diff --git "a/32227/metadata.json" "b/32227/metadata.json" new file mode 100644--- /dev/null +++ "b/32227/metadata.json" @@ -0,0 +1,50012 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32227", + "quality_score": 0.9023, + "per_segment_quality_scores": [ + { + "start": 71.46, + "end": 76.18, + "probability": 0.9507 + }, + { + "start": 76.34, + "end": 79.46, + "probability": 0.8649 + }, + { + "start": 81.96, + "end": 87.14, + "probability": 0.5081 + }, + { + "start": 87.76, + "end": 89.38, + "probability": 0.6551 + }, + { + "start": 91.16, + "end": 95.1, + "probability": 0.6911 + }, + { + "start": 95.98, + "end": 95.98, + "probability": 0.1808 + }, + { + "start": 95.98, + "end": 95.98, + "probability": 0.1711 + }, + { + "start": 95.98, + "end": 96.68, + "probability": 0.0648 + }, + { + "start": 97.78, + "end": 98.4, + "probability": 0.568 + }, + { + "start": 100.18, + "end": 100.96, + "probability": 0.7445 + }, + { + "start": 101.02, + "end": 104.96, + "probability": 0.9344 + }, + { + "start": 105.66, + "end": 111.44, + "probability": 0.6866 + }, + { + "start": 112.3, + "end": 113.2, + "probability": 0.0047 + }, + { + "start": 140.18, + "end": 140.18, + "probability": 0.0193 + }, + { + "start": 140.18, + "end": 140.18, + "probability": 0.1151 + }, + { + "start": 140.18, + "end": 140.18, + "probability": 0.0567 + }, + { + "start": 140.18, + "end": 140.84, + "probability": 0.4674 + }, + { + "start": 144.14, + "end": 146.98, + "probability": 0.9977 + }, + { + "start": 148.02, + "end": 149.98, + "probability": 0.914 + }, + { + "start": 151.56, + "end": 157.94, + "probability": 0.9838 + }, + { + "start": 159.62, + "end": 163.68, + "probability": 0.9144 + }, + { + "start": 165.48, + "end": 169.78, + "probability": 0.9918 + }, + { + "start": 170.94, + "end": 175.7, + "probability": 0.9966 + }, + { + "start": 176.28, + "end": 177.48, + "probability": 0.9948 + }, + { + "start": 178.4, + "end": 179.9, + "probability": 0.7837 + }, + { + "start": 180.02, + "end": 183.06, + "probability": 0.9509 + }, + { + "start": 183.1, + "end": 186.46, + "probability": 0.9764 + }, + { + "start": 187.24, + "end": 190.3, + "probability": 0.7602 + }, + { + "start": 191.44, + "end": 197.84, + "probability": 0.9828 + }, + { + "start": 197.84, + "end": 201.28, + "probability": 0.9718 + }, + { + "start": 202.56, + "end": 206.2, + "probability": 0.7938 + }, + { + "start": 206.2, + "end": 213.48, + "probability": 0.8452 + }, + { + "start": 214.34, + "end": 217.08, + "probability": 0.9907 + }, + { + "start": 217.28, + "end": 217.96, + "probability": 0.5779 + }, + { + "start": 218.08, + "end": 218.68, + "probability": 0.8356 + }, + { + "start": 219.3, + "end": 220.74, + "probability": 0.8841 + }, + { + "start": 220.88, + "end": 228.16, + "probability": 0.8914 + }, + { + "start": 229.0, + "end": 230.28, + "probability": 0.6686 + }, + { + "start": 230.8, + "end": 240.76, + "probability": 0.9453 + }, + { + "start": 241.04, + "end": 245.28, + "probability": 0.9619 + }, + { + "start": 247.31, + "end": 249.56, + "probability": 0.8106 + }, + { + "start": 250.46, + "end": 251.16, + "probability": 0.6827 + }, + { + "start": 252.06, + "end": 253.25, + "probability": 0.6609 + }, + { + "start": 255.3, + "end": 255.4, + "probability": 0.652 + }, + { + "start": 256.62, + "end": 258.94, + "probability": 0.9569 + }, + { + "start": 259.28, + "end": 261.1, + "probability": 0.8628 + }, + { + "start": 261.66, + "end": 264.76, + "probability": 0.9987 + }, + { + "start": 265.34, + "end": 267.06, + "probability": 0.9673 + }, + { + "start": 268.08, + "end": 272.6, + "probability": 0.8543 + }, + { + "start": 274.6, + "end": 277.26, + "probability": 0.8873 + }, + { + "start": 277.96, + "end": 280.74, + "probability": 0.3302 + }, + { + "start": 281.4, + "end": 284.02, + "probability": 0.8776 + }, + { + "start": 284.66, + "end": 293.1, + "probability": 0.9188 + }, + { + "start": 293.88, + "end": 295.88, + "probability": 0.9156 + }, + { + "start": 297.06, + "end": 300.82, + "probability": 0.9033 + }, + { + "start": 300.96, + "end": 302.92, + "probability": 0.7892 + }, + { + "start": 307.0, + "end": 307.38, + "probability": 0.5508 + }, + { + "start": 308.06, + "end": 312.34, + "probability": 0.5949 + }, + { + "start": 312.74, + "end": 315.08, + "probability": 0.9868 + }, + { + "start": 315.36, + "end": 316.96, + "probability": 0.929 + }, + { + "start": 317.92, + "end": 321.84, + "probability": 0.9778 + }, + { + "start": 322.34, + "end": 326.36, + "probability": 0.9938 + }, + { + "start": 326.42, + "end": 331.1, + "probability": 0.9896 + }, + { + "start": 331.2, + "end": 332.24, + "probability": 0.9912 + }, + { + "start": 332.34, + "end": 332.74, + "probability": 0.4924 + }, + { + "start": 333.3, + "end": 333.96, + "probability": 0.6855 + }, + { + "start": 334.34, + "end": 337.44, + "probability": 0.9959 + }, + { + "start": 337.88, + "end": 342.42, + "probability": 0.9738 + }, + { + "start": 342.98, + "end": 346.52, + "probability": 0.9815 + }, + { + "start": 346.72, + "end": 350.98, + "probability": 0.9749 + }, + { + "start": 352.54, + "end": 355.18, + "probability": 0.9796 + }, + { + "start": 355.18, + "end": 359.84, + "probability": 0.5609 + }, + { + "start": 360.2, + "end": 362.44, + "probability": 0.9627 + }, + { + "start": 363.06, + "end": 365.46, + "probability": 0.8857 + }, + { + "start": 366.04, + "end": 368.13, + "probability": 0.9912 + }, + { + "start": 369.54, + "end": 370.1, + "probability": 0.6109 + }, + { + "start": 372.05, + "end": 376.78, + "probability": 0.9569 + }, + { + "start": 377.3, + "end": 378.2, + "probability": 0.5738 + }, + { + "start": 378.46, + "end": 381.62, + "probability": 0.9569 + }, + { + "start": 382.1, + "end": 383.54, + "probability": 0.8636 + }, + { + "start": 383.94, + "end": 384.92, + "probability": 0.4965 + }, + { + "start": 385.89, + "end": 393.74, + "probability": 0.8183 + }, + { + "start": 394.46, + "end": 399.22, + "probability": 0.9619 + }, + { + "start": 399.22, + "end": 403.26, + "probability": 0.9632 + }, + { + "start": 404.18, + "end": 410.64, + "probability": 0.9904 + }, + { + "start": 411.26, + "end": 413.38, + "probability": 0.7396 + }, + { + "start": 414.06, + "end": 417.56, + "probability": 0.4738 + }, + { + "start": 419.24, + "end": 422.9, + "probability": 0.9396 + }, + { + "start": 422.9, + "end": 426.16, + "probability": 0.6835 + }, + { + "start": 426.76, + "end": 432.64, + "probability": 0.9886 + }, + { + "start": 433.26, + "end": 437.12, + "probability": 0.9918 + }, + { + "start": 437.84, + "end": 441.84, + "probability": 0.9981 + }, + { + "start": 442.56, + "end": 446.52, + "probability": 0.9619 + }, + { + "start": 446.62, + "end": 449.36, + "probability": 0.9861 + }, + { + "start": 450.06, + "end": 452.01, + "probability": 0.9788 + }, + { + "start": 452.16, + "end": 454.52, + "probability": 0.9634 + }, + { + "start": 455.04, + "end": 460.04, + "probability": 0.9941 + }, + { + "start": 460.62, + "end": 462.92, + "probability": 0.9556 + }, + { + "start": 463.78, + "end": 466.64, + "probability": 0.8431 + }, + { + "start": 466.76, + "end": 468.38, + "probability": 0.7351 + }, + { + "start": 468.9, + "end": 469.46, + "probability": 0.9277 + }, + { + "start": 470.38, + "end": 471.3, + "probability": 0.9325 + }, + { + "start": 471.76, + "end": 475.88, + "probability": 0.9805 + }, + { + "start": 475.88, + "end": 479.06, + "probability": 0.9854 + }, + { + "start": 479.68, + "end": 482.4, + "probability": 0.9958 + }, + { + "start": 482.4, + "end": 486.1, + "probability": 0.9959 + }, + { + "start": 486.6, + "end": 489.56, + "probability": 0.9584 + }, + { + "start": 489.56, + "end": 493.56, + "probability": 0.6129 + }, + { + "start": 493.68, + "end": 498.54, + "probability": 0.9663 + }, + { + "start": 499.32, + "end": 504.54, + "probability": 0.9745 + }, + { + "start": 504.62, + "end": 506.5, + "probability": 0.9922 + }, + { + "start": 507.1, + "end": 509.42, + "probability": 0.8945 + }, + { + "start": 509.8, + "end": 512.54, + "probability": 0.5948 + }, + { + "start": 513.14, + "end": 518.92, + "probability": 0.9898 + }, + { + "start": 518.92, + "end": 525.22, + "probability": 0.959 + }, + { + "start": 525.22, + "end": 530.22, + "probability": 0.9526 + }, + { + "start": 532.38, + "end": 534.58, + "probability": 0.9762 + }, + { + "start": 534.68, + "end": 537.4, + "probability": 0.9928 + }, + { + "start": 537.44, + "end": 538.08, + "probability": 0.7291 + }, + { + "start": 543.32, + "end": 544.97, + "probability": 0.9698 + }, + { + "start": 545.94, + "end": 546.58, + "probability": 0.5026 + }, + { + "start": 547.28, + "end": 549.24, + "probability": 0.3389 + }, + { + "start": 549.38, + "end": 550.98, + "probability": 0.818 + }, + { + "start": 551.06, + "end": 551.28, + "probability": 0.8499 + }, + { + "start": 553.16, + "end": 556.06, + "probability": 0.4748 + }, + { + "start": 556.06, + "end": 557.74, + "probability": 0.6546 + }, + { + "start": 557.74, + "end": 562.72, + "probability": 0.9737 + }, + { + "start": 562.72, + "end": 566.04, + "probability": 0.9865 + }, + { + "start": 566.14, + "end": 569.26, + "probability": 0.9966 + }, + { + "start": 570.38, + "end": 572.82, + "probability": 0.9379 + }, + { + "start": 573.66, + "end": 577.46, + "probability": 0.9989 + }, + { + "start": 577.66, + "end": 580.32, + "probability": 0.9751 + }, + { + "start": 580.68, + "end": 582.0, + "probability": 0.6432 + }, + { + "start": 582.0, + "end": 583.78, + "probability": 0.7999 + }, + { + "start": 584.72, + "end": 587.2, + "probability": 0.7603 + }, + { + "start": 587.34, + "end": 588.08, + "probability": 0.8821 + }, + { + "start": 588.78, + "end": 590.44, + "probability": 0.9368 + }, + { + "start": 590.52, + "end": 591.1, + "probability": 0.9222 + }, + { + "start": 591.26, + "end": 592.44, + "probability": 0.9702 + }, + { + "start": 593.28, + "end": 596.0, + "probability": 0.992 + }, + { + "start": 596.16, + "end": 601.12, + "probability": 0.9744 + }, + { + "start": 601.2, + "end": 602.2, + "probability": 0.7946 + }, + { + "start": 602.22, + "end": 602.96, + "probability": 0.7608 + }, + { + "start": 604.16, + "end": 608.5, + "probability": 0.9891 + }, + { + "start": 608.72, + "end": 611.3, + "probability": 0.8831 + }, + { + "start": 611.62, + "end": 611.9, + "probability": 0.7985 + }, + { + "start": 612.53, + "end": 613.92, + "probability": 0.9662 + }, + { + "start": 615.12, + "end": 618.94, + "probability": 0.9663 + }, + { + "start": 618.94, + "end": 619.4, + "probability": 0.4176 + }, + { + "start": 619.4, + "end": 619.44, + "probability": 0.0289 + }, + { + "start": 619.64, + "end": 624.76, + "probability": 0.9978 + }, + { + "start": 625.66, + "end": 627.16, + "probability": 0.9812 + }, + { + "start": 629.06, + "end": 630.56, + "probability": 0.9951 + }, + { + "start": 631.58, + "end": 633.08, + "probability": 0.9967 + }, + { + "start": 633.78, + "end": 636.12, + "probability": 0.9482 + }, + { + "start": 636.96, + "end": 637.72, + "probability": 0.9619 + }, + { + "start": 637.8, + "end": 638.8, + "probability": 0.8955 + }, + { + "start": 638.88, + "end": 639.79, + "probability": 0.9307 + }, + { + "start": 640.62, + "end": 642.02, + "probability": 0.8828 + }, + { + "start": 642.92, + "end": 644.3, + "probability": 0.9366 + }, + { + "start": 645.06, + "end": 650.64, + "probability": 0.9974 + }, + { + "start": 650.8, + "end": 651.9, + "probability": 0.908 + }, + { + "start": 652.52, + "end": 655.56, + "probability": 0.9645 + }, + { + "start": 655.8, + "end": 662.28, + "probability": 0.9263 + }, + { + "start": 663.91, + "end": 671.12, + "probability": 0.9543 + }, + { + "start": 671.34, + "end": 673.58, + "probability": 0.9937 + }, + { + "start": 673.8, + "end": 676.94, + "probability": 0.9985 + }, + { + "start": 677.38, + "end": 680.52, + "probability": 0.6728 + }, + { + "start": 682.06, + "end": 685.36, + "probability": 0.9052 + }, + { + "start": 685.46, + "end": 686.36, + "probability": 0.3669 + }, + { + "start": 686.56, + "end": 687.44, + "probability": 0.5217 + }, + { + "start": 688.48, + "end": 691.08, + "probability": 0.8096 + }, + { + "start": 691.6, + "end": 693.02, + "probability": 0.9971 + }, + { + "start": 693.76, + "end": 698.74, + "probability": 0.9657 + }, + { + "start": 699.54, + "end": 702.52, + "probability": 0.8799 + }, + { + "start": 702.74, + "end": 704.44, + "probability": 0.9712 + }, + { + "start": 704.74, + "end": 709.76, + "probability": 0.992 + }, + { + "start": 709.86, + "end": 710.02, + "probability": 0.4084 + }, + { + "start": 710.92, + "end": 712.84, + "probability": 0.5113 + }, + { + "start": 713.5, + "end": 714.94, + "probability": 0.8138 + }, + { + "start": 715.16, + "end": 718.32, + "probability": 0.9473 + }, + { + "start": 722.68, + "end": 724.62, + "probability": 0.7878 + }, + { + "start": 725.04, + "end": 729.46, + "probability": 0.7144 + }, + { + "start": 729.52, + "end": 730.36, + "probability": 0.8493 + }, + { + "start": 730.44, + "end": 732.72, + "probability": 0.7391 + }, + { + "start": 733.36, + "end": 738.32, + "probability": 0.9883 + }, + { + "start": 738.4, + "end": 739.44, + "probability": 0.912 + }, + { + "start": 740.08, + "end": 743.26, + "probability": 0.895 + }, + { + "start": 743.4, + "end": 745.47, + "probability": 0.9849 + }, + { + "start": 746.16, + "end": 751.08, + "probability": 0.8249 + }, + { + "start": 751.96, + "end": 753.02, + "probability": 0.6489 + }, + { + "start": 753.06, + "end": 753.72, + "probability": 0.9698 + }, + { + "start": 754.6, + "end": 754.7, + "probability": 0.37 + }, + { + "start": 754.76, + "end": 756.26, + "probability": 0.9062 + }, + { + "start": 756.76, + "end": 760.52, + "probability": 0.8909 + }, + { + "start": 761.08, + "end": 762.74, + "probability": 0.9491 + }, + { + "start": 762.92, + "end": 770.8, + "probability": 0.7026 + }, + { + "start": 770.8, + "end": 772.2, + "probability": 0.7517 + }, + { + "start": 772.92, + "end": 776.42, + "probability": 0.632 + }, + { + "start": 776.44, + "end": 783.06, + "probability": 0.8346 + }, + { + "start": 783.4, + "end": 788.28, + "probability": 0.7667 + }, + { + "start": 788.76, + "end": 794.54, + "probability": 0.9411 + }, + { + "start": 795.08, + "end": 797.92, + "probability": 0.9481 + }, + { + "start": 797.92, + "end": 800.42, + "probability": 0.9949 + }, + { + "start": 800.9, + "end": 802.34, + "probability": 0.4712 + }, + { + "start": 802.34, + "end": 802.76, + "probability": 0.5721 + }, + { + "start": 802.94, + "end": 805.76, + "probability": 0.8735 + }, + { + "start": 808.28, + "end": 811.2, + "probability": 0.9458 + }, + { + "start": 811.2, + "end": 813.64, + "probability": 0.8067 + }, + { + "start": 813.72, + "end": 814.76, + "probability": 0.7018 + }, + { + "start": 815.96, + "end": 819.58, + "probability": 0.9417 + }, + { + "start": 820.1, + "end": 821.32, + "probability": 0.8313 + }, + { + "start": 821.32, + "end": 822.81, + "probability": 0.9914 + }, + { + "start": 823.04, + "end": 826.08, + "probability": 0.9684 + }, + { + "start": 826.94, + "end": 829.74, + "probability": 0.8492 + }, + { + "start": 830.68, + "end": 832.22, + "probability": 0.8443 + }, + { + "start": 832.78, + "end": 837.84, + "probability": 0.9285 + }, + { + "start": 838.02, + "end": 838.44, + "probability": 0.3934 + }, + { + "start": 838.62, + "end": 840.94, + "probability": 0.7502 + }, + { + "start": 841.08, + "end": 845.52, + "probability": 0.9824 + }, + { + "start": 846.76, + "end": 848.18, + "probability": 0.8326 + }, + { + "start": 848.32, + "end": 849.4, + "probability": 0.5845 + }, + { + "start": 849.44, + "end": 853.18, + "probability": 0.9404 + }, + { + "start": 853.92, + "end": 855.36, + "probability": 0.6236 + }, + { + "start": 856.94, + "end": 860.18, + "probability": 0.3911 + }, + { + "start": 860.62, + "end": 865.26, + "probability": 0.9797 + }, + { + "start": 865.26, + "end": 868.54, + "probability": 0.9979 + }, + { + "start": 868.98, + "end": 874.78, + "probability": 0.978 + }, + { + "start": 875.9, + "end": 877.56, + "probability": 0.5726 + }, + { + "start": 877.68, + "end": 879.12, + "probability": 0.9301 + }, + { + "start": 879.72, + "end": 883.6, + "probability": 0.8257 + }, + { + "start": 884.65, + "end": 888.38, + "probability": 0.9511 + }, + { + "start": 888.48, + "end": 892.64, + "probability": 0.9113 + }, + { + "start": 892.66, + "end": 896.42, + "probability": 0.9442 + }, + { + "start": 896.42, + "end": 900.3, + "probability": 0.9528 + }, + { + "start": 901.02, + "end": 901.99, + "probability": 0.9985 + }, + { + "start": 902.26, + "end": 904.82, + "probability": 0.8926 + }, + { + "start": 905.12, + "end": 905.14, + "probability": 0.1982 + }, + { + "start": 906.6, + "end": 909.24, + "probability": 0.7469 + }, + { + "start": 910.8, + "end": 913.08, + "probability": 0.602 + }, + { + "start": 913.28, + "end": 917.56, + "probability": 0.9692 + }, + { + "start": 918.8, + "end": 920.42, + "probability": 0.8406 + }, + { + "start": 921.24, + "end": 925.02, + "probability": 0.9875 + }, + { + "start": 925.02, + "end": 932.2, + "probability": 0.7586 + }, + { + "start": 933.02, + "end": 938.42, + "probability": 0.8976 + }, + { + "start": 939.02, + "end": 941.14, + "probability": 0.9918 + }, + { + "start": 941.84, + "end": 948.8, + "probability": 0.9929 + }, + { + "start": 949.92, + "end": 954.9, + "probability": 0.886 + }, + { + "start": 955.68, + "end": 961.12, + "probability": 0.9927 + }, + { + "start": 961.84, + "end": 965.8, + "probability": 0.987 + }, + { + "start": 965.8, + "end": 970.7, + "probability": 0.9907 + }, + { + "start": 971.58, + "end": 974.88, + "probability": 0.9305 + }, + { + "start": 975.94, + "end": 981.4, + "probability": 0.9694 + }, + { + "start": 981.94, + "end": 982.1, + "probability": 0.7348 + }, + { + "start": 982.18, + "end": 983.14, + "probability": 0.9407 + }, + { + "start": 983.44, + "end": 984.2, + "probability": 0.5322 + }, + { + "start": 984.62, + "end": 986.32, + "probability": 0.881 + }, + { + "start": 986.4, + "end": 987.04, + "probability": 0.0676 + }, + { + "start": 987.08, + "end": 991.4, + "probability": 0.9521 + }, + { + "start": 992.24, + "end": 993.7, + "probability": 0.9465 + }, + { + "start": 994.38, + "end": 999.96, + "probability": 0.9544 + }, + { + "start": 1000.48, + "end": 1003.98, + "probability": 0.9701 + }, + { + "start": 1003.98, + "end": 1007.98, + "probability": 0.9961 + }, + { + "start": 1009.02, + "end": 1015.14, + "probability": 0.993 + }, + { + "start": 1015.8, + "end": 1016.56, + "probability": 0.5749 + }, + { + "start": 1016.6, + "end": 1021.72, + "probability": 0.9636 + }, + { + "start": 1022.32, + "end": 1025.48, + "probability": 0.991 + }, + { + "start": 1025.58, + "end": 1027.18, + "probability": 0.98 + }, + { + "start": 1027.74, + "end": 1033.46, + "probability": 0.9678 + }, + { + "start": 1034.26, + "end": 1036.44, + "probability": 0.9106 + }, + { + "start": 1037.26, + "end": 1039.86, + "probability": 0.9526 + }, + { + "start": 1040.92, + "end": 1044.82, + "probability": 0.9813 + }, + { + "start": 1044.9, + "end": 1046.12, + "probability": 0.8795 + }, + { + "start": 1046.56, + "end": 1048.12, + "probability": 0.9314 + }, + { + "start": 1049.06, + "end": 1053.84, + "probability": 0.9837 + }, + { + "start": 1054.66, + "end": 1059.86, + "probability": 0.9668 + }, + { + "start": 1060.52, + "end": 1064.8, + "probability": 0.9954 + }, + { + "start": 1064.98, + "end": 1066.66, + "probability": 0.5697 + }, + { + "start": 1067.68, + "end": 1069.9, + "probability": 0.8998 + }, + { + "start": 1070.76, + "end": 1071.62, + "probability": 0.9854 + }, + { + "start": 1071.68, + "end": 1072.45, + "probability": 0.8887 + }, + { + "start": 1072.74, + "end": 1074.12, + "probability": 0.9375 + }, + { + "start": 1074.64, + "end": 1077.2, + "probability": 0.9581 + }, + { + "start": 1077.62, + "end": 1079.22, + "probability": 0.9934 + }, + { + "start": 1080.48, + "end": 1085.34, + "probability": 0.9739 + }, + { + "start": 1086.24, + "end": 1089.2, + "probability": 0.2637 + }, + { + "start": 1089.44, + "end": 1090.6, + "probability": 0.5212 + }, + { + "start": 1091.02, + "end": 1093.58, + "probability": 0.8921 + }, + { + "start": 1094.12, + "end": 1098.14, + "probability": 0.9598 + }, + { + "start": 1098.66, + "end": 1103.9, + "probability": 0.9629 + }, + { + "start": 1104.72, + "end": 1106.26, + "probability": 0.8847 + }, + { + "start": 1107.34, + "end": 1110.02, + "probability": 0.9167 + }, + { + "start": 1110.6, + "end": 1113.12, + "probability": 0.8314 + }, + { + "start": 1114.04, + "end": 1114.96, + "probability": 0.6234 + }, + { + "start": 1115.16, + "end": 1116.6, + "probability": 0.8901 + }, + { + "start": 1116.98, + "end": 1117.66, + "probability": 0.6355 + }, + { + "start": 1118.34, + "end": 1119.44, + "probability": 0.9639 + }, + { + "start": 1119.54, + "end": 1120.48, + "probability": 0.5372 + }, + { + "start": 1120.9, + "end": 1127.52, + "probability": 0.9372 + }, + { + "start": 1128.04, + "end": 1130.54, + "probability": 0.9509 + }, + { + "start": 1130.54, + "end": 1134.34, + "probability": 0.8103 + }, + { + "start": 1134.38, + "end": 1137.3, + "probability": 0.8395 + }, + { + "start": 1137.44, + "end": 1139.24, + "probability": 0.6227 + }, + { + "start": 1139.92, + "end": 1141.28, + "probability": 0.97 + }, + { + "start": 1141.68, + "end": 1142.4, + "probability": 0.9072 + }, + { + "start": 1142.56, + "end": 1145.96, + "probability": 0.9666 + }, + { + "start": 1145.96, + "end": 1149.28, + "probability": 0.9816 + }, + { + "start": 1149.4, + "end": 1151.76, + "probability": 0.6575 + }, + { + "start": 1151.92, + "end": 1153.44, + "probability": 0.897 + }, + { + "start": 1153.6, + "end": 1154.32, + "probability": 0.8183 + }, + { + "start": 1154.62, + "end": 1156.42, + "probability": 0.9221 + }, + { + "start": 1156.74, + "end": 1159.32, + "probability": 0.994 + }, + { + "start": 1161.08, + "end": 1164.84, + "probability": 0.5145 + }, + { + "start": 1164.84, + "end": 1168.94, + "probability": 0.948 + }, + { + "start": 1169.56, + "end": 1176.06, + "probability": 0.9523 + }, + { + "start": 1176.56, + "end": 1181.32, + "probability": 0.6006 + }, + { + "start": 1181.72, + "end": 1182.0, + "probability": 0.4073 + }, + { + "start": 1182.04, + "end": 1183.54, + "probability": 0.8981 + }, + { + "start": 1184.34, + "end": 1190.14, + "probability": 0.9749 + }, + { + "start": 1190.18, + "end": 1190.46, + "probability": 0.7966 + }, + { + "start": 1190.46, + "end": 1191.78, + "probability": 0.8477 + }, + { + "start": 1192.48, + "end": 1195.2, + "probability": 0.984 + }, + { + "start": 1195.82, + "end": 1199.24, + "probability": 0.9634 + }, + { + "start": 1199.94, + "end": 1203.72, + "probability": 0.9911 + }, + { + "start": 1203.86, + "end": 1205.4, + "probability": 0.946 + }, + { + "start": 1206.02, + "end": 1208.44, + "probability": 0.779 + }, + { + "start": 1209.18, + "end": 1215.66, + "probability": 0.9145 + }, + { + "start": 1216.36, + "end": 1218.08, + "probability": 0.6269 + }, + { + "start": 1218.6, + "end": 1222.56, + "probability": 0.9878 + }, + { + "start": 1222.84, + "end": 1224.42, + "probability": 0.8258 + }, + { + "start": 1225.2, + "end": 1227.1, + "probability": 0.9829 + }, + { + "start": 1227.22, + "end": 1231.18, + "probability": 0.9595 + }, + { + "start": 1232.23, + "end": 1235.4, + "probability": 0.9873 + }, + { + "start": 1235.52, + "end": 1236.68, + "probability": 0.815 + }, + { + "start": 1237.22, + "end": 1240.68, + "probability": 0.9255 + }, + { + "start": 1241.12, + "end": 1244.38, + "probability": 0.9954 + }, + { + "start": 1244.46, + "end": 1244.82, + "probability": 0.8873 + }, + { + "start": 1246.12, + "end": 1248.48, + "probability": 0.9214 + }, + { + "start": 1248.54, + "end": 1250.66, + "probability": 0.7419 + }, + { + "start": 1250.72, + "end": 1251.54, + "probability": 0.7609 + }, + { + "start": 1251.58, + "end": 1255.12, + "probability": 0.9548 + }, + { + "start": 1257.44, + "end": 1259.08, + "probability": 0.8923 + }, + { + "start": 1259.55, + "end": 1266.36, + "probability": 0.9005 + }, + { + "start": 1266.36, + "end": 1272.68, + "probability": 0.8608 + }, + { + "start": 1273.46, + "end": 1275.14, + "probability": 0.5797 + }, + { + "start": 1275.74, + "end": 1276.42, + "probability": 0.7588 + }, + { + "start": 1276.7, + "end": 1277.0, + "probability": 0.5457 + }, + { + "start": 1277.1, + "end": 1277.68, + "probability": 0.7174 + }, + { + "start": 1277.84, + "end": 1278.18, + "probability": 0.8713 + }, + { + "start": 1278.24, + "end": 1279.42, + "probability": 0.8443 + }, + { + "start": 1280.42, + "end": 1281.38, + "probability": 0.6561 + }, + { + "start": 1281.56, + "end": 1282.54, + "probability": 0.8811 + }, + { + "start": 1283.44, + "end": 1287.82, + "probability": 0.8162 + }, + { + "start": 1289.98, + "end": 1292.36, + "probability": 0.4775 + }, + { + "start": 1293.28, + "end": 1295.76, + "probability": 0.744 + }, + { + "start": 1296.36, + "end": 1297.5, + "probability": 0.9375 + }, + { + "start": 1298.14, + "end": 1299.3, + "probability": 0.9844 + }, + { + "start": 1299.72, + "end": 1302.08, + "probability": 0.9731 + }, + { + "start": 1302.14, + "end": 1304.94, + "probability": 0.8366 + }, + { + "start": 1305.36, + "end": 1309.82, + "probability": 0.782 + }, + { + "start": 1309.92, + "end": 1312.56, + "probability": 0.946 + }, + { + "start": 1313.38, + "end": 1316.3, + "probability": 0.8854 + }, + { + "start": 1316.3, + "end": 1320.14, + "probability": 0.9301 + }, + { + "start": 1320.7, + "end": 1323.94, + "probability": 0.9398 + }, + { + "start": 1324.1, + "end": 1325.28, + "probability": 0.6045 + }, + { + "start": 1325.98, + "end": 1327.36, + "probability": 0.7195 + }, + { + "start": 1327.44, + "end": 1330.04, + "probability": 0.9836 + }, + { + "start": 1330.06, + "end": 1330.92, + "probability": 0.6779 + }, + { + "start": 1332.92, + "end": 1338.1, + "probability": 0.6793 + }, + { + "start": 1338.8, + "end": 1339.28, + "probability": 0.9266 + }, + { + "start": 1339.42, + "end": 1343.9, + "probability": 0.962 + }, + { + "start": 1344.56, + "end": 1347.64, + "probability": 0.6666 + }, + { + "start": 1347.76, + "end": 1349.48, + "probability": 0.9607 + }, + { + "start": 1349.8, + "end": 1351.18, + "probability": 0.9362 + }, + { + "start": 1351.3, + "end": 1353.94, + "probability": 0.9862 + }, + { + "start": 1354.56, + "end": 1359.6, + "probability": 0.8916 + }, + { + "start": 1360.24, + "end": 1363.52, + "probability": 0.9812 + }, + { + "start": 1363.52, + "end": 1365.88, + "probability": 0.9541 + }, + { + "start": 1365.96, + "end": 1370.36, + "probability": 0.8918 + }, + { + "start": 1370.48, + "end": 1374.08, + "probability": 0.9722 + }, + { + "start": 1374.16, + "end": 1374.56, + "probability": 0.8066 + }, + { + "start": 1374.74, + "end": 1378.1, + "probability": 0.9787 + }, + { + "start": 1378.14, + "end": 1379.66, + "probability": 0.998 + }, + { + "start": 1379.72, + "end": 1381.88, + "probability": 0.5317 + }, + { + "start": 1382.0, + "end": 1382.22, + "probability": 0.5966 + }, + { + "start": 1382.6, + "end": 1384.16, + "probability": 0.7389 + }, + { + "start": 1384.26, + "end": 1385.8, + "probability": 0.9421 + }, + { + "start": 1385.9, + "end": 1390.16, + "probability": 0.9668 + }, + { + "start": 1393.5, + "end": 1395.01, + "probability": 0.8181 + }, + { + "start": 1395.48, + "end": 1396.64, + "probability": 0.7395 + }, + { + "start": 1397.12, + "end": 1402.56, + "probability": 0.833 + }, + { + "start": 1402.74, + "end": 1403.3, + "probability": 0.6837 + }, + { + "start": 1403.88, + "end": 1404.74, + "probability": 0.7859 + }, + { + "start": 1404.88, + "end": 1407.54, + "probability": 0.9435 + }, + { + "start": 1407.96, + "end": 1409.74, + "probability": 0.9221 + }, + { + "start": 1409.8, + "end": 1413.82, + "probability": 0.9928 + }, + { + "start": 1414.22, + "end": 1416.36, + "probability": 0.5066 + }, + { + "start": 1417.46, + "end": 1419.46, + "probability": 0.9679 + }, + { + "start": 1420.26, + "end": 1421.14, + "probability": 0.8565 + }, + { + "start": 1421.24, + "end": 1422.1, + "probability": 0.96 + }, + { + "start": 1422.56, + "end": 1424.98, + "probability": 0.6498 + }, + { + "start": 1425.26, + "end": 1426.14, + "probability": 0.9005 + }, + { + "start": 1426.84, + "end": 1427.54, + "probability": 0.3488 + }, + { + "start": 1427.6, + "end": 1430.42, + "probability": 0.5446 + }, + { + "start": 1430.46, + "end": 1431.62, + "probability": 0.9076 + }, + { + "start": 1431.72, + "end": 1432.66, + "probability": 0.9332 + }, + { + "start": 1432.76, + "end": 1433.9, + "probability": 0.8708 + }, + { + "start": 1433.96, + "end": 1440.1, + "probability": 0.6477 + }, + { + "start": 1440.56, + "end": 1443.04, + "probability": 0.9699 + }, + { + "start": 1443.08, + "end": 1443.76, + "probability": 0.9342 + }, + { + "start": 1443.88, + "end": 1446.54, + "probability": 0.55 + }, + { + "start": 1446.82, + "end": 1448.18, + "probability": 0.5181 + }, + { + "start": 1448.26, + "end": 1451.28, + "probability": 0.8962 + }, + { + "start": 1451.64, + "end": 1452.22, + "probability": 0.9566 + }, + { + "start": 1452.34, + "end": 1453.46, + "probability": 0.7439 + }, + { + "start": 1453.6, + "end": 1458.04, + "probability": 0.8774 + }, + { + "start": 1458.04, + "end": 1463.0, + "probability": 0.89 + }, + { + "start": 1463.26, + "end": 1463.5, + "probability": 0.8083 + }, + { + "start": 1464.18, + "end": 1465.16, + "probability": 0.3554 + }, + { + "start": 1465.24, + "end": 1466.84, + "probability": 0.8906 + }, + { + "start": 1467.86, + "end": 1471.2, + "probability": 0.7306 + }, + { + "start": 1471.3, + "end": 1475.3, + "probability": 0.5157 + }, + { + "start": 1475.94, + "end": 1476.92, + "probability": 0.7799 + }, + { + "start": 1478.0, + "end": 1480.72, + "probability": 0.8686 + }, + { + "start": 1480.8, + "end": 1488.28, + "probability": 0.9585 + }, + { + "start": 1488.5, + "end": 1489.32, + "probability": 0.6001 + }, + { + "start": 1489.76, + "end": 1491.1, + "probability": 0.7468 + }, + { + "start": 1491.24, + "end": 1491.68, + "probability": 0.8184 + }, + { + "start": 1492.2, + "end": 1499.58, + "probability": 0.9934 + }, + { + "start": 1499.76, + "end": 1500.24, + "probability": 0.7599 + }, + { + "start": 1500.78, + "end": 1501.5, + "probability": 0.9181 + }, + { + "start": 1502.34, + "end": 1502.48, + "probability": 0.7849 + }, + { + "start": 1502.86, + "end": 1504.54, + "probability": 0.9542 + }, + { + "start": 1505.04, + "end": 1506.76, + "probability": 0.8303 + }, + { + "start": 1506.84, + "end": 1508.14, + "probability": 0.0266 + }, + { + "start": 1508.38, + "end": 1508.98, + "probability": 0.7821 + }, + { + "start": 1509.38, + "end": 1511.24, + "probability": 0.1083 + }, + { + "start": 1511.6, + "end": 1514.48, + "probability": 0.9876 + }, + { + "start": 1515.08, + "end": 1516.14, + "probability": 0.6084 + }, + { + "start": 1517.1, + "end": 1519.1, + "probability": 0.5116 + }, + { + "start": 1519.42, + "end": 1521.36, + "probability": 0.8921 + }, + { + "start": 1521.48, + "end": 1522.2, + "probability": 0.8225 + }, + { + "start": 1522.64, + "end": 1523.84, + "probability": 0.9715 + }, + { + "start": 1523.9, + "end": 1526.48, + "probability": 0.9329 + }, + { + "start": 1526.7, + "end": 1530.04, + "probability": 0.8008 + }, + { + "start": 1530.04, + "end": 1530.04, + "probability": 0.1865 + }, + { + "start": 1530.04, + "end": 1534.82, + "probability": 0.5978 + }, + { + "start": 1535.58, + "end": 1539.9, + "probability": 0.885 + }, + { + "start": 1540.0, + "end": 1543.28, + "probability": 0.7469 + }, + { + "start": 1543.52, + "end": 1545.48, + "probability": 0.9391 + }, + { + "start": 1545.9, + "end": 1550.32, + "probability": 0.9646 + }, + { + "start": 1550.56, + "end": 1551.38, + "probability": 0.7013 + }, + { + "start": 1551.8, + "end": 1552.46, + "probability": 0.2384 + }, + { + "start": 1553.12, + "end": 1557.42, + "probability": 0.9359 + }, + { + "start": 1557.94, + "end": 1565.54, + "probability": 0.9784 + }, + { + "start": 1566.4, + "end": 1568.56, + "probability": 0.8054 + }, + { + "start": 1568.94, + "end": 1569.28, + "probability": 0.7683 + }, + { + "start": 1569.76, + "end": 1574.96, + "probability": 0.9575 + }, + { + "start": 1575.32, + "end": 1577.12, + "probability": 0.9002 + }, + { + "start": 1577.56, + "end": 1578.32, + "probability": 0.8172 + }, + { + "start": 1578.42, + "end": 1581.7, + "probability": 0.9592 + }, + { + "start": 1582.38, + "end": 1583.42, + "probability": 0.6352 + }, + { + "start": 1583.92, + "end": 1584.44, + "probability": 0.6033 + }, + { + "start": 1584.64, + "end": 1586.3, + "probability": 0.9714 + }, + { + "start": 1587.0, + "end": 1590.52, + "probability": 0.9924 + }, + { + "start": 1590.52, + "end": 1594.4, + "probability": 0.7436 + }, + { + "start": 1594.6, + "end": 1595.1, + "probability": 0.7435 + }, + { + "start": 1595.24, + "end": 1596.22, + "probability": 0.6874 + }, + { + "start": 1596.94, + "end": 1599.56, + "probability": 0.9988 + }, + { + "start": 1600.88, + "end": 1602.74, + "probability": 0.9671 + }, + { + "start": 1603.38, + "end": 1605.42, + "probability": 0.8128 + }, + { + "start": 1606.32, + "end": 1609.7, + "probability": 0.9928 + }, + { + "start": 1610.0, + "end": 1611.28, + "probability": 0.9626 + }, + { + "start": 1611.68, + "end": 1618.28, + "probability": 0.9906 + }, + { + "start": 1618.9, + "end": 1621.22, + "probability": 0.8746 + }, + { + "start": 1621.22, + "end": 1622.42, + "probability": 0.0671 + }, + { + "start": 1622.42, + "end": 1623.3, + "probability": 0.094 + }, + { + "start": 1623.84, + "end": 1627.34, + "probability": 0.7254 + }, + { + "start": 1627.52, + "end": 1631.76, + "probability": 0.9511 + }, + { + "start": 1632.26, + "end": 1633.66, + "probability": 0.9168 + }, + { + "start": 1633.74, + "end": 1634.82, + "probability": 0.772 + }, + { + "start": 1634.92, + "end": 1635.54, + "probability": 0.5986 + }, + { + "start": 1635.92, + "end": 1638.78, + "probability": 0.8442 + }, + { + "start": 1638.88, + "end": 1640.16, + "probability": 0.8898 + }, + { + "start": 1640.34, + "end": 1643.02, + "probability": 0.8921 + }, + { + "start": 1643.84, + "end": 1647.36, + "probability": 0.9904 + }, + { + "start": 1647.72, + "end": 1648.6, + "probability": 0.9608 + }, + { + "start": 1649.42, + "end": 1653.26, + "probability": 0.9904 + }, + { + "start": 1653.64, + "end": 1657.64, + "probability": 0.9063 + }, + { + "start": 1658.08, + "end": 1661.66, + "probability": 0.8164 + }, + { + "start": 1661.82, + "end": 1662.82, + "probability": 0.6766 + }, + { + "start": 1662.92, + "end": 1664.18, + "probability": 0.9585 + }, + { + "start": 1664.32, + "end": 1667.44, + "probability": 0.9915 + }, + { + "start": 1667.62, + "end": 1668.59, + "probability": 0.9824 + }, + { + "start": 1669.44, + "end": 1671.22, + "probability": 0.9642 + }, + { + "start": 1671.48, + "end": 1672.27, + "probability": 0.1796 + }, + { + "start": 1673.0, + "end": 1673.96, + "probability": 0.3132 + }, + { + "start": 1674.26, + "end": 1674.4, + "probability": 0.1007 + }, + { + "start": 1674.4, + "end": 1678.38, + "probability": 0.8921 + }, + { + "start": 1679.56, + "end": 1687.12, + "probability": 0.0618 + }, + { + "start": 1688.18, + "end": 1688.28, + "probability": 0.0428 + }, + { + "start": 1688.28, + "end": 1688.28, + "probability": 0.047 + }, + { + "start": 1688.28, + "end": 1688.28, + "probability": 0.0055 + }, + { + "start": 1688.28, + "end": 1691.8, + "probability": 0.3316 + }, + { + "start": 1692.98, + "end": 1696.18, + "probability": 0.3735 + }, + { + "start": 1697.46, + "end": 1698.8, + "probability": 0.6531 + }, + { + "start": 1699.44, + "end": 1700.6, + "probability": 0.5836 + }, + { + "start": 1701.98, + "end": 1705.1, + "probability": 0.7639 + }, + { + "start": 1705.16, + "end": 1706.42, + "probability": 0.8667 + }, + { + "start": 1706.52, + "end": 1707.38, + "probability": 0.785 + }, + { + "start": 1707.7, + "end": 1713.86, + "probability": 0.9686 + }, + { + "start": 1714.52, + "end": 1718.48, + "probability": 0.5522 + }, + { + "start": 1718.94, + "end": 1719.92, + "probability": 0.7774 + }, + { + "start": 1720.84, + "end": 1723.08, + "probability": 0.8274 + }, + { + "start": 1723.86, + "end": 1724.88, + "probability": 0.8757 + }, + { + "start": 1724.98, + "end": 1726.44, + "probability": 0.7999 + }, + { + "start": 1726.58, + "end": 1729.64, + "probability": 0.7912 + }, + { + "start": 1729.76, + "end": 1730.2, + "probability": 0.6768 + }, + { + "start": 1730.26, + "end": 1737.2, + "probability": 0.9647 + }, + { + "start": 1738.32, + "end": 1740.06, + "probability": 0.8569 + }, + { + "start": 1740.68, + "end": 1747.16, + "probability": 0.9924 + }, + { + "start": 1747.26, + "end": 1747.82, + "probability": 0.8179 + }, + { + "start": 1748.5, + "end": 1752.75, + "probability": 0.8672 + }, + { + "start": 1753.22, + "end": 1756.84, + "probability": 0.6553 + }, + { + "start": 1756.84, + "end": 1757.4, + "probability": 0.0868 + }, + { + "start": 1757.96, + "end": 1760.48, + "probability": 0.99 + }, + { + "start": 1760.82, + "end": 1763.56, + "probability": 0.8797 + }, + { + "start": 1764.5, + "end": 1765.64, + "probability": 0.8576 + }, + { + "start": 1765.72, + "end": 1768.02, + "probability": 0.866 + }, + { + "start": 1768.26, + "end": 1770.18, + "probability": 0.791 + }, + { + "start": 1771.1, + "end": 1771.64, + "probability": 0.764 + }, + { + "start": 1771.72, + "end": 1774.94, + "probability": 0.8832 + }, + { + "start": 1774.94, + "end": 1778.44, + "probability": 0.7751 + }, + { + "start": 1779.64, + "end": 1783.38, + "probability": 0.9065 + }, + { + "start": 1784.32, + "end": 1785.34, + "probability": 0.9056 + }, + { + "start": 1785.62, + "end": 1790.02, + "probability": 0.9558 + }, + { + "start": 1790.14, + "end": 1791.64, + "probability": 0.7397 + }, + { + "start": 1792.74, + "end": 1795.22, + "probability": 0.8892 + }, + { + "start": 1795.22, + "end": 1798.52, + "probability": 0.9851 + }, + { + "start": 1799.64, + "end": 1801.86, + "probability": 0.4147 + }, + { + "start": 1801.86, + "end": 1806.2, + "probability": 0.7989 + }, + { + "start": 1808.24, + "end": 1811.98, + "probability": 0.9792 + }, + { + "start": 1813.3, + "end": 1816.86, + "probability": 0.9521 + }, + { + "start": 1817.94, + "end": 1819.82, + "probability": 0.9258 + }, + { + "start": 1820.64, + "end": 1823.88, + "probability": 0.9932 + }, + { + "start": 1823.88, + "end": 1827.78, + "probability": 0.9967 + }, + { + "start": 1828.56, + "end": 1830.92, + "probability": 0.8564 + }, + { + "start": 1831.04, + "end": 1832.56, + "probability": 0.7191 + }, + { + "start": 1833.06, + "end": 1837.34, + "probability": 0.8623 + }, + { + "start": 1838.1, + "end": 1841.8, + "probability": 0.9341 + }, + { + "start": 1841.8, + "end": 1845.28, + "probability": 0.993 + }, + { + "start": 1846.08, + "end": 1850.48, + "probability": 0.9969 + }, + { + "start": 1850.92, + "end": 1852.36, + "probability": 0.837 + }, + { + "start": 1853.28, + "end": 1854.82, + "probability": 0.8864 + }, + { + "start": 1856.76, + "end": 1860.06, + "probability": 0.9874 + }, + { + "start": 1860.26, + "end": 1861.02, + "probability": 0.4809 + }, + { + "start": 1861.1, + "end": 1864.94, + "probability": 0.5086 + }, + { + "start": 1864.94, + "end": 1868.38, + "probability": 0.783 + }, + { + "start": 1868.7, + "end": 1871.8, + "probability": 0.8999 + }, + { + "start": 1871.8, + "end": 1875.24, + "probability": 0.9524 + }, + { + "start": 1876.22, + "end": 1879.19, + "probability": 0.636 + }, + { + "start": 1879.22, + "end": 1881.4, + "probability": 0.9192 + }, + { + "start": 1882.32, + "end": 1886.44, + "probability": 0.9946 + }, + { + "start": 1886.5, + "end": 1887.44, + "probability": 0.93 + }, + { + "start": 1888.12, + "end": 1892.02, + "probability": 0.9457 + }, + { + "start": 1892.16, + "end": 1893.16, + "probability": 0.8407 + }, + { + "start": 1893.74, + "end": 1896.46, + "probability": 0.9916 + }, + { + "start": 1896.46, + "end": 1900.12, + "probability": 0.9816 + }, + { + "start": 1901.74, + "end": 1904.94, + "probability": 0.8522 + }, + { + "start": 1904.94, + "end": 1908.66, + "probability": 0.9763 + }, + { + "start": 1909.46, + "end": 1910.02, + "probability": 0.7535 + }, + { + "start": 1910.54, + "end": 1912.52, + "probability": 0.9961 + }, + { + "start": 1912.52, + "end": 1916.66, + "probability": 0.9783 + }, + { + "start": 1917.16, + "end": 1918.38, + "probability": 0.679 + }, + { + "start": 1922.24, + "end": 1923.42, + "probability": 0.7445 + }, + { + "start": 1923.5, + "end": 1925.28, + "probability": 0.7697 + }, + { + "start": 1925.32, + "end": 1926.1, + "probability": 0.7896 + }, + { + "start": 1927.12, + "end": 1931.16, + "probability": 0.978 + }, + { + "start": 1931.84, + "end": 1935.42, + "probability": 0.9547 + }, + { + "start": 1936.12, + "end": 1953.46, + "probability": 0.9478 + }, + { + "start": 1953.46, + "end": 1961.9, + "probability": 0.8965 + }, + { + "start": 1962.2, + "end": 1966.16, + "probability": 0.9753 + }, + { + "start": 1966.98, + "end": 1968.62, + "probability": 0.9071 + }, + { + "start": 1969.06, + "end": 1972.8, + "probability": 0.9845 + }, + { + "start": 1972.8, + "end": 1976.12, + "probability": 0.9373 + }, + { + "start": 1976.68, + "end": 1980.44, + "probability": 0.9985 + }, + { + "start": 1981.48, + "end": 1986.46, + "probability": 0.9716 + }, + { + "start": 1986.46, + "end": 1991.4, + "probability": 0.9839 + }, + { + "start": 1992.02, + "end": 1995.04, + "probability": 0.9971 + }, + { + "start": 1995.04, + "end": 1999.84, + "probability": 0.9425 + }, + { + "start": 2000.88, + "end": 2001.48, + "probability": 0.7851 + }, + { + "start": 2002.08, + "end": 2003.52, + "probability": 0.8672 + }, + { + "start": 2003.6, + "end": 2007.68, + "probability": 0.99 + }, + { + "start": 2008.42, + "end": 2012.12, + "probability": 0.9937 + }, + { + "start": 2012.12, + "end": 2014.84, + "probability": 0.8705 + }, + { + "start": 2015.82, + "end": 2019.3, + "probability": 0.8782 + }, + { + "start": 2019.42, + "end": 2020.88, + "probability": 0.9354 + }, + { + "start": 2021.56, + "end": 2024.96, + "probability": 0.9246 + }, + { + "start": 2025.5, + "end": 2027.72, + "probability": 0.9513 + }, + { + "start": 2028.7, + "end": 2034.16, + "probability": 0.9243 + }, + { + "start": 2035.68, + "end": 2036.56, + "probability": 0.6049 + }, + { + "start": 2036.64, + "end": 2039.0, + "probability": 0.9115 + }, + { + "start": 2039.16, + "end": 2039.22, + "probability": 0.6836 + }, + { + "start": 2039.3, + "end": 2040.36, + "probability": 0.376 + }, + { + "start": 2040.44, + "end": 2041.48, + "probability": 0.8142 + }, + { + "start": 2042.0, + "end": 2045.3, + "probability": 0.781 + }, + { + "start": 2045.3, + "end": 2045.66, + "probability": 0.6481 + }, + { + "start": 2045.78, + "end": 2051.36, + "probability": 0.779 + }, + { + "start": 2051.36, + "end": 2054.66, + "probability": 0.9793 + }, + { + "start": 2055.6, + "end": 2058.76, + "probability": 0.9775 + }, + { + "start": 2058.84, + "end": 2065.9, + "probability": 0.9692 + }, + { + "start": 2065.98, + "end": 2066.54, + "probability": 0.4154 + }, + { + "start": 2067.28, + "end": 2071.7, + "probability": 0.9888 + }, + { + "start": 2073.06, + "end": 2077.65, + "probability": 0.7435 + }, + { + "start": 2078.28, + "end": 2079.2, + "probability": 0.65 + }, + { + "start": 2079.42, + "end": 2079.66, + "probability": 0.716 + }, + { + "start": 2080.74, + "end": 2083.14, + "probability": 0.9266 + }, + { + "start": 2083.2, + "end": 2085.22, + "probability": 0.8833 + }, + { + "start": 2088.04, + "end": 2089.88, + "probability": 0.9194 + }, + { + "start": 2089.92, + "end": 2092.28, + "probability": 0.9813 + }, + { + "start": 2093.32, + "end": 2094.2, + "probability": 0.5412 + }, + { + "start": 2094.2, + "end": 2097.3, + "probability": 0.9727 + }, + { + "start": 2099.22, + "end": 2099.58, + "probability": 0.7868 + }, + { + "start": 2100.12, + "end": 2101.38, + "probability": 0.5885 + }, + { + "start": 2101.52, + "end": 2102.68, + "probability": 0.0557 + }, + { + "start": 2103.16, + "end": 2104.84, + "probability": 0.731 + }, + { + "start": 2104.84, + "end": 2106.6, + "probability": 0.6436 + }, + { + "start": 2106.74, + "end": 2107.52, + "probability": 0.6484 + }, + { + "start": 2107.52, + "end": 2108.98, + "probability": 0.8381 + }, + { + "start": 2109.16, + "end": 2110.66, + "probability": 0.949 + }, + { + "start": 2110.72, + "end": 2111.32, + "probability": 0.864 + }, + { + "start": 2111.58, + "end": 2117.46, + "probability": 0.9927 + }, + { + "start": 2118.06, + "end": 2120.9, + "probability": 0.9683 + }, + { + "start": 2121.86, + "end": 2124.72, + "probability": 0.9933 + }, + { + "start": 2125.66, + "end": 2126.22, + "probability": 0.7715 + }, + { + "start": 2126.26, + "end": 2127.62, + "probability": 0.9756 + }, + { + "start": 2127.68, + "end": 2129.22, + "probability": 0.9495 + }, + { + "start": 2129.3, + "end": 2129.98, + "probability": 0.8961 + }, + { + "start": 2130.78, + "end": 2134.56, + "probability": 0.9937 + }, + { + "start": 2134.6, + "end": 2138.04, + "probability": 0.9161 + }, + { + "start": 2139.2, + "end": 2140.28, + "probability": 0.5344 + }, + { + "start": 2140.3, + "end": 2141.4, + "probability": 0.8637 + }, + { + "start": 2141.52, + "end": 2143.84, + "probability": 0.7664 + }, + { + "start": 2144.62, + "end": 2147.76, + "probability": 0.8612 + }, + { + "start": 2147.8, + "end": 2150.16, + "probability": 0.9937 + }, + { + "start": 2150.22, + "end": 2152.9, + "probability": 0.9807 + }, + { + "start": 2153.68, + "end": 2153.98, + "probability": 0.446 + }, + { + "start": 2154.42, + "end": 2157.72, + "probability": 0.79 + }, + { + "start": 2157.82, + "end": 2160.62, + "probability": 0.9365 + }, + { + "start": 2160.74, + "end": 2162.48, + "probability": 0.6901 + }, + { + "start": 2162.98, + "end": 2163.94, + "probability": 0.8992 + }, + { + "start": 2163.98, + "end": 2168.36, + "probability": 0.9762 + }, + { + "start": 2168.36, + "end": 2172.02, + "probability": 0.998 + }, + { + "start": 2172.74, + "end": 2173.86, + "probability": 0.5428 + }, + { + "start": 2174.08, + "end": 2177.84, + "probability": 0.9617 + }, + { + "start": 2178.64, + "end": 2182.78, + "probability": 0.9976 + }, + { + "start": 2182.92, + "end": 2183.7, + "probability": 0.9784 + }, + { + "start": 2183.9, + "end": 2184.67, + "probability": 0.8704 + }, + { + "start": 2185.68, + "end": 2186.08, + "probability": 0.5238 + }, + { + "start": 2186.24, + "end": 2188.76, + "probability": 0.8799 + }, + { + "start": 2188.8, + "end": 2189.56, + "probability": 0.8531 + }, + { + "start": 2198.54, + "end": 2199.46, + "probability": 0.6721 + }, + { + "start": 2200.04, + "end": 2200.76, + "probability": 0.8103 + }, + { + "start": 2201.4, + "end": 2204.18, + "probability": 0.9861 + }, + { + "start": 2204.26, + "end": 2205.74, + "probability": 0.9138 + }, + { + "start": 2206.26, + "end": 2209.3, + "probability": 0.8828 + }, + { + "start": 2209.34, + "end": 2214.68, + "probability": 0.9757 + }, + { + "start": 2214.8, + "end": 2219.96, + "probability": 0.9906 + }, + { + "start": 2220.46, + "end": 2223.64, + "probability": 0.9873 + }, + { + "start": 2223.92, + "end": 2224.08, + "probability": 0.5264 + }, + { + "start": 2224.46, + "end": 2225.77, + "probability": 0.7396 + }, + { + "start": 2226.18, + "end": 2227.98, + "probability": 0.853 + }, + { + "start": 2228.5, + "end": 2229.92, + "probability": 0.9497 + }, + { + "start": 2231.26, + "end": 2237.3, + "probability": 0.9608 + }, + { + "start": 2239.02, + "end": 2239.82, + "probability": 0.7234 + }, + { + "start": 2239.98, + "end": 2241.6, + "probability": 0.8374 + }, + { + "start": 2241.76, + "end": 2242.82, + "probability": 0.733 + }, + { + "start": 2242.98, + "end": 2244.46, + "probability": 0.8777 + }, + { + "start": 2245.22, + "end": 2246.82, + "probability": 0.527 + }, + { + "start": 2247.72, + "end": 2251.66, + "probability": 0.969 + }, + { + "start": 2251.74, + "end": 2253.3, + "probability": 0.9919 + }, + { + "start": 2254.34, + "end": 2259.58, + "probability": 0.8755 + }, + { + "start": 2259.58, + "end": 2267.02, + "probability": 0.989 + }, + { + "start": 2267.98, + "end": 2272.24, + "probability": 0.9933 + }, + { + "start": 2273.06, + "end": 2275.92, + "probability": 0.9914 + }, + { + "start": 2276.04, + "end": 2284.36, + "probability": 0.9805 + }, + { + "start": 2284.56, + "end": 2287.3, + "probability": 0.6619 + }, + { + "start": 2288.26, + "end": 2291.88, + "probability": 0.95 + }, + { + "start": 2292.14, + "end": 2296.48, + "probability": 0.9884 + }, + { + "start": 2297.26, + "end": 2299.76, + "probability": 0.8954 + }, + { + "start": 2300.5, + "end": 2302.8, + "probability": 0.8813 + }, + { + "start": 2303.42, + "end": 2304.76, + "probability": 0.8652 + }, + { + "start": 2305.65, + "end": 2307.76, + "probability": 0.9888 + }, + { + "start": 2308.89, + "end": 2310.44, + "probability": 0.9371 + }, + { + "start": 2310.56, + "end": 2312.68, + "probability": 0.9922 + }, + { + "start": 2313.44, + "end": 2316.44, + "probability": 0.9965 + }, + { + "start": 2316.48, + "end": 2318.86, + "probability": 0.9855 + }, + { + "start": 2319.9, + "end": 2320.72, + "probability": 0.8606 + }, + { + "start": 2321.54, + "end": 2324.84, + "probability": 0.9799 + }, + { + "start": 2325.72, + "end": 2330.26, + "probability": 0.9729 + }, + { + "start": 2332.16, + "end": 2335.28, + "probability": 0.9954 + }, + { + "start": 2335.28, + "end": 2338.26, + "probability": 0.7367 + }, + { + "start": 2338.5, + "end": 2341.94, + "probability": 0.9823 + }, + { + "start": 2343.28, + "end": 2345.56, + "probability": 0.8601 + }, + { + "start": 2346.32, + "end": 2349.82, + "probability": 0.9906 + }, + { + "start": 2350.62, + "end": 2351.26, + "probability": 0.7738 + }, + { + "start": 2352.6, + "end": 2353.7, + "probability": 0.7108 + }, + { + "start": 2354.1, + "end": 2358.66, + "probability": 0.987 + }, + { + "start": 2358.66, + "end": 2363.66, + "probability": 0.9318 + }, + { + "start": 2364.2, + "end": 2368.52, + "probability": 0.9321 + }, + { + "start": 2369.06, + "end": 2370.24, + "probability": 0.9937 + }, + { + "start": 2370.9, + "end": 2374.9, + "probability": 0.993 + }, + { + "start": 2375.7, + "end": 2378.48, + "probability": 0.9609 + }, + { + "start": 2379.02, + "end": 2380.6, + "probability": 0.9541 + }, + { + "start": 2381.06, + "end": 2382.68, + "probability": 0.9017 + }, + { + "start": 2383.3, + "end": 2385.46, + "probability": 0.939 + }, + { + "start": 2385.48, + "end": 2387.02, + "probability": 0.9419 + }, + { + "start": 2387.12, + "end": 2388.26, + "probability": 0.8623 + }, + { + "start": 2389.04, + "end": 2391.4, + "probability": 0.9521 + }, + { + "start": 2391.8, + "end": 2392.98, + "probability": 0.9956 + }, + { + "start": 2393.36, + "end": 2394.64, + "probability": 0.7705 + }, + { + "start": 2395.3, + "end": 2397.14, + "probability": 0.9925 + }, + { + "start": 2397.64, + "end": 2398.68, + "probability": 0.9954 + }, + { + "start": 2399.22, + "end": 2401.64, + "probability": 0.955 + }, + { + "start": 2402.06, + "end": 2404.22, + "probability": 0.9625 + }, + { + "start": 2404.26, + "end": 2405.7, + "probability": 0.7869 + }, + { + "start": 2406.08, + "end": 2409.3, + "probability": 0.9614 + }, + { + "start": 2409.94, + "end": 2412.76, + "probability": 0.8782 + }, + { + "start": 2413.36, + "end": 2415.26, + "probability": 0.8135 + }, + { + "start": 2416.24, + "end": 2419.44, + "probability": 0.5101 + }, + { + "start": 2419.68, + "end": 2422.08, + "probability": 0.9642 + }, + { + "start": 2423.12, + "end": 2423.84, + "probability": 0.9284 + }, + { + "start": 2425.06, + "end": 2427.3, + "probability": 0.9878 + }, + { + "start": 2428.34, + "end": 2428.94, + "probability": 0.9407 + }, + { + "start": 2429.08, + "end": 2430.78, + "probability": 0.9945 + }, + { + "start": 2430.86, + "end": 2432.63, + "probability": 0.9976 + }, + { + "start": 2433.92, + "end": 2435.46, + "probability": 0.8528 + }, + { + "start": 2436.64, + "end": 2439.2, + "probability": 0.9278 + }, + { + "start": 2440.0, + "end": 2441.16, + "probability": 0.5822 + }, + { + "start": 2441.28, + "end": 2442.65, + "probability": 0.9844 + }, + { + "start": 2444.1, + "end": 2445.92, + "probability": 0.9815 + }, + { + "start": 2447.46, + "end": 2451.04, + "probability": 0.9988 + }, + { + "start": 2451.04, + "end": 2454.58, + "probability": 0.9896 + }, + { + "start": 2456.7, + "end": 2457.08, + "probability": 0.4398 + }, + { + "start": 2457.42, + "end": 2457.68, + "probability": 0.6993 + }, + { + "start": 2457.84, + "end": 2462.34, + "probability": 0.965 + }, + { + "start": 2462.82, + "end": 2467.12, + "probability": 0.9784 + }, + { + "start": 2467.68, + "end": 2469.1, + "probability": 0.9357 + }, + { + "start": 2470.16, + "end": 2472.62, + "probability": 0.9183 + }, + { + "start": 2473.02, + "end": 2474.22, + "probability": 0.9961 + }, + { + "start": 2474.78, + "end": 2477.32, + "probability": 0.9673 + }, + { + "start": 2477.9, + "end": 2482.18, + "probability": 0.9838 + }, + { + "start": 2482.26, + "end": 2482.78, + "probability": 0.9726 + }, + { + "start": 2482.86, + "end": 2484.0, + "probability": 0.8813 + }, + { + "start": 2484.96, + "end": 2489.28, + "probability": 0.8671 + }, + { + "start": 2489.72, + "end": 2490.78, + "probability": 0.8796 + }, + { + "start": 2491.04, + "end": 2494.14, + "probability": 0.9231 + }, + { + "start": 2494.72, + "end": 2495.84, + "probability": 0.7773 + }, + { + "start": 2497.14, + "end": 2498.52, + "probability": 0.8898 + }, + { + "start": 2499.12, + "end": 2504.12, + "probability": 0.971 + }, + { + "start": 2504.78, + "end": 2506.06, + "probability": 0.9775 + }, + { + "start": 2506.46, + "end": 2508.36, + "probability": 0.6322 + }, + { + "start": 2509.2, + "end": 2510.38, + "probability": 0.8547 + }, + { + "start": 2511.02, + "end": 2513.06, + "probability": 0.9922 + }, + { + "start": 2513.1, + "end": 2514.04, + "probability": 0.9916 + }, + { + "start": 2515.62, + "end": 2518.56, + "probability": 0.957 + }, + { + "start": 2520.6, + "end": 2522.02, + "probability": 0.6292 + }, + { + "start": 2523.92, + "end": 2526.18, + "probability": 0.9989 + }, + { + "start": 2526.62, + "end": 2532.16, + "probability": 0.9937 + }, + { + "start": 2533.26, + "end": 2535.22, + "probability": 0.8193 + }, + { + "start": 2535.74, + "end": 2539.94, + "probability": 0.9806 + }, + { + "start": 2540.02, + "end": 2541.86, + "probability": 0.9956 + }, + { + "start": 2542.72, + "end": 2543.47, + "probability": 0.9177 + }, + { + "start": 2543.6, + "end": 2544.34, + "probability": 0.8951 + }, + { + "start": 2544.36, + "end": 2545.32, + "probability": 0.9118 + }, + { + "start": 2546.28, + "end": 2546.7, + "probability": 0.9176 + }, + { + "start": 2546.76, + "end": 2547.06, + "probability": 0.8931 + }, + { + "start": 2547.48, + "end": 2548.03, + "probability": 0.9198 + }, + { + "start": 2548.42, + "end": 2549.28, + "probability": 0.6794 + }, + { + "start": 2549.4, + "end": 2550.12, + "probability": 0.7647 + }, + { + "start": 2550.18, + "end": 2550.6, + "probability": 0.4828 + }, + { + "start": 2551.16, + "end": 2552.36, + "probability": 0.7028 + }, + { + "start": 2552.8, + "end": 2553.84, + "probability": 0.9389 + }, + { + "start": 2554.0, + "end": 2554.63, + "probability": 0.6831 + }, + { + "start": 2555.26, + "end": 2556.42, + "probability": 0.8864 + }, + { + "start": 2556.58, + "end": 2557.76, + "probability": 0.4692 + }, + { + "start": 2557.78, + "end": 2557.88, + "probability": 0.1931 + }, + { + "start": 2557.88, + "end": 2558.18, + "probability": 0.5635 + }, + { + "start": 2558.24, + "end": 2559.06, + "probability": 0.7731 + }, + { + "start": 2559.14, + "end": 2560.34, + "probability": 0.8223 + }, + { + "start": 2561.18, + "end": 2562.9, + "probability": 0.9816 + }, + { + "start": 2564.04, + "end": 2564.54, + "probability": 0.3766 + }, + { + "start": 2564.64, + "end": 2568.8, + "probability": 0.994 + }, + { + "start": 2569.34, + "end": 2573.32, + "probability": 0.8823 + }, + { + "start": 2574.68, + "end": 2577.18, + "probability": 0.8254 + }, + { + "start": 2578.44, + "end": 2580.68, + "probability": 0.9377 + }, + { + "start": 2581.54, + "end": 2584.34, + "probability": 0.9967 + }, + { + "start": 2584.42, + "end": 2585.82, + "probability": 0.9973 + }, + { + "start": 2586.2, + "end": 2589.76, + "probability": 0.9926 + }, + { + "start": 2590.18, + "end": 2593.16, + "probability": 0.9915 + }, + { + "start": 2593.86, + "end": 2598.68, + "probability": 0.9804 + }, + { + "start": 2599.2, + "end": 2601.58, + "probability": 0.9187 + }, + { + "start": 2602.32, + "end": 2602.86, + "probability": 0.8629 + }, + { + "start": 2602.98, + "end": 2603.82, + "probability": 0.9229 + }, + { + "start": 2603.9, + "end": 2605.04, + "probability": 0.9556 + }, + { + "start": 2605.48, + "end": 2606.9, + "probability": 0.9789 + }, + { + "start": 2607.0, + "end": 2608.04, + "probability": 0.9976 + }, + { + "start": 2608.78, + "end": 2610.28, + "probability": 0.9939 + }, + { + "start": 2610.86, + "end": 2613.84, + "probability": 0.9307 + }, + { + "start": 2615.12, + "end": 2616.1, + "probability": 0.8475 + }, + { + "start": 2616.58, + "end": 2618.12, + "probability": 0.9946 + }, + { + "start": 2618.2, + "end": 2619.42, + "probability": 0.9899 + }, + { + "start": 2619.54, + "end": 2620.22, + "probability": 0.9954 + }, + { + "start": 2620.34, + "end": 2620.95, + "probability": 0.9873 + }, + { + "start": 2621.4, + "end": 2623.62, + "probability": 0.9935 + }, + { + "start": 2623.92, + "end": 2625.32, + "probability": 0.682 + }, + { + "start": 2626.36, + "end": 2627.69, + "probability": 0.8809 + }, + { + "start": 2628.46, + "end": 2631.8, + "probability": 0.9901 + }, + { + "start": 2632.74, + "end": 2634.72, + "probability": 0.553 + }, + { + "start": 2635.42, + "end": 2637.0, + "probability": 0.9664 + }, + { + "start": 2637.62, + "end": 2641.16, + "probability": 0.7755 + }, + { + "start": 2641.8, + "end": 2643.58, + "probability": 0.93 + }, + { + "start": 2643.6, + "end": 2647.5, + "probability": 0.9935 + }, + { + "start": 2648.12, + "end": 2650.16, + "probability": 0.6455 + }, + { + "start": 2650.3, + "end": 2651.48, + "probability": 0.9964 + }, + { + "start": 2652.08, + "end": 2653.36, + "probability": 0.8997 + }, + { + "start": 2653.9, + "end": 2657.06, + "probability": 0.949 + }, + { + "start": 2657.2, + "end": 2660.3, + "probability": 0.8682 + }, + { + "start": 2660.38, + "end": 2662.34, + "probability": 0.5085 + }, + { + "start": 2662.7, + "end": 2663.8, + "probability": 0.416 + }, + { + "start": 2663.8, + "end": 2664.08, + "probability": 0.7515 + }, + { + "start": 2664.08, + "end": 2664.52, + "probability": 0.0407 + }, + { + "start": 2665.32, + "end": 2666.74, + "probability": 0.6771 + }, + { + "start": 2667.22, + "end": 2670.86, + "probability": 0.9676 + }, + { + "start": 2671.44, + "end": 2672.22, + "probability": 0.756 + }, + { + "start": 2673.5, + "end": 2675.0, + "probability": 0.2311 + }, + { + "start": 2675.04, + "end": 2676.06, + "probability": 0.7231 + }, + { + "start": 2676.22, + "end": 2677.12, + "probability": 0.8113 + }, + { + "start": 2677.9, + "end": 2679.92, + "probability": 0.8584 + }, + { + "start": 2680.0, + "end": 2683.88, + "probability": 0.9917 + }, + { + "start": 2684.22, + "end": 2685.34, + "probability": 0.9869 + }, + { + "start": 2685.42, + "end": 2685.96, + "probability": 0.981 + }, + { + "start": 2686.48, + "end": 2688.04, + "probability": 0.9697 + }, + { + "start": 2688.5, + "end": 2690.12, + "probability": 0.9352 + }, + { + "start": 2690.42, + "end": 2691.42, + "probability": 0.8705 + }, + { + "start": 2691.76, + "end": 2692.94, + "probability": 0.9932 + }, + { + "start": 2693.12, + "end": 2694.25, + "probability": 0.9479 + }, + { + "start": 2694.62, + "end": 2695.66, + "probability": 0.9773 + }, + { + "start": 2696.42, + "end": 2699.84, + "probability": 0.9634 + }, + { + "start": 2699.86, + "end": 2703.58, + "probability": 0.9389 + }, + { + "start": 2704.04, + "end": 2707.2, + "probability": 0.8083 + }, + { + "start": 2707.46, + "end": 2708.52, + "probability": 0.4186 + }, + { + "start": 2710.16, + "end": 2714.28, + "probability": 0.8569 + }, + { + "start": 2714.38, + "end": 2716.36, + "probability": 0.6961 + }, + { + "start": 2716.5, + "end": 2717.26, + "probability": 0.4617 + }, + { + "start": 2721.36, + "end": 2725.2, + "probability": 0.3862 + }, + { + "start": 2725.3, + "end": 2726.16, + "probability": 0.5037 + }, + { + "start": 2726.38, + "end": 2726.6, + "probability": 0.5102 + }, + { + "start": 2726.6, + "end": 2726.6, + "probability": 0.5906 + }, + { + "start": 2726.6, + "end": 2727.41, + "probability": 0.9639 + }, + { + "start": 2727.76, + "end": 2730.98, + "probability": 0.8774 + }, + { + "start": 2731.56, + "end": 2732.26, + "probability": 0.7182 + }, + { + "start": 2732.44, + "end": 2732.98, + "probability": 0.95 + }, + { + "start": 2734.06, + "end": 2735.52, + "probability": 0.6455 + }, + { + "start": 2735.88, + "end": 2736.66, + "probability": 0.8914 + }, + { + "start": 2737.0, + "end": 2738.92, + "probability": 0.9746 + }, + { + "start": 2739.5, + "end": 2740.92, + "probability": 0.8992 + }, + { + "start": 2741.52, + "end": 2744.56, + "probability": 0.9503 + }, + { + "start": 2745.3, + "end": 2747.97, + "probability": 0.9661 + }, + { + "start": 2748.82, + "end": 2750.92, + "probability": 0.3939 + }, + { + "start": 2751.18, + "end": 2752.3, + "probability": 0.6943 + }, + { + "start": 2752.94, + "end": 2756.54, + "probability": 0.6334 + }, + { + "start": 2756.76, + "end": 2757.46, + "probability": 0.7613 + }, + { + "start": 2757.62, + "end": 2758.24, + "probability": 0.6912 + }, + { + "start": 2758.46, + "end": 2758.86, + "probability": 0.6737 + }, + { + "start": 2758.94, + "end": 2759.4, + "probability": 0.7902 + }, + { + "start": 2759.5, + "end": 2760.64, + "probability": 0.918 + }, + { + "start": 2761.14, + "end": 2761.96, + "probability": 0.7415 + }, + { + "start": 2762.0, + "end": 2765.88, + "probability": 0.9466 + }, + { + "start": 2766.26, + "end": 2767.42, + "probability": 0.9108 + }, + { + "start": 2768.06, + "end": 2770.26, + "probability": 0.9258 + }, + { + "start": 2770.78, + "end": 2771.85, + "probability": 0.7205 + }, + { + "start": 2772.78, + "end": 2774.26, + "probability": 0.9724 + }, + { + "start": 2774.34, + "end": 2774.88, + "probability": 0.7327 + }, + { + "start": 2775.04, + "end": 2778.08, + "probability": 0.5734 + }, + { + "start": 2778.18, + "end": 2778.18, + "probability": 0.116 + }, + { + "start": 2778.18, + "end": 2778.8, + "probability": 0.5963 + }, + { + "start": 2779.58, + "end": 2780.52, + "probability": 0.468 + }, + { + "start": 2780.72, + "end": 2781.16, + "probability": 0.894 + }, + { + "start": 2781.56, + "end": 2782.16, + "probability": 0.2642 + }, + { + "start": 2782.16, + "end": 2783.78, + "probability": 0.3452 + }, + { + "start": 2784.7, + "end": 2786.28, + "probability": 0.331 + }, + { + "start": 2786.58, + "end": 2786.62, + "probability": 0.3197 + }, + { + "start": 2786.62, + "end": 2787.86, + "probability": 0.8052 + }, + { + "start": 2788.42, + "end": 2790.32, + "probability": 0.7311 + }, + { + "start": 2790.76, + "end": 2791.32, + "probability": 0.771 + }, + { + "start": 2791.32, + "end": 2792.0, + "probability": 0.9354 + }, + { + "start": 2792.06, + "end": 2794.5, + "probability": 0.9821 + }, + { + "start": 2795.0, + "end": 2796.39, + "probability": 0.9963 + }, + { + "start": 2797.1, + "end": 2799.94, + "probability": 0.574 + }, + { + "start": 2800.06, + "end": 2801.24, + "probability": 0.7225 + }, + { + "start": 2801.26, + "end": 2804.16, + "probability": 0.9855 + }, + { + "start": 2804.46, + "end": 2805.7, + "probability": 0.9879 + }, + { + "start": 2805.92, + "end": 2807.06, + "probability": 0.8956 + }, + { + "start": 2807.46, + "end": 2808.68, + "probability": 0.9885 + }, + { + "start": 2808.78, + "end": 2809.18, + "probability": 0.7211 + }, + { + "start": 2809.74, + "end": 2811.4, + "probability": 0.5157 + }, + { + "start": 2811.58, + "end": 2813.36, + "probability": 0.897 + }, + { + "start": 2813.46, + "end": 2818.46, + "probability": 0.8626 + }, + { + "start": 2819.32, + "end": 2822.44, + "probability": 0.9568 + }, + { + "start": 2823.6, + "end": 2830.98, + "probability": 0.986 + }, + { + "start": 2832.8, + "end": 2836.2, + "probability": 0.9136 + }, + { + "start": 2837.1, + "end": 2838.08, + "probability": 0.6631 + }, + { + "start": 2839.38, + "end": 2841.74, + "probability": 0.7325 + }, + { + "start": 2842.66, + "end": 2848.8, + "probability": 0.8452 + }, + { + "start": 2848.8, + "end": 2855.18, + "probability": 0.7926 + }, + { + "start": 2855.88, + "end": 2858.06, + "probability": 0.9668 + }, + { + "start": 2859.06, + "end": 2860.08, + "probability": 0.7801 + }, + { + "start": 2860.46, + "end": 2864.02, + "probability": 0.8964 + }, + { + "start": 2864.02, + "end": 2867.9, + "probability": 0.9841 + }, + { + "start": 2868.38, + "end": 2870.56, + "probability": 0.7533 + }, + { + "start": 2870.96, + "end": 2872.06, + "probability": 0.9199 + }, + { + "start": 2873.08, + "end": 2874.38, + "probability": 0.486 + }, + { + "start": 2874.44, + "end": 2875.5, + "probability": 0.8597 + }, + { + "start": 2876.48, + "end": 2877.66, + "probability": 0.8363 + }, + { + "start": 2877.96, + "end": 2879.34, + "probability": 0.8289 + }, + { + "start": 2879.46, + "end": 2880.82, + "probability": 0.869 + }, + { + "start": 2881.42, + "end": 2884.44, + "probability": 0.8398 + }, + { + "start": 2886.2, + "end": 2889.28, + "probability": 0.9839 + }, + { + "start": 2889.74, + "end": 2890.18, + "probability": 0.0097 + }, + { + "start": 2890.3, + "end": 2893.82, + "probability": 0.9956 + }, + { + "start": 2894.32, + "end": 2897.8, + "probability": 0.584 + }, + { + "start": 2898.98, + "end": 2903.32, + "probability": 0.906 + }, + { + "start": 2903.6, + "end": 2905.06, + "probability": 0.6808 + }, + { + "start": 2906.04, + "end": 2908.78, + "probability": 0.7043 + }, + { + "start": 2909.06, + "end": 2910.48, + "probability": 0.7229 + }, + { + "start": 2910.6, + "end": 2915.2, + "probability": 0.7825 + }, + { + "start": 2915.72, + "end": 2922.54, + "probability": 0.7363 + }, + { + "start": 2923.17, + "end": 2927.48, + "probability": 0.9899 + }, + { + "start": 2933.96, + "end": 2936.38, + "probability": 0.4717 + }, + { + "start": 2936.66, + "end": 2937.54, + "probability": 0.0824 + }, + { + "start": 2937.7, + "end": 2938.28, + "probability": 0.5703 + }, + { + "start": 2939.24, + "end": 2939.56, + "probability": 0.2031 + }, + { + "start": 2939.56, + "end": 2939.56, + "probability": 0.4614 + }, + { + "start": 2939.56, + "end": 2939.56, + "probability": 0.0992 + }, + { + "start": 2939.56, + "end": 2942.08, + "probability": 0.1915 + }, + { + "start": 2943.26, + "end": 2946.78, + "probability": 0.8168 + }, + { + "start": 2948.8, + "end": 2956.42, + "probability": 0.8271 + }, + { + "start": 2956.42, + "end": 2956.88, + "probability": 0.2185 + }, + { + "start": 2957.52, + "end": 2957.62, + "probability": 0.0334 + }, + { + "start": 2957.62, + "end": 2958.2, + "probability": 0.7833 + }, + { + "start": 2960.0, + "end": 2961.98, + "probability": 0.8582 + }, + { + "start": 2962.1, + "end": 2964.78, + "probability": 0.8569 + }, + { + "start": 2964.88, + "end": 2968.96, + "probability": 0.6945 + }, + { + "start": 2969.84, + "end": 2973.6, + "probability": 0.9369 + }, + { + "start": 2973.66, + "end": 2974.64, + "probability": 0.5917 + }, + { + "start": 2980.28, + "end": 2981.14, + "probability": 0.2844 + }, + { + "start": 2982.06, + "end": 2985.7, + "probability": 0.9781 + }, + { + "start": 2985.7, + "end": 2990.6, + "probability": 0.9158 + }, + { + "start": 2991.88, + "end": 2995.02, + "probability": 0.9824 + }, + { + "start": 2996.38, + "end": 2997.06, + "probability": 0.6989 + }, + { + "start": 2998.7, + "end": 3003.48, + "probability": 0.9781 + }, + { + "start": 3004.08, + "end": 3007.28, + "probability": 0.8328 + }, + { + "start": 3007.96, + "end": 3008.08, + "probability": 0.2669 + }, + { + "start": 3008.36, + "end": 3009.68, + "probability": 0.7241 + }, + { + "start": 3009.72, + "end": 3010.4, + "probability": 0.7747 + }, + { + "start": 3011.8, + "end": 3013.9, + "probability": 0.9511 + }, + { + "start": 3014.82, + "end": 3018.44, + "probability": 0.9844 + }, + { + "start": 3018.44, + "end": 3020.78, + "probability": 0.9863 + }, + { + "start": 3020.9, + "end": 3022.38, + "probability": 0.8167 + }, + { + "start": 3023.38, + "end": 3024.5, + "probability": 0.0619 + }, + { + "start": 3024.5, + "end": 3025.2, + "probability": 0.7784 + }, + { + "start": 3026.24, + "end": 3030.24, + "probability": 0.9613 + }, + { + "start": 3030.36, + "end": 3033.42, + "probability": 0.9548 + }, + { + "start": 3034.18, + "end": 3038.02, + "probability": 0.9827 + }, + { + "start": 3038.14, + "end": 3043.26, + "probability": 0.9815 + }, + { + "start": 3043.26, + "end": 3047.24, + "probability": 0.9291 + }, + { + "start": 3048.12, + "end": 3051.26, + "probability": 0.9973 + }, + { + "start": 3051.42, + "end": 3052.14, + "probability": 0.7428 + }, + { + "start": 3052.24, + "end": 3053.78, + "probability": 0.9899 + }, + { + "start": 3054.54, + "end": 3056.04, + "probability": 0.9843 + }, + { + "start": 3056.62, + "end": 3059.56, + "probability": 0.7753 + }, + { + "start": 3060.02, + "end": 3062.86, + "probability": 0.9921 + }, + { + "start": 3062.86, + "end": 3066.52, + "probability": 0.9152 + }, + { + "start": 3067.06, + "end": 3067.56, + "probability": 0.4565 + }, + { + "start": 3067.7, + "end": 3070.46, + "probability": 0.8828 + }, + { + "start": 3070.5, + "end": 3075.04, + "probability": 0.958 + }, + { + "start": 3075.82, + "end": 3077.56, + "probability": 0.9993 + }, + { + "start": 3077.72, + "end": 3081.4, + "probability": 0.9702 + }, + { + "start": 3082.02, + "end": 3083.1, + "probability": 0.9961 + }, + { + "start": 3083.3, + "end": 3084.22, + "probability": 0.981 + }, + { + "start": 3084.72, + "end": 3086.18, + "probability": 0.8761 + }, + { + "start": 3086.28, + "end": 3087.14, + "probability": 0.9012 + }, + { + "start": 3087.86, + "end": 3091.44, + "probability": 0.8053 + }, + { + "start": 3091.44, + "end": 3093.68, + "probability": 0.7784 + }, + { + "start": 3094.36, + "end": 3097.8, + "probability": 0.9971 + }, + { + "start": 3098.72, + "end": 3102.12, + "probability": 0.9886 + }, + { + "start": 3102.74, + "end": 3106.6, + "probability": 0.9896 + }, + { + "start": 3107.12, + "end": 3107.38, + "probability": 0.8341 + }, + { + "start": 3107.54, + "end": 3111.1, + "probability": 0.9843 + }, + { + "start": 3111.44, + "end": 3113.72, + "probability": 0.989 + }, + { + "start": 3114.26, + "end": 3115.92, + "probability": 0.9844 + }, + { + "start": 3116.06, + "end": 3118.68, + "probability": 0.9977 + }, + { + "start": 3118.68, + "end": 3122.72, + "probability": 0.8254 + }, + { + "start": 3122.8, + "end": 3124.5, + "probability": 0.9601 + }, + { + "start": 3124.68, + "end": 3129.3, + "probability": 0.9453 + }, + { + "start": 3130.26, + "end": 3134.34, + "probability": 0.9934 + }, + { + "start": 3134.52, + "end": 3136.26, + "probability": 0.9514 + }, + { + "start": 3146.3, + "end": 3146.64, + "probability": 0.0769 + }, + { + "start": 3146.64, + "end": 3146.64, + "probability": 0.1055 + }, + { + "start": 3146.64, + "end": 3146.64, + "probability": 0.0313 + }, + { + "start": 3148.24, + "end": 3151.24, + "probability": 0.6754 + }, + { + "start": 3151.4, + "end": 3154.68, + "probability": 0.8537 + }, + { + "start": 3154.76, + "end": 3157.06, + "probability": 0.9724 + }, + { + "start": 3157.58, + "end": 3158.02, + "probability": 0.4868 + }, + { + "start": 3160.86, + "end": 3161.06, + "probability": 0.3129 + }, + { + "start": 3161.1, + "end": 3165.5, + "probability": 0.9888 + }, + { + "start": 3165.5, + "end": 3168.08, + "probability": 0.9858 + }, + { + "start": 3168.12, + "end": 3168.82, + "probability": 0.519 + }, + { + "start": 3168.88, + "end": 3169.24, + "probability": 0.7861 + }, + { + "start": 3169.66, + "end": 3171.34, + "probability": 0.9141 + }, + { + "start": 3172.16, + "end": 3173.78, + "probability": 0.6888 + }, + { + "start": 3174.58, + "end": 3176.28, + "probability": 0.7702 + }, + { + "start": 3176.72, + "end": 3177.42, + "probability": 0.9199 + }, + { + "start": 3178.22, + "end": 3179.82, + "probability": 0.9178 + }, + { + "start": 3181.02, + "end": 3183.26, + "probability": 0.834 + }, + { + "start": 3183.56, + "end": 3185.5, + "probability": 0.8674 + }, + { + "start": 3185.56, + "end": 3186.76, + "probability": 0.9347 + }, + { + "start": 3186.86, + "end": 3191.88, + "probability": 0.8942 + }, + { + "start": 3192.56, + "end": 3194.25, + "probability": 0.9819 + }, + { + "start": 3194.6, + "end": 3195.64, + "probability": 0.9324 + }, + { + "start": 3196.14, + "end": 3196.96, + "probability": 0.8042 + }, + { + "start": 3197.36, + "end": 3198.34, + "probability": 0.7651 + }, + { + "start": 3198.56, + "end": 3199.74, + "probability": 0.7526 + }, + { + "start": 3200.24, + "end": 3204.18, + "probability": 0.9341 + }, + { + "start": 3204.48, + "end": 3207.46, + "probability": 0.8731 + }, + { + "start": 3207.64, + "end": 3207.86, + "probability": 0.8662 + }, + { + "start": 3208.82, + "end": 3209.44, + "probability": 0.4716 + }, + { + "start": 3209.7, + "end": 3213.82, + "probability": 0.7434 + }, + { + "start": 3214.22, + "end": 3214.22, + "probability": 0.242 + }, + { + "start": 3214.34, + "end": 3216.72, + "probability": 0.9548 + }, + { + "start": 3216.72, + "end": 3220.38, + "probability": 0.8776 + }, + { + "start": 3221.12, + "end": 3222.34, + "probability": 0.561 + }, + { + "start": 3222.58, + "end": 3224.28, + "probability": 0.9279 + }, + { + "start": 3224.54, + "end": 3226.1, + "probability": 0.9398 + }, + { + "start": 3226.2, + "end": 3229.02, + "probability": 0.9937 + }, + { + "start": 3229.16, + "end": 3229.72, + "probability": 0.7151 + }, + { + "start": 3229.92, + "end": 3230.97, + "probability": 0.298 + }, + { + "start": 3231.16, + "end": 3233.22, + "probability": 0.69 + }, + { + "start": 3233.38, + "end": 3234.26, + "probability": 0.8092 + }, + { + "start": 3234.3, + "end": 3234.7, + "probability": 0.9013 + }, + { + "start": 3235.26, + "end": 3237.42, + "probability": 0.7583 + }, + { + "start": 3238.02, + "end": 3239.62, + "probability": 0.7645 + }, + { + "start": 3239.74, + "end": 3241.08, + "probability": 0.8477 + }, + { + "start": 3241.52, + "end": 3247.74, + "probability": 0.9914 + }, + { + "start": 3248.2, + "end": 3252.74, + "probability": 0.9896 + }, + { + "start": 3252.74, + "end": 3258.06, + "probability": 0.9982 + }, + { + "start": 3258.26, + "end": 3259.58, + "probability": 0.6776 + }, + { + "start": 3259.72, + "end": 3263.62, + "probability": 0.8771 + }, + { + "start": 3263.9, + "end": 3266.14, + "probability": 0.9881 + }, + { + "start": 3266.16, + "end": 3268.26, + "probability": 0.9897 + }, + { + "start": 3268.44, + "end": 3272.0, + "probability": 0.8198 + }, + { + "start": 3272.54, + "end": 3275.4, + "probability": 0.9451 + }, + { + "start": 3276.06, + "end": 3276.46, + "probability": 0.5907 + }, + { + "start": 3276.58, + "end": 3279.72, + "probability": 0.9504 + }, + { + "start": 3280.1, + "end": 3282.92, + "probability": 0.9871 + }, + { + "start": 3283.14, + "end": 3286.26, + "probability": 0.9744 + }, + { + "start": 3286.82, + "end": 3290.27, + "probability": 0.9919 + }, + { + "start": 3290.8, + "end": 3296.56, + "probability": 0.9878 + }, + { + "start": 3296.56, + "end": 3301.14, + "probability": 0.9971 + }, + { + "start": 3301.44, + "end": 3302.08, + "probability": 0.4841 + }, + { + "start": 3302.46, + "end": 3304.14, + "probability": 0.9245 + }, + { + "start": 3304.26, + "end": 3306.11, + "probability": 0.9925 + }, + { + "start": 3306.62, + "end": 3308.08, + "probability": 0.7782 + }, + { + "start": 3308.16, + "end": 3309.8, + "probability": 0.925 + }, + { + "start": 3310.12, + "end": 3312.3, + "probability": 0.845 + }, + { + "start": 3312.66, + "end": 3315.04, + "probability": 0.5811 + }, + { + "start": 3315.08, + "end": 3317.46, + "probability": 0.8361 + }, + { + "start": 3320.06, + "end": 3320.72, + "probability": 0.5771 + }, + { + "start": 3320.96, + "end": 3321.68, + "probability": 0.5613 + }, + { + "start": 3321.84, + "end": 3322.9, + "probability": 0.7888 + }, + { + "start": 3323.36, + "end": 3325.14, + "probability": 0.838 + }, + { + "start": 3325.58, + "end": 3328.84, + "probability": 0.9712 + }, + { + "start": 3329.88, + "end": 3333.84, + "probability": 0.7961 + }, + { + "start": 3334.44, + "end": 3336.98, + "probability": 0.9979 + }, + { + "start": 3337.12, + "end": 3341.0, + "probability": 0.9951 + }, + { + "start": 3341.08, + "end": 3342.22, + "probability": 0.9207 + }, + { + "start": 3342.78, + "end": 3343.42, + "probability": 0.8476 + }, + { + "start": 3343.5, + "end": 3344.48, + "probability": 0.9484 + }, + { + "start": 3344.72, + "end": 3349.16, + "probability": 0.9563 + }, + { + "start": 3349.48, + "end": 3352.34, + "probability": 0.7018 + }, + { + "start": 3352.42, + "end": 3353.38, + "probability": 0.8001 + }, + { + "start": 3353.58, + "end": 3354.4, + "probability": 0.9597 + }, + { + "start": 3354.46, + "end": 3355.27, + "probability": 0.9417 + }, + { + "start": 3355.64, + "end": 3356.86, + "probability": 0.9944 + }, + { + "start": 3357.04, + "end": 3358.44, + "probability": 0.7688 + }, + { + "start": 3358.58, + "end": 3360.86, + "probability": 0.9735 + }, + { + "start": 3360.92, + "end": 3361.9, + "probability": 0.9634 + }, + { + "start": 3362.08, + "end": 3363.29, + "probability": 0.9895 + }, + { + "start": 3363.56, + "end": 3363.86, + "probability": 0.7272 + }, + { + "start": 3363.88, + "end": 3364.62, + "probability": 0.8706 + }, + { + "start": 3365.18, + "end": 3366.9, + "probability": 0.6272 + }, + { + "start": 3367.08, + "end": 3369.02, + "probability": 0.9659 + }, + { + "start": 3369.26, + "end": 3371.58, + "probability": 0.9341 + }, + { + "start": 3371.78, + "end": 3373.24, + "probability": 0.7338 + }, + { + "start": 3373.38, + "end": 3374.2, + "probability": 0.8597 + }, + { + "start": 3374.7, + "end": 3375.92, + "probability": 0.8054 + }, + { + "start": 3376.18, + "end": 3377.42, + "probability": 0.915 + }, + { + "start": 3377.78, + "end": 3379.35, + "probability": 0.8304 + }, + { + "start": 3379.8, + "end": 3382.1, + "probability": 0.9917 + }, + { + "start": 3382.38, + "end": 3383.14, + "probability": 0.8992 + }, + { + "start": 3383.3, + "end": 3385.14, + "probability": 0.9474 + }, + { + "start": 3385.52, + "end": 3386.59, + "probability": 0.9034 + }, + { + "start": 3386.7, + "end": 3387.63, + "probability": 0.4953 + }, + { + "start": 3387.82, + "end": 3388.7, + "probability": 0.9275 + }, + { + "start": 3388.78, + "end": 3389.48, + "probability": 0.6043 + }, + { + "start": 3389.9, + "end": 3391.84, + "probability": 0.8799 + }, + { + "start": 3392.26, + "end": 3394.26, + "probability": 0.7168 + }, + { + "start": 3394.78, + "end": 3397.12, + "probability": 0.7381 + }, + { + "start": 3397.52, + "end": 3398.68, + "probability": 0.9624 + }, + { + "start": 3398.72, + "end": 3400.2, + "probability": 0.9648 + }, + { + "start": 3400.54, + "end": 3403.2, + "probability": 0.9656 + }, + { + "start": 3403.48, + "end": 3404.56, + "probability": 0.9894 + }, + { + "start": 3404.6, + "end": 3406.83, + "probability": 0.7885 + }, + { + "start": 3407.4, + "end": 3410.08, + "probability": 0.9321 + }, + { + "start": 3410.16, + "end": 3410.28, + "probability": 0.6067 + }, + { + "start": 3410.38, + "end": 3412.26, + "probability": 0.5818 + }, + { + "start": 3412.32, + "end": 3414.68, + "probability": 0.7867 + }, + { + "start": 3416.16, + "end": 3419.16, + "probability": 0.8828 + }, + { + "start": 3419.38, + "end": 3424.78, + "probability": 0.9488 + }, + { + "start": 3424.78, + "end": 3427.54, + "probability": 0.9436 + }, + { + "start": 3427.94, + "end": 3429.9, + "probability": 0.987 + }, + { + "start": 3430.32, + "end": 3435.48, + "probability": 0.9329 + }, + { + "start": 3435.82, + "end": 3439.06, + "probability": 0.9913 + }, + { + "start": 3439.52, + "end": 3440.1, + "probability": 0.8655 + }, + { + "start": 3440.14, + "end": 3442.5, + "probability": 0.9854 + }, + { + "start": 3442.56, + "end": 3445.26, + "probability": 0.9963 + }, + { + "start": 3445.32, + "end": 3448.46, + "probability": 0.6521 + }, + { + "start": 3448.7, + "end": 3451.66, + "probability": 0.9104 + }, + { + "start": 3451.66, + "end": 3454.42, + "probability": 0.9807 + }, + { + "start": 3454.48, + "end": 3455.39, + "probability": 0.6048 + }, + { + "start": 3455.76, + "end": 3456.1, + "probability": 0.4577 + }, + { + "start": 3456.12, + "end": 3459.12, + "probability": 0.9207 + }, + { + "start": 3459.92, + "end": 3461.86, + "probability": 0.9812 + }, + { + "start": 3461.98, + "end": 3462.12, + "probability": 0.6248 + }, + { + "start": 3462.24, + "end": 3463.8, + "probability": 0.5038 + }, + { + "start": 3463.86, + "end": 3465.36, + "probability": 0.7791 + }, + { + "start": 3466.04, + "end": 3467.76, + "probability": 0.9279 + }, + { + "start": 3468.0, + "end": 3471.34, + "probability": 0.8371 + }, + { + "start": 3472.1, + "end": 3476.24, + "probability": 0.9838 + }, + { + "start": 3476.24, + "end": 3479.44, + "probability": 0.7213 + }, + { + "start": 3480.14, + "end": 3480.92, + "probability": 0.4418 + }, + { + "start": 3481.02, + "end": 3483.98, + "probability": 0.9882 + }, + { + "start": 3484.54, + "end": 3486.41, + "probability": 0.9785 + }, + { + "start": 3486.68, + "end": 3489.52, + "probability": 0.9972 + }, + { + "start": 3489.52, + "end": 3493.02, + "probability": 0.9988 + }, + { + "start": 3493.52, + "end": 3494.96, + "probability": 0.8274 + }, + { + "start": 3495.19, + "end": 3498.82, + "probability": 0.9866 + }, + { + "start": 3498.82, + "end": 3501.78, + "probability": 0.9996 + }, + { + "start": 3502.38, + "end": 3502.82, + "probability": 0.5199 + }, + { + "start": 3502.9, + "end": 3504.02, + "probability": 0.5957 + }, + { + "start": 3504.3, + "end": 3505.6, + "probability": 0.9976 + }, + { + "start": 3505.68, + "end": 3506.99, + "probability": 0.9925 + }, + { + "start": 3507.18, + "end": 3507.86, + "probability": 0.752 + }, + { + "start": 3508.38, + "end": 3509.14, + "probability": 0.8052 + }, + { + "start": 3509.66, + "end": 3513.14, + "probability": 0.9312 + }, + { + "start": 3513.18, + "end": 3515.04, + "probability": 0.8198 + }, + { + "start": 3515.48, + "end": 3518.24, + "probability": 0.9944 + }, + { + "start": 3518.38, + "end": 3521.08, + "probability": 0.8552 + }, + { + "start": 3521.2, + "end": 3524.04, + "probability": 0.9591 + }, + { + "start": 3524.66, + "end": 3525.52, + "probability": 0.8981 + }, + { + "start": 3525.98, + "end": 3530.36, + "probability": 0.9831 + }, + { + "start": 3531.24, + "end": 3533.56, + "probability": 0.9087 + }, + { + "start": 3534.06, + "end": 3537.86, + "probability": 0.9099 + }, + { + "start": 3538.32, + "end": 3539.76, + "probability": 0.8803 + }, + { + "start": 3539.94, + "end": 3541.9, + "probability": 0.9775 + }, + { + "start": 3542.58, + "end": 3545.56, + "probability": 0.968 + }, + { + "start": 3545.64, + "end": 3547.28, + "probability": 0.9677 + }, + { + "start": 3547.4, + "end": 3548.78, + "probability": 0.9954 + }, + { + "start": 3549.36, + "end": 3553.42, + "probability": 0.9854 + }, + { + "start": 3553.58, + "end": 3555.4, + "probability": 0.6966 + }, + { + "start": 3555.5, + "end": 3557.16, + "probability": 0.9354 + }, + { + "start": 3557.56, + "end": 3560.76, + "probability": 0.9873 + }, + { + "start": 3561.22, + "end": 3561.38, + "probability": 0.6902 + }, + { + "start": 3561.58, + "end": 3562.18, + "probability": 0.9652 + }, + { + "start": 3562.34, + "end": 3564.8, + "probability": 0.9978 + }, + { + "start": 3564.8, + "end": 3567.18, + "probability": 0.9791 + }, + { + "start": 3567.32, + "end": 3571.7, + "probability": 0.9968 + }, + { + "start": 3571.88, + "end": 3572.1, + "probability": 0.7372 + }, + { + "start": 3572.74, + "end": 3574.84, + "probability": 0.991 + }, + { + "start": 3574.92, + "end": 3577.14, + "probability": 0.8722 + }, + { + "start": 3577.36, + "end": 3578.84, + "probability": 0.8763 + }, + { + "start": 3578.92, + "end": 3579.63, + "probability": 0.6245 + }, + { + "start": 3579.7, + "end": 3581.02, + "probability": 0.9702 + }, + { + "start": 3581.1, + "end": 3585.68, + "probability": 0.9069 + }, + { + "start": 3585.78, + "end": 3588.48, + "probability": 0.6115 + }, + { + "start": 3589.78, + "end": 3591.3, + "probability": 0.7493 + }, + { + "start": 3592.06, + "end": 3597.74, + "probability": 0.9121 + }, + { + "start": 3599.5, + "end": 3600.91, + "probability": 0.7596 + }, + { + "start": 3604.38, + "end": 3609.96, + "probability": 0.9915 + }, + { + "start": 3610.04, + "end": 3612.36, + "probability": 0.1028 + }, + { + "start": 3613.1, + "end": 3616.5, + "probability": 0.9612 + }, + { + "start": 3617.16, + "end": 3620.1, + "probability": 0.8634 + }, + { + "start": 3620.16, + "end": 3623.06, + "probability": 0.4824 + }, + { + "start": 3633.7, + "end": 3634.16, + "probability": 0.3915 + }, + { + "start": 3634.26, + "end": 3636.22, + "probability": 0.7469 + }, + { + "start": 3636.44, + "end": 3637.64, + "probability": 0.8807 + }, + { + "start": 3638.5, + "end": 3641.3, + "probability": 0.8112 + }, + { + "start": 3641.86, + "end": 3644.68, + "probability": 0.9956 + }, + { + "start": 3644.82, + "end": 3645.76, + "probability": 0.7059 + }, + { + "start": 3645.8, + "end": 3646.76, + "probability": 0.8906 + }, + { + "start": 3647.02, + "end": 3648.82, + "probability": 0.9043 + }, + { + "start": 3652.84, + "end": 3655.06, + "probability": 0.9696 + }, + { + "start": 3655.52, + "end": 3659.3, + "probability": 0.9247 + }, + { + "start": 3659.94, + "end": 3661.94, + "probability": 0.9766 + }, + { + "start": 3662.64, + "end": 3663.32, + "probability": 0.9429 + }, + { + "start": 3663.36, + "end": 3663.72, + "probability": 0.6818 + }, + { + "start": 3663.8, + "end": 3667.58, + "probability": 0.9773 + }, + { + "start": 3667.66, + "end": 3668.5, + "probability": 0.6678 + }, + { + "start": 3668.88, + "end": 3670.76, + "probability": 0.9584 + }, + { + "start": 3670.8, + "end": 3671.88, + "probability": 0.966 + }, + { + "start": 3671.98, + "end": 3674.08, + "probability": 0.8987 + }, + { + "start": 3674.2, + "end": 3676.24, + "probability": 0.8376 + }, + { + "start": 3676.26, + "end": 3678.1, + "probability": 0.911 + }, + { + "start": 3678.24, + "end": 3678.88, + "probability": 0.9454 + }, + { + "start": 3678.98, + "end": 3681.6, + "probability": 0.8932 + }, + { + "start": 3681.72, + "end": 3684.82, + "probability": 0.9884 + }, + { + "start": 3685.52, + "end": 3689.54, + "probability": 0.9515 + }, + { + "start": 3689.9, + "end": 3693.5, + "probability": 0.9573 + }, + { + "start": 3693.9, + "end": 3694.7, + "probability": 0.9507 + }, + { + "start": 3694.8, + "end": 3697.38, + "probability": 0.9946 + }, + { + "start": 3697.46, + "end": 3704.12, + "probability": 0.9841 + }, + { + "start": 3704.26, + "end": 3706.5, + "probability": 0.8603 + }, + { + "start": 3706.68, + "end": 3707.48, + "probability": 0.9614 + }, + { + "start": 3707.56, + "end": 3709.2, + "probability": 0.9728 + }, + { + "start": 3709.32, + "end": 3710.28, + "probability": 0.6604 + }, + { + "start": 3710.9, + "end": 3713.24, + "probability": 0.7374 + }, + { + "start": 3713.32, + "end": 3713.8, + "probability": 0.4714 + }, + { + "start": 3714.0, + "end": 3714.38, + "probability": 0.7126 + }, + { + "start": 3714.48, + "end": 3715.76, + "probability": 0.8486 + }, + { + "start": 3715.9, + "end": 3717.53, + "probability": 0.9751 + }, + { + "start": 3717.9, + "end": 3720.8, + "probability": 0.8608 + }, + { + "start": 3721.92, + "end": 3726.24, + "probability": 0.959 + }, + { + "start": 3726.34, + "end": 3730.12, + "probability": 0.9964 + }, + { + "start": 3731.66, + "end": 3736.66, + "probability": 0.9784 + }, + { + "start": 3736.96, + "end": 3737.18, + "probability": 0.7953 + }, + { + "start": 3737.28, + "end": 3740.2, + "probability": 0.9976 + }, + { + "start": 3740.2, + "end": 3744.58, + "probability": 0.9989 + }, + { + "start": 3745.42, + "end": 3749.04, + "probability": 0.9638 + }, + { + "start": 3749.44, + "end": 3751.78, + "probability": 0.9966 + }, + { + "start": 3752.02, + "end": 3754.24, + "probability": 0.9393 + }, + { + "start": 3754.36, + "end": 3757.2, + "probability": 0.9931 + }, + { + "start": 3757.24, + "end": 3760.22, + "probability": 0.9902 + }, + { + "start": 3760.64, + "end": 3761.06, + "probability": 0.8941 + }, + { + "start": 3761.66, + "end": 3763.78, + "probability": 0.9502 + }, + { + "start": 3763.94, + "end": 3766.36, + "probability": 0.9432 + }, + { + "start": 3768.8, + "end": 3768.8, + "probability": 0.264 + }, + { + "start": 3768.8, + "end": 3770.08, + "probability": 0.2217 + }, + { + "start": 3777.08, + "end": 3778.34, + "probability": 0.1685 + }, + { + "start": 3782.8, + "end": 3784.5, + "probability": 0.5461 + }, + { + "start": 3784.56, + "end": 3784.84, + "probability": 0.8697 + }, + { + "start": 3785.58, + "end": 3786.38, + "probability": 0.5783 + }, + { + "start": 3787.6, + "end": 3789.48, + "probability": 0.9854 + }, + { + "start": 3790.14, + "end": 3794.06, + "probability": 0.937 + }, + { + "start": 3794.58, + "end": 3795.84, + "probability": 0.8407 + }, + { + "start": 3795.92, + "end": 3796.64, + "probability": 0.8164 + }, + { + "start": 3797.02, + "end": 3799.02, + "probability": 0.9923 + }, + { + "start": 3800.14, + "end": 3802.2, + "probability": 0.5509 + }, + { + "start": 3802.28, + "end": 3803.22, + "probability": 0.9631 + }, + { + "start": 3803.28, + "end": 3806.38, + "probability": 0.7054 + }, + { + "start": 3806.46, + "end": 3807.3, + "probability": 0.6631 + }, + { + "start": 3807.82, + "end": 3809.12, + "probability": 0.4681 + }, + { + "start": 3809.12, + "end": 3810.96, + "probability": 0.3188 + }, + { + "start": 3810.96, + "end": 3812.36, + "probability": 0.8106 + }, + { + "start": 3812.42, + "end": 3812.76, + "probability": 0.6677 + }, + { + "start": 3813.2, + "end": 3813.76, + "probability": 0.396 + }, + { + "start": 3813.9, + "end": 3817.88, + "probability": 0.4894 + }, + { + "start": 3818.22, + "end": 3819.32, + "probability": 0.4203 + }, + { + "start": 3819.46, + "end": 3822.6, + "probability": 0.9856 + }, + { + "start": 3823.38, + "end": 3826.46, + "probability": 0.8853 + }, + { + "start": 3826.7, + "end": 3829.94, + "probability": 0.9943 + }, + { + "start": 3830.48, + "end": 3831.66, + "probability": 0.5215 + }, + { + "start": 3831.74, + "end": 3834.97, + "probability": 0.7856 + }, + { + "start": 3843.78, + "end": 3845.06, + "probability": 0.5772 + }, + { + "start": 3846.1, + "end": 3850.16, + "probability": 0.9748 + }, + { + "start": 3850.92, + "end": 3854.0, + "probability": 0.9178 + }, + { + "start": 3854.56, + "end": 3855.96, + "probability": 0.9127 + }, + { + "start": 3857.02, + "end": 3860.32, + "probability": 0.8257 + }, + { + "start": 3860.96, + "end": 3863.22, + "probability": 0.8469 + }, + { + "start": 3864.0, + "end": 3869.04, + "probability": 0.6891 + }, + { + "start": 3870.16, + "end": 3870.2, + "probability": 0.676 + }, + { + "start": 3871.3, + "end": 3872.86, + "probability": 0.5189 + }, + { + "start": 3872.96, + "end": 3873.84, + "probability": 0.1335 + }, + { + "start": 3874.18, + "end": 3874.86, + "probability": 0.072 + }, + { + "start": 3875.16, + "end": 3879.66, + "probability": 0.6027 + }, + { + "start": 3880.32, + "end": 3884.0, + "probability": 0.0847 + }, + { + "start": 3886.2, + "end": 3886.3, + "probability": 0.508 + }, + { + "start": 3886.3, + "end": 3887.28, + "probability": 0.3834 + }, + { + "start": 3887.82, + "end": 3891.26, + "probability": 0.3005 + }, + { + "start": 3891.38, + "end": 3891.52, + "probability": 0.4934 + }, + { + "start": 3898.78, + "end": 3903.52, + "probability": 0.0952 + }, + { + "start": 3903.52, + "end": 3903.84, + "probability": 0.0205 + }, + { + "start": 3903.97, + "end": 3904.48, + "probability": 0.009 + }, + { + "start": 3904.48, + "end": 3904.48, + "probability": 0.0824 + }, + { + "start": 3904.48, + "end": 3904.76, + "probability": 0.0347 + }, + { + "start": 3904.76, + "end": 3906.9, + "probability": 0.277 + }, + { + "start": 3907.0, + "end": 3908.46, + "probability": 0.2082 + }, + { + "start": 3908.46, + "end": 3912.28, + "probability": 0.0528 + }, + { + "start": 3912.28, + "end": 3912.98, + "probability": 0.0161 + }, + { + "start": 3912.98, + "end": 3916.34, + "probability": 0.1107 + }, + { + "start": 3917.08, + "end": 3917.82, + "probability": 0.0575 + }, + { + "start": 3917.82, + "end": 3920.58, + "probability": 0.1955 + }, + { + "start": 3921.82, + "end": 3925.23, + "probability": 0.0244 + }, + { + "start": 3930.64, + "end": 3930.8, + "probability": 0.0129 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.0, + "end": 3952.0, + "probability": 0.0 + }, + { + "start": 3952.14, + "end": 3953.36, + "probability": 0.2941 + }, + { + "start": 3953.54, + "end": 3953.84, + "probability": 0.022 + }, + { + "start": 3953.84, + "end": 3953.86, + "probability": 0.4994 + }, + { + "start": 3953.86, + "end": 3953.86, + "probability": 0.192 + }, + { + "start": 3953.86, + "end": 3954.62, + "probability": 0.3803 + }, + { + "start": 3955.0, + "end": 3956.16, + "probability": 0.4478 + }, + { + "start": 3956.24, + "end": 3961.9, + "probability": 0.2903 + }, + { + "start": 3962.26, + "end": 3962.3, + "probability": 0.1687 + }, + { + "start": 3962.3, + "end": 3962.46, + "probability": 0.6104 + }, + { + "start": 3962.56, + "end": 3965.12, + "probability": 0.8794 + }, + { + "start": 3965.18, + "end": 3966.72, + "probability": 0.9158 + }, + { + "start": 3966.88, + "end": 3968.1, + "probability": 0.8643 + }, + { + "start": 3968.44, + "end": 3970.74, + "probability": 0.9741 + }, + { + "start": 3971.03, + "end": 3973.88, + "probability": 0.6241 + }, + { + "start": 3974.32, + "end": 3976.76, + "probability": 0.788 + }, + { + "start": 3977.68, + "end": 3979.98, + "probability": 0.7858 + }, + { + "start": 3980.24, + "end": 3983.5, + "probability": 0.9552 + }, + { + "start": 3984.12, + "end": 3986.72, + "probability": 0.8737 + }, + { + "start": 3987.0, + "end": 3988.54, + "probability": 0.8044 + }, + { + "start": 3988.98, + "end": 3991.9, + "probability": 0.8893 + }, + { + "start": 3991.9, + "end": 3994.86, + "probability": 0.895 + }, + { + "start": 3995.46, + "end": 3998.4, + "probability": 0.5645 + }, + { + "start": 4001.92, + "end": 4003.96, + "probability": 0.7404 + }, + { + "start": 4005.56, + "end": 4010.4, + "probability": 0.9602 + }, + { + "start": 4010.5, + "end": 4012.44, + "probability": 0.0832 + }, + { + "start": 4013.04, + "end": 4016.22, + "probability": 0.9775 + }, + { + "start": 4018.0, + "end": 4020.52, + "probability": 0.9463 + }, + { + "start": 4020.6, + "end": 4021.16, + "probability": 0.5985 + }, + { + "start": 4021.26, + "end": 4021.92, + "probability": 0.6682 + }, + { + "start": 4022.9, + "end": 4024.0, + "probability": 0.7789 + }, + { + "start": 4025.44, + "end": 4025.9, + "probability": 0.0299 + }, + { + "start": 4028.76, + "end": 4030.7, + "probability": 0.0781 + }, + { + "start": 4030.7, + "end": 4032.18, + "probability": 0.0902 + }, + { + "start": 4032.44, + "end": 4032.8, + "probability": 0.048 + }, + { + "start": 4032.8, + "end": 4032.89, + "probability": 0.1246 + }, + { + "start": 4038.04, + "end": 4038.88, + "probability": 0.1199 + }, + { + "start": 4039.44, + "end": 4039.54, + "probability": 0.0786 + }, + { + "start": 4039.54, + "end": 4040.4, + "probability": 0.6298 + }, + { + "start": 4042.22, + "end": 4044.14, + "probability": 0.3364 + }, + { + "start": 4044.82, + "end": 4047.92, + "probability": 0.686 + }, + { + "start": 4049.1, + "end": 4052.72, + "probability": 0.9639 + }, + { + "start": 4053.0, + "end": 4059.17, + "probability": 0.9884 + }, + { + "start": 4059.84, + "end": 4063.44, + "probability": 0.9967 + }, + { + "start": 4063.62, + "end": 4064.04, + "probability": 0.3674 + }, + { + "start": 4064.8, + "end": 4065.18, + "probability": 0.2616 + }, + { + "start": 4065.18, + "end": 4069.22, + "probability": 0.9702 + }, + { + "start": 4070.08, + "end": 4070.34, + "probability": 0.8503 + }, + { + "start": 4070.54, + "end": 4074.8, + "probability": 0.9591 + }, + { + "start": 4075.96, + "end": 4078.44, + "probability": 0.7643 + }, + { + "start": 4080.76, + "end": 4081.94, + "probability": 0.7453 + }, + { + "start": 4083.26, + "end": 4087.74, + "probability": 0.833 + }, + { + "start": 4089.04, + "end": 4091.12, + "probability": 0.8462 + }, + { + "start": 4091.12, + "end": 4094.12, + "probability": 0.7147 + }, + { + "start": 4094.32, + "end": 4096.18, + "probability": 0.0959 + }, + { + "start": 4096.5, + "end": 4099.84, + "probability": 0.9828 + }, + { + "start": 4100.02, + "end": 4101.16, + "probability": 0.9208 + }, + { + "start": 4101.44, + "end": 4102.28, + "probability": 0.7473 + }, + { + "start": 4103.04, + "end": 4104.66, + "probability": 0.6729 + }, + { + "start": 4104.9, + "end": 4108.4, + "probability": 0.8288 + }, + { + "start": 4108.42, + "end": 4111.96, + "probability": 0.9835 + }, + { + "start": 4112.02, + "end": 4114.18, + "probability": 0.8671 + }, + { + "start": 4114.82, + "end": 4117.68, + "probability": 0.7439 + }, + { + "start": 4117.9, + "end": 4120.22, + "probability": 0.992 + }, + { + "start": 4120.22, + "end": 4124.6, + "probability": 0.7524 + }, + { + "start": 4124.88, + "end": 4126.92, + "probability": 0.6437 + }, + { + "start": 4127.04, + "end": 4128.88, + "probability": 0.972 + }, + { + "start": 4129.38, + "end": 4131.33, + "probability": 0.9611 + }, + { + "start": 4131.7, + "end": 4135.88, + "probability": 0.9947 + }, + { + "start": 4136.32, + "end": 4136.78, + "probability": 0.9542 + }, + { + "start": 4136.88, + "end": 4137.51, + "probability": 0.9648 + }, + { + "start": 4137.94, + "end": 4138.58, + "probability": 0.9183 + }, + { + "start": 4138.86, + "end": 4144.44, + "probability": 0.9413 + }, + { + "start": 4144.62, + "end": 4146.48, + "probability": 0.9631 + }, + { + "start": 4146.58, + "end": 4149.08, + "probability": 0.8606 + }, + { + "start": 4149.22, + "end": 4152.1, + "probability": 0.7561 + }, + { + "start": 4152.28, + "end": 4153.98, + "probability": 0.9652 + }, + { + "start": 4154.06, + "end": 4155.32, + "probability": 0.889 + }, + { + "start": 4155.46, + "end": 4156.44, + "probability": 0.6567 + }, + { + "start": 4156.72, + "end": 4161.56, + "probability": 0.6369 + }, + { + "start": 4162.02, + "end": 4165.62, + "probability": 0.9953 + }, + { + "start": 4165.62, + "end": 4170.58, + "probability": 0.996 + }, + { + "start": 4170.86, + "end": 4175.68, + "probability": 0.9328 + }, + { + "start": 4175.92, + "end": 4182.02, + "probability": 0.9933 + }, + { + "start": 4182.4, + "end": 4183.3, + "probability": 0.7427 + }, + { + "start": 4183.44, + "end": 4189.75, + "probability": 0.9546 + }, + { + "start": 4190.04, + "end": 4192.16, + "probability": 0.9978 + }, + { + "start": 4192.16, + "end": 4195.16, + "probability": 0.9746 + }, + { + "start": 4195.58, + "end": 4199.92, + "probability": 0.98 + }, + { + "start": 4200.46, + "end": 4206.18, + "probability": 0.9943 + }, + { + "start": 4206.66, + "end": 4208.78, + "probability": 0.9944 + }, + { + "start": 4208.92, + "end": 4210.74, + "probability": 0.992 + }, + { + "start": 4211.14, + "end": 4213.84, + "probability": 0.9769 + }, + { + "start": 4214.22, + "end": 4217.3, + "probability": 0.6832 + }, + { + "start": 4217.36, + "end": 4219.7, + "probability": 0.7109 + }, + { + "start": 4219.96, + "end": 4223.06, + "probability": 0.9476 + }, + { + "start": 4223.36, + "end": 4223.98, + "probability": 0.7423 + }, + { + "start": 4224.3, + "end": 4226.0, + "probability": 0.8807 + }, + { + "start": 4226.14, + "end": 4227.02, + "probability": 0.8998 + }, + { + "start": 4227.08, + "end": 4227.52, + "probability": 0.754 + }, + { + "start": 4227.52, + "end": 4230.06, + "probability": 0.8089 + }, + { + "start": 4230.14, + "end": 4234.76, + "probability": 0.7609 + }, + { + "start": 4235.38, + "end": 4239.0, + "probability": 0.5259 + }, + { + "start": 4239.42, + "end": 4242.32, + "probability": 0.9338 + }, + { + "start": 4242.42, + "end": 4245.4, + "probability": 0.9894 + }, + { + "start": 4246.14, + "end": 4246.96, + "probability": 0.7588 + }, + { + "start": 4247.12, + "end": 4250.66, + "probability": 0.9749 + }, + { + "start": 4251.36, + "end": 4255.84, + "probability": 0.9795 + }, + { + "start": 4256.58, + "end": 4259.36, + "probability": 0.9937 + }, + { + "start": 4259.92, + "end": 4264.54, + "probability": 0.9945 + }, + { + "start": 4265.14, + "end": 4268.46, + "probability": 0.9883 + }, + { + "start": 4268.6, + "end": 4273.8, + "probability": 0.9422 + }, + { + "start": 4273.9, + "end": 4280.6, + "probability": 0.9953 + }, + { + "start": 4284.12, + "end": 4286.64, + "probability": 0.9784 + }, + { + "start": 4287.02, + "end": 4287.9, + "probability": 0.8406 + }, + { + "start": 4288.1, + "end": 4293.37, + "probability": 0.7351 + }, + { + "start": 4293.44, + "end": 4298.84, + "probability": 0.9729 + }, + { + "start": 4299.04, + "end": 4301.86, + "probability": 0.6852 + }, + { + "start": 4301.94, + "end": 4304.96, + "probability": 0.9827 + }, + { + "start": 4305.08, + "end": 4305.28, + "probability": 0.7401 + }, + { + "start": 4305.36, + "end": 4307.52, + "probability": 0.6449 + }, + { + "start": 4307.64, + "end": 4311.56, + "probability": 0.9633 + }, + { + "start": 4311.76, + "end": 4312.84, + "probability": 0.7222 + }, + { + "start": 4312.88, + "end": 4314.1, + "probability": 0.5159 + }, + { + "start": 4314.2, + "end": 4315.88, + "probability": 0.8108 + }, + { + "start": 4319.28, + "end": 4320.98, + "probability": 0.6226 + }, + { + "start": 4321.7, + "end": 4324.56, + "probability": 0.7533 + }, + { + "start": 4324.56, + "end": 4326.92, + "probability": 0.9994 + }, + { + "start": 4327.96, + "end": 4328.62, + "probability": 0.5696 + }, + { + "start": 4329.26, + "end": 4333.48, + "probability": 0.992 + }, + { + "start": 4333.48, + "end": 4337.38, + "probability": 0.938 + }, + { + "start": 4338.44, + "end": 4339.06, + "probability": 0.9061 + }, + { + "start": 4342.0, + "end": 4342.38, + "probability": 0.0155 + }, + { + "start": 4342.38, + "end": 4346.52, + "probability": 0.675 + }, + { + "start": 4346.52, + "end": 4353.78, + "probability": 0.8933 + }, + { + "start": 4354.78, + "end": 4359.14, + "probability": 0.9436 + }, + { + "start": 4359.16, + "end": 4364.18, + "probability": 0.9981 + }, + { + "start": 4365.32, + "end": 4366.05, + "probability": 0.5457 + }, + { + "start": 4366.64, + "end": 4369.4, + "probability": 0.9741 + }, + { + "start": 4369.54, + "end": 4372.6, + "probability": 0.9738 + }, + { + "start": 4373.28, + "end": 4373.58, + "probability": 0.6763 + }, + { + "start": 4374.3, + "end": 4380.34, + "probability": 0.9775 + }, + { + "start": 4380.62, + "end": 4384.42, + "probability": 0.9377 + }, + { + "start": 4385.26, + "end": 4389.38, + "probability": 0.7394 + }, + { + "start": 4390.02, + "end": 4393.48, + "probability": 0.9165 + }, + { + "start": 4393.64, + "end": 4393.9, + "probability": 0.3416 + }, + { + "start": 4394.04, + "end": 4394.82, + "probability": 0.8335 + }, + { + "start": 4395.24, + "end": 4395.56, + "probability": 0.9643 + }, + { + "start": 4396.92, + "end": 4399.91, + "probability": 0.9956 + }, + { + "start": 4400.88, + "end": 4401.58, + "probability": 0.6691 + }, + { + "start": 4402.26, + "end": 4403.94, + "probability": 0.8818 + }, + { + "start": 4404.0, + "end": 4406.52, + "probability": 0.72 + }, + { + "start": 4406.92, + "end": 4408.54, + "probability": 0.9028 + }, + { + "start": 4415.4, + "end": 4416.06, + "probability": 0.3477 + }, + { + "start": 4418.0, + "end": 4418.1, + "probability": 0.0001 + }, + { + "start": 4418.78, + "end": 4421.74, + "probability": 0.1917 + }, + { + "start": 4422.0, + "end": 4424.6, + "probability": 0.1737 + }, + { + "start": 4426.16, + "end": 4429.56, + "probability": 0.0403 + }, + { + "start": 4439.86, + "end": 4439.94, + "probability": 0.0346 + }, + { + "start": 4439.94, + "end": 4440.83, + "probability": 0.2297 + }, + { + "start": 4440.92, + "end": 4442.22, + "probability": 0.8849 + }, + { + "start": 4467.28, + "end": 4468.34, + "probability": 0.0623 + }, + { + "start": 4472.88, + "end": 4477.08, + "probability": 0.5695 + }, + { + "start": 4477.22, + "end": 4479.62, + "probability": 0.1132 + }, + { + "start": 4479.7, + "end": 4481.44, + "probability": 0.7441 + }, + { + "start": 4482.88, + "end": 4487.18, + "probability": 0.0498 + }, + { + "start": 4488.2, + "end": 4493.78, + "probability": 0.0797 + }, + { + "start": 4494.22, + "end": 4498.54, + "probability": 0.0505 + }, + { + "start": 4498.54, + "end": 4499.04, + "probability": 0.3364 + }, + { + "start": 4500.18, + "end": 4501.98, + "probability": 0.2159 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.0, + "end": 4511.0, + "probability": 0.0 + }, + { + "start": 4511.2, + "end": 4512.26, + "probability": 0.0458 + }, + { + "start": 4512.26, + "end": 4514.7, + "probability": 0.0078 + }, + { + "start": 4519.16, + "end": 4519.76, + "probability": 0.0375 + }, + { + "start": 4519.76, + "end": 4520.48, + "probability": 0.0639 + }, + { + "start": 4520.48, + "end": 4522.1, + "probability": 0.0811 + }, + { + "start": 4522.1, + "end": 4525.46, + "probability": 0.0215 + }, + { + "start": 4525.46, + "end": 4526.74, + "probability": 0.0341 + }, + { + "start": 4526.86, + "end": 4530.52, + "probability": 0.0594 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.0, + "end": 4636.0, + "probability": 0.0 + }, + { + "start": 4636.26, + "end": 4636.3, + "probability": 0.0018 + }, + { + "start": 4636.3, + "end": 4636.3, + "probability": 0.2238 + }, + { + "start": 4636.3, + "end": 4636.3, + "probability": 0.0609 + }, + { + "start": 4636.3, + "end": 4636.3, + "probability": 0.0233 + }, + { + "start": 4636.3, + "end": 4638.42, + "probability": 0.3531 + }, + { + "start": 4638.66, + "end": 4638.94, + "probability": 0.5203 + }, + { + "start": 4639.62, + "end": 4643.88, + "probability": 0.8574 + }, + { + "start": 4643.98, + "end": 4645.24, + "probability": 0.6556 + }, + { + "start": 4646.42, + "end": 4649.1, + "probability": 0.6176 + }, + { + "start": 4649.1, + "end": 4651.06, + "probability": 0.7527 + }, + { + "start": 4653.58, + "end": 4657.86, + "probability": 0.8982 + }, + { + "start": 4658.72, + "end": 4659.9, + "probability": 0.6615 + }, + { + "start": 4660.26, + "end": 4664.6, + "probability": 0.7537 + }, + { + "start": 4665.36, + "end": 4669.78, + "probability": 0.9936 + }, + { + "start": 4669.92, + "end": 4671.88, + "probability": 0.9824 + }, + { + "start": 4672.44, + "end": 4674.8, + "probability": 0.998 + }, + { + "start": 4675.6, + "end": 4676.02, + "probability": 0.4509 + }, + { + "start": 4676.94, + "end": 4680.46, + "probability": 0.9326 + }, + { + "start": 4680.54, + "end": 4683.98, + "probability": 0.8271 + }, + { + "start": 4684.12, + "end": 4684.65, + "probability": 0.8475 + }, + { + "start": 4685.3, + "end": 4685.74, + "probability": 0.9551 + }, + { + "start": 4686.78, + "end": 4691.52, + "probability": 0.8328 + }, + { + "start": 4691.7, + "end": 4696.52, + "probability": 0.9805 + }, + { + "start": 4698.75, + "end": 4703.36, + "probability": 0.9445 + }, + { + "start": 4703.88, + "end": 4706.06, + "probability": 0.9631 + }, + { + "start": 4706.18, + "end": 4708.92, + "probability": 0.9882 + }, + { + "start": 4709.18, + "end": 4711.46, + "probability": 0.9951 + }, + { + "start": 4712.08, + "end": 4714.58, + "probability": 0.9406 + }, + { + "start": 4715.36, + "end": 4718.96, + "probability": 0.9985 + }, + { + "start": 4719.56, + "end": 4724.04, + "probability": 0.9925 + }, + { + "start": 4724.6, + "end": 4727.14, + "probability": 0.6971 + }, + { + "start": 4727.92, + "end": 4733.26, + "probability": 0.9901 + }, + { + "start": 4733.44, + "end": 4738.0, + "probability": 0.9854 + }, + { + "start": 4738.26, + "end": 4739.88, + "probability": 0.8931 + }, + { + "start": 4740.34, + "end": 4741.22, + "probability": 0.5927 + }, + { + "start": 4741.72, + "end": 4742.58, + "probability": 0.8114 + }, + { + "start": 4742.98, + "end": 4745.32, + "probability": 0.9766 + }, + { + "start": 4745.52, + "end": 4748.38, + "probability": 0.9153 + }, + { + "start": 4748.72, + "end": 4753.02, + "probability": 0.9678 + }, + { + "start": 4753.02, + "end": 4760.42, + "probability": 0.7573 + }, + { + "start": 4760.76, + "end": 4765.28, + "probability": 0.9984 + }, + { + "start": 4765.52, + "end": 4769.24, + "probability": 0.9856 + }, + { + "start": 4769.4, + "end": 4769.64, + "probability": 0.6776 + }, + { + "start": 4769.9, + "end": 4771.68, + "probability": 0.585 + }, + { + "start": 4771.72, + "end": 4774.88, + "probability": 0.8826 + }, + { + "start": 4779.18, + "end": 4781.92, + "probability": 0.7493 + }, + { + "start": 4782.22, + "end": 4783.4, + "probability": 0.951 + }, + { + "start": 4787.58, + "end": 4790.64, + "probability": 0.9948 + }, + { + "start": 4793.86, + "end": 4795.4, + "probability": 0.9992 + }, + { + "start": 4796.46, + "end": 4799.22, + "probability": 0.9644 + }, + { + "start": 4799.92, + "end": 4803.22, + "probability": 0.9902 + }, + { + "start": 4803.9, + "end": 4807.42, + "probability": 0.6145 + }, + { + "start": 4808.6, + "end": 4810.66, + "probability": 0.0038 + }, + { + "start": 4812.9, + "end": 4813.99, + "probability": 0.0097 + }, + { + "start": 4815.54, + "end": 4815.54, + "probability": 0.0181 + }, + { + "start": 4815.56, + "end": 4816.2, + "probability": 0.0475 + }, + { + "start": 4817.99, + "end": 4819.42, + "probability": 0.0563 + }, + { + "start": 4819.42, + "end": 4822.4, + "probability": 0.086 + }, + { + "start": 4822.4, + "end": 4825.76, + "probability": 0.6893 + }, + { + "start": 4826.08, + "end": 4827.72, + "probability": 0.6056 + }, + { + "start": 4827.84, + "end": 4829.78, + "probability": 0.9435 + }, + { + "start": 4829.88, + "end": 4835.64, + "probability": 0.9722 + }, + { + "start": 4836.7, + "end": 4839.72, + "probability": 0.996 + }, + { + "start": 4839.72, + "end": 4843.98, + "probability": 0.9265 + }, + { + "start": 4844.52, + "end": 4846.3, + "probability": 0.8576 + }, + { + "start": 4846.82, + "end": 4847.34, + "probability": 0.7282 + }, + { + "start": 4847.58, + "end": 4850.14, + "probability": 0.9413 + }, + { + "start": 4850.14, + "end": 4855.5, + "probability": 0.9909 + }, + { + "start": 4856.18, + "end": 4857.36, + "probability": 0.6887 + }, + { + "start": 4858.9, + "end": 4859.14, + "probability": 0.0001 + }, + { + "start": 4859.14, + "end": 4859.66, + "probability": 0.1304 + }, + { + "start": 4859.74, + "end": 4863.92, + "probability": 0.96 + }, + { + "start": 4863.96, + "end": 4864.2, + "probability": 0.4625 + }, + { + "start": 4864.32, + "end": 4865.34, + "probability": 0.8565 + }, + { + "start": 4867.0, + "end": 4870.48, + "probability": 0.6392 + }, + { + "start": 4870.56, + "end": 4871.06, + "probability": 0.8923 + }, + { + "start": 4871.62, + "end": 4874.06, + "probability": 0.9034 + }, + { + "start": 4874.62, + "end": 4876.26, + "probability": 0.7914 + }, + { + "start": 4876.36, + "end": 4879.16, + "probability": 0.6996 + }, + { + "start": 4880.16, + "end": 4880.58, + "probability": 0.934 + }, + { + "start": 4880.64, + "end": 4881.58, + "probability": 0.9776 + }, + { + "start": 4881.68, + "end": 4882.44, + "probability": 0.8344 + }, + { + "start": 4882.52, + "end": 4885.38, + "probability": 0.9445 + }, + { + "start": 4886.04, + "end": 4886.62, + "probability": 0.7565 + }, + { + "start": 4887.36, + "end": 4890.9, + "probability": 0.9756 + }, + { + "start": 4891.46, + "end": 4893.4, + "probability": 0.8973 + }, + { + "start": 4894.02, + "end": 4896.84, + "probability": 0.9854 + }, + { + "start": 4898.1, + "end": 4899.52, + "probability": 0.9751 + }, + { + "start": 4900.06, + "end": 4903.78, + "probability": 0.6775 + }, + { + "start": 4903.82, + "end": 4904.98, + "probability": 0.9287 + }, + { + "start": 4905.72, + "end": 4906.1, + "probability": 0.4478 + }, + { + "start": 4906.64, + "end": 4908.84, + "probability": 0.974 + }, + { + "start": 4909.3, + "end": 4912.24, + "probability": 0.9938 + }, + { + "start": 4912.8, + "end": 4916.92, + "probability": 0.9769 + }, + { + "start": 4917.5, + "end": 4919.34, + "probability": 0.5812 + }, + { + "start": 4919.84, + "end": 4920.88, + "probability": 0.8385 + }, + { + "start": 4921.66, + "end": 4922.98, + "probability": 0.981 + }, + { + "start": 4923.78, + "end": 4931.72, + "probability": 0.9673 + }, + { + "start": 4932.34, + "end": 4933.38, + "probability": 0.8769 + }, + { + "start": 4933.94, + "end": 4935.08, + "probability": 0.832 + }, + { + "start": 4935.6, + "end": 4937.83, + "probability": 0.7581 + }, + { + "start": 4938.5, + "end": 4938.96, + "probability": 0.9836 + }, + { + "start": 4939.58, + "end": 4941.15, + "probability": 0.6488 + }, + { + "start": 4941.98, + "end": 4945.34, + "probability": 0.84 + }, + { + "start": 4945.44, + "end": 4946.32, + "probability": 0.4648 + }, + { + "start": 4946.84, + "end": 4950.64, + "probability": 0.9504 + }, + { + "start": 4951.12, + "end": 4952.04, + "probability": 0.9372 + }, + { + "start": 4952.88, + "end": 4955.94, + "probability": 0.8129 + }, + { + "start": 4956.7, + "end": 4957.26, + "probability": 0.5832 + }, + { + "start": 4957.48, + "end": 4957.98, + "probability": 0.8803 + }, + { + "start": 4958.08, + "end": 4961.3, + "probability": 0.9679 + }, + { + "start": 4961.48, + "end": 4962.86, + "probability": 0.9938 + }, + { + "start": 4962.88, + "end": 4963.12, + "probability": 0.9355 + }, + { + "start": 4963.9, + "end": 4964.53, + "probability": 0.4054 + }, + { + "start": 4964.88, + "end": 4967.86, + "probability": 0.8852 + }, + { + "start": 4968.02, + "end": 4969.38, + "probability": 0.7505 + }, + { + "start": 4969.4, + "end": 4969.98, + "probability": 0.8688 + }, + { + "start": 4970.84, + "end": 4971.5, + "probability": 0.3959 + }, + { + "start": 4990.72, + "end": 4990.82, + "probability": 0.0549 + }, + { + "start": 4990.82, + "end": 4991.32, + "probability": 0.4853 + }, + { + "start": 4991.32, + "end": 4991.8, + "probability": 0.7521 + }, + { + "start": 4997.3, + "end": 4999.76, + "probability": 0.6545 + }, + { + "start": 5000.7, + "end": 5002.38, + "probability": 0.8413 + }, + { + "start": 5003.24, + "end": 5005.11, + "probability": 0.9863 + }, + { + "start": 5006.24, + "end": 5010.9, + "probability": 0.9991 + }, + { + "start": 5011.0, + "end": 5013.48, + "probability": 0.8705 + }, + { + "start": 5013.62, + "end": 5015.28, + "probability": 0.9725 + }, + { + "start": 5016.74, + "end": 5022.94, + "probability": 0.9767 + }, + { + "start": 5023.22, + "end": 5024.68, + "probability": 0.6167 + }, + { + "start": 5024.84, + "end": 5027.1, + "probability": 0.9573 + }, + { + "start": 5028.62, + "end": 5029.66, + "probability": 0.9574 + }, + { + "start": 5030.58, + "end": 5033.66, + "probability": 0.9689 + }, + { + "start": 5034.2, + "end": 5037.16, + "probability": 0.8043 + }, + { + "start": 5037.72, + "end": 5039.18, + "probability": 0.8352 + }, + { + "start": 5040.02, + "end": 5043.2, + "probability": 0.8967 + }, + { + "start": 5043.66, + "end": 5045.06, + "probability": 0.8989 + }, + { + "start": 5045.2, + "end": 5047.2, + "probability": 0.9793 + }, + { + "start": 5048.78, + "end": 5051.08, + "probability": 0.9606 + }, + { + "start": 5051.68, + "end": 5053.6, + "probability": 0.6849 + }, + { + "start": 5053.66, + "end": 5055.7, + "probability": 0.6689 + }, + { + "start": 5055.7, + "end": 5057.48, + "probability": 0.8627 + }, + { + "start": 5057.84, + "end": 5060.32, + "probability": 0.9443 + }, + { + "start": 5060.92, + "end": 5061.85, + "probability": 0.9823 + }, + { + "start": 5062.7, + "end": 5063.72, + "probability": 0.8112 + }, + { + "start": 5063.78, + "end": 5066.72, + "probability": 0.8838 + }, + { + "start": 5067.2, + "end": 5069.66, + "probability": 0.8765 + }, + { + "start": 5069.96, + "end": 5072.14, + "probability": 0.95 + }, + { + "start": 5072.24, + "end": 5073.64, + "probability": 0.6636 + }, + { + "start": 5074.02, + "end": 5079.12, + "probability": 0.9437 + }, + { + "start": 5079.88, + "end": 5084.4, + "probability": 0.9141 + }, + { + "start": 5084.72, + "end": 5085.5, + "probability": 0.89 + }, + { + "start": 5085.68, + "end": 5087.66, + "probability": 0.8236 + }, + { + "start": 5087.86, + "end": 5089.2, + "probability": 0.7395 + }, + { + "start": 5089.3, + "end": 5089.72, + "probability": 0.7339 + }, + { + "start": 5089.98, + "end": 5090.67, + "probability": 0.4944 + }, + { + "start": 5091.22, + "end": 5094.46, + "probability": 0.9914 + }, + { + "start": 5094.84, + "end": 5096.1, + "probability": 0.697 + }, + { + "start": 5096.54, + "end": 5098.08, + "probability": 0.7288 + }, + { + "start": 5098.58, + "end": 5102.28, + "probability": 0.8397 + }, + { + "start": 5102.8, + "end": 5107.4, + "probability": 0.8115 + }, + { + "start": 5107.4, + "end": 5109.39, + "probability": 0.8989 + }, + { + "start": 5110.54, + "end": 5116.58, + "probability": 0.6841 + }, + { + "start": 5117.18, + "end": 5123.36, + "probability": 0.8939 + }, + { + "start": 5124.04, + "end": 5125.88, + "probability": 0.6648 + }, + { + "start": 5126.6, + "end": 5127.52, + "probability": 0.7547 + }, + { + "start": 5127.68, + "end": 5129.35, + "probability": 0.8124 + }, + { + "start": 5129.78, + "end": 5131.24, + "probability": 0.4936 + }, + { + "start": 5131.42, + "end": 5133.38, + "probability": 0.8405 + }, + { + "start": 5133.8, + "end": 5137.72, + "probability": 0.9827 + }, + { + "start": 5138.3, + "end": 5138.98, + "probability": 0.5301 + }, + { + "start": 5139.16, + "end": 5143.62, + "probability": 0.9338 + }, + { + "start": 5143.68, + "end": 5144.86, + "probability": 0.6588 + }, + { + "start": 5145.78, + "end": 5149.84, + "probability": 0.6831 + }, + { + "start": 5149.84, + "end": 5152.0, + "probability": 0.8014 + }, + { + "start": 5152.0, + "end": 5153.58, + "probability": 0.8933 + }, + { + "start": 5153.66, + "end": 5154.4, + "probability": 0.7297 + }, + { + "start": 5154.82, + "end": 5158.66, + "probability": 0.6343 + }, + { + "start": 5158.76, + "end": 5161.8, + "probability": 0.6478 + }, + { + "start": 5161.91, + "end": 5162.38, + "probability": 0.3034 + }, + { + "start": 5162.48, + "end": 5168.92, + "probability": 0.9978 + }, + { + "start": 5169.24, + "end": 5172.14, + "probability": 0.7358 + }, + { + "start": 5172.6, + "end": 5175.4, + "probability": 0.9971 + }, + { + "start": 5176.48, + "end": 5177.26, + "probability": 0.7283 + }, + { + "start": 5178.04, + "end": 5179.78, + "probability": 0.923 + }, + { + "start": 5180.2, + "end": 5181.24, + "probability": 0.7693 + }, + { + "start": 5181.28, + "end": 5182.96, + "probability": 0.9417 + }, + { + "start": 5183.46, + "end": 5189.38, + "probability": 0.9937 + }, + { + "start": 5190.3, + "end": 5191.18, + "probability": 0.708 + }, + { + "start": 5191.4, + "end": 5192.64, + "probability": 0.394 + }, + { + "start": 5192.74, + "end": 5197.88, + "probability": 0.8505 + }, + { + "start": 5197.88, + "end": 5200.12, + "probability": 0.0981 + }, + { + "start": 5201.06, + "end": 5206.0, + "probability": 0.6428 + }, + { + "start": 5206.3, + "end": 5207.16, + "probability": 0.7029 + }, + { + "start": 5207.56, + "end": 5208.74, + "probability": 0.3694 + }, + { + "start": 5209.24, + "end": 5210.1, + "probability": 0.9966 + }, + { + "start": 5210.18, + "end": 5211.9, + "probability": 0.8649 + }, + { + "start": 5212.7, + "end": 5216.58, + "probability": 0.352 + }, + { + "start": 5217.32, + "end": 5219.88, + "probability": 0.6657 + }, + { + "start": 5221.06, + "end": 5222.52, + "probability": 0.8556 + }, + { + "start": 5223.74, + "end": 5227.12, + "probability": 0.4774 + }, + { + "start": 5227.66, + "end": 5232.93, + "probability": 0.9819 + }, + { + "start": 5234.24, + "end": 5234.24, + "probability": 0.1039 + }, + { + "start": 5234.24, + "end": 5238.5, + "probability": 0.6307 + }, + { + "start": 5238.5, + "end": 5240.36, + "probability": 0.8306 + }, + { + "start": 5240.4, + "end": 5241.02, + "probability": 0.761 + }, + { + "start": 5246.06, + "end": 5247.08, + "probability": 0.0089 + }, + { + "start": 5247.08, + "end": 5247.78, + "probability": 0.4997 + }, + { + "start": 5248.1, + "end": 5250.24, + "probability": 0.873 + }, + { + "start": 5250.28, + "end": 5252.5, + "probability": 0.5589 + }, + { + "start": 5252.56, + "end": 5253.48, + "probability": 0.4631 + }, + { + "start": 5253.58, + "end": 5254.5, + "probability": 0.7802 + }, + { + "start": 5254.9, + "end": 5257.34, + "probability": 0.6883 + }, + { + "start": 5257.44, + "end": 5259.04, + "probability": 0.6544 + }, + { + "start": 5259.5, + "end": 5260.58, + "probability": 0.6763 + }, + { + "start": 5260.68, + "end": 5266.42, + "probability": 0.8182 + }, + { + "start": 5267.78, + "end": 5268.68, + "probability": 0.4081 + }, + { + "start": 5268.72, + "end": 5269.72, + "probability": 0.9121 + }, + { + "start": 5273.68, + "end": 5273.78, + "probability": 0.819 + }, + { + "start": 5273.78, + "end": 5273.78, + "probability": 0.7872 + }, + { + "start": 5273.78, + "end": 5273.78, + "probability": 0.0123 + }, + { + "start": 5273.78, + "end": 5275.98, + "probability": 0.2091 + }, + { + "start": 5277.2, + "end": 5278.5, + "probability": 0.6178 + }, + { + "start": 5279.2, + "end": 5285.54, + "probability": 0.8329 + }, + { + "start": 5286.72, + "end": 5288.7, + "probability": 0.7013 + }, + { + "start": 5288.84, + "end": 5289.2, + "probability": 0.791 + }, + { + "start": 5293.8, + "end": 5296.1, + "probability": 0.7243 + }, + { + "start": 5296.7, + "end": 5298.2, + "probability": 0.9781 + }, + { + "start": 5298.32, + "end": 5300.72, + "probability": 0.9683 + }, + { + "start": 5300.84, + "end": 5301.44, + "probability": 0.8445 + }, + { + "start": 5301.62, + "end": 5304.14, + "probability": 0.9827 + }, + { + "start": 5304.24, + "end": 5306.48, + "probability": 0.9958 + }, + { + "start": 5306.5, + "end": 5306.96, + "probability": 0.8807 + }, + { + "start": 5307.32, + "end": 5309.46, + "probability": 0.5305 + }, + { + "start": 5309.48, + "end": 5310.56, + "probability": 0.965 + }, + { + "start": 5310.74, + "end": 5314.62, + "probability": 0.9475 + }, + { + "start": 5315.3, + "end": 5316.38, + "probability": 0.9972 + }, + { + "start": 5317.18, + "end": 5318.88, + "probability": 0.9951 + }, + { + "start": 5321.86, + "end": 5324.42, + "probability": 0.8538 + }, + { + "start": 5324.54, + "end": 5327.62, + "probability": 0.7586 + }, + { + "start": 5328.38, + "end": 5331.74, + "probability": 0.9366 + }, + { + "start": 5332.58, + "end": 5333.74, + "probability": 0.7552 + }, + { + "start": 5333.9, + "end": 5334.38, + "probability": 0.8137 + }, + { + "start": 5334.44, + "end": 5337.12, + "probability": 0.846 + }, + { + "start": 5337.7, + "end": 5339.18, + "probability": 0.6029 + }, + { + "start": 5339.44, + "end": 5340.18, + "probability": 0.1392 + }, + { + "start": 5340.18, + "end": 5341.14, + "probability": 0.4241 + }, + { + "start": 5341.24, + "end": 5342.18, + "probability": 0.5159 + }, + { + "start": 5342.28, + "end": 5344.36, + "probability": 0.6614 + }, + { + "start": 5344.42, + "end": 5345.56, + "probability": 0.869 + }, + { + "start": 5345.56, + "end": 5346.44, + "probability": 0.1781 + }, + { + "start": 5347.22, + "end": 5348.02, + "probability": 0.4536 + }, + { + "start": 5348.06, + "end": 5352.0, + "probability": 0.6611 + }, + { + "start": 5353.26, + "end": 5354.02, + "probability": 0.0074 + }, + { + "start": 5354.02, + "end": 5358.46, + "probability": 0.3728 + }, + { + "start": 5358.64, + "end": 5360.78, + "probability": 0.8031 + }, + { + "start": 5361.3, + "end": 5364.35, + "probability": 0.2076 + }, + { + "start": 5364.94, + "end": 5366.2, + "probability": 0.4414 + }, + { + "start": 5366.2, + "end": 5368.06, + "probability": 0.0676 + }, + { + "start": 5368.28, + "end": 5373.08, + "probability": 0.8308 + }, + { + "start": 5373.2, + "end": 5374.0, + "probability": 0.0536 + }, + { + "start": 5374.38, + "end": 5379.58, + "probability": 0.7032 + }, + { + "start": 5380.58, + "end": 5382.68, + "probability": 0.9982 + }, + { + "start": 5382.96, + "end": 5383.94, + "probability": 0.7747 + }, + { + "start": 5384.68, + "end": 5395.42, + "probability": 0.7924 + }, + { + "start": 5395.9, + "end": 5399.26, + "probability": 0.991 + }, + { + "start": 5400.12, + "end": 5401.52, + "probability": 0.4941 + }, + { + "start": 5402.18, + "end": 5404.82, + "probability": 0.8206 + }, + { + "start": 5405.42, + "end": 5406.4, + "probability": 0.8024 + }, + { + "start": 5407.02, + "end": 5408.14, + "probability": 0.9707 + }, + { + "start": 5408.68, + "end": 5410.18, + "probability": 0.906 + }, + { + "start": 5410.88, + "end": 5413.26, + "probability": 0.9375 + }, + { + "start": 5413.78, + "end": 5417.58, + "probability": 0.8084 + }, + { + "start": 5418.9, + "end": 5422.74, + "probability": 0.7078 + }, + { + "start": 5423.18, + "end": 5423.66, + "probability": 0.7577 + }, + { + "start": 5423.74, + "end": 5425.52, + "probability": 0.9827 + }, + { + "start": 5425.66, + "end": 5427.04, + "probability": 0.9557 + }, + { + "start": 5427.6, + "end": 5429.38, + "probability": 0.5322 + }, + { + "start": 5429.76, + "end": 5430.32, + "probability": 0.7827 + }, + { + "start": 5431.58, + "end": 5434.18, + "probability": 0.0694 + }, + { + "start": 5434.18, + "end": 5435.98, + "probability": 0.5318 + }, + { + "start": 5436.06, + "end": 5436.48, + "probability": 0.717 + }, + { + "start": 5436.94, + "end": 5440.5, + "probability": 0.3963 + }, + { + "start": 5440.62, + "end": 5442.4, + "probability": 0.5785 + }, + { + "start": 5442.62, + "end": 5444.06, + "probability": 0.8359 + }, + { + "start": 5444.14, + "end": 5446.08, + "probability": 0.9724 + }, + { + "start": 5446.08, + "end": 5449.8, + "probability": 0.3158 + }, + { + "start": 5449.8, + "end": 5450.14, + "probability": 0.4131 + }, + { + "start": 5450.36, + "end": 5452.37, + "probability": 0.7972 + }, + { + "start": 5453.0, + "end": 5457.29, + "probability": 0.8206 + }, + { + "start": 5458.3, + "end": 5459.15, + "probability": 0.7466 + }, + { + "start": 5460.28, + "end": 5463.64, + "probability": 0.9709 + }, + { + "start": 5464.5, + "end": 5465.2, + "probability": 0.9805 + }, + { + "start": 5465.8, + "end": 5466.7, + "probability": 0.47 + }, + { + "start": 5466.78, + "end": 5471.46, + "probability": 0.7657 + }, + { + "start": 5471.46, + "end": 5473.82, + "probability": 0.6185 + }, + { + "start": 5474.24, + "end": 5474.36, + "probability": 0.3766 + }, + { + "start": 5474.36, + "end": 5474.36, + "probability": 0.2535 + }, + { + "start": 5474.36, + "end": 5475.65, + "probability": 0.4661 + }, + { + "start": 5476.44, + "end": 5479.0, + "probability": 0.8501 + }, + { + "start": 5479.26, + "end": 5480.58, + "probability": 0.5468 + }, + { + "start": 5480.62, + "end": 5484.64, + "probability": 0.6104 + }, + { + "start": 5485.12, + "end": 5486.24, + "probability": 0.5969 + }, + { + "start": 5487.63, + "end": 5487.88, + "probability": 0.1048 + }, + { + "start": 5487.88, + "end": 5488.56, + "probability": 0.6667 + }, + { + "start": 5488.58, + "end": 5492.44, + "probability": 0.9927 + }, + { + "start": 5492.46, + "end": 5492.76, + "probability": 0.5776 + }, + { + "start": 5492.76, + "end": 5494.06, + "probability": 0.6661 + }, + { + "start": 5494.06, + "end": 5496.74, + "probability": 0.3034 + }, + { + "start": 5499.52, + "end": 5500.2, + "probability": 0.0917 + }, + { + "start": 5500.2, + "end": 5500.2, + "probability": 0.0419 + }, + { + "start": 5500.2, + "end": 5501.42, + "probability": 0.4673 + }, + { + "start": 5501.7, + "end": 5503.98, + "probability": 0.936 + }, + { + "start": 5503.98, + "end": 5506.54, + "probability": 0.79 + }, + { + "start": 5506.54, + "end": 5507.18, + "probability": 0.0096 + }, + { + "start": 5507.6, + "end": 5508.18, + "probability": 0.0256 + }, + { + "start": 5508.18, + "end": 5509.08, + "probability": 0.2603 + }, + { + "start": 5509.38, + "end": 5512.28, + "probability": 0.8112 + }, + { + "start": 5512.52, + "end": 5514.68, + "probability": 0.9213 + }, + { + "start": 5514.76, + "end": 5516.04, + "probability": 0.7949 + }, + { + "start": 5516.52, + "end": 5519.92, + "probability": 0.9304 + }, + { + "start": 5520.5, + "end": 5521.28, + "probability": 0.4834 + }, + { + "start": 5521.38, + "end": 5521.84, + "probability": 0.7376 + }, + { + "start": 5523.32, + "end": 5525.8, + "probability": 0.7142 + }, + { + "start": 5527.76, + "end": 5529.7, + "probability": 0.6845 + }, + { + "start": 5529.78, + "end": 5533.68, + "probability": 0.9844 + }, + { + "start": 5533.68, + "end": 5537.96, + "probability": 0.9711 + }, + { + "start": 5538.32, + "end": 5541.0, + "probability": 0.98 + }, + { + "start": 5541.12, + "end": 5544.59, + "probability": 0.8565 + }, + { + "start": 5545.02, + "end": 5549.46, + "probability": 0.9797 + }, + { + "start": 5549.64, + "end": 5553.1, + "probability": 0.8602 + }, + { + "start": 5553.14, + "end": 5559.38, + "probability": 0.9922 + }, + { + "start": 5560.14, + "end": 5561.98, + "probability": 0.9977 + }, + { + "start": 5561.98, + "end": 5564.5, + "probability": 0.9563 + }, + { + "start": 5564.6, + "end": 5566.74, + "probability": 0.9526 + }, + { + "start": 5566.9, + "end": 5568.46, + "probability": 0.7994 + }, + { + "start": 5568.8, + "end": 5570.92, + "probability": 0.917 + }, + { + "start": 5571.08, + "end": 5573.48, + "probability": 0.9443 + }, + { + "start": 5573.58, + "end": 5573.86, + "probability": 0.9165 + }, + { + "start": 5573.92, + "end": 5575.1, + "probability": 0.9272 + }, + { + "start": 5575.38, + "end": 5578.64, + "probability": 0.9639 + }, + { + "start": 5578.72, + "end": 5579.96, + "probability": 0.9703 + }, + { + "start": 5580.02, + "end": 5584.8, + "probability": 0.9893 + }, + { + "start": 5584.88, + "end": 5589.14, + "probability": 0.9897 + }, + { + "start": 5589.26, + "end": 5592.02, + "probability": 0.9937 + }, + { + "start": 5592.32, + "end": 5593.06, + "probability": 0.6929 + }, + { + "start": 5593.08, + "end": 5594.06, + "probability": 0.8861 + }, + { + "start": 5594.12, + "end": 5596.74, + "probability": 0.8713 + }, + { + "start": 5597.14, + "end": 5597.72, + "probability": 0.4359 + }, + { + "start": 5597.72, + "end": 5599.84, + "probability": 0.4616 + }, + { + "start": 5599.98, + "end": 5602.38, + "probability": 0.2641 + }, + { + "start": 5603.68, + "end": 5604.24, + "probability": 0.5407 + }, + { + "start": 5604.4, + "end": 5605.87, + "probability": 0.5829 + }, + { + "start": 5606.24, + "end": 5609.98, + "probability": 0.8617 + }, + { + "start": 5610.24, + "end": 5610.52, + "probability": 0.0338 + }, + { + "start": 5610.56, + "end": 5611.44, + "probability": 0.6067 + }, + { + "start": 5612.08, + "end": 5613.94, + "probability": 0.6255 + }, + { + "start": 5613.94, + "end": 5615.02, + "probability": 0.1234 + }, + { + "start": 5615.02, + "end": 5615.02, + "probability": 0.2158 + }, + { + "start": 5615.16, + "end": 5615.8, + "probability": 0.192 + }, + { + "start": 5616.34, + "end": 5616.8, + "probability": 0.2315 + }, + { + "start": 5617.24, + "end": 5619.21, + "probability": 0.4921 + }, + { + "start": 5620.0, + "end": 5621.39, + "probability": 0.1349 + }, + { + "start": 5621.86, + "end": 5623.18, + "probability": 0.4091 + }, + { + "start": 5623.52, + "end": 5629.62, + "probability": 0.9018 + }, + { + "start": 5629.72, + "end": 5632.8, + "probability": 0.508 + }, + { + "start": 5633.78, + "end": 5634.68, + "probability": 0.0437 + }, + { + "start": 5634.68, + "end": 5638.96, + "probability": 0.058 + }, + { + "start": 5639.84, + "end": 5641.48, + "probability": 0.0249 + }, + { + "start": 5641.56, + "end": 5643.6, + "probability": 0.095 + }, + { + "start": 5643.66, + "end": 5644.66, + "probability": 0.0714 + }, + { + "start": 5645.12, + "end": 5646.15, + "probability": 0.0527 + }, + { + "start": 5647.42, + "end": 5647.64, + "probability": 0.0302 + }, + { + "start": 5658.54, + "end": 5659.12, + "probability": 0.0067 + }, + { + "start": 5660.09, + "end": 5662.16, + "probability": 0.0456 + }, + { + "start": 5662.38, + "end": 5664.0, + "probability": 0.0619 + }, + { + "start": 5664.0, + "end": 5665.6, + "probability": 0.0625 + }, + { + "start": 5665.6, + "end": 5670.64, + "probability": 0.0513 + }, + { + "start": 5671.86, + "end": 5674.48, + "probability": 0.1127 + }, + { + "start": 5677.72, + "end": 5678.54, + "probability": 0.4791 + }, + { + "start": 5679.12, + "end": 5682.2, + "probability": 0.0406 + }, + { + "start": 5682.2, + "end": 5686.02, + "probability": 0.0714 + }, + { + "start": 5686.23, + "end": 5687.32, + "probability": 0.053 + }, + { + "start": 5687.32, + "end": 5689.86, + "probability": 0.075 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 5999.0, + "end": 5999.0, + "probability": 0.0 + }, + { + "start": 6001.43, + "end": 6003.6, + "probability": 0.3138 + }, + { + "start": 6004.82, + "end": 6004.96, + "probability": 0.3568 + }, + { + "start": 6005.14, + "end": 6005.66, + "probability": 0.5859 + }, + { + "start": 6005.66, + "end": 6006.64, + "probability": 0.3263 + }, + { + "start": 6006.64, + "end": 6008.89, + "probability": 0.9448 + }, + { + "start": 6009.0, + "end": 6012.28, + "probability": 0.7994 + }, + { + "start": 6013.06, + "end": 6014.7, + "probability": 0.9757 + }, + { + "start": 6014.88, + "end": 6016.42, + "probability": 0.7584 + }, + { + "start": 6016.94, + "end": 6018.86, + "probability": 0.8301 + }, + { + "start": 6019.28, + "end": 6023.04, + "probability": 0.7442 + }, + { + "start": 6023.06, + "end": 6023.78, + "probability": 0.937 + }, + { + "start": 6024.39, + "end": 6027.34, + "probability": 0.7581 + }, + { + "start": 6028.9, + "end": 6030.7, + "probability": 0.6588 + }, + { + "start": 6031.6, + "end": 6032.68, + "probability": 0.191 + }, + { + "start": 6033.46, + "end": 6034.94, + "probability": 0.8295 + }, + { + "start": 6035.74, + "end": 6037.52, + "probability": 0.9249 + }, + { + "start": 6038.72, + "end": 6040.38, + "probability": 0.9852 + }, + { + "start": 6041.08, + "end": 6042.56, + "probability": 0.9305 + }, + { + "start": 6043.14, + "end": 6044.16, + "probability": 0.9932 + }, + { + "start": 6045.26, + "end": 6047.44, + "probability": 0.9421 + }, + { + "start": 6048.82, + "end": 6051.5, + "probability": 0.752 + }, + { + "start": 6052.46, + "end": 6054.7, + "probability": 0.9854 + }, + { + "start": 6054.78, + "end": 6057.54, + "probability": 0.9868 + }, + { + "start": 6057.62, + "end": 6058.9, + "probability": 0.9754 + }, + { + "start": 6059.24, + "end": 6061.46, + "probability": 0.8326 + }, + { + "start": 6062.3, + "end": 6063.24, + "probability": 0.8526 + }, + { + "start": 6063.52, + "end": 6066.6, + "probability": 0.9674 + }, + { + "start": 6066.82, + "end": 6067.16, + "probability": 0.3802 + }, + { + "start": 6067.2, + "end": 6069.08, + "probability": 0.8966 + }, + { + "start": 6069.56, + "end": 6071.62, + "probability": 0.8412 + }, + { + "start": 6072.68, + "end": 6074.42, + "probability": 0.9698 + }, + { + "start": 6075.36, + "end": 6077.34, + "probability": 0.8579 + }, + { + "start": 6078.06, + "end": 6080.45, + "probability": 0.9442 + }, + { + "start": 6081.22, + "end": 6082.06, + "probability": 0.798 + }, + { + "start": 6082.18, + "end": 6083.19, + "probability": 0.7997 + }, + { + "start": 6084.02, + "end": 6084.9, + "probability": 0.7373 + }, + { + "start": 6085.0, + "end": 6086.9, + "probability": 0.9147 + }, + { + "start": 6087.62, + "end": 6088.98, + "probability": 0.9655 + }, + { + "start": 6089.74, + "end": 6091.64, + "probability": 0.9859 + }, + { + "start": 6092.26, + "end": 6094.42, + "probability": 0.8931 + }, + { + "start": 6094.96, + "end": 6098.11, + "probability": 0.9946 + }, + { + "start": 6098.88, + "end": 6100.14, + "probability": 0.6654 + }, + { + "start": 6100.14, + "end": 6102.74, + "probability": 0.693 + }, + { + "start": 6103.36, + "end": 6104.72, + "probability": 0.6967 + }, + { + "start": 6105.1, + "end": 6109.48, + "probability": 0.6244 + }, + { + "start": 6110.08, + "end": 6111.32, + "probability": 0.3385 + }, + { + "start": 6112.0, + "end": 6113.6, + "probability": 0.0491 + }, + { + "start": 6113.62, + "end": 6118.3, + "probability": 0.127 + }, + { + "start": 6118.3, + "end": 6119.92, + "probability": 0.0385 + }, + { + "start": 6120.0, + "end": 6120.76, + "probability": 0.0413 + }, + { + "start": 6120.86, + "end": 6121.14, + "probability": 0.0758 + }, + { + "start": 6121.68, + "end": 6123.34, + "probability": 0.1816 + }, + { + "start": 6126.74, + "end": 6128.06, + "probability": 0.0407 + }, + { + "start": 6128.06, + "end": 6128.06, + "probability": 0.0248 + }, + { + "start": 6128.06, + "end": 6129.66, + "probability": 0.1689 + }, + { + "start": 6132.7, + "end": 6136.3, + "probability": 0.0165 + }, + { + "start": 6136.3, + "end": 6136.68, + "probability": 0.0608 + }, + { + "start": 6136.68, + "end": 6137.52, + "probability": 0.1619 + }, + { + "start": 6138.44, + "end": 6140.88, + "probability": 0.314 + }, + { + "start": 6145.34, + "end": 6149.12, + "probability": 0.3418 + }, + { + "start": 6156.52, + "end": 6161.32, + "probability": 0.0829 + }, + { + "start": 6161.32, + "end": 6161.46, + "probability": 0.039 + }, + { + "start": 6162.0, + "end": 6162.28, + "probability": 0.2188 + }, + { + "start": 6162.28, + "end": 6164.88, + "probability": 0.0272 + }, + { + "start": 6165.56, + "end": 6165.99, + "probability": 0.059 + }, + { + "start": 6166.42, + "end": 6169.01, + "probability": 0.0275 + }, + { + "start": 6169.64, + "end": 6171.64, + "probability": 0.1288 + }, + { + "start": 6171.64, + "end": 6174.24, + "probability": 0.2657 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.0, + "end": 6194.0, + "probability": 0.0 + }, + { + "start": 6194.14, + "end": 6194.16, + "probability": 0.0162 + }, + { + "start": 6194.16, + "end": 6194.86, + "probability": 0.3615 + }, + { + "start": 6195.5, + "end": 6196.32, + "probability": 0.3636 + }, + { + "start": 6196.46, + "end": 6196.78, + "probability": 0.2624 + }, + { + "start": 6197.14, + "end": 6198.16, + "probability": 0.8874 + }, + { + "start": 6198.32, + "end": 6199.04, + "probability": 0.8415 + }, + { + "start": 6199.14, + "end": 6200.06, + "probability": 0.6947 + }, + { + "start": 6200.68, + "end": 6202.04, + "probability": 0.8242 + }, + { + "start": 6203.16, + "end": 6205.2, + "probability": 0.9482 + }, + { + "start": 6205.28, + "end": 6205.74, + "probability": 0.5943 + }, + { + "start": 6205.82, + "end": 6206.3, + "probability": 0.878 + }, + { + "start": 6206.92, + "end": 6209.2, + "probability": 0.8857 + }, + { + "start": 6209.78, + "end": 6211.78, + "probability": 0.6799 + }, + { + "start": 6212.66, + "end": 6214.2, + "probability": 0.8306 + }, + { + "start": 6214.78, + "end": 6217.98, + "probability": 0.991 + }, + { + "start": 6218.42, + "end": 6220.76, + "probability": 0.8048 + }, + { + "start": 6221.28, + "end": 6223.26, + "probability": 0.9951 + }, + { + "start": 6224.56, + "end": 6227.08, + "probability": 0.8754 + }, + { + "start": 6227.68, + "end": 6229.14, + "probability": 0.9328 + }, + { + "start": 6229.88, + "end": 6230.86, + "probability": 0.5168 + }, + { + "start": 6231.26, + "end": 6232.3, + "probability": 0.7334 + }, + { + "start": 6232.34, + "end": 6235.74, + "probability": 0.8412 + }, + { + "start": 6236.22, + "end": 6237.32, + "probability": 0.8381 + }, + { + "start": 6237.76, + "end": 6239.14, + "probability": 0.9663 + }, + { + "start": 6239.54, + "end": 6240.86, + "probability": 0.7359 + }, + { + "start": 6241.42, + "end": 6242.88, + "probability": 0.7475 + }, + { + "start": 6243.32, + "end": 6244.92, + "probability": 0.9736 + }, + { + "start": 6245.38, + "end": 6246.48, + "probability": 0.9326 + }, + { + "start": 6246.86, + "end": 6248.9, + "probability": 0.7069 + }, + { + "start": 6248.98, + "end": 6251.58, + "probability": 0.7322 + }, + { + "start": 6252.0, + "end": 6256.42, + "probability": 0.8463 + }, + { + "start": 6261.88, + "end": 6265.4, + "probability": 0.6554 + }, + { + "start": 6266.38, + "end": 6269.12, + "probability": 0.7521 + }, + { + "start": 6270.2, + "end": 6273.02, + "probability": 0.1077 + }, + { + "start": 6273.46, + "end": 6273.6, + "probability": 0.0493 + }, + { + "start": 6274.0, + "end": 6274.6, + "probability": 0.0506 + }, + { + "start": 6275.1, + "end": 6276.16, + "probability": 0.906 + }, + { + "start": 6276.16, + "end": 6277.52, + "probability": 0.9475 + }, + { + "start": 6277.58, + "end": 6279.14, + "probability": 0.8664 + }, + { + "start": 6279.24, + "end": 6280.76, + "probability": 0.884 + }, + { + "start": 6281.42, + "end": 6282.3, + "probability": 0.4833 + }, + { + "start": 6282.4, + "end": 6282.4, + "probability": 0.2947 + }, + { + "start": 6282.4, + "end": 6286.32, + "probability": 0.8187 + }, + { + "start": 6287.12, + "end": 6290.0, + "probability": 0.9148 + }, + { + "start": 6290.84, + "end": 6294.36, + "probability": 0.9697 + }, + { + "start": 6294.84, + "end": 6296.64, + "probability": 0.9971 + }, + { + "start": 6297.5, + "end": 6299.24, + "probability": 0.8835 + }, + { + "start": 6299.8, + "end": 6304.34, + "probability": 0.9547 + }, + { + "start": 6305.36, + "end": 6308.92, + "probability": 0.9836 + }, + { + "start": 6309.52, + "end": 6310.54, + "probability": 0.9836 + }, + { + "start": 6311.1, + "end": 6313.84, + "probability": 0.9284 + }, + { + "start": 6314.82, + "end": 6317.8, + "probability": 0.9792 + }, + { + "start": 6318.58, + "end": 6318.92, + "probability": 0.376 + }, + { + "start": 6318.98, + "end": 6320.7, + "probability": 0.9712 + }, + { + "start": 6321.18, + "end": 6322.12, + "probability": 0.9584 + }, + { + "start": 6322.24, + "end": 6323.2, + "probability": 0.9384 + }, + { + "start": 6323.26, + "end": 6324.0, + "probability": 0.7201 + }, + { + "start": 6325.1, + "end": 6327.83, + "probability": 0.9818 + }, + { + "start": 6327.98, + "end": 6329.16, + "probability": 0.5287 + }, + { + "start": 6329.26, + "end": 6330.64, + "probability": 0.943 + }, + { + "start": 6330.84, + "end": 6331.18, + "probability": 0.3578 + }, + { + "start": 6331.18, + "end": 6331.66, + "probability": 0.7214 + }, + { + "start": 6332.08, + "end": 6334.22, + "probability": 0.938 + }, + { + "start": 6334.84, + "end": 6336.14, + "probability": 0.9115 + }, + { + "start": 6336.16, + "end": 6337.04, + "probability": 0.9844 + }, + { + "start": 6337.1, + "end": 6338.34, + "probability": 0.9976 + }, + { + "start": 6338.96, + "end": 6341.12, + "probability": 0.9932 + }, + { + "start": 6341.68, + "end": 6344.22, + "probability": 0.9712 + }, + { + "start": 6345.94, + "end": 6347.62, + "probability": 0.8608 + }, + { + "start": 6348.28, + "end": 6349.72, + "probability": 0.8979 + }, + { + "start": 6349.82, + "end": 6351.12, + "probability": 0.8558 + }, + { + "start": 6351.4, + "end": 6353.52, + "probability": 0.9246 + }, + { + "start": 6353.62, + "end": 6355.08, + "probability": 0.5458 + }, + { + "start": 6355.26, + "end": 6358.18, + "probability": 0.8846 + }, + { + "start": 6358.52, + "end": 6360.22, + "probability": 0.8206 + }, + { + "start": 6360.5, + "end": 6365.58, + "probability": 0.834 + }, + { + "start": 6365.8, + "end": 6367.59, + "probability": 0.2745 + }, + { + "start": 6367.86, + "end": 6368.92, + "probability": 0.3714 + }, + { + "start": 6369.9, + "end": 6371.76, + "probability": 0.9104 + }, + { + "start": 6373.55, + "end": 6375.82, + "probability": 0.277 + }, + { + "start": 6375.82, + "end": 6378.4, + "probability": 0.5759 + }, + { + "start": 6378.54, + "end": 6380.7, + "probability": 0.9896 + }, + { + "start": 6380.76, + "end": 6381.42, + "probability": 0.5574 + }, + { + "start": 6381.42, + "end": 6382.54, + "probability": 0.803 + }, + { + "start": 6382.6, + "end": 6383.62, + "probability": 0.4857 + }, + { + "start": 6383.76, + "end": 6385.68, + "probability": 0.9525 + }, + { + "start": 6385.74, + "end": 6386.16, + "probability": 0.8165 + }, + { + "start": 6386.18, + "end": 6386.6, + "probability": 0.9678 + }, + { + "start": 6386.66, + "end": 6387.56, + "probability": 0.9873 + }, + { + "start": 6387.72, + "end": 6389.54, + "probability": 0.9619 + }, + { + "start": 6389.72, + "end": 6390.66, + "probability": 0.691 + }, + { + "start": 6390.66, + "end": 6391.52, + "probability": 0.7701 + }, + { + "start": 6391.82, + "end": 6392.5, + "probability": 0.1786 + }, + { + "start": 6392.5, + "end": 6392.84, + "probability": 0.0099 + }, + { + "start": 6392.84, + "end": 6394.48, + "probability": 0.8055 + }, + { + "start": 6394.7, + "end": 6397.96, + "probability": 0.9761 + }, + { + "start": 6398.06, + "end": 6399.88, + "probability": 0.9314 + }, + { + "start": 6399.96, + "end": 6400.54, + "probability": 0.8915 + }, + { + "start": 6400.66, + "end": 6401.58, + "probability": 0.4813 + }, + { + "start": 6401.86, + "end": 6403.0, + "probability": 0.9778 + }, + { + "start": 6403.72, + "end": 6405.84, + "probability": 0.7804 + }, + { + "start": 6405.92, + "end": 6409.24, + "probability": 0.9869 + }, + { + "start": 6409.6, + "end": 6410.3, + "probability": 0.724 + }, + { + "start": 6410.74, + "end": 6411.32, + "probability": 0.8551 + }, + { + "start": 6411.62, + "end": 6414.62, + "probability": 0.9585 + }, + { + "start": 6414.74, + "end": 6415.46, + "probability": 0.8875 + }, + { + "start": 6415.54, + "end": 6416.54, + "probability": 0.9381 + }, + { + "start": 6416.8, + "end": 6420.44, + "probability": 0.7773 + }, + { + "start": 6420.52, + "end": 6422.12, + "probability": 0.8491 + }, + { + "start": 6422.48, + "end": 6424.06, + "probability": 0.618 + }, + { + "start": 6424.2, + "end": 6426.3, + "probability": 0.88 + }, + { + "start": 6426.66, + "end": 6430.96, + "probability": 0.8834 + }, + { + "start": 6430.98, + "end": 6431.92, + "probability": 0.5976 + }, + { + "start": 6431.96, + "end": 6431.96, + "probability": 0.8521 + }, + { + "start": 6431.96, + "end": 6433.1, + "probability": 0.4511 + }, + { + "start": 6433.2, + "end": 6434.22, + "probability": 0.7066 + }, + { + "start": 6434.34, + "end": 6435.52, + "probability": 0.8876 + }, + { + "start": 6435.66, + "end": 6437.45, + "probability": 0.9238 + }, + { + "start": 6437.86, + "end": 6439.43, + "probability": 0.9224 + }, + { + "start": 6440.06, + "end": 6444.46, + "probability": 0.9863 + }, + { + "start": 6444.58, + "end": 6446.12, + "probability": 0.8147 + }, + { + "start": 6446.3, + "end": 6448.14, + "probability": 0.9493 + }, + { + "start": 6448.2, + "end": 6448.96, + "probability": 0.723 + }, + { + "start": 6449.2, + "end": 6450.36, + "probability": 0.9542 + }, + { + "start": 6450.64, + "end": 6453.26, + "probability": 0.9019 + }, + { + "start": 6453.32, + "end": 6453.92, + "probability": 0.5056 + }, + { + "start": 6453.92, + "end": 6455.1, + "probability": 0.7506 + }, + { + "start": 6455.3, + "end": 6455.4, + "probability": 0.0513 + }, + { + "start": 6455.4, + "end": 6457.76, + "probability": 0.8717 + }, + { + "start": 6457.84, + "end": 6460.72, + "probability": 0.889 + }, + { + "start": 6460.94, + "end": 6462.78, + "probability": 0.9469 + }, + { + "start": 6462.88, + "end": 6464.56, + "probability": 0.8185 + }, + { + "start": 6464.72, + "end": 6466.54, + "probability": 0.5051 + }, + { + "start": 6466.92, + "end": 6469.04, + "probability": 0.9702 + }, + { + "start": 6469.14, + "end": 6469.58, + "probability": 0.3796 + }, + { + "start": 6469.66, + "end": 6470.62, + "probability": 0.6691 + }, + { + "start": 6481.68, + "end": 6483.55, + "probability": 0.5482 + }, + { + "start": 6484.12, + "end": 6487.24, + "probability": 0.84 + }, + { + "start": 6487.86, + "end": 6491.98, + "probability": 0.9485 + }, + { + "start": 6492.54, + "end": 6494.52, + "probability": 0.9786 + }, + { + "start": 6495.46, + "end": 6497.22, + "probability": 0.6336 + }, + { + "start": 6497.34, + "end": 6498.48, + "probability": 0.7313 + }, + { + "start": 6499.06, + "end": 6501.26, + "probability": 0.9792 + }, + { + "start": 6502.14, + "end": 6506.56, + "probability": 0.9394 + }, + { + "start": 6508.24, + "end": 6513.56, + "probability": 0.8812 + }, + { + "start": 6514.14, + "end": 6516.21, + "probability": 0.9204 + }, + { + "start": 6517.16, + "end": 6518.72, + "probability": 0.7799 + }, + { + "start": 6518.86, + "end": 6522.94, + "probability": 0.989 + }, + { + "start": 6522.94, + "end": 6525.94, + "probability": 0.9992 + }, + { + "start": 6526.3, + "end": 6526.98, + "probability": 0.9744 + }, + { + "start": 6527.8, + "end": 6530.14, + "probability": 0.9681 + }, + { + "start": 6530.4, + "end": 6535.64, + "probability": 0.658 + }, + { + "start": 6536.14, + "end": 6538.36, + "probability": 0.9758 + }, + { + "start": 6538.5, + "end": 6541.66, + "probability": 0.8774 + }, + { + "start": 6542.14, + "end": 6543.74, + "probability": 0.9948 + }, + { + "start": 6544.28, + "end": 6546.92, + "probability": 0.9881 + }, + { + "start": 6547.46, + "end": 6548.92, + "probability": 0.9412 + }, + { + "start": 6549.3, + "end": 6550.44, + "probability": 0.8054 + }, + { + "start": 6550.52, + "end": 6552.9, + "probability": 0.9847 + }, + { + "start": 6553.0, + "end": 6553.2, + "probability": 0.7875 + }, + { + "start": 6553.86, + "end": 6555.56, + "probability": 0.6171 + }, + { + "start": 6555.6, + "end": 6558.5, + "probability": 0.7638 + }, + { + "start": 6558.56, + "end": 6559.87, + "probability": 0.9531 + }, + { + "start": 6560.16, + "end": 6563.68, + "probability": 0.9937 + }, + { + "start": 6563.76, + "end": 6564.32, + "probability": 0.8735 + }, + { + "start": 6579.18, + "end": 6579.89, + "probability": 0.3738 + }, + { + "start": 6582.56, + "end": 6583.2, + "probability": 0.6721 + }, + { + "start": 6584.04, + "end": 6586.5, + "probability": 0.8716 + }, + { + "start": 6587.74, + "end": 6589.7, + "probability": 0.7979 + }, + { + "start": 6590.24, + "end": 6592.22, + "probability": 0.9962 + }, + { + "start": 6592.82, + "end": 6597.44, + "probability": 0.959 + }, + { + "start": 6597.44, + "end": 6601.78, + "probability": 0.9984 + }, + { + "start": 6603.48, + "end": 6603.94, + "probability": 0.4321 + }, + { + "start": 6604.66, + "end": 6605.46, + "probability": 0.6188 + }, + { + "start": 6606.08, + "end": 6606.58, + "probability": 0.5074 + }, + { + "start": 6606.58, + "end": 6606.58, + "probability": 0.4629 + }, + { + "start": 6606.68, + "end": 6608.32, + "probability": 0.9961 + }, + { + "start": 6608.38, + "end": 6611.26, + "probability": 0.9952 + }, + { + "start": 6611.28, + "end": 6611.5, + "probability": 0.668 + }, + { + "start": 6611.62, + "end": 6612.48, + "probability": 0.4899 + }, + { + "start": 6612.64, + "end": 6616.94, + "probability": 0.8489 + }, + { + "start": 6617.0, + "end": 6617.68, + "probability": 0.6945 + }, + { + "start": 6619.38, + "end": 6621.42, + "probability": 0.9385 + }, + { + "start": 6628.14, + "end": 6629.08, + "probability": 0.5757 + }, + { + "start": 6629.12, + "end": 6630.36, + "probability": 0.9381 + }, + { + "start": 6630.56, + "end": 6632.62, + "probability": 0.985 + }, + { + "start": 6633.46, + "end": 6637.5, + "probability": 0.9315 + }, + { + "start": 6638.46, + "end": 6639.9, + "probability": 0.781 + }, + { + "start": 6640.16, + "end": 6643.74, + "probability": 0.9939 + }, + { + "start": 6643.74, + "end": 6648.82, + "probability": 0.9961 + }, + { + "start": 6649.72, + "end": 6653.46, + "probability": 0.8588 + }, + { + "start": 6654.06, + "end": 6656.62, + "probability": 0.9983 + }, + { + "start": 6656.62, + "end": 6660.36, + "probability": 0.8929 + }, + { + "start": 6660.84, + "end": 6663.78, + "probability": 0.9975 + }, + { + "start": 6664.56, + "end": 6666.12, + "probability": 0.9839 + }, + { + "start": 6666.22, + "end": 6667.92, + "probability": 0.9753 + }, + { + "start": 6668.02, + "end": 6670.08, + "probability": 0.9831 + }, + { + "start": 6670.36, + "end": 6673.38, + "probability": 0.9824 + }, + { + "start": 6674.0, + "end": 6676.08, + "probability": 0.9927 + }, + { + "start": 6676.52, + "end": 6677.7, + "probability": 0.712 + }, + { + "start": 6678.52, + "end": 6680.94, + "probability": 0.9407 + }, + { + "start": 6681.04, + "end": 6681.95, + "probability": 0.8076 + }, + { + "start": 6682.54, + "end": 6687.56, + "probability": 0.9884 + }, + { + "start": 6688.14, + "end": 6696.62, + "probability": 0.8512 + }, + { + "start": 6697.92, + "end": 6701.26, + "probability": 0.994 + }, + { + "start": 6701.4, + "end": 6702.18, + "probability": 0.678 + }, + { + "start": 6702.24, + "end": 6703.28, + "probability": 0.9642 + }, + { + "start": 6703.42, + "end": 6705.78, + "probability": 0.6868 + }, + { + "start": 6705.84, + "end": 6707.6, + "probability": 0.4056 + }, + { + "start": 6707.62, + "end": 6708.74, + "probability": 0.6642 + }, + { + "start": 6709.14, + "end": 6710.46, + "probability": 0.8421 + }, + { + "start": 6711.1, + "end": 6712.64, + "probability": 0.8411 + }, + { + "start": 6712.96, + "end": 6715.46, + "probability": 0.6242 + }, + { + "start": 6716.04, + "end": 6717.32, + "probability": 0.9785 + }, + { + "start": 6717.44, + "end": 6718.14, + "probability": 0.5971 + }, + { + "start": 6718.2, + "end": 6719.88, + "probability": 0.5562 + }, + { + "start": 6719.94, + "end": 6721.84, + "probability": 0.6497 + }, + { + "start": 6722.42, + "end": 6724.76, + "probability": 0.5579 + }, + { + "start": 6724.78, + "end": 6724.94, + "probability": 0.4332 + }, + { + "start": 6725.12, + "end": 6726.24, + "probability": 0.6416 + }, + { + "start": 6727.3, + "end": 6731.36, + "probability": 0.8728 + }, + { + "start": 6731.6, + "end": 6732.2, + "probability": 0.3671 + }, + { + "start": 6732.42, + "end": 6732.96, + "probability": 0.4604 + }, + { + "start": 6733.2, + "end": 6734.2, + "probability": 0.3902 + }, + { + "start": 6734.42, + "end": 6735.82, + "probability": 0.0747 + }, + { + "start": 6736.34, + "end": 6737.0, + "probability": 0.0044 + }, + { + "start": 6737.5, + "end": 6738.68, + "probability": 0.2888 + }, + { + "start": 6739.08, + "end": 6741.8, + "probability": 0.4035 + }, + { + "start": 6741.98, + "end": 6745.62, + "probability": 0.9635 + }, + { + "start": 6745.78, + "end": 6746.74, + "probability": 0.211 + }, + { + "start": 6746.74, + "end": 6747.54, + "probability": 0.7347 + }, + { + "start": 6747.94, + "end": 6750.76, + "probability": 0.9978 + }, + { + "start": 6750.93, + "end": 6754.44, + "probability": 0.9666 + }, + { + "start": 6754.92, + "end": 6758.06, + "probability": 0.9468 + }, + { + "start": 6758.16, + "end": 6760.84, + "probability": 0.9545 + }, + { + "start": 6761.22, + "end": 6762.44, + "probability": 0.7704 + }, + { + "start": 6762.56, + "end": 6763.92, + "probability": 0.6595 + }, + { + "start": 6764.18, + "end": 6767.14, + "probability": 0.9865 + }, + { + "start": 6767.7, + "end": 6770.12, + "probability": 0.9105 + }, + { + "start": 6770.18, + "end": 6771.47, + "probability": 0.8797 + }, + { + "start": 6772.0, + "end": 6773.72, + "probability": 0.993 + }, + { + "start": 6773.84, + "end": 6776.58, + "probability": 0.6501 + }, + { + "start": 6776.94, + "end": 6778.44, + "probability": 0.9515 + }, + { + "start": 6778.48, + "end": 6779.88, + "probability": 0.8485 + }, + { + "start": 6779.88, + "end": 6785.72, + "probability": 0.9961 + }, + { + "start": 6786.16, + "end": 6788.78, + "probability": 0.9224 + }, + { + "start": 6789.16, + "end": 6789.92, + "probability": 0.5048 + }, + { + "start": 6789.94, + "end": 6791.2, + "probability": 0.801 + }, + { + "start": 6791.6, + "end": 6792.86, + "probability": 0.734 + }, + { + "start": 6793.0, + "end": 6794.56, + "probability": 0.9434 + }, + { + "start": 6794.9, + "end": 6796.86, + "probability": 0.8743 + }, + { + "start": 6797.56, + "end": 6798.88, + "probability": 0.2404 + }, + { + "start": 6798.88, + "end": 6799.94, + "probability": 0.5034 + }, + { + "start": 6800.22, + "end": 6803.34, + "probability": 0.9663 + }, + { + "start": 6803.34, + "end": 6806.08, + "probability": 0.9911 + }, + { + "start": 6807.0, + "end": 6807.44, + "probability": 0.06 + }, + { + "start": 6807.44, + "end": 6808.35, + "probability": 0.9969 + }, + { + "start": 6809.48, + "end": 6812.2, + "probability": 0.866 + }, + { + "start": 6812.2, + "end": 6813.72, + "probability": 0.7995 + }, + { + "start": 6813.92, + "end": 6815.38, + "probability": 0.4784 + }, + { + "start": 6818.96, + "end": 6821.66, + "probability": 0.9671 + }, + { + "start": 6823.06, + "end": 6823.82, + "probability": 0.6823 + }, + { + "start": 6826.3, + "end": 6828.1, + "probability": 0.9457 + }, + { + "start": 6828.98, + "end": 6829.84, + "probability": 0.6974 + }, + { + "start": 6831.16, + "end": 6832.74, + "probability": 0.7973 + }, + { + "start": 6835.58, + "end": 6839.28, + "probability": 0.1475 + }, + { + "start": 6841.0, + "end": 6841.94, + "probability": 0.143 + }, + { + "start": 6841.94, + "end": 6842.38, + "probability": 0.023 + }, + { + "start": 6845.12, + "end": 6845.34, + "probability": 0.2187 + }, + { + "start": 6845.34, + "end": 6850.16, + "probability": 0.7519 + }, + { + "start": 6850.34, + "end": 6855.5, + "probability": 0.9829 + }, + { + "start": 6856.42, + "end": 6858.84, + "probability": 0.9749 + }, + { + "start": 6859.14, + "end": 6860.9, + "probability": 0.9917 + }, + { + "start": 6860.98, + "end": 6862.18, + "probability": 0.9111 + }, + { + "start": 6862.58, + "end": 6863.88, + "probability": 0.2076 + }, + { + "start": 6864.0, + "end": 6867.2, + "probability": 0.6058 + }, + { + "start": 6867.36, + "end": 6869.22, + "probability": 0.5381 + }, + { + "start": 6869.62, + "end": 6873.3, + "probability": 0.8876 + }, + { + "start": 6873.56, + "end": 6876.82, + "probability": 0.9468 + }, + { + "start": 6876.86, + "end": 6880.32, + "probability": 0.7974 + }, + { + "start": 6884.18, + "end": 6885.48, + "probability": 0.5171 + }, + { + "start": 6887.08, + "end": 6889.32, + "probability": 0.7526 + }, + { + "start": 6891.38, + "end": 6894.36, + "probability": 0.9575 + }, + { + "start": 6894.36, + "end": 6894.49, + "probability": 0.9827 + }, + { + "start": 6894.92, + "end": 6895.2, + "probability": 0.8186 + }, + { + "start": 6896.28, + "end": 6896.5, + "probability": 0.2947 + }, + { + "start": 6896.86, + "end": 6897.44, + "probability": 0.9707 + }, + { + "start": 6897.8, + "end": 6898.2, + "probability": 0.4989 + }, + { + "start": 6899.94, + "end": 6905.38, + "probability": 0.9345 + }, + { + "start": 6905.38, + "end": 6912.38, + "probability": 0.9696 + }, + { + "start": 6913.5, + "end": 6914.78, + "probability": 0.8957 + }, + { + "start": 6915.32, + "end": 6915.98, + "probability": 0.938 + }, + { + "start": 6916.68, + "end": 6917.8, + "probability": 0.836 + }, + { + "start": 6919.22, + "end": 6919.6, + "probability": 0.958 + }, + { + "start": 6921.14, + "end": 6930.04, + "probability": 0.9819 + }, + { + "start": 6931.12, + "end": 6934.6, + "probability": 0.4732 + }, + { + "start": 6936.22, + "end": 6943.32, + "probability": 0.743 + }, + { + "start": 6944.9, + "end": 6945.68, + "probability": 0.6943 + }, + { + "start": 6947.16, + "end": 6948.18, + "probability": 0.6281 + }, + { + "start": 6949.3, + "end": 6949.94, + "probability": 0.6631 + }, + { + "start": 6950.82, + "end": 6954.0, + "probability": 0.4675 + }, + { + "start": 6954.68, + "end": 6955.36, + "probability": 0.4318 + }, + { + "start": 6956.52, + "end": 6960.96, + "probability": 0.5384 + }, + { + "start": 6962.46, + "end": 6970.14, + "probability": 0.9014 + }, + { + "start": 6972.18, + "end": 6978.68, + "probability": 0.973 + }, + { + "start": 6980.9, + "end": 6986.24, + "probability": 0.5014 + }, + { + "start": 6987.26, + "end": 6987.96, + "probability": 0.3138 + }, + { + "start": 6989.16, + "end": 6990.72, + "probability": 0.9396 + }, + { + "start": 6992.1, + "end": 6999.58, + "probability": 0.8172 + }, + { + "start": 7000.86, + "end": 7007.06, + "probability": 0.9167 + }, + { + "start": 7008.1, + "end": 7008.8, + "probability": 0.1779 + }, + { + "start": 7010.26, + "end": 7020.64, + "probability": 0.5394 + }, + { + "start": 7021.54, + "end": 7025.98, + "probability": 0.735 + }, + { + "start": 7028.82, + "end": 7034.78, + "probability": 0.9937 + }, + { + "start": 7034.94, + "end": 7035.85, + "probability": 0.6166 + }, + { + "start": 7036.42, + "end": 7036.86, + "probability": 0.7767 + }, + { + "start": 7037.8, + "end": 7039.22, + "probability": 0.9497 + }, + { + "start": 7040.92, + "end": 7043.56, + "probability": 0.7042 + }, + { + "start": 7044.16, + "end": 7045.88, + "probability": 0.7889 + }, + { + "start": 7046.64, + "end": 7047.94, + "probability": 0.9476 + }, + { + "start": 7048.04, + "end": 7050.32, + "probability": 0.5537 + }, + { + "start": 7051.1, + "end": 7057.82, + "probability": 0.8707 + }, + { + "start": 7058.16, + "end": 7058.6, + "probability": 0.8604 + }, + { + "start": 7059.04, + "end": 7060.3, + "probability": 0.5789 + }, + { + "start": 7061.4, + "end": 7064.64, + "probability": 0.9561 + }, + { + "start": 7065.9, + "end": 7070.26, + "probability": 0.9594 + }, + { + "start": 7070.84, + "end": 7072.89, + "probability": 0.9897 + }, + { + "start": 7074.04, + "end": 7074.78, + "probability": 0.8684 + }, + { + "start": 7075.54, + "end": 7076.94, + "probability": 0.7527 + }, + { + "start": 7077.98, + "end": 7079.16, + "probability": 0.8167 + }, + { + "start": 7080.06, + "end": 7083.48, + "probability": 0.6822 + }, + { + "start": 7084.24, + "end": 7085.12, + "probability": 0.5704 + }, + { + "start": 7086.5, + "end": 7089.1, + "probability": 0.7925 + }, + { + "start": 7090.62, + "end": 7093.58, + "probability": 0.6164 + }, + { + "start": 7094.6, + "end": 7096.06, + "probability": 0.7262 + }, + { + "start": 7097.24, + "end": 7102.72, + "probability": 0.783 + }, + { + "start": 7103.62, + "end": 7107.54, + "probability": 0.9507 + }, + { + "start": 7108.2, + "end": 7109.3, + "probability": 0.5837 + }, + { + "start": 7110.6, + "end": 7118.92, + "probability": 0.7341 + }, + { + "start": 7119.86, + "end": 7122.36, + "probability": 0.622 + }, + { + "start": 7123.8, + "end": 7124.84, + "probability": 0.7054 + }, + { + "start": 7125.68, + "end": 7129.14, + "probability": 0.6345 + }, + { + "start": 7129.2, + "end": 7132.52, + "probability": 0.8745 + }, + { + "start": 7133.3, + "end": 7136.66, + "probability": 0.7297 + }, + { + "start": 7138.52, + "end": 7142.92, + "probability": 0.9087 + }, + { + "start": 7143.1, + "end": 7146.74, + "probability": 0.5945 + }, + { + "start": 7147.62, + "end": 7149.54, + "probability": 0.8541 + }, + { + "start": 7150.56, + "end": 7154.24, + "probability": 0.702 + }, + { + "start": 7155.1, + "end": 7157.84, + "probability": 0.9652 + }, + { + "start": 7158.62, + "end": 7163.06, + "probability": 0.974 + }, + { + "start": 7163.72, + "end": 7166.9, + "probability": 0.9221 + }, + { + "start": 7167.62, + "end": 7172.6, + "probability": 0.981 + }, + { + "start": 7172.6, + "end": 7180.88, + "probability": 0.9385 + }, + { + "start": 7181.0, + "end": 7182.02, + "probability": 0.64 + }, + { + "start": 7182.08, + "end": 7182.58, + "probability": 0.876 + }, + { + "start": 7182.66, + "end": 7183.6, + "probability": 0.9166 + }, + { + "start": 7183.72, + "end": 7185.12, + "probability": 0.907 + }, + { + "start": 7185.36, + "end": 7186.34, + "probability": 0.6717 + }, + { + "start": 7187.52, + "end": 7194.56, + "probability": 0.9541 + }, + { + "start": 7195.12, + "end": 7195.8, + "probability": 0.7228 + }, + { + "start": 7196.2, + "end": 7197.16, + "probability": 0.7445 + }, + { + "start": 7198.14, + "end": 7203.62, + "probability": 0.5626 + }, + { + "start": 7204.08, + "end": 7205.28, + "probability": 0.6636 + }, + { + "start": 7205.88, + "end": 7207.3, + "probability": 0.9631 + }, + { + "start": 7207.4, + "end": 7208.2, + "probability": 0.9403 + }, + { + "start": 7208.94, + "end": 7210.6, + "probability": 0.82 + }, + { + "start": 7210.92, + "end": 7211.38, + "probability": 0.6895 + }, + { + "start": 7212.36, + "end": 7214.7, + "probability": 0.7158 + }, + { + "start": 7214.78, + "end": 7218.8, + "probability": 0.908 + }, + { + "start": 7240.78, + "end": 7243.52, + "probability": 0.5544 + }, + { + "start": 7245.76, + "end": 7249.9, + "probability": 0.9949 + }, + { + "start": 7249.9, + "end": 7254.6, + "probability": 0.7407 + }, + { + "start": 7255.62, + "end": 7257.64, + "probability": 0.7261 + }, + { + "start": 7257.64, + "end": 7261.48, + "probability": 0.9919 + }, + { + "start": 7262.44, + "end": 7262.8, + "probability": 0.4756 + }, + { + "start": 7262.92, + "end": 7267.92, + "probability": 0.9935 + }, + { + "start": 7268.84, + "end": 7269.58, + "probability": 0.33 + }, + { + "start": 7270.24, + "end": 7271.62, + "probability": 0.6162 + }, + { + "start": 7271.78, + "end": 7274.72, + "probability": 0.9929 + }, + { + "start": 7275.38, + "end": 7277.64, + "probability": 0.8814 + }, + { + "start": 7278.56, + "end": 7281.98, + "probability": 0.9921 + }, + { + "start": 7282.8, + "end": 7287.14, + "probability": 0.9468 + }, + { + "start": 7287.84, + "end": 7291.6, + "probability": 0.986 + }, + { + "start": 7292.48, + "end": 7294.88, + "probability": 0.9904 + }, + { + "start": 7295.02, + "end": 7295.3, + "probability": 0.7223 + }, + { + "start": 7295.86, + "end": 7296.74, + "probability": 0.6396 + }, + { + "start": 7296.96, + "end": 7299.76, + "probability": 0.9976 + }, + { + "start": 7300.9, + "end": 7302.38, + "probability": 0.166 + }, + { + "start": 7302.44, + "end": 7303.94, + "probability": 0.3433 + }, + { + "start": 7304.0, + "end": 7306.08, + "probability": 0.8222 + }, + { + "start": 7306.68, + "end": 7308.14, + "probability": 0.7453 + }, + { + "start": 7308.24, + "end": 7309.22, + "probability": 0.8391 + }, + { + "start": 7313.92, + "end": 7314.84, + "probability": 0.8016 + }, + { + "start": 7316.92, + "end": 7323.14, + "probability": 0.0224 + }, + { + "start": 7323.14, + "end": 7327.2, + "probability": 0.0394 + }, + { + "start": 7328.1, + "end": 7328.6, + "probability": 0.055 + }, + { + "start": 7329.26, + "end": 7331.7, + "probability": 0.0475 + }, + { + "start": 7332.5, + "end": 7338.0, + "probability": 0.9033 + }, + { + "start": 7338.62, + "end": 7340.64, + "probability": 0.8612 + }, + { + "start": 7340.94, + "end": 7342.3, + "probability": 0.908 + }, + { + "start": 7342.34, + "end": 7345.26, + "probability": 0.9406 + }, + { + "start": 7347.94, + "end": 7348.16, + "probability": 0.0073 + }, + { + "start": 7348.16, + "end": 7350.4, + "probability": 0.2545 + }, + { + "start": 7350.7, + "end": 7351.88, + "probability": 0.5951 + }, + { + "start": 7352.34, + "end": 7355.12, + "probability": 0.6926 + }, + { + "start": 7355.74, + "end": 7357.9, + "probability": 0.8475 + }, + { + "start": 7358.1, + "end": 7358.14, + "probability": 0.1549 + }, + { + "start": 7358.14, + "end": 7359.87, + "probability": 0.9476 + }, + { + "start": 7360.62, + "end": 7363.48, + "probability": 0.7753 + }, + { + "start": 7365.22, + "end": 7367.34, + "probability": 0.9531 + }, + { + "start": 7368.66, + "end": 7370.4, + "probability": 0.9648 + }, + { + "start": 7378.14, + "end": 7380.88, + "probability": 0.5232 + }, + { + "start": 7383.54, + "end": 7384.82, + "probability": 0.8337 + }, + { + "start": 7386.18, + "end": 7386.18, + "probability": 0.5747 + }, + { + "start": 7386.22, + "end": 7389.52, + "probability": 0.7431 + }, + { + "start": 7390.52, + "end": 7394.78, + "probability": 0.9928 + }, + { + "start": 7395.24, + "end": 7396.84, + "probability": 0.9545 + }, + { + "start": 7397.42, + "end": 7399.68, + "probability": 0.9703 + }, + { + "start": 7399.74, + "end": 7400.66, + "probability": 0.7133 + }, + { + "start": 7400.74, + "end": 7402.5, + "probability": 0.822 + }, + { + "start": 7402.8, + "end": 7404.94, + "probability": 0.7301 + }, + { + "start": 7405.1, + "end": 7406.62, + "probability": 0.7441 + }, + { + "start": 7406.8, + "end": 7410.58, + "probability": 0.9476 + }, + { + "start": 7410.72, + "end": 7415.14, + "probability": 0.7909 + }, + { + "start": 7415.14, + "end": 7419.1, + "probability": 0.9971 + }, + { + "start": 7419.38, + "end": 7421.0, + "probability": 0.6925 + }, + { + "start": 7422.86, + "end": 7424.4, + "probability": 0.8319 + }, + { + "start": 7425.36, + "end": 7427.36, + "probability": 0.9414 + }, + { + "start": 7427.54, + "end": 7427.86, + "probability": 0.9518 + }, + { + "start": 7430.86, + "end": 7434.26, + "probability": 0.9118 + }, + { + "start": 7434.3, + "end": 7435.32, + "probability": 0.7861 + }, + { + "start": 7435.42, + "end": 7436.58, + "probability": 0.8911 + }, + { + "start": 7436.64, + "end": 7437.7, + "probability": 0.8529 + }, + { + "start": 7437.84, + "end": 7438.66, + "probability": 0.8664 + }, + { + "start": 7438.74, + "end": 7439.5, + "probability": 0.8737 + }, + { + "start": 7439.88, + "end": 7440.52, + "probability": 0.8888 + }, + { + "start": 7440.6, + "end": 7441.92, + "probability": 0.745 + }, + { + "start": 7442.22, + "end": 7443.26, + "probability": 0.7992 + }, + { + "start": 7443.34, + "end": 7444.16, + "probability": 0.9228 + }, + { + "start": 7444.24, + "end": 7445.12, + "probability": 0.9133 + }, + { + "start": 7445.36, + "end": 7447.32, + "probability": 0.9099 + }, + { + "start": 7448.3, + "end": 7449.12, + "probability": 0.7372 + }, + { + "start": 7449.5, + "end": 7450.16, + "probability": 0.9597 + }, + { + "start": 7450.28, + "end": 7453.2, + "probability": 0.9829 + }, + { + "start": 7454.26, + "end": 7458.76, + "probability": 0.982 + }, + { + "start": 7459.9, + "end": 7464.44, + "probability": 0.8456 + }, + { + "start": 7464.92, + "end": 7465.56, + "probability": 0.667 + }, + { + "start": 7465.66, + "end": 7466.3, + "probability": 0.385 + }, + { + "start": 7466.36, + "end": 7467.96, + "probability": 0.8383 + }, + { + "start": 7468.58, + "end": 7473.1, + "probability": 0.6973 + }, + { + "start": 7473.62, + "end": 7475.5, + "probability": 0.9635 + }, + { + "start": 7475.7, + "end": 7477.14, + "probability": 0.7276 + }, + { + "start": 7477.86, + "end": 7478.82, + "probability": 0.8582 + }, + { + "start": 7479.5, + "end": 7480.9, + "probability": 0.8477 + }, + { + "start": 7480.98, + "end": 7483.78, + "probability": 0.9805 + }, + { + "start": 7484.88, + "end": 7489.92, + "probability": 0.9919 + }, + { + "start": 7490.42, + "end": 7492.88, + "probability": 0.9966 + }, + { + "start": 7494.7, + "end": 7500.56, + "probability": 0.6832 + }, + { + "start": 7501.68, + "end": 7505.3, + "probability": 0.9963 + }, + { + "start": 7505.64, + "end": 7508.96, + "probability": 0.9858 + }, + { + "start": 7509.94, + "end": 7513.14, + "probability": 0.9639 + }, + { + "start": 7513.14, + "end": 7515.86, + "probability": 0.8668 + }, + { + "start": 7517.56, + "end": 7518.22, + "probability": 0.6285 + }, + { + "start": 7518.32, + "end": 7525.46, + "probability": 0.9901 + }, + { + "start": 7525.88, + "end": 7527.76, + "probability": 0.8377 + }, + { + "start": 7529.14, + "end": 7530.14, + "probability": 0.8492 + }, + { + "start": 7530.24, + "end": 7531.78, + "probability": 0.8997 + }, + { + "start": 7532.2, + "end": 7537.14, + "probability": 0.8767 + }, + { + "start": 7537.72, + "end": 7539.34, + "probability": 0.848 + }, + { + "start": 7539.96, + "end": 7541.74, + "probability": 0.9005 + }, + { + "start": 7541.82, + "end": 7545.7, + "probability": 0.9944 + }, + { + "start": 7546.32, + "end": 7548.8, + "probability": 0.9695 + }, + { + "start": 7549.24, + "end": 7555.2, + "probability": 0.999 + }, + { + "start": 7555.2, + "end": 7559.0, + "probability": 0.9975 + }, + { + "start": 7559.28, + "end": 7565.46, + "probability": 0.9965 + }, + { + "start": 7566.24, + "end": 7571.04, + "probability": 0.9663 + }, + { + "start": 7572.02, + "end": 7572.6, + "probability": 0.9928 + }, + { + "start": 7575.64, + "end": 7577.9, + "probability": 0.5168 + }, + { + "start": 7578.4, + "end": 7582.32, + "probability": 0.9971 + }, + { + "start": 7582.32, + "end": 7586.56, + "probability": 0.8304 + }, + { + "start": 7587.14, + "end": 7589.42, + "probability": 0.8612 + }, + { + "start": 7589.78, + "end": 7595.78, + "probability": 0.7021 + }, + { + "start": 7596.84, + "end": 7599.76, + "probability": 0.993 + }, + { + "start": 7599.76, + "end": 7603.6, + "probability": 0.9595 + }, + { + "start": 7604.62, + "end": 7606.28, + "probability": 0.7851 + }, + { + "start": 7607.08, + "end": 7611.06, + "probability": 0.9836 + }, + { + "start": 7611.92, + "end": 7614.8, + "probability": 0.969 + }, + { + "start": 7615.18, + "end": 7620.12, + "probability": 0.9944 + }, + { + "start": 7621.42, + "end": 7622.24, + "probability": 0.6683 + }, + { + "start": 7622.4, + "end": 7625.18, + "probability": 0.9691 + }, + { + "start": 7625.3, + "end": 7628.68, + "probability": 0.9767 + }, + { + "start": 7628.68, + "end": 7630.36, + "probability": 0.9101 + }, + { + "start": 7630.68, + "end": 7633.54, + "probability": 0.9963 + }, + { + "start": 7634.54, + "end": 7639.6, + "probability": 0.9733 + }, + { + "start": 7640.32, + "end": 7644.82, + "probability": 0.9825 + }, + { + "start": 7645.32, + "end": 7648.52, + "probability": 0.981 + }, + { + "start": 7648.56, + "end": 7650.06, + "probability": 0.9807 + }, + { + "start": 7652.04, + "end": 7656.6, + "probability": 0.9695 + }, + { + "start": 7657.18, + "end": 7661.46, + "probability": 0.9647 + }, + { + "start": 7662.14, + "end": 7664.38, + "probability": 0.8652 + }, + { + "start": 7665.08, + "end": 7668.62, + "probability": 0.9707 + }, + { + "start": 7668.94, + "end": 7670.92, + "probability": 0.9558 + }, + { + "start": 7670.96, + "end": 7673.02, + "probability": 0.9415 + }, + { + "start": 7673.68, + "end": 7677.72, + "probability": 0.9875 + }, + { + "start": 7677.72, + "end": 7682.28, + "probability": 0.9847 + }, + { + "start": 7682.96, + "end": 7685.52, + "probability": 0.947 + }, + { + "start": 7685.76, + "end": 7689.58, + "probability": 0.9932 + }, + { + "start": 7690.34, + "end": 7693.54, + "probability": 0.9744 + }, + { + "start": 7693.84, + "end": 7694.48, + "probability": 0.5943 + }, + { + "start": 7694.72, + "end": 7696.62, + "probability": 0.9937 + }, + { + "start": 7696.92, + "end": 7699.08, + "probability": 0.9113 + }, + { + "start": 7699.68, + "end": 7703.74, + "probability": 0.9818 + }, + { + "start": 7703.74, + "end": 7708.86, + "probability": 0.996 + }, + { + "start": 7710.56, + "end": 7714.5, + "probability": 0.9995 + }, + { + "start": 7715.72, + "end": 7717.18, + "probability": 0.8987 + }, + { + "start": 7717.4, + "end": 7721.2, + "probability": 0.9964 + }, + { + "start": 7721.92, + "end": 7726.08, + "probability": 0.9973 + }, + { + "start": 7726.54, + "end": 7728.72, + "probability": 0.9941 + }, + { + "start": 7729.42, + "end": 7731.54, + "probability": 0.9734 + }, + { + "start": 7732.4, + "end": 7734.74, + "probability": 0.9507 + }, + { + "start": 7735.26, + "end": 7739.22, + "probability": 0.9796 + }, + { + "start": 7739.76, + "end": 7742.52, + "probability": 0.9867 + }, + { + "start": 7742.74, + "end": 7746.56, + "probability": 0.9967 + }, + { + "start": 7746.94, + "end": 7748.32, + "probability": 0.9744 + }, + { + "start": 7748.62, + "end": 7750.86, + "probability": 0.7576 + }, + { + "start": 7751.46, + "end": 7755.24, + "probability": 0.9879 + }, + { + "start": 7756.06, + "end": 7759.28, + "probability": 0.833 + }, + { + "start": 7760.3, + "end": 7765.54, + "probability": 0.9607 + }, + { + "start": 7766.48, + "end": 7771.64, + "probability": 0.9758 + }, + { + "start": 7771.64, + "end": 7775.16, + "probability": 0.9717 + }, + { + "start": 7775.98, + "end": 7781.06, + "probability": 0.9885 + }, + { + "start": 7781.46, + "end": 7783.12, + "probability": 0.8934 + }, + { + "start": 7783.86, + "end": 7787.86, + "probability": 0.9971 + }, + { + "start": 7788.1, + "end": 7788.3, + "probability": 0.8401 + }, + { + "start": 7789.48, + "end": 7790.94, + "probability": 0.6355 + }, + { + "start": 7791.2, + "end": 7792.66, + "probability": 0.6784 + }, + { + "start": 7793.0, + "end": 7793.26, + "probability": 0.2994 + }, + { + "start": 7794.12, + "end": 7796.78, + "probability": 0.618 + }, + { + "start": 7797.7, + "end": 7799.9, + "probability": 0.8218 + }, + { + "start": 7799.9, + "end": 7800.85, + "probability": 0.477 + }, + { + "start": 7801.46, + "end": 7803.56, + "probability": 0.9487 + }, + { + "start": 7803.94, + "end": 7804.12, + "probability": 0.2045 + }, + { + "start": 7804.12, + "end": 7805.28, + "probability": 0.3673 + }, + { + "start": 7805.46, + "end": 7808.8, + "probability": 0.9742 + }, + { + "start": 7809.22, + "end": 7812.48, + "probability": 0.7395 + }, + { + "start": 7813.0, + "end": 7819.44, + "probability": 0.8732 + }, + { + "start": 7820.0, + "end": 7823.34, + "probability": 0.7946 + }, + { + "start": 7824.12, + "end": 7825.62, + "probability": 0.9976 + }, + { + "start": 7826.18, + "end": 7828.1, + "probability": 0.5084 + }, + { + "start": 7828.78, + "end": 7831.88, + "probability": 0.8659 + }, + { + "start": 7832.92, + "end": 7838.8, + "probability": 0.7703 + }, + { + "start": 7838.98, + "end": 7840.54, + "probability": 0.4651 + }, + { + "start": 7841.32, + "end": 7843.82, + "probability": 0.9844 + }, + { + "start": 7843.92, + "end": 7844.44, + "probability": 0.7937 + }, + { + "start": 7844.58, + "end": 7846.41, + "probability": 0.9943 + }, + { + "start": 7846.88, + "end": 7848.76, + "probability": 0.8089 + }, + { + "start": 7849.16, + "end": 7852.62, + "probability": 0.9819 + }, + { + "start": 7864.26, + "end": 7866.54, + "probability": 0.5094 + }, + { + "start": 7867.72, + "end": 7870.42, + "probability": 0.8905 + }, + { + "start": 7870.42, + "end": 7873.9, + "probability": 0.9526 + }, + { + "start": 7876.98, + "end": 7879.84, + "probability": 0.8059 + }, + { + "start": 7880.14, + "end": 7882.98, + "probability": 0.9946 + }, + { + "start": 7883.06, + "end": 7884.58, + "probability": 0.9951 + }, + { + "start": 7885.56, + "end": 7889.4, + "probability": 0.9924 + }, + { + "start": 7889.56, + "end": 7890.12, + "probability": 0.9891 + }, + { + "start": 7890.22, + "end": 7890.96, + "probability": 0.9662 + }, + { + "start": 7891.5, + "end": 7892.34, + "probability": 0.8317 + }, + { + "start": 7892.42, + "end": 7894.7, + "probability": 0.9626 + }, + { + "start": 7895.18, + "end": 7899.84, + "probability": 0.9987 + }, + { + "start": 7900.52, + "end": 7902.22, + "probability": 0.9598 + }, + { + "start": 7902.74, + "end": 7904.58, + "probability": 0.4627 + }, + { + "start": 7905.42, + "end": 7906.72, + "probability": 0.8571 + }, + { + "start": 7906.8, + "end": 7907.4, + "probability": 0.6869 + }, + { + "start": 7907.62, + "end": 7910.18, + "probability": 0.9908 + }, + { + "start": 7910.96, + "end": 7912.41, + "probability": 0.9692 + }, + { + "start": 7913.9, + "end": 7916.94, + "probability": 0.8881 + }, + { + "start": 7918.2, + "end": 7920.14, + "probability": 0.9111 + }, + { + "start": 7920.34, + "end": 7921.34, + "probability": 0.9761 + }, + { + "start": 7921.46, + "end": 7923.26, + "probability": 0.9729 + }, + { + "start": 7923.34, + "end": 7923.88, + "probability": 0.9222 + }, + { + "start": 7927.04, + "end": 7928.38, + "probability": 0.772 + }, + { + "start": 7930.7, + "end": 7937.2, + "probability": 0.9817 + }, + { + "start": 7938.12, + "end": 7942.06, + "probability": 0.9834 + }, + { + "start": 7943.02, + "end": 7945.22, + "probability": 0.9871 + }, + { + "start": 7947.4, + "end": 7948.38, + "probability": 0.6838 + }, + { + "start": 7948.52, + "end": 7949.02, + "probability": 0.9366 + }, + { + "start": 7949.14, + "end": 7950.4, + "probability": 0.9286 + }, + { + "start": 7950.82, + "end": 7953.28, + "probability": 0.4377 + }, + { + "start": 7954.52, + "end": 7956.42, + "probability": 0.9912 + }, + { + "start": 7956.52, + "end": 7957.3, + "probability": 0.4529 + }, + { + "start": 7959.48, + "end": 7962.14, + "probability": 0.9607 + }, + { + "start": 7962.32, + "end": 7963.99, + "probability": 0.6733 + }, + { + "start": 7964.84, + "end": 7966.52, + "probability": 0.6905 + }, + { + "start": 7967.96, + "end": 7969.76, + "probability": 0.7376 + }, + { + "start": 7971.46, + "end": 7973.72, + "probability": 0.6174 + }, + { + "start": 7973.74, + "end": 7979.1, + "probability": 0.976 + }, + { + "start": 7980.1, + "end": 7981.88, + "probability": 0.8877 + }, + { + "start": 7983.76, + "end": 7985.58, + "probability": 0.7628 + }, + { + "start": 7986.7, + "end": 7988.32, + "probability": 0.9492 + }, + { + "start": 7989.0, + "end": 7990.48, + "probability": 0.9978 + }, + { + "start": 7991.24, + "end": 7991.54, + "probability": 0.5232 + }, + { + "start": 7991.72, + "end": 7993.36, + "probability": 0.9386 + }, + { + "start": 7993.36, + "end": 7994.6, + "probability": 0.482 + }, + { + "start": 7995.28, + "end": 7996.47, + "probability": 0.8461 + }, + { + "start": 7997.46, + "end": 7999.08, + "probability": 0.7469 + }, + { + "start": 8000.12, + "end": 8002.98, + "probability": 0.808 + }, + { + "start": 8003.82, + "end": 8005.26, + "probability": 0.7502 + }, + { + "start": 8005.34, + "end": 8007.76, + "probability": 0.8533 + }, + { + "start": 8007.84, + "end": 8009.75, + "probability": 0.8481 + }, + { + "start": 8010.7, + "end": 8012.6, + "probability": 0.8773 + }, + { + "start": 8013.56, + "end": 8016.14, + "probability": 0.9407 + }, + { + "start": 8016.38, + "end": 8017.58, + "probability": 0.7807 + }, + { + "start": 8017.72, + "end": 8018.82, + "probability": 0.6496 + }, + { + "start": 8022.88, + "end": 8025.48, + "probability": 0.1123 + }, + { + "start": 8026.86, + "end": 8027.14, + "probability": 0.0239 + }, + { + "start": 8027.14, + "end": 8031.56, + "probability": 0.9937 + }, + { + "start": 8032.7, + "end": 8032.84, + "probability": 0.5953 + }, + { + "start": 8033.04, + "end": 8034.02, + "probability": 0.9568 + }, + { + "start": 8034.14, + "end": 8034.32, + "probability": 0.6008 + }, + { + "start": 8034.75, + "end": 8037.41, + "probability": 0.7944 + }, + { + "start": 8037.88, + "end": 8041.84, + "probability": 0.74 + }, + { + "start": 8042.12, + "end": 8043.82, + "probability": 0.4958 + }, + { + "start": 8043.84, + "end": 8046.48, + "probability": 0.9497 + }, + { + "start": 8047.24, + "end": 8050.86, + "probability": 0.9288 + }, + { + "start": 8051.02, + "end": 8051.7, + "probability": 0.2304 + }, + { + "start": 8052.24, + "end": 8052.36, + "probability": 0.1284 + }, + { + "start": 8052.36, + "end": 8052.42, + "probability": 0.0963 + }, + { + "start": 8052.42, + "end": 8053.52, + "probability": 0.9072 + }, + { + "start": 8053.64, + "end": 8056.46, + "probability": 0.6682 + }, + { + "start": 8057.42, + "end": 8060.26, + "probability": 0.963 + }, + { + "start": 8060.38, + "end": 8062.18, + "probability": 0.9878 + }, + { + "start": 8063.5, + "end": 8063.78, + "probability": 0.556 + }, + { + "start": 8063.84, + "end": 8066.24, + "probability": 0.6775 + }, + { + "start": 8066.48, + "end": 8068.24, + "probability": 0.9304 + }, + { + "start": 8068.9, + "end": 8072.24, + "probability": 0.7608 + }, + { + "start": 8072.88, + "end": 8074.26, + "probability": 0.8144 + }, + { + "start": 8074.44, + "end": 8075.46, + "probability": 0.7587 + }, + { + "start": 8076.4, + "end": 8079.62, + "probability": 0.8597 + }, + { + "start": 8080.0, + "end": 8081.3, + "probability": 0.9963 + }, + { + "start": 8081.96, + "end": 8083.92, + "probability": 0.7354 + }, + { + "start": 8086.1, + "end": 8089.28, + "probability": 0.8374 + }, + { + "start": 8089.32, + "end": 8091.7, + "probability": 0.8237 + }, + { + "start": 8091.7, + "end": 8092.24, + "probability": 0.3001 + }, + { + "start": 8092.32, + "end": 8093.38, + "probability": 0.8162 + }, + { + "start": 8093.42, + "end": 8097.04, + "probability": 0.6423 + }, + { + "start": 8098.62, + "end": 8099.42, + "probability": 0.5803 + }, + { + "start": 8101.4, + "end": 8103.64, + "probability": 0.7649 + }, + { + "start": 8103.72, + "end": 8106.12, + "probability": 0.8877 + }, + { + "start": 8106.42, + "end": 8106.76, + "probability": 0.7605 + }, + { + "start": 8106.84, + "end": 8107.66, + "probability": 0.6185 + }, + { + "start": 8107.68, + "end": 8110.28, + "probability": 0.8091 + }, + { + "start": 8111.68, + "end": 8115.2, + "probability": 0.5002 + }, + { + "start": 8115.74, + "end": 8118.66, + "probability": 0.9728 + }, + { + "start": 8118.86, + "end": 8119.88, + "probability": 0.8368 + }, + { + "start": 8121.22, + "end": 8126.62, + "probability": 0.9431 + }, + { + "start": 8126.8, + "end": 8130.68, + "probability": 0.9584 + }, + { + "start": 8131.54, + "end": 8132.52, + "probability": 0.9446 + }, + { + "start": 8133.3, + "end": 8135.06, + "probability": 0.6846 + }, + { + "start": 8136.98, + "end": 8138.3, + "probability": 0.7147 + }, + { + "start": 8139.02, + "end": 8140.36, + "probability": 0.9111 + }, + { + "start": 8141.24, + "end": 8143.28, + "probability": 0.9814 + }, + { + "start": 8144.34, + "end": 8146.34, + "probability": 0.9796 + }, + { + "start": 8146.58, + "end": 8147.64, + "probability": 0.6768 + }, + { + "start": 8147.68, + "end": 8148.6, + "probability": 0.9714 + }, + { + "start": 8149.22, + "end": 8150.86, + "probability": 0.9255 + }, + { + "start": 8154.38, + "end": 8156.43, + "probability": 0.5846 + }, + { + "start": 8156.78, + "end": 8157.38, + "probability": 0.303 + }, + { + "start": 8157.5, + "end": 8160.7, + "probability": 0.7133 + }, + { + "start": 8161.58, + "end": 8164.54, + "probability": 0.9988 + }, + { + "start": 8165.46, + "end": 8169.74, + "probability": 0.9122 + }, + { + "start": 8171.24, + "end": 8177.7, + "probability": 0.805 + }, + { + "start": 8177.9, + "end": 8179.0, + "probability": 0.7841 + }, + { + "start": 8179.68, + "end": 8180.6, + "probability": 0.4781 + }, + { + "start": 8181.42, + "end": 8183.92, + "probability": 0.946 + }, + { + "start": 8184.52, + "end": 8185.36, + "probability": 0.9126 + }, + { + "start": 8186.06, + "end": 8186.98, + "probability": 0.9041 + }, + { + "start": 8187.06, + "end": 8189.4, + "probability": 0.9168 + }, + { + "start": 8191.0, + "end": 8191.4, + "probability": 0.5587 + }, + { + "start": 8191.58, + "end": 8192.6, + "probability": 0.9742 + }, + { + "start": 8192.78, + "end": 8193.81, + "probability": 0.7667 + }, + { + "start": 8195.16, + "end": 8198.22, + "probability": 0.7629 + }, + { + "start": 8199.0, + "end": 8200.12, + "probability": 0.6837 + }, + { + "start": 8200.28, + "end": 8201.38, + "probability": 0.9219 + }, + { + "start": 8201.5, + "end": 8203.08, + "probability": 0.6598 + }, + { + "start": 8203.44, + "end": 8205.64, + "probability": 0.9855 + }, + { + "start": 8205.7, + "end": 8206.6, + "probability": 0.6247 + }, + { + "start": 8207.24, + "end": 8211.72, + "probability": 0.9348 + }, + { + "start": 8211.8, + "end": 8212.4, + "probability": 0.8127 + }, + { + "start": 8212.54, + "end": 8213.16, + "probability": 0.8812 + }, + { + "start": 8213.3, + "end": 8216.46, + "probability": 0.9712 + }, + { + "start": 8216.48, + "end": 8217.02, + "probability": 0.8067 + }, + { + "start": 8217.36, + "end": 8219.2, + "probability": 0.8073 + }, + { + "start": 8219.42, + "end": 8221.88, + "probability": 0.8936 + }, + { + "start": 8222.26, + "end": 8223.94, + "probability": 0.9717 + }, + { + "start": 8223.98, + "end": 8226.14, + "probability": 0.8504 + }, + { + "start": 8226.7, + "end": 8228.42, + "probability": 0.9857 + }, + { + "start": 8228.56, + "end": 8229.68, + "probability": 0.8077 + }, + { + "start": 8229.72, + "end": 8231.64, + "probability": 0.5817 + }, + { + "start": 8232.04, + "end": 8234.5, + "probability": 0.9714 + }, + { + "start": 8234.64, + "end": 8236.9, + "probability": 0.8993 + }, + { + "start": 8237.42, + "end": 8238.85, + "probability": 0.8242 + }, + { + "start": 8239.7, + "end": 8240.98, + "probability": 0.8258 + }, + { + "start": 8241.04, + "end": 8241.5, + "probability": 0.9193 + }, + { + "start": 8242.44, + "end": 8246.48, + "probability": 0.8893 + }, + { + "start": 8247.28, + "end": 8247.72, + "probability": 0.9305 + }, + { + "start": 8248.24, + "end": 8252.24, + "probability": 0.8991 + }, + { + "start": 8252.94, + "end": 8253.96, + "probability": 0.4897 + }, + { + "start": 8254.5, + "end": 8256.54, + "probability": 0.0252 + }, + { + "start": 8256.66, + "end": 8257.92, + "probability": 0.715 + }, + { + "start": 8258.4, + "end": 8259.06, + "probability": 0.5802 + }, + { + "start": 8259.58, + "end": 8262.78, + "probability": 0.9971 + }, + { + "start": 8269.04, + "end": 8270.04, + "probability": 0.3793 + }, + { + "start": 8270.56, + "end": 8272.12, + "probability": 0.7173 + }, + { + "start": 8273.24, + "end": 8278.54, + "probability": 0.9881 + }, + { + "start": 8278.64, + "end": 8279.92, + "probability": 0.9587 + }, + { + "start": 8280.0, + "end": 8281.0, + "probability": 0.8826 + }, + { + "start": 8282.26, + "end": 8286.12, + "probability": 0.918 + }, + { + "start": 8286.14, + "end": 8287.82, + "probability": 0.8444 + }, + { + "start": 8287.92, + "end": 8290.86, + "probability": 0.9373 + }, + { + "start": 8290.96, + "end": 8292.56, + "probability": 0.9663 + }, + { + "start": 8293.36, + "end": 8294.38, + "probability": 0.9448 + }, + { + "start": 8294.84, + "end": 8296.24, + "probability": 0.9775 + }, + { + "start": 8296.3, + "end": 8298.18, + "probability": 0.9282 + }, + { + "start": 8299.88, + "end": 8302.74, + "probability": 0.9642 + }, + { + "start": 8303.0, + "end": 8306.32, + "probability": 0.9961 + }, + { + "start": 8306.32, + "end": 8311.18, + "probability": 0.9727 + }, + { + "start": 8311.82, + "end": 8314.62, + "probability": 0.8499 + }, + { + "start": 8314.7, + "end": 8317.08, + "probability": 0.9766 + }, + { + "start": 8317.14, + "end": 8318.42, + "probability": 0.9129 + }, + { + "start": 8319.4, + "end": 8323.28, + "probability": 0.9909 + }, + { + "start": 8325.2, + "end": 8327.79, + "probability": 0.9604 + }, + { + "start": 8327.9, + "end": 8329.36, + "probability": 0.8387 + }, + { + "start": 8329.5, + "end": 8332.24, + "probability": 0.995 + }, + { + "start": 8332.28, + "end": 8332.66, + "probability": 0.4427 + }, + { + "start": 8333.14, + "end": 8334.28, + "probability": 0.9487 + }, + { + "start": 8337.27, + "end": 8337.34, + "probability": 0.7502 + }, + { + "start": 8337.34, + "end": 8339.2, + "probability": 0.9703 + }, + { + "start": 8339.36, + "end": 8341.22, + "probability": 0.9845 + }, + { + "start": 8341.66, + "end": 8341.76, + "probability": 0.0583 + }, + { + "start": 8341.76, + "end": 8341.76, + "probability": 0.0123 + }, + { + "start": 8341.76, + "end": 8342.86, + "probability": 0.6643 + }, + { + "start": 8343.28, + "end": 8343.36, + "probability": 0.0004 + }, + { + "start": 8343.9, + "end": 8346.86, + "probability": 0.5027 + }, + { + "start": 8346.9, + "end": 8348.7, + "probability": 0.9432 + }, + { + "start": 8348.72, + "end": 8350.34, + "probability": 0.852 + }, + { + "start": 8351.18, + "end": 8352.0, + "probability": 0.959 + }, + { + "start": 8352.18, + "end": 8357.12, + "probability": 0.9929 + }, + { + "start": 8357.62, + "end": 8360.15, + "probability": 0.959 + }, + { + "start": 8360.66, + "end": 8361.42, + "probability": 0.3564 + }, + { + "start": 8362.58, + "end": 8364.08, + "probability": 0.8369 + }, + { + "start": 8364.62, + "end": 8366.16, + "probability": 0.7951 + }, + { + "start": 8367.66, + "end": 8371.1, + "probability": 0.8777 + }, + { + "start": 8371.72, + "end": 8373.48, + "probability": 0.4999 + }, + { + "start": 8374.76, + "end": 8379.22, + "probability": 0.9864 + }, + { + "start": 8380.04, + "end": 8384.82, + "probability": 0.9916 + }, + { + "start": 8386.06, + "end": 8387.34, + "probability": 0.9781 + }, + { + "start": 8388.14, + "end": 8389.38, + "probability": 0.915 + }, + { + "start": 8390.14, + "end": 8393.18, + "probability": 0.8829 + }, + { + "start": 8393.78, + "end": 8395.0, + "probability": 0.5165 + }, + { + "start": 8395.42, + "end": 8396.36, + "probability": 0.7691 + }, + { + "start": 8396.58, + "end": 8398.34, + "probability": 0.9869 + }, + { + "start": 8399.08, + "end": 8401.76, + "probability": 0.7202 + }, + { + "start": 8402.5, + "end": 8407.66, + "probability": 0.9316 + }, + { + "start": 8408.5, + "end": 8410.72, + "probability": 0.9565 + }, + { + "start": 8410.82, + "end": 8411.66, + "probability": 0.4918 + }, + { + "start": 8412.28, + "end": 8413.24, + "probability": 0.9192 + }, + { + "start": 8414.2, + "end": 8417.58, + "probability": 0.9551 + }, + { + "start": 8418.22, + "end": 8426.52, + "probability": 0.9708 + }, + { + "start": 8426.66, + "end": 8427.12, + "probability": 0.8344 + }, + { + "start": 8427.24, + "end": 8427.68, + "probability": 0.4218 + }, + { + "start": 8430.04, + "end": 8435.62, + "probability": 0.9844 + }, + { + "start": 8435.84, + "end": 8437.06, + "probability": 0.8976 + }, + { + "start": 8437.1, + "end": 8439.08, + "probability": 0.9741 + }, + { + "start": 8440.12, + "end": 8442.73, + "probability": 0.9956 + }, + { + "start": 8442.96, + "end": 8447.86, + "probability": 0.9788 + }, + { + "start": 8448.22, + "end": 8449.8, + "probability": 0.9885 + }, + { + "start": 8450.14, + "end": 8451.7, + "probability": 0.9074 + }, + { + "start": 8452.02, + "end": 8455.34, + "probability": 0.8704 + }, + { + "start": 8456.24, + "end": 8459.0, + "probability": 0.9897 + }, + { + "start": 8460.56, + "end": 8461.74, + "probability": 0.814 + }, + { + "start": 8463.02, + "end": 8463.64, + "probability": 0.7198 + }, + { + "start": 8463.68, + "end": 8465.1, + "probability": 0.9478 + }, + { + "start": 8465.96, + "end": 8466.34, + "probability": 0.4849 + }, + { + "start": 8466.38, + "end": 8466.86, + "probability": 0.6799 + }, + { + "start": 8467.92, + "end": 8470.64, + "probability": 0.9522 + }, + { + "start": 8471.12, + "end": 8473.08, + "probability": 0.9402 + }, + { + "start": 8475.7, + "end": 8475.7, + "probability": 0.4947 + }, + { + "start": 8475.7, + "end": 8479.48, + "probability": 0.9329 + }, + { + "start": 8479.5, + "end": 8480.6, + "probability": 0.4363 + }, + { + "start": 8481.72, + "end": 8483.04, + "probability": 0.8581 + }, + { + "start": 8483.3, + "end": 8484.74, + "probability": 0.823 + }, + { + "start": 8485.64, + "end": 8487.16, + "probability": 0.7534 + }, + { + "start": 8487.3, + "end": 8488.24, + "probability": 0.7109 + }, + { + "start": 8488.46, + "end": 8490.14, + "probability": 0.6799 + }, + { + "start": 8490.22, + "end": 8491.28, + "probability": 0.8198 + }, + { + "start": 8491.44, + "end": 8493.02, + "probability": 0.7659 + }, + { + "start": 8493.14, + "end": 8493.48, + "probability": 0.9089 + }, + { + "start": 8494.08, + "end": 8496.26, + "probability": 0.9487 + }, + { + "start": 8496.34, + "end": 8497.42, + "probability": 0.2991 + }, + { + "start": 8497.52, + "end": 8498.4, + "probability": 0.691 + }, + { + "start": 8498.94, + "end": 8501.6, + "probability": 0.7935 + }, + { + "start": 8502.04, + "end": 8502.44, + "probability": 0.9451 + }, + { + "start": 8503.52, + "end": 8504.9, + "probability": 0.6458 + }, + { + "start": 8505.18, + "end": 8506.3, + "probability": 0.9704 + }, + { + "start": 8506.78, + "end": 8508.09, + "probability": 0.9267 + }, + { + "start": 8508.62, + "end": 8510.9, + "probability": 0.8232 + }, + { + "start": 8511.5, + "end": 8512.54, + "probability": 0.9554 + }, + { + "start": 8513.32, + "end": 8514.44, + "probability": 0.4273 + }, + { + "start": 8514.56, + "end": 8518.92, + "probability": 0.9669 + }, + { + "start": 8519.48, + "end": 8524.84, + "probability": 0.9856 + }, + { + "start": 8525.56, + "end": 8530.56, + "probability": 0.6785 + }, + { + "start": 8532.34, + "end": 8535.5, + "probability": 0.981 + }, + { + "start": 8536.08, + "end": 8537.24, + "probability": 0.9808 + }, + { + "start": 8537.86, + "end": 8541.1, + "probability": 0.9884 + }, + { + "start": 8541.7, + "end": 8544.26, + "probability": 0.9977 + }, + { + "start": 8544.26, + "end": 8546.72, + "probability": 0.9954 + }, + { + "start": 8547.28, + "end": 8550.36, + "probability": 0.7554 + }, + { + "start": 8551.28, + "end": 8555.28, + "probability": 0.9727 + }, + { + "start": 8556.12, + "end": 8558.11, + "probability": 0.813 + }, + { + "start": 8558.78, + "end": 8560.42, + "probability": 0.9303 + }, + { + "start": 8560.58, + "end": 8561.02, + "probability": 0.7897 + }, + { + "start": 8561.08, + "end": 8562.66, + "probability": 0.9564 + }, + { + "start": 8562.7, + "end": 8563.66, + "probability": 0.8824 + }, + { + "start": 8563.92, + "end": 8564.46, + "probability": 0.984 + }, + { + "start": 8566.04, + "end": 8569.1, + "probability": 0.853 + }, + { + "start": 8569.86, + "end": 8572.48, + "probability": 0.9679 + }, + { + "start": 8572.98, + "end": 8574.1, + "probability": 0.9515 + }, + { + "start": 8574.2, + "end": 8575.64, + "probability": 0.6053 + }, + { + "start": 8576.06, + "end": 8577.06, + "probability": 0.749 + }, + { + "start": 8578.16, + "end": 8580.42, + "probability": 0.8643 + }, + { + "start": 8580.86, + "end": 8583.3, + "probability": 0.9656 + }, + { + "start": 8584.0, + "end": 8586.48, + "probability": 0.8933 + }, + { + "start": 8586.88, + "end": 8590.98, + "probability": 0.9593 + }, + { + "start": 8591.0, + "end": 8593.83, + "probability": 0.9817 + }, + { + "start": 8594.66, + "end": 8598.0, + "probability": 0.7952 + }, + { + "start": 8598.58, + "end": 8601.77, + "probability": 0.8514 + }, + { + "start": 8602.54, + "end": 8604.68, + "probability": 0.9167 + }, + { + "start": 8605.08, + "end": 8608.38, + "probability": 0.8838 + }, + { + "start": 8608.44, + "end": 8609.7, + "probability": 0.9219 + }, + { + "start": 8610.14, + "end": 8612.42, + "probability": 0.9851 + }, + { + "start": 8612.98, + "end": 8613.9, + "probability": 0.8949 + }, + { + "start": 8615.62, + "end": 8617.16, + "probability": 0.9893 + }, + { + "start": 8617.28, + "end": 8618.61, + "probability": 0.9727 + }, + { + "start": 8618.86, + "end": 8619.4, + "probability": 0.9693 + }, + { + "start": 8619.5, + "end": 8620.26, + "probability": 0.9803 + }, + { + "start": 8620.32, + "end": 8621.14, + "probability": 0.9732 + }, + { + "start": 8621.22, + "end": 8622.36, + "probability": 0.981 + }, + { + "start": 8622.48, + "end": 8623.04, + "probability": 0.9749 + }, + { + "start": 8623.14, + "end": 8623.58, + "probability": 0.7992 + }, + { + "start": 8624.22, + "end": 8624.7, + "probability": 0.306 + }, + { + "start": 8626.08, + "end": 8626.08, + "probability": 0.1692 + }, + { + "start": 8626.08, + "end": 8627.58, + "probability": 0.4459 + }, + { + "start": 8627.94, + "end": 8628.86, + "probability": 0.9731 + }, + { + "start": 8632.7, + "end": 8635.42, + "probability": 0.8736 + }, + { + "start": 8636.16, + "end": 8640.08, + "probability": 0.6954 + }, + { + "start": 8640.08, + "end": 8646.5, + "probability": 0.9871 + }, + { + "start": 8647.0, + "end": 8647.66, + "probability": 0.9724 + }, + { + "start": 8647.76, + "end": 8648.48, + "probability": 0.6521 + }, + { + "start": 8648.54, + "end": 8649.98, + "probability": 0.758 + }, + { + "start": 8649.98, + "end": 8650.4, + "probability": 0.3816 + }, + { + "start": 8650.92, + "end": 8654.06, + "probability": 0.9829 + }, + { + "start": 8654.72, + "end": 8659.41, + "probability": 0.939 + }, + { + "start": 8659.56, + "end": 8659.76, + "probability": 0.1877 + }, + { + "start": 8662.52, + "end": 8665.12, + "probability": 0.7706 + }, + { + "start": 8666.02, + "end": 8668.84, + "probability": 0.7778 + }, + { + "start": 8669.4, + "end": 8669.4, + "probability": 0.0025 + }, + { + "start": 8669.4, + "end": 8674.02, + "probability": 0.766 + }, + { + "start": 8675.1, + "end": 8676.84, + "probability": 0.6241 + }, + { + "start": 8677.32, + "end": 8678.11, + "probability": 0.7036 + }, + { + "start": 8678.22, + "end": 8679.0, + "probability": 0.7101 + }, + { + "start": 8679.08, + "end": 8680.38, + "probability": 0.9583 + }, + { + "start": 8680.38, + "end": 8682.26, + "probability": 0.355 + }, + { + "start": 8682.28, + "end": 8684.28, + "probability": 0.3504 + }, + { + "start": 8685.04, + "end": 8685.3, + "probability": 0.1046 + }, + { + "start": 8685.72, + "end": 8689.3, + "probability": 0.9951 + }, + { + "start": 8689.36, + "end": 8690.44, + "probability": 0.5593 + }, + { + "start": 8691.0, + "end": 8693.08, + "probability": 0.9526 + }, + { + "start": 8693.1, + "end": 8693.46, + "probability": 0.7993 + }, + { + "start": 8693.54, + "end": 8694.68, + "probability": 0.9164 + }, + { + "start": 8694.86, + "end": 8695.56, + "probability": 0.5496 + }, + { + "start": 8698.9, + "end": 8704.74, + "probability": 0.9788 + }, + { + "start": 8705.36, + "end": 8707.68, + "probability": 0.9973 + }, + { + "start": 8707.68, + "end": 8710.36, + "probability": 0.9859 + }, + { + "start": 8711.16, + "end": 8712.06, + "probability": 0.7553 + }, + { + "start": 8712.76, + "end": 8715.54, + "probability": 0.9984 + }, + { + "start": 8715.54, + "end": 8717.46, + "probability": 0.9893 + }, + { + "start": 8718.26, + "end": 8722.72, + "probability": 0.9951 + }, + { + "start": 8722.72, + "end": 8726.1, + "probability": 0.9887 + }, + { + "start": 8732.92, + "end": 8737.06, + "probability": 0.9944 + }, + { + "start": 8737.5, + "end": 8738.7, + "probability": 0.9321 + }, + { + "start": 8739.28, + "end": 8739.46, + "probability": 0.7032 + }, + { + "start": 8739.54, + "end": 8740.2, + "probability": 0.6538 + }, + { + "start": 8740.3, + "end": 8743.72, + "probability": 0.8882 + }, + { + "start": 8743.72, + "end": 8747.6, + "probability": 0.8911 + }, + { + "start": 8748.12, + "end": 8750.8, + "probability": 0.9826 + }, + { + "start": 8751.36, + "end": 8753.76, + "probability": 0.8641 + }, + { + "start": 8754.28, + "end": 8756.66, + "probability": 0.993 + }, + { + "start": 8757.28, + "end": 8759.12, + "probability": 0.9378 + }, + { + "start": 8760.12, + "end": 8765.26, + "probability": 0.9664 + }, + { + "start": 8765.44, + "end": 8766.84, + "probability": 0.9071 + }, + { + "start": 8767.66, + "end": 8768.56, + "probability": 0.663 + }, + { + "start": 8768.62, + "end": 8776.24, + "probability": 0.994 + }, + { + "start": 8776.3, + "end": 8777.32, + "probability": 0.9611 + }, + { + "start": 8777.66, + "end": 8779.56, + "probability": 0.9663 + }, + { + "start": 8779.92, + "end": 8780.7, + "probability": 0.6077 + }, + { + "start": 8780.96, + "end": 8782.18, + "probability": 0.8573 + }, + { + "start": 8782.34, + "end": 8784.48, + "probability": 0.9592 + }, + { + "start": 8785.1, + "end": 8788.56, + "probability": 0.9906 + }, + { + "start": 8788.56, + "end": 8791.8, + "probability": 0.9712 + }, + { + "start": 8792.48, + "end": 8796.68, + "probability": 0.8263 + }, + { + "start": 8797.32, + "end": 8800.38, + "probability": 0.8038 + }, + { + "start": 8801.06, + "end": 8801.68, + "probability": 0.9473 + }, + { + "start": 8802.08, + "end": 8802.92, + "probability": 0.9956 + }, + { + "start": 8803.02, + "end": 8808.78, + "probability": 0.9063 + }, + { + "start": 8808.78, + "end": 8813.26, + "probability": 0.9595 + }, + { + "start": 8813.48, + "end": 8816.44, + "probability": 0.9907 + }, + { + "start": 8817.18, + "end": 8818.22, + "probability": 0.5932 + }, + { + "start": 8818.38, + "end": 8819.1, + "probability": 0.8761 + }, + { + "start": 8819.18, + "end": 8820.66, + "probability": 0.824 + }, + { + "start": 8820.86, + "end": 8821.94, + "probability": 0.7289 + }, + { + "start": 8822.32, + "end": 8823.4, + "probability": 0.5234 + }, + { + "start": 8823.74, + "end": 8827.78, + "probability": 0.9623 + }, + { + "start": 8828.56, + "end": 8830.14, + "probability": 0.9473 + }, + { + "start": 8830.42, + "end": 8833.14, + "probability": 0.9736 + }, + { + "start": 8833.42, + "end": 8836.96, + "probability": 0.9946 + }, + { + "start": 8837.62, + "end": 8839.12, + "probability": 0.8675 + }, + { + "start": 8839.46, + "end": 8841.24, + "probability": 0.7303 + }, + { + "start": 8841.76, + "end": 8843.14, + "probability": 0.8223 + }, + { + "start": 8843.36, + "end": 8845.16, + "probability": 0.9254 + }, + { + "start": 8845.74, + "end": 8850.62, + "probability": 0.8142 + }, + { + "start": 8850.98, + "end": 8853.32, + "probability": 0.9888 + }, + { + "start": 8854.08, + "end": 8858.02, + "probability": 0.8712 + }, + { + "start": 8859.1, + "end": 8863.24, + "probability": 0.9642 + }, + { + "start": 8863.34, + "end": 8863.88, + "probability": 0.5298 + }, + { + "start": 8864.54, + "end": 8865.44, + "probability": 0.9174 + }, + { + "start": 8865.7, + "end": 8867.92, + "probability": 0.9285 + }, + { + "start": 8868.56, + "end": 8871.02, + "probability": 0.8812 + }, + { + "start": 8871.3, + "end": 8874.04, + "probability": 0.9845 + }, + { + "start": 8874.04, + "end": 8876.08, + "probability": 0.9641 + }, + { + "start": 8876.16, + "end": 8876.7, + "probability": 0.8286 + }, + { + "start": 8876.74, + "end": 8878.74, + "probability": 0.8645 + }, + { + "start": 8880.28, + "end": 8880.7, + "probability": 0.2693 + }, + { + "start": 8880.7, + "end": 8882.1, + "probability": 0.9436 + }, + { + "start": 8882.18, + "end": 8882.96, + "probability": 0.6029 + }, + { + "start": 8882.96, + "end": 8885.74, + "probability": 0.971 + }, + { + "start": 8885.96, + "end": 8887.48, + "probability": 0.9493 + }, + { + "start": 8887.56, + "end": 8889.76, + "probability": 0.9546 + }, + { + "start": 8889.76, + "end": 8890.36, + "probability": 0.6702 + }, + { + "start": 8890.4, + "end": 8893.08, + "probability": 0.9904 + }, + { + "start": 8893.34, + "end": 8894.48, + "probability": 0.9725 + }, + { + "start": 8894.6, + "end": 8895.82, + "probability": 0.9322 + }, + { + "start": 8895.84, + "end": 8897.65, + "probability": 0.9834 + }, + { + "start": 8898.06, + "end": 8900.98, + "probability": 0.925 + }, + { + "start": 8901.06, + "end": 8901.58, + "probability": 0.5238 + }, + { + "start": 8901.64, + "end": 8902.4, + "probability": 0.9925 + }, + { + "start": 8903.22, + "end": 8904.72, + "probability": 0.9629 + }, + { + "start": 8904.78, + "end": 8905.9, + "probability": 0.9427 + }, + { + "start": 8905.96, + "end": 8909.32, + "probability": 0.7898 + }, + { + "start": 8909.32, + "end": 8909.52, + "probability": 0.7817 + }, + { + "start": 8909.52, + "end": 8909.64, + "probability": 0.6262 + }, + { + "start": 8909.82, + "end": 8912.64, + "probability": 0.8426 + }, + { + "start": 8912.7, + "end": 8917.38, + "probability": 0.9702 + }, + { + "start": 8918.38, + "end": 8920.62, + "probability": 0.7926 + }, + { + "start": 8920.74, + "end": 8923.86, + "probability": 0.9355 + }, + { + "start": 8927.44, + "end": 8927.66, + "probability": 0.3113 + }, + { + "start": 8937.38, + "end": 8938.1, + "probability": 0.5056 + }, + { + "start": 8938.16, + "end": 8939.0, + "probability": 0.8234 + }, + { + "start": 8939.12, + "end": 8946.0, + "probability": 0.8986 + }, + { + "start": 8946.06, + "end": 8946.36, + "probability": 0.8365 + }, + { + "start": 8946.5, + "end": 8947.56, + "probability": 0.8685 + }, + { + "start": 8947.78, + "end": 8949.72, + "probability": 0.6756 + }, + { + "start": 8950.48, + "end": 8955.82, + "probability": 0.9873 + }, + { + "start": 8956.1, + "end": 8958.46, + "probability": 0.9984 + }, + { + "start": 8958.64, + "end": 8963.52, + "probability": 0.9826 + }, + { + "start": 8963.58, + "end": 8964.76, + "probability": 0.9923 + }, + { + "start": 8965.9, + "end": 8967.32, + "probability": 0.9578 + }, + { + "start": 8967.92, + "end": 8971.29, + "probability": 0.5244 + }, + { + "start": 8973.0, + "end": 8975.84, + "probability": 0.9236 + }, + { + "start": 8975.86, + "end": 8978.34, + "probability": 0.9829 + }, + { + "start": 8982.08, + "end": 8982.89, + "probability": 0.5428 + }, + { + "start": 8983.36, + "end": 8986.2, + "probability": 0.9976 + }, + { + "start": 8986.94, + "end": 8989.24, + "probability": 0.8829 + }, + { + "start": 8990.06, + "end": 8992.92, + "probability": 0.9752 + }, + { + "start": 8992.98, + "end": 8994.68, + "probability": 0.9968 + }, + { + "start": 8997.06, + "end": 8997.28, + "probability": 0.608 + }, + { + "start": 8997.6, + "end": 8998.7, + "probability": 0.9404 + }, + { + "start": 8998.78, + "end": 9000.62, + "probability": 0.8601 + }, + { + "start": 9000.88, + "end": 9001.88, + "probability": 0.8843 + }, + { + "start": 9003.2, + "end": 9009.46, + "probability": 0.6985 + }, + { + "start": 9012.26, + "end": 9013.84, + "probability": 0.7415 + }, + { + "start": 9013.88, + "end": 9018.78, + "probability": 0.9832 + }, + { + "start": 9019.78, + "end": 9025.43, + "probability": 0.9878 + }, + { + "start": 9027.36, + "end": 9027.46, + "probability": 0.6572 + }, + { + "start": 9027.62, + "end": 9031.94, + "probability": 0.9884 + }, + { + "start": 9032.54, + "end": 9038.46, + "probability": 0.9672 + }, + { + "start": 9039.02, + "end": 9041.04, + "probability": 0.8384 + }, + { + "start": 9042.3, + "end": 9046.63, + "probability": 0.9146 + }, + { + "start": 9047.8, + "end": 9048.68, + "probability": 0.9023 + }, + { + "start": 9049.1, + "end": 9049.7, + "probability": 0.9809 + }, + { + "start": 9050.06, + "end": 9051.06, + "probability": 0.9898 + }, + { + "start": 9051.36, + "end": 9052.06, + "probability": 0.9698 + }, + { + "start": 9052.4, + "end": 9053.06, + "probability": 0.9814 + }, + { + "start": 9053.24, + "end": 9055.42, + "probability": 0.9499 + }, + { + "start": 9056.9, + "end": 9059.64, + "probability": 0.8388 + }, + { + "start": 9059.64, + "end": 9062.7, + "probability": 0.8886 + }, + { + "start": 9063.24, + "end": 9065.18, + "probability": 0.9904 + }, + { + "start": 9065.9, + "end": 9068.54, + "probability": 0.9943 + }, + { + "start": 9069.06, + "end": 9072.3, + "probability": 0.9973 + }, + { + "start": 9073.06, + "end": 9077.08, + "probability": 0.9385 + }, + { + "start": 9078.74, + "end": 9081.3, + "probability": 0.9788 + }, + { + "start": 9082.34, + "end": 9082.7, + "probability": 0.8357 + }, + { + "start": 9082.78, + "end": 9087.32, + "probability": 0.9927 + }, + { + "start": 9087.78, + "end": 9091.52, + "probability": 0.9038 + }, + { + "start": 9091.62, + "end": 9093.66, + "probability": 0.6868 + }, + { + "start": 9094.12, + "end": 9095.28, + "probability": 0.8286 + }, + { + "start": 9095.4, + "end": 9097.14, + "probability": 0.9204 + }, + { + "start": 9097.7, + "end": 9099.22, + "probability": 0.8431 + }, + { + "start": 9099.22, + "end": 9100.12, + "probability": 0.7724 + }, + { + "start": 9100.72, + "end": 9102.42, + "probability": 0.9862 + }, + { + "start": 9102.6, + "end": 9103.88, + "probability": 0.7999 + }, + { + "start": 9104.02, + "end": 9106.92, + "probability": 0.9095 + }, + { + "start": 9106.92, + "end": 9109.68, + "probability": 0.9805 + }, + { + "start": 9109.74, + "end": 9110.66, + "probability": 0.7676 + }, + { + "start": 9111.36, + "end": 9113.6, + "probability": 0.931 + }, + { + "start": 9114.22, + "end": 9115.82, + "probability": 0.9209 + }, + { + "start": 9115.98, + "end": 9118.98, + "probability": 0.4989 + }, + { + "start": 9119.6, + "end": 9121.3, + "probability": 0.9572 + }, + { + "start": 9121.56, + "end": 9124.98, + "probability": 0.9697 + }, + { + "start": 9125.14, + "end": 9128.18, + "probability": 0.9954 + }, + { + "start": 9128.34, + "end": 9128.78, + "probability": 0.3838 + }, + { + "start": 9129.02, + "end": 9129.94, + "probability": 0.5467 + }, + { + "start": 9130.06, + "end": 9131.94, + "probability": 0.9262 + }, + { + "start": 9132.14, + "end": 9133.2, + "probability": 0.7944 + }, + { + "start": 9143.04, + "end": 9145.34, + "probability": 0.902 + }, + { + "start": 9146.36, + "end": 9147.56, + "probability": 0.9244 + }, + { + "start": 9149.52, + "end": 9150.77, + "probability": 0.0729 + }, + { + "start": 9152.18, + "end": 9155.24, + "probability": 0.9955 + }, + { + "start": 9156.48, + "end": 9157.14, + "probability": 0.575 + }, + { + "start": 9158.02, + "end": 9159.06, + "probability": 0.6575 + }, + { + "start": 9159.7, + "end": 9165.34, + "probability": 0.7668 + }, + { + "start": 9166.84, + "end": 9171.48, + "probability": 0.9915 + }, + { + "start": 9172.96, + "end": 9176.86, + "probability": 0.9645 + }, + { + "start": 9177.54, + "end": 9179.48, + "probability": 0.9545 + }, + { + "start": 9180.36, + "end": 9185.2, + "probability": 0.9844 + }, + { + "start": 9185.42, + "end": 9186.96, + "probability": 0.9849 + }, + { + "start": 9187.38, + "end": 9192.36, + "probability": 0.961 + }, + { + "start": 9193.1, + "end": 9193.78, + "probability": 0.5273 + }, + { + "start": 9193.92, + "end": 9197.22, + "probability": 0.9605 + }, + { + "start": 9197.22, + "end": 9201.82, + "probability": 0.9941 + }, + { + "start": 9202.46, + "end": 9204.5, + "probability": 0.9105 + }, + { + "start": 9205.04, + "end": 9208.06, + "probability": 0.9814 + }, + { + "start": 9208.7, + "end": 9209.04, + "probability": 0.0386 + }, + { + "start": 9209.04, + "end": 9214.48, + "probability": 0.5992 + }, + { + "start": 9215.7, + "end": 9216.34, + "probability": 0.0551 + }, + { + "start": 9216.34, + "end": 9216.4, + "probability": 0.0512 + }, + { + "start": 9216.4, + "end": 9216.46, + "probability": 0.016 + }, + { + "start": 9216.46, + "end": 9217.19, + "probability": 0.6458 + }, + { + "start": 9217.4, + "end": 9221.11, + "probability": 0.9756 + }, + { + "start": 9221.58, + "end": 9223.52, + "probability": 0.7661 + }, + { + "start": 9223.6, + "end": 9224.8, + "probability": 0.6017 + }, + { + "start": 9224.92, + "end": 9229.44, + "probability": 0.997 + }, + { + "start": 9229.68, + "end": 9233.6, + "probability": 0.9354 + }, + { + "start": 9233.6, + "end": 9238.46, + "probability": 0.9957 + }, + { + "start": 9238.56, + "end": 9239.88, + "probability": 0.6447 + }, + { + "start": 9239.96, + "end": 9240.94, + "probability": 0.9216 + }, + { + "start": 9242.82, + "end": 9244.0, + "probability": 0.0524 + }, + { + "start": 9244.0, + "end": 9244.9, + "probability": 0.1615 + }, + { + "start": 9245.0, + "end": 9245.07, + "probability": 0.029 + }, + { + "start": 9245.66, + "end": 9249.02, + "probability": 0.4936 + }, + { + "start": 9249.16, + "end": 9252.76, + "probability": 0.0594 + }, + { + "start": 9252.98, + "end": 9255.62, + "probability": 0.3443 + }, + { + "start": 9255.88, + "end": 9258.8, + "probability": 0.8903 + }, + { + "start": 9259.04, + "end": 9261.44, + "probability": 0.9056 + }, + { + "start": 9261.44, + "end": 9264.9, + "probability": 0.3806 + }, + { + "start": 9265.46, + "end": 9269.41, + "probability": 0.9879 + }, + { + "start": 9270.02, + "end": 9271.06, + "probability": 0.9165 + }, + { + "start": 9272.06, + "end": 9273.67, + "probability": 0.9561 + }, + { + "start": 9274.1, + "end": 9275.6, + "probability": 0.9088 + }, + { + "start": 9276.14, + "end": 9280.3, + "probability": 0.97 + }, + { + "start": 9280.3, + "end": 9282.22, + "probability": 0.5869 + }, + { + "start": 9282.3, + "end": 9284.0, + "probability": 0.917 + }, + { + "start": 9284.1, + "end": 9284.58, + "probability": 0.7886 + }, + { + "start": 9284.64, + "end": 9284.96, + "probability": 0.8076 + }, + { + "start": 9286.56, + "end": 9288.76, + "probability": 0.9778 + }, + { + "start": 9288.92, + "end": 9290.04, + "probability": 0.9848 + }, + { + "start": 9290.18, + "end": 9292.34, + "probability": 0.9639 + }, + { + "start": 9292.64, + "end": 9293.36, + "probability": 0.8232 + }, + { + "start": 9293.68, + "end": 9296.32, + "probability": 0.8381 + }, + { + "start": 9296.46, + "end": 9298.4, + "probability": 0.9723 + }, + { + "start": 9298.66, + "end": 9300.26, + "probability": 0.6595 + }, + { + "start": 9300.46, + "end": 9304.79, + "probability": 0.726 + }, + { + "start": 9305.06, + "end": 9308.46, + "probability": 0.9315 + }, + { + "start": 9308.96, + "end": 9309.72, + "probability": 0.5179 + }, + { + "start": 9310.12, + "end": 9312.08, + "probability": 0.0133 + }, + { + "start": 9312.42, + "end": 9312.56, + "probability": 0.0281 + }, + { + "start": 9312.56, + "end": 9313.4, + "probability": 0.5879 + }, + { + "start": 9314.32, + "end": 9317.36, + "probability": 0.9068 + }, + { + "start": 9317.68, + "end": 9319.1, + "probability": 0.957 + }, + { + "start": 9319.38, + "end": 9319.8, + "probability": 0.7628 + }, + { + "start": 9319.92, + "end": 9321.83, + "probability": 0.9712 + }, + { + "start": 9322.32, + "end": 9325.1, + "probability": 0.9964 + }, + { + "start": 9325.14, + "end": 9326.16, + "probability": 0.8757 + }, + { + "start": 9327.14, + "end": 9330.94, + "probability": 0.9349 + }, + { + "start": 9331.08, + "end": 9332.56, + "probability": 0.7147 + }, + { + "start": 9332.76, + "end": 9335.82, + "probability": 0.9956 + }, + { + "start": 9336.04, + "end": 9337.6, + "probability": 0.7073 + }, + { + "start": 9337.82, + "end": 9343.58, + "probability": 0.9719 + }, + { + "start": 9343.64, + "end": 9347.34, + "probability": 0.8728 + }, + { + "start": 9347.66, + "end": 9348.66, + "probability": 0.6495 + }, + { + "start": 9349.14, + "end": 9349.14, + "probability": 0.155 + }, + { + "start": 9349.14, + "end": 9352.56, + "probability": 0.9666 + }, + { + "start": 9352.68, + "end": 9352.72, + "probability": 0.3481 + }, + { + "start": 9353.14, + "end": 9355.99, + "probability": 0.9057 + }, + { + "start": 9356.24, + "end": 9359.78, + "probability": 0.9463 + }, + { + "start": 9359.94, + "end": 9360.48, + "probability": 0.4845 + }, + { + "start": 9360.6, + "end": 9361.12, + "probability": 0.9348 + }, + { + "start": 9361.22, + "end": 9362.42, + "probability": 0.8255 + }, + { + "start": 9362.68, + "end": 9364.69, + "probability": 0.9796 + }, + { + "start": 9365.14, + "end": 9366.58, + "probability": 0.8869 + }, + { + "start": 9366.92, + "end": 9369.22, + "probability": 0.8438 + }, + { + "start": 9369.24, + "end": 9371.27, + "probability": 0.9577 + }, + { + "start": 9371.72, + "end": 9373.36, + "probability": 0.7344 + }, + { + "start": 9373.36, + "end": 9373.46, + "probability": 0.024 + }, + { + "start": 9373.9, + "end": 9374.38, + "probability": 0.7874 + }, + { + "start": 9374.96, + "end": 9378.2, + "probability": 0.9928 + }, + { + "start": 9378.3, + "end": 9378.82, + "probability": 0.8319 + }, + { + "start": 9378.96, + "end": 9382.42, + "probability": 0.8219 + }, + { + "start": 9382.44, + "end": 9384.96, + "probability": 0.9399 + }, + { + "start": 9385.46, + "end": 9385.74, + "probability": 0.0032 + }, + { + "start": 9385.74, + "end": 9387.28, + "probability": 0.5112 + }, + { + "start": 9387.54, + "end": 9389.8, + "probability": 0.7843 + }, + { + "start": 9390.02, + "end": 9393.22, + "probability": 0.9976 + }, + { + "start": 9393.46, + "end": 9394.82, + "probability": 0.6156 + }, + { + "start": 9394.86, + "end": 9396.78, + "probability": 0.9856 + }, + { + "start": 9396.8, + "end": 9396.86, + "probability": 0.586 + }, + { + "start": 9396.94, + "end": 9397.8, + "probability": 0.5908 + }, + { + "start": 9398.16, + "end": 9399.6, + "probability": 0.5613 + }, + { + "start": 9400.06, + "end": 9401.24, + "probability": 0.9134 + }, + { + "start": 9401.56, + "end": 9401.6, + "probability": 0.0965 + }, + { + "start": 9401.6, + "end": 9402.23, + "probability": 0.6819 + }, + { + "start": 9402.66, + "end": 9406.2, + "probability": 0.9921 + }, + { + "start": 9406.76, + "end": 9410.84, + "probability": 0.9839 + }, + { + "start": 9410.96, + "end": 9412.94, + "probability": 0.9471 + }, + { + "start": 9412.98, + "end": 9413.6, + "probability": 0.6485 + }, + { + "start": 9413.68, + "end": 9413.9, + "probability": 0.7492 + }, + { + "start": 9415.72, + "end": 9417.32, + "probability": 0.7297 + }, + { + "start": 9417.6, + "end": 9418.5, + "probability": 0.8533 + }, + { + "start": 9419.5, + "end": 9420.88, + "probability": 0.7686 + }, + { + "start": 9430.18, + "end": 9430.98, + "probability": 0.6193 + }, + { + "start": 9431.52, + "end": 9432.22, + "probability": 0.1651 + }, + { + "start": 9438.88, + "end": 9440.09, + "probability": 0.0367 + }, + { + "start": 9440.25, + "end": 9440.71, + "probability": 0.0291 + }, + { + "start": 9440.97, + "end": 9441.51, + "probability": 0.0505 + }, + { + "start": 9442.69, + "end": 9443.01, + "probability": 0.0562 + }, + { + "start": 9444.25, + "end": 9445.33, + "probability": 0.3088 + }, + { + "start": 9445.57, + "end": 9448.19, + "probability": 0.9897 + }, + { + "start": 9449.65, + "end": 9451.75, + "probability": 0.9653 + }, + { + "start": 9452.01, + "end": 9453.73, + "probability": 0.795 + }, + { + "start": 9453.83, + "end": 9455.45, + "probability": 0.9141 + }, + { + "start": 9456.51, + "end": 9458.67, + "probability": 0.3525 + }, + { + "start": 9458.67, + "end": 9461.08, + "probability": 0.9868 + }, + { + "start": 9461.75, + "end": 9464.51, + "probability": 0.0761 + }, + { + "start": 9465.13, + "end": 9466.25, + "probability": 0.3387 + }, + { + "start": 9466.37, + "end": 9466.37, + "probability": 0.4164 + }, + { + "start": 9466.37, + "end": 9466.37, + "probability": 0.4499 + }, + { + "start": 9466.37, + "end": 9466.51, + "probability": 0.5048 + }, + { + "start": 9466.73, + "end": 9467.19, + "probability": 0.5475 + }, + { + "start": 9467.45, + "end": 9469.93, + "probability": 0.186 + }, + { + "start": 9470.01, + "end": 9471.38, + "probability": 0.2331 + }, + { + "start": 9473.15, + "end": 9474.71, + "probability": 0.1671 + }, + { + "start": 9475.77, + "end": 9476.15, + "probability": 0.3195 + }, + { + "start": 9477.37, + "end": 9478.56, + "probability": 0.759 + }, + { + "start": 9481.07, + "end": 9481.69, + "probability": 0.6568 + }, + { + "start": 9484.02, + "end": 9487.35, + "probability": 0.5252 + }, + { + "start": 9488.31, + "end": 9489.01, + "probability": 0.0447 + }, + { + "start": 9489.27, + "end": 9489.27, + "probability": 0.1493 + }, + { + "start": 9489.27, + "end": 9489.87, + "probability": 0.011 + }, + { + "start": 9489.99, + "end": 9490.31, + "probability": 0.1249 + }, + { + "start": 9490.33, + "end": 9492.27, + "probability": 0.1349 + }, + { + "start": 9492.27, + "end": 9492.65, + "probability": 0.0441 + }, + { + "start": 9493.03, + "end": 9494.09, + "probability": 0.4241 + }, + { + "start": 9495.25, + "end": 9495.53, + "probability": 0.2651 + }, + { + "start": 9495.59, + "end": 9496.4, + "probability": 0.0309 + }, + { + "start": 9504.98, + "end": 9505.19, + "probability": 0.0925 + }, + { + "start": 9505.41, + "end": 9505.41, + "probability": 0.1049 + }, + { + "start": 9505.41, + "end": 9506.13, + "probability": 0.1314 + }, + { + "start": 9506.13, + "end": 9506.43, + "probability": 0.2898 + }, + { + "start": 9506.53, + "end": 9507.05, + "probability": 0.4054 + }, + { + "start": 9509.77, + "end": 9510.83, + "probability": 0.8076 + }, + { + "start": 9520.77, + "end": 9522.67, + "probability": 0.635 + }, + { + "start": 9523.71, + "end": 9526.05, + "probability": 0.7787 + }, + { + "start": 9526.09, + "end": 9526.65, + "probability": 0.881 + }, + { + "start": 9526.89, + "end": 9528.45, + "probability": 0.9917 + }, + { + "start": 9529.75, + "end": 9532.21, + "probability": 0.9537 + }, + { + "start": 9532.93, + "end": 9535.21, + "probability": 0.9766 + }, + { + "start": 9536.36, + "end": 9542.11, + "probability": 0.7856 + }, + { + "start": 9542.89, + "end": 9547.81, + "probability": 0.9854 + }, + { + "start": 9547.81, + "end": 9553.53, + "probability": 0.9907 + }, + { + "start": 9554.09, + "end": 9555.39, + "probability": 0.5287 + }, + { + "start": 9556.35, + "end": 9557.21, + "probability": 0.8262 + }, + { + "start": 9557.83, + "end": 9565.03, + "probability": 0.9742 + }, + { + "start": 9565.09, + "end": 9566.17, + "probability": 0.6158 + }, + { + "start": 9566.91, + "end": 9571.48, + "probability": 0.965 + }, + { + "start": 9572.69, + "end": 9573.79, + "probability": 0.9119 + }, + { + "start": 9574.37, + "end": 9577.15, + "probability": 0.9201 + }, + { + "start": 9578.47, + "end": 9580.93, + "probability": 0.7881 + }, + { + "start": 9580.97, + "end": 9585.47, + "probability": 0.9235 + }, + { + "start": 9586.29, + "end": 9587.29, + "probability": 0.6908 + }, + { + "start": 9588.47, + "end": 9594.53, + "probability": 0.9681 + }, + { + "start": 9595.65, + "end": 9597.75, + "probability": 0.9701 + }, + { + "start": 9597.81, + "end": 9604.55, + "probability": 0.9882 + }, + { + "start": 9604.71, + "end": 9606.27, + "probability": 0.5012 + }, + { + "start": 9606.33, + "end": 9606.89, + "probability": 0.5161 + }, + { + "start": 9607.03, + "end": 9609.95, + "probability": 0.9607 + }, + { + "start": 9610.05, + "end": 9610.99, + "probability": 0.8241 + }, + { + "start": 9611.51, + "end": 9615.82, + "probability": 0.8961 + }, + { + "start": 9616.27, + "end": 9618.77, + "probability": 0.991 + }, + { + "start": 9618.89, + "end": 9620.29, + "probability": 0.7715 + }, + { + "start": 9620.85, + "end": 9621.27, + "probability": 0.5176 + }, + { + "start": 9621.47, + "end": 9625.85, + "probability": 0.9785 + }, + { + "start": 9626.29, + "end": 9627.07, + "probability": 0.9451 + }, + { + "start": 9627.97, + "end": 9629.27, + "probability": 0.8652 + }, + { + "start": 9629.72, + "end": 9631.89, + "probability": 0.656 + }, + { + "start": 9632.27, + "end": 9636.89, + "probability": 0.9253 + }, + { + "start": 9637.33, + "end": 9640.57, + "probability": 0.9949 + }, + { + "start": 9640.89, + "end": 9642.13, + "probability": 0.6819 + }, + { + "start": 9642.77, + "end": 9645.09, + "probability": 0.7737 + }, + { + "start": 9648.15, + "end": 9650.53, + "probability": 0.8166 + }, + { + "start": 9650.57, + "end": 9652.31, + "probability": 0.9013 + }, + { + "start": 9652.49, + "end": 9653.97, + "probability": 0.9844 + }, + { + "start": 9654.17, + "end": 9654.96, + "probability": 0.9106 + }, + { + "start": 9655.61, + "end": 9658.65, + "probability": 0.8815 + }, + { + "start": 9659.21, + "end": 9661.81, + "probability": 0.7474 + }, + { + "start": 9661.81, + "end": 9663.31, + "probability": 0.7019 + }, + { + "start": 9664.79, + "end": 9670.69, + "probability": 0.9888 + }, + { + "start": 9670.69, + "end": 9677.15, + "probability": 0.9795 + }, + { + "start": 9677.69, + "end": 9681.65, + "probability": 0.7688 + }, + { + "start": 9681.97, + "end": 9684.49, + "probability": 0.7311 + }, + { + "start": 9685.29, + "end": 9688.11, + "probability": 0.7406 + }, + { + "start": 9688.11, + "end": 9693.07, + "probability": 0.9976 + }, + { + "start": 9693.53, + "end": 9699.75, + "probability": 0.9658 + }, + { + "start": 9699.79, + "end": 9702.53, + "probability": 0.987 + }, + { + "start": 9703.07, + "end": 9705.01, + "probability": 0.9978 + }, + { + "start": 9705.97, + "end": 9709.45, + "probability": 0.9338 + }, + { + "start": 9709.59, + "end": 9713.07, + "probability": 0.9974 + }, + { + "start": 9713.41, + "end": 9714.17, + "probability": 0.9035 + }, + { + "start": 9714.35, + "end": 9719.63, + "probability": 0.9907 + }, + { + "start": 9719.99, + "end": 9720.69, + "probability": 0.8394 + }, + { + "start": 9721.17, + "end": 9724.13, + "probability": 0.9911 + }, + { + "start": 9724.45, + "end": 9727.74, + "probability": 0.4968 + }, + { + "start": 9728.25, + "end": 9732.01, + "probability": 0.9968 + }, + { + "start": 9732.53, + "end": 9736.63, + "probability": 0.898 + }, + { + "start": 9736.85, + "end": 9740.01, + "probability": 0.9434 + }, + { + "start": 9740.01, + "end": 9743.03, + "probability": 0.887 + }, + { + "start": 9743.19, + "end": 9745.43, + "probability": 0.9844 + }, + { + "start": 9745.97, + "end": 9750.07, + "probability": 0.9976 + }, + { + "start": 9750.13, + "end": 9755.41, + "probability": 0.9972 + }, + { + "start": 9755.57, + "end": 9759.13, + "probability": 0.7869 + }, + { + "start": 9759.25, + "end": 9759.51, + "probability": 0.7066 + }, + { + "start": 9760.69, + "end": 9761.83, + "probability": 0.5222 + }, + { + "start": 9761.91, + "end": 9763.49, + "probability": 0.9644 + }, + { + "start": 9768.13, + "end": 9769.58, + "probability": 0.3991 + }, + { + "start": 9770.71, + "end": 9772.19, + "probability": 0.9194 + }, + { + "start": 9775.11, + "end": 9784.97, + "probability": 0.5833 + }, + { + "start": 9785.11, + "end": 9785.47, + "probability": 0.4019 + }, + { + "start": 9785.63, + "end": 9787.59, + "probability": 0.673 + }, + { + "start": 9790.73, + "end": 9793.22, + "probability": 0.9502 + }, + { + "start": 9795.27, + "end": 9797.29, + "probability": 0.9686 + }, + { + "start": 9798.49, + "end": 9799.85, + "probability": 0.9871 + }, + { + "start": 9801.77, + "end": 9802.55, + "probability": 0.998 + }, + { + "start": 9805.55, + "end": 9808.05, + "probability": 0.9904 + }, + { + "start": 9809.95, + "end": 9815.19, + "probability": 0.994 + }, + { + "start": 9817.57, + "end": 9821.73, + "probability": 0.8359 + }, + { + "start": 9823.55, + "end": 9829.21, + "probability": 0.9332 + }, + { + "start": 9830.91, + "end": 9831.39, + "probability": 0.9355 + }, + { + "start": 9834.87, + "end": 9837.59, + "probability": 0.8782 + }, + { + "start": 9838.19, + "end": 9838.99, + "probability": 0.9829 + }, + { + "start": 9839.59, + "end": 9840.49, + "probability": 0.9476 + }, + { + "start": 9842.87, + "end": 9843.96, + "probability": 0.9148 + }, + { + "start": 9845.81, + "end": 9850.41, + "probability": 0.9702 + }, + { + "start": 9850.41, + "end": 9856.23, + "probability": 0.929 + }, + { + "start": 9857.29, + "end": 9858.13, + "probability": 0.5012 + }, + { + "start": 9858.75, + "end": 9859.59, + "probability": 0.8462 + }, + { + "start": 9861.43, + "end": 9863.21, + "probability": 0.7827 + }, + { + "start": 9864.37, + "end": 9864.39, + "probability": 0.9072 + }, + { + "start": 9868.19, + "end": 9871.53, + "probability": 0.4865 + }, + { + "start": 9872.51, + "end": 9876.65, + "probability": 0.7094 + }, + { + "start": 9877.03, + "end": 9878.05, + "probability": 0.5051 + }, + { + "start": 9878.87, + "end": 9880.29, + "probability": 0.7059 + }, + { + "start": 9881.57, + "end": 9881.67, + "probability": 0.4692 + }, + { + "start": 9882.81, + "end": 9885.31, + "probability": 0.9409 + }, + { + "start": 9885.49, + "end": 9886.19, + "probability": 0.5231 + }, + { + "start": 9886.27, + "end": 9886.75, + "probability": 0.6352 + }, + { + "start": 9887.13, + "end": 9887.77, + "probability": 0.1675 + }, + { + "start": 9887.81, + "end": 9890.75, + "probability": 0.5186 + }, + { + "start": 9890.93, + "end": 9892.79, + "probability": 0.9624 + }, + { + "start": 9892.83, + "end": 9893.79, + "probability": 0.5176 + }, + { + "start": 9893.89, + "end": 9894.35, + "probability": 0.9347 + }, + { + "start": 9896.43, + "end": 9899.35, + "probability": 0.9544 + }, + { + "start": 9902.07, + "end": 9902.63, + "probability": 0.9526 + }, + { + "start": 9904.15, + "end": 9905.15, + "probability": 0.7271 + }, + { + "start": 9905.41, + "end": 9910.13, + "probability": 0.9608 + }, + { + "start": 9911.55, + "end": 9916.39, + "probability": 0.96 + }, + { + "start": 9916.85, + "end": 9918.19, + "probability": 0.8065 + }, + { + "start": 9920.31, + "end": 9921.29, + "probability": 0.3808 + }, + { + "start": 9921.67, + "end": 9923.95, + "probability": 0.7561 + }, + { + "start": 9925.2, + "end": 9927.61, + "probability": 0.8781 + }, + { + "start": 9929.49, + "end": 9930.79, + "probability": 0.9608 + }, + { + "start": 9932.49, + "end": 9934.35, + "probability": 0.8302 + }, + { + "start": 9935.41, + "end": 9937.99, + "probability": 0.8274 + }, + { + "start": 9939.35, + "end": 9946.27, + "probability": 0.967 + }, + { + "start": 9948.31, + "end": 9950.15, + "probability": 0.9922 + }, + { + "start": 9950.25, + "end": 9951.47, + "probability": 0.7349 + }, + { + "start": 9952.59, + "end": 9953.69, + "probability": 0.37 + }, + { + "start": 9954.25, + "end": 9957.99, + "probability": 0.8623 + }, + { + "start": 9959.23, + "end": 9962.85, + "probability": 0.8357 + }, + { + "start": 9964.07, + "end": 9964.83, + "probability": 0.7874 + }, + { + "start": 9965.37, + "end": 9966.83, + "probability": 0.9834 + }, + { + "start": 9966.91, + "end": 9970.25, + "probability": 0.9855 + }, + { + "start": 9970.45, + "end": 9971.59, + "probability": 0.6693 + }, + { + "start": 9972.09, + "end": 9972.93, + "probability": 0.8227 + }, + { + "start": 9974.09, + "end": 9975.25, + "probability": 0.9224 + }, + { + "start": 9975.29, + "end": 9976.19, + "probability": 0.8695 + }, + { + "start": 9976.47, + "end": 9977.38, + "probability": 0.957 + }, + { + "start": 9978.63, + "end": 9979.25, + "probability": 0.3411 + }, + { + "start": 9979.27, + "end": 9980.99, + "probability": 0.6594 + }, + { + "start": 9981.21, + "end": 9985.13, + "probability": 0.9175 + }, + { + "start": 9985.67, + "end": 9988.47, + "probability": 0.9726 + }, + { + "start": 9988.55, + "end": 9991.51, + "probability": 0.8882 + }, + { + "start": 9991.51, + "end": 9995.17, + "probability": 0.9779 + }, + { + "start": 9995.41, + "end": 9996.57, + "probability": 0.9296 + }, + { + "start": 9996.67, + "end": 9996.91, + "probability": 0.7579 + }, + { + "start": 9997.35, + "end": 9998.75, + "probability": 0.5816 + }, + { + "start": 9998.79, + "end": 10000.67, + "probability": 0.7526 + }, + { + "start": 10000.86, + "end": 10002.31, + "probability": 0.6088 + }, + { + "start": 10008.57, + "end": 10009.41, + "probability": 0.6895 + }, + { + "start": 10010.59, + "end": 10013.43, + "probability": 0.9878 + }, + { + "start": 10014.17, + "end": 10019.09, + "probability": 0.9295 + }, + { + "start": 10019.09, + "end": 10023.71, + "probability": 0.9805 + }, + { + "start": 10025.17, + "end": 10025.87, + "probability": 0.7154 + }, + { + "start": 10027.19, + "end": 10028.47, + "probability": 0.8992 + }, + { + "start": 10028.57, + "end": 10030.21, + "probability": 0.9896 + }, + { + "start": 10030.21, + "end": 10033.49, + "probability": 0.9835 + }, + { + "start": 10035.63, + "end": 10037.21, + "probability": 0.9406 + }, + { + "start": 10042.11, + "end": 10043.19, + "probability": 0.8349 + }, + { + "start": 10047.03, + "end": 10049.51, + "probability": 0.9454 + }, + { + "start": 10051.33, + "end": 10053.59, + "probability": 0.9901 + }, + { + "start": 10053.77, + "end": 10055.27, + "probability": 0.2391 + }, + { + "start": 10055.29, + "end": 10055.75, + "probability": 0.6507 + }, + { + "start": 10056.13, + "end": 10057.79, + "probability": 0.7319 + }, + { + "start": 10057.97, + "end": 10059.85, + "probability": 0.8638 + }, + { + "start": 10060.15, + "end": 10061.41, + "probability": 0.7395 + }, + { + "start": 10061.49, + "end": 10062.51, + "probability": 0.9485 + }, + { + "start": 10062.55, + "end": 10063.35, + "probability": 0.5078 + }, + { + "start": 10063.61, + "end": 10064.35, + "probability": 0.8604 + }, + { + "start": 10065.05, + "end": 10067.99, + "probability": 0.9929 + }, + { + "start": 10069.21, + "end": 10069.97, + "probability": 0.9286 + }, + { + "start": 10070.07, + "end": 10073.29, + "probability": 0.9575 + }, + { + "start": 10073.57, + "end": 10077.75, + "probability": 0.9697 + }, + { + "start": 10078.45, + "end": 10079.15, + "probability": 0.8619 + }, + { + "start": 10079.71, + "end": 10082.27, + "probability": 0.9972 + }, + { + "start": 10083.03, + "end": 10085.57, + "probability": 0.9743 + }, + { + "start": 10087.03, + "end": 10087.99, + "probability": 0.8548 + }, + { + "start": 10088.21, + "end": 10088.53, + "probability": 0.9441 + }, + { + "start": 10088.73, + "end": 10090.49, + "probability": 0.9783 + }, + { + "start": 10090.75, + "end": 10092.63, + "probability": 0.909 + }, + { + "start": 10093.55, + "end": 10095.27, + "probability": 0.9345 + }, + { + "start": 10095.37, + "end": 10096.01, + "probability": 0.513 + }, + { + "start": 10096.43, + "end": 10096.99, + "probability": 0.8372 + }, + { + "start": 10097.05, + "end": 10097.73, + "probability": 0.7001 + }, + { + "start": 10097.81, + "end": 10100.57, + "probability": 0.9655 + }, + { + "start": 10103.85, + "end": 10105.15, + "probability": 0.7524 + }, + { + "start": 10105.32, + "end": 10105.39, + "probability": 0.1247 + }, + { + "start": 10105.39, + "end": 10105.39, + "probability": 0.0761 + }, + { + "start": 10105.39, + "end": 10106.09, + "probability": 0.6606 + }, + { + "start": 10106.15, + "end": 10108.13, + "probability": 0.9691 + }, + { + "start": 10108.23, + "end": 10109.05, + "probability": 0.9829 + }, + { + "start": 10110.59, + "end": 10113.51, + "probability": 0.9845 + }, + { + "start": 10113.83, + "end": 10114.17, + "probability": 0.7633 + }, + { + "start": 10114.35, + "end": 10115.09, + "probability": 0.9045 + }, + { + "start": 10115.19, + "end": 10115.83, + "probability": 0.8597 + }, + { + "start": 10116.35, + "end": 10117.79, + "probability": 0.9554 + }, + { + "start": 10119.17, + "end": 10119.41, + "probability": 0.7184 + }, + { + "start": 10120.23, + "end": 10122.19, + "probability": 0.9849 + }, + { + "start": 10122.19, + "end": 10125.65, + "probability": 0.9717 + }, + { + "start": 10126.59, + "end": 10129.93, + "probability": 0.9815 + }, + { + "start": 10130.01, + "end": 10131.43, + "probability": 0.9968 + }, + { + "start": 10131.61, + "end": 10133.05, + "probability": 0.7662 + }, + { + "start": 10133.45, + "end": 10134.65, + "probability": 0.9083 + }, + { + "start": 10134.79, + "end": 10137.87, + "probability": 0.9918 + }, + { + "start": 10138.37, + "end": 10139.93, + "probability": 0.9819 + }, + { + "start": 10139.97, + "end": 10144.79, + "probability": 0.9933 + }, + { + "start": 10144.85, + "end": 10145.83, + "probability": 0.9944 + }, + { + "start": 10145.93, + "end": 10147.17, + "probability": 0.9966 + }, + { + "start": 10147.25, + "end": 10147.91, + "probability": 0.9731 + }, + { + "start": 10148.11, + "end": 10150.73, + "probability": 0.998 + }, + { + "start": 10150.73, + "end": 10153.57, + "probability": 0.9948 + }, + { + "start": 10155.6, + "end": 10158.09, + "probability": 0.712 + }, + { + "start": 10158.41, + "end": 10160.33, + "probability": 0.1069 + }, + { + "start": 10160.55, + "end": 10161.37, + "probability": 0.7167 + }, + { + "start": 10161.51, + "end": 10163.34, + "probability": 0.8406 + }, + { + "start": 10163.73, + "end": 10165.35, + "probability": 0.797 + }, + { + "start": 10165.45, + "end": 10166.75, + "probability": 0.8854 + }, + { + "start": 10166.77, + "end": 10167.95, + "probability": 0.6512 + }, + { + "start": 10168.43, + "end": 10170.01, + "probability": 0.7266 + }, + { + "start": 10170.19, + "end": 10174.29, + "probability": 0.7108 + }, + { + "start": 10174.74, + "end": 10176.13, + "probability": 0.032 + }, + { + "start": 10176.13, + "end": 10178.44, + "probability": 0.7075 + }, + { + "start": 10180.03, + "end": 10180.91, + "probability": 0.0517 + }, + { + "start": 10182.69, + "end": 10182.87, + "probability": 0.0086 + }, + { + "start": 10182.87, + "end": 10184.15, + "probability": 0.1226 + }, + { + "start": 10184.25, + "end": 10184.69, + "probability": 0.036 + }, + { + "start": 10184.69, + "end": 10184.69, + "probability": 0.1645 + }, + { + "start": 10184.69, + "end": 10187.61, + "probability": 0.207 + }, + { + "start": 10187.93, + "end": 10188.09, + "probability": 0.0749 + }, + { + "start": 10190.47, + "end": 10190.47, + "probability": 0.195 + }, + { + "start": 10190.57, + "end": 10190.97, + "probability": 0.3274 + }, + { + "start": 10190.99, + "end": 10191.29, + "probability": 0.5917 + }, + { + "start": 10191.43, + "end": 10192.01, + "probability": 0.7866 + }, + { + "start": 10192.17, + "end": 10197.07, + "probability": 0.9434 + }, + { + "start": 10197.07, + "end": 10202.09, + "probability": 0.9925 + }, + { + "start": 10202.45, + "end": 10203.01, + "probability": 0.543 + }, + { + "start": 10203.07, + "end": 10203.95, + "probability": 0.9421 + }, + { + "start": 10204.21, + "end": 10204.59, + "probability": 0.6909 + }, + { + "start": 10205.33, + "end": 10206.77, + "probability": 0.6593 + }, + { + "start": 10206.87, + "end": 10208.36, + "probability": 0.8442 + }, + { + "start": 10210.49, + "end": 10212.67, + "probability": 0.862 + }, + { + "start": 10226.45, + "end": 10228.73, + "probability": 0.7436 + }, + { + "start": 10229.79, + "end": 10231.89, + "probability": 0.7262 + }, + { + "start": 10233.21, + "end": 10237.89, + "probability": 0.9897 + }, + { + "start": 10237.89, + "end": 10242.23, + "probability": 0.9927 + }, + { + "start": 10242.59, + "end": 10243.73, + "probability": 0.9459 + }, + { + "start": 10244.61, + "end": 10246.19, + "probability": 0.9886 + }, + { + "start": 10246.21, + "end": 10247.59, + "probability": 0.6745 + }, + { + "start": 10248.43, + "end": 10248.95, + "probability": 0.5456 + }, + { + "start": 10249.11, + "end": 10253.44, + "probability": 0.5638 + }, + { + "start": 10256.35, + "end": 10256.57, + "probability": 0.111 + }, + { + "start": 10256.57, + "end": 10256.57, + "probability": 0.2208 + }, + { + "start": 10256.57, + "end": 10257.33, + "probability": 0.2088 + }, + { + "start": 10257.43, + "end": 10257.65, + "probability": 0.2907 + }, + { + "start": 10257.89, + "end": 10260.05, + "probability": 0.2622 + }, + { + "start": 10260.11, + "end": 10260.18, + "probability": 0.0016 + }, + { + "start": 10262.99, + "end": 10263.21, + "probability": 0.0248 + }, + { + "start": 10263.83, + "end": 10264.03, + "probability": 0.061 + }, + { + "start": 10264.03, + "end": 10264.03, + "probability": 0.0714 + }, + { + "start": 10264.03, + "end": 10264.03, + "probability": 0.1329 + }, + { + "start": 10264.03, + "end": 10265.65, + "probability": 0.8295 + }, + { + "start": 10266.11, + "end": 10269.23, + "probability": 0.9888 + }, + { + "start": 10269.73, + "end": 10272.51, + "probability": 0.9966 + }, + { + "start": 10272.69, + "end": 10275.55, + "probability": 0.7537 + }, + { + "start": 10276.07, + "end": 10277.27, + "probability": 0.998 + }, + { + "start": 10278.01, + "end": 10279.41, + "probability": 0.9939 + }, + { + "start": 10280.31, + "end": 10282.57, + "probability": 0.8071 + }, + { + "start": 10282.73, + "end": 10285.05, + "probability": 0.9678 + }, + { + "start": 10285.39, + "end": 10286.17, + "probability": 0.5841 + }, + { + "start": 10286.19, + "end": 10287.09, + "probability": 0.7055 + }, + { + "start": 10289.13, + "end": 10294.17, + "probability": 0.9779 + }, + { + "start": 10295.35, + "end": 10296.11, + "probability": 0.9461 + }, + { + "start": 10297.59, + "end": 10300.1, + "probability": 0.9185 + }, + { + "start": 10300.91, + "end": 10303.61, + "probability": 0.9829 + }, + { + "start": 10304.69, + "end": 10306.57, + "probability": 0.9474 + }, + { + "start": 10307.15, + "end": 10309.47, + "probability": 0.9544 + }, + { + "start": 10310.09, + "end": 10310.95, + "probability": 0.6145 + }, + { + "start": 10311.51, + "end": 10313.01, + "probability": 0.9753 + }, + { + "start": 10313.49, + "end": 10315.81, + "probability": 0.9836 + }, + { + "start": 10316.35, + "end": 10317.37, + "probability": 0.5037 + }, + { + "start": 10317.61, + "end": 10321.19, + "probability": 0.8481 + }, + { + "start": 10321.69, + "end": 10322.37, + "probability": 0.5762 + }, + { + "start": 10322.49, + "end": 10327.73, + "probability": 0.9915 + }, + { + "start": 10327.77, + "end": 10329.27, + "probability": 0.9917 + }, + { + "start": 10329.39, + "end": 10331.53, + "probability": 0.8665 + }, + { + "start": 10331.89, + "end": 10333.51, + "probability": 0.9533 + }, + { + "start": 10334.63, + "end": 10335.31, + "probability": 0.9357 + }, + { + "start": 10335.95, + "end": 10337.21, + "probability": 0.6661 + }, + { + "start": 10337.57, + "end": 10339.19, + "probability": 0.9979 + }, + { + "start": 10339.75, + "end": 10341.81, + "probability": 0.9826 + }, + { + "start": 10342.51, + "end": 10345.09, + "probability": 0.9785 + }, + { + "start": 10346.33, + "end": 10352.17, + "probability": 0.9591 + }, + { + "start": 10352.51, + "end": 10354.05, + "probability": 0.9964 + }, + { + "start": 10354.99, + "end": 10355.25, + "probability": 0.415 + }, + { + "start": 10355.41, + "end": 10356.53, + "probability": 0.9524 + }, + { + "start": 10356.63, + "end": 10357.03, + "probability": 0.4594 + }, + { + "start": 10357.05, + "end": 10357.55, + "probability": 0.7436 + }, + { + "start": 10357.61, + "end": 10358.69, + "probability": 0.9351 + }, + { + "start": 10359.09, + "end": 10363.77, + "probability": 0.9927 + }, + { + "start": 10364.13, + "end": 10366.35, + "probability": 0.9868 + }, + { + "start": 10366.45, + "end": 10368.69, + "probability": 0.9873 + }, + { + "start": 10369.23, + "end": 10372.23, + "probability": 0.9769 + }, + { + "start": 10372.57, + "end": 10374.19, + "probability": 0.8799 + }, + { + "start": 10374.53, + "end": 10375.37, + "probability": 0.7281 + }, + { + "start": 10375.81, + "end": 10377.17, + "probability": 0.788 + }, + { + "start": 10377.51, + "end": 10379.09, + "probability": 0.995 + }, + { + "start": 10379.77, + "end": 10382.29, + "probability": 0.7649 + }, + { + "start": 10383.01, + "end": 10383.75, + "probability": 0.0221 + }, + { + "start": 10383.87, + "end": 10384.25, + "probability": 0.1378 + }, + { + "start": 10384.41, + "end": 10385.59, + "probability": 0.6562 + }, + { + "start": 10385.59, + "end": 10388.89, + "probability": 0.7223 + }, + { + "start": 10388.95, + "end": 10392.77, + "probability": 0.9567 + }, + { + "start": 10393.29, + "end": 10396.13, + "probability": 0.9728 + }, + { + "start": 10396.47, + "end": 10397.93, + "probability": 0.9565 + }, + { + "start": 10398.49, + "end": 10400.41, + "probability": 0.9604 + }, + { + "start": 10400.81, + "end": 10402.13, + "probability": 0.9943 + }, + { + "start": 10402.27, + "end": 10403.33, + "probability": 0.9209 + }, + { + "start": 10403.69, + "end": 10405.53, + "probability": 0.9231 + }, + { + "start": 10405.59, + "end": 10406.05, + "probability": 0.8969 + }, + { + "start": 10406.33, + "end": 10409.65, + "probability": 0.938 + }, + { + "start": 10410.17, + "end": 10411.29, + "probability": 0.9497 + }, + { + "start": 10411.55, + "end": 10413.29, + "probability": 0.9799 + }, + { + "start": 10413.83, + "end": 10415.67, + "probability": 0.922 + }, + { + "start": 10416.17, + "end": 10419.57, + "probability": 0.9854 + }, + { + "start": 10420.11, + "end": 10422.99, + "probability": 0.9849 + }, + { + "start": 10423.91, + "end": 10425.71, + "probability": 0.951 + }, + { + "start": 10426.01, + "end": 10427.11, + "probability": 0.8552 + }, + { + "start": 10427.57, + "end": 10428.63, + "probability": 0.6626 + }, + { + "start": 10429.15, + "end": 10434.53, + "probability": 0.9865 + }, + { + "start": 10434.53, + "end": 10437.49, + "probability": 0.9765 + }, + { + "start": 10437.63, + "end": 10438.81, + "probability": 0.5818 + }, + { + "start": 10439.21, + "end": 10440.59, + "probability": 0.7228 + }, + { + "start": 10444.05, + "end": 10444.45, + "probability": 0.6644 + }, + { + "start": 10461.57, + "end": 10462.51, + "probability": 0.5908 + }, + { + "start": 10463.67, + "end": 10465.71, + "probability": 0.6731 + }, + { + "start": 10468.39, + "end": 10472.11, + "probability": 0.9468 + }, + { + "start": 10474.39, + "end": 10479.27, + "probability": 0.8101 + }, + { + "start": 10480.99, + "end": 10481.79, + "probability": 0.7089 + }, + { + "start": 10483.55, + "end": 10484.83, + "probability": 0.8023 + }, + { + "start": 10485.63, + "end": 10490.11, + "probability": 0.7611 + }, + { + "start": 10490.77, + "end": 10495.35, + "probability": 0.9465 + }, + { + "start": 10498.45, + "end": 10504.07, + "probability": 0.9915 + }, + { + "start": 10506.25, + "end": 10507.33, + "probability": 0.9623 + }, + { + "start": 10508.07, + "end": 10509.03, + "probability": 0.9755 + }, + { + "start": 10509.93, + "end": 10510.89, + "probability": 0.967 + }, + { + "start": 10512.71, + "end": 10513.03, + "probability": 0.2788 + }, + { + "start": 10514.45, + "end": 10518.19, + "probability": 0.8893 + }, + { + "start": 10519.25, + "end": 10520.93, + "probability": 0.8844 + }, + { + "start": 10521.77, + "end": 10522.83, + "probability": 0.6791 + }, + { + "start": 10524.69, + "end": 10528.09, + "probability": 0.9505 + }, + { + "start": 10529.65, + "end": 10533.15, + "probability": 0.9315 + }, + { + "start": 10534.15, + "end": 10537.85, + "probability": 0.8564 + }, + { + "start": 10537.95, + "end": 10538.67, + "probability": 0.5949 + }, + { + "start": 10540.13, + "end": 10542.83, + "probability": 0.8891 + }, + { + "start": 10543.01, + "end": 10546.77, + "probability": 0.9871 + }, + { + "start": 10548.23, + "end": 10552.23, + "probability": 0.8962 + }, + { + "start": 10554.63, + "end": 10556.31, + "probability": 0.929 + }, + { + "start": 10557.93, + "end": 10560.35, + "probability": 0.3353 + }, + { + "start": 10561.31, + "end": 10563.51, + "probability": 0.4993 + }, + { + "start": 10564.33, + "end": 10568.29, + "probability": 0.6642 + }, + { + "start": 10569.13, + "end": 10570.09, + "probability": 0.4167 + }, + { + "start": 10570.38, + "end": 10573.09, + "probability": 0.3039 + }, + { + "start": 10573.09, + "end": 10573.37, + "probability": 0.4361 + }, + { + "start": 10573.41, + "end": 10576.47, + "probability": 0.3706 + }, + { + "start": 10577.29, + "end": 10577.65, + "probability": 0.1547 + }, + { + "start": 10578.85, + "end": 10580.73, + "probability": 0.9633 + }, + { + "start": 10581.75, + "end": 10586.43, + "probability": 0.9173 + }, + { + "start": 10588.79, + "end": 10589.91, + "probability": 0.9976 + }, + { + "start": 10593.13, + "end": 10595.71, + "probability": 0.9559 + }, + { + "start": 10597.21, + "end": 10603.89, + "probability": 0.8596 + }, + { + "start": 10604.87, + "end": 10606.29, + "probability": 0.8705 + }, + { + "start": 10606.71, + "end": 10606.89, + "probability": 0.3092 + }, + { + "start": 10606.97, + "end": 10607.51, + "probability": 0.9348 + }, + { + "start": 10608.99, + "end": 10612.13, + "probability": 0.7705 + }, + { + "start": 10612.83, + "end": 10615.05, + "probability": 0.7466 + }, + { + "start": 10615.97, + "end": 10620.76, + "probability": 0.8055 + }, + { + "start": 10622.17, + "end": 10624.31, + "probability": 0.6825 + }, + { + "start": 10625.35, + "end": 10625.59, + "probability": 0.2907 + }, + { + "start": 10626.87, + "end": 10629.89, + "probability": 0.5471 + }, + { + "start": 10631.77, + "end": 10636.23, + "probability": 0.8763 + }, + { + "start": 10637.23, + "end": 10639.75, + "probability": 0.8571 + }, + { + "start": 10640.45, + "end": 10641.58, + "probability": 0.9772 + }, + { + "start": 10643.09, + "end": 10644.03, + "probability": 0.7957 + }, + { + "start": 10646.01, + "end": 10647.25, + "probability": 0.9504 + }, + { + "start": 10647.43, + "end": 10648.31, + "probability": 0.7655 + }, + { + "start": 10648.69, + "end": 10649.65, + "probability": 0.8154 + }, + { + "start": 10650.17, + "end": 10651.55, + "probability": 0.9424 + }, + { + "start": 10651.91, + "end": 10652.49, + "probability": 0.2853 + }, + { + "start": 10653.59, + "end": 10656.51, + "probability": 0.9789 + }, + { + "start": 10657.11, + "end": 10659.23, + "probability": 0.9688 + }, + { + "start": 10660.07, + "end": 10663.21, + "probability": 0.8769 + }, + { + "start": 10664.05, + "end": 10668.39, + "probability": 0.8381 + }, + { + "start": 10669.41, + "end": 10671.25, + "probability": 0.4576 + }, + { + "start": 10671.47, + "end": 10672.05, + "probability": 0.3308 + }, + { + "start": 10672.31, + "end": 10673.91, + "probability": 0.8705 + }, + { + "start": 10675.19, + "end": 10677.63, + "probability": 0.9316 + }, + { + "start": 10678.11, + "end": 10683.64, + "probability": 0.7517 + }, + { + "start": 10684.19, + "end": 10687.27, + "probability": 0.8668 + }, + { + "start": 10687.85, + "end": 10688.01, + "probability": 0.2537 + }, + { + "start": 10688.47, + "end": 10690.99, + "probability": 0.4983 + }, + { + "start": 10691.51, + "end": 10693.63, + "probability": 0.9364 + }, + { + "start": 10693.75, + "end": 10694.37, + "probability": 0.376 + }, + { + "start": 10694.61, + "end": 10697.29, + "probability": 0.9008 + }, + { + "start": 10697.67, + "end": 10700.11, + "probability": 0.9863 + }, + { + "start": 10702.01, + "end": 10702.36, + "probability": 0.3769 + }, + { + "start": 10702.81, + "end": 10703.25, + "probability": 0.507 + }, + { + "start": 10703.41, + "end": 10703.57, + "probability": 0.8062 + }, + { + "start": 10704.09, + "end": 10705.39, + "probability": 0.5729 + }, + { + "start": 10705.55, + "end": 10707.43, + "probability": 0.9312 + }, + { + "start": 10708.45, + "end": 10711.29, + "probability": 0.9028 + }, + { + "start": 10711.61, + "end": 10713.31, + "probability": 0.3839 + }, + { + "start": 10735.23, + "end": 10735.93, + "probability": 0.4347 + }, + { + "start": 10736.75, + "end": 10737.67, + "probability": 0.3691 + }, + { + "start": 10737.89, + "end": 10739.57, + "probability": 0.8712 + }, + { + "start": 10739.81, + "end": 10741.67, + "probability": 0.9934 + }, + { + "start": 10742.49, + "end": 10744.83, + "probability": 0.8628 + }, + { + "start": 10745.03, + "end": 10745.87, + "probability": 0.5189 + }, + { + "start": 10745.89, + "end": 10748.55, + "probability": 0.9941 + }, + { + "start": 10750.55, + "end": 10751.51, + "probability": 0.0129 + }, + { + "start": 10752.35, + "end": 10753.71, + "probability": 0.5382 + }, + { + "start": 10754.77, + "end": 10756.42, + "probability": 0.8509 + }, + { + "start": 10758.15, + "end": 10762.15, + "probability": 0.9769 + }, + { + "start": 10764.1, + "end": 10769.93, + "probability": 0.934 + }, + { + "start": 10772.55, + "end": 10775.09, + "probability": 0.9757 + }, + { + "start": 10776.65, + "end": 10777.47, + "probability": 0.8765 + }, + { + "start": 10779.73, + "end": 10780.77, + "probability": 0.8301 + }, + { + "start": 10780.89, + "end": 10783.91, + "probability": 0.9647 + }, + { + "start": 10784.01, + "end": 10787.39, + "probability": 0.9758 + }, + { + "start": 10787.49, + "end": 10788.91, + "probability": 0.988 + }, + { + "start": 10791.01, + "end": 10793.79, + "probability": 0.9288 + }, + { + "start": 10795.45, + "end": 10797.87, + "probability": 0.9872 + }, + { + "start": 10798.71, + "end": 10804.03, + "probability": 0.841 + }, + { + "start": 10804.13, + "end": 10806.99, + "probability": 0.984 + }, + { + "start": 10808.13, + "end": 10810.11, + "probability": 0.9492 + }, + { + "start": 10812.15, + "end": 10813.24, + "probability": 0.9894 + }, + { + "start": 10814.67, + "end": 10815.85, + "probability": 0.7459 + }, + { + "start": 10819.29, + "end": 10820.87, + "probability": 0.9809 + }, + { + "start": 10822.45, + "end": 10824.81, + "probability": 0.8513 + }, + { + "start": 10825.49, + "end": 10826.39, + "probability": 0.9004 + }, + { + "start": 10826.99, + "end": 10829.6, + "probability": 0.9152 + }, + { + "start": 10831.89, + "end": 10833.79, + "probability": 0.8684 + }, + { + "start": 10835.27, + "end": 10835.77, + "probability": 0.5006 + }, + { + "start": 10835.77, + "end": 10836.19, + "probability": 0.6865 + }, + { + "start": 10837.77, + "end": 10840.17, + "probability": 0.8416 + }, + { + "start": 10842.57, + "end": 10843.85, + "probability": 0.9965 + }, + { + "start": 10845.59, + "end": 10847.17, + "probability": 0.9592 + }, + { + "start": 10847.97, + "end": 10848.77, + "probability": 0.7729 + }, + { + "start": 10849.81, + "end": 10850.71, + "probability": 0.8341 + }, + { + "start": 10851.51, + "end": 10854.41, + "probability": 0.9448 + }, + { + "start": 10855.89, + "end": 10856.75, + "probability": 0.6079 + }, + { + "start": 10858.53, + "end": 10859.71, + "probability": 0.9886 + }, + { + "start": 10859.77, + "end": 10860.87, + "probability": 0.882 + }, + { + "start": 10860.95, + "end": 10866.11, + "probability": 0.9954 + }, + { + "start": 10867.37, + "end": 10870.67, + "probability": 0.9979 + }, + { + "start": 10870.67, + "end": 10873.27, + "probability": 0.9977 + }, + { + "start": 10874.01, + "end": 10875.03, + "probability": 0.6258 + }, + { + "start": 10875.05, + "end": 10876.15, + "probability": 0.2269 + }, + { + "start": 10876.29, + "end": 10877.47, + "probability": 0.8967 + }, + { + "start": 10878.15, + "end": 10878.15, + "probability": 0.2925 + }, + { + "start": 10878.15, + "end": 10878.65, + "probability": 0.8732 + }, + { + "start": 10878.69, + "end": 10880.03, + "probability": 0.9664 + }, + { + "start": 10880.13, + "end": 10880.95, + "probability": 0.9805 + }, + { + "start": 10881.51, + "end": 10882.37, + "probability": 0.6947 + }, + { + "start": 10883.93, + "end": 10885.47, + "probability": 0.9483 + }, + { + "start": 10885.81, + "end": 10887.45, + "probability": 0.6014 + }, + { + "start": 10887.79, + "end": 10888.55, + "probability": 0.6124 + }, + { + "start": 10889.29, + "end": 10891.05, + "probability": 0.171 + }, + { + "start": 10891.05, + "end": 10892.41, + "probability": 0.5541 + }, + { + "start": 10892.89, + "end": 10895.0, + "probability": 0.3269 + }, + { + "start": 10895.91, + "end": 10895.91, + "probability": 0.2897 + }, + { + "start": 10895.91, + "end": 10896.91, + "probability": 0.639 + }, + { + "start": 10897.11, + "end": 10898.97, + "probability": 0.2836 + }, + { + "start": 10899.39, + "end": 10902.87, + "probability": 0.9729 + }, + { + "start": 10904.45, + "end": 10905.83, + "probability": 0.5058 + }, + { + "start": 10906.85, + "end": 10908.55, + "probability": 0.9844 + }, + { + "start": 10910.25, + "end": 10913.71, + "probability": 0.6435 + }, + { + "start": 10914.51, + "end": 10919.83, + "probability": 0.9712 + }, + { + "start": 10920.65, + "end": 10921.83, + "probability": 0.7542 + }, + { + "start": 10922.37, + "end": 10930.01, + "probability": 0.9752 + }, + { + "start": 10930.15, + "end": 10930.87, + "probability": 0.7547 + }, + { + "start": 10931.91, + "end": 10932.71, + "probability": 0.7609 + }, + { + "start": 10933.97, + "end": 10934.31, + "probability": 0.5703 + }, + { + "start": 10934.33, + "end": 10935.18, + "probability": 0.9132 + }, + { + "start": 10935.41, + "end": 10940.33, + "probability": 0.9097 + }, + { + "start": 10940.47, + "end": 10941.45, + "probability": 0.8287 + }, + { + "start": 10943.01, + "end": 10946.91, + "probability": 0.8418 + }, + { + "start": 10947.15, + "end": 10947.47, + "probability": 0.7861 + }, + { + "start": 10947.93, + "end": 10948.77, + "probability": 0.7577 + }, + { + "start": 10949.25, + "end": 10950.83, + "probability": 0.9353 + }, + { + "start": 10951.83, + "end": 10954.51, + "probability": 0.8706 + }, + { + "start": 10955.81, + "end": 10957.73, + "probability": 0.8293 + }, + { + "start": 10958.33, + "end": 10963.45, + "probability": 0.9578 + }, + { + "start": 10963.99, + "end": 10964.21, + "probability": 0.7595 + }, + { + "start": 10964.39, + "end": 10964.95, + "probability": 0.3171 + }, + { + "start": 10966.07, + "end": 10967.42, + "probability": 0.9021 + }, + { + "start": 10969.95, + "end": 10973.69, + "probability": 0.7966 + }, + { + "start": 10974.93, + "end": 10981.01, + "probability": 0.9802 + }, + { + "start": 10982.27, + "end": 10985.03, + "probability": 0.954 + }, + { + "start": 10985.75, + "end": 10986.41, + "probability": 0.5424 + }, + { + "start": 10987.41, + "end": 10988.13, + "probability": 0.8792 + }, + { + "start": 10989.01, + "end": 10991.43, + "probability": 0.7137 + }, + { + "start": 10993.05, + "end": 10995.95, + "probability": 0.7509 + }, + { + "start": 10997.25, + "end": 10997.67, + "probability": 0.6983 + }, + { + "start": 10997.67, + "end": 10998.81, + "probability": 0.9499 + }, + { + "start": 10998.89, + "end": 11000.65, + "probability": 0.992 + }, + { + "start": 11000.93, + "end": 11003.31, + "probability": 0.9149 + }, + { + "start": 11005.09, + "end": 11005.99, + "probability": 0.9288 + }, + { + "start": 11006.61, + "end": 11012.27, + "probability": 0.9833 + }, + { + "start": 11014.67, + "end": 11017.96, + "probability": 0.9795 + }, + { + "start": 11019.33, + "end": 11023.19, + "probability": 0.9446 + }, + { + "start": 11024.73, + "end": 11028.29, + "probability": 0.9446 + }, + { + "start": 11029.47, + "end": 11030.07, + "probability": 0.9451 + }, + { + "start": 11030.33, + "end": 11034.39, + "probability": 0.9468 + }, + { + "start": 11034.55, + "end": 11035.77, + "probability": 0.9679 + }, + { + "start": 11037.47, + "end": 11038.17, + "probability": 0.6204 + }, + { + "start": 11039.63, + "end": 11040.17, + "probability": 0.6897 + }, + { + "start": 11041.07, + "end": 11044.29, + "probability": 0.9881 + }, + { + "start": 11044.29, + "end": 11048.83, + "probability": 0.8686 + }, + { + "start": 11050.25, + "end": 11052.01, + "probability": 0.8334 + }, + { + "start": 11053.11, + "end": 11054.13, + "probability": 0.4709 + }, + { + "start": 11056.34, + "end": 11058.01, + "probability": 0.9923 + }, + { + "start": 11060.03, + "end": 11062.45, + "probability": 0.9934 + }, + { + "start": 11063.63, + "end": 11066.03, + "probability": 0.7449 + }, + { + "start": 11066.59, + "end": 11069.33, + "probability": 0.9296 + }, + { + "start": 11069.83, + "end": 11071.87, + "probability": 0.9911 + }, + { + "start": 11072.51, + "end": 11076.65, + "probability": 0.9967 + }, + { + "start": 11077.73, + "end": 11084.09, + "probability": 0.9216 + }, + { + "start": 11084.53, + "end": 11085.05, + "probability": 0.8447 + }, + { + "start": 11086.53, + "end": 11087.03, + "probability": 0.98 + }, + { + "start": 11087.53, + "end": 11088.25, + "probability": 0.9272 + }, + { + "start": 11088.75, + "end": 11090.03, + "probability": 0.9759 + }, + { + "start": 11090.35, + "end": 11091.63, + "probability": 0.9559 + }, + { + "start": 11091.97, + "end": 11093.38, + "probability": 0.9023 + }, + { + "start": 11093.95, + "end": 11096.83, + "probability": 0.9955 + }, + { + "start": 11096.83, + "end": 11100.67, + "probability": 0.9373 + }, + { + "start": 11100.77, + "end": 11101.79, + "probability": 0.7255 + }, + { + "start": 11102.77, + "end": 11107.91, + "probability": 0.9824 + }, + { + "start": 11107.91, + "end": 11108.29, + "probability": 0.9347 + }, + { + "start": 11108.73, + "end": 11109.59, + "probability": 0.8911 + }, + { + "start": 11109.95, + "end": 11110.69, + "probability": 0.6043 + }, + { + "start": 11111.01, + "end": 11111.87, + "probability": 0.828 + }, + { + "start": 11112.19, + "end": 11113.19, + "probability": 0.911 + }, + { + "start": 11113.43, + "end": 11114.73, + "probability": 0.9824 + }, + { + "start": 11114.89, + "end": 11115.95, + "probability": 0.9873 + }, + { + "start": 11116.25, + "end": 11117.5, + "probability": 0.9712 + }, + { + "start": 11117.81, + "end": 11119.29, + "probability": 0.9966 + }, + { + "start": 11119.61, + "end": 11120.51, + "probability": 0.9614 + }, + { + "start": 11120.81, + "end": 11121.81, + "probability": 0.9853 + }, + { + "start": 11122.17, + "end": 11123.09, + "probability": 0.8546 + }, + { + "start": 11123.67, + "end": 11124.71, + "probability": 0.7331 + }, + { + "start": 11125.83, + "end": 11128.55, + "probability": 0.9849 + }, + { + "start": 11129.99, + "end": 11132.35, + "probability": 0.9827 + }, + { + "start": 11132.89, + "end": 11135.27, + "probability": 0.8563 + }, + { + "start": 11135.67, + "end": 11136.61, + "probability": 0.5375 + }, + { + "start": 11138.45, + "end": 11139.65, + "probability": 0.4867 + }, + { + "start": 11140.69, + "end": 11142.95, + "probability": 0.6859 + }, + { + "start": 11144.17, + "end": 11145.23, + "probability": 0.9435 + }, + { + "start": 11146.25, + "end": 11148.81, + "probability": 0.9956 + }, + { + "start": 11149.87, + "end": 11153.49, + "probability": 0.998 + }, + { + "start": 11158.03, + "end": 11158.73, + "probability": 0.6292 + }, + { + "start": 11159.27, + "end": 11160.29, + "probability": 0.796 + }, + { + "start": 11161.69, + "end": 11164.31, + "probability": 0.5982 + }, + { + "start": 11165.03, + "end": 11166.39, + "probability": 0.9276 + }, + { + "start": 11167.05, + "end": 11169.39, + "probability": 0.9836 + }, + { + "start": 11170.19, + "end": 11170.85, + "probability": 0.5785 + }, + { + "start": 11170.91, + "end": 11171.43, + "probability": 0.7554 + }, + { + "start": 11172.21, + "end": 11173.01, + "probability": 0.6662 + }, + { + "start": 11173.09, + "end": 11174.75, + "probability": 0.9757 + }, + { + "start": 11175.39, + "end": 11178.83, + "probability": 0.8628 + }, + { + "start": 11180.27, + "end": 11181.43, + "probability": 0.2661 + }, + { + "start": 11182.17, + "end": 11183.63, + "probability": 0.9577 + }, + { + "start": 11184.65, + "end": 11188.01, + "probability": 0.91 + }, + { + "start": 11189.15, + "end": 11192.17, + "probability": 0.9824 + }, + { + "start": 11192.85, + "end": 11195.75, + "probability": 0.7189 + }, + { + "start": 11196.33, + "end": 11196.99, + "probability": 0.6198 + }, + { + "start": 11197.11, + "end": 11197.91, + "probability": 0.9007 + }, + { + "start": 11198.03, + "end": 11200.09, + "probability": 0.7248 + }, + { + "start": 11201.35, + "end": 11203.15, + "probability": 0.9618 + }, + { + "start": 11204.17, + "end": 11207.79, + "probability": 0.9868 + }, + { + "start": 11207.97, + "end": 11208.43, + "probability": 0.7268 + }, + { + "start": 11209.49, + "end": 11213.74, + "probability": 0.8854 + }, + { + "start": 11214.39, + "end": 11215.31, + "probability": 0.748 + }, + { + "start": 11215.31, + "end": 11216.51, + "probability": 0.5153 + }, + { + "start": 11217.01, + "end": 11218.53, + "probability": 0.9414 + }, + { + "start": 11219.53, + "end": 11221.83, + "probability": 0.8633 + }, + { + "start": 11223.27, + "end": 11223.71, + "probability": 0.5589 + }, + { + "start": 11223.79, + "end": 11224.83, + "probability": 0.942 + }, + { + "start": 11224.93, + "end": 11225.46, + "probability": 0.9432 + }, + { + "start": 11225.71, + "end": 11226.11, + "probability": 0.9339 + }, + { + "start": 11227.03, + "end": 11229.69, + "probability": 0.9584 + }, + { + "start": 11230.47, + "end": 11231.31, + "probability": 0.7882 + }, + { + "start": 11232.13, + "end": 11232.53, + "probability": 0.7753 + }, + { + "start": 11233.97, + "end": 11237.42, + "probability": 0.9627 + }, + { + "start": 11239.07, + "end": 11241.03, + "probability": 0.7539 + }, + { + "start": 11241.73, + "end": 11243.11, + "probability": 0.9932 + }, + { + "start": 11244.23, + "end": 11245.03, + "probability": 0.5638 + }, + { + "start": 11245.49, + "end": 11250.31, + "probability": 0.6252 + }, + { + "start": 11250.71, + "end": 11252.09, + "probability": 0.9333 + }, + { + "start": 11252.37, + "end": 11256.07, + "probability": 0.9355 + }, + { + "start": 11256.51, + "end": 11256.61, + "probability": 0.0475 + }, + { + "start": 11256.61, + "end": 11256.61, + "probability": 0.3055 + }, + { + "start": 11256.61, + "end": 11256.61, + "probability": 0.0243 + }, + { + "start": 11256.61, + "end": 11258.51, + "probability": 0.7585 + }, + { + "start": 11259.65, + "end": 11259.99, + "probability": 0.8621 + }, + { + "start": 11260.05, + "end": 11261.11, + "probability": 0.9849 + }, + { + "start": 11261.53, + "end": 11263.19, + "probability": 0.6888 + }, + { + "start": 11263.71, + "end": 11265.59, + "probability": 0.9221 + }, + { + "start": 11266.63, + "end": 11267.31, + "probability": 0.8081 + }, + { + "start": 11267.63, + "end": 11269.45, + "probability": 0.7791 + }, + { + "start": 11269.77, + "end": 11272.21, + "probability": 0.9514 + }, + { + "start": 11273.05, + "end": 11274.35, + "probability": 0.8411 + }, + { + "start": 11274.39, + "end": 11275.45, + "probability": 0.9505 + }, + { + "start": 11275.59, + "end": 11276.27, + "probability": 0.8765 + }, + { + "start": 11276.51, + "end": 11278.17, + "probability": 0.9682 + }, + { + "start": 11278.25, + "end": 11278.79, + "probability": 0.4085 + }, + { + "start": 11278.89, + "end": 11279.57, + "probability": 0.8418 + }, + { + "start": 11281.63, + "end": 11282.05, + "probability": 0.8128 + }, + { + "start": 11283.31, + "end": 11284.01, + "probability": 0.8838 + }, + { + "start": 11284.55, + "end": 11287.55, + "probability": 0.965 + }, + { + "start": 11287.55, + "end": 11290.37, + "probability": 0.8953 + }, + { + "start": 11290.69, + "end": 11291.38, + "probability": 0.6704 + }, + { + "start": 11291.95, + "end": 11292.47, + "probability": 0.7723 + }, + { + "start": 11293.41, + "end": 11295.01, + "probability": 0.5651 + }, + { + "start": 11295.25, + "end": 11295.85, + "probability": 0.9002 + }, + { + "start": 11295.95, + "end": 11297.59, + "probability": 0.9355 + }, + { + "start": 11298.99, + "end": 11299.97, + "probability": 0.9802 + }, + { + "start": 11301.93, + "end": 11302.81, + "probability": 0.9438 + }, + { + "start": 11304.05, + "end": 11305.15, + "probability": 0.8371 + }, + { + "start": 11306.71, + "end": 11309.73, + "probability": 0.958 + }, + { + "start": 11311.65, + "end": 11312.61, + "probability": 0.9996 + }, + { + "start": 11313.13, + "end": 11314.73, + "probability": 0.9655 + }, + { + "start": 11315.29, + "end": 11317.37, + "probability": 0.9918 + }, + { + "start": 11318.05, + "end": 11321.73, + "probability": 0.9678 + }, + { + "start": 11322.49, + "end": 11322.81, + "probability": 0.7092 + }, + { + "start": 11323.73, + "end": 11325.03, + "probability": 0.7437 + }, + { + "start": 11326.03, + "end": 11326.38, + "probability": 0.5419 + }, + { + "start": 11326.51, + "end": 11328.69, + "probability": 0.8425 + }, + { + "start": 11328.81, + "end": 11329.87, + "probability": 0.9285 + }, + { + "start": 11330.47, + "end": 11331.13, + "probability": 0.8069 + }, + { + "start": 11331.19, + "end": 11332.33, + "probability": 0.9829 + }, + { + "start": 11333.07, + "end": 11333.93, + "probability": 0.931 + }, + { + "start": 11335.05, + "end": 11336.23, + "probability": 0.9247 + }, + { + "start": 11338.01, + "end": 11340.59, + "probability": 0.8993 + }, + { + "start": 11341.89, + "end": 11342.19, + "probability": 0.5696 + }, + { + "start": 11342.27, + "end": 11342.94, + "probability": 0.9077 + }, + { + "start": 11343.13, + "end": 11346.91, + "probability": 0.6582 + }, + { + "start": 11347.01, + "end": 11350.07, + "probability": 0.7099 + }, + { + "start": 11351.35, + "end": 11351.85, + "probability": 0.8546 + }, + { + "start": 11353.31, + "end": 11354.29, + "probability": 0.8011 + }, + { + "start": 11355.15, + "end": 11356.49, + "probability": 0.8784 + }, + { + "start": 11356.73, + "end": 11361.21, + "probability": 0.959 + }, + { + "start": 11361.81, + "end": 11363.28, + "probability": 0.8598 + }, + { + "start": 11364.49, + "end": 11365.19, + "probability": 0.9646 + }, + { + "start": 11365.29, + "end": 11366.57, + "probability": 0.8707 + }, + { + "start": 11366.65, + "end": 11368.55, + "probability": 0.968 + }, + { + "start": 11368.61, + "end": 11369.73, + "probability": 0.8229 + }, + { + "start": 11369.83, + "end": 11372.47, + "probability": 0.95 + }, + { + "start": 11372.51, + "end": 11373.31, + "probability": 0.8492 + }, + { + "start": 11373.67, + "end": 11375.93, + "probability": 0.6503 + }, + { + "start": 11376.77, + "end": 11377.85, + "probability": 0.7016 + }, + { + "start": 11379.87, + "end": 11382.03, + "probability": 0.9004 + }, + { + "start": 11382.85, + "end": 11383.11, + "probability": 0.8198 + }, + { + "start": 11383.95, + "end": 11386.89, + "probability": 0.9679 + }, + { + "start": 11387.27, + "end": 11388.51, + "probability": 0.8524 + }, + { + "start": 11388.79, + "end": 11392.59, + "probability": 0.9307 + }, + { + "start": 11395.07, + "end": 11395.67, + "probability": 0.8272 + }, + { + "start": 11397.37, + "end": 11399.53, + "probability": 0.9238 + }, + { + "start": 11400.81, + "end": 11404.75, + "probability": 0.778 + }, + { + "start": 11405.17, + "end": 11406.91, + "probability": 0.9756 + }, + { + "start": 11407.77, + "end": 11408.77, + "probability": 0.9894 + }, + { + "start": 11409.45, + "end": 11410.63, + "probability": 0.9374 + }, + { + "start": 11412.13, + "end": 11415.17, + "probability": 0.9573 + }, + { + "start": 11416.11, + "end": 11419.12, + "probability": 0.985 + }, + { + "start": 11421.83, + "end": 11422.75, + "probability": 0.7128 + }, + { + "start": 11422.77, + "end": 11424.75, + "probability": 0.7365 + }, + { + "start": 11424.93, + "end": 11426.69, + "probability": 0.9438 + }, + { + "start": 11427.05, + "end": 11427.83, + "probability": 0.7351 + }, + { + "start": 11429.01, + "end": 11434.89, + "probability": 0.0482 + }, + { + "start": 11435.01, + "end": 11435.95, + "probability": 0.0966 + }, + { + "start": 11436.23, + "end": 11438.15, + "probability": 0.7 + }, + { + "start": 11438.19, + "end": 11440.47, + "probability": 0.5693 + }, + { + "start": 11440.87, + "end": 11443.15, + "probability": 0.6978 + }, + { + "start": 11443.99, + "end": 11445.2, + "probability": 0.9502 + }, + { + "start": 11446.29, + "end": 11447.65, + "probability": 0.5625 + }, + { + "start": 11447.95, + "end": 11448.17, + "probability": 0.3525 + }, + { + "start": 11448.17, + "end": 11448.77, + "probability": 0.4785 + }, + { + "start": 11448.85, + "end": 11449.85, + "probability": 0.8422 + }, + { + "start": 11449.93, + "end": 11451.01, + "probability": 0.9155 + }, + { + "start": 11451.63, + "end": 11454.53, + "probability": 0.9651 + }, + { + "start": 11455.17, + "end": 11457.95, + "probability": 0.9944 + }, + { + "start": 11460.15, + "end": 11462.65, + "probability": 0.9409 + }, + { + "start": 11463.19, + "end": 11464.55, + "probability": 0.2695 + }, + { + "start": 11464.85, + "end": 11468.79, + "probability": 0.8071 + }, + { + "start": 11469.47, + "end": 11472.15, + "probability": 0.8113 + }, + { + "start": 11472.29, + "end": 11474.33, + "probability": 0.761 + }, + { + "start": 11474.95, + "end": 11476.01, + "probability": 0.6865 + }, + { + "start": 11476.23, + "end": 11477.94, + "probability": 0.4077 + }, + { + "start": 11480.02, + "end": 11482.23, + "probability": 0.6624 + }, + { + "start": 11482.23, + "end": 11483.91, + "probability": 0.3621 + }, + { + "start": 11484.05, + "end": 11484.67, + "probability": 0.7802 + }, + { + "start": 11485.03, + "end": 11487.43, + "probability": 0.89 + }, + { + "start": 11488.45, + "end": 11490.95, + "probability": 0.5685 + }, + { + "start": 11491.59, + "end": 11494.13, + "probability": 0.9106 + }, + { + "start": 11494.85, + "end": 11498.31, + "probability": 0.9943 + }, + { + "start": 11499.61, + "end": 11500.83, + "probability": 0.9399 + }, + { + "start": 11501.71, + "end": 11502.33, + "probability": 0.2836 + }, + { + "start": 11502.61, + "end": 11503.13, + "probability": 0.8536 + }, + { + "start": 11503.27, + "end": 11503.96, + "probability": 0.4817 + }, + { + "start": 11504.33, + "end": 11506.35, + "probability": 0.9542 + }, + { + "start": 11506.43, + "end": 11508.01, + "probability": 0.6018 + }, + { + "start": 11508.09, + "end": 11508.85, + "probability": 0.714 + }, + { + "start": 11509.21, + "end": 11510.39, + "probability": 0.677 + }, + { + "start": 11510.41, + "end": 11512.81, + "probability": 0.9034 + }, + { + "start": 11512.87, + "end": 11513.54, + "probability": 0.9165 + }, + { + "start": 11514.27, + "end": 11516.87, + "probability": 0.9028 + }, + { + "start": 11516.89, + "end": 11518.26, + "probability": 0.3588 + }, + { + "start": 11519.35, + "end": 11520.75, + "probability": 0.8493 + }, + { + "start": 11521.61, + "end": 11524.69, + "probability": 0.6671 + }, + { + "start": 11525.27, + "end": 11526.51, + "probability": 0.8605 + }, + { + "start": 11527.37, + "end": 11530.97, + "probability": 0.875 + }, + { + "start": 11531.63, + "end": 11531.71, + "probability": 0.4949 + }, + { + "start": 11531.87, + "end": 11537.23, + "probability": 0.9233 + }, + { + "start": 11537.43, + "end": 11537.93, + "probability": 0.8175 + }, + { + "start": 11538.43, + "end": 11539.33, + "probability": 0.7109 + }, + { + "start": 11539.67, + "end": 11540.15, + "probability": 0.8716 + }, + { + "start": 11540.47, + "end": 11541.23, + "probability": 0.4594 + }, + { + "start": 11541.73, + "end": 11542.97, + "probability": 0.2037 + }, + { + "start": 11543.41, + "end": 11544.21, + "probability": 0.9914 + }, + { + "start": 11544.37, + "end": 11545.37, + "probability": 0.8244 + }, + { + "start": 11546.69, + "end": 11549.05, + "probability": 0.8347 + }, + { + "start": 11549.55, + "end": 11550.97, + "probability": 0.9547 + }, + { + "start": 11552.01, + "end": 11554.09, + "probability": 0.6263 + }, + { + "start": 11555.0, + "end": 11558.27, + "probability": 0.1433 + }, + { + "start": 11558.41, + "end": 11558.47, + "probability": 0.0315 + }, + { + "start": 11558.47, + "end": 11559.47, + "probability": 0.3979 + }, + { + "start": 11559.87, + "end": 11562.43, + "probability": 0.5073 + }, + { + "start": 11562.47, + "end": 11563.63, + "probability": 0.0288 + }, + { + "start": 11563.93, + "end": 11565.33, + "probability": 0.9919 + }, + { + "start": 11566.47, + "end": 11569.17, + "probability": 0.1232 + }, + { + "start": 11569.25, + "end": 11569.99, + "probability": 0.746 + }, + { + "start": 11569.99, + "end": 11571.8, + "probability": 0.5368 + }, + { + "start": 11572.41, + "end": 11574.81, + "probability": 0.026 + }, + { + "start": 11574.81, + "end": 11575.37, + "probability": 0.0254 + }, + { + "start": 11575.49, + "end": 11577.18, + "probability": 0.6692 + }, + { + "start": 11579.85, + "end": 11580.81, + "probability": 0.3267 + }, + { + "start": 11581.45, + "end": 11582.31, + "probability": 0.6548 + }, + { + "start": 11582.43, + "end": 11584.11, + "probability": 0.9883 + }, + { + "start": 11584.11, + "end": 11586.67, + "probability": 0.0451 + }, + { + "start": 11589.34, + "end": 11591.47, + "probability": 0.5098 + }, + { + "start": 11591.55, + "end": 11592.69, + "probability": 0.5319 + }, + { + "start": 11592.79, + "end": 11593.49, + "probability": 0.7885 + }, + { + "start": 11593.67, + "end": 11594.09, + "probability": 0.7859 + }, + { + "start": 11594.19, + "end": 11594.77, + "probability": 0.8203 + }, + { + "start": 11594.95, + "end": 11595.11, + "probability": 0.7657 + }, + { + "start": 11595.35, + "end": 11598.73, + "probability": 0.9317 + }, + { + "start": 11599.21, + "end": 11599.71, + "probability": 0.8458 + }, + { + "start": 11599.83, + "end": 11603.11, + "probability": 0.8964 + }, + { + "start": 11603.77, + "end": 11605.65, + "probability": 0.553 + }, + { + "start": 11605.89, + "end": 11606.71, + "probability": 0.9168 + }, + { + "start": 11606.87, + "end": 11607.75, + "probability": 0.9777 + }, + { + "start": 11607.99, + "end": 11609.45, + "probability": 0.9956 + }, + { + "start": 11610.23, + "end": 11611.83, + "probability": 0.8742 + }, + { + "start": 11612.87, + "end": 11615.1, + "probability": 0.698 + }, + { + "start": 11616.96, + "end": 11621.05, + "probability": 0.9202 + }, + { + "start": 11621.79, + "end": 11623.55, + "probability": 0.9122 + }, + { + "start": 11624.47, + "end": 11625.83, + "probability": 0.9375 + }, + { + "start": 11626.21, + "end": 11626.65, + "probability": 0.9395 + }, + { + "start": 11627.03, + "end": 11628.63, + "probability": 0.9866 + }, + { + "start": 11628.69, + "end": 11630.37, + "probability": 0.9939 + }, + { + "start": 11630.89, + "end": 11632.29, + "probability": 0.672 + }, + { + "start": 11632.89, + "end": 11635.23, + "probability": 0.7788 + }, + { + "start": 11635.77, + "end": 11637.01, + "probability": 0.7365 + }, + { + "start": 11637.15, + "end": 11639.51, + "probability": 0.8337 + }, + { + "start": 11639.51, + "end": 11642.67, + "probability": 0.8213 + }, + { + "start": 11642.77, + "end": 11643.41, + "probability": 0.6011 + }, + { + "start": 11644.77, + "end": 11645.55, + "probability": 0.7867 + }, + { + "start": 11646.17, + "end": 11646.85, + "probability": 0.4833 + }, + { + "start": 11656.19, + "end": 11658.23, + "probability": 0.5066 + }, + { + "start": 11660.15, + "end": 11665.31, + "probability": 0.7903 + }, + { + "start": 11665.91, + "end": 11666.81, + "probability": 0.7174 + }, + { + "start": 11666.87, + "end": 11669.71, + "probability": 0.6804 + }, + { + "start": 11671.23, + "end": 11672.23, + "probability": 0.8895 + }, + { + "start": 11673.71, + "end": 11676.13, + "probability": 0.8736 + }, + { + "start": 11676.25, + "end": 11680.17, + "probability": 0.9984 + }, + { + "start": 11681.01, + "end": 11685.97, + "probability": 0.9958 + }, + { + "start": 11686.11, + "end": 11690.45, + "probability": 0.9749 + }, + { + "start": 11690.75, + "end": 11691.83, + "probability": 0.7315 + }, + { + "start": 11691.87, + "end": 11692.53, + "probability": 0.8042 + }, + { + "start": 11693.81, + "end": 11697.77, + "probability": 0.979 + }, + { + "start": 11698.31, + "end": 11701.09, + "probability": 0.8132 + }, + { + "start": 11701.85, + "end": 11703.65, + "probability": 0.9714 + }, + { + "start": 11703.99, + "end": 11707.69, + "probability": 0.979 + }, + { + "start": 11708.51, + "end": 11709.65, + "probability": 0.9342 + }, + { + "start": 11709.73, + "end": 11710.71, + "probability": 0.9881 + }, + { + "start": 11710.79, + "end": 11712.19, + "probability": 0.9746 + }, + { + "start": 11712.23, + "end": 11713.33, + "probability": 0.9841 + }, + { + "start": 11714.93, + "end": 11716.51, + "probability": 0.9751 + }, + { + "start": 11717.73, + "end": 11720.01, + "probability": 0.9331 + }, + { + "start": 11720.69, + "end": 11721.57, + "probability": 0.8438 + }, + { + "start": 11721.61, + "end": 11722.19, + "probability": 0.9487 + }, + { + "start": 11722.43, + "end": 11724.09, + "probability": 0.9644 + }, + { + "start": 11724.53, + "end": 11727.55, + "probability": 0.9811 + }, + { + "start": 11727.79, + "end": 11735.51, + "probability": 0.9245 + }, + { + "start": 11736.31, + "end": 11738.31, + "probability": 0.7839 + }, + { + "start": 11738.59, + "end": 11739.67, + "probability": 0.9382 + }, + { + "start": 11739.85, + "end": 11742.41, + "probability": 0.9949 + }, + { + "start": 11743.85, + "end": 11749.29, + "probability": 0.9273 + }, + { + "start": 11750.31, + "end": 11756.93, + "probability": 0.9604 + }, + { + "start": 11757.79, + "end": 11757.79, + "probability": 0.0357 + }, + { + "start": 11757.79, + "end": 11757.79, + "probability": 0.2201 + }, + { + "start": 11757.79, + "end": 11759.29, + "probability": 0.9738 + }, + { + "start": 11759.33, + "end": 11760.13, + "probability": 0.7402 + }, + { + "start": 11760.27, + "end": 11762.01, + "probability": 0.9648 + }, + { + "start": 11762.89, + "end": 11771.29, + "probability": 0.9886 + }, + { + "start": 11771.57, + "end": 11773.19, + "probability": 0.8173 + }, + { + "start": 11773.67, + "end": 11776.21, + "probability": 0.9617 + }, + { + "start": 11776.77, + "end": 11778.89, + "probability": 0.7395 + }, + { + "start": 11779.47, + "end": 11783.75, + "probability": 0.9226 + }, + { + "start": 11784.33, + "end": 11785.93, + "probability": 0.9697 + }, + { + "start": 11786.13, + "end": 11789.87, + "probability": 0.8817 + }, + { + "start": 11789.93, + "end": 11790.71, + "probability": 0.7659 + }, + { + "start": 11790.83, + "end": 11793.39, + "probability": 0.9439 + }, + { + "start": 11793.93, + "end": 11794.21, + "probability": 0.1946 + }, + { + "start": 11794.21, + "end": 11794.21, + "probability": 0.2654 + }, + { + "start": 11794.21, + "end": 11795.67, + "probability": 0.6679 + }, + { + "start": 11796.23, + "end": 11798.23, + "probability": 0.9756 + }, + { + "start": 11798.91, + "end": 11799.83, + "probability": 0.9855 + }, + { + "start": 11800.19, + "end": 11801.87, + "probability": 0.7633 + }, + { + "start": 11802.03, + "end": 11802.8, + "probability": 0.8422 + }, + { + "start": 11803.73, + "end": 11807.89, + "probability": 0.9956 + }, + { + "start": 11808.45, + "end": 11810.73, + "probability": 0.9141 + }, + { + "start": 11811.61, + "end": 11814.91, + "probability": 0.9849 + }, + { + "start": 11815.75, + "end": 11823.61, + "probability": 0.9911 + }, + { + "start": 11824.41, + "end": 11825.33, + "probability": 0.7012 + }, + { + "start": 11825.91, + "end": 11828.83, + "probability": 0.6782 + }, + { + "start": 11828.85, + "end": 11829.49, + "probability": 0.5154 + }, + { + "start": 11830.17, + "end": 11832.97, + "probability": 0.9849 + }, + { + "start": 11833.51, + "end": 11836.07, + "probability": 0.9692 + }, + { + "start": 11836.29, + "end": 11837.73, + "probability": 0.553 + }, + { + "start": 11838.51, + "end": 11842.19, + "probability": 0.7547 + }, + { + "start": 11842.79, + "end": 11843.59, + "probability": 0.1261 + }, + { + "start": 11843.85, + "end": 11844.63, + "probability": 0.4985 + }, + { + "start": 11844.71, + "end": 11846.37, + "probability": 0.9196 + }, + { + "start": 11846.49, + "end": 11847.53, + "probability": 0.7027 + }, + { + "start": 11847.71, + "end": 11849.17, + "probability": 0.7465 + }, + { + "start": 11849.17, + "end": 11849.67, + "probability": 0.8347 + }, + { + "start": 11850.33, + "end": 11852.35, + "probability": 0.6293 + }, + { + "start": 11852.97, + "end": 11854.39, + "probability": 0.1426 + }, + { + "start": 11855.75, + "end": 11860.49, + "probability": 0.8976 + }, + { + "start": 11860.97, + "end": 11863.87, + "probability": 0.9377 + }, + { + "start": 11864.37, + "end": 11866.83, + "probability": 0.9895 + }, + { + "start": 11866.91, + "end": 11868.01, + "probability": 0.9657 + }, + { + "start": 11868.19, + "end": 11871.19, + "probability": 0.1055 + }, + { + "start": 11872.25, + "end": 11878.19, + "probability": 0.9922 + }, + { + "start": 11879.05, + "end": 11884.03, + "probability": 0.9974 + }, + { + "start": 11884.03, + "end": 11887.51, + "probability": 0.9974 + }, + { + "start": 11889.23, + "end": 11892.09, + "probability": 0.7999 + }, + { + "start": 11893.41, + "end": 11895.43, + "probability": 0.9994 + }, + { + "start": 11896.17, + "end": 11896.65, + "probability": 0.728 + }, + { + "start": 11897.79, + "end": 11899.01, + "probability": 0.8038 + }, + { + "start": 11899.57, + "end": 11900.43, + "probability": 0.932 + }, + { + "start": 11901.39, + "end": 11904.27, + "probability": 0.9543 + }, + { + "start": 11905.57, + "end": 11911.45, + "probability": 0.9882 + }, + { + "start": 11913.15, + "end": 11913.89, + "probability": 0.8397 + }, + { + "start": 11914.77, + "end": 11917.99, + "probability": 0.9881 + }, + { + "start": 11918.49, + "end": 11919.55, + "probability": 0.9941 + }, + { + "start": 11919.63, + "end": 11922.01, + "probability": 0.9113 + }, + { + "start": 11922.69, + "end": 11925.07, + "probability": 0.9939 + }, + { + "start": 11929.01, + "end": 11931.77, + "probability": 0.9729 + }, + { + "start": 11932.33, + "end": 11936.97, + "probability": 0.9894 + }, + { + "start": 11936.97, + "end": 11940.61, + "probability": 0.8728 + }, + { + "start": 11940.73, + "end": 11942.17, + "probability": 0.8331 + }, + { + "start": 11943.17, + "end": 11944.55, + "probability": 0.976 + }, + { + "start": 11945.57, + "end": 11947.51, + "probability": 0.8811 + }, + { + "start": 11949.19, + "end": 11950.17, + "probability": 0.9897 + }, + { + "start": 11950.51, + "end": 11951.37, + "probability": 0.9128 + }, + { + "start": 11952.11, + "end": 11952.71, + "probability": 0.3448 + }, + { + "start": 11953.87, + "end": 11957.01, + "probability": 0.25 + }, + { + "start": 11957.11, + "end": 11957.15, + "probability": 0.2623 + }, + { + "start": 11957.15, + "end": 11959.57, + "probability": 0.5648 + }, + { + "start": 11960.39, + "end": 11968.59, + "probability": 0.9634 + }, + { + "start": 11969.55, + "end": 11973.07, + "probability": 0.4694 + }, + { + "start": 11974.69, + "end": 11977.83, + "probability": 0.9215 + }, + { + "start": 11977.83, + "end": 11981.09, + "probability": 0.9844 + }, + { + "start": 11981.23, + "end": 11981.75, + "probability": 0.3591 + }, + { + "start": 11982.65, + "end": 11986.51, + "probability": 0.6374 + }, + { + "start": 11987.03, + "end": 11987.47, + "probability": 0.1602 + }, + { + "start": 11987.47, + "end": 11987.47, + "probability": 0.0186 + }, + { + "start": 11987.47, + "end": 11988.63, + "probability": 0.4995 + }, + { + "start": 11988.69, + "end": 11990.31, + "probability": 0.957 + }, + { + "start": 11990.97, + "end": 11991.05, + "probability": 0.0193 + }, + { + "start": 11991.05, + "end": 11991.05, + "probability": 0.3857 + }, + { + "start": 11991.05, + "end": 11991.05, + "probability": 0.0738 + }, + { + "start": 11991.05, + "end": 11993.41, + "probability": 0.6611 + }, + { + "start": 11994.13, + "end": 11994.39, + "probability": 0.1513 + }, + { + "start": 11994.39, + "end": 11995.34, + "probability": 0.2713 + }, + { + "start": 11996.35, + "end": 11998.37, + "probability": 0.7001 + }, + { + "start": 11998.47, + "end": 11999.71, + "probability": 0.7603 + }, + { + "start": 12000.07, + "end": 12000.77, + "probability": 0.9271 + }, + { + "start": 12000.97, + "end": 12001.45, + "probability": 0.0819 + }, + { + "start": 12001.45, + "end": 12001.65, + "probability": 0.2856 + }, + { + "start": 12001.65, + "end": 12003.89, + "probability": 0.6904 + }, + { + "start": 12004.03, + "end": 12004.83, + "probability": 0.4818 + }, + { + "start": 12004.83, + "end": 12005.89, + "probability": 0.3881 + }, + { + "start": 12006.19, + "end": 12011.77, + "probability": 0.6885 + }, + { + "start": 12013.63, + "end": 12013.89, + "probability": 0.1284 + }, + { + "start": 12013.89, + "end": 12013.89, + "probability": 0.0612 + }, + { + "start": 12013.89, + "end": 12018.43, + "probability": 0.7721 + }, + { + "start": 12018.43, + "end": 12024.69, + "probability": 0.9932 + }, + { + "start": 12025.51, + "end": 12027.55, + "probability": 0.1583 + }, + { + "start": 12027.87, + "end": 12028.35, + "probability": 0.1103 + }, + { + "start": 12028.35, + "end": 12031.89, + "probability": 0.9829 + }, + { + "start": 12032.53, + "end": 12034.85, + "probability": 0.8713 + }, + { + "start": 12034.91, + "end": 12038.31, + "probability": 0.7102 + }, + { + "start": 12039.19, + "end": 12041.89, + "probability": 0.8596 + }, + { + "start": 12042.55, + "end": 12043.91, + "probability": 0.6756 + }, + { + "start": 12045.09, + "end": 12050.73, + "probability": 0.9148 + }, + { + "start": 12051.43, + "end": 12056.35, + "probability": 0.9709 + }, + { + "start": 12056.35, + "end": 12060.83, + "probability": 0.9966 + }, + { + "start": 12061.59, + "end": 12062.25, + "probability": 0.5472 + }, + { + "start": 12063.03, + "end": 12065.39, + "probability": 0.822 + }, + { + "start": 12066.07, + "end": 12068.87, + "probability": 0.9754 + }, + { + "start": 12069.67, + "end": 12072.53, + "probability": 0.9627 + }, + { + "start": 12073.21, + "end": 12075.65, + "probability": 0.9292 + }, + { + "start": 12075.93, + "end": 12076.86, + "probability": 0.8706 + }, + { + "start": 12077.47, + "end": 12081.33, + "probability": 0.9932 + }, + { + "start": 12082.59, + "end": 12085.87, + "probability": 0.7678 + }, + { + "start": 12086.55, + "end": 12089.97, + "probability": 0.8042 + }, + { + "start": 12090.15, + "end": 12093.31, + "probability": 0.6705 + }, + { + "start": 12093.93, + "end": 12095.17, + "probability": 0.6802 + }, + { + "start": 12095.81, + "end": 12098.69, + "probability": 0.9531 + }, + { + "start": 12099.33, + "end": 12100.81, + "probability": 0.9255 + }, + { + "start": 12101.51, + "end": 12105.81, + "probability": 0.4928 + }, + { + "start": 12106.85, + "end": 12108.43, + "probability": 0.5873 + }, + { + "start": 12108.81, + "end": 12110.87, + "probability": 0.8737 + }, + { + "start": 12110.93, + "end": 12111.85, + "probability": 0.2182 + }, + { + "start": 12111.85, + "end": 12114.29, + "probability": 0.7852 + }, + { + "start": 12114.51, + "end": 12119.47, + "probability": 0.8328 + }, + { + "start": 12119.59, + "end": 12121.89, + "probability": 0.9033 + }, + { + "start": 12122.19, + "end": 12122.69, + "probability": 0.0904 + }, + { + "start": 12122.87, + "end": 12123.81, + "probability": 0.739 + }, + { + "start": 12124.65, + "end": 12125.43, + "probability": 0.9522 + }, + { + "start": 12126.23, + "end": 12127.67, + "probability": 0.9961 + }, + { + "start": 12128.91, + "end": 12132.15, + "probability": 0.9176 + }, + { + "start": 12133.63, + "end": 12138.11, + "probability": 0.7124 + }, + { + "start": 12139.47, + "end": 12144.39, + "probability": 0.8832 + }, + { + "start": 12145.59, + "end": 12149.47, + "probability": 0.9303 + }, + { + "start": 12149.51, + "end": 12153.29, + "probability": 0.9847 + }, + { + "start": 12154.31, + "end": 12155.69, + "probability": 0.827 + }, + { + "start": 12155.83, + "end": 12157.13, + "probability": 0.8711 + }, + { + "start": 12157.55, + "end": 12161.95, + "probability": 0.9884 + }, + { + "start": 12162.19, + "end": 12163.31, + "probability": 0.6103 + }, + { + "start": 12163.85, + "end": 12165.96, + "probability": 0.9976 + }, + { + "start": 12166.65, + "end": 12167.63, + "probability": 0.9294 + }, + { + "start": 12167.81, + "end": 12168.23, + "probability": 0.7629 + }, + { + "start": 12168.29, + "end": 12168.83, + "probability": 0.873 + }, + { + "start": 12168.95, + "end": 12169.53, + "probability": 0.8193 + }, + { + "start": 12170.09, + "end": 12170.45, + "probability": 0.342 + }, + { + "start": 12170.61, + "end": 12173.69, + "probability": 0.8218 + }, + { + "start": 12173.69, + "end": 12175.81, + "probability": 0.5172 + }, + { + "start": 12176.13, + "end": 12176.41, + "probability": 0.1469 + }, + { + "start": 12176.41, + "end": 12176.41, + "probability": 0.3486 + }, + { + "start": 12176.41, + "end": 12178.85, + "probability": 0.4049 + }, + { + "start": 12178.89, + "end": 12179.27, + "probability": 0.5661 + }, + { + "start": 12179.55, + "end": 12179.55, + "probability": 0.0855 + }, + { + "start": 12179.55, + "end": 12181.97, + "probability": 0.5989 + }, + { + "start": 12181.99, + "end": 12182.59, + "probability": 0.3425 + }, + { + "start": 12182.89, + "end": 12183.55, + "probability": 0.3517 + }, + { + "start": 12185.55, + "end": 12185.87, + "probability": 0.2144 + }, + { + "start": 12186.03, + "end": 12186.03, + "probability": 0.0236 + }, + { + "start": 12186.03, + "end": 12187.29, + "probability": 0.1845 + }, + { + "start": 12187.41, + "end": 12187.43, + "probability": 0.0502 + }, + { + "start": 12187.47, + "end": 12189.37, + "probability": 0.6009 + }, + { + "start": 12189.81, + "end": 12190.75, + "probability": 0.5179 + }, + { + "start": 12190.89, + "end": 12193.55, + "probability": 0.8879 + }, + { + "start": 12193.95, + "end": 12194.53, + "probability": 0.1535 + }, + { + "start": 12194.79, + "end": 12196.03, + "probability": 0.8359 + }, + { + "start": 12196.15, + "end": 12197.89, + "probability": 0.1295 + }, + { + "start": 12197.89, + "end": 12199.79, + "probability": 0.1763 + }, + { + "start": 12199.79, + "end": 12202.07, + "probability": 0.4889 + }, + { + "start": 12202.27, + "end": 12204.39, + "probability": 0.4197 + }, + { + "start": 12204.91, + "end": 12206.25, + "probability": 0.6531 + }, + { + "start": 12207.11, + "end": 12208.91, + "probability": 0.8562 + }, + { + "start": 12210.45, + "end": 12210.93, + "probability": 0.0158 + }, + { + "start": 12210.97, + "end": 12214.33, + "probability": 0.8192 + }, + { + "start": 12214.63, + "end": 12217.45, + "probability": 0.9639 + }, + { + "start": 12217.57, + "end": 12220.15, + "probability": 0.0102 + }, + { + "start": 12221.13, + "end": 12222.83, + "probability": 0.0461 + }, + { + "start": 12222.83, + "end": 12222.83, + "probability": 0.1293 + }, + { + "start": 12222.83, + "end": 12225.09, + "probability": 0.6502 + }, + { + "start": 12225.17, + "end": 12226.63, + "probability": 0.7923 + }, + { + "start": 12227.27, + "end": 12229.35, + "probability": 0.9824 + }, + { + "start": 12229.95, + "end": 12231.15, + "probability": 0.9515 + }, + { + "start": 12231.15, + "end": 12231.89, + "probability": 0.106 + }, + { + "start": 12231.99, + "end": 12234.61, + "probability": 0.7396 + }, + { + "start": 12235.29, + "end": 12238.66, + "probability": 0.7839 + }, + { + "start": 12239.35, + "end": 12239.49, + "probability": 0.4961 + }, + { + "start": 12240.55, + "end": 12241.89, + "probability": 0.3216 + }, + { + "start": 12241.95, + "end": 12242.41, + "probability": 0.4001 + }, + { + "start": 12249.43, + "end": 12252.41, + "probability": 0.3059 + }, + { + "start": 12261.07, + "end": 12266.91, + "probability": 0.2118 + }, + { + "start": 12267.75, + "end": 12269.01, + "probability": 0.0182 + }, + { + "start": 12270.25, + "end": 12270.92, + "probability": 0.0694 + }, + { + "start": 12272.21, + "end": 12273.54, + "probability": 0.2371 + }, + { + "start": 12274.23, + "end": 12275.45, + "probability": 0.4498 + }, + { + "start": 12275.99, + "end": 12280.19, + "probability": 0.042 + }, + { + "start": 12280.19, + "end": 12284.75, + "probability": 0.0163 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12324.0, + "end": 12324.0, + "probability": 0.0 + }, + { + "start": 12337.48, + "end": 12338.06, + "probability": 0.0811 + }, + { + "start": 12338.78, + "end": 12342.0, + "probability": 0.0255 + }, + { + "start": 12342.0, + "end": 12342.48, + "probability": 0.1599 + }, + { + "start": 12344.56, + "end": 12348.48, + "probability": 0.0653 + }, + { + "start": 12348.48, + "end": 12348.5, + "probability": 0.3059 + }, + { + "start": 12348.5, + "end": 12350.3, + "probability": 0.098 + }, + { + "start": 12350.3, + "end": 12351.98, + "probability": 0.073 + }, + { + "start": 12353.71, + "end": 12353.98, + "probability": 0.1642 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.0, + "probability": 0.0 + }, + { + "start": 12448.0, + "end": 12448.5, + "probability": 0.0235 + }, + { + "start": 12448.5, + "end": 12451.21, + "probability": 0.5446 + }, + { + "start": 12451.84, + "end": 12457.46, + "probability": 0.9872 + }, + { + "start": 12458.04, + "end": 12460.96, + "probability": 0.978 + }, + { + "start": 12461.58, + "end": 12462.3, + "probability": 0.4731 + }, + { + "start": 12463.08, + "end": 12466.98, + "probability": 0.984 + }, + { + "start": 12467.04, + "end": 12467.96, + "probability": 0.9741 + }, + { + "start": 12468.1, + "end": 12468.97, + "probability": 0.9626 + }, + { + "start": 12469.96, + "end": 12472.24, + "probability": 0.9835 + }, + { + "start": 12472.88, + "end": 12475.86, + "probability": 0.8953 + }, + { + "start": 12476.72, + "end": 12477.6, + "probability": 0.6857 + }, + { + "start": 12477.72, + "end": 12481.98, + "probability": 0.5732 + }, + { + "start": 12482.82, + "end": 12483.76, + "probability": 0.2964 + }, + { + "start": 12483.76, + "end": 12488.0, + "probability": 0.9399 + }, + { + "start": 12488.56, + "end": 12489.74, + "probability": 0.9897 + }, + { + "start": 12490.32, + "end": 12491.68, + "probability": 0.9966 + }, + { + "start": 12491.72, + "end": 12495.1, + "probability": 0.3304 + }, + { + "start": 12495.38, + "end": 12496.02, + "probability": 0.8915 + }, + { + "start": 12496.14, + "end": 12497.04, + "probability": 0.8633 + }, + { + "start": 12497.78, + "end": 12499.28, + "probability": 0.9385 + }, + { + "start": 12499.38, + "end": 12501.44, + "probability": 0.9919 + }, + { + "start": 12502.16, + "end": 12506.04, + "probability": 0.9526 + }, + { + "start": 12506.18, + "end": 12506.8, + "probability": 0.4527 + }, + { + "start": 12506.98, + "end": 12508.14, + "probability": 0.4375 + }, + { + "start": 12508.16, + "end": 12509.5, + "probability": 0.9537 + }, + { + "start": 12509.88, + "end": 12511.5, + "probability": 0.8761 + }, + { + "start": 12511.64, + "end": 12513.08, + "probability": 0.8698 + }, + { + "start": 12513.24, + "end": 12514.6, + "probability": 0.9841 + }, + { + "start": 12515.14, + "end": 12520.18, + "probability": 0.937 + }, + { + "start": 12520.96, + "end": 12522.02, + "probability": 0.941 + }, + { + "start": 12522.16, + "end": 12523.48, + "probability": 0.993 + }, + { + "start": 12524.48, + "end": 12530.52, + "probability": 0.9395 + }, + { + "start": 12530.7, + "end": 12534.18, + "probability": 0.9913 + }, + { + "start": 12535.6, + "end": 12537.72, + "probability": 0.9654 + }, + { + "start": 12538.48, + "end": 12538.82, + "probability": 0.7831 + }, + { + "start": 12539.02, + "end": 12540.12, + "probability": 0.9128 + }, + { + "start": 12540.16, + "end": 12543.78, + "probability": 0.7272 + }, + { + "start": 12544.8, + "end": 12547.16, + "probability": 0.9561 + }, + { + "start": 12547.94, + "end": 12550.06, + "probability": 0.9392 + }, + { + "start": 12550.32, + "end": 12550.78, + "probability": 0.7025 + }, + { + "start": 12550.78, + "end": 12551.16, + "probability": 0.802 + }, + { + "start": 12551.54, + "end": 12552.94, + "probability": 0.6718 + }, + { + "start": 12553.54, + "end": 12554.3, + "probability": 0.9614 + }, + { + "start": 12554.44, + "end": 12554.56, + "probability": 0.6393 + }, + { + "start": 12554.64, + "end": 12556.5, + "probability": 0.986 + }, + { + "start": 12556.6, + "end": 12557.22, + "probability": 0.7004 + }, + { + "start": 12557.28, + "end": 12557.74, + "probability": 0.3498 + }, + { + "start": 12558.46, + "end": 12559.66, + "probability": 0.709 + }, + { + "start": 12559.7, + "end": 12560.56, + "probability": 0.9603 + }, + { + "start": 12560.62, + "end": 12561.12, + "probability": 0.8516 + }, + { + "start": 12561.2, + "end": 12561.64, + "probability": 0.4755 + }, + { + "start": 12562.36, + "end": 12564.1, + "probability": 0.87 + }, + { + "start": 12564.62, + "end": 12564.74, + "probability": 0.7124 + }, + { + "start": 12564.92, + "end": 12567.58, + "probability": 0.9446 + }, + { + "start": 12567.82, + "end": 12571.6, + "probability": 0.9993 + }, + { + "start": 12571.66, + "end": 12574.14, + "probability": 0.7414 + }, + { + "start": 12574.26, + "end": 12575.12, + "probability": 0.8816 + }, + { + "start": 12575.62, + "end": 12577.2, + "probability": 0.9702 + }, + { + "start": 12577.68, + "end": 12581.06, + "probability": 0.9202 + }, + { + "start": 12581.28, + "end": 12582.64, + "probability": 0.4574 + }, + { + "start": 12583.28, + "end": 12585.6, + "probability": 0.1874 + }, + { + "start": 12585.6, + "end": 12589.18, + "probability": 0.9615 + }, + { + "start": 12590.34, + "end": 12593.1, + "probability": 0.846 + }, + { + "start": 12593.74, + "end": 12595.74, + "probability": 0.9131 + }, + { + "start": 12596.42, + "end": 12598.4, + "probability": 0.9928 + }, + { + "start": 12598.86, + "end": 12600.7, + "probability": 0.8833 + }, + { + "start": 12601.64, + "end": 12602.84, + "probability": 0.5441 + }, + { + "start": 12603.86, + "end": 12606.57, + "probability": 0.8689 + }, + { + "start": 12607.32, + "end": 12610.38, + "probability": 0.9603 + }, + { + "start": 12611.34, + "end": 12613.08, + "probability": 0.9521 + }, + { + "start": 12614.46, + "end": 12615.56, + "probability": 0.847 + }, + { + "start": 12615.72, + "end": 12617.68, + "probability": 0.8862 + }, + { + "start": 12617.78, + "end": 12618.22, + "probability": 0.7651 + }, + { + "start": 12618.4, + "end": 12618.52, + "probability": 0.0189 + }, + { + "start": 12618.64, + "end": 12619.68, + "probability": 0.9705 + }, + { + "start": 12620.24, + "end": 12623.62, + "probability": 0.9584 + }, + { + "start": 12624.34, + "end": 12626.24, + "probability": 0.9427 + }, + { + "start": 12626.92, + "end": 12627.9, + "probability": 0.9495 + }, + { + "start": 12629.2, + "end": 12633.08, + "probability": 0.9883 + }, + { + "start": 12633.96, + "end": 12636.28, + "probability": 0.8347 + }, + { + "start": 12637.04, + "end": 12638.5, + "probability": 0.9504 + }, + { + "start": 12639.08, + "end": 12639.8, + "probability": 0.9307 + }, + { + "start": 12639.96, + "end": 12640.52, + "probability": 0.9331 + }, + { + "start": 12641.28, + "end": 12642.1, + "probability": 0.8332 + }, + { + "start": 12642.62, + "end": 12644.72, + "probability": 0.9769 + }, + { + "start": 12644.92, + "end": 12646.76, + "probability": 0.9141 + }, + { + "start": 12647.46, + "end": 12648.78, + "probability": 0.9292 + }, + { + "start": 12649.84, + "end": 12652.4, + "probability": 0.8562 + }, + { + "start": 12652.52, + "end": 12653.34, + "probability": 0.9483 + }, + { + "start": 12653.52, + "end": 12654.88, + "probability": 0.9683 + }, + { + "start": 12654.98, + "end": 12656.4, + "probability": 0.9127 + }, + { + "start": 12657.0, + "end": 12659.89, + "probability": 0.9697 + }, + { + "start": 12661.19, + "end": 12666.7, + "probability": 0.9334 + }, + { + "start": 12667.34, + "end": 12672.36, + "probability": 0.352 + }, + { + "start": 12672.36, + "end": 12673.62, + "probability": 0.6191 + }, + { + "start": 12673.62, + "end": 12673.76, + "probability": 0.6377 + }, + { + "start": 12673.8, + "end": 12674.74, + "probability": 0.7128 + }, + { + "start": 12674.78, + "end": 12675.66, + "probability": 0.8133 + }, + { + "start": 12675.7, + "end": 12677.24, + "probability": 0.9714 + }, + { + "start": 12677.78, + "end": 12681.1, + "probability": 0.7001 + }, + { + "start": 12681.72, + "end": 12682.74, + "probability": 0.5078 + }, + { + "start": 12683.02, + "end": 12684.6, + "probability": 0.865 + }, + { + "start": 12685.2, + "end": 12686.32, + "probability": 0.947 + }, + { + "start": 12686.84, + "end": 12687.9, + "probability": 0.9775 + }, + { + "start": 12688.08, + "end": 12689.62, + "probability": 0.946 + }, + { + "start": 12689.7, + "end": 12691.0, + "probability": 0.9795 + }, + { + "start": 12692.22, + "end": 12693.3, + "probability": 0.736 + }, + { + "start": 12693.48, + "end": 12695.5, + "probability": 0.8229 + }, + { + "start": 12696.22, + "end": 12698.36, + "probability": 0.7902 + }, + { + "start": 12698.48, + "end": 12699.38, + "probability": 0.6022 + }, + { + "start": 12699.54, + "end": 12700.12, + "probability": 0.4913 + }, + { + "start": 12700.14, + "end": 12702.06, + "probability": 0.8639 + }, + { + "start": 12702.84, + "end": 12703.56, + "probability": 0.8984 + }, + { + "start": 12703.8, + "end": 12704.8, + "probability": 0.9238 + }, + { + "start": 12705.58, + "end": 12706.74, + "probability": 0.9617 + }, + { + "start": 12707.78, + "end": 12712.9, + "probability": 0.9964 + }, + { + "start": 12712.98, + "end": 12714.84, + "probability": 0.8223 + }, + { + "start": 12715.62, + "end": 12716.62, + "probability": 0.8816 + }, + { + "start": 12716.7, + "end": 12717.3, + "probability": 0.7991 + }, + { + "start": 12717.46, + "end": 12719.39, + "probability": 0.9965 + }, + { + "start": 12720.22, + "end": 12724.94, + "probability": 0.9858 + }, + { + "start": 12725.68, + "end": 12727.85, + "probability": 0.9447 + }, + { + "start": 12728.72, + "end": 12730.98, + "probability": 0.9347 + }, + { + "start": 12731.1, + "end": 12732.16, + "probability": 0.9185 + }, + { + "start": 12732.22, + "end": 12733.18, + "probability": 0.9073 + }, + { + "start": 12733.32, + "end": 12733.74, + "probability": 0.6382 + }, + { + "start": 12733.74, + "end": 12734.22, + "probability": 0.5691 + }, + { + "start": 12734.7, + "end": 12735.22, + "probability": 0.3158 + }, + { + "start": 12736.4, + "end": 12741.98, + "probability": 0.0243 + }, + { + "start": 12743.1, + "end": 12743.58, + "probability": 0.0988 + }, + { + "start": 12743.58, + "end": 12743.58, + "probability": 0.0422 + }, + { + "start": 12743.58, + "end": 12743.58, + "probability": 0.1262 + }, + { + "start": 12743.58, + "end": 12744.34, + "probability": 0.4142 + }, + { + "start": 12744.5, + "end": 12745.0, + "probability": 0.3831 + }, + { + "start": 12745.04, + "end": 12745.46, + "probability": 0.7245 + }, + { + "start": 12746.52, + "end": 12748.24, + "probability": 0.9841 + }, + { + "start": 12748.34, + "end": 12749.24, + "probability": 0.8931 + }, + { + "start": 12749.42, + "end": 12751.86, + "probability": 0.9813 + }, + { + "start": 12752.0, + "end": 12752.98, + "probability": 0.8364 + }, + { + "start": 12753.08, + "end": 12756.06, + "probability": 0.9077 + }, + { + "start": 12756.74, + "end": 12758.48, + "probability": 0.7291 + }, + { + "start": 12758.68, + "end": 12761.9, + "probability": 0.9535 + }, + { + "start": 12761.98, + "end": 12762.56, + "probability": 0.7154 + }, + { + "start": 12763.72, + "end": 12766.56, + "probability": 0.9505 + }, + { + "start": 12766.56, + "end": 12770.34, + "probability": 0.8368 + }, + { + "start": 12770.48, + "end": 12772.36, + "probability": 0.5612 + }, + { + "start": 12773.0, + "end": 12773.88, + "probability": 0.6994 + }, + { + "start": 12773.94, + "end": 12774.84, + "probability": 0.7932 + }, + { + "start": 12774.94, + "end": 12776.7, + "probability": 0.9418 + }, + { + "start": 12776.86, + "end": 12777.58, + "probability": 0.4272 + }, + { + "start": 12778.3, + "end": 12779.68, + "probability": 0.5747 + }, + { + "start": 12780.14, + "end": 12781.9, + "probability": 0.9861 + }, + { + "start": 12782.48, + "end": 12784.42, + "probability": 0.9854 + }, + { + "start": 12784.92, + "end": 12787.26, + "probability": 0.9185 + }, + { + "start": 12787.48, + "end": 12789.84, + "probability": 0.4779 + }, + { + "start": 12789.96, + "end": 12791.0, + "probability": 0.8519 + }, + { + "start": 12791.56, + "end": 12791.94, + "probability": 0.8855 + }, + { + "start": 12792.92, + "end": 12794.94, + "probability": 0.8794 + }, + { + "start": 12795.44, + "end": 12799.06, + "probability": 0.9722 + }, + { + "start": 12799.1, + "end": 12801.66, + "probability": 0.8583 + }, + { + "start": 12802.22, + "end": 12803.96, + "probability": 0.9937 + }, + { + "start": 12804.44, + "end": 12805.76, + "probability": 0.9429 + }, + { + "start": 12805.76, + "end": 12805.94, + "probability": 0.0346 + }, + { + "start": 12806.04, + "end": 12808.38, + "probability": 0.6578 + }, + { + "start": 12808.46, + "end": 12808.78, + "probability": 0.6785 + }, + { + "start": 12808.9, + "end": 12810.38, + "probability": 0.8163 + }, + { + "start": 12811.22, + "end": 12812.76, + "probability": 0.9858 + }, + { + "start": 12813.2, + "end": 12815.82, + "probability": 0.99 + }, + { + "start": 12816.74, + "end": 12818.42, + "probability": 0.8857 + }, + { + "start": 12819.14, + "end": 12820.1, + "probability": 0.89 + }, + { + "start": 12820.26, + "end": 12820.74, + "probability": 0.6799 + }, + { + "start": 12820.82, + "end": 12823.81, + "probability": 0.9927 + }, + { + "start": 12824.16, + "end": 12826.02, + "probability": 0.9258 + }, + { + "start": 12826.14, + "end": 12827.28, + "probability": 0.9867 + }, + { + "start": 12827.56, + "end": 12830.56, + "probability": 0.8475 + }, + { + "start": 12831.12, + "end": 12831.8, + "probability": 0.7427 + }, + { + "start": 12831.94, + "end": 12832.74, + "probability": 0.7496 + }, + { + "start": 12832.82, + "end": 12833.46, + "probability": 0.7871 + }, + { + "start": 12833.54, + "end": 12833.88, + "probability": 0.4862 + }, + { + "start": 12833.98, + "end": 12834.1, + "probability": 0.7068 + }, + { + "start": 12834.64, + "end": 12838.57, + "probability": 0.6755 + }, + { + "start": 12839.8, + "end": 12841.66, + "probability": 0.8139 + }, + { + "start": 12843.34, + "end": 12844.12, + "probability": 0.842 + }, + { + "start": 12844.64, + "end": 12845.22, + "probability": 0.7553 + }, + { + "start": 12846.2, + "end": 12847.75, + "probability": 0.7004 + }, + { + "start": 12847.96, + "end": 12850.36, + "probability": 0.9928 + }, + { + "start": 12850.5, + "end": 12851.47, + "probability": 0.888 + }, + { + "start": 12851.68, + "end": 12852.96, + "probability": 0.9663 + }, + { + "start": 12853.12, + "end": 12853.94, + "probability": 0.7054 + }, + { + "start": 12854.56, + "end": 12854.66, + "probability": 0.8489 + }, + { + "start": 12854.9, + "end": 12859.7, + "probability": 0.9067 + }, + { + "start": 12859.8, + "end": 12860.68, + "probability": 0.2475 + }, + { + "start": 12863.5, + "end": 12863.82, + "probability": 0.033 + }, + { + "start": 12863.82, + "end": 12863.82, + "probability": 0.0946 + }, + { + "start": 12863.82, + "end": 12864.28, + "probability": 0.5453 + }, + { + "start": 12864.82, + "end": 12868.78, + "probability": 0.9308 + }, + { + "start": 12870.74, + "end": 12871.95, + "probability": 0.8618 + }, + { + "start": 12873.36, + "end": 12874.22, + "probability": 0.7154 + }, + { + "start": 12874.9, + "end": 12876.58, + "probability": 0.8584 + }, + { + "start": 12876.9, + "end": 12878.44, + "probability": 0.3132 + }, + { + "start": 12878.46, + "end": 12881.42, + "probability": 0.3406 + }, + { + "start": 12881.84, + "end": 12883.5, + "probability": 0.7496 + }, + { + "start": 12883.9, + "end": 12885.42, + "probability": 0.631 + }, + { + "start": 12885.42, + "end": 12885.56, + "probability": 0.8403 + }, + { + "start": 12886.36, + "end": 12888.06, + "probability": 0.7766 + }, + { + "start": 12890.14, + "end": 12891.16, + "probability": 0.1831 + }, + { + "start": 12891.16, + "end": 12891.58, + "probability": 0.6526 + }, + { + "start": 12891.58, + "end": 12894.36, + "probability": 0.488 + }, + { + "start": 12894.4, + "end": 12894.42, + "probability": 0.2263 + }, + { + "start": 12894.56, + "end": 12894.92, + "probability": 0.422 + }, + { + "start": 12895.4, + "end": 12896.84, + "probability": 0.7422 + }, + { + "start": 12896.98, + "end": 12899.0, + "probability": 0.936 + }, + { + "start": 12899.12, + "end": 12899.98, + "probability": 0.6781 + }, + { + "start": 12902.08, + "end": 12903.72, + "probability": 0.7231 + }, + { + "start": 12904.26, + "end": 12908.04, + "probability": 0.9863 + }, + { + "start": 12908.52, + "end": 12911.4, + "probability": 0.5858 + }, + { + "start": 12911.4, + "end": 12914.8, + "probability": 0.9233 + }, + { + "start": 12915.7, + "end": 12919.86, + "probability": 0.9957 + }, + { + "start": 12920.56, + "end": 12922.36, + "probability": 0.9849 + }, + { + "start": 12922.84, + "end": 12926.36, + "probability": 0.9703 + }, + { + "start": 12927.06, + "end": 12928.26, + "probability": 0.7484 + }, + { + "start": 12928.4, + "end": 12929.48, + "probability": 0.9246 + }, + { + "start": 12929.98, + "end": 12933.76, + "probability": 0.981 + }, + { + "start": 12933.88, + "end": 12936.48, + "probability": 0.8402 + }, + { + "start": 12936.54, + "end": 12937.68, + "probability": 0.9063 + }, + { + "start": 12938.06, + "end": 12938.86, + "probability": 0.909 + }, + { + "start": 12939.18, + "end": 12939.98, + "probability": 0.8096 + }, + { + "start": 12940.02, + "end": 12943.66, + "probability": 0.9941 + }, + { + "start": 12944.18, + "end": 12946.34, + "probability": 0.983 + }, + { + "start": 12946.74, + "end": 12948.54, + "probability": 0.7329 + }, + { + "start": 12948.8, + "end": 12951.04, + "probability": 0.9415 + }, + { + "start": 12951.46, + "end": 12954.66, + "probability": 0.9875 + }, + { + "start": 12955.26, + "end": 12956.66, + "probability": 0.9343 + }, + { + "start": 12957.36, + "end": 12959.87, + "probability": 0.9185 + }, + { + "start": 12960.38, + "end": 12961.9, + "probability": 0.9722 + }, + { + "start": 12961.96, + "end": 12962.56, + "probability": 0.8315 + }, + { + "start": 12962.6, + "end": 12963.26, + "probability": 0.915 + }, + { + "start": 12963.28, + "end": 12965.22, + "probability": 0.9476 + }, + { + "start": 12965.3, + "end": 12965.3, + "probability": 0.2538 + }, + { + "start": 12965.3, + "end": 12965.76, + "probability": 0.6986 + }, + { + "start": 12966.44, + "end": 12967.72, + "probability": 0.6783 + }, + { + "start": 12967.86, + "end": 12969.92, + "probability": 0.6844 + }, + { + "start": 12970.0, + "end": 12970.64, + "probability": 0.8114 + }, + { + "start": 12975.52, + "end": 12978.08, + "probability": 0.9085 + }, + { + "start": 12980.4, + "end": 12980.62, + "probability": 0.6273 + }, + { + "start": 12981.2, + "end": 12983.66, + "probability": 0.7771 + }, + { + "start": 12984.18, + "end": 12985.36, + "probability": 0.9827 + }, + { + "start": 12985.66, + "end": 12988.08, + "probability": 0.9375 + }, + { + "start": 12988.12, + "end": 12988.54, + "probability": 0.8983 + }, + { + "start": 12988.58, + "end": 12989.47, + "probability": 0.939 + }, + { + "start": 12990.24, + "end": 12993.74, + "probability": 0.9007 + }, + { + "start": 12994.06, + "end": 12996.52, + "probability": 0.9114 + }, + { + "start": 12996.88, + "end": 12997.46, + "probability": 0.4697 + }, + { + "start": 12997.56, + "end": 12999.29, + "probability": 0.8797 + }, + { + "start": 13000.64, + "end": 13003.1, + "probability": 0.9255 + }, + { + "start": 13004.06, + "end": 13007.02, + "probability": 0.9917 + }, + { + "start": 13007.22, + "end": 13007.48, + "probability": 0.6082 + }, + { + "start": 13007.88, + "end": 13009.72, + "probability": 0.9131 + }, + { + "start": 13009.8, + "end": 13011.36, + "probability": 0.1988 + }, + { + "start": 13011.88, + "end": 13012.4, + "probability": 0.3432 + }, + { + "start": 13012.5, + "end": 13013.3, + "probability": 0.8609 + }, + { + "start": 13013.56, + "end": 13016.64, + "probability": 0.9736 + }, + { + "start": 13016.7, + "end": 13016.86, + "probability": 0.4441 + }, + { + "start": 13016.94, + "end": 13017.1, + "probability": 0.0337 + }, + { + "start": 13017.34, + "end": 13019.58, + "probability": 0.9053 + }, + { + "start": 13019.8, + "end": 13023.24, + "probability": 0.9155 + }, + { + "start": 13024.38, + "end": 13026.08, + "probability": 0.5646 + }, + { + "start": 13027.6, + "end": 13029.14, + "probability": 0.725 + }, + { + "start": 13029.72, + "end": 13032.6, + "probability": 0.7791 + }, + { + "start": 13032.6, + "end": 13036.84, + "probability": 0.6857 + }, + { + "start": 13037.24, + "end": 13037.38, + "probability": 0.4855 + }, + { + "start": 13037.5, + "end": 13038.64, + "probability": 0.6694 + }, + { + "start": 13039.36, + "end": 13039.64, + "probability": 0.6927 + }, + { + "start": 13039.8, + "end": 13040.76, + "probability": 0.8133 + }, + { + "start": 13041.2, + "end": 13045.78, + "probability": 0.8611 + }, + { + "start": 13046.1, + "end": 13047.46, + "probability": 0.9613 + }, + { + "start": 13047.8, + "end": 13048.0, + "probability": 0.8011 + }, + { + "start": 13048.34, + "end": 13049.88, + "probability": 0.5496 + }, + { + "start": 13049.96, + "end": 13052.28, + "probability": 0.7504 + }, + { + "start": 13052.3, + "end": 13053.12, + "probability": 0.9798 + }, + { + "start": 13053.86, + "end": 13056.5, + "probability": 0.6715 + }, + { + "start": 13057.06, + "end": 13059.68, + "probability": 0.9556 + }, + { + "start": 13060.78, + "end": 13061.0, + "probability": 0.7076 + }, + { + "start": 13061.04, + "end": 13065.24, + "probability": 0.978 + }, + { + "start": 13065.6, + "end": 13066.58, + "probability": 0.981 + }, + { + "start": 13066.64, + "end": 13068.49, + "probability": 0.9969 + }, + { + "start": 13069.18, + "end": 13073.62, + "probability": 0.9956 + }, + { + "start": 13074.0, + "end": 13079.18, + "probability": 0.9927 + }, + { + "start": 13079.28, + "end": 13083.26, + "probability": 0.9942 + }, + { + "start": 13083.38, + "end": 13087.72, + "probability": 0.9569 + }, + { + "start": 13088.34, + "end": 13090.08, + "probability": 0.6487 + }, + { + "start": 13090.68, + "end": 13092.54, + "probability": 0.9952 + }, + { + "start": 13092.58, + "end": 13094.69, + "probability": 0.929 + }, + { + "start": 13095.38, + "end": 13099.36, + "probability": 0.939 + }, + { + "start": 13099.58, + "end": 13100.08, + "probability": 0.6825 + }, + { + "start": 13100.18, + "end": 13100.76, + "probability": 0.4368 + }, + { + "start": 13100.82, + "end": 13101.7, + "probability": 0.9391 + }, + { + "start": 13101.76, + "end": 13103.8, + "probability": 0.9977 + }, + { + "start": 13104.34, + "end": 13106.84, + "probability": 0.8767 + }, + { + "start": 13107.22, + "end": 13113.06, + "probability": 0.927 + }, + { + "start": 13113.16, + "end": 13115.9, + "probability": 0.955 + }, + { + "start": 13115.9, + "end": 13120.02, + "probability": 0.9513 + }, + { + "start": 13120.36, + "end": 13122.68, + "probability": 0.9993 + }, + { + "start": 13122.94, + "end": 13123.04, + "probability": 0.4523 + }, + { + "start": 13123.04, + "end": 13125.36, + "probability": 0.9617 + }, + { + "start": 13125.64, + "end": 13125.84, + "probability": 0.4613 + }, + { + "start": 13125.84, + "end": 13127.48, + "probability": 0.7489 + }, + { + "start": 13127.66, + "end": 13129.32, + "probability": 0.5558 + }, + { + "start": 13129.54, + "end": 13133.6, + "probability": 0.9811 + }, + { + "start": 13134.26, + "end": 13135.66, + "probability": 0.9702 + }, + { + "start": 13136.6, + "end": 13137.78, + "probability": 0.9597 + }, + { + "start": 13137.98, + "end": 13138.6, + "probability": 0.765 + }, + { + "start": 13138.86, + "end": 13140.42, + "probability": 0.941 + }, + { + "start": 13142.76, + "end": 13146.64, + "probability": 0.9845 + }, + { + "start": 13146.64, + "end": 13146.74, + "probability": 0.5283 + }, + { + "start": 13148.12, + "end": 13148.24, + "probability": 0.4935 + }, + { + "start": 13148.64, + "end": 13149.28, + "probability": 0.3912 + }, + { + "start": 13149.38, + "end": 13152.98, + "probability": 0.3136 + }, + { + "start": 13153.04, + "end": 13153.24, + "probability": 0.1293 + }, + { + "start": 13153.64, + "end": 13154.64, + "probability": 0.06 + }, + { + "start": 13155.12, + "end": 13155.66, + "probability": 0.0633 + }, + { + "start": 13155.66, + "end": 13156.42, + "probability": 0.3983 + }, + { + "start": 13156.74, + "end": 13158.56, + "probability": 0.6855 + }, + { + "start": 13159.0, + "end": 13161.34, + "probability": 0.9233 + }, + { + "start": 13162.34, + "end": 13162.96, + "probability": 0.574 + }, + { + "start": 13163.06, + "end": 13163.68, + "probability": 0.4812 + }, + { + "start": 13163.74, + "end": 13164.4, + "probability": 0.6197 + }, + { + "start": 13164.62, + "end": 13166.42, + "probability": 0.5244 + }, + { + "start": 13167.2, + "end": 13168.66, + "probability": 0.8085 + }, + { + "start": 13169.5, + "end": 13170.16, + "probability": 0.6939 + }, + { + "start": 13170.78, + "end": 13172.8, + "probability": 0.9172 + }, + { + "start": 13174.3, + "end": 13175.8, + "probability": 0.9836 + }, + { + "start": 13175.88, + "end": 13177.48, + "probability": 0.8752 + }, + { + "start": 13177.58, + "end": 13179.41, + "probability": 0.5746 + }, + { + "start": 13180.3, + "end": 13181.46, + "probability": 0.3196 + }, + { + "start": 13181.46, + "end": 13183.3, + "probability": 0.5338 + }, + { + "start": 13183.54, + "end": 13187.08, + "probability": 0.9564 + }, + { + "start": 13187.08, + "end": 13190.08, + "probability": 0.9818 + }, + { + "start": 13190.64, + "end": 13194.46, + "probability": 0.4656 + }, + { + "start": 13194.56, + "end": 13197.3, + "probability": 0.9668 + }, + { + "start": 13197.38, + "end": 13198.3, + "probability": 0.2598 + }, + { + "start": 13198.3, + "end": 13199.18, + "probability": 0.5245 + }, + { + "start": 13199.22, + "end": 13199.94, + "probability": 0.5927 + }, + { + "start": 13200.26, + "end": 13201.4, + "probability": 0.7476 + }, + { + "start": 13201.76, + "end": 13203.4, + "probability": 0.4002 + }, + { + "start": 13203.5, + "end": 13206.7, + "probability": 0.9358 + }, + { + "start": 13206.78, + "end": 13207.18, + "probability": 0.4369 + }, + { + "start": 13207.64, + "end": 13208.16, + "probability": 0.1432 + }, + { + "start": 13208.2, + "end": 13209.28, + "probability": 0.1262 + }, + { + "start": 13209.3, + "end": 13209.86, + "probability": 0.2083 + }, + { + "start": 13210.18, + "end": 13211.4, + "probability": 0.4115 + }, + { + "start": 13211.56, + "end": 13212.64, + "probability": 0.0879 + }, + { + "start": 13213.28, + "end": 13214.56, + "probability": 0.1029 + }, + { + "start": 13214.7, + "end": 13216.14, + "probability": 0.8378 + }, + { + "start": 13216.48, + "end": 13218.66, + "probability": 0.97 + }, + { + "start": 13218.66, + "end": 13222.26, + "probability": 0.7945 + }, + { + "start": 13222.4, + "end": 13227.04, + "probability": 0.258 + }, + { + "start": 13227.76, + "end": 13228.64, + "probability": 0.0227 + }, + { + "start": 13228.64, + "end": 13228.64, + "probability": 0.1077 + }, + { + "start": 13228.64, + "end": 13228.64, + "probability": 0.2057 + }, + { + "start": 13228.64, + "end": 13228.64, + "probability": 0.0725 + }, + { + "start": 13228.64, + "end": 13228.64, + "probability": 0.6053 + }, + { + "start": 13228.64, + "end": 13229.64, + "probability": 0.2202 + }, + { + "start": 13229.78, + "end": 13235.16, + "probability": 0.9294 + }, + { + "start": 13240.1, + "end": 13244.96, + "probability": 0.9736 + }, + { + "start": 13245.02, + "end": 13245.76, + "probability": 0.7703 + }, + { + "start": 13270.9, + "end": 13271.48, + "probability": 0.6827 + }, + { + "start": 13271.94, + "end": 13271.98, + "probability": 0.3469 + }, + { + "start": 13271.98, + "end": 13272.73, + "probability": 0.9324 + }, + { + "start": 13272.9, + "end": 13273.98, + "probability": 0.9263 + }, + { + "start": 13274.8, + "end": 13275.9, + "probability": 0.8359 + }, + { + "start": 13276.72, + "end": 13277.5, + "probability": 0.7161 + }, + { + "start": 13278.32, + "end": 13282.18, + "probability": 0.6413 + }, + { + "start": 13282.2, + "end": 13283.9, + "probability": 0.9752 + }, + { + "start": 13284.06, + "end": 13288.48, + "probability": 0.7978 + }, + { + "start": 13289.22, + "end": 13290.24, + "probability": 0.7796 + }, + { + "start": 13290.78, + "end": 13292.28, + "probability": 0.9292 + }, + { + "start": 13294.12, + "end": 13294.84, + "probability": 0.9548 + }, + { + "start": 13296.22, + "end": 13299.38, + "probability": 0.9983 + }, + { + "start": 13299.38, + "end": 13303.02, + "probability": 0.968 + }, + { + "start": 13303.66, + "end": 13307.54, + "probability": 0.993 + }, + { + "start": 13308.58, + "end": 13313.36, + "probability": 0.9951 + }, + { + "start": 13314.36, + "end": 13316.34, + "probability": 0.9678 + }, + { + "start": 13316.9, + "end": 13320.57, + "probability": 0.997 + }, + { + "start": 13321.12, + "end": 13323.98, + "probability": 0.9735 + }, + { + "start": 13325.04, + "end": 13329.14, + "probability": 0.9915 + }, + { + "start": 13329.86, + "end": 13332.5, + "probability": 0.9985 + }, + { + "start": 13333.1, + "end": 13333.9, + "probability": 0.6427 + }, + { + "start": 13334.12, + "end": 13338.56, + "probability": 0.9829 + }, + { + "start": 13339.52, + "end": 13340.12, + "probability": 0.8286 + }, + { + "start": 13340.18, + "end": 13341.04, + "probability": 0.9881 + }, + { + "start": 13341.18, + "end": 13342.86, + "probability": 0.7516 + }, + { + "start": 13343.4, + "end": 13345.78, + "probability": 0.9959 + }, + { + "start": 13346.38, + "end": 13349.54, + "probability": 0.8929 + }, + { + "start": 13350.14, + "end": 13352.43, + "probability": 0.9441 + }, + { + "start": 13353.4, + "end": 13356.36, + "probability": 0.9945 + }, + { + "start": 13357.5, + "end": 13363.9, + "probability": 0.9833 + }, + { + "start": 13364.02, + "end": 13364.24, + "probability": 0.3145 + }, + { + "start": 13364.26, + "end": 13364.6, + "probability": 0.6117 + }, + { + "start": 13365.56, + "end": 13367.62, + "probability": 0.8854 + }, + { + "start": 13368.16, + "end": 13369.28, + "probability": 0.7939 + }, + { + "start": 13369.92, + "end": 13373.58, + "probability": 0.9633 + }, + { + "start": 13374.68, + "end": 13377.44, + "probability": 0.9031 + }, + { + "start": 13377.8, + "end": 13379.24, + "probability": 0.9791 + }, + { + "start": 13379.76, + "end": 13384.3, + "probability": 0.9938 + }, + { + "start": 13385.18, + "end": 13385.66, + "probability": 0.585 + }, + { + "start": 13385.82, + "end": 13396.62, + "probability": 0.9802 + }, + { + "start": 13397.52, + "end": 13399.72, + "probability": 0.9962 + }, + { + "start": 13401.24, + "end": 13403.04, + "probability": 0.9919 + }, + { + "start": 13403.7, + "end": 13404.94, + "probability": 0.9285 + }, + { + "start": 13405.9, + "end": 13409.24, + "probability": 0.9976 + }, + { + "start": 13410.02, + "end": 13411.92, + "probability": 0.9471 + }, + { + "start": 13412.46, + "end": 13414.4, + "probability": 0.9979 + }, + { + "start": 13415.58, + "end": 13419.02, + "probability": 0.8174 + }, + { + "start": 13419.48, + "end": 13419.96, + "probability": 0.5088 + }, + { + "start": 13420.02, + "end": 13420.5, + "probability": 0.7436 + }, + { + "start": 13421.5, + "end": 13425.4, + "probability": 0.9979 + }, + { + "start": 13426.02, + "end": 13428.38, + "probability": 0.9897 + }, + { + "start": 13428.98, + "end": 13431.18, + "probability": 0.7379 + }, + { + "start": 13431.6, + "end": 13434.16, + "probability": 0.9325 + }, + { + "start": 13435.14, + "end": 13437.24, + "probability": 0.9637 + }, + { + "start": 13437.72, + "end": 13439.49, + "probability": 0.9869 + }, + { + "start": 13439.86, + "end": 13440.58, + "probability": 0.4151 + }, + { + "start": 13440.7, + "end": 13442.16, + "probability": 0.8571 + }, + { + "start": 13443.36, + "end": 13447.0, + "probability": 0.9945 + }, + { + "start": 13447.26, + "end": 13449.26, + "probability": 0.9256 + }, + { + "start": 13449.74, + "end": 13452.8, + "probability": 0.9883 + }, + { + "start": 13453.8, + "end": 13454.28, + "probability": 0.3688 + }, + { + "start": 13454.46, + "end": 13455.46, + "probability": 0.9619 + }, + { + "start": 13455.56, + "end": 13457.96, + "probability": 0.9863 + }, + { + "start": 13458.66, + "end": 13460.64, + "probability": 0.9617 + }, + { + "start": 13461.24, + "end": 13464.0, + "probability": 0.9849 + }, + { + "start": 13464.64, + "end": 13466.58, + "probability": 0.988 + }, + { + "start": 13467.12, + "end": 13472.44, + "probability": 0.9961 + }, + { + "start": 13473.48, + "end": 13478.1, + "probability": 0.9968 + }, + { + "start": 13478.56, + "end": 13483.42, + "probability": 0.9987 + }, + { + "start": 13484.12, + "end": 13485.52, + "probability": 0.9932 + }, + { + "start": 13485.58, + "end": 13486.4, + "probability": 0.9484 + }, + { + "start": 13487.04, + "end": 13490.74, + "probability": 0.9876 + }, + { + "start": 13491.38, + "end": 13495.56, + "probability": 0.9956 + }, + { + "start": 13496.18, + "end": 13499.58, + "probability": 0.9964 + }, + { + "start": 13500.12, + "end": 13502.78, + "probability": 0.9841 + }, + { + "start": 13503.36, + "end": 13504.06, + "probability": 0.8601 + }, + { + "start": 13505.04, + "end": 13507.52, + "probability": 0.9906 + }, + { + "start": 13508.06, + "end": 13508.5, + "probability": 0.9446 + }, + { + "start": 13508.54, + "end": 13512.66, + "probability": 0.9938 + }, + { + "start": 13513.66, + "end": 13514.28, + "probability": 0.7782 + }, + { + "start": 13515.12, + "end": 13516.22, + "probability": 0.826 + }, + { + "start": 13517.22, + "end": 13520.56, + "probability": 0.9606 + }, + { + "start": 13521.04, + "end": 13522.84, + "probability": 0.9573 + }, + { + "start": 13523.52, + "end": 13531.68, + "probability": 0.9788 + }, + { + "start": 13531.78, + "end": 13535.2, + "probability": 0.9777 + }, + { + "start": 13536.24, + "end": 13539.68, + "probability": 0.9845 + }, + { + "start": 13540.26, + "end": 13542.84, + "probability": 0.9893 + }, + { + "start": 13543.58, + "end": 13546.78, + "probability": 0.9967 + }, + { + "start": 13546.78, + "end": 13551.72, + "probability": 0.8843 + }, + { + "start": 13552.68, + "end": 13553.78, + "probability": 0.7813 + }, + { + "start": 13554.52, + "end": 13556.52, + "probability": 0.9825 + }, + { + "start": 13557.1, + "end": 13559.88, + "probability": 0.9665 + }, + { + "start": 13560.34, + "end": 13564.26, + "probability": 0.9556 + }, + { + "start": 13565.24, + "end": 13565.76, + "probability": 0.9148 + }, + { + "start": 13566.32, + "end": 13569.3, + "probability": 0.9827 + }, + { + "start": 13569.82, + "end": 13575.84, + "probability": 0.9606 + }, + { + "start": 13576.26, + "end": 13577.02, + "probability": 0.9528 + }, + { + "start": 13577.44, + "end": 13578.22, + "probability": 0.9924 + }, + { + "start": 13578.54, + "end": 13579.3, + "probability": 0.9877 + }, + { + "start": 13579.72, + "end": 13580.34, + "probability": 0.9691 + }, + { + "start": 13581.12, + "end": 13587.26, + "probability": 0.9918 + }, + { + "start": 13587.44, + "end": 13589.8, + "probability": 0.7362 + }, + { + "start": 13590.5, + "end": 13590.86, + "probability": 0.8229 + }, + { + "start": 13591.96, + "end": 13592.42, + "probability": 0.7768 + }, + { + "start": 13593.48, + "end": 13595.1, + "probability": 0.8569 + }, + { + "start": 13595.74, + "end": 13598.06, + "probability": 0.9922 + }, + { + "start": 13599.02, + "end": 13601.5, + "probability": 0.9387 + }, + { + "start": 13602.38, + "end": 13603.46, + "probability": 0.9855 + }, + { + "start": 13604.2, + "end": 13609.8, + "probability": 0.9944 + }, + { + "start": 13610.82, + "end": 13613.16, + "probability": 0.9191 + }, + { + "start": 13613.84, + "end": 13616.09, + "probability": 0.9985 + }, + { + "start": 13616.58, + "end": 13619.18, + "probability": 0.9974 + }, + { + "start": 13619.34, + "end": 13621.98, + "probability": 0.9932 + }, + { + "start": 13622.8, + "end": 13628.38, + "probability": 0.9946 + }, + { + "start": 13629.26, + "end": 13632.96, + "probability": 0.9985 + }, + { + "start": 13633.46, + "end": 13635.22, + "probability": 0.9941 + }, + { + "start": 13635.64, + "end": 13637.1, + "probability": 0.9789 + }, + { + "start": 13638.2, + "end": 13641.62, + "probability": 0.9987 + }, + { + "start": 13641.62, + "end": 13645.5, + "probability": 0.9992 + }, + { + "start": 13646.22, + "end": 13647.57, + "probability": 0.9595 + }, + { + "start": 13648.64, + "end": 13649.78, + "probability": 0.9842 + }, + { + "start": 13650.42, + "end": 13652.68, + "probability": 0.9928 + }, + { + "start": 13653.24, + "end": 13656.08, + "probability": 0.9872 + }, + { + "start": 13656.08, + "end": 13659.72, + "probability": 0.9966 + }, + { + "start": 13660.22, + "end": 13664.34, + "probability": 0.9799 + }, + { + "start": 13664.38, + "end": 13665.52, + "probability": 0.9495 + }, + { + "start": 13666.66, + "end": 13669.02, + "probability": 0.9897 + }, + { + "start": 13669.82, + "end": 13673.56, + "probability": 0.9528 + }, + { + "start": 13674.26, + "end": 13676.32, + "probability": 0.9985 + }, + { + "start": 13676.84, + "end": 13677.81, + "probability": 0.9581 + }, + { + "start": 13678.4, + "end": 13682.14, + "probability": 0.9854 + }, + { + "start": 13683.28, + "end": 13684.42, + "probability": 0.9904 + }, + { + "start": 13685.38, + "end": 13686.32, + "probability": 0.8804 + }, + { + "start": 13686.98, + "end": 13689.52, + "probability": 0.9617 + }, + { + "start": 13690.36, + "end": 13690.66, + "probability": 0.7783 + }, + { + "start": 13690.88, + "end": 13691.3, + "probability": 0.8818 + }, + { + "start": 13691.66, + "end": 13692.44, + "probability": 0.9607 + }, + { + "start": 13692.62, + "end": 13694.74, + "probability": 0.9788 + }, + { + "start": 13694.82, + "end": 13700.44, + "probability": 0.9451 + }, + { + "start": 13701.2, + "end": 13707.68, + "probability": 0.9986 + }, + { + "start": 13707.78, + "end": 13709.44, + "probability": 0.8122 + }, + { + "start": 13710.02, + "end": 13711.92, + "probability": 0.9597 + }, + { + "start": 13712.82, + "end": 13716.12, + "probability": 0.9641 + }, + { + "start": 13716.42, + "end": 13718.92, + "probability": 0.9994 + }, + { + "start": 13719.88, + "end": 13724.76, + "probability": 0.9976 + }, + { + "start": 13725.42, + "end": 13727.7, + "probability": 0.9929 + }, + { + "start": 13728.46, + "end": 13732.92, + "probability": 0.9951 + }, + { + "start": 13733.9, + "end": 13738.18, + "probability": 0.9949 + }, + { + "start": 13738.92, + "end": 13743.34, + "probability": 0.9897 + }, + { + "start": 13744.18, + "end": 13746.76, + "probability": 0.9461 + }, + { + "start": 13746.76, + "end": 13750.5, + "probability": 0.8749 + }, + { + "start": 13751.2, + "end": 13751.74, + "probability": 0.477 + }, + { + "start": 13752.32, + "end": 13755.52, + "probability": 0.9932 + }, + { + "start": 13756.04, + "end": 13761.2, + "probability": 0.9886 + }, + { + "start": 13761.84, + "end": 13762.82, + "probability": 0.9679 + }, + { + "start": 13763.62, + "end": 13769.98, + "probability": 0.9961 + }, + { + "start": 13771.14, + "end": 13773.48, + "probability": 0.995 + }, + { + "start": 13774.4, + "end": 13776.5, + "probability": 0.99 + }, + { + "start": 13777.04, + "end": 13777.74, + "probability": 0.78 + }, + { + "start": 13778.64, + "end": 13783.08, + "probability": 0.9955 + }, + { + "start": 13783.88, + "end": 13789.16, + "probability": 0.9968 + }, + { + "start": 13790.72, + "end": 13791.58, + "probability": 0.9736 + }, + { + "start": 13793.38, + "end": 13795.98, + "probability": 0.7653 + }, + { + "start": 13796.9, + "end": 13799.6, + "probability": 0.9901 + }, + { + "start": 13800.1, + "end": 13801.07, + "probability": 0.9166 + }, + { + "start": 13801.78, + "end": 13802.74, + "probability": 0.9355 + }, + { + "start": 13803.58, + "end": 13808.14, + "probability": 0.9971 + }, + { + "start": 13808.9, + "end": 13811.44, + "probability": 0.968 + }, + { + "start": 13812.26, + "end": 13813.42, + "probability": 0.8901 + }, + { + "start": 13814.38, + "end": 13818.2, + "probability": 0.9886 + }, + { + "start": 13818.6, + "end": 13822.02, + "probability": 0.9941 + }, + { + "start": 13823.3, + "end": 13825.62, + "probability": 0.8841 + }, + { + "start": 13825.98, + "end": 13828.92, + "probability": 0.9976 + }, + { + "start": 13829.12, + "end": 13833.9, + "probability": 0.9948 + }, + { + "start": 13834.9, + "end": 13836.5, + "probability": 0.9878 + }, + { + "start": 13837.66, + "end": 13838.79, + "probability": 0.9922 + }, + { + "start": 13839.74, + "end": 13843.74, + "probability": 0.9951 + }, + { + "start": 13843.88, + "end": 13844.42, + "probability": 0.8525 + }, + { + "start": 13844.88, + "end": 13847.78, + "probability": 0.9722 + }, + { + "start": 13848.88, + "end": 13854.3, + "probability": 0.9928 + }, + { + "start": 13854.8, + "end": 13858.18, + "probability": 0.9849 + }, + { + "start": 13858.31, + "end": 13861.57, + "probability": 0.9941 + }, + { + "start": 13862.86, + "end": 13865.86, + "probability": 0.9733 + }, + { + "start": 13866.54, + "end": 13869.1, + "probability": 0.9675 + }, + { + "start": 13870.1, + "end": 13877.2, + "probability": 0.9793 + }, + { + "start": 13877.3, + "end": 13880.66, + "probability": 0.9744 + }, + { + "start": 13881.4, + "end": 13883.4, + "probability": 0.9712 + }, + { + "start": 13883.98, + "end": 13887.12, + "probability": 0.9954 + }, + { + "start": 13887.7, + "end": 13890.83, + "probability": 0.9824 + }, + { + "start": 13892.1, + "end": 13892.84, + "probability": 0.9531 + }, + { + "start": 13893.7, + "end": 13894.34, + "probability": 0.9857 + }, + { + "start": 13895.1, + "end": 13897.2, + "probability": 0.9994 + }, + { + "start": 13898.04, + "end": 13901.34, + "probability": 0.9993 + }, + { + "start": 13901.34, + "end": 13904.3, + "probability": 0.9994 + }, + { + "start": 13905.42, + "end": 13907.36, + "probability": 0.9534 + }, + { + "start": 13907.92, + "end": 13908.89, + "probability": 0.8629 + }, + { + "start": 13909.62, + "end": 13910.8, + "probability": 0.9819 + }, + { + "start": 13911.54, + "end": 13911.92, + "probability": 0.8739 + }, + { + "start": 13912.66, + "end": 13914.82, + "probability": 0.9974 + }, + { + "start": 13915.58, + "end": 13916.14, + "probability": 0.5266 + }, + { + "start": 13916.68, + "end": 13917.4, + "probability": 0.7801 + }, + { + "start": 13918.02, + "end": 13918.68, + "probability": 0.4629 + }, + { + "start": 13919.42, + "end": 13922.28, + "probability": 0.9941 + }, + { + "start": 13923.16, + "end": 13926.94, + "probability": 0.9834 + }, + { + "start": 13927.12, + "end": 13927.8, + "probability": 0.5028 + }, + { + "start": 13928.26, + "end": 13929.43, + "probability": 0.7342 + }, + { + "start": 13930.32, + "end": 13934.6, + "probability": 0.9392 + }, + { + "start": 13935.22, + "end": 13935.72, + "probability": 0.521 + }, + { + "start": 13936.46, + "end": 13938.9, + "probability": 0.9632 + }, + { + "start": 13939.58, + "end": 13943.24, + "probability": 0.9592 + }, + { + "start": 13943.68, + "end": 13944.2, + "probability": 0.988 + }, + { + "start": 13944.76, + "end": 13945.08, + "probability": 0.7092 + }, + { + "start": 13945.42, + "end": 13945.64, + "probability": 0.4221 + }, + { + "start": 13946.7, + "end": 13948.28, + "probability": 0.8054 + }, + { + "start": 13949.72, + "end": 13952.96, + "probability": 0.9436 + }, + { + "start": 13953.08, + "end": 13956.62, + "probability": 0.8548 + }, + { + "start": 13956.64, + "end": 13957.9, + "probability": 0.8103 + }, + { + "start": 13958.0, + "end": 13958.52, + "probability": 0.7385 + }, + { + "start": 13963.36, + "end": 13966.2, + "probability": 0.6746 + }, + { + "start": 13967.86, + "end": 13970.01, + "probability": 0.9246 + }, + { + "start": 13972.34, + "end": 13973.54, + "probability": 0.5534 + }, + { + "start": 13975.7, + "end": 13976.58, + "probability": 0.553 + }, + { + "start": 13977.8, + "end": 13984.8, + "probability": 0.9354 + }, + { + "start": 13984.96, + "end": 13985.82, + "probability": 0.7932 + }, + { + "start": 13986.68, + "end": 13993.54, + "probability": 0.9656 + }, + { + "start": 13997.5, + "end": 13997.76, + "probability": 0.4986 + }, + { + "start": 13997.78, + "end": 13998.48, + "probability": 0.6005 + }, + { + "start": 13998.6, + "end": 13999.74, + "probability": 0.9502 + }, + { + "start": 14000.2, + "end": 14004.56, + "probability": 0.9395 + }, + { + "start": 14004.84, + "end": 14005.48, + "probability": 0.8331 + }, + { + "start": 14007.95, + "end": 14011.92, + "probability": 0.9652 + }, + { + "start": 14012.64, + "end": 14016.92, + "probability": 0.9891 + }, + { + "start": 14018.04, + "end": 14019.38, + "probability": 0.9041 + }, + { + "start": 14019.48, + "end": 14023.74, + "probability": 0.9468 + }, + { + "start": 14024.7, + "end": 14027.12, + "probability": 0.9764 + }, + { + "start": 14027.3, + "end": 14027.84, + "probability": 0.8793 + }, + { + "start": 14028.36, + "end": 14031.08, + "probability": 0.9358 + }, + { + "start": 14031.64, + "end": 14032.72, + "probability": 0.6504 + }, + { + "start": 14033.28, + "end": 14035.21, + "probability": 0.9707 + }, + { + "start": 14035.32, + "end": 14038.0, + "probability": 0.908 + }, + { + "start": 14038.06, + "end": 14038.56, + "probability": 0.5482 + }, + { + "start": 14038.6, + "end": 14038.96, + "probability": 0.8746 + }, + { + "start": 14039.64, + "end": 14041.46, + "probability": 0.9236 + }, + { + "start": 14042.04, + "end": 14044.5, + "probability": 0.9667 + }, + { + "start": 14045.38, + "end": 14047.36, + "probability": 0.8984 + }, + { + "start": 14048.48, + "end": 14049.84, + "probability": 0.9993 + }, + { + "start": 14050.66, + "end": 14052.44, + "probability": 0.9684 + }, + { + "start": 14053.4, + "end": 14056.68, + "probability": 0.9927 + }, + { + "start": 14056.74, + "end": 14059.44, + "probability": 0.9984 + }, + { + "start": 14059.94, + "end": 14060.62, + "probability": 0.6953 + }, + { + "start": 14061.22, + "end": 14063.46, + "probability": 0.9765 + }, + { + "start": 14064.94, + "end": 14069.34, + "probability": 0.9026 + }, + { + "start": 14069.7, + "end": 14075.42, + "probability": 0.9666 + }, + { + "start": 14076.16, + "end": 14080.86, + "probability": 0.9802 + }, + { + "start": 14081.12, + "end": 14086.72, + "probability": 0.9741 + }, + { + "start": 14087.24, + "end": 14094.32, + "probability": 0.9967 + }, + { + "start": 14094.46, + "end": 14096.18, + "probability": 0.9329 + }, + { + "start": 14096.76, + "end": 14096.8, + "probability": 0.491 + }, + { + "start": 14096.92, + "end": 14100.54, + "probability": 0.9956 + }, + { + "start": 14100.94, + "end": 14102.58, + "probability": 0.745 + }, + { + "start": 14103.16, + "end": 14106.24, + "probability": 0.8721 + }, + { + "start": 14107.22, + "end": 14108.69, + "probability": 0.9823 + }, + { + "start": 14109.98, + "end": 14112.06, + "probability": 0.713 + }, + { + "start": 14112.6, + "end": 14113.5, + "probability": 0.8433 + }, + { + "start": 14115.62, + "end": 14117.1, + "probability": 0.9971 + }, + { + "start": 14122.0, + "end": 14124.14, + "probability": 0.7357 + }, + { + "start": 14126.64, + "end": 14133.74, + "probability": 0.8922 + }, + { + "start": 14133.82, + "end": 14134.2, + "probability": 0.7719 + }, + { + "start": 14134.94, + "end": 14135.02, + "probability": 0.8328 + }, + { + "start": 14135.12, + "end": 14137.14, + "probability": 0.9976 + }, + { + "start": 14137.14, + "end": 14140.54, + "probability": 0.8564 + }, + { + "start": 14141.62, + "end": 14144.66, + "probability": 0.9016 + }, + { + "start": 14145.3, + "end": 14145.46, + "probability": 0.8124 + }, + { + "start": 14148.4, + "end": 14151.62, + "probability": 0.8923 + }, + { + "start": 14152.7, + "end": 14153.06, + "probability": 0.7504 + }, + { + "start": 14153.16, + "end": 14155.4, + "probability": 0.973 + }, + { + "start": 14155.48, + "end": 14156.16, + "probability": 0.9695 + }, + { + "start": 14156.24, + "end": 14157.34, + "probability": 0.8552 + }, + { + "start": 14158.22, + "end": 14159.35, + "probability": 0.9674 + }, + { + "start": 14159.88, + "end": 14163.32, + "probability": 0.9553 + }, + { + "start": 14163.38, + "end": 14164.22, + "probability": 0.72 + }, + { + "start": 14164.66, + "end": 14166.36, + "probability": 0.9922 + }, + { + "start": 14166.4, + "end": 14167.14, + "probability": 0.8135 + }, + { + "start": 14167.6, + "end": 14168.14, + "probability": 0.9647 + }, + { + "start": 14168.54, + "end": 14171.02, + "probability": 0.966 + }, + { + "start": 14171.32, + "end": 14174.72, + "probability": 0.9956 + }, + { + "start": 14174.8, + "end": 14176.58, + "probability": 0.8696 + }, + { + "start": 14176.64, + "end": 14177.4, + "probability": 0.9636 + }, + { + "start": 14177.46, + "end": 14178.2, + "probability": 0.6698 + }, + { + "start": 14178.56, + "end": 14179.78, + "probability": 0.77 + }, + { + "start": 14179.86, + "end": 14180.4, + "probability": 0.963 + }, + { + "start": 14180.8, + "end": 14182.32, + "probability": 0.9951 + }, + { + "start": 14182.4, + "end": 14183.08, + "probability": 0.9399 + }, + { + "start": 14185.4, + "end": 14185.9, + "probability": 0.6711 + }, + { + "start": 14190.96, + "end": 14192.96, + "probability": 0.9995 + }, + { + "start": 14193.92, + "end": 14195.06, + "probability": 0.7761 + }, + { + "start": 14196.62, + "end": 14200.12, + "probability": 0.9931 + }, + { + "start": 14201.18, + "end": 14201.78, + "probability": 0.8763 + }, + { + "start": 14203.46, + "end": 14204.08, + "probability": 0.5752 + }, + { + "start": 14204.6, + "end": 14206.46, + "probability": 0.9116 + }, + { + "start": 14206.56, + "end": 14208.77, + "probability": 0.9581 + }, + { + "start": 14209.66, + "end": 14211.82, + "probability": 0.8545 + }, + { + "start": 14213.22, + "end": 14216.04, + "probability": 0.8582 + }, + { + "start": 14217.4, + "end": 14218.74, + "probability": 0.931 + }, + { + "start": 14218.78, + "end": 14223.6, + "probability": 0.9956 + }, + { + "start": 14225.36, + "end": 14228.28, + "probability": 0.9771 + }, + { + "start": 14229.22, + "end": 14234.3, + "probability": 0.453 + }, + { + "start": 14235.72, + "end": 14237.82, + "probability": 0.7036 + }, + { + "start": 14237.86, + "end": 14239.52, + "probability": 0.9323 + }, + { + "start": 14239.52, + "end": 14245.62, + "probability": 0.8769 + }, + { + "start": 14245.72, + "end": 14246.28, + "probability": 0.8799 + }, + { + "start": 14246.48, + "end": 14246.96, + "probability": 0.7706 + }, + { + "start": 14248.66, + "end": 14252.2, + "probability": 0.9901 + }, + { + "start": 14253.1, + "end": 14254.76, + "probability": 0.9873 + }, + { + "start": 14254.98, + "end": 14257.76, + "probability": 0.8389 + }, + { + "start": 14257.76, + "end": 14260.8, + "probability": 0.9988 + }, + { + "start": 14263.42, + "end": 14264.3, + "probability": 0.9334 + }, + { + "start": 14264.4, + "end": 14266.56, + "probability": 0.9269 + }, + { + "start": 14267.54, + "end": 14270.36, + "probability": 0.9935 + }, + { + "start": 14270.72, + "end": 14274.6, + "probability": 0.9544 + }, + { + "start": 14276.08, + "end": 14277.56, + "probability": 0.9616 + }, + { + "start": 14278.64, + "end": 14281.64, + "probability": 0.9822 + }, + { + "start": 14282.16, + "end": 14284.54, + "probability": 0.8599 + }, + { + "start": 14285.48, + "end": 14286.38, + "probability": 0.9971 + }, + { + "start": 14287.1, + "end": 14289.58, + "probability": 0.8907 + }, + { + "start": 14291.0, + "end": 14292.88, + "probability": 0.9484 + }, + { + "start": 14294.68, + "end": 14296.76, + "probability": 0.9915 + }, + { + "start": 14297.34, + "end": 14299.3, + "probability": 0.9801 + }, + { + "start": 14300.38, + "end": 14302.9, + "probability": 0.9447 + }, + { + "start": 14303.7, + "end": 14312.02, + "probability": 0.9431 + }, + { + "start": 14312.12, + "end": 14312.54, + "probability": 0.9173 + }, + { + "start": 14312.64, + "end": 14314.06, + "probability": 0.8004 + }, + { + "start": 14316.38, + "end": 14320.4, + "probability": 0.8605 + }, + { + "start": 14322.48, + "end": 14322.64, + "probability": 0.6799 + }, + { + "start": 14323.08, + "end": 14325.92, + "probability": 0.9263 + }, + { + "start": 14326.02, + "end": 14326.78, + "probability": 0.6787 + }, + { + "start": 14328.96, + "end": 14330.66, + "probability": 0.8745 + }, + { + "start": 14332.08, + "end": 14333.86, + "probability": 0.8232 + }, + { + "start": 14334.08, + "end": 14338.44, + "probability": 0.9352 + }, + { + "start": 14339.8, + "end": 14340.52, + "probability": 0.5016 + }, + { + "start": 14340.6, + "end": 14342.56, + "probability": 0.8709 + }, + { + "start": 14342.9, + "end": 14343.78, + "probability": 0.751 + }, + { + "start": 14343.92, + "end": 14344.32, + "probability": 0.7255 + }, + { + "start": 14347.56, + "end": 14348.66, + "probability": 0.0696 + }, + { + "start": 14348.66, + "end": 14348.74, + "probability": 0.1072 + }, + { + "start": 14348.74, + "end": 14348.74, + "probability": 0.3741 + }, + { + "start": 14348.74, + "end": 14350.08, + "probability": 0.6367 + }, + { + "start": 14350.8, + "end": 14352.42, + "probability": 0.9661 + }, + { + "start": 14353.52, + "end": 14355.26, + "probability": 0.9948 + }, + { + "start": 14355.3, + "end": 14356.3, + "probability": 0.9248 + }, + { + "start": 14356.36, + "end": 14357.52, + "probability": 0.8196 + }, + { + "start": 14358.28, + "end": 14359.82, + "probability": 0.7268 + }, + { + "start": 14359.84, + "end": 14361.32, + "probability": 0.8891 + }, + { + "start": 14361.34, + "end": 14362.74, + "probability": 0.7394 + }, + { + "start": 14364.98, + "end": 14368.86, + "probability": 0.9957 + }, + { + "start": 14369.02, + "end": 14371.56, + "probability": 0.9862 + }, + { + "start": 14371.62, + "end": 14373.98, + "probability": 0.8805 + }, + { + "start": 14375.08, + "end": 14376.08, + "probability": 0.9892 + }, + { + "start": 14376.14, + "end": 14377.06, + "probability": 0.6021 + }, + { + "start": 14377.1, + "end": 14378.56, + "probability": 0.6695 + }, + { + "start": 14378.92, + "end": 14379.64, + "probability": 0.7411 + }, + { + "start": 14381.18, + "end": 14382.9, + "probability": 0.9791 + }, + { + "start": 14384.26, + "end": 14385.02, + "probability": 0.9109 + }, + { + "start": 14386.28, + "end": 14388.96, + "probability": 0.9951 + }, + { + "start": 14389.12, + "end": 14392.64, + "probability": 0.8371 + }, + { + "start": 14392.92, + "end": 14395.32, + "probability": 0.8793 + }, + { + "start": 14397.52, + "end": 14400.14, + "probability": 0.8921 + }, + { + "start": 14400.24, + "end": 14401.08, + "probability": 0.9279 + }, + { + "start": 14401.26, + "end": 14402.94, + "probability": 0.9965 + }, + { + "start": 14403.48, + "end": 14406.92, + "probability": 0.9413 + }, + { + "start": 14407.56, + "end": 14408.74, + "probability": 0.5013 + }, + { + "start": 14408.86, + "end": 14410.12, + "probability": 0.8935 + }, + { + "start": 14410.74, + "end": 14412.12, + "probability": 0.9914 + }, + { + "start": 14412.22, + "end": 14414.61, + "probability": 0.9976 + }, + { + "start": 14414.72, + "end": 14415.64, + "probability": 0.7523 + }, + { + "start": 14415.98, + "end": 14416.5, + "probability": 0.9519 + }, + { + "start": 14416.68, + "end": 14419.78, + "probability": 0.4075 + }, + { + "start": 14420.32, + "end": 14423.02, + "probability": 0.8532 + }, + { + "start": 14423.16, + "end": 14424.6, + "probability": 0.9946 + }, + { + "start": 14425.64, + "end": 14427.7, + "probability": 0.8786 + }, + { + "start": 14428.32, + "end": 14433.16, + "probability": 0.9891 + }, + { + "start": 14433.58, + "end": 14437.7, + "probability": 0.9325 + }, + { + "start": 14438.22, + "end": 14438.76, + "probability": 0.7549 + }, + { + "start": 14439.3, + "end": 14439.92, + "probability": 0.8175 + }, + { + "start": 14440.52, + "end": 14440.84, + "probability": 0.7835 + }, + { + "start": 14443.14, + "end": 14443.7, + "probability": 0.0574 + }, + { + "start": 14443.7, + "end": 14447.74, + "probability": 0.7384 + }, + { + "start": 14448.4, + "end": 14448.98, + "probability": 0.6786 + }, + { + "start": 14449.02, + "end": 14450.76, + "probability": 0.9075 + }, + { + "start": 14450.92, + "end": 14451.62, + "probability": 0.8137 + }, + { + "start": 14451.88, + "end": 14452.74, + "probability": 0.8618 + }, + { + "start": 14452.92, + "end": 14454.44, + "probability": 0.9336 + }, + { + "start": 14455.04, + "end": 14458.73, + "probability": 0.7627 + }, + { + "start": 14458.94, + "end": 14461.62, + "probability": 0.5519 + }, + { + "start": 14461.96, + "end": 14463.74, + "probability": 0.7874 + }, + { + "start": 14464.02, + "end": 14466.4, + "probability": 0.3685 + }, + { + "start": 14466.96, + "end": 14469.98, + "probability": 0.2187 + }, + { + "start": 14473.8, + "end": 14476.02, + "probability": 0.9386 + }, + { + "start": 14477.66, + "end": 14480.38, + "probability": 0.9652 + }, + { + "start": 14483.82, + "end": 14485.46, + "probability": 0.5713 + }, + { + "start": 14485.98, + "end": 14486.0, + "probability": 0.5788 + }, + { + "start": 14486.0, + "end": 14486.71, + "probability": 0.8639 + }, + { + "start": 14487.0, + "end": 14487.84, + "probability": 0.8799 + }, + { + "start": 14488.04, + "end": 14488.76, + "probability": 0.783 + }, + { + "start": 14489.56, + "end": 14495.54, + "probability": 0.9604 + }, + { + "start": 14495.54, + "end": 14501.22, + "probability": 0.8598 + }, + { + "start": 14501.68, + "end": 14504.56, + "probability": 0.8766 + }, + { + "start": 14505.06, + "end": 14505.8, + "probability": 0.9841 + }, + { + "start": 14507.38, + "end": 14512.12, + "probability": 0.9956 + }, + { + "start": 14512.76, + "end": 14513.46, + "probability": 0.8582 + }, + { + "start": 14514.52, + "end": 14516.2, + "probability": 0.992 + }, + { + "start": 14516.88, + "end": 14520.12, + "probability": 0.8996 + }, + { + "start": 14521.5, + "end": 14524.0, + "probability": 0.6577 + }, + { + "start": 14524.68, + "end": 14526.32, + "probability": 0.9465 + }, + { + "start": 14527.16, + "end": 14528.22, + "probability": 0.8338 + }, + { + "start": 14529.08, + "end": 14530.38, + "probability": 0.8511 + }, + { + "start": 14530.96, + "end": 14531.9, + "probability": 0.9839 + }, + { + "start": 14532.4, + "end": 14533.9, + "probability": 0.9032 + }, + { + "start": 14534.36, + "end": 14538.56, + "probability": 0.9415 + }, + { + "start": 14539.36, + "end": 14541.04, + "probability": 0.8738 + }, + { + "start": 14541.7, + "end": 14543.32, + "probability": 0.8568 + }, + { + "start": 14544.3, + "end": 14545.76, + "probability": 0.6162 + }, + { + "start": 14546.82, + "end": 14547.84, + "probability": 0.9679 + }, + { + "start": 14548.44, + "end": 14549.5, + "probability": 0.8872 + }, + { + "start": 14549.8, + "end": 14550.54, + "probability": 0.8812 + }, + { + "start": 14550.96, + "end": 14553.06, + "probability": 0.8865 + }, + { + "start": 14553.28, + "end": 14553.94, + "probability": 0.9009 + }, + { + "start": 14554.54, + "end": 14555.46, + "probability": 0.7077 + }, + { + "start": 14556.52, + "end": 14558.3, + "probability": 0.9216 + }, + { + "start": 14559.0, + "end": 14561.32, + "probability": 0.7567 + }, + { + "start": 14561.64, + "end": 14565.38, + "probability": 0.9338 + }, + { + "start": 14566.2, + "end": 14567.58, + "probability": 0.6966 + }, + { + "start": 14568.48, + "end": 14571.8, + "probability": 0.9038 + }, + { + "start": 14572.74, + "end": 14576.1, + "probability": 0.9587 + }, + { + "start": 14576.88, + "end": 14581.36, + "probability": 0.8988 + }, + { + "start": 14582.38, + "end": 14585.7, + "probability": 0.6731 + }, + { + "start": 14586.5, + "end": 14588.3, + "probability": 0.7283 + }, + { + "start": 14588.7, + "end": 14592.0, + "probability": 0.6516 + }, + { + "start": 14593.54, + "end": 14596.08, + "probability": 0.7368 + }, + { + "start": 14596.72, + "end": 14600.74, + "probability": 0.6368 + }, + { + "start": 14601.1, + "end": 14603.68, + "probability": 0.9593 + }, + { + "start": 14604.88, + "end": 14609.1, + "probability": 0.9844 + }, + { + "start": 14610.08, + "end": 14614.12, + "probability": 0.9063 + }, + { + "start": 14615.3, + "end": 14616.72, + "probability": 0.8634 + }, + { + "start": 14617.8, + "end": 14621.78, + "probability": 0.8492 + }, + { + "start": 14622.36, + "end": 14625.5, + "probability": 0.9714 + }, + { + "start": 14626.04, + "end": 14628.74, + "probability": 0.9785 + }, + { + "start": 14629.68, + "end": 14631.64, + "probability": 0.9473 + }, + { + "start": 14632.3, + "end": 14636.54, + "probability": 0.8535 + }, + { + "start": 14637.4, + "end": 14639.18, + "probability": 0.7473 + }, + { + "start": 14639.48, + "end": 14641.7, + "probability": 0.9085 + }, + { + "start": 14642.58, + "end": 14645.22, + "probability": 0.9958 + }, + { + "start": 14645.82, + "end": 14647.82, + "probability": 0.9748 + }, + { + "start": 14648.76, + "end": 14650.2, + "probability": 0.9331 + }, + { + "start": 14650.74, + "end": 14653.92, + "probability": 0.9624 + }, + { + "start": 14654.9, + "end": 14656.78, + "probability": 0.9865 + }, + { + "start": 14657.74, + "end": 14658.96, + "probability": 0.5398 + }, + { + "start": 14659.18, + "end": 14662.36, + "probability": 0.8752 + }, + { + "start": 14662.94, + "end": 14663.52, + "probability": 0.8923 + }, + { + "start": 14664.16, + "end": 14668.68, + "probability": 0.9738 + }, + { + "start": 14669.34, + "end": 14672.82, + "probability": 0.9823 + }, + { + "start": 14672.82, + "end": 14676.34, + "probability": 0.9529 + }, + { + "start": 14677.08, + "end": 14680.52, + "probability": 0.9764 + }, + { + "start": 14681.72, + "end": 14682.88, + "probability": 0.7727 + }, + { + "start": 14683.78, + "end": 14688.46, + "probability": 0.9798 + }, + { + "start": 14689.26, + "end": 14690.74, + "probability": 0.986 + }, + { + "start": 14691.38, + "end": 14696.78, + "probability": 0.8297 + }, + { + "start": 14697.24, + "end": 14697.66, + "probability": 0.7985 + }, + { + "start": 14699.0, + "end": 14700.68, + "probability": 0.7697 + }, + { + "start": 14700.76, + "end": 14703.08, + "probability": 0.8304 + }, + { + "start": 14703.86, + "end": 14705.62, + "probability": 0.8018 + }, + { + "start": 14715.22, + "end": 14717.08, + "probability": 0.7273 + }, + { + "start": 14719.5, + "end": 14722.38, + "probability": 0.8804 + }, + { + "start": 14724.18, + "end": 14726.58, + "probability": 0.9871 + }, + { + "start": 14727.2, + "end": 14728.5, + "probability": 0.9014 + }, + { + "start": 14729.46, + "end": 14730.12, + "probability": 0.799 + }, + { + "start": 14730.36, + "end": 14732.32, + "probability": 0.8537 + }, + { + "start": 14733.22, + "end": 14736.62, + "probability": 0.9395 + }, + { + "start": 14737.38, + "end": 14738.24, + "probability": 0.9883 + }, + { + "start": 14739.26, + "end": 14742.72, + "probability": 0.9932 + }, + { + "start": 14743.3, + "end": 14745.6, + "probability": 0.9986 + }, + { + "start": 14747.2, + "end": 14749.36, + "probability": 0.999 + }, + { + "start": 14749.36, + "end": 14751.8, + "probability": 0.9979 + }, + { + "start": 14752.46, + "end": 14753.32, + "probability": 0.9381 + }, + { + "start": 14753.86, + "end": 14758.84, + "probability": 0.9946 + }, + { + "start": 14758.84, + "end": 14763.88, + "probability": 0.9993 + }, + { + "start": 14764.6, + "end": 14764.9, + "probability": 0.8701 + }, + { + "start": 14765.0, + "end": 14767.74, + "probability": 0.9933 + }, + { + "start": 14767.88, + "end": 14768.52, + "probability": 0.9231 + }, + { + "start": 14769.16, + "end": 14771.58, + "probability": 0.9514 + }, + { + "start": 14772.78, + "end": 14775.64, + "probability": 0.9969 + }, + { + "start": 14776.44, + "end": 14778.03, + "probability": 0.9741 + }, + { + "start": 14778.34, + "end": 14783.8, + "probability": 0.9528 + }, + { + "start": 14784.1, + "end": 14785.58, + "probability": 0.8393 + }, + { + "start": 14786.54, + "end": 14790.54, + "probability": 0.9941 + }, + { + "start": 14791.04, + "end": 14795.16, + "probability": 0.9969 + }, + { + "start": 14795.5, + "end": 14796.28, + "probability": 0.882 + }, + { + "start": 14796.46, + "end": 14797.4, + "probability": 0.8839 + }, + { + "start": 14797.5, + "end": 14798.88, + "probability": 0.9844 + }, + { + "start": 14799.22, + "end": 14801.1, + "probability": 0.9592 + }, + { + "start": 14801.4, + "end": 14802.46, + "probability": 0.5471 + }, + { + "start": 14803.08, + "end": 14806.11, + "probability": 0.9946 + }, + { + "start": 14806.24, + "end": 14807.1, + "probability": 0.704 + }, + { + "start": 14807.16, + "end": 14808.0, + "probability": 0.9848 + }, + { + "start": 14808.68, + "end": 14811.96, + "probability": 0.9927 + }, + { + "start": 14811.96, + "end": 14815.94, + "probability": 0.9924 + }, + { + "start": 14816.52, + "end": 14818.76, + "probability": 0.9966 + }, + { + "start": 14818.86, + "end": 14820.18, + "probability": 0.5589 + }, + { + "start": 14820.58, + "end": 14823.88, + "probability": 0.9969 + }, + { + "start": 14823.88, + "end": 14828.7, + "probability": 0.9982 + }, + { + "start": 14829.06, + "end": 14832.66, + "probability": 0.9966 + }, + { + "start": 14833.9, + "end": 14837.26, + "probability": 0.9952 + }, + { + "start": 14837.58, + "end": 14838.73, + "probability": 0.9952 + }, + { + "start": 14839.04, + "end": 14839.72, + "probability": 0.9001 + }, + { + "start": 14840.1, + "end": 14840.84, + "probability": 0.8265 + }, + { + "start": 14841.1, + "end": 14842.96, + "probability": 0.9822 + }, + { + "start": 14843.42, + "end": 14846.54, + "probability": 0.9961 + }, + { + "start": 14846.54, + "end": 14849.5, + "probability": 0.9857 + }, + { + "start": 14850.06, + "end": 14853.68, + "probability": 0.9978 + }, + { + "start": 14855.12, + "end": 14859.06, + "probability": 0.9961 + }, + { + "start": 14859.52, + "end": 14861.86, + "probability": 0.9923 + }, + { + "start": 14862.42, + "end": 14863.42, + "probability": 0.587 + }, + { + "start": 14863.92, + "end": 14866.4, + "probability": 0.9956 + }, + { + "start": 14866.66, + "end": 14867.18, + "probability": 0.8969 + }, + { + "start": 14867.48, + "end": 14870.86, + "probability": 0.9818 + }, + { + "start": 14871.56, + "end": 14874.4, + "probability": 0.988 + }, + { + "start": 14874.4, + "end": 14878.24, + "probability": 0.9932 + }, + { + "start": 14878.56, + "end": 14879.24, + "probability": 0.9775 + }, + { + "start": 14880.16, + "end": 14884.24, + "probability": 0.9762 + }, + { + "start": 14884.64, + "end": 14885.28, + "probability": 0.5844 + }, + { + "start": 14885.64, + "end": 14888.22, + "probability": 0.993 + }, + { + "start": 14888.3, + "end": 14888.78, + "probability": 0.0682 + }, + { + "start": 14889.12, + "end": 14889.64, + "probability": 0.6711 + }, + { + "start": 14889.94, + "end": 14892.0, + "probability": 0.914 + }, + { + "start": 14892.44, + "end": 14893.54, + "probability": 0.9153 + }, + { + "start": 14894.22, + "end": 14896.7, + "probability": 0.9886 + }, + { + "start": 14896.7, + "end": 14899.94, + "probability": 0.9982 + }, + { + "start": 14900.58, + "end": 14904.12, + "probability": 0.9846 + }, + { + "start": 14904.38, + "end": 14905.84, + "probability": 0.784 + }, + { + "start": 14906.2, + "end": 14908.78, + "probability": 0.9944 + }, + { + "start": 14908.78, + "end": 14910.4, + "probability": 0.9964 + }, + { + "start": 14911.76, + "end": 14913.36, + "probability": 0.999 + }, + { + "start": 14914.14, + "end": 14916.52, + "probability": 0.9868 + }, + { + "start": 14916.52, + "end": 14918.56, + "probability": 0.9082 + }, + { + "start": 14919.2, + "end": 14920.38, + "probability": 0.7682 + }, + { + "start": 14920.38, + "end": 14922.58, + "probability": 0.9046 + }, + { + "start": 14922.88, + "end": 14923.94, + "probability": 0.6684 + }, + { + "start": 14924.32, + "end": 14925.88, + "probability": 0.9904 + }, + { + "start": 14926.3, + "end": 14928.94, + "probability": 0.9948 + }, + { + "start": 14929.3, + "end": 14931.32, + "probability": 0.9154 + }, + { + "start": 14931.32, + "end": 14933.76, + "probability": 0.9054 + }, + { + "start": 14934.24, + "end": 14934.78, + "probability": 0.6226 + }, + { + "start": 14935.22, + "end": 14937.82, + "probability": 0.9692 + }, + { + "start": 14937.86, + "end": 14938.42, + "probability": 0.9696 + }, + { + "start": 14938.48, + "end": 14940.02, + "probability": 0.9763 + }, + { + "start": 14940.32, + "end": 14941.48, + "probability": 0.9164 + }, + { + "start": 14941.78, + "end": 14942.78, + "probability": 0.9797 + }, + { + "start": 14942.84, + "end": 14943.72, + "probability": 0.9946 + }, + { + "start": 14943.84, + "end": 14944.78, + "probability": 0.7385 + }, + { + "start": 14945.5, + "end": 14947.62, + "probability": 0.9954 + }, + { + "start": 14948.48, + "end": 14950.0, + "probability": 0.7609 + }, + { + "start": 14950.56, + "end": 14952.2, + "probability": 0.9935 + }, + { + "start": 14952.26, + "end": 14954.02, + "probability": 0.9915 + }, + { + "start": 14954.3, + "end": 14955.8, + "probability": 0.9929 + }, + { + "start": 14956.44, + "end": 14959.16, + "probability": 0.9905 + }, + { + "start": 14959.5, + "end": 14960.82, + "probability": 0.9615 + }, + { + "start": 14961.66, + "end": 14961.86, + "probability": 0.5553 + }, + { + "start": 14962.48, + "end": 14964.66, + "probability": 0.8358 + }, + { + "start": 14964.86, + "end": 14967.14, + "probability": 0.8499 + }, + { + "start": 14985.08, + "end": 14986.61, + "probability": 0.7339 + }, + { + "start": 14993.9, + "end": 14994.36, + "probability": 0.6201 + }, + { + "start": 14995.06, + "end": 14996.9, + "probability": 0.9088 + }, + { + "start": 14997.96, + "end": 14999.46, + "probability": 0.9626 + }, + { + "start": 15000.58, + "end": 15003.2, + "probability": 0.896 + }, + { + "start": 15004.0, + "end": 15008.74, + "probability": 0.8316 + }, + { + "start": 15009.98, + "end": 15013.08, + "probability": 0.984 + }, + { + "start": 15014.72, + "end": 15016.28, + "probability": 0.9602 + }, + { + "start": 15017.3, + "end": 15018.48, + "probability": 0.651 + }, + { + "start": 15019.28, + "end": 15021.46, + "probability": 0.9876 + }, + { + "start": 15023.4, + "end": 15025.38, + "probability": 0.7798 + }, + { + "start": 15026.7, + "end": 15028.74, + "probability": 0.9673 + }, + { + "start": 15029.48, + "end": 15031.22, + "probability": 0.9815 + }, + { + "start": 15031.98, + "end": 15036.94, + "probability": 0.931 + }, + { + "start": 15038.08, + "end": 15039.84, + "probability": 0.99 + }, + { + "start": 15040.06, + "end": 15044.3, + "probability": 0.7054 + }, + { + "start": 15045.18, + "end": 15047.84, + "probability": 0.581 + }, + { + "start": 15048.54, + "end": 15051.37, + "probability": 0.9966 + }, + { + "start": 15052.42, + "end": 15053.12, + "probability": 0.2952 + }, + { + "start": 15053.12, + "end": 15053.42, + "probability": 0.7167 + }, + { + "start": 15053.68, + "end": 15053.94, + "probability": 0.8261 + }, + { + "start": 15054.02, + "end": 15055.86, + "probability": 0.9329 + }, + { + "start": 15057.42, + "end": 15062.44, + "probability": 0.643 + }, + { + "start": 15063.38, + "end": 15067.5, + "probability": 0.9521 + }, + { + "start": 15068.62, + "end": 15070.14, + "probability": 0.7566 + }, + { + "start": 15071.54, + "end": 15074.1, + "probability": 0.98 + }, + { + "start": 15074.1, + "end": 15076.74, + "probability": 0.957 + }, + { + "start": 15077.28, + "end": 15079.64, + "probability": 0.8906 + }, + { + "start": 15080.6, + "end": 15083.12, + "probability": 0.9092 + }, + { + "start": 15083.34, + "end": 15084.28, + "probability": 0.6935 + }, + { + "start": 15085.16, + "end": 15085.67, + "probability": 0.9634 + }, + { + "start": 15086.38, + "end": 15087.24, + "probability": 0.9817 + }, + { + "start": 15087.86, + "end": 15090.94, + "probability": 0.9626 + }, + { + "start": 15091.86, + "end": 15092.76, + "probability": 0.9888 + }, + { + "start": 15093.6, + "end": 15096.22, + "probability": 0.9807 + }, + { + "start": 15097.0, + "end": 15098.52, + "probability": 0.9475 + }, + { + "start": 15098.56, + "end": 15100.64, + "probability": 0.7861 + }, + { + "start": 15100.72, + "end": 15101.56, + "probability": 0.4914 + }, + { + "start": 15102.1, + "end": 15103.86, + "probability": 0.7452 + }, + { + "start": 15104.34, + "end": 15105.46, + "probability": 0.8651 + }, + { + "start": 15106.14, + "end": 15106.52, + "probability": 0.9011 + }, + { + "start": 15106.62, + "end": 15108.24, + "probability": 0.979 + }, + { + "start": 15108.3, + "end": 15108.88, + "probability": 0.8497 + }, + { + "start": 15108.88, + "end": 15109.36, + "probability": 0.634 + }, + { + "start": 15109.46, + "end": 15110.12, + "probability": 0.823 + }, + { + "start": 15110.6, + "end": 15111.47, + "probability": 0.8872 + }, + { + "start": 15112.52, + "end": 15115.92, + "probability": 0.9445 + }, + { + "start": 15116.28, + "end": 15117.92, + "probability": 0.9937 + }, + { + "start": 15118.28, + "end": 15119.74, + "probability": 0.9074 + }, + { + "start": 15120.08, + "end": 15120.92, + "probability": 0.3234 + }, + { + "start": 15120.92, + "end": 15121.18, + "probability": 0.4478 + }, + { + "start": 15121.7, + "end": 15122.88, + "probability": 0.8365 + }, + { + "start": 15125.16, + "end": 15127.2, + "probability": 0.8587 + }, + { + "start": 15127.8, + "end": 15128.38, + "probability": 0.882 + }, + { + "start": 15130.02, + "end": 15131.31, + "probability": 0.9678 + }, + { + "start": 15132.24, + "end": 15134.68, + "probability": 0.9607 + }, + { + "start": 15135.78, + "end": 15136.5, + "probability": 0.985 + }, + { + "start": 15137.02, + "end": 15137.98, + "probability": 0.75 + }, + { + "start": 15138.6, + "end": 15140.12, + "probability": 0.9006 + }, + { + "start": 15140.9, + "end": 15145.3, + "probability": 0.8706 + }, + { + "start": 15145.64, + "end": 15147.3, + "probability": 0.9087 + }, + { + "start": 15148.7, + "end": 15151.36, + "probability": 0.9527 + }, + { + "start": 15151.46, + "end": 15153.02, + "probability": 0.9246 + }, + { + "start": 15153.88, + "end": 15157.08, + "probability": 0.9185 + }, + { + "start": 15157.44, + "end": 15162.0, + "probability": 0.9465 + }, + { + "start": 15163.58, + "end": 15164.5, + "probability": 0.5896 + }, + { + "start": 15165.54, + "end": 15168.58, + "probability": 0.9551 + }, + { + "start": 15169.52, + "end": 15169.94, + "probability": 0.5567 + }, + { + "start": 15170.02, + "end": 15173.1, + "probability": 0.9816 + }, + { + "start": 15173.78, + "end": 15175.8, + "probability": 0.9627 + }, + { + "start": 15176.26, + "end": 15178.14, + "probability": 0.9863 + }, + { + "start": 15178.16, + "end": 15178.68, + "probability": 0.7479 + }, + { + "start": 15179.24, + "end": 15180.32, + "probability": 0.9755 + }, + { + "start": 15180.38, + "end": 15181.8, + "probability": 0.8779 + }, + { + "start": 15182.18, + "end": 15183.04, + "probability": 0.7754 + }, + { + "start": 15183.86, + "end": 15185.57, + "probability": 0.9694 + }, + { + "start": 15186.64, + "end": 15187.49, + "probability": 0.6637 + }, + { + "start": 15187.66, + "end": 15189.42, + "probability": 0.9868 + }, + { + "start": 15190.16, + "end": 15191.3, + "probability": 0.9669 + }, + { + "start": 15191.44, + "end": 15192.54, + "probability": 0.9368 + }, + { + "start": 15192.72, + "end": 15194.38, + "probability": 0.9863 + }, + { + "start": 15194.46, + "end": 15194.98, + "probability": 0.5168 + }, + { + "start": 15195.98, + "end": 15198.74, + "probability": 0.9274 + }, + { + "start": 15199.24, + "end": 15200.52, + "probability": 0.9455 + }, + { + "start": 15201.0, + "end": 15202.19, + "probability": 0.9337 + }, + { + "start": 15202.3, + "end": 15203.62, + "probability": 0.813 + }, + { + "start": 15203.62, + "end": 15204.04, + "probability": 0.9624 + }, + { + "start": 15204.32, + "end": 15205.45, + "probability": 0.8759 + }, + { + "start": 15206.3, + "end": 15206.5, + "probability": 0.326 + }, + { + "start": 15206.66, + "end": 15207.46, + "probability": 0.6653 + }, + { + "start": 15207.54, + "end": 15208.12, + "probability": 0.9071 + }, + { + "start": 15208.18, + "end": 15208.64, + "probability": 0.9097 + }, + { + "start": 15208.64, + "end": 15212.34, + "probability": 0.9751 + }, + { + "start": 15212.92, + "end": 15213.94, + "probability": 0.9465 + }, + { + "start": 15214.34, + "end": 15218.4, + "probability": 0.9928 + }, + { + "start": 15218.8, + "end": 15220.24, + "probability": 0.9656 + }, + { + "start": 15223.34, + "end": 15223.84, + "probability": 0.5374 + }, + { + "start": 15223.92, + "end": 15226.12, + "probability": 0.9685 + }, + { + "start": 15226.32, + "end": 15228.14, + "probability": 0.8533 + }, + { + "start": 15228.8, + "end": 15231.32, + "probability": 0.9827 + }, + { + "start": 15231.36, + "end": 15233.72, + "probability": 0.856 + }, + { + "start": 15233.8, + "end": 15234.64, + "probability": 0.9554 + }, + { + "start": 15235.4, + "end": 15236.76, + "probability": 0.9376 + }, + { + "start": 15238.0, + "end": 15239.02, + "probability": 0.5968 + }, + { + "start": 15239.1, + "end": 15240.42, + "probability": 0.9902 + }, + { + "start": 15240.7, + "end": 15242.0, + "probability": 0.9729 + }, + { + "start": 15243.02, + "end": 15243.44, + "probability": 0.8319 + }, + { + "start": 15243.52, + "end": 15244.4, + "probability": 0.9373 + }, + { + "start": 15244.62, + "end": 15248.74, + "probability": 0.9474 + }, + { + "start": 15248.96, + "end": 15249.45, + "probability": 0.4973 + }, + { + "start": 15250.16, + "end": 15253.44, + "probability": 0.6639 + }, + { + "start": 15254.36, + "end": 15256.58, + "probability": 0.9984 + }, + { + "start": 15256.72, + "end": 15258.66, + "probability": 0.9785 + }, + { + "start": 15258.98, + "end": 15260.32, + "probability": 0.8626 + }, + { + "start": 15260.64, + "end": 15261.46, + "probability": 0.9505 + }, + { + "start": 15261.54, + "end": 15263.44, + "probability": 0.9919 + }, + { + "start": 15264.0, + "end": 15265.68, + "probability": 0.9819 + }, + { + "start": 15266.64, + "end": 15269.86, + "probability": 0.9784 + }, + { + "start": 15269.94, + "end": 15270.74, + "probability": 0.907 + }, + { + "start": 15271.34, + "end": 15274.0, + "probability": 0.9972 + }, + { + "start": 15274.58, + "end": 15275.06, + "probability": 0.9455 + }, + { + "start": 15276.5, + "end": 15278.7, + "probability": 0.7515 + }, + { + "start": 15279.64, + "end": 15282.66, + "probability": 0.9746 + }, + { + "start": 15282.86, + "end": 15285.52, + "probability": 0.9702 + }, + { + "start": 15299.94, + "end": 15299.94, + "probability": 0.1482 + }, + { + "start": 15299.94, + "end": 15301.26, + "probability": 0.7411 + }, + { + "start": 15302.52, + "end": 15304.95, + "probability": 0.5474 + }, + { + "start": 15305.86, + "end": 15307.78, + "probability": 0.766 + }, + { + "start": 15309.52, + "end": 15315.34, + "probability": 0.5537 + }, + { + "start": 15316.16, + "end": 15316.96, + "probability": 0.4995 + }, + { + "start": 15317.92, + "end": 15318.76, + "probability": 0.9365 + }, + { + "start": 15320.02, + "end": 15327.94, + "probability": 0.9688 + }, + { + "start": 15329.14, + "end": 15330.04, + "probability": 0.549 + }, + { + "start": 15331.3, + "end": 15334.72, + "probability": 0.6322 + }, + { + "start": 15335.22, + "end": 15337.18, + "probability": 0.7638 + }, + { + "start": 15337.44, + "end": 15338.86, + "probability": 0.4165 + }, + { + "start": 15339.22, + "end": 15341.31, + "probability": 0.9399 + }, + { + "start": 15341.52, + "end": 15344.28, + "probability": 0.9664 + }, + { + "start": 15345.22, + "end": 15346.49, + "probability": 0.9097 + }, + { + "start": 15346.86, + "end": 15350.76, + "probability": 0.9587 + }, + { + "start": 15351.06, + "end": 15351.7, + "probability": 0.7347 + }, + { + "start": 15352.14, + "end": 15355.9, + "probability": 0.9369 + }, + { + "start": 15356.24, + "end": 15358.18, + "probability": 0.9763 + }, + { + "start": 15358.26, + "end": 15358.5, + "probability": 0.4361 + }, + { + "start": 15358.66, + "end": 15361.06, + "probability": 0.7975 + }, + { + "start": 15361.14, + "end": 15366.06, + "probability": 0.9881 + }, + { + "start": 15366.52, + "end": 15367.14, + "probability": 0.8856 + }, + { + "start": 15367.82, + "end": 15369.8, + "probability": 0.8209 + }, + { + "start": 15371.7, + "end": 15372.16, + "probability": 0.5975 + }, + { + "start": 15372.22, + "end": 15375.72, + "probability": 0.5777 + }, + { + "start": 15375.88, + "end": 15377.14, + "probability": 0.6904 + }, + { + "start": 15378.56, + "end": 15379.08, + "probability": 0.3911 + }, + { + "start": 15379.7, + "end": 15380.82, + "probability": 0.4627 + }, + { + "start": 15381.14, + "end": 15383.56, + "probability": 0.9834 + }, + { + "start": 15383.66, + "end": 15384.84, + "probability": 0.5247 + }, + { + "start": 15384.92, + "end": 15385.92, + "probability": 0.7348 + }, + { + "start": 15386.28, + "end": 15389.34, + "probability": 0.9811 + }, + { + "start": 15389.4, + "end": 15390.08, + "probability": 0.6229 + }, + { + "start": 15390.1, + "end": 15391.46, + "probability": 0.5504 + }, + { + "start": 15391.82, + "end": 15392.88, + "probability": 0.9572 + }, + { + "start": 15392.96, + "end": 15393.56, + "probability": 0.729 + }, + { + "start": 15393.7, + "end": 15394.54, + "probability": 0.7013 + }, + { + "start": 15395.02, + "end": 15396.94, + "probability": 0.9556 + }, + { + "start": 15398.0, + "end": 15401.34, + "probability": 0.7775 + }, + { + "start": 15401.38, + "end": 15403.44, + "probability": 0.9517 + }, + { + "start": 15403.64, + "end": 15407.16, + "probability": 0.9433 + }, + { + "start": 15407.3, + "end": 15409.02, + "probability": 0.7531 + }, + { + "start": 15409.22, + "end": 15410.74, + "probability": 0.8986 + }, + { + "start": 15411.06, + "end": 15411.24, + "probability": 0.0947 + }, + { + "start": 15411.4, + "end": 15415.54, + "probability": 0.9636 + }, + { + "start": 15415.54, + "end": 15418.1, + "probability": 0.9799 + }, + { + "start": 15418.68, + "end": 15420.0, + "probability": 0.935 + }, + { + "start": 15420.98, + "end": 15421.42, + "probability": 0.923 + }, + { + "start": 15421.5, + "end": 15421.95, + "probability": 0.8786 + }, + { + "start": 15422.08, + "end": 15426.68, + "probability": 0.9673 + }, + { + "start": 15426.92, + "end": 15429.72, + "probability": 0.9738 + }, + { + "start": 15430.58, + "end": 15433.6, + "probability": 0.9133 + }, + { + "start": 15433.72, + "end": 15434.24, + "probability": 0.4377 + }, + { + "start": 15435.06, + "end": 15435.44, + "probability": 0.0915 + }, + { + "start": 15435.44, + "end": 15435.62, + "probability": 0.2803 + }, + { + "start": 15436.2, + "end": 15437.34, + "probability": 0.741 + }, + { + "start": 15437.42, + "end": 15445.14, + "probability": 0.7951 + }, + { + "start": 15447.6, + "end": 15453.0, + "probability": 0.9163 + }, + { + "start": 15454.0, + "end": 15456.16, + "probability": 0.7482 + }, + { + "start": 15456.52, + "end": 15459.22, + "probability": 0.9557 + }, + { + "start": 15459.22, + "end": 15461.68, + "probability": 0.915 + }, + { + "start": 15462.24, + "end": 15462.88, + "probability": 0.9089 + }, + { + "start": 15464.06, + "end": 15466.92, + "probability": 0.8704 + }, + { + "start": 15467.44, + "end": 15468.3, + "probability": 0.9736 + }, + { + "start": 15469.1, + "end": 15473.96, + "probability": 0.9915 + }, + { + "start": 15474.78, + "end": 15476.02, + "probability": 0.9805 + }, + { + "start": 15477.32, + "end": 15478.62, + "probability": 0.9337 + }, + { + "start": 15480.38, + "end": 15482.04, + "probability": 0.9233 + }, + { + "start": 15482.56, + "end": 15485.95, + "probability": 0.8145 + }, + { + "start": 15487.0, + "end": 15489.4, + "probability": 0.9933 + }, + { + "start": 15489.4, + "end": 15492.46, + "probability": 0.9813 + }, + { + "start": 15493.66, + "end": 15494.78, + "probability": 0.7308 + }, + { + "start": 15495.84, + "end": 15498.16, + "probability": 0.8539 + }, + { + "start": 15498.7, + "end": 15501.0, + "probability": 0.9913 + }, + { + "start": 15502.58, + "end": 15504.34, + "probability": 0.8416 + }, + { + "start": 15505.34, + "end": 15506.38, + "probability": 0.7533 + }, + { + "start": 15506.42, + "end": 15511.38, + "probability": 0.9279 + }, + { + "start": 15511.78, + "end": 15512.98, + "probability": 0.8776 + }, + { + "start": 15513.72, + "end": 15514.4, + "probability": 0.8212 + }, + { + "start": 15515.18, + "end": 15518.14, + "probability": 0.7585 + }, + { + "start": 15518.82, + "end": 15519.8, + "probability": 0.3734 + }, + { + "start": 15520.68, + "end": 15526.3, + "probability": 0.7728 + }, + { + "start": 15526.78, + "end": 15528.38, + "probability": 0.892 + }, + { + "start": 15528.48, + "end": 15529.5, + "probability": 0.5787 + }, + { + "start": 15530.36, + "end": 15533.72, + "probability": 0.9738 + }, + { + "start": 15534.34, + "end": 15535.86, + "probability": 0.8593 + }, + { + "start": 15535.94, + "end": 15537.66, + "probability": 0.9731 + }, + { + "start": 15538.08, + "end": 15539.74, + "probability": 0.9401 + }, + { + "start": 15540.0, + "end": 15541.06, + "probability": 0.6201 + }, + { + "start": 15541.56, + "end": 15543.34, + "probability": 0.8502 + }, + { + "start": 15544.26, + "end": 15544.88, + "probability": 0.7231 + }, + { + "start": 15545.13, + "end": 15547.7, + "probability": 0.5086 + }, + { + "start": 15547.76, + "end": 15548.72, + "probability": 0.689 + }, + { + "start": 15548.84, + "end": 15550.48, + "probability": 0.8153 + }, + { + "start": 15550.54, + "end": 15553.48, + "probability": 0.3196 + }, + { + "start": 15553.48, + "end": 15556.54, + "probability": 0.6284 + }, + { + "start": 15557.12, + "end": 15558.03, + "probability": 0.8539 + }, + { + "start": 15558.1, + "end": 15561.1, + "probability": 0.9644 + }, + { + "start": 15561.14, + "end": 15562.12, + "probability": 0.9601 + }, + { + "start": 15562.12, + "end": 15563.04, + "probability": 0.5837 + }, + { + "start": 15563.56, + "end": 15565.02, + "probability": 0.6868 + }, + { + "start": 15565.86, + "end": 15568.8, + "probability": 0.9299 + }, + { + "start": 15569.26, + "end": 15574.34, + "probability": 0.9739 + }, + { + "start": 15574.88, + "end": 15575.94, + "probability": 0.8833 + }, + { + "start": 15576.24, + "end": 15578.2, + "probability": 0.6828 + }, + { + "start": 15580.44, + "end": 15580.62, + "probability": 0.0878 + }, + { + "start": 15580.62, + "end": 15582.09, + "probability": 0.1232 + }, + { + "start": 15582.28, + "end": 15583.58, + "probability": 0.8478 + }, + { + "start": 15584.08, + "end": 15587.06, + "probability": 0.6648 + }, + { + "start": 15587.34, + "end": 15588.56, + "probability": 0.7071 + }, + { + "start": 15589.62, + "end": 15592.3, + "probability": 0.5043 + }, + { + "start": 15592.74, + "end": 15595.1, + "probability": 0.5464 + }, + { + "start": 15595.1, + "end": 15595.7, + "probability": 0.3639 + }, + { + "start": 15596.14, + "end": 15598.62, + "probability": 0.8809 + }, + { + "start": 15599.16, + "end": 15600.48, + "probability": 0.7838 + }, + { + "start": 15600.8, + "end": 15601.26, + "probability": 0.8682 + }, + { + "start": 15601.58, + "end": 15604.08, + "probability": 0.6675 + }, + { + "start": 15604.34, + "end": 15605.72, + "probability": 0.9688 + }, + { + "start": 15605.82, + "end": 15606.24, + "probability": 0.6203 + }, + { + "start": 15606.3, + "end": 15606.52, + "probability": 0.5128 + }, + { + "start": 15606.56, + "end": 15607.02, + "probability": 0.8693 + }, + { + "start": 15607.06, + "end": 15608.3, + "probability": 0.764 + }, + { + "start": 15609.18, + "end": 15609.84, + "probability": 0.9739 + }, + { + "start": 15609.94, + "end": 15611.88, + "probability": 0.993 + }, + { + "start": 15612.04, + "end": 15613.68, + "probability": 0.9611 + }, + { + "start": 15614.28, + "end": 15616.22, + "probability": 0.8146 + }, + { + "start": 15616.38, + "end": 15618.21, + "probability": 0.9917 + }, + { + "start": 15622.84, + "end": 15625.56, + "probability": 0.6589 + }, + { + "start": 15626.16, + "end": 15626.8, + "probability": 0.7571 + }, + { + "start": 15626.88, + "end": 15627.34, + "probability": 0.733 + }, + { + "start": 15627.55, + "end": 15628.64, + "probability": 0.7607 + }, + { + "start": 15628.96, + "end": 15630.28, + "probability": 0.6174 + }, + { + "start": 15630.6, + "end": 15631.36, + "probability": 0.8834 + }, + { + "start": 15633.12, + "end": 15635.42, + "probability": 0.9707 + }, + { + "start": 15637.67, + "end": 15638.86, + "probability": 0.1891 + }, + { + "start": 15640.08, + "end": 15643.0, + "probability": 0.7655 + }, + { + "start": 15644.5, + "end": 15645.2, + "probability": 0.9561 + }, + { + "start": 15645.36, + "end": 15646.6, + "probability": 0.8906 + }, + { + "start": 15647.22, + "end": 15649.6, + "probability": 0.9005 + }, + { + "start": 15651.04, + "end": 15656.04, + "probability": 0.7886 + }, + { + "start": 15656.16, + "end": 15656.58, + "probability": 0.0844 + }, + { + "start": 15657.44, + "end": 15658.58, + "probability": 0.2473 + }, + { + "start": 15659.24, + "end": 15661.86, + "probability": 0.608 + }, + { + "start": 15661.86, + "end": 15662.78, + "probability": 0.9821 + }, + { + "start": 15662.92, + "end": 15663.16, + "probability": 0.7051 + }, + { + "start": 15663.28, + "end": 15665.22, + "probability": 0.6107 + }, + { + "start": 15665.3, + "end": 15667.76, + "probability": 0.8548 + }, + { + "start": 15668.48, + "end": 15671.32, + "probability": 0.9051 + }, + { + "start": 15672.76, + "end": 15674.96, + "probability": 0.9621 + }, + { + "start": 15675.52, + "end": 15676.32, + "probability": 0.9338 + }, + { + "start": 15676.38, + "end": 15678.86, + "probability": 0.915 + }, + { + "start": 15678.94, + "end": 15679.96, + "probability": 0.9023 + }, + { + "start": 15680.64, + "end": 15683.14, + "probability": 0.9098 + }, + { + "start": 15683.16, + "end": 15686.35, + "probability": 0.9747 + }, + { + "start": 15686.8, + "end": 15691.0, + "probability": 0.9797 + }, + { + "start": 15691.14, + "end": 15692.62, + "probability": 0.7754 + }, + { + "start": 15693.56, + "end": 15694.44, + "probability": 0.146 + }, + { + "start": 15694.94, + "end": 15694.94, + "probability": 0.2006 + }, + { + "start": 15694.94, + "end": 15694.94, + "probability": 0.0154 + }, + { + "start": 15694.94, + "end": 15696.6, + "probability": 0.5064 + }, + { + "start": 15697.08, + "end": 15700.08, + "probability": 0.7865 + }, + { + "start": 15700.72, + "end": 15703.7, + "probability": 0.9808 + }, + { + "start": 15704.38, + "end": 15706.38, + "probability": 0.7413 + }, + { + "start": 15706.42, + "end": 15711.18, + "probability": 0.8953 + }, + { + "start": 15712.0, + "end": 15714.1, + "probability": 0.955 + }, + { + "start": 15714.84, + "end": 15716.3, + "probability": 0.4648 + }, + { + "start": 15716.56, + "end": 15718.2, + "probability": 0.9497 + }, + { + "start": 15718.92, + "end": 15722.04, + "probability": 0.9453 + }, + { + "start": 15722.36, + "end": 15726.48, + "probability": 0.9727 + }, + { + "start": 15728.08, + "end": 15728.98, + "probability": 0.1052 + }, + { + "start": 15729.08, + "end": 15730.06, + "probability": 0.5051 + }, + { + "start": 15730.26, + "end": 15730.92, + "probability": 0.6052 + }, + { + "start": 15731.06, + "end": 15732.8, + "probability": 0.9924 + }, + { + "start": 15733.48, + "end": 15735.67, + "probability": 0.9502 + }, + { + "start": 15736.08, + "end": 15737.14, + "probability": 0.7415 + }, + { + "start": 15737.86, + "end": 15739.78, + "probability": 0.9948 + }, + { + "start": 15741.0, + "end": 15741.18, + "probability": 0.8162 + }, + { + "start": 15741.32, + "end": 15741.8, + "probability": 0.468 + }, + { + "start": 15742.02, + "end": 15742.83, + "probability": 0.8475 + }, + { + "start": 15743.04, + "end": 15743.84, + "probability": 0.9046 + }, + { + "start": 15744.94, + "end": 15745.92, + "probability": 0.9441 + }, + { + "start": 15746.9, + "end": 15750.46, + "probability": 0.85 + }, + { + "start": 15751.4, + "end": 15754.48, + "probability": 0.9152 + }, + { + "start": 15755.14, + "end": 15756.58, + "probability": 0.5724 + }, + { + "start": 15756.7, + "end": 15758.06, + "probability": 0.6152 + }, + { + "start": 15759.1, + "end": 15760.06, + "probability": 0.9591 + }, + { + "start": 15760.78, + "end": 15762.76, + "probability": 0.9545 + }, + { + "start": 15763.5, + "end": 15765.8, + "probability": 0.9862 + }, + { + "start": 15766.76, + "end": 15768.54, + "probability": 0.8415 + }, + { + "start": 15768.92, + "end": 15775.72, + "probability": 0.7694 + }, + { + "start": 15776.5, + "end": 15779.28, + "probability": 0.7246 + }, + { + "start": 15780.58, + "end": 15783.68, + "probability": 0.8134 + }, + { + "start": 15783.8, + "end": 15785.08, + "probability": 0.9951 + }, + { + "start": 15785.96, + "end": 15787.22, + "probability": 0.9974 + }, + { + "start": 15788.02, + "end": 15789.86, + "probability": 0.8994 + }, + { + "start": 15790.52, + "end": 15791.16, + "probability": 0.9502 + }, + { + "start": 15791.26, + "end": 15791.94, + "probability": 0.6006 + }, + { + "start": 15792.04, + "end": 15795.26, + "probability": 0.9673 + }, + { + "start": 15795.26, + "end": 15798.46, + "probability": 0.9836 + }, + { + "start": 15798.84, + "end": 15800.38, + "probability": 0.9204 + }, + { + "start": 15800.82, + "end": 15803.08, + "probability": 0.999 + }, + { + "start": 15803.2, + "end": 15803.42, + "probability": 0.5623 + }, + { + "start": 15804.38, + "end": 15806.46, + "probability": 0.8674 + }, + { + "start": 15806.46, + "end": 15810.82, + "probability": 0.8253 + }, + { + "start": 15811.12, + "end": 15811.34, + "probability": 0.9403 + }, + { + "start": 15812.7, + "end": 15815.36, + "probability": 0.7957 + }, + { + "start": 15815.4, + "end": 15815.96, + "probability": 0.5244 + }, + { + "start": 15815.98, + "end": 15816.5, + "probability": 0.7695 + }, + { + "start": 15816.88, + "end": 15817.74, + "probability": 0.7325 + }, + { + "start": 15817.84, + "end": 15819.88, + "probability": 0.7858 + }, + { + "start": 15825.8, + "end": 15826.4, + "probability": 0.5308 + }, + { + "start": 15826.92, + "end": 15828.77, + "probability": 0.7905 + }, + { + "start": 15829.68, + "end": 15831.76, + "probability": 0.9904 + }, + { + "start": 15832.08, + "end": 15834.04, + "probability": 0.9501 + }, + { + "start": 15834.82, + "end": 15838.44, + "probability": 0.8053 + }, + { + "start": 15838.7, + "end": 15838.8, + "probability": 0.8899 + }, + { + "start": 15839.22, + "end": 15840.42, + "probability": 0.9806 + }, + { + "start": 15840.98, + "end": 15841.6, + "probability": 0.5455 + }, + { + "start": 15841.74, + "end": 15842.98, + "probability": 0.4261 + }, + { + "start": 15843.04, + "end": 15847.08, + "probability": 0.9771 + }, + { + "start": 15848.14, + "end": 15853.8, + "probability": 0.9806 + }, + { + "start": 15853.9, + "end": 15856.28, + "probability": 0.9976 + }, + { + "start": 15856.28, + "end": 15859.44, + "probability": 0.9962 + }, + { + "start": 15859.96, + "end": 15862.52, + "probability": 0.9248 + }, + { + "start": 15862.56, + "end": 15863.82, + "probability": 0.9405 + }, + { + "start": 15864.08, + "end": 15864.64, + "probability": 0.7487 + }, + { + "start": 15865.3, + "end": 15866.58, + "probability": 0.9114 + }, + { + "start": 15867.26, + "end": 15870.34, + "probability": 0.9872 + }, + { + "start": 15870.84, + "end": 15872.12, + "probability": 0.9526 + }, + { + "start": 15872.18, + "end": 15875.3, + "probability": 0.9854 + }, + { + "start": 15875.3, + "end": 15880.02, + "probability": 0.998 + }, + { + "start": 15880.66, + "end": 15882.42, + "probability": 0.9437 + }, + { + "start": 15883.08, + "end": 15889.24, + "probability": 0.7754 + }, + { + "start": 15889.8, + "end": 15894.15, + "probability": 0.9854 + }, + { + "start": 15894.28, + "end": 15898.12, + "probability": 0.9983 + }, + { + "start": 15898.18, + "end": 15899.32, + "probability": 0.9781 + }, + { + "start": 15900.2, + "end": 15903.08, + "probability": 0.9976 + }, + { + "start": 15903.26, + "end": 15906.2, + "probability": 0.8287 + }, + { + "start": 15906.44, + "end": 15908.32, + "probability": 0.728 + }, + { + "start": 15908.6, + "end": 15909.15, + "probability": 0.8232 + }, + { + "start": 15909.76, + "end": 15911.64, + "probability": 0.9663 + }, + { + "start": 15912.06, + "end": 15914.44, + "probability": 0.9875 + }, + { + "start": 15914.96, + "end": 15916.61, + "probability": 0.9932 + }, + { + "start": 15916.86, + "end": 15924.1, + "probability": 0.9357 + }, + { + "start": 15924.52, + "end": 15932.46, + "probability": 0.9756 + }, + { + "start": 15932.86, + "end": 15935.06, + "probability": 0.9961 + }, + { + "start": 15935.36, + "end": 15937.04, + "probability": 0.9794 + }, + { + "start": 15937.32, + "end": 15937.94, + "probability": 0.9845 + }, + { + "start": 15938.24, + "end": 15940.62, + "probability": 0.9574 + }, + { + "start": 15940.96, + "end": 15944.64, + "probability": 0.9741 + }, + { + "start": 15944.82, + "end": 15945.82, + "probability": 0.9534 + }, + { + "start": 15945.92, + "end": 15947.2, + "probability": 0.8913 + }, + { + "start": 15947.34, + "end": 15950.6, + "probability": 0.9092 + }, + { + "start": 15950.96, + "end": 15954.86, + "probability": 0.9124 + }, + { + "start": 15955.28, + "end": 15958.22, + "probability": 0.9899 + }, + { + "start": 15959.34, + "end": 15959.92, + "probability": 0.9544 + }, + { + "start": 15960.3, + "end": 15960.84, + "probability": 0.9415 + }, + { + "start": 15961.26, + "end": 15965.42, + "probability": 0.9886 + }, + { + "start": 15965.84, + "end": 15967.6, + "probability": 0.9623 + }, + { + "start": 15967.82, + "end": 15969.2, + "probability": 0.9556 + }, + { + "start": 15969.54, + "end": 15969.9, + "probability": 0.4923 + }, + { + "start": 15970.54, + "end": 15971.94, + "probability": 0.9923 + }, + { + "start": 15972.04, + "end": 15973.52, + "probability": 0.9961 + }, + { + "start": 15973.64, + "end": 15974.12, + "probability": 0.6199 + }, + { + "start": 15974.72, + "end": 15975.42, + "probability": 0.7639 + }, + { + "start": 15975.52, + "end": 15978.48, + "probability": 0.9994 + }, + { + "start": 15979.6, + "end": 15984.74, + "probability": 0.9867 + }, + { + "start": 15985.1, + "end": 15985.68, + "probability": 0.6625 + }, + { + "start": 15985.78, + "end": 15991.86, + "probability": 0.9984 + }, + { + "start": 15992.78, + "end": 15997.78, + "probability": 0.9957 + }, + { + "start": 15998.04, + "end": 15998.48, + "probability": 0.4576 + }, + { + "start": 15998.96, + "end": 16004.4, + "probability": 0.9954 + }, + { + "start": 16004.7, + "end": 16006.9, + "probability": 0.9966 + }, + { + "start": 16007.42, + "end": 16008.44, + "probability": 0.8169 + }, + { + "start": 16009.0, + "end": 16012.42, + "probability": 0.9371 + }, + { + "start": 16013.36, + "end": 16017.1, + "probability": 0.9512 + }, + { + "start": 16017.66, + "end": 16017.92, + "probability": 0.7084 + }, + { + "start": 16018.56, + "end": 16020.52, + "probability": 0.7767 + }, + { + "start": 16021.2, + "end": 16023.12, + "probability": 0.9778 + }, + { + "start": 16023.42, + "end": 16023.64, + "probability": 0.949 + }, + { + "start": 16023.7, + "end": 16024.86, + "probability": 0.9781 + }, + { + "start": 16024.86, + "end": 16026.34, + "probability": 0.8939 + }, + { + "start": 16026.4, + "end": 16029.94, + "probability": 0.9136 + }, + { + "start": 16030.3, + "end": 16032.72, + "probability": 0.9329 + }, + { + "start": 16033.46, + "end": 16036.44, + "probability": 0.9941 + }, + { + "start": 16036.96, + "end": 16038.08, + "probability": 0.9163 + }, + { + "start": 16038.46, + "end": 16040.06, + "probability": 0.9566 + }, + { + "start": 16040.36, + "end": 16042.1, + "probability": 0.9958 + }, + { + "start": 16042.18, + "end": 16043.89, + "probability": 0.9362 + }, + { + "start": 16044.32, + "end": 16046.47, + "probability": 0.9917 + }, + { + "start": 16046.92, + "end": 16053.02, + "probability": 0.8559 + }, + { + "start": 16053.3, + "end": 16058.64, + "probability": 0.9808 + }, + { + "start": 16059.04, + "end": 16059.18, + "probability": 0.0537 + }, + { + "start": 16059.26, + "end": 16060.2, + "probability": 0.8463 + }, + { + "start": 16060.26, + "end": 16061.21, + "probability": 0.928 + }, + { + "start": 16061.62, + "end": 16064.62, + "probability": 0.9932 + }, + { + "start": 16065.0, + "end": 16065.36, + "probability": 0.9473 + }, + { + "start": 16065.64, + "end": 16067.48, + "probability": 0.9893 + }, + { + "start": 16067.52, + "end": 16068.84, + "probability": 0.938 + }, + { + "start": 16068.86, + "end": 16070.08, + "probability": 0.9602 + }, + { + "start": 16070.34, + "end": 16071.66, + "probability": 0.8817 + }, + { + "start": 16071.96, + "end": 16071.96, + "probability": 0.2265 + }, + { + "start": 16071.96, + "end": 16074.54, + "probability": 0.9369 + }, + { + "start": 16074.62, + "end": 16075.06, + "probability": 0.8244 + }, + { + "start": 16075.14, + "end": 16077.04, + "probability": 0.8052 + }, + { + "start": 16077.2, + "end": 16079.18, + "probability": 0.9559 + }, + { + "start": 16079.62, + "end": 16081.78, + "probability": 0.9619 + }, + { + "start": 16092.66, + "end": 16095.46, + "probability": 0.7946 + }, + { + "start": 16096.2, + "end": 16097.24, + "probability": 0.8035 + }, + { + "start": 16097.32, + "end": 16104.02, + "probability": 0.9954 + }, + { + "start": 16104.14, + "end": 16105.68, + "probability": 0.9043 + }, + { + "start": 16105.74, + "end": 16107.26, + "probability": 0.2746 + }, + { + "start": 16107.38, + "end": 16108.76, + "probability": 0.6493 + }, + { + "start": 16109.92, + "end": 16118.6, + "probability": 0.9498 + }, + { + "start": 16119.44, + "end": 16120.94, + "probability": 0.9816 + }, + { + "start": 16121.34, + "end": 16125.32, + "probability": 0.6678 + }, + { + "start": 16125.42, + "end": 16127.92, + "probability": 0.8418 + }, + { + "start": 16128.1, + "end": 16132.72, + "probability": 0.9749 + }, + { + "start": 16132.86, + "end": 16137.46, + "probability": 0.9793 + }, + { + "start": 16138.28, + "end": 16142.24, + "probability": 0.8286 + }, + { + "start": 16142.82, + "end": 16143.92, + "probability": 0.8102 + }, + { + "start": 16144.68, + "end": 16145.76, + "probability": 0.7699 + }, + { + "start": 16146.02, + "end": 16150.56, + "probability": 0.9014 + }, + { + "start": 16150.72, + "end": 16154.52, + "probability": 0.9946 + }, + { + "start": 16155.62, + "end": 16160.82, + "probability": 0.9951 + }, + { + "start": 16160.82, + "end": 16164.96, + "probability": 0.9825 + }, + { + "start": 16165.6, + "end": 16170.92, + "probability": 0.9927 + }, + { + "start": 16171.26, + "end": 16173.22, + "probability": 0.9652 + }, + { + "start": 16173.54, + "end": 16175.34, + "probability": 0.5052 + }, + { + "start": 16176.22, + "end": 16179.04, + "probability": 0.83 + }, + { + "start": 16179.56, + "end": 16183.46, + "probability": 0.9047 + }, + { + "start": 16183.66, + "end": 16190.46, + "probability": 0.9883 + }, + { + "start": 16191.76, + "end": 16195.52, + "probability": 0.7985 + }, + { + "start": 16196.66, + "end": 16198.0, + "probability": 0.9639 + }, + { + "start": 16198.12, + "end": 16199.92, + "probability": 0.9419 + }, + { + "start": 16200.42, + "end": 16201.22, + "probability": 0.9307 + }, + { + "start": 16201.84, + "end": 16203.12, + "probability": 0.9944 + }, + { + "start": 16203.66, + "end": 16206.58, + "probability": 0.96 + }, + { + "start": 16207.02, + "end": 16208.38, + "probability": 0.9583 + }, + { + "start": 16209.2, + "end": 16210.9, + "probability": 0.8465 + }, + { + "start": 16211.02, + "end": 16215.0, + "probability": 0.9097 + }, + { + "start": 16215.86, + "end": 16219.96, + "probability": 0.9603 + }, + { + "start": 16220.52, + "end": 16221.76, + "probability": 0.7577 + }, + { + "start": 16222.02, + "end": 16226.1, + "probability": 0.7887 + }, + { + "start": 16228.12, + "end": 16230.06, + "probability": 0.7599 + }, + { + "start": 16230.64, + "end": 16237.15, + "probability": 0.9596 + }, + { + "start": 16238.12, + "end": 16240.52, + "probability": 0.8889 + }, + { + "start": 16240.84, + "end": 16246.5, + "probability": 0.9663 + }, + { + "start": 16247.34, + "end": 16249.9, + "probability": 0.856 + }, + { + "start": 16250.38, + "end": 16251.4, + "probability": 0.9279 + }, + { + "start": 16251.72, + "end": 16254.42, + "probability": 0.7106 + }, + { + "start": 16255.34, + "end": 16258.54, + "probability": 0.9857 + }, + { + "start": 16259.12, + "end": 16264.92, + "probability": 0.9795 + }, + { + "start": 16264.92, + "end": 16270.5, + "probability": 0.9963 + }, + { + "start": 16271.8, + "end": 16273.2, + "probability": 0.7449 + }, + { + "start": 16273.54, + "end": 16283.02, + "probability": 0.9656 + }, + { + "start": 16283.5, + "end": 16284.2, + "probability": 0.7738 + }, + { + "start": 16285.02, + "end": 16288.24, + "probability": 0.7919 + }, + { + "start": 16288.24, + "end": 16293.26, + "probability": 0.9634 + }, + { + "start": 16293.56, + "end": 16294.24, + "probability": 0.7197 + }, + { + "start": 16294.96, + "end": 16295.6, + "probability": 0.707 + }, + { + "start": 16295.94, + "end": 16300.52, + "probability": 0.9961 + }, + { + "start": 16301.68, + "end": 16302.9, + "probability": 0.9528 + }, + { + "start": 16303.02, + "end": 16308.62, + "probability": 0.7992 + }, + { + "start": 16309.02, + "end": 16309.66, + "probability": 0.7894 + }, + { + "start": 16309.9, + "end": 16313.5, + "probability": 0.9648 + }, + { + "start": 16313.74, + "end": 16317.42, + "probability": 0.9414 + }, + { + "start": 16318.18, + "end": 16319.98, + "probability": 0.4896 + }, + { + "start": 16320.56, + "end": 16326.24, + "probability": 0.9355 + }, + { + "start": 16326.72, + "end": 16328.72, + "probability": 0.9873 + }, + { + "start": 16329.3, + "end": 16330.62, + "probability": 0.929 + }, + { + "start": 16330.94, + "end": 16331.76, + "probability": 0.2633 + }, + { + "start": 16331.82, + "end": 16334.4, + "probability": 0.8354 + }, + { + "start": 16335.24, + "end": 16337.22, + "probability": 0.8478 + }, + { + "start": 16337.3, + "end": 16339.16, + "probability": 0.9383 + }, + { + "start": 16339.48, + "end": 16345.38, + "probability": 0.907 + }, + { + "start": 16345.58, + "end": 16348.68, + "probability": 0.9901 + }, + { + "start": 16349.44, + "end": 16349.68, + "probability": 0.6332 + }, + { + "start": 16351.68, + "end": 16353.8, + "probability": 0.7792 + }, + { + "start": 16353.88, + "end": 16355.98, + "probability": 0.7801 + }, + { + "start": 16356.56, + "end": 16358.06, + "probability": 0.8524 + }, + { + "start": 16367.66, + "end": 16368.14, + "probability": 0.3819 + }, + { + "start": 16368.14, + "end": 16368.42, + "probability": 0.7754 + }, + { + "start": 16369.06, + "end": 16369.86, + "probability": 0.7897 + }, + { + "start": 16369.9, + "end": 16371.1, + "probability": 0.703 + }, + { + "start": 16371.44, + "end": 16377.56, + "probability": 0.9895 + }, + { + "start": 16378.66, + "end": 16379.5, + "probability": 0.8423 + }, + { + "start": 16380.4, + "end": 16385.0, + "probability": 0.978 + }, + { + "start": 16385.0, + "end": 16389.38, + "probability": 0.9992 + }, + { + "start": 16390.04, + "end": 16396.54, + "probability": 0.9912 + }, + { + "start": 16397.64, + "end": 16401.72, + "probability": 0.8154 + }, + { + "start": 16402.82, + "end": 16405.32, + "probability": 0.9919 + }, + { + "start": 16406.0, + "end": 16407.96, + "probability": 0.9978 + }, + { + "start": 16409.7, + "end": 16410.76, + "probability": 0.9578 + }, + { + "start": 16412.76, + "end": 16416.54, + "probability": 0.9945 + }, + { + "start": 16416.54, + "end": 16421.28, + "probability": 0.9814 + }, + { + "start": 16421.84, + "end": 16427.62, + "probability": 0.9816 + }, + { + "start": 16428.1, + "end": 16432.1, + "probability": 0.9907 + }, + { + "start": 16433.4, + "end": 16436.98, + "probability": 0.9821 + }, + { + "start": 16436.98, + "end": 16441.42, + "probability": 0.9886 + }, + { + "start": 16441.92, + "end": 16444.9, + "probability": 0.9968 + }, + { + "start": 16445.76, + "end": 16451.2, + "probability": 0.9931 + }, + { + "start": 16451.82, + "end": 16454.02, + "probability": 0.9584 + }, + { + "start": 16454.8, + "end": 16456.56, + "probability": 0.9648 + }, + { + "start": 16456.9, + "end": 16457.44, + "probability": 0.7386 + }, + { + "start": 16457.78, + "end": 16459.26, + "probability": 0.8814 + }, + { + "start": 16459.98, + "end": 16460.66, + "probability": 0.7544 + }, + { + "start": 16460.98, + "end": 16462.82, + "probability": 0.819 + }, + { + "start": 16464.62, + "end": 16467.24, + "probability": 0.797 + }, + { + "start": 16468.96, + "end": 16473.23, + "probability": 0.9867 + }, + { + "start": 16474.66, + "end": 16477.5, + "probability": 0.997 + }, + { + "start": 16477.98, + "end": 16479.27, + "probability": 0.9624 + }, + { + "start": 16479.6, + "end": 16482.54, + "probability": 0.8555 + }, + { + "start": 16482.84, + "end": 16484.44, + "probability": 0.8928 + }, + { + "start": 16484.8, + "end": 16486.04, + "probability": 0.998 + }, + { + "start": 16486.98, + "end": 16490.4, + "probability": 0.9918 + }, + { + "start": 16490.92, + "end": 16492.0, + "probability": 0.7363 + }, + { + "start": 16492.54, + "end": 16493.64, + "probability": 0.9646 + }, + { + "start": 16494.02, + "end": 16495.32, + "probability": 0.8657 + }, + { + "start": 16495.86, + "end": 16496.88, + "probability": 0.8099 + }, + { + "start": 16497.02, + "end": 16498.44, + "probability": 0.9545 + }, + { + "start": 16498.52, + "end": 16499.98, + "probability": 0.9709 + }, + { + "start": 16500.5, + "end": 16503.06, + "probability": 0.9153 + }, + { + "start": 16503.16, + "end": 16504.44, + "probability": 0.9857 + }, + { + "start": 16505.62, + "end": 16510.72, + "probability": 0.9934 + }, + { + "start": 16511.12, + "end": 16513.16, + "probability": 0.9969 + }, + { + "start": 16513.5, + "end": 16517.68, + "probability": 0.9833 + }, + { + "start": 16517.8, + "end": 16518.86, + "probability": 0.8643 + }, + { + "start": 16518.9, + "end": 16520.06, + "probability": 0.9655 + }, + { + "start": 16521.56, + "end": 16522.45, + "probability": 0.9312 + }, + { + "start": 16522.88, + "end": 16523.78, + "probability": 0.9658 + }, + { + "start": 16524.82, + "end": 16526.58, + "probability": 0.9569 + }, + { + "start": 16528.22, + "end": 16531.82, + "probability": 0.9988 + }, + { + "start": 16532.2, + "end": 16532.96, + "probability": 0.8516 + }, + { + "start": 16533.28, + "end": 16535.5, + "probability": 0.9988 + }, + { + "start": 16536.12, + "end": 16541.32, + "probability": 0.9863 + }, + { + "start": 16541.88, + "end": 16543.7, + "probability": 0.8228 + }, + { + "start": 16544.82, + "end": 16549.64, + "probability": 0.9775 + }, + { + "start": 16550.16, + "end": 16551.4, + "probability": 0.6735 + }, + { + "start": 16551.52, + "end": 16553.08, + "probability": 0.9193 + }, + { + "start": 16553.34, + "end": 16555.52, + "probability": 0.9962 + }, + { + "start": 16556.2, + "end": 16562.14, + "probability": 0.9968 + }, + { + "start": 16562.14, + "end": 16565.58, + "probability": 0.9714 + }, + { + "start": 16565.58, + "end": 16566.18, + "probability": 0.4857 + }, + { + "start": 16567.64, + "end": 16568.81, + "probability": 0.8815 + }, + { + "start": 16571.34, + "end": 16574.52, + "probability": 0.9867 + }, + { + "start": 16575.02, + "end": 16575.58, + "probability": 0.9277 + }, + { + "start": 16576.72, + "end": 16577.9, + "probability": 0.9971 + }, + { + "start": 16578.66, + "end": 16586.76, + "probability": 0.9858 + }, + { + "start": 16587.78, + "end": 16591.18, + "probability": 0.999 + }, + { + "start": 16592.52, + "end": 16594.76, + "probability": 0.8685 + }, + { + "start": 16594.96, + "end": 16595.4, + "probability": 0.9257 + }, + { + "start": 16595.66, + "end": 16597.42, + "probability": 0.7174 + }, + { + "start": 16597.52, + "end": 16600.22, + "probability": 0.8576 + }, + { + "start": 16600.78, + "end": 16602.7, + "probability": 0.9902 + }, + { + "start": 16603.36, + "end": 16604.32, + "probability": 0.9308 + }, + { + "start": 16606.34, + "end": 16606.86, + "probability": 0.7183 + }, + { + "start": 16615.12, + "end": 16616.0, + "probability": 0.4923 + }, + { + "start": 16616.04, + "end": 16616.41, + "probability": 0.6497 + }, + { + "start": 16617.18, + "end": 16618.78, + "probability": 0.7041 + }, + { + "start": 16619.7, + "end": 16620.62, + "probability": 0.634 + }, + { + "start": 16621.64, + "end": 16623.34, + "probability": 0.9825 + }, + { + "start": 16624.36, + "end": 16629.04, + "probability": 0.9357 + }, + { + "start": 16629.22, + "end": 16633.98, + "probability": 0.9733 + }, + { + "start": 16634.92, + "end": 16636.2, + "probability": 0.6692 + }, + { + "start": 16637.24, + "end": 16637.98, + "probability": 0.6578 + }, + { + "start": 16638.02, + "end": 16638.8, + "probability": 0.9247 + }, + { + "start": 16638.94, + "end": 16644.46, + "probability": 0.9821 + }, + { + "start": 16645.08, + "end": 16646.46, + "probability": 0.6542 + }, + { + "start": 16646.76, + "end": 16648.66, + "probability": 0.8892 + }, + { + "start": 16648.7, + "end": 16650.32, + "probability": 0.6717 + }, + { + "start": 16650.66, + "end": 16653.22, + "probability": 0.9859 + }, + { + "start": 16654.7, + "end": 16659.82, + "probability": 0.8643 + }, + { + "start": 16661.32, + "end": 16665.9, + "probability": 0.915 + }, + { + "start": 16666.7, + "end": 16668.44, + "probability": 0.83 + }, + { + "start": 16669.78, + "end": 16675.3, + "probability": 0.9527 + }, + { + "start": 16675.4, + "end": 16678.32, + "probability": 0.8442 + }, + { + "start": 16680.08, + "end": 16684.34, + "probability": 0.4011 + }, + { + "start": 16688.12, + "end": 16691.78, + "probability": 0.7684 + }, + { + "start": 16692.58, + "end": 16692.98, + "probability": 0.3922 + }, + { + "start": 16693.06, + "end": 16694.52, + "probability": 0.8299 + }, + { + "start": 16694.58, + "end": 16699.08, + "probability": 0.7816 + }, + { + "start": 16699.36, + "end": 16701.16, + "probability": 0.9844 + }, + { + "start": 16702.18, + "end": 16703.86, + "probability": 0.4068 + }, + { + "start": 16703.92, + "end": 16708.18, + "probability": 0.8439 + }, + { + "start": 16709.06, + "end": 16711.34, + "probability": 0.9966 + }, + { + "start": 16711.66, + "end": 16715.12, + "probability": 0.8411 + }, + { + "start": 16716.16, + "end": 16717.34, + "probability": 0.7427 + }, + { + "start": 16718.44, + "end": 16720.42, + "probability": 0.5347 + }, + { + "start": 16721.22, + "end": 16724.14, + "probability": 0.9928 + }, + { + "start": 16725.1, + "end": 16725.2, + "probability": 0.4015 + }, + { + "start": 16725.32, + "end": 16726.29, + "probability": 0.8209 + }, + { + "start": 16726.7, + "end": 16729.42, + "probability": 0.7867 + }, + { + "start": 16730.12, + "end": 16731.86, + "probability": 0.9056 + }, + { + "start": 16731.96, + "end": 16733.56, + "probability": 0.9742 + }, + { + "start": 16734.36, + "end": 16738.04, + "probability": 0.7376 + }, + { + "start": 16738.66, + "end": 16744.6, + "probability": 0.8013 + }, + { + "start": 16745.24, + "end": 16748.16, + "probability": 0.9438 + }, + { + "start": 16749.1, + "end": 16752.14, + "probability": 0.3995 + }, + { + "start": 16753.54, + "end": 16756.57, + "probability": 0.8452 + }, + { + "start": 16757.98, + "end": 16763.56, + "probability": 0.9878 + }, + { + "start": 16763.84, + "end": 16765.78, + "probability": 0.9937 + }, + { + "start": 16767.52, + "end": 16770.58, + "probability": 0.9484 + }, + { + "start": 16770.7, + "end": 16772.34, + "probability": 0.8805 + }, + { + "start": 16772.7, + "end": 16773.32, + "probability": 0.6407 + }, + { + "start": 16773.52, + "end": 16779.22, + "probability": 0.9906 + }, + { + "start": 16779.36, + "end": 16779.94, + "probability": 0.1651 + }, + { + "start": 16780.1, + "end": 16781.64, + "probability": 0.4897 + }, + { + "start": 16782.02, + "end": 16783.28, + "probability": 0.7753 + }, + { + "start": 16783.64, + "end": 16786.0, + "probability": 0.9784 + }, + { + "start": 16787.04, + "end": 16788.93, + "probability": 0.9729 + }, + { + "start": 16789.24, + "end": 16795.36, + "probability": 0.8977 + }, + { + "start": 16795.58, + "end": 16796.06, + "probability": 0.4013 + }, + { + "start": 16796.06, + "end": 16796.86, + "probability": 0.737 + }, + { + "start": 16798.96, + "end": 16804.66, + "probability": 0.9858 + }, + { + "start": 16805.54, + "end": 16806.02, + "probability": 0.1923 + }, + { + "start": 16806.02, + "end": 16807.1, + "probability": 0.8604 + }, + { + "start": 16807.66, + "end": 16807.66, + "probability": 0.1763 + }, + { + "start": 16808.1, + "end": 16809.58, + "probability": 0.6199 + }, + { + "start": 16810.48, + "end": 16813.58, + "probability": 0.6726 + }, + { + "start": 16813.62, + "end": 16814.43, + "probability": 0.6658 + }, + { + "start": 16815.36, + "end": 16817.56, + "probability": 0.9695 + }, + { + "start": 16817.56, + "end": 16821.46, + "probability": 0.9866 + }, + { + "start": 16822.1, + "end": 16822.94, + "probability": 0.343 + }, + { + "start": 16823.0, + "end": 16826.3, + "probability": 0.9021 + }, + { + "start": 16826.3, + "end": 16831.72, + "probability": 0.8571 + }, + { + "start": 16832.5, + "end": 16833.62, + "probability": 0.7618 + }, + { + "start": 16834.52, + "end": 16838.64, + "probability": 0.8791 + }, + { + "start": 16839.2, + "end": 16840.58, + "probability": 0.847 + }, + { + "start": 16840.8, + "end": 16841.08, + "probability": 0.8126 + }, + { + "start": 16841.32, + "end": 16843.36, + "probability": 0.5459 + }, + { + "start": 16843.66, + "end": 16846.7, + "probability": 0.9705 + }, + { + "start": 16847.34, + "end": 16848.96, + "probability": 0.9102 + }, + { + "start": 16858.26, + "end": 16859.1, + "probability": 0.5262 + }, + { + "start": 16863.66, + "end": 16864.76, + "probability": 0.7044 + }, + { + "start": 16864.86, + "end": 16866.6, + "probability": 0.9669 + }, + { + "start": 16866.82, + "end": 16868.26, + "probability": 0.8901 + }, + { + "start": 16869.2, + "end": 16871.66, + "probability": 0.9341 + }, + { + "start": 16872.66, + "end": 16872.92, + "probability": 0.4494 + }, + { + "start": 16873.04, + "end": 16876.56, + "probability": 0.9788 + }, + { + "start": 16877.28, + "end": 16879.76, + "probability": 0.5058 + }, + { + "start": 16880.38, + "end": 16882.04, + "probability": 0.6833 + }, + { + "start": 16882.8, + "end": 16884.24, + "probability": 0.9445 + }, + { + "start": 16884.8, + "end": 16886.18, + "probability": 0.9309 + }, + { + "start": 16887.66, + "end": 16891.36, + "probability": 0.9548 + }, + { + "start": 16891.36, + "end": 16895.64, + "probability": 0.9778 + }, + { + "start": 16897.18, + "end": 16898.38, + "probability": 0.7892 + }, + { + "start": 16900.06, + "end": 16901.9, + "probability": 0.8974 + }, + { + "start": 16902.06, + "end": 16907.94, + "probability": 0.9814 + }, + { + "start": 16908.13, + "end": 16914.0, + "probability": 0.9979 + }, + { + "start": 16915.06, + "end": 16922.67, + "probability": 0.9946 + }, + { + "start": 16923.08, + "end": 16925.5, + "probability": 0.9824 + }, + { + "start": 16926.48, + "end": 16930.7, + "probability": 0.9198 + }, + { + "start": 16931.48, + "end": 16937.74, + "probability": 0.9871 + }, + { + "start": 16938.76, + "end": 16945.55, + "probability": 0.9924 + }, + { + "start": 16947.36, + "end": 16948.76, + "probability": 0.8356 + }, + { + "start": 16949.02, + "end": 16950.98, + "probability": 0.8108 + }, + { + "start": 16951.34, + "end": 16954.7, + "probability": 0.9871 + }, + { + "start": 16954.76, + "end": 16955.68, + "probability": 0.9011 + }, + { + "start": 16956.8, + "end": 16958.82, + "probability": 0.7515 + }, + { + "start": 16959.4, + "end": 16960.14, + "probability": 0.5313 + }, + { + "start": 16960.64, + "end": 16961.46, + "probability": 0.7758 + }, + { + "start": 16961.78, + "end": 16966.96, + "probability": 0.9919 + }, + { + "start": 16966.96, + "end": 16972.0, + "probability": 0.999 + }, + { + "start": 16974.4, + "end": 16975.26, + "probability": 0.8389 + }, + { + "start": 16975.42, + "end": 16976.56, + "probability": 0.9539 + }, + { + "start": 16976.86, + "end": 16978.78, + "probability": 0.8169 + }, + { + "start": 16979.28, + "end": 16980.42, + "probability": 0.7355 + }, + { + "start": 16980.52, + "end": 16982.64, + "probability": 0.8853 + }, + { + "start": 16982.96, + "end": 16987.14, + "probability": 0.9923 + }, + { + "start": 16987.14, + "end": 16990.44, + "probability": 0.9942 + }, + { + "start": 16990.98, + "end": 16994.34, + "probability": 0.9846 + }, + { + "start": 16995.22, + "end": 16996.8, + "probability": 0.8312 + }, + { + "start": 16996.96, + "end": 16997.98, + "probability": 0.7402 + }, + { + "start": 16998.5, + "end": 17003.94, + "probability": 0.9888 + }, + { + "start": 17004.72, + "end": 17008.87, + "probability": 0.9542 + }, + { + "start": 17010.16, + "end": 17011.78, + "probability": 0.9423 + }, + { + "start": 17012.44, + "end": 17016.58, + "probability": 0.6747 + }, + { + "start": 17017.04, + "end": 17021.42, + "probability": 0.9607 + }, + { + "start": 17021.42, + "end": 17025.12, + "probability": 0.7982 + }, + { + "start": 17026.32, + "end": 17027.54, + "probability": 0.8998 + }, + { + "start": 17028.2, + "end": 17030.81, + "probability": 0.9892 + }, + { + "start": 17031.28, + "end": 17034.32, + "probability": 0.8421 + }, + { + "start": 17035.26, + "end": 17037.48, + "probability": 0.8482 + }, + { + "start": 17037.74, + "end": 17041.78, + "probability": 0.8648 + }, + { + "start": 17042.06, + "end": 17043.46, + "probability": 0.9284 + }, + { + "start": 17043.7, + "end": 17047.88, + "probability": 0.9951 + }, + { + "start": 17048.8, + "end": 17051.22, + "probability": 0.9974 + }, + { + "start": 17051.22, + "end": 17054.22, + "probability": 0.9991 + }, + { + "start": 17056.44, + "end": 17058.62, + "probability": 0.8512 + }, + { + "start": 17059.2, + "end": 17059.98, + "probability": 0.6855 + }, + { + "start": 17060.16, + "end": 17066.42, + "probability": 0.9097 + }, + { + "start": 17066.88, + "end": 17070.82, + "probability": 0.9967 + }, + { + "start": 17070.86, + "end": 17074.62, + "probability": 0.8063 + }, + { + "start": 17075.14, + "end": 17077.84, + "probability": 0.9868 + }, + { + "start": 17078.44, + "end": 17078.8, + "probability": 0.7294 + }, + { + "start": 17078.9, + "end": 17080.76, + "probability": 0.8812 + }, + { + "start": 17081.18, + "end": 17084.22, + "probability": 0.7585 + }, + { + "start": 17084.46, + "end": 17085.82, + "probability": 0.5679 + }, + { + "start": 17086.16, + "end": 17090.2, + "probability": 0.8818 + }, + { + "start": 17090.62, + "end": 17092.68, + "probability": 0.7328 + }, + { + "start": 17093.0, + "end": 17095.9, + "probability": 0.8608 + }, + { + "start": 17095.94, + "end": 17095.94, + "probability": 0.3812 + }, + { + "start": 17096.02, + "end": 17098.82, + "probability": 0.9942 + }, + { + "start": 17099.16, + "end": 17100.04, + "probability": 0.6448 + }, + { + "start": 17100.76, + "end": 17101.69, + "probability": 0.8159 + }, + { + "start": 17102.06, + "end": 17107.16, + "probability": 0.9858 + }, + { + "start": 17109.32, + "end": 17109.62, + "probability": 0.5726 + }, + { + "start": 17109.66, + "end": 17115.7, + "probability": 0.998 + }, + { + "start": 17115.7, + "end": 17122.14, + "probability": 0.9149 + }, + { + "start": 17123.36, + "end": 17124.71, + "probability": 0.9937 + }, + { + "start": 17125.6, + "end": 17126.88, + "probability": 0.9717 + }, + { + "start": 17127.4, + "end": 17130.78, + "probability": 0.923 + }, + { + "start": 17131.3, + "end": 17131.4, + "probability": 0.2247 + }, + { + "start": 17131.4, + "end": 17136.52, + "probability": 0.9905 + }, + { + "start": 17137.08, + "end": 17140.16, + "probability": 0.8607 + }, + { + "start": 17140.58, + "end": 17145.82, + "probability": 0.9586 + }, + { + "start": 17146.5, + "end": 17152.3, + "probability": 0.9941 + }, + { + "start": 17153.62, + "end": 17155.88, + "probability": 0.7056 + }, + { + "start": 17156.4, + "end": 17158.84, + "probability": 0.7419 + }, + { + "start": 17159.3, + "end": 17160.7, + "probability": 0.9271 + }, + { + "start": 17182.08, + "end": 17182.76, + "probability": 0.4065 + }, + { + "start": 17183.54, + "end": 17185.42, + "probability": 0.8296 + }, + { + "start": 17186.32, + "end": 17186.8, + "probability": 0.7806 + }, + { + "start": 17187.16, + "end": 17191.24, + "probability": 0.9761 + }, + { + "start": 17191.44, + "end": 17192.98, + "probability": 0.666 + }, + { + "start": 17193.86, + "end": 17195.32, + "probability": 0.5157 + }, + { + "start": 17196.35, + "end": 17200.52, + "probability": 0.5428 + }, + { + "start": 17200.92, + "end": 17201.5, + "probability": 0.8381 + }, + { + "start": 17203.34, + "end": 17204.04, + "probability": 0.6186 + }, + { + "start": 17205.58, + "end": 17206.57, + "probability": 0.918 + }, + { + "start": 17207.54, + "end": 17212.12, + "probability": 0.9702 + }, + { + "start": 17213.5, + "end": 17217.0, + "probability": 0.9969 + }, + { + "start": 17218.44, + "end": 17221.56, + "probability": 0.998 + }, + { + "start": 17221.84, + "end": 17223.82, + "probability": 0.7613 + }, + { + "start": 17224.44, + "end": 17229.42, + "probability": 0.9504 + }, + { + "start": 17230.14, + "end": 17232.3, + "probability": 0.995 + }, + { + "start": 17232.38, + "end": 17233.48, + "probability": 0.9062 + }, + { + "start": 17233.8, + "end": 17235.8, + "probability": 0.3454 + }, + { + "start": 17236.16, + "end": 17237.62, + "probability": 0.9573 + }, + { + "start": 17237.74, + "end": 17239.13, + "probability": 0.5255 + }, + { + "start": 17240.36, + "end": 17244.44, + "probability": 0.8372 + }, + { + "start": 17246.1, + "end": 17248.22, + "probability": 0.9936 + }, + { + "start": 17249.76, + "end": 17251.22, + "probability": 0.9978 + }, + { + "start": 17252.08, + "end": 17253.42, + "probability": 0.9302 + }, + { + "start": 17254.58, + "end": 17255.24, + "probability": 0.6682 + }, + { + "start": 17256.06, + "end": 17259.3, + "probability": 0.9888 + }, + { + "start": 17259.3, + "end": 17262.0, + "probability": 0.9991 + }, + { + "start": 17262.78, + "end": 17264.04, + "probability": 0.9514 + }, + { + "start": 17264.74, + "end": 17270.98, + "probability": 0.9902 + }, + { + "start": 17271.68, + "end": 17275.28, + "probability": 0.9115 + }, + { + "start": 17275.8, + "end": 17279.78, + "probability": 0.9954 + }, + { + "start": 17280.34, + "end": 17282.94, + "probability": 0.9912 + }, + { + "start": 17283.0, + "end": 17287.5, + "probability": 0.9966 + }, + { + "start": 17288.14, + "end": 17290.24, + "probability": 0.9614 + }, + { + "start": 17292.4, + "end": 17296.28, + "probability": 0.8536 + }, + { + "start": 17296.28, + "end": 17298.98, + "probability": 0.9977 + }, + { + "start": 17299.66, + "end": 17303.76, + "probability": 0.7729 + }, + { + "start": 17303.86, + "end": 17307.44, + "probability": 0.9736 + }, + { + "start": 17307.5, + "end": 17308.28, + "probability": 0.8755 + }, + { + "start": 17308.46, + "end": 17309.36, + "probability": 0.9865 + }, + { + "start": 17309.8, + "end": 17311.64, + "probability": 0.9504 + }, + { + "start": 17312.26, + "end": 17317.06, + "probability": 0.995 + }, + { + "start": 17318.12, + "end": 17320.24, + "probability": 0.9371 + }, + { + "start": 17320.24, + "end": 17323.88, + "probability": 0.948 + }, + { + "start": 17323.98, + "end": 17324.64, + "probability": 0.4677 + }, + { + "start": 17325.17, + "end": 17329.82, + "probability": 0.6404 + }, + { + "start": 17330.42, + "end": 17331.92, + "probability": 0.4487 + }, + { + "start": 17332.44, + "end": 17334.9, + "probability": 0.7712 + }, + { + "start": 17335.36, + "end": 17338.28, + "probability": 0.9792 + }, + { + "start": 17338.78, + "end": 17340.9, + "probability": 0.9755 + }, + { + "start": 17341.5, + "end": 17343.52, + "probability": 0.9824 + }, + { + "start": 17346.24, + "end": 17347.74, + "probability": 0.7384 + }, + { + "start": 17348.52, + "end": 17353.94, + "probability": 0.8495 + }, + { + "start": 17354.86, + "end": 17357.56, + "probability": 0.8698 + }, + { + "start": 17357.96, + "end": 17358.12, + "probability": 0.8138 + }, + { + "start": 17358.16, + "end": 17359.84, + "probability": 0.9958 + }, + { + "start": 17359.9, + "end": 17361.94, + "probability": 0.9734 + }, + { + "start": 17362.38, + "end": 17363.2, + "probability": 0.4271 + }, + { + "start": 17363.99, + "end": 17368.78, + "probability": 0.6731 + }, + { + "start": 17368.84, + "end": 17369.32, + "probability": 0.5498 + }, + { + "start": 17369.44, + "end": 17370.52, + "probability": 0.7395 + }, + { + "start": 17370.56, + "end": 17371.68, + "probability": 0.8436 + }, + { + "start": 17372.54, + "end": 17374.18, + "probability": 0.0057 + }, + { + "start": 17374.38, + "end": 17374.52, + "probability": 0.22 + }, + { + "start": 17374.6, + "end": 17374.78, + "probability": 0.207 + }, + { + "start": 17374.84, + "end": 17376.27, + "probability": 0.7451 + }, + { + "start": 17377.22, + "end": 17379.92, + "probability": 0.9431 + }, + { + "start": 17380.2, + "end": 17380.66, + "probability": 0.5516 + }, + { + "start": 17380.74, + "end": 17387.84, + "probability": 0.9609 + }, + { + "start": 17387.96, + "end": 17389.16, + "probability": 0.8149 + }, + { + "start": 17389.6, + "end": 17393.82, + "probability": 0.9832 + }, + { + "start": 17394.58, + "end": 17400.48, + "probability": 0.9871 + }, + { + "start": 17401.28, + "end": 17404.82, + "probability": 0.9944 + }, + { + "start": 17405.42, + "end": 17408.44, + "probability": 0.8234 + }, + { + "start": 17409.38, + "end": 17410.5, + "probability": 0.8692 + }, + { + "start": 17410.6, + "end": 17411.14, + "probability": 0.9654 + }, + { + "start": 17411.2, + "end": 17412.3, + "probability": 0.8138 + }, + { + "start": 17412.72, + "end": 17415.74, + "probability": 0.9911 + }, + { + "start": 17416.16, + "end": 17417.72, + "probability": 0.8436 + }, + { + "start": 17418.04, + "end": 17419.99, + "probability": 0.9108 + }, + { + "start": 17420.54, + "end": 17421.96, + "probability": 0.8702 + }, + { + "start": 17422.04, + "end": 17424.34, + "probability": 0.8138 + }, + { + "start": 17425.3, + "end": 17428.74, + "probability": 0.9289 + }, + { + "start": 17430.68, + "end": 17431.78, + "probability": 0.7752 + }, + { + "start": 17432.46, + "end": 17434.24, + "probability": 0.9973 + }, + { + "start": 17434.26, + "end": 17437.22, + "probability": 0.9956 + }, + { + "start": 17437.84, + "end": 17440.26, + "probability": 0.919 + }, + { + "start": 17440.8, + "end": 17442.7, + "probability": 0.8912 + }, + { + "start": 17443.06, + "end": 17445.97, + "probability": 0.9924 + }, + { + "start": 17447.26, + "end": 17451.52, + "probability": 0.9976 + }, + { + "start": 17451.76, + "end": 17453.82, + "probability": 0.9835 + }, + { + "start": 17455.52, + "end": 17457.28, + "probability": 0.8364 + }, + { + "start": 17458.02, + "end": 17461.08, + "probability": 0.9166 + }, + { + "start": 17461.28, + "end": 17463.07, + "probability": 0.9937 + }, + { + "start": 17463.94, + "end": 17467.56, + "probability": 0.9955 + }, + { + "start": 17468.16, + "end": 17470.1, + "probability": 0.9677 + }, + { + "start": 17470.18, + "end": 17471.68, + "probability": 0.9859 + }, + { + "start": 17471.9, + "end": 17472.28, + "probability": 0.5968 + }, + { + "start": 17472.34, + "end": 17474.78, + "probability": 0.936 + }, + { + "start": 17475.74, + "end": 17479.52, + "probability": 0.6702 + }, + { + "start": 17479.53, + "end": 17481.32, + "probability": 0.3522 + }, + { + "start": 17481.32, + "end": 17483.8, + "probability": 0.9194 + }, + { + "start": 17484.56, + "end": 17488.34, + "probability": 0.8837 + }, + { + "start": 17489.61, + "end": 17493.54, + "probability": 0.9365 + }, + { + "start": 17493.7, + "end": 17495.0, + "probability": 0.994 + }, + { + "start": 17495.54, + "end": 17495.54, + "probability": 0.3957 + }, + { + "start": 17495.58, + "end": 17496.8, + "probability": 0.9707 + }, + { + "start": 17496.8, + "end": 17499.72, + "probability": 0.8999 + }, + { + "start": 17499.98, + "end": 17500.2, + "probability": 0.7493 + }, + { + "start": 17501.02, + "end": 17502.76, + "probability": 0.7666 + }, + { + "start": 17503.54, + "end": 17504.12, + "probability": 0.6727 + }, + { + "start": 17504.78, + "end": 17506.72, + "probability": 0.2161 + }, + { + "start": 17510.96, + "end": 17511.22, + "probability": 0.1216 + }, + { + "start": 17511.78, + "end": 17512.34, + "probability": 0.1599 + }, + { + "start": 17521.46, + "end": 17521.92, + "probability": 0.0614 + }, + { + "start": 17521.92, + "end": 17521.94, + "probability": 0.4934 + }, + { + "start": 17521.94, + "end": 17524.02, + "probability": 0.9134 + }, + { + "start": 17524.1, + "end": 17526.62, + "probability": 0.9485 + }, + { + "start": 17526.8, + "end": 17527.82, + "probability": 0.8041 + }, + { + "start": 17527.94, + "end": 17529.5, + "probability": 0.825 + }, + { + "start": 17530.06, + "end": 17530.56, + "probability": 0.5226 + }, + { + "start": 17530.8, + "end": 17532.69, + "probability": 0.8782 + }, + { + "start": 17533.62, + "end": 17536.02, + "probability": 0.9585 + }, + { + "start": 17536.06, + "end": 17536.24, + "probability": 0.8517 + }, + { + "start": 17536.24, + "end": 17538.46, + "probability": 0.1528 + }, + { + "start": 17538.98, + "end": 17539.62, + "probability": 0.678 + }, + { + "start": 17540.24, + "end": 17542.74, + "probability": 0.7259 + }, + { + "start": 17542.74, + "end": 17543.06, + "probability": 0.068 + }, + { + "start": 17543.06, + "end": 17545.76, + "probability": 0.4896 + }, + { + "start": 17545.78, + "end": 17546.8, + "probability": 0.1989 + }, + { + "start": 17547.84, + "end": 17551.14, + "probability": 0.7589 + }, + { + "start": 17551.84, + "end": 17552.52, + "probability": 0.7075 + }, + { + "start": 17555.36, + "end": 17557.02, + "probability": 0.2092 + }, + { + "start": 17557.54, + "end": 17557.66, + "probability": 0.0177 + }, + { + "start": 17557.66, + "end": 17558.38, + "probability": 0.4368 + }, + { + "start": 17558.56, + "end": 17558.9, + "probability": 0.9265 + }, + { + "start": 17560.84, + "end": 17564.5, + "probability": 0.8795 + }, + { + "start": 17565.3, + "end": 17568.92, + "probability": 0.4659 + }, + { + "start": 17569.4, + "end": 17570.66, + "probability": 0.7786 + }, + { + "start": 17571.94, + "end": 17573.78, + "probability": 0.973 + }, + { + "start": 17574.2, + "end": 17576.57, + "probability": 0.988 + }, + { + "start": 17578.52, + "end": 17580.54, + "probability": 0.9019 + }, + { + "start": 17581.12, + "end": 17584.26, + "probability": 0.9766 + }, + { + "start": 17586.39, + "end": 17590.02, + "probability": 0.9883 + }, + { + "start": 17591.06, + "end": 17592.42, + "probability": 0.9892 + }, + { + "start": 17593.14, + "end": 17599.28, + "probability": 0.8492 + }, + { + "start": 17600.34, + "end": 17602.82, + "probability": 0.9842 + }, + { + "start": 17604.28, + "end": 17605.56, + "probability": 0.9708 + }, + { + "start": 17609.62, + "end": 17611.76, + "probability": 0.8238 + }, + { + "start": 17611.86, + "end": 17615.6, + "probability": 0.9971 + }, + { + "start": 17615.7, + "end": 17617.14, + "probability": 0.843 + }, + { + "start": 17617.22, + "end": 17619.2, + "probability": 0.9822 + }, + { + "start": 17620.12, + "end": 17622.46, + "probability": 0.9525 + }, + { + "start": 17624.2, + "end": 17630.7, + "probability": 0.8032 + }, + { + "start": 17632.04, + "end": 17635.94, + "probability": 0.9945 + }, + { + "start": 17635.94, + "end": 17642.04, + "probability": 0.9971 + }, + { + "start": 17643.2, + "end": 17643.86, + "probability": 0.7913 + }, + { + "start": 17644.92, + "end": 17651.3, + "probability": 0.9836 + }, + { + "start": 17652.94, + "end": 17655.9, + "probability": 0.8611 + }, + { + "start": 17656.0, + "end": 17656.54, + "probability": 0.6702 + }, + { + "start": 17657.5, + "end": 17658.26, + "probability": 0.9873 + }, + { + "start": 17658.78, + "end": 17660.12, + "probability": 0.9304 + }, + { + "start": 17660.82, + "end": 17664.14, + "probability": 0.9781 + }, + { + "start": 17664.84, + "end": 17666.9, + "probability": 0.9646 + }, + { + "start": 17668.42, + "end": 17670.38, + "probability": 0.7139 + }, + { + "start": 17670.92, + "end": 17672.04, + "probability": 0.8842 + }, + { + "start": 17672.72, + "end": 17676.96, + "probability": 0.991 + }, + { + "start": 17677.44, + "end": 17677.76, + "probability": 0.8832 + }, + { + "start": 17677.82, + "end": 17678.17, + "probability": 0.8917 + }, + { + "start": 17678.94, + "end": 17681.5, + "probability": 0.6365 + }, + { + "start": 17681.9, + "end": 17683.08, + "probability": 0.4386 + }, + { + "start": 17683.08, + "end": 17684.12, + "probability": 0.5846 + }, + { + "start": 17684.12, + "end": 17685.2, + "probability": 0.3859 + }, + { + "start": 17685.3, + "end": 17685.72, + "probability": 0.5134 + }, + { + "start": 17685.8, + "end": 17686.55, + "probability": 0.3807 + }, + { + "start": 17686.82, + "end": 17690.9, + "probability": 0.0239 + }, + { + "start": 17690.96, + "end": 17691.1, + "probability": 0.0032 + }, + { + "start": 17691.1, + "end": 17694.86, + "probability": 0.9295 + }, + { + "start": 17694.94, + "end": 17695.72, + "probability": 0.6176 + }, + { + "start": 17695.86, + "end": 17699.74, + "probability": 0.2248 + }, + { + "start": 17700.42, + "end": 17705.7, + "probability": 0.9382 + }, + { + "start": 17710.86, + "end": 17711.66, + "probability": 0.6302 + }, + { + "start": 17712.42, + "end": 17713.08, + "probability": 0.4211 + }, + { + "start": 17713.96, + "end": 17715.08, + "probability": 0.7685 + }, + { + "start": 17718.08, + "end": 17721.94, + "probability": 0.9573 + }, + { + "start": 17722.86, + "end": 17725.28, + "probability": 0.9585 + }, + { + "start": 17726.66, + "end": 17730.6, + "probability": 0.9994 + }, + { + "start": 17730.7, + "end": 17732.92, + "probability": 0.8566 + }, + { + "start": 17733.06, + "end": 17733.88, + "probability": 0.9474 + }, + { + "start": 17734.82, + "end": 17740.16, + "probability": 0.9678 + }, + { + "start": 17740.3, + "end": 17743.48, + "probability": 0.9181 + }, + { + "start": 17745.38, + "end": 17746.62, + "probability": 0.9836 + }, + { + "start": 17747.86, + "end": 17751.36, + "probability": 0.9953 + }, + { + "start": 17753.3, + "end": 17755.28, + "probability": 0.9578 + }, + { + "start": 17756.2, + "end": 17758.24, + "probability": 0.9976 + }, + { + "start": 17759.0, + "end": 17760.28, + "probability": 0.9679 + }, + { + "start": 17760.68, + "end": 17763.04, + "probability": 0.8646 + }, + { + "start": 17763.12, + "end": 17763.46, + "probability": 0.8989 + }, + { + "start": 17763.5, + "end": 17765.2, + "probability": 0.9592 + }, + { + "start": 17765.5, + "end": 17767.0, + "probability": 0.9979 + }, + { + "start": 17768.82, + "end": 17769.62, + "probability": 0.6916 + }, + { + "start": 17769.7, + "end": 17770.18, + "probability": 0.6416 + }, + { + "start": 17770.34, + "end": 17773.98, + "probability": 0.7604 + }, + { + "start": 17774.72, + "end": 17777.1, + "probability": 0.9264 + }, + { + "start": 17777.38, + "end": 17781.42, + "probability": 0.9985 + }, + { + "start": 17781.42, + "end": 17784.16, + "probability": 0.9995 + }, + { + "start": 17784.22, + "end": 17784.7, + "probability": 0.9122 + }, + { + "start": 17785.98, + "end": 17787.02, + "probability": 0.6631 + }, + { + "start": 17787.54, + "end": 17793.72, + "probability": 0.8953 + }, + { + "start": 17793.8, + "end": 17794.39, + "probability": 0.7451 + }, + { + "start": 17794.54, + "end": 17796.34, + "probability": 0.9604 + }, + { + "start": 17797.04, + "end": 17801.5, + "probability": 0.9912 + }, + { + "start": 17801.84, + "end": 17802.4, + "probability": 0.5186 + }, + { + "start": 17803.4, + "end": 17809.37, + "probability": 0.9871 + }, + { + "start": 17809.64, + "end": 17810.24, + "probability": 0.6249 + }, + { + "start": 17811.87, + "end": 17812.72, + "probability": 0.385 + }, + { + "start": 17812.72, + "end": 17813.3, + "probability": 0.4509 + }, + { + "start": 17813.44, + "end": 17821.0, + "probability": 0.8894 + }, + { + "start": 17821.56, + "end": 17821.56, + "probability": 0.0828 + }, + { + "start": 17821.56, + "end": 17821.56, + "probability": 0.4594 + }, + { + "start": 17821.56, + "end": 17821.56, + "probability": 0.0278 + }, + { + "start": 17821.56, + "end": 17825.08, + "probability": 0.1581 + }, + { + "start": 17825.46, + "end": 17828.12, + "probability": 0.9969 + }, + { + "start": 17828.44, + "end": 17829.78, + "probability": 0.7375 + }, + { + "start": 17830.74, + "end": 17833.32, + "probability": 0.8478 + }, + { + "start": 17833.42, + "end": 17838.84, + "probability": 0.7574 + }, + { + "start": 17839.2, + "end": 17840.72, + "probability": 0.6143 + }, + { + "start": 17840.8, + "end": 17845.18, + "probability": 0.7678 + }, + { + "start": 17845.54, + "end": 17849.1, + "probability": 0.9244 + }, + { + "start": 17849.48, + "end": 17851.36, + "probability": 0.7141 + }, + { + "start": 17851.94, + "end": 17853.04, + "probability": 0.9008 + }, + { + "start": 17853.4, + "end": 17854.48, + "probability": 0.9384 + }, + { + "start": 17854.54, + "end": 17860.1, + "probability": 0.9897 + }, + { + "start": 17860.92, + "end": 17864.02, + "probability": 0.8739 + }, + { + "start": 17864.84, + "end": 17866.72, + "probability": 0.7664 + }, + { + "start": 17866.84, + "end": 17867.58, + "probability": 0.9886 + }, + { + "start": 17868.22, + "end": 17873.84, + "probability": 0.9893 + }, + { + "start": 17874.5, + "end": 17878.62, + "probability": 0.456 + }, + { + "start": 17879.18, + "end": 17879.62, + "probability": 0.4771 + }, + { + "start": 17880.18, + "end": 17881.1, + "probability": 0.8154 + }, + { + "start": 17881.16, + "end": 17885.6, + "probability": 0.9746 + }, + { + "start": 17886.14, + "end": 17891.32, + "probability": 0.965 + }, + { + "start": 17891.88, + "end": 17896.56, + "probability": 0.989 + }, + { + "start": 17896.86, + "end": 17899.93, + "probability": 0.964 + }, + { + "start": 17900.14, + "end": 17903.02, + "probability": 0.9861 + }, + { + "start": 17903.46, + "end": 17907.04, + "probability": 0.9972 + }, + { + "start": 17907.44, + "end": 17912.1, + "probability": 0.9974 + }, + { + "start": 17912.82, + "end": 17914.36, + "probability": 0.6914 + }, + { + "start": 17915.26, + "end": 17915.94, + "probability": 0.5756 + }, + { + "start": 17916.18, + "end": 17918.16, + "probability": 0.9954 + }, + { + "start": 17918.16, + "end": 17919.28, + "probability": 0.7405 + }, + { + "start": 17919.76, + "end": 17920.42, + "probability": 0.576 + }, + { + "start": 17921.04, + "end": 17921.84, + "probability": 0.5354 + }, + { + "start": 17921.9, + "end": 17922.38, + "probability": 0.9665 + }, + { + "start": 17922.94, + "end": 17926.38, + "probability": 0.9604 + }, + { + "start": 17926.58, + "end": 17927.8, + "probability": 0.994 + }, + { + "start": 17928.28, + "end": 17933.24, + "probability": 0.9995 + }, + { + "start": 17933.24, + "end": 17937.14, + "probability": 0.9993 + }, + { + "start": 17937.84, + "end": 17938.92, + "probability": 0.64 + }, + { + "start": 17939.02, + "end": 17942.98, + "probability": 0.9865 + }, + { + "start": 17943.94, + "end": 17945.22, + "probability": 0.9902 + }, + { + "start": 17945.76, + "end": 17949.24, + "probability": 0.9973 + }, + { + "start": 17949.3, + "end": 17952.1, + "probability": 0.9175 + }, + { + "start": 17952.58, + "end": 17956.16, + "probability": 0.9592 + }, + { + "start": 17956.6, + "end": 17957.52, + "probability": 0.5264 + }, + { + "start": 17957.56, + "end": 17958.98, + "probability": 0.5342 + }, + { + "start": 17958.98, + "end": 17959.77, + "probability": 0.5807 + }, + { + "start": 17960.52, + "end": 17962.24, + "probability": 0.9805 + }, + { + "start": 17962.34, + "end": 17963.67, + "probability": 0.946 + }, + { + "start": 17964.14, + "end": 17964.9, + "probability": 0.947 + }, + { + "start": 17965.52, + "end": 17971.62, + "probability": 0.9852 + }, + { + "start": 17972.68, + "end": 17973.1, + "probability": 0.629 + }, + { + "start": 17973.12, + "end": 17974.3, + "probability": 0.9226 + }, + { + "start": 17975.74, + "end": 17981.6, + "probability": 0.9518 + }, + { + "start": 17982.56, + "end": 17985.36, + "probability": 0.991 + }, + { + "start": 17985.54, + "end": 17989.22, + "probability": 0.9795 + }, + { + "start": 17989.6, + "end": 17993.32, + "probability": 0.9979 + }, + { + "start": 17993.46, + "end": 17994.78, + "probability": 0.771 + }, + { + "start": 17995.3, + "end": 17999.1, + "probability": 0.9899 + }, + { + "start": 17999.58, + "end": 18001.34, + "probability": 0.656 + }, + { + "start": 18002.02, + "end": 18005.78, + "probability": 0.9683 + }, + { + "start": 18005.86, + "end": 18006.66, + "probability": 0.6577 + }, + { + "start": 18007.16, + "end": 18009.52, + "probability": 0.6966 + }, + { + "start": 18010.2, + "end": 18010.56, + "probability": 0.7997 + }, + { + "start": 18010.68, + "end": 18013.5, + "probability": 0.9858 + }, + { + "start": 18013.74, + "end": 18016.36, + "probability": 0.9119 + }, + { + "start": 18016.42, + "end": 18017.28, + "probability": 0.5773 + }, + { + "start": 18017.92, + "end": 18018.46, + "probability": 0.503 + }, + { + "start": 18019.14, + "end": 18022.72, + "probability": 0.9674 + }, + { + "start": 18023.1, + "end": 18023.7, + "probability": 0.6507 + }, + { + "start": 18024.46, + "end": 18025.2, + "probability": 0.9143 + }, + { + "start": 18026.04, + "end": 18026.56, + "probability": 0.7384 + }, + { + "start": 18026.74, + "end": 18029.1, + "probability": 0.9562 + }, + { + "start": 18029.12, + "end": 18030.88, + "probability": 0.9894 + }, + { + "start": 18031.0, + "end": 18032.82, + "probability": 0.9349 + }, + { + "start": 18033.4, + "end": 18036.56, + "probability": 0.9934 + }, + { + "start": 18037.44, + "end": 18038.16, + "probability": 0.8254 + }, + { + "start": 18038.47, + "end": 18040.43, + "probability": 0.8315 + }, + { + "start": 18041.28, + "end": 18042.48, + "probability": 0.5371 + }, + { + "start": 18043.26, + "end": 18045.54, + "probability": 0.7002 + }, + { + "start": 18045.88, + "end": 18048.58, + "probability": 0.7498 + }, + { + "start": 18048.88, + "end": 18051.12, + "probability": 0.9062 + }, + { + "start": 18051.24, + "end": 18053.22, + "probability": 0.9851 + }, + { + "start": 18053.78, + "end": 18057.08, + "probability": 0.9858 + }, + { + "start": 18057.7, + "end": 18062.7, + "probability": 0.9193 + }, + { + "start": 18063.56, + "end": 18064.19, + "probability": 0.1199 + }, + { + "start": 18064.7, + "end": 18065.04, + "probability": 0.7411 + }, + { + "start": 18065.16, + "end": 18065.9, + "probability": 0.785 + }, + { + "start": 18067.0, + "end": 18070.82, + "probability": 0.9731 + }, + { + "start": 18070.9, + "end": 18073.86, + "probability": 0.9951 + }, + { + "start": 18074.98, + "end": 18078.92, + "probability": 0.9893 + }, + { + "start": 18079.1, + "end": 18081.98, + "probability": 0.7318 + }, + { + "start": 18085.22, + "end": 18087.14, + "probability": 0.2145 + }, + { + "start": 18101.38, + "end": 18107.1, + "probability": 0.7769 + }, + { + "start": 18114.3, + "end": 18115.24, + "probability": 0.7665 + }, + { + "start": 18116.12, + "end": 18119.6, + "probability": 0.9564 + }, + { + "start": 18121.24, + "end": 18124.16, + "probability": 0.9957 + }, + { + "start": 18124.82, + "end": 18126.94, + "probability": 0.884 + }, + { + "start": 18127.66, + "end": 18130.04, + "probability": 0.9272 + }, + { + "start": 18130.74, + "end": 18131.56, + "probability": 0.4514 + }, + { + "start": 18132.86, + "end": 18133.26, + "probability": 0.1022 + }, + { + "start": 18134.76, + "end": 18136.68, + "probability": 0.9695 + }, + { + "start": 18137.52, + "end": 18139.26, + "probability": 0.8745 + }, + { + "start": 18140.94, + "end": 18145.04, + "probability": 0.563 + }, + { + "start": 18146.52, + "end": 18148.48, + "probability": 0.9968 + }, + { + "start": 18149.78, + "end": 18151.14, + "probability": 0.9927 + }, + { + "start": 18152.08, + "end": 18152.5, + "probability": 0.597 + }, + { + "start": 18153.1, + "end": 18155.58, + "probability": 0.8322 + }, + { + "start": 18156.58, + "end": 18157.84, + "probability": 0.8882 + }, + { + "start": 18158.24, + "end": 18162.07, + "probability": 0.7983 + }, + { + "start": 18162.6, + "end": 18163.88, + "probability": 0.9163 + }, + { + "start": 18164.08, + "end": 18164.46, + "probability": 0.8984 + }, + { + "start": 18164.86, + "end": 18165.8, + "probability": 0.853 + }, + { + "start": 18165.92, + "end": 18166.76, + "probability": 0.8175 + }, + { + "start": 18168.58, + "end": 18171.44, + "probability": 0.9813 + }, + { + "start": 18171.44, + "end": 18174.7, + "probability": 0.9892 + }, + { + "start": 18174.76, + "end": 18175.7, + "probability": 0.7109 + }, + { + "start": 18176.3, + "end": 18176.74, + "probability": 0.3001 + }, + { + "start": 18177.32, + "end": 18179.72, + "probability": 0.7955 + }, + { + "start": 18180.52, + "end": 18181.58, + "probability": 0.9951 + }, + { + "start": 18182.5, + "end": 18184.3, + "probability": 0.9586 + }, + { + "start": 18184.92, + "end": 18187.56, + "probability": 0.9912 + }, + { + "start": 18188.08, + "end": 18189.08, + "probability": 0.6337 + }, + { + "start": 18189.64, + "end": 18191.23, + "probability": 0.9819 + }, + { + "start": 18191.92, + "end": 18192.88, + "probability": 0.9158 + }, + { + "start": 18193.12, + "end": 18193.58, + "probability": 0.8331 + }, + { + "start": 18194.5, + "end": 18197.12, + "probability": 0.2635 + }, + { + "start": 18197.58, + "end": 18199.84, + "probability": 0.8801 + }, + { + "start": 18204.76, + "end": 18205.67, + "probability": 0.9689 + }, + { + "start": 18207.26, + "end": 18208.3, + "probability": 0.8749 + }, + { + "start": 18210.14, + "end": 18211.94, + "probability": 0.9681 + }, + { + "start": 18214.5, + "end": 18217.1, + "probability": 0.9151 + }, + { + "start": 18217.94, + "end": 18220.28, + "probability": 0.9186 + }, + { + "start": 18220.88, + "end": 18224.5, + "probability": 0.959 + }, + { + "start": 18225.2, + "end": 18228.24, + "probability": 0.9709 + }, + { + "start": 18229.64, + "end": 18231.88, + "probability": 0.9886 + }, + { + "start": 18232.02, + "end": 18232.66, + "probability": 0.9484 + }, + { + "start": 18233.92, + "end": 18238.26, + "probability": 0.9473 + }, + { + "start": 18239.2, + "end": 18241.2, + "probability": 0.9518 + }, + { + "start": 18241.92, + "end": 18246.26, + "probability": 0.998 + }, + { + "start": 18246.96, + "end": 18248.06, + "probability": 0.828 + }, + { + "start": 18248.42, + "end": 18252.18, + "probability": 0.9957 + }, + { + "start": 18254.1, + "end": 18256.86, + "probability": 0.9348 + }, + { + "start": 18257.42, + "end": 18258.6, + "probability": 0.5074 + }, + { + "start": 18259.04, + "end": 18259.78, + "probability": 0.6864 + }, + { + "start": 18259.84, + "end": 18260.38, + "probability": 0.4925 + }, + { + "start": 18260.44, + "end": 18261.3, + "probability": 0.6702 + }, + { + "start": 18261.38, + "end": 18262.25, + "probability": 0.5652 + }, + { + "start": 18262.84, + "end": 18264.68, + "probability": 0.8045 + }, + { + "start": 18265.32, + "end": 18265.64, + "probability": 0.5337 + }, + { + "start": 18265.66, + "end": 18268.38, + "probability": 0.9907 + }, + { + "start": 18268.86, + "end": 18271.12, + "probability": 0.8433 + }, + { + "start": 18272.04, + "end": 18274.04, + "probability": 0.861 + }, + { + "start": 18274.52, + "end": 18274.8, + "probability": 0.6934 + }, + { + "start": 18274.86, + "end": 18278.46, + "probability": 0.9938 + }, + { + "start": 18279.1, + "end": 18280.74, + "probability": 0.7671 + }, + { + "start": 18280.92, + "end": 18283.56, + "probability": 0.9594 + }, + { + "start": 18283.82, + "end": 18285.06, + "probability": 0.8649 + }, + { + "start": 18285.16, + "end": 18288.46, + "probability": 0.9915 + }, + { + "start": 18289.12, + "end": 18290.62, + "probability": 0.9551 + }, + { + "start": 18291.42, + "end": 18295.46, + "probability": 0.9935 + }, + { + "start": 18295.76, + "end": 18298.76, + "probability": 0.8644 + }, + { + "start": 18298.98, + "end": 18302.14, + "probability": 0.9717 + }, + { + "start": 18302.64, + "end": 18304.72, + "probability": 0.9661 + }, + { + "start": 18305.68, + "end": 18306.92, + "probability": 0.9545 + }, + { + "start": 18308.62, + "end": 18311.72, + "probability": 0.9469 + }, + { + "start": 18312.58, + "end": 18314.16, + "probability": 0.8999 + }, + { + "start": 18314.3, + "end": 18315.66, + "probability": 0.7751 + }, + { + "start": 18316.04, + "end": 18316.98, + "probability": 0.9845 + }, + { + "start": 18317.5, + "end": 18318.88, + "probability": 0.9813 + }, + { + "start": 18319.06, + "end": 18321.52, + "probability": 0.967 + }, + { + "start": 18321.74, + "end": 18322.74, + "probability": 0.9836 + }, + { + "start": 18323.84, + "end": 18324.67, + "probability": 0.9061 + }, + { + "start": 18324.94, + "end": 18325.64, + "probability": 0.2654 + }, + { + "start": 18325.78, + "end": 18327.4, + "probability": 0.9623 + }, + { + "start": 18327.7, + "end": 18331.92, + "probability": 0.9224 + }, + { + "start": 18332.38, + "end": 18333.76, + "probability": 0.8726 + }, + { + "start": 18334.56, + "end": 18337.92, + "probability": 0.9948 + }, + { + "start": 18338.54, + "end": 18343.71, + "probability": 0.8249 + }, + { + "start": 18344.58, + "end": 18345.84, + "probability": 0.3643 + }, + { + "start": 18346.5, + "end": 18347.04, + "probability": 0.6137 + }, + { + "start": 18347.12, + "end": 18350.08, + "probability": 0.9983 + }, + { + "start": 18350.22, + "end": 18350.8, + "probability": 0.7565 + }, + { + "start": 18352.7, + "end": 18352.92, + "probability": 0.4402 + }, + { + "start": 18353.02, + "end": 18356.06, + "probability": 0.8517 + }, + { + "start": 18356.06, + "end": 18358.76, + "probability": 0.9901 + }, + { + "start": 18360.28, + "end": 18361.42, + "probability": 0.993 + }, + { + "start": 18361.68, + "end": 18362.84, + "probability": 0.9093 + }, + { + "start": 18363.24, + "end": 18364.84, + "probability": 0.9364 + }, + { + "start": 18365.44, + "end": 18367.2, + "probability": 0.5832 + }, + { + "start": 18368.1, + "end": 18368.66, + "probability": 0.926 + }, + { + "start": 18368.9, + "end": 18370.34, + "probability": 0.9178 + }, + { + "start": 18370.82, + "end": 18371.52, + "probability": 0.8261 + }, + { + "start": 18371.98, + "end": 18375.26, + "probability": 0.9946 + }, + { + "start": 18376.1, + "end": 18379.1, + "probability": 0.9832 + }, + { + "start": 18379.22, + "end": 18383.34, + "probability": 0.9642 + }, + { + "start": 18383.56, + "end": 18385.22, + "probability": 0.94 + }, + { + "start": 18385.36, + "end": 18388.86, + "probability": 0.9504 + }, + { + "start": 18389.82, + "end": 18391.53, + "probability": 0.713 + }, + { + "start": 18391.66, + "end": 18392.15, + "probability": 0.9441 + }, + { + "start": 18392.4, + "end": 18393.38, + "probability": 0.9724 + }, + { + "start": 18393.4, + "end": 18394.64, + "probability": 0.9185 + }, + { + "start": 18394.98, + "end": 18396.2, + "probability": 0.666 + }, + { + "start": 18396.92, + "end": 18397.22, + "probability": 0.6445 + }, + { + "start": 18397.34, + "end": 18399.18, + "probability": 0.8794 + }, + { + "start": 18399.5, + "end": 18400.52, + "probability": 0.9588 + }, + { + "start": 18400.64, + "end": 18404.98, + "probability": 0.8833 + }, + { + "start": 18405.54, + "end": 18407.34, + "probability": 0.9409 + }, + { + "start": 18408.16, + "end": 18409.78, + "probability": 0.8628 + }, + { + "start": 18410.66, + "end": 18414.64, + "probability": 0.9923 + }, + { + "start": 18415.36, + "end": 18417.66, + "probability": 0.9929 + }, + { + "start": 18418.06, + "end": 18419.64, + "probability": 0.7921 + }, + { + "start": 18419.82, + "end": 18420.98, + "probability": 0.7456 + }, + { + "start": 18421.28, + "end": 18422.38, + "probability": 0.942 + }, + { + "start": 18422.46, + "end": 18423.18, + "probability": 0.4257 + }, + { + "start": 18423.28, + "end": 18426.3, + "probability": 0.9727 + }, + { + "start": 18426.7, + "end": 18428.46, + "probability": 0.8259 + }, + { + "start": 18428.88, + "end": 18431.5, + "probability": 0.9239 + }, + { + "start": 18431.8, + "end": 18435.38, + "probability": 0.8638 + }, + { + "start": 18435.94, + "end": 18438.5, + "probability": 0.8749 + }, + { + "start": 18439.82, + "end": 18442.47, + "probability": 0.6404 + }, + { + "start": 18444.64, + "end": 18445.66, + "probability": 0.998 + }, + { + "start": 18446.46, + "end": 18448.22, + "probability": 0.9614 + }, + { + "start": 18449.2, + "end": 18449.94, + "probability": 0.9868 + }, + { + "start": 18450.0, + "end": 18450.4, + "probability": 0.5005 + }, + { + "start": 18450.5, + "end": 18450.96, + "probability": 0.8898 + }, + { + "start": 18451.0, + "end": 18452.28, + "probability": 0.938 + }, + { + "start": 18453.4, + "end": 18456.08, + "probability": 0.9166 + }, + { + "start": 18456.68, + "end": 18458.04, + "probability": 0.4501 + }, + { + "start": 18458.82, + "end": 18460.0, + "probability": 0.7747 + }, + { + "start": 18460.4, + "end": 18461.12, + "probability": 0.1707 + }, + { + "start": 18461.4, + "end": 18462.2, + "probability": 0.4338 + }, + { + "start": 18462.28, + "end": 18463.14, + "probability": 0.9487 + }, + { + "start": 18463.68, + "end": 18465.08, + "probability": 0.8102 + }, + { + "start": 18465.7, + "end": 18469.1, + "probability": 0.9739 + }, + { + "start": 18469.76, + "end": 18470.8, + "probability": 0.9808 + }, + { + "start": 18471.26, + "end": 18472.54, + "probability": 0.9591 + }, + { + "start": 18472.68, + "end": 18474.04, + "probability": 0.9685 + }, + { + "start": 18474.18, + "end": 18476.36, + "probability": 0.9967 + }, + { + "start": 18476.36, + "end": 18478.94, + "probability": 0.9927 + }, + { + "start": 18479.28, + "end": 18480.3, + "probability": 0.9831 + }, + { + "start": 18480.5, + "end": 18480.74, + "probability": 0.8942 + }, + { + "start": 18480.76, + "end": 18484.61, + "probability": 0.9764 + }, + { + "start": 18486.0, + "end": 18486.56, + "probability": 0.1086 + }, + { + "start": 18486.66, + "end": 18487.22, + "probability": 0.394 + }, + { + "start": 18487.32, + "end": 18489.32, + "probability": 0.8325 + }, + { + "start": 18489.42, + "end": 18490.42, + "probability": 0.7268 + }, + { + "start": 18490.9, + "end": 18493.1, + "probability": 0.899 + }, + { + "start": 18493.8, + "end": 18495.26, + "probability": 0.7686 + }, + { + "start": 18495.8, + "end": 18497.04, + "probability": 0.9444 + }, + { + "start": 18498.18, + "end": 18499.48, + "probability": 0.6207 + }, + { + "start": 18500.08, + "end": 18505.1, + "probability": 0.8259 + }, + { + "start": 18505.1, + "end": 18507.68, + "probability": 0.9376 + }, + { + "start": 18507.98, + "end": 18509.44, + "probability": 0.9937 + }, + { + "start": 18509.48, + "end": 18511.74, + "probability": 0.4962 + }, + { + "start": 18512.04, + "end": 18513.76, + "probability": 0.9482 + }, + { + "start": 18513.8, + "end": 18514.66, + "probability": 0.9076 + }, + { + "start": 18515.42, + "end": 18516.97, + "probability": 0.7457 + }, + { + "start": 18517.64, + "end": 18521.04, + "probability": 0.9412 + }, + { + "start": 18521.22, + "end": 18521.99, + "probability": 0.9443 + }, + { + "start": 18525.3, + "end": 18525.92, + "probability": 0.1237 + }, + { + "start": 18527.26, + "end": 18530.64, + "probability": 0.6323 + }, + { + "start": 18531.68, + "end": 18537.34, + "probability": 0.9537 + }, + { + "start": 18537.42, + "end": 18539.22, + "probability": 0.7956 + }, + { + "start": 18539.88, + "end": 18541.66, + "probability": 0.6134 + }, + { + "start": 18542.4, + "end": 18543.68, + "probability": 0.9686 + }, + { + "start": 18543.76, + "end": 18546.38, + "probability": 0.9125 + }, + { + "start": 18547.04, + "end": 18547.24, + "probability": 0.4729 + }, + { + "start": 18554.26, + "end": 18556.46, + "probability": 0.9641 + }, + { + "start": 18558.2, + "end": 18560.0, + "probability": 0.7711 + }, + { + "start": 18561.14, + "end": 18561.95, + "probability": 0.8942 + }, + { + "start": 18563.6, + "end": 18564.41, + "probability": 0.9438 + }, + { + "start": 18564.52, + "end": 18568.6, + "probability": 0.996 + }, + { + "start": 18569.36, + "end": 18570.78, + "probability": 0.8018 + }, + { + "start": 18571.96, + "end": 18573.16, + "probability": 0.8191 + }, + { + "start": 18573.26, + "end": 18576.66, + "probability": 0.988 + }, + { + "start": 18577.48, + "end": 18580.88, + "probability": 0.9985 + }, + { + "start": 18580.88, + "end": 18583.0, + "probability": 0.9937 + }, + { + "start": 18584.46, + "end": 18588.52, + "probability": 0.9977 + }, + { + "start": 18588.52, + "end": 18592.36, + "probability": 0.9966 + }, + { + "start": 18593.76, + "end": 18595.42, + "probability": 0.9696 + }, + { + "start": 18596.32, + "end": 18598.98, + "probability": 0.9988 + }, + { + "start": 18599.52, + "end": 18601.46, + "probability": 0.9933 + }, + { + "start": 18601.99, + "end": 18603.69, + "probability": 0.6417 + }, + { + "start": 18604.62, + "end": 18608.98, + "probability": 0.932 + }, + { + "start": 18613.26, + "end": 18619.06, + "probability": 0.9921 + }, + { + "start": 18619.78, + "end": 18625.32, + "probability": 0.9985 + }, + { + "start": 18626.44, + "end": 18628.46, + "probability": 0.9969 + }, + { + "start": 18629.68, + "end": 18634.72, + "probability": 0.9862 + }, + { + "start": 18635.36, + "end": 18637.78, + "probability": 0.9927 + }, + { + "start": 18637.86, + "end": 18638.56, + "probability": 0.7577 + }, + { + "start": 18639.94, + "end": 18642.9, + "probability": 0.9731 + }, + { + "start": 18643.0, + "end": 18645.48, + "probability": 0.9988 + }, + { + "start": 18646.48, + "end": 18652.02, + "probability": 0.991 + }, + { + "start": 18653.48, + "end": 18658.26, + "probability": 0.9985 + }, + { + "start": 18659.0, + "end": 18661.8, + "probability": 0.9854 + }, + { + "start": 18662.02, + "end": 18665.6, + "probability": 0.9977 + }, + { + "start": 18666.26, + "end": 18670.32, + "probability": 0.9812 + }, + { + "start": 18670.44, + "end": 18675.84, + "probability": 0.9778 + }, + { + "start": 18676.46, + "end": 18680.72, + "probability": 0.9676 + }, + { + "start": 18681.3, + "end": 18683.44, + "probability": 0.9783 + }, + { + "start": 18685.02, + "end": 18685.95, + "probability": 0.8943 + }, + { + "start": 18686.12, + "end": 18687.92, + "probability": 0.9866 + }, + { + "start": 18688.02, + "end": 18690.78, + "probability": 0.9707 + }, + { + "start": 18690.78, + "end": 18693.6, + "probability": 0.9499 + }, + { + "start": 18693.74, + "end": 18696.92, + "probability": 0.9988 + }, + { + "start": 18698.04, + "end": 18700.66, + "probability": 0.9893 + }, + { + "start": 18700.66, + "end": 18703.66, + "probability": 0.9703 + }, + { + "start": 18704.6, + "end": 18709.44, + "probability": 0.998 + }, + { + "start": 18710.38, + "end": 18711.76, + "probability": 0.7637 + }, + { + "start": 18713.56, + "end": 18716.7, + "probability": 0.649 + }, + { + "start": 18716.82, + "end": 18717.8, + "probability": 0.8226 + }, + { + "start": 18718.56, + "end": 18724.66, + "probability": 0.8234 + }, + { + "start": 18724.66, + "end": 18729.5, + "probability": 0.9971 + }, + { + "start": 18729.58, + "end": 18729.84, + "probability": 0.6903 + }, + { + "start": 18729.96, + "end": 18733.74, + "probability": 0.9458 + }, + { + "start": 18735.18, + "end": 18737.62, + "probability": 0.9877 + }, + { + "start": 18737.7, + "end": 18740.76, + "probability": 0.9634 + }, + { + "start": 18740.76, + "end": 18744.08, + "probability": 0.9992 + }, + { + "start": 18744.68, + "end": 18749.62, + "probability": 0.9626 + }, + { + "start": 18750.88, + "end": 18751.64, + "probability": 0.4416 + }, + { + "start": 18752.78, + "end": 18755.1, + "probability": 0.9326 + }, + { + "start": 18755.1, + "end": 18757.85, + "probability": 0.984 + }, + { + "start": 18758.58, + "end": 18760.28, + "probability": 0.1771 + }, + { + "start": 18760.42, + "end": 18764.76, + "probability": 0.905 + }, + { + "start": 18764.76, + "end": 18767.7, + "probability": 0.9947 + }, + { + "start": 18769.2, + "end": 18770.86, + "probability": 0.7878 + }, + { + "start": 18771.46, + "end": 18773.14, + "probability": 0.931 + }, + { + "start": 18773.98, + "end": 18777.18, + "probability": 0.9961 + }, + { + "start": 18777.3, + "end": 18777.4, + "probability": 0.9649 + }, + { + "start": 18778.08, + "end": 18779.48, + "probability": 0.9209 + }, + { + "start": 18780.16, + "end": 18783.76, + "probability": 0.9893 + }, + { + "start": 18783.9, + "end": 18788.38, + "probability": 0.959 + }, + { + "start": 18788.94, + "end": 18791.4, + "probability": 0.9974 + }, + { + "start": 18791.4, + "end": 18794.76, + "probability": 0.9658 + }, + { + "start": 18794.84, + "end": 18795.42, + "probability": 0.9743 + }, + { + "start": 18795.44, + "end": 18796.18, + "probability": 0.937 + }, + { + "start": 18796.86, + "end": 18798.08, + "probability": 0.9944 + }, + { + "start": 18798.14, + "end": 18799.6, + "probability": 0.8535 + }, + { + "start": 18799.66, + "end": 18801.04, + "probability": 0.9555 + }, + { + "start": 18801.68, + "end": 18806.86, + "probability": 0.995 + }, + { + "start": 18808.3, + "end": 18813.66, + "probability": 0.0046 + }, + { + "start": 18815.92, + "end": 18816.08, + "probability": 0.0572 + }, + { + "start": 18816.08, + "end": 18816.08, + "probability": 0.108 + }, + { + "start": 18816.08, + "end": 18816.2, + "probability": 0.0576 + }, + { + "start": 18816.7, + "end": 18820.44, + "probability": 0.9366 + }, + { + "start": 18820.44, + "end": 18822.66, + "probability": 0.877 + }, + { + "start": 18823.84, + "end": 18827.5, + "probability": 0.9064 + }, + { + "start": 18827.62, + "end": 18829.58, + "probability": 0.9951 + }, + { + "start": 18829.74, + "end": 18832.3, + "probability": 0.6737 + }, + { + "start": 18832.98, + "end": 18835.12, + "probability": 0.8202 + }, + { + "start": 18835.24, + "end": 18836.04, + "probability": 0.2513 + }, + { + "start": 18836.32, + "end": 18838.3, + "probability": 0.848 + }, + { + "start": 18839.74, + "end": 18839.96, + "probability": 0.5834 + }, + { + "start": 18840.0, + "end": 18840.46, + "probability": 0.852 + }, + { + "start": 18840.54, + "end": 18841.06, + "probability": 0.8765 + }, + { + "start": 18841.12, + "end": 18843.48, + "probability": 0.8212 + }, + { + "start": 18843.54, + "end": 18845.66, + "probability": 0.9928 + }, + { + "start": 18846.6, + "end": 18850.48, + "probability": 0.9849 + }, + { + "start": 18851.28, + "end": 18855.86, + "probability": 0.9971 + }, + { + "start": 18856.5, + "end": 18859.16, + "probability": 0.9475 + }, + { + "start": 18859.88, + "end": 18861.68, + "probability": 0.9898 + }, + { + "start": 18862.92, + "end": 18862.92, + "probability": 0.1382 + }, + { + "start": 18862.92, + "end": 18863.28, + "probability": 0.5105 + }, + { + "start": 18863.64, + "end": 18864.64, + "probability": 0.7193 + }, + { + "start": 18865.14, + "end": 18868.8, + "probability": 0.9812 + }, + { + "start": 18868.8, + "end": 18872.37, + "probability": 0.7158 + }, + { + "start": 18873.34, + "end": 18875.14, + "probability": 0.9444 + }, + { + "start": 18875.44, + "end": 18878.1, + "probability": 0.499 + }, + { + "start": 18878.18, + "end": 18882.84, + "probability": 0.9739 + }, + { + "start": 18882.84, + "end": 18885.06, + "probability": 0.5272 + }, + { + "start": 18888.28, + "end": 18889.14, + "probability": 0.7443 + }, + { + "start": 18889.56, + "end": 18890.96, + "probability": 0.7437 + }, + { + "start": 18891.12, + "end": 18892.36, + "probability": 0.495 + }, + { + "start": 18892.42, + "end": 18893.76, + "probability": 0.8909 + }, + { + "start": 18893.92, + "end": 18895.1, + "probability": 0.9594 + }, + { + "start": 18895.84, + "end": 18897.02, + "probability": 0.9699 + }, + { + "start": 18897.18, + "end": 18897.84, + "probability": 0.9618 + }, + { + "start": 18898.04, + "end": 18901.38, + "probability": 0.9807 + }, + { + "start": 18901.54, + "end": 18904.54, + "probability": 0.8096 + }, + { + "start": 18905.2, + "end": 18908.0, + "probability": 0.9982 + }, + { + "start": 18908.62, + "end": 18911.7, + "probability": 0.9957 + }, + { + "start": 18912.46, + "end": 18915.78, + "probability": 0.9938 + }, + { + "start": 18915.92, + "end": 18917.3, + "probability": 0.9525 + }, + { + "start": 18918.8, + "end": 18920.54, + "probability": 0.9951 + }, + { + "start": 18920.66, + "end": 18922.76, + "probability": 0.6346 + }, + { + "start": 18923.96, + "end": 18925.78, + "probability": 0.9961 + }, + { + "start": 18925.88, + "end": 18928.06, + "probability": 0.9884 + }, + { + "start": 18929.04, + "end": 18930.42, + "probability": 0.8385 + }, + { + "start": 18930.5, + "end": 18932.54, + "probability": 0.9817 + }, + { + "start": 18932.54, + "end": 18935.18, + "probability": 0.9901 + }, + { + "start": 18935.98, + "end": 18938.08, + "probability": 0.9079 + }, + { + "start": 18938.58, + "end": 18942.1, + "probability": 0.9989 + }, + { + "start": 18942.47, + "end": 18946.42, + "probability": 0.9989 + }, + { + "start": 18948.8, + "end": 18950.02, + "probability": 0.1018 + }, + { + "start": 18950.38, + "end": 18950.38, + "probability": 0.0236 + }, + { + "start": 18950.38, + "end": 18950.59, + "probability": 0.3396 + }, + { + "start": 18951.76, + "end": 18953.52, + "probability": 0.917 + }, + { + "start": 18954.06, + "end": 18954.7, + "probability": 0.4438 + }, + { + "start": 18955.1, + "end": 18957.24, + "probability": 0.9553 + }, + { + "start": 18957.42, + "end": 18960.1, + "probability": 0.7444 + }, + { + "start": 18960.2, + "end": 18961.38, + "probability": 0.2134 + }, + { + "start": 18962.84, + "end": 18966.68, + "probability": 0.9381 + }, + { + "start": 18967.7, + "end": 18970.64, + "probability": 0.9588 + }, + { + "start": 18971.64, + "end": 18971.78, + "probability": 0.078 + }, + { + "start": 18971.78, + "end": 18976.42, + "probability": 0.9907 + }, + { + "start": 18977.82, + "end": 18979.24, + "probability": 0.9988 + }, + { + "start": 18980.1, + "end": 18980.84, + "probability": 0.7476 + }, + { + "start": 18980.92, + "end": 18982.24, + "probability": 0.985 + }, + { + "start": 18982.3, + "end": 18983.3, + "probability": 0.8715 + }, + { + "start": 18983.34, + "end": 18985.54, + "probability": 0.9674 + }, + { + "start": 18986.0, + "end": 18988.6, + "probability": 0.9945 + }, + { + "start": 18989.38, + "end": 18990.36, + "probability": 0.6847 + }, + { + "start": 18990.5, + "end": 18991.46, + "probability": 0.9473 + }, + { + "start": 18991.56, + "end": 18993.46, + "probability": 0.999 + }, + { + "start": 18993.46, + "end": 18997.36, + "probability": 0.8657 + }, + { + "start": 18997.5, + "end": 18999.76, + "probability": 0.9033 + }, + { + "start": 18999.86, + "end": 19000.52, + "probability": 0.6654 + }, + { + "start": 19001.1, + "end": 19002.7, + "probability": 0.9938 + }, + { + "start": 19003.04, + "end": 19004.9, + "probability": 0.9683 + }, + { + "start": 19005.62, + "end": 19009.32, + "probability": 0.9528 + }, + { + "start": 19009.6, + "end": 19013.44, + "probability": 0.7786 + }, + { + "start": 19014.0, + "end": 19016.08, + "probability": 0.9912 + }, + { + "start": 19016.68, + "end": 19019.94, + "probability": 0.9986 + }, + { + "start": 19019.94, + "end": 19024.52, + "probability": 0.9976 + }, + { + "start": 19025.26, + "end": 19027.52, + "probability": 0.543 + }, + { + "start": 19027.9, + "end": 19029.56, + "probability": 0.7269 + }, + { + "start": 19030.4, + "end": 19031.88, + "probability": 0.9548 + }, + { + "start": 19032.1, + "end": 19035.66, + "probability": 0.9801 + }, + { + "start": 19035.76, + "end": 19039.58, + "probability": 0.9966 + }, + { + "start": 19039.66, + "end": 19040.12, + "probability": 0.843 + }, + { + "start": 19041.14, + "end": 19045.84, + "probability": 0.7684 + }, + { + "start": 19046.54, + "end": 19048.44, + "probability": 0.8204 + }, + { + "start": 19049.86, + "end": 19054.58, + "probability": 0.9048 + }, + { + "start": 19055.04, + "end": 19056.48, + "probability": 0.9108 + }, + { + "start": 19056.52, + "end": 19057.92, + "probability": 0.8662 + }, + { + "start": 19057.98, + "end": 19061.5, + "probability": 0.9663 + }, + { + "start": 19062.0, + "end": 19064.76, + "probability": 0.9824 + }, + { + "start": 19064.9, + "end": 19066.48, + "probability": 0.9692 + }, + { + "start": 19067.16, + "end": 19070.34, + "probability": 0.9889 + }, + { + "start": 19082.16, + "end": 19084.2, + "probability": 0.6823 + }, + { + "start": 19084.24, + "end": 19086.48, + "probability": 0.9527 + }, + { + "start": 19092.32, + "end": 19093.38, + "probability": 0.6534 + }, + { + "start": 19094.56, + "end": 19098.86, + "probability": 0.9702 + }, + { + "start": 19100.98, + "end": 19103.54, + "probability": 0.9153 + }, + { + "start": 19104.76, + "end": 19109.68, + "probability": 0.9226 + }, + { + "start": 19111.44, + "end": 19112.18, + "probability": 0.7105 + }, + { + "start": 19115.8, + "end": 19117.22, + "probability": 0.8232 + }, + { + "start": 19118.24, + "end": 19122.82, + "probability": 0.9392 + }, + { + "start": 19124.74, + "end": 19128.06, + "probability": 0.9902 + }, + { + "start": 19129.36, + "end": 19130.64, + "probability": 0.998 + }, + { + "start": 19132.26, + "end": 19133.18, + "probability": 0.9889 + }, + { + "start": 19134.96, + "end": 19138.38, + "probability": 0.9249 + }, + { + "start": 19139.36, + "end": 19140.58, + "probability": 0.6245 + }, + { + "start": 19141.62, + "end": 19142.12, + "probability": 0.3485 + }, + { + "start": 19144.06, + "end": 19148.64, + "probability": 0.8988 + }, + { + "start": 19152.24, + "end": 19155.46, + "probability": 0.9817 + }, + { + "start": 19156.26, + "end": 19157.98, + "probability": 0.9227 + }, + { + "start": 19158.1, + "end": 19159.78, + "probability": 0.8976 + }, + { + "start": 19160.56, + "end": 19161.94, + "probability": 0.7563 + }, + { + "start": 19163.3, + "end": 19165.18, + "probability": 0.9943 + }, + { + "start": 19168.92, + "end": 19169.38, + "probability": 0.8364 + }, + { + "start": 19170.88, + "end": 19171.44, + "probability": 0.6725 + }, + { + "start": 19173.0, + "end": 19175.46, + "probability": 0.863 + }, + { + "start": 19178.16, + "end": 19180.28, + "probability": 0.985 + }, + { + "start": 19181.74, + "end": 19183.66, + "probability": 0.9597 + }, + { + "start": 19184.74, + "end": 19187.78, + "probability": 0.9988 + }, + { + "start": 19189.42, + "end": 19191.22, + "probability": 0.9447 + }, + { + "start": 19192.7, + "end": 19195.34, + "probability": 0.8441 + }, + { + "start": 19196.92, + "end": 19198.04, + "probability": 0.9482 + }, + { + "start": 19200.2, + "end": 19201.46, + "probability": 0.7209 + }, + { + "start": 19202.9, + "end": 19207.18, + "probability": 0.9739 + }, + { + "start": 19208.4, + "end": 19209.78, + "probability": 0.9929 + }, + { + "start": 19210.66, + "end": 19211.38, + "probability": 0.9247 + }, + { + "start": 19214.18, + "end": 19215.36, + "probability": 0.9966 + }, + { + "start": 19216.72, + "end": 19218.24, + "probability": 0.9987 + }, + { + "start": 19219.6, + "end": 19221.54, + "probability": 0.9174 + }, + { + "start": 19222.24, + "end": 19223.76, + "probability": 0.2706 + }, + { + "start": 19225.24, + "end": 19227.78, + "probability": 0.7386 + }, + { + "start": 19230.6, + "end": 19231.04, + "probability": 0.9868 + }, + { + "start": 19233.64, + "end": 19236.32, + "probability": 0.9957 + }, + { + "start": 19239.1, + "end": 19239.56, + "probability": 0.8197 + }, + { + "start": 19241.26, + "end": 19241.9, + "probability": 0.9979 + }, + { + "start": 19242.7, + "end": 19244.5, + "probability": 0.998 + }, + { + "start": 19246.32, + "end": 19249.06, + "probability": 0.9901 + }, + { + "start": 19250.22, + "end": 19250.86, + "probability": 0.9329 + }, + { + "start": 19252.46, + "end": 19255.46, + "probability": 0.9975 + }, + { + "start": 19256.94, + "end": 19257.5, + "probability": 0.866 + }, + { + "start": 19259.32, + "end": 19263.62, + "probability": 0.9919 + }, + { + "start": 19266.72, + "end": 19268.94, + "probability": 0.9727 + }, + { + "start": 19269.7, + "end": 19270.22, + "probability": 0.8443 + }, + { + "start": 19271.32, + "end": 19271.88, + "probability": 0.8953 + }, + { + "start": 19272.9, + "end": 19275.46, + "probability": 0.9432 + }, + { + "start": 19277.04, + "end": 19278.28, + "probability": 0.9559 + }, + { + "start": 19278.34, + "end": 19280.62, + "probability": 0.9158 + }, + { + "start": 19281.5, + "end": 19282.04, + "probability": 0.9774 + }, + { + "start": 19286.66, + "end": 19288.88, + "probability": 0.9824 + }, + { + "start": 19290.92, + "end": 19292.7, + "probability": 0.9818 + }, + { + "start": 19294.88, + "end": 19295.74, + "probability": 0.9995 + }, + { + "start": 19299.32, + "end": 19301.44, + "probability": 0.9993 + }, + { + "start": 19303.94, + "end": 19304.64, + "probability": 0.4606 + }, + { + "start": 19304.84, + "end": 19306.48, + "probability": 0.8982 + }, + { + "start": 19306.56, + "end": 19307.4, + "probability": 0.9536 + }, + { + "start": 19308.24, + "end": 19309.04, + "probability": 0.9565 + }, + { + "start": 19311.16, + "end": 19312.8, + "probability": 0.9839 + }, + { + "start": 19314.12, + "end": 19318.4, + "probability": 0.9802 + }, + { + "start": 19319.64, + "end": 19322.61, + "probability": 0.1245 + }, + { + "start": 19323.62, + "end": 19325.3, + "probability": 0.9035 + }, + { + "start": 19325.46, + "end": 19332.9, + "probability": 0.9266 + }, + { + "start": 19333.56, + "end": 19334.34, + "probability": 0.9299 + }, + { + "start": 19334.78, + "end": 19336.0, + "probability": 0.9985 + }, + { + "start": 19336.72, + "end": 19339.72, + "probability": 0.8748 + }, + { + "start": 19340.74, + "end": 19340.74, + "probability": 0.0052 + }, + { + "start": 19340.74, + "end": 19342.77, + "probability": 0.9832 + }, + { + "start": 19343.52, + "end": 19344.54, + "probability": 0.9395 + }, + { + "start": 19345.18, + "end": 19347.8, + "probability": 0.9909 + }, + { + "start": 19347.8, + "end": 19353.08, + "probability": 0.985 + }, + { + "start": 19353.92, + "end": 19355.5, + "probability": 0.9988 + }, + { + "start": 19357.1, + "end": 19357.78, + "probability": 0.9267 + }, + { + "start": 19358.14, + "end": 19358.16, + "probability": 0.0441 + }, + { + "start": 19358.16, + "end": 19363.22, + "probability": 0.848 + }, + { + "start": 19363.38, + "end": 19368.42, + "probability": 0.9725 + }, + { + "start": 19371.64, + "end": 19373.32, + "probability": 0.0693 + }, + { + "start": 19373.32, + "end": 19376.6, + "probability": 0.6079 + }, + { + "start": 19378.94, + "end": 19380.4, + "probability": 0.0894 + }, + { + "start": 19380.64, + "end": 19382.24, + "probability": 0.8106 + }, + { + "start": 19382.32, + "end": 19383.34, + "probability": 0.0948 + }, + { + "start": 19383.54, + "end": 19385.38, + "probability": 0.122 + }, + { + "start": 19385.38, + "end": 19386.3, + "probability": 0.1461 + }, + { + "start": 19386.54, + "end": 19390.1, + "probability": 0.8911 + }, + { + "start": 19390.1, + "end": 19390.68, + "probability": 0.4968 + }, + { + "start": 19390.98, + "end": 19391.36, + "probability": 0.3825 + }, + { + "start": 19392.96, + "end": 19396.14, + "probability": 0.9613 + }, + { + "start": 19396.48, + "end": 19398.54, + "probability": 0.733 + }, + { + "start": 19399.18, + "end": 19399.78, + "probability": 0.3159 + }, + { + "start": 19399.78, + "end": 19402.66, + "probability": 0.6235 + }, + { + "start": 19402.78, + "end": 19404.82, + "probability": 0.988 + }, + { + "start": 19404.9, + "end": 19410.1, + "probability": 0.9807 + }, + { + "start": 19410.1, + "end": 19412.0, + "probability": 0.194 + }, + { + "start": 19416.22, + "end": 19417.08, + "probability": 0.1457 + }, + { + "start": 19417.08, + "end": 19417.08, + "probability": 0.2881 + }, + { + "start": 19417.08, + "end": 19419.16, + "probability": 0.5811 + }, + { + "start": 19421.1, + "end": 19421.7, + "probability": 0.1894 + }, + { + "start": 19423.54, + "end": 19424.32, + "probability": 0.5343 + }, + { + "start": 19426.06, + "end": 19427.5, + "probability": 0.7032 + }, + { + "start": 19429.92, + "end": 19431.3, + "probability": 0.7349 + }, + { + "start": 19431.38, + "end": 19434.36, + "probability": 0.8705 + }, + { + "start": 19434.58, + "end": 19435.03, + "probability": 0.9698 + }, + { + "start": 19436.52, + "end": 19437.42, + "probability": 0.9556 + }, + { + "start": 19439.16, + "end": 19441.74, + "probability": 0.99 + }, + { + "start": 19443.98, + "end": 19445.68, + "probability": 0.9927 + }, + { + "start": 19447.2, + "end": 19448.26, + "probability": 0.8594 + }, + { + "start": 19449.62, + "end": 19451.18, + "probability": 0.6019 + }, + { + "start": 19452.1, + "end": 19454.86, + "probability": 0.9821 + }, + { + "start": 19454.96, + "end": 19456.81, + "probability": 0.9814 + }, + { + "start": 19459.5, + "end": 19462.86, + "probability": 0.9868 + }, + { + "start": 19464.3, + "end": 19466.36, + "probability": 0.9974 + }, + { + "start": 19469.46, + "end": 19471.26, + "probability": 0.9996 + }, + { + "start": 19472.74, + "end": 19477.7, + "probability": 0.9996 + }, + { + "start": 19478.96, + "end": 19482.62, + "probability": 0.9985 + }, + { + "start": 19483.94, + "end": 19485.48, + "probability": 0.995 + }, + { + "start": 19487.2, + "end": 19490.18, + "probability": 0.9968 + }, + { + "start": 19490.54, + "end": 19491.9, + "probability": 0.8916 + }, + { + "start": 19494.82, + "end": 19496.22, + "probability": 0.6336 + }, + { + "start": 19497.44, + "end": 19498.35, + "probability": 0.1418 + }, + { + "start": 19499.96, + "end": 19502.22, + "probability": 0.9512 + }, + { + "start": 19503.32, + "end": 19504.98, + "probability": 0.9969 + }, + { + "start": 19505.72, + "end": 19507.48, + "probability": 0.6328 + }, + { + "start": 19509.37, + "end": 19510.94, + "probability": 0.2831 + }, + { + "start": 19511.5, + "end": 19514.08, + "probability": 0.0626 + }, + { + "start": 19515.16, + "end": 19515.16, + "probability": 0.0191 + }, + { + "start": 19515.16, + "end": 19517.76, + "probability": 0.6849 + }, + { + "start": 19518.28, + "end": 19521.36, + "probability": 0.8561 + }, + { + "start": 19521.38, + "end": 19522.12, + "probability": 0.0354 + }, + { + "start": 19522.3, + "end": 19522.52, + "probability": 0.0483 + }, + { + "start": 19522.64, + "end": 19523.55, + "probability": 0.0066 + }, + { + "start": 19525.56, + "end": 19526.8, + "probability": 0.4438 + }, + { + "start": 19527.38, + "end": 19527.42, + "probability": 0.0184 + }, + { + "start": 19527.42, + "end": 19527.42, + "probability": 0.1887 + }, + { + "start": 19527.42, + "end": 19528.8, + "probability": 0.3385 + }, + { + "start": 19528.94, + "end": 19531.42, + "probability": 0.9603 + }, + { + "start": 19532.26, + "end": 19536.37, + "probability": 0.1897 + }, + { + "start": 19537.46, + "end": 19537.46, + "probability": 0.0282 + }, + { + "start": 19537.46, + "end": 19537.46, + "probability": 0.194 + }, + { + "start": 19537.46, + "end": 19540.16, + "probability": 0.506 + }, + { + "start": 19540.26, + "end": 19543.2, + "probability": 0.7812 + }, + { + "start": 19543.68, + "end": 19545.68, + "probability": 0.9785 + }, + { + "start": 19545.88, + "end": 19548.92, + "probability": 0.9923 + }, + { + "start": 19549.8, + "end": 19550.6, + "probability": 0.8591 + }, + { + "start": 19550.86, + "end": 19554.6, + "probability": 0.9718 + }, + { + "start": 19556.18, + "end": 19560.32, + "probability": 0.926 + }, + { + "start": 19562.06, + "end": 19563.24, + "probability": 0.7192 + }, + { + "start": 19563.62, + "end": 19564.86, + "probability": 0.742 + }, + { + "start": 19565.14, + "end": 19566.28, + "probability": 0.9934 + }, + { + "start": 19566.42, + "end": 19566.84, + "probability": 0.9437 + }, + { + "start": 19567.38, + "end": 19571.84, + "probability": 0.9785 + }, + { + "start": 19573.86, + "end": 19577.28, + "probability": 0.8833 + }, + { + "start": 19577.94, + "end": 19578.74, + "probability": 0.8712 + }, + { + "start": 19581.31, + "end": 19584.5, + "probability": 0.8782 + }, + { + "start": 19586.02, + "end": 19587.7, + "probability": 0.7057 + }, + { + "start": 19588.28, + "end": 19589.76, + "probability": 0.9422 + }, + { + "start": 19589.9, + "end": 19591.04, + "probability": 0.9095 + }, + { + "start": 19592.04, + "end": 19595.48, + "probability": 0.9538 + }, + { + "start": 19595.58, + "end": 19596.26, + "probability": 0.6188 + }, + { + "start": 19596.5, + "end": 19597.62, + "probability": 0.3159 + }, + { + "start": 19597.8, + "end": 19598.58, + "probability": 0.9158 + }, + { + "start": 19599.5, + "end": 19599.88, + "probability": 0.9087 + }, + { + "start": 19600.74, + "end": 19601.72, + "probability": 0.8865 + }, + { + "start": 19603.7, + "end": 19606.1, + "probability": 0.9863 + }, + { + "start": 19606.12, + "end": 19607.44, + "probability": 0.9566 + }, + { + "start": 19609.56, + "end": 19611.4, + "probability": 0.9831 + }, + { + "start": 19612.48, + "end": 19613.18, + "probability": 0.7566 + }, + { + "start": 19615.92, + "end": 19619.5, + "probability": 0.9733 + }, + { + "start": 19620.56, + "end": 19626.38, + "probability": 0.9832 + }, + { + "start": 19627.0, + "end": 19628.52, + "probability": 0.9992 + }, + { + "start": 19629.48, + "end": 19630.22, + "probability": 0.9675 + }, + { + "start": 19632.5, + "end": 19634.3, + "probability": 0.9794 + }, + { + "start": 19636.2, + "end": 19637.34, + "probability": 0.8752 + }, + { + "start": 19639.84, + "end": 19645.7, + "probability": 0.8855 + }, + { + "start": 19647.78, + "end": 19649.1, + "probability": 0.9256 + }, + { + "start": 19651.2, + "end": 19652.04, + "probability": 0.5863 + }, + { + "start": 19653.72, + "end": 19654.84, + "probability": 0.7977 + }, + { + "start": 19656.04, + "end": 19657.14, + "probability": 0.9648 + }, + { + "start": 19657.26, + "end": 19658.36, + "probability": 0.9889 + }, + { + "start": 19658.42, + "end": 19660.16, + "probability": 0.9564 + }, + { + "start": 19662.32, + "end": 19662.92, + "probability": 0.81 + }, + { + "start": 19664.88, + "end": 19669.42, + "probability": 0.9513 + }, + { + "start": 19672.22, + "end": 19679.84, + "probability": 0.8138 + }, + { + "start": 19680.16, + "end": 19683.36, + "probability": 0.6788 + }, + { + "start": 19683.68, + "end": 19685.38, + "probability": 0.8144 + }, + { + "start": 19686.9, + "end": 19687.8, + "probability": 0.4498 + }, + { + "start": 19690.3, + "end": 19690.78, + "probability": 0.7921 + }, + { + "start": 19692.2, + "end": 19693.7, + "probability": 0.9167 + }, + { + "start": 19696.58, + "end": 19699.54, + "probability": 0.9565 + }, + { + "start": 19700.2, + "end": 19700.9, + "probability": 0.9832 + }, + { + "start": 19702.74, + "end": 19703.02, + "probability": 0.6323 + }, + { + "start": 19703.18, + "end": 19703.64, + "probability": 0.6024 + }, + { + "start": 19703.84, + "end": 19705.26, + "probability": 0.919 + }, + { + "start": 19705.32, + "end": 19705.84, + "probability": 0.7004 + }, + { + "start": 19705.98, + "end": 19706.7, + "probability": 0.5533 + }, + { + "start": 19706.9, + "end": 19707.4, + "probability": 0.8606 + }, + { + "start": 19707.66, + "end": 19708.44, + "probability": 0.9302 + }, + { + "start": 19708.52, + "end": 19708.8, + "probability": 0.9057 + }, + { + "start": 19708.88, + "end": 19709.94, + "probability": 0.9104 + }, + { + "start": 19710.04, + "end": 19710.7, + "probability": 0.9387 + }, + { + "start": 19712.8, + "end": 19715.12, + "probability": 0.894 + }, + { + "start": 19715.18, + "end": 19718.98, + "probability": 0.6504 + }, + { + "start": 19719.04, + "end": 19719.26, + "probability": 0.2873 + }, + { + "start": 19719.66, + "end": 19720.24, + "probability": 0.8911 + }, + { + "start": 19721.2, + "end": 19723.4, + "probability": 0.2646 + }, + { + "start": 19723.58, + "end": 19724.54, + "probability": 0.95 + }, + { + "start": 19725.28, + "end": 19726.4, + "probability": 0.9526 + }, + { + "start": 19726.48, + "end": 19727.38, + "probability": 0.8434 + }, + { + "start": 19727.38, + "end": 19729.44, + "probability": 0.3513 + }, + { + "start": 19730.2, + "end": 19731.84, + "probability": 0.2931 + }, + { + "start": 19732.08, + "end": 19732.84, + "probability": 0.2218 + }, + { + "start": 19733.22, + "end": 19734.84, + "probability": 0.9619 + }, + { + "start": 19735.08, + "end": 19735.54, + "probability": 0.5478 + }, + { + "start": 19735.6, + "end": 19736.34, + "probability": 0.9167 + }, + { + "start": 19736.5, + "end": 19737.44, + "probability": 0.659 + }, + { + "start": 19738.66, + "end": 19739.82, + "probability": 0.9839 + }, + { + "start": 19739.86, + "end": 19742.28, + "probability": 0.9657 + }, + { + "start": 19742.4, + "end": 19743.0, + "probability": 0.9607 + }, + { + "start": 19743.48, + "end": 19743.5, + "probability": 0.9644 + }, + { + "start": 19744.8, + "end": 19746.32, + "probability": 0.9139 + }, + { + "start": 19748.28, + "end": 19750.69, + "probability": 0.8188 + }, + { + "start": 19753.58, + "end": 19757.22, + "probability": 0.6962 + }, + { + "start": 19757.46, + "end": 19760.22, + "probability": 0.9828 + }, + { + "start": 19762.88, + "end": 19764.24, + "probability": 0.8011 + }, + { + "start": 19765.8, + "end": 19766.62, + "probability": 0.8513 + }, + { + "start": 19768.76, + "end": 19769.88, + "probability": 0.9545 + }, + { + "start": 19774.02, + "end": 19776.96, + "probability": 0.7789 + }, + { + "start": 19778.36, + "end": 19779.38, + "probability": 0.9266 + }, + { + "start": 19781.9, + "end": 19784.94, + "probability": 0.802 + }, + { + "start": 19788.22, + "end": 19789.2, + "probability": 0.7647 + }, + { + "start": 19789.5, + "end": 19790.82, + "probability": 0.8571 + }, + { + "start": 19790.98, + "end": 19793.54, + "probability": 0.955 + }, + { + "start": 19795.4, + "end": 19796.56, + "probability": 0.9382 + }, + { + "start": 19798.96, + "end": 19801.76, + "probability": 0.9942 + }, + { + "start": 19803.56, + "end": 19804.34, + "probability": 0.673 + }, + { + "start": 19806.08, + "end": 19810.48, + "probability": 0.9905 + }, + { + "start": 19811.78, + "end": 19812.64, + "probability": 0.9092 + }, + { + "start": 19814.4, + "end": 19816.2, + "probability": 0.8211 + }, + { + "start": 19817.68, + "end": 19821.56, + "probability": 0.9971 + }, + { + "start": 19822.5, + "end": 19823.62, + "probability": 0.7278 + }, + { + "start": 19824.96, + "end": 19825.74, + "probability": 0.782 + }, + { + "start": 19827.54, + "end": 19828.38, + "probability": 0.9539 + }, + { + "start": 19830.4, + "end": 19836.04, + "probability": 0.9748 + }, + { + "start": 19836.04, + "end": 19839.8, + "probability": 0.9255 + }, + { + "start": 19841.84, + "end": 19845.12, + "probability": 0.9102 + }, + { + "start": 19846.52, + "end": 19849.56, + "probability": 0.7306 + }, + { + "start": 19850.68, + "end": 19851.92, + "probability": 0.9912 + }, + { + "start": 19852.46, + "end": 19855.44, + "probability": 0.9775 + }, + { + "start": 19856.54, + "end": 19856.92, + "probability": 0.8337 + }, + { + "start": 19857.9, + "end": 19859.82, + "probability": 0.9024 + }, + { + "start": 19860.08, + "end": 19861.56, + "probability": 0.882 + }, + { + "start": 19864.64, + "end": 19866.52, + "probability": 0.9646 + }, + { + "start": 19867.9, + "end": 19869.86, + "probability": 0.952 + }, + { + "start": 19870.34, + "end": 19872.08, + "probability": 0.9756 + }, + { + "start": 19874.88, + "end": 19875.38, + "probability": 0.7573 + }, + { + "start": 19877.2, + "end": 19877.86, + "probability": 0.8004 + }, + { + "start": 19879.24, + "end": 19881.86, + "probability": 0.9856 + }, + { + "start": 19883.94, + "end": 19883.94, + "probability": 0.0649 + }, + { + "start": 19883.94, + "end": 19889.14, + "probability": 0.9813 + }, + { + "start": 19890.3, + "end": 19893.28, + "probability": 0.996 + }, + { + "start": 19894.5, + "end": 19897.8, + "probability": 0.9878 + }, + { + "start": 19898.66, + "end": 19901.12, + "probability": 0.9607 + }, + { + "start": 19901.84, + "end": 19904.34, + "probability": 0.8568 + }, + { + "start": 19905.92, + "end": 19906.64, + "probability": 0.826 + }, + { + "start": 19907.58, + "end": 19910.08, + "probability": 0.9948 + }, + { + "start": 19910.82, + "end": 19913.8, + "probability": 0.9972 + }, + { + "start": 19914.62, + "end": 19916.26, + "probability": 0.9292 + }, + { + "start": 19918.66, + "end": 19920.44, + "probability": 0.9937 + }, + { + "start": 19920.44, + "end": 19923.6, + "probability": 0.9962 + }, + { + "start": 19925.06, + "end": 19929.56, + "probability": 0.9715 + }, + { + "start": 19932.6, + "end": 19933.64, + "probability": 0.7178 + }, + { + "start": 19935.0, + "end": 19936.67, + "probability": 0.9811 + }, + { + "start": 19939.48, + "end": 19940.24, + "probability": 0.7651 + }, + { + "start": 19940.86, + "end": 19941.4, + "probability": 0.5008 + }, + { + "start": 19943.94, + "end": 19946.8, + "probability": 0.9814 + }, + { + "start": 19948.32, + "end": 19948.68, + "probability": 0.8887 + }, + { + "start": 19948.8, + "end": 19950.4, + "probability": 0.8482 + }, + { + "start": 19950.5, + "end": 19952.52, + "probability": 0.9655 + }, + { + "start": 19954.46, + "end": 19955.3, + "probability": 0.9275 + }, + { + "start": 19956.62, + "end": 19958.09, + "probability": 0.8109 + }, + { + "start": 19959.94, + "end": 19960.3, + "probability": 0.9587 + }, + { + "start": 19961.46, + "end": 19963.4, + "probability": 0.9336 + }, + { + "start": 19964.1, + "end": 19966.56, + "probability": 0.9927 + }, + { + "start": 19966.98, + "end": 19970.78, + "probability": 0.9964 + }, + { + "start": 19972.64, + "end": 19975.96, + "probability": 0.9692 + }, + { + "start": 19976.08, + "end": 19977.52, + "probability": 0.9786 + }, + { + "start": 19978.78, + "end": 19979.74, + "probability": 0.639 + }, + { + "start": 19980.9, + "end": 19983.22, + "probability": 0.9897 + }, + { + "start": 19983.86, + "end": 19985.4, + "probability": 0.8986 + }, + { + "start": 19985.68, + "end": 19989.36, + "probability": 0.9832 + }, + { + "start": 19989.36, + "end": 19993.02, + "probability": 0.9995 + }, + { + "start": 19993.08, + "end": 19993.82, + "probability": 0.879 + }, + { + "start": 19993.92, + "end": 19995.16, + "probability": 0.8982 + }, + { + "start": 19996.72, + "end": 20003.34, + "probability": 0.9916 + }, + { + "start": 20003.5, + "end": 20004.1, + "probability": 0.554 + }, + { + "start": 20004.94, + "end": 20007.12, + "probability": 0.9785 + }, + { + "start": 20008.44, + "end": 20009.04, + "probability": 0.903 + }, + { + "start": 20011.5, + "end": 20015.12, + "probability": 0.9401 + }, + { + "start": 20015.18, + "end": 20017.34, + "probability": 0.6647 + }, + { + "start": 20017.92, + "end": 20019.64, + "probability": 0.8438 + }, + { + "start": 20021.68, + "end": 20022.87, + "probability": 0.833 + }, + { + "start": 20023.5, + "end": 20024.64, + "probability": 0.7298 + }, + { + "start": 20024.7, + "end": 20025.3, + "probability": 0.8519 + }, + { + "start": 20025.5, + "end": 20026.2, + "probability": 0.8788 + }, + { + "start": 20026.66, + "end": 20031.36, + "probability": 0.9762 + }, + { + "start": 20033.62, + "end": 20034.2, + "probability": 0.9932 + }, + { + "start": 20034.72, + "end": 20037.94, + "probability": 0.9944 + }, + { + "start": 20038.76, + "end": 20040.62, + "probability": 0.7522 + }, + { + "start": 20043.52, + "end": 20047.7, + "probability": 0.5472 + }, + { + "start": 20048.78, + "end": 20048.92, + "probability": 0.2352 + }, + { + "start": 20048.92, + "end": 20048.92, + "probability": 0.1886 + }, + { + "start": 20048.92, + "end": 20048.92, + "probability": 0.0437 + }, + { + "start": 20048.92, + "end": 20048.92, + "probability": 0.0571 + }, + { + "start": 20048.92, + "end": 20048.92, + "probability": 0.5452 + }, + { + "start": 20048.92, + "end": 20049.4, + "probability": 0.1821 + }, + { + "start": 20049.4, + "end": 20052.52, + "probability": 0.8583 + }, + { + "start": 20053.88, + "end": 20056.72, + "probability": 0.6082 + }, + { + "start": 20056.96, + "end": 20058.34, + "probability": 0.9378 + }, + { + "start": 20058.44, + "end": 20061.08, + "probability": 0.9824 + }, + { + "start": 20062.84, + "end": 20063.74, + "probability": 0.8947 + }, + { + "start": 20063.86, + "end": 20064.58, + "probability": 0.9316 + }, + { + "start": 20064.7, + "end": 20066.9, + "probability": 0.9346 + }, + { + "start": 20068.78, + "end": 20070.04, + "probability": 0.749 + }, + { + "start": 20070.46, + "end": 20071.54, + "probability": 0.998 + }, + { + "start": 20071.62, + "end": 20073.34, + "probability": 0.6787 + }, + { + "start": 20073.9, + "end": 20080.26, + "probability": 0.9954 + }, + { + "start": 20083.68, + "end": 20084.52, + "probability": 0.9363 + }, + { + "start": 20087.44, + "end": 20089.1, + "probability": 0.6609 + }, + { + "start": 20089.88, + "end": 20092.1, + "probability": 0.4983 + }, + { + "start": 20092.76, + "end": 20093.56, + "probability": 0.7297 + }, + { + "start": 20093.78, + "end": 20096.22, + "probability": 0.218 + }, + { + "start": 20099.02, + "end": 20100.45, + "probability": 0.1124 + }, + { + "start": 20101.38, + "end": 20102.42, + "probability": 0.0127 + }, + { + "start": 20102.42, + "end": 20102.42, + "probability": 0.2097 + }, + { + "start": 20102.42, + "end": 20105.54, + "probability": 0.0532 + }, + { + "start": 20105.9, + "end": 20108.54, + "probability": 0.854 + }, + { + "start": 20108.6, + "end": 20109.42, + "probability": 0.9353 + }, + { + "start": 20109.5, + "end": 20110.64, + "probability": 0.9972 + }, + { + "start": 20111.24, + "end": 20113.7, + "probability": 0.9841 + }, + { + "start": 20114.46, + "end": 20118.0, + "probability": 0.9886 + }, + { + "start": 20119.28, + "end": 20121.93, + "probability": 0.7361 + }, + { + "start": 20124.91, + "end": 20126.06, + "probability": 0.7824 + }, + { + "start": 20126.54, + "end": 20128.76, + "probability": 0.9456 + }, + { + "start": 20129.74, + "end": 20130.4, + "probability": 0.6631 + }, + { + "start": 20131.48, + "end": 20133.3, + "probability": 0.9128 + }, + { + "start": 20133.5, + "end": 20134.48, + "probability": 0.8152 + }, + { + "start": 20136.68, + "end": 20137.44, + "probability": 0.8155 + }, + { + "start": 20138.16, + "end": 20140.56, + "probability": 0.9861 + }, + { + "start": 20143.46, + "end": 20144.38, + "probability": 0.6024 + }, + { + "start": 20147.12, + "end": 20147.18, + "probability": 0.0105 + }, + { + "start": 20147.18, + "end": 20148.38, + "probability": 0.8941 + }, + { + "start": 20149.54, + "end": 20150.66, + "probability": 0.9726 + }, + { + "start": 20152.04, + "end": 20154.9, + "probability": 0.7685 + }, + { + "start": 20156.82, + "end": 20157.24, + "probability": 0.7258 + }, + { + "start": 20157.46, + "end": 20159.16, + "probability": 0.9135 + }, + { + "start": 20159.26, + "end": 20160.02, + "probability": 0.5142 + }, + { + "start": 20160.06, + "end": 20163.42, + "probability": 0.9946 + }, + { + "start": 20164.28, + "end": 20168.06, + "probability": 0.8047 + }, + { + "start": 20169.14, + "end": 20169.65, + "probability": 0.5249 + }, + { + "start": 20171.04, + "end": 20177.2, + "probability": 0.813 + }, + { + "start": 20181.29, + "end": 20183.86, + "probability": 0.9948 + }, + { + "start": 20183.86, + "end": 20184.7, + "probability": 0.9707 + }, + { + "start": 20186.17, + "end": 20186.28, + "probability": 0.2155 + }, + { + "start": 20186.46, + "end": 20192.06, + "probability": 0.9128 + }, + { + "start": 20192.7, + "end": 20195.9, + "probability": 0.9573 + }, + { + "start": 20196.46, + "end": 20200.32, + "probability": 0.9139 + }, + { + "start": 20201.04, + "end": 20202.94, + "probability": 0.7514 + }, + { + "start": 20204.9, + "end": 20206.74, + "probability": 0.6719 + }, + { + "start": 20207.52, + "end": 20208.1, + "probability": 0.0094 + }, + { + "start": 20208.54, + "end": 20208.58, + "probability": 0.6001 + }, + { + "start": 20208.58, + "end": 20211.4, + "probability": 0.9965 + }, + { + "start": 20211.6, + "end": 20211.88, + "probability": 0.2294 + }, + { + "start": 20211.88, + "end": 20214.16, + "probability": 0.926 + }, + { + "start": 20214.92, + "end": 20216.2, + "probability": 0.5332 + }, + { + "start": 20216.94, + "end": 20219.24, + "probability": 0.686 + }, + { + "start": 20219.34, + "end": 20219.66, + "probability": 0.315 + }, + { + "start": 20219.92, + "end": 20220.44, + "probability": 0.2747 + }, + { + "start": 20221.44, + "end": 20224.46, + "probability": 0.5725 + }, + { + "start": 20227.44, + "end": 20230.58, + "probability": 0.0577 + }, + { + "start": 20231.0, + "end": 20232.64, + "probability": 0.1526 + }, + { + "start": 20233.52, + "end": 20233.94, + "probability": 0.2352 + }, + { + "start": 20234.54, + "end": 20235.84, + "probability": 0.1597 + }, + { + "start": 20235.84, + "end": 20239.0, + "probability": 0.0945 + }, + { + "start": 20241.65, + "end": 20241.77, + "probability": 0.0903 + }, + { + "start": 20246.32, + "end": 20246.58, + "probability": 0.3758 + }, + { + "start": 20250.84, + "end": 20254.46, + "probability": 0.1831 + }, + { + "start": 20256.14, + "end": 20258.02, + "probability": 0.2883 + }, + { + "start": 20258.12, + "end": 20258.92, + "probability": 0.2839 + }, + { + "start": 20262.04, + "end": 20265.04, + "probability": 0.0379 + }, + { + "start": 20265.06, + "end": 20265.14, + "probability": 0.1087 + }, + { + "start": 20265.14, + "end": 20265.46, + "probability": 0.3045 + }, + { + "start": 20269.62, + "end": 20270.6, + "probability": 0.1768 + }, + { + "start": 20271.88, + "end": 20275.12, + "probability": 0.0352 + }, + { + "start": 20275.12, + "end": 20275.22, + "probability": 0.0099 + }, + { + "start": 20275.22, + "end": 20278.88, + "probability": 0.0681 + }, + { + "start": 20278.9, + "end": 20279.0, + "probability": 0.0742 + }, + { + "start": 20280.18, + "end": 20280.46, + "probability": 0.0346 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.0, + "end": 20304.0, + "probability": 0.0 + }, + { + "start": 20304.1, + "end": 20307.69, + "probability": 0.9837 + }, + { + "start": 20308.46, + "end": 20308.62, + "probability": 0.0075 + }, + { + "start": 20308.62, + "end": 20310.35, + "probability": 0.9473 + }, + { + "start": 20311.38, + "end": 20313.35, + "probability": 0.9985 + }, + { + "start": 20313.9, + "end": 20317.58, + "probability": 0.9159 + }, + { + "start": 20318.6, + "end": 20319.28, + "probability": 0.6865 + }, + { + "start": 20320.88, + "end": 20321.9, + "probability": 0.7757 + }, + { + "start": 20322.22, + "end": 20328.78, + "probability": 0.9552 + }, + { + "start": 20328.98, + "end": 20330.4, + "probability": 0.996 + }, + { + "start": 20330.8, + "end": 20330.82, + "probability": 0.0935 + }, + { + "start": 20330.82, + "end": 20334.2, + "probability": 0.4972 + }, + { + "start": 20334.2, + "end": 20335.7, + "probability": 0.6398 + }, + { + "start": 20340.14, + "end": 20342.22, + "probability": 0.7487 + }, + { + "start": 20343.78, + "end": 20345.44, + "probability": 0.6342 + }, + { + "start": 20346.0, + "end": 20348.11, + "probability": 0.9756 + }, + { + "start": 20348.58, + "end": 20349.62, + "probability": 0.7915 + }, + { + "start": 20350.1, + "end": 20351.06, + "probability": 0.8759 + }, + { + "start": 20352.04, + "end": 20352.04, + "probability": 0.897 + }, + { + "start": 20353.64, + "end": 20354.94, + "probability": 0.8523 + }, + { + "start": 20355.0, + "end": 20360.16, + "probability": 0.9894 + }, + { + "start": 20360.9, + "end": 20363.74, + "probability": 0.8076 + }, + { + "start": 20363.82, + "end": 20364.92, + "probability": 0.9829 + }, + { + "start": 20365.52, + "end": 20366.86, + "probability": 0.7568 + }, + { + "start": 20367.04, + "end": 20370.42, + "probability": 0.9071 + }, + { + "start": 20372.36, + "end": 20373.36, + "probability": 0.1102 + }, + { + "start": 20373.36, + "end": 20377.96, + "probability": 0.9565 + }, + { + "start": 20378.86, + "end": 20381.86, + "probability": 0.0757 + }, + { + "start": 20382.82, + "end": 20383.64, + "probability": 0.0156 + }, + { + "start": 20383.64, + "end": 20383.64, + "probability": 0.1145 + }, + { + "start": 20383.64, + "end": 20383.74, + "probability": 0.0836 + }, + { + "start": 20383.74, + "end": 20390.98, + "probability": 0.7778 + }, + { + "start": 20392.82, + "end": 20393.9, + "probability": 0.2868 + }, + { + "start": 20394.58, + "end": 20394.76, + "probability": 0.0565 + }, + { + "start": 20394.76, + "end": 20395.34, + "probability": 0.4592 + }, + { + "start": 20396.16, + "end": 20398.3, + "probability": 0.6786 + }, + { + "start": 20399.28, + "end": 20401.84, + "probability": 0.9501 + }, + { + "start": 20402.06, + "end": 20403.2, + "probability": 0.9922 + }, + { + "start": 20403.74, + "end": 20408.18, + "probability": 0.9947 + }, + { + "start": 20408.18, + "end": 20411.34, + "probability": 0.9926 + }, + { + "start": 20412.7, + "end": 20413.5, + "probability": 0.9881 + }, + { + "start": 20414.5, + "end": 20415.82, + "probability": 0.9141 + }, + { + "start": 20416.4, + "end": 20416.78, + "probability": 0.6966 + }, + { + "start": 20418.92, + "end": 20420.24, + "probability": 0.9636 + }, + { + "start": 20421.84, + "end": 20423.78, + "probability": 0.9983 + }, + { + "start": 20424.66, + "end": 20426.62, + "probability": 0.988 + }, + { + "start": 20427.44, + "end": 20428.76, + "probability": 0.999 + }, + { + "start": 20430.22, + "end": 20432.52, + "probability": 0.9592 + }, + { + "start": 20433.06, + "end": 20434.12, + "probability": 0.7774 + }, + { + "start": 20434.42, + "end": 20436.02, + "probability": 0.8501 + }, + { + "start": 20436.9, + "end": 20441.58, + "probability": 0.9449 + }, + { + "start": 20441.78, + "end": 20442.92, + "probability": 0.978 + }, + { + "start": 20443.0, + "end": 20443.66, + "probability": 0.9587 + }, + { + "start": 20443.7, + "end": 20445.95, + "probability": 0.9479 + }, + { + "start": 20446.68, + "end": 20447.74, + "probability": 0.7989 + }, + { + "start": 20448.42, + "end": 20450.04, + "probability": 0.7192 + }, + { + "start": 20451.22, + "end": 20453.24, + "probability": 0.8874 + }, + { + "start": 20453.32, + "end": 20455.17, + "probability": 0.8014 + }, + { + "start": 20455.84, + "end": 20460.36, + "probability": 0.9961 + }, + { + "start": 20460.8, + "end": 20462.92, + "probability": 0.9948 + }, + { + "start": 20463.38, + "end": 20464.24, + "probability": 0.8876 + }, + { + "start": 20464.36, + "end": 20469.54, + "probability": 0.9715 + }, + { + "start": 20469.82, + "end": 20470.7, + "probability": 0.5502 + }, + { + "start": 20470.8, + "end": 20471.88, + "probability": 0.9405 + }, + { + "start": 20471.98, + "end": 20473.52, + "probability": 0.9473 + }, + { + "start": 20474.54, + "end": 20475.18, + "probability": 0.849 + }, + { + "start": 20475.7, + "end": 20479.46, + "probability": 0.9912 + }, + { + "start": 20479.58, + "end": 20479.9, + "probability": 0.6098 + }, + { + "start": 20480.8, + "end": 20481.39, + "probability": 0.9893 + }, + { + "start": 20481.42, + "end": 20481.96, + "probability": 0.9463 + }, + { + "start": 20483.26, + "end": 20484.92, + "probability": 0.8523 + }, + { + "start": 20486.0, + "end": 20488.24, + "probability": 0.9211 + }, + { + "start": 20488.32, + "end": 20489.72, + "probability": 0.981 + }, + { + "start": 20490.58, + "end": 20496.8, + "probability": 0.9924 + }, + { + "start": 20497.52, + "end": 20498.83, + "probability": 0.5306 + }, + { + "start": 20499.16, + "end": 20502.36, + "probability": 0.7774 + }, + { + "start": 20502.5, + "end": 20506.6, + "probability": 0.8641 + }, + { + "start": 20507.14, + "end": 20511.38, + "probability": 0.9788 + }, + { + "start": 20511.38, + "end": 20513.68, + "probability": 0.7991 + }, + { + "start": 20513.82, + "end": 20516.7, + "probability": 0.8363 + }, + { + "start": 20516.96, + "end": 20518.16, + "probability": 0.689 + }, + { + "start": 20518.6, + "end": 20520.29, + "probability": 0.9806 + }, + { + "start": 20520.4, + "end": 20521.38, + "probability": 0.9221 + }, + { + "start": 20521.5, + "end": 20522.04, + "probability": 0.4252 + }, + { + "start": 20522.52, + "end": 20523.48, + "probability": 0.6301 + }, + { + "start": 20523.6, + "end": 20525.22, + "probability": 0.9415 + }, + { + "start": 20525.28, + "end": 20525.86, + "probability": 0.9854 + }, + { + "start": 20526.56, + "end": 20527.28, + "probability": 0.7051 + }, + { + "start": 20527.54, + "end": 20531.62, + "probability": 0.7188 + }, + { + "start": 20532.98, + "end": 20533.3, + "probability": 0.0867 + }, + { + "start": 20533.3, + "end": 20533.3, + "probability": 0.1132 + }, + { + "start": 20533.3, + "end": 20533.3, + "probability": 0.0461 + }, + { + "start": 20533.3, + "end": 20535.06, + "probability": 0.7546 + }, + { + "start": 20535.06, + "end": 20538.88, + "probability": 0.9496 + }, + { + "start": 20539.16, + "end": 20539.4, + "probability": 0.6798 + }, + { + "start": 20541.1, + "end": 20545.6, + "probability": 0.6511 + }, + { + "start": 20545.76, + "end": 20547.32, + "probability": 0.9077 + }, + { + "start": 20547.36, + "end": 20547.46, + "probability": 0.5049 + }, + { + "start": 20547.46, + "end": 20555.64, + "probability": 0.9095 + }, + { + "start": 20556.18, + "end": 20559.62, + "probability": 0.8645 + }, + { + "start": 20559.88, + "end": 20564.44, + "probability": 0.9923 + }, + { + "start": 20564.72, + "end": 20565.8, + "probability": 0.5189 + }, + { + "start": 20565.94, + "end": 20566.94, + "probability": 0.6558 + }, + { + "start": 20567.06, + "end": 20569.3, + "probability": 0.8759 + }, + { + "start": 20569.72, + "end": 20570.3, + "probability": 0.7887 + }, + { + "start": 20571.0, + "end": 20571.92, + "probability": 0.8566 + }, + { + "start": 20572.92, + "end": 20573.76, + "probability": 0.9068 + }, + { + "start": 20574.56, + "end": 20575.18, + "probability": 0.9748 + }, + { + "start": 20575.88, + "end": 20578.74, + "probability": 0.9948 + }, + { + "start": 20580.12, + "end": 20582.74, + "probability": 0.6308 + }, + { + "start": 20583.12, + "end": 20583.87, + "probability": 0.4567 + }, + { + "start": 20584.0, + "end": 20584.9, + "probability": 0.8118 + }, + { + "start": 20586.32, + "end": 20586.32, + "probability": 0.4556 + }, + { + "start": 20586.32, + "end": 20586.98, + "probability": 0.6344 + }, + { + "start": 20587.62, + "end": 20588.5, + "probability": 0.9574 + }, + { + "start": 20589.48, + "end": 20590.46, + "probability": 0.9533 + }, + { + "start": 20590.62, + "end": 20594.74, + "probability": 0.9834 + }, + { + "start": 20594.86, + "end": 20598.46, + "probability": 0.9902 + }, + { + "start": 20599.12, + "end": 20600.3, + "probability": 0.5033 + }, + { + "start": 20600.38, + "end": 20603.16, + "probability": 0.9881 + }, + { + "start": 20604.0, + "end": 20605.8, + "probability": 0.9344 + }, + { + "start": 20607.44, + "end": 20608.42, + "probability": 0.7214 + }, + { + "start": 20608.84, + "end": 20611.0, + "probability": 0.967 + }, + { + "start": 20611.44, + "end": 20611.8, + "probability": 0.8733 + }, + { + "start": 20612.58, + "end": 20613.84, + "probability": 0.9973 + }, + { + "start": 20614.56, + "end": 20616.76, + "probability": 0.8119 + }, + { + "start": 20617.28, + "end": 20619.92, + "probability": 0.9788 + }, + { + "start": 20620.14, + "end": 20622.78, + "probability": 0.9913 + }, + { + "start": 20623.32, + "end": 20626.9, + "probability": 0.7629 + }, + { + "start": 20627.36, + "end": 20630.1, + "probability": 0.9836 + }, + { + "start": 20630.44, + "end": 20631.16, + "probability": 0.1805 + }, + { + "start": 20632.44, + "end": 20632.68, + "probability": 0.112 + }, + { + "start": 20632.68, + "end": 20632.68, + "probability": 0.0527 + }, + { + "start": 20632.68, + "end": 20636.54, + "probability": 0.543 + }, + { + "start": 20637.64, + "end": 20638.88, + "probability": 0.7858 + }, + { + "start": 20639.68, + "end": 20639.98, + "probability": 0.7559 + }, + { + "start": 20640.66, + "end": 20641.4, + "probability": 0.9648 + }, + { + "start": 20643.42, + "end": 20644.32, + "probability": 0.8967 + }, + { + "start": 20646.2, + "end": 20651.12, + "probability": 0.6699 + }, + { + "start": 20653.06, + "end": 20653.6, + "probability": 0.8892 + }, + { + "start": 20655.66, + "end": 20656.26, + "probability": 0.8095 + }, + { + "start": 20657.3, + "end": 20657.98, + "probability": 0.9851 + }, + { + "start": 20659.56, + "end": 20660.44, + "probability": 0.9501 + }, + { + "start": 20662.66, + "end": 20664.5, + "probability": 0.8894 + }, + { + "start": 20665.96, + "end": 20667.4, + "probability": 0.9386 + }, + { + "start": 20669.08, + "end": 20670.82, + "probability": 0.3899 + }, + { + "start": 20671.98, + "end": 20672.8, + "probability": 0.9313 + }, + { + "start": 20674.18, + "end": 20675.72, + "probability": 0.6334 + }, + { + "start": 20676.86, + "end": 20680.34, + "probability": 0.9167 + }, + { + "start": 20681.82, + "end": 20682.62, + "probability": 0.9707 + }, + { + "start": 20684.18, + "end": 20685.5, + "probability": 0.8752 + }, + { + "start": 20686.9, + "end": 20687.9, + "probability": 0.7274 + }, + { + "start": 20688.92, + "end": 20689.66, + "probability": 0.5205 + }, + { + "start": 20691.58, + "end": 20693.64, + "probability": 0.9888 + }, + { + "start": 20696.36, + "end": 20697.6, + "probability": 0.9907 + }, + { + "start": 20699.02, + "end": 20699.86, + "probability": 0.8028 + }, + { + "start": 20701.42, + "end": 20703.76, + "probability": 0.9883 + }, + { + "start": 20705.16, + "end": 20706.5, + "probability": 0.9398 + }, + { + "start": 20708.7, + "end": 20710.18, + "probability": 0.9995 + }, + { + "start": 20711.72, + "end": 20716.2, + "probability": 0.6212 + }, + { + "start": 20717.32, + "end": 20718.68, + "probability": 0.9211 + }, + { + "start": 20719.66, + "end": 20722.16, + "probability": 0.9985 + }, + { + "start": 20722.62, + "end": 20724.52, + "probability": 0.8291 + }, + { + "start": 20725.56, + "end": 20726.12, + "probability": 0.5193 + }, + { + "start": 20727.18, + "end": 20728.7, + "probability": 0.9889 + }, + { + "start": 20729.28, + "end": 20729.98, + "probability": 0.7212 + }, + { + "start": 20731.06, + "end": 20732.21, + "probability": 0.9409 + }, + { + "start": 20732.7, + "end": 20733.5, + "probability": 0.8875 + }, + { + "start": 20733.68, + "end": 20734.62, + "probability": 0.9197 + }, + { + "start": 20734.64, + "end": 20735.85, + "probability": 0.9496 + }, + { + "start": 20735.94, + "end": 20736.78, + "probability": 0.9637 + }, + { + "start": 20738.44, + "end": 20739.2, + "probability": 0.999 + }, + { + "start": 20739.76, + "end": 20742.3, + "probability": 0.4768 + }, + { + "start": 20742.46, + "end": 20743.98, + "probability": 0.31 + }, + { + "start": 20743.98, + "end": 20744.08, + "probability": 0.3566 + }, + { + "start": 20744.08, + "end": 20746.73, + "probability": 0.9799 + }, + { + "start": 20750.48, + "end": 20750.86, + "probability": 0.5417 + }, + { + "start": 20752.96, + "end": 20756.58, + "probability": 0.7661 + }, + { + "start": 20758.68, + "end": 20764.9, + "probability": 0.7484 + }, + { + "start": 20766.6, + "end": 20767.04, + "probability": 0.8327 + }, + { + "start": 20768.2, + "end": 20770.14, + "probability": 0.9988 + }, + { + "start": 20770.24, + "end": 20772.22, + "probability": 0.9866 + }, + { + "start": 20773.3, + "end": 20775.32, + "probability": 0.9397 + }, + { + "start": 20775.98, + "end": 20777.58, + "probability": 0.9854 + }, + { + "start": 20777.66, + "end": 20778.68, + "probability": 0.9944 + }, + { + "start": 20779.02, + "end": 20779.76, + "probability": 0.3288 + }, + { + "start": 20780.54, + "end": 20782.62, + "probability": 0.86 + }, + { + "start": 20784.32, + "end": 20785.72, + "probability": 0.9681 + }, + { + "start": 20785.84, + "end": 20786.88, + "probability": 0.8968 + }, + { + "start": 20787.0, + "end": 20788.44, + "probability": 0.9894 + }, + { + "start": 20788.52, + "end": 20789.32, + "probability": 0.9412 + }, + { + "start": 20791.04, + "end": 20791.6, + "probability": 0.9331 + }, + { + "start": 20792.72, + "end": 20793.56, + "probability": 0.8842 + }, + { + "start": 20793.68, + "end": 20796.24, + "probability": 0.9775 + }, + { + "start": 20796.34, + "end": 20797.16, + "probability": 0.983 + }, + { + "start": 20797.18, + "end": 20798.36, + "probability": 0.9217 + }, + { + "start": 20799.54, + "end": 20801.7, + "probability": 0.9698 + }, + { + "start": 20801.86, + "end": 20805.1, + "probability": 0.9429 + }, + { + "start": 20805.24, + "end": 20806.72, + "probability": 0.9539 + }, + { + "start": 20806.86, + "end": 20807.38, + "probability": 0.5311 + }, + { + "start": 20807.48, + "end": 20808.0, + "probability": 0.9618 + }, + { + "start": 20808.5, + "end": 20809.14, + "probability": 0.6953 + }, + { + "start": 20809.86, + "end": 20811.65, + "probability": 0.9787 + }, + { + "start": 20813.32, + "end": 20814.36, + "probability": 0.7607 + }, + { + "start": 20816.08, + "end": 20819.3, + "probability": 0.9424 + }, + { + "start": 20819.48, + "end": 20820.7, + "probability": 0.7188 + }, + { + "start": 20822.4, + "end": 20824.27, + "probability": 0.6561 + }, + { + "start": 20825.58, + "end": 20827.48, + "probability": 0.9887 + }, + { + "start": 20828.94, + "end": 20833.18, + "probability": 0.9595 + }, + { + "start": 20833.24, + "end": 20834.34, + "probability": 0.8678 + }, + { + "start": 20835.64, + "end": 20840.38, + "probability": 0.8356 + }, + { + "start": 20841.36, + "end": 20844.69, + "probability": 0.0667 + }, + { + "start": 20846.12, + "end": 20846.12, + "probability": 0.0701 + }, + { + "start": 20846.12, + "end": 20848.04, + "probability": 0.4344 + }, + { + "start": 20849.34, + "end": 20850.06, + "probability": 0.1187 + }, + { + "start": 20850.06, + "end": 20851.0, + "probability": 0.4885 + }, + { + "start": 20852.06, + "end": 20854.0, + "probability": 0.1351 + }, + { + "start": 20854.22, + "end": 20856.46, + "probability": 0.0348 + }, + { + "start": 20862.89, + "end": 20865.32, + "probability": 0.9033 + }, + { + "start": 20866.22, + "end": 20867.0, + "probability": 0.9486 + }, + { + "start": 20868.0, + "end": 20869.42, + "probability": 0.7686 + }, + { + "start": 20869.72, + "end": 20870.4, + "probability": 0.956 + }, + { + "start": 20870.44, + "end": 20874.14, + "probability": 0.9943 + }, + { + "start": 20875.36, + "end": 20876.5, + "probability": 0.9556 + }, + { + "start": 20877.26, + "end": 20880.2, + "probability": 0.9924 + }, + { + "start": 20880.2, + "end": 20881.22, + "probability": 0.959 + }, + { + "start": 20881.88, + "end": 20881.88, + "probability": 0.1205 + }, + { + "start": 20881.88, + "end": 20883.4, + "probability": 0.8624 + }, + { + "start": 20884.0, + "end": 20887.02, + "probability": 0.9328 + }, + { + "start": 20887.4, + "end": 20890.58, + "probability": 0.9844 + }, + { + "start": 20890.64, + "end": 20891.7, + "probability": 0.9941 + }, + { + "start": 20891.76, + "end": 20892.84, + "probability": 0.9837 + }, + { + "start": 20893.32, + "end": 20894.38, + "probability": 0.9514 + }, + { + "start": 20894.66, + "end": 20895.76, + "probability": 0.5278 + }, + { + "start": 20895.98, + "end": 20897.7, + "probability": 0.8486 + }, + { + "start": 20898.0, + "end": 20902.66, + "probability": 0.9813 + }, + { + "start": 20902.78, + "end": 20903.66, + "probability": 0.9807 + }, + { + "start": 20904.28, + "end": 20908.86, + "probability": 0.9905 + }, + { + "start": 20910.18, + "end": 20911.3, + "probability": 0.6223 + }, + { + "start": 20912.06, + "end": 20912.5, + "probability": 0.0325 + }, + { + "start": 20912.54, + "end": 20912.86, + "probability": 0.4016 + }, + { + "start": 20912.86, + "end": 20914.9, + "probability": 0.941 + }, + { + "start": 20915.3, + "end": 20917.1, + "probability": 0.9927 + }, + { + "start": 20917.18, + "end": 20919.5, + "probability": 0.968 + }, + { + "start": 20919.64, + "end": 20920.46, + "probability": 0.9519 + }, + { + "start": 20921.12, + "end": 20922.6, + "probability": 0.9521 + }, + { + "start": 20923.4, + "end": 20925.56, + "probability": 0.9875 + }, + { + "start": 20926.2, + "end": 20932.18, + "probability": 0.9461 + }, + { + "start": 20933.64, + "end": 20935.54, + "probability": 0.7829 + }, + { + "start": 20936.54, + "end": 20940.88, + "probability": 0.9917 + }, + { + "start": 20941.06, + "end": 20941.18, + "probability": 0.135 + }, + { + "start": 20941.6, + "end": 20942.5, + "probability": 0.9617 + }, + { + "start": 20942.56, + "end": 20945.62, + "probability": 0.8924 + }, + { + "start": 20945.88, + "end": 20947.02, + "probability": 0.685 + }, + { + "start": 20947.84, + "end": 20949.72, + "probability": 0.9963 + }, + { + "start": 20950.32, + "end": 20954.46, + "probability": 0.9959 + }, + { + "start": 20955.06, + "end": 20955.06, + "probability": 0.0071 + }, + { + "start": 20955.06, + "end": 20958.78, + "probability": 0.9407 + }, + { + "start": 20959.24, + "end": 20961.16, + "probability": 0.9704 + }, + { + "start": 20961.72, + "end": 20964.62, + "probability": 0.7624 + }, + { + "start": 20965.32, + "end": 20966.32, + "probability": 0.752 + }, + { + "start": 20966.48, + "end": 20967.84, + "probability": 0.8374 + }, + { + "start": 20967.86, + "end": 20968.72, + "probability": 0.833 + }, + { + "start": 20969.08, + "end": 20971.8, + "probability": 0.8274 + }, + { + "start": 20972.4, + "end": 20974.16, + "probability": 0.9717 + }, + { + "start": 20974.62, + "end": 20975.08, + "probability": 0.3501 + }, + { + "start": 20975.22, + "end": 20975.9, + "probability": 0.8859 + }, + { + "start": 20976.12, + "end": 20978.7, + "probability": 0.9502 + }, + { + "start": 20979.02, + "end": 20981.58, + "probability": 0.9957 + }, + { + "start": 20981.92, + "end": 20984.44, + "probability": 0.918 + }, + { + "start": 20984.92, + "end": 20989.04, + "probability": 0.9227 + }, + { + "start": 20989.16, + "end": 20990.98, + "probability": 0.7468 + }, + { + "start": 20992.4, + "end": 20993.6, + "probability": 0.9257 + }, + { + "start": 20993.72, + "end": 20993.96, + "probability": 0.8594 + }, + { + "start": 20994.06, + "end": 20994.58, + "probability": 0.9724 + }, + { + "start": 20994.72, + "end": 20995.38, + "probability": 0.9547 + }, + { + "start": 20995.44, + "end": 20996.5, + "probability": 0.9891 + }, + { + "start": 20997.4, + "end": 20998.4, + "probability": 0.8061 + }, + { + "start": 20999.14, + "end": 21002.6, + "probability": 0.7763 + }, + { + "start": 21003.3, + "end": 21003.7, + "probability": 0.6921 + }, + { + "start": 21004.34, + "end": 21007.16, + "probability": 0.7683 + }, + { + "start": 21007.54, + "end": 21010.52, + "probability": 0.9149 + }, + { + "start": 21010.9, + "end": 21012.04, + "probability": 0.8384 + }, + { + "start": 21012.42, + "end": 21015.16, + "probability": 0.9604 + }, + { + "start": 21015.2, + "end": 21016.6, + "probability": 0.998 + }, + { + "start": 21017.22, + "end": 21017.32, + "probability": 0.0174 + }, + { + "start": 21017.32, + "end": 21020.32, + "probability": 0.9977 + }, + { + "start": 21021.1, + "end": 21023.04, + "probability": 0.9653 + }, + { + "start": 21023.88, + "end": 21024.82, + "probability": 0.7388 + }, + { + "start": 21024.96, + "end": 21025.8, + "probability": 0.7054 + }, + { + "start": 21025.96, + "end": 21027.36, + "probability": 0.8802 + }, + { + "start": 21027.7, + "end": 21030.9, + "probability": 0.9877 + }, + { + "start": 21031.06, + "end": 21031.06, + "probability": 0.2147 + }, + { + "start": 21031.06, + "end": 21034.67, + "probability": 0.8608 + }, + { + "start": 21034.98, + "end": 21035.7, + "probability": 0.5178 + }, + { + "start": 21035.78, + "end": 21036.36, + "probability": 0.7484 + }, + { + "start": 21036.62, + "end": 21040.38, + "probability": 0.77 + }, + { + "start": 21041.42, + "end": 21042.98, + "probability": 0.0727 + }, + { + "start": 21043.4, + "end": 21047.28, + "probability": 0.7833 + }, + { + "start": 21047.38, + "end": 21049.52, + "probability": 0.8948 + }, + { + "start": 21050.08, + "end": 21051.62, + "probability": 0.7452 + }, + { + "start": 21051.72, + "end": 21052.61, + "probability": 0.059 + }, + { + "start": 21053.56, + "end": 21057.86, + "probability": 0.5618 + }, + { + "start": 21064.02, + "end": 21067.06, + "probability": 0.999 + }, + { + "start": 21067.3, + "end": 21070.24, + "probability": 0.8854 + }, + { + "start": 21070.46, + "end": 21070.74, + "probability": 0.4204 + }, + { + "start": 21071.82, + "end": 21075.42, + "probability": 0.7944 + }, + { + "start": 21075.5, + "end": 21076.34, + "probability": 0.7902 + }, + { + "start": 21076.36, + "end": 21078.06, + "probability": 0.9274 + }, + { + "start": 21078.34, + "end": 21078.86, + "probability": 0.2364 + }, + { + "start": 21078.86, + "end": 21082.04, + "probability": 0.6575 + }, + { + "start": 21082.22, + "end": 21083.06, + "probability": 0.7216 + }, + { + "start": 21083.72, + "end": 21085.04, + "probability": 0.7936 + }, + { + "start": 21085.1, + "end": 21086.32, + "probability": 0.957 + }, + { + "start": 21086.42, + "end": 21090.58, + "probability": 0.958 + }, + { + "start": 21090.66, + "end": 21094.5, + "probability": 0.8611 + }, + { + "start": 21096.6, + "end": 21098.78, + "probability": 0.8431 + }, + { + "start": 21099.0, + "end": 21101.14, + "probability": 0.8224 + }, + { + "start": 21101.84, + "end": 21103.5, + "probability": 0.9815 + }, + { + "start": 21104.56, + "end": 21106.0, + "probability": 0.9281 + }, + { + "start": 21107.12, + "end": 21110.43, + "probability": 0.9799 + }, + { + "start": 21111.42, + "end": 21114.02, + "probability": 0.9167 + }, + { + "start": 21114.82, + "end": 21117.34, + "probability": 0.9771 + }, + { + "start": 21118.56, + "end": 21124.28, + "probability": 0.9962 + }, + { + "start": 21125.74, + "end": 21128.92, + "probability": 0.9919 + }, + { + "start": 21129.0, + "end": 21132.46, + "probability": 0.9219 + }, + { + "start": 21132.56, + "end": 21133.18, + "probability": 0.66 + }, + { + "start": 21133.24, + "end": 21133.46, + "probability": 0.8319 + }, + { + "start": 21133.62, + "end": 21134.92, + "probability": 0.9359 + }, + { + "start": 21136.46, + "end": 21137.5, + "probability": 0.9341 + }, + { + "start": 21138.34, + "end": 21140.3, + "probability": 0.9954 + }, + { + "start": 21142.62, + "end": 21143.34, + "probability": 0.9348 + }, + { + "start": 21143.44, + "end": 21148.84, + "probability": 0.7883 + }, + { + "start": 21149.36, + "end": 21151.5, + "probability": 0.934 + }, + { + "start": 21153.26, + "end": 21155.98, + "probability": 0.7704 + }, + { + "start": 21158.18, + "end": 21159.12, + "probability": 0.9773 + }, + { + "start": 21159.64, + "end": 21161.68, + "probability": 0.8826 + }, + { + "start": 21161.76, + "end": 21164.38, + "probability": 0.9893 + }, + { + "start": 21164.54, + "end": 21165.36, + "probability": 0.9508 + }, + { + "start": 21166.14, + "end": 21170.08, + "probability": 0.9873 + }, + { + "start": 21170.42, + "end": 21171.82, + "probability": 0.8381 + }, + { + "start": 21173.02, + "end": 21174.58, + "probability": 0.876 + }, + { + "start": 21174.7, + "end": 21176.76, + "probability": 0.9823 + }, + { + "start": 21178.34, + "end": 21179.74, + "probability": 0.9106 + }, + { + "start": 21183.06, + "end": 21184.18, + "probability": 0.7622 + }, + { + "start": 21185.12, + "end": 21186.06, + "probability": 0.8443 + }, + { + "start": 21186.12, + "end": 21187.42, + "probability": 0.8207 + }, + { + "start": 21187.42, + "end": 21188.6, + "probability": 0.9952 + }, + { + "start": 21188.68, + "end": 21190.32, + "probability": 0.6924 + }, + { + "start": 21192.0, + "end": 21193.28, + "probability": 0.9808 + }, + { + "start": 21194.5, + "end": 21197.23, + "probability": 0.9904 + }, + { + "start": 21197.9, + "end": 21201.76, + "probability": 0.7751 + }, + { + "start": 21203.28, + "end": 21209.32, + "probability": 0.9453 + }, + { + "start": 21210.04, + "end": 21211.7, + "probability": 0.5737 + }, + { + "start": 21212.48, + "end": 21213.2, + "probability": 0.6731 + }, + { + "start": 21213.44, + "end": 21213.88, + "probability": 0.9647 + }, + { + "start": 21214.08, + "end": 21217.18, + "probability": 0.9519 + }, + { + "start": 21217.56, + "end": 21218.14, + "probability": 0.3828 + }, + { + "start": 21218.28, + "end": 21218.6, + "probability": 0.6121 + }, + { + "start": 21218.68, + "end": 21219.3, + "probability": 0.9604 + }, + { + "start": 21219.68, + "end": 21220.24, + "probability": 0.7742 + }, + { + "start": 21220.86, + "end": 21224.32, + "probability": 0.9878 + }, + { + "start": 21226.94, + "end": 21228.62, + "probability": 0.9718 + }, + { + "start": 21228.74, + "end": 21229.52, + "probability": 0.9387 + }, + { + "start": 21229.94, + "end": 21233.94, + "probability": 0.9032 + }, + { + "start": 21233.98, + "end": 21235.78, + "probability": 0.9446 + }, + { + "start": 21235.92, + "end": 21236.9, + "probability": 0.6025 + }, + { + "start": 21240.06, + "end": 21244.28, + "probability": 0.9609 + }, + { + "start": 21244.3, + "end": 21245.14, + "probability": 0.9113 + }, + { + "start": 21245.3, + "end": 21246.3, + "probability": 0.9229 + }, + { + "start": 21247.22, + "end": 21247.96, + "probability": 0.5386 + }, + { + "start": 21248.36, + "end": 21250.98, + "probability": 0.8386 + }, + { + "start": 21251.48, + "end": 21256.34, + "probability": 0.9847 + }, + { + "start": 21258.48, + "end": 21261.1, + "probability": 0.5228 + }, + { + "start": 21262.24, + "end": 21266.76, + "probability": 0.9147 + }, + { + "start": 21266.76, + "end": 21270.26, + "probability": 0.9905 + }, + { + "start": 21271.6, + "end": 21273.32, + "probability": 0.8251 + }, + { + "start": 21274.42, + "end": 21276.44, + "probability": 0.9272 + }, + { + "start": 21277.76, + "end": 21280.26, + "probability": 0.8118 + }, + { + "start": 21281.1, + "end": 21282.44, + "probability": 0.5236 + }, + { + "start": 21282.48, + "end": 21283.62, + "probability": 0.7441 + }, + { + "start": 21283.72, + "end": 21288.9, + "probability": 0.9989 + }, + { + "start": 21289.04, + "end": 21293.46, + "probability": 0.9966 + }, + { + "start": 21294.36, + "end": 21295.14, + "probability": 0.8227 + }, + { + "start": 21295.48, + "end": 21302.08, + "probability": 0.9657 + }, + { + "start": 21303.02, + "end": 21308.0, + "probability": 0.9985 + }, + { + "start": 21308.58, + "end": 21311.76, + "probability": 0.8091 + }, + { + "start": 21312.96, + "end": 21317.66, + "probability": 0.9943 + }, + { + "start": 21317.78, + "end": 21319.39, + "probability": 0.9824 + }, + { + "start": 21320.08, + "end": 21324.7, + "probability": 0.9666 + }, + { + "start": 21324.7, + "end": 21327.02, + "probability": 0.9962 + }, + { + "start": 21330.18, + "end": 21333.34, + "probability": 0.9121 + }, + { + "start": 21333.76, + "end": 21335.08, + "probability": 0.6062 + }, + { + "start": 21335.48, + "end": 21336.96, + "probability": 0.9742 + }, + { + "start": 21336.98, + "end": 21338.26, + "probability": 0.8556 + }, + { + "start": 21339.82, + "end": 21343.28, + "probability": 0.994 + }, + { + "start": 21344.5, + "end": 21350.2, + "probability": 0.9961 + }, + { + "start": 21350.24, + "end": 21351.28, + "probability": 0.811 + }, + { + "start": 21351.72, + "end": 21352.72, + "probability": 0.7472 + }, + { + "start": 21352.96, + "end": 21354.5, + "probability": 0.8752 + }, + { + "start": 21354.86, + "end": 21360.62, + "probability": 0.9327 + }, + { + "start": 21360.78, + "end": 21361.12, + "probability": 0.9176 + }, + { + "start": 21362.88, + "end": 21364.96, + "probability": 0.9763 + }, + { + "start": 21365.0, + "end": 21366.02, + "probability": 0.8592 + }, + { + "start": 21366.46, + "end": 21372.04, + "probability": 0.9972 + }, + { + "start": 21372.08, + "end": 21376.96, + "probability": 0.99 + }, + { + "start": 21377.4, + "end": 21378.2, + "probability": 0.6197 + }, + { + "start": 21378.26, + "end": 21382.6, + "probability": 0.9727 + }, + { + "start": 21384.06, + "end": 21386.4, + "probability": 0.9724 + }, + { + "start": 21386.76, + "end": 21388.36, + "probability": 0.9163 + }, + { + "start": 21388.46, + "end": 21389.48, + "probability": 0.9172 + }, + { + "start": 21389.52, + "end": 21391.08, + "probability": 0.8519 + }, + { + "start": 21393.62, + "end": 21395.44, + "probability": 0.9147 + }, + { + "start": 21396.84, + "end": 21397.8, + "probability": 0.7062 + }, + { + "start": 21399.1, + "end": 21402.9, + "probability": 0.9778 + }, + { + "start": 21403.08, + "end": 21403.88, + "probability": 0.6449 + }, + { + "start": 21404.96, + "end": 21407.04, + "probability": 0.9712 + }, + { + "start": 21407.18, + "end": 21408.42, + "probability": 0.9706 + }, + { + "start": 21408.52, + "end": 21409.78, + "probability": 0.9927 + }, + { + "start": 21410.14, + "end": 21411.22, + "probability": 0.9968 + }, + { + "start": 21411.36, + "end": 21412.42, + "probability": 0.6301 + }, + { + "start": 21412.74, + "end": 21416.32, + "probability": 0.8076 + }, + { + "start": 21416.64, + "end": 21418.04, + "probability": 0.8145 + }, + { + "start": 21418.38, + "end": 21423.1, + "probability": 0.9677 + }, + { + "start": 21423.82, + "end": 21425.94, + "probability": 0.6978 + }, + { + "start": 21426.28, + "end": 21428.67, + "probability": 0.9084 + }, + { + "start": 21429.82, + "end": 21430.52, + "probability": 0.724 + }, + { + "start": 21430.64, + "end": 21431.42, + "probability": 0.9448 + }, + { + "start": 21431.54, + "end": 21432.36, + "probability": 0.7351 + }, + { + "start": 21432.86, + "end": 21433.26, + "probability": 0.0322 + }, + { + "start": 21434.02, + "end": 21435.88, + "probability": 0.9523 + }, + { + "start": 21436.52, + "end": 21436.62, + "probability": 0.2671 + }, + { + "start": 21437.56, + "end": 21442.14, + "probability": 0.9294 + }, + { + "start": 21442.14, + "end": 21445.54, + "probability": 0.9354 + }, + { + "start": 21446.56, + "end": 21449.3, + "probability": 0.8008 + }, + { + "start": 21449.3, + "end": 21455.56, + "probability": 0.9684 + }, + { + "start": 21457.82, + "end": 21459.64, + "probability": 0.879 + }, + { + "start": 21461.46, + "end": 21462.52, + "probability": 0.9991 + }, + { + "start": 21463.48, + "end": 21467.64, + "probability": 0.9972 + }, + { + "start": 21468.02, + "end": 21471.88, + "probability": 0.9056 + }, + { + "start": 21472.32, + "end": 21476.3, + "probability": 0.9946 + }, + { + "start": 21478.48, + "end": 21481.84, + "probability": 0.9972 + }, + { + "start": 21482.02, + "end": 21482.78, + "probability": 0.4681 + }, + { + "start": 21482.86, + "end": 21485.46, + "probability": 0.9554 + }, + { + "start": 21486.36, + "end": 21486.76, + "probability": 0.5828 + }, + { + "start": 21486.84, + "end": 21488.68, + "probability": 0.8531 + }, + { + "start": 21488.74, + "end": 21490.0, + "probability": 0.8564 + }, + { + "start": 21491.0, + "end": 21491.7, + "probability": 0.8606 + }, + { + "start": 21492.76, + "end": 21494.1, + "probability": 0.9403 + }, + { + "start": 21494.26, + "end": 21495.65, + "probability": 0.8717 + }, + { + "start": 21496.0, + "end": 21497.52, + "probability": 0.865 + }, + { + "start": 21498.78, + "end": 21501.32, + "probability": 0.8063 + }, + { + "start": 21502.32, + "end": 21503.12, + "probability": 0.466 + }, + { + "start": 21503.22, + "end": 21505.7, + "probability": 0.9659 + }, + { + "start": 21506.04, + "end": 21508.62, + "probability": 0.9784 + }, + { + "start": 21509.36, + "end": 21510.76, + "probability": 0.9353 + }, + { + "start": 21511.78, + "end": 21514.18, + "probability": 0.9927 + }, + { + "start": 21514.92, + "end": 21517.0, + "probability": 0.8941 + }, + { + "start": 21517.24, + "end": 21518.56, + "probability": 0.8825 + }, + { + "start": 21518.66, + "end": 21519.16, + "probability": 0.9831 + }, + { + "start": 21519.3, + "end": 21519.96, + "probability": 0.9242 + }, + { + "start": 21521.32, + "end": 21523.38, + "probability": 0.973 + }, + { + "start": 21523.56, + "end": 21527.36, + "probability": 0.964 + }, + { + "start": 21529.1, + "end": 21532.16, + "probability": 0.9971 + }, + { + "start": 21534.48, + "end": 21535.92, + "probability": 0.9764 + }, + { + "start": 21536.0, + "end": 21539.46, + "probability": 0.9941 + }, + { + "start": 21539.58, + "end": 21541.38, + "probability": 0.9705 + }, + { + "start": 21541.66, + "end": 21543.38, + "probability": 0.9548 + }, + { + "start": 21543.4, + "end": 21548.12, + "probability": 0.9971 + }, + { + "start": 21548.12, + "end": 21551.18, + "probability": 0.9998 + }, + { + "start": 21552.04, + "end": 21555.3, + "probability": 0.9797 + }, + { + "start": 21556.44, + "end": 21560.88, + "probability": 0.9946 + }, + { + "start": 21561.08, + "end": 21562.4, + "probability": 0.8913 + }, + { + "start": 21563.94, + "end": 21567.48, + "probability": 0.9053 + }, + { + "start": 21567.88, + "end": 21569.16, + "probability": 0.8917 + }, + { + "start": 21569.24, + "end": 21570.74, + "probability": 0.9185 + }, + { + "start": 21571.1, + "end": 21573.48, + "probability": 0.9972 + }, + { + "start": 21574.26, + "end": 21577.82, + "probability": 0.9827 + }, + { + "start": 21577.94, + "end": 21580.42, + "probability": 0.9628 + }, + { + "start": 21580.82, + "end": 21580.98, + "probability": 0.6909 + }, + { + "start": 21581.06, + "end": 21581.54, + "probability": 0.9818 + }, + { + "start": 21581.86, + "end": 21582.84, + "probability": 0.9789 + }, + { + "start": 21583.52, + "end": 21584.1, + "probability": 0.9763 + }, + { + "start": 21584.76, + "end": 21588.4, + "probability": 0.998 + }, + { + "start": 21590.46, + "end": 21591.95, + "probability": 0.9946 + }, + { + "start": 21593.18, + "end": 21595.26, + "probability": 0.9971 + }, + { + "start": 21596.48, + "end": 21597.26, + "probability": 0.7421 + }, + { + "start": 21598.52, + "end": 21600.52, + "probability": 0.9833 + }, + { + "start": 21601.22, + "end": 21603.3, + "probability": 0.5673 + }, + { + "start": 21604.58, + "end": 21609.38, + "probability": 0.9944 + }, + { + "start": 21609.56, + "end": 21610.46, + "probability": 0.9739 + }, + { + "start": 21613.28, + "end": 21616.88, + "probability": 0.9913 + }, + { + "start": 21616.92, + "end": 21618.03, + "probability": 0.9497 + }, + { + "start": 21618.68, + "end": 21619.91, + "probability": 0.9307 + }, + { + "start": 21621.78, + "end": 21623.34, + "probability": 0.9302 + }, + { + "start": 21626.44, + "end": 21628.54, + "probability": 0.9622 + }, + { + "start": 21628.64, + "end": 21631.06, + "probability": 0.9919 + }, + { + "start": 21631.56, + "end": 21632.32, + "probability": 0.9702 + }, + { + "start": 21632.44, + "end": 21633.0, + "probability": 0.9839 + }, + { + "start": 21633.06, + "end": 21633.8, + "probability": 0.8916 + }, + { + "start": 21633.86, + "end": 21635.08, + "probability": 0.9315 + }, + { + "start": 21635.16, + "end": 21636.04, + "probability": 0.3493 + }, + { + "start": 21636.88, + "end": 21638.02, + "probability": 0.5578 + }, + { + "start": 21638.1, + "end": 21639.38, + "probability": 0.9005 + }, + { + "start": 21639.54, + "end": 21640.66, + "probability": 0.9973 + }, + { + "start": 21640.82, + "end": 21644.82, + "probability": 0.9721 + }, + { + "start": 21646.42, + "end": 21647.04, + "probability": 0.5746 + }, + { + "start": 21647.18, + "end": 21648.46, + "probability": 0.9398 + }, + { + "start": 21648.62, + "end": 21654.0, + "probability": 0.9005 + }, + { + "start": 21654.76, + "end": 21656.42, + "probability": 0.7519 + }, + { + "start": 21657.62, + "end": 21661.04, + "probability": 0.9691 + }, + { + "start": 21663.04, + "end": 21663.58, + "probability": 0.5793 + }, + { + "start": 21664.42, + "end": 21666.2, + "probability": 0.9468 + }, + { + "start": 21667.04, + "end": 21669.7, + "probability": 0.8966 + }, + { + "start": 21670.72, + "end": 21675.44, + "probability": 0.9652 + }, + { + "start": 21676.14, + "end": 21677.44, + "probability": 0.9391 + }, + { + "start": 21678.44, + "end": 21682.14, + "probability": 0.9958 + }, + { + "start": 21682.14, + "end": 21684.92, + "probability": 0.9969 + }, + { + "start": 21689.96, + "end": 21691.6, + "probability": 0.9782 + }, + { + "start": 21693.68, + "end": 21697.14, + "probability": 0.7642 + }, + { + "start": 21697.28, + "end": 21700.14, + "probability": 0.9776 + }, + { + "start": 21701.14, + "end": 21705.0, + "probability": 0.9936 + }, + { + "start": 21705.0, + "end": 21710.6, + "probability": 0.9014 + }, + { + "start": 21710.84, + "end": 21711.86, + "probability": 0.7642 + }, + { + "start": 21713.26, + "end": 21714.74, + "probability": 0.9433 + }, + { + "start": 21715.32, + "end": 21716.84, + "probability": 0.9165 + }, + { + "start": 21717.98, + "end": 21718.32, + "probability": 0.83 + }, + { + "start": 21718.48, + "end": 21718.78, + "probability": 0.8547 + }, + { + "start": 21718.9, + "end": 21719.22, + "probability": 0.9326 + }, + { + "start": 21719.32, + "end": 21720.14, + "probability": 0.9279 + }, + { + "start": 21720.22, + "end": 21721.04, + "probability": 0.9849 + }, + { + "start": 21721.18, + "end": 21721.7, + "probability": 0.8623 + }, + { + "start": 21721.74, + "end": 21722.4, + "probability": 0.8747 + }, + { + "start": 21722.42, + "end": 21722.68, + "probability": 0.4829 + }, + { + "start": 21722.7, + "end": 21725.9, + "probability": 0.9302 + }, + { + "start": 21727.2, + "end": 21728.74, + "probability": 0.9973 + }, + { + "start": 21728.74, + "end": 21730.94, + "probability": 0.7666 + }, + { + "start": 21733.48, + "end": 21736.04, + "probability": 0.9039 + }, + { + "start": 21738.3, + "end": 21741.12, + "probability": 0.9879 + }, + { + "start": 21743.9, + "end": 21747.4, + "probability": 0.3915 + }, + { + "start": 21750.87, + "end": 21756.13, + "probability": 0.9877 + }, + { + "start": 21756.42, + "end": 21757.24, + "probability": 0.6986 + }, + { + "start": 21757.4, + "end": 21758.14, + "probability": 0.744 + }, + { + "start": 21758.68, + "end": 21760.7, + "probability": 0.4896 + }, + { + "start": 21761.18, + "end": 21762.84, + "probability": 0.5539 + }, + { + "start": 21763.3, + "end": 21763.98, + "probability": 0.3364 + }, + { + "start": 21764.24, + "end": 21766.46, + "probability": 0.946 + }, + { + "start": 21766.6, + "end": 21766.78, + "probability": 0.7988 + }, + { + "start": 21766.88, + "end": 21767.1, + "probability": 0.2274 + }, + { + "start": 21767.4, + "end": 21767.88, + "probability": 0.9951 + }, + { + "start": 21771.14, + "end": 21773.8, + "probability": 0.9537 + }, + { + "start": 21774.9, + "end": 21777.48, + "probability": 0.7922 + }, + { + "start": 21778.12, + "end": 21780.6, + "probability": 0.7034 + }, + { + "start": 21780.92, + "end": 21783.14, + "probability": 0.6521 + }, + { + "start": 21783.88, + "end": 21785.78, + "probability": 0.8236 + }, + { + "start": 21786.36, + "end": 21789.82, + "probability": 0.9911 + }, + { + "start": 21791.34, + "end": 21796.74, + "probability": 0.9962 + }, + { + "start": 21798.58, + "end": 21799.66, + "probability": 0.3772 + }, + { + "start": 21800.64, + "end": 21801.24, + "probability": 0.8328 + }, + { + "start": 21802.04, + "end": 21803.36, + "probability": 0.9932 + }, + { + "start": 21803.46, + "end": 21805.08, + "probability": 0.8384 + }, + { + "start": 21805.58, + "end": 21808.66, + "probability": 0.9849 + }, + { + "start": 21810.14, + "end": 21810.62, + "probability": 0.8901 + }, + { + "start": 21810.7, + "end": 21811.42, + "probability": 0.939 + }, + { + "start": 21811.5, + "end": 21812.56, + "probability": 0.9958 + }, + { + "start": 21814.46, + "end": 21815.24, + "probability": 0.564 + }, + { + "start": 21816.28, + "end": 21817.72, + "probability": 0.9932 + }, + { + "start": 21819.04, + "end": 21820.1, + "probability": 0.8637 + }, + { + "start": 21821.3, + "end": 21824.48, + "probability": 0.9915 + }, + { + "start": 21826.4, + "end": 21830.24, + "probability": 0.9976 + }, + { + "start": 21830.47, + "end": 21834.66, + "probability": 0.964 + }, + { + "start": 21836.68, + "end": 21840.12, + "probability": 0.9834 + }, + { + "start": 21840.28, + "end": 21842.14, + "probability": 0.9935 + }, + { + "start": 21843.06, + "end": 21844.76, + "probability": 0.7485 + }, + { + "start": 21844.96, + "end": 21846.14, + "probability": 0.9174 + }, + { + "start": 21846.6, + "end": 21848.94, + "probability": 0.9537 + }, + { + "start": 21849.88, + "end": 21856.24, + "probability": 0.0042 + }, + { + "start": 21859.52, + "end": 21859.64, + "probability": 0.0316 + }, + { + "start": 21859.64, + "end": 21860.69, + "probability": 0.1547 + }, + { + "start": 21861.18, + "end": 21862.36, + "probability": 0.8953 + }, + { + "start": 21862.78, + "end": 21869.12, + "probability": 0.9604 + }, + { + "start": 21870.46, + "end": 21871.4, + "probability": 0.9519 + }, + { + "start": 21873.84, + "end": 21874.76, + "probability": 0.7601 + }, + { + "start": 21875.24, + "end": 21877.74, + "probability": 0.8823 + }, + { + "start": 21878.02, + "end": 21878.66, + "probability": 0.7323 + }, + { + "start": 21878.76, + "end": 21879.2, + "probability": 0.8869 + }, + { + "start": 21879.28, + "end": 21880.7, + "probability": 0.9769 + }, + { + "start": 21880.8, + "end": 21881.28, + "probability": 0.8612 + }, + { + "start": 21881.44, + "end": 21882.4, + "probability": 0.7011 + }, + { + "start": 21883.92, + "end": 21887.66, + "probability": 0.943 + }, + { + "start": 21887.86, + "end": 21892.74, + "probability": 0.9948 + }, + { + "start": 21893.64, + "end": 21897.66, + "probability": 0.9224 + }, + { + "start": 21898.62, + "end": 21900.34, + "probability": 0.7988 + }, + { + "start": 21901.76, + "end": 21906.46, + "probability": 0.9982 + }, + { + "start": 21906.46, + "end": 21910.46, + "probability": 0.9952 + }, + { + "start": 21910.56, + "end": 21912.22, + "probability": 0.8729 + }, + { + "start": 21913.96, + "end": 21917.82, + "probability": 0.9208 + }, + { + "start": 21918.9, + "end": 21923.4, + "probability": 0.9802 + }, + { + "start": 21925.54, + "end": 21927.8, + "probability": 0.9915 + }, + { + "start": 21928.0, + "end": 21929.3, + "probability": 0.9961 + }, + { + "start": 21930.54, + "end": 21932.1, + "probability": 0.9929 + }, + { + "start": 21933.22, + "end": 21937.52, + "probability": 0.9894 + }, + { + "start": 21939.34, + "end": 21945.66, + "probability": 0.8509 + }, + { + "start": 21948.52, + "end": 21951.6, + "probability": 0.9828 + }, + { + "start": 21952.48, + "end": 21955.6, + "probability": 0.9939 + }, + { + "start": 21955.6, + "end": 21959.5, + "probability": 0.9956 + }, + { + "start": 21960.12, + "end": 21962.34, + "probability": 0.998 + }, + { + "start": 21962.52, + "end": 21966.98, + "probability": 0.9362 + }, + { + "start": 21968.22, + "end": 21969.22, + "probability": 0.8999 + }, + { + "start": 21970.04, + "end": 21972.34, + "probability": 0.9622 + }, + { + "start": 21973.8, + "end": 21977.75, + "probability": 0.9871 + }, + { + "start": 21980.1, + "end": 21984.62, + "probability": 0.9545 + }, + { + "start": 21984.7, + "end": 21987.08, + "probability": 0.9222 + }, + { + "start": 21987.18, + "end": 21987.84, + "probability": 0.9599 + }, + { + "start": 21988.22, + "end": 21988.82, + "probability": 0.9836 + }, + { + "start": 21988.9, + "end": 21989.84, + "probability": 0.8575 + }, + { + "start": 21989.92, + "end": 21990.84, + "probability": 0.9773 + }, + { + "start": 21991.12, + "end": 21992.1, + "probability": 0.9837 + }, + { + "start": 21992.16, + "end": 21993.12, + "probability": 0.596 + }, + { + "start": 21993.5, + "end": 21997.04, + "probability": 0.9968 + }, + { + "start": 21998.14, + "end": 22004.02, + "probability": 0.9915 + }, + { + "start": 22004.2, + "end": 22005.89, + "probability": 0.9658 + }, + { + "start": 22006.68, + "end": 22008.52, + "probability": 0.9922 + }, + { + "start": 22011.14, + "end": 22013.02, + "probability": 0.9645 + }, + { + "start": 22015.17, + "end": 22015.54, + "probability": 0.1411 + }, + { + "start": 22015.54, + "end": 22019.72, + "probability": 0.9835 + }, + { + "start": 22022.36, + "end": 22027.3, + "probability": 0.8787 + }, + { + "start": 22027.48, + "end": 22030.98, + "probability": 0.9952 + }, + { + "start": 22031.25, + "end": 22034.78, + "probability": 0.1943 + }, + { + "start": 22035.46, + "end": 22038.63, + "probability": 0.8885 + }, + { + "start": 22043.74, + "end": 22046.42, + "probability": 0.9948 + }, + { + "start": 22047.36, + "end": 22047.96, + "probability": 0.4206 + }, + { + "start": 22048.8, + "end": 22052.66, + "probability": 0.9821 + }, + { + "start": 22052.98, + "end": 22054.98, + "probability": 0.9777 + }, + { + "start": 22056.42, + "end": 22060.16, + "probability": 0.8895 + }, + { + "start": 22061.1, + "end": 22063.88, + "probability": 0.9704 + }, + { + "start": 22064.82, + "end": 22068.82, + "probability": 0.9902 + }, + { + "start": 22068.82, + "end": 22073.42, + "probability": 0.9924 + }, + { + "start": 22075.4, + "end": 22075.92, + "probability": 0.3651 + }, + { + "start": 22078.0, + "end": 22079.42, + "probability": 0.79 + }, + { + "start": 22080.3, + "end": 22082.52, + "probability": 0.9844 + }, + { + "start": 22084.18, + "end": 22085.38, + "probability": 0.9668 + }, + { + "start": 22086.2, + "end": 22089.1, + "probability": 0.9948 + }, + { + "start": 22089.22, + "end": 22089.8, + "probability": 0.863 + }, + { + "start": 22089.88, + "end": 22090.36, + "probability": 0.5512 + }, + { + "start": 22092.52, + "end": 22094.46, + "probability": 0.9892 + }, + { + "start": 22095.06, + "end": 22097.5, + "probability": 0.8302 + }, + { + "start": 22098.26, + "end": 22101.46, + "probability": 0.613 + }, + { + "start": 22102.84, + "end": 22106.58, + "probability": 0.9775 + }, + { + "start": 22107.24, + "end": 22107.98, + "probability": 0.6458 + }, + { + "start": 22109.34, + "end": 22110.36, + "probability": 0.909 + }, + { + "start": 22112.12, + "end": 22116.9, + "probability": 0.9858 + }, + { + "start": 22117.16, + "end": 22117.66, + "probability": 0.8329 + }, + { + "start": 22118.64, + "end": 22122.48, + "probability": 0.9352 + }, + { + "start": 22123.14, + "end": 22123.48, + "probability": 0.2461 + }, + { + "start": 22124.54, + "end": 22129.02, + "probability": 0.7004 + }, + { + "start": 22129.12, + "end": 22129.78, + "probability": 0.8857 + }, + { + "start": 22130.14, + "end": 22133.32, + "probability": 0.9919 + }, + { + "start": 22133.5, + "end": 22136.28, + "probability": 0.9573 + }, + { + "start": 22136.4, + "end": 22137.1, + "probability": 0.8881 + }, + { + "start": 22137.3, + "end": 22138.46, + "probability": 0.893 + }, + { + "start": 22138.96, + "end": 22145.5, + "probability": 0.8297 + }, + { + "start": 22146.84, + "end": 22148.36, + "probability": 0.9513 + }, + { + "start": 22149.32, + "end": 22150.36, + "probability": 0.9073 + }, + { + "start": 22151.42, + "end": 22156.8, + "probability": 0.9272 + }, + { + "start": 22156.8, + "end": 22160.42, + "probability": 0.7738 + }, + { + "start": 22160.52, + "end": 22165.1, + "probability": 0.9282 + }, + { + "start": 22165.5, + "end": 22168.94, + "probability": 0.7968 + }, + { + "start": 22169.7, + "end": 22173.86, + "probability": 0.9679 + }, + { + "start": 22190.68, + "end": 22190.68, + "probability": 0.0386 + }, + { + "start": 22190.68, + "end": 22192.52, + "probability": 0.7451 + }, + { + "start": 22192.58, + "end": 22194.16, + "probability": 0.8647 + }, + { + "start": 22194.32, + "end": 22195.22, + "probability": 0.5834 + }, + { + "start": 22196.06, + "end": 22199.5, + "probability": 0.9036 + }, + { + "start": 22200.14, + "end": 22204.58, + "probability": 0.9933 + }, + { + "start": 22205.5, + "end": 22209.7, + "probability": 0.9787 + }, + { + "start": 22209.7, + "end": 22214.56, + "probability": 0.7679 + }, + { + "start": 22216.4, + "end": 22219.88, + "probability": 0.9834 + }, + { + "start": 22220.12, + "end": 22223.1, + "probability": 0.8994 + }, + { + "start": 22223.54, + "end": 22227.26, + "probability": 0.9877 + }, + { + "start": 22227.94, + "end": 22230.78, + "probability": 0.9944 + }, + { + "start": 22230.78, + "end": 22235.76, + "probability": 0.9952 + }, + { + "start": 22236.86, + "end": 22238.96, + "probability": 0.971 + }, + { + "start": 22239.56, + "end": 22244.44, + "probability": 0.8963 + }, + { + "start": 22244.78, + "end": 22247.08, + "probability": 0.9981 + }, + { + "start": 22247.34, + "end": 22250.0, + "probability": 0.9772 + }, + { + "start": 22250.36, + "end": 22254.9, + "probability": 0.9909 + }, + { + "start": 22255.78, + "end": 22261.54, + "probability": 0.9228 + }, + { + "start": 22263.06, + "end": 22264.0, + "probability": 0.7563 + }, + { + "start": 22264.56, + "end": 22267.44, + "probability": 0.8748 + }, + { + "start": 22268.42, + "end": 22270.84, + "probability": 0.6379 + }, + { + "start": 22271.42, + "end": 22272.08, + "probability": 0.9622 + }, + { + "start": 22273.58, + "end": 22274.5, + "probability": 0.6526 + }, + { + "start": 22274.6, + "end": 22277.84, + "probability": 0.9824 + }, + { + "start": 22278.54, + "end": 22280.87, + "probability": 0.983 + }, + { + "start": 22281.22, + "end": 22283.82, + "probability": 0.9886 + }, + { + "start": 22284.34, + "end": 22288.16, + "probability": 0.9922 + }, + { + "start": 22288.16, + "end": 22292.68, + "probability": 0.9889 + }, + { + "start": 22293.26, + "end": 22296.46, + "probability": 0.9993 + }, + { + "start": 22296.46, + "end": 22300.62, + "probability": 0.9948 + }, + { + "start": 22300.72, + "end": 22302.32, + "probability": 0.951 + }, + { + "start": 22303.42, + "end": 22303.8, + "probability": 0.8687 + }, + { + "start": 22305.18, + "end": 22307.12, + "probability": 0.7998 + }, + { + "start": 22307.18, + "end": 22312.3, + "probability": 0.9785 + }, + { + "start": 22312.94, + "end": 22313.44, + "probability": 0.5437 + }, + { + "start": 22314.68, + "end": 22315.1, + "probability": 0.8566 + }, + { + "start": 22315.94, + "end": 22318.13, + "probability": 0.6402 + }, + { + "start": 22322.3, + "end": 22323.7, + "probability": 0.587 + }, + { + "start": 22324.0, + "end": 22326.56, + "probability": 0.9844 + }, + { + "start": 22327.28, + "end": 22331.24, + "probability": 0.9964 + }, + { + "start": 22331.82, + "end": 22333.52, + "probability": 0.9821 + }, + { + "start": 22334.2, + "end": 22338.66, + "probability": 0.9624 + }, + { + "start": 22339.14, + "end": 22340.3, + "probability": 0.5706 + }, + { + "start": 22340.84, + "end": 22341.14, + "probability": 0.7434 + }, + { + "start": 22341.56, + "end": 22344.36, + "probability": 0.9977 + }, + { + "start": 22344.7, + "end": 22346.52, + "probability": 0.1911 + }, + { + "start": 22346.52, + "end": 22348.76, + "probability": 0.8642 + }, + { + "start": 22348.86, + "end": 22349.08, + "probability": 0.4327 + }, + { + "start": 22354.12, + "end": 22355.88, + "probability": 0.773 + }, + { + "start": 22355.92, + "end": 22356.48, + "probability": 0.7661 + }, + { + "start": 22356.54, + "end": 22358.66, + "probability": 0.9696 + }, + { + "start": 22358.74, + "end": 22360.32, + "probability": 0.8775 + }, + { + "start": 22361.39, + "end": 22364.28, + "probability": 0.78 + }, + { + "start": 22365.14, + "end": 22367.46, + "probability": 0.5215 + }, + { + "start": 22372.2, + "end": 22375.62, + "probability": 0.815 + }, + { + "start": 22376.34, + "end": 22377.02, + "probability": 0.4894 + }, + { + "start": 22377.14, + "end": 22379.22, + "probability": 0.7005 + }, + { + "start": 22379.98, + "end": 22384.02, + "probability": 0.8809 + }, + { + "start": 22384.48, + "end": 22385.08, + "probability": 0.894 + }, + { + "start": 22385.44, + "end": 22390.04, + "probability": 0.9002 + }, + { + "start": 22391.54, + "end": 22393.0, + "probability": 0.669 + }, + { + "start": 22393.3, + "end": 22393.92, + "probability": 0.403 + }, + { + "start": 22394.0, + "end": 22394.58, + "probability": 0.4727 + }, + { + "start": 22394.64, + "end": 22395.88, + "probability": 0.6638 + }, + { + "start": 22402.4, + "end": 22406.0, + "probability": 0.8521 + }, + { + "start": 22414.9, + "end": 22414.9, + "probability": 0.2995 + }, + { + "start": 22414.9, + "end": 22418.44, + "probability": 0.6924 + }, + { + "start": 22418.68, + "end": 22421.46, + "probability": 0.991 + }, + { + "start": 22421.46, + "end": 22426.22, + "probability": 0.9828 + }, + { + "start": 22427.56, + "end": 22429.02, + "probability": 0.5335 + }, + { + "start": 22430.56, + "end": 22433.22, + "probability": 0.5605 + }, + { + "start": 22436.44, + "end": 22439.4, + "probability": 0.9616 + }, + { + "start": 22439.5, + "end": 22441.14, + "probability": 0.8318 + }, + { + "start": 22441.56, + "end": 22443.53, + "probability": 0.6535 + }, + { + "start": 22443.76, + "end": 22444.58, + "probability": 0.7425 + }, + { + "start": 22444.58, + "end": 22449.2, + "probability": 0.9185 + }, + { + "start": 22449.8, + "end": 22450.72, + "probability": 0.024 + }, + { + "start": 22450.84, + "end": 22459.62, + "probability": 0.903 + }, + { + "start": 22460.16, + "end": 22465.68, + "probability": 0.7555 + }, + { + "start": 22466.18, + "end": 22467.0, + "probability": 0.6447 + }, + { + "start": 22467.92, + "end": 22470.2, + "probability": 0.979 + }, + { + "start": 22470.2, + "end": 22473.7, + "probability": 0.4529 + }, + { + "start": 22473.7, + "end": 22479.24, + "probability": 0.9977 + }, + { + "start": 22480.22, + "end": 22483.78, + "probability": 0.9915 + }, + { + "start": 22486.96, + "end": 22492.26, + "probability": 0.9367 + }, + { + "start": 22492.38, + "end": 22494.1, + "probability": 0.8634 + }, + { + "start": 22494.2, + "end": 22495.86, + "probability": 0.9841 + }, + { + "start": 22496.26, + "end": 22496.46, + "probability": 0.8329 + }, + { + "start": 22497.54, + "end": 22499.28, + "probability": 0.9255 + }, + { + "start": 22500.22, + "end": 22502.68, + "probability": 0.797 + }, + { + "start": 22505.51, + "end": 22510.7, + "probability": 0.6897 + }, + { + "start": 22510.76, + "end": 22512.02, + "probability": 0.757 + }, + { + "start": 22512.36, + "end": 22512.76, + "probability": 0.0207 + }, + { + "start": 22512.76, + "end": 22514.44, + "probability": 0.9176 + }, + { + "start": 22514.66, + "end": 22519.72, + "probability": 0.9434 + }, + { + "start": 22519.8, + "end": 22522.84, + "probability": 0.8657 + }, + { + "start": 22539.16, + "end": 22541.37, + "probability": 0.7667 + }, + { + "start": 22543.14, + "end": 22545.88, + "probability": 0.8667 + }, + { + "start": 22547.28, + "end": 22548.32, + "probability": 0.8465 + }, + { + "start": 22551.12, + "end": 22555.66, + "probability": 0.9448 + }, + { + "start": 22556.86, + "end": 22560.02, + "probability": 0.7046 + }, + { + "start": 22561.52, + "end": 22561.8, + "probability": 0.5424 + }, + { + "start": 22562.64, + "end": 22563.68, + "probability": 0.9823 + }, + { + "start": 22565.02, + "end": 22569.02, + "probability": 0.572 + }, + { + "start": 22569.46, + "end": 22570.44, + "probability": 0.5778 + }, + { + "start": 22571.48, + "end": 22572.64, + "probability": 0.988 + }, + { + "start": 22573.96, + "end": 22577.58, + "probability": 0.9912 + }, + { + "start": 22579.28, + "end": 22580.79, + "probability": 0.9886 + }, + { + "start": 22582.26, + "end": 22586.18, + "probability": 0.9989 + }, + { + "start": 22586.18, + "end": 22599.96, + "probability": 0.7423 + }, + { + "start": 22600.72, + "end": 22603.48, + "probability": 0.9611 + }, + { + "start": 22605.79, + "end": 22607.74, + "probability": 0.8292 + }, + { + "start": 22610.04, + "end": 22611.44, + "probability": 0.9782 + }, + { + "start": 22612.26, + "end": 22613.33, + "probability": 0.7886 + }, + { + "start": 22613.6, + "end": 22614.66, + "probability": 0.7837 + }, + { + "start": 22614.82, + "end": 22615.94, + "probability": 0.7589 + }, + { + "start": 22616.1, + "end": 22617.24, + "probability": 0.8243 + }, + { + "start": 22618.28, + "end": 22620.26, + "probability": 0.5421 + }, + { + "start": 22621.4, + "end": 22625.04, + "probability": 0.6982 + }, + { + "start": 22625.04, + "end": 22631.28, + "probability": 0.4291 + }, + { + "start": 22631.98, + "end": 22632.54, + "probability": 0.7736 + }, + { + "start": 22635.4, + "end": 22640.21, + "probability": 0.915 + }, + { + "start": 22641.3, + "end": 22643.02, + "probability": 0.8508 + }, + { + "start": 22643.72, + "end": 22644.62, + "probability": 0.8454 + }, + { + "start": 22647.28, + "end": 22648.58, + "probability": 0.751 + }, + { + "start": 22648.74, + "end": 22651.02, + "probability": 0.8127 + }, + { + "start": 22651.24, + "end": 22652.3, + "probability": 0.6521 + }, + { + "start": 22652.94, + "end": 22653.86, + "probability": 0.7481 + }, + { + "start": 22654.78, + "end": 22657.1, + "probability": 0.8725 + }, + { + "start": 22657.26, + "end": 22658.22, + "probability": 0.9335 + }, + { + "start": 22658.72, + "end": 22659.94, + "probability": 0.6191 + }, + { + "start": 22660.08, + "end": 22660.94, + "probability": 0.7322 + }, + { + "start": 22661.04, + "end": 22661.9, + "probability": 0.9035 + }, + { + "start": 22662.56, + "end": 22666.22, + "probability": 0.7874 + }, + { + "start": 22666.38, + "end": 22667.18, + "probability": 0.7836 + }, + { + "start": 22668.36, + "end": 22675.78, + "probability": 0.8473 + }, + { + "start": 22675.92, + "end": 22678.14, + "probability": 0.9937 + }, + { + "start": 22679.94, + "end": 22680.08, + "probability": 0.6483 + }, + { + "start": 22681.95, + "end": 22684.38, + "probability": 0.9887 + }, + { + "start": 22686.36, + "end": 22686.56, + "probability": 0.9423 + }, + { + "start": 22686.78, + "end": 22689.66, + "probability": 0.9236 + }, + { + "start": 22689.7, + "end": 22696.82, + "probability": 0.6551 + }, + { + "start": 22696.94, + "end": 22697.04, + "probability": 0.3539 + }, + { + "start": 22698.9, + "end": 22699.9, + "probability": 0.8226 + }, + { + "start": 22700.5, + "end": 22700.96, + "probability": 0.6143 + }, + { + "start": 22701.14, + "end": 22705.7, + "probability": 0.9865 + }, + { + "start": 22705.78, + "end": 22707.68, + "probability": 0.8607 + }, + { + "start": 22708.34, + "end": 22709.82, + "probability": 0.8143 + }, + { + "start": 22711.52, + "end": 22712.5, + "probability": 0.8465 + }, + { + "start": 22713.14, + "end": 22713.82, + "probability": 0.9716 + }, + { + "start": 22714.44, + "end": 22716.36, + "probability": 0.9562 + }, + { + "start": 22716.52, + "end": 22716.62, + "probability": 0.4281 + }, + { + "start": 22716.64, + "end": 22717.38, + "probability": 0.9648 + }, + { + "start": 22717.46, + "end": 22720.48, + "probability": 0.9811 + }, + { + "start": 22720.54, + "end": 22726.74, + "probability": 0.7961 + }, + { + "start": 22726.92, + "end": 22729.26, + "probability": 0.7117 + }, + { + "start": 22729.72, + "end": 22735.1, + "probability": 0.9749 + }, + { + "start": 22736.52, + "end": 22738.76, + "probability": 0.714 + }, + { + "start": 22738.98, + "end": 22740.02, + "probability": 0.9717 + }, + { + "start": 22741.1, + "end": 22744.32, + "probability": 0.994 + }, + { + "start": 22745.32, + "end": 22746.42, + "probability": 0.753 + }, + { + "start": 22746.56, + "end": 22747.01, + "probability": 0.6701 + }, + { + "start": 22747.36, + "end": 22748.84, + "probability": 0.8707 + }, + { + "start": 22748.92, + "end": 22750.66, + "probability": 0.7989 + }, + { + "start": 22751.1, + "end": 22752.98, + "probability": 0.9673 + }, + { + "start": 22753.4, + "end": 22758.16, + "probability": 0.9949 + }, + { + "start": 22758.2, + "end": 22759.56, + "probability": 0.9939 + }, + { + "start": 22760.78, + "end": 22761.54, + "probability": 0.8347 + }, + { + "start": 22762.62, + "end": 22763.72, + "probability": 0.9964 + }, + { + "start": 22765.8, + "end": 22770.54, + "probability": 0.9927 + }, + { + "start": 22771.04, + "end": 22771.46, + "probability": 0.686 + }, + { + "start": 22771.62, + "end": 22771.8, + "probability": 0.6714 + }, + { + "start": 22774.6, + "end": 22776.12, + "probability": 0.8005 + }, + { + "start": 22776.42, + "end": 22776.8, + "probability": 0.307 + }, + { + "start": 22777.22, + "end": 22777.7, + "probability": 0.1576 + }, + { + "start": 22778.28, + "end": 22780.04, + "probability": 0.8678 + }, + { + "start": 22780.5, + "end": 22781.44, + "probability": 0.5379 + }, + { + "start": 22781.52, + "end": 22782.88, + "probability": 0.7984 + }, + { + "start": 22782.94, + "end": 22784.84, + "probability": 0.967 + }, + { + "start": 22785.62, + "end": 22787.12, + "probability": 0.7486 + }, + { + "start": 22787.2, + "end": 22788.62, + "probability": 0.9539 + }, + { + "start": 22788.72, + "end": 22789.34, + "probability": 0.5556 + }, + { + "start": 22789.5, + "end": 22791.22, + "probability": 0.9834 + }, + { + "start": 22791.4, + "end": 22793.5, + "probability": 0.7311 + }, + { + "start": 22793.78, + "end": 22797.36, + "probability": 0.5748 + }, + { + "start": 22797.36, + "end": 22799.9, + "probability": 0.9902 + }, + { + "start": 22800.66, + "end": 22803.94, + "probability": 0.9865 + }, + { + "start": 22803.94, + "end": 22808.18, + "probability": 0.9611 + }, + { + "start": 22808.2, + "end": 22811.68, + "probability": 0.7589 + }, + { + "start": 22812.04, + "end": 22812.54, + "probability": 0.5353 + }, + { + "start": 22813.1, + "end": 22816.24, + "probability": 0.8101 + }, + { + "start": 22816.92, + "end": 22816.92, + "probability": 0.1259 + }, + { + "start": 22816.92, + "end": 22818.82, + "probability": 0.8166 + }, + { + "start": 22819.48, + "end": 22821.84, + "probability": 0.9285 + }, + { + "start": 22822.64, + "end": 22824.04, + "probability": 0.5673 + }, + { + "start": 22824.34, + "end": 22826.28, + "probability": 0.915 + }, + { + "start": 22826.58, + "end": 22828.66, + "probability": 0.9025 + }, + { + "start": 22829.26, + "end": 22832.34, + "probability": 0.9832 + }, + { + "start": 22832.34, + "end": 22836.94, + "probability": 0.9685 + }, + { + "start": 22837.38, + "end": 22837.7, + "probability": 0.6331 + }, + { + "start": 22838.28, + "end": 22838.7, + "probability": 0.1998 + }, + { + "start": 22838.74, + "end": 22841.3, + "probability": 0.8955 + }, + { + "start": 22841.3, + "end": 22842.39, + "probability": 0.9952 + }, + { + "start": 22846.0, + "end": 22847.22, + "probability": 0.6035 + }, + { + "start": 22847.24, + "end": 22847.72, + "probability": 0.0315 + }, + { + "start": 22848.28, + "end": 22848.7, + "probability": 0.4747 + }, + { + "start": 22848.82, + "end": 22850.4, + "probability": 0.3842 + }, + { + "start": 22850.56, + "end": 22851.18, + "probability": 0.866 + }, + { + "start": 22852.12, + "end": 22852.6, + "probability": 0.378 + }, + { + "start": 22852.8, + "end": 22854.84, + "probability": 0.0116 + }, + { + "start": 22854.96, + "end": 22856.56, + "probability": 0.5985 + }, + { + "start": 22856.8, + "end": 22859.94, + "probability": 0.5411 + }, + { + "start": 22861.14, + "end": 22864.62, + "probability": 0.9471 + }, + { + "start": 22864.82, + "end": 22867.52, + "probability": 0.9873 + }, + { + "start": 22868.5, + "end": 22869.52, + "probability": 0.7025 + }, + { + "start": 22870.38, + "end": 22874.16, + "probability": 0.6178 + }, + { + "start": 22876.36, + "end": 22878.96, + "probability": 0.9752 + }, + { + "start": 22879.62, + "end": 22883.06, + "probability": 0.7036 + }, + { + "start": 22884.52, + "end": 22885.55, + "probability": 0.9792 + }, + { + "start": 22887.22, + "end": 22889.44, + "probability": 0.734 + }, + { + "start": 22890.1, + "end": 22893.54, + "probability": 0.7431 + }, + { + "start": 22895.06, + "end": 22899.1, + "probability": 0.9966 + }, + { + "start": 22899.78, + "end": 22903.06, + "probability": 0.8441 + }, + { + "start": 22903.52, + "end": 22907.56, + "probability": 0.9989 + }, + { + "start": 22910.52, + "end": 22911.46, + "probability": 0.7569 + }, + { + "start": 22912.78, + "end": 22915.52, + "probability": 0.9968 + }, + { + "start": 22916.9, + "end": 22919.62, + "probability": 0.9692 + }, + { + "start": 22920.62, + "end": 22924.5, + "probability": 0.6121 + }, + { + "start": 22924.62, + "end": 22926.26, + "probability": 0.7472 + }, + { + "start": 22927.08, + "end": 22931.58, + "probability": 0.7977 + }, + { + "start": 22932.32, + "end": 22934.37, + "probability": 0.9932 + }, + { + "start": 22936.12, + "end": 22937.22, + "probability": 0.7207 + }, + { + "start": 22937.34, + "end": 22940.91, + "probability": 0.9432 + }, + { + "start": 22942.5, + "end": 22944.28, + "probability": 0.5322 + }, + { + "start": 22945.48, + "end": 22946.72, + "probability": 0.8105 + }, + { + "start": 22947.24, + "end": 22948.66, + "probability": 0.998 + }, + { + "start": 22949.44, + "end": 22952.08, + "probability": 0.795 + }, + { + "start": 22952.76, + "end": 22956.7, + "probability": 0.9199 + }, + { + "start": 22957.08, + "end": 22959.68, + "probability": 0.9466 + }, + { + "start": 22960.48, + "end": 22961.18, + "probability": 0.7012 + }, + { + "start": 22962.74, + "end": 22964.39, + "probability": 0.9941 + }, + { + "start": 22964.72, + "end": 22967.82, + "probability": 0.9497 + }, + { + "start": 22967.82, + "end": 22971.7, + "probability": 0.988 + }, + { + "start": 22972.34, + "end": 22973.74, + "probability": 0.8027 + }, + { + "start": 22974.1, + "end": 22978.8, + "probability": 0.9144 + }, + { + "start": 22979.78, + "end": 22981.66, + "probability": 0.9386 + }, + { + "start": 22982.24, + "end": 22983.2, + "probability": 0.9912 + }, + { + "start": 22983.22, + "end": 22983.78, + "probability": 0.9081 + }, + { + "start": 22983.88, + "end": 22984.76, + "probability": 0.9109 + }, + { + "start": 22985.22, + "end": 22986.16, + "probability": 0.6217 + }, + { + "start": 22986.24, + "end": 22986.86, + "probability": 0.9328 + }, + { + "start": 22986.86, + "end": 22987.64, + "probability": 0.8353 + }, + { + "start": 22989.72, + "end": 22994.12, + "probability": 0.8796 + }, + { + "start": 22994.28, + "end": 22996.6, + "probability": 0.7701 + }, + { + "start": 22996.74, + "end": 22997.47, + "probability": 0.8092 + }, + { + "start": 22998.54, + "end": 23000.98, + "probability": 0.9709 + }, + { + "start": 23001.58, + "end": 23003.5, + "probability": 0.7864 + }, + { + "start": 23004.22, + "end": 23005.06, + "probability": 0.651 + }, + { + "start": 23005.24, + "end": 23008.78, + "probability": 0.9305 + }, + { + "start": 23010.62, + "end": 23011.32, + "probability": 0.6009 + }, + { + "start": 23012.7, + "end": 23014.32, + "probability": 0.9614 + }, + { + "start": 23014.86, + "end": 23016.26, + "probability": 0.9698 + }, + { + "start": 23017.04, + "end": 23021.58, + "probability": 0.9419 + }, + { + "start": 23021.68, + "end": 23026.44, + "probability": 0.9654 + }, + { + "start": 23026.66, + "end": 23027.12, + "probability": 0.7503 + }, + { + "start": 23027.48, + "end": 23028.56, + "probability": 0.5216 + }, + { + "start": 23028.72, + "end": 23030.66, + "probability": 0.685 + }, + { + "start": 23031.7, + "end": 23033.76, + "probability": 0.9853 + }, + { + "start": 23035.2, + "end": 23035.74, + "probability": 0.9769 + }, + { + "start": 23046.32, + "end": 23047.48, + "probability": 0.6295 + }, + { + "start": 23048.9, + "end": 23049.9, + "probability": 0.6959 + }, + { + "start": 23050.94, + "end": 23051.76, + "probability": 0.8436 + }, + { + "start": 23054.7, + "end": 23057.8, + "probability": 0.9922 + }, + { + "start": 23057.96, + "end": 23060.58, + "probability": 0.9313 + }, + { + "start": 23061.32, + "end": 23061.92, + "probability": 0.9894 + }, + { + "start": 23062.5, + "end": 23068.78, + "probability": 0.9941 + }, + { + "start": 23069.4, + "end": 23071.14, + "probability": 0.0005 + }, + { + "start": 23074.7, + "end": 23077.34, + "probability": 0.1222 + }, + { + "start": 23078.14, + "end": 23078.4, + "probability": 0.5815 + }, + { + "start": 23078.48, + "end": 23080.39, + "probability": 0.7985 + }, + { + "start": 23081.76, + "end": 23085.5, + "probability": 0.8616 + }, + { + "start": 23086.34, + "end": 23092.62, + "probability": 0.8983 + }, + { + "start": 23093.2, + "end": 23096.82, + "probability": 0.9972 + }, + { + "start": 23098.02, + "end": 23101.46, + "probability": 0.8236 + }, + { + "start": 23102.06, + "end": 23103.84, + "probability": 0.7796 + }, + { + "start": 23104.44, + "end": 23111.32, + "probability": 0.978 + }, + { + "start": 23111.96, + "end": 23117.87, + "probability": 0.9748 + }, + { + "start": 23118.92, + "end": 23122.2, + "probability": 0.9006 + }, + { + "start": 23123.12, + "end": 23131.54, + "probability": 0.9427 + }, + { + "start": 23132.26, + "end": 23133.96, + "probability": 0.9772 + }, + { + "start": 23134.56, + "end": 23136.1, + "probability": 0.9603 + }, + { + "start": 23136.92, + "end": 23139.18, + "probability": 0.9647 + }, + { + "start": 23140.76, + "end": 23141.54, + "probability": 0.4782 + }, + { + "start": 23142.1, + "end": 23143.1, + "probability": 0.7531 + }, + { + "start": 23143.72, + "end": 23149.1, + "probability": 0.9491 + }, + { + "start": 23150.48, + "end": 23155.32, + "probability": 0.8188 + }, + { + "start": 23156.0, + "end": 23159.12, + "probability": 0.9404 + }, + { + "start": 23159.78, + "end": 23163.34, + "probability": 0.9645 + }, + { + "start": 23163.72, + "end": 23164.66, + "probability": 0.8365 + }, + { + "start": 23165.0, + "end": 23168.62, + "probability": 0.9134 + }, + { + "start": 23168.62, + "end": 23171.6, + "probability": 0.9618 + }, + { + "start": 23172.0, + "end": 23172.8, + "probability": 0.693 + }, + { + "start": 23172.84, + "end": 23173.9, + "probability": 0.8147 + }, + { + "start": 23174.18, + "end": 23175.34, + "probability": 0.9042 + }, + { + "start": 23176.54, + "end": 23184.72, + "probability": 0.985 + }, + { + "start": 23185.58, + "end": 23189.88, + "probability": 0.9719 + }, + { + "start": 23190.06, + "end": 23193.02, + "probability": 0.9921 + }, + { + "start": 23193.5, + "end": 23194.48, + "probability": 0.7377 + }, + { + "start": 23195.64, + "end": 23197.76, + "probability": 0.9962 + }, + { + "start": 23197.88, + "end": 23200.72, + "probability": 0.9803 + }, + { + "start": 23201.62, + "end": 23207.58, + "probability": 0.895 + }, + { + "start": 23209.02, + "end": 23209.42, + "probability": 0.6312 + }, + { + "start": 23209.6, + "end": 23213.94, + "probability": 0.8528 + }, + { + "start": 23214.78, + "end": 23221.6, + "probability": 0.8403 + }, + { + "start": 23222.42, + "end": 23226.12, + "probability": 0.9695 + }, + { + "start": 23226.48, + "end": 23229.17, + "probability": 0.9828 + }, + { + "start": 23229.46, + "end": 23230.3, + "probability": 0.5699 + }, + { + "start": 23230.96, + "end": 23233.74, + "probability": 0.926 + }, + { + "start": 23234.16, + "end": 23235.8, + "probability": 0.9463 + }, + { + "start": 23236.24, + "end": 23240.1, + "probability": 0.7604 + }, + { + "start": 23241.92, + "end": 23242.42, + "probability": 0.8959 + }, + { + "start": 23242.82, + "end": 23248.38, + "probability": 0.9697 + }, + { + "start": 23248.9, + "end": 23253.66, + "probability": 0.8572 + }, + { + "start": 23255.98, + "end": 23259.6, + "probability": 0.492 + }, + { + "start": 23260.54, + "end": 23261.92, + "probability": 0.9873 + }, + { + "start": 23262.08, + "end": 23268.86, + "probability": 0.7896 + }, + { + "start": 23269.72, + "end": 23270.98, + "probability": 0.9408 + }, + { + "start": 23271.84, + "end": 23274.2, + "probability": 0.9525 + }, + { + "start": 23274.88, + "end": 23276.32, + "probability": 0.9797 + }, + { + "start": 23277.02, + "end": 23281.86, + "probability": 0.7332 + }, + { + "start": 23282.42, + "end": 23284.5, + "probability": 0.9449 + }, + { + "start": 23285.2, + "end": 23286.45, + "probability": 0.9634 + }, + { + "start": 23286.7, + "end": 23288.87, + "probability": 0.9641 + }, + { + "start": 23289.46, + "end": 23290.68, + "probability": 0.9334 + }, + { + "start": 23290.68, + "end": 23291.76, + "probability": 0.7754 + }, + { + "start": 23292.12, + "end": 23292.72, + "probability": 0.5529 + }, + { + "start": 23293.62, + "end": 23294.42, + "probability": 0.9152 + }, + { + "start": 23295.12, + "end": 23297.28, + "probability": 0.9609 + }, + { + "start": 23298.32, + "end": 23299.94, + "probability": 0.968 + }, + { + "start": 23300.04, + "end": 23303.0, + "probability": 0.617 + }, + { + "start": 23303.62, + "end": 23304.66, + "probability": 0.9349 + }, + { + "start": 23305.1, + "end": 23307.86, + "probability": 0.9727 + }, + { + "start": 23307.98, + "end": 23312.8, + "probability": 0.9109 + }, + { + "start": 23313.72, + "end": 23315.66, + "probability": 0.7327 + }, + { + "start": 23316.32, + "end": 23318.42, + "probability": 0.5371 + }, + { + "start": 23319.88, + "end": 23321.16, + "probability": 0.8401 + }, + { + "start": 23321.7, + "end": 23322.58, + "probability": 0.63 + }, + { + "start": 23324.22, + "end": 23328.18, + "probability": 0.9919 + }, + { + "start": 23329.02, + "end": 23333.58, + "probability": 0.9725 + }, + { + "start": 23334.16, + "end": 23335.06, + "probability": 0.7022 + }, + { + "start": 23335.64, + "end": 23337.12, + "probability": 0.9629 + }, + { + "start": 23337.7, + "end": 23343.0, + "probability": 0.8822 + }, + { + "start": 23343.44, + "end": 23345.88, + "probability": 0.9871 + }, + { + "start": 23348.66, + "end": 23349.75, + "probability": 0.4736 + }, + { + "start": 23350.46, + "end": 23350.89, + "probability": 0.8467 + }, + { + "start": 23352.16, + "end": 23353.3, + "probability": 0.7168 + }, + { + "start": 23353.84, + "end": 23353.98, + "probability": 0.0064 + }, + { + "start": 23355.9, + "end": 23357.6, + "probability": 0.671 + }, + { + "start": 23357.78, + "end": 23363.66, + "probability": 0.4863 + }, + { + "start": 23363.66, + "end": 23368.04, + "probability": 0.9493 + }, + { + "start": 23368.06, + "end": 23368.98, + "probability": 0.754 + }, + { + "start": 23369.0, + "end": 23369.22, + "probability": 0.2589 + }, + { + "start": 23369.32, + "end": 23370.78, + "probability": 0.6744 + }, + { + "start": 23372.0, + "end": 23376.02, + "probability": 0.8338 + }, + { + "start": 23376.44, + "end": 23377.6, + "probability": 0.9638 + }, + { + "start": 23377.74, + "end": 23381.12, + "probability": 0.8766 + }, + { + "start": 23381.86, + "end": 23383.62, + "probability": 0.7878 + }, + { + "start": 23383.88, + "end": 23384.51, + "probability": 0.5043 + }, + { + "start": 23385.78, + "end": 23386.8, + "probability": 0.6032 + }, + { + "start": 23388.35, + "end": 23390.32, + "probability": 0.9443 + }, + { + "start": 23390.4, + "end": 23390.54, + "probability": 0.8137 + }, + { + "start": 23390.68, + "end": 23391.58, + "probability": 0.9564 + }, + { + "start": 23392.6, + "end": 23393.36, + "probability": 0.4847 + }, + { + "start": 23393.92, + "end": 23394.48, + "probability": 0.6944 + }, + { + "start": 23395.06, + "end": 23397.86, + "probability": 0.9746 + }, + { + "start": 23397.86, + "end": 23401.96, + "probability": 0.9785 + }, + { + "start": 23402.72, + "end": 23404.96, + "probability": 0.9252 + }, + { + "start": 23405.52, + "end": 23408.3, + "probability": 0.9833 + }, + { + "start": 23408.96, + "end": 23412.08, + "probability": 0.9305 + }, + { + "start": 23412.64, + "end": 23416.4, + "probability": 0.7189 + }, + { + "start": 23416.44, + "end": 23419.1, + "probability": 0.9575 + }, + { + "start": 23419.88, + "end": 23422.79, + "probability": 0.8102 + }, + { + "start": 23425.02, + "end": 23425.02, + "probability": 0.1433 + }, + { + "start": 23425.02, + "end": 23425.84, + "probability": 0.6135 + }, + { + "start": 23425.94, + "end": 23426.88, + "probability": 0.686 + }, + { + "start": 23427.26, + "end": 23428.28, + "probability": 0.7459 + }, + { + "start": 23428.34, + "end": 23430.36, + "probability": 0.7369 + }, + { + "start": 23431.66, + "end": 23436.8, + "probability": 0.8809 + }, + { + "start": 23436.98, + "end": 23438.32, + "probability": 0.9942 + }, + { + "start": 23438.84, + "end": 23439.46, + "probability": 0.9895 + }, + { + "start": 23440.74, + "end": 23443.08, + "probability": 0.9299 + }, + { + "start": 23443.6, + "end": 23444.98, + "probability": 0.8436 + }, + { + "start": 23445.86, + "end": 23447.12, + "probability": 0.5715 + }, + { + "start": 23447.22, + "end": 23450.08, + "probability": 0.926 + }, + { + "start": 23450.54, + "end": 23451.52, + "probability": 0.4058 + }, + { + "start": 23452.08, + "end": 23457.78, + "probability": 0.9592 + }, + { + "start": 23458.48, + "end": 23459.04, + "probability": 0.475 + }, + { + "start": 23459.46, + "end": 23466.76, + "probability": 0.9495 + }, + { + "start": 23467.0, + "end": 23467.1, + "probability": 0.4699 + }, + { + "start": 23467.24, + "end": 23467.68, + "probability": 0.8799 + }, + { + "start": 23467.88, + "end": 23469.04, + "probability": 0.9968 + }, + { + "start": 23469.64, + "end": 23470.68, + "probability": 0.8613 + }, + { + "start": 23471.3, + "end": 23474.52, + "probability": 0.9893 + }, + { + "start": 23475.18, + "end": 23477.12, + "probability": 0.8188 + }, + { + "start": 23477.48, + "end": 23477.68, + "probability": 0.7883 + }, + { + "start": 23478.42, + "end": 23480.07, + "probability": 0.7542 + }, + { + "start": 23480.34, + "end": 23481.66, + "probability": 0.5103 + }, + { + "start": 23482.88, + "end": 23484.08, + "probability": 0.4412 + }, + { + "start": 23484.24, + "end": 23485.56, + "probability": 0.5303 + }, + { + "start": 23488.42, + "end": 23488.58, + "probability": 0.0732 + }, + { + "start": 23488.58, + "end": 23490.24, + "probability": 0.5303 + }, + { + "start": 23491.26, + "end": 23492.8, + "probability": 0.8984 + }, + { + "start": 23496.18, + "end": 23496.86, + "probability": 0.6138 + }, + { + "start": 23496.86, + "end": 23497.56, + "probability": 0.4789 + }, + { + "start": 23500.54, + "end": 23501.3, + "probability": 0.1324 + }, + { + "start": 23512.26, + "end": 23513.3, + "probability": 0.218 + }, + { + "start": 23513.3, + "end": 23515.68, + "probability": 0.319 + }, + { + "start": 23516.84, + "end": 23520.38, + "probability": 0.9576 + }, + { + "start": 23521.02, + "end": 23521.2, + "probability": 0.3035 + }, + { + "start": 23521.22, + "end": 23521.66, + "probability": 0.3506 + }, + { + "start": 23523.08, + "end": 23527.28, + "probability": 0.3926 + }, + { + "start": 23527.28, + "end": 23530.58, + "probability": 0.9599 + }, + { + "start": 23530.98, + "end": 23531.22, + "probability": 0.0546 + }, + { + "start": 23532.12, + "end": 23532.24, + "probability": 0.0448 + }, + { + "start": 23532.24, + "end": 23534.22, + "probability": 0.9074 + }, + { + "start": 23534.42, + "end": 23536.2, + "probability": 0.8421 + }, + { + "start": 23537.06, + "end": 23538.56, + "probability": 0.7751 + }, + { + "start": 23540.16, + "end": 23541.62, + "probability": 0.7191 + }, + { + "start": 23542.42, + "end": 23544.62, + "probability": 0.7759 + }, + { + "start": 23544.88, + "end": 23547.5, + "probability": 0.9897 + }, + { + "start": 23548.28, + "end": 23549.38, + "probability": 0.9954 + }, + { + "start": 23549.98, + "end": 23553.02, + "probability": 0.9648 + }, + { + "start": 23553.7, + "end": 23556.24, + "probability": 0.9951 + }, + { + "start": 23556.34, + "end": 23558.32, + "probability": 0.9609 + }, + { + "start": 23558.5, + "end": 23559.7, + "probability": 0.9463 + }, + { + "start": 23559.8, + "end": 23561.98, + "probability": 0.9546 + }, + { + "start": 23562.98, + "end": 23563.62, + "probability": 0.796 + }, + { + "start": 23564.6, + "end": 23564.72, + "probability": 0.7595 + }, + { + "start": 23565.88, + "end": 23566.44, + "probability": 0.9119 + }, + { + "start": 23566.8, + "end": 23568.08, + "probability": 0.8757 + }, + { + "start": 23572.16, + "end": 23573.4, + "probability": 0.56 + }, + { + "start": 23573.98, + "end": 23574.92, + "probability": 0.467 + }, + { + "start": 23576.16, + "end": 23578.66, + "probability": 0.704 + }, + { + "start": 23578.9, + "end": 23580.96, + "probability": 0.8937 + }, + { + "start": 23581.58, + "end": 23584.42, + "probability": 0.9229 + }, + { + "start": 23585.14, + "end": 23590.7, + "probability": 0.8573 + }, + { + "start": 23591.94, + "end": 23595.5, + "probability": 0.9635 + }, + { + "start": 23597.22, + "end": 23600.14, + "probability": 0.6112 + }, + { + "start": 23600.7, + "end": 23604.66, + "probability": 0.8198 + }, + { + "start": 23607.52, + "end": 23609.44, + "probability": 0.9322 + }, + { + "start": 23610.24, + "end": 23614.86, + "probability": 0.9984 + }, + { + "start": 23615.48, + "end": 23617.14, + "probability": 0.9406 + }, + { + "start": 23617.3, + "end": 23622.94, + "probability": 0.5699 + }, + { + "start": 23624.94, + "end": 23628.22, + "probability": 0.9944 + }, + { + "start": 23628.22, + "end": 23629.76, + "probability": 0.8514 + }, + { + "start": 23630.52, + "end": 23634.1, + "probability": 0.9788 + }, + { + "start": 23635.19, + "end": 23636.96, + "probability": 0.4438 + }, + { + "start": 23637.1, + "end": 23638.84, + "probability": 0.9902 + }, + { + "start": 23639.36, + "end": 23641.9, + "probability": 0.9707 + }, + { + "start": 23642.6, + "end": 23646.44, + "probability": 0.9802 + }, + { + "start": 23646.96, + "end": 23648.5, + "probability": 0.9891 + }, + { + "start": 23651.7, + "end": 23658.36, + "probability": 0.8026 + }, + { + "start": 23658.74, + "end": 23663.64, + "probability": 0.7352 + }, + { + "start": 23664.14, + "end": 23672.67, + "probability": 0.5177 + }, + { + "start": 23672.9, + "end": 23673.67, + "probability": 0.5922 + }, + { + "start": 23674.38, + "end": 23675.1, + "probability": 0.6457 + }, + { + "start": 23675.64, + "end": 23676.72, + "probability": 0.8525 + }, + { + "start": 23676.84, + "end": 23679.7, + "probability": 0.7636 + }, + { + "start": 23680.18, + "end": 23684.04, + "probability": 0.9629 + }, + { + "start": 23685.08, + "end": 23688.06, + "probability": 0.9492 + }, + { + "start": 23688.58, + "end": 23690.22, + "probability": 0.9833 + }, + { + "start": 23691.12, + "end": 23692.6, + "probability": 0.9964 + }, + { + "start": 23693.28, + "end": 23695.44, + "probability": 0.5019 + }, + { + "start": 23696.04, + "end": 23698.1, + "probability": 0.9907 + }, + { + "start": 23699.45, + "end": 23702.48, + "probability": 0.8288 + }, + { + "start": 23703.24, + "end": 23705.6, + "probability": 0.8179 + }, + { + "start": 23706.82, + "end": 23709.14, + "probability": 0.9174 + }, + { + "start": 23709.56, + "end": 23711.44, + "probability": 0.936 + }, + { + "start": 23711.6, + "end": 23715.24, + "probability": 0.9722 + }, + { + "start": 23715.86, + "end": 23719.55, + "probability": 0.9666 + }, + { + "start": 23720.96, + "end": 23725.59, + "probability": 0.888 + }, + { + "start": 23726.24, + "end": 23731.9, + "probability": 0.9424 + }, + { + "start": 23732.8, + "end": 23735.66, + "probability": 0.9914 + }, + { + "start": 23735.8, + "end": 23736.76, + "probability": 0.6238 + }, + { + "start": 23736.84, + "end": 23737.66, + "probability": 0.8869 + }, + { + "start": 23738.2, + "end": 23739.32, + "probability": 0.8012 + }, + { + "start": 23739.82, + "end": 23741.63, + "probability": 0.9722 + }, + { + "start": 23741.8, + "end": 23743.08, + "probability": 0.8717 + }, + { + "start": 23743.58, + "end": 23744.54, + "probability": 0.756 + }, + { + "start": 23745.68, + "end": 23748.42, + "probability": 0.9945 + }, + { + "start": 23749.06, + "end": 23751.16, + "probability": 0.775 + }, + { + "start": 23751.34, + "end": 23754.82, + "probability": 0.7768 + }, + { + "start": 23755.54, + "end": 23756.72, + "probability": 0.9813 + }, + { + "start": 23757.24, + "end": 23758.78, + "probability": 0.9773 + }, + { + "start": 23758.86, + "end": 23759.08, + "probability": 0.7794 + }, + { + "start": 23760.36, + "end": 23761.82, + "probability": 0.8971 + }, + { + "start": 23762.24, + "end": 23763.48, + "probability": 0.9965 + }, + { + "start": 23764.12, + "end": 23764.72, + "probability": 0.6404 + }, + { + "start": 23766.18, + "end": 23767.16, + "probability": 0.7183 + }, + { + "start": 23767.6, + "end": 23769.65, + "probability": 0.9147 + }, + { + "start": 23769.72, + "end": 23771.14, + "probability": 0.9542 + }, + { + "start": 23786.38, + "end": 23787.18, + "probability": 0.644 + }, + { + "start": 23788.16, + "end": 23790.5, + "probability": 0.8481 + }, + { + "start": 23792.0, + "end": 23794.24, + "probability": 0.9813 + }, + { + "start": 23796.72, + "end": 23797.44, + "probability": 0.9697 + }, + { + "start": 23800.78, + "end": 23802.48, + "probability": 0.998 + }, + { + "start": 23803.76, + "end": 23806.0, + "probability": 0.7764 + }, + { + "start": 23808.26, + "end": 23810.15, + "probability": 0.8452 + }, + { + "start": 23813.08, + "end": 23814.96, + "probability": 0.8353 + }, + { + "start": 23816.86, + "end": 23819.92, + "probability": 0.8975 + }, + { + "start": 23821.54, + "end": 23822.02, + "probability": 0.5143 + }, + { + "start": 23823.46, + "end": 23826.16, + "probability": 0.9945 + }, + { + "start": 23826.94, + "end": 23829.68, + "probability": 0.9552 + }, + { + "start": 23831.3, + "end": 23836.8, + "probability": 0.9167 + }, + { + "start": 23837.38, + "end": 23839.38, + "probability": 0.7264 + }, + { + "start": 23839.92, + "end": 23846.14, + "probability": 0.883 + }, + { + "start": 23847.84, + "end": 23849.12, + "probability": 0.5994 + }, + { + "start": 23851.76, + "end": 23852.22, + "probability": 0.6842 + }, + { + "start": 23852.36, + "end": 23853.2, + "probability": 0.8708 + }, + { + "start": 23853.56, + "end": 23854.02, + "probability": 0.5704 + }, + { + "start": 23854.12, + "end": 23855.9, + "probability": 0.815 + }, + { + "start": 23857.04, + "end": 23858.5, + "probability": 0.6761 + }, + { + "start": 23860.04, + "end": 23860.86, + "probability": 0.8885 + }, + { + "start": 23862.54, + "end": 23864.68, + "probability": 0.6804 + }, + { + "start": 23864.9, + "end": 23865.96, + "probability": 0.8068 + }, + { + "start": 23866.52, + "end": 23868.22, + "probability": 0.7324 + }, + { + "start": 23870.1, + "end": 23873.78, + "probability": 0.8722 + }, + { + "start": 23875.64, + "end": 23878.36, + "probability": 0.8062 + }, + { + "start": 23881.28, + "end": 23882.54, + "probability": 0.9531 + }, + { + "start": 23884.2, + "end": 23884.84, + "probability": 0.7638 + }, + { + "start": 23885.72, + "end": 23886.14, + "probability": 0.9757 + }, + { + "start": 23887.36, + "end": 23888.18, + "probability": 0.8975 + }, + { + "start": 23889.14, + "end": 23889.86, + "probability": 0.5677 + }, + { + "start": 23891.5, + "end": 23894.66, + "probability": 0.9517 + }, + { + "start": 23895.86, + "end": 23897.88, + "probability": 0.5264 + }, + { + "start": 23901.3, + "end": 23902.7, + "probability": 0.6808 + }, + { + "start": 23903.84, + "end": 23904.86, + "probability": 0.8666 + }, + { + "start": 23905.52, + "end": 23906.84, + "probability": 0.8853 + }, + { + "start": 23907.88, + "end": 23909.92, + "probability": 0.8795 + }, + { + "start": 23912.04, + "end": 23912.63, + "probability": 0.2709 + }, + { + "start": 23917.8, + "end": 23918.78, + "probability": 0.5065 + }, + { + "start": 23920.28, + "end": 23921.08, + "probability": 0.9365 + }, + { + "start": 23923.84, + "end": 23925.16, + "probability": 0.4899 + }, + { + "start": 23925.22, + "end": 23926.44, + "probability": 0.7096 + }, + { + "start": 23926.48, + "end": 23929.38, + "probability": 0.9758 + }, + { + "start": 23931.24, + "end": 23934.92, + "probability": 0.9285 + }, + { + "start": 23936.74, + "end": 23938.84, + "probability": 0.8424 + }, + { + "start": 23939.24, + "end": 23940.59, + "probability": 0.9942 + }, + { + "start": 23941.26, + "end": 23942.16, + "probability": 0.752 + }, + { + "start": 23943.68, + "end": 23948.38, + "probability": 0.9902 + }, + { + "start": 23949.02, + "end": 23953.44, + "probability": 0.3146 + }, + { + "start": 23955.22, + "end": 23957.64, + "probability": 0.9591 + }, + { + "start": 23958.52, + "end": 23962.26, + "probability": 0.9966 + }, + { + "start": 23963.26, + "end": 23964.52, + "probability": 0.6679 + }, + { + "start": 23964.64, + "end": 23965.98, + "probability": 0.9961 + }, + { + "start": 23966.5, + "end": 23969.52, + "probability": 0.7793 + }, + { + "start": 23971.0, + "end": 23972.02, + "probability": 0.332 + }, + { + "start": 23973.88, + "end": 23975.4, + "probability": 0.5548 + }, + { + "start": 23976.18, + "end": 23978.42, + "probability": 0.8469 + }, + { + "start": 23980.42, + "end": 23981.66, + "probability": 0.5771 + }, + { + "start": 23982.82, + "end": 23984.8, + "probability": 0.9961 + }, + { + "start": 23986.28, + "end": 23988.49, + "probability": 0.9948 + }, + { + "start": 23990.02, + "end": 23991.02, + "probability": 0.824 + }, + { + "start": 23991.96, + "end": 23996.84, + "probability": 0.9937 + }, + { + "start": 23997.36, + "end": 24003.42, + "probability": 0.6668 + }, + { + "start": 24003.74, + "end": 24004.35, + "probability": 0.75 + }, + { + "start": 24005.24, + "end": 24006.32, + "probability": 0.9631 + }, + { + "start": 24006.96, + "end": 24010.5, + "probability": 0.9186 + }, + { + "start": 24013.48, + "end": 24014.06, + "probability": 0.7319 + }, + { + "start": 24015.42, + "end": 24018.48, + "probability": 0.8675 + }, + { + "start": 24020.26, + "end": 24020.86, + "probability": 0.7868 + }, + { + "start": 24022.48, + "end": 24024.02, + "probability": 0.9642 + }, + { + "start": 24026.72, + "end": 24027.18, + "probability": 0.4285 + }, + { + "start": 24029.34, + "end": 24033.5, + "probability": 0.9854 + }, + { + "start": 24034.0, + "end": 24035.8, + "probability": 0.4863 + }, + { + "start": 24036.52, + "end": 24040.16, + "probability": 0.7122 + }, + { + "start": 24041.06, + "end": 24044.84, + "probability": 0.9204 + }, + { + "start": 24045.18, + "end": 24045.97, + "probability": 0.6746 + }, + { + "start": 24046.86, + "end": 24048.98, + "probability": 0.6642 + }, + { + "start": 24049.06, + "end": 24051.62, + "probability": 0.918 + }, + { + "start": 24052.4, + "end": 24053.9, + "probability": 0.9023 + }, + { + "start": 24053.96, + "end": 24058.16, + "probability": 0.9938 + }, + { + "start": 24058.42, + "end": 24060.22, + "probability": 0.9251 + }, + { + "start": 24060.72, + "end": 24064.24, + "probability": 0.9637 + }, + { + "start": 24064.24, + "end": 24067.92, + "probability": 0.9574 + }, + { + "start": 24068.02, + "end": 24068.4, + "probability": 0.7549 + }, + { + "start": 24068.4, + "end": 24070.0, + "probability": 0.7081 + }, + { + "start": 24070.2, + "end": 24070.74, + "probability": 0.6451 + }, + { + "start": 24071.6, + "end": 24073.98, + "probability": 0.5385 + }, + { + "start": 24075.98, + "end": 24076.72, + "probability": 0.8027 + }, + { + "start": 24081.5, + "end": 24083.18, + "probability": 0.7333 + }, + { + "start": 24083.18, + "end": 24085.38, + "probability": 0.9654 + }, + { + "start": 24087.62, + "end": 24088.32, + "probability": 0.7247 + }, + { + "start": 24091.66, + "end": 24093.28, + "probability": 0.6989 + }, + { + "start": 24094.04, + "end": 24096.58, + "probability": 0.945 + }, + { + "start": 24096.68, + "end": 24101.44, + "probability": 0.9946 + }, + { + "start": 24101.44, + "end": 24103.84, + "probability": 0.9985 + }, + { + "start": 24105.0, + "end": 24108.98, + "probability": 0.998 + }, + { + "start": 24109.56, + "end": 24110.42, + "probability": 0.9143 + }, + { + "start": 24111.56, + "end": 24113.96, + "probability": 0.9808 + }, + { + "start": 24114.74, + "end": 24116.94, + "probability": 0.993 + }, + { + "start": 24117.7, + "end": 24120.94, + "probability": 0.9937 + }, + { + "start": 24121.0, + "end": 24126.06, + "probability": 0.988 + }, + { + "start": 24126.19, + "end": 24131.18, + "probability": 0.8886 + }, + { + "start": 24132.02, + "end": 24138.18, + "probability": 0.9932 + }, + { + "start": 24138.92, + "end": 24139.74, + "probability": 0.8726 + }, + { + "start": 24140.44, + "end": 24140.74, + "probability": 0.4591 + }, + { + "start": 24140.88, + "end": 24144.12, + "probability": 0.9856 + }, + { + "start": 24144.24, + "end": 24145.44, + "probability": 0.9413 + }, + { + "start": 24145.76, + "end": 24150.66, + "probability": 0.9123 + }, + { + "start": 24150.74, + "end": 24151.38, + "probability": 0.4614 + }, + { + "start": 24152.02, + "end": 24154.5, + "probability": 0.938 + }, + { + "start": 24154.62, + "end": 24154.94, + "probability": 0.5901 + }, + { + "start": 24154.96, + "end": 24155.94, + "probability": 0.9272 + }, + { + "start": 24155.98, + "end": 24158.02, + "probability": 0.7739 + }, + { + "start": 24158.04, + "end": 24161.82, + "probability": 0.9203 + }, + { + "start": 24164.2, + "end": 24165.98, + "probability": 0.5931 + }, + { + "start": 24167.72, + "end": 24173.82, + "probability": 0.7755 + }, + { + "start": 24174.14, + "end": 24181.5, + "probability": 0.9355 + }, + { + "start": 24182.4, + "end": 24183.88, + "probability": 0.3575 + }, + { + "start": 24184.46, + "end": 24186.9, + "probability": 0.2586 + }, + { + "start": 24187.12, + "end": 24189.56, + "probability": 0.4475 + }, + { + "start": 24189.72, + "end": 24190.14, + "probability": 0.7921 + }, + { + "start": 24190.24, + "end": 24192.14, + "probability": 0.7292 + }, + { + "start": 24194.12, + "end": 24197.04, + "probability": 0.701 + }, + { + "start": 24197.06, + "end": 24198.96, + "probability": 0.9133 + }, + { + "start": 24200.2, + "end": 24203.0, + "probability": 0.9046 + }, + { + "start": 24203.12, + "end": 24205.1, + "probability": 0.551 + }, + { + "start": 24205.86, + "end": 24208.82, + "probability": 0.9899 + }, + { + "start": 24209.64, + "end": 24209.64, + "probability": 0.6665 + }, + { + "start": 24210.28, + "end": 24213.64, + "probability": 0.998 + }, + { + "start": 24214.56, + "end": 24215.46, + "probability": 0.6942 + }, + { + "start": 24215.62, + "end": 24217.74, + "probability": 0.9296 + }, + { + "start": 24217.84, + "end": 24219.74, + "probability": 0.8885 + }, + { + "start": 24219.9, + "end": 24222.32, + "probability": 0.9976 + }, + { + "start": 24223.04, + "end": 24226.18, + "probability": 0.9797 + }, + { + "start": 24226.88, + "end": 24231.0, + "probability": 0.987 + }, + { + "start": 24231.0, + "end": 24233.66, + "probability": 0.9951 + }, + { + "start": 24234.38, + "end": 24236.3, + "probability": 0.9697 + }, + { + "start": 24236.42, + "end": 24236.63, + "probability": 0.7889 + }, + { + "start": 24237.38, + "end": 24239.66, + "probability": 0.968 + }, + { + "start": 24239.86, + "end": 24242.34, + "probability": 0.9104 + }, + { + "start": 24242.34, + "end": 24244.84, + "probability": 0.9941 + }, + { + "start": 24245.84, + "end": 24246.66, + "probability": 0.617 + }, + { + "start": 24246.74, + "end": 24248.01, + "probability": 0.9829 + }, + { + "start": 24248.36, + "end": 24251.84, + "probability": 0.9537 + }, + { + "start": 24252.4, + "end": 24254.74, + "probability": 0.97 + }, + { + "start": 24254.74, + "end": 24255.99, + "probability": 0.9707 + }, + { + "start": 24256.92, + "end": 24256.92, + "probability": 0.1441 + }, + { + "start": 24256.92, + "end": 24259.64, + "probability": 0.9476 + }, + { + "start": 24259.76, + "end": 24261.04, + "probability": 0.8678 + }, + { + "start": 24262.02, + "end": 24266.15, + "probability": 0.8798 + }, + { + "start": 24267.04, + "end": 24268.24, + "probability": 0.0183 + }, + { + "start": 24268.24, + "end": 24268.26, + "probability": 0.1051 + }, + { + "start": 24268.26, + "end": 24269.28, + "probability": 0.6923 + }, + { + "start": 24269.66, + "end": 24271.84, + "probability": 0.9732 + }, + { + "start": 24272.32, + "end": 24274.34, + "probability": 0.8764 + }, + { + "start": 24274.42, + "end": 24276.82, + "probability": 0.7046 + }, + { + "start": 24277.38, + "end": 24277.48, + "probability": 0.188 + }, + { + "start": 24277.54, + "end": 24278.16, + "probability": 0.4144 + }, + { + "start": 24278.18, + "end": 24278.5, + "probability": 0.4444 + }, + { + "start": 24278.64, + "end": 24278.76, + "probability": 0.2629 + }, + { + "start": 24278.76, + "end": 24280.76, + "probability": 0.9327 + }, + { + "start": 24281.42, + "end": 24281.9, + "probability": 0.744 + }, + { + "start": 24281.98, + "end": 24282.48, + "probability": 0.8977 + }, + { + "start": 24282.8, + "end": 24283.3, + "probability": 0.3446 + }, + { + "start": 24283.3, + "end": 24284.83, + "probability": 0.9363 + }, + { + "start": 24286.5, + "end": 24288.42, + "probability": 0.8693 + }, + { + "start": 24291.08, + "end": 24293.88, + "probability": 0.5476 + }, + { + "start": 24294.58, + "end": 24296.58, + "probability": 0.8331 + }, + { + "start": 24296.96, + "end": 24297.18, + "probability": 0.1978 + }, + { + "start": 24297.18, + "end": 24297.36, + "probability": 0.7088 + }, + { + "start": 24297.52, + "end": 24298.64, + "probability": 0.7205 + }, + { + "start": 24298.68, + "end": 24302.54, + "probability": 0.8384 + }, + { + "start": 24303.28, + "end": 24305.56, + "probability": 0.5511 + }, + { + "start": 24305.56, + "end": 24305.9, + "probability": 0.0614 + }, + { + "start": 24306.14, + "end": 24306.58, + "probability": 0.6653 + }, + { + "start": 24306.74, + "end": 24309.84, + "probability": 0.7689 + }, + { + "start": 24309.84, + "end": 24312.34, + "probability": 0.991 + }, + { + "start": 24312.46, + "end": 24312.72, + "probability": 0.7963 + }, + { + "start": 24312.76, + "end": 24313.2, + "probability": 0.6796 + }, + { + "start": 24313.28, + "end": 24315.34, + "probability": 0.9705 + }, + { + "start": 24316.1, + "end": 24319.8, + "probability": 0.8821 + }, + { + "start": 24319.8, + "end": 24322.58, + "probability": 0.9577 + }, + { + "start": 24323.1, + "end": 24324.7, + "probability": 0.9813 + }, + { + "start": 24324.7, + "end": 24325.44, + "probability": 0.5936 + }, + { + "start": 24325.58, + "end": 24325.92, + "probability": 0.4194 + }, + { + "start": 24326.64, + "end": 24328.98, + "probability": 0.7835 + }, + { + "start": 24329.1, + "end": 24329.66, + "probability": 0.6133 + }, + { + "start": 24330.5, + "end": 24333.3, + "probability": 0.4975 + }, + { + "start": 24333.6, + "end": 24336.14, + "probability": 0.757 + }, + { + "start": 24336.38, + "end": 24337.6, + "probability": 0.7259 + }, + { + "start": 24337.82, + "end": 24339.71, + "probability": 0.8195 + }, + { + "start": 24342.28, + "end": 24343.92, + "probability": 0.7741 + }, + { + "start": 24345.3, + "end": 24346.12, + "probability": 0.5359 + }, + { + "start": 24346.28, + "end": 24347.74, + "probability": 0.8234 + }, + { + "start": 24348.72, + "end": 24349.64, + "probability": 0.32 + }, + { + "start": 24361.1, + "end": 24361.1, + "probability": 0.0761 + }, + { + "start": 24361.1, + "end": 24361.7, + "probability": 0.4056 + }, + { + "start": 24362.18, + "end": 24362.46, + "probability": 0.5366 + }, + { + "start": 24362.76, + "end": 24363.62, + "probability": 0.1846 + }, + { + "start": 24364.06, + "end": 24364.1, + "probability": 0.1184 + }, + { + "start": 24364.1, + "end": 24364.1, + "probability": 0.0539 + }, + { + "start": 24364.1, + "end": 24366.06, + "probability": 0.8098 + }, + { + "start": 24366.12, + "end": 24368.7, + "probability": 0.7192 + }, + { + "start": 24368.84, + "end": 24370.14, + "probability": 0.9945 + }, + { + "start": 24371.04, + "end": 24371.92, + "probability": 0.985 + }, + { + "start": 24372.98, + "end": 24378.22, + "probability": 0.5464 + }, + { + "start": 24379.46, + "end": 24379.6, + "probability": 0.0009 + }, + { + "start": 24381.1, + "end": 24382.82, + "probability": 0.0785 + }, + { + "start": 24383.92, + "end": 24384.76, + "probability": 0.1145 + }, + { + "start": 24384.76, + "end": 24384.76, + "probability": 0.0481 + }, + { + "start": 24384.76, + "end": 24384.76, + "probability": 0.1343 + }, + { + "start": 24384.76, + "end": 24385.26, + "probability": 0.6682 + }, + { + "start": 24385.26, + "end": 24385.8, + "probability": 0.2621 + }, + { + "start": 24385.8, + "end": 24386.88, + "probability": 0.2846 + }, + { + "start": 24388.3, + "end": 24389.44, + "probability": 0.6921 + }, + { + "start": 24389.62, + "end": 24390.16, + "probability": 0.8458 + }, + { + "start": 24390.18, + "end": 24390.68, + "probability": 0.2151 + }, + { + "start": 24390.68, + "end": 24391.62, + "probability": 0.9409 + }, + { + "start": 24392.36, + "end": 24394.38, + "probability": 0.9043 + }, + { + "start": 24395.38, + "end": 24396.36, + "probability": 0.8494 + }, + { + "start": 24397.04, + "end": 24397.74, + "probability": 0.5397 + }, + { + "start": 24398.28, + "end": 24398.54, + "probability": 0.5427 + }, + { + "start": 24399.02, + "end": 24400.54, + "probability": 0.7331 + }, + { + "start": 24400.58, + "end": 24401.14, + "probability": 0.5437 + }, + { + "start": 24401.6, + "end": 24403.1, + "probability": 0.801 + }, + { + "start": 24403.82, + "end": 24407.5, + "probability": 0.4369 + }, + { + "start": 24408.22, + "end": 24412.3, + "probability": 0.6744 + }, + { + "start": 24414.8, + "end": 24416.38, + "probability": 0.7365 + }, + { + "start": 24416.4, + "end": 24417.64, + "probability": 0.8483 + }, + { + "start": 24417.68, + "end": 24419.18, + "probability": 0.7646 + }, + { + "start": 24419.8, + "end": 24421.74, + "probability": 0.8556 + }, + { + "start": 24422.32, + "end": 24423.82, + "probability": 0.9089 + }, + { + "start": 24425.69, + "end": 24426.18, + "probability": 0.0013 + }, + { + "start": 24426.68, + "end": 24428.06, + "probability": 0.6615 + }, + { + "start": 24428.1, + "end": 24428.48, + "probability": 0.3905 + }, + { + "start": 24428.66, + "end": 24430.14, + "probability": 0.76 + }, + { + "start": 24430.14, + "end": 24430.86, + "probability": 0.6665 + }, + { + "start": 24431.28, + "end": 24431.96, + "probability": 0.9094 + }, + { + "start": 24433.1, + "end": 24436.16, + "probability": 0.2722 + }, + { + "start": 24437.56, + "end": 24440.84, + "probability": 0.7187 + }, + { + "start": 24441.5, + "end": 24445.66, + "probability": 0.9883 + }, + { + "start": 24446.94, + "end": 24452.9, + "probability": 0.9624 + }, + { + "start": 24453.72, + "end": 24455.04, + "probability": 0.7139 + }, + { + "start": 24455.6, + "end": 24456.44, + "probability": 0.9819 + }, + { + "start": 24458.18, + "end": 24459.0, + "probability": 0.9642 + }, + { + "start": 24459.68, + "end": 24460.98, + "probability": 0.9385 + }, + { + "start": 24462.02, + "end": 24467.3, + "probability": 0.9977 + }, + { + "start": 24467.6, + "end": 24468.34, + "probability": 0.9865 + }, + { + "start": 24469.72, + "end": 24472.84, + "probability": 0.9935 + }, + { + "start": 24473.44, + "end": 24477.2, + "probability": 0.9851 + }, + { + "start": 24477.7, + "end": 24482.24, + "probability": 0.966 + }, + { + "start": 24483.54, + "end": 24485.05, + "probability": 0.8398 + }, + { + "start": 24485.84, + "end": 24490.4, + "probability": 0.9928 + }, + { + "start": 24491.24, + "end": 24493.56, + "probability": 0.8911 + }, + { + "start": 24493.72, + "end": 24494.7, + "probability": 0.566 + }, + { + "start": 24494.82, + "end": 24496.68, + "probability": 0.9414 + }, + { + "start": 24496.88, + "end": 24497.62, + "probability": 0.8875 + }, + { + "start": 24498.72, + "end": 24503.06, + "probability": 0.981 + }, + { + "start": 24503.06, + "end": 24507.2, + "probability": 0.998 + }, + { + "start": 24507.76, + "end": 24510.1, + "probability": 0.9688 + }, + { + "start": 24510.46, + "end": 24511.6, + "probability": 0.7904 + }, + { + "start": 24513.04, + "end": 24513.94, + "probability": 0.9017 + }, + { + "start": 24514.16, + "end": 24516.08, + "probability": 0.782 + }, + { + "start": 24516.08, + "end": 24520.56, + "probability": 0.9365 + }, + { + "start": 24521.82, + "end": 24525.06, + "probability": 0.8249 + }, + { + "start": 24526.08, + "end": 24527.5, + "probability": 0.8696 + }, + { + "start": 24528.02, + "end": 24529.54, + "probability": 0.6014 + }, + { + "start": 24530.12, + "end": 24530.26, + "probability": 0.2155 + }, + { + "start": 24530.26, + "end": 24532.36, + "probability": 0.616 + }, + { + "start": 24533.89, + "end": 24538.38, + "probability": 0.8672 + }, + { + "start": 24541.14, + "end": 24546.28, + "probability": 0.9112 + }, + { + "start": 24546.86, + "end": 24548.9, + "probability": 0.9664 + }, + { + "start": 24549.82, + "end": 24551.38, + "probability": 0.7161 + }, + { + "start": 24552.16, + "end": 24555.24, + "probability": 0.9674 + }, + { + "start": 24555.46, + "end": 24556.68, + "probability": 0.8676 + }, + { + "start": 24556.76, + "end": 24557.94, + "probability": 0.9338 + }, + { + "start": 24558.6, + "end": 24560.64, + "probability": 0.6387 + }, + { + "start": 24561.5, + "end": 24566.6, + "probability": 0.9757 + }, + { + "start": 24566.64, + "end": 24571.6, + "probability": 0.9588 + }, + { + "start": 24572.06, + "end": 24574.62, + "probability": 0.9149 + }, + { + "start": 24575.52, + "end": 24579.4, + "probability": 0.9188 + }, + { + "start": 24580.36, + "end": 24583.4, + "probability": 0.9658 + }, + { + "start": 24583.98, + "end": 24587.26, + "probability": 0.9576 + }, + { + "start": 24587.88, + "end": 24590.7, + "probability": 0.9971 + }, + { + "start": 24590.82, + "end": 24594.02, + "probability": 0.995 + }, + { + "start": 24594.68, + "end": 24598.52, + "probability": 0.8345 + }, + { + "start": 24598.66, + "end": 24599.42, + "probability": 0.8769 + }, + { + "start": 24599.98, + "end": 24602.5, + "probability": 0.979 + }, + { + "start": 24603.8, + "end": 24604.72, + "probability": 0.8956 + }, + { + "start": 24605.06, + "end": 24608.48, + "probability": 0.9972 + }, + { + "start": 24608.82, + "end": 24609.92, + "probability": 0.9122 + }, + { + "start": 24610.84, + "end": 24612.16, + "probability": 0.8642 + }, + { + "start": 24612.22, + "end": 24615.08, + "probability": 0.9073 + }, + { + "start": 24615.16, + "end": 24618.56, + "probability": 0.9812 + }, + { + "start": 24619.04, + "end": 24621.52, + "probability": 0.9888 + }, + { + "start": 24622.58, + "end": 24626.76, + "probability": 0.999 + }, + { + "start": 24627.0, + "end": 24627.68, + "probability": 0.9126 + }, + { + "start": 24628.02, + "end": 24628.72, + "probability": 0.9852 + }, + { + "start": 24628.76, + "end": 24629.36, + "probability": 0.9573 + }, + { + "start": 24629.38, + "end": 24630.26, + "probability": 0.936 + }, + { + "start": 24630.66, + "end": 24633.94, + "probability": 0.9899 + }, + { + "start": 24634.4, + "end": 24635.8, + "probability": 0.806 + }, + { + "start": 24637.34, + "end": 24640.54, + "probability": 0.8953 + }, + { + "start": 24641.74, + "end": 24643.8, + "probability": 0.681 + }, + { + "start": 24643.88, + "end": 24647.62, + "probability": 0.9731 + }, + { + "start": 24647.76, + "end": 24648.36, + "probability": 0.2418 + }, + { + "start": 24648.38, + "end": 24649.62, + "probability": 0.9873 + }, + { + "start": 24649.72, + "end": 24651.32, + "probability": 0.9872 + }, + { + "start": 24651.42, + "end": 24652.56, + "probability": 0.9615 + }, + { + "start": 24652.76, + "end": 24654.92, + "probability": 0.8108 + }, + { + "start": 24654.96, + "end": 24655.64, + "probability": 0.8132 + }, + { + "start": 24655.8, + "end": 24659.58, + "probability": 0.7367 + }, + { + "start": 24660.28, + "end": 24661.82, + "probability": 0.4413 + }, + { + "start": 24662.82, + "end": 24664.64, + "probability": 0.5645 + }, + { + "start": 24678.52, + "end": 24679.2, + "probability": 0.3871 + }, + { + "start": 24679.22, + "end": 24679.78, + "probability": 0.9537 + }, + { + "start": 24681.26, + "end": 24682.46, + "probability": 0.8068 + }, + { + "start": 24683.48, + "end": 24684.34, + "probability": 0.8686 + }, + { + "start": 24685.42, + "end": 24687.76, + "probability": 0.9097 + }, + { + "start": 24689.04, + "end": 24693.36, + "probability": 0.9939 + }, + { + "start": 24693.36, + "end": 24699.24, + "probability": 0.9462 + }, + { + "start": 24699.9, + "end": 24701.84, + "probability": 0.8839 + }, + { + "start": 24703.18, + "end": 24707.78, + "probability": 0.8939 + }, + { + "start": 24708.82, + "end": 24712.58, + "probability": 0.9785 + }, + { + "start": 24713.96, + "end": 24715.3, + "probability": 0.9506 + }, + { + "start": 24716.48, + "end": 24718.34, + "probability": 0.9786 + }, + { + "start": 24718.98, + "end": 24723.46, + "probability": 0.976 + }, + { + "start": 24724.28, + "end": 24724.88, + "probability": 0.8201 + }, + { + "start": 24725.0, + "end": 24725.64, + "probability": 0.8363 + }, + { + "start": 24726.04, + "end": 24728.42, + "probability": 0.7985 + }, + { + "start": 24728.6, + "end": 24729.48, + "probability": 0.8839 + }, + { + "start": 24729.68, + "end": 24732.96, + "probability": 0.9956 + }, + { + "start": 24734.22, + "end": 24736.08, + "probability": 0.9191 + }, + { + "start": 24736.26, + "end": 24737.12, + "probability": 0.9805 + }, + { + "start": 24737.8, + "end": 24739.38, + "probability": 0.9443 + }, + { + "start": 24740.32, + "end": 24741.67, + "probability": 0.999 + }, + { + "start": 24742.74, + "end": 24744.22, + "probability": 0.5095 + }, + { + "start": 24744.76, + "end": 24746.02, + "probability": 0.7243 + }, + { + "start": 24746.44, + "end": 24747.42, + "probability": 0.8773 + }, + { + "start": 24747.42, + "end": 24748.38, + "probability": 0.7425 + }, + { + "start": 24748.98, + "end": 24753.3, + "probability": 0.8931 + }, + { + "start": 24753.3, + "end": 24758.38, + "probability": 0.9204 + }, + { + "start": 24759.2, + "end": 24760.55, + "probability": 0.9954 + }, + { + "start": 24761.3, + "end": 24764.78, + "probability": 0.9561 + }, + { + "start": 24765.3, + "end": 24769.0, + "probability": 0.9411 + }, + { + "start": 24769.34, + "end": 24770.92, + "probability": 0.8428 + }, + { + "start": 24771.5, + "end": 24775.62, + "probability": 0.967 + }, + { + "start": 24775.74, + "end": 24777.52, + "probability": 0.4947 + }, + { + "start": 24778.5, + "end": 24779.68, + "probability": 0.6603 + }, + { + "start": 24780.36, + "end": 24784.98, + "probability": 0.9766 + }, + { + "start": 24785.44, + "end": 24788.16, + "probability": 0.9389 + }, + { + "start": 24788.84, + "end": 24796.48, + "probability": 0.9842 + }, + { + "start": 24797.8, + "end": 24803.7, + "probability": 0.9925 + }, + { + "start": 24804.06, + "end": 24805.55, + "probability": 0.9379 + }, + { + "start": 24806.64, + "end": 24808.92, + "probability": 0.9956 + }, + { + "start": 24809.96, + "end": 24811.9, + "probability": 0.9128 + }, + { + "start": 24812.64, + "end": 24813.44, + "probability": 0.9004 + }, + { + "start": 24814.16, + "end": 24818.7, + "probability": 0.998 + }, + { + "start": 24818.96, + "end": 24820.34, + "probability": 0.9745 + }, + { + "start": 24820.66, + "end": 24823.08, + "probability": 0.9658 + }, + { + "start": 24823.78, + "end": 24828.88, + "probability": 0.8981 + }, + { + "start": 24830.72, + "end": 24832.6, + "probability": 0.8116 + }, + { + "start": 24833.24, + "end": 24834.72, + "probability": 0.9701 + }, + { + "start": 24835.36, + "end": 24840.4, + "probability": 0.8296 + }, + { + "start": 24840.84, + "end": 24844.22, + "probability": 0.9238 + }, + { + "start": 24844.96, + "end": 24846.16, + "probability": 0.9645 + }, + { + "start": 24846.22, + "end": 24850.1, + "probability": 0.9777 + }, + { + "start": 24850.22, + "end": 24850.8, + "probability": 0.4693 + }, + { + "start": 24851.16, + "end": 24853.24, + "probability": 0.9211 + }, + { + "start": 24853.84, + "end": 24855.5, + "probability": 0.9137 + }, + { + "start": 24855.74, + "end": 24856.5, + "probability": 0.7893 + }, + { + "start": 24856.76, + "end": 24857.44, + "probability": 0.4415 + }, + { + "start": 24857.6, + "end": 24862.9, + "probability": 0.9904 + }, + { + "start": 24863.32, + "end": 24864.1, + "probability": 0.8884 + }, + { + "start": 24864.64, + "end": 24868.54, + "probability": 0.8043 + }, + { + "start": 24868.94, + "end": 24869.98, + "probability": 0.7294 + }, + { + "start": 24870.48, + "end": 24873.05, + "probability": 0.8106 + }, + { + "start": 24873.6, + "end": 24877.2, + "probability": 0.978 + }, + { + "start": 24877.44, + "end": 24878.72, + "probability": 0.9541 + }, + { + "start": 24878.8, + "end": 24879.52, + "probability": 0.7224 + }, + { + "start": 24879.66, + "end": 24881.42, + "probability": 0.871 + }, + { + "start": 24882.04, + "end": 24886.08, + "probability": 0.9783 + }, + { + "start": 24886.12, + "end": 24888.74, + "probability": 0.9971 + }, + { + "start": 24889.28, + "end": 24890.04, + "probability": 0.7478 + }, + { + "start": 24890.1, + "end": 24894.2, + "probability": 0.8861 + }, + { + "start": 24894.26, + "end": 24897.56, + "probability": 0.9895 + }, + { + "start": 24897.88, + "end": 24899.4, + "probability": 0.8611 + }, + { + "start": 24900.68, + "end": 24903.2, + "probability": 0.9956 + }, + { + "start": 24903.2, + "end": 24907.6, + "probability": 0.9321 + }, + { + "start": 24908.26, + "end": 24910.62, + "probability": 0.5286 + }, + { + "start": 24911.52, + "end": 24914.8, + "probability": 0.9817 + }, + { + "start": 24914.8, + "end": 24917.38, + "probability": 0.9479 + }, + { + "start": 24917.48, + "end": 24918.04, + "probability": 0.7856 + }, + { + "start": 24918.96, + "end": 24919.56, + "probability": 0.8849 + }, + { + "start": 24919.94, + "end": 24920.84, + "probability": 0.9358 + }, + { + "start": 24920.98, + "end": 24922.18, + "probability": 0.9496 + }, + { + "start": 24922.5, + "end": 24923.74, + "probability": 0.7786 + }, + { + "start": 24924.08, + "end": 24927.46, + "probability": 0.8618 + }, + { + "start": 24927.68, + "end": 24928.46, + "probability": 0.6016 + }, + { + "start": 24928.54, + "end": 24930.06, + "probability": 0.9901 + }, + { + "start": 24930.42, + "end": 24932.24, + "probability": 0.9922 + }, + { + "start": 24932.64, + "end": 24937.44, + "probability": 0.9981 + }, + { + "start": 24937.8, + "end": 24939.3, + "probability": 0.9073 + }, + { + "start": 24939.7, + "end": 24942.72, + "probability": 0.9716 + }, + { + "start": 24943.26, + "end": 24944.82, + "probability": 0.8882 + }, + { + "start": 24945.66, + "end": 24946.48, + "probability": 0.82 + }, + { + "start": 24947.04, + "end": 24950.22, + "probability": 0.9954 + }, + { + "start": 24950.96, + "end": 24952.12, + "probability": 0.7469 + }, + { + "start": 24952.84, + "end": 24954.28, + "probability": 0.8846 + }, + { + "start": 24954.32, + "end": 24955.3, + "probability": 0.8876 + }, + { + "start": 24955.76, + "end": 24957.56, + "probability": 0.9734 + }, + { + "start": 24958.02, + "end": 24959.0, + "probability": 0.9406 + }, + { + "start": 24959.04, + "end": 24961.7, + "probability": 0.9854 + }, + { + "start": 24962.12, + "end": 24967.54, + "probability": 0.9976 + }, + { + "start": 24968.06, + "end": 24969.82, + "probability": 0.9871 + }, + { + "start": 24970.16, + "end": 24970.86, + "probability": 0.868 + }, + { + "start": 24971.24, + "end": 24972.82, + "probability": 0.7618 + }, + { + "start": 24973.18, + "end": 24975.36, + "probability": 0.9956 + }, + { + "start": 24975.48, + "end": 24975.78, + "probability": 0.596 + }, + { + "start": 24977.24, + "end": 24979.38, + "probability": 0.6063 + }, + { + "start": 24980.12, + "end": 24981.8, + "probability": 0.9414 + }, + { + "start": 24983.8, + "end": 24987.02, + "probability": 0.9878 + }, + { + "start": 24987.76, + "end": 24988.56, + "probability": 0.97 + }, + { + "start": 24989.02, + "end": 24990.64, + "probability": 0.923 + }, + { + "start": 24991.44, + "end": 24991.98, + "probability": 0.7277 + }, + { + "start": 24992.54, + "end": 24994.0, + "probability": 0.8038 + }, + { + "start": 24994.52, + "end": 24995.1, + "probability": 0.9377 + }, + { + "start": 24999.28, + "end": 25000.18, + "probability": 0.685 + }, + { + "start": 25002.04, + "end": 25003.1, + "probability": 0.6857 + }, + { + "start": 25003.84, + "end": 25004.48, + "probability": 0.7677 + }, + { + "start": 25005.82, + "end": 25005.96, + "probability": 0.4744 + }, + { + "start": 25005.96, + "end": 25006.18, + "probability": 0.465 + }, + { + "start": 25006.36, + "end": 25006.36, + "probability": 0.5236 + }, + { + "start": 25006.36, + "end": 25008.14, + "probability": 0.5887 + }, + { + "start": 25008.98, + "end": 25008.98, + "probability": 0.4818 + }, + { + "start": 25008.98, + "end": 25008.98, + "probability": 0.0079 + }, + { + "start": 25009.6, + "end": 25010.4, + "probability": 0.6224 + }, + { + "start": 25010.72, + "end": 25012.88, + "probability": 0.4327 + }, + { + "start": 25013.04, + "end": 25013.34, + "probability": 0.8764 + }, + { + "start": 25014.04, + "end": 25015.34, + "probability": 0.7872 + }, + { + "start": 25016.18, + "end": 25017.96, + "probability": 0.9531 + }, + { + "start": 25018.88, + "end": 25021.18, + "probability": 0.9598 + }, + { + "start": 25021.56, + "end": 25023.58, + "probability": 0.9829 + }, + { + "start": 25024.48, + "end": 25027.26, + "probability": 0.9355 + }, + { + "start": 25027.88, + "end": 25029.62, + "probability": 0.9604 + }, + { + "start": 25030.84, + "end": 25036.38, + "probability": 0.9316 + }, + { + "start": 25036.92, + "end": 25037.5, + "probability": 0.7886 + }, + { + "start": 25038.24, + "end": 25041.38, + "probability": 0.7445 + }, + { + "start": 25042.06, + "end": 25044.24, + "probability": 0.7161 + }, + { + "start": 25045.08, + "end": 25045.12, + "probability": 0.746 + }, + { + "start": 25045.12, + "end": 25046.2, + "probability": 0.9623 + }, + { + "start": 25046.8, + "end": 25047.96, + "probability": 0.9072 + }, + { + "start": 25048.56, + "end": 25050.19, + "probability": 0.8726 + }, + { + "start": 25050.82, + "end": 25054.02, + "probability": 0.9318 + }, + { + "start": 25054.46, + "end": 25056.16, + "probability": 0.9858 + }, + { + "start": 25056.9, + "end": 25057.71, + "probability": 0.931 + }, + { + "start": 25058.52, + "end": 25060.73, + "probability": 0.9954 + }, + { + "start": 25061.62, + "end": 25064.14, + "probability": 0.8718 + }, + { + "start": 25065.0, + "end": 25069.16, + "probability": 0.8916 + }, + { + "start": 25069.21, + "end": 25072.78, + "probability": 0.9304 + }, + { + "start": 25072.84, + "end": 25075.84, + "probability": 0.9917 + }, + { + "start": 25076.76, + "end": 25079.04, + "probability": 0.9056 + }, + { + "start": 25079.86, + "end": 25082.47, + "probability": 0.9897 + }, + { + "start": 25083.8, + "end": 25085.34, + "probability": 0.9777 + }, + { + "start": 25085.92, + "end": 25087.34, + "probability": 0.9958 + }, + { + "start": 25088.52, + "end": 25090.16, + "probability": 0.9796 + }, + { + "start": 25090.76, + "end": 25093.26, + "probability": 0.9435 + }, + { + "start": 25094.54, + "end": 25095.86, + "probability": 0.9918 + }, + { + "start": 25096.04, + "end": 25097.66, + "probability": 0.6682 + }, + { + "start": 25099.08, + "end": 25099.52, + "probability": 0.736 + }, + { + "start": 25100.54, + "end": 25102.58, + "probability": 0.6812 + }, + { + "start": 25102.92, + "end": 25103.62, + "probability": 0.9587 + }, + { + "start": 25103.7, + "end": 25104.24, + "probability": 0.9393 + }, + { + "start": 25104.52, + "end": 25105.68, + "probability": 0.9794 + }, + { + "start": 25106.16, + "end": 25106.8, + "probability": 0.734 + }, + { + "start": 25106.86, + "end": 25107.1, + "probability": 0.473 + }, + { + "start": 25107.2, + "end": 25107.86, + "probability": 0.7293 + }, + { + "start": 25108.36, + "end": 25109.3, + "probability": 0.9932 + }, + { + "start": 25109.86, + "end": 25111.28, + "probability": 0.9977 + }, + { + "start": 25112.26, + "end": 25113.88, + "probability": 0.9328 + }, + { + "start": 25114.22, + "end": 25115.44, + "probability": 0.9323 + }, + { + "start": 25115.78, + "end": 25117.98, + "probability": 0.9691 + }, + { + "start": 25118.38, + "end": 25119.44, + "probability": 0.9824 + }, + { + "start": 25119.74, + "end": 25120.96, + "probability": 0.978 + }, + { + "start": 25121.3, + "end": 25124.06, + "probability": 0.9858 + }, + { + "start": 25124.28, + "end": 25127.18, + "probability": 0.9895 + }, + { + "start": 25127.22, + "end": 25128.0, + "probability": 0.8267 + }, + { + "start": 25128.78, + "end": 25129.28, + "probability": 0.8662 + }, + { + "start": 25130.06, + "end": 25131.28, + "probability": 0.9594 + }, + { + "start": 25131.86, + "end": 25134.7, + "probability": 0.8662 + }, + { + "start": 25135.88, + "end": 25139.24, + "probability": 0.9072 + }, + { + "start": 25139.68, + "end": 25140.9, + "probability": 0.9766 + }, + { + "start": 25141.08, + "end": 25141.72, + "probability": 0.7245 + }, + { + "start": 25143.06, + "end": 25147.8, + "probability": 0.9549 + }, + { + "start": 25148.32, + "end": 25149.42, + "probability": 0.8931 + }, + { + "start": 25149.46, + "end": 25150.4, + "probability": 0.9763 + }, + { + "start": 25151.48, + "end": 25156.4, + "probability": 0.9023 + }, + { + "start": 25156.9, + "end": 25159.24, + "probability": 0.9844 + }, + { + "start": 25159.56, + "end": 25159.98, + "probability": 0.8167 + }, + { + "start": 25160.08, + "end": 25161.94, + "probability": 0.7144 + }, + { + "start": 25162.76, + "end": 25164.42, + "probability": 0.827 + }, + { + "start": 25164.96, + "end": 25166.48, + "probability": 0.4104 + }, + { + "start": 25167.44, + "end": 25171.48, + "probability": 0.9229 + }, + { + "start": 25172.56, + "end": 25174.44, + "probability": 0.6754 + }, + { + "start": 25175.04, + "end": 25176.1, + "probability": 0.7673 + }, + { + "start": 25176.3, + "end": 25180.1, + "probability": 0.8461 + }, + { + "start": 25180.1, + "end": 25182.4, + "probability": 0.8623 + }, + { + "start": 25184.08, + "end": 25184.78, + "probability": 0.9019 + }, + { + "start": 25185.42, + "end": 25186.44, + "probability": 0.5851 + }, + { + "start": 25187.48, + "end": 25188.88, + "probability": 0.844 + }, + { + "start": 25188.96, + "end": 25191.58, + "probability": 0.9544 + }, + { + "start": 25193.2, + "end": 25198.68, + "probability": 0.9964 + }, + { + "start": 25200.28, + "end": 25201.12, + "probability": 0.4506 + }, + { + "start": 25202.42, + "end": 25203.5, + "probability": 0.7533 + }, + { + "start": 25204.08, + "end": 25204.54, + "probability": 0.9366 + }, + { + "start": 25206.94, + "end": 25210.66, + "probability": 0.9976 + }, + { + "start": 25213.02, + "end": 25214.42, + "probability": 0.7625 + }, + { + "start": 25215.88, + "end": 25216.38, + "probability": 0.3489 + }, + { + "start": 25217.86, + "end": 25220.68, + "probability": 0.9561 + }, + { + "start": 25220.74, + "end": 25221.58, + "probability": 0.7791 + }, + { + "start": 25221.94, + "end": 25222.46, + "probability": 0.9319 + }, + { + "start": 25224.9, + "end": 25229.16, + "probability": 0.9901 + }, + { + "start": 25229.62, + "end": 25231.44, + "probability": 0.9744 + }, + { + "start": 25231.84, + "end": 25233.1, + "probability": 0.9712 + }, + { + "start": 25233.24, + "end": 25234.24, + "probability": 0.7144 + }, + { + "start": 25234.8, + "end": 25236.9, + "probability": 0.9496 + }, + { + "start": 25237.66, + "end": 25239.8, + "probability": 0.9935 + }, + { + "start": 25240.68, + "end": 25241.36, + "probability": 0.861 + }, + { + "start": 25241.94, + "end": 25244.52, + "probability": 0.978 + }, + { + "start": 25245.58, + "end": 25246.18, + "probability": 0.9578 + }, + { + "start": 25248.06, + "end": 25248.74, + "probability": 0.6034 + }, + { + "start": 25253.28, + "end": 25256.44, + "probability": 0.8163 + }, + { + "start": 25257.18, + "end": 25259.82, + "probability": 0.9177 + }, + { + "start": 25260.56, + "end": 25263.97, + "probability": 0.6774 + }, + { + "start": 25264.72, + "end": 25265.98, + "probability": 0.9082 + }, + { + "start": 25266.72, + "end": 25267.66, + "probability": 0.9446 + }, + { + "start": 25267.94, + "end": 25268.84, + "probability": 0.9718 + }, + { + "start": 25269.4, + "end": 25270.32, + "probability": 0.6272 + }, + { + "start": 25271.1, + "end": 25273.3, + "probability": 0.3616 + }, + { + "start": 25274.2, + "end": 25274.97, + "probability": 0.9218 + }, + { + "start": 25275.16, + "end": 25278.42, + "probability": 0.83 + }, + { + "start": 25278.78, + "end": 25280.04, + "probability": 0.7475 + }, + { + "start": 25280.42, + "end": 25282.9, + "probability": 0.7322 + }, + { + "start": 25283.1, + "end": 25285.66, + "probability": 0.2229 + }, + { + "start": 25286.0, + "end": 25286.0, + "probability": 0.0347 + }, + { + "start": 25286.0, + "end": 25287.76, + "probability": 0.2171 + }, + { + "start": 25287.76, + "end": 25291.14, + "probability": 0.902 + }, + { + "start": 25291.96, + "end": 25294.56, + "probability": 0.8889 + }, + { + "start": 25295.88, + "end": 25297.32, + "probability": 0.8802 + }, + { + "start": 25297.92, + "end": 25299.64, + "probability": 0.9693 + }, + { + "start": 25300.3, + "end": 25300.91, + "probability": 0.5054 + }, + { + "start": 25301.12, + "end": 25302.14, + "probability": 0.5539 + }, + { + "start": 25302.92, + "end": 25305.08, + "probability": 0.9602 + }, + { + "start": 25305.52, + "end": 25307.72, + "probability": 0.9123 + }, + { + "start": 25308.34, + "end": 25312.96, + "probability": 0.9443 + }, + { + "start": 25314.26, + "end": 25314.98, + "probability": 0.6271 + }, + { + "start": 25315.16, + "end": 25317.14, + "probability": 0.8232 + }, + { + "start": 25317.64, + "end": 25320.26, + "probability": 0.7002 + }, + { + "start": 25320.38, + "end": 25322.54, + "probability": 0.8267 + }, + { + "start": 25323.76, + "end": 25324.24, + "probability": 0.8182 + }, + { + "start": 25325.38, + "end": 25326.58, + "probability": 0.9491 + }, + { + "start": 25328.14, + "end": 25329.24, + "probability": 0.9005 + }, + { + "start": 25329.92, + "end": 25331.62, + "probability": 0.7996 + }, + { + "start": 25332.26, + "end": 25332.68, + "probability": 0.9902 + }, + { + "start": 25333.36, + "end": 25335.14, + "probability": 0.9933 + }, + { + "start": 25335.54, + "end": 25336.2, + "probability": 0.9839 + }, + { + "start": 25336.96, + "end": 25338.14, + "probability": 0.9894 + }, + { + "start": 25338.76, + "end": 25342.14, + "probability": 0.9911 + }, + { + "start": 25342.54, + "end": 25343.58, + "probability": 0.9966 + }, + { + "start": 25343.96, + "end": 25344.92, + "probability": 0.9893 + }, + { + "start": 25345.32, + "end": 25346.8, + "probability": 0.9927 + }, + { + "start": 25347.24, + "end": 25348.38, + "probability": 0.9267 + }, + { + "start": 25349.92, + "end": 25350.32, + "probability": 0.6 + }, + { + "start": 25350.76, + "end": 25354.08, + "probability": 0.9305 + }, + { + "start": 25354.2, + "end": 25356.14, + "probability": 0.5946 + }, + { + "start": 25357.43, + "end": 25360.46, + "probability": 0.9857 + }, + { + "start": 25360.88, + "end": 25367.48, + "probability": 0.996 + }, + { + "start": 25367.6, + "end": 25368.04, + "probability": 0.8605 + }, + { + "start": 25368.6, + "end": 25369.92, + "probability": 0.7251 + }, + { + "start": 25370.66, + "end": 25370.98, + "probability": 0.662 + }, + { + "start": 25371.54, + "end": 25372.6, + "probability": 0.7783 + }, + { + "start": 25373.28, + "end": 25374.48, + "probability": 0.6187 + }, + { + "start": 25387.06, + "end": 25387.62, + "probability": 0.7133 + }, + { + "start": 25387.76, + "end": 25388.72, + "probability": 0.8896 + }, + { + "start": 25388.84, + "end": 25391.48, + "probability": 0.5127 + }, + { + "start": 25391.48, + "end": 25392.16, + "probability": 0.698 + }, + { + "start": 25392.74, + "end": 25393.9, + "probability": 0.8768 + }, + { + "start": 25395.96, + "end": 25396.4, + "probability": 0.9427 + }, + { + "start": 25398.66, + "end": 25400.5, + "probability": 0.7585 + }, + { + "start": 25403.3, + "end": 25404.55, + "probability": 0.7944 + }, + { + "start": 25405.44, + "end": 25408.06, + "probability": 0.8975 + }, + { + "start": 25408.38, + "end": 25409.4, + "probability": 0.8938 + }, + { + "start": 25410.94, + "end": 25411.62, + "probability": 0.8491 + }, + { + "start": 25413.38, + "end": 25417.0, + "probability": 0.9944 + }, + { + "start": 25419.64, + "end": 25420.14, + "probability": 0.3024 + }, + { + "start": 25421.58, + "end": 25422.4, + "probability": 0.867 + }, + { + "start": 25423.96, + "end": 25425.74, + "probability": 0.9279 + }, + { + "start": 25426.58, + "end": 25430.62, + "probability": 0.5839 + }, + { + "start": 25430.62, + "end": 25431.78, + "probability": 0.6389 + }, + { + "start": 25432.76, + "end": 25433.98, + "probability": 0.9617 + }, + { + "start": 25434.66, + "end": 25436.02, + "probability": 0.8397 + }, + { + "start": 25436.38, + "end": 25436.46, + "probability": 0.5521 + }, + { + "start": 25436.62, + "end": 25439.06, + "probability": 0.8805 + }, + { + "start": 25439.76, + "end": 25440.68, + "probability": 0.7913 + }, + { + "start": 25440.8, + "end": 25441.62, + "probability": 0.7863 + }, + { + "start": 25441.74, + "end": 25442.34, + "probability": 0.8614 + }, + { + "start": 25442.58, + "end": 25444.3, + "probability": 0.9119 + }, + { + "start": 25444.4, + "end": 25445.47, + "probability": 0.76 + }, + { + "start": 25447.26, + "end": 25451.48, + "probability": 0.9977 + }, + { + "start": 25452.14, + "end": 25453.0, + "probability": 0.7902 + }, + { + "start": 25453.52, + "end": 25456.12, + "probability": 0.9792 + }, + { + "start": 25456.54, + "end": 25458.04, + "probability": 0.9901 + }, + { + "start": 25458.38, + "end": 25459.64, + "probability": 0.9605 + }, + { + "start": 25460.14, + "end": 25463.06, + "probability": 0.9941 + }, + { + "start": 25463.14, + "end": 25465.46, + "probability": 0.9355 + }, + { + "start": 25466.44, + "end": 25466.82, + "probability": 0.7345 + }, + { + "start": 25468.18, + "end": 25469.62, + "probability": 0.94 + }, + { + "start": 25470.52, + "end": 25471.5, + "probability": 0.8635 + }, + { + "start": 25472.42, + "end": 25473.3, + "probability": 0.7921 + }, + { + "start": 25474.72, + "end": 25478.24, + "probability": 0.9131 + }, + { + "start": 25478.3, + "end": 25478.94, + "probability": 0.9586 + }, + { + "start": 25479.02, + "end": 25480.62, + "probability": 0.8373 + }, + { + "start": 25482.0, + "end": 25486.54, + "probability": 0.9783 + }, + { + "start": 25487.54, + "end": 25491.94, + "probability": 0.9697 + }, + { + "start": 25492.1, + "end": 25492.94, + "probability": 0.9559 + }, + { + "start": 25493.32, + "end": 25494.5, + "probability": 0.9888 + }, + { + "start": 25495.58, + "end": 25499.48, + "probability": 0.981 + }, + { + "start": 25500.74, + "end": 25503.7, + "probability": 0.9993 + }, + { + "start": 25505.58, + "end": 25509.38, + "probability": 0.984 + }, + { + "start": 25509.38, + "end": 25511.74, + "probability": 0.8014 + }, + { + "start": 25512.16, + "end": 25513.3, + "probability": 0.7162 + }, + { + "start": 25514.26, + "end": 25515.38, + "probability": 0.3595 + }, + { + "start": 25516.38, + "end": 25521.4, + "probability": 0.901 + }, + { + "start": 25522.04, + "end": 25526.28, + "probability": 0.9925 + }, + { + "start": 25526.8, + "end": 25527.72, + "probability": 0.5417 + }, + { + "start": 25528.34, + "end": 25533.08, + "probability": 0.9834 + }, + { + "start": 25533.96, + "end": 25540.06, + "probability": 0.975 + }, + { + "start": 25540.72, + "end": 25544.62, + "probability": 0.9057 + }, + { + "start": 25545.18, + "end": 25552.26, + "probability": 0.7251 + }, + { + "start": 25552.52, + "end": 25553.7, + "probability": 0.2518 + }, + { + "start": 25554.62, + "end": 25555.66, + "probability": 0.4069 + }, + { + "start": 25555.66, + "end": 25558.53, + "probability": 0.1476 + }, + { + "start": 25559.44, + "end": 25560.02, + "probability": 0.4743 + }, + { + "start": 25561.73, + "end": 25563.06, + "probability": 0.0616 + }, + { + "start": 25563.06, + "end": 25564.06, + "probability": 0.0785 + }, + { + "start": 25564.78, + "end": 25567.42, + "probability": 0.9107 + }, + { + "start": 25568.0, + "end": 25569.72, + "probability": 0.8191 + }, + { + "start": 25570.26, + "end": 25571.3, + "probability": 0.2741 + }, + { + "start": 25572.04, + "end": 25575.16, + "probability": 0.8894 + }, + { + "start": 25575.74, + "end": 25577.24, + "probability": 0.6467 + }, + { + "start": 25577.78, + "end": 25579.16, + "probability": 0.4752 + }, + { + "start": 25579.52, + "end": 25580.64, + "probability": 0.9845 + }, + { + "start": 25580.74, + "end": 25581.72, + "probability": 0.9683 + }, + { + "start": 25581.84, + "end": 25582.91, + "probability": 0.8877 + }, + { + "start": 25583.52, + "end": 25584.08, + "probability": 0.1356 + }, + { + "start": 25584.3, + "end": 25584.64, + "probability": 0.9163 + }, + { + "start": 25585.02, + "end": 25586.42, + "probability": 0.9614 + }, + { + "start": 25587.0, + "end": 25591.12, + "probability": 0.9443 + }, + { + "start": 25591.74, + "end": 25592.67, + "probability": 0.98 + }, + { + "start": 25593.82, + "end": 25595.98, + "probability": 0.6057 + }, + { + "start": 25596.1, + "end": 25597.88, + "probability": 0.8767 + }, + { + "start": 25597.96, + "end": 25598.7, + "probability": 0.9477 + }, + { + "start": 25598.96, + "end": 25601.28, + "probability": 0.9674 + }, + { + "start": 25602.44, + "end": 25602.74, + "probability": 0.9561 + }, + { + "start": 25603.18, + "end": 25604.88, + "probability": 0.9445 + }, + { + "start": 25605.42, + "end": 25609.12, + "probability": 0.5832 + }, + { + "start": 25609.76, + "end": 25612.44, + "probability": 0.8344 + }, + { + "start": 25612.44, + "end": 25615.6, + "probability": 0.9609 + }, + { + "start": 25616.18, + "end": 25617.42, + "probability": 0.5772 + }, + { + "start": 25618.22, + "end": 25618.7, + "probability": 0.9301 + }, + { + "start": 25620.4, + "end": 25622.86, + "probability": 0.7105 + }, + { + "start": 25623.82, + "end": 25629.06, + "probability": 0.7972 + }, + { + "start": 25629.58, + "end": 25630.02, + "probability": 0.087 + }, + { + "start": 25630.28, + "end": 25631.2, + "probability": 0.8265 + }, + { + "start": 25631.5, + "end": 25632.76, + "probability": 0.3981 + }, + { + "start": 25632.86, + "end": 25634.0, + "probability": 0.6925 + }, + { + "start": 25634.0, + "end": 25634.42, + "probability": 0.3749 + }, + { + "start": 25635.02, + "end": 25635.12, + "probability": 0.5452 + }, + { + "start": 25635.12, + "end": 25639.1, + "probability": 0.812 + }, + { + "start": 25639.88, + "end": 25641.03, + "probability": 0.6161 + }, + { + "start": 25642.3, + "end": 25642.84, + "probability": 0.3996 + }, + { + "start": 25643.06, + "end": 25647.68, + "probability": 0.9049 + }, + { + "start": 25648.58, + "end": 25649.28, + "probability": 0.7963 + }, + { + "start": 25650.0, + "end": 25653.04, + "probability": 0.9883 + }, + { + "start": 25653.78, + "end": 25657.7, + "probability": 0.7256 + }, + { + "start": 25658.44, + "end": 25659.18, + "probability": 0.7651 + }, + { + "start": 25659.76, + "end": 25661.32, + "probability": 0.5568 + }, + { + "start": 25661.94, + "end": 25662.28, + "probability": 0.9473 + }, + { + "start": 25663.42, + "end": 25664.52, + "probability": 0.8503 + }, + { + "start": 25665.68, + "end": 25670.78, + "probability": 0.9187 + }, + { + "start": 25672.0, + "end": 25673.02, + "probability": 0.7208 + }, + { + "start": 25673.02, + "end": 25675.84, + "probability": 0.8416 + }, + { + "start": 25676.68, + "end": 25678.39, + "probability": 0.9004 + }, + { + "start": 25679.02, + "end": 25683.76, + "probability": 0.9933 + }, + { + "start": 25684.52, + "end": 25685.95, + "probability": 0.8718 + }, + { + "start": 25686.5, + "end": 25690.76, + "probability": 0.7978 + }, + { + "start": 25690.86, + "end": 25693.16, + "probability": 0.9893 + }, + { + "start": 25694.72, + "end": 25695.54, + "probability": 0.0678 + }, + { + "start": 25696.56, + "end": 25697.52, + "probability": 0.9486 + }, + { + "start": 25698.42, + "end": 25699.66, + "probability": 0.9919 + }, + { + "start": 25700.32, + "end": 25701.86, + "probability": 0.9438 + }, + { + "start": 25702.6, + "end": 25706.2, + "probability": 0.9951 + }, + { + "start": 25706.34, + "end": 25711.7, + "probability": 0.7957 + }, + { + "start": 25712.18, + "end": 25712.18, + "probability": 0.1918 + }, + { + "start": 25712.18, + "end": 25715.2, + "probability": 0.5074 + }, + { + "start": 25716.42, + "end": 25718.94, + "probability": 0.2129 + }, + { + "start": 25719.74, + "end": 25722.16, + "probability": 0.8789 + }, + { + "start": 25722.64, + "end": 25723.32, + "probability": 0.591 + }, + { + "start": 25723.44, + "end": 25724.72, + "probability": 0.7566 + }, + { + "start": 25725.12, + "end": 25726.32, + "probability": 0.8164 + }, + { + "start": 25726.62, + "end": 25727.64, + "probability": 0.7405 + }, + { + "start": 25728.02, + "end": 25729.74, + "probability": 0.5121 + }, + { + "start": 25729.88, + "end": 25729.96, + "probability": 0.4592 + }, + { + "start": 25730.24, + "end": 25731.53, + "probability": 0.0771 + }, + { + "start": 25731.9, + "end": 25732.92, + "probability": 0.0672 + }, + { + "start": 25732.92, + "end": 25733.38, + "probability": 0.4012 + }, + { + "start": 25733.42, + "end": 25737.97, + "probability": 0.9222 + }, + { + "start": 25738.44, + "end": 25740.5, + "probability": 0.2175 + }, + { + "start": 25740.62, + "end": 25741.88, + "probability": 0.5165 + }, + { + "start": 25742.54, + "end": 25743.06, + "probability": 0.3489 + }, + { + "start": 25743.84, + "end": 25744.1, + "probability": 0.1049 + }, + { + "start": 25744.1, + "end": 25745.52, + "probability": 0.0577 + }, + { + "start": 25746.35, + "end": 25747.46, + "probability": 0.0437 + }, + { + "start": 25747.66, + "end": 25749.5, + "probability": 0.9391 + }, + { + "start": 25749.88, + "end": 25750.38, + "probability": 0.7858 + }, + { + "start": 25750.44, + "end": 25751.72, + "probability": 0.3869 + }, + { + "start": 25751.86, + "end": 25752.76, + "probability": 0.0466 + }, + { + "start": 25754.26, + "end": 25756.36, + "probability": 0.1258 + }, + { + "start": 25756.48, + "end": 25756.54, + "probability": 0.0866 + }, + { + "start": 25756.54, + "end": 25757.64, + "probability": 0.3984 + }, + { + "start": 25758.4, + "end": 25758.4, + "probability": 0.0218 + }, + { + "start": 25758.4, + "end": 25761.28, + "probability": 0.3037 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.0, + "end": 25845.0, + "probability": 0.0 + }, + { + "start": 25845.5, + "end": 25845.88, + "probability": 0.0738 + }, + { + "start": 25845.88, + "end": 25845.88, + "probability": 0.0556 + }, + { + "start": 25845.88, + "end": 25845.88, + "probability": 0.0964 + }, + { + "start": 25845.88, + "end": 25845.88, + "probability": 0.0579 + }, + { + "start": 25845.88, + "end": 25847.22, + "probability": 0.1768 + }, + { + "start": 25847.64, + "end": 25850.34, + "probability": 0.7989 + }, + { + "start": 25850.6, + "end": 25851.86, + "probability": 0.7985 + }, + { + "start": 25852.22, + "end": 25855.72, + "probability": 0.7961 + }, + { + "start": 25856.2, + "end": 25859.84, + "probability": 0.7751 + }, + { + "start": 25860.42, + "end": 25860.5, + "probability": 0.1638 + }, + { + "start": 25861.36, + "end": 25863.67, + "probability": 0.4291 + }, + { + "start": 25864.5, + "end": 25864.52, + "probability": 0.074 + }, + { + "start": 25864.58, + "end": 25866.56, + "probability": 0.8099 + }, + { + "start": 25866.92, + "end": 25867.28, + "probability": 0.2918 + }, + { + "start": 25867.28, + "end": 25870.27, + "probability": 0.7168 + }, + { + "start": 25870.38, + "end": 25871.6, + "probability": 0.236 + }, + { + "start": 25871.6, + "end": 25872.34, + "probability": 0.5916 + }, + { + "start": 25872.6, + "end": 25873.88, + "probability": 0.9251 + }, + { + "start": 25874.1, + "end": 25879.18, + "probability": 0.6647 + }, + { + "start": 25879.54, + "end": 25883.36, + "probability": 0.9781 + }, + { + "start": 25883.82, + "end": 25884.4, + "probability": 0.37 + }, + { + "start": 25884.56, + "end": 25884.74, + "probability": 0.0171 + }, + { + "start": 25884.96, + "end": 25885.86, + "probability": 0.2826 + }, + { + "start": 25885.98, + "end": 25887.24, + "probability": 0.4687 + }, + { + "start": 25887.52, + "end": 25890.24, + "probability": 0.9045 + }, + { + "start": 25891.18, + "end": 25892.0, + "probability": 0.8532 + }, + { + "start": 25892.26, + "end": 25894.76, + "probability": 0.9788 + }, + { + "start": 25895.42, + "end": 25897.1, + "probability": 0.2976 + }, + { + "start": 25897.16, + "end": 25899.62, + "probability": 0.4317 + }, + { + "start": 25899.62, + "end": 25903.0, + "probability": 0.999 + }, + { + "start": 25903.02, + "end": 25904.2, + "probability": 0.8794 + }, + { + "start": 25904.74, + "end": 25905.42, + "probability": 0.8046 + }, + { + "start": 25906.4, + "end": 25906.96, + "probability": 0.8697 + }, + { + "start": 25908.08, + "end": 25909.8, + "probability": 0.9682 + }, + { + "start": 25909.82, + "end": 25910.48, + "probability": 0.8805 + }, + { + "start": 25910.72, + "end": 25912.77, + "probability": 0.9811 + }, + { + "start": 25914.14, + "end": 25916.68, + "probability": 0.9551 + }, + { + "start": 25917.08, + "end": 25919.8, + "probability": 0.7364 + }, + { + "start": 25920.7, + "end": 25922.26, + "probability": 0.9077 + }, + { + "start": 25922.34, + "end": 25923.2, + "probability": 0.6554 + }, + { + "start": 25924.61, + "end": 25927.42, + "probability": 0.896 + }, + { + "start": 25928.4, + "end": 25929.88, + "probability": 0.9314 + }, + { + "start": 25930.56, + "end": 25933.24, + "probability": 0.8652 + }, + { + "start": 25933.98, + "end": 25934.66, + "probability": 0.8564 + }, + { + "start": 25936.52, + "end": 25940.12, + "probability": 0.3315 + }, + { + "start": 25940.26, + "end": 25943.1, + "probability": 0.6281 + }, + { + "start": 25943.66, + "end": 25945.82, + "probability": 0.9907 + }, + { + "start": 25946.34, + "end": 25946.94, + "probability": 0.7374 + }, + { + "start": 25947.7, + "end": 25951.48, + "probability": 0.9014 + }, + { + "start": 25952.02, + "end": 25954.58, + "probability": 0.7304 + }, + { + "start": 25955.04, + "end": 25955.32, + "probability": 0.7036 + }, + { + "start": 25955.5, + "end": 25956.1, + "probability": 0.5737 + }, + { + "start": 25956.38, + "end": 25959.3, + "probability": 0.9927 + }, + { + "start": 25960.12, + "end": 25965.56, + "probability": 0.9817 + }, + { + "start": 25967.05, + "end": 25968.42, + "probability": 0.4625 + }, + { + "start": 25968.88, + "end": 25970.36, + "probability": 0.5975 + }, + { + "start": 25970.42, + "end": 25970.58, + "probability": 0.5163 + }, + { + "start": 25970.72, + "end": 25974.5, + "probability": 0.9299 + }, + { + "start": 25974.84, + "end": 25976.26, + "probability": 0.4728 + }, + { + "start": 25976.78, + "end": 25978.53, + "probability": 0.8428 + }, + { + "start": 25978.9, + "end": 25982.34, + "probability": 0.2831 + }, + { + "start": 25982.68, + "end": 25983.9, + "probability": 0.8382 + }, + { + "start": 25983.98, + "end": 25985.96, + "probability": 0.6786 + }, + { + "start": 25986.76, + "end": 25988.58, + "probability": 0.7566 + }, + { + "start": 25989.12, + "end": 25990.2, + "probability": 0.9635 + }, + { + "start": 25990.6, + "end": 25993.55, + "probability": 0.9109 + }, + { + "start": 25993.96, + "end": 25994.92, + "probability": 0.7367 + }, + { + "start": 25995.46, + "end": 25996.74, + "probability": 0.8464 + }, + { + "start": 25997.28, + "end": 25998.18, + "probability": 0.6727 + }, + { + "start": 25998.78, + "end": 26000.34, + "probability": 0.915 + }, + { + "start": 26000.76, + "end": 26000.9, + "probability": 0.4789 + }, + { + "start": 26000.92, + "end": 26004.02, + "probability": 0.9247 + }, + { + "start": 26004.12, + "end": 26004.84, + "probability": 0.6717 + }, + { + "start": 26004.86, + "end": 26007.28, + "probability": 0.4539 + }, + { + "start": 26007.48, + "end": 26010.1, + "probability": 0.6771 + }, + { + "start": 26010.44, + "end": 26010.76, + "probability": 0.1397 + }, + { + "start": 26010.76, + "end": 26011.54, + "probability": 0.1082 + }, + { + "start": 26011.74, + "end": 26015.34, + "probability": 0.7401 + }, + { + "start": 26015.52, + "end": 26017.08, + "probability": 0.7178 + }, + { + "start": 26017.34, + "end": 26017.76, + "probability": 0.0124 + }, + { + "start": 26017.92, + "end": 26019.88, + "probability": 0.2832 + }, + { + "start": 26019.9, + "end": 26020.6, + "probability": 0.322 + }, + { + "start": 26020.68, + "end": 26021.58, + "probability": 0.4775 + }, + { + "start": 26021.7, + "end": 26024.94, + "probability": 0.7554 + }, + { + "start": 26024.94, + "end": 26025.06, + "probability": 0.0153 + }, + { + "start": 26025.46, + "end": 26027.96, + "probability": 0.7174 + }, + { + "start": 26028.14, + "end": 26029.3, + "probability": 0.859 + }, + { + "start": 26029.7, + "end": 26030.96, + "probability": 0.5767 + }, + { + "start": 26031.12, + "end": 26032.18, + "probability": 0.6072 + }, + { + "start": 26032.78, + "end": 26035.48, + "probability": 0.8697 + }, + { + "start": 26035.72, + "end": 26035.8, + "probability": 0.5552 + }, + { + "start": 26035.88, + "end": 26036.86, + "probability": 0.8247 + }, + { + "start": 26037.68, + "end": 26039.24, + "probability": 0.9937 + }, + { + "start": 26039.36, + "end": 26042.28, + "probability": 0.9722 + }, + { + "start": 26042.34, + "end": 26043.28, + "probability": 0.7275 + }, + { + "start": 26043.32, + "end": 26044.8, + "probability": 0.9368 + }, + { + "start": 26045.18, + "end": 26046.5, + "probability": 0.7397 + }, + { + "start": 26047.04, + "end": 26049.33, + "probability": 0.7739 + }, + { + "start": 26050.12, + "end": 26050.74, + "probability": 0.8058 + }, + { + "start": 26051.14, + "end": 26051.98, + "probability": 0.4556 + }, + { + "start": 26052.0, + "end": 26056.3, + "probability": 0.4748 + }, + { + "start": 26056.3, + "end": 26058.01, + "probability": 0.865 + }, + { + "start": 26059.06, + "end": 26059.61, + "probability": 0.2814 + }, + { + "start": 26060.0, + "end": 26061.72, + "probability": 0.9307 + }, + { + "start": 26062.08, + "end": 26062.56, + "probability": 0.8188 + }, + { + "start": 26063.5, + "end": 26066.26, + "probability": 0.8042 + }, + { + "start": 26066.34, + "end": 26067.3, + "probability": 0.9753 + }, + { + "start": 26068.3, + "end": 26069.22, + "probability": 0.9771 + }, + { + "start": 26069.3, + "end": 26069.78, + "probability": 0.7189 + }, + { + "start": 26069.86, + "end": 26071.58, + "probability": 0.7307 + }, + { + "start": 26071.68, + "end": 26072.88, + "probability": 0.6677 + }, + { + "start": 26073.8, + "end": 26074.92, + "probability": 0.0678 + }, + { + "start": 26075.18, + "end": 26075.66, + "probability": 0.3807 + }, + { + "start": 26075.8, + "end": 26077.8, + "probability": 0.4726 + }, + { + "start": 26077.92, + "end": 26079.78, + "probability": 0.8854 + }, + { + "start": 26080.0, + "end": 26080.88, + "probability": 0.9308 + }, + { + "start": 26081.14, + "end": 26081.9, + "probability": 0.7476 + }, + { + "start": 26082.0, + "end": 26086.1, + "probability": 0.324 + }, + { + "start": 26086.54, + "end": 26086.56, + "probability": 0.2542 + }, + { + "start": 26086.56, + "end": 26086.56, + "probability": 0.1145 + }, + { + "start": 26086.56, + "end": 26090.22, + "probability": 0.4139 + }, + { + "start": 26093.11, + "end": 26093.18, + "probability": 0.1041 + }, + { + "start": 26094.4, + "end": 26094.82, + "probability": 0.027 + }, + { + "start": 26094.82, + "end": 26095.78, + "probability": 0.1276 + }, + { + "start": 26095.78, + "end": 26095.78, + "probability": 0.1518 + }, + { + "start": 26095.78, + "end": 26095.78, + "probability": 0.0072 + }, + { + "start": 26095.78, + "end": 26095.78, + "probability": 0.1062 + }, + { + "start": 26095.78, + "end": 26096.28, + "probability": 0.1698 + }, + { + "start": 26096.8, + "end": 26099.12, + "probability": 0.3121 + }, + { + "start": 26099.48, + "end": 26104.04, + "probability": 0.0407 + }, + { + "start": 26104.04, + "end": 26104.04, + "probability": 0.0035 + }, + { + "start": 26104.04, + "end": 26104.04, + "probability": 0.0618 + }, + { + "start": 26104.04, + "end": 26104.62, + "probability": 0.3498 + }, + { + "start": 26104.76, + "end": 26106.98, + "probability": 0.4626 + }, + { + "start": 26107.1, + "end": 26108.36, + "probability": 0.5263 + }, + { + "start": 26108.38, + "end": 26110.8, + "probability": 0.0943 + }, + { + "start": 26114.18, + "end": 26114.4, + "probability": 0.546 + }, + { + "start": 26116.92, + "end": 26116.92, + "probability": 0.0173 + }, + { + "start": 26116.92, + "end": 26116.98, + "probability": 0.0864 + }, + { + "start": 26116.98, + "end": 26117.66, + "probability": 0.388 + }, + { + "start": 26118.24, + "end": 26118.73, + "probability": 0.101 + }, + { + "start": 26120.14, + "end": 26123.76, + "probability": 0.1894 + }, + { + "start": 26127.0, + "end": 26127.0, + "probability": 0.0 + }, + { + "start": 26127.14, + "end": 26127.68, + "probability": 0.0071 + }, + { + "start": 26127.74, + "end": 26128.1, + "probability": 0.0408 + }, + { + "start": 26128.1, + "end": 26128.86, + "probability": 0.0819 + }, + { + "start": 26129.46, + "end": 26132.6, + "probability": 0.1119 + }, + { + "start": 26132.88, + "end": 26134.72, + "probability": 0.1265 + }, + { + "start": 26136.03, + "end": 26136.62, + "probability": 0.3861 + }, + { + "start": 26136.76, + "end": 26137.88, + "probability": 0.4976 + }, + { + "start": 26141.28, + "end": 26141.8, + "probability": 0.9497 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26269.0, + "end": 26269.0, + "probability": 0.0 + }, + { + "start": 26272.54, + "end": 26272.88, + "probability": 0.2253 + }, + { + "start": 26276.01, + "end": 26276.9, + "probability": 0.0014 + }, + { + "start": 26277.68, + "end": 26278.94, + "probability": 0.0727 + }, + { + "start": 26278.94, + "end": 26279.76, + "probability": 0.0879 + }, + { + "start": 26280.36, + "end": 26281.38, + "probability": 0.0453 + }, + { + "start": 26282.76, + "end": 26283.22, + "probability": 0.1229 + }, + { + "start": 26283.78, + "end": 26284.88, + "probability": 0.049 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26397.0, + "end": 26397.0, + "probability": 0.0 + }, + { + "start": 26398.17, + "end": 26400.92, + "probability": 0.6166 + }, + { + "start": 26401.84, + "end": 26402.54, + "probability": 0.6256 + }, + { + "start": 26402.54, + "end": 26404.97, + "probability": 0.9241 + }, + { + "start": 26405.14, + "end": 26406.02, + "probability": 0.9908 + }, + { + "start": 26407.6, + "end": 26409.54, + "probability": 0.9648 + }, + { + "start": 26410.9, + "end": 26412.58, + "probability": 0.939 + }, + { + "start": 26413.31, + "end": 26415.02, + "probability": 0.734 + }, + { + "start": 26415.24, + "end": 26416.94, + "probability": 0.5979 + }, + { + "start": 26418.03, + "end": 26420.34, + "probability": 0.9834 + }, + { + "start": 26420.38, + "end": 26421.94, + "probability": 0.9658 + }, + { + "start": 26422.5, + "end": 26424.66, + "probability": 0.9868 + }, + { + "start": 26424.74, + "end": 26427.8, + "probability": 0.982 + }, + { + "start": 26427.9, + "end": 26431.16, + "probability": 0.8926 + }, + { + "start": 26431.62, + "end": 26431.82, + "probability": 0.4413 + }, + { + "start": 26431.82, + "end": 26436.12, + "probability": 0.9803 + }, + { + "start": 26436.68, + "end": 26439.62, + "probability": 0.9966 + }, + { + "start": 26439.62, + "end": 26444.78, + "probability": 0.998 + }, + { + "start": 26445.22, + "end": 26445.7, + "probability": 0.5343 + }, + { + "start": 26445.74, + "end": 26446.22, + "probability": 0.5048 + }, + { + "start": 26446.3, + "end": 26448.56, + "probability": 0.9733 + }, + { + "start": 26448.6, + "end": 26450.76, + "probability": 0.8961 + }, + { + "start": 26451.3, + "end": 26455.62, + "probability": 0.7882 + }, + { + "start": 26455.78, + "end": 26459.7, + "probability": 0.5993 + }, + { + "start": 26460.06, + "end": 26463.56, + "probability": 0.9821 + }, + { + "start": 26465.16, + "end": 26466.0, + "probability": 0.4553 + }, + { + "start": 26466.8, + "end": 26469.36, + "probability": 0.8047 + }, + { + "start": 26469.5, + "end": 26472.74, + "probability": 0.9668 + }, + { + "start": 26473.22, + "end": 26475.22, + "probability": 0.9922 + }, + { + "start": 26475.48, + "end": 26478.38, + "probability": 0.4261 + }, + { + "start": 26478.38, + "end": 26480.9, + "probability": 0.9283 + }, + { + "start": 26481.04, + "end": 26483.04, + "probability": 0.96 + }, + { + "start": 26483.14, + "end": 26483.48, + "probability": 0.3106 + }, + { + "start": 26483.48, + "end": 26484.88, + "probability": 0.7576 + }, + { + "start": 26485.4, + "end": 26486.44, + "probability": 0.9585 + }, + { + "start": 26511.08, + "end": 26512.2, + "probability": 0.2898 + }, + { + "start": 26512.2, + "end": 26512.2, + "probability": 0.0993 + }, + { + "start": 26512.2, + "end": 26513.9, + "probability": 0.6392 + }, + { + "start": 26515.94, + "end": 26519.88, + "probability": 0.8303 + }, + { + "start": 26520.86, + "end": 26522.12, + "probability": 0.8491 + }, + { + "start": 26523.06, + "end": 26525.84, + "probability": 0.9625 + }, + { + "start": 26526.9, + "end": 26527.3, + "probability": 0.0223 + }, + { + "start": 26527.34, + "end": 26528.16, + "probability": 0.9425 + }, + { + "start": 26528.78, + "end": 26529.5, + "probability": 0.6802 + }, + { + "start": 26552.58, + "end": 26553.2, + "probability": 0.7104 + }, + { + "start": 26553.4, + "end": 26553.78, + "probability": 0.8113 + }, + { + "start": 26558.36, + "end": 26559.28, + "probability": 0.6036 + }, + { + "start": 26560.36, + "end": 26562.2, + "probability": 0.8945 + }, + { + "start": 26563.44, + "end": 26569.12, + "probability": 0.8391 + }, + { + "start": 26569.18, + "end": 26571.6, + "probability": 0.9858 + }, + { + "start": 26571.74, + "end": 26572.98, + "probability": 0.9253 + }, + { + "start": 26574.1, + "end": 26578.12, + "probability": 0.9739 + }, + { + "start": 26578.96, + "end": 26581.52, + "probability": 0.5402 + }, + { + "start": 26582.92, + "end": 26585.18, + "probability": 0.9599 + }, + { + "start": 26585.8, + "end": 26588.52, + "probability": 0.8115 + }, + { + "start": 26589.64, + "end": 26592.9, + "probability": 0.6907 + }, + { + "start": 26596.78, + "end": 26598.54, + "probability": 0.9983 + }, + { + "start": 26599.64, + "end": 26601.82, + "probability": 0.9415 + }, + { + "start": 26602.28, + "end": 26604.9, + "probability": 0.9775 + }, + { + "start": 26604.9, + "end": 26607.8, + "probability": 0.9991 + }, + { + "start": 26609.48, + "end": 26612.62, + "probability": 0.9989 + }, + { + "start": 26613.8, + "end": 26620.2, + "probability": 0.9927 + }, + { + "start": 26621.26, + "end": 26625.94, + "probability": 0.9492 + }, + { + "start": 26627.08, + "end": 26630.92, + "probability": 0.9805 + }, + { + "start": 26632.12, + "end": 26633.1, + "probability": 0.9831 + }, + { + "start": 26633.74, + "end": 26634.45, + "probability": 0.98 + }, + { + "start": 26635.74, + "end": 26636.42, + "probability": 0.9623 + }, + { + "start": 26637.62, + "end": 26639.26, + "probability": 0.9973 + }, + { + "start": 26642.2, + "end": 26644.94, + "probability": 0.998 + }, + { + "start": 26645.02, + "end": 26646.06, + "probability": 0.6973 + }, + { + "start": 26647.58, + "end": 26653.08, + "probability": 0.9534 + }, + { + "start": 26654.36, + "end": 26655.28, + "probability": 0.7169 + }, + { + "start": 26655.36, + "end": 26656.72, + "probability": 0.8911 + }, + { + "start": 26659.6, + "end": 26664.34, + "probability": 0.9988 + }, + { + "start": 26665.74, + "end": 26666.72, + "probability": 0.5664 + }, + { + "start": 26666.84, + "end": 26668.38, + "probability": 0.981 + }, + { + "start": 26668.46, + "end": 26669.56, + "probability": 0.8752 + }, + { + "start": 26671.0, + "end": 26673.9, + "probability": 0.9855 + }, + { + "start": 26674.96, + "end": 26677.34, + "probability": 0.8651 + }, + { + "start": 26679.1, + "end": 26680.76, + "probability": 0.9775 + }, + { + "start": 26682.42, + "end": 26683.6, + "probability": 0.9253 + }, + { + "start": 26684.9, + "end": 26687.9, + "probability": 0.8914 + }, + { + "start": 26688.56, + "end": 26689.44, + "probability": 0.8715 + }, + { + "start": 26689.48, + "end": 26690.02, + "probability": 0.976 + }, + { + "start": 26690.08, + "end": 26690.58, + "probability": 0.8359 + }, + { + "start": 26690.68, + "end": 26691.24, + "probability": 0.9203 + }, + { + "start": 26691.36, + "end": 26691.7, + "probability": 0.9741 + }, + { + "start": 26691.74, + "end": 26692.26, + "probability": 0.9194 + }, + { + "start": 26692.32, + "end": 26693.08, + "probability": 0.5384 + }, + { + "start": 26693.1, + "end": 26695.66, + "probability": 0.8039 + }, + { + "start": 26695.84, + "end": 26697.02, + "probability": 0.9097 + }, + { + "start": 26697.92, + "end": 26699.58, + "probability": 0.7587 + }, + { + "start": 26700.76, + "end": 26703.2, + "probability": 0.9984 + }, + { + "start": 26703.2, + "end": 26707.1, + "probability": 0.98 + }, + { + "start": 26707.64, + "end": 26710.82, + "probability": 0.9921 + }, + { + "start": 26711.9, + "end": 26713.86, + "probability": 0.9946 + }, + { + "start": 26714.5, + "end": 26717.5, + "probability": 0.9777 + }, + { + "start": 26718.54, + "end": 26720.25, + "probability": 0.9575 + }, + { + "start": 26720.7, + "end": 26722.3, + "probability": 0.9922 + }, + { + "start": 26722.84, + "end": 26725.02, + "probability": 0.8804 + }, + { + "start": 26725.1, + "end": 26732.66, + "probability": 0.9973 + }, + { + "start": 26733.34, + "end": 26738.44, + "probability": 0.9966 + }, + { + "start": 26739.04, + "end": 26739.26, + "probability": 0.2605 + }, + { + "start": 26739.28, + "end": 26741.62, + "probability": 0.9971 + }, + { + "start": 26742.6, + "end": 26746.0, + "probability": 0.9951 + }, + { + "start": 26746.2, + "end": 26748.06, + "probability": 0.8037 + }, + { + "start": 26748.58, + "end": 26750.96, + "probability": 0.9902 + }, + { + "start": 26751.08, + "end": 26751.56, + "probability": 0.5238 + }, + { + "start": 26751.58, + "end": 26752.2, + "probability": 0.5253 + }, + { + "start": 26752.2, + "end": 26752.52, + "probability": 0.811 + }, + { + "start": 26752.78, + "end": 26757.18, + "probability": 0.9409 + }, + { + "start": 26757.9, + "end": 26759.82, + "probability": 0.9598 + }, + { + "start": 26759.88, + "end": 26760.38, + "probability": 0.516 + }, + { + "start": 26760.68, + "end": 26763.62, + "probability": 0.9939 + }, + { + "start": 26764.2, + "end": 26767.84, + "probability": 0.9865 + }, + { + "start": 26768.81, + "end": 26770.94, + "probability": 0.7224 + }, + { + "start": 26772.02, + "end": 26777.6, + "probability": 0.9937 + }, + { + "start": 26778.04, + "end": 26778.52, + "probability": 0.7352 + }, + { + "start": 26779.62, + "end": 26780.78, + "probability": 0.8744 + }, + { + "start": 26781.49, + "end": 26783.05, + "probability": 0.9412 + }, + { + "start": 26783.5, + "end": 26784.54, + "probability": 0.6638 + }, + { + "start": 26785.12, + "end": 26785.56, + "probability": 0.8419 + }, + { + "start": 26785.56, + "end": 26788.04, + "probability": 0.9873 + }, + { + "start": 26788.22, + "end": 26788.44, + "probability": 0.7993 + }, + { + "start": 26788.44, + "end": 26788.76, + "probability": 0.7394 + }, + { + "start": 26790.42, + "end": 26792.62, + "probability": 0.9224 + }, + { + "start": 26792.88, + "end": 26795.74, + "probability": 0.4103 + }, + { + "start": 26796.02, + "end": 26800.52, + "probability": 0.6971 + }, + { + "start": 26800.6, + "end": 26801.24, + "probability": 0.2776 + }, + { + "start": 26801.98, + "end": 26803.08, + "probability": 0.6996 + }, + { + "start": 26816.4, + "end": 26819.12, + "probability": 0.7093 + }, + { + "start": 26820.58, + "end": 26824.42, + "probability": 0.7261 + }, + { + "start": 26824.5, + "end": 26825.52, + "probability": 0.7137 + }, + { + "start": 26825.62, + "end": 26826.26, + "probability": 0.6578 + }, + { + "start": 26826.96, + "end": 26828.57, + "probability": 0.8004 + }, + { + "start": 26829.84, + "end": 26831.06, + "probability": 0.9971 + }, + { + "start": 26831.6, + "end": 26833.12, + "probability": 0.9902 + }, + { + "start": 26833.56, + "end": 26835.7, + "probability": 0.9131 + }, + { + "start": 26835.76, + "end": 26836.86, + "probability": 0.9326 + }, + { + "start": 26837.84, + "end": 26841.06, + "probability": 0.9401 + }, + { + "start": 26842.22, + "end": 26843.82, + "probability": 0.9347 + }, + { + "start": 26844.4, + "end": 26846.72, + "probability": 0.9902 + }, + { + "start": 26846.74, + "end": 26849.98, + "probability": 0.8494 + }, + { + "start": 26851.5, + "end": 26853.54, + "probability": 0.9937 + }, + { + "start": 26853.64, + "end": 26858.4, + "probability": 0.9731 + }, + { + "start": 26858.52, + "end": 26859.18, + "probability": 0.8374 + }, + { + "start": 26859.92, + "end": 26862.4, + "probability": 0.9199 + }, + { + "start": 26862.52, + "end": 26863.36, + "probability": 0.7367 + }, + { + "start": 26863.56, + "end": 26864.58, + "probability": 0.9851 + }, + { + "start": 26865.48, + "end": 26869.0, + "probability": 0.8961 + }, + { + "start": 26869.9, + "end": 26871.0, + "probability": 0.8936 + }, + { + "start": 26873.51, + "end": 26875.26, + "probability": 0.998 + }, + { + "start": 26876.68, + "end": 26879.84, + "probability": 0.9989 + }, + { + "start": 26879.84, + "end": 26883.08, + "probability": 0.9896 + }, + { + "start": 26884.08, + "end": 26886.72, + "probability": 0.9973 + }, + { + "start": 26887.28, + "end": 26890.1, + "probability": 0.9434 + }, + { + "start": 26890.1, + "end": 26893.14, + "probability": 0.9665 + }, + { + "start": 26894.54, + "end": 26897.82, + "probability": 0.9846 + }, + { + "start": 26897.82, + "end": 26900.82, + "probability": 0.9924 + }, + { + "start": 26901.8, + "end": 26904.66, + "probability": 0.9852 + }, + { + "start": 26905.42, + "end": 26907.64, + "probability": 0.965 + }, + { + "start": 26908.92, + "end": 26911.4, + "probability": 0.9474 + }, + { + "start": 26911.4, + "end": 26914.02, + "probability": 0.9664 + }, + { + "start": 26914.78, + "end": 26918.46, + "probability": 0.964 + }, + { + "start": 26920.14, + "end": 26922.72, + "probability": 0.9564 + }, + { + "start": 26922.72, + "end": 26925.48, + "probability": 0.9466 + }, + { + "start": 26925.56, + "end": 26926.06, + "probability": 0.894 + }, + { + "start": 26926.86, + "end": 26927.64, + "probability": 0.742 + }, + { + "start": 26927.82, + "end": 26929.02, + "probability": 0.958 + }, + { + "start": 26929.76, + "end": 26931.76, + "probability": 0.8365 + }, + { + "start": 26932.28, + "end": 26934.6, + "probability": 0.9966 + }, + { + "start": 26934.74, + "end": 26938.02, + "probability": 0.9662 + }, + { + "start": 26939.0, + "end": 26943.58, + "probability": 0.9777 + }, + { + "start": 26944.26, + "end": 26945.24, + "probability": 0.9924 + }, + { + "start": 26945.92, + "end": 26949.2, + "probability": 0.9954 + }, + { + "start": 26949.2, + "end": 26951.46, + "probability": 0.9995 + }, + { + "start": 26952.32, + "end": 26954.94, + "probability": 0.9937 + }, + { + "start": 26954.94, + "end": 26958.12, + "probability": 0.9492 + }, + { + "start": 26958.96, + "end": 26962.72, + "probability": 0.9834 + }, + { + "start": 26963.72, + "end": 26964.53, + "probability": 0.8211 + }, + { + "start": 26964.9, + "end": 26965.82, + "probability": 0.7262 + }, + { + "start": 26967.02, + "end": 26968.74, + "probability": 0.8565 + }, + { + "start": 26969.08, + "end": 26970.36, + "probability": 0.9413 + }, + { + "start": 26970.4, + "end": 26971.02, + "probability": 0.9709 + }, + { + "start": 26972.9, + "end": 26976.98, + "probability": 0.9928 + }, + { + "start": 26977.54, + "end": 26979.48, + "probability": 0.6896 + }, + { + "start": 26980.58, + "end": 26983.24, + "probability": 0.9681 + }, + { + "start": 26984.1, + "end": 26984.94, + "probability": 0.6714 + }, + { + "start": 26986.04, + "end": 26987.92, + "probability": 0.7884 + }, + { + "start": 26989.02, + "end": 26993.92, + "probability": 0.9987 + }, + { + "start": 26995.58, + "end": 26999.61, + "probability": 0.977 + }, + { + "start": 27001.28, + "end": 27003.03, + "probability": 0.9968 + }, + { + "start": 27004.04, + "end": 27006.18, + "probability": 0.985 + }, + { + "start": 27006.36, + "end": 27006.84, + "probability": 0.819 + }, + { + "start": 27006.92, + "end": 27009.52, + "probability": 0.9635 + }, + { + "start": 27010.78, + "end": 27013.62, + "probability": 0.9548 + }, + { + "start": 27013.7, + "end": 27014.26, + "probability": 0.8616 + }, + { + "start": 27014.44, + "end": 27015.44, + "probability": 0.8892 + }, + { + "start": 27016.38, + "end": 27018.92, + "probability": 0.9226 + }, + { + "start": 27020.08, + "end": 27022.48, + "probability": 0.9964 + }, + { + "start": 27025.42, + "end": 27028.82, + "probability": 0.9927 + }, + { + "start": 27029.38, + "end": 27031.04, + "probability": 0.9989 + }, + { + "start": 27031.94, + "end": 27033.38, + "probability": 0.8419 + }, + { + "start": 27034.08, + "end": 27036.14, + "probability": 0.9297 + }, + { + "start": 27036.42, + "end": 27041.76, + "probability": 0.9937 + }, + { + "start": 27042.7, + "end": 27046.78, + "probability": 0.9312 + }, + { + "start": 27048.78, + "end": 27051.36, + "probability": 0.7968 + }, + { + "start": 27054.36, + "end": 27055.86, + "probability": 0.927 + }, + { + "start": 27057.3, + "end": 27058.28, + "probability": 0.8556 + }, + { + "start": 27058.92, + "end": 27064.48, + "probability": 0.9578 + }, + { + "start": 27065.06, + "end": 27067.74, + "probability": 0.9951 + }, + { + "start": 27068.36, + "end": 27069.14, + "probability": 0.5887 + }, + { + "start": 27069.28, + "end": 27072.76, + "probability": 0.994 + }, + { + "start": 27073.5, + "end": 27076.26, + "probability": 0.9879 + }, + { + "start": 27077.32, + "end": 27078.28, + "probability": 0.9678 + }, + { + "start": 27079.46, + "end": 27082.4, + "probability": 0.5649 + }, + { + "start": 27083.06, + "end": 27084.64, + "probability": 0.9889 + }, + { + "start": 27085.9, + "end": 27089.23, + "probability": 0.8359 + }, + { + "start": 27090.6, + "end": 27091.18, + "probability": 0.5298 + }, + { + "start": 27092.32, + "end": 27094.54, + "probability": 0.9948 + }, + { + "start": 27095.0, + "end": 27098.8, + "probability": 0.9987 + }, + { + "start": 27098.96, + "end": 27101.22, + "probability": 0.9988 + }, + { + "start": 27103.04, + "end": 27103.22, + "probability": 0.102 + }, + { + "start": 27103.3, + "end": 27103.9, + "probability": 0.8853 + }, + { + "start": 27104.34, + "end": 27106.54, + "probability": 0.9857 + }, + { + "start": 27106.6, + "end": 27107.16, + "probability": 0.8427 + }, + { + "start": 27108.68, + "end": 27111.44, + "probability": 0.9499 + }, + { + "start": 27113.06, + "end": 27114.14, + "probability": 0.663 + }, + { + "start": 27114.88, + "end": 27116.16, + "probability": 0.9697 + }, + { + "start": 27116.96, + "end": 27117.9, + "probability": 0.9238 + }, + { + "start": 27118.76, + "end": 27121.02, + "probability": 0.9961 + }, + { + "start": 27122.04, + "end": 27126.22, + "probability": 0.9963 + }, + { + "start": 27126.8, + "end": 27128.52, + "probability": 1.0 + }, + { + "start": 27129.88, + "end": 27130.3, + "probability": 0.757 + }, + { + "start": 27130.74, + "end": 27131.16, + "probability": 0.6754 + }, + { + "start": 27131.24, + "end": 27132.46, + "probability": 0.8811 + }, + { + "start": 27133.52, + "end": 27135.58, + "probability": 0.9191 + }, + { + "start": 27137.43, + "end": 27140.48, + "probability": 0.9279 + }, + { + "start": 27141.38, + "end": 27142.28, + "probability": 0.1323 + }, + { + "start": 27142.86, + "end": 27143.92, + "probability": 0.8081 + }, + { + "start": 27144.64, + "end": 27146.42, + "probability": 0.6571 + }, + { + "start": 27146.42, + "end": 27146.54, + "probability": 0.6912 + }, + { + "start": 27148.24, + "end": 27150.26, + "probability": 0.4279 + }, + { + "start": 27150.42, + "end": 27152.82, + "probability": 0.8253 + }, + { + "start": 27153.78, + "end": 27156.44, + "probability": 0.7576 + }, + { + "start": 27156.94, + "end": 27157.74, + "probability": 0.1642 + }, + { + "start": 27159.13, + "end": 27160.04, + "probability": 0.2665 + }, + { + "start": 27162.21, + "end": 27163.16, + "probability": 0.1513 + }, + { + "start": 27174.46, + "end": 27177.92, + "probability": 0.7238 + }, + { + "start": 27178.88, + "end": 27183.6, + "probability": 0.8439 + }, + { + "start": 27184.28, + "end": 27185.08, + "probability": 0.4283 + }, + { + "start": 27185.64, + "end": 27185.96, + "probability": 0.0477 + }, + { + "start": 27186.56, + "end": 27189.3, + "probability": 0.6335 + }, + { + "start": 27189.66, + "end": 27191.76, + "probability": 0.8938 + }, + { + "start": 27197.4, + "end": 27198.46, + "probability": 0.7124 + }, + { + "start": 27199.44, + "end": 27199.83, + "probability": 0.5228 + }, + { + "start": 27200.6, + "end": 27201.66, + "probability": 0.9431 + }, + { + "start": 27203.26, + "end": 27207.64, + "probability": 0.7016 + }, + { + "start": 27208.18, + "end": 27211.9, + "probability": 0.6345 + }, + { + "start": 27212.46, + "end": 27212.88, + "probability": 0.4665 + }, + { + "start": 27213.34, + "end": 27214.3, + "probability": 0.4708 + }, + { + "start": 27216.55, + "end": 27219.28, + "probability": 0.9295 + }, + { + "start": 27220.56, + "end": 27222.26, + "probability": 0.9843 + }, + { + "start": 27222.86, + "end": 27226.01, + "probability": 0.8822 + }, + { + "start": 27226.66, + "end": 27231.2, + "probability": 0.9902 + }, + { + "start": 27231.2, + "end": 27233.7, + "probability": 0.9994 + }, + { + "start": 27234.84, + "end": 27237.44, + "probability": 0.9414 + }, + { + "start": 27237.56, + "end": 27240.78, + "probability": 0.9945 + }, + { + "start": 27242.3, + "end": 27246.2, + "probability": 0.9542 + }, + { + "start": 27247.12, + "end": 27249.86, + "probability": 0.9551 + }, + { + "start": 27251.28, + "end": 27254.58, + "probability": 0.9979 + }, + { + "start": 27255.82, + "end": 27257.74, + "probability": 0.9964 + }, + { + "start": 27257.74, + "end": 27260.22, + "probability": 0.9797 + }, + { + "start": 27261.18, + "end": 27266.62, + "probability": 0.9985 + }, + { + "start": 27267.32, + "end": 27275.72, + "probability": 0.9976 + }, + { + "start": 27276.04, + "end": 27276.68, + "probability": 0.9329 + }, + { + "start": 27277.56, + "end": 27279.8, + "probability": 0.9814 + }, + { + "start": 27280.72, + "end": 27284.1, + "probability": 0.5582 + }, + { + "start": 27284.16, + "end": 27288.28, + "probability": 0.9928 + }, + { + "start": 27289.58, + "end": 27290.5, + "probability": 0.4061 + }, + { + "start": 27290.76, + "end": 27296.62, + "probability": 0.9924 + }, + { + "start": 27296.96, + "end": 27297.4, + "probability": 0.9633 + }, + { + "start": 27299.2, + "end": 27304.94, + "probability": 0.9853 + }, + { + "start": 27305.94, + "end": 27308.24, + "probability": 0.9418 + }, + { + "start": 27308.24, + "end": 27311.94, + "probability": 0.9639 + }, + { + "start": 27313.79, + "end": 27316.28, + "probability": 0.9686 + }, + { + "start": 27316.28, + "end": 27319.58, + "probability": 0.9615 + }, + { + "start": 27320.74, + "end": 27321.5, + "probability": 0.9017 + }, + { + "start": 27324.42, + "end": 27329.5, + "probability": 0.9069 + }, + { + "start": 27330.52, + "end": 27331.53, + "probability": 0.9805 + }, + { + "start": 27331.98, + "end": 27335.86, + "probability": 0.9502 + }, + { + "start": 27336.64, + "end": 27340.24, + "probability": 0.9925 + }, + { + "start": 27340.9, + "end": 27342.48, + "probability": 0.9953 + }, + { + "start": 27342.58, + "end": 27348.68, + "probability": 0.9961 + }, + { + "start": 27349.3, + "end": 27351.34, + "probability": 0.9982 + }, + { + "start": 27352.04, + "end": 27354.27, + "probability": 0.9605 + }, + { + "start": 27355.2, + "end": 27357.18, + "probability": 0.9986 + }, + { + "start": 27358.12, + "end": 27362.28, + "probability": 0.9515 + }, + { + "start": 27363.88, + "end": 27365.1, + "probability": 0.9374 + }, + { + "start": 27366.3, + "end": 27367.64, + "probability": 0.8452 + }, + { + "start": 27368.02, + "end": 27373.34, + "probability": 0.9255 + }, + { + "start": 27373.96, + "end": 27375.7, + "probability": 0.9225 + }, + { + "start": 27376.42, + "end": 27377.8, + "probability": 0.8511 + }, + { + "start": 27377.9, + "end": 27378.62, + "probability": 0.4037 + }, + { + "start": 27378.62, + "end": 27381.4, + "probability": 0.4274 + }, + { + "start": 27381.68, + "end": 27383.82, + "probability": 0.8728 + }, + { + "start": 27383.86, + "end": 27385.36, + "probability": 0.8434 + }, + { + "start": 27385.96, + "end": 27387.12, + "probability": 0.8976 + }, + { + "start": 27388.58, + "end": 27392.12, + "probability": 0.974 + }, + { + "start": 27392.12, + "end": 27396.92, + "probability": 0.985 + }, + { + "start": 27397.54, + "end": 27404.74, + "probability": 0.9987 + }, + { + "start": 27406.24, + "end": 27410.84, + "probability": 0.9829 + }, + { + "start": 27411.64, + "end": 27412.79, + "probability": 0.998 + }, + { + "start": 27414.38, + "end": 27415.63, + "probability": 0.7195 + }, + { + "start": 27416.04, + "end": 27418.06, + "probability": 0.884 + }, + { + "start": 27418.96, + "end": 27421.42, + "probability": 0.9725 + }, + { + "start": 27421.92, + "end": 27424.44, + "probability": 0.9939 + }, + { + "start": 27424.44, + "end": 27428.74, + "probability": 0.9888 + }, + { + "start": 27428.86, + "end": 27431.72, + "probability": 0.9402 + }, + { + "start": 27431.82, + "end": 27432.1, + "probability": 0.2693 + }, + { + "start": 27432.68, + "end": 27433.84, + "probability": 0.8332 + }, + { + "start": 27433.84, + "end": 27436.54, + "probability": 0.9989 + }, + { + "start": 27437.14, + "end": 27441.34, + "probability": 0.9977 + }, + { + "start": 27442.5, + "end": 27444.28, + "probability": 0.8405 + }, + { + "start": 27446.84, + "end": 27452.1, + "probability": 0.999 + }, + { + "start": 27452.1, + "end": 27457.36, + "probability": 0.9977 + }, + { + "start": 27457.98, + "end": 27458.76, + "probability": 0.8486 + }, + { + "start": 27459.98, + "end": 27462.82, + "probability": 0.9955 + }, + { + "start": 27463.84, + "end": 27464.94, + "probability": 0.8949 + }, + { + "start": 27465.04, + "end": 27465.76, + "probability": 0.6542 + }, + { + "start": 27465.84, + "end": 27466.98, + "probability": 0.7595 + }, + { + "start": 27468.06, + "end": 27470.2, + "probability": 0.9957 + }, + { + "start": 27470.4, + "end": 27473.62, + "probability": 0.9939 + }, + { + "start": 27474.48, + "end": 27480.26, + "probability": 0.9594 + }, + { + "start": 27480.94, + "end": 27482.56, + "probability": 0.9871 + }, + { + "start": 27483.38, + "end": 27483.48, + "probability": 0.7534 + }, + { + "start": 27483.6, + "end": 27485.94, + "probability": 0.9962 + }, + { + "start": 27486.04, + "end": 27487.2, + "probability": 0.9494 + }, + { + "start": 27487.88, + "end": 27493.94, + "probability": 0.9679 + }, + { + "start": 27494.06, + "end": 27496.44, + "probability": 0.9294 + }, + { + "start": 27497.7, + "end": 27499.0, + "probability": 0.9839 + }, + { + "start": 27499.68, + "end": 27502.3, + "probability": 0.9819 + }, + { + "start": 27504.78, + "end": 27505.9, + "probability": 0.9588 + }, + { + "start": 27506.32, + "end": 27508.8, + "probability": 0.9993 + }, + { + "start": 27508.9, + "end": 27511.74, + "probability": 0.9932 + }, + { + "start": 27512.38, + "end": 27515.37, + "probability": 0.9932 + }, + { + "start": 27515.84, + "end": 27517.34, + "probability": 0.9741 + }, + { + "start": 27518.14, + "end": 27521.88, + "probability": 0.4895 + }, + { + "start": 27522.32, + "end": 27527.02, + "probability": 0.9723 + }, + { + "start": 27528.22, + "end": 27529.2, + "probability": 0.8215 + }, + { + "start": 27529.76, + "end": 27534.98, + "probability": 0.9939 + }, + { + "start": 27535.1, + "end": 27535.54, + "probability": 0.6417 + }, + { + "start": 27536.34, + "end": 27539.12, + "probability": 0.9951 + }, + { + "start": 27539.98, + "end": 27545.6, + "probability": 0.9937 + }, + { + "start": 27546.24, + "end": 27550.56, + "probability": 0.963 + }, + { + "start": 27551.74, + "end": 27552.82, + "probability": 0.8917 + }, + { + "start": 27553.42, + "end": 27556.56, + "probability": 0.9922 + }, + { + "start": 27557.22, + "end": 27560.02, + "probability": 0.9809 + }, + { + "start": 27560.62, + "end": 27566.88, + "probability": 0.8926 + }, + { + "start": 27567.0, + "end": 27569.08, + "probability": 0.9023 + }, + { + "start": 27569.42, + "end": 27571.68, + "probability": 0.9963 + }, + { + "start": 27573.8, + "end": 27574.86, + "probability": 0.8883 + }, + { + "start": 27576.6, + "end": 27578.68, + "probability": 0.9536 + }, + { + "start": 27579.52, + "end": 27582.28, + "probability": 0.9198 + }, + { + "start": 27582.36, + "end": 27583.7, + "probability": 0.9238 + }, + { + "start": 27584.84, + "end": 27586.4, + "probability": 0.6683 + }, + { + "start": 27586.5, + "end": 27588.54, + "probability": 0.979 + }, + { + "start": 27589.14, + "end": 27591.14, + "probability": 0.9866 + }, + { + "start": 27591.6, + "end": 27593.72, + "probability": 0.999 + }, + { + "start": 27595.0, + "end": 27599.44, + "probability": 0.9968 + }, + { + "start": 27599.74, + "end": 27600.34, + "probability": 0.442 + }, + { + "start": 27601.02, + "end": 27601.54, + "probability": 0.8302 + }, + { + "start": 27601.66, + "end": 27604.34, + "probability": 0.9214 + }, + { + "start": 27604.46, + "end": 27609.88, + "probability": 0.9554 + }, + { + "start": 27610.74, + "end": 27611.46, + "probability": 0.4836 + }, + { + "start": 27611.98, + "end": 27615.1, + "probability": 0.9892 + }, + { + "start": 27615.62, + "end": 27620.36, + "probability": 0.8164 + }, + { + "start": 27620.64, + "end": 27621.26, + "probability": 0.7578 + }, + { + "start": 27622.3, + "end": 27624.26, + "probability": 0.9111 + }, + { + "start": 27625.1, + "end": 27628.86, + "probability": 0.9728 + }, + { + "start": 27628.86, + "end": 27633.26, + "probability": 0.9965 + }, + { + "start": 27634.46, + "end": 27635.84, + "probability": 0.5821 + }, + { + "start": 27636.84, + "end": 27640.42, + "probability": 0.9438 + }, + { + "start": 27641.92, + "end": 27647.62, + "probability": 0.8849 + }, + { + "start": 27647.8, + "end": 27651.66, + "probability": 0.9969 + }, + { + "start": 27653.06, + "end": 27658.28, + "probability": 0.9292 + }, + { + "start": 27658.94, + "end": 27661.04, + "probability": 0.9942 + }, + { + "start": 27661.32, + "end": 27664.9, + "probability": 0.9627 + }, + { + "start": 27665.34, + "end": 27666.88, + "probability": 0.9644 + }, + { + "start": 27667.8, + "end": 27670.0, + "probability": 0.9941 + }, + { + "start": 27670.16, + "end": 27674.02, + "probability": 0.8909 + }, + { + "start": 27674.54, + "end": 27676.12, + "probability": 0.9833 + }, + { + "start": 27677.02, + "end": 27680.42, + "probability": 0.9929 + }, + { + "start": 27680.56, + "end": 27681.33, + "probability": 0.9659 + }, + { + "start": 27682.36, + "end": 27686.94, + "probability": 0.9932 + }, + { + "start": 27687.56, + "end": 27691.4, + "probability": 0.9888 + }, + { + "start": 27692.6, + "end": 27694.39, + "probability": 0.9961 + }, + { + "start": 27695.84, + "end": 27698.24, + "probability": 0.9979 + }, + { + "start": 27698.62, + "end": 27700.86, + "probability": 0.9928 + }, + { + "start": 27701.88, + "end": 27703.2, + "probability": 0.9348 + }, + { + "start": 27706.34, + "end": 27708.08, + "probability": 0.845 + }, + { + "start": 27709.68, + "end": 27713.02, + "probability": 0.994 + }, + { + "start": 27713.58, + "end": 27716.74, + "probability": 0.9996 + }, + { + "start": 27717.66, + "end": 27720.66, + "probability": 0.9963 + }, + { + "start": 27721.12, + "end": 27722.64, + "probability": 0.788 + }, + { + "start": 27722.76, + "end": 27728.2, + "probability": 0.9055 + }, + { + "start": 27728.98, + "end": 27732.84, + "probability": 0.9619 + }, + { + "start": 27733.04, + "end": 27733.54, + "probability": 0.7165 + }, + { + "start": 27734.22, + "end": 27738.42, + "probability": 0.7825 + }, + { + "start": 27739.34, + "end": 27744.3, + "probability": 0.9554 + }, + { + "start": 27746.06, + "end": 27752.55, + "probability": 0.9712 + }, + { + "start": 27754.2, + "end": 27758.54, + "probability": 0.9587 + }, + { + "start": 27759.0, + "end": 27760.28, + "probability": 0.7806 + }, + { + "start": 27760.34, + "end": 27763.38, + "probability": 0.9887 + }, + { + "start": 27764.94, + "end": 27767.56, + "probability": 0.8071 + }, + { + "start": 27768.6, + "end": 27768.7, + "probability": 0.6548 + }, + { + "start": 27769.38, + "end": 27770.36, + "probability": 0.9695 + }, + { + "start": 27771.82, + "end": 27773.92, + "probability": 0.9879 + }, + { + "start": 27774.72, + "end": 27778.2, + "probability": 0.99 + }, + { + "start": 27778.64, + "end": 27779.32, + "probability": 0.989 + }, + { + "start": 27779.94, + "end": 27781.48, + "probability": 0.9985 + }, + { + "start": 27782.76, + "end": 27784.96, + "probability": 0.9175 + }, + { + "start": 27785.06, + "end": 27786.12, + "probability": 0.9757 + }, + { + "start": 27787.1, + "end": 27787.58, + "probability": 0.9813 + }, + { + "start": 27788.12, + "end": 27789.08, + "probability": 0.755 + }, + { + "start": 27789.84, + "end": 27792.46, + "probability": 0.9377 + }, + { + "start": 27793.38, + "end": 27796.54, + "probability": 0.724 + }, + { + "start": 27797.06, + "end": 27797.94, + "probability": 0.1348 + }, + { + "start": 27798.0, + "end": 27799.67, + "probability": 0.9873 + }, + { + "start": 27800.16, + "end": 27801.24, + "probability": 0.9441 + }, + { + "start": 27802.94, + "end": 27807.48, + "probability": 0.9725 + }, + { + "start": 27808.28, + "end": 27810.9, + "probability": 0.7877 + }, + { + "start": 27811.38, + "end": 27815.94, + "probability": 0.9235 + }, + { + "start": 27817.76, + "end": 27818.68, + "probability": 0.9567 + }, + { + "start": 27819.46, + "end": 27821.12, + "probability": 0.9071 + }, + { + "start": 27822.06, + "end": 27823.48, + "probability": 0.8679 + }, + { + "start": 27824.06, + "end": 27828.42, + "probability": 0.8776 + }, + { + "start": 27829.24, + "end": 27829.96, + "probability": 0.9792 + }, + { + "start": 27831.5, + "end": 27833.3, + "probability": 0.9099 + }, + { + "start": 27834.58, + "end": 27837.22, + "probability": 0.9867 + }, + { + "start": 27837.48, + "end": 27837.64, + "probability": 0.8027 + }, + { + "start": 27837.78, + "end": 27839.59, + "probability": 0.957 + }, + { + "start": 27840.42, + "end": 27843.98, + "probability": 0.997 + }, + { + "start": 27844.68, + "end": 27847.2, + "probability": 0.9255 + }, + { + "start": 27847.7, + "end": 27853.58, + "probability": 0.9971 + }, + { + "start": 27853.58, + "end": 27856.18, + "probability": 0.3878 + }, + { + "start": 27856.86, + "end": 27858.78, + "probability": 0.99 + }, + { + "start": 27862.02, + "end": 27869.02, + "probability": 0.9915 + }, + { + "start": 27869.02, + "end": 27872.02, + "probability": 0.8016 + }, + { + "start": 27873.1, + "end": 27879.36, + "probability": 0.9614 + }, + { + "start": 27879.4, + "end": 27880.76, + "probability": 0.8798 + }, + { + "start": 27881.5, + "end": 27887.2, + "probability": 0.9779 + }, + { + "start": 27888.76, + "end": 27891.98, + "probability": 0.9897 + }, + { + "start": 27892.26, + "end": 27894.54, + "probability": 0.9854 + }, + { + "start": 27895.38, + "end": 27901.44, + "probability": 0.9946 + }, + { + "start": 27901.44, + "end": 27907.72, + "probability": 0.9997 + }, + { + "start": 27908.52, + "end": 27910.0, + "probability": 0.9995 + }, + { + "start": 27910.6, + "end": 27910.8, + "probability": 0.6637 + }, + { + "start": 27911.28, + "end": 27912.9, + "probability": 0.7642 + }, + { + "start": 27913.84, + "end": 27915.0, + "probability": 0.8069 + }, + { + "start": 27936.6, + "end": 27936.9, + "probability": 0.2654 + }, + { + "start": 27936.9, + "end": 27939.06, + "probability": 0.763 + }, + { + "start": 27940.66, + "end": 27941.48, + "probability": 0.7078 + }, + { + "start": 27943.68, + "end": 27946.44, + "probability": 0.9924 + }, + { + "start": 27948.08, + "end": 27953.16, + "probability": 0.5267 + }, + { + "start": 27954.56, + "end": 27957.34, + "probability": 0.9989 + }, + { + "start": 27957.34, + "end": 27960.34, + "probability": 0.7509 + }, + { + "start": 27960.5, + "end": 27960.76, + "probability": 0.6972 + }, + { + "start": 27960.9, + "end": 27961.52, + "probability": 0.9044 + }, + { + "start": 27962.28, + "end": 27963.26, + "probability": 0.778 + }, + { + "start": 27964.46, + "end": 27965.88, + "probability": 0.8971 + }, + { + "start": 27966.0, + "end": 27971.04, + "probability": 0.9743 + }, + { + "start": 27972.18, + "end": 27975.26, + "probability": 0.9916 + }, + { + "start": 27975.26, + "end": 27980.18, + "probability": 0.9728 + }, + { + "start": 27982.48, + "end": 27985.68, + "probability": 0.9842 + }, + { + "start": 27985.68, + "end": 27989.08, + "probability": 0.9988 + }, + { + "start": 27989.84, + "end": 27994.42, + "probability": 0.823 + }, + { + "start": 27994.6, + "end": 27996.44, + "probability": 0.9237 + }, + { + "start": 27996.6, + "end": 27997.24, + "probability": 0.9625 + }, + { + "start": 27997.62, + "end": 27999.5, + "probability": 0.9954 + }, + { + "start": 28000.84, + "end": 28003.21, + "probability": 0.9885 + }, + { + "start": 28004.24, + "end": 28006.82, + "probability": 0.9956 + }, + { + "start": 28007.74, + "end": 28010.68, + "probability": 0.8061 + }, + { + "start": 28012.44, + "end": 28013.5, + "probability": 0.8539 + }, + { + "start": 28013.54, + "end": 28016.58, + "probability": 0.9897 + }, + { + "start": 28016.66, + "end": 28018.96, + "probability": 0.9945 + }, + { + "start": 28018.96, + "end": 28022.22, + "probability": 0.9824 + }, + { + "start": 28023.44, + "end": 28027.32, + "probability": 0.9481 + }, + { + "start": 28031.26, + "end": 28033.0, + "probability": 0.8241 + }, + { + "start": 28033.82, + "end": 28037.96, + "probability": 0.9897 + }, + { + "start": 28038.46, + "end": 28039.3, + "probability": 0.408 + }, + { + "start": 28039.68, + "end": 28040.34, + "probability": 0.5381 + }, + { + "start": 28040.74, + "end": 28044.68, + "probability": 0.9048 + }, + { + "start": 28045.5, + "end": 28049.38, + "probability": 0.9976 + }, + { + "start": 28050.2, + "end": 28050.96, + "probability": 0.951 + }, + { + "start": 28051.28, + "end": 28053.04, + "probability": 0.9982 + }, + { + "start": 28053.24, + "end": 28056.42, + "probability": 0.9934 + }, + { + "start": 28057.38, + "end": 28060.38, + "probability": 0.9884 + }, + { + "start": 28060.38, + "end": 28063.62, + "probability": 0.9926 + }, + { + "start": 28064.3, + "end": 28066.8, + "probability": 0.9738 + }, + { + "start": 28067.4, + "end": 28067.68, + "probability": 0.8667 + }, + { + "start": 28067.94, + "end": 28072.08, + "probability": 0.9807 + }, + { + "start": 28073.12, + "end": 28076.24, + "probability": 0.9778 + }, + { + "start": 28077.16, + "end": 28078.7, + "probability": 0.7818 + }, + { + "start": 28079.2, + "end": 28082.54, + "probability": 0.9604 + }, + { + "start": 28082.6, + "end": 28085.7, + "probability": 0.9852 + }, + { + "start": 28085.84, + "end": 28088.82, + "probability": 0.9952 + }, + { + "start": 28089.48, + "end": 28093.26, + "probability": 0.9808 + }, + { + "start": 28093.58, + "end": 28099.22, + "probability": 0.9902 + }, + { + "start": 28100.72, + "end": 28104.12, + "probability": 0.8311 + }, + { + "start": 28104.18, + "end": 28107.54, + "probability": 0.993 + }, + { + "start": 28107.78, + "end": 28111.54, + "probability": 0.9949 + }, + { + "start": 28112.96, + "end": 28113.82, + "probability": 0.9614 + }, + { + "start": 28114.54, + "end": 28115.64, + "probability": 0.8433 + }, + { + "start": 28115.8, + "end": 28118.08, + "probability": 0.8919 + }, + { + "start": 28118.8, + "end": 28121.8, + "probability": 0.9244 + }, + { + "start": 28122.42, + "end": 28122.66, + "probability": 0.5284 + }, + { + "start": 28122.72, + "end": 28127.32, + "probability": 0.9886 + }, + { + "start": 28128.5, + "end": 28132.42, + "probability": 0.9598 + }, + { + "start": 28133.06, + "end": 28136.48, + "probability": 0.996 + }, + { + "start": 28137.22, + "end": 28137.76, + "probability": 0.9962 + }, + { + "start": 28139.08, + "end": 28142.2, + "probability": 0.981 + }, + { + "start": 28142.2, + "end": 28146.16, + "probability": 0.9927 + }, + { + "start": 28146.42, + "end": 28149.94, + "probability": 0.9981 + }, + { + "start": 28149.94, + "end": 28154.36, + "probability": 0.998 + }, + { + "start": 28154.78, + "end": 28157.22, + "probability": 0.9722 + }, + { + "start": 28158.22, + "end": 28163.42, + "probability": 0.9891 + }, + { + "start": 28164.06, + "end": 28167.6, + "probability": 0.987 + }, + { + "start": 28167.96, + "end": 28168.16, + "probability": 0.782 + }, + { + "start": 28169.92, + "end": 28173.16, + "probability": 0.9771 + }, + { + "start": 28173.16, + "end": 28177.62, + "probability": 0.9923 + }, + { + "start": 28178.1, + "end": 28179.74, + "probability": 0.7816 + }, + { + "start": 28180.54, + "end": 28183.34, + "probability": 0.9707 + }, + { + "start": 28183.34, + "end": 28188.24, + "probability": 0.9977 + }, + { + "start": 28188.76, + "end": 28191.26, + "probability": 0.9482 + }, + { + "start": 28192.48, + "end": 28196.16, + "probability": 0.9979 + }, + { + "start": 28196.16, + "end": 28200.58, + "probability": 0.9894 + }, + { + "start": 28200.68, + "end": 28204.82, + "probability": 0.9489 + }, + { + "start": 28205.6, + "end": 28208.44, + "probability": 0.9937 + }, + { + "start": 28209.34, + "end": 28211.5, + "probability": 0.9531 + }, + { + "start": 28211.64, + "end": 28213.88, + "probability": 0.7927 + }, + { + "start": 28215.86, + "end": 28219.7, + "probability": 0.9242 + }, + { + "start": 28221.08, + "end": 28226.26, + "probability": 0.9949 + }, + { + "start": 28226.26, + "end": 28231.22, + "probability": 0.9989 + }, + { + "start": 28231.42, + "end": 28232.74, + "probability": 0.9995 + }, + { + "start": 28233.3, + "end": 28234.74, + "probability": 0.9977 + }, + { + "start": 28235.42, + "end": 28237.3, + "probability": 0.7499 + }, + { + "start": 28238.34, + "end": 28240.8, + "probability": 0.9806 + }, + { + "start": 28241.64, + "end": 28245.12, + "probability": 0.9946 + }, + { + "start": 28245.34, + "end": 28246.98, + "probability": 0.9948 + }, + { + "start": 28247.48, + "end": 28250.26, + "probability": 0.9912 + }, + { + "start": 28250.52, + "end": 28252.84, + "probability": 0.7825 + }, + { + "start": 28252.94, + "end": 28256.49, + "probability": 0.9722 + }, + { + "start": 28256.78, + "end": 28260.92, + "probability": 0.9753 + }, + { + "start": 28263.26, + "end": 28268.02, + "probability": 0.9839 + }, + { + "start": 28268.6, + "end": 28271.6, + "probability": 0.9944 + }, + { + "start": 28272.34, + "end": 28273.76, + "probability": 0.8173 + }, + { + "start": 28274.42, + "end": 28277.0, + "probability": 0.9235 + }, + { + "start": 28277.66, + "end": 28279.72, + "probability": 0.8792 + }, + { + "start": 28281.98, + "end": 28288.66, + "probability": 0.9958 + }, + { + "start": 28289.94, + "end": 28296.24, + "probability": 0.7806 + }, + { + "start": 28297.16, + "end": 28299.68, + "probability": 0.8064 + }, + { + "start": 28300.42, + "end": 28303.12, + "probability": 0.9775 + }, + { + "start": 28308.38, + "end": 28310.04, + "probability": 0.5739 + }, + { + "start": 28311.18, + "end": 28316.3, + "probability": 0.7976 + }, + { + "start": 28316.92, + "end": 28317.04, + "probability": 0.3849 + }, + { + "start": 28317.22, + "end": 28317.58, + "probability": 0.858 + }, + { + "start": 28317.7, + "end": 28321.34, + "probability": 0.994 + }, + { + "start": 28322.12, + "end": 28324.14, + "probability": 0.9976 + }, + { + "start": 28325.12, + "end": 28325.92, + "probability": 0.761 + }, + { + "start": 28326.86, + "end": 28330.86, + "probability": 0.7854 + }, + { + "start": 28331.62, + "end": 28335.1, + "probability": 0.9966 + }, + { + "start": 28335.1, + "end": 28338.96, + "probability": 0.964 + }, + { + "start": 28339.28, + "end": 28340.22, + "probability": 0.6709 + }, + { + "start": 28341.2, + "end": 28343.42, + "probability": 0.9908 + }, + { + "start": 28344.92, + "end": 28347.68, + "probability": 0.928 + }, + { + "start": 28347.72, + "end": 28348.46, + "probability": 0.6333 + }, + { + "start": 28349.0, + "end": 28350.3, + "probability": 0.9087 + }, + { + "start": 28351.2, + "end": 28354.34, + "probability": 0.8469 + }, + { + "start": 28354.34, + "end": 28357.7, + "probability": 0.4997 + }, + { + "start": 28357.84, + "end": 28358.27, + "probability": 0.8299 + }, + { + "start": 28358.58, + "end": 28359.2, + "probability": 0.9414 + }, + { + "start": 28359.85, + "end": 28365.14, + "probability": 0.9707 + }, + { + "start": 28366.28, + "end": 28370.52, + "probability": 0.9711 + }, + { + "start": 28371.74, + "end": 28377.32, + "probability": 0.9706 + }, + { + "start": 28378.3, + "end": 28381.3, + "probability": 0.8921 + }, + { + "start": 28382.34, + "end": 28382.94, + "probability": 0.8801 + }, + { + "start": 28383.92, + "end": 28387.9, + "probability": 0.9884 + }, + { + "start": 28387.98, + "end": 28388.68, + "probability": 0.9014 + }, + { + "start": 28389.04, + "end": 28391.26, + "probability": 0.9583 + }, + { + "start": 28391.26, + "end": 28393.88, + "probability": 0.891 + }, + { + "start": 28394.38, + "end": 28394.54, + "probability": 0.9528 + }, + { + "start": 28395.24, + "end": 28398.7, + "probability": 0.8418 + }, + { + "start": 28398.92, + "end": 28399.78, + "probability": 0.5007 + }, + { + "start": 28399.8, + "end": 28400.14, + "probability": 0.599 + }, + { + "start": 28400.9, + "end": 28403.74, + "probability": 0.9948 + }, + { + "start": 28404.24, + "end": 28404.82, + "probability": 0.6247 + }, + { + "start": 28404.9, + "end": 28405.8, + "probability": 0.9515 + }, + { + "start": 28406.48, + "end": 28410.36, + "probability": 0.9846 + }, + { + "start": 28410.74, + "end": 28412.48, + "probability": 0.7252 + }, + { + "start": 28414.1, + "end": 28414.85, + "probability": 0.4533 + }, + { + "start": 28416.44, + "end": 28417.3, + "probability": 0.8583 + }, + { + "start": 28437.68, + "end": 28437.68, + "probability": 0.4168 + }, + { + "start": 28437.68, + "end": 28437.68, + "probability": 0.0624 + }, + { + "start": 28437.68, + "end": 28438.68, + "probability": 0.3825 + }, + { + "start": 28439.24, + "end": 28440.86, + "probability": 0.5894 + }, + { + "start": 28441.9, + "end": 28446.02, + "probability": 0.9615 + }, + { + "start": 28447.82, + "end": 28450.22, + "probability": 0.4417 + }, + { + "start": 28451.02, + "end": 28455.48, + "probability": 0.7494 + } + ], + "segments_count": 9999, + "words_count": 49799, + "avg_words_per_segment": 4.9804, + "avg_segment_duration": 2.0559, + "avg_words_per_minute": 104.6891, + "plenum_id": "32227", + "duration": 28541.09, + "title": null, + "plenum_date": "2013-11-13" +} \ No newline at end of file