probability": 0.7036 + }, + { + "start": 4213.04, + "end": 4217.3, + "probability": 0.9448 + }, + { + "start": 4218.26, + "end": 4224.0, + "probability": 0.7877 + }, + { + "start": 4224.6, + "end": 4229.42, + "probability": 0.8425 + }, + { + "start": 4230.2, + "end": 4235.68, + "probability": 0.9703 + }, + { + "start": 4236.3, + "end": 4241.34, + "probability": 0.9785 + }, + { + "start": 4241.34, + "end": 4247.52, + "probability": 0.8691 + }, + { + "start": 4248.3, + "end": 4252.96, + "probability": 0.8948 + }, + { + "start": 4253.52, + "end": 4254.7, + "probability": 0.592 + }, + { + "start": 4255.02, + "end": 4259.54, + "probability": 0.888 + }, + { + "start": 4260.24, + "end": 4261.34, + "probability": 0.6708 + }, + { + "start": 4262.3, + "end": 4263.18, + "probability": 0.7027 + }, + { + "start": 4265.0, + "end": 4273.18, + "probability": 0.768 + }, + { + "start": 4273.18, + "end": 4280.44, + "probability": 0.9856 + }, + { + "start": 4281.14, + "end": 4284.12, + "probability": 0.608 + }, + { + "start": 4285.08, + "end": 4291.28, + "probability": 0.8065 + }, + { + "start": 4291.98, + "end": 4293.86, + "probability": 0.5033 + }, + { + "start": 4294.64, + "end": 4297.76, + "probability": 0.8995 + }, + { + "start": 4298.06, + "end": 4301.7, + "probability": 0.8966 + }, + { + "start": 4304.18, + "end": 4304.88, + "probability": 0.2598 + }, + { + "start": 4305.44, + "end": 4313.88, + "probability": 0.7845 + }, + { + "start": 4315.32, + "end": 4316.64, + "probability": 0.7292 + }, + { + "start": 4316.94, + "end": 4320.5, + "probability": 0.7823 + }, + { + "start": 4320.56, + "end": 4325.46, + "probability": 0.9307 + }, + { + "start": 4325.58, + "end": 4326.14, + "probability": 0.6909 + }, + { + "start": 4326.9, + "end": 4333.44, + "probability": 0.6906 + }, + { + "start": 4334.72, + "end": 4336.68, + "probability": 0.9441 + }, + { + "start": 4336.88, + "end": 4339.22, + "probability": 0.8936 + }, + { + "start": 4341.02, + "end": 4348.48, + "probability": 0.8862 + }, + { + "start": 4349.32, + "end": 4354.16, + "probability": 0.8416 + }, + { + "start": 4355.16, + "end": 4357.92, + "probability": 0.896 + }, + { + "start": 4358.68, + "end": 4365.14, + "probability": 0.6926 + }, + { + "start": 4365.3, + "end": 4365.84, + "probability": 0.8873 + }, + { + "start": 4366.6, + "end": 4370.42, + "probability": 0.9205 + }, + { + "start": 4371.14, + "end": 4375.02, + "probability": 0.713 + }, + { + "start": 4375.32, + "end": 4378.14, + "probability": 0.8605 + }, + { + "start": 4378.88, + "end": 4385.82, + "probability": 0.8328 + }, + { + "start": 4386.04, + "end": 4392.18, + "probability": 0.9127 + }, + { + "start": 4392.78, + "end": 4395.16, + "probability": 0.8685 + }, + { + "start": 4395.7, + "end": 4400.42, + "probability": 0.9168 + }, + { + "start": 4401.08, + "end": 4403.9, + "probability": 0.7325 + }, + { + "start": 4404.36, + "end": 4412.86, + "probability": 0.9587 + }, + { + "start": 4412.98, + "end": 4414.84, + "probability": 0.9645 + }, + { + "start": 4415.4, + "end": 4424.0, + "probability": 0.7668 + }, + { + "start": 4424.56, + "end": 4425.28, + "probability": 0.9673 + }, + { + "start": 4425.98, + "end": 4428.44, + "probability": 0.8156 + }, + { + "start": 4428.84, + "end": 4432.76, + "probability": 0.9817 + }, + { + "start": 4433.28, + "end": 4438.26, + "probability": 0.9326 + }, + { + "start": 4438.38, + "end": 4442.65, + "probability": 0.8302 + }, + { + "start": 4443.74, + "end": 4448.32, + "probability": 0.9562 + }, + { + "start": 4448.32, + "end": 4453.14, + "probability": 0.9824 + }, + { + "start": 4453.68, + "end": 4460.12, + "probability": 0.96 + }, + { + "start": 4461.34, + "end": 4463.42, + "probability": 0.7454 + }, + { + "start": 4463.72, + "end": 4467.04, + "probability": 0.7571 + }, + { + "start": 4467.98, + "end": 4472.42, + "probability": 0.7255 + }, + { + "start": 4473.08, + "end": 4475.32, + "probability": 0.7761 + }, + { + "start": 4476.0, + "end": 4477.98, + "probability": 0.916 + }, + { + "start": 4478.04, + "end": 4478.6, + "probability": 0.5473 + }, + { + "start": 4479.08, + "end": 4482.14, + "probability": 0.9107 + }, + { + "start": 4482.72, + "end": 4483.36, + "probability": 0.9077 + }, + { + "start": 4483.88, + "end": 4485.74, + "probability": 0.9637 + }, + { + "start": 4486.2, + "end": 4490.92, + "probability": 0.9829 + }, + { + "start": 4491.48, + "end": 4498.68, + "probability": 0.9712 + }, + { + "start": 4498.82, + "end": 4499.66, + "probability": 0.8596 + }, + { + "start": 4500.48, + "end": 4500.84, + "probability": 0.7325 + }, + { + "start": 4501.3, + "end": 4504.24, + "probability": 0.917 + }, + { + "start": 4506.0, + "end": 4509.8, + "probability": 0.9279 + }, + { + "start": 4511.49, + "end": 4515.74, + "probability": 0.8076 + }, + { + "start": 4515.9, + "end": 4517.23, + "probability": 0.9072 + }, + { + "start": 4517.9, + "end": 4518.98, + "probability": 0.9673 + }, + { + "start": 4519.8, + "end": 4519.8, + "probability": 0.0004 + }, + { + "start": 4521.54, + "end": 4521.78, + "probability": 0.041 + }, + { + "start": 4521.78, + "end": 4524.42, + "probability": 0.6763 + }, + { + "start": 4525.36, + "end": 4525.36, + "probability": 0.4063 + }, + { + "start": 4525.38, + "end": 4527.58, + "probability": 0.6011 + }, + { + "start": 4527.8, + "end": 4530.32, + "probability": 0.9749 + }, + { + "start": 4531.94, + "end": 4532.78, + "probability": 0.2122 + }, + { + "start": 4536.54, + "end": 4537.38, + "probability": 0.1546 + }, + { + "start": 4542.28, + "end": 4543.3, + "probability": 0.6393 + }, + { + "start": 4543.36, + "end": 4543.99, + "probability": 0.4037 + }, + { + "start": 4545.09, + "end": 4547.14, + "probability": 0.6276 + }, + { + "start": 4547.14, + "end": 4548.34, + "probability": 0.4132 + }, + { + "start": 4548.59, + "end": 4555.36, + "probability": 0.96 + }, + { + "start": 4555.5, + "end": 4556.14, + "probability": 0.3358 + }, + { + "start": 4556.52, + "end": 4557.16, + "probability": 0.2782 + }, + { + "start": 4557.52, + "end": 4558.64, + "probability": 0.5841 + }, + { + "start": 4559.22, + "end": 4562.46, + "probability": 0.9778 + }, + { + "start": 4562.76, + "end": 4563.6, + "probability": 0.9231 + }, + { + "start": 4564.04, + "end": 4566.2, + "probability": 0.8498 + }, + { + "start": 4566.26, + "end": 4566.86, + "probability": 0.7361 + }, + { + "start": 4567.26, + "end": 4567.52, + "probability": 0.8805 + }, + { + "start": 4568.48, + "end": 4572.86, + "probability": 0.8951 + }, + { + "start": 4573.62, + "end": 4575.74, + "probability": 0.8455 + }, + { + "start": 4575.94, + "end": 4576.74, + "probability": 0.8841 + }, + { + "start": 4576.78, + "end": 4579.14, + "probability": 0.9713 + }, + { + "start": 4579.26, + "end": 4579.56, + "probability": 0.9306 + }, + { + "start": 4580.24, + "end": 4581.5, + "probability": 0.6191 + }, + { + "start": 4582.48, + "end": 4584.02, + "probability": 0.9845 + }, + { + "start": 4584.64, + "end": 4588.0, + "probability": 0.9604 + }, + { + "start": 4588.96, + "end": 4589.22, + "probability": 0.4431 + }, + { + "start": 4589.42, + "end": 4593.06, + "probability": 0.9894 + }, + { + "start": 4593.84, + "end": 4597.82, + "probability": 0.9658 + }, + { + "start": 4597.82, + "end": 4602.88, + "probability": 0.9913 + }, + { + "start": 4603.68, + "end": 4607.4, + "probability": 0.9782 + }, + { + "start": 4608.14, + "end": 4610.58, + "probability": 0.9982 + }, + { + "start": 4610.58, + "end": 4614.1, + "probability": 0.9798 + }, + { + "start": 4614.96, + "end": 4615.42, + "probability": 0.6663 + }, + { + "start": 4616.1, + "end": 4622.32, + "probability": 0.9806 + }, + { + "start": 4622.76, + "end": 4627.86, + "probability": 0.9592 + }, + { + "start": 4628.66, + "end": 4632.88, + "probability": 0.9904 + }, + { + "start": 4633.4, + "end": 4635.86, + "probability": 0.8813 + }, + { + "start": 4636.96, + "end": 4637.9, + "probability": 0.9345 + }, + { + "start": 4638.74, + "end": 4643.4, + "probability": 0.9893 + }, + { + "start": 4643.4, + "end": 4645.94, + "probability": 0.7692 + }, + { + "start": 4646.66, + "end": 4651.5, + "probability": 0.9962 + }, + { + "start": 4652.26, + "end": 4655.66, + "probability": 0.9971 + }, + { + "start": 4656.54, + "end": 4657.34, + "probability": 0.7874 + }, + { + "start": 4657.92, + "end": 4661.0, + "probability": 0.8898 + }, + { + "start": 4661.76, + "end": 4662.62, + "probability": 0.6363 + }, + { + "start": 4663.26, + "end": 4667.9, + "probability": 0.9414 + }, + { + "start": 4669.04, + "end": 4670.56, + "probability": 0.8263 + }, + { + "start": 4672.22, + "end": 4676.24, + "probability": 0.9941 + }, + { + "start": 4676.24, + "end": 4680.4, + "probability": 0.9977 + }, + { + "start": 4681.28, + "end": 4681.76, + "probability": 0.8535 + }, + { + "start": 4682.3, + "end": 4688.24, + "probability": 0.9989 + }, + { + "start": 4689.12, + "end": 4693.88, + "probability": 0.9937 + }, + { + "start": 4693.88, + "end": 4698.72, + "probability": 0.9334 + }, + { + "start": 4699.92, + "end": 4705.26, + "probability": 0.9979 + }, + { + "start": 4705.84, + "end": 4709.7, + "probability": 0.9951 + }, + { + "start": 4710.32, + "end": 4712.0, + "probability": 0.9499 + }, + { + "start": 4712.86, + "end": 4717.08, + "probability": 0.9987 + }, + { + "start": 4717.56, + "end": 4722.1, + "probability": 0.9391 + }, + { + "start": 4722.42, + "end": 4726.24, + "probability": 0.8598 + }, + { + "start": 4727.22, + "end": 4729.8, + "probability": 0.8716 + }, + { + "start": 4730.46, + "end": 4736.24, + "probability": 0.9578 + }, + { + "start": 4737.14, + "end": 4737.8, + "probability": 0.8317 + }, + { + "start": 4738.36, + "end": 4741.98, + "probability": 0.9722 + }, + { + "start": 4743.08, + "end": 4749.14, + "probability": 0.9824 + }, + { + "start": 4749.76, + "end": 4752.46, + "probability": 0.998 + }, + { + "start": 4753.1, + "end": 4753.74, + "probability": 0.7321 + }, + { + "start": 4753.9, + "end": 4755.26, + "probability": 0.8018 + }, + { + "start": 4755.87, + "end": 4757.18, + "probability": 0.6295 + }, + { + "start": 4757.22, + "end": 4758.1, + "probability": 0.8711 + }, + { + "start": 4758.24, + "end": 4758.78, + "probability": 0.8392 + }, + { + "start": 4759.55, + "end": 4761.42, + "probability": 0.6233 + }, + { + "start": 4761.42, + "end": 4763.96, + "probability": 0.1896 + }, + { + "start": 4764.38, + "end": 4764.38, + "probability": 0.6327 + }, + { + "start": 4764.46, + "end": 4767.88, + "probability": 0.8995 + }, + { + "start": 4767.98, + "end": 4771.92, + "probability": 0.9624 + }, + { + "start": 4772.24, + "end": 4774.16, + "probability": 0.9413 + }, + { + "start": 4774.24, + "end": 4775.14, + "probability": 0.9211 + }, + { + "start": 4775.62, + "end": 4777.04, + "probability": 0.4634 + }, + { + "start": 4777.2, + "end": 4777.98, + "probability": 0.287 + }, + { + "start": 4778.74, + "end": 4782.18, + "probability": 0.9897 + }, + { + "start": 4782.18, + "end": 4786.14, + "probability": 0.9925 + }, + { + "start": 4786.3, + "end": 4787.22, + "probability": 0.9353 + }, + { + "start": 4787.76, + "end": 4788.48, + "probability": 0.9369 + }, + { + "start": 4789.02, + "end": 4790.96, + "probability": 0.956 + }, + { + "start": 4791.58, + "end": 4795.34, + "probability": 0.9967 + }, + { + "start": 4795.48, + "end": 4797.1, + "probability": 0.9984 + }, + { + "start": 4797.14, + "end": 4797.54, + "probability": 0.9451 + }, + { + "start": 4798.63, + "end": 4801.76, + "probability": 0.9867 + }, + { + "start": 4803.06, + "end": 4805.0, + "probability": 0.9985 + }, + { + "start": 4805.74, + "end": 4809.02, + "probability": 0.9697 + }, + { + "start": 4809.64, + "end": 4813.6, + "probability": 0.9977 + }, + { + "start": 4814.14, + "end": 4815.88, + "probability": 0.9971 + }, + { + "start": 4816.54, + "end": 4820.28, + "probability": 0.9959 + }, + { + "start": 4820.4, + "end": 4823.3, + "probability": 0.9935 + }, + { + "start": 4823.94, + "end": 4825.06, + "probability": 0.9767 + }, + { + "start": 4825.36, + "end": 4826.46, + "probability": 0.9395 + }, + { + "start": 4826.7, + "end": 4827.98, + "probability": 0.9095 + }, + { + "start": 4828.28, + "end": 4829.47, + "probability": 0.598 + }, + { + "start": 4830.06, + "end": 4831.46, + "probability": 0.9684 + }, + { + "start": 4832.02, + "end": 4833.56, + "probability": 0.5713 + }, + { + "start": 4834.12, + "end": 4835.92, + "probability": 0.6358 + }, + { + "start": 4836.3, + "end": 4840.06, + "probability": 0.9688 + }, + { + "start": 4840.6, + "end": 4843.16, + "probability": 0.9982 + }, + { + "start": 4843.16, + "end": 4845.87, + "probability": 0.8721 + }, + { + "start": 4846.06, + "end": 4851.12, + "probability": 0.9423 + }, + { + "start": 4851.48, + "end": 4851.94, + "probability": 0.7911 + }, + { + "start": 4852.02, + "end": 4854.04, + "probability": 0.787 + }, + { + "start": 4854.08, + "end": 4855.58, + "probability": 0.9343 + }, + { + "start": 4855.94, + "end": 4856.64, + "probability": 0.8116 + }, + { + "start": 4857.32, + "end": 4860.15, + "probability": 0.9028 + }, + { + "start": 4861.28, + "end": 4861.68, + "probability": 0.0867 + }, + { + "start": 4862.14, + "end": 4863.4, + "probability": 0.9844 + }, + { + "start": 4863.52, + "end": 4865.2, + "probability": 0.7585 + }, + { + "start": 4865.34, + "end": 4867.2, + "probability": 0.7739 + }, + { + "start": 4867.2, + "end": 4867.27, + "probability": 0.4393 + }, + { + "start": 4867.68, + "end": 4869.26, + "probability": 0.8076 + }, + { + "start": 4869.52, + "end": 4869.72, + "probability": 0.1665 + }, + { + "start": 4869.72, + "end": 4872.96, + "probability": 0.9126 + }, + { + "start": 4873.12, + "end": 4874.62, + "probability": 0.9839 + }, + { + "start": 4874.66, + "end": 4875.38, + "probability": 0.8115 + }, + { + "start": 4875.38, + "end": 4878.28, + "probability": 0.9674 + }, + { + "start": 4878.64, + "end": 4883.9, + "probability": 0.9814 + }, + { + "start": 4884.3, + "end": 4886.34, + "probability": 0.9087 + }, + { + "start": 4886.7, + "end": 4887.06, + "probability": 0.6569 + }, + { + "start": 4887.1, + "end": 4888.1, + "probability": 0.7165 + }, + { + "start": 4888.78, + "end": 4890.14, + "probability": 0.9342 + }, + { + "start": 4890.52, + "end": 4893.14, + "probability": 0.9927 + }, + { + "start": 4894.0, + "end": 4899.98, + "probability": 0.0703 + }, + { + "start": 4900.24, + "end": 4900.48, + "probability": 0.0395 + }, + { + "start": 4900.48, + "end": 4900.48, + "probability": 0.1419 + }, + { + "start": 4900.48, + "end": 4900.48, + "probability": 0.0643 + }, + { + "start": 4900.48, + "end": 4901.14, + "probability": 0.341 + }, + { + "start": 4901.16, + "end": 4902.34, + "probability": 0.4434 + }, + { + "start": 4902.84, + "end": 4903.6, + "probability": 0.3681 + }, + { + "start": 4903.7, + "end": 4904.2, + "probability": 0.6054 + }, + { + "start": 4905.14, + "end": 4905.18, + "probability": 0.3673 + }, + { + "start": 4905.18, + "end": 4906.1, + "probability": 0.8647 + }, + { + "start": 4906.44, + "end": 4906.7, + "probability": 0.3643 + }, + { + "start": 4906.7, + "end": 4906.92, + "probability": 0.4751 + }, + { + "start": 4906.92, + "end": 4907.24, + "probability": 0.3141 + }, + { + "start": 4907.34, + "end": 4908.0, + "probability": 0.6972 + }, + { + "start": 4908.1, + "end": 4908.6, + "probability": 0.7563 + }, + { + "start": 4908.68, + "end": 4910.62, + "probability": 0.7539 + }, + { + "start": 4911.22, + "end": 4911.96, + "probability": 0.6909 + }, + { + "start": 4911.96, + "end": 4916.0, + "probability": 0.832 + }, + { + "start": 4916.19, + "end": 4917.98, + "probability": 0.7431 + }, + { + "start": 4917.98, + "end": 4919.04, + "probability": 0.769 + }, + { + "start": 4919.56, + "end": 4919.56, + "probability": 0.363 + }, + { + "start": 4919.56, + "end": 4922.16, + "probability": 0.9697 + }, + { + "start": 4922.16, + "end": 4924.26, + "probability": 0.998 + }, + { + "start": 4924.48, + "end": 4924.88, + "probability": 0.3781 + }, + { + "start": 4925.06, + "end": 4925.22, + "probability": 0.5402 + }, + { + "start": 4926.05, + "end": 4928.6, + "probability": 0.9843 + }, + { + "start": 4928.7, + "end": 4929.0, + "probability": 0.3428 + }, + { + "start": 4929.18, + "end": 4929.75, + "probability": 0.309 + }, + { + "start": 4930.56, + "end": 4930.98, + "probability": 0.349 + }, + { + "start": 4931.24, + "end": 4933.76, + "probability": 0.8427 + }, + { + "start": 4934.0, + "end": 4934.92, + "probability": 0.5975 + }, + { + "start": 4935.24, + "end": 4936.8, + "probability": 0.728 + }, + { + "start": 4936.92, + "end": 4937.8, + "probability": 0.9399 + }, + { + "start": 4938.14, + "end": 4939.5, + "probability": 0.88 + }, + { + "start": 4940.32, + "end": 4940.32, + "probability": 0.3857 + }, + { + "start": 4940.32, + "end": 4941.38, + "probability": 0.7881 + }, + { + "start": 4941.84, + "end": 4942.5, + "probability": 0.7744 + }, + { + "start": 4942.5, + "end": 4942.5, + "probability": 0.3382 + }, + { + "start": 4942.5, + "end": 4945.72, + "probability": 0.8321 + }, + { + "start": 4946.12, + "end": 4949.2, + "probability": 0.9694 + }, + { + "start": 4949.8, + "end": 4951.8, + "probability": 0.0714 + }, + { + "start": 4953.46, + "end": 4955.84, + "probability": 0.0753 + }, + { + "start": 4955.84, + "end": 4955.84, + "probability": 0.5719 + }, + { + "start": 4955.84, + "end": 4955.84, + "probability": 0.6425 + }, + { + "start": 4955.84, + "end": 4957.14, + "probability": 0.6021 + }, + { + "start": 4959.24, + "end": 4962.08, + "probability": 0.7273 + }, + { + "start": 4962.2, + "end": 4965.28, + "probability": 0.6315 + }, + { + "start": 4965.4, + "end": 4965.98, + "probability": 0.7675 + }, + { + "start": 4966.06, + "end": 4967.04, + "probability": 0.7825 + }, + { + "start": 4967.52, + "end": 4969.58, + "probability": 0.8552 + }, + { + "start": 4970.04, + "end": 4972.88, + "probability": 0.9136 + }, + { + "start": 4973.34, + "end": 4973.76, + "probability": 0.9323 + }, + { + "start": 4973.88, + "end": 4975.64, + "probability": 0.9663 + }, + { + "start": 4976.22, + "end": 4976.38, + "probability": 0.0162 + }, + { + "start": 4976.48, + "end": 4977.38, + "probability": 0.5513 + }, + { + "start": 4977.48, + "end": 4977.6, + "probability": 0.3152 + }, + { + "start": 4977.6, + "end": 4978.02, + "probability": 0.442 + }, + { + "start": 4978.24, + "end": 4978.65, + "probability": 0.5735 + }, + { + "start": 4978.88, + "end": 4981.02, + "probability": 0.8078 + }, + { + "start": 4981.02, + "end": 4981.96, + "probability": 0.7271 + }, + { + "start": 4982.58, + "end": 4985.34, + "probability": 0.8639 + }, + { + "start": 4986.04, + "end": 4986.46, + "probability": 0.5723 + }, + { + "start": 4986.92, + "end": 4988.25, + "probability": 0.6235 + }, + { + "start": 4988.76, + "end": 4991.28, + "probability": 0.9192 + }, + { + "start": 4991.7, + "end": 4994.7, + "probability": 0.9793 + }, + { + "start": 4995.04, + "end": 4995.62, + "probability": 0.9748 + }, + { + "start": 4997.98, + "end": 4998.32, + "probability": 0.2096 + }, + { + "start": 4998.32, + "end": 4998.32, + "probability": 0.1248 + }, + { + "start": 4998.32, + "end": 4999.78, + "probability": 0.8654 + }, + { + "start": 5000.38, + "end": 5002.0, + "probability": 0.9063 + }, + { + "start": 5002.12, + "end": 5004.52, + "probability": 0.6368 + }, + { + "start": 5005.2, + "end": 5009.42, + "probability": 0.7352 + }, + { + "start": 5009.42, + "end": 5011.32, + "probability": 0.757 + }, + { + "start": 5011.68, + "end": 5013.56, + "probability": 0.7161 + }, + { + "start": 5013.6, + "end": 5014.98, + "probability": 0.6465 + }, + { + "start": 5015.02, + "end": 5015.46, + "probability": 0.5254 + }, + { + "start": 5015.58, + "end": 5015.84, + "probability": 0.489 + }, + { + "start": 5016.3, + "end": 5018.1, + "probability": 0.6021 + }, + { + "start": 5018.34, + "end": 5019.42, + "probability": 0.6574 + }, + { + "start": 5024.46, + "end": 5028.74, + "probability": 0.1922 + }, + { + "start": 5029.48, + "end": 5030.5, + "probability": 0.3164 + }, + { + "start": 5033.52, + "end": 5035.42, + "probability": 0.049 + }, + { + "start": 5035.78, + "end": 5039.0, + "probability": 0.7174 + }, + { + "start": 5039.12, + "end": 5044.28, + "probability": 0.9052 + }, + { + "start": 5044.6, + "end": 5046.02, + "probability": 0.9923 + }, + { + "start": 5047.32, + "end": 5049.72, + "probability": 0.7463 + }, + { + "start": 5049.72, + "end": 5052.88, + "probability": 0.7535 + }, + { + "start": 5053.2, + "end": 5055.94, + "probability": 0.8868 + }, + { + "start": 5056.1, + "end": 5056.78, + "probability": 0.7044 + }, + { + "start": 5059.35, + "end": 5061.32, + "probability": 0.3567 + }, + { + "start": 5061.66, + "end": 5062.74, + "probability": 0.3157 + }, + { + "start": 5066.02, + "end": 5066.38, + "probability": 0.4062 + }, + { + "start": 5066.44, + "end": 5072.3, + "probability": 0.9229 + }, + { + "start": 5072.46, + "end": 5073.56, + "probability": 0.3001 + }, + { + "start": 5073.56, + "end": 5076.92, + "probability": 0.7419 + }, + { + "start": 5078.36, + "end": 5080.12, + "probability": 0.8094 + }, + { + "start": 5080.58, + "end": 5084.32, + "probability": 0.8718 + }, + { + "start": 5084.96, + "end": 5088.56, + "probability": 0.7729 + }, + { + "start": 5089.14, + "end": 5090.4, + "probability": 0.9841 + }, + { + "start": 5090.46, + "end": 5090.74, + "probability": 0.7801 + }, + { + "start": 5091.76, + "end": 5094.02, + "probability": 0.4986 + }, + { + "start": 5094.78, + "end": 5095.1, + "probability": 0.2329 + }, + { + "start": 5095.6, + "end": 5097.32, + "probability": 0.8545 + }, + { + "start": 5098.33, + "end": 5102.8, + "probability": 0.6669 + }, + { + "start": 5104.32, + "end": 5106.46, + "probability": 0.9415 + }, + { + "start": 5106.52, + "end": 5108.86, + "probability": 0.7906 + }, + { + "start": 5109.18, + "end": 5112.96, + "probability": 0.9664 + }, + { + "start": 5112.96, + "end": 5113.26, + "probability": 0.4409 + }, + { + "start": 5113.5, + "end": 5115.46, + "probability": 0.9856 + }, + { + "start": 5115.52, + "end": 5116.58, + "probability": 0.9653 + }, + { + "start": 5116.66, + "end": 5117.76, + "probability": 0.8292 + }, + { + "start": 5117.9, + "end": 5118.5, + "probability": 0.5542 + }, + { + "start": 5118.5, + "end": 5119.6, + "probability": 0.9288 + }, + { + "start": 5119.8, + "end": 5120.92, + "probability": 0.9823 + }, + { + "start": 5121.0, + "end": 5121.68, + "probability": 0.8501 + }, + { + "start": 5121.84, + "end": 5122.36, + "probability": 0.6909 + }, + { + "start": 5122.42, + "end": 5125.68, + "probability": 0.9355 + }, + { + "start": 5125.72, + "end": 5126.16, + "probability": 0.8682 + }, + { + "start": 5126.3, + "end": 5126.68, + "probability": 0.497 + }, + { + "start": 5127.26, + "end": 5128.8, + "probability": 0.4167 + }, + { + "start": 5128.88, + "end": 5130.73, + "probability": 0.9905 + }, + { + "start": 5130.98, + "end": 5131.08, + "probability": 0.0425 + }, + { + "start": 5131.16, + "end": 5134.58, + "probability": 0.7504 + }, + { + "start": 5134.72, + "end": 5135.66, + "probability": 0.6139 + }, + { + "start": 5135.7, + "end": 5136.4, + "probability": 0.5141 + }, + { + "start": 5136.4, + "end": 5139.68, + "probability": 0.9877 + }, + { + "start": 5140.32, + "end": 5141.04, + "probability": 0.6541 + }, + { + "start": 5141.04, + "end": 5142.26, + "probability": 0.9202 + }, + { + "start": 5143.1, + "end": 5143.32, + "probability": 0.2213 + }, + { + "start": 5143.32, + "end": 5144.36, + "probability": 0.6316 + }, + { + "start": 5144.92, + "end": 5145.6, + "probability": 0.8525 + }, + { + "start": 5145.8, + "end": 5147.32, + "probability": 0.9727 + }, + { + "start": 5147.68, + "end": 5151.16, + "probability": 0.9533 + }, + { + "start": 5151.88, + "end": 5153.98, + "probability": 0.9411 + }, + { + "start": 5154.68, + "end": 5155.42, + "probability": 0.9904 + }, + { + "start": 5156.34, + "end": 5160.94, + "probability": 0.9141 + }, + { + "start": 5161.34, + "end": 5164.06, + "probability": 0.9899 + }, + { + "start": 5164.96, + "end": 5166.06, + "probability": 0.89 + }, + { + "start": 5166.2, + "end": 5170.72, + "probability": 0.9961 + }, + { + "start": 5171.54, + "end": 5175.06, + "probability": 0.738 + }, + { + "start": 5176.0, + "end": 5176.92, + "probability": 0.7367 + }, + { + "start": 5178.14, + "end": 5179.74, + "probability": 0.8901 + }, + { + "start": 5179.86, + "end": 5183.72, + "probability": 0.9978 + }, + { + "start": 5184.4, + "end": 5189.12, + "probability": 0.996 + }, + { + "start": 5190.16, + "end": 5191.12, + "probability": 0.8912 + }, + { + "start": 5191.74, + "end": 5192.24, + "probability": 0.8961 + }, + { + "start": 5193.52, + "end": 5195.36, + "probability": 0.9841 + }, + { + "start": 5195.5, + "end": 5197.06, + "probability": 0.9978 + }, + { + "start": 5197.68, + "end": 5197.92, + "probability": 0.2533 + }, + { + "start": 5198.1, + "end": 5201.7, + "probability": 0.994 + }, + { + "start": 5202.04, + "end": 5204.52, + "probability": 0.9882 + }, + { + "start": 5204.6, + "end": 5205.14, + "probability": 0.7937 + }, + { + "start": 5205.68, + "end": 5209.28, + "probability": 0.984 + }, + { + "start": 5210.08, + "end": 5214.34, + "probability": 0.9594 + }, + { + "start": 5215.04, + "end": 5216.81, + "probability": 0.7736 + }, + { + "start": 5217.04, + "end": 5217.92, + "probability": 0.6661 + }, + { + "start": 5217.96, + "end": 5220.02, + "probability": 0.8492 + }, + { + "start": 5220.58, + "end": 5223.38, + "probability": 0.7174 + }, + { + "start": 5223.94, + "end": 5225.6, + "probability": 0.9312 + }, + { + "start": 5226.2, + "end": 5227.68, + "probability": 0.9496 + }, + { + "start": 5227.76, + "end": 5230.42, + "probability": 0.8403 + }, + { + "start": 5230.66, + "end": 5232.44, + "probability": 0.7012 + }, + { + "start": 5232.88, + "end": 5234.08, + "probability": 0.8008 + }, + { + "start": 5234.18, + "end": 5235.5, + "probability": 0.9017 + }, + { + "start": 5235.64, + "end": 5236.58, + "probability": 0.9521 + }, + { + "start": 5236.76, + "end": 5237.26, + "probability": 0.77 + }, + { + "start": 5237.3, + "end": 5238.5, + "probability": 0.9683 + }, + { + "start": 5239.48, + "end": 5240.66, + "probability": 0.7792 + }, + { + "start": 5241.74, + "end": 5246.04, + "probability": 0.9965 + }, + { + "start": 5246.9, + "end": 5250.08, + "probability": 0.9982 + }, + { + "start": 5250.68, + "end": 5252.82, + "probability": 0.9848 + }, + { + "start": 5253.84, + "end": 5255.0, + "probability": 0.9704 + }, + { + "start": 5255.7, + "end": 5257.12, + "probability": 0.9656 + }, + { + "start": 5258.02, + "end": 5259.58, + "probability": 0.9621 + }, + { + "start": 5259.76, + "end": 5260.94, + "probability": 0.7825 + }, + { + "start": 5261.06, + "end": 5261.9, + "probability": 0.9242 + }, + { + "start": 5262.16, + "end": 5263.0, + "probability": 0.9722 + }, + { + "start": 5263.74, + "end": 5266.94, + "probability": 0.9877 + }, + { + "start": 5267.83, + "end": 5273.2, + "probability": 0.9739 + }, + { + "start": 5273.36, + "end": 5274.16, + "probability": 0.6272 + }, + { + "start": 5275.1, + "end": 5276.54, + "probability": 0.8146 + }, + { + "start": 5276.96, + "end": 5279.48, + "probability": 0.9189 + }, + { + "start": 5280.32, + "end": 5282.98, + "probability": 0.8167 + }, + { + "start": 5283.7, + "end": 5286.78, + "probability": 0.9844 + }, + { + "start": 5287.26, + "end": 5289.16, + "probability": 0.9833 + }, + { + "start": 5289.84, + "end": 5295.26, + "probability": 0.764 + }, + { + "start": 5295.5, + "end": 5296.82, + "probability": 0.8269 + }, + { + "start": 5297.0, + "end": 5299.86, + "probability": 0.988 + }, + { + "start": 5300.16, + "end": 5300.68, + "probability": 0.4664 + }, + { + "start": 5300.86, + "end": 5301.22, + "probability": 0.634 + }, + { + "start": 5301.44, + "end": 5301.68, + "probability": 0.5884 + }, + { + "start": 5302.26, + "end": 5305.6, + "probability": 0.8384 + }, + { + "start": 5306.5, + "end": 5309.84, + "probability": 0.8844 + }, + { + "start": 5310.42, + "end": 5311.3, + "probability": 0.9645 + }, + { + "start": 5311.42, + "end": 5311.98, + "probability": 0.6816 + }, + { + "start": 5312.06, + "end": 5312.92, + "probability": 0.8726 + }, + { + "start": 5313.08, + "end": 5313.78, + "probability": 0.8667 + }, + { + "start": 5314.44, + "end": 5317.46, + "probability": 0.8716 + }, + { + "start": 5317.8, + "end": 5319.26, + "probability": 0.8073 + }, + { + "start": 5319.64, + "end": 5320.9, + "probability": 0.9149 + }, + { + "start": 5321.28, + "end": 5322.5, + "probability": 0.9685 + }, + { + "start": 5322.76, + "end": 5324.0, + "probability": 0.9849 + }, + { + "start": 5324.58, + "end": 5325.44, + "probability": 0.425 + }, + { + "start": 5325.62, + "end": 5326.22, + "probability": 0.4839 + }, + { + "start": 5326.48, + "end": 5327.4, + "probability": 0.6763 + }, + { + "start": 5327.48, + "end": 5327.72, + "probability": 0.4815 + }, + { + "start": 5327.86, + "end": 5328.74, + "probability": 0.9098 + }, + { + "start": 5329.18, + "end": 5330.84, + "probability": 0.6924 + }, + { + "start": 5331.3, + "end": 5332.1, + "probability": 0.6876 + }, + { + "start": 5332.14, + "end": 5335.54, + "probability": 0.9132 + }, + { + "start": 5335.72, + "end": 5335.74, + "probability": 0.0 + }, + { + "start": 5336.72, + "end": 5338.2, + "probability": 0.1509 + }, + { + "start": 5338.75, + "end": 5339.48, + "probability": 0.3087 + }, + { + "start": 5339.48, + "end": 5340.44, + "probability": 0.2902 + }, + { + "start": 5340.6, + "end": 5343.1, + "probability": 0.9927 + }, + { + "start": 5343.28, + "end": 5343.36, + "probability": 0.4373 + }, + { + "start": 5343.38, + "end": 5344.38, + "probability": 0.8474 + }, + { + "start": 5344.52, + "end": 5344.86, + "probability": 0.7324 + }, + { + "start": 5345.24, + "end": 5347.4, + "probability": 0.7561 + }, + { + "start": 5347.82, + "end": 5348.54, + "probability": 0.906 + }, + { + "start": 5349.06, + "end": 5350.4, + "probability": 0.2774 + }, + { + "start": 5350.6, + "end": 5350.7, + "probability": 0.337 + }, + { + "start": 5350.7, + "end": 5351.44, + "probability": 0.1781 + }, + { + "start": 5351.58, + "end": 5352.96, + "probability": 0.8418 + }, + { + "start": 5353.18, + "end": 5356.66, + "probability": 0.948 + }, + { + "start": 5356.74, + "end": 5359.9, + "probability": 0.1232 + }, + { + "start": 5361.38, + "end": 5363.62, + "probability": 0.4253 + }, + { + "start": 5363.76, + "end": 5363.84, + "probability": 0.413 + }, + { + "start": 5363.84, + "end": 5366.0, + "probability": 0.4704 + }, + { + "start": 5366.0, + "end": 5366.54, + "probability": 0.7889 + }, + { + "start": 5366.96, + "end": 5367.8, + "probability": 0.285 + }, + { + "start": 5371.08, + "end": 5371.22, + "probability": 0.0135 + }, + { + "start": 5371.22, + "end": 5371.22, + "probability": 0.2836 + }, + { + "start": 5371.22, + "end": 5371.7, + "probability": 0.0508 + }, + { + "start": 5371.78, + "end": 5371.92, + "probability": 0.1196 + }, + { + "start": 5371.92, + "end": 5373.92, + "probability": 0.5572 + }, + { + "start": 5374.24, + "end": 5374.58, + "probability": 0.2456 + }, + { + "start": 5375.22, + "end": 5376.7, + "probability": 0.555 + }, + { + "start": 5377.32, + "end": 5377.34, + "probability": 0.0195 + }, + { + "start": 5377.34, + "end": 5377.5, + "probability": 0.1689 + }, + { + "start": 5377.66, + "end": 5378.98, + "probability": 0.9333 + }, + { + "start": 5380.0, + "end": 5382.7, + "probability": 0.8994 + }, + { + "start": 5383.6, + "end": 5384.32, + "probability": 0.9614 + }, + { + "start": 5385.1, + "end": 5385.9, + "probability": 0.9408 + }, + { + "start": 5386.94, + "end": 5387.14, + "probability": 0.8632 + }, + { + "start": 5388.3, + "end": 5390.08, + "probability": 0.9803 + }, + { + "start": 5390.14, + "end": 5391.18, + "probability": 0.8841 + }, + { + "start": 5391.54, + "end": 5392.76, + "probability": 0.9956 + }, + { + "start": 5394.04, + "end": 5396.9, + "probability": 0.4405 + }, + { + "start": 5397.0, + "end": 5399.09, + "probability": 0.8 + }, + { + "start": 5400.22, + "end": 5400.98, + "probability": 0.8292 + }, + { + "start": 5401.08, + "end": 5401.18, + "probability": 0.5969 + }, + { + "start": 5401.44, + "end": 5403.42, + "probability": 0.9519 + }, + { + "start": 5403.9, + "end": 5408.8, + "probability": 0.9789 + }, + { + "start": 5408.86, + "end": 5410.26, + "probability": 0.9987 + }, + { + "start": 5410.72, + "end": 5411.08, + "probability": 0.6901 + }, + { + "start": 5411.52, + "end": 5413.04, + "probability": 0.7086 + }, + { + "start": 5413.58, + "end": 5414.96, + "probability": 0.972 + }, + { + "start": 5415.04, + "end": 5415.78, + "probability": 0.9211 + }, + { + "start": 5416.2, + "end": 5416.54, + "probability": 0.9565 + }, + { + "start": 5417.84, + "end": 5419.26, + "probability": 0.6313 + }, + { + "start": 5419.38, + "end": 5421.44, + "probability": 0.9955 + }, + { + "start": 5422.02, + "end": 5424.24, + "probability": 0.8372 + }, + { + "start": 5424.46, + "end": 5425.06, + "probability": 0.3262 + }, + { + "start": 5425.34, + "end": 5429.96, + "probability": 0.7389 + }, + { + "start": 5429.96, + "end": 5430.16, + "probability": 0.3319 + }, + { + "start": 5430.36, + "end": 5430.58, + "probability": 0.2676 + }, + { + "start": 5430.58, + "end": 5430.62, + "probability": 0.1999 + }, + { + "start": 5430.64, + "end": 5431.78, + "probability": 0.3458 + }, + { + "start": 5431.94, + "end": 5434.2, + "probability": 0.7405 + }, + { + "start": 5434.7, + "end": 5439.18, + "probability": 0.9614 + }, + { + "start": 5439.48, + "end": 5441.12, + "probability": 0.5248 + }, + { + "start": 5441.48, + "end": 5442.62, + "probability": 0.8457 + }, + { + "start": 5442.74, + "end": 5442.96, + "probability": 0.8593 + }, + { + "start": 5443.04, + "end": 5444.06, + "probability": 0.9819 + }, + { + "start": 5444.52, + "end": 5445.56, + "probability": 0.9364 + }, + { + "start": 5445.76, + "end": 5447.04, + "probability": 0.9495 + }, + { + "start": 5447.18, + "end": 5447.46, + "probability": 0.8035 + }, + { + "start": 5447.46, + "end": 5449.7, + "probability": 0.9565 + }, + { + "start": 5449.76, + "end": 5450.5, + "probability": 0.6815 + }, + { + "start": 5450.56, + "end": 5450.78, + "probability": 0.7956 + }, + { + "start": 5451.77, + "end": 5454.44, + "probability": 0.7013 + }, + { + "start": 5454.88, + "end": 5455.62, + "probability": 0.6877 + }, + { + "start": 5455.92, + "end": 5457.1, + "probability": 0.8198 + }, + { + "start": 5457.22, + "end": 5458.26, + "probability": 0.756 + }, + { + "start": 5458.54, + "end": 5462.86, + "probability": 0.8643 + }, + { + "start": 5462.86, + "end": 5464.06, + "probability": 0.5353 + }, + { + "start": 5464.54, + "end": 5464.88, + "probability": 0.4521 + }, + { + "start": 5465.04, + "end": 5465.68, + "probability": 0.7609 + }, + { + "start": 5465.76, + "end": 5466.62, + "probability": 0.7615 + }, + { + "start": 5466.78, + "end": 5468.84, + "probability": 0.9575 + }, + { + "start": 5469.08, + "end": 5470.94, + "probability": 0.8218 + }, + { + "start": 5471.18, + "end": 5473.82, + "probability": 0.9226 + }, + { + "start": 5474.52, + "end": 5475.4, + "probability": 0.7479 + }, + { + "start": 5476.04, + "end": 5476.64, + "probability": 0.4699 + }, + { + "start": 5476.76, + "end": 5477.6, + "probability": 0.7137 + }, + { + "start": 5477.68, + "end": 5479.72, + "probability": 0.96 + }, + { + "start": 5480.14, + "end": 5482.86, + "probability": 0.7305 + }, + { + "start": 5482.88, + "end": 5485.36, + "probability": 0.9437 + }, + { + "start": 5486.02, + "end": 5486.83, + "probability": 0.957 + }, + { + "start": 5487.44, + "end": 5488.0, + "probability": 0.897 + }, + { + "start": 5488.22, + "end": 5488.94, + "probability": 0.4788 + }, + { + "start": 5489.3, + "end": 5489.38, + "probability": 0.5607 + }, + { + "start": 5489.56, + "end": 5489.98, + "probability": 0.9335 + }, + { + "start": 5490.04, + "end": 5492.7, + "probability": 0.907 + }, + { + "start": 5492.78, + "end": 5493.16, + "probability": 0.6146 + }, + { + "start": 5493.6, + "end": 5497.44, + "probability": 0.5511 + }, + { + "start": 5497.88, + "end": 5499.34, + "probability": 0.8035 + }, + { + "start": 5499.5, + "end": 5500.06, + "probability": 0.7882 + }, + { + "start": 5500.08, + "end": 5501.14, + "probability": 0.9069 + }, + { + "start": 5501.26, + "end": 5504.68, + "probability": 0.9625 + }, + { + "start": 5504.78, + "end": 5505.76, + "probability": 0.5966 + }, + { + "start": 5506.38, + "end": 5507.08, + "probability": 0.8287 + }, + { + "start": 5507.44, + "end": 5508.78, + "probability": 0.968 + }, + { + "start": 5509.08, + "end": 5509.4, + "probability": 0.4546 + }, + { + "start": 5509.58, + "end": 5510.4, + "probability": 0.9851 + }, + { + "start": 5510.98, + "end": 5511.58, + "probability": 0.9287 + }, + { + "start": 5511.6, + "end": 5513.05, + "probability": 0.8898 + }, + { + "start": 5513.18, + "end": 5513.97, + "probability": 0.9275 + }, + { + "start": 5514.06, + "end": 5514.74, + "probability": 0.7123 + }, + { + "start": 5514.9, + "end": 5515.16, + "probability": 0.4569 + }, + { + "start": 5515.22, + "end": 5518.7, + "probability": 0.9826 + }, + { + "start": 5519.44, + "end": 5522.82, + "probability": 0.8719 + }, + { + "start": 5523.36, + "end": 5525.62, + "probability": 0.9247 + }, + { + "start": 5525.9, + "end": 5529.12, + "probability": 0.8225 + }, + { + "start": 5529.84, + "end": 5530.82, + "probability": 0.5162 + }, + { + "start": 5530.94, + "end": 5531.36, + "probability": 0.9609 + }, + { + "start": 5531.52, + "end": 5533.98, + "probability": 0.8886 + }, + { + "start": 5534.28, + "end": 5536.06, + "probability": 0.983 + }, + { + "start": 5536.54, + "end": 5540.02, + "probability": 0.9193 + }, + { + "start": 5540.48, + "end": 5541.56, + "probability": 0.9964 + }, + { + "start": 5541.66, + "end": 5542.06, + "probability": 0.8021 + }, + { + "start": 5542.24, + "end": 5542.8, + "probability": 0.8071 + }, + { + "start": 5543.48, + "end": 5546.86, + "probability": 0.9457 + }, + { + "start": 5547.38, + "end": 5549.22, + "probability": 0.9916 + }, + { + "start": 5549.64, + "end": 5552.3, + "probability": 0.9941 + }, + { + "start": 5552.7, + "end": 5554.18, + "probability": 0.862 + }, + { + "start": 5555.74, + "end": 5555.76, + "probability": 0.285 + }, + { + "start": 5555.76, + "end": 5557.42, + "probability": 0.5016 + }, + { + "start": 5557.64, + "end": 5559.08, + "probability": 0.9319 + }, + { + "start": 5559.8, + "end": 5560.28, + "probability": 0.9303 + }, + { + "start": 5560.74, + "end": 5562.48, + "probability": 0.7132 + }, + { + "start": 5562.58, + "end": 5566.42, + "probability": 0.9784 + }, + { + "start": 5566.82, + "end": 5568.02, + "probability": 0.9003 + }, + { + "start": 5568.32, + "end": 5570.58, + "probability": 0.9907 + }, + { + "start": 5571.6, + "end": 5574.12, + "probability": 0.8718 + }, + { + "start": 5574.78, + "end": 5577.42, + "probability": 0.9297 + }, + { + "start": 5577.48, + "end": 5578.25, + "probability": 0.9763 + }, + { + "start": 5578.38, + "end": 5579.98, + "probability": 0.9744 + }, + { + "start": 5580.62, + "end": 5585.46, + "probability": 0.9932 + }, + { + "start": 5585.5, + "end": 5587.74, + "probability": 0.6663 + }, + { + "start": 5588.44, + "end": 5590.24, + "probability": 0.9858 + }, + { + "start": 5590.88, + "end": 5595.38, + "probability": 0.745 + }, + { + "start": 5596.3, + "end": 5597.56, + "probability": 0.8789 + }, + { + "start": 5597.6, + "end": 5598.7, + "probability": 0.961 + }, + { + "start": 5598.74, + "end": 5600.64, + "probability": 0.8757 + }, + { + "start": 5601.0, + "end": 5602.52, + "probability": 0.833 + }, + { + "start": 5603.0, + "end": 5604.42, + "probability": 0.8254 + }, + { + "start": 5604.8, + "end": 5607.8, + "probability": 0.9587 + }, + { + "start": 5608.02, + "end": 5609.83, + "probability": 0.8247 + }, + { + "start": 5610.5, + "end": 5612.24, + "probability": 0.8286 + }, + { + "start": 5612.62, + "end": 5616.32, + "probability": 0.9795 + }, + { + "start": 5616.52, + "end": 5618.62, + "probability": 0.9912 + }, + { + "start": 5619.86, + "end": 5621.06, + "probability": 0.7856 + }, + { + "start": 5621.26, + "end": 5626.4, + "probability": 0.9684 + }, + { + "start": 5627.04, + "end": 5630.56, + "probability": 0.9813 + }, + { + "start": 5630.74, + "end": 5631.36, + "probability": 0.7617 + }, + { + "start": 5631.86, + "end": 5633.08, + "probability": 0.9845 + }, + { + "start": 5633.7, + "end": 5635.98, + "probability": 0.9025 + }, + { + "start": 5636.96, + "end": 5640.14, + "probability": 0.9889 + }, + { + "start": 5640.26, + "end": 5641.2, + "probability": 0.524 + }, + { + "start": 5641.28, + "end": 5643.16, + "probability": 0.9604 + }, + { + "start": 5643.54, + "end": 5643.84, + "probability": 0.7482 + }, + { + "start": 5644.36, + "end": 5646.48, + "probability": 0.8658 + }, + { + "start": 5647.1, + "end": 5648.24, + "probability": 0.9863 + }, + { + "start": 5648.4, + "end": 5649.64, + "probability": 0.992 + }, + { + "start": 5650.08, + "end": 5650.92, + "probability": 0.9758 + }, + { + "start": 5651.46, + "end": 5653.34, + "probability": 0.8217 + }, + { + "start": 5653.72, + "end": 5655.26, + "probability": 0.915 + }, + { + "start": 5655.62, + "end": 5658.1, + "probability": 0.919 + }, + { + "start": 5658.26, + "end": 5659.03, + "probability": 0.9512 + }, + { + "start": 5659.38, + "end": 5660.54, + "probability": 0.7992 + }, + { + "start": 5661.18, + "end": 5663.16, + "probability": 0.9598 + }, + { + "start": 5666.54, + "end": 5670.74, + "probability": 0.4592 + }, + { + "start": 5670.9, + "end": 5671.98, + "probability": 0.9527 + }, + { + "start": 5672.08, + "end": 5672.54, + "probability": 0.8609 + }, + { + "start": 5672.66, + "end": 5673.98, + "probability": 0.6492 + }, + { + "start": 5674.64, + "end": 5675.94, + "probability": 0.9486 + }, + { + "start": 5676.24, + "end": 5677.04, + "probability": 0.9686 + }, + { + "start": 5677.14, + "end": 5678.26, + "probability": 0.8496 + }, + { + "start": 5678.44, + "end": 5680.78, + "probability": 0.9877 + }, + { + "start": 5680.86, + "end": 5682.4, + "probability": 0.9724 + }, + { + "start": 5682.76, + "end": 5683.2, + "probability": 0.9952 + }, + { + "start": 5683.74, + "end": 5684.66, + "probability": 0.681 + }, + { + "start": 5685.02, + "end": 5687.52, + "probability": 0.8076 + }, + { + "start": 5687.56, + "end": 5687.88, + "probability": 0.429 + }, + { + "start": 5687.9, + "end": 5689.86, + "probability": 0.7378 + }, + { + "start": 5690.28, + "end": 5692.32, + "probability": 0.9895 + }, + { + "start": 5692.34, + "end": 5693.24, + "probability": 0.2844 + }, + { + "start": 5693.3, + "end": 5694.04, + "probability": 0.4857 + }, + { + "start": 5694.1, + "end": 5695.26, + "probability": 0.9451 + }, + { + "start": 5695.7, + "end": 5696.82, + "probability": 0.8746 + }, + { + "start": 5696.96, + "end": 5699.32, + "probability": 0.8235 + }, + { + "start": 5700.57, + "end": 5703.42, + "probability": 0.7683 + }, + { + "start": 5708.44, + "end": 5715.34, + "probability": 0.9366 + }, + { + "start": 5715.68, + "end": 5715.88, + "probability": 0.3261 + }, + { + "start": 5716.02, + "end": 5716.62, + "probability": 0.7222 + }, + { + "start": 5716.64, + "end": 5717.34, + "probability": 0.5969 + }, + { + "start": 5717.34, + "end": 5717.4, + "probability": 0.0346 + }, + { + "start": 5717.4, + "end": 5717.8, + "probability": 0.3917 + }, + { + "start": 5717.82, + "end": 5718.7, + "probability": 0.4776 + }, + { + "start": 5718.7, + "end": 5721.8, + "probability": 0.3693 + }, + { + "start": 5721.98, + "end": 5722.36, + "probability": 0.9543 + }, + { + "start": 5722.92, + "end": 5727.44, + "probability": 0.879 + }, + { + "start": 5728.08, + "end": 5729.14, + "probability": 0.9402 + }, + { + "start": 5729.26, + "end": 5733.82, + "probability": 0.9048 + }, + { + "start": 5734.16, + "end": 5735.14, + "probability": 0.6177 + }, + { + "start": 5735.24, + "end": 5736.5, + "probability": 0.9093 + }, + { + "start": 5737.14, + "end": 5737.34, + "probability": 0.0269 + }, + { + "start": 5737.9, + "end": 5740.48, + "probability": 0.785 + }, + { + "start": 5740.56, + "end": 5741.0, + "probability": 0.1709 + }, + { + "start": 5742.81, + "end": 5744.86, + "probability": 0.4944 + }, + { + "start": 5744.96, + "end": 5745.24, + "probability": 0.1507 + }, + { + "start": 5745.36, + "end": 5746.18, + "probability": 0.7227 + }, + { + "start": 5746.32, + "end": 5747.84, + "probability": 0.5375 + }, + { + "start": 5748.08, + "end": 5749.0, + "probability": 0.4475 + }, + { + "start": 5749.66, + "end": 5751.28, + "probability": 0.858 + }, + { + "start": 5751.32, + "end": 5752.48, + "probability": 0.8389 + }, + { + "start": 5753.46, + "end": 5757.6, + "probability": 0.9933 + }, + { + "start": 5757.73, + "end": 5759.22, + "probability": 0.7607 + }, + { + "start": 5759.46, + "end": 5761.58, + "probability": 0.9919 + }, + { + "start": 5761.74, + "end": 5766.66, + "probability": 0.9563 + }, + { + "start": 5767.42, + "end": 5769.6, + "probability": 0.9951 + }, + { + "start": 5769.76, + "end": 5775.6, + "probability": 0.8353 + }, + { + "start": 5776.4, + "end": 5780.12, + "probability": 0.8885 + }, + { + "start": 5780.96, + "end": 5784.28, + "probability": 0.8829 + }, + { + "start": 5784.5, + "end": 5785.24, + "probability": 0.5552 + }, + { + "start": 5785.32, + "end": 5786.0, + "probability": 0.6865 + }, + { + "start": 5786.1, + "end": 5786.8, + "probability": 0.619 + }, + { + "start": 5787.26, + "end": 5788.14, + "probability": 0.9952 + }, + { + "start": 5789.16, + "end": 5793.7, + "probability": 0.4854 + }, + { + "start": 5793.84, + "end": 5794.44, + "probability": 0.3662 + }, + { + "start": 5794.5, + "end": 5796.92, + "probability": 0.9031 + }, + { + "start": 5796.96, + "end": 5800.8, + "probability": 0.8986 + }, + { + "start": 5800.9, + "end": 5802.44, + "probability": 0.998 + }, + { + "start": 5802.52, + "end": 5802.94, + "probability": 0.563 + }, + { + "start": 5802.98, + "end": 5803.44, + "probability": 0.4581 + }, + { + "start": 5803.58, + "end": 5804.46, + "probability": 0.7693 + }, + { + "start": 5804.64, + "end": 5805.14, + "probability": 0.4718 + }, + { + "start": 5805.2, + "end": 5809.12, + "probability": 0.9936 + }, + { + "start": 5809.28, + "end": 5814.6, + "probability": 0.9822 + }, + { + "start": 5815.06, + "end": 5816.33, + "probability": 0.969 + }, + { + "start": 5816.64, + "end": 5817.14, + "probability": 0.7962 + }, + { + "start": 5817.34, + "end": 5822.34, + "probability": 0.9361 + }, + { + "start": 5822.62, + "end": 5824.72, + "probability": 0.9211 + }, + { + "start": 5824.92, + "end": 5826.16, + "probability": 0.7189 + }, + { + "start": 5826.36, + "end": 5827.58, + "probability": 0.7977 + }, + { + "start": 5827.7, + "end": 5828.02, + "probability": 0.7183 + }, + { + "start": 5828.16, + "end": 5828.4, + "probability": 0.8755 + }, + { + "start": 5828.54, + "end": 5831.56, + "probability": 0.9933 + }, + { + "start": 5832.0, + "end": 5834.71, + "probability": 0.9731 + }, + { + "start": 5834.94, + "end": 5835.58, + "probability": 0.6152 + }, + { + "start": 5835.76, + "end": 5836.14, + "probability": 0.7124 + }, + { + "start": 5836.56, + "end": 5836.86, + "probability": 0.5129 + }, + { + "start": 5836.92, + "end": 5837.82, + "probability": 0.6308 + }, + { + "start": 5837.86, + "end": 5839.14, + "probability": 0.6902 + }, + { + "start": 5839.3, + "end": 5840.28, + "probability": 0.917 + }, + { + "start": 5840.4, + "end": 5842.32, + "probability": 0.6739 + }, + { + "start": 5842.64, + "end": 5843.38, + "probability": 0.9109 + }, + { + "start": 5843.5, + "end": 5847.02, + "probability": 0.9874 + }, + { + "start": 5847.12, + "end": 5848.58, + "probability": 0.6174 + }, + { + "start": 5848.7, + "end": 5849.54, + "probability": 0.7792 + }, + { + "start": 5849.72, + "end": 5850.82, + "probability": 0.8428 + }, + { + "start": 5850.92, + "end": 5854.24, + "probability": 0.9579 + }, + { + "start": 5854.28, + "end": 5856.96, + "probability": 0.9641 + }, + { + "start": 5857.42, + "end": 5858.58, + "probability": 0.8896 + }, + { + "start": 5858.76, + "end": 5864.44, + "probability": 0.9909 + }, + { + "start": 5864.44, + "end": 5865.42, + "probability": 0.0935 + }, + { + "start": 5866.54, + "end": 5868.16, + "probability": 0.9479 + }, + { + "start": 5868.18, + "end": 5869.96, + "probability": 0.8228 + }, + { + "start": 5870.08, + "end": 5873.32, + "probability": 0.7089 + }, + { + "start": 5874.0, + "end": 5874.12, + "probability": 0.8026 + }, + { + "start": 5874.12, + "end": 5874.72, + "probability": 0.7104 + }, + { + "start": 5874.8, + "end": 5876.72, + "probability": 0.9812 + }, + { + "start": 5877.06, + "end": 5877.52, + "probability": 0.5028 + }, + { + "start": 5877.56, + "end": 5878.24, + "probability": 0.8483 + }, + { + "start": 5878.5, + "end": 5879.98, + "probability": 0.9248 + }, + { + "start": 5880.6, + "end": 5881.32, + "probability": 0.6804 + }, + { + "start": 5881.5, + "end": 5882.7, + "probability": 0.5075 + }, + { + "start": 5882.98, + "end": 5888.36, + "probability": 0.9712 + }, + { + "start": 5888.36, + "end": 5893.36, + "probability": 0.9979 + }, + { + "start": 5893.72, + "end": 5895.1, + "probability": 0.908 + }, + { + "start": 5895.96, + "end": 5896.9, + "probability": 0.5737 + }, + { + "start": 5897.18, + "end": 5904.2, + "probability": 0.9471 + }, + { + "start": 5905.2, + "end": 5908.4, + "probability": 0.9961 + }, + { + "start": 5908.78, + "end": 5910.56, + "probability": 0.9276 + }, + { + "start": 5910.78, + "end": 5911.48, + "probability": 0.8035 + }, + { + "start": 5911.96, + "end": 5915.62, + "probability": 0.8569 + }, + { + "start": 5916.11, + "end": 5921.09, + "probability": 0.8442 + }, + { + "start": 5921.44, + "end": 5922.8, + "probability": 0.7146 + }, + { + "start": 5922.86, + "end": 5925.34, + "probability": 0.6058 + }, + { + "start": 5925.9, + "end": 5928.68, + "probability": 0.4414 + }, + { + "start": 5928.82, + "end": 5933.06, + "probability": 0.9759 + }, + { + "start": 5933.14, + "end": 5935.21, + "probability": 0.9717 + }, + { + "start": 5938.02, + "end": 5939.59, + "probability": 0.9961 + }, + { + "start": 5939.96, + "end": 5940.32, + "probability": 0.6275 + }, + { + "start": 5940.76, + "end": 5941.48, + "probability": 0.6573 + }, + { + "start": 5942.48, + "end": 5944.32, + "probability": 0.6679 + }, + { + "start": 5944.5, + "end": 5947.12, + "probability": 0.8439 + }, + { + "start": 5947.72, + "end": 5949.7, + "probability": 0.9181 + }, + { + "start": 5950.7, + "end": 5952.53, + "probability": 0.7508 + }, + { + "start": 5953.02, + "end": 5953.6, + "probability": 0.6505 + }, + { + "start": 5953.86, + "end": 5955.6, + "probability": 0.8442 + }, + { + "start": 5955.66, + "end": 5956.1, + "probability": 0.8171 + }, + { + "start": 5956.66, + "end": 5956.92, + "probability": 0.8423 + }, + { + "start": 5959.16, + "end": 5960.8, + "probability": 0.4506 + }, + { + "start": 5961.0, + "end": 5961.72, + "probability": 0.7591 + }, + { + "start": 5961.86, + "end": 5963.82, + "probability": 0.5733 + }, + { + "start": 5963.88, + "end": 5964.68, + "probability": 0.9099 + }, + { + "start": 5964.98, + "end": 5966.08, + "probability": 0.5783 + }, + { + "start": 5966.42, + "end": 5967.64, + "probability": 0.8063 + }, + { + "start": 5969.28, + "end": 5970.3, + "probability": 0.2242 + }, + { + "start": 5979.86, + "end": 5983.52, + "probability": 0.3209 + }, + { + "start": 5984.04, + "end": 5987.39, + "probability": 0.965 + }, + { + "start": 5987.46, + "end": 5988.18, + "probability": 0.646 + }, + { + "start": 5988.18, + "end": 5989.56, + "probability": 0.5079 + }, + { + "start": 5989.76, + "end": 5991.86, + "probability": 0.791 + }, + { + "start": 5992.6, + "end": 5992.88, + "probability": 0.2337 + }, + { + "start": 5992.96, + "end": 5995.6, + "probability": 0.5167 + }, + { + "start": 5997.32, + "end": 6002.61, + "probability": 0.7147 + }, + { + "start": 6004.83, + "end": 6007.5, + "probability": 0.8041 + }, + { + "start": 6008.08, + "end": 6008.7, + "probability": 0.9961 + }, + { + "start": 6009.98, + "end": 6011.28, + "probability": 0.9668 + }, + { + "start": 6012.08, + "end": 6013.21, + "probability": 0.6635 + }, + { + "start": 6014.42, + "end": 6020.0, + "probability": 0.8546 + }, + { + "start": 6020.62, + "end": 6024.24, + "probability": 0.9876 + }, + { + "start": 6024.78, + "end": 6026.3, + "probability": 0.8625 + }, + { + "start": 6027.52, + "end": 6030.54, + "probability": 0.9966 + }, + { + "start": 6032.46, + "end": 6034.84, + "probability": 0.9056 + }, + { + "start": 6034.94, + "end": 6037.06, + "probability": 0.7728 + }, + { + "start": 6037.96, + "end": 6039.16, + "probability": 0.951 + }, + { + "start": 6040.98, + "end": 6044.18, + "probability": 0.9902 + }, + { + "start": 6045.14, + "end": 6046.52, + "probability": 0.8974 + }, + { + "start": 6048.8, + "end": 6051.4, + "probability": 0.9492 + }, + { + "start": 6053.32, + "end": 6057.34, + "probability": 0.6436 + }, + { + "start": 6058.8, + "end": 6060.94, + "probability": 0.8715 + }, + { + "start": 6062.02, + "end": 6064.86, + "probability": 0.3914 + }, + { + "start": 6066.58, + "end": 6070.62, + "probability": 0.9107 + }, + { + "start": 6071.14, + "end": 6072.2, + "probability": 0.9154 + }, + { + "start": 6072.28, + "end": 6073.76, + "probability": 0.9966 + }, + { + "start": 6075.44, + "end": 6077.74, + "probability": 0.705 + }, + { + "start": 6078.76, + "end": 6080.26, + "probability": 0.793 + }, + { + "start": 6082.54, + "end": 6086.12, + "probability": 0.9453 + }, + { + "start": 6086.78, + "end": 6089.6, + "probability": 0.9096 + }, + { + "start": 6091.1, + "end": 6092.8, + "probability": 0.8691 + }, + { + "start": 6093.0, + "end": 6096.16, + "probability": 0.6721 + }, + { + "start": 6096.16, + "end": 6099.1, + "probability": 0.5514 + }, + { + "start": 6099.18, + "end": 6099.6, + "probability": 0.5549 + }, + { + "start": 6100.48, + "end": 6101.62, + "probability": 0.7383 + }, + { + "start": 6102.3, + "end": 6105.52, + "probability": 0.8762 + }, + { + "start": 6107.22, + "end": 6109.46, + "probability": 0.8325 + }, + { + "start": 6110.26, + "end": 6114.22, + "probability": 0.9873 + }, + { + "start": 6115.16, + "end": 6117.28, + "probability": 0.5761 + }, + { + "start": 6117.96, + "end": 6121.56, + "probability": 0.8361 + }, + { + "start": 6122.74, + "end": 6124.62, + "probability": 0.9917 + }, + { + "start": 6125.16, + "end": 6126.76, + "probability": 0.9712 + }, + { + "start": 6127.82, + "end": 6130.9, + "probability": 0.9958 + }, + { + "start": 6132.94, + "end": 6134.64, + "probability": 0.6913 + }, + { + "start": 6135.56, + "end": 6136.46, + "probability": 0.6372 + }, + { + "start": 6138.04, + "end": 6140.58, + "probability": 0.865 + }, + { + "start": 6140.64, + "end": 6143.44, + "probability": 0.9049 + }, + { + "start": 6145.82, + "end": 6146.44, + "probability": 0.895 + }, + { + "start": 6146.6, + "end": 6147.54, + "probability": 0.7556 + }, + { + "start": 6147.84, + "end": 6150.4, + "probability": 0.7595 + }, + { + "start": 6150.56, + "end": 6151.88, + "probability": 0.6701 + }, + { + "start": 6153.06, + "end": 6156.49, + "probability": 0.9072 + }, + { + "start": 6158.54, + "end": 6161.58, + "probability": 0.9945 + }, + { + "start": 6161.8, + "end": 6165.48, + "probability": 0.9178 + }, + { + "start": 6166.14, + "end": 6167.82, + "probability": 0.975 + }, + { + "start": 6168.7, + "end": 6170.36, + "probability": 0.9857 + }, + { + "start": 6172.02, + "end": 6173.52, + "probability": 0.6312 + }, + { + "start": 6175.14, + "end": 6178.28, + "probability": 0.9641 + }, + { + "start": 6178.92, + "end": 6182.94, + "probability": 0.9825 + }, + { + "start": 6183.68, + "end": 6188.18, + "probability": 0.5811 + }, + { + "start": 6189.36, + "end": 6191.86, + "probability": 0.7998 + }, + { + "start": 6192.26, + "end": 6193.1, + "probability": 0.9252 + }, + { + "start": 6194.26, + "end": 6195.84, + "probability": 0.6611 + }, + { + "start": 6196.08, + "end": 6197.08, + "probability": 0.869 + }, + { + "start": 6197.66, + "end": 6198.5, + "probability": 0.8491 + }, + { + "start": 6200.06, + "end": 6201.78, + "probability": 0.9912 + }, + { + "start": 6201.88, + "end": 6203.18, + "probability": 0.8237 + }, + { + "start": 6204.77, + "end": 6208.28, + "probability": 0.9925 + }, + { + "start": 6209.5, + "end": 6211.42, + "probability": 0.5469 + }, + { + "start": 6212.68, + "end": 6214.06, + "probability": 0.7474 + }, + { + "start": 6215.4, + "end": 6216.7, + "probability": 0.7724 + }, + { + "start": 6217.64, + "end": 6222.27, + "probability": 0.7329 + }, + { + "start": 6223.14, + "end": 6224.44, + "probability": 0.6174 + }, + { + "start": 6224.6, + "end": 6226.62, + "probability": 0.9282 + }, + { + "start": 6227.58, + "end": 6229.31, + "probability": 0.9769 + }, + { + "start": 6230.4, + "end": 6231.06, + "probability": 0.7269 + }, + { + "start": 6231.9, + "end": 6233.56, + "probability": 0.9574 + }, + { + "start": 6234.34, + "end": 6235.94, + "probability": 0.8911 + }, + { + "start": 6236.82, + "end": 6237.64, + "probability": 0.7729 + }, + { + "start": 6239.34, + "end": 6241.42, + "probability": 0.9591 + }, + { + "start": 6245.16, + "end": 6246.82, + "probability": 0.9308 + }, + { + "start": 6247.64, + "end": 6250.9, + "probability": 0.9847 + }, + { + "start": 6251.4, + "end": 6254.56, + "probability": 0.8675 + }, + { + "start": 6254.72, + "end": 6255.7, + "probability": 0.879 + }, + { + "start": 6256.82, + "end": 6257.77, + "probability": 0.4023 + }, + { + "start": 6258.86, + "end": 6262.88, + "probability": 0.7004 + }, + { + "start": 6263.42, + "end": 6265.68, + "probability": 0.99 + }, + { + "start": 6265.88, + "end": 6268.06, + "probability": 0.9897 + }, + { + "start": 6268.56, + "end": 6269.48, + "probability": 0.8171 + }, + { + "start": 6270.6, + "end": 6274.78, + "probability": 0.8563 + }, + { + "start": 6275.36, + "end": 6276.08, + "probability": 0.5262 + }, + { + "start": 6276.12, + "end": 6276.9, + "probability": 0.8243 + }, + { + "start": 6277.06, + "end": 6278.68, + "probability": 0.8046 + }, + { + "start": 6279.58, + "end": 6280.4, + "probability": 0.9978 + }, + { + "start": 6281.6, + "end": 6284.52, + "probability": 0.9584 + }, + { + "start": 6285.68, + "end": 6286.92, + "probability": 0.9352 + }, + { + "start": 6287.52, + "end": 6288.84, + "probability": 0.9951 + }, + { + "start": 6290.72, + "end": 6293.36, + "probability": 0.8769 + }, + { + "start": 6294.04, + "end": 6294.32, + "probability": 0.1538 + }, + { + "start": 6294.84, + "end": 6295.76, + "probability": 0.3816 + }, + { + "start": 6296.16, + "end": 6298.96, + "probability": 0.4131 + }, + { + "start": 6299.02, + "end": 6300.26, + "probability": 0.7387 + }, + { + "start": 6300.44, + "end": 6303.08, + "probability": 0.9829 + }, + { + "start": 6303.2, + "end": 6305.04, + "probability": 0.7386 + }, + { + "start": 6305.08, + "end": 6306.28, + "probability": 0.8018 + }, + { + "start": 6306.62, + "end": 6311.28, + "probability": 0.9934 + }, + { + "start": 6312.34, + "end": 6313.7, + "probability": 0.8311 + }, + { + "start": 6314.16, + "end": 6316.54, + "probability": 0.9487 + }, + { + "start": 6317.2, + "end": 6317.64, + "probability": 0.7876 + }, + { + "start": 6318.84, + "end": 6320.74, + "probability": 0.7462 + }, + { + "start": 6320.8, + "end": 6322.28, + "probability": 0.9893 + }, + { + "start": 6322.86, + "end": 6324.94, + "probability": 0.8137 + }, + { + "start": 6325.1, + "end": 6325.84, + "probability": 0.8136 + }, + { + "start": 6326.16, + "end": 6327.72, + "probability": 0.8571 + }, + { + "start": 6327.72, + "end": 6328.86, + "probability": 0.8455 + }, + { + "start": 6333.3, + "end": 6337.34, + "probability": 0.9707 + }, + { + "start": 6337.98, + "end": 6339.08, + "probability": 0.4651 + }, + { + "start": 6339.08, + "end": 6341.4, + "probability": 0.9556 + }, + { + "start": 6341.78, + "end": 6343.7, + "probability": 0.9964 + }, + { + "start": 6344.84, + "end": 6345.78, + "probability": 0.5734 + }, + { + "start": 6345.88, + "end": 6347.32, + "probability": 0.509 + }, + { + "start": 6347.84, + "end": 6349.92, + "probability": 0.3323 + }, + { + "start": 6350.0, + "end": 6350.48, + "probability": 0.3301 + }, + { + "start": 6350.9, + "end": 6352.56, + "probability": 0.7344 + }, + { + "start": 6352.76, + "end": 6354.02, + "probability": 0.9177 + }, + { + "start": 6354.16, + "end": 6355.48, + "probability": 0.8185 + }, + { + "start": 6356.46, + "end": 6359.04, + "probability": 0.9814 + }, + { + "start": 6360.5, + "end": 6363.64, + "probability": 0.6151 + }, + { + "start": 6363.96, + "end": 6365.72, + "probability": 0.9924 + }, + { + "start": 6366.42, + "end": 6368.5, + "probability": 0.9932 + }, + { + "start": 6369.34, + "end": 6369.38, + "probability": 0.7368 + }, + { + "start": 6370.98, + "end": 6374.39, + "probability": 0.9026 + }, + { + "start": 6375.62, + "end": 6376.54, + "probability": 0.7491 + }, + { + "start": 6376.88, + "end": 6379.52, + "probability": 0.8028 + }, + { + "start": 6380.82, + "end": 6381.34, + "probability": 0.3531 + }, + { + "start": 6381.86, + "end": 6383.46, + "probability": 0.9874 + }, + { + "start": 6383.68, + "end": 6385.62, + "probability": 0.9861 + }, + { + "start": 6385.7, + "end": 6386.34, + "probability": 0.7802 + }, + { + "start": 6387.42, + "end": 6389.14, + "probability": 0.9215 + }, + { + "start": 6389.78, + "end": 6393.56, + "probability": 0.9655 + }, + { + "start": 6394.18, + "end": 6398.18, + "probability": 0.656 + }, + { + "start": 6398.72, + "end": 6405.2, + "probability": 0.9869 + }, + { + "start": 6405.68, + "end": 6407.45, + "probability": 0.8945 + }, + { + "start": 6407.64, + "end": 6408.8, + "probability": 0.9247 + }, + { + "start": 6408.92, + "end": 6413.02, + "probability": 0.9315 + }, + { + "start": 6413.58, + "end": 6416.28, + "probability": 0.9782 + }, + { + "start": 6416.58, + "end": 6416.94, + "probability": 0.3502 + }, + { + "start": 6417.0, + "end": 6418.98, + "probability": 0.9301 + }, + { + "start": 6419.04, + "end": 6420.06, + "probability": 0.9812 + }, + { + "start": 6420.66, + "end": 6420.86, + "probability": 0.6864 + }, + { + "start": 6421.24, + "end": 6424.12, + "probability": 0.9993 + }, + { + "start": 6425.54, + "end": 6426.2, + "probability": 0.9146 + }, + { + "start": 6426.22, + "end": 6426.86, + "probability": 0.9102 + }, + { + "start": 6426.96, + "end": 6428.54, + "probability": 0.9759 + }, + { + "start": 6429.12, + "end": 6430.1, + "probability": 0.7145 + }, + { + "start": 6430.5, + "end": 6432.44, + "probability": 0.59 + }, + { + "start": 6432.44, + "end": 6433.48, + "probability": 0.8405 + }, + { + "start": 6433.64, + "end": 6434.5, + "probability": 0.9937 + }, + { + "start": 6435.34, + "end": 6436.04, + "probability": 0.9927 + }, + { + "start": 6437.84, + "end": 6443.08, + "probability": 0.8942 + }, + { + "start": 6443.78, + "end": 6446.72, + "probability": 0.9842 + }, + { + "start": 6447.54, + "end": 6448.0, + "probability": 0.7163 + }, + { + "start": 6448.28, + "end": 6448.54, + "probability": 0.6926 + }, + { + "start": 6448.78, + "end": 6450.84, + "probability": 0.9141 + }, + { + "start": 6450.94, + "end": 6452.32, + "probability": 0.8337 + }, + { + "start": 6453.0, + "end": 6455.76, + "probability": 0.9712 + }, + { + "start": 6456.76, + "end": 6457.26, + "probability": 0.8795 + }, + { + "start": 6457.32, + "end": 6458.82, + "probability": 0.8279 + }, + { + "start": 6459.78, + "end": 6462.96, + "probability": 0.9459 + }, + { + "start": 6463.78, + "end": 6465.12, + "probability": 0.8548 + }, + { + "start": 6466.6, + "end": 6468.58, + "probability": 0.7494 + }, + { + "start": 6469.06, + "end": 6473.04, + "probability": 0.9937 + }, + { + "start": 6473.7, + "end": 6475.12, + "probability": 0.9916 + }, + { + "start": 6475.9, + "end": 6476.8, + "probability": 0.9572 + }, + { + "start": 6477.08, + "end": 6477.87, + "probability": 0.9014 + }, + { + "start": 6477.96, + "end": 6478.72, + "probability": 0.7757 + }, + { + "start": 6479.6, + "end": 6481.8, + "probability": 0.9351 + }, + { + "start": 6481.92, + "end": 6484.02, + "probability": 0.5956 + }, + { + "start": 6484.12, + "end": 6484.64, + "probability": 0.639 + }, + { + "start": 6484.7, + "end": 6485.28, + "probability": 0.7683 + }, + { + "start": 6486.06, + "end": 6489.98, + "probability": 0.9346 + }, + { + "start": 6490.68, + "end": 6494.8, + "probability": 0.9127 + }, + { + "start": 6495.02, + "end": 6495.58, + "probability": 0.7682 + }, + { + "start": 6495.8, + "end": 6496.72, + "probability": 0.6399 + }, + { + "start": 6496.88, + "end": 6499.18, + "probability": 0.9463 + }, + { + "start": 6499.43, + "end": 6501.16, + "probability": 0.638 + }, + { + "start": 6501.54, + "end": 6504.08, + "probability": 0.9658 + }, + { + "start": 6504.18, + "end": 6505.24, + "probability": 0.7837 + }, + { + "start": 6505.68, + "end": 6507.16, + "probability": 0.9849 + }, + { + "start": 6508.62, + "end": 6512.58, + "probability": 0.9951 + }, + { + "start": 6512.68, + "end": 6515.08, + "probability": 0.9926 + }, + { + "start": 6515.86, + "end": 6516.86, + "probability": 0.7863 + }, + { + "start": 6517.06, + "end": 6518.88, + "probability": 0.9986 + }, + { + "start": 6519.2, + "end": 6519.82, + "probability": 0.7593 + }, + { + "start": 6520.2, + "end": 6521.24, + "probability": 0.6571 + }, + { + "start": 6521.94, + "end": 6528.6, + "probability": 0.9915 + }, + { + "start": 6529.12, + "end": 6534.4, + "probability": 0.6497 + }, + { + "start": 6534.44, + "end": 6537.2, + "probability": 0.9898 + }, + { + "start": 6537.6, + "end": 6539.86, + "probability": 0.9492 + }, + { + "start": 6540.1, + "end": 6543.14, + "probability": 0.9441 + }, + { + "start": 6543.46, + "end": 6545.04, + "probability": 0.5465 + }, + { + "start": 6545.1, + "end": 6546.18, + "probability": 0.743 + }, + { + "start": 6546.52, + "end": 6549.26, + "probability": 0.8468 + }, + { + "start": 6550.46, + "end": 6554.3, + "probability": 0.9641 + }, + { + "start": 6554.82, + "end": 6558.78, + "probability": 0.9375 + }, + { + "start": 6559.14, + "end": 6560.66, + "probability": 0.7344 + }, + { + "start": 6561.22, + "end": 6566.58, + "probability": 0.9367 + }, + { + "start": 6566.82, + "end": 6567.54, + "probability": 0.7061 + }, + { + "start": 6568.56, + "end": 6569.9, + "probability": 0.6157 + }, + { + "start": 6571.2, + "end": 6574.52, + "probability": 0.874 + }, + { + "start": 6602.78, + "end": 6603.88, + "probability": 0.1491 + }, + { + "start": 6603.88, + "end": 6606.88, + "probability": 0.9695 + }, + { + "start": 6607.24, + "end": 6609.06, + "probability": 0.8206 + }, + { + "start": 6610.06, + "end": 6614.32, + "probability": 0.8528 + }, + { + "start": 6614.38, + "end": 6616.32, + "probability": 0.9707 + }, + { + "start": 6616.36, + "end": 6618.78, + "probability": 0.9904 + }, + { + "start": 6619.96, + "end": 6620.26, + "probability": 0.8095 + }, + { + "start": 6620.48, + "end": 6620.9, + "probability": 0.7164 + }, + { + "start": 6622.32, + "end": 6622.68, + "probability": 0.796 + }, + { + "start": 6622.96, + "end": 6625.46, + "probability": 0.9063 + }, + { + "start": 6626.04, + "end": 6627.14, + "probability": 0.9336 + }, + { + "start": 6627.7, + "end": 6629.72, + "probability": 0.9642 + }, + { + "start": 6630.34, + "end": 6632.74, + "probability": 0.8321 + }, + { + "start": 6634.2, + "end": 6636.53, + "probability": 0.936 + }, + { + "start": 6637.0, + "end": 6638.17, + "probability": 0.9897 + }, + { + "start": 6638.32, + "end": 6638.84, + "probability": 0.671 + }, + { + "start": 6639.22, + "end": 6639.9, + "probability": 0.8445 + }, + { + "start": 6639.98, + "end": 6643.22, + "probability": 0.8175 + }, + { + "start": 6643.62, + "end": 6646.58, + "probability": 0.5864 + }, + { + "start": 6647.26, + "end": 6647.86, + "probability": 0.0047 + }, + { + "start": 6649.14, + "end": 6651.14, + "probability": 0.1429 + }, + { + "start": 6651.68, + "end": 6652.2, + "probability": 0.0935 + }, + { + "start": 6652.4, + "end": 6653.68, + "probability": 0.4515 + }, + { + "start": 6653.68, + "end": 6653.68, + "probability": 0.0813 + }, + { + "start": 6653.68, + "end": 6653.68, + "probability": 0.7525 + }, + { + "start": 6653.7, + "end": 6658.4, + "probability": 0.745 + }, + { + "start": 6658.4, + "end": 6661.4, + "probability": 0.9834 + }, + { + "start": 6662.36, + "end": 6662.76, + "probability": 0.5129 + }, + { + "start": 6663.0, + "end": 6665.12, + "probability": 0.8821 + }, + { + "start": 6665.62, + "end": 6666.28, + "probability": 0.8204 + }, + { + "start": 6666.4, + "end": 6667.4, + "probability": 0.6627 + }, + { + "start": 6667.44, + "end": 6671.58, + "probability": 0.6537 + }, + { + "start": 6671.92, + "end": 6672.24, + "probability": 0.7698 + }, + { + "start": 6674.2, + "end": 6677.42, + "probability": 0.9313 + }, + { + "start": 6677.5, + "end": 6678.3, + "probability": 0.8656 + }, + { + "start": 6679.24, + "end": 6681.42, + "probability": 0.9945 + }, + { + "start": 6683.02, + "end": 6683.62, + "probability": 0.85 + }, + { + "start": 6684.22, + "end": 6687.84, + "probability": 0.9456 + }, + { + "start": 6687.94, + "end": 6689.5, + "probability": 0.7156 + }, + { + "start": 6690.6, + "end": 6693.8, + "probability": 0.729 + }, + { + "start": 6693.82, + "end": 6695.46, + "probability": 0.6245 + }, + { + "start": 6696.24, + "end": 6698.98, + "probability": 0.9844 + }, + { + "start": 6700.5, + "end": 6702.58, + "probability": 0.8143 + }, + { + "start": 6702.76, + "end": 6704.4, + "probability": 0.7852 + }, + { + "start": 6705.66, + "end": 6706.64, + "probability": 0.8698 + }, + { + "start": 6707.48, + "end": 6708.54, + "probability": 0.8382 + }, + { + "start": 6708.62, + "end": 6709.18, + "probability": 0.5625 + }, + { + "start": 6709.3, + "end": 6710.92, + "probability": 0.8916 + }, + { + "start": 6712.32, + "end": 6714.02, + "probability": 0.9101 + }, + { + "start": 6714.7, + "end": 6717.18, + "probability": 0.4481 + }, + { + "start": 6718.4, + "end": 6722.26, + "probability": 0.9779 + }, + { + "start": 6722.4, + "end": 6725.58, + "probability": 0.7439 + }, + { + "start": 6725.58, + "end": 6726.64, + "probability": 0.7861 + }, + { + "start": 6727.28, + "end": 6727.86, + "probability": 0.8522 + }, + { + "start": 6728.2, + "end": 6729.56, + "probability": 0.5493 + }, + { + "start": 6729.6, + "end": 6731.78, + "probability": 0.8793 + }, + { + "start": 6731.98, + "end": 6734.84, + "probability": 0.7699 + }, + { + "start": 6734.88, + "end": 6737.04, + "probability": 0.845 + }, + { + "start": 6737.04, + "end": 6737.64, + "probability": 0.3979 + }, + { + "start": 6737.64, + "end": 6738.13, + "probability": 0.5166 + }, + { + "start": 6738.32, + "end": 6740.72, + "probability": 0.7768 + }, + { + "start": 6744.8, + "end": 6746.62, + "probability": 0.6581 + }, + { + "start": 6746.78, + "end": 6751.34, + "probability": 0.9695 + }, + { + "start": 6751.98, + "end": 6753.18, + "probability": 0.6284 + }, + { + "start": 6753.86, + "end": 6757.35, + "probability": 0.8166 + }, + { + "start": 6757.58, + "end": 6758.0, + "probability": 0.8516 + }, + { + "start": 6759.04, + "end": 6761.54, + "probability": 0.9146 + }, + { + "start": 6761.78, + "end": 6762.68, + "probability": 0.8312 + }, + { + "start": 6763.7, + "end": 6767.02, + "probability": 0.9628 + }, + { + "start": 6767.7, + "end": 6771.12, + "probability": 0.9243 + }, + { + "start": 6771.3, + "end": 6775.9, + "probability": 0.7965 + }, + { + "start": 6776.24, + "end": 6778.34, + "probability": 0.8809 + }, + { + "start": 6780.06, + "end": 6781.8, + "probability": 0.9003 + }, + { + "start": 6782.53, + "end": 6783.44, + "probability": 0.9849 + }, + { + "start": 6783.7, + "end": 6786.9, + "probability": 0.5129 + }, + { + "start": 6787.6, + "end": 6790.56, + "probability": 0.8322 + }, + { + "start": 6790.74, + "end": 6790.9, + "probability": 0.453 + }, + { + "start": 6790.92, + "end": 6794.1, + "probability": 0.9312 + }, + { + "start": 6794.64, + "end": 6796.58, + "probability": 0.6129 + }, + { + "start": 6796.68, + "end": 6798.38, + "probability": 0.1919 + }, + { + "start": 6798.38, + "end": 6799.94, + "probability": 0.7045 + }, + { + "start": 6800.72, + "end": 6801.96, + "probability": 0.6651 + }, + { + "start": 6802.56, + "end": 6805.92, + "probability": 0.7521 + }, + { + "start": 6809.24, + "end": 6809.68, + "probability": 0.0181 + }, + { + "start": 6812.02, + "end": 6816.76, + "probability": 0.9517 + }, + { + "start": 6817.5, + "end": 6818.76, + "probability": 0.6094 + }, + { + "start": 6819.06, + "end": 6822.12, + "probability": 0.8087 + }, + { + "start": 6823.26, + "end": 6827.86, + "probability": 0.9741 + }, + { + "start": 6827.88, + "end": 6828.42, + "probability": 0.5339 + }, + { + "start": 6828.52, + "end": 6830.44, + "probability": 0.9906 + }, + { + "start": 6831.04, + "end": 6832.4, + "probability": 0.8205 + }, + { + "start": 6833.6, + "end": 6836.28, + "probability": 0.7949 + }, + { + "start": 6836.42, + "end": 6837.04, + "probability": 0.5891 + }, + { + "start": 6838.24, + "end": 6839.3, + "probability": 0.7712 + }, + { + "start": 6840.68, + "end": 6844.84, + "probability": 0.714 + }, + { + "start": 6845.8, + "end": 6846.74, + "probability": 0.8715 + }, + { + "start": 6846.96, + "end": 6847.06, + "probability": 0.667 + }, + { + "start": 6847.44, + "end": 6848.86, + "probability": 0.7504 + }, + { + "start": 6848.88, + "end": 6850.34, + "probability": 0.9645 + }, + { + "start": 6853.32, + "end": 6853.88, + "probability": 0.0753 + }, + { + "start": 6853.88, + "end": 6854.23, + "probability": 0.156 + }, + { + "start": 6854.42, + "end": 6858.0, + "probability": 0.923 + }, + { + "start": 6858.0, + "end": 6861.16, + "probability": 0.9735 + }, + { + "start": 6862.82, + "end": 6865.9, + "probability": 0.9948 + }, + { + "start": 6865.9, + "end": 6869.32, + "probability": 0.9683 + }, + { + "start": 6871.02, + "end": 6873.24, + "probability": 0.6724 + }, + { + "start": 6873.72, + "end": 6874.36, + "probability": 0.7736 + }, + { + "start": 6874.56, + "end": 6875.34, + "probability": 0.7955 + }, + { + "start": 6875.5, + "end": 6877.66, + "probability": 0.9364 + }, + { + "start": 6877.78, + "end": 6877.92, + "probability": 0.379 + }, + { + "start": 6878.2, + "end": 6878.92, + "probability": 0.5274 + }, + { + "start": 6879.02, + "end": 6879.58, + "probability": 0.8562 + }, + { + "start": 6879.7, + "end": 6879.98, + "probability": 0.5903 + }, + { + "start": 6882.46, + "end": 6882.74, + "probability": 0.0224 + }, + { + "start": 6883.32, + "end": 6884.14, + "probability": 0.2268 + }, + { + "start": 6885.26, + "end": 6886.6, + "probability": 0.4188 + }, + { + "start": 6887.42, + "end": 6890.09, + "probability": 0.7518 + }, + { + "start": 6890.94, + "end": 6893.28, + "probability": 0.5945 + }, + { + "start": 6893.5, + "end": 6893.76, + "probability": 0.7795 + }, + { + "start": 6893.82, + "end": 6898.49, + "probability": 0.9756 + }, + { + "start": 6898.6, + "end": 6899.72, + "probability": 0.6755 + }, + { + "start": 6899.74, + "end": 6899.78, + "probability": 0.1149 + }, + { + "start": 6899.78, + "end": 6900.06, + "probability": 0.9894 + }, + { + "start": 6901.68, + "end": 6902.46, + "probability": 0.2213 + }, + { + "start": 6902.74, + "end": 6904.84, + "probability": 0.3452 + }, + { + "start": 6904.84, + "end": 6907.5, + "probability": 0.2861 + }, + { + "start": 6910.1, + "end": 6911.68, + "probability": 0.5456 + }, + { + "start": 6911.82, + "end": 6915.08, + "probability": 0.7809 + }, + { + "start": 6915.16, + "end": 6916.04, + "probability": 0.4087 + }, + { + "start": 6916.52, + "end": 6917.92, + "probability": 0.3624 + }, + { + "start": 6918.36, + "end": 6919.02, + "probability": 0.6752 + }, + { + "start": 6919.66, + "end": 6920.34, + "probability": 0.6902 + }, + { + "start": 6920.98, + "end": 6922.04, + "probability": 0.6968 + }, + { + "start": 6922.04, + "end": 6923.12, + "probability": 0.4111 + }, + { + "start": 6926.12, + "end": 6926.24, + "probability": 0.3513 + }, + { + "start": 6932.78, + "end": 6933.72, + "probability": 0.0298 + }, + { + "start": 6933.82, + "end": 6937.18, + "probability": 0.0147 + }, + { + "start": 6937.84, + "end": 6938.2, + "probability": 0.0739 + }, + { + "start": 6939.04, + "end": 6941.2, + "probability": 0.3903 + }, + { + "start": 6941.28, + "end": 6944.16, + "probability": 0.9319 + }, + { + "start": 6944.28, + "end": 6944.78, + "probability": 0.6307 + }, + { + "start": 6945.4, + "end": 6949.82, + "probability": 0.7846 + }, + { + "start": 6950.6, + "end": 6951.88, + "probability": 0.6386 + }, + { + "start": 6952.16, + "end": 6954.62, + "probability": 0.8547 + }, + { + "start": 6955.12, + "end": 6958.08, + "probability": 0.9012 + }, + { + "start": 6981.72, + "end": 6984.7, + "probability": 0.6005 + }, + { + "start": 6985.88, + "end": 6989.84, + "probability": 0.8296 + }, + { + "start": 6989.96, + "end": 6991.56, + "probability": 0.6457 + }, + { + "start": 6993.06, + "end": 6996.48, + "probability": 0.9971 + }, + { + "start": 6996.58, + "end": 6997.96, + "probability": 0.8451 + }, + { + "start": 6998.1, + "end": 6998.78, + "probability": 0.7533 + }, + { + "start": 6998.86, + "end": 7005.04, + "probability": 0.9861 + }, + { + "start": 7005.76, + "end": 7009.96, + "probability": 0.999 + }, + { + "start": 7010.84, + "end": 7012.6, + "probability": 0.9849 + }, + { + "start": 7014.3, + "end": 7018.52, + "probability": 0.7419 + }, + { + "start": 7019.6, + "end": 7019.98, + "probability": 0.5954 + }, + { + "start": 7020.06, + "end": 7020.5, + "probability": 0.8772 + }, + { + "start": 7020.5, + "end": 7021.28, + "probability": 0.4407 + }, + { + "start": 7021.38, + "end": 7023.26, + "probability": 0.9368 + }, + { + "start": 7023.34, + "end": 7024.08, + "probability": 0.9796 + }, + { + "start": 7024.14, + "end": 7027.3, + "probability": 0.9106 + }, + { + "start": 7028.52, + "end": 7031.34, + "probability": 0.9575 + }, + { + "start": 7031.72, + "end": 7033.58, + "probability": 0.9983 + }, + { + "start": 7034.24, + "end": 7037.74, + "probability": 0.9816 + }, + { + "start": 7037.74, + "end": 7043.2, + "probability": 0.988 + }, + { + "start": 7043.46, + "end": 7045.36, + "probability": 0.9379 + }, + { + "start": 7046.42, + "end": 7048.46, + "probability": 0.815 + }, + { + "start": 7048.58, + "end": 7049.6, + "probability": 0.7109 + }, + { + "start": 7049.68, + "end": 7055.96, + "probability": 0.9619 + }, + { + "start": 7056.88, + "end": 7062.8, + "probability": 0.9749 + }, + { + "start": 7063.68, + "end": 7066.68, + "probability": 0.9893 + }, + { + "start": 7067.24, + "end": 7070.34, + "probability": 0.9937 + }, + { + "start": 7071.02, + "end": 7071.84, + "probability": 0.9716 + }, + { + "start": 7072.74, + "end": 7074.44, + "probability": 0.6606 + }, + { + "start": 7075.16, + "end": 7081.28, + "probability": 0.8525 + }, + { + "start": 7082.14, + "end": 7084.7, + "probability": 0.9696 + }, + { + "start": 7085.82, + "end": 7088.96, + "probability": 0.9016 + }, + { + "start": 7088.96, + "end": 7092.52, + "probability": 0.3153 + }, + { + "start": 7093.8, + "end": 7094.7, + "probability": 0.6008 + }, + { + "start": 7095.4, + "end": 7100.2, + "probability": 0.9871 + }, + { + "start": 7100.9, + "end": 7102.84, + "probability": 0.9976 + }, + { + "start": 7103.42, + "end": 7106.24, + "probability": 0.9883 + }, + { + "start": 7106.68, + "end": 7110.96, + "probability": 0.7181 + }, + { + "start": 7110.96, + "end": 7113.3, + "probability": 0.9978 + }, + { + "start": 7114.02, + "end": 7115.64, + "probability": 0.4204 + }, + { + "start": 7116.98, + "end": 7125.96, + "probability": 0.9752 + }, + { + "start": 7126.86, + "end": 7129.68, + "probability": 0.9841 + }, + { + "start": 7130.7, + "end": 7132.88, + "probability": 0.9165 + }, + { + "start": 7133.32, + "end": 7139.4, + "probability": 0.9958 + }, + { + "start": 7139.86, + "end": 7142.02, + "probability": 0.9895 + }, + { + "start": 7143.12, + "end": 7149.98, + "probability": 0.9851 + }, + { + "start": 7151.2, + "end": 7151.9, + "probability": 0.4674 + }, + { + "start": 7152.24, + "end": 7154.34, + "probability": 0.8488 + }, + { + "start": 7154.48, + "end": 7158.0, + "probability": 0.9668 + }, + { + "start": 7158.32, + "end": 7162.83, + "probability": 0.8687 + }, + { + "start": 7163.74, + "end": 7164.78, + "probability": 0.7975 + }, + { + "start": 7164.82, + "end": 7166.28, + "probability": 0.6972 + }, + { + "start": 7166.32, + "end": 7168.94, + "probability": 0.9664 + }, + { + "start": 7169.16, + "end": 7172.66, + "probability": 0.9924 + }, + { + "start": 7173.52, + "end": 7178.18, + "probability": 0.9377 + }, + { + "start": 7178.24, + "end": 7180.26, + "probability": 0.9824 + }, + { + "start": 7180.72, + "end": 7181.96, + "probability": 0.896 + }, + { + "start": 7182.4, + "end": 7188.32, + "probability": 0.9932 + }, + { + "start": 7188.32, + "end": 7194.14, + "probability": 0.9476 + }, + { + "start": 7195.9, + "end": 7199.06, + "probability": 0.6537 + }, + { + "start": 7199.6, + "end": 7202.48, + "probability": 0.7266 + }, + { + "start": 7202.88, + "end": 7206.68, + "probability": 0.9987 + }, + { + "start": 7208.29, + "end": 7210.93, + "probability": 0.7446 + }, + { + "start": 7211.56, + "end": 7213.86, + "probability": 0.3971 + }, + { + "start": 7214.34, + "end": 7216.42, + "probability": 0.9687 + }, + { + "start": 7216.86, + "end": 7219.36, + "probability": 0.9569 + }, + { + "start": 7219.9, + "end": 7223.78, + "probability": 0.9498 + }, + { + "start": 7223.78, + "end": 7226.36, + "probability": 0.9009 + }, + { + "start": 7227.87, + "end": 7233.42, + "probability": 0.6653 + }, + { + "start": 7233.42, + "end": 7234.3, + "probability": 0.9354 + }, + { + "start": 7234.5, + "end": 7235.32, + "probability": 0.7825 + }, + { + "start": 7236.0, + "end": 7239.16, + "probability": 0.4975 + }, + { + "start": 7239.42, + "end": 7241.68, + "probability": 0.5289 + }, + { + "start": 7241.86, + "end": 7243.34, + "probability": 0.8188 + }, + { + "start": 7244.56, + "end": 7245.88, + "probability": 0.3174 + }, + { + "start": 7246.12, + "end": 7250.72, + "probability": 0.0507 + }, + { + "start": 7251.26, + "end": 7251.26, + "probability": 0.0939 + }, + { + "start": 7251.26, + "end": 7253.5, + "probability": 0.2955 + }, + { + "start": 7254.08, + "end": 7256.65, + "probability": 0.1827 + }, + { + "start": 7258.28, + "end": 7258.84, + "probability": 0.1084 + }, + { + "start": 7258.84, + "end": 7259.18, + "probability": 0.6499 + }, + { + "start": 7259.4, + "end": 7259.4, + "probability": 0.6685 + }, + { + "start": 7259.4, + "end": 7261.94, + "probability": 0.5475 + }, + { + "start": 7262.06, + "end": 7262.6, + "probability": 0.5725 + }, + { + "start": 7262.92, + "end": 7264.76, + "probability": 0.938 + }, + { + "start": 7266.12, + "end": 7268.81, + "probability": 0.798 + }, + { + "start": 7269.68, + "end": 7271.14, + "probability": 0.7559 + }, + { + "start": 7271.4, + "end": 7274.2, + "probability": 0.6853 + }, + { + "start": 7274.3, + "end": 7277.38, + "probability": 0.9757 + }, + { + "start": 7277.48, + "end": 7278.04, + "probability": 0.8301 + }, + { + "start": 7278.66, + "end": 7280.76, + "probability": 0.9551 + }, + { + "start": 7281.72, + "end": 7284.02, + "probability": 0.9971 + }, + { + "start": 7284.46, + "end": 7285.24, + "probability": 0.7559 + }, + { + "start": 7285.34, + "end": 7285.68, + "probability": 0.7379 + }, + { + "start": 7285.96, + "end": 7286.06, + "probability": 0.5575 + }, + { + "start": 7286.06, + "end": 7286.7, + "probability": 0.6267 + }, + { + "start": 7287.26, + "end": 7287.96, + "probability": 0.782 + }, + { + "start": 7288.46, + "end": 7291.66, + "probability": 0.9852 + }, + { + "start": 7291.74, + "end": 7292.4, + "probability": 0.8621 + }, + { + "start": 7292.8, + "end": 7295.14, + "probability": 0.8334 + }, + { + "start": 7295.28, + "end": 7297.02, + "probability": 0.9429 + }, + { + "start": 7297.8, + "end": 7298.42, + "probability": 0.7942 + }, + { + "start": 7298.48, + "end": 7302.36, + "probability": 0.9503 + }, + { + "start": 7302.44, + "end": 7306.18, + "probability": 0.979 + }, + { + "start": 7307.08, + "end": 7307.5, + "probability": 0.7511 + }, + { + "start": 7307.64, + "end": 7308.9, + "probability": 0.7323 + }, + { + "start": 7309.28, + "end": 7312.96, + "probability": 0.7661 + }, + { + "start": 7313.68, + "end": 7317.86, + "probability": 0.8536 + }, + { + "start": 7318.7, + "end": 7324.88, + "probability": 0.9844 + }, + { + "start": 7325.64, + "end": 7330.08, + "probability": 0.9955 + }, + { + "start": 7330.76, + "end": 7334.42, + "probability": 0.8408 + }, + { + "start": 7334.9, + "end": 7336.78, + "probability": 0.9082 + }, + { + "start": 7338.94, + "end": 7339.88, + "probability": 0.9146 + }, + { + "start": 7339.98, + "end": 7340.68, + "probability": 0.8144 + }, + { + "start": 7340.8, + "end": 7345.58, + "probability": 0.7953 + }, + { + "start": 7345.58, + "end": 7349.1, + "probability": 0.8708 + }, + { + "start": 7349.94, + "end": 7352.18, + "probability": 0.9784 + }, + { + "start": 7352.84, + "end": 7355.94, + "probability": 0.9539 + }, + { + "start": 7356.56, + "end": 7357.26, + "probability": 0.7505 + }, + { + "start": 7357.34, + "end": 7359.0, + "probability": 0.9722 + }, + { + "start": 7359.02, + "end": 7360.52, + "probability": 0.8431 + }, + { + "start": 7360.62, + "end": 7362.38, + "probability": 0.6307 + }, + { + "start": 7362.44, + "end": 7365.62, + "probability": 0.9939 + }, + { + "start": 7366.12, + "end": 7372.3, + "probability": 0.7699 + }, + { + "start": 7372.32, + "end": 7372.52, + "probability": 0.8257 + }, + { + "start": 7372.66, + "end": 7374.82, + "probability": 0.8064 + }, + { + "start": 7374.92, + "end": 7375.16, + "probability": 0.7859 + }, + { + "start": 7377.09, + "end": 7380.86, + "probability": 0.6321 + }, + { + "start": 7381.2, + "end": 7385.84, + "probability": 0.5502 + }, + { + "start": 7405.14, + "end": 7407.5, + "probability": 0.7349 + }, + { + "start": 7411.44, + "end": 7412.82, + "probability": 0.6624 + }, + { + "start": 7412.88, + "end": 7414.08, + "probability": 0.9941 + }, + { + "start": 7416.16, + "end": 7418.58, + "probability": 0.9604 + }, + { + "start": 7419.92, + "end": 7420.84, + "probability": 0.8428 + }, + { + "start": 7423.18, + "end": 7423.2, + "probability": 0.2231 + }, + { + "start": 7423.2, + "end": 7426.7, + "probability": 0.9954 + }, + { + "start": 7427.78, + "end": 7430.94, + "probability": 0.7343 + }, + { + "start": 7431.76, + "end": 7434.08, + "probability": 0.484 + }, + { + "start": 7434.84, + "end": 7436.51, + "probability": 0.8666 + }, + { + "start": 7437.28, + "end": 7440.1, + "probability": 0.9344 + }, + { + "start": 7440.88, + "end": 7442.88, + "probability": 0.9514 + }, + { + "start": 7443.76, + "end": 7445.14, + "probability": 0.9539 + }, + { + "start": 7445.24, + "end": 7447.42, + "probability": 0.8785 + }, + { + "start": 7448.32, + "end": 7450.84, + "probability": 0.9767 + }, + { + "start": 7451.8, + "end": 7455.88, + "probability": 0.9482 + }, + { + "start": 7455.88, + "end": 7460.28, + "probability": 0.9376 + }, + { + "start": 7460.5, + "end": 7461.72, + "probability": 0.8691 + }, + { + "start": 7462.42, + "end": 7464.58, + "probability": 0.9756 + }, + { + "start": 7465.54, + "end": 7470.24, + "probability": 0.9844 + }, + { + "start": 7471.56, + "end": 7472.7, + "probability": 0.9526 + }, + { + "start": 7473.24, + "end": 7475.68, + "probability": 0.9943 + }, + { + "start": 7476.82, + "end": 7477.98, + "probability": 0.9356 + }, + { + "start": 7478.52, + "end": 7483.5, + "probability": 0.9828 + }, + { + "start": 7483.5, + "end": 7488.68, + "probability": 0.9977 + }, + { + "start": 7489.22, + "end": 7490.14, + "probability": 0.9755 + }, + { + "start": 7491.08, + "end": 7491.88, + "probability": 0.67 + }, + { + "start": 7493.02, + "end": 7496.96, + "probability": 0.9814 + }, + { + "start": 7497.58, + "end": 7499.64, + "probability": 0.2217 + }, + { + "start": 7500.82, + "end": 7503.78, + "probability": 0.9826 + }, + { + "start": 7504.58, + "end": 7504.74, + "probability": 0.0 + }, + { + "start": 7505.93, + "end": 7512.06, + "probability": 0.895 + }, + { + "start": 7512.2, + "end": 7514.46, + "probability": 0.8047 + }, + { + "start": 7515.02, + "end": 7516.8, + "probability": 0.8991 + }, + { + "start": 7517.52, + "end": 7521.28, + "probability": 0.9849 + }, + { + "start": 7521.28, + "end": 7524.38, + "probability": 0.9675 + }, + { + "start": 7525.44, + "end": 7528.84, + "probability": 0.9433 + }, + { + "start": 7529.46, + "end": 7532.06, + "probability": 0.9916 + }, + { + "start": 7532.6, + "end": 7534.0, + "probability": 0.8556 + }, + { + "start": 7534.91, + "end": 7541.22, + "probability": 0.9976 + }, + { + "start": 7541.22, + "end": 7545.64, + "probability": 0.9537 + }, + { + "start": 7545.64, + "end": 7549.5, + "probability": 0.9935 + }, + { + "start": 7550.04, + "end": 7551.12, + "probability": 0.3301 + }, + { + "start": 7552.1, + "end": 7554.56, + "probability": 0.9215 + }, + { + "start": 7555.18, + "end": 7557.7, + "probability": 0.9973 + }, + { + "start": 7558.32, + "end": 7561.84, + "probability": 0.8848 + }, + { + "start": 7562.62, + "end": 7567.26, + "probability": 0.9916 + }, + { + "start": 7567.26, + "end": 7572.62, + "probability": 0.99 + }, + { + "start": 7573.9, + "end": 7576.24, + "probability": 0.8765 + }, + { + "start": 7576.24, + "end": 7580.02, + "probability": 0.999 + }, + { + "start": 7580.54, + "end": 7582.56, + "probability": 0.9989 + }, + { + "start": 7583.6, + "end": 7584.34, + "probability": 0.5515 + }, + { + "start": 7584.54, + "end": 7588.72, + "probability": 0.9605 + }, + { + "start": 7589.5, + "end": 7592.66, + "probability": 0.9735 + }, + { + "start": 7593.38, + "end": 7595.58, + "probability": 0.9994 + }, + { + "start": 7596.36, + "end": 7598.94, + "probability": 0.9919 + }, + { + "start": 7600.88, + "end": 7603.64, + "probability": 0.5729 + }, + { + "start": 7603.86, + "end": 7604.6, + "probability": 0.4143 + }, + { + "start": 7604.6, + "end": 7605.68, + "probability": 0.7281 + }, + { + "start": 7606.08, + "end": 7607.64, + "probability": 0.8698 + }, + { + "start": 7608.1, + "end": 7610.56, + "probability": 0.4401 + }, + { + "start": 7610.58, + "end": 7611.26, + "probability": 0.1154 + }, + { + "start": 7611.76, + "end": 7612.62, + "probability": 0.7822 + }, + { + "start": 7612.98, + "end": 7614.6, + "probability": 0.8568 + }, + { + "start": 7615.02, + "end": 7618.16, + "probability": 0.0754 + }, + { + "start": 7618.7, + "end": 7620.22, + "probability": 0.6411 + }, + { + "start": 7620.5, + "end": 7623.56, + "probability": 0.3438 + }, + { + "start": 7623.56, + "end": 7624.72, + "probability": 0.3516 + }, + { + "start": 7625.14, + "end": 7629.57, + "probability": 0.0529 + }, + { + "start": 7631.48, + "end": 7632.34, + "probability": 0.0086 + }, + { + "start": 7632.34, + "end": 7635.06, + "probability": 0.483 + }, + { + "start": 7635.16, + "end": 7637.72, + "probability": 0.9777 + }, + { + "start": 7638.1, + "end": 7638.5, + "probability": 0.7024 + }, + { + "start": 7638.5, + "end": 7638.5, + "probability": 0.1924 + }, + { + "start": 7638.72, + "end": 7639.56, + "probability": 0.8215 + }, + { + "start": 7639.6, + "end": 7644.46, + "probability": 0.9835 + }, + { + "start": 7645.14, + "end": 7647.46, + "probability": 0.9052 + }, + { + "start": 7648.12, + "end": 7652.02, + "probability": 0.8814 + }, + { + "start": 7652.82, + "end": 7654.54, + "probability": 0.8085 + }, + { + "start": 7655.06, + "end": 7657.64, + "probability": 0.957 + }, + { + "start": 7658.26, + "end": 7660.28, + "probability": 0.9883 + }, + { + "start": 7662.32, + "end": 7662.36, + "probability": 0.1642 + }, + { + "start": 7662.36, + "end": 7662.36, + "probability": 0.2779 + }, + { + "start": 7662.36, + "end": 7662.7, + "probability": 0.3612 + }, + { + "start": 7662.7, + "end": 7663.12, + "probability": 0.515 + }, + { + "start": 7663.24, + "end": 7667.98, + "probability": 0.9409 + }, + { + "start": 7668.56, + "end": 7671.32, + "probability": 0.9437 + }, + { + "start": 7671.32, + "end": 7674.02, + "probability": 0.9285 + }, + { + "start": 7674.02, + "end": 7674.5, + "probability": 0.4405 + }, + { + "start": 7675.24, + "end": 7676.28, + "probability": 0.54 + }, + { + "start": 7682.12, + "end": 7683.8, + "probability": 0.3883 + }, + { + "start": 7683.9, + "end": 7684.4, + "probability": 0.4698 + }, + { + "start": 7684.4, + "end": 7684.9, + "probability": 0.5221 + }, + { + "start": 7690.78, + "end": 7692.12, + "probability": 0.4208 + }, + { + "start": 7692.12, + "end": 7693.36, + "probability": 0.6983 + }, + { + "start": 7697.46, + "end": 7701.02, + "probability": 0.6534 + }, + { + "start": 7701.02, + "end": 7701.2, + "probability": 0.159 + }, + { + "start": 7701.2, + "end": 7701.74, + "probability": 0.7682 + }, + { + "start": 7702.16, + "end": 7705.02, + "probability": 0.5305 + }, + { + "start": 7705.2, + "end": 7708.32, + "probability": 0.9531 + }, + { + "start": 7709.14, + "end": 7712.82, + "probability": 0.851 + }, + { + "start": 7713.28, + "end": 7713.58, + "probability": 0.8256 + }, + { + "start": 7714.28, + "end": 7715.48, + "probability": 0.7509 + }, + { + "start": 7715.56, + "end": 7717.06, + "probability": 0.7193 + }, + { + "start": 7717.46, + "end": 7718.9, + "probability": 0.9076 + }, + { + "start": 7719.64, + "end": 7725.74, + "probability": 0.9252 + }, + { + "start": 7726.26, + "end": 7730.1, + "probability": 0.9907 + }, + { + "start": 7731.24, + "end": 7735.12, + "probability": 0.9695 + }, + { + "start": 7735.38, + "end": 7736.88, + "probability": 0.5105 + }, + { + "start": 7737.28, + "end": 7738.62, + "probability": 0.9646 + }, + { + "start": 7738.74, + "end": 7739.4, + "probability": 0.5387 + }, + { + "start": 7740.22, + "end": 7741.62, + "probability": 0.9789 + }, + { + "start": 7742.18, + "end": 7743.32, + "probability": 0.3234 + }, + { + "start": 7743.76, + "end": 7745.16, + "probability": 0.6272 + }, + { + "start": 7745.52, + "end": 7746.42, + "probability": 0.9988 + }, + { + "start": 7746.8, + "end": 7747.44, + "probability": 0.8672 + }, + { + "start": 7748.26, + "end": 7753.74, + "probability": 0.987 + }, + { + "start": 7753.74, + "end": 7758.46, + "probability": 0.993 + }, + { + "start": 7759.26, + "end": 7760.12, + "probability": 0.5889 + }, + { + "start": 7760.66, + "end": 7765.56, + "probability": 0.7041 + }, + { + "start": 7765.66, + "end": 7769.24, + "probability": 0.8335 + }, + { + "start": 7769.78, + "end": 7773.76, + "probability": 0.8607 + }, + { + "start": 7774.3, + "end": 7776.02, + "probability": 0.7531 + }, + { + "start": 7776.2, + "end": 7776.68, + "probability": 0.8743 + }, + { + "start": 7776.76, + "end": 7778.48, + "probability": 0.6138 + }, + { + "start": 7778.72, + "end": 7779.08, + "probability": 0.8591 + }, + { + "start": 7779.64, + "end": 7780.96, + "probability": 0.7139 + }, + { + "start": 7781.16, + "end": 7783.27, + "probability": 0.7315 + }, + { + "start": 7784.8, + "end": 7790.48, + "probability": 0.9155 + }, + { + "start": 7790.48, + "end": 7793.5, + "probability": 0.7418 + }, + { + "start": 7794.32, + "end": 7797.28, + "probability": 0.4278 + }, + { + "start": 7797.8, + "end": 7799.54, + "probability": 0.8944 + }, + { + "start": 7801.36, + "end": 7805.4, + "probability": 0.9258 + }, + { + "start": 7806.34, + "end": 7809.06, + "probability": 0.693 + }, + { + "start": 7809.82, + "end": 7810.5, + "probability": 0.8603 + }, + { + "start": 7812.72, + "end": 7814.26, + "probability": 0.6009 + }, + { + "start": 7814.66, + "end": 7815.78, + "probability": 0.1867 + }, + { + "start": 7815.8, + "end": 7817.2, + "probability": 0.7721 + }, + { + "start": 7817.44, + "end": 7818.82, + "probability": 0.7615 + }, + { + "start": 7819.34, + "end": 7827.86, + "probability": 0.6984 + }, + { + "start": 7829.34, + "end": 7831.9, + "probability": 0.8914 + }, + { + "start": 7832.1, + "end": 7834.16, + "probability": 0.961 + }, + { + "start": 7834.72, + "end": 7837.72, + "probability": 0.9829 + }, + { + "start": 7839.0, + "end": 7843.74, + "probability": 0.9753 + }, + { + "start": 7845.14, + "end": 7850.36, + "probability": 0.9686 + }, + { + "start": 7851.12, + "end": 7855.02, + "probability": 0.8314 + }, + { + "start": 7856.26, + "end": 7862.1, + "probability": 0.9672 + }, + { + "start": 7862.74, + "end": 7864.06, + "probability": 0.9328 + }, + { + "start": 7865.38, + "end": 7867.72, + "probability": 0.9488 + }, + { + "start": 7868.5, + "end": 7868.8, + "probability": 0.4199 + }, + { + "start": 7869.56, + "end": 7872.96, + "probability": 0.9946 + }, + { + "start": 7873.18, + "end": 7875.24, + "probability": 0.9855 + }, + { + "start": 7876.62, + "end": 7878.55, + "probability": 0.9258 + }, + { + "start": 7879.38, + "end": 7881.28, + "probability": 0.9746 + }, + { + "start": 7882.58, + "end": 7884.28, + "probability": 0.8503 + }, + { + "start": 7884.84, + "end": 7886.24, + "probability": 0.9958 + }, + { + "start": 7886.32, + "end": 7888.34, + "probability": 0.9944 + }, + { + "start": 7889.12, + "end": 7890.96, + "probability": 0.6722 + }, + { + "start": 7892.02, + "end": 7894.58, + "probability": 0.9838 + }, + { + "start": 7895.5, + "end": 7898.42, + "probability": 0.9928 + }, + { + "start": 7898.42, + "end": 7902.68, + "probability": 0.9951 + }, + { + "start": 7902.74, + "end": 7904.4, + "probability": 0.8971 + }, + { + "start": 7906.0, + "end": 7908.76, + "probability": 0.9714 + }, + { + "start": 7908.76, + "end": 7911.92, + "probability": 0.9787 + }, + { + "start": 7912.86, + "end": 7917.2, + "probability": 0.9026 + }, + { + "start": 7917.9, + "end": 7922.12, + "probability": 0.9958 + }, + { + "start": 7923.36, + "end": 7925.3, + "probability": 0.9932 + }, + { + "start": 7925.48, + "end": 7929.6, + "probability": 0.9916 + }, + { + "start": 7930.62, + "end": 7934.04, + "probability": 0.9927 + }, + { + "start": 7934.82, + "end": 7937.86, + "probability": 0.9746 + }, + { + "start": 7938.0, + "end": 7943.76, + "probability": 0.9893 + }, + { + "start": 7943.76, + "end": 7949.96, + "probability": 0.9868 + }, + { + "start": 7952.28, + "end": 7955.96, + "probability": 0.9952 + }, + { + "start": 7956.08, + "end": 7959.74, + "probability": 0.9895 + }, + { + "start": 7960.6, + "end": 7967.52, + "probability": 0.9972 + }, + { + "start": 7967.52, + "end": 7974.58, + "probability": 0.9935 + }, + { + "start": 7974.7, + "end": 7976.66, + "probability": 0.988 + }, + { + "start": 7977.16, + "end": 7981.08, + "probability": 0.9982 + }, + { + "start": 7981.38, + "end": 7982.74, + "probability": 0.9836 + }, + { + "start": 7983.22, + "end": 7987.4, + "probability": 0.9955 + }, + { + "start": 7987.94, + "end": 7993.92, + "probability": 0.906 + }, + { + "start": 7994.0, + "end": 7998.0, + "probability": 0.9897 + }, + { + "start": 7998.34, + "end": 8003.6, + "probability": 0.9752 + }, + { + "start": 8004.06, + "end": 8005.04, + "probability": 0.9482 + }, + { + "start": 8005.16, + "end": 8008.64, + "probability": 0.986 + }, + { + "start": 8009.34, + "end": 8011.14, + "probability": 0.9221 + }, + { + "start": 8012.1, + "end": 8020.14, + "probability": 0.9802 + }, + { + "start": 8020.48, + "end": 8021.94, + "probability": 0.9198 + }, + { + "start": 8022.54, + "end": 8025.3, + "probability": 0.9934 + }, + { + "start": 8026.0, + "end": 8030.24, + "probability": 0.9944 + }, + { + "start": 8030.7, + "end": 8031.2, + "probability": 0.7716 + }, + { + "start": 8031.42, + "end": 8035.4, + "probability": 0.9879 + }, + { + "start": 8035.54, + "end": 8035.98, + "probability": 0.8659 + }, + { + "start": 8036.26, + "end": 8038.2, + "probability": 0.979 + }, + { + "start": 8038.4, + "end": 8042.44, + "probability": 0.7628 + }, + { + "start": 8044.18, + "end": 8048.92, + "probability": 0.8859 + }, + { + "start": 8048.94, + "end": 8051.6, + "probability": 0.7613 + }, + { + "start": 8052.14, + "end": 8055.34, + "probability": 0.995 + }, + { + "start": 8055.98, + "end": 8057.32, + "probability": 0.9939 + }, + { + "start": 8058.02, + "end": 8059.84, + "probability": 0.9187 + }, + { + "start": 8060.02, + "end": 8060.72, + "probability": 0.6822 + }, + { + "start": 8060.88, + "end": 8061.48, + "probability": 0.5642 + }, + { + "start": 8062.5, + "end": 8063.3, + "probability": 0.9893 + }, + { + "start": 8063.52, + "end": 8064.14, + "probability": 0.9648 + }, + { + "start": 8064.3, + "end": 8066.14, + "probability": 0.9717 + }, + { + "start": 8067.28, + "end": 8068.06, + "probability": 0.9241 + }, + { + "start": 8068.32, + "end": 8070.3, + "probability": 0.9741 + }, + { + "start": 8070.38, + "end": 8072.46, + "probability": 0.8529 + }, + { + "start": 8073.8, + "end": 8075.86, + "probability": 0.9772 + }, + { + "start": 8076.44, + "end": 8077.4, + "probability": 0.9778 + }, + { + "start": 8078.28, + "end": 8081.2, + "probability": 0.982 + }, + { + "start": 8082.0, + "end": 8084.94, + "probability": 0.9958 + }, + { + "start": 8085.64, + "end": 8087.64, + "probability": 0.6918 + }, + { + "start": 8088.56, + "end": 8089.46, + "probability": 0.3473 + }, + { + "start": 8091.12, + "end": 8092.98, + "probability": 0.8528 + }, + { + "start": 8093.94, + "end": 8095.36, + "probability": 0.871 + }, + { + "start": 8096.54, + "end": 8100.84, + "probability": 0.9893 + }, + { + "start": 8100.84, + "end": 8105.02, + "probability": 0.8724 + }, + { + "start": 8105.06, + "end": 8106.9, + "probability": 0.9993 + }, + { + "start": 8107.2, + "end": 8107.44, + "probability": 0.8896 + }, + { + "start": 8107.52, + "end": 8112.2, + "probability": 0.9763 + }, + { + "start": 8112.36, + "end": 8115.9, + "probability": 0.988 + }, + { + "start": 8116.02, + "end": 8118.26, + "probability": 0.5372 + }, + { + "start": 8119.12, + "end": 8119.9, + "probability": 0.968 + }, + { + "start": 8120.5, + "end": 8123.1, + "probability": 0.6815 + }, + { + "start": 8124.18, + "end": 8126.76, + "probability": 0.9101 + }, + { + "start": 8127.72, + "end": 8130.4, + "probability": 0.9716 + }, + { + "start": 8131.12, + "end": 8131.58, + "probability": 0.5202 + }, + { + "start": 8131.6, + "end": 8132.12, + "probability": 0.9686 + }, + { + "start": 8132.2, + "end": 8132.98, + "probability": 0.9753 + }, + { + "start": 8134.0, + "end": 8135.62, + "probability": 0.9972 + }, + { + "start": 8136.38, + "end": 8140.2, + "probability": 0.9657 + }, + { + "start": 8140.26, + "end": 8140.69, + "probability": 0.809 + }, + { + "start": 8141.82, + "end": 8143.6, + "probability": 0.9884 + }, + { + "start": 8143.72, + "end": 8144.14, + "probability": 0.9047 + }, + { + "start": 8144.36, + "end": 8145.04, + "probability": 0.9575 + }, + { + "start": 8145.16, + "end": 8146.7, + "probability": 0.9209 + }, + { + "start": 8147.48, + "end": 8151.16, + "probability": 0.9775 + }, + { + "start": 8152.32, + "end": 8157.58, + "probability": 0.9946 + }, + { + "start": 8158.62, + "end": 8159.5, + "probability": 0.7042 + }, + { + "start": 8160.2, + "end": 8161.48, + "probability": 0.7543 + }, + { + "start": 8161.54, + "end": 8163.3, + "probability": 0.984 + }, + { + "start": 8164.0, + "end": 8167.38, + "probability": 0.9919 + }, + { + "start": 8168.56, + "end": 8170.7, + "probability": 0.7473 + }, + { + "start": 8171.66, + "end": 8175.24, + "probability": 0.8463 + }, + { + "start": 8175.94, + "end": 8177.8, + "probability": 0.7574 + }, + { + "start": 8178.64, + "end": 8181.0, + "probability": 0.7872 + }, + { + "start": 8181.9, + "end": 8187.24, + "probability": 0.8917 + }, + { + "start": 8187.8, + "end": 8190.9, + "probability": 0.9724 + }, + { + "start": 8191.74, + "end": 8192.32, + "probability": 0.7015 + }, + { + "start": 8193.2, + "end": 8197.76, + "probability": 0.9858 + }, + { + "start": 8198.66, + "end": 8199.72, + "probability": 0.8193 + }, + { + "start": 8200.74, + "end": 8201.86, + "probability": 0.8752 + }, + { + "start": 8202.56, + "end": 8205.51, + "probability": 0.9768 + }, + { + "start": 8205.76, + "end": 8206.64, + "probability": 0.8613 + }, + { + "start": 8207.44, + "end": 8211.56, + "probability": 0.9803 + }, + { + "start": 8212.52, + "end": 8214.24, + "probability": 0.9316 + }, + { + "start": 8214.38, + "end": 8214.98, + "probability": 0.8209 + }, + { + "start": 8215.54, + "end": 8217.58, + "probability": 0.9619 + }, + { + "start": 8218.54, + "end": 8222.08, + "probability": 0.5927 + }, + { + "start": 8222.64, + "end": 8226.14, + "probability": 0.8209 + }, + { + "start": 8226.14, + "end": 8229.0, + "probability": 0.9731 + }, + { + "start": 8229.12, + "end": 8230.1, + "probability": 0.313 + }, + { + "start": 8230.48, + "end": 8232.38, + "probability": 0.8936 + }, + { + "start": 8233.88, + "end": 8234.22, + "probability": 0.8677 + }, + { + "start": 8235.4, + "end": 8238.06, + "probability": 0.8446 + }, + { + "start": 8248.38, + "end": 8249.48, + "probability": 0.9006 + }, + { + "start": 8252.52, + "end": 8253.46, + "probability": 0.5829 + }, + { + "start": 8256.16, + "end": 8257.2, + "probability": 0.8865 + }, + { + "start": 8258.06, + "end": 8259.2, + "probability": 0.7433 + }, + { + "start": 8260.32, + "end": 8265.98, + "probability": 0.9837 + }, + { + "start": 8266.9, + "end": 8267.82, + "probability": 0.9291 + }, + { + "start": 8268.72, + "end": 8269.52, + "probability": 0.909 + }, + { + "start": 8270.12, + "end": 8271.1, + "probability": 0.9363 + }, + { + "start": 8271.66, + "end": 8273.68, + "probability": 0.8418 + }, + { + "start": 8275.02, + "end": 8277.94, + "probability": 0.7737 + }, + { + "start": 8278.9, + "end": 8290.76, + "probability": 0.6904 + }, + { + "start": 8291.64, + "end": 8293.28, + "probability": 0.9495 + }, + { + "start": 8294.0, + "end": 8295.26, + "probability": 0.9394 + }, + { + "start": 8295.92, + "end": 8297.6, + "probability": 0.6525 + }, + { + "start": 8298.36, + "end": 8300.71, + "probability": 0.9198 + }, + { + "start": 8301.24, + "end": 8303.14, + "probability": 0.7912 + }, + { + "start": 8303.3, + "end": 8304.64, + "probability": 0.9597 + }, + { + "start": 8305.72, + "end": 8307.46, + "probability": 0.8875 + }, + { + "start": 8308.6, + "end": 8311.62, + "probability": 0.9239 + }, + { + "start": 8311.74, + "end": 8313.94, + "probability": 0.9851 + }, + { + "start": 8315.08, + "end": 8317.06, + "probability": 0.8413 + }, + { + "start": 8317.94, + "end": 8322.92, + "probability": 0.9737 + }, + { + "start": 8323.96, + "end": 8331.5, + "probability": 0.8986 + }, + { + "start": 8331.62, + "end": 8332.68, + "probability": 0.9384 + }, + { + "start": 8333.76, + "end": 8335.87, + "probability": 0.9685 + }, + { + "start": 8336.08, + "end": 8337.18, + "probability": 0.778 + }, + { + "start": 8338.16, + "end": 8339.77, + "probability": 0.6918 + }, + { + "start": 8340.4, + "end": 8343.06, + "probability": 0.783 + }, + { + "start": 8344.04, + "end": 8345.82, + "probability": 0.5343 + }, + { + "start": 8347.16, + "end": 8347.16, + "probability": 0.8452 + }, + { + "start": 8348.9, + "end": 8349.94, + "probability": 0.8461 + }, + { + "start": 8351.28, + "end": 8353.24, + "probability": 0.9852 + }, + { + "start": 8354.62, + "end": 8356.74, + "probability": 0.8976 + }, + { + "start": 8357.4, + "end": 8359.38, + "probability": 0.9261 + }, + { + "start": 8360.18, + "end": 8365.62, + "probability": 0.9195 + }, + { + "start": 8366.58, + "end": 8367.88, + "probability": 0.9706 + }, + { + "start": 8368.92, + "end": 8371.68, + "probability": 0.6277 + }, + { + "start": 8371.9, + "end": 8376.28, + "probability": 0.9692 + }, + { + "start": 8376.32, + "end": 8377.54, + "probability": 0.7699 + }, + { + "start": 8379.02, + "end": 8382.26, + "probability": 0.7954 + }, + { + "start": 8383.0, + "end": 8387.06, + "probability": 0.9886 + }, + { + "start": 8388.32, + "end": 8392.94, + "probability": 0.9242 + }, + { + "start": 8392.94, + "end": 8397.38, + "probability": 0.9802 + }, + { + "start": 8397.76, + "end": 8402.58, + "probability": 0.9657 + }, + { + "start": 8403.1, + "end": 8404.72, + "probability": 0.9622 + }, + { + "start": 8404.78, + "end": 8408.94, + "probability": 0.97 + }, + { + "start": 8411.44, + "end": 8412.22, + "probability": 0.4984 + }, + { + "start": 8412.64, + "end": 8417.8, + "probability": 0.1573 + }, + { + "start": 8418.56, + "end": 8422.64, + "probability": 0.6723 + }, + { + "start": 8423.08, + "end": 8425.06, + "probability": 0.3659 + }, + { + "start": 8425.12, + "end": 8426.62, + "probability": 0.4876 + }, + { + "start": 8427.74, + "end": 8429.5, + "probability": 0.6423 + }, + { + "start": 8430.35, + "end": 8434.58, + "probability": 0.7854 + }, + { + "start": 8434.8, + "end": 8435.04, + "probability": 0.4768 + }, + { + "start": 8435.56, + "end": 8439.74, + "probability": 0.7887 + }, + { + "start": 8442.68, + "end": 8444.94, + "probability": 0.0455 + }, + { + "start": 8456.28, + "end": 8457.36, + "probability": 0.0692 + }, + { + "start": 8462.98, + "end": 8464.41, + "probability": 0.7915 + }, + { + "start": 8465.3, + "end": 8468.2, + "probability": 0.9915 + }, + { + "start": 8469.86, + "end": 8475.7, + "probability": 0.9154 + }, + { + "start": 8475.84, + "end": 8476.76, + "probability": 0.9557 + }, + { + "start": 8477.42, + "end": 8481.46, + "probability": 0.8607 + }, + { + "start": 8481.46, + "end": 8485.12, + "probability": 0.8257 + }, + { + "start": 8486.44, + "end": 8490.4, + "probability": 0.9791 + }, + { + "start": 8490.44, + "end": 8495.1, + "probability": 0.9916 + }, + { + "start": 8495.62, + "end": 8497.4, + "probability": 0.9879 + }, + { + "start": 8497.58, + "end": 8500.28, + "probability": 0.8323 + }, + { + "start": 8500.48, + "end": 8501.74, + "probability": 0.8332 + }, + { + "start": 8502.16, + "end": 8505.26, + "probability": 0.9131 + }, + { + "start": 8506.16, + "end": 8510.62, + "probability": 0.9622 + }, + { + "start": 8514.34, + "end": 8521.2, + "probability": 0.9941 + }, + { + "start": 8521.2, + "end": 8524.34, + "probability": 0.7223 + }, + { + "start": 8525.44, + "end": 8531.12, + "probability": 0.7664 + }, + { + "start": 8532.04, + "end": 8539.06, + "probability": 0.7136 + }, + { + "start": 8539.16, + "end": 8544.14, + "probability": 0.837 + }, + { + "start": 8544.52, + "end": 8545.52, + "probability": 0.7014 + }, + { + "start": 8546.98, + "end": 8549.88, + "probability": 0.8216 + }, + { + "start": 8549.88, + "end": 8552.94, + "probability": 0.9496 + }, + { + "start": 8553.56, + "end": 8555.44, + "probability": 0.931 + }, + { + "start": 8556.02, + "end": 8560.2, + "probability": 0.9429 + }, + { + "start": 8560.76, + "end": 8565.48, + "probability": 0.9824 + }, + { + "start": 8565.92, + "end": 8567.5, + "probability": 0.9375 + }, + { + "start": 8568.12, + "end": 8570.74, + "probability": 0.9932 + }, + { + "start": 8571.46, + "end": 8574.3, + "probability": 0.808 + }, + { + "start": 8574.44, + "end": 8577.8, + "probability": 0.8899 + }, + { + "start": 8578.72, + "end": 8584.54, + "probability": 0.9692 + }, + { + "start": 8585.26, + "end": 8587.38, + "probability": 0.7113 + }, + { + "start": 8587.48, + "end": 8588.1, + "probability": 0.9554 + }, + { + "start": 8588.18, + "end": 8590.5, + "probability": 0.9838 + }, + { + "start": 8590.96, + "end": 8593.68, + "probability": 0.9857 + }, + { + "start": 8595.72, + "end": 8604.16, + "probability": 0.9519 + }, + { + "start": 8604.16, + "end": 8610.14, + "probability": 0.989 + }, + { + "start": 8610.54, + "end": 8617.36, + "probability": 0.993 + }, + { + "start": 8618.18, + "end": 8621.26, + "probability": 0.9172 + }, + { + "start": 8621.42, + "end": 8628.34, + "probability": 0.9827 + }, + { + "start": 8630.22, + "end": 8633.4, + "probability": 0.9502 + }, + { + "start": 8633.92, + "end": 8636.74, + "probability": 0.967 + }, + { + "start": 8636.74, + "end": 8641.92, + "probability": 0.8311 + }, + { + "start": 8642.96, + "end": 8647.74, + "probability": 0.9634 + }, + { + "start": 8648.16, + "end": 8648.74, + "probability": 0.8152 + }, + { + "start": 8648.82, + "end": 8650.68, + "probability": 0.9802 + }, + { + "start": 8651.14, + "end": 8653.28, + "probability": 0.9683 + }, + { + "start": 8653.78, + "end": 8655.5, + "probability": 0.7026 + }, + { + "start": 8656.24, + "end": 8656.72, + "probability": 0.7278 + }, + { + "start": 8659.66, + "end": 8662.36, + "probability": 0.9179 + }, + { + "start": 8663.36, + "end": 8668.04, + "probability": 0.8798 + }, + { + "start": 8668.04, + "end": 8670.4, + "probability": 0.857 + }, + { + "start": 8671.02, + "end": 8674.64, + "probability": 0.8772 + }, + { + "start": 8676.44, + "end": 8677.08, + "probability": 0.808 + }, + { + "start": 8678.26, + "end": 8681.78, + "probability": 0.9878 + }, + { + "start": 8683.08, + "end": 8684.7, + "probability": 0.9504 + }, + { + "start": 8685.48, + "end": 8687.16, + "probability": 0.9957 + }, + { + "start": 8687.9, + "end": 8692.1, + "probability": 0.999 + }, + { + "start": 8692.8, + "end": 8700.18, + "probability": 0.9659 + }, + { + "start": 8700.6, + "end": 8701.37, + "probability": 0.5823 + }, + { + "start": 8701.8, + "end": 8703.54, + "probability": 0.5251 + }, + { + "start": 8703.7, + "end": 8705.28, + "probability": 0.753 + }, + { + "start": 8705.6, + "end": 8707.18, + "probability": 0.9621 + }, + { + "start": 8708.12, + "end": 8710.08, + "probability": 0.8691 + }, + { + "start": 8710.56, + "end": 8716.06, + "probability": 0.9048 + }, + { + "start": 8716.98, + "end": 8722.24, + "probability": 0.7969 + }, + { + "start": 8722.9, + "end": 8726.9, + "probability": 0.8675 + }, + { + "start": 8727.36, + "end": 8729.46, + "probability": 0.986 + }, + { + "start": 8730.46, + "end": 8736.7, + "probability": 0.993 + }, + { + "start": 8736.7, + "end": 8740.8, + "probability": 0.7488 + }, + { + "start": 8741.34, + "end": 8742.9, + "probability": 0.9837 + }, + { + "start": 8744.14, + "end": 8747.74, + "probability": 0.9502 + }, + { + "start": 8748.26, + "end": 8751.92, + "probability": 0.9954 + }, + { + "start": 8752.24, + "end": 8754.16, + "probability": 0.6988 + }, + { + "start": 8754.32, + "end": 8758.54, + "probability": 0.9922 + }, + { + "start": 8759.16, + "end": 8765.06, + "probability": 0.9863 + }, + { + "start": 8765.06, + "end": 8770.02, + "probability": 0.9419 + }, + { + "start": 8773.06, + "end": 8776.32, + "probability": 0.8465 + }, + { + "start": 8777.14, + "end": 8780.76, + "probability": 0.982 + }, + { + "start": 8781.66, + "end": 8784.88, + "probability": 0.8875 + }, + { + "start": 8784.88, + "end": 8786.86, + "probability": 0.8348 + }, + { + "start": 8788.6, + "end": 8792.12, + "probability": 0.9777 + }, + { + "start": 8792.76, + "end": 8796.58, + "probability": 0.9951 + }, + { + "start": 8796.58, + "end": 8799.86, + "probability": 0.7147 + }, + { + "start": 8800.6, + "end": 8803.76, + "probability": 0.9843 + }, + { + "start": 8804.54, + "end": 8806.26, + "probability": 0.6187 + }, + { + "start": 8807.06, + "end": 8811.54, + "probability": 0.7443 + }, + { + "start": 8811.9, + "end": 8813.58, + "probability": 0.991 + }, + { + "start": 8814.26, + "end": 8816.06, + "probability": 0.84 + }, + { + "start": 8816.62, + "end": 8816.82, + "probability": 0.0961 + }, + { + "start": 8816.82, + "end": 8817.18, + "probability": 0.717 + }, + { + "start": 8817.28, + "end": 8820.54, + "probability": 0.9907 + }, + { + "start": 8821.5, + "end": 8823.82, + "probability": 0.7664 + }, + { + "start": 8823.9, + "end": 8826.48, + "probability": 0.5372 + }, + { + "start": 8827.02, + "end": 8827.56, + "probability": 0.7225 + }, + { + "start": 8853.71, + "end": 8858.7, + "probability": 0.0768 + }, + { + "start": 8860.55, + "end": 8861.66, + "probability": 0.0591 + }, + { + "start": 8861.68, + "end": 8862.16, + "probability": 0.032 + }, + { + "start": 8862.16, + "end": 8865.24, + "probability": 0.1219 + }, + { + "start": 8866.86, + "end": 8866.96, + "probability": 0.0129 + }, + { + "start": 8875.56, + "end": 8877.9, + "probability": 0.0649 + }, + { + "start": 8878.48, + "end": 8878.92, + "probability": 0.2115 + }, + { + "start": 8879.04, + "end": 8879.04, + "probability": 0.0564 + }, + { + "start": 8879.04, + "end": 8881.13, + "probability": 0.2332 + }, + { + "start": 8882.42, + "end": 8883.4, + "probability": 0.3179 + }, + { + "start": 8883.4, + "end": 8883.82, + "probability": 0.1973 + }, + { + "start": 8885.0, + "end": 8890.14, + "probability": 0.2802 + }, + { + "start": 8891.64, + "end": 8892.8, + "probability": 0.0989 + }, + { + "start": 8893.44, + "end": 8896.08, + "probability": 0.0202 + }, + { + "start": 8896.24, + "end": 8898.62, + "probability": 0.0832 + }, + { + "start": 8901.38, + "end": 8902.24, + "probability": 0.0311 + }, + { + "start": 8902.26, + "end": 8902.36, + "probability": 0.0098 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.0, + "end": 8903.0, + "probability": 0.0 + }, + { + "start": 8903.18, + "end": 8903.18, + "probability": 0.0091 + }, + { + "start": 8903.18, + "end": 8903.18, + "probability": 0.0635 + }, + { + "start": 8903.18, + "end": 8904.14, + "probability": 0.1459 + }, + { + "start": 8905.12, + "end": 8907.98, + "probability": 0.6355 + }, + { + "start": 8908.76, + "end": 8911.16, + "probability": 0.5303 + }, + { + "start": 8913.32, + "end": 8914.22, + "probability": 0.6677 + }, + { + "start": 8915.22, + "end": 8918.64, + "probability": 0.8266 + }, + { + "start": 8918.76, + "end": 8920.16, + "probability": 0.7155 + }, + { + "start": 8920.82, + "end": 8925.52, + "probability": 0.9637 + }, + { + "start": 8929.18, + "end": 8929.98, + "probability": 0.9374 + }, + { + "start": 8930.54, + "end": 8933.0, + "probability": 0.9734 + }, + { + "start": 8933.66, + "end": 8936.76, + "probability": 0.622 + }, + { + "start": 8937.18, + "end": 8938.76, + "probability": 0.8069 + }, + { + "start": 8938.84, + "end": 8939.32, + "probability": 0.4738 + }, + { + "start": 8939.44, + "end": 8939.7, + "probability": 0.9196 + }, + { + "start": 8939.76, + "end": 8940.9, + "probability": 0.7788 + }, + { + "start": 8941.44, + "end": 8944.34, + "probability": 0.9593 + }, + { + "start": 8945.54, + "end": 8948.3, + "probability": 0.9949 + }, + { + "start": 8948.38, + "end": 8949.78, + "probability": 0.8617 + }, + { + "start": 8950.32, + "end": 8953.3, + "probability": 0.9795 + }, + { + "start": 8953.82, + "end": 8956.6, + "probability": 0.8777 + }, + { + "start": 8957.54, + "end": 8962.28, + "probability": 0.9503 + }, + { + "start": 8962.76, + "end": 8963.8, + "probability": 0.7565 + }, + { + "start": 8963.9, + "end": 8970.92, + "probability": 0.9869 + }, + { + "start": 8971.7, + "end": 8974.64, + "probability": 0.9854 + }, + { + "start": 8975.24, + "end": 8977.88, + "probability": 0.9393 + }, + { + "start": 8978.34, + "end": 8980.52, + "probability": 0.8097 + }, + { + "start": 8981.0, + "end": 8983.78, + "probability": 0.9824 + }, + { + "start": 8984.42, + "end": 8986.72, + "probability": 0.844 + }, + { + "start": 8987.18, + "end": 8988.82, + "probability": 0.9547 + }, + { + "start": 8988.86, + "end": 8990.3, + "probability": 0.7776 + }, + { + "start": 8990.72, + "end": 8991.84, + "probability": 0.9564 + }, + { + "start": 8992.54, + "end": 8994.84, + "probability": 0.902 + }, + { + "start": 8995.66, + "end": 8999.32, + "probability": 0.9271 + }, + { + "start": 8999.8, + "end": 9002.06, + "probability": 0.9667 + }, + { + "start": 9002.7, + "end": 9004.18, + "probability": 0.6473 + }, + { + "start": 9004.3, + "end": 9008.12, + "probability": 0.9524 + }, + { + "start": 9008.96, + "end": 9014.06, + "probability": 0.9907 + }, + { + "start": 9014.46, + "end": 9019.76, + "probability": 0.9873 + }, + { + "start": 9020.2, + "end": 9020.74, + "probability": 0.4939 + }, + { + "start": 9021.1, + "end": 9022.26, + "probability": 0.7946 + }, + { + "start": 9023.7, + "end": 9024.46, + "probability": 0.7483 + }, + { + "start": 9024.52, + "end": 9025.5, + "probability": 0.9507 + }, + { + "start": 9025.64, + "end": 9029.14, + "probability": 0.9634 + }, + { + "start": 9029.36, + "end": 9030.64, + "probability": 0.7343 + }, + { + "start": 9030.86, + "end": 9034.34, + "probability": 0.9072 + }, + { + "start": 9035.44, + "end": 9037.54, + "probability": 0.9917 + }, + { + "start": 9038.26, + "end": 9038.96, + "probability": 0.7101 + }, + { + "start": 9040.08, + "end": 9041.88, + "probability": 0.8778 + }, + { + "start": 9042.6, + "end": 9046.56, + "probability": 0.9775 + }, + { + "start": 9048.46, + "end": 9051.12, + "probability": 0.9917 + }, + { + "start": 9051.44, + "end": 9056.2, + "probability": 0.986 + }, + { + "start": 9056.64, + "end": 9058.41, + "probability": 0.9399 + }, + { + "start": 9058.82, + "end": 9061.3, + "probability": 0.9956 + }, + { + "start": 9062.42, + "end": 9063.76, + "probability": 0.5293 + }, + { + "start": 9063.8, + "end": 9063.8, + "probability": 0.0228 + }, + { + "start": 9063.8, + "end": 9063.8, + "probability": 0.5823 + }, + { + "start": 9063.82, + "end": 9065.42, + "probability": 0.9954 + }, + { + "start": 9066.12, + "end": 9068.64, + "probability": 0.7815 + }, + { + "start": 9069.64, + "end": 9070.74, + "probability": 0.8474 + }, + { + "start": 9071.4, + "end": 9072.64, + "probability": 0.975 + }, + { + "start": 9074.66, + "end": 9076.74, + "probability": 0.979 + }, + { + "start": 9077.3, + "end": 9081.8, + "probability": 0.9722 + }, + { + "start": 9081.84, + "end": 9084.08, + "probability": 0.9478 + }, + { + "start": 9084.2, + "end": 9085.96, + "probability": 0.67 + }, + { + "start": 9086.04, + "end": 9088.66, + "probability": 0.9585 + }, + { + "start": 9090.4, + "end": 9092.28, + "probability": 0.8079 + }, + { + "start": 9092.8, + "end": 9099.36, + "probability": 0.9836 + }, + { + "start": 9100.14, + "end": 9102.8, + "probability": 0.9312 + }, + { + "start": 9103.28, + "end": 9105.72, + "probability": 0.9453 + }, + { + "start": 9105.98, + "end": 9107.72, + "probability": 0.7939 + }, + { + "start": 9108.06, + "end": 9110.28, + "probability": 0.7669 + }, + { + "start": 9110.6, + "end": 9111.57, + "probability": 0.8781 + }, + { + "start": 9111.96, + "end": 9113.04, + "probability": 0.3215 + }, + { + "start": 9114.18, + "end": 9116.35, + "probability": 0.9551 + }, + { + "start": 9117.06, + "end": 9118.28, + "probability": 0.9663 + }, + { + "start": 9118.62, + "end": 9119.56, + "probability": 0.846 + }, + { + "start": 9119.58, + "end": 9120.6, + "probability": 0.9293 + }, + { + "start": 9120.66, + "end": 9121.66, + "probability": 0.8872 + }, + { + "start": 9122.24, + "end": 9123.24, + "probability": 0.75 + }, + { + "start": 9123.4, + "end": 9127.66, + "probability": 0.9292 + }, + { + "start": 9128.24, + "end": 9132.47, + "probability": 0.9863 + }, + { + "start": 9133.22, + "end": 9134.08, + "probability": 0.9475 + }, + { + "start": 9134.24, + "end": 9135.9, + "probability": 0.4898 + }, + { + "start": 9136.44, + "end": 9138.12, + "probability": 0.1419 + }, + { + "start": 9138.8, + "end": 9139.46, + "probability": 0.2728 + }, + { + "start": 9141.22, + "end": 9141.68, + "probability": 0.0158 + }, + { + "start": 9141.68, + "end": 9142.03, + "probability": 0.0877 + }, + { + "start": 9142.76, + "end": 9144.28, + "probability": 0.2632 + }, + { + "start": 9144.36, + "end": 9145.0, + "probability": 0.2682 + }, + { + "start": 9145.22, + "end": 9146.38, + "probability": 0.3217 + }, + { + "start": 9147.2, + "end": 9150.8, + "probability": 0.8253 + }, + { + "start": 9151.52, + "end": 9153.74, + "probability": 0.8874 + }, + { + "start": 9154.34, + "end": 9156.14, + "probability": 0.9961 + }, + { + "start": 9156.62, + "end": 9158.98, + "probability": 0.8269 + }, + { + "start": 9158.98, + "end": 9161.38, + "probability": 0.998 + }, + { + "start": 9161.72, + "end": 9162.84, + "probability": 0.9948 + }, + { + "start": 9163.56, + "end": 9164.54, + "probability": 0.9399 + }, + { + "start": 9164.6, + "end": 9165.96, + "probability": 0.7436 + }, + { + "start": 9166.28, + "end": 9168.98, + "probability": 0.7542 + }, + { + "start": 9169.44, + "end": 9170.24, + "probability": 0.6616 + }, + { + "start": 9170.66, + "end": 9175.0, + "probability": 0.9679 + }, + { + "start": 9175.34, + "end": 9177.74, + "probability": 0.9956 + }, + { + "start": 9177.8, + "end": 9180.68, + "probability": 0.9818 + }, + { + "start": 9181.48, + "end": 9188.48, + "probability": 0.9568 + }, + { + "start": 9188.58, + "end": 9191.7, + "probability": 0.7528 + }, + { + "start": 9192.8, + "end": 9196.12, + "probability": 0.8718 + }, + { + "start": 9196.36, + "end": 9198.04, + "probability": 0.7224 + }, + { + "start": 9198.32, + "end": 9198.64, + "probability": 0.8243 + }, + { + "start": 9198.68, + "end": 9201.18, + "probability": 0.9976 + }, + { + "start": 9201.74, + "end": 9204.32, + "probability": 0.9911 + }, + { + "start": 9204.84, + "end": 9205.94, + "probability": 0.7925 + }, + { + "start": 9206.36, + "end": 9208.0, + "probability": 0.9176 + }, + { + "start": 9208.06, + "end": 9212.2, + "probability": 0.8369 + }, + { + "start": 9212.32, + "end": 9215.2, + "probability": 0.6631 + }, + { + "start": 9215.92, + "end": 9216.28, + "probability": 0.8493 + }, + { + "start": 9216.36, + "end": 9216.68, + "probability": 0.7215 + }, + { + "start": 9217.1, + "end": 9222.04, + "probability": 0.8121 + }, + { + "start": 9222.64, + "end": 9226.64, + "probability": 0.9713 + }, + { + "start": 9226.76, + "end": 9232.28, + "probability": 0.9941 + }, + { + "start": 9233.56, + "end": 9235.8, + "probability": 0.8841 + }, + { + "start": 9235.94, + "end": 9236.98, + "probability": 0.9059 + }, + { + "start": 9237.1, + "end": 9237.98, + "probability": 0.9106 + }, + { + "start": 9238.44, + "end": 9241.0, + "probability": 0.9963 + }, + { + "start": 9241.56, + "end": 9243.36, + "probability": 0.9785 + }, + { + "start": 9244.82, + "end": 9246.08, + "probability": 0.9912 + }, + { + "start": 9246.26, + "end": 9247.78, + "probability": 0.8964 + }, + { + "start": 9248.02, + "end": 9250.98, + "probability": 0.9873 + }, + { + "start": 9251.3, + "end": 9254.24, + "probability": 0.9862 + }, + { + "start": 9254.84, + "end": 9256.9, + "probability": 0.8435 + }, + { + "start": 9257.54, + "end": 9259.92, + "probability": 0.7526 + }, + { + "start": 9260.7, + "end": 9261.86, + "probability": 0.8589 + }, + { + "start": 9262.02, + "end": 9264.78, + "probability": 0.9937 + }, + { + "start": 9265.14, + "end": 9267.84, + "probability": 0.9032 + }, + { + "start": 9267.98, + "end": 9271.61, + "probability": 0.9961 + }, + { + "start": 9271.78, + "end": 9274.82, + "probability": 0.9976 + }, + { + "start": 9275.1, + "end": 9276.5, + "probability": 0.9561 + }, + { + "start": 9277.1, + "end": 9279.72, + "probability": 0.9623 + }, + { + "start": 9279.96, + "end": 9284.08, + "probability": 0.9478 + }, + { + "start": 9284.54, + "end": 9285.58, + "probability": 0.8808 + }, + { + "start": 9285.94, + "end": 9287.58, + "probability": 0.9932 + }, + { + "start": 9288.04, + "end": 9292.76, + "probability": 0.9153 + }, + { + "start": 9293.87, + "end": 9298.36, + "probability": 0.631 + }, + { + "start": 9298.86, + "end": 9300.96, + "probability": 0.9733 + }, + { + "start": 9301.1, + "end": 9302.06, + "probability": 0.9566 + }, + { + "start": 9302.32, + "end": 9303.18, + "probability": 0.7443 + }, + { + "start": 9303.24, + "end": 9303.7, + "probability": 0.8696 + }, + { + "start": 9303.74, + "end": 9306.1, + "probability": 0.9577 + }, + { + "start": 9306.2, + "end": 9308.7, + "probability": 0.8324 + }, + { + "start": 9309.02, + "end": 9312.34, + "probability": 0.9497 + }, + { + "start": 9313.08, + "end": 9315.42, + "probability": 0.8462 + }, + { + "start": 9315.46, + "end": 9317.54, + "probability": 0.6977 + }, + { + "start": 9317.58, + "end": 9318.4, + "probability": 0.85 + }, + { + "start": 9318.6, + "end": 9323.64, + "probability": 0.9968 + }, + { + "start": 9324.54, + "end": 9326.42, + "probability": 0.8582 + }, + { + "start": 9327.46, + "end": 9330.56, + "probability": 0.8708 + }, + { + "start": 9331.28, + "end": 9332.33, + "probability": 0.9727 + }, + { + "start": 9333.06, + "end": 9337.36, + "probability": 0.937 + }, + { + "start": 9338.12, + "end": 9339.42, + "probability": 0.9757 + }, + { + "start": 9340.72, + "end": 9341.24, + "probability": 0.3847 + }, + { + "start": 9341.58, + "end": 9345.88, + "probability": 0.9678 + }, + { + "start": 9345.94, + "end": 9351.82, + "probability": 0.9595 + }, + { + "start": 9352.54, + "end": 9354.98, + "probability": 0.8633 + }, + { + "start": 9355.42, + "end": 9359.2, + "probability": 0.9888 + }, + { + "start": 9359.8, + "end": 9362.22, + "probability": 0.7367 + }, + { + "start": 9362.56, + "end": 9365.22, + "probability": 0.9907 + }, + { + "start": 9365.58, + "end": 9369.16, + "probability": 0.7734 + }, + { + "start": 9369.72, + "end": 9373.84, + "probability": 0.9878 + }, + { + "start": 9374.2, + "end": 9378.18, + "probability": 0.8738 + }, + { + "start": 9378.18, + "end": 9378.18, + "probability": 0.1083 + }, + { + "start": 9378.18, + "end": 9380.9, + "probability": 0.8201 + }, + { + "start": 9381.2, + "end": 9382.8, + "probability": 0.8439 + }, + { + "start": 9383.66, + "end": 9387.28, + "probability": 0.7769 + }, + { + "start": 9388.62, + "end": 9389.84, + "probability": 0.3654 + }, + { + "start": 9391.64, + "end": 9392.8, + "probability": 0.5236 + }, + { + "start": 9394.58, + "end": 9394.68, + "probability": 0.0087 + }, + { + "start": 9394.68, + "end": 9396.22, + "probability": 0.641 + }, + { + "start": 9397.48, + "end": 9401.92, + "probability": 0.6043 + }, + { + "start": 9402.28, + "end": 9405.38, + "probability": 0.9918 + }, + { + "start": 9406.82, + "end": 9408.06, + "probability": 0.4677 + }, + { + "start": 9408.14, + "end": 9410.36, + "probability": 0.9395 + }, + { + "start": 9411.82, + "end": 9413.08, + "probability": 0.9472 + }, + { + "start": 9413.86, + "end": 9414.98, + "probability": 0.8196 + }, + { + "start": 9416.48, + "end": 9417.56, + "probability": 0.9893 + }, + { + "start": 9417.62, + "end": 9418.78, + "probability": 0.8728 + }, + { + "start": 9418.84, + "end": 9419.7, + "probability": 0.8981 + }, + { + "start": 9421.76, + "end": 9428.82, + "probability": 0.8736 + }, + { + "start": 9429.72, + "end": 9431.74, + "probability": 0.999 + }, + { + "start": 9433.0, + "end": 9434.24, + "probability": 0.7161 + }, + { + "start": 9435.5, + "end": 9438.4, + "probability": 0.9775 + }, + { + "start": 9438.94, + "end": 9440.32, + "probability": 0.7441 + }, + { + "start": 9441.76, + "end": 9444.18, + "probability": 0.9912 + }, + { + "start": 9444.18, + "end": 9446.86, + "probability": 0.9915 + }, + { + "start": 9448.0, + "end": 9449.46, + "probability": 0.8566 + }, + { + "start": 9449.6, + "end": 9455.96, + "probability": 0.8638 + }, + { + "start": 9456.08, + "end": 9457.01, + "probability": 0.4103 + }, + { + "start": 9458.34, + "end": 9464.48, + "probability": 0.898 + }, + { + "start": 9464.64, + "end": 9465.92, + "probability": 0.9033 + }, + { + "start": 9465.96, + "end": 9467.06, + "probability": 0.9616 + }, + { + "start": 9467.86, + "end": 9469.28, + "probability": 0.9592 + }, + { + "start": 9470.12, + "end": 9470.42, + "probability": 0.4315 + }, + { + "start": 9470.46, + "end": 9470.82, + "probability": 0.7241 + }, + { + "start": 9470.88, + "end": 9471.5, + "probability": 0.8225 + }, + { + "start": 9471.58, + "end": 9472.76, + "probability": 0.9787 + }, + { + "start": 9473.38, + "end": 9476.06, + "probability": 0.7574 + }, + { + "start": 9476.66, + "end": 9479.26, + "probability": 0.9088 + }, + { + "start": 9479.78, + "end": 9482.78, + "probability": 0.9302 + }, + { + "start": 9484.14, + "end": 9485.62, + "probability": 0.9886 + }, + { + "start": 9485.76, + "end": 9487.0, + "probability": 0.9652 + }, + { + "start": 9487.82, + "end": 9491.92, + "probability": 0.9919 + }, + { + "start": 9493.06, + "end": 9494.28, + "probability": 0.7573 + }, + { + "start": 9495.1, + "end": 9496.32, + "probability": 0.9956 + }, + { + "start": 9498.02, + "end": 9500.56, + "probability": 0.9792 + }, + { + "start": 9501.24, + "end": 9503.08, + "probability": 0.9988 + }, + { + "start": 9503.72, + "end": 9506.48, + "probability": 0.8878 + }, + { + "start": 9507.16, + "end": 9509.02, + "probability": 0.9967 + }, + { + "start": 9510.14, + "end": 9513.08, + "probability": 0.9814 + }, + { + "start": 9513.8, + "end": 9515.82, + "probability": 0.6342 + }, + { + "start": 9516.22, + "end": 9517.34, + "probability": 0.9313 + }, + { + "start": 9518.14, + "end": 9520.2, + "probability": 0.8929 + }, + { + "start": 9521.06, + "end": 9522.4, + "probability": 0.6538 + }, + { + "start": 9523.54, + "end": 9524.7, + "probability": 0.9106 + }, + { + "start": 9525.42, + "end": 9525.77, + "probability": 0.1406 + }, + { + "start": 9526.44, + "end": 9529.4, + "probability": 0.9088 + }, + { + "start": 9529.81, + "end": 9531.0, + "probability": 0.9946 + }, + { + "start": 9531.22, + "end": 9531.88, + "probability": 0.3362 + }, + { + "start": 9532.06, + "end": 9534.82, + "probability": 0.6087 + }, + { + "start": 9535.52, + "end": 9536.84, + "probability": 0.9395 + }, + { + "start": 9537.0, + "end": 9538.8, + "probability": 0.9618 + }, + { + "start": 9538.88, + "end": 9539.55, + "probability": 0.8369 + }, + { + "start": 9539.82, + "end": 9544.44, + "probability": 0.986 + }, + { + "start": 9544.84, + "end": 9546.34, + "probability": 0.8021 + }, + { + "start": 9546.42, + "end": 9546.84, + "probability": 0.6365 + }, + { + "start": 9547.48, + "end": 9548.62, + "probability": 0.7477 + }, + { + "start": 9548.98, + "end": 9551.26, + "probability": 0.9371 + }, + { + "start": 9552.0, + "end": 9553.04, + "probability": 0.8073 + }, + { + "start": 9553.76, + "end": 9555.34, + "probability": 0.9475 + }, + { + "start": 9555.78, + "end": 9558.96, + "probability": 0.981 + }, + { + "start": 9559.34, + "end": 9561.06, + "probability": 0.6762 + }, + { + "start": 9562.04, + "end": 9563.58, + "probability": 0.4496 + }, + { + "start": 9564.44, + "end": 9570.68, + "probability": 0.76 + }, + { + "start": 9571.04, + "end": 9573.8, + "probability": 0.9779 + }, + { + "start": 9574.26, + "end": 9575.16, + "probability": 0.9832 + }, + { + "start": 9575.86, + "end": 9577.6, + "probability": 0.8356 + }, + { + "start": 9578.14, + "end": 9581.64, + "probability": 0.8119 + }, + { + "start": 9581.78, + "end": 9583.72, + "probability": 0.7917 + }, + { + "start": 9583.82, + "end": 9585.21, + "probability": 0.6348 + }, + { + "start": 9585.34, + "end": 9586.57, + "probability": 0.9047 + }, + { + "start": 9587.32, + "end": 9588.22, + "probability": 0.8862 + }, + { + "start": 9589.08, + "end": 9589.54, + "probability": 0.866 + }, + { + "start": 9589.66, + "end": 9594.76, + "probability": 0.8012 + }, + { + "start": 9596.04, + "end": 9596.53, + "probability": 0.7651 + }, + { + "start": 9597.52, + "end": 9599.79, + "probability": 0.9676 + }, + { + "start": 9601.38, + "end": 9603.16, + "probability": 0.213 + }, + { + "start": 9603.82, + "end": 9604.64, + "probability": 0.8132 + }, + { + "start": 9604.72, + "end": 9605.7, + "probability": 0.048 + }, + { + "start": 9605.7, + "end": 9607.96, + "probability": 0.5672 + }, + { + "start": 9608.58, + "end": 9608.6, + "probability": 0.0478 + }, + { + "start": 9608.6, + "end": 9611.58, + "probability": 0.9902 + }, + { + "start": 9611.72, + "end": 9612.02, + "probability": 0.4104 + }, + { + "start": 9612.16, + "end": 9613.44, + "probability": 0.5316 + }, + { + "start": 9613.74, + "end": 9617.48, + "probability": 0.7247 + }, + { + "start": 9617.8, + "end": 9619.6, + "probability": 0.4693 + }, + { + "start": 9619.88, + "end": 9621.1, + "probability": 0.7212 + }, + { + "start": 9621.28, + "end": 9623.06, + "probability": 0.9043 + }, + { + "start": 9623.22, + "end": 9627.3, + "probability": 0.8798 + }, + { + "start": 9627.68, + "end": 9628.06, + "probability": 0.7879 + }, + { + "start": 9628.1, + "end": 9629.58, + "probability": 0.7717 + }, + { + "start": 9629.81, + "end": 9635.0, + "probability": 0.8766 + }, + { + "start": 9635.54, + "end": 9636.28, + "probability": 0.8812 + }, + { + "start": 9636.38, + "end": 9638.04, + "probability": 0.9351 + }, + { + "start": 9638.54, + "end": 9640.14, + "probability": 0.957 + }, + { + "start": 9640.28, + "end": 9643.38, + "probability": 0.7206 + }, + { + "start": 9644.12, + "end": 9645.36, + "probability": 0.7842 + }, + { + "start": 9645.48, + "end": 9647.78, + "probability": 0.9959 + }, + { + "start": 9647.82, + "end": 9649.42, + "probability": 0.9946 + }, + { + "start": 9650.16, + "end": 9654.3, + "probability": 0.9974 + }, + { + "start": 9654.35, + "end": 9657.22, + "probability": 0.7221 + }, + { + "start": 9657.84, + "end": 9658.6, + "probability": 0.9011 + }, + { + "start": 9658.98, + "end": 9660.7, + "probability": 0.8574 + }, + { + "start": 9661.14, + "end": 9666.38, + "probability": 0.9007 + }, + { + "start": 9667.2, + "end": 9670.06, + "probability": 0.8601 + }, + { + "start": 9670.06, + "end": 9674.32, + "probability": 0.6188 + }, + { + "start": 9675.56, + "end": 9677.52, + "probability": 0.9927 + }, + { + "start": 9678.1, + "end": 9681.3, + "probability": 0.7428 + }, + { + "start": 9682.4, + "end": 9685.72, + "probability": 0.9609 + }, + { + "start": 9686.42, + "end": 9688.44, + "probability": 0.9142 + }, + { + "start": 9689.2, + "end": 9690.04, + "probability": 0.4859 + }, + { + "start": 9690.46, + "end": 9692.22, + "probability": 0.9625 + }, + { + "start": 9692.62, + "end": 9695.38, + "probability": 0.853 + }, + { + "start": 9696.28, + "end": 9696.82, + "probability": 0.8218 + }, + { + "start": 9697.46, + "end": 9700.64, + "probability": 0.6569 + }, + { + "start": 9701.64, + "end": 9705.1, + "probability": 0.9207 + }, + { + "start": 9705.1, + "end": 9708.28, + "probability": 0.9865 + }, + { + "start": 9708.64, + "end": 9711.63, + "probability": 0.9756 + }, + { + "start": 9712.34, + "end": 9717.1, + "probability": 0.971 + }, + { + "start": 9717.68, + "end": 9719.68, + "probability": 0.868 + }, + { + "start": 9719.96, + "end": 9721.6, + "probability": 0.7885 + }, + { + "start": 9722.04, + "end": 9723.48, + "probability": 0.9003 + }, + { + "start": 9724.7, + "end": 9726.46, + "probability": 0.5418 + }, + { + "start": 9727.26, + "end": 9728.2, + "probability": 0.8603 + }, + { + "start": 9729.44, + "end": 9731.94, + "probability": 0.9929 + }, + { + "start": 9732.6, + "end": 9733.56, + "probability": 0.6003 + }, + { + "start": 9733.64, + "end": 9734.54, + "probability": 0.8335 + }, + { + "start": 9735.94, + "end": 9736.49, + "probability": 0.0398 + }, + { + "start": 9740.36, + "end": 9742.96, + "probability": 0.0085 + }, + { + "start": 9743.76, + "end": 9744.94, + "probability": 0.2243 + }, + { + "start": 9748.58, + "end": 9749.22, + "probability": 0.2813 + }, + { + "start": 9750.4, + "end": 9752.92, + "probability": 0.7027 + }, + { + "start": 9753.02, + "end": 9754.36, + "probability": 0.7987 + }, + { + "start": 9754.72, + "end": 9756.18, + "probability": 0.6662 + }, + { + "start": 9756.26, + "end": 9760.64, + "probability": 0.9943 + }, + { + "start": 9760.64, + "end": 9766.28, + "probability": 0.9773 + }, + { + "start": 9767.16, + "end": 9770.42, + "probability": 0.8694 + }, + { + "start": 9771.12, + "end": 9772.68, + "probability": 0.7738 + }, + { + "start": 9773.3, + "end": 9776.8, + "probability": 0.7059 + }, + { + "start": 9777.04, + "end": 9781.34, + "probability": 0.9976 + }, + { + "start": 9781.34, + "end": 9784.28, + "probability": 0.9675 + }, + { + "start": 9785.62, + "end": 9791.02, + "probability": 0.9807 + }, + { + "start": 9791.46, + "end": 9791.78, + "probability": 0.5793 + }, + { + "start": 9791.86, + "end": 9792.28, + "probability": 0.9548 + }, + { + "start": 9792.36, + "end": 9796.62, + "probability": 0.9846 + }, + { + "start": 9798.36, + "end": 9803.72, + "probability": 0.9985 + }, + { + "start": 9803.72, + "end": 9808.02, + "probability": 0.9975 + }, + { + "start": 9809.24, + "end": 9812.72, + "probability": 0.9973 + }, + { + "start": 9813.64, + "end": 9815.06, + "probability": 0.936 + }, + { + "start": 9815.98, + "end": 9818.48, + "probability": 0.9974 + }, + { + "start": 9819.24, + "end": 9821.68, + "probability": 0.8012 + }, + { + "start": 9822.24, + "end": 9825.1, + "probability": 0.9966 + }, + { + "start": 9825.86, + "end": 9831.04, + "probability": 0.9885 + }, + { + "start": 9831.42, + "end": 9831.72, + "probability": 0.6887 + }, + { + "start": 9831.98, + "end": 9836.62, + "probability": 0.7073 + }, + { + "start": 9837.04, + "end": 9838.84, + "probability": 0.6111 + }, + { + "start": 9840.02, + "end": 9840.62, + "probability": 0.443 + }, + { + "start": 9841.66, + "end": 9843.54, + "probability": 0.663 + }, + { + "start": 9846.04, + "end": 9850.98, + "probability": 0.6527 + }, + { + "start": 9851.96, + "end": 9854.89, + "probability": 0.2281 + }, + { + "start": 9856.4, + "end": 9859.0, + "probability": 0.0261 + }, + { + "start": 9859.3, + "end": 9860.53, + "probability": 0.0615 + }, + { + "start": 9864.3, + "end": 9864.3, + "probability": 0.0468 + }, + { + "start": 9864.3, + "end": 9864.3, + "probability": 0.2649 + }, + { + "start": 9864.3, + "end": 9864.3, + "probability": 0.6131 + }, + { + "start": 9864.3, + "end": 9868.12, + "probability": 0.3595 + }, + { + "start": 9868.54, + "end": 9869.1, + "probability": 0.721 + }, + { + "start": 9869.22, + "end": 9872.54, + "probability": 0.7608 + }, + { + "start": 9873.02, + "end": 9876.64, + "probability": 0.639 + }, + { + "start": 9877.64, + "end": 9879.24, + "probability": 0.7263 + }, + { + "start": 9879.34, + "end": 9879.84, + "probability": 0.2282 + }, + { + "start": 9883.04, + "end": 9891.46, + "probability": 0.6637 + }, + { + "start": 9892.8, + "end": 9893.12, + "probability": 0.2044 + }, + { + "start": 9893.12, + "end": 9894.74, + "probability": 0.6244 + }, + { + "start": 9895.7, + "end": 9898.2, + "probability": 0.7185 + }, + { + "start": 9918.94, + "end": 9920.06, + "probability": 0.7467 + }, + { + "start": 9921.05, + "end": 9921.78, + "probability": 0.9932 + }, + { + "start": 9923.44, + "end": 9924.0, + "probability": 0.3646 + }, + { + "start": 9924.88, + "end": 9925.76, + "probability": 0.8548 + }, + { + "start": 9926.0, + "end": 9928.06, + "probability": 0.9132 + }, + { + "start": 9928.82, + "end": 9928.98, + "probability": 0.2432 + }, + { + "start": 9929.16, + "end": 9930.3, + "probability": 0.7642 + }, + { + "start": 9930.54, + "end": 9930.74, + "probability": 0.7971 + }, + { + "start": 9930.74, + "end": 9932.58, + "probability": 0.9967 + }, + { + "start": 9932.68, + "end": 9933.77, + "probability": 0.9702 + }, + { + "start": 9936.43, + "end": 9937.3, + "probability": 0.1361 + }, + { + "start": 9937.3, + "end": 9937.3, + "probability": 0.186 + }, + { + "start": 9937.3, + "end": 9938.56, + "probability": 0.5498 + }, + { + "start": 9940.88, + "end": 9942.94, + "probability": 0.7169 + }, + { + "start": 9943.36, + "end": 9946.76, + "probability": 0.4481 + }, + { + "start": 9946.76, + "end": 9947.78, + "probability": 0.5738 + }, + { + "start": 9948.3, + "end": 9948.4, + "probability": 0.5568 + }, + { + "start": 9950.16, + "end": 9951.36, + "probability": 0.8507 + }, + { + "start": 9951.66, + "end": 9952.38, + "probability": 0.7963 + }, + { + "start": 9952.52, + "end": 9955.32, + "probability": 0.7197 + }, + { + "start": 9955.42, + "end": 9956.78, + "probability": 0.8179 + }, + { + "start": 9957.76, + "end": 9958.4, + "probability": 0.942 + }, + { + "start": 9960.84, + "end": 9966.06, + "probability": 0.9852 + }, + { + "start": 9966.88, + "end": 9971.58, + "probability": 0.9745 + }, + { + "start": 9972.04, + "end": 9972.99, + "probability": 0.9845 + }, + { + "start": 9974.6, + "end": 9974.8, + "probability": 0.3885 + }, + { + "start": 9975.0, + "end": 9975.6, + "probability": 0.5123 + }, + { + "start": 9975.96, + "end": 9976.18, + "probability": 0.3214 + }, + { + "start": 9977.42, + "end": 9980.82, + "probability": 0.996 + }, + { + "start": 9981.88, + "end": 9983.84, + "probability": 0.9411 + }, + { + "start": 9984.5, + "end": 9991.74, + "probability": 0.9846 + }, + { + "start": 9991.94, + "end": 9993.92, + "probability": 0.9966 + }, + { + "start": 9994.72, + "end": 9998.38, + "probability": 0.9821 + }, + { + "start": 9998.64, + "end": 9999.76, + "probability": 0.6861 + }, + { + "start": 10000.3, + "end": 10002.64, + "probability": 0.9366 + }, + { + "start": 10003.74, + "end": 10008.32, + "probability": 0.9265 + }, + { + "start": 10009.48, + "end": 10013.82, + "probability": 0.8559 + }, + { + "start": 10014.5, + "end": 10025.52, + "probability": 0.994 + }, + { + "start": 10025.6, + "end": 10026.52, + "probability": 0.8154 + }, + { + "start": 10027.74, + "end": 10029.52, + "probability": 0.5636 + }, + { + "start": 10029.86, + "end": 10035.76, + "probability": 0.9694 + }, + { + "start": 10036.08, + "end": 10037.38, + "probability": 0.719 + }, + { + "start": 10037.52, + "end": 10039.94, + "probability": 0.8172 + }, + { + "start": 10040.5, + "end": 10041.32, + "probability": 0.7222 + }, + { + "start": 10043.14, + "end": 10045.58, + "probability": 0.9806 + }, + { + "start": 10046.3, + "end": 10052.98, + "probability": 0.9948 + }, + { + "start": 10053.8, + "end": 10054.77, + "probability": 0.9614 + }, + { + "start": 10056.04, + "end": 10056.92, + "probability": 0.8081 + }, + { + "start": 10057.64, + "end": 10063.22, + "probability": 0.931 + }, + { + "start": 10063.3, + "end": 10063.64, + "probability": 0.5809 + }, + { + "start": 10063.78, + "end": 10064.44, + "probability": 0.6006 + }, + { + "start": 10064.96, + "end": 10066.14, + "probability": 0.8338 + }, + { + "start": 10067.24, + "end": 10076.38, + "probability": 0.967 + }, + { + "start": 10077.1, + "end": 10078.66, + "probability": 0.9328 + }, + { + "start": 10078.76, + "end": 10079.36, + "probability": 0.6581 + }, + { + "start": 10079.8, + "end": 10080.78, + "probability": 0.7509 + }, + { + "start": 10080.88, + "end": 10081.52, + "probability": 0.2787 + }, + { + "start": 10081.84, + "end": 10086.09, + "probability": 0.8731 + }, + { + "start": 10086.84, + "end": 10093.66, + "probability": 0.9837 + }, + { + "start": 10093.98, + "end": 10094.36, + "probability": 0.9742 + }, + { + "start": 10095.68, + "end": 10100.62, + "probability": 0.8329 + }, + { + "start": 10100.62, + "end": 10102.66, + "probability": 0.7549 + }, + { + "start": 10103.28, + "end": 10105.5, + "probability": 0.9361 + }, + { + "start": 10105.58, + "end": 10106.56, + "probability": 0.9121 + }, + { + "start": 10106.66, + "end": 10108.06, + "probability": 0.9838 + }, + { + "start": 10108.62, + "end": 10109.44, + "probability": 0.7961 + }, + { + "start": 10109.7, + "end": 10110.8, + "probability": 0.7491 + }, + { + "start": 10110.8, + "end": 10111.7, + "probability": 0.9724 + }, + { + "start": 10112.78, + "end": 10118.38, + "probability": 0.9911 + }, + { + "start": 10118.52, + "end": 10123.88, + "probability": 0.9103 + }, + { + "start": 10124.84, + "end": 10126.42, + "probability": 0.9723 + }, + { + "start": 10127.08, + "end": 10129.26, + "probability": 0.973 + }, + { + "start": 10129.36, + "end": 10130.94, + "probability": 0.9925 + }, + { + "start": 10131.5, + "end": 10135.23, + "probability": 0.7402 + }, + { + "start": 10135.84, + "end": 10138.4, + "probability": 0.8765 + }, + { + "start": 10139.06, + "end": 10141.2, + "probability": 0.7074 + }, + { + "start": 10141.8, + "end": 10144.48, + "probability": 0.5753 + }, + { + "start": 10145.9, + "end": 10147.06, + "probability": 0.4873 + }, + { + "start": 10147.2, + "end": 10148.1, + "probability": 0.7877 + }, + { + "start": 10148.26, + "end": 10151.5, + "probability": 0.9646 + }, + { + "start": 10151.9, + "end": 10157.2, + "probability": 0.9818 + }, + { + "start": 10158.26, + "end": 10160.76, + "probability": 0.9473 + }, + { + "start": 10160.9, + "end": 10161.84, + "probability": 0.949 + }, + { + "start": 10162.22, + "end": 10162.46, + "probability": 0.7429 + }, + { + "start": 10162.7, + "end": 10164.53, + "probability": 0.7756 + }, + { + "start": 10165.22, + "end": 10167.24, + "probability": 0.7538 + }, + { + "start": 10167.45, + "end": 10171.64, + "probability": 0.8933 + }, + { + "start": 10172.3, + "end": 10176.76, + "probability": 0.7029 + }, + { + "start": 10177.64, + "end": 10181.8, + "probability": 0.9874 + }, + { + "start": 10182.1, + "end": 10182.74, + "probability": 0.2774 + }, + { + "start": 10183.64, + "end": 10187.34, + "probability": 0.9871 + }, + { + "start": 10187.48, + "end": 10190.88, + "probability": 0.9692 + }, + { + "start": 10190.98, + "end": 10195.46, + "probability": 0.9481 + }, + { + "start": 10195.86, + "end": 10197.52, + "probability": 0.9727 + }, + { + "start": 10198.5, + "end": 10203.62, + "probability": 0.9257 + }, + { + "start": 10204.48, + "end": 10206.44, + "probability": 0.9877 + }, + { + "start": 10207.58, + "end": 10210.46, + "probability": 0.7077 + }, + { + "start": 10211.72, + "end": 10216.0, + "probability": 0.9378 + }, + { + "start": 10216.68, + "end": 10218.28, + "probability": 0.7623 + }, + { + "start": 10218.7, + "end": 10219.9, + "probability": 0.8988 + }, + { + "start": 10219.96, + "end": 10220.45, + "probability": 0.9282 + }, + { + "start": 10220.94, + "end": 10223.6, + "probability": 0.98 + }, + { + "start": 10224.0, + "end": 10229.26, + "probability": 0.887 + }, + { + "start": 10229.36, + "end": 10230.2, + "probability": 0.9704 + }, + { + "start": 10230.38, + "end": 10234.88, + "probability": 0.9926 + }, + { + "start": 10234.88, + "end": 10239.1, + "probability": 0.9878 + }, + { + "start": 10240.02, + "end": 10243.84, + "probability": 0.9141 + }, + { + "start": 10243.84, + "end": 10249.14, + "probability": 0.9966 + }, + { + "start": 10250.08, + "end": 10254.72, + "probability": 0.9901 + }, + { + "start": 10255.32, + "end": 10256.76, + "probability": 0.9873 + }, + { + "start": 10256.84, + "end": 10256.94, + "probability": 0.7327 + }, + { + "start": 10257.0, + "end": 10259.04, + "probability": 0.9405 + }, + { + "start": 10259.68, + "end": 10262.06, + "probability": 0.9619 + }, + { + "start": 10262.8, + "end": 10265.5, + "probability": 0.978 + }, + { + "start": 10266.06, + "end": 10267.14, + "probability": 0.1416 + }, + { + "start": 10267.14, + "end": 10267.22, + "probability": 0.3082 + }, + { + "start": 10267.6, + "end": 10271.76, + "probability": 0.8726 + }, + { + "start": 10272.6, + "end": 10276.93, + "probability": 0.8571 + }, + { + "start": 10277.32, + "end": 10278.32, + "probability": 0.5318 + }, + { + "start": 10278.36, + "end": 10279.5, + "probability": 0.7758 + }, + { + "start": 10280.08, + "end": 10282.24, + "probability": 0.9819 + }, + { + "start": 10282.76, + "end": 10283.32, + "probability": 0.7409 + }, + { + "start": 10284.2, + "end": 10287.86, + "probability": 0.8439 + }, + { + "start": 10287.96, + "end": 10288.86, + "probability": 0.8472 + }, + { + "start": 10289.78, + "end": 10290.42, + "probability": 0.6629 + }, + { + "start": 10291.4, + "end": 10292.71, + "probability": 0.9015 + }, + { + "start": 10293.06, + "end": 10293.7, + "probability": 0.8087 + }, + { + "start": 10293.76, + "end": 10295.32, + "probability": 0.8586 + }, + { + "start": 10295.72, + "end": 10297.02, + "probability": 0.8822 + }, + { + "start": 10297.46, + "end": 10298.7, + "probability": 0.8784 + }, + { + "start": 10298.78, + "end": 10300.12, + "probability": 0.9334 + }, + { + "start": 10300.52, + "end": 10302.32, + "probability": 0.9036 + }, + { + "start": 10302.64, + "end": 10304.1, + "probability": 0.7187 + }, + { + "start": 10304.24, + "end": 10304.88, + "probability": 0.7881 + }, + { + "start": 10306.2, + "end": 10309.24, + "probability": 0.8861 + }, + { + "start": 10310.48, + "end": 10312.0, + "probability": 0.9973 + }, + { + "start": 10313.08, + "end": 10314.96, + "probability": 0.8609 + }, + { + "start": 10315.1, + "end": 10316.96, + "probability": 0.9599 + }, + { + "start": 10317.0, + "end": 10320.64, + "probability": 0.8462 + }, + { + "start": 10321.32, + "end": 10322.36, + "probability": 0.9103 + }, + { + "start": 10323.6, + "end": 10327.42, + "probability": 0.593 + }, + { + "start": 10327.96, + "end": 10328.24, + "probability": 0.6816 + }, + { + "start": 10328.32, + "end": 10329.98, + "probability": 0.4365 + }, + { + "start": 10330.75, + "end": 10333.12, + "probability": 0.8612 + }, + { + "start": 10333.16, + "end": 10335.7, + "probability": 0.7585 + }, + { + "start": 10335.94, + "end": 10338.18, + "probability": 0.7183 + }, + { + "start": 10338.22, + "end": 10341.62, + "probability": 0.9521 + }, + { + "start": 10342.08, + "end": 10343.2, + "probability": 0.9062 + }, + { + "start": 10344.46, + "end": 10348.46, + "probability": 0.9897 + }, + { + "start": 10349.16, + "end": 10350.1, + "probability": 0.9922 + }, + { + "start": 10351.18, + "end": 10353.44, + "probability": 0.6125 + }, + { + "start": 10354.0, + "end": 10355.36, + "probability": 0.8416 + }, + { + "start": 10356.32, + "end": 10357.54, + "probability": 0.9306 + }, + { + "start": 10358.4, + "end": 10360.32, + "probability": 0.9753 + }, + { + "start": 10361.3, + "end": 10364.16, + "probability": 0.991 + }, + { + "start": 10365.0, + "end": 10369.78, + "probability": 0.9806 + }, + { + "start": 10369.94, + "end": 10370.34, + "probability": 0.4443 + }, + { + "start": 10372.26, + "end": 10377.58, + "probability": 0.9923 + }, + { + "start": 10378.96, + "end": 10380.58, + "probability": 0.939 + }, + { + "start": 10381.34, + "end": 10383.78, + "probability": 0.6396 + }, + { + "start": 10383.9, + "end": 10388.6, + "probability": 0.91 + }, + { + "start": 10389.0, + "end": 10393.08, + "probability": 0.8817 + }, + { + "start": 10393.36, + "end": 10393.88, + "probability": 0.9966 + }, + { + "start": 10394.58, + "end": 10397.7, + "probability": 0.985 + }, + { + "start": 10398.1, + "end": 10401.1, + "probability": 0.998 + }, + { + "start": 10401.94, + "end": 10408.04, + "probability": 0.9989 + }, + { + "start": 10409.2, + "end": 10410.64, + "probability": 0.9036 + }, + { + "start": 10412.18, + "end": 10414.54, + "probability": 0.782 + }, + { + "start": 10415.24, + "end": 10415.78, + "probability": 0.6573 + }, + { + "start": 10416.36, + "end": 10419.84, + "probability": 0.9429 + }, + { + "start": 10420.6, + "end": 10421.94, + "probability": 0.8772 + }, + { + "start": 10423.34, + "end": 10425.22, + "probability": 0.9523 + }, + { + "start": 10425.3, + "end": 10426.02, + "probability": 0.6701 + }, + { + "start": 10426.54, + "end": 10432.06, + "probability": 0.9742 + }, + { + "start": 10433.14, + "end": 10436.44, + "probability": 0.9906 + }, + { + "start": 10437.1, + "end": 10438.04, + "probability": 0.8851 + }, + { + "start": 10438.72, + "end": 10442.1, + "probability": 0.9939 + }, + { + "start": 10442.68, + "end": 10446.92, + "probability": 0.968 + }, + { + "start": 10447.02, + "end": 10448.84, + "probability": 0.9865 + }, + { + "start": 10450.92, + "end": 10451.42, + "probability": 0.013 + }, + { + "start": 10451.42, + "end": 10452.6, + "probability": 0.6616 + }, + { + "start": 10452.72, + "end": 10454.22, + "probability": 0.9658 + }, + { + "start": 10454.94, + "end": 10456.42, + "probability": 0.6562 + }, + { + "start": 10456.46, + "end": 10458.34, + "probability": 0.7964 + }, + { + "start": 10458.6, + "end": 10460.06, + "probability": 0.9609 + }, + { + "start": 10460.06, + "end": 10461.92, + "probability": 0.77 + }, + { + "start": 10463.28, + "end": 10466.7, + "probability": 0.9307 + }, + { + "start": 10467.26, + "end": 10469.48, + "probability": 0.9194 + }, + { + "start": 10469.9, + "end": 10474.6, + "probability": 0.9614 + }, + { + "start": 10474.7, + "end": 10476.66, + "probability": 0.9873 + }, + { + "start": 10477.14, + "end": 10478.7, + "probability": 0.9976 + }, + { + "start": 10478.94, + "end": 10480.78, + "probability": 0.8331 + }, + { + "start": 10480.98, + "end": 10481.6, + "probability": 0.8228 + }, + { + "start": 10482.14, + "end": 10482.98, + "probability": 0.8833 + }, + { + "start": 10483.64, + "end": 10486.0, + "probability": 0.9927 + }, + { + "start": 10486.72, + "end": 10490.56, + "probability": 0.7257 + }, + { + "start": 10490.6, + "end": 10493.3, + "probability": 0.0699 + }, + { + "start": 10493.7, + "end": 10497.16, + "probability": 0.9362 + }, + { + "start": 10497.16, + "end": 10497.93, + "probability": 0.333 + }, + { + "start": 10498.24, + "end": 10500.54, + "probability": 0.9834 + }, + { + "start": 10500.94, + "end": 10501.38, + "probability": 0.494 + }, + { + "start": 10501.42, + "end": 10502.58, + "probability": 0.6934 + }, + { + "start": 10503.04, + "end": 10504.34, + "probability": 0.8428 + }, + { + "start": 10504.5, + "end": 10507.02, + "probability": 0.9225 + }, + { + "start": 10507.14, + "end": 10507.86, + "probability": 0.083 + }, + { + "start": 10507.86, + "end": 10508.44, + "probability": 0.4863 + }, + { + "start": 10510.8, + "end": 10511.74, + "probability": 0.4842 + }, + { + "start": 10512.36, + "end": 10516.7, + "probability": 0.6911 + }, + { + "start": 10516.88, + "end": 10519.24, + "probability": 0.7348 + }, + { + "start": 10519.6, + "end": 10521.4, + "probability": 0.4773 + }, + { + "start": 10521.7, + "end": 10522.45, + "probability": 0.8465 + }, + { + "start": 10522.92, + "end": 10522.92, + "probability": 0.4811 + }, + { + "start": 10522.98, + "end": 10525.3, + "probability": 0.9808 + }, + { + "start": 10525.3, + "end": 10525.5, + "probability": 0.3701 + }, + { + "start": 10525.9, + "end": 10527.94, + "probability": 0.9595 + }, + { + "start": 10530.02, + "end": 10531.02, + "probability": 0.8087 + }, + { + "start": 10535.32, + "end": 10538.82, + "probability": 0.9969 + }, + { + "start": 10539.36, + "end": 10541.04, + "probability": 0.9292 + }, + { + "start": 10541.76, + "end": 10545.8, + "probability": 0.8052 + }, + { + "start": 10546.46, + "end": 10548.88, + "probability": 0.8936 + }, + { + "start": 10549.36, + "end": 10551.96, + "probability": 0.7398 + }, + { + "start": 10552.5, + "end": 10555.16, + "probability": 0.9952 + }, + { + "start": 10556.04, + "end": 10557.96, + "probability": 0.9946 + }, + { + "start": 10558.68, + "end": 10561.36, + "probability": 0.9866 + }, + { + "start": 10561.36, + "end": 10564.24, + "probability": 0.6398 + }, + { + "start": 10565.02, + "end": 10567.7, + "probability": 0.8843 + }, + { + "start": 10569.04, + "end": 10571.76, + "probability": 0.7537 + }, + { + "start": 10572.46, + "end": 10572.88, + "probability": 0.6823 + }, + { + "start": 10574.12, + "end": 10576.42, + "probability": 0.8848 + }, + { + "start": 10597.0, + "end": 10597.66, + "probability": 0.3219 + }, + { + "start": 10601.74, + "end": 10603.82, + "probability": 0.628 + }, + { + "start": 10606.98, + "end": 10608.18, + "probability": 0.9689 + }, + { + "start": 10610.32, + "end": 10612.86, + "probability": 0.9791 + }, + { + "start": 10613.92, + "end": 10618.82, + "probability": 0.9375 + }, + { + "start": 10620.62, + "end": 10625.2, + "probability": 0.9348 + }, + { + "start": 10627.0, + "end": 10631.18, + "probability": 0.9884 + }, + { + "start": 10633.1, + "end": 10634.42, + "probability": 0.9934 + }, + { + "start": 10635.12, + "end": 10635.5, + "probability": 0.0155 + }, + { + "start": 10635.66, + "end": 10636.7, + "probability": 0.0141 + }, + { + "start": 10638.32, + "end": 10644.52, + "probability": 0.9979 + }, + { + "start": 10644.68, + "end": 10647.2, + "probability": 0.9902 + }, + { + "start": 10647.24, + "end": 10647.86, + "probability": 0.63 + }, + { + "start": 10648.78, + "end": 10652.92, + "probability": 0.258 + }, + { + "start": 10653.76, + "end": 10655.48, + "probability": 0.2884 + }, + { + "start": 10655.8, + "end": 10657.7, + "probability": 0.8831 + }, + { + "start": 10657.74, + "end": 10658.88, + "probability": 0.7208 + }, + { + "start": 10659.26, + "end": 10662.2, + "probability": 0.7686 + }, + { + "start": 10663.02, + "end": 10664.74, + "probability": 0.5826 + }, + { + "start": 10665.3, + "end": 10666.44, + "probability": 0.1732 + }, + { + "start": 10666.44, + "end": 10666.44, + "probability": 0.4976 + }, + { + "start": 10666.44, + "end": 10666.44, + "probability": 0.1027 + }, + { + "start": 10666.44, + "end": 10666.44, + "probability": 0.1326 + }, + { + "start": 10666.44, + "end": 10667.64, + "probability": 0.1013 + }, + { + "start": 10668.06, + "end": 10669.44, + "probability": 0.8943 + }, + { + "start": 10670.32, + "end": 10672.38, + "probability": 0.731 + }, + { + "start": 10673.12, + "end": 10675.44, + "probability": 0.9951 + }, + { + "start": 10676.58, + "end": 10679.9, + "probability": 0.9995 + }, + { + "start": 10680.98, + "end": 10687.96, + "probability": 0.9993 + }, + { + "start": 10689.32, + "end": 10695.3, + "probability": 0.9985 + }, + { + "start": 10695.3, + "end": 10701.4, + "probability": 0.9985 + }, + { + "start": 10701.96, + "end": 10705.22, + "probability": 0.7574 + }, + { + "start": 10706.96, + "end": 10708.42, + "probability": 0.0031 + }, + { + "start": 10709.04, + "end": 10711.86, + "probability": 0.7814 + }, + { + "start": 10713.9, + "end": 10715.12, + "probability": 0.2852 + }, + { + "start": 10715.76, + "end": 10719.66, + "probability": 0.6496 + }, + { + "start": 10720.92, + "end": 10722.02, + "probability": 0.9717 + }, + { + "start": 10723.6, + "end": 10729.26, + "probability": 0.7552 + }, + { + "start": 10730.22, + "end": 10731.18, + "probability": 0.9947 + }, + { + "start": 10732.02, + "end": 10732.72, + "probability": 0.9731 + }, + { + "start": 10733.48, + "end": 10734.04, + "probability": 0.9963 + }, + { + "start": 10734.66, + "end": 10735.6, + "probability": 0.9438 + }, + { + "start": 10736.38, + "end": 10736.96, + "probability": 0.8594 + }, + { + "start": 10738.16, + "end": 10741.6, + "probability": 0.9661 + }, + { + "start": 10741.78, + "end": 10747.04, + "probability": 0.8985 + }, + { + "start": 10747.1, + "end": 10749.18, + "probability": 0.9388 + }, + { + "start": 10750.74, + "end": 10754.36, + "probability": 0.9969 + }, + { + "start": 10754.72, + "end": 10756.08, + "probability": 0.8994 + }, + { + "start": 10756.68, + "end": 10757.56, + "probability": 0.8798 + }, + { + "start": 10758.16, + "end": 10759.1, + "probability": 0.9893 + }, + { + "start": 10760.46, + "end": 10764.84, + "probability": 0.9666 + }, + { + "start": 10765.7, + "end": 10770.99, + "probability": 0.9945 + }, + { + "start": 10772.7, + "end": 10773.94, + "probability": 0.9324 + }, + { + "start": 10774.24, + "end": 10775.44, + "probability": 0.908 + }, + { + "start": 10775.84, + "end": 10777.04, + "probability": 0.8488 + }, + { + "start": 10777.5, + "end": 10783.54, + "probability": 0.9964 + }, + { + "start": 10783.94, + "end": 10785.12, + "probability": 0.6644 + }, + { + "start": 10785.12, + "end": 10788.54, + "probability": 0.9723 + }, + { + "start": 10790.06, + "end": 10791.92, + "probability": 0.4186 + }, + { + "start": 10792.98, + "end": 10793.64, + "probability": 0.316 + }, + { + "start": 10796.86, + "end": 10797.96, + "probability": 0.861 + }, + { + "start": 10797.96, + "end": 10800.7, + "probability": 0.3667 + }, + { + "start": 10801.22, + "end": 10801.74, + "probability": 0.2187 + }, + { + "start": 10801.84, + "end": 10805.41, + "probability": 0.3009 + }, + { + "start": 10806.1, + "end": 10807.32, + "probability": 0.1957 + }, + { + "start": 10807.58, + "end": 10809.66, + "probability": 0.0926 + }, + { + "start": 10809.66, + "end": 10809.66, + "probability": 0.1997 + }, + { + "start": 10809.66, + "end": 10810.28, + "probability": 0.1649 + }, + { + "start": 10810.88, + "end": 10813.08, + "probability": 0.0873 + }, + { + "start": 10813.3, + "end": 10813.92, + "probability": 0.4045 + }, + { + "start": 10814.06, + "end": 10816.08, + "probability": 0.7773 + }, + { + "start": 10816.14, + "end": 10817.22, + "probability": 0.6825 + }, + { + "start": 10817.28, + "end": 10818.57, + "probability": 0.9902 + }, + { + "start": 10818.8, + "end": 10820.82, + "probability": 0.6886 + }, + { + "start": 10820.88, + "end": 10823.8, + "probability": 0.8404 + }, + { + "start": 10823.92, + "end": 10825.0, + "probability": 0.8026 + }, + { + "start": 10825.0, + "end": 10825.88, + "probability": 0.1363 + }, + { + "start": 10825.88, + "end": 10826.84, + "probability": 0.1066 + }, + { + "start": 10826.84, + "end": 10827.08, + "probability": 0.0081 + }, + { + "start": 10827.08, + "end": 10829.23, + "probability": 0.6409 + }, + { + "start": 10829.32, + "end": 10829.54, + "probability": 0.6108 + }, + { + "start": 10830.24, + "end": 10830.68, + "probability": 0.9202 + }, + { + "start": 10830.78, + "end": 10836.84, + "probability": 0.8188 + }, + { + "start": 10837.44, + "end": 10841.24, + "probability": 0.9215 + }, + { + "start": 10841.98, + "end": 10842.4, + "probability": 0.8313 + }, + { + "start": 10842.58, + "end": 10845.7, + "probability": 0.8721 + }, + { + "start": 10845.7, + "end": 10848.92, + "probability": 0.9902 + }, + { + "start": 10849.78, + "end": 10852.34, + "probability": 0.9968 + }, + { + "start": 10853.84, + "end": 10858.54, + "probability": 0.971 + }, + { + "start": 10858.54, + "end": 10864.44, + "probability": 0.9148 + }, + { + "start": 10864.88, + "end": 10867.58, + "probability": 0.9976 + }, + { + "start": 10868.62, + "end": 10870.42, + "probability": 0.5764 + }, + { + "start": 10871.92, + "end": 10872.42, + "probability": 0.7507 + }, + { + "start": 10873.66, + "end": 10874.9, + "probability": 0.9592 + }, + { + "start": 10875.76, + "end": 10877.36, + "probability": 0.9602 + }, + { + "start": 10878.64, + "end": 10879.34, + "probability": 0.3149 + }, + { + "start": 10879.94, + "end": 10882.26, + "probability": 0.9258 + }, + { + "start": 10883.22, + "end": 10889.78, + "probability": 0.9985 + }, + { + "start": 10892.22, + "end": 10894.0, + "probability": 0.9143 + }, + { + "start": 10894.52, + "end": 10895.48, + "probability": 0.7611 + }, + { + "start": 10895.5, + "end": 10895.7, + "probability": 0.1305 + }, + { + "start": 10895.78, + "end": 10897.64, + "probability": 0.7866 + }, + { + "start": 10897.72, + "end": 10900.44, + "probability": 0.3609 + }, + { + "start": 10900.66, + "end": 10902.5, + "probability": 0.6499 + }, + { + "start": 10903.14, + "end": 10904.36, + "probability": 0.8659 + }, + { + "start": 10904.7, + "end": 10905.8, + "probability": 0.0098 + }, + { + "start": 10905.84, + "end": 10908.44, + "probability": 0.9492 + }, + { + "start": 10909.1, + "end": 10911.16, + "probability": 0.9937 + }, + { + "start": 10912.26, + "end": 10917.23, + "probability": 0.9653 + }, + { + "start": 10918.62, + "end": 10919.94, + "probability": 0.8184 + }, + { + "start": 10921.42, + "end": 10922.24, + "probability": 0.8727 + }, + { + "start": 10923.72, + "end": 10925.14, + "probability": 0.9607 + }, + { + "start": 10925.28, + "end": 10926.64, + "probability": 0.98 + }, + { + "start": 10926.7, + "end": 10930.34, + "probability": 0.9873 + }, + { + "start": 10930.34, + "end": 10934.54, + "probability": 0.9962 + }, + { + "start": 10934.7, + "end": 10936.68, + "probability": 0.9649 + }, + { + "start": 10938.52, + "end": 10940.04, + "probability": 0.9266 + }, + { + "start": 10940.34, + "end": 10942.4, + "probability": 0.8716 + }, + { + "start": 10942.8, + "end": 10944.5, + "probability": 0.992 + }, + { + "start": 10944.96, + "end": 10947.26, + "probability": 0.1345 + }, + { + "start": 10947.68, + "end": 10948.82, + "probability": 0.3883 + }, + { + "start": 10948.82, + "end": 10950.08, + "probability": 0.0303 + }, + { + "start": 10950.08, + "end": 10951.1, + "probability": 0.8831 + }, + { + "start": 10951.2, + "end": 10951.68, + "probability": 0.9261 + }, + { + "start": 10951.68, + "end": 10952.56, + "probability": 0.9175 + }, + { + "start": 10953.38, + "end": 10956.44, + "probability": 0.9803 + }, + { + "start": 10956.5, + "end": 10957.46, + "probability": 0.9571 + }, + { + "start": 10957.62, + "end": 10958.42, + "probability": 0.8565 + }, + { + "start": 10958.52, + "end": 10961.12, + "probability": 0.9609 + }, + { + "start": 10961.68, + "end": 10963.04, + "probability": 0.9411 + }, + { + "start": 10963.14, + "end": 10964.74, + "probability": 0.9949 + }, + { + "start": 10964.78, + "end": 10965.48, + "probability": 0.7754 + }, + { + "start": 10965.6, + "end": 10966.72, + "probability": 0.7529 + }, + { + "start": 10967.52, + "end": 10969.98, + "probability": 0.9919 + }, + { + "start": 10970.12, + "end": 10970.89, + "probability": 0.8567 + }, + { + "start": 10971.24, + "end": 10971.46, + "probability": 0.7263 + }, + { + "start": 10971.48, + "end": 10972.32, + "probability": 0.7094 + }, + { + "start": 10972.32, + "end": 10973.7, + "probability": 0.7951 + }, + { + "start": 10974.04, + "end": 10977.0, + "probability": 0.927 + }, + { + "start": 10977.12, + "end": 10977.54, + "probability": 0.392 + }, + { + "start": 10977.6, + "end": 10978.74, + "probability": 0.9541 + }, + { + "start": 10978.86, + "end": 10979.72, + "probability": 0.8468 + }, + { + "start": 10980.02, + "end": 10981.5, + "probability": 0.7237 + }, + { + "start": 10981.72, + "end": 10983.14, + "probability": 0.9246 + }, + { + "start": 10983.9, + "end": 10987.08, + "probability": 0.9789 + }, + { + "start": 10989.36, + "end": 10992.46, + "probability": 0.1584 + }, + { + "start": 10994.48, + "end": 10995.66, + "probability": 0.0017 + }, + { + "start": 10996.56, + "end": 10996.88, + "probability": 0.0008 + }, + { + "start": 10996.88, + "end": 10996.94, + "probability": 0.1281 + }, + { + "start": 10996.94, + "end": 10996.94, + "probability": 0.1982 + }, + { + "start": 10996.94, + "end": 10996.94, + "probability": 0.1106 + }, + { + "start": 10996.94, + "end": 10997.72, + "probability": 0.3289 + }, + { + "start": 10997.96, + "end": 11000.26, + "probability": 0.7659 + }, + { + "start": 11001.3, + "end": 11010.94, + "probability": 0.6544 + }, + { + "start": 11011.04, + "end": 11014.3, + "probability": 0.8411 + }, + { + "start": 11015.2, + "end": 11021.24, + "probability": 0.9089 + }, + { + "start": 11022.62, + "end": 11024.88, + "probability": 0.9924 + }, + { + "start": 11025.32, + "end": 11027.14, + "probability": 0.9932 + }, + { + "start": 11027.56, + "end": 11030.2, + "probability": 0.998 + }, + { + "start": 11030.84, + "end": 11034.9, + "probability": 0.9777 + }, + { + "start": 11038.24, + "end": 11040.52, + "probability": 0.9622 + }, + { + "start": 11042.04, + "end": 11048.94, + "probability": 0.9557 + }, + { + "start": 11049.72, + "end": 11052.88, + "probability": 0.9503 + }, + { + "start": 11053.44, + "end": 11054.46, + "probability": 0.8219 + }, + { + "start": 11055.4, + "end": 11057.2, + "probability": 0.7862 + }, + { + "start": 11058.34, + "end": 11061.34, + "probability": 0.9525 + }, + { + "start": 11061.4, + "end": 11062.52, + "probability": 0.8593 + }, + { + "start": 11062.6, + "end": 11064.76, + "probability": 0.9946 + }, + { + "start": 11065.42, + "end": 11070.9, + "probability": 0.9882 + }, + { + "start": 11071.28, + "end": 11073.68, + "probability": 0.9956 + }, + { + "start": 11074.2, + "end": 11076.74, + "probability": 0.9587 + }, + { + "start": 11076.98, + "end": 11077.94, + "probability": 0.5755 + }, + { + "start": 11078.46, + "end": 11079.3, + "probability": 0.9155 + }, + { + "start": 11080.54, + "end": 11085.9, + "probability": 0.9932 + }, + { + "start": 11086.26, + "end": 11087.28, + "probability": 0.9106 + }, + { + "start": 11087.48, + "end": 11088.62, + "probability": 0.9826 + }, + { + "start": 11089.74, + "end": 11092.6, + "probability": 0.9788 + }, + { + "start": 11092.84, + "end": 11094.52, + "probability": 0.9886 + }, + { + "start": 11094.8, + "end": 11095.86, + "probability": 0.81 + }, + { + "start": 11097.34, + "end": 11103.64, + "probability": 0.8757 + }, + { + "start": 11103.84, + "end": 11105.26, + "probability": 0.9398 + }, + { + "start": 11107.74, + "end": 11112.88, + "probability": 0.9645 + }, + { + "start": 11112.88, + "end": 11118.84, + "probability": 0.9873 + }, + { + "start": 11119.26, + "end": 11125.0, + "probability": 0.9871 + }, + { + "start": 11125.56, + "end": 11126.48, + "probability": 0.9366 + }, + { + "start": 11127.78, + "end": 11129.96, + "probability": 0.9202 + }, + { + "start": 11130.82, + "end": 11132.5, + "probability": 0.5545 + }, + { + "start": 11134.98, + "end": 11143.04, + "probability": 0.9613 + }, + { + "start": 11143.42, + "end": 11144.78, + "probability": 0.973 + }, + { + "start": 11145.38, + "end": 11147.42, + "probability": 0.6231 + }, + { + "start": 11148.04, + "end": 11151.0, + "probability": 0.9343 + }, + { + "start": 11151.48, + "end": 11153.6, + "probability": 0.9966 + }, + { + "start": 11153.9, + "end": 11160.18, + "probability": 0.9796 + }, + { + "start": 11160.28, + "end": 11161.12, + "probability": 0.8734 + }, + { + "start": 11162.06, + "end": 11165.38, + "probability": 0.8999 + }, + { + "start": 11166.06, + "end": 11171.78, + "probability": 0.9856 + }, + { + "start": 11173.44, + "end": 11175.34, + "probability": 0.9 + }, + { + "start": 11176.4, + "end": 11180.58, + "probability": 0.997 + }, + { + "start": 11181.44, + "end": 11183.86, + "probability": 0.9937 + }, + { + "start": 11184.68, + "end": 11188.24, + "probability": 0.9928 + }, + { + "start": 11189.06, + "end": 11190.14, + "probability": 0.7714 + }, + { + "start": 11191.58, + "end": 11198.4, + "probability": 0.8951 + }, + { + "start": 11198.94, + "end": 11200.06, + "probability": 0.8022 + }, + { + "start": 11200.5, + "end": 11201.54, + "probability": 0.7489 + }, + { + "start": 11201.84, + "end": 11203.84, + "probability": 0.8195 + }, + { + "start": 11203.9, + "end": 11204.46, + "probability": 0.7131 + }, + { + "start": 11204.52, + "end": 11206.6, + "probability": 0.8553 + }, + { + "start": 11207.26, + "end": 11208.9, + "probability": 0.9924 + }, + { + "start": 11209.18, + "end": 11214.16, + "probability": 0.9894 + }, + { + "start": 11216.3, + "end": 11223.0, + "probability": 0.9926 + }, + { + "start": 11223.58, + "end": 11226.2, + "probability": 0.9916 + }, + { + "start": 11227.04, + "end": 11228.02, + "probability": 0.8136 + }, + { + "start": 11228.64, + "end": 11230.26, + "probability": 0.9524 + }, + { + "start": 11230.38, + "end": 11231.18, + "probability": 0.8163 + }, + { + "start": 11232.0, + "end": 11235.56, + "probability": 0.9913 + }, + { + "start": 11236.28, + "end": 11239.16, + "probability": 0.9604 + }, + { + "start": 11239.92, + "end": 11242.86, + "probability": 0.9653 + }, + { + "start": 11243.54, + "end": 11247.56, + "probability": 0.9845 + }, + { + "start": 11247.94, + "end": 11253.1, + "probability": 0.9832 + }, + { + "start": 11253.1, + "end": 11255.26, + "probability": 0.8464 + }, + { + "start": 11255.66, + "end": 11256.64, + "probability": 0.771 + }, + { + "start": 11257.18, + "end": 11257.88, + "probability": 0.995 + }, + { + "start": 11258.78, + "end": 11259.86, + "probability": 0.876 + }, + { + "start": 11260.46, + "end": 11266.14, + "probability": 0.9863 + }, + { + "start": 11266.14, + "end": 11270.3, + "probability": 0.9977 + }, + { + "start": 11271.98, + "end": 11272.64, + "probability": 0.8099 + }, + { + "start": 11274.34, + "end": 11275.04, + "probability": 0.6664 + }, + { + "start": 11277.9, + "end": 11280.82, + "probability": 0.9247 + }, + { + "start": 11281.42, + "end": 11282.5, + "probability": 0.7992 + }, + { + "start": 11285.58, + "end": 11287.76, + "probability": 0.9697 + }, + { + "start": 11288.2, + "end": 11293.86, + "probability": 0.9971 + }, + { + "start": 11293.86, + "end": 11297.61, + "probability": 0.8679 + }, + { + "start": 11298.6, + "end": 11302.9, + "probability": 0.9904 + }, + { + "start": 11303.56, + "end": 11306.78, + "probability": 0.9984 + }, + { + "start": 11306.78, + "end": 11311.86, + "probability": 0.9961 + }, + { + "start": 11311.94, + "end": 11312.8, + "probability": 0.9594 + }, + { + "start": 11313.34, + "end": 11314.48, + "probability": 0.9836 + }, + { + "start": 11314.9, + "end": 11319.0, + "probability": 0.9873 + }, + { + "start": 11319.46, + "end": 11319.94, + "probability": 0.6539 + }, + { + "start": 11320.18, + "end": 11320.58, + "probability": 0.8525 + }, + { + "start": 11320.68, + "end": 11324.42, + "probability": 0.976 + }, + { + "start": 11324.42, + "end": 11328.74, + "probability": 0.9531 + }, + { + "start": 11329.1, + "end": 11330.64, + "probability": 0.9732 + }, + { + "start": 11330.78, + "end": 11335.96, + "probability": 0.834 + }, + { + "start": 11336.56, + "end": 11336.72, + "probability": 0.656 + }, + { + "start": 11336.8, + "end": 11338.28, + "probability": 0.7185 + }, + { + "start": 11338.3, + "end": 11338.76, + "probability": 0.6277 + }, + { + "start": 11339.18, + "end": 11340.06, + "probability": 0.7664 + }, + { + "start": 11340.16, + "end": 11343.24, + "probability": 0.9928 + }, + { + "start": 11343.54, + "end": 11343.66, + "probability": 0.2579 + }, + { + "start": 11344.46, + "end": 11346.48, + "probability": 0.8577 + }, + { + "start": 11347.81, + "end": 11350.64, + "probability": 0.5757 + }, + { + "start": 11351.0, + "end": 11359.16, + "probability": 0.7599 + }, + { + "start": 11359.92, + "end": 11361.47, + "probability": 0.9543 + }, + { + "start": 11362.22, + "end": 11363.3, + "probability": 0.8976 + }, + { + "start": 11363.36, + "end": 11365.56, + "probability": 0.9806 + }, + { + "start": 11366.22, + "end": 11367.78, + "probability": 0.9177 + }, + { + "start": 11367.98, + "end": 11368.16, + "probability": 0.1445 + }, + { + "start": 11368.16, + "end": 11368.36, + "probability": 0.1873 + }, + { + "start": 11368.4, + "end": 11368.94, + "probability": 0.5237 + }, + { + "start": 11369.0, + "end": 11370.94, + "probability": 0.878 + }, + { + "start": 11371.0, + "end": 11372.3, + "probability": 0.9473 + }, + { + "start": 11372.44, + "end": 11373.13, + "probability": 0.9834 + }, + { + "start": 11373.32, + "end": 11375.88, + "probability": 0.9586 + }, + { + "start": 11376.7, + "end": 11377.04, + "probability": 0.6933 + }, + { + "start": 11378.48, + "end": 11380.64, + "probability": 0.7085 + }, + { + "start": 11390.9, + "end": 11394.18, + "probability": 0.5362 + }, + { + "start": 11394.62, + "end": 11395.16, + "probability": 0.2593 + }, + { + "start": 11395.22, + "end": 11396.84, + "probability": 0.8729 + }, + { + "start": 11397.06, + "end": 11397.8, + "probability": 0.7485 + }, + { + "start": 11398.46, + "end": 11399.72, + "probability": 0.8467 + }, + { + "start": 11399.82, + "end": 11400.26, + "probability": 0.915 + }, + { + "start": 11400.78, + "end": 11403.96, + "probability": 0.5561 + }, + { + "start": 11406.2, + "end": 11409.5, + "probability": 0.9862 + }, + { + "start": 11411.0, + "end": 11415.46, + "probability": 0.9927 + }, + { + "start": 11416.12, + "end": 11416.68, + "probability": 0.9079 + }, + { + "start": 11417.98, + "end": 11421.0, + "probability": 0.9626 + }, + { + "start": 11421.58, + "end": 11428.38, + "probability": 0.9939 + }, + { + "start": 11429.74, + "end": 11434.26, + "probability": 0.9179 + }, + { + "start": 11434.9, + "end": 11437.92, + "probability": 0.8739 + }, + { + "start": 11438.06, + "end": 11439.86, + "probability": 0.998 + }, + { + "start": 11440.7, + "end": 11444.14, + "probability": 0.9662 + }, + { + "start": 11444.86, + "end": 11445.88, + "probability": 0.9928 + }, + { + "start": 11446.58, + "end": 11448.76, + "probability": 0.999 + }, + { + "start": 11449.66, + "end": 11453.18, + "probability": 0.9987 + }, + { + "start": 11453.64, + "end": 11455.1, + "probability": 0.9808 + }, + { + "start": 11456.22, + "end": 11458.66, + "probability": 0.9961 + }, + { + "start": 11459.52, + "end": 11461.48, + "probability": 0.996 + }, + { + "start": 11462.14, + "end": 11463.64, + "probability": 0.9941 + }, + { + "start": 11464.24, + "end": 11466.68, + "probability": 0.7661 + }, + { + "start": 11467.38, + "end": 11469.28, + "probability": 0.9731 + }, + { + "start": 11469.72, + "end": 11472.14, + "probability": 0.9333 + }, + { + "start": 11472.3, + "end": 11473.08, + "probability": 0.6911 + }, + { + "start": 11473.28, + "end": 11473.56, + "probability": 0.8059 + }, + { + "start": 11473.7, + "end": 11474.66, + "probability": 0.7532 + }, + { + "start": 11474.92, + "end": 11476.2, + "probability": 0.9282 + }, + { + "start": 11477.44, + "end": 11481.92, + "probability": 0.8735 + }, + { + "start": 11482.06, + "end": 11482.92, + "probability": 0.7175 + }, + { + "start": 11483.2, + "end": 11485.62, + "probability": 0.9954 + }, + { + "start": 11485.94, + "end": 11488.62, + "probability": 0.9703 + }, + { + "start": 11489.42, + "end": 11490.32, + "probability": 0.9613 + }, + { + "start": 11490.56, + "end": 11493.44, + "probability": 0.6272 + }, + { + "start": 11493.74, + "end": 11495.04, + "probability": 0.989 + }, + { + "start": 11495.24, + "end": 11496.46, + "probability": 0.9877 + }, + { + "start": 11496.74, + "end": 11500.56, + "probability": 0.9921 + }, + { + "start": 11500.78, + "end": 11502.04, + "probability": 0.7202 + }, + { + "start": 11502.2, + "end": 11503.04, + "probability": 0.7578 + }, + { + "start": 11503.62, + "end": 11504.27, + "probability": 0.8843 + }, + { + "start": 11504.34, + "end": 11506.96, + "probability": 0.9668 + }, + { + "start": 11507.22, + "end": 11507.86, + "probability": 0.84 + }, + { + "start": 11508.36, + "end": 11509.08, + "probability": 0.9689 + }, + { + "start": 11510.52, + "end": 11511.16, + "probability": 0.9429 + }, + { + "start": 11511.72, + "end": 11515.72, + "probability": 0.9985 + }, + { + "start": 11516.26, + "end": 11519.1, + "probability": 0.8634 + }, + { + "start": 11520.0, + "end": 11522.08, + "probability": 0.9897 + }, + { + "start": 11522.48, + "end": 11528.64, + "probability": 0.995 + }, + { + "start": 11528.7, + "end": 11529.92, + "probability": 0.8291 + }, + { + "start": 11530.2, + "end": 11531.6, + "probability": 0.845 + }, + { + "start": 11531.92, + "end": 11534.22, + "probability": 0.9884 + }, + { + "start": 11534.52, + "end": 11535.98, + "probability": 0.804 + }, + { + "start": 11536.26, + "end": 11537.4, + "probability": 0.8885 + }, + { + "start": 11537.64, + "end": 11540.08, + "probability": 0.9845 + }, + { + "start": 11540.96, + "end": 11542.1, + "probability": 0.915 + }, + { + "start": 11542.24, + "end": 11547.12, + "probability": 0.9551 + }, + { + "start": 11547.72, + "end": 11549.15, + "probability": 0.9861 + }, + { + "start": 11549.86, + "end": 11553.6, + "probability": 0.7056 + }, + { + "start": 11553.96, + "end": 11555.32, + "probability": 0.8849 + }, + { + "start": 11555.9, + "end": 11560.58, + "probability": 0.9016 + }, + { + "start": 11560.78, + "end": 11562.28, + "probability": 0.8247 + }, + { + "start": 11562.42, + "end": 11564.36, + "probability": 0.805 + }, + { + "start": 11564.68, + "end": 11565.56, + "probability": 0.4521 + }, + { + "start": 11565.64, + "end": 11566.96, + "probability": 0.8644 + }, + { + "start": 11567.64, + "end": 11569.98, + "probability": 0.8061 + }, + { + "start": 11570.56, + "end": 11573.16, + "probability": 0.9689 + }, + { + "start": 11573.9, + "end": 11575.28, + "probability": 0.4613 + }, + { + "start": 11575.36, + "end": 11576.4, + "probability": 0.6149 + }, + { + "start": 11576.48, + "end": 11577.0, + "probability": 0.7489 + }, + { + "start": 11577.46, + "end": 11581.7, + "probability": 0.9368 + }, + { + "start": 11582.38, + "end": 11583.86, + "probability": 0.7972 + }, + { + "start": 11584.52, + "end": 11589.9, + "probability": 0.9863 + }, + { + "start": 11590.66, + "end": 11593.2, + "probability": 0.9976 + }, + { + "start": 11594.1, + "end": 11596.3, + "probability": 0.9985 + }, + { + "start": 11596.76, + "end": 11598.32, + "probability": 0.9844 + }, + { + "start": 11598.68, + "end": 11599.82, + "probability": 0.9946 + }, + { + "start": 11600.04, + "end": 11600.8, + "probability": 0.8623 + }, + { + "start": 11601.14, + "end": 11602.34, + "probability": 0.9931 + }, + { + "start": 11602.6, + "end": 11604.04, + "probability": 0.9393 + }, + { + "start": 11604.3, + "end": 11606.8, + "probability": 0.9896 + }, + { + "start": 11606.8, + "end": 11609.54, + "probability": 0.9521 + }, + { + "start": 11609.8, + "end": 11610.64, + "probability": 0.3483 + }, + { + "start": 11610.96, + "end": 11612.16, + "probability": 0.8927 + }, + { + "start": 11612.36, + "end": 11613.78, + "probability": 0.8418 + }, + { + "start": 11614.42, + "end": 11617.82, + "probability": 0.9834 + }, + { + "start": 11618.26, + "end": 11620.1, + "probability": 0.9875 + }, + { + "start": 11620.28, + "end": 11623.98, + "probability": 0.9895 + }, + { + "start": 11624.22, + "end": 11626.18, + "probability": 0.811 + }, + { + "start": 11626.28, + "end": 11627.46, + "probability": 0.6498 + }, + { + "start": 11628.02, + "end": 11631.78, + "probability": 0.9401 + }, + { + "start": 11632.22, + "end": 11636.76, + "probability": 0.9067 + }, + { + "start": 11637.1, + "end": 11638.48, + "probability": 0.8929 + }, + { + "start": 11638.86, + "end": 11641.34, + "probability": 0.9958 + }, + { + "start": 11641.74, + "end": 11644.02, + "probability": 0.9861 + }, + { + "start": 11644.32, + "end": 11645.54, + "probability": 0.9878 + }, + { + "start": 11646.08, + "end": 11649.34, + "probability": 0.9857 + }, + { + "start": 11649.94, + "end": 11650.44, + "probability": 0.3122 + }, + { + "start": 11650.62, + "end": 11653.96, + "probability": 0.995 + }, + { + "start": 11654.02, + "end": 11655.76, + "probability": 0.7866 + }, + { + "start": 11655.8, + "end": 11657.66, + "probability": 0.9566 + }, + { + "start": 11657.76, + "end": 11660.14, + "probability": 0.9893 + }, + { + "start": 11660.66, + "end": 11661.46, + "probability": 0.7466 + }, + { + "start": 11665.42, + "end": 11670.16, + "probability": 0.9316 + }, + { + "start": 11670.6, + "end": 11670.88, + "probability": 0.7593 + }, + { + "start": 11670.96, + "end": 11676.28, + "probability": 0.8464 + }, + { + "start": 11676.38, + "end": 11677.2, + "probability": 0.7227 + }, + { + "start": 11677.24, + "end": 11680.44, + "probability": 0.686 + }, + { + "start": 11681.0, + "end": 11681.14, + "probability": 0.3725 + }, + { + "start": 11681.14, + "end": 11681.44, + "probability": 0.6437 + }, + { + "start": 11681.52, + "end": 11682.12, + "probability": 0.7107 + }, + { + "start": 11682.2, + "end": 11684.36, + "probability": 0.8651 + }, + { + "start": 11686.22, + "end": 11688.84, + "probability": 0.8859 + }, + { + "start": 11689.26, + "end": 11690.44, + "probability": 0.4641 + }, + { + "start": 11690.58, + "end": 11691.52, + "probability": 0.6763 + }, + { + "start": 11691.58, + "end": 11692.8, + "probability": 0.9181 + }, + { + "start": 11699.26, + "end": 11700.86, + "probability": 0.1582 + }, + { + "start": 11705.85, + "end": 11711.14, + "probability": 0.6241 + }, + { + "start": 11711.14, + "end": 11711.46, + "probability": 0.4892 + }, + { + "start": 11712.06, + "end": 11714.94, + "probability": 0.8956 + }, + { + "start": 11715.6, + "end": 11715.86, + "probability": 0.6104 + }, + { + "start": 11715.92, + "end": 11721.96, + "probability": 0.6719 + }, + { + "start": 11722.78, + "end": 11722.78, + "probability": 0.1076 + }, + { + "start": 11722.78, + "end": 11722.78, + "probability": 0.332 + }, + { + "start": 11722.78, + "end": 11722.78, + "probability": 0.347 + }, + { + "start": 11722.78, + "end": 11722.78, + "probability": 0.1026 + }, + { + "start": 11722.78, + "end": 11725.6, + "probability": 0.5205 + }, + { + "start": 11726.16, + "end": 11729.4, + "probability": 0.6917 + }, + { + "start": 11734.06, + "end": 11736.86, + "probability": 0.5137 + }, + { + "start": 11737.72, + "end": 11738.98, + "probability": 0.8467 + }, + { + "start": 11739.54, + "end": 11744.4, + "probability": 0.6021 + }, + { + "start": 11751.02, + "end": 11751.66, + "probability": 0.3562 + }, + { + "start": 11751.96, + "end": 11757.56, + "probability": 0.5407 + }, + { + "start": 11759.26, + "end": 11760.6, + "probability": 0.831 + }, + { + "start": 11761.8, + "end": 11764.04, + "probability": 0.7748 + }, + { + "start": 11765.62, + "end": 11767.56, + "probability": 0.9602 + }, + { + "start": 11770.2, + "end": 11777.94, + "probability": 0.9945 + }, + { + "start": 11779.5, + "end": 11789.44, + "probability": 0.9827 + }, + { + "start": 11789.44, + "end": 11796.38, + "probability": 0.9933 + }, + { + "start": 11797.2, + "end": 11798.34, + "probability": 0.4956 + }, + { + "start": 11799.94, + "end": 11802.18, + "probability": 0.9005 + }, + { + "start": 11802.82, + "end": 11804.34, + "probability": 0.8655 + }, + { + "start": 11806.12, + "end": 11811.86, + "probability": 0.9302 + }, + { + "start": 11812.62, + "end": 11813.36, + "probability": 0.9139 + }, + { + "start": 11814.24, + "end": 11816.86, + "probability": 0.9599 + }, + { + "start": 11817.5, + "end": 11819.38, + "probability": 0.9564 + }, + { + "start": 11820.08, + "end": 11827.8, + "probability": 0.9908 + }, + { + "start": 11828.52, + "end": 11834.86, + "probability": 0.6249 + }, + { + "start": 11835.14, + "end": 11837.78, + "probability": 0.8071 + }, + { + "start": 11838.26, + "end": 11841.24, + "probability": 0.9845 + }, + { + "start": 11841.82, + "end": 11844.68, + "probability": 0.9616 + }, + { + "start": 11845.32, + "end": 11846.62, + "probability": 0.8878 + }, + { + "start": 11846.98, + "end": 11847.08, + "probability": 0.7718 + }, + { + "start": 11848.18, + "end": 11851.58, + "probability": 0.9854 + }, + { + "start": 11855.86, + "end": 11862.54, + "probability": 0.8237 + }, + { + "start": 11862.82, + "end": 11869.66, + "probability": 0.9714 + }, + { + "start": 11870.68, + "end": 11870.68, + "probability": 0.6211 + }, + { + "start": 11872.24, + "end": 11874.04, + "probability": 0.6638 + }, + { + "start": 11874.26, + "end": 11876.8, + "probability": 0.6157 + }, + { + "start": 11877.96, + "end": 11879.68, + "probability": 0.4241 + }, + { + "start": 11880.02, + "end": 11881.82, + "probability": 0.8889 + }, + { + "start": 11882.66, + "end": 11886.18, + "probability": 0.9352 + }, + { + "start": 11887.24, + "end": 11889.32, + "probability": 0.9893 + }, + { + "start": 11890.0, + "end": 11891.8, + "probability": 0.981 + }, + { + "start": 11892.58, + "end": 11896.62, + "probability": 0.9704 + }, + { + "start": 11896.62, + "end": 11898.7, + "probability": 0.9941 + }, + { + "start": 11900.3, + "end": 11901.4, + "probability": 0.591 + }, + { + "start": 11901.46, + "end": 11902.9, + "probability": 0.8603 + }, + { + "start": 11903.16, + "end": 11903.84, + "probability": 0.9327 + }, + { + "start": 11904.2, + "end": 11908.32, + "probability": 0.9625 + }, + { + "start": 11908.48, + "end": 11912.96, + "probability": 0.8966 + }, + { + "start": 11913.58, + "end": 11917.38, + "probability": 0.9976 + }, + { + "start": 11917.92, + "end": 11923.22, + "probability": 0.9963 + }, + { + "start": 11923.22, + "end": 11927.14, + "probability": 0.999 + }, + { + "start": 11927.64, + "end": 11928.32, + "probability": 0.7351 + }, + { + "start": 11929.48, + "end": 11933.28, + "probability": 0.7465 + }, + { + "start": 11934.78, + "end": 11935.74, + "probability": 0.4317 + }, + { + "start": 11936.38, + "end": 11939.28, + "probability": 0.8628 + }, + { + "start": 11939.84, + "end": 11943.16, + "probability": 0.6279 + }, + { + "start": 11944.46, + "end": 11946.56, + "probability": 0.7857 + }, + { + "start": 11947.26, + "end": 11950.12, + "probability": 0.9954 + }, + { + "start": 11950.82, + "end": 11952.84, + "probability": 0.8887 + }, + { + "start": 11954.04, + "end": 11955.86, + "probability": 0.8439 + }, + { + "start": 11956.6, + "end": 11958.3, + "probability": 0.8183 + }, + { + "start": 11958.48, + "end": 11959.93, + "probability": 0.9983 + }, + { + "start": 11960.28, + "end": 11961.59, + "probability": 0.9968 + }, + { + "start": 11962.76, + "end": 11963.44, + "probability": 0.4067 + }, + { + "start": 11964.16, + "end": 11971.62, + "probability": 0.9689 + }, + { + "start": 11972.76, + "end": 11974.7, + "probability": 0.936 + }, + { + "start": 11975.36, + "end": 11978.2, + "probability": 0.9741 + }, + { + "start": 11979.12, + "end": 11980.54, + "probability": 0.9205 + }, + { + "start": 11981.51, + "end": 11984.44, + "probability": 0.9826 + }, + { + "start": 11984.54, + "end": 11986.44, + "probability": 0.8955 + }, + { + "start": 11986.8, + "end": 11988.28, + "probability": 0.3062 + }, + { + "start": 11989.1, + "end": 11991.62, + "probability": 0.557 + }, + { + "start": 11991.74, + "end": 11992.66, + "probability": 0.8357 + }, + { + "start": 11992.72, + "end": 11993.06, + "probability": 0.603 + }, + { + "start": 11993.16, + "end": 11995.08, + "probability": 0.9893 + }, + { + "start": 11995.2, + "end": 11996.18, + "probability": 0.8177 + }, + { + "start": 11996.24, + "end": 11999.9, + "probability": 0.9691 + }, + { + "start": 12000.52, + "end": 12004.12, + "probability": 0.7547 + }, + { + "start": 12004.86, + "end": 12007.36, + "probability": 0.815 + }, + { + "start": 12007.48, + "end": 12009.4, + "probability": 0.9344 + }, + { + "start": 12009.86, + "end": 12012.62, + "probability": 0.4437 + }, + { + "start": 12012.92, + "end": 12014.78, + "probability": 0.6702 + }, + { + "start": 12014.94, + "end": 12016.68, + "probability": 0.9623 + }, + { + "start": 12017.44, + "end": 12020.82, + "probability": 0.6836 + }, + { + "start": 12020.94, + "end": 12021.98, + "probability": 0.8237 + }, + { + "start": 12022.06, + "end": 12024.2, + "probability": 0.9722 + }, + { + "start": 12024.2, + "end": 12027.98, + "probability": 0.9734 + }, + { + "start": 12028.04, + "end": 12029.3, + "probability": 0.8994 + }, + { + "start": 12029.38, + "end": 12034.04, + "probability": 0.9839 + }, + { + "start": 12034.34, + "end": 12038.88, + "probability": 0.9951 + }, + { + "start": 12039.14, + "end": 12042.48, + "probability": 0.9743 + }, + { + "start": 12042.56, + "end": 12043.02, + "probability": 0.7644 + }, + { + "start": 12043.22, + "end": 12045.36, + "probability": 0.6085 + }, + { + "start": 12045.44, + "end": 12047.18, + "probability": 0.8315 + }, + { + "start": 12048.04, + "end": 12050.14, + "probability": 0.8271 + }, + { + "start": 12064.68, + "end": 12067.36, + "probability": 0.7609 + }, + { + "start": 12068.3, + "end": 12070.8, + "probability": 0.8406 + }, + { + "start": 12072.26, + "end": 12075.49, + "probability": 0.553 + }, + { + "start": 12076.36, + "end": 12076.62, + "probability": 0.8861 + }, + { + "start": 12077.06, + "end": 12078.96, + "probability": 0.2684 + }, + { + "start": 12081.36, + "end": 12082.18, + "probability": 0.8779 + }, + { + "start": 12082.24, + "end": 12083.36, + "probability": 0.9763 + }, + { + "start": 12083.4, + "end": 12084.9, + "probability": 0.9263 + }, + { + "start": 12085.0, + "end": 12086.48, + "probability": 0.7732 + }, + { + "start": 12086.56, + "end": 12087.08, + "probability": 0.6091 + }, + { + "start": 12088.38, + "end": 12096.42, + "probability": 0.9331 + }, + { + "start": 12097.1, + "end": 12097.72, + "probability": 0.7563 + }, + { + "start": 12098.32, + "end": 12099.39, + "probability": 0.8019 + }, + { + "start": 12100.46, + "end": 12102.92, + "probability": 0.7831 + }, + { + "start": 12104.26, + "end": 12106.04, + "probability": 0.0218 + }, + { + "start": 12106.04, + "end": 12109.18, + "probability": 0.7314 + }, + { + "start": 12110.32, + "end": 12111.46, + "probability": 0.8656 + }, + { + "start": 12112.9, + "end": 12113.06, + "probability": 0.1193 + }, + { + "start": 12113.76, + "end": 12120.48, + "probability": 0.8345 + }, + { + "start": 12120.7, + "end": 12122.74, + "probability": 0.9326 + }, + { + "start": 12123.76, + "end": 12124.6, + "probability": 0.6508 + }, + { + "start": 12125.6, + "end": 12126.36, + "probability": 0.9689 + }, + { + "start": 12127.36, + "end": 12130.36, + "probability": 0.7725 + }, + { + "start": 12131.52, + "end": 12132.56, + "probability": 0.9714 + }, + { + "start": 12133.76, + "end": 12138.32, + "probability": 0.9841 + }, + { + "start": 12138.32, + "end": 12142.36, + "probability": 0.9966 + }, + { + "start": 12142.68, + "end": 12145.56, + "probability": 0.9913 + }, + { + "start": 12146.04, + "end": 12147.84, + "probability": 0.9717 + }, + { + "start": 12148.06, + "end": 12149.68, + "probability": 0.9891 + }, + { + "start": 12149.98, + "end": 12150.8, + "probability": 0.8292 + }, + { + "start": 12151.16, + "end": 12152.38, + "probability": 0.9478 + }, + { + "start": 12153.3, + "end": 12157.1, + "probability": 0.9878 + }, + { + "start": 12158.42, + "end": 12159.64, + "probability": 0.5009 + }, + { + "start": 12160.6, + "end": 12162.6, + "probability": 0.7897 + }, + { + "start": 12163.92, + "end": 12164.74, + "probability": 0.9297 + }, + { + "start": 12164.84, + "end": 12170.08, + "probability": 0.7719 + }, + { + "start": 12171.12, + "end": 12174.2, + "probability": 0.8852 + }, + { + "start": 12174.74, + "end": 12176.02, + "probability": 0.8935 + }, + { + "start": 12177.46, + "end": 12178.04, + "probability": 0.464 + }, + { + "start": 12178.14, + "end": 12178.24, + "probability": 0.4875 + }, + { + "start": 12178.5, + "end": 12181.28, + "probability": 0.8421 + }, + { + "start": 12181.9, + "end": 12183.06, + "probability": 0.8433 + }, + { + "start": 12183.9, + "end": 12186.58, + "probability": 0.9425 + }, + { + "start": 12187.54, + "end": 12192.4, + "probability": 0.9429 + }, + { + "start": 12192.86, + "end": 12194.16, + "probability": 0.9326 + }, + { + "start": 12194.32, + "end": 12197.2, + "probability": 0.9786 + }, + { + "start": 12198.06, + "end": 12199.76, + "probability": 0.1608 + }, + { + "start": 12200.72, + "end": 12201.18, + "probability": 0.5078 + }, + { + "start": 12201.18, + "end": 12202.98, + "probability": 0.9907 + }, + { + "start": 12204.24, + "end": 12204.6, + "probability": 0.231 + }, + { + "start": 12204.92, + "end": 12205.7, + "probability": 0.6505 + }, + { + "start": 12206.2, + "end": 12206.68, + "probability": 0.1241 + }, + { + "start": 12207.14, + "end": 12207.74, + "probability": 0.0757 + }, + { + "start": 12207.74, + "end": 12208.46, + "probability": 0.2869 + }, + { + "start": 12208.86, + "end": 12211.24, + "probability": 0.8823 + }, + { + "start": 12211.4, + "end": 12213.36, + "probability": 0.8014 + }, + { + "start": 12213.36, + "end": 12214.34, + "probability": 0.2021 + }, + { + "start": 12214.34, + "end": 12214.9, + "probability": 0.5686 + }, + { + "start": 12215.24, + "end": 12217.6, + "probability": 0.7368 + }, + { + "start": 12217.9, + "end": 12220.86, + "probability": 0.9961 + }, + { + "start": 12221.1, + "end": 12222.86, + "probability": 0.9829 + }, + { + "start": 12223.6, + "end": 12226.64, + "probability": 0.8057 + }, + { + "start": 12227.48, + "end": 12232.44, + "probability": 0.9492 + }, + { + "start": 12233.42, + "end": 12235.74, + "probability": 0.5186 + }, + { + "start": 12236.42, + "end": 12236.82, + "probability": 0.849 + }, + { + "start": 12237.72, + "end": 12240.06, + "probability": 0.9968 + }, + { + "start": 12240.6, + "end": 12245.44, + "probability": 0.8288 + }, + { + "start": 12246.24, + "end": 12249.14, + "probability": 0.992 + }, + { + "start": 12250.34, + "end": 12251.06, + "probability": 0.075 + }, + { + "start": 12251.12, + "end": 12252.48, + "probability": 0.628 + }, + { + "start": 12252.54, + "end": 12254.7, + "probability": 0.9569 + }, + { + "start": 12254.98, + "end": 12257.5, + "probability": 0.967 + }, + { + "start": 12257.8, + "end": 12260.82, + "probability": 0.9685 + }, + { + "start": 12262.68, + "end": 12264.42, + "probability": 0.9954 + }, + { + "start": 12265.04, + "end": 12267.32, + "probability": 0.879 + }, + { + "start": 12268.2, + "end": 12269.36, + "probability": 0.5677 + }, + { + "start": 12269.92, + "end": 12271.64, + "probability": 0.9658 + }, + { + "start": 12272.52, + "end": 12274.7, + "probability": 0.9735 + }, + { + "start": 12275.5, + "end": 12276.52, + "probability": 0.985 + }, + { + "start": 12278.3, + "end": 12279.99, + "probability": 0.9912 + }, + { + "start": 12281.36, + "end": 12282.29, + "probability": 0.9351 + }, + { + "start": 12283.42, + "end": 12285.28, + "probability": 0.9866 + }, + { + "start": 12285.84, + "end": 12287.22, + "probability": 0.7031 + }, + { + "start": 12288.36, + "end": 12292.7, + "probability": 0.9118 + }, + { + "start": 12293.44, + "end": 12294.23, + "probability": 0.675 + }, + { + "start": 12296.8, + "end": 12297.34, + "probability": 0.9075 + }, + { + "start": 12297.56, + "end": 12298.18, + "probability": 0.8738 + }, + { + "start": 12298.34, + "end": 12298.56, + "probability": 0.9149 + }, + { + "start": 12298.6, + "end": 12300.46, + "probability": 0.9363 + }, + { + "start": 12300.58, + "end": 12301.64, + "probability": 0.9097 + }, + { + "start": 12302.52, + "end": 12303.82, + "probability": 0.0739 + }, + { + "start": 12303.92, + "end": 12307.88, + "probability": 0.9537 + }, + { + "start": 12307.88, + "end": 12313.64, + "probability": 0.8371 + }, + { + "start": 12314.04, + "end": 12315.92, + "probability": 0.7542 + }, + { + "start": 12316.24, + "end": 12318.02, + "probability": 0.9979 + }, + { + "start": 12319.76, + "end": 12320.52, + "probability": 0.8713 + }, + { + "start": 12320.7, + "end": 12321.26, + "probability": 0.6627 + }, + { + "start": 12321.4, + "end": 12323.32, + "probability": 0.7532 + }, + { + "start": 12323.4, + "end": 12328.58, + "probability": 0.9783 + }, + { + "start": 12328.78, + "end": 12331.87, + "probability": 0.9504 + }, + { + "start": 12332.94, + "end": 12335.22, + "probability": 0.6885 + }, + { + "start": 12336.1, + "end": 12337.2, + "probability": 0.4786 + }, + { + "start": 12337.68, + "end": 12339.72, + "probability": 0.6938 + }, + { + "start": 12340.04, + "end": 12340.94, + "probability": 0.401 + }, + { + "start": 12341.04, + "end": 12343.18, + "probability": 0.347 + }, + { + "start": 12343.18, + "end": 12343.32, + "probability": 0.673 + }, + { + "start": 12343.36, + "end": 12344.58, + "probability": 0.9477 + }, + { + "start": 12344.74, + "end": 12346.54, + "probability": 0.9009 + }, + { + "start": 12346.58, + "end": 12348.54, + "probability": 0.958 + }, + { + "start": 12349.16, + "end": 12350.08, + "probability": 0.6011 + }, + { + "start": 12350.9, + "end": 12355.36, + "probability": 0.9718 + }, + { + "start": 12355.84, + "end": 12357.04, + "probability": 0.9924 + }, + { + "start": 12357.54, + "end": 12359.22, + "probability": 0.9629 + }, + { + "start": 12359.54, + "end": 12361.12, + "probability": 0.8379 + }, + { + "start": 12361.5, + "end": 12363.26, + "probability": 0.93 + }, + { + "start": 12363.32, + "end": 12363.6, + "probability": 0.9156 + }, + { + "start": 12364.12, + "end": 12366.04, + "probability": 0.5229 + }, + { + "start": 12366.06, + "end": 12367.64, + "probability": 0.9609 + }, + { + "start": 12368.56, + "end": 12371.42, + "probability": 0.9382 + }, + { + "start": 12376.64, + "end": 12377.86, + "probability": 0.4423 + }, + { + "start": 12381.92, + "end": 12385.18, + "probability": 0.9655 + }, + { + "start": 12387.48, + "end": 12388.98, + "probability": 0.5959 + }, + { + "start": 12389.14, + "end": 12389.88, + "probability": 0.6043 + }, + { + "start": 12390.0, + "end": 12391.06, + "probability": 0.6231 + }, + { + "start": 12391.22, + "end": 12392.53, + "probability": 0.8474 + }, + { + "start": 12394.07, + "end": 12399.46, + "probability": 0.9971 + }, + { + "start": 12399.74, + "end": 12400.98, + "probability": 0.8001 + }, + { + "start": 12401.12, + "end": 12402.17, + "probability": 0.9512 + }, + { + "start": 12403.56, + "end": 12407.38, + "probability": 0.9478 + }, + { + "start": 12408.3, + "end": 12409.9, + "probability": 0.9395 + }, + { + "start": 12410.36, + "end": 12414.02, + "probability": 0.9019 + }, + { + "start": 12415.16, + "end": 12419.66, + "probability": 0.9979 + }, + { + "start": 12419.7, + "end": 12421.64, + "probability": 0.9229 + }, + { + "start": 12422.26, + "end": 12424.02, + "probability": 0.9889 + }, + { + "start": 12424.4, + "end": 12425.3, + "probability": 0.882 + }, + { + "start": 12425.8, + "end": 12426.86, + "probability": 0.6249 + }, + { + "start": 12426.88, + "end": 12430.14, + "probability": 0.6642 + }, + { + "start": 12430.2, + "end": 12431.66, + "probability": 0.8254 + }, + { + "start": 12431.7, + "end": 12433.27, + "probability": 0.8812 + }, + { + "start": 12433.68, + "end": 12434.82, + "probability": 0.6439 + }, + { + "start": 12434.88, + "end": 12439.56, + "probability": 0.9448 + }, + { + "start": 12439.6, + "end": 12446.56, + "probability": 0.9902 + }, + { + "start": 12446.6, + "end": 12450.91, + "probability": 0.9959 + }, + { + "start": 12451.18, + "end": 12452.22, + "probability": 0.4998 + }, + { + "start": 12452.52, + "end": 12453.72, + "probability": 0.8926 + }, + { + "start": 12453.88, + "end": 12454.7, + "probability": 0.863 + }, + { + "start": 12454.86, + "end": 12455.8, + "probability": 0.9541 + }, + { + "start": 12455.8, + "end": 12456.66, + "probability": 0.9365 + }, + { + "start": 12456.66, + "end": 12458.28, + "probability": 0.5364 + }, + { + "start": 12458.38, + "end": 12459.12, + "probability": 0.3766 + }, + { + "start": 12459.16, + "end": 12460.16, + "probability": 0.7646 + }, + { + "start": 12460.24, + "end": 12461.42, + "probability": 0.9414 + }, + { + "start": 12461.86, + "end": 12464.12, + "probability": 0.9487 + }, + { + "start": 12464.52, + "end": 12465.46, + "probability": 0.9849 + }, + { + "start": 12465.58, + "end": 12466.54, + "probability": 0.7315 + }, + { + "start": 12467.34, + "end": 12468.62, + "probability": 0.6531 + }, + { + "start": 12469.5, + "end": 12472.48, + "probability": 0.9385 + }, + { + "start": 12472.82, + "end": 12475.64, + "probability": 0.9917 + }, + { + "start": 12475.9, + "end": 12476.94, + "probability": 0.3465 + }, + { + "start": 12477.16, + "end": 12477.9, + "probability": 0.5799 + }, + { + "start": 12477.98, + "end": 12479.4, + "probability": 0.8505 + }, + { + "start": 12479.7, + "end": 12480.92, + "probability": 0.9925 + }, + { + "start": 12481.0, + "end": 12482.24, + "probability": 0.9526 + }, + { + "start": 12482.36, + "end": 12484.48, + "probability": 0.9983 + }, + { + "start": 12484.48, + "end": 12487.84, + "probability": 0.9917 + }, + { + "start": 12488.2, + "end": 12488.56, + "probability": 0.7742 + }, + { + "start": 12489.1, + "end": 12489.82, + "probability": 0.9243 + }, + { + "start": 12490.18, + "end": 12491.64, + "probability": 0.5994 + }, + { + "start": 12492.02, + "end": 12496.48, + "probability": 0.9901 + }, + { + "start": 12496.56, + "end": 12499.9, + "probability": 0.9839 + }, + { + "start": 12501.04, + "end": 12501.72, + "probability": 0.8397 + }, + { + "start": 12502.46, + "end": 12504.04, + "probability": 0.9191 + }, + { + "start": 12504.8, + "end": 12506.48, + "probability": 0.664 + }, + { + "start": 12506.6, + "end": 12508.0, + "probability": 0.9807 + }, + { + "start": 12508.78, + "end": 12510.34, + "probability": 0.9454 + }, + { + "start": 12511.0, + "end": 12514.74, + "probability": 0.9907 + }, + { + "start": 12515.16, + "end": 12515.94, + "probability": 0.8308 + }, + { + "start": 12516.66, + "end": 12518.62, + "probability": 0.9912 + }, + { + "start": 12519.12, + "end": 12526.02, + "probability": 0.9708 + }, + { + "start": 12526.5, + "end": 12529.46, + "probability": 0.9772 + }, + { + "start": 12529.84, + "end": 12531.26, + "probability": 0.8152 + }, + { + "start": 12531.84, + "end": 12534.8, + "probability": 0.9912 + }, + { + "start": 12535.24, + "end": 12536.78, + "probability": 0.9409 + }, + { + "start": 12537.5, + "end": 12538.9, + "probability": 0.937 + }, + { + "start": 12539.24, + "end": 12540.2, + "probability": 0.197 + }, + { + "start": 12540.2, + "end": 12540.44, + "probability": 0.3385 + }, + { + "start": 12540.86, + "end": 12541.54, + "probability": 0.5334 + }, + { + "start": 12541.96, + "end": 12542.68, + "probability": 0.3823 + }, + { + "start": 12542.68, + "end": 12544.94, + "probability": 0.8945 + }, + { + "start": 12545.6, + "end": 12547.26, + "probability": 0.8895 + }, + { + "start": 12547.42, + "end": 12548.4, + "probability": 0.8766 + }, + { + "start": 12548.82, + "end": 12550.66, + "probability": 0.833 + }, + { + "start": 12550.7, + "end": 12551.76, + "probability": 0.6144 + }, + { + "start": 12551.76, + "end": 12552.8, + "probability": 0.3183 + }, + { + "start": 12552.86, + "end": 12555.34, + "probability": 0.9882 + }, + { + "start": 12555.58, + "end": 12556.64, + "probability": 0.9749 + }, + { + "start": 12556.72, + "end": 12557.24, + "probability": 0.8267 + }, + { + "start": 12558.14, + "end": 12559.72, + "probability": 0.9018 + }, + { + "start": 12560.4, + "end": 12561.73, + "probability": 0.9896 + }, + { + "start": 12561.9, + "end": 12563.57, + "probability": 0.9933 + }, + { + "start": 12563.9, + "end": 12564.0, + "probability": 0.4916 + }, + { + "start": 12565.02, + "end": 12566.32, + "probability": 0.5467 + }, + { + "start": 12567.1, + "end": 12568.58, + "probability": 0.8131 + }, + { + "start": 12568.84, + "end": 12570.08, + "probability": 0.7477 + }, + { + "start": 12570.32, + "end": 12571.76, + "probability": 0.9604 + }, + { + "start": 12572.12, + "end": 12576.6, + "probability": 0.9969 + }, + { + "start": 12577.22, + "end": 12579.82, + "probability": 0.8198 + }, + { + "start": 12580.28, + "end": 12581.14, + "probability": 0.7802 + }, + { + "start": 12581.72, + "end": 12584.62, + "probability": 0.9593 + }, + { + "start": 12584.8, + "end": 12586.7, + "probability": 0.9912 + }, + { + "start": 12586.96, + "end": 12588.52, + "probability": 0.9626 + }, + { + "start": 12588.92, + "end": 12590.82, + "probability": 0.7281 + }, + { + "start": 12591.28, + "end": 12592.96, + "probability": 0.6015 + }, + { + "start": 12592.98, + "end": 12594.6, + "probability": 0.9885 + }, + { + "start": 12594.98, + "end": 12595.6, + "probability": 0.767 + }, + { + "start": 12595.92, + "end": 12596.56, + "probability": 0.9811 + }, + { + "start": 12597.36, + "end": 12597.78, + "probability": 0.1026 + }, + { + "start": 12598.7, + "end": 12598.92, + "probability": 0.1299 + }, + { + "start": 12598.92, + "end": 12599.34, + "probability": 0.464 + }, + { + "start": 12600.8, + "end": 12604.28, + "probability": 0.7817 + }, + { + "start": 12604.9, + "end": 12607.7, + "probability": 0.7923 + }, + { + "start": 12609.06, + "end": 12613.8, + "probability": 0.8354 + }, + { + "start": 12614.06, + "end": 12616.3, + "probability": 0.8156 + }, + { + "start": 12616.44, + "end": 12620.6, + "probability": 0.8562 + }, + { + "start": 12623.02, + "end": 12626.36, + "probability": 0.4553 + }, + { + "start": 12628.38, + "end": 12630.38, + "probability": 0.6107 + }, + { + "start": 12631.12, + "end": 12633.88, + "probability": 0.9966 + }, + { + "start": 12633.88, + "end": 12637.48, + "probability": 0.8423 + }, + { + "start": 12637.96, + "end": 12645.22, + "probability": 0.9287 + }, + { + "start": 12646.92, + "end": 12650.22, + "probability": 0.7913 + }, + { + "start": 12650.84, + "end": 12652.7, + "probability": 0.9003 + }, + { + "start": 12653.86, + "end": 12656.62, + "probability": 0.9887 + }, + { + "start": 12658.42, + "end": 12658.88, + "probability": 0.9841 + }, + { + "start": 12659.26, + "end": 12659.74, + "probability": 0.8914 + }, + { + "start": 12659.76, + "end": 12661.16, + "probability": 0.9867 + }, + { + "start": 12661.32, + "end": 12663.76, + "probability": 0.0551 + }, + { + "start": 12663.76, + "end": 12663.76, + "probability": 0.2299 + }, + { + "start": 12664.32, + "end": 12667.14, + "probability": 0.9726 + }, + { + "start": 12667.96, + "end": 12668.8, + "probability": 0.7274 + }, + { + "start": 12669.36, + "end": 12672.36, + "probability": 0.9634 + }, + { + "start": 12673.44, + "end": 12676.78, + "probability": 0.937 + }, + { + "start": 12676.78, + "end": 12680.44, + "probability": 0.9627 + }, + { + "start": 12680.5, + "end": 12680.92, + "probability": 0.6795 + }, + { + "start": 12681.28, + "end": 12682.36, + "probability": 0.7389 + }, + { + "start": 12683.26, + "end": 12685.92, + "probability": 0.9852 + }, + { + "start": 12686.22, + "end": 12688.4, + "probability": 0.5961 + }, + { + "start": 12688.5, + "end": 12689.72, + "probability": 0.9928 + }, + { + "start": 12690.72, + "end": 12695.42, + "probability": 0.6116 + }, + { + "start": 12695.96, + "end": 12696.22, + "probability": 0.5596 + }, + { + "start": 12696.92, + "end": 12701.44, + "probability": 0.9656 + }, + { + "start": 12701.72, + "end": 12702.04, + "probability": 0.6136 + }, + { + "start": 12702.58, + "end": 12704.08, + "probability": 0.8945 + }, + { + "start": 12704.88, + "end": 12706.16, + "probability": 0.9948 + }, + { + "start": 12706.88, + "end": 12708.6, + "probability": 0.769 + }, + { + "start": 12709.44, + "end": 12713.72, + "probability": 0.6801 + }, + { + "start": 12713.82, + "end": 12716.12, + "probability": 0.8629 + }, + { + "start": 12716.56, + "end": 12718.08, + "probability": 0.9413 + }, + { + "start": 12718.74, + "end": 12720.52, + "probability": 0.8833 + }, + { + "start": 12721.24, + "end": 12723.76, + "probability": 0.6937 + }, + { + "start": 12724.76, + "end": 12729.32, + "probability": 0.9627 + }, + { + "start": 12729.34, + "end": 12730.62, + "probability": 0.7741 + }, + { + "start": 12730.7, + "end": 12731.52, + "probability": 0.842 + }, + { + "start": 12732.28, + "end": 12732.72, + "probability": 0.8727 + }, + { + "start": 12733.6, + "end": 12738.64, + "probability": 0.9952 + }, + { + "start": 12738.68, + "end": 12742.22, + "probability": 0.7905 + }, + { + "start": 12742.86, + "end": 12745.79, + "probability": 0.9843 + }, + { + "start": 12746.58, + "end": 12747.6, + "probability": 0.9934 + }, + { + "start": 12747.74, + "end": 12748.28, + "probability": 0.6781 + }, + { + "start": 12748.3, + "end": 12749.88, + "probability": 0.7986 + }, + { + "start": 12750.38, + "end": 12751.1, + "probability": 0.6636 + }, + { + "start": 12751.22, + "end": 12751.72, + "probability": 0.6981 + }, + { + "start": 12751.8, + "end": 12752.36, + "probability": 0.9685 + }, + { + "start": 12752.4, + "end": 12754.24, + "probability": 0.9866 + }, + { + "start": 12754.38, + "end": 12755.04, + "probability": 0.8961 + }, + { + "start": 12755.8, + "end": 12758.52, + "probability": 0.9958 + }, + { + "start": 12759.52, + "end": 12761.14, + "probability": 0.9958 + }, + { + "start": 12761.72, + "end": 12763.28, + "probability": 0.9508 + }, + { + "start": 12763.88, + "end": 12768.49, + "probability": 0.9458 + }, + { + "start": 12769.52, + "end": 12770.26, + "probability": 0.7603 + }, + { + "start": 12770.7, + "end": 12773.09, + "probability": 0.9834 + }, + { + "start": 12773.28, + "end": 12773.74, + "probability": 0.568 + }, + { + "start": 12773.88, + "end": 12774.58, + "probability": 0.9009 + }, + { + "start": 12774.66, + "end": 12775.38, + "probability": 0.872 + }, + { + "start": 12776.46, + "end": 12780.56, + "probability": 0.9287 + }, + { + "start": 12780.62, + "end": 12781.96, + "probability": 0.9028 + }, + { + "start": 12782.04, + "end": 12786.82, + "probability": 0.9609 + }, + { + "start": 12786.82, + "end": 12789.9, + "probability": 0.9966 + }, + { + "start": 12789.9, + "end": 12792.74, + "probability": 0.9985 + }, + { + "start": 12793.48, + "end": 12793.76, + "probability": 0.2905 + }, + { + "start": 12793.97, + "end": 12796.32, + "probability": 0.9909 + }, + { + "start": 12796.32, + "end": 12799.48, + "probability": 0.9885 + }, + { + "start": 12800.0, + "end": 12803.12, + "probability": 0.9025 + }, + { + "start": 12803.9, + "end": 12806.7, + "probability": 0.9838 + }, + { + "start": 12806.82, + "end": 12808.3, + "probability": 0.9792 + }, + { + "start": 12809.38, + "end": 12810.02, + "probability": 0.7749 + }, + { + "start": 12810.8, + "end": 12812.22, + "probability": 0.6098 + }, + { + "start": 12812.34, + "end": 12816.18, + "probability": 0.8361 + }, + { + "start": 12817.06, + "end": 12819.08, + "probability": 0.9587 + }, + { + "start": 12819.6, + "end": 12821.18, + "probability": 0.9796 + }, + { + "start": 12821.62, + "end": 12823.75, + "probability": 0.9425 + }, + { + "start": 12825.12, + "end": 12828.74, + "probability": 0.8387 + }, + { + "start": 12829.42, + "end": 12832.14, + "probability": 0.9712 + }, + { + "start": 12832.52, + "end": 12836.0, + "probability": 0.9447 + }, + { + "start": 12836.32, + "end": 12837.28, + "probability": 0.7402 + }, + { + "start": 12837.34, + "end": 12838.36, + "probability": 0.8244 + }, + { + "start": 12838.7, + "end": 12841.1, + "probability": 0.925 + }, + { + "start": 12841.54, + "end": 12844.28, + "probability": 0.8867 + }, + { + "start": 12844.44, + "end": 12844.92, + "probability": 0.814 + }, + { + "start": 12845.4, + "end": 12847.96, + "probability": 0.8602 + }, + { + "start": 12848.36, + "end": 12851.82, + "probability": 0.8853 + }, + { + "start": 12864.2, + "end": 12867.06, + "probability": 0.8041 + }, + { + "start": 12876.32, + "end": 12877.86, + "probability": 0.5171 + }, + { + "start": 12877.86, + "end": 12879.56, + "probability": 0.9458 + }, + { + "start": 12879.92, + "end": 12881.26, + "probability": 0.9739 + }, + { + "start": 12882.4, + "end": 12885.12, + "probability": 0.995 + }, + { + "start": 12887.96, + "end": 12889.4, + "probability": 0.9495 + }, + { + "start": 12892.8, + "end": 12897.94, + "probability": 0.9805 + }, + { + "start": 12900.44, + "end": 12902.44, + "probability": 0.9482 + }, + { + "start": 12903.92, + "end": 12904.38, + "probability": 0.7594 + }, + { + "start": 12906.28, + "end": 12908.87, + "probability": 0.5556 + }, + { + "start": 12910.06, + "end": 12911.24, + "probability": 0.9255 + }, + { + "start": 12913.12, + "end": 12916.56, + "probability": 0.9819 + }, + { + "start": 12919.66, + "end": 12921.18, + "probability": 0.9254 + }, + { + "start": 12922.32, + "end": 12923.6, + "probability": 0.8679 + }, + { + "start": 12927.14, + "end": 12929.52, + "probability": 0.5339 + }, + { + "start": 12930.22, + "end": 12931.88, + "probability": 0.9688 + }, + { + "start": 12933.12, + "end": 12933.88, + "probability": 0.7921 + }, + { + "start": 12935.2, + "end": 12935.93, + "probability": 0.993 + }, + { + "start": 12937.72, + "end": 12939.68, + "probability": 0.9966 + }, + { + "start": 12940.2, + "end": 12942.9, + "probability": 0.8729 + }, + { + "start": 12943.54, + "end": 12944.02, + "probability": 0.4486 + }, + { + "start": 12945.68, + "end": 12949.88, + "probability": 0.9532 + }, + { + "start": 12950.94, + "end": 12955.84, + "probability": 0.9848 + }, + { + "start": 12959.42, + "end": 12960.16, + "probability": 0.7563 + }, + { + "start": 12961.6, + "end": 12962.32, + "probability": 0.5107 + }, + { + "start": 12964.0, + "end": 12966.08, + "probability": 0.8032 + }, + { + "start": 12966.24, + "end": 12968.28, + "probability": 0.6548 + }, + { + "start": 12969.42, + "end": 12972.04, + "probability": 0.8692 + }, + { + "start": 12974.22, + "end": 12977.58, + "probability": 0.7908 + }, + { + "start": 12980.18, + "end": 12980.86, + "probability": 0.7412 + }, + { + "start": 12981.58, + "end": 12982.72, + "probability": 0.8853 + }, + { + "start": 12984.4, + "end": 12985.36, + "probability": 0.8002 + }, + { + "start": 12989.24, + "end": 12989.96, + "probability": 0.7678 + }, + { + "start": 12991.12, + "end": 12993.16, + "probability": 0.7143 + }, + { + "start": 12996.86, + "end": 12999.1, + "probability": 0.9235 + }, + { + "start": 13000.98, + "end": 13003.48, + "probability": 0.963 + }, + { + "start": 13008.86, + "end": 13014.58, + "probability": 0.951 + }, + { + "start": 13015.64, + "end": 13018.84, + "probability": 0.9442 + }, + { + "start": 13021.54, + "end": 13028.14, + "probability": 0.7724 + }, + { + "start": 13029.32, + "end": 13030.04, + "probability": 0.8091 + }, + { + "start": 13031.58, + "end": 13033.48, + "probability": 0.9929 + }, + { + "start": 13034.9, + "end": 13035.36, + "probability": 0.7928 + }, + { + "start": 13038.8, + "end": 13041.16, + "probability": 0.8076 + }, + { + "start": 13043.34, + "end": 13047.6, + "probability": 0.9313 + }, + { + "start": 13048.88, + "end": 13051.3, + "probability": 0.7927 + }, + { + "start": 13052.32, + "end": 13054.24, + "probability": 0.8068 + }, + { + "start": 13054.32, + "end": 13054.5, + "probability": 0.7793 + }, + { + "start": 13056.12, + "end": 13058.06, + "probability": 0.8442 + }, + { + "start": 13058.28, + "end": 13060.49, + "probability": 0.8389 + }, + { + "start": 13061.34, + "end": 13063.5, + "probability": 0.5526 + }, + { + "start": 13072.56, + "end": 13074.24, + "probability": 0.5514 + }, + { + "start": 13076.22, + "end": 13078.7, + "probability": 0.9454 + }, + { + "start": 13079.78, + "end": 13086.3, + "probability": 0.99 + }, + { + "start": 13087.72, + "end": 13093.64, + "probability": 0.9976 + }, + { + "start": 13094.54, + "end": 13095.74, + "probability": 0.9956 + }, + { + "start": 13097.08, + "end": 13097.82, + "probability": 0.5795 + }, + { + "start": 13098.18, + "end": 13101.22, + "probability": 0.9297 + }, + { + "start": 13101.28, + "end": 13103.62, + "probability": 0.9763 + }, + { + "start": 13103.76, + "end": 13105.54, + "probability": 0.9932 + }, + { + "start": 13106.44, + "end": 13108.28, + "probability": 0.9331 + }, + { + "start": 13109.24, + "end": 13111.08, + "probability": 0.999 + }, + { + "start": 13112.44, + "end": 13115.98, + "probability": 0.9156 + }, + { + "start": 13117.32, + "end": 13120.16, + "probability": 0.9915 + }, + { + "start": 13120.44, + "end": 13123.34, + "probability": 0.9785 + }, + { + "start": 13123.96, + "end": 13125.44, + "probability": 0.9937 + }, + { + "start": 13125.66, + "end": 13128.58, + "probability": 0.9959 + }, + { + "start": 13128.7, + "end": 13129.38, + "probability": 0.9849 + }, + { + "start": 13130.74, + "end": 13133.62, + "probability": 0.9671 + }, + { + "start": 13133.7, + "end": 13135.52, + "probability": 0.9755 + }, + { + "start": 13136.22, + "end": 13137.34, + "probability": 0.7825 + }, + { + "start": 13138.08, + "end": 13139.28, + "probability": 0.9727 + }, + { + "start": 13140.08, + "end": 13142.18, + "probability": 0.9517 + }, + { + "start": 13142.3, + "end": 13142.62, + "probability": 0.6968 + }, + { + "start": 13142.72, + "end": 13145.58, + "probability": 0.5146 + }, + { + "start": 13145.86, + "end": 13147.36, + "probability": 0.954 + }, + { + "start": 13150.0, + "end": 13152.04, + "probability": 0.9575 + }, + { + "start": 13152.22, + "end": 13153.3, + "probability": 0.9497 + }, + { + "start": 13153.34, + "end": 13153.86, + "probability": 0.8388 + }, + { + "start": 13154.06, + "end": 13156.52, + "probability": 0.9214 + }, + { + "start": 13157.42, + "end": 13159.72, + "probability": 0.6481 + }, + { + "start": 13160.56, + "end": 13161.66, + "probability": 0.7281 + }, + { + "start": 13162.2, + "end": 13162.7, + "probability": 0.9691 + }, + { + "start": 13163.36, + "end": 13165.1, + "probability": 0.6562 + }, + { + "start": 13165.56, + "end": 13166.08, + "probability": 0.7432 + }, + { + "start": 13166.36, + "end": 13170.16, + "probability": 0.9675 + }, + { + "start": 13170.86, + "end": 13173.92, + "probability": 0.7349 + }, + { + "start": 13174.18, + "end": 13175.14, + "probability": 0.8502 + }, + { + "start": 13175.32, + "end": 13176.54, + "probability": 0.9016 + }, + { + "start": 13177.64, + "end": 13180.5, + "probability": 0.9202 + }, + { + "start": 13180.64, + "end": 13181.48, + "probability": 0.9158 + }, + { + "start": 13182.92, + "end": 13184.02, + "probability": 0.5988 + }, + { + "start": 13184.46, + "end": 13184.9, + "probability": 0.728 + }, + { + "start": 13186.68, + "end": 13186.9, + "probability": 0.1867 + }, + { + "start": 13187.32, + "end": 13192.56, + "probability": 0.9919 + }, + { + "start": 13193.6, + "end": 13195.04, + "probability": 0.9988 + }, + { + "start": 13195.96, + "end": 13200.42, + "probability": 0.9806 + }, + { + "start": 13201.12, + "end": 13203.62, + "probability": 0.9875 + }, + { + "start": 13204.28, + "end": 13207.22, + "probability": 0.997 + }, + { + "start": 13207.4, + "end": 13208.2, + "probability": 0.7048 + }, + { + "start": 13208.32, + "end": 13208.94, + "probability": 0.7139 + }, + { + "start": 13209.76, + "end": 13211.5, + "probability": 0.9924 + }, + { + "start": 13212.14, + "end": 13214.7, + "probability": 0.9918 + }, + { + "start": 13214.7, + "end": 13216.9, + "probability": 0.9738 + }, + { + "start": 13217.14, + "end": 13218.0, + "probability": 0.8982 + }, + { + "start": 13218.96, + "end": 13222.28, + "probability": 0.9941 + }, + { + "start": 13222.28, + "end": 13224.7, + "probability": 0.9958 + }, + { + "start": 13224.76, + "end": 13225.58, + "probability": 0.6877 + }, + { + "start": 13226.26, + "end": 13228.92, + "probability": 0.9583 + }, + { + "start": 13229.14, + "end": 13230.34, + "probability": 0.9993 + }, + { + "start": 13230.54, + "end": 13232.6, + "probability": 0.9602 + }, + { + "start": 13232.64, + "end": 13234.52, + "probability": 0.9664 + }, + { + "start": 13235.06, + "end": 13237.54, + "probability": 0.9897 + }, + { + "start": 13239.02, + "end": 13240.37, + "probability": 0.7635 + }, + { + "start": 13241.1, + "end": 13241.62, + "probability": 0.7449 + }, + { + "start": 13241.7, + "end": 13242.64, + "probability": 0.8799 + }, + { + "start": 13242.84, + "end": 13244.5, + "probability": 0.7223 + }, + { + "start": 13244.58, + "end": 13245.71, + "probability": 0.8861 + }, + { + "start": 13246.54, + "end": 13251.14, + "probability": 0.9634 + }, + { + "start": 13251.72, + "end": 13252.24, + "probability": 0.6063 + }, + { + "start": 13252.36, + "end": 13254.74, + "probability": 0.9027 + }, + { + "start": 13255.16, + "end": 13256.12, + "probability": 0.9836 + }, + { + "start": 13257.5, + "end": 13259.24, + "probability": 0.627 + }, + { + "start": 13259.52, + "end": 13259.98, + "probability": 0.8899 + }, + { + "start": 13260.0, + "end": 13260.8, + "probability": 0.8241 + }, + { + "start": 13261.28, + "end": 13262.04, + "probability": 0.9111 + }, + { + "start": 13262.24, + "end": 13263.5, + "probability": 0.9226 + }, + { + "start": 13264.36, + "end": 13265.76, + "probability": 0.9667 + }, + { + "start": 13266.44, + "end": 13268.4, + "probability": 0.9736 + }, + { + "start": 13270.02, + "end": 13274.28, + "probability": 0.9558 + }, + { + "start": 13275.1, + "end": 13277.58, + "probability": 0.904 + }, + { + "start": 13278.74, + "end": 13283.34, + "probability": 0.8173 + }, + { + "start": 13284.68, + "end": 13287.28, + "probability": 0.9978 + }, + { + "start": 13287.88, + "end": 13291.54, + "probability": 0.8984 + }, + { + "start": 13292.1, + "end": 13292.94, + "probability": 0.7779 + }, + { + "start": 13293.06, + "end": 13295.7, + "probability": 0.9259 + }, + { + "start": 13296.02, + "end": 13297.22, + "probability": 0.9476 + }, + { + "start": 13297.3, + "end": 13298.09, + "probability": 0.9288 + }, + { + "start": 13298.28, + "end": 13298.86, + "probability": 0.9279 + }, + { + "start": 13299.38, + "end": 13300.34, + "probability": 0.9149 + }, + { + "start": 13300.44, + "end": 13300.94, + "probability": 0.9733 + }, + { + "start": 13301.54, + "end": 13303.34, + "probability": 0.9241 + }, + { + "start": 13303.92, + "end": 13305.2, + "probability": 0.8892 + }, + { + "start": 13305.3, + "end": 13306.28, + "probability": 0.6647 + }, + { + "start": 13306.76, + "end": 13308.6, + "probability": 0.985 + }, + { + "start": 13308.64, + "end": 13311.19, + "probability": 0.9307 + }, + { + "start": 13311.48, + "end": 13312.16, + "probability": 0.5727 + }, + { + "start": 13312.8, + "end": 13313.82, + "probability": 0.669 + }, + { + "start": 13314.76, + "end": 13317.2, + "probability": 0.9972 + }, + { + "start": 13317.82, + "end": 13319.14, + "probability": 0.9589 + }, + { + "start": 13319.64, + "end": 13322.58, + "probability": 0.9424 + }, + { + "start": 13323.12, + "end": 13325.36, + "probability": 0.9243 + }, + { + "start": 13326.34, + "end": 13329.7, + "probability": 0.8514 + }, + { + "start": 13329.72, + "end": 13331.5, + "probability": 0.7315 + }, + { + "start": 13332.02, + "end": 13333.06, + "probability": 0.9292 + }, + { + "start": 13333.28, + "end": 13336.58, + "probability": 0.9311 + }, + { + "start": 13337.78, + "end": 13341.02, + "probability": 0.9774 + }, + { + "start": 13342.32, + "end": 13344.04, + "probability": 0.9297 + }, + { + "start": 13344.82, + "end": 13350.44, + "probability": 0.9264 + }, + { + "start": 13350.52, + "end": 13353.14, + "probability": 0.7834 + }, + { + "start": 13353.28, + "end": 13357.08, + "probability": 0.8957 + }, + { + "start": 13357.22, + "end": 13359.58, + "probability": 0.9111 + }, + { + "start": 13359.64, + "end": 13360.18, + "probability": 0.8717 + }, + { + "start": 13361.52, + "end": 13364.42, + "probability": 0.9617 + }, + { + "start": 13365.16, + "end": 13365.18, + "probability": 0.4454 + }, + { + "start": 13365.26, + "end": 13365.78, + "probability": 0.9255 + }, + { + "start": 13365.86, + "end": 13367.2, + "probability": 0.9653 + }, + { + "start": 13367.24, + "end": 13367.88, + "probability": 0.6669 + }, + { + "start": 13367.94, + "end": 13373.72, + "probability": 0.8922 + }, + { + "start": 13373.74, + "end": 13375.64, + "probability": 0.9117 + }, + { + "start": 13376.16, + "end": 13378.82, + "probability": 0.8691 + }, + { + "start": 13379.0, + "end": 13381.04, + "probability": 0.9555 + }, + { + "start": 13381.1, + "end": 13384.18, + "probability": 0.98 + }, + { + "start": 13384.52, + "end": 13386.06, + "probability": 0.9954 + }, + { + "start": 13388.58, + "end": 13389.24, + "probability": 0.6172 + }, + { + "start": 13390.28, + "end": 13394.08, + "probability": 0.7687 + }, + { + "start": 13395.0, + "end": 13397.58, + "probability": 0.9982 + }, + { + "start": 13397.76, + "end": 13399.74, + "probability": 0.9924 + }, + { + "start": 13400.78, + "end": 13405.82, + "probability": 0.9818 + }, + { + "start": 13406.94, + "end": 13412.22, + "probability": 0.9952 + }, + { + "start": 13412.4, + "end": 13413.99, + "probability": 0.9677 + }, + { + "start": 13414.2, + "end": 13415.88, + "probability": 0.9507 + }, + { + "start": 13415.98, + "end": 13417.32, + "probability": 0.9342 + }, + { + "start": 13418.92, + "end": 13421.8, + "probability": 0.8168 + }, + { + "start": 13421.8, + "end": 13423.92, + "probability": 0.9779 + }, + { + "start": 13424.02, + "end": 13424.78, + "probability": 0.5424 + }, + { + "start": 13424.86, + "end": 13426.02, + "probability": 0.8965 + }, + { + "start": 13426.76, + "end": 13428.54, + "probability": 0.9951 + }, + { + "start": 13429.12, + "end": 13432.38, + "probability": 0.9898 + }, + { + "start": 13432.48, + "end": 13434.02, + "probability": 0.8934 + }, + { + "start": 13434.76, + "end": 13437.86, + "probability": 0.7839 + }, + { + "start": 13438.94, + "end": 13441.2, + "probability": 0.9966 + }, + { + "start": 13441.28, + "end": 13442.62, + "probability": 0.9839 + }, + { + "start": 13443.32, + "end": 13447.0, + "probability": 0.9801 + }, + { + "start": 13447.08, + "end": 13450.1, + "probability": 0.7052 + }, + { + "start": 13450.8, + "end": 13454.22, + "probability": 0.9856 + }, + { + "start": 13454.42, + "end": 13455.04, + "probability": 0.4829 + }, + { + "start": 13455.5, + "end": 13459.14, + "probability": 0.7365 + }, + { + "start": 13459.66, + "end": 13461.52, + "probability": 0.9979 + }, + { + "start": 13462.06, + "end": 13463.2, + "probability": 0.773 + }, + { + "start": 13463.3, + "end": 13467.98, + "probability": 0.9951 + }, + { + "start": 13468.72, + "end": 13469.24, + "probability": 0.4538 + }, + { + "start": 13469.74, + "end": 13472.24, + "probability": 0.9639 + }, + { + "start": 13472.24, + "end": 13475.1, + "probability": 0.9963 + }, + { + "start": 13475.64, + "end": 13480.56, + "probability": 0.8979 + }, + { + "start": 13480.72, + "end": 13484.28, + "probability": 0.8242 + }, + { + "start": 13484.36, + "end": 13485.78, + "probability": 0.8652 + }, + { + "start": 13487.46, + "end": 13488.98, + "probability": 0.7127 + }, + { + "start": 13489.9, + "end": 13491.56, + "probability": 0.1039 + }, + { + "start": 13492.6, + "end": 13496.54, + "probability": 0.0029 + }, + { + "start": 13496.96, + "end": 13498.06, + "probability": 0.9774 + }, + { + "start": 13498.92, + "end": 13501.5, + "probability": 0.9362 + }, + { + "start": 13503.0, + "end": 13504.14, + "probability": 0.68 + }, + { + "start": 13504.68, + "end": 13507.27, + "probability": 0.6955 + }, + { + "start": 13507.44, + "end": 13508.08, + "probability": 0.8838 + }, + { + "start": 13509.02, + "end": 13509.98, + "probability": 0.4404 + }, + { + "start": 13510.1, + "end": 13511.66, + "probability": 0.6971 + }, + { + "start": 13512.26, + "end": 13513.98, + "probability": 0.9614 + }, + { + "start": 13514.24, + "end": 13515.02, + "probability": 0.8747 + }, + { + "start": 13515.12, + "end": 13515.66, + "probability": 0.9502 + }, + { + "start": 13516.82, + "end": 13519.38, + "probability": 0.9946 + }, + { + "start": 13519.38, + "end": 13522.62, + "probability": 0.8064 + }, + { + "start": 13522.74, + "end": 13524.58, + "probability": 0.5066 + }, + { + "start": 13524.58, + "end": 13525.38, + "probability": 0.9257 + }, + { + "start": 13526.24, + "end": 13527.92, + "probability": 0.5105 + }, + { + "start": 13528.58, + "end": 13529.12, + "probability": 0.5028 + }, + { + "start": 13530.04, + "end": 13531.04, + "probability": 0.8825 + }, + { + "start": 13531.8, + "end": 13533.72, + "probability": 0.7275 + }, + { + "start": 13533.82, + "end": 13534.96, + "probability": 0.9741 + }, + { + "start": 13535.64, + "end": 13537.01, + "probability": 0.9751 + }, + { + "start": 13537.96, + "end": 13538.6, + "probability": 0.899 + }, + { + "start": 13540.44, + "end": 13543.15, + "probability": 0.9907 + }, + { + "start": 13543.36, + "end": 13547.26, + "probability": 0.5882 + }, + { + "start": 13547.52, + "end": 13550.62, + "probability": 0.2981 + }, + { + "start": 13550.76, + "end": 13551.92, + "probability": 0.4615 + }, + { + "start": 13552.06, + "end": 13552.76, + "probability": 0.3135 + }, + { + "start": 13552.78, + "end": 13554.78, + "probability": 0.5344 + }, + { + "start": 13554.82, + "end": 13556.14, + "probability": 0.9907 + }, + { + "start": 13556.22, + "end": 13558.06, + "probability": 0.9657 + }, + { + "start": 13559.38, + "end": 13562.04, + "probability": 0.9385 + }, + { + "start": 13562.14, + "end": 13562.97, + "probability": 0.6548 + }, + { + "start": 13563.16, + "end": 13566.24, + "probability": 0.9154 + }, + { + "start": 13566.44, + "end": 13567.46, + "probability": 0.6045 + }, + { + "start": 13567.96, + "end": 13569.64, + "probability": 0.8987 + }, + { + "start": 13569.64, + "end": 13572.4, + "probability": 0.9724 + }, + { + "start": 13573.14, + "end": 13574.08, + "probability": 0.9536 + }, + { + "start": 13574.84, + "end": 13575.08, + "probability": 0.3062 + }, + { + "start": 13575.08, + "end": 13575.96, + "probability": 0.8042 + }, + { + "start": 13576.04, + "end": 13578.54, + "probability": 0.9865 + }, + { + "start": 13578.54, + "end": 13582.82, + "probability": 0.9863 + }, + { + "start": 13583.1, + "end": 13587.98, + "probability": 0.9805 + }, + { + "start": 13588.84, + "end": 13588.88, + "probability": 0.175 + }, + { + "start": 13589.02, + "end": 13589.9, + "probability": 0.9074 + }, + { + "start": 13590.32, + "end": 13593.56, + "probability": 0.9884 + }, + { + "start": 13593.72, + "end": 13595.04, + "probability": 0.9941 + }, + { + "start": 13595.1, + "end": 13596.15, + "probability": 0.9565 + }, + { + "start": 13596.8, + "end": 13598.68, + "probability": 0.9961 + }, + { + "start": 13598.78, + "end": 13600.06, + "probability": 0.9375 + }, + { + "start": 13600.18, + "end": 13601.24, + "probability": 0.8416 + }, + { + "start": 13601.54, + "end": 13603.52, + "probability": 0.9556 + }, + { + "start": 13604.46, + "end": 13606.76, + "probability": 0.9466 + }, + { + "start": 13606.84, + "end": 13608.14, + "probability": 0.7367 + }, + { + "start": 13609.0, + "end": 13610.28, + "probability": 0.8242 + }, + { + "start": 13610.28, + "end": 13610.84, + "probability": 0.6296 + }, + { + "start": 13610.98, + "end": 13616.48, + "probability": 0.9725 + }, + { + "start": 13616.9, + "end": 13617.8, + "probability": 0.9038 + }, + { + "start": 13618.34, + "end": 13620.05, + "probability": 0.9924 + }, + { + "start": 13620.44, + "end": 13623.0, + "probability": 0.9395 + }, + { + "start": 13623.92, + "end": 13624.74, + "probability": 0.9371 + }, + { + "start": 13624.84, + "end": 13626.14, + "probability": 0.9015 + }, + { + "start": 13626.56, + "end": 13627.26, + "probability": 0.8263 + }, + { + "start": 13627.7, + "end": 13628.24, + "probability": 0.8566 + }, + { + "start": 13628.76, + "end": 13629.58, + "probability": 0.5293 + }, + { + "start": 13630.1, + "end": 13631.52, + "probability": 0.9561 + }, + { + "start": 13632.31, + "end": 13633.74, + "probability": 0.9115 + }, + { + "start": 13633.8, + "end": 13634.86, + "probability": 0.9035 + }, + { + "start": 13634.96, + "end": 13635.8, + "probability": 0.8478 + }, + { + "start": 13636.24, + "end": 13637.44, + "probability": 0.9979 + }, + { + "start": 13639.68, + "end": 13639.8, + "probability": 0.3182 + }, + { + "start": 13639.8, + "end": 13640.83, + "probability": 0.399 + }, + { + "start": 13641.58, + "end": 13642.88, + "probability": 0.9868 + }, + { + "start": 13643.54, + "end": 13647.58, + "probability": 0.8036 + }, + { + "start": 13647.96, + "end": 13648.96, + "probability": 0.8541 + }, + { + "start": 13650.0, + "end": 13651.12, + "probability": 0.781 + }, + { + "start": 13651.86, + "end": 13653.68, + "probability": 0.9938 + }, + { + "start": 13654.44, + "end": 13655.71, + "probability": 0.9769 + }, + { + "start": 13656.02, + "end": 13657.34, + "probability": 0.9558 + }, + { + "start": 13657.5, + "end": 13658.14, + "probability": 0.9852 + }, + { + "start": 13658.22, + "end": 13658.72, + "probability": 0.986 + }, + { + "start": 13658.78, + "end": 13659.46, + "probability": 0.9723 + }, + { + "start": 13659.6, + "end": 13659.7, + "probability": 0.3584 + }, + { + "start": 13660.52, + "end": 13661.8, + "probability": 0.9836 + }, + { + "start": 13662.58, + "end": 13665.06, + "probability": 0.987 + }, + { + "start": 13665.82, + "end": 13667.2, + "probability": 0.9136 + }, + { + "start": 13668.28, + "end": 13669.38, + "probability": 0.9532 + }, + { + "start": 13669.88, + "end": 13673.16, + "probability": 0.9922 + }, + { + "start": 13673.88, + "end": 13674.52, + "probability": 0.8745 + }, + { + "start": 13674.92, + "end": 13678.18, + "probability": 0.9342 + }, + { + "start": 13679.18, + "end": 13680.06, + "probability": 0.9532 + }, + { + "start": 13680.5, + "end": 13685.22, + "probability": 0.8524 + }, + { + "start": 13685.5, + "end": 13690.0, + "probability": 0.993 + }, + { + "start": 13690.78, + "end": 13693.2, + "probability": 0.9568 + }, + { + "start": 13693.9, + "end": 13695.92, + "probability": 0.9861 + }, + { + "start": 13696.0, + "end": 13696.74, + "probability": 0.8381 + }, + { + "start": 13697.16, + "end": 13698.0, + "probability": 0.7117 + }, + { + "start": 13698.42, + "end": 13699.02, + "probability": 0.9738 + }, + { + "start": 13699.9, + "end": 13704.06, + "probability": 0.9961 + }, + { + "start": 13704.18, + "end": 13706.5, + "probability": 0.9917 + }, + { + "start": 13706.5, + "end": 13710.14, + "probability": 0.9954 + }, + { + "start": 13710.66, + "end": 13711.16, + "probability": 0.5334 + }, + { + "start": 13711.2, + "end": 13715.12, + "probability": 0.9937 + }, + { + "start": 13715.12, + "end": 13717.82, + "probability": 0.9919 + }, + { + "start": 13717.92, + "end": 13718.36, + "probability": 0.8757 + }, + { + "start": 13718.84, + "end": 13719.76, + "probability": 0.9813 + }, + { + "start": 13720.44, + "end": 13722.14, + "probability": 0.9154 + }, + { + "start": 13722.52, + "end": 13724.64, + "probability": 0.9902 + }, + { + "start": 13725.38, + "end": 13727.14, + "probability": 0.9355 + }, + { + "start": 13727.3, + "end": 13727.84, + "probability": 0.9058 + }, + { + "start": 13728.48, + "end": 13729.5, + "probability": 0.6665 + }, + { + "start": 13730.5, + "end": 13733.32, + "probability": 0.99 + }, + { + "start": 13733.5, + "end": 13738.36, + "probability": 0.8019 + }, + { + "start": 13739.24, + "end": 13742.56, + "probability": 0.9944 + }, + { + "start": 13742.66, + "end": 13744.03, + "probability": 0.9456 + }, + { + "start": 13744.82, + "end": 13747.7, + "probability": 0.936 + }, + { + "start": 13747.98, + "end": 13749.22, + "probability": 0.89 + }, + { + "start": 13749.86, + "end": 13750.65, + "probability": 0.6782 + }, + { + "start": 13751.48, + "end": 13752.3, + "probability": 0.9827 + }, + { + "start": 13753.42, + "end": 13760.66, + "probability": 0.9759 + }, + { + "start": 13761.12, + "end": 13762.4, + "probability": 0.9414 + }, + { + "start": 13762.86, + "end": 13762.92, + "probability": 0.0522 + }, + { + "start": 13762.94, + "end": 13763.26, + "probability": 0.8672 + }, + { + "start": 13763.3, + "end": 13767.1, + "probability": 0.8335 + }, + { + "start": 13767.1, + "end": 13767.84, + "probability": 0.9172 + }, + { + "start": 13767.88, + "end": 13768.24, + "probability": 0.5217 + }, + { + "start": 13769.81, + "end": 13778.54, + "probability": 0.9716 + }, + { + "start": 13778.64, + "end": 13780.24, + "probability": 0.999 + }, + { + "start": 13780.88, + "end": 13786.06, + "probability": 0.9918 + }, + { + "start": 13786.98, + "end": 13788.64, + "probability": 0.9233 + }, + { + "start": 13788.8, + "end": 13790.8, + "probability": 0.8937 + }, + { + "start": 13790.82, + "end": 13791.36, + "probability": 0.5597 + }, + { + "start": 13791.48, + "end": 13794.86, + "probability": 0.896 + }, + { + "start": 13794.94, + "end": 13797.22, + "probability": 0.9369 + }, + { + "start": 13797.74, + "end": 13799.4, + "probability": 0.6739 + }, + { + "start": 13799.44, + "end": 13802.5, + "probability": 0.9883 + }, + { + "start": 13802.5, + "end": 13805.38, + "probability": 0.9889 + }, + { + "start": 13805.76, + "end": 13806.39, + "probability": 0.942 + }, + { + "start": 13807.16, + "end": 13809.38, + "probability": 0.7807 + }, + { + "start": 13809.94, + "end": 13812.14, + "probability": 0.6879 + }, + { + "start": 13812.18, + "end": 13814.3, + "probability": 0.9938 + }, + { + "start": 13815.16, + "end": 13815.79, + "probability": 0.9895 + }, + { + "start": 13816.48, + "end": 13819.18, + "probability": 0.9224 + }, + { + "start": 13819.48, + "end": 13823.66, + "probability": 0.0636 + }, + { + "start": 13823.66, + "end": 13824.78, + "probability": 0.6671 + }, + { + "start": 13824.88, + "end": 13825.58, + "probability": 0.1366 + }, + { + "start": 13825.76, + "end": 13827.66, + "probability": 0.953 + }, + { + "start": 13828.24, + "end": 13829.04, + "probability": 0.518 + }, + { + "start": 13829.16, + "end": 13834.94, + "probability": 0.9459 + }, + { + "start": 13835.24, + "end": 13836.28, + "probability": 0.9624 + }, + { + "start": 13836.66, + "end": 13838.02, + "probability": 0.9833 + }, + { + "start": 13838.46, + "end": 13839.98, + "probability": 0.9925 + }, + { + "start": 13840.6, + "end": 13843.0, + "probability": 0.9973 + }, + { + "start": 13843.76, + "end": 13844.44, + "probability": 0.9088 + }, + { + "start": 13845.06, + "end": 13846.26, + "probability": 0.4693 + }, + { + "start": 13846.58, + "end": 13848.29, + "probability": 0.8044 + }, + { + "start": 13849.14, + "end": 13850.96, + "probability": 0.8835 + }, + { + "start": 13851.08, + "end": 13853.02, + "probability": 0.8803 + }, + { + "start": 13854.98, + "end": 13857.1, + "probability": 0.3647 + }, + { + "start": 13857.18, + "end": 13858.1, + "probability": 0.6997 + }, + { + "start": 13859.06, + "end": 13859.1, + "probability": 0.586 + }, + { + "start": 13859.2, + "end": 13860.51, + "probability": 0.9816 + }, + { + "start": 13860.82, + "end": 13861.76, + "probability": 0.8125 + }, + { + "start": 13861.86, + "end": 13862.35, + "probability": 0.7874 + }, + { + "start": 13863.56, + "end": 13863.9, + "probability": 0.9236 + }, + { + "start": 13864.32, + "end": 13864.94, + "probability": 0.7504 + }, + { + "start": 13865.2, + "end": 13868.36, + "probability": 0.8457 + }, + { + "start": 13868.48, + "end": 13872.68, + "probability": 0.9746 + }, + { + "start": 13872.72, + "end": 13873.36, + "probability": 0.9469 + }, + { + "start": 13873.88, + "end": 13876.4, + "probability": 0.5861 + }, + { + "start": 13876.68, + "end": 13877.52, + "probability": 0.0736 + }, + { + "start": 13880.02, + "end": 13881.84, + "probability": 0.8591 + }, + { + "start": 13882.0, + "end": 13883.32, + "probability": 0.7434 + }, + { + "start": 13883.54, + "end": 13886.4, + "probability": 0.9902 + }, + { + "start": 13886.48, + "end": 13889.02, + "probability": 0.9789 + }, + { + "start": 13890.48, + "end": 13891.9, + "probability": 0.9888 + }, + { + "start": 13893.12, + "end": 13897.04, + "probability": 0.9939 + }, + { + "start": 13897.46, + "end": 13899.58, + "probability": 0.9898 + }, + { + "start": 13899.7, + "end": 13900.81, + "probability": 0.9646 + }, + { + "start": 13900.96, + "end": 13901.95, + "probability": 0.948 + }, + { + "start": 13902.5, + "end": 13903.49, + "probability": 0.5003 + }, + { + "start": 13904.06, + "end": 13904.67, + "probability": 0.5908 + }, + { + "start": 13904.82, + "end": 13906.74, + "probability": 0.9936 + }, + { + "start": 13907.74, + "end": 13913.88, + "probability": 0.9888 + }, + { + "start": 13913.94, + "end": 13914.1, + "probability": 0.9045 + }, + { + "start": 13914.92, + "end": 13919.88, + "probability": 0.9941 + }, + { + "start": 13920.7, + "end": 13922.32, + "probability": 0.7699 + }, + { + "start": 13922.94, + "end": 13925.3, + "probability": 0.9003 + }, + { + "start": 13926.5, + "end": 13927.66, + "probability": 0.8346 + }, + { + "start": 13927.8, + "end": 13928.67, + "probability": 0.9562 + }, + { + "start": 13928.84, + "end": 13929.64, + "probability": 0.8684 + }, + { + "start": 13930.29, + "end": 13936.46, + "probability": 0.9577 + }, + { + "start": 13936.5, + "end": 13938.8, + "probability": 0.9967 + }, + { + "start": 13939.24, + "end": 13943.3, + "probability": 0.894 + }, + { + "start": 13943.56, + "end": 13944.8, + "probability": 0.9881 + }, + { + "start": 13944.82, + "end": 13946.16, + "probability": 0.8216 + }, + { + "start": 13948.08, + "end": 13949.14, + "probability": 0.7941 + }, + { + "start": 13949.72, + "end": 13951.42, + "probability": 0.9724 + }, + { + "start": 13951.92, + "end": 13956.2, + "probability": 0.9943 + }, + { + "start": 13957.8, + "end": 13960.58, + "probability": 0.6646 + }, + { + "start": 13960.58, + "end": 13963.74, + "probability": 0.7654 + }, + { + "start": 13964.12, + "end": 13966.66, + "probability": 0.8708 + }, + { + "start": 13966.7, + "end": 13968.38, + "probability": 0.9827 + }, + { + "start": 13968.94, + "end": 13970.2, + "probability": 0.4005 + }, + { + "start": 13970.36, + "end": 13971.3, + "probability": 0.9691 + }, + { + "start": 13971.5, + "end": 13972.4, + "probability": 0.9581 + }, + { + "start": 13972.56, + "end": 13973.12, + "probability": 0.6152 + }, + { + "start": 13973.32, + "end": 13973.64, + "probability": 0.6476 + }, + { + "start": 13974.14, + "end": 13974.54, + "probability": 0.4854 + }, + { + "start": 13974.74, + "end": 13975.28, + "probability": 0.9766 + }, + { + "start": 13975.42, + "end": 13978.56, + "probability": 0.7048 + }, + { + "start": 13979.12, + "end": 13980.48, + "probability": 0.4733 + }, + { + "start": 13980.58, + "end": 13981.58, + "probability": 0.9865 + }, + { + "start": 13981.64, + "end": 13983.36, + "probability": 0.9764 + }, + { + "start": 13983.48, + "end": 13985.3, + "probability": 0.6516 + }, + { + "start": 13986.64, + "end": 13988.58, + "probability": 0.2536 + }, + { + "start": 13989.0, + "end": 13990.94, + "probability": 0.7321 + }, + { + "start": 13991.24, + "end": 13994.44, + "probability": 0.9717 + }, + { + "start": 13994.72, + "end": 13996.54, + "probability": 0.4895 + }, + { + "start": 13997.96, + "end": 14001.76, + "probability": 0.4691 + }, + { + "start": 14002.2, + "end": 14004.06, + "probability": 0.9049 + }, + { + "start": 14004.5, + "end": 14006.34, + "probability": 0.6596 + }, + { + "start": 14006.48, + "end": 14007.56, + "probability": 0.5654 + }, + { + "start": 14007.56, + "end": 14009.26, + "probability": 0.7233 + }, + { + "start": 14009.65, + "end": 14014.1, + "probability": 0.8159 + }, + { + "start": 14014.16, + "end": 14017.1, + "probability": 0.9041 + }, + { + "start": 14018.42, + "end": 14019.72, + "probability": 0.9751 + }, + { + "start": 14020.4, + "end": 14022.16, + "probability": 0.9847 + }, + { + "start": 14023.0, + "end": 14023.1, + "probability": 0.2111 + }, + { + "start": 14023.44, + "end": 14023.44, + "probability": 0.0218 + }, + { + "start": 14023.44, + "end": 14025.98, + "probability": 0.9521 + }, + { + "start": 14026.36, + "end": 14027.38, + "probability": 0.8135 + }, + { + "start": 14028.52, + "end": 14030.56, + "probability": 0.9849 + }, + { + "start": 14031.64, + "end": 14033.72, + "probability": 0.9777 + }, + { + "start": 14034.38, + "end": 14035.04, + "probability": 0.9588 + }, + { + "start": 14035.6, + "end": 14037.42, + "probability": 0.9272 + }, + { + "start": 14038.76, + "end": 14042.76, + "probability": 0.7095 + }, + { + "start": 14042.78, + "end": 14042.92, + "probability": 0.3575 + }, + { + "start": 14043.98, + "end": 14049.76, + "probability": 0.9518 + }, + { + "start": 14051.04, + "end": 14053.4, + "probability": 0.9508 + }, + { + "start": 14054.3, + "end": 14056.58, + "probability": 0.9578 + }, + { + "start": 14056.84, + "end": 14057.38, + "probability": 0.6119 + }, + { + "start": 14058.12, + "end": 14060.66, + "probability": 0.8646 + }, + { + "start": 14060.86, + "end": 14062.18, + "probability": 0.6881 + }, + { + "start": 14062.24, + "end": 14062.94, + "probability": 0.7419 + }, + { + "start": 14063.48, + "end": 14066.06, + "probability": 0.7455 + }, + { + "start": 14066.18, + "end": 14067.66, + "probability": 0.6322 + }, + { + "start": 14067.72, + "end": 14067.72, + "probability": 0.0933 + }, + { + "start": 14067.78, + "end": 14069.06, + "probability": 0.3377 + }, + { + "start": 14072.87, + "end": 14074.34, + "probability": 0.194 + }, + { + "start": 14074.34, + "end": 14074.34, + "probability": 0.0787 + }, + { + "start": 14074.34, + "end": 14074.34, + "probability": 0.0525 + }, + { + "start": 14074.34, + "end": 14075.15, + "probability": 0.0727 + }, + { + "start": 14075.46, + "end": 14076.54, + "probability": 0.5364 + }, + { + "start": 14077.04, + "end": 14078.0, + "probability": 0.8911 + }, + { + "start": 14078.16, + "end": 14080.22, + "probability": 0.813 + }, + { + "start": 14080.4, + "end": 14081.27, + "probability": 0.9609 + }, + { + "start": 14081.32, + "end": 14082.01, + "probability": 0.5953 + }, + { + "start": 14082.42, + "end": 14082.64, + "probability": 0.7154 + }, + { + "start": 14082.72, + "end": 14086.14, + "probability": 0.834 + }, + { + "start": 14086.26, + "end": 14088.12, + "probability": 0.1105 + }, + { + "start": 14088.52, + "end": 14089.21, + "probability": 0.3032 + }, + { + "start": 14090.06, + "end": 14090.69, + "probability": 0.8347 + }, + { + "start": 14091.08, + "end": 14093.38, + "probability": 0.3603 + }, + { + "start": 14093.5, + "end": 14094.36, + "probability": 0.0999 + }, + { + "start": 14094.38, + "end": 14095.56, + "probability": 0.4854 + }, + { + "start": 14095.7, + "end": 14096.71, + "probability": 0.7284 + }, + { + "start": 14097.12, + "end": 14097.68, + "probability": 0.9241 + }, + { + "start": 14098.82, + "end": 14100.94, + "probability": 0.9946 + }, + { + "start": 14101.76, + "end": 14105.6, + "probability": 0.9748 + }, + { + "start": 14105.94, + "end": 14106.24, + "probability": 0.8514 + }, + { + "start": 14106.32, + "end": 14107.64, + "probability": 0.8301 + }, + { + "start": 14108.26, + "end": 14109.48, + "probability": 0.9992 + }, + { + "start": 14110.04, + "end": 14110.96, + "probability": 0.9538 + }, + { + "start": 14111.08, + "end": 14113.36, + "probability": 0.8249 + }, + { + "start": 14113.44, + "end": 14116.84, + "probability": 0.9161 + }, + { + "start": 14116.84, + "end": 14121.26, + "probability": 0.9881 + }, + { + "start": 14122.6, + "end": 14128.18, + "probability": 0.9501 + }, + { + "start": 14128.86, + "end": 14129.3, + "probability": 0.7588 + }, + { + "start": 14129.6, + "end": 14133.5, + "probability": 0.7694 + }, + { + "start": 14133.96, + "end": 14136.94, + "probability": 0.972 + }, + { + "start": 14137.28, + "end": 14138.58, + "probability": 0.639 + }, + { + "start": 14139.1, + "end": 14140.84, + "probability": 0.9824 + }, + { + "start": 14140.96, + "end": 14141.66, + "probability": 0.3242 + }, + { + "start": 14141.78, + "end": 14143.82, + "probability": 0.9137 + }, + { + "start": 14143.88, + "end": 14147.68, + "probability": 0.9937 + }, + { + "start": 14148.0, + "end": 14148.5, + "probability": 0.8787 + }, + { + "start": 14149.98, + "end": 14150.6, + "probability": 0.744 + }, + { + "start": 14150.68, + "end": 14151.5, + "probability": 0.4385 + }, + { + "start": 14151.6, + "end": 14152.4, + "probability": 0.9205 + }, + { + "start": 14152.68, + "end": 14153.96, + "probability": 0.8501 + }, + { + "start": 14154.1, + "end": 14155.86, + "probability": 0.9849 + }, + { + "start": 14156.86, + "end": 14157.5, + "probability": 0.8257 + }, + { + "start": 14158.04, + "end": 14160.14, + "probability": 0.6179 + }, + { + "start": 14160.62, + "end": 14163.56, + "probability": 0.9941 + }, + { + "start": 14163.56, + "end": 14166.34, + "probability": 0.9789 + }, + { + "start": 14166.46, + "end": 14167.42, + "probability": 0.8471 + }, + { + "start": 14167.84, + "end": 14171.22, + "probability": 0.9927 + }, + { + "start": 14171.9, + "end": 14176.92, + "probability": 0.9854 + }, + { + "start": 14177.08, + "end": 14178.16, + "probability": 0.9922 + }, + { + "start": 14178.7, + "end": 14179.56, + "probability": 0.6514 + }, + { + "start": 14179.64, + "end": 14182.5, + "probability": 0.997 + }, + { + "start": 14182.86, + "end": 14183.8, + "probability": 0.1814 + }, + { + "start": 14184.18, + "end": 14184.58, + "probability": 0.7989 + }, + { + "start": 14184.68, + "end": 14186.12, + "probability": 0.7476 + }, + { + "start": 14186.18, + "end": 14187.46, + "probability": 0.9857 + }, + { + "start": 14187.9, + "end": 14188.96, + "probability": 0.9067 + }, + { + "start": 14189.64, + "end": 14191.4, + "probability": 0.6808 + }, + { + "start": 14193.24, + "end": 14193.86, + "probability": 0.8608 + }, + { + "start": 14193.9, + "end": 14194.98, + "probability": 0.9207 + }, + { + "start": 14195.12, + "end": 14198.44, + "probability": 0.5035 + }, + { + "start": 14198.9, + "end": 14199.62, + "probability": 0.8 + }, + { + "start": 14199.66, + "end": 14202.46, + "probability": 0.9819 + }, + { + "start": 14203.02, + "end": 14205.62, + "probability": 0.7916 + }, + { + "start": 14206.18, + "end": 14207.14, + "probability": 0.4975 + }, + { + "start": 14208.6, + "end": 14214.42, + "probability": 0.9845 + }, + { + "start": 14215.08, + "end": 14216.6, + "probability": 0.7218 + }, + { + "start": 14216.72, + "end": 14218.24, + "probability": 0.8204 + }, + { + "start": 14218.56, + "end": 14222.14, + "probability": 0.9863 + }, + { + "start": 14222.3, + "end": 14223.12, + "probability": 0.9279 + }, + { + "start": 14223.28, + "end": 14228.04, + "probability": 0.9972 + }, + { + "start": 14228.82, + "end": 14231.98, + "probability": 0.9697 + }, + { + "start": 14232.62, + "end": 14233.18, + "probability": 0.9662 + }, + { + "start": 14233.76, + "end": 14237.6, + "probability": 0.9202 + }, + { + "start": 14238.1, + "end": 14238.59, + "probability": 0.6757 + }, + { + "start": 14238.74, + "end": 14243.04, + "probability": 0.5636 + }, + { + "start": 14244.02, + "end": 14247.04, + "probability": 0.5779 + }, + { + "start": 14247.26, + "end": 14248.46, + "probability": 0.9509 + }, + { + "start": 14250.26, + "end": 14251.4, + "probability": 0.8547 + }, + { + "start": 14252.02, + "end": 14255.37, + "probability": 0.8746 + }, + { + "start": 14256.18, + "end": 14256.72, + "probability": 0.8133 + }, + { + "start": 14256.78, + "end": 14256.82, + "probability": 0.813 + }, + { + "start": 14257.54, + "end": 14259.0, + "probability": 0.0434 + }, + { + "start": 14259.0, + "end": 14259.0, + "probability": 0.4092 + }, + { + "start": 14259.0, + "end": 14259.1, + "probability": 0.1392 + }, + { + "start": 14259.16, + "end": 14261.74, + "probability": 0.615 + }, + { + "start": 14262.18, + "end": 14263.75, + "probability": 0.0853 + }, + { + "start": 14264.3, + "end": 14265.84, + "probability": 0.7896 + }, + { + "start": 14265.92, + "end": 14267.0, + "probability": 0.6753 + }, + { + "start": 14267.38, + "end": 14267.38, + "probability": 0.1799 + }, + { + "start": 14267.38, + "end": 14268.15, + "probability": 0.1193 + }, + { + "start": 14268.84, + "end": 14269.76, + "probability": 0.3628 + }, + { + "start": 14270.64, + "end": 14271.12, + "probability": 0.0054 + }, + { + "start": 14271.2, + "end": 14273.22, + "probability": 0.2892 + }, + { + "start": 14273.22, + "end": 14274.38, + "probability": 0.2615 + }, + { + "start": 14274.72, + "end": 14278.62, + "probability": 0.7528 + }, + { + "start": 14279.12, + "end": 14280.24, + "probability": 0.4082 + }, + { + "start": 14280.5, + "end": 14282.1, + "probability": 0.976 + }, + { + "start": 14282.96, + "end": 14285.72, + "probability": 0.9164 + }, + { + "start": 14286.8, + "end": 14288.64, + "probability": 0.889 + }, + { + "start": 14288.7, + "end": 14290.24, + "probability": 0.5284 + }, + { + "start": 14290.3, + "end": 14291.14, + "probability": 0.8909 + }, + { + "start": 14291.38, + "end": 14296.38, + "probability": 0.9854 + }, + { + "start": 14296.62, + "end": 14298.64, + "probability": 0.5283 + }, + { + "start": 14298.72, + "end": 14299.92, + "probability": 0.3778 + }, + { + "start": 14301.2, + "end": 14304.66, + "probability": 0.9937 + }, + { + "start": 14304.92, + "end": 14308.84, + "probability": 0.9629 + }, + { + "start": 14309.3, + "end": 14311.36, + "probability": 0.9524 + }, + { + "start": 14311.48, + "end": 14312.86, + "probability": 0.833 + }, + { + "start": 14313.22, + "end": 14313.82, + "probability": 0.4272 + }, + { + "start": 14313.94, + "end": 14315.04, + "probability": 0.8361 + }, + { + "start": 14315.26, + "end": 14317.24, + "probability": 0.9586 + }, + { + "start": 14317.28, + "end": 14318.15, + "probability": 0.9299 + }, + { + "start": 14319.18, + "end": 14320.8, + "probability": 0.9853 + }, + { + "start": 14321.54, + "end": 14322.94, + "probability": 0.638 + }, + { + "start": 14323.04, + "end": 14324.82, + "probability": 0.9194 + }, + { + "start": 14324.82, + "end": 14325.96, + "probability": 0.859 + }, + { + "start": 14326.08, + "end": 14328.47, + "probability": 0.5309 + }, + { + "start": 14329.14, + "end": 14330.1, + "probability": 0.4368 + }, + { + "start": 14330.1, + "end": 14331.96, + "probability": 0.3623 + }, + { + "start": 14332.36, + "end": 14332.6, + "probability": 0.1013 + }, + { + "start": 14332.84, + "end": 14334.26, + "probability": 0.6881 + }, + { + "start": 14334.52, + "end": 14335.66, + "probability": 0.8165 + }, + { + "start": 14335.94, + "end": 14338.46, + "probability": 0.873 + }, + { + "start": 14338.46, + "end": 14339.3, + "probability": 0.4348 + }, + { + "start": 14339.32, + "end": 14340.32, + "probability": 0.7308 + }, + { + "start": 14340.38, + "end": 14340.8, + "probability": 0.0858 + }, + { + "start": 14340.96, + "end": 14343.18, + "probability": 0.504 + }, + { + "start": 14343.36, + "end": 14345.1, + "probability": 0.8085 + }, + { + "start": 14345.24, + "end": 14348.16, + "probability": 0.9658 + }, + { + "start": 14350.62, + "end": 14350.7, + "probability": 0.1246 + }, + { + "start": 14350.7, + "end": 14350.7, + "probability": 0.0595 + }, + { + "start": 14350.7, + "end": 14350.98, + "probability": 0.15 + }, + { + "start": 14351.04, + "end": 14352.72, + "probability": 0.7808 + }, + { + "start": 14352.78, + "end": 14356.66, + "probability": 0.9741 + }, + { + "start": 14356.76, + "end": 14357.22, + "probability": 0.485 + }, + { + "start": 14357.3, + "end": 14358.12, + "probability": 0.8988 + }, + { + "start": 14359.82, + "end": 14360.32, + "probability": 0.8034 + }, + { + "start": 14360.4, + "end": 14361.46, + "probability": 0.6051 + }, + { + "start": 14361.9, + "end": 14364.72, + "probability": 0.9721 + }, + { + "start": 14365.46, + "end": 14368.58, + "probability": 0.9428 + }, + { + "start": 14369.3, + "end": 14370.92, + "probability": 0.9501 + }, + { + "start": 14370.98, + "end": 14372.02, + "probability": 0.8122 + }, + { + "start": 14372.18, + "end": 14375.62, + "probability": 0.9836 + }, + { + "start": 14376.44, + "end": 14378.64, + "probability": 0.9943 + }, + { + "start": 14379.42, + "end": 14381.42, + "probability": 0.9977 + }, + { + "start": 14381.88, + "end": 14383.9, + "probability": 0.9913 + }, + { + "start": 14384.46, + "end": 14388.46, + "probability": 0.9899 + }, + { + "start": 14388.58, + "end": 14392.96, + "probability": 0.9881 + }, + { + "start": 14393.76, + "end": 14395.48, + "probability": 0.9919 + }, + { + "start": 14396.22, + "end": 14397.32, + "probability": 0.7877 + }, + { + "start": 14397.46, + "end": 14400.52, + "probability": 0.9855 + }, + { + "start": 14401.54, + "end": 14403.1, + "probability": 0.9788 + }, + { + "start": 14403.36, + "end": 14405.86, + "probability": 0.9932 + }, + { + "start": 14405.86, + "end": 14409.36, + "probability": 0.8976 + }, + { + "start": 14409.5, + "end": 14413.06, + "probability": 0.7091 + }, + { + "start": 14413.3, + "end": 14413.3, + "probability": 0.1916 + }, + { + "start": 14413.3, + "end": 14413.52, + "probability": 0.9097 + }, + { + "start": 14413.6, + "end": 14414.44, + "probability": 0.6655 + }, + { + "start": 14414.52, + "end": 14417.3, + "probability": 0.903 + }, + { + "start": 14418.16, + "end": 14420.1, + "probability": 0.7348 + }, + { + "start": 14420.14, + "end": 14422.06, + "probability": 0.9444 + }, + { + "start": 14422.86, + "end": 14423.7, + "probability": 0.8368 + }, + { + "start": 14423.8, + "end": 14424.34, + "probability": 0.6982 + }, + { + "start": 14424.44, + "end": 14425.54, + "probability": 0.9824 + }, + { + "start": 14425.78, + "end": 14427.24, + "probability": 0.9013 + }, + { + "start": 14427.32, + "end": 14427.86, + "probability": 0.6266 + }, + { + "start": 14428.56, + "end": 14429.92, + "probability": 0.9886 + }, + { + "start": 14431.06, + "end": 14431.88, + "probability": 0.6679 + }, + { + "start": 14431.88, + "end": 14432.58, + "probability": 0.307 + }, + { + "start": 14433.1, + "end": 14434.07, + "probability": 0.9284 + }, + { + "start": 14434.5, + "end": 14435.34, + "probability": 0.7289 + }, + { + "start": 14435.4, + "end": 14436.32, + "probability": 0.947 + }, + { + "start": 14436.4, + "end": 14437.94, + "probability": 0.6479 + }, + { + "start": 14438.24, + "end": 14440.74, + "probability": 0.8501 + }, + { + "start": 14443.26, + "end": 14443.86, + "probability": 0.6012 + }, + { + "start": 14443.92, + "end": 14444.9, + "probability": 0.654 + }, + { + "start": 14445.06, + "end": 14448.58, + "probability": 0.9869 + }, + { + "start": 14449.6, + "end": 14452.6, + "probability": 0.9814 + }, + { + "start": 14454.02, + "end": 14456.1, + "probability": 0.9528 + }, + { + "start": 14456.4, + "end": 14457.84, + "probability": 0.98 + }, + { + "start": 14458.86, + "end": 14461.16, + "probability": 0.7799 + }, + { + "start": 14462.14, + "end": 14467.46, + "probability": 0.9946 + }, + { + "start": 14468.24, + "end": 14469.44, + "probability": 0.9173 + }, + { + "start": 14469.44, + "end": 14472.28, + "probability": 0.9542 + }, + { + "start": 14472.62, + "end": 14476.42, + "probability": 0.8662 + }, + { + "start": 14476.54, + "end": 14477.38, + "probability": 0.775 + }, + { + "start": 14477.64, + "end": 14478.32, + "probability": 0.9423 + }, + { + "start": 14479.08, + "end": 14481.18, + "probability": 0.9816 + }, + { + "start": 14481.4, + "end": 14482.35, + "probability": 0.8879 + }, + { + "start": 14483.1, + "end": 14484.74, + "probability": 0.9648 + }, + { + "start": 14484.96, + "end": 14487.32, + "probability": 0.9908 + }, + { + "start": 14488.02, + "end": 14489.22, + "probability": 0.6767 + }, + { + "start": 14489.76, + "end": 14491.68, + "probability": 0.9401 + }, + { + "start": 14491.82, + "end": 14493.12, + "probability": 0.8619 + }, + { + "start": 14494.26, + "end": 14494.68, + "probability": 0.9478 + }, + { + "start": 14495.46, + "end": 14497.46, + "probability": 0.9683 + }, + { + "start": 14497.82, + "end": 14498.41, + "probability": 0.5989 + }, + { + "start": 14499.1, + "end": 14499.46, + "probability": 0.2187 + }, + { + "start": 14499.48, + "end": 14500.94, + "probability": 0.8579 + }, + { + "start": 14501.0, + "end": 14502.1, + "probability": 0.8268 + }, + { + "start": 14502.12, + "end": 14502.72, + "probability": 0.4058 + }, + { + "start": 14503.32, + "end": 14503.92, + "probability": 0.8867 + }, + { + "start": 14504.04, + "end": 14504.69, + "probability": 0.6364 + }, + { + "start": 14505.4, + "end": 14507.04, + "probability": 0.6265 + }, + { + "start": 14507.8, + "end": 14510.2, + "probability": 0.7739 + }, + { + "start": 14510.3, + "end": 14512.12, + "probability": 0.8397 + }, + { + "start": 14512.78, + "end": 14514.06, + "probability": 0.8213 + }, + { + "start": 14514.86, + "end": 14516.98, + "probability": 0.6556 + }, + { + "start": 14517.0, + "end": 14519.74, + "probability": 0.9961 + }, + { + "start": 14520.18, + "end": 14522.36, + "probability": 0.9583 + }, + { + "start": 14522.42, + "end": 14523.34, + "probability": 0.6716 + }, + { + "start": 14523.66, + "end": 14524.23, + "probability": 0.7368 + }, + { + "start": 14524.7, + "end": 14526.52, + "probability": 0.902 + }, + { + "start": 14526.9, + "end": 14527.85, + "probability": 0.8426 + }, + { + "start": 14528.14, + "end": 14530.68, + "probability": 0.8066 + }, + { + "start": 14530.68, + "end": 14533.8, + "probability": 0.838 + }, + { + "start": 14533.94, + "end": 14534.86, + "probability": 0.9002 + }, + { + "start": 14535.38, + "end": 14538.88, + "probability": 0.9893 + }, + { + "start": 14539.6, + "end": 14540.31, + "probability": 0.6536 + }, + { + "start": 14540.5, + "end": 14542.94, + "probability": 0.7479 + }, + { + "start": 14543.64, + "end": 14547.14, + "probability": 0.984 + }, + { + "start": 14547.2, + "end": 14548.54, + "probability": 0.4741 + }, + { + "start": 14548.96, + "end": 14549.9, + "probability": 0.7482 + }, + { + "start": 14549.9, + "end": 14550.18, + "probability": 0.6238 + }, + { + "start": 14550.72, + "end": 14553.0, + "probability": 0.6835 + }, + { + "start": 14553.62, + "end": 14555.06, + "probability": 0.9346 + }, + { + "start": 14555.08, + "end": 14556.48, + "probability": 0.9292 + }, + { + "start": 14557.02, + "end": 14558.8, + "probability": 0.9753 + }, + { + "start": 14558.9, + "end": 14559.92, + "probability": 0.5865 + }, + { + "start": 14560.04, + "end": 14563.16, + "probability": 0.8167 + }, + { + "start": 14563.6, + "end": 14566.94, + "probability": 0.7935 + }, + { + "start": 14567.32, + "end": 14568.42, + "probability": 0.9102 + }, + { + "start": 14568.9, + "end": 14571.22, + "probability": 0.8481 + }, + { + "start": 14572.08, + "end": 14576.04, + "probability": 0.7414 + }, + { + "start": 14576.2, + "end": 14577.64, + "probability": 0.7378 + }, + { + "start": 14578.18, + "end": 14581.16, + "probability": 0.5252 + }, + { + "start": 14581.16, + "end": 14583.12, + "probability": 0.9536 + }, + { + "start": 14583.36, + "end": 14584.68, + "probability": 0.7465 + }, + { + "start": 14584.92, + "end": 14587.88, + "probability": 0.6253 + }, + { + "start": 14587.94, + "end": 14588.42, + "probability": 0.7861 + }, + { + "start": 14588.54, + "end": 14590.32, + "probability": 0.6856 + }, + { + "start": 14591.24, + "end": 14598.22, + "probability": 0.7631 + }, + { + "start": 14598.28, + "end": 14598.64, + "probability": 0.1895 + }, + { + "start": 14598.64, + "end": 14599.12, + "probability": 0.3766 + }, + { + "start": 14605.86, + "end": 14606.92, + "probability": 0.3483 + }, + { + "start": 14614.72, + "end": 14615.34, + "probability": 0.7487 + }, + { + "start": 14615.34, + "end": 14617.98, + "probability": 0.6168 + }, + { + "start": 14618.04, + "end": 14618.18, + "probability": 0.1088 + }, + { + "start": 14618.36, + "end": 14618.66, + "probability": 0.2695 + }, + { + "start": 14618.88, + "end": 14622.02, + "probability": 0.5632 + }, + { + "start": 14622.06, + "end": 14622.4, + "probability": 0.0079 + }, + { + "start": 14623.0, + "end": 14625.26, + "probability": 0.764 + }, + { + "start": 14626.96, + "end": 14630.6, + "probability": 0.7301 + }, + { + "start": 14631.2, + "end": 14631.64, + "probability": 0.8333 + }, + { + "start": 14633.02, + "end": 14634.16, + "probability": 0.7814 + }, + { + "start": 14634.24, + "end": 14635.14, + "probability": 0.5354 + }, + { + "start": 14635.22, + "end": 14637.6, + "probability": 0.547 + }, + { + "start": 14638.3, + "end": 14639.08, + "probability": 0.4425 + }, + { + "start": 14639.66, + "end": 14643.04, + "probability": 0.8985 + }, + { + "start": 14643.18, + "end": 14645.08, + "probability": 0.1427 + }, + { + "start": 14645.54, + "end": 14645.54, + "probability": 0.0449 + }, + { + "start": 14645.54, + "end": 14645.54, + "probability": 0.0755 + }, + { + "start": 14645.54, + "end": 14648.0, + "probability": 0.5436 + }, + { + "start": 14648.48, + "end": 14650.8, + "probability": 0.6773 + }, + { + "start": 14651.48, + "end": 14653.22, + "probability": 0.1292 + }, + { + "start": 14653.62, + "end": 14653.8, + "probability": 0.0184 + }, + { + "start": 14653.82, + "end": 14655.7, + "probability": 0.2093 + }, + { + "start": 14656.8, + "end": 14659.94, + "probability": 0.6864 + }, + { + "start": 14661.44, + "end": 14663.06, + "probability": 0.105 + }, + { + "start": 14663.06, + "end": 14665.7, + "probability": 0.6552 + }, + { + "start": 14666.78, + "end": 14668.5, + "probability": 0.7827 + }, + { + "start": 14668.5, + "end": 14671.62, + "probability": 0.9164 + }, + { + "start": 14672.65, + "end": 14677.16, + "probability": 0.8472 + }, + { + "start": 14677.3, + "end": 14677.58, + "probability": 0.524 + }, + { + "start": 14678.24, + "end": 14680.64, + "probability": 0.81 + }, + { + "start": 14681.9, + "end": 14682.34, + "probability": 0.1913 + }, + { + "start": 14683.54, + "end": 14688.48, + "probability": 0.9701 + }, + { + "start": 14689.48, + "end": 14689.66, + "probability": 0.0448 + }, + { + "start": 14689.66, + "end": 14689.66, + "probability": 0.3701 + }, + { + "start": 14689.66, + "end": 14689.66, + "probability": 0.3975 + }, + { + "start": 14689.66, + "end": 14689.66, + "probability": 0.4268 + }, + { + "start": 14689.66, + "end": 14689.66, + "probability": 0.0891 + }, + { + "start": 14689.66, + "end": 14692.56, + "probability": 0.6749 + }, + { + "start": 14693.08, + "end": 14695.42, + "probability": 0.6423 + }, + { + "start": 14696.1, + "end": 14698.7, + "probability": 0.7497 + }, + { + "start": 14702.48, + "end": 14703.28, + "probability": 0.9612 + }, + { + "start": 14703.8, + "end": 14704.82, + "probability": 0.861 + }, + { + "start": 14705.54, + "end": 14707.2, + "probability": 0.8639 + }, + { + "start": 14709.0, + "end": 14710.14, + "probability": 0.84 + }, + { + "start": 14711.18, + "end": 14712.0, + "probability": 0.8099 + }, + { + "start": 14713.3, + "end": 14713.44, + "probability": 0.4625 + }, + { + "start": 14713.74, + "end": 14716.17, + "probability": 0.9961 + }, + { + "start": 14717.02, + "end": 14718.12, + "probability": 0.9966 + }, + { + "start": 14718.22, + "end": 14719.11, + "probability": 0.8742 + }, + { + "start": 14719.72, + "end": 14720.8, + "probability": 0.7161 + }, + { + "start": 14721.08, + "end": 14722.36, + "probability": 0.9878 + }, + { + "start": 14724.7, + "end": 14728.66, + "probability": 0.9403 + }, + { + "start": 14728.76, + "end": 14731.24, + "probability": 0.8153 + }, + { + "start": 14733.87, + "end": 14737.9, + "probability": 0.9326 + }, + { + "start": 14740.06, + "end": 14740.62, + "probability": 0.9851 + }, + { + "start": 14741.54, + "end": 14743.58, + "probability": 0.9896 + }, + { + "start": 14743.72, + "end": 14746.36, + "probability": 0.9421 + }, + { + "start": 14746.98, + "end": 14748.76, + "probability": 0.6524 + }, + { + "start": 14749.96, + "end": 14752.42, + "probability": 0.9775 + }, + { + "start": 14753.66, + "end": 14758.04, + "probability": 0.9526 + }, + { + "start": 14758.5, + "end": 14758.96, + "probability": 0.7303 + }, + { + "start": 14759.08, + "end": 14760.1, + "probability": 0.5245 + }, + { + "start": 14760.16, + "end": 14761.58, + "probability": 0.944 + }, + { + "start": 14762.14, + "end": 14766.26, + "probability": 0.9355 + }, + { + "start": 14767.0, + "end": 14769.02, + "probability": 0.9681 + }, + { + "start": 14769.44, + "end": 14771.22, + "probability": 0.9482 + }, + { + "start": 14772.46, + "end": 14772.92, + "probability": 0.6206 + }, + { + "start": 14775.16, + "end": 14775.3, + "probability": 0.7185 + }, + { + "start": 14776.92, + "end": 14778.56, + "probability": 0.5747 + }, + { + "start": 14779.2, + "end": 14779.96, + "probability": 0.7864 + }, + { + "start": 14780.52, + "end": 14783.44, + "probability": 0.9328 + }, + { + "start": 14785.22, + "end": 14788.78, + "probability": 0.9594 + }, + { + "start": 14789.4, + "end": 14796.62, + "probability": 0.9787 + }, + { + "start": 14797.3, + "end": 14802.3, + "probability": 0.9899 + }, + { + "start": 14803.02, + "end": 14804.02, + "probability": 0.868 + }, + { + "start": 14804.1, + "end": 14805.2, + "probability": 0.7145 + }, + { + "start": 14805.24, + "end": 14807.58, + "probability": 0.9539 + }, + { + "start": 14809.48, + "end": 14810.18, + "probability": 0.9188 + }, + { + "start": 14811.96, + "end": 14812.98, + "probability": 0.7089 + }, + { + "start": 14813.96, + "end": 14814.58, + "probability": 0.7742 + }, + { + "start": 14814.72, + "end": 14817.5, + "probability": 0.9258 + }, + { + "start": 14817.58, + "end": 14819.3, + "probability": 0.6749 + }, + { + "start": 14819.38, + "end": 14823.88, + "probability": 0.9598 + }, + { + "start": 14825.06, + "end": 14827.14, + "probability": 0.991 + }, + { + "start": 14828.82, + "end": 14832.98, + "probability": 0.9779 + }, + { + "start": 14834.14, + "end": 14837.38, + "probability": 0.9846 + }, + { + "start": 14837.48, + "end": 14838.86, + "probability": 0.9602 + }, + { + "start": 14839.32, + "end": 14842.68, + "probability": 0.7118 + }, + { + "start": 14843.6, + "end": 14847.08, + "probability": 0.908 + }, + { + "start": 14847.14, + "end": 14849.12, + "probability": 0.7377 + }, + { + "start": 14850.12, + "end": 14852.8, + "probability": 0.6589 + }, + { + "start": 14853.72, + "end": 14854.42, + "probability": 0.5196 + }, + { + "start": 14855.26, + "end": 14859.54, + "probability": 0.9445 + }, + { + "start": 14859.72, + "end": 14861.3, + "probability": 0.9385 + }, + { + "start": 14862.02, + "end": 14863.88, + "probability": 0.9648 + }, + { + "start": 14864.46, + "end": 14866.26, + "probability": 0.8866 + }, + { + "start": 14866.3, + "end": 14867.06, + "probability": 0.9514 + }, + { + "start": 14867.5, + "end": 14872.08, + "probability": 0.9936 + }, + { + "start": 14872.08, + "end": 14877.3, + "probability": 0.9801 + }, + { + "start": 14878.02, + "end": 14882.14, + "probability": 0.9824 + }, + { + "start": 14882.7, + "end": 14885.58, + "probability": 0.9067 + }, + { + "start": 14886.08, + "end": 14890.04, + "probability": 0.981 + }, + { + "start": 14890.56, + "end": 14892.56, + "probability": 0.9686 + }, + { + "start": 14893.42, + "end": 14896.26, + "probability": 0.9974 + }, + { + "start": 14896.94, + "end": 14905.16, + "probability": 0.9861 + }, + { + "start": 14905.74, + "end": 14908.14, + "probability": 0.9924 + }, + { + "start": 14908.28, + "end": 14908.7, + "probability": 0.8201 + }, + { + "start": 14909.94, + "end": 14912.3, + "probability": 0.6782 + }, + { + "start": 14912.38, + "end": 14915.02, + "probability": 0.745 + }, + { + "start": 14915.16, + "end": 14916.78, + "probability": 0.9746 + }, + { + "start": 14917.74, + "end": 14919.08, + "probability": 0.6848 + }, + { + "start": 14919.32, + "end": 14921.56, + "probability": 0.6321 + }, + { + "start": 14922.12, + "end": 14923.36, + "probability": 0.7623 + }, + { + "start": 14923.5, + "end": 14925.76, + "probability": 0.9307 + }, + { + "start": 14927.0, + "end": 14927.28, + "probability": 0.6839 + }, + { + "start": 14928.46, + "end": 14931.28, + "probability": 0.6875 + }, + { + "start": 14931.32, + "end": 14933.48, + "probability": 0.9139 + }, + { + "start": 14934.18, + "end": 14936.72, + "probability": 0.2646 + }, + { + "start": 14937.32, + "end": 14938.62, + "probability": 0.5545 + }, + { + "start": 14938.74, + "end": 14939.26, + "probability": 0.4865 + }, + { + "start": 14939.36, + "end": 14940.06, + "probability": 0.5584 + }, + { + "start": 14940.3, + "end": 14944.92, + "probability": 0.9966 + }, + { + "start": 14944.92, + "end": 14946.9, + "probability": 0.9978 + }, + { + "start": 14947.0, + "end": 14948.2, + "probability": 0.8608 + }, + { + "start": 14949.36, + "end": 14955.12, + "probability": 0.9429 + }, + { + "start": 14956.1, + "end": 14959.24, + "probability": 0.9871 + }, + { + "start": 14959.24, + "end": 14964.4, + "probability": 0.9971 + }, + { + "start": 14966.15, + "end": 14968.48, + "probability": 0.6086 + }, + { + "start": 14969.14, + "end": 14973.5, + "probability": 0.9853 + }, + { + "start": 14973.5, + "end": 14978.58, + "probability": 0.9982 + }, + { + "start": 14980.11, + "end": 14982.06, + "probability": 0.9475 + }, + { + "start": 14982.86, + "end": 14984.1, + "probability": 0.7458 + }, + { + "start": 14984.18, + "end": 14984.48, + "probability": 0.8911 + }, + { + "start": 14984.54, + "end": 14985.0, + "probability": 0.5963 + }, + { + "start": 14985.02, + "end": 14989.2, + "probability": 0.9365 + }, + { + "start": 14989.32, + "end": 14991.04, + "probability": 0.9155 + }, + { + "start": 14991.86, + "end": 14995.02, + "probability": 0.8635 + }, + { + "start": 14996.18, + "end": 14998.38, + "probability": 0.7648 + }, + { + "start": 14999.5, + "end": 15003.24, + "probability": 0.994 + }, + { + "start": 15004.12, + "end": 15009.52, + "probability": 0.9874 + }, + { + "start": 15010.88, + "end": 15012.86, + "probability": 0.8098 + }, + { + "start": 15013.64, + "end": 15014.5, + "probability": 0.9202 + }, + { + "start": 15015.02, + "end": 15015.72, + "probability": 0.9407 + }, + { + "start": 15017.28, + "end": 15023.62, + "probability": 0.9565 + }, + { + "start": 15023.78, + "end": 15026.02, + "probability": 0.9823 + }, + { + "start": 15026.6, + "end": 15027.36, + "probability": 0.9546 + }, + { + "start": 15027.92, + "end": 15029.16, + "probability": 0.9798 + }, + { + "start": 15029.62, + "end": 15032.54, + "probability": 0.9655 + }, + { + "start": 15033.08, + "end": 15037.96, + "probability": 0.9458 + }, + { + "start": 15038.46, + "end": 15040.44, + "probability": 0.861 + }, + { + "start": 15041.84, + "end": 15045.16, + "probability": 0.837 + }, + { + "start": 15046.4, + "end": 15049.28, + "probability": 0.7941 + }, + { + "start": 15050.02, + "end": 15050.42, + "probability": 0.785 + }, + { + "start": 15050.6, + "end": 15053.74, + "probability": 0.8933 + }, + { + "start": 15054.24, + "end": 15058.74, + "probability": 0.9485 + }, + { + "start": 15058.84, + "end": 15065.26, + "probability": 0.9902 + }, + { + "start": 15065.7, + "end": 15066.22, + "probability": 0.8681 + }, + { + "start": 15066.92, + "end": 15070.68, + "probability": 0.7935 + }, + { + "start": 15071.22, + "end": 15076.32, + "probability": 0.9972 + }, + { + "start": 15077.28, + "end": 15077.6, + "probability": 0.4916 + }, + { + "start": 15077.82, + "end": 15079.16, + "probability": 0.8768 + }, + { + "start": 15079.44, + "end": 15082.08, + "probability": 0.9603 + }, + { + "start": 15082.32, + "end": 15085.24, + "probability": 0.9426 + }, + { + "start": 15086.02, + "end": 15090.82, + "probability": 0.7358 + }, + { + "start": 15091.46, + "end": 15092.74, + "probability": 0.9742 + }, + { + "start": 15093.98, + "end": 15097.87, + "probability": 0.9573 + }, + { + "start": 15098.22, + "end": 15099.04, + "probability": 0.7839 + }, + { + "start": 15099.96, + "end": 15102.14, + "probability": 0.9791 + }, + { + "start": 15102.52, + "end": 15106.5, + "probability": 0.9539 + }, + { + "start": 15107.0, + "end": 15109.86, + "probability": 0.7692 + }, + { + "start": 15110.44, + "end": 15113.98, + "probability": 0.981 + }, + { + "start": 15114.64, + "end": 15118.3, + "probability": 0.9928 + }, + { + "start": 15118.94, + "end": 15119.78, + "probability": 0.5185 + }, + { + "start": 15120.52, + "end": 15123.97, + "probability": 0.9243 + }, + { + "start": 15126.46, + "end": 15128.38, + "probability": 0.9746 + }, + { + "start": 15129.6, + "end": 15131.11, + "probability": 0.8018 + }, + { + "start": 15131.34, + "end": 15134.4, + "probability": 0.864 + }, + { + "start": 15134.7, + "end": 15138.24, + "probability": 0.9523 + }, + { + "start": 15139.04, + "end": 15142.46, + "probability": 0.8456 + }, + { + "start": 15143.08, + "end": 15147.3, + "probability": 0.7838 + }, + { + "start": 15147.56, + "end": 15151.06, + "probability": 0.9832 + }, + { + "start": 15151.64, + "end": 15153.4, + "probability": 0.656 + }, + { + "start": 15153.98, + "end": 15154.7, + "probability": 0.9593 + }, + { + "start": 15155.04, + "end": 15157.68, + "probability": 0.9711 + }, + { + "start": 15158.22, + "end": 15161.74, + "probability": 0.991 + }, + { + "start": 15162.6, + "end": 15163.98, + "probability": 0.564 + }, + { + "start": 15164.08, + "end": 15166.06, + "probability": 0.5814 + }, + { + "start": 15166.3, + "end": 15167.28, + "probability": 0.9375 + }, + { + "start": 15167.48, + "end": 15168.86, + "probability": 0.9299 + }, + { + "start": 15168.94, + "end": 15171.66, + "probability": 0.9691 + }, + { + "start": 15172.38, + "end": 15176.84, + "probability": 0.9746 + }, + { + "start": 15177.3, + "end": 15181.52, + "probability": 0.9905 + }, + { + "start": 15181.64, + "end": 15185.22, + "probability": 0.7253 + }, + { + "start": 15185.38, + "end": 15187.24, + "probability": 0.9454 + }, + { + "start": 15187.36, + "end": 15187.54, + "probability": 0.7319 + }, + { + "start": 15187.84, + "end": 15190.08, + "probability": 0.6747 + }, + { + "start": 15190.22, + "end": 15192.81, + "probability": 0.8644 + }, + { + "start": 15195.0, + "end": 15195.9, + "probability": 0.6943 + }, + { + "start": 15196.04, + "end": 15201.52, + "probability": 0.6098 + }, + { + "start": 15201.72, + "end": 15202.94, + "probability": 0.8526 + }, + { + "start": 15204.84, + "end": 15208.4, + "probability": 0.7662 + }, + { + "start": 15209.34, + "end": 15211.46, + "probability": 0.9249 + }, + { + "start": 15212.28, + "end": 15212.98, + "probability": 0.5436 + }, + { + "start": 15214.06, + "end": 15215.4, + "probability": 0.637 + }, + { + "start": 15216.96, + "end": 15217.98, + "probability": 0.8047 + }, + { + "start": 15219.78, + "end": 15219.78, + "probability": 0.667 + }, + { + "start": 15223.34, + "end": 15227.88, + "probability": 0.5395 + }, + { + "start": 15227.88, + "end": 15229.12, + "probability": 0.7467 + }, + { + "start": 15230.26, + "end": 15233.96, + "probability": 0.8617 + }, + { + "start": 15235.2, + "end": 15237.1, + "probability": 0.9648 + }, + { + "start": 15238.5, + "end": 15239.74, + "probability": 0.876 + }, + { + "start": 15242.2, + "end": 15243.74, + "probability": 0.6045 + }, + { + "start": 15245.62, + "end": 15248.6, + "probability": 0.9133 + }, + { + "start": 15249.98, + "end": 15250.8, + "probability": 0.9842 + }, + { + "start": 15252.38, + "end": 15254.46, + "probability": 0.9298 + }, + { + "start": 15255.98, + "end": 15263.12, + "probability": 0.9961 + }, + { + "start": 15265.8, + "end": 15268.32, + "probability": 0.9265 + }, + { + "start": 15268.78, + "end": 15271.5, + "probability": 0.9896 + }, + { + "start": 15273.0, + "end": 15278.2, + "probability": 0.9849 + }, + { + "start": 15282.34, + "end": 15289.08, + "probability": 0.9492 + }, + { + "start": 15291.62, + "end": 15292.1, + "probability": 0.8438 + }, + { + "start": 15295.18, + "end": 15300.18, + "probability": 0.8457 + }, + { + "start": 15301.14, + "end": 15302.02, + "probability": 0.7718 + }, + { + "start": 15302.72, + "end": 15309.12, + "probability": 0.9935 + }, + { + "start": 15310.46, + "end": 15314.22, + "probability": 0.9324 + }, + { + "start": 15315.56, + "end": 15316.7, + "probability": 0.9927 + }, + { + "start": 15319.33, + "end": 15320.52, + "probability": 0.0539 + }, + { + "start": 15320.52, + "end": 15322.52, + "probability": 0.8597 + }, + { + "start": 15323.34, + "end": 15330.04, + "probability": 0.7349 + }, + { + "start": 15330.78, + "end": 15331.64, + "probability": 0.4705 + }, + { + "start": 15331.76, + "end": 15332.32, + "probability": 0.9286 + }, + { + "start": 15334.4, + "end": 15340.38, + "probability": 0.96 + }, + { + "start": 15341.68, + "end": 15347.34, + "probability": 0.9669 + }, + { + "start": 15349.02, + "end": 15349.6, + "probability": 0.8821 + }, + { + "start": 15350.72, + "end": 15352.16, + "probability": 0.949 + }, + { + "start": 15353.28, + "end": 15358.64, + "probability": 0.9964 + }, + { + "start": 15358.91, + "end": 15364.26, + "probability": 0.9724 + }, + { + "start": 15365.66, + "end": 15366.39, + "probability": 0.9966 + }, + { + "start": 15367.58, + "end": 15369.06, + "probability": 0.6667 + }, + { + "start": 15370.22, + "end": 15376.66, + "probability": 0.6157 + }, + { + "start": 15377.26, + "end": 15378.4, + "probability": 0.7073 + }, + { + "start": 15379.04, + "end": 15380.14, + "probability": 0.9585 + }, + { + "start": 15381.08, + "end": 15383.76, + "probability": 0.9832 + }, + { + "start": 15384.8, + "end": 15387.1, + "probability": 0.5618 + }, + { + "start": 15388.56, + "end": 15390.66, + "probability": 0.6325 + }, + { + "start": 15391.24, + "end": 15392.22, + "probability": 0.684 + }, + { + "start": 15393.48, + "end": 15396.3, + "probability": 0.8215 + }, + { + "start": 15396.72, + "end": 15398.58, + "probability": 0.9871 + }, + { + "start": 15398.92, + "end": 15401.18, + "probability": 0.8357 + }, + { + "start": 15401.34, + "end": 15403.19, + "probability": 0.9541 + }, + { + "start": 15403.6, + "end": 15406.9, + "probability": 0.7103 + }, + { + "start": 15407.36, + "end": 15408.54, + "probability": 0.8377 + }, + { + "start": 15408.96, + "end": 15409.58, + "probability": 0.6649 + }, + { + "start": 15409.66, + "end": 15411.8, + "probability": 0.794 + }, + { + "start": 15412.46, + "end": 15415.92, + "probability": 0.7352 + }, + { + "start": 15426.24, + "end": 15428.62, + "probability": 0.9016 + }, + { + "start": 15431.5, + "end": 15432.16, + "probability": 0.6996 + }, + { + "start": 15432.8, + "end": 15433.64, + "probability": 0.8435 + }, + { + "start": 15435.78, + "end": 15440.94, + "probability": 0.908 + }, + { + "start": 15441.64, + "end": 15443.48, + "probability": 0.8922 + }, + { + "start": 15444.24, + "end": 15447.76, + "probability": 0.6353 + }, + { + "start": 15447.76, + "end": 15450.28, + "probability": 0.7408 + }, + { + "start": 15451.08, + "end": 15451.44, + "probability": 0.6172 + }, + { + "start": 15452.4, + "end": 15455.3, + "probability": 0.9974 + }, + { + "start": 15456.08, + "end": 15457.48, + "probability": 0.9796 + }, + { + "start": 15458.24, + "end": 15459.92, + "probability": 0.8289 + }, + { + "start": 15460.68, + "end": 15461.38, + "probability": 0.7558 + }, + { + "start": 15462.32, + "end": 15463.46, + "probability": 0.9851 + }, + { + "start": 15464.28, + "end": 15465.76, + "probability": 0.7863 + }, + { + "start": 15466.58, + "end": 15467.44, + "probability": 0.7641 + }, + { + "start": 15468.12, + "end": 15468.94, + "probability": 0.7277 + }, + { + "start": 15469.48, + "end": 15470.26, + "probability": 0.939 + }, + { + "start": 15471.4, + "end": 15472.26, + "probability": 0.62 + }, + { + "start": 15473.16, + "end": 15474.84, + "probability": 0.7573 + }, + { + "start": 15476.48, + "end": 15480.34, + "probability": 0.8217 + }, + { + "start": 15480.84, + "end": 15482.4, + "probability": 0.9619 + }, + { + "start": 15483.08, + "end": 15487.52, + "probability": 0.8758 + }, + { + "start": 15488.08, + "end": 15492.48, + "probability": 0.9886 + }, + { + "start": 15493.54, + "end": 15497.98, + "probability": 0.9954 + }, + { + "start": 15498.58, + "end": 15499.8, + "probability": 0.998 + }, + { + "start": 15500.34, + "end": 15503.04, + "probability": 0.9729 + }, + { + "start": 15503.66, + "end": 15504.6, + "probability": 0.9623 + }, + { + "start": 15504.7, + "end": 15505.08, + "probability": 0.551 + }, + { + "start": 15505.3, + "end": 15510.82, + "probability": 0.943 + }, + { + "start": 15511.58, + "end": 15514.2, + "probability": 0.846 + }, + { + "start": 15514.88, + "end": 15519.44, + "probability": 0.981 + }, + { + "start": 15519.96, + "end": 15521.17, + "probability": 0.998 + }, + { + "start": 15522.44, + "end": 15523.36, + "probability": 0.7973 + }, + { + "start": 15524.08, + "end": 15527.96, + "probability": 0.8928 + }, + { + "start": 15528.46, + "end": 15533.12, + "probability": 0.8206 + }, + { + "start": 15533.9, + "end": 15534.3, + "probability": 0.9051 + }, + { + "start": 15535.16, + "end": 15538.82, + "probability": 0.5495 + }, + { + "start": 15539.38, + "end": 15540.9, + "probability": 0.7845 + }, + { + "start": 15541.46, + "end": 15545.18, + "probability": 0.995 + }, + { + "start": 15545.5, + "end": 15546.48, + "probability": 0.8111 + }, + { + "start": 15546.82, + "end": 15547.84, + "probability": 0.9659 + }, + { + "start": 15548.56, + "end": 15551.2, + "probability": 0.9183 + }, + { + "start": 15551.2, + "end": 15553.7, + "probability": 0.9775 + }, + { + "start": 15554.74, + "end": 15555.68, + "probability": 0.5917 + }, + { + "start": 15556.08, + "end": 15561.1, + "probability": 0.8049 + }, + { + "start": 15562.44, + "end": 15565.78, + "probability": 0.6492 + }, + { + "start": 15566.44, + "end": 15568.74, + "probability": 0.8724 + }, + { + "start": 15569.58, + "end": 15571.52, + "probability": 0.9751 + }, + { + "start": 15572.4, + "end": 15575.06, + "probability": 0.8212 + }, + { + "start": 15575.46, + "end": 15578.46, + "probability": 0.9785 + }, + { + "start": 15578.76, + "end": 15578.96, + "probability": 0.263 + }, + { + "start": 15579.06, + "end": 15584.74, + "probability": 0.9138 + }, + { + "start": 15585.42, + "end": 15588.78, + "probability": 0.7554 + }, + { + "start": 15589.26, + "end": 15590.86, + "probability": 0.2105 + }, + { + "start": 15591.66, + "end": 15592.16, + "probability": 0.7481 + }, + { + "start": 15592.5, + "end": 15596.4, + "probability": 0.6275 + }, + { + "start": 15596.78, + "end": 15599.16, + "probability": 0.7691 + }, + { + "start": 15599.54, + "end": 15603.4, + "probability": 0.947 + }, + { + "start": 15604.26, + "end": 15607.38, + "probability": 0.7007 + }, + { + "start": 15608.08, + "end": 15610.64, + "probability": 0.8667 + }, + { + "start": 15611.14, + "end": 15611.62, + "probability": 0.7514 + }, + { + "start": 15612.04, + "end": 15615.58, + "probability": 0.9248 + }, + { + "start": 15616.6, + "end": 15619.92, + "probability": 0.9719 + }, + { + "start": 15620.44, + "end": 15622.52, + "probability": 0.7987 + }, + { + "start": 15623.18, + "end": 15624.98, + "probability": 0.7454 + }, + { + "start": 15625.32, + "end": 15626.9, + "probability": 0.6513 + }, + { + "start": 15627.32, + "end": 15629.68, + "probability": 0.7795 + }, + { + "start": 15630.1, + "end": 15631.98, + "probability": 0.9735 + }, + { + "start": 15632.38, + "end": 15633.52, + "probability": 0.861 + }, + { + "start": 15633.82, + "end": 15635.04, + "probability": 0.9847 + }, + { + "start": 15635.66, + "end": 15637.48, + "probability": 0.9409 + }, + { + "start": 15638.08, + "end": 15639.57, + "probability": 0.5815 + }, + { + "start": 15640.06, + "end": 15642.64, + "probability": 0.9749 + }, + { + "start": 15643.12, + "end": 15649.89, + "probability": 0.9679 + }, + { + "start": 15650.76, + "end": 15654.24, + "probability": 0.8172 + }, + { + "start": 15654.58, + "end": 15654.7, + "probability": 0.0243 + }, + { + "start": 15655.26, + "end": 15656.6, + "probability": 0.682 + }, + { + "start": 15657.28, + "end": 15659.16, + "probability": 0.989 + }, + { + "start": 15659.98, + "end": 15663.02, + "probability": 0.5341 + }, + { + "start": 15664.0, + "end": 15668.94, + "probability": 0.9503 + }, + { + "start": 15670.16, + "end": 15673.54, + "probability": 0.7433 + }, + { + "start": 15673.84, + "end": 15675.84, + "probability": 0.887 + }, + { + "start": 15676.44, + "end": 15679.08, + "probability": 0.9546 + }, + { + "start": 15679.28, + "end": 15679.58, + "probability": 0.5996 + }, + { + "start": 15679.6, + "end": 15681.02, + "probability": 0.8006 + }, + { + "start": 15681.54, + "end": 15685.8, + "probability": 0.7262 + }, + { + "start": 15685.82, + "end": 15687.5, + "probability": 0.712 + }, + { + "start": 15687.98, + "end": 15691.56, + "probability": 0.9769 + }, + { + "start": 15691.84, + "end": 15693.6, + "probability": 0.4945 + }, + { + "start": 15693.6, + "end": 15694.46, + "probability": 0.3116 + }, + { + "start": 15694.48, + "end": 15699.56, + "probability": 0.9062 + }, + { + "start": 15700.12, + "end": 15705.42, + "probability": 0.9811 + }, + { + "start": 15705.9, + "end": 15708.56, + "probability": 0.8319 + }, + { + "start": 15709.1, + "end": 15711.94, + "probability": 0.8943 + }, + { + "start": 15712.28, + "end": 15713.52, + "probability": 0.7196 + }, + { + "start": 15713.9, + "end": 15715.94, + "probability": 0.9702 + }, + { + "start": 15716.16, + "end": 15718.96, + "probability": 0.9255 + }, + { + "start": 15720.24, + "end": 15721.64, + "probability": 0.7309 + }, + { + "start": 15722.06, + "end": 15722.48, + "probability": 0.3173 + }, + { + "start": 15722.48, + "end": 15723.46, + "probability": 0.9543 + }, + { + "start": 15724.02, + "end": 15725.4, + "probability": 0.4818 + }, + { + "start": 15726.34, + "end": 15730.16, + "probability": 0.7588 + }, + { + "start": 15730.22, + "end": 15731.48, + "probability": 0.7589 + }, + { + "start": 15731.78, + "end": 15732.88, + "probability": 0.8256 + }, + { + "start": 15746.66, + "end": 15748.8, + "probability": 0.9822 + }, + { + "start": 15749.32, + "end": 15749.48, + "probability": 0.2155 + }, + { + "start": 15750.12, + "end": 15751.16, + "probability": 0.9192 + }, + { + "start": 15752.66, + "end": 15753.34, + "probability": 0.3804 + }, + { + "start": 15753.54, + "end": 15754.2, + "probability": 0.9499 + }, + { + "start": 15758.54, + "end": 15761.38, + "probability": 0.701 + }, + { + "start": 15768.22, + "end": 15774.08, + "probability": 0.9911 + }, + { + "start": 15775.2, + "end": 15777.08, + "probability": 0.6293 + }, + { + "start": 15777.88, + "end": 15780.12, + "probability": 0.1095 + }, + { + "start": 15780.38, + "end": 15782.18, + "probability": 0.2433 + }, + { + "start": 15783.45, + "end": 15787.5, + "probability": 0.994 + }, + { + "start": 15787.72, + "end": 15791.38, + "probability": 0.9992 + }, + { + "start": 15792.26, + "end": 15793.56, + "probability": 0.9885 + }, + { + "start": 15795.4, + "end": 15798.7, + "probability": 0.9867 + }, + { + "start": 15799.5, + "end": 15800.6, + "probability": 0.9815 + }, + { + "start": 15801.22, + "end": 15806.1, + "probability": 0.9068 + }, + { + "start": 15806.1, + "end": 15810.46, + "probability": 0.9984 + }, + { + "start": 15814.52, + "end": 15815.08, + "probability": 0.6469 + }, + { + "start": 15815.4, + "end": 15820.42, + "probability": 0.8258 + }, + { + "start": 15820.92, + "end": 15823.18, + "probability": 0.7728 + }, + { + "start": 15823.74, + "end": 15824.92, + "probability": 0.9607 + }, + { + "start": 15825.9, + "end": 15828.16, + "probability": 0.7898 + }, + { + "start": 15828.82, + "end": 15832.72, + "probability": 0.972 + }, + { + "start": 15833.92, + "end": 15840.58, + "probability": 0.9946 + }, + { + "start": 15841.28, + "end": 15842.46, + "probability": 0.9624 + }, + { + "start": 15843.98, + "end": 15848.24, + "probability": 0.9543 + }, + { + "start": 15849.16, + "end": 15852.77, + "probability": 0.9736 + }, + { + "start": 15853.16, + "end": 15855.82, + "probability": 0.9991 + }, + { + "start": 15856.9, + "end": 15857.56, + "probability": 0.6538 + }, + { + "start": 15857.88, + "end": 15858.64, + "probability": 0.9075 + }, + { + "start": 15858.72, + "end": 15864.52, + "probability": 0.9908 + }, + { + "start": 15865.46, + "end": 15868.52, + "probability": 0.9751 + }, + { + "start": 15868.52, + "end": 15871.12, + "probability": 0.9984 + }, + { + "start": 15872.64, + "end": 15875.14, + "probability": 0.923 + }, + { + "start": 15875.72, + "end": 15878.02, + "probability": 0.9912 + }, + { + "start": 15878.9, + "end": 15880.96, + "probability": 0.9956 + }, + { + "start": 15881.8, + "end": 15885.18, + "probability": 0.9685 + }, + { + "start": 15885.84, + "end": 15888.56, + "probability": 0.7535 + }, + { + "start": 15889.38, + "end": 15890.32, + "probability": 0.561 + }, + { + "start": 15890.46, + "end": 15892.5, + "probability": 0.8839 + }, + { + "start": 15892.6, + "end": 15895.86, + "probability": 0.9895 + }, + { + "start": 15896.84, + "end": 15897.3, + "probability": 0.6812 + }, + { + "start": 15897.76, + "end": 15901.68, + "probability": 0.9936 + }, + { + "start": 15902.38, + "end": 15907.66, + "probability": 0.9967 + }, + { + "start": 15908.3, + "end": 15910.94, + "probability": 0.9413 + }, + { + "start": 15911.78, + "end": 15915.24, + "probability": 0.8076 + }, + { + "start": 15915.98, + "end": 15921.52, + "probability": 0.9585 + }, + { + "start": 15922.68, + "end": 15925.18, + "probability": 0.9764 + }, + { + "start": 15925.74, + "end": 15928.04, + "probability": 0.9322 + }, + { + "start": 15928.9, + "end": 15929.0, + "probability": 0.2588 + }, + { + "start": 15929.22, + "end": 15934.2, + "probability": 0.9885 + }, + { + "start": 15934.78, + "end": 15937.42, + "probability": 0.9529 + }, + { + "start": 15938.58, + "end": 15942.36, + "probability": 0.9574 + }, + { + "start": 15942.48, + "end": 15943.1, + "probability": 0.8314 + }, + { + "start": 15943.54, + "end": 15946.28, + "probability": 0.9908 + }, + { + "start": 15947.36, + "end": 15948.34, + "probability": 0.827 + }, + { + "start": 15948.42, + "end": 15951.37, + "probability": 0.8766 + }, + { + "start": 15953.02, + "end": 15956.4, + "probability": 0.9954 + }, + { + "start": 15957.24, + "end": 15961.66, + "probability": 0.845 + }, + { + "start": 15962.76, + "end": 15963.74, + "probability": 0.9175 + }, + { + "start": 15965.61, + "end": 15972.0, + "probability": 0.9718 + }, + { + "start": 15972.96, + "end": 15976.52, + "probability": 0.9966 + }, + { + "start": 15977.62, + "end": 15979.8, + "probability": 0.9705 + }, + { + "start": 15981.28, + "end": 15982.32, + "probability": 0.6938 + }, + { + "start": 15983.72, + "end": 15989.72, + "probability": 0.9814 + }, + { + "start": 15989.8, + "end": 15990.86, + "probability": 0.9834 + }, + { + "start": 15992.14, + "end": 15995.2, + "probability": 0.8316 + }, + { + "start": 15995.82, + "end": 15998.3, + "probability": 0.9906 + }, + { + "start": 15998.98, + "end": 16000.98, + "probability": 0.9957 + }, + { + "start": 16002.08, + "end": 16002.91, + "probability": 0.6198 + }, + { + "start": 16003.98, + "end": 16005.02, + "probability": 0.8193 + }, + { + "start": 16005.84, + "end": 16009.18, + "probability": 0.9995 + }, + { + "start": 16010.26, + "end": 16014.82, + "probability": 0.8581 + }, + { + "start": 16015.5, + "end": 16015.96, + "probability": 0.9589 + }, + { + "start": 16016.06, + "end": 16017.9, + "probability": 0.8768 + }, + { + "start": 16018.38, + "end": 16023.1, + "probability": 0.9888 + }, + { + "start": 16023.2, + "end": 16026.14, + "probability": 0.9852 + }, + { + "start": 16027.0, + "end": 16028.98, + "probability": 0.4862 + }, + { + "start": 16029.48, + "end": 16029.48, + "probability": 0.6717 + }, + { + "start": 16029.48, + "end": 16031.88, + "probability": 0.9526 + }, + { + "start": 16032.06, + "end": 16034.54, + "probability": 0.9948 + }, + { + "start": 16035.18, + "end": 16039.56, + "probability": 0.9968 + }, + { + "start": 16040.32, + "end": 16041.06, + "probability": 0.5405 + }, + { + "start": 16041.6, + "end": 16043.26, + "probability": 0.7588 + }, + { + "start": 16043.38, + "end": 16046.2, + "probability": 0.9987 + }, + { + "start": 16046.74, + "end": 16051.26, + "probability": 0.9879 + }, + { + "start": 16051.42, + "end": 16053.68, + "probability": 0.9808 + }, + { + "start": 16054.22, + "end": 16056.16, + "probability": 0.9779 + }, + { + "start": 16056.76, + "end": 16058.36, + "probability": 0.9824 + }, + { + "start": 16059.74, + "end": 16061.87, + "probability": 0.323 + }, + { + "start": 16062.08, + "end": 16063.76, + "probability": 0.0922 + }, + { + "start": 16064.26, + "end": 16067.56, + "probability": 0.3763 + }, + { + "start": 16068.42, + "end": 16069.02, + "probability": 0.1705 + }, + { + "start": 16069.02, + "end": 16069.86, + "probability": 0.1846 + }, + { + "start": 16070.04, + "end": 16071.48, + "probability": 0.401 + }, + { + "start": 16071.72, + "end": 16073.22, + "probability": 0.6464 + }, + { + "start": 16073.32, + "end": 16073.62, + "probability": 0.0305 + }, + { + "start": 16073.62, + "end": 16073.76, + "probability": 0.3935 + }, + { + "start": 16073.84, + "end": 16076.88, + "probability": 0.7119 + }, + { + "start": 16076.92, + "end": 16077.64, + "probability": 0.9174 + }, + { + "start": 16077.76, + "end": 16078.32, + "probability": 0.0152 + }, + { + "start": 16078.46, + "end": 16078.92, + "probability": 0.0322 + }, + { + "start": 16078.92, + "end": 16079.08, + "probability": 0.1317 + }, + { + "start": 16079.08, + "end": 16081.06, + "probability": 0.9753 + }, + { + "start": 16081.16, + "end": 16083.0, + "probability": 0.918 + }, + { + "start": 16083.56, + "end": 16084.36, + "probability": 0.9572 + }, + { + "start": 16084.46, + "end": 16085.66, + "probability": 0.4208 + }, + { + "start": 16085.7, + "end": 16087.16, + "probability": 0.4676 + }, + { + "start": 16087.34, + "end": 16088.29, + "probability": 0.5366 + }, + { + "start": 16088.36, + "end": 16088.86, + "probability": 0.2756 + }, + { + "start": 16088.88, + "end": 16090.56, + "probability": 0.7437 + }, + { + "start": 16090.66, + "end": 16090.78, + "probability": 0.3055 + }, + { + "start": 16090.78, + "end": 16094.24, + "probability": 0.3584 + }, + { + "start": 16094.46, + "end": 16094.46, + "probability": 0.321 + }, + { + "start": 16094.46, + "end": 16096.6, + "probability": 0.713 + }, + { + "start": 16096.6, + "end": 16096.78, + "probability": 0.1182 + }, + { + "start": 16096.78, + "end": 16096.82, + "probability": 0.1203 + }, + { + "start": 16096.82, + "end": 16096.82, + "probability": 0.1176 + }, + { + "start": 16096.82, + "end": 16096.82, + "probability": 0.0529 + }, + { + "start": 16096.82, + "end": 16098.04, + "probability": 0.6059 + }, + { + "start": 16098.06, + "end": 16100.08, + "probability": 0.6889 + }, + { + "start": 16100.38, + "end": 16102.0, + "probability": 0.8327 + }, + { + "start": 16102.54, + "end": 16103.94, + "probability": 0.983 + }, + { + "start": 16104.02, + "end": 16104.86, + "probability": 0.9751 + }, + { + "start": 16105.34, + "end": 16105.54, + "probability": 0.3997 + }, + { + "start": 16105.54, + "end": 16106.73, + "probability": 0.4567 + }, + { + "start": 16107.12, + "end": 16108.02, + "probability": 0.5642 + }, + { + "start": 16108.56, + "end": 16108.84, + "probability": 0.1454 + }, + { + "start": 16108.84, + "end": 16108.84, + "probability": 0.0379 + }, + { + "start": 16108.84, + "end": 16109.82, + "probability": 0.5264 + }, + { + "start": 16110.12, + "end": 16111.52, + "probability": 0.6196 + }, + { + "start": 16112.5, + "end": 16113.4, + "probability": 0.6462 + }, + { + "start": 16113.42, + "end": 16114.26, + "probability": 0.9121 + }, + { + "start": 16114.56, + "end": 16117.78, + "probability": 0.9564 + }, + { + "start": 16117.78, + "end": 16120.3, + "probability": 0.919 + }, + { + "start": 16120.38, + "end": 16121.0, + "probability": 0.4686 + }, + { + "start": 16121.1, + "end": 16121.87, + "probability": 0.6915 + }, + { + "start": 16122.16, + "end": 16124.8, + "probability": 0.6473 + }, + { + "start": 16125.96, + "end": 16126.2, + "probability": 0.0774 + }, + { + "start": 16126.2, + "end": 16126.76, + "probability": 0.1152 + }, + { + "start": 16126.86, + "end": 16127.32, + "probability": 0.4901 + }, + { + "start": 16127.32, + "end": 16127.32, + "probability": 0.0176 + }, + { + "start": 16127.32, + "end": 16127.32, + "probability": 0.3784 + }, + { + "start": 16127.32, + "end": 16127.82, + "probability": 0.8214 + }, + { + "start": 16127.98, + "end": 16129.54, + "probability": 0.8027 + }, + { + "start": 16129.6, + "end": 16130.08, + "probability": 0.721 + }, + { + "start": 16134.0, + "end": 16134.0, + "probability": 0.0 + }, + { + "start": 16134.0, + "end": 16134.0, + "probability": 0.0 + }, + { + "start": 16134.0, + "end": 16134.0, + "probability": 0.0 + }, + { + "start": 16134.0, + "end": 16134.0, + "probability": 0.0 + }, + { + "start": 16134.18, + "end": 16135.42, + "probability": 0.1773 + }, + { + "start": 16135.46, + "end": 16138.54, + "probability": 0.696 + }, + { + "start": 16138.62, + "end": 16141.02, + "probability": 0.6405 + }, + { + "start": 16141.02, + "end": 16141.02, + "probability": 0.0663 + }, + { + "start": 16141.02, + "end": 16145.38, + "probability": 0.9565 + }, + { + "start": 16146.12, + "end": 16147.94, + "probability": 0.9592 + }, + { + "start": 16148.52, + "end": 16151.48, + "probability": 0.9868 + }, + { + "start": 16152.0, + "end": 16153.44, + "probability": 0.991 + }, + { + "start": 16153.82, + "end": 16158.38, + "probability": 0.9941 + }, + { + "start": 16158.54, + "end": 16159.44, + "probability": 0.9221 + }, + { + "start": 16160.5, + "end": 16165.34, + "probability": 0.9983 + }, + { + "start": 16165.62, + "end": 16170.68, + "probability": 0.9989 + }, + { + "start": 16171.16, + "end": 16174.34, + "probability": 0.9879 + }, + { + "start": 16174.8, + "end": 16175.62, + "probability": 0.8728 + }, + { + "start": 16176.2, + "end": 16178.88, + "probability": 0.981 + }, + { + "start": 16179.5, + "end": 16180.86, + "probability": 0.7063 + }, + { + "start": 16181.44, + "end": 16182.88, + "probability": 0.8504 + }, + { + "start": 16182.96, + "end": 16186.47, + "probability": 0.9391 + }, + { + "start": 16186.68, + "end": 16188.9, + "probability": 0.9907 + }, + { + "start": 16189.58, + "end": 16191.24, + "probability": 0.5685 + }, + { + "start": 16191.24, + "end": 16191.66, + "probability": 0.958 + }, + { + "start": 16192.79, + "end": 16197.74, + "probability": 0.9699 + }, + { + "start": 16197.92, + "end": 16198.3, + "probability": 0.6957 + }, + { + "start": 16199.18, + "end": 16200.42, + "probability": 0.7651 + }, + { + "start": 16200.54, + "end": 16203.94, + "probability": 0.8118 + }, + { + "start": 16203.96, + "end": 16206.16, + "probability": 0.5861 + }, + { + "start": 16208.22, + "end": 16208.88, + "probability": 0.1559 + }, + { + "start": 16209.38, + "end": 16209.58, + "probability": 0.3041 + }, + { + "start": 16209.58, + "end": 16210.5, + "probability": 0.8032 + }, + { + "start": 16210.54, + "end": 16210.6, + "probability": 0.1556 + }, + { + "start": 16210.66, + "end": 16214.28, + "probability": 0.6924 + }, + { + "start": 16214.3, + "end": 16215.0, + "probability": 0.4443 + }, + { + "start": 16215.0, + "end": 16215.2, + "probability": 0.2515 + }, + { + "start": 16215.34, + "end": 16215.95, + "probability": 0.914 + }, + { + "start": 16216.08, + "end": 16219.42, + "probability": 0.764 + }, + { + "start": 16220.14, + "end": 16221.96, + "probability": 0.6749 + }, + { + "start": 16222.8, + "end": 16223.4, + "probability": 0.7658 + }, + { + "start": 16223.58, + "end": 16226.16, + "probability": 0.9531 + }, + { + "start": 16226.66, + "end": 16227.74, + "probability": 0.3467 + }, + { + "start": 16227.84, + "end": 16228.06, + "probability": 0.3504 + }, + { + "start": 16228.2, + "end": 16228.4, + "probability": 0.5086 + }, + { + "start": 16228.52, + "end": 16228.84, + "probability": 0.3725 + }, + { + "start": 16232.74, + "end": 16232.76, + "probability": 0.0205 + }, + { + "start": 16232.76, + "end": 16232.76, + "probability": 0.0558 + }, + { + "start": 16232.76, + "end": 16234.21, + "probability": 0.7285 + }, + { + "start": 16234.34, + "end": 16236.74, + "probability": 0.8838 + }, + { + "start": 16237.2, + "end": 16241.3, + "probability": 0.7889 + }, + { + "start": 16241.64, + "end": 16242.87, + "probability": 0.8813 + }, + { + "start": 16242.96, + "end": 16243.1, + "probability": 0.3953 + }, + { + "start": 16243.3, + "end": 16245.7, + "probability": 0.9035 + }, + { + "start": 16246.64, + "end": 16248.82, + "probability": 0.6281 + }, + { + "start": 16249.28, + "end": 16252.9, + "probability": 0.9223 + }, + { + "start": 16254.64, + "end": 16254.64, + "probability": 0.5349 + }, + { + "start": 16254.64, + "end": 16255.16, + "probability": 0.76 + }, + { + "start": 16255.3, + "end": 16255.3, + "probability": 0.7635 + }, + { + "start": 16255.3, + "end": 16255.3, + "probability": 0.7412 + }, + { + "start": 16255.3, + "end": 16256.19, + "probability": 0.9849 + }, + { + "start": 16256.5, + "end": 16257.84, + "probability": 0.7069 + }, + { + "start": 16258.44, + "end": 16258.98, + "probability": 0.8915 + }, + { + "start": 16260.76, + "end": 16261.94, + "probability": 0.546 + }, + { + "start": 16262.16, + "end": 16262.2, + "probability": 0.3174 + }, + { + "start": 16262.2, + "end": 16262.96, + "probability": 0.4063 + }, + { + "start": 16263.1, + "end": 16267.48, + "probability": 0.9922 + }, + { + "start": 16268.62, + "end": 16273.47, + "probability": 0.9956 + }, + { + "start": 16274.96, + "end": 16276.55, + "probability": 0.9961 + }, + { + "start": 16276.82, + "end": 16277.86, + "probability": 0.8496 + }, + { + "start": 16278.18, + "end": 16279.94, + "probability": 0.9935 + }, + { + "start": 16280.96, + "end": 16282.88, + "probability": 0.9391 + }, + { + "start": 16282.94, + "end": 16283.3, + "probability": 0.1345 + }, + { + "start": 16283.72, + "end": 16284.84, + "probability": 0.9851 + }, + { + "start": 16285.58, + "end": 16286.1, + "probability": 0.8611 + }, + { + "start": 16286.24, + "end": 16288.84, + "probability": 0.9811 + }, + { + "start": 16289.22, + "end": 16290.86, + "probability": 0.9914 + }, + { + "start": 16290.98, + "end": 16292.38, + "probability": 0.9122 + }, + { + "start": 16293.18, + "end": 16295.44, + "probability": 0.9816 + }, + { + "start": 16296.02, + "end": 16299.4, + "probability": 0.9958 + }, + { + "start": 16299.92, + "end": 16302.56, + "probability": 0.9938 + }, + { + "start": 16302.8, + "end": 16304.84, + "probability": 0.989 + }, + { + "start": 16305.56, + "end": 16308.5, + "probability": 0.9603 + }, + { + "start": 16308.64, + "end": 16310.34, + "probability": 0.5404 + }, + { + "start": 16311.54, + "end": 16312.86, + "probability": 0.6429 + }, + { + "start": 16315.44, + "end": 16316.42, + "probability": 0.7737 + }, + { + "start": 16316.5, + "end": 16317.24, + "probability": 0.7462 + }, + { + "start": 16317.64, + "end": 16320.46, + "probability": 0.9307 + }, + { + "start": 16321.3, + "end": 16322.6, + "probability": 0.6708 + }, + { + "start": 16322.66, + "end": 16324.19, + "probability": 0.9761 + }, + { + "start": 16324.24, + "end": 16331.58, + "probability": 0.9842 + }, + { + "start": 16332.32, + "end": 16335.02, + "probability": 0.7471 + }, + { + "start": 16335.94, + "end": 16340.86, + "probability": 0.9941 + }, + { + "start": 16341.52, + "end": 16345.88, + "probability": 0.9952 + }, + { + "start": 16346.38, + "end": 16347.28, + "probability": 0.9985 + }, + { + "start": 16348.06, + "end": 16349.3, + "probability": 0.9434 + }, + { + "start": 16349.42, + "end": 16352.06, + "probability": 0.9528 + }, + { + "start": 16352.42, + "end": 16354.46, + "probability": 0.9961 + }, + { + "start": 16355.36, + "end": 16358.4, + "probability": 0.9473 + }, + { + "start": 16359.76, + "end": 16363.64, + "probability": 0.9713 + }, + { + "start": 16363.7, + "end": 16364.4, + "probability": 0.5662 + }, + { + "start": 16364.66, + "end": 16365.42, + "probability": 0.7763 + }, + { + "start": 16365.5, + "end": 16366.28, + "probability": 0.9819 + }, + { + "start": 16366.36, + "end": 16366.66, + "probability": 0.4096 + }, + { + "start": 16366.66, + "end": 16366.8, + "probability": 0.3966 + }, + { + "start": 16366.88, + "end": 16367.25, + "probability": 0.9546 + }, + { + "start": 16367.76, + "end": 16369.0, + "probability": 0.9229 + }, + { + "start": 16369.08, + "end": 16371.08, + "probability": 0.9458 + }, + { + "start": 16371.28, + "end": 16374.5, + "probability": 0.997 + }, + { + "start": 16374.5, + "end": 16378.8, + "probability": 0.9917 + }, + { + "start": 16378.86, + "end": 16378.88, + "probability": 0.1522 + }, + { + "start": 16378.94, + "end": 16381.2, + "probability": 0.9507 + }, + { + "start": 16381.76, + "end": 16382.96, + "probability": 0.9604 + }, + { + "start": 16383.02, + "end": 16383.52, + "probability": 0.8683 + }, + { + "start": 16383.62, + "end": 16386.3, + "probability": 0.9709 + }, + { + "start": 16386.7, + "end": 16389.5, + "probability": 0.9713 + }, + { + "start": 16390.24, + "end": 16394.2, + "probability": 0.9019 + }, + { + "start": 16394.84, + "end": 16395.58, + "probability": 0.9785 + }, + { + "start": 16396.04, + "end": 16396.4, + "probability": 0.6343 + }, + { + "start": 16396.44, + "end": 16396.54, + "probability": 0.5919 + }, + { + "start": 16396.58, + "end": 16397.4, + "probability": 0.8075 + }, + { + "start": 16397.46, + "end": 16400.12, + "probability": 0.9805 + }, + { + "start": 16405.78, + "end": 16406.46, + "probability": 0.6509 + }, + { + "start": 16407.6, + "end": 16408.89, + "probability": 0.9868 + }, + { + "start": 16409.76, + "end": 16413.7, + "probability": 0.9527 + }, + { + "start": 16413.7, + "end": 16416.76, + "probability": 0.9971 + }, + { + "start": 16418.36, + "end": 16420.52, + "probability": 0.9438 + }, + { + "start": 16420.52, + "end": 16421.81, + "probability": 0.9905 + }, + { + "start": 16423.28, + "end": 16425.49, + "probability": 0.7593 + }, + { + "start": 16427.76, + "end": 16430.2, + "probability": 0.9951 + }, + { + "start": 16430.86, + "end": 16432.08, + "probability": 0.9668 + }, + { + "start": 16433.4, + "end": 16436.08, + "probability": 0.8496 + }, + { + "start": 16436.74, + "end": 16437.64, + "probability": 0.7205 + }, + { + "start": 16437.7, + "end": 16441.24, + "probability": 0.5003 + }, + { + "start": 16441.28, + "end": 16442.14, + "probability": 0.9521 + }, + { + "start": 16442.66, + "end": 16443.84, + "probability": 0.9377 + }, + { + "start": 16444.22, + "end": 16447.34, + "probability": 0.8908 + }, + { + "start": 16447.76, + "end": 16449.3, + "probability": 0.9686 + }, + { + "start": 16449.42, + "end": 16450.34, + "probability": 0.8721 + }, + { + "start": 16450.9, + "end": 16453.02, + "probability": 0.6001 + }, + { + "start": 16454.64, + "end": 16455.5, + "probability": 0.8198 + }, + { + "start": 16456.38, + "end": 16459.74, + "probability": 0.9848 + }, + { + "start": 16459.88, + "end": 16462.2, + "probability": 0.8225 + }, + { + "start": 16462.2, + "end": 16463.38, + "probability": 0.0338 + }, + { + "start": 16463.58, + "end": 16463.93, + "probability": 0.4278 + }, + { + "start": 16464.46, + "end": 16465.62, + "probability": 0.6352 + }, + { + "start": 16465.8, + "end": 16466.57, + "probability": 0.4096 + }, + { + "start": 16468.5, + "end": 16469.08, + "probability": 0.8289 + }, + { + "start": 16470.78, + "end": 16473.48, + "probability": 0.7488 + }, + { + "start": 16473.64, + "end": 16476.02, + "probability": 0.1319 + }, + { + "start": 16476.36, + "end": 16477.59, + "probability": 0.9467 + }, + { + "start": 16477.9, + "end": 16478.94, + "probability": 0.9758 + }, + { + "start": 16479.08, + "end": 16480.66, + "probability": 0.495 + }, + { + "start": 16481.54, + "end": 16488.04, + "probability": 0.9895 + }, + { + "start": 16488.34, + "end": 16489.2, + "probability": 0.9019 + }, + { + "start": 16489.28, + "end": 16489.74, + "probability": 0.7424 + }, + { + "start": 16489.74, + "end": 16490.44, + "probability": 0.5478 + }, + { + "start": 16490.58, + "end": 16494.54, + "probability": 0.86 + }, + { + "start": 16495.16, + "end": 16495.3, + "probability": 0.5599 + }, + { + "start": 16495.52, + "end": 16496.24, + "probability": 0.891 + }, + { + "start": 16496.58, + "end": 16501.9, + "probability": 0.9275 + }, + { + "start": 16502.24, + "end": 16503.44, + "probability": 0.5911 + }, + { + "start": 16503.64, + "end": 16506.24, + "probability": 0.8701 + }, + { + "start": 16506.5, + "end": 16507.34, + "probability": 0.9424 + }, + { + "start": 16507.7, + "end": 16508.92, + "probability": 0.7408 + }, + { + "start": 16509.42, + "end": 16510.14, + "probability": 0.7173 + }, + { + "start": 16510.16, + "end": 16510.84, + "probability": 0.8321 + }, + { + "start": 16510.88, + "end": 16513.44, + "probability": 0.8578 + }, + { + "start": 16513.78, + "end": 16515.62, + "probability": 0.9735 + }, + { + "start": 16515.96, + "end": 16516.88, + "probability": 0.8161 + }, + { + "start": 16516.96, + "end": 16517.84, + "probability": 0.9175 + }, + { + "start": 16518.08, + "end": 16519.42, + "probability": 0.9439 + }, + { + "start": 16519.86, + "end": 16520.94, + "probability": 0.9929 + }, + { + "start": 16521.66, + "end": 16522.2, + "probability": 0.5248 + }, + { + "start": 16522.54, + "end": 16524.4, + "probability": 0.3584 + }, + { + "start": 16524.46, + "end": 16524.74, + "probability": 0.4938 + }, + { + "start": 16524.74, + "end": 16528.26, + "probability": 0.9834 + }, + { + "start": 16528.26, + "end": 16530.62, + "probability": 0.9363 + }, + { + "start": 16531.08, + "end": 16536.04, + "probability": 0.9256 + }, + { + "start": 16537.52, + "end": 16539.24, + "probability": 0.9883 + }, + { + "start": 16539.62, + "end": 16544.04, + "probability": 0.967 + }, + { + "start": 16544.04, + "end": 16544.04, + "probability": 0.6142 + }, + { + "start": 16546.66, + "end": 16549.08, + "probability": 0.5785 + }, + { + "start": 16549.94, + "end": 16552.06, + "probability": 0.9956 + }, + { + "start": 16552.06, + "end": 16555.08, + "probability": 0.9988 + }, + { + "start": 16556.5, + "end": 16557.64, + "probability": 0.9297 + }, + { + "start": 16558.5, + "end": 16560.22, + "probability": 0.5657 + }, + { + "start": 16561.28, + "end": 16563.02, + "probability": 0.7607 + }, + { + "start": 16563.1, + "end": 16564.54, + "probability": 0.8881 + }, + { + "start": 16564.68, + "end": 16565.24, + "probability": 0.7363 + }, + { + "start": 16565.36, + "end": 16566.01, + "probability": 0.7949 + }, + { + "start": 16566.94, + "end": 16567.7, + "probability": 0.9639 + }, + { + "start": 16567.82, + "end": 16570.54, + "probability": 0.9767 + }, + { + "start": 16571.22, + "end": 16572.82, + "probability": 0.786 + }, + { + "start": 16573.48, + "end": 16575.32, + "probability": 0.981 + }, + { + "start": 16575.82, + "end": 16576.98, + "probability": 0.7778 + }, + { + "start": 16577.04, + "end": 16577.4, + "probability": 0.6498 + }, + { + "start": 16577.56, + "end": 16577.96, + "probability": 0.8376 + }, + { + "start": 16579.3, + "end": 16580.9, + "probability": 0.7376 + }, + { + "start": 16581.54, + "end": 16582.38, + "probability": 0.3349 + }, + { + "start": 16582.4, + "end": 16586.0, + "probability": 0.941 + }, + { + "start": 16587.1, + "end": 16592.66, + "probability": 0.9526 + }, + { + "start": 16593.54, + "end": 16598.92, + "probability": 0.9971 + }, + { + "start": 16599.96, + "end": 16601.94, + "probability": 0.8056 + }, + { + "start": 16602.92, + "end": 16604.92, + "probability": 0.9437 + }, + { + "start": 16605.02, + "end": 16607.48, + "probability": 0.7709 + }, + { + "start": 16608.36, + "end": 16610.32, + "probability": 0.8275 + }, + { + "start": 16610.42, + "end": 16612.86, + "probability": 0.8979 + }, + { + "start": 16612.96, + "end": 16614.04, + "probability": 0.6695 + }, + { + "start": 16614.1, + "end": 16615.16, + "probability": 0.9568 + }, + { + "start": 16615.2, + "end": 16615.5, + "probability": 0.8041 + }, + { + "start": 16616.48, + "end": 16619.04, + "probability": 0.8608 + }, + { + "start": 16619.1, + "end": 16621.32, + "probability": 0.8547 + }, + { + "start": 16622.96, + "end": 16623.78, + "probability": 0.2726 + }, + { + "start": 16624.0, + "end": 16625.28, + "probability": 0.8236 + }, + { + "start": 16625.48, + "end": 16627.44, + "probability": 0.6984 + }, + { + "start": 16627.54, + "end": 16628.98, + "probability": 0.9773 + }, + { + "start": 16629.12, + "end": 16630.0, + "probability": 0.5068 + }, + { + "start": 16630.04, + "end": 16632.84, + "probability": 0.6988 + }, + { + "start": 16633.5, + "end": 16635.86, + "probability": 0.8491 + }, + { + "start": 16636.06, + "end": 16636.5, + "probability": 0.6529 + }, + { + "start": 16637.1, + "end": 16638.42, + "probability": 0.8382 + }, + { + "start": 16650.98, + "end": 16654.81, + "probability": 0.1374 + }, + { + "start": 16655.58, + "end": 16656.84, + "probability": 0.6658 + }, + { + "start": 16657.18, + "end": 16657.38, + "probability": 0.3916 + }, + { + "start": 16657.5, + "end": 16657.88, + "probability": 0.0882 + }, + { + "start": 16658.16, + "end": 16658.48, + "probability": 0.6989 + }, + { + "start": 16658.56, + "end": 16662.25, + "probability": 0.8051 + }, + { + "start": 16662.66, + "end": 16666.9, + "probability": 0.9492 + }, + { + "start": 16667.46, + "end": 16670.58, + "probability": 0.9883 + }, + { + "start": 16670.74, + "end": 16671.28, + "probability": 0.8581 + }, + { + "start": 16671.84, + "end": 16673.06, + "probability": 0.7648 + }, + { + "start": 16673.16, + "end": 16674.06, + "probability": 0.6652 + }, + { + "start": 16674.16, + "end": 16676.07, + "probability": 0.9305 + }, + { + "start": 16676.72, + "end": 16678.1, + "probability": 0.9939 + }, + { + "start": 16678.32, + "end": 16681.0, + "probability": 0.9336 + }, + { + "start": 16681.44, + "end": 16683.92, + "probability": 0.2259 + }, + { + "start": 16684.14, + "end": 16685.24, + "probability": 0.7191 + }, + { + "start": 16685.32, + "end": 16686.12, + "probability": 0.7245 + }, + { + "start": 16686.18, + "end": 16686.62, + "probability": 0.7782 + }, + { + "start": 16687.56, + "end": 16691.97, + "probability": 0.6751 + }, + { + "start": 16693.02, + "end": 16693.68, + "probability": 0.0154 + }, + { + "start": 16693.68, + "end": 16693.96, + "probability": 0.059 + }, + { + "start": 16693.96, + "end": 16696.68, + "probability": 0.7391 + }, + { + "start": 16697.34, + "end": 16699.78, + "probability": 0.7517 + }, + { + "start": 16700.12, + "end": 16700.88, + "probability": 0.8023 + }, + { + "start": 16704.78, + "end": 16705.36, + "probability": 0.8558 + }, + { + "start": 16706.12, + "end": 16706.4, + "probability": 0.8048 + }, + { + "start": 16708.92, + "end": 16710.62, + "probability": 0.4953 + }, + { + "start": 16711.66, + "end": 16713.66, + "probability": 0.792 + }, + { + "start": 16715.4, + "end": 16715.78, + "probability": 0.5391 + }, + { + "start": 16716.1, + "end": 16717.3, + "probability": 0.9043 + }, + { + "start": 16717.38, + "end": 16718.1, + "probability": 0.951 + }, + { + "start": 16718.14, + "end": 16719.26, + "probability": 0.6769 + }, + { + "start": 16719.52, + "end": 16721.51, + "probability": 0.97 + }, + { + "start": 16722.62, + "end": 16723.48, + "probability": 0.9987 + }, + { + "start": 16724.7, + "end": 16725.88, + "probability": 0.7829 + }, + { + "start": 16727.02, + "end": 16729.54, + "probability": 0.777 + }, + { + "start": 16729.64, + "end": 16730.26, + "probability": 0.4458 + }, + { + "start": 16730.44, + "end": 16731.77, + "probability": 0.595 + }, + { + "start": 16732.56, + "end": 16736.2, + "probability": 0.9293 + }, + { + "start": 16736.86, + "end": 16741.86, + "probability": 0.9844 + }, + { + "start": 16742.66, + "end": 16747.91, + "probability": 0.6669 + }, + { + "start": 16748.66, + "end": 16750.62, + "probability": 0.6223 + }, + { + "start": 16751.66, + "end": 16753.1, + "probability": 0.6752 + }, + { + "start": 16753.64, + "end": 16754.56, + "probability": 0.6239 + }, + { + "start": 16758.74, + "end": 16763.04, + "probability": 0.9718 + }, + { + "start": 16763.7, + "end": 16765.92, + "probability": 0.939 + }, + { + "start": 16766.02, + "end": 16768.48, + "probability": 0.7716 + }, + { + "start": 16768.98, + "end": 16769.9, + "probability": 0.5955 + }, + { + "start": 16770.3, + "end": 16771.06, + "probability": 0.7602 + }, + { + "start": 16771.12, + "end": 16771.82, + "probability": 0.9124 + }, + { + "start": 16773.96, + "end": 16776.8, + "probability": 0.806 + }, + { + "start": 16778.68, + "end": 16782.32, + "probability": 0.9896 + }, + { + "start": 16784.14, + "end": 16786.26, + "probability": 0.9985 + }, + { + "start": 16786.32, + "end": 16789.12, + "probability": 0.998 + }, + { + "start": 16789.98, + "end": 16792.2, + "probability": 0.7963 + }, + { + "start": 16794.92, + "end": 16799.56, + "probability": 0.7172 + }, + { + "start": 16800.28, + "end": 16804.06, + "probability": 0.9985 + }, + { + "start": 16805.6, + "end": 16807.4, + "probability": 0.9782 + }, + { + "start": 16808.32, + "end": 16810.02, + "probability": 0.8564 + }, + { + "start": 16811.46, + "end": 16811.46, + "probability": 0.3904 + }, + { + "start": 16812.9, + "end": 16813.54, + "probability": 0.4754 + }, + { + "start": 16814.28, + "end": 16815.12, + "probability": 0.9459 + }, + { + "start": 16815.2, + "end": 16817.1, + "probability": 0.9199 + }, + { + "start": 16817.2, + "end": 16818.22, + "probability": 0.7665 + }, + { + "start": 16818.8, + "end": 16823.66, + "probability": 0.9761 + }, + { + "start": 16823.88, + "end": 16825.26, + "probability": 0.9826 + }, + { + "start": 16826.68, + "end": 16828.0, + "probability": 0.9751 + }, + { + "start": 16828.12, + "end": 16828.74, + "probability": 0.548 + }, + { + "start": 16828.8, + "end": 16830.13, + "probability": 0.637 + }, + { + "start": 16830.86, + "end": 16832.98, + "probability": 0.9859 + }, + { + "start": 16834.18, + "end": 16835.78, + "probability": 0.9145 + }, + { + "start": 16836.7, + "end": 16837.64, + "probability": 0.9304 + }, + { + "start": 16839.24, + "end": 16840.06, + "probability": 0.9434 + }, + { + "start": 16840.5, + "end": 16841.0, + "probability": 0.4819 + }, + { + "start": 16841.04, + "end": 16842.28, + "probability": 0.7536 + }, + { + "start": 16842.46, + "end": 16842.72, + "probability": 0.3834 + }, + { + "start": 16842.82, + "end": 16845.56, + "probability": 0.9884 + }, + { + "start": 16846.7, + "end": 16847.16, + "probability": 0.82 + }, + { + "start": 16847.62, + "end": 16847.98, + "probability": 0.9632 + }, + { + "start": 16848.1, + "end": 16848.46, + "probability": 0.6206 + }, + { + "start": 16848.48, + "end": 16850.56, + "probability": 0.8358 + }, + { + "start": 16851.36, + "end": 16857.14, + "probability": 0.9886 + }, + { + "start": 16857.54, + "end": 16861.68, + "probability": 0.9426 + }, + { + "start": 16861.92, + "end": 16862.54, + "probability": 0.3535 + }, + { + "start": 16862.6, + "end": 16863.0, + "probability": 0.4114 + }, + { + "start": 16863.1, + "end": 16864.0, + "probability": 0.5025 + }, + { + "start": 16865.22, + "end": 16868.14, + "probability": 0.9819 + }, + { + "start": 16869.7, + "end": 16870.32, + "probability": 0.9167 + }, + { + "start": 16871.0, + "end": 16873.06, + "probability": 0.9861 + }, + { + "start": 16873.06, + "end": 16874.52, + "probability": 0.6226 + }, + { + "start": 16875.48, + "end": 16876.56, + "probability": 0.9812 + }, + { + "start": 16877.36, + "end": 16879.5, + "probability": 0.992 + }, + { + "start": 16881.38, + "end": 16882.72, + "probability": 0.9858 + }, + { + "start": 16884.92, + "end": 16885.6, + "probability": 0.5782 + }, + { + "start": 16885.66, + "end": 16886.2, + "probability": 0.6116 + }, + { + "start": 16886.32, + "end": 16891.38, + "probability": 0.9534 + }, + { + "start": 16892.62, + "end": 16895.2, + "probability": 0.9595 + }, + { + "start": 16896.04, + "end": 16901.38, + "probability": 0.8967 + }, + { + "start": 16902.14, + "end": 16904.22, + "probability": 0.378 + }, + { + "start": 16904.48, + "end": 16907.68, + "probability": 0.7324 + }, + { + "start": 16908.26, + "end": 16909.82, + "probability": 0.9164 + }, + { + "start": 16910.38, + "end": 16911.1, + "probability": 0.8885 + }, + { + "start": 16911.68, + "end": 16912.9, + "probability": 0.9766 + }, + { + "start": 16913.04, + "end": 16914.0, + "probability": 0.9408 + }, + { + "start": 16914.62, + "end": 16917.08, + "probability": 0.9982 + }, + { + "start": 16918.64, + "end": 16922.1, + "probability": 0.9974 + }, + { + "start": 16923.88, + "end": 16924.16, + "probability": 0.7534 + }, + { + "start": 16925.0, + "end": 16926.9, + "probability": 0.8389 + }, + { + "start": 16927.62, + "end": 16929.64, + "probability": 0.9233 + }, + { + "start": 16930.4, + "end": 16935.22, + "probability": 0.6811 + }, + { + "start": 16937.18, + "end": 16940.18, + "probability": 0.796 + }, + { + "start": 16941.66, + "end": 16942.5, + "probability": 0.9827 + }, + { + "start": 16943.02, + "end": 16944.76, + "probability": 0.9937 + }, + { + "start": 16945.72, + "end": 16946.74, + "probability": 0.941 + }, + { + "start": 16947.6, + "end": 16951.26, + "probability": 0.6597 + }, + { + "start": 16952.14, + "end": 16955.4, + "probability": 0.9844 + }, + { + "start": 16956.38, + "end": 16958.06, + "probability": 0.8022 + }, + { + "start": 16959.18, + "end": 16959.82, + "probability": 0.6546 + }, + { + "start": 16959.86, + "end": 16964.46, + "probability": 0.8674 + }, + { + "start": 16964.52, + "end": 16966.24, + "probability": 0.8709 + }, + { + "start": 16966.96, + "end": 16967.52, + "probability": 0.8366 + }, + { + "start": 16968.08, + "end": 16971.76, + "probability": 0.9576 + }, + { + "start": 16972.7, + "end": 16974.66, + "probability": 0.9917 + }, + { + "start": 16975.3, + "end": 16978.76, + "probability": 0.8241 + }, + { + "start": 16979.44, + "end": 16981.3, + "probability": 0.9651 + }, + { + "start": 16982.14, + "end": 16985.46, + "probability": 0.9246 + }, + { + "start": 16985.8, + "end": 16987.2, + "probability": 0.9851 + }, + { + "start": 16988.12, + "end": 16988.98, + "probability": 0.991 + }, + { + "start": 16989.16, + "end": 16992.16, + "probability": 0.8717 + }, + { + "start": 16992.22, + "end": 16994.74, + "probability": 0.9952 + }, + { + "start": 16994.94, + "end": 16996.59, + "probability": 0.8259 + }, + { + "start": 16996.86, + "end": 16998.8, + "probability": 0.8199 + }, + { + "start": 16999.04, + "end": 17000.52, + "probability": 0.9471 + }, + { + "start": 17000.62, + "end": 17002.82, + "probability": 0.9043 + }, + { + "start": 17003.94, + "end": 17004.56, + "probability": 0.2266 + }, + { + "start": 17004.62, + "end": 17007.22, + "probability": 0.7312 + }, + { + "start": 17007.3, + "end": 17009.42, + "probability": 0.9367 + }, + { + "start": 17009.84, + "end": 17010.62, + "probability": 0.6065 + }, + { + "start": 17010.98, + "end": 17013.4, + "probability": 0.9449 + }, + { + "start": 17013.58, + "end": 17014.44, + "probability": 0.9508 + }, + { + "start": 17014.82, + "end": 17017.02, + "probability": 0.4403 + }, + { + "start": 17017.06, + "end": 17017.98, + "probability": 0.8694 + }, + { + "start": 17019.0, + "end": 17022.04, + "probability": 0.9616 + }, + { + "start": 17022.6, + "end": 17022.95, + "probability": 0.7163 + }, + { + "start": 17023.2, + "end": 17025.34, + "probability": 0.8196 + }, + { + "start": 17026.47, + "end": 17027.36, + "probability": 0.9233 + }, + { + "start": 17027.44, + "end": 17028.96, + "probability": 0.9895 + }, + { + "start": 17029.26, + "end": 17030.62, + "probability": 0.7318 + }, + { + "start": 17030.84, + "end": 17031.32, + "probability": 0.8116 + }, + { + "start": 17031.32, + "end": 17036.3, + "probability": 0.8294 + }, + { + "start": 17036.76, + "end": 17038.32, + "probability": 0.8676 + }, + { + "start": 17038.58, + "end": 17039.9, + "probability": 0.8205 + }, + { + "start": 17039.94, + "end": 17040.5, + "probability": 0.3085 + }, + { + "start": 17040.94, + "end": 17041.61, + "probability": 0.7527 + }, + { + "start": 17042.06, + "end": 17042.42, + "probability": 0.0715 + }, + { + "start": 17042.58, + "end": 17043.42, + "probability": 0.3462 + }, + { + "start": 17043.54, + "end": 17044.6, + "probability": 0.7489 + }, + { + "start": 17044.66, + "end": 17050.46, + "probability": 0.6672 + }, + { + "start": 17050.56, + "end": 17051.28, + "probability": 0.5268 + }, + { + "start": 17051.52, + "end": 17052.62, + "probability": 0.8629 + }, + { + "start": 17053.08, + "end": 17053.62, + "probability": 0.7643 + }, + { + "start": 17053.72, + "end": 17054.5, + "probability": 0.8378 + }, + { + "start": 17054.62, + "end": 17055.08, + "probability": 0.92 + }, + { + "start": 17055.52, + "end": 17056.34, + "probability": 0.8086 + }, + { + "start": 17056.78, + "end": 17058.28, + "probability": 0.5531 + }, + { + "start": 17058.28, + "end": 17058.66, + "probability": 0.5886 + }, + { + "start": 17059.18, + "end": 17060.96, + "probability": 0.917 + }, + { + "start": 17061.22, + "end": 17063.68, + "probability": 0.963 + }, + { + "start": 17063.92, + "end": 17064.75, + "probability": 0.7862 + }, + { + "start": 17064.92, + "end": 17066.4, + "probability": 0.9441 + }, + { + "start": 17067.06, + "end": 17069.4, + "probability": 0.9744 + }, + { + "start": 17070.08, + "end": 17072.94, + "probability": 0.952 + }, + { + "start": 17073.9, + "end": 17076.74, + "probability": 0.9563 + }, + { + "start": 17076.92, + "end": 17077.2, + "probability": 0.5537 + }, + { + "start": 17077.94, + "end": 17078.84, + "probability": 0.8992 + }, + { + "start": 17079.48, + "end": 17080.06, + "probability": 0.7712 + }, + { + "start": 17080.14, + "end": 17081.86, + "probability": 0.9555 + }, + { + "start": 17082.24, + "end": 17082.72, + "probability": 0.5596 + }, + { + "start": 17082.74, + "end": 17083.22, + "probability": 0.405 + }, + { + "start": 17083.42, + "end": 17083.96, + "probability": 0.8607 + }, + { + "start": 17084.4, + "end": 17084.88, + "probability": 0.8978 + }, + { + "start": 17085.02, + "end": 17086.86, + "probability": 0.9613 + }, + { + "start": 17087.0, + "end": 17087.94, + "probability": 0.8378 + }, + { + "start": 17087.96, + "end": 17089.14, + "probability": 0.7886 + }, + { + "start": 17089.18, + "end": 17094.37, + "probability": 0.9139 + }, + { + "start": 17095.0, + "end": 17100.66, + "probability": 0.9876 + }, + { + "start": 17100.82, + "end": 17103.6, + "probability": 0.9934 + }, + { + "start": 17103.6, + "end": 17107.44, + "probability": 0.9767 + }, + { + "start": 17108.01, + "end": 17109.78, + "probability": 0.758 + }, + { + "start": 17110.32, + "end": 17110.9, + "probability": 0.9648 + }, + { + "start": 17110.9, + "end": 17112.02, + "probability": 0.9907 + }, + { + "start": 17112.06, + "end": 17113.98, + "probability": 0.9927 + }, + { + "start": 17114.38, + "end": 17115.52, + "probability": 0.9014 + }, + { + "start": 17115.56, + "end": 17118.0, + "probability": 0.9746 + }, + { + "start": 17118.4, + "end": 17119.66, + "probability": 0.3058 + }, + { + "start": 17119.68, + "end": 17120.44, + "probability": 0.9803 + }, + { + "start": 17120.5, + "end": 17122.34, + "probability": 0.8151 + }, + { + "start": 17122.46, + "end": 17123.56, + "probability": 0.8838 + }, + { + "start": 17123.8, + "end": 17125.62, + "probability": 0.9493 + }, + { + "start": 17126.62, + "end": 17130.48, + "probability": 0.9355 + }, + { + "start": 17131.16, + "end": 17133.02, + "probability": 0.7551 + }, + { + "start": 17134.68, + "end": 17135.62, + "probability": 0.7413 + }, + { + "start": 17135.62, + "end": 17138.02, + "probability": 0.9418 + }, + { + "start": 17138.08, + "end": 17140.72, + "probability": 0.9968 + }, + { + "start": 17140.88, + "end": 17142.8, + "probability": 0.7898 + }, + { + "start": 17143.06, + "end": 17145.08, + "probability": 0.7861 + }, + { + "start": 17145.68, + "end": 17145.68, + "probability": 0.6228 + }, + { + "start": 17145.68, + "end": 17145.98, + "probability": 0.5015 + }, + { + "start": 17146.74, + "end": 17147.46, + "probability": 0.6388 + }, + { + "start": 17148.38, + "end": 17151.52, + "probability": 0.841 + }, + { + "start": 17153.38, + "end": 17156.22, + "probability": 0.8617 + }, + { + "start": 17157.78, + "end": 17160.38, + "probability": 0.8904 + }, + { + "start": 17161.74, + "end": 17163.92, + "probability": 0.8608 + }, + { + "start": 17165.0, + "end": 17166.3, + "probability": 0.9647 + }, + { + "start": 17166.42, + "end": 17171.78, + "probability": 0.7371 + }, + { + "start": 17171.92, + "end": 17175.64, + "probability": 0.5087 + }, + { + "start": 17175.7, + "end": 17176.3, + "probability": 0.7755 + }, + { + "start": 17176.52, + "end": 17178.74, + "probability": 0.8117 + }, + { + "start": 17178.8, + "end": 17179.49, + "probability": 0.7505 + }, + { + "start": 17179.64, + "end": 17180.7, + "probability": 0.9626 + }, + { + "start": 17181.04, + "end": 17183.22, + "probability": 0.7077 + }, + { + "start": 17184.36, + "end": 17186.52, + "probability": 0.8833 + }, + { + "start": 17187.22, + "end": 17190.82, + "probability": 0.9211 + }, + { + "start": 17191.34, + "end": 17192.32, + "probability": 0.4636 + }, + { + "start": 17193.66, + "end": 17195.12, + "probability": 0.9305 + }, + { + "start": 17195.24, + "end": 17196.4, + "probability": 0.7234 + }, + { + "start": 17196.54, + "end": 17198.81, + "probability": 0.9443 + }, + { + "start": 17199.14, + "end": 17200.18, + "probability": 0.958 + }, + { + "start": 17201.54, + "end": 17202.28, + "probability": 0.8605 + }, + { + "start": 17202.64, + "end": 17204.16, + "probability": 0.9255 + }, + { + "start": 17204.38, + "end": 17205.06, + "probability": 0.8315 + }, + { + "start": 17205.12, + "end": 17208.44, + "probability": 0.8595 + }, + { + "start": 17208.66, + "end": 17210.88, + "probability": 0.9266 + }, + { + "start": 17210.98, + "end": 17212.32, + "probability": 0.9133 + }, + { + "start": 17213.36, + "end": 17214.1, + "probability": 0.609 + }, + { + "start": 17214.12, + "end": 17214.76, + "probability": 0.7568 + }, + { + "start": 17214.84, + "end": 17215.36, + "probability": 0.6868 + }, + { + "start": 17215.42, + "end": 17216.13, + "probability": 0.9365 + }, + { + "start": 17216.22, + "end": 17217.64, + "probability": 0.9923 + }, + { + "start": 17217.72, + "end": 17219.12, + "probability": 0.9901 + }, + { + "start": 17219.36, + "end": 17220.5, + "probability": 0.97 + }, + { + "start": 17221.02, + "end": 17221.18, + "probability": 0.8911 + }, + { + "start": 17222.46, + "end": 17223.64, + "probability": 0.5834 + }, + { + "start": 17224.28, + "end": 17225.1, + "probability": 0.7744 + }, + { + "start": 17225.28, + "end": 17227.28, + "probability": 0.9834 + }, + { + "start": 17227.44, + "end": 17228.16, + "probability": 0.8799 + }, + { + "start": 17228.94, + "end": 17229.54, + "probability": 0.5002 + }, + { + "start": 17230.44, + "end": 17233.16, + "probability": 0.8157 + }, + { + "start": 17233.68, + "end": 17235.44, + "probability": 0.8028 + }, + { + "start": 17235.82, + "end": 17236.62, + "probability": 0.8284 + }, + { + "start": 17237.46, + "end": 17239.8, + "probability": 0.962 + }, + { + "start": 17239.92, + "end": 17240.54, + "probability": 0.6918 + }, + { + "start": 17240.66, + "end": 17243.18, + "probability": 0.9252 + }, + { + "start": 17243.84, + "end": 17244.5, + "probability": 0.7868 + }, + { + "start": 17245.06, + "end": 17246.48, + "probability": 0.824 + }, + { + "start": 17246.6, + "end": 17247.12, + "probability": 0.8658 + }, + { + "start": 17247.3, + "end": 17248.1, + "probability": 0.7329 + }, + { + "start": 17248.5, + "end": 17250.44, + "probability": 0.8922 + }, + { + "start": 17251.06, + "end": 17253.1, + "probability": 0.5559 + }, + { + "start": 17253.26, + "end": 17261.0, + "probability": 0.957 + }, + { + "start": 17261.04, + "end": 17262.82, + "probability": 0.8796 + }, + { + "start": 17263.32, + "end": 17264.24, + "probability": 0.9988 + }, + { + "start": 17264.38, + "end": 17265.4, + "probability": 0.9841 + }, + { + "start": 17265.9, + "end": 17267.9, + "probability": 0.9409 + }, + { + "start": 17268.34, + "end": 17269.56, + "probability": 0.7276 + }, + { + "start": 17269.88, + "end": 17272.58, + "probability": 0.5335 + }, + { + "start": 17272.66, + "end": 17273.55, + "probability": 0.9495 + }, + { + "start": 17274.0, + "end": 17274.7, + "probability": 0.8975 + }, + { + "start": 17274.88, + "end": 17276.36, + "probability": 0.7762 + }, + { + "start": 17276.84, + "end": 17280.76, + "probability": 0.9691 + }, + { + "start": 17280.88, + "end": 17281.32, + "probability": 0.9635 + }, + { + "start": 17281.94, + "end": 17283.26, + "probability": 0.9805 + }, + { + "start": 17284.1, + "end": 17285.44, + "probability": 0.9961 + }, + { + "start": 17286.72, + "end": 17289.58, + "probability": 0.9849 + }, + { + "start": 17290.16, + "end": 17291.6, + "probability": 0.7679 + }, + { + "start": 17292.43, + "end": 17294.24, + "probability": 0.5473 + }, + { + "start": 17297.1, + "end": 17297.84, + "probability": 0.8602 + }, + { + "start": 17299.0, + "end": 17303.31, + "probability": 0.9956 + }, + { + "start": 17303.96, + "end": 17304.67, + "probability": 0.7424 + }, + { + "start": 17305.56, + "end": 17307.9, + "probability": 0.966 + }, + { + "start": 17308.16, + "end": 17309.66, + "probability": 0.9585 + }, + { + "start": 17309.72, + "end": 17310.34, + "probability": 0.6136 + }, + { + "start": 17310.36, + "end": 17312.5, + "probability": 0.9264 + }, + { + "start": 17312.78, + "end": 17313.7, + "probability": 0.8796 + }, + { + "start": 17314.18, + "end": 17315.54, + "probability": 0.9789 + }, + { + "start": 17315.68, + "end": 17316.16, + "probability": 0.7039 + }, + { + "start": 17316.38, + "end": 17316.8, + "probability": 0.3526 + }, + { + "start": 17316.8, + "end": 17317.66, + "probability": 0.9274 + }, + { + "start": 17317.8, + "end": 17318.28, + "probability": 0.6729 + }, + { + "start": 17318.4, + "end": 17318.84, + "probability": 0.5135 + }, + { + "start": 17320.22, + "end": 17322.26, + "probability": 0.7374 + }, + { + "start": 17323.24, + "end": 17327.4, + "probability": 0.8817 + }, + { + "start": 17327.6, + "end": 17329.26, + "probability": 0.5181 + }, + { + "start": 17330.06, + "end": 17332.54, + "probability": 0.9641 + }, + { + "start": 17333.32, + "end": 17337.98, + "probability": 0.6677 + }, + { + "start": 17338.4, + "end": 17340.86, + "probability": 0.8267 + }, + { + "start": 17341.7, + "end": 17342.12, + "probability": 0.7477 + }, + { + "start": 17342.76, + "end": 17344.28, + "probability": 0.9824 + }, + { + "start": 17344.44, + "end": 17345.98, + "probability": 0.6675 + }, + { + "start": 17346.04, + "end": 17346.48, + "probability": 0.8463 + }, + { + "start": 17347.56, + "end": 17348.35, + "probability": 0.8898 + }, + { + "start": 17348.62, + "end": 17351.24, + "probability": 0.9893 + }, + { + "start": 17352.02, + "end": 17355.32, + "probability": 0.3407 + }, + { + "start": 17355.32, + "end": 17358.1, + "probability": 0.6861 + }, + { + "start": 17358.1, + "end": 17361.92, + "probability": 0.9875 + }, + { + "start": 17362.04, + "end": 17364.78, + "probability": 0.4514 + }, + { + "start": 17365.46, + "end": 17368.44, + "probability": 0.7979 + }, + { + "start": 17369.1, + "end": 17371.14, + "probability": 0.7144 + }, + { + "start": 17371.24, + "end": 17371.7, + "probability": 0.72 + }, + { + "start": 17371.86, + "end": 17373.54, + "probability": 0.826 + }, + { + "start": 17373.64, + "end": 17374.1, + "probability": 0.4473 + }, + { + "start": 17374.16, + "end": 17375.48, + "probability": 0.5136 + }, + { + "start": 17375.58, + "end": 17380.68, + "probability": 0.6791 + }, + { + "start": 17381.18, + "end": 17385.82, + "probability": 0.9899 + }, + { + "start": 17386.24, + "end": 17388.36, + "probability": 0.5829 + }, + { + "start": 17388.36, + "end": 17392.04, + "probability": 0.9812 + }, + { + "start": 17392.16, + "end": 17392.68, + "probability": 0.7924 + }, + { + "start": 17393.3, + "end": 17395.72, + "probability": 0.867 + }, + { + "start": 17397.22, + "end": 17397.38, + "probability": 0.5838 + }, + { + "start": 17397.68, + "end": 17398.46, + "probability": 0.488 + }, + { + "start": 17398.48, + "end": 17400.76, + "probability": 0.7813 + }, + { + "start": 17400.88, + "end": 17405.38, + "probability": 0.9482 + }, + { + "start": 17405.96, + "end": 17409.86, + "probability": 0.9964 + }, + { + "start": 17410.62, + "end": 17412.72, + "probability": 0.6778 + }, + { + "start": 17413.34, + "end": 17414.06, + "probability": 0.7376 + }, + { + "start": 17414.62, + "end": 17415.63, + "probability": 0.5202 + }, + { + "start": 17416.26, + "end": 17417.66, + "probability": 0.7215 + }, + { + "start": 17418.12, + "end": 17418.76, + "probability": 0.5957 + }, + { + "start": 17418.88, + "end": 17421.72, + "probability": 0.9374 + }, + { + "start": 17421.92, + "end": 17422.68, + "probability": 0.5853 + }, + { + "start": 17423.14, + "end": 17424.5, + "probability": 0.6416 + }, + { + "start": 17425.92, + "end": 17430.54, + "probability": 0.9466 + }, + { + "start": 17430.54, + "end": 17432.44, + "probability": 0.7423 + }, + { + "start": 17433.2, + "end": 17434.82, + "probability": 0.6666 + }, + { + "start": 17435.48, + "end": 17437.06, + "probability": 0.8898 + }, + { + "start": 17437.78, + "end": 17437.8, + "probability": 0.4749 + }, + { + "start": 17437.94, + "end": 17438.78, + "probability": 0.847 + }, + { + "start": 17438.84, + "end": 17440.26, + "probability": 0.8631 + }, + { + "start": 17440.7, + "end": 17441.54, + "probability": 0.9784 + }, + { + "start": 17443.46, + "end": 17445.68, + "probability": 0.8318 + }, + { + "start": 17445.74, + "end": 17446.16, + "probability": 0.8452 + }, + { + "start": 17447.92, + "end": 17448.38, + "probability": 0.3507 + }, + { + "start": 17448.46, + "end": 17449.2, + "probability": 0.9666 + }, + { + "start": 17449.66, + "end": 17451.28, + "probability": 0.9195 + }, + { + "start": 17451.78, + "end": 17453.56, + "probability": 0.8921 + }, + { + "start": 17454.54, + "end": 17455.18, + "probability": 0.8025 + }, + { + "start": 17455.76, + "end": 17457.34, + "probability": 0.9888 + }, + { + "start": 17457.42, + "end": 17458.74, + "probability": 0.931 + }, + { + "start": 17459.24, + "end": 17460.3, + "probability": 0.9941 + }, + { + "start": 17460.6, + "end": 17461.22, + "probability": 0.7748 + }, + { + "start": 17461.38, + "end": 17464.6, + "probability": 0.8141 + }, + { + "start": 17464.7, + "end": 17465.32, + "probability": 0.8954 + }, + { + "start": 17466.24, + "end": 17466.92, + "probability": 0.5747 + }, + { + "start": 17468.06, + "end": 17471.34, + "probability": 0.9793 + }, + { + "start": 17471.44, + "end": 17473.0, + "probability": 0.9098 + }, + { + "start": 17474.24, + "end": 17478.74, + "probability": 0.9793 + }, + { + "start": 17478.84, + "end": 17479.38, + "probability": 0.5493 + }, + { + "start": 17480.28, + "end": 17482.66, + "probability": 0.7595 + }, + { + "start": 17483.76, + "end": 17486.02, + "probability": 0.7252 + }, + { + "start": 17487.42, + "end": 17490.02, + "probability": 0.9908 + }, + { + "start": 17490.22, + "end": 17491.66, + "probability": 0.6154 + }, + { + "start": 17491.94, + "end": 17493.94, + "probability": 0.7405 + }, + { + "start": 17494.88, + "end": 17495.3, + "probability": 0.3238 + }, + { + "start": 17497.06, + "end": 17500.26, + "probability": 0.8762 + }, + { + "start": 17500.42, + "end": 17504.04, + "probability": 0.9387 + }, + { + "start": 17505.18, + "end": 17510.34, + "probability": 0.9086 + }, + { + "start": 17510.64, + "end": 17511.64, + "probability": 0.7632 + }, + { + "start": 17512.08, + "end": 17513.9, + "probability": 0.7492 + }, + { + "start": 17514.44, + "end": 17517.52, + "probability": 0.9904 + }, + { + "start": 17518.0, + "end": 17518.82, + "probability": 0.9154 + }, + { + "start": 17519.42, + "end": 17521.58, + "probability": 0.9954 + }, + { + "start": 17521.58, + "end": 17525.48, + "probability": 0.9773 + }, + { + "start": 17526.2, + "end": 17526.86, + "probability": 0.2156 + }, + { + "start": 17527.92, + "end": 17529.1, + "probability": 0.7463 + }, + { + "start": 17529.34, + "end": 17531.8, + "probability": 0.9088 + }, + { + "start": 17532.34, + "end": 17535.42, + "probability": 0.8339 + }, + { + "start": 17535.44, + "end": 17536.22, + "probability": 0.7123 + }, + { + "start": 17536.48, + "end": 17537.56, + "probability": 0.8219 + }, + { + "start": 17538.1, + "end": 17542.46, + "probability": 0.8359 + }, + { + "start": 17543.1, + "end": 17545.62, + "probability": 0.3505 + }, + { + "start": 17545.7, + "end": 17546.16, + "probability": 0.6889 + }, + { + "start": 17546.5, + "end": 17548.26, + "probability": 0.7442 + }, + { + "start": 17548.38, + "end": 17548.78, + "probability": 0.5071 + }, + { + "start": 17549.18, + "end": 17549.92, + "probability": 0.5014 + }, + { + "start": 17550.02, + "end": 17553.08, + "probability": 0.8861 + }, + { + "start": 17553.14, + "end": 17557.02, + "probability": 0.9933 + }, + { + "start": 17557.42, + "end": 17559.48, + "probability": 0.9922 + }, + { + "start": 17559.72, + "end": 17560.92, + "probability": 0.7613 + }, + { + "start": 17561.4, + "end": 17564.98, + "probability": 0.9242 + }, + { + "start": 17565.04, + "end": 17565.9, + "probability": 0.5597 + }, + { + "start": 17566.24, + "end": 17567.74, + "probability": 0.853 + }, + { + "start": 17567.74, + "end": 17569.62, + "probability": 0.7934 + }, + { + "start": 17569.74, + "end": 17570.0, + "probability": 0.6799 + }, + { + "start": 17570.14, + "end": 17570.76, + "probability": 0.6702 + }, + { + "start": 17570.92, + "end": 17572.62, + "probability": 0.7397 + }, + { + "start": 17573.02, + "end": 17574.76, + "probability": 0.9943 + }, + { + "start": 17575.42, + "end": 17577.86, + "probability": 0.9954 + }, + { + "start": 17578.48, + "end": 17579.64, + "probability": 0.6362 + }, + { + "start": 17579.78, + "end": 17582.44, + "probability": 0.4378 + }, + { + "start": 17583.22, + "end": 17585.58, + "probability": 0.7476 + }, + { + "start": 17585.74, + "end": 17589.16, + "probability": 0.6057 + }, + { + "start": 17589.18, + "end": 17590.42, + "probability": 0.9888 + }, + { + "start": 17590.98, + "end": 17593.4, + "probability": 0.5965 + }, + { + "start": 17593.4, + "end": 17595.0, + "probability": 0.6776 + }, + { + "start": 17595.12, + "end": 17595.88, + "probability": 0.5525 + }, + { + "start": 17595.98, + "end": 17596.66, + "probability": 0.9191 + }, + { + "start": 17597.4, + "end": 17597.46, + "probability": 0.1886 + }, + { + "start": 17597.46, + "end": 17599.5, + "probability": 0.9008 + }, + { + "start": 17600.58, + "end": 17603.88, + "probability": 0.7392 + }, + { + "start": 17604.58, + "end": 17607.44, + "probability": 0.8163 + }, + { + "start": 17607.54, + "end": 17609.44, + "probability": 0.9351 + }, + { + "start": 17609.44, + "end": 17611.24, + "probability": 0.602 + }, + { + "start": 17611.4, + "end": 17612.92, + "probability": 0.854 + }, + { + "start": 17614.82, + "end": 17616.0, + "probability": 0.7164 + }, + { + "start": 17617.04, + "end": 17618.74, + "probability": 0.7378 + }, + { + "start": 17619.24, + "end": 17621.04, + "probability": 0.5698 + }, + { + "start": 17621.6, + "end": 17623.36, + "probability": 0.8089 + }, + { + "start": 17623.48, + "end": 17625.88, + "probability": 0.9146 + }, + { + "start": 17626.09, + "end": 17627.64, + "probability": 0.6417 + }, + { + "start": 17627.82, + "end": 17628.66, + "probability": 0.7202 + }, + { + "start": 17628.74, + "end": 17631.38, + "probability": 0.9565 + }, + { + "start": 17631.42, + "end": 17632.96, + "probability": 0.6574 + }, + { + "start": 17633.04, + "end": 17633.66, + "probability": 0.8516 + }, + { + "start": 17633.74, + "end": 17634.42, + "probability": 0.8857 + }, + { + "start": 17634.54, + "end": 17635.16, + "probability": 0.6138 + }, + { + "start": 17635.22, + "end": 17636.12, + "probability": 0.295 + }, + { + "start": 17636.28, + "end": 17636.4, + "probability": 0.3142 + }, + { + "start": 17636.4, + "end": 17636.5, + "probability": 0.738 + }, + { + "start": 17636.74, + "end": 17637.56, + "probability": 0.9792 + }, + { + "start": 17637.56, + "end": 17637.96, + "probability": 0.3189 + }, + { + "start": 17638.0, + "end": 17638.48, + "probability": 0.7861 + }, + { + "start": 17639.08, + "end": 17640.26, + "probability": 0.5761 + }, + { + "start": 17640.32, + "end": 17641.04, + "probability": 0.8333 + }, + { + "start": 17641.52, + "end": 17643.2, + "probability": 0.5747 + }, + { + "start": 17643.98, + "end": 17648.42, + "probability": 0.5903 + }, + { + "start": 17648.42, + "end": 17650.88, + "probability": 0.9304 + }, + { + "start": 17651.58, + "end": 17652.3, + "probability": 0.7869 + }, + { + "start": 17652.76, + "end": 17654.6, + "probability": 0.6505 + }, + { + "start": 17655.32, + "end": 17656.88, + "probability": 0.9156 + }, + { + "start": 17656.98, + "end": 17657.34, + "probability": 0.5693 + }, + { + "start": 17657.58, + "end": 17659.54, + "probability": 0.8717 + }, + { + "start": 17659.7, + "end": 17660.22, + "probability": 0.8528 + }, + { + "start": 17660.7, + "end": 17666.12, + "probability": 0.3941 + }, + { + "start": 17666.18, + "end": 17666.18, + "probability": 0.1654 + }, + { + "start": 17666.18, + "end": 17666.18, + "probability": 0.1177 + }, + { + "start": 17666.18, + "end": 17669.4, + "probability": 0.3723 + }, + { + "start": 17669.48, + "end": 17674.96, + "probability": 0.8514 + }, + { + "start": 17674.98, + "end": 17675.96, + "probability": 0.6236 + }, + { + "start": 17676.5, + "end": 17677.91, + "probability": 0.8408 + }, + { + "start": 17678.48, + "end": 17680.9, + "probability": 0.9785 + }, + { + "start": 17681.02, + "end": 17682.31, + "probability": 0.9469 + }, + { + "start": 17682.8, + "end": 17683.26, + "probability": 0.6202 + }, + { + "start": 17683.42, + "end": 17684.18, + "probability": 0.5851 + }, + { + "start": 17684.2, + "end": 17685.24, + "probability": 0.9601 + }, + { + "start": 17685.64, + "end": 17687.56, + "probability": 0.5833 + }, + { + "start": 17687.82, + "end": 17692.5, + "probability": 0.8431 + }, + { + "start": 17692.64, + "end": 17693.52, + "probability": 0.861 + }, + { + "start": 17694.38, + "end": 17698.22, + "probability": 0.7746 + }, + { + "start": 17708.16, + "end": 17711.24, + "probability": 0.5458 + }, + { + "start": 17715.94, + "end": 17717.24, + "probability": 0.8328 + }, + { + "start": 17717.34, + "end": 17717.46, + "probability": 0.6279 + }, + { + "start": 17717.54, + "end": 17718.94, + "probability": 0.9785 + }, + { + "start": 17720.92, + "end": 17724.98, + "probability": 0.8127 + }, + { + "start": 17726.54, + "end": 17729.96, + "probability": 0.9457 + }, + { + "start": 17731.24, + "end": 17736.96, + "probability": 0.9229 + }, + { + "start": 17737.66, + "end": 17739.52, + "probability": 0.8333 + }, + { + "start": 17740.24, + "end": 17743.4, + "probability": 0.9195 + }, + { + "start": 17744.22, + "end": 17747.22, + "probability": 0.9981 + }, + { + "start": 17747.72, + "end": 17748.52, + "probability": 0.9361 + }, + { + "start": 17749.2, + "end": 17756.36, + "probability": 0.8674 + }, + { + "start": 17757.32, + "end": 17758.66, + "probability": 0.6445 + }, + { + "start": 17759.22, + "end": 17760.82, + "probability": 0.9849 + }, + { + "start": 17760.98, + "end": 17764.08, + "probability": 0.856 + }, + { + "start": 17764.18, + "end": 17766.92, + "probability": 0.9717 + }, + { + "start": 17768.1, + "end": 17770.24, + "probability": 0.9941 + }, + { + "start": 17771.14, + "end": 17772.22, + "probability": 0.8972 + }, + { + "start": 17772.74, + "end": 17773.54, + "probability": 0.6987 + }, + { + "start": 17774.68, + "end": 17776.68, + "probability": 0.6843 + }, + { + "start": 17777.82, + "end": 17778.5, + "probability": 0.8503 + }, + { + "start": 17779.36, + "end": 17780.01, + "probability": 0.8169 + }, + { + "start": 17780.84, + "end": 17783.14, + "probability": 0.819 + }, + { + "start": 17783.36, + "end": 17786.68, + "probability": 0.7355 + }, + { + "start": 17787.42, + "end": 17789.7, + "probability": 0.8161 + }, + { + "start": 17790.72, + "end": 17793.78, + "probability": 0.8871 + }, + { + "start": 17794.62, + "end": 17798.78, + "probability": 0.9763 + }, + { + "start": 17799.5, + "end": 17804.56, + "probability": 0.8791 + }, + { + "start": 17805.16, + "end": 17809.86, + "probability": 0.9938 + }, + { + "start": 17810.06, + "end": 17811.66, + "probability": 0.9955 + }, + { + "start": 17813.08, + "end": 17818.5, + "probability": 0.9938 + }, + { + "start": 17819.36, + "end": 17821.75, + "probability": 0.9648 + }, + { + "start": 17822.68, + "end": 17824.48, + "probability": 0.9409 + }, + { + "start": 17825.6, + "end": 17828.46, + "probability": 0.9053 + }, + { + "start": 17829.08, + "end": 17831.08, + "probability": 0.9976 + }, + { + "start": 17831.96, + "end": 17834.74, + "probability": 0.9915 + }, + { + "start": 17835.9, + "end": 17836.84, + "probability": 0.8455 + }, + { + "start": 17836.94, + "end": 17837.58, + "probability": 0.5334 + }, + { + "start": 17837.58, + "end": 17838.8, + "probability": 0.8722 + }, + { + "start": 17838.94, + "end": 17843.26, + "probability": 0.9965 + }, + { + "start": 17844.56, + "end": 17848.8, + "probability": 0.9915 + }, + { + "start": 17848.8, + "end": 17853.1, + "probability": 0.9954 + }, + { + "start": 17853.8, + "end": 17856.22, + "probability": 0.8148 + }, + { + "start": 17856.78, + "end": 17859.16, + "probability": 0.9696 + }, + { + "start": 17860.4, + "end": 17861.88, + "probability": 0.9779 + }, + { + "start": 17861.96, + "end": 17862.64, + "probability": 0.5921 + }, + { + "start": 17863.14, + "end": 17866.62, + "probability": 0.9908 + }, + { + "start": 17866.76, + "end": 17868.4, + "probability": 0.8711 + }, + { + "start": 17869.02, + "end": 17872.76, + "probability": 0.8626 + }, + { + "start": 17873.6, + "end": 17877.2, + "probability": 0.9844 + }, + { + "start": 17878.08, + "end": 17880.48, + "probability": 0.9399 + }, + { + "start": 17881.22, + "end": 17882.44, + "probability": 0.6821 + }, + { + "start": 17883.2, + "end": 17886.34, + "probability": 0.9924 + }, + { + "start": 17887.16, + "end": 17891.96, + "probability": 0.9948 + }, + { + "start": 17892.6, + "end": 17895.98, + "probability": 0.9689 + }, + { + "start": 17895.98, + "end": 17899.0, + "probability": 0.9985 + }, + { + "start": 17899.48, + "end": 17900.4, + "probability": 0.8161 + }, + { + "start": 17900.92, + "end": 17901.62, + "probability": 0.283 + }, + { + "start": 17902.32, + "end": 17903.78, + "probability": 0.3689 + }, + { + "start": 17904.54, + "end": 17907.66, + "probability": 0.6089 + }, + { + "start": 17907.84, + "end": 17909.1, + "probability": 0.5616 + }, + { + "start": 17909.86, + "end": 17912.44, + "probability": 0.1752 + }, + { + "start": 17913.16, + "end": 17913.92, + "probability": 0.58 + }, + { + "start": 17914.14, + "end": 17914.74, + "probability": 0.4708 + }, + { + "start": 17914.82, + "end": 17916.92, + "probability": 0.9948 + }, + { + "start": 17917.48, + "end": 17918.56, + "probability": 0.9987 + }, + { + "start": 17918.78, + "end": 17919.54, + "probability": 0.6673 + }, + { + "start": 17919.68, + "end": 17922.49, + "probability": 0.6804 + }, + { + "start": 17922.72, + "end": 17923.6, + "probability": 0.8463 + }, + { + "start": 17924.54, + "end": 17928.34, + "probability": 0.9909 + }, + { + "start": 17928.48, + "end": 17930.0, + "probability": 0.9946 + }, + { + "start": 17930.9, + "end": 17931.8, + "probability": 0.9227 + }, + { + "start": 17932.34, + "end": 17934.26, + "probability": 0.9808 + }, + { + "start": 17934.26, + "end": 17938.28, + "probability": 0.966 + }, + { + "start": 17938.36, + "end": 17940.06, + "probability": 0.7218 + }, + { + "start": 17940.64, + "end": 17941.48, + "probability": 0.5538 + }, + { + "start": 17941.82, + "end": 17945.72, + "probability": 0.9026 + }, + { + "start": 17946.28, + "end": 17948.96, + "probability": 0.7294 + }, + { + "start": 17948.96, + "end": 17950.28, + "probability": 0.8111 + }, + { + "start": 17950.38, + "end": 17951.22, + "probability": 0.7401 + }, + { + "start": 17951.36, + "end": 17954.34, + "probability": 0.5981 + }, + { + "start": 17954.38, + "end": 17955.14, + "probability": 0.95 + }, + { + "start": 17955.5, + "end": 17956.88, + "probability": 0.9361 + }, + { + "start": 17956.92, + "end": 17960.36, + "probability": 0.8757 + }, + { + "start": 17960.4, + "end": 17963.02, + "probability": 0.992 + }, + { + "start": 17963.12, + "end": 17963.44, + "probability": 0.4088 + }, + { + "start": 17963.86, + "end": 17964.04, + "probability": 0.0041 + }, + { + "start": 17964.16, + "end": 17965.74, + "probability": 0.998 + }, + { + "start": 17965.76, + "end": 17967.48, + "probability": 0.9785 + }, + { + "start": 17967.92, + "end": 17969.94, + "probability": 0.928 + }, + { + "start": 17970.7, + "end": 17972.54, + "probability": 0.7554 + }, + { + "start": 17972.66, + "end": 17973.48, + "probability": 0.7992 + }, + { + "start": 17973.74, + "end": 17975.12, + "probability": 0.9758 + }, + { + "start": 17975.72, + "end": 17978.72, + "probability": 0.6987 + }, + { + "start": 17978.88, + "end": 17980.76, + "probability": 0.9644 + }, + { + "start": 17981.46, + "end": 17984.76, + "probability": 0.8157 + }, + { + "start": 17984.9, + "end": 17985.78, + "probability": 0.7349 + }, + { + "start": 17985.98, + "end": 17989.06, + "probability": 0.6196 + }, + { + "start": 17989.22, + "end": 17993.78, + "probability": 0.9707 + }, + { + "start": 17994.14, + "end": 17996.0, + "probability": 0.9516 + }, + { + "start": 17996.42, + "end": 17998.88, + "probability": 0.723 + }, + { + "start": 17999.02, + "end": 17999.68, + "probability": 0.9221 + }, + { + "start": 18000.12, + "end": 18001.82, + "probability": 0.7229 + }, + { + "start": 18002.22, + "end": 18007.76, + "probability": 0.9211 + }, + { + "start": 18008.44, + "end": 18012.74, + "probability": 0.9822 + }, + { + "start": 18013.1, + "end": 18013.92, + "probability": 0.662 + }, + { + "start": 18013.94, + "end": 18014.66, + "probability": 0.6517 + }, + { + "start": 18014.8, + "end": 18015.82, + "probability": 0.9822 + }, + { + "start": 18015.92, + "end": 18018.14, + "probability": 0.9768 + }, + { + "start": 18018.78, + "end": 18021.7, + "probability": 0.9899 + }, + { + "start": 18021.7, + "end": 18023.96, + "probability": 0.6813 + }, + { + "start": 18024.7, + "end": 18027.38, + "probability": 0.9771 + }, + { + "start": 18027.92, + "end": 18028.78, + "probability": 0.9869 + }, + { + "start": 18030.28, + "end": 18035.14, + "probability": 0.8837 + }, + { + "start": 18035.28, + "end": 18036.58, + "probability": 0.98 + }, + { + "start": 18037.84, + "end": 18041.98, + "probability": 0.9473 + }, + { + "start": 18042.99, + "end": 18044.84, + "probability": 0.7424 + }, + { + "start": 18046.1, + "end": 18050.04, + "probability": 0.9401 + }, + { + "start": 18050.84, + "end": 18051.8, + "probability": 0.6728 + }, + { + "start": 18052.0, + "end": 18053.12, + "probability": 0.9457 + }, + { + "start": 18053.7, + "end": 18055.14, + "probability": 0.9471 + }, + { + "start": 18055.94, + "end": 18058.4, + "probability": 0.988 + }, + { + "start": 18059.06, + "end": 18061.68, + "probability": 0.9233 + }, + { + "start": 18061.76, + "end": 18063.7, + "probability": 0.9968 + }, + { + "start": 18064.3, + "end": 18064.82, + "probability": 0.8609 + }, + { + "start": 18065.28, + "end": 18068.2, + "probability": 0.8258 + }, + { + "start": 18068.9, + "end": 18071.8, + "probability": 0.9709 + }, + { + "start": 18072.34, + "end": 18075.14, + "probability": 0.8994 + }, + { + "start": 18075.4, + "end": 18076.02, + "probability": 0.968 + }, + { + "start": 18076.2, + "end": 18076.32, + "probability": 0.6945 + }, + { + "start": 18076.82, + "end": 18077.98, + "probability": 0.9648 + }, + { + "start": 18078.06, + "end": 18081.38, + "probability": 0.9739 + }, + { + "start": 18082.44, + "end": 18083.88, + "probability": 0.6524 + }, + { + "start": 18083.98, + "end": 18085.06, + "probability": 0.9271 + }, + { + "start": 18085.08, + "end": 18089.5, + "probability": 0.9347 + }, + { + "start": 18089.5, + "end": 18090.32, + "probability": 0.2118 + }, + { + "start": 18091.04, + "end": 18092.14, + "probability": 0.8116 + }, + { + "start": 18092.7, + "end": 18096.06, + "probability": 0.8078 + }, + { + "start": 18096.88, + "end": 18098.44, + "probability": 0.7366 + }, + { + "start": 18099.08, + "end": 18100.7, + "probability": 0.7392 + }, + { + "start": 18101.3, + "end": 18103.12, + "probability": 0.916 + }, + { + "start": 18103.74, + "end": 18105.12, + "probability": 0.9604 + }, + { + "start": 18105.82, + "end": 18107.4, + "probability": 0.9126 + }, + { + "start": 18107.78, + "end": 18108.69, + "probability": 0.9878 + }, + { + "start": 18108.9, + "end": 18109.82, + "probability": 0.9932 + }, + { + "start": 18110.52, + "end": 18113.7, + "probability": 0.946 + }, + { + "start": 18114.5, + "end": 18118.14, + "probability": 0.998 + }, + { + "start": 18118.92, + "end": 18121.16, + "probability": 0.8634 + }, + { + "start": 18122.1, + "end": 18125.76, + "probability": 0.8615 + }, + { + "start": 18126.84, + "end": 18130.58, + "probability": 0.948 + }, + { + "start": 18130.58, + "end": 18133.16, + "probability": 0.9399 + }, + { + "start": 18133.26, + "end": 18134.54, + "probability": 0.9974 + }, + { + "start": 18135.26, + "end": 18137.79, + "probability": 0.9974 + }, + { + "start": 18138.42, + "end": 18139.14, + "probability": 0.903 + }, + { + "start": 18139.18, + "end": 18139.96, + "probability": 0.8654 + }, + { + "start": 18140.08, + "end": 18140.84, + "probability": 0.9666 + }, + { + "start": 18140.86, + "end": 18142.16, + "probability": 0.9211 + }, + { + "start": 18142.7, + "end": 18146.82, + "probability": 0.9929 + }, + { + "start": 18146.86, + "end": 18148.94, + "probability": 0.9984 + }, + { + "start": 18149.46, + "end": 18151.4, + "probability": 0.9443 + }, + { + "start": 18151.7, + "end": 18153.14, + "probability": 0.8425 + }, + { + "start": 18153.5, + "end": 18154.34, + "probability": 0.9238 + }, + { + "start": 18154.5, + "end": 18155.1, + "probability": 0.8686 + }, + { + "start": 18155.34, + "end": 18157.42, + "probability": 0.9688 + }, + { + "start": 18157.42, + "end": 18157.64, + "probability": 0.1247 + }, + { + "start": 18157.64, + "end": 18158.34, + "probability": 0.8817 + }, + { + "start": 18159.16, + "end": 18159.48, + "probability": 0.8785 + }, + { + "start": 18160.24, + "end": 18161.56, + "probability": 0.1811 + }, + { + "start": 18162.2, + "end": 18162.46, + "probability": 0.9002 + }, + { + "start": 18162.98, + "end": 18165.82, + "probability": 0.993 + }, + { + "start": 18166.5, + "end": 18167.28, + "probability": 0.6871 + }, + { + "start": 18167.42, + "end": 18171.68, + "probability": 0.4082 + }, + { + "start": 18171.72, + "end": 18174.12, + "probability": 0.8625 + }, + { + "start": 18176.12, + "end": 18177.52, + "probability": 0.8151 + }, + { + "start": 18179.26, + "end": 18181.46, + "probability": 0.9992 + }, + { + "start": 18182.56, + "end": 18183.46, + "probability": 0.8607 + }, + { + "start": 18183.6, + "end": 18184.14, + "probability": 0.7979 + }, + { + "start": 18184.55, + "end": 18187.97, + "probability": 0.8963 + }, + { + "start": 18188.16, + "end": 18189.92, + "probability": 0.9661 + }, + { + "start": 18190.0, + "end": 18191.14, + "probability": 0.738 + }, + { + "start": 18191.22, + "end": 18192.41, + "probability": 0.8591 + }, + { + "start": 18193.4, + "end": 18197.48, + "probability": 0.9873 + }, + { + "start": 18198.24, + "end": 18200.58, + "probability": 0.8979 + }, + { + "start": 18201.94, + "end": 18208.8, + "probability": 0.9795 + }, + { + "start": 18208.9, + "end": 18210.04, + "probability": 0.4352 + }, + { + "start": 18210.58, + "end": 18214.36, + "probability": 0.9782 + }, + { + "start": 18214.36, + "end": 18217.22, + "probability": 0.8218 + }, + { + "start": 18217.44, + "end": 18218.66, + "probability": 0.8492 + }, + { + "start": 18219.52, + "end": 18220.3, + "probability": 0.8915 + }, + { + "start": 18220.4, + "end": 18223.2, + "probability": 0.6564 + }, + { + "start": 18223.8, + "end": 18225.24, + "probability": 0.9907 + }, + { + "start": 18225.76, + "end": 18229.8, + "probability": 0.9553 + }, + { + "start": 18230.08, + "end": 18230.72, + "probability": 0.9247 + }, + { + "start": 18231.62, + "end": 18232.52, + "probability": 0.7543 + }, + { + "start": 18232.62, + "end": 18232.89, + "probability": 0.9653 + }, + { + "start": 18235.16, + "end": 18236.5, + "probability": 0.9824 + }, + { + "start": 18236.6, + "end": 18239.2, + "probability": 0.9554 + }, + { + "start": 18240.86, + "end": 18242.49, + "probability": 0.9895 + }, + { + "start": 18243.06, + "end": 18244.94, + "probability": 0.8186 + }, + { + "start": 18245.48, + "end": 18246.72, + "probability": 0.9103 + }, + { + "start": 18246.8, + "end": 18247.14, + "probability": 0.2216 + }, + { + "start": 18247.86, + "end": 18250.16, + "probability": 0.1634 + }, + { + "start": 18250.32, + "end": 18251.61, + "probability": 0.3714 + }, + { + "start": 18252.52, + "end": 18257.2, + "probability": 0.823 + }, + { + "start": 18257.2, + "end": 18257.6, + "probability": 0.1012 + }, + { + "start": 18257.76, + "end": 18258.34, + "probability": 0.7825 + }, + { + "start": 18258.82, + "end": 18259.32, + "probability": 0.8633 + }, + { + "start": 18259.4, + "end": 18265.44, + "probability": 0.9331 + }, + { + "start": 18265.74, + "end": 18266.2, + "probability": 0.5623 + }, + { + "start": 18266.78, + "end": 18267.8, + "probability": 0.7835 + }, + { + "start": 18268.02, + "end": 18268.46, + "probability": 0.8979 + }, + { + "start": 18270.78, + "end": 18273.56, + "probability": 0.2927 + }, + { + "start": 18273.58, + "end": 18277.84, + "probability": 0.874 + }, + { + "start": 18278.42, + "end": 18279.16, + "probability": 0.4422 + }, + { + "start": 18279.26, + "end": 18287.22, + "probability": 0.9631 + }, + { + "start": 18287.9, + "end": 18288.9, + "probability": 0.7746 + }, + { + "start": 18290.08, + "end": 18291.08, + "probability": 0.9153 + }, + { + "start": 18291.18, + "end": 18295.72, + "probability": 0.9925 + }, + { + "start": 18296.44, + "end": 18297.68, + "probability": 0.9435 + }, + { + "start": 18298.56, + "end": 18299.86, + "probability": 0.0388 + }, + { + "start": 18300.02, + "end": 18302.06, + "probability": 0.1375 + }, + { + "start": 18302.94, + "end": 18304.8, + "probability": 0.8878 + }, + { + "start": 18304.88, + "end": 18307.32, + "probability": 0.881 + }, + { + "start": 18307.92, + "end": 18308.1, + "probability": 0.6715 + }, + { + "start": 18308.76, + "end": 18309.44, + "probability": 0.8495 + }, + { + "start": 18309.62, + "end": 18311.54, + "probability": 0.9932 + }, + { + "start": 18312.34, + "end": 18313.2, + "probability": 0.9087 + }, + { + "start": 18314.5, + "end": 18316.92, + "probability": 0.7431 + }, + { + "start": 18317.1, + "end": 18318.23, + "probability": 0.8518 + }, + { + "start": 18318.44, + "end": 18319.66, + "probability": 0.7086 + }, + { + "start": 18319.78, + "end": 18324.14, + "probability": 0.8319 + }, + { + "start": 18324.22, + "end": 18327.02, + "probability": 0.9915 + }, + { + "start": 18335.14, + "end": 18336.92, + "probability": 0.7242 + }, + { + "start": 18337.26, + "end": 18338.42, + "probability": 0.7501 + }, + { + "start": 18338.54, + "end": 18339.26, + "probability": 0.5082 + }, + { + "start": 18342.34, + "end": 18344.42, + "probability": 0.8729 + }, + { + "start": 18344.46, + "end": 18345.02, + "probability": 0.8362 + }, + { + "start": 18345.98, + "end": 18347.14, + "probability": 0.6493 + }, + { + "start": 18347.22, + "end": 18348.04, + "probability": 0.5238 + }, + { + "start": 18348.08, + "end": 18349.72, + "probability": 0.6918 + }, + { + "start": 18349.94, + "end": 18351.06, + "probability": 0.9606 + }, + { + "start": 18351.78, + "end": 18353.32, + "probability": 0.8821 + }, + { + "start": 18353.6, + "end": 18355.08, + "probability": 0.1313 + }, + { + "start": 18355.4, + "end": 18357.4, + "probability": 0.7897 + }, + { + "start": 18358.18, + "end": 18360.26, + "probability": 0.5838 + }, + { + "start": 18360.48, + "end": 18361.86, + "probability": 0.58 + }, + { + "start": 18362.08, + "end": 18363.1, + "probability": 0.9888 + }, + { + "start": 18363.16, + "end": 18363.94, + "probability": 0.9151 + }, + { + "start": 18364.32, + "end": 18364.82, + "probability": 0.9087 + }, + { + "start": 18365.74, + "end": 18366.98, + "probability": 0.8531 + }, + { + "start": 18367.16, + "end": 18369.32, + "probability": 0.3151 + }, + { + "start": 18370.06, + "end": 18373.1, + "probability": 0.8568 + }, + { + "start": 18373.3, + "end": 18373.92, + "probability": 0.0004 + }, + { + "start": 18373.92, + "end": 18378.12, + "probability": 0.5398 + }, + { + "start": 18378.18, + "end": 18378.78, + "probability": 0.862 + }, + { + "start": 18384.8, + "end": 18385.26, + "probability": 0.4933 + }, + { + "start": 18391.78, + "end": 18392.94, + "probability": 0.3337 + }, + { + "start": 18393.5, + "end": 18398.52, + "probability": 0.6794 + }, + { + "start": 18399.48, + "end": 18401.11, + "probability": 0.9817 + }, + { + "start": 18401.34, + "end": 18405.02, + "probability": 0.9664 + }, + { + "start": 18405.16, + "end": 18406.64, + "probability": 0.9402 + }, + { + "start": 18407.4, + "end": 18408.8, + "probability": 0.9976 + }, + { + "start": 18409.02, + "end": 18411.98, + "probability": 0.9168 + }, + { + "start": 18412.54, + "end": 18412.7, + "probability": 0.437 + }, + { + "start": 18412.72, + "end": 18414.02, + "probability": 0.7032 + }, + { + "start": 18414.14, + "end": 18418.12, + "probability": 0.9354 + }, + { + "start": 18418.72, + "end": 18424.12, + "probability": 0.9849 + }, + { + "start": 18425.16, + "end": 18426.2, + "probability": 0.5152 + }, + { + "start": 18426.62, + "end": 18431.64, + "probability": 0.9871 + }, + { + "start": 18432.42, + "end": 18434.34, + "probability": 0.9502 + }, + { + "start": 18435.16, + "end": 18440.2, + "probability": 0.989 + }, + { + "start": 18440.96, + "end": 18444.72, + "probability": 0.9722 + }, + { + "start": 18445.58, + "end": 18448.16, + "probability": 0.948 + }, + { + "start": 18448.62, + "end": 18451.22, + "probability": 0.9145 + }, + { + "start": 18451.64, + "end": 18453.54, + "probability": 0.9716 + }, + { + "start": 18454.24, + "end": 18455.18, + "probability": 0.7273 + }, + { + "start": 18455.22, + "end": 18456.08, + "probability": 0.9824 + }, + { + "start": 18456.1, + "end": 18459.72, + "probability": 0.9687 + }, + { + "start": 18459.82, + "end": 18461.92, + "probability": 0.9246 + }, + { + "start": 18462.52, + "end": 18463.6, + "probability": 0.9487 + }, + { + "start": 18464.0, + "end": 18464.96, + "probability": 0.9354 + }, + { + "start": 18465.38, + "end": 18466.58, + "probability": 0.9965 + }, + { + "start": 18466.64, + "end": 18467.24, + "probability": 0.6243 + }, + { + "start": 18467.32, + "end": 18467.82, + "probability": 0.9729 + }, + { + "start": 18467.84, + "end": 18469.62, + "probability": 0.9673 + }, + { + "start": 18470.32, + "end": 18471.66, + "probability": 0.8549 + }, + { + "start": 18472.5, + "end": 18474.54, + "probability": 0.6888 + }, + { + "start": 18475.12, + "end": 18477.76, + "probability": 0.9552 + }, + { + "start": 18478.28, + "end": 18480.26, + "probability": 0.9636 + }, + { + "start": 18480.9, + "end": 18481.3, + "probability": 0.9413 + }, + { + "start": 18481.88, + "end": 18488.0, + "probability": 0.9963 + }, + { + "start": 18489.58, + "end": 18492.86, + "probability": 0.999 + }, + { + "start": 18492.86, + "end": 18497.34, + "probability": 0.9874 + }, + { + "start": 18498.2, + "end": 18501.14, + "probability": 0.9932 + }, + { + "start": 18501.58, + "end": 18502.58, + "probability": 0.9724 + }, + { + "start": 18502.92, + "end": 18503.98, + "probability": 0.9694 + }, + { + "start": 18504.44, + "end": 18505.4, + "probability": 0.3103 + }, + { + "start": 18505.44, + "end": 18505.78, + "probability": 0.8289 + }, + { + "start": 18506.66, + "end": 18510.14, + "probability": 0.8299 + }, + { + "start": 18510.7, + "end": 18513.36, + "probability": 0.9932 + }, + { + "start": 18514.0, + "end": 18515.72, + "probability": 0.9725 + }, + { + "start": 18516.4, + "end": 18517.64, + "probability": 0.8881 + }, + { + "start": 18518.48, + "end": 18519.34, + "probability": 0.2168 + }, + { + "start": 18520.02, + "end": 18522.92, + "probability": 0.9941 + }, + { + "start": 18523.68, + "end": 18527.14, + "probability": 0.9491 + }, + { + "start": 18527.14, + "end": 18531.6, + "probability": 0.9948 + }, + { + "start": 18532.1, + "end": 18534.9, + "probability": 0.9377 + }, + { + "start": 18535.6, + "end": 18536.06, + "probability": 0.6839 + }, + { + "start": 18536.18, + "end": 18538.1, + "probability": 0.9945 + }, + { + "start": 18538.18, + "end": 18538.72, + "probability": 0.9149 + }, + { + "start": 18538.78, + "end": 18539.46, + "probability": 0.893 + }, + { + "start": 18539.48, + "end": 18540.08, + "probability": 0.903 + }, + { + "start": 18540.16, + "end": 18540.84, + "probability": 0.853 + }, + { + "start": 18541.1, + "end": 18541.78, + "probability": 0.9784 + }, + { + "start": 18542.1, + "end": 18543.1, + "probability": 0.7034 + }, + { + "start": 18543.68, + "end": 18544.42, + "probability": 0.941 + }, + { + "start": 18545.06, + "end": 18548.76, + "probability": 0.9792 + }, + { + "start": 18549.3, + "end": 18551.44, + "probability": 0.72 + }, + { + "start": 18553.0, + "end": 18556.9, + "probability": 0.9911 + }, + { + "start": 18557.72, + "end": 18562.4, + "probability": 0.9928 + }, + { + "start": 18562.56, + "end": 18563.64, + "probability": 0.8152 + }, + { + "start": 18565.26, + "end": 18565.52, + "probability": 0.3676 + }, + { + "start": 18565.6, + "end": 18566.18, + "probability": 0.5761 + }, + { + "start": 18566.34, + "end": 18568.18, + "probability": 0.9829 + }, + { + "start": 18568.64, + "end": 18570.76, + "probability": 0.9826 + }, + { + "start": 18571.16, + "end": 18572.66, + "probability": 0.9984 + }, + { + "start": 18572.86, + "end": 18574.58, + "probability": 0.9278 + }, + { + "start": 18575.16, + "end": 18576.72, + "probability": 0.9839 + }, + { + "start": 18577.52, + "end": 18580.88, + "probability": 0.9961 + }, + { + "start": 18581.78, + "end": 18582.42, + "probability": 0.8643 + }, + { + "start": 18582.48, + "end": 18585.66, + "probability": 0.9976 + }, + { + "start": 18585.98, + "end": 18587.24, + "probability": 0.0866 + }, + { + "start": 18587.62, + "end": 18589.82, + "probability": 0.7111 + }, + { + "start": 18590.32, + "end": 18595.02, + "probability": 0.9924 + }, + { + "start": 18595.08, + "end": 18599.94, + "probability": 0.9915 + }, + { + "start": 18600.44, + "end": 18602.78, + "probability": 0.9585 + }, + { + "start": 18603.36, + "end": 18607.0, + "probability": 0.9833 + }, + { + "start": 18607.0, + "end": 18610.38, + "probability": 0.9976 + }, + { + "start": 18610.86, + "end": 18614.24, + "probability": 0.9927 + }, + { + "start": 18615.06, + "end": 18621.1, + "probability": 0.9382 + }, + { + "start": 18623.48, + "end": 18623.48, + "probability": 0.0515 + }, + { + "start": 18623.48, + "end": 18625.94, + "probability": 0.9122 + }, + { + "start": 18626.28, + "end": 18628.28, + "probability": 0.6811 + }, + { + "start": 18628.96, + "end": 18629.44, + "probability": 0.6154 + }, + { + "start": 18629.52, + "end": 18630.62, + "probability": 0.9525 + }, + { + "start": 18630.64, + "end": 18631.52, + "probability": 0.8847 + }, + { + "start": 18631.68, + "end": 18633.96, + "probability": 0.9899 + }, + { + "start": 18634.6, + "end": 18635.86, + "probability": 0.9294 + }, + { + "start": 18636.1, + "end": 18637.0, + "probability": 0.8153 + }, + { + "start": 18637.18, + "end": 18639.9, + "probability": 0.9736 + }, + { + "start": 18639.96, + "end": 18641.66, + "probability": 0.9749 + }, + { + "start": 18642.06, + "end": 18643.04, + "probability": 0.9736 + }, + { + "start": 18643.06, + "end": 18643.68, + "probability": 0.5751 + }, + { + "start": 18644.38, + "end": 18645.9, + "probability": 0.9849 + }, + { + "start": 18646.0, + "end": 18650.24, + "probability": 0.9272 + }, + { + "start": 18650.34, + "end": 18653.21, + "probability": 0.246 + }, + { + "start": 18654.42, + "end": 18657.8, + "probability": 0.9633 + }, + { + "start": 18658.16, + "end": 18661.6, + "probability": 0.9974 + }, + { + "start": 18662.08, + "end": 18663.36, + "probability": 0.9987 + }, + { + "start": 18663.98, + "end": 18665.54, + "probability": 0.9474 + }, + { + "start": 18665.86, + "end": 18669.22, + "probability": 0.9907 + }, + { + "start": 18669.44, + "end": 18673.0, + "probability": 0.9702 + }, + { + "start": 18673.28, + "end": 18675.7, + "probability": 0.9902 + }, + { + "start": 18675.98, + "end": 18677.9, + "probability": 0.9024 + }, + { + "start": 18678.04, + "end": 18678.66, + "probability": 0.5109 + }, + { + "start": 18678.66, + "end": 18680.54, + "probability": 0.7905 + }, + { + "start": 18680.9, + "end": 18684.42, + "probability": 0.9118 + }, + { + "start": 18686.02, + "end": 18687.12, + "probability": 0.4117 + }, + { + "start": 18687.18, + "end": 18690.08, + "probability": 0.0295 + }, + { + "start": 18690.6, + "end": 18690.94, + "probability": 0.1603 + }, + { + "start": 18692.86, + "end": 18696.38, + "probability": 0.1206 + }, + { + "start": 18698.32, + "end": 18701.22, + "probability": 0.6017 + }, + { + "start": 18701.32, + "end": 18702.92, + "probability": 0.7651 + }, + { + "start": 18709.92, + "end": 18711.78, + "probability": 0.314 + }, + { + "start": 18713.0, + "end": 18713.24, + "probability": 0.9412 + }, + { + "start": 18713.26, + "end": 18714.02, + "probability": 0.7903 + }, + { + "start": 18714.28, + "end": 18716.78, + "probability": 0.8207 + }, + { + "start": 18717.44, + "end": 18719.5, + "probability": 0.9489 + }, + { + "start": 18719.64, + "end": 18719.9, + "probability": 0.6831 + }, + { + "start": 18719.98, + "end": 18722.62, + "probability": 0.9969 + }, + { + "start": 18722.68, + "end": 18723.61, + "probability": 0.9078 + }, + { + "start": 18723.94, + "end": 18725.27, + "probability": 0.4979 + }, + { + "start": 18727.84, + "end": 18730.92, + "probability": 0.7444 + }, + { + "start": 18732.5, + "end": 18735.84, + "probability": 0.9875 + }, + { + "start": 18736.66, + "end": 18737.52, + "probability": 0.4114 + }, + { + "start": 18738.12, + "end": 18740.1, + "probability": 0.9324 + }, + { + "start": 18740.68, + "end": 18745.78, + "probability": 0.9624 + }, + { + "start": 18746.16, + "end": 18750.56, + "probability": 0.8884 + }, + { + "start": 18750.7, + "end": 18752.04, + "probability": 0.768 + }, + { + "start": 18752.16, + "end": 18752.62, + "probability": 0.6747 + }, + { + "start": 18753.88, + "end": 18755.72, + "probability": 0.7732 + }, + { + "start": 18756.08, + "end": 18759.18, + "probability": 0.2638 + }, + { + "start": 18759.52, + "end": 18761.32, + "probability": 0.7043 + }, + { + "start": 18761.82, + "end": 18762.4, + "probability": 0.9385 + }, + { + "start": 18763.36, + "end": 18765.6, + "probability": 0.6219 + }, + { + "start": 18765.64, + "end": 18766.85, + "probability": 0.6665 + }, + { + "start": 18767.18, + "end": 18774.89, + "probability": 0.9897 + }, + { + "start": 18775.24, + "end": 18776.64, + "probability": 0.6676 + }, + { + "start": 18777.3, + "end": 18778.52, + "probability": 0.8795 + }, + { + "start": 18779.34, + "end": 18780.5, + "probability": 0.9705 + }, + { + "start": 18781.06, + "end": 18788.44, + "probability": 0.9976 + }, + { + "start": 18789.1, + "end": 18792.08, + "probability": 0.9293 + }, + { + "start": 18792.72, + "end": 18800.46, + "probability": 0.8316 + }, + { + "start": 18801.28, + "end": 18801.3, + "probability": 0.0035 + }, + { + "start": 18801.3, + "end": 18801.64, + "probability": 0.2569 + }, + { + "start": 18802.1, + "end": 18805.14, + "probability": 0.8296 + }, + { + "start": 18805.24, + "end": 18808.16, + "probability": 0.5368 + }, + { + "start": 18808.16, + "end": 18808.26, + "probability": 0.2869 + }, + { + "start": 18809.18, + "end": 18810.08, + "probability": 0.4733 + }, + { + "start": 18810.34, + "end": 18813.78, + "probability": 0.4163 + }, + { + "start": 18814.22, + "end": 18817.4, + "probability": 0.8715 + }, + { + "start": 18817.72, + "end": 18818.72, + "probability": 0.4904 + }, + { + "start": 18819.3, + "end": 18820.38, + "probability": 0.502 + }, + { + "start": 18820.46, + "end": 18823.28, + "probability": 0.6344 + }, + { + "start": 18823.54, + "end": 18825.2, + "probability": 0.9889 + }, + { + "start": 18825.26, + "end": 18826.26, + "probability": 0.9985 + }, + { + "start": 18826.72, + "end": 18828.0, + "probability": 0.5224 + }, + { + "start": 18829.4, + "end": 18829.46, + "probability": 0.0656 + }, + { + "start": 18829.46, + "end": 18834.26, + "probability": 0.908 + }, + { + "start": 18834.64, + "end": 18836.28, + "probability": 0.5007 + }, + { + "start": 18836.32, + "end": 18836.67, + "probability": 0.9114 + }, + { + "start": 18837.26, + "end": 18840.78, + "probability": 0.86 + }, + { + "start": 18841.34, + "end": 18843.5, + "probability": 0.8391 + }, + { + "start": 18844.06, + "end": 18845.0, + "probability": 0.0677 + }, + { + "start": 18845.44, + "end": 18845.84, + "probability": 0.2069 + }, + { + "start": 18845.9, + "end": 18847.56, + "probability": 0.5246 + }, + { + "start": 18848.26, + "end": 18849.78, + "probability": 0.7351 + }, + { + "start": 18849.88, + "end": 18851.87, + "probability": 0.9351 + }, + { + "start": 18852.28, + "end": 18853.02, + "probability": 0.8438 + }, + { + "start": 18853.34, + "end": 18856.12, + "probability": 0.9032 + }, + { + "start": 18856.54, + "end": 18858.0, + "probability": 0.9515 + }, + { + "start": 18858.28, + "end": 18858.76, + "probability": 0.6547 + }, + { + "start": 18859.24, + "end": 18861.88, + "probability": 0.9847 + }, + { + "start": 18862.48, + "end": 18867.48, + "probability": 0.9897 + }, + { + "start": 18867.84, + "end": 18870.64, + "probability": 0.9608 + }, + { + "start": 18870.88, + "end": 18871.54, + "probability": 0.8472 + }, + { + "start": 18872.22, + "end": 18874.74, + "probability": 0.939 + }, + { + "start": 18875.3, + "end": 18876.08, + "probability": 0.8888 + }, + { + "start": 18876.64, + "end": 18880.32, + "probability": 0.6298 + }, + { + "start": 18881.26, + "end": 18884.1, + "probability": 0.9835 + }, + { + "start": 18884.16, + "end": 18885.82, + "probability": 0.6899 + }, + { + "start": 18886.46, + "end": 18887.63, + "probability": 0.9824 + }, + { + "start": 18887.76, + "end": 18889.24, + "probability": 0.9342 + }, + { + "start": 18889.3, + "end": 18890.52, + "probability": 0.9961 + }, + { + "start": 18890.96, + "end": 18892.48, + "probability": 0.9949 + }, + { + "start": 18892.88, + "end": 18898.36, + "probability": 0.9533 + }, + { + "start": 18898.74, + "end": 18898.74, + "probability": 0.0018 + }, + { + "start": 18898.74, + "end": 18900.26, + "probability": 0.5329 + }, + { + "start": 18900.84, + "end": 18901.72, + "probability": 0.795 + }, + { + "start": 18902.08, + "end": 18902.96, + "probability": 0.8932 + }, + { + "start": 18903.2, + "end": 18904.12, + "probability": 0.7866 + }, + { + "start": 18904.26, + "end": 18906.92, + "probability": 0.7915 + }, + { + "start": 18906.94, + "end": 18907.62, + "probability": 0.7723 + }, + { + "start": 18908.38, + "end": 18910.34, + "probability": 0.9908 + }, + { + "start": 18910.48, + "end": 18911.7, + "probability": 0.7375 + }, + { + "start": 18911.82, + "end": 18912.28, + "probability": 0.5021 + }, + { + "start": 18912.76, + "end": 18913.82, + "probability": 0.9829 + }, + { + "start": 18914.26, + "end": 18915.18, + "probability": 0.9473 + }, + { + "start": 18915.36, + "end": 18916.72, + "probability": 0.85 + }, + { + "start": 18916.78, + "end": 18917.34, + "probability": 0.9365 + }, + { + "start": 18917.6, + "end": 18918.44, + "probability": 0.8858 + }, + { + "start": 18918.46, + "end": 18919.04, + "probability": 0.9715 + }, + { + "start": 18919.56, + "end": 18920.52, + "probability": 0.712 + }, + { + "start": 18920.86, + "end": 18922.46, + "probability": 0.7941 + }, + { + "start": 18922.6, + "end": 18923.48, + "probability": 0.6188 + }, + { + "start": 18923.6, + "end": 18924.56, + "probability": 0.7562 + }, + { + "start": 18925.44, + "end": 18928.7, + "probability": 0.7689 + }, + { + "start": 18929.28, + "end": 18929.98, + "probability": 0.6279 + }, + { + "start": 18930.84, + "end": 18931.4, + "probability": 0.6506 + }, + { + "start": 18931.9, + "end": 18934.06, + "probability": 0.9812 + }, + { + "start": 18934.54, + "end": 18935.47, + "probability": 0.9851 + }, + { + "start": 18936.3, + "end": 18941.36, + "probability": 0.994 + }, + { + "start": 18941.36, + "end": 18945.86, + "probability": 0.9902 + }, + { + "start": 18946.3, + "end": 18947.24, + "probability": 0.9825 + }, + { + "start": 18947.32, + "end": 18948.14, + "probability": 0.5145 + }, + { + "start": 18948.24, + "end": 18949.28, + "probability": 0.9141 + }, + { + "start": 18949.54, + "end": 18950.04, + "probability": 0.1967 + }, + { + "start": 18950.12, + "end": 18950.48, + "probability": 0.5533 + }, + { + "start": 18950.48, + "end": 18953.22, + "probability": 0.8822 + }, + { + "start": 18953.32, + "end": 18958.06, + "probability": 0.8049 + }, + { + "start": 18958.24, + "end": 18958.92, + "probability": 0.884 + }, + { + "start": 18959.42, + "end": 18959.97, + "probability": 0.8555 + }, + { + "start": 18960.64, + "end": 18962.57, + "probability": 0.821 + }, + { + "start": 18963.34, + "end": 18964.3, + "probability": 0.5644 + }, + { + "start": 18965.12, + "end": 18968.24, + "probability": 0.5162 + }, + { + "start": 18968.32, + "end": 18968.32, + "probability": 0.1361 + }, + { + "start": 18968.32, + "end": 18971.6, + "probability": 0.8385 + }, + { + "start": 18971.94, + "end": 18972.36, + "probability": 0.6992 + }, + { + "start": 18972.98, + "end": 18974.64, + "probability": 0.9502 + }, + { + "start": 18974.78, + "end": 18975.13, + "probability": 0.4482 + }, + { + "start": 18975.66, + "end": 18976.38, + "probability": 0.0616 + }, + { + "start": 18976.72, + "end": 18977.9, + "probability": 0.4713 + }, + { + "start": 18978.36, + "end": 18979.94, + "probability": 0.2691 + }, + { + "start": 18979.94, + "end": 18980.7, + "probability": 0.61 + }, + { + "start": 18980.84, + "end": 18981.7, + "probability": 0.7361 + }, + { + "start": 18981.98, + "end": 18983.87, + "probability": 0.0985 + }, + { + "start": 18983.94, + "end": 18986.54, + "probability": 0.8896 + }, + { + "start": 18986.68, + "end": 18988.02, + "probability": 0.9739 + }, + { + "start": 18988.12, + "end": 18988.94, + "probability": 0.038 + }, + { + "start": 18988.94, + "end": 18989.81, + "probability": 0.1276 + }, + { + "start": 18989.9, + "end": 18991.05, + "probability": 0.5325 + }, + { + "start": 18991.14, + "end": 18992.16, + "probability": 0.1535 + }, + { + "start": 18992.64, + "end": 18994.16, + "probability": 0.14 + }, + { + "start": 18994.98, + "end": 18996.21, + "probability": 0.3133 + }, + { + "start": 18998.22, + "end": 19001.32, + "probability": 0.6759 + }, + { + "start": 19001.74, + "end": 19004.02, + "probability": 0.978 + }, + { + "start": 19004.38, + "end": 19005.76, + "probability": 0.9984 + }, + { + "start": 19006.36, + "end": 19008.02, + "probability": 0.8286 + }, + { + "start": 19008.14, + "end": 19010.06, + "probability": 0.6781 + }, + { + "start": 19010.72, + "end": 19012.14, + "probability": 0.961 + }, + { + "start": 19012.2, + "end": 19014.04, + "probability": 0.9941 + }, + { + "start": 19014.62, + "end": 19016.16, + "probability": 0.9763 + }, + { + "start": 19016.26, + "end": 19019.08, + "probability": 0.3303 + }, + { + "start": 19019.08, + "end": 19020.58, + "probability": 0.4427 + }, + { + "start": 19021.0, + "end": 19023.24, + "probability": 0.721 + }, + { + "start": 19023.48, + "end": 19028.24, + "probability": 0.0192 + }, + { + "start": 19030.08, + "end": 19030.56, + "probability": 0.059 + }, + { + "start": 19030.56, + "end": 19030.66, + "probability": 0.0066 + }, + { + "start": 19032.18, + "end": 19032.44, + "probability": 0.2845 + }, + { + "start": 19032.44, + "end": 19032.44, + "probability": 0.0504 + }, + { + "start": 19032.44, + "end": 19032.44, + "probability": 0.0349 + }, + { + "start": 19032.44, + "end": 19034.76, + "probability": 0.1274 + }, + { + "start": 19034.82, + "end": 19036.68, + "probability": 0.5978 + }, + { + "start": 19037.26, + "end": 19037.26, + "probability": 0.2144 + }, + { + "start": 19037.26, + "end": 19038.06, + "probability": 0.2592 + }, + { + "start": 19038.18, + "end": 19038.92, + "probability": 0.3909 + }, + { + "start": 19039.12, + "end": 19040.32, + "probability": 0.1773 + }, + { + "start": 19040.38, + "end": 19041.54, + "probability": 0.366 + }, + { + "start": 19041.72, + "end": 19042.18, + "probability": 0.5062 + }, + { + "start": 19042.22, + "end": 19044.26, + "probability": 0.7308 + }, + { + "start": 19044.26, + "end": 19045.18, + "probability": 0.5082 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.0, + "end": 19153.0, + "probability": 0.0 + }, + { + "start": 19153.16, + "end": 19154.14, + "probability": 0.5067 + }, + { + "start": 19154.76, + "end": 19155.36, + "probability": 0.3044 + }, + { + "start": 19155.36, + "end": 19156.58, + "probability": 0.4748 + }, + { + "start": 19156.98, + "end": 19158.26, + "probability": 0.5878 + }, + { + "start": 19158.32, + "end": 19162.4, + "probability": 0.6659 + }, + { + "start": 19163.02, + "end": 19163.04, + "probability": 0.1357 + }, + { + "start": 19163.04, + "end": 19163.28, + "probability": 0.7683 + }, + { + "start": 19163.36, + "end": 19164.36, + "probability": 0.8496 + }, + { + "start": 19164.48, + "end": 19166.62, + "probability": 0.8267 + }, + { + "start": 19166.92, + "end": 19167.04, + "probability": 0.058 + }, + { + "start": 19167.36, + "end": 19169.16, + "probability": 0.9736 + }, + { + "start": 19169.68, + "end": 19170.46, + "probability": 0.5254 + }, + { + "start": 19170.7, + "end": 19171.1, + "probability": 0.0359 + }, + { + "start": 19171.1, + "end": 19174.86, + "probability": 0.9505 + }, + { + "start": 19175.1, + "end": 19175.1, + "probability": 0.5202 + }, + { + "start": 19175.1, + "end": 19175.66, + "probability": 0.5675 + }, + { + "start": 19175.76, + "end": 19176.66, + "probability": 0.9675 + }, + { + "start": 19176.78, + "end": 19184.02, + "probability": 0.0673 + }, + { + "start": 19184.52, + "end": 19184.58, + "probability": 0.2919 + }, + { + "start": 19184.58, + "end": 19185.64, + "probability": 0.0137 + }, + { + "start": 19186.18, + "end": 19186.18, + "probability": 0.0562 + }, + { + "start": 19186.7, + "end": 19192.12, + "probability": 0.0382 + }, + { + "start": 19192.12, + "end": 19192.34, + "probability": 0.3715 + }, + { + "start": 19192.36, + "end": 19193.22, + "probability": 0.0112 + }, + { + "start": 19193.56, + "end": 19194.4, + "probability": 0.0125 + }, + { + "start": 19195.92, + "end": 19196.16, + "probability": 0.0654 + }, + { + "start": 19196.16, + "end": 19199.28, + "probability": 0.3934 + }, + { + "start": 19199.9, + "end": 19202.02, + "probability": 0.1475 + }, + { + "start": 19203.3, + "end": 19203.42, + "probability": 0.0103 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19276.0, + "end": 19276.0, + "probability": 0.0 + }, + { + "start": 19281.12, + "end": 19281.18, + "probability": 0.3747 + }, + { + "start": 19281.56, + "end": 19282.54, + "probability": 0.839 + }, + { + "start": 19282.64, + "end": 19284.82, + "probability": 0.6126 + }, + { + "start": 19284.82, + "end": 19284.82, + "probability": 0.7968 + }, + { + "start": 19284.94, + "end": 19285.62, + "probability": 0.0615 + }, + { + "start": 19285.62, + "end": 19287.54, + "probability": 0.9578 + }, + { + "start": 19287.68, + "end": 19288.24, + "probability": 0.8862 + }, + { + "start": 19288.68, + "end": 19290.14, + "probability": 0.8639 + }, + { + "start": 19290.24, + "end": 19291.9, + "probability": 0.876 + }, + { + "start": 19292.53, + "end": 19294.05, + "probability": 0.5468 + }, + { + "start": 19294.46, + "end": 19294.94, + "probability": 0.9402 + }, + { + "start": 19295.14, + "end": 19296.96, + "probability": 0.8665 + }, + { + "start": 19297.0, + "end": 19297.76, + "probability": 0.7457 + }, + { + "start": 19298.16, + "end": 19298.9, + "probability": 0.819 + }, + { + "start": 19299.04, + "end": 19300.26, + "probability": 0.9832 + }, + { + "start": 19300.94, + "end": 19301.0, + "probability": 0.0024 + }, + { + "start": 19302.86, + "end": 19303.34, + "probability": 0.0107 + }, + { + "start": 19306.22, + "end": 19306.3, + "probability": 0.0303 + }, + { + "start": 19307.49, + "end": 19310.25, + "probability": 0.011 + }, + { + "start": 19310.46, + "end": 19311.76, + "probability": 0.1755 + }, + { + "start": 19312.88, + "end": 19317.04, + "probability": 0.1982 + }, + { + "start": 19320.14, + "end": 19321.26, + "probability": 0.0157 + }, + { + "start": 19322.32, + "end": 19323.08, + "probability": 0.181 + }, + { + "start": 19323.08, + "end": 19323.7, + "probability": 0.0274 + }, + { + "start": 19323.7, + "end": 19325.06, + "probability": 0.2469 + }, + { + "start": 19325.06, + "end": 19325.06, + "probability": 0.0723 + }, + { + "start": 19326.58, + "end": 19328.48, + "probability": 0.2193 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.0, + "end": 19400.0, + "probability": 0.0 + }, + { + "start": 19400.12, + "end": 19402.12, + "probability": 0.2794 + }, + { + "start": 19402.7, + "end": 19402.9, + "probability": 0.2946 + }, + { + "start": 19402.9, + "end": 19402.98, + "probability": 0.2079 + }, + { + "start": 19402.98, + "end": 19402.98, + "probability": 0.4165 + }, + { + "start": 19402.98, + "end": 19405.11, + "probability": 0.4972 + }, + { + "start": 19406.2, + "end": 19407.94, + "probability": 0.8547 + }, + { + "start": 19407.98, + "end": 19409.26, + "probability": 0.7429 + }, + { + "start": 19409.26, + "end": 19409.73, + "probability": 0.2706 + }, + { + "start": 19410.88, + "end": 19412.38, + "probability": 0.1687 + }, + { + "start": 19412.76, + "end": 19416.34, + "probability": 0.1958 + }, + { + "start": 19416.42, + "end": 19416.42, + "probability": 0.2227 + }, + { + "start": 19416.42, + "end": 19416.42, + "probability": 0.0958 + }, + { + "start": 19416.42, + "end": 19417.56, + "probability": 0.1764 + }, + { + "start": 19418.36, + "end": 19418.62, + "probability": 0.3003 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.0, + "end": 19529.0, + "probability": 0.0 + }, + { + "start": 19529.32, + "end": 19529.6, + "probability": 0.0162 + }, + { + "start": 19530.74, + "end": 19532.18, + "probability": 0.6584 + }, + { + "start": 19532.44, + "end": 19535.06, + "probability": 0.9901 + }, + { + "start": 19536.14, + "end": 19537.96, + "probability": 0.794 + }, + { + "start": 19538.18, + "end": 19539.16, + "probability": 0.928 + }, + { + "start": 19540.24, + "end": 19543.1, + "probability": 0.8896 + }, + { + "start": 19544.4, + "end": 19545.32, + "probability": 0.8719 + }, + { + "start": 19546.4, + "end": 19547.22, + "probability": 0.7233 + }, + { + "start": 19547.48, + "end": 19551.36, + "probability": 0.9912 + }, + { + "start": 19552.46, + "end": 19555.1, + "probability": 0.9924 + }, + { + "start": 19555.8, + "end": 19557.16, + "probability": 0.9883 + }, + { + "start": 19558.16, + "end": 19559.0, + "probability": 0.9937 + }, + { + "start": 19559.6, + "end": 19560.66, + "probability": 0.9514 + }, + { + "start": 19561.34, + "end": 19562.58, + "probability": 0.7728 + }, + { + "start": 19563.8, + "end": 19565.3, + "probability": 0.9475 + }, + { + "start": 19565.46, + "end": 19568.42, + "probability": 0.9834 + }, + { + "start": 19568.88, + "end": 19570.42, + "probability": 0.8944 + }, + { + "start": 19570.83, + "end": 19572.72, + "probability": 0.9792 + }, + { + "start": 19573.7, + "end": 19575.38, + "probability": 0.9825 + }, + { + "start": 19575.62, + "end": 19576.64, + "probability": 0.9541 + }, + { + "start": 19576.88, + "end": 19577.66, + "probability": 0.7909 + }, + { + "start": 19577.74, + "end": 19580.3, + "probability": 0.9455 + }, + { + "start": 19580.92, + "end": 19585.1, + "probability": 0.9494 + }, + { + "start": 19586.82, + "end": 19589.42, + "probability": 0.5498 + }, + { + "start": 19590.2, + "end": 19591.04, + "probability": 0.2685 + }, + { + "start": 19591.04, + "end": 19592.26, + "probability": 0.6922 + }, + { + "start": 19593.18, + "end": 19593.38, + "probability": 0.8003 + }, + { + "start": 19593.42, + "end": 19598.9, + "probability": 0.984 + }, + { + "start": 19598.9, + "end": 19602.92, + "probability": 0.9975 + }, + { + "start": 19603.42, + "end": 19603.52, + "probability": 0.2082 + }, + { + "start": 19604.88, + "end": 19606.86, + "probability": 0.607 + }, + { + "start": 19607.24, + "end": 19611.38, + "probability": 0.9875 + }, + { + "start": 19612.72, + "end": 19615.64, + "probability": 0.9993 + }, + { + "start": 19616.0, + "end": 19619.28, + "probability": 0.929 + }, + { + "start": 19619.94, + "end": 19621.9, + "probability": 0.9958 + }, + { + "start": 19622.36, + "end": 19623.72, + "probability": 0.8603 + }, + { + "start": 19624.18, + "end": 19625.54, + "probability": 0.9911 + }, + { + "start": 19625.98, + "end": 19629.56, + "probability": 0.9658 + }, + { + "start": 19630.26, + "end": 19633.25, + "probability": 0.9902 + }, + { + "start": 19633.58, + "end": 19634.3, + "probability": 0.9546 + }, + { + "start": 19634.66, + "end": 19638.28, + "probability": 0.9326 + }, + { + "start": 19638.86, + "end": 19640.92, + "probability": 0.9954 + }, + { + "start": 19641.94, + "end": 19644.2, + "probability": 0.9925 + }, + { + "start": 19644.52, + "end": 19645.74, + "probability": 0.7251 + }, + { + "start": 19647.14, + "end": 19647.16, + "probability": 0.9614 + }, + { + "start": 19648.32, + "end": 19651.0, + "probability": 0.998 + }, + { + "start": 19651.38, + "end": 19655.54, + "probability": 0.7666 + }, + { + "start": 19655.94, + "end": 19656.58, + "probability": 0.6288 + }, + { + "start": 19656.66, + "end": 19657.76, + "probability": 0.8394 + }, + { + "start": 19657.84, + "end": 19662.88, + "probability": 0.8714 + }, + { + "start": 19662.88, + "end": 19665.84, + "probability": 0.9971 + }, + { + "start": 19666.3, + "end": 19668.38, + "probability": 0.9863 + }, + { + "start": 19669.42, + "end": 19671.06, + "probability": 0.9985 + }, + { + "start": 19672.36, + "end": 19674.54, + "probability": 0.9524 + }, + { + "start": 19675.02, + "end": 19676.88, + "probability": 0.8012 + }, + { + "start": 19676.98, + "end": 19681.86, + "probability": 0.9983 + }, + { + "start": 19682.64, + "end": 19685.48, + "probability": 0.9778 + }, + { + "start": 19685.58, + "end": 19688.18, + "probability": 0.8691 + }, + { + "start": 19688.7, + "end": 19690.16, + "probability": 0.8921 + }, + { + "start": 19690.62, + "end": 19694.14, + "probability": 0.9683 + }, + { + "start": 19694.56, + "end": 19699.3, + "probability": 0.9842 + }, + { + "start": 19699.76, + "end": 19703.68, + "probability": 0.9396 + }, + { + "start": 19704.16, + "end": 19705.76, + "probability": 0.856 + }, + { + "start": 19705.86, + "end": 19709.18, + "probability": 0.8179 + }, + { + "start": 19709.24, + "end": 19710.56, + "probability": 0.9387 + }, + { + "start": 19710.86, + "end": 19712.18, + "probability": 0.7422 + }, + { + "start": 19712.34, + "end": 19714.28, + "probability": 0.9877 + }, + { + "start": 19714.94, + "end": 19717.24, + "probability": 0.5815 + }, + { + "start": 19717.24, + "end": 19717.24, + "probability": 0.0742 + }, + { + "start": 19717.24, + "end": 19720.06, + "probability": 0.4698 + }, + { + "start": 19721.36, + "end": 19721.7, + "probability": 0.6659 + }, + { + "start": 19722.16, + "end": 19723.12, + "probability": 0.6571 + }, + { + "start": 19723.16, + "end": 19723.96, + "probability": 0.1281 + }, + { + "start": 19724.12, + "end": 19724.5, + "probability": 0.2916 + }, + { + "start": 19724.62, + "end": 19726.02, + "probability": 0.5215 + }, + { + "start": 19726.2, + "end": 19729.1, + "probability": 0.9482 + }, + { + "start": 19729.46, + "end": 19731.66, + "probability": 0.8604 + }, + { + "start": 19732.2, + "end": 19736.18, + "probability": 0.9683 + }, + { + "start": 19736.4, + "end": 19737.98, + "probability": 0.8636 + }, + { + "start": 19738.22, + "end": 19739.31, + "probability": 0.9627 + }, + { + "start": 19740.06, + "end": 19743.16, + "probability": 0.9584 + }, + { + "start": 19744.5, + "end": 19748.6, + "probability": 0.8449 + }, + { + "start": 19748.68, + "end": 19750.48, + "probability": 0.9888 + }, + { + "start": 19750.9, + "end": 19755.74, + "probability": 0.77 + }, + { + "start": 19755.92, + "end": 19757.02, + "probability": 0.6803 + }, + { + "start": 19757.42, + "end": 19757.52, + "probability": 0.3403 + }, + { + "start": 19760.08, + "end": 19760.5, + "probability": 0.0519 + }, + { + "start": 19760.5, + "end": 19760.5, + "probability": 0.1438 + }, + { + "start": 19760.5, + "end": 19761.12, + "probability": 0.3202 + }, + { + "start": 19761.58, + "end": 19764.0, + "probability": 0.9385 + }, + { + "start": 19764.98, + "end": 19767.22, + "probability": 0.8954 + }, + { + "start": 19767.56, + "end": 19769.3, + "probability": 0.9814 + }, + { + "start": 19769.58, + "end": 19769.88, + "probability": 0.5531 + }, + { + "start": 19769.88, + "end": 19770.16, + "probability": 0.7504 + }, + { + "start": 19770.22, + "end": 19771.3, + "probability": 0.9847 + }, + { + "start": 19771.36, + "end": 19773.08, + "probability": 0.9798 + }, + { + "start": 19773.28, + "end": 19773.46, + "probability": 0.4678 + }, + { + "start": 19774.1, + "end": 19774.54, + "probability": 0.6833 + }, + { + "start": 19774.76, + "end": 19776.46, + "probability": 0.9255 + }, + { + "start": 19776.64, + "end": 19778.0, + "probability": 0.7365 + }, + { + "start": 19778.8, + "end": 19781.26, + "probability": 0.916 + }, + { + "start": 19781.28, + "end": 19782.42, + "probability": 0.9139 + }, + { + "start": 19785.08, + "end": 19787.12, + "probability": 0.3269 + }, + { + "start": 19787.32, + "end": 19790.0, + "probability": 0.5596 + }, + { + "start": 19790.92, + "end": 19794.22, + "probability": 0.9621 + }, + { + "start": 19794.42, + "end": 19798.88, + "probability": 0.9949 + }, + { + "start": 19800.28, + "end": 19804.72, + "probability": 0.9548 + }, + { + "start": 19806.16, + "end": 19808.46, + "probability": 0.8476 + }, + { + "start": 19809.62, + "end": 19810.34, + "probability": 0.9332 + }, + { + "start": 19811.5, + "end": 19814.0, + "probability": 0.582 + }, + { + "start": 19814.26, + "end": 19817.98, + "probability": 0.981 + }, + { + "start": 19819.26, + "end": 19824.08, + "probability": 0.9909 + }, + { + "start": 19824.24, + "end": 19827.0, + "probability": 0.9973 + }, + { + "start": 19828.58, + "end": 19831.52, + "probability": 0.9297 + }, + { + "start": 19832.48, + "end": 19836.48, + "probability": 0.9159 + }, + { + "start": 19837.04, + "end": 19837.8, + "probability": 0.8718 + }, + { + "start": 19838.2, + "end": 19839.28, + "probability": 0.9739 + }, + { + "start": 19839.62, + "end": 19841.08, + "probability": 0.4183 + }, + { + "start": 19842.1, + "end": 19842.56, + "probability": 0.8589 + }, + { + "start": 19843.96, + "end": 19844.31, + "probability": 0.9546 + }, + { + "start": 19845.38, + "end": 19848.04, + "probability": 0.9624 + }, + { + "start": 19848.98, + "end": 19849.62, + "probability": 0.754 + }, + { + "start": 19851.14, + "end": 19853.42, + "probability": 0.9983 + }, + { + "start": 19853.6, + "end": 19855.2, + "probability": 0.9578 + }, + { + "start": 19856.16, + "end": 19857.38, + "probability": 0.9862 + }, + { + "start": 19858.88, + "end": 19859.82, + "probability": 0.6928 + }, + { + "start": 19860.56, + "end": 19863.4, + "probability": 0.9536 + }, + { + "start": 19865.24, + "end": 19867.86, + "probability": 0.9309 + }, + { + "start": 19868.7, + "end": 19868.8, + "probability": 0.4191 + }, + { + "start": 19869.06, + "end": 19870.14, + "probability": 0.8798 + }, + { + "start": 19870.66, + "end": 19872.52, + "probability": 0.8755 + }, + { + "start": 19872.62, + "end": 19875.06, + "probability": 0.9907 + }, + { + "start": 19875.58, + "end": 19877.12, + "probability": 0.8843 + }, + { + "start": 19877.28, + "end": 19878.5, + "probability": 0.5907 + }, + { + "start": 19878.52, + "end": 19879.7, + "probability": 0.9309 + }, + { + "start": 19880.34, + "end": 19883.9, + "probability": 0.7712 + }, + { + "start": 19884.08, + "end": 19885.18, + "probability": 0.8631 + }, + { + "start": 19885.46, + "end": 19887.9, + "probability": 0.9439 + }, + { + "start": 19888.94, + "end": 19890.13, + "probability": 0.9629 + }, + { + "start": 19892.56, + "end": 19897.72, + "probability": 0.9929 + }, + { + "start": 19897.94, + "end": 19898.14, + "probability": 0.7971 + }, + { + "start": 19898.96, + "end": 19899.61, + "probability": 0.9302 + }, + { + "start": 19899.88, + "end": 19902.04, + "probability": 0.9939 + }, + { + "start": 19902.9, + "end": 19906.74, + "probability": 0.9377 + }, + { + "start": 19907.8, + "end": 19910.52, + "probability": 0.8952 + }, + { + "start": 19910.6, + "end": 19911.66, + "probability": 0.7464 + }, + { + "start": 19911.82, + "end": 19915.56, + "probability": 0.9875 + }, + { + "start": 19916.74, + "end": 19919.04, + "probability": 0.9055 + }, + { + "start": 19919.8, + "end": 19922.65, + "probability": 0.908 + }, + { + "start": 19923.52, + "end": 19924.12, + "probability": 0.7358 + }, + { + "start": 19924.3, + "end": 19924.78, + "probability": 0.1314 + }, + { + "start": 19924.96, + "end": 19925.34, + "probability": 0.5083 + }, + { + "start": 19925.42, + "end": 19925.9, + "probability": 0.4494 + }, + { + "start": 19927.0, + "end": 19930.42, + "probability": 0.7882 + }, + { + "start": 19931.5, + "end": 19932.84, + "probability": 0.9721 + }, + { + "start": 19933.02, + "end": 19935.12, + "probability": 0.9841 + }, + { + "start": 19935.64, + "end": 19940.12, + "probability": 0.9985 + }, + { + "start": 19940.14, + "end": 19943.14, + "probability": 0.9998 + }, + { + "start": 19944.86, + "end": 19946.22, + "probability": 0.9273 + }, + { + "start": 19946.58, + "end": 19946.92, + "probability": 0.9121 + }, + { + "start": 19946.96, + "end": 19948.8, + "probability": 0.9811 + }, + { + "start": 19949.7, + "end": 19955.2, + "probability": 0.9858 + }, + { + "start": 19956.58, + "end": 19957.36, + "probability": 0.3329 + }, + { + "start": 19958.46, + "end": 19959.44, + "probability": 0.862 + }, + { + "start": 19959.66, + "end": 19961.12, + "probability": 0.7075 + }, + { + "start": 19961.24, + "end": 19961.7, + "probability": 0.9324 + }, + { + "start": 19961.78, + "end": 19962.7, + "probability": 0.9041 + }, + { + "start": 19963.62, + "end": 19964.55, + "probability": 0.4484 + }, + { + "start": 19965.06, + "end": 19965.98, + "probability": 0.9731 + }, + { + "start": 19966.0, + "end": 19966.26, + "probability": 0.3739 + }, + { + "start": 19966.44, + "end": 19966.86, + "probability": 0.7545 + }, + { + "start": 19966.9, + "end": 19967.2, + "probability": 0.6598 + }, + { + "start": 19967.24, + "end": 19968.14, + "probability": 0.8016 + }, + { + "start": 19968.48, + "end": 19969.96, + "probability": 0.8875 + }, + { + "start": 19970.94, + "end": 19971.46, + "probability": 0.9694 + }, + { + "start": 19972.66, + "end": 19973.14, + "probability": 0.354 + }, + { + "start": 19974.36, + "end": 19976.14, + "probability": 0.7363 + }, + { + "start": 19977.32, + "end": 19978.12, + "probability": 0.893 + }, + { + "start": 19978.36, + "end": 19981.84, + "probability": 0.9354 + }, + { + "start": 19981.94, + "end": 19982.6, + "probability": 0.8857 + }, + { + "start": 19984.16, + "end": 19985.72, + "probability": 0.9614 + }, + { + "start": 19987.0, + "end": 19987.28, + "probability": 0.8484 + }, + { + "start": 19987.46, + "end": 19989.82, + "probability": 0.9907 + }, + { + "start": 19989.92, + "end": 19990.08, + "probability": 0.9745 + }, + { + "start": 19990.14, + "end": 19990.44, + "probability": 0.7072 + }, + { + "start": 19990.6, + "end": 19991.8, + "probability": 0.9475 + }, + { + "start": 19992.7, + "end": 19994.92, + "probability": 0.9927 + }, + { + "start": 19995.4, + "end": 19998.32, + "probability": 0.7822 + }, + { + "start": 19998.4, + "end": 19999.48, + "probability": 0.831 + }, + { + "start": 19999.68, + "end": 20000.77, + "probability": 0.7701 + }, + { + "start": 20000.94, + "end": 20003.68, + "probability": 0.9208 + }, + { + "start": 20004.76, + "end": 20005.26, + "probability": 0.386 + }, + { + "start": 20005.34, + "end": 20006.7, + "probability": 0.9399 + }, + { + "start": 20006.78, + "end": 20009.06, + "probability": 0.834 + }, + { + "start": 20009.68, + "end": 20010.82, + "probability": 0.9548 + }, + { + "start": 20011.62, + "end": 20012.24, + "probability": 0.8206 + }, + { + "start": 20012.24, + "end": 20014.28, + "probability": 0.9827 + }, + { + "start": 20014.5, + "end": 20014.98, + "probability": 0.7001 + }, + { + "start": 20015.88, + "end": 20016.94, + "probability": 0.8819 + }, + { + "start": 20017.82, + "end": 20019.34, + "probability": 0.8175 + }, + { + "start": 20019.96, + "end": 20021.08, + "probability": 0.7541 + }, + { + "start": 20021.3, + "end": 20023.22, + "probability": 0.9817 + }, + { + "start": 20024.18, + "end": 20025.2, + "probability": 0.7939 + }, + { + "start": 20026.52, + "end": 20027.46, + "probability": 0.5687 + }, + { + "start": 20028.88, + "end": 20030.12, + "probability": 0.9788 + }, + { + "start": 20030.92, + "end": 20032.36, + "probability": 0.9518 + }, + { + "start": 20032.74, + "end": 20033.66, + "probability": 0.6172 + }, + { + "start": 20033.78, + "end": 20034.1, + "probability": 0.9255 + }, + { + "start": 20034.34, + "end": 20034.76, + "probability": 0.7337 + }, + { + "start": 20036.02, + "end": 20039.06, + "probability": 0.9756 + }, + { + "start": 20039.56, + "end": 20041.88, + "probability": 0.9727 + }, + { + "start": 20042.58, + "end": 20045.76, + "probability": 0.9699 + }, + { + "start": 20046.86, + "end": 20046.96, + "probability": 0.2385 + }, + { + "start": 20046.96, + "end": 20048.64, + "probability": 0.5451 + }, + { + "start": 20048.94, + "end": 20050.88, + "probability": 0.8903 + }, + { + "start": 20050.98, + "end": 20051.8, + "probability": 0.9648 + }, + { + "start": 20052.02, + "end": 20052.68, + "probability": 0.7737 + }, + { + "start": 20066.16, + "end": 20069.86, + "probability": 0.7492 + }, + { + "start": 20080.6, + "end": 20081.88, + "probability": 0.3139 + }, + { + "start": 20082.04, + "end": 20082.04, + "probability": 0.4391 + }, + { + "start": 20082.08, + "end": 20082.52, + "probability": 0.6978 + }, + { + "start": 20082.8, + "end": 20083.84, + "probability": 0.9364 + }, + { + "start": 20085.9, + "end": 20087.78, + "probability": 0.9968 + }, + { + "start": 20089.72, + "end": 20090.74, + "probability": 0.8624 + }, + { + "start": 20090.84, + "end": 20091.8, + "probability": 0.9132 + }, + { + "start": 20091.94, + "end": 20093.17, + "probability": 0.9829 + }, + { + "start": 20093.6, + "end": 20095.48, + "probability": 0.9153 + }, + { + "start": 20096.92, + "end": 20097.96, + "probability": 0.9797 + }, + { + "start": 20098.8, + "end": 20101.62, + "probability": 0.9977 + }, + { + "start": 20102.78, + "end": 20103.52, + "probability": 0.3955 + }, + { + "start": 20104.4, + "end": 20105.56, + "probability": 0.9576 + }, + { + "start": 20106.44, + "end": 20108.52, + "probability": 0.9961 + }, + { + "start": 20110.1, + "end": 20112.54, + "probability": 0.9925 + }, + { + "start": 20113.98, + "end": 20117.86, + "probability": 0.9906 + }, + { + "start": 20122.96, + "end": 20124.16, + "probability": 0.8137 + }, + { + "start": 20124.26, + "end": 20127.56, + "probability": 0.9976 + }, + { + "start": 20127.86, + "end": 20128.02, + "probability": 0.7487 + }, + { + "start": 20128.46, + "end": 20128.94, + "probability": 0.8074 + }, + { + "start": 20130.38, + "end": 20132.5, + "probability": 0.9775 + }, + { + "start": 20133.42, + "end": 20135.82, + "probability": 0.8731 + }, + { + "start": 20137.12, + "end": 20138.48, + "probability": 0.9851 + }, + { + "start": 20139.6, + "end": 20142.98, + "probability": 0.9993 + }, + { + "start": 20142.98, + "end": 20146.02, + "probability": 0.9997 + }, + { + "start": 20146.6, + "end": 20151.2, + "probability": 0.9091 + }, + { + "start": 20153.46, + "end": 20158.66, + "probability": 0.8469 + }, + { + "start": 20160.06, + "end": 20161.5, + "probability": 0.8152 + }, + { + "start": 20163.34, + "end": 20165.96, + "probability": 0.9746 + }, + { + "start": 20165.96, + "end": 20169.78, + "probability": 0.9976 + }, + { + "start": 20170.62, + "end": 20173.8, + "probability": 0.9878 + }, + { + "start": 20174.64, + "end": 20177.72, + "probability": 0.9964 + }, + { + "start": 20179.4, + "end": 20181.52, + "probability": 0.6826 + }, + { + "start": 20183.26, + "end": 20187.82, + "probability": 0.9923 + }, + { + "start": 20187.82, + "end": 20191.02, + "probability": 0.9992 + }, + { + "start": 20193.02, + "end": 20193.82, + "probability": 0.9921 + }, + { + "start": 20195.32, + "end": 20197.04, + "probability": 0.9945 + }, + { + "start": 20197.4, + "end": 20199.9, + "probability": 0.9985 + }, + { + "start": 20200.06, + "end": 20202.78, + "probability": 0.9956 + }, + { + "start": 20203.32, + "end": 20203.92, + "probability": 0.9925 + }, + { + "start": 20206.46, + "end": 20208.38, + "probability": 0.7566 + }, + { + "start": 20209.94, + "end": 20210.28, + "probability": 0.9105 + }, + { + "start": 20210.9, + "end": 20215.58, + "probability": 0.9985 + }, + { + "start": 20217.32, + "end": 20219.76, + "probability": 0.9977 + }, + { + "start": 20220.44, + "end": 20222.88, + "probability": 0.8419 + }, + { + "start": 20224.8, + "end": 20225.32, + "probability": 0.4063 + }, + { + "start": 20226.32, + "end": 20228.42, + "probability": 0.9531 + }, + { + "start": 20229.64, + "end": 20233.52, + "probability": 0.9921 + }, + { + "start": 20238.72, + "end": 20240.87, + "probability": 0.8809 + }, + { + "start": 20241.86, + "end": 20242.4, + "probability": 0.8868 + }, + { + "start": 20243.08, + "end": 20243.72, + "probability": 0.8519 + }, + { + "start": 20245.32, + "end": 20247.12, + "probability": 0.887 + }, + { + "start": 20248.74, + "end": 20250.28, + "probability": 0.9475 + }, + { + "start": 20250.76, + "end": 20252.4, + "probability": 0.9921 + }, + { + "start": 20252.98, + "end": 20255.28, + "probability": 0.9941 + }, + { + "start": 20255.38, + "end": 20256.22, + "probability": 0.8225 + }, + { + "start": 20257.92, + "end": 20259.66, + "probability": 0.8656 + }, + { + "start": 20260.6, + "end": 20266.34, + "probability": 0.9959 + }, + { + "start": 20267.52, + "end": 20267.96, + "probability": 0.4869 + }, + { + "start": 20268.12, + "end": 20271.46, + "probability": 0.9893 + }, + { + "start": 20271.46, + "end": 20275.46, + "probability": 0.9919 + }, + { + "start": 20276.42, + "end": 20277.78, + "probability": 0.9895 + }, + { + "start": 20278.96, + "end": 20280.34, + "probability": 0.944 + }, + { + "start": 20281.38, + "end": 20283.1, + "probability": 0.8604 + }, + { + "start": 20283.18, + "end": 20284.44, + "probability": 0.9777 + }, + { + "start": 20284.52, + "end": 20286.16, + "probability": 0.9823 + }, + { + "start": 20286.52, + "end": 20290.5, + "probability": 0.8298 + }, + { + "start": 20291.64, + "end": 20294.8, + "probability": 0.9682 + }, + { + "start": 20294.98, + "end": 20295.7, + "probability": 0.7376 + }, + { + "start": 20295.82, + "end": 20298.68, + "probability": 0.9984 + }, + { + "start": 20299.68, + "end": 20301.5, + "probability": 0.9762 + }, + { + "start": 20302.06, + "end": 20303.44, + "probability": 0.9897 + }, + { + "start": 20303.94, + "end": 20306.4, + "probability": 0.9988 + }, + { + "start": 20306.9, + "end": 20310.54, + "probability": 0.9532 + }, + { + "start": 20311.36, + "end": 20314.86, + "probability": 0.8728 + }, + { + "start": 20315.46, + "end": 20317.02, + "probability": 0.9722 + }, + { + "start": 20317.26, + "end": 20318.0, + "probability": 0.496 + }, + { + "start": 20318.02, + "end": 20324.08, + "probability": 0.9799 + }, + { + "start": 20324.28, + "end": 20324.64, + "probability": 0.7822 + }, + { + "start": 20324.86, + "end": 20325.42, + "probability": 0.5397 + }, + { + "start": 20325.48, + "end": 20326.8, + "probability": 0.9096 + }, + { + "start": 20326.84, + "end": 20328.4, + "probability": 0.9436 + }, + { + "start": 20328.5, + "end": 20329.72, + "probability": 0.9835 + }, + { + "start": 20331.16, + "end": 20331.62, + "probability": 0.9196 + }, + { + "start": 20354.07, + "end": 20354.94, + "probability": 0.9216 + }, + { + "start": 20356.86, + "end": 20359.94, + "probability": 0.7126 + }, + { + "start": 20361.64, + "end": 20362.88, + "probability": 0.8966 + }, + { + "start": 20365.42, + "end": 20368.02, + "probability": 0.9698 + }, + { + "start": 20370.42, + "end": 20371.54, + "probability": 0.9097 + }, + { + "start": 20372.22, + "end": 20373.78, + "probability": 0.984 + }, + { + "start": 20373.92, + "end": 20378.9, + "probability": 0.9846 + }, + { + "start": 20379.86, + "end": 20382.52, + "probability": 0.8568 + }, + { + "start": 20384.34, + "end": 20385.56, + "probability": 0.7859 + }, + { + "start": 20386.5, + "end": 20388.38, + "probability": 0.9771 + }, + { + "start": 20389.3, + "end": 20391.56, + "probability": 0.9451 + }, + { + "start": 20393.14, + "end": 20394.76, + "probability": 0.863 + }, + { + "start": 20395.04, + "end": 20397.12, + "probability": 0.9636 + }, + { + "start": 20399.14, + "end": 20405.2, + "probability": 0.9278 + }, + { + "start": 20406.28, + "end": 20408.96, + "probability": 0.7921 + }, + { + "start": 20411.02, + "end": 20413.8, + "probability": 0.9639 + }, + { + "start": 20415.14, + "end": 20418.06, + "probability": 0.9866 + }, + { + "start": 20418.88, + "end": 20419.94, + "probability": 0.938 + }, + { + "start": 20420.02, + "end": 20421.76, + "probability": 0.8752 + }, + { + "start": 20423.94, + "end": 20424.46, + "probability": 0.4233 + }, + { + "start": 20425.04, + "end": 20425.5, + "probability": 0.4479 + }, + { + "start": 20425.7, + "end": 20427.2, + "probability": 0.8326 + }, + { + "start": 20427.6, + "end": 20432.86, + "probability": 0.9745 + }, + { + "start": 20434.6, + "end": 20435.4, + "probability": 0.7998 + }, + { + "start": 20436.7, + "end": 20438.28, + "probability": 0.9405 + }, + { + "start": 20438.5, + "end": 20438.64, + "probability": 0.9559 + }, + { + "start": 20439.34, + "end": 20440.63, + "probability": 0.9749 + }, + { + "start": 20441.94, + "end": 20443.46, + "probability": 0.9864 + }, + { + "start": 20445.0, + "end": 20448.56, + "probability": 0.9927 + }, + { + "start": 20449.74, + "end": 20450.64, + "probability": 0.9124 + }, + { + "start": 20450.7, + "end": 20452.96, + "probability": 0.9785 + }, + { + "start": 20453.08, + "end": 20456.44, + "probability": 0.8922 + }, + { + "start": 20456.64, + "end": 20456.98, + "probability": 0.4217 + }, + { + "start": 20457.14, + "end": 20460.2, + "probability": 0.8767 + }, + { + "start": 20460.32, + "end": 20461.14, + "probability": 0.869 + }, + { + "start": 20461.18, + "end": 20462.0, + "probability": 0.8538 + }, + { + "start": 20462.22, + "end": 20466.54, + "probability": 0.8685 + }, + { + "start": 20468.34, + "end": 20470.86, + "probability": 0.8369 + }, + { + "start": 20471.42, + "end": 20472.48, + "probability": 0.8873 + }, + { + "start": 20473.78, + "end": 20475.4, + "probability": 0.9746 + }, + { + "start": 20475.58, + "end": 20477.87, + "probability": 0.9851 + }, + { + "start": 20480.04, + "end": 20480.88, + "probability": 0.8226 + }, + { + "start": 20481.58, + "end": 20483.3, + "probability": 0.907 + }, + { + "start": 20484.26, + "end": 20486.3, + "probability": 0.8876 + }, + { + "start": 20486.84, + "end": 20491.78, + "probability": 0.9657 + }, + { + "start": 20491.78, + "end": 20496.32, + "probability": 0.9785 + }, + { + "start": 20496.74, + "end": 20497.76, + "probability": 0.8255 + }, + { + "start": 20497.92, + "end": 20498.52, + "probability": 0.6385 + }, + { + "start": 20498.7, + "end": 20499.28, + "probability": 0.6164 + }, + { + "start": 20499.58, + "end": 20503.06, + "probability": 0.9126 + }, + { + "start": 20503.36, + "end": 20506.2, + "probability": 0.9646 + }, + { + "start": 20507.6, + "end": 20508.9, + "probability": 0.7027 + }, + { + "start": 20509.26, + "end": 20509.96, + "probability": 0.63 + }, + { + "start": 20510.4, + "end": 20511.58, + "probability": 0.3466 + }, + { + "start": 20511.68, + "end": 20512.38, + "probability": 0.8573 + }, + { + "start": 20512.46, + "end": 20514.9, + "probability": 0.6494 + }, + { + "start": 20515.46, + "end": 20516.5, + "probability": 0.9766 + }, + { + "start": 20516.66, + "end": 20518.18, + "probability": 0.9654 + }, + { + "start": 20519.54, + "end": 20521.74, + "probability": 0.9897 + }, + { + "start": 20522.36, + "end": 20526.12, + "probability": 0.8044 + }, + { + "start": 20526.24, + "end": 20528.0, + "probability": 0.9897 + }, + { + "start": 20529.2, + "end": 20535.04, + "probability": 0.9508 + }, + { + "start": 20535.86, + "end": 20539.88, + "probability": 0.8991 + }, + { + "start": 20540.16, + "end": 20543.02, + "probability": 0.7553 + }, + { + "start": 20543.52, + "end": 20544.6, + "probability": 0.7065 + }, + { + "start": 20545.2, + "end": 20546.42, + "probability": 0.7233 + }, + { + "start": 20547.32, + "end": 20548.08, + "probability": 0.7479 + }, + { + "start": 20549.28, + "end": 20550.08, + "probability": 0.8034 + }, + { + "start": 20550.36, + "end": 20550.96, + "probability": 0.3612 + }, + { + "start": 20551.16, + "end": 20553.68, + "probability": 0.9798 + }, + { + "start": 20553.68, + "end": 20557.98, + "probability": 0.9655 + }, + { + "start": 20558.48, + "end": 20559.1, + "probability": 0.5657 + }, + { + "start": 20559.64, + "end": 20562.14, + "probability": 0.9011 + }, + { + "start": 20562.82, + "end": 20568.8, + "probability": 0.9462 + }, + { + "start": 20569.16, + "end": 20571.74, + "probability": 0.9907 + }, + { + "start": 20572.32, + "end": 20575.68, + "probability": 0.9319 + }, + { + "start": 20576.12, + "end": 20578.8, + "probability": 0.9567 + }, + { + "start": 20579.04, + "end": 20584.04, + "probability": 0.9875 + }, + { + "start": 20584.34, + "end": 20587.34, + "probability": 0.9901 + }, + { + "start": 20587.34, + "end": 20590.7, + "probability": 0.9994 + }, + { + "start": 20591.48, + "end": 20593.26, + "probability": 0.7344 + }, + { + "start": 20593.6, + "end": 20596.42, + "probability": 0.9849 + }, + { + "start": 20598.6, + "end": 20599.1, + "probability": 0.0372 + }, + { + "start": 20622.56, + "end": 20628.24, + "probability": 0.5922 + }, + { + "start": 20629.22, + "end": 20632.28, + "probability": 0.7139 + }, + { + "start": 20633.48, + "end": 20636.29, + "probability": 0.9745 + }, + { + "start": 20638.42, + "end": 20643.5, + "probability": 0.9993 + }, + { + "start": 20643.78, + "end": 20649.08, + "probability": 0.9825 + }, + { + "start": 20649.14, + "end": 20650.26, + "probability": 0.6483 + }, + { + "start": 20651.4, + "end": 20652.12, + "probability": 0.6907 + }, + { + "start": 20652.22, + "end": 20653.56, + "probability": 0.5004 + }, + { + "start": 20654.52, + "end": 20660.22, + "probability": 0.9289 + }, + { + "start": 20661.16, + "end": 20662.94, + "probability": 0.9976 + }, + { + "start": 20663.66, + "end": 20665.85, + "probability": 0.8367 + }, + { + "start": 20667.02, + "end": 20669.36, + "probability": 0.7633 + }, + { + "start": 20669.52, + "end": 20671.56, + "probability": 0.9985 + }, + { + "start": 20672.54, + "end": 20673.1, + "probability": 0.8124 + }, + { + "start": 20673.96, + "end": 20676.98, + "probability": 0.8875 + }, + { + "start": 20677.24, + "end": 20678.46, + "probability": 0.9283 + }, + { + "start": 20678.58, + "end": 20679.02, + "probability": 0.9689 + }, + { + "start": 20680.18, + "end": 20684.04, + "probability": 0.4991 + }, + { + "start": 20685.06, + "end": 20687.16, + "probability": 0.8365 + }, + { + "start": 20687.78, + "end": 20695.42, + "probability": 0.9092 + }, + { + "start": 20695.54, + "end": 20696.74, + "probability": 0.6898 + }, + { + "start": 20697.4, + "end": 20699.9, + "probability": 0.9951 + }, + { + "start": 20702.24, + "end": 20703.9, + "probability": 0.9946 + }, + { + "start": 20704.38, + "end": 20707.08, + "probability": 0.9272 + }, + { + "start": 20707.7, + "end": 20715.34, + "probability": 0.9639 + }, + { + "start": 20716.3, + "end": 20720.1, + "probability": 0.9414 + }, + { + "start": 20720.54, + "end": 20721.08, + "probability": 0.3764 + }, + { + "start": 20721.98, + "end": 20723.08, + "probability": 0.8179 + }, + { + "start": 20723.18, + "end": 20724.76, + "probability": 0.8181 + }, + { + "start": 20725.02, + "end": 20726.22, + "probability": 0.9233 + }, + { + "start": 20727.18, + "end": 20728.4, + "probability": 0.7892 + }, + { + "start": 20729.46, + "end": 20730.72, + "probability": 0.8616 + }, + { + "start": 20731.62, + "end": 20733.18, + "probability": 0.9033 + }, + { + "start": 20733.9, + "end": 20736.23, + "probability": 0.9775 + }, + { + "start": 20737.5, + "end": 20739.42, + "probability": 0.7996 + }, + { + "start": 20740.24, + "end": 20742.14, + "probability": 0.6648 + }, + { + "start": 20742.66, + "end": 20745.9, + "probability": 0.9773 + }, + { + "start": 20746.32, + "end": 20747.14, + "probability": 0.8939 + }, + { + "start": 20747.66, + "end": 20749.24, + "probability": 0.9827 + }, + { + "start": 20750.02, + "end": 20753.88, + "probability": 0.9958 + }, + { + "start": 20754.34, + "end": 20754.96, + "probability": 0.8842 + }, + { + "start": 20755.56, + "end": 20759.64, + "probability": 0.7729 + }, + { + "start": 20760.56, + "end": 20761.86, + "probability": 0.623 + }, + { + "start": 20762.6, + "end": 20764.54, + "probability": 0.8743 + }, + { + "start": 20764.78, + "end": 20769.96, + "probability": 0.9909 + }, + { + "start": 20771.26, + "end": 20773.22, + "probability": 0.8955 + }, + { + "start": 20773.28, + "end": 20774.03, + "probability": 0.7708 + }, + { + "start": 20774.26, + "end": 20776.52, + "probability": 0.6824 + }, + { + "start": 20776.7, + "end": 20778.32, + "probability": 0.8704 + }, + { + "start": 20778.46, + "end": 20779.24, + "probability": 0.5152 + }, + { + "start": 20780.08, + "end": 20781.54, + "probability": 0.7521 + }, + { + "start": 20782.14, + "end": 20783.83, + "probability": 0.951 + }, + { + "start": 20784.54, + "end": 20785.28, + "probability": 0.6707 + }, + { + "start": 20785.38, + "end": 20786.1, + "probability": 0.7045 + }, + { + "start": 20787.06, + "end": 20789.4, + "probability": 0.7387 + }, + { + "start": 20789.42, + "end": 20790.68, + "probability": 0.9271 + }, + { + "start": 20793.0, + "end": 20794.78, + "probability": 0.5074 + }, + { + "start": 20795.0, + "end": 20797.26, + "probability": 0.9612 + }, + { + "start": 20797.48, + "end": 20798.1, + "probability": 0.9058 + }, + { + "start": 20799.18, + "end": 20799.72, + "probability": 0.9741 + }, + { + "start": 20801.28, + "end": 20803.58, + "probability": 0.9883 + }, + { + "start": 20803.58, + "end": 20805.9, + "probability": 0.9983 + }, + { + "start": 20806.54, + "end": 20807.97, + "probability": 0.6069 + }, + { + "start": 20808.84, + "end": 20809.97, + "probability": 0.7612 + }, + { + "start": 20810.22, + "end": 20811.94, + "probability": 0.9907 + }, + { + "start": 20811.96, + "end": 20812.68, + "probability": 0.4471 + }, + { + "start": 20814.66, + "end": 20816.56, + "probability": 0.9894 + }, + { + "start": 20817.36, + "end": 20818.74, + "probability": 0.9735 + }, + { + "start": 20820.14, + "end": 20821.38, + "probability": 0.7543 + }, + { + "start": 20822.32, + "end": 20825.18, + "probability": 0.7847 + }, + { + "start": 20826.3, + "end": 20828.26, + "probability": 0.7926 + }, + { + "start": 20829.42, + "end": 20832.9, + "probability": 0.9893 + }, + { + "start": 20834.22, + "end": 20834.85, + "probability": 0.6589 + }, + { + "start": 20835.48, + "end": 20836.57, + "probability": 0.9883 + }, + { + "start": 20836.86, + "end": 20838.13, + "probability": 0.731 + }, + { + "start": 20839.08, + "end": 20839.94, + "probability": 0.9487 + }, + { + "start": 20840.74, + "end": 20842.12, + "probability": 0.9888 + }, + { + "start": 20842.8, + "end": 20847.68, + "probability": 0.5262 + }, + { + "start": 20847.94, + "end": 20848.8, + "probability": 0.7717 + }, + { + "start": 20849.34, + "end": 20851.18, + "probability": 0.8375 + }, + { + "start": 20851.62, + "end": 20854.4, + "probability": 0.9084 + }, + { + "start": 20854.98, + "end": 20856.22, + "probability": 0.9475 + }, + { + "start": 20857.44, + "end": 20859.0, + "probability": 0.9614 + }, + { + "start": 20859.14, + "end": 20860.28, + "probability": 0.7344 + }, + { + "start": 20861.06, + "end": 20861.6, + "probability": 0.9409 + }, + { + "start": 20861.66, + "end": 20862.43, + "probability": 0.9063 + }, + { + "start": 20862.7, + "end": 20865.32, + "probability": 0.6232 + }, + { + "start": 20865.42, + "end": 20867.8, + "probability": 0.9752 + }, + { + "start": 20868.38, + "end": 20873.12, + "probability": 0.7888 + }, + { + "start": 20874.12, + "end": 20874.8, + "probability": 0.9843 + }, + { + "start": 20874.94, + "end": 20876.14, + "probability": 0.8527 + }, + { + "start": 20876.24, + "end": 20877.93, + "probability": 0.8887 + }, + { + "start": 20878.66, + "end": 20881.84, + "probability": 0.873 + }, + { + "start": 20882.5, + "end": 20884.42, + "probability": 0.7329 + }, + { + "start": 20885.0, + "end": 20888.46, + "probability": 0.8651 + }, + { + "start": 20888.52, + "end": 20891.26, + "probability": 0.9219 + }, + { + "start": 20891.36, + "end": 20891.76, + "probability": 0.9295 + }, + { + "start": 20892.0, + "end": 20893.5, + "probability": 0.8541 + }, + { + "start": 20894.6, + "end": 20896.84, + "probability": 0.8565 + }, + { + "start": 20898.22, + "end": 20900.68, + "probability": 0.8897 + }, + { + "start": 20914.7, + "end": 20917.26, + "probability": 0.7448 + }, + { + "start": 20919.62, + "end": 20921.72, + "probability": 0.323 + }, + { + "start": 20923.44, + "end": 20925.24, + "probability": 0.6445 + }, + { + "start": 20927.46, + "end": 20936.2, + "probability": 0.957 + }, + { + "start": 20938.12, + "end": 20939.48, + "probability": 0.8799 + }, + { + "start": 20939.58, + "end": 20940.86, + "probability": 0.8988 + }, + { + "start": 20941.34, + "end": 20942.68, + "probability": 0.4408 + }, + { + "start": 20942.68, + "end": 20943.9, + "probability": 0.901 + }, + { + "start": 20944.02, + "end": 20946.86, + "probability": 0.9601 + }, + { + "start": 20948.28, + "end": 20949.46, + "probability": 0.9968 + }, + { + "start": 20950.04, + "end": 20950.9, + "probability": 0.3088 + }, + { + "start": 20951.5, + "end": 20952.14, + "probability": 0.6142 + }, + { + "start": 20953.0, + "end": 20956.34, + "probability": 0.9897 + }, + { + "start": 20957.38, + "end": 20957.82, + "probability": 0.9996 + }, + { + "start": 20958.42, + "end": 20959.02, + "probability": 0.9989 + }, + { + "start": 20960.18, + "end": 20964.2, + "probability": 0.9224 + }, + { + "start": 20964.2, + "end": 20969.56, + "probability": 0.9984 + }, + { + "start": 20969.84, + "end": 20971.02, + "probability": 0.8791 + }, + { + "start": 20971.16, + "end": 20975.82, + "probability": 0.7776 + }, + { + "start": 20976.42, + "end": 20977.46, + "probability": 0.9952 + }, + { + "start": 20977.64, + "end": 20979.38, + "probability": 0.9597 + }, + { + "start": 20979.6, + "end": 20982.84, + "probability": 0.9545 + }, + { + "start": 20983.2, + "end": 20985.38, + "probability": 0.874 + }, + { + "start": 20986.06, + "end": 20987.04, + "probability": 0.8121 + }, + { + "start": 20987.14, + "end": 20990.56, + "probability": 0.8267 + }, + { + "start": 20990.7, + "end": 20993.16, + "probability": 0.9724 + }, + { + "start": 20993.42, + "end": 20999.18, + "probability": 0.8604 + }, + { + "start": 20999.28, + "end": 21005.36, + "probability": 0.9316 + }, + { + "start": 21007.54, + "end": 21012.5, + "probability": 0.9287 + }, + { + "start": 21014.3, + "end": 21015.06, + "probability": 0.9077 + }, + { + "start": 21015.22, + "end": 21018.04, + "probability": 0.9805 + }, + { + "start": 21018.24, + "end": 21021.58, + "probability": 0.6479 + }, + { + "start": 21021.64, + "end": 21024.24, + "probability": 0.9425 + }, + { + "start": 21024.56, + "end": 21025.52, + "probability": 0.8744 + }, + { + "start": 21026.06, + "end": 21027.6, + "probability": 0.973 + }, + { + "start": 21028.16, + "end": 21029.38, + "probability": 0.0602 + }, + { + "start": 21029.5, + "end": 21029.88, + "probability": 0.0364 + }, + { + "start": 21030.68, + "end": 21033.58, + "probability": 0.7365 + }, + { + "start": 21033.9, + "end": 21034.84, + "probability": 0.9595 + }, + { + "start": 21035.42, + "end": 21036.44, + "probability": 0.9367 + }, + { + "start": 21037.28, + "end": 21038.16, + "probability": 0.4635 + }, + { + "start": 21039.46, + "end": 21040.92, + "probability": 0.9307 + }, + { + "start": 21042.04, + "end": 21046.06, + "probability": 0.9109 + }, + { + "start": 21046.78, + "end": 21051.06, + "probability": 0.8679 + }, + { + "start": 21051.8, + "end": 21052.54, + "probability": 0.7998 + }, + { + "start": 21054.22, + "end": 21055.54, + "probability": 0.5132 + }, + { + "start": 21056.96, + "end": 21057.62, + "probability": 0.5175 + }, + { + "start": 21057.72, + "end": 21060.28, + "probability": 0.9524 + }, + { + "start": 21060.34, + "end": 21061.08, + "probability": 0.8015 + }, + { + "start": 21063.92, + "end": 21065.5, + "probability": 0.6863 + }, + { + "start": 21065.82, + "end": 21066.44, + "probability": 0.7341 + }, + { + "start": 21066.56, + "end": 21069.18, + "probability": 0.7275 + }, + { + "start": 21069.94, + "end": 21069.98, + "probability": 0.7017 + }, + { + "start": 21071.62, + "end": 21072.06, + "probability": 0.462 + }, + { + "start": 21072.2, + "end": 21074.46, + "probability": 0.9868 + }, + { + "start": 21074.52, + "end": 21075.14, + "probability": 0.6113 + }, + { + "start": 21076.9, + "end": 21078.26, + "probability": 0.552 + }, + { + "start": 21078.3, + "end": 21082.24, + "probability": 0.9758 + }, + { + "start": 21082.38, + "end": 21083.29, + "probability": 0.9141 + }, + { + "start": 21083.54, + "end": 21085.22, + "probability": 0.9917 + }, + { + "start": 21085.4, + "end": 21085.74, + "probability": 0.999 + }, + { + "start": 21086.74, + "end": 21087.5, + "probability": 0.9594 + }, + { + "start": 21087.64, + "end": 21092.04, + "probability": 0.9565 + }, + { + "start": 21092.44, + "end": 21095.06, + "probability": 0.9854 + }, + { + "start": 21095.58, + "end": 21096.37, + "probability": 0.9917 + }, + { + "start": 21096.76, + "end": 21098.14, + "probability": 0.7108 + }, + { + "start": 21098.64, + "end": 21098.82, + "probability": 0.844 + }, + { + "start": 21099.5, + "end": 21100.98, + "probability": 0.7339 + }, + { + "start": 21101.32, + "end": 21101.8, + "probability": 0.7161 + }, + { + "start": 21101.9, + "end": 21106.32, + "probability": 0.9925 + }, + { + "start": 21106.76, + "end": 21107.53, + "probability": 0.896 + }, + { + "start": 21107.82, + "end": 21110.44, + "probability": 0.9871 + }, + { + "start": 21110.64, + "end": 21111.72, + "probability": 0.8947 + }, + { + "start": 21111.9, + "end": 21114.8, + "probability": 0.6052 + }, + { + "start": 21114.92, + "end": 21116.9, + "probability": 0.8863 + }, + { + "start": 21117.3, + "end": 21119.22, + "probability": 0.9529 + }, + { + "start": 21120.56, + "end": 21121.84, + "probability": 0.8569 + }, + { + "start": 21122.38, + "end": 21123.3, + "probability": 0.8867 + }, + { + "start": 21123.4, + "end": 21125.38, + "probability": 0.9478 + }, + { + "start": 21126.12, + "end": 21127.76, + "probability": 0.7078 + }, + { + "start": 21127.84, + "end": 21130.5, + "probability": 0.6795 + }, + { + "start": 21131.22, + "end": 21134.18, + "probability": 0.9618 + }, + { + "start": 21134.28, + "end": 21136.14, + "probability": 0.8109 + }, + { + "start": 21136.52, + "end": 21137.42, + "probability": 0.9992 + }, + { + "start": 21137.98, + "end": 21138.38, + "probability": 0.5142 + }, + { + "start": 21139.34, + "end": 21140.82, + "probability": 0.8832 + }, + { + "start": 21141.24, + "end": 21142.86, + "probability": 0.9987 + }, + { + "start": 21142.92, + "end": 21145.38, + "probability": 0.7531 + }, + { + "start": 21145.56, + "end": 21150.5, + "probability": 0.8892 + }, + { + "start": 21150.52, + "end": 21151.52, + "probability": 0.959 + }, + { + "start": 21151.64, + "end": 21153.96, + "probability": 0.6784 + }, + { + "start": 21154.34, + "end": 21156.78, + "probability": 0.8105 + }, + { + "start": 21156.86, + "end": 21157.62, + "probability": 0.9171 + }, + { + "start": 21157.88, + "end": 21160.24, + "probability": 0.9884 + }, + { + "start": 21160.62, + "end": 21160.8, + "probability": 0.8557 + }, + { + "start": 21161.14, + "end": 21162.96, + "probability": 0.8597 + }, + { + "start": 21163.22, + "end": 21164.64, + "probability": 0.7467 + }, + { + "start": 21167.02, + "end": 21169.48, + "probability": 0.9296 + }, + { + "start": 21184.9, + "end": 21185.04, + "probability": 0.2763 + }, + { + "start": 21185.06, + "end": 21185.74, + "probability": 0.4353 + }, + { + "start": 21185.82, + "end": 21186.48, + "probability": 0.9204 + }, + { + "start": 21186.9, + "end": 21188.74, + "probability": 0.4826 + }, + { + "start": 21189.5, + "end": 21190.32, + "probability": 0.5944 + }, + { + "start": 21190.32, + "end": 21195.84, + "probability": 0.9728 + }, + { + "start": 21195.92, + "end": 21197.44, + "probability": 0.9814 + }, + { + "start": 21198.4, + "end": 21201.04, + "probability": 0.9585 + }, + { + "start": 21201.74, + "end": 21202.3, + "probability": 0.7599 + }, + { + "start": 21203.06, + "end": 21204.14, + "probability": 0.8577 + }, + { + "start": 21205.56, + "end": 21207.42, + "probability": 0.6852 + }, + { + "start": 21207.84, + "end": 21208.52, + "probability": 0.8663 + }, + { + "start": 21208.62, + "end": 21212.7, + "probability": 0.8994 + }, + { + "start": 21213.8, + "end": 21215.09, + "probability": 0.8984 + }, + { + "start": 21216.26, + "end": 21221.18, + "probability": 0.9539 + }, + { + "start": 21221.52, + "end": 21222.8, + "probability": 0.8924 + }, + { + "start": 21222.98, + "end": 21224.32, + "probability": 0.8635 + }, + { + "start": 21224.96, + "end": 21226.92, + "probability": 0.8665 + }, + { + "start": 21227.54, + "end": 21228.41, + "probability": 0.9937 + }, + { + "start": 21228.86, + "end": 21229.23, + "probability": 0.9624 + }, + { + "start": 21229.66, + "end": 21230.8, + "probability": 0.917 + }, + { + "start": 21231.2, + "end": 21233.07, + "probability": 0.9678 + }, + { + "start": 21234.9, + "end": 21239.96, + "probability": 0.9749 + }, + { + "start": 21241.04, + "end": 21244.56, + "probability": 0.9037 + }, + { + "start": 21247.1, + "end": 21248.36, + "probability": 0.8921 + }, + { + "start": 21249.92, + "end": 21251.12, + "probability": 0.8047 + }, + { + "start": 21251.64, + "end": 21255.72, + "probability": 0.9379 + }, + { + "start": 21256.6, + "end": 21258.72, + "probability": 0.6809 + }, + { + "start": 21259.62, + "end": 21265.25, + "probability": 0.9184 + }, + { + "start": 21266.68, + "end": 21268.4, + "probability": 0.8511 + }, + { + "start": 21268.52, + "end": 21269.38, + "probability": 0.8828 + }, + { + "start": 21270.32, + "end": 21272.54, + "probability": 0.9974 + }, + { + "start": 21273.8, + "end": 21278.64, + "probability": 0.9688 + }, + { + "start": 21281.72, + "end": 21282.48, + "probability": 0.4782 + }, + { + "start": 21283.0, + "end": 21284.72, + "probability": 0.5017 + }, + { + "start": 21285.1, + "end": 21285.82, + "probability": 0.3586 + }, + { + "start": 21286.6, + "end": 21288.28, + "probability": 0.8824 + }, + { + "start": 21289.68, + "end": 21291.97, + "probability": 0.8999 + }, + { + "start": 21292.7, + "end": 21298.44, + "probability": 0.9285 + }, + { + "start": 21298.66, + "end": 21299.04, + "probability": 0.9027 + }, + { + "start": 21300.22, + "end": 21304.86, + "probability": 0.9221 + }, + { + "start": 21305.02, + "end": 21305.12, + "probability": 0.7893 + }, + { + "start": 21305.84, + "end": 21307.0, + "probability": 0.5632 + }, + { + "start": 21308.04, + "end": 21313.36, + "probability": 0.9709 + }, + { + "start": 21313.66, + "end": 21314.74, + "probability": 0.9368 + }, + { + "start": 21316.14, + "end": 21320.94, + "probability": 0.9602 + }, + { + "start": 21323.21, + "end": 21327.04, + "probability": 0.897 + }, + { + "start": 21327.04, + "end": 21328.04, + "probability": 0.7772 + }, + { + "start": 21328.26, + "end": 21328.9, + "probability": 0.7637 + }, + { + "start": 21329.5, + "end": 21333.76, + "probability": 0.9741 + }, + { + "start": 21337.36, + "end": 21339.22, + "probability": 0.8445 + }, + { + "start": 21340.6, + "end": 21341.94, + "probability": 0.9471 + }, + { + "start": 21342.72, + "end": 21344.86, + "probability": 0.3972 + }, + { + "start": 21345.72, + "end": 21348.42, + "probability": 0.7792 + }, + { + "start": 21349.76, + "end": 21350.16, + "probability": 0.1315 + }, + { + "start": 21351.04, + "end": 21352.32, + "probability": 0.9579 + }, + { + "start": 21352.6, + "end": 21354.58, + "probability": 0.9858 + }, + { + "start": 21354.6, + "end": 21355.58, + "probability": 0.8324 + }, + { + "start": 21356.18, + "end": 21359.48, + "probability": 0.9971 + }, + { + "start": 21360.7, + "end": 21362.54, + "probability": 0.8215 + }, + { + "start": 21362.62, + "end": 21363.32, + "probability": 0.9544 + }, + { + "start": 21363.54, + "end": 21364.96, + "probability": 0.9273 + }, + { + "start": 21366.38, + "end": 21367.84, + "probability": 0.4188 + }, + { + "start": 21369.22, + "end": 21370.74, + "probability": 0.9944 + }, + { + "start": 21372.18, + "end": 21373.4, + "probability": 0.99 + }, + { + "start": 21373.92, + "end": 21374.9, + "probability": 0.8521 + }, + { + "start": 21376.56, + "end": 21378.4, + "probability": 0.992 + }, + { + "start": 21379.24, + "end": 21380.1, + "probability": 0.7374 + }, + { + "start": 21381.02, + "end": 21382.16, + "probability": 0.7764 + }, + { + "start": 21384.78, + "end": 21385.54, + "probability": 0.7216 + }, + { + "start": 21385.62, + "end": 21389.16, + "probability": 0.9841 + }, + { + "start": 21389.64, + "end": 21394.56, + "probability": 0.8778 + }, + { + "start": 21395.3, + "end": 21397.02, + "probability": 0.5645 + }, + { + "start": 21398.66, + "end": 21399.56, + "probability": 0.6604 + }, + { + "start": 21400.16, + "end": 21400.68, + "probability": 0.0526 + }, + { + "start": 21400.8, + "end": 21403.32, + "probability": 0.6575 + }, + { + "start": 21403.4, + "end": 21403.58, + "probability": 0.6013 + }, + { + "start": 21403.88, + "end": 21405.92, + "probability": 0.9644 + }, + { + "start": 21406.4, + "end": 21408.34, + "probability": 0.9972 + }, + { + "start": 21408.42, + "end": 21410.5, + "probability": 0.9536 + }, + { + "start": 21410.58, + "end": 21413.4, + "probability": 0.9793 + }, + { + "start": 21414.12, + "end": 21415.44, + "probability": 0.6195 + }, + { + "start": 21418.0, + "end": 21418.76, + "probability": 0.6147 + }, + { + "start": 21418.76, + "end": 21429.32, + "probability": 0.9393 + }, + { + "start": 21430.52, + "end": 21432.04, + "probability": 0.923 + }, + { + "start": 21432.62, + "end": 21434.54, + "probability": 0.8953 + }, + { + "start": 21435.32, + "end": 21436.06, + "probability": 0.7129 + }, + { + "start": 21436.88, + "end": 21438.14, + "probability": 0.7253 + }, + { + "start": 21438.94, + "end": 21440.58, + "probability": 0.9495 + }, + { + "start": 21441.54, + "end": 21444.44, + "probability": 0.8159 + }, + { + "start": 21445.16, + "end": 21447.48, + "probability": 0.9507 + }, + { + "start": 21449.0, + "end": 21449.77, + "probability": 0.9736 + }, + { + "start": 21452.08, + "end": 21456.24, + "probability": 0.8158 + }, + { + "start": 21457.14, + "end": 21457.9, + "probability": 0.7228 + }, + { + "start": 21459.28, + "end": 21460.88, + "probability": 0.5486 + }, + { + "start": 21461.62, + "end": 21462.28, + "probability": 0.959 + }, + { + "start": 21463.5, + "end": 21464.56, + "probability": 0.4828 + }, + { + "start": 21464.58, + "end": 21466.62, + "probability": 0.8522 + }, + { + "start": 21467.06, + "end": 21468.26, + "probability": 0.9585 + }, + { + "start": 21468.36, + "end": 21468.94, + "probability": 0.8272 + }, + { + "start": 21469.48, + "end": 21470.72, + "probability": 0.9137 + }, + { + "start": 21470.76, + "end": 21471.16, + "probability": 0.3945 + }, + { + "start": 21471.22, + "end": 21473.04, + "probability": 0.8059 + }, + { + "start": 21473.5, + "end": 21476.54, + "probability": 0.8517 + }, + { + "start": 21486.49, + "end": 21490.48, + "probability": 0.8169 + }, + { + "start": 21492.78, + "end": 21494.52, + "probability": 0.6611 + }, + { + "start": 21495.1, + "end": 21496.3, + "probability": 0.7873 + }, + { + "start": 21497.52, + "end": 21507.32, + "probability": 0.9861 + }, + { + "start": 21507.38, + "end": 21511.76, + "probability": 0.9527 + }, + { + "start": 21513.04, + "end": 21524.36, + "probability": 0.9858 + }, + { + "start": 21524.36, + "end": 21533.72, + "probability": 0.9781 + }, + { + "start": 21535.78, + "end": 21545.1, + "probability": 0.9978 + }, + { + "start": 21545.88, + "end": 21551.28, + "probability": 0.9919 + }, + { + "start": 21552.36, + "end": 21561.44, + "probability": 0.9674 + }, + { + "start": 21562.04, + "end": 21566.46, + "probability": 0.999 + }, + { + "start": 21567.14, + "end": 21569.38, + "probability": 0.8054 + }, + { + "start": 21571.86, + "end": 21575.22, + "probability": 0.9998 + }, + { + "start": 21576.38, + "end": 21580.54, + "probability": 0.9547 + }, + { + "start": 21582.68, + "end": 21587.56, + "probability": 0.9944 + }, + { + "start": 21588.84, + "end": 21592.1, + "probability": 0.9636 + }, + { + "start": 21593.0, + "end": 21595.34, + "probability": 0.9849 + }, + { + "start": 21596.78, + "end": 21598.28, + "probability": 0.8774 + }, + { + "start": 21599.48, + "end": 21601.1, + "probability": 0.7526 + }, + { + "start": 21602.82, + "end": 21607.96, + "probability": 0.9902 + }, + { + "start": 21609.1, + "end": 21610.0, + "probability": 0.8313 + }, + { + "start": 21611.22, + "end": 21618.68, + "probability": 0.9907 + }, + { + "start": 21620.54, + "end": 21626.14, + "probability": 0.9859 + }, + { + "start": 21626.14, + "end": 21630.04, + "probability": 0.9978 + }, + { + "start": 21631.38, + "end": 21635.82, + "probability": 0.8853 + }, + { + "start": 21637.3, + "end": 21638.96, + "probability": 0.9544 + }, + { + "start": 21639.56, + "end": 21641.06, + "probability": 0.8046 + }, + { + "start": 21642.36, + "end": 21645.46, + "probability": 0.9952 + }, + { + "start": 21646.1, + "end": 21648.61, + "probability": 0.6281 + }, + { + "start": 21649.44, + "end": 21650.56, + "probability": 0.7448 + }, + { + "start": 21650.72, + "end": 21653.67, + "probability": 0.8921 + }, + { + "start": 21655.42, + "end": 21661.14, + "probability": 0.991 + }, + { + "start": 21661.14, + "end": 21665.42, + "probability": 0.9961 + }, + { + "start": 21665.78, + "end": 21668.78, + "probability": 0.9912 + }, + { + "start": 21670.12, + "end": 21674.54, + "probability": 0.9894 + }, + { + "start": 21674.64, + "end": 21675.84, + "probability": 0.9587 + }, + { + "start": 21675.86, + "end": 21676.5, + "probability": 0.4901 + }, + { + "start": 21676.98, + "end": 21679.92, + "probability": 0.9824 + }, + { + "start": 21679.98, + "end": 21681.18, + "probability": 0.576 + }, + { + "start": 21681.9, + "end": 21683.62, + "probability": 0.9884 + }, + { + "start": 21685.16, + "end": 21688.24, + "probability": 0.9253 + }, + { + "start": 21689.96, + "end": 21691.92, + "probability": 0.9886 + }, + { + "start": 21694.26, + "end": 21696.14, + "probability": 0.8612 + }, + { + "start": 21697.2, + "end": 21700.22, + "probability": 0.981 + }, + { + "start": 21701.68, + "end": 21702.88, + "probability": 0.6848 + }, + { + "start": 21704.18, + "end": 21706.72, + "probability": 0.9917 + }, + { + "start": 21708.42, + "end": 21710.34, + "probability": 0.9985 + }, + { + "start": 21711.76, + "end": 21715.52, + "probability": 0.9902 + }, + { + "start": 21717.22, + "end": 21718.78, + "probability": 0.9847 + }, + { + "start": 21722.06, + "end": 21724.34, + "probability": 0.997 + }, + { + "start": 21724.84, + "end": 21730.44, + "probability": 0.9959 + }, + { + "start": 21731.24, + "end": 21732.16, + "probability": 0.7537 + }, + { + "start": 21732.8, + "end": 21737.98, + "probability": 0.9553 + }, + { + "start": 21738.76, + "end": 21739.48, + "probability": 0.9035 + }, + { + "start": 21740.44, + "end": 21745.86, + "probability": 0.9956 + }, + { + "start": 21746.22, + "end": 21747.64, + "probability": 0.7625 + }, + { + "start": 21748.78, + "end": 21750.34, + "probability": 0.7861 + }, + { + "start": 21752.18, + "end": 21753.38, + "probability": 0.9606 + }, + { + "start": 21754.28, + "end": 21758.44, + "probability": 0.9867 + }, + { + "start": 21760.08, + "end": 21761.74, + "probability": 0.9917 + }, + { + "start": 21762.86, + "end": 21765.42, + "probability": 0.9982 + }, + { + "start": 21767.56, + "end": 21770.46, + "probability": 0.9979 + }, + { + "start": 21771.38, + "end": 21772.9, + "probability": 0.6519 + }, + { + "start": 21773.52, + "end": 21774.88, + "probability": 0.8696 + }, + { + "start": 21776.98, + "end": 21782.82, + "probability": 0.9741 + }, + { + "start": 21783.4, + "end": 21784.34, + "probability": 0.764 + }, + { + "start": 21785.96, + "end": 21788.5, + "probability": 0.7883 + }, + { + "start": 21788.6, + "end": 21791.72, + "probability": 0.932 + }, + { + "start": 21792.86, + "end": 21795.2, + "probability": 0.9581 + }, + { + "start": 21796.88, + "end": 21800.88, + "probability": 0.9952 + }, + { + "start": 21801.32, + "end": 21801.9, + "probability": 0.6149 + }, + { + "start": 21802.74, + "end": 21808.1, + "probability": 0.9919 + }, + { + "start": 21810.54, + "end": 21813.19, + "probability": 0.9834 + }, + { + "start": 21813.62, + "end": 21815.18, + "probability": 0.7553 + }, + { + "start": 21816.28, + "end": 21817.86, + "probability": 0.9615 + }, + { + "start": 21817.98, + "end": 21819.64, + "probability": 0.9391 + }, + { + "start": 21820.44, + "end": 21822.58, + "probability": 0.7334 + }, + { + "start": 21823.24, + "end": 21826.84, + "probability": 0.9941 + }, + { + "start": 21826.94, + "end": 21828.98, + "probability": 0.9788 + }, + { + "start": 21829.9, + "end": 21834.3, + "probability": 0.962 + }, + { + "start": 21836.3, + "end": 21841.8, + "probability": 0.9975 + }, + { + "start": 21841.8, + "end": 21846.44, + "probability": 0.9972 + }, + { + "start": 21846.96, + "end": 21849.16, + "probability": 0.9763 + }, + { + "start": 21849.48, + "end": 21852.67, + "probability": 0.8643 + }, + { + "start": 21853.7, + "end": 21855.68, + "probability": 0.9973 + }, + { + "start": 21856.32, + "end": 21860.52, + "probability": 0.9116 + }, + { + "start": 21861.74, + "end": 21865.48, + "probability": 0.9438 + }, + { + "start": 21866.3, + "end": 21867.7, + "probability": 0.9557 + }, + { + "start": 21868.04, + "end": 21869.52, + "probability": 0.9966 + }, + { + "start": 21870.3, + "end": 21871.68, + "probability": 0.774 + }, + { + "start": 21872.28, + "end": 21878.38, + "probability": 0.9932 + }, + { + "start": 21879.16, + "end": 21881.22, + "probability": 0.9819 + }, + { + "start": 21881.98, + "end": 21889.24, + "probability": 0.9924 + }, + { + "start": 21889.24, + "end": 21895.1, + "probability": 0.9489 + }, + { + "start": 21895.1, + "end": 21899.14, + "probability": 0.9956 + }, + { + "start": 21899.22, + "end": 21901.22, + "probability": 0.9781 + }, + { + "start": 21901.94, + "end": 21904.06, + "probability": 0.9907 + }, + { + "start": 21904.76, + "end": 21907.94, + "probability": 0.9863 + }, + { + "start": 21908.98, + "end": 21910.0, + "probability": 0.8861 + }, + { + "start": 21910.56, + "end": 21915.9, + "probability": 0.9846 + }, + { + "start": 21915.9, + "end": 21919.08, + "probability": 0.9926 + }, + { + "start": 21919.92, + "end": 21922.74, + "probability": 0.9518 + }, + { + "start": 21922.86, + "end": 21923.32, + "probability": 0.8742 + }, + { + "start": 21923.64, + "end": 21924.56, + "probability": 0.8901 + }, + { + "start": 21925.14, + "end": 21926.24, + "probability": 0.91 + }, + { + "start": 21929.28, + "end": 21931.08, + "probability": 0.9886 + }, + { + "start": 21932.4, + "end": 21933.42, + "probability": 0.9914 + }, + { + "start": 21934.04, + "end": 21937.52, + "probability": 0.951 + }, + { + "start": 21937.98, + "end": 21942.4, + "probability": 0.9953 + }, + { + "start": 21943.78, + "end": 21945.28, + "probability": 0.8311 + }, + { + "start": 21945.7, + "end": 21948.36, + "probability": 0.8799 + }, + { + "start": 21948.52, + "end": 21951.16, + "probability": 0.9737 + }, + { + "start": 21952.04, + "end": 21952.44, + "probability": 0.571 + }, + { + "start": 21952.5, + "end": 21953.98, + "probability": 0.959 + }, + { + "start": 21954.46, + "end": 21956.06, + "probability": 0.8707 + }, + { + "start": 21956.46, + "end": 21959.18, + "probability": 0.9849 + }, + { + "start": 21960.0, + "end": 21963.06, + "probability": 0.7096 + }, + { + "start": 21963.9, + "end": 21968.46, + "probability": 0.8559 + }, + { + "start": 21970.56, + "end": 21971.5, + "probability": 0.6695 + }, + { + "start": 21972.12, + "end": 21972.52, + "probability": 0.7204 + }, + { + "start": 21972.7, + "end": 21976.42, + "probability": 0.9929 + }, + { + "start": 21976.56, + "end": 21979.37, + "probability": 0.2399 + }, + { + "start": 21980.58, + "end": 21981.46, + "probability": 0.6199 + }, + { + "start": 21982.24, + "end": 21985.29, + "probability": 0.6941 + }, + { + "start": 21986.12, + "end": 21990.24, + "probability": 0.9163 + }, + { + "start": 21990.36, + "end": 21993.55, + "probability": 0.4999 + }, + { + "start": 21993.78, + "end": 21995.94, + "probability": 0.9532 + }, + { + "start": 21997.02, + "end": 22003.04, + "probability": 0.9403 + }, + { + "start": 22004.12, + "end": 22006.1, + "probability": 0.9473 + }, + { + "start": 22007.82, + "end": 22008.22, + "probability": 0.5216 + }, + { + "start": 22009.42, + "end": 22010.3, + "probability": 0.6121 + }, + { + "start": 22010.94, + "end": 22015.72, + "probability": 0.9774 + }, + { + "start": 22015.72, + "end": 22019.12, + "probability": 0.8843 + }, + { + "start": 22019.98, + "end": 22025.38, + "probability": 0.9946 + }, + { + "start": 22026.84, + "end": 22027.64, + "probability": 0.9556 + }, + { + "start": 22028.9, + "end": 22029.89, + "probability": 0.9238 + }, + { + "start": 22030.66, + "end": 22035.26, + "probability": 0.9852 + }, + { + "start": 22036.5, + "end": 22039.62, + "probability": 0.9954 + }, + { + "start": 22041.38, + "end": 22044.52, + "probability": 0.9014 + }, + { + "start": 22046.12, + "end": 22049.26, + "probability": 0.9804 + }, + { + "start": 22050.54, + "end": 22052.92, + "probability": 0.7942 + }, + { + "start": 22055.54, + "end": 22055.98, + "probability": 0.9384 + }, + { + "start": 22058.36, + "end": 22058.72, + "probability": 0.9814 + }, + { + "start": 22059.46, + "end": 22060.04, + "probability": 0.9989 + }, + { + "start": 22060.72, + "end": 22062.14, + "probability": 0.9972 + }, + { + "start": 22063.34, + "end": 22064.94, + "probability": 0.8818 + }, + { + "start": 22065.8, + "end": 22068.18, + "probability": 0.7866 + }, + { + "start": 22069.16, + "end": 22070.48, + "probability": 0.9274 + }, + { + "start": 22072.26, + "end": 22074.08, + "probability": 0.9989 + }, + { + "start": 22074.7, + "end": 22077.14, + "probability": 0.9389 + }, + { + "start": 22077.6, + "end": 22079.18, + "probability": 0.9932 + }, + { + "start": 22079.56, + "end": 22080.96, + "probability": 0.9964 + }, + { + "start": 22081.58, + "end": 22083.48, + "probability": 0.8809 + }, + { + "start": 22086.84, + "end": 22087.46, + "probability": 0.8367 + }, + { + "start": 22087.58, + "end": 22088.28, + "probability": 0.8005 + }, + { + "start": 22088.44, + "end": 22088.94, + "probability": 0.8471 + }, + { + "start": 22089.08, + "end": 22090.44, + "probability": 0.6681 + }, + { + "start": 22091.5, + "end": 22095.2, + "probability": 0.9849 + }, + { + "start": 22095.82, + "end": 22101.09, + "probability": 0.9969 + }, + { + "start": 22103.66, + "end": 22105.06, + "probability": 0.9946 + }, + { + "start": 22106.08, + "end": 22107.56, + "probability": 0.5914 + }, + { + "start": 22108.52, + "end": 22111.94, + "probability": 0.9185 + }, + { + "start": 22112.78, + "end": 22117.8, + "probability": 0.9351 + }, + { + "start": 22118.3, + "end": 22120.12, + "probability": 0.9962 + }, + { + "start": 22120.74, + "end": 22126.68, + "probability": 0.9771 + }, + { + "start": 22127.78, + "end": 22128.34, + "probability": 0.5618 + }, + { + "start": 22129.0, + "end": 22130.9, + "probability": 0.4579 + }, + { + "start": 22131.74, + "end": 22132.64, + "probability": 0.8014 + }, + { + "start": 22133.7, + "end": 22134.2, + "probability": 0.7695 + }, + { + "start": 22134.4, + "end": 22137.3, + "probability": 0.7934 + }, + { + "start": 22141.12, + "end": 22142.76, + "probability": 0.9971 + }, + { + "start": 22143.4, + "end": 22144.2, + "probability": 0.7588 + }, + { + "start": 22144.66, + "end": 22147.28, + "probability": 0.9221 + }, + { + "start": 22147.46, + "end": 22147.86, + "probability": 0.6821 + }, + { + "start": 22148.72, + "end": 22151.62, + "probability": 0.9956 + }, + { + "start": 22151.68, + "end": 22154.44, + "probability": 0.9874 + }, + { + "start": 22155.78, + "end": 22157.52, + "probability": 0.9891 + }, + { + "start": 22158.98, + "end": 22161.14, + "probability": 0.9793 + }, + { + "start": 22162.2, + "end": 22164.76, + "probability": 0.978 + }, + { + "start": 22165.62, + "end": 22167.52, + "probability": 0.9961 + }, + { + "start": 22168.1, + "end": 22169.74, + "probability": 0.9842 + }, + { + "start": 22171.84, + "end": 22174.32, + "probability": 0.9753 + }, + { + "start": 22175.96, + "end": 22178.72, + "probability": 0.998 + }, + { + "start": 22179.98, + "end": 22183.34, + "probability": 0.9977 + }, + { + "start": 22184.34, + "end": 22185.26, + "probability": 0.7512 + }, + { + "start": 22186.32, + "end": 22189.52, + "probability": 0.9897 + }, + { + "start": 22190.84, + "end": 22200.44, + "probability": 0.9845 + }, + { + "start": 22200.44, + "end": 22201.52, + "probability": 0.621 + }, + { + "start": 22202.34, + "end": 22205.75, + "probability": 0.9751 + }, + { + "start": 22206.22, + "end": 22212.16, + "probability": 0.9995 + }, + { + "start": 22212.93, + "end": 22219.14, + "probability": 0.9026 + }, + { + "start": 22220.24, + "end": 22221.06, + "probability": 0.7324 + }, + { + "start": 22221.9, + "end": 22226.06, + "probability": 0.994 + }, + { + "start": 22226.88, + "end": 22228.54, + "probability": 0.6942 + }, + { + "start": 22228.86, + "end": 22230.38, + "probability": 0.5191 + }, + { + "start": 22230.94, + "end": 22232.34, + "probability": 0.9845 + }, + { + "start": 22233.92, + "end": 22236.7, + "probability": 0.964 + }, + { + "start": 22237.36, + "end": 22238.4, + "probability": 0.7534 + }, + { + "start": 22239.8, + "end": 22241.72, + "probability": 0.949 + }, + { + "start": 22242.54, + "end": 22244.22, + "probability": 0.9595 + }, + { + "start": 22245.88, + "end": 22247.3, + "probability": 0.8615 + }, + { + "start": 22247.96, + "end": 22249.92, + "probability": 0.9651 + }, + { + "start": 22250.6, + "end": 22252.5, + "probability": 0.9849 + }, + { + "start": 22254.48, + "end": 22261.92, + "probability": 0.9958 + }, + { + "start": 22262.76, + "end": 22265.62, + "probability": 0.7781 + }, + { + "start": 22266.22, + "end": 22267.66, + "probability": 0.0777 + }, + { + "start": 22267.66, + "end": 22269.2, + "probability": 0.1257 + }, + { + "start": 22269.7, + "end": 22271.84, + "probability": 0.5511 + }, + { + "start": 22272.62, + "end": 22275.25, + "probability": 0.9157 + }, + { + "start": 22275.9, + "end": 22277.32, + "probability": 0.6565 + }, + { + "start": 22277.32, + "end": 22278.78, + "probability": 0.7308 + }, + { + "start": 22278.86, + "end": 22283.62, + "probability": 0.9963 + }, + { + "start": 22283.62, + "end": 22287.4, + "probability": 0.9987 + }, + { + "start": 22287.48, + "end": 22288.86, + "probability": 0.865 + }, + { + "start": 22289.66, + "end": 22291.84, + "probability": 0.9901 + }, + { + "start": 22292.44, + "end": 22293.18, + "probability": 0.684 + }, + { + "start": 22294.22, + "end": 22295.54, + "probability": 0.8447 + }, + { + "start": 22295.84, + "end": 22296.42, + "probability": 0.0341 + }, + { + "start": 22296.42, + "end": 22297.82, + "probability": 0.9855 + }, + { + "start": 22297.98, + "end": 22299.82, + "probability": 0.6278 + }, + { + "start": 22299.86, + "end": 22300.18, + "probability": 0.1521 + }, + { + "start": 22300.38, + "end": 22302.76, + "probability": 0.7295 + }, + { + "start": 22302.86, + "end": 22304.64, + "probability": 0.5954 + }, + { + "start": 22305.04, + "end": 22306.6, + "probability": 0.3249 + }, + { + "start": 22306.66, + "end": 22307.1, + "probability": 0.1785 + }, + { + "start": 22307.44, + "end": 22309.72, + "probability": 0.225 + }, + { + "start": 22309.82, + "end": 22311.48, + "probability": 0.6205 + }, + { + "start": 22311.88, + "end": 22315.4, + "probability": 0.9435 + }, + { + "start": 22315.8, + "end": 22318.3, + "probability": 0.2308 + }, + { + "start": 22318.92, + "end": 22319.26, + "probability": 0.1475 + }, + { + "start": 22319.5, + "end": 22320.42, + "probability": 0.5268 + }, + { + "start": 22321.24, + "end": 22322.48, + "probability": 0.437 + }, + { + "start": 22323.28, + "end": 22326.66, + "probability": 0.3359 + }, + { + "start": 22328.2, + "end": 22332.04, + "probability": 0.3536 + }, + { + "start": 22332.16, + "end": 22332.79, + "probability": 0.5455 + }, + { + "start": 22333.24, + "end": 22334.04, + "probability": 0.4823 + }, + { + "start": 22334.04, + "end": 22335.6, + "probability": 0.0419 + }, + { + "start": 22338.06, + "end": 22339.86, + "probability": 0.9397 + }, + { + "start": 22341.74, + "end": 22344.26, + "probability": 0.9796 + }, + { + "start": 22346.64, + "end": 22349.06, + "probability": 0.9644 + }, + { + "start": 22349.26, + "end": 22350.56, + "probability": 0.9937 + }, + { + "start": 22350.64, + "end": 22351.16, + "probability": 0.7726 + }, + { + "start": 22351.4, + "end": 22355.28, + "probability": 0.9748 + }, + { + "start": 22355.58, + "end": 22358.04, + "probability": 0.9782 + }, + { + "start": 22359.1, + "end": 22360.58, + "probability": 0.7659 + }, + { + "start": 22361.04, + "end": 22367.1, + "probability": 0.9774 + }, + { + "start": 22367.22, + "end": 22368.97, + "probability": 0.9971 + }, + { + "start": 22369.96, + "end": 22373.12, + "probability": 0.8767 + }, + { + "start": 22373.68, + "end": 22374.58, + "probability": 0.9658 + }, + { + "start": 22375.08, + "end": 22376.34, + "probability": 0.8227 + }, + { + "start": 22376.48, + "end": 22380.5, + "probability": 0.8364 + }, + { + "start": 22381.14, + "end": 22382.92, + "probability": 0.823 + }, + { + "start": 22383.38, + "end": 22385.6, + "probability": 0.9312 + }, + { + "start": 22385.76, + "end": 22388.12, + "probability": 0.8692 + }, + { + "start": 22388.2, + "end": 22389.08, + "probability": 0.9458 + }, + { + "start": 22389.88, + "end": 22391.56, + "probability": 0.079 + }, + { + "start": 22391.56, + "end": 22393.52, + "probability": 0.8222 + }, + { + "start": 22393.7, + "end": 22400.56, + "probability": 0.5864 + }, + { + "start": 22400.76, + "end": 22404.84, + "probability": 0.9481 + }, + { + "start": 22404.96, + "end": 22406.62, + "probability": 0.4104 + }, + { + "start": 22406.94, + "end": 22409.18, + "probability": 0.4144 + }, + { + "start": 22409.42, + "end": 22410.46, + "probability": 0.6455 + }, + { + "start": 22410.8, + "end": 22412.5, + "probability": 0.9392 + }, + { + "start": 22413.68, + "end": 22413.68, + "probability": 0.0129 + }, + { + "start": 22413.68, + "end": 22417.55, + "probability": 0.9297 + }, + { + "start": 22417.78, + "end": 22421.16, + "probability": 0.9835 + }, + { + "start": 22421.36, + "end": 22424.66, + "probability": 0.9199 + }, + { + "start": 22425.26, + "end": 22426.98, + "probability": 0.9978 + }, + { + "start": 22427.08, + "end": 22428.84, + "probability": 0.9764 + }, + { + "start": 22429.34, + "end": 22430.64, + "probability": 0.4027 + }, + { + "start": 22430.7, + "end": 22431.62, + "probability": 0.8669 + }, + { + "start": 22431.92, + "end": 22433.8, + "probability": 0.9104 + }, + { + "start": 22434.48, + "end": 22437.82, + "probability": 0.8509 + }, + { + "start": 22439.02, + "end": 22441.46, + "probability": 0.9712 + }, + { + "start": 22441.48, + "end": 22442.46, + "probability": 0.9387 + }, + { + "start": 22443.44, + "end": 22445.3, + "probability": 0.9453 + }, + { + "start": 22446.64, + "end": 22451.76, + "probability": 0.8701 + }, + { + "start": 22452.5, + "end": 22455.04, + "probability": 0.9727 + }, + { + "start": 22455.66, + "end": 22459.16, + "probability": 0.9706 + }, + { + "start": 22459.7, + "end": 22462.86, + "probability": 0.975 + }, + { + "start": 22463.84, + "end": 22464.98, + "probability": 0.9334 + }, + { + "start": 22466.8, + "end": 22468.12, + "probability": 0.9041 + }, + { + "start": 22468.52, + "end": 22472.32, + "probability": 0.9747 + }, + { + "start": 22472.62, + "end": 22473.13, + "probability": 0.7993 + }, + { + "start": 22474.7, + "end": 22476.84, + "probability": 0.9628 + }, + { + "start": 22477.2, + "end": 22479.8, + "probability": 0.9931 + }, + { + "start": 22480.32, + "end": 22483.08, + "probability": 0.9449 + }, + { + "start": 22484.0, + "end": 22486.82, + "probability": 0.9775 + }, + { + "start": 22487.64, + "end": 22492.22, + "probability": 0.9524 + }, + { + "start": 22493.74, + "end": 22497.2, + "probability": 0.6528 + }, + { + "start": 22497.7, + "end": 22500.22, + "probability": 0.9645 + }, + { + "start": 22500.26, + "end": 22501.26, + "probability": 0.8568 + }, + { + "start": 22502.64, + "end": 22505.44, + "probability": 0.9292 + }, + { + "start": 22506.02, + "end": 22508.56, + "probability": 0.7929 + }, + { + "start": 22508.92, + "end": 22509.72, + "probability": 0.9688 + }, + { + "start": 22509.8, + "end": 22514.9, + "probability": 0.9869 + }, + { + "start": 22515.42, + "end": 22519.82, + "probability": 0.957 + }, + { + "start": 22520.42, + "end": 22523.52, + "probability": 0.9923 + }, + { + "start": 22524.08, + "end": 22525.75, + "probability": 0.9082 + }, + { + "start": 22526.28, + "end": 22527.78, + "probability": 0.4727 + }, + { + "start": 22528.2, + "end": 22528.96, + "probability": 0.6287 + }, + { + "start": 22529.24, + "end": 22533.04, + "probability": 0.9915 + }, + { + "start": 22535.62, + "end": 22538.02, + "probability": 0.7954 + }, + { + "start": 22538.96, + "end": 22539.59, + "probability": 0.9384 + }, + { + "start": 22540.4, + "end": 22541.26, + "probability": 0.5951 + }, + { + "start": 22542.32, + "end": 22544.12, + "probability": 0.7508 + }, + { + "start": 22544.94, + "end": 22546.72, + "probability": 0.9824 + }, + { + "start": 22548.25, + "end": 22550.96, + "probability": 0.0563 + }, + { + "start": 22550.96, + "end": 22550.96, + "probability": 0.0108 + }, + { + "start": 22550.96, + "end": 22552.32, + "probability": 0.2904 + }, + { + "start": 22552.34, + "end": 22553.35, + "probability": 0.6107 + }, + { + "start": 22554.24, + "end": 22558.3, + "probability": 0.6622 + }, + { + "start": 22559.16, + "end": 22560.78, + "probability": 0.3231 + }, + { + "start": 22560.92, + "end": 22562.42, + "probability": 0.2051 + }, + { + "start": 22562.42, + "end": 22563.78, + "probability": 0.9368 + }, + { + "start": 22563.78, + "end": 22564.1, + "probability": 0.7523 + }, + { + "start": 22564.1, + "end": 22567.92, + "probability": 0.9777 + }, + { + "start": 22568.88, + "end": 22571.6, + "probability": 0.8077 + }, + { + "start": 22571.68, + "end": 22577.42, + "probability": 0.9938 + }, + { + "start": 22578.22, + "end": 22580.04, + "probability": 0.8259 + }, + { + "start": 22580.18, + "end": 22580.62, + "probability": 0.3625 + }, + { + "start": 22581.28, + "end": 22584.42, + "probability": 0.9937 + }, + { + "start": 22585.36, + "end": 22586.55, + "probability": 0.9834 + }, + { + "start": 22587.08, + "end": 22587.42, + "probability": 0.5745 + }, + { + "start": 22588.58, + "end": 22593.68, + "probability": 0.0642 + }, + { + "start": 22593.68, + "end": 22593.9, + "probability": 0.049 + }, + { + "start": 22593.9, + "end": 22593.9, + "probability": 0.0112 + }, + { + "start": 22593.9, + "end": 22594.26, + "probability": 0.0962 + }, + { + "start": 22594.34, + "end": 22596.47, + "probability": 0.2641 + }, + { + "start": 22596.88, + "end": 22600.32, + "probability": 0.9731 + }, + { + "start": 22600.32, + "end": 22602.84, + "probability": 0.9989 + }, + { + "start": 22603.02, + "end": 22604.18, + "probability": 0.9682 + }, + { + "start": 22605.38, + "end": 22607.69, + "probability": 0.9958 + }, + { + "start": 22610.24, + "end": 22615.32, + "probability": 0.995 + }, + { + "start": 22616.06, + "end": 22619.06, + "probability": 0.9961 + }, + { + "start": 22619.06, + "end": 22624.56, + "probability": 0.9952 + }, + { + "start": 22626.14, + "end": 22628.14, + "probability": 0.088 + }, + { + "start": 22628.26, + "end": 22629.28, + "probability": 0.6327 + }, + { + "start": 22629.36, + "end": 22632.46, + "probability": 0.4869 + }, + { + "start": 22633.09, + "end": 22638.62, + "probability": 0.9897 + }, + { + "start": 22638.68, + "end": 22640.44, + "probability": 0.9815 + }, + { + "start": 22640.94, + "end": 22641.66, + "probability": 0.6091 + }, + { + "start": 22642.08, + "end": 22642.62, + "probability": 0.6995 + }, + { + "start": 22643.18, + "end": 22649.4, + "probability": 0.9913 + }, + { + "start": 22650.32, + "end": 22651.66, + "probability": 0.1159 + }, + { + "start": 22651.68, + "end": 22657.1, + "probability": 0.0726 + }, + { + "start": 22657.14, + "end": 22658.04, + "probability": 0.6812 + }, + { + "start": 22658.32, + "end": 22658.82, + "probability": 0.7734 + }, + { + "start": 22658.86, + "end": 22660.86, + "probability": 0.7539 + }, + { + "start": 22661.12, + "end": 22662.0, + "probability": 0.3879 + }, + { + "start": 22662.22, + "end": 22663.98, + "probability": 0.1503 + }, + { + "start": 22663.98, + "end": 22663.98, + "probability": 0.4843 + }, + { + "start": 22663.98, + "end": 22663.98, + "probability": 0.1116 + }, + { + "start": 22663.98, + "end": 22663.98, + "probability": 0.0512 + }, + { + "start": 22663.98, + "end": 22663.98, + "probability": 0.6462 + }, + { + "start": 22663.98, + "end": 22668.18, + "probability": 0.6395 + }, + { + "start": 22668.26, + "end": 22669.4, + "probability": 0.6829 + }, + { + "start": 22670.36, + "end": 22672.44, + "probability": 0.9259 + }, + { + "start": 22672.94, + "end": 22677.36, + "probability": 0.8864 + }, + { + "start": 22677.48, + "end": 22677.82, + "probability": 0.1562 + }, + { + "start": 22677.82, + "end": 22677.82, + "probability": 0.0225 + }, + { + "start": 22677.88, + "end": 22680.08, + "probability": 0.3759 + }, + { + "start": 22680.12, + "end": 22685.4, + "probability": 0.9924 + }, + { + "start": 22685.56, + "end": 22690.05, + "probability": 0.9735 + }, + { + "start": 22690.52, + "end": 22691.42, + "probability": 0.0682 + }, + { + "start": 22691.42, + "end": 22691.42, + "probability": 0.5507 + }, + { + "start": 22691.42, + "end": 22691.42, + "probability": 0.2659 + }, + { + "start": 22691.42, + "end": 22693.88, + "probability": 0.8774 + }, + { + "start": 22694.24, + "end": 22696.36, + "probability": 0.2871 + }, + { + "start": 22696.36, + "end": 22696.96, + "probability": 0.7081 + }, + { + "start": 22698.46, + "end": 22698.92, + "probability": 0.3035 + }, + { + "start": 22699.74, + "end": 22703.56, + "probability": 0.0541 + }, + { + "start": 22703.9, + "end": 22705.28, + "probability": 0.7446 + }, + { + "start": 22706.1, + "end": 22707.52, + "probability": 0.8003 + }, + { + "start": 22707.52, + "end": 22708.66, + "probability": 0.7651 + }, + { + "start": 22708.84, + "end": 22709.84, + "probability": 0.874 + }, + { + "start": 22711.02, + "end": 22712.26, + "probability": 0.875 + }, + { + "start": 22713.26, + "end": 22713.4, + "probability": 0.5142 + }, + { + "start": 22714.54, + "end": 22716.36, + "probability": 0.9917 + }, + { + "start": 22716.54, + "end": 22720.06, + "probability": 0.9973 + }, + { + "start": 22720.66, + "end": 22721.52, + "probability": 0.9966 + }, + { + "start": 22722.08, + "end": 22726.14, + "probability": 0.9959 + }, + { + "start": 22726.82, + "end": 22730.9, + "probability": 0.999 + }, + { + "start": 22731.04, + "end": 22732.88, + "probability": 0.1745 + }, + { + "start": 22732.88, + "end": 22732.94, + "probability": 0.719 + }, + { + "start": 22733.48, + "end": 22735.3, + "probability": 0.177 + }, + { + "start": 22737.92, + "end": 22738.0, + "probability": 0.1407 + }, + { + "start": 22738.0, + "end": 22738.0, + "probability": 0.0201 + }, + { + "start": 22738.0, + "end": 22738.0, + "probability": 0.0043 + }, + { + "start": 22738.0, + "end": 22738.84, + "probability": 0.5777 + }, + { + "start": 22739.38, + "end": 22739.84, + "probability": 0.0468 + }, + { + "start": 22739.84, + "end": 22742.74, + "probability": 0.6585 + }, + { + "start": 22743.44, + "end": 22744.06, + "probability": 0.1326 + }, + { + "start": 22744.78, + "end": 22746.1, + "probability": 0.2487 + }, + { + "start": 22747.1, + "end": 22751.24, + "probability": 0.154 + }, + { + "start": 22751.4, + "end": 22752.84, + "probability": 0.9558 + }, + { + "start": 22752.98, + "end": 22753.8, + "probability": 0.8322 + }, + { + "start": 22753.8, + "end": 22754.32, + "probability": 0.6431 + }, + { + "start": 22754.88, + "end": 22756.64, + "probability": 0.9641 + }, + { + "start": 22757.4, + "end": 22758.76, + "probability": 0.9631 + }, + { + "start": 22759.66, + "end": 22764.38, + "probability": 0.9455 + }, + { + "start": 22764.84, + "end": 22766.3, + "probability": 0.7074 + }, + { + "start": 22766.3, + "end": 22767.07, + "probability": 0.1296 + }, + { + "start": 22767.72, + "end": 22770.98, + "probability": 0.3231 + }, + { + "start": 22772.1, + "end": 22773.86, + "probability": 0.0164 + }, + { + "start": 22773.88, + "end": 22774.1, + "probability": 0.0157 + }, + { + "start": 22774.1, + "end": 22776.32, + "probability": 0.1391 + }, + { + "start": 22777.36, + "end": 22780.72, + "probability": 0.2065 + }, + { + "start": 22780.72, + "end": 22782.87, + "probability": 0.7196 + }, + { + "start": 22783.86, + "end": 22791.48, + "probability": 0.9899 + }, + { + "start": 22791.5, + "end": 22792.04, + "probability": 0.3937 + }, + { + "start": 22792.22, + "end": 22793.98, + "probability": 0.6001 + }, + { + "start": 22794.08, + "end": 22795.42, + "probability": 0.5185 + }, + { + "start": 22795.42, + "end": 22795.54, + "probability": 0.2652 + }, + { + "start": 22795.54, + "end": 22796.42, + "probability": 0.3852 + }, + { + "start": 22797.28, + "end": 22799.88, + "probability": 0.9292 + }, + { + "start": 22800.08, + "end": 22802.48, + "probability": 0.3462 + }, + { + "start": 22802.56, + "end": 22802.84, + "probability": 0.5393 + }, + { + "start": 22802.96, + "end": 22806.66, + "probability": 0.2469 + }, + { + "start": 22806.68, + "end": 22807.78, + "probability": 0.0397 + }, + { + "start": 22808.34, + "end": 22810.82, + "probability": 0.1448 + }, + { + "start": 22810.82, + "end": 22810.82, + "probability": 0.1253 + }, + { + "start": 22810.82, + "end": 22811.58, + "probability": 0.0196 + }, + { + "start": 22812.06, + "end": 22812.14, + "probability": 0.151 + }, + { + "start": 22812.14, + "end": 22812.42, + "probability": 0.0947 + }, + { + "start": 22813.6, + "end": 22815.32, + "probability": 0.0641 + }, + { + "start": 22817.86, + "end": 22823.88, + "probability": 0.151 + }, + { + "start": 22825.3, + "end": 22829.48, + "probability": 0.1119 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.0, + "end": 22841.0, + "probability": 0.0 + }, + { + "start": 22841.12, + "end": 22841.18, + "probability": 0.0038 + }, + { + "start": 22841.18, + "end": 22842.28, + "probability": 0.2407 + }, + { + "start": 22842.7, + "end": 22842.7, + "probability": 0.4336 + }, + { + "start": 22842.72, + "end": 22843.48, + "probability": 0.661 + }, + { + "start": 22843.6, + "end": 22845.94, + "probability": 0.978 + }, + { + "start": 22846.02, + "end": 22852.22, + "probability": 0.9948 + }, + { + "start": 22852.22, + "end": 22856.52, + "probability": 0.9993 + }, + { + "start": 22856.64, + "end": 22856.98, + "probability": 0.069 + }, + { + "start": 22857.16, + "end": 22858.7, + "probability": 0.5256 + }, + { + "start": 22858.74, + "end": 22859.34, + "probability": 0.9624 + }, + { + "start": 22862.69, + "end": 22871.24, + "probability": 0.9738 + }, + { + "start": 22871.24, + "end": 22877.28, + "probability": 0.955 + }, + { + "start": 22877.8, + "end": 22879.56, + "probability": 0.8989 + }, + { + "start": 22880.24, + "end": 22884.9, + "probability": 0.9966 + }, + { + "start": 22885.3, + "end": 22888.62, + "probability": 0.9943 + }, + { + "start": 22889.28, + "end": 22892.0, + "probability": 0.8479 + }, + { + "start": 22892.38, + "end": 22893.82, + "probability": 0.9593 + }, + { + "start": 22894.38, + "end": 22899.86, + "probability": 0.9976 + }, + { + "start": 22900.16, + "end": 22900.62, + "probability": 0.9264 + }, + { + "start": 22900.68, + "end": 22901.42, + "probability": 0.9883 + }, + { + "start": 22901.72, + "end": 22902.78, + "probability": 0.7022 + }, + { + "start": 22903.24, + "end": 22904.16, + "probability": 0.8651 + }, + { + "start": 22904.48, + "end": 22904.58, + "probability": 0.4091 + }, + { + "start": 22904.68, + "end": 22906.02, + "probability": 0.9896 + }, + { + "start": 22906.8, + "end": 22910.02, + "probability": 0.9392 + }, + { + "start": 22911.16, + "end": 22913.64, + "probability": 0.8883 + }, + { + "start": 22913.82, + "end": 22914.94, + "probability": 0.1807 + }, + { + "start": 22914.94, + "end": 22916.14, + "probability": 0.7969 + }, + { + "start": 22916.28, + "end": 22917.3, + "probability": 0.5089 + }, + { + "start": 22917.42, + "end": 22919.04, + "probability": 0.9548 + }, + { + "start": 22919.08, + "end": 22919.68, + "probability": 0.2615 + }, + { + "start": 22920.59, + "end": 22926.18, + "probability": 0.4755 + }, + { + "start": 22926.9, + "end": 22929.1, + "probability": 0.7966 + }, + { + "start": 22929.16, + "end": 22929.88, + "probability": 0.2297 + }, + { + "start": 22929.88, + "end": 22930.64, + "probability": 0.2388 + }, + { + "start": 22930.64, + "end": 22931.96, + "probability": 0.0222 + }, + { + "start": 22932.1, + "end": 22932.42, + "probability": 0.6071 + }, + { + "start": 22932.6, + "end": 22935.14, + "probability": 0.8561 + }, + { + "start": 22935.14, + "end": 22936.76, + "probability": 0.4009 + }, + { + "start": 22936.9, + "end": 22937.54, + "probability": 0.4132 + }, + { + "start": 22937.76, + "end": 22940.3, + "probability": 0.6849 + }, + { + "start": 22940.3, + "end": 22942.98, + "probability": 0.4249 + }, + { + "start": 22943.08, + "end": 22943.76, + "probability": 0.771 + }, + { + "start": 22944.16, + "end": 22945.18, + "probability": 0.0067 + }, + { + "start": 22945.18, + "end": 22945.18, + "probability": 0.0082 + }, + { + "start": 22945.18, + "end": 22946.78, + "probability": 0.0401 + }, + { + "start": 22947.0, + "end": 22947.1, + "probability": 0.296 + }, + { + "start": 22947.22, + "end": 22948.06, + "probability": 0.1917 + }, + { + "start": 22948.1, + "end": 22951.86, + "probability": 0.3168 + }, + { + "start": 22952.32, + "end": 22954.06, + "probability": 0.4864 + }, + { + "start": 22954.18, + "end": 22954.95, + "probability": 0.4221 + }, + { + "start": 22955.24, + "end": 22959.46, + "probability": 0.9305 + }, + { + "start": 22959.88, + "end": 22962.0, + "probability": 0.1222 + }, + { + "start": 22962.0, + "end": 22965.6, + "probability": 0.5294 + }, + { + "start": 22965.76, + "end": 22967.6, + "probability": 0.5684 + }, + { + "start": 22968.72, + "end": 22969.78, + "probability": 0.0706 + }, + { + "start": 22969.94, + "end": 22969.94, + "probability": 0.2337 + }, + { + "start": 22969.94, + "end": 22969.94, + "probability": 0.0283 + }, + { + "start": 22970.14, + "end": 22970.66, + "probability": 0.6591 + }, + { + "start": 22970.74, + "end": 22971.96, + "probability": 0.7363 + }, + { + "start": 22972.56, + "end": 22972.84, + "probability": 0.3023 + }, + { + "start": 22973.74, + "end": 22976.66, + "probability": 0.7071 + }, + { + "start": 22977.94, + "end": 22979.74, + "probability": 0.9541 + }, + { + "start": 22980.2, + "end": 22984.24, + "probability": 0.9039 + }, + { + "start": 22984.42, + "end": 22986.52, + "probability": 0.6939 + }, + { + "start": 22986.54, + "end": 22987.08, + "probability": 0.0767 + }, + { + "start": 22987.08, + "end": 22987.34, + "probability": 0.0112 + }, + { + "start": 22987.54, + "end": 22988.98, + "probability": 0.5657 + }, + { + "start": 22989.08, + "end": 22990.34, + "probability": 0.8314 + }, + { + "start": 22990.46, + "end": 22992.86, + "probability": 0.8459 + }, + { + "start": 22993.64, + "end": 22995.09, + "probability": 0.9695 + }, + { + "start": 22995.56, + "end": 22996.04, + "probability": 0.5583 + }, + { + "start": 22996.12, + "end": 22996.34, + "probability": 0.4287 + }, + { + "start": 22996.46, + "end": 22999.12, + "probability": 0.8058 + }, + { + "start": 22999.22, + "end": 23003.14, + "probability": 0.9663 + }, + { + "start": 23004.24, + "end": 23005.68, + "probability": 0.9309 + }, + { + "start": 23006.64, + "end": 23009.9, + "probability": 0.979 + }, + { + "start": 23009.9, + "end": 23012.8, + "probability": 0.9864 + }, + { + "start": 23013.68, + "end": 23017.14, + "probability": 0.9984 + }, + { + "start": 23017.14, + "end": 23020.19, + "probability": 0.9946 + }, + { + "start": 23021.26, + "end": 23024.48, + "probability": 0.957 + }, + { + "start": 23024.62, + "end": 23028.68, + "probability": 0.991 + }, + { + "start": 23028.74, + "end": 23030.52, + "probability": 0.9873 + }, + { + "start": 23030.78, + "end": 23035.32, + "probability": 0.9958 + }, + { + "start": 23035.64, + "end": 23039.22, + "probability": 0.996 + }, + { + "start": 23039.48, + "end": 23042.56, + "probability": 0.9829 + }, + { + "start": 23042.66, + "end": 23044.6, + "probability": 0.9905 + }, + { + "start": 23045.08, + "end": 23048.9, + "probability": 0.9948 + }, + { + "start": 23049.22, + "end": 23052.68, + "probability": 0.9954 + }, + { + "start": 23053.26, + "end": 23056.58, + "probability": 0.9948 + }, + { + "start": 23057.06, + "end": 23058.78, + "probability": 0.7833 + }, + { + "start": 23058.82, + "end": 23061.52, + "probability": 0.9967 + }, + { + "start": 23061.94, + "end": 23064.45, + "probability": 0.9077 + }, + { + "start": 23064.5, + "end": 23066.42, + "probability": 0.7828 + }, + { + "start": 23066.72, + "end": 23067.34, + "probability": 0.6974 + }, + { + "start": 23067.44, + "end": 23069.7, + "probability": 0.9922 + }, + { + "start": 23070.3, + "end": 23073.06, + "probability": 0.9967 + }, + { + "start": 23073.68, + "end": 23077.05, + "probability": 0.939 + }, + { + "start": 23077.26, + "end": 23082.84, + "probability": 0.9982 + }, + { + "start": 23083.0, + "end": 23090.32, + "probability": 0.9972 + }, + { + "start": 23090.34, + "end": 23090.34, + "probability": 0.2608 + }, + { + "start": 23090.34, + "end": 23093.18, + "probability": 0.8134 + }, + { + "start": 23093.82, + "end": 23099.56, + "probability": 0.9911 + }, + { + "start": 23099.56, + "end": 23102.86, + "probability": 0.9344 + }, + { + "start": 23102.86, + "end": 23104.21, + "probability": 0.7014 + }, + { + "start": 23105.04, + "end": 23105.32, + "probability": 0.0144 + }, + { + "start": 23105.32, + "end": 23107.74, + "probability": 0.7311 + }, + { + "start": 23107.86, + "end": 23108.88, + "probability": 0.8566 + }, + { + "start": 23111.66, + "end": 23114.08, + "probability": 0.7376 + }, + { + "start": 23114.62, + "end": 23117.06, + "probability": 0.7206 + }, + { + "start": 23118.1, + "end": 23120.88, + "probability": 0.99 + }, + { + "start": 23121.46, + "end": 23123.56, + "probability": 0.9973 + }, + { + "start": 23124.28, + "end": 23128.16, + "probability": 0.9559 + }, + { + "start": 23129.58, + "end": 23131.54, + "probability": 0.4175 + }, + { + "start": 23131.69, + "end": 23133.21, + "probability": 0.7009 + }, + { + "start": 23133.74, + "end": 23135.7, + "probability": 0.9827 + }, + { + "start": 23136.42, + "end": 23139.94, + "probability": 0.9883 + }, + { + "start": 23140.02, + "end": 23142.68, + "probability": 0.954 + }, + { + "start": 23142.98, + "end": 23146.18, + "probability": 0.9771 + }, + { + "start": 23146.88, + "end": 23149.18, + "probability": 0.9927 + }, + { + "start": 23149.56, + "end": 23150.44, + "probability": 0.7894 + }, + { + "start": 23150.52, + "end": 23151.34, + "probability": 0.9104 + }, + { + "start": 23151.44, + "end": 23153.67, + "probability": 0.9646 + }, + { + "start": 23154.48, + "end": 23156.2, + "probability": 0.3459 + }, + { + "start": 23156.3, + "end": 23156.66, + "probability": 0.451 + }, + { + "start": 23156.66, + "end": 23158.52, + "probability": 0.0517 + }, + { + "start": 23158.64, + "end": 23162.08, + "probability": 0.7599 + }, + { + "start": 23162.96, + "end": 23163.02, + "probability": 0.0081 + }, + { + "start": 23163.02, + "end": 23163.1, + "probability": 0.1888 + }, + { + "start": 23163.1, + "end": 23163.59, + "probability": 0.6308 + }, + { + "start": 23163.76, + "end": 23165.56, + "probability": 0.7544 + }, + { + "start": 23165.77, + "end": 23166.26, + "probability": 0.2159 + }, + { + "start": 23166.26, + "end": 23169.44, + "probability": 0.6321 + }, + { + "start": 23170.46, + "end": 23174.26, + "probability": 0.8092 + }, + { + "start": 23174.5, + "end": 23175.61, + "probability": 0.652 + }, + { + "start": 23176.08, + "end": 23176.38, + "probability": 0.252 + }, + { + "start": 23176.38, + "end": 23178.24, + "probability": 0.6105 + }, + { + "start": 23178.68, + "end": 23180.08, + "probability": 0.4415 + }, + { + "start": 23180.48, + "end": 23180.74, + "probability": 0.3951 + }, + { + "start": 23180.8, + "end": 23182.7, + "probability": 0.707 + }, + { + "start": 23183.66, + "end": 23183.96, + "probability": 0.5741 + }, + { + "start": 23183.96, + "end": 23184.56, + "probability": 0.2327 + }, + { + "start": 23184.56, + "end": 23186.38, + "probability": 0.522 + }, + { + "start": 23186.7, + "end": 23188.72, + "probability": 0.8257 + }, + { + "start": 23189.3, + "end": 23191.9, + "probability": 0.7543 + }, + { + "start": 23191.92, + "end": 23194.36, + "probability": 0.2145 + }, + { + "start": 23195.0, + "end": 23195.88, + "probability": 0.1431 + }, + { + "start": 23195.94, + "end": 23197.88, + "probability": 0.2613 + }, + { + "start": 23197.88, + "end": 23198.36, + "probability": 0.0749 + }, + { + "start": 23198.4, + "end": 23199.92, + "probability": 0.4092 + }, + { + "start": 23199.92, + "end": 23200.26, + "probability": 0.4144 + }, + { + "start": 23200.52, + "end": 23200.64, + "probability": 0.62 + }, + { + "start": 23200.64, + "end": 23200.64, + "probability": 0.5835 + }, + { + "start": 23200.64, + "end": 23202.68, + "probability": 0.9673 + }, + { + "start": 23203.2, + "end": 23206.35, + "probability": 0.9894 + }, + { + "start": 23206.44, + "end": 23206.96, + "probability": 0.2023 + }, + { + "start": 23206.96, + "end": 23209.5, + "probability": 0.4341 + }, + { + "start": 23209.62, + "end": 23210.28, + "probability": 0.8734 + }, + { + "start": 23210.4, + "end": 23211.41, + "probability": 0.8987 + }, + { + "start": 23211.88, + "end": 23213.04, + "probability": 0.8615 + }, + { + "start": 23213.06, + "end": 23213.13, + "probability": 0.4707 + }, + { + "start": 23213.26, + "end": 23215.22, + "probability": 0.9758 + }, + { + "start": 23215.62, + "end": 23215.62, + "probability": 0.0483 + }, + { + "start": 23215.62, + "end": 23216.85, + "probability": 0.7107 + }, + { + "start": 23217.12, + "end": 23218.5, + "probability": 0.9056 + }, + { + "start": 23218.6, + "end": 23218.7, + "probability": 0.3876 + }, + { + "start": 23218.88, + "end": 23221.75, + "probability": 0.9746 + }, + { + "start": 23222.42, + "end": 23224.78, + "probability": 0.9236 + }, + { + "start": 23225.16, + "end": 23227.78, + "probability": 0.9798 + }, + { + "start": 23228.38, + "end": 23229.74, + "probability": 0.7906 + }, + { + "start": 23229.76, + "end": 23230.88, + "probability": 0.6954 + }, + { + "start": 23230.96, + "end": 23231.74, + "probability": 0.7737 + }, + { + "start": 23232.34, + "end": 23233.94, + "probability": 0.8273 + }, + { + "start": 23234.74, + "end": 23235.6, + "probability": 0.9491 + }, + { + "start": 23236.0, + "end": 23240.0, + "probability": 0.9875 + }, + { + "start": 23241.82, + "end": 23244.38, + "probability": 0.8035 + }, + { + "start": 23244.88, + "end": 23245.64, + "probability": 0.4284 + }, + { + "start": 23246.04, + "end": 23246.22, + "probability": 0.1633 + }, + { + "start": 23246.88, + "end": 23248.52, + "probability": 0.3873 + }, + { + "start": 23249.06, + "end": 23249.06, + "probability": 0.2891 + }, + { + "start": 23249.08, + "end": 23249.3, + "probability": 0.3303 + }, + { + "start": 23249.32, + "end": 23251.14, + "probability": 0.7692 + }, + { + "start": 23251.46, + "end": 23252.18, + "probability": 0.9291 + }, + { + "start": 23252.26, + "end": 23255.69, + "probability": 0.9077 + }, + { + "start": 23255.9, + "end": 23256.46, + "probability": 0.7363 + }, + { + "start": 23256.58, + "end": 23258.63, + "probability": 0.8189 + }, + { + "start": 23260.2, + "end": 23260.46, + "probability": 0.3873 + }, + { + "start": 23260.7, + "end": 23260.86, + "probability": 0.8047 + }, + { + "start": 23261.94, + "end": 23265.5, + "probability": 0.228 + }, + { + "start": 23266.62, + "end": 23271.44, + "probability": 0.018 + }, + { + "start": 23271.56, + "end": 23272.56, + "probability": 0.1114 + }, + { + "start": 23272.6, + "end": 23272.6, + "probability": 0.0983 + }, + { + "start": 23272.6, + "end": 23273.22, + "probability": 0.0537 + }, + { + "start": 23274.09, + "end": 23276.7, + "probability": 0.909 + }, + { + "start": 23276.7, + "end": 23279.62, + "probability": 0.9356 + }, + { + "start": 23280.4, + "end": 23282.36, + "probability": 0.6751 + }, + { + "start": 23282.86, + "end": 23286.42, + "probability": 0.2139 + }, + { + "start": 23286.44, + "end": 23288.9, + "probability": 0.0965 + }, + { + "start": 23289.18, + "end": 23289.96, + "probability": 0.2884 + }, + { + "start": 23290.12, + "end": 23290.6, + "probability": 0.3746 + }, + { + "start": 23290.6, + "end": 23290.84, + "probability": 0.1266 + }, + { + "start": 23291.4, + "end": 23291.4, + "probability": 0.1342 + }, + { + "start": 23294.96, + "end": 23295.86, + "probability": 0.2084 + }, + { + "start": 23296.46, + "end": 23298.48, + "probability": 0.041 + }, + { + "start": 23300.1, + "end": 23301.38, + "probability": 0.0936 + }, + { + "start": 23301.6, + "end": 23301.6, + "probability": 0.0882 + }, + { + "start": 23303.8, + "end": 23304.34, + "probability": 0.5253 + }, + { + "start": 23308.02, + "end": 23309.18, + "probability": 0.1691 + }, + { + "start": 23309.96, + "end": 23310.96, + "probability": 0.7234 + }, + { + "start": 23310.96, + "end": 23312.04, + "probability": 0.9597 + }, + { + "start": 23312.58, + "end": 23314.44, + "probability": 0.7661 + }, + { + "start": 23314.66, + "end": 23315.74, + "probability": 0.8711 + }, + { + "start": 23315.94, + "end": 23316.9, + "probability": 0.7354 + }, + { + "start": 23317.54, + "end": 23319.2, + "probability": 0.9335 + }, + { + "start": 23319.74, + "end": 23323.66, + "probability": 0.9929 + }, + { + "start": 23324.74, + "end": 23329.56, + "probability": 0.992 + }, + { + "start": 23330.14, + "end": 23331.36, + "probability": 0.8452 + }, + { + "start": 23332.24, + "end": 23337.7, + "probability": 0.9755 + }, + { + "start": 23338.28, + "end": 23341.72, + "probability": 0.9977 + }, + { + "start": 23342.76, + "end": 23347.0, + "probability": 0.9644 + }, + { + "start": 23347.74, + "end": 23349.56, + "probability": 0.5306 + }, + { + "start": 23350.1, + "end": 23354.82, + "probability": 0.9608 + }, + { + "start": 23355.7, + "end": 23357.36, + "probability": 0.522 + }, + { + "start": 23357.98, + "end": 23358.86, + "probability": 0.7166 + }, + { + "start": 23359.4, + "end": 23360.68, + "probability": 0.9399 + }, + { + "start": 23361.36, + "end": 23363.34, + "probability": 0.8079 + }, + { + "start": 23363.82, + "end": 23364.45, + "probability": 0.8496 + }, + { + "start": 23364.82, + "end": 23366.04, + "probability": 0.7973 + }, + { + "start": 23366.4, + "end": 23368.0, + "probability": 0.8424 + }, + { + "start": 23368.32, + "end": 23369.36, + "probability": 0.9884 + }, + { + "start": 23369.74, + "end": 23371.74, + "probability": 0.9964 + }, + { + "start": 23372.78, + "end": 23375.42, + "probability": 0.9228 + }, + { + "start": 23375.46, + "end": 23375.96, + "probability": 0.6009 + }, + { + "start": 23376.02, + "end": 23376.84, + "probability": 0.8366 + }, + { + "start": 23377.24, + "end": 23378.26, + "probability": 0.6276 + }, + { + "start": 23379.74, + "end": 23381.26, + "probability": 0.4493 + }, + { + "start": 23381.36, + "end": 23382.0, + "probability": 0.9717 + }, + { + "start": 23382.04, + "end": 23384.38, + "probability": 0.9646 + }, + { + "start": 23384.84, + "end": 23385.8, + "probability": 0.9631 + }, + { + "start": 23388.24, + "end": 23388.34, + "probability": 0.1321 + }, + { + "start": 23388.34, + "end": 23391.58, + "probability": 0.9096 + }, + { + "start": 23392.8, + "end": 23395.62, + "probability": 0.8499 + }, + { + "start": 23396.32, + "end": 23397.32, + "probability": 0.9966 + }, + { + "start": 23397.84, + "end": 23400.1, + "probability": 0.845 + }, + { + "start": 23400.32, + "end": 23402.3, + "probability": 0.721 + }, + { + "start": 23402.96, + "end": 23404.94, + "probability": 0.991 + }, + { + "start": 23405.46, + "end": 23408.4, + "probability": 0.9839 + }, + { + "start": 23408.98, + "end": 23411.68, + "probability": 0.8782 + }, + { + "start": 23412.4, + "end": 23414.26, + "probability": 0.9951 + }, + { + "start": 23415.24, + "end": 23419.42, + "probability": 0.9668 + }, + { + "start": 23420.04, + "end": 23424.8, + "probability": 0.9963 + }, + { + "start": 23425.4, + "end": 23429.22, + "probability": 0.9501 + }, + { + "start": 23429.82, + "end": 23431.46, + "probability": 0.5002 + }, + { + "start": 23432.5, + "end": 23437.0, + "probability": 0.9832 + }, + { + "start": 23437.82, + "end": 23441.36, + "probability": 0.9929 + }, + { + "start": 23441.36, + "end": 23445.34, + "probability": 0.9901 + }, + { + "start": 23445.86, + "end": 23451.7, + "probability": 0.9952 + }, + { + "start": 23452.26, + "end": 23457.74, + "probability": 0.9955 + }, + { + "start": 23458.5, + "end": 23461.92, + "probability": 0.9691 + }, + { + "start": 23462.68, + "end": 23468.2, + "probability": 0.9743 + }, + { + "start": 23468.64, + "end": 23472.8, + "probability": 0.9981 + }, + { + "start": 23473.34, + "end": 23477.92, + "probability": 0.9633 + }, + { + "start": 23478.86, + "end": 23486.42, + "probability": 0.995 + }, + { + "start": 23486.88, + "end": 23492.8, + "probability": 0.9819 + }, + { + "start": 23493.46, + "end": 23497.86, + "probability": 0.9399 + }, + { + "start": 23498.02, + "end": 23499.72, + "probability": 0.9583 + }, + { + "start": 23499.86, + "end": 23502.88, + "probability": 0.862 + }, + { + "start": 23503.46, + "end": 23510.16, + "probability": 0.9938 + }, + { + "start": 23511.16, + "end": 23514.88, + "probability": 0.6848 + }, + { + "start": 23516.2, + "end": 23520.3, + "probability": 0.7985 + }, + { + "start": 23520.94, + "end": 23524.16, + "probability": 0.9792 + }, + { + "start": 23524.76, + "end": 23526.36, + "probability": 0.9269 + }, + { + "start": 23527.3, + "end": 23533.62, + "probability": 0.9629 + }, + { + "start": 23534.86, + "end": 23535.06, + "probability": 0.5479 + }, + { + "start": 23536.8, + "end": 23537.64, + "probability": 0.5466 + }, + { + "start": 23538.1, + "end": 23539.68, + "probability": 0.7236 + }, + { + "start": 23557.64, + "end": 23560.0, + "probability": 0.7042 + }, + { + "start": 23562.54, + "end": 23568.28, + "probability": 0.9468 + }, + { + "start": 23570.02, + "end": 23573.3, + "probability": 0.778 + }, + { + "start": 23574.66, + "end": 23581.82, + "probability": 0.99 + }, + { + "start": 23583.14, + "end": 23587.28, + "probability": 0.9799 + }, + { + "start": 23588.2, + "end": 23593.46, + "probability": 0.8006 + }, + { + "start": 23594.3, + "end": 23596.68, + "probability": 0.9971 + }, + { + "start": 23596.9, + "end": 23598.06, + "probability": 0.8677 + }, + { + "start": 23598.48, + "end": 23600.26, + "probability": 0.9805 + }, + { + "start": 23602.7, + "end": 23605.24, + "probability": 0.9712 + }, + { + "start": 23605.82, + "end": 23608.96, + "probability": 0.9741 + }, + { + "start": 23609.98, + "end": 23613.98, + "probability": 0.853 + }, + { + "start": 23615.7, + "end": 23622.0, + "probability": 0.9405 + }, + { + "start": 23623.12, + "end": 23623.4, + "probability": 0.8264 + }, + { + "start": 23624.18, + "end": 23625.16, + "probability": 0.5812 + }, + { + "start": 23626.28, + "end": 23627.78, + "probability": 0.9873 + }, + { + "start": 23629.62, + "end": 23631.5, + "probability": 0.9724 + }, + { + "start": 23633.52, + "end": 23635.0, + "probability": 0.9819 + }, + { + "start": 23636.02, + "end": 23641.22, + "probability": 0.9446 + }, + { + "start": 23641.98, + "end": 23643.8, + "probability": 0.9958 + }, + { + "start": 23645.52, + "end": 23649.0, + "probability": 0.9857 + }, + { + "start": 23649.0, + "end": 23652.94, + "probability": 0.9971 + }, + { + "start": 23654.7, + "end": 23655.56, + "probability": 0.9182 + }, + { + "start": 23656.64, + "end": 23656.96, + "probability": 0.6736 + }, + { + "start": 23657.58, + "end": 23659.25, + "probability": 0.9058 + }, + { + "start": 23660.18, + "end": 23663.04, + "probability": 0.988 + }, + { + "start": 23664.44, + "end": 23666.04, + "probability": 0.992 + }, + { + "start": 23666.7, + "end": 23669.44, + "probability": 0.9873 + }, + { + "start": 23670.02, + "end": 23671.06, + "probability": 0.6985 + }, + { + "start": 23671.54, + "end": 23674.08, + "probability": 0.9926 + }, + { + "start": 23675.78, + "end": 23678.18, + "probability": 0.7734 + }, + { + "start": 23679.3, + "end": 23682.58, + "probability": 0.9388 + }, + { + "start": 23683.6, + "end": 23686.42, + "probability": 0.9749 + }, + { + "start": 23687.12, + "end": 23690.18, + "probability": 0.9709 + }, + { + "start": 23692.08, + "end": 23694.44, + "probability": 0.8166 + }, + { + "start": 23695.18, + "end": 23699.24, + "probability": 0.9901 + }, + { + "start": 23700.08, + "end": 23700.9, + "probability": 0.9756 + }, + { + "start": 23703.22, + "end": 23706.14, + "probability": 0.8923 + }, + { + "start": 23707.1, + "end": 23712.22, + "probability": 0.9495 + }, + { + "start": 23714.08, + "end": 23719.52, + "probability": 0.9927 + }, + { + "start": 23720.0, + "end": 23720.94, + "probability": 0.7441 + }, + { + "start": 23721.24, + "end": 23722.26, + "probability": 0.9114 + }, + { + "start": 23723.34, + "end": 23726.54, + "probability": 0.9696 + }, + { + "start": 23727.3, + "end": 23729.08, + "probability": 0.9935 + }, + { + "start": 23730.46, + "end": 23735.1, + "probability": 0.9955 + }, + { + "start": 23736.36, + "end": 23740.52, + "probability": 0.9971 + }, + { + "start": 23741.32, + "end": 23741.94, + "probability": 0.8192 + }, + { + "start": 23743.9, + "end": 23744.72, + "probability": 0.8907 + }, + { + "start": 23744.9, + "end": 23748.9, + "probability": 0.9917 + }, + { + "start": 23749.78, + "end": 23754.28, + "probability": 0.9856 + }, + { + "start": 23754.32, + "end": 23759.3, + "probability": 0.9845 + }, + { + "start": 23759.72, + "end": 23761.92, + "probability": 0.9987 + }, + { + "start": 23762.84, + "end": 23766.16, + "probability": 0.9967 + }, + { + "start": 23766.86, + "end": 23770.56, + "probability": 0.9989 + }, + { + "start": 23770.56, + "end": 23773.98, + "probability": 0.9985 + }, + { + "start": 23775.24, + "end": 23776.56, + "probability": 0.7053 + }, + { + "start": 23777.72, + "end": 23782.44, + "probability": 0.9818 + }, + { + "start": 23783.2, + "end": 23786.3, + "probability": 0.998 + }, + { + "start": 23787.58, + "end": 23790.2, + "probability": 0.9988 + }, + { + "start": 23791.08, + "end": 23795.3, + "probability": 0.9953 + }, + { + "start": 23795.92, + "end": 23796.32, + "probability": 0.7301 + }, + { + "start": 23796.82, + "end": 23797.52, + "probability": 0.4988 + }, + { + "start": 23798.36, + "end": 23799.22, + "probability": 0.9761 + }, + { + "start": 23807.86, + "end": 23809.94, + "probability": 0.0006 + }, + { + "start": 23815.72, + "end": 23816.84, + "probability": 0.521 + }, + { + "start": 23818.52, + "end": 23819.74, + "probability": 0.8112 + }, + { + "start": 23820.52, + "end": 23821.72, + "probability": 0.8664 + }, + { + "start": 23823.02, + "end": 23828.13, + "probability": 0.9927 + }, + { + "start": 23829.34, + "end": 23830.3, + "probability": 0.811 + }, + { + "start": 23830.54, + "end": 23831.12, + "probability": 0.6629 + }, + { + "start": 23831.36, + "end": 23837.6, + "probability": 0.7917 + }, + { + "start": 23839.94, + "end": 23843.86, + "probability": 0.9663 + }, + { + "start": 23844.96, + "end": 23846.78, + "probability": 0.9929 + }, + { + "start": 23847.6, + "end": 23850.24, + "probability": 0.823 + }, + { + "start": 23851.04, + "end": 23852.18, + "probability": 0.9677 + }, + { + "start": 23854.64, + "end": 23859.08, + "probability": 0.9043 + }, + { + "start": 23860.58, + "end": 23863.16, + "probability": 0.9204 + }, + { + "start": 23864.98, + "end": 23869.64, + "probability": 0.9825 + }, + { + "start": 23871.46, + "end": 23876.8, + "probability": 0.9847 + }, + { + "start": 23877.8, + "end": 23883.34, + "probability": 0.9793 + }, + { + "start": 23884.78, + "end": 23889.84, + "probability": 0.9598 + }, + { + "start": 23890.4, + "end": 23890.9, + "probability": 0.7075 + }, + { + "start": 23891.84, + "end": 23894.08, + "probability": 0.842 + }, + { + "start": 23895.34, + "end": 23897.32, + "probability": 0.9379 + }, + { + "start": 23899.64, + "end": 23901.89, + "probability": 0.9829 + }, + { + "start": 23903.74, + "end": 23908.22, + "probability": 0.9735 + }, + { + "start": 23910.3, + "end": 23911.2, + "probability": 0.8306 + }, + { + "start": 23911.3, + "end": 23912.0, + "probability": 0.7902 + }, + { + "start": 23912.08, + "end": 23913.98, + "probability": 0.8443 + }, + { + "start": 23914.54, + "end": 23916.06, + "probability": 0.8402 + }, + { + "start": 23917.92, + "end": 23923.32, + "probability": 0.998 + }, + { + "start": 23924.06, + "end": 23925.74, + "probability": 0.7936 + }, + { + "start": 23926.5, + "end": 23928.12, + "probability": 0.9841 + }, + { + "start": 23929.0, + "end": 23929.96, + "probability": 0.7386 + }, + { + "start": 23930.62, + "end": 23931.6, + "probability": 0.9469 + }, + { + "start": 23933.8, + "end": 23936.14, + "probability": 0.7092 + }, + { + "start": 23936.24, + "end": 23937.32, + "probability": 0.7629 + }, + { + "start": 23937.48, + "end": 23939.74, + "probability": 0.9613 + }, + { + "start": 23940.74, + "end": 23950.9, + "probability": 0.9693 + }, + { + "start": 23952.54, + "end": 23957.96, + "probability": 0.8931 + }, + { + "start": 23959.22, + "end": 23962.14, + "probability": 0.7466 + }, + { + "start": 23963.68, + "end": 23964.8, + "probability": 0.8433 + }, + { + "start": 23965.44, + "end": 23966.71, + "probability": 0.5318 + }, + { + "start": 23968.58, + "end": 23970.9, + "probability": 0.9944 + }, + { + "start": 23970.9, + "end": 23976.2, + "probability": 0.9171 + }, + { + "start": 23977.4, + "end": 23978.42, + "probability": 0.8608 + }, + { + "start": 23979.8, + "end": 23982.48, + "probability": 0.8195 + }, + { + "start": 23983.46, + "end": 23984.58, + "probability": 0.9066 + }, + { + "start": 23985.74, + "end": 23991.96, + "probability": 0.9866 + }, + { + "start": 23993.22, + "end": 23994.63, + "probability": 0.9944 + }, + { + "start": 23996.48, + "end": 23999.28, + "probability": 0.9897 + }, + { + "start": 23999.92, + "end": 24004.1, + "probability": 0.9573 + }, + { + "start": 24004.38, + "end": 24006.98, + "probability": 0.9681 + }, + { + "start": 24007.48, + "end": 24008.24, + "probability": 0.8876 + }, + { + "start": 24008.78, + "end": 24013.64, + "probability": 0.9869 + }, + { + "start": 24014.7, + "end": 24016.32, + "probability": 0.9777 + }, + { + "start": 24017.34, + "end": 24018.8, + "probability": 0.9667 + }, + { + "start": 24019.26, + "end": 24024.86, + "probability": 0.9885 + }, + { + "start": 24026.48, + "end": 24029.56, + "probability": 0.7487 + }, + { + "start": 24030.42, + "end": 24034.52, + "probability": 0.9972 + }, + { + "start": 24035.08, + "end": 24035.86, + "probability": 0.7948 + }, + { + "start": 24037.02, + "end": 24038.54, + "probability": 0.8611 + }, + { + "start": 24039.22, + "end": 24040.78, + "probability": 0.6587 + }, + { + "start": 24041.58, + "end": 24041.7, + "probability": 0.0867 + }, + { + "start": 24045.84, + "end": 24049.51, + "probability": 0.2634 + }, + { + "start": 24051.0, + "end": 24054.53, + "probability": 0.0166 + }, + { + "start": 24056.1, + "end": 24056.78, + "probability": 0.0263 + }, + { + "start": 24058.82, + "end": 24059.92, + "probability": 0.0351 + }, + { + "start": 24062.1, + "end": 24062.94, + "probability": 0.6536 + }, + { + "start": 24063.02, + "end": 24065.14, + "probability": 0.1578 + }, + { + "start": 24065.24, + "end": 24066.12, + "probability": 0.0304 + }, + { + "start": 24067.52, + "end": 24068.0, + "probability": 0.5939 + }, + { + "start": 24068.46, + "end": 24069.42, + "probability": 0.9694 + }, + { + "start": 24070.7, + "end": 24072.88, + "probability": 0.8519 + }, + { + "start": 24074.12, + "end": 24081.5, + "probability": 0.9938 + }, + { + "start": 24082.44, + "end": 24085.04, + "probability": 0.9976 + }, + { + "start": 24085.68, + "end": 24089.6, + "probability": 0.9237 + }, + { + "start": 24089.72, + "end": 24091.22, + "probability": 0.7008 + }, + { + "start": 24092.38, + "end": 24093.32, + "probability": 0.981 + }, + { + "start": 24093.86, + "end": 24097.78, + "probability": 0.7953 + }, + { + "start": 24098.32, + "end": 24103.18, + "probability": 0.9225 + }, + { + "start": 24104.28, + "end": 24106.38, + "probability": 0.6707 + }, + { + "start": 24106.98, + "end": 24114.96, + "probability": 0.8943 + }, + { + "start": 24115.34, + "end": 24117.1, + "probability": 0.9211 + }, + { + "start": 24117.18, + "end": 24117.92, + "probability": 0.8664 + }, + { + "start": 24118.62, + "end": 24121.88, + "probability": 0.9849 + }, + { + "start": 24122.94, + "end": 24126.43, + "probability": 0.759 + }, + { + "start": 24127.22, + "end": 24128.4, + "probability": 0.9545 + }, + { + "start": 24128.74, + "end": 24130.08, + "probability": 0.93 + }, + { + "start": 24130.48, + "end": 24132.66, + "probability": 0.9873 + }, + { + "start": 24133.04, + "end": 24134.08, + "probability": 0.8934 + }, + { + "start": 24135.62, + "end": 24137.82, + "probability": 0.9895 + }, + { + "start": 24138.46, + "end": 24141.74, + "probability": 0.9121 + }, + { + "start": 24141.74, + "end": 24145.32, + "probability": 0.5267 + }, + { + "start": 24146.52, + "end": 24151.36, + "probability": 0.986 + }, + { + "start": 24152.18, + "end": 24153.08, + "probability": 0.7168 + }, + { + "start": 24154.34, + "end": 24154.96, + "probability": 0.7956 + }, + { + "start": 24155.58, + "end": 24156.32, + "probability": 0.9458 + }, + { + "start": 24157.0, + "end": 24157.56, + "probability": 0.0837 + }, + { + "start": 24158.06, + "end": 24161.78, + "probability": 0.9008 + }, + { + "start": 24161.81, + "end": 24164.63, + "probability": 0.2018 + }, + { + "start": 24165.78, + "end": 24166.3, + "probability": 0.4963 + }, + { + "start": 24166.58, + "end": 24173.3, + "probability": 0.8134 + }, + { + "start": 24174.28, + "end": 24175.04, + "probability": 0.7636 + }, + { + "start": 24175.54, + "end": 24178.56, + "probability": 0.8429 + }, + { + "start": 24178.6, + "end": 24180.84, + "probability": 0.9065 + }, + { + "start": 24181.36, + "end": 24183.98, + "probability": 0.782 + }, + { + "start": 24184.56, + "end": 24188.38, + "probability": 0.6829 + }, + { + "start": 24188.9, + "end": 24194.14, + "probability": 0.8116 + }, + { + "start": 24194.42, + "end": 24195.26, + "probability": 0.6332 + }, + { + "start": 24195.64, + "end": 24198.2, + "probability": 0.9856 + }, + { + "start": 24198.84, + "end": 24199.94, + "probability": 0.6676 + }, + { + "start": 24200.26, + "end": 24201.38, + "probability": 0.9142 + }, + { + "start": 24202.24, + "end": 24203.0, + "probability": 0.6864 + }, + { + "start": 24203.18, + "end": 24203.84, + "probability": 0.7493 + }, + { + "start": 24203.96, + "end": 24208.5, + "probability": 0.9603 + }, + { + "start": 24208.86, + "end": 24214.02, + "probability": 0.9314 + }, + { + "start": 24214.46, + "end": 24216.24, + "probability": 0.9727 + }, + { + "start": 24217.46, + "end": 24222.64, + "probability": 0.9952 + }, + { + "start": 24223.06, + "end": 24225.24, + "probability": 0.5359 + }, + { + "start": 24226.09, + "end": 24229.16, + "probability": 0.9546 + }, + { + "start": 24229.96, + "end": 24234.98, + "probability": 0.8565 + }, + { + "start": 24235.54, + "end": 24236.42, + "probability": 0.95 + }, + { + "start": 24237.38, + "end": 24239.48, + "probability": 0.9938 + }, + { + "start": 24239.92, + "end": 24240.8, + "probability": 0.6464 + }, + { + "start": 24241.36, + "end": 24244.9, + "probability": 0.9968 + }, + { + "start": 24245.32, + "end": 24246.96, + "probability": 0.9822 + }, + { + "start": 24247.56, + "end": 24247.96, + "probability": 0.8901 + }, + { + "start": 24248.68, + "end": 24249.26, + "probability": 0.613 + }, + { + "start": 24249.56, + "end": 24249.86, + "probability": 0.5116 + }, + { + "start": 24250.58, + "end": 24252.2, + "probability": 0.9658 + }, + { + "start": 24253.09, + "end": 24256.46, + "probability": 0.8415 + }, + { + "start": 24264.32, + "end": 24267.34, + "probability": 0.6611 + }, + { + "start": 24267.44, + "end": 24268.38, + "probability": 0.5978 + }, + { + "start": 24268.58, + "end": 24268.86, + "probability": 0.888 + }, + { + "start": 24270.3, + "end": 24270.54, + "probability": 0.0211 + }, + { + "start": 24271.14, + "end": 24275.84, + "probability": 0.3113 + }, + { + "start": 24276.94, + "end": 24280.34, + "probability": 0.6056 + }, + { + "start": 24280.52, + "end": 24281.76, + "probability": 0.7921 + }, + { + "start": 24282.78, + "end": 24282.78, + "probability": 0.0004 + }, + { + "start": 24282.78, + "end": 24284.58, + "probability": 0.7476 + }, + { + "start": 24286.6, + "end": 24287.84, + "probability": 0.8456 + }, + { + "start": 24288.02, + "end": 24288.76, + "probability": 0.6233 + }, + { + "start": 24289.22, + "end": 24290.18, + "probability": 0.922 + }, + { + "start": 24290.18, + "end": 24292.22, + "probability": 0.0741 + }, + { + "start": 24292.58, + "end": 24293.48, + "probability": 0.9534 + }, + { + "start": 24295.18, + "end": 24298.82, + "probability": 0.3971 + }, + { + "start": 24298.9, + "end": 24300.74, + "probability": 0.1934 + }, + { + "start": 24300.74, + "end": 24301.52, + "probability": 0.8065 + }, + { + "start": 24301.64, + "end": 24302.94, + "probability": 0.8315 + }, + { + "start": 24304.7, + "end": 24305.84, + "probability": 0.9271 + }, + { + "start": 24307.06, + "end": 24308.36, + "probability": 0.9948 + }, + { + "start": 24310.04, + "end": 24314.1, + "probability": 0.9707 + }, + { + "start": 24315.5, + "end": 24315.82, + "probability": 0.9839 + }, + { + "start": 24317.86, + "end": 24318.96, + "probability": 0.5597 + }, + { + "start": 24320.76, + "end": 24326.6, + "probability": 0.9884 + }, + { + "start": 24328.0, + "end": 24332.8, + "probability": 0.9739 + }, + { + "start": 24333.9, + "end": 24336.46, + "probability": 0.9909 + }, + { + "start": 24337.32, + "end": 24343.7, + "probability": 0.8349 + }, + { + "start": 24344.68, + "end": 24347.08, + "probability": 0.7756 + }, + { + "start": 24348.14, + "end": 24348.74, + "probability": 0.4302 + }, + { + "start": 24348.8, + "end": 24349.98, + "probability": 0.7525 + }, + { + "start": 24350.04, + "end": 24351.4, + "probability": 0.9949 + }, + { + "start": 24351.54, + "end": 24352.0, + "probability": 0.824 + }, + { + "start": 24352.14, + "end": 24354.04, + "probability": 0.7434 + }, + { + "start": 24354.42, + "end": 24357.6, + "probability": 0.9615 + }, + { + "start": 24358.46, + "end": 24360.26, + "probability": 0.9736 + }, + { + "start": 24361.4, + "end": 24364.04, + "probability": 0.9946 + }, + { + "start": 24364.04, + "end": 24367.5, + "probability": 0.9141 + }, + { + "start": 24369.14, + "end": 24370.0, + "probability": 0.7967 + }, + { + "start": 24371.36, + "end": 24373.32, + "probability": 0.9987 + }, + { + "start": 24374.0, + "end": 24376.86, + "probability": 0.9976 + }, + { + "start": 24377.1, + "end": 24378.64, + "probability": 0.7486 + }, + { + "start": 24380.74, + "end": 24385.54, + "probability": 0.8456 + }, + { + "start": 24386.32, + "end": 24387.9, + "probability": 0.9873 + }, + { + "start": 24389.34, + "end": 24392.32, + "probability": 0.8147 + }, + { + "start": 24392.78, + "end": 24393.86, + "probability": 0.9221 + }, + { + "start": 24393.92, + "end": 24396.72, + "probability": 0.9803 + }, + { + "start": 24397.6, + "end": 24398.62, + "probability": 0.9437 + }, + { + "start": 24399.14, + "end": 24402.92, + "probability": 0.9839 + }, + { + "start": 24404.04, + "end": 24409.6, + "probability": 0.9927 + }, + { + "start": 24410.18, + "end": 24412.84, + "probability": 0.8851 + }, + { + "start": 24413.86, + "end": 24415.8, + "probability": 0.6299 + }, + { + "start": 24415.82, + "end": 24417.17, + "probability": 0.7529 + }, + { + "start": 24417.82, + "end": 24418.7, + "probability": 0.9849 + }, + { + "start": 24419.64, + "end": 24422.19, + "probability": 0.8301 + }, + { + "start": 24423.44, + "end": 24426.96, + "probability": 0.9888 + }, + { + "start": 24427.08, + "end": 24427.56, + "probability": 0.9932 + }, + { + "start": 24428.16, + "end": 24429.55, + "probability": 0.9492 + }, + { + "start": 24430.74, + "end": 24434.06, + "probability": 0.9803 + }, + { + "start": 24434.64, + "end": 24435.36, + "probability": 0.7574 + }, + { + "start": 24436.32, + "end": 24437.86, + "probability": 0.9355 + }, + { + "start": 24438.5, + "end": 24439.82, + "probability": 0.9778 + }, + { + "start": 24441.38, + "end": 24444.74, + "probability": 0.8803 + }, + { + "start": 24445.46, + "end": 24446.44, + "probability": 0.9899 + }, + { + "start": 24447.3, + "end": 24447.8, + "probability": 0.9224 + }, + { + "start": 24448.42, + "end": 24448.9, + "probability": 0.4498 + }, + { + "start": 24449.0, + "end": 24449.62, + "probability": 0.7439 + }, + { + "start": 24449.68, + "end": 24451.73, + "probability": 0.9879 + }, + { + "start": 24452.18, + "end": 24454.48, + "probability": 0.9785 + }, + { + "start": 24455.72, + "end": 24459.62, + "probability": 0.9549 + }, + { + "start": 24459.8, + "end": 24459.82, + "probability": 0.2549 + }, + { + "start": 24459.94, + "end": 24462.66, + "probability": 0.9958 + }, + { + "start": 24463.44, + "end": 24464.7, + "probability": 0.93 + }, + { + "start": 24464.86, + "end": 24468.58, + "probability": 0.9928 + }, + { + "start": 24469.52, + "end": 24470.02, + "probability": 0.8748 + }, + { + "start": 24470.16, + "end": 24472.98, + "probability": 0.9937 + }, + { + "start": 24472.98, + "end": 24474.94, + "probability": 0.7406 + }, + { + "start": 24475.12, + "end": 24475.78, + "probability": 0.7935 + }, + { + "start": 24476.48, + "end": 24479.7, + "probability": 0.934 + }, + { + "start": 24480.28, + "end": 24482.3, + "probability": 0.9802 + }, + { + "start": 24483.02, + "end": 24488.42, + "probability": 0.9949 + }, + { + "start": 24488.5, + "end": 24490.14, + "probability": 0.9971 + }, + { + "start": 24490.74, + "end": 24493.05, + "probability": 0.9719 + }, + { + "start": 24493.34, + "end": 24494.38, + "probability": 0.2381 + }, + { + "start": 24494.44, + "end": 24494.76, + "probability": 0.5455 + }, + { + "start": 24494.88, + "end": 24499.38, + "probability": 0.9509 + }, + { + "start": 24499.98, + "end": 24502.42, + "probability": 0.7904 + }, + { + "start": 24503.0, + "end": 24507.02, + "probability": 0.8118 + }, + { + "start": 24507.82, + "end": 24509.12, + "probability": 0.3282 + }, + { + "start": 24509.18, + "end": 24509.56, + "probability": 0.7963 + }, + { + "start": 24509.68, + "end": 24509.98, + "probability": 0.8851 + }, + { + "start": 24510.04, + "end": 24510.42, + "probability": 0.8083 + }, + { + "start": 24510.44, + "end": 24511.86, + "probability": 0.952 + }, + { + "start": 24512.74, + "end": 24514.64, + "probability": 0.9595 + }, + { + "start": 24516.14, + "end": 24518.1, + "probability": 0.9165 + }, + { + "start": 24518.1, + "end": 24518.1, + "probability": 0.0112 + }, + { + "start": 24518.1, + "end": 24518.46, + "probability": 0.4117 + }, + { + "start": 24518.54, + "end": 24519.26, + "probability": 0.6002 + }, + { + "start": 24519.46, + "end": 24523.86, + "probability": 0.8624 + }, + { + "start": 24523.92, + "end": 24526.98, + "probability": 0.9034 + }, + { + "start": 24527.84, + "end": 24531.18, + "probability": 0.9437 + }, + { + "start": 24531.22, + "end": 24535.68, + "probability": 0.9331 + }, + { + "start": 24535.84, + "end": 24536.44, + "probability": 0.6462 + }, + { + "start": 24536.5, + "end": 24538.28, + "probability": 0.8377 + }, + { + "start": 24538.66, + "end": 24539.84, + "probability": 0.9657 + }, + { + "start": 24539.96, + "end": 24540.38, + "probability": 0.7173 + }, + { + "start": 24540.58, + "end": 24542.14, + "probability": 0.7627 + }, + { + "start": 24542.68, + "end": 24544.58, + "probability": 0.6645 + }, + { + "start": 24545.9, + "end": 24546.35, + "probability": 0.471 + }, + { + "start": 24548.12, + "end": 24549.54, + "probability": 0.8995 + }, + { + "start": 24551.74, + "end": 24553.28, + "probability": 0.9698 + }, + { + "start": 24554.56, + "end": 24554.82, + "probability": 0.2167 + }, + { + "start": 24555.4, + "end": 24556.28, + "probability": 0.685 + }, + { + "start": 24556.4, + "end": 24556.74, + "probability": 0.7515 + }, + { + "start": 24557.32, + "end": 24559.36, + "probability": 0.9309 + }, + { + "start": 24561.62, + "end": 24562.28, + "probability": 0.0373 + }, + { + "start": 24566.98, + "end": 24568.32, + "probability": 0.1816 + }, + { + "start": 24568.98, + "end": 24569.06, + "probability": 0.366 + }, + { + "start": 24570.82, + "end": 24572.6, + "probability": 0.731 + }, + { + "start": 24572.76, + "end": 24573.32, + "probability": 0.799 + }, + { + "start": 24574.8, + "end": 24575.96, + "probability": 0.8987 + }, + { + "start": 24576.1, + "end": 24577.16, + "probability": 0.752 + }, + { + "start": 24577.4, + "end": 24581.1, + "probability": 0.8438 + }, + { + "start": 24583.63, + "end": 24585.78, + "probability": 0.8733 + }, + { + "start": 24586.94, + "end": 24589.54, + "probability": 0.7181 + }, + { + "start": 24591.06, + "end": 24594.98, + "probability": 0.9526 + }, + { + "start": 24595.14, + "end": 24595.46, + "probability": 0.3507 + }, + { + "start": 24595.48, + "end": 24596.32, + "probability": 0.9178 + }, + { + "start": 24596.52, + "end": 24597.72, + "probability": 0.8582 + }, + { + "start": 24599.06, + "end": 24600.82, + "probability": 0.9919 + }, + { + "start": 24601.04, + "end": 24601.36, + "probability": 0.4947 + }, + { + "start": 24602.36, + "end": 24608.54, + "probability": 0.9456 + }, + { + "start": 24609.9, + "end": 24610.64, + "probability": 0.9054 + }, + { + "start": 24613.46, + "end": 24615.74, + "probability": 0.5105 + }, + { + "start": 24616.98, + "end": 24619.9, + "probability": 0.8179 + }, + { + "start": 24621.04, + "end": 24622.84, + "probability": 0.8137 + }, + { + "start": 24623.92, + "end": 24632.72, + "probability": 0.9756 + }, + { + "start": 24634.8, + "end": 24637.12, + "probability": 0.9898 + }, + { + "start": 24637.12, + "end": 24640.16, + "probability": 0.9671 + }, + { + "start": 24641.84, + "end": 24647.54, + "probability": 0.7983 + }, + { + "start": 24647.62, + "end": 24648.64, + "probability": 0.6927 + }, + { + "start": 24650.1, + "end": 24653.64, + "probability": 0.9154 + }, + { + "start": 24654.82, + "end": 24656.62, + "probability": 0.8949 + }, + { + "start": 24657.9, + "end": 24660.66, + "probability": 0.7972 + }, + { + "start": 24661.56, + "end": 24665.1, + "probability": 0.9154 + }, + { + "start": 24665.8, + "end": 24666.44, + "probability": 0.5348 + }, + { + "start": 24667.54, + "end": 24668.58, + "probability": 0.8655 + }, + { + "start": 24670.42, + "end": 24672.06, + "probability": 0.9883 + }, + { + "start": 24672.76, + "end": 24677.7, + "probability": 0.9908 + }, + { + "start": 24677.7, + "end": 24684.58, + "probability": 0.9807 + }, + { + "start": 24685.82, + "end": 24686.3, + "probability": 0.8873 + }, + { + "start": 24687.74, + "end": 24688.12, + "probability": 0.6672 + }, + { + "start": 24689.0, + "end": 24690.12, + "probability": 0.8773 + }, + { + "start": 24692.18, + "end": 24696.62, + "probability": 0.9708 + }, + { + "start": 24698.48, + "end": 24704.58, + "probability": 0.9805 + }, + { + "start": 24706.76, + "end": 24708.02, + "probability": 0.9644 + }, + { + "start": 24708.62, + "end": 24710.4, + "probability": 0.9311 + }, + { + "start": 24711.58, + "end": 24720.74, + "probability": 0.99 + }, + { + "start": 24723.7, + "end": 24728.68, + "probability": 0.9971 + }, + { + "start": 24729.22, + "end": 24730.02, + "probability": 0.7168 + }, + { + "start": 24731.92, + "end": 24732.34, + "probability": 0.6707 + }, + { + "start": 24732.5, + "end": 24732.62, + "probability": 0.5898 + }, + { + "start": 24732.82, + "end": 24735.47, + "probability": 0.976 + }, + { + "start": 24735.72, + "end": 24738.06, + "probability": 0.9922 + }, + { + "start": 24738.84, + "end": 24741.7, + "probability": 0.9933 + }, + { + "start": 24742.7, + "end": 24744.56, + "probability": 0.9829 + }, + { + "start": 24745.72, + "end": 24747.83, + "probability": 0.9673 + }, + { + "start": 24748.06, + "end": 24752.68, + "probability": 0.7681 + }, + { + "start": 24752.74, + "end": 24753.84, + "probability": 0.7392 + }, + { + "start": 24753.84, + "end": 24754.26, + "probability": 0.756 + }, + { + "start": 24756.8, + "end": 24757.48, + "probability": 0.9951 + }, + { + "start": 24758.46, + "end": 24759.46, + "probability": 0.9934 + }, + { + "start": 24762.96, + "end": 24768.26, + "probability": 0.6989 + }, + { + "start": 24768.32, + "end": 24770.58, + "probability": 0.75 + }, + { + "start": 24771.38, + "end": 24776.9, + "probability": 0.9735 + }, + { + "start": 24777.0, + "end": 24780.08, + "probability": 0.9825 + }, + { + "start": 24780.32, + "end": 24781.16, + "probability": 0.933 + }, + { + "start": 24781.22, + "end": 24785.36, + "probability": 0.8749 + }, + { + "start": 24786.12, + "end": 24786.98, + "probability": 0.5476 + }, + { + "start": 24787.64, + "end": 24793.0, + "probability": 0.7721 + }, + { + "start": 24793.5, + "end": 24802.88, + "probability": 0.9375 + }, + { + "start": 24803.48, + "end": 24807.82, + "probability": 0.9109 + }, + { + "start": 24809.12, + "end": 24815.28, + "probability": 0.8881 + }, + { + "start": 24816.66, + "end": 24817.26, + "probability": 0.7375 + }, + { + "start": 24817.92, + "end": 24820.26, + "probability": 0.9505 + }, + { + "start": 24821.18, + "end": 24823.52, + "probability": 0.7457 + }, + { + "start": 24824.76, + "end": 24828.66, + "probability": 0.8838 + }, + { + "start": 24829.28, + "end": 24830.22, + "probability": 0.8468 + }, + { + "start": 24831.42, + "end": 24835.74, + "probability": 0.9692 + }, + { + "start": 24836.2, + "end": 24838.24, + "probability": 0.9837 + }, + { + "start": 24839.34, + "end": 24843.1, + "probability": 0.9792 + }, + { + "start": 24843.72, + "end": 24844.28, + "probability": 0.6286 + }, + { + "start": 24845.56, + "end": 24849.06, + "probability": 0.9754 + }, + { + "start": 24850.24, + "end": 24850.62, + "probability": 0.926 + }, + { + "start": 24851.2, + "end": 24852.48, + "probability": 0.9573 + }, + { + "start": 24853.46, + "end": 24856.42, + "probability": 0.9374 + }, + { + "start": 24856.58, + "end": 24857.14, + "probability": 0.6024 + }, + { + "start": 24857.84, + "end": 24860.85, + "probability": 0.9938 + }, + { + "start": 24862.42, + "end": 24863.18, + "probability": 0.9896 + }, + { + "start": 24864.52, + "end": 24870.08, + "probability": 0.9756 + }, + { + "start": 24870.14, + "end": 24871.2, + "probability": 0.9556 + }, + { + "start": 24871.32, + "end": 24873.46, + "probability": 0.8617 + }, + { + "start": 24874.86, + "end": 24878.64, + "probability": 0.9604 + }, + { + "start": 24879.58, + "end": 24882.14, + "probability": 0.8694 + }, + { + "start": 24882.8, + "end": 24885.36, + "probability": 0.9723 + }, + { + "start": 24886.36, + "end": 24889.32, + "probability": 0.9922 + }, + { + "start": 24889.32, + "end": 24893.78, + "probability": 0.8914 + }, + { + "start": 24894.96, + "end": 24895.76, + "probability": 0.473 + }, + { + "start": 24896.36, + "end": 24900.14, + "probability": 0.65 + }, + { + "start": 24900.2, + "end": 24901.12, + "probability": 0.7898 + }, + { + "start": 24901.84, + "end": 24905.72, + "probability": 0.8889 + }, + { + "start": 24906.3, + "end": 24906.3, + "probability": 0.6978 + }, + { + "start": 24906.5, + "end": 24906.94, + "probability": 0.8155 + }, + { + "start": 24907.06, + "end": 24907.68, + "probability": 0.7595 + }, + { + "start": 24907.72, + "end": 24913.14, + "probability": 0.9722 + }, + { + "start": 24913.3, + "end": 24914.18, + "probability": 0.4745 + }, + { + "start": 24914.36, + "end": 24916.22, + "probability": 0.9545 + }, + { + "start": 24916.76, + "end": 24917.54, + "probability": 0.6188 + }, + { + "start": 24918.78, + "end": 24922.62, + "probability": 0.9069 + }, + { + "start": 24930.98, + "end": 24932.74, + "probability": 0.3521 + }, + { + "start": 24941.7, + "end": 24943.64, + "probability": 0.5235 + }, + { + "start": 24944.7, + "end": 24945.6, + "probability": 0.7601 + }, + { + "start": 24946.7, + "end": 24951.18, + "probability": 0.8427 + }, + { + "start": 24952.08, + "end": 24955.36, + "probability": 0.9933 + }, + { + "start": 24956.76, + "end": 24959.44, + "probability": 0.809 + }, + { + "start": 24959.52, + "end": 24965.04, + "probability": 0.9097 + }, + { + "start": 24966.14, + "end": 24967.8, + "probability": 0.8878 + }, + { + "start": 24968.7, + "end": 24971.68, + "probability": 0.9978 + }, + { + "start": 24972.26, + "end": 24975.92, + "probability": 0.991 + }, + { + "start": 24976.6, + "end": 24978.44, + "probability": 0.8223 + }, + { + "start": 24979.08, + "end": 24985.5, + "probability": 0.9492 + }, + { + "start": 24986.16, + "end": 24988.06, + "probability": 0.7041 + }, + { + "start": 24988.88, + "end": 24992.26, + "probability": 0.9512 + }, + { + "start": 24993.16, + "end": 24996.14, + "probability": 0.9852 + }, + { + "start": 24996.8, + "end": 25000.4, + "probability": 0.9775 + }, + { + "start": 25000.4, + "end": 25004.52, + "probability": 0.9999 + }, + { + "start": 25006.0, + "end": 25009.09, + "probability": 0.9434 + }, + { + "start": 25012.22, + "end": 25013.96, + "probability": 0.9993 + }, + { + "start": 25014.96, + "end": 25018.22, + "probability": 0.9414 + }, + { + "start": 25018.94, + "end": 25019.52, + "probability": 0.8078 + }, + { + "start": 25020.58, + "end": 25023.2, + "probability": 0.9802 + }, + { + "start": 25023.2, + "end": 25029.72, + "probability": 0.9971 + }, + { + "start": 25029.88, + "end": 25030.38, + "probability": 0.3541 + }, + { + "start": 25031.0, + "end": 25034.06, + "probability": 0.7297 + }, + { + "start": 25035.04, + "end": 25037.3, + "probability": 0.7437 + }, + { + "start": 25037.48, + "end": 25038.4, + "probability": 0.9294 + }, + { + "start": 25041.12, + "end": 25042.26, + "probability": 0.9138 + }, + { + "start": 25043.48, + "end": 25044.44, + "probability": 0.9329 + }, + { + "start": 25045.32, + "end": 25046.46, + "probability": 0.8385 + }, + { + "start": 25047.62, + "end": 25056.22, + "probability": 0.8673 + }, + { + "start": 25057.88, + "end": 25060.02, + "probability": 0.902 + }, + { + "start": 25061.7, + "end": 25062.84, + "probability": 0.9817 + }, + { + "start": 25063.54, + "end": 25065.09, + "probability": 0.9983 + }, + { + "start": 25066.32, + "end": 25070.86, + "probability": 0.967 + }, + { + "start": 25073.06, + "end": 25074.22, + "probability": 0.8837 + }, + { + "start": 25075.28, + "end": 25080.46, + "probability": 0.969 + }, + { + "start": 25081.03, + "end": 25084.38, + "probability": 0.9797 + }, + { + "start": 25085.62, + "end": 25091.58, + "probability": 0.9968 + }, + { + "start": 25092.86, + "end": 25094.26, + "probability": 0.976 + }, + { + "start": 25095.46, + "end": 25097.06, + "probability": 0.9985 + }, + { + "start": 25097.68, + "end": 25102.46, + "probability": 0.9963 + }, + { + "start": 25103.36, + "end": 25104.72, + "probability": 0.6056 + }, + { + "start": 25105.44, + "end": 25106.98, + "probability": 0.9766 + }, + { + "start": 25108.76, + "end": 25109.58, + "probability": 0.6139 + }, + { + "start": 25110.5, + "end": 25111.22, + "probability": 0.914 + }, + { + "start": 25112.5, + "end": 25114.74, + "probability": 0.9854 + }, + { + "start": 25116.46, + "end": 25119.84, + "probability": 0.9287 + }, + { + "start": 25121.08, + "end": 25122.14, + "probability": 0.9527 + }, + { + "start": 25122.98, + "end": 25123.98, + "probability": 0.9614 + }, + { + "start": 25124.66, + "end": 25125.74, + "probability": 0.871 + }, + { + "start": 25127.04, + "end": 25129.78, + "probability": 0.9609 + }, + { + "start": 25130.38, + "end": 25132.54, + "probability": 0.9941 + }, + { + "start": 25135.88, + "end": 25136.82, + "probability": 0.5986 + }, + { + "start": 25139.4, + "end": 25149.22, + "probability": 0.9967 + }, + { + "start": 25151.0, + "end": 25153.22, + "probability": 0.9747 + }, + { + "start": 25154.72, + "end": 25157.56, + "probability": 0.7084 + }, + { + "start": 25158.36, + "end": 25160.62, + "probability": 0.9939 + }, + { + "start": 25162.28, + "end": 25165.72, + "probability": 0.993 + }, + { + "start": 25166.86, + "end": 25167.6, + "probability": 0.763 + }, + { + "start": 25168.32, + "end": 25176.66, + "probability": 0.978 + }, + { + "start": 25177.84, + "end": 25181.66, + "probability": 0.999 + }, + { + "start": 25182.34, + "end": 25186.82, + "probability": 0.7479 + }, + { + "start": 25187.52, + "end": 25188.1, + "probability": 0.6987 + }, + { + "start": 25188.96, + "end": 25190.42, + "probability": 0.8515 + }, + { + "start": 25191.58, + "end": 25193.28, + "probability": 0.9985 + }, + { + "start": 25194.3, + "end": 25199.92, + "probability": 0.8179 + }, + { + "start": 25201.08, + "end": 25202.3, + "probability": 0.8196 + }, + { + "start": 25203.86, + "end": 25208.02, + "probability": 0.8055 + }, + { + "start": 25208.96, + "end": 25210.06, + "probability": 0.9329 + }, + { + "start": 25210.74, + "end": 25212.96, + "probability": 0.9333 + }, + { + "start": 25213.68, + "end": 25214.64, + "probability": 0.485 + }, + { + "start": 25215.62, + "end": 25216.68, + "probability": 0.9286 + }, + { + "start": 25218.12, + "end": 25219.16, + "probability": 0.5939 + }, + { + "start": 25220.96, + "end": 25225.04, + "probability": 0.9791 + }, + { + "start": 25226.08, + "end": 25230.16, + "probability": 0.9392 + }, + { + "start": 25231.26, + "end": 25232.02, + "probability": 0.7024 + }, + { + "start": 25232.54, + "end": 25233.56, + "probability": 0.8895 + }, + { + "start": 25234.68, + "end": 25235.08, + "probability": 0.6689 + }, + { + "start": 25235.34, + "end": 25238.14, + "probability": 0.4632 + }, + { + "start": 25241.36, + "end": 25242.96, + "probability": 0.9319 + }, + { + "start": 25244.1, + "end": 25245.22, + "probability": 0.9438 + }, + { + "start": 25246.4, + "end": 25247.02, + "probability": 0.7661 + }, + { + "start": 25248.3, + "end": 25253.94, + "probability": 0.9783 + }, + { + "start": 25254.08, + "end": 25257.7, + "probability": 0.9902 + }, + { + "start": 25258.56, + "end": 25259.92, + "probability": 0.6246 + }, + { + "start": 25261.7, + "end": 25262.16, + "probability": 0.7901 + }, + { + "start": 25263.5, + "end": 25264.74, + "probability": 0.7653 + }, + { + "start": 25265.94, + "end": 25271.7, + "probability": 0.8681 + }, + { + "start": 25272.48, + "end": 25275.78, + "probability": 0.5863 + }, + { + "start": 25276.36, + "end": 25278.11, + "probability": 0.7879 + }, + { + "start": 25279.16, + "end": 25282.56, + "probability": 0.9783 + }, + { + "start": 25283.36, + "end": 25286.9, + "probability": 0.8373 + }, + { + "start": 25287.68, + "end": 25288.3, + "probability": 0.9399 + }, + { + "start": 25288.96, + "end": 25290.22, + "probability": 0.8138 + }, + { + "start": 25291.58, + "end": 25292.72, + "probability": 0.6682 + }, + { + "start": 25293.32, + "end": 25294.42, + "probability": 0.8261 + }, + { + "start": 25295.16, + "end": 25298.34, + "probability": 0.8814 + }, + { + "start": 25298.62, + "end": 25301.78, + "probability": 0.9242 + }, + { + "start": 25302.28, + "end": 25304.36, + "probability": 0.9645 + }, + { + "start": 25304.96, + "end": 25307.12, + "probability": 0.64 + }, + { + "start": 25307.66, + "end": 25309.74, + "probability": 0.8384 + }, + { + "start": 25310.28, + "end": 25311.82, + "probability": 0.9834 + }, + { + "start": 25313.0, + "end": 25314.8, + "probability": 0.9354 + }, + { + "start": 25315.66, + "end": 25320.98, + "probability": 0.9968 + }, + { + "start": 25321.02, + "end": 25328.08, + "probability": 0.9809 + }, + { + "start": 25330.32, + "end": 25331.18, + "probability": 0.8085 + }, + { + "start": 25332.12, + "end": 25333.44, + "probability": 0.9638 + }, + { + "start": 25334.16, + "end": 25335.08, + "probability": 0.9492 + }, + { + "start": 25337.52, + "end": 25338.42, + "probability": 0.567 + }, + { + "start": 25339.32, + "end": 25339.52, + "probability": 0.7011 + }, + { + "start": 25340.82, + "end": 25344.68, + "probability": 0.8245 + }, + { + "start": 25345.62, + "end": 25350.84, + "probability": 0.9984 + }, + { + "start": 25351.6, + "end": 25356.54, + "probability": 0.8914 + }, + { + "start": 25357.7, + "end": 25357.7, + "probability": 0.7837 + }, + { + "start": 25358.26, + "end": 25363.6, + "probability": 0.9565 + }, + { + "start": 25365.12, + "end": 25366.1, + "probability": 0.8008 + }, + { + "start": 25367.12, + "end": 25368.3, + "probability": 0.5442 + }, + { + "start": 25369.44, + "end": 25373.56, + "probability": 0.8713 + }, + { + "start": 25374.96, + "end": 25376.32, + "probability": 0.897 + }, + { + "start": 25376.86, + "end": 25377.37, + "probability": 0.9634 + }, + { + "start": 25380.26, + "end": 25381.62, + "probability": 0.9762 + }, + { + "start": 25382.86, + "end": 25383.74, + "probability": 0.8183 + }, + { + "start": 25385.48, + "end": 25387.8, + "probability": 0.832 + }, + { + "start": 25388.54, + "end": 25389.62, + "probability": 0.7634 + }, + { + "start": 25391.2, + "end": 25392.64, + "probability": 0.9182 + }, + { + "start": 25393.48, + "end": 25393.58, + "probability": 0.9918 + }, + { + "start": 25394.54, + "end": 25395.82, + "probability": 0.9956 + }, + { + "start": 25396.64, + "end": 25404.14, + "probability": 0.9585 + }, + { + "start": 25405.22, + "end": 25406.1, + "probability": 0.9911 + }, + { + "start": 25406.76, + "end": 25408.8, + "probability": 0.8762 + }, + { + "start": 25409.58, + "end": 25409.9, + "probability": 0.8806 + }, + { + "start": 25410.74, + "end": 25413.64, + "probability": 0.9903 + }, + { + "start": 25414.6, + "end": 25416.18, + "probability": 0.9491 + }, + { + "start": 25416.88, + "end": 25418.86, + "probability": 0.7824 + }, + { + "start": 25420.1, + "end": 25423.66, + "probability": 0.6507 + }, + { + "start": 25424.28, + "end": 25427.62, + "probability": 0.3169 + }, + { + "start": 25429.48, + "end": 25431.14, + "probability": 0.4526 + }, + { + "start": 25432.08, + "end": 25432.76, + "probability": 0.2511 + }, + { + "start": 25435.02, + "end": 25436.36, + "probability": 0.2217 + }, + { + "start": 25437.58, + "end": 25440.44, + "probability": 0.8859 + }, + { + "start": 25441.5, + "end": 25449.1, + "probability": 0.9249 + }, + { + "start": 25450.1, + "end": 25450.92, + "probability": 0.6259 + }, + { + "start": 25451.9, + "end": 25456.66, + "probability": 0.8593 + }, + { + "start": 25457.44, + "end": 25458.02, + "probability": 0.7529 + }, + { + "start": 25459.1, + "end": 25466.06, + "probability": 0.917 + }, + { + "start": 25467.1, + "end": 25472.84, + "probability": 0.983 + }, + { + "start": 25473.66, + "end": 25476.94, + "probability": 0.998 + }, + { + "start": 25477.68, + "end": 25480.52, + "probability": 0.9961 + }, + { + "start": 25481.16, + "end": 25482.64, + "probability": 0.9983 + }, + { + "start": 25483.42, + "end": 25484.76, + "probability": 0.5016 + }, + { + "start": 25484.8, + "end": 25485.3, + "probability": 0.5899 + }, + { + "start": 25486.28, + "end": 25487.96, + "probability": 0.9761 + }, + { + "start": 25488.02, + "end": 25491.64, + "probability": 0.9653 + }, + { + "start": 25492.98, + "end": 25495.24, + "probability": 0.8704 + }, + { + "start": 25496.12, + "end": 25497.98, + "probability": 0.9961 + }, + { + "start": 25499.78, + "end": 25504.18, + "probability": 0.993 + }, + { + "start": 25505.26, + "end": 25507.52, + "probability": 0.874 + }, + { + "start": 25507.98, + "end": 25514.0, + "probability": 0.9789 + }, + { + "start": 25514.6, + "end": 25524.1, + "probability": 0.9767 + }, + { + "start": 25525.26, + "end": 25526.14, + "probability": 0.8303 + }, + { + "start": 25528.12, + "end": 25529.6, + "probability": 0.9863 + }, + { + "start": 25531.3, + "end": 25537.88, + "probability": 0.9883 + }, + { + "start": 25538.52, + "end": 25539.52, + "probability": 0.9448 + }, + { + "start": 25539.78, + "end": 25540.38, + "probability": 0.7875 + }, + { + "start": 25542.0, + "end": 25544.67, + "probability": 0.7876 + }, + { + "start": 25546.92, + "end": 25548.56, + "probability": 0.9916 + }, + { + "start": 25550.02, + "end": 25550.82, + "probability": 0.8698 + }, + { + "start": 25551.46, + "end": 25552.32, + "probability": 0.7783 + }, + { + "start": 25552.88, + "end": 25558.48, + "probability": 0.965 + }, + { + "start": 25559.9, + "end": 25561.24, + "probability": 0.8679 + }, + { + "start": 25561.76, + "end": 25564.26, + "probability": 0.8886 + }, + { + "start": 25565.3, + "end": 25566.42, + "probability": 0.9727 + }, + { + "start": 25571.78, + "end": 25573.72, + "probability": 0.8757 + }, + { + "start": 25575.56, + "end": 25577.04, + "probability": 0.999 + }, + { + "start": 25578.84, + "end": 25582.78, + "probability": 0.9981 + }, + { + "start": 25583.56, + "end": 25585.2, + "probability": 0.8343 + }, + { + "start": 25585.88, + "end": 25590.32, + "probability": 0.9916 + }, + { + "start": 25592.56, + "end": 25594.78, + "probability": 0.8884 + }, + { + "start": 25595.6, + "end": 25596.1, + "probability": 0.6273 + }, + { + "start": 25596.66, + "end": 25600.74, + "probability": 0.9134 + }, + { + "start": 25601.18, + "end": 25601.88, + "probability": 0.8597 + }, + { + "start": 25601.94, + "end": 25603.42, + "probability": 0.9167 + }, + { + "start": 25603.84, + "end": 25609.6, + "probability": 0.9193 + }, + { + "start": 25610.56, + "end": 25615.5, + "probability": 0.9971 + }, + { + "start": 25617.02, + "end": 25618.74, + "probability": 0.9676 + }, + { + "start": 25619.86, + "end": 25620.74, + "probability": 0.9551 + }, + { + "start": 25622.18, + "end": 25622.98, + "probability": 0.8831 + }, + { + "start": 25623.78, + "end": 25625.86, + "probability": 0.8453 + }, + { + "start": 25626.82, + "end": 25629.8, + "probability": 0.981 + }, + { + "start": 25630.58, + "end": 25632.02, + "probability": 0.9861 + }, + { + "start": 25633.02, + "end": 25636.15, + "probability": 0.975 + }, + { + "start": 25637.16, + "end": 25641.2, + "probability": 0.2759 + }, + { + "start": 25641.56, + "end": 25642.48, + "probability": 0.6202 + }, + { + "start": 25644.38, + "end": 25646.52, + "probability": 0.9917 + }, + { + "start": 25647.42, + "end": 25650.7, + "probability": 0.9947 + }, + { + "start": 25651.16, + "end": 25656.06, + "probability": 0.9477 + }, + { + "start": 25657.86, + "end": 25660.78, + "probability": 0.9097 + }, + { + "start": 25661.52, + "end": 25663.82, + "probability": 0.9536 + }, + { + "start": 25664.26, + "end": 25667.46, + "probability": 0.8675 + }, + { + "start": 25668.3, + "end": 25668.7, + "probability": 0.9309 + }, + { + "start": 25670.34, + "end": 25672.5, + "probability": 0.9819 + }, + { + "start": 25673.64, + "end": 25674.78, + "probability": 0.8953 + }, + { + "start": 25675.74, + "end": 25680.24, + "probability": 0.9908 + }, + { + "start": 25680.92, + "end": 25682.9, + "probability": 0.8543 + }, + { + "start": 25684.76, + "end": 25686.26, + "probability": 0.8125 + }, + { + "start": 25686.9, + "end": 25688.82, + "probability": 0.8904 + }, + { + "start": 25691.58, + "end": 25694.24, + "probability": 0.9121 + }, + { + "start": 25694.8, + "end": 25701.38, + "probability": 0.9954 + }, + { + "start": 25701.98, + "end": 25704.04, + "probability": 0.882 + }, + { + "start": 25704.68, + "end": 25705.78, + "probability": 0.5918 + }, + { + "start": 25706.0, + "end": 25706.32, + "probability": 0.3777 + }, + { + "start": 25706.76, + "end": 25714.92, + "probability": 0.8629 + }, + { + "start": 25717.08, + "end": 25718.0, + "probability": 0.7519 + }, + { + "start": 25720.1, + "end": 25721.46, + "probability": 0.9954 + }, + { + "start": 25723.74, + "end": 25724.56, + "probability": 0.3245 + }, + { + "start": 25725.34, + "end": 25727.12, + "probability": 0.7391 + }, + { + "start": 25728.2, + "end": 25729.56, + "probability": 0.7015 + }, + { + "start": 25730.44, + "end": 25731.78, + "probability": 0.6707 + }, + { + "start": 25734.28, + "end": 25736.06, + "probability": 0.9115 + }, + { + "start": 25737.14, + "end": 25738.5, + "probability": 0.8487 + }, + { + "start": 25740.06, + "end": 25744.86, + "probability": 0.9204 + }, + { + "start": 25745.4, + "end": 25746.1, + "probability": 0.7231 + }, + { + "start": 25747.54, + "end": 25748.54, + "probability": 0.7621 + }, + { + "start": 25748.66, + "end": 25753.04, + "probability": 0.9854 + }, + { + "start": 25753.62, + "end": 25754.5, + "probability": 0.9894 + }, + { + "start": 25755.4, + "end": 25757.56, + "probability": 0.7789 + }, + { + "start": 25759.2, + "end": 25761.42, + "probability": 0.9917 + }, + { + "start": 25762.34, + "end": 25769.04, + "probability": 0.9623 + }, + { + "start": 25770.4, + "end": 25772.26, + "probability": 0.9289 + }, + { + "start": 25773.4, + "end": 25776.04, + "probability": 0.8069 + }, + { + "start": 25777.32, + "end": 25778.7, + "probability": 0.9713 + }, + { + "start": 25779.6, + "end": 25784.86, + "probability": 0.9821 + }, + { + "start": 25785.56, + "end": 25786.44, + "probability": 0.9907 + }, + { + "start": 25789.04, + "end": 25789.78, + "probability": 0.8914 + }, + { + "start": 25790.82, + "end": 25793.0, + "probability": 0.858 + }, + { + "start": 25793.62, + "end": 25795.48, + "probability": 0.9374 + }, + { + "start": 25796.06, + "end": 25802.28, + "probability": 0.966 + }, + { + "start": 25802.8, + "end": 25807.34, + "probability": 0.9501 + }, + { + "start": 25807.96, + "end": 25808.94, + "probability": 0.9946 + }, + { + "start": 25809.6, + "end": 25811.06, + "probability": 0.9901 + }, + { + "start": 25811.72, + "end": 25813.56, + "probability": 0.9534 + }, + { + "start": 25814.86, + "end": 25815.18, + "probability": 0.748 + }, + { + "start": 25816.18, + "end": 25820.6, + "probability": 0.9448 + }, + { + "start": 25821.24, + "end": 25824.9, + "probability": 0.9122 + }, + { + "start": 25825.58, + "end": 25828.68, + "probability": 0.6274 + }, + { + "start": 25830.54, + "end": 25833.9, + "probability": 0.9044 + }, + { + "start": 25834.76, + "end": 25837.24, + "probability": 0.88 + }, + { + "start": 25837.76, + "end": 25839.42, + "probability": 0.9281 + }, + { + "start": 25840.04, + "end": 25843.8, + "probability": 0.9912 + }, + { + "start": 25845.82, + "end": 25847.68, + "probability": 0.9941 + }, + { + "start": 25850.46, + "end": 25850.92, + "probability": 0.8483 + }, + { + "start": 25852.26, + "end": 25854.38, + "probability": 0.9846 + }, + { + "start": 25856.16, + "end": 25860.06, + "probability": 0.9896 + }, + { + "start": 25860.58, + "end": 25862.18, + "probability": 0.7284 + }, + { + "start": 25864.04, + "end": 25867.9, + "probability": 0.9102 + }, + { + "start": 25868.66, + "end": 25872.88, + "probability": 0.912 + }, + { + "start": 25874.14, + "end": 25875.16, + "probability": 0.8027 + }, + { + "start": 25876.24, + "end": 25879.9, + "probability": 0.9454 + }, + { + "start": 25881.3, + "end": 25882.62, + "probability": 0.873 + }, + { + "start": 25883.22, + "end": 25885.18, + "probability": 0.9866 + }, + { + "start": 25886.48, + "end": 25889.36, + "probability": 0.9862 + }, + { + "start": 25890.24, + "end": 25893.34, + "probability": 0.9134 + }, + { + "start": 25894.84, + "end": 25896.8, + "probability": 0.9428 + }, + { + "start": 25897.6, + "end": 25900.66, + "probability": 0.9973 + }, + { + "start": 25902.14, + "end": 25905.48, + "probability": 0.9562 + }, + { + "start": 25906.72, + "end": 25907.54, + "probability": 0.9455 + }, + { + "start": 25908.92, + "end": 25912.24, + "probability": 0.7943 + }, + { + "start": 25912.24, + "end": 25916.82, + "probability": 0.9987 + }, + { + "start": 25919.56, + "end": 25920.26, + "probability": 0.7518 + }, + { + "start": 25921.06, + "end": 25925.68, + "probability": 0.9927 + }, + { + "start": 25927.08, + "end": 25928.62, + "probability": 0.9912 + }, + { + "start": 25930.36, + "end": 25931.54, + "probability": 0.9385 + }, + { + "start": 25932.52, + "end": 25933.68, + "probability": 0.963 + }, + { + "start": 25934.64, + "end": 25935.42, + "probability": 0.7267 + }, + { + "start": 25937.22, + "end": 25938.82, + "probability": 0.9447 + }, + { + "start": 25940.2, + "end": 25941.02, + "probability": 0.9423 + }, + { + "start": 25941.7, + "end": 25943.26, + "probability": 0.7771 + }, + { + "start": 25944.34, + "end": 25945.74, + "probability": 0.8657 + }, + { + "start": 25946.72, + "end": 25951.16, + "probability": 0.9128 + }, + { + "start": 25952.62, + "end": 25953.58, + "probability": 0.9487 + }, + { + "start": 25954.48, + "end": 25956.78, + "probability": 0.9978 + }, + { + "start": 25958.26, + "end": 25961.18, + "probability": 0.5843 + }, + { + "start": 25962.02, + "end": 25963.08, + "probability": 0.999 + }, + { + "start": 25964.08, + "end": 25965.78, + "probability": 0.9971 + }, + { + "start": 25967.46, + "end": 25973.52, + "probability": 0.9957 + }, + { + "start": 25975.82, + "end": 25976.66, + "probability": 0.8307 + }, + { + "start": 25979.08, + "end": 25980.92, + "probability": 0.9727 + }, + { + "start": 25981.7, + "end": 25982.74, + "probability": 0.6627 + }, + { + "start": 25983.98, + "end": 25986.92, + "probability": 0.8876 + }, + { + "start": 25987.68, + "end": 25992.62, + "probability": 0.9338 + }, + { + "start": 25993.88, + "end": 25996.92, + "probability": 0.6472 + }, + { + "start": 25997.64, + "end": 25999.02, + "probability": 0.9915 + }, + { + "start": 25999.62, + "end": 26003.72, + "probability": 0.9824 + }, + { + "start": 26004.1, + "end": 26005.36, + "probability": 0.0775 + }, + { + "start": 26006.18, + "end": 26007.18, + "probability": 0.8117 + }, + { + "start": 26008.64, + "end": 26011.24, + "probability": 0.8685 + }, + { + "start": 26012.1, + "end": 26014.96, + "probability": 0.9447 + }, + { + "start": 26016.2, + "end": 26021.6, + "probability": 0.9883 + }, + { + "start": 26031.18, + "end": 26034.18, + "probability": 0.6711 + }, + { + "start": 26034.92, + "end": 26035.48, + "probability": 0.6527 + }, + { + "start": 26036.02, + "end": 26037.68, + "probability": 0.9932 + }, + { + "start": 26038.26, + "end": 26039.24, + "probability": 0.7242 + }, + { + "start": 26040.5, + "end": 26041.72, + "probability": 0.9944 + }, + { + "start": 26042.9, + "end": 26047.52, + "probability": 0.9075 + }, + { + "start": 26048.8, + "end": 26053.34, + "probability": 0.9774 + }, + { + "start": 26053.92, + "end": 26058.08, + "probability": 0.5366 + }, + { + "start": 26058.48, + "end": 26061.82, + "probability": 0.9972 + }, + { + "start": 26062.58, + "end": 26064.88, + "probability": 0.8781 + }, + { + "start": 26066.1, + "end": 26067.32, + "probability": 0.9626 + }, + { + "start": 26067.94, + "end": 26073.18, + "probability": 0.9974 + }, + { + "start": 26075.34, + "end": 26076.82, + "probability": 0.9049 + }, + { + "start": 26078.82, + "end": 26084.18, + "probability": 0.9745 + }, + { + "start": 26085.34, + "end": 26090.74, + "probability": 0.9028 + }, + { + "start": 26092.02, + "end": 26092.84, + "probability": 0.9253 + }, + { + "start": 26093.76, + "end": 26097.72, + "probability": 0.9631 + }, + { + "start": 26098.42, + "end": 26101.48, + "probability": 0.8338 + }, + { + "start": 26102.42, + "end": 26103.68, + "probability": 0.2731 + }, + { + "start": 26104.92, + "end": 26109.76, + "probability": 0.8746 + }, + { + "start": 26111.22, + "end": 26115.48, + "probability": 0.9808 + }, + { + "start": 26115.68, + "end": 26116.62, + "probability": 0.9976 + }, + { + "start": 26117.36, + "end": 26119.12, + "probability": 0.9546 + }, + { + "start": 26119.92, + "end": 26122.36, + "probability": 0.7022 + }, + { + "start": 26123.48, + "end": 26125.78, + "probability": 0.9382 + }, + { + "start": 26126.6, + "end": 26130.72, + "probability": 0.96 + }, + { + "start": 26131.2, + "end": 26135.22, + "probability": 0.8584 + }, + { + "start": 26135.8, + "end": 26136.78, + "probability": 0.8159 + }, + { + "start": 26136.86, + "end": 26138.99, + "probability": 0.6521 + }, + { + "start": 26139.7, + "end": 26144.6, + "probability": 0.9956 + }, + { + "start": 26145.18, + "end": 26148.9, + "probability": 0.9983 + }, + { + "start": 26149.32, + "end": 26149.42, + "probability": 0.5564 + }, + { + "start": 26150.6, + "end": 26151.32, + "probability": 0.6556 + }, + { + "start": 26154.0, + "end": 26156.7, + "probability": 0.8118 + }, + { + "start": 26159.88, + "end": 26163.52, + "probability": 0.974 + }, + { + "start": 26164.34, + "end": 26165.58, + "probability": 0.9844 + }, + { + "start": 26166.1, + "end": 26168.72, + "probability": 0.8914 + }, + { + "start": 26171.4, + "end": 26172.28, + "probability": 0.7786 + }, + { + "start": 26172.92, + "end": 26175.7, + "probability": 0.9362 + }, + { + "start": 26176.26, + "end": 26183.32, + "probability": 0.9487 + }, + { + "start": 26183.54, + "end": 26186.04, + "probability": 0.9911 + }, + { + "start": 26186.64, + "end": 26187.84, + "probability": 0.931 + }, + { + "start": 26188.06, + "end": 26191.66, + "probability": 0.9402 + }, + { + "start": 26193.48, + "end": 26195.06, + "probability": 0.9694 + }, + { + "start": 26196.3, + "end": 26201.52, + "probability": 0.8551 + }, + { + "start": 26202.64, + "end": 26205.19, + "probability": 0.979 + }, + { + "start": 26206.34, + "end": 26209.82, + "probability": 0.9306 + }, + { + "start": 26209.9, + "end": 26213.4, + "probability": 0.9744 + }, + { + "start": 26216.46, + "end": 26218.54, + "probability": 0.7329 + }, + { + "start": 26219.44, + "end": 26225.8, + "probability": 0.9876 + }, + { + "start": 26227.14, + "end": 26227.88, + "probability": 0.6886 + }, + { + "start": 26228.94, + "end": 26235.92, + "probability": 0.947 + }, + { + "start": 26237.2, + "end": 26238.96, + "probability": 0.8934 + }, + { + "start": 26240.08, + "end": 26241.96, + "probability": 0.9321 + }, + { + "start": 26243.72, + "end": 26244.74, + "probability": 0.8021 + }, + { + "start": 26245.58, + "end": 26247.1, + "probability": 0.7926 + }, + { + "start": 26248.16, + "end": 26251.72, + "probability": 0.763 + }, + { + "start": 26252.24, + "end": 26254.18, + "probability": 0.7371 + }, + { + "start": 26254.78, + "end": 26261.99, + "probability": 0.9882 + }, + { + "start": 26264.16, + "end": 26265.62, + "probability": 0.8344 + }, + { + "start": 26266.78, + "end": 26269.9, + "probability": 0.8604 + }, + { + "start": 26270.64, + "end": 26274.94, + "probability": 0.9874 + }, + { + "start": 26275.08, + "end": 26278.88, + "probability": 0.9773 + }, + { + "start": 26279.58, + "end": 26285.64, + "probability": 0.9777 + }, + { + "start": 26286.32, + "end": 26290.14, + "probability": 0.9985 + }, + { + "start": 26290.4, + "end": 26290.78, + "probability": 0.7647 + }, + { + "start": 26291.34, + "end": 26293.25, + "probability": 0.7599 + }, + { + "start": 26294.52, + "end": 26301.42, + "probability": 0.9127 + }, + { + "start": 26302.04, + "end": 26310.4, + "probability": 0.9988 + }, + { + "start": 26311.16, + "end": 26313.22, + "probability": 0.9446 + }, + { + "start": 26314.16, + "end": 26315.98, + "probability": 0.8848 + }, + { + "start": 26316.58, + "end": 26320.16, + "probability": 0.9961 + }, + { + "start": 26321.26, + "end": 26321.76, + "probability": 0.792 + }, + { + "start": 26321.96, + "end": 26324.86, + "probability": 0.9731 + }, + { + "start": 26325.0, + "end": 26328.0, + "probability": 0.969 + }, + { + "start": 26328.65, + "end": 26330.78, + "probability": 0.7136 + }, + { + "start": 26331.96, + "end": 26335.02, + "probability": 0.8578 + }, + { + "start": 26335.7, + "end": 26343.18, + "probability": 0.9959 + }, + { + "start": 26343.74, + "end": 26345.7, + "probability": 0.8925 + }, + { + "start": 26346.22, + "end": 26347.82, + "probability": 0.6359 + }, + { + "start": 26348.84, + "end": 26352.06, + "probability": 0.9978 + }, + { + "start": 26352.62, + "end": 26353.06, + "probability": 0.4863 + }, + { + "start": 26354.34, + "end": 26356.9, + "probability": 0.9878 + }, + { + "start": 26358.12, + "end": 26359.68, + "probability": 0.8221 + }, + { + "start": 26360.22, + "end": 26361.44, + "probability": 0.991 + }, + { + "start": 26363.36, + "end": 26364.06, + "probability": 0.0018 + }, + { + "start": 26364.96, + "end": 26368.64, + "probability": 0.9724 + }, + { + "start": 26369.28, + "end": 26370.94, + "probability": 0.8535 + }, + { + "start": 26371.6, + "end": 26373.34, + "probability": 0.7529 + }, + { + "start": 26373.9, + "end": 26379.3, + "probability": 0.9678 + }, + { + "start": 26382.86, + "end": 26387.22, + "probability": 0.7221 + }, + { + "start": 26388.22, + "end": 26389.66, + "probability": 0.7683 + }, + { + "start": 26389.9, + "end": 26390.88, + "probability": 0.9971 + }, + { + "start": 26392.58, + "end": 26394.58, + "probability": 0.9 + }, + { + "start": 26397.76, + "end": 26398.74, + "probability": 0.895 + }, + { + "start": 26400.1, + "end": 26401.14, + "probability": 0.9948 + }, + { + "start": 26403.16, + "end": 26405.04, + "probability": 0.8455 + }, + { + "start": 26405.84, + "end": 26407.44, + "probability": 0.8057 + }, + { + "start": 26408.9, + "end": 26411.18, + "probability": 0.6563 + }, + { + "start": 26412.92, + "end": 26418.58, + "probability": 0.8777 + }, + { + "start": 26420.0, + "end": 26420.48, + "probability": 0.4223 + }, + { + "start": 26421.42, + "end": 26425.1, + "probability": 0.9498 + }, + { + "start": 26426.48, + "end": 26431.04, + "probability": 0.9897 + }, + { + "start": 26432.54, + "end": 26439.26, + "probability": 0.9991 + }, + { + "start": 26440.14, + "end": 26441.48, + "probability": 0.8478 + }, + { + "start": 26442.28, + "end": 26445.56, + "probability": 0.7461 + }, + { + "start": 26446.06, + "end": 26448.0, + "probability": 0.3752 + }, + { + "start": 26448.56, + "end": 26449.49, + "probability": 0.8149 + }, + { + "start": 26450.74, + "end": 26455.04, + "probability": 0.6991 + }, + { + "start": 26455.26, + "end": 26457.49, + "probability": 0.6343 + }, + { + "start": 26458.44, + "end": 26459.54, + "probability": 0.9383 + }, + { + "start": 26460.6, + "end": 26463.9, + "probability": 0.9795 + }, + { + "start": 26464.48, + "end": 26466.34, + "probability": 0.9246 + }, + { + "start": 26467.08, + "end": 26469.68, + "probability": 0.4113 + }, + { + "start": 26471.34, + "end": 26473.92, + "probability": 0.8011 + }, + { + "start": 26475.46, + "end": 26479.3, + "probability": 0.9284 + }, + { + "start": 26480.06, + "end": 26481.32, + "probability": 0.8438 + }, + { + "start": 26481.92, + "end": 26484.58, + "probability": 0.9429 + }, + { + "start": 26485.12, + "end": 26488.26, + "probability": 0.9698 + }, + { + "start": 26489.48, + "end": 26493.8, + "probability": 0.8794 + }, + { + "start": 26494.62, + "end": 26497.42, + "probability": 0.9667 + }, + { + "start": 26498.42, + "end": 26500.02, + "probability": 0.8822 + }, + { + "start": 26501.0, + "end": 26503.2, + "probability": 0.938 + }, + { + "start": 26504.7, + "end": 26506.06, + "probability": 0.8308 + }, + { + "start": 26507.2, + "end": 26508.42, + "probability": 0.9806 + }, + { + "start": 26510.92, + "end": 26514.8, + "probability": 0.8248 + }, + { + "start": 26515.56, + "end": 26522.86, + "probability": 0.9478 + }, + { + "start": 26524.0, + "end": 26524.02, + "probability": 0.3108 + }, + { + "start": 26524.62, + "end": 26526.3, + "probability": 0.6468 + }, + { + "start": 26526.46, + "end": 26529.52, + "probability": 0.9082 + }, + { + "start": 26530.52, + "end": 26534.52, + "probability": 0.8776 + }, + { + "start": 26535.2, + "end": 26539.02, + "probability": 0.7771 + }, + { + "start": 26539.68, + "end": 26541.34, + "probability": 0.7742 + }, + { + "start": 26542.74, + "end": 26547.5, + "probability": 0.9927 + }, + { + "start": 26548.32, + "end": 26550.02, + "probability": 0.7844 + }, + { + "start": 26551.1, + "end": 26551.66, + "probability": 0.7972 + }, + { + "start": 26552.32, + "end": 26559.38, + "probability": 0.9644 + }, + { + "start": 26559.98, + "end": 26560.98, + "probability": 0.4208 + }, + { + "start": 26561.6, + "end": 26568.98, + "probability": 0.9136 + }, + { + "start": 26570.58, + "end": 26571.48, + "probability": 0.798 + }, + { + "start": 26572.68, + "end": 26573.2, + "probability": 0.795 + }, + { + "start": 26575.16, + "end": 26576.92, + "probability": 0.8982 + }, + { + "start": 26577.58, + "end": 26579.34, + "probability": 0.7456 + }, + { + "start": 26579.94, + "end": 26581.98, + "probability": 0.9517 + }, + { + "start": 26582.98, + "end": 26585.3, + "probability": 0.9919 + }, + { + "start": 26586.06, + "end": 26588.68, + "probability": 0.9661 + }, + { + "start": 26589.42, + "end": 26590.32, + "probability": 0.8778 + }, + { + "start": 26591.18, + "end": 26593.26, + "probability": 0.9698 + }, + { + "start": 26594.42, + "end": 26597.16, + "probability": 0.9721 + }, + { + "start": 26597.8, + "end": 26600.14, + "probability": 0.9826 + }, + { + "start": 26600.92, + "end": 26602.82, + "probability": 0.9443 + }, + { + "start": 26603.82, + "end": 26604.56, + "probability": 0.9511 + }, + { + "start": 26605.06, + "end": 26605.24, + "probability": 0.6057 + }, + { + "start": 26605.26, + "end": 26606.38, + "probability": 0.9061 + }, + { + "start": 26606.5, + "end": 26612.65, + "probability": 0.992 + }, + { + "start": 26614.1, + "end": 26615.94, + "probability": 0.7407 + }, + { + "start": 26616.7, + "end": 26622.46, + "probability": 0.991 + }, + { + "start": 26623.24, + "end": 26630.84, + "probability": 0.9821 + }, + { + "start": 26631.7, + "end": 26635.48, + "probability": 0.9819 + }, + { + "start": 26636.06, + "end": 26641.36, + "probability": 0.9969 + }, + { + "start": 26641.7, + "end": 26642.76, + "probability": 0.8325 + }, + { + "start": 26644.02, + "end": 26647.1, + "probability": 0.8743 + }, + { + "start": 26648.0, + "end": 26648.76, + "probability": 0.7995 + }, + { + "start": 26649.48, + "end": 26650.6, + "probability": 0.9738 + }, + { + "start": 26651.66, + "end": 26652.56, + "probability": 0.8647 + }, + { + "start": 26653.44, + "end": 26659.08, + "probability": 0.7029 + }, + { + "start": 26659.76, + "end": 26662.16, + "probability": 0.8121 + }, + { + "start": 26662.86, + "end": 26664.36, + "probability": 0.8019 + }, + { + "start": 26665.02, + "end": 26666.12, + "probability": 0.9084 + }, + { + "start": 26666.64, + "end": 26669.8, + "probability": 0.9837 + }, + { + "start": 26670.24, + "end": 26671.44, + "probability": 0.9152 + }, + { + "start": 26672.16, + "end": 26673.32, + "probability": 0.9561 + }, + { + "start": 26674.04, + "end": 26677.88, + "probability": 0.9641 + }, + { + "start": 26678.58, + "end": 26680.22, + "probability": 0.821 + }, + { + "start": 26680.92, + "end": 26682.74, + "probability": 0.7707 + }, + { + "start": 26683.96, + "end": 26686.82, + "probability": 0.7105 + }, + { + "start": 26687.36, + "end": 26692.56, + "probability": 0.8484 + }, + { + "start": 26693.36, + "end": 26696.2, + "probability": 0.917 + }, + { + "start": 26696.62, + "end": 26697.44, + "probability": 0.7057 + }, + { + "start": 26697.64, + "end": 26698.54, + "probability": 0.5628 + }, + { + "start": 26699.0, + "end": 26703.16, + "probability": 0.9128 + }, + { + "start": 26703.72, + "end": 26706.1, + "probability": 0.9561 + }, + { + "start": 26706.74, + "end": 26707.86, + "probability": 0.7688 + }, + { + "start": 26708.08, + "end": 26710.48, + "probability": 0.8384 + }, + { + "start": 26711.4, + "end": 26713.3, + "probability": 0.9246 + }, + { + "start": 26721.08, + "end": 26722.8, + "probability": 0.6699 + }, + { + "start": 26723.4, + "end": 26724.92, + "probability": 0.825 + }, + { + "start": 26725.34, + "end": 26726.91, + "probability": 0.1016 + }, + { + "start": 26727.38, + "end": 26728.26, + "probability": 0.5032 + }, + { + "start": 26728.58, + "end": 26728.98, + "probability": 0.7263 + }, + { + "start": 26729.86, + "end": 26730.1, + "probability": 0.2286 + }, + { + "start": 26731.04, + "end": 26731.04, + "probability": 0.0124 + }, + { + "start": 26732.83, + "end": 26734.83, + "probability": 0.4521 + }, + { + "start": 26735.2, + "end": 26738.2, + "probability": 0.8448 + }, + { + "start": 26739.06, + "end": 26744.1, + "probability": 0.9862 + }, + { + "start": 26744.72, + "end": 26751.0, + "probability": 0.9583 + }, + { + "start": 26751.42, + "end": 26752.5, + "probability": 0.9249 + }, + { + "start": 26752.9, + "end": 26755.98, + "probability": 0.9261 + }, + { + "start": 26756.12, + "end": 26758.56, + "probability": 0.9746 + }, + { + "start": 26759.64, + "end": 26760.34, + "probability": 0.5046 + }, + { + "start": 26760.98, + "end": 26761.5, + "probability": 0.5264 + }, + { + "start": 26761.64, + "end": 26764.64, + "probability": 0.7067 + }, + { + "start": 26765.44, + "end": 26766.04, + "probability": 0.4188 + }, + { + "start": 26766.08, + "end": 26766.36, + "probability": 0.9797 + }, + { + "start": 26766.42, + "end": 26767.0, + "probability": 0.7992 + }, + { + "start": 26767.38, + "end": 26768.96, + "probability": 0.8483 + }, + { + "start": 26769.56, + "end": 26770.5, + "probability": 0.9916 + }, + { + "start": 26770.62, + "end": 26771.28, + "probability": 0.9607 + }, + { + "start": 26771.36, + "end": 26775.79, + "probability": 0.9875 + }, + { + "start": 26775.96, + "end": 26778.18, + "probability": 0.9146 + }, + { + "start": 26778.82, + "end": 26779.74, + "probability": 0.8145 + }, + { + "start": 26779.86, + "end": 26780.48, + "probability": 0.882 + }, + { + "start": 26780.64, + "end": 26781.56, + "probability": 0.4886 + }, + { + "start": 26781.64, + "end": 26786.84, + "probability": 0.9344 + }, + { + "start": 26788.84, + "end": 26792.0, + "probability": 0.6454 + }, + { + "start": 26792.0, + "end": 26796.68, + "probability": 0.9658 + }, + { + "start": 26796.76, + "end": 26797.44, + "probability": 0.7055 + }, + { + "start": 26797.58, + "end": 26799.26, + "probability": 0.5186 + }, + { + "start": 26799.26, + "end": 26800.91, + "probability": 0.8829 + }, + { + "start": 26801.92, + "end": 26803.82, + "probability": 0.6558 + }, + { + "start": 26803.98, + "end": 26805.96, + "probability": 0.7436 + }, + { + "start": 26807.14, + "end": 26809.75, + "probability": 0.2186 + }, + { + "start": 26810.84, + "end": 26812.44, + "probability": 0.732 + }, + { + "start": 26812.64, + "end": 26813.88, + "probability": 0.4632 + }, + { + "start": 26813.96, + "end": 26816.26, + "probability": 0.7773 + }, + { + "start": 26816.6, + "end": 26818.06, + "probability": 0.8823 + }, + { + "start": 26818.3, + "end": 26819.38, + "probability": 0.5267 + }, + { + "start": 26819.76, + "end": 26821.92, + "probability": 0.563 + }, + { + "start": 26822.52, + "end": 26830.38, + "probability": 0.8069 + }, + { + "start": 26830.8, + "end": 26833.46, + "probability": 0.4363 + }, + { + "start": 26835.04, + "end": 26837.74, + "probability": 0.2516 + }, + { + "start": 26837.94, + "end": 26838.38, + "probability": 0.8396 + }, + { + "start": 26838.58, + "end": 26842.44, + "probability": 0.83 + }, + { + "start": 26842.54, + "end": 26844.74, + "probability": 0.9021 + }, + { + "start": 26845.4, + "end": 26851.38, + "probability": 0.9884 + }, + { + "start": 26851.74, + "end": 26855.18, + "probability": 0.9307 + }, + { + "start": 26855.9, + "end": 26862.12, + "probability": 0.9747 + }, + { + "start": 26862.82, + "end": 26866.06, + "probability": 0.8669 + }, + { + "start": 26866.52, + "end": 26867.16, + "probability": 0.3578 + }, + { + "start": 26867.2, + "end": 26867.66, + "probability": 0.8611 + }, + { + "start": 26867.74, + "end": 26871.44, + "probability": 0.9082 + }, + { + "start": 26871.88, + "end": 26876.6, + "probability": 0.9864 + }, + { + "start": 26876.92, + "end": 26878.48, + "probability": 0.8577 + }, + { + "start": 26879.0, + "end": 26879.64, + "probability": 0.5038 + }, + { + "start": 26879.64, + "end": 26882.02, + "probability": 0.7088 + }, + { + "start": 26883.9, + "end": 26886.44, + "probability": 0.804 + }, + { + "start": 26886.54, + "end": 26889.24, + "probability": 0.9528 + }, + { + "start": 26889.32, + "end": 26889.8, + "probability": 0.6956 + }, + { + "start": 26891.14, + "end": 26891.76, + "probability": 0.743 + }, + { + "start": 26892.16, + "end": 26892.38, + "probability": 0.9489 + }, + { + "start": 26892.48, + "end": 26894.0, + "probability": 0.9194 + }, + { + "start": 26894.22, + "end": 26897.18, + "probability": 0.9754 + }, + { + "start": 26897.32, + "end": 26897.8, + "probability": 0.4623 + }, + { + "start": 26898.3, + "end": 26900.98, + "probability": 0.9287 + }, + { + "start": 26901.44, + "end": 26902.14, + "probability": 0.5477 + }, + { + "start": 26902.22, + "end": 26902.98, + "probability": 0.828 + }, + { + "start": 26903.3, + "end": 26906.48, + "probability": 0.9898 + }, + { + "start": 26906.78, + "end": 26907.88, + "probability": 0.7555 + }, + { + "start": 26908.46, + "end": 26909.34, + "probability": 0.8906 + }, + { + "start": 26909.48, + "end": 26913.62, + "probability": 0.9907 + }, + { + "start": 26914.36, + "end": 26914.94, + "probability": 0.6414 + }, + { + "start": 26915.04, + "end": 26916.64, + "probability": 0.991 + }, + { + "start": 26917.44, + "end": 26919.94, + "probability": 0.9774 + }, + { + "start": 26920.56, + "end": 26922.72, + "probability": 0.9663 + }, + { + "start": 26922.78, + "end": 26926.84, + "probability": 0.9911 + }, + { + "start": 26926.84, + "end": 26931.64, + "probability": 0.9878 + }, + { + "start": 26932.08, + "end": 26932.46, + "probability": 0.5264 + }, + { + "start": 26932.52, + "end": 26932.92, + "probability": 0.5361 + }, + { + "start": 26933.02, + "end": 26935.76, + "probability": 0.8337 + }, + { + "start": 26936.22, + "end": 26937.12, + "probability": 0.9341 + }, + { + "start": 26937.2, + "end": 26940.04, + "probability": 0.9529 + }, + { + "start": 26940.42, + "end": 26942.12, + "probability": 0.4861 + }, + { + "start": 26942.36, + "end": 26942.92, + "probability": 0.6822 + }, + { + "start": 26944.18, + "end": 26944.59, + "probability": 0.4155 + }, + { + "start": 26944.86, + "end": 26945.34, + "probability": 0.9347 + }, + { + "start": 26945.44, + "end": 26947.48, + "probability": 0.9731 + }, + { + "start": 26947.82, + "end": 26950.46, + "probability": 0.9851 + }, + { + "start": 26950.56, + "end": 26951.4, + "probability": 0.8741 + }, + { + "start": 26951.94, + "end": 26952.94, + "probability": 0.959 + }, + { + "start": 26954.72, + "end": 26960.06, + "probability": 0.5743 + }, + { + "start": 26960.18, + "end": 26961.08, + "probability": 0.3785 + }, + { + "start": 26961.08, + "end": 26961.88, + "probability": 0.7646 + }, + { + "start": 26962.6, + "end": 26964.36, + "probability": 0.1787 + }, + { + "start": 26964.94, + "end": 26965.94, + "probability": 0.5739 + }, + { + "start": 26966.2, + "end": 26968.18, + "probability": 0.7839 + }, + { + "start": 26968.38, + "end": 26969.34, + "probability": 0.9482 + }, + { + "start": 26969.76, + "end": 26972.06, + "probability": 0.9709 + }, + { + "start": 26972.42, + "end": 26973.4, + "probability": 0.1657 + }, + { + "start": 26973.4, + "end": 26975.24, + "probability": 0.9914 + }, + { + "start": 26975.58, + "end": 26977.7, + "probability": 0.8067 + }, + { + "start": 26978.76, + "end": 26981.49, + "probability": 0.973 + }, + { + "start": 26983.38, + "end": 26985.16, + "probability": 0.2782 + }, + { + "start": 26985.35, + "end": 26987.6, + "probability": 0.8755 + }, + { + "start": 26987.76, + "end": 26988.92, + "probability": 0.6082 + }, + { + "start": 26989.6, + "end": 26991.34, + "probability": 0.8596 + }, + { + "start": 26991.86, + "end": 26996.9, + "probability": 0.9408 + }, + { + "start": 26997.44, + "end": 26998.42, + "probability": 0.6217 + }, + { + "start": 26998.7, + "end": 27000.96, + "probability": 0.7315 + }, + { + "start": 27002.06, + "end": 27004.14, + "probability": 0.5641 + }, + { + "start": 27004.34, + "end": 27005.64, + "probability": 0.4943 + }, + { + "start": 27005.9, + "end": 27007.4, + "probability": 0.0927 + }, + { + "start": 27007.44, + "end": 27009.72, + "probability": 0.5679 + }, + { + "start": 27010.24, + "end": 27011.88, + "probability": 0.8785 + }, + { + "start": 27011.92, + "end": 27013.06, + "probability": 0.8403 + }, + { + "start": 27013.65, + "end": 27017.51, + "probability": 0.9417 + }, + { + "start": 27018.52, + "end": 27020.36, + "probability": 0.9305 + }, + { + "start": 27020.7, + "end": 27021.84, + "probability": 0.8812 + }, + { + "start": 27021.94, + "end": 27022.62, + "probability": 0.8138 + }, + { + "start": 27022.68, + "end": 27022.9, + "probability": 0.866 + }, + { + "start": 27022.98, + "end": 27024.03, + "probability": 0.4016 + }, + { + "start": 27024.52, + "end": 27028.7, + "probability": 0.8813 + }, + { + "start": 27030.34, + "end": 27032.31, + "probability": 0.9783 + }, + { + "start": 27032.92, + "end": 27035.26, + "probability": 0.9882 + }, + { + "start": 27036.47, + "end": 27038.52, + "probability": 0.0452 + }, + { + "start": 27038.7, + "end": 27042.82, + "probability": 0.8831 + }, + { + "start": 27043.58, + "end": 27047.96, + "probability": 0.8374 + }, + { + "start": 27048.28, + "end": 27049.54, + "probability": 0.5625 + }, + { + "start": 27050.02, + "end": 27053.5, + "probability": 0.5612 + }, + { + "start": 27053.94, + "end": 27058.62, + "probability": 0.5171 + }, + { + "start": 27058.86, + "end": 27061.74, + "probability": 0.6719 + }, + { + "start": 27062.08, + "end": 27064.52, + "probability": 0.6005 + }, + { + "start": 27064.76, + "end": 27066.05, + "probability": 0.328 + }, + { + "start": 27069.67, + "end": 27075.88, + "probability": 0.8276 + }, + { + "start": 27076.88, + "end": 27085.22, + "probability": 0.9489 + }, + { + "start": 27086.44, + "end": 27090.42, + "probability": 0.9653 + }, + { + "start": 27090.48, + "end": 27092.16, + "probability": 0.9924 + }, + { + "start": 27093.14, + "end": 27094.24, + "probability": 0.9977 + }, + { + "start": 27094.84, + "end": 27095.26, + "probability": 0.62 + }, + { + "start": 27095.36, + "end": 27098.04, + "probability": 0.9599 + }, + { + "start": 27098.04, + "end": 27100.38, + "probability": 0.9053 + }, + { + "start": 27100.72, + "end": 27105.84, + "probability": 0.9893 + }, + { + "start": 27107.6, + "end": 27109.16, + "probability": 0.4628 + }, + { + "start": 27109.34, + "end": 27110.44, + "probability": 0.8299 + }, + { + "start": 27111.0, + "end": 27116.42, + "probability": 0.9963 + }, + { + "start": 27116.48, + "end": 27118.68, + "probability": 0.8293 + }, + { + "start": 27121.64, + "end": 27125.34, + "probability": 0.9878 + }, + { + "start": 27125.62, + "end": 27127.0, + "probability": 0.6887 + }, + { + "start": 27128.72, + "end": 27132.38, + "probability": 0.8448 + }, + { + "start": 27132.94, + "end": 27133.74, + "probability": 0.3891 + }, + { + "start": 27133.74, + "end": 27134.58, + "probability": 0.5042 + }, + { + "start": 27135.06, + "end": 27135.9, + "probability": 0.9242 + }, + { + "start": 27136.18, + "end": 27137.7, + "probability": 0.9463 + }, + { + "start": 27137.86, + "end": 27139.35, + "probability": 0.615 + }, + { + "start": 27139.84, + "end": 27140.7, + "probability": 0.865 + }, + { + "start": 27140.88, + "end": 27142.27, + "probability": 0.1712 + }, + { + "start": 27143.94, + "end": 27145.6, + "probability": 0.8992 + }, + { + "start": 27145.68, + "end": 27147.9, + "probability": 0.6351 + }, + { + "start": 27148.18, + "end": 27152.38, + "probability": 0.7431 + }, + { + "start": 27153.24, + "end": 27153.36, + "probability": 0.0015 + }, + { + "start": 27155.34, + "end": 27156.54, + "probability": 0.4427 + }, + { + "start": 27156.8, + "end": 27157.32, + "probability": 0.4257 + }, + { + "start": 27157.32, + "end": 27160.64, + "probability": 0.9941 + }, + { + "start": 27160.72, + "end": 27161.08, + "probability": 0.708 + }, + { + "start": 27161.42, + "end": 27162.12, + "probability": 0.6826 + }, + { + "start": 27162.28, + "end": 27165.1, + "probability": 0.8763 + }, + { + "start": 27166.13, + "end": 27168.84, + "probability": 0.9254 + }, + { + "start": 27169.16, + "end": 27172.98, + "probability": 0.729 + }, + { + "start": 27173.1, + "end": 27178.86, + "probability": 0.9717 + }, + { + "start": 27179.38, + "end": 27182.24, + "probability": 0.8073 + }, + { + "start": 27183.38, + "end": 27184.14, + "probability": 0.69 + }, + { + "start": 27184.82, + "end": 27185.58, + "probability": 0.9853 + }, + { + "start": 27190.14, + "end": 27193.06, + "probability": 0.6439 + }, + { + "start": 27193.82, + "end": 27195.91, + "probability": 0.9827 + }, + { + "start": 27195.98, + "end": 27198.44, + "probability": 0.6644 + }, + { + "start": 27198.98, + "end": 27203.7, + "probability": 0.8359 + }, + { + "start": 27204.56, + "end": 27207.26, + "probability": 0.9033 + }, + { + "start": 27207.68, + "end": 27208.12, + "probability": 0.61 + }, + { + "start": 27208.62, + "end": 27215.04, + "probability": 0.9443 + }, + { + "start": 27215.44, + "end": 27216.69, + "probability": 0.5825 + }, + { + "start": 27218.3, + "end": 27219.12, + "probability": 0.8943 + }, + { + "start": 27219.34, + "end": 27225.62, + "probability": 0.9487 + }, + { + "start": 27225.84, + "end": 27226.56, + "probability": 0.6586 + }, + { + "start": 27226.76, + "end": 27227.6, + "probability": 0.4976 + }, + { + "start": 27227.72, + "end": 27228.24, + "probability": 0.7679 + }, + { + "start": 27228.9, + "end": 27228.9, + "probability": 0.4526 + }, + { + "start": 27228.9, + "end": 27229.14, + "probability": 0.0116 + }, + { + "start": 27235.22, + "end": 27235.32, + "probability": 0.0158 + }, + { + "start": 27235.32, + "end": 27236.77, + "probability": 0.6497 + }, + { + "start": 27236.88, + "end": 27238.94, + "probability": 0.9482 + }, + { + "start": 27239.1, + "end": 27241.2, + "probability": 0.817 + }, + { + "start": 27241.44, + "end": 27242.48, + "probability": 0.5805 + }, + { + "start": 27242.9, + "end": 27244.74, + "probability": 0.9846 + }, + { + "start": 27244.84, + "end": 27246.66, + "probability": 0.9301 + }, + { + "start": 27246.68, + "end": 27247.88, + "probability": 0.5147 + }, + { + "start": 27248.0, + "end": 27250.1, + "probability": 0.9814 + }, + { + "start": 27250.18, + "end": 27255.24, + "probability": 0.955 + }, + { + "start": 27255.52, + "end": 27257.6, + "probability": 0.9485 + }, + { + "start": 27257.94, + "end": 27259.96, + "probability": 0.6677 + }, + { + "start": 27260.66, + "end": 27261.6, + "probability": 0.9336 + }, + { + "start": 27262.72, + "end": 27265.96, + "probability": 0.8012 + }, + { + "start": 27266.54, + "end": 27267.22, + "probability": 0.9358 + }, + { + "start": 27271.0, + "end": 27273.64, + "probability": 0.9295 + }, + { + "start": 27273.88, + "end": 27274.4, + "probability": 0.5771 + }, + { + "start": 27274.56, + "end": 27274.92, + "probability": 0.8032 + }, + { + "start": 27275.02, + "end": 27276.04, + "probability": 0.9424 + }, + { + "start": 27276.32, + "end": 27278.84, + "probability": 0.9771 + }, + { + "start": 27279.22, + "end": 27280.72, + "probability": 0.9138 + }, + { + "start": 27282.72, + "end": 27284.74, + "probability": 0.5829 + }, + { + "start": 27284.94, + "end": 27288.72, + "probability": 0.9562 + }, + { + "start": 27288.82, + "end": 27290.1, + "probability": 0.6991 + }, + { + "start": 27290.36, + "end": 27293.2, + "probability": 0.9438 + }, + { + "start": 27293.66, + "end": 27295.62, + "probability": 0.933 + }, + { + "start": 27295.78, + "end": 27296.48, + "probability": 0.7441 + }, + { + "start": 27296.6, + "end": 27297.58, + "probability": 0.9674 + }, + { + "start": 27298.56, + "end": 27299.04, + "probability": 0.9207 + }, + { + "start": 27299.08, + "end": 27300.46, + "probability": 0.9863 + }, + { + "start": 27300.54, + "end": 27302.6, + "probability": 0.8972 + }, + { + "start": 27303.02, + "end": 27307.0, + "probability": 0.9694 + }, + { + "start": 27307.06, + "end": 27310.66, + "probability": 0.6884 + }, + { + "start": 27311.12, + "end": 27314.24, + "probability": 0.9864 + }, + { + "start": 27314.66, + "end": 27320.5, + "probability": 0.9745 + }, + { + "start": 27320.78, + "end": 27322.78, + "probability": 0.643 + }, + { + "start": 27322.94, + "end": 27327.42, + "probability": 0.9591 + }, + { + "start": 27327.94, + "end": 27333.2, + "probability": 0.9078 + }, + { + "start": 27333.38, + "end": 27333.73, + "probability": 0.7452 + }, + { + "start": 27334.12, + "end": 27334.38, + "probability": 0.2679 + }, + { + "start": 27334.38, + "end": 27334.7, + "probability": 0.7066 + }, + { + "start": 27335.7, + "end": 27336.54, + "probability": 0.8452 + }, + { + "start": 27336.82, + "end": 27337.88, + "probability": 0.8945 + }, + { + "start": 27340.82, + "end": 27342.32, + "probability": 0.2223 + }, + { + "start": 27346.51, + "end": 27350.04, + "probability": 0.9897 + }, + { + "start": 27350.64, + "end": 27352.08, + "probability": 0.6329 + }, + { + "start": 27353.48, + "end": 27355.48, + "probability": 0.8151 + }, + { + "start": 27356.56, + "end": 27360.0, + "probability": 0.3328 + }, + { + "start": 27360.18, + "end": 27361.73, + "probability": 0.1559 + }, + { + "start": 27361.96, + "end": 27364.02, + "probability": 0.4177 + }, + { + "start": 27364.08, + "end": 27367.28, + "probability": 0.9697 + }, + { + "start": 27368.34, + "end": 27370.5, + "probability": 0.5911 + }, + { + "start": 27371.82, + "end": 27373.48, + "probability": 0.593 + }, + { + "start": 27374.08, + "end": 27375.26, + "probability": 0.8891 + }, + { + "start": 27375.98, + "end": 27379.44, + "probability": 0.9597 + }, + { + "start": 27381.24, + "end": 27384.74, + "probability": 0.8908 + }, + { + "start": 27385.36, + "end": 27387.02, + "probability": 0.8988 + }, + { + "start": 27388.36, + "end": 27389.94, + "probability": 0.826 + }, + { + "start": 27390.58, + "end": 27391.26, + "probability": 0.6825 + }, + { + "start": 27392.16, + "end": 27395.29, + "probability": 0.8712 + }, + { + "start": 27395.96, + "end": 27396.62, + "probability": 0.8799 + }, + { + "start": 27398.5, + "end": 27399.7, + "probability": 0.6764 + }, + { + "start": 27400.46, + "end": 27408.48, + "probability": 0.7893 + }, + { + "start": 27408.48, + "end": 27412.28, + "probability": 0.996 + }, + { + "start": 27412.76, + "end": 27416.46, + "probability": 0.7493 + }, + { + "start": 27417.66, + "end": 27421.3, + "probability": 0.4864 + }, + { + "start": 27422.92, + "end": 27424.92, + "probability": 0.6987 + }, + { + "start": 27425.1, + "end": 27425.54, + "probability": 0.6936 + }, + { + "start": 27426.28, + "end": 27427.26, + "probability": 0.8391 + }, + { + "start": 27428.88, + "end": 27435.08, + "probability": 0.9792 + }, + { + "start": 27435.52, + "end": 27437.6, + "probability": 0.7581 + }, + { + "start": 27438.38, + "end": 27441.94, + "probability": 0.9866 + }, + { + "start": 27442.5, + "end": 27445.0, + "probability": 0.9734 + }, + { + "start": 27446.52, + "end": 27447.8, + "probability": 0.6993 + }, + { + "start": 27449.14, + "end": 27450.98, + "probability": 0.9965 + }, + { + "start": 27452.96, + "end": 27458.88, + "probability": 0.9406 + }, + { + "start": 27459.82, + "end": 27463.44, + "probability": 0.9963 + }, + { + "start": 27463.96, + "end": 27466.52, + "probability": 0.9296 + }, + { + "start": 27466.92, + "end": 27467.58, + "probability": 0.9062 + }, + { + "start": 27467.7, + "end": 27468.24, + "probability": 0.4018 + }, + { + "start": 27468.4, + "end": 27469.82, + "probability": 0.7609 + }, + { + "start": 27470.82, + "end": 27471.48, + "probability": 0.6526 + }, + { + "start": 27471.92, + "end": 27473.24, + "probability": 0.8123 + }, + { + "start": 27476.08, + "end": 27476.92, + "probability": 0.4178 + }, + { + "start": 27476.94, + "end": 27478.16, + "probability": 0.9055 + }, + { + "start": 27481.18, + "end": 27482.86, + "probability": 0.5036 + }, + { + "start": 27484.06, + "end": 27484.78, + "probability": 0.8032 + }, + { + "start": 27485.78, + "end": 27489.16, + "probability": 0.5297 + }, + { + "start": 27489.54, + "end": 27491.06, + "probability": 0.873 + }, + { + "start": 27493.42, + "end": 27494.9, + "probability": 0.3352 + }, + { + "start": 27499.22, + "end": 27505.32, + "probability": 0.5294 + }, + { + "start": 27509.76, + "end": 27512.42, + "probability": 0.5203 + }, + { + "start": 27512.5, + "end": 27513.36, + "probability": 0.9586 + }, + { + "start": 27514.06, + "end": 27517.56, + "probability": 0.98 + }, + { + "start": 27520.66, + "end": 27522.48, + "probability": 0.8848 + }, + { + "start": 27523.36, + "end": 27527.22, + "probability": 0.9364 + }, + { + "start": 27527.84, + "end": 27527.84, + "probability": 0.0073 + }, + { + "start": 27527.84, + "end": 27529.08, + "probability": 0.335 + }, + { + "start": 27532.92, + "end": 27534.02, + "probability": 0.2826 + }, + { + "start": 27535.36, + "end": 27536.66, + "probability": 0.6297 + }, + { + "start": 27536.96, + "end": 27538.82, + "probability": 0.3434 + }, + { + "start": 27539.2, + "end": 27541.04, + "probability": 0.1451 + }, + { + "start": 27542.42, + "end": 27545.29, + "probability": 0.0193 + }, + { + "start": 27546.0, + "end": 27546.94, + "probability": 0.7454 + }, + { + "start": 27551.92, + "end": 27555.84, + "probability": 0.7512 + }, + { + "start": 27556.86, + "end": 27559.94, + "probability": 0.6733 + }, + { + "start": 27560.66, + "end": 27563.36, + "probability": 0.9788 + }, + { + "start": 27563.92, + "end": 27566.22, + "probability": 0.9974 + }, + { + "start": 27566.8, + "end": 27569.6, + "probability": 0.9966 + }, + { + "start": 27571.14, + "end": 27572.44, + "probability": 0.6689 + }, + { + "start": 27572.98, + "end": 27572.98, + "probability": 0.0124 + }, + { + "start": 27575.38, + "end": 27577.06, + "probability": 0.4493 + }, + { + "start": 27577.64, + "end": 27578.79, + "probability": 0.5816 + }, + { + "start": 27579.14, + "end": 27579.62, + "probability": 0.021 + }, + { + "start": 27580.08, + "end": 27584.4, + "probability": 0.5133 + }, + { + "start": 27584.48, + "end": 27584.58, + "probability": 0.7431 + }, + { + "start": 27585.3, + "end": 27588.38, + "probability": 0.659 + }, + { + "start": 27588.74, + "end": 27588.9, + "probability": 0.1447 + }, + { + "start": 27588.9, + "end": 27592.76, + "probability": 0.9963 + }, + { + "start": 27593.3, + "end": 27594.88, + "probability": 0.0356 + }, + { + "start": 27594.98, + "end": 27598.12, + "probability": 0.9794 + }, + { + "start": 27598.14, + "end": 27600.86, + "probability": 0.566 + }, + { + "start": 27601.18, + "end": 27604.12, + "probability": 0.6372 + }, + { + "start": 27604.24, + "end": 27607.14, + "probability": 0.1644 + }, + { + "start": 27607.14, + "end": 27610.36, + "probability": 0.9204 + }, + { + "start": 27612.22, + "end": 27614.14, + "probability": 0.6373 + }, + { + "start": 27614.42, + "end": 27615.18, + "probability": 0.3779 + }, + { + "start": 27615.24, + "end": 27616.14, + "probability": 0.746 + }, + { + "start": 27616.22, + "end": 27616.9, + "probability": 0.9208 + }, + { + "start": 27617.18, + "end": 27617.94, + "probability": 0.524 + }, + { + "start": 27618.3, + "end": 27619.3, + "probability": 0.9819 + }, + { + "start": 27620.43, + "end": 27623.12, + "probability": 0.4561 + }, + { + "start": 27624.36, + "end": 27624.96, + "probability": 0.6556 + }, + { + "start": 27625.06, + "end": 27629.54, + "probability": 0.7937 + }, + { + "start": 27629.62, + "end": 27632.52, + "probability": 0.7482 + }, + { + "start": 27634.77, + "end": 27637.79, + "probability": 0.9813 + }, + { + "start": 27638.08, + "end": 27644.32, + "probability": 0.9881 + }, + { + "start": 27645.24, + "end": 27648.94, + "probability": 0.5875 + }, + { + "start": 27649.48, + "end": 27650.55, + "probability": 0.632 + }, + { + "start": 27652.12, + "end": 27653.08, + "probability": 0.5785 + }, + { + "start": 27653.12, + "end": 27654.1, + "probability": 0.9841 + }, + { + "start": 27654.36, + "end": 27654.98, + "probability": 0.5357 + }, + { + "start": 27655.24, + "end": 27656.74, + "probability": 0.8586 + }, + { + "start": 27657.02, + "end": 27657.52, + "probability": 0.9535 + }, + { + "start": 27658.22, + "end": 27659.16, + "probability": 0.9861 + }, + { + "start": 27659.74, + "end": 27661.0, + "probability": 0.7523 + }, + { + "start": 27661.3, + "end": 27662.14, + "probability": 0.9364 + }, + { + "start": 27662.36, + "end": 27663.03, + "probability": 0.8541 + }, + { + "start": 27663.18, + "end": 27664.52, + "probability": 0.2604 + }, + { + "start": 27664.54, + "end": 27669.18, + "probability": 0.7386 + }, + { + "start": 27669.26, + "end": 27669.9, + "probability": 0.7802 + }, + { + "start": 27669.96, + "end": 27671.48, + "probability": 0.9885 + }, + { + "start": 27671.62, + "end": 27672.08, + "probability": 0.6779 + }, + { + "start": 27672.18, + "end": 27674.5, + "probability": 0.8645 + }, + { + "start": 27674.58, + "end": 27676.4, + "probability": 0.979 + }, + { + "start": 27677.52, + "end": 27679.9, + "probability": 0.8961 + }, + { + "start": 27680.0, + "end": 27685.1, + "probability": 0.8993 + }, + { + "start": 27685.92, + "end": 27686.02, + "probability": 0.7069 + }, + { + "start": 27686.08, + "end": 27686.6, + "probability": 0.9428 + }, + { + "start": 27686.86, + "end": 27688.38, + "probability": 0.9818 + }, + { + "start": 27688.48, + "end": 27689.42, + "probability": 0.8262 + }, + { + "start": 27689.82, + "end": 27690.55, + "probability": 0.8589 + }, + { + "start": 27691.06, + "end": 27692.98, + "probability": 0.7486 + }, + { + "start": 27693.76, + "end": 27695.8, + "probability": 0.4359 + }, + { + "start": 27696.1, + "end": 27697.37, + "probability": 0.9169 + }, + { + "start": 27698.56, + "end": 27702.64, + "probability": 0.9672 + }, + { + "start": 27702.66, + "end": 27703.5, + "probability": 0.9709 + }, + { + "start": 27704.08, + "end": 27706.4, + "probability": 0.9539 + }, + { + "start": 27707.5, + "end": 27709.62, + "probability": 0.8623 + }, + { + "start": 27710.16, + "end": 27710.51, + "probability": 0.6443 + }, + { + "start": 27711.78, + "end": 27714.84, + "probability": 0.9889 + }, + { + "start": 27715.68, + "end": 27719.02, + "probability": 0.9146 + }, + { + "start": 27719.98, + "end": 27720.74, + "probability": 0.7147 + }, + { + "start": 27720.9, + "end": 27723.68, + "probability": 0.9767 + }, + { + "start": 27724.16, + "end": 27729.24, + "probability": 0.9736 + }, + { + "start": 27730.24, + "end": 27730.5, + "probability": 0.4253 + }, + { + "start": 27731.52, + "end": 27732.7, + "probability": 0.7847 + }, + { + "start": 27732.86, + "end": 27735.36, + "probability": 0.8486 + }, + { + "start": 27735.8, + "end": 27742.64, + "probability": 0.9711 + }, + { + "start": 27744.16, + "end": 27744.7, + "probability": 0.5307 + }, + { + "start": 27744.8, + "end": 27745.32, + "probability": 0.8732 + }, + { + "start": 27745.68, + "end": 27747.86, + "probability": 0.9647 + }, + { + "start": 27748.2, + "end": 27749.34, + "probability": 0.8008 + }, + { + "start": 27750.18, + "end": 27753.44, + "probability": 0.9675 + }, + { + "start": 27754.32, + "end": 27756.36, + "probability": 0.9093 + }, + { + "start": 27757.2, + "end": 27762.6, + "probability": 0.9619 + }, + { + "start": 27763.4, + "end": 27764.84, + "probability": 0.9661 + }, + { + "start": 27765.86, + "end": 27766.04, + "probability": 0.3516 + }, + { + "start": 27766.08, + "end": 27772.76, + "probability": 0.9681 + }, + { + "start": 27773.78, + "end": 27773.94, + "probability": 0.0429 + }, + { + "start": 27774.76, + "end": 27775.02, + "probability": 0.6964 + }, + { + "start": 27775.88, + "end": 27777.42, + "probability": 0.9926 + }, + { + "start": 27777.84, + "end": 27778.74, + "probability": 0.8895 + }, + { + "start": 27778.82, + "end": 27781.7, + "probability": 0.6946 + }, + { + "start": 27782.26, + "end": 27782.74, + "probability": 0.5451 + }, + { + "start": 27782.86, + "end": 27787.36, + "probability": 0.8828 + }, + { + "start": 27787.58, + "end": 27788.0, + "probability": 0.8632 + }, + { + "start": 27789.36, + "end": 27789.52, + "probability": 0.1458 + }, + { + "start": 27789.62, + "end": 27791.06, + "probability": 0.9667 + }, + { + "start": 27791.34, + "end": 27792.74, + "probability": 0.4848 + }, + { + "start": 27793.32, + "end": 27796.88, + "probability": 0.9707 + }, + { + "start": 27797.46, + "end": 27798.96, + "probability": 0.9217 + }, + { + "start": 27799.0, + "end": 27799.44, + "probability": 0.985 + }, + { + "start": 27799.54, + "end": 27801.48, + "probability": 0.978 + }, + { + "start": 27801.58, + "end": 27801.98, + "probability": 0.7873 + }, + { + "start": 27805.22, + "end": 27806.86, + "probability": 0.8328 + }, + { + "start": 27807.34, + "end": 27810.96, + "probability": 0.6201 + }, + { + "start": 27811.16, + "end": 27813.52, + "probability": 0.969 + }, + { + "start": 27814.98, + "end": 27817.54, + "probability": 0.9709 + }, + { + "start": 27818.06, + "end": 27818.74, + "probability": 0.3825 + }, + { + "start": 27819.42, + "end": 27823.2, + "probability": 0.877 + }, + { + "start": 27823.42, + "end": 27824.84, + "probability": 0.5487 + }, + { + "start": 27825.1, + "end": 27825.97, + "probability": 0.988 + }, + { + "start": 27826.7, + "end": 27831.21, + "probability": 0.8459 + }, + { + "start": 27831.54, + "end": 27832.68, + "probability": 0.929 + }, + { + "start": 27832.86, + "end": 27833.9, + "probability": 0.7096 + }, + { + "start": 27834.3, + "end": 27836.3, + "probability": 0.963 + }, + { + "start": 27836.44, + "end": 27836.68, + "probability": 0.8597 + }, + { + "start": 27836.88, + "end": 27838.82, + "probability": 0.6566 + }, + { + "start": 27856.96, + "end": 27859.42, + "probability": 0.7157 + }, + { + "start": 27860.14, + "end": 27864.02, + "probability": 0.9493 + }, + { + "start": 27864.6, + "end": 27867.0, + "probability": 0.91 + }, + { + "start": 27867.62, + "end": 27869.14, + "probability": 0.9647 + }, + { + "start": 27870.08, + "end": 27875.18, + "probability": 0.9915 + }, + { + "start": 27875.64, + "end": 27877.5, + "probability": 0.9922 + }, + { + "start": 27877.6, + "end": 27879.08, + "probability": 0.5317 + }, + { + "start": 27879.56, + "end": 27883.84, + "probability": 0.9951 + }, + { + "start": 27884.34, + "end": 27886.7, + "probability": 0.999 + }, + { + "start": 27889.28, + "end": 27892.52, + "probability": 0.7862 + }, + { + "start": 27893.14, + "end": 27896.38, + "probability": 0.996 + }, + { + "start": 27897.28, + "end": 27902.1, + "probability": 0.9736 + }, + { + "start": 27902.2, + "end": 27904.76, + "probability": 0.5721 + }, + { + "start": 27905.18, + "end": 27905.96, + "probability": 0.5936 + }, + { + "start": 27908.52, + "end": 27909.5, + "probability": 0.659 + }, + { + "start": 27909.76, + "end": 27914.02, + "probability": 0.9719 + }, + { + "start": 27914.02, + "end": 27916.14, + "probability": 0.7621 + }, + { + "start": 27917.12, + "end": 27919.46, + "probability": 0.8675 + }, + { + "start": 27920.04, + "end": 27924.16, + "probability": 0.979 + }, + { + "start": 27925.92, + "end": 27928.56, + "probability": 0.7681 + }, + { + "start": 27928.62, + "end": 27931.85, + "probability": 0.8765 + }, + { + "start": 27932.28, + "end": 27935.78, + "probability": 0.9702 + }, + { + "start": 27935.88, + "end": 27938.94, + "probability": 0.9549 + }, + { + "start": 27939.58, + "end": 27945.04, + "probability": 0.9983 + }, + { + "start": 27946.12, + "end": 27947.16, + "probability": 0.9969 + }, + { + "start": 27949.34, + "end": 27952.36, + "probability": 0.9546 + }, + { + "start": 27952.98, + "end": 27955.1, + "probability": 0.6586 + }, + { + "start": 27955.3, + "end": 27960.16, + "probability": 0.7862 + }, + { + "start": 27961.61, + "end": 27965.72, + "probability": 0.9944 + }, + { + "start": 27966.96, + "end": 27971.17, + "probability": 0.9986 + }, + { + "start": 27972.28, + "end": 27974.04, + "probability": 0.9909 + }, + { + "start": 27974.04, + "end": 27977.96, + "probability": 0.9966 + }, + { + "start": 27978.38, + "end": 27988.28, + "probability": 0.9954 + }, + { + "start": 27989.0, + "end": 27994.24, + "probability": 0.9995 + }, + { + "start": 27994.92, + "end": 27996.11, + "probability": 0.938 + }, + { + "start": 27996.48, + "end": 27998.92, + "probability": 0.9091 + }, + { + "start": 27999.28, + "end": 28001.46, + "probability": 0.9954 + }, + { + "start": 28001.8, + "end": 28005.02, + "probability": 0.9897 + }, + { + "start": 28005.16, + "end": 28005.94, + "probability": 0.8732 + }, + { + "start": 28006.36, + "end": 28007.0, + "probability": 0.7272 + }, + { + "start": 28007.06, + "end": 28010.44, + "probability": 0.9842 + }, + { + "start": 28011.28, + "end": 28014.94, + "probability": 0.9865 + }, + { + "start": 28015.08, + "end": 28018.96, + "probability": 0.9415 + }, + { + "start": 28019.46, + "end": 28026.06, + "probability": 0.991 + }, + { + "start": 28026.64, + "end": 28027.06, + "probability": 0.6761 + }, + { + "start": 28027.72, + "end": 28028.49, + "probability": 0.6171 + }, + { + "start": 28029.66, + "end": 28030.26, + "probability": 0.8274 + }, + { + "start": 28041.76, + "end": 28044.7, + "probability": 0.7334 + }, + { + "start": 28045.46, + "end": 28047.08, + "probability": 0.8613 + }, + { + "start": 28051.48, + "end": 28052.28, + "probability": 0.3724 + }, + { + "start": 28053.24, + "end": 28054.48, + "probability": 0.7008 + }, + { + "start": 28054.56, + "end": 28058.56, + "probability": 0.808 + }, + { + "start": 28059.12, + "end": 28062.94, + "probability": 0.6532 + }, + { + "start": 28063.78, + "end": 28065.84, + "probability": 0.8363 + }, + { + "start": 28065.98, + "end": 28066.57, + "probability": 0.9426 + }, + { + "start": 28066.9, + "end": 28067.34, + "probability": 0.6317 + }, + { + "start": 28067.44, + "end": 28069.82, + "probability": 0.915 + }, + { + "start": 28070.02, + "end": 28070.04, + "probability": 0.1464 + }, + { + "start": 28070.04, + "end": 28071.04, + "probability": 0.8276 + }, + { + "start": 28071.1, + "end": 28072.81, + "probability": 0.8073 + }, + { + "start": 28073.38, + "end": 28076.06, + "probability": 0.8802 + }, + { + "start": 28076.22, + "end": 28078.32, + "probability": 0.8081 + }, + { + "start": 28079.3, + "end": 28083.38, + "probability": 0.9927 + }, + { + "start": 28083.64, + "end": 28085.14, + "probability": 0.6043 + }, + { + "start": 28086.46, + "end": 28089.38, + "probability": 0.983 + }, + { + "start": 28090.24, + "end": 28093.16, + "probability": 0.8743 + }, + { + "start": 28093.9, + "end": 28095.54, + "probability": 0.8952 + }, + { + "start": 28096.64, + "end": 28098.22, + "probability": 0.9167 + }, + { + "start": 28098.84, + "end": 28099.96, + "probability": 0.87 + }, + { + "start": 28100.02, + "end": 28103.84, + "probability": 0.8916 + }, + { + "start": 28104.2, + "end": 28106.32, + "probability": 0.909 + }, + { + "start": 28107.18, + "end": 28111.38, + "probability": 0.9943 + }, + { + "start": 28111.94, + "end": 28113.94, + "probability": 0.9377 + }, + { + "start": 28114.66, + "end": 28116.2, + "probability": 0.9475 + }, + { + "start": 28116.94, + "end": 28120.16, + "probability": 0.9938 + }, + { + "start": 28121.42, + "end": 28127.26, + "probability": 0.9172 + }, + { + "start": 28128.94, + "end": 28133.84, + "probability": 0.7909 + }, + { + "start": 28133.84, + "end": 28139.66, + "probability": 0.8213 + }, + { + "start": 28140.4, + "end": 28143.0, + "probability": 0.9587 + }, + { + "start": 28144.56, + "end": 28146.22, + "probability": 0.8926 + }, + { + "start": 28146.96, + "end": 28148.78, + "probability": 0.1522 + }, + { + "start": 28148.9, + "end": 28150.68, + "probability": 0.1056 + }, + { + "start": 28151.36, + "end": 28152.02, + "probability": 0.5775 + }, + { + "start": 28152.56, + "end": 28153.94, + "probability": 0.6601 + }, + { + "start": 28154.16, + "end": 28157.66, + "probability": 0.4947 + }, + { + "start": 28157.76, + "end": 28157.76, + "probability": 0.0386 + }, + { + "start": 28157.76, + "end": 28159.74, + "probability": 0.5991 + }, + { + "start": 28159.86, + "end": 28164.24, + "probability": 0.9447 + }, + { + "start": 28164.99, + "end": 28168.86, + "probability": 0.7976 + }, + { + "start": 28168.92, + "end": 28170.4, + "probability": 0.9943 + }, + { + "start": 28170.6, + "end": 28172.9, + "probability": 0.819 + }, + { + "start": 28173.84, + "end": 28176.5, + "probability": 0.9583 + }, + { + "start": 28177.3, + "end": 28180.0, + "probability": 0.934 + }, + { + "start": 28180.5, + "end": 28185.93, + "probability": 0.9827 + }, + { + "start": 28187.28, + "end": 28190.16, + "probability": 0.9969 + }, + { + "start": 28190.18, + "end": 28193.72, + "probability": 0.8417 + }, + { + "start": 28194.3, + "end": 28198.02, + "probability": 0.9688 + }, + { + "start": 28198.92, + "end": 28200.54, + "probability": 0.9782 + }, + { + "start": 28201.84, + "end": 28202.52, + "probability": 0.6174 + }, + { + "start": 28202.64, + "end": 28206.42, + "probability": 0.988 + }, + { + "start": 28206.98, + "end": 28208.04, + "probability": 0.8662 + }, + { + "start": 28209.1, + "end": 28209.62, + "probability": 0.8974 + }, + { + "start": 28210.82, + "end": 28211.58, + "probability": 0.6848 + }, + { + "start": 28212.04, + "end": 28215.03, + "probability": 0.8386 + }, + { + "start": 28215.9, + "end": 28221.5, + "probability": 0.9344 + }, + { + "start": 28221.5, + "end": 28226.46, + "probability": 0.9085 + }, + { + "start": 28227.42, + "end": 28230.96, + "probability": 0.9956 + }, + { + "start": 28232.14, + "end": 28235.26, + "probability": 0.9193 + }, + { + "start": 28235.26, + "end": 28237.26, + "probability": 0.9759 + }, + { + "start": 28237.6, + "end": 28240.94, + "probability": 0.7639 + }, + { + "start": 28241.12, + "end": 28241.94, + "probability": 0.6964 + }, + { + "start": 28242.36, + "end": 28245.86, + "probability": 0.9873 + }, + { + "start": 28246.44, + "end": 28246.68, + "probability": 0.8976 + }, + { + "start": 28246.84, + "end": 28250.76, + "probability": 0.9868 + }, + { + "start": 28251.76, + "end": 28253.88, + "probability": 0.9923 + }, + { + "start": 28254.04, + "end": 28256.54, + "probability": 0.9951 + }, + { + "start": 28257.8, + "end": 28258.78, + "probability": 0.915 + }, + { + "start": 28258.9, + "end": 28259.34, + "probability": 0.8992 + }, + { + "start": 28259.52, + "end": 28261.86, + "probability": 0.9658 + }, + { + "start": 28262.36, + "end": 28262.88, + "probability": 0.6808 + }, + { + "start": 28263.32, + "end": 28265.74, + "probability": 0.9176 + }, + { + "start": 28266.22, + "end": 28269.06, + "probability": 0.9899 + }, + { + "start": 28269.06, + "end": 28274.24, + "probability": 0.9456 + }, + { + "start": 28274.92, + "end": 28278.62, + "probability": 0.6711 + }, + { + "start": 28279.58, + "end": 28282.74, + "probability": 0.8421 + }, + { + "start": 28284.7, + "end": 28285.86, + "probability": 0.8228 + }, + { + "start": 28286.82, + "end": 28290.62, + "probability": 0.896 + }, + { + "start": 28290.96, + "end": 28293.52, + "probability": 0.6238 + }, + { + "start": 28294.32, + "end": 28296.06, + "probability": 0.8296 + }, + { + "start": 28297.0, + "end": 28301.08, + "probability": 0.9857 + }, + { + "start": 28301.72, + "end": 28304.14, + "probability": 0.8801 + }, + { + "start": 28304.24, + "end": 28310.2, + "probability": 0.9439 + }, + { + "start": 28310.26, + "end": 28312.86, + "probability": 0.953 + }, + { + "start": 28313.42, + "end": 28318.16, + "probability": 0.9814 + }, + { + "start": 28318.2, + "end": 28320.46, + "probability": 0.812 + }, + { + "start": 28320.46, + "end": 28322.24, + "probability": 0.7501 + }, + { + "start": 28324.6, + "end": 28326.1, + "probability": 0.7221 + }, + { + "start": 28326.16, + "end": 28326.88, + "probability": 0.8175 + }, + { + "start": 28327.02, + "end": 28328.55, + "probability": 0.735 + }, + { + "start": 28329.28, + "end": 28334.08, + "probability": 0.9167 + }, + { + "start": 28334.92, + "end": 28335.78, + "probability": 0.981 + }, + { + "start": 28337.78, + "end": 28340.46, + "probability": 0.7065 + }, + { + "start": 28340.96, + "end": 28345.14, + "probability": 0.8646 + }, + { + "start": 28345.76, + "end": 28348.32, + "probability": 0.9904 + }, + { + "start": 28349.08, + "end": 28351.18, + "probability": 0.9427 + }, + { + "start": 28352.44, + "end": 28352.68, + "probability": 0.2842 + }, + { + "start": 28353.62, + "end": 28354.75, + "probability": 0.9882 + }, + { + "start": 28354.88, + "end": 28357.9, + "probability": 0.9673 + }, + { + "start": 28358.64, + "end": 28360.36, + "probability": 0.3651 + }, + { + "start": 28361.88, + "end": 28365.44, + "probability": 0.7499 + }, + { + "start": 28365.54, + "end": 28370.04, + "probability": 0.7026 + }, + { + "start": 28370.18, + "end": 28371.86, + "probability": 0.9624 + }, + { + "start": 28372.0, + "end": 28373.52, + "probability": 0.7654 + }, + { + "start": 28374.2, + "end": 28375.58, + "probability": 0.4346 + }, + { + "start": 28375.64, + "end": 28378.2, + "probability": 0.5272 + }, + { + "start": 28378.86, + "end": 28382.56, + "probability": 0.1004 + }, + { + "start": 28382.76, + "end": 28383.42, + "probability": 0.2975 + }, + { + "start": 28384.53, + "end": 28386.06, + "probability": 0.9629 + }, + { + "start": 28386.26, + "end": 28387.4, + "probability": 0.5503 + }, + { + "start": 28387.88, + "end": 28390.4, + "probability": 0.8201 + }, + { + "start": 28392.98, + "end": 28393.56, + "probability": 0.4392 + }, + { + "start": 28394.62, + "end": 28394.82, + "probability": 0.1762 + }, + { + "start": 28398.22, + "end": 28400.04, + "probability": 0.4981 + }, + { + "start": 28401.08, + "end": 28403.14, + "probability": 0.0246 + }, + { + "start": 28403.9, + "end": 28403.92, + "probability": 0.1969 + }, + { + "start": 28406.38, + "end": 28407.06, + "probability": 0.0221 + }, + { + "start": 28409.04, + "end": 28411.56, + "probability": 0.5851 + }, + { + "start": 28411.6, + "end": 28414.78, + "probability": 0.9791 + }, + { + "start": 28416.12, + "end": 28419.82, + "probability": 0.2218 + }, + { + "start": 28420.94, + "end": 28423.08, + "probability": 0.8238 + }, + { + "start": 28433.86, + "end": 28437.1, + "probability": 0.1251 + }, + { + "start": 28445.64, + "end": 28446.44, + "probability": 0.122 + }, + { + "start": 28447.22, + "end": 28448.06, + "probability": 0.5641 + }, + { + "start": 28451.48, + "end": 28452.74, + "probability": 0.942 + }, + { + "start": 28454.08, + "end": 28455.99, + "probability": 0.9924 + }, + { + "start": 28458.24, + "end": 28461.88, + "probability": 0.9184 + }, + { + "start": 28463.42, + "end": 28469.32, + "probability": 0.9941 + }, + { + "start": 28470.46, + "end": 28474.78, + "probability": 0.8304 + }, + { + "start": 28474.96, + "end": 28477.29, + "probability": 0.9225 + }, + { + "start": 28478.2, + "end": 28479.23, + "probability": 0.9921 + }, + { + "start": 28481.16, + "end": 28482.06, + "probability": 0.6718 + }, + { + "start": 28482.14, + "end": 28483.7, + "probability": 0.8608 + }, + { + "start": 28484.06, + "end": 28485.96, + "probability": 0.8944 + }, + { + "start": 28487.62, + "end": 28491.54, + "probability": 0.9076 + }, + { + "start": 28493.2, + "end": 28496.86, + "probability": 0.9868 + }, + { + "start": 28497.88, + "end": 28500.2, + "probability": 0.9893 + }, + { + "start": 28503.06, + "end": 28504.06, + "probability": 0.8866 + }, + { + "start": 28506.1, + "end": 28507.82, + "probability": 0.6461 + }, + { + "start": 28511.22, + "end": 28511.84, + "probability": 0.6981 + }, + { + "start": 28514.14, + "end": 28517.7, + "probability": 0.8636 + }, + { + "start": 28517.74, + "end": 28520.7, + "probability": 0.9741 + }, + { + "start": 28520.86, + "end": 28521.74, + "probability": 0.9472 + }, + { + "start": 28524.6, + "end": 28528.06, + "probability": 0.9893 + }, + { + "start": 28528.36, + "end": 28529.98, + "probability": 0.8615 + }, + { + "start": 28532.52, + "end": 28533.52, + "probability": 0.9743 + }, + { + "start": 28534.7, + "end": 28537.48, + "probability": 0.9723 + }, + { + "start": 28538.44, + "end": 28539.08, + "probability": 0.5283 + }, + { + "start": 28540.42, + "end": 28545.36, + "probability": 0.8311 + }, + { + "start": 28545.52, + "end": 28546.14, + "probability": 0.1793 + }, + { + "start": 28549.14, + "end": 28551.8, + "probability": 0.641 + }, + { + "start": 28552.98, + "end": 28556.9, + "probability": 0.8931 + }, + { + "start": 28558.96, + "end": 28561.54, + "probability": 0.9722 + }, + { + "start": 28564.36, + "end": 28564.7, + "probability": 0.4968 + }, + { + "start": 28566.98, + "end": 28570.86, + "probability": 0.689 + }, + { + "start": 28572.68, + "end": 28575.82, + "probability": 0.699 + }, + { + "start": 28576.92, + "end": 28578.54, + "probability": 0.9357 + }, + { + "start": 28581.44, + "end": 28583.34, + "probability": 0.8616 + }, + { + "start": 28585.56, + "end": 28586.82, + "probability": 0.869 + }, + { + "start": 28587.82, + "end": 28590.38, + "probability": 0.9519 + }, + { + "start": 28591.52, + "end": 28593.88, + "probability": 0.722 + }, + { + "start": 28595.2, + "end": 28602.44, + "probability": 0.9844 + }, + { + "start": 28603.56, + "end": 28608.34, + "probability": 0.9909 + }, + { + "start": 28609.18, + "end": 28611.62, + "probability": 0.8135 + }, + { + "start": 28612.83, + "end": 28613.96, + "probability": 0.7834 + }, + { + "start": 28615.34, + "end": 28622.77, + "probability": 0.9892 + }, + { + "start": 28623.98, + "end": 28624.82, + "probability": 0.8308 + }, + { + "start": 28626.28, + "end": 28633.24, + "probability": 0.9802 + }, + { + "start": 28634.1, + "end": 28636.82, + "probability": 0.9188 + }, + { + "start": 28636.86, + "end": 28646.3, + "probability": 0.8588 + }, + { + "start": 28647.68, + "end": 28649.02, + "probability": 0.9611 + }, + { + "start": 28649.16, + "end": 28652.22, + "probability": 0.6996 + }, + { + "start": 28652.98, + "end": 28654.3, + "probability": 0.4252 + }, + { + "start": 28654.5, + "end": 28657.14, + "probability": 0.7956 + }, + { + "start": 28657.84, + "end": 28659.6, + "probability": 0.9814 + }, + { + "start": 28661.24, + "end": 28664.6, + "probability": 0.9376 + }, + { + "start": 28665.72, + "end": 28668.68, + "probability": 0.9971 + }, + { + "start": 28669.8, + "end": 28670.7, + "probability": 0.9743 + }, + { + "start": 28671.58, + "end": 28673.42, + "probability": 0.9692 + }, + { + "start": 28677.7, + "end": 28680.22, + "probability": 0.9827 + }, + { + "start": 28681.48, + "end": 28681.82, + "probability": 0.5049 + }, + { + "start": 28681.82, + "end": 28684.48, + "probability": 0.957 + }, + { + "start": 28685.28, + "end": 28686.58, + "probability": 0.8423 + }, + { + "start": 28689.81, + "end": 28694.08, + "probability": 0.8032 + }, + { + "start": 28694.22, + "end": 28695.3, + "probability": 0.8323 + }, + { + "start": 28696.58, + "end": 28698.44, + "probability": 0.9859 + }, + { + "start": 28700.7, + "end": 28706.88, + "probability": 0.966 + }, + { + "start": 28709.94, + "end": 28711.5, + "probability": 0.9106 + }, + { + "start": 28713.84, + "end": 28715.4, + "probability": 0.9992 + }, + { + "start": 28717.4, + "end": 28718.5, + "probability": 0.8404 + }, + { + "start": 28719.82, + "end": 28723.8, + "probability": 0.9744 + }, + { + "start": 28723.98, + "end": 28724.56, + "probability": 0.412 + }, + { + "start": 28724.7, + "end": 28725.78, + "probability": 0.9805 + }, + { + "start": 28726.96, + "end": 28728.94, + "probability": 0.0448 + }, + { + "start": 28730.72, + "end": 28732.78, + "probability": 0.8897 + }, + { + "start": 28734.04, + "end": 28734.7, + "probability": 0.8242 + }, + { + "start": 28735.96, + "end": 28736.98, + "probability": 0.8855 + }, + { + "start": 28737.5, + "end": 28739.62, + "probability": 0.9158 + }, + { + "start": 28742.22, + "end": 28746.8, + "probability": 0.9941 + }, + { + "start": 28747.22, + "end": 28748.88, + "probability": 0.993 + }, + { + "start": 28748.98, + "end": 28749.61, + "probability": 0.8895 + }, + { + "start": 28751.28, + "end": 28753.44, + "probability": 0.9632 + }, + { + "start": 28754.68, + "end": 28761.28, + "probability": 0.9916 + }, + { + "start": 28762.42, + "end": 28763.18, + "probability": 0.9512 + }, + { + "start": 28764.24, + "end": 28767.1, + "probability": 0.6425 + }, + { + "start": 28767.3, + "end": 28768.66, + "probability": 0.9 + }, + { + "start": 28770.16, + "end": 28772.82, + "probability": 0.9933 + }, + { + "start": 28773.84, + "end": 28774.24, + "probability": 0.5698 + }, + { + "start": 28775.06, + "end": 28779.68, + "probability": 0.9862 + }, + { + "start": 28781.38, + "end": 28783.76, + "probability": 0.9973 + }, + { + "start": 28784.02, + "end": 28785.18, + "probability": 0.813 + }, + { + "start": 28786.6, + "end": 28790.65, + "probability": 0.9942 + }, + { + "start": 28791.78, + "end": 28796.26, + "probability": 0.8743 + }, + { + "start": 28797.84, + "end": 28798.8, + "probability": 0.9213 + }, + { + "start": 28799.92, + "end": 28801.12, + "probability": 0.6016 + }, + { + "start": 28802.02, + "end": 28803.42, + "probability": 0.7738 + }, + { + "start": 28804.48, + "end": 28812.62, + "probability": 0.8783 + }, + { + "start": 28812.62, + "end": 28818.58, + "probability": 0.8856 + }, + { + "start": 28818.9, + "end": 28819.78, + "probability": 0.663 + }, + { + "start": 28819.92, + "end": 28823.28, + "probability": 0.83 + }, + { + "start": 28824.82, + "end": 28828.0, + "probability": 0.8931 + }, + { + "start": 28829.54, + "end": 28830.2, + "probability": 0.6001 + }, + { + "start": 28831.58, + "end": 28834.96, + "probability": 0.9561 + }, + { + "start": 28835.98, + "end": 28843.2, + "probability": 0.9071 + }, + { + "start": 28843.84, + "end": 28853.36, + "probability": 0.9635 + }, + { + "start": 28853.8, + "end": 28856.18, + "probability": 0.9905 + }, + { + "start": 28856.88, + "end": 28858.66, + "probability": 0.8852 + }, + { + "start": 28859.76, + "end": 28863.6, + "probability": 0.8594 + }, + { + "start": 28864.1, + "end": 28866.82, + "probability": 0.9863 + }, + { + "start": 28869.19, + "end": 28873.8, + "probability": 0.989 + }, + { + "start": 28874.62, + "end": 28879.48, + "probability": 0.5799 + }, + { + "start": 28880.3, + "end": 28884.06, + "probability": 0.9757 + }, + { + "start": 28884.2, + "end": 28885.1, + "probability": 0.8669 + }, + { + "start": 28885.5, + "end": 28886.0, + "probability": 0.5387 + }, + { + "start": 28897.58, + "end": 28899.92, + "probability": 0.7251 + }, + { + "start": 28901.18, + "end": 28903.8, + "probability": 0.9675 + }, + { + "start": 28904.32, + "end": 28905.86, + "probability": 0.6424 + }, + { + "start": 28908.5, + "end": 28909.7, + "probability": 0.615 + }, + { + "start": 28910.24, + "end": 28910.92, + "probability": 0.6953 + }, + { + "start": 28911.84, + "end": 28912.98, + "probability": 0.9325 + }, + { + "start": 28913.94, + "end": 28914.92, + "probability": 0.782 + }, + { + "start": 28915.72, + "end": 28915.9, + "probability": 0.0274 + }, + { + "start": 28915.9, + "end": 28918.04, + "probability": 0.8058 + }, + { + "start": 28918.68, + "end": 28919.82, + "probability": 0.8631 + }, + { + "start": 28920.3, + "end": 28922.14, + "probability": 0.9331 + }, + { + "start": 28923.1, + "end": 28924.78, + "probability": 0.999 + }, + { + "start": 28925.62, + "end": 28926.26, + "probability": 0.7117 + }, + { + "start": 28927.18, + "end": 28927.88, + "probability": 0.7042 + }, + { + "start": 28929.14, + "end": 28932.1, + "probability": 0.6335 + }, + { + "start": 28932.98, + "end": 28935.92, + "probability": 0.8213 + }, + { + "start": 28937.1, + "end": 28939.2, + "probability": 0.8069 + }, + { + "start": 28939.54, + "end": 28942.74, + "probability": 0.9906 + }, + { + "start": 28943.8, + "end": 28945.66, + "probability": 0.7201 + }, + { + "start": 28945.86, + "end": 28946.74, + "probability": 0.6397 + }, + { + "start": 28947.0, + "end": 28950.06, + "probability": 0.7342 + }, + { + "start": 28950.92, + "end": 28952.26, + "probability": 0.7461 + }, + { + "start": 28952.4, + "end": 28955.48, + "probability": 0.9678 + }, + { + "start": 28956.44, + "end": 28962.05, + "probability": 0.9849 + }, + { + "start": 28962.92, + "end": 28968.06, + "probability": 0.9647 + }, + { + "start": 28968.74, + "end": 28969.5, + "probability": 0.5364 + }, + { + "start": 28969.52, + "end": 28970.22, + "probability": 0.645 + }, + { + "start": 28970.38, + "end": 28971.92, + "probability": 0.9365 + }, + { + "start": 28972.46, + "end": 28974.64, + "probability": 0.9224 + }, + { + "start": 28975.54, + "end": 28977.44, + "probability": 0.9857 + }, + { + "start": 28977.58, + "end": 28980.26, + "probability": 0.6759 + }, + { + "start": 28980.64, + "end": 28983.7, + "probability": 0.9775 + }, + { + "start": 28984.4, + "end": 28986.9, + "probability": 0.9832 + }, + { + "start": 28987.72, + "end": 28990.4, + "probability": 0.9451 + }, + { + "start": 28992.06, + "end": 28994.04, + "probability": 0.9757 + }, + { + "start": 28994.66, + "end": 28998.56, + "probability": 0.9801 + }, + { + "start": 28999.14, + "end": 29000.7, + "probability": 0.9109 + }, + { + "start": 29001.18, + "end": 29004.66, + "probability": 0.9985 + }, + { + "start": 29004.66, + "end": 29007.6, + "probability": 0.9917 + }, + { + "start": 29009.54, + "end": 29012.7, + "probability": 0.9945 + }, + { + "start": 29013.46, + "end": 29018.26, + "probability": 0.9863 + }, + { + "start": 29018.68, + "end": 29023.76, + "probability": 0.8905 + }, + { + "start": 29024.42, + "end": 29025.12, + "probability": 0.9286 + }, + { + "start": 29025.2, + "end": 29026.78, + "probability": 0.9912 + }, + { + "start": 29027.26, + "end": 29030.52, + "probability": 0.9961 + }, + { + "start": 29030.52, + "end": 29035.02, + "probability": 0.9768 + }, + { + "start": 29036.14, + "end": 29036.34, + "probability": 0.687 + }, + { + "start": 29037.22, + "end": 29038.34, + "probability": 0.781 + }, + { + "start": 29038.8, + "end": 29040.16, + "probability": 0.9177 + }, + { + "start": 29040.48, + "end": 29041.32, + "probability": 0.7104 + }, + { + "start": 29041.42, + "end": 29046.1, + "probability": 0.9914 + }, + { + "start": 29047.12, + "end": 29048.0, + "probability": 0.9517 + }, + { + "start": 29048.68, + "end": 29049.46, + "probability": 0.7505 + }, + { + "start": 29059.52, + "end": 29059.9, + "probability": 0.2795 + }, + { + "start": 29059.9, + "end": 29060.74, + "probability": 0.3694 + }, + { + "start": 29061.4, + "end": 29062.62, + "probability": 0.9186 + }, + { + "start": 29062.9, + "end": 29067.44, + "probability": 0.7373 + }, + { + "start": 29069.8, + "end": 29070.5, + "probability": 0.7417 + }, + { + "start": 29070.5, + "end": 29076.08, + "probability": 0.4424 + }, + { + "start": 29076.08, + "end": 29076.92, + "probability": 0.1113 + }, + { + "start": 29076.92, + "end": 29077.5, + "probability": 0.4441 + }, + { + "start": 29077.84, + "end": 29081.84, + "probability": 0.9692 + }, + { + "start": 29081.88, + "end": 29083.0, + "probability": 0.7323 + }, + { + "start": 29085.2, + "end": 29085.2, + "probability": 0.0134 + }, + { + "start": 29088.15, + "end": 29088.22, + "probability": 0.0749 + }, + { + "start": 29088.22, + "end": 29088.22, + "probability": 0.0359 + }, + { + "start": 29088.22, + "end": 29088.26, + "probability": 0.0137 + }, + { + "start": 29088.26, + "end": 29092.14, + "probability": 0.877 + }, + { + "start": 29094.96, + "end": 29095.62, + "probability": 0.0014 + } + ], + "segments_count": 10089, + "words_count": 49273, + "avg_words_per_segment": 4.8838, + "avg_segment_duration": 2.1398, + "avg_words_per_minute": 101.5424, + "plenum_id": "12848", + "duration": 29114.73, + "title": null, + "plenum_date": "2011-03-16" +} \ No newline at end of file