diff --git "a/119445/metadata.json" "b/119445/metadata.json" new file mode 100644--- /dev/null +++ "b/119445/metadata.json" @@ -0,0 +1,29532 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "119445", + "quality_score": 0.8269, + "per_segment_quality_scores": [ + { + "start": 34.22, + "end": 34.46, + "probability": 0.0136 + }, + { + "start": 34.46, + "end": 35.26, + "probability": 0.024 + }, + { + "start": 35.8, + "end": 39.36, + "probability": 0.0133 + }, + { + "start": 47.62, + "end": 48.92, + "probability": 0.0843 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.08, + "end": 123.7, + "probability": 0.1804 + }, + { + "start": 123.7, + "end": 123.7, + "probability": 0.1509 + }, + { + "start": 123.7, + "end": 124.75, + "probability": 0.7808 + }, + { + "start": 124.92, + "end": 126.02, + "probability": 0.9731 + }, + { + "start": 127.38, + "end": 129.16, + "probability": 0.9875 + }, + { + "start": 129.76, + "end": 132.98, + "probability": 0.9966 + }, + { + "start": 133.78, + "end": 136.18, + "probability": 0.9637 + }, + { + "start": 136.54, + "end": 136.9, + "probability": 0.9663 + }, + { + "start": 138.26, + "end": 138.48, + "probability": 0.9834 + }, + { + "start": 140.08, + "end": 141.66, + "probability": 0.9925 + }, + { + "start": 142.24, + "end": 143.42, + "probability": 0.7009 + }, + { + "start": 145.16, + "end": 149.34, + "probability": 0.9935 + }, + { + "start": 150.78, + "end": 152.34, + "probability": 0.8489 + }, + { + "start": 153.74, + "end": 155.72, + "probability": 0.7706 + }, + { + "start": 155.8, + "end": 158.76, + "probability": 0.949 + }, + { + "start": 159.48, + "end": 162.56, + "probability": 0.9904 + }, + { + "start": 164.98, + "end": 168.82, + "probability": 0.9497 + }, + { + "start": 170.08, + "end": 172.78, + "probability": 0.7618 + }, + { + "start": 174.74, + "end": 179.82, + "probability": 0.9856 + }, + { + "start": 180.66, + "end": 182.7, + "probability": 0.7697 + }, + { + "start": 183.96, + "end": 185.48, + "probability": 0.9895 + }, + { + "start": 187.14, + "end": 188.7, + "probability": 0.4416 + }, + { + "start": 189.6, + "end": 194.0, + "probability": 0.974 + }, + { + "start": 194.48, + "end": 195.5, + "probability": 0.8671 + }, + { + "start": 197.78, + "end": 198.96, + "probability": 0.9796 + }, + { + "start": 199.04, + "end": 200.16, + "probability": 0.9978 + }, + { + "start": 200.74, + "end": 204.02, + "probability": 0.9983 + }, + { + "start": 205.34, + "end": 205.84, + "probability": 0.834 + }, + { + "start": 206.58, + "end": 207.2, + "probability": 0.7593 + }, + { + "start": 209.46, + "end": 210.16, + "probability": 0.8525 + }, + { + "start": 210.34, + "end": 211.8, + "probability": 0.7328 + }, + { + "start": 211.9, + "end": 215.2, + "probability": 0.9991 + }, + { + "start": 216.0, + "end": 216.82, + "probability": 0.9988 + }, + { + "start": 218.44, + "end": 218.62, + "probability": 0.0388 + }, + { + "start": 221.46, + "end": 225.44, + "probability": 0.9722 + }, + { + "start": 226.24, + "end": 227.44, + "probability": 0.9683 + }, + { + "start": 228.34, + "end": 231.72, + "probability": 0.9803 + }, + { + "start": 232.04, + "end": 234.98, + "probability": 0.9863 + }, + { + "start": 235.2, + "end": 235.5, + "probability": 0.4295 + }, + { + "start": 235.5, + "end": 236.24, + "probability": 0.8857 + }, + { + "start": 236.56, + "end": 237.32, + "probability": 0.9974 + }, + { + "start": 237.96, + "end": 238.28, + "probability": 0.9121 + }, + { + "start": 239.36, + "end": 241.62, + "probability": 0.7725 + }, + { + "start": 242.2, + "end": 243.7, + "probability": 0.929 + }, + { + "start": 244.14, + "end": 246.3, + "probability": 0.9888 + }, + { + "start": 246.8, + "end": 249.25, + "probability": 0.9922 + }, + { + "start": 249.68, + "end": 250.37, + "probability": 0.9849 + }, + { + "start": 251.18, + "end": 252.22, + "probability": 0.9901 + }, + { + "start": 252.62, + "end": 254.34, + "probability": 0.942 + }, + { + "start": 254.46, + "end": 255.02, + "probability": 0.7633 + }, + { + "start": 255.84, + "end": 260.22, + "probability": 0.9619 + }, + { + "start": 261.5, + "end": 262.42, + "probability": 0.425 + }, + { + "start": 262.58, + "end": 265.28, + "probability": 0.9797 + }, + { + "start": 265.74, + "end": 266.94, + "probability": 0.9587 + }, + { + "start": 267.1, + "end": 267.76, + "probability": 0.0806 + }, + { + "start": 269.19, + "end": 271.22, + "probability": 0.8441 + }, + { + "start": 271.22, + "end": 273.15, + "probability": 0.5118 + }, + { + "start": 273.44, + "end": 274.96, + "probability": 0.6512 + }, + { + "start": 275.08, + "end": 275.08, + "probability": 0.7991 + }, + { + "start": 275.08, + "end": 275.76, + "probability": 0.439 + }, + { + "start": 275.82, + "end": 276.46, + "probability": 0.7727 + }, + { + "start": 276.64, + "end": 284.3, + "probability": 0.9543 + }, + { + "start": 285.14, + "end": 286.91, + "probability": 0.995 + }, + { + "start": 287.28, + "end": 290.48, + "probability": 0.9766 + }, + { + "start": 290.88, + "end": 293.28, + "probability": 0.9869 + }, + { + "start": 293.86, + "end": 295.24, + "probability": 0.9938 + }, + { + "start": 295.56, + "end": 296.96, + "probability": 0.7256 + }, + { + "start": 297.12, + "end": 301.26, + "probability": 0.9931 + }, + { + "start": 301.38, + "end": 303.19, + "probability": 0.9932 + }, + { + "start": 304.12, + "end": 307.52, + "probability": 0.9797 + }, + { + "start": 307.62, + "end": 308.98, + "probability": 0.7834 + }, + { + "start": 309.06, + "end": 309.68, + "probability": 0.8262 + }, + { + "start": 309.74, + "end": 310.5, + "probability": 0.7161 + }, + { + "start": 311.32, + "end": 311.68, + "probability": 0.8887 + }, + { + "start": 312.42, + "end": 315.1, + "probability": 0.9914 + }, + { + "start": 315.7, + "end": 318.46, + "probability": 0.9663 + }, + { + "start": 319.06, + "end": 324.82, + "probability": 0.8719 + }, + { + "start": 325.62, + "end": 328.38, + "probability": 0.6688 + }, + { + "start": 329.04, + "end": 333.82, + "probability": 0.9883 + }, + { + "start": 334.86, + "end": 335.14, + "probability": 0.7753 + }, + { + "start": 335.22, + "end": 336.2, + "probability": 0.9288 + }, + { + "start": 336.7, + "end": 337.92, + "probability": 0.8035 + }, + { + "start": 338.0, + "end": 339.6, + "probability": 0.9748 + }, + { + "start": 340.98, + "end": 341.32, + "probability": 0.7241 + }, + { + "start": 341.36, + "end": 346.14, + "probability": 0.9223 + }, + { + "start": 347.22, + "end": 349.7, + "probability": 0.9667 + }, + { + "start": 351.12, + "end": 354.58, + "probability": 0.9835 + }, + { + "start": 355.46, + "end": 358.56, + "probability": 0.9851 + }, + { + "start": 359.12, + "end": 363.58, + "probability": 0.7547 + }, + { + "start": 364.7, + "end": 365.64, + "probability": 0.9993 + }, + { + "start": 367.48, + "end": 368.12, + "probability": 0.8546 + }, + { + "start": 369.44, + "end": 373.48, + "probability": 0.8499 + }, + { + "start": 374.9, + "end": 375.68, + "probability": 0.863 + }, + { + "start": 376.86, + "end": 385.16, + "probability": 0.9061 + }, + { + "start": 387.24, + "end": 387.34, + "probability": 0.0409 + }, + { + "start": 387.34, + "end": 391.62, + "probability": 0.9505 + }, + { + "start": 393.64, + "end": 394.16, + "probability": 0.6423 + }, + { + "start": 394.34, + "end": 400.28, + "probability": 0.9573 + }, + { + "start": 401.1, + "end": 401.7, + "probability": 0.9349 + }, + { + "start": 402.7, + "end": 403.44, + "probability": 0.6085 + }, + { + "start": 403.78, + "end": 404.76, + "probability": 0.8544 + }, + { + "start": 405.08, + "end": 408.6, + "probability": 0.9753 + }, + { + "start": 409.46, + "end": 410.42, + "probability": 0.9798 + }, + { + "start": 410.74, + "end": 412.18, + "probability": 0.9717 + }, + { + "start": 413.84, + "end": 417.9, + "probability": 0.9858 + }, + { + "start": 419.54, + "end": 420.78, + "probability": 0.8487 + }, + { + "start": 420.9, + "end": 421.86, + "probability": 0.9766 + }, + { + "start": 423.16, + "end": 427.68, + "probability": 0.9575 + }, + { + "start": 428.3, + "end": 429.44, + "probability": 0.9727 + }, + { + "start": 429.5, + "end": 433.52, + "probability": 0.9599 + }, + { + "start": 434.42, + "end": 438.26, + "probability": 0.9974 + }, + { + "start": 439.58, + "end": 440.92, + "probability": 0.959 + }, + { + "start": 443.86, + "end": 445.5, + "probability": 0.6587 + }, + { + "start": 445.6, + "end": 446.62, + "probability": 0.6089 + }, + { + "start": 447.32, + "end": 451.34, + "probability": 0.8574 + }, + { + "start": 452.58, + "end": 456.5, + "probability": 0.9952 + }, + { + "start": 457.86, + "end": 458.76, + "probability": 0.9474 + }, + { + "start": 460.7, + "end": 461.2, + "probability": 0.8947 + }, + { + "start": 461.26, + "end": 464.94, + "probability": 0.891 + }, + { + "start": 465.36, + "end": 466.28, + "probability": 0.743 + }, + { + "start": 466.66, + "end": 470.6, + "probability": 0.9464 + }, + { + "start": 472.94, + "end": 473.76, + "probability": 0.8118 + }, + { + "start": 474.76, + "end": 475.68, + "probability": 0.7355 + }, + { + "start": 476.56, + "end": 478.14, + "probability": 0.9038 + }, + { + "start": 479.52, + "end": 480.16, + "probability": 0.9727 + }, + { + "start": 480.22, + "end": 482.66, + "probability": 0.7487 + }, + { + "start": 482.72, + "end": 484.26, + "probability": 0.9438 + }, + { + "start": 484.99, + "end": 487.4, + "probability": 0.7926 + }, + { + "start": 489.72, + "end": 491.84, + "probability": 0.9968 + }, + { + "start": 491.98, + "end": 493.4, + "probability": 0.7253 + }, + { + "start": 494.86, + "end": 495.98, + "probability": 0.9722 + }, + { + "start": 496.02, + "end": 501.0, + "probability": 0.7809 + }, + { + "start": 502.56, + "end": 502.78, + "probability": 0.4598 + }, + { + "start": 505.57, + "end": 510.64, + "probability": 0.8219 + }, + { + "start": 511.68, + "end": 512.68, + "probability": 0.9066 + }, + { + "start": 513.8, + "end": 515.86, + "probability": 0.7183 + }, + { + "start": 516.76, + "end": 517.32, + "probability": 0.9646 + }, + { + "start": 518.8, + "end": 522.14, + "probability": 0.983 + }, + { + "start": 522.22, + "end": 523.0, + "probability": 0.9169 + }, + { + "start": 523.04, + "end": 523.32, + "probability": 0.5409 + }, + { + "start": 523.82, + "end": 525.92, + "probability": 0.9972 + }, + { + "start": 526.8, + "end": 527.84, + "probability": 0.7001 + }, + { + "start": 528.54, + "end": 531.76, + "probability": 0.7172 + }, + { + "start": 532.82, + "end": 536.76, + "probability": 0.9092 + }, + { + "start": 536.76, + "end": 540.14, + "probability": 0.9777 + }, + { + "start": 541.0, + "end": 545.16, + "probability": 0.9971 + }, + { + "start": 545.92, + "end": 547.34, + "probability": 0.9973 + }, + { + "start": 549.46, + "end": 552.7, + "probability": 0.9922 + }, + { + "start": 553.46, + "end": 555.58, + "probability": 0.8165 + }, + { + "start": 556.48, + "end": 557.94, + "probability": 0.9488 + }, + { + "start": 558.4, + "end": 562.26, + "probability": 0.994 + }, + { + "start": 563.56, + "end": 565.22, + "probability": 0.9966 + }, + { + "start": 566.1, + "end": 568.0, + "probability": 0.9991 + }, + { + "start": 569.1, + "end": 570.9, + "probability": 0.9543 + }, + { + "start": 571.34, + "end": 572.5, + "probability": 0.7661 + }, + { + "start": 572.56, + "end": 573.6, + "probability": 0.9648 + }, + { + "start": 577.5, + "end": 581.66, + "probability": 0.9929 + }, + { + "start": 582.66, + "end": 584.12, + "probability": 0.9906 + }, + { + "start": 584.78, + "end": 587.42, + "probability": 0.9691 + }, + { + "start": 587.62, + "end": 588.7, + "probability": 0.6838 + }, + { + "start": 589.42, + "end": 591.02, + "probability": 0.9025 + }, + { + "start": 593.04, + "end": 598.76, + "probability": 0.8486 + }, + { + "start": 602.92, + "end": 605.02, + "probability": 0.959 + }, + { + "start": 606.44, + "end": 609.38, + "probability": 0.8379 + }, + { + "start": 610.44, + "end": 612.2, + "probability": 0.9968 + }, + { + "start": 613.04, + "end": 615.92, + "probability": 0.9226 + }, + { + "start": 618.56, + "end": 619.82, + "probability": 0.7532 + }, + { + "start": 619.86, + "end": 620.74, + "probability": 0.8595 + }, + { + "start": 620.74, + "end": 621.92, + "probability": 0.8201 + }, + { + "start": 621.92, + "end": 622.82, + "probability": 0.9165 + }, + { + "start": 624.48, + "end": 627.08, + "probability": 0.9854 + }, + { + "start": 628.02, + "end": 631.12, + "probability": 0.9798 + }, + { + "start": 632.16, + "end": 635.3, + "probability": 0.9443 + }, + { + "start": 635.92, + "end": 636.96, + "probability": 0.7429 + }, + { + "start": 637.98, + "end": 639.0, + "probability": 0.7233 + }, + { + "start": 641.44, + "end": 644.52, + "probability": 0.9229 + }, + { + "start": 644.7, + "end": 648.46, + "probability": 0.9675 + }, + { + "start": 650.18, + "end": 652.1, + "probability": 0.9837 + }, + { + "start": 654.31, + "end": 657.04, + "probability": 0.9622 + }, + { + "start": 658.84, + "end": 661.48, + "probability": 0.9234 + }, + { + "start": 666.2, + "end": 668.68, + "probability": 0.5163 + }, + { + "start": 671.52, + "end": 674.18, + "probability": 0.7519 + }, + { + "start": 674.42, + "end": 674.98, + "probability": 0.5761 + }, + { + "start": 676.74, + "end": 680.66, + "probability": 0.9943 + }, + { + "start": 682.3, + "end": 683.66, + "probability": 0.9776 + }, + { + "start": 684.78, + "end": 691.32, + "probability": 0.9815 + }, + { + "start": 692.88, + "end": 695.04, + "probability": 0.8262 + }, + { + "start": 695.94, + "end": 697.64, + "probability": 0.9912 + }, + { + "start": 698.1, + "end": 699.3, + "probability": 0.9977 + }, + { + "start": 700.66, + "end": 705.68, + "probability": 0.9827 + }, + { + "start": 706.4, + "end": 708.44, + "probability": 0.8433 + }, + { + "start": 709.16, + "end": 713.88, + "probability": 0.778 + }, + { + "start": 714.44, + "end": 717.96, + "probability": 0.7571 + }, + { + "start": 720.3, + "end": 722.92, + "probability": 0.9669 + }, + { + "start": 723.86, + "end": 726.22, + "probability": 0.8076 + }, + { + "start": 726.94, + "end": 728.9, + "probability": 0.862 + }, + { + "start": 730.16, + "end": 733.54, + "probability": 0.9119 + }, + { + "start": 734.14, + "end": 735.48, + "probability": 0.5731 + }, + { + "start": 737.17, + "end": 740.26, + "probability": 0.9166 + }, + { + "start": 741.16, + "end": 743.06, + "probability": 0.8188 + }, + { + "start": 743.1, + "end": 744.1, + "probability": 0.9831 + }, + { + "start": 744.18, + "end": 744.66, + "probability": 0.9207 + }, + { + "start": 745.66, + "end": 747.62, + "probability": 0.9883 + }, + { + "start": 748.42, + "end": 750.52, + "probability": 0.9064 + }, + { + "start": 750.62, + "end": 751.7, + "probability": 0.7091 + }, + { + "start": 752.12, + "end": 753.72, + "probability": 0.8095 + }, + { + "start": 754.64, + "end": 756.58, + "probability": 0.6643 + }, + { + "start": 757.2, + "end": 759.42, + "probability": 0.784 + }, + { + "start": 759.48, + "end": 760.58, + "probability": 0.9286 + }, + { + "start": 761.04, + "end": 761.66, + "probability": 0.6886 + }, + { + "start": 761.78, + "end": 764.8, + "probability": 0.9849 + }, + { + "start": 764.96, + "end": 765.36, + "probability": 0.4488 + }, + { + "start": 765.58, + "end": 766.3, + "probability": 0.9602 + }, + { + "start": 766.58, + "end": 768.04, + "probability": 0.9722 + }, + { + "start": 768.16, + "end": 768.84, + "probability": 0.4128 + }, + { + "start": 769.22, + "end": 769.74, + "probability": 0.8181 + }, + { + "start": 769.76, + "end": 769.98, + "probability": 0.6903 + }, + { + "start": 770.24, + "end": 773.08, + "probability": 0.9723 + }, + { + "start": 774.64, + "end": 775.98, + "probability": 0.8836 + }, + { + "start": 776.3, + "end": 777.02, + "probability": 0.7917 + }, + { + "start": 777.84, + "end": 778.2, + "probability": 0.4989 + }, + { + "start": 778.9, + "end": 781.2, + "probability": 0.979 + }, + { + "start": 782.18, + "end": 783.68, + "probability": 0.9171 + }, + { + "start": 784.2, + "end": 785.98, + "probability": 0.9052 + }, + { + "start": 786.66, + "end": 788.64, + "probability": 0.9636 + }, + { + "start": 789.18, + "end": 790.81, + "probability": 0.9912 + }, + { + "start": 791.4, + "end": 791.6, + "probability": 0.7227 + }, + { + "start": 792.98, + "end": 794.18, + "probability": 0.7328 + }, + { + "start": 794.26, + "end": 799.02, + "probability": 0.9939 + }, + { + "start": 799.74, + "end": 801.0, + "probability": 0.9645 + }, + { + "start": 809.64, + "end": 811.33, + "probability": 0.7654 + }, + { + "start": 812.94, + "end": 814.56, + "probability": 0.5321 + }, + { + "start": 816.0, + "end": 818.94, + "probability": 0.921 + }, + { + "start": 819.48, + "end": 823.46, + "probability": 0.9766 + }, + { + "start": 824.46, + "end": 826.8, + "probability": 0.993 + }, + { + "start": 827.5, + "end": 829.3, + "probability": 0.4737 + }, + { + "start": 829.76, + "end": 833.08, + "probability": 0.9947 + }, + { + "start": 833.62, + "end": 835.22, + "probability": 0.9609 + }, + { + "start": 836.0, + "end": 839.38, + "probability": 0.9968 + }, + { + "start": 839.98, + "end": 841.64, + "probability": 0.9333 + }, + { + "start": 842.54, + "end": 847.08, + "probability": 0.9819 + }, + { + "start": 847.78, + "end": 848.7, + "probability": 0.9581 + }, + { + "start": 849.54, + "end": 852.02, + "probability": 0.9873 + }, + { + "start": 852.02, + "end": 855.74, + "probability": 0.9971 + }, + { + "start": 856.8, + "end": 858.9, + "probability": 0.9788 + }, + { + "start": 858.94, + "end": 862.96, + "probability": 0.921 + }, + { + "start": 863.86, + "end": 866.36, + "probability": 0.9868 + }, + { + "start": 867.42, + "end": 869.58, + "probability": 0.9283 + }, + { + "start": 870.44, + "end": 873.36, + "probability": 0.7498 + }, + { + "start": 874.0, + "end": 876.72, + "probability": 0.95 + }, + { + "start": 877.54, + "end": 883.34, + "probability": 0.9931 + }, + { + "start": 883.8, + "end": 886.73, + "probability": 0.9751 + }, + { + "start": 888.14, + "end": 891.14, + "probability": 0.9934 + }, + { + "start": 891.14, + "end": 893.86, + "probability": 0.992 + }, + { + "start": 894.56, + "end": 897.0, + "probability": 0.9575 + }, + { + "start": 898.28, + "end": 901.22, + "probability": 0.9831 + }, + { + "start": 901.22, + "end": 905.26, + "probability": 0.9539 + }, + { + "start": 906.06, + "end": 908.24, + "probability": 0.9958 + }, + { + "start": 908.86, + "end": 912.04, + "probability": 0.9543 + }, + { + "start": 912.52, + "end": 913.74, + "probability": 0.8273 + }, + { + "start": 914.3, + "end": 919.82, + "probability": 0.989 + }, + { + "start": 920.66, + "end": 924.88, + "probability": 0.9883 + }, + { + "start": 925.44, + "end": 927.04, + "probability": 0.8025 + }, + { + "start": 927.74, + "end": 931.68, + "probability": 0.91 + }, + { + "start": 932.38, + "end": 934.22, + "probability": 0.9743 + }, + { + "start": 935.06, + "end": 936.9, + "probability": 0.9932 + }, + { + "start": 937.66, + "end": 939.94, + "probability": 0.992 + }, + { + "start": 940.2, + "end": 943.12, + "probability": 0.9974 + }, + { + "start": 943.8, + "end": 946.6, + "probability": 0.9829 + }, + { + "start": 947.44, + "end": 949.32, + "probability": 0.9553 + }, + { + "start": 950.06, + "end": 954.1, + "probability": 0.9952 + }, + { + "start": 954.1, + "end": 957.0, + "probability": 0.9403 + }, + { + "start": 957.36, + "end": 958.0, + "probability": 0.9595 + }, + { + "start": 958.72, + "end": 961.94, + "probability": 0.996 + }, + { + "start": 961.94, + "end": 965.1, + "probability": 0.921 + }, + { + "start": 965.66, + "end": 968.58, + "probability": 0.996 + }, + { + "start": 969.36, + "end": 972.74, + "probability": 0.8898 + }, + { + "start": 972.74, + "end": 976.18, + "probability": 0.9941 + }, + { + "start": 976.34, + "end": 976.7, + "probability": 0.8445 + }, + { + "start": 977.64, + "end": 979.4, + "probability": 0.9916 + }, + { + "start": 980.1, + "end": 984.84, + "probability": 0.9425 + }, + { + "start": 985.5, + "end": 988.92, + "probability": 0.998 + }, + { + "start": 989.46, + "end": 991.3, + "probability": 0.9714 + }, + { + "start": 991.88, + "end": 992.86, + "probability": 0.7441 + }, + { + "start": 993.0, + "end": 993.73, + "probability": 0.9648 + }, + { + "start": 994.05, + "end": 995.01, + "probability": 0.7114 + }, + { + "start": 995.47, + "end": 998.93, + "probability": 0.9886 + }, + { + "start": 999.45, + "end": 1001.03, + "probability": 0.9971 + }, + { + "start": 1002.01, + "end": 1002.93, + "probability": 0.7937 + }, + { + "start": 1003.47, + "end": 1006.53, + "probability": 0.9912 + }, + { + "start": 1008.57, + "end": 1009.97, + "probability": 0.2795 + }, + { + "start": 1009.97, + "end": 1009.97, + "probability": 0.0407 + }, + { + "start": 1009.97, + "end": 1011.21, + "probability": 0.7083 + }, + { + "start": 1011.33, + "end": 1012.25, + "probability": 0.743 + }, + { + "start": 1012.85, + "end": 1014.89, + "probability": 0.8581 + }, + { + "start": 1015.67, + "end": 1022.09, + "probability": 0.9882 + }, + { + "start": 1023.03, + "end": 1026.97, + "probability": 0.8526 + }, + { + "start": 1027.35, + "end": 1028.59, + "probability": 0.9604 + }, + { + "start": 1029.09, + "end": 1031.67, + "probability": 0.9927 + }, + { + "start": 1032.39, + "end": 1037.75, + "probability": 0.987 + }, + { + "start": 1038.19, + "end": 1041.53, + "probability": 0.9868 + }, + { + "start": 1041.65, + "end": 1042.43, + "probability": 0.9682 + }, + { + "start": 1043.45, + "end": 1045.13, + "probability": 0.9784 + }, + { + "start": 1045.73, + "end": 1046.85, + "probability": 0.9515 + }, + { + "start": 1047.33, + "end": 1048.81, + "probability": 0.9844 + }, + { + "start": 1049.49, + "end": 1052.31, + "probability": 0.8607 + }, + { + "start": 1053.03, + "end": 1055.31, + "probability": 0.791 + }, + { + "start": 1055.97, + "end": 1058.05, + "probability": 0.9546 + }, + { + "start": 1058.45, + "end": 1063.39, + "probability": 0.9562 + }, + { + "start": 1064.17, + "end": 1065.51, + "probability": 0.9725 + }, + { + "start": 1066.37, + "end": 1070.21, + "probability": 0.98 + }, + { + "start": 1070.91, + "end": 1072.85, + "probability": 0.918 + }, + { + "start": 1073.35, + "end": 1074.17, + "probability": 0.6699 + }, + { + "start": 1074.61, + "end": 1075.39, + "probability": 0.7602 + }, + { + "start": 1075.75, + "end": 1076.43, + "probability": 0.9665 + }, + { + "start": 1077.35, + "end": 1081.45, + "probability": 0.9629 + }, + { + "start": 1082.27, + "end": 1086.15, + "probability": 0.9917 + }, + { + "start": 1087.73, + "end": 1092.17, + "probability": 0.9684 + }, + { + "start": 1092.85, + "end": 1093.37, + "probability": 0.7543 + }, + { + "start": 1093.67, + "end": 1094.87, + "probability": 0.905 + }, + { + "start": 1095.05, + "end": 1096.35, + "probability": 0.9292 + }, + { + "start": 1096.83, + "end": 1098.93, + "probability": 0.9836 + }, + { + "start": 1099.33, + "end": 1100.87, + "probability": 0.9941 + }, + { + "start": 1101.59, + "end": 1106.11, + "probability": 0.9962 + }, + { + "start": 1106.21, + "end": 1107.45, + "probability": 0.8442 + }, + { + "start": 1108.01, + "end": 1109.95, + "probability": 0.7487 + }, + { + "start": 1110.55, + "end": 1113.55, + "probability": 0.8689 + }, + { + "start": 1114.69, + "end": 1117.11, + "probability": 0.9849 + }, + { + "start": 1117.25, + "end": 1119.35, + "probability": 0.9929 + }, + { + "start": 1120.27, + "end": 1121.11, + "probability": 0.8705 + }, + { + "start": 1122.07, + "end": 1127.27, + "probability": 0.7368 + }, + { + "start": 1128.05, + "end": 1130.13, + "probability": 0.8938 + }, + { + "start": 1130.51, + "end": 1132.19, + "probability": 0.9688 + }, + { + "start": 1132.95, + "end": 1134.03, + "probability": 0.8229 + }, + { + "start": 1134.73, + "end": 1137.27, + "probability": 0.9092 + }, + { + "start": 1137.71, + "end": 1139.19, + "probability": 0.8506 + }, + { + "start": 1139.79, + "end": 1141.31, + "probability": 0.7959 + }, + { + "start": 1141.47, + "end": 1142.61, + "probability": 0.984 + }, + { + "start": 1142.95, + "end": 1145.91, + "probability": 0.7498 + }, + { + "start": 1146.95, + "end": 1147.95, + "probability": 0.9966 + }, + { + "start": 1148.39, + "end": 1149.34, + "probability": 0.9541 + }, + { + "start": 1149.71, + "end": 1152.75, + "probability": 0.991 + }, + { + "start": 1153.41, + "end": 1156.63, + "probability": 0.9902 + }, + { + "start": 1157.09, + "end": 1160.07, + "probability": 0.9405 + }, + { + "start": 1160.81, + "end": 1161.89, + "probability": 0.9461 + }, + { + "start": 1162.45, + "end": 1163.59, + "probability": 0.7206 + }, + { + "start": 1164.11, + "end": 1166.05, + "probability": 0.965 + }, + { + "start": 1166.69, + "end": 1172.57, + "probability": 0.9723 + }, + { + "start": 1172.87, + "end": 1174.15, + "probability": 0.8579 + }, + { + "start": 1174.89, + "end": 1177.49, + "probability": 0.9419 + }, + { + "start": 1178.07, + "end": 1180.15, + "probability": 0.9385 + }, + { + "start": 1180.63, + "end": 1181.73, + "probability": 0.9946 + }, + { + "start": 1182.65, + "end": 1185.95, + "probability": 0.9907 + }, + { + "start": 1186.65, + "end": 1190.85, + "probability": 0.8687 + }, + { + "start": 1191.49, + "end": 1194.59, + "probability": 0.9895 + }, + { + "start": 1195.29, + "end": 1197.61, + "probability": 0.8276 + }, + { + "start": 1198.11, + "end": 1200.09, + "probability": 0.988 + }, + { + "start": 1201.14, + "end": 1202.15, + "probability": 0.6568 + }, + { + "start": 1202.33, + "end": 1203.43, + "probability": 0.8765 + }, + { + "start": 1203.57, + "end": 1203.93, + "probability": 0.638 + }, + { + "start": 1205.17, + "end": 1206.73, + "probability": 0.9318 + }, + { + "start": 1206.75, + "end": 1209.49, + "probability": 0.9925 + }, + { + "start": 1209.49, + "end": 1213.69, + "probability": 0.939 + }, + { + "start": 1214.55, + "end": 1215.43, + "probability": 0.8222 + }, + { + "start": 1216.01, + "end": 1217.41, + "probability": 0.4114 + }, + { + "start": 1218.45, + "end": 1219.01, + "probability": 0.8171 + }, + { + "start": 1219.61, + "end": 1221.17, + "probability": 0.2666 + }, + { + "start": 1222.43, + "end": 1222.88, + "probability": 0.0052 + }, + { + "start": 1226.89, + "end": 1227.57, + "probability": 0.3637 + }, + { + "start": 1227.75, + "end": 1228.85, + "probability": 0.6012 + }, + { + "start": 1228.93, + "end": 1230.53, + "probability": 0.859 + }, + { + "start": 1230.69, + "end": 1230.91, + "probability": 0.1675 + }, + { + "start": 1230.95, + "end": 1234.69, + "probability": 0.8374 + }, + { + "start": 1235.05, + "end": 1235.61, + "probability": 0.7314 + }, + { + "start": 1235.87, + "end": 1236.4, + "probability": 0.904 + }, + { + "start": 1237.03, + "end": 1238.51, + "probability": 0.5777 + }, + { + "start": 1238.51, + "end": 1240.73, + "probability": 0.2125 + }, + { + "start": 1240.88, + "end": 1243.53, + "probability": 0.6272 + }, + { + "start": 1244.37, + "end": 1248.17, + "probability": 0.7177 + }, + { + "start": 1248.43, + "end": 1250.95, + "probability": 0.7285 + }, + { + "start": 1251.13, + "end": 1251.87, + "probability": 0.8113 + }, + { + "start": 1252.11, + "end": 1254.53, + "probability": 0.7307 + }, + { + "start": 1255.35, + "end": 1257.27, + "probability": 0.0303 + }, + { + "start": 1257.27, + "end": 1258.35, + "probability": 0.0147 + }, + { + "start": 1258.71, + "end": 1259.17, + "probability": 0.0571 + }, + { + "start": 1259.17, + "end": 1263.59, + "probability": 0.3349 + }, + { + "start": 1264.07, + "end": 1264.59, + "probability": 0.321 + }, + { + "start": 1265.73, + "end": 1267.39, + "probability": 0.4234 + }, + { + "start": 1267.39, + "end": 1270.01, + "probability": 0.9959 + }, + { + "start": 1270.09, + "end": 1272.79, + "probability": 0.9411 + }, + { + "start": 1272.87, + "end": 1273.63, + "probability": 0.9013 + }, + { + "start": 1273.69, + "end": 1274.19, + "probability": 0.1796 + }, + { + "start": 1274.53, + "end": 1275.57, + "probability": 0.7478 + }, + { + "start": 1275.57, + "end": 1277.47, + "probability": 0.9638 + }, + { + "start": 1277.77, + "end": 1278.23, + "probability": 0.4733 + }, + { + "start": 1279.31, + "end": 1284.49, + "probability": 0.7322 + }, + { + "start": 1285.21, + "end": 1290.59, + "probability": 0.9862 + }, + { + "start": 1291.15, + "end": 1292.27, + "probability": 0.9883 + }, + { + "start": 1293.01, + "end": 1293.79, + "probability": 0.9102 + }, + { + "start": 1294.09, + "end": 1299.41, + "probability": 0.9955 + }, + { + "start": 1300.31, + "end": 1302.59, + "probability": 0.7859 + }, + { + "start": 1302.85, + "end": 1305.55, + "probability": 0.9872 + }, + { + "start": 1306.05, + "end": 1310.77, + "probability": 0.9979 + }, + { + "start": 1311.21, + "end": 1311.89, + "probability": 0.9523 + }, + { + "start": 1312.13, + "end": 1313.05, + "probability": 0.5202 + }, + { + "start": 1313.63, + "end": 1315.47, + "probability": 0.9647 + }, + { + "start": 1315.91, + "end": 1318.99, + "probability": 0.9854 + }, + { + "start": 1318.99, + "end": 1321.95, + "probability": 0.9782 + }, + { + "start": 1322.99, + "end": 1328.19, + "probability": 0.9943 + }, + { + "start": 1328.57, + "end": 1330.85, + "probability": 0.9599 + }, + { + "start": 1331.57, + "end": 1336.77, + "probability": 0.955 + }, + { + "start": 1337.23, + "end": 1342.25, + "probability": 0.9895 + }, + { + "start": 1342.91, + "end": 1348.07, + "probability": 0.9862 + }, + { + "start": 1348.65, + "end": 1352.89, + "probability": 0.9961 + }, + { + "start": 1353.95, + "end": 1354.68, + "probability": 0.9985 + }, + { + "start": 1355.45, + "end": 1360.83, + "probability": 0.9974 + }, + { + "start": 1361.37, + "end": 1364.57, + "probability": 0.9642 + }, + { + "start": 1365.45, + "end": 1368.03, + "probability": 0.8204 + }, + { + "start": 1368.79, + "end": 1371.87, + "probability": 0.9984 + }, + { + "start": 1371.87, + "end": 1375.65, + "probability": 0.9949 + }, + { + "start": 1376.41, + "end": 1379.53, + "probability": 0.962 + }, + { + "start": 1380.03, + "end": 1385.73, + "probability": 0.988 + }, + { + "start": 1386.65, + "end": 1389.83, + "probability": 0.9849 + }, + { + "start": 1390.57, + "end": 1395.87, + "probability": 0.9935 + }, + { + "start": 1396.41, + "end": 1404.39, + "probability": 0.9985 + }, + { + "start": 1405.07, + "end": 1407.67, + "probability": 0.9077 + }, + { + "start": 1408.27, + "end": 1412.53, + "probability": 0.9944 + }, + { + "start": 1412.53, + "end": 1416.13, + "probability": 0.9925 + }, + { + "start": 1416.59, + "end": 1418.69, + "probability": 0.9906 + }, + { + "start": 1419.89, + "end": 1420.45, + "probability": 0.9014 + }, + { + "start": 1421.55, + "end": 1424.93, + "probability": 0.9969 + }, + { + "start": 1425.71, + "end": 1428.83, + "probability": 0.7636 + }, + { + "start": 1429.27, + "end": 1432.45, + "probability": 0.6328 + }, + { + "start": 1433.33, + "end": 1435.85, + "probability": 0.9591 + }, + { + "start": 1436.37, + "end": 1438.07, + "probability": 0.95 + }, + { + "start": 1438.95, + "end": 1445.15, + "probability": 0.9981 + }, + { + "start": 1445.15, + "end": 1451.59, + "probability": 0.9955 + }, + { + "start": 1452.49, + "end": 1457.45, + "probability": 0.9993 + }, + { + "start": 1457.45, + "end": 1463.53, + "probability": 0.9994 + }, + { + "start": 1463.53, + "end": 1468.23, + "probability": 0.9929 + }, + { + "start": 1468.75, + "end": 1474.35, + "probability": 0.9993 + }, + { + "start": 1475.29, + "end": 1478.55, + "probability": 0.9886 + }, + { + "start": 1479.27, + "end": 1482.87, + "probability": 0.9627 + }, + { + "start": 1483.91, + "end": 1486.15, + "probability": 0.9846 + }, + { + "start": 1486.43, + "end": 1490.69, + "probability": 0.9948 + }, + { + "start": 1491.43, + "end": 1495.05, + "probability": 0.9877 + }, + { + "start": 1495.05, + "end": 1499.91, + "probability": 0.9993 + }, + { + "start": 1500.45, + "end": 1502.69, + "probability": 0.9629 + }, + { + "start": 1503.53, + "end": 1507.55, + "probability": 0.999 + }, + { + "start": 1508.01, + "end": 1510.21, + "probability": 0.8952 + }, + { + "start": 1510.43, + "end": 1517.11, + "probability": 0.7749 + }, + { + "start": 1517.63, + "end": 1519.81, + "probability": 0.8088 + }, + { + "start": 1520.21, + "end": 1525.79, + "probability": 0.9959 + }, + { + "start": 1525.79, + "end": 1531.77, + "probability": 0.9571 + }, + { + "start": 1533.37, + "end": 1538.61, + "probability": 0.9917 + }, + { + "start": 1538.65, + "end": 1544.07, + "probability": 0.9904 + }, + { + "start": 1544.07, + "end": 1550.29, + "probability": 0.9957 + }, + { + "start": 1550.29, + "end": 1555.49, + "probability": 0.9987 + }, + { + "start": 1555.93, + "end": 1557.43, + "probability": 0.9172 + }, + { + "start": 1558.79, + "end": 1562.47, + "probability": 0.9981 + }, + { + "start": 1562.47, + "end": 1566.09, + "probability": 0.9968 + }, + { + "start": 1566.57, + "end": 1571.77, + "probability": 0.9854 + }, + { + "start": 1571.79, + "end": 1576.25, + "probability": 0.9518 + }, + { + "start": 1576.95, + "end": 1581.11, + "probability": 0.9869 + }, + { + "start": 1581.65, + "end": 1582.95, + "probability": 0.8844 + }, + { + "start": 1583.87, + "end": 1589.45, + "probability": 0.993 + }, + { + "start": 1590.01, + "end": 1597.33, + "probability": 0.9891 + }, + { + "start": 1597.33, + "end": 1602.37, + "probability": 0.9974 + }, + { + "start": 1602.69, + "end": 1605.37, + "probability": 0.972 + }, + { + "start": 1606.51, + "end": 1611.81, + "probability": 0.9921 + }, + { + "start": 1612.65, + "end": 1618.85, + "probability": 0.9867 + }, + { + "start": 1619.45, + "end": 1625.93, + "probability": 0.9963 + }, + { + "start": 1626.77, + "end": 1633.05, + "probability": 0.9987 + }, + { + "start": 1633.57, + "end": 1634.99, + "probability": 0.9911 + }, + { + "start": 1635.59, + "end": 1640.05, + "probability": 0.9609 + }, + { + "start": 1640.85, + "end": 1641.98, + "probability": 0.546 + }, + { + "start": 1643.01, + "end": 1643.53, + "probability": 0.5363 + }, + { + "start": 1643.63, + "end": 1649.67, + "probability": 0.97 + }, + { + "start": 1649.67, + "end": 1656.11, + "probability": 0.9952 + }, + { + "start": 1656.11, + "end": 1663.39, + "probability": 0.9812 + }, + { + "start": 1663.99, + "end": 1669.61, + "probability": 0.9908 + }, + { + "start": 1670.27, + "end": 1675.93, + "probability": 0.9974 + }, + { + "start": 1676.35, + "end": 1681.65, + "probability": 0.9995 + }, + { + "start": 1683.19, + "end": 1684.05, + "probability": 0.4055 + }, + { + "start": 1684.23, + "end": 1685.53, + "probability": 0.7199 + }, + { + "start": 1686.01, + "end": 1686.91, + "probability": 0.9815 + }, + { + "start": 1687.57, + "end": 1692.07, + "probability": 0.9832 + }, + { + "start": 1692.07, + "end": 1697.27, + "probability": 0.9937 + }, + { + "start": 1697.67, + "end": 1700.49, + "probability": 0.9965 + }, + { + "start": 1701.29, + "end": 1702.91, + "probability": 0.8799 + }, + { + "start": 1703.49, + "end": 1707.17, + "probability": 0.9973 + }, + { + "start": 1707.85, + "end": 1711.37, + "probability": 0.8163 + }, + { + "start": 1711.91, + "end": 1715.27, + "probability": 0.9988 + }, + { + "start": 1715.27, + "end": 1719.67, + "probability": 0.9961 + }, + { + "start": 1720.33, + "end": 1721.49, + "probability": 0.9099 + }, + { + "start": 1722.09, + "end": 1727.65, + "probability": 0.9926 + }, + { + "start": 1728.07, + "end": 1730.17, + "probability": 0.9916 + }, + { + "start": 1730.93, + "end": 1734.77, + "probability": 0.9951 + }, + { + "start": 1734.77, + "end": 1737.65, + "probability": 0.9953 + }, + { + "start": 1738.89, + "end": 1743.05, + "probability": 0.9987 + }, + { + "start": 1743.05, + "end": 1747.53, + "probability": 0.9986 + }, + { + "start": 1748.13, + "end": 1750.91, + "probability": 0.9321 + }, + { + "start": 1752.07, + "end": 1754.55, + "probability": 0.983 + }, + { + "start": 1754.99, + "end": 1757.86, + "probability": 0.9986 + }, + { + "start": 1758.23, + "end": 1762.21, + "probability": 0.96 + }, + { + "start": 1762.21, + "end": 1765.53, + "probability": 0.9992 + }, + { + "start": 1766.33, + "end": 1768.73, + "probability": 0.9495 + }, + { + "start": 1769.29, + "end": 1772.77, + "probability": 0.9965 + }, + { + "start": 1773.29, + "end": 1776.69, + "probability": 0.9988 + }, + { + "start": 1776.72, + "end": 1779.87, + "probability": 0.9349 + }, + { + "start": 1781.01, + "end": 1783.65, + "probability": 0.9946 + }, + { + "start": 1784.23, + "end": 1787.21, + "probability": 0.9957 + }, + { + "start": 1787.21, + "end": 1791.71, + "probability": 0.9928 + }, + { + "start": 1792.47, + "end": 1796.11, + "probability": 0.998 + }, + { + "start": 1796.71, + "end": 1801.39, + "probability": 0.9917 + }, + { + "start": 1802.55, + "end": 1805.61, + "probability": 0.9717 + }, + { + "start": 1806.15, + "end": 1807.53, + "probability": 0.5683 + }, + { + "start": 1808.13, + "end": 1815.81, + "probability": 0.9323 + }, + { + "start": 1816.81, + "end": 1817.73, + "probability": 0.9518 + }, + { + "start": 1818.21, + "end": 1821.29, + "probability": 0.8437 + }, + { + "start": 1821.49, + "end": 1822.81, + "probability": 0.9073 + }, + { + "start": 1823.27, + "end": 1825.47, + "probability": 0.8438 + }, + { + "start": 1825.59, + "end": 1831.37, + "probability": 0.9851 + }, + { + "start": 1832.17, + "end": 1833.07, + "probability": 0.6528 + }, + { + "start": 1833.17, + "end": 1838.11, + "probability": 0.9646 + }, + { + "start": 1838.71, + "end": 1840.81, + "probability": 0.8293 + }, + { + "start": 1841.19, + "end": 1842.49, + "probability": 0.9601 + }, + { + "start": 1842.61, + "end": 1843.13, + "probability": 0.9377 + }, + { + "start": 1843.17, + "end": 1849.95, + "probability": 0.9854 + }, + { + "start": 1849.97, + "end": 1855.35, + "probability": 0.9963 + }, + { + "start": 1856.29, + "end": 1858.17, + "probability": 0.9987 + }, + { + "start": 1858.63, + "end": 1861.37, + "probability": 0.9912 + }, + { + "start": 1861.53, + "end": 1863.83, + "probability": 0.9576 + }, + { + "start": 1864.37, + "end": 1867.89, + "probability": 0.9977 + }, + { + "start": 1867.89, + "end": 1871.21, + "probability": 0.993 + }, + { + "start": 1871.77, + "end": 1874.69, + "probability": 0.9927 + }, + { + "start": 1875.21, + "end": 1879.51, + "probability": 0.9811 + }, + { + "start": 1880.17, + "end": 1881.13, + "probability": 0.9471 + }, + { + "start": 1881.21, + "end": 1882.45, + "probability": 0.9339 + }, + { + "start": 1882.49, + "end": 1883.23, + "probability": 0.7947 + }, + { + "start": 1883.37, + "end": 1884.21, + "probability": 0.8936 + }, + { + "start": 1884.53, + "end": 1886.35, + "probability": 0.9917 + }, + { + "start": 1887.05, + "end": 1889.59, + "probability": 0.9803 + }, + { + "start": 1890.27, + "end": 1891.73, + "probability": 0.753 + }, + { + "start": 1892.41, + "end": 1893.83, + "probability": 0.9899 + }, + { + "start": 1894.31, + "end": 1897.05, + "probability": 0.9951 + }, + { + "start": 1897.55, + "end": 1900.81, + "probability": 0.99 + }, + { + "start": 1901.39, + "end": 1902.19, + "probability": 0.9073 + }, + { + "start": 1902.61, + "end": 1902.91, + "probability": 0.8889 + }, + { + "start": 1904.63, + "end": 1905.93, + "probability": 0.9103 + }, + { + "start": 1906.05, + "end": 1907.83, + "probability": 0.7254 + }, + { + "start": 1908.37, + "end": 1910.25, + "probability": 0.9906 + }, + { + "start": 1910.51, + "end": 1911.51, + "probability": 0.8399 + }, + { + "start": 1911.57, + "end": 1912.11, + "probability": 0.8464 + }, + { + "start": 1943.29, + "end": 1945.95, + "probability": 0.5181 + }, + { + "start": 1947.85, + "end": 1949.95, + "probability": 0.9764 + }, + { + "start": 1951.05, + "end": 1952.57, + "probability": 0.9413 + }, + { + "start": 1953.75, + "end": 1953.77, + "probability": 0.4058 + }, + { + "start": 1954.41, + "end": 1954.93, + "probability": 0.8784 + }, + { + "start": 1960.25, + "end": 1962.33, + "probability": 0.974 + }, + { + "start": 1963.77, + "end": 1966.27, + "probability": 0.9856 + }, + { + "start": 1968.41, + "end": 1969.13, + "probability": 0.9917 + }, + { + "start": 1971.17, + "end": 1972.05, + "probability": 0.8309 + }, + { + "start": 1972.57, + "end": 1973.01, + "probability": 0.8956 + }, + { + "start": 1974.81, + "end": 1975.45, + "probability": 0.8931 + }, + { + "start": 1977.59, + "end": 1978.63, + "probability": 0.4874 + }, + { + "start": 1979.51, + "end": 1982.35, + "probability": 0.9892 + }, + { + "start": 1985.05, + "end": 1987.15, + "probability": 0.9891 + }, + { + "start": 1988.23, + "end": 1988.89, + "probability": 0.8148 + }, + { + "start": 1991.71, + "end": 1996.73, + "probability": 0.9777 + }, + { + "start": 1996.79, + "end": 1997.63, + "probability": 0.6395 + }, + { + "start": 1998.81, + "end": 2000.01, + "probability": 0.4255 + }, + { + "start": 2001.31, + "end": 2004.45, + "probability": 0.9294 + }, + { + "start": 2005.13, + "end": 2007.26, + "probability": 0.9777 + }, + { + "start": 2007.45, + "end": 2008.71, + "probability": 0.6 + }, + { + "start": 2009.41, + "end": 2010.53, + "probability": 0.5379 + }, + { + "start": 2012.51, + "end": 2012.69, + "probability": 0.0006 + }, + { + "start": 2014.59, + "end": 2017.17, + "probability": 0.9979 + }, + { + "start": 2019.35, + "end": 2020.87, + "probability": 0.9985 + }, + { + "start": 2021.71, + "end": 2023.77, + "probability": 0.9558 + }, + { + "start": 2025.07, + "end": 2027.11, + "probability": 0.9965 + }, + { + "start": 2027.15, + "end": 2028.09, + "probability": 0.9631 + }, + { + "start": 2029.49, + "end": 2031.19, + "probability": 0.9746 + }, + { + "start": 2031.65, + "end": 2033.19, + "probability": 0.8591 + }, + { + "start": 2034.71, + "end": 2036.09, + "probability": 0.7836 + }, + { + "start": 2036.11, + "end": 2036.35, + "probability": 0.861 + }, + { + "start": 2036.45, + "end": 2036.53, + "probability": 0.2244 + }, + { + "start": 2036.53, + "end": 2039.47, + "probability": 0.9436 + }, + { + "start": 2043.93, + "end": 2045.11, + "probability": 0.9382 + }, + { + "start": 2045.37, + "end": 2047.65, + "probability": 0.9979 + }, + { + "start": 2048.37, + "end": 2052.25, + "probability": 0.929 + }, + { + "start": 2052.39, + "end": 2053.33, + "probability": 0.943 + }, + { + "start": 2054.53, + "end": 2055.82, + "probability": 0.9568 + }, + { + "start": 2056.77, + "end": 2060.25, + "probability": 0.738 + }, + { + "start": 2060.27, + "end": 2060.75, + "probability": 0.9884 + }, + { + "start": 2062.53, + "end": 2063.13, + "probability": 0.0169 + }, + { + "start": 2064.05, + "end": 2064.43, + "probability": 0.0842 + }, + { + "start": 2064.43, + "end": 2066.27, + "probability": 0.7713 + }, + { + "start": 2068.03, + "end": 2071.19, + "probability": 0.9045 + }, + { + "start": 2071.33, + "end": 2071.79, + "probability": 0.5239 + }, + { + "start": 2072.39, + "end": 2072.73, + "probability": 0.4901 + }, + { + "start": 2072.73, + "end": 2073.03, + "probability": 0.3757 + }, + { + "start": 2073.81, + "end": 2074.25, + "probability": 0.9375 + }, + { + "start": 2075.03, + "end": 2077.27, + "probability": 0.6562 + }, + { + "start": 2077.81, + "end": 2078.3, + "probability": 0.3818 + }, + { + "start": 2078.63, + "end": 2078.89, + "probability": 0.4503 + }, + { + "start": 2078.91, + "end": 2079.79, + "probability": 0.8129 + }, + { + "start": 2083.01, + "end": 2085.7, + "probability": 0.9666 + }, + { + "start": 2086.57, + "end": 2087.65, + "probability": 0.4724 + }, + { + "start": 2088.23, + "end": 2089.29, + "probability": 0.99 + }, + { + "start": 2090.95, + "end": 2092.17, + "probability": 0.8481 + }, + { + "start": 2093.37, + "end": 2095.83, + "probability": 0.8956 + }, + { + "start": 2096.79, + "end": 2098.45, + "probability": 0.8186 + }, + { + "start": 2101.71, + "end": 2104.79, + "probability": 0.8687 + }, + { + "start": 2104.79, + "end": 2107.73, + "probability": 0.8892 + }, + { + "start": 2108.17, + "end": 2110.93, + "probability": 0.96 + }, + { + "start": 2112.73, + "end": 2115.15, + "probability": 0.8452 + }, + { + "start": 2116.75, + "end": 2118.33, + "probability": 0.9615 + }, + { + "start": 2119.81, + "end": 2120.81, + "probability": 0.6965 + }, + { + "start": 2121.83, + "end": 2123.35, + "probability": 0.6874 + }, + { + "start": 2123.65, + "end": 2127.15, + "probability": 0.95 + }, + { + "start": 2127.19, + "end": 2127.46, + "probability": 0.8482 + }, + { + "start": 2129.17, + "end": 2131.37, + "probability": 0.9414 + }, + { + "start": 2132.45, + "end": 2133.04, + "probability": 0.9375 + }, + { + "start": 2134.15, + "end": 2135.05, + "probability": 0.8937 + }, + { + "start": 2135.33, + "end": 2137.11, + "probability": 0.6986 + }, + { + "start": 2137.41, + "end": 2139.47, + "probability": 0.9568 + }, + { + "start": 2141.01, + "end": 2141.74, + "probability": 0.6997 + }, + { + "start": 2142.93, + "end": 2146.49, + "probability": 0.6619 + }, + { + "start": 2147.77, + "end": 2149.15, + "probability": 0.9089 + }, + { + "start": 2149.51, + "end": 2150.25, + "probability": 0.8451 + }, + { + "start": 2150.87, + "end": 2154.37, + "probability": 0.6315 + }, + { + "start": 2154.43, + "end": 2156.23, + "probability": 0.6931 + }, + { + "start": 2156.81, + "end": 2158.69, + "probability": 0.9767 + }, + { + "start": 2159.61, + "end": 2161.59, + "probability": 0.9301 + }, + { + "start": 2162.11, + "end": 2162.85, + "probability": 0.5155 + }, + { + "start": 2163.39, + "end": 2164.25, + "probability": 0.9873 + }, + { + "start": 2166.49, + "end": 2168.71, + "probability": 0.9484 + }, + { + "start": 2169.23, + "end": 2169.98, + "probability": 0.8292 + }, + { + "start": 2171.05, + "end": 2171.15, + "probability": 0.5813 + }, + { + "start": 2171.15, + "end": 2173.91, + "probability": 0.9871 + }, + { + "start": 2174.87, + "end": 2174.95, + "probability": 0.0481 + }, + { + "start": 2182.15, + "end": 2182.27, + "probability": 0.1394 + }, + { + "start": 2182.27, + "end": 2182.83, + "probability": 0.226 + }, + { + "start": 2184.11, + "end": 2184.29, + "probability": 0.0144 + }, + { + "start": 2184.29, + "end": 2186.99, + "probability": 0.5231 + }, + { + "start": 2189.55, + "end": 2190.63, + "probability": 0.6127 + }, + { + "start": 2191.43, + "end": 2194.05, + "probability": 0.9746 + }, + { + "start": 2196.37, + "end": 2199.01, + "probability": 0.9569 + }, + { + "start": 2199.19, + "end": 2200.11, + "probability": 0.5605 + }, + { + "start": 2200.17, + "end": 2200.98, + "probability": 0.9102 + }, + { + "start": 2203.13, + "end": 2203.39, + "probability": 0.6283 + }, + { + "start": 2203.57, + "end": 2204.63, + "probability": 0.8632 + }, + { + "start": 2204.73, + "end": 2205.79, + "probability": 0.974 + }, + { + "start": 2205.89, + "end": 2206.41, + "probability": 0.5518 + }, + { + "start": 2206.51, + "end": 2207.25, + "probability": 0.9814 + }, + { + "start": 2207.35, + "end": 2208.05, + "probability": 0.9509 + }, + { + "start": 2208.55, + "end": 2209.33, + "probability": 0.6151 + }, + { + "start": 2209.67, + "end": 2211.47, + "probability": 0.936 + }, + { + "start": 2214.09, + "end": 2216.73, + "probability": 0.6195 + }, + { + "start": 2216.75, + "end": 2217.83, + "probability": 0.7975 + }, + { + "start": 2217.93, + "end": 2218.54, + "probability": 0.9937 + }, + { + "start": 2219.45, + "end": 2223.15, + "probability": 0.9376 + }, + { + "start": 2224.07, + "end": 2224.59, + "probability": 0.7119 + }, + { + "start": 2224.63, + "end": 2225.47, + "probability": 0.9927 + }, + { + "start": 2225.53, + "end": 2226.15, + "probability": 0.5028 + }, + { + "start": 2227.33, + "end": 2227.85, + "probability": 0.7373 + }, + { + "start": 2228.81, + "end": 2230.19, + "probability": 0.9102 + }, + { + "start": 2234.03, + "end": 2234.79, + "probability": 0.965 + }, + { + "start": 2235.55, + "end": 2238.69, + "probability": 0.9792 + }, + { + "start": 2239.93, + "end": 2242.81, + "probability": 0.9888 + }, + { + "start": 2243.55, + "end": 2243.91, + "probability": 0.9433 + }, + { + "start": 2244.29, + "end": 2245.47, + "probability": 0.8482 + }, + { + "start": 2245.53, + "end": 2247.87, + "probability": 0.9917 + }, + { + "start": 2248.99, + "end": 2249.77, + "probability": 0.5183 + }, + { + "start": 2251.23, + "end": 2252.13, + "probability": 0.8036 + }, + { + "start": 2253.23, + "end": 2253.75, + "probability": 0.4557 + }, + { + "start": 2253.87, + "end": 2255.39, + "probability": 0.9937 + }, + { + "start": 2255.69, + "end": 2259.03, + "probability": 0.6274 + }, + { + "start": 2260.43, + "end": 2260.79, + "probability": 0.7659 + }, + { + "start": 2260.85, + "end": 2262.71, + "probability": 0.9163 + }, + { + "start": 2262.95, + "end": 2265.32, + "probability": 0.6823 + }, + { + "start": 2266.49, + "end": 2266.81, + "probability": 0.8071 + }, + { + "start": 2266.87, + "end": 2271.05, + "probability": 0.9686 + }, + { + "start": 2271.51, + "end": 2272.71, + "probability": 0.8493 + }, + { + "start": 2273.75, + "end": 2275.61, + "probability": 0.9589 + }, + { + "start": 2276.79, + "end": 2280.41, + "probability": 0.1976 + }, + { + "start": 2281.63, + "end": 2281.63, + "probability": 0.1012 + }, + { + "start": 2281.63, + "end": 2281.63, + "probability": 0.1465 + }, + { + "start": 2281.63, + "end": 2281.63, + "probability": 0.266 + }, + { + "start": 2281.63, + "end": 2281.63, + "probability": 0.0745 + }, + { + "start": 2281.71, + "end": 2284.12, + "probability": 0.3941 + }, + { + "start": 2284.21, + "end": 2284.34, + "probability": 0.4415 + }, + { + "start": 2285.37, + "end": 2286.65, + "probability": 0.6455 + }, + { + "start": 2287.49, + "end": 2287.59, + "probability": 0.2499 + }, + { + "start": 2287.59, + "end": 2288.33, + "probability": 0.4466 + }, + { + "start": 2288.51, + "end": 2289.46, + "probability": 0.9829 + }, + { + "start": 2290.91, + "end": 2293.05, + "probability": 0.774 + }, + { + "start": 2293.55, + "end": 2295.21, + "probability": 0.9946 + }, + { + "start": 2297.07, + "end": 2301.25, + "probability": 0.9536 + }, + { + "start": 2301.31, + "end": 2302.09, + "probability": 0.9934 + }, + { + "start": 2302.81, + "end": 2303.23, + "probability": 0.925 + }, + { + "start": 2303.55, + "end": 2304.35, + "probability": 0.8217 + }, + { + "start": 2304.85, + "end": 2305.31, + "probability": 0.8644 + }, + { + "start": 2305.41, + "end": 2306.05, + "probability": 0.7093 + }, + { + "start": 2306.99, + "end": 2308.75, + "probability": 0.9564 + }, + { + "start": 2309.75, + "end": 2310.93, + "probability": 0.9829 + }, + { + "start": 2311.61, + "end": 2313.75, + "probability": 0.6611 + }, + { + "start": 2313.95, + "end": 2314.87, + "probability": 0.9829 + }, + { + "start": 2315.47, + "end": 2316.37, + "probability": 0.9395 + }, + { + "start": 2316.97, + "end": 2317.61, + "probability": 0.4666 + }, + { + "start": 2317.99, + "end": 2319.27, + "probability": 0.8691 + }, + { + "start": 2319.95, + "end": 2320.35, + "probability": 0.9875 + }, + { + "start": 2322.27, + "end": 2325.07, + "probability": 0.9256 + }, + { + "start": 2326.19, + "end": 2327.73, + "probability": 0.8817 + }, + { + "start": 2329.19, + "end": 2333.53, + "probability": 0.9932 + }, + { + "start": 2334.07, + "end": 2336.21, + "probability": 0.6496 + }, + { + "start": 2337.73, + "end": 2341.29, + "probability": 0.9615 + }, + { + "start": 2341.91, + "end": 2342.57, + "probability": 0.4834 + }, + { + "start": 2342.85, + "end": 2344.43, + "probability": 0.6019 + }, + { + "start": 2346.87, + "end": 2348.33, + "probability": 0.981 + }, + { + "start": 2348.97, + "end": 2350.27, + "probability": 0.9978 + }, + { + "start": 2350.35, + "end": 2350.59, + "probability": 0.7492 + }, + { + "start": 2350.65, + "end": 2352.51, + "probability": 0.828 + }, + { + "start": 2352.79, + "end": 2353.83, + "probability": 0.1607 + }, + { + "start": 2354.47, + "end": 2356.23, + "probability": 0.7421 + }, + { + "start": 2357.31, + "end": 2359.61, + "probability": 0.9834 + }, + { + "start": 2361.07, + "end": 2361.85, + "probability": 0.9713 + }, + { + "start": 2365.05, + "end": 2365.41, + "probability": 0.8554 + }, + { + "start": 2365.97, + "end": 2367.71, + "probability": 0.9949 + }, + { + "start": 2367.91, + "end": 2370.03, + "probability": 0.9904 + }, + { + "start": 2370.13, + "end": 2371.45, + "probability": 0.9768 + }, + { + "start": 2374.07, + "end": 2376.35, + "probability": 0.2333 + }, + { + "start": 2376.47, + "end": 2376.81, + "probability": 0.0027 + }, + { + "start": 2376.81, + "end": 2377.45, + "probability": 0.1444 + }, + { + "start": 2378.77, + "end": 2381.43, + "probability": 0.6637 + }, + { + "start": 2382.05, + "end": 2385.07, + "probability": 0.8682 + }, + { + "start": 2387.79, + "end": 2389.53, + "probability": 0.906 + }, + { + "start": 2391.68, + "end": 2393.67, + "probability": 0.7858 + }, + { + "start": 2394.51, + "end": 2395.93, + "probability": 0.8659 + }, + { + "start": 2397.05, + "end": 2397.45, + "probability": 0.4244 + }, + { + "start": 2398.09, + "end": 2398.77, + "probability": 0.8496 + }, + { + "start": 2399.33, + "end": 2400.61, + "probability": 0.7983 + }, + { + "start": 2400.75, + "end": 2403.25, + "probability": 0.9961 + }, + { + "start": 2405.05, + "end": 2405.31, + "probability": 0.8055 + }, + { + "start": 2405.39, + "end": 2406.9, + "probability": 0.9823 + }, + { + "start": 2407.49, + "end": 2407.69, + "probability": 0.5535 + }, + { + "start": 2407.69, + "end": 2409.79, + "probability": 0.6489 + }, + { + "start": 2409.85, + "end": 2410.83, + "probability": 0.8509 + }, + { + "start": 2411.79, + "end": 2413.75, + "probability": 0.9953 + }, + { + "start": 2414.93, + "end": 2419.87, + "probability": 0.9868 + }, + { + "start": 2420.03, + "end": 2420.55, + "probability": 0.5469 + }, + { + "start": 2422.65, + "end": 2423.83, + "probability": 0.7902 + }, + { + "start": 2425.15, + "end": 2426.83, + "probability": 0.958 + }, + { + "start": 2429.85, + "end": 2431.73, + "probability": 0.9263 + }, + { + "start": 2433.43, + "end": 2435.65, + "probability": 0.8956 + }, + { + "start": 2435.77, + "end": 2437.77, + "probability": 0.6719 + }, + { + "start": 2438.71, + "end": 2439.69, + "probability": 0.9611 + }, + { + "start": 2440.05, + "end": 2440.91, + "probability": 0.2853 + }, + { + "start": 2440.91, + "end": 2441.33, + "probability": 0.4927 + }, + { + "start": 2442.29, + "end": 2443.15, + "probability": 0.9033 + }, + { + "start": 2443.35, + "end": 2444.17, + "probability": 0.9661 + }, + { + "start": 2444.39, + "end": 2447.47, + "probability": 0.9158 + }, + { + "start": 2447.63, + "end": 2450.09, + "probability": 0.9957 + }, + { + "start": 2451.01, + "end": 2452.51, + "probability": 0.9854 + }, + { + "start": 2453.71, + "end": 2457.27, + "probability": 0.997 + }, + { + "start": 2459.57, + "end": 2460.59, + "probability": 0.266 + }, + { + "start": 2461.77, + "end": 2463.49, + "probability": 0.9167 + }, + { + "start": 2463.71, + "end": 2465.01, + "probability": 0.9668 + }, + { + "start": 2465.17, + "end": 2465.35, + "probability": 0.6079 + }, + { + "start": 2465.43, + "end": 2465.79, + "probability": 0.8401 + }, + { + "start": 2466.89, + "end": 2468.05, + "probability": 0.787 + }, + { + "start": 2469.17, + "end": 2470.03, + "probability": 0.9912 + }, + { + "start": 2471.47, + "end": 2473.83, + "probability": 0.8628 + }, + { + "start": 2474.79, + "end": 2474.89, + "probability": 0.9846 + }, + { + "start": 2475.53, + "end": 2476.17, + "probability": 0.411 + }, + { + "start": 2477.19, + "end": 2478.59, + "probability": 0.9979 + }, + { + "start": 2479.33, + "end": 2481.91, + "probability": 0.927 + }, + { + "start": 2483.01, + "end": 2484.29, + "probability": 0.9907 + }, + { + "start": 2486.35, + "end": 2489.45, + "probability": 0.8804 + }, + { + "start": 2490.17, + "end": 2490.71, + "probability": 0.2418 + }, + { + "start": 2490.77, + "end": 2496.09, + "probability": 0.2644 + }, + { + "start": 2497.11, + "end": 2497.33, + "probability": 0.0539 + }, + { + "start": 2497.33, + "end": 2497.33, + "probability": 0.0865 + }, + { + "start": 2497.33, + "end": 2497.33, + "probability": 0.318 + }, + { + "start": 2497.33, + "end": 2497.79, + "probability": 0.0282 + }, + { + "start": 2498.41, + "end": 2498.9, + "probability": 0.8861 + }, + { + "start": 2499.63, + "end": 2500.33, + "probability": 0.169 + }, + { + "start": 2503.67, + "end": 2503.67, + "probability": 0.0926 + }, + { + "start": 2503.67, + "end": 2503.67, + "probability": 0.1589 + }, + { + "start": 2503.67, + "end": 2504.69, + "probability": 0.7046 + }, + { + "start": 2506.45, + "end": 2507.05, + "probability": 0.8857 + }, + { + "start": 2507.69, + "end": 2508.85, + "probability": 0.8316 + }, + { + "start": 2510.87, + "end": 2513.05, + "probability": 0.9299 + }, + { + "start": 2513.67, + "end": 2513.67, + "probability": 0.0883 + }, + { + "start": 2513.67, + "end": 2515.71, + "probability": 0.9287 + }, + { + "start": 2516.35, + "end": 2517.57, + "probability": 0.9128 + }, + { + "start": 2518.57, + "end": 2519.51, + "probability": 0.7876 + }, + { + "start": 2520.87, + "end": 2521.9, + "probability": 0.9883 + }, + { + "start": 2522.61, + "end": 2523.89, + "probability": 0.6553 + }, + { + "start": 2523.99, + "end": 2527.01, + "probability": 0.9976 + }, + { + "start": 2527.47, + "end": 2532.19, + "probability": 0.72 + }, + { + "start": 2533.08, + "end": 2535.33, + "probability": 0.4312 + }, + { + "start": 2536.19, + "end": 2539.01, + "probability": 0.6203 + }, + { + "start": 2539.65, + "end": 2544.33, + "probability": 0.5767 + }, + { + "start": 2544.43, + "end": 2545.18, + "probability": 0.9014 + }, + { + "start": 2546.43, + "end": 2546.89, + "probability": 0.0463 + }, + { + "start": 2546.89, + "end": 2550.29, + "probability": 0.9402 + }, + { + "start": 2551.95, + "end": 2556.39, + "probability": 0.0319 + }, + { + "start": 2556.51, + "end": 2557.65, + "probability": 0.0493 + }, + { + "start": 2557.65, + "end": 2557.65, + "probability": 0.0174 + }, + { + "start": 2557.65, + "end": 2557.65, + "probability": 0.0289 + }, + { + "start": 2557.65, + "end": 2558.21, + "probability": 0.1557 + }, + { + "start": 2558.35, + "end": 2558.35, + "probability": 0.0212 + }, + { + "start": 2558.35, + "end": 2558.35, + "probability": 0.0476 + }, + { + "start": 2558.35, + "end": 2558.35, + "probability": 0.5228 + }, + { + "start": 2558.35, + "end": 2559.73, + "probability": 0.4986 + }, + { + "start": 2559.77, + "end": 2562.17, + "probability": 0.8481 + }, + { + "start": 2565.01, + "end": 2565.75, + "probability": 0.0831 + }, + { + "start": 2565.75, + "end": 2568.01, + "probability": 0.4573 + }, + { + "start": 2569.13, + "end": 2570.97, + "probability": 0.6391 + }, + { + "start": 2571.17, + "end": 2572.29, + "probability": 0.9966 + }, + { + "start": 2572.39, + "end": 2573.13, + "probability": 0.9394 + }, + { + "start": 2573.93, + "end": 2575.43, + "probability": 0.8089 + }, + { + "start": 2576.19, + "end": 2579.61, + "probability": 0.0575 + }, + { + "start": 2580.33, + "end": 2580.97, + "probability": 0.1038 + }, + { + "start": 2580.97, + "end": 2580.97, + "probability": 0.1277 + }, + { + "start": 2580.97, + "end": 2580.97, + "probability": 0.061 + }, + { + "start": 2580.97, + "end": 2581.59, + "probability": 0.1048 + }, + { + "start": 2582.47, + "end": 2582.77, + "probability": 0.0591 + }, + { + "start": 2582.77, + "end": 2582.77, + "probability": 0.1639 + }, + { + "start": 2582.77, + "end": 2583.45, + "probability": 0.229 + }, + { + "start": 2584.69, + "end": 2585.11, + "probability": 0.5813 + }, + { + "start": 2585.75, + "end": 2585.77, + "probability": 0.014 + }, + { + "start": 2585.77, + "end": 2587.01, + "probability": 0.1396 + }, + { + "start": 2587.93, + "end": 2590.49, + "probability": 0.8212 + }, + { + "start": 2591.47, + "end": 2594.77, + "probability": 0.8853 + }, + { + "start": 2595.11, + "end": 2595.91, + "probability": 0.5124 + }, + { + "start": 2596.35, + "end": 2596.99, + "probability": 0.0986 + }, + { + "start": 2597.92, + "end": 2598.65, + "probability": 0.1452 + }, + { + "start": 2598.67, + "end": 2600.13, + "probability": 0.8418 + }, + { + "start": 2600.71, + "end": 2602.43, + "probability": 0.93 + }, + { + "start": 2603.83, + "end": 2606.39, + "probability": 0.4622 + }, + { + "start": 2606.43, + "end": 2607.15, + "probability": 0.4831 + }, + { + "start": 2607.29, + "end": 2607.65, + "probability": 0.2443 + }, + { + "start": 2607.67, + "end": 2608.89, + "probability": 0.9951 + }, + { + "start": 2610.09, + "end": 2613.67, + "probability": 0.315 + }, + { + "start": 2613.67, + "end": 2614.37, + "probability": 0.6245 + }, + { + "start": 2615.07, + "end": 2616.95, + "probability": 0.1793 + }, + { + "start": 2616.95, + "end": 2617.05, + "probability": 0.1694 + }, + { + "start": 2617.05, + "end": 2617.05, + "probability": 0.0953 + }, + { + "start": 2617.05, + "end": 2617.05, + "probability": 0.0595 + }, + { + "start": 2617.05, + "end": 2617.05, + "probability": 0.719 + }, + { + "start": 2617.05, + "end": 2617.05, + "probability": 0.4481 + }, + { + "start": 2617.05, + "end": 2617.73, + "probability": 0.6831 + }, + { + "start": 2617.79, + "end": 2619.15, + "probability": 0.8953 + }, + { + "start": 2619.51, + "end": 2619.81, + "probability": 0.2411 + }, + { + "start": 2620.13, + "end": 2622.45, + "probability": 0.9666 + }, + { + "start": 2623.21, + "end": 2623.21, + "probability": 0.186 + }, + { + "start": 2623.21, + "end": 2623.61, + "probability": 0.0815 + }, + { + "start": 2624.09, + "end": 2625.23, + "probability": 0.7679 + }, + { + "start": 2625.77, + "end": 2627.55, + "probability": 0.9758 + }, + { + "start": 2628.15, + "end": 2628.53, + "probability": 0.0158 + }, + { + "start": 2628.57, + "end": 2629.03, + "probability": 0.6038 + }, + { + "start": 2629.61, + "end": 2632.53, + "probability": 0.8943 + }, + { + "start": 2633.35, + "end": 2637.51, + "probability": 0.9768 + }, + { + "start": 2637.53, + "end": 2638.89, + "probability": 0.9211 + }, + { + "start": 2639.55, + "end": 2640.53, + "probability": 0.8089 + }, + { + "start": 2641.41, + "end": 2642.81, + "probability": 0.5714 + }, + { + "start": 2642.81, + "end": 2645.71, + "probability": 0.9414 + }, + { + "start": 2645.73, + "end": 2648.65, + "probability": 0.931 + }, + { + "start": 2649.43, + "end": 2652.25, + "probability": 0.3964 + }, + { + "start": 2652.53, + "end": 2652.79, + "probability": 0.1029 + }, + { + "start": 2652.81, + "end": 2653.37, + "probability": 0.2654 + }, + { + "start": 2653.37, + "end": 2653.39, + "probability": 0.0468 + }, + { + "start": 2653.39, + "end": 2654.43, + "probability": 0.5216 + }, + { + "start": 2654.89, + "end": 2655.63, + "probability": 0.6277 + }, + { + "start": 2655.83, + "end": 2656.69, + "probability": 0.3823 + }, + { + "start": 2656.81, + "end": 2659.13, + "probability": 0.6224 + }, + { + "start": 2659.49, + "end": 2659.65, + "probability": 0.4479 + }, + { + "start": 2659.81, + "end": 2661.01, + "probability": 0.6199 + }, + { + "start": 2662.11, + "end": 2665.39, + "probability": 0.783 + }, + { + "start": 2665.83, + "end": 2665.91, + "probability": 0.163 + }, + { + "start": 2665.91, + "end": 2665.91, + "probability": 0.0272 + }, + { + "start": 2665.91, + "end": 2668.17, + "probability": 0.683 + }, + { + "start": 2669.21, + "end": 2672.13, + "probability": 0.9336 + }, + { + "start": 2672.77, + "end": 2674.29, + "probability": 0.5496 + }, + { + "start": 2674.39, + "end": 2676.21, + "probability": 0.8402 + }, + { + "start": 2676.49, + "end": 2677.55, + "probability": 0.0859 + }, + { + "start": 2677.55, + "end": 2677.55, + "probability": 0.2127 + }, + { + "start": 2677.55, + "end": 2683.15, + "probability": 0.8249 + }, + { + "start": 2684.11, + "end": 2686.53, + "probability": 0.9891 + }, + { + "start": 2686.63, + "end": 2688.99, + "probability": 0.9951 + }, + { + "start": 2689.03, + "end": 2690.07, + "probability": 0.9097 + }, + { + "start": 2691.09, + "end": 2695.25, + "probability": 0.8817 + }, + { + "start": 2696.07, + "end": 2698.65, + "probability": 0.999 + }, + { + "start": 2698.65, + "end": 2699.19, + "probability": 0.0102 + }, + { + "start": 2699.23, + "end": 2699.53, + "probability": 0.1024 + }, + { + "start": 2699.53, + "end": 2700.05, + "probability": 0.2683 + }, + { + "start": 2700.67, + "end": 2703.99, + "probability": 0.8979 + }, + { + "start": 2704.39, + "end": 2704.91, + "probability": 0.8992 + }, + { + "start": 2705.27, + "end": 2706.23, + "probability": 0.7782 + }, + { + "start": 2706.65, + "end": 2709.29, + "probability": 0.4638 + }, + { + "start": 2709.29, + "end": 2709.5, + "probability": 0.9281 + }, + { + "start": 2709.95, + "end": 2710.81, + "probability": 0.5348 + }, + { + "start": 2710.81, + "end": 2712.53, + "probability": 0.5512 + }, + { + "start": 2712.85, + "end": 2712.85, + "probability": 0.2576 + }, + { + "start": 2712.85, + "end": 2715.05, + "probability": 0.7778 + }, + { + "start": 2715.37, + "end": 2717.81, + "probability": 0.6416 + }, + { + "start": 2717.93, + "end": 2718.96, + "probability": 0.514 + }, + { + "start": 2719.89, + "end": 2720.95, + "probability": 0.68 + }, + { + "start": 2721.63, + "end": 2724.63, + "probability": 0.7581 + }, + { + "start": 2726.51, + "end": 2730.47, + "probability": 0.6604 + }, + { + "start": 2731.09, + "end": 2732.33, + "probability": 0.9946 + }, + { + "start": 2732.39, + "end": 2733.57, + "probability": 0.6079 + }, + { + "start": 2734.53, + "end": 2734.95, + "probability": 0.8575 + }, + { + "start": 2735.07, + "end": 2735.61, + "probability": 0.9258 + }, + { + "start": 2735.75, + "end": 2736.85, + "probability": 0.8201 + }, + { + "start": 2736.91, + "end": 2737.41, + "probability": 0.8869 + }, + { + "start": 2737.81, + "end": 2738.65, + "probability": 0.9284 + }, + { + "start": 2739.31, + "end": 2742.03, + "probability": 0.8672 + }, + { + "start": 2744.49, + "end": 2745.79, + "probability": 0.6035 + }, + { + "start": 2746.71, + "end": 2748.63, + "probability": 0.9768 + }, + { + "start": 2749.36, + "end": 2749.51, + "probability": 0.0153 + }, + { + "start": 2749.51, + "end": 2749.63, + "probability": 0.068 + }, + { + "start": 2749.65, + "end": 2749.65, + "probability": 0.0277 + }, + { + "start": 2749.65, + "end": 2750.03, + "probability": 0.3975 + }, + { + "start": 2751.35, + "end": 2752.25, + "probability": 0.5779 + }, + { + "start": 2753.09, + "end": 2754.78, + "probability": 0.6026 + }, + { + "start": 2755.95, + "end": 2756.57, + "probability": 0.4253 + }, + { + "start": 2757.21, + "end": 2758.43, + "probability": 0.773 + }, + { + "start": 2758.59, + "end": 2760.57, + "probability": 0.8814 + }, + { + "start": 2760.61, + "end": 2764.71, + "probability": 0.3229 + }, + { + "start": 2764.71, + "end": 2765.87, + "probability": 0.2572 + }, + { + "start": 2766.05, + "end": 2766.13, + "probability": 0.0599 + }, + { + "start": 2768.31, + "end": 2769.03, + "probability": 0.0226 + }, + { + "start": 2769.03, + "end": 2771.03, + "probability": 0.0378 + }, + { + "start": 2776.41, + "end": 2777.09, + "probability": 0.049 + }, + { + "start": 2777.09, + "end": 2778.83, + "probability": 0.2081 + }, + { + "start": 2780.46, + "end": 2782.57, + "probability": 0.1424 + }, + { + "start": 2782.99, + "end": 2786.57, + "probability": 0.0274 + }, + { + "start": 2788.23, + "end": 2790.87, + "probability": 0.0958 + }, + { + "start": 2791.23, + "end": 2793.07, + "probability": 0.3663 + }, + { + "start": 2793.59, + "end": 2795.41, + "probability": 0.0766 + }, + { + "start": 2795.41, + "end": 2795.83, + "probability": 0.093 + }, + { + "start": 2795.83, + "end": 2795.9, + "probability": 0.0197 + }, + { + "start": 2796.87, + "end": 2798.11, + "probability": 0.142 + }, + { + "start": 2799.63, + "end": 2800.22, + "probability": 0.0833 + }, + { + "start": 2801.79, + "end": 2803.23, + "probability": 0.0767 + }, + { + "start": 2803.54, + "end": 2804.14, + "probability": 0.0166 + }, + { + "start": 2806.78, + "end": 2807.23, + "probability": 0.0245 + }, + { + "start": 2809.83, + "end": 2809.93, + "probability": 0.2105 + }, + { + "start": 2811.33, + "end": 2814.17, + "probability": 0.0612 + }, + { + "start": 2814.17, + "end": 2815.51, + "probability": 0.1365 + }, + { + "start": 2816.19, + "end": 2816.23, + "probability": 0.2332 + }, + { + "start": 2816.23, + "end": 2816.69, + "probability": 0.0411 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.0, + "end": 2817.0, + "probability": 0.0 + }, + { + "start": 2817.14, + "end": 2817.74, + "probability": 0.0688 + }, + { + "start": 2817.74, + "end": 2819.58, + "probability": 0.0159 + }, + { + "start": 2819.58, + "end": 2819.58, + "probability": 0.1536 + }, + { + "start": 2819.8, + "end": 2820.92, + "probability": 0.0624 + }, + { + "start": 2820.98, + "end": 2822.02, + "probability": 0.3507 + }, + { + "start": 2822.02, + "end": 2822.42, + "probability": 0.2438 + }, + { + "start": 2822.42, + "end": 2824.74, + "probability": 0.2199 + }, + { + "start": 2825.08, + "end": 2827.4, + "probability": 0.925 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2954.06, + "end": 2956.32, + "probability": 0.211 + }, + { + "start": 2956.92, + "end": 2957.12, + "probability": 0.0031 + }, + { + "start": 2957.66, + "end": 2959.1, + "probability": 0.2549 + }, + { + "start": 2961.02, + "end": 2963.9, + "probability": 0.0981 + }, + { + "start": 2964.7, + "end": 2965.5, + "probability": 0.0717 + }, + { + "start": 2965.66, + "end": 2966.08, + "probability": 0.1615 + }, + { + "start": 2966.94, + "end": 2967.7, + "probability": 0.0189 + }, + { + "start": 2969.62, + "end": 2969.62, + "probability": 0.0497 + }, + { + "start": 2970.18, + "end": 2971.5, + "probability": 0.0958 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.0, + "end": 3082.0, + "probability": 0.0 + }, + { + "start": 3082.18, + "end": 3086.3, + "probability": 0.9115 + }, + { + "start": 3086.5, + "end": 3088.12, + "probability": 0.5629 + }, + { + "start": 3088.28, + "end": 3089.92, + "probability": 0.8341 + }, + { + "start": 3090.92, + "end": 3092.42, + "probability": 0.9444 + }, + { + "start": 3092.98, + "end": 3094.16, + "probability": 0.6884 + }, + { + "start": 3094.86, + "end": 3095.4, + "probability": 0.9455 + }, + { + "start": 3095.48, + "end": 3097.88, + "probability": 0.9695 + }, + { + "start": 3099.18, + "end": 3100.58, + "probability": 0.9724 + }, + { + "start": 3101.24, + "end": 3101.28, + "probability": 0.0157 + }, + { + "start": 3101.28, + "end": 3101.8, + "probability": 0.2549 + }, + { + "start": 3101.9, + "end": 3103.1, + "probability": 0.5696 + }, + { + "start": 3103.18, + "end": 3104.1, + "probability": 0.5006 + }, + { + "start": 3104.12, + "end": 3105.08, + "probability": 0.2527 + }, + { + "start": 3105.42, + "end": 3107.4, + "probability": 0.7037 + }, + { + "start": 3107.96, + "end": 3108.87, + "probability": 0.7935 + }, + { + "start": 3109.88, + "end": 3111.82, + "probability": 0.6855 + }, + { + "start": 3112.2, + "end": 3114.86, + "probability": 0.8078 + }, + { + "start": 3115.74, + "end": 3118.86, + "probability": 0.029 + }, + { + "start": 3119.0, + "end": 3123.54, + "probability": 0.8875 + }, + { + "start": 3123.76, + "end": 3125.94, + "probability": 0.6006 + }, + { + "start": 3126.78, + "end": 3131.28, + "probability": 0.8729 + }, + { + "start": 3132.32, + "end": 3133.24, + "probability": 0.9443 + }, + { + "start": 3133.34, + "end": 3134.82, + "probability": 0.9174 + }, + { + "start": 3135.24, + "end": 3136.8, + "probability": 0.9878 + }, + { + "start": 3137.78, + "end": 3142.34, + "probability": 0.991 + }, + { + "start": 3142.94, + "end": 3143.94, + "probability": 0.415 + }, + { + "start": 3144.18, + "end": 3148.62, + "probability": 0.9294 + }, + { + "start": 3149.14, + "end": 3150.72, + "probability": 0.9976 + }, + { + "start": 3151.6, + "end": 3153.96, + "probability": 0.9459 + }, + { + "start": 3154.5, + "end": 3154.5, + "probability": 0.6402 + }, + { + "start": 3154.5, + "end": 3156.72, + "probability": 0.8695 + }, + { + "start": 3157.04, + "end": 3158.22, + "probability": 0.8467 + }, + { + "start": 3158.28, + "end": 3159.18, + "probability": 0.9401 + }, + { + "start": 3160.42, + "end": 3161.52, + "probability": 0.9428 + }, + { + "start": 3161.92, + "end": 3164.8, + "probability": 0.7515 + }, + { + "start": 3165.94, + "end": 3168.7, + "probability": 0.999 + }, + { + "start": 3168.96, + "end": 3171.28, + "probability": 0.6201 + }, + { + "start": 3171.34, + "end": 3171.82, + "probability": 0.849 + }, + { + "start": 3173.48, + "end": 3174.82, + "probability": 0.9907 + }, + { + "start": 3174.9, + "end": 3175.76, + "probability": 0.8926 + }, + { + "start": 3175.88, + "end": 3176.16, + "probability": 0.6194 + }, + { + "start": 3176.16, + "end": 3176.88, + "probability": 0.6346 + }, + { + "start": 3176.98, + "end": 3178.28, + "probability": 0.5093 + }, + { + "start": 3179.21, + "end": 3181.1, + "probability": 0.9362 + }, + { + "start": 3181.12, + "end": 3182.39, + "probability": 0.6448 + }, + { + "start": 3182.98, + "end": 3184.54, + "probability": 0.9739 + }, + { + "start": 3185.78, + "end": 3187.1, + "probability": 0.9596 + }, + { + "start": 3187.66, + "end": 3188.5, + "probability": 0.8923 + }, + { + "start": 3190.62, + "end": 3190.92, + "probability": 0.9714 + }, + { + "start": 3191.46, + "end": 3193.08, + "probability": 0.9121 + }, + { + "start": 3193.82, + "end": 3194.66, + "probability": 0.8449 + }, + { + "start": 3195.76, + "end": 3196.66, + "probability": 0.779 + }, + { + "start": 3196.82, + "end": 3197.96, + "probability": 0.8141 + }, + { + "start": 3198.3, + "end": 3199.12, + "probability": 0.957 + }, + { + "start": 3199.88, + "end": 3204.2, + "probability": 0.9939 + }, + { + "start": 3204.28, + "end": 3205.32, + "probability": 0.9641 + }, + { + "start": 3205.68, + "end": 3206.38, + "probability": 0.9896 + }, + { + "start": 3207.16, + "end": 3208.34, + "probability": 0.9447 + }, + { + "start": 3209.78, + "end": 3211.36, + "probability": 0.7982 + }, + { + "start": 3211.96, + "end": 3212.88, + "probability": 0.9517 + }, + { + "start": 3214.52, + "end": 3217.96, + "probability": 0.7568 + }, + { + "start": 3218.88, + "end": 3222.3, + "probability": 0.8936 + }, + { + "start": 3223.58, + "end": 3224.3, + "probability": 0.9784 + }, + { + "start": 3225.42, + "end": 3226.68, + "probability": 0.8696 + }, + { + "start": 3227.9, + "end": 3231.92, + "probability": 0.9891 + }, + { + "start": 3232.7, + "end": 3235.3, + "probability": 0.9984 + }, + { + "start": 3235.36, + "end": 3236.28, + "probability": 0.5787 + }, + { + "start": 3237.2, + "end": 3239.44, + "probability": 0.9824 + }, + { + "start": 3240.84, + "end": 3245.38, + "probability": 0.9062 + }, + { + "start": 3246.6, + "end": 3246.92, + "probability": 0.8276 + }, + { + "start": 3247.74, + "end": 3249.58, + "probability": 0.9191 + }, + { + "start": 3249.68, + "end": 3250.72, + "probability": 0.9227 + }, + { + "start": 3251.16, + "end": 3251.7, + "probability": 0.8171 + }, + { + "start": 3252.9, + "end": 3253.78, + "probability": 0.8137 + }, + { + "start": 3255.68, + "end": 3258.38, + "probability": 0.9419 + }, + { + "start": 3260.12, + "end": 3262.56, + "probability": 0.7837 + }, + { + "start": 3263.18, + "end": 3263.58, + "probability": 0.5954 + }, + { + "start": 3264.56, + "end": 3266.66, + "probability": 0.8688 + }, + { + "start": 3267.66, + "end": 3269.03, + "probability": 0.9932 + }, + { + "start": 3269.86, + "end": 3270.94, + "probability": 0.9548 + }, + { + "start": 3270.98, + "end": 3271.81, + "probability": 0.9428 + }, + { + "start": 3272.4, + "end": 3273.46, + "probability": 0.9195 + }, + { + "start": 3273.72, + "end": 3276.49, + "probability": 0.9883 + }, + { + "start": 3277.72, + "end": 3278.3, + "probability": 0.6314 + }, + { + "start": 3279.5, + "end": 3279.7, + "probability": 0.8652 + }, + { + "start": 3279.78, + "end": 3280.52, + "probability": 0.9742 + }, + { + "start": 3280.6, + "end": 3282.44, + "probability": 0.9951 + }, + { + "start": 3284.38, + "end": 3285.38, + "probability": 0.9354 + }, + { + "start": 3285.9, + "end": 3287.34, + "probability": 0.9593 + }, + { + "start": 3289.26, + "end": 3292.76, + "probability": 0.8443 + }, + { + "start": 3294.1, + "end": 3295.07, + "probability": 0.7559 + }, + { + "start": 3295.24, + "end": 3298.46, + "probability": 0.8861 + }, + { + "start": 3300.18, + "end": 3302.24, + "probability": 0.9699 + }, + { + "start": 3302.4, + "end": 3304.1, + "probability": 0.7787 + }, + { + "start": 3304.58, + "end": 3308.36, + "probability": 0.9939 + }, + { + "start": 3308.52, + "end": 3309.4, + "probability": 0.8795 + }, + { + "start": 3309.94, + "end": 3310.64, + "probability": 0.5629 + }, + { + "start": 3310.78, + "end": 3311.62, + "probability": 0.6681 + }, + { + "start": 3311.62, + "end": 3312.58, + "probability": 0.5388 + }, + { + "start": 3312.58, + "end": 3314.18, + "probability": 0.5963 + }, + { + "start": 3315.18, + "end": 3315.92, + "probability": 0.9849 + }, + { + "start": 3317.26, + "end": 3318.5, + "probability": 0.926 + }, + { + "start": 3318.84, + "end": 3321.44, + "probability": 0.8589 + }, + { + "start": 3321.48, + "end": 3323.46, + "probability": 0.8809 + }, + { + "start": 3323.49, + "end": 3325.78, + "probability": 0.9337 + }, + { + "start": 3327.12, + "end": 3327.82, + "probability": 0.9883 + }, + { + "start": 3329.12, + "end": 3331.86, + "probability": 0.4114 + }, + { + "start": 3332.68, + "end": 3334.34, + "probability": 0.9404 + }, + { + "start": 3336.5, + "end": 3337.66, + "probability": 0.7943 + }, + { + "start": 3338.96, + "end": 3340.06, + "probability": 0.8789 + }, + { + "start": 3340.92, + "end": 3341.32, + "probability": 0.7039 + }, + { + "start": 3342.12, + "end": 3345.56, + "probability": 0.9159 + }, + { + "start": 3347.2, + "end": 3350.84, + "probability": 0.8815 + }, + { + "start": 3352.36, + "end": 3353.88, + "probability": 0.8081 + }, + { + "start": 3354.68, + "end": 3356.22, + "probability": 0.9624 + }, + { + "start": 3356.6, + "end": 3359.9, + "probability": 0.9875 + }, + { + "start": 3361.28, + "end": 3365.72, + "probability": 0.9963 + }, + { + "start": 3367.46, + "end": 3368.1, + "probability": 0.5062 + }, + { + "start": 3369.48, + "end": 3373.06, + "probability": 0.7697 + }, + { + "start": 3373.18, + "end": 3373.96, + "probability": 0.8899 + }, + { + "start": 3375.1, + "end": 3375.78, + "probability": 0.6291 + }, + { + "start": 3376.06, + "end": 3379.28, + "probability": 0.9872 + }, + { + "start": 3380.08, + "end": 3380.28, + "probability": 0.4 + }, + { + "start": 3383.5, + "end": 3384.28, + "probability": 0.6639 + }, + { + "start": 3386.04, + "end": 3391.12, + "probability": 0.9287 + }, + { + "start": 3392.78, + "end": 3394.2, + "probability": 0.9731 + }, + { + "start": 3396.94, + "end": 3398.5, + "probability": 0.5928 + }, + { + "start": 3399.58, + "end": 3400.46, + "probability": 0.6569 + }, + { + "start": 3401.26, + "end": 3402.1, + "probability": 0.6275 + }, + { + "start": 3403.24, + "end": 3406.98, + "probability": 0.9964 + }, + { + "start": 3407.36, + "end": 3408.92, + "probability": 0.8741 + }, + { + "start": 3409.34, + "end": 3410.64, + "probability": 0.9753 + }, + { + "start": 3412.44, + "end": 3414.32, + "probability": 0.998 + }, + { + "start": 3415.14, + "end": 3416.76, + "probability": 0.9957 + }, + { + "start": 3417.8, + "end": 3419.76, + "probability": 0.9569 + }, + { + "start": 3420.38, + "end": 3421.1, + "probability": 0.952 + }, + { + "start": 3421.96, + "end": 3422.66, + "probability": 0.7569 + }, + { + "start": 3423.42, + "end": 3425.86, + "probability": 0.9875 + }, + { + "start": 3426.82, + "end": 3427.62, + "probability": 0.9345 + }, + { + "start": 3430.3, + "end": 3433.66, + "probability": 0.9977 + }, + { + "start": 3434.18, + "end": 3436.04, + "probability": 0.8553 + }, + { + "start": 3436.7, + "end": 3437.1, + "probability": 0.9587 + }, + { + "start": 3437.88, + "end": 3438.86, + "probability": 0.8301 + }, + { + "start": 3439.06, + "end": 3440.01, + "probability": 0.8252 + }, + { + "start": 3440.64, + "end": 3441.64, + "probability": 0.7 + }, + { + "start": 3442.84, + "end": 3443.61, + "probability": 0.9014 + }, + { + "start": 3445.3, + "end": 3446.64, + "probability": 0.8481 + }, + { + "start": 3447.14, + "end": 3447.52, + "probability": 0.4353 + }, + { + "start": 3447.52, + "end": 3448.41, + "probability": 0.6376 + }, + { + "start": 3448.6, + "end": 3449.26, + "probability": 0.7551 + }, + { + "start": 3450.14, + "end": 3451.09, + "probability": 0.9819 + }, + { + "start": 3451.54, + "end": 3454.16, + "probability": 0.9633 + }, + { + "start": 3454.24, + "end": 3454.72, + "probability": 0.9837 + }, + { + "start": 3455.58, + "end": 3457.5, + "probability": 0.7154 + }, + { + "start": 3457.88, + "end": 3459.78, + "probability": 0.9526 + }, + { + "start": 3459.84, + "end": 3460.58, + "probability": 0.927 + }, + { + "start": 3460.64, + "end": 3460.88, + "probability": 0.4083 + }, + { + "start": 3461.12, + "end": 3461.76, + "probability": 0.7177 + }, + { + "start": 3461.78, + "end": 3462.58, + "probability": 0.3627 + }, + { + "start": 3462.58, + "end": 3463.42, + "probability": 0.7871 + }, + { + "start": 3463.54, + "end": 3464.58, + "probability": 0.8915 + }, + { + "start": 3464.72, + "end": 3465.5, + "probability": 0.9697 + }, + { + "start": 3466.54, + "end": 3469.4, + "probability": 0.7935 + }, + { + "start": 3470.5, + "end": 3472.12, + "probability": 0.7655 + }, + { + "start": 3472.76, + "end": 3474.06, + "probability": 0.9221 + }, + { + "start": 3474.46, + "end": 3478.16, + "probability": 0.8353 + }, + { + "start": 3478.36, + "end": 3478.94, + "probability": 0.9824 + }, + { + "start": 3479.78, + "end": 3480.98, + "probability": 0.9701 + }, + { + "start": 3481.54, + "end": 3482.48, + "probability": 0.9211 + }, + { + "start": 3482.58, + "end": 3483.7, + "probability": 0.971 + }, + { + "start": 3484.28, + "end": 3486.8, + "probability": 0.8721 + }, + { + "start": 3487.52, + "end": 3488.32, + "probability": 0.6484 + }, + { + "start": 3490.64, + "end": 3493.78, + "probability": 0.9816 + }, + { + "start": 3494.28, + "end": 3495.04, + "probability": 0.9392 + }, + { + "start": 3496.02, + "end": 3496.46, + "probability": 0.2219 + }, + { + "start": 3496.48, + "end": 3500.18, + "probability": 0.9322 + }, + { + "start": 3501.82, + "end": 3503.46, + "probability": 0.29 + }, + { + "start": 3505.42, + "end": 3507.6, + "probability": 0.8717 + }, + { + "start": 3508.74, + "end": 3509.08, + "probability": 0.3495 + }, + { + "start": 3509.12, + "end": 3512.1, + "probability": 0.9868 + }, + { + "start": 3513.58, + "end": 3515.16, + "probability": 0.9683 + }, + { + "start": 3515.5, + "end": 3515.84, + "probability": 0.8981 + }, + { + "start": 3515.94, + "end": 3516.84, + "probability": 0.8518 + }, + { + "start": 3517.1, + "end": 3517.7, + "probability": 0.8368 + }, + { + "start": 3518.6, + "end": 3522.24, + "probability": 0.8748 + }, + { + "start": 3522.24, + "end": 3523.9, + "probability": 0.9968 + }, + { + "start": 3524.04, + "end": 3525.16, + "probability": 0.7972 + }, + { + "start": 3525.46, + "end": 3527.32, + "probability": 0.9448 + }, + { + "start": 3529.08, + "end": 3530.67, + "probability": 0.6456 + }, + { + "start": 3530.84, + "end": 3532.12, + "probability": 0.9939 + }, + { + "start": 3532.62, + "end": 3534.4, + "probability": 0.996 + }, + { + "start": 3535.26, + "end": 3537.4, + "probability": 0.6855 + }, + { + "start": 3538.98, + "end": 3542.48, + "probability": 0.6071 + }, + { + "start": 3543.32, + "end": 3545.74, + "probability": 0.9343 + }, + { + "start": 3547.48, + "end": 3548.64, + "probability": 0.6014 + }, + { + "start": 3550.58, + "end": 3551.96, + "probability": 0.8629 + }, + { + "start": 3552.54, + "end": 3555.64, + "probability": 0.9849 + }, + { + "start": 3556.78, + "end": 3557.58, + "probability": 0.8007 + }, + { + "start": 3558.42, + "end": 3559.0, + "probability": 0.8376 + }, + { + "start": 3559.62, + "end": 3561.38, + "probability": 0.9633 + }, + { + "start": 3562.34, + "end": 3565.76, + "probability": 0.9126 + }, + { + "start": 3566.48, + "end": 3569.04, + "probability": 0.5503 + }, + { + "start": 3569.6, + "end": 3571.28, + "probability": 0.8359 + }, + { + "start": 3573.54, + "end": 3576.2, + "probability": 0.7064 + }, + { + "start": 3578.04, + "end": 3580.58, + "probability": 0.66 + }, + { + "start": 3580.58, + "end": 3583.98, + "probability": 0.9097 + }, + { + "start": 3585.98, + "end": 3587.04, + "probability": 0.3938 + }, + { + "start": 3589.36, + "end": 3591.8, + "probability": 0.8454 + }, + { + "start": 3591.9, + "end": 3593.76, + "probability": 0.9848 + }, + { + "start": 3594.92, + "end": 3597.7, + "probability": 0.9915 + }, + { + "start": 3597.78, + "end": 3598.84, + "probability": 0.9448 + }, + { + "start": 3598.9, + "end": 3599.71, + "probability": 0.827 + }, + { + "start": 3600.06, + "end": 3601.62, + "probability": 0.7572 + }, + { + "start": 3601.9, + "end": 3603.1, + "probability": 0.6494 + }, + { + "start": 3605.02, + "end": 3607.26, + "probability": 0.5547 + }, + { + "start": 3608.1, + "end": 3610.48, + "probability": 0.9415 + }, + { + "start": 3612.84, + "end": 3613.4, + "probability": 0.4005 + }, + { + "start": 3613.4, + "end": 3615.56, + "probability": 0.9373 + }, + { + "start": 3615.76, + "end": 3616.3, + "probability": 0.8394 + }, + { + "start": 3617.74, + "end": 3618.54, + "probability": 0.7468 + }, + { + "start": 3620.4, + "end": 3621.26, + "probability": 0.7706 + }, + { + "start": 3622.46, + "end": 3622.48, + "probability": 0.0312 + }, + { + "start": 3622.48, + "end": 3623.8, + "probability": 0.9022 + }, + { + "start": 3624.24, + "end": 3626.08, + "probability": 0.8035 + }, + { + "start": 3626.14, + "end": 3626.58, + "probability": 0.9685 + }, + { + "start": 3627.6, + "end": 3629.4, + "probability": 0.9913 + }, + { + "start": 3630.12, + "end": 3631.52, + "probability": 0.428 + }, + { + "start": 3633.28, + "end": 3635.6, + "probability": 0.9824 + }, + { + "start": 3636.48, + "end": 3637.09, + "probability": 0.959 + }, + { + "start": 3637.78, + "end": 3640.26, + "probability": 0.8517 + }, + { + "start": 3641.48, + "end": 3643.44, + "probability": 0.9753 + }, + { + "start": 3644.08, + "end": 3644.7, + "probability": 0.8337 + }, + { + "start": 3645.26, + "end": 3647.9, + "probability": 0.1107 + }, + { + "start": 3648.8, + "end": 3649.06, + "probability": 0.0193 + }, + { + "start": 3649.06, + "end": 3649.92, + "probability": 0.9167 + }, + { + "start": 3650.14, + "end": 3652.46, + "probability": 0.719 + }, + { + "start": 3653.0, + "end": 3655.54, + "probability": 0.9878 + }, + { + "start": 3656.42, + "end": 3656.86, + "probability": 0.7603 + }, + { + "start": 3657.28, + "end": 3658.34, + "probability": 0.9751 + }, + { + "start": 3658.4, + "end": 3659.18, + "probability": 0.8256 + }, + { + "start": 3660.86, + "end": 3663.5, + "probability": 0.9065 + }, + { + "start": 3664.56, + "end": 3669.68, + "probability": 0.87 + }, + { + "start": 3670.9, + "end": 3671.8, + "probability": 0.9399 + }, + { + "start": 3672.64, + "end": 3676.84, + "probability": 0.9962 + }, + { + "start": 3677.4, + "end": 3678.3, + "probability": 0.7803 + }, + { + "start": 3680.1, + "end": 3682.46, + "probability": 0.8867 + }, + { + "start": 3683.64, + "end": 3684.23, + "probability": 0.9541 + }, + { + "start": 3684.54, + "end": 3685.98, + "probability": 0.8321 + }, + { + "start": 3686.2, + "end": 3687.92, + "probability": 0.8676 + }, + { + "start": 3687.98, + "end": 3688.44, + "probability": 0.2455 + }, + { + "start": 3689.24, + "end": 3691.2, + "probability": 0.8796 + }, + { + "start": 3691.26, + "end": 3691.96, + "probability": 0.7325 + }, + { + "start": 3692.02, + "end": 3692.72, + "probability": 0.8235 + }, + { + "start": 3694.34, + "end": 3695.8, + "probability": 0.9395 + }, + { + "start": 3696.58, + "end": 3697.46, + "probability": 0.3744 + }, + { + "start": 3697.98, + "end": 3699.5, + "probability": 0.9582 + }, + { + "start": 3700.08, + "end": 3700.38, + "probability": 0.9672 + }, + { + "start": 3700.84, + "end": 3703.56, + "probability": 0.9976 + }, + { + "start": 3704.06, + "end": 3704.62, + "probability": 0.8409 + }, + { + "start": 3704.72, + "end": 3705.21, + "probability": 0.9092 + }, + { + "start": 3707.4, + "end": 3709.36, + "probability": 0.9646 + }, + { + "start": 3710.66, + "end": 3714.16, + "probability": 0.9777 + }, + { + "start": 3714.26, + "end": 3716.08, + "probability": 0.9913 + }, + { + "start": 3717.66, + "end": 3719.58, + "probability": 0.9834 + }, + { + "start": 3720.26, + "end": 3721.16, + "probability": 0.9763 + }, + { + "start": 3721.24, + "end": 3721.72, + "probability": 0.9495 + }, + { + "start": 3722.24, + "end": 3724.92, + "probability": 0.9327 + }, + { + "start": 3726.04, + "end": 3727.16, + "probability": 0.9841 + }, + { + "start": 3728.9, + "end": 3730.26, + "probability": 0.6923 + }, + { + "start": 3730.62, + "end": 3730.94, + "probability": 0.5579 + }, + { + "start": 3731.26, + "end": 3731.98, + "probability": 0.7623 + }, + { + "start": 3732.04, + "end": 3734.36, + "probability": 0.9864 + }, + { + "start": 3735.48, + "end": 3738.08, + "probability": 0.8511 + }, + { + "start": 3739.34, + "end": 3741.9, + "probability": 0.9097 + }, + { + "start": 3742.9, + "end": 3744.7, + "probability": 0.9883 + }, + { + "start": 3745.52, + "end": 3745.92, + "probability": 0.2524 + }, + { + "start": 3746.32, + "end": 3750.6, + "probability": 0.9688 + }, + { + "start": 3752.2, + "end": 3753.0, + "probability": 0.8984 + }, + { + "start": 3753.12, + "end": 3753.96, + "probability": 0.7487 + }, + { + "start": 3754.38, + "end": 3755.72, + "probability": 0.8578 + }, + { + "start": 3755.8, + "end": 3757.44, + "probability": 0.6631 + }, + { + "start": 3757.5, + "end": 3758.35, + "probability": 0.6797 + }, + { + "start": 3758.54, + "end": 3759.22, + "probability": 0.5519 + }, + { + "start": 3759.74, + "end": 3760.28, + "probability": 0.6394 + }, + { + "start": 3761.74, + "end": 3763.81, + "probability": 0.96 + }, + { + "start": 3766.22, + "end": 3767.98, + "probability": 0.9799 + }, + { + "start": 3768.28, + "end": 3770.54, + "probability": 0.9873 + }, + { + "start": 3771.82, + "end": 3772.78, + "probability": 0.7508 + }, + { + "start": 3772.84, + "end": 3774.16, + "probability": 0.9927 + }, + { + "start": 3774.24, + "end": 3775.32, + "probability": 0.5469 + }, + { + "start": 3776.84, + "end": 3780.96, + "probability": 0.9883 + }, + { + "start": 3781.98, + "end": 3782.28, + "probability": 0.5363 + }, + { + "start": 3784.34, + "end": 3786.84, + "probability": 0.9741 + }, + { + "start": 3786.94, + "end": 3788.06, + "probability": 0.9469 + }, + { + "start": 3788.9, + "end": 3790.04, + "probability": 0.7464 + }, + { + "start": 3790.66, + "end": 3793.26, + "probability": 0.9943 + }, + { + "start": 3793.28, + "end": 3794.16, + "probability": 0.9494 + }, + { + "start": 3796.84, + "end": 3796.92, + "probability": 0.0784 + }, + { + "start": 3796.92, + "end": 3797.54, + "probability": 0.6614 + }, + { + "start": 3798.54, + "end": 3799.2, + "probability": 0.9793 + }, + { + "start": 3800.94, + "end": 3803.88, + "probability": 0.975 + }, + { + "start": 3804.5, + "end": 3805.98, + "probability": 0.9661 + }, + { + "start": 3807.6, + "end": 3810.48, + "probability": 0.9673 + }, + { + "start": 3810.8, + "end": 3813.16, + "probability": 0.5032 + }, + { + "start": 3816.04, + "end": 3817.42, + "probability": 0.9949 + }, + { + "start": 3817.74, + "end": 3819.36, + "probability": 0.9883 + }, + { + "start": 3819.94, + "end": 3821.58, + "probability": 0.7369 + }, + { + "start": 3822.64, + "end": 3822.64, + "probability": 0.1096 + }, + { + "start": 3822.64, + "end": 3822.64, + "probability": 0.0344 + }, + { + "start": 3822.64, + "end": 3824.38, + "probability": 0.3852 + }, + { + "start": 3824.56, + "end": 3825.0, + "probability": 0.72 + }, + { + "start": 3825.02, + "end": 3825.84, + "probability": 0.9231 + }, + { + "start": 3825.88, + "end": 3827.06, + "probability": 0.8251 + }, + { + "start": 3827.08, + "end": 3827.48, + "probability": 0.8558 + }, + { + "start": 3828.98, + "end": 3829.86, + "probability": 0.7662 + }, + { + "start": 3832.06, + "end": 3833.26, + "probability": 0.9398 + }, + { + "start": 3835.22, + "end": 3836.3, + "probability": 0.9111 + }, + { + "start": 3837.26, + "end": 3840.04, + "probability": 0.3665 + }, + { + "start": 3840.04, + "end": 3842.06, + "probability": 0.9752 + }, + { + "start": 3842.54, + "end": 3844.16, + "probability": 0.9927 + }, + { + "start": 3844.82, + "end": 3846.42, + "probability": 0.9604 + }, + { + "start": 3848.26, + "end": 3849.04, + "probability": 0.2613 + }, + { + "start": 3849.04, + "end": 3850.96, + "probability": 0.8184 + }, + { + "start": 3851.28, + "end": 3852.62, + "probability": 0.5712 + }, + { + "start": 3853.6, + "end": 3854.64, + "probability": 0.4202 + }, + { + "start": 3855.42, + "end": 3856.26, + "probability": 0.9167 + }, + { + "start": 3857.18, + "end": 3859.0, + "probability": 0.7906 + }, + { + "start": 3860.26, + "end": 3860.78, + "probability": 0.8309 + }, + { + "start": 3861.04, + "end": 3863.44, + "probability": 0.9154 + }, + { + "start": 3864.6, + "end": 3865.99, + "probability": 0.9977 + }, + { + "start": 3868.0, + "end": 3871.16, + "probability": 0.6424 + }, + { + "start": 3872.76, + "end": 3875.44, + "probability": 0.9844 + }, + { + "start": 3877.18, + "end": 3879.24, + "probability": 0.9847 + }, + { + "start": 3881.22, + "end": 3882.44, + "probability": 0.9859 + }, + { + "start": 3884.4, + "end": 3886.88, + "probability": 0.9839 + }, + { + "start": 3889.84, + "end": 3892.45, + "probability": 0.9966 + }, + { + "start": 3894.62, + "end": 3896.8, + "probability": 0.9929 + }, + { + "start": 3896.8, + "end": 3898.8, + "probability": 0.9866 + }, + { + "start": 3901.26, + "end": 3903.74, + "probability": 0.9795 + }, + { + "start": 3904.8, + "end": 3905.96, + "probability": 0.7722 + }, + { + "start": 3909.16, + "end": 3912.06, + "probability": 0.9927 + }, + { + "start": 3913.12, + "end": 3913.52, + "probability": 0.7478 + }, + { + "start": 3914.88, + "end": 3916.26, + "probability": 0.9922 + }, + { + "start": 3916.6, + "end": 3917.64, + "probability": 0.9954 + }, + { + "start": 3917.98, + "end": 3918.88, + "probability": 0.9803 + }, + { + "start": 3919.82, + "end": 3921.26, + "probability": 0.9851 + }, + { + "start": 3921.32, + "end": 3926.08, + "probability": 0.9914 + }, + { + "start": 3926.4, + "end": 3927.5, + "probability": 0.6406 + }, + { + "start": 3928.6, + "end": 3930.38, + "probability": 0.998 + }, + { + "start": 3931.76, + "end": 3934.38, + "probability": 0.9614 + }, + { + "start": 3936.08, + "end": 3936.84, + "probability": 0.6906 + }, + { + "start": 3937.4, + "end": 3938.06, + "probability": 0.812 + }, + { + "start": 3938.18, + "end": 3938.62, + "probability": 0.487 + }, + { + "start": 3938.66, + "end": 3939.84, + "probability": 0.8374 + }, + { + "start": 3939.92, + "end": 3942.46, + "probability": 0.9281 + }, + { + "start": 3945.01, + "end": 3947.9, + "probability": 0.9631 + }, + { + "start": 3948.24, + "end": 3949.3, + "probability": 0.9913 + }, + { + "start": 3950.14, + "end": 3951.27, + "probability": 0.9945 + }, + { + "start": 3951.92, + "end": 3953.84, + "probability": 0.9927 + }, + { + "start": 3953.9, + "end": 3954.78, + "probability": 0.9381 + }, + { + "start": 3955.91, + "end": 3957.7, + "probability": 0.9851 + }, + { + "start": 3958.29, + "end": 3960.22, + "probability": 0.6794 + }, + { + "start": 3960.9, + "end": 3961.92, + "probability": 0.9497 + }, + { + "start": 3963.52, + "end": 3965.44, + "probability": 0.9561 + }, + { + "start": 3966.08, + "end": 3967.01, + "probability": 0.9509 + }, + { + "start": 3967.28, + "end": 3968.18, + "probability": 0.9579 + }, + { + "start": 3968.28, + "end": 3968.98, + "probability": 0.9767 + }, + { + "start": 3969.24, + "end": 3969.58, + "probability": 0.9709 + }, + { + "start": 3970.46, + "end": 3970.92, + "probability": 0.9534 + }, + { + "start": 3972.26, + "end": 3973.18, + "probability": 0.7631 + }, + { + "start": 3973.54, + "end": 3975.54, + "probability": 0.9359 + }, + { + "start": 3975.54, + "end": 3979.42, + "probability": 0.9067 + }, + { + "start": 3997.96, + "end": 4000.14, + "probability": 0.6522 + }, + { + "start": 4000.14, + "end": 4001.38, + "probability": 0.6166 + }, + { + "start": 4001.96, + "end": 4004.6, + "probability": 0.5803 + }, + { + "start": 4005.92, + "end": 4014.39, + "probability": 0.9971 + }, + { + "start": 4014.44, + "end": 4019.88, + "probability": 0.9776 + }, + { + "start": 4021.62, + "end": 4023.82, + "probability": 0.98 + }, + { + "start": 4025.32, + "end": 4025.94, + "probability": 0.8672 + }, + { + "start": 4026.42, + "end": 4031.52, + "probability": 0.9969 + }, + { + "start": 4032.12, + "end": 4034.7, + "probability": 0.9702 + }, + { + "start": 4035.9, + "end": 4036.32, + "probability": 0.7419 + }, + { + "start": 4037.18, + "end": 4038.66, + "probability": 0.9398 + }, + { + "start": 4040.38, + "end": 4043.26, + "probability": 0.937 + }, + { + "start": 4044.02, + "end": 4049.0, + "probability": 0.9675 + }, + { + "start": 4050.72, + "end": 4051.56, + "probability": 0.8716 + }, + { + "start": 4053.72, + "end": 4056.94, + "probability": 0.984 + }, + { + "start": 4058.0, + "end": 4060.68, + "probability": 0.986 + }, + { + "start": 4061.42, + "end": 4064.52, + "probability": 0.9977 + }, + { + "start": 4065.82, + "end": 4068.06, + "probability": 0.8674 + }, + { + "start": 4068.92, + "end": 4073.26, + "probability": 0.9959 + }, + { + "start": 4073.42, + "end": 4077.46, + "probability": 0.9978 + }, + { + "start": 4079.74, + "end": 4080.84, + "probability": 0.765 + }, + { + "start": 4081.38, + "end": 4085.62, + "probability": 0.983 + }, + { + "start": 4085.74, + "end": 4090.42, + "probability": 0.9771 + }, + { + "start": 4091.3, + "end": 4093.92, + "probability": 0.7949 + }, + { + "start": 4095.12, + "end": 4102.1, + "probability": 0.9941 + }, + { + "start": 4102.66, + "end": 4107.38, + "probability": 0.9918 + }, + { + "start": 4107.38, + "end": 4111.64, + "probability": 0.9978 + }, + { + "start": 4113.76, + "end": 4117.72, + "probability": 0.8738 + }, + { + "start": 4120.28, + "end": 4124.54, + "probability": 0.9352 + }, + { + "start": 4125.06, + "end": 4127.52, + "probability": 0.7993 + }, + { + "start": 4128.12, + "end": 4129.64, + "probability": 0.9868 + }, + { + "start": 4130.66, + "end": 4132.12, + "probability": 0.908 + }, + { + "start": 4133.14, + "end": 4137.22, + "probability": 0.9821 + }, + { + "start": 4138.74, + "end": 4141.12, + "probability": 0.9029 + }, + { + "start": 4141.82, + "end": 4146.17, + "probability": 0.9929 + }, + { + "start": 4149.86, + "end": 4152.66, + "probability": 0.9353 + }, + { + "start": 4153.96, + "end": 4155.04, + "probability": 0.4841 + }, + { + "start": 4155.7, + "end": 4161.46, + "probability": 0.9189 + }, + { + "start": 4162.0, + "end": 4167.58, + "probability": 0.9941 + }, + { + "start": 4169.28, + "end": 4171.66, + "probability": 0.7307 + }, + { + "start": 4172.5, + "end": 4174.18, + "probability": 0.9662 + }, + { + "start": 4175.58, + "end": 4181.18, + "probability": 0.9859 + }, + { + "start": 4182.16, + "end": 4182.93, + "probability": 0.9932 + }, + { + "start": 4183.68, + "end": 4184.96, + "probability": 0.7603 + }, + { + "start": 4186.02, + "end": 4191.18, + "probability": 0.9724 + }, + { + "start": 4192.22, + "end": 4195.02, + "probability": 0.9678 + }, + { + "start": 4196.0, + "end": 4202.56, + "probability": 0.962 + }, + { + "start": 4204.6, + "end": 4207.38, + "probability": 0.959 + }, + { + "start": 4208.84, + "end": 4211.3, + "probability": 0.9946 + }, + { + "start": 4212.92, + "end": 4216.87, + "probability": 0.9551 + }, + { + "start": 4218.24, + "end": 4222.16, + "probability": 0.9932 + }, + { + "start": 4223.82, + "end": 4224.74, + "probability": 0.5727 + }, + { + "start": 4225.78, + "end": 4228.16, + "probability": 0.9937 + }, + { + "start": 4229.22, + "end": 4233.0, + "probability": 0.9492 + }, + { + "start": 4233.84, + "end": 4237.96, + "probability": 0.9524 + }, + { + "start": 4238.28, + "end": 4240.08, + "probability": 0.9888 + }, + { + "start": 4241.44, + "end": 4244.82, + "probability": 0.9832 + }, + { + "start": 4245.92, + "end": 4248.04, + "probability": 0.9764 + }, + { + "start": 4249.26, + "end": 4250.56, + "probability": 0.9427 + }, + { + "start": 4252.36, + "end": 4252.58, + "probability": 0.1232 + }, + { + "start": 4253.44, + "end": 4256.84, + "probability": 0.9921 + }, + { + "start": 4258.9, + "end": 4263.22, + "probability": 0.6744 + }, + { + "start": 4264.16, + "end": 4267.76, + "probability": 0.9966 + }, + { + "start": 4269.76, + "end": 4270.38, + "probability": 0.8145 + }, + { + "start": 4270.56, + "end": 4271.14, + "probability": 0.7319 + }, + { + "start": 4271.26, + "end": 4272.42, + "probability": 0.9604 + }, + { + "start": 4272.9, + "end": 4274.92, + "probability": 0.9883 + }, + { + "start": 4275.66, + "end": 4278.76, + "probability": 0.871 + }, + { + "start": 4280.68, + "end": 4289.98, + "probability": 0.9453 + }, + { + "start": 4290.56, + "end": 4291.96, + "probability": 0.6688 + }, + { + "start": 4292.66, + "end": 4295.9, + "probability": 0.9873 + }, + { + "start": 4297.1, + "end": 4305.84, + "probability": 0.6644 + }, + { + "start": 4306.76, + "end": 4310.18, + "probability": 0.9825 + }, + { + "start": 4310.28, + "end": 4316.62, + "probability": 0.9889 + }, + { + "start": 4317.6, + "end": 4321.12, + "probability": 0.9932 + }, + { + "start": 4322.26, + "end": 4325.03, + "probability": 0.8762 + }, + { + "start": 4326.22, + "end": 4330.94, + "probability": 0.7805 + }, + { + "start": 4334.12, + "end": 4336.24, + "probability": 0.8357 + }, + { + "start": 4337.5, + "end": 4339.6, + "probability": 0.9946 + }, + { + "start": 4339.74, + "end": 4345.06, + "probability": 0.9942 + }, + { + "start": 4345.92, + "end": 4348.9, + "probability": 0.9792 + }, + { + "start": 4349.62, + "end": 4352.18, + "probability": 0.995 + }, + { + "start": 4353.42, + "end": 4355.24, + "probability": 0.5667 + }, + { + "start": 4356.28, + "end": 4359.1, + "probability": 0.7653 + }, + { + "start": 4359.18, + "end": 4364.16, + "probability": 0.9545 + }, + { + "start": 4365.94, + "end": 4371.88, + "probability": 0.9763 + }, + { + "start": 4373.1, + "end": 4377.22, + "probability": 0.9319 + }, + { + "start": 4378.02, + "end": 4383.1, + "probability": 0.7434 + }, + { + "start": 4384.24, + "end": 4387.12, + "probability": 0.5087 + }, + { + "start": 4387.96, + "end": 4389.92, + "probability": 0.8926 + }, + { + "start": 4392.88, + "end": 4395.44, + "probability": 0.9883 + }, + { + "start": 4397.48, + "end": 4398.36, + "probability": 0.8086 + }, + { + "start": 4399.86, + "end": 4400.6, + "probability": 0.2798 + }, + { + "start": 4403.66, + "end": 4405.98, + "probability": 0.9471 + }, + { + "start": 4407.94, + "end": 4411.56, + "probability": 0.6031 + }, + { + "start": 4412.1, + "end": 4413.04, + "probability": 0.6699 + }, + { + "start": 4413.14, + "end": 4413.96, + "probability": 0.9133 + }, + { + "start": 4415.8, + "end": 4417.28, + "probability": 0.6183 + }, + { + "start": 4417.56, + "end": 4421.02, + "probability": 0.9929 + }, + { + "start": 4421.02, + "end": 4424.56, + "probability": 0.9976 + }, + { + "start": 4425.2, + "end": 4427.08, + "probability": 0.9956 + }, + { + "start": 4427.8, + "end": 4430.58, + "probability": 0.8384 + }, + { + "start": 4431.8, + "end": 4434.16, + "probability": 0.9832 + }, + { + "start": 4435.24, + "end": 4440.46, + "probability": 0.9912 + }, + { + "start": 4442.6, + "end": 4443.64, + "probability": 0.6201 + }, + { + "start": 4444.38, + "end": 4446.56, + "probability": 0.8522 + }, + { + "start": 4447.52, + "end": 4449.6, + "probability": 0.9383 + }, + { + "start": 4451.7, + "end": 4455.94, + "probability": 0.9951 + }, + { + "start": 4455.94, + "end": 4461.44, + "probability": 0.983 + }, + { + "start": 4463.88, + "end": 4467.9, + "probability": 0.9318 + }, + { + "start": 4468.92, + "end": 4470.58, + "probability": 0.9751 + }, + { + "start": 4471.3, + "end": 4473.42, + "probability": 0.9971 + }, + { + "start": 4474.28, + "end": 4479.52, + "probability": 0.9933 + }, + { + "start": 4480.38, + "end": 4485.08, + "probability": 0.9407 + }, + { + "start": 4485.98, + "end": 4487.13, + "probability": 0.8213 + }, + { + "start": 4488.74, + "end": 4491.8, + "probability": 0.9785 + }, + { + "start": 4492.6, + "end": 4495.8, + "probability": 0.999 + }, + { + "start": 4496.4, + "end": 4499.1, + "probability": 0.6949 + }, + { + "start": 4500.0, + "end": 4502.7, + "probability": 0.9102 + }, + { + "start": 4503.54, + "end": 4506.78, + "probability": 0.9937 + }, + { + "start": 4507.3, + "end": 4508.22, + "probability": 0.9937 + }, + { + "start": 4509.54, + "end": 4513.64, + "probability": 0.9817 + }, + { + "start": 4514.78, + "end": 4516.16, + "probability": 0.7069 + }, + { + "start": 4516.72, + "end": 4517.56, + "probability": 0.9412 + }, + { + "start": 4518.22, + "end": 4519.38, + "probability": 0.9879 + }, + { + "start": 4520.06, + "end": 4521.28, + "probability": 0.952 + }, + { + "start": 4522.46, + "end": 4524.42, + "probability": 0.9774 + }, + { + "start": 4525.36, + "end": 4529.4, + "probability": 0.9946 + }, + { + "start": 4530.66, + "end": 4536.42, + "probability": 0.9955 + }, + { + "start": 4538.04, + "end": 4539.16, + "probability": 0.6692 + }, + { + "start": 4539.18, + "end": 4540.66, + "probability": 0.8973 + }, + { + "start": 4540.78, + "end": 4542.94, + "probability": 0.9003 + }, + { + "start": 4543.56, + "end": 4545.58, + "probability": 0.8985 + }, + { + "start": 4545.76, + "end": 4546.96, + "probability": 0.9613 + }, + { + "start": 4547.62, + "end": 4550.0, + "probability": 0.8965 + }, + { + "start": 4550.1, + "end": 4550.56, + "probability": 0.958 + }, + { + "start": 4550.96, + "end": 4552.48, + "probability": 0.8762 + }, + { + "start": 4552.96, + "end": 4555.72, + "probability": 0.9922 + }, + { + "start": 4556.28, + "end": 4560.42, + "probability": 0.9563 + }, + { + "start": 4560.48, + "end": 4562.52, + "probability": 0.9893 + }, + { + "start": 4563.38, + "end": 4568.2, + "probability": 0.6593 + }, + { + "start": 4569.69, + "end": 4574.66, + "probability": 0.9985 + }, + { + "start": 4575.96, + "end": 4579.26, + "probability": 0.9268 + }, + { + "start": 4579.98, + "end": 4586.78, + "probability": 0.9912 + }, + { + "start": 4588.66, + "end": 4591.28, + "probability": 0.9977 + }, + { + "start": 4593.96, + "end": 4595.06, + "probability": 0.7289 + }, + { + "start": 4596.3, + "end": 4602.16, + "probability": 0.835 + }, + { + "start": 4604.46, + "end": 4607.56, + "probability": 0.2175 + }, + { + "start": 4607.58, + "end": 4607.66, + "probability": 0.2822 + }, + { + "start": 4629.3, + "end": 4633.2, + "probability": 0.6814 + }, + { + "start": 4633.74, + "end": 4636.16, + "probability": 0.7782 + }, + { + "start": 4637.38, + "end": 4638.02, + "probability": 0.9954 + }, + { + "start": 4638.84, + "end": 4640.06, + "probability": 0.6699 + }, + { + "start": 4640.2, + "end": 4642.68, + "probability": 0.9583 + }, + { + "start": 4643.44, + "end": 4643.76, + "probability": 0.7257 + }, + { + "start": 4645.54, + "end": 4649.36, + "probability": 0.9788 + }, + { + "start": 4652.08, + "end": 4655.16, + "probability": 0.9799 + }, + { + "start": 4657.18, + "end": 4657.76, + "probability": 0.9884 + }, + { + "start": 4658.66, + "end": 4660.82, + "probability": 0.9933 + }, + { + "start": 4661.6, + "end": 4664.54, + "probability": 0.9727 + }, + { + "start": 4664.66, + "end": 4665.18, + "probability": 0.6379 + }, + { + "start": 4665.9, + "end": 4666.98, + "probability": 0.7209 + }, + { + "start": 4669.44, + "end": 4672.42, + "probability": 0.8488 + }, + { + "start": 4673.88, + "end": 4674.67, + "probability": 0.967 + }, + { + "start": 4676.06, + "end": 4678.94, + "probability": 0.8055 + }, + { + "start": 4679.54, + "end": 4683.68, + "probability": 0.9759 + }, + { + "start": 4685.1, + "end": 4687.24, + "probability": 0.9635 + }, + { + "start": 4687.34, + "end": 4687.6, + "probability": 0.3395 + }, + { + "start": 4687.6, + "end": 4687.94, + "probability": 0.3715 + }, + { + "start": 4688.1, + "end": 4688.98, + "probability": 0.6934 + }, + { + "start": 4690.12, + "end": 4692.82, + "probability": 0.8979 + }, + { + "start": 4693.52, + "end": 4694.2, + "probability": 0.7335 + }, + { + "start": 4696.9, + "end": 4699.8, + "probability": 0.9585 + }, + { + "start": 4700.02, + "end": 4700.9, + "probability": 0.8875 + }, + { + "start": 4701.24, + "end": 4702.38, + "probability": 0.9673 + }, + { + "start": 4704.46, + "end": 4705.76, + "probability": 0.9858 + }, + { + "start": 4707.9, + "end": 4710.72, + "probability": 0.9717 + }, + { + "start": 4711.12, + "end": 4712.28, + "probability": 0.9448 + }, + { + "start": 4712.8, + "end": 4716.54, + "probability": 0.98 + }, + { + "start": 4716.88, + "end": 4717.68, + "probability": 0.8648 + }, + { + "start": 4718.12, + "end": 4720.45, + "probability": 0.4534 + }, + { + "start": 4720.52, + "end": 4722.13, + "probability": 0.8281 + }, + { + "start": 4722.7, + "end": 4725.0, + "probability": 0.8003 + }, + { + "start": 4726.14, + "end": 4729.02, + "probability": 0.7325 + }, + { + "start": 4729.72, + "end": 4730.14, + "probability": 0.6684 + }, + { + "start": 4733.24, + "end": 4734.0, + "probability": 0.9463 + }, + { + "start": 4734.86, + "end": 4739.12, + "probability": 0.8271 + }, + { + "start": 4740.46, + "end": 4740.84, + "probability": 0.9191 + }, + { + "start": 4741.04, + "end": 4744.82, + "probability": 0.9927 + }, + { + "start": 4745.34, + "end": 4746.5, + "probability": 0.8621 + }, + { + "start": 4747.2, + "end": 4747.84, + "probability": 0.9656 + }, + { + "start": 4748.0, + "end": 4748.98, + "probability": 0.9593 + }, + { + "start": 4749.16, + "end": 4751.5, + "probability": 0.9372 + }, + { + "start": 4751.72, + "end": 4752.46, + "probability": 0.8149 + }, + { + "start": 4753.52, + "end": 4756.72, + "probability": 0.9955 + }, + { + "start": 4758.26, + "end": 4760.42, + "probability": 0.9724 + }, + { + "start": 4760.64, + "end": 4763.82, + "probability": 0.9888 + }, + { + "start": 4764.83, + "end": 4770.96, + "probability": 0.999 + }, + { + "start": 4772.34, + "end": 4774.66, + "probability": 0.8091 + }, + { + "start": 4776.74, + "end": 4777.92, + "probability": 0.9778 + }, + { + "start": 4779.46, + "end": 4780.8, + "probability": 0.8591 + }, + { + "start": 4780.9, + "end": 4782.12, + "probability": 0.2677 + }, + { + "start": 4782.24, + "end": 4782.58, + "probability": 0.7188 + }, + { + "start": 4784.38, + "end": 4785.6, + "probability": 0.7948 + }, + { + "start": 4786.78, + "end": 4788.16, + "probability": 0.9037 + }, + { + "start": 4788.26, + "end": 4789.28, + "probability": 0.9976 + }, + { + "start": 4791.44, + "end": 4793.49, + "probability": 0.9944 + }, + { + "start": 4795.22, + "end": 4801.14, + "probability": 0.9769 + }, + { + "start": 4802.26, + "end": 4804.9, + "probability": 0.9798 + }, + { + "start": 4806.1, + "end": 4810.8, + "probability": 0.8657 + }, + { + "start": 4813.88, + "end": 4814.42, + "probability": 0.3843 + }, + { + "start": 4814.68, + "end": 4818.54, + "probability": 0.7466 + }, + { + "start": 4819.34, + "end": 4821.72, + "probability": 0.957 + }, + { + "start": 4823.9, + "end": 4824.58, + "probability": 0.9814 + }, + { + "start": 4826.6, + "end": 4828.6, + "probability": 0.6288 + }, + { + "start": 4828.7, + "end": 4829.42, + "probability": 0.8169 + }, + { + "start": 4829.5, + "end": 4830.14, + "probability": 0.7049 + }, + { + "start": 4830.32, + "end": 4833.34, + "probability": 0.9968 + }, + { + "start": 4836.36, + "end": 4837.12, + "probability": 0.4364 + }, + { + "start": 4837.18, + "end": 4838.34, + "probability": 0.9316 + }, + { + "start": 4838.66, + "end": 4839.78, + "probability": 0.8673 + }, + { + "start": 4839.78, + "end": 4839.94, + "probability": 0.6954 + }, + { + "start": 4840.04, + "end": 4840.52, + "probability": 0.975 + }, + { + "start": 4840.56, + "end": 4841.18, + "probability": 0.954 + }, + { + "start": 4841.74, + "end": 4843.1, + "probability": 0.9816 + }, + { + "start": 4843.24, + "end": 4844.72, + "probability": 0.991 + }, + { + "start": 4845.06, + "end": 4846.22, + "probability": 0.803 + }, + { + "start": 4846.46, + "end": 4847.16, + "probability": 0.8629 + }, + { + "start": 4847.5, + "end": 4849.06, + "probability": 0.7494 + }, + { + "start": 4850.24, + "end": 4851.76, + "probability": 0.7487 + }, + { + "start": 4854.18, + "end": 4856.86, + "probability": 0.9568 + }, + { + "start": 4859.04, + "end": 4861.66, + "probability": 0.828 + }, + { + "start": 4861.92, + "end": 4863.44, + "probability": 0.845 + }, + { + "start": 4864.28, + "end": 4865.72, + "probability": 0.8308 + }, + { + "start": 4866.46, + "end": 4867.84, + "probability": 0.9891 + }, + { + "start": 4869.08, + "end": 4871.38, + "probability": 0.658 + }, + { + "start": 4873.98, + "end": 4875.14, + "probability": 0.708 + }, + { + "start": 4875.2, + "end": 4875.8, + "probability": 0.9714 + }, + { + "start": 4875.92, + "end": 4876.52, + "probability": 0.7591 + }, + { + "start": 4876.92, + "end": 4877.68, + "probability": 0.97 + }, + { + "start": 4877.74, + "end": 4878.68, + "probability": 0.8298 + }, + { + "start": 4880.6, + "end": 4882.34, + "probability": 0.8647 + }, + { + "start": 4883.14, + "end": 4883.76, + "probability": 0.5624 + }, + { + "start": 4885.12, + "end": 4888.0, + "probability": 0.9683 + }, + { + "start": 4890.14, + "end": 4892.14, + "probability": 0.9663 + }, + { + "start": 4892.8, + "end": 4894.1, + "probability": 0.4704 + }, + { + "start": 4894.34, + "end": 4895.08, + "probability": 0.5536 + }, + { + "start": 4895.8, + "end": 4896.92, + "probability": 0.202 + }, + { + "start": 4897.22, + "end": 4900.32, + "probability": 0.2117 + }, + { + "start": 4900.6, + "end": 4900.6, + "probability": 0.1791 + }, + { + "start": 4900.6, + "end": 4901.96, + "probability": 0.2763 + }, + { + "start": 4902.62, + "end": 4902.76, + "probability": 0.1096 + }, + { + "start": 4902.76, + "end": 4903.56, + "probability": 0.4946 + }, + { + "start": 4903.68, + "end": 4905.34, + "probability": 0.633 + }, + { + "start": 4905.74, + "end": 4906.96, + "probability": 0.5694 + }, + { + "start": 4907.16, + "end": 4909.42, + "probability": 0.5228 + }, + { + "start": 4909.6, + "end": 4910.66, + "probability": 0.6172 + }, + { + "start": 4912.44, + "end": 4912.56, + "probability": 0.0066 + }, + { + "start": 4912.56, + "end": 4912.56, + "probability": 0.0583 + }, + { + "start": 4912.56, + "end": 4914.12, + "probability": 0.0496 + }, + { + "start": 4915.44, + "end": 4916.24, + "probability": 0.1852 + }, + { + "start": 4916.28, + "end": 4917.06, + "probability": 0.4202 + }, + { + "start": 4917.42, + "end": 4920.76, + "probability": 0.614 + }, + { + "start": 4920.8, + "end": 4922.25, + "probability": 0.4987 + }, + { + "start": 4922.64, + "end": 4923.41, + "probability": 0.0142 + }, + { + "start": 4923.8, + "end": 4924.12, + "probability": 0.5819 + }, + { + "start": 4924.32, + "end": 4926.17, + "probability": 0.9873 + }, + { + "start": 4926.3, + "end": 4928.06, + "probability": 0.1652 + }, + { + "start": 4928.06, + "end": 4929.44, + "probability": 0.0134 + }, + { + "start": 4930.74, + "end": 4931.68, + "probability": 0.1882 + }, + { + "start": 4931.68, + "end": 4931.68, + "probability": 0.1632 + }, + { + "start": 4931.68, + "end": 4931.68, + "probability": 0.3743 + }, + { + "start": 4932.16, + "end": 4933.08, + "probability": 0.0981 + }, + { + "start": 4933.08, + "end": 4934.13, + "probability": 0.3221 + }, + { + "start": 4934.86, + "end": 4939.76, + "probability": 0.6549 + }, + { + "start": 4940.3, + "end": 4941.3, + "probability": 0.6454 + }, + { + "start": 4941.7, + "end": 4943.02, + "probability": 0.8498 + }, + { + "start": 4943.56, + "end": 4947.36, + "probability": 0.1505 + }, + { + "start": 4948.14, + "end": 4953.36, + "probability": 0.0938 + }, + { + "start": 4953.64, + "end": 4953.96, + "probability": 0.0222 + }, + { + "start": 4954.2, + "end": 4956.14, + "probability": 0.7738 + }, + { + "start": 4956.28, + "end": 4957.16, + "probability": 0.2468 + }, + { + "start": 4957.22, + "end": 4958.3, + "probability": 0.7429 + }, + { + "start": 4958.34, + "end": 4960.32, + "probability": 0.9397 + }, + { + "start": 4960.9, + "end": 4962.68, + "probability": 0.7077 + }, + { + "start": 4962.78, + "end": 4967.12, + "probability": 0.5631 + }, + { + "start": 4967.68, + "end": 4968.19, + "probability": 0.9814 + }, + { + "start": 4968.74, + "end": 4969.82, + "probability": 0.4347 + }, + { + "start": 4969.92, + "end": 4970.96, + "probability": 0.6973 + }, + { + "start": 4971.9, + "end": 4972.58, + "probability": 0.168 + }, + { + "start": 4972.9, + "end": 4973.92, + "probability": 0.2837 + }, + { + "start": 4974.16, + "end": 4976.02, + "probability": 0.2013 + }, + { + "start": 4976.04, + "end": 4977.1, + "probability": 0.8066 + }, + { + "start": 4977.54, + "end": 4979.4, + "probability": 0.3163 + }, + { + "start": 4982.7, + "end": 4984.94, + "probability": 0.3716 + }, + { + "start": 4985.14, + "end": 4985.8, + "probability": 0.1924 + }, + { + "start": 4985.8, + "end": 4986.2, + "probability": 0.4413 + }, + { + "start": 4986.28, + "end": 4987.76, + "probability": 0.2976 + }, + { + "start": 4987.76, + "end": 4990.48, + "probability": 0.2174 + }, + { + "start": 4991.78, + "end": 4995.02, + "probability": 0.4242 + }, + { + "start": 4995.02, + "end": 4998.78, + "probability": 0.6257 + }, + { + "start": 4998.94, + "end": 5000.3, + "probability": 0.6507 + }, + { + "start": 5000.46, + "end": 5001.62, + "probability": 0.2921 + }, + { + "start": 5001.76, + "end": 5003.7, + "probability": 0.5092 + }, + { + "start": 5003.76, + "end": 5007.64, + "probability": 0.7676 + }, + { + "start": 5008.98, + "end": 5014.6, + "probability": 0.5106 + }, + { + "start": 5014.6, + "end": 5016.2, + "probability": 0.8647 + }, + { + "start": 5016.3, + "end": 5017.14, + "probability": 0.5151 + }, + { + "start": 5018.26, + "end": 5019.94, + "probability": 0.8458 + }, + { + "start": 5020.2, + "end": 5020.96, + "probability": 0.0091 + }, + { + "start": 5020.96, + "end": 5021.98, + "probability": 0.6273 + }, + { + "start": 5022.32, + "end": 5025.06, + "probability": 0.9023 + }, + { + "start": 5025.08, + "end": 5025.62, + "probability": 0.494 + }, + { + "start": 5027.2, + "end": 5029.08, + "probability": 0.9399 + }, + { + "start": 5029.5, + "end": 5032.4, + "probability": 0.2132 + }, + { + "start": 5032.84, + "end": 5034.44, + "probability": 0.3196 + }, + { + "start": 5034.6, + "end": 5037.32, + "probability": 0.5041 + }, + { + "start": 5037.64, + "end": 5038.78, + "probability": 0.482 + }, + { + "start": 5038.78, + "end": 5040.28, + "probability": 0.4288 + }, + { + "start": 5041.12, + "end": 5041.12, + "probability": 0.0014 + }, + { + "start": 5042.48, + "end": 5043.16, + "probability": 0.1261 + }, + { + "start": 5043.16, + "end": 5043.16, + "probability": 0.1064 + }, + { + "start": 5043.76, + "end": 5047.38, + "probability": 0.3056 + }, + { + "start": 5048.14, + "end": 5049.84, + "probability": 0.7209 + }, + { + "start": 5051.16, + "end": 5052.74, + "probability": 0.0486 + }, + { + "start": 5052.74, + "end": 5054.94, + "probability": 0.8051 + }, + { + "start": 5055.24, + "end": 5057.92, + "probability": 0.8801 + }, + { + "start": 5058.06, + "end": 5060.92, + "probability": 0.9454 + }, + { + "start": 5061.5, + "end": 5061.9, + "probability": 0.3473 + }, + { + "start": 5062.06, + "end": 5066.18, + "probability": 0.9631 + }, + { + "start": 5066.84, + "end": 5068.3, + "probability": 0.858 + }, + { + "start": 5068.52, + "end": 5070.28, + "probability": 0.5664 + }, + { + "start": 5070.58, + "end": 5070.65, + "probability": 0.257 + }, + { + "start": 5072.31, + "end": 5074.98, + "probability": 0.0587 + }, + { + "start": 5075.38, + "end": 5076.04, + "probability": 0.3218 + }, + { + "start": 5076.04, + "end": 5076.04, + "probability": 0.4625 + }, + { + "start": 5076.04, + "end": 5078.06, + "probability": 0.8872 + }, + { + "start": 5078.56, + "end": 5082.32, + "probability": 0.9694 + }, + { + "start": 5082.34, + "end": 5085.54, + "probability": 0.0434 + }, + { + "start": 5085.54, + "end": 5085.56, + "probability": 0.1753 + }, + { + "start": 5085.56, + "end": 5086.53, + "probability": 0.1462 + }, + { + "start": 5087.44, + "end": 5089.3, + "probability": 0.1091 + }, + { + "start": 5091.5, + "end": 5095.96, + "probability": 0.5134 + }, + { + "start": 5097.84, + "end": 5097.84, + "probability": 0.0935 + }, + { + "start": 5097.84, + "end": 5098.44, + "probability": 0.6392 + }, + { + "start": 5099.96, + "end": 5101.4, + "probability": 0.9252 + }, + { + "start": 5102.06, + "end": 5105.32, + "probability": 0.0831 + }, + { + "start": 5105.32, + "end": 5105.84, + "probability": 0.0264 + }, + { + "start": 5105.84, + "end": 5105.84, + "probability": 0.1057 + }, + { + "start": 5105.84, + "end": 5105.84, + "probability": 0.0157 + }, + { + "start": 5105.84, + "end": 5105.84, + "probability": 0.0508 + }, + { + "start": 5105.84, + "end": 5108.54, + "probability": 0.6534 + }, + { + "start": 5108.6, + "end": 5108.68, + "probability": 0.604 + }, + { + "start": 5108.68, + "end": 5109.54, + "probability": 0.084 + }, + { + "start": 5109.56, + "end": 5112.54, + "probability": 0.2371 + }, + { + "start": 5113.78, + "end": 5114.3, + "probability": 0.1145 + }, + { + "start": 5114.3, + "end": 5114.66, + "probability": 0.6212 + }, + { + "start": 5114.66, + "end": 5116.0, + "probability": 0.9239 + }, + { + "start": 5116.06, + "end": 5117.18, + "probability": 0.7334 + }, + { + "start": 5117.2, + "end": 5118.58, + "probability": 0.7103 + }, + { + "start": 5119.02, + "end": 5119.94, + "probability": 0.7904 + }, + { + "start": 5120.14, + "end": 5122.36, + "probability": 0.9041 + }, + { + "start": 5122.76, + "end": 5123.32, + "probability": 0.951 + }, + { + "start": 5123.38, + "end": 5123.68, + "probability": 0.404 + }, + { + "start": 5123.78, + "end": 5125.88, + "probability": 0.4957 + }, + { + "start": 5126.72, + "end": 5127.22, + "probability": 0.719 + }, + { + "start": 5127.8, + "end": 5131.9, + "probability": 0.5922 + }, + { + "start": 5132.12, + "end": 5133.08, + "probability": 0.2858 + }, + { + "start": 5133.96, + "end": 5134.92, + "probability": 0.4304 + }, + { + "start": 5136.26, + "end": 5137.81, + "probability": 0.6379 + }, + { + "start": 5138.7, + "end": 5140.2, + "probability": 0.6256 + }, + { + "start": 5140.76, + "end": 5143.94, + "probability": 0.9612 + }, + { + "start": 5145.2, + "end": 5147.3, + "probability": 0.7996 + }, + { + "start": 5147.9, + "end": 5148.38, + "probability": 0.6412 + }, + { + "start": 5148.74, + "end": 5150.14, + "probability": 0.7327 + }, + { + "start": 5150.48, + "end": 5151.46, + "probability": 0.5365 + }, + { + "start": 5151.54, + "end": 5152.0, + "probability": 0.9143 + }, + { + "start": 5152.5, + "end": 5153.08, + "probability": 0.4603 + }, + { + "start": 5154.16, + "end": 5159.5, + "probability": 0.9858 + }, + { + "start": 5159.68, + "end": 5160.0, + "probability": 0.8479 + }, + { + "start": 5160.42, + "end": 5161.12, + "probability": 0.6706 + }, + { + "start": 5161.28, + "end": 5164.04, + "probability": 0.7368 + }, + { + "start": 5164.9, + "end": 5165.78, + "probability": 0.8441 + }, + { + "start": 5166.88, + "end": 5167.52, + "probability": 0.557 + }, + { + "start": 5168.96, + "end": 5169.44, + "probability": 0.8817 + }, + { + "start": 5171.18, + "end": 5171.18, + "probability": 0.0125 + }, + { + "start": 5171.18, + "end": 5171.81, + "probability": 0.0456 + }, + { + "start": 5173.18, + "end": 5174.32, + "probability": 0.7177 + }, + { + "start": 5175.18, + "end": 5176.36, + "probability": 0.6921 + }, + { + "start": 5176.96, + "end": 5177.08, + "probability": 0.5038 + }, + { + "start": 5177.22, + "end": 5179.16, + "probability": 0.9573 + }, + { + "start": 5179.26, + "end": 5179.88, + "probability": 0.9575 + }, + { + "start": 5180.26, + "end": 5181.16, + "probability": 0.7102 + }, + { + "start": 5181.32, + "end": 5182.38, + "probability": 0.9651 + }, + { + "start": 5183.42, + "end": 5184.26, + "probability": 0.9856 + }, + { + "start": 5184.34, + "end": 5185.0, + "probability": 0.8073 + }, + { + "start": 5186.22, + "end": 5190.02, + "probability": 0.9415 + }, + { + "start": 5191.64, + "end": 5192.88, + "probability": 0.9887 + }, + { + "start": 5193.52, + "end": 5194.26, + "probability": 0.8931 + }, + { + "start": 5195.54, + "end": 5198.44, + "probability": 0.9974 + }, + { + "start": 5199.22, + "end": 5204.3, + "probability": 0.981 + }, + { + "start": 5205.3, + "end": 5206.4, + "probability": 0.7601 + }, + { + "start": 5207.98, + "end": 5211.7, + "probability": 0.959 + }, + { + "start": 5212.56, + "end": 5213.58, + "probability": 0.14 + }, + { + "start": 5213.68, + "end": 5214.3, + "probability": 0.5327 + }, + { + "start": 5215.16, + "end": 5219.44, + "probability": 0.9837 + }, + { + "start": 5219.46, + "end": 5221.85, + "probability": 0.998 + }, + { + "start": 5222.04, + "end": 5223.38, + "probability": 0.88 + }, + { + "start": 5223.76, + "end": 5227.86, + "probability": 0.5456 + }, + { + "start": 5227.94, + "end": 5228.52, + "probability": 0.2487 + }, + { + "start": 5228.96, + "end": 5229.14, + "probability": 0.0285 + }, + { + "start": 5229.14, + "end": 5231.74, + "probability": 0.9521 + }, + { + "start": 5233.0, + "end": 5234.92, + "probability": 0.8957 + }, + { + "start": 5235.14, + "end": 5235.54, + "probability": 0.9712 + }, + { + "start": 5235.54, + "end": 5236.08, + "probability": 0.9423 + }, + { + "start": 5236.88, + "end": 5240.62, + "probability": 0.9317 + }, + { + "start": 5240.76, + "end": 5242.46, + "probability": 0.964 + }, + { + "start": 5242.52, + "end": 5243.24, + "probability": 0.7461 + }, + { + "start": 5243.56, + "end": 5244.28, + "probability": 0.0766 + }, + { + "start": 5245.94, + "end": 5249.74, + "probability": 0.8603 + }, + { + "start": 5250.74, + "end": 5254.08, + "probability": 0.9321 + }, + { + "start": 5255.4, + "end": 5256.44, + "probability": 0.8938 + }, + { + "start": 5257.32, + "end": 5258.32, + "probability": 0.7755 + }, + { + "start": 5259.26, + "end": 5263.16, + "probability": 0.8634 + }, + { + "start": 5264.06, + "end": 5265.65, + "probability": 0.9023 + }, + { + "start": 5266.5, + "end": 5268.62, + "probability": 0.9948 + }, + { + "start": 5269.46, + "end": 5269.78, + "probability": 0.0359 + }, + { + "start": 5269.78, + "end": 5277.3, + "probability": 0.9218 + }, + { + "start": 5277.58, + "end": 5280.58, + "probability": 0.826 + }, + { + "start": 5281.12, + "end": 5282.96, + "probability": 0.7828 + }, + { + "start": 5282.96, + "end": 5283.82, + "probability": 0.8749 + }, + { + "start": 5284.26, + "end": 5284.82, + "probability": 0.8819 + }, + { + "start": 5284.86, + "end": 5285.08, + "probability": 0.5898 + }, + { + "start": 5285.9, + "end": 5287.77, + "probability": 0.7039 + }, + { + "start": 5288.76, + "end": 5291.24, + "probability": 0.8752 + }, + { + "start": 5292.02, + "end": 5294.44, + "probability": 0.8674 + }, + { + "start": 5294.56, + "end": 5295.54, + "probability": 0.4355 + }, + { + "start": 5296.06, + "end": 5296.68, + "probability": 0.0973 + }, + { + "start": 5296.68, + "end": 5298.86, + "probability": 0.6015 + }, + { + "start": 5299.54, + "end": 5300.44, + "probability": 0.3101 + }, + { + "start": 5300.44, + "end": 5300.86, + "probability": 0.0119 + }, + { + "start": 5301.2, + "end": 5302.58, + "probability": 0.0687 + }, + { + "start": 5302.62, + "end": 5303.62, + "probability": 0.117 + }, + { + "start": 5304.09, + "end": 5305.06, + "probability": 0.0283 + }, + { + "start": 5305.3, + "end": 5306.84, + "probability": 0.2489 + }, + { + "start": 5307.3, + "end": 5307.56, + "probability": 0.1049 + }, + { + "start": 5308.32, + "end": 5310.16, + "probability": 0.5599 + }, + { + "start": 5310.18, + "end": 5310.54, + "probability": 0.0422 + }, + { + "start": 5310.72, + "end": 5311.46, + "probability": 0.0734 + }, + { + "start": 5311.54, + "end": 5312.8, + "probability": 0.466 + }, + { + "start": 5312.96, + "end": 5315.38, + "probability": 0.7723 + }, + { + "start": 5316.04, + "end": 5319.45, + "probability": 0.1857 + }, + { + "start": 5319.68, + "end": 5321.05, + "probability": 0.1048 + }, + { + "start": 5322.02, + "end": 5324.04, + "probability": 0.7446 + }, + { + "start": 5324.32, + "end": 5324.66, + "probability": 0.3107 + }, + { + "start": 5324.66, + "end": 5328.2, + "probability": 0.5748 + }, + { + "start": 5328.6, + "end": 5329.38, + "probability": 0.8375 + }, + { + "start": 5329.48, + "end": 5330.54, + "probability": 0.5906 + }, + { + "start": 5330.54, + "end": 5333.72, + "probability": 0.697 + }, + { + "start": 5334.14, + "end": 5336.24, + "probability": 0.9206 + }, + { + "start": 5336.38, + "end": 5337.18, + "probability": 0.5777 + }, + { + "start": 5337.22, + "end": 5340.44, + "probability": 0.1654 + }, + { + "start": 5341.1, + "end": 5341.84, + "probability": 0.0506 + }, + { + "start": 5342.1, + "end": 5342.1, + "probability": 0.2112 + }, + { + "start": 5342.1, + "end": 5342.6, + "probability": 0.2438 + }, + { + "start": 5344.56, + "end": 5346.6, + "probability": 0.5908 + }, + { + "start": 5346.76, + "end": 5347.84, + "probability": 0.7357 + }, + { + "start": 5347.84, + "end": 5348.66, + "probability": 0.5785 + }, + { + "start": 5348.76, + "end": 5348.84, + "probability": 0.2231 + }, + { + "start": 5348.96, + "end": 5351.86, + "probability": 0.873 + }, + { + "start": 5351.88, + "end": 5355.38, + "probability": 0.4807 + }, + { + "start": 5356.3, + "end": 5359.78, + "probability": 0.701 + }, + { + "start": 5361.26, + "end": 5364.24, + "probability": 0.5136 + }, + { + "start": 5364.3, + "end": 5364.94, + "probability": 0.7775 + }, + { + "start": 5365.14, + "end": 5366.12, + "probability": 0.6747 + }, + { + "start": 5367.6, + "end": 5367.9, + "probability": 0.2568 + }, + { + "start": 5367.9, + "end": 5368.8, + "probability": 0.9258 + }, + { + "start": 5369.92, + "end": 5371.12, + "probability": 0.7789 + }, + { + "start": 5372.18, + "end": 5373.98, + "probability": 0.856 + }, + { + "start": 5374.02, + "end": 5377.18, + "probability": 0.9526 + }, + { + "start": 5377.22, + "end": 5378.96, + "probability": 0.9803 + }, + { + "start": 5379.02, + "end": 5380.74, + "probability": 0.8431 + }, + { + "start": 5380.84, + "end": 5381.56, + "probability": 0.641 + }, + { + "start": 5381.64, + "end": 5382.32, + "probability": 0.6638 + }, + { + "start": 5382.62, + "end": 5387.38, + "probability": 0.8962 + }, + { + "start": 5387.62, + "end": 5393.1, + "probability": 0.2858 + }, + { + "start": 5394.0, + "end": 5395.14, + "probability": 0.9434 + }, + { + "start": 5396.5, + "end": 5398.62, + "probability": 0.9943 + }, + { + "start": 5398.84, + "end": 5399.62, + "probability": 0.6842 + }, + { + "start": 5399.72, + "end": 5400.92, + "probability": 0.8943 + }, + { + "start": 5401.08, + "end": 5401.5, + "probability": 0.5061 + }, + { + "start": 5401.62, + "end": 5402.78, + "probability": 0.6983 + }, + { + "start": 5403.04, + "end": 5406.26, + "probability": 0.7685 + }, + { + "start": 5406.7, + "end": 5407.75, + "probability": 0.0177 + }, + { + "start": 5408.08, + "end": 5409.0, + "probability": 0.4097 + }, + { + "start": 5409.82, + "end": 5411.9, + "probability": 0.5905 + }, + { + "start": 5412.44, + "end": 5412.62, + "probability": 0.3377 + }, + { + "start": 5412.74, + "end": 5413.82, + "probability": 0.6654 + }, + { + "start": 5413.9, + "end": 5415.66, + "probability": 0.7314 + }, + { + "start": 5415.98, + "end": 5416.28, + "probability": 0.3288 + }, + { + "start": 5416.4, + "end": 5417.14, + "probability": 0.8676 + }, + { + "start": 5417.94, + "end": 5420.06, + "probability": 0.9614 + }, + { + "start": 5420.14, + "end": 5420.84, + "probability": 0.5642 + }, + { + "start": 5421.18, + "end": 5422.02, + "probability": 0.4067 + }, + { + "start": 5422.38, + "end": 5422.94, + "probability": 0.0073 + }, + { + "start": 5422.94, + "end": 5423.62, + "probability": 0.4605 + }, + { + "start": 5423.7, + "end": 5424.72, + "probability": 0.6229 + }, + { + "start": 5424.72, + "end": 5425.74, + "probability": 0.8882 + }, + { + "start": 5426.34, + "end": 5429.1, + "probability": 0.7179 + }, + { + "start": 5429.12, + "end": 5429.26, + "probability": 0.1038 + }, + { + "start": 5430.5, + "end": 5433.22, + "probability": 0.1278 + }, + { + "start": 5435.82, + "end": 5437.1, + "probability": 0.0756 + }, + { + "start": 5437.1, + "end": 5437.42, + "probability": 0.0496 + }, + { + "start": 5438.42, + "end": 5440.22, + "probability": 0.2726 + }, + { + "start": 5440.38, + "end": 5442.1, + "probability": 0.005 + }, + { + "start": 5442.74, + "end": 5447.3, + "probability": 0.3638 + }, + { + "start": 5448.58, + "end": 5450.64, + "probability": 0.0359 + }, + { + "start": 5450.76, + "end": 5452.28, + "probability": 0.1639 + }, + { + "start": 5453.48, + "end": 5454.18, + "probability": 0.2455 + }, + { + "start": 5455.3, + "end": 5455.44, + "probability": 0.1135 + }, + { + "start": 5456.22, + "end": 5457.54, + "probability": 0.6169 + }, + { + "start": 5457.96, + "end": 5457.98, + "probability": 0.0516 + }, + { + "start": 5459.14, + "end": 5461.06, + "probability": 0.0292 + }, + { + "start": 5461.54, + "end": 5465.68, + "probability": 0.1136 + }, + { + "start": 5466.72, + "end": 5467.78, + "probability": 0.1016 + }, + { + "start": 5468.3, + "end": 5468.58, + "probability": 0.0185 + }, + { + "start": 5469.54, + "end": 5471.08, + "probability": 0.3453 + }, + { + "start": 5471.48, + "end": 5473.38, + "probability": 0.2577 + }, + { + "start": 5474.12, + "end": 5474.64, + "probability": 0.0003 + }, + { + "start": 5475.06, + "end": 5478.52, + "probability": 0.0126 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.0, + "end": 5505.0, + "probability": 0.0 + }, + { + "start": 5505.2, + "end": 5505.42, + "probability": 0.0215 + }, + { + "start": 5505.42, + "end": 5505.42, + "probability": 0.1174 + }, + { + "start": 5505.42, + "end": 5505.42, + "probability": 0.1528 + }, + { + "start": 5505.42, + "end": 5508.26, + "probability": 0.986 + }, + { + "start": 5508.58, + "end": 5510.72, + "probability": 0.9848 + }, + { + "start": 5512.04, + "end": 5514.66, + "probability": 0.8808 + }, + { + "start": 5515.62, + "end": 5516.78, + "probability": 0.9225 + }, + { + "start": 5517.22, + "end": 5519.66, + "probability": 0.0649 + }, + { + "start": 5519.66, + "end": 5519.66, + "probability": 0.3154 + }, + { + "start": 5519.66, + "end": 5519.66, + "probability": 0.0746 + }, + { + "start": 5519.66, + "end": 5520.34, + "probability": 0.0321 + }, + { + "start": 5521.48, + "end": 5523.24, + "probability": 0.2246 + }, + { + "start": 5523.5, + "end": 5526.7, + "probability": 0.8541 + }, + { + "start": 5527.0, + "end": 5528.12, + "probability": 0.5279 + }, + { + "start": 5528.32, + "end": 5529.96, + "probability": 0.3413 + }, + { + "start": 5530.42, + "end": 5531.76, + "probability": 0.0133 + }, + { + "start": 5532.62, + "end": 5535.46, + "probability": 0.3025 + }, + { + "start": 5535.57, + "end": 5535.64, + "probability": 0.3206 + }, + { + "start": 5535.64, + "end": 5536.38, + "probability": 0.5878 + }, + { + "start": 5536.4, + "end": 5542.66, + "probability": 0.8091 + }, + { + "start": 5543.5, + "end": 5543.64, + "probability": 0.0748 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.0, + "end": 5630.0, + "probability": 0.0 + }, + { + "start": 5630.04, + "end": 5631.97, + "probability": 0.8529 + }, + { + "start": 5632.65, + "end": 5635.51, + "probability": 0.8051 + }, + { + "start": 5635.63, + "end": 5637.67, + "probability": 0.5379 + }, + { + "start": 5637.73, + "end": 5638.53, + "probability": 0.6892 + }, + { + "start": 5639.35, + "end": 5641.11, + "probability": 0.7903 + }, + { + "start": 5643.43, + "end": 5649.69, + "probability": 0.0725 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.14, + "end": 5757.38, + "probability": 0.0703 + }, + { + "start": 5757.38, + "end": 5757.38, + "probability": 0.3463 + }, + { + "start": 5757.38, + "end": 5757.6, + "probability": 0.4585 + }, + { + "start": 5758.12, + "end": 5761.22, + "probability": 0.8348 + }, + { + "start": 5761.64, + "end": 5764.66, + "probability": 0.9611 + }, + { + "start": 5765.26, + "end": 5765.44, + "probability": 0.4064 + }, + { + "start": 5765.56, + "end": 5766.42, + "probability": 0.5834 + }, + { + "start": 5766.78, + "end": 5767.6, + "probability": 0.9382 + }, + { + "start": 5767.78, + "end": 5769.16, + "probability": 0.5995 + }, + { + "start": 5769.26, + "end": 5770.36, + "probability": 0.6635 + }, + { + "start": 5770.84, + "end": 5771.1, + "probability": 0.6195 + }, + { + "start": 5771.18, + "end": 5772.36, + "probability": 0.9854 + }, + { + "start": 5772.86, + "end": 5774.12, + "probability": 0.6048 + }, + { + "start": 5774.36, + "end": 5775.0, + "probability": 0.7759 + }, + { + "start": 5775.04, + "end": 5776.58, + "probability": 0.4228 + }, + { + "start": 5791.24, + "end": 5793.6, + "probability": 0.7795 + }, + { + "start": 5793.63, + "end": 5794.24, + "probability": 0.062 + }, + { + "start": 5794.24, + "end": 5794.58, + "probability": 0.011 + }, + { + "start": 5796.7, + "end": 5798.54, + "probability": 0.0161 + }, + { + "start": 5798.94, + "end": 5800.14, + "probability": 0.0295 + }, + { + "start": 5800.26, + "end": 5801.52, + "probability": 0.3443 + }, + { + "start": 5802.22, + "end": 5802.58, + "probability": 0.4702 + }, + { + "start": 5803.18, + "end": 5803.52, + "probability": 0.2608 + }, + { + "start": 5803.52, + "end": 5803.8, + "probability": 0.0323 + }, + { + "start": 5805.7, + "end": 5806.26, + "probability": 0.0964 + }, + { + "start": 5811.22, + "end": 5811.58, + "probability": 0.0001 + }, + { + "start": 5827.48, + "end": 5827.84, + "probability": 0.042 + }, + { + "start": 5832.66, + "end": 5833.04, + "probability": 0.0798 + }, + { + "start": 5833.04, + "end": 5834.96, + "probability": 0.0034 + }, + { + "start": 5834.96, + "end": 5835.19, + "probability": 0.0615 + }, + { + "start": 5835.42, + "end": 5835.94, + "probability": 0.0654 + }, + { + "start": 5837.38, + "end": 5838.58, + "probability": 0.1983 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.0, + "end": 5877.0, + "probability": 0.0 + }, + { + "start": 5877.12, + "end": 5877.42, + "probability": 0.0472 + }, + { + "start": 5877.7, + "end": 5880.53, + "probability": 0.9727 + }, + { + "start": 5880.84, + "end": 5880.94, + "probability": 0.6728 + }, + { + "start": 5881.04, + "end": 5884.5, + "probability": 0.7194 + }, + { + "start": 5884.76, + "end": 5887.62, + "probability": 0.9641 + }, + { + "start": 5887.94, + "end": 5891.52, + "probability": 0.7847 + }, + { + "start": 5891.7, + "end": 5892.47, + "probability": 0.892 + }, + { + "start": 5892.94, + "end": 5893.04, + "probability": 0.6696 + }, + { + "start": 5893.06, + "end": 5895.67, + "probability": 0.6875 + }, + { + "start": 5895.92, + "end": 5896.68, + "probability": 0.8448 + }, + { + "start": 5897.24, + "end": 5899.84, + "probability": 0.8297 + }, + { + "start": 5900.58, + "end": 5901.94, + "probability": 0.4613 + }, + { + "start": 5903.28, + "end": 5908.1, + "probability": 0.3821 + }, + { + "start": 5908.16, + "end": 5910.94, + "probability": 0.4197 + }, + { + "start": 5911.0, + "end": 5911.5, + "probability": 0.1307 + }, + { + "start": 5911.5, + "end": 5913.26, + "probability": 0.422 + }, + { + "start": 5913.3, + "end": 5915.52, + "probability": 0.1607 + }, + { + "start": 5915.72, + "end": 5916.08, + "probability": 0.4092 + }, + { + "start": 5916.14, + "end": 5917.22, + "probability": 0.6107 + }, + { + "start": 5917.98, + "end": 5919.28, + "probability": 0.4988 + }, + { + "start": 5919.3, + "end": 5919.56, + "probability": 0.0843 + }, + { + "start": 5919.56, + "end": 5920.92, + "probability": 0.3995 + }, + { + "start": 5920.96, + "end": 5922.92, + "probability": 0.6589 + }, + { + "start": 5923.08, + "end": 5925.28, + "probability": 0.8629 + }, + { + "start": 5925.42, + "end": 5926.48, + "probability": 0.9476 + }, + { + "start": 5926.72, + "end": 5928.16, + "probability": 0.7742 + }, + { + "start": 5928.22, + "end": 5931.16, + "probability": 0.9791 + }, + { + "start": 5932.0, + "end": 5933.1, + "probability": 0.8604 + }, + { + "start": 5933.72, + "end": 5936.08, + "probability": 0.9756 + }, + { + "start": 5936.18, + "end": 5938.35, + "probability": 0.6741 + }, + { + "start": 5938.74, + "end": 5939.76, + "probability": 0.9832 + }, + { + "start": 5939.86, + "end": 5941.14, + "probability": 0.8657 + }, + { + "start": 5941.62, + "end": 5944.12, + "probability": 0.9883 + }, + { + "start": 5944.24, + "end": 5945.22, + "probability": 0.9873 + }, + { + "start": 5945.34, + "end": 5946.06, + "probability": 0.9131 + }, + { + "start": 5946.2, + "end": 5947.62, + "probability": 0.9927 + }, + { + "start": 5948.08, + "end": 5951.56, + "probability": 0.9489 + }, + { + "start": 5952.0, + "end": 5952.82, + "probability": 0.9966 + }, + { + "start": 5952.88, + "end": 5956.26, + "probability": 0.9434 + }, + { + "start": 5956.84, + "end": 5958.66, + "probability": 0.9531 + }, + { + "start": 5959.52, + "end": 5962.18, + "probability": 0.8963 + }, + { + "start": 5963.46, + "end": 5964.46, + "probability": 0.8389 + }, + { + "start": 5965.54, + "end": 5966.76, + "probability": 0.9054 + }, + { + "start": 5966.82, + "end": 5968.3, + "probability": 0.9531 + }, + { + "start": 5968.6, + "end": 5970.14, + "probability": 0.978 + }, + { + "start": 5970.84, + "end": 5974.08, + "probability": 0.9873 + }, + { + "start": 5975.16, + "end": 5976.46, + "probability": 0.9985 + }, + { + "start": 5977.12, + "end": 5979.8, + "probability": 0.9753 + }, + { + "start": 5980.48, + "end": 5983.64, + "probability": 0.918 + }, + { + "start": 5984.6, + "end": 5988.9, + "probability": 0.9718 + }, + { + "start": 5989.5, + "end": 5991.58, + "probability": 0.0941 + }, + { + "start": 5994.56, + "end": 5994.56, + "probability": 0.3723 + }, + { + "start": 5994.56, + "end": 5994.56, + "probability": 0.3188 + }, + { + "start": 5994.56, + "end": 5994.56, + "probability": 0.1763 + }, + { + "start": 5994.56, + "end": 5994.56, + "probability": 0.2786 + }, + { + "start": 5994.56, + "end": 5995.2, + "probability": 0.4388 + }, + { + "start": 5995.48, + "end": 5996.08, + "probability": 0.3975 + }, + { + "start": 5996.18, + "end": 5999.82, + "probability": 0.7702 + }, + { + "start": 6000.44, + "end": 6004.66, + "probability": 0.9805 + }, + { + "start": 6006.2, + "end": 6010.03, + "probability": 0.8094 + }, + { + "start": 6010.76, + "end": 6012.81, + "probability": 0.9824 + }, + { + "start": 6013.1, + "end": 6015.78, + "probability": 0.8651 + }, + { + "start": 6016.66, + "end": 6018.2, + "probability": 0.9502 + }, + { + "start": 6018.88, + "end": 6019.26, + "probability": 0.8083 + }, + { + "start": 6019.68, + "end": 6020.48, + "probability": 0.8835 + }, + { + "start": 6021.52, + "end": 6027.46, + "probability": 0.9821 + }, + { + "start": 6027.76, + "end": 6032.02, + "probability": 0.8588 + }, + { + "start": 6032.3, + "end": 6035.46, + "probability": 0.9897 + }, + { + "start": 6036.08, + "end": 6036.56, + "probability": 0.5918 + }, + { + "start": 6036.98, + "end": 6040.82, + "probability": 0.9888 + }, + { + "start": 6040.82, + "end": 6043.9, + "probability": 0.8038 + }, + { + "start": 6044.42, + "end": 6047.04, + "probability": 0.9938 + }, + { + "start": 6047.44, + "end": 6049.2, + "probability": 0.9014 + }, + { + "start": 6049.68, + "end": 6051.66, + "probability": 0.9839 + }, + { + "start": 6052.8, + "end": 6057.49, + "probability": 0.9688 + }, + { + "start": 6057.54, + "end": 6063.8, + "probability": 0.9876 + }, + { + "start": 6064.28, + "end": 6068.43, + "probability": 0.9852 + }, + { + "start": 6069.06, + "end": 6072.1, + "probability": 0.9971 + }, + { + "start": 6072.1, + "end": 6075.9, + "probability": 0.9151 + }, + { + "start": 6076.2, + "end": 6078.9, + "probability": 0.9768 + }, + { + "start": 6079.6, + "end": 6079.98, + "probability": 0.9402 + }, + { + "start": 6080.06, + "end": 6080.86, + "probability": 0.8934 + }, + { + "start": 6080.96, + "end": 6085.78, + "probability": 0.9652 + }, + { + "start": 6086.36, + "end": 6088.88, + "probability": 0.877 + }, + { + "start": 6089.48, + "end": 6090.52, + "probability": 0.4987 + }, + { + "start": 6090.56, + "end": 6090.94, + "probability": 0.8833 + }, + { + "start": 6091.0, + "end": 6092.38, + "probability": 0.958 + }, + { + "start": 6092.78, + "end": 6096.86, + "probability": 0.9616 + }, + { + "start": 6097.24, + "end": 6100.62, + "probability": 0.9031 + }, + { + "start": 6100.82, + "end": 6101.24, + "probability": 0.4343 + }, + { + "start": 6101.44, + "end": 6103.32, + "probability": 0.9941 + }, + { + "start": 6103.36, + "end": 6106.72, + "probability": 0.9915 + }, + { + "start": 6106.82, + "end": 6106.96, + "probability": 0.2575 + }, + { + "start": 6107.08, + "end": 6109.24, + "probability": 0.9701 + }, + { + "start": 6109.46, + "end": 6111.92, + "probability": 0.9838 + }, + { + "start": 6112.22, + "end": 6115.06, + "probability": 0.9473 + }, + { + "start": 6115.58, + "end": 6116.72, + "probability": 0.9546 + }, + { + "start": 6116.8, + "end": 6117.74, + "probability": 0.9341 + }, + { + "start": 6117.78, + "end": 6118.58, + "probability": 0.8787 + }, + { + "start": 6118.9, + "end": 6119.78, + "probability": 0.5627 + }, + { + "start": 6119.9, + "end": 6120.92, + "probability": 0.9833 + }, + { + "start": 6121.3, + "end": 6123.02, + "probability": 0.9767 + }, + { + "start": 6123.06, + "end": 6125.88, + "probability": 0.9959 + }, + { + "start": 6126.04, + "end": 6126.7, + "probability": 0.71 + }, + { + "start": 6126.82, + "end": 6128.38, + "probability": 0.9696 + }, + { + "start": 6128.5, + "end": 6129.68, + "probability": 0.978 + }, + { + "start": 6131.27, + "end": 6133.43, + "probability": 0.9712 + }, + { + "start": 6133.54, + "end": 6135.32, + "probability": 0.9355 + }, + { + "start": 6135.42, + "end": 6136.79, + "probability": 0.9705 + }, + { + "start": 6136.96, + "end": 6139.88, + "probability": 0.9893 + }, + { + "start": 6140.12, + "end": 6140.38, + "probability": 0.7117 + }, + { + "start": 6140.7, + "end": 6141.32, + "probability": 0.6904 + }, + { + "start": 6141.38, + "end": 6143.82, + "probability": 0.8107 + }, + { + "start": 6145.36, + "end": 6145.78, + "probability": 0.4116 + }, + { + "start": 6155.64, + "end": 6155.98, + "probability": 0.7213 + }, + { + "start": 6157.24, + "end": 6160.28, + "probability": 0.7924 + }, + { + "start": 6161.88, + "end": 6163.16, + "probability": 0.9712 + }, + { + "start": 6164.62, + "end": 6166.32, + "probability": 0.9639 + }, + { + "start": 6167.02, + "end": 6168.42, + "probability": 0.9709 + }, + { + "start": 6171.14, + "end": 6174.6, + "probability": 0.9498 + }, + { + "start": 6175.94, + "end": 6177.18, + "probability": 0.5681 + }, + { + "start": 6178.26, + "end": 6180.38, + "probability": 0.5391 + }, + { + "start": 6184.26, + "end": 6184.68, + "probability": 0.6927 + }, + { + "start": 6184.8, + "end": 6185.75, + "probability": 0.6177 + }, + { + "start": 6185.94, + "end": 6188.24, + "probability": 0.9292 + }, + { + "start": 6188.84, + "end": 6190.96, + "probability": 0.96 + }, + { + "start": 6191.18, + "end": 6193.7, + "probability": 0.8661 + }, + { + "start": 6196.02, + "end": 6198.76, + "probability": 0.9655 + }, + { + "start": 6199.2, + "end": 6199.64, + "probability": 0.5019 + }, + { + "start": 6199.74, + "end": 6200.26, + "probability": 0.9202 + }, + { + "start": 6200.36, + "end": 6201.72, + "probability": 0.9811 + }, + { + "start": 6203.6, + "end": 6206.8, + "probability": 0.9953 + }, + { + "start": 6210.48, + "end": 6211.22, + "probability": 0.9858 + }, + { + "start": 6212.42, + "end": 6214.46, + "probability": 0.9384 + }, + { + "start": 6215.02, + "end": 6216.58, + "probability": 0.8652 + }, + { + "start": 6217.42, + "end": 6218.38, + "probability": 0.8635 + }, + { + "start": 6219.88, + "end": 6224.26, + "probability": 0.9933 + }, + { + "start": 6226.6, + "end": 6231.1, + "probability": 0.8501 + }, + { + "start": 6233.76, + "end": 6237.74, + "probability": 0.9865 + }, + { + "start": 6238.54, + "end": 6239.74, + "probability": 0.9056 + }, + { + "start": 6241.54, + "end": 6244.14, + "probability": 0.9229 + }, + { + "start": 6247.68, + "end": 6251.4, + "probability": 0.9805 + }, + { + "start": 6251.66, + "end": 6254.54, + "probability": 0.9842 + }, + { + "start": 6255.64, + "end": 6259.56, + "probability": 0.8826 + }, + { + "start": 6261.64, + "end": 6263.48, + "probability": 0.9668 + }, + { + "start": 6263.92, + "end": 6266.06, + "probability": 0.936 + }, + { + "start": 6267.54, + "end": 6272.28, + "probability": 0.995 + }, + { + "start": 6275.78, + "end": 6278.76, + "probability": 0.9996 + }, + { + "start": 6279.96, + "end": 6284.02, + "probability": 0.8867 + }, + { + "start": 6284.28, + "end": 6285.96, + "probability": 0.9538 + }, + { + "start": 6286.2, + "end": 6288.22, + "probability": 0.9946 + }, + { + "start": 6289.12, + "end": 6291.18, + "probability": 0.929 + }, + { + "start": 6291.98, + "end": 6293.84, + "probability": 0.6213 + }, + { + "start": 6294.62, + "end": 6295.5, + "probability": 0.8702 + }, + { + "start": 6297.96, + "end": 6301.3, + "probability": 0.9468 + }, + { + "start": 6301.38, + "end": 6302.04, + "probability": 0.8537 + }, + { + "start": 6303.9, + "end": 6305.6, + "probability": 0.0987 + }, + { + "start": 6305.8, + "end": 6308.88, + "probability": 0.2039 + }, + { + "start": 6309.42, + "end": 6310.18, + "probability": 0.1505 + }, + { + "start": 6336.12, + "end": 6336.8, + "probability": 0.1284 + }, + { + "start": 6337.7, + "end": 6339.0, + "probability": 0.4667 + }, + { + "start": 6339.82, + "end": 6344.84, + "probability": 0.9574 + }, + { + "start": 6346.04, + "end": 6347.78, + "probability": 0.72 + }, + { + "start": 6348.56, + "end": 6349.52, + "probability": 0.4623 + }, + { + "start": 6351.42, + "end": 6353.0, + "probability": 0.8384 + }, + { + "start": 6354.16, + "end": 6355.2, + "probability": 0.7443 + }, + { + "start": 6356.86, + "end": 6357.68, + "probability": 0.9043 + }, + { + "start": 6359.16, + "end": 6362.1, + "probability": 0.9035 + }, + { + "start": 6364.08, + "end": 6367.54, + "probability": 0.8958 + }, + { + "start": 6368.68, + "end": 6370.6, + "probability": 0.9978 + }, + { + "start": 6371.66, + "end": 6372.8, + "probability": 0.9883 + }, + { + "start": 6373.78, + "end": 6379.38, + "probability": 0.9943 + }, + { + "start": 6380.36, + "end": 6383.68, + "probability": 0.9974 + }, + { + "start": 6383.77, + "end": 6386.41, + "probability": 0.9619 + }, + { + "start": 6387.84, + "end": 6390.36, + "probability": 0.984 + }, + { + "start": 6390.52, + "end": 6391.7, + "probability": 0.9815 + }, + { + "start": 6392.5, + "end": 6394.8, + "probability": 0.9175 + }, + { + "start": 6395.3, + "end": 6399.44, + "probability": 0.9473 + }, + { + "start": 6400.84, + "end": 6401.68, + "probability": 0.9667 + }, + { + "start": 6402.06, + "end": 6403.32, + "probability": 0.992 + }, + { + "start": 6404.32, + "end": 6406.72, + "probability": 0.9651 + }, + { + "start": 6407.44, + "end": 6411.96, + "probability": 0.9893 + }, + { + "start": 6412.22, + "end": 6416.84, + "probability": 0.9551 + }, + { + "start": 6416.84, + "end": 6423.46, + "probability": 0.9984 + }, + { + "start": 6424.07, + "end": 6425.0, + "probability": 0.9777 + }, + { + "start": 6425.62, + "end": 6430.32, + "probability": 0.8434 + }, + { + "start": 6430.96, + "end": 6432.62, + "probability": 0.9033 + }, + { + "start": 6433.54, + "end": 6435.26, + "probability": 0.8996 + }, + { + "start": 6435.74, + "end": 6436.78, + "probability": 0.8106 + }, + { + "start": 6437.66, + "end": 6438.72, + "probability": 0.9534 + }, + { + "start": 6438.86, + "end": 6439.36, + "probability": 0.7517 + }, + { + "start": 6439.44, + "end": 6440.94, + "probability": 0.9546 + }, + { + "start": 6441.18, + "end": 6442.0, + "probability": 0.9485 + }, + { + "start": 6442.94, + "end": 6444.0, + "probability": 0.6921 + }, + { + "start": 6446.24, + "end": 6446.86, + "probability": 0.3192 + }, + { + "start": 6446.98, + "end": 6446.98, + "probability": 0.21 + }, + { + "start": 6447.42, + "end": 6451.94, + "probability": 0.9801 + }, + { + "start": 6452.52, + "end": 6452.68, + "probability": 0.0726 + }, + { + "start": 6452.68, + "end": 6456.54, + "probability": 0.9405 + }, + { + "start": 6457.22, + "end": 6459.52, + "probability": 0.9891 + }, + { + "start": 6459.58, + "end": 6461.96, + "probability": 0.6151 + }, + { + "start": 6462.24, + "end": 6462.46, + "probability": 0.7024 + }, + { + "start": 6462.6, + "end": 6468.82, + "probability": 0.9809 + }, + { + "start": 6468.82, + "end": 6474.46, + "probability": 0.9429 + }, + { + "start": 6474.5, + "end": 6475.78, + "probability": 0.8482 + }, + { + "start": 6476.56, + "end": 6477.24, + "probability": 0.5085 + }, + { + "start": 6477.62, + "end": 6480.22, + "probability": 0.9468 + }, + { + "start": 6480.72, + "end": 6481.54, + "probability": 0.9172 + }, + { + "start": 6481.68, + "end": 6483.02, + "probability": 0.9395 + }, + { + "start": 6483.74, + "end": 6485.72, + "probability": 0.9878 + }, + { + "start": 6485.8, + "end": 6488.5, + "probability": 0.9566 + }, + { + "start": 6488.92, + "end": 6490.94, + "probability": 0.7499 + }, + { + "start": 6491.08, + "end": 6492.16, + "probability": 0.9985 + }, + { + "start": 6492.88, + "end": 6494.14, + "probability": 0.7887 + }, + { + "start": 6494.74, + "end": 6497.16, + "probability": 0.8036 + }, + { + "start": 6497.6, + "end": 6499.04, + "probability": 0.9977 + }, + { + "start": 6499.14, + "end": 6500.14, + "probability": 0.9971 + }, + { + "start": 6501.36, + "end": 6505.13, + "probability": 0.9849 + }, + { + "start": 6505.24, + "end": 6507.72, + "probability": 0.9956 + }, + { + "start": 6508.3, + "end": 6511.96, + "probability": 0.9182 + }, + { + "start": 6512.08, + "end": 6514.5, + "probability": 0.8738 + }, + { + "start": 6515.4, + "end": 6517.58, + "probability": 0.9849 + }, + { + "start": 6518.42, + "end": 6519.8, + "probability": 0.7085 + }, + { + "start": 6519.9, + "end": 6524.24, + "probability": 0.9447 + }, + { + "start": 6524.24, + "end": 6528.32, + "probability": 0.9278 + }, + { + "start": 6528.42, + "end": 6529.16, + "probability": 0.5211 + }, + { + "start": 6529.78, + "end": 6533.04, + "probability": 0.9572 + }, + { + "start": 6533.78, + "end": 6535.0, + "probability": 0.8784 + }, + { + "start": 6535.08, + "end": 6535.14, + "probability": 0.4994 + }, + { + "start": 6535.24, + "end": 6535.24, + "probability": 0.4153 + }, + { + "start": 6535.34, + "end": 6536.16, + "probability": 0.1267 + }, + { + "start": 6536.16, + "end": 6536.44, + "probability": 0.1995 + }, + { + "start": 6536.6, + "end": 6537.12, + "probability": 0.1396 + }, + { + "start": 6538.04, + "end": 6540.86, + "probability": 0.4937 + }, + { + "start": 6540.94, + "end": 6543.58, + "probability": 0.7454 + }, + { + "start": 6544.28, + "end": 6547.2, + "probability": 0.9873 + }, + { + "start": 6547.74, + "end": 6550.58, + "probability": 0.4702 + }, + { + "start": 6551.18, + "end": 6555.26, + "probability": 0.5335 + }, + { + "start": 6555.64, + "end": 6560.18, + "probability": 0.7046 + }, + { + "start": 6560.22, + "end": 6564.1, + "probability": 0.9192 + }, + { + "start": 6564.54, + "end": 6565.64, + "probability": 0.6006 + }, + { + "start": 6565.86, + "end": 6567.26, + "probability": 0.8335 + }, + { + "start": 6567.8, + "end": 6570.04, + "probability": 0.7469 + }, + { + "start": 6570.18, + "end": 6571.62, + "probability": 0.9196 + }, + { + "start": 6571.84, + "end": 6572.44, + "probability": 0.4034 + }, + { + "start": 6572.5, + "end": 6574.68, + "probability": 0.9181 + }, + { + "start": 6576.06, + "end": 6576.88, + "probability": 0.6269 + }, + { + "start": 6583.86, + "end": 6584.9, + "probability": 0.9042 + }, + { + "start": 6597.96, + "end": 6599.6, + "probability": 0.6755 + }, + { + "start": 6600.8, + "end": 6602.72, + "probability": 0.9661 + }, + { + "start": 6603.28, + "end": 6604.02, + "probability": 0.6993 + }, + { + "start": 6604.6, + "end": 6608.18, + "probability": 0.966 + }, + { + "start": 6608.66, + "end": 6612.2, + "probability": 0.99 + }, + { + "start": 6613.26, + "end": 6613.26, + "probability": 0.1361 + }, + { + "start": 6613.4, + "end": 6614.28, + "probability": 0.8046 + }, + { + "start": 6614.58, + "end": 6618.68, + "probability": 0.9834 + }, + { + "start": 6619.26, + "end": 6620.02, + "probability": 0.9751 + }, + { + "start": 6620.58, + "end": 6622.82, + "probability": 0.9841 + }, + { + "start": 6623.36, + "end": 6625.82, + "probability": 0.9922 + }, + { + "start": 6626.14, + "end": 6629.32, + "probability": 0.9156 + }, + { + "start": 6629.88, + "end": 6633.8, + "probability": 0.8983 + }, + { + "start": 6634.22, + "end": 6635.88, + "probability": 0.7391 + }, + { + "start": 6636.54, + "end": 6636.88, + "probability": 0.8132 + }, + { + "start": 6637.78, + "end": 6642.84, + "probability": 0.9525 + }, + { + "start": 6643.5, + "end": 6646.04, + "probability": 0.9414 + }, + { + "start": 6646.42, + "end": 6648.4, + "probability": 0.8984 + }, + { + "start": 6649.32, + "end": 6651.44, + "probability": 0.9499 + }, + { + "start": 6652.0, + "end": 6652.52, + "probability": 0.9624 + }, + { + "start": 6654.12, + "end": 6657.34, + "probability": 0.9788 + }, + { + "start": 6657.78, + "end": 6659.42, + "probability": 0.9572 + }, + { + "start": 6659.9, + "end": 6661.85, + "probability": 0.9971 + }, + { + "start": 6662.48, + "end": 6664.0, + "probability": 0.9718 + }, + { + "start": 6664.1, + "end": 6665.48, + "probability": 0.9459 + }, + { + "start": 6665.98, + "end": 6668.38, + "probability": 0.9947 + }, + { + "start": 6668.94, + "end": 6670.44, + "probability": 0.9594 + }, + { + "start": 6670.9, + "end": 6672.1, + "probability": 0.8312 + }, + { + "start": 6672.58, + "end": 6673.84, + "probability": 0.8016 + }, + { + "start": 6674.22, + "end": 6679.16, + "probability": 0.9695 + }, + { + "start": 6680.1, + "end": 6682.52, + "probability": 0.7824 + }, + { + "start": 6683.02, + "end": 6686.0, + "probability": 0.979 + }, + { + "start": 6686.42, + "end": 6689.08, + "probability": 0.9851 + }, + { + "start": 6690.48, + "end": 6692.96, + "probability": 0.9216 + }, + { + "start": 6693.14, + "end": 6694.18, + "probability": 0.7308 + }, + { + "start": 6694.8, + "end": 6695.76, + "probability": 0.4677 + }, + { + "start": 6695.88, + "end": 6697.56, + "probability": 0.9786 + }, + { + "start": 6697.98, + "end": 6701.14, + "probability": 0.9878 + }, + { + "start": 6701.36, + "end": 6701.76, + "probability": 0.8803 + }, + { + "start": 6703.32, + "end": 6704.04, + "probability": 0.657 + }, + { + "start": 6704.04, + "end": 6707.26, + "probability": 0.9252 + }, + { + "start": 6717.06, + "end": 6717.86, + "probability": 0.7179 + }, + { + "start": 6719.04, + "end": 6722.06, + "probability": 0.7998 + }, + { + "start": 6723.48, + "end": 6728.68, + "probability": 0.9933 + }, + { + "start": 6729.56, + "end": 6734.1, + "probability": 0.9963 + }, + { + "start": 6735.92, + "end": 6736.6, + "probability": 0.552 + }, + { + "start": 6737.22, + "end": 6739.78, + "probability": 0.6628 + }, + { + "start": 6740.1, + "end": 6740.66, + "probability": 0.9311 + }, + { + "start": 6742.0, + "end": 6742.92, + "probability": 0.9624 + }, + { + "start": 6743.0, + "end": 6743.2, + "probability": 0.8948 + }, + { + "start": 6743.3, + "end": 6745.84, + "probability": 0.9678 + }, + { + "start": 6746.28, + "end": 6747.14, + "probability": 0.9382 + }, + { + "start": 6747.2, + "end": 6748.48, + "probability": 0.7813 + }, + { + "start": 6750.16, + "end": 6752.66, + "probability": 0.9224 + }, + { + "start": 6754.14, + "end": 6757.22, + "probability": 0.8849 + }, + { + "start": 6758.53, + "end": 6763.96, + "probability": 0.9758 + }, + { + "start": 6765.16, + "end": 6766.86, + "probability": 0.9341 + }, + { + "start": 6768.84, + "end": 6771.18, + "probability": 0.7713 + }, + { + "start": 6772.88, + "end": 6775.46, + "probability": 0.9372 + }, + { + "start": 6777.84, + "end": 6781.32, + "probability": 0.9693 + }, + { + "start": 6782.66, + "end": 6785.22, + "probability": 0.9786 + }, + { + "start": 6786.48, + "end": 6788.04, + "probability": 0.9989 + }, + { + "start": 6790.6, + "end": 6791.54, + "probability": 0.7875 + }, + { + "start": 6792.74, + "end": 6795.94, + "probability": 0.9914 + }, + { + "start": 6796.48, + "end": 6797.92, + "probability": 0.9455 + }, + { + "start": 6798.46, + "end": 6800.16, + "probability": 0.9852 + }, + { + "start": 6800.92, + "end": 6803.88, + "probability": 0.7828 + }, + { + "start": 6804.08, + "end": 6809.5, + "probability": 0.9836 + }, + { + "start": 6810.58, + "end": 6813.42, + "probability": 0.9623 + }, + { + "start": 6814.18, + "end": 6818.64, + "probability": 0.7543 + }, + { + "start": 6820.3, + "end": 6824.72, + "probability": 0.9593 + }, + { + "start": 6824.9, + "end": 6829.0, + "probability": 0.8596 + }, + { + "start": 6829.82, + "end": 6834.02, + "probability": 0.9928 + }, + { + "start": 6835.04, + "end": 6837.3, + "probability": 0.9967 + }, + { + "start": 6837.96, + "end": 6840.52, + "probability": 0.9965 + }, + { + "start": 6841.42, + "end": 6843.82, + "probability": 0.7881 + }, + { + "start": 6844.6, + "end": 6845.64, + "probability": 0.7508 + }, + { + "start": 6846.18, + "end": 6847.52, + "probability": 0.9446 + }, + { + "start": 6848.12, + "end": 6849.14, + "probability": 0.6473 + }, + { + "start": 6850.32, + "end": 6853.26, + "probability": 0.0078 + }, + { + "start": 6855.84, + "end": 6856.12, + "probability": 0.1088 + }, + { + "start": 6856.12, + "end": 6856.12, + "probability": 0.0358 + }, + { + "start": 6856.12, + "end": 6856.12, + "probability": 0.049 + }, + { + "start": 6856.12, + "end": 6856.88, + "probability": 0.0526 + }, + { + "start": 6857.26, + "end": 6860.12, + "probability": 0.8523 + }, + { + "start": 6860.64, + "end": 6863.3, + "probability": 0.9401 + }, + { + "start": 6864.12, + "end": 6866.44, + "probability": 0.9956 + }, + { + "start": 6866.9, + "end": 6868.34, + "probability": 0.6654 + }, + { + "start": 6869.1, + "end": 6870.12, + "probability": 0.9979 + }, + { + "start": 6870.66, + "end": 6874.3, + "probability": 0.497 + }, + { + "start": 6874.78, + "end": 6878.18, + "probability": 0.9144 + }, + { + "start": 6879.08, + "end": 6883.71, + "probability": 0.9844 + }, + { + "start": 6884.66, + "end": 6886.84, + "probability": 0.7842 + }, + { + "start": 6888.91, + "end": 6892.2, + "probability": 0.8601 + }, + { + "start": 6893.04, + "end": 6897.04, + "probability": 0.752 + }, + { + "start": 6897.1, + "end": 6897.24, + "probability": 0.3401 + }, + { + "start": 6897.3, + "end": 6897.84, + "probability": 0.2453 + }, + { + "start": 6898.8, + "end": 6899.06, + "probability": 0.2769 + }, + { + "start": 6899.12, + "end": 6899.34, + "probability": 0.0254 + }, + { + "start": 6899.34, + "end": 6902.22, + "probability": 0.636 + }, + { + "start": 6902.22, + "end": 6902.42, + "probability": 0.3202 + }, + { + "start": 6902.44, + "end": 6902.52, + "probability": 0.336 + }, + { + "start": 6902.6, + "end": 6904.06, + "probability": 0.8577 + }, + { + "start": 6904.37, + "end": 6904.44, + "probability": 0.7899 + }, + { + "start": 6904.44, + "end": 6905.5, + "probability": 0.0615 + }, + { + "start": 6905.66, + "end": 6906.92, + "probability": 0.8473 + }, + { + "start": 6907.24, + "end": 6907.46, + "probability": 0.2066 + }, + { + "start": 6909.4, + "end": 6910.1, + "probability": 0.024 + }, + { + "start": 6910.1, + "end": 6910.99, + "probability": 0.5314 + }, + { + "start": 6911.46, + "end": 6912.82, + "probability": 0.5581 + }, + { + "start": 6912.98, + "end": 6914.02, + "probability": 0.9275 + }, + { + "start": 6914.24, + "end": 6914.92, + "probability": 0.8188 + }, + { + "start": 6914.98, + "end": 6915.66, + "probability": 0.7435 + }, + { + "start": 6915.66, + "end": 6917.1, + "probability": 0.6046 + }, + { + "start": 6917.72, + "end": 6923.36, + "probability": 0.986 + }, + { + "start": 6924.3, + "end": 6925.74, + "probability": 0.7662 + }, + { + "start": 6926.3, + "end": 6927.33, + "probability": 0.3604 + }, + { + "start": 6927.62, + "end": 6929.76, + "probability": 0.996 + }, + { + "start": 6929.76, + "end": 6931.98, + "probability": 0.9907 + }, + { + "start": 6932.36, + "end": 6935.44, + "probability": 0.9985 + }, + { + "start": 6935.92, + "end": 6937.88, + "probability": 0.9045 + }, + { + "start": 6938.1, + "end": 6938.92, + "probability": 0.6841 + }, + { + "start": 6939.26, + "end": 6940.46, + "probability": 0.9319 + }, + { + "start": 6940.88, + "end": 6943.3, + "probability": 0.98 + }, + { + "start": 6943.44, + "end": 6945.88, + "probability": 0.6853 + }, + { + "start": 6946.24, + "end": 6947.4, + "probability": 0.7698 + }, + { + "start": 6947.42, + "end": 6947.76, + "probability": 0.6959 + }, + { + "start": 6947.8, + "end": 6948.36, + "probability": 0.7272 + }, + { + "start": 6948.78, + "end": 6950.42, + "probability": 0.598 + }, + { + "start": 6950.56, + "end": 6954.0, + "probability": 0.765 + }, + { + "start": 6954.62, + "end": 6955.06, + "probability": 0.0057 + }, + { + "start": 6955.74, + "end": 6955.74, + "probability": 0.061 + }, + { + "start": 6955.94, + "end": 6955.94, + "probability": 0.329 + }, + { + "start": 6955.94, + "end": 6956.8, + "probability": 0.3378 + }, + { + "start": 6956.8, + "end": 6957.55, + "probability": 0.3398 + }, + { + "start": 6958.18, + "end": 6962.08, + "probability": 0.2374 + }, + { + "start": 6963.2, + "end": 6964.2, + "probability": 0.0679 + }, + { + "start": 6964.9, + "end": 6965.76, + "probability": 0.3172 + }, + { + "start": 6966.02, + "end": 6967.28, + "probability": 0.6757 + }, + { + "start": 6967.38, + "end": 6968.42, + "probability": 0.6188 + }, + { + "start": 6968.44, + "end": 6969.5, + "probability": 0.4551 + }, + { + "start": 6969.68, + "end": 6970.66, + "probability": 0.6178 + }, + { + "start": 6971.65, + "end": 6974.34, + "probability": 0.9447 + }, + { + "start": 6974.5, + "end": 6978.32, + "probability": 0.7125 + }, + { + "start": 6978.32, + "end": 6979.68, + "probability": 0.7868 + }, + { + "start": 6980.18, + "end": 6981.24, + "probability": 0.5593 + }, + { + "start": 6981.24, + "end": 6984.08, + "probability": 0.9409 + }, + { + "start": 6984.3, + "end": 6986.68, + "probability": 0.7188 + }, + { + "start": 6988.06, + "end": 6988.98, + "probability": 0.8936 + }, + { + "start": 6990.7, + "end": 6996.92, + "probability": 0.7987 + }, + { + "start": 6998.1, + "end": 7002.88, + "probability": 0.8331 + }, + { + "start": 7004.64, + "end": 7005.44, + "probability": 0.9746 + }, + { + "start": 7006.0, + "end": 7007.38, + "probability": 0.9819 + }, + { + "start": 7007.94, + "end": 7012.76, + "probability": 0.8984 + }, + { + "start": 7013.92, + "end": 7014.42, + "probability": 0.7054 + }, + { + "start": 7015.92, + "end": 7017.0, + "probability": 0.7535 + }, + { + "start": 7017.62, + "end": 7020.56, + "probability": 0.7876 + }, + { + "start": 7020.68, + "end": 7021.38, + "probability": 0.6855 + }, + { + "start": 7021.9, + "end": 7024.38, + "probability": 0.99 + }, + { + "start": 7025.12, + "end": 7027.44, + "probability": 0.9888 + }, + { + "start": 7028.1, + "end": 7029.5, + "probability": 0.9362 + }, + { + "start": 7031.6, + "end": 7032.64, + "probability": 0.6037 + }, + { + "start": 7033.72, + "end": 7035.11, + "probability": 0.9807 + }, + { + "start": 7036.02, + "end": 7038.26, + "probability": 0.6796 + }, + { + "start": 7039.61, + "end": 7044.68, + "probability": 0.8577 + }, + { + "start": 7045.54, + "end": 7046.3, + "probability": 0.9673 + }, + { + "start": 7046.64, + "end": 7051.32, + "probability": 0.8094 + }, + { + "start": 7051.72, + "end": 7055.38, + "probability": 0.8857 + }, + { + "start": 7056.08, + "end": 7057.29, + "probability": 0.7865 + }, + { + "start": 7057.88, + "end": 7062.96, + "probability": 0.7489 + }, + { + "start": 7063.46, + "end": 7064.76, + "probability": 0.5926 + }, + { + "start": 7064.88, + "end": 7068.4, + "probability": 0.8289 + }, + { + "start": 7068.9, + "end": 7070.71, + "probability": 0.9805 + }, + { + "start": 7070.91, + "end": 7074.08, + "probability": 0.9431 + }, + { + "start": 7074.59, + "end": 7081.82, + "probability": 0.9905 + }, + { + "start": 7082.26, + "end": 7086.26, + "probability": 0.6862 + }, + { + "start": 7087.16, + "end": 7089.5, + "probability": 0.9869 + }, + { + "start": 7090.1, + "end": 7091.24, + "probability": 0.6223 + }, + { + "start": 7091.5, + "end": 7093.11, + "probability": 0.4494 + }, + { + "start": 7093.54, + "end": 7093.54, + "probability": 0.7428 + }, + { + "start": 7093.54, + "end": 7094.22, + "probability": 0.3286 + }, + { + "start": 7094.22, + "end": 7095.68, + "probability": 0.266 + }, + { + "start": 7095.94, + "end": 7097.96, + "probability": 0.6862 + }, + { + "start": 7098.2, + "end": 7100.14, + "probability": 0.458 + }, + { + "start": 7100.9, + "end": 7101.48, + "probability": 0.0298 + }, + { + "start": 7101.48, + "end": 7101.48, + "probability": 0.2194 + }, + { + "start": 7101.48, + "end": 7103.59, + "probability": 0.1982 + }, + { + "start": 7105.16, + "end": 7108.9, + "probability": 0.3315 + }, + { + "start": 7121.34, + "end": 7122.54, + "probability": 0.655 + }, + { + "start": 7123.3, + "end": 7124.1, + "probability": 0.6035 + }, + { + "start": 7124.24, + "end": 7126.34, + "probability": 0.7232 + }, + { + "start": 7126.58, + "end": 7129.32, + "probability": 0.7839 + }, + { + "start": 7129.77, + "end": 7133.62, + "probability": 0.9788 + }, + { + "start": 7134.32, + "end": 7137.6, + "probability": 0.9426 + }, + { + "start": 7138.36, + "end": 7141.62, + "probability": 0.8285 + }, + { + "start": 7143.0, + "end": 7145.66, + "probability": 0.7189 + }, + { + "start": 7147.34, + "end": 7149.52, + "probability": 0.9934 + }, + { + "start": 7151.3, + "end": 7153.32, + "probability": 0.981 + }, + { + "start": 7153.86, + "end": 7158.64, + "probability": 0.917 + }, + { + "start": 7159.48, + "end": 7163.0, + "probability": 0.739 + }, + { + "start": 7163.88, + "end": 7164.36, + "probability": 0.7419 + }, + { + "start": 7164.6, + "end": 7165.78, + "probability": 0.7225 + }, + { + "start": 7165.88, + "end": 7170.04, + "probability": 0.9924 + }, + { + "start": 7170.9, + "end": 7176.96, + "probability": 0.9863 + }, + { + "start": 7178.02, + "end": 7178.68, + "probability": 0.7893 + }, + { + "start": 7179.26, + "end": 7183.18, + "probability": 0.8248 + }, + { + "start": 7184.44, + "end": 7190.48, + "probability": 0.9907 + }, + { + "start": 7191.38, + "end": 7193.26, + "probability": 0.9524 + }, + { + "start": 7193.9, + "end": 7199.64, + "probability": 0.9775 + }, + { + "start": 7200.34, + "end": 7201.34, + "probability": 0.6513 + }, + { + "start": 7201.84, + "end": 7202.36, + "probability": 0.6617 + }, + { + "start": 7202.54, + "end": 7203.14, + "probability": 0.8772 + }, + { + "start": 7203.3, + "end": 7203.96, + "probability": 0.7584 + }, + { + "start": 7204.08, + "end": 7204.9, + "probability": 0.9963 + }, + { + "start": 7205.48, + "end": 7209.4, + "probability": 0.9995 + }, + { + "start": 7209.96, + "end": 7213.26, + "probability": 0.8988 + }, + { + "start": 7214.38, + "end": 7216.58, + "probability": 0.7155 + }, + { + "start": 7217.16, + "end": 7222.9, + "probability": 0.9642 + }, + { + "start": 7223.3, + "end": 7224.46, + "probability": 0.8779 + }, + { + "start": 7225.02, + "end": 7225.8, + "probability": 0.6843 + }, + { + "start": 7226.56, + "end": 7229.62, + "probability": 0.8453 + }, + { + "start": 7230.26, + "end": 7231.82, + "probability": 0.9902 + }, + { + "start": 7232.38, + "end": 7234.88, + "probability": 0.7264 + }, + { + "start": 7236.02, + "end": 7238.84, + "probability": 0.9262 + }, + { + "start": 7241.28, + "end": 7246.84, + "probability": 0.997 + }, + { + "start": 7248.06, + "end": 7250.78, + "probability": 0.987 + }, + { + "start": 7251.58, + "end": 7253.02, + "probability": 0.9907 + }, + { + "start": 7253.7, + "end": 7255.86, + "probability": 0.9968 + }, + { + "start": 7257.32, + "end": 7257.81, + "probability": 0.6284 + }, + { + "start": 7258.32, + "end": 7262.18, + "probability": 0.9722 + }, + { + "start": 7262.28, + "end": 7264.4, + "probability": 0.9938 + }, + { + "start": 7265.54, + "end": 7269.32, + "probability": 0.9822 + }, + { + "start": 7270.24, + "end": 7272.92, + "probability": 0.9924 + }, + { + "start": 7273.36, + "end": 7278.82, + "probability": 0.9497 + }, + { + "start": 7279.48, + "end": 7282.82, + "probability": 0.983 + }, + { + "start": 7283.7, + "end": 7285.3, + "probability": 0.9421 + }, + { + "start": 7286.22, + "end": 7289.16, + "probability": 0.863 + }, + { + "start": 7290.22, + "end": 7291.16, + "probability": 0.7991 + }, + { + "start": 7292.5, + "end": 7294.78, + "probability": 0.9497 + }, + { + "start": 7296.2, + "end": 7299.54, + "probability": 0.792 + }, + { + "start": 7300.56, + "end": 7305.1, + "probability": 0.8633 + }, + { + "start": 7305.24, + "end": 7308.28, + "probability": 0.9553 + }, + { + "start": 7308.54, + "end": 7308.58, + "probability": 0.6529 + }, + { + "start": 7308.66, + "end": 7311.08, + "probability": 0.6337 + }, + { + "start": 7311.88, + "end": 7314.38, + "probability": 0.7783 + }, + { + "start": 7315.04, + "end": 7319.42, + "probability": 0.9824 + }, + { + "start": 7320.04, + "end": 7324.86, + "probability": 0.9989 + }, + { + "start": 7325.88, + "end": 7325.92, + "probability": 0.2575 + }, + { + "start": 7325.96, + "end": 7327.08, + "probability": 0.9446 + }, + { + "start": 7327.18, + "end": 7328.62, + "probability": 0.4284 + }, + { + "start": 7328.72, + "end": 7329.98, + "probability": 0.8396 + }, + { + "start": 7330.62, + "end": 7332.5, + "probability": 0.8293 + }, + { + "start": 7333.26, + "end": 7336.06, + "probability": 0.876 + }, + { + "start": 7336.28, + "end": 7336.96, + "probability": 0.7552 + }, + { + "start": 7337.54, + "end": 7340.15, + "probability": 0.9963 + }, + { + "start": 7341.16, + "end": 7343.0, + "probability": 0.9027 + }, + { + "start": 7344.0, + "end": 7348.58, + "probability": 0.9961 + }, + { + "start": 7348.64, + "end": 7348.74, + "probability": 0.0354 + }, + { + "start": 7348.74, + "end": 7351.18, + "probability": 0.953 + }, + { + "start": 7351.52, + "end": 7352.58, + "probability": 0.9966 + }, + { + "start": 7352.66, + "end": 7353.2, + "probability": 0.8068 + }, + { + "start": 7353.4, + "end": 7353.4, + "probability": 0.6081 + }, + { + "start": 7353.54, + "end": 7355.0, + "probability": 0.7681 + }, + { + "start": 7355.82, + "end": 7356.54, + "probability": 0.6314 + }, + { + "start": 7361.26, + "end": 7362.06, + "probability": 0.0933 + }, + { + "start": 7374.78, + "end": 7376.3, + "probability": 0.2828 + }, + { + "start": 7380.96, + "end": 7382.08, + "probability": 0.2728 + }, + { + "start": 7384.72, + "end": 7385.68, + "probability": 0.7787 + }, + { + "start": 7386.6, + "end": 7390.34, + "probability": 0.998 + }, + { + "start": 7390.42, + "end": 7395.52, + "probability": 0.9941 + }, + { + "start": 7396.3, + "end": 7399.38, + "probability": 0.9998 + }, + { + "start": 7399.86, + "end": 7405.02, + "probability": 0.9487 + }, + { + "start": 7405.96, + "end": 7410.22, + "probability": 0.999 + }, + { + "start": 7410.22, + "end": 7413.68, + "probability": 0.9993 + }, + { + "start": 7414.7, + "end": 7421.62, + "probability": 0.9972 + }, + { + "start": 7422.26, + "end": 7425.96, + "probability": 0.9911 + }, + { + "start": 7426.98, + "end": 7432.02, + "probability": 0.844 + }, + { + "start": 7433.16, + "end": 7436.34, + "probability": 0.9862 + }, + { + "start": 7437.14, + "end": 7439.9, + "probability": 0.9756 + }, + { + "start": 7440.86, + "end": 7447.36, + "probability": 0.9722 + }, + { + "start": 7448.18, + "end": 7452.7, + "probability": 0.9665 + }, + { + "start": 7453.54, + "end": 7457.13, + "probability": 0.9873 + }, + { + "start": 7458.12, + "end": 7463.52, + "probability": 0.9635 + }, + { + "start": 7464.54, + "end": 7468.42, + "probability": 0.9667 + }, + { + "start": 7468.92, + "end": 7473.04, + "probability": 0.989 + }, + { + "start": 7473.52, + "end": 7476.28, + "probability": 0.9984 + }, + { + "start": 7476.28, + "end": 7480.7, + "probability": 0.883 + }, + { + "start": 7481.6, + "end": 7485.88, + "probability": 0.9991 + }, + { + "start": 7485.9, + "end": 7489.82, + "probability": 0.981 + }, + { + "start": 7490.76, + "end": 7495.76, + "probability": 0.9929 + }, + { + "start": 7496.32, + "end": 7498.24, + "probability": 0.9606 + }, + { + "start": 7498.9, + "end": 7501.68, + "probability": 0.9888 + }, + { + "start": 7502.54, + "end": 7505.98, + "probability": 0.7281 + }, + { + "start": 7506.74, + "end": 7510.84, + "probability": 0.9958 + }, + { + "start": 7510.84, + "end": 7515.52, + "probability": 0.9995 + }, + { + "start": 7516.06, + "end": 7520.52, + "probability": 0.9928 + }, + { + "start": 7520.52, + "end": 7525.64, + "probability": 0.9994 + }, + { + "start": 7526.06, + "end": 7530.38, + "probability": 0.911 + }, + { + "start": 7531.54, + "end": 7535.4, + "probability": 0.7726 + }, + { + "start": 7535.86, + "end": 7539.41, + "probability": 0.9569 + }, + { + "start": 7539.84, + "end": 7543.66, + "probability": 0.9963 + }, + { + "start": 7543.66, + "end": 7548.64, + "probability": 0.9681 + }, + { + "start": 7549.04, + "end": 7552.74, + "probability": 0.9885 + }, + { + "start": 7553.64, + "end": 7557.94, + "probability": 0.9871 + }, + { + "start": 7558.52, + "end": 7563.78, + "probability": 0.9974 + }, + { + "start": 7564.52, + "end": 7565.14, + "probability": 0.4826 + }, + { + "start": 7565.46, + "end": 7567.4, + "probability": 0.5004 + }, + { + "start": 7567.58, + "end": 7569.42, + "probability": 0.8743 + }, + { + "start": 7569.92, + "end": 7570.64, + "probability": 0.9755 + }, + { + "start": 7574.02, + "end": 7577.48, + "probability": 0.705 + }, + { + "start": 7578.14, + "end": 7582.6, + "probability": 0.9972 + }, + { + "start": 7582.6, + "end": 7587.62, + "probability": 0.9993 + }, + { + "start": 7588.08, + "end": 7588.82, + "probability": 0.6865 + }, + { + "start": 7589.72, + "end": 7591.92, + "probability": 0.9277 + }, + { + "start": 7593.12, + "end": 7593.12, + "probability": 0.1028 + }, + { + "start": 7593.76, + "end": 7594.6, + "probability": 0.1493 + }, + { + "start": 7595.68, + "end": 7598.58, + "probability": 0.0882 + }, + { + "start": 7615.56, + "end": 7620.06, + "probability": 0.818 + }, + { + "start": 7621.1, + "end": 7622.84, + "probability": 0.7307 + }, + { + "start": 7623.94, + "end": 7630.74, + "probability": 0.9024 + }, + { + "start": 7631.42, + "end": 7632.3, + "probability": 0.8606 + }, + { + "start": 7633.66, + "end": 7634.59, + "probability": 0.7731 + }, + { + "start": 7636.08, + "end": 7636.38, + "probability": 0.7686 + }, + { + "start": 7639.7, + "end": 7643.78, + "probability": 0.9927 + }, + { + "start": 7643.78, + "end": 7649.48, + "probability": 0.9995 + }, + { + "start": 7649.48, + "end": 7654.36, + "probability": 0.9983 + }, + { + "start": 7655.82, + "end": 7658.28, + "probability": 0.7474 + }, + { + "start": 7658.8, + "end": 7659.96, + "probability": 0.9662 + }, + { + "start": 7660.98, + "end": 7663.16, + "probability": 0.0417 + }, + { + "start": 7663.16, + "end": 7663.34, + "probability": 0.0571 + }, + { + "start": 7663.34, + "end": 7664.26, + "probability": 0.0722 + }, + { + "start": 7664.28, + "end": 7664.28, + "probability": 0.2932 + }, + { + "start": 7664.5, + "end": 7668.7, + "probability": 0.9199 + }, + { + "start": 7669.16, + "end": 7672.3, + "probability": 0.9717 + }, + { + "start": 7672.94, + "end": 7674.15, + "probability": 0.1019 + }, + { + "start": 7675.48, + "end": 7676.78, + "probability": 0.0458 + }, + { + "start": 7676.78, + "end": 7677.39, + "probability": 0.1896 + }, + { + "start": 7678.04, + "end": 7678.16, + "probability": 0.0011 + }, + { + "start": 7678.16, + "end": 7679.24, + "probability": 0.1509 + }, + { + "start": 7679.38, + "end": 7681.96, + "probability": 0.9845 + }, + { + "start": 7681.96, + "end": 7683.22, + "probability": 0.9039 + }, + { + "start": 7683.36, + "end": 7685.44, + "probability": 0.9948 + }, + { + "start": 7685.78, + "end": 7687.82, + "probability": 0.908 + }, + { + "start": 7689.6, + "end": 7690.76, + "probability": 0.1055 + }, + { + "start": 7692.66, + "end": 7692.84, + "probability": 0.0357 + }, + { + "start": 7693.88, + "end": 7695.0, + "probability": 0.4962 + }, + { + "start": 7695.0, + "end": 7695.98, + "probability": 0.0489 + }, + { + "start": 7695.98, + "end": 7699.04, + "probability": 0.0859 + }, + { + "start": 7699.04, + "end": 7699.25, + "probability": 0.0829 + }, + { + "start": 7701.88, + "end": 7704.04, + "probability": 0.0611 + }, + { + "start": 7704.28, + "end": 7704.94, + "probability": 0.2162 + }, + { + "start": 7708.44, + "end": 7709.88, + "probability": 0.3991 + }, + { + "start": 7710.0, + "end": 7710.92, + "probability": 0.6982 + }, + { + "start": 7710.92, + "end": 7715.26, + "probability": 0.5712 + }, + { + "start": 7715.72, + "end": 7716.16, + "probability": 0.1511 + }, + { + "start": 7716.4, + "end": 7719.16, + "probability": 0.6642 + }, + { + "start": 7719.4, + "end": 7720.06, + "probability": 0.8819 + }, + { + "start": 7720.14, + "end": 7720.52, + "probability": 0.9293 + }, + { + "start": 7720.6, + "end": 7721.32, + "probability": 0.8149 + }, + { + "start": 7721.32, + "end": 7722.58, + "probability": 0.9351 + }, + { + "start": 7722.76, + "end": 7723.44, + "probability": 0.9441 + }, + { + "start": 7723.58, + "end": 7725.14, + "probability": 0.8001 + }, + { + "start": 7725.52, + "end": 7730.32, + "probability": 0.9629 + }, + { + "start": 7730.32, + "end": 7735.1, + "probability": 0.9938 + }, + { + "start": 7735.32, + "end": 7736.22, + "probability": 0.9812 + }, + { + "start": 7736.52, + "end": 7738.24, + "probability": 0.9908 + }, + { + "start": 7738.36, + "end": 7739.7, + "probability": 0.9188 + }, + { + "start": 7740.62, + "end": 7741.7, + "probability": 0.9825 + }, + { + "start": 7742.48, + "end": 7743.04, + "probability": 0.8284 + }, + { + "start": 7743.12, + "end": 7743.52, + "probability": 0.9376 + }, + { + "start": 7743.72, + "end": 7747.16, + "probability": 0.9969 + }, + { + "start": 7747.16, + "end": 7753.08, + "probability": 0.9993 + }, + { + "start": 7754.1, + "end": 7756.2, + "probability": 0.0311 + }, + { + "start": 7756.36, + "end": 7756.66, + "probability": 0.0031 + }, + { + "start": 7756.66, + "end": 7756.66, + "probability": 0.0788 + }, + { + "start": 7756.66, + "end": 7758.02, + "probability": 0.0485 + }, + { + "start": 7758.42, + "end": 7758.5, + "probability": 0.0246 + }, + { + "start": 7758.5, + "end": 7758.5, + "probability": 0.0358 + }, + { + "start": 7758.5, + "end": 7758.5, + "probability": 0.0413 + }, + { + "start": 7758.5, + "end": 7758.5, + "probability": 0.158 + }, + { + "start": 7758.5, + "end": 7765.44, + "probability": 0.8637 + }, + { + "start": 7765.62, + "end": 7769.82, + "probability": 0.9319 + }, + { + "start": 7770.48, + "end": 7773.22, + "probability": 0.9647 + }, + { + "start": 7774.04, + "end": 7778.84, + "probability": 0.9987 + }, + { + "start": 7779.1, + "end": 7784.3, + "probability": 0.9838 + }, + { + "start": 7784.44, + "end": 7785.51, + "probability": 0.97 + }, + { + "start": 7786.14, + "end": 7791.98, + "probability": 0.9951 + }, + { + "start": 7792.18, + "end": 7793.64, + "probability": 0.9766 + }, + { + "start": 7794.04, + "end": 7796.54, + "probability": 0.894 + }, + { + "start": 7796.98, + "end": 7799.54, + "probability": 0.7542 + }, + { + "start": 7799.56, + "end": 7801.42, + "probability": 0.8701 + }, + { + "start": 7801.46, + "end": 7801.46, + "probability": 0.1081 + }, + { + "start": 7801.46, + "end": 7806.04, + "probability": 0.7018 + }, + { + "start": 7806.62, + "end": 7808.62, + "probability": 0.6494 + }, + { + "start": 7808.74, + "end": 7810.86, + "probability": 0.9908 + }, + { + "start": 7810.94, + "end": 7811.56, + "probability": 0.9194 + }, + { + "start": 7811.64, + "end": 7812.0, + "probability": 0.7078 + }, + { + "start": 7812.08, + "end": 7813.3, + "probability": 0.6413 + }, + { + "start": 7813.48, + "end": 7817.14, + "probability": 0.9698 + }, + { + "start": 7817.76, + "end": 7818.08, + "probability": 0.0087 + }, + { + "start": 7818.08, + "end": 7820.14, + "probability": 0.8569 + }, + { + "start": 7820.8, + "end": 7821.24, + "probability": 0.14 + }, + { + "start": 7821.24, + "end": 7821.24, + "probability": 0.1743 + }, + { + "start": 7821.24, + "end": 7824.36, + "probability": 0.6387 + }, + { + "start": 7825.5, + "end": 7825.68, + "probability": 0.5518 + }, + { + "start": 7825.68, + "end": 7829.08, + "probability": 0.9858 + }, + { + "start": 7829.36, + "end": 7830.32, + "probability": 0.5068 + }, + { + "start": 7830.6, + "end": 7831.44, + "probability": 0.5265 + }, + { + "start": 7832.02, + "end": 7832.24, + "probability": 0.1049 + }, + { + "start": 7832.24, + "end": 7833.88, + "probability": 0.3425 + }, + { + "start": 7834.64, + "end": 7835.88, + "probability": 0.2143 + }, + { + "start": 7836.1, + "end": 7837.96, + "probability": 0.0432 + }, + { + "start": 7837.96, + "end": 7838.86, + "probability": 0.217 + }, + { + "start": 7838.98, + "end": 7841.1, + "probability": 0.1965 + }, + { + "start": 7841.1, + "end": 7845.42, + "probability": 0.0455 + }, + { + "start": 7845.42, + "end": 7848.1, + "probability": 0.2127 + }, + { + "start": 7848.34, + "end": 7849.98, + "probability": 0.8584 + }, + { + "start": 7849.98, + "end": 7857.68, + "probability": 0.2257 + }, + { + "start": 7857.68, + "end": 7857.68, + "probability": 0.0356 + }, + { + "start": 7857.68, + "end": 7860.56, + "probability": 0.2266 + }, + { + "start": 7860.6, + "end": 7864.9, + "probability": 0.2034 + }, + { + "start": 7864.9, + "end": 7867.96, + "probability": 0.6774 + }, + { + "start": 7868.2, + "end": 7869.16, + "probability": 0.1449 + }, + { + "start": 7869.16, + "end": 7871.12, + "probability": 0.0653 + }, + { + "start": 7871.12, + "end": 7873.93, + "probability": 0.5795 + }, + { + "start": 7874.06, + "end": 7874.85, + "probability": 0.5862 + }, + { + "start": 7875.08, + "end": 7876.0, + "probability": 0.3252 + }, + { + "start": 7876.14, + "end": 7877.3, + "probability": 0.665 + }, + { + "start": 7877.44, + "end": 7878.53, + "probability": 0.6885 + }, + { + "start": 7878.78, + "end": 7880.36, + "probability": 0.1064 + }, + { + "start": 7881.16, + "end": 7881.4, + "probability": 0.5379 + }, + { + "start": 7881.5, + "end": 7881.72, + "probability": 0.4944 + }, + { + "start": 7881.9, + "end": 7882.98, + "probability": 0.2133 + }, + { + "start": 7883.82, + "end": 7886.28, + "probability": 0.2059 + }, + { + "start": 7886.28, + "end": 7887.08, + "probability": 0.6506 + }, + { + "start": 7887.16, + "end": 7888.24, + "probability": 0.7076 + }, + { + "start": 7888.5, + "end": 7889.45, + "probability": 0.5876 + }, + { + "start": 7889.56, + "end": 7890.52, + "probability": 0.7368 + }, + { + "start": 7890.78, + "end": 7891.86, + "probability": 0.6819 + }, + { + "start": 7892.58, + "end": 7893.51, + "probability": 0.1337 + }, + { + "start": 7894.04, + "end": 7894.18, + "probability": 0.0418 + }, + { + "start": 7894.18, + "end": 7894.18, + "probability": 0.1598 + }, + { + "start": 7894.18, + "end": 7894.84, + "probability": 0.006 + }, + { + "start": 7895.5, + "end": 7897.74, + "probability": 0.7925 + }, + { + "start": 7897.94, + "end": 7899.44, + "probability": 0.0922 + }, + { + "start": 7899.44, + "end": 7900.44, + "probability": 0.1235 + }, + { + "start": 7900.66, + "end": 7901.7, + "probability": 0.0434 + }, + { + "start": 7901.7, + "end": 7901.7, + "probability": 0.037 + }, + { + "start": 7901.7, + "end": 7901.7, + "probability": 0.0249 + }, + { + "start": 7901.7, + "end": 7902.8, + "probability": 0.0605 + }, + { + "start": 7903.64, + "end": 7905.1, + "probability": 0.4458 + }, + { + "start": 7905.62, + "end": 7912.44, + "probability": 0.9585 + }, + { + "start": 7913.54, + "end": 7914.8, + "probability": 0.813 + }, + { + "start": 7915.6, + "end": 7919.6, + "probability": 0.8842 + }, + { + "start": 7919.72, + "end": 7920.7, + "probability": 0.7516 + }, + { + "start": 7921.12, + "end": 7921.56, + "probability": 0.0791 + }, + { + "start": 7921.74, + "end": 7926.52, + "probability": 0.8913 + }, + { + "start": 7926.76, + "end": 7927.5, + "probability": 0.8491 + }, + { + "start": 7928.38, + "end": 7930.09, + "probability": 0.3062 + }, + { + "start": 7931.47, + "end": 7935.43, + "probability": 0.8512 + }, + { + "start": 7936.1, + "end": 7938.9, + "probability": 0.9264 + }, + { + "start": 7939.02, + "end": 7940.38, + "probability": 0.7997 + }, + { + "start": 7941.0, + "end": 7942.86, + "probability": 0.7816 + }, + { + "start": 7943.82, + "end": 7947.74, + "probability": 0.9717 + }, + { + "start": 7947.74, + "end": 7951.28, + "probability": 0.8446 + }, + { + "start": 7951.4, + "end": 7953.22, + "probability": 0.7741 + }, + { + "start": 7953.28, + "end": 7956.28, + "probability": 0.9958 + }, + { + "start": 7957.9, + "end": 7963.26, + "probability": 0.9946 + }, + { + "start": 7963.82, + "end": 7967.84, + "probability": 0.9763 + }, + { + "start": 7968.92, + "end": 7971.28, + "probability": 0.691 + }, + { + "start": 7971.42, + "end": 7974.52, + "probability": 0.9646 + }, + { + "start": 7974.74, + "end": 7975.14, + "probability": 0.8189 + }, + { + "start": 7975.24, + "end": 7980.3, + "probability": 0.981 + }, + { + "start": 7981.18, + "end": 7984.12, + "probability": 0.9604 + }, + { + "start": 7985.0, + "end": 7990.22, + "probability": 0.9967 + }, + { + "start": 7991.92, + "end": 7995.94, + "probability": 0.9842 + }, + { + "start": 7996.62, + "end": 7997.72, + "probability": 0.8191 + }, + { + "start": 7997.88, + "end": 7999.24, + "probability": 0.9449 + }, + { + "start": 8000.16, + "end": 8001.84, + "probability": 0.9856 + }, + { + "start": 8002.72, + "end": 8006.14, + "probability": 0.998 + }, + { + "start": 8006.14, + "end": 8010.22, + "probability": 0.9961 + }, + { + "start": 8011.08, + "end": 8013.98, + "probability": 0.9836 + }, + { + "start": 8014.16, + "end": 8018.72, + "probability": 0.7911 + }, + { + "start": 8019.36, + "end": 8022.76, + "probability": 0.9689 + }, + { + "start": 8023.84, + "end": 8025.94, + "probability": 0.8314 + }, + { + "start": 8026.46, + "end": 8030.0, + "probability": 0.9716 + }, + { + "start": 8030.24, + "end": 8031.12, + "probability": 0.6253 + }, + { + "start": 8031.68, + "end": 8034.7, + "probability": 0.8965 + }, + { + "start": 8035.34, + "end": 8039.36, + "probability": 0.8889 + }, + { + "start": 8039.68, + "end": 8040.34, + "probability": 0.9288 + }, + { + "start": 8041.84, + "end": 8046.62, + "probability": 0.9299 + }, + { + "start": 8047.46, + "end": 8051.28, + "probability": 0.7742 + }, + { + "start": 8052.08, + "end": 8054.46, + "probability": 0.7969 + }, + { + "start": 8055.22, + "end": 8056.96, + "probability": 0.9749 + }, + { + "start": 8057.16, + "end": 8062.0, + "probability": 0.9768 + }, + { + "start": 8062.56, + "end": 8065.54, + "probability": 0.8143 + }, + { + "start": 8065.68, + "end": 8072.04, + "probability": 0.9898 + }, + { + "start": 8072.6, + "end": 8075.82, + "probability": 0.976 + }, + { + "start": 8076.34, + "end": 8082.2, + "probability": 0.9913 + }, + { + "start": 8082.22, + "end": 8082.5, + "probability": 0.3014 + }, + { + "start": 8082.7, + "end": 8086.56, + "probability": 0.8696 + }, + { + "start": 8086.66, + "end": 8087.2, + "probability": 0.9233 + }, + { + "start": 8088.18, + "end": 8090.22, + "probability": 0.9657 + }, + { + "start": 8094.48, + "end": 8096.08, + "probability": 0.9095 + }, + { + "start": 8097.94, + "end": 8099.14, + "probability": 0.2321 + }, + { + "start": 8099.26, + "end": 8101.94, + "probability": 0.5065 + }, + { + "start": 8102.28, + "end": 8102.42, + "probability": 0.0283 + }, + { + "start": 8102.44, + "end": 8102.48, + "probability": 0.3431 + }, + { + "start": 8102.48, + "end": 8102.48, + "probability": 0.4643 + }, + { + "start": 8102.48, + "end": 8105.63, + "probability": 0.414 + }, + { + "start": 8109.8, + "end": 8110.66, + "probability": 0.1624 + }, + { + "start": 8111.51, + "end": 8114.86, + "probability": 0.16 + }, + { + "start": 8115.54, + "end": 8116.46, + "probability": 0.1291 + }, + { + "start": 8116.92, + "end": 8117.14, + "probability": 0.0166 + }, + { + "start": 8117.24, + "end": 8121.46, + "probability": 0.0298 + }, + { + "start": 8121.46, + "end": 8123.58, + "probability": 0.3913 + }, + { + "start": 8124.28, + "end": 8124.6, + "probability": 0.3621 + }, + { + "start": 8125.16, + "end": 8127.38, + "probability": 0.0225 + }, + { + "start": 8127.5, + "end": 8128.74, + "probability": 0.035 + }, + { + "start": 8128.96, + "end": 8130.48, + "probability": 0.1122 + }, + { + "start": 8130.58, + "end": 8136.62, + "probability": 0.046 + }, + { + "start": 8141.72, + "end": 8142.88, + "probability": 0.0663 + }, + { + "start": 8143.24, + "end": 8145.92, + "probability": 0.0172 + }, + { + "start": 8145.92, + "end": 8146.54, + "probability": 0.135 + }, + { + "start": 8146.78, + "end": 8147.02, + "probability": 0.133 + }, + { + "start": 8147.02, + "end": 8147.06, + "probability": 0.3797 + }, + { + "start": 8147.06, + "end": 8147.06, + "probability": 0.0346 + }, + { + "start": 8148.24, + "end": 8149.12, + "probability": 0.1015 + }, + { + "start": 8149.32, + "end": 8152.3, + "probability": 0.0786 + }, + { + "start": 8152.56, + "end": 8154.58, + "probability": 0.3176 + }, + { + "start": 8154.64, + "end": 8158.02, + "probability": 0.127 + }, + { + "start": 8158.34, + "end": 8161.22, + "probability": 0.0948 + }, + { + "start": 8162.9, + "end": 8165.54, + "probability": 0.1823 + }, + { + "start": 8165.78, + "end": 8168.66, + "probability": 0.0101 + }, + { + "start": 8168.66, + "end": 8169.98, + "probability": 0.0333 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.0, + "end": 8170.0, + "probability": 0.0 + }, + { + "start": 8170.38, + "end": 8170.8, + "probability": 0.0769 + }, + { + "start": 8170.8, + "end": 8170.8, + "probability": 0.3327 + }, + { + "start": 8170.8, + "end": 8175.76, + "probability": 0.6213 + }, + { + "start": 8176.9, + "end": 8180.66, + "probability": 0.9604 + }, + { + "start": 8180.86, + "end": 8182.79, + "probability": 0.9236 + }, + { + "start": 8183.34, + "end": 8185.6, + "probability": 0.9444 + }, + { + "start": 8185.92, + "end": 8186.9, + "probability": 0.7155 + }, + { + "start": 8186.94, + "end": 8188.34, + "probability": 0.8889 + }, + { + "start": 8189.36, + "end": 8193.84, + "probability": 0.9452 + }, + { + "start": 8193.94, + "end": 8194.92, + "probability": 0.9823 + }, + { + "start": 8194.98, + "end": 8195.74, + "probability": 0.8197 + }, + { + "start": 8196.76, + "end": 8198.66, + "probability": 0.8857 + }, + { + "start": 8198.66, + "end": 8198.94, + "probability": 0.6645 + }, + { + "start": 8199.02, + "end": 8200.8, + "probability": 0.7803 + }, + { + "start": 8200.92, + "end": 8202.71, + "probability": 0.8346 + }, + { + "start": 8206.4, + "end": 8207.6, + "probability": 0.4036 + }, + { + "start": 8207.62, + "end": 8209.26, + "probability": 0.0799 + }, + { + "start": 8209.32, + "end": 8211.16, + "probability": 0.7732 + }, + { + "start": 8211.18, + "end": 8211.74, + "probability": 0.1692 + }, + { + "start": 8211.84, + "end": 8212.58, + "probability": 0.2814 + }, + { + "start": 8212.78, + "end": 8214.66, + "probability": 0.9794 + }, + { + "start": 8214.78, + "end": 8218.1, + "probability": 0.4685 + }, + { + "start": 8221.48, + "end": 8222.88, + "probability": 0.5579 + }, + { + "start": 8223.38, + "end": 8224.29, + "probability": 0.7164 + }, + { + "start": 8224.94, + "end": 8225.39, + "probability": 0.8181 + }, + { + "start": 8226.14, + "end": 8226.7, + "probability": 0.7572 + }, + { + "start": 8226.86, + "end": 8228.78, + "probability": 0.5878 + }, + { + "start": 8230.42, + "end": 8230.56, + "probability": 0.0311 + }, + { + "start": 8230.56, + "end": 8231.54, + "probability": 0.1794 + }, + { + "start": 8231.88, + "end": 8231.88, + "probability": 0.2241 + }, + { + "start": 8231.88, + "end": 8231.88, + "probability": 0.1811 + }, + { + "start": 8231.88, + "end": 8232.66, + "probability": 0.7167 + }, + { + "start": 8232.66, + "end": 8233.02, + "probability": 0.5069 + }, + { + "start": 8233.08, + "end": 8233.08, + "probability": 0.4609 + }, + { + "start": 8233.08, + "end": 8234.9, + "probability": 0.3361 + }, + { + "start": 8235.48, + "end": 8236.74, + "probability": 0.0253 + }, + { + "start": 8238.34, + "end": 8239.08, + "probability": 0.0117 + }, + { + "start": 8239.16, + "end": 8239.7, + "probability": 0.2983 + }, + { + "start": 8239.92, + "end": 8241.76, + "probability": 0.1578 + }, + { + "start": 8242.5, + "end": 8242.9, + "probability": 0.0181 + }, + { + "start": 8242.9, + "end": 8245.08, + "probability": 0.082 + }, + { + "start": 8246.2, + "end": 8246.26, + "probability": 0.0149 + }, + { + "start": 8246.92, + "end": 8247.66, + "probability": 0.1642 + }, + { + "start": 8248.38, + "end": 8249.44, + "probability": 0.1173 + }, + { + "start": 8249.44, + "end": 8250.48, + "probability": 0.441 + }, + { + "start": 8250.48, + "end": 8251.98, + "probability": 0.5334 + }, + { + "start": 8254.48, + "end": 8258.3, + "probability": 0.2079 + }, + { + "start": 8258.82, + "end": 8261.24, + "probability": 0.0562 + }, + { + "start": 8264.0, + "end": 8264.0, + "probability": 0.0217 + }, + { + "start": 8268.26, + "end": 8269.94, + "probability": 0.0468 + }, + { + "start": 8272.12, + "end": 8275.28, + "probability": 0.5277 + }, + { + "start": 8276.12, + "end": 8278.92, + "probability": 0.18 + }, + { + "start": 8278.92, + "end": 8279.3, + "probability": 0.4789 + }, + { + "start": 8279.3, + "end": 8279.3, + "probability": 0.0145 + }, + { + "start": 8279.3, + "end": 8279.82, + "probability": 0.3293 + }, + { + "start": 8279.82, + "end": 8279.82, + "probability": 0.1608 + }, + { + "start": 8279.82, + "end": 8281.1, + "probability": 0.5973 + }, + { + "start": 8281.1, + "end": 8284.2, + "probability": 0.0493 + }, + { + "start": 8284.68, + "end": 8287.83, + "probability": 0.0795 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.0, + "end": 8290.0, + "probability": 0.0 + }, + { + "start": 8290.12, + "end": 8291.43, + "probability": 0.6133 + }, + { + "start": 8293.04, + "end": 8293.38, + "probability": 0.7876 + }, + { + "start": 8293.42, + "end": 8296.68, + "probability": 0.9897 + }, + { + "start": 8297.36, + "end": 8299.3, + "probability": 0.5747 + }, + { + "start": 8299.46, + "end": 8300.68, + "probability": 0.8162 + }, + { + "start": 8301.24, + "end": 8301.56, + "probability": 0.7576 + }, + { + "start": 8302.16, + "end": 8302.72, + "probability": 0.7541 + }, + { + "start": 8302.8, + "end": 8303.84, + "probability": 0.988 + }, + { + "start": 8303.92, + "end": 8304.45, + "probability": 0.9373 + }, + { + "start": 8304.98, + "end": 8306.87, + "probability": 0.7996 + }, + { + "start": 8307.04, + "end": 8308.94, + "probability": 0.9667 + }, + { + "start": 8309.42, + "end": 8311.68, + "probability": 0.7889 + }, + { + "start": 8311.86, + "end": 8312.43, + "probability": 0.9438 + }, + { + "start": 8313.26, + "end": 8314.58, + "probability": 0.8952 + }, + { + "start": 8314.98, + "end": 8319.66, + "probability": 0.9979 + }, + { + "start": 8320.14, + "end": 8320.24, + "probability": 0.6244 + }, + { + "start": 8320.26, + "end": 8321.26, + "probability": 0.6651 + }, + { + "start": 8321.42, + "end": 8321.82, + "probability": 0.472 + }, + { + "start": 8322.3, + "end": 8322.32, + "probability": 0.1608 + }, + { + "start": 8322.46, + "end": 8324.2, + "probability": 0.9699 + }, + { + "start": 8325.22, + "end": 8326.54, + "probability": 0.5182 + }, + { + "start": 8327.42, + "end": 8327.9, + "probability": 0.7531 + }, + { + "start": 8328.42, + "end": 8330.86, + "probability": 0.9122 + }, + { + "start": 8330.98, + "end": 8331.7, + "probability": 0.4958 + }, + { + "start": 8332.08, + "end": 8332.18, + "probability": 0.4224 + }, + { + "start": 8332.18, + "end": 8332.74, + "probability": 0.7279 + }, + { + "start": 8332.74, + "end": 8333.68, + "probability": 0.7477 + }, + { + "start": 8333.8, + "end": 8333.8, + "probability": 0.6202 + }, + { + "start": 8333.8, + "end": 8334.5, + "probability": 0.0869 + }, + { + "start": 8334.52, + "end": 8335.2, + "probability": 0.3924 + }, + { + "start": 8335.66, + "end": 8336.3, + "probability": 0.9084 + }, + { + "start": 8336.32, + "end": 8336.66, + "probability": 0.587 + }, + { + "start": 8336.66, + "end": 8337.34, + "probability": 0.8737 + }, + { + "start": 8337.52, + "end": 8337.8, + "probability": 0.8604 + }, + { + "start": 8338.3, + "end": 8339.28, + "probability": 0.9978 + }, + { + "start": 8339.4, + "end": 8341.32, + "probability": 0.9907 + }, + { + "start": 8341.44, + "end": 8344.32, + "probability": 0.9844 + }, + { + "start": 8344.88, + "end": 8345.26, + "probability": 0.6927 + }, + { + "start": 8345.58, + "end": 8346.18, + "probability": 0.5051 + }, + { + "start": 8346.52, + "end": 8348.12, + "probability": 0.7205 + }, + { + "start": 8348.56, + "end": 8349.38, + "probability": 0.7632 + }, + { + "start": 8349.76, + "end": 8351.18, + "probability": 0.9785 + }, + { + "start": 8351.66, + "end": 8354.66, + "probability": 0.9335 + }, + { + "start": 8354.74, + "end": 8355.14, + "probability": 0.305 + }, + { + "start": 8355.24, + "end": 8356.0, + "probability": 0.8641 + }, + { + "start": 8356.44, + "end": 8357.3, + "probability": 0.3548 + }, + { + "start": 8357.3, + "end": 8358.8, + "probability": 0.7513 + }, + { + "start": 8358.92, + "end": 8359.32, + "probability": 0.9631 + }, + { + "start": 8359.82, + "end": 8361.54, + "probability": 0.0444 + }, + { + "start": 8361.94, + "end": 8363.8, + "probability": 0.7529 + }, + { + "start": 8363.88, + "end": 8364.86, + "probability": 0.9092 + }, + { + "start": 8365.42, + "end": 8366.35, + "probability": 0.2381 + }, + { + "start": 8366.76, + "end": 8367.99, + "probability": 0.6947 + }, + { + "start": 8369.84, + "end": 8370.86, + "probability": 0.8818 + }, + { + "start": 8370.94, + "end": 8371.04, + "probability": 0.5376 + }, + { + "start": 8371.14, + "end": 8371.62, + "probability": 0.8781 + }, + { + "start": 8371.66, + "end": 8373.28, + "probability": 0.7767 + }, + { + "start": 8373.68, + "end": 8376.04, + "probability": 0.9815 + }, + { + "start": 8376.4, + "end": 8377.46, + "probability": 0.9086 + }, + { + "start": 8377.54, + "end": 8378.44, + "probability": 0.7949 + }, + { + "start": 8379.0, + "end": 8381.68, + "probability": 0.7106 + }, + { + "start": 8382.08, + "end": 8382.72, + "probability": 0.8774 + }, + { + "start": 8383.52, + "end": 8383.96, + "probability": 0.6123 + }, + { + "start": 8384.04, + "end": 8384.68, + "probability": 0.9609 + }, + { + "start": 8385.0, + "end": 8386.42, + "probability": 0.9204 + }, + { + "start": 8386.7, + "end": 8389.56, + "probability": 0.9567 + }, + { + "start": 8389.98, + "end": 8392.58, + "probability": 0.9563 + }, + { + "start": 8392.88, + "end": 8393.6, + "probability": 0.9036 + }, + { + "start": 8393.96, + "end": 8394.72, + "probability": 0.8863 + }, + { + "start": 8395.1, + "end": 8395.44, + "probability": 0.7035 + }, + { + "start": 8396.0, + "end": 8396.56, + "probability": 0.9631 + }, + { + "start": 8397.38, + "end": 8402.04, + "probability": 0.9825 + }, + { + "start": 8402.14, + "end": 8403.08, + "probability": 0.937 + }, + { + "start": 8403.52, + "end": 8405.76, + "probability": 0.7793 + }, + { + "start": 8406.74, + "end": 8408.8, + "probability": 0.9662 + }, + { + "start": 8408.86, + "end": 8409.34, + "probability": 0.7524 + }, + { + "start": 8409.9, + "end": 8413.18, + "probability": 0.9737 + }, + { + "start": 8413.66, + "end": 8414.41, + "probability": 0.9886 + }, + { + "start": 8415.52, + "end": 8419.16, + "probability": 0.9699 + }, + { + "start": 8419.54, + "end": 8420.48, + "probability": 0.8196 + }, + { + "start": 8420.94, + "end": 8423.22, + "probability": 0.9864 + }, + { + "start": 8423.3, + "end": 8424.43, + "probability": 0.9551 + }, + { + "start": 8424.74, + "end": 8427.47, + "probability": 0.9155 + }, + { + "start": 8428.18, + "end": 8433.3, + "probability": 0.9498 + }, + { + "start": 8433.82, + "end": 8434.4, + "probability": 0.8089 + }, + { + "start": 8434.54, + "end": 8437.44, + "probability": 0.9322 + }, + { + "start": 8438.28, + "end": 8440.92, + "probability": 0.9126 + }, + { + "start": 8441.32, + "end": 8445.66, + "probability": 0.8775 + }, + { + "start": 8446.32, + "end": 8446.7, + "probability": 0.7359 + }, + { + "start": 8447.18, + "end": 8449.6, + "probability": 0.8139 + }, + { + "start": 8449.68, + "end": 8450.26, + "probability": 0.7892 + }, + { + "start": 8450.7, + "end": 8451.24, + "probability": 0.6459 + }, + { + "start": 8451.32, + "end": 8451.78, + "probability": 0.8358 + }, + { + "start": 8451.92, + "end": 8452.74, + "probability": 0.8438 + }, + { + "start": 8452.78, + "end": 8453.78, + "probability": 0.9686 + }, + { + "start": 8454.26, + "end": 8454.96, + "probability": 0.9574 + }, + { + "start": 8455.12, + "end": 8456.01, + "probability": 0.9873 + }, + { + "start": 8456.36, + "end": 8457.08, + "probability": 0.5961 + }, + { + "start": 8457.32, + "end": 8458.66, + "probability": 0.7174 + }, + { + "start": 8458.8, + "end": 8463.76, + "probability": 0.989 + }, + { + "start": 8463.92, + "end": 8464.98, + "probability": 0.9432 + }, + { + "start": 8465.62, + "end": 8468.96, + "probability": 0.9883 + }, + { + "start": 8469.36, + "end": 8471.5, + "probability": 0.9731 + }, + { + "start": 8471.56, + "end": 8471.8, + "probability": 0.7447 + }, + { + "start": 8472.22, + "end": 8476.6, + "probability": 0.9781 + }, + { + "start": 8476.84, + "end": 8476.92, + "probability": 0.6324 + }, + { + "start": 8476.92, + "end": 8478.76, + "probability": 0.9919 + }, + { + "start": 8479.04, + "end": 8479.74, + "probability": 0.6456 + }, + { + "start": 8479.8, + "end": 8480.54, + "probability": 0.9167 + }, + { + "start": 8481.28, + "end": 8482.54, + "probability": 0.173 + }, + { + "start": 8483.64, + "end": 8484.1, + "probability": 0.5674 + }, + { + "start": 8487.96, + "end": 8488.74, + "probability": 0.7167 + }, + { + "start": 8490.06, + "end": 8490.48, + "probability": 0.5374 + }, + { + "start": 8491.24, + "end": 8491.9, + "probability": 0.7229 + }, + { + "start": 8492.12, + "end": 8492.8, + "probability": 0.2012 + }, + { + "start": 8492.86, + "end": 8493.24, + "probability": 0.9023 + }, + { + "start": 8494.18, + "end": 8495.38, + "probability": 0.9035 + }, + { + "start": 8495.46, + "end": 8497.22, + "probability": 0.0947 + }, + { + "start": 8497.68, + "end": 8497.78, + "probability": 0.3303 + }, + { + "start": 8497.78, + "end": 8499.38, + "probability": 0.6954 + }, + { + "start": 8500.02, + "end": 8500.69, + "probability": 0.0073 + }, + { + "start": 8506.15, + "end": 8506.36, + "probability": 0.0017 + }, + { + "start": 8506.36, + "end": 8508.86, + "probability": 0.8296 + }, + { + "start": 8509.68, + "end": 8513.88, + "probability": 0.9941 + }, + { + "start": 8513.88, + "end": 8513.88, + "probability": 0.7086 + }, + { + "start": 8513.88, + "end": 8515.36, + "probability": 0.9824 + }, + { + "start": 8516.92, + "end": 8517.76, + "probability": 0.5352 + }, + { + "start": 8518.54, + "end": 8520.76, + "probability": 0.9881 + }, + { + "start": 8521.38, + "end": 8525.54, + "probability": 0.7799 + }, + { + "start": 8526.08, + "end": 8532.04, + "probability": 0.9413 + }, + { + "start": 8533.44, + "end": 8534.94, + "probability": 0.9048 + }, + { + "start": 8535.08, + "end": 8537.0, + "probability": 0.7833 + }, + { + "start": 8537.16, + "end": 8539.2, + "probability": 0.9277 + }, + { + "start": 8539.66, + "end": 8541.6, + "probability": 0.9025 + }, + { + "start": 8542.18, + "end": 8544.1, + "probability": 0.82 + }, + { + "start": 8544.84, + "end": 8547.84, + "probability": 0.9117 + }, + { + "start": 8548.78, + "end": 8550.46, + "probability": 0.8447 + }, + { + "start": 8550.54, + "end": 8551.82, + "probability": 0.9813 + }, + { + "start": 8552.24, + "end": 8554.88, + "probability": 0.9108 + }, + { + "start": 8555.6, + "end": 8557.72, + "probability": 0.9933 + }, + { + "start": 8557.76, + "end": 8559.42, + "probability": 0.8801 + }, + { + "start": 8560.04, + "end": 8561.64, + "probability": 0.9014 + }, + { + "start": 8562.12, + "end": 8566.06, + "probability": 0.9978 + }, + { + "start": 8566.28, + "end": 8566.74, + "probability": 0.8534 + }, + { + "start": 8566.82, + "end": 8567.24, + "probability": 0.9131 + }, + { + "start": 8567.8, + "end": 8570.48, + "probability": 0.9885 + }, + { + "start": 8571.56, + "end": 8572.7, + "probability": 0.6407 + }, + { + "start": 8575.34, + "end": 8576.04, + "probability": 0.1966 + }, + { + "start": 8576.8, + "end": 8578.34, + "probability": 0.337 + }, + { + "start": 8578.98, + "end": 8582.52, + "probability": 0.0659 + }, + { + "start": 8585.06, + "end": 8586.9, + "probability": 0.7075 + }, + { + "start": 8587.84, + "end": 8590.66, + "probability": 0.905 + }, + { + "start": 8592.58, + "end": 8597.72, + "probability": 0.991 + }, + { + "start": 8598.2, + "end": 8598.22, + "probability": 0.4041 + }, + { + "start": 8598.22, + "end": 8600.0, + "probability": 0.9422 + }, + { + "start": 8600.16, + "end": 8602.96, + "probability": 0.5854 + }, + { + "start": 8603.8, + "end": 8604.24, + "probability": 0.6053 + }, + { + "start": 8604.58, + "end": 8606.84, + "probability": 0.9152 + }, + { + "start": 8608.21, + "end": 8611.44, + "probability": 0.9831 + }, + { + "start": 8612.36, + "end": 8614.52, + "probability": 0.972 + }, + { + "start": 8615.06, + "end": 8618.02, + "probability": 0.9863 + }, + { + "start": 8618.5, + "end": 8619.82, + "probability": 0.9629 + }, + { + "start": 8620.0, + "end": 8620.42, + "probability": 0.7765 + }, + { + "start": 8620.66, + "end": 8620.86, + "probability": 0.3535 + }, + { + "start": 8621.48, + "end": 8622.9, + "probability": 0.962 + }, + { + "start": 8627.1, + "end": 8632.14, + "probability": 0.7674 + }, + { + "start": 8634.31, + "end": 8646.06, + "probability": 0.7059 + }, + { + "start": 8646.82, + "end": 8647.92, + "probability": 0.7264 + }, + { + "start": 8647.96, + "end": 8648.26, + "probability": 0.6964 + }, + { + "start": 8648.56, + "end": 8650.46, + "probability": 0.9313 + }, + { + "start": 8650.78, + "end": 8651.36, + "probability": 0.0824 + }, + { + "start": 8651.92, + "end": 8653.7, + "probability": 0.9343 + }, + { + "start": 8653.7, + "end": 8654.34, + "probability": 0.4931 + }, + { + "start": 8654.72, + "end": 8656.16, + "probability": 0.5993 + }, + { + "start": 8657.48, + "end": 8657.5, + "probability": 0.0251 + }, + { + "start": 8657.5, + "end": 8658.26, + "probability": 0.4333 + }, + { + "start": 8658.98, + "end": 8660.24, + "probability": 0.9612 + }, + { + "start": 8660.8, + "end": 8661.44, + "probability": 0.9449 + }, + { + "start": 8661.6, + "end": 8663.12, + "probability": 0.9851 + }, + { + "start": 8663.6, + "end": 8664.8, + "probability": 0.9515 + }, + { + "start": 8665.24, + "end": 8665.4, + "probability": 0.1671 + }, + { + "start": 8666.34, + "end": 8666.72, + "probability": 0.5226 + }, + { + "start": 8667.9, + "end": 8668.8, + "probability": 0.8484 + }, + { + "start": 8669.48, + "end": 8670.38, + "probability": 0.6372 + }, + { + "start": 8671.1, + "end": 8676.46, + "probability": 0.5608 + }, + { + "start": 8676.56, + "end": 8676.9, + "probability": 0.6685 + }, + { + "start": 8678.48, + "end": 8679.02, + "probability": 0.4668 + }, + { + "start": 8679.02, + "end": 8679.92, + "probability": 0.4331 + }, + { + "start": 8680.9, + "end": 8685.86, + "probability": 0.5864 + }, + { + "start": 8686.98, + "end": 8687.8, + "probability": 0.5609 + }, + { + "start": 8688.36, + "end": 8688.36, + "probability": 0.0059 + }, + { + "start": 8688.36, + "end": 8691.42, + "probability": 0.9486 + }, + { + "start": 8691.98, + "end": 8694.04, + "probability": 0.8603 + }, + { + "start": 8694.84, + "end": 8697.98, + "probability": 0.9827 + }, + { + "start": 8698.62, + "end": 8700.66, + "probability": 0.6969 + }, + { + "start": 8701.72, + "end": 8705.1, + "probability": 0.8735 + }, + { + "start": 8705.22, + "end": 8707.86, + "probability": 0.9206 + }, + { + "start": 8709.74, + "end": 8712.86, + "probability": 0.9931 + }, + { + "start": 8714.06, + "end": 8716.22, + "probability": 0.9723 + }, + { + "start": 8716.88, + "end": 8717.7, + "probability": 0.9159 + }, + { + "start": 8719.98, + "end": 8721.83, + "probability": 0.8261 + }, + { + "start": 8723.32, + "end": 8723.8, + "probability": 0.4032 + }, + { + "start": 8724.78, + "end": 8727.6, + "probability": 0.9883 + }, + { + "start": 8730.04, + "end": 8730.86, + "probability": 0.9273 + }, + { + "start": 8732.24, + "end": 8733.82, + "probability": 0.8062 + }, + { + "start": 8733.92, + "end": 8735.58, + "probability": 0.7116 + }, + { + "start": 8736.56, + "end": 8737.68, + "probability": 0.6541 + }, + { + "start": 8738.66, + "end": 8745.5, + "probability": 0.8171 + }, + { + "start": 8746.9, + "end": 8749.96, + "probability": 0.8467 + }, + { + "start": 8751.58, + "end": 8760.0, + "probability": 0.9521 + }, + { + "start": 8762.76, + "end": 8767.82, + "probability": 0.7748 + }, + { + "start": 8769.3, + "end": 8770.38, + "probability": 0.9829 + }, + { + "start": 8772.72, + "end": 8773.22, + "probability": 0.5452 + }, + { + "start": 8773.94, + "end": 8775.98, + "probability": 0.8484 + }, + { + "start": 8778.01, + "end": 8780.54, + "probability": 0.73 + }, + { + "start": 8780.78, + "end": 8781.62, + "probability": 0.8261 + }, + { + "start": 8781.7, + "end": 8784.74, + "probability": 0.8835 + }, + { + "start": 8785.12, + "end": 8787.65, + "probability": 0.7837 + }, + { + "start": 8788.46, + "end": 8789.24, + "probability": 0.9398 + }, + { + "start": 8790.4, + "end": 8793.78, + "probability": 0.9035 + }, + { + "start": 8795.38, + "end": 8795.96, + "probability": 0.7477 + }, + { + "start": 8796.54, + "end": 8798.52, + "probability": 0.6183 + }, + { + "start": 8799.1, + "end": 8801.3, + "probability": 0.8682 + }, + { + "start": 8802.54, + "end": 8805.28, + "probability": 0.9088 + }, + { + "start": 8806.88, + "end": 8810.0, + "probability": 0.5581 + }, + { + "start": 8811.44, + "end": 8817.6, + "probability": 0.9791 + }, + { + "start": 8817.6, + "end": 8818.76, + "probability": 0.7617 + }, + { + "start": 8819.5, + "end": 8822.18, + "probability": 0.9712 + }, + { + "start": 8822.92, + "end": 8823.34, + "probability": 0.3615 + }, + { + "start": 8824.12, + "end": 8825.26, + "probability": 0.9972 + }, + { + "start": 8826.6, + "end": 8827.58, + "probability": 0.9329 + }, + { + "start": 8829.58, + "end": 8835.18, + "probability": 0.7672 + }, + { + "start": 8836.6, + "end": 8838.3, + "probability": 0.985 + }, + { + "start": 8839.02, + "end": 8840.94, + "probability": 0.9268 + }, + { + "start": 8841.48, + "end": 8843.54, + "probability": 0.9932 + }, + { + "start": 8845.46, + "end": 8847.36, + "probability": 0.5577 + }, + { + "start": 8849.26, + "end": 8851.72, + "probability": 0.7597 + }, + { + "start": 8853.14, + "end": 8853.96, + "probability": 0.9273 + }, + { + "start": 8854.08, + "end": 8855.72, + "probability": 0.9033 + }, + { + "start": 8857.02, + "end": 8858.84, + "probability": 0.8843 + }, + { + "start": 8859.56, + "end": 8862.68, + "probability": 0.7467 + }, + { + "start": 8862.74, + "end": 8864.15, + "probability": 0.7341 + }, + { + "start": 8864.64, + "end": 8867.78, + "probability": 0.7405 + }, + { + "start": 8869.1, + "end": 8869.94, + "probability": 0.9527 + }, + { + "start": 8872.48, + "end": 8876.44, + "probability": 0.9033 + }, + { + "start": 8876.98, + "end": 8879.8, + "probability": 0.984 + }, + { + "start": 8880.28, + "end": 8882.02, + "probability": 0.9554 + }, + { + "start": 8882.72, + "end": 8883.32, + "probability": 0.5977 + }, + { + "start": 8885.16, + "end": 8886.63, + "probability": 0.9746 + }, + { + "start": 8887.94, + "end": 8890.39, + "probability": 0.9418 + }, + { + "start": 8891.5, + "end": 8893.38, + "probability": 0.8735 + }, + { + "start": 8895.36, + "end": 8898.02, + "probability": 0.7979 + }, + { + "start": 8898.98, + "end": 8900.82, + "probability": 0.7983 + }, + { + "start": 8902.06, + "end": 8904.68, + "probability": 0.9762 + }, + { + "start": 8905.9, + "end": 8909.1, + "probability": 0.83 + }, + { + "start": 8910.84, + "end": 8914.38, + "probability": 0.9877 + }, + { + "start": 8915.08, + "end": 8916.16, + "probability": 0.7343 + }, + { + "start": 8918.24, + "end": 8919.62, + "probability": 0.9443 + }, + { + "start": 8921.44, + "end": 8927.32, + "probability": 0.998 + }, + { + "start": 8928.74, + "end": 8931.96, + "probability": 0.9653 + }, + { + "start": 8933.92, + "end": 8936.46, + "probability": 0.9968 + }, + { + "start": 8938.62, + "end": 8940.94, + "probability": 0.959 + }, + { + "start": 8942.9, + "end": 8943.52, + "probability": 0.9528 + }, + { + "start": 8944.72, + "end": 8947.24, + "probability": 0.9872 + }, + { + "start": 8950.38, + "end": 8951.68, + "probability": 0.991 + }, + { + "start": 8952.42, + "end": 8955.19, + "probability": 0.9941 + }, + { + "start": 8957.56, + "end": 8958.94, + "probability": 0.6448 + }, + { + "start": 8959.38, + "end": 8960.0, + "probability": 0.3334 + }, + { + "start": 8961.54, + "end": 8963.82, + "probability": 0.9061 + }, + { + "start": 8964.22, + "end": 8964.9, + "probability": 0.9304 + }, + { + "start": 8965.0, + "end": 8966.12, + "probability": 0.9796 + }, + { + "start": 8966.48, + "end": 8969.1, + "probability": 0.9365 + }, + { + "start": 8970.92, + "end": 8974.42, + "probability": 0.9948 + }, + { + "start": 8975.18, + "end": 8976.74, + "probability": 0.9897 + }, + { + "start": 8978.5, + "end": 8980.56, + "probability": 0.8379 + }, + { + "start": 8981.76, + "end": 8985.96, + "probability": 0.9682 + }, + { + "start": 8990.46, + "end": 8991.0, + "probability": 0.6753 + }, + { + "start": 8991.02, + "end": 8991.88, + "probability": 0.7333 + }, + { + "start": 8991.92, + "end": 8992.82, + "probability": 0.641 + }, + { + "start": 8992.94, + "end": 8994.46, + "probability": 0.5885 + }, + { + "start": 8995.94, + "end": 9002.24, + "probability": 0.8234 + }, + { + "start": 9002.5, + "end": 9003.6, + "probability": 0.4999 + }, + { + "start": 9003.7, + "end": 9004.74, + "probability": 0.9333 + }, + { + "start": 9004.82, + "end": 9005.4, + "probability": 0.8485 + }, + { + "start": 9005.86, + "end": 9010.48, + "probability": 0.9664 + }, + { + "start": 9010.7, + "end": 9012.0, + "probability": 0.8745 + }, + { + "start": 9014.68, + "end": 9016.44, + "probability": 0.9878 + }, + { + "start": 9017.78, + "end": 9019.66, + "probability": 0.9008 + }, + { + "start": 9021.46, + "end": 9023.08, + "probability": 0.8589 + }, + { + "start": 9023.62, + "end": 9025.5, + "probability": 0.7456 + }, + { + "start": 9026.94, + "end": 9030.94, + "probability": 0.8563 + }, + { + "start": 9032.26, + "end": 9035.1, + "probability": 0.9823 + }, + { + "start": 9035.88, + "end": 9038.94, + "probability": 0.9673 + }, + { + "start": 9040.32, + "end": 9044.28, + "probability": 0.7049 + }, + { + "start": 9044.36, + "end": 9044.86, + "probability": 0.3178 + }, + { + "start": 9045.06, + "end": 9045.71, + "probability": 0.8821 + }, + { + "start": 9046.94, + "end": 9048.0, + "probability": 0.9426 + }, + { + "start": 9048.12, + "end": 9049.26, + "probability": 0.7296 + }, + { + "start": 9049.38, + "end": 9050.0, + "probability": 0.88 + }, + { + "start": 9050.3, + "end": 9051.1, + "probability": 0.9015 + }, + { + "start": 9051.16, + "end": 9052.18, + "probability": 0.7041 + }, + { + "start": 9053.98, + "end": 9056.62, + "probability": 0.9756 + }, + { + "start": 9057.34, + "end": 9059.56, + "probability": 0.9961 + }, + { + "start": 9060.08, + "end": 9062.66, + "probability": 0.7709 + }, + { + "start": 9062.66, + "end": 9063.24, + "probability": 0.2697 + }, + { + "start": 9063.56, + "end": 9064.32, + "probability": 0.3647 + }, + { + "start": 9064.32, + "end": 9064.36, + "probability": 0.0464 + }, + { + "start": 9064.7, + "end": 9065.62, + "probability": 0.7086 + }, + { + "start": 9066.42, + "end": 9069.62, + "probability": 0.6683 + }, + { + "start": 9070.66, + "end": 9077.36, + "probability": 0.9621 + }, + { + "start": 9078.68, + "end": 9079.16, + "probability": 0.9779 + }, + { + "start": 9079.6, + "end": 9082.08, + "probability": 0.9972 + }, + { + "start": 9083.26, + "end": 9084.94, + "probability": 0.4891 + }, + { + "start": 9085.46, + "end": 9088.88, + "probability": 0.5638 + }, + { + "start": 9089.12, + "end": 9090.06, + "probability": 0.6253 + }, + { + "start": 9090.16, + "end": 9090.2, + "probability": 0.0639 + }, + { + "start": 9090.2, + "end": 9090.2, + "probability": 0.2065 + }, + { + "start": 9090.2, + "end": 9090.38, + "probability": 0.3653 + }, + { + "start": 9090.48, + "end": 9095.44, + "probability": 0.9963 + }, + { + "start": 9095.58, + "end": 9098.66, + "probability": 0.7822 + }, + { + "start": 9099.02, + "end": 9100.02, + "probability": 0.1912 + }, + { + "start": 9100.04, + "end": 9102.3, + "probability": 0.5735 + }, + { + "start": 9102.6, + "end": 9103.48, + "probability": 0.8374 + }, + { + "start": 9103.6, + "end": 9104.12, + "probability": 0.7257 + }, + { + "start": 9104.18, + "end": 9105.84, + "probability": 0.9836 + }, + { + "start": 9106.3, + "end": 9107.66, + "probability": 0.4333 + }, + { + "start": 9107.86, + "end": 9112.34, + "probability": 0.9597 + }, + { + "start": 9112.66, + "end": 9114.18, + "probability": 0.9355 + }, + { + "start": 9114.26, + "end": 9114.81, + "probability": 0.9458 + }, + { + "start": 9115.04, + "end": 9116.02, + "probability": 0.3694 + }, + { + "start": 9116.04, + "end": 9118.82, + "probability": 0.8069 + }, + { + "start": 9118.96, + "end": 9119.74, + "probability": 0.7601 + }, + { + "start": 9121.04, + "end": 9123.16, + "probability": 0.7533 + }, + { + "start": 9123.2, + "end": 9124.62, + "probability": 0.9135 + }, + { + "start": 9125.74, + "end": 9128.52, + "probability": 0.5446 + }, + { + "start": 9128.68, + "end": 9130.0, + "probability": 0.3449 + }, + { + "start": 9131.58, + "end": 9132.94, + "probability": 0.8291 + }, + { + "start": 9133.14, + "end": 9136.26, + "probability": 0.7988 + }, + { + "start": 9136.52, + "end": 9137.18, + "probability": 0.136 + }, + { + "start": 9137.32, + "end": 9137.96, + "probability": 0.3324 + }, + { + "start": 9138.6, + "end": 9145.06, + "probability": 0.1829 + }, + { + "start": 9146.4, + "end": 9149.06, + "probability": 0.5468 + }, + { + "start": 9150.03, + "end": 9155.7, + "probability": 0.6108 + }, + { + "start": 9155.96, + "end": 9158.88, + "probability": 0.9146 + }, + { + "start": 9159.62, + "end": 9160.62, + "probability": 0.6963 + }, + { + "start": 9160.84, + "end": 9161.86, + "probability": 0.6697 + }, + { + "start": 9162.44, + "end": 9162.8, + "probability": 0.5094 + }, + { + "start": 9163.04, + "end": 9164.63, + "probability": 0.9839 + }, + { + "start": 9164.94, + "end": 9166.18, + "probability": 0.769 + }, + { + "start": 9167.56, + "end": 9168.98, + "probability": 0.161 + }, + { + "start": 9169.2, + "end": 9169.2, + "probability": 0.1629 + }, + { + "start": 9169.26, + "end": 9171.12, + "probability": 0.8081 + }, + { + "start": 9171.16, + "end": 9173.44, + "probability": 0.8579 + }, + { + "start": 9173.84, + "end": 9174.6, + "probability": 0.0283 + }, + { + "start": 9174.6, + "end": 9175.3, + "probability": 0.6959 + }, + { + "start": 9176.68, + "end": 9178.12, + "probability": 0.7934 + }, + { + "start": 9179.68, + "end": 9183.72, + "probability": 0.9697 + }, + { + "start": 9185.2, + "end": 9186.6, + "probability": 0.824 + }, + { + "start": 9187.6, + "end": 9192.05, + "probability": 0.9819 + }, + { + "start": 9192.72, + "end": 9194.22, + "probability": 0.5637 + }, + { + "start": 9194.7, + "end": 9194.7, + "probability": 0.2574 + }, + { + "start": 9194.7, + "end": 9194.7, + "probability": 0.3439 + }, + { + "start": 9194.7, + "end": 9195.34, + "probability": 0.7135 + }, + { + "start": 9195.98, + "end": 9198.7, + "probability": 0.5714 + }, + { + "start": 9199.6, + "end": 9200.6, + "probability": 0.501 + }, + { + "start": 9200.76, + "end": 9203.98, + "probability": 0.8588 + }, + { + "start": 9204.98, + "end": 9206.7, + "probability": 0.5831 + }, + { + "start": 9208.28, + "end": 9211.82, + "probability": 0.7581 + }, + { + "start": 9211.9, + "end": 9215.09, + "probability": 0.9045 + }, + { + "start": 9216.72, + "end": 9218.34, + "probability": 0.5155 + }, + { + "start": 9218.58, + "end": 9222.98, + "probability": 0.8479 + }, + { + "start": 9222.98, + "end": 9223.05, + "probability": 0.0586 + }, + { + "start": 9223.64, + "end": 9225.32, + "probability": 0.8288 + }, + { + "start": 9225.42, + "end": 9227.56, + "probability": 0.9247 + }, + { + "start": 9227.76, + "end": 9228.39, + "probability": 0.8713 + }, + { + "start": 9228.88, + "end": 9231.14, + "probability": 0.9043 + }, + { + "start": 9231.34, + "end": 9232.16, + "probability": 0.9197 + }, + { + "start": 9232.32, + "end": 9232.96, + "probability": 0.4217 + }, + { + "start": 9233.06, + "end": 9234.98, + "probability": 0.9951 + }, + { + "start": 9235.35, + "end": 9238.76, + "probability": 0.6934 + }, + { + "start": 9238.86, + "end": 9240.68, + "probability": 0.9984 + }, + { + "start": 9240.98, + "end": 9242.26, + "probability": 0.9837 + }, + { + "start": 9242.82, + "end": 9243.75, + "probability": 0.4993 + }, + { + "start": 9244.38, + "end": 9246.5, + "probability": 0.9727 + }, + { + "start": 9247.5, + "end": 9249.78, + "probability": 0.9437 + }, + { + "start": 9250.5, + "end": 9251.86, + "probability": 0.8398 + }, + { + "start": 9252.48, + "end": 9253.42, + "probability": 0.9319 + }, + { + "start": 9254.04, + "end": 9255.22, + "probability": 0.9692 + }, + { + "start": 9256.28, + "end": 9256.9, + "probability": 0.9497 + }, + { + "start": 9257.44, + "end": 9259.4, + "probability": 0.9189 + }, + { + "start": 9260.22, + "end": 9265.18, + "probability": 0.9845 + }, + { + "start": 9265.34, + "end": 9268.92, + "probability": 0.9463 + }, + { + "start": 9270.02, + "end": 9274.08, + "probability": 0.7744 + }, + { + "start": 9275.5, + "end": 9276.76, + "probability": 0.9473 + }, + { + "start": 9277.18, + "end": 9277.24, + "probability": 0.22 + }, + { + "start": 9277.34, + "end": 9278.0, + "probability": 0.8307 + }, + { + "start": 9278.88, + "end": 9281.54, + "probability": 0.9868 + }, + { + "start": 9282.4, + "end": 9284.5, + "probability": 0.9932 + }, + { + "start": 9284.62, + "end": 9285.36, + "probability": 0.8359 + }, + { + "start": 9286.92, + "end": 9291.44, + "probability": 0.7687 + }, + { + "start": 9291.9, + "end": 9292.56, + "probability": 0.8235 + }, + { + "start": 9292.94, + "end": 9296.16, + "probability": 0.9226 + }, + { + "start": 9296.3, + "end": 9297.02, + "probability": 0.9838 + }, + { + "start": 9298.08, + "end": 9298.46, + "probability": 0.9818 + }, + { + "start": 9299.02, + "end": 9302.02, + "probability": 0.6642 + }, + { + "start": 9303.16, + "end": 9303.18, + "probability": 0.3147 + }, + { + "start": 9303.18, + "end": 9307.04, + "probability": 0.7214 + }, + { + "start": 9308.38, + "end": 9309.9, + "probability": 0.5444 + }, + { + "start": 9311.1, + "end": 9314.5, + "probability": 0.8296 + }, + { + "start": 9314.98, + "end": 9316.12, + "probability": 0.7408 + }, + { + "start": 9316.24, + "end": 9317.0, + "probability": 0.4372 + }, + { + "start": 9318.66, + "end": 9319.5, + "probability": 0.7475 + }, + { + "start": 9319.68, + "end": 9320.16, + "probability": 0.75 + }, + { + "start": 9320.26, + "end": 9324.62, + "probability": 0.8932 + }, + { + "start": 9324.82, + "end": 9327.58, + "probability": 0.7136 + }, + { + "start": 9328.76, + "end": 9332.58, + "probability": 0.634 + }, + { + "start": 9332.62, + "end": 9338.04, + "probability": 0.9442 + }, + { + "start": 9338.12, + "end": 9340.14, + "probability": 0.9693 + }, + { + "start": 9340.5, + "end": 9341.46, + "probability": 0.9139 + }, + { + "start": 9342.61, + "end": 9343.74, + "probability": 0.5354 + }, + { + "start": 9344.3, + "end": 9347.39, + "probability": 0.9358 + }, + { + "start": 9348.66, + "end": 9349.88, + "probability": 0.9115 + }, + { + "start": 9351.12, + "end": 9352.96, + "probability": 0.7603 + }, + { + "start": 9353.74, + "end": 9355.56, + "probability": 0.8708 + }, + { + "start": 9356.48, + "end": 9357.77, + "probability": 0.8076 + }, + { + "start": 9358.74, + "end": 9360.66, + "probability": 0.7817 + }, + { + "start": 9360.82, + "end": 9361.08, + "probability": 0.4371 + }, + { + "start": 9361.12, + "end": 9362.54, + "probability": 0.8755 + }, + { + "start": 9363.34, + "end": 9368.0, + "probability": 0.9968 + }, + { + "start": 9369.52, + "end": 9374.1, + "probability": 0.8345 + }, + { + "start": 9375.96, + "end": 9376.86, + "probability": 0.106 + }, + { + "start": 9376.86, + "end": 9377.12, + "probability": 0.1019 + }, + { + "start": 9377.12, + "end": 9380.34, + "probability": 0.5564 + }, + { + "start": 9381.54, + "end": 9383.84, + "probability": 0.8734 + }, + { + "start": 9383.88, + "end": 9385.34, + "probability": 0.8305 + }, + { + "start": 9385.4, + "end": 9388.46, + "probability": 0.1732 + }, + { + "start": 9388.68, + "end": 9388.68, + "probability": 0.0017 + }, + { + "start": 9389.22, + "end": 9389.46, + "probability": 0.2783 + }, + { + "start": 9389.46, + "end": 9389.46, + "probability": 0.569 + }, + { + "start": 9389.46, + "end": 9389.46, + "probability": 0.2773 + }, + { + "start": 9389.46, + "end": 9390.66, + "probability": 0.6755 + }, + { + "start": 9390.8, + "end": 9391.66, + "probability": 0.6614 + }, + { + "start": 9391.66, + "end": 9394.56, + "probability": 0.6592 + }, + { + "start": 9400.99, + "end": 9406.02, + "probability": 0.9803 + }, + { + "start": 9406.76, + "end": 9407.82, + "probability": 0.8575 + }, + { + "start": 9411.44, + "end": 9411.78, + "probability": 0.7736 + }, + { + "start": 9412.4, + "end": 9413.48, + "probability": 0.7023 + }, + { + "start": 9414.5, + "end": 9415.4, + "probability": 0.9084 + }, + { + "start": 9416.0, + "end": 9416.8, + "probability": 0.7573 + }, + { + "start": 9417.7, + "end": 9419.94, + "probability": 0.967 + }, + { + "start": 9419.98, + "end": 9422.1, + "probability": 0.9574 + }, + { + "start": 9422.56, + "end": 9425.28, + "probability": 0.983 + }, + { + "start": 9425.52, + "end": 9426.6, + "probability": 0.863 + }, + { + "start": 9427.42, + "end": 9429.3, + "probability": 0.9829 + }, + { + "start": 9429.88, + "end": 9432.52, + "probability": 0.889 + }, + { + "start": 9434.1, + "end": 9436.46, + "probability": 0.483 + }, + { + "start": 9437.74, + "end": 9441.02, + "probability": 0.9471 + }, + { + "start": 9441.94, + "end": 9443.42, + "probability": 0.9609 + }, + { + "start": 9444.48, + "end": 9446.26, + "probability": 0.6027 + }, + { + "start": 9447.5, + "end": 9448.14, + "probability": 0.5962 + }, + { + "start": 9448.92, + "end": 9450.14, + "probability": 0.6338 + }, + { + "start": 9450.9, + "end": 9453.16, + "probability": 0.9073 + }, + { + "start": 9453.22, + "end": 9454.5, + "probability": 0.8101 + }, + { + "start": 9454.82, + "end": 9455.32, + "probability": 0.7682 + }, + { + "start": 9455.4, + "end": 9455.92, + "probability": 0.7473 + }, + { + "start": 9455.94, + "end": 9456.28, + "probability": 0.9505 + }, + { + "start": 9456.38, + "end": 9457.52, + "probability": 0.8525 + }, + { + "start": 9459.22, + "end": 9462.58, + "probability": 0.9894 + }, + { + "start": 9464.08, + "end": 9464.76, + "probability": 0.0134 + }, + { + "start": 9465.59, + "end": 9468.88, + "probability": 0.9742 + }, + { + "start": 9470.44, + "end": 9473.92, + "probability": 0.8574 + }, + { + "start": 9474.86, + "end": 9476.38, + "probability": 0.9614 + }, + { + "start": 9477.2, + "end": 9478.16, + "probability": 0.5672 + }, + { + "start": 9478.3, + "end": 9479.7, + "probability": 0.9927 + }, + { + "start": 9479.82, + "end": 9481.92, + "probability": 0.935 + }, + { + "start": 9482.12, + "end": 9482.48, + "probability": 0.7086 + }, + { + "start": 9483.32, + "end": 9484.44, + "probability": 0.6875 + }, + { + "start": 9484.88, + "end": 9485.26, + "probability": 0.6023 + }, + { + "start": 9486.22, + "end": 9487.08, + "probability": 0.9265 + }, + { + "start": 9487.86, + "end": 9493.0, + "probability": 0.8979 + }, + { + "start": 9494.34, + "end": 9495.32, + "probability": 0.6377 + }, + { + "start": 9496.2, + "end": 9500.2, + "probability": 0.8194 + }, + { + "start": 9501.42, + "end": 9502.14, + "probability": 0.9758 + }, + { + "start": 9502.7, + "end": 9504.32, + "probability": 0.6781 + }, + { + "start": 9504.58, + "end": 9505.11, + "probability": 0.999 + }, + { + "start": 9506.16, + "end": 9507.46, + "probability": 0.9727 + }, + { + "start": 9507.78, + "end": 9508.8, + "probability": 0.6296 + }, + { + "start": 9509.5, + "end": 9512.2, + "probability": 0.9355 + }, + { + "start": 9513.32, + "end": 9514.88, + "probability": 0.7622 + }, + { + "start": 9515.8, + "end": 9521.18, + "probability": 0.9865 + }, + { + "start": 9521.34, + "end": 9521.66, + "probability": 0.1507 + }, + { + "start": 9522.64, + "end": 9524.44, + "probability": 0.7784 + }, + { + "start": 9525.18, + "end": 9529.72, + "probability": 0.7969 + }, + { + "start": 9530.5, + "end": 9531.0, + "probability": 0.9297 + }, + { + "start": 9531.96, + "end": 9534.2, + "probability": 0.9448 + }, + { + "start": 9535.14, + "end": 9535.62, + "probability": 0.8892 + }, + { + "start": 9537.36, + "end": 9538.2, + "probability": 0.4395 + }, + { + "start": 9540.34, + "end": 9543.1, + "probability": 0.9568 + }, + { + "start": 9544.72, + "end": 9545.12, + "probability": 0.464 + }, + { + "start": 9546.4, + "end": 9550.3, + "probability": 0.7371 + }, + { + "start": 9550.38, + "end": 9550.74, + "probability": 0.4929 + }, + { + "start": 9550.76, + "end": 9551.32, + "probability": 0.7719 + }, + { + "start": 9551.74, + "end": 9554.6, + "probability": 0.9841 + }, + { + "start": 9554.92, + "end": 9555.24, + "probability": 0.653 + }, + { + "start": 9555.36, + "end": 9556.88, + "probability": 0.998 + }, + { + "start": 9558.14, + "end": 9560.84, + "probability": 0.9858 + }, + { + "start": 9561.02, + "end": 9562.32, + "probability": 0.9907 + }, + { + "start": 9562.6, + "end": 9564.62, + "probability": 0.7819 + }, + { + "start": 9564.9, + "end": 9568.8, + "probability": 0.5135 + }, + { + "start": 9569.02, + "end": 9570.06, + "probability": 0.6074 + }, + { + "start": 9570.44, + "end": 9572.5, + "probability": 0.4939 + }, + { + "start": 9572.5, + "end": 9573.92, + "probability": 0.487 + }, + { + "start": 9573.92, + "end": 9577.2, + "probability": 0.7793 + }, + { + "start": 9578.04, + "end": 9579.23, + "probability": 0.9277 + }, + { + "start": 9581.23, + "end": 9582.07, + "probability": 0.2436 + }, + { + "start": 9585.51, + "end": 9587.56, + "probability": 0.9885 + }, + { + "start": 9589.68, + "end": 9590.76, + "probability": 0.92 + }, + { + "start": 9590.94, + "end": 9592.24, + "probability": 0.9392 + }, + { + "start": 9592.74, + "end": 9594.18, + "probability": 0.9665 + }, + { + "start": 9595.28, + "end": 9597.0, + "probability": 0.9406 + }, + { + "start": 9597.62, + "end": 9598.92, + "probability": 0.8191 + }, + { + "start": 9599.0, + "end": 9600.46, + "probability": 0.588 + }, + { + "start": 9601.34, + "end": 9601.76, + "probability": 0.2744 + }, + { + "start": 9602.0, + "end": 9606.32, + "probability": 0.7459 + }, + { + "start": 9606.7, + "end": 9609.14, + "probability": 0.9314 + }, + { + "start": 9609.72, + "end": 9612.9, + "probability": 0.9792 + }, + { + "start": 9613.64, + "end": 9614.56, + "probability": 0.6646 + }, + { + "start": 9615.16, + "end": 9617.96, + "probability": 0.3916 + }, + { + "start": 9618.64, + "end": 9618.7, + "probability": 0.5189 + }, + { + "start": 9618.96, + "end": 9621.56, + "probability": 0.9147 + }, + { + "start": 9621.6, + "end": 9622.06, + "probability": 0.4324 + }, + { + "start": 9623.48, + "end": 9626.08, + "probability": 0.9635 + }, + { + "start": 9626.42, + "end": 9628.14, + "probability": 0.7638 + }, + { + "start": 9628.62, + "end": 9629.82, + "probability": 0.9531 + }, + { + "start": 9631.36, + "end": 9634.56, + "probability": 0.9871 + }, + { + "start": 9634.76, + "end": 9635.08, + "probability": 0.6214 + }, + { + "start": 9636.96, + "end": 9638.4, + "probability": 0.934 + }, + { + "start": 9638.98, + "end": 9639.6, + "probability": 0.3162 + }, + { + "start": 9640.22, + "end": 9642.22, + "probability": 0.9933 + }, + { + "start": 9642.64, + "end": 9643.12, + "probability": 0.9264 + }, + { + "start": 9643.22, + "end": 9643.6, + "probability": 0.9679 + }, + { + "start": 9643.76, + "end": 9645.2, + "probability": 0.7265 + }, + { + "start": 9646.34, + "end": 9647.7, + "probability": 0.5326 + }, + { + "start": 9647.92, + "end": 9652.28, + "probability": 0.6089 + }, + { + "start": 9652.4, + "end": 9653.46, + "probability": 0.9324 + }, + { + "start": 9653.62, + "end": 9654.14, + "probability": 0.5716 + }, + { + "start": 9654.88, + "end": 9655.66, + "probability": 0.9201 + }, + { + "start": 9655.7, + "end": 9656.24, + "probability": 0.8598 + }, + { + "start": 9656.9, + "end": 9658.24, + "probability": 0.9799 + }, + { + "start": 9658.96, + "end": 9660.2, + "probability": 0.911 + }, + { + "start": 9660.68, + "end": 9662.24, + "probability": 0.7878 + }, + { + "start": 9663.18, + "end": 9664.68, + "probability": 0.9409 + }, + { + "start": 9665.08, + "end": 9669.5, + "probability": 0.9868 + }, + { + "start": 9669.6, + "end": 9669.95, + "probability": 0.9575 + }, + { + "start": 9671.04, + "end": 9671.72, + "probability": 0.9961 + }, + { + "start": 9672.62, + "end": 9674.86, + "probability": 0.9292 + }, + { + "start": 9675.46, + "end": 9675.83, + "probability": 0.9473 + }, + { + "start": 9677.08, + "end": 9677.46, + "probability": 0.7313 + }, + { + "start": 9678.42, + "end": 9679.96, + "probability": 0.9933 + }, + { + "start": 9680.84, + "end": 9685.72, + "probability": 0.9912 + }, + { + "start": 9687.12, + "end": 9689.7, + "probability": 0.9656 + }, + { + "start": 9689.78, + "end": 9691.13, + "probability": 0.9258 + }, + { + "start": 9691.4, + "end": 9693.1, + "probability": 0.9335 + }, + { + "start": 9694.44, + "end": 9696.56, + "probability": 0.8077 + }, + { + "start": 9697.94, + "end": 9698.58, + "probability": 0.8677 + }, + { + "start": 9699.14, + "end": 9701.16, + "probability": 0.861 + }, + { + "start": 9704.42, + "end": 9707.38, + "probability": 0.6774 + }, + { + "start": 9707.6, + "end": 9709.24, + "probability": 0.8007 + }, + { + "start": 9709.72, + "end": 9711.8, + "probability": 0.4957 + }, + { + "start": 9711.88, + "end": 9715.58, + "probability": 0.8081 + }, + { + "start": 9717.38, + "end": 9720.81, + "probability": 0.3511 + }, + { + "start": 9721.26, + "end": 9721.82, + "probability": 0.8264 + }, + { + "start": 9722.62, + "end": 9723.66, + "probability": 0.6146 + }, + { + "start": 9724.7, + "end": 9727.24, + "probability": 0.8384 + }, + { + "start": 9728.24, + "end": 9729.06, + "probability": 0.4938 + }, + { + "start": 9729.64, + "end": 9730.66, + "probability": 0.9668 + }, + { + "start": 9732.08, + "end": 9734.0, + "probability": 0.9243 + }, + { + "start": 9736.54, + "end": 9739.28, + "probability": 0.9917 + }, + { + "start": 9739.88, + "end": 9741.46, + "probability": 0.9233 + }, + { + "start": 9742.54, + "end": 9743.54, + "probability": 0.7727 + }, + { + "start": 9745.82, + "end": 9746.87, + "probability": 0.8232 + }, + { + "start": 9748.66, + "end": 9752.24, + "probability": 0.7695 + }, + { + "start": 9752.36, + "end": 9753.62, + "probability": 0.8086 + }, + { + "start": 9754.94, + "end": 9756.92, + "probability": 0.5587 + }, + { + "start": 9757.08, + "end": 9757.56, + "probability": 0.5131 + }, + { + "start": 9758.64, + "end": 9762.36, + "probability": 0.894 + }, + { + "start": 9762.48, + "end": 9763.24, + "probability": 0.7134 + }, + { + "start": 9765.02, + "end": 9766.74, + "probability": 0.8746 + }, + { + "start": 9769.2, + "end": 9769.58, + "probability": 0.6825 + }, + { + "start": 9770.26, + "end": 9770.62, + "probability": 0.412 + }, + { + "start": 9770.7, + "end": 9774.6, + "probability": 0.9586 + }, + { + "start": 9774.68, + "end": 9776.18, + "probability": 0.4011 + }, + { + "start": 9776.56, + "end": 9780.86, + "probability": 0.8931 + }, + { + "start": 9781.72, + "end": 9783.28, + "probability": 0.5293 + }, + { + "start": 9784.3, + "end": 9786.34, + "probability": 0.7832 + }, + { + "start": 9787.44, + "end": 9789.44, + "probability": 0.9894 + }, + { + "start": 9789.88, + "end": 9790.76, + "probability": 0.9573 + }, + { + "start": 9791.54, + "end": 9793.66, + "probability": 0.9288 + }, + { + "start": 9795.9, + "end": 9796.54, + "probability": 0.8774 + }, + { + "start": 9796.6, + "end": 9797.0, + "probability": 0.9176 + }, + { + "start": 9797.08, + "end": 9798.56, + "probability": 0.9912 + }, + { + "start": 9798.64, + "end": 9800.2, + "probability": 0.8101 + }, + { + "start": 9800.74, + "end": 9801.76, + "probability": 0.858 + }, + { + "start": 9802.28, + "end": 9804.06, + "probability": 0.9003 + }, + { + "start": 9805.04, + "end": 9806.18, + "probability": 0.8779 + }, + { + "start": 9807.6, + "end": 9810.24, + "probability": 0.959 + }, + { + "start": 9810.94, + "end": 9811.42, + "probability": 0.6391 + }, + { + "start": 9812.0, + "end": 9812.96, + "probability": 0.9717 + }, + { + "start": 9814.02, + "end": 9816.94, + "probability": 0.9634 + }, + { + "start": 9817.6, + "end": 9818.12, + "probability": 0.8052 + }, + { + "start": 9819.0, + "end": 9826.14, + "probability": 0.9554 + }, + { + "start": 9827.68, + "end": 9829.52, + "probability": 0.9915 + }, + { + "start": 9831.18, + "end": 9833.38, + "probability": 0.9893 + }, + { + "start": 9834.48, + "end": 9835.36, + "probability": 0.7199 + }, + { + "start": 9836.26, + "end": 9837.1, + "probability": 0.8053 + }, + { + "start": 9837.28, + "end": 9839.28, + "probability": 0.8491 + }, + { + "start": 9840.28, + "end": 9841.86, + "probability": 0.8396 + }, + { + "start": 9842.78, + "end": 9844.46, + "probability": 0.751 + }, + { + "start": 9846.58, + "end": 9847.2, + "probability": 0.7514 + }, + { + "start": 9849.1, + "end": 9849.38, + "probability": 0.981 + }, + { + "start": 9849.68, + "end": 9850.12, + "probability": 0.8358 + }, + { + "start": 9852.28, + "end": 9853.58, + "probability": 0.5408 + }, + { + "start": 9853.74, + "end": 9855.04, + "probability": 0.7662 + }, + { + "start": 9855.78, + "end": 9856.42, + "probability": 0.749 + }, + { + "start": 9857.64, + "end": 9863.08, + "probability": 0.9782 + }, + { + "start": 9865.02, + "end": 9871.42, + "probability": 0.9277 + }, + { + "start": 9871.68, + "end": 9876.92, + "probability": 0.7154 + }, + { + "start": 9877.36, + "end": 9879.24, + "probability": 0.805 + }, + { + "start": 9882.18, + "end": 9882.22, + "probability": 0.2379 + }, + { + "start": 9882.22, + "end": 9882.22, + "probability": 0.675 + }, + { + "start": 9882.22, + "end": 9882.22, + "probability": 0.1817 + }, + { + "start": 9882.22, + "end": 9884.16, + "probability": 0.7834 + }, + { + "start": 9885.52, + "end": 9885.98, + "probability": 0.5308 + }, + { + "start": 9886.56, + "end": 9887.98, + "probability": 0.8664 + }, + { + "start": 9888.62, + "end": 9889.38, + "probability": 0.9925 + }, + { + "start": 9890.42, + "end": 9891.62, + "probability": 0.7788 + }, + { + "start": 9891.72, + "end": 9898.1, + "probability": 0.989 + }, + { + "start": 9898.78, + "end": 9899.82, + "probability": 0.6728 + }, + { + "start": 9900.56, + "end": 9903.68, + "probability": 0.6526 + }, + { + "start": 9904.44, + "end": 9908.22, + "probability": 0.922 + }, + { + "start": 9909.28, + "end": 9910.48, + "probability": 0.7927 + }, + { + "start": 9911.38, + "end": 9916.34, + "probability": 0.9192 + }, + { + "start": 9917.1, + "end": 9921.48, + "probability": 0.9377 + }, + { + "start": 9922.48, + "end": 9924.82, + "probability": 0.9974 + }, + { + "start": 9926.1, + "end": 9927.66, + "probability": 0.932 + }, + { + "start": 9928.82, + "end": 9929.86, + "probability": 0.7662 + }, + { + "start": 9931.36, + "end": 9932.76, + "probability": 0.7997 + }, + { + "start": 9932.76, + "end": 9934.54, + "probability": 0.9992 + }, + { + "start": 9936.14, + "end": 9936.98, + "probability": 0.9966 + }, + { + "start": 9938.62, + "end": 9941.84, + "probability": 0.9685 + }, + { + "start": 9942.62, + "end": 9944.92, + "probability": 0.9961 + }, + { + "start": 9944.98, + "end": 9947.16, + "probability": 0.7933 + }, + { + "start": 9950.14, + "end": 9953.24, + "probability": 0.9857 + }, + { + "start": 9953.9, + "end": 9959.12, + "probability": 0.9589 + }, + { + "start": 9961.16, + "end": 9962.56, + "probability": 0.4831 + }, + { + "start": 9963.38, + "end": 9965.76, + "probability": 0.7124 + }, + { + "start": 9966.82, + "end": 9969.02, + "probability": 0.6765 + }, + { + "start": 9969.22, + "end": 9970.08, + "probability": 0.7943 + }, + { + "start": 9970.22, + "end": 9970.78, + "probability": 0.8569 + }, + { + "start": 9970.86, + "end": 9972.3, + "probability": 0.9683 + }, + { + "start": 9972.8, + "end": 9973.9, + "probability": 0.7288 + }, + { + "start": 9973.98, + "end": 9975.7, + "probability": 0.9529 + }, + { + "start": 9976.5, + "end": 9977.98, + "probability": 0.9954 + }, + { + "start": 9978.72, + "end": 9979.26, + "probability": 0.0124 + }, + { + "start": 9979.26, + "end": 9979.26, + "probability": 0.0809 + }, + { + "start": 9979.26, + "end": 9979.26, + "probability": 0.0544 + }, + { + "start": 9979.26, + "end": 9979.69, + "probability": 0.1361 + }, + { + "start": 9980.98, + "end": 9982.08, + "probability": 0.6425 + }, + { + "start": 9982.34, + "end": 9985.4, + "probability": 0.8866 + }, + { + "start": 9985.98, + "end": 9986.94, + "probability": 0.7112 + }, + { + "start": 9987.04, + "end": 9987.72, + "probability": 0.208 + }, + { + "start": 9987.84, + "end": 9990.87, + "probability": 0.6727 + }, + { + "start": 9992.1, + "end": 9993.3, + "probability": 0.9369 + }, + { + "start": 9994.42, + "end": 9995.52, + "probability": 0.5565 + }, + { + "start": 9996.04, + "end": 9996.26, + "probability": 0.4752 + }, + { + "start": 9996.34, + "end": 9996.58, + "probability": 0.8201 + }, + { + "start": 9996.74, + "end": 9997.34, + "probability": 0.7577 + }, + { + "start": 9997.44, + "end": 9997.72, + "probability": 0.9102 + }, + { + "start": 9997.8, + "end": 9998.74, + "probability": 0.9142 + }, + { + "start": 9998.74, + "end": 9999.58, + "probability": 0.7305 + }, + { + "start": 10000.04, + "end": 10000.52, + "probability": 0.6912 + }, + { + "start": 10001.12, + "end": 10001.6, + "probability": 0.6417 + }, + { + "start": 10002.89, + "end": 10003.94, + "probability": 0.0077 + }, + { + "start": 10003.94, + "end": 10004.34, + "probability": 0.0632 + }, + { + "start": 10004.34, + "end": 10004.34, + "probability": 0.1596 + }, + { + "start": 10004.34, + "end": 10004.96, + "probability": 0.3109 + }, + { + "start": 10005.14, + "end": 10006.24, + "probability": 0.7495 + }, + { + "start": 10006.26, + "end": 10007.08, + "probability": 0.9246 + }, + { + "start": 10007.18, + "end": 10008.36, + "probability": 0.6201 + }, + { + "start": 10009.06, + "end": 10009.74, + "probability": 0.2753 + }, + { + "start": 10010.52, + "end": 10013.52, + "probability": 0.0919 + }, + { + "start": 10013.52, + "end": 10013.66, + "probability": 0.1086 + }, + { + "start": 10013.66, + "end": 10013.66, + "probability": 0.1069 + }, + { + "start": 10013.66, + "end": 10013.66, + "probability": 0.1243 + }, + { + "start": 10013.66, + "end": 10013.66, + "probability": 0.104 + }, + { + "start": 10013.66, + "end": 10014.22, + "probability": 0.283 + }, + { + "start": 10015.0, + "end": 10017.74, + "probability": 0.3802 + }, + { + "start": 10019.1, + "end": 10020.54, + "probability": 0.2375 + }, + { + "start": 10021.94, + "end": 10023.3, + "probability": 0.1615 + }, + { + "start": 10024.38, + "end": 10025.54, + "probability": 0.0637 + }, + { + "start": 10025.54, + "end": 10025.54, + "probability": 0.1237 + }, + { + "start": 10025.54, + "end": 10025.54, + "probability": 0.1887 + }, + { + "start": 10025.54, + "end": 10025.54, + "probability": 0.0837 + }, + { + "start": 10025.54, + "end": 10028.18, + "probability": 0.3139 + }, + { + "start": 10029.88, + "end": 10032.7, + "probability": 0.7954 + }, + { + "start": 10033.54, + "end": 10034.04, + "probability": 0.661 + }, + { + "start": 10036.16, + "end": 10039.46, + "probability": 0.8486 + }, + { + "start": 10039.5, + "end": 10041.35, + "probability": 0.9878 + }, + { + "start": 10043.08, + "end": 10044.46, + "probability": 0.8559 + }, + { + "start": 10044.46, + "end": 10044.9, + "probability": 0.667 + }, + { + "start": 10045.2, + "end": 10050.94, + "probability": 0.819 + }, + { + "start": 10051.1, + "end": 10052.66, + "probability": 0.8847 + }, + { + "start": 10053.44, + "end": 10054.08, + "probability": 0.9222 + }, + { + "start": 10054.2, + "end": 10056.96, + "probability": 0.9473 + }, + { + "start": 10057.02, + "end": 10058.66, + "probability": 0.1479 + }, + { + "start": 10058.8, + "end": 10058.94, + "probability": 0.3356 + }, + { + "start": 10059.04, + "end": 10061.12, + "probability": 0.9094 + }, + { + "start": 10062.7, + "end": 10066.6, + "probability": 0.7361 + }, + { + "start": 10066.6, + "end": 10070.76, + "probability": 0.8645 + }, + { + "start": 10071.84, + "end": 10073.54, + "probability": 0.5955 + }, + { + "start": 10073.62, + "end": 10074.34, + "probability": 0.644 + }, + { + "start": 10074.46, + "end": 10076.12, + "probability": 0.9583 + }, + { + "start": 10076.7, + "end": 10077.48, + "probability": 0.7521 + }, + { + "start": 10079.54, + "end": 10087.16, + "probability": 0.9918 + }, + { + "start": 10088.26, + "end": 10090.76, + "probability": 0.8715 + }, + { + "start": 10091.56, + "end": 10096.4, + "probability": 0.5536 + }, + { + "start": 10096.92, + "end": 10098.44, + "probability": 0.6969 + }, + { + "start": 10100.06, + "end": 10100.62, + "probability": 0.5397 + }, + { + "start": 10100.68, + "end": 10101.52, + "probability": 0.6723 + }, + { + "start": 10101.68, + "end": 10107.48, + "probability": 0.9357 + }, + { + "start": 10107.94, + "end": 10109.94, + "probability": 0.1794 + }, + { + "start": 10110.58, + "end": 10112.72, + "probability": 0.5943 + }, + { + "start": 10113.56, + "end": 10114.52, + "probability": 0.5597 + }, + { + "start": 10115.48, + "end": 10117.7, + "probability": 0.4997 + }, + { + "start": 10119.12, + "end": 10126.4, + "probability": 0.9669 + }, + { + "start": 10127.3, + "end": 10130.62, + "probability": 0.809 + }, + { + "start": 10130.8, + "end": 10138.36, + "probability": 0.9857 + }, + { + "start": 10138.88, + "end": 10139.86, + "probability": 0.5641 + }, + { + "start": 10140.9, + "end": 10141.86, + "probability": 0.9558 + }, + { + "start": 10143.1, + "end": 10144.0, + "probability": 0.7284 + }, + { + "start": 10144.5, + "end": 10145.42, + "probability": 0.8557 + }, + { + "start": 10146.44, + "end": 10147.12, + "probability": 0.7873 + }, + { + "start": 10147.2, + "end": 10147.62, + "probability": 0.6316 + }, + { + "start": 10147.82, + "end": 10150.4, + "probability": 0.9764 + }, + { + "start": 10150.74, + "end": 10151.74, + "probability": 0.7187 + }, + { + "start": 10152.26, + "end": 10155.0, + "probability": 0.7935 + }, + { + "start": 10155.42, + "end": 10156.34, + "probability": 0.806 + }, + { + "start": 10156.46, + "end": 10157.06, + "probability": 0.5262 + }, + { + "start": 10158.06, + "end": 10160.32, + "probability": 0.9665 + }, + { + "start": 10160.48, + "end": 10161.64, + "probability": 0.5449 + }, + { + "start": 10161.78, + "end": 10162.78, + "probability": 0.6241 + }, + { + "start": 10163.52, + "end": 10164.23, + "probability": 0.9524 + }, + { + "start": 10165.26, + "end": 10166.0, + "probability": 0.9702 + }, + { + "start": 10167.0, + "end": 10167.49, + "probability": 0.748 + }, + { + "start": 10168.54, + "end": 10170.12, + "probability": 0.9466 + }, + { + "start": 10171.16, + "end": 10172.02, + "probability": 0.9285 + }, + { + "start": 10172.54, + "end": 10173.1, + "probability": 0.917 + }, + { + "start": 10173.98, + "end": 10175.58, + "probability": 0.97 + }, + { + "start": 10176.72, + "end": 10179.18, + "probability": 0.9891 + }, + { + "start": 10180.1, + "end": 10180.66, + "probability": 0.9447 + }, + { + "start": 10181.88, + "end": 10182.4, + "probability": 0.7822 + }, + { + "start": 10183.42, + "end": 10185.34, + "probability": 0.9042 + }, + { + "start": 10185.8, + "end": 10187.44, + "probability": 0.9769 + }, + { + "start": 10187.48, + "end": 10188.4, + "probability": 0.9167 + }, + { + "start": 10188.42, + "end": 10192.6, + "probability": 0.8741 + }, + { + "start": 10193.98, + "end": 10196.33, + "probability": 0.978 + }, + { + "start": 10196.88, + "end": 10197.38, + "probability": 0.5731 + }, + { + "start": 10198.6, + "end": 10200.4, + "probability": 0.7145 + }, + { + "start": 10200.84, + "end": 10203.18, + "probability": 0.8484 + }, + { + "start": 10204.92, + "end": 10213.14, + "probability": 0.7831 + }, + { + "start": 10213.46, + "end": 10215.68, + "probability": 0.9489 + }, + { + "start": 10216.66, + "end": 10217.6, + "probability": 0.6609 + }, + { + "start": 10218.12, + "end": 10220.78, + "probability": 0.7796 + }, + { + "start": 10221.28, + "end": 10225.64, + "probability": 0.8796 + }, + { + "start": 10225.8, + "end": 10229.42, + "probability": 0.6132 + }, + { + "start": 10231.76, + "end": 10233.3, + "probability": 0.5198 + }, + { + "start": 10234.46, + "end": 10237.22, + "probability": 0.7203 + }, + { + "start": 10237.22, + "end": 10241.68, + "probability": 0.7359 + }, + { + "start": 10243.14, + "end": 10243.44, + "probability": 0.4542 + }, + { + "start": 10243.6, + "end": 10244.86, + "probability": 0.9177 + }, + { + "start": 10245.32, + "end": 10247.78, + "probability": 0.9653 + }, + { + "start": 10248.54, + "end": 10251.56, + "probability": 0.8073 + }, + { + "start": 10254.26, + "end": 10257.24, + "probability": 0.5295 + }, + { + "start": 10258.88, + "end": 10263.92, + "probability": 0.9254 + }, + { + "start": 10265.12, + "end": 10266.32, + "probability": 0.5723 + }, + { + "start": 10266.88, + "end": 10267.51, + "probability": 0.5977 + }, + { + "start": 10267.94, + "end": 10268.7, + "probability": 0.7496 + }, + { + "start": 10269.3, + "end": 10271.86, + "probability": 0.7606 + }, + { + "start": 10272.26, + "end": 10273.82, + "probability": 0.7092 + }, + { + "start": 10274.68, + "end": 10278.88, + "probability": 0.9598 + }, + { + "start": 10279.3, + "end": 10280.48, + "probability": 0.516 + }, + { + "start": 10281.62, + "end": 10285.4, + "probability": 0.575 + }, + { + "start": 10286.0, + "end": 10287.62, + "probability": 0.8505 + }, + { + "start": 10288.3, + "end": 10289.84, + "probability": 0.7056 + }, + { + "start": 10289.92, + "end": 10290.32, + "probability": 0.6455 + }, + { + "start": 10290.34, + "end": 10292.32, + "probability": 0.9798 + }, + { + "start": 10294.14, + "end": 10297.18, + "probability": 0.8382 + }, + { + "start": 10297.78, + "end": 10300.08, + "probability": 0.8489 + }, + { + "start": 10302.94, + "end": 10307.54, + "probability": 0.9783 + }, + { + "start": 10308.26, + "end": 10310.0, + "probability": 0.9993 + }, + { + "start": 10310.84, + "end": 10313.86, + "probability": 0.8809 + }, + { + "start": 10314.82, + "end": 10317.24, + "probability": 0.8524 + }, + { + "start": 10317.76, + "end": 10318.04, + "probability": 0.9333 + }, + { + "start": 10318.56, + "end": 10319.2, + "probability": 0.9561 + }, + { + "start": 10319.88, + "end": 10320.66, + "probability": 0.6659 + }, + { + "start": 10321.24, + "end": 10322.04, + "probability": 0.9984 + }, + { + "start": 10322.36, + "end": 10323.54, + "probability": 0.9775 + }, + { + "start": 10324.66, + "end": 10327.26, + "probability": 0.9476 + }, + { + "start": 10328.5, + "end": 10329.56, + "probability": 0.9914 + }, + { + "start": 10330.56, + "end": 10332.42, + "probability": 0.9541 + }, + { + "start": 10333.2, + "end": 10334.6, + "probability": 0.9709 + }, + { + "start": 10334.7, + "end": 10335.54, + "probability": 0.9008 + }, + { + "start": 10336.68, + "end": 10339.78, + "probability": 0.9937 + }, + { + "start": 10339.94, + "end": 10341.24, + "probability": 0.8772 + }, + { + "start": 10341.62, + "end": 10343.82, + "probability": 0.9873 + }, + { + "start": 10343.86, + "end": 10344.32, + "probability": 0.9415 + }, + { + "start": 10345.84, + "end": 10348.1, + "probability": 0.9133 + }, + { + "start": 10348.86, + "end": 10349.06, + "probability": 0.7736 + }, + { + "start": 10349.14, + "end": 10349.72, + "probability": 0.9656 + }, + { + "start": 10349.8, + "end": 10350.42, + "probability": 0.7571 + }, + { + "start": 10350.46, + "end": 10350.68, + "probability": 0.5337 + }, + { + "start": 10350.7, + "end": 10351.06, + "probability": 0.7443 + }, + { + "start": 10352.22, + "end": 10353.14, + "probability": 0.7376 + }, + { + "start": 10353.88, + "end": 10355.84, + "probability": 0.7695 + }, + { + "start": 10357.12, + "end": 10359.13, + "probability": 0.9609 + }, + { + "start": 10359.86, + "end": 10365.08, + "probability": 0.7366 + }, + { + "start": 10365.76, + "end": 10367.34, + "probability": 0.9894 + }, + { + "start": 10367.6, + "end": 10371.08, + "probability": 0.9139 + }, + { + "start": 10371.22, + "end": 10371.46, + "probability": 0.5219 + }, + { + "start": 10371.82, + "end": 10373.04, + "probability": 0.6804 + }, + { + "start": 10373.94, + "end": 10374.22, + "probability": 0.6649 + }, + { + "start": 10374.5, + "end": 10375.74, + "probability": 0.9595 + }, + { + "start": 10375.99, + "end": 10379.13, + "probability": 0.3653 + }, + { + "start": 10379.62, + "end": 10379.96, + "probability": 0.2778 + }, + { + "start": 10380.98, + "end": 10382.26, + "probability": 0.6602 + }, + { + "start": 10382.42, + "end": 10384.42, + "probability": 0.9465 + }, + { + "start": 10385.36, + "end": 10389.48, + "probability": 0.7515 + }, + { + "start": 10389.88, + "end": 10393.7, + "probability": 0.8567 + }, + { + "start": 10393.78, + "end": 10393.88, + "probability": 0.3925 + }, + { + "start": 10394.08, + "end": 10395.34, + "probability": 0.4547 + }, + { + "start": 10395.34, + "end": 10395.96, + "probability": 0.7788 + }, + { + "start": 10396.12, + "end": 10396.83, + "probability": 0.2296 + }, + { + "start": 10397.66, + "end": 10399.66, + "probability": 0.2651 + }, + { + "start": 10399.66, + "end": 10400.19, + "probability": 0.1102 + }, + { + "start": 10400.9, + "end": 10402.78, + "probability": 0.6541 + }, + { + "start": 10402.92, + "end": 10405.8, + "probability": 0.7737 + }, + { + "start": 10406.58, + "end": 10410.16, + "probability": 0.8188 + }, + { + "start": 10410.68, + "end": 10413.15, + "probability": 0.8223 + }, + { + "start": 10414.4, + "end": 10415.32, + "probability": 0.9106 + }, + { + "start": 10417.26, + "end": 10418.03, + "probability": 0.7284 + }, + { + "start": 10418.38, + "end": 10418.56, + "probability": 0.6227 + }, + { + "start": 10418.64, + "end": 10418.98, + "probability": 0.7192 + }, + { + "start": 10419.1, + "end": 10419.6, + "probability": 0.9017 + }, + { + "start": 10419.78, + "end": 10420.98, + "probability": 0.838 + }, + { + "start": 10421.72, + "end": 10423.08, + "probability": 0.6376 + }, + { + "start": 10423.16, + "end": 10424.66, + "probability": 0.9823 + }, + { + "start": 10425.68, + "end": 10426.66, + "probability": 0.9749 + }, + { + "start": 10428.2, + "end": 10430.64, + "probability": 0.9088 + }, + { + "start": 10431.42, + "end": 10432.62, + "probability": 0.8021 + }, + { + "start": 10433.26, + "end": 10434.86, + "probability": 0.7867 + }, + { + "start": 10435.82, + "end": 10437.64, + "probability": 0.8988 + }, + { + "start": 10437.8, + "end": 10438.24, + "probability": 0.9467 + }, + { + "start": 10438.36, + "end": 10439.98, + "probability": 0.9889 + }, + { + "start": 10441.0, + "end": 10442.36, + "probability": 0.9966 + }, + { + "start": 10443.82, + "end": 10446.6, + "probability": 0.9932 + }, + { + "start": 10448.02, + "end": 10451.14, + "probability": 0.9878 + }, + { + "start": 10451.14, + "end": 10452.74, + "probability": 0.6845 + }, + { + "start": 10453.96, + "end": 10454.3, + "probability": 0.9084 + }, + { + "start": 10454.58, + "end": 10456.57, + "probability": 0.9338 + }, + { + "start": 10457.68, + "end": 10460.54, + "probability": 0.9816 + }, + { + "start": 10460.84, + "end": 10462.96, + "probability": 0.9542 + }, + { + "start": 10463.06, + "end": 10463.76, + "probability": 0.8794 + }, + { + "start": 10464.44, + "end": 10465.26, + "probability": 0.9791 + }, + { + "start": 10465.9, + "end": 10466.56, + "probability": 0.5657 + }, + { + "start": 10469.06, + "end": 10472.16, + "probability": 0.9642 + }, + { + "start": 10472.26, + "end": 10472.62, + "probability": 0.9648 + }, + { + "start": 10472.86, + "end": 10474.44, + "probability": 0.833 + }, + { + "start": 10475.76, + "end": 10477.26, + "probability": 0.9678 + }, + { + "start": 10478.04, + "end": 10480.81, + "probability": 0.9741 + }, + { + "start": 10482.1, + "end": 10483.54, + "probability": 0.9794 + }, + { + "start": 10484.64, + "end": 10486.08, + "probability": 0.9854 + }, + { + "start": 10486.18, + "end": 10488.7, + "probability": 0.9897 + }, + { + "start": 10489.36, + "end": 10490.66, + "probability": 0.8154 + }, + { + "start": 10490.74, + "end": 10491.1, + "probability": 0.9537 + }, + { + "start": 10492.04, + "end": 10494.48, + "probability": 0.9839 + }, + { + "start": 10495.16, + "end": 10495.6, + "probability": 0.7627 + }, + { + "start": 10495.68, + "end": 10495.68, + "probability": 0.4617 + }, + { + "start": 10497.18, + "end": 10498.46, + "probability": 0.8865 + }, + { + "start": 10498.74, + "end": 10500.72, + "probability": 0.9973 + }, + { + "start": 10501.58, + "end": 10503.96, + "probability": 0.5142 + }, + { + "start": 10504.62, + "end": 10506.94, + "probability": 0.7188 + }, + { + "start": 10507.94, + "end": 10509.0, + "probability": 0.9097 + }, + { + "start": 10509.76, + "end": 10510.8, + "probability": 0.5986 + }, + { + "start": 10512.12, + "end": 10514.14, + "probability": 0.679 + }, + { + "start": 10514.18, + "end": 10515.28, + "probability": 0.4547 + }, + { + "start": 10515.28, + "end": 10515.7, + "probability": 0.4224 + }, + { + "start": 10515.84, + "end": 10516.3, + "probability": 0.7993 + }, + { + "start": 10516.5, + "end": 10517.96, + "probability": 0.8341 + }, + { + "start": 10518.24, + "end": 10518.24, + "probability": 0.0004 + }, + { + "start": 10519.45, + "end": 10521.38, + "probability": 0.0873 + }, + { + "start": 10521.38, + "end": 10521.42, + "probability": 0.4462 + }, + { + "start": 10521.42, + "end": 10521.42, + "probability": 0.052 + }, + { + "start": 10521.42, + "end": 10521.42, + "probability": 0.3303 + }, + { + "start": 10521.42, + "end": 10521.6, + "probability": 0.2079 + }, + { + "start": 10521.76, + "end": 10522.86, + "probability": 0.639 + }, + { + "start": 10523.24, + "end": 10526.7, + "probability": 0.978 + }, + { + "start": 10527.2, + "end": 10530.64, + "probability": 0.9342 + }, + { + "start": 10531.72, + "end": 10536.0, + "probability": 0.842 + }, + { + "start": 10536.1, + "end": 10537.14, + "probability": 0.8049 + }, + { + "start": 10537.32, + "end": 10537.94, + "probability": 0.8653 + }, + { + "start": 10538.5, + "end": 10540.04, + "probability": 0.6897 + }, + { + "start": 10540.3, + "end": 10541.4, + "probability": 0.7191 + }, + { + "start": 10543.76, + "end": 10547.18, + "probability": 0.7969 + }, + { + "start": 10548.12, + "end": 10549.76, + "probability": 0.9883 + }, + { + "start": 10549.92, + "end": 10551.74, + "probability": 0.7606 + }, + { + "start": 10551.76, + "end": 10552.52, + "probability": 0.917 + }, + { + "start": 10553.18, + "end": 10556.0, + "probability": 0.3139 + }, + { + "start": 10557.46, + "end": 10557.96, + "probability": 0.5579 + }, + { + "start": 10558.06, + "end": 10560.26, + "probability": 0.6353 + }, + { + "start": 10561.18, + "end": 10561.6, + "probability": 0.6236 + }, + { + "start": 10562.16, + "end": 10563.26, + "probability": 0.6631 + }, + { + "start": 10563.96, + "end": 10564.68, + "probability": 0.5165 + }, + { + "start": 10565.02, + "end": 10567.68, + "probability": 0.989 + }, + { + "start": 10569.66, + "end": 10572.04, + "probability": 0.8296 + }, + { + "start": 10572.84, + "end": 10573.56, + "probability": 0.9424 + }, + { + "start": 10574.66, + "end": 10576.46, + "probability": 0.9234 + }, + { + "start": 10577.54, + "end": 10578.64, + "probability": 0.8114 + }, + { + "start": 10578.82, + "end": 10578.82, + "probability": 0.0002 + }, + { + "start": 10579.6, + "end": 10580.75, + "probability": 0.8564 + }, + { + "start": 10581.56, + "end": 10583.92, + "probability": 0.9257 + }, + { + "start": 10583.92, + "end": 10584.26, + "probability": 0.5854 + }, + { + "start": 10584.28, + "end": 10584.84, + "probability": 0.9409 + }, + { + "start": 10585.8, + "end": 10586.9, + "probability": 0.9767 + }, + { + "start": 10588.24, + "end": 10590.76, + "probability": 0.4531 + }, + { + "start": 10591.72, + "end": 10593.72, + "probability": 0.6754 + }, + { + "start": 10596.0, + "end": 10598.12, + "probability": 0.9338 + }, + { + "start": 10599.66, + "end": 10603.9, + "probability": 0.9058 + }, + { + "start": 10603.96, + "end": 10605.62, + "probability": 0.9764 + }, + { + "start": 10605.92, + "end": 10606.98, + "probability": 0.9612 + }, + { + "start": 10608.24, + "end": 10609.02, + "probability": 0.7093 + }, + { + "start": 10610.16, + "end": 10610.76, + "probability": 0.6356 + }, + { + "start": 10611.9, + "end": 10613.28, + "probability": 0.5942 + }, + { + "start": 10614.62, + "end": 10615.92, + "probability": 0.9829 + }, + { + "start": 10617.8, + "end": 10619.38, + "probability": 0.8207 + }, + { + "start": 10619.74, + "end": 10619.84, + "probability": 0.3321 + }, + { + "start": 10620.46, + "end": 10623.46, + "probability": 0.8228 + }, + { + "start": 10623.9, + "end": 10628.52, + "probability": 0.9294 + }, + { + "start": 10629.12, + "end": 10629.86, + "probability": 0.3267 + }, + { + "start": 10630.16, + "end": 10632.18, + "probability": 0.8007 + }, + { + "start": 10633.44, + "end": 10635.94, + "probability": 0.9863 + }, + { + "start": 10636.76, + "end": 10639.26, + "probability": 0.396 + }, + { + "start": 10640.78, + "end": 10641.36, + "probability": 0.5661 + }, + { + "start": 10641.88, + "end": 10642.92, + "probability": 0.9927 + }, + { + "start": 10644.17, + "end": 10645.12, + "probability": 0.7568 + }, + { + "start": 10645.96, + "end": 10647.02, + "probability": 0.7678 + }, + { + "start": 10647.88, + "end": 10650.06, + "probability": 0.9939 + }, + { + "start": 10650.1, + "end": 10650.93, + "probability": 0.9615 + }, + { + "start": 10651.38, + "end": 10652.24, + "probability": 0.4591 + }, + { + "start": 10652.56, + "end": 10653.02, + "probability": 0.9912 + }, + { + "start": 10653.36, + "end": 10655.22, + "probability": 0.9961 + }, + { + "start": 10655.24, + "end": 10657.4, + "probability": 0.9988 + }, + { + "start": 10671.84, + "end": 10673.28, + "probability": 0.0931 + }, + { + "start": 10680.44, + "end": 10683.42, + "probability": 0.0247 + }, + { + "start": 10684.32, + "end": 10685.7, + "probability": 0.0311 + }, + { + "start": 10685.92, + "end": 10687.92, + "probability": 0.2068 + }, + { + "start": 10706.5, + "end": 10706.58, + "probability": 0.0231 + }, + { + "start": 10707.7, + "end": 10710.22, + "probability": 0.0812 + }, + { + "start": 10710.22, + "end": 10710.24, + "probability": 0.1834 + }, + { + "start": 10710.24, + "end": 10713.1, + "probability": 0.0325 + }, + { + "start": 10713.1, + "end": 10713.32, + "probability": 0.2878 + }, + { + "start": 10713.32, + "end": 10713.34, + "probability": 0.0922 + }, + { + "start": 10714.12, + "end": 10716.38, + "probability": 0.1275 + }, + { + "start": 10768.0, + "end": 10768.0, + "probability": 0.0 + }, + { + "start": 10768.0, + "end": 10768.0, + "probability": 0.0 + }, + { + "start": 10768.0, + "end": 10768.0, + "probability": 0.0 + }, + { + "start": 10768.0, + "end": 10768.0, + "probability": 0.0 + }, + { + "start": 10768.0, + "end": 10768.0, + "probability": 0.0 + }, + { + "start": 10768.0, + "end": 10768.0, + "probability": 0.0 + }, + { + "start": 10775.06, + "end": 10780.92, + "probability": 0.1295 + }, + { + "start": 10783.96, + "end": 10787.72, + "probability": 0.9593 + }, + { + "start": 10788.62, + "end": 10790.48, + "probability": 0.9466 + }, + { + "start": 10791.06, + "end": 10792.66, + "probability": 0.9543 + }, + { + "start": 10793.28, + "end": 10796.76, + "probability": 0.9917 + }, + { + "start": 10797.54, + "end": 10800.28, + "probability": 0.8715 + }, + { + "start": 10800.32, + "end": 10802.4, + "probability": 0.9783 + }, + { + "start": 10803.06, + "end": 10804.62, + "probability": 0.9718 + }, + { + "start": 10805.69, + "end": 10809.02, + "probability": 0.8556 + }, + { + "start": 10810.28, + "end": 10812.18, + "probability": 0.8092 + }, + { + "start": 10813.02, + "end": 10813.83, + "probability": 0.9863 + }, + { + "start": 10814.06, + "end": 10814.58, + "probability": 0.9189 + }, + { + "start": 10814.86, + "end": 10815.9, + "probability": 0.7288 + }, + { + "start": 10816.06, + "end": 10818.32, + "probability": 0.7951 + }, + { + "start": 10820.61, + "end": 10824.16, + "probability": 0.7503 + }, + { + "start": 10824.3, + "end": 10826.08, + "probability": 0.8272 + }, + { + "start": 10826.94, + "end": 10828.3, + "probability": 0.7715 + }, + { + "start": 10830.4, + "end": 10832.58, + "probability": 0.8149 + }, + { + "start": 10832.74, + "end": 10833.1, + "probability": 0.3855 + }, + { + "start": 10833.66, + "end": 10836.78, + "probability": 0.9238 + }, + { + "start": 10836.96, + "end": 10838.0, + "probability": 0.4493 + }, + { + "start": 10840.0, + "end": 10840.72, + "probability": 0.64 + }, + { + "start": 10841.4, + "end": 10843.28, + "probability": 0.8374 + }, + { + "start": 10844.26, + "end": 10845.54, + "probability": 0.9563 + }, + { + "start": 10847.52, + "end": 10851.52, + "probability": 0.8979 + }, + { + "start": 10852.74, + "end": 10854.94, + "probability": 0.9758 + }, + { + "start": 10855.88, + "end": 10858.06, + "probability": 0.9508 + }, + { + "start": 10858.62, + "end": 10860.78, + "probability": 0.7924 + }, + { + "start": 10861.48, + "end": 10862.76, + "probability": 0.8617 + }, + { + "start": 10864.38, + "end": 10867.84, + "probability": 0.961 + }, + { + "start": 10868.68, + "end": 10870.94, + "probability": 0.9579 + }, + { + "start": 10871.5, + "end": 10874.74, + "probability": 0.9966 + }, + { + "start": 10875.46, + "end": 10877.6, + "probability": 0.9871 + }, + { + "start": 10878.42, + "end": 10883.76, + "probability": 0.98 + }, + { + "start": 10884.28, + "end": 10885.24, + "probability": 0.8993 + }, + { + "start": 10886.14, + "end": 10887.04, + "probability": 0.8176 + }, + { + "start": 10888.48, + "end": 10891.86, + "probability": 0.9845 + }, + { + "start": 10892.56, + "end": 10895.76, + "probability": 0.9858 + }, + { + "start": 10896.7, + "end": 10899.8, + "probability": 0.9982 + }, + { + "start": 10900.4, + "end": 10902.0, + "probability": 0.9935 + }, + { + "start": 10902.7, + "end": 10905.96, + "probability": 0.9609 + }, + { + "start": 10906.56, + "end": 10908.24, + "probability": 0.7046 + }, + { + "start": 10909.2, + "end": 10910.74, + "probability": 0.7058 + }, + { + "start": 10911.48, + "end": 10914.92, + "probability": 0.9867 + }, + { + "start": 10915.7, + "end": 10918.66, + "probability": 0.8568 + }, + { + "start": 10919.64, + "end": 10922.72, + "probability": 0.9762 + }, + { + "start": 10923.38, + "end": 10924.66, + "probability": 0.9769 + }, + { + "start": 10925.3, + "end": 10926.4, + "probability": 0.9886 + }, + { + "start": 10927.08, + "end": 10928.6, + "probability": 0.705 + }, + { + "start": 10928.92, + "end": 10933.92, + "probability": 0.9964 + }, + { + "start": 10934.44, + "end": 10935.56, + "probability": 0.9737 + }, + { + "start": 10936.3, + "end": 10937.92, + "probability": 0.969 + }, + { + "start": 10938.58, + "end": 10941.44, + "probability": 0.999 + }, + { + "start": 10942.76, + "end": 10944.78, + "probability": 0.6992 + }, + { + "start": 10945.72, + "end": 10950.16, + "probability": 0.9821 + }, + { + "start": 10951.76, + "end": 10954.14, + "probability": 0.9972 + }, + { + "start": 10954.82, + "end": 10959.44, + "probability": 0.9272 + }, + { + "start": 10960.28, + "end": 10964.48, + "probability": 0.9698 + }, + { + "start": 10965.54, + "end": 10969.28, + "probability": 0.9932 + }, + { + "start": 10970.5, + "end": 10973.2, + "probability": 0.9048 + }, + { + "start": 10974.26, + "end": 10978.22, + "probability": 0.9988 + }, + { + "start": 10979.44, + "end": 10982.96, + "probability": 0.998 + }, + { + "start": 10983.48, + "end": 10984.78, + "probability": 0.9912 + }, + { + "start": 10985.96, + "end": 10989.34, + "probability": 0.9969 + }, + { + "start": 10989.98, + "end": 10991.62, + "probability": 0.9045 + }, + { + "start": 10992.34, + "end": 10997.1, + "probability": 0.9752 + }, + { + "start": 10998.04, + "end": 11002.04, + "probability": 0.9654 + }, + { + "start": 11003.58, + "end": 11007.62, + "probability": 0.9961 + }, + { + "start": 11008.36, + "end": 11009.3, + "probability": 0.9626 + }, + { + "start": 11010.8, + "end": 11012.08, + "probability": 0.9838 + }, + { + "start": 11012.64, + "end": 11017.32, + "probability": 0.9989 + }, + { + "start": 11018.06, + "end": 11020.28, + "probability": 0.9932 + }, + { + "start": 11020.6, + "end": 11023.04, + "probability": 0.8349 + }, + { + "start": 11024.02, + "end": 11026.5, + "probability": 0.9977 + }, + { + "start": 11027.08, + "end": 11029.74, + "probability": 0.9511 + }, + { + "start": 11030.7, + "end": 11032.24, + "probability": 0.9839 + }, + { + "start": 11032.4, + "end": 11036.56, + "probability": 0.9941 + }, + { + "start": 11037.24, + "end": 11039.82, + "probability": 0.9992 + }, + { + "start": 11041.42, + "end": 11043.4, + "probability": 0.7316 + }, + { + "start": 11044.18, + "end": 11044.94, + "probability": 0.9484 + }, + { + "start": 11045.1, + "end": 11047.82, + "probability": 0.9921 + }, + { + "start": 11048.28, + "end": 11049.6, + "probability": 0.99 + }, + { + "start": 11050.68, + "end": 11052.18, + "probability": 0.9594 + }, + { + "start": 11052.22, + "end": 11053.72, + "probability": 0.9325 + }, + { + "start": 11053.82, + "end": 11059.46, + "probability": 0.8573 + }, + { + "start": 11061.06, + "end": 11061.06, + "probability": 0.182 + }, + { + "start": 11061.06, + "end": 11065.46, + "probability": 0.9795 + }, + { + "start": 11066.54, + "end": 11070.4, + "probability": 0.9658 + }, + { + "start": 11073.66, + "end": 11075.7, + "probability": 0.9189 + }, + { + "start": 11077.22, + "end": 11080.66, + "probability": 0.9988 + }, + { + "start": 11081.8, + "end": 11083.84, + "probability": 0.9966 + }, + { + "start": 11084.82, + "end": 11085.98, + "probability": 0.6986 + }, + { + "start": 11086.92, + "end": 11087.68, + "probability": 0.7619 + }, + { + "start": 11088.6, + "end": 11089.62, + "probability": 0.8106 + }, + { + "start": 11090.28, + "end": 11093.0, + "probability": 0.988 + }, + { + "start": 11093.92, + "end": 11095.54, + "probability": 0.7082 + }, + { + "start": 11096.4, + "end": 11099.64, + "probability": 0.9725 + }, + { + "start": 11100.4, + "end": 11101.54, + "probability": 0.7467 + }, + { + "start": 11102.8, + "end": 11104.76, + "probability": 0.9902 + }, + { + "start": 11105.32, + "end": 11106.78, + "probability": 0.7535 + }, + { + "start": 11107.3, + "end": 11112.14, + "probability": 0.9912 + }, + { + "start": 11113.44, + "end": 11115.02, + "probability": 0.7521 + }, + { + "start": 11115.7, + "end": 11118.68, + "probability": 0.8644 + }, + { + "start": 11119.78, + "end": 11120.44, + "probability": 0.9923 + }, + { + "start": 11121.1, + "end": 11124.16, + "probability": 0.9585 + }, + { + "start": 11124.96, + "end": 11126.94, + "probability": 0.9334 + }, + { + "start": 11127.72, + "end": 11128.88, + "probability": 0.6657 + }, + { + "start": 11130.26, + "end": 11132.82, + "probability": 0.9958 + }, + { + "start": 11133.68, + "end": 11134.08, + "probability": 0.6666 + }, + { + "start": 11135.26, + "end": 11135.92, + "probability": 0.7235 + }, + { + "start": 11136.56, + "end": 11138.72, + "probability": 0.928 + }, + { + "start": 11140.06, + "end": 11142.98, + "probability": 0.9655 + }, + { + "start": 11143.76, + "end": 11146.54, + "probability": 0.9817 + }, + { + "start": 11147.64, + "end": 11152.18, + "probability": 0.9888 + }, + { + "start": 11153.24, + "end": 11155.58, + "probability": 0.9652 + }, + { + "start": 11156.7, + "end": 11158.76, + "probability": 0.9563 + }, + { + "start": 11158.86, + "end": 11161.8, + "probability": 0.964 + }, + { + "start": 11162.72, + "end": 11165.82, + "probability": 0.9887 + }, + { + "start": 11166.34, + "end": 11166.92, + "probability": 0.9111 + }, + { + "start": 11167.84, + "end": 11169.46, + "probability": 0.9971 + }, + { + "start": 11169.98, + "end": 11174.84, + "probability": 0.998 + }, + { + "start": 11175.04, + "end": 11176.26, + "probability": 0.8801 + }, + { + "start": 11177.86, + "end": 11181.3, + "probability": 0.9219 + }, + { + "start": 11181.3, + "end": 11185.6, + "probability": 0.9987 + }, + { + "start": 11186.3, + "end": 11187.1, + "probability": 0.9572 + }, + { + "start": 11187.72, + "end": 11189.74, + "probability": 0.9962 + }, + { + "start": 11190.36, + "end": 11191.16, + "probability": 0.8906 + }, + { + "start": 11191.76, + "end": 11192.94, + "probability": 0.9913 + }, + { + "start": 11193.72, + "end": 11194.86, + "probability": 0.9356 + }, + { + "start": 11195.74, + "end": 11197.14, + "probability": 0.8713 + }, + { + "start": 11198.02, + "end": 11199.8, + "probability": 0.8761 + }, + { + "start": 11200.62, + "end": 11203.58, + "probability": 0.9487 + }, + { + "start": 11205.52, + "end": 11208.68, + "probability": 0.9057 + }, + { + "start": 11209.94, + "end": 11212.94, + "probability": 0.7817 + }, + { + "start": 11213.88, + "end": 11216.58, + "probability": 0.9613 + }, + { + "start": 11216.58, + "end": 11219.88, + "probability": 0.9829 + }, + { + "start": 11220.78, + "end": 11222.88, + "probability": 0.9731 + }, + { + "start": 11224.04, + "end": 11224.68, + "probability": 0.8762 + }, + { + "start": 11225.88, + "end": 11228.44, + "probability": 0.9746 + }, + { + "start": 11228.44, + "end": 11232.1, + "probability": 0.8803 + }, + { + "start": 11232.72, + "end": 11233.6, + "probability": 0.9023 + }, + { + "start": 11234.56, + "end": 11238.54, + "probability": 0.959 + }, + { + "start": 11239.16, + "end": 11243.62, + "probability": 0.9925 + }, + { + "start": 11244.68, + "end": 11248.66, + "probability": 0.9958 + }, + { + "start": 11248.66, + "end": 11251.64, + "probability": 0.9993 + }, + { + "start": 11252.5, + "end": 11253.64, + "probability": 0.9144 + }, + { + "start": 11254.94, + "end": 11260.94, + "probability": 0.993 + }, + { + "start": 11262.08, + "end": 11266.28, + "probability": 0.9857 + }, + { + "start": 11266.76, + "end": 11268.04, + "probability": 0.5937 + }, + { + "start": 11268.62, + "end": 11272.8, + "probability": 0.9157 + }, + { + "start": 11273.66, + "end": 11276.94, + "probability": 0.9858 + }, + { + "start": 11277.64, + "end": 11281.16, + "probability": 0.9921 + }, + { + "start": 11281.32, + "end": 11286.66, + "probability": 0.9779 + }, + { + "start": 11287.66, + "end": 11290.36, + "probability": 0.9655 + }, + { + "start": 11290.92, + "end": 11292.2, + "probability": 0.9676 + }, + { + "start": 11292.88, + "end": 11296.52, + "probability": 0.9871 + }, + { + "start": 11297.14, + "end": 11300.72, + "probability": 0.9963 + }, + { + "start": 11301.42, + "end": 11302.62, + "probability": 0.9522 + }, + { + "start": 11303.14, + "end": 11306.14, + "probability": 0.998 + }, + { + "start": 11307.26, + "end": 11312.1, + "probability": 0.9924 + }, + { + "start": 11312.68, + "end": 11315.14, + "probability": 0.9937 + }, + { + "start": 11315.66, + "end": 11320.1, + "probability": 0.9871 + }, + { + "start": 11321.44, + "end": 11324.86, + "probability": 0.8544 + }, + { + "start": 11324.88, + "end": 11328.6, + "probability": 0.9927 + }, + { + "start": 11329.62, + "end": 11332.62, + "probability": 0.9396 + }, + { + "start": 11333.24, + "end": 11335.0, + "probability": 0.9373 + }, + { + "start": 11335.78, + "end": 11337.56, + "probability": 0.5932 + }, + { + "start": 11338.98, + "end": 11339.9, + "probability": 0.8335 + }, + { + "start": 11340.82, + "end": 11342.52, + "probability": 0.9826 + }, + { + "start": 11343.04, + "end": 11346.32, + "probability": 0.9989 + }, + { + "start": 11346.32, + "end": 11348.98, + "probability": 0.9938 + }, + { + "start": 11349.9, + "end": 11354.76, + "probability": 0.9951 + }, + { + "start": 11355.28, + "end": 11356.4, + "probability": 0.8092 + }, + { + "start": 11357.38, + "end": 11360.52, + "probability": 0.993 + }, + { + "start": 11361.7, + "end": 11364.22, + "probability": 0.9613 + }, + { + "start": 11364.22, + "end": 11367.6, + "probability": 0.9938 + }, + { + "start": 11368.22, + "end": 11373.0, + "probability": 0.8539 + }, + { + "start": 11374.28, + "end": 11377.98, + "probability": 0.9976 + }, + { + "start": 11377.98, + "end": 11382.52, + "probability": 0.9938 + }, + { + "start": 11383.36, + "end": 11384.3, + "probability": 0.8599 + }, + { + "start": 11384.94, + "end": 11389.96, + "probability": 0.9951 + }, + { + "start": 11390.96, + "end": 11396.66, + "probability": 0.9861 + }, + { + "start": 11397.38, + "end": 11403.76, + "probability": 0.9753 + }, + { + "start": 11404.76, + "end": 11405.22, + "probability": 0.805 + }, + { + "start": 11405.78, + "end": 11408.04, + "probability": 0.8277 + }, + { + "start": 11408.78, + "end": 11410.2, + "probability": 0.7559 + }, + { + "start": 11411.1, + "end": 11414.13, + "probability": 0.9618 + }, + { + "start": 11415.28, + "end": 11415.76, + "probability": 0.8881 + }, + { + "start": 11418.08, + "end": 11418.62, + "probability": 0.6063 + }, + { + "start": 11418.64, + "end": 11423.36, + "probability": 0.9824 + }, + { + "start": 11423.44, + "end": 11425.02, + "probability": 0.9331 + }, + { + "start": 11428.06, + "end": 11429.68, + "probability": 0.9305 + }, + { + "start": 11449.34, + "end": 11450.12, + "probability": 0.5965 + }, + { + "start": 11450.94, + "end": 11452.12, + "probability": 0.8725 + }, + { + "start": 11453.02, + "end": 11454.68, + "probability": 0.9546 + }, + { + "start": 11456.54, + "end": 11457.68, + "probability": 0.9782 + }, + { + "start": 11458.28, + "end": 11459.26, + "probability": 0.9092 + }, + { + "start": 11461.84, + "end": 11463.94, + "probability": 0.7399 + }, + { + "start": 11465.32, + "end": 11468.74, + "probability": 0.8554 + }, + { + "start": 11470.02, + "end": 11472.22, + "probability": 0.9893 + }, + { + "start": 11472.98, + "end": 11474.04, + "probability": 0.8375 + }, + { + "start": 11474.56, + "end": 11478.48, + "probability": 0.9847 + }, + { + "start": 11478.48, + "end": 11483.3, + "probability": 0.9961 + }, + { + "start": 11485.1, + "end": 11485.8, + "probability": 0.8272 + }, + { + "start": 11485.88, + "end": 11489.44, + "probability": 0.9966 + }, + { + "start": 11490.32, + "end": 11491.72, + "probability": 0.9995 + }, + { + "start": 11492.42, + "end": 11494.06, + "probability": 0.993 + }, + { + "start": 11496.52, + "end": 11498.46, + "probability": 0.8194 + }, + { + "start": 11499.14, + "end": 11502.74, + "probability": 0.9577 + }, + { + "start": 11503.22, + "end": 11504.28, + "probability": 0.7965 + }, + { + "start": 11504.96, + "end": 11506.26, + "probability": 0.663 + }, + { + "start": 11506.82, + "end": 11507.88, + "probability": 0.9334 + }, + { + "start": 11509.52, + "end": 11510.68, + "probability": 0.6439 + }, + { + "start": 11511.42, + "end": 11516.1, + "probability": 0.9386 + }, + { + "start": 11517.04, + "end": 11520.3, + "probability": 0.9429 + }, + { + "start": 11521.58, + "end": 11524.1, + "probability": 0.7986 + }, + { + "start": 11524.82, + "end": 11531.6, + "probability": 0.9844 + }, + { + "start": 11532.28, + "end": 11532.96, + "probability": 0.5909 + }, + { + "start": 11534.3, + "end": 11534.66, + "probability": 0.9036 + }, + { + "start": 11535.16, + "end": 11541.68, + "probability": 0.9881 + }, + { + "start": 11543.76, + "end": 11546.9, + "probability": 0.945 + }, + { + "start": 11548.13, + "end": 11552.3, + "probability": 0.9958 + }, + { + "start": 11553.74, + "end": 11554.64, + "probability": 0.9125 + }, + { + "start": 11555.84, + "end": 11559.84, + "probability": 0.9947 + }, + { + "start": 11560.86, + "end": 11561.72, + "probability": 0.9833 + }, + { + "start": 11562.72, + "end": 11563.94, + "probability": 0.9847 + }, + { + "start": 11565.08, + "end": 11566.64, + "probability": 0.9971 + }, + { + "start": 11567.82, + "end": 11570.04, + "probability": 0.9929 + }, + { + "start": 11571.2, + "end": 11572.82, + "probability": 0.5099 + }, + { + "start": 11574.5, + "end": 11576.2, + "probability": 0.8879 + }, + { + "start": 11576.8, + "end": 11581.78, + "probability": 0.9863 + }, + { + "start": 11581.84, + "end": 11581.9, + "probability": 0.561 + }, + { + "start": 11581.9, + "end": 11587.4, + "probability": 0.9468 + }, + { + "start": 11587.4, + "end": 11587.44, + "probability": 0.243 + }, + { + "start": 11587.56, + "end": 11591.89, + "probability": 0.6366 + }, + { + "start": 11594.76, + "end": 11595.0, + "probability": 0.8895 + }, + { + "start": 11596.14, + "end": 11597.2, + "probability": 0.6759 + }, + { + "start": 11597.48, + "end": 11603.06, + "probability": 0.9046 + }, + { + "start": 11603.1, + "end": 11606.48, + "probability": 0.9886 + }, + { + "start": 11606.48, + "end": 11607.6, + "probability": 0.8444 + }, + { + "start": 11607.72, + "end": 11608.32, + "probability": 0.3863 + }, + { + "start": 11608.88, + "end": 11611.5, + "probability": 0.8978 + }, + { + "start": 11611.6, + "end": 11611.82, + "probability": 0.7583 + }, + { + "start": 11614.02, + "end": 11618.42, + "probability": 0.9961 + }, + { + "start": 11619.16, + "end": 11619.9, + "probability": 0.6754 + }, + { + "start": 11620.9, + "end": 11621.92, + "probability": 0.9585 + }, + { + "start": 11622.52, + "end": 11624.0, + "probability": 0.9906 + }, + { + "start": 11624.14, + "end": 11625.42, + "probability": 0.651 + }, + { + "start": 11625.8, + "end": 11629.0, + "probability": 0.6271 + }, + { + "start": 11630.54, + "end": 11632.52, + "probability": 0.9798 + }, + { + "start": 11633.38, + "end": 11637.82, + "probability": 0.9989 + }, + { + "start": 11638.28, + "end": 11642.12, + "probability": 0.9969 + }, + { + "start": 11642.68, + "end": 11644.9, + "probability": 0.9989 + }, + { + "start": 11646.02, + "end": 11650.5, + "probability": 0.8717 + }, + { + "start": 11651.28, + "end": 11652.26, + "probability": 0.9661 + }, + { + "start": 11653.22, + "end": 11657.98, + "probability": 0.9852 + }, + { + "start": 11658.38, + "end": 11659.82, + "probability": 0.7898 + }, + { + "start": 11660.38, + "end": 11661.06, + "probability": 0.9696 + }, + { + "start": 11662.34, + "end": 11666.3, + "probability": 0.9793 + }, + { + "start": 11666.7, + "end": 11667.48, + "probability": 0.5492 + }, + { + "start": 11668.16, + "end": 11668.78, + "probability": 0.9258 + }, + { + "start": 11669.34, + "end": 11670.08, + "probability": 0.9486 + }, + { + "start": 11672.02, + "end": 11676.14, + "probability": 0.9935 + }, + { + "start": 11676.14, + "end": 11679.6, + "probability": 0.9553 + }, + { + "start": 11680.28, + "end": 11682.42, + "probability": 0.9378 + }, + { + "start": 11684.9, + "end": 11685.0, + "probability": 0.103 + }, + { + "start": 11687.08, + "end": 11689.88, + "probability": 0.315 + }, + { + "start": 11689.92, + "end": 11690.14, + "probability": 0.0222 + }, + { + "start": 11690.18, + "end": 11691.08, + "probability": 0.2542 + }, + { + "start": 11691.26, + "end": 11691.26, + "probability": 0.0964 + }, + { + "start": 11691.26, + "end": 11693.06, + "probability": 0.0216 + }, + { + "start": 11693.94, + "end": 11695.0, + "probability": 0.1089 + }, + { + "start": 11695.52, + "end": 11697.4, + "probability": 0.1655 + }, + { + "start": 11699.32, + "end": 11700.2, + "probability": 0.0409 + }, + { + "start": 11700.74, + "end": 11702.36, + "probability": 0.7922 + }, + { + "start": 11702.42, + "end": 11702.64, + "probability": 0.8423 + }, + { + "start": 11703.66, + "end": 11705.72, + "probability": 0.9848 + }, + { + "start": 11707.14, + "end": 11707.3, + "probability": 0.0116 + }, + { + "start": 11707.3, + "end": 11707.72, + "probability": 0.4008 + }, + { + "start": 11707.72, + "end": 11708.12, + "probability": 0.9749 + }, + { + "start": 11708.58, + "end": 11710.73, + "probability": 0.9985 + }, + { + "start": 11711.78, + "end": 11714.08, + "probability": 0.8174 + }, + { + "start": 11714.94, + "end": 11716.56, + "probability": 0.908 + }, + { + "start": 11717.26, + "end": 11718.14, + "probability": 0.874 + }, + { + "start": 11718.66, + "end": 11722.0, + "probability": 0.9911 + }, + { + "start": 11723.3, + "end": 11727.36, + "probability": 0.9966 + }, + { + "start": 11728.76, + "end": 11729.12, + "probability": 0.0096 + }, + { + "start": 11729.12, + "end": 11732.0, + "probability": 0.6638 + }, + { + "start": 11732.94, + "end": 11735.4, + "probability": 0.7917 + }, + { + "start": 11735.96, + "end": 11742.73, + "probability": 0.9473 + }, + { + "start": 11744.02, + "end": 11744.6, + "probability": 0.91 + }, + { + "start": 11745.38, + "end": 11747.1, + "probability": 0.598 + }, + { + "start": 11747.8, + "end": 11749.42, + "probability": 0.7594 + }, + { + "start": 11750.18, + "end": 11753.32, + "probability": 0.9991 + }, + { + "start": 11754.16, + "end": 11755.04, + "probability": 0.9444 + }, + { + "start": 11755.6, + "end": 11757.0, + "probability": 0.9863 + }, + { + "start": 11757.98, + "end": 11760.24, + "probability": 0.8817 + }, + { + "start": 11760.82, + "end": 11762.88, + "probability": 0.9951 + }, + { + "start": 11763.56, + "end": 11765.97, + "probability": 0.8467 + }, + { + "start": 11767.08, + "end": 11770.08, + "probability": 0.9833 + }, + { + "start": 11771.14, + "end": 11773.02, + "probability": 0.9811 + }, + { + "start": 11773.74, + "end": 11774.48, + "probability": 0.9572 + }, + { + "start": 11775.08, + "end": 11777.68, + "probability": 0.9901 + }, + { + "start": 11778.5, + "end": 11779.36, + "probability": 0.649 + }, + { + "start": 11780.04, + "end": 11781.6, + "probability": 0.8392 + }, + { + "start": 11781.7, + "end": 11782.28, + "probability": 0.1472 + }, + { + "start": 11782.7, + "end": 11783.52, + "probability": 0.4322 + }, + { + "start": 11785.76, + "end": 11788.92, + "probability": 0.6303 + }, + { + "start": 11789.94, + "end": 11790.64, + "probability": 0.8321 + }, + { + "start": 11791.2, + "end": 11795.94, + "probability": 0.7839 + }, + { + "start": 11796.34, + "end": 11796.74, + "probability": 0.5693 + }, + { + "start": 11798.0, + "end": 11799.86, + "probability": 0.8437 + }, + { + "start": 11800.42, + "end": 11808.7, + "probability": 0.9785 + }, + { + "start": 11809.08, + "end": 11810.28, + "probability": 0.523 + }, + { + "start": 11811.3, + "end": 11815.78, + "probability": 0.9656 + }, + { + "start": 11817.02, + "end": 11822.64, + "probability": 0.96 + }, + { + "start": 11822.64, + "end": 11828.32, + "probability": 0.9802 + }, + { + "start": 11829.24, + "end": 11830.06, + "probability": 0.6862 + }, + { + "start": 11830.18, + "end": 11831.4, + "probability": 0.5509 + }, + { + "start": 11832.84, + "end": 11834.76, + "probability": 0.7759 + }, + { + "start": 11834.88, + "end": 11835.68, + "probability": 0.7151 + }, + { + "start": 11835.68, + "end": 11837.48, + "probability": 0.5586 + }, + { + "start": 11838.6, + "end": 11841.08, + "probability": 0.9827 + }, + { + "start": 11842.76, + "end": 11844.12, + "probability": 0.9932 + }, + { + "start": 11844.58, + "end": 11846.9, + "probability": 0.9594 + }, + { + "start": 11847.6, + "end": 11849.28, + "probability": 0.9623 + }, + { + "start": 11850.26, + "end": 11853.08, + "probability": 0.8898 + }, + { + "start": 11854.24, + "end": 11855.78, + "probability": 0.8652 + }, + { + "start": 11856.38, + "end": 11858.38, + "probability": 0.9886 + }, + { + "start": 11859.12, + "end": 11860.36, + "probability": 0.6562 + }, + { + "start": 11860.94, + "end": 11862.66, + "probability": 0.9387 + }, + { + "start": 11864.08, + "end": 11867.76, + "probability": 0.9713 + }, + { + "start": 11868.68, + "end": 11872.48, + "probability": 0.5915 + }, + { + "start": 11872.96, + "end": 11876.0, + "probability": 0.9059 + }, + { + "start": 11877.06, + "end": 11878.46, + "probability": 0.833 + }, + { + "start": 11879.46, + "end": 11880.06, + "probability": 0.9331 + }, + { + "start": 11880.96, + "end": 11884.06, + "probability": 0.9375 + }, + { + "start": 11885.64, + "end": 11886.86, + "probability": 0.6693 + }, + { + "start": 11888.64, + "end": 11889.76, + "probability": 0.4649 + }, + { + "start": 11891.16, + "end": 11892.62, + "probability": 0.631 + }, + { + "start": 11893.58, + "end": 11894.4, + "probability": 0.7499 + }, + { + "start": 11894.94, + "end": 11898.06, + "probability": 0.7437 + }, + { + "start": 11899.06, + "end": 11900.84, + "probability": 0.4365 + }, + { + "start": 11900.84, + "end": 11903.18, + "probability": 0.1731 + }, + { + "start": 11906.72, + "end": 11908.32, + "probability": 0.9096 + }, + { + "start": 11908.92, + "end": 11914.54, + "probability": 0.8739 + }, + { + "start": 11916.22, + "end": 11917.58, + "probability": 0.8647 + }, + { + "start": 11919.82, + "end": 11920.64, + "probability": 0.8064 + }, + { + "start": 11921.46, + "end": 11922.72, + "probability": 0.9679 + }, + { + "start": 11923.74, + "end": 11926.44, + "probability": 0.8756 + }, + { + "start": 11927.72, + "end": 11930.0, + "probability": 0.9148 + }, + { + "start": 11930.66, + "end": 11934.07, + "probability": 0.8668 + }, + { + "start": 11935.54, + "end": 11936.66, + "probability": 0.8816 + }, + { + "start": 11937.58, + "end": 11939.36, + "probability": 0.9897 + }, + { + "start": 11939.84, + "end": 11943.52, + "probability": 0.9698 + }, + { + "start": 11944.66, + "end": 11946.94, + "probability": 0.9622 + }, + { + "start": 11947.52, + "end": 11948.52, + "probability": 0.8817 + }, + { + "start": 11949.16, + "end": 11949.83, + "probability": 0.562 + }, + { + "start": 11951.34, + "end": 11953.22, + "probability": 0.9966 + }, + { + "start": 11954.06, + "end": 11955.12, + "probability": 0.9891 + }, + { + "start": 11956.08, + "end": 11959.58, + "probability": 0.9983 + }, + { + "start": 11959.96, + "end": 11963.2, + "probability": 0.9834 + }, + { + "start": 11964.84, + "end": 11966.5, + "probability": 0.991 + }, + { + "start": 11967.96, + "end": 11969.14, + "probability": 0.9428 + }, + { + "start": 11969.3, + "end": 11972.94, + "probability": 0.9932 + }, + { + "start": 11973.6, + "end": 11974.42, + "probability": 0.8494 + }, + { + "start": 11975.04, + "end": 11977.2, + "probability": 0.9605 + }, + { + "start": 11977.5, + "end": 11984.74, + "probability": 0.9927 + }, + { + "start": 11985.18, + "end": 11985.82, + "probability": 0.8016 + }, + { + "start": 11986.16, + "end": 11989.98, + "probability": 0.8172 + }, + { + "start": 11991.04, + "end": 11991.9, + "probability": 0.8382 + }, + { + "start": 11992.7, + "end": 11998.32, + "probability": 0.9806 + }, + { + "start": 11999.88, + "end": 12001.54, + "probability": 0.6751 + }, + { + "start": 12002.56, + "end": 12004.3, + "probability": 0.9564 + }, + { + "start": 12004.86, + "end": 12005.44, + "probability": 0.9028 + }, + { + "start": 12006.08, + "end": 12007.14, + "probability": 0.8189 + }, + { + "start": 12007.84, + "end": 12009.44, + "probability": 0.8633 + }, + { + "start": 12011.16, + "end": 12012.88, + "probability": 0.6438 + }, + { + "start": 12013.44, + "end": 12017.86, + "probability": 0.9919 + }, + { + "start": 12018.44, + "end": 12020.54, + "probability": 0.952 + }, + { + "start": 12021.24, + "end": 12023.42, + "probability": 0.9243 + }, + { + "start": 12024.02, + "end": 12027.08, + "probability": 0.971 + }, + { + "start": 12028.38, + "end": 12032.04, + "probability": 0.9904 + }, + { + "start": 12033.92, + "end": 12034.68, + "probability": 0.7029 + }, + { + "start": 12034.82, + "end": 12035.62, + "probability": 0.9387 + }, + { + "start": 12036.12, + "end": 12038.06, + "probability": 0.9703 + }, + { + "start": 12038.7, + "end": 12042.36, + "probability": 0.9038 + }, + { + "start": 12043.04, + "end": 12044.72, + "probability": 0.9967 + }, + { + "start": 12045.56, + "end": 12046.4, + "probability": 0.7049 + }, + { + "start": 12047.7, + "end": 12053.98, + "probability": 0.9682 + }, + { + "start": 12055.44, + "end": 12057.16, + "probability": 0.9958 + }, + { + "start": 12058.12, + "end": 12061.4, + "probability": 0.9839 + }, + { + "start": 12061.54, + "end": 12066.76, + "probability": 0.985 + }, + { + "start": 12068.32, + "end": 12069.12, + "probability": 0.5078 + }, + { + "start": 12070.46, + "end": 12071.22, + "probability": 0.4156 + }, + { + "start": 12072.22, + "end": 12072.78, + "probability": 0.5394 + }, + { + "start": 12074.06, + "end": 12075.9, + "probability": 0.9131 + }, + { + "start": 12076.92, + "end": 12077.66, + "probability": 0.9092 + }, + { + "start": 12078.18, + "end": 12081.0, + "probability": 0.9857 + }, + { + "start": 12081.94, + "end": 12082.96, + "probability": 0.5469 + }, + { + "start": 12084.68, + "end": 12086.1, + "probability": 0.8923 + }, + { + "start": 12086.98, + "end": 12087.66, + "probability": 0.8164 + }, + { + "start": 12088.4, + "end": 12092.38, + "probability": 0.954 + }, + { + "start": 12094.58, + "end": 12095.4, + "probability": 0.8404 + }, + { + "start": 12096.4, + "end": 12098.1, + "probability": 0.6867 + }, + { + "start": 12099.34, + "end": 12104.14, + "probability": 0.9987 + }, + { + "start": 12104.74, + "end": 12106.12, + "probability": 0.9385 + }, + { + "start": 12106.86, + "end": 12109.16, + "probability": 0.972 + }, + { + "start": 12110.68, + "end": 12111.92, + "probability": 0.9973 + }, + { + "start": 12111.94, + "end": 12117.08, + "probability": 0.9973 + }, + { + "start": 12128.88, + "end": 12130.44, + "probability": 0.9303 + }, + { + "start": 12131.0, + "end": 12134.02, + "probability": 0.8633 + }, + { + "start": 12134.56, + "end": 12135.66, + "probability": 0.9733 + }, + { + "start": 12137.88, + "end": 12138.36, + "probability": 0.5912 + }, + { + "start": 12140.58, + "end": 12143.0, + "probability": 0.9116 + }, + { + "start": 12144.28, + "end": 12147.26, + "probability": 0.9888 + }, + { + "start": 12148.44, + "end": 12149.34, + "probability": 0.8845 + }, + { + "start": 12150.38, + "end": 12154.64, + "probability": 0.9976 + }, + { + "start": 12155.7, + "end": 12158.5, + "probability": 0.9861 + }, + { + "start": 12159.66, + "end": 12160.86, + "probability": 0.9756 + }, + { + "start": 12161.64, + "end": 12162.54, + "probability": 0.6457 + }, + { + "start": 12163.34, + "end": 12164.28, + "probability": 0.6872 + }, + { + "start": 12164.38, + "end": 12166.24, + "probability": 0.9172 + }, + { + "start": 12166.7, + "end": 12168.28, + "probability": 0.7922 + }, + { + "start": 12168.4, + "end": 12169.42, + "probability": 0.8044 + }, + { + "start": 12170.06, + "end": 12172.46, + "probability": 0.8716 + }, + { + "start": 12173.02, + "end": 12176.24, + "probability": 0.9498 + }, + { + "start": 12176.32, + "end": 12178.02, + "probability": 0.9528 + }, + { + "start": 12179.66, + "end": 12180.46, + "probability": 0.9668 + }, + { + "start": 12182.02, + "end": 12187.3, + "probability": 0.9219 + }, + { + "start": 12187.74, + "end": 12189.04, + "probability": 0.9607 + }, + { + "start": 12191.02, + "end": 12193.96, + "probability": 0.9675 + }, + { + "start": 12194.0, + "end": 12196.52, + "probability": 0.9531 + }, + { + "start": 12197.54, + "end": 12198.96, + "probability": 0.831 + }, + { + "start": 12200.52, + "end": 12201.18, + "probability": 0.9023 + }, + { + "start": 12201.32, + "end": 12205.32, + "probability": 0.9938 + }, + { + "start": 12206.32, + "end": 12208.28, + "probability": 0.998 + }, + { + "start": 12208.8, + "end": 12210.83, + "probability": 0.9937 + }, + { + "start": 12211.84, + "end": 12213.02, + "probability": 0.9927 + }, + { + "start": 12214.28, + "end": 12215.68, + "probability": 0.8805 + }, + { + "start": 12216.62, + "end": 12219.62, + "probability": 0.9971 + }, + { + "start": 12222.16, + "end": 12223.12, + "probability": 0.9949 + }, + { + "start": 12225.36, + "end": 12229.78, + "probability": 0.9959 + }, + { + "start": 12230.32, + "end": 12233.64, + "probability": 0.8199 + }, + { + "start": 12233.82, + "end": 12237.56, + "probability": 0.9961 + }, + { + "start": 12238.52, + "end": 12240.34, + "probability": 0.9516 + }, + { + "start": 12240.62, + "end": 12241.02, + "probability": 0.8538 + }, + { + "start": 12241.08, + "end": 12244.94, + "probability": 0.9859 + }, + { + "start": 12246.86, + "end": 12248.14, + "probability": 0.9742 + }, + { + "start": 12248.16, + "end": 12250.04, + "probability": 0.9973 + }, + { + "start": 12250.14, + "end": 12253.68, + "probability": 0.9236 + }, + { + "start": 12255.52, + "end": 12257.88, + "probability": 0.978 + }, + { + "start": 12259.04, + "end": 12260.3, + "probability": 0.9899 + }, + { + "start": 12260.44, + "end": 12261.18, + "probability": 0.8914 + }, + { + "start": 12261.62, + "end": 12263.9, + "probability": 0.9882 + }, + { + "start": 12264.78, + "end": 12266.41, + "probability": 0.9963 + }, + { + "start": 12267.26, + "end": 12269.92, + "probability": 0.9978 + }, + { + "start": 12270.25, + "end": 12273.48, + "probability": 0.9961 + }, + { + "start": 12273.88, + "end": 12278.94, + "probability": 0.9988 + }, + { + "start": 12280.04, + "end": 12281.16, + "probability": 0.998 + }, + { + "start": 12281.82, + "end": 12282.54, + "probability": 0.8754 + }, + { + "start": 12283.4, + "end": 12287.72, + "probability": 0.9784 + }, + { + "start": 12288.84, + "end": 12291.18, + "probability": 0.9948 + }, + { + "start": 12291.98, + "end": 12293.14, + "probability": 0.7527 + }, + { + "start": 12293.76, + "end": 12295.4, + "probability": 0.9424 + }, + { + "start": 12296.62, + "end": 12296.72, + "probability": 0.6681 + }, + { + "start": 12297.2, + "end": 12299.42, + "probability": 0.9156 + }, + { + "start": 12301.12, + "end": 12301.84, + "probability": 0.9368 + }, + { + "start": 12303.52, + "end": 12304.56, + "probability": 0.9827 + }, + { + "start": 12305.8, + "end": 12308.36, + "probability": 0.9964 + }, + { + "start": 12309.68, + "end": 12311.6, + "probability": 0.9673 + }, + { + "start": 12311.8, + "end": 12313.94, + "probability": 0.9965 + }, + { + "start": 12315.12, + "end": 12318.18, + "probability": 0.9326 + }, + { + "start": 12318.92, + "end": 12320.68, + "probability": 0.551 + }, + { + "start": 12321.3, + "end": 12323.17, + "probability": 0.7887 + }, + { + "start": 12324.38, + "end": 12329.16, + "probability": 0.9859 + }, + { + "start": 12331.76, + "end": 12333.28, + "probability": 0.9962 + }, + { + "start": 12333.38, + "end": 12337.72, + "probability": 0.9993 + }, + { + "start": 12338.1, + "end": 12340.8, + "probability": 0.9979 + }, + { + "start": 12341.2, + "end": 12345.38, + "probability": 0.979 + }, + { + "start": 12345.48, + "end": 12346.58, + "probability": 0.2716 + }, + { + "start": 12347.46, + "end": 12347.98, + "probability": 0.8854 + }, + { + "start": 12348.68, + "end": 12349.3, + "probability": 0.9527 + }, + { + "start": 12353.82, + "end": 12353.92, + "probability": 0.4087 + }, + { + "start": 12354.72, + "end": 12356.48, + "probability": 0.99 + }, + { + "start": 12357.6, + "end": 12362.54, + "probability": 0.9945 + }, + { + "start": 12363.36, + "end": 12364.56, + "probability": 0.9566 + }, + { + "start": 12364.88, + "end": 12368.52, + "probability": 0.3312 + }, + { + "start": 12369.88, + "end": 12371.02, + "probability": 0.0208 + }, + { + "start": 12372.58, + "end": 12374.98, + "probability": 0.9845 + }, + { + "start": 12375.16, + "end": 12375.94, + "probability": 0.9918 + }, + { + "start": 12378.52, + "end": 12379.32, + "probability": 0.5363 + }, + { + "start": 12379.32, + "end": 12379.9, + "probability": 0.7508 + }, + { + "start": 12379.94, + "end": 12381.34, + "probability": 0.9826 + }, + { + "start": 12381.52, + "end": 12384.4, + "probability": 0.9685 + }, + { + "start": 12384.96, + "end": 12386.22, + "probability": 0.9609 + }, + { + "start": 12386.42, + "end": 12388.68, + "probability": 0.8988 + }, + { + "start": 12389.48, + "end": 12389.78, + "probability": 0.4643 + }, + { + "start": 12389.9, + "end": 12390.02, + "probability": 0.7936 + }, + { + "start": 12390.16, + "end": 12390.72, + "probability": 0.7881 + }, + { + "start": 12390.82, + "end": 12391.36, + "probability": 0.9509 + }, + { + "start": 12391.46, + "end": 12394.2, + "probability": 0.9925 + }, + { + "start": 12394.2, + "end": 12398.18, + "probability": 0.9952 + }, + { + "start": 12398.32, + "end": 12402.24, + "probability": 0.9954 + }, + { + "start": 12404.62, + "end": 12407.0, + "probability": 0.8892 + }, + { + "start": 12407.62, + "end": 12409.9, + "probability": 0.999 + }, + { + "start": 12410.08, + "end": 12415.58, + "probability": 0.9979 + }, + { + "start": 12416.28, + "end": 12417.1, + "probability": 0.9983 + }, + { + "start": 12417.74, + "end": 12421.2, + "probability": 0.9926 + }, + { + "start": 12422.12, + "end": 12423.1, + "probability": 0.9249 + }, + { + "start": 12423.88, + "end": 12424.32, + "probability": 0.6913 + }, + { + "start": 12425.26, + "end": 12428.6, + "probability": 0.8392 + }, + { + "start": 12429.62, + "end": 12432.06, + "probability": 0.984 + }, + { + "start": 12432.52, + "end": 12437.92, + "probability": 0.9969 + }, + { + "start": 12438.36, + "end": 12439.72, + "probability": 0.9022 + }, + { + "start": 12440.5, + "end": 12441.8, + "probability": 0.8031 + }, + { + "start": 12442.36, + "end": 12442.89, + "probability": 0.9121 + }, + { + "start": 12443.9, + "end": 12446.48, + "probability": 0.8395 + }, + { + "start": 12446.98, + "end": 12451.22, + "probability": 0.9839 + }, + { + "start": 12451.84, + "end": 12452.84, + "probability": 0.9978 + }, + { + "start": 12454.1, + "end": 12458.92, + "probability": 0.9982 + }, + { + "start": 12460.44, + "end": 12461.2, + "probability": 0.539 + }, + { + "start": 12462.98, + "end": 12464.6, + "probability": 0.9835 + }, + { + "start": 12465.56, + "end": 12467.66, + "probability": 0.9979 + }, + { + "start": 12468.76, + "end": 12471.9, + "probability": 0.997 + }, + { + "start": 12472.82, + "end": 12476.28, + "probability": 0.9969 + }, + { + "start": 12477.08, + "end": 12480.18, + "probability": 0.9934 + }, + { + "start": 12480.74, + "end": 12482.02, + "probability": 0.8442 + }, + { + "start": 12482.8, + "end": 12485.78, + "probability": 0.9934 + }, + { + "start": 12486.06, + "end": 12486.64, + "probability": 0.7703 + }, + { + "start": 12487.54, + "end": 12490.06, + "probability": 0.9878 + }, + { + "start": 12490.6, + "end": 12491.76, + "probability": 0.9661 + }, + { + "start": 12492.22, + "end": 12493.74, + "probability": 0.9853 + }, + { + "start": 12493.82, + "end": 12495.16, + "probability": 0.9961 + }, + { + "start": 12495.28, + "end": 12499.38, + "probability": 0.9565 + }, + { + "start": 12500.62, + "end": 12501.92, + "probability": 0.8499 + }, + { + "start": 12502.72, + "end": 12508.34, + "probability": 0.99 + }, + { + "start": 12508.9, + "end": 12510.18, + "probability": 0.8128 + }, + { + "start": 12510.74, + "end": 12512.51, + "probability": 0.8123 + }, + { + "start": 12513.72, + "end": 12516.46, + "probability": 0.9946 + }, + { + "start": 12516.74, + "end": 12521.1, + "probability": 0.9899 + }, + { + "start": 12522.38, + "end": 12524.74, + "probability": 0.949 + }, + { + "start": 12525.52, + "end": 12527.92, + "probability": 0.9919 + }, + { + "start": 12528.8, + "end": 12531.84, + "probability": 0.9813 + }, + { + "start": 12532.62, + "end": 12535.0, + "probability": 0.9896 + }, + { + "start": 12535.7, + "end": 12536.6, + "probability": 0.7921 + }, + { + "start": 12538.56, + "end": 12540.62, + "probability": 0.9789 + }, + { + "start": 12542.24, + "end": 12543.48, + "probability": 0.9595 + }, + { + "start": 12544.86, + "end": 12546.94, + "probability": 0.9953 + }, + { + "start": 12547.54, + "end": 12548.26, + "probability": 0.9433 + }, + { + "start": 12549.32, + "end": 12549.78, + "probability": 0.9721 + }, + { + "start": 12550.8, + "end": 12553.03, + "probability": 0.979 + }, + { + "start": 12553.8, + "end": 12555.57, + "probability": 0.9897 + }, + { + "start": 12556.4, + "end": 12557.94, + "probability": 0.9966 + }, + { + "start": 12558.66, + "end": 12561.02, + "probability": 0.9847 + }, + { + "start": 12562.22, + "end": 12564.32, + "probability": 0.9941 + }, + { + "start": 12565.4, + "end": 12566.84, + "probability": 0.9852 + }, + { + "start": 12568.4, + "end": 12569.66, + "probability": 0.9754 + }, + { + "start": 12570.74, + "end": 12575.68, + "probability": 0.9982 + }, + { + "start": 12577.42, + "end": 12579.46, + "probability": 0.9785 + }, + { + "start": 12579.56, + "end": 12580.64, + "probability": 0.9973 + }, + { + "start": 12580.66, + "end": 12581.86, + "probability": 0.9911 + }, + { + "start": 12581.92, + "end": 12584.7, + "probability": 0.9611 + }, + { + "start": 12585.18, + "end": 12586.4, + "probability": 0.9982 + }, + { + "start": 12587.3, + "end": 12589.18, + "probability": 0.9992 + }, + { + "start": 12590.7, + "end": 12593.16, + "probability": 0.9986 + }, + { + "start": 12594.66, + "end": 12597.88, + "probability": 0.9752 + }, + { + "start": 12598.22, + "end": 12600.26, + "probability": 0.9926 + }, + { + "start": 12600.72, + "end": 12603.76, + "probability": 0.9995 + }, + { + "start": 12604.58, + "end": 12606.72, + "probability": 0.7812 + }, + { + "start": 12607.98, + "end": 12610.06, + "probability": 0.9828 + }, + { + "start": 12610.94, + "end": 12613.72, + "probability": 0.9858 + }, + { + "start": 12614.46, + "end": 12615.63, + "probability": 0.9503 + }, + { + "start": 12616.34, + "end": 12617.6, + "probability": 0.991 + }, + { + "start": 12618.02, + "end": 12618.76, + "probability": 0.9918 + }, + { + "start": 12618.84, + "end": 12619.54, + "probability": 0.9971 + }, + { + "start": 12619.66, + "end": 12621.06, + "probability": 0.9945 + }, + { + "start": 12631.84, + "end": 12634.14, + "probability": 0.5413 + }, + { + "start": 12634.14, + "end": 12634.14, + "probability": 0.0981 + }, + { + "start": 12634.14, + "end": 12634.14, + "probability": 0.071 + }, + { + "start": 12634.14, + "end": 12635.58, + "probability": 0.2943 + }, + { + "start": 12636.34, + "end": 12638.8, + "probability": 0.7865 + }, + { + "start": 12639.4, + "end": 12640.94, + "probability": 0.73 + }, + { + "start": 12641.56, + "end": 12644.24, + "probability": 0.9978 + }, + { + "start": 12644.58, + "end": 12644.86, + "probability": 0.7781 + }, + { + "start": 12645.5, + "end": 12646.95, + "probability": 0.7876 + }, + { + "start": 12647.79, + "end": 12649.68, + "probability": 0.8472 + }, + { + "start": 12649.78, + "end": 12650.3, + "probability": 0.8322 + }, + { + "start": 12650.3, + "end": 12654.46, + "probability": 0.9836 + }, + { + "start": 12655.08, + "end": 12658.72, + "probability": 0.9891 + }, + { + "start": 12659.46, + "end": 12662.38, + "probability": 0.8612 + }, + { + "start": 12663.06, + "end": 12665.34, + "probability": 0.7613 + }, + { + "start": 12666.81, + "end": 12667.06, + "probability": 0.2547 + }, + { + "start": 12668.24, + "end": 12669.08, + "probability": 0.7374 + }, + { + "start": 12669.62, + "end": 12670.04, + "probability": 0.9536 + }, + { + "start": 12671.44, + "end": 12673.28, + "probability": 0.6081 + }, + { + "start": 12674.32, + "end": 12677.44, + "probability": 0.8573 + }, + { + "start": 12678.56, + "end": 12679.32, + "probability": 0.9902 + }, + { + "start": 12680.46, + "end": 12681.5, + "probability": 0.8039 + }, + { + "start": 12684.26, + "end": 12684.96, + "probability": 0.6351 + }, + { + "start": 12685.64, + "end": 12686.48, + "probability": 0.8998 + }, + { + "start": 12688.38, + "end": 12690.42, + "probability": 0.9294 + }, + { + "start": 12691.2, + "end": 12691.66, + "probability": 0.9958 + }, + { + "start": 12692.4, + "end": 12693.34, + "probability": 0.7188 + }, + { + "start": 12694.88, + "end": 12695.64, + "probability": 0.9841 + }, + { + "start": 12696.48, + "end": 12697.3, + "probability": 0.6795 + }, + { + "start": 12697.92, + "end": 12698.34, + "probability": 0.6107 + }, + { + "start": 12699.26, + "end": 12702.74, + "probability": 0.9233 + }, + { + "start": 12704.8, + "end": 12705.24, + "probability": 0.9863 + }, + { + "start": 12707.34, + "end": 12708.32, + "probability": 0.9877 + }, + { + "start": 12709.6, + "end": 12710.52, + "probability": 0.9575 + }, + { + "start": 12711.3, + "end": 12713.52, + "probability": 0.6811 + }, + { + "start": 12716.22, + "end": 12717.02, + "probability": 0.901 + }, + { + "start": 12718.06, + "end": 12718.88, + "probability": 0.9349 + }, + { + "start": 12719.5, + "end": 12722.04, + "probability": 0.9643 + }, + { + "start": 12722.96, + "end": 12723.34, + "probability": 0.9922 + }, + { + "start": 12724.64, + "end": 12724.96, + "probability": 0.9751 + }, + { + "start": 12726.96, + "end": 12727.86, + "probability": 0.5149 + }, + { + "start": 12728.7, + "end": 12731.34, + "probability": 0.8663 + }, + { + "start": 12732.28, + "end": 12732.7, + "probability": 0.697 + }, + { + "start": 12736.54, + "end": 12737.32, + "probability": 0.4871 + }, + { + "start": 12738.04, + "end": 12738.72, + "probability": 0.7306 + }, + { + "start": 12740.46, + "end": 12741.24, + "probability": 0.8522 + }, + { + "start": 12742.86, + "end": 12743.3, + "probability": 0.9661 + }, + { + "start": 12744.16, + "end": 12744.88, + "probability": 0.9857 + }, + { + "start": 12746.12, + "end": 12748.06, + "probability": 0.9932 + }, + { + "start": 12749.26, + "end": 12750.0, + "probability": 0.9885 + }, + { + "start": 12750.7, + "end": 12751.64, + "probability": 0.934 + }, + { + "start": 12756.12, + "end": 12758.78, + "probability": 0.9583 + }, + { + "start": 12759.4, + "end": 12760.52, + "probability": 0.9695 + }, + { + "start": 12761.28, + "end": 12762.18, + "probability": 0.9409 + }, + { + "start": 12763.08, + "end": 12765.2, + "probability": 0.8875 + }, + { + "start": 12774.8, + "end": 12775.9, + "probability": 0.616 + }, + { + "start": 12777.46, + "end": 12777.72, + "probability": 0.722 + }, + { + "start": 12786.7, + "end": 12788.32, + "probability": 0.3955 + }, + { + "start": 12789.12, + "end": 12789.7, + "probability": 0.7074 + }, + { + "start": 12790.72, + "end": 12791.38, + "probability": 0.7003 + }, + { + "start": 12793.86, + "end": 12797.0, + "probability": 0.8904 + }, + { + "start": 12797.82, + "end": 12798.68, + "probability": 0.8012 + }, + { + "start": 12801.76, + "end": 12802.38, + "probability": 0.9875 + }, + { + "start": 12805.0, + "end": 12805.82, + "probability": 0.9525 + }, + { + "start": 12806.74, + "end": 12807.12, + "probability": 0.9725 + }, + { + "start": 12808.46, + "end": 12808.96, + "probability": 0.7559 + }, + { + "start": 12811.54, + "end": 12812.02, + "probability": 0.8036 + }, + { + "start": 12814.18, + "end": 12815.0, + "probability": 0.8739 + }, + { + "start": 12816.48, + "end": 12818.36, + "probability": 0.8176 + }, + { + "start": 12820.18, + "end": 12820.92, + "probability": 0.9045 + }, + { + "start": 12821.54, + "end": 12825.38, + "probability": 0.9763 + }, + { + "start": 12826.54, + "end": 12827.04, + "probability": 0.9909 + }, + { + "start": 12828.68, + "end": 12829.84, + "probability": 0.797 + }, + { + "start": 12830.5, + "end": 12832.14, + "probability": 0.9632 + }, + { + "start": 12832.68, + "end": 12834.28, + "probability": 0.9834 + }, + { + "start": 12835.8, + "end": 12838.4, + "probability": 0.8386 + }, + { + "start": 12839.14, + "end": 12842.32, + "probability": 0.7377 + }, + { + "start": 12843.16, + "end": 12843.54, + "probability": 0.9723 + }, + { + "start": 12844.58, + "end": 12845.48, + "probability": 0.4965 + }, + { + "start": 12846.38, + "end": 12847.3, + "probability": 0.8286 + }, + { + "start": 12848.24, + "end": 12849.36, + "probability": 0.9136 + }, + { + "start": 12850.08, + "end": 12852.42, + "probability": 0.9124 + }, + { + "start": 12854.3, + "end": 12857.34, + "probability": 0.9194 + }, + { + "start": 12857.6, + "end": 12859.32, + "probability": 0.8594 + }, + { + "start": 12860.24, + "end": 12860.7, + "probability": 0.5357 + }, + { + "start": 12861.48, + "end": 12862.7, + "probability": 0.7407 + }, + { + "start": 12863.37, + "end": 12865.08, + "probability": 0.4 + }, + { + "start": 12868.64, + "end": 12870.3, + "probability": 0.8665 + }, + { + "start": 12878.86, + "end": 12880.68, + "probability": 0.7312 + }, + { + "start": 12881.72, + "end": 12882.58, + "probability": 0.6768 + }, + { + "start": 12883.4, + "end": 12884.6, + "probability": 0.722 + }, + { + "start": 12885.32, + "end": 12886.06, + "probability": 0.9896 + }, + { + "start": 12887.13, + "end": 12888.68, + "probability": 0.9663 + }, + { + "start": 12889.86, + "end": 12890.36, + "probability": 0.9564 + }, + { + "start": 12891.12, + "end": 12891.82, + "probability": 0.684 + }, + { + "start": 12893.25, + "end": 12897.2, + "probability": 0.9792 + }, + { + "start": 12897.78, + "end": 12898.22, + "probability": 0.9927 + }, + { + "start": 12898.8, + "end": 12899.62, + "probability": 0.8797 + }, + { + "start": 12903.0, + "end": 12904.32, + "probability": 0.7498 + }, + { + "start": 12905.34, + "end": 12906.4, + "probability": 0.4095 + }, + { + "start": 12907.72, + "end": 12909.6, + "probability": 0.7356 + }, + { + "start": 12911.28, + "end": 12912.94, + "probability": 0.9302 + }, + { + "start": 12913.74, + "end": 12915.56, + "probability": 0.9263 + }, + { + "start": 12918.34, + "end": 12920.26, + "probability": 0.8885 + }, + { + "start": 12923.36, + "end": 12925.5, + "probability": 0.9845 + }, + { + "start": 12926.26, + "end": 12926.7, + "probability": 0.9857 + }, + { + "start": 12927.78, + "end": 12928.72, + "probability": 0.8829 + }, + { + "start": 12934.54, + "end": 12935.18, + "probability": 0.4045 + }, + { + "start": 12941.24, + "end": 12942.34, + "probability": 0.4068 + }, + { + "start": 12943.0, + "end": 12943.26, + "probability": 0.532 + }, + { + "start": 12944.18, + "end": 12944.82, + "probability": 0.6679 + }, + { + "start": 12948.24, + "end": 12950.92, + "probability": 0.8802 + }, + { + "start": 12953.0, + "end": 12955.68, + "probability": 0.9324 + }, + { + "start": 12958.36, + "end": 12960.72, + "probability": 0.975 + }, + { + "start": 12961.52, + "end": 12962.52, + "probability": 0.8755 + }, + { + "start": 12963.26, + "end": 12964.02, + "probability": 0.9852 + }, + { + "start": 12964.9, + "end": 12965.18, + "probability": 0.9785 + }, + { + "start": 12966.12, + "end": 12967.04, + "probability": 0.6077 + }, + { + "start": 12968.36, + "end": 12968.86, + "probability": 0.9185 + }, + { + "start": 12970.08, + "end": 12971.1, + "probability": 0.8694 + }, + { + "start": 12971.98, + "end": 12972.46, + "probability": 0.9934 + }, + { + "start": 12973.28, + "end": 12974.2, + "probability": 0.8505 + }, + { + "start": 12975.22, + "end": 12977.48, + "probability": 0.9395 + }, + { + "start": 12978.08, + "end": 12980.28, + "probability": 0.9742 + }, + { + "start": 12982.0, + "end": 12982.48, + "probability": 0.9932 + }, + { + "start": 12983.47, + "end": 12985.28, + "probability": 0.8641 + }, + { + "start": 12987.06, + "end": 12989.02, + "probability": 0.9814 + }, + { + "start": 12990.16, + "end": 12990.54, + "probability": 0.9969 + }, + { + "start": 12991.4, + "end": 12993.0, + "probability": 0.7837 + }, + { + "start": 12994.66, + "end": 12997.74, + "probability": 0.7801 + }, + { + "start": 13001.9, + "end": 13002.32, + "probability": 0.9842 + }, + { + "start": 13003.76, + "end": 13004.64, + "probability": 0.7948 + }, + { + "start": 13005.8, + "end": 13006.28, + "probability": 0.9867 + }, + { + "start": 13007.02, + "end": 13007.76, + "probability": 0.9691 + }, + { + "start": 13008.78, + "end": 13010.34, + "probability": 0.9588 + }, + { + "start": 13011.6, + "end": 13012.06, + "probability": 0.9651 + }, + { + "start": 13012.74, + "end": 13013.86, + "probability": 0.9726 + }, + { + "start": 13014.74, + "end": 13020.6, + "probability": 0.938 + }, + { + "start": 13023.62, + "end": 13023.84, + "probability": 0.4911 + }, + { + "start": 13024.58, + "end": 13025.64, + "probability": 0.6369 + }, + { + "start": 13026.7, + "end": 13027.24, + "probability": 0.7814 + }, + { + "start": 13027.88, + "end": 13028.86, + "probability": 0.7859 + }, + { + "start": 13032.54, + "end": 13034.94, + "probability": 0.7493 + }, + { + "start": 13035.62, + "end": 13037.76, + "probability": 0.9743 + }, + { + "start": 13039.6, + "end": 13042.08, + "probability": 0.9648 + }, + { + "start": 13043.78, + "end": 13044.7, + "probability": 0.9946 + }, + { + "start": 13045.22, + "end": 13046.14, + "probability": 0.9325 + }, + { + "start": 13049.02, + "end": 13049.72, + "probability": 0.7702 + }, + { + "start": 13050.42, + "end": 13051.2, + "probability": 0.5839 + }, + { + "start": 13051.84, + "end": 13052.48, + "probability": 0.5936 + }, + { + "start": 13053.06, + "end": 13053.92, + "probability": 0.6971 + }, + { + "start": 13060.68, + "end": 13061.12, + "probability": 0.723 + }, + { + "start": 13063.0, + "end": 13063.72, + "probability": 0.838 + }, + { + "start": 13066.44, + "end": 13067.16, + "probability": 0.6198 + }, + { + "start": 13068.18, + "end": 13069.2, + "probability": 0.8244 + }, + { + "start": 13070.03, + "end": 13072.14, + "probability": 0.617 + }, + { + "start": 13074.38, + "end": 13074.9, + "probability": 0.9811 + }, + { + "start": 13075.82, + "end": 13076.46, + "probability": 0.8382 + }, + { + "start": 13077.9, + "end": 13078.98, + "probability": 0.969 + }, + { + "start": 13080.02, + "end": 13081.02, + "probability": 0.9534 + }, + { + "start": 13081.86, + "end": 13083.86, + "probability": 0.959 + }, + { + "start": 13085.06, + "end": 13085.88, + "probability": 0.5783 + }, + { + "start": 13088.34, + "end": 13089.48, + "probability": 0.4482 + }, + { + "start": 13090.02, + "end": 13090.86, + "probability": 0.7606 + }, + { + "start": 13091.8, + "end": 13092.72, + "probability": 0.7496 + }, + { + "start": 13094.2, + "end": 13097.12, + "probability": 0.9951 + }, + { + "start": 13097.86, + "end": 13100.42, + "probability": 0.8128 + }, + { + "start": 13102.28, + "end": 13105.64, + "probability": 0.9306 + }, + { + "start": 13106.28, + "end": 13106.74, + "probability": 0.9756 + }, + { + "start": 13107.74, + "end": 13108.86, + "probability": 0.916 + }, + { + "start": 13111.66, + "end": 13116.18, + "probability": 0.8177 + }, + { + "start": 13117.4, + "end": 13117.72, + "probability": 0.7079 + }, + { + "start": 13119.02, + "end": 13119.48, + "probability": 0.8468 + }, + { + "start": 13123.0, + "end": 13125.26, + "probability": 0.8367 + }, + { + "start": 13129.03, + "end": 13131.12, + "probability": 0.9715 + }, + { + "start": 13136.68, + "end": 13137.68, + "probability": 0.8027 + }, + { + "start": 13138.52, + "end": 13139.1, + "probability": 0.6341 + }, + { + "start": 13143.84, + "end": 13144.66, + "probability": 0.9254 + }, + { + "start": 13145.24, + "end": 13146.18, + "probability": 0.8906 + }, + { + "start": 13147.68, + "end": 13148.5, + "probability": 0.9899 + }, + { + "start": 13161.5, + "end": 13162.26, + "probability": 0.5882 + }, + { + "start": 13163.94, + "end": 13164.38, + "probability": 0.7996 + }, + { + "start": 13165.72, + "end": 13166.94, + "probability": 0.9204 + }, + { + "start": 13168.06, + "end": 13168.62, + "probability": 0.9802 + }, + { + "start": 13169.26, + "end": 13170.48, + "probability": 0.7464 + }, + { + "start": 13175.74, + "end": 13176.22, + "probability": 0.9863 + }, + { + "start": 13177.74, + "end": 13178.02, + "probability": 0.8613 + }, + { + "start": 13178.14, + "end": 13178.72, + "probability": 0.6978 + }, + { + "start": 13182.36, + "end": 13187.2, + "probability": 0.6823 + }, + { + "start": 13188.0, + "end": 13191.34, + "probability": 0.9257 + }, + { + "start": 13192.1, + "end": 13195.48, + "probability": 0.6523 + }, + { + "start": 13198.32, + "end": 13200.58, + "probability": 0.9243 + }, + { + "start": 13201.4, + "end": 13203.32, + "probability": 0.5989 + }, + { + "start": 13204.76, + "end": 13206.2, + "probability": 0.8805 + }, + { + "start": 13209.22, + "end": 13210.22, + "probability": 0.5502 + }, + { + "start": 13211.68, + "end": 13214.8, + "probability": 0.9705 + }, + { + "start": 13215.44, + "end": 13216.3, + "probability": 0.6087 + }, + { + "start": 13217.42, + "end": 13218.18, + "probability": 0.9209 + }, + { + "start": 13231.62, + "end": 13234.46, + "probability": 0.9925 + }, + { + "start": 13236.99, + "end": 13239.01, + "probability": 0.538 + }, + { + "start": 13242.0, + "end": 13242.76, + "probability": 0.4848 + }, + { + "start": 13244.9, + "end": 13247.46, + "probability": 0.3384 + }, + { + "start": 13248.02, + "end": 13248.34, + "probability": 0.2212 + }, + { + "start": 13258.5, + "end": 13258.68, + "probability": 0.3813 + }, + { + "start": 13272.2, + "end": 13275.3, + "probability": 0.4977 + }, + { + "start": 13275.8, + "end": 13276.72, + "probability": 0.4 + }, + { + "start": 13276.82, + "end": 13277.14, + "probability": 0.0529 + }, + { + "start": 13277.2, + "end": 13277.52, + "probability": 0.3925 + }, + { + "start": 13277.54, + "end": 13278.84, + "probability": 0.8003 + }, + { + "start": 13279.5, + "end": 13280.28, + "probability": 0.2128 + }, + { + "start": 13282.34, + "end": 13284.46, + "probability": 0.0586 + }, + { + "start": 13285.63, + "end": 13288.4, + "probability": 0.0424 + }, + { + "start": 13291.76, + "end": 13293.04, + "probability": 0.0021 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.0, + "end": 13491.0, + "probability": 0.0 + }, + { + "start": 13491.21, + "end": 13491.94, + "probability": 0.4818 + }, + { + "start": 13491.98, + "end": 13498.68, + "probability": 0.0246 + }, + { + "start": 13503.5, + "end": 13504.32, + "probability": 0.448 + }, + { + "start": 13505.04, + "end": 13505.24, + "probability": 0.5839 + }, + { + "start": 13510.88, + "end": 13512.54, + "probability": 0.9915 + }, + { + "start": 13513.44, + "end": 13514.39, + "probability": 0.8757 + }, + { + "start": 13514.86, + "end": 13516.3, + "probability": 0.697 + }, + { + "start": 13517.28, + "end": 13518.16, + "probability": 0.1077 + }, + { + "start": 13520.92, + "end": 13523.22, + "probability": 0.0505 + }, + { + "start": 13525.08, + "end": 13525.44, + "probability": 0.0554 + }, + { + "start": 13675.0, + "end": 13675.0, + "probability": 0.0 + }, + { + "start": 13675.0, + "end": 13675.0, + "probability": 0.0 + }, + { + "start": 13683.82, + "end": 13685.4, + "probability": 0.7366 + }, + { + "start": 13686.24, + "end": 13688.48, + "probability": 0.7398 + }, + { + "start": 13689.84, + "end": 13693.86, + "probability": 0.9721 + }, + { + "start": 13695.02, + "end": 13695.76, + "probability": 0.5267 + }, + { + "start": 13696.42, + "end": 13702.2, + "probability": 0.8024 + }, + { + "start": 13703.08, + "end": 13705.92, + "probability": 0.6164 + }, + { + "start": 13707.56, + "end": 13710.64, + "probability": 0.9686 + }, + { + "start": 13711.32, + "end": 13712.12, + "probability": 0.7075 + }, + { + "start": 13714.36, + "end": 13714.76, + "probability": 0.7427 + }, + { + "start": 13716.22, + "end": 13719.2, + "probability": 0.8048 + }, + { + "start": 13720.12, + "end": 13721.0, + "probability": 0.7111 + }, + { + "start": 13723.48, + "end": 13724.44, + "probability": 0.3714 + }, + { + "start": 13725.5, + "end": 13727.58, + "probability": 0.6907 + }, + { + "start": 13728.58, + "end": 13730.14, + "probability": 0.8467 + }, + { + "start": 13730.66, + "end": 13731.86, + "probability": 0.9167 + }, + { + "start": 13732.92, + "end": 13733.3, + "probability": 0.9661 + }, + { + "start": 13733.84, + "end": 13734.68, + "probability": 0.9539 + }, + { + "start": 13735.8, + "end": 13737.2, + "probability": 0.8709 + }, + { + "start": 13738.18, + "end": 13740.78, + "probability": 0.9663 + }, + { + "start": 13741.84, + "end": 13742.58, + "probability": 0.9885 + }, + { + "start": 13743.46, + "end": 13744.32, + "probability": 0.4444 + }, + { + "start": 13744.86, + "end": 13746.46, + "probability": 0.56 + }, + { + "start": 13748.02, + "end": 13749.64, + "probability": 0.9272 + }, + { + "start": 13751.06, + "end": 13751.54, + "probability": 0.9849 + }, + { + "start": 13752.82, + "end": 13753.96, + "probability": 0.8834 + }, + { + "start": 13755.26, + "end": 13756.74, + "probability": 0.9624 + }, + { + "start": 13757.8, + "end": 13758.08, + "probability": 0.9683 + }, + { + "start": 13758.72, + "end": 13759.34, + "probability": 0.989 + }, + { + "start": 13760.56, + "end": 13761.96, + "probability": 0.99 + }, + { + "start": 13762.76, + "end": 13764.06, + "probability": 0.986 + }, + { + "start": 13767.14, + "end": 13768.83, + "probability": 0.5929 + }, + { + "start": 13769.62, + "end": 13771.44, + "probability": 0.6676 + }, + { + "start": 13772.48, + "end": 13773.78, + "probability": 0.8993 + }, + { + "start": 13777.69, + "end": 13780.42, + "probability": 0.5875 + }, + { + "start": 13782.54, + "end": 13783.92, + "probability": 0.9762 + }, + { + "start": 13785.24, + "end": 13789.5, + "probability": 0.9403 + }, + { + "start": 13793.24, + "end": 13795.22, + "probability": 0.8502 + }, + { + "start": 13800.96, + "end": 13802.34, + "probability": 0.8464 + }, + { + "start": 13804.16, + "end": 13805.16, + "probability": 0.8704 + }, + { + "start": 13806.12, + "end": 13806.52, + "probability": 0.8 + }, + { + "start": 13807.44, + "end": 13808.24, + "probability": 0.7971 + }, + { + "start": 13808.92, + "end": 13810.6, + "probability": 0.7797 + }, + { + "start": 13813.76, + "end": 13815.68, + "probability": 0.9426 + }, + { + "start": 13816.52, + "end": 13817.64, + "probability": 0.7407 + }, + { + "start": 13818.44, + "end": 13819.84, + "probability": 0.9629 + }, + { + "start": 13822.1, + "end": 13824.82, + "probability": 0.9382 + }, + { + "start": 13825.96, + "end": 13829.3, + "probability": 0.7376 + }, + { + "start": 13833.52, + "end": 13835.26, + "probability": 0.5867 + }, + { + "start": 13836.62, + "end": 13837.06, + "probability": 0.7986 + }, + { + "start": 13838.48, + "end": 13839.36, + "probability": 0.7618 + }, + { + "start": 13843.26, + "end": 13845.6, + "probability": 0.9082 + }, + { + "start": 13846.96, + "end": 13848.56, + "probability": 0.8371 + }, + { + "start": 13849.6, + "end": 13850.82, + "probability": 0.8072 + }, + { + "start": 13853.5, + "end": 13855.94, + "probability": 0.8494 + }, + { + "start": 13856.4, + "end": 13857.82, + "probability": 0.3661 + }, + { + "start": 13858.42, + "end": 13859.92, + "probability": 0.719 + }, + { + "start": 13862.96, + "end": 13863.4, + "probability": 0.6111 + }, + { + "start": 13865.1, + "end": 13865.94, + "probability": 0.6597 + }, + { + "start": 13866.72, + "end": 13867.84, + "probability": 0.9342 + }, + { + "start": 13870.3, + "end": 13872.14, + "probability": 0.8941 + }, + { + "start": 13876.38, + "end": 13878.34, + "probability": 0.8841 + }, + { + "start": 13879.1, + "end": 13880.4, + "probability": 0.8986 + }, + { + "start": 13881.26, + "end": 13882.42, + "probability": 0.7525 + }, + { + "start": 13883.36, + "end": 13883.76, + "probability": 0.5751 + }, + { + "start": 13886.24, + "end": 13887.08, + "probability": 0.6821 + }, + { + "start": 13888.54, + "end": 13889.98, + "probability": 0.8138 + }, + { + "start": 13892.22, + "end": 13894.84, + "probability": 0.9344 + }, + { + "start": 13897.5, + "end": 13898.54, + "probability": 0.9719 + }, + { + "start": 13899.78, + "end": 13900.66, + "probability": 0.881 + }, + { + "start": 13901.8, + "end": 13902.22, + "probability": 0.9944 + }, + { + "start": 13902.84, + "end": 13903.48, + "probability": 0.8832 + }, + { + "start": 13904.72, + "end": 13906.04, + "probability": 0.94 + }, + { + "start": 13907.4, + "end": 13909.08, + "probability": 0.8999 + }, + { + "start": 13910.14, + "end": 13911.18, + "probability": 0.5446 + }, + { + "start": 13919.5, + "end": 13920.5, + "probability": 0.2933 + }, + { + "start": 13921.04, + "end": 13921.28, + "probability": 0.5027 + }, + { + "start": 13921.8, + "end": 13922.46, + "probability": 0.7484 + }, + { + "start": 13923.54, + "end": 13925.42, + "probability": 0.8322 + }, + { + "start": 13927.48, + "end": 13927.94, + "probability": 0.9827 + }, + { + "start": 13928.9, + "end": 13929.72, + "probability": 0.8485 + }, + { + "start": 13931.04, + "end": 13933.06, + "probability": 0.9905 + }, + { + "start": 13933.98, + "end": 13935.5, + "probability": 0.9849 + }, + { + "start": 13936.44, + "end": 13938.24, + "probability": 0.9734 + }, + { + "start": 13939.7, + "end": 13941.88, + "probability": 0.7959 + }, + { + "start": 13942.72, + "end": 13942.96, + "probability": 0.567 + }, + { + "start": 13944.24, + "end": 13945.18, + "probability": 0.7186 + }, + { + "start": 13946.3, + "end": 13947.86, + "probability": 0.899 + }, + { + "start": 13951.46, + "end": 13953.76, + "probability": 0.86 + }, + { + "start": 13956.78, + "end": 13958.58, + "probability": 0.8422 + }, + { + "start": 13961.24, + "end": 13963.1, + "probability": 0.9604 + }, + { + "start": 13964.66, + "end": 13966.2, + "probability": 0.9345 + }, + { + "start": 13966.9, + "end": 13968.6, + "probability": 0.9656 + }, + { + "start": 13974.92, + "end": 13975.38, + "probability": 0.7041 + }, + { + "start": 13977.14, + "end": 13978.16, + "probability": 0.5971 + }, + { + "start": 13985.44, + "end": 13986.26, + "probability": 0.8526 + }, + { + "start": 13987.0, + "end": 13987.72, + "probability": 0.7751 + }, + { + "start": 13989.06, + "end": 13989.48, + "probability": 0.9285 + }, + { + "start": 13990.66, + "end": 13991.5, + "probability": 0.9805 + }, + { + "start": 13992.8, + "end": 13994.32, + "probability": 0.8837 + }, + { + "start": 13995.02, + "end": 13995.74, + "probability": 0.9516 + }, + { + "start": 13997.14, + "end": 13998.22, + "probability": 0.7622 + }, + { + "start": 13998.74, + "end": 14000.4, + "probability": 0.9451 + }, + { + "start": 14000.94, + "end": 14002.26, + "probability": 0.9097 + }, + { + "start": 14003.84, + "end": 14005.74, + "probability": 0.8655 + }, + { + "start": 14007.0, + "end": 14008.48, + "probability": 0.5112 + }, + { + "start": 14009.36, + "end": 14010.82, + "probability": 0.7264 + }, + { + "start": 14012.0, + "end": 14013.86, + "probability": 0.8218 + }, + { + "start": 14014.5, + "end": 14015.62, + "probability": 0.9783 + }, + { + "start": 14017.26, + "end": 14018.6, + "probability": 0.9863 + }, + { + "start": 14020.18, + "end": 14021.52, + "probability": 0.9505 + }, + { + "start": 14022.88, + "end": 14024.24, + "probability": 0.843 + }, + { + "start": 14025.52, + "end": 14026.5, + "probability": 0.6053 + }, + { + "start": 14027.56, + "end": 14028.5, + "probability": 0.7805 + }, + { + "start": 14030.0, + "end": 14032.18, + "probability": 0.476 + }, + { + "start": 14033.68, + "end": 14034.2, + "probability": 0.7858 + }, + { + "start": 14035.32, + "end": 14036.12, + "probability": 0.7259 + }, + { + "start": 14036.84, + "end": 14038.7, + "probability": 0.9458 + }, + { + "start": 14039.76, + "end": 14041.1, + "probability": 0.9792 + }, + { + "start": 14042.08, + "end": 14043.58, + "probability": 0.9836 + }, + { + "start": 14044.76, + "end": 14046.66, + "probability": 0.9915 + }, + { + "start": 14048.82, + "end": 14050.68, + "probability": 0.9955 + }, + { + "start": 14052.26, + "end": 14052.7, + "probability": 0.9919 + }, + { + "start": 14053.56, + "end": 14054.82, + "probability": 0.8427 + }, + { + "start": 14057.32, + "end": 14061.32, + "probability": 0.8623 + }, + { + "start": 14063.18, + "end": 14064.06, + "probability": 0.6143 + }, + { + "start": 14065.98, + "end": 14067.02, + "probability": 0.8909 + }, + { + "start": 14068.58, + "end": 14069.0, + "probability": 0.9876 + }, + { + "start": 14069.78, + "end": 14070.72, + "probability": 0.8734 + }, + { + "start": 14073.3, + "end": 14074.32, + "probability": 0.9486 + }, + { + "start": 14075.28, + "end": 14076.22, + "probability": 0.9716 + }, + { + "start": 14078.6, + "end": 14080.72, + "probability": 0.8477 + }, + { + "start": 14081.7, + "end": 14084.26, + "probability": 0.9904 + }, + { + "start": 14089.36, + "end": 14090.98, + "probability": 0.5118 + }, + { + "start": 14091.92, + "end": 14093.5, + "probability": 0.7323 + }, + { + "start": 14097.48, + "end": 14098.3, + "probability": 0.7645 + }, + { + "start": 14102.22, + "end": 14102.9, + "probability": 0.5842 + }, + { + "start": 14104.6, + "end": 14106.76, + "probability": 0.7722 + }, + { + "start": 14107.96, + "end": 14109.52, + "probability": 0.8752 + }, + { + "start": 14110.34, + "end": 14111.84, + "probability": 0.9652 + }, + { + "start": 14114.78, + "end": 14118.34, + "probability": 0.904 + }, + { + "start": 14119.34, + "end": 14120.92, + "probability": 0.9688 + }, + { + "start": 14122.42, + "end": 14124.42, + "probability": 0.9567 + }, + { + "start": 14125.44, + "end": 14126.58, + "probability": 0.991 + }, + { + "start": 14127.46, + "end": 14127.66, + "probability": 0.5742 + }, + { + "start": 14128.32, + "end": 14129.02, + "probability": 0.6102 + }, + { + "start": 14129.62, + "end": 14132.94, + "probability": 0.7139 + }, + { + "start": 14136.24, + "end": 14137.28, + "probability": 0.4026 + }, + { + "start": 14138.28, + "end": 14139.36, + "probability": 0.6111 + }, + { + "start": 14140.66, + "end": 14141.08, + "probability": 0.9766 + }, + { + "start": 14144.58, + "end": 14147.94, + "probability": 0.7825 + }, + { + "start": 14148.94, + "end": 14149.82, + "probability": 0.3303 + }, + { + "start": 14151.66, + "end": 14153.54, + "probability": 0.6975 + }, + { + "start": 14154.4, + "end": 14154.88, + "probability": 0.9621 + }, + { + "start": 14156.76, + "end": 14157.86, + "probability": 0.5199 + }, + { + "start": 14165.62, + "end": 14169.82, + "probability": 0.6681 + }, + { + "start": 14171.06, + "end": 14171.46, + "probability": 0.9886 + }, + { + "start": 14174.06, + "end": 14174.58, + "probability": 0.841 + }, + { + "start": 14175.58, + "end": 14177.42, + "probability": 0.9504 + }, + { + "start": 14178.02, + "end": 14179.64, + "probability": 0.9763 + }, + { + "start": 14180.16, + "end": 14180.98, + "probability": 0.9519 + }, + { + "start": 14181.84, + "end": 14182.3, + "probability": 0.9823 + }, + { + "start": 14183.86, + "end": 14184.8, + "probability": 0.9673 + }, + { + "start": 14185.38, + "end": 14186.76, + "probability": 0.96 + }, + { + "start": 14187.44, + "end": 14187.92, + "probability": 0.9985 + }, + { + "start": 14189.76, + "end": 14190.66, + "probability": 0.7958 + }, + { + "start": 14191.72, + "end": 14192.24, + "probability": 0.7622 + }, + { + "start": 14193.6, + "end": 14194.74, + "probability": 0.612 + }, + { + "start": 14198.38, + "end": 14202.0, + "probability": 0.7093 + }, + { + "start": 14202.26, + "end": 14203.78, + "probability": 0.6242 + }, + { + "start": 14204.9, + "end": 14205.7, + "probability": 0.8999 + }, + { + "start": 14206.68, + "end": 14207.16, + "probability": 0.9844 + }, + { + "start": 14208.94, + "end": 14210.5, + "probability": 0.9844 + }, + { + "start": 14212.76, + "end": 14213.98, + "probability": 0.4437 + }, + { + "start": 14217.1, + "end": 14217.92, + "probability": 0.8486 + }, + { + "start": 14220.54, + "end": 14220.98, + "probability": 0.7981 + }, + { + "start": 14222.66, + "end": 14223.14, + "probability": 0.9377 + }, + { + "start": 14223.9, + "end": 14225.5, + "probability": 0.8721 + }, + { + "start": 14229.26, + "end": 14229.88, + "probability": 0.9194 + }, + { + "start": 14236.0, + "end": 14236.62, + "probability": 0.6148 + }, + { + "start": 14237.92, + "end": 14239.86, + "probability": 0.8899 + }, + { + "start": 14240.64, + "end": 14242.6, + "probability": 0.9501 + }, + { + "start": 14243.18, + "end": 14244.36, + "probability": 0.9465 + }, + { + "start": 14245.02, + "end": 14245.92, + "probability": 0.8475 + }, + { + "start": 14246.8, + "end": 14248.64, + "probability": 0.8841 + }, + { + "start": 14250.08, + "end": 14250.6, + "probability": 0.9767 + }, + { + "start": 14252.3, + "end": 14253.38, + "probability": 0.9922 + }, + { + "start": 14254.0, + "end": 14256.36, + "probability": 0.9904 + }, + { + "start": 14257.96, + "end": 14258.44, + "probability": 0.5905 + }, + { + "start": 14260.42, + "end": 14261.42, + "probability": 0.446 + }, + { + "start": 14263.08, + "end": 14265.76, + "probability": 0.8862 + }, + { + "start": 14270.48, + "end": 14271.4, + "probability": 0.7932 + }, + { + "start": 14271.96, + "end": 14272.4, + "probability": 0.6774 + }, + { + "start": 14273.84, + "end": 14274.36, + "probability": 0.854 + }, + { + "start": 14275.82, + "end": 14276.7, + "probability": 0.9135 + }, + { + "start": 14277.66, + "end": 14278.12, + "probability": 0.981 + }, + { + "start": 14279.94, + "end": 14280.88, + "probability": 0.9403 + }, + { + "start": 14284.33, + "end": 14286.92, + "probability": 0.6203 + }, + { + "start": 14287.9, + "end": 14288.74, + "probability": 0.7605 + }, + { + "start": 14293.28, + "end": 14295.98, + "probability": 0.9508 + }, + { + "start": 14296.72, + "end": 14297.42, + "probability": 0.0138 + }, + { + "start": 14298.66, + "end": 14301.2, + "probability": 0.8066 + }, + { + "start": 14301.92, + "end": 14305.6, + "probability": 0.8491 + }, + { + "start": 14307.2, + "end": 14307.88, + "probability": 0.397 + }, + { + "start": 14308.54, + "end": 14309.3, + "probability": 0.6957 + }, + { + "start": 14325.74, + "end": 14327.98, + "probability": 0.0987 + }, + { + "start": 14329.22, + "end": 14333.62, + "probability": 0.2425 + }, + { + "start": 14335.54, + "end": 14336.02, + "probability": 0.0008 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14967.0, + "end": 14967.0, + "probability": 0.0 + }, + { + "start": 14988.46, + "end": 14991.14, + "probability": 0.7461 + }, + { + "start": 14991.92, + "end": 14992.4, + "probability": 0.9718 + }, + { + "start": 14993.9, + "end": 14994.74, + "probability": 0.2041 + }, + { + "start": 14998.11, + "end": 15001.78, + "probability": 0.7317 + }, + { + "start": 15002.28, + "end": 15005.0, + "probability": 0.8015 + }, + { + "start": 15006.24, + "end": 15007.16, + "probability": 0.9498 + }, + { + "start": 15008.06, + "end": 15009.0, + "probability": 0.9735 + }, + { + "start": 15011.86, + "end": 15012.66, + "probability": 0.8109 + }, + { + "start": 15013.18, + "end": 15015.62, + "probability": 0.9305 + }, + { + "start": 15016.94, + "end": 15017.46, + "probability": 0.7179 + }, + { + "start": 15019.52, + "end": 15020.34, + "probability": 0.583 + }, + { + "start": 15022.48, + "end": 15024.48, + "probability": 0.6706 + }, + { + "start": 15025.26, + "end": 15026.46, + "probability": 0.896 + }, + { + "start": 15027.1, + "end": 15028.82, + "probability": 0.5326 + }, + { + "start": 15032.26, + "end": 15034.8, + "probability": 0.7633 + }, + { + "start": 15036.2, + "end": 15036.3, + "probability": 0.6976 + }, + { + "start": 15037.86, + "end": 15038.92, + "probability": 0.611 + }, + { + "start": 15039.44, + "end": 15041.5, + "probability": 0.9143 + }, + { + "start": 15042.14, + "end": 15044.48, + "probability": 0.8281 + }, + { + "start": 15045.72, + "end": 15049.02, + "probability": 0.9815 + }, + { + "start": 15050.0, + "end": 15050.48, + "probability": 0.986 + }, + { + "start": 15052.42, + "end": 15053.16, + "probability": 0.8909 + }, + { + "start": 15056.0, + "end": 15056.74, + "probability": 0.3905 + }, + { + "start": 15059.0, + "end": 15060.38, + "probability": 0.8853 + }, + { + "start": 15062.3, + "end": 15064.48, + "probability": 0.9494 + }, + { + "start": 15069.02, + "end": 15071.28, + "probability": 0.7703 + }, + { + "start": 15072.18, + "end": 15072.52, + "probability": 0.8225 + }, + { + "start": 15075.0, + "end": 15076.02, + "probability": 0.6935 + }, + { + "start": 15080.14, + "end": 15082.4, + "probability": 0.8267 + }, + { + "start": 15084.29, + "end": 15087.34, + "probability": 0.8549 + }, + { + "start": 15088.7, + "end": 15089.42, + "probability": 0.9697 + }, + { + "start": 15091.82, + "end": 15094.58, + "probability": 0.9752 + }, + { + "start": 15095.96, + "end": 15096.78, + "probability": 0.631 + }, + { + "start": 15097.32, + "end": 15099.62, + "probability": 0.0294 + }, + { + "start": 15099.8, + "end": 15102.3, + "probability": 0.5041 + }, + { + "start": 15102.66, + "end": 15105.04, + "probability": 0.1984 + }, + { + "start": 15105.54, + "end": 15106.72, + "probability": 0.0555 + }, + { + "start": 15107.8, + "end": 15108.32, + "probability": 0.9498 + }, + { + "start": 15108.32, + "end": 15111.08, + "probability": 0.0379 + }, + { + "start": 15113.66, + "end": 15113.8, + "probability": 0.0005 + }, + { + "start": 15115.72, + "end": 15117.76, + "probability": 0.1395 + }, + { + "start": 15118.72, + "end": 15118.82, + "probability": 0.0054 + }, + { + "start": 15262.12, + "end": 15262.28, + "probability": 0.1809 + }, + { + "start": 15262.28, + "end": 15264.68, + "probability": 0.7104 + }, + { + "start": 15266.1, + "end": 15268.38, + "probability": 0.8577 + }, + { + "start": 15268.44, + "end": 15272.88, + "probability": 0.8312 + }, + { + "start": 15273.38, + "end": 15275.16, + "probability": 0.7938 + }, + { + "start": 15276.4, + "end": 15278.58, + "probability": 0.9963 + }, + { + "start": 15278.72, + "end": 15279.36, + "probability": 0.5436 + }, + { + "start": 15280.46, + "end": 15280.98, + "probability": 0.9608 + }, + { + "start": 15281.94, + "end": 15284.94, + "probability": 0.7836 + }, + { + "start": 15285.56, + "end": 15287.86, + "probability": 0.9084 + }, + { + "start": 15288.74, + "end": 15290.4, + "probability": 0.9941 + }, + { + "start": 15291.0, + "end": 15291.8, + "probability": 0.9222 + }, + { + "start": 15293.46, + "end": 15293.92, + "probability": 0.8645 + }, + { + "start": 15295.9, + "end": 15296.98, + "probability": 0.9584 + }, + { + "start": 15298.28, + "end": 15299.86, + "probability": 0.9922 + }, + { + "start": 15301.38, + "end": 15302.08, + "probability": 0.7103 + }, + { + "start": 15303.4, + "end": 15306.38, + "probability": 0.8937 + }, + { + "start": 15307.36, + "end": 15308.36, + "probability": 0.7494 + }, + { + "start": 15309.48, + "end": 15309.94, + "probability": 0.9919 + }, + { + "start": 15311.98, + "end": 15313.32, + "probability": 0.904 + }, + { + "start": 15313.88, + "end": 15314.64, + "probability": 0.6677 + }, + { + "start": 15316.4, + "end": 15317.34, + "probability": 0.734 + }, + { + "start": 15318.68, + "end": 15319.18, + "probability": 0.964 + }, + { + "start": 15319.98, + "end": 15320.9, + "probability": 0.9612 + }, + { + "start": 15321.78, + "end": 15324.04, + "probability": 0.877 + }, + { + "start": 15325.49, + "end": 15329.38, + "probability": 0.9413 + }, + { + "start": 15330.48, + "end": 15330.92, + "probability": 0.9895 + }, + { + "start": 15331.68, + "end": 15333.66, + "probability": 0.8433 + }, + { + "start": 15334.2, + "end": 15334.94, + "probability": 0.9504 + }, + { + "start": 15336.22, + "end": 15337.8, + "probability": 0.0006 + }, + { + "start": 15342.1, + "end": 15344.12, + "probability": 0.5376 + }, + { + "start": 15345.02, + "end": 15348.5, + "probability": 0.8008 + }, + { + "start": 15349.74, + "end": 15351.28, + "probability": 0.9277 + }, + { + "start": 15353.59, + "end": 15355.44, + "probability": 0.9862 + }, + { + "start": 15356.76, + "end": 15358.4, + "probability": 0.9881 + }, + { + "start": 15359.06, + "end": 15361.22, + "probability": 0.9625 + }, + { + "start": 15362.06, + "end": 15363.9, + "probability": 0.8927 + }, + { + "start": 15364.68, + "end": 15366.66, + "probability": 0.981 + }, + { + "start": 15367.52, + "end": 15368.62, + "probability": 0.5385 + }, + { + "start": 15369.8, + "end": 15370.14, + "probability": 0.9826 + }, + { + "start": 15370.98, + "end": 15372.92, + "probability": 0.4392 + }, + { + "start": 15374.5, + "end": 15376.22, + "probability": 0.9631 + }, + { + "start": 15378.96, + "end": 15380.92, + "probability": 0.9334 + }, + { + "start": 15382.42, + "end": 15382.84, + "probability": 0.9875 + }, + { + "start": 15383.94, + "end": 15384.68, + "probability": 0.9198 + }, + { + "start": 15385.46, + "end": 15385.9, + "probability": 0.9925 + }, + { + "start": 15388.5, + "end": 15389.4, + "probability": 0.8895 + }, + { + "start": 15392.08, + "end": 15396.18, + "probability": 0.9726 + }, + { + "start": 15396.38, + "end": 15396.8, + "probability": 0.0782 + }, + { + "start": 15398.6, + "end": 15403.56, + "probability": 0.7514 + }, + { + "start": 15404.2, + "end": 15404.68, + "probability": 0.7427 + }, + { + "start": 15405.32, + "end": 15406.14, + "probability": 0.8164 + }, + { + "start": 15407.0, + "end": 15408.06, + "probability": 0.7816 + }, + { + "start": 15409.28, + "end": 15410.66, + "probability": 0.8628 + }, + { + "start": 15413.64, + "end": 15415.64, + "probability": 0.9298 + }, + { + "start": 15416.52, + "end": 15419.96, + "probability": 0.9487 + }, + { + "start": 15420.8, + "end": 15423.54, + "probability": 0.5649 + }, + { + "start": 15424.14, + "end": 15427.9, + "probability": 0.7167 + }, + { + "start": 15428.88, + "end": 15430.5, + "probability": 0.9158 + }, + { + "start": 15433.14, + "end": 15436.24, + "probability": 0.8315 + }, + { + "start": 15437.8, + "end": 15438.08, + "probability": 0.9561 + }, + { + "start": 15438.94, + "end": 15439.52, + "probability": 0.6873 + }, + { + "start": 15443.18, + "end": 15443.78, + "probability": 0.4696 + }, + { + "start": 15445.12, + "end": 15447.16, + "probability": 0.6683 + }, + { + "start": 15449.08, + "end": 15449.94, + "probability": 0.174 + }, + { + "start": 15450.66, + "end": 15453.42, + "probability": 0.8844 + }, + { + "start": 15456.62, + "end": 15458.5, + "probability": 0.8027 + }, + { + "start": 15460.05, + "end": 15462.26, + "probability": 0.9915 + }, + { + "start": 15463.0, + "end": 15464.9, + "probability": 0.9839 + }, + { + "start": 15466.28, + "end": 15466.72, + "probability": 0.9836 + }, + { + "start": 15467.68, + "end": 15468.4, + "probability": 0.834 + }, + { + "start": 15470.32, + "end": 15472.48, + "probability": 0.9699 + }, + { + "start": 15475.36, + "end": 15476.16, + "probability": 0.7078 + }, + { + "start": 15476.78, + "end": 15477.04, + "probability": 0.8408 + }, + { + "start": 15478.84, + "end": 15479.76, + "probability": 0.7326 + }, + { + "start": 15481.94, + "end": 15484.28, + "probability": 0.9733 + }, + { + "start": 15485.0, + "end": 15486.72, + "probability": 0.9595 + }, + { + "start": 15488.02, + "end": 15490.44, + "probability": 0.979 + }, + { + "start": 15494.18, + "end": 15498.32, + "probability": 0.9462 + }, + { + "start": 15499.16, + "end": 15499.62, + "probability": 0.9668 + }, + { + "start": 15501.04, + "end": 15501.96, + "probability": 0.9683 + }, + { + "start": 15502.72, + "end": 15504.12, + "probability": 0.6611 + }, + { + "start": 15505.2, + "end": 15506.8, + "probability": 0.8903 + }, + { + "start": 15507.84, + "end": 15508.28, + "probability": 0.9004 + }, + { + "start": 15509.0, + "end": 15510.12, + "probability": 0.5495 + }, + { + "start": 15510.78, + "end": 15511.16, + "probability": 0.9883 + }, + { + "start": 15511.76, + "end": 15512.44, + "probability": 0.8691 + }, + { + "start": 15513.06, + "end": 15515.1, + "probability": 0.9744 + }, + { + "start": 15515.86, + "end": 15518.16, + "probability": 0.9915 + }, + { + "start": 15519.18, + "end": 15521.24, + "probability": 0.9736 + }, + { + "start": 15522.46, + "end": 15523.54, + "probability": 0.9814 + }, + { + "start": 15524.5, + "end": 15526.58, + "probability": 0.9856 + }, + { + "start": 15529.68, + "end": 15532.44, + "probability": 0.8411 + }, + { + "start": 15533.68, + "end": 15538.34, + "probability": 0.7227 + }, + { + "start": 15542.36, + "end": 15545.84, + "probability": 0.5205 + }, + { + "start": 15546.84, + "end": 15547.84, + "probability": 0.9434 + }, + { + "start": 15549.2, + "end": 15551.26, + "probability": 0.8978 + }, + { + "start": 15552.24, + "end": 15556.72, + "probability": 0.9043 + }, + { + "start": 15564.5, + "end": 15565.58, + "probability": 0.7017 + }, + { + "start": 15566.44, + "end": 15571.02, + "probability": 0.8044 + }, + { + "start": 15571.98, + "end": 15572.52, + "probability": 0.9937 + }, + { + "start": 15573.2, + "end": 15574.86, + "probability": 0.7923 + }, + { + "start": 15576.12, + "end": 15577.92, + "probability": 0.9894 + }, + { + "start": 15578.92, + "end": 15580.14, + "probability": 0.9597 + }, + { + "start": 15581.34, + "end": 15586.04, + "probability": 0.9919 + }, + { + "start": 15587.32, + "end": 15587.78, + "probability": 0.9816 + }, + { + "start": 15590.18, + "end": 15591.3, + "probability": 0.5869 + }, + { + "start": 15591.98, + "end": 15592.3, + "probability": 0.6833 + }, + { + "start": 15592.86, + "end": 15593.72, + "probability": 0.5477 + }, + { + "start": 15594.38, + "end": 15596.7, + "probability": 0.8553 + }, + { + "start": 15597.66, + "end": 15599.36, + "probability": 0.9039 + }, + { + "start": 15600.08, + "end": 15601.76, + "probability": 0.808 + }, + { + "start": 15605.64, + "end": 15606.36, + "probability": 0.953 + }, + { + "start": 15606.92, + "end": 15608.5, + "probability": 0.9321 + }, + { + "start": 15611.12, + "end": 15614.08, + "probability": 0.9549 + }, + { + "start": 15615.16, + "end": 15615.6, + "probability": 0.9933 + }, + { + "start": 15621.44, + "end": 15623.1, + "probability": 0.6702 + }, + { + "start": 15624.04, + "end": 15626.86, + "probability": 0.8688 + }, + { + "start": 15627.74, + "end": 15628.7, + "probability": 0.9187 + }, + { + "start": 15629.92, + "end": 15630.98, + "probability": 0.9792 + }, + { + "start": 15634.64, + "end": 15636.62, + "probability": 0.936 + }, + { + "start": 15637.9, + "end": 15639.66, + "probability": 0.885 + }, + { + "start": 15640.5, + "end": 15642.7, + "probability": 0.6881 + }, + { + "start": 15643.46, + "end": 15643.94, + "probability": 0.9945 + }, + { + "start": 15645.02, + "end": 15648.16, + "probability": 0.8718 + }, + { + "start": 15649.08, + "end": 15652.06, + "probability": 0.927 + }, + { + "start": 15653.94, + "end": 15655.38, + "probability": 0.9421 + }, + { + "start": 15659.68, + "end": 15660.66, + "probability": 0.8332 + }, + { + "start": 15662.0, + "end": 15663.14, + "probability": 0.8864 + }, + { + "start": 15663.8, + "end": 15664.24, + "probability": 0.6979 + }, + { + "start": 15665.62, + "end": 15667.0, + "probability": 0.8368 + }, + { + "start": 15667.82, + "end": 15670.5, + "probability": 0.9456 + }, + { + "start": 15671.44, + "end": 15672.28, + "probability": 0.9595 + }, + { + "start": 15673.14, + "end": 15673.62, + "probability": 0.7746 + }, + { + "start": 15675.6, + "end": 15678.52, + "probability": 0.7778 + }, + { + "start": 15680.39, + "end": 15682.98, + "probability": 0.9455 + }, + { + "start": 15683.52, + "end": 15685.82, + "probability": 0.777 + }, + { + "start": 15686.98, + "end": 15688.8, + "probability": 0.9291 + }, + { + "start": 15694.54, + "end": 15695.44, + "probability": 0.834 + }, + { + "start": 15696.04, + "end": 15696.7, + "probability": 0.7454 + }, + { + "start": 15697.76, + "end": 15699.24, + "probability": 0.9826 + }, + { + "start": 15700.08, + "end": 15700.38, + "probability": 0.987 + }, + { + "start": 15702.42, + "end": 15703.3, + "probability": 0.9626 + }, + { + "start": 15704.64, + "end": 15706.6, + "probability": 0.6153 + }, + { + "start": 15707.36, + "end": 15709.0, + "probability": 0.8005 + }, + { + "start": 15709.6, + "end": 15711.16, + "probability": 0.9688 + }, + { + "start": 15711.8, + "end": 15713.76, + "probability": 0.9326 + }, + { + "start": 15714.74, + "end": 15716.94, + "probability": 0.9507 + }, + { + "start": 15719.94, + "end": 15721.02, + "probability": 0.97 + }, + { + "start": 15722.6, + "end": 15723.74, + "probability": 0.9283 + }, + { + "start": 15724.78, + "end": 15726.7, + "probability": 0.9944 + }, + { + "start": 15727.66, + "end": 15729.64, + "probability": 0.988 + }, + { + "start": 15730.76, + "end": 15732.19, + "probability": 0.7929 + }, + { + "start": 15733.0, + "end": 15734.84, + "probability": 0.614 + }, + { + "start": 15736.6, + "end": 15737.08, + "probability": 0.9888 + }, + { + "start": 15740.42, + "end": 15742.97, + "probability": 0.7719 + }, + { + "start": 15743.92, + "end": 15744.72, + "probability": 0.6659 + }, + { + "start": 15745.16, + "end": 15746.56, + "probability": 0.77 + }, + { + "start": 15747.92, + "end": 15748.38, + "probability": 0.9731 + }, + { + "start": 15751.5, + "end": 15752.46, + "probability": 0.7585 + }, + { + "start": 15754.0, + "end": 15757.74, + "probability": 0.9165 + }, + { + "start": 15758.64, + "end": 15759.14, + "probability": 0.9961 + }, + { + "start": 15761.26, + "end": 15762.3, + "probability": 0.9399 + }, + { + "start": 15762.88, + "end": 15766.0, + "probability": 0.9365 + }, + { + "start": 15768.34, + "end": 15768.76, + "probability": 0.9388 + }, + { + "start": 15769.38, + "end": 15769.86, + "probability": 0.9922 + }, + { + "start": 15770.8, + "end": 15773.3, + "probability": 0.9495 + }, + { + "start": 15775.16, + "end": 15778.4, + "probability": 0.6593 + }, + { + "start": 15778.86, + "end": 15780.84, + "probability": 0.9787 + }, + { + "start": 15780.96, + "end": 15782.4, + "probability": 0.9521 + }, + { + "start": 15783.34, + "end": 15786.12, + "probability": 0.9746 + }, + { + "start": 15787.24, + "end": 15793.12, + "probability": 0.9619 + }, + { + "start": 15793.76, + "end": 15795.56, + "probability": 0.806 + }, + { + "start": 15796.46, + "end": 15798.4, + "probability": 0.8576 + }, + { + "start": 15798.98, + "end": 15801.28, + "probability": 0.9696 + }, + { + "start": 15801.9, + "end": 15802.7, + "probability": 0.9894 + }, + { + "start": 15812.68, + "end": 15812.68, + "probability": 0.0852 + }, + { + "start": 15814.46, + "end": 15819.62, + "probability": 0.967 + }, + { + "start": 15820.82, + "end": 15821.06, + "probability": 0.5141 + }, + { + "start": 15822.44, + "end": 15823.82, + "probability": 0.547 + }, + { + "start": 15825.34, + "end": 15826.24, + "probability": 0.321 + }, + { + "start": 15826.28, + "end": 15827.54, + "probability": 0.0093 + }, + { + "start": 15830.96, + "end": 15831.4, + "probability": 0.1814 + }, + { + "start": 15831.4, + "end": 15831.46, + "probability": 0.1244 + }, + { + "start": 15831.46, + "end": 15831.46, + "probability": 0.141 + }, + { + "start": 15837.6, + "end": 15838.9, + "probability": 0.1163 + }, + { + "start": 15838.9, + "end": 15838.98, + "probability": 0.0193 + }, + { + "start": 15840.72, + "end": 15841.98, + "probability": 0.1455 + }, + { + "start": 15854.44, + "end": 15855.58, + "probability": 0.0176 + }, + { + "start": 15856.74, + "end": 15856.74, + "probability": 0.1463 + }, + { + "start": 15859.52, + "end": 15865.36, + "probability": 0.116 + }, + { + "start": 15870.5, + "end": 15871.54, + "probability": 0.123 + }, + { + "start": 15872.94, + "end": 15875.58, + "probability": 0.1452 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16095.0, + "end": 16095.0, + "probability": 0.0 + }, + { + "start": 16097.04, + "end": 16100.32, + "probability": 0.7957 + }, + { + "start": 16100.36, + "end": 16100.86, + "probability": 0.8086 + }, + { + "start": 16116.82, + "end": 16117.44, + "probability": 0.3749 + }, + { + "start": 16121.54, + "end": 16123.78, + "probability": 0.7182 + }, + { + "start": 16124.6, + "end": 16127.8, + "probability": 0.969 + }, + { + "start": 16127.88, + "end": 16131.22, + "probability": 0.9875 + }, + { + "start": 16131.24, + "end": 16131.74, + "probability": 0.6665 + }, + { + "start": 16132.3, + "end": 16133.4, + "probability": 0.7143 + }, + { + "start": 16133.56, + "end": 16135.2, + "probability": 0.9889 + }, + { + "start": 16135.2, + "end": 16135.6, + "probability": 0.7525 + }, + { + "start": 16135.74, + "end": 16136.9, + "probability": 0.9104 + }, + { + "start": 16138.31, + "end": 16140.6, + "probability": 0.9481 + }, + { + "start": 16141.86, + "end": 16142.26, + "probability": 0.6467 + }, + { + "start": 16142.28, + "end": 16145.52, + "probability": 0.9901 + }, + { + "start": 16145.52, + "end": 16148.06, + "probability": 0.9934 + }, + { + "start": 16148.36, + "end": 16151.94, + "probability": 0.9888 + }, + { + "start": 16173.55, + "end": 16173.8, + "probability": 0.0027 + } + ], + "segments_count": 5903, + "words_count": 26032, + "avg_words_per_segment": 4.41, + "avg_segment_duration": 1.6204, + "avg_words_per_minute": 93.7121, + "plenum_id": "119445", + "duration": 16667.21, + "title": null, + "plenum_date": "2023-07-17" +} \ No newline at end of file