diff --git "a/29610/metadata.json" "b/29610/metadata.json" new file mode 100644--- /dev/null +++ "b/29610/metadata.json" @@ -0,0 +1,34967 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "29610", + "quality_score": 0.9102, + "per_segment_quality_scores": [ + { + "start": 40.42, + "end": 43.3, + "probability": 0.624 + }, + { + "start": 44.04, + "end": 46.62, + "probability": 0.9929 + }, + { + "start": 47.6, + "end": 51.84, + "probability": 0.9608 + }, + { + "start": 52.22, + "end": 54.4, + "probability": 0.9401 + }, + { + "start": 56.5, + "end": 62.76, + "probability": 0.8212 + }, + { + "start": 62.98, + "end": 64.14, + "probability": 0.7789 + }, + { + "start": 64.3, + "end": 66.32, + "probability": 0.9923 + }, + { + "start": 66.94, + "end": 68.38, + "probability": 0.906 + }, + { + "start": 69.22, + "end": 71.42, + "probability": 0.9973 + }, + { + "start": 72.34, + "end": 75.02, + "probability": 0.6905 + }, + { + "start": 75.74, + "end": 77.02, + "probability": 0.4504 + }, + { + "start": 77.1, + "end": 78.68, + "probability": 0.9881 + }, + { + "start": 78.76, + "end": 81.72, + "probability": 0.8994 + }, + { + "start": 110.28, + "end": 112.42, + "probability": 0.7007 + }, + { + "start": 112.76, + "end": 114.5, + "probability": 0.8094 + }, + { + "start": 114.7, + "end": 118.96, + "probability": 0.8451 + }, + { + "start": 119.0, + "end": 120.56, + "probability": 0.9898 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.003 + }, + { + "start": 121.12, + "end": 124.02, + "probability": 0.4585 + }, + { + "start": 124.2, + "end": 129.42, + "probability": 0.9818 + }, + { + "start": 130.24, + "end": 135.2, + "probability": 0.7948 + }, + { + "start": 137.68, + "end": 138.34, + "probability": 0.902 + }, + { + "start": 138.54, + "end": 139.26, + "probability": 0.8131 + }, + { + "start": 139.46, + "end": 144.38, + "probability": 0.917 + }, + { + "start": 153.7, + "end": 156.28, + "probability": 0.5952 + }, + { + "start": 157.36, + "end": 159.88, + "probability": 0.9749 + }, + { + "start": 159.88, + "end": 162.44, + "probability": 0.6845 + }, + { + "start": 162.92, + "end": 165.86, + "probability": 0.9007 + }, + { + "start": 166.32, + "end": 168.34, + "probability": 0.8181 + }, + { + "start": 168.34, + "end": 171.68, + "probability": 0.7577 + }, + { + "start": 172.38, + "end": 177.06, + "probability": 0.9929 + }, + { + "start": 177.06, + "end": 182.04, + "probability": 0.8816 + }, + { + "start": 182.86, + "end": 186.04, + "probability": 0.9766 + }, + { + "start": 187.16, + "end": 189.44, + "probability": 0.8966 + }, + { + "start": 190.42, + "end": 191.52, + "probability": 0.7307 + }, + { + "start": 192.46, + "end": 193.94, + "probability": 0.8928 + }, + { + "start": 194.88, + "end": 195.48, + "probability": 0.9312 + }, + { + "start": 196.26, + "end": 201.32, + "probability": 0.9224 + }, + { + "start": 202.28, + "end": 207.82, + "probability": 0.9889 + }, + { + "start": 209.42, + "end": 214.44, + "probability": 0.8132 + }, + { + "start": 214.98, + "end": 222.0, + "probability": 0.9863 + }, + { + "start": 222.76, + "end": 223.52, + "probability": 0.7403 + }, + { + "start": 223.88, + "end": 226.62, + "probability": 0.9113 + }, + { + "start": 226.62, + "end": 227.46, + "probability": 0.3682 + }, + { + "start": 229.04, + "end": 230.18, + "probability": 0.5221 + }, + { + "start": 230.36, + "end": 235.72, + "probability": 0.9146 + }, + { + "start": 235.72, + "end": 241.7, + "probability": 0.9944 + }, + { + "start": 241.76, + "end": 242.54, + "probability": 0.5793 + }, + { + "start": 242.86, + "end": 246.24, + "probability": 0.7325 + }, + { + "start": 246.24, + "end": 250.46, + "probability": 0.9126 + }, + { + "start": 251.72, + "end": 253.16, + "probability": 0.708 + }, + { + "start": 253.34, + "end": 257.54, + "probability": 0.8761 + }, + { + "start": 257.92, + "end": 261.82, + "probability": 0.9417 + }, + { + "start": 263.37, + "end": 266.54, + "probability": 0.9863 + }, + { + "start": 266.54, + "end": 270.16, + "probability": 0.9709 + }, + { + "start": 270.74, + "end": 273.54, + "probability": 0.6985 + }, + { + "start": 273.62, + "end": 274.58, + "probability": 0.6687 + }, + { + "start": 274.82, + "end": 278.2, + "probability": 0.7803 + }, + { + "start": 278.52, + "end": 281.12, + "probability": 0.989 + }, + { + "start": 281.22, + "end": 281.64, + "probability": 0.4192 + }, + { + "start": 281.82, + "end": 286.78, + "probability": 0.8597 + }, + { + "start": 286.9, + "end": 290.0, + "probability": 0.9743 + }, + { + "start": 290.3, + "end": 294.46, + "probability": 0.8491 + }, + { + "start": 294.72, + "end": 297.22, + "probability": 0.9723 + }, + { + "start": 297.22, + "end": 300.4, + "probability": 0.9236 + }, + { + "start": 301.06, + "end": 304.88, + "probability": 0.9761 + }, + { + "start": 305.16, + "end": 305.48, + "probability": 0.4263 + }, + { + "start": 305.86, + "end": 306.36, + "probability": 0.7474 + }, + { + "start": 306.6, + "end": 311.0, + "probability": 0.9705 + }, + { + "start": 311.82, + "end": 313.08, + "probability": 0.7405 + }, + { + "start": 313.24, + "end": 314.14, + "probability": 0.6378 + }, + { + "start": 314.2, + "end": 315.06, + "probability": 0.7275 + }, + { + "start": 315.12, + "end": 316.74, + "probability": 0.7764 + }, + { + "start": 316.82, + "end": 318.56, + "probability": 0.7028 + }, + { + "start": 318.72, + "end": 323.42, + "probability": 0.8198 + }, + { + "start": 324.7, + "end": 325.36, + "probability": 0.8346 + }, + { + "start": 325.76, + "end": 327.66, + "probability": 0.9963 + }, + { + "start": 327.78, + "end": 331.2, + "probability": 0.9836 + }, + { + "start": 332.06, + "end": 336.03, + "probability": 0.9385 + }, + { + "start": 337.12, + "end": 338.68, + "probability": 0.7042 + }, + { + "start": 338.88, + "end": 340.16, + "probability": 0.8906 + }, + { + "start": 340.42, + "end": 343.66, + "probability": 0.9918 + }, + { + "start": 343.7, + "end": 346.56, + "probability": 0.8469 + }, + { + "start": 347.2, + "end": 348.48, + "probability": 0.7039 + }, + { + "start": 348.58, + "end": 349.86, + "probability": 0.8809 + }, + { + "start": 350.3, + "end": 352.44, + "probability": 0.8882 + }, + { + "start": 353.62, + "end": 356.36, + "probability": 0.9337 + }, + { + "start": 358.08, + "end": 365.86, + "probability": 0.928 + }, + { + "start": 366.44, + "end": 371.7, + "probability": 0.978 + }, + { + "start": 372.68, + "end": 373.92, + "probability": 0.2516 + }, + { + "start": 373.98, + "end": 379.6, + "probability": 0.8287 + }, + { + "start": 379.72, + "end": 382.8, + "probability": 0.9862 + }, + { + "start": 383.4, + "end": 385.88, + "probability": 0.9852 + }, + { + "start": 385.92, + "end": 386.56, + "probability": 0.9888 + }, + { + "start": 387.14, + "end": 387.54, + "probability": 0.6519 + }, + { + "start": 388.42, + "end": 395.1, + "probability": 0.9168 + }, + { + "start": 395.1, + "end": 399.98, + "probability": 0.9668 + }, + { + "start": 400.54, + "end": 402.82, + "probability": 0.8508 + }, + { + "start": 402.9, + "end": 403.94, + "probability": 0.8769 + }, + { + "start": 404.06, + "end": 409.24, + "probability": 0.9933 + }, + { + "start": 409.58, + "end": 410.44, + "probability": 0.8262 + }, + { + "start": 410.44, + "end": 412.3, + "probability": 0.889 + }, + { + "start": 412.8, + "end": 414.5, + "probability": 0.7988 + }, + { + "start": 414.7, + "end": 420.22, + "probability": 0.9814 + }, + { + "start": 420.22, + "end": 423.14, + "probability": 0.995 + }, + { + "start": 423.78, + "end": 424.64, + "probability": 0.6606 + }, + { + "start": 425.06, + "end": 429.9, + "probability": 0.9976 + }, + { + "start": 430.24, + "end": 432.0, + "probability": 0.8368 + }, + { + "start": 432.46, + "end": 435.76, + "probability": 0.9981 + }, + { + "start": 436.34, + "end": 441.38, + "probability": 0.9955 + }, + { + "start": 441.38, + "end": 445.84, + "probability": 0.9815 + }, + { + "start": 446.3, + "end": 446.96, + "probability": 0.6027 + }, + { + "start": 447.62, + "end": 452.84, + "probability": 0.9932 + }, + { + "start": 452.84, + "end": 457.18, + "probability": 0.9924 + }, + { + "start": 458.0, + "end": 459.19, + "probability": 0.981 + }, + { + "start": 460.22, + "end": 463.32, + "probability": 0.9215 + }, + { + "start": 464.16, + "end": 468.32, + "probability": 0.7866 + }, + { + "start": 469.76, + "end": 472.0, + "probability": 0.6543 + }, + { + "start": 472.02, + "end": 474.52, + "probability": 0.8003 + }, + { + "start": 474.64, + "end": 474.64, + "probability": 0.3782 + }, + { + "start": 474.74, + "end": 475.2, + "probability": 0.6553 + }, + { + "start": 475.32, + "end": 476.84, + "probability": 0.4722 + }, + { + "start": 476.96, + "end": 478.54, + "probability": 0.8849 + }, + { + "start": 478.64, + "end": 479.82, + "probability": 0.9609 + }, + { + "start": 481.31, + "end": 482.8, + "probability": 0.6819 + }, + { + "start": 482.88, + "end": 485.2, + "probability": 0.8513 + }, + { + "start": 485.46, + "end": 487.18, + "probability": 0.9774 + }, + { + "start": 487.38, + "end": 488.58, + "probability": 0.7368 + }, + { + "start": 488.58, + "end": 488.74, + "probability": 0.252 + }, + { + "start": 488.98, + "end": 489.56, + "probability": 0.4445 + }, + { + "start": 490.08, + "end": 490.26, + "probability": 0.2233 + }, + { + "start": 490.26, + "end": 490.76, + "probability": 0.5774 + }, + { + "start": 491.08, + "end": 493.04, + "probability": 0.7568 + }, + { + "start": 493.22, + "end": 494.98, + "probability": 0.7496 + }, + { + "start": 495.28, + "end": 497.14, + "probability": 0.6652 + }, + { + "start": 497.3, + "end": 498.86, + "probability": 0.9009 + }, + { + "start": 499.16, + "end": 503.12, + "probability": 0.967 + }, + { + "start": 503.12, + "end": 507.94, + "probability": 0.9923 + }, + { + "start": 508.7, + "end": 511.58, + "probability": 0.9834 + }, + { + "start": 511.78, + "end": 513.2, + "probability": 0.5732 + }, + { + "start": 513.78, + "end": 514.44, + "probability": 0.6896 + }, + { + "start": 514.74, + "end": 517.78, + "probability": 0.9773 + }, + { + "start": 518.26, + "end": 523.32, + "probability": 0.9894 + }, + { + "start": 523.32, + "end": 527.72, + "probability": 0.8793 + }, + { + "start": 528.14, + "end": 529.16, + "probability": 0.3296 + }, + { + "start": 529.34, + "end": 531.08, + "probability": 0.8923 + }, + { + "start": 531.4, + "end": 532.58, + "probability": 0.8042 + }, + { + "start": 533.56, + "end": 535.8, + "probability": 0.7108 + }, + { + "start": 535.88, + "end": 539.0, + "probability": 0.9688 + }, + { + "start": 539.48, + "end": 542.38, + "probability": 0.9244 + }, + { + "start": 542.52, + "end": 544.82, + "probability": 0.472 + }, + { + "start": 544.92, + "end": 547.3, + "probability": 0.9844 + }, + { + "start": 547.32, + "end": 547.72, + "probability": 0.6083 + }, + { + "start": 547.82, + "end": 550.24, + "probability": 0.9886 + }, + { + "start": 550.4, + "end": 555.62, + "probability": 0.943 + }, + { + "start": 555.7, + "end": 556.02, + "probability": 0.5532 + }, + { + "start": 556.68, + "end": 558.22, + "probability": 0.6633 + }, + { + "start": 558.22, + "end": 558.72, + "probability": 0.3467 + }, + { + "start": 558.8, + "end": 563.04, + "probability": 0.8316 + }, + { + "start": 563.12, + "end": 563.72, + "probability": 0.5509 + }, + { + "start": 563.82, + "end": 569.32, + "probability": 0.7763 + }, + { + "start": 569.36, + "end": 570.62, + "probability": 0.7824 + }, + { + "start": 570.82, + "end": 575.74, + "probability": 0.9483 + }, + { + "start": 575.78, + "end": 580.52, + "probability": 0.8962 + }, + { + "start": 581.32, + "end": 585.46, + "probability": 0.9819 + }, + { + "start": 585.64, + "end": 586.96, + "probability": 0.8367 + }, + { + "start": 587.02, + "end": 590.28, + "probability": 0.7649 + }, + { + "start": 591.02, + "end": 594.06, + "probability": 0.8838 + }, + { + "start": 594.16, + "end": 598.62, + "probability": 0.896 + }, + { + "start": 598.9, + "end": 605.6, + "probability": 0.8849 + }, + { + "start": 606.04, + "end": 607.3, + "probability": 0.743 + }, + { + "start": 607.48, + "end": 612.04, + "probability": 0.9647 + }, + { + "start": 613.44, + "end": 617.64, + "probability": 0.9962 + }, + { + "start": 618.04, + "end": 618.52, + "probability": 0.5767 + }, + { + "start": 618.8, + "end": 623.76, + "probability": 0.9739 + }, + { + "start": 623.76, + "end": 629.84, + "probability": 0.9912 + }, + { + "start": 629.92, + "end": 630.26, + "probability": 0.5834 + }, + { + "start": 631.58, + "end": 633.16, + "probability": 0.5887 + }, + { + "start": 633.3, + "end": 635.66, + "probability": 0.7959 + }, + { + "start": 636.74, + "end": 638.62, + "probability": 0.8625 + }, + { + "start": 639.08, + "end": 641.22, + "probability": 0.891 + }, + { + "start": 641.4, + "end": 644.7, + "probability": 0.9695 + }, + { + "start": 645.36, + "end": 648.48, + "probability": 0.9695 + }, + { + "start": 648.78, + "end": 652.3, + "probability": 0.9948 + }, + { + "start": 653.32, + "end": 655.38, + "probability": 0.7542 + }, + { + "start": 655.58, + "end": 658.3, + "probability": 0.9626 + }, + { + "start": 658.44, + "end": 659.2, + "probability": 0.6142 + }, + { + "start": 659.74, + "end": 662.58, + "probability": 0.8544 + }, + { + "start": 663.26, + "end": 663.82, + "probability": 0.5778 + }, + { + "start": 663.86, + "end": 664.94, + "probability": 0.8287 + }, + { + "start": 665.04, + "end": 670.28, + "probability": 0.9987 + }, + { + "start": 670.44, + "end": 673.52, + "probability": 0.6501 + }, + { + "start": 673.6, + "end": 675.14, + "probability": 0.6715 + }, + { + "start": 675.3, + "end": 676.16, + "probability": 0.8928 + }, + { + "start": 677.4, + "end": 679.04, + "probability": 0.9033 + }, + { + "start": 679.28, + "end": 682.8, + "probability": 0.9442 + }, + { + "start": 683.24, + "end": 686.5, + "probability": 0.8203 + }, + { + "start": 686.76, + "end": 692.1, + "probability": 0.7337 + }, + { + "start": 692.1, + "end": 695.06, + "probability": 0.9912 + }, + { + "start": 695.6, + "end": 697.08, + "probability": 0.5729 + }, + { + "start": 697.26, + "end": 698.42, + "probability": 0.9365 + }, + { + "start": 698.44, + "end": 699.36, + "probability": 0.8796 + }, + { + "start": 699.54, + "end": 701.14, + "probability": 0.9958 + }, + { + "start": 701.24, + "end": 703.88, + "probability": 0.9696 + }, + { + "start": 703.96, + "end": 705.3, + "probability": 0.9174 + }, + { + "start": 705.56, + "end": 707.76, + "probability": 0.9597 + }, + { + "start": 707.98, + "end": 714.18, + "probability": 0.9399 + }, + { + "start": 714.54, + "end": 716.88, + "probability": 0.9491 + }, + { + "start": 717.14, + "end": 717.26, + "probability": 0.6917 + }, + { + "start": 717.38, + "end": 718.19, + "probability": 0.8923 + }, + { + "start": 718.28, + "end": 718.72, + "probability": 0.7326 + }, + { + "start": 718.78, + "end": 720.26, + "probability": 0.9424 + }, + { + "start": 720.38, + "end": 721.08, + "probability": 0.7347 + }, + { + "start": 721.14, + "end": 721.32, + "probability": 0.595 + }, + { + "start": 721.46, + "end": 722.23, + "probability": 0.5018 + }, + { + "start": 723.02, + "end": 726.7, + "probability": 0.8481 + }, + { + "start": 727.4, + "end": 733.76, + "probability": 0.96 + }, + { + "start": 733.84, + "end": 736.68, + "probability": 0.999 + }, + { + "start": 736.88, + "end": 737.14, + "probability": 0.4783 + }, + { + "start": 737.26, + "end": 741.78, + "probability": 0.8442 + }, + { + "start": 741.94, + "end": 743.68, + "probability": 0.837 + }, + { + "start": 743.8, + "end": 744.54, + "probability": 0.9014 + }, + { + "start": 744.6, + "end": 744.66, + "probability": 0.6666 + }, + { + "start": 744.86, + "end": 745.44, + "probability": 0.7673 + }, + { + "start": 746.17, + "end": 748.02, + "probability": 0.6599 + }, + { + "start": 748.14, + "end": 749.5, + "probability": 0.9873 + }, + { + "start": 750.16, + "end": 753.28, + "probability": 0.9378 + }, + { + "start": 754.01, + "end": 758.36, + "probability": 0.9956 + }, + { + "start": 758.54, + "end": 760.36, + "probability": 0.7999 + }, + { + "start": 760.72, + "end": 764.26, + "probability": 0.8123 + }, + { + "start": 767.24, + "end": 772.64, + "probability": 0.7524 + }, + { + "start": 773.38, + "end": 777.32, + "probability": 0.8911 + }, + { + "start": 777.42, + "end": 782.52, + "probability": 0.4567 + }, + { + "start": 782.78, + "end": 784.32, + "probability": 0.5411 + }, + { + "start": 786.96, + "end": 787.56, + "probability": 0.1247 + }, + { + "start": 787.78, + "end": 788.12, + "probability": 0.1365 + }, + { + "start": 788.36, + "end": 788.98, + "probability": 0.8063 + }, + { + "start": 789.14, + "end": 790.46, + "probability": 0.84 + }, + { + "start": 790.74, + "end": 792.92, + "probability": 0.7283 + }, + { + "start": 792.96, + "end": 794.36, + "probability": 0.9152 + }, + { + "start": 794.62, + "end": 796.5, + "probability": 0.6497 + }, + { + "start": 796.66, + "end": 799.04, + "probability": 0.2548 + }, + { + "start": 799.04, + "end": 799.44, + "probability": 0.1163 + }, + { + "start": 799.44, + "end": 801.82, + "probability": 0.9497 + }, + { + "start": 801.88, + "end": 801.94, + "probability": 0.1797 + }, + { + "start": 801.94, + "end": 802.36, + "probability": 0.3255 + }, + { + "start": 802.36, + "end": 803.94, + "probability": 0.9 + }, + { + "start": 804.02, + "end": 805.96, + "probability": 0.9099 + }, + { + "start": 806.02, + "end": 807.41, + "probability": 0.9639 + }, + { + "start": 808.5, + "end": 811.93, + "probability": 0.7102 + }, + { + "start": 812.16, + "end": 813.96, + "probability": 0.9839 + }, + { + "start": 814.98, + "end": 817.64, + "probability": 0.8521 + }, + { + "start": 817.64, + "end": 820.18, + "probability": 0.8331 + }, + { + "start": 820.88, + "end": 822.74, + "probability": 0.9939 + }, + { + "start": 823.14, + "end": 826.66, + "probability": 0.9906 + }, + { + "start": 831.82, + "end": 833.7, + "probability": 0.6635 + }, + { + "start": 834.26, + "end": 836.42, + "probability": 0.6239 + }, + { + "start": 837.3, + "end": 841.22, + "probability": 0.9757 + }, + { + "start": 841.22, + "end": 844.24, + "probability": 0.9011 + }, + { + "start": 844.88, + "end": 851.1, + "probability": 0.9199 + }, + { + "start": 851.58, + "end": 854.5, + "probability": 0.973 + }, + { + "start": 854.52, + "end": 857.3, + "probability": 0.9972 + }, + { + "start": 859.18, + "end": 860.86, + "probability": 0.7673 + }, + { + "start": 860.92, + "end": 862.36, + "probability": 0.7341 + }, + { + "start": 862.66, + "end": 865.3, + "probability": 0.7343 + }, + { + "start": 865.42, + "end": 866.26, + "probability": 0.7541 + }, + { + "start": 866.4, + "end": 867.34, + "probability": 0.8699 + }, + { + "start": 867.4, + "end": 870.3, + "probability": 0.9768 + }, + { + "start": 871.28, + "end": 873.26, + "probability": 0.3894 + }, + { + "start": 873.86, + "end": 876.82, + "probability": 0.922 + }, + { + "start": 876.82, + "end": 880.14, + "probability": 0.9924 + }, + { + "start": 881.01, + "end": 886.12, + "probability": 0.9679 + }, + { + "start": 886.54, + "end": 893.0, + "probability": 0.9917 + }, + { + "start": 893.02, + "end": 895.6, + "probability": 0.8811 + }, + { + "start": 896.3, + "end": 899.9, + "probability": 0.9948 + }, + { + "start": 899.9, + "end": 903.72, + "probability": 0.919 + }, + { + "start": 904.3, + "end": 904.78, + "probability": 0.4818 + }, + { + "start": 904.84, + "end": 909.4, + "probability": 0.9985 + }, + { + "start": 909.54, + "end": 913.1, + "probability": 0.9497 + }, + { + "start": 913.74, + "end": 915.84, + "probability": 0.8941 + }, + { + "start": 916.0, + "end": 916.46, + "probability": 0.7851 + }, + { + "start": 916.58, + "end": 918.2, + "probability": 0.9925 + }, + { + "start": 918.82, + "end": 919.28, + "probability": 0.5315 + }, + { + "start": 919.32, + "end": 924.22, + "probability": 0.9977 + }, + { + "start": 924.26, + "end": 924.94, + "probability": 0.913 + }, + { + "start": 925.0, + "end": 929.76, + "probability": 0.9227 + }, + { + "start": 930.3, + "end": 932.7, + "probability": 0.9818 + }, + { + "start": 932.8, + "end": 935.34, + "probability": 0.9722 + }, + { + "start": 935.82, + "end": 937.96, + "probability": 0.8664 + }, + { + "start": 938.12, + "end": 939.46, + "probability": 0.9149 + }, + { + "start": 939.58, + "end": 941.2, + "probability": 0.6791 + }, + { + "start": 941.58, + "end": 944.66, + "probability": 0.9937 + }, + { + "start": 945.08, + "end": 948.11, + "probability": 0.983 + }, + { + "start": 949.62, + "end": 950.72, + "probability": 0.8008 + }, + { + "start": 950.92, + "end": 951.7, + "probability": 0.2224 + }, + { + "start": 951.8, + "end": 954.3, + "probability": 0.9971 + }, + { + "start": 954.68, + "end": 956.16, + "probability": 0.9199 + }, + { + "start": 956.32, + "end": 959.8, + "probability": 0.9628 + }, + { + "start": 959.92, + "end": 960.56, + "probability": 0.5245 + }, + { + "start": 963.94, + "end": 970.42, + "probability": 0.9846 + }, + { + "start": 971.46, + "end": 974.96, + "probability": 0.729 + }, + { + "start": 975.6, + "end": 978.52, + "probability": 0.9241 + }, + { + "start": 978.68, + "end": 982.06, + "probability": 0.9728 + }, + { + "start": 982.2, + "end": 983.16, + "probability": 0.958 + }, + { + "start": 983.36, + "end": 983.96, + "probability": 0.6377 + }, + { + "start": 984.36, + "end": 986.96, + "probability": 0.9576 + }, + { + "start": 987.22, + "end": 990.7, + "probability": 0.9776 + }, + { + "start": 990.82, + "end": 991.74, + "probability": 0.7661 + }, + { + "start": 991.78, + "end": 992.2, + "probability": 0.6107 + }, + { + "start": 992.54, + "end": 992.96, + "probability": 0.6016 + }, + { + "start": 993.04, + "end": 994.34, + "probability": 0.7788 + }, + { + "start": 994.4, + "end": 996.02, + "probability": 0.3785 + }, + { + "start": 996.12, + "end": 997.66, + "probability": 0.9041 + }, + { + "start": 998.12, + "end": 999.96, + "probability": 0.6507 + }, + { + "start": 1000.28, + "end": 1003.44, + "probability": 0.8255 + }, + { + "start": 1003.54, + "end": 1007.0, + "probability": 0.7177 + }, + { + "start": 1007.12, + "end": 1011.8, + "probability": 0.9136 + }, + { + "start": 1011.98, + "end": 1015.18, + "probability": 0.9933 + }, + { + "start": 1015.43, + "end": 1018.07, + "probability": 0.7454 + }, + { + "start": 1019.38, + "end": 1022.28, + "probability": 0.8291 + }, + { + "start": 1022.66, + "end": 1023.22, + "probability": 0.472 + }, + { + "start": 1023.24, + "end": 1024.1, + "probability": 0.735 + }, + { + "start": 1024.6, + "end": 1028.92, + "probability": 0.9738 + }, + { + "start": 1029.2, + "end": 1031.92, + "probability": 0.9993 + }, + { + "start": 1032.64, + "end": 1035.78, + "probability": 0.9907 + }, + { + "start": 1035.78, + "end": 1039.58, + "probability": 0.7261 + }, + { + "start": 1039.74, + "end": 1039.78, + "probability": 0.3525 + }, + { + "start": 1039.88, + "end": 1039.98, + "probability": 0.7624 + }, + { + "start": 1040.06, + "end": 1041.52, + "probability": 0.9849 + }, + { + "start": 1041.6, + "end": 1044.84, + "probability": 0.9808 + }, + { + "start": 1045.66, + "end": 1046.38, + "probability": 0.6319 + }, + { + "start": 1046.5, + "end": 1048.06, + "probability": 0.4755 + }, + { + "start": 1048.08, + "end": 1051.96, + "probability": 0.8811 + }, + { + "start": 1052.38, + "end": 1057.14, + "probability": 0.9773 + }, + { + "start": 1057.68, + "end": 1061.02, + "probability": 0.9639 + }, + { + "start": 1061.02, + "end": 1064.76, + "probability": 0.9058 + }, + { + "start": 1065.76, + "end": 1069.18, + "probability": 0.9749 + }, + { + "start": 1069.36, + "end": 1073.56, + "probability": 0.8497 + }, + { + "start": 1074.24, + "end": 1075.52, + "probability": 0.9287 + }, + { + "start": 1075.66, + "end": 1079.02, + "probability": 0.9783 + }, + { + "start": 1079.78, + "end": 1084.18, + "probability": 0.6102 + }, + { + "start": 1084.7, + "end": 1085.36, + "probability": 0.6099 + }, + { + "start": 1085.52, + "end": 1088.26, + "probability": 0.9581 + }, + { + "start": 1088.44, + "end": 1091.5, + "probability": 0.8977 + }, + { + "start": 1092.22, + "end": 1094.58, + "probability": 0.9149 + }, + { + "start": 1094.66, + "end": 1099.12, + "probability": 0.8123 + }, + { + "start": 1100.3, + "end": 1102.02, + "probability": 0.5868 + }, + { + "start": 1102.14, + "end": 1105.36, + "probability": 0.927 + }, + { + "start": 1105.54, + "end": 1111.02, + "probability": 0.9815 + }, + { + "start": 1111.36, + "end": 1113.96, + "probability": 0.9788 + }, + { + "start": 1114.68, + "end": 1119.74, + "probability": 0.9826 + }, + { + "start": 1120.26, + "end": 1124.86, + "probability": 0.9946 + }, + { + "start": 1124.92, + "end": 1125.38, + "probability": 0.454 + }, + { + "start": 1125.86, + "end": 1126.6, + "probability": 0.8279 + }, + { + "start": 1127.07, + "end": 1132.18, + "probability": 0.9668 + }, + { + "start": 1132.32, + "end": 1133.56, + "probability": 0.9039 + }, + { + "start": 1134.12, + "end": 1134.62, + "probability": 0.7338 + }, + { + "start": 1134.68, + "end": 1137.24, + "probability": 0.865 + }, + { + "start": 1137.48, + "end": 1141.18, + "probability": 0.8772 + }, + { + "start": 1141.92, + "end": 1146.44, + "probability": 0.882 + }, + { + "start": 1147.08, + "end": 1150.26, + "probability": 0.6346 + }, + { + "start": 1150.34, + "end": 1152.32, + "probability": 0.9805 + }, + { + "start": 1152.56, + "end": 1154.4, + "probability": 0.6411 + }, + { + "start": 1154.96, + "end": 1156.54, + "probability": 0.738 + }, + { + "start": 1156.62, + "end": 1163.7, + "probability": 0.9025 + }, + { + "start": 1164.22, + "end": 1166.48, + "probability": 0.6064 + }, + { + "start": 1166.84, + "end": 1169.18, + "probability": 0.6838 + }, + { + "start": 1169.22, + "end": 1174.18, + "probability": 0.9952 + }, + { + "start": 1174.36, + "end": 1174.52, + "probability": 0.7746 + }, + { + "start": 1174.64, + "end": 1178.38, + "probability": 0.9642 + }, + { + "start": 1178.48, + "end": 1180.04, + "probability": 0.8082 + }, + { + "start": 1180.38, + "end": 1184.26, + "probability": 0.8421 + }, + { + "start": 1185.1, + "end": 1187.68, + "probability": 0.7727 + }, + { + "start": 1187.92, + "end": 1188.62, + "probability": 0.6841 + }, + { + "start": 1188.74, + "end": 1190.88, + "probability": 0.9646 + }, + { + "start": 1190.98, + "end": 1193.6, + "probability": 0.9969 + }, + { + "start": 1193.94, + "end": 1195.18, + "probability": 0.9668 + }, + { + "start": 1196.14, + "end": 1196.5, + "probability": 0.6454 + }, + { + "start": 1196.62, + "end": 1199.9, + "probability": 0.9595 + }, + { + "start": 1199.9, + "end": 1203.38, + "probability": 0.9795 + }, + { + "start": 1203.48, + "end": 1205.02, + "probability": 0.8571 + }, + { + "start": 1205.18, + "end": 1207.84, + "probability": 0.8765 + }, + { + "start": 1208.44, + "end": 1210.54, + "probability": 0.9293 + }, + { + "start": 1210.7, + "end": 1211.5, + "probability": 0.8651 + }, + { + "start": 1211.78, + "end": 1216.76, + "probability": 0.9716 + }, + { + "start": 1216.9, + "end": 1217.7, + "probability": 0.7143 + }, + { + "start": 1217.76, + "end": 1221.04, + "probability": 0.6362 + }, + { + "start": 1221.68, + "end": 1224.14, + "probability": 0.9966 + }, + { + "start": 1224.24, + "end": 1225.2, + "probability": 0.4618 + }, + { + "start": 1225.4, + "end": 1226.1, + "probability": 0.9625 + }, + { + "start": 1227.0, + "end": 1231.76, + "probability": 0.9863 + }, + { + "start": 1231.76, + "end": 1233.4, + "probability": 0.8479 + }, + { + "start": 1233.76, + "end": 1234.18, + "probability": 0.2754 + }, + { + "start": 1234.22, + "end": 1234.64, + "probability": 0.7801 + }, + { + "start": 1234.96, + "end": 1235.64, + "probability": 0.8085 + }, + { + "start": 1235.7, + "end": 1236.14, + "probability": 0.8833 + }, + { + "start": 1236.24, + "end": 1238.42, + "probability": 0.9527 + }, + { + "start": 1238.86, + "end": 1240.34, + "probability": 0.7854 + }, + { + "start": 1240.56, + "end": 1245.74, + "probability": 0.9901 + }, + { + "start": 1245.74, + "end": 1249.26, + "probability": 0.9972 + }, + { + "start": 1249.84, + "end": 1253.14, + "probability": 0.8919 + }, + { + "start": 1253.14, + "end": 1256.68, + "probability": 0.99 + }, + { + "start": 1257.02, + "end": 1259.06, + "probability": 0.9982 + }, + { + "start": 1259.29, + "end": 1261.59, + "probability": 0.6749 + }, + { + "start": 1261.84, + "end": 1262.84, + "probability": 0.9598 + }, + { + "start": 1262.96, + "end": 1263.94, + "probability": 0.9558 + }, + { + "start": 1264.18, + "end": 1268.16, + "probability": 0.9844 + }, + { + "start": 1268.24, + "end": 1269.92, + "probability": 0.9736 + }, + { + "start": 1270.26, + "end": 1270.68, + "probability": 0.8856 + }, + { + "start": 1271.28, + "end": 1275.22, + "probability": 0.8746 + }, + { + "start": 1275.7, + "end": 1280.22, + "probability": 0.9525 + }, + { + "start": 1280.36, + "end": 1282.82, + "probability": 0.8176 + }, + { + "start": 1282.96, + "end": 1285.72, + "probability": 0.9724 + }, + { + "start": 1286.5, + "end": 1289.28, + "probability": 0.9797 + }, + { + "start": 1289.44, + "end": 1289.8, + "probability": 0.3937 + }, + { + "start": 1289.92, + "end": 1292.32, + "probability": 0.9224 + }, + { + "start": 1292.38, + "end": 1294.16, + "probability": 0.9826 + }, + { + "start": 1294.7, + "end": 1295.14, + "probability": 0.8011 + }, + { + "start": 1295.3, + "end": 1297.86, + "probability": 0.9927 + }, + { + "start": 1298.04, + "end": 1299.58, + "probability": 0.995 + }, + { + "start": 1299.76, + "end": 1303.54, + "probability": 0.9736 + }, + { + "start": 1304.0, + "end": 1307.74, + "probability": 0.984 + }, + { + "start": 1307.74, + "end": 1311.78, + "probability": 0.7822 + }, + { + "start": 1311.94, + "end": 1315.54, + "probability": 0.9902 + }, + { + "start": 1315.6, + "end": 1316.06, + "probability": 0.4454 + }, + { + "start": 1316.12, + "end": 1320.2, + "probability": 0.5039 + }, + { + "start": 1320.36, + "end": 1322.84, + "probability": 0.8535 + }, + { + "start": 1322.84, + "end": 1326.96, + "probability": 0.9857 + }, + { + "start": 1327.08, + "end": 1327.18, + "probability": 0.215 + }, + { + "start": 1327.96, + "end": 1328.36, + "probability": 0.7262 + }, + { + "start": 1328.4, + "end": 1334.52, + "probability": 0.7574 + }, + { + "start": 1334.62, + "end": 1335.32, + "probability": 0.2982 + }, + { + "start": 1335.32, + "end": 1337.1, + "probability": 0.937 + }, + { + "start": 1337.57, + "end": 1341.76, + "probability": 0.9329 + }, + { + "start": 1341.82, + "end": 1344.48, + "probability": 0.9808 + }, + { + "start": 1344.9, + "end": 1346.0, + "probability": 0.6462 + }, + { + "start": 1346.44, + "end": 1350.88, + "probability": 0.9822 + }, + { + "start": 1351.58, + "end": 1353.94, + "probability": 0.916 + }, + { + "start": 1354.1, + "end": 1354.56, + "probability": 0.2518 + }, + { + "start": 1354.6, + "end": 1356.96, + "probability": 0.9854 + }, + { + "start": 1356.96, + "end": 1361.02, + "probability": 0.9834 + }, + { + "start": 1361.14, + "end": 1362.96, + "probability": 0.9427 + }, + { + "start": 1363.08, + "end": 1363.28, + "probability": 0.8418 + }, + { + "start": 1363.46, + "end": 1365.24, + "probability": 0.9681 + }, + { + "start": 1365.74, + "end": 1369.62, + "probability": 0.9517 + }, + { + "start": 1370.14, + "end": 1373.1, + "probability": 0.9876 + }, + { + "start": 1373.62, + "end": 1376.94, + "probability": 0.7985 + }, + { + "start": 1377.14, + "end": 1380.48, + "probability": 0.9233 + }, + { + "start": 1381.08, + "end": 1382.96, + "probability": 0.8027 + }, + { + "start": 1383.1, + "end": 1385.3, + "probability": 0.9272 + }, + { + "start": 1385.44, + "end": 1390.26, + "probability": 0.9105 + }, + { + "start": 1390.36, + "end": 1392.5, + "probability": 0.9944 + }, + { + "start": 1392.66, + "end": 1393.3, + "probability": 0.9034 + }, + { + "start": 1393.4, + "end": 1394.21, + "probability": 0.9536 + }, + { + "start": 1394.52, + "end": 1396.24, + "probability": 0.8705 + }, + { + "start": 1396.74, + "end": 1399.86, + "probability": 0.993 + }, + { + "start": 1399.86, + "end": 1404.22, + "probability": 0.9812 + }, + { + "start": 1404.3, + "end": 1406.0, + "probability": 0.9193 + }, + { + "start": 1406.32, + "end": 1407.5, + "probability": 0.9878 + }, + { + "start": 1408.34, + "end": 1408.52, + "probability": 0.358 + }, + { + "start": 1408.52, + "end": 1410.67, + "probability": 0.7387 + }, + { + "start": 1410.74, + "end": 1414.56, + "probability": 0.9741 + }, + { + "start": 1415.02, + "end": 1416.3, + "probability": 0.8464 + }, + { + "start": 1416.62, + "end": 1418.62, + "probability": 0.9904 + }, + { + "start": 1419.1, + "end": 1422.74, + "probability": 0.9893 + }, + { + "start": 1422.84, + "end": 1423.88, + "probability": 0.8274 + }, + { + "start": 1424.04, + "end": 1425.58, + "probability": 0.9311 + }, + { + "start": 1425.68, + "end": 1429.5, + "probability": 0.9312 + }, + { + "start": 1429.88, + "end": 1432.42, + "probability": 0.8793 + }, + { + "start": 1432.56, + "end": 1435.56, + "probability": 0.9764 + }, + { + "start": 1435.58, + "end": 1435.7, + "probability": 0.6718 + }, + { + "start": 1435.82, + "end": 1438.26, + "probability": 0.7703 + }, + { + "start": 1438.7, + "end": 1439.28, + "probability": 0.9057 + }, + { + "start": 1439.38, + "end": 1443.72, + "probability": 0.9886 + }, + { + "start": 1444.1, + "end": 1444.84, + "probability": 0.929 + }, + { + "start": 1444.92, + "end": 1447.62, + "probability": 0.9873 + }, + { + "start": 1448.02, + "end": 1449.82, + "probability": 0.9203 + }, + { + "start": 1449.94, + "end": 1451.4, + "probability": 0.9165 + }, + { + "start": 1451.52, + "end": 1455.6, + "probability": 0.9669 + }, + { + "start": 1456.18, + "end": 1456.88, + "probability": 0.9505 + }, + { + "start": 1457.06, + "end": 1459.06, + "probability": 0.5897 + }, + { + "start": 1459.18, + "end": 1461.86, + "probability": 0.9895 + }, + { + "start": 1461.94, + "end": 1464.24, + "probability": 0.9595 + }, + { + "start": 1464.86, + "end": 1470.31, + "probability": 0.9641 + }, + { + "start": 1471.84, + "end": 1471.88, + "probability": 0.5536 + }, + { + "start": 1471.88, + "end": 1474.36, + "probability": 0.9944 + }, + { + "start": 1474.66, + "end": 1479.06, + "probability": 0.9981 + }, + { + "start": 1479.24, + "end": 1481.78, + "probability": 0.9473 + }, + { + "start": 1481.88, + "end": 1482.7, + "probability": 0.7678 + }, + { + "start": 1482.92, + "end": 1483.48, + "probability": 0.6594 + }, + { + "start": 1483.62, + "end": 1486.08, + "probability": 0.832 + }, + { + "start": 1486.4, + "end": 1488.9, + "probability": 0.7369 + }, + { + "start": 1489.02, + "end": 1491.48, + "probability": 0.7848 + }, + { + "start": 1491.94, + "end": 1492.51, + "probability": 0.8115 + }, + { + "start": 1492.9, + "end": 1495.38, + "probability": 0.9454 + }, + { + "start": 1495.94, + "end": 1497.74, + "probability": 0.738 + }, + { + "start": 1497.78, + "end": 1501.4, + "probability": 0.9978 + }, + { + "start": 1501.4, + "end": 1505.42, + "probability": 0.8824 + }, + { + "start": 1505.42, + "end": 1509.24, + "probability": 0.9946 + }, + { + "start": 1510.66, + "end": 1513.98, + "probability": 0.9906 + }, + { + "start": 1514.0, + "end": 1517.52, + "probability": 0.8613 + }, + { + "start": 1517.9, + "end": 1521.98, + "probability": 0.8815 + }, + { + "start": 1522.4, + "end": 1522.58, + "probability": 0.4679 + }, + { + "start": 1522.6, + "end": 1523.02, + "probability": 0.848 + }, + { + "start": 1523.08, + "end": 1525.78, + "probability": 0.7635 + }, + { + "start": 1526.42, + "end": 1526.42, + "probability": 0.011 + }, + { + "start": 1526.98, + "end": 1529.52, + "probability": 0.9771 + }, + { + "start": 1530.2, + "end": 1530.38, + "probability": 0.3557 + }, + { + "start": 1530.48, + "end": 1533.28, + "probability": 0.9778 + }, + { + "start": 1534.02, + "end": 1534.54, + "probability": 0.3553 + }, + { + "start": 1534.8, + "end": 1535.92, + "probability": 0.454 + }, + { + "start": 1536.1, + "end": 1537.46, + "probability": 0.7729 + }, + { + "start": 1537.56, + "end": 1539.82, + "probability": 0.7927 + }, + { + "start": 1539.96, + "end": 1540.0, + "probability": 0.0167 + }, + { + "start": 1540.0, + "end": 1540.28, + "probability": 0.1316 + }, + { + "start": 1543.54, + "end": 1546.4, + "probability": 0.7287 + }, + { + "start": 1547.06, + "end": 1548.0, + "probability": 0.8355 + }, + { + "start": 1548.02, + "end": 1548.32, + "probability": 0.4881 + }, + { + "start": 1548.44, + "end": 1549.59, + "probability": 0.8869 + }, + { + "start": 1551.64, + "end": 1555.16, + "probability": 0.4372 + }, + { + "start": 1555.16, + "end": 1555.58, + "probability": 0.5361 + }, + { + "start": 1555.58, + "end": 1557.88, + "probability": 0.9334 + }, + { + "start": 1557.96, + "end": 1560.48, + "probability": 0.8009 + }, + { + "start": 1560.58, + "end": 1562.14, + "probability": 0.8831 + }, + { + "start": 1562.28, + "end": 1562.68, + "probability": 0.4163 + }, + { + "start": 1563.34, + "end": 1565.24, + "probability": 0.2731 + }, + { + "start": 1565.54, + "end": 1566.4, + "probability": 0.3962 + }, + { + "start": 1566.4, + "end": 1567.51, + "probability": 0.7705 + }, + { + "start": 1568.06, + "end": 1568.2, + "probability": 0.3562 + }, + { + "start": 1568.24, + "end": 1569.26, + "probability": 0.2421 + }, + { + "start": 1569.34, + "end": 1570.96, + "probability": 0.8966 + }, + { + "start": 1571.18, + "end": 1575.64, + "probability": 0.9736 + }, + { + "start": 1575.76, + "end": 1577.6, + "probability": 0.8348 + }, + { + "start": 1577.7, + "end": 1578.58, + "probability": 0.2457 + }, + { + "start": 1580.02, + "end": 1580.48, + "probability": 0.3974 + }, + { + "start": 1581.06, + "end": 1583.62, + "probability": 0.6169 + }, + { + "start": 1583.72, + "end": 1586.02, + "probability": 0.8453 + }, + { + "start": 1586.02, + "end": 1586.26, + "probability": 0.9542 + }, + { + "start": 1587.02, + "end": 1590.72, + "probability": 0.5646 + }, + { + "start": 1591.06, + "end": 1592.78, + "probability": 0.8658 + }, + { + "start": 1592.88, + "end": 1594.46, + "probability": 0.725 + }, + { + "start": 1594.52, + "end": 1597.26, + "probability": 0.7166 + }, + { + "start": 1597.32, + "end": 1597.6, + "probability": 0.5964 + }, + { + "start": 1597.68, + "end": 1598.36, + "probability": 0.7501 + }, + { + "start": 1598.52, + "end": 1598.7, + "probability": 0.8582 + }, + { + "start": 1598.7, + "end": 1600.32, + "probability": 0.9946 + }, + { + "start": 1600.34, + "end": 1602.36, + "probability": 0.9655 + }, + { + "start": 1602.52, + "end": 1605.23, + "probability": 0.989 + }, + { + "start": 1605.48, + "end": 1608.62, + "probability": 0.7212 + }, + { + "start": 1609.2, + "end": 1610.88, + "probability": 0.8983 + }, + { + "start": 1611.2, + "end": 1612.42, + "probability": 0.9716 + }, + { + "start": 1613.26, + "end": 1616.74, + "probability": 0.842 + }, + { + "start": 1616.88, + "end": 1617.18, + "probability": 0.5684 + }, + { + "start": 1617.36, + "end": 1618.2, + "probability": 0.8227 + }, + { + "start": 1618.26, + "end": 1619.72, + "probability": 0.7171 + }, + { + "start": 1619.94, + "end": 1621.26, + "probability": 0.9481 + }, + { + "start": 1621.34, + "end": 1622.7, + "probability": 0.8667 + }, + { + "start": 1622.92, + "end": 1623.84, + "probability": 0.9414 + }, + { + "start": 1623.98, + "end": 1625.98, + "probability": 0.9756 + }, + { + "start": 1626.4, + "end": 1629.18, + "probability": 0.9863 + }, + { + "start": 1629.26, + "end": 1631.66, + "probability": 0.9436 + }, + { + "start": 1631.84, + "end": 1632.26, + "probability": 0.8614 + }, + { + "start": 1632.38, + "end": 1635.92, + "probability": 0.9847 + }, + { + "start": 1635.92, + "end": 1639.5, + "probability": 0.9915 + }, + { + "start": 1639.56, + "end": 1641.94, + "probability": 0.9917 + }, + { + "start": 1642.34, + "end": 1644.92, + "probability": 0.9436 + }, + { + "start": 1644.92, + "end": 1647.86, + "probability": 0.9967 + }, + { + "start": 1647.94, + "end": 1649.62, + "probability": 0.9925 + }, + { + "start": 1650.2, + "end": 1650.44, + "probability": 0.2397 + }, + { + "start": 1650.44, + "end": 1652.62, + "probability": 0.9933 + }, + { + "start": 1652.72, + "end": 1653.86, + "probability": 0.6902 + }, + { + "start": 1654.0, + "end": 1656.62, + "probability": 0.7462 + }, + { + "start": 1657.02, + "end": 1662.02, + "probability": 0.9851 + }, + { + "start": 1662.44, + "end": 1664.9, + "probability": 0.7411 + }, + { + "start": 1665.0, + "end": 1666.0, + "probability": 0.915 + }, + { + "start": 1666.1, + "end": 1668.14, + "probability": 0.9229 + }, + { + "start": 1668.7, + "end": 1670.88, + "probability": 0.9527 + }, + { + "start": 1671.08, + "end": 1674.16, + "probability": 0.9755 + }, + { + "start": 1674.34, + "end": 1679.1, + "probability": 0.9472 + }, + { + "start": 1679.98, + "end": 1682.25, + "probability": 0.8617 + }, + { + "start": 1682.72, + "end": 1684.22, + "probability": 0.9766 + }, + { + "start": 1684.52, + "end": 1688.86, + "probability": 0.9324 + }, + { + "start": 1688.96, + "end": 1691.06, + "probability": 0.9724 + }, + { + "start": 1691.62, + "end": 1692.2, + "probability": 0.2012 + }, + { + "start": 1692.26, + "end": 1693.42, + "probability": 0.7764 + }, + { + "start": 1693.46, + "end": 1695.44, + "probability": 0.8424 + }, + { + "start": 1695.84, + "end": 1697.52, + "probability": 0.8276 + }, + { + "start": 1697.6, + "end": 1700.3, + "probability": 0.9938 + }, + { + "start": 1700.3, + "end": 1702.96, + "probability": 0.9902 + }, + { + "start": 1703.36, + "end": 1704.96, + "probability": 0.917 + }, + { + "start": 1705.02, + "end": 1707.62, + "probability": 0.8193 + }, + { + "start": 1707.7, + "end": 1709.43, + "probability": 0.9045 + }, + { + "start": 1709.8, + "end": 1712.74, + "probability": 0.8441 + }, + { + "start": 1712.82, + "end": 1713.92, + "probability": 0.7774 + }, + { + "start": 1714.3, + "end": 1715.51, + "probability": 0.9909 + }, + { + "start": 1715.88, + "end": 1720.06, + "probability": 0.9147 + }, + { + "start": 1720.22, + "end": 1721.22, + "probability": 0.8663 + }, + { + "start": 1721.4, + "end": 1722.28, + "probability": 0.6846 + }, + { + "start": 1722.46, + "end": 1724.66, + "probability": 0.9857 + }, + { + "start": 1725.2, + "end": 1726.26, + "probability": 0.9976 + }, + { + "start": 1726.52, + "end": 1728.16, + "probability": 0.9969 + }, + { + "start": 1728.6, + "end": 1731.38, + "probability": 0.9827 + }, + { + "start": 1731.7, + "end": 1734.94, + "probability": 0.9039 + }, + { + "start": 1735.04, + "end": 1735.68, + "probability": 0.8711 + }, + { + "start": 1735.78, + "end": 1738.28, + "probability": 0.9972 + }, + { + "start": 1738.92, + "end": 1740.22, + "probability": 0.9969 + }, + { + "start": 1740.3, + "end": 1741.8, + "probability": 0.9897 + }, + { + "start": 1741.82, + "end": 1743.42, + "probability": 0.9966 + }, + { + "start": 1743.95, + "end": 1746.16, + "probability": 0.4936 + }, + { + "start": 1746.52, + "end": 1751.46, + "probability": 0.9816 + }, + { + "start": 1751.88, + "end": 1753.56, + "probability": 0.9972 + }, + { + "start": 1753.78, + "end": 1756.14, + "probability": 0.9966 + }, + { + "start": 1756.14, + "end": 1759.23, + "probability": 0.9855 + }, + { + "start": 1760.06, + "end": 1762.36, + "probability": 0.985 + }, + { + "start": 1762.88, + "end": 1764.4, + "probability": 0.6427 + }, + { + "start": 1764.52, + "end": 1767.14, + "probability": 0.9662 + }, + { + "start": 1767.56, + "end": 1768.34, + "probability": 0.659 + }, + { + "start": 1768.56, + "end": 1772.82, + "probability": 0.9313 + }, + { + "start": 1773.22, + "end": 1775.74, + "probability": 0.7907 + }, + { + "start": 1775.92, + "end": 1780.46, + "probability": 0.777 + }, + { + "start": 1780.5, + "end": 1780.66, + "probability": 0.3797 + }, + { + "start": 1782.28, + "end": 1784.44, + "probability": 0.8243 + }, + { + "start": 1784.58, + "end": 1785.82, + "probability": 0.9513 + }, + { + "start": 1785.9, + "end": 1788.22, + "probability": 0.8328 + }, + { + "start": 1788.5, + "end": 1795.18, + "probability": 0.9854 + }, + { + "start": 1795.54, + "end": 1796.76, + "probability": 0.9941 + }, + { + "start": 1796.82, + "end": 1798.81, + "probability": 0.9878 + }, + { + "start": 1799.9, + "end": 1802.72, + "probability": 0.9869 + }, + { + "start": 1803.08, + "end": 1805.04, + "probability": 0.8515 + }, + { + "start": 1805.48, + "end": 1807.7, + "probability": 0.9719 + }, + { + "start": 1807.8, + "end": 1809.47, + "probability": 0.993 + }, + { + "start": 1809.68, + "end": 1813.36, + "probability": 0.9933 + }, + { + "start": 1813.46, + "end": 1814.8, + "probability": 0.8879 + }, + { + "start": 1814.82, + "end": 1816.6, + "probability": 0.7512 + }, + { + "start": 1816.9, + "end": 1817.53, + "probability": 0.703 + }, + { + "start": 1817.64, + "end": 1819.48, + "probability": 0.9927 + }, + { + "start": 1819.62, + "end": 1820.62, + "probability": 0.8789 + }, + { + "start": 1820.9, + "end": 1826.2, + "probability": 0.9623 + }, + { + "start": 1826.3, + "end": 1827.96, + "probability": 0.8239 + }, + { + "start": 1828.16, + "end": 1829.34, + "probability": 0.7422 + }, + { + "start": 1829.56, + "end": 1830.88, + "probability": 0.7999 + }, + { + "start": 1831.06, + "end": 1831.98, + "probability": 0.9208 + }, + { + "start": 1832.02, + "end": 1833.46, + "probability": 0.9302 + }, + { + "start": 1833.62, + "end": 1837.36, + "probability": 0.9878 + }, + { + "start": 1837.54, + "end": 1839.26, + "probability": 0.8939 + }, + { + "start": 1839.42, + "end": 1840.52, + "probability": 0.9893 + }, + { + "start": 1840.56, + "end": 1841.62, + "probability": 0.7761 + }, + { + "start": 1841.7, + "end": 1843.4, + "probability": 0.7935 + }, + { + "start": 1843.5, + "end": 1845.78, + "probability": 0.9758 + }, + { + "start": 1845.82, + "end": 1849.72, + "probability": 0.9897 + }, + { + "start": 1849.72, + "end": 1849.72, + "probability": 0.1345 + }, + { + "start": 1849.72, + "end": 1849.72, + "probability": 0.1481 + }, + { + "start": 1849.72, + "end": 1849.72, + "probability": 0.33 + }, + { + "start": 1849.72, + "end": 1850.1, + "probability": 0.3745 + }, + { + "start": 1850.26, + "end": 1852.84, + "probability": 0.5177 + }, + { + "start": 1852.84, + "end": 1852.94, + "probability": 0.0834 + }, + { + "start": 1853.72, + "end": 1857.86, + "probability": 0.9251 + }, + { + "start": 1857.86, + "end": 1859.14, + "probability": 0.6841 + }, + { + "start": 1859.18, + "end": 1860.5, + "probability": 0.899 + }, + { + "start": 1860.92, + "end": 1862.28, + "probability": 0.9977 + }, + { + "start": 1862.34, + "end": 1865.5, + "probability": 0.9835 + }, + { + "start": 1866.32, + "end": 1868.94, + "probability": 0.9567 + }, + { + "start": 1869.22, + "end": 1874.58, + "probability": 0.9562 + }, + { + "start": 1874.68, + "end": 1876.31, + "probability": 0.9922 + }, + { + "start": 1876.52, + "end": 1877.16, + "probability": 0.4867 + }, + { + "start": 1877.52, + "end": 1878.87, + "probability": 0.9266 + }, + { + "start": 1879.06, + "end": 1880.05, + "probability": 0.9944 + }, + { + "start": 1880.4, + "end": 1882.38, + "probability": 0.9843 + }, + { + "start": 1882.76, + "end": 1885.65, + "probability": 0.9976 + }, + { + "start": 1885.92, + "end": 1887.21, + "probability": 0.5818 + }, + { + "start": 1887.24, + "end": 1888.38, + "probability": 0.5525 + }, + { + "start": 1888.38, + "end": 1890.88, + "probability": 0.6898 + }, + { + "start": 1890.94, + "end": 1891.2, + "probability": 0.4378 + }, + { + "start": 1891.36, + "end": 1892.88, + "probability": 0.8171 + }, + { + "start": 1893.4, + "end": 1894.84, + "probability": 0.5798 + }, + { + "start": 1895.66, + "end": 1897.22, + "probability": 0.4075 + }, + { + "start": 1897.36, + "end": 1899.1, + "probability": 0.6836 + }, + { + "start": 1899.2, + "end": 1900.22, + "probability": 0.8631 + }, + { + "start": 1900.22, + "end": 1900.22, + "probability": 0.5207 + }, + { + "start": 1900.34, + "end": 1902.8, + "probability": 0.8135 + }, + { + "start": 1902.94, + "end": 1905.26, + "probability": 0.8132 + }, + { + "start": 1905.78, + "end": 1908.12, + "probability": 0.6292 + }, + { + "start": 1908.22, + "end": 1908.66, + "probability": 0.9081 + }, + { + "start": 1908.84, + "end": 1910.58, + "probability": 0.9407 + }, + { + "start": 1910.58, + "end": 1912.54, + "probability": 0.9976 + }, + { + "start": 1912.7, + "end": 1913.7, + "probability": 0.9636 + }, + { + "start": 1913.74, + "end": 1914.36, + "probability": 0.8263 + }, + { + "start": 1914.42, + "end": 1915.4, + "probability": 0.9025 + }, + { + "start": 1915.6, + "end": 1921.06, + "probability": 0.9909 + }, + { + "start": 1921.3, + "end": 1925.62, + "probability": 0.9951 + }, + { + "start": 1926.04, + "end": 1926.26, + "probability": 0.0508 + }, + { + "start": 1926.26, + "end": 1926.86, + "probability": 0.8025 + }, + { + "start": 1926.96, + "end": 1929.6, + "probability": 0.7988 + }, + { + "start": 1929.78, + "end": 1930.04, + "probability": 0.7922 + }, + { + "start": 1931.16, + "end": 1933.38, + "probability": 0.7981 + }, + { + "start": 1935.2, + "end": 1935.26, + "probability": 0.2588 + }, + { + "start": 1935.26, + "end": 1936.8, + "probability": 0.5 + }, + { + "start": 1937.3, + "end": 1942.26, + "probability": 0.9874 + }, + { + "start": 1942.36, + "end": 1946.24, + "probability": 0.938 + }, + { + "start": 1946.4, + "end": 1947.16, + "probability": 0.8276 + }, + { + "start": 1947.78, + "end": 1949.06, + "probability": 0.8424 + }, + { + "start": 1949.66, + "end": 1950.84, + "probability": 0.9834 + }, + { + "start": 1951.32, + "end": 1952.56, + "probability": 0.9652 + }, + { + "start": 1952.78, + "end": 1957.08, + "probability": 0.9803 + }, + { + "start": 1957.08, + "end": 1960.18, + "probability": 0.9936 + }, + { + "start": 1961.52, + "end": 1962.86, + "probability": 0.836 + }, + { + "start": 1962.9, + "end": 1963.1, + "probability": 0.7922 + }, + { + "start": 1963.18, + "end": 1964.04, + "probability": 0.9449 + }, + { + "start": 1964.1, + "end": 1964.68, + "probability": 0.8473 + }, + { + "start": 1964.8, + "end": 1967.89, + "probability": 0.7939 + }, + { + "start": 1969.38, + "end": 1974.46, + "probability": 0.8512 + }, + { + "start": 1974.58, + "end": 1978.9, + "probability": 0.9525 + }, + { + "start": 1978.98, + "end": 1980.52, + "probability": 0.9505 + }, + { + "start": 1980.54, + "end": 1981.48, + "probability": 0.6641 + }, + { + "start": 1981.82, + "end": 1983.06, + "probability": 0.9612 + }, + { + "start": 1983.14, + "end": 1985.68, + "probability": 0.6393 + }, + { + "start": 1986.06, + "end": 1987.46, + "probability": 0.967 + }, + { + "start": 1987.76, + "end": 1991.2, + "probability": 0.7733 + }, + { + "start": 1991.52, + "end": 1992.4, + "probability": 0.7592 + }, + { + "start": 1992.44, + "end": 1994.32, + "probability": 0.7257 + }, + { + "start": 1995.08, + "end": 1996.34, + "probability": 0.8702 + }, + { + "start": 1996.58, + "end": 1997.8, + "probability": 0.6419 + }, + { + "start": 1997.88, + "end": 1998.24, + "probability": 0.3782 + }, + { + "start": 1998.26, + "end": 1999.72, + "probability": 0.7279 + }, + { + "start": 1999.9, + "end": 2000.2, + "probability": 0.5941 + }, + { + "start": 2000.22, + "end": 2002.4, + "probability": 0.6768 + }, + { + "start": 2005.04, + "end": 2005.68, + "probability": 0.5891 + }, + { + "start": 2005.88, + "end": 2006.84, + "probability": 0.7328 + }, + { + "start": 2006.98, + "end": 2008.84, + "probability": 0.9046 + }, + { + "start": 2008.98, + "end": 2012.82, + "probability": 0.6885 + }, + { + "start": 2014.06, + "end": 2017.34, + "probability": 0.9487 + }, + { + "start": 2018.18, + "end": 2020.82, + "probability": 0.9881 + }, + { + "start": 2020.82, + "end": 2025.12, + "probability": 0.9955 + }, + { + "start": 2025.96, + "end": 2028.56, + "probability": 0.9551 + }, + { + "start": 2028.56, + "end": 2032.3, + "probability": 0.9725 + }, + { + "start": 2032.78, + "end": 2033.64, + "probability": 0.78 + }, + { + "start": 2034.44, + "end": 2038.82, + "probability": 0.985 + }, + { + "start": 2038.82, + "end": 2043.34, + "probability": 0.9378 + }, + { + "start": 2043.68, + "end": 2045.82, + "probability": 0.9677 + }, + { + "start": 2046.66, + "end": 2048.14, + "probability": 0.7181 + }, + { + "start": 2048.24, + "end": 2052.28, + "probability": 0.9375 + }, + { + "start": 2052.48, + "end": 2055.64, + "probability": 0.9572 + }, + { + "start": 2055.64, + "end": 2059.02, + "probability": 0.8479 + }, + { + "start": 2059.1, + "end": 2059.52, + "probability": 0.6529 + }, + { + "start": 2060.3, + "end": 2061.7, + "probability": 0.7692 + }, + { + "start": 2061.82, + "end": 2063.12, + "probability": 0.6782 + }, + { + "start": 2063.16, + "end": 2064.02, + "probability": 0.7585 + }, + { + "start": 2064.1, + "end": 2066.96, + "probability": 0.788 + }, + { + "start": 2067.02, + "end": 2067.84, + "probability": 0.8894 + }, + { + "start": 2067.94, + "end": 2069.3, + "probability": 0.8257 + }, + { + "start": 2069.3, + "end": 2073.26, + "probability": 0.9931 + }, + { + "start": 2073.7, + "end": 2076.38, + "probability": 0.9911 + }, + { + "start": 2076.92, + "end": 2082.3, + "probability": 0.9656 + }, + { + "start": 2082.72, + "end": 2085.85, + "probability": 0.9868 + }, + { + "start": 2086.14, + "end": 2087.47, + "probability": 0.9344 + }, + { + "start": 2087.8, + "end": 2090.86, + "probability": 0.906 + }, + { + "start": 2090.9, + "end": 2093.02, + "probability": 0.9017 + }, + { + "start": 2093.48, + "end": 2096.74, + "probability": 0.9755 + }, + { + "start": 2096.82, + "end": 2097.62, + "probability": 0.6974 + }, + { + "start": 2098.32, + "end": 2103.38, + "probability": 0.9929 + }, + { + "start": 2104.0, + "end": 2106.22, + "probability": 0.8857 + }, + { + "start": 2106.52, + "end": 2107.54, + "probability": 0.7815 + }, + { + "start": 2107.6, + "end": 2109.22, + "probability": 0.878 + }, + { + "start": 2109.44, + "end": 2111.46, + "probability": 0.998 + }, + { + "start": 2111.8, + "end": 2114.3, + "probability": 0.6676 + }, + { + "start": 2114.68, + "end": 2115.42, + "probability": 0.6907 + }, + { + "start": 2115.48, + "end": 2117.82, + "probability": 0.9896 + }, + { + "start": 2118.42, + "end": 2120.14, + "probability": 0.9427 + }, + { + "start": 2120.22, + "end": 2123.2, + "probability": 0.8826 + }, + { + "start": 2123.26, + "end": 2126.34, + "probability": 0.9772 + }, + { + "start": 2126.72, + "end": 2127.76, + "probability": 0.3267 + }, + { + "start": 2127.88, + "end": 2129.6, + "probability": 0.8114 + }, + { + "start": 2129.88, + "end": 2131.66, + "probability": 0.4212 + }, + { + "start": 2132.82, + "end": 2133.4, + "probability": 0.6778 + }, + { + "start": 2133.5, + "end": 2136.26, + "probability": 0.9526 + }, + { + "start": 2136.4, + "end": 2139.56, + "probability": 0.9797 + }, + { + "start": 2140.46, + "end": 2143.16, + "probability": 0.6581 + }, + { + "start": 2143.98, + "end": 2145.82, + "probability": 0.745 + }, + { + "start": 2145.86, + "end": 2149.6, + "probability": 0.9774 + }, + { + "start": 2149.74, + "end": 2151.04, + "probability": 0.9054 + }, + { + "start": 2151.24, + "end": 2151.98, + "probability": 0.4385 + }, + { + "start": 2152.34, + "end": 2156.56, + "probability": 0.9856 + }, + { + "start": 2156.72, + "end": 2157.12, + "probability": 0.3759 + }, + { + "start": 2157.27, + "end": 2161.06, + "probability": 0.9638 + }, + { + "start": 2161.12, + "end": 2162.3, + "probability": 0.9055 + }, + { + "start": 2162.76, + "end": 2164.1, + "probability": 0.962 + }, + { + "start": 2164.1, + "end": 2166.8, + "probability": 0.9574 + }, + { + "start": 2166.86, + "end": 2170.62, + "probability": 0.8153 + }, + { + "start": 2170.74, + "end": 2175.94, + "probability": 0.9558 + }, + { + "start": 2176.16, + "end": 2178.48, + "probability": 0.7653 + }, + { + "start": 2178.56, + "end": 2181.64, + "probability": 0.851 + }, + { + "start": 2182.68, + "end": 2185.46, + "probability": 0.8844 + }, + { + "start": 2186.02, + "end": 2188.62, + "probability": 0.9976 + }, + { + "start": 2188.62, + "end": 2192.04, + "probability": 0.9678 + }, + { + "start": 2192.34, + "end": 2194.74, + "probability": 0.9828 + }, + { + "start": 2195.24, + "end": 2198.09, + "probability": 0.9915 + }, + { + "start": 2198.1, + "end": 2199.12, + "probability": 0.7568 + }, + { + "start": 2199.2, + "end": 2201.04, + "probability": 0.7564 + }, + { + "start": 2201.12, + "end": 2203.44, + "probability": 0.9173 + }, + { + "start": 2203.58, + "end": 2204.06, + "probability": 0.7137 + }, + { + "start": 2204.2, + "end": 2207.82, + "probability": 0.6044 + }, + { + "start": 2208.02, + "end": 2210.87, + "probability": 0.9066 + }, + { + "start": 2211.76, + "end": 2215.14, + "probability": 0.9804 + }, + { + "start": 2216.36, + "end": 2220.72, + "probability": 0.7708 + }, + { + "start": 2220.72, + "end": 2224.16, + "probability": 0.8918 + }, + { + "start": 2224.58, + "end": 2227.54, + "probability": 0.9985 + }, + { + "start": 2227.54, + "end": 2230.22, + "probability": 0.999 + }, + { + "start": 2230.4, + "end": 2231.28, + "probability": 0.7217 + }, + { + "start": 2231.88, + "end": 2234.36, + "probability": 0.9883 + }, + { + "start": 2234.76, + "end": 2238.04, + "probability": 0.86 + }, + { + "start": 2238.68, + "end": 2239.48, + "probability": 0.8553 + }, + { + "start": 2239.86, + "end": 2242.5, + "probability": 0.9793 + }, + { + "start": 2242.5, + "end": 2245.28, + "probability": 0.9984 + }, + { + "start": 2245.46, + "end": 2246.58, + "probability": 0.9701 + }, + { + "start": 2246.72, + "end": 2250.42, + "probability": 0.9871 + }, + { + "start": 2250.58, + "end": 2252.72, + "probability": 0.9456 + }, + { + "start": 2253.16, + "end": 2256.42, + "probability": 0.8671 + }, + { + "start": 2256.54, + "end": 2259.2, + "probability": 0.9909 + }, + { + "start": 2259.36, + "end": 2260.36, + "probability": 0.9629 + }, + { + "start": 2261.0, + "end": 2262.86, + "probability": 0.9463 + }, + { + "start": 2263.72, + "end": 2263.96, + "probability": 0.5207 + }, + { + "start": 2264.06, + "end": 2264.76, + "probability": 0.8665 + }, + { + "start": 2264.84, + "end": 2267.48, + "probability": 0.9912 + }, + { + "start": 2267.56, + "end": 2268.72, + "probability": 0.9889 + }, + { + "start": 2268.86, + "end": 2271.76, + "probability": 0.9207 + }, + { + "start": 2272.04, + "end": 2275.48, + "probability": 0.9851 + }, + { + "start": 2275.6, + "end": 2277.48, + "probability": 0.5925 + }, + { + "start": 2277.83, + "end": 2281.16, + "probability": 0.9756 + }, + { + "start": 2281.24, + "end": 2283.04, + "probability": 0.9604 + }, + { + "start": 2283.8, + "end": 2288.08, + "probability": 0.8506 + }, + { + "start": 2288.16, + "end": 2290.62, + "probability": 0.9902 + }, + { + "start": 2290.84, + "end": 2292.58, + "probability": 0.8023 + }, + { + "start": 2292.86, + "end": 2294.14, + "probability": 0.9198 + }, + { + "start": 2294.34, + "end": 2296.56, + "probability": 0.9304 + }, + { + "start": 2297.4, + "end": 2299.58, + "probability": 0.8998 + }, + { + "start": 2299.74, + "end": 2300.0, + "probability": 0.2648 + }, + { + "start": 2300.02, + "end": 2302.56, + "probability": 0.9915 + }, + { + "start": 2303.02, + "end": 2304.94, + "probability": 0.9585 + }, + { + "start": 2305.14, + "end": 2306.68, + "probability": 0.9492 + }, + { + "start": 2306.68, + "end": 2307.86, + "probability": 0.843 + }, + { + "start": 2308.1, + "end": 2313.54, + "probability": 0.9176 + }, + { + "start": 2313.92, + "end": 2315.48, + "probability": 0.9881 + }, + { + "start": 2315.56, + "end": 2316.74, + "probability": 0.882 + }, + { + "start": 2316.92, + "end": 2319.16, + "probability": 0.5712 + }, + { + "start": 2319.54, + "end": 2320.04, + "probability": 0.4245 + }, + { + "start": 2320.16, + "end": 2321.9, + "probability": 0.7123 + }, + { + "start": 2322.0, + "end": 2325.96, + "probability": 0.9733 + }, + { + "start": 2326.36, + "end": 2329.36, + "probability": 0.9786 + }, + { + "start": 2329.5, + "end": 2333.44, + "probability": 0.9956 + }, + { + "start": 2333.54, + "end": 2334.74, + "probability": 0.8484 + }, + { + "start": 2334.86, + "end": 2336.01, + "probability": 0.8423 + }, + { + "start": 2336.8, + "end": 2339.08, + "probability": 0.9275 + }, + { + "start": 2340.04, + "end": 2341.74, + "probability": 0.747 + }, + { + "start": 2341.8, + "end": 2342.82, + "probability": 0.795 + }, + { + "start": 2343.36, + "end": 2346.68, + "probability": 0.9934 + }, + { + "start": 2346.86, + "end": 2350.94, + "probability": 0.9731 + }, + { + "start": 2351.04, + "end": 2352.12, + "probability": 0.7935 + }, + { + "start": 2352.56, + "end": 2356.15, + "probability": 0.9907 + }, + { + "start": 2356.82, + "end": 2359.38, + "probability": 0.9858 + }, + { + "start": 2359.44, + "end": 2360.98, + "probability": 0.8285 + }, + { + "start": 2361.08, + "end": 2362.66, + "probability": 0.9857 + }, + { + "start": 2362.88, + "end": 2366.18, + "probability": 0.95 + }, + { + "start": 2367.0, + "end": 2372.24, + "probability": 0.9505 + }, + { + "start": 2372.32, + "end": 2377.66, + "probability": 0.917 + }, + { + "start": 2378.12, + "end": 2378.64, + "probability": 0.6728 + }, + { + "start": 2378.8, + "end": 2380.94, + "probability": 0.932 + }, + { + "start": 2381.2, + "end": 2382.94, + "probability": 0.8073 + }, + { + "start": 2383.34, + "end": 2385.22, + "probability": 0.9535 + }, + { + "start": 2385.26, + "end": 2387.2, + "probability": 0.8326 + }, + { + "start": 2387.46, + "end": 2390.06, + "probability": 0.8918 + }, + { + "start": 2391.98, + "end": 2396.6, + "probability": 0.9348 + }, + { + "start": 2397.34, + "end": 2399.9, + "probability": 0.9938 + }, + { + "start": 2399.9, + "end": 2402.52, + "probability": 0.8667 + }, + { + "start": 2402.74, + "end": 2403.67, + "probability": 0.6748 + }, + { + "start": 2404.2, + "end": 2405.76, + "probability": 0.9902 + }, + { + "start": 2405.8, + "end": 2408.68, + "probability": 0.9685 + }, + { + "start": 2408.76, + "end": 2410.4, + "probability": 0.7866 + }, + { + "start": 2410.64, + "end": 2412.78, + "probability": 0.8722 + }, + { + "start": 2412.92, + "end": 2414.66, + "probability": 0.9519 + }, + { + "start": 2415.04, + "end": 2418.28, + "probability": 0.9944 + }, + { + "start": 2418.72, + "end": 2421.16, + "probability": 0.9591 + }, + { + "start": 2421.16, + "end": 2423.52, + "probability": 0.979 + }, + { + "start": 2423.58, + "end": 2425.4, + "probability": 0.9633 + }, + { + "start": 2425.8, + "end": 2428.28, + "probability": 0.9786 + }, + { + "start": 2428.28, + "end": 2432.38, + "probability": 0.9675 + }, + { + "start": 2432.56, + "end": 2432.74, + "probability": 0.9604 + }, + { + "start": 2435.22, + "end": 2435.68, + "probability": 0.0723 + }, + { + "start": 2435.68, + "end": 2438.48, + "probability": 0.3617 + }, + { + "start": 2438.86, + "end": 2440.72, + "probability": 0.7421 + }, + { + "start": 2440.84, + "end": 2441.88, + "probability": 0.8625 + }, + { + "start": 2441.94, + "end": 2445.42, + "probability": 0.8442 + }, + { + "start": 2446.1, + "end": 2448.16, + "probability": 0.7432 + }, + { + "start": 2448.16, + "end": 2451.04, + "probability": 0.9795 + }, + { + "start": 2452.36, + "end": 2454.63, + "probability": 0.7275 + }, + { + "start": 2455.62, + "end": 2456.1, + "probability": 0.0146 + }, + { + "start": 2456.1, + "end": 2456.82, + "probability": 0.591 + }, + { + "start": 2456.9, + "end": 2458.0, + "probability": 0.8921 + }, + { + "start": 2458.66, + "end": 2459.64, + "probability": 0.6015 + }, + { + "start": 2459.88, + "end": 2463.14, + "probability": 0.7896 + }, + { + "start": 2463.14, + "end": 2467.06, + "probability": 0.9843 + }, + { + "start": 2467.64, + "end": 2470.8, + "probability": 0.9958 + }, + { + "start": 2470.9, + "end": 2473.0, + "probability": 0.9763 + }, + { + "start": 2473.0, + "end": 2475.24, + "probability": 0.9824 + }, + { + "start": 2475.84, + "end": 2477.88, + "probability": 0.7287 + }, + { + "start": 2479.08, + "end": 2482.8, + "probability": 0.9043 + }, + { + "start": 2482.92, + "end": 2483.64, + "probability": 0.8622 + }, + { + "start": 2483.98, + "end": 2487.36, + "probability": 0.9272 + }, + { + "start": 2487.48, + "end": 2488.54, + "probability": 0.8365 + }, + { + "start": 2488.72, + "end": 2488.9, + "probability": 0.3293 + }, + { + "start": 2488.96, + "end": 2492.12, + "probability": 0.8683 + }, + { + "start": 2492.22, + "end": 2494.38, + "probability": 0.0951 + }, + { + "start": 2494.52, + "end": 2494.86, + "probability": 0.4548 + }, + { + "start": 2495.2, + "end": 2500.38, + "probability": 0.9387 + }, + { + "start": 2500.84, + "end": 2501.16, + "probability": 0.1167 + }, + { + "start": 2501.28, + "end": 2503.46, + "probability": 0.9157 + }, + { + "start": 2503.48, + "end": 2505.24, + "probability": 0.8607 + }, + { + "start": 2505.3, + "end": 2510.89, + "probability": 0.9886 + }, + { + "start": 2511.54, + "end": 2512.32, + "probability": 0.7693 + }, + { + "start": 2512.46, + "end": 2515.68, + "probability": 0.9962 + }, + { + "start": 2515.78, + "end": 2516.88, + "probability": 0.7185 + }, + { + "start": 2516.98, + "end": 2518.96, + "probability": 0.9672 + }, + { + "start": 2518.96, + "end": 2524.56, + "probability": 0.7474 + }, + { + "start": 2524.6, + "end": 2528.44, + "probability": 0.9951 + }, + { + "start": 2528.48, + "end": 2529.02, + "probability": 0.8824 + }, + { + "start": 2529.22, + "end": 2531.26, + "probability": 0.7973 + }, + { + "start": 2531.38, + "end": 2532.18, + "probability": 0.3031 + }, + { + "start": 2532.58, + "end": 2535.28, + "probability": 0.7691 + }, + { + "start": 2535.36, + "end": 2536.68, + "probability": 0.8289 + }, + { + "start": 2536.78, + "end": 2538.14, + "probability": 0.7614 + }, + { + "start": 2538.54, + "end": 2539.96, + "probability": 0.451 + }, + { + "start": 2541.26, + "end": 2543.9, + "probability": 0.3537 + }, + { + "start": 2543.9, + "end": 2546.34, + "probability": 0.5646 + }, + { + "start": 2547.0, + "end": 2549.52, + "probability": 0.8462 + }, + { + "start": 2549.92, + "end": 2550.72, + "probability": 0.2774 + }, + { + "start": 2550.72, + "end": 2555.16, + "probability": 0.6746 + }, + { + "start": 2555.26, + "end": 2555.86, + "probability": 0.2887 + }, + { + "start": 2556.68, + "end": 2559.02, + "probability": 0.553 + }, + { + "start": 2560.22, + "end": 2563.3, + "probability": 0.6905 + }, + { + "start": 2563.92, + "end": 2565.44, + "probability": 0.7661 + }, + { + "start": 2565.6, + "end": 2566.74, + "probability": 0.7228 + }, + { + "start": 2566.8, + "end": 2572.1, + "probability": 0.8892 + }, + { + "start": 2572.78, + "end": 2577.8, + "probability": 0.7846 + }, + { + "start": 2577.84, + "end": 2582.0, + "probability": 0.9909 + }, + { + "start": 2582.0, + "end": 2585.6, + "probability": 0.9962 + }, + { + "start": 2586.18, + "end": 2588.34, + "probability": 0.9977 + }, + { + "start": 2588.34, + "end": 2591.38, + "probability": 0.9992 + }, + { + "start": 2591.52, + "end": 2597.26, + "probability": 0.9775 + }, + { + "start": 2597.6, + "end": 2598.62, + "probability": 0.8254 + }, + { + "start": 2598.72, + "end": 2603.81, + "probability": 0.9755 + }, + { + "start": 2604.06, + "end": 2605.2, + "probability": 0.9335 + }, + { + "start": 2605.42, + "end": 2607.3, + "probability": 0.9596 + }, + { + "start": 2607.74, + "end": 2609.2, + "probability": 0.8565 + }, + { + "start": 2609.4, + "end": 2610.6, + "probability": 0.7534 + }, + { + "start": 2610.92, + "end": 2614.17, + "probability": 0.7225 + }, + { + "start": 2614.9, + "end": 2615.78, + "probability": 0.9421 + }, + { + "start": 2616.12, + "end": 2618.81, + "probability": 0.8818 + }, + { + "start": 2620.86, + "end": 2622.4, + "probability": 0.7196 + }, + { + "start": 2622.5, + "end": 2623.94, + "probability": 0.7854 + }, + { + "start": 2624.22, + "end": 2625.04, + "probability": 0.6354 + }, + { + "start": 2625.7, + "end": 2628.88, + "probability": 0.7225 + }, + { + "start": 2630.08, + "end": 2635.72, + "probability": 0.9236 + }, + { + "start": 2635.84, + "end": 2640.24, + "probability": 0.84 + }, + { + "start": 2640.76, + "end": 2642.3, + "probability": 0.8622 + }, + { + "start": 2642.68, + "end": 2646.76, + "probability": 0.8755 + }, + { + "start": 2646.94, + "end": 2648.62, + "probability": 0.7402 + }, + { + "start": 2649.8, + "end": 2655.84, + "probability": 0.8838 + }, + { + "start": 2655.96, + "end": 2657.73, + "probability": 0.8828 + }, + { + "start": 2669.46, + "end": 2672.16, + "probability": 0.7078 + }, + { + "start": 2673.62, + "end": 2679.6, + "probability": 0.9129 + }, + { + "start": 2681.08, + "end": 2688.28, + "probability": 0.9784 + }, + { + "start": 2689.34, + "end": 2691.06, + "probability": 0.9172 + }, + { + "start": 2691.76, + "end": 2696.8, + "probability": 0.7176 + }, + { + "start": 2697.8, + "end": 2700.28, + "probability": 0.7993 + }, + { + "start": 2700.82, + "end": 2701.62, + "probability": 0.4543 + }, + { + "start": 2702.24, + "end": 2704.26, + "probability": 0.7403 + }, + { + "start": 2704.88, + "end": 2705.0, + "probability": 0.7673 + }, + { + "start": 2705.36, + "end": 2707.0, + "probability": 0.7339 + }, + { + "start": 2707.74, + "end": 2708.82, + "probability": 0.83 + }, + { + "start": 2708.94, + "end": 2710.14, + "probability": 0.888 + }, + { + "start": 2710.26, + "end": 2713.74, + "probability": 0.6062 + }, + { + "start": 2713.82, + "end": 2715.64, + "probability": 0.8013 + }, + { + "start": 2716.48, + "end": 2719.88, + "probability": 0.9921 + }, + { + "start": 2719.88, + "end": 2723.54, + "probability": 0.926 + }, + { + "start": 2724.26, + "end": 2724.6, + "probability": 0.4848 + }, + { + "start": 2724.7, + "end": 2727.9, + "probability": 0.9839 + }, + { + "start": 2727.9, + "end": 2731.76, + "probability": 0.9843 + }, + { + "start": 2732.24, + "end": 2737.0, + "probability": 0.987 + }, + { + "start": 2737.84, + "end": 2742.22, + "probability": 0.9653 + }, + { + "start": 2742.48, + "end": 2744.48, + "probability": 0.8591 + }, + { + "start": 2745.34, + "end": 2748.9, + "probability": 0.9878 + }, + { + "start": 2748.9, + "end": 2753.36, + "probability": 0.989 + }, + { + "start": 2753.68, + "end": 2756.24, + "probability": 0.7526 + }, + { + "start": 2757.12, + "end": 2760.3, + "probability": 0.742 + }, + { + "start": 2760.72, + "end": 2762.96, + "probability": 0.9958 + }, + { + "start": 2762.96, + "end": 2765.66, + "probability": 0.9761 + }, + { + "start": 2766.1, + "end": 2766.8, + "probability": 0.6556 + }, + { + "start": 2767.54, + "end": 2770.54, + "probability": 0.9576 + }, + { + "start": 2770.9, + "end": 2773.58, + "probability": 0.6954 + }, + { + "start": 2773.66, + "end": 2774.86, + "probability": 0.9535 + }, + { + "start": 2774.94, + "end": 2776.96, + "probability": 0.9761 + }, + { + "start": 2777.2, + "end": 2778.98, + "probability": 0.96 + }, + { + "start": 2781.82, + "end": 2782.98, + "probability": 0.5713 + }, + { + "start": 2783.54, + "end": 2784.8, + "probability": 0.2302 + }, + { + "start": 2786.52, + "end": 2786.94, + "probability": 0.1974 + }, + { + "start": 2786.94, + "end": 2788.18, + "probability": 0.2125 + }, + { + "start": 2789.02, + "end": 2789.36, + "probability": 0.351 + }, + { + "start": 2789.44, + "end": 2792.04, + "probability": 0.9047 + }, + { + "start": 2793.1, + "end": 2795.0, + "probability": 0.556 + }, + { + "start": 2797.32, + "end": 2799.24, + "probability": 0.7564 + }, + { + "start": 2800.42, + "end": 2810.8, + "probability": 0.9901 + }, + { + "start": 2810.92, + "end": 2817.67, + "probability": 0.8297 + }, + { + "start": 2820.52, + "end": 2827.0, + "probability": 0.9596 + }, + { + "start": 2828.51, + "end": 2832.62, + "probability": 0.7892 + }, + { + "start": 2832.74, + "end": 2834.22, + "probability": 0.6646 + }, + { + "start": 2834.26, + "end": 2839.41, + "probability": 0.979 + }, + { + "start": 2839.93, + "end": 2845.16, + "probability": 0.9128 + }, + { + "start": 2845.2, + "end": 2850.64, + "probability": 0.9939 + }, + { + "start": 2850.64, + "end": 2853.02, + "probability": 0.9875 + }, + { + "start": 2854.12, + "end": 2856.08, + "probability": 0.726 + }, + { + "start": 2856.16, + "end": 2859.22, + "probability": 0.9034 + }, + { + "start": 2860.85, + "end": 2861.72, + "probability": 0.6838 + }, + { + "start": 2861.84, + "end": 2865.6, + "probability": 0.9916 + }, + { + "start": 2865.6, + "end": 2870.22, + "probability": 0.995 + }, + { + "start": 2870.34, + "end": 2870.74, + "probability": 0.7353 + }, + { + "start": 2871.12, + "end": 2872.32, + "probability": 0.7867 + }, + { + "start": 2872.54, + "end": 2874.64, + "probability": 0.9511 + }, + { + "start": 2874.88, + "end": 2877.62, + "probability": 0.9504 + }, + { + "start": 2877.62, + "end": 2881.28, + "probability": 0.9985 + }, + { + "start": 2881.34, + "end": 2883.88, + "probability": 0.8247 + }, + { + "start": 2884.06, + "end": 2886.8, + "probability": 0.9643 + }, + { + "start": 2887.34, + "end": 2889.66, + "probability": 0.9774 + }, + { + "start": 2889.8, + "end": 2893.26, + "probability": 0.7718 + }, + { + "start": 2893.26, + "end": 2901.4, + "probability": 0.8431 + }, + { + "start": 2902.38, + "end": 2904.24, + "probability": 0.995 + }, + { + "start": 2904.62, + "end": 2905.52, + "probability": 0.9431 + }, + { + "start": 2906.24, + "end": 2910.62, + "probability": 0.99 + }, + { + "start": 2910.62, + "end": 2914.82, + "probability": 0.8732 + }, + { + "start": 2914.94, + "end": 2917.56, + "probability": 0.9909 + }, + { + "start": 2918.36, + "end": 2920.38, + "probability": 0.8944 + }, + { + "start": 2920.38, + "end": 2921.2, + "probability": 0.2325 + }, + { + "start": 2921.94, + "end": 2923.19, + "probability": 0.9805 + }, + { + "start": 2923.42, + "end": 2927.48, + "probability": 0.9847 + }, + { + "start": 2927.56, + "end": 2928.46, + "probability": 0.9558 + }, + { + "start": 2928.6, + "end": 2928.88, + "probability": 0.8527 + }, + { + "start": 2928.96, + "end": 2931.6, + "probability": 0.9921 + }, + { + "start": 2931.7, + "end": 2933.94, + "probability": 0.7602 + }, + { + "start": 2934.32, + "end": 2936.36, + "probability": 0.9979 + }, + { + "start": 2936.44, + "end": 2937.59, + "probability": 0.9902 + }, + { + "start": 2938.34, + "end": 2942.84, + "probability": 0.9656 + }, + { + "start": 2942.94, + "end": 2944.44, + "probability": 0.9497 + }, + { + "start": 2944.6, + "end": 2947.41, + "probability": 0.9821 + }, + { + "start": 2948.98, + "end": 2949.82, + "probability": 0.6988 + }, + { + "start": 2950.54, + "end": 2952.42, + "probability": 0.6888 + }, + { + "start": 2959.72, + "end": 2960.48, + "probability": 0.524 + }, + { + "start": 2960.74, + "end": 2961.88, + "probability": 0.6945 + }, + { + "start": 2962.06, + "end": 2965.46, + "probability": 0.9773 + }, + { + "start": 2965.54, + "end": 2969.84, + "probability": 0.8511 + }, + { + "start": 2970.76, + "end": 2975.66, + "probability": 0.9818 + }, + { + "start": 2976.18, + "end": 2981.52, + "probability": 0.9631 + }, + { + "start": 2982.16, + "end": 2985.7, + "probability": 0.8157 + }, + { + "start": 2985.84, + "end": 2987.16, + "probability": 0.7822 + }, + { + "start": 2987.86, + "end": 2991.28, + "probability": 0.7853 + }, + { + "start": 2991.9, + "end": 2994.74, + "probability": 0.9802 + }, + { + "start": 2995.0, + "end": 2998.74, + "probability": 0.9039 + }, + { + "start": 2998.96, + "end": 3002.58, + "probability": 0.7475 + }, + { + "start": 3002.58, + "end": 3007.06, + "probability": 0.994 + }, + { + "start": 3007.16, + "end": 3007.52, + "probability": 0.7071 + }, + { + "start": 3007.96, + "end": 3008.76, + "probability": 0.5453 + }, + { + "start": 3008.9, + "end": 3009.9, + "probability": 0.6895 + }, + { + "start": 3009.96, + "end": 3012.53, + "probability": 0.9933 + }, + { + "start": 3012.82, + "end": 3016.6, + "probability": 0.9608 + }, + { + "start": 3016.76, + "end": 3018.92, + "probability": 0.9948 + }, + { + "start": 3018.94, + "end": 3020.72, + "probability": 0.7503 + }, + { + "start": 3020.94, + "end": 3025.48, + "probability": 0.9596 + }, + { + "start": 3025.54, + "end": 3028.94, + "probability": 0.9654 + }, + { + "start": 3029.02, + "end": 3031.2, + "probability": 0.9834 + }, + { + "start": 3031.98, + "end": 3032.16, + "probability": 0.6384 + }, + { + "start": 3033.14, + "end": 3034.5, + "probability": 0.8468 + }, + { + "start": 3034.66, + "end": 3037.24, + "probability": 0.9106 + }, + { + "start": 3037.24, + "end": 3040.55, + "probability": 0.919 + }, + { + "start": 3041.14, + "end": 3043.76, + "probability": 0.8206 + }, + { + "start": 3047.26, + "end": 3049.3, + "probability": 0.6266 + }, + { + "start": 3049.3, + "end": 3052.74, + "probability": 0.9791 + }, + { + "start": 3059.69, + "end": 3060.5, + "probability": 0.1746 + }, + { + "start": 3071.96, + "end": 3073.74, + "probability": 0.5645 + }, + { + "start": 3076.34, + "end": 3079.44, + "probability": 0.9091 + }, + { + "start": 3079.5, + "end": 3080.9, + "probability": 0.9757 + }, + { + "start": 3081.92, + "end": 3084.5, + "probability": 0.9388 + }, + { + "start": 3085.5, + "end": 3086.44, + "probability": 0.759 + }, + { + "start": 3087.1, + "end": 3088.85, + "probability": 0.9536 + }, + { + "start": 3089.54, + "end": 3092.48, + "probability": 0.7811 + }, + { + "start": 3093.94, + "end": 3097.46, + "probability": 0.9818 + }, + { + "start": 3097.76, + "end": 3098.14, + "probability": 0.8375 + }, + { + "start": 3100.38, + "end": 3101.38, + "probability": 0.799 + }, + { + "start": 3101.76, + "end": 3102.77, + "probability": 0.738 + }, + { + "start": 3102.84, + "end": 3104.54, + "probability": 0.9179 + }, + { + "start": 3104.72, + "end": 3109.44, + "probability": 0.8455 + }, + { + "start": 3110.38, + "end": 3112.16, + "probability": 0.7557 + }, + { + "start": 3112.26, + "end": 3115.96, + "probability": 0.8989 + }, + { + "start": 3116.58, + "end": 3118.48, + "probability": 0.97 + }, + { + "start": 3119.22, + "end": 3123.38, + "probability": 0.9329 + }, + { + "start": 3124.18, + "end": 3124.81, + "probability": 0.5167 + }, + { + "start": 3125.96, + "end": 3127.96, + "probability": 0.7921 + }, + { + "start": 3128.92, + "end": 3134.74, + "probability": 0.9622 + }, + { + "start": 3138.16, + "end": 3139.96, + "probability": 0.7265 + }, + { + "start": 3141.34, + "end": 3143.24, + "probability": 0.8248 + }, + { + "start": 3144.22, + "end": 3145.38, + "probability": 0.5698 + }, + { + "start": 3145.76, + "end": 3150.14, + "probability": 0.9783 + }, + { + "start": 3150.8, + "end": 3151.56, + "probability": 0.814 + }, + { + "start": 3151.58, + "end": 3152.78, + "probability": 0.6831 + }, + { + "start": 3152.78, + "end": 3154.98, + "probability": 0.7253 + }, + { + "start": 3155.38, + "end": 3157.46, + "probability": 0.9952 + }, + { + "start": 3157.64, + "end": 3158.14, + "probability": 0.831 + }, + { + "start": 3158.58, + "end": 3159.97, + "probability": 0.8682 + }, + { + "start": 3160.56, + "end": 3164.4, + "probability": 0.959 + }, + { + "start": 3164.86, + "end": 3166.0, + "probability": 0.9861 + }, + { + "start": 3166.56, + "end": 3167.28, + "probability": 0.9142 + }, + { + "start": 3167.3, + "end": 3167.54, + "probability": 0.5116 + }, + { + "start": 3167.62, + "end": 3168.4, + "probability": 0.8639 + }, + { + "start": 3168.78, + "end": 3169.96, + "probability": 0.9819 + }, + { + "start": 3170.42, + "end": 3172.3, + "probability": 0.5389 + }, + { + "start": 3173.14, + "end": 3176.86, + "probability": 0.7987 + }, + { + "start": 3176.96, + "end": 3181.78, + "probability": 0.9828 + }, + { + "start": 3182.58, + "end": 3190.8, + "probability": 0.9931 + }, + { + "start": 3190.8, + "end": 3195.64, + "probability": 0.9927 + }, + { + "start": 3195.72, + "end": 3196.28, + "probability": 0.7389 + }, + { + "start": 3196.94, + "end": 3198.72, + "probability": 0.9664 + }, + { + "start": 3200.1, + "end": 3203.38, + "probability": 0.8414 + }, + { + "start": 3203.68, + "end": 3205.08, + "probability": 0.9248 + }, + { + "start": 3205.74, + "end": 3208.66, + "probability": 0.722 + }, + { + "start": 3209.52, + "end": 3216.04, + "probability": 0.9545 + }, + { + "start": 3216.56, + "end": 3217.86, + "probability": 0.6004 + }, + { + "start": 3217.9, + "end": 3218.86, + "probability": 0.8213 + }, + { + "start": 3219.12, + "end": 3224.22, + "probability": 0.9411 + }, + { + "start": 3224.34, + "end": 3227.0, + "probability": 0.7716 + }, + { + "start": 3227.3, + "end": 3228.22, + "probability": 0.8871 + }, + { + "start": 3228.8, + "end": 3232.22, + "probability": 0.975 + }, + { + "start": 3232.94, + "end": 3236.72, + "probability": 0.9995 + }, + { + "start": 3236.72, + "end": 3240.32, + "probability": 0.9919 + }, + { + "start": 3240.64, + "end": 3244.56, + "probability": 0.9951 + }, + { + "start": 3244.56, + "end": 3249.44, + "probability": 0.9949 + }, + { + "start": 3249.78, + "end": 3252.78, + "probability": 0.996 + }, + { + "start": 3252.78, + "end": 3256.18, + "probability": 0.9932 + }, + { + "start": 3256.66, + "end": 3258.52, + "probability": 0.996 + }, + { + "start": 3258.52, + "end": 3261.9, + "probability": 0.9932 + }, + { + "start": 3262.78, + "end": 3264.08, + "probability": 0.6373 + }, + { + "start": 3265.4, + "end": 3270.36, + "probability": 0.9913 + }, + { + "start": 3270.88, + "end": 3275.42, + "probability": 0.9935 + }, + { + "start": 3275.8, + "end": 3277.5, + "probability": 0.9157 + }, + { + "start": 3277.88, + "end": 3278.23, + "probability": 0.7764 + }, + { + "start": 3278.4, + "end": 3281.5, + "probability": 0.9592 + }, + { + "start": 3281.9, + "end": 3283.64, + "probability": 0.9939 + }, + { + "start": 3284.18, + "end": 3287.08, + "probability": 0.9045 + }, + { + "start": 3287.34, + "end": 3287.96, + "probability": 0.8112 + }, + { + "start": 3288.14, + "end": 3290.82, + "probability": 0.748 + }, + { + "start": 3290.82, + "end": 3293.6, + "probability": 0.9377 + }, + { + "start": 3293.64, + "end": 3298.3, + "probability": 0.884 + }, + { + "start": 3299.18, + "end": 3301.76, + "probability": 0.999 + }, + { + "start": 3302.3, + "end": 3305.0, + "probability": 0.9643 + }, + { + "start": 3305.26, + "end": 3307.34, + "probability": 0.9788 + }, + { + "start": 3307.52, + "end": 3308.12, + "probability": 0.5992 + }, + { + "start": 3308.52, + "end": 3309.08, + "probability": 0.6124 + }, + { + "start": 3309.42, + "end": 3310.92, + "probability": 0.8808 + }, + { + "start": 3311.14, + "end": 3314.34, + "probability": 0.9883 + }, + { + "start": 3314.38, + "end": 3315.98, + "probability": 0.8802 + }, + { + "start": 3316.12, + "end": 3317.75, + "probability": 0.7861 + }, + { + "start": 3319.54, + "end": 3321.86, + "probability": 0.8174 + }, + { + "start": 3322.58, + "end": 3323.36, + "probability": 0.7147 + }, + { + "start": 3323.4, + "end": 3324.02, + "probability": 0.927 + }, + { + "start": 3324.06, + "end": 3326.86, + "probability": 0.9441 + }, + { + "start": 3329.42, + "end": 3332.88, + "probability": 0.7643 + }, + { + "start": 3333.93, + "end": 3343.52, + "probability": 0.956 + }, + { + "start": 3344.88, + "end": 3350.5, + "probability": 0.9588 + }, + { + "start": 3351.08, + "end": 3355.56, + "probability": 0.998 + }, + { + "start": 3355.78, + "end": 3361.56, + "probability": 0.9972 + }, + { + "start": 3362.62, + "end": 3366.38, + "probability": 0.8802 + }, + { + "start": 3367.18, + "end": 3372.26, + "probability": 0.9847 + }, + { + "start": 3372.68, + "end": 3375.3, + "probability": 0.4989 + }, + { + "start": 3375.34, + "end": 3380.8, + "probability": 0.7633 + }, + { + "start": 3381.88, + "end": 3387.5, + "probability": 0.9803 + }, + { + "start": 3388.16, + "end": 3391.86, + "probability": 0.9051 + }, + { + "start": 3392.0, + "end": 3393.92, + "probability": 0.9396 + }, + { + "start": 3394.32, + "end": 3400.94, + "probability": 0.9967 + }, + { + "start": 3401.8, + "end": 3404.96, + "probability": 0.9609 + }, + { + "start": 3405.2, + "end": 3407.36, + "probability": 0.7438 + }, + { + "start": 3407.78, + "end": 3408.88, + "probability": 0.7703 + }, + { + "start": 3409.38, + "end": 3414.32, + "probability": 0.9885 + }, + { + "start": 3414.8, + "end": 3417.24, + "probability": 0.5034 + }, + { + "start": 3417.36, + "end": 3418.18, + "probability": 0.8853 + }, + { + "start": 3418.86, + "end": 3420.78, + "probability": 0.9555 + }, + { + "start": 3421.14, + "end": 3425.4, + "probability": 0.9893 + }, + { + "start": 3426.1, + "end": 3429.44, + "probability": 0.9889 + }, + { + "start": 3429.44, + "end": 3432.46, + "probability": 0.9978 + }, + { + "start": 3433.12, + "end": 3436.04, + "probability": 0.8334 + }, + { + "start": 3437.02, + "end": 3439.64, + "probability": 0.8644 + }, + { + "start": 3440.08, + "end": 3442.36, + "probability": 0.7557 + }, + { + "start": 3442.62, + "end": 3443.8, + "probability": 0.6299 + }, + { + "start": 3443.86, + "end": 3445.36, + "probability": 0.9937 + }, + { + "start": 3445.72, + "end": 3448.22, + "probability": 0.9567 + }, + { + "start": 3448.68, + "end": 3452.62, + "probability": 0.966 + }, + { + "start": 3452.62, + "end": 3453.24, + "probability": 0.8537 + }, + { + "start": 3453.3, + "end": 3453.54, + "probability": 0.0035 + }, + { + "start": 3454.52, + "end": 3457.64, + "probability": 0.0667 + }, + { + "start": 3457.64, + "end": 3458.54, + "probability": 0.1936 + }, + { + "start": 3459.29, + "end": 3462.5, + "probability": 0.0625 + }, + { + "start": 3463.08, + "end": 3468.62, + "probability": 0.6227 + }, + { + "start": 3468.62, + "end": 3470.54, + "probability": 0.2502 + }, + { + "start": 3470.76, + "end": 3472.26, + "probability": 0.7844 + }, + { + "start": 3472.44, + "end": 3473.09, + "probability": 0.5664 + }, + { + "start": 3473.78, + "end": 3475.7, + "probability": 0.6042 + }, + { + "start": 3475.7, + "end": 3476.58, + "probability": 0.0569 + }, + { + "start": 3476.96, + "end": 3477.82, + "probability": 0.4091 + }, + { + "start": 3478.0, + "end": 3478.42, + "probability": 0.6753 + }, + { + "start": 3478.86, + "end": 3480.46, + "probability": 0.8846 + }, + { + "start": 3480.66, + "end": 3483.76, + "probability": 0.3033 + }, + { + "start": 3483.94, + "end": 3487.14, + "probability": 0.2559 + }, + { + "start": 3487.14, + "end": 3488.26, + "probability": 0.7194 + }, + { + "start": 3488.26, + "end": 3490.64, + "probability": 0.1372 + }, + { + "start": 3491.22, + "end": 3492.68, + "probability": 0.4907 + }, + { + "start": 3492.74, + "end": 3493.5, + "probability": 0.5377 + }, + { + "start": 3493.92, + "end": 3495.12, + "probability": 0.9148 + }, + { + "start": 3495.16, + "end": 3496.02, + "probability": 0.9708 + }, + { + "start": 3496.89, + "end": 3497.66, + "probability": 0.1094 + }, + { + "start": 3497.66, + "end": 3497.94, + "probability": 0.4092 + }, + { + "start": 3497.96, + "end": 3499.06, + "probability": 0.4999 + }, + { + "start": 3499.12, + "end": 3499.56, + "probability": 0.4013 + }, + { + "start": 3499.56, + "end": 3501.94, + "probability": 0.6948 + }, + { + "start": 3502.0, + "end": 3502.8, + "probability": 0.7335 + }, + { + "start": 3502.92, + "end": 3504.48, + "probability": 0.8945 + }, + { + "start": 3507.0, + "end": 3508.6, + "probability": 0.9194 + }, + { + "start": 3508.8, + "end": 3510.16, + "probability": 0.501 + }, + { + "start": 3510.57, + "end": 3513.9, + "probability": 0.9971 + }, + { + "start": 3513.96, + "end": 3515.68, + "probability": 0.9441 + }, + { + "start": 3516.8, + "end": 3520.6, + "probability": 0.9263 + }, + { + "start": 3520.72, + "end": 3526.94, + "probability": 0.967 + }, + { + "start": 3528.58, + "end": 3529.92, + "probability": 0.9585 + }, + { + "start": 3530.4, + "end": 3531.26, + "probability": 0.8785 + }, + { + "start": 3531.36, + "end": 3535.46, + "probability": 0.6372 + }, + { + "start": 3536.22, + "end": 3540.14, + "probability": 0.9875 + }, + { + "start": 3541.16, + "end": 3547.16, + "probability": 0.9518 + }, + { + "start": 3547.82, + "end": 3548.16, + "probability": 0.5247 + }, + { + "start": 3548.22, + "end": 3549.98, + "probability": 0.9419 + }, + { + "start": 3550.06, + "end": 3551.2, + "probability": 0.7105 + }, + { + "start": 3552.58, + "end": 3559.42, + "probability": 0.9604 + }, + { + "start": 3560.02, + "end": 3565.1, + "probability": 0.6306 + }, + { + "start": 3565.28, + "end": 3566.49, + "probability": 0.8891 + }, + { + "start": 3568.32, + "end": 3568.68, + "probability": 0.6895 + }, + { + "start": 3568.68, + "end": 3570.86, + "probability": 0.9327 + }, + { + "start": 3571.34, + "end": 3574.18, + "probability": 0.9161 + }, + { + "start": 3575.36, + "end": 3578.18, + "probability": 0.7285 + }, + { + "start": 3579.04, + "end": 3584.02, + "probability": 0.9869 + }, + { + "start": 3585.6, + "end": 3587.02, + "probability": 0.9934 + }, + { + "start": 3587.28, + "end": 3589.48, + "probability": 0.8376 + }, + { + "start": 3589.8, + "end": 3592.16, + "probability": 0.8457 + }, + { + "start": 3593.12, + "end": 3595.78, + "probability": 0.9285 + }, + { + "start": 3595.94, + "end": 3597.5, + "probability": 0.9846 + }, + { + "start": 3597.82, + "end": 3601.44, + "probability": 0.9882 + }, + { + "start": 3602.6, + "end": 3605.62, + "probability": 0.9399 + }, + { + "start": 3605.82, + "end": 3606.38, + "probability": 0.8589 + }, + { + "start": 3606.64, + "end": 3608.6, + "probability": 0.9624 + }, + { + "start": 3609.06, + "end": 3609.92, + "probability": 0.6485 + }, + { + "start": 3609.98, + "end": 3613.04, + "probability": 0.7615 + }, + { + "start": 3613.61, + "end": 3621.07, + "probability": 0.9686 + }, + { + "start": 3621.42, + "end": 3622.68, + "probability": 0.8488 + }, + { + "start": 3622.76, + "end": 3625.92, + "probability": 0.9543 + }, + { + "start": 3625.96, + "end": 3627.92, + "probability": 0.9554 + }, + { + "start": 3628.4, + "end": 3628.76, + "probability": 0.5339 + }, + { + "start": 3628.88, + "end": 3632.06, + "probability": 0.9303 + }, + { + "start": 3632.4, + "end": 3634.54, + "probability": 0.9935 + }, + { + "start": 3635.14, + "end": 3638.18, + "probability": 0.8212 + }, + { + "start": 3638.48, + "end": 3641.82, + "probability": 0.8435 + }, + { + "start": 3642.12, + "end": 3642.72, + "probability": 0.388 + }, + { + "start": 3642.72, + "end": 3644.66, + "probability": 0.9298 + }, + { + "start": 3645.1, + "end": 3648.82, + "probability": 0.7175 + }, + { + "start": 3649.84, + "end": 3652.04, + "probability": 0.8544 + }, + { + "start": 3652.1, + "end": 3654.1, + "probability": 0.9644 + }, + { + "start": 3654.12, + "end": 3655.94, + "probability": 0.4204 + }, + { + "start": 3656.94, + "end": 3656.98, + "probability": 0.1514 + }, + { + "start": 3656.98, + "end": 3657.24, + "probability": 0.5847 + }, + { + "start": 3657.4, + "end": 3658.18, + "probability": 0.7031 + }, + { + "start": 3658.26, + "end": 3659.06, + "probability": 0.8191 + }, + { + "start": 3659.58, + "end": 3661.26, + "probability": 0.7948 + }, + { + "start": 3661.32, + "end": 3661.88, + "probability": 0.4446 + }, + { + "start": 3662.18, + "end": 3663.48, + "probability": 0.7493 + }, + { + "start": 3663.62, + "end": 3664.82, + "probability": 0.7732 + }, + { + "start": 3664.82, + "end": 3666.8, + "probability": 0.6703 + }, + { + "start": 3667.03, + "end": 3667.1, + "probability": 0.5359 + }, + { + "start": 3667.3, + "end": 3668.0, + "probability": 0.42 + }, + { + "start": 3669.24, + "end": 3670.36, + "probability": 0.7664 + }, + { + "start": 3670.48, + "end": 3671.28, + "probability": 0.8429 + }, + { + "start": 3672.06, + "end": 3677.38, + "probability": 0.7593 + }, + { + "start": 3678.39, + "end": 3681.52, + "probability": 0.9761 + }, + { + "start": 3682.42, + "end": 3683.44, + "probability": 0.8088 + }, + { + "start": 3684.3, + "end": 3687.24, + "probability": 0.9765 + }, + { + "start": 3687.86, + "end": 3690.86, + "probability": 0.7481 + }, + { + "start": 3691.86, + "end": 3694.82, + "probability": 0.9745 + }, + { + "start": 3695.82, + "end": 3698.88, + "probability": 0.9966 + }, + { + "start": 3699.42, + "end": 3703.76, + "probability": 0.9263 + }, + { + "start": 3704.1, + "end": 3706.76, + "probability": 0.3284 + }, + { + "start": 3706.88, + "end": 3708.04, + "probability": 0.7729 + }, + { + "start": 3708.64, + "end": 3713.8, + "probability": 0.9179 + }, + { + "start": 3714.52, + "end": 3715.78, + "probability": 0.7925 + }, + { + "start": 3716.18, + "end": 3716.6, + "probability": 0.6276 + }, + { + "start": 3716.62, + "end": 3719.7, + "probability": 0.7962 + }, + { + "start": 3719.98, + "end": 3722.92, + "probability": 0.9663 + }, + { + "start": 3723.56, + "end": 3724.94, + "probability": 0.7449 + }, + { + "start": 3727.05, + "end": 3730.6, + "probability": 0.7982 + }, + { + "start": 3730.84, + "end": 3732.7, + "probability": 0.9281 + }, + { + "start": 3733.46, + "end": 3733.86, + "probability": 0.1192 + }, + { + "start": 3733.9, + "end": 3735.43, + "probability": 0.989 + }, + { + "start": 3735.76, + "end": 3737.7, + "probability": 0.9692 + }, + { + "start": 3738.08, + "end": 3739.84, + "probability": 0.9175 + }, + { + "start": 3740.76, + "end": 3744.74, + "probability": 0.9919 + }, + { + "start": 3745.02, + "end": 3748.66, + "probability": 0.7285 + }, + { + "start": 3748.84, + "end": 3753.62, + "probability": 0.9952 + }, + { + "start": 3753.8, + "end": 3755.06, + "probability": 0.8542 + }, + { + "start": 3755.3, + "end": 3756.42, + "probability": 0.3281 + }, + { + "start": 3756.5, + "end": 3758.06, + "probability": 0.5159 + }, + { + "start": 3758.08, + "end": 3758.68, + "probability": 0.7319 + }, + { + "start": 3758.7, + "end": 3760.7, + "probability": 0.9404 + }, + { + "start": 3764.26, + "end": 3765.66, + "probability": 0.8096 + }, + { + "start": 3765.88, + "end": 3770.5, + "probability": 0.9138 + }, + { + "start": 3770.64, + "end": 3774.96, + "probability": 0.9939 + }, + { + "start": 3776.0, + "end": 3779.8, + "probability": 0.9045 + }, + { + "start": 3779.94, + "end": 3780.66, + "probability": 0.7973 + }, + { + "start": 3780.9, + "end": 3783.3, + "probability": 0.9414 + }, + { + "start": 3783.58, + "end": 3787.02, + "probability": 0.9771 + }, + { + "start": 3787.56, + "end": 3790.9, + "probability": 0.9895 + }, + { + "start": 3791.98, + "end": 3793.52, + "probability": 0.7191 + }, + { + "start": 3794.62, + "end": 3798.64, + "probability": 0.7567 + }, + { + "start": 3800.0, + "end": 3810.82, + "probability": 0.9919 + }, + { + "start": 3811.66, + "end": 3814.04, + "probability": 0.7704 + }, + { + "start": 3814.54, + "end": 3816.64, + "probability": 0.9485 + }, + { + "start": 3816.78, + "end": 3823.86, + "probability": 0.9405 + }, + { + "start": 3825.08, + "end": 3828.34, + "probability": 0.9885 + }, + { + "start": 3828.78, + "end": 3830.2, + "probability": 0.813 + }, + { + "start": 3831.18, + "end": 3834.9, + "probability": 0.5207 + }, + { + "start": 3836.38, + "end": 3839.08, + "probability": 0.3437 + }, + { + "start": 3839.54, + "end": 3846.74, + "probability": 0.9825 + }, + { + "start": 3846.74, + "end": 3853.76, + "probability": 0.992 + }, + { + "start": 3854.6, + "end": 3855.66, + "probability": 0.2645 + }, + { + "start": 3855.66, + "end": 3856.52, + "probability": 0.6914 + }, + { + "start": 3857.24, + "end": 3862.08, + "probability": 0.9879 + }, + { + "start": 3862.34, + "end": 3866.16, + "probability": 0.6597 + }, + { + "start": 3866.78, + "end": 3871.5, + "probability": 0.9782 + }, + { + "start": 3873.12, + "end": 3877.52, + "probability": 0.9729 + }, + { + "start": 3877.58, + "end": 3882.66, + "probability": 0.8896 + }, + { + "start": 3882.7, + "end": 3883.32, + "probability": 0.371 + }, + { + "start": 3883.34, + "end": 3884.46, + "probability": 0.853 + }, + { + "start": 3884.6, + "end": 3889.44, + "probability": 0.9234 + }, + { + "start": 3889.5, + "end": 3890.84, + "probability": 0.7478 + }, + { + "start": 3891.0, + "end": 3892.64, + "probability": 0.8036 + }, + { + "start": 3893.2, + "end": 3894.52, + "probability": 0.3903 + }, + { + "start": 3894.72, + "end": 3895.96, + "probability": 0.486 + }, + { + "start": 3897.47, + "end": 3900.94, + "probability": 0.9278 + }, + { + "start": 3901.56, + "end": 3905.38, + "probability": 0.8677 + }, + { + "start": 3906.18, + "end": 3906.52, + "probability": 0.4888 + }, + { + "start": 3906.74, + "end": 3909.46, + "probability": 0.9261 + }, + { + "start": 3909.56, + "end": 3913.86, + "probability": 0.9664 + }, + { + "start": 3913.92, + "end": 3914.44, + "probability": 0.5082 + }, + { + "start": 3914.48, + "end": 3917.23, + "probability": 0.8874 + }, + { + "start": 3917.76, + "end": 3920.54, + "probability": 0.8693 + }, + { + "start": 3921.0, + "end": 3922.56, + "probability": 0.9814 + }, + { + "start": 3924.81, + "end": 3928.04, + "probability": 0.6892 + }, + { + "start": 3928.68, + "end": 3930.56, + "probability": 0.842 + }, + { + "start": 3930.66, + "end": 3931.44, + "probability": 0.7016 + }, + { + "start": 3931.84, + "end": 3932.78, + "probability": 0.8218 + }, + { + "start": 3932.94, + "end": 3933.9, + "probability": 0.8578 + }, + { + "start": 3934.1, + "end": 3935.82, + "probability": 0.981 + }, + { + "start": 3936.32, + "end": 3938.02, + "probability": 0.9347 + }, + { + "start": 3938.24, + "end": 3940.56, + "probability": 0.9911 + }, + { + "start": 3940.9, + "end": 3943.68, + "probability": 0.9958 + }, + { + "start": 3944.24, + "end": 3949.52, + "probability": 0.7478 + }, + { + "start": 3950.32, + "end": 3951.42, + "probability": 0.7677 + }, + { + "start": 3951.48, + "end": 3953.76, + "probability": 0.9583 + }, + { + "start": 3954.12, + "end": 3955.56, + "probability": 0.9379 + }, + { + "start": 3955.62, + "end": 3958.66, + "probability": 0.7907 + }, + { + "start": 3958.72, + "end": 3964.1, + "probability": 0.9639 + }, + { + "start": 3964.5, + "end": 3968.26, + "probability": 0.8492 + }, + { + "start": 3968.56, + "end": 3968.96, + "probability": 0.6662 + }, + { + "start": 3969.22, + "end": 3973.19, + "probability": 0.7356 + }, + { + "start": 3974.18, + "end": 3978.96, + "probability": 0.0797 + }, + { + "start": 3978.96, + "end": 3980.9, + "probability": 0.7607 + }, + { + "start": 3980.98, + "end": 3982.4, + "probability": 0.8287 + }, + { + "start": 3982.86, + "end": 3984.44, + "probability": 0.6651 + }, + { + "start": 3984.56, + "end": 3985.14, + "probability": 0.9646 + }, + { + "start": 3985.3, + "end": 3985.52, + "probability": 0.8 + }, + { + "start": 3985.6, + "end": 3988.36, + "probability": 0.6667 + }, + { + "start": 3988.52, + "end": 3992.56, + "probability": 0.8127 + }, + { + "start": 3992.64, + "end": 3992.96, + "probability": 0.2948 + }, + { + "start": 3992.96, + "end": 3994.26, + "probability": 0.7086 + }, + { + "start": 3994.9, + "end": 3999.18, + "probability": 0.6538 + }, + { + "start": 4000.8, + "end": 4001.66, + "probability": 0.991 + }, + { + "start": 4006.6, + "end": 4009.92, + "probability": 0.683 + }, + { + "start": 4009.92, + "end": 4013.94, + "probability": 0.4836 + }, + { + "start": 4014.9, + "end": 4018.12, + "probability": 0.9893 + }, + { + "start": 4018.54, + "end": 4021.32, + "probability": 0.9977 + }, + { + "start": 4021.68, + "end": 4025.6, + "probability": 0.9963 + }, + { + "start": 4025.98, + "end": 4028.07, + "probability": 0.9543 + }, + { + "start": 4029.0, + "end": 4031.8, + "probability": 0.8301 + }, + { + "start": 4031.86, + "end": 4032.7, + "probability": 0.7508 + }, + { + "start": 4032.74, + "end": 4033.35, + "probability": 0.8751 + }, + { + "start": 4034.04, + "end": 4038.18, + "probability": 0.9132 + }, + { + "start": 4038.62, + "end": 4043.24, + "probability": 0.9758 + }, + { + "start": 4043.4, + "end": 4044.3, + "probability": 0.928 + }, + { + "start": 4044.46, + "end": 4047.42, + "probability": 0.993 + }, + { + "start": 4047.9, + "end": 4049.56, + "probability": 0.6671 + }, + { + "start": 4050.34, + "end": 4055.08, + "probability": 0.9854 + }, + { + "start": 4055.54, + "end": 4056.27, + "probability": 0.5955 + }, + { + "start": 4056.78, + "end": 4057.76, + "probability": 0.8544 + }, + { + "start": 4057.94, + "end": 4058.62, + "probability": 0.4865 + }, + { + "start": 4058.78, + "end": 4060.32, + "probability": 0.9193 + }, + { + "start": 4060.4, + "end": 4063.48, + "probability": 0.9287 + }, + { + "start": 4063.54, + "end": 4065.42, + "probability": 0.8054 + }, + { + "start": 4065.46, + "end": 4067.58, + "probability": 0.9619 + }, + { + "start": 4067.92, + "end": 4068.66, + "probability": 0.8428 + }, + { + "start": 4068.74, + "end": 4070.18, + "probability": 0.8011 + }, + { + "start": 4070.84, + "end": 4071.66, + "probability": 0.8952 + }, + { + "start": 4071.8, + "end": 4072.76, + "probability": 0.9263 + }, + { + "start": 4072.84, + "end": 4073.38, + "probability": 0.757 + }, + { + "start": 4073.42, + "end": 4075.02, + "probability": 0.9074 + }, + { + "start": 4075.52, + "end": 4077.84, + "probability": 0.8082 + }, + { + "start": 4078.32, + "end": 4080.54, + "probability": 0.9756 + }, + { + "start": 4081.28, + "end": 4083.16, + "probability": 0.8395 + }, + { + "start": 4083.98, + "end": 4085.4, + "probability": 0.9592 + }, + { + "start": 4085.62, + "end": 4086.24, + "probability": 0.8532 + }, + { + "start": 4086.28, + "end": 4087.52, + "probability": 0.644 + }, + { + "start": 4088.1, + "end": 4090.9, + "probability": 0.824 + }, + { + "start": 4091.22, + "end": 4092.32, + "probability": 0.87 + }, + { + "start": 4092.66, + "end": 4094.7, + "probability": 0.9875 + }, + { + "start": 4094.76, + "end": 4097.28, + "probability": 0.7197 + }, + { + "start": 4097.58, + "end": 4099.16, + "probability": 0.856 + }, + { + "start": 4099.38, + "end": 4099.78, + "probability": 0.7965 + }, + { + "start": 4099.86, + "end": 4100.58, + "probability": 0.7196 + }, + { + "start": 4100.98, + "end": 4107.82, + "probability": 0.7699 + }, + { + "start": 4107.88, + "end": 4108.36, + "probability": 0.4898 + }, + { + "start": 4108.4, + "end": 4110.36, + "probability": 0.8657 + }, + { + "start": 4110.76, + "end": 4112.04, + "probability": 0.9259 + }, + { + "start": 4112.12, + "end": 4114.18, + "probability": 0.9658 + }, + { + "start": 4114.54, + "end": 4115.2, + "probability": 0.8931 + }, + { + "start": 4115.3, + "end": 4117.12, + "probability": 0.7383 + }, + { + "start": 4117.82, + "end": 4118.76, + "probability": 0.1823 + }, + { + "start": 4119.22, + "end": 4121.36, + "probability": 0.2797 + }, + { + "start": 4122.23, + "end": 4123.08, + "probability": 0.2129 + }, + { + "start": 4123.26, + "end": 4125.36, + "probability": 0.6661 + }, + { + "start": 4125.36, + "end": 4126.3, + "probability": 0.4894 + }, + { + "start": 4127.36, + "end": 4128.38, + "probability": 0.7007 + }, + { + "start": 4128.46, + "end": 4129.44, + "probability": 0.7076 + }, + { + "start": 4129.48, + "end": 4132.36, + "probability": 0.8955 + }, + { + "start": 4132.72, + "end": 4133.58, + "probability": 0.7178 + }, + { + "start": 4133.62, + "end": 4136.26, + "probability": 0.762 + }, + { + "start": 4136.96, + "end": 4138.32, + "probability": 0.8877 + }, + { + "start": 4138.4, + "end": 4141.68, + "probability": 0.9567 + }, + { + "start": 4141.96, + "end": 4142.64, + "probability": 0.9751 + }, + { + "start": 4143.46, + "end": 4144.58, + "probability": 0.9369 + }, + { + "start": 4144.66, + "end": 4144.84, + "probability": 0.6799 + }, + { + "start": 4145.86, + "end": 4146.46, + "probability": 0.777 + }, + { + "start": 4146.54, + "end": 4150.94, + "probability": 0.8726 + }, + { + "start": 4151.77, + "end": 4153.75, + "probability": 0.9438 + }, + { + "start": 4154.56, + "end": 4157.4, + "probability": 0.8371 + }, + { + "start": 4157.4, + "end": 4160.94, + "probability": 0.8013 + }, + { + "start": 4161.86, + "end": 4165.22, + "probability": 0.7503 + }, + { + "start": 4177.12, + "end": 4178.62, + "probability": 0.6624 + }, + { + "start": 4179.32, + "end": 4182.18, + "probability": 0.7299 + }, + { + "start": 4183.0, + "end": 4186.92, + "probability": 0.9169 + }, + { + "start": 4186.92, + "end": 4190.04, + "probability": 0.9039 + }, + { + "start": 4190.76, + "end": 4191.62, + "probability": 0.7273 + }, + { + "start": 4192.38, + "end": 4196.76, + "probability": 0.9703 + }, + { + "start": 4197.44, + "end": 4205.16, + "probability": 0.9549 + }, + { + "start": 4205.7, + "end": 4211.26, + "probability": 0.9862 + }, + { + "start": 4211.52, + "end": 4212.54, + "probability": 0.7263 + }, + { + "start": 4212.9, + "end": 4214.46, + "probability": 0.6906 + }, + { + "start": 4214.62, + "end": 4214.86, + "probability": 0.7163 + }, + { + "start": 4215.82, + "end": 4216.34, + "probability": 0.5184 + }, + { + "start": 4216.74, + "end": 4217.54, + "probability": 0.6991 + }, + { + "start": 4218.0, + "end": 4220.52, + "probability": 0.7496 + }, + { + "start": 4221.24, + "end": 4222.3, + "probability": 0.8275 + }, + { + "start": 4223.08, + "end": 4224.92, + "probability": 0.6554 + }, + { + "start": 4226.12, + "end": 4226.5, + "probability": 0.6065 + }, + { + "start": 4227.46, + "end": 4233.44, + "probability": 0.874 + }, + { + "start": 4234.04, + "end": 4235.86, + "probability": 0.998 + }, + { + "start": 4236.32, + "end": 4237.56, + "probability": 0.9795 + }, + { + "start": 4238.18, + "end": 4241.96, + "probability": 0.7481 + }, + { + "start": 4243.96, + "end": 4245.28, + "probability": 0.6133 + }, + { + "start": 4246.7, + "end": 4249.34, + "probability": 0.9935 + }, + { + "start": 4249.84, + "end": 4250.48, + "probability": 0.7972 + }, + { + "start": 4250.56, + "end": 4251.47, + "probability": 0.5179 + }, + { + "start": 4251.96, + "end": 4255.55, + "probability": 0.9653 + }, + { + "start": 4256.04, + "end": 4258.76, + "probability": 0.9958 + }, + { + "start": 4259.22, + "end": 4261.56, + "probability": 0.9428 + }, + { + "start": 4262.26, + "end": 4269.08, + "probability": 0.895 + }, + { + "start": 4269.5, + "end": 4271.38, + "probability": 0.8737 + }, + { + "start": 4272.14, + "end": 4277.98, + "probability": 0.9546 + }, + { + "start": 4278.5, + "end": 4279.58, + "probability": 0.8538 + }, + { + "start": 4279.76, + "end": 4281.26, + "probability": 0.7616 + }, + { + "start": 4281.52, + "end": 4286.32, + "probability": 0.9614 + }, + { + "start": 4286.96, + "end": 4294.4, + "probability": 0.6392 + }, + { + "start": 4295.46, + "end": 4295.46, + "probability": 0.0232 + }, + { + "start": 4295.46, + "end": 4302.38, + "probability": 0.8974 + }, + { + "start": 4303.38, + "end": 4308.72, + "probability": 0.9826 + }, + { + "start": 4309.82, + "end": 4310.6, + "probability": 0.4282 + }, + { + "start": 4311.62, + "end": 4313.56, + "probability": 0.876 + }, + { + "start": 4313.64, + "end": 4314.14, + "probability": 0.4649 + }, + { + "start": 4314.18, + "end": 4315.14, + "probability": 0.8328 + }, + { + "start": 4315.74, + "end": 4319.78, + "probability": 0.9333 + }, + { + "start": 4320.24, + "end": 4323.36, + "probability": 0.938 + }, + { + "start": 4323.4, + "end": 4325.26, + "probability": 0.8337 + }, + { + "start": 4325.66, + "end": 4327.06, + "probability": 0.9881 + }, + { + "start": 4327.76, + "end": 4328.0, + "probability": 0.2853 + }, + { + "start": 4328.12, + "end": 4329.72, + "probability": 0.8721 + }, + { + "start": 4329.92, + "end": 4333.27, + "probability": 0.9705 + }, + { + "start": 4333.92, + "end": 4334.72, + "probability": 0.4697 + }, + { + "start": 4334.82, + "end": 4341.76, + "probability": 0.8247 + }, + { + "start": 4341.9, + "end": 4343.12, + "probability": 0.958 + }, + { + "start": 4343.54, + "end": 4345.26, + "probability": 0.963 + }, + { + "start": 4345.3, + "end": 4345.64, + "probability": 0.737 + }, + { + "start": 4345.74, + "end": 4348.86, + "probability": 0.9358 + }, + { + "start": 4349.1, + "end": 4351.98, + "probability": 0.995 + }, + { + "start": 4352.3, + "end": 4357.36, + "probability": 0.9605 + }, + { + "start": 4357.78, + "end": 4362.21, + "probability": 0.9909 + }, + { + "start": 4362.34, + "end": 4364.5, + "probability": 0.9829 + }, + { + "start": 4364.86, + "end": 4370.82, + "probability": 0.9783 + }, + { + "start": 4371.14, + "end": 4373.18, + "probability": 0.8835 + }, + { + "start": 4373.3, + "end": 4374.4, + "probability": 0.4953 + }, + { + "start": 4374.46, + "end": 4374.9, + "probability": 0.4692 + }, + { + "start": 4377.11, + "end": 4379.74, + "probability": 0.3185 + }, + { + "start": 4379.74, + "end": 4380.62, + "probability": 0.1692 + }, + { + "start": 4380.64, + "end": 4383.72, + "probability": 0.8962 + }, + { + "start": 4383.98, + "end": 4385.69, + "probability": 0.9342 + }, + { + "start": 4386.32, + "end": 4386.78, + "probability": 0.6603 + }, + { + "start": 4386.92, + "end": 4390.98, + "probability": 0.9519 + }, + { + "start": 4391.34, + "end": 4395.96, + "probability": 0.8408 + }, + { + "start": 4396.04, + "end": 4397.66, + "probability": 0.8121 + }, + { + "start": 4398.12, + "end": 4400.6, + "probability": 0.8594 + }, + { + "start": 4401.18, + "end": 4403.78, + "probability": 0.998 + }, + { + "start": 4404.16, + "end": 4405.15, + "probability": 0.9526 + }, + { + "start": 4405.54, + "end": 4407.56, + "probability": 0.9866 + }, + { + "start": 4407.56, + "end": 4412.08, + "probability": 0.9627 + }, + { + "start": 4412.68, + "end": 4416.96, + "probability": 0.8374 + }, + { + "start": 4417.48, + "end": 4419.64, + "probability": 0.8232 + }, + { + "start": 4419.96, + "end": 4423.18, + "probability": 0.9954 + }, + { + "start": 4423.42, + "end": 4425.72, + "probability": 0.8526 + }, + { + "start": 4426.22, + "end": 4427.18, + "probability": 0.8994 + }, + { + "start": 4427.24, + "end": 4427.74, + "probability": 0.752 + }, + { + "start": 4428.16, + "end": 4428.48, + "probability": 0.3512 + }, + { + "start": 4428.5, + "end": 4429.66, + "probability": 0.7796 + }, + { + "start": 4429.74, + "end": 4431.96, + "probability": 0.6483 + }, + { + "start": 4433.43, + "end": 4436.54, + "probability": 0.8511 + }, + { + "start": 4436.62, + "end": 4436.84, + "probability": 0.6071 + }, + { + "start": 4436.94, + "end": 4437.52, + "probability": 0.5824 + }, + { + "start": 4437.56, + "end": 4438.93, + "probability": 0.7828 + }, + { + "start": 4439.22, + "end": 4441.24, + "probability": 0.9741 + }, + { + "start": 4441.34, + "end": 4443.58, + "probability": 0.9919 + }, + { + "start": 4443.86, + "end": 4447.0, + "probability": 0.9916 + }, + { + "start": 4447.2, + "end": 4449.32, + "probability": 0.9978 + }, + { + "start": 4449.44, + "end": 4450.24, + "probability": 0.8861 + }, + { + "start": 4450.38, + "end": 4453.32, + "probability": 0.8814 + }, + { + "start": 4453.32, + "end": 4456.56, + "probability": 0.9776 + }, + { + "start": 4456.7, + "end": 4457.89, + "probability": 0.9066 + }, + { + "start": 4458.28, + "end": 4459.78, + "probability": 0.9866 + }, + { + "start": 4460.16, + "end": 4462.64, + "probability": 0.9544 + }, + { + "start": 4462.64, + "end": 4464.42, + "probability": 0.9664 + }, + { + "start": 4464.5, + "end": 4466.7, + "probability": 0.9976 + }, + { + "start": 4466.86, + "end": 4468.76, + "probability": 0.8418 + }, + { + "start": 4468.8, + "end": 4469.96, + "probability": 0.8828 + }, + { + "start": 4470.0, + "end": 4470.66, + "probability": 0.7102 + }, + { + "start": 4470.84, + "end": 4472.12, + "probability": 0.9965 + }, + { + "start": 4472.18, + "end": 4474.78, + "probability": 0.9863 + }, + { + "start": 4474.86, + "end": 4475.16, + "probability": 0.531 + }, + { + "start": 4475.18, + "end": 4475.6, + "probability": 0.9644 + }, + { + "start": 4475.6, + "end": 4476.88, + "probability": 0.9121 + }, + { + "start": 4477.12, + "end": 4481.26, + "probability": 0.9965 + }, + { + "start": 4481.52, + "end": 4484.32, + "probability": 0.9783 + }, + { + "start": 4484.38, + "end": 4485.14, + "probability": 0.8529 + }, + { + "start": 4485.2, + "end": 4485.78, + "probability": 0.8409 + }, + { + "start": 4485.98, + "end": 4488.5, + "probability": 0.9976 + }, + { + "start": 4488.62, + "end": 4489.05, + "probability": 0.8132 + }, + { + "start": 4489.14, + "end": 4489.62, + "probability": 0.8668 + }, + { + "start": 4489.72, + "end": 4490.18, + "probability": 0.6415 + }, + { + "start": 4490.28, + "end": 4490.86, + "probability": 0.9766 + }, + { + "start": 4490.96, + "end": 4492.58, + "probability": 0.9376 + }, + { + "start": 4492.66, + "end": 4493.32, + "probability": 0.821 + }, + { + "start": 4493.4, + "end": 4496.94, + "probability": 0.9089 + }, + { + "start": 4497.12, + "end": 4497.98, + "probability": 0.8162 + }, + { + "start": 4498.12, + "end": 4500.3, + "probability": 0.9782 + }, + { + "start": 4500.52, + "end": 4500.94, + "probability": 0.5657 + }, + { + "start": 4501.42, + "end": 4501.86, + "probability": 0.8092 + }, + { + "start": 4502.02, + "end": 4504.4, + "probability": 0.5414 + }, + { + "start": 4504.4, + "end": 4504.8, + "probability": 0.2455 + }, + { + "start": 4505.0, + "end": 4505.2, + "probability": 0.548 + }, + { + "start": 4505.38, + "end": 4507.18, + "probability": 0.7419 + }, + { + "start": 4507.48, + "end": 4507.68, + "probability": 0.2246 + }, + { + "start": 4510.28, + "end": 4510.62, + "probability": 0.025 + }, + { + "start": 4510.62, + "end": 4511.58, + "probability": 0.1615 + }, + { + "start": 4516.2, + "end": 4517.22, + "probability": 0.8489 + }, + { + "start": 4517.4, + "end": 4520.39, + "probability": 0.9922 + }, + { + "start": 4520.54, + "end": 4528.06, + "probability": 0.9409 + }, + { + "start": 4528.68, + "end": 4530.04, + "probability": 0.9512 + }, + { + "start": 4530.16, + "end": 4532.06, + "probability": 0.7794 + }, + { + "start": 4532.18, + "end": 4532.52, + "probability": 0.3325 + }, + { + "start": 4532.68, + "end": 4533.04, + "probability": 0.8264 + }, + { + "start": 4533.1, + "end": 4533.4, + "probability": 0.8092 + }, + { + "start": 4533.46, + "end": 4534.14, + "probability": 0.762 + }, + { + "start": 4534.24, + "end": 4535.1, + "probability": 0.9688 + }, + { + "start": 4535.56, + "end": 4537.85, + "probability": 0.689 + }, + { + "start": 4538.94, + "end": 4540.4, + "probability": 0.5337 + }, + { + "start": 4540.4, + "end": 4540.4, + "probability": 0.4733 + }, + { + "start": 4540.4, + "end": 4545.2, + "probability": 0.6288 + }, + { + "start": 4545.56, + "end": 4548.86, + "probability": 0.9844 + }, + { + "start": 4549.0, + "end": 4549.92, + "probability": 0.727 + }, + { + "start": 4550.06, + "end": 4551.5, + "probability": 0.9789 + }, + { + "start": 4552.14, + "end": 4552.3, + "probability": 0.6332 + }, + { + "start": 4552.3, + "end": 4554.32, + "probability": 0.7114 + }, + { + "start": 4554.7, + "end": 4556.24, + "probability": 0.808 + }, + { + "start": 4556.36, + "end": 4556.94, + "probability": 0.8579 + }, + { + "start": 4557.52, + "end": 4559.56, + "probability": 0.7974 + }, + { + "start": 4560.02, + "end": 4564.12, + "probability": 0.9725 + }, + { + "start": 4564.64, + "end": 4566.17, + "probability": 0.9482 + }, + { + "start": 4566.22, + "end": 4567.63, + "probability": 0.7228 + }, + { + "start": 4568.18, + "end": 4570.18, + "probability": 0.6859 + }, + { + "start": 4570.28, + "end": 4570.74, + "probability": 0.6855 + }, + { + "start": 4571.16, + "end": 4571.9, + "probability": 0.3776 + }, + { + "start": 4571.96, + "end": 4572.08, + "probability": 0.8022 + }, + { + "start": 4572.14, + "end": 4572.44, + "probability": 0.8317 + }, + { + "start": 4572.48, + "end": 4573.06, + "probability": 0.7362 + }, + { + "start": 4573.46, + "end": 4574.48, + "probability": 0.7992 + }, + { + "start": 4574.94, + "end": 4575.8, + "probability": 0.3042 + }, + { + "start": 4576.3, + "end": 4577.36, + "probability": 0.8172 + }, + { + "start": 4577.66, + "end": 4578.9, + "probability": 0.9904 + }, + { + "start": 4578.96, + "end": 4580.12, + "probability": 0.8439 + }, + { + "start": 4580.42, + "end": 4581.3, + "probability": 0.6538 + }, + { + "start": 4581.36, + "end": 4582.64, + "probability": 0.8226 + }, + { + "start": 4582.68, + "end": 4585.5, + "probability": 0.9517 + }, + { + "start": 4586.02, + "end": 4587.28, + "probability": 0.9291 + }, + { + "start": 4587.72, + "end": 4590.6, + "probability": 0.991 + }, + { + "start": 4590.66, + "end": 4591.36, + "probability": 0.5137 + }, + { + "start": 4591.94, + "end": 4592.38, + "probability": 0.5965 + }, + { + "start": 4592.5, + "end": 4593.7, + "probability": 0.8606 + }, + { + "start": 4593.8, + "end": 4595.26, + "probability": 0.9065 + }, + { + "start": 4595.36, + "end": 4598.84, + "probability": 0.9715 + }, + { + "start": 4599.12, + "end": 4599.66, + "probability": 0.7286 + }, + { + "start": 4599.74, + "end": 4600.4, + "probability": 0.6239 + }, + { + "start": 4600.42, + "end": 4602.08, + "probability": 0.8645 + }, + { + "start": 4602.22, + "end": 4603.24, + "probability": 0.6698 + }, + { + "start": 4603.28, + "end": 4606.16, + "probability": 0.9762 + }, + { + "start": 4606.52, + "end": 4608.2, + "probability": 0.9394 + }, + { + "start": 4608.78, + "end": 4613.28, + "probability": 0.966 + }, + { + "start": 4613.38, + "end": 4614.15, + "probability": 0.8504 + }, + { + "start": 4614.32, + "end": 4615.9, + "probability": 0.9592 + }, + { + "start": 4616.02, + "end": 4616.86, + "probability": 0.5383 + }, + { + "start": 4617.26, + "end": 4618.69, + "probability": 0.9053 + }, + { + "start": 4619.04, + "end": 4620.76, + "probability": 0.6686 + }, + { + "start": 4621.36, + "end": 4627.24, + "probability": 0.8894 + }, + { + "start": 4627.24, + "end": 4629.55, + "probability": 0.9875 + }, + { + "start": 4630.22, + "end": 4633.3, + "probability": 0.7791 + }, + { + "start": 4633.44, + "end": 4634.77, + "probability": 0.7141 + }, + { + "start": 4635.24, + "end": 4637.28, + "probability": 0.8024 + }, + { + "start": 4637.42, + "end": 4639.47, + "probability": 0.9849 + }, + { + "start": 4640.04, + "end": 4642.38, + "probability": 0.997 + }, + { + "start": 4642.76, + "end": 4644.52, + "probability": 0.9856 + }, + { + "start": 4645.18, + "end": 4649.34, + "probability": 0.9939 + }, + { + "start": 4649.54, + "end": 4651.99, + "probability": 0.9026 + }, + { + "start": 4652.9, + "end": 4656.27, + "probability": 0.5736 + }, + { + "start": 4659.94, + "end": 4660.16, + "probability": 0.2927 + }, + { + "start": 4660.34, + "end": 4660.83, + "probability": 0.51 + }, + { + "start": 4661.02, + "end": 4661.92, + "probability": 0.2052 + }, + { + "start": 4661.92, + "end": 4664.64, + "probability": 0.0478 + }, + { + "start": 4664.9, + "end": 4665.16, + "probability": 0.0967 + }, + { + "start": 4665.34, + "end": 4666.88, + "probability": 0.6315 + }, + { + "start": 4667.04, + "end": 4672.8, + "probability": 0.9868 + }, + { + "start": 4672.8, + "end": 4677.52, + "probability": 0.9981 + }, + { + "start": 4677.76, + "end": 4679.22, + "probability": 0.5027 + }, + { + "start": 4679.24, + "end": 4680.62, + "probability": 0.9331 + }, + { + "start": 4680.94, + "end": 4682.82, + "probability": 0.9235 + }, + { + "start": 4683.06, + "end": 4684.8, + "probability": 0.9422 + }, + { + "start": 4685.0, + "end": 4685.82, + "probability": 0.5076 + }, + { + "start": 4685.84, + "end": 4686.32, + "probability": 0.8784 + }, + { + "start": 4686.94, + "end": 4687.48, + "probability": 0.8806 + }, + { + "start": 4688.3, + "end": 4688.3, + "probability": 0.0148 + }, + { + "start": 4688.3, + "end": 4688.82, + "probability": 0.1038 + }, + { + "start": 4689.1, + "end": 4691.1, + "probability": 0.2212 + }, + { + "start": 4691.18, + "end": 4692.97, + "probability": 0.2432 + }, + { + "start": 4693.28, + "end": 4693.38, + "probability": 0.035 + }, + { + "start": 4693.38, + "end": 4695.22, + "probability": 0.4399 + }, + { + "start": 4696.67, + "end": 4701.34, + "probability": 0.1365 + }, + { + "start": 4701.34, + "end": 4701.68, + "probability": 0.7195 + }, + { + "start": 4701.68, + "end": 4703.24, + "probability": 0.2365 + }, + { + "start": 4703.3, + "end": 4704.99, + "probability": 0.9558 + }, + { + "start": 4706.09, + "end": 4708.85, + "probability": 0.9967 + }, + { + "start": 4709.26, + "end": 4710.88, + "probability": 0.8129 + }, + { + "start": 4710.94, + "end": 4715.62, + "probability": 0.9597 + }, + { + "start": 4716.42, + "end": 4717.44, + "probability": 0.4027 + }, + { + "start": 4717.6, + "end": 4719.6, + "probability": 0.536 + }, + { + "start": 4719.7, + "end": 4721.45, + "probability": 0.5017 + }, + { + "start": 4722.74, + "end": 4723.28, + "probability": 0.6283 + }, + { + "start": 4723.4, + "end": 4726.54, + "probability": 0.5307 + }, + { + "start": 4727.56, + "end": 4727.68, + "probability": 0.0789 + }, + { + "start": 4728.4, + "end": 4729.28, + "probability": 0.0584 + }, + { + "start": 4729.92, + "end": 4729.92, + "probability": 0.2091 + }, + { + "start": 4729.92, + "end": 4731.62, + "probability": 0.0393 + }, + { + "start": 4732.6, + "end": 4732.6, + "probability": 0.3035 + }, + { + "start": 4733.76, + "end": 4734.88, + "probability": 0.2442 + }, + { + "start": 4734.88, + "end": 4735.24, + "probability": 0.0364 + }, + { + "start": 4735.24, + "end": 4736.22, + "probability": 0.7424 + }, + { + "start": 4737.06, + "end": 4738.42, + "probability": 0.5226 + }, + { + "start": 4738.66, + "end": 4741.34, + "probability": 0.8461 + }, + { + "start": 4742.12, + "end": 4746.06, + "probability": 0.994 + }, + { + "start": 4746.18, + "end": 4748.9, + "probability": 0.7983 + }, + { + "start": 4749.18, + "end": 4751.66, + "probability": 0.754 + }, + { + "start": 4754.0, + "end": 4755.18, + "probability": 0.8127 + }, + { + "start": 4755.68, + "end": 4755.88, + "probability": 0.3241 + }, + { + "start": 4757.78, + "end": 4761.34, + "probability": 0.9772 + }, + { + "start": 4772.7, + "end": 4775.0, + "probability": 0.2229 + }, + { + "start": 4777.0, + "end": 4777.82, + "probability": 0.0836 + }, + { + "start": 4779.12, + "end": 4780.74, + "probability": 0.471 + }, + { + "start": 4783.46, + "end": 4786.66, + "probability": 0.7182 + }, + { + "start": 4787.18, + "end": 4789.92, + "probability": 0.8843 + }, + { + "start": 4790.08, + "end": 4791.95, + "probability": 0.8039 + }, + { + "start": 4792.58, + "end": 4798.22, + "probability": 0.8449 + }, + { + "start": 4800.16, + "end": 4801.36, + "probability": 0.765 + }, + { + "start": 4801.46, + "end": 4802.3, + "probability": 0.7827 + }, + { + "start": 4802.38, + "end": 4809.2, + "probability": 0.9902 + }, + { + "start": 4809.24, + "end": 4810.3, + "probability": 0.818 + }, + { + "start": 4810.32, + "end": 4814.14, + "probability": 0.8426 + }, + { + "start": 4814.8, + "end": 4818.54, + "probability": 0.846 + }, + { + "start": 4818.58, + "end": 4820.68, + "probability": 0.9808 + }, + { + "start": 4820.8, + "end": 4828.04, + "probability": 0.9979 + }, + { + "start": 4828.04, + "end": 4832.94, + "probability": 0.9982 + }, + { + "start": 4833.68, + "end": 4837.96, + "probability": 0.9979 + }, + { + "start": 4838.08, + "end": 4839.46, + "probability": 0.6956 + }, + { + "start": 4839.56, + "end": 4840.66, + "probability": 0.5384 + }, + { + "start": 4840.78, + "end": 4841.34, + "probability": 0.9272 + }, + { + "start": 4841.42, + "end": 4842.8, + "probability": 0.782 + }, + { + "start": 4843.26, + "end": 4845.3, + "probability": 0.8941 + }, + { + "start": 4845.48, + "end": 4846.16, + "probability": 0.9087 + }, + { + "start": 4846.24, + "end": 4849.63, + "probability": 0.9825 + }, + { + "start": 4851.35, + "end": 4854.18, + "probability": 0.8877 + }, + { + "start": 4854.3, + "end": 4859.24, + "probability": 0.9882 + }, + { + "start": 4859.24, + "end": 4863.32, + "probability": 0.9971 + }, + { + "start": 4864.2, + "end": 4864.4, + "probability": 0.8296 + }, + { + "start": 4864.5, + "end": 4865.66, + "probability": 0.9347 + }, + { + "start": 4865.7, + "end": 4866.9, + "probability": 0.8332 + }, + { + "start": 4867.12, + "end": 4870.92, + "probability": 0.9703 + }, + { + "start": 4871.24, + "end": 4874.72, + "probability": 0.9856 + }, + { + "start": 4875.26, + "end": 4877.28, + "probability": 0.9824 + }, + { + "start": 4877.44, + "end": 4882.36, + "probability": 0.985 + }, + { + "start": 4883.1, + "end": 4883.5, + "probability": 0.5479 + }, + { + "start": 4883.74, + "end": 4889.74, + "probability": 0.976 + }, + { + "start": 4889.74, + "end": 4893.4, + "probability": 0.9711 + }, + { + "start": 4893.52, + "end": 4896.36, + "probability": 0.9876 + }, + { + "start": 4896.78, + "end": 4898.74, + "probability": 0.9196 + }, + { + "start": 4898.84, + "end": 4899.42, + "probability": 0.5566 + }, + { + "start": 4899.58, + "end": 4900.24, + "probability": 0.0483 + }, + { + "start": 4900.44, + "end": 4902.28, + "probability": 0.9977 + }, + { + "start": 4902.28, + "end": 4904.94, + "probability": 0.7069 + }, + { + "start": 4905.34, + "end": 4906.2, + "probability": 0.8337 + }, + { + "start": 4906.26, + "end": 4908.18, + "probability": 0.8599 + }, + { + "start": 4908.7, + "end": 4914.28, + "probability": 0.9793 + }, + { + "start": 4914.78, + "end": 4916.0, + "probability": 0.7475 + }, + { + "start": 4916.18, + "end": 4920.82, + "probability": 0.9904 + }, + { + "start": 4921.32, + "end": 4925.34, + "probability": 0.9434 + }, + { + "start": 4925.44, + "end": 4926.94, + "probability": 0.9713 + }, + { + "start": 4927.04, + "end": 4928.82, + "probability": 0.776 + }, + { + "start": 4929.5, + "end": 4932.32, + "probability": 0.8587 + }, + { + "start": 4933.02, + "end": 4936.52, + "probability": 0.3423 + }, + { + "start": 4937.78, + "end": 4943.1, + "probability": 0.9634 + }, + { + "start": 4943.1, + "end": 4947.48, + "probability": 0.9861 + }, + { + "start": 4947.66, + "end": 4949.42, + "probability": 0.8689 + }, + { + "start": 4949.56, + "end": 4950.82, + "probability": 0.8039 + }, + { + "start": 4951.14, + "end": 4956.48, + "probability": 0.9967 + }, + { + "start": 4956.48, + "end": 4961.84, + "probability": 0.9918 + }, + { + "start": 4961.9, + "end": 4966.58, + "probability": 0.99 + }, + { + "start": 4967.12, + "end": 4971.04, + "probability": 0.9351 + }, + { + "start": 4971.4, + "end": 4972.12, + "probability": 0.8008 + }, + { + "start": 4972.64, + "end": 4974.0, + "probability": 0.5419 + }, + { + "start": 4974.54, + "end": 4976.46, + "probability": 0.6584 + }, + { + "start": 4981.38, + "end": 4984.98, + "probability": 0.9752 + }, + { + "start": 4986.34, + "end": 4988.4, + "probability": 0.7522 + }, + { + "start": 4989.42, + "end": 4990.26, + "probability": 0.7708 + }, + { + "start": 4990.34, + "end": 4991.24, + "probability": 0.7635 + }, + { + "start": 4991.58, + "end": 4993.22, + "probability": 0.9231 + }, + { + "start": 4993.48, + "end": 4997.28, + "probability": 0.9805 + }, + { + "start": 4997.28, + "end": 5001.38, + "probability": 0.9991 + }, + { + "start": 5002.04, + "end": 5004.62, + "probability": 0.9739 + }, + { + "start": 5004.62, + "end": 5007.94, + "probability": 0.9683 + }, + { + "start": 5008.0, + "end": 5009.06, + "probability": 0.98 + }, + { + "start": 5009.12, + "end": 5010.96, + "probability": 0.9912 + }, + { + "start": 5011.56, + "end": 5016.1, + "probability": 0.9977 + }, + { + "start": 5016.1, + "end": 5020.06, + "probability": 0.9941 + }, + { + "start": 5020.86, + "end": 5025.6, + "probability": 0.9936 + }, + { + "start": 5026.44, + "end": 5030.48, + "probability": 0.9963 + }, + { + "start": 5030.98, + "end": 5035.7, + "probability": 0.9917 + }, + { + "start": 5036.2, + "end": 5037.72, + "probability": 0.7252 + }, + { + "start": 5038.14, + "end": 5039.12, + "probability": 0.9893 + }, + { + "start": 5039.52, + "end": 5040.04, + "probability": 0.6173 + }, + { + "start": 5041.2, + "end": 5042.26, + "probability": 0.8029 + }, + { + "start": 5043.5, + "end": 5045.64, + "probability": 0.9183 + }, + { + "start": 5059.66, + "end": 5060.42, + "probability": 0.6506 + }, + { + "start": 5062.02, + "end": 5063.74, + "probability": 0.2217 + }, + { + "start": 5066.3, + "end": 5066.94, + "probability": 0.4341 + }, + { + "start": 5067.94, + "end": 5069.06, + "probability": 0.5428 + }, + { + "start": 5073.18, + "end": 5073.9, + "probability": 0.0707 + }, + { + "start": 5074.64, + "end": 5076.9, + "probability": 0.0828 + }, + { + "start": 5076.9, + "end": 5079.22, + "probability": 0.4296 + }, + { + "start": 5079.34, + "end": 5082.14, + "probability": 0.8867 + }, + { + "start": 5083.76, + "end": 5084.5, + "probability": 0.8224 + }, + { + "start": 5086.28, + "end": 5086.4, + "probability": 0.0019 + }, + { + "start": 5086.4, + "end": 5086.5, + "probability": 0.1632 + }, + { + "start": 5086.5, + "end": 5087.56, + "probability": 0.0189 + }, + { + "start": 5087.84, + "end": 5094.68, + "probability": 0.6144 + }, + { + "start": 5094.78, + "end": 5099.98, + "probability": 0.4598 + }, + { + "start": 5100.0, + "end": 5100.62, + "probability": 0.7828 + }, + { + "start": 5115.38, + "end": 5116.73, + "probability": 0.4716 + }, + { + "start": 5117.4, + "end": 5117.56, + "probability": 0.8438 + }, + { + "start": 5120.72, + "end": 5122.0, + "probability": 0.5163 + }, + { + "start": 5123.12, + "end": 5123.88, + "probability": 0.809 + }, + { + "start": 5124.14, + "end": 5126.68, + "probability": 0.9651 + }, + { + "start": 5126.68, + "end": 5129.5, + "probability": 0.8798 + }, + { + "start": 5129.62, + "end": 5131.58, + "probability": 0.2922 + }, + { + "start": 5132.1, + "end": 5134.44, + "probability": 0.9247 + }, + { + "start": 5134.54, + "end": 5135.18, + "probability": 0.8375 + }, + { + "start": 5135.28, + "end": 5136.55, + "probability": 0.9103 + }, + { + "start": 5137.46, + "end": 5142.28, + "probability": 0.7506 + }, + { + "start": 5142.94, + "end": 5146.14, + "probability": 0.9905 + }, + { + "start": 5146.22, + "end": 5151.59, + "probability": 0.9938 + }, + { + "start": 5153.74, + "end": 5158.96, + "probability": 0.9307 + }, + { + "start": 5160.27, + "end": 5168.84, + "probability": 0.9958 + }, + { + "start": 5169.4, + "end": 5170.86, + "probability": 0.8812 + }, + { + "start": 5171.32, + "end": 5175.1, + "probability": 0.9949 + }, + { + "start": 5175.18, + "end": 5176.8, + "probability": 0.9269 + }, + { + "start": 5177.4, + "end": 5180.48, + "probability": 0.9982 + }, + { + "start": 5181.12, + "end": 5183.36, + "probability": 0.9967 + }, + { + "start": 5184.52, + "end": 5185.32, + "probability": 0.596 + }, + { + "start": 5185.92, + "end": 5190.04, + "probability": 0.9359 + }, + { + "start": 5190.18, + "end": 5192.42, + "probability": 0.9902 + }, + { + "start": 5192.92, + "end": 5194.3, + "probability": 0.9851 + }, + { + "start": 5196.37, + "end": 5196.54, + "probability": 0.0453 + }, + { + "start": 5196.54, + "end": 5197.74, + "probability": 0.7403 + }, + { + "start": 5197.96, + "end": 5201.38, + "probability": 0.9853 + }, + { + "start": 5201.6, + "end": 5204.48, + "probability": 0.9586 + }, + { + "start": 5204.58, + "end": 5206.1, + "probability": 0.8181 + }, + { + "start": 5206.46, + "end": 5209.24, + "probability": 0.9637 + }, + { + "start": 5209.36, + "end": 5210.58, + "probability": 0.9297 + }, + { + "start": 5211.12, + "end": 5211.6, + "probability": 0.0349 + }, + { + "start": 5212.12, + "end": 5213.85, + "probability": 0.8744 + }, + { + "start": 5216.01, + "end": 5219.9, + "probability": 0.9897 + }, + { + "start": 5220.14, + "end": 5222.82, + "probability": 0.9946 + }, + { + "start": 5222.82, + "end": 5225.86, + "probability": 0.9826 + }, + { + "start": 5226.26, + "end": 5227.34, + "probability": 0.9612 + }, + { + "start": 5227.46, + "end": 5228.18, + "probability": 0.9114 + }, + { + "start": 5228.44, + "end": 5229.21, + "probability": 0.8422 + }, + { + "start": 5230.26, + "end": 5232.55, + "probability": 0.9868 + }, + { + "start": 5232.74, + "end": 5234.22, + "probability": 0.9704 + }, + { + "start": 5234.58, + "end": 5238.52, + "probability": 0.9744 + }, + { + "start": 5238.68, + "end": 5240.3, + "probability": 0.9971 + }, + { + "start": 5241.32, + "end": 5244.7, + "probability": 0.9919 + }, + { + "start": 5245.1, + "end": 5246.94, + "probability": 0.8188 + }, + { + "start": 5247.02, + "end": 5248.6, + "probability": 0.9556 + }, + { + "start": 5249.08, + "end": 5251.56, + "probability": 0.9526 + }, + { + "start": 5251.96, + "end": 5254.34, + "probability": 0.9878 + }, + { + "start": 5254.6, + "end": 5257.2, + "probability": 0.9932 + }, + { + "start": 5257.58, + "end": 5259.24, + "probability": 0.9978 + }, + { + "start": 5259.8, + "end": 5260.94, + "probability": 0.877 + }, + { + "start": 5261.06, + "end": 5262.46, + "probability": 0.9728 + }, + { + "start": 5262.72, + "end": 5263.94, + "probability": 0.8811 + }, + { + "start": 5264.0, + "end": 5264.96, + "probability": 0.9514 + }, + { + "start": 5265.76, + "end": 5269.6, + "probability": 0.9229 + }, + { + "start": 5270.3, + "end": 5270.48, + "probability": 0.1225 + }, + { + "start": 5270.48, + "end": 5271.34, + "probability": 0.3187 + }, + { + "start": 5271.38, + "end": 5273.72, + "probability": 0.9852 + }, + { + "start": 5273.86, + "end": 5275.68, + "probability": 0.9431 + }, + { + "start": 5275.84, + "end": 5280.26, + "probability": 0.9487 + }, + { + "start": 5280.68, + "end": 5284.06, + "probability": 0.9746 + }, + { + "start": 5284.18, + "end": 5285.02, + "probability": 0.7447 + }, + { + "start": 5285.38, + "end": 5289.34, + "probability": 0.9456 + }, + { + "start": 5289.46, + "end": 5290.56, + "probability": 0.8613 + }, + { + "start": 5290.94, + "end": 5293.88, + "probability": 0.981 + }, + { + "start": 5294.12, + "end": 5294.94, + "probability": 0.812 + }, + { + "start": 5295.48, + "end": 5297.02, + "probability": 0.6156 + }, + { + "start": 5297.34, + "end": 5300.02, + "probability": 0.7792 + }, + { + "start": 5300.78, + "end": 5302.0, + "probability": 0.8161 + }, + { + "start": 5306.16, + "end": 5307.94, + "probability": 0.9744 + }, + { + "start": 5315.4, + "end": 5319.66, + "probability": 0.5775 + }, + { + "start": 5320.6, + "end": 5324.5, + "probability": 0.9896 + }, + { + "start": 5324.78, + "end": 5328.46, + "probability": 0.9863 + }, + { + "start": 5328.64, + "end": 5330.54, + "probability": 0.564 + }, + { + "start": 5331.1, + "end": 5332.24, + "probability": 0.8916 + }, + { + "start": 5332.34, + "end": 5332.78, + "probability": 0.6071 + }, + { + "start": 5333.86, + "end": 5334.32, + "probability": 0.5144 + }, + { + "start": 5334.5, + "end": 5336.52, + "probability": 0.7842 + }, + { + "start": 5341.28, + "end": 5342.16, + "probability": 0.6193 + }, + { + "start": 5342.18, + "end": 5342.94, + "probability": 0.492 + }, + { + "start": 5346.14, + "end": 5353.54, + "probability": 0.1322 + }, + { + "start": 5353.78, + "end": 5355.06, + "probability": 0.035 + }, + { + "start": 5355.7, + "end": 5356.32, + "probability": 0.1227 + }, + { + "start": 5357.34, + "end": 5357.94, + "probability": 0.3807 + }, + { + "start": 5359.8, + "end": 5362.38, + "probability": 0.2893 + }, + { + "start": 5362.46, + "end": 5367.14, + "probability": 0.9827 + }, + { + "start": 5368.04, + "end": 5372.28, + "probability": 0.8938 + }, + { + "start": 5372.28, + "end": 5375.4, + "probability": 0.9896 + }, + { + "start": 5375.56, + "end": 5378.96, + "probability": 0.7539 + }, + { + "start": 5380.0, + "end": 5383.34, + "probability": 0.8204 + }, + { + "start": 5386.92, + "end": 5390.68, + "probability": 0.7932 + }, + { + "start": 5395.16, + "end": 5396.58, + "probability": 0.5114 + }, + { + "start": 5396.64, + "end": 5397.06, + "probability": 0.8456 + }, + { + "start": 5399.88, + "end": 5403.28, + "probability": 0.6016 + }, + { + "start": 5404.3, + "end": 5407.32, + "probability": 0.9712 + }, + { + "start": 5407.32, + "end": 5411.68, + "probability": 0.9743 + }, + { + "start": 5412.36, + "end": 5415.22, + "probability": 0.9947 + }, + { + "start": 5415.22, + "end": 5420.06, + "probability": 0.9911 + }, + { + "start": 5420.06, + "end": 5423.72, + "probability": 0.9995 + }, + { + "start": 5425.42, + "end": 5426.44, + "probability": 0.6358 + }, + { + "start": 5426.66, + "end": 5427.54, + "probability": 0.4932 + }, + { + "start": 5427.6, + "end": 5430.78, + "probability": 0.5556 + }, + { + "start": 5432.44, + "end": 5433.84, + "probability": 0.8196 + }, + { + "start": 5434.16, + "end": 5436.4, + "probability": 0.8605 + }, + { + "start": 5436.46, + "end": 5437.34, + "probability": 0.9753 + }, + { + "start": 5437.56, + "end": 5438.02, + "probability": 0.52 + }, + { + "start": 5439.11, + "end": 5440.68, + "probability": 0.9516 + }, + { + "start": 5440.8, + "end": 5441.96, + "probability": 0.8545 + }, + { + "start": 5442.04, + "end": 5442.74, + "probability": 0.4398 + }, + { + "start": 5442.78, + "end": 5443.22, + "probability": 0.717 + }, + { + "start": 5445.7, + "end": 5450.9, + "probability": 0.9761 + }, + { + "start": 5451.74, + "end": 5452.96, + "probability": 0.7828 + }, + { + "start": 5453.0, + "end": 5456.68, + "probability": 0.7554 + }, + { + "start": 5456.68, + "end": 5461.62, + "probability": 0.9779 + }, + { + "start": 5461.88, + "end": 5464.1, + "probability": 0.9517 + }, + { + "start": 5464.72, + "end": 5469.24, + "probability": 0.9104 + }, + { + "start": 5469.52, + "end": 5474.9, + "probability": 0.9887 + }, + { + "start": 5475.0, + "end": 5480.76, + "probability": 0.999 + }, + { + "start": 5481.28, + "end": 5486.02, + "probability": 0.9935 + }, + { + "start": 5486.02, + "end": 5491.14, + "probability": 0.9714 + }, + { + "start": 5491.86, + "end": 5496.62, + "probability": 0.7892 + }, + { + "start": 5497.08, + "end": 5497.48, + "probability": 0.4828 + }, + { + "start": 5497.52, + "end": 5501.67, + "probability": 0.978 + }, + { + "start": 5502.08, + "end": 5503.35, + "probability": 0.9559 + }, + { + "start": 5503.7, + "end": 5504.82, + "probability": 0.851 + }, + { + "start": 5505.62, + "end": 5508.98, + "probability": 0.9725 + }, + { + "start": 5509.16, + "end": 5510.66, + "probability": 0.9048 + }, + { + "start": 5511.02, + "end": 5512.54, + "probability": 0.9613 + }, + { + "start": 5512.92, + "end": 5514.68, + "probability": 0.9612 + }, + { + "start": 5514.88, + "end": 5518.0, + "probability": 0.9648 + }, + { + "start": 5518.06, + "end": 5520.59, + "probability": 0.7891 + }, + { + "start": 5521.22, + "end": 5526.52, + "probability": 0.7426 + }, + { + "start": 5526.52, + "end": 5530.44, + "probability": 0.9472 + }, + { + "start": 5531.08, + "end": 5534.78, + "probability": 0.9985 + }, + { + "start": 5535.16, + "end": 5535.94, + "probability": 0.6814 + }, + { + "start": 5536.04, + "end": 5539.94, + "probability": 0.9881 + }, + { + "start": 5540.28, + "end": 5542.5, + "probability": 0.9729 + }, + { + "start": 5543.32, + "end": 5546.28, + "probability": 0.9962 + }, + { + "start": 5546.28, + "end": 5550.8, + "probability": 0.7486 + }, + { + "start": 5551.38, + "end": 5555.88, + "probability": 0.9938 + }, + { + "start": 5558.14, + "end": 5562.86, + "probability": 0.977 + }, + { + "start": 5562.88, + "end": 5564.2, + "probability": 0.6484 + }, + { + "start": 5564.86, + "end": 5566.44, + "probability": 0.9599 + }, + { + "start": 5567.38, + "end": 5569.66, + "probability": 0.9912 + }, + { + "start": 5570.82, + "end": 5574.18, + "probability": 0.9934 + }, + { + "start": 5575.04, + "end": 5577.6, + "probability": 0.8602 + }, + { + "start": 5578.1, + "end": 5581.92, + "probability": 0.934 + }, + { + "start": 5582.16, + "end": 5585.14, + "probability": 0.8145 + }, + { + "start": 5585.68, + "end": 5591.96, + "probability": 0.9844 + }, + { + "start": 5592.08, + "end": 5594.92, + "probability": 0.9865 + }, + { + "start": 5595.08, + "end": 5596.08, + "probability": 0.7563 + }, + { + "start": 5596.56, + "end": 5597.94, + "probability": 0.6953 + }, + { + "start": 5597.98, + "end": 5600.68, + "probability": 0.8442 + }, + { + "start": 5601.0, + "end": 5603.16, + "probability": 0.4696 + }, + { + "start": 5603.26, + "end": 5605.5, + "probability": 0.9183 + }, + { + "start": 5615.98, + "end": 5617.16, + "probability": 0.7753 + }, + { + "start": 5617.24, + "end": 5618.22, + "probability": 0.6376 + }, + { + "start": 5618.22, + "end": 5620.96, + "probability": 0.8602 + }, + { + "start": 5621.18, + "end": 5622.3, + "probability": 0.9721 + }, + { + "start": 5622.4, + "end": 5624.72, + "probability": 0.9121 + }, + { + "start": 5624.74, + "end": 5626.3, + "probability": 0.9709 + }, + { + "start": 5626.4, + "end": 5628.6, + "probability": 0.5271 + }, + { + "start": 5628.66, + "end": 5629.96, + "probability": 0.601 + }, + { + "start": 5630.16, + "end": 5630.16, + "probability": 0.2865 + }, + { + "start": 5630.16, + "end": 5630.98, + "probability": 0.7356 + }, + { + "start": 5631.1, + "end": 5632.28, + "probability": 0.7831 + }, + { + "start": 5632.48, + "end": 5638.98, + "probability": 0.8932 + }, + { + "start": 5639.12, + "end": 5640.38, + "probability": 0.8685 + }, + { + "start": 5640.78, + "end": 5641.54, + "probability": 0.762 + }, + { + "start": 5641.58, + "end": 5644.0, + "probability": 0.9225 + }, + { + "start": 5644.18, + "end": 5648.78, + "probability": 0.9123 + }, + { + "start": 5648.88, + "end": 5650.62, + "probability": 0.8819 + }, + { + "start": 5650.72, + "end": 5656.66, + "probability": 0.9893 + }, + { + "start": 5657.42, + "end": 5661.44, + "probability": 0.9912 + }, + { + "start": 5661.44, + "end": 5664.94, + "probability": 0.9887 + }, + { + "start": 5665.44, + "end": 5669.86, + "probability": 0.978 + }, + { + "start": 5670.3, + "end": 5673.72, + "probability": 0.939 + }, + { + "start": 5673.72, + "end": 5677.5, + "probability": 0.9805 + }, + { + "start": 5677.76, + "end": 5682.95, + "probability": 0.9745 + }, + { + "start": 5684.06, + "end": 5685.38, + "probability": 0.7639 + }, + { + "start": 5685.68, + "end": 5688.14, + "probability": 0.9937 + }, + { + "start": 5695.64, + "end": 5696.8, + "probability": 0.6495 + }, + { + "start": 5697.08, + "end": 5698.06, + "probability": 0.7587 + }, + { + "start": 5717.12, + "end": 5720.2, + "probability": 0.232 + }, + { + "start": 5724.42, + "end": 5725.52, + "probability": 0.1094 + }, + { + "start": 5725.52, + "end": 5726.98, + "probability": 0.0658 + }, + { + "start": 5727.48, + "end": 5727.64, + "probability": 0.1267 + }, + { + "start": 5727.64, + "end": 5727.64, + "probability": 0.2219 + }, + { + "start": 5727.64, + "end": 5727.64, + "probability": 0.039 + }, + { + "start": 5727.64, + "end": 5727.64, + "probability": 0.013 + }, + { + "start": 5727.64, + "end": 5729.82, + "probability": 0.729 + }, + { + "start": 5731.9, + "end": 5733.32, + "probability": 0.0402 + }, + { + "start": 5733.32, + "end": 5733.4, + "probability": 0.0853 + }, + { + "start": 5733.4, + "end": 5736.31, + "probability": 0.5329 + }, + { + "start": 5737.76, + "end": 5738.8, + "probability": 0.7858 + }, + { + "start": 5738.92, + "end": 5739.32, + "probability": 0.8858 + }, + { + "start": 5740.4, + "end": 5740.9, + "probability": 0.5905 + }, + { + "start": 5741.66, + "end": 5744.64, + "probability": 0.9388 + }, + { + "start": 5744.76, + "end": 5747.1, + "probability": 0.8507 + }, + { + "start": 5747.22, + "end": 5749.06, + "probability": 0.5102 + }, + { + "start": 5749.3, + "end": 5751.76, + "probability": 0.9353 + }, + { + "start": 5755.0, + "end": 5755.66, + "probability": 0.5016 + }, + { + "start": 5755.74, + "end": 5757.62, + "probability": 0.5054 + }, + { + "start": 5758.02, + "end": 5760.76, + "probability": 0.5502 + }, + { + "start": 5760.76, + "end": 5763.26, + "probability": 0.6703 + }, + { + "start": 5764.02, + "end": 5766.54, + "probability": 0.938 + }, + { + "start": 5766.64, + "end": 5771.76, + "probability": 0.9499 + }, + { + "start": 5771.94, + "end": 5772.83, + "probability": 0.9126 + }, + { + "start": 5773.2, + "end": 5773.74, + "probability": 0.748 + }, + { + "start": 5773.86, + "end": 5775.6, + "probability": 0.9283 + }, + { + "start": 5775.7, + "end": 5776.78, + "probability": 0.9839 + }, + { + "start": 5776.86, + "end": 5777.46, + "probability": 0.9819 + }, + { + "start": 5777.56, + "end": 5778.98, + "probability": 0.9109 + }, + { + "start": 5779.52, + "end": 5780.14, + "probability": 0.8137 + }, + { + "start": 5780.46, + "end": 5782.44, + "probability": 0.9716 + }, + { + "start": 5782.74, + "end": 5786.94, + "probability": 0.9816 + }, + { + "start": 5787.44, + "end": 5793.24, + "probability": 0.9927 + }, + { + "start": 5793.44, + "end": 5793.68, + "probability": 0.4589 + }, + { + "start": 5793.82, + "end": 5794.36, + "probability": 0.8258 + }, + { + "start": 5794.74, + "end": 5795.8, + "probability": 0.9585 + }, + { + "start": 5796.06, + "end": 5799.5, + "probability": 0.9915 + }, + { + "start": 5799.72, + "end": 5803.84, + "probability": 0.832 + }, + { + "start": 5803.92, + "end": 5808.58, + "probability": 0.8284 + }, + { + "start": 5808.9, + "end": 5813.84, + "probability": 0.9845 + }, + { + "start": 5814.38, + "end": 5816.52, + "probability": 0.9773 + }, + { + "start": 5817.22, + "end": 5820.56, + "probability": 0.8219 + }, + { + "start": 5820.92, + "end": 5822.57, + "probability": 0.8779 + }, + { + "start": 5823.1, + "end": 5824.12, + "probability": 0.9406 + }, + { + "start": 5824.38, + "end": 5829.2, + "probability": 0.8964 + }, + { + "start": 5829.78, + "end": 5830.62, + "probability": 0.6009 + }, + { + "start": 5830.62, + "end": 5832.44, + "probability": 0.4625 + }, + { + "start": 5832.88, + "end": 5832.88, + "probability": 0.4 + }, + { + "start": 5832.88, + "end": 5833.26, + "probability": 0.5353 + }, + { + "start": 5833.46, + "end": 5835.38, + "probability": 0.6965 + }, + { + "start": 5835.54, + "end": 5836.84, + "probability": 0.8719 + }, + { + "start": 5844.74, + "end": 5847.76, + "probability": 0.6571 + }, + { + "start": 5848.6, + "end": 5849.48, + "probability": 0.7812 + }, + { + "start": 5849.62, + "end": 5850.62, + "probability": 0.8945 + }, + { + "start": 5850.76, + "end": 5852.34, + "probability": 0.9648 + }, + { + "start": 5852.88, + "end": 5862.5, + "probability": 0.9818 + }, + { + "start": 5862.64, + "end": 5864.4, + "probability": 0.9143 + }, + { + "start": 5867.56, + "end": 5869.96, + "probability": 0.1612 + }, + { + "start": 5870.3, + "end": 5871.32, + "probability": 0.7052 + }, + { + "start": 5871.48, + "end": 5872.78, + "probability": 0.6058 + }, + { + "start": 5873.02, + "end": 5874.82, + "probability": 0.5654 + }, + { + "start": 5877.32, + "end": 5878.29, + "probability": 0.3488 + }, + { + "start": 5878.84, + "end": 5884.58, + "probability": 0.4763 + }, + { + "start": 5884.94, + "end": 5886.06, + "probability": 0.32 + }, + { + "start": 5886.4, + "end": 5886.94, + "probability": 0.4888 + }, + { + "start": 5887.22, + "end": 5889.4, + "probability": 0.9924 + }, + { + "start": 5889.54, + "end": 5889.54, + "probability": 0.2573 + }, + { + "start": 5889.54, + "end": 5890.8, + "probability": 0.5959 + }, + { + "start": 5890.8, + "end": 5891.46, + "probability": 0.0888 + }, + { + "start": 5892.02, + "end": 5895.08, + "probability": 0.2325 + }, + { + "start": 5895.08, + "end": 5895.15, + "probability": 0.1752 + }, + { + "start": 5896.64, + "end": 5897.6, + "probability": 0.6962 + }, + { + "start": 5897.76, + "end": 5899.76, + "probability": 0.7965 + }, + { + "start": 5899.84, + "end": 5900.84, + "probability": 0.8027 + }, + { + "start": 5900.98, + "end": 5902.8, + "probability": 0.9805 + }, + { + "start": 5902.96, + "end": 5903.93, + "probability": 0.0659 + }, + { + "start": 5904.28, + "end": 5905.98, + "probability": 0.3996 + }, + { + "start": 5907.32, + "end": 5907.66, + "probability": 0.1611 + }, + { + "start": 5907.66, + "end": 5908.34, + "probability": 0.5735 + }, + { + "start": 5908.46, + "end": 5911.14, + "probability": 0.9847 + }, + { + "start": 5918.18, + "end": 5918.9, + "probability": 0.5567 + }, + { + "start": 5918.96, + "end": 5919.74, + "probability": 0.8162 + }, + { + "start": 5920.72, + "end": 5923.08, + "probability": 0.1144 + }, + { + "start": 5925.05, + "end": 5926.62, + "probability": 0.0107 + }, + { + "start": 5927.44, + "end": 5930.76, + "probability": 0.0337 + }, + { + "start": 5930.76, + "end": 5931.22, + "probability": 0.2236 + }, + { + "start": 5931.22, + "end": 5931.22, + "probability": 0.2324 + }, + { + "start": 5931.22, + "end": 5931.76, + "probability": 0.5229 + }, + { + "start": 5931.86, + "end": 5933.04, + "probability": 0.0644 + }, + { + "start": 5933.08, + "end": 5933.92, + "probability": 0.1489 + }, + { + "start": 5933.92, + "end": 5935.58, + "probability": 0.3909 + }, + { + "start": 5935.62, + "end": 5938.98, + "probability": 0.9705 + }, + { + "start": 5939.54, + "end": 5940.44, + "probability": 0.5561 + }, + { + "start": 5941.16, + "end": 5941.34, + "probability": 0.678 + }, + { + "start": 5941.48, + "end": 5943.42, + "probability": 0.8928 + }, + { + "start": 5943.46, + "end": 5946.52, + "probability": 0.9156 + }, + { + "start": 5947.52, + "end": 5951.34, + "probability": 0.986 + }, + { + "start": 5951.49, + "end": 5955.14, + "probability": 0.9702 + }, + { + "start": 5955.24, + "end": 5959.9, + "probability": 0.9226 + }, + { + "start": 5961.1, + "end": 5965.34, + "probability": 0.702 + }, + { + "start": 5968.05, + "end": 5970.44, + "probability": 0.822 + }, + { + "start": 5971.3, + "end": 5973.92, + "probability": 0.6823 + }, + { + "start": 5974.52, + "end": 5977.16, + "probability": 0.963 + }, + { + "start": 5977.3, + "end": 5980.8, + "probability": 0.9911 + }, + { + "start": 5980.94, + "end": 5981.76, + "probability": 0.5125 + }, + { + "start": 5982.64, + "end": 5990.62, + "probability": 0.9866 + }, + { + "start": 5991.16, + "end": 5994.06, + "probability": 0.911 + }, + { + "start": 5994.42, + "end": 5998.14, + "probability": 0.991 + }, + { + "start": 5998.14, + "end": 6002.02, + "probability": 0.9006 + }, + { + "start": 6002.16, + "end": 6002.62, + "probability": 0.8067 + }, + { + "start": 6003.06, + "end": 6007.8, + "probability": 0.9891 + }, + { + "start": 6008.18, + "end": 6009.74, + "probability": 0.8167 + }, + { + "start": 6009.78, + "end": 6013.08, + "probability": 0.943 + }, + { + "start": 6013.52, + "end": 6017.84, + "probability": 0.9981 + }, + { + "start": 6017.84, + "end": 6021.5, + "probability": 0.9855 + }, + { + "start": 6022.0, + "end": 6024.18, + "probability": 0.8574 + }, + { + "start": 6024.34, + "end": 6026.84, + "probability": 0.8589 + }, + { + "start": 6026.94, + "end": 6031.94, + "probability": 0.9638 + }, + { + "start": 6032.4, + "end": 6037.26, + "probability": 0.9329 + }, + { + "start": 6037.38, + "end": 6039.68, + "probability": 0.8472 + }, + { + "start": 6039.94, + "end": 6045.92, + "probability": 0.6695 + }, + { + "start": 6046.56, + "end": 6051.46, + "probability": 0.6563 + }, + { + "start": 6051.64, + "end": 6055.92, + "probability": 0.9089 + }, + { + "start": 6055.92, + "end": 6060.36, + "probability": 0.9894 + }, + { + "start": 6062.3, + "end": 6062.88, + "probability": 0.6082 + }, + { + "start": 6062.96, + "end": 6066.36, + "probability": 0.5249 + }, + { + "start": 6066.4, + "end": 6070.66, + "probability": 0.9848 + }, + { + "start": 6070.96, + "end": 6072.74, + "probability": 0.9287 + }, + { + "start": 6073.08, + "end": 6075.6, + "probability": 0.988 + }, + { + "start": 6075.8, + "end": 6076.32, + "probability": 0.5338 + }, + { + "start": 6076.38, + "end": 6078.24, + "probability": 0.9774 + }, + { + "start": 6078.46, + "end": 6079.2, + "probability": 0.9221 + }, + { + "start": 6080.12, + "end": 6080.74, + "probability": 0.8579 + }, + { + "start": 6080.78, + "end": 6085.26, + "probability": 0.9821 + }, + { + "start": 6085.58, + "end": 6088.06, + "probability": 0.7218 + }, + { + "start": 6088.24, + "end": 6091.7, + "probability": 0.9838 + }, + { + "start": 6091.78, + "end": 6093.1, + "probability": 0.5616 + }, + { + "start": 6093.28, + "end": 6096.1, + "probability": 0.7362 + }, + { + "start": 6096.7, + "end": 6098.12, + "probability": 0.9301 + }, + { + "start": 6101.1, + "end": 6101.74, + "probability": 0.5877 + }, + { + "start": 6103.34, + "end": 6104.1, + "probability": 0.5071 + }, + { + "start": 6104.16, + "end": 6105.16, + "probability": 0.75 + }, + { + "start": 6105.36, + "end": 6108.76, + "probability": 0.9798 + }, + { + "start": 6109.32, + "end": 6112.46, + "probability": 0.8868 + }, + { + "start": 6113.02, + "end": 6114.78, + "probability": 0.7017 + }, + { + "start": 6114.92, + "end": 6117.54, + "probability": 0.8258 + }, + { + "start": 6118.32, + "end": 6121.08, + "probability": 0.9949 + }, + { + "start": 6121.08, + "end": 6124.86, + "probability": 0.9749 + }, + { + "start": 6126.24, + "end": 6130.78, + "probability": 0.9916 + }, + { + "start": 6130.78, + "end": 6136.56, + "probability": 0.9984 + }, + { + "start": 6136.78, + "end": 6144.56, + "probability": 0.8046 + }, + { + "start": 6145.24, + "end": 6149.05, + "probability": 0.854 + }, + { + "start": 6150.34, + "end": 6154.66, + "probability": 0.8972 + }, + { + "start": 6154.66, + "end": 6159.56, + "probability": 0.8367 + }, + { + "start": 6159.56, + "end": 6166.66, + "probability": 0.9905 + }, + { + "start": 6167.34, + "end": 6169.88, + "probability": 0.9842 + }, + { + "start": 6169.88, + "end": 6173.94, + "probability": 0.9683 + }, + { + "start": 6174.9, + "end": 6177.34, + "probability": 0.98 + }, + { + "start": 6177.34, + "end": 6181.02, + "probability": 0.9931 + }, + { + "start": 6181.92, + "end": 6185.76, + "probability": 0.9836 + }, + { + "start": 6185.96, + "end": 6190.02, + "probability": 0.9971 + }, + { + "start": 6190.02, + "end": 6196.82, + "probability": 0.512 + }, + { + "start": 6196.82, + "end": 6200.94, + "probability": 0.9771 + }, + { + "start": 6201.78, + "end": 6202.52, + "probability": 0.5906 + }, + { + "start": 6203.12, + "end": 6203.6, + "probability": 0.4651 + }, + { + "start": 6203.8, + "end": 6205.67, + "probability": 0.9697 + }, + { + "start": 6215.1, + "end": 6215.34, + "probability": 0.2148 + }, + { + "start": 6215.34, + "end": 6216.12, + "probability": 0.3298 + }, + { + "start": 6218.3, + "end": 6221.58, + "probability": 0.1608 + }, + { + "start": 6223.74, + "end": 6225.14, + "probability": 0.1126 + }, + { + "start": 6225.16, + "end": 6227.94, + "probability": 0.0151 + }, + { + "start": 6229.14, + "end": 6230.24, + "probability": 0.0558 + }, + { + "start": 6230.58, + "end": 6231.4, + "probability": 0.2937 + }, + { + "start": 6231.4, + "end": 6231.4, + "probability": 0.7234 + }, + { + "start": 6231.4, + "end": 6232.18, + "probability": 0.1854 + }, + { + "start": 6232.38, + "end": 6235.62, + "probability": 0.9419 + }, + { + "start": 6235.72, + "end": 6237.84, + "probability": 0.9188 + }, + { + "start": 6240.26, + "end": 6244.68, + "probability": 0.8202 + }, + { + "start": 6245.52, + "end": 6248.34, + "probability": 0.9837 + }, + { + "start": 6248.54, + "end": 6249.86, + "probability": 0.8801 + }, + { + "start": 6249.86, + "end": 6255.54, + "probability": 0.7297 + }, + { + "start": 6256.0, + "end": 6256.54, + "probability": 0.3167 + }, + { + "start": 6260.74, + "end": 6261.74, + "probability": 0.3602 + }, + { + "start": 6261.8, + "end": 6262.48, + "probability": 0.765 + }, + { + "start": 6263.1, + "end": 6265.82, + "probability": 0.1682 + }, + { + "start": 6265.82, + "end": 6265.82, + "probability": 0.2625 + }, + { + "start": 6265.82, + "end": 6271.88, + "probability": 0.828 + }, + { + "start": 6272.52, + "end": 6277.16, + "probability": 0.8919 + }, + { + "start": 6277.86, + "end": 6281.14, + "probability": 0.9993 + }, + { + "start": 6281.94, + "end": 6282.46, + "probability": 0.578 + }, + { + "start": 6282.52, + "end": 6287.22, + "probability": 0.8265 + }, + { + "start": 6287.66, + "end": 6292.24, + "probability": 0.9346 + }, + { + "start": 6292.66, + "end": 6294.16, + "probability": 0.9879 + }, + { + "start": 6294.92, + "end": 6299.24, + "probability": 0.9937 + }, + { + "start": 6299.7, + "end": 6305.44, + "probability": 0.9963 + }, + { + "start": 6306.18, + "end": 6309.0, + "probability": 0.6173 + }, + { + "start": 6309.16, + "end": 6311.0, + "probability": 0.9211 + }, + { + "start": 6311.6, + "end": 6312.86, + "probability": 0.7876 + }, + { + "start": 6312.96, + "end": 6318.08, + "probability": 0.9794 + }, + { + "start": 6318.08, + "end": 6324.58, + "probability": 0.9924 + }, + { + "start": 6324.68, + "end": 6325.02, + "probability": 0.6887 + }, + { + "start": 6325.24, + "end": 6326.97, + "probability": 0.5933 + }, + { + "start": 6327.22, + "end": 6329.3, + "probability": 0.8291 + }, + { + "start": 6331.02, + "end": 6333.92, + "probability": 0.9397 + }, + { + "start": 6340.56, + "end": 6341.65, + "probability": 0.6703 + }, + { + "start": 6342.84, + "end": 6343.5, + "probability": 0.7297 + }, + { + "start": 6343.62, + "end": 6344.26, + "probability": 0.8391 + }, + { + "start": 6344.36, + "end": 6348.6, + "probability": 0.9943 + }, + { + "start": 6348.6, + "end": 6353.08, + "probability": 0.9388 + }, + { + "start": 6353.44, + "end": 6354.2, + "probability": 0.8285 + }, + { + "start": 6354.34, + "end": 6356.38, + "probability": 0.7585 + }, + { + "start": 6356.54, + "end": 6357.96, + "probability": 0.7504 + }, + { + "start": 6358.1, + "end": 6358.76, + "probability": 0.4881 + }, + { + "start": 6359.04, + "end": 6362.76, + "probability": 0.9207 + }, + { + "start": 6362.86, + "end": 6366.75, + "probability": 0.8644 + }, + { + "start": 6367.28, + "end": 6371.08, + "probability": 0.8485 + }, + { + "start": 6371.94, + "end": 6372.9, + "probability": 0.9672 + }, + { + "start": 6373.38, + "end": 6377.74, + "probability": 0.9764 + }, + { + "start": 6377.74, + "end": 6382.9, + "probability": 0.9917 + }, + { + "start": 6383.02, + "end": 6383.54, + "probability": 0.5853 + }, + { + "start": 6383.7, + "end": 6386.16, + "probability": 0.8656 + }, + { + "start": 6386.8, + "end": 6392.2, + "probability": 0.9729 + }, + { + "start": 6392.28, + "end": 6395.16, + "probability": 0.9958 + }, + { + "start": 6396.06, + "end": 6399.78, + "probability": 0.979 + }, + { + "start": 6399.78, + "end": 6404.34, + "probability": 0.999 + }, + { + "start": 6404.36, + "end": 6405.92, + "probability": 0.6896 + }, + { + "start": 6406.04, + "end": 6406.8, + "probability": 0.7258 + }, + { + "start": 6407.46, + "end": 6409.58, + "probability": 0.8148 + }, + { + "start": 6409.74, + "end": 6412.44, + "probability": 0.9865 + }, + { + "start": 6414.14, + "end": 6418.56, + "probability": 0.9813 + }, + { + "start": 6418.68, + "end": 6419.92, + "probability": 0.8926 + }, + { + "start": 6419.96, + "end": 6420.58, + "probability": 0.7818 + }, + { + "start": 6421.24, + "end": 6422.62, + "probability": 0.6705 + }, + { + "start": 6422.84, + "end": 6426.53, + "probability": 0.8994 + }, + { + "start": 6435.98, + "end": 6437.16, + "probability": 0.571 + }, + { + "start": 6437.5, + "end": 6438.18, + "probability": 0.3211 + }, + { + "start": 6441.02, + "end": 6443.06, + "probability": 0.3406 + }, + { + "start": 6443.82, + "end": 6449.22, + "probability": 0.0374 + }, + { + "start": 6449.22, + "end": 6450.16, + "probability": 0.0849 + }, + { + "start": 6450.72, + "end": 6453.26, + "probability": 0.0804 + }, + { + "start": 6453.26, + "end": 6455.78, + "probability": 0.1478 + }, + { + "start": 6456.26, + "end": 6456.26, + "probability": 0.4867 + }, + { + "start": 6456.26, + "end": 6456.34, + "probability": 0.041 + }, + { + "start": 6456.34, + "end": 6456.96, + "probability": 0.4757 + }, + { + "start": 6457.04, + "end": 6460.06, + "probability": 0.8637 + }, + { + "start": 6460.52, + "end": 6463.74, + "probability": 0.5842 + }, + { + "start": 6464.8, + "end": 6467.52, + "probability": 0.9353 + }, + { + "start": 6470.44, + "end": 6473.84, + "probability": 0.8678 + }, + { + "start": 6479.72, + "end": 6481.14, + "probability": 0.5191 + }, + { + "start": 6481.18, + "end": 6482.04, + "probability": 0.9424 + }, + { + "start": 6484.9, + "end": 6485.78, + "probability": 0.6708 + }, + { + "start": 6485.92, + "end": 6488.48, + "probability": 0.7311 + }, + { + "start": 6488.96, + "end": 6493.5, + "probability": 0.9465 + }, + { + "start": 6493.5, + "end": 6497.2, + "probability": 0.9975 + }, + { + "start": 6499.22, + "end": 6502.68, + "probability": 0.993 + }, + { + "start": 6504.28, + "end": 6512.38, + "probability": 0.9937 + }, + { + "start": 6512.52, + "end": 6513.1, + "probability": 0.7263 + }, + { + "start": 6513.7, + "end": 6514.96, + "probability": 0.9623 + }, + { + "start": 6517.86, + "end": 6519.1, + "probability": 0.9611 + }, + { + "start": 6519.14, + "end": 6520.06, + "probability": 0.886 + }, + { + "start": 6520.2, + "end": 6521.78, + "probability": 0.9178 + }, + { + "start": 6521.86, + "end": 6522.52, + "probability": 0.5923 + }, + { + "start": 6523.72, + "end": 6535.4, + "probability": 0.9714 + }, + { + "start": 6537.86, + "end": 6538.98, + "probability": 0.6558 + }, + { + "start": 6539.02, + "end": 6543.76, + "probability": 0.942 + }, + { + "start": 6543.86, + "end": 6545.02, + "probability": 0.7183 + }, + { + "start": 6546.88, + "end": 6551.18, + "probability": 0.9749 + }, + { + "start": 6552.62, + "end": 6552.62, + "probability": 0.0821 + }, + { + "start": 6552.62, + "end": 6552.7, + "probability": 0.4209 + }, + { + "start": 6552.78, + "end": 6553.68, + "probability": 0.8147 + }, + { + "start": 6553.7, + "end": 6555.72, + "probability": 0.9537 + }, + { + "start": 6555.84, + "end": 6556.68, + "probability": 0.813 + }, + { + "start": 6558.08, + "end": 6560.84, + "probability": 0.9323 + }, + { + "start": 6563.66, + "end": 6572.92, + "probability": 0.7249 + }, + { + "start": 6575.18, + "end": 6578.0, + "probability": 0.7071 + }, + { + "start": 6579.44, + "end": 6581.24, + "probability": 0.9042 + }, + { + "start": 6581.74, + "end": 6582.62, + "probability": 0.4513 + }, + { + "start": 6582.62, + "end": 6583.8, + "probability": 0.8115 + }, + { + "start": 6583.92, + "end": 6584.5, + "probability": 0.48 + }, + { + "start": 6584.56, + "end": 6585.7, + "probability": 0.8333 + }, + { + "start": 6585.86, + "end": 6586.34, + "probability": 0.9453 + }, + { + "start": 6586.4, + "end": 6587.91, + "probability": 0.9691 + }, + { + "start": 6588.26, + "end": 6588.86, + "probability": 0.8779 + }, + { + "start": 6588.86, + "end": 6591.07, + "probability": 0.8845 + }, + { + "start": 6592.4, + "end": 6593.96, + "probability": 0.5919 + }, + { + "start": 6595.52, + "end": 6596.54, + "probability": 0.8086 + }, + { + "start": 6598.28, + "end": 6602.22, + "probability": 0.9956 + }, + { + "start": 6602.22, + "end": 6605.88, + "probability": 0.915 + }, + { + "start": 6607.54, + "end": 6613.48, + "probability": 0.9634 + }, + { + "start": 6614.3, + "end": 6617.82, + "probability": 0.9893 + }, + { + "start": 6617.88, + "end": 6618.74, + "probability": 0.8767 + }, + { + "start": 6620.46, + "end": 6621.68, + "probability": 0.8167 + }, + { + "start": 6621.94, + "end": 6625.32, + "probability": 0.9851 + }, + { + "start": 6625.32, + "end": 6630.7, + "probability": 0.8889 + }, + { + "start": 6630.86, + "end": 6633.68, + "probability": 0.7536 + }, + { + "start": 6634.32, + "end": 6636.24, + "probability": 0.3648 + }, + { + "start": 6636.32, + "end": 6640.28, + "probability": 0.9809 + }, + { + "start": 6640.42, + "end": 6641.94, + "probability": 0.7035 + }, + { + "start": 6644.4, + "end": 6646.94, + "probability": 0.9575 + }, + { + "start": 6646.94, + "end": 6650.2, + "probability": 0.9866 + }, + { + "start": 6650.98, + "end": 6651.38, + "probability": 0.8998 + }, + { + "start": 6651.5, + "end": 6652.82, + "probability": 0.721 + }, + { + "start": 6652.96, + "end": 6652.98, + "probability": 0.0556 + }, + { + "start": 6653.86, + "end": 6658.04, + "probability": 0.9977 + }, + { + "start": 6658.62, + "end": 6660.76, + "probability": 0.4888 + }, + { + "start": 6663.06, + "end": 6664.8, + "probability": 0.5654 + }, + { + "start": 6665.34, + "end": 6669.62, + "probability": 0.7087 + }, + { + "start": 6669.76, + "end": 6670.76, + "probability": 0.9002 + }, + { + "start": 6671.24, + "end": 6674.44, + "probability": 0.8934 + }, + { + "start": 6675.28, + "end": 6677.6, + "probability": 0.8187 + }, + { + "start": 6678.24, + "end": 6681.22, + "probability": 0.9808 + }, + { + "start": 6681.38, + "end": 6682.28, + "probability": 0.8701 + }, + { + "start": 6682.44, + "end": 6685.28, + "probability": 0.943 + }, + { + "start": 6685.32, + "end": 6688.8, + "probability": 0.9514 + }, + { + "start": 6688.8, + "end": 6692.72, + "probability": 0.999 + }, + { + "start": 6692.82, + "end": 6695.24, + "probability": 0.7474 + }, + { + "start": 6695.34, + "end": 6697.26, + "probability": 0.931 + }, + { + "start": 6697.28, + "end": 6697.66, + "probability": 0.8429 + }, + { + "start": 6697.72, + "end": 6698.72, + "probability": 0.6617 + }, + { + "start": 6698.78, + "end": 6701.0, + "probability": 0.3158 + }, + { + "start": 6701.32, + "end": 6702.06, + "probability": 0.6415 + }, + { + "start": 6702.12, + "end": 6702.44, + "probability": 0.6699 + }, + { + "start": 6702.48, + "end": 6704.32, + "probability": 0.9442 + }, + { + "start": 6704.34, + "end": 6706.54, + "probability": 0.8002 + }, + { + "start": 6707.5, + "end": 6710.5, + "probability": 0.9875 + }, + { + "start": 6710.6, + "end": 6711.38, + "probability": 0.8063 + }, + { + "start": 6711.76, + "end": 6712.5, + "probability": 0.2931 + }, + { + "start": 6713.16, + "end": 6714.6, + "probability": 0.5901 + }, + { + "start": 6714.76, + "end": 6716.62, + "probability": 0.826 + }, + { + "start": 6716.62, + "end": 6717.67, + "probability": 0.4877 + }, + { + "start": 6718.1, + "end": 6719.14, + "probability": 0.903 + }, + { + "start": 6721.36, + "end": 6725.16, + "probability": 0.9871 + }, + { + "start": 6725.16, + "end": 6727.62, + "probability": 0.9883 + }, + { + "start": 6727.78, + "end": 6731.54, + "probability": 0.8614 + }, + { + "start": 6732.24, + "end": 6732.96, + "probability": 0.1556 + }, + { + "start": 6733.38, + "end": 6737.06, + "probability": 0.9932 + }, + { + "start": 6738.0, + "end": 6738.74, + "probability": 0.8043 + }, + { + "start": 6739.32, + "end": 6741.32, + "probability": 0.9982 + }, + { + "start": 6741.62, + "end": 6745.2, + "probability": 0.9053 + }, + { + "start": 6746.38, + "end": 6749.06, + "probability": 0.6936 + }, + { + "start": 6749.16, + "end": 6750.12, + "probability": 0.634 + }, + { + "start": 6750.14, + "end": 6756.42, + "probability": 0.9838 + }, + { + "start": 6756.42, + "end": 6758.83, + "probability": 0.9971 + }, + { + "start": 6759.9, + "end": 6764.9, + "probability": 0.9802 + }, + { + "start": 6765.72, + "end": 6768.72, + "probability": 0.6441 + }, + { + "start": 6769.26, + "end": 6774.43, + "probability": 0.946 + }, + { + "start": 6774.94, + "end": 6775.98, + "probability": 0.585 + }, + { + "start": 6776.24, + "end": 6778.0, + "probability": 0.8626 + }, + { + "start": 6778.86, + "end": 6780.34, + "probability": 0.9854 + }, + { + "start": 6780.96, + "end": 6784.1, + "probability": 0.6474 + }, + { + "start": 6784.16, + "end": 6785.98, + "probability": 0.9922 + }, + { + "start": 6786.28, + "end": 6787.32, + "probability": 0.8356 + }, + { + "start": 6787.32, + "end": 6787.72, + "probability": 0.7338 + }, + { + "start": 6787.74, + "end": 6787.84, + "probability": 0.3545 + }, + { + "start": 6787.84, + "end": 6788.22, + "probability": 0.3682 + }, + { + "start": 6788.22, + "end": 6789.18, + "probability": 0.8326 + }, + { + "start": 6789.6, + "end": 6789.86, + "probability": 0.6581 + }, + { + "start": 6789.86, + "end": 6792.51, + "probability": 0.4611 + }, + { + "start": 6793.43, + "end": 6795.27, + "probability": 0.9663 + }, + { + "start": 6795.72, + "end": 6796.62, + "probability": 0.7938 + }, + { + "start": 6796.68, + "end": 6797.88, + "probability": 0.9941 + }, + { + "start": 6800.37, + "end": 6805.9, + "probability": 0.6694 + }, + { + "start": 6805.94, + "end": 6812.44, + "probability": 0.9959 + }, + { + "start": 6812.44, + "end": 6817.34, + "probability": 0.9557 + }, + { + "start": 6818.74, + "end": 6825.22, + "probability": 0.9766 + }, + { + "start": 6825.34, + "end": 6826.88, + "probability": 0.733 + }, + { + "start": 6827.06, + "end": 6830.4, + "probability": 0.8391 + }, + { + "start": 6830.52, + "end": 6832.72, + "probability": 0.808 + }, + { + "start": 6833.38, + "end": 6836.62, + "probability": 0.9392 + }, + { + "start": 6836.76, + "end": 6840.78, + "probability": 0.9806 + }, + { + "start": 6841.38, + "end": 6846.54, + "probability": 0.8425 + }, + { + "start": 6846.72, + "end": 6849.64, + "probability": 0.9796 + }, + { + "start": 6850.62, + "end": 6850.94, + "probability": 0.7515 + }, + { + "start": 6851.22, + "end": 6852.82, + "probability": 0.9185 + }, + { + "start": 6853.28, + "end": 6854.14, + "probability": 0.5555 + }, + { + "start": 6854.62, + "end": 6856.86, + "probability": 0.9609 + }, + { + "start": 6859.68, + "end": 6862.62, + "probability": 0.9764 + }, + { + "start": 6863.32, + "end": 6869.92, + "probability": 0.9945 + }, + { + "start": 6870.68, + "end": 6873.78, + "probability": 0.834 + }, + { + "start": 6873.78, + "end": 6878.86, + "probability": 0.9062 + }, + { + "start": 6879.02, + "end": 6881.48, + "probability": 0.7683 + }, + { + "start": 6881.64, + "end": 6882.5, + "probability": 0.9119 + }, + { + "start": 6882.7, + "end": 6883.6, + "probability": 0.4718 + }, + { + "start": 6883.64, + "end": 6886.84, + "probability": 0.9635 + }, + { + "start": 6886.94, + "end": 6888.36, + "probability": 0.907 + }, + { + "start": 6888.56, + "end": 6890.54, + "probability": 0.9725 + }, + { + "start": 6891.66, + "end": 6895.24, + "probability": 0.9575 + }, + { + "start": 6895.24, + "end": 6897.64, + "probability": 0.9839 + }, + { + "start": 6898.78, + "end": 6899.12, + "probability": 0.5602 + }, + { + "start": 6900.02, + "end": 6902.58, + "probability": 0.7928 + }, + { + "start": 6903.48, + "end": 6904.08, + "probability": 0.538 + }, + { + "start": 6904.64, + "end": 6909.82, + "probability": 0.9901 + }, + { + "start": 6910.42, + "end": 6911.18, + "probability": 0.9144 + }, + { + "start": 6911.24, + "end": 6913.28, + "probability": 0.9701 + }, + { + "start": 6913.7, + "end": 6915.62, + "probability": 0.9031 + }, + { + "start": 6915.74, + "end": 6920.07, + "probability": 0.9688 + }, + { + "start": 6921.28, + "end": 6926.98, + "probability": 0.9924 + }, + { + "start": 6927.48, + "end": 6931.0, + "probability": 0.939 + }, + { + "start": 6933.81, + "end": 6936.7, + "probability": 0.6752 + }, + { + "start": 6937.3, + "end": 6941.18, + "probability": 0.9471 + }, + { + "start": 6941.54, + "end": 6945.34, + "probability": 0.7342 + }, + { + "start": 6945.34, + "end": 6949.5, + "probability": 0.9946 + }, + { + "start": 6949.92, + "end": 6955.96, + "probability": 0.991 + }, + { + "start": 6956.04, + "end": 6956.78, + "probability": 0.7515 + }, + { + "start": 6957.34, + "end": 6959.23, + "probability": 0.682 + }, + { + "start": 6959.42, + "end": 6963.2, + "probability": 0.931 + }, + { + "start": 6963.28, + "end": 6964.89, + "probability": 0.9729 + }, + { + "start": 6978.08, + "end": 6978.82, + "probability": 0.3194 + }, + { + "start": 6978.82, + "end": 6981.14, + "probability": 0.8169 + }, + { + "start": 6981.28, + "end": 6983.54, + "probability": 0.5235 + }, + { + "start": 6983.66, + "end": 6986.26, + "probability": 0.9138 + }, + { + "start": 6986.44, + "end": 6988.72, + "probability": 0.9613 + }, + { + "start": 6988.72, + "end": 6990.08, + "probability": 0.7812 + }, + { + "start": 6990.14, + "end": 6990.9, + "probability": 0.6733 + }, + { + "start": 6991.52, + "end": 6992.7, + "probability": 0.63 + }, + { + "start": 6992.94, + "end": 6995.58, + "probability": 0.6562 + }, + { + "start": 6999.06, + "end": 7002.06, + "probability": 0.8142 + }, + { + "start": 7002.24, + "end": 7005.22, + "probability": 0.9544 + }, + { + "start": 7005.66, + "end": 7008.3, + "probability": 0.9744 + }, + { + "start": 7008.62, + "end": 7012.34, + "probability": 0.9838 + }, + { + "start": 7013.24, + "end": 7015.9, + "probability": 0.9692 + }, + { + "start": 7015.9, + "end": 7018.42, + "probability": 0.9851 + }, + { + "start": 7018.5, + "end": 7019.74, + "probability": 0.6752 + }, + { + "start": 7021.36, + "end": 7026.26, + "probability": 0.8271 + }, + { + "start": 7026.96, + "end": 7029.6, + "probability": 0.6688 + }, + { + "start": 7029.7, + "end": 7032.52, + "probability": 0.9922 + }, + { + "start": 7033.38, + "end": 7037.74, + "probability": 0.8438 + }, + { + "start": 7037.84, + "end": 7039.86, + "probability": 0.7708 + }, + { + "start": 7039.92, + "end": 7044.0, + "probability": 0.9409 + }, + { + "start": 7045.14, + "end": 7052.14, + "probability": 0.9803 + }, + { + "start": 7052.14, + "end": 7054.42, + "probability": 0.9607 + }, + { + "start": 7055.64, + "end": 7059.58, + "probability": 0.8893 + }, + { + "start": 7059.66, + "end": 7061.47, + "probability": 0.9927 + }, + { + "start": 7062.68, + "end": 7066.4, + "probability": 0.9857 + }, + { + "start": 7066.56, + "end": 7068.58, + "probability": 0.9917 + }, + { + "start": 7068.68, + "end": 7070.95, + "probability": 0.998 + }, + { + "start": 7071.22, + "end": 7074.5, + "probability": 0.6228 + }, + { + "start": 7074.62, + "end": 7076.08, + "probability": 0.8963 + }, + { + "start": 7076.14, + "end": 7078.26, + "probability": 0.9785 + }, + { + "start": 7078.26, + "end": 7081.8, + "probability": 0.9673 + }, + { + "start": 7081.84, + "end": 7084.74, + "probability": 0.9841 + }, + { + "start": 7084.88, + "end": 7090.48, + "probability": 0.9574 + }, + { + "start": 7090.8, + "end": 7093.6, + "probability": 0.7731 + }, + { + "start": 7093.82, + "end": 7094.28, + "probability": 0.3163 + }, + { + "start": 7094.36, + "end": 7094.96, + "probability": 0.7699 + }, + { + "start": 7095.36, + "end": 7096.41, + "probability": 0.9814 + }, + { + "start": 7096.72, + "end": 7098.9, + "probability": 0.9263 + }, + { + "start": 7099.42, + "end": 7103.52, + "probability": 0.9946 + }, + { + "start": 7103.62, + "end": 7107.0, + "probability": 0.8806 + }, + { + "start": 7108.0, + "end": 7112.28, + "probability": 0.8111 + }, + { + "start": 7112.32, + "end": 7113.9, + "probability": 0.6932 + }, + { + "start": 7114.08, + "end": 7114.74, + "probability": 0.776 + }, + { + "start": 7115.68, + "end": 7117.02, + "probability": 0.9833 + }, + { + "start": 7117.4, + "end": 7121.41, + "probability": 0.9741 + }, + { + "start": 7122.36, + "end": 7124.24, + "probability": 0.9691 + }, + { + "start": 7124.4, + "end": 7131.06, + "probability": 0.8792 + }, + { + "start": 7131.94, + "end": 7135.66, + "probability": 0.9924 + }, + { + "start": 7136.24, + "end": 7139.22, + "probability": 0.9644 + }, + { + "start": 7139.92, + "end": 7143.3, + "probability": 0.9822 + }, + { + "start": 7143.36, + "end": 7144.7, + "probability": 0.9352 + }, + { + "start": 7145.32, + "end": 7150.78, + "probability": 0.9869 + }, + { + "start": 7150.78, + "end": 7154.7, + "probability": 0.9975 + }, + { + "start": 7154.7, + "end": 7160.7, + "probability": 0.9974 + }, + { + "start": 7161.5, + "end": 7161.88, + "probability": 0.3597 + }, + { + "start": 7161.96, + "end": 7162.32, + "probability": 0.8816 + }, + { + "start": 7162.38, + "end": 7165.6, + "probability": 0.998 + }, + { + "start": 7166.1, + "end": 7168.94, + "probability": 0.8217 + }, + { + "start": 7169.44, + "end": 7171.32, + "probability": 0.9505 + }, + { + "start": 7171.42, + "end": 7174.2, + "probability": 0.9633 + }, + { + "start": 7174.74, + "end": 7175.7, + "probability": 0.5605 + }, + { + "start": 7175.76, + "end": 7180.94, + "probability": 0.9823 + }, + { + "start": 7181.64, + "end": 7183.08, + "probability": 0.9456 + }, + { + "start": 7183.62, + "end": 7186.3, + "probability": 0.8995 + }, + { + "start": 7186.76, + "end": 7188.7, + "probability": 0.988 + }, + { + "start": 7188.78, + "end": 7190.49, + "probability": 0.9873 + }, + { + "start": 7190.98, + "end": 7193.54, + "probability": 0.772 + }, + { + "start": 7194.4, + "end": 7195.2, + "probability": 0.7316 + }, + { + "start": 7195.26, + "end": 7195.8, + "probability": 0.5497 + }, + { + "start": 7195.98, + "end": 7196.78, + "probability": 0.8358 + }, + { + "start": 7197.62, + "end": 7199.34, + "probability": 0.7667 + }, + { + "start": 7199.66, + "end": 7202.68, + "probability": 0.8879 + }, + { + "start": 7202.84, + "end": 7203.44, + "probability": 0.895 + }, + { + "start": 7203.82, + "end": 7206.82, + "probability": 0.9691 + }, + { + "start": 7207.56, + "end": 7211.42, + "probability": 0.9959 + }, + { + "start": 7211.42, + "end": 7214.98, + "probability": 0.9829 + }, + { + "start": 7215.26, + "end": 7219.6, + "probability": 0.9995 + }, + { + "start": 7219.6, + "end": 7223.04, + "probability": 0.998 + }, + { + "start": 7223.52, + "end": 7224.38, + "probability": 0.7136 + }, + { + "start": 7225.04, + "end": 7227.02, + "probability": 0.9412 + }, + { + "start": 7227.16, + "end": 7228.98, + "probability": 0.9507 + }, + { + "start": 7229.04, + "end": 7230.44, + "probability": 0.9587 + }, + { + "start": 7230.9, + "end": 7232.9, + "probability": 0.7373 + }, + { + "start": 7233.3, + "end": 7233.98, + "probability": 0.537 + }, + { + "start": 7239.02, + "end": 7242.76, + "probability": 0.7184 + }, + { + "start": 7243.4, + "end": 7246.86, + "probability": 0.5818 + }, + { + "start": 7246.86, + "end": 7249.08, + "probability": 0.7072 + }, + { + "start": 7250.48, + "end": 7254.82, + "probability": 0.9969 + }, + { + "start": 7255.14, + "end": 7259.44, + "probability": 0.988 + }, + { + "start": 7260.32, + "end": 7261.52, + "probability": 0.9064 + }, + { + "start": 7262.8, + "end": 7264.32, + "probability": 0.7869 + }, + { + "start": 7264.9, + "end": 7265.64, + "probability": 0.7839 + }, + { + "start": 7267.42, + "end": 7275.24, + "probability": 0.9917 + }, + { + "start": 7275.24, + "end": 7279.16, + "probability": 0.9957 + }, + { + "start": 7279.58, + "end": 7281.12, + "probability": 0.779 + }, + { + "start": 7281.88, + "end": 7284.34, + "probability": 0.9843 + }, + { + "start": 7285.38, + "end": 7290.66, + "probability": 0.9359 + }, + { + "start": 7290.98, + "end": 7291.28, + "probability": 0.1461 + }, + { + "start": 7291.76, + "end": 7292.98, + "probability": 0.6971 + }, + { + "start": 7293.1, + "end": 7295.94, + "probability": 0.9601 + }, + { + "start": 7296.28, + "end": 7299.5, + "probability": 0.9668 + }, + { + "start": 7299.58, + "end": 7302.5, + "probability": 0.9816 + }, + { + "start": 7302.64, + "end": 7305.3, + "probability": 0.9636 + }, + { + "start": 7305.4, + "end": 7306.38, + "probability": 0.9431 + }, + { + "start": 7307.38, + "end": 7313.97, + "probability": 0.8696 + }, + { + "start": 7314.02, + "end": 7318.92, + "probability": 0.9966 + }, + { + "start": 7319.06, + "end": 7321.0, + "probability": 0.9961 + }, + { + "start": 7321.12, + "end": 7328.82, + "probability": 0.9746 + }, + { + "start": 7329.44, + "end": 7329.74, + "probability": 0.3875 + }, + { + "start": 7329.96, + "end": 7336.48, + "probability": 0.9757 + }, + { + "start": 7336.56, + "end": 7337.28, + "probability": 0.5621 + }, + { + "start": 7337.66, + "end": 7339.92, + "probability": 0.9285 + }, + { + "start": 7341.04, + "end": 7343.53, + "probability": 0.9316 + }, + { + "start": 7344.9, + "end": 7346.2, + "probability": 0.9931 + }, + { + "start": 7346.32, + "end": 7347.44, + "probability": 0.9883 + }, + { + "start": 7347.54, + "end": 7350.22, + "probability": 0.7705 + }, + { + "start": 7350.4, + "end": 7352.52, + "probability": 0.9653 + }, + { + "start": 7352.66, + "end": 7354.42, + "probability": 0.9579 + }, + { + "start": 7354.52, + "end": 7357.98, + "probability": 0.917 + }, + { + "start": 7358.38, + "end": 7363.84, + "probability": 0.9688 + }, + { + "start": 7364.4, + "end": 7365.56, + "probability": 0.6395 + }, + { + "start": 7365.92, + "end": 7370.6, + "probability": 0.9777 + }, + { + "start": 7371.18, + "end": 7374.42, + "probability": 0.9646 + }, + { + "start": 7374.52, + "end": 7375.82, + "probability": 0.8686 + }, + { + "start": 7375.88, + "end": 7376.52, + "probability": 0.8378 + }, + { + "start": 7377.4, + "end": 7379.34, + "probability": 0.9166 + }, + { + "start": 7379.46, + "end": 7383.32, + "probability": 0.8887 + }, + { + "start": 7390.52, + "end": 7391.22, + "probability": 0.6299 + }, + { + "start": 7391.26, + "end": 7391.86, + "probability": 0.5255 + }, + { + "start": 7392.54, + "end": 7394.76, + "probability": 0.0127 + }, + { + "start": 7395.3, + "end": 7396.06, + "probability": 0.209 + }, + { + "start": 7396.06, + "end": 7396.2, + "probability": 0.0169 + }, + { + "start": 7407.94, + "end": 7408.8, + "probability": 0.3501 + }, + { + "start": 7409.34, + "end": 7412.86, + "probability": 0.8589 + }, + { + "start": 7414.94, + "end": 7418.24, + "probability": 0.9885 + }, + { + "start": 7418.32, + "end": 7420.54, + "probability": 0.9233 + }, + { + "start": 7420.64, + "end": 7422.98, + "probability": 0.9751 + }, + { + "start": 7422.98, + "end": 7426.04, + "probability": 0.9971 + }, + { + "start": 7426.14, + "end": 7429.64, + "probability": 0.8787 + }, + { + "start": 7430.3, + "end": 7431.12, + "probability": 0.8082 + }, + { + "start": 7431.2, + "end": 7434.22, + "probability": 0.8846 + }, + { + "start": 7438.44, + "end": 7438.96, + "probability": 0.0731 + }, + { + "start": 7438.96, + "end": 7440.08, + "probability": 0.2283 + }, + { + "start": 7440.48, + "end": 7440.7, + "probability": 0.6568 + }, + { + "start": 7440.76, + "end": 7443.31, + "probability": 0.9087 + }, + { + "start": 7445.42, + "end": 7446.48, + "probability": 0.5783 + }, + { + "start": 7450.66, + "end": 7452.46, + "probability": 0.4095 + }, + { + "start": 7452.48, + "end": 7452.98, + "probability": 0.8466 + }, + { + "start": 7455.28, + "end": 7456.63, + "probability": 0.5805 + }, + { + "start": 7458.94, + "end": 7460.9, + "probability": 0.9623 + }, + { + "start": 7462.22, + "end": 7462.86, + "probability": 0.9482 + }, + { + "start": 7462.94, + "end": 7463.72, + "probability": 0.7368 + }, + { + "start": 7463.74, + "end": 7467.42, + "probability": 0.9194 + }, + { + "start": 7469.04, + "end": 7470.76, + "probability": 0.9897 + }, + { + "start": 7477.04, + "end": 7477.72, + "probability": 0.2427 + }, + { + "start": 7477.72, + "end": 7478.7, + "probability": 0.5111 + }, + { + "start": 7479.94, + "end": 7483.16, + "probability": 0.7624 + }, + { + "start": 7483.96, + "end": 7488.02, + "probability": 0.7622 + }, + { + "start": 7488.12, + "end": 7489.54, + "probability": 0.9702 + }, + { + "start": 7489.8, + "end": 7490.9, + "probability": 0.9123 + }, + { + "start": 7493.4, + "end": 7496.58, + "probability": 0.9643 + }, + { + "start": 7499.14, + "end": 7500.16, + "probability": 0.8399 + }, + { + "start": 7500.68, + "end": 7501.68, + "probability": 0.5151 + }, + { + "start": 7501.8, + "end": 7502.56, + "probability": 0.833 + }, + { + "start": 7503.0, + "end": 7505.46, + "probability": 0.8556 + }, + { + "start": 7508.68, + "end": 7513.44, + "probability": 0.9315 + }, + { + "start": 7513.48, + "end": 7513.7, + "probability": 0.7678 + }, + { + "start": 7513.86, + "end": 7515.02, + "probability": 0.7722 + }, + { + "start": 7522.0, + "end": 7522.66, + "probability": 0.5907 + }, + { + "start": 7522.78, + "end": 7523.8, + "probability": 0.6543 + }, + { + "start": 7523.8, + "end": 7529.04, + "probability": 0.9722 + }, + { + "start": 7530.46, + "end": 7531.7, + "probability": 0.8979 + }, + { + "start": 7531.98, + "end": 7535.8, + "probability": 0.9652 + }, + { + "start": 7536.44, + "end": 7538.38, + "probability": 0.983 + }, + { + "start": 7539.58, + "end": 7541.7, + "probability": 0.9815 + }, + { + "start": 7541.78, + "end": 7544.94, + "probability": 0.8599 + }, + { + "start": 7544.96, + "end": 7545.84, + "probability": 0.7975 + }, + { + "start": 7545.88, + "end": 7546.96, + "probability": 0.9461 + }, + { + "start": 7548.18, + "end": 7551.14, + "probability": 0.7935 + }, + { + "start": 7552.6, + "end": 7554.46, + "probability": 0.7564 + }, + { + "start": 7555.9, + "end": 7557.66, + "probability": 0.9958 + }, + { + "start": 7558.28, + "end": 7559.34, + "probability": 0.9807 + }, + { + "start": 7560.54, + "end": 7564.26, + "probability": 0.8802 + }, + { + "start": 7565.9, + "end": 7569.04, + "probability": 0.9948 + }, + { + "start": 7570.24, + "end": 7572.21, + "probability": 0.725 + }, + { + "start": 7573.18, + "end": 7574.82, + "probability": 0.9609 + }, + { + "start": 7574.84, + "end": 7576.56, + "probability": 0.8364 + }, + { + "start": 7580.08, + "end": 7581.0, + "probability": 0.519 + }, + { + "start": 7581.16, + "end": 7583.6, + "probability": 0.9183 + }, + { + "start": 7583.84, + "end": 7586.2, + "probability": 0.7408 + }, + { + "start": 7586.28, + "end": 7587.9, + "probability": 0.8613 + }, + { + "start": 7588.88, + "end": 7594.12, + "probability": 0.9637 + }, + { + "start": 7594.12, + "end": 7596.88, + "probability": 0.9775 + }, + { + "start": 7598.54, + "end": 7601.9, + "probability": 0.9738 + }, + { + "start": 7603.3, + "end": 7604.66, + "probability": 0.8929 + }, + { + "start": 7606.18, + "end": 7610.08, + "probability": 0.8564 + }, + { + "start": 7610.08, + "end": 7615.38, + "probability": 0.9932 + }, + { + "start": 7616.78, + "end": 7617.74, + "probability": 0.7026 + }, + { + "start": 7618.9, + "end": 7620.06, + "probability": 0.982 + }, + { + "start": 7621.0, + "end": 7622.51, + "probability": 0.9575 + }, + { + "start": 7623.98, + "end": 7626.22, + "probability": 0.9659 + }, + { + "start": 7627.3, + "end": 7629.03, + "probability": 0.7849 + }, + { + "start": 7630.12, + "end": 7632.46, + "probability": 0.9595 + }, + { + "start": 7634.0, + "end": 7639.28, + "probability": 0.9504 + }, + { + "start": 7640.58, + "end": 7646.0, + "probability": 0.9342 + }, + { + "start": 7646.64, + "end": 7647.9, + "probability": 0.8603 + }, + { + "start": 7648.96, + "end": 7652.72, + "probability": 0.9307 + }, + { + "start": 7652.92, + "end": 7654.84, + "probability": 0.9968 + }, + { + "start": 7657.22, + "end": 7659.96, + "probability": 0.7555 + }, + { + "start": 7661.12, + "end": 7667.4, + "probability": 0.9817 + }, + { + "start": 7667.58, + "end": 7669.46, + "probability": 0.778 + }, + { + "start": 7670.76, + "end": 7671.68, + "probability": 0.7728 + }, + { + "start": 7671.84, + "end": 7675.82, + "probability": 0.9961 + }, + { + "start": 7676.92, + "end": 7679.74, + "probability": 0.9243 + }, + { + "start": 7680.64, + "end": 7684.8, + "probability": 0.9424 + }, + { + "start": 7684.88, + "end": 7685.52, + "probability": 0.6501 + }, + { + "start": 7685.62, + "end": 7686.66, + "probability": 0.7809 + }, + { + "start": 7688.0, + "end": 7694.34, + "probability": 0.9888 + }, + { + "start": 7696.74, + "end": 7698.3, + "probability": 0.8761 + }, + { + "start": 7698.44, + "end": 7699.54, + "probability": 0.7897 + }, + { + "start": 7701.12, + "end": 7702.82, + "probability": 0.9757 + }, + { + "start": 7703.46, + "end": 7704.8, + "probability": 0.9857 + }, + { + "start": 7705.58, + "end": 7706.72, + "probability": 0.7188 + }, + { + "start": 7707.74, + "end": 7708.88, + "probability": 0.6689 + }, + { + "start": 7710.06, + "end": 7712.04, + "probability": 0.9438 + }, + { + "start": 7712.76, + "end": 7717.62, + "probability": 0.9994 + }, + { + "start": 7717.62, + "end": 7723.38, + "probability": 0.9376 + }, + { + "start": 7723.52, + "end": 7725.16, + "probability": 0.9613 + }, + { + "start": 7726.16, + "end": 7731.1, + "probability": 0.7977 + }, + { + "start": 7731.22, + "end": 7731.34, + "probability": 0.8519 + }, + { + "start": 7731.44, + "end": 7732.44, + "probability": 0.976 + }, + { + "start": 7733.38, + "end": 7735.48, + "probability": 0.8726 + }, + { + "start": 7736.74, + "end": 7738.12, + "probability": 0.9557 + }, + { + "start": 7738.72, + "end": 7744.18, + "probability": 0.9502 + }, + { + "start": 7745.1, + "end": 7753.1, + "probability": 0.9938 + }, + { + "start": 7755.54, + "end": 7758.72, + "probability": 0.8862 + }, + { + "start": 7759.36, + "end": 7761.96, + "probability": 0.8413 + }, + { + "start": 7761.96, + "end": 7765.22, + "probability": 0.8483 + }, + { + "start": 7765.7, + "end": 7769.96, + "probability": 0.9901 + }, + { + "start": 7769.96, + "end": 7774.42, + "probability": 0.8589 + }, + { + "start": 7775.34, + "end": 7777.2, + "probability": 0.9701 + }, + { + "start": 7778.22, + "end": 7779.78, + "probability": 0.9449 + }, + { + "start": 7780.4, + "end": 7781.42, + "probability": 0.958 + }, + { + "start": 7783.12, + "end": 7784.58, + "probability": 0.9976 + }, + { + "start": 7784.64, + "end": 7785.34, + "probability": 0.3427 + }, + { + "start": 7787.76, + "end": 7790.44, + "probability": 0.8711 + }, + { + "start": 7790.66, + "end": 7794.62, + "probability": 0.9624 + }, + { + "start": 7794.78, + "end": 7796.06, + "probability": 0.9989 + }, + { + "start": 7796.68, + "end": 7800.48, + "probability": 0.8669 + }, + { + "start": 7801.42, + "end": 7804.44, + "probability": 0.8382 + }, + { + "start": 7805.88, + "end": 7809.8, + "probability": 0.9622 + }, + { + "start": 7809.82, + "end": 7815.04, + "probability": 0.9626 + }, + { + "start": 7816.14, + "end": 7816.72, + "probability": 0.8161 + }, + { + "start": 7816.88, + "end": 7819.9, + "probability": 0.8048 + }, + { + "start": 7820.44, + "end": 7824.4, + "probability": 0.9595 + }, + { + "start": 7824.61, + "end": 7827.28, + "probability": 0.1715 + }, + { + "start": 7827.34, + "end": 7828.29, + "probability": 0.6795 + }, + { + "start": 7828.5, + "end": 7829.36, + "probability": 0.5813 + }, + { + "start": 7829.56, + "end": 7832.6, + "probability": 0.5842 + }, + { + "start": 7833.18, + "end": 7838.82, + "probability": 0.9803 + }, + { + "start": 7838.82, + "end": 7840.26, + "probability": 0.3588 + }, + { + "start": 7840.3, + "end": 7840.78, + "probability": 0.3774 + }, + { + "start": 7840.86, + "end": 7842.56, + "probability": 0.7983 + }, + { + "start": 7842.7, + "end": 7843.52, + "probability": 0.7861 + }, + { + "start": 7843.54, + "end": 7843.86, + "probability": 0.8773 + }, + { + "start": 7843.92, + "end": 7848.02, + "probability": 0.9927 + }, + { + "start": 7848.02, + "end": 7850.6, + "probability": 0.972 + }, + { + "start": 7851.0, + "end": 7854.22, + "probability": 0.8618 + }, + { + "start": 7854.74, + "end": 7856.82, + "probability": 0.1878 + }, + { + "start": 7856.82, + "end": 7856.82, + "probability": 0.1122 + }, + { + "start": 7856.82, + "end": 7857.34, + "probability": 0.6206 + }, + { + "start": 7857.34, + "end": 7857.34, + "probability": 0.0028 + }, + { + "start": 7857.46, + "end": 7859.66, + "probability": 0.4013 + }, + { + "start": 7860.42, + "end": 7862.6, + "probability": 0.7338 + }, + { + "start": 7863.14, + "end": 7863.76, + "probability": 0.9465 + }, + { + "start": 7864.22, + "end": 7866.54, + "probability": 0.6659 + }, + { + "start": 7866.68, + "end": 7867.98, + "probability": 0.7631 + }, + { + "start": 7869.64, + "end": 7874.14, + "probability": 0.9692 + }, + { + "start": 7875.46, + "end": 7876.36, + "probability": 0.8035 + }, + { + "start": 7876.5, + "end": 7879.22, + "probability": 0.3525 + }, + { + "start": 7879.22, + "end": 7881.79, + "probability": 0.7607 + }, + { + "start": 7882.06, + "end": 7885.14, + "probability": 0.2689 + }, + { + "start": 7886.18, + "end": 7888.52, + "probability": 0.5722 + }, + { + "start": 7889.06, + "end": 7890.04, + "probability": 0.8773 + }, + { + "start": 7890.4, + "end": 7892.68, + "probability": 0.9626 + }, + { + "start": 7892.68, + "end": 7897.64, + "probability": 0.9276 + }, + { + "start": 7898.1, + "end": 7898.54, + "probability": 0.8783 + }, + { + "start": 7898.64, + "end": 7902.26, + "probability": 0.9929 + }, + { + "start": 7902.86, + "end": 7905.0, + "probability": 0.6515 + }, + { + "start": 7905.12, + "end": 7906.63, + "probability": 0.1742 + }, + { + "start": 7907.04, + "end": 7909.6, + "probability": 0.5188 + }, + { + "start": 7910.3, + "end": 7912.94, + "probability": 0.6107 + }, + { + "start": 7913.62, + "end": 7916.22, + "probability": 0.9404 + }, + { + "start": 7916.58, + "end": 7919.22, + "probability": 0.9735 + }, + { + "start": 7919.58, + "end": 7920.22, + "probability": 0.3213 + }, + { + "start": 7920.96, + "end": 7923.1, + "probability": 0.9808 + }, + { + "start": 7923.24, + "end": 7926.2, + "probability": 0.7531 + }, + { + "start": 7926.58, + "end": 7927.7, + "probability": 0.873 + }, + { + "start": 7927.82, + "end": 7931.22, + "probability": 0.963 + }, + { + "start": 7931.48, + "end": 7932.92, + "probability": 0.9624 + }, + { + "start": 7933.84, + "end": 7934.36, + "probability": 0.8112 + }, + { + "start": 7934.48, + "end": 7937.76, + "probability": 0.9941 + }, + { + "start": 7937.96, + "end": 7941.3, + "probability": 0.9318 + }, + { + "start": 7941.58, + "end": 7941.86, + "probability": 0.3894 + }, + { + "start": 7941.98, + "end": 7945.46, + "probability": 0.9221 + }, + { + "start": 7946.26, + "end": 7950.16, + "probability": 0.8603 + }, + { + "start": 7951.46, + "end": 7954.82, + "probability": 0.9951 + }, + { + "start": 7955.52, + "end": 7955.9, + "probability": 0.7116 + }, + { + "start": 7956.08, + "end": 7959.0, + "probability": 0.7292 + }, + { + "start": 7959.38, + "end": 7960.82, + "probability": 0.7667 + }, + { + "start": 7960.88, + "end": 7963.02, + "probability": 0.9927 + }, + { + "start": 7963.82, + "end": 7965.04, + "probability": 0.851 + }, + { + "start": 7965.9, + "end": 7967.21, + "probability": 0.9517 + }, + { + "start": 7968.5, + "end": 7971.1, + "probability": 0.9727 + }, + { + "start": 7972.72, + "end": 7973.96, + "probability": 0.8339 + }, + { + "start": 7974.48, + "end": 7978.18, + "probability": 0.9734 + }, + { + "start": 7979.34, + "end": 7981.3, + "probability": 0.9881 + }, + { + "start": 7982.26, + "end": 7982.44, + "probability": 0.2518 + }, + { + "start": 7982.44, + "end": 7987.26, + "probability": 0.9754 + }, + { + "start": 7987.92, + "end": 7990.04, + "probability": 0.8521 + }, + { + "start": 7990.68, + "end": 7997.32, + "probability": 0.439 + }, + { + "start": 7997.46, + "end": 7998.44, + "probability": 0.5255 + }, + { + "start": 7998.96, + "end": 7999.54, + "probability": 0.398 + }, + { + "start": 7999.54, + "end": 8000.72, + "probability": 0.2709 + }, + { + "start": 8002.1, + "end": 8005.3, + "probability": 0.3377 + }, + { + "start": 8006.4, + "end": 8009.76, + "probability": 0.9861 + }, + { + "start": 8010.46, + "end": 8014.38, + "probability": 0.9939 + }, + { + "start": 8014.42, + "end": 8015.56, + "probability": 0.8035 + }, + { + "start": 8016.1, + "end": 8020.16, + "probability": 0.993 + }, + { + "start": 8020.42, + "end": 8021.05, + "probability": 0.7749 + }, + { + "start": 8022.2, + "end": 8022.64, + "probability": 0.3247 + }, + { + "start": 8022.84, + "end": 8023.92, + "probability": 0.6938 + }, + { + "start": 8024.14, + "end": 8028.44, + "probability": 0.9927 + }, + { + "start": 8029.16, + "end": 8030.96, + "probability": 0.8494 + }, + { + "start": 8031.02, + "end": 8032.04, + "probability": 0.9588 + }, + { + "start": 8032.42, + "end": 8033.6, + "probability": 0.8332 + }, + { + "start": 8033.72, + "end": 8034.29, + "probability": 0.7185 + }, + { + "start": 8035.24, + "end": 8035.46, + "probability": 0.5604 + }, + { + "start": 8035.52, + "end": 8037.76, + "probability": 0.8496 + }, + { + "start": 8037.84, + "end": 8038.42, + "probability": 0.5086 + }, + { + "start": 8039.08, + "end": 8040.18, + "probability": 0.4502 + }, + { + "start": 8041.96, + "end": 8043.46, + "probability": 0.7467 + }, + { + "start": 8045.64, + "end": 8047.68, + "probability": 0.9824 + }, + { + "start": 8049.44, + "end": 8052.94, + "probability": 0.8623 + }, + { + "start": 8053.24, + "end": 8055.32, + "probability": 0.9673 + }, + { + "start": 8055.78, + "end": 8056.9, + "probability": 0.9778 + }, + { + "start": 8057.18, + "end": 8058.26, + "probability": 0.7061 + }, + { + "start": 8058.54, + "end": 8062.02, + "probability": 0.6598 + }, + { + "start": 8062.16, + "end": 8062.82, + "probability": 0.6362 + }, + { + "start": 8063.32, + "end": 8066.02, + "probability": 0.9412 + }, + { + "start": 8066.12, + "end": 8066.64, + "probability": 0.9482 + }, + { + "start": 8067.6, + "end": 8069.6, + "probability": 0.9878 + }, + { + "start": 8069.9, + "end": 8070.6, + "probability": 0.8228 + }, + { + "start": 8071.66, + "end": 8071.78, + "probability": 0.0146 + }, + { + "start": 8071.78, + "end": 8073.18, + "probability": 0.5406 + }, + { + "start": 8073.26, + "end": 8075.88, + "probability": 0.7147 + }, + { + "start": 8078.44, + "end": 8078.54, + "probability": 0.3038 + }, + { + "start": 8079.4, + "end": 8080.52, + "probability": 0.5031 + }, + { + "start": 8092.64, + "end": 8097.22, + "probability": 0.9868 + }, + { + "start": 8097.22, + "end": 8101.26, + "probability": 0.9963 + }, + { + "start": 8101.28, + "end": 8102.98, + "probability": 0.9906 + }, + { + "start": 8103.06, + "end": 8103.3, + "probability": 0.4143 + }, + { + "start": 8105.22, + "end": 8106.06, + "probability": 0.7585 + }, + { + "start": 8116.46, + "end": 8119.34, + "probability": 0.4521 + }, + { + "start": 8119.4, + "end": 8122.26, + "probability": 0.7808 + }, + { + "start": 8123.18, + "end": 8125.5, + "probability": 0.8036 + }, + { + "start": 8125.58, + "end": 8129.2, + "probability": 0.9717 + }, + { + "start": 8130.04, + "end": 8133.74, + "probability": 0.6777 + }, + { + "start": 8134.36, + "end": 8137.48, + "probability": 0.7052 + }, + { + "start": 8138.18, + "end": 8141.84, + "probability": 0.9541 + }, + { + "start": 8142.76, + "end": 8144.58, + "probability": 0.4024 + }, + { + "start": 8144.7, + "end": 8146.52, + "probability": 0.9916 + }, + { + "start": 8146.64, + "end": 8147.76, + "probability": 0.85 + }, + { + "start": 8148.34, + "end": 8150.72, + "probability": 0.8745 + }, + { + "start": 8150.92, + "end": 8152.34, + "probability": 0.8065 + }, + { + "start": 8152.8, + "end": 8152.94, + "probability": 0.0931 + }, + { + "start": 8153.02, + "end": 8158.02, + "probability": 0.9951 + }, + { + "start": 8158.98, + "end": 8161.7, + "probability": 0.6774 + }, + { + "start": 8161.86, + "end": 8163.72, + "probability": 0.9375 + }, + { + "start": 8164.56, + "end": 8164.8, + "probability": 0.306 + }, + { + "start": 8164.86, + "end": 8165.54, + "probability": 0.7034 + }, + { + "start": 8165.6, + "end": 8170.7, + "probability": 0.9839 + }, + { + "start": 8171.04, + "end": 8172.58, + "probability": 0.995 + }, + { + "start": 8172.66, + "end": 8176.62, + "probability": 0.8834 + }, + { + "start": 8176.96, + "end": 8181.12, + "probability": 0.9911 + }, + { + "start": 8181.18, + "end": 8184.52, + "probability": 0.8633 + }, + { + "start": 8185.84, + "end": 8187.22, + "probability": 0.5008 + }, + { + "start": 8187.28, + "end": 8189.88, + "probability": 0.6713 + }, + { + "start": 8189.96, + "end": 8190.92, + "probability": 0.488 + }, + { + "start": 8191.62, + "end": 8192.84, + "probability": 0.5287 + }, + { + "start": 8193.36, + "end": 8193.96, + "probability": 0.5391 + }, + { + "start": 8194.06, + "end": 8198.52, + "probability": 0.8652 + }, + { + "start": 8198.9, + "end": 8201.36, + "probability": 0.9953 + }, + { + "start": 8201.36, + "end": 8205.42, + "probability": 0.9948 + }, + { + "start": 8205.48, + "end": 8206.18, + "probability": 0.8997 + }, + { + "start": 8210.76, + "end": 8211.1, + "probability": 0.0136 + }, + { + "start": 8211.1, + "end": 8213.74, + "probability": 0.2953 + }, + { + "start": 8214.78, + "end": 8217.28, + "probability": 0.8113 + }, + { + "start": 8225.74, + "end": 8226.9, + "probability": 0.9551 + }, + { + "start": 8230.28, + "end": 8231.66, + "probability": 0.6094 + }, + { + "start": 8232.18, + "end": 8234.46, + "probability": 0.8178 + }, + { + "start": 8235.2, + "end": 8237.1, + "probability": 0.9606 + }, + { + "start": 8237.9, + "end": 8239.25, + "probability": 0.9197 + }, + { + "start": 8240.42, + "end": 8246.4, + "probability": 0.9729 + }, + { + "start": 8247.12, + "end": 8249.74, + "probability": 0.9893 + }, + { + "start": 8251.24, + "end": 8253.94, + "probability": 0.8638 + }, + { + "start": 8254.62, + "end": 8255.48, + "probability": 0.8914 + }, + { + "start": 8256.08, + "end": 8256.6, + "probability": 0.8413 + }, + { + "start": 8257.86, + "end": 8258.18, + "probability": 0.8862 + }, + { + "start": 8258.8, + "end": 8259.9, + "probability": 0.9682 + }, + { + "start": 8260.5, + "end": 8262.44, + "probability": 0.976 + }, + { + "start": 8264.28, + "end": 8266.48, + "probability": 0.984 + }, + { + "start": 8267.84, + "end": 8270.74, + "probability": 0.9752 + }, + { + "start": 8271.82, + "end": 8278.42, + "probability": 0.9092 + }, + { + "start": 8279.26, + "end": 8281.5, + "probability": 0.7278 + }, + { + "start": 8282.28, + "end": 8285.04, + "probability": 0.1228 + }, + { + "start": 8288.96, + "end": 8289.02, + "probability": 0.4373 + }, + { + "start": 8294.38, + "end": 8295.48, + "probability": 0.0016 + }, + { + "start": 8295.58, + "end": 8299.86, + "probability": 0.0381 + }, + { + "start": 8300.38, + "end": 8304.08, + "probability": 0.9304 + }, + { + "start": 8304.72, + "end": 8305.95, + "probability": 0.1425 + }, + { + "start": 8306.76, + "end": 8307.06, + "probability": 0.9593 + }, + { + "start": 8311.92, + "end": 8315.62, + "probability": 0.5961 + }, + { + "start": 8315.74, + "end": 8316.82, + "probability": 0.8716 + }, + { + "start": 8316.88, + "end": 8317.32, + "probability": 0.8267 + }, + { + "start": 8317.4, + "end": 8318.6, + "probability": 0.9834 + }, + { + "start": 8321.32, + "end": 8323.78, + "probability": 0.6432 + }, + { + "start": 8324.94, + "end": 8326.26, + "probability": 0.9023 + }, + { + "start": 8326.98, + "end": 8327.58, + "probability": 0.8188 + }, + { + "start": 8327.62, + "end": 8333.18, + "probability": 0.0414 + }, + { + "start": 8345.72, + "end": 8348.94, + "probability": 0.7327 + }, + { + "start": 8349.76, + "end": 8350.79, + "probability": 0.3959 + }, + { + "start": 8351.32, + "end": 8354.68, + "probability": 0.7418 + }, + { + "start": 8355.5, + "end": 8359.76, + "probability": 0.8263 + }, + { + "start": 8360.62, + "end": 8363.14, + "probability": 0.8662 + }, + { + "start": 8363.76, + "end": 8365.58, + "probability": 0.7221 + }, + { + "start": 8366.28, + "end": 8369.82, + "probability": 0.9077 + }, + { + "start": 8372.92, + "end": 8375.56, + "probability": 0.6836 + }, + { + "start": 8380.24, + "end": 8381.22, + "probability": 0.5111 + }, + { + "start": 8382.1, + "end": 8382.42, + "probability": 0.843 + }, + { + "start": 8383.14, + "end": 8387.38, + "probability": 0.9563 + }, + { + "start": 8388.28, + "end": 8394.54, + "probability": 0.4206 + }, + { + "start": 8395.0, + "end": 8396.26, + "probability": 0.0166 + }, + { + "start": 8396.26, + "end": 8404.44, + "probability": 0.8588 + }, + { + "start": 8405.18, + "end": 8407.46, + "probability": 0.9895 + }, + { + "start": 8408.24, + "end": 8413.32, + "probability": 0.868 + }, + { + "start": 8414.02, + "end": 8416.3, + "probability": 0.993 + }, + { + "start": 8416.94, + "end": 8419.28, + "probability": 0.9675 + }, + { + "start": 8420.08, + "end": 8422.22, + "probability": 0.9774 + }, + { + "start": 8423.72, + "end": 8426.12, + "probability": 0.9455 + }, + { + "start": 8427.54, + "end": 8430.06, + "probability": 0.9872 + }, + { + "start": 8430.88, + "end": 8433.92, + "probability": 0.5406 + }, + { + "start": 8434.76, + "end": 8435.1, + "probability": 0.9854 + }, + { + "start": 8435.92, + "end": 8437.06, + "probability": 0.9373 + }, + { + "start": 8437.74, + "end": 8439.86, + "probability": 0.9146 + }, + { + "start": 8442.24, + "end": 8444.58, + "probability": 0.8619 + }, + { + "start": 8445.44, + "end": 8447.76, + "probability": 0.9713 + }, + { + "start": 8448.76, + "end": 8451.08, + "probability": 0.969 + }, + { + "start": 8451.7, + "end": 8453.84, + "probability": 0.9782 + }, + { + "start": 8456.14, + "end": 8458.54, + "probability": 0.8207 + }, + { + "start": 8459.92, + "end": 8462.16, + "probability": 0.5381 + }, + { + "start": 8463.06, + "end": 8465.82, + "probability": 0.8407 + }, + { + "start": 8466.62, + "end": 8468.96, + "probability": 0.8281 + }, + { + "start": 8469.98, + "end": 8472.64, + "probability": 0.9485 + }, + { + "start": 8473.38, + "end": 8475.68, + "probability": 0.9465 + }, + { + "start": 8476.74, + "end": 8479.64, + "probability": 0.8946 + }, + { + "start": 8482.3, + "end": 8484.54, + "probability": 0.9316 + }, + { + "start": 8486.52, + "end": 8488.88, + "probability": 0.7589 + }, + { + "start": 8489.92, + "end": 8492.14, + "probability": 0.8539 + }, + { + "start": 8495.84, + "end": 8498.48, + "probability": 0.8769 + }, + { + "start": 8499.78, + "end": 8501.84, + "probability": 0.9725 + }, + { + "start": 8503.04, + "end": 8505.14, + "probability": 0.9548 + }, + { + "start": 8506.0, + "end": 8506.38, + "probability": 0.8916 + }, + { + "start": 8507.08, + "end": 8508.32, + "probability": 0.9751 + }, + { + "start": 8509.22, + "end": 8513.0, + "probability": 0.9784 + }, + { + "start": 8514.86, + "end": 8515.54, + "probability": 0.6598 + }, + { + "start": 8516.58, + "end": 8518.76, + "probability": 0.9695 + }, + { + "start": 8519.76, + "end": 8521.66, + "probability": 0.9065 + }, + { + "start": 8522.38, + "end": 8524.88, + "probability": 0.9906 + }, + { + "start": 8525.94, + "end": 8529.44, + "probability": 0.9859 + }, + { + "start": 8530.22, + "end": 8534.14, + "probability": 0.703 + }, + { + "start": 8535.0, + "end": 8537.54, + "probability": 0.9924 + }, + { + "start": 8538.06, + "end": 8541.14, + "probability": 0.9897 + }, + { + "start": 8542.18, + "end": 8545.02, + "probability": 0.8041 + }, + { + "start": 8545.72, + "end": 8547.66, + "probability": 0.8905 + }, + { + "start": 8548.68, + "end": 8551.08, + "probability": 0.9526 + }, + { + "start": 8551.98, + "end": 8554.68, + "probability": 0.9814 + }, + { + "start": 8555.88, + "end": 8558.0, + "probability": 0.7128 + }, + { + "start": 8560.24, + "end": 8562.38, + "probability": 0.8318 + }, + { + "start": 8563.16, + "end": 8565.58, + "probability": 0.9492 + }, + { + "start": 8566.16, + "end": 8566.68, + "probability": 0.9446 + }, + { + "start": 8567.44, + "end": 8568.58, + "probability": 0.9457 + }, + { + "start": 8569.6, + "end": 8572.06, + "probability": 0.8121 + }, + { + "start": 8572.62, + "end": 8575.0, + "probability": 0.856 + }, + { + "start": 8576.16, + "end": 8578.34, + "probability": 0.9551 + }, + { + "start": 8578.98, + "end": 8585.56, + "probability": 0.9551 + }, + { + "start": 8588.4, + "end": 8591.28, + "probability": 0.9329 + }, + { + "start": 8594.62, + "end": 8595.12, + "probability": 0.9902 + }, + { + "start": 8596.58, + "end": 8598.94, + "probability": 0.6413 + }, + { + "start": 8601.0, + "end": 8603.26, + "probability": 0.7795 + }, + { + "start": 8604.0, + "end": 8606.28, + "probability": 0.848 + }, + { + "start": 8607.06, + "end": 8609.56, + "probability": 0.9395 + }, + { + "start": 8610.64, + "end": 8612.68, + "probability": 0.8914 + }, + { + "start": 8613.52, + "end": 8614.02, + "probability": 0.9858 + }, + { + "start": 8614.66, + "end": 8615.9, + "probability": 0.8864 + }, + { + "start": 8616.7, + "end": 8618.92, + "probability": 0.9214 + }, + { + "start": 8619.72, + "end": 8620.14, + "probability": 0.966 + }, + { + "start": 8620.9, + "end": 8621.88, + "probability": 0.8662 + }, + { + "start": 8622.66, + "end": 8624.14, + "probability": 0.9333 + }, + { + "start": 8624.84, + "end": 8625.9, + "probability": 0.8868 + }, + { + "start": 8626.72, + "end": 8628.52, + "probability": 0.7964 + }, + { + "start": 8630.04, + "end": 8635.0, + "probability": 0.932 + }, + { + "start": 8636.18, + "end": 8638.68, + "probability": 0.964 + }, + { + "start": 8639.48, + "end": 8642.98, + "probability": 0.9805 + }, + { + "start": 8643.72, + "end": 8644.74, + "probability": 0.9347 + }, + { + "start": 8645.52, + "end": 8647.6, + "probability": 0.9249 + }, + { + "start": 8648.44, + "end": 8648.92, + "probability": 0.9982 + }, + { + "start": 8649.52, + "end": 8650.5, + "probability": 0.7901 + }, + { + "start": 8651.34, + "end": 8651.62, + "probability": 0.8379 + }, + { + "start": 8652.28, + "end": 8653.04, + "probability": 0.8119 + }, + { + "start": 8654.04, + "end": 8656.16, + "probability": 0.8475 + }, + { + "start": 8658.0, + "end": 8658.46, + "probability": 0.8491 + }, + { + "start": 8660.12, + "end": 8661.38, + "probability": 0.8974 + }, + { + "start": 8662.2, + "end": 8663.94, + "probability": 0.9727 + }, + { + "start": 8664.58, + "end": 8665.06, + "probability": 0.9738 + }, + { + "start": 8665.64, + "end": 8666.64, + "probability": 0.9125 + }, + { + "start": 8671.5, + "end": 8675.46, + "probability": 0.6332 + }, + { + "start": 8676.58, + "end": 8676.9, + "probability": 0.9681 + }, + { + "start": 8677.54, + "end": 8678.46, + "probability": 0.8232 + }, + { + "start": 8679.46, + "end": 8681.6, + "probability": 0.9152 + }, + { + "start": 8683.5, + "end": 8685.64, + "probability": 0.7787 + }, + { + "start": 8688.94, + "end": 8689.44, + "probability": 0.9549 + }, + { + "start": 8690.44, + "end": 8691.48, + "probability": 0.9525 + }, + { + "start": 8692.08, + "end": 8694.2, + "probability": 0.9648 + }, + { + "start": 8694.96, + "end": 8697.08, + "probability": 0.9517 + }, + { + "start": 8697.96, + "end": 8700.08, + "probability": 0.9896 + }, + { + "start": 8700.82, + "end": 8703.02, + "probability": 0.6743 + }, + { + "start": 8704.2, + "end": 8704.62, + "probability": 0.8589 + }, + { + "start": 8705.28, + "end": 8706.22, + "probability": 0.9424 + }, + { + "start": 8707.24, + "end": 8709.28, + "probability": 0.957 + }, + { + "start": 8710.2, + "end": 8712.62, + "probability": 0.9816 + }, + { + "start": 8713.58, + "end": 8716.18, + "probability": 0.8088 + }, + { + "start": 8716.98, + "end": 8717.52, + "probability": 0.9858 + }, + { + "start": 8718.56, + "end": 8724.42, + "probability": 0.9328 + }, + { + "start": 8725.38, + "end": 8727.18, + "probability": 0.4014 + }, + { + "start": 8728.66, + "end": 8730.58, + "probability": 0.799 + }, + { + "start": 8731.3, + "end": 8733.52, + "probability": 0.939 + }, + { + "start": 8734.18, + "end": 8736.38, + "probability": 0.9307 + }, + { + "start": 8737.0, + "end": 8737.7, + "probability": 0.9736 + }, + { + "start": 8738.24, + "end": 8739.14, + "probability": 0.6686 + }, + { + "start": 8739.72, + "end": 8741.58, + "probability": 0.7999 + }, + { + "start": 8742.38, + "end": 8744.48, + "probability": 0.9462 + }, + { + "start": 8745.52, + "end": 8749.7, + "probability": 0.9891 + }, + { + "start": 8750.58, + "end": 8752.44, + "probability": 0.9724 + }, + { + "start": 8755.04, + "end": 8755.56, + "probability": 0.7822 + }, + { + "start": 8757.74, + "end": 8759.08, + "probability": 0.875 + }, + { + "start": 8760.02, + "end": 8760.82, + "probability": 0.8052 + }, + { + "start": 8763.86, + "end": 8764.66, + "probability": 0.6625 + }, + { + "start": 8765.68, + "end": 8767.3, + "probability": 0.7522 + }, + { + "start": 8768.2, + "end": 8769.16, + "probability": 0.8038 + }, + { + "start": 8769.96, + "end": 8770.76, + "probability": 0.8771 + }, + { + "start": 8772.42, + "end": 8773.46, + "probability": 0.9819 + }, + { + "start": 8774.7, + "end": 8776.86, + "probability": 0.969 + }, + { + "start": 8778.1, + "end": 8781.56, + "probability": 0.9174 + }, + { + "start": 8783.34, + "end": 8785.36, + "probability": 0.8877 + }, + { + "start": 8786.44, + "end": 8788.46, + "probability": 0.9716 + }, + { + "start": 8789.36, + "end": 8791.42, + "probability": 0.8643 + }, + { + "start": 8792.54, + "end": 8794.72, + "probability": 0.7785 + }, + { + "start": 8795.68, + "end": 8797.88, + "probability": 0.9867 + }, + { + "start": 8799.12, + "end": 8800.96, + "probability": 0.9883 + }, + { + "start": 8801.94, + "end": 8805.86, + "probability": 0.9949 + }, + { + "start": 8806.74, + "end": 8809.36, + "probability": 0.9877 + }, + { + "start": 8810.54, + "end": 8811.38, + "probability": 0.9851 + }, + { + "start": 8811.96, + "end": 8812.98, + "probability": 0.7227 + }, + { + "start": 8814.26, + "end": 8817.06, + "probability": 0.9922 + }, + { + "start": 8818.2, + "end": 8820.46, + "probability": 0.8547 + }, + { + "start": 8821.22, + "end": 8823.8, + "probability": 0.9814 + }, + { + "start": 8825.04, + "end": 8827.76, + "probability": 0.9591 + }, + { + "start": 8828.64, + "end": 8831.02, + "probability": 0.9553 + }, + { + "start": 8833.28, + "end": 8837.44, + "probability": 0.925 + }, + { + "start": 8839.1, + "end": 8840.08, + "probability": 0.7006 + }, + { + "start": 8840.6, + "end": 8843.82, + "probability": 0.6195 + }, + { + "start": 8845.96, + "end": 8848.22, + "probability": 0.957 + }, + { + "start": 8849.34, + "end": 8850.64, + "probability": 0.6516 + }, + { + "start": 8851.92, + "end": 8855.14, + "probability": 0.8862 + }, + { + "start": 8855.96, + "end": 8856.92, + "probability": 0.992 + }, + { + "start": 8857.58, + "end": 8858.64, + "probability": 0.9041 + }, + { + "start": 8859.6, + "end": 8865.5, + "probability": 0.9634 + }, + { + "start": 8866.26, + "end": 8867.0, + "probability": 0.9945 + }, + { + "start": 8868.3, + "end": 8868.88, + "probability": 0.8454 + }, + { + "start": 8870.3, + "end": 8874.48, + "probability": 0.5272 + }, + { + "start": 8874.6, + "end": 8879.44, + "probability": 0.9902 + }, + { + "start": 8881.08, + "end": 8883.73, + "probability": 0.5127 + }, + { + "start": 8885.62, + "end": 8889.08, + "probability": 0.9264 + }, + { + "start": 8889.68, + "end": 8890.12, + "probability": 0.8523 + }, + { + "start": 8895.4, + "end": 8897.54, + "probability": 0.7508 + }, + { + "start": 8897.54, + "end": 8899.84, + "probability": 0.1463 + }, + { + "start": 8899.84, + "end": 8904.18, + "probability": 0.9962 + }, + { + "start": 8905.68, + "end": 8907.6, + "probability": 0.0735 + }, + { + "start": 8907.72, + "end": 8909.82, + "probability": 0.2589 + }, + { + "start": 8909.82, + "end": 8911.54, + "probability": 0.9225 + }, + { + "start": 8982.42, + "end": 8982.42, + "probability": 0.0002 + }, + { + "start": 9024.62, + "end": 9025.14, + "probability": 0.432 + }, + { + "start": 9025.24, + "end": 9027.48, + "probability": 0.9383 + }, + { + "start": 9027.56, + "end": 9029.16, + "probability": 0.724 + }, + { + "start": 9029.32, + "end": 9031.22, + "probability": 0.9792 + }, + { + "start": 9031.22, + "end": 9033.56, + "probability": 0.7642 + }, + { + "start": 9034.28, + "end": 9036.2, + "probability": 0.8713 + }, + { + "start": 9036.74, + "end": 9039.6, + "probability": 0.5483 + }, + { + "start": 9039.6, + "end": 9041.78, + "probability": 0.8015 + }, + { + "start": 9043.93, + "end": 9049.16, + "probability": 0.9783 + }, + { + "start": 9049.24, + "end": 9052.44, + "probability": 0.8444 + }, + { + "start": 9052.54, + "end": 9053.98, + "probability": 0.6838 + }, + { + "start": 9054.56, + "end": 9057.66, + "probability": 0.9644 + }, + { + "start": 9058.02, + "end": 9060.04, + "probability": 0.7298 + }, + { + "start": 9060.76, + "end": 9062.38, + "probability": 0.9258 + }, + { + "start": 9062.44, + "end": 9062.84, + "probability": 0.9525 + }, + { + "start": 9063.5, + "end": 9067.58, + "probability": 0.9514 + }, + { + "start": 9067.94, + "end": 9068.78, + "probability": 0.899 + }, + { + "start": 9069.34, + "end": 9070.54, + "probability": 0.5987 + }, + { + "start": 9071.04, + "end": 9072.76, + "probability": 0.7495 + }, + { + "start": 9073.16, + "end": 9075.0, + "probability": 0.8923 + }, + { + "start": 9075.62, + "end": 9078.12, + "probability": 0.9971 + }, + { + "start": 9078.12, + "end": 9080.98, + "probability": 0.9446 + }, + { + "start": 9081.94, + "end": 9083.08, + "probability": 0.8987 + }, + { + "start": 9083.36, + "end": 9084.08, + "probability": 0.4182 + }, + { + "start": 9084.42, + "end": 9086.1, + "probability": 0.9117 + }, + { + "start": 9086.52, + "end": 9089.12, + "probability": 0.9248 + }, + { + "start": 9089.8, + "end": 9092.22, + "probability": 0.7987 + }, + { + "start": 9092.42, + "end": 9094.06, + "probability": 0.9888 + }, + { + "start": 9094.38, + "end": 9096.44, + "probability": 0.9827 + }, + { + "start": 9096.8, + "end": 9100.3, + "probability": 0.9448 + }, + { + "start": 9100.6, + "end": 9103.12, + "probability": 0.9977 + }, + { + "start": 9103.12, + "end": 9106.44, + "probability": 0.9917 + }, + { + "start": 9106.96, + "end": 9108.01, + "probability": 0.7563 + }, + { + "start": 9108.36, + "end": 9109.7, + "probability": 0.7358 + }, + { + "start": 9111.12, + "end": 9114.12, + "probability": 0.9951 + }, + { + "start": 9114.12, + "end": 9118.28, + "probability": 0.9969 + }, + { + "start": 9118.3, + "end": 9121.88, + "probability": 0.8817 + }, + { + "start": 9122.62, + "end": 9124.44, + "probability": 0.8231 + }, + { + "start": 9125.18, + "end": 9127.44, + "probability": 0.9912 + }, + { + "start": 9127.44, + "end": 9130.84, + "probability": 0.988 + }, + { + "start": 9131.08, + "end": 9134.76, + "probability": 0.9705 + }, + { + "start": 9135.36, + "end": 9138.52, + "probability": 0.8417 + }, + { + "start": 9139.24, + "end": 9139.66, + "probability": 0.6931 + }, + { + "start": 9139.76, + "end": 9140.76, + "probability": 0.9824 + }, + { + "start": 9140.98, + "end": 9144.22, + "probability": 0.9034 + }, + { + "start": 9144.5, + "end": 9144.7, + "probability": 0.7796 + }, + { + "start": 9144.82, + "end": 9146.32, + "probability": 0.834 + }, + { + "start": 9146.64, + "end": 9147.82, + "probability": 0.8114 + }, + { + "start": 9149.08, + "end": 9150.26, + "probability": 0.9468 + }, + { + "start": 9151.28, + "end": 9152.54, + "probability": 0.9532 + }, + { + "start": 9163.32, + "end": 9166.44, + "probability": 0.8129 + }, + { + "start": 9166.44, + "end": 9167.8, + "probability": 0.2683 + }, + { + "start": 9167.8, + "end": 9175.0, + "probability": 0.8527 + }, + { + "start": 9175.0, + "end": 9181.12, + "probability": 0.9123 + }, + { + "start": 9181.8, + "end": 9184.46, + "probability": 0.998 + }, + { + "start": 9185.14, + "end": 9188.96, + "probability": 0.9497 + }, + { + "start": 9189.52, + "end": 9192.82, + "probability": 0.9801 + }, + { + "start": 9192.82, + "end": 9195.76, + "probability": 0.9956 + }, + { + "start": 9196.62, + "end": 9198.8, + "probability": 0.9944 + }, + { + "start": 9199.58, + "end": 9203.28, + "probability": 0.7545 + }, + { + "start": 9203.28, + "end": 9207.86, + "probability": 0.9971 + }, + { + "start": 9207.86, + "end": 9211.64, + "probability": 0.9696 + }, + { + "start": 9213.82, + "end": 9215.04, + "probability": 0.4933 + }, + { + "start": 9215.04, + "end": 9222.88, + "probability": 0.8959 + }, + { + "start": 9222.88, + "end": 9227.12, + "probability": 0.9988 + }, + { + "start": 9227.96, + "end": 9229.4, + "probability": 0.7873 + }, + { + "start": 9230.16, + "end": 9233.44, + "probability": 0.9929 + }, + { + "start": 9234.48, + "end": 9234.86, + "probability": 0.532 + }, + { + "start": 9235.08, + "end": 9237.38, + "probability": 0.9885 + }, + { + "start": 9237.38, + "end": 9240.46, + "probability": 0.9966 + }, + { + "start": 9240.56, + "end": 9241.42, + "probability": 0.7526 + }, + { + "start": 9241.48, + "end": 9244.1, + "probability": 0.9857 + }, + { + "start": 9244.58, + "end": 9245.5, + "probability": 0.8645 + }, + { + "start": 9245.6, + "end": 9246.36, + "probability": 0.9563 + }, + { + "start": 9246.56, + "end": 9247.48, + "probability": 0.2678 + }, + { + "start": 9247.86, + "end": 9248.58, + "probability": 0.7562 + }, + { + "start": 9248.68, + "end": 9253.66, + "probability": 0.9314 + }, + { + "start": 9254.32, + "end": 9256.64, + "probability": 0.9503 + }, + { + "start": 9257.08, + "end": 9260.48, + "probability": 0.989 + }, + { + "start": 9260.84, + "end": 9262.3, + "probability": 0.9579 + }, + { + "start": 9263.72, + "end": 9265.28, + "probability": 0.5772 + }, + { + "start": 9268.0, + "end": 9269.18, + "probability": 0.8382 + }, + { + "start": 9270.78, + "end": 9273.64, + "probability": 0.6256 + }, + { + "start": 9274.32, + "end": 9274.56, + "probability": 0.003 + }, + { + "start": 9274.58, + "end": 9275.0, + "probability": 0.5809 + }, + { + "start": 9275.62, + "end": 9276.22, + "probability": 0.5787 + }, + { + "start": 9277.68, + "end": 9278.82, + "probability": 0.8213 + }, + { + "start": 9281.12, + "end": 9288.88, + "probability": 0.0115 + }, + { + "start": 9289.24, + "end": 9290.06, + "probability": 0.0189 + }, + { + "start": 9292.0, + "end": 9292.18, + "probability": 0.0124 + }, + { + "start": 9293.14, + "end": 9295.24, + "probability": 0.0866 + }, + { + "start": 9296.86, + "end": 9297.9, + "probability": 0.0362 + }, + { + "start": 9297.9, + "end": 9297.98, + "probability": 0.1039 + }, + { + "start": 9297.98, + "end": 9301.48, + "probability": 0.431 + }, + { + "start": 9302.56, + "end": 9306.32, + "probability": 0.7458 + }, + { + "start": 9306.32, + "end": 9308.96, + "probability": 0.9811 + }, + { + "start": 9314.0, + "end": 9314.84, + "probability": 0.649 + }, + { + "start": 9322.4, + "end": 9322.76, + "probability": 0.8029 + }, + { + "start": 9322.96, + "end": 9325.02, + "probability": 0.6692 + }, + { + "start": 9325.16, + "end": 9326.22, + "probability": 0.8275 + }, + { + "start": 9327.24, + "end": 9331.86, + "probability": 0.9578 + }, + { + "start": 9331.96, + "end": 9333.16, + "probability": 0.4834 + }, + { + "start": 9333.7, + "end": 9336.0, + "probability": 0.9663 + }, + { + "start": 9336.9, + "end": 9340.78, + "probability": 0.9373 + }, + { + "start": 9352.38, + "end": 9353.12, + "probability": 0.3907 + }, + { + "start": 9353.16, + "end": 9354.22, + "probability": 0.9063 + }, + { + "start": 9359.04, + "end": 9360.22, + "probability": 0.6245 + }, + { + "start": 9361.42, + "end": 9363.48, + "probability": 0.6791 + }, + { + "start": 9364.9, + "end": 9368.5, + "probability": 0.7622 + }, + { + "start": 9369.46, + "end": 9373.16, + "probability": 0.9136 + }, + { + "start": 9373.64, + "end": 9377.64, + "probability": 0.9966 + }, + { + "start": 9378.62, + "end": 9380.46, + "probability": 0.9526 + }, + { + "start": 9381.34, + "end": 9390.84, + "probability": 0.9839 + }, + { + "start": 9392.06, + "end": 9396.74, + "probability": 0.9797 + }, + { + "start": 9396.74, + "end": 9402.34, + "probability": 0.9811 + }, + { + "start": 9403.42, + "end": 9406.66, + "probability": 0.8503 + }, + { + "start": 9408.22, + "end": 9416.48, + "probability": 0.9912 + }, + { + "start": 9416.74, + "end": 9418.12, + "probability": 0.6878 + }, + { + "start": 9418.92, + "end": 9420.74, + "probability": 0.9612 + }, + { + "start": 9421.36, + "end": 9423.6, + "probability": 0.761 + }, + { + "start": 9424.14, + "end": 9425.56, + "probability": 0.8041 + }, + { + "start": 9427.26, + "end": 9428.98, + "probability": 0.5653 + }, + { + "start": 9429.04, + "end": 9433.38, + "probability": 0.847 + }, + { + "start": 9433.92, + "end": 9436.04, + "probability": 0.8823 + }, + { + "start": 9436.5, + "end": 9437.58, + "probability": 0.9642 + }, + { + "start": 9438.12, + "end": 9441.36, + "probability": 0.8762 + }, + { + "start": 9441.88, + "end": 9443.24, + "probability": 0.7044 + }, + { + "start": 9444.24, + "end": 9453.36, + "probability": 0.9778 + }, + { + "start": 9453.76, + "end": 9455.28, + "probability": 0.9863 + }, + { + "start": 9455.82, + "end": 9458.46, + "probability": 0.5563 + }, + { + "start": 9458.74, + "end": 9461.84, + "probability": 0.75 + }, + { + "start": 9462.16, + "end": 9465.0, + "probability": 0.4709 + }, + { + "start": 9465.3, + "end": 9470.42, + "probability": 0.9233 + }, + { + "start": 9470.94, + "end": 9474.66, + "probability": 0.854 + }, + { + "start": 9474.94, + "end": 9475.62, + "probability": 0.4838 + }, + { + "start": 9475.72, + "end": 9476.92, + "probability": 0.3666 + }, + { + "start": 9477.4, + "end": 9479.72, + "probability": 0.8885 + }, + { + "start": 9480.32, + "end": 9484.02, + "probability": 0.8621 + }, + { + "start": 9484.72, + "end": 9489.54, + "probability": 0.963 + }, + { + "start": 9490.24, + "end": 9497.96, + "probability": 0.9774 + }, + { + "start": 9498.68, + "end": 9499.98, + "probability": 0.7693 + }, + { + "start": 9500.18, + "end": 9500.92, + "probability": 0.9134 + }, + { + "start": 9501.0, + "end": 9502.09, + "probability": 0.892 + }, + { + "start": 9502.66, + "end": 9505.82, + "probability": 0.9287 + }, + { + "start": 9506.18, + "end": 9509.92, + "probability": 0.9739 + }, + { + "start": 9510.66, + "end": 9515.54, + "probability": 0.9841 + }, + { + "start": 9520.63, + "end": 9523.16, + "probability": 0.3744 + }, + { + "start": 9523.28, + "end": 9526.86, + "probability": 0.6666 + }, + { + "start": 9527.3, + "end": 9528.16, + "probability": 0.6877 + }, + { + "start": 9528.38, + "end": 9531.88, + "probability": 0.8682 + }, + { + "start": 9531.94, + "end": 9532.64, + "probability": 0.7187 + }, + { + "start": 9532.95, + "end": 9534.66, + "probability": 0.5903 + }, + { + "start": 9534.66, + "end": 9536.44, + "probability": 0.4786 + }, + { + "start": 9537.22, + "end": 9539.26, + "probability": 0.6124 + }, + { + "start": 9539.36, + "end": 9543.42, + "probability": 0.995 + }, + { + "start": 9544.08, + "end": 9545.3, + "probability": 0.8519 + }, + { + "start": 9545.92, + "end": 9547.74, + "probability": 0.9913 + }, + { + "start": 9548.02, + "end": 9550.54, + "probability": 0.9601 + }, + { + "start": 9551.28, + "end": 9553.5, + "probability": 0.3466 + }, + { + "start": 9553.5, + "end": 9554.86, + "probability": 0.0041 + }, + { + "start": 9556.0, + "end": 9556.7, + "probability": 0.402 + }, + { + "start": 9557.08, + "end": 9561.02, + "probability": 0.0658 + }, + { + "start": 9561.3, + "end": 9562.38, + "probability": 0.2061 + }, + { + "start": 9562.68, + "end": 9565.8, + "probability": 0.2763 + }, + { + "start": 9566.43, + "end": 9569.12, + "probability": 0.6316 + }, + { + "start": 9569.22, + "end": 9573.58, + "probability": 0.9856 + }, + { + "start": 9574.24, + "end": 9576.84, + "probability": 0.9811 + }, + { + "start": 9577.52, + "end": 9579.2, + "probability": 0.9331 + }, + { + "start": 9579.76, + "end": 9581.6, + "probability": 0.7914 + }, + { + "start": 9581.64, + "end": 9583.46, + "probability": 0.9957 + }, + { + "start": 9583.72, + "end": 9584.54, + "probability": 0.9392 + }, + { + "start": 9584.68, + "end": 9586.98, + "probability": 0.7966 + }, + { + "start": 9587.08, + "end": 9588.12, + "probability": 0.7915 + }, + { + "start": 9588.5, + "end": 9589.7, + "probability": 0.6499 + }, + { + "start": 9590.08, + "end": 9592.62, + "probability": 0.7672 + }, + { + "start": 9592.88, + "end": 9595.66, + "probability": 0.8966 + }, + { + "start": 9596.64, + "end": 9599.54, + "probability": 0.077 + }, + { + "start": 9604.16, + "end": 9609.2, + "probability": 0.9705 + }, + { + "start": 9609.62, + "end": 9612.88, + "probability": 0.9976 + }, + { + "start": 9613.34, + "end": 9617.98, + "probability": 0.986 + }, + { + "start": 9617.98, + "end": 9621.16, + "probability": 0.997 + }, + { + "start": 9621.36, + "end": 9623.24, + "probability": 0.843 + }, + { + "start": 9623.5, + "end": 9626.68, + "probability": 0.2217 + }, + { + "start": 9626.68, + "end": 9629.04, + "probability": 0.4036 + }, + { + "start": 9629.32, + "end": 9630.38, + "probability": 0.7586 + }, + { + "start": 9631.26, + "end": 9632.16, + "probability": 0.0588 + }, + { + "start": 9632.68, + "end": 9633.74, + "probability": 0.1415 + }, + { + "start": 9633.74, + "end": 9634.86, + "probability": 0.662 + }, + { + "start": 9636.16, + "end": 9640.68, + "probability": 0.3919 + }, + { + "start": 9640.84, + "end": 9642.87, + "probability": 0.5989 + }, + { + "start": 9646.56, + "end": 9647.12, + "probability": 0.1006 + }, + { + "start": 9647.14, + "end": 9649.2, + "probability": 0.5799 + }, + { + "start": 9650.28, + "end": 9650.78, + "probability": 0.3564 + }, + { + "start": 9653.48, + "end": 9654.9, + "probability": 0.001 + }, + { + "start": 9657.44, + "end": 9658.1, + "probability": 0.1245 + }, + { + "start": 9659.83, + "end": 9660.22, + "probability": 0.027 + }, + { + "start": 9666.78, + "end": 9667.58, + "probability": 0.0778 + }, + { + "start": 9668.56, + "end": 9669.34, + "probability": 0.0509 + }, + { + "start": 9669.4, + "end": 9669.56, + "probability": 0.0885 + }, + { + "start": 9669.56, + "end": 9672.18, + "probability": 0.4432 + }, + { + "start": 9672.7, + "end": 9676.96, + "probability": 0.6492 + }, + { + "start": 9679.4, + "end": 9682.84, + "probability": 0.1469 + }, + { + "start": 9683.64, + "end": 9683.78, + "probability": 0.7497 + }, + { + "start": 9683.78, + "end": 9684.44, + "probability": 0.5462 + }, + { + "start": 9684.58, + "end": 9686.7, + "probability": 0.6932 + }, + { + "start": 9687.22, + "end": 9689.42, + "probability": 0.674 + }, + { + "start": 9689.56, + "end": 9690.6, + "probability": 0.6887 + }, + { + "start": 9691.74, + "end": 9691.81, + "probability": 0.0101 + }, + { + "start": 9701.8, + "end": 9703.36, + "probability": 0.701 + }, + { + "start": 9704.14, + "end": 9708.29, + "probability": 0.9409 + }, + { + "start": 9708.98, + "end": 9711.08, + "probability": 0.6199 + }, + { + "start": 9720.28, + "end": 9722.36, + "probability": 0.8463 + }, + { + "start": 9722.7, + "end": 9723.12, + "probability": 0.7188 + }, + { + "start": 9723.84, + "end": 9725.28, + "probability": 0.8839 + }, + { + "start": 9725.36, + "end": 9731.58, + "probability": 0.9907 + }, + { + "start": 9732.4, + "end": 9733.98, + "probability": 0.7815 + }, + { + "start": 9734.5, + "end": 9738.64, + "probability": 0.9888 + }, + { + "start": 9738.64, + "end": 9741.78, + "probability": 0.9968 + }, + { + "start": 9742.56, + "end": 9743.78, + "probability": 0.421 + }, + { + "start": 9743.88, + "end": 9743.88, + "probability": 0.2934 + }, + { + "start": 9743.88, + "end": 9748.24, + "probability": 0.9888 + }, + { + "start": 9749.08, + "end": 9752.28, + "probability": 0.9809 + }, + { + "start": 9752.28, + "end": 9754.82, + "probability": 0.9968 + }, + { + "start": 9754.88, + "end": 9756.0, + "probability": 0.9521 + }, + { + "start": 9756.76, + "end": 9761.14, + "probability": 0.9863 + }, + { + "start": 9761.54, + "end": 9762.2, + "probability": 0.9902 + }, + { + "start": 9762.9, + "end": 9765.5, + "probability": 0.8869 + }, + { + "start": 9766.16, + "end": 9770.08, + "probability": 0.9571 + }, + { + "start": 9770.3, + "end": 9772.7, + "probability": 0.8498 + }, + { + "start": 9773.1, + "end": 9778.22, + "probability": 0.9832 + }, + { + "start": 9778.98, + "end": 9779.96, + "probability": 0.9002 + }, + { + "start": 9780.02, + "end": 9780.92, + "probability": 0.7518 + }, + { + "start": 9781.0, + "end": 9786.32, + "probability": 0.9692 + }, + { + "start": 9786.32, + "end": 9790.26, + "probability": 0.9989 + }, + { + "start": 9791.28, + "end": 9794.56, + "probability": 0.9947 + }, + { + "start": 9795.16, + "end": 9802.12, + "probability": 0.9611 + }, + { + "start": 9802.26, + "end": 9803.14, + "probability": 0.8916 + }, + { + "start": 9803.38, + "end": 9804.76, + "probability": 0.963 + }, + { + "start": 9805.22, + "end": 9807.86, + "probability": 0.989 + }, + { + "start": 9808.4, + "end": 9814.1, + "probability": 0.9894 + }, + { + "start": 9815.24, + "end": 9819.84, + "probability": 0.9917 + }, + { + "start": 9820.46, + "end": 9822.98, + "probability": 0.968 + }, + { + "start": 9823.96, + "end": 9827.0, + "probability": 0.9983 + }, + { + "start": 9827.6, + "end": 9832.7, + "probability": 0.9872 + }, + { + "start": 9832.7, + "end": 9836.82, + "probability": 0.9884 + }, + { + "start": 9837.98, + "end": 9839.8, + "probability": 0.8865 + }, + { + "start": 9840.28, + "end": 9846.32, + "probability": 0.986 + }, + { + "start": 9846.32, + "end": 9850.78, + "probability": 0.9948 + }, + { + "start": 9851.56, + "end": 9857.6, + "probability": 0.9569 + }, + { + "start": 9858.22, + "end": 9860.78, + "probability": 0.9525 + }, + { + "start": 9862.76, + "end": 9867.78, + "probability": 0.9702 + }, + { + "start": 9868.46, + "end": 9871.36, + "probability": 0.7723 + }, + { + "start": 9871.4, + "end": 9876.44, + "probability": 0.9834 + }, + { + "start": 9876.88, + "end": 9878.2, + "probability": 0.952 + }, + { + "start": 9878.56, + "end": 9881.16, + "probability": 0.9857 + }, + { + "start": 9881.24, + "end": 9882.34, + "probability": 0.9213 + }, + { + "start": 9882.6, + "end": 9887.68, + "probability": 0.994 + }, + { + "start": 9888.78, + "end": 9893.1, + "probability": 0.8183 + }, + { + "start": 9893.28, + "end": 9893.86, + "probability": 0.5147 + }, + { + "start": 9894.2, + "end": 9897.56, + "probability": 0.9814 + }, + { + "start": 9898.06, + "end": 9898.98, + "probability": 0.9208 + }, + { + "start": 9899.38, + "end": 9900.3, + "probability": 0.8628 + }, + { + "start": 9900.52, + "end": 9901.46, + "probability": 0.946 + }, + { + "start": 9901.7, + "end": 9902.7, + "probability": 0.9786 + }, + { + "start": 9902.94, + "end": 9906.12, + "probability": 0.9884 + }, + { + "start": 9906.76, + "end": 9907.26, + "probability": 0.4732 + }, + { + "start": 9907.34, + "end": 9912.02, + "probability": 0.9949 + }, + { + "start": 9912.34, + "end": 9916.02, + "probability": 0.9009 + }, + { + "start": 9916.22, + "end": 9918.65, + "probability": 0.9658 + }, + { + "start": 9918.88, + "end": 9922.3, + "probability": 0.988 + }, + { + "start": 9923.04, + "end": 9925.36, + "probability": 0.9536 + }, + { + "start": 9925.9, + "end": 9929.84, + "probability": 0.9755 + }, + { + "start": 9930.04, + "end": 9934.26, + "probability": 0.9891 + }, + { + "start": 9934.6, + "end": 9936.48, + "probability": 0.9473 + }, + { + "start": 9937.52, + "end": 9938.9, + "probability": 0.942 + }, + { + "start": 9939.76, + "end": 9945.6, + "probability": 0.9927 + }, + { + "start": 9945.98, + "end": 9950.14, + "probability": 0.9678 + }, + { + "start": 9950.2, + "end": 9954.72, + "probability": 0.9878 + }, + { + "start": 9955.06, + "end": 9956.84, + "probability": 0.835 + }, + { + "start": 9957.02, + "end": 9957.76, + "probability": 0.7122 + }, + { + "start": 9958.24, + "end": 9961.98, + "probability": 0.9577 + }, + { + "start": 9962.36, + "end": 9966.3, + "probability": 0.995 + }, + { + "start": 9966.3, + "end": 9969.62, + "probability": 0.9995 + }, + { + "start": 9970.14, + "end": 9972.3, + "probability": 0.993 + }, + { + "start": 9972.3, + "end": 9975.48, + "probability": 0.9909 + }, + { + "start": 9976.16, + "end": 9976.96, + "probability": 0.518 + }, + { + "start": 9977.44, + "end": 9979.12, + "probability": 0.8218 + }, + { + "start": 9979.58, + "end": 9982.02, + "probability": 0.6973 + }, + { + "start": 9982.4, + "end": 9983.84, + "probability": 0.8237 + }, + { + "start": 9984.46, + "end": 9985.94, + "probability": 0.6789 + }, + { + "start": 9985.98, + "end": 9986.74, + "probability": 0.9024 + }, + { + "start": 9987.14, + "end": 9988.78, + "probability": 0.9395 + }, + { + "start": 9988.86, + "end": 9995.18, + "probability": 0.914 + }, + { + "start": 9996.34, + "end": 9997.46, + "probability": 0.5829 + }, + { + "start": 9999.07, + "end": 10002.1, + "probability": 0.9021 + }, + { + "start": 10002.64, + "end": 10006.34, + "probability": 0.9969 + }, + { + "start": 10007.22, + "end": 10013.68, + "probability": 0.9965 + }, + { + "start": 10014.26, + "end": 10019.42, + "probability": 0.9843 + }, + { + "start": 10019.64, + "end": 10021.72, + "probability": 0.9768 + }, + { + "start": 10022.5, + "end": 10023.88, + "probability": 0.9407 + }, + { + "start": 10024.78, + "end": 10026.38, + "probability": 0.977 + }, + { + "start": 10026.54, + "end": 10027.7, + "probability": 0.9621 + }, + { + "start": 10028.52, + "end": 10029.34, + "probability": 0.9347 + }, + { + "start": 10030.62, + "end": 10033.76, + "probability": 0.9979 + }, + { + "start": 10034.5, + "end": 10037.4, + "probability": 0.9932 + }, + { + "start": 10037.6, + "end": 10039.98, + "probability": 0.9966 + }, + { + "start": 10040.32, + "end": 10041.38, + "probability": 0.8006 + }, + { + "start": 10042.02, + "end": 10047.94, + "probability": 0.9919 + }, + { + "start": 10051.64, + "end": 10057.42, + "probability": 0.9575 + }, + { + "start": 10057.42, + "end": 10061.9, + "probability": 0.8873 + }, + { + "start": 10062.54, + "end": 10066.54, + "probability": 0.9985 + }, + { + "start": 10066.54, + "end": 10070.44, + "probability": 0.9976 + }, + { + "start": 10071.38, + "end": 10075.49, + "probability": 0.9993 + }, + { + "start": 10076.1, + "end": 10080.56, + "probability": 0.999 + }, + { + "start": 10081.32, + "end": 10083.5, + "probability": 0.9056 + }, + { + "start": 10083.52, + "end": 10084.7, + "probability": 0.9473 + }, + { + "start": 10085.18, + "end": 10088.08, + "probability": 0.9945 + }, + { + "start": 10088.56, + "end": 10091.66, + "probability": 0.8796 + }, + { + "start": 10091.98, + "end": 10093.8, + "probability": 0.8896 + }, + { + "start": 10094.44, + "end": 10099.34, + "probability": 0.9812 + }, + { + "start": 10099.94, + "end": 10101.92, + "probability": 0.9813 + }, + { + "start": 10102.46, + "end": 10103.78, + "probability": 0.9535 + }, + { + "start": 10104.8, + "end": 10110.8, + "probability": 0.9946 + }, + { + "start": 10111.54, + "end": 10113.96, + "probability": 0.896 + }, + { + "start": 10114.44, + "end": 10117.26, + "probability": 0.9916 + }, + { + "start": 10118.44, + "end": 10122.88, + "probability": 0.8169 + }, + { + "start": 10123.02, + "end": 10127.84, + "probability": 0.9752 + }, + { + "start": 10127.86, + "end": 10129.01, + "probability": 0.9561 + }, + { + "start": 10130.88, + "end": 10135.22, + "probability": 0.9621 + }, + { + "start": 10135.44, + "end": 10139.1, + "probability": 0.9985 + }, + { + "start": 10139.6, + "end": 10145.34, + "probability": 0.9915 + }, + { + "start": 10146.16, + "end": 10146.84, + "probability": 0.6658 + }, + { + "start": 10147.7, + "end": 10150.12, + "probability": 0.9778 + }, + { + "start": 10150.84, + "end": 10153.72, + "probability": 0.9947 + }, + { + "start": 10153.72, + "end": 10157.07, + "probability": 0.9894 + }, + { + "start": 10159.08, + "end": 10160.16, + "probability": 0.8988 + }, + { + "start": 10160.78, + "end": 10162.08, + "probability": 0.7722 + }, + { + "start": 10163.08, + "end": 10164.6, + "probability": 0.8882 + }, + { + "start": 10165.02, + "end": 10166.16, + "probability": 0.9603 + }, + { + "start": 10166.3, + "end": 10171.98, + "probability": 0.9207 + }, + { + "start": 10172.16, + "end": 10172.94, + "probability": 0.9714 + }, + { + "start": 10173.52, + "end": 10174.54, + "probability": 0.9835 + }, + { + "start": 10175.24, + "end": 10176.3, + "probability": 0.9349 + }, + { + "start": 10177.1, + "end": 10179.66, + "probability": 0.9739 + }, + { + "start": 10180.42, + "end": 10182.3, + "probability": 0.8778 + }, + { + "start": 10183.76, + "end": 10184.27, + "probability": 0.8982 + }, + { + "start": 10184.58, + "end": 10185.32, + "probability": 0.838 + }, + { + "start": 10185.46, + "end": 10187.82, + "probability": 0.6291 + }, + { + "start": 10188.78, + "end": 10191.54, + "probability": 0.9154 + }, + { + "start": 10192.12, + "end": 10195.8, + "probability": 0.9959 + }, + { + "start": 10196.84, + "end": 10199.3, + "probability": 0.9919 + }, + { + "start": 10199.3, + "end": 10202.38, + "probability": 0.9936 + }, + { + "start": 10202.9, + "end": 10206.3, + "probability": 0.9952 + }, + { + "start": 10206.4, + "end": 10206.9, + "probability": 0.9419 + }, + { + "start": 10208.52, + "end": 10210.16, + "probability": 0.9952 + }, + { + "start": 10211.1, + "end": 10212.62, + "probability": 0.9954 + }, + { + "start": 10213.32, + "end": 10214.22, + "probability": 0.8999 + }, + { + "start": 10214.3, + "end": 10215.34, + "probability": 0.9644 + }, + { + "start": 10215.52, + "end": 10218.86, + "probability": 0.9438 + }, + { + "start": 10219.26, + "end": 10221.78, + "probability": 0.9944 + }, + { + "start": 10222.06, + "end": 10225.18, + "probability": 0.9996 + }, + { + "start": 10225.6, + "end": 10226.32, + "probability": 0.8793 + }, + { + "start": 10227.52, + "end": 10228.94, + "probability": 0.9067 + }, + { + "start": 10229.0, + "end": 10230.04, + "probability": 0.8012 + }, + { + "start": 10230.4, + "end": 10233.12, + "probability": 0.8903 + }, + { + "start": 10233.8, + "end": 10235.7, + "probability": 0.9863 + }, + { + "start": 10236.42, + "end": 10240.88, + "probability": 0.9897 + }, + { + "start": 10241.58, + "end": 10241.92, + "probability": 0.7242 + }, + { + "start": 10242.38, + "end": 10247.02, + "probability": 0.9963 + }, + { + "start": 10248.0, + "end": 10250.18, + "probability": 0.9676 + }, + { + "start": 10250.54, + "end": 10253.46, + "probability": 0.9887 + }, + { + "start": 10253.72, + "end": 10254.38, + "probability": 0.9747 + }, + { + "start": 10254.64, + "end": 10255.24, + "probability": 0.8601 + }, + { + "start": 10255.44, + "end": 10256.22, + "probability": 0.9692 + }, + { + "start": 10256.34, + "end": 10257.02, + "probability": 0.66 + }, + { + "start": 10259.36, + "end": 10262.28, + "probability": 0.8563 + }, + { + "start": 10262.28, + "end": 10265.76, + "probability": 0.9993 + }, + { + "start": 10266.86, + "end": 10269.98, + "probability": 0.983 + }, + { + "start": 10269.98, + "end": 10272.6, + "probability": 0.941 + }, + { + "start": 10273.1, + "end": 10275.04, + "probability": 0.9928 + }, + { + "start": 10275.04, + "end": 10277.94, + "probability": 0.9975 + }, + { + "start": 10278.74, + "end": 10283.18, + "probability": 0.9948 + }, + { + "start": 10283.78, + "end": 10284.7, + "probability": 0.9395 + }, + { + "start": 10287.24, + "end": 10287.76, + "probability": 0.3539 + }, + { + "start": 10287.76, + "end": 10291.08, + "probability": 0.924 + }, + { + "start": 10291.4, + "end": 10297.76, + "probability": 0.8936 + }, + { + "start": 10297.76, + "end": 10304.38, + "probability": 0.8979 + }, + { + "start": 10304.86, + "end": 10306.32, + "probability": 0.923 + }, + { + "start": 10306.38, + "end": 10307.17, + "probability": 0.7018 + }, + { + "start": 10307.52, + "end": 10309.24, + "probability": 0.8431 + }, + { + "start": 10309.44, + "end": 10311.82, + "probability": 0.9484 + }, + { + "start": 10312.84, + "end": 10314.56, + "probability": 0.7841 + }, + { + "start": 10316.5, + "end": 10320.84, + "probability": 0.9484 + }, + { + "start": 10321.58, + "end": 10324.44, + "probability": 0.9263 + }, + { + "start": 10324.54, + "end": 10325.42, + "probability": 0.7902 + }, + { + "start": 10325.64, + "end": 10327.88, + "probability": 0.8624 + }, + { + "start": 10328.36, + "end": 10329.62, + "probability": 0.6854 + }, + { + "start": 10330.14, + "end": 10334.48, + "probability": 0.9967 + }, + { + "start": 10334.84, + "end": 10337.02, + "probability": 0.9389 + }, + { + "start": 10337.46, + "end": 10338.32, + "probability": 0.6424 + }, + { + "start": 10338.4, + "end": 10339.68, + "probability": 0.9941 + }, + { + "start": 10339.8, + "end": 10343.58, + "probability": 0.942 + }, + { + "start": 10344.04, + "end": 10344.98, + "probability": 0.932 + }, + { + "start": 10345.3, + "end": 10350.52, + "probability": 0.9689 + }, + { + "start": 10351.08, + "end": 10354.72, + "probability": 0.8691 + }, + { + "start": 10355.28, + "end": 10357.9, + "probability": 0.8606 + }, + { + "start": 10358.22, + "end": 10361.26, + "probability": 0.9898 + }, + { + "start": 10361.58, + "end": 10362.48, + "probability": 0.8088 + }, + { + "start": 10362.7, + "end": 10366.88, + "probability": 0.9934 + }, + { + "start": 10367.0, + "end": 10367.4, + "probability": 0.6971 + }, + { + "start": 10367.5, + "end": 10369.2, + "probability": 0.8391 + }, + { + "start": 10369.32, + "end": 10372.92, + "probability": 0.9933 + }, + { + "start": 10386.06, + "end": 10386.72, + "probability": 0.5583 + }, + { + "start": 10389.1, + "end": 10390.16, + "probability": 0.6459 + }, + { + "start": 10391.24, + "end": 10392.02, + "probability": 0.89 + }, + { + "start": 10396.06, + "end": 10402.8, + "probability": 0.9955 + }, + { + "start": 10403.24, + "end": 10409.0, + "probability": 0.9753 + }, + { + "start": 10410.82, + "end": 10411.7, + "probability": 0.8289 + }, + { + "start": 10412.4, + "end": 10419.34, + "probability": 0.9985 + }, + { + "start": 10420.8, + "end": 10424.22, + "probability": 0.89 + }, + { + "start": 10425.28, + "end": 10430.74, + "probability": 0.9978 + }, + { + "start": 10432.34, + "end": 10437.6, + "probability": 0.9991 + }, + { + "start": 10437.6, + "end": 10443.18, + "probability": 0.9994 + }, + { + "start": 10444.64, + "end": 10450.98, + "probability": 0.9736 + }, + { + "start": 10451.6, + "end": 10457.22, + "probability": 0.9868 + }, + { + "start": 10457.72, + "end": 10458.7, + "probability": 0.8385 + }, + { + "start": 10459.62, + "end": 10461.44, + "probability": 0.9062 + }, + { + "start": 10461.56, + "end": 10463.1, + "probability": 0.8667 + }, + { + "start": 10464.42, + "end": 10469.3, + "probability": 0.9917 + }, + { + "start": 10469.3, + "end": 10473.4, + "probability": 0.9917 + }, + { + "start": 10473.84, + "end": 10475.8, + "probability": 0.9832 + }, + { + "start": 10477.22, + "end": 10477.9, + "probability": 0.7206 + }, + { + "start": 10478.9, + "end": 10484.24, + "probability": 0.9714 + }, + { + "start": 10484.24, + "end": 10487.98, + "probability": 0.9984 + }, + { + "start": 10488.84, + "end": 10495.24, + "probability": 0.9615 + }, + { + "start": 10495.86, + "end": 10501.74, + "probability": 0.9904 + }, + { + "start": 10501.74, + "end": 10508.96, + "probability": 0.998 + }, + { + "start": 10509.36, + "end": 10513.06, + "probability": 0.9785 + }, + { + "start": 10513.24, + "end": 10515.12, + "probability": 0.9318 + }, + { + "start": 10515.44, + "end": 10519.18, + "probability": 0.996 + }, + { + "start": 10520.18, + "end": 10522.38, + "probability": 0.9549 + }, + { + "start": 10523.04, + "end": 10528.16, + "probability": 0.9905 + }, + { + "start": 10528.7, + "end": 10531.6, + "probability": 0.8596 + }, + { + "start": 10532.12, + "end": 10532.92, + "probability": 0.8356 + }, + { + "start": 10533.08, + "end": 10537.64, + "probability": 0.87 + }, + { + "start": 10537.8, + "end": 10538.6, + "probability": 0.8423 + }, + { + "start": 10538.98, + "end": 10539.06, + "probability": 0.1013 + }, + { + "start": 10539.06, + "end": 10545.74, + "probability": 0.9528 + }, + { + "start": 10546.18, + "end": 10548.92, + "probability": 0.9181 + }, + { + "start": 10549.36, + "end": 10550.64, + "probability": 0.7979 + }, + { + "start": 10550.76, + "end": 10557.1, + "probability": 0.9718 + }, + { + "start": 10558.18, + "end": 10560.0, + "probability": 0.7842 + }, + { + "start": 10560.68, + "end": 10564.54, + "probability": 0.9881 + }, + { + "start": 10565.24, + "end": 10566.7, + "probability": 0.9659 + }, + { + "start": 10567.22, + "end": 10571.1, + "probability": 0.9484 + }, + { + "start": 10571.98, + "end": 10573.62, + "probability": 0.9911 + }, + { + "start": 10574.2, + "end": 10575.6, + "probability": 0.9946 + }, + { + "start": 10576.08, + "end": 10579.38, + "probability": 0.9951 + }, + { + "start": 10579.92, + "end": 10583.76, + "probability": 0.998 + }, + { + "start": 10583.76, + "end": 10586.74, + "probability": 0.9803 + }, + { + "start": 10587.26, + "end": 10588.26, + "probability": 0.7217 + }, + { + "start": 10588.78, + "end": 10592.4, + "probability": 0.9967 + }, + { + "start": 10593.3, + "end": 10597.44, + "probability": 0.9731 + }, + { + "start": 10597.88, + "end": 10599.38, + "probability": 0.5881 + }, + { + "start": 10599.46, + "end": 10600.02, + "probability": 0.5436 + }, + { + "start": 10600.52, + "end": 10602.16, + "probability": 0.9184 + }, + { + "start": 10602.64, + "end": 10604.38, + "probability": 0.9272 + }, + { + "start": 10605.0, + "end": 10607.14, + "probability": 0.9963 + }, + { + "start": 10607.54, + "end": 10612.62, + "probability": 0.9874 + }, + { + "start": 10613.22, + "end": 10616.82, + "probability": 0.999 + }, + { + "start": 10617.56, + "end": 10620.12, + "probability": 0.9216 + }, + { + "start": 10620.52, + "end": 10623.96, + "probability": 0.947 + }, + { + "start": 10624.14, + "end": 10626.99, + "probability": 0.9854 + }, + { + "start": 10627.3, + "end": 10628.86, + "probability": 0.87 + }, + { + "start": 10629.32, + "end": 10629.84, + "probability": 0.7129 + }, + { + "start": 10629.92, + "end": 10631.64, + "probability": 0.9763 + }, + { + "start": 10631.98, + "end": 10632.58, + "probability": 0.9257 + }, + { + "start": 10632.7, + "end": 10632.88, + "probability": 0.3997 + }, + { + "start": 10632.94, + "end": 10640.18, + "probability": 0.9896 + }, + { + "start": 10640.18, + "end": 10645.66, + "probability": 0.9874 + }, + { + "start": 10646.56, + "end": 10649.18, + "probability": 0.7688 + }, + { + "start": 10649.86, + "end": 10653.02, + "probability": 0.953 + }, + { + "start": 10653.66, + "end": 10654.72, + "probability": 0.8839 + }, + { + "start": 10654.98, + "end": 10660.62, + "probability": 0.9823 + }, + { + "start": 10660.62, + "end": 10666.86, + "probability": 0.9907 + }, + { + "start": 10667.82, + "end": 10668.46, + "probability": 0.7985 + }, + { + "start": 10668.98, + "end": 10671.32, + "probability": 0.9771 + }, + { + "start": 10671.5, + "end": 10674.02, + "probability": 0.9877 + }, + { + "start": 10674.5, + "end": 10680.1, + "probability": 0.9991 + }, + { + "start": 10680.64, + "end": 10683.6, + "probability": 0.9404 + }, + { + "start": 10684.16, + "end": 10687.46, + "probability": 0.9976 + }, + { + "start": 10688.6, + "end": 10693.04, + "probability": 0.9668 + }, + { + "start": 10693.04, + "end": 10697.04, + "probability": 0.9902 + }, + { + "start": 10698.08, + "end": 10701.02, + "probability": 0.9985 + }, + { + "start": 10701.02, + "end": 10704.26, + "probability": 0.9954 + }, + { + "start": 10704.58, + "end": 10706.62, + "probability": 0.9829 + }, + { + "start": 10707.14, + "end": 10710.4, + "probability": 0.9744 + }, + { + "start": 10711.56, + "end": 10715.04, + "probability": 0.687 + }, + { + "start": 10715.08, + "end": 10715.98, + "probability": 0.9778 + }, + { + "start": 10716.76, + "end": 10720.92, + "probability": 0.9731 + }, + { + "start": 10720.92, + "end": 10724.64, + "probability": 0.999 + }, + { + "start": 10725.5, + "end": 10727.19, + "probability": 0.781 + }, + { + "start": 10727.72, + "end": 10728.98, + "probability": 0.8534 + }, + { + "start": 10729.74, + "end": 10731.46, + "probability": 0.9932 + }, + { + "start": 10731.9, + "end": 10734.26, + "probability": 0.7709 + }, + { + "start": 10734.84, + "end": 10738.48, + "probability": 0.9661 + }, + { + "start": 10739.14, + "end": 10740.14, + "probability": 0.7121 + }, + { + "start": 10740.3, + "end": 10744.74, + "probability": 0.9936 + }, + { + "start": 10744.74, + "end": 10748.1, + "probability": 0.9871 + }, + { + "start": 10748.78, + "end": 10750.94, + "probability": 0.89 + }, + { + "start": 10751.58, + "end": 10754.58, + "probability": 0.9531 + }, + { + "start": 10755.18, + "end": 10756.62, + "probability": 0.9417 + }, + { + "start": 10757.4, + "end": 10759.86, + "probability": 0.9893 + }, + { + "start": 10760.02, + "end": 10763.08, + "probability": 0.9516 + }, + { + "start": 10763.62, + "end": 10765.46, + "probability": 0.9539 + }, + { + "start": 10765.96, + "end": 10767.5, + "probability": 0.9665 + }, + { + "start": 10767.92, + "end": 10771.1, + "probability": 0.9967 + }, + { + "start": 10771.9, + "end": 10775.42, + "probability": 0.966 + }, + { + "start": 10775.86, + "end": 10777.11, + "probability": 0.9781 + }, + { + "start": 10777.84, + "end": 10778.4, + "probability": 0.9255 + }, + { + "start": 10778.8, + "end": 10779.72, + "probability": 0.9984 + }, + { + "start": 10779.8, + "end": 10781.08, + "probability": 0.998 + }, + { + "start": 10781.52, + "end": 10781.66, + "probability": 0.4899 + }, + { + "start": 10781.8, + "end": 10783.32, + "probability": 0.8926 + }, + { + "start": 10783.5, + "end": 10783.94, + "probability": 0.3811 + }, + { + "start": 10783.94, + "end": 10784.34, + "probability": 0.9664 + }, + { + "start": 10784.44, + "end": 10786.48, + "probability": 0.7745 + }, + { + "start": 10786.68, + "end": 10790.06, + "probability": 0.9886 + }, + { + "start": 10790.54, + "end": 10793.1, + "probability": 0.9634 + }, + { + "start": 10793.42, + "end": 10795.14, + "probability": 0.8897 + }, + { + "start": 10795.22, + "end": 10795.66, + "probability": 0.9145 + }, + { + "start": 10795.74, + "end": 10796.22, + "probability": 0.8671 + }, + { + "start": 10796.22, + "end": 10796.88, + "probability": 0.9802 + }, + { + "start": 10797.0, + "end": 10797.58, + "probability": 0.9339 + }, + { + "start": 10797.88, + "end": 10798.82, + "probability": 0.8947 + }, + { + "start": 10798.9, + "end": 10800.28, + "probability": 0.9189 + }, + { + "start": 10800.76, + "end": 10801.98, + "probability": 0.9764 + }, + { + "start": 10802.26, + "end": 10805.1, + "probability": 0.9757 + }, + { + "start": 10805.28, + "end": 10805.92, + "probability": 0.7607 + }, + { + "start": 10805.94, + "end": 10807.01, + "probability": 0.8843 + }, + { + "start": 10807.5, + "end": 10812.18, + "probability": 0.9545 + }, + { + "start": 10812.34, + "end": 10817.2, + "probability": 0.955 + }, + { + "start": 10817.32, + "end": 10819.66, + "probability": 0.5239 + }, + { + "start": 10819.66, + "end": 10820.48, + "probability": 0.926 + }, + { + "start": 10820.68, + "end": 10823.14, + "probability": 0.9713 + }, + { + "start": 10823.52, + "end": 10827.98, + "probability": 0.9978 + }, + { + "start": 10828.12, + "end": 10828.86, + "probability": 0.8049 + }, + { + "start": 10829.32, + "end": 10829.84, + "probability": 0.6493 + }, + { + "start": 10830.02, + "end": 10832.75, + "probability": 0.8927 + }, + { + "start": 10834.02, + "end": 10836.08, + "probability": 0.8286 + }, + { + "start": 10836.56, + "end": 10836.92, + "probability": 0.8947 + }, + { + "start": 10837.0, + "end": 10839.36, + "probability": 0.4855 + }, + { + "start": 10839.4, + "end": 10840.38, + "probability": 0.8541 + }, + { + "start": 10840.46, + "end": 10842.38, + "probability": 0.8381 + }, + { + "start": 10845.88, + "end": 10847.32, + "probability": 0.8794 + }, + { + "start": 10858.12, + "end": 10861.96, + "probability": 0.7003 + }, + { + "start": 10862.24, + "end": 10863.22, + "probability": 0.8857 + }, + { + "start": 10863.5, + "end": 10864.44, + "probability": 0.6985 + }, + { + "start": 10864.44, + "end": 10865.76, + "probability": 0.5507 + }, + { + "start": 10866.16, + "end": 10873.62, + "probability": 0.5278 + }, + { + "start": 10873.62, + "end": 10874.52, + "probability": 0.0338 + }, + { + "start": 10885.44, + "end": 10886.0, + "probability": 0.0229 + }, + { + "start": 10886.06, + "end": 10886.06, + "probability": 0.0073 + }, + { + "start": 10893.0, + "end": 10896.86, + "probability": 0.1058 + }, + { + "start": 10896.86, + "end": 10897.28, + "probability": 0.1552 + }, + { + "start": 10897.68, + "end": 10898.86, + "probability": 0.044 + }, + { + "start": 10900.22, + "end": 10901.32, + "probability": 0.3048 + }, + { + "start": 10904.72, + "end": 10907.12, + "probability": 0.0182 + }, + { + "start": 10907.12, + "end": 10908.94, + "probability": 0.1009 + }, + { + "start": 10909.58, + "end": 10914.58, + "probability": 0.0121 + }, + { + "start": 10919.9, + "end": 10920.58, + "probability": 0.0805 + }, + { + "start": 10921.41, + "end": 10923.18, + "probability": 0.0415 + }, + { + "start": 10923.3, + "end": 10924.54, + "probability": 0.0932 + }, + { + "start": 10924.62, + "end": 10926.26, + "probability": 0.0542 + }, + { + "start": 10926.26, + "end": 10929.2, + "probability": 0.3009 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10946.0, + "end": 10946.0, + "probability": 0.0 + }, + { + "start": 10951.04, + "end": 10951.2, + "probability": 0.1401 + }, + { + "start": 10952.58, + "end": 10953.76, + "probability": 0.0859 + }, + { + "start": 10954.1, + "end": 10954.56, + "probability": 0.6537 + }, + { + "start": 10955.86, + "end": 10955.94, + "probability": 0.1182 + }, + { + "start": 10955.94, + "end": 10957.02, + "probability": 0.5596 + }, + { + "start": 10957.02, + "end": 10957.5, + "probability": 0.3315 + }, + { + "start": 10957.94, + "end": 10959.2, + "probability": 0.3389 + }, + { + "start": 10959.36, + "end": 10961.3, + "probability": 0.9543 + }, + { + "start": 10961.42, + "end": 10961.82, + "probability": 0.5676 + }, + { + "start": 10962.54, + "end": 10968.92, + "probability": 0.907 + }, + { + "start": 10969.46, + "end": 10972.28, + "probability": 0.9076 + }, + { + "start": 10972.38, + "end": 10975.2, + "probability": 0.979 + }, + { + "start": 10975.2, + "end": 10978.74, + "probability": 0.5957 + }, + { + "start": 10978.82, + "end": 10982.4, + "probability": 0.6094 + }, + { + "start": 10982.6, + "end": 10983.16, + "probability": 0.6763 + }, + { + "start": 10983.24, + "end": 10985.96, + "probability": 0.9761 + }, + { + "start": 10986.46, + "end": 10987.37, + "probability": 0.6976 + }, + { + "start": 10987.52, + "end": 10988.2, + "probability": 0.5956 + }, + { + "start": 10988.26, + "end": 10989.06, + "probability": 0.9894 + }, + { + "start": 10990.02, + "end": 10992.54, + "probability": 0.944 + }, + { + "start": 10992.54, + "end": 10994.26, + "probability": 0.8882 + }, + { + "start": 11013.26, + "end": 11014.34, + "probability": 0.797 + }, + { + "start": 11016.62, + "end": 11017.86, + "probability": 0.7714 + }, + { + "start": 11019.26, + "end": 11020.32, + "probability": 0.6555 + }, + { + "start": 11023.13, + "end": 11024.32, + "probability": 0.3055 + }, + { + "start": 11024.32, + "end": 11024.32, + "probability": 0.0088 + }, + { + "start": 11033.72, + "end": 11034.32, + "probability": 0.1244 + }, + { + "start": 11036.74, + "end": 11037.9, + "probability": 0.3899 + }, + { + "start": 11039.54, + "end": 11040.64, + "probability": 0.6364 + }, + { + "start": 11040.74, + "end": 11041.76, + "probability": 0.8865 + }, + { + "start": 11041.86, + "end": 11044.78, + "probability": 0.9621 + }, + { + "start": 11045.64, + "end": 11047.72, + "probability": 0.798 + }, + { + "start": 11049.4, + "end": 11052.2, + "probability": 0.8306 + }, + { + "start": 11052.24, + "end": 11054.88, + "probability": 0.6869 + }, + { + "start": 11055.0, + "end": 11056.16, + "probability": 0.6909 + }, + { + "start": 11056.5, + "end": 11058.6, + "probability": 0.6602 + }, + { + "start": 11058.8, + "end": 11062.48, + "probability": 0.9895 + }, + { + "start": 11063.52, + "end": 11063.68, + "probability": 0.1468 + }, + { + "start": 11063.68, + "end": 11066.38, + "probability": 0.7408 + }, + { + "start": 11067.6, + "end": 11068.6, + "probability": 0.1579 + }, + { + "start": 11068.66, + "end": 11071.0, + "probability": 0.9341 + }, + { + "start": 11071.24, + "end": 11073.2, + "probability": 0.5199 + }, + { + "start": 11074.88, + "end": 11077.5, + "probability": 0.6941 + }, + { + "start": 11079.58, + "end": 11082.98, + "probability": 0.6925 + }, + { + "start": 11083.02, + "end": 11084.94, + "probability": 0.3239 + }, + { + "start": 11085.68, + "end": 11088.24, + "probability": 0.7102 + }, + { + "start": 11089.76, + "end": 11091.01, + "probability": 0.2581 + }, + { + "start": 11091.84, + "end": 11094.38, + "probability": 0.8511 + }, + { + "start": 11096.1, + "end": 11097.34, + "probability": 0.2932 + }, + { + "start": 11098.1, + "end": 11101.7, + "probability": 0.9946 + }, + { + "start": 11103.42, + "end": 11110.82, + "probability": 0.8833 + }, + { + "start": 11111.88, + "end": 11114.48, + "probability": 0.994 + }, + { + "start": 11115.88, + "end": 11119.58, + "probability": 0.9954 + }, + { + "start": 11119.7, + "end": 11121.05, + "probability": 0.8996 + }, + { + "start": 11121.96, + "end": 11126.34, + "probability": 0.9429 + }, + { + "start": 11126.56, + "end": 11127.6, + "probability": 0.7361 + }, + { + "start": 11128.3, + "end": 11130.04, + "probability": 0.7712 + }, + { + "start": 11131.38, + "end": 11131.38, + "probability": 0.9277 + }, + { + "start": 11133.57, + "end": 11137.58, + "probability": 0.9492 + }, + { + "start": 11138.78, + "end": 11142.88, + "probability": 0.8132 + }, + { + "start": 11143.98, + "end": 11148.0, + "probability": 0.9463 + }, + { + "start": 11148.74, + "end": 11153.56, + "probability": 0.951 + }, + { + "start": 11154.48, + "end": 11155.54, + "probability": 0.9243 + }, + { + "start": 11156.34, + "end": 11157.96, + "probability": 0.8047 + }, + { + "start": 11158.08, + "end": 11159.88, + "probability": 0.7729 + }, + { + "start": 11160.14, + "end": 11162.4, + "probability": 0.9805 + }, + { + "start": 11163.7, + "end": 11165.64, + "probability": 0.7997 + }, + { + "start": 11166.48, + "end": 11169.0, + "probability": 0.9067 + }, + { + "start": 11169.5, + "end": 11170.76, + "probability": 0.9458 + }, + { + "start": 11171.04, + "end": 11172.53, + "probability": 0.9629 + }, + { + "start": 11172.88, + "end": 11173.88, + "probability": 0.626 + }, + { + "start": 11174.24, + "end": 11176.14, + "probability": 0.3042 + }, + { + "start": 11176.74, + "end": 11180.42, + "probability": 0.8721 + }, + { + "start": 11180.56, + "end": 11181.12, + "probability": 0.8779 + }, + { + "start": 11182.38, + "end": 11184.82, + "probability": 0.5044 + }, + { + "start": 11185.9, + "end": 11190.98, + "probability": 0.6749 + }, + { + "start": 11191.38, + "end": 11192.88, + "probability": 0.9074 + }, + { + "start": 11192.92, + "end": 11193.94, + "probability": 0.9417 + }, + { + "start": 11194.44, + "end": 11196.04, + "probability": 0.991 + }, + { + "start": 11198.08, + "end": 11199.6, + "probability": 0.7624 + }, + { + "start": 11201.08, + "end": 11203.44, + "probability": 0.9597 + }, + { + "start": 11203.56, + "end": 11204.03, + "probability": 0.8419 + }, + { + "start": 11205.34, + "end": 11206.53, + "probability": 0.476 + }, + { + "start": 11208.42, + "end": 11210.46, + "probability": 0.5001 + }, + { + "start": 11210.6, + "end": 11212.06, + "probability": 0.6023 + }, + { + "start": 11212.06, + "end": 11213.1, + "probability": 0.5964 + }, + { + "start": 11213.82, + "end": 11215.34, + "probability": 0.859 + }, + { + "start": 11215.34, + "end": 11221.58, + "probability": 0.936 + }, + { + "start": 11221.58, + "end": 11222.22, + "probability": 0.7502 + }, + { + "start": 11222.64, + "end": 11223.74, + "probability": 0.5163 + }, + { + "start": 11223.98, + "end": 11227.7, + "probability": 0.7819 + }, + { + "start": 11228.4, + "end": 11230.46, + "probability": 0.9433 + }, + { + "start": 11230.5, + "end": 11233.76, + "probability": 0.5958 + }, + { + "start": 11233.76, + "end": 11234.11, + "probability": 0.1721 + }, + { + "start": 11235.5, + "end": 11235.54, + "probability": 0.1228 + }, + { + "start": 11235.54, + "end": 11236.95, + "probability": 0.547 + }, + { + "start": 11237.88, + "end": 11240.36, + "probability": 0.7598 + }, + { + "start": 11241.1, + "end": 11242.56, + "probability": 0.449 + }, + { + "start": 11247.91, + "end": 11249.4, + "probability": 0.0311 + }, + { + "start": 11249.4, + "end": 11251.28, + "probability": 0.1783 + }, + { + "start": 11252.42, + "end": 11253.8, + "probability": 0.2026 + }, + { + "start": 11254.54, + "end": 11256.09, + "probability": 0.1279 + }, + { + "start": 11257.01, + "end": 11259.08, + "probability": 0.022 + }, + { + "start": 11259.08, + "end": 11259.08, + "probability": 0.0678 + }, + { + "start": 11259.08, + "end": 11260.78, + "probability": 0.4077 + }, + { + "start": 11260.8, + "end": 11262.64, + "probability": 0.3453 + }, + { + "start": 11263.8, + "end": 11264.06, + "probability": 0.5871 + }, + { + "start": 11264.8, + "end": 11265.02, + "probability": 0.2997 + }, + { + "start": 11265.02, + "end": 11266.1, + "probability": 0.2779 + }, + { + "start": 11266.24, + "end": 11267.88, + "probability": 0.2237 + }, + { + "start": 11267.98, + "end": 11268.16, + "probability": 0.3752 + }, + { + "start": 11268.16, + "end": 11268.18, + "probability": 0.5741 + }, + { + "start": 11268.3, + "end": 11270.21, + "probability": 0.8018 + }, + { + "start": 11270.94, + "end": 11274.76, + "probability": 0.9568 + }, + { + "start": 11274.76, + "end": 11279.24, + "probability": 0.9946 + }, + { + "start": 11279.6, + "end": 11281.18, + "probability": 0.9943 + }, + { + "start": 11281.42, + "end": 11282.37, + "probability": 0.8192 + }, + { + "start": 11283.26, + "end": 11283.26, + "probability": 0.1251 + }, + { + "start": 11283.38, + "end": 11285.0, + "probability": 0.9014 + }, + { + "start": 11285.0, + "end": 11286.74, + "probability": 0.4167 + }, + { + "start": 11287.3, + "end": 11287.72, + "probability": 0.6171 + }, + { + "start": 11287.72, + "end": 11287.8, + "probability": 0.0215 + }, + { + "start": 11287.8, + "end": 11288.46, + "probability": 0.1482 + }, + { + "start": 11288.82, + "end": 11290.52, + "probability": 0.414 + }, + { + "start": 11291.76, + "end": 11294.96, + "probability": 0.8268 + }, + { + "start": 11294.96, + "end": 11296.36, + "probability": 0.7507 + }, + { + "start": 11296.8, + "end": 11297.96, + "probability": 0.5439 + }, + { + "start": 11298.38, + "end": 11299.48, + "probability": 0.5091 + }, + { + "start": 11299.82, + "end": 11302.04, + "probability": 0.8772 + }, + { + "start": 11303.24, + "end": 11303.86, + "probability": 0.8804 + }, + { + "start": 11303.94, + "end": 11306.24, + "probability": 0.8028 + }, + { + "start": 11306.62, + "end": 11310.62, + "probability": 0.8525 + }, + { + "start": 11310.98, + "end": 11313.24, + "probability": 0.9855 + }, + { + "start": 11313.96, + "end": 11314.8, + "probability": 0.828 + }, + { + "start": 11315.5, + "end": 11315.94, + "probability": 0.8174 + }, + { + "start": 11316.12, + "end": 11317.73, + "probability": 0.9239 + }, + { + "start": 11318.2, + "end": 11319.18, + "probability": 0.9216 + }, + { + "start": 11319.38, + "end": 11320.66, + "probability": 0.9094 + }, + { + "start": 11321.38, + "end": 11322.66, + "probability": 0.8103 + }, + { + "start": 11323.64, + "end": 11328.39, + "probability": 0.8845 + }, + { + "start": 11329.4, + "end": 11333.48, + "probability": 0.9766 + }, + { + "start": 11334.2, + "end": 11337.42, + "probability": 0.9636 + }, + { + "start": 11337.98, + "end": 11338.88, + "probability": 0.4582 + }, + { + "start": 11340.0, + "end": 11342.42, + "probability": 0.9505 + }, + { + "start": 11342.7, + "end": 11344.96, + "probability": 0.9466 + }, + { + "start": 11345.06, + "end": 11345.8, + "probability": 0.6453 + }, + { + "start": 11345.94, + "end": 11347.84, + "probability": 0.8643 + }, + { + "start": 11349.28, + "end": 11351.3, + "probability": 0.9711 + }, + { + "start": 11351.4, + "end": 11352.98, + "probability": 0.939 + }, + { + "start": 11353.1, + "end": 11353.76, + "probability": 0.6558 + }, + { + "start": 11354.46, + "end": 11356.44, + "probability": 0.8438 + }, + { + "start": 11357.0, + "end": 11361.36, + "probability": 0.8302 + }, + { + "start": 11361.36, + "end": 11361.76, + "probability": 0.9045 + }, + { + "start": 11382.38, + "end": 11384.54, + "probability": 0.6293 + }, + { + "start": 11386.94, + "end": 11391.26, + "probability": 0.9483 + }, + { + "start": 11393.14, + "end": 11397.04, + "probability": 0.9542 + }, + { + "start": 11398.48, + "end": 11401.04, + "probability": 0.9722 + }, + { + "start": 11401.94, + "end": 11404.46, + "probability": 0.9495 + }, + { + "start": 11404.7, + "end": 11409.7, + "probability": 0.813 + }, + { + "start": 11412.1, + "end": 11414.6, + "probability": 0.641 + }, + { + "start": 11415.48, + "end": 11417.36, + "probability": 0.5908 + }, + { + "start": 11417.52, + "end": 11420.46, + "probability": 0.9927 + }, + { + "start": 11421.12, + "end": 11422.5, + "probability": 0.472 + }, + { + "start": 11423.72, + "end": 11426.54, + "probability": 0.7505 + }, + { + "start": 11426.86, + "end": 11432.78, + "probability": 0.7275 + }, + { + "start": 11433.54, + "end": 11436.68, + "probability": 0.9801 + }, + { + "start": 11436.68, + "end": 11439.8, + "probability": 0.9797 + }, + { + "start": 11440.62, + "end": 11446.06, + "probability": 0.9847 + }, + { + "start": 11448.18, + "end": 11449.34, + "probability": 0.9018 + }, + { + "start": 11451.92, + "end": 11455.2, + "probability": 0.9982 + }, + { + "start": 11455.8, + "end": 11457.64, + "probability": 0.6002 + }, + { + "start": 11459.42, + "end": 11461.46, + "probability": 0.9149 + }, + { + "start": 11461.68, + "end": 11463.55, + "probability": 0.9795 + }, + { + "start": 11465.45, + "end": 11468.26, + "probability": 0.7444 + }, + { + "start": 11468.38, + "end": 11469.72, + "probability": 0.7605 + }, + { + "start": 11471.86, + "end": 11473.68, + "probability": 0.7468 + }, + { + "start": 11473.94, + "end": 11477.12, + "probability": 0.7707 + }, + { + "start": 11477.44, + "end": 11480.84, + "probability": 0.6632 + }, + { + "start": 11481.44, + "end": 11482.02, + "probability": 0.9517 + }, + { + "start": 11482.34, + "end": 11484.24, + "probability": 0.8783 + }, + { + "start": 11484.72, + "end": 11485.32, + "probability": 0.5102 + }, + { + "start": 11485.48, + "end": 11490.62, + "probability": 0.8894 + }, + { + "start": 11491.2, + "end": 11491.64, + "probability": 0.8342 + }, + { + "start": 11491.82, + "end": 11494.94, + "probability": 0.9111 + }, + { + "start": 11495.32, + "end": 11496.82, + "probability": 0.9447 + }, + { + "start": 11497.52, + "end": 11498.24, + "probability": 0.3452 + }, + { + "start": 11498.34, + "end": 11499.86, + "probability": 0.9224 + }, + { + "start": 11500.38, + "end": 11502.34, + "probability": 0.7968 + }, + { + "start": 11502.88, + "end": 11503.72, + "probability": 0.9311 + }, + { + "start": 11503.86, + "end": 11505.09, + "probability": 0.3618 + }, + { + "start": 11506.38, + "end": 11506.38, + "probability": 0.0691 + }, + { + "start": 11506.38, + "end": 11509.9, + "probability": 0.9345 + }, + { + "start": 11511.88, + "end": 11513.04, + "probability": 0.9448 + }, + { + "start": 11513.12, + "end": 11516.06, + "probability": 0.9792 + }, + { + "start": 11516.44, + "end": 11517.76, + "probability": 0.9543 + }, + { + "start": 11518.2, + "end": 11520.18, + "probability": 0.84 + }, + { + "start": 11523.88, + "end": 11524.8, + "probability": 0.7212 + }, + { + "start": 11524.94, + "end": 11526.8, + "probability": 0.5097 + }, + { + "start": 11527.08, + "end": 11528.82, + "probability": 0.8673 + }, + { + "start": 11529.28, + "end": 11531.88, + "probability": 0.988 + }, + { + "start": 11532.3, + "end": 11534.58, + "probability": 0.7177 + }, + { + "start": 11535.16, + "end": 11537.44, + "probability": 0.5236 + }, + { + "start": 11538.54, + "end": 11540.82, + "probability": 0.8124 + }, + { + "start": 11541.7, + "end": 11544.34, + "probability": 0.9634 + }, + { + "start": 11544.74, + "end": 11546.5, + "probability": 0.9072 + }, + { + "start": 11547.14, + "end": 11548.62, + "probability": 0.9535 + }, + { + "start": 11548.66, + "end": 11549.24, + "probability": 0.5214 + }, + { + "start": 11549.34, + "end": 11549.78, + "probability": 0.7209 + }, + { + "start": 11549.86, + "end": 11551.12, + "probability": 0.6925 + }, + { + "start": 11551.56, + "end": 11552.4, + "probability": 0.9003 + }, + { + "start": 11553.34, + "end": 11556.14, + "probability": 0.9723 + }, + { + "start": 11556.56, + "end": 11560.78, + "probability": 0.9475 + }, + { + "start": 11561.5, + "end": 11563.42, + "probability": 0.6789 + }, + { + "start": 11565.78, + "end": 11572.18, + "probability": 0.8552 + }, + { + "start": 11572.68, + "end": 11577.42, + "probability": 0.7809 + }, + { + "start": 11578.14, + "end": 11584.82, + "probability": 0.8039 + }, + { + "start": 11585.58, + "end": 11586.26, + "probability": 0.6148 + }, + { + "start": 11586.3, + "end": 11586.64, + "probability": 0.6411 + }, + { + "start": 11586.74, + "end": 11590.86, + "probability": 0.7675 + }, + { + "start": 11590.86, + "end": 11596.14, + "probability": 0.9504 + }, + { + "start": 11601.56, + "end": 11604.4, + "probability": 0.5877 + }, + { + "start": 11605.16, + "end": 11605.62, + "probability": 0.8413 + }, + { + "start": 11606.7, + "end": 11608.31, + "probability": 0.8162 + }, + { + "start": 11608.68, + "end": 11612.04, + "probability": 0.8623 + }, + { + "start": 11612.84, + "end": 11613.38, + "probability": 0.7608 + }, + { + "start": 11613.58, + "end": 11614.82, + "probability": 0.9884 + }, + { + "start": 11614.88, + "end": 11616.46, + "probability": 0.9956 + }, + { + "start": 11617.06, + "end": 11618.65, + "probability": 0.9961 + }, + { + "start": 11619.84, + "end": 11622.16, + "probability": 0.7674 + }, + { + "start": 11622.28, + "end": 11629.74, + "probability": 0.9229 + }, + { + "start": 11629.9, + "end": 11633.2, + "probability": 0.9819 + }, + { + "start": 11633.92, + "end": 11634.66, + "probability": 0.6945 + }, + { + "start": 11635.44, + "end": 11637.1, + "probability": 0.9696 + }, + { + "start": 11637.86, + "end": 11643.28, + "probability": 0.9162 + }, + { + "start": 11644.42, + "end": 11646.3, + "probability": 0.6221 + }, + { + "start": 11646.64, + "end": 11648.52, + "probability": 0.5241 + }, + { + "start": 11648.92, + "end": 11652.24, + "probability": 0.4695 + }, + { + "start": 11652.67, + "end": 11653.75, + "probability": 0.18 + }, + { + "start": 11654.0, + "end": 11657.98, + "probability": 0.9471 + }, + { + "start": 11658.1, + "end": 11658.92, + "probability": 0.4217 + }, + { + "start": 11659.08, + "end": 11661.5, + "probability": 0.7057 + }, + { + "start": 11661.56, + "end": 11662.26, + "probability": 0.6757 + }, + { + "start": 11662.28, + "end": 11663.1, + "probability": 0.9531 + }, + { + "start": 11663.76, + "end": 11665.04, + "probability": 0.7406 + }, + { + "start": 11665.58, + "end": 11666.51, + "probability": 0.448 + }, + { + "start": 11666.82, + "end": 11667.92, + "probability": 0.9525 + }, + { + "start": 11668.12, + "end": 11671.38, + "probability": 0.4924 + }, + { + "start": 11672.26, + "end": 11673.78, + "probability": 0.7932 + }, + { + "start": 11674.84, + "end": 11676.2, + "probability": 0.8788 + }, + { + "start": 11676.88, + "end": 11679.46, + "probability": 0.6905 + }, + { + "start": 11680.84, + "end": 11682.6, + "probability": 0.951 + }, + { + "start": 11683.26, + "end": 11683.98, + "probability": 0.9439 + }, + { + "start": 11684.1, + "end": 11684.58, + "probability": 0.7212 + }, + { + "start": 11684.68, + "end": 11689.74, + "probability": 0.9544 + }, + { + "start": 11689.8, + "end": 11692.24, + "probability": 0.6673 + }, + { + "start": 11692.4, + "end": 11693.04, + "probability": 0.6669 + }, + { + "start": 11695.52, + "end": 11697.46, + "probability": 0.9885 + }, + { + "start": 11698.44, + "end": 11702.06, + "probability": 0.8411 + }, + { + "start": 11702.06, + "end": 11707.03, + "probability": 0.7089 + }, + { + "start": 11708.2, + "end": 11710.64, + "probability": 0.3413 + }, + { + "start": 11710.82, + "end": 11711.85, + "probability": 0.5141 + }, + { + "start": 11712.08, + "end": 11712.64, + "probability": 0.6526 + }, + { + "start": 11712.66, + "end": 11714.38, + "probability": 0.7038 + }, + { + "start": 11714.8, + "end": 11715.73, + "probability": 0.7139 + }, + { + "start": 11719.92, + "end": 11720.82, + "probability": 0.4026 + }, + { + "start": 11720.82, + "end": 11726.44, + "probability": 0.0298 + }, + { + "start": 11727.26, + "end": 11733.2, + "probability": 0.0181 + }, + { + "start": 11733.2, + "end": 11735.82, + "probability": 0.0285 + }, + { + "start": 11738.8, + "end": 11738.8, + "probability": 0.0407 + }, + { + "start": 11738.8, + "end": 11741.96, + "probability": 0.1809 + }, + { + "start": 11742.62, + "end": 11745.5, + "probability": 0.1965 + }, + { + "start": 11745.68, + "end": 11747.18, + "probability": 0.1934 + }, + { + "start": 11747.62, + "end": 11749.48, + "probability": 0.2354 + }, + { + "start": 11750.88, + "end": 11754.92, + "probability": 0.659 + }, + { + "start": 11754.94, + "end": 11755.86, + "probability": 0.8652 + }, + { + "start": 11756.74, + "end": 11759.61, + "probability": 0.7955 + }, + { + "start": 11763.6, + "end": 11770.12, + "probability": 0.9499 + }, + { + "start": 11770.2, + "end": 11774.63, + "probability": 0.7404 + }, + { + "start": 11775.44, + "end": 11777.48, + "probability": 0.8827 + }, + { + "start": 11785.8, + "end": 11786.52, + "probability": 0.577 + }, + { + "start": 11789.78, + "end": 11793.22, + "probability": 0.7283 + }, + { + "start": 11794.42, + "end": 11799.08, + "probability": 0.9957 + }, + { + "start": 11799.08, + "end": 11803.22, + "probability": 0.9912 + }, + { + "start": 11804.58, + "end": 11807.22, + "probability": 0.5915 + }, + { + "start": 11807.58, + "end": 11812.5, + "probability": 0.9957 + }, + { + "start": 11812.5, + "end": 11817.88, + "probability": 0.9989 + }, + { + "start": 11818.02, + "end": 11818.96, + "probability": 0.9968 + }, + { + "start": 11819.32, + "end": 11819.32, + "probability": 0.4942 + }, + { + "start": 11819.32, + "end": 11828.66, + "probability": 0.9106 + }, + { + "start": 11829.74, + "end": 11834.78, + "probability": 0.9937 + }, + { + "start": 11835.48, + "end": 11836.12, + "probability": 0.8221 + }, + { + "start": 11837.48, + "end": 11840.96, + "probability": 0.9907 + }, + { + "start": 11841.3, + "end": 11841.86, + "probability": 0.7518 + }, + { + "start": 11841.94, + "end": 11843.26, + "probability": 0.9163 + }, + { + "start": 11843.42, + "end": 11847.58, + "probability": 0.833 + }, + { + "start": 11848.23, + "end": 11851.17, + "probability": 0.8379 + }, + { + "start": 11853.64, + "end": 11855.16, + "probability": 0.9742 + }, + { + "start": 11855.36, + "end": 11861.36, + "probability": 0.87 + }, + { + "start": 11864.17, + "end": 11868.36, + "probability": 0.7132 + }, + { + "start": 11868.52, + "end": 11872.88, + "probability": 0.9531 + }, + { + "start": 11873.63, + "end": 11875.72, + "probability": 0.5664 + }, + { + "start": 11875.8, + "end": 11876.22, + "probability": 0.7067 + }, + { + "start": 11877.4, + "end": 11882.86, + "probability": 0.8995 + }, + { + "start": 11883.34, + "end": 11890.98, + "probability": 0.972 + }, + { + "start": 11891.24, + "end": 11896.74, + "probability": 0.9965 + }, + { + "start": 11897.42, + "end": 11901.34, + "probability": 0.7054 + }, + { + "start": 11902.3, + "end": 11906.48, + "probability": 0.6953 + }, + { + "start": 11907.44, + "end": 11913.76, + "probability": 0.9962 + }, + { + "start": 11914.9, + "end": 11920.3, + "probability": 0.9865 + }, + { + "start": 11920.4, + "end": 11924.02, + "probability": 0.7466 + }, + { + "start": 11924.04, + "end": 11927.02, + "probability": 0.8551 + }, + { + "start": 11928.64, + "end": 11932.84, + "probability": 0.98 + }, + { + "start": 11934.06, + "end": 11937.36, + "probability": 0.8814 + }, + { + "start": 11937.36, + "end": 11943.6, + "probability": 0.9981 + }, + { + "start": 11944.24, + "end": 11945.44, + "probability": 0.8942 + }, + { + "start": 11946.48, + "end": 11948.82, + "probability": 0.9399 + }, + { + "start": 11949.82, + "end": 11952.86, + "probability": 0.7961 + }, + { + "start": 11953.22, + "end": 11954.92, + "probability": 0.838 + }, + { + "start": 11955.64, + "end": 11958.96, + "probability": 0.8722 + }, + { + "start": 11959.02, + "end": 11960.28, + "probability": 0.9985 + }, + { + "start": 11960.88, + "end": 11962.14, + "probability": 0.714 + }, + { + "start": 11962.98, + "end": 11962.98, + "probability": 0.4217 + }, + { + "start": 11962.98, + "end": 11965.3, + "probability": 0.8086 + }, + { + "start": 11965.56, + "end": 11966.6, + "probability": 0.3234 + }, + { + "start": 11966.66, + "end": 11966.94, + "probability": 0.6429 + }, + { + "start": 11967.72, + "end": 11967.96, + "probability": 0.1385 + }, + { + "start": 11968.89, + "end": 11972.88, + "probability": 0.9958 + }, + { + "start": 11973.1, + "end": 11975.94, + "probability": 0.7502 + }, + { + "start": 11975.94, + "end": 11981.42, + "probability": 0.9167 + }, + { + "start": 11982.56, + "end": 11984.56, + "probability": 0.9932 + }, + { + "start": 11984.56, + "end": 11986.74, + "probability": 0.999 + }, + { + "start": 11987.64, + "end": 11988.98, + "probability": 0.7449 + }, + { + "start": 11989.36, + "end": 11995.4, + "probability": 0.9903 + }, + { + "start": 11996.6, + "end": 12000.36, + "probability": 0.936 + }, + { + "start": 12001.12, + "end": 12005.56, + "probability": 0.8695 + }, + { + "start": 12006.38, + "end": 12010.32, + "probability": 0.9922 + }, + { + "start": 12010.54, + "end": 12012.9, + "probability": 0.8521 + }, + { + "start": 12013.78, + "end": 12017.44, + "probability": 0.999 + }, + { + "start": 12017.6, + "end": 12018.56, + "probability": 0.6346 + }, + { + "start": 12019.6, + "end": 12020.98, + "probability": 0.7174 + }, + { + "start": 12021.7, + "end": 12024.36, + "probability": 0.6438 + }, + { + "start": 12024.38, + "end": 12024.54, + "probability": 0.654 + }, + { + "start": 12024.54, + "end": 12025.19, + "probability": 0.9593 + }, + { + "start": 12025.96, + "end": 12027.12, + "probability": 0.991 + }, + { + "start": 12027.64, + "end": 12028.94, + "probability": 0.9953 + }, + { + "start": 12029.06, + "end": 12029.3, + "probability": 0.4763 + }, + { + "start": 12029.4, + "end": 12033.76, + "probability": 0.6997 + }, + { + "start": 12033.84, + "end": 12034.6, + "probability": 0.8564 + }, + { + "start": 12035.04, + "end": 12035.1, + "probability": 0.1359 + }, + { + "start": 12035.1, + "end": 12035.1, + "probability": 0.2342 + }, + { + "start": 12035.1, + "end": 12035.1, + "probability": 0.3973 + }, + { + "start": 12035.1, + "end": 12036.36, + "probability": 0.7653 + }, + { + "start": 12036.96, + "end": 12039.86, + "probability": 0.5521 + }, + { + "start": 12040.68, + "end": 12042.08, + "probability": 0.4247 + }, + { + "start": 12043.74, + "end": 12044.06, + "probability": 0.1289 + }, + { + "start": 12045.3, + "end": 12052.1, + "probability": 0.7909 + }, + { + "start": 12052.58, + "end": 12053.07, + "probability": 0.9175 + }, + { + "start": 12054.2, + "end": 12058.8, + "probability": 0.9507 + }, + { + "start": 12059.34, + "end": 12060.42, + "probability": 0.7365 + }, + { + "start": 12060.54, + "end": 12063.26, + "probability": 0.9988 + }, + { + "start": 12063.72, + "end": 12065.32, + "probability": 0.958 + }, + { + "start": 12065.4, + "end": 12067.44, + "probability": 0.9042 + }, + { + "start": 12067.48, + "end": 12071.44, + "probability": 0.9667 + }, + { + "start": 12071.98, + "end": 12072.56, + "probability": 0.7335 + }, + { + "start": 12072.9, + "end": 12076.4, + "probability": 0.7376 + }, + { + "start": 12076.4, + "end": 12077.72, + "probability": 0.2472 + }, + { + "start": 12087.38, + "end": 12087.94, + "probability": 0.6231 + }, + { + "start": 12088.43, + "end": 12092.44, + "probability": 0.5384 + }, + { + "start": 12092.96, + "end": 12094.22, + "probability": 0.7464 + }, + { + "start": 12094.34, + "end": 12095.35, + "probability": 0.9928 + }, + { + "start": 12097.1, + "end": 12098.08, + "probability": 0.9292 + }, + { + "start": 12098.24, + "end": 12101.12, + "probability": 0.6917 + }, + { + "start": 12103.7, + "end": 12108.52, + "probability": 0.7491 + }, + { + "start": 12109.8, + "end": 12110.92, + "probability": 0.8292 + }, + { + "start": 12111.28, + "end": 12112.86, + "probability": 0.1388 + }, + { + "start": 12113.12, + "end": 12118.71, + "probability": 0.9964 + }, + { + "start": 12120.8, + "end": 12122.28, + "probability": 0.9747 + }, + { + "start": 12122.48, + "end": 12124.6, + "probability": 0.6446 + }, + { + "start": 12125.0, + "end": 12127.16, + "probability": 0.842 + }, + { + "start": 12127.22, + "end": 12128.62, + "probability": 0.8198 + }, + { + "start": 12128.7, + "end": 12129.98, + "probability": 0.8311 + }, + { + "start": 12132.22, + "end": 12137.6, + "probability": 0.9293 + }, + { + "start": 12139.2, + "end": 12140.62, + "probability": 0.9689 + }, + { + "start": 12141.56, + "end": 12144.78, + "probability": 0.9247 + }, + { + "start": 12145.52, + "end": 12148.62, + "probability": 0.9054 + }, + { + "start": 12150.04, + "end": 12151.56, + "probability": 0.7949 + }, + { + "start": 12151.66, + "end": 12153.56, + "probability": 0.8419 + }, + { + "start": 12153.68, + "end": 12153.84, + "probability": 0.5375 + }, + { + "start": 12155.08, + "end": 12162.48, + "probability": 0.8278 + }, + { + "start": 12162.6, + "end": 12163.34, + "probability": 0.7109 + }, + { + "start": 12163.86, + "end": 12169.46, + "probability": 0.8504 + }, + { + "start": 12170.16, + "end": 12173.88, + "probability": 0.7598 + }, + { + "start": 12174.5, + "end": 12177.38, + "probability": 0.9775 + }, + { + "start": 12178.06, + "end": 12179.7, + "probability": 0.7601 + }, + { + "start": 12182.58, + "end": 12185.28, + "probability": 0.6271 + }, + { + "start": 12186.86, + "end": 12187.84, + "probability": 0.7245 + }, + { + "start": 12187.98, + "end": 12189.54, + "probability": 0.8455 + }, + { + "start": 12189.62, + "end": 12195.2, + "probability": 0.9735 + }, + { + "start": 12197.44, + "end": 12201.36, + "probability": 0.7854 + }, + { + "start": 12201.36, + "end": 12207.54, + "probability": 0.9486 + }, + { + "start": 12207.54, + "end": 12213.6, + "probability": 0.9957 + }, + { + "start": 12215.12, + "end": 12215.54, + "probability": 0.4646 + }, + { + "start": 12215.68, + "end": 12221.3, + "probability": 0.9792 + }, + { + "start": 12222.56, + "end": 12229.86, + "probability": 0.8778 + }, + { + "start": 12230.58, + "end": 12232.44, + "probability": 0.9318 + }, + { + "start": 12233.72, + "end": 12236.34, + "probability": 0.5892 + }, + { + "start": 12236.42, + "end": 12238.94, + "probability": 0.8962 + }, + { + "start": 12239.08, + "end": 12240.76, + "probability": 0.7485 + }, + { + "start": 12241.66, + "end": 12244.56, + "probability": 0.6976 + }, + { + "start": 12245.42, + "end": 12247.22, + "probability": 0.7307 + }, + { + "start": 12247.68, + "end": 12255.72, + "probability": 0.9377 + }, + { + "start": 12256.28, + "end": 12257.5, + "probability": 0.6541 + }, + { + "start": 12258.0, + "end": 12262.54, + "probability": 0.9116 + }, + { + "start": 12262.54, + "end": 12266.68, + "probability": 0.8017 + }, + { + "start": 12267.26, + "end": 12271.24, + "probability": 0.9966 + }, + { + "start": 12271.7, + "end": 12275.23, + "probability": 0.9894 + }, + { + "start": 12276.16, + "end": 12278.06, + "probability": 0.7775 + }, + { + "start": 12279.0, + "end": 12281.04, + "probability": 0.9581 + }, + { + "start": 12281.62, + "end": 12283.38, + "probability": 0.6611 + }, + { + "start": 12284.78, + "end": 12287.7, + "probability": 0.9888 + }, + { + "start": 12288.04, + "end": 12289.76, + "probability": 0.655 + }, + { + "start": 12290.54, + "end": 12292.7, + "probability": 0.9393 + }, + { + "start": 12293.2, + "end": 12295.64, + "probability": 0.8289 + }, + { + "start": 12297.68, + "end": 12302.7, + "probability": 0.9489 + }, + { + "start": 12303.22, + "end": 12304.65, + "probability": 0.9978 + }, + { + "start": 12305.06, + "end": 12306.98, + "probability": 0.8007 + }, + { + "start": 12307.24, + "end": 12308.56, + "probability": 0.7497 + }, + { + "start": 12308.76, + "end": 12309.22, + "probability": 0.7245 + }, + { + "start": 12309.72, + "end": 12311.78, + "probability": 0.7144 + }, + { + "start": 12313.26, + "end": 12316.78, + "probability": 0.9337 + }, + { + "start": 12349.72, + "end": 12349.72, + "probability": 0.4092 + }, + { + "start": 12349.72, + "end": 12349.72, + "probability": 0.1266 + }, + { + "start": 12349.72, + "end": 12349.72, + "probability": 0.4072 + }, + { + "start": 12349.72, + "end": 12349.72, + "probability": 0.3081 + }, + { + "start": 12349.72, + "end": 12352.08, + "probability": 0.5347 + }, + { + "start": 12354.72, + "end": 12358.88, + "probability": 0.7738 + }, + { + "start": 12359.74, + "end": 12361.86, + "probability": 0.9248 + }, + { + "start": 12363.46, + "end": 12365.26, + "probability": 0.1097 + }, + { + "start": 12365.26, + "end": 12365.74, + "probability": 0.7882 + }, + { + "start": 12366.96, + "end": 12368.98, + "probability": 0.2364 + }, + { + "start": 12368.98, + "end": 12370.12, + "probability": 0.2805 + }, + { + "start": 12370.24, + "end": 12370.64, + "probability": 0.5749 + }, + { + "start": 12370.84, + "end": 12371.68, + "probability": 0.2114 + }, + { + "start": 12372.48, + "end": 12376.24, + "probability": 0.1293 + }, + { + "start": 12376.94, + "end": 12379.48, + "probability": 0.3474 + }, + { + "start": 12379.68, + "end": 12381.98, + "probability": 0.8034 + }, + { + "start": 12382.12, + "end": 12383.65, + "probability": 0.1908 + }, + { + "start": 12386.22, + "end": 12389.52, + "probability": 0.8269 + }, + { + "start": 12389.8, + "end": 12394.81, + "probability": 0.9621 + }, + { + "start": 12396.14, + "end": 12396.38, + "probability": 0.3812 + }, + { + "start": 12396.52, + "end": 12396.66, + "probability": 0.0698 + }, + { + "start": 12396.7, + "end": 12402.9, + "probability": 0.9972 + }, + { + "start": 12404.86, + "end": 12404.86, + "probability": 0.0362 + }, + { + "start": 12404.86, + "end": 12405.48, + "probability": 0.508 + }, + { + "start": 12405.8, + "end": 12407.68, + "probability": 0.8832 + }, + { + "start": 12407.8, + "end": 12417.74, + "probability": 0.9818 + }, + { + "start": 12417.82, + "end": 12422.82, + "probability": 0.96 + }, + { + "start": 12423.62, + "end": 12425.42, + "probability": 0.8781 + }, + { + "start": 12426.04, + "end": 12430.5, + "probability": 0.8913 + }, + { + "start": 12431.3, + "end": 12435.12, + "probability": 0.907 + }, + { + "start": 12435.92, + "end": 12439.2, + "probability": 0.9443 + }, + { + "start": 12440.62, + "end": 12444.18, + "probability": 0.9153 + }, + { + "start": 12444.18, + "end": 12450.9, + "probability": 0.9526 + }, + { + "start": 12451.0, + "end": 12452.36, + "probability": 0.7283 + }, + { + "start": 12453.3, + "end": 12456.0, + "probability": 0.9625 + }, + { + "start": 12456.7, + "end": 12457.44, + "probability": 0.9251 + }, + { + "start": 12457.98, + "end": 12459.22, + "probability": 0.7713 + }, + { + "start": 12460.3, + "end": 12462.7, + "probability": 0.9935 + }, + { + "start": 12462.7, + "end": 12468.66, + "probability": 0.9638 + }, + { + "start": 12469.36, + "end": 12470.7, + "probability": 0.71 + }, + { + "start": 12470.74, + "end": 12475.14, + "probability": 0.9041 + }, + { + "start": 12475.98, + "end": 12478.88, + "probability": 0.9874 + }, + { + "start": 12479.42, + "end": 12483.62, + "probability": 0.9631 + }, + { + "start": 12485.08, + "end": 12487.4, + "probability": 0.9956 + }, + { + "start": 12487.98, + "end": 12489.38, + "probability": 0.7486 + }, + { + "start": 12489.94, + "end": 12492.94, + "probability": 0.7679 + }, + { + "start": 12493.34, + "end": 12493.8, + "probability": 0.6552 + }, + { + "start": 12494.64, + "end": 12497.14, + "probability": 0.879 + }, + { + "start": 12497.98, + "end": 12500.12, + "probability": 0.9018 + }, + { + "start": 12501.18, + "end": 12507.48, + "probability": 0.9607 + }, + { + "start": 12508.22, + "end": 12517.04, + "probability": 0.8944 + }, + { + "start": 12517.66, + "end": 12526.6, + "probability": 0.9521 + }, + { + "start": 12527.84, + "end": 12529.16, + "probability": 0.5678 + }, + { + "start": 12529.3, + "end": 12530.18, + "probability": 0.1025 + }, + { + "start": 12530.18, + "end": 12531.46, + "probability": 0.9282 + }, + { + "start": 12531.8, + "end": 12532.54, + "probability": 0.8285 + }, + { + "start": 12532.92, + "end": 12534.24, + "probability": 0.9158 + }, + { + "start": 12534.28, + "end": 12535.72, + "probability": 0.8315 + }, + { + "start": 12536.52, + "end": 12538.04, + "probability": 0.9325 + }, + { + "start": 12538.54, + "end": 12539.4, + "probability": 0.5299 + }, + { + "start": 12539.54, + "end": 12540.44, + "probability": 0.3706 + }, + { + "start": 12540.56, + "end": 12541.28, + "probability": 0.5419 + }, + { + "start": 12541.54, + "end": 12541.66, + "probability": 0.1888 + }, + { + "start": 12541.66, + "end": 12547.46, + "probability": 0.9297 + }, + { + "start": 12548.0, + "end": 12549.86, + "probability": 0.9614 + }, + { + "start": 12550.74, + "end": 12555.14, + "probability": 0.9812 + }, + { + "start": 12555.36, + "end": 12558.2, + "probability": 0.6619 + }, + { + "start": 12558.48, + "end": 12562.86, + "probability": 0.9191 + }, + { + "start": 12562.86, + "end": 12565.08, + "probability": 0.9807 + }, + { + "start": 12565.38, + "end": 12566.66, + "probability": 0.669 + }, + { + "start": 12566.7, + "end": 12570.46, + "probability": 0.9296 + }, + { + "start": 12570.5, + "end": 12571.66, + "probability": 0.7691 + }, + { + "start": 12571.72, + "end": 12579.66, + "probability": 0.9661 + }, + { + "start": 12579.92, + "end": 12581.55, + "probability": 0.9966 + }, + { + "start": 12581.62, + "end": 12585.22, + "probability": 0.9271 + }, + { + "start": 12586.3, + "end": 12587.96, + "probability": 0.5189 + }, + { + "start": 12587.96, + "end": 12588.6, + "probability": 0.439 + }, + { + "start": 12588.78, + "end": 12589.22, + "probability": 0.0154 + }, + { + "start": 12589.3, + "end": 12589.3, + "probability": 0.1475 + }, + { + "start": 12589.3, + "end": 12589.9, + "probability": 0.2798 + }, + { + "start": 12590.18, + "end": 12590.38, + "probability": 0.0074 + }, + { + "start": 12590.54, + "end": 12591.72, + "probability": 0.5334 + }, + { + "start": 12591.94, + "end": 12592.3, + "probability": 0.4028 + }, + { + "start": 12592.56, + "end": 12593.1, + "probability": 0.0519 + }, + { + "start": 12593.8, + "end": 12594.72, + "probability": 0.6829 + }, + { + "start": 12594.72, + "end": 12595.94, + "probability": 0.4723 + }, + { + "start": 12595.94, + "end": 12597.14, + "probability": 0.2471 + }, + { + "start": 12597.28, + "end": 12597.64, + "probability": 0.5396 + }, + { + "start": 12597.64, + "end": 12599.16, + "probability": 0.9854 + }, + { + "start": 12599.36, + "end": 12601.1, + "probability": 0.8965 + }, + { + "start": 12602.82, + "end": 12606.64, + "probability": 0.8911 + }, + { + "start": 12606.76, + "end": 12607.9, + "probability": 0.6103 + }, + { + "start": 12607.96, + "end": 12609.12, + "probability": 0.794 + }, + { + "start": 12610.06, + "end": 12613.18, + "probability": 0.9329 + }, + { + "start": 12613.88, + "end": 12614.64, + "probability": 0.829 + }, + { + "start": 12614.72, + "end": 12617.08, + "probability": 0.9724 + }, + { + "start": 12617.46, + "end": 12618.86, + "probability": 0.9062 + }, + { + "start": 12619.48, + "end": 12620.76, + "probability": 0.8871 + }, + { + "start": 12620.92, + "end": 12627.34, + "probability": 0.9844 + }, + { + "start": 12628.68, + "end": 12629.72, + "probability": 0.0943 + }, + { + "start": 12629.94, + "end": 12630.18, + "probability": 0.1594 + }, + { + "start": 12630.18, + "end": 12630.92, + "probability": 0.6373 + }, + { + "start": 12630.92, + "end": 12631.44, + "probability": 0.3098 + }, + { + "start": 12631.98, + "end": 12635.24, + "probability": 0.5645 + }, + { + "start": 12637.18, + "end": 12637.76, + "probability": 0.0113 + }, + { + "start": 12637.76, + "end": 12637.76, + "probability": 0.1176 + }, + { + "start": 12637.76, + "end": 12637.76, + "probability": 0.0303 + }, + { + "start": 12637.76, + "end": 12640.8, + "probability": 0.7734 + }, + { + "start": 12640.94, + "end": 12641.1, + "probability": 0.0444 + }, + { + "start": 12641.1, + "end": 12641.78, + "probability": 0.3151 + }, + { + "start": 12641.78, + "end": 12643.86, + "probability": 0.4791 + }, + { + "start": 12644.68, + "end": 12646.56, + "probability": 0.147 + }, + { + "start": 12647.72, + "end": 12647.72, + "probability": 0.0195 + }, + { + "start": 12647.72, + "end": 12651.08, + "probability": 0.8939 + }, + { + "start": 12651.58, + "end": 12655.0, + "probability": 0.8398 + }, + { + "start": 12655.34, + "end": 12656.68, + "probability": 0.9091 + }, + { + "start": 12657.6, + "end": 12659.52, + "probability": 0.9807 + }, + { + "start": 12659.66, + "end": 12664.72, + "probability": 0.9731 + }, + { + "start": 12665.68, + "end": 12669.24, + "probability": 0.9802 + }, + { + "start": 12669.9, + "end": 12671.42, + "probability": 0.7865 + }, + { + "start": 12672.32, + "end": 12674.06, + "probability": 0.9294 + }, + { + "start": 12674.52, + "end": 12674.64, + "probability": 0.1759 + }, + { + "start": 12674.72, + "end": 12676.56, + "probability": 0.9419 + }, + { + "start": 12676.76, + "end": 12676.94, + "probability": 0.3769 + }, + { + "start": 12677.98, + "end": 12677.98, + "probability": 0.3936 + }, + { + "start": 12677.98, + "end": 12678.86, + "probability": 0.4374 + }, + { + "start": 12678.94, + "end": 12679.7, + "probability": 0.5243 + }, + { + "start": 12679.72, + "end": 12680.42, + "probability": 0.4787 + }, + { + "start": 12681.16, + "end": 12683.18, + "probability": 0.7848 + }, + { + "start": 12683.82, + "end": 12687.72, + "probability": 0.9077 + }, + { + "start": 12687.84, + "end": 12689.74, + "probability": 0.8755 + }, + { + "start": 12690.02, + "end": 12691.58, + "probability": 0.803 + }, + { + "start": 12692.16, + "end": 12695.82, + "probability": 0.8015 + }, + { + "start": 12696.18, + "end": 12698.78, + "probability": 0.9147 + }, + { + "start": 12699.6, + "end": 12700.92, + "probability": 0.6239 + }, + { + "start": 12701.66, + "end": 12703.38, + "probability": 0.8376 + }, + { + "start": 12704.32, + "end": 12706.74, + "probability": 0.9301 + }, + { + "start": 12707.54, + "end": 12708.37, + "probability": 0.856 + }, + { + "start": 12711.44, + "end": 12713.56, + "probability": 0.9933 + }, + { + "start": 12713.78, + "end": 12715.2, + "probability": 0.6558 + }, + { + "start": 12716.12, + "end": 12717.9, + "probability": 0.493 + }, + { + "start": 12718.2, + "end": 12718.2, + "probability": 0.1097 + }, + { + "start": 12718.2, + "end": 12718.86, + "probability": 0.2539 + }, + { + "start": 12718.94, + "end": 12721.5, + "probability": 0.9855 + }, + { + "start": 12722.1, + "end": 12722.18, + "probability": 0.0799 + }, + { + "start": 12722.18, + "end": 12724.06, + "probability": 0.922 + }, + { + "start": 12724.32, + "end": 12730.3, + "probability": 0.9827 + }, + { + "start": 12731.18, + "end": 12736.82, + "probability": 0.1731 + }, + { + "start": 12738.06, + "end": 12739.0, + "probability": 0.1435 + }, + { + "start": 12741.38, + "end": 12742.24, + "probability": 0.2666 + }, + { + "start": 12742.24, + "end": 12744.9, + "probability": 0.2603 + }, + { + "start": 12744.9, + "end": 12746.8, + "probability": 0.1924 + }, + { + "start": 12747.86, + "end": 12753.32, + "probability": 0.8802 + }, + { + "start": 12753.38, + "end": 12755.02, + "probability": 0.4919 + }, + { + "start": 12755.04, + "end": 12758.78, + "probability": 0.5208 + }, + { + "start": 12759.3, + "end": 12760.08, + "probability": 0.6478 + }, + { + "start": 12760.96, + "end": 12760.96, + "probability": 0.0658 + }, + { + "start": 12760.96, + "end": 12763.66, + "probability": 0.138 + }, + { + "start": 12764.34, + "end": 12765.32, + "probability": 0.4168 + }, + { + "start": 12767.04, + "end": 12771.76, + "probability": 0.8755 + }, + { + "start": 12772.6, + "end": 12774.64, + "probability": 0.9985 + }, + { + "start": 12775.88, + "end": 12779.86, + "probability": 0.9951 + }, + { + "start": 12779.86, + "end": 12784.82, + "probability": 0.9963 + }, + { + "start": 12785.78, + "end": 12789.14, + "probability": 0.8643 + }, + { + "start": 12789.76, + "end": 12792.62, + "probability": 0.8403 + }, + { + "start": 12793.66, + "end": 12795.88, + "probability": 0.6921 + }, + { + "start": 12795.94, + "end": 12800.54, + "probability": 0.9828 + }, + { + "start": 12801.7, + "end": 12806.98, + "probability": 0.9375 + }, + { + "start": 12807.54, + "end": 12812.94, + "probability": 0.9344 + }, + { + "start": 12813.58, + "end": 12814.54, + "probability": 0.87 + }, + { + "start": 12815.36, + "end": 12819.0, + "probability": 0.9534 + }, + { + "start": 12819.12, + "end": 12822.58, + "probability": 0.9895 + }, + { + "start": 12823.7, + "end": 12825.76, + "probability": 0.7952 + }, + { + "start": 12826.46, + "end": 12827.59, + "probability": 0.9775 + }, + { + "start": 12828.62, + "end": 12831.89, + "probability": 0.574 + }, + { + "start": 12833.16, + "end": 12835.88, + "probability": 0.7428 + }, + { + "start": 12836.58, + "end": 12837.48, + "probability": 0.9482 + }, + { + "start": 12837.58, + "end": 12840.24, + "probability": 0.9733 + }, + { + "start": 12840.7, + "end": 12842.4, + "probability": 0.9052 + }, + { + "start": 12842.46, + "end": 12843.05, + "probability": 0.5837 + }, + { + "start": 12844.28, + "end": 12847.16, + "probability": 0.9858 + }, + { + "start": 12847.68, + "end": 12849.42, + "probability": 0.916 + }, + { + "start": 12850.78, + "end": 12855.9, + "probability": 0.8813 + }, + { + "start": 12856.84, + "end": 12860.14, + "probability": 0.9924 + }, + { + "start": 12860.8, + "end": 12862.76, + "probability": 0.9944 + }, + { + "start": 12863.44, + "end": 12864.1, + "probability": 0.9658 + }, + { + "start": 12864.88, + "end": 12867.9, + "probability": 0.0671 + }, + { + "start": 12868.34, + "end": 12869.14, + "probability": 0.207 + }, + { + "start": 12870.7, + "end": 12874.54, + "probability": 0.6789 + }, + { + "start": 12875.04, + "end": 12878.02, + "probability": 0.9468 + }, + { + "start": 12879.04, + "end": 12880.54, + "probability": 0.5179 + }, + { + "start": 12881.32, + "end": 12882.26, + "probability": 0.9435 + }, + { + "start": 12883.62, + "end": 12888.62, + "probability": 0.0827 + }, + { + "start": 12888.7, + "end": 12889.56, + "probability": 0.5197 + }, + { + "start": 12890.7, + "end": 12892.06, + "probability": 0.7718 + }, + { + "start": 12892.92, + "end": 12894.5, + "probability": 0.8643 + }, + { + "start": 12895.78, + "end": 12896.16, + "probability": 0.1871 + }, + { + "start": 12897.82, + "end": 12898.16, + "probability": 0.1058 + }, + { + "start": 12898.16, + "end": 12899.77, + "probability": 0.8913 + }, + { + "start": 12901.88, + "end": 12902.08, + "probability": 0.4439 + }, + { + "start": 12902.68, + "end": 12904.18, + "probability": 0.4169 + }, + { + "start": 12904.38, + "end": 12905.42, + "probability": 0.131 + }, + { + "start": 12905.42, + "end": 12906.04, + "probability": 0.5924 + }, + { + "start": 12906.14, + "end": 12909.58, + "probability": 0.4956 + }, + { + "start": 12909.58, + "end": 12910.12, + "probability": 0.1318 + }, + { + "start": 12910.22, + "end": 12914.06, + "probability": 0.7526 + }, + { + "start": 12914.12, + "end": 12916.96, + "probability": 0.6163 + }, + { + "start": 12917.92, + "end": 12920.78, + "probability": 0.8245 + }, + { + "start": 12920.86, + "end": 12921.28, + "probability": 0.8184 + }, + { + "start": 12921.38, + "end": 12922.16, + "probability": 0.6698 + }, + { + "start": 12922.62, + "end": 12928.74, + "probability": 0.9937 + }, + { + "start": 12929.5, + "end": 12933.52, + "probability": 0.986 + }, + { + "start": 12933.66, + "end": 12935.16, + "probability": 0.7075 + }, + { + "start": 12935.56, + "end": 12936.76, + "probability": 0.9283 + }, + { + "start": 12937.36, + "end": 12940.62, + "probability": 0.9936 + }, + { + "start": 12940.62, + "end": 12946.86, + "probability": 0.9296 + }, + { + "start": 12947.26, + "end": 12948.38, + "probability": 0.9106 + }, + { + "start": 12948.46, + "end": 12950.54, + "probability": 0.9831 + }, + { + "start": 12951.28, + "end": 12953.96, + "probability": 0.8156 + }, + { + "start": 12954.88, + "end": 12958.72, + "probability": 0.9546 + }, + { + "start": 12959.26, + "end": 12960.48, + "probability": 0.9688 + }, + { + "start": 12961.36, + "end": 12965.58, + "probability": 0.9938 + }, + { + "start": 12966.2, + "end": 12973.66, + "probability": 0.9977 + }, + { + "start": 12974.18, + "end": 12977.31, + "probability": 0.9902 + }, + { + "start": 12977.9, + "end": 12983.8, + "probability": 0.8208 + }, + { + "start": 12983.86, + "end": 12985.95, + "probability": 0.8159 + }, + { + "start": 12986.16, + "end": 12993.26, + "probability": 0.9961 + }, + { + "start": 12994.3, + "end": 12998.5, + "probability": 0.7592 + }, + { + "start": 12999.06, + "end": 13000.4, + "probability": 0.7707 + }, + { + "start": 13000.8, + "end": 13004.08, + "probability": 0.7601 + }, + { + "start": 13004.6, + "end": 13008.04, + "probability": 0.8892 + }, + { + "start": 13008.46, + "end": 13012.16, + "probability": 0.9651 + }, + { + "start": 13013.66, + "end": 13014.26, + "probability": 0.8628 + }, + { + "start": 13016.8, + "end": 13024.76, + "probability": 0.7451 + }, + { + "start": 13025.72, + "end": 13028.06, + "probability": 0.9762 + }, + { + "start": 13028.3, + "end": 13032.2, + "probability": 0.9963 + }, + { + "start": 13032.78, + "end": 13034.14, + "probability": 0.9177 + }, + { + "start": 13034.56, + "end": 13035.18, + "probability": 0.1007 + }, + { + "start": 13035.34, + "end": 13036.76, + "probability": 0.0428 + }, + { + "start": 13038.66, + "end": 13042.98, + "probability": 0.1355 + }, + { + "start": 13043.64, + "end": 13044.5, + "probability": 0.0759 + }, + { + "start": 13044.92, + "end": 13045.48, + "probability": 0.8477 + }, + { + "start": 13045.72, + "end": 13047.22, + "probability": 0.9338 + }, + { + "start": 13047.28, + "end": 13048.44, + "probability": 0.6142 + }, + { + "start": 13048.44, + "end": 13049.1, + "probability": 0.6969 + }, + { + "start": 13049.2, + "end": 13050.7, + "probability": 0.979 + }, + { + "start": 13050.92, + "end": 13060.16, + "probability": 0.9883 + }, + { + "start": 13060.92, + "end": 13063.14, + "probability": 0.9938 + }, + { + "start": 13063.14, + "end": 13071.14, + "probability": 0.7495 + }, + { + "start": 13071.6, + "end": 13074.52, + "probability": 0.7916 + }, + { + "start": 13075.96, + "end": 13078.56, + "probability": 0.9771 + }, + { + "start": 13080.26, + "end": 13082.68, + "probability": 0.7996 + }, + { + "start": 13082.9, + "end": 13085.78, + "probability": 0.8999 + }, + { + "start": 13086.95, + "end": 13090.02, + "probability": 0.9214 + }, + { + "start": 13090.9, + "end": 13092.54, + "probability": 0.9943 + }, + { + "start": 13092.6, + "end": 13094.24, + "probability": 0.8599 + }, + { + "start": 13095.08, + "end": 13097.3, + "probability": 0.9631 + }, + { + "start": 13098.26, + "end": 13100.72, + "probability": 0.9145 + }, + { + "start": 13103.72, + "end": 13103.72, + "probability": 0.7585 + }, + { + "start": 13104.4, + "end": 13107.78, + "probability": 0.9458 + }, + { + "start": 13108.28, + "end": 13112.08, + "probability": 0.9979 + }, + { + "start": 13112.08, + "end": 13115.48, + "probability": 0.999 + }, + { + "start": 13117.42, + "end": 13120.64, + "probability": 0.9865 + }, + { + "start": 13120.64, + "end": 13123.26, + "probability": 0.9971 + }, + { + "start": 13124.02, + "end": 13125.94, + "probability": 0.793 + }, + { + "start": 13126.54, + "end": 13128.12, + "probability": 0.9858 + }, + { + "start": 13128.66, + "end": 13131.96, + "probability": 0.9669 + }, + { + "start": 13132.5, + "end": 13137.4, + "probability": 0.973 + }, + { + "start": 13138.06, + "end": 13138.48, + "probability": 0.5095 + }, + { + "start": 13138.52, + "end": 13145.3, + "probability": 0.9775 + }, + { + "start": 13145.3, + "end": 13150.72, + "probability": 0.994 + }, + { + "start": 13151.44, + "end": 13152.52, + "probability": 0.9811 + }, + { + "start": 13153.16, + "end": 13156.5, + "probability": 0.9778 + }, + { + "start": 13157.64, + "end": 13158.5, + "probability": 0.9279 + }, + { + "start": 13158.66, + "end": 13159.62, + "probability": 0.2849 + }, + { + "start": 13159.66, + "end": 13161.18, + "probability": 0.9696 + }, + { + "start": 13161.58, + "end": 13165.15, + "probability": 0.7579 + }, + { + "start": 13167.18, + "end": 13168.94, + "probability": 0.875 + }, + { + "start": 13169.66, + "end": 13172.62, + "probability": 0.9017 + }, + { + "start": 13174.5, + "end": 13178.1, + "probability": 0.2942 + }, + { + "start": 13178.32, + "end": 13178.82, + "probability": 0.7982 + }, + { + "start": 13179.1, + "end": 13180.16, + "probability": 0.2439 + }, + { + "start": 13180.56, + "end": 13181.46, + "probability": 0.2945 + }, + { + "start": 13181.54, + "end": 13183.14, + "probability": 0.3947 + }, + { + "start": 13183.18, + "end": 13186.86, + "probability": 0.5325 + }, + { + "start": 13186.86, + "end": 13188.74, + "probability": 0.7407 + }, + { + "start": 13191.74, + "end": 13193.58, + "probability": 0.124 + }, + { + "start": 13194.12, + "end": 13196.2, + "probability": 0.822 + }, + { + "start": 13197.42, + "end": 13198.88, + "probability": 0.9296 + }, + { + "start": 13199.62, + "end": 13201.36, + "probability": 0.6895 + }, + { + "start": 13201.44, + "end": 13202.8, + "probability": 0.7854 + }, + { + "start": 13203.24, + "end": 13207.73, + "probability": 0.968 + }, + { + "start": 13207.79, + "end": 13208.39, + "probability": 0.7238 + }, + { + "start": 13209.15, + "end": 13212.93, + "probability": 0.7918 + }, + { + "start": 13213.55, + "end": 13213.89, + "probability": 0.7797 + }, + { + "start": 13222.53, + "end": 13223.29, + "probability": 0.1794 + }, + { + "start": 13223.63, + "end": 13224.37, + "probability": 0.516 + }, + { + "start": 13225.67, + "end": 13228.03, + "probability": 0.3506 + }, + { + "start": 13231.33, + "end": 13232.49, + "probability": 0.1633 + }, + { + "start": 13238.03, + "end": 13239.49, + "probability": 0.2915 + }, + { + "start": 13240.31, + "end": 13244.37, + "probability": 0.6231 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.0, + "end": 13340.0, + "probability": 0.0 + }, + { + "start": 13340.16, + "end": 13340.48, + "probability": 0.0009 + }, + { + "start": 13340.48, + "end": 13340.48, + "probability": 0.1093 + }, + { + "start": 13340.48, + "end": 13340.48, + "probability": 0.0976 + }, + { + "start": 13340.48, + "end": 13341.42, + "probability": 0.3205 + }, + { + "start": 13341.48, + "end": 13346.8, + "probability": 0.8714 + }, + { + "start": 13347.24, + "end": 13353.7, + "probability": 0.9253 + }, + { + "start": 13353.7, + "end": 13361.3, + "probability": 0.9862 + }, + { + "start": 13362.2, + "end": 13368.22, + "probability": 0.9973 + }, + { + "start": 13368.22, + "end": 13375.2, + "probability": 0.9445 + }, + { + "start": 13375.54, + "end": 13376.32, + "probability": 0.4235 + }, + { + "start": 13376.42, + "end": 13377.7, + "probability": 0.6135 + }, + { + "start": 13377.7, + "end": 13380.36, + "probability": 0.928 + }, + { + "start": 13380.36, + "end": 13384.1, + "probability": 0.9826 + }, + { + "start": 13384.74, + "end": 13389.96, + "probability": 0.9173 + }, + { + "start": 13389.96, + "end": 13396.26, + "probability": 0.9921 + }, + { + "start": 13397.02, + "end": 13402.6, + "probability": 0.9832 + }, + { + "start": 13403.06, + "end": 13406.84, + "probability": 0.9015 + }, + { + "start": 13406.96, + "end": 13410.94, + "probability": 0.9382 + }, + { + "start": 13411.88, + "end": 13413.84, + "probability": 0.9172 + }, + { + "start": 13414.2, + "end": 13419.9, + "probability": 0.5806 + }, + { + "start": 13420.8, + "end": 13421.66, + "probability": 0.8273 + }, + { + "start": 13422.12, + "end": 13423.84, + "probability": 0.9136 + }, + { + "start": 13424.0, + "end": 13427.24, + "probability": 0.8889 + }, + { + "start": 13427.8, + "end": 13433.61, + "probability": 0.9612 + }, + { + "start": 13434.62, + "end": 13437.8, + "probability": 0.967 + }, + { + "start": 13437.9, + "end": 13439.16, + "probability": 0.8943 + }, + { + "start": 13440.04, + "end": 13441.54, + "probability": 0.8543 + }, + { + "start": 13441.58, + "end": 13444.32, + "probability": 0.9934 + }, + { + "start": 13444.68, + "end": 13447.0, + "probability": 0.9147 + }, + { + "start": 13447.22, + "end": 13448.02, + "probability": 0.7172 + }, + { + "start": 13448.58, + "end": 13450.08, + "probability": 0.6672 + }, + { + "start": 13450.62, + "end": 13453.01, + "probability": 0.8663 + }, + { + "start": 13453.66, + "end": 13454.86, + "probability": 0.8739 + }, + { + "start": 13454.98, + "end": 13457.88, + "probability": 0.9993 + }, + { + "start": 13457.88, + "end": 13462.36, + "probability": 0.9985 + }, + { + "start": 13463.14, + "end": 13466.18, + "probability": 0.8437 + }, + { + "start": 13466.7, + "end": 13467.32, + "probability": 0.7908 + }, + { + "start": 13467.38, + "end": 13469.8, + "probability": 0.9946 + }, + { + "start": 13471.36, + "end": 13472.1, + "probability": 0.7875 + }, + { + "start": 13472.28, + "end": 13476.18, + "probability": 0.9954 + }, + { + "start": 13476.36, + "end": 13479.4, + "probability": 0.8654 + }, + { + "start": 13479.48, + "end": 13483.38, + "probability": 0.9938 + }, + { + "start": 13483.5, + "end": 13488.54, + "probability": 0.7193 + }, + { + "start": 13489.26, + "end": 13493.28, + "probability": 0.9784 + }, + { + "start": 13493.98, + "end": 13497.83, + "probability": 0.957 + }, + { + "start": 13498.04, + "end": 13502.26, + "probability": 0.9893 + }, + { + "start": 13502.74, + "end": 13505.2, + "probability": 0.8311 + }, + { + "start": 13505.3, + "end": 13507.14, + "probability": 0.7809 + }, + { + "start": 13507.56, + "end": 13508.92, + "probability": 0.9946 + }, + { + "start": 13510.1, + "end": 13512.08, + "probability": 0.844 + }, + { + "start": 13512.4, + "end": 13516.7, + "probability": 0.9676 + }, + { + "start": 13516.84, + "end": 13521.3, + "probability": 0.7924 + }, + { + "start": 13521.6, + "end": 13523.98, + "probability": 0.7752 + }, + { + "start": 13524.1, + "end": 13524.3, + "probability": 0.803 + }, + { + "start": 13524.34, + "end": 13527.46, + "probability": 0.7365 + }, + { + "start": 13527.58, + "end": 13529.24, + "probability": 0.9194 + }, + { + "start": 13529.4, + "end": 13531.26, + "probability": 0.7955 + }, + { + "start": 13531.4, + "end": 13532.1, + "probability": 0.0877 + }, + { + "start": 13532.18, + "end": 13532.94, + "probability": 0.7054 + }, + { + "start": 13533.22, + "end": 13534.36, + "probability": 0.6425 + }, + { + "start": 13534.48, + "end": 13535.49, + "probability": 0.9611 + }, + { + "start": 13536.08, + "end": 13538.8, + "probability": 0.9042 + }, + { + "start": 13540.16, + "end": 13542.12, + "probability": 0.7184 + }, + { + "start": 13542.22, + "end": 13544.08, + "probability": 0.9224 + }, + { + "start": 13546.24, + "end": 13548.24, + "probability": 0.9907 + }, + { + "start": 13548.24, + "end": 13550.5, + "probability": 0.9491 + }, + { + "start": 13551.5, + "end": 13552.18, + "probability": 0.0258 + }, + { + "start": 13552.18, + "end": 13552.5, + "probability": 0.4685 + }, + { + "start": 13552.68, + "end": 13556.58, + "probability": 0.804 + }, + { + "start": 13556.8, + "end": 13556.8, + "probability": 0.0025 + }, + { + "start": 13556.8, + "end": 13556.92, + "probability": 0.3683 + }, + { + "start": 13557.06, + "end": 13557.94, + "probability": 0.6135 + }, + { + "start": 13558.28, + "end": 13558.72, + "probability": 0.8972 + }, + { + "start": 13559.52, + "end": 13560.06, + "probability": 0.6455 + }, + { + "start": 13560.06, + "end": 13560.44, + "probability": 0.9636 + }, + { + "start": 13560.72, + "end": 13561.24, + "probability": 0.839 + }, + { + "start": 13561.76, + "end": 13563.72, + "probability": 0.7327 + }, + { + "start": 13564.0, + "end": 13565.78, + "probability": 0.8394 + }, + { + "start": 13565.86, + "end": 13566.88, + "probability": 0.8286 + }, + { + "start": 13567.14, + "end": 13568.35, + "probability": 0.5897 + }, + { + "start": 13569.52, + "end": 13571.96, + "probability": 0.7414 + }, + { + "start": 13572.48, + "end": 13574.06, + "probability": 0.7003 + }, + { + "start": 13575.5, + "end": 13578.7, + "probability": 0.8916 + }, + { + "start": 13578.84, + "end": 13579.32, + "probability": 0.475 + }, + { + "start": 13579.66, + "end": 13580.92, + "probability": 0.8329 + }, + { + "start": 13581.78, + "end": 13583.64, + "probability": 0.8471 + }, + { + "start": 13584.34, + "end": 13585.24, + "probability": 0.7748 + }, + { + "start": 13586.0, + "end": 13586.42, + "probability": 0.4888 + }, + { + "start": 13587.14, + "end": 13590.94, + "probability": 0.8045 + }, + { + "start": 13591.26, + "end": 13592.14, + "probability": 0.76 + }, + { + "start": 13592.38, + "end": 13593.12, + "probability": 0.7729 + }, + { + "start": 13593.28, + "end": 13594.12, + "probability": 0.9815 + }, + { + "start": 13594.76, + "end": 13598.76, + "probability": 0.676 + }, + { + "start": 13598.94, + "end": 13600.54, + "probability": 0.698 + }, + { + "start": 13601.38, + "end": 13603.62, + "probability": 0.5746 + }, + { + "start": 13603.98, + "end": 13605.92, + "probability": 0.8687 + }, + { + "start": 13606.14, + "end": 13607.54, + "probability": 0.991 + }, + { + "start": 13608.22, + "end": 13611.5, + "probability": 0.9429 + }, + { + "start": 13612.08, + "end": 13612.86, + "probability": 0.9753 + }, + { + "start": 13613.16, + "end": 13615.68, + "probability": 0.8628 + }, + { + "start": 13615.68, + "end": 13619.04, + "probability": 0.8207 + }, + { + "start": 13620.22, + "end": 13621.26, + "probability": 0.8443 + }, + { + "start": 13621.36, + "end": 13622.24, + "probability": 0.6344 + }, + { + "start": 13622.72, + "end": 13624.64, + "probability": 0.7236 + }, + { + "start": 13625.38, + "end": 13627.92, + "probability": 0.9748 + }, + { + "start": 13629.26, + "end": 13630.72, + "probability": 0.9504 + }, + { + "start": 13630.88, + "end": 13631.4, + "probability": 0.6151 + }, + { + "start": 13631.58, + "end": 13632.3, + "probability": 0.7313 + }, + { + "start": 13632.6, + "end": 13636.14, + "probability": 0.9771 + }, + { + "start": 13636.52, + "end": 13638.26, + "probability": 0.6184 + }, + { + "start": 13638.76, + "end": 13640.52, + "probability": 0.8237 + }, + { + "start": 13640.82, + "end": 13642.71, + "probability": 0.9574 + }, + { + "start": 13642.9, + "end": 13643.46, + "probability": 0.8074 + }, + { + "start": 13643.68, + "end": 13644.64, + "probability": 0.9883 + }, + { + "start": 13645.2, + "end": 13648.16, + "probability": 0.8804 + }, + { + "start": 13648.4, + "end": 13651.4, + "probability": 0.9969 + }, + { + "start": 13651.66, + "end": 13652.68, + "probability": 0.9622 + }, + { + "start": 13653.08, + "end": 13655.26, + "probability": 0.9546 + }, + { + "start": 13655.38, + "end": 13658.76, + "probability": 0.9961 + }, + { + "start": 13658.84, + "end": 13664.3, + "probability": 0.9827 + }, + { + "start": 13664.38, + "end": 13665.68, + "probability": 0.9277 + }, + { + "start": 13666.34, + "end": 13669.56, + "probability": 0.9873 + }, + { + "start": 13669.98, + "end": 13671.08, + "probability": 0.7676 + }, + { + "start": 13671.68, + "end": 13674.34, + "probability": 0.7889 + }, + { + "start": 13676.28, + "end": 13678.1, + "probability": 0.7763 + }, + { + "start": 13678.34, + "end": 13681.18, + "probability": 0.5907 + }, + { + "start": 13681.26, + "end": 13681.54, + "probability": 0.8778 + }, + { + "start": 13698.52, + "end": 13700.68, + "probability": 0.6979 + }, + { + "start": 13702.08, + "end": 13705.08, + "probability": 0.9924 + }, + { + "start": 13705.78, + "end": 13707.04, + "probability": 0.9325 + }, + { + "start": 13707.08, + "end": 13714.02, + "probability": 0.8603 + }, + { + "start": 13714.78, + "end": 13715.0, + "probability": 0.2863 + }, + { + "start": 13715.82, + "end": 13718.99, + "probability": 0.118 + }, + { + "start": 13719.2, + "end": 13719.64, + "probability": 0.6779 + }, + { + "start": 13719.84, + "end": 13722.58, + "probability": 0.96 + }, + { + "start": 13722.64, + "end": 13725.54, + "probability": 0.9867 + }, + { + "start": 13726.44, + "end": 13726.98, + "probability": 0.9126 + }, + { + "start": 13727.52, + "end": 13730.14, + "probability": 0.0638 + }, + { + "start": 13731.62, + "end": 13731.94, + "probability": 0.4487 + }, + { + "start": 13732.12, + "end": 13732.24, + "probability": 0.0562 + }, + { + "start": 13732.28, + "end": 13733.42, + "probability": 0.698 + }, + { + "start": 13733.56, + "end": 13736.94, + "probability": 0.916 + }, + { + "start": 13737.56, + "end": 13740.8, + "probability": 0.9927 + }, + { + "start": 13741.68, + "end": 13744.5, + "probability": 0.1232 + }, + { + "start": 13745.4, + "end": 13746.64, + "probability": 0.0053 + }, + { + "start": 13746.64, + "end": 13746.64, + "probability": 0.1077 + }, + { + "start": 13747.06, + "end": 13747.32, + "probability": 0.0287 + }, + { + "start": 13747.32, + "end": 13747.6, + "probability": 0.1554 + }, + { + "start": 13747.78, + "end": 13748.9, + "probability": 0.4527 + }, + { + "start": 13749.32, + "end": 13750.96, + "probability": 0.1904 + }, + { + "start": 13751.08, + "end": 13753.34, + "probability": 0.7816 + }, + { + "start": 13754.02, + "end": 13756.52, + "probability": 0.5265 + }, + { + "start": 13756.7, + "end": 13757.8, + "probability": 0.3529 + }, + { + "start": 13757.9, + "end": 13763.32, + "probability": 0.9338 + }, + { + "start": 13763.32, + "end": 13766.26, + "probability": 0.7872 + }, + { + "start": 13766.96, + "end": 13775.06, + "probability": 0.9843 + }, + { + "start": 13775.56, + "end": 13779.3, + "probability": 0.9471 + }, + { + "start": 13779.3, + "end": 13783.74, + "probability": 0.9941 + }, + { + "start": 13785.48, + "end": 13788.92, + "probability": 0.9718 + }, + { + "start": 13789.56, + "end": 13791.14, + "probability": 0.9958 + }, + { + "start": 13792.04, + "end": 13797.18, + "probability": 0.9663 + }, + { + "start": 13797.74, + "end": 13800.64, + "probability": 0.9538 + }, + { + "start": 13800.64, + "end": 13805.0, + "probability": 0.957 + }, + { + "start": 13805.7, + "end": 13806.78, + "probability": 0.7261 + }, + { + "start": 13807.82, + "end": 13808.58, + "probability": 0.7221 + }, + { + "start": 13809.18, + "end": 13812.76, + "probability": 0.9397 + }, + { + "start": 13813.6, + "end": 13818.55, + "probability": 0.9974 + }, + { + "start": 13818.72, + "end": 13824.62, + "probability": 0.9924 + }, + { + "start": 13825.22, + "end": 13828.12, + "probability": 0.9666 + }, + { + "start": 13829.24, + "end": 13834.72, + "probability": 0.9461 + }, + { + "start": 13835.28, + "end": 13836.76, + "probability": 0.8275 + }, + { + "start": 13837.84, + "end": 13841.44, + "probability": 0.9195 + }, + { + "start": 13841.44, + "end": 13845.72, + "probability": 0.9868 + }, + { + "start": 13846.84, + "end": 13852.0, + "probability": 0.9921 + }, + { + "start": 13852.66, + "end": 13854.16, + "probability": 0.9998 + }, + { + "start": 13854.74, + "end": 13858.74, + "probability": 0.992 + }, + { + "start": 13859.82, + "end": 13860.82, + "probability": 0.9871 + }, + { + "start": 13861.48, + "end": 13862.52, + "probability": 0.7624 + }, + { + "start": 13863.72, + "end": 13865.48, + "probability": 0.9475 + }, + { + "start": 13866.52, + "end": 13867.98, + "probability": 0.9946 + }, + { + "start": 13868.88, + "end": 13870.36, + "probability": 0.9944 + }, + { + "start": 13871.2, + "end": 13875.92, + "probability": 0.9716 + }, + { + "start": 13876.04, + "end": 13876.96, + "probability": 0.9827 + }, + { + "start": 13877.38, + "end": 13880.08, + "probability": 0.937 + }, + { + "start": 13880.72, + "end": 13884.9, + "probability": 0.9896 + }, + { + "start": 13885.22, + "end": 13885.68, + "probability": 0.8137 + }, + { + "start": 13886.38, + "end": 13888.18, + "probability": 0.9307 + }, + { + "start": 13888.6, + "end": 13889.26, + "probability": 0.047 + }, + { + "start": 13889.26, + "end": 13892.86, + "probability": 0.7634 + }, + { + "start": 13893.18, + "end": 13894.4, + "probability": 0.4438 + }, + { + "start": 13894.4, + "end": 13894.54, + "probability": 0.9023 + }, + { + "start": 13899.22, + "end": 13900.1, + "probability": 0.6228 + }, + { + "start": 13900.24, + "end": 13900.8, + "probability": 0.6655 + }, + { + "start": 13900.88, + "end": 13901.54, + "probability": 0.8676 + }, + { + "start": 13901.56, + "end": 13902.56, + "probability": 0.9071 + }, + { + "start": 13902.62, + "end": 13907.38, + "probability": 0.968 + }, + { + "start": 13907.52, + "end": 13909.12, + "probability": 0.7728 + }, + { + "start": 13909.18, + "end": 13912.78, + "probability": 0.974 + }, + { + "start": 13912.88, + "end": 13914.06, + "probability": 0.9924 + }, + { + "start": 13915.0, + "end": 13916.46, + "probability": 0.8735 + }, + { + "start": 13917.68, + "end": 13921.24, + "probability": 0.9963 + }, + { + "start": 13921.76, + "end": 13926.34, + "probability": 0.9952 + }, + { + "start": 13927.16, + "end": 13931.58, + "probability": 0.9753 + }, + { + "start": 13932.9, + "end": 13936.2, + "probability": 0.9983 + }, + { + "start": 13936.78, + "end": 13939.56, + "probability": 0.9977 + }, + { + "start": 13940.34, + "end": 13941.02, + "probability": 0.8035 + }, + { + "start": 13942.04, + "end": 13943.36, + "probability": 0.9951 + }, + { + "start": 13943.96, + "end": 13945.62, + "probability": 0.8908 + }, + { + "start": 13946.72, + "end": 13949.42, + "probability": 0.9965 + }, + { + "start": 13949.42, + "end": 13953.44, + "probability": 0.9958 + }, + { + "start": 13954.14, + "end": 13956.48, + "probability": 0.9977 + }, + { + "start": 13957.04, + "end": 13960.68, + "probability": 0.9994 + }, + { + "start": 13961.12, + "end": 13966.12, + "probability": 0.9976 + }, + { + "start": 13966.8, + "end": 13968.88, + "probability": 0.969 + }, + { + "start": 13969.38, + "end": 13970.14, + "probability": 0.6405 + }, + { + "start": 13970.76, + "end": 13972.26, + "probability": 0.694 + }, + { + "start": 13972.4, + "end": 13972.7, + "probability": 0.4541 + }, + { + "start": 13972.74, + "end": 13973.16, + "probability": 0.9633 + }, + { + "start": 13978.14, + "end": 13979.42, + "probability": 0.6705 + }, + { + "start": 13979.54, + "end": 13984.24, + "probability": 0.9677 + }, + { + "start": 13985.4, + "end": 13988.8, + "probability": 0.7061 + }, + { + "start": 13990.14, + "end": 13992.74, + "probability": 0.9276 + }, + { + "start": 13994.22, + "end": 13995.7, + "probability": 0.2887 + }, + { + "start": 13996.36, + "end": 13999.34, + "probability": 0.7692 + }, + { + "start": 14000.0, + "end": 14002.32, + "probability": 0.761 + }, + { + "start": 14003.18, + "end": 14006.4, + "probability": 0.9348 + }, + { + "start": 14007.06, + "end": 14008.7, + "probability": 0.7307 + }, + { + "start": 14009.6, + "end": 14013.24, + "probability": 0.7092 + }, + { + "start": 14014.04, + "end": 14015.66, + "probability": 0.7556 + }, + { + "start": 14015.9, + "end": 14016.44, + "probability": 0.8948 + }, + { + "start": 14016.56, + "end": 14017.16, + "probability": 0.7619 + }, + { + "start": 14017.58, + "end": 14019.62, + "probability": 0.9595 + }, + { + "start": 14019.74, + "end": 14020.72, + "probability": 0.9446 + }, + { + "start": 14021.24, + "end": 14025.36, + "probability": 0.9786 + }, + { + "start": 14025.6, + "end": 14029.16, + "probability": 0.7275 + }, + { + "start": 14029.3, + "end": 14029.74, + "probability": 0.978 + }, + { + "start": 14031.28, + "end": 14031.96, + "probability": 0.6418 + }, + { + "start": 14032.78, + "end": 14035.48, + "probability": 0.7671 + }, + { + "start": 14036.04, + "end": 14041.0, + "probability": 0.8556 + }, + { + "start": 14041.08, + "end": 14042.42, + "probability": 0.5168 + }, + { + "start": 14042.58, + "end": 14044.56, + "probability": 0.546 + }, + { + "start": 14044.6, + "end": 14047.56, + "probability": 0.9464 + }, + { + "start": 14047.76, + "end": 14048.18, + "probability": 0.4031 + }, + { + "start": 14048.38, + "end": 14051.52, + "probability": 0.7967 + }, + { + "start": 14051.58, + "end": 14052.44, + "probability": 0.8786 + }, + { + "start": 14052.52, + "end": 14054.08, + "probability": 0.9298 + }, + { + "start": 14054.5, + "end": 14055.5, + "probability": 0.674 + }, + { + "start": 14055.84, + "end": 14056.56, + "probability": 0.9015 + }, + { + "start": 14056.68, + "end": 14057.36, + "probability": 0.9032 + }, + { + "start": 14057.36, + "end": 14057.96, + "probability": 0.9426 + }, + { + "start": 14058.44, + "end": 14060.64, + "probability": 0.8218 + }, + { + "start": 14060.76, + "end": 14062.9, + "probability": 0.8135 + }, + { + "start": 14063.64, + "end": 14068.36, + "probability": 0.8568 + }, + { + "start": 14069.34, + "end": 14072.3, + "probability": 0.4848 + }, + { + "start": 14072.78, + "end": 14075.9, + "probability": 0.9063 + }, + { + "start": 14075.96, + "end": 14077.24, + "probability": 0.9439 + }, + { + "start": 14077.56, + "end": 14078.6, + "probability": 0.6953 + }, + { + "start": 14078.7, + "end": 14079.8, + "probability": 0.9231 + }, + { + "start": 14080.36, + "end": 14083.22, + "probability": 0.8446 + }, + { + "start": 14083.88, + "end": 14088.32, + "probability": 0.9097 + }, + { + "start": 14088.9, + "end": 14092.4, + "probability": 0.728 + }, + { + "start": 14092.92, + "end": 14094.08, + "probability": 0.8141 + }, + { + "start": 14094.22, + "end": 14095.34, + "probability": 0.8847 + }, + { + "start": 14095.42, + "end": 14097.2, + "probability": 0.7404 + }, + { + "start": 14097.48, + "end": 14099.42, + "probability": 0.8259 + }, + { + "start": 14099.54, + "end": 14099.86, + "probability": 0.4536 + }, + { + "start": 14100.22, + "end": 14101.34, + "probability": 0.6748 + }, + { + "start": 14101.34, + "end": 14102.16, + "probability": 0.6026 + }, + { + "start": 14102.36, + "end": 14105.02, + "probability": 0.8942 + }, + { + "start": 14105.5, + "end": 14111.9, + "probability": 0.9403 + }, + { + "start": 14112.24, + "end": 14112.7, + "probability": 0.3601 + }, + { + "start": 14112.84, + "end": 14116.0, + "probability": 0.4436 + }, + { + "start": 14116.34, + "end": 14117.0, + "probability": 0.6011 + }, + { + "start": 14117.08, + "end": 14117.46, + "probability": 0.4976 + }, + { + "start": 14117.46, + "end": 14118.48, + "probability": 0.5832 + }, + { + "start": 14118.76, + "end": 14120.34, + "probability": 0.7153 + }, + { + "start": 14120.48, + "end": 14123.48, + "probability": 0.8595 + }, + { + "start": 14124.04, + "end": 14124.46, + "probability": 0.4796 + }, + { + "start": 14124.7, + "end": 14124.94, + "probability": 0.865 + }, + { + "start": 14126.52, + "end": 14128.02, + "probability": 0.6398 + }, + { + "start": 14128.12, + "end": 14132.48, + "probability": 0.9669 + }, + { + "start": 14132.9, + "end": 14134.39, + "probability": 0.8804 + }, + { + "start": 14134.92, + "end": 14136.24, + "probability": 0.9869 + }, + { + "start": 14136.62, + "end": 14137.52, + "probability": 0.9495 + }, + { + "start": 14137.7, + "end": 14141.16, + "probability": 0.9312 + }, + { + "start": 14141.22, + "end": 14142.58, + "probability": 0.9536 + }, + { + "start": 14142.66, + "end": 14146.58, + "probability": 0.996 + }, + { + "start": 14146.72, + "end": 14148.42, + "probability": 0.7875 + }, + { + "start": 14149.0, + "end": 14150.2, + "probability": 0.8141 + }, + { + "start": 14150.44, + "end": 14152.59, + "probability": 0.9932 + }, + { + "start": 14152.92, + "end": 14156.14, + "probability": 0.9692 + }, + { + "start": 14156.36, + "end": 14157.3, + "probability": 0.9487 + }, + { + "start": 14157.64, + "end": 14159.64, + "probability": 0.9832 + }, + { + "start": 14160.48, + "end": 14161.0, + "probability": 0.6339 + }, + { + "start": 14161.04, + "end": 14167.46, + "probability": 0.9299 + }, + { + "start": 14167.7, + "end": 14169.76, + "probability": 0.9967 + }, + { + "start": 14170.4, + "end": 14172.88, + "probability": 0.9809 + }, + { + "start": 14172.96, + "end": 14174.7, + "probability": 0.9602 + }, + { + "start": 14175.34, + "end": 14179.96, + "probability": 0.9727 + }, + { + "start": 14180.04, + "end": 14182.82, + "probability": 0.9509 + }, + { + "start": 14182.92, + "end": 14185.7, + "probability": 0.9307 + }, + { + "start": 14186.1, + "end": 14187.04, + "probability": 0.9951 + }, + { + "start": 14187.48, + "end": 14188.96, + "probability": 0.9365 + }, + { + "start": 14189.02, + "end": 14193.36, + "probability": 0.9902 + }, + { + "start": 14193.36, + "end": 14195.94, + "probability": 0.9976 + }, + { + "start": 14196.1, + "end": 14196.72, + "probability": 0.7027 + }, + { + "start": 14196.92, + "end": 14200.38, + "probability": 0.9629 + }, + { + "start": 14200.54, + "end": 14200.72, + "probability": 0.7037 + }, + { + "start": 14201.28, + "end": 14203.4, + "probability": 0.78 + }, + { + "start": 14203.76, + "end": 14207.04, + "probability": 0.7519 + }, + { + "start": 14207.16, + "end": 14207.44, + "probability": 0.4473 + }, + { + "start": 14207.5, + "end": 14207.96, + "probability": 0.9679 + }, + { + "start": 14209.8, + "end": 14215.54, + "probability": 0.8418 + }, + { + "start": 14217.16, + "end": 14220.48, + "probability": 0.9616 + }, + { + "start": 14220.66, + "end": 14225.98, + "probability": 0.9806 + }, + { + "start": 14226.06, + "end": 14229.32, + "probability": 0.9878 + }, + { + "start": 14229.94, + "end": 14231.32, + "probability": 0.7983 + }, + { + "start": 14231.96, + "end": 14233.1, + "probability": 0.7958 + }, + { + "start": 14233.24, + "end": 14234.12, + "probability": 0.8201 + }, + { + "start": 14234.62, + "end": 14238.42, + "probability": 0.9879 + }, + { + "start": 14239.54, + "end": 14239.94, + "probability": 0.4191 + }, + { + "start": 14240.04, + "end": 14245.24, + "probability": 0.9301 + }, + { + "start": 14245.74, + "end": 14252.12, + "probability": 0.9395 + }, + { + "start": 14252.24, + "end": 14252.7, + "probability": 0.7438 + }, + { + "start": 14252.86, + "end": 14253.66, + "probability": 0.5345 + }, + { + "start": 14253.66, + "end": 14254.9, + "probability": 0.9982 + }, + { + "start": 14254.94, + "end": 14256.86, + "probability": 0.8793 + }, + { + "start": 14257.0, + "end": 14260.42, + "probability": 0.9771 + }, + { + "start": 14260.74, + "end": 14260.92, + "probability": 0.7581 + }, + { + "start": 14261.88, + "end": 14263.66, + "probability": 0.5972 + }, + { + "start": 14263.78, + "end": 14264.7, + "probability": 0.7521 + }, + { + "start": 14264.82, + "end": 14265.54, + "probability": 0.6641 + }, + { + "start": 14266.4, + "end": 14267.59, + "probability": 0.2713 + }, + { + "start": 14268.18, + "end": 14268.9, + "probability": 0.363 + }, + { + "start": 14269.38, + "end": 14271.88, + "probability": 0.7008 + }, + { + "start": 14272.06, + "end": 14272.22, + "probability": 0.4481 + }, + { + "start": 14272.22, + "end": 14273.58, + "probability": 0.4938 + }, + { + "start": 14273.64, + "end": 14275.3, + "probability": 0.3646 + }, + { + "start": 14276.96, + "end": 14277.62, + "probability": 0.0933 + }, + { + "start": 14277.62, + "end": 14277.62, + "probability": 0.0067 + }, + { + "start": 14277.62, + "end": 14278.68, + "probability": 0.2563 + }, + { + "start": 14279.02, + "end": 14279.02, + "probability": 0.1953 + }, + { + "start": 14279.02, + "end": 14281.0, + "probability": 0.1586 + }, + { + "start": 14282.58, + "end": 14283.28, + "probability": 0.3673 + }, + { + "start": 14283.74, + "end": 14285.0, + "probability": 0.5232 + }, + { + "start": 14285.14, + "end": 14285.78, + "probability": 0.635 + }, + { + "start": 14286.1, + "end": 14287.89, + "probability": 0.8799 + }, + { + "start": 14288.36, + "end": 14288.96, + "probability": 0.0265 + }, + { + "start": 14290.52, + "end": 14290.72, + "probability": 0.3492 + }, + { + "start": 14290.72, + "end": 14292.76, + "probability": 0.7141 + }, + { + "start": 14293.56, + "end": 14295.3, + "probability": 0.5054 + }, + { + "start": 14295.82, + "end": 14296.16, + "probability": 0.2557 + }, + { + "start": 14296.16, + "end": 14296.16, + "probability": 0.361 + }, + { + "start": 14296.16, + "end": 14296.4, + "probability": 0.163 + }, + { + "start": 14296.4, + "end": 14298.53, + "probability": 0.6087 + }, + { + "start": 14298.62, + "end": 14298.98, + "probability": 0.5795 + }, + { + "start": 14299.02, + "end": 14299.38, + "probability": 0.6838 + }, + { + "start": 14299.42, + "end": 14299.88, + "probability": 0.8132 + }, + { + "start": 14301.56, + "end": 14304.02, + "probability": 0.4703 + }, + { + "start": 14304.52, + "end": 14305.99, + "probability": 0.7603 + }, + { + "start": 14311.12, + "end": 14312.86, + "probability": 0.0284 + }, + { + "start": 14319.2, + "end": 14320.26, + "probability": 0.1142 + }, + { + "start": 14320.26, + "end": 14320.26, + "probability": 0.6093 + }, + { + "start": 14320.26, + "end": 14320.26, + "probability": 0.1847 + }, + { + "start": 14320.26, + "end": 14321.94, + "probability": 0.5692 + }, + { + "start": 14322.06, + "end": 14323.64, + "probability": 0.9038 + }, + { + "start": 14323.84, + "end": 14324.14, + "probability": 0.5104 + }, + { + "start": 14324.16, + "end": 14324.38, + "probability": 0.6435 + }, + { + "start": 14324.58, + "end": 14329.92, + "probability": 0.7093 + }, + { + "start": 14330.12, + "end": 14330.2, + "probability": 0.0142 + }, + { + "start": 14330.2, + "end": 14330.2, + "probability": 0.2343 + }, + { + "start": 14330.2, + "end": 14330.2, + "probability": 0.0593 + }, + { + "start": 14330.2, + "end": 14332.66, + "probability": 0.6527 + }, + { + "start": 14333.28, + "end": 14334.1, + "probability": 0.8016 + }, + { + "start": 14345.26, + "end": 14345.58, + "probability": 0.3728 + }, + { + "start": 14345.7, + "end": 14346.12, + "probability": 0.7878 + }, + { + "start": 14348.74, + "end": 14350.68, + "probability": 0.766 + }, + { + "start": 14351.62, + "end": 14354.88, + "probability": 0.7902 + }, + { + "start": 14355.36, + "end": 14356.56, + "probability": 0.8708 + }, + { + "start": 14356.66, + "end": 14357.52, + "probability": 0.9945 + }, + { + "start": 14357.68, + "end": 14360.78, + "probability": 0.8886 + }, + { + "start": 14360.9, + "end": 14361.56, + "probability": 0.8086 + }, + { + "start": 14365.14, + "end": 14368.6, + "probability": 0.9505 + }, + { + "start": 14368.6, + "end": 14373.82, + "probability": 0.995 + }, + { + "start": 14374.28, + "end": 14377.52, + "probability": 0.9985 + }, + { + "start": 14378.28, + "end": 14380.4, + "probability": 0.7329 + }, + { + "start": 14380.42, + "end": 14383.36, + "probability": 0.8982 + }, + { + "start": 14384.48, + "end": 14385.46, + "probability": 0.9009 + }, + { + "start": 14386.52, + "end": 14389.26, + "probability": 0.9086 + }, + { + "start": 14390.28, + "end": 14391.3, + "probability": 0.8299 + }, + { + "start": 14391.66, + "end": 14392.2, + "probability": 0.7753 + }, + { + "start": 14392.6, + "end": 14394.96, + "probability": 0.9081 + }, + { + "start": 14395.18, + "end": 14396.12, + "probability": 0.9851 + }, + { + "start": 14396.3, + "end": 14396.8, + "probability": 0.8789 + }, + { + "start": 14397.46, + "end": 14398.36, + "probability": 0.9922 + }, + { + "start": 14398.74, + "end": 14399.34, + "probability": 0.782 + }, + { + "start": 14399.52, + "end": 14400.68, + "probability": 0.8385 + }, + { + "start": 14400.8, + "end": 14402.02, + "probability": 0.7699 + }, + { + "start": 14403.94, + "end": 14404.82, + "probability": 0.9078 + }, + { + "start": 14405.16, + "end": 14409.44, + "probability": 0.9941 + }, + { + "start": 14409.62, + "end": 14411.5, + "probability": 0.8033 + }, + { + "start": 14411.56, + "end": 14412.28, + "probability": 0.8166 + }, + { + "start": 14412.46, + "end": 14414.44, + "probability": 0.9893 + }, + { + "start": 14415.62, + "end": 14420.56, + "probability": 0.9733 + }, + { + "start": 14420.78, + "end": 14421.4, + "probability": 0.7977 + }, + { + "start": 14422.16, + "end": 14422.9, + "probability": 0.7438 + }, + { + "start": 14423.12, + "end": 14426.1, + "probability": 0.8125 + }, + { + "start": 14426.86, + "end": 14429.74, + "probability": 0.8268 + }, + { + "start": 14430.3, + "end": 14431.44, + "probability": 0.8649 + }, + { + "start": 14431.9, + "end": 14435.46, + "probability": 0.9301 + }, + { + "start": 14436.52, + "end": 14437.28, + "probability": 0.7722 + }, + { + "start": 14437.52, + "end": 14440.48, + "probability": 0.7739 + }, + { + "start": 14440.56, + "end": 14440.76, + "probability": 0.5544 + }, + { + "start": 14441.38, + "end": 14443.08, + "probability": 0.5269 + }, + { + "start": 14443.18, + "end": 14444.86, + "probability": 0.8511 + }, + { + "start": 14444.88, + "end": 14445.36, + "probability": 0.4941 + }, + { + "start": 14445.36, + "end": 14446.78, + "probability": 0.9464 + }, + { + "start": 14458.8, + "end": 14459.3, + "probability": 0.7182 + }, + { + "start": 14459.38, + "end": 14459.84, + "probability": 0.9057 + }, + { + "start": 14469.6, + "end": 14471.1, + "probability": 0.5111 + }, + { + "start": 14471.2, + "end": 14471.2, + "probability": 0.365 + }, + { + "start": 14471.2, + "end": 14471.6, + "probability": 0.7502 + }, + { + "start": 14471.7, + "end": 14472.9, + "probability": 0.7663 + }, + { + "start": 14473.92, + "end": 14478.0, + "probability": 0.9973 + }, + { + "start": 14478.0, + "end": 14480.92, + "probability": 0.9897 + }, + { + "start": 14482.13, + "end": 14488.16, + "probability": 0.9978 + }, + { + "start": 14488.26, + "end": 14490.4, + "probability": 0.9971 + }, + { + "start": 14491.06, + "end": 14495.32, + "probability": 0.7891 + }, + { + "start": 14496.58, + "end": 14500.85, + "probability": 0.9961 + }, + { + "start": 14502.08, + "end": 14503.7, + "probability": 0.9218 + }, + { + "start": 14503.9, + "end": 14505.36, + "probability": 0.8888 + }, + { + "start": 14505.54, + "end": 14505.74, + "probability": 0.6025 + }, + { + "start": 14505.76, + "end": 14506.54, + "probability": 0.9798 + }, + { + "start": 14506.68, + "end": 14508.02, + "probability": 0.9764 + }, + { + "start": 14509.34, + "end": 14515.68, + "probability": 0.979 + }, + { + "start": 14515.92, + "end": 14520.92, + "probability": 0.9745 + }, + { + "start": 14521.26, + "end": 14526.02, + "probability": 0.9923 + }, + { + "start": 14526.02, + "end": 14529.18, + "probability": 0.9992 + }, + { + "start": 14529.24, + "end": 14531.42, + "probability": 0.9926 + }, + { + "start": 14532.16, + "end": 14533.46, + "probability": 0.6943 + }, + { + "start": 14534.22, + "end": 14534.66, + "probability": 0.9337 + }, + { + "start": 14534.74, + "end": 14538.0, + "probability": 0.9935 + }, + { + "start": 14538.06, + "end": 14540.54, + "probability": 0.9988 + }, + { + "start": 14540.66, + "end": 14542.62, + "probability": 0.896 + }, + { + "start": 14543.06, + "end": 14548.96, + "probability": 0.9633 + }, + { + "start": 14549.48, + "end": 14551.84, + "probability": 0.9362 + }, + { + "start": 14552.56, + "end": 14557.18, + "probability": 0.9861 + }, + { + "start": 14557.8, + "end": 14558.96, + "probability": 0.8136 + }, + { + "start": 14560.26, + "end": 14564.36, + "probability": 0.9529 + }, + { + "start": 14564.5, + "end": 14567.44, + "probability": 0.9702 + }, + { + "start": 14567.94, + "end": 14572.02, + "probability": 0.9997 + }, + { + "start": 14573.3, + "end": 14577.22, + "probability": 0.7753 + }, + { + "start": 14577.98, + "end": 14579.86, + "probability": 0.9441 + }, + { + "start": 14580.88, + "end": 14584.34, + "probability": 0.9414 + }, + { + "start": 14584.5, + "end": 14587.18, + "probability": 0.9956 + }, + { + "start": 14587.62, + "end": 14589.44, + "probability": 0.9704 + }, + { + "start": 14590.16, + "end": 14590.48, + "probability": 0.8993 + }, + { + "start": 14590.56, + "end": 14595.02, + "probability": 0.9973 + }, + { + "start": 14595.2, + "end": 14597.96, + "probability": 0.9907 + }, + { + "start": 14599.6, + "end": 14601.23, + "probability": 0.8887 + }, + { + "start": 14602.2, + "end": 14603.0, + "probability": 0.728 + }, + { + "start": 14603.04, + "end": 14604.7, + "probability": 0.7815 + }, + { + "start": 14605.04, + "end": 14605.82, + "probability": 0.7284 + }, + { + "start": 14605.9, + "end": 14607.22, + "probability": 0.9204 + }, + { + "start": 14607.28, + "end": 14611.32, + "probability": 0.9775 + }, + { + "start": 14611.4, + "end": 14613.54, + "probability": 0.9816 + }, + { + "start": 14614.5, + "end": 14615.74, + "probability": 0.8939 + }, + { + "start": 14615.98, + "end": 14616.62, + "probability": 0.9008 + }, + { + "start": 14616.78, + "end": 14618.6, + "probability": 0.9412 + }, + { + "start": 14618.68, + "end": 14621.54, + "probability": 0.9886 + }, + { + "start": 14622.0, + "end": 14623.78, + "probability": 0.9508 + }, + { + "start": 14624.16, + "end": 14627.68, + "probability": 0.9957 + }, + { + "start": 14628.1, + "end": 14631.0, + "probability": 0.9979 + }, + { + "start": 14631.5, + "end": 14632.12, + "probability": 0.9797 + }, + { + "start": 14632.18, + "end": 14633.82, + "probability": 0.989 + }, + { + "start": 14634.52, + "end": 14637.88, + "probability": 0.9995 + }, + { + "start": 14639.67, + "end": 14642.36, + "probability": 0.9785 + }, + { + "start": 14642.36, + "end": 14647.04, + "probability": 0.9917 + }, + { + "start": 14647.36, + "end": 14648.5, + "probability": 0.6514 + }, + { + "start": 14649.06, + "end": 14651.04, + "probability": 0.936 + }, + { + "start": 14651.18, + "end": 14652.9, + "probability": 0.931 + }, + { + "start": 14653.06, + "end": 14653.52, + "probability": 0.4667 + }, + { + "start": 14654.7, + "end": 14656.5, + "probability": 0.9363 + }, + { + "start": 14656.62, + "end": 14661.7, + "probability": 0.9751 + }, + { + "start": 14661.7, + "end": 14666.84, + "probability": 0.9826 + }, + { + "start": 14667.06, + "end": 14670.28, + "probability": 0.7456 + }, + { + "start": 14670.36, + "end": 14671.8, + "probability": 0.9976 + }, + { + "start": 14672.72, + "end": 14673.38, + "probability": 0.869 + }, + { + "start": 14673.54, + "end": 14674.38, + "probability": 0.7893 + }, + { + "start": 14674.58, + "end": 14674.96, + "probability": 0.6272 + }, + { + "start": 14675.04, + "end": 14679.6, + "probability": 0.9439 + }, + { + "start": 14679.6, + "end": 14684.08, + "probability": 0.946 + }, + { + "start": 14685.04, + "end": 14688.58, + "probability": 0.8667 + }, + { + "start": 14688.76, + "end": 14690.28, + "probability": 0.8662 + }, + { + "start": 14690.5, + "end": 14693.44, + "probability": 0.9814 + }, + { + "start": 14694.34, + "end": 14695.04, + "probability": 0.8737 + }, + { + "start": 14695.08, + "end": 14695.76, + "probability": 0.9269 + }, + { + "start": 14695.84, + "end": 14700.28, + "probability": 0.9611 + }, + { + "start": 14700.36, + "end": 14701.36, + "probability": 0.9858 + }, + { + "start": 14701.46, + "end": 14703.06, + "probability": 0.9933 + }, + { + "start": 14703.22, + "end": 14705.18, + "probability": 0.9896 + }, + { + "start": 14705.34, + "end": 14707.22, + "probability": 0.9262 + }, + { + "start": 14708.21, + "end": 14711.16, + "probability": 0.9863 + }, + { + "start": 14711.3, + "end": 14713.2, + "probability": 0.9664 + }, + { + "start": 14713.38, + "end": 14713.77, + "probability": 0.9926 + }, + { + "start": 14714.08, + "end": 14715.28, + "probability": 0.7702 + }, + { + "start": 14715.38, + "end": 14717.5, + "probability": 0.9762 + }, + { + "start": 14717.62, + "end": 14718.62, + "probability": 0.9867 + }, + { + "start": 14718.66, + "end": 14719.52, + "probability": 0.7954 + }, + { + "start": 14720.58, + "end": 14720.7, + "probability": 0.4275 + }, + { + "start": 14720.7, + "end": 14720.84, + "probability": 0.8327 + }, + { + "start": 14721.02, + "end": 14724.3, + "probability": 0.8188 + }, + { + "start": 14724.38, + "end": 14724.98, + "probability": 0.6198 + }, + { + "start": 14725.46, + "end": 14730.16, + "probability": 0.9751 + }, + { + "start": 14730.44, + "end": 14730.64, + "probability": 0.6976 + }, + { + "start": 14730.72, + "end": 14732.52, + "probability": 0.8267 + }, + { + "start": 14732.6, + "end": 14734.5, + "probability": 0.7995 + }, + { + "start": 14735.36, + "end": 14737.7, + "probability": 0.8982 + }, + { + "start": 14737.74, + "end": 14737.84, + "probability": 0.8736 + }, + { + "start": 14740.08, + "end": 14740.53, + "probability": 0.61 + }, + { + "start": 14741.3, + "end": 14741.74, + "probability": 0.0163 + }, + { + "start": 14742.34, + "end": 14742.78, + "probability": 0.2818 + }, + { + "start": 14761.04, + "end": 14761.26, + "probability": 0.7133 + }, + { + "start": 14762.34, + "end": 14764.26, + "probability": 0.6667 + }, + { + "start": 14765.48, + "end": 14768.14, + "probability": 0.9554 + }, + { + "start": 14768.8, + "end": 14769.9, + "probability": 0.8066 + }, + { + "start": 14770.12, + "end": 14772.74, + "probability": 0.9631 + }, + { + "start": 14772.74, + "end": 14778.14, + "probability": 0.9792 + }, + { + "start": 14778.28, + "end": 14779.42, + "probability": 0.5631 + }, + { + "start": 14779.92, + "end": 14784.46, + "probability": 0.754 + }, + { + "start": 14784.46, + "end": 14788.66, + "probability": 0.9604 + }, + { + "start": 14789.5, + "end": 14793.64, + "probability": 0.9901 + }, + { + "start": 14793.64, + "end": 14798.4, + "probability": 0.9979 + }, + { + "start": 14798.92, + "end": 14801.68, + "probability": 0.906 + }, + { + "start": 14801.82, + "end": 14802.83, + "probability": 0.9915 + }, + { + "start": 14803.78, + "end": 14808.74, + "probability": 0.9958 + }, + { + "start": 14809.18, + "end": 14816.58, + "probability": 0.865 + }, + { + "start": 14817.08, + "end": 14820.5, + "probability": 0.9979 + }, + { + "start": 14821.4, + "end": 14824.25, + "probability": 0.7495 + }, + { + "start": 14826.55, + "end": 14831.1, + "probability": 0.8165 + }, + { + "start": 14831.8, + "end": 14837.28, + "probability": 0.9354 + }, + { + "start": 14838.04, + "end": 14842.86, + "probability": 0.9773 + }, + { + "start": 14842.96, + "end": 14846.84, + "probability": 0.8904 + }, + { + "start": 14847.76, + "end": 14853.2, + "probability": 0.9888 + }, + { + "start": 14853.64, + "end": 14854.66, + "probability": 0.6964 + }, + { + "start": 14855.82, + "end": 14858.14, + "probability": 0.9629 + }, + { + "start": 14859.28, + "end": 14861.52, + "probability": 0.971 + }, + { + "start": 14862.7, + "end": 14864.58, + "probability": 0.7475 + }, + { + "start": 14864.76, + "end": 14865.46, + "probability": 0.7051 + }, + { + "start": 14865.74, + "end": 14867.84, + "probability": 0.8301 + }, + { + "start": 14868.66, + "end": 14871.82, + "probability": 0.3999 + }, + { + "start": 14872.44, + "end": 14873.36, + "probability": 0.7794 + }, + { + "start": 14873.78, + "end": 14878.24, + "probability": 0.8812 + }, + { + "start": 14878.6, + "end": 14879.78, + "probability": 0.9541 + }, + { + "start": 14879.88, + "end": 14880.46, + "probability": 0.8134 + }, + { + "start": 14880.56, + "end": 14882.42, + "probability": 0.5202 + }, + { + "start": 14882.78, + "end": 14883.27, + "probability": 0.8953 + }, + { + "start": 14883.56, + "end": 14883.98, + "probability": 0.8465 + }, + { + "start": 14884.54, + "end": 14885.35, + "probability": 0.7848 + }, + { + "start": 14885.98, + "end": 14888.31, + "probability": 0.9858 + }, + { + "start": 14889.28, + "end": 14894.16, + "probability": 0.8606 + }, + { + "start": 14895.0, + "end": 14897.18, + "probability": 0.9032 + }, + { + "start": 14898.04, + "end": 14903.08, + "probability": 0.409 + }, + { + "start": 14903.1, + "end": 14903.67, + "probability": 0.7253 + }, + { + "start": 14904.12, + "end": 14904.28, + "probability": 0.8527 + }, + { + "start": 14904.34, + "end": 14905.24, + "probability": 0.6561 + }, + { + "start": 14905.78, + "end": 14908.74, + "probability": 0.8735 + }, + { + "start": 14909.18, + "end": 14910.4, + "probability": 0.7734 + }, + { + "start": 14910.8, + "end": 14912.28, + "probability": 0.6942 + }, + { + "start": 14912.38, + "end": 14913.16, + "probability": 0.819 + }, + { + "start": 14913.48, + "end": 14916.46, + "probability": 0.9465 + }, + { + "start": 14916.5, + "end": 14917.42, + "probability": 0.6002 + }, + { + "start": 14918.49, + "end": 14922.02, + "probability": 0.9857 + }, + { + "start": 14922.52, + "end": 14924.46, + "probability": 0.75 + }, + { + "start": 14924.8, + "end": 14927.74, + "probability": 0.9517 + }, + { + "start": 14928.18, + "end": 14931.44, + "probability": 0.8438 + }, + { + "start": 14931.96, + "end": 14934.36, + "probability": 0.986 + }, + { + "start": 14935.24, + "end": 14936.22, + "probability": 0.8358 + }, + { + "start": 14936.32, + "end": 14937.18, + "probability": 0.7403 + }, + { + "start": 14937.43, + "end": 14941.36, + "probability": 0.8935 + }, + { + "start": 14941.56, + "end": 14946.18, + "probability": 0.9624 + }, + { + "start": 14946.44, + "end": 14953.25, + "probability": 0.9477 + }, + { + "start": 14953.72, + "end": 14954.28, + "probability": 0.7026 + }, + { + "start": 14954.44, + "end": 14956.08, + "probability": 0.7817 + }, + { + "start": 14956.42, + "end": 14958.42, + "probability": 0.6564 + }, + { + "start": 14958.66, + "end": 14959.94, + "probability": 0.7861 + }, + { + "start": 14960.22, + "end": 14960.62, + "probability": 0.8925 + }, + { + "start": 14970.88, + "end": 14972.74, + "probability": 0.707 + }, + { + "start": 14973.46, + "end": 14975.0, + "probability": 0.9415 + }, + { + "start": 14975.1, + "end": 14975.76, + "probability": 0.939 + }, + { + "start": 14975.88, + "end": 14981.6, + "probability": 0.8965 + }, + { + "start": 14981.6, + "end": 14985.9, + "probability": 0.994 + }, + { + "start": 14986.92, + "end": 14990.6, + "probability": 0.8872 + }, + { + "start": 14991.08, + "end": 14992.98, + "probability": 0.8809 + }, + { + "start": 14994.48, + "end": 14996.52, + "probability": 0.8217 + }, + { + "start": 14997.08, + "end": 14998.2, + "probability": 0.9731 + }, + { + "start": 14999.0, + "end": 15007.98, + "probability": 0.9937 + }, + { + "start": 15008.56, + "end": 15012.48, + "probability": 0.9834 + }, + { + "start": 15014.26, + "end": 15020.8, + "probability": 0.9409 + }, + { + "start": 15021.44, + "end": 15024.5, + "probability": 0.6028 + }, + { + "start": 15025.08, + "end": 15031.42, + "probability": 0.9922 + }, + { + "start": 15032.66, + "end": 15035.0, + "probability": 0.8565 + }, + { + "start": 15035.42, + "end": 15036.1, + "probability": 0.5445 + }, + { + "start": 15036.18, + "end": 15037.34, + "probability": 0.9412 + }, + { + "start": 15037.82, + "end": 15038.92, + "probability": 0.8952 + }, + { + "start": 15039.56, + "end": 15042.06, + "probability": 0.9933 + }, + { + "start": 15042.48, + "end": 15043.7, + "probability": 0.7547 + }, + { + "start": 15044.2, + "end": 15047.4, + "probability": 0.9405 + }, + { + "start": 15047.7, + "end": 15049.92, + "probability": 0.9595 + }, + { + "start": 15050.14, + "end": 15050.9, + "probability": 0.7739 + }, + { + "start": 15051.46, + "end": 15054.96, + "probability": 0.6501 + }, + { + "start": 15056.2, + "end": 15060.16, + "probability": 0.9808 + }, + { + "start": 15060.16, + "end": 15064.22, + "probability": 0.8745 + }, + { + "start": 15064.58, + "end": 15070.1, + "probability": 0.8493 + }, + { + "start": 15070.26, + "end": 15072.1, + "probability": 0.9672 + }, + { + "start": 15073.08, + "end": 15077.96, + "probability": 0.8968 + }, + { + "start": 15078.48, + "end": 15083.74, + "probability": 0.9814 + }, + { + "start": 15084.6, + "end": 15090.4, + "probability": 0.9967 + }, + { + "start": 15091.28, + "end": 15096.18, + "probability": 0.9933 + }, + { + "start": 15097.48, + "end": 15099.8, + "probability": 0.9827 + }, + { + "start": 15099.96, + "end": 15101.46, + "probability": 0.9504 + }, + { + "start": 15103.62, + "end": 15107.08, + "probability": 0.9757 + }, + { + "start": 15107.98, + "end": 15110.8, + "probability": 0.9819 + }, + { + "start": 15111.4, + "end": 15115.77, + "probability": 0.9922 + }, + { + "start": 15116.36, + "end": 15123.24, + "probability": 0.9481 + }, + { + "start": 15124.46, + "end": 15128.78, + "probability": 0.9422 + }, + { + "start": 15129.48, + "end": 15131.92, + "probability": 0.9273 + }, + { + "start": 15132.58, + "end": 15139.62, + "probability": 0.9465 + }, + { + "start": 15139.86, + "end": 15141.94, + "probability": 0.9527 + }, + { + "start": 15142.42, + "end": 15149.92, + "probability": 0.9568 + }, + { + "start": 15151.28, + "end": 15155.22, + "probability": 0.9856 + }, + { + "start": 15155.48, + "end": 15156.98, + "probability": 0.9422 + }, + { + "start": 15157.38, + "end": 15158.46, + "probability": 0.9412 + }, + { + "start": 15159.4, + "end": 15162.88, + "probability": 0.9979 + }, + { + "start": 15162.88, + "end": 15167.22, + "probability": 0.9973 + }, + { + "start": 15167.42, + "end": 15169.2, + "probability": 0.9641 + }, + { + "start": 15169.48, + "end": 15174.34, + "probability": 0.9969 + }, + { + "start": 15174.34, + "end": 15181.04, + "probability": 0.9944 + }, + { + "start": 15181.74, + "end": 15183.46, + "probability": 0.9334 + }, + { + "start": 15183.74, + "end": 15184.2, + "probability": 0.6887 + }, + { + "start": 15185.88, + "end": 15187.96, + "probability": 0.9792 + }, + { + "start": 15189.1, + "end": 15190.81, + "probability": 0.9913 + }, + { + "start": 15191.3, + "end": 15192.51, + "probability": 0.9719 + }, + { + "start": 15193.4, + "end": 15195.24, + "probability": 0.7875 + }, + { + "start": 15195.32, + "end": 15195.72, + "probability": 0.4659 + }, + { + "start": 15195.74, + "end": 15199.9, + "probability": 0.8925 + }, + { + "start": 15201.86, + "end": 15203.8, + "probability": 0.6966 + }, + { + "start": 15204.4, + "end": 15205.12, + "probability": 0.7078 + }, + { + "start": 15205.26, + "end": 15205.64, + "probability": 0.887 + }, + { + "start": 15205.72, + "end": 15209.84, + "probability": 0.8435 + }, + { + "start": 15210.56, + "end": 15213.5, + "probability": 0.9714 + }, + { + "start": 15213.52, + "end": 15217.37, + "probability": 0.9724 + }, + { + "start": 15218.88, + "end": 15222.76, + "probability": 0.9753 + }, + { + "start": 15223.54, + "end": 15225.6, + "probability": 0.7603 + }, + { + "start": 15226.22, + "end": 15228.32, + "probability": 0.9169 + }, + { + "start": 15229.5, + "end": 15230.26, + "probability": 0.8254 + }, + { + "start": 15231.04, + "end": 15235.04, + "probability": 0.9768 + }, + { + "start": 15235.58, + "end": 15238.92, + "probability": 0.9741 + }, + { + "start": 15240.74, + "end": 15241.88, + "probability": 0.9131 + }, + { + "start": 15242.42, + "end": 15243.52, + "probability": 0.4977 + }, + { + "start": 15243.86, + "end": 15246.06, + "probability": 0.9422 + }, + { + "start": 15246.5, + "end": 15247.43, + "probability": 0.8077 + }, + { + "start": 15248.02, + "end": 15249.58, + "probability": 0.9364 + }, + { + "start": 15250.12, + "end": 15256.18, + "probability": 0.9835 + }, + { + "start": 15256.28, + "end": 15256.96, + "probability": 0.9095 + }, + { + "start": 15257.12, + "end": 15257.88, + "probability": 0.7882 + }, + { + "start": 15258.36, + "end": 15262.34, + "probability": 0.9648 + }, + { + "start": 15262.94, + "end": 15266.04, + "probability": 0.6599 + }, + { + "start": 15266.84, + "end": 15270.3, + "probability": 0.9177 + }, + { + "start": 15271.4, + "end": 15275.16, + "probability": 0.9395 + }, + { + "start": 15276.0, + "end": 15277.08, + "probability": 0.5573 + }, + { + "start": 15277.36, + "end": 15277.94, + "probability": 0.9546 + }, + { + "start": 15278.0, + "end": 15283.92, + "probability": 0.9961 + }, + { + "start": 15283.92, + "end": 15290.98, + "probability": 0.9963 + }, + { + "start": 15291.08, + "end": 15291.62, + "probability": 0.4689 + }, + { + "start": 15292.5, + "end": 15292.82, + "probability": 0.5092 + }, + { + "start": 15292.96, + "end": 15294.46, + "probability": 0.7736 + }, + { + "start": 15294.52, + "end": 15295.94, + "probability": 0.7944 + }, + { + "start": 15296.04, + "end": 15296.3, + "probability": 0.5278 + }, + { + "start": 15296.3, + "end": 15296.76, + "probability": 0.9567 + }, + { + "start": 15300.06, + "end": 15302.64, + "probability": 0.5447 + }, + { + "start": 15302.7, + "end": 15305.64, + "probability": 0.9663 + }, + { + "start": 15305.64, + "end": 15308.56, + "probability": 0.9917 + }, + { + "start": 15309.12, + "end": 15310.1, + "probability": 0.6953 + }, + { + "start": 15310.2, + "end": 15310.84, + "probability": 0.836 + }, + { + "start": 15310.94, + "end": 15314.86, + "probability": 0.9933 + }, + { + "start": 15315.14, + "end": 15320.66, + "probability": 0.9948 + }, + { + "start": 15320.88, + "end": 15322.02, + "probability": 0.6982 + }, + { + "start": 15322.26, + "end": 15323.54, + "probability": 0.9592 + }, + { + "start": 15324.3, + "end": 15326.34, + "probability": 0.743 + }, + { + "start": 15326.38, + "end": 15330.46, + "probability": 0.5832 + }, + { + "start": 15330.56, + "end": 15332.52, + "probability": 0.9453 + }, + { + "start": 15332.58, + "end": 15334.56, + "probability": 0.8498 + }, + { + "start": 15334.84, + "end": 15336.44, + "probability": 0.6813 + }, + { + "start": 15336.44, + "end": 15338.36, + "probability": 0.7786 + }, + { + "start": 15338.74, + "end": 15340.22, + "probability": 0.9865 + }, + { + "start": 15340.68, + "end": 15344.96, + "probability": 0.9788 + }, + { + "start": 15345.46, + "end": 15348.0, + "probability": 0.9633 + }, + { + "start": 15348.04, + "end": 15351.02, + "probability": 0.6405 + }, + { + "start": 15351.06, + "end": 15352.62, + "probability": 0.7825 + }, + { + "start": 15352.62, + "end": 15355.26, + "probability": 0.7959 + }, + { + "start": 15355.28, + "end": 15357.14, + "probability": 0.8253 + }, + { + "start": 15357.28, + "end": 15359.46, + "probability": 0.9751 + }, + { + "start": 15359.54, + "end": 15360.26, + "probability": 0.7852 + }, + { + "start": 15360.28, + "end": 15360.72, + "probability": 0.6016 + }, + { + "start": 15360.74, + "end": 15362.16, + "probability": 0.6926 + }, + { + "start": 15362.54, + "end": 15368.18, + "probability": 0.8705 + }, + { + "start": 15368.24, + "end": 15368.9, + "probability": 0.9418 + }, + { + "start": 15369.26, + "end": 15371.94, + "probability": 0.8609 + }, + { + "start": 15371.94, + "end": 15374.14, + "probability": 0.539 + }, + { + "start": 15374.14, + "end": 15376.08, + "probability": 0.7003 + }, + { + "start": 15376.28, + "end": 15377.8, + "probability": 0.8481 + }, + { + "start": 15378.06, + "end": 15382.88, + "probability": 0.9388 + }, + { + "start": 15383.9, + "end": 15385.24, + "probability": 0.7576 + }, + { + "start": 15385.82, + "end": 15387.4, + "probability": 0.7613 + }, + { + "start": 15387.46, + "end": 15389.08, + "probability": 0.9162 + }, + { + "start": 15389.54, + "end": 15391.11, + "probability": 0.97 + }, + { + "start": 15391.6, + "end": 15393.16, + "probability": 0.9451 + }, + { + "start": 15393.62, + "end": 15397.96, + "probability": 0.9393 + }, + { + "start": 15398.62, + "end": 15404.36, + "probability": 0.9355 + }, + { + "start": 15404.36, + "end": 15410.56, + "probability": 0.9922 + }, + { + "start": 15410.94, + "end": 15412.32, + "probability": 0.0564 + }, + { + "start": 15412.32, + "end": 15416.02, + "probability": 0.2827 + }, + { + "start": 15416.38, + "end": 15417.26, + "probability": 0.0322 + }, + { + "start": 15417.26, + "end": 15417.84, + "probability": 0.1326 + }, + { + "start": 15420.34, + "end": 15428.58, + "probability": 0.9309 + }, + { + "start": 15428.58, + "end": 15432.3, + "probability": 0.9978 + }, + { + "start": 15432.96, + "end": 15435.46, + "probability": 0.7462 + }, + { + "start": 15435.86, + "end": 15441.88, + "probability": 0.9971 + }, + { + "start": 15442.1, + "end": 15443.58, + "probability": 0.7538 + }, + { + "start": 15443.94, + "end": 15450.4, + "probability": 0.9799 + }, + { + "start": 15450.5, + "end": 15455.42, + "probability": 0.9612 + }, + { + "start": 15456.04, + "end": 15457.68, + "probability": 0.7858 + }, + { + "start": 15457.8, + "end": 15461.64, + "probability": 0.9711 + }, + { + "start": 15461.76, + "end": 15462.22, + "probability": 0.7229 + }, + { + "start": 15462.32, + "end": 15463.04, + "probability": 0.524 + }, + { + "start": 15463.34, + "end": 15463.86, + "probability": 0.5789 + }, + { + "start": 15464.04, + "end": 15465.22, + "probability": 0.7855 + }, + { + "start": 15465.44, + "end": 15466.7, + "probability": 0.9868 + }, + { + "start": 15467.7, + "end": 15470.48, + "probability": 0.6185 + }, + { + "start": 15471.56, + "end": 15474.5, + "probability": 0.9537 + }, + { + "start": 15474.9, + "end": 15477.54, + "probability": 0.9701 + }, + { + "start": 15478.02, + "end": 15479.7, + "probability": 0.9795 + }, + { + "start": 15479.72, + "end": 15482.44, + "probability": 0.9955 + }, + { + "start": 15482.44, + "end": 15486.42, + "probability": 0.9722 + }, + { + "start": 15486.5, + "end": 15487.6, + "probability": 0.8975 + }, + { + "start": 15487.74, + "end": 15490.3, + "probability": 0.9692 + }, + { + "start": 15490.3, + "end": 15492.57, + "probability": 0.9946 + }, + { + "start": 15493.04, + "end": 15493.36, + "probability": 0.745 + }, + { + "start": 15493.68, + "end": 15495.38, + "probability": 0.6672 + }, + { + "start": 15495.5, + "end": 15499.24, + "probability": 0.8502 + }, + { + "start": 15499.76, + "end": 15499.98, + "probability": 0.7895 + }, + { + "start": 15505.7, + "end": 15508.88, + "probability": 0.7755 + }, + { + "start": 15510.18, + "end": 15513.88, + "probability": 0.9953 + }, + { + "start": 15514.62, + "end": 15516.86, + "probability": 0.9879 + }, + { + "start": 15516.92, + "end": 15520.56, + "probability": 0.9932 + }, + { + "start": 15520.56, + "end": 15524.84, + "probability": 0.9976 + }, + { + "start": 15525.02, + "end": 15527.84, + "probability": 0.9609 + }, + { + "start": 15528.28, + "end": 15531.91, + "probability": 0.9141 + }, + { + "start": 15532.62, + "end": 15532.88, + "probability": 0.4256 + }, + { + "start": 15533.08, + "end": 15533.72, + "probability": 0.8658 + }, + { + "start": 15534.2, + "end": 15536.24, + "probability": 0.9923 + }, + { + "start": 15536.48, + "end": 15537.62, + "probability": 0.8789 + }, + { + "start": 15538.0, + "end": 15538.28, + "probability": 0.858 + }, + { + "start": 15538.42, + "end": 15542.24, + "probability": 0.9924 + }, + { + "start": 15542.66, + "end": 15543.21, + "probability": 0.895 + }, + { + "start": 15543.52, + "end": 15545.84, + "probability": 0.9917 + }, + { + "start": 15546.1, + "end": 15551.88, + "probability": 0.9822 + }, + { + "start": 15552.22, + "end": 15552.68, + "probability": 0.247 + }, + { + "start": 15552.8, + "end": 15557.24, + "probability": 0.9743 + }, + { + "start": 15557.54, + "end": 15560.06, + "probability": 0.7771 + }, + { + "start": 15560.08, + "end": 15560.3, + "probability": 0.387 + }, + { + "start": 15560.34, + "end": 15560.68, + "probability": 0.7241 + }, + { + "start": 15560.78, + "end": 15561.86, + "probability": 0.9157 + }, + { + "start": 15562.12, + "end": 15563.38, + "probability": 0.8901 + }, + { + "start": 15563.52, + "end": 15566.93, + "probability": 0.914 + }, + { + "start": 15568.06, + "end": 15571.18, + "probability": 0.8725 + }, + { + "start": 15571.82, + "end": 15574.54, + "probability": 0.6035 + }, + { + "start": 15574.76, + "end": 15575.46, + "probability": 0.3815 + }, + { + "start": 15576.02, + "end": 15577.72, + "probability": 0.9718 + }, + { + "start": 15577.82, + "end": 15579.44, + "probability": 0.8754 + }, + { + "start": 15579.48, + "end": 15581.64, + "probability": 0.9167 + }, + { + "start": 15581.68, + "end": 15582.28, + "probability": 0.734 + }, + { + "start": 15582.32, + "end": 15583.06, + "probability": 0.6224 + }, + { + "start": 15583.66, + "end": 15584.52, + "probability": 0.8845 + }, + { + "start": 15587.46, + "end": 15589.46, + "probability": 0.7765 + }, + { + "start": 15599.72, + "end": 15605.28, + "probability": 0.1975 + }, + { + "start": 15606.04, + "end": 15606.88, + "probability": 0.0307 + }, + { + "start": 15610.39, + "end": 15614.1, + "probability": 0.4158 + }, + { + "start": 15614.22, + "end": 15616.26, + "probability": 0.8392 + }, + { + "start": 15616.8, + "end": 15618.1, + "probability": 0.7159 + }, + { + "start": 15618.18, + "end": 15619.08, + "probability": 0.8671 + }, + { + "start": 15619.18, + "end": 15620.92, + "probability": 0.8282 + }, + { + "start": 15620.96, + "end": 15624.32, + "probability": 0.9522 + }, + { + "start": 15624.86, + "end": 15625.48, + "probability": 0.857 + }, + { + "start": 15626.92, + "end": 15627.84, + "probability": 0.7595 + }, + { + "start": 15631.12, + "end": 15633.24, + "probability": 0.4908 + }, + { + "start": 15633.66, + "end": 15634.42, + "probability": 0.0402 + }, + { + "start": 15634.42, + "end": 15634.42, + "probability": 0.1168 + }, + { + "start": 15634.42, + "end": 15635.3, + "probability": 0.2848 + }, + { + "start": 15635.3, + "end": 15636.38, + "probability": 0.9251 + }, + { + "start": 15637.48, + "end": 15640.2, + "probability": 0.571 + }, + { + "start": 15640.3, + "end": 15642.8, + "probability": 0.6866 + }, + { + "start": 15642.84, + "end": 15643.24, + "probability": 0.8031 + }, + { + "start": 15661.46, + "end": 15663.84, + "probability": 0.6963 + }, + { + "start": 15665.16, + "end": 15667.32, + "probability": 0.7619 + }, + { + "start": 15668.28, + "end": 15669.22, + "probability": 0.9093 + }, + { + "start": 15670.52, + "end": 15675.2, + "probability": 0.9548 + }, + { + "start": 15675.72, + "end": 15676.82, + "probability": 0.9342 + }, + { + "start": 15678.34, + "end": 15680.14, + "probability": 0.6176 + }, + { + "start": 15680.2, + "end": 15681.46, + "probability": 0.561 + }, + { + "start": 15682.56, + "end": 15685.42, + "probability": 0.978 + }, + { + "start": 15687.14, + "end": 15691.98, + "probability": 0.7246 + }, + { + "start": 15693.24, + "end": 15696.26, + "probability": 0.8749 + }, + { + "start": 15697.46, + "end": 15701.78, + "probability": 0.9883 + }, + { + "start": 15701.88, + "end": 15702.56, + "probability": 0.8669 + }, + { + "start": 15702.98, + "end": 15703.56, + "probability": 0.3912 + }, + { + "start": 15704.08, + "end": 15705.56, + "probability": 0.9476 + }, + { + "start": 15706.6, + "end": 15709.06, + "probability": 0.9965 + }, + { + "start": 15709.36, + "end": 15712.96, + "probability": 0.658 + }, + { + "start": 15713.04, + "end": 15714.12, + "probability": 0.8764 + }, + { + "start": 15715.08, + "end": 15717.7, + "probability": 0.8962 + }, + { + "start": 15718.64, + "end": 15720.56, + "probability": 0.89 + }, + { + "start": 15721.52, + "end": 15722.42, + "probability": 0.8338 + }, + { + "start": 15722.42, + "end": 15725.86, + "probability": 0.9835 + }, + { + "start": 15727.06, + "end": 15727.96, + "probability": 0.8617 + }, + { + "start": 15728.74, + "end": 15731.58, + "probability": 0.9849 + }, + { + "start": 15732.34, + "end": 15737.46, + "probability": 0.8632 + }, + { + "start": 15738.74, + "end": 15739.56, + "probability": 0.5309 + }, + { + "start": 15740.92, + "end": 15743.07, + "probability": 0.9961 + }, + { + "start": 15744.08, + "end": 15744.71, + "probability": 0.8594 + }, + { + "start": 15745.0, + "end": 15746.0, + "probability": 0.729 + }, + { + "start": 15746.04, + "end": 15747.86, + "probability": 0.7769 + }, + { + "start": 15748.62, + "end": 15750.0, + "probability": 0.9412 + }, + { + "start": 15751.24, + "end": 15753.18, + "probability": 0.906 + }, + { + "start": 15754.46, + "end": 15756.88, + "probability": 0.8203 + }, + { + "start": 15756.96, + "end": 15760.72, + "probability": 0.9575 + }, + { + "start": 15761.34, + "end": 15763.41, + "probability": 0.9691 + }, + { + "start": 15764.52, + "end": 15769.72, + "probability": 0.983 + }, + { + "start": 15770.12, + "end": 15770.88, + "probability": 0.9431 + }, + { + "start": 15771.04, + "end": 15771.84, + "probability": 0.7258 + }, + { + "start": 15772.62, + "end": 15776.66, + "probability": 0.76 + }, + { + "start": 15778.48, + "end": 15782.06, + "probability": 0.8661 + }, + { + "start": 15782.32, + "end": 15785.54, + "probability": 0.9335 + }, + { + "start": 15799.56, + "end": 15800.16, + "probability": 0.4916 + }, + { + "start": 15800.18, + "end": 15800.4, + "probability": 0.8604 + }, + { + "start": 15804.12, + "end": 15804.96, + "probability": 0.6315 + }, + { + "start": 15806.32, + "end": 15808.16, + "probability": 0.6864 + }, + { + "start": 15810.0, + "end": 15818.6, + "probability": 0.8107 + }, + { + "start": 15819.58, + "end": 15821.54, + "probability": 0.9163 + }, + { + "start": 15822.34, + "end": 15823.38, + "probability": 0.9823 + }, + { + "start": 15824.78, + "end": 15830.92, + "probability": 0.9353 + }, + { + "start": 15831.92, + "end": 15836.34, + "probability": 0.9824 + }, + { + "start": 15836.74, + "end": 15842.3, + "probability": 0.9972 + }, + { + "start": 15843.02, + "end": 15843.72, + "probability": 0.9766 + }, + { + "start": 15843.96, + "end": 15846.84, + "probability": 0.9927 + }, + { + "start": 15847.06, + "end": 15847.08, + "probability": 0.8916 + }, + { + "start": 15848.76, + "end": 15849.67, + "probability": 0.7491 + }, + { + "start": 15851.2, + "end": 15852.36, + "probability": 0.4991 + }, + { + "start": 15853.18, + "end": 15853.4, + "probability": 0.2517 + }, + { + "start": 15855.0, + "end": 15855.91, + "probability": 0.9523 + }, + { + "start": 15857.68, + "end": 15857.82, + "probability": 0.6744 + }, + { + "start": 15857.92, + "end": 15858.48, + "probability": 0.7866 + }, + { + "start": 15858.6, + "end": 15860.05, + "probability": 0.9777 + }, + { + "start": 15860.66, + "end": 15862.22, + "probability": 0.9423 + }, + { + "start": 15862.36, + "end": 15864.26, + "probability": 0.9869 + }, + { + "start": 15864.3, + "end": 15865.98, + "probability": 0.505 + }, + { + "start": 15867.0, + "end": 15868.82, + "probability": 0.8491 + }, + { + "start": 15869.44, + "end": 15872.48, + "probability": 0.9917 + }, + { + "start": 15874.06, + "end": 15874.58, + "probability": 0.1574 + }, + { + "start": 15874.96, + "end": 15875.34, + "probability": 0.1777 + }, + { + "start": 15875.36, + "end": 15878.89, + "probability": 0.998 + }, + { + "start": 15879.9, + "end": 15881.24, + "probability": 0.0046 + }, + { + "start": 15881.4, + "end": 15881.62, + "probability": 0.1185 + }, + { + "start": 15881.76, + "end": 15881.88, + "probability": 0.0033 + }, + { + "start": 15881.88, + "end": 15881.88, + "probability": 0.262 + }, + { + "start": 15881.92, + "end": 15885.71, + "probability": 0.769 + }, + { + "start": 15886.62, + "end": 15890.68, + "probability": 0.9352 + }, + { + "start": 15892.12, + "end": 15896.52, + "probability": 0.9884 + }, + { + "start": 15896.52, + "end": 15899.82, + "probability": 0.9862 + }, + { + "start": 15899.96, + "end": 15901.38, + "probability": 0.9554 + }, + { + "start": 15901.86, + "end": 15903.44, + "probability": 0.9432 + }, + { + "start": 15904.68, + "end": 15907.96, + "probability": 0.9199 + }, + { + "start": 15908.1, + "end": 15912.52, + "probability": 0.9816 + }, + { + "start": 15914.7, + "end": 15916.9, + "probability": 0.9814 + }, + { + "start": 15918.06, + "end": 15921.16, + "probability": 0.8473 + }, + { + "start": 15922.1, + "end": 15924.78, + "probability": 0.9808 + }, + { + "start": 15926.26, + "end": 15930.48, + "probability": 0.874 + }, + { + "start": 15930.62, + "end": 15932.62, + "probability": 0.7403 + }, + { + "start": 15932.82, + "end": 15935.42, + "probability": 0.7388 + }, + { + "start": 15936.06, + "end": 15938.46, + "probability": 0.894 + }, + { + "start": 15938.92, + "end": 15942.32, + "probability": 0.957 + }, + { + "start": 15942.42, + "end": 15947.94, + "probability": 0.8191 + }, + { + "start": 15948.7, + "end": 15950.14, + "probability": 0.9275 + }, + { + "start": 15951.2, + "end": 15953.82, + "probability": 0.9839 + }, + { + "start": 15953.94, + "end": 15954.46, + "probability": 0.72 + }, + { + "start": 15954.52, + "end": 15959.1, + "probability": 0.6249 + }, + { + "start": 15959.72, + "end": 15962.78, + "probability": 0.8439 + }, + { + "start": 15963.12, + "end": 15970.62, + "probability": 0.9408 + }, + { + "start": 15970.66, + "end": 15972.12, + "probability": 0.9178 + }, + { + "start": 15972.4, + "end": 15972.64, + "probability": 0.4637 + }, + { + "start": 15973.24, + "end": 15974.84, + "probability": 0.5391 + }, + { + "start": 15974.94, + "end": 15976.56, + "probability": 0.9467 + }, + { + "start": 15983.62, + "end": 15983.62, + "probability": 0.4385 + }, + { + "start": 15983.68, + "end": 15983.68, + "probability": 0.1363 + }, + { + "start": 15983.68, + "end": 15983.68, + "probability": 0.1613 + }, + { + "start": 15983.68, + "end": 15983.68, + "probability": 0.1371 + }, + { + "start": 15983.68, + "end": 15983.68, + "probability": 0.1339 + }, + { + "start": 15983.68, + "end": 15983.68, + "probability": 0.1385 + }, + { + "start": 15995.46, + "end": 15996.26, + "probability": 0.225 + }, + { + "start": 15996.26, + "end": 15998.36, + "probability": 0.7935 + }, + { + "start": 15998.54, + "end": 16003.48, + "probability": 0.9832 + }, + { + "start": 16004.66, + "end": 16005.98, + "probability": 0.8585 + }, + { + "start": 16006.72, + "end": 16009.72, + "probability": 0.9923 + }, + { + "start": 16010.7, + "end": 16013.3, + "probability": 0.9919 + }, + { + "start": 16013.76, + "end": 16016.08, + "probability": 0.9743 + }, + { + "start": 16016.98, + "end": 16019.42, + "probability": 0.8487 + }, + { + "start": 16020.3, + "end": 16021.84, + "probability": 0.9985 + }, + { + "start": 16022.88, + "end": 16024.3, + "probability": 0.8946 + }, + { + "start": 16025.28, + "end": 16029.24, + "probability": 0.8193 + }, + { + "start": 16033.74, + "end": 16037.5, + "probability": 0.9206 + }, + { + "start": 16038.8, + "end": 16040.96, + "probability": 0.8059 + }, + { + "start": 16041.38, + "end": 16045.18, + "probability": 0.9576 + }, + { + "start": 16045.48, + "end": 16046.54, + "probability": 0.6672 + }, + { + "start": 16047.94, + "end": 16051.88, + "probability": 0.9914 + }, + { + "start": 16052.88, + "end": 16053.4, + "probability": 0.9146 + }, + { + "start": 16053.48, + "end": 16054.14, + "probability": 0.7201 + }, + { + "start": 16054.24, + "end": 16056.34, + "probability": 0.9841 + }, + { + "start": 16057.82, + "end": 16060.82, + "probability": 0.9967 + }, + { + "start": 16061.98, + "end": 16065.36, + "probability": 0.9888 + }, + { + "start": 16065.52, + "end": 16066.52, + "probability": 0.3891 + }, + { + "start": 16066.62, + "end": 16068.14, + "probability": 0.9689 + }, + { + "start": 16068.88, + "end": 16074.6, + "probability": 0.8776 + }, + { + "start": 16075.76, + "end": 16077.3, + "probability": 0.9844 + }, + { + "start": 16077.44, + "end": 16078.14, + "probability": 0.8681 + }, + { + "start": 16078.58, + "end": 16080.56, + "probability": 0.8551 + }, + { + "start": 16080.62, + "end": 16081.68, + "probability": 0.8975 + }, + { + "start": 16083.88, + "end": 16085.58, + "probability": 0.9385 + }, + { + "start": 16085.74, + "end": 16086.36, + "probability": 0.8722 + }, + { + "start": 16086.6, + "end": 16090.96, + "probability": 0.9758 + }, + { + "start": 16090.98, + "end": 16091.84, + "probability": 0.917 + }, + { + "start": 16092.2, + "end": 16092.84, + "probability": 0.8382 + }, + { + "start": 16094.36, + "end": 16095.7, + "probability": 0.6887 + }, + { + "start": 16098.12, + "end": 16101.76, + "probability": 0.939 + }, + { + "start": 16102.96, + "end": 16106.18, + "probability": 0.9904 + }, + { + "start": 16107.22, + "end": 16109.34, + "probability": 0.9815 + }, + { + "start": 16109.68, + "end": 16111.02, + "probability": 0.968 + }, + { + "start": 16111.06, + "end": 16112.12, + "probability": 0.8651 + }, + { + "start": 16112.56, + "end": 16115.3, + "probability": 0.9074 + }, + { + "start": 16115.52, + "end": 16116.16, + "probability": 0.752 + }, + { + "start": 16116.26, + "end": 16116.9, + "probability": 0.6245 + }, + { + "start": 16117.04, + "end": 16117.92, + "probability": 0.7687 + }, + { + "start": 16118.52, + "end": 16120.64, + "probability": 0.9891 + }, + { + "start": 16121.32, + "end": 16121.9, + "probability": 0.8291 + }, + { + "start": 16122.9, + "end": 16124.32, + "probability": 0.9201 + }, + { + "start": 16124.68, + "end": 16128.0, + "probability": 0.9658 + }, + { + "start": 16129.22, + "end": 16135.26, + "probability": 0.9515 + }, + { + "start": 16136.04, + "end": 16136.84, + "probability": 0.6055 + }, + { + "start": 16137.76, + "end": 16140.52, + "probability": 0.7723 + }, + { + "start": 16141.06, + "end": 16145.86, + "probability": 0.9863 + }, + { + "start": 16146.44, + "end": 16148.76, + "probability": 0.987 + }, + { + "start": 16149.66, + "end": 16151.14, + "probability": 0.9514 + }, + { + "start": 16151.72, + "end": 16153.06, + "probability": 0.9786 + }, + { + "start": 16153.62, + "end": 16154.26, + "probability": 0.8316 + }, + { + "start": 16154.82, + "end": 16156.14, + "probability": 0.9878 + }, + { + "start": 16156.92, + "end": 16159.88, + "probability": 0.9523 + }, + { + "start": 16160.08, + "end": 16160.54, + "probability": 0.6091 + }, + { + "start": 16160.72, + "end": 16161.82, + "probability": 0.9829 + }, + { + "start": 16162.72, + "end": 16163.38, + "probability": 0.8108 + }, + { + "start": 16163.52, + "end": 16164.54, + "probability": 0.6824 + }, + { + "start": 16165.36, + "end": 16166.42, + "probability": 0.9731 + }, + { + "start": 16166.54, + "end": 16168.68, + "probability": 0.6798 + }, + { + "start": 16168.8, + "end": 16171.4, + "probability": 0.8533 + }, + { + "start": 16171.6, + "end": 16172.64, + "probability": 0.994 + }, + { + "start": 16172.7, + "end": 16173.46, + "probability": 0.7212 + }, + { + "start": 16174.2, + "end": 16178.58, + "probability": 0.8203 + }, + { + "start": 16178.78, + "end": 16181.12, + "probability": 0.9855 + }, + { + "start": 16181.9, + "end": 16182.44, + "probability": 0.9276 + }, + { + "start": 16182.54, + "end": 16184.76, + "probability": 0.9564 + }, + { + "start": 16184.86, + "end": 16186.04, + "probability": 0.9462 + }, + { + "start": 16186.22, + "end": 16188.96, + "probability": 0.8443 + }, + { + "start": 16189.44, + "end": 16190.14, + "probability": 0.7505 + }, + { + "start": 16190.44, + "end": 16192.32, + "probability": 0.9534 + }, + { + "start": 16192.46, + "end": 16193.4, + "probability": 0.9354 + }, + { + "start": 16193.66, + "end": 16195.98, + "probability": 0.8201 + }, + { + "start": 16196.2, + "end": 16197.76, + "probability": 0.4903 + }, + { + "start": 16197.8, + "end": 16199.48, + "probability": 0.941 + }, + { + "start": 16199.64, + "end": 16203.47, + "probability": 0.56 + }, + { + "start": 16204.74, + "end": 16206.14, + "probability": 0.4646 + }, + { + "start": 16206.34, + "end": 16206.76, + "probability": 0.4752 + }, + { + "start": 16208.06, + "end": 16209.6, + "probability": 0.2469 + }, + { + "start": 16211.76, + "end": 16212.96, + "probability": 0.5918 + }, + { + "start": 16212.98, + "end": 16215.15, + "probability": 0.5291 + }, + { + "start": 16216.82, + "end": 16218.0, + "probability": 0.9835 + }, + { + "start": 16218.06, + "end": 16218.38, + "probability": 0.9512 + }, + { + "start": 16223.9, + "end": 16225.06, + "probability": 0.6155 + }, + { + "start": 16225.18, + "end": 16226.44, + "probability": 0.8245 + }, + { + "start": 16226.78, + "end": 16229.24, + "probability": 0.9623 + }, + { + "start": 16229.4, + "end": 16232.74, + "probability": 0.9655 + }, + { + "start": 16233.07, + "end": 16238.78, + "probability": 0.8434 + }, + { + "start": 16238.78, + "end": 16244.32, + "probability": 0.9869 + }, + { + "start": 16245.5, + "end": 16246.96, + "probability": 0.8167 + }, + { + "start": 16249.24, + "end": 16256.1, + "probability": 0.9465 + }, + { + "start": 16256.22, + "end": 16258.7, + "probability": 0.984 + }, + { + "start": 16259.52, + "end": 16264.32, + "probability": 0.9943 + }, + { + "start": 16264.42, + "end": 16265.34, + "probability": 0.91 + }, + { + "start": 16265.46, + "end": 16266.36, + "probability": 0.8921 + }, + { + "start": 16266.78, + "end": 16268.34, + "probability": 0.9606 + }, + { + "start": 16268.72, + "end": 16270.22, + "probability": 0.9205 + }, + { + "start": 16270.46, + "end": 16271.46, + "probability": 0.9414 + }, + { + "start": 16272.62, + "end": 16273.0, + "probability": 0.7548 + }, + { + "start": 16273.16, + "end": 16278.56, + "probability": 0.8608 + }, + { + "start": 16279.58, + "end": 16284.16, + "probability": 0.9924 + }, + { + "start": 16285.2, + "end": 16288.78, + "probability": 0.803 + }, + { + "start": 16289.44, + "end": 16292.32, + "probability": 0.9784 + }, + { + "start": 16292.78, + "end": 16299.73, + "probability": 0.7753 + }, + { + "start": 16300.86, + "end": 16306.52, + "probability": 0.9967 + }, + { + "start": 16307.6, + "end": 16307.94, + "probability": 0.4585 + }, + { + "start": 16308.04, + "end": 16311.58, + "probability": 0.9903 + }, + { + "start": 16312.6, + "end": 16318.22, + "probability": 0.9608 + }, + { + "start": 16318.64, + "end": 16320.86, + "probability": 0.8677 + }, + { + "start": 16321.34, + "end": 16324.64, + "probability": 0.9891 + }, + { + "start": 16325.98, + "end": 16327.0, + "probability": 0.936 + }, + { + "start": 16327.12, + "end": 16328.6, + "probability": 0.9683 + }, + { + "start": 16328.98, + "end": 16330.92, + "probability": 0.9688 + }, + { + "start": 16331.68, + "end": 16333.88, + "probability": 0.9964 + }, + { + "start": 16334.14, + "end": 16335.6, + "probability": 0.9845 + }, + { + "start": 16336.1, + "end": 16338.68, + "probability": 0.987 + }, + { + "start": 16340.02, + "end": 16343.24, + "probability": 0.9627 + }, + { + "start": 16343.24, + "end": 16348.92, + "probability": 0.9596 + }, + { + "start": 16349.36, + "end": 16351.8, + "probability": 0.9541 + }, + { + "start": 16352.22, + "end": 16354.1, + "probability": 0.9729 + }, + { + "start": 16355.26, + "end": 16359.62, + "probability": 0.978 + }, + { + "start": 16360.5, + "end": 16364.08, + "probability": 0.9331 + }, + { + "start": 16364.96, + "end": 16367.04, + "probability": 0.9972 + }, + { + "start": 16367.62, + "end": 16370.34, + "probability": 0.9987 + }, + { + "start": 16370.86, + "end": 16372.18, + "probability": 0.9204 + }, + { + "start": 16372.96, + "end": 16376.14, + "probability": 0.8802 + }, + { + "start": 16376.56, + "end": 16379.26, + "probability": 0.9612 + }, + { + "start": 16379.98, + "end": 16382.42, + "probability": 0.9706 + }, + { + "start": 16382.76, + "end": 16383.72, + "probability": 0.8663 + }, + { + "start": 16383.9, + "end": 16386.42, + "probability": 0.9395 + }, + { + "start": 16387.3, + "end": 16391.68, + "probability": 0.9775 + }, + { + "start": 16392.22, + "end": 16393.2, + "probability": 0.9235 + }, + { + "start": 16393.34, + "end": 16394.36, + "probability": 0.9656 + }, + { + "start": 16394.62, + "end": 16396.32, + "probability": 0.958 + }, + { + "start": 16396.8, + "end": 16399.86, + "probability": 0.9852 + }, + { + "start": 16401.42, + "end": 16404.28, + "probability": 0.7519 + }, + { + "start": 16405.1, + "end": 16409.28, + "probability": 0.7244 + }, + { + "start": 16413.92, + "end": 16420.18, + "probability": 0.9795 + }, + { + "start": 16420.9, + "end": 16421.28, + "probability": 0.1152 + }, + { + "start": 16421.28, + "end": 16425.08, + "probability": 0.9844 + }, + { + "start": 16426.04, + "end": 16426.76, + "probability": 0.7872 + }, + { + "start": 16427.3, + "end": 16428.98, + "probability": 0.8914 + }, + { + "start": 16429.14, + "end": 16430.32, + "probability": 0.6203 + }, + { + "start": 16430.82, + "end": 16432.92, + "probability": 0.9886 + }, + { + "start": 16433.38, + "end": 16435.7, + "probability": 0.8526 + }, + { + "start": 16435.76, + "end": 16438.9, + "probability": 0.9489 + }, + { + "start": 16439.52, + "end": 16441.94, + "probability": 0.9443 + }, + { + "start": 16442.58, + "end": 16444.58, + "probability": 0.9714 + }, + { + "start": 16445.54, + "end": 16448.36, + "probability": 0.9712 + }, + { + "start": 16448.7, + "end": 16451.46, + "probability": 0.9746 + }, + { + "start": 16452.68, + "end": 16457.3, + "probability": 0.9505 + }, + { + "start": 16457.92, + "end": 16462.92, + "probability": 0.965 + }, + { + "start": 16462.92, + "end": 16468.12, + "probability": 0.995 + }, + { + "start": 16469.14, + "end": 16473.0, + "probability": 0.9927 + }, + { + "start": 16473.52, + "end": 16476.1, + "probability": 0.9456 + }, + { + "start": 16476.68, + "end": 16478.64, + "probability": 0.9977 + }, + { + "start": 16480.22, + "end": 16484.68, + "probability": 0.9956 + }, + { + "start": 16485.54, + "end": 16489.82, + "probability": 0.9178 + }, + { + "start": 16490.56, + "end": 16492.54, + "probability": 0.9696 + }, + { + "start": 16494.02, + "end": 16495.94, + "probability": 0.8524 + }, + { + "start": 16496.98, + "end": 16499.14, + "probability": 0.0172 + }, + { + "start": 16499.4, + "end": 16501.24, + "probability": 0.6452 + }, + { + "start": 16501.6, + "end": 16503.0, + "probability": 0.7083 + }, + { + "start": 16503.44, + "end": 16509.08, + "probability": 0.9466 + }, + { + "start": 16510.92, + "end": 16512.98, + "probability": 0.8699 + }, + { + "start": 16514.05, + "end": 16517.27, + "probability": 0.9387 + }, + { + "start": 16518.5, + "end": 16521.6, + "probability": 0.792 + }, + { + "start": 16522.04, + "end": 16522.22, + "probability": 0.2353 + }, + { + "start": 16522.38, + "end": 16524.62, + "probability": 0.5782 + }, + { + "start": 16526.1, + "end": 16529.9, + "probability": 0.808 + }, + { + "start": 16530.1, + "end": 16530.72, + "probability": 0.2791 + }, + { + "start": 16530.78, + "end": 16531.6, + "probability": 0.8149 + }, + { + "start": 16532.32, + "end": 16535.54, + "probability": 0.8917 + }, + { + "start": 16536.06, + "end": 16538.04, + "probability": 0.9651 + }, + { + "start": 16538.58, + "end": 16541.46, + "probability": 0.9868 + }, + { + "start": 16541.86, + "end": 16542.04, + "probability": 0.8232 + }, + { + "start": 16542.2, + "end": 16544.02, + "probability": 0.7442 + }, + { + "start": 16544.14, + "end": 16546.66, + "probability": 0.993 + }, + { + "start": 16547.38, + "end": 16554.94, + "probability": 0.9978 + }, + { + "start": 16555.56, + "end": 16556.64, + "probability": 0.7235 + }, + { + "start": 16557.24, + "end": 16561.34, + "probability": 0.9694 + }, + { + "start": 16562.32, + "end": 16565.32, + "probability": 0.9972 + }, + { + "start": 16565.68, + "end": 16567.0, + "probability": 0.7841 + }, + { + "start": 16567.08, + "end": 16571.44, + "probability": 0.9887 + }, + { + "start": 16572.56, + "end": 16575.68, + "probability": 0.9754 + }, + { + "start": 16576.08, + "end": 16578.26, + "probability": 0.996 + }, + { + "start": 16578.78, + "end": 16582.44, + "probability": 0.9914 + }, + { + "start": 16582.82, + "end": 16587.06, + "probability": 0.9945 + }, + { + "start": 16587.06, + "end": 16592.52, + "probability": 0.9902 + }, + { + "start": 16593.64, + "end": 16596.36, + "probability": 0.7639 + }, + { + "start": 16596.36, + "end": 16599.96, + "probability": 0.9621 + }, + { + "start": 16600.38, + "end": 16604.76, + "probability": 0.9673 + }, + { + "start": 16605.28, + "end": 16606.45, + "probability": 0.5816 + }, + { + "start": 16606.98, + "end": 16611.44, + "probability": 0.967 + }, + { + "start": 16611.44, + "end": 16615.74, + "probability": 0.9783 + }, + { + "start": 16616.46, + "end": 16619.94, + "probability": 0.9929 + }, + { + "start": 16621.6, + "end": 16625.27, + "probability": 0.9432 + }, + { + "start": 16625.3, + "end": 16628.46, + "probability": 0.9876 + }, + { + "start": 16628.96, + "end": 16630.88, + "probability": 0.8944 + }, + { + "start": 16631.36, + "end": 16635.06, + "probability": 0.9868 + }, + { + "start": 16635.06, + "end": 16640.06, + "probability": 0.9856 + }, + { + "start": 16641.1, + "end": 16643.6, + "probability": 0.9755 + }, + { + "start": 16643.6, + "end": 16648.34, + "probability": 0.9967 + }, + { + "start": 16649.12, + "end": 16650.3, + "probability": 0.7164 + }, + { + "start": 16650.44, + "end": 16653.98, + "probability": 0.9967 + }, + { + "start": 16653.98, + "end": 16659.1, + "probability": 0.998 + }, + { + "start": 16659.6, + "end": 16666.22, + "probability": 0.9975 + }, + { + "start": 16666.74, + "end": 16671.4, + "probability": 0.9967 + }, + { + "start": 16672.1, + "end": 16676.4, + "probability": 0.9476 + }, + { + "start": 16677.72, + "end": 16681.66, + "probability": 0.9766 + }, + { + "start": 16682.58, + "end": 16683.42, + "probability": 0.9601 + }, + { + "start": 16684.34, + "end": 16686.14, + "probability": 0.8596 + }, + { + "start": 16686.52, + "end": 16689.14, + "probability": 0.9849 + }, + { + "start": 16690.04, + "end": 16691.18, + "probability": 0.9774 + }, + { + "start": 16691.58, + "end": 16695.24, + "probability": 0.9987 + }, + { + "start": 16695.24, + "end": 16698.1, + "probability": 0.9967 + }, + { + "start": 16699.28, + "end": 16702.2, + "probability": 0.9701 + }, + { + "start": 16702.78, + "end": 16706.8, + "probability": 0.9952 + }, + { + "start": 16707.22, + "end": 16709.9, + "probability": 0.9924 + }, + { + "start": 16710.76, + "end": 16712.34, + "probability": 0.8802 + }, + { + "start": 16712.54, + "end": 16714.18, + "probability": 0.8264 + }, + { + "start": 16714.62, + "end": 16717.0, + "probability": 0.9661 + }, + { + "start": 16717.62, + "end": 16718.36, + "probability": 0.5412 + }, + { + "start": 16718.94, + "end": 16721.26, + "probability": 0.6669 + }, + { + "start": 16722.1, + "end": 16723.8, + "probability": 0.8927 + }, + { + "start": 16724.04, + "end": 16725.66, + "probability": 0.9932 + }, + { + "start": 16725.74, + "end": 16726.4, + "probability": 0.4825 + }, + { + "start": 16727.6, + "end": 16728.07, + "probability": 0.8482 + }, + { + "start": 16733.16, + "end": 16736.62, + "probability": 0.5696 + }, + { + "start": 16738.78, + "end": 16741.66, + "probability": 0.9635 + }, + { + "start": 16741.84, + "end": 16744.72, + "probability": 0.9536 + }, + { + "start": 16744.88, + "end": 16745.78, + "probability": 0.9321 + }, + { + "start": 16745.94, + "end": 16751.04, + "probability": 0.9819 + }, + { + "start": 16751.58, + "end": 16756.9, + "probability": 0.8926 + }, + { + "start": 16757.76, + "end": 16765.3, + "probability": 0.9893 + }, + { + "start": 16765.44, + "end": 16769.32, + "probability": 0.9802 + }, + { + "start": 16769.38, + "end": 16770.7, + "probability": 0.7818 + }, + { + "start": 16771.12, + "end": 16772.32, + "probability": 0.6605 + }, + { + "start": 16773.44, + "end": 16778.02, + "probability": 0.7308 + }, + { + "start": 16778.84, + "end": 16782.42, + "probability": 0.9026 + }, + { + "start": 16782.62, + "end": 16783.22, + "probability": 0.7267 + }, + { + "start": 16783.74, + "end": 16785.48, + "probability": 0.7137 + }, + { + "start": 16785.78, + "end": 16786.42, + "probability": 0.6105 + }, + { + "start": 16786.9, + "end": 16788.64, + "probability": 0.8429 + }, + { + "start": 16788.98, + "end": 16790.69, + "probability": 0.9834 + }, + { + "start": 16790.9, + "end": 16792.48, + "probability": 0.7139 + }, + { + "start": 16793.54, + "end": 16794.1, + "probability": 0.8819 + }, + { + "start": 16794.24, + "end": 16796.9, + "probability": 0.972 + }, + { + "start": 16797.04, + "end": 16800.86, + "probability": 0.9893 + }, + { + "start": 16801.02, + "end": 16801.94, + "probability": 0.938 + }, + { + "start": 16802.36, + "end": 16803.52, + "probability": 0.8193 + }, + { + "start": 16803.58, + "end": 16804.92, + "probability": 0.8955 + }, + { + "start": 16805.14, + "end": 16805.58, + "probability": 0.902 + }, + { + "start": 16805.66, + "end": 16807.96, + "probability": 0.9583 + }, + { + "start": 16808.48, + "end": 16809.84, + "probability": 0.8271 + }, + { + "start": 16810.08, + "end": 16810.72, + "probability": 0.7161 + }, + { + "start": 16810.74, + "end": 16813.0, + "probability": 0.8943 + }, + { + "start": 16813.24, + "end": 16815.82, + "probability": 0.9297 + }, + { + "start": 16816.02, + "end": 16816.98, + "probability": 0.915 + }, + { + "start": 16817.34, + "end": 16819.28, + "probability": 0.8162 + }, + { + "start": 16819.58, + "end": 16822.34, + "probability": 0.755 + }, + { + "start": 16822.56, + "end": 16824.48, + "probability": 0.9701 + }, + { + "start": 16825.06, + "end": 16829.38, + "probability": 0.9896 + }, + { + "start": 16829.62, + "end": 16831.16, + "probability": 0.9738 + }, + { + "start": 16831.32, + "end": 16835.26, + "probability": 0.9982 + }, + { + "start": 16835.3, + "end": 16835.64, + "probability": 0.5995 + }, + { + "start": 16835.7, + "end": 16836.97, + "probability": 0.9927 + }, + { + "start": 16837.72, + "end": 16840.82, + "probability": 0.9781 + }, + { + "start": 16841.0, + "end": 16842.15, + "probability": 0.9872 + }, + { + "start": 16842.48, + "end": 16844.8, + "probability": 0.9775 + }, + { + "start": 16845.1, + "end": 16849.08, + "probability": 0.9424 + }, + { + "start": 16849.88, + "end": 16851.67, + "probability": 0.7513 + }, + { + "start": 16851.94, + "end": 16854.36, + "probability": 0.9617 + }, + { + "start": 16855.62, + "end": 16856.36, + "probability": 0.7755 + }, + { + "start": 16856.66, + "end": 16859.64, + "probability": 0.8636 + }, + { + "start": 16860.2, + "end": 16860.2, + "probability": 0.1098 + }, + { + "start": 16860.24, + "end": 16860.76, + "probability": 0.6886 + }, + { + "start": 16861.4, + "end": 16863.46, + "probability": 0.5043 + }, + { + "start": 16865.39, + "end": 16869.5, + "probability": 0.9775 + }, + { + "start": 16869.64, + "end": 16872.64, + "probability": 0.704 + }, + { + "start": 16874.98, + "end": 16879.78, + "probability": 0.4859 + }, + { + "start": 16881.04, + "end": 16881.82, + "probability": 0.8324 + }, + { + "start": 16883.92, + "end": 16883.92, + "probability": 0.3815 + }, + { + "start": 16884.16, + "end": 16885.3, + "probability": 0.1258 + }, + { + "start": 16885.3, + "end": 16889.2, + "probability": 0.1814 + }, + { + "start": 16890.5, + "end": 16890.99, + "probability": 0.2312 + }, + { + "start": 16893.32, + "end": 16896.45, + "probability": 0.0672 + }, + { + "start": 16898.34, + "end": 16900.01, + "probability": 0.0999 + }, + { + "start": 16900.26, + "end": 16900.44, + "probability": 0.2274 + }, + { + "start": 16900.44, + "end": 16900.66, + "probability": 0.1007 + }, + { + "start": 16900.66, + "end": 16904.99, + "probability": 0.5513 + }, + { + "start": 16906.92, + "end": 16912.7, + "probability": 0.3126 + }, + { + "start": 16913.12, + "end": 16914.1, + "probability": 0.0471 + }, + { + "start": 16915.6, + "end": 16916.0, + "probability": 0.3259 + }, + { + "start": 16917.58, + "end": 16924.36, + "probability": 0.3886 + }, + { + "start": 16928.12, + "end": 16932.14, + "probability": 0.1468 + }, + { + "start": 16936.2, + "end": 16936.2, + "probability": 0.1808 + }, + { + "start": 16936.2, + "end": 16936.2, + "probability": 0.0165 + }, + { + "start": 16936.2, + "end": 16936.2, + "probability": 0.1413 + }, + { + "start": 16936.2, + "end": 16936.2, + "probability": 0.0394 + }, + { + "start": 16936.2, + "end": 16937.2, + "probability": 0.1309 + }, + { + "start": 16937.44, + "end": 16939.24, + "probability": 0.6973 + }, + { + "start": 16939.3, + "end": 16941.36, + "probability": 0.9478 + }, + { + "start": 16942.82, + "end": 16945.22, + "probability": 0.9069 + }, + { + "start": 16945.34, + "end": 16948.39, + "probability": 0.9551 + }, + { + "start": 16949.2, + "end": 16951.89, + "probability": 0.9644 + }, + { + "start": 16952.7, + "end": 16954.84, + "probability": 0.8354 + }, + { + "start": 16955.1, + "end": 16956.08, + "probability": 0.9353 + }, + { + "start": 16956.16, + "end": 16959.72, + "probability": 0.9793 + }, + { + "start": 16959.9, + "end": 16960.8, + "probability": 0.9912 + }, + { + "start": 16961.5, + "end": 16964.76, + "probability": 0.9573 + }, + { + "start": 16964.76, + "end": 16968.34, + "probability": 0.9823 + }, + { + "start": 16969.02, + "end": 16972.08, + "probability": 0.7656 + }, + { + "start": 16972.96, + "end": 16978.06, + "probability": 0.9586 + }, + { + "start": 16978.66, + "end": 16981.66, + "probability": 0.9624 + }, + { + "start": 16982.42, + "end": 16993.7, + "probability": 0.9246 + }, + { + "start": 16993.94, + "end": 16997.38, + "probability": 0.9702 + }, + { + "start": 16997.6, + "end": 16998.44, + "probability": 0.6541 + }, + { + "start": 16998.54, + "end": 17002.54, + "probability": 0.6158 + }, + { + "start": 17003.36, + "end": 17007.5, + "probability": 0.9558 + }, + { + "start": 17007.5, + "end": 17010.76, + "probability": 0.859 + }, + { + "start": 17011.4, + "end": 17014.2, + "probability": 0.9497 + }, + { + "start": 17015.02, + "end": 17018.3, + "probability": 0.9721 + }, + { + "start": 17019.18, + "end": 17025.22, + "probability": 0.9956 + }, + { + "start": 17025.88, + "end": 17033.76, + "probability": 0.9253 + }, + { + "start": 17033.76, + "end": 17041.1, + "probability": 0.9641 + }, + { + "start": 17041.36, + "end": 17046.2, + "probability": 0.8847 + }, + { + "start": 17046.32, + "end": 17047.18, + "probability": 0.8854 + }, + { + "start": 17047.66, + "end": 17047.96, + "probability": 0.4309 + }, + { + "start": 17047.96, + "end": 17048.74, + "probability": 0.8061 + }, + { + "start": 17048.9, + "end": 17053.12, + "probability": 0.9597 + }, + { + "start": 17053.22, + "end": 17056.28, + "probability": 0.9692 + }, + { + "start": 17056.8, + "end": 17059.82, + "probability": 0.9731 + }, + { + "start": 17060.5, + "end": 17063.06, + "probability": 0.9499 + }, + { + "start": 17063.96, + "end": 17064.72, + "probability": 0.9857 + }, + { + "start": 17064.86, + "end": 17065.82, + "probability": 0.9818 + }, + { + "start": 17066.14, + "end": 17067.14, + "probability": 0.6717 + }, + { + "start": 17067.28, + "end": 17068.08, + "probability": 0.8995 + }, + { + "start": 17068.2, + "end": 17069.1, + "probability": 0.7709 + }, + { + "start": 17069.24, + "end": 17070.16, + "probability": 0.9102 + }, + { + "start": 17071.02, + "end": 17075.98, + "probability": 0.9918 + }, + { + "start": 17076.54, + "end": 17077.62, + "probability": 0.9961 + }, + { + "start": 17077.78, + "end": 17078.94, + "probability": 0.0281 + }, + { + "start": 17079.42, + "end": 17079.42, + "probability": 0.0273 + }, + { + "start": 17079.42, + "end": 17083.54, + "probability": 0.9841 + }, + { + "start": 17084.02, + "end": 17086.12, + "probability": 0.3311 + }, + { + "start": 17086.7, + "end": 17087.62, + "probability": 0.4078 + }, + { + "start": 17088.2, + "end": 17094.9, + "probability": 0.9224 + }, + { + "start": 17095.46, + "end": 17097.08, + "probability": 0.947 + }, + { + "start": 17098.53, + "end": 17102.58, + "probability": 0.9983 + }, + { + "start": 17102.84, + "end": 17104.64, + "probability": 0.9985 + }, + { + "start": 17104.88, + "end": 17106.72, + "probability": 0.8369 + }, + { + "start": 17106.8, + "end": 17109.26, + "probability": 0.9946 + }, + { + "start": 17109.58, + "end": 17110.56, + "probability": 0.9386 + }, + { + "start": 17110.7, + "end": 17113.12, + "probability": 0.9669 + }, + { + "start": 17113.54, + "end": 17116.24, + "probability": 0.8461 + }, + { + "start": 17116.7, + "end": 17117.66, + "probability": 0.96 + }, + { + "start": 17118.08, + "end": 17118.32, + "probability": 0.4128 + }, + { + "start": 17118.68, + "end": 17123.74, + "probability": 0.9897 + }, + { + "start": 17124.22, + "end": 17129.1, + "probability": 0.9937 + }, + { + "start": 17129.1, + "end": 17135.34, + "probability": 0.926 + }, + { + "start": 17135.46, + "end": 17137.1, + "probability": 0.8703 + }, + { + "start": 17137.22, + "end": 17140.12, + "probability": 0.998 + }, + { + "start": 17141.3, + "end": 17150.48, + "probability": 0.9848 + }, + { + "start": 17151.16, + "end": 17153.74, + "probability": 0.9971 + }, + { + "start": 17154.24, + "end": 17156.82, + "probability": 0.9617 + }, + { + "start": 17157.46, + "end": 17160.4, + "probability": 0.9434 + }, + { + "start": 17160.72, + "end": 17162.8, + "probability": 0.5494 + }, + { + "start": 17163.08, + "end": 17166.26, + "probability": 0.9843 + }, + { + "start": 17166.62, + "end": 17167.98, + "probability": 0.976 + }, + { + "start": 17168.06, + "end": 17171.06, + "probability": 0.9955 + }, + { + "start": 17171.14, + "end": 17174.64, + "probability": 0.9875 + }, + { + "start": 17175.24, + "end": 17175.56, + "probability": 0.2854 + }, + { + "start": 17175.68, + "end": 17179.62, + "probability": 0.8526 + }, + { + "start": 17179.88, + "end": 17181.2, + "probability": 0.5281 + }, + { + "start": 17181.4, + "end": 17184.36, + "probability": 0.6507 + }, + { + "start": 17184.5, + "end": 17189.2, + "probability": 0.9685 + }, + { + "start": 17190.08, + "end": 17191.6, + "probability": 0.8724 + }, + { + "start": 17191.84, + "end": 17195.9, + "probability": 0.9462 + }, + { + "start": 17196.2, + "end": 17200.6, + "probability": 0.753 + }, + { + "start": 17200.98, + "end": 17203.9, + "probability": 0.8772 + }, + { + "start": 17204.08, + "end": 17206.94, + "probability": 0.9858 + }, + { + "start": 17207.04, + "end": 17209.3, + "probability": 0.9951 + }, + { + "start": 17209.5, + "end": 17209.82, + "probability": 0.5453 + }, + { + "start": 17210.04, + "end": 17215.42, + "probability": 0.9514 + }, + { + "start": 17215.64, + "end": 17216.32, + "probability": 0.6792 + }, + { + "start": 17216.42, + "end": 17220.26, + "probability": 0.8055 + }, + { + "start": 17220.64, + "end": 17226.12, + "probability": 0.9867 + }, + { + "start": 17226.24, + "end": 17226.9, + "probability": 0.9723 + }, + { + "start": 17226.94, + "end": 17231.76, + "probability": 0.9814 + }, + { + "start": 17232.72, + "end": 17234.02, + "probability": 0.9769 + }, + { + "start": 17234.66, + "end": 17236.18, + "probability": 0.4886 + }, + { + "start": 17236.28, + "end": 17238.4, + "probability": 0.925 + }, + { + "start": 17253.34, + "end": 17256.22, + "probability": 0.5467 + }, + { + "start": 17256.96, + "end": 17257.82, + "probability": 0.8865 + }, + { + "start": 17258.72, + "end": 17260.48, + "probability": 0.7892 + }, + { + "start": 17261.9, + "end": 17262.9, + "probability": 0.7811 + }, + { + "start": 17263.28, + "end": 17264.54, + "probability": 0.9458 + }, + { + "start": 17264.58, + "end": 17265.62, + "probability": 0.8575 + }, + { + "start": 17266.08, + "end": 17267.48, + "probability": 0.5653 + }, + { + "start": 17267.56, + "end": 17269.4, + "probability": 0.9801 + }, + { + "start": 17269.72, + "end": 17269.98, + "probability": 0.7117 + }, + { + "start": 17270.14, + "end": 17270.8, + "probability": 0.5373 + }, + { + "start": 17271.14, + "end": 17272.36, + "probability": 0.9792 + }, + { + "start": 17272.48, + "end": 17273.12, + "probability": 0.7216 + }, + { + "start": 17274.2, + "end": 17276.5, + "probability": 0.8795 + }, + { + "start": 17276.6, + "end": 17277.09, + "probability": 0.0581 + }, + { + "start": 17278.26, + "end": 17281.86, + "probability": 0.5245 + }, + { + "start": 17281.94, + "end": 17284.92, + "probability": 0.7598 + }, + { + "start": 17285.06, + "end": 17288.0, + "probability": 0.9138 + }, + { + "start": 17289.58, + "end": 17291.66, + "probability": 0.5293 + }, + { + "start": 17292.76, + "end": 17292.76, + "probability": 0.0601 + }, + { + "start": 17292.76, + "end": 17295.33, + "probability": 0.9694 + }, + { + "start": 17298.4, + "end": 17300.4, + "probability": 0.5184 + }, + { + "start": 17301.02, + "end": 17302.15, + "probability": 0.9578 + }, + { + "start": 17303.78, + "end": 17304.48, + "probability": 0.8336 + }, + { + "start": 17304.76, + "end": 17309.42, + "probability": 0.9513 + }, + { + "start": 17310.58, + "end": 17311.22, + "probability": 0.9277 + }, + { + "start": 17312.3, + "end": 17313.92, + "probability": 0.767 + }, + { + "start": 17314.62, + "end": 17316.38, + "probability": 0.5924 + }, + { + "start": 17318.58, + "end": 17319.54, + "probability": 0.8123 + }, + { + "start": 17320.74, + "end": 17322.9, + "probability": 0.6773 + }, + { + "start": 17324.48, + "end": 17327.1, + "probability": 0.7304 + }, + { + "start": 17330.08, + "end": 17331.58, + "probability": 0.8726 + }, + { + "start": 17332.56, + "end": 17335.54, + "probability": 0.9407 + }, + { + "start": 17337.12, + "end": 17340.56, + "probability": 0.9899 + }, + { + "start": 17340.96, + "end": 17341.86, + "probability": 0.709 + }, + { + "start": 17341.94, + "end": 17343.26, + "probability": 0.9746 + }, + { + "start": 17343.46, + "end": 17344.62, + "probability": 0.9359 + }, + { + "start": 17345.62, + "end": 17347.2, + "probability": 0.3518 + }, + { + "start": 17348.06, + "end": 17350.48, + "probability": 0.6502 + }, + { + "start": 17351.64, + "end": 17352.66, + "probability": 0.8535 + }, + { + "start": 17354.12, + "end": 17354.46, + "probability": 0.2615 + }, + { + "start": 17354.46, + "end": 17355.8, + "probability": 0.558 + }, + { + "start": 17356.32, + "end": 17360.12, + "probability": 0.9678 + }, + { + "start": 17360.72, + "end": 17363.92, + "probability": 0.9626 + }, + { + "start": 17364.78, + "end": 17366.1, + "probability": 0.9619 + }, + { + "start": 17366.88, + "end": 17368.36, + "probability": 0.9901 + }, + { + "start": 17369.86, + "end": 17373.5, + "probability": 0.9966 + }, + { + "start": 17374.12, + "end": 17374.82, + "probability": 0.9551 + }, + { + "start": 17374.96, + "end": 17379.06, + "probability": 0.9783 + }, + { + "start": 17379.32, + "end": 17381.0, + "probability": 0.9955 + }, + { + "start": 17383.4, + "end": 17387.74, + "probability": 0.9347 + }, + { + "start": 17389.14, + "end": 17391.32, + "probability": 0.9738 + }, + { + "start": 17394.08, + "end": 17395.54, + "probability": 0.9937 + }, + { + "start": 17396.88, + "end": 17397.31, + "probability": 0.9045 + }, + { + "start": 17398.74, + "end": 17401.86, + "probability": 0.7476 + }, + { + "start": 17403.82, + "end": 17405.68, + "probability": 0.9928 + }, + { + "start": 17405.82, + "end": 17406.24, + "probability": 0.7723 + }, + { + "start": 17406.44, + "end": 17406.94, + "probability": 0.6864 + }, + { + "start": 17407.06, + "end": 17407.88, + "probability": 0.9075 + }, + { + "start": 17408.2, + "end": 17409.22, + "probability": 0.7593 + }, + { + "start": 17412.08, + "end": 17415.74, + "probability": 0.9912 + }, + { + "start": 17416.78, + "end": 17417.26, + "probability": 0.8175 + }, + { + "start": 17418.48, + "end": 17420.2, + "probability": 0.839 + }, + { + "start": 17420.26, + "end": 17421.28, + "probability": 0.934 + }, + { + "start": 17421.68, + "end": 17423.4, + "probability": 0.8718 + }, + { + "start": 17423.76, + "end": 17425.32, + "probability": 0.9422 + }, + { + "start": 17426.5, + "end": 17427.62, + "probability": 0.9509 + }, + { + "start": 17428.26, + "end": 17428.78, + "probability": 0.803 + }, + { + "start": 17429.06, + "end": 17430.68, + "probability": 0.7233 + }, + { + "start": 17430.82, + "end": 17433.4, + "probability": 0.9272 + }, + { + "start": 17434.04, + "end": 17437.66, + "probability": 0.969 + }, + { + "start": 17438.16, + "end": 17440.91, + "probability": 0.9973 + }, + { + "start": 17441.16, + "end": 17441.9, + "probability": 0.4934 + }, + { + "start": 17441.98, + "end": 17443.08, + "probability": 0.9178 + }, + { + "start": 17443.68, + "end": 17446.59, + "probability": 0.9988 + }, + { + "start": 17447.66, + "end": 17455.7, + "probability": 0.8955 + }, + { + "start": 17457.44, + "end": 17457.93, + "probability": 0.7581 + }, + { + "start": 17459.24, + "end": 17462.14, + "probability": 0.8521 + }, + { + "start": 17463.04, + "end": 17464.84, + "probability": 0.9271 + }, + { + "start": 17465.52, + "end": 17466.96, + "probability": 0.9478 + }, + { + "start": 17467.14, + "end": 17469.54, + "probability": 0.9741 + }, + { + "start": 17469.64, + "end": 17471.2, + "probability": 0.9708 + }, + { + "start": 17471.34, + "end": 17472.42, + "probability": 0.9381 + }, + { + "start": 17473.04, + "end": 17476.1, + "probability": 0.9639 + }, + { + "start": 17476.5, + "end": 17478.6, + "probability": 0.6582 + }, + { + "start": 17479.06, + "end": 17480.46, + "probability": 0.7189 + }, + { + "start": 17480.62, + "end": 17487.72, + "probability": 0.9884 + }, + { + "start": 17490.8, + "end": 17492.58, + "probability": 0.8924 + }, + { + "start": 17493.34, + "end": 17496.22, + "probability": 0.8186 + }, + { + "start": 17497.12, + "end": 17500.6, + "probability": 0.9575 + }, + { + "start": 17501.08, + "end": 17502.18, + "probability": 0.9159 + }, + { + "start": 17502.54, + "end": 17503.8, + "probability": 0.7677 + }, + { + "start": 17503.96, + "end": 17508.14, + "probability": 0.9894 + }, + { + "start": 17508.2, + "end": 17509.34, + "probability": 0.6529 + }, + { + "start": 17509.42, + "end": 17510.08, + "probability": 0.4573 + }, + { + "start": 17511.24, + "end": 17512.7, + "probability": 0.7671 + }, + { + "start": 17512.88, + "end": 17514.84, + "probability": 0.9929 + }, + { + "start": 17529.74, + "end": 17529.84, + "probability": 0.27 + }, + { + "start": 17529.9, + "end": 17530.08, + "probability": 0.297 + }, + { + "start": 17536.08, + "end": 17536.14, + "probability": 0.008 + }, + { + "start": 17536.14, + "end": 17536.14, + "probability": 0.2354 + }, + { + "start": 17536.14, + "end": 17537.0, + "probability": 0.2395 + }, + { + "start": 17537.98, + "end": 17543.9, + "probability": 0.5322 + }, + { + "start": 17545.26, + "end": 17546.12, + "probability": 0.7748 + }, + { + "start": 17546.26, + "end": 17548.94, + "probability": 0.9893 + }, + { + "start": 17548.98, + "end": 17549.52, + "probability": 0.8572 + }, + { + "start": 17551.16, + "end": 17553.9, + "probability": 0.2178 + }, + { + "start": 17554.1, + "end": 17557.59, + "probability": 0.9054 + }, + { + "start": 17557.82, + "end": 17562.76, + "probability": 0.9619 + }, + { + "start": 17562.84, + "end": 17565.92, + "probability": 0.7829 + }, + { + "start": 17565.98, + "end": 17569.98, + "probability": 0.9979 + }, + { + "start": 17570.2, + "end": 17574.4, + "probability": 0.9985 + }, + { + "start": 17574.52, + "end": 17579.52, + "probability": 0.8444 + }, + { + "start": 17580.04, + "end": 17582.12, + "probability": 0.9978 + }, + { + "start": 17582.6, + "end": 17584.46, + "probability": 0.9343 + }, + { + "start": 17584.54, + "end": 17589.44, + "probability": 0.8987 + }, + { + "start": 17590.16, + "end": 17590.88, + "probability": 0.8691 + }, + { + "start": 17593.21, + "end": 17595.36, + "probability": 0.7001 + }, + { + "start": 17595.7, + "end": 17598.38, + "probability": 0.951 + }, + { + "start": 17598.94, + "end": 17600.04, + "probability": 0.8929 + }, + { + "start": 17600.58, + "end": 17605.98, + "probability": 0.9079 + }, + { + "start": 17606.92, + "end": 17609.58, + "probability": 0.9599 + }, + { + "start": 17610.66, + "end": 17613.76, + "probability": 0.993 + }, + { + "start": 17614.04, + "end": 17615.74, + "probability": 0.99 + }, + { + "start": 17616.14, + "end": 17616.74, + "probability": 0.5929 + }, + { + "start": 17616.9, + "end": 17618.68, + "probability": 0.8337 + }, + { + "start": 17618.76, + "end": 17619.72, + "probability": 0.517 + }, + { + "start": 17620.52, + "end": 17625.64, + "probability": 0.9299 + }, + { + "start": 17626.2, + "end": 17626.96, + "probability": 0.7952 + }, + { + "start": 17627.1, + "end": 17632.38, + "probability": 0.8392 + }, + { + "start": 17632.48, + "end": 17636.56, + "probability": 0.9736 + }, + { + "start": 17637.92, + "end": 17641.76, + "probability": 0.9854 + }, + { + "start": 17642.2, + "end": 17644.4, + "probability": 0.8529 + }, + { + "start": 17644.64, + "end": 17648.06, + "probability": 0.9312 + }, + { + "start": 17648.26, + "end": 17649.24, + "probability": 0.9559 + }, + { + "start": 17649.5, + "end": 17651.06, + "probability": 0.9786 + }, + { + "start": 17651.76, + "end": 17652.78, + "probability": 0.6106 + }, + { + "start": 17652.94, + "end": 17654.98, + "probability": 0.9832 + }, + { + "start": 17655.6, + "end": 17657.54, + "probability": 0.9072 + }, + { + "start": 17657.64, + "end": 17658.28, + "probability": 0.7699 + }, + { + "start": 17658.44, + "end": 17659.7, + "probability": 0.8248 + }, + { + "start": 17659.98, + "end": 17662.82, + "probability": 0.9639 + }, + { + "start": 17663.3, + "end": 17665.96, + "probability": 0.9661 + }, + { + "start": 17666.94, + "end": 17667.78, + "probability": 0.6927 + }, + { + "start": 17668.2, + "end": 17671.26, + "probability": 0.7655 + }, + { + "start": 17671.64, + "end": 17673.04, + "probability": 0.8711 + }, + { + "start": 17673.14, + "end": 17674.16, + "probability": 0.8157 + }, + { + "start": 17674.28, + "end": 17674.76, + "probability": 0.9135 + }, + { + "start": 17674.96, + "end": 17681.12, + "probability": 0.9647 + }, + { + "start": 17681.38, + "end": 17683.28, + "probability": 0.9611 + }, + { + "start": 17683.32, + "end": 17684.04, + "probability": 0.7376 + }, + { + "start": 17684.32, + "end": 17687.42, + "probability": 0.807 + }, + { + "start": 17687.88, + "end": 17690.87, + "probability": 0.9034 + }, + { + "start": 17691.28, + "end": 17691.8, + "probability": 0.8819 + }, + { + "start": 17691.86, + "end": 17697.08, + "probability": 0.9618 + }, + { + "start": 17697.18, + "end": 17700.2, + "probability": 0.9866 + }, + { + "start": 17700.78, + "end": 17705.68, + "probability": 0.8181 + }, + { + "start": 17706.02, + "end": 17706.34, + "probability": 0.6354 + }, + { + "start": 17706.54, + "end": 17708.42, + "probability": 0.679 + }, + { + "start": 17708.48, + "end": 17709.68, + "probability": 0.9528 + }, + { + "start": 17709.8, + "end": 17712.04, + "probability": 0.9893 + }, + { + "start": 17712.18, + "end": 17713.1, + "probability": 0.8837 + }, + { + "start": 17713.28, + "end": 17713.96, + "probability": 0.6376 + }, + { + "start": 17714.18, + "end": 17714.3, + "probability": 0.3815 + }, + { + "start": 17714.84, + "end": 17717.5, + "probability": 0.9576 + }, + { + "start": 17717.56, + "end": 17720.64, + "probability": 0.8387 + }, + { + "start": 17732.08, + "end": 17732.66, + "probability": 0.0247 + }, + { + "start": 17735.58, + "end": 17737.38, + "probability": 0.0667 + }, + { + "start": 17738.94, + "end": 17742.24, + "probability": 0.889 + }, + { + "start": 17743.62, + "end": 17744.76, + "probability": 0.702 + }, + { + "start": 17746.1, + "end": 17747.22, + "probability": 0.7039 + }, + { + "start": 17747.52, + "end": 17749.72, + "probability": 0.998 + }, + { + "start": 17750.8, + "end": 17752.5, + "probability": 0.948 + }, + { + "start": 17752.82, + "end": 17755.42, + "probability": 0.9583 + }, + { + "start": 17755.72, + "end": 17757.98, + "probability": 0.9981 + }, + { + "start": 17758.52, + "end": 17762.14, + "probability": 0.9993 + }, + { + "start": 17762.6, + "end": 17763.0, + "probability": 0.8312 + }, + { + "start": 17763.14, + "end": 17763.56, + "probability": 0.5387 + }, + { + "start": 17763.68, + "end": 17764.12, + "probability": 0.9499 + }, + { + "start": 17764.2, + "end": 17765.0, + "probability": 0.9341 + }, + { + "start": 17765.2, + "end": 17765.96, + "probability": 0.9446 + }, + { + "start": 17767.3, + "end": 17770.4, + "probability": 0.9904 + }, + { + "start": 17771.44, + "end": 17774.74, + "probability": 0.9977 + }, + { + "start": 17774.78, + "end": 17777.14, + "probability": 0.995 + }, + { + "start": 17777.74, + "end": 17778.22, + "probability": 0.6963 + }, + { + "start": 17779.38, + "end": 17786.86, + "probability": 0.9914 + }, + { + "start": 17787.34, + "end": 17789.06, + "probability": 0.8993 + }, + { + "start": 17789.28, + "end": 17790.04, + "probability": 0.761 + }, + { + "start": 17790.16, + "end": 17793.54, + "probability": 0.9426 + }, + { + "start": 17793.68, + "end": 17795.34, + "probability": 0.9819 + }, + { + "start": 17796.48, + "end": 17798.4, + "probability": 0.7297 + }, + { + "start": 17799.16, + "end": 17802.78, + "probability": 0.9916 + }, + { + "start": 17803.34, + "end": 17804.9, + "probability": 0.8294 + }, + { + "start": 17806.24, + "end": 17809.92, + "probability": 0.915 + }, + { + "start": 17810.1, + "end": 17813.34, + "probability": 0.9396 + }, + { + "start": 17814.72, + "end": 17816.16, + "probability": 0.9955 + }, + { + "start": 17816.66, + "end": 17820.38, + "probability": 0.9899 + }, + { + "start": 17821.04, + "end": 17821.24, + "probability": 0.3514 + }, + { + "start": 17821.6, + "end": 17827.96, + "probability": 0.9688 + }, + { + "start": 17828.2, + "end": 17829.66, + "probability": 0.7788 + }, + { + "start": 17830.94, + "end": 17833.2, + "probability": 0.9297 + }, + { + "start": 17833.88, + "end": 17834.63, + "probability": 0.9836 + }, + { + "start": 17835.04, + "end": 17836.22, + "probability": 0.9762 + }, + { + "start": 17836.82, + "end": 17839.56, + "probability": 0.9874 + }, + { + "start": 17840.44, + "end": 17843.46, + "probability": 0.9636 + }, + { + "start": 17844.04, + "end": 17844.92, + "probability": 0.9482 + }, + { + "start": 17845.68, + "end": 17847.44, + "probability": 0.9751 + }, + { + "start": 17849.3, + "end": 17854.38, + "probability": 0.9521 + }, + { + "start": 17854.9, + "end": 17857.2, + "probability": 0.9867 + }, + { + "start": 17858.52, + "end": 17862.12, + "probability": 0.9919 + }, + { + "start": 17862.12, + "end": 17865.42, + "probability": 0.9992 + }, + { + "start": 17866.36, + "end": 17870.12, + "probability": 0.7385 + }, + { + "start": 17871.46, + "end": 17874.08, + "probability": 0.9894 + }, + { + "start": 17875.02, + "end": 17878.94, + "probability": 0.9706 + }, + { + "start": 17879.72, + "end": 17881.62, + "probability": 0.9874 + }, + { + "start": 17881.7, + "end": 17882.46, + "probability": 0.7721 + }, + { + "start": 17882.46, + "end": 17884.48, + "probability": 0.9341 + }, + { + "start": 17884.54, + "end": 17885.79, + "probability": 0.9016 + }, + { + "start": 17886.8, + "end": 17890.94, + "probability": 0.9293 + }, + { + "start": 17891.66, + "end": 17895.3, + "probability": 0.9612 + }, + { + "start": 17897.26, + "end": 17899.86, + "probability": 0.9903 + }, + { + "start": 17900.32, + "end": 17901.24, + "probability": 0.864 + }, + { + "start": 17901.32, + "end": 17903.32, + "probability": 0.9945 + }, + { + "start": 17904.18, + "end": 17907.08, + "probability": 0.9994 + }, + { + "start": 17907.42, + "end": 17909.72, + "probability": 0.9949 + }, + { + "start": 17911.48, + "end": 17913.6, + "probability": 0.9962 + }, + { + "start": 17913.6, + "end": 17917.2, + "probability": 0.9655 + }, + { + "start": 17917.76, + "end": 17918.54, + "probability": 0.9941 + }, + { + "start": 17918.74, + "end": 17921.8, + "probability": 0.9729 + }, + { + "start": 17921.8, + "end": 17924.46, + "probability": 0.9966 + }, + { + "start": 17924.96, + "end": 17929.0, + "probability": 0.9229 + }, + { + "start": 17929.28, + "end": 17930.54, + "probability": 0.6677 + }, + { + "start": 17930.94, + "end": 17931.62, + "probability": 0.8409 + }, + { + "start": 17932.02, + "end": 17935.14, + "probability": 0.9563 + }, + { + "start": 17935.36, + "end": 17936.4, + "probability": 0.8525 + }, + { + "start": 17936.72, + "end": 17937.6, + "probability": 0.977 + }, + { + "start": 17938.26, + "end": 17941.34, + "probability": 0.9582 + }, + { + "start": 17941.78, + "end": 17943.98, + "probability": 0.9977 + }, + { + "start": 17943.98, + "end": 17947.5, + "probability": 0.9753 + }, + { + "start": 17947.78, + "end": 17950.98, + "probability": 0.919 + }, + { + "start": 17951.16, + "end": 17951.36, + "probability": 0.7169 + }, + { + "start": 17951.78, + "end": 17953.02, + "probability": 0.7008 + }, + { + "start": 17954.1, + "end": 17956.5, + "probability": 0.9961 + }, + { + "start": 17957.9, + "end": 17959.52, + "probability": 0.3056 + }, + { + "start": 17960.18, + "end": 17963.9, + "probability": 0.8351 + }, + { + "start": 17967.34, + "end": 17971.34, + "probability": 0.4134 + }, + { + "start": 17977.68, + "end": 17977.88, + "probability": 0.554 + }, + { + "start": 17978.6, + "end": 17979.0, + "probability": 0.0524 + }, + { + "start": 17979.0, + "end": 17979.14, + "probability": 0.069 + }, + { + "start": 17979.14, + "end": 17979.5, + "probability": 0.1435 + }, + { + "start": 17979.5, + "end": 17979.5, + "probability": 0.0407 + }, + { + "start": 17979.5, + "end": 17980.24, + "probability": 0.0156 + }, + { + "start": 17981.22, + "end": 17982.64, + "probability": 0.472 + }, + { + "start": 17983.44, + "end": 17984.76, + "probability": 0.3106 + }, + { + "start": 17985.26, + "end": 17985.28, + "probability": 0.5489 + }, + { + "start": 17985.28, + "end": 17985.74, + "probability": 0.724 + }, + { + "start": 17986.16, + "end": 17987.78, + "probability": 0.817 + }, + { + "start": 17990.38, + "end": 17993.64, + "probability": 0.827 + }, + { + "start": 17994.8, + "end": 18004.54, + "probability": 0.7999 + }, + { + "start": 18005.26, + "end": 18008.96, + "probability": 0.722 + }, + { + "start": 18009.48, + "end": 18011.34, + "probability": 0.9498 + }, + { + "start": 18012.68, + "end": 18017.08, + "probability": 0.9922 + }, + { + "start": 18017.24, + "end": 18021.26, + "probability": 0.9758 + }, + { + "start": 18022.28, + "end": 18023.7, + "probability": 0.9653 + }, + { + "start": 18024.74, + "end": 18028.44, + "probability": 0.9946 + }, + { + "start": 18028.54, + "end": 18032.14, + "probability": 0.918 + }, + { + "start": 18032.68, + "end": 18036.42, + "probability": 0.9038 + }, + { + "start": 18037.34, + "end": 18042.28, + "probability": 0.6466 + }, + { + "start": 18042.8, + "end": 18049.52, + "probability": 0.856 + }, + { + "start": 18050.18, + "end": 18054.62, + "probability": 0.9625 + }, + { + "start": 18055.36, + "end": 18064.28, + "probability": 0.9453 + }, + { + "start": 18064.96, + "end": 18068.14, + "probability": 0.9469 + }, + { + "start": 18068.6, + "end": 18070.38, + "probability": 0.9487 + }, + { + "start": 18070.86, + "end": 18075.12, + "probability": 0.8965 + }, + { + "start": 18075.86, + "end": 18078.59, + "probability": 0.8373 + }, + { + "start": 18079.34, + "end": 18084.2, + "probability": 0.9785 + }, + { + "start": 18085.26, + "end": 18085.98, + "probability": 0.9983 + }, + { + "start": 18088.82, + "end": 18089.7, + "probability": 0.6207 + }, + { + "start": 18089.74, + "end": 18092.14, + "probability": 0.9967 + }, + { + "start": 18092.16, + "end": 18093.04, + "probability": 0.7199 + }, + { + "start": 18094.1, + "end": 18096.02, + "probability": 0.7542 + }, + { + "start": 18096.12, + "end": 18097.38, + "probability": 0.9229 + }, + { + "start": 18097.74, + "end": 18101.54, + "probability": 0.9868 + }, + { + "start": 18102.46, + "end": 18105.6, + "probability": 0.9339 + }, + { + "start": 18106.1, + "end": 18106.62, + "probability": 0.9175 + }, + { + "start": 18107.08, + "end": 18110.4, + "probability": 0.957 + }, + { + "start": 18110.48, + "end": 18113.32, + "probability": 0.8735 + }, + { + "start": 18113.66, + "end": 18119.14, + "probability": 0.9878 + }, + { + "start": 18119.7, + "end": 18122.66, + "probability": 0.9695 + }, + { + "start": 18123.54, + "end": 18125.15, + "probability": 0.9583 + }, + { + "start": 18126.78, + "end": 18129.52, + "probability": 0.9009 + }, + { + "start": 18129.56, + "end": 18132.6, + "probability": 0.9623 + }, + { + "start": 18132.72, + "end": 18134.86, + "probability": 0.8193 + }, + { + "start": 18135.16, + "end": 18139.1, + "probability": 0.8458 + }, + { + "start": 18139.6, + "end": 18143.4, + "probability": 0.541 + }, + { + "start": 18144.1, + "end": 18149.34, + "probability": 0.9211 + }, + { + "start": 18149.98, + "end": 18152.99, + "probability": 0.9364 + }, + { + "start": 18154.02, + "end": 18157.84, + "probability": 0.6498 + }, + { + "start": 18158.12, + "end": 18159.28, + "probability": 0.5815 + }, + { + "start": 18159.44, + "end": 18160.34, + "probability": 0.8622 + }, + { + "start": 18161.02, + "end": 18164.46, + "probability": 0.989 + }, + { + "start": 18164.64, + "end": 18168.96, + "probability": 0.7957 + }, + { + "start": 18169.68, + "end": 18172.12, + "probability": 0.9605 + }, + { + "start": 18172.46, + "end": 18175.38, + "probability": 0.9738 + }, + { + "start": 18175.72, + "end": 18177.7, + "probability": 0.9717 + }, + { + "start": 18178.1, + "end": 18183.74, + "probability": 0.984 + }, + { + "start": 18183.74, + "end": 18189.38, + "probability": 0.9731 + }, + { + "start": 18189.48, + "end": 18189.6, + "probability": 0.4471 + }, + { + "start": 18190.04, + "end": 18192.02, + "probability": 0.7945 + }, + { + "start": 18192.12, + "end": 18192.7, + "probability": 0.8102 + }, + { + "start": 18192.8, + "end": 18194.14, + "probability": 0.9478 + }, + { + "start": 18194.24, + "end": 18194.76, + "probability": 0.4991 + }, + { + "start": 18194.82, + "end": 18195.44, + "probability": 0.6699 + }, + { + "start": 18211.7, + "end": 18213.1, + "probability": 0.6815 + }, + { + "start": 18214.72, + "end": 18216.92, + "probability": 0.7222 + }, + { + "start": 18218.64, + "end": 18221.3, + "probability": 0.9347 + }, + { + "start": 18222.16, + "end": 18224.4, + "probability": 0.9836 + }, + { + "start": 18225.72, + "end": 18227.7, + "probability": 0.9976 + }, + { + "start": 18229.3, + "end": 18231.46, + "probability": 0.9263 + }, + { + "start": 18232.3, + "end": 18233.4, + "probability": 0.853 + }, + { + "start": 18234.26, + "end": 18237.48, + "probability": 0.9135 + }, + { + "start": 18238.34, + "end": 18242.68, + "probability": 0.961 + }, + { + "start": 18244.64, + "end": 18250.68, + "probability": 0.9647 + }, + { + "start": 18250.86, + "end": 18252.66, + "probability": 0.9974 + }, + { + "start": 18254.0, + "end": 18257.14, + "probability": 0.999 + }, + { + "start": 18257.62, + "end": 18260.2, + "probability": 0.8621 + }, + { + "start": 18260.76, + "end": 18265.42, + "probability": 0.908 + }, + { + "start": 18265.98, + "end": 18268.84, + "probability": 0.9764 + }, + { + "start": 18269.38, + "end": 18269.84, + "probability": 0.8643 + }, + { + "start": 18270.62, + "end": 18272.64, + "probability": 0.9412 + }, + { + "start": 18273.12, + "end": 18274.38, + "probability": 0.6228 + }, + { + "start": 18274.9, + "end": 18276.16, + "probability": 0.6044 + }, + { + "start": 18276.72, + "end": 18278.28, + "probability": 0.6001 + }, + { + "start": 18278.48, + "end": 18279.22, + "probability": 0.9721 + }, + { + "start": 18279.32, + "end": 18280.38, + "probability": 0.7395 + }, + { + "start": 18280.8, + "end": 18282.32, + "probability": 0.9847 + }, + { + "start": 18282.6, + "end": 18284.32, + "probability": 0.9261 + }, + { + "start": 18284.58, + "end": 18287.4, + "probability": 0.9964 + }, + { + "start": 18288.14, + "end": 18289.81, + "probability": 0.7236 + }, + { + "start": 18290.44, + "end": 18297.82, + "probability": 0.9928 + }, + { + "start": 18298.42, + "end": 18299.68, + "probability": 0.8836 + }, + { + "start": 18300.4, + "end": 18303.3, + "probability": 0.9772 + }, + { + "start": 18303.3, + "end": 18306.42, + "probability": 0.8928 + }, + { + "start": 18306.96, + "end": 18307.48, + "probability": 0.5999 + }, + { + "start": 18307.7, + "end": 18308.38, + "probability": 0.7174 + }, + { + "start": 18308.82, + "end": 18310.04, + "probability": 0.8866 + }, + { + "start": 18310.16, + "end": 18311.18, + "probability": 0.673 + }, + { + "start": 18311.36, + "end": 18312.69, + "probability": 0.9249 + }, + { + "start": 18312.98, + "end": 18314.02, + "probability": 0.8757 + }, + { + "start": 18314.1, + "end": 18315.96, + "probability": 0.934 + }, + { + "start": 18316.58, + "end": 18318.44, + "probability": 0.8994 + }, + { + "start": 18318.92, + "end": 18322.38, + "probability": 0.9749 + }, + { + "start": 18322.66, + "end": 18326.54, + "probability": 0.8174 + }, + { + "start": 18327.1, + "end": 18329.94, + "probability": 0.9757 + }, + { + "start": 18330.4, + "end": 18331.4, + "probability": 0.527 + }, + { + "start": 18331.54, + "end": 18332.44, + "probability": 0.8797 + }, + { + "start": 18332.72, + "end": 18334.16, + "probability": 0.9968 + }, + { + "start": 18334.76, + "end": 18338.66, + "probability": 0.8615 + }, + { + "start": 18339.82, + "end": 18340.6, + "probability": 0.6246 + }, + { + "start": 18340.62, + "end": 18341.18, + "probability": 0.8532 + }, + { + "start": 18341.34, + "end": 18341.86, + "probability": 0.7827 + }, + { + "start": 18342.2, + "end": 18343.72, + "probability": 0.938 + }, + { + "start": 18344.38, + "end": 18348.92, + "probability": 0.7261 + }, + { + "start": 18349.36, + "end": 18350.78, + "probability": 0.9333 + }, + { + "start": 18352.04, + "end": 18355.08, + "probability": 0.9851 + }, + { + "start": 18355.18, + "end": 18358.6, + "probability": 0.9194 + }, + { + "start": 18358.76, + "end": 18360.1, + "probability": 0.8838 + }, + { + "start": 18360.62, + "end": 18361.42, + "probability": 0.9819 + }, + { + "start": 18362.32, + "end": 18362.93, + "probability": 0.623 + }, + { + "start": 18363.12, + "end": 18363.14, + "probability": 0.5183 + }, + { + "start": 18363.28, + "end": 18363.66, + "probability": 0.8767 + }, + { + "start": 18363.66, + "end": 18364.6, + "probability": 0.9532 + }, + { + "start": 18364.64, + "end": 18365.66, + "probability": 0.9276 + }, + { + "start": 18366.04, + "end": 18366.98, + "probability": 0.9394 + }, + { + "start": 18367.32, + "end": 18368.6, + "probability": 0.9786 + }, + { + "start": 18369.04, + "end": 18371.9, + "probability": 0.9759 + }, + { + "start": 18372.2, + "end": 18373.04, + "probability": 0.6806 + }, + { + "start": 18373.18, + "end": 18374.06, + "probability": 0.9224 + }, + { + "start": 18374.58, + "end": 18378.32, + "probability": 0.9406 + }, + { + "start": 18378.6, + "end": 18379.08, + "probability": 0.7403 + }, + { + "start": 18379.2, + "end": 18381.1, + "probability": 0.716 + }, + { + "start": 18381.26, + "end": 18384.22, + "probability": 0.9707 + }, + { + "start": 18384.32, + "end": 18385.02, + "probability": 0.6608 + }, + { + "start": 18385.1, + "end": 18386.98, + "probability": 0.8787 + }, + { + "start": 18391.96, + "end": 18394.52, + "probability": 0.6254 + }, + { + "start": 18395.24, + "end": 18398.9, + "probability": 0.7741 + }, + { + "start": 18399.1, + "end": 18399.52, + "probability": 0.8735 + }, + { + "start": 18400.04, + "end": 18401.12, + "probability": 0.9857 + }, + { + "start": 18401.52, + "end": 18402.58, + "probability": 0.3551 + }, + { + "start": 18404.22, + "end": 18406.65, + "probability": 0.9369 + }, + { + "start": 18407.22, + "end": 18409.68, + "probability": 0.1056 + }, + { + "start": 18410.88, + "end": 18412.35, + "probability": 0.3189 + }, + { + "start": 18414.28, + "end": 18416.58, + "probability": 0.9765 + }, + { + "start": 18416.66, + "end": 18418.74, + "probability": 0.9971 + }, + { + "start": 18418.8, + "end": 18420.92, + "probability": 0.9912 + }, + { + "start": 18421.4, + "end": 18422.74, + "probability": 0.8745 + }, + { + "start": 18422.98, + "end": 18424.22, + "probability": 0.4188 + }, + { + "start": 18424.24, + "end": 18424.8, + "probability": 0.8823 + }, + { + "start": 18424.94, + "end": 18425.2, + "probability": 0.8155 + }, + { + "start": 18425.28, + "end": 18426.98, + "probability": 0.9574 + }, + { + "start": 18427.6, + "end": 18430.27, + "probability": 0.9713 + }, + { + "start": 18430.3, + "end": 18430.3, + "probability": 0.3368 + }, + { + "start": 18430.3, + "end": 18431.62, + "probability": 0.2494 + }, + { + "start": 18432.64, + "end": 18434.3, + "probability": 0.9316 + }, + { + "start": 18434.5, + "end": 18435.56, + "probability": 0.8086 + }, + { + "start": 18435.72, + "end": 18437.06, + "probability": 0.4756 + }, + { + "start": 18437.38, + "end": 18438.82, + "probability": 0.8672 + }, + { + "start": 18439.18, + "end": 18441.68, + "probability": 0.7614 + }, + { + "start": 18444.0, + "end": 18446.04, + "probability": 0.3918 + }, + { + "start": 18448.92, + "end": 18450.02, + "probability": 0.9385 + }, + { + "start": 18450.08, + "end": 18451.12, + "probability": 0.9396 + }, + { + "start": 18451.22, + "end": 18452.82, + "probability": 0.7616 + }, + { + "start": 18453.08, + "end": 18453.54, + "probability": 0.9073 + }, + { + "start": 18458.46, + "end": 18466.62, + "probability": 0.969 + }, + { + "start": 18468.34, + "end": 18472.04, + "probability": 0.9308 + }, + { + "start": 18473.04, + "end": 18475.28, + "probability": 0.4804 + }, + { + "start": 18476.18, + "end": 18476.18, + "probability": 0.2716 + }, + { + "start": 18476.18, + "end": 18477.17, + "probability": 0.5073 + }, + { + "start": 18477.94, + "end": 18479.4, + "probability": 0.7906 + }, + { + "start": 18479.72, + "end": 18482.72, + "probability": 0.9003 + }, + { + "start": 18485.2, + "end": 18485.72, + "probability": 0.8328 + }, + { + "start": 18486.68, + "end": 18488.28, + "probability": 0.8134 + }, + { + "start": 18490.16, + "end": 18496.74, + "probability": 0.9653 + }, + { + "start": 18497.5, + "end": 18498.66, + "probability": 0.9756 + }, + { + "start": 18499.54, + "end": 18501.36, + "probability": 0.8276 + }, + { + "start": 18503.36, + "end": 18504.06, + "probability": 0.861 + }, + { + "start": 18505.84, + "end": 18507.44, + "probability": 0.9306 + }, + { + "start": 18507.56, + "end": 18507.82, + "probability": 0.5759 + }, + { + "start": 18508.0, + "end": 18511.08, + "probability": 0.6026 + }, + { + "start": 18511.14, + "end": 18513.12, + "probability": 0.5381 + }, + { + "start": 18513.32, + "end": 18514.92, + "probability": 0.9856 + }, + { + "start": 18515.84, + "end": 18519.84, + "probability": 0.4965 + }, + { + "start": 18520.4, + "end": 18521.72, + "probability": 0.96 + }, + { + "start": 18522.36, + "end": 18524.64, + "probability": 0.7031 + }, + { + "start": 18526.76, + "end": 18526.76, + "probability": 0.0171 + }, + { + "start": 18526.76, + "end": 18526.76, + "probability": 0.037 + }, + { + "start": 18526.76, + "end": 18527.2, + "probability": 0.6699 + }, + { + "start": 18529.24, + "end": 18531.2, + "probability": 0.9597 + }, + { + "start": 18533.26, + "end": 18537.42, + "probability": 0.8689 + }, + { + "start": 18537.62, + "end": 18538.34, + "probability": 0.8513 + }, + { + "start": 18538.56, + "end": 18541.32, + "probability": 0.9532 + }, + { + "start": 18543.14, + "end": 18544.76, + "probability": 0.9684 + }, + { + "start": 18546.16, + "end": 18547.66, + "probability": 0.8895 + }, + { + "start": 18549.32, + "end": 18549.48, + "probability": 0.3813 + }, + { + "start": 18549.6, + "end": 18551.14, + "probability": 0.7926 + }, + { + "start": 18551.58, + "end": 18552.56, + "probability": 0.9072 + }, + { + "start": 18552.74, + "end": 18553.24, + "probability": 0.9004 + }, + { + "start": 18555.48, + "end": 18557.82, + "probability": 0.8712 + }, + { + "start": 18558.76, + "end": 18560.16, + "probability": 0.8231 + }, + { + "start": 18561.78, + "end": 18566.88, + "probability": 0.9788 + }, + { + "start": 18568.34, + "end": 18569.54, + "probability": 0.9964 + }, + { + "start": 18570.7, + "end": 18574.9, + "probability": 0.9976 + }, + { + "start": 18575.02, + "end": 18575.68, + "probability": 0.4504 + }, + { + "start": 18576.12, + "end": 18577.42, + "probability": 0.8281 + }, + { + "start": 18579.48, + "end": 18582.94, + "probability": 0.9372 + }, + { + "start": 18582.94, + "end": 18587.04, + "probability": 0.9964 + }, + { + "start": 18587.36, + "end": 18587.96, + "probability": 0.4481 + }, + { + "start": 18588.8, + "end": 18589.06, + "probability": 0.277 + }, + { + "start": 18589.06, + "end": 18589.06, + "probability": 0.1874 + }, + { + "start": 18589.06, + "end": 18589.96, + "probability": 0.7344 + }, + { + "start": 18590.8, + "end": 18593.39, + "probability": 0.8781 + }, + { + "start": 18594.7, + "end": 18596.76, + "probability": 0.8908 + }, + { + "start": 18597.48, + "end": 18599.6, + "probability": 0.758 + }, + { + "start": 18600.26, + "end": 18601.84, + "probability": 0.8183 + }, + { + "start": 18602.18, + "end": 18603.35, + "probability": 0.9336 + }, + { + "start": 18604.4, + "end": 18605.54, + "probability": 0.0543 + }, + { + "start": 18605.54, + "end": 18606.14, + "probability": 0.531 + }, + { + "start": 18606.14, + "end": 18607.3, + "probability": 0.8323 + }, + { + "start": 18607.78, + "end": 18608.22, + "probability": 0.839 + }, + { + "start": 18608.74, + "end": 18611.18, + "probability": 0.1831 + }, + { + "start": 18612.74, + "end": 18614.46, + "probability": 0.5584 + }, + { + "start": 18615.96, + "end": 18617.16, + "probability": 0.3232 + }, + { + "start": 18617.26, + "end": 18619.36, + "probability": 0.683 + }, + { + "start": 18619.5, + "end": 18620.18, + "probability": 0.7694 + }, + { + "start": 18620.32, + "end": 18621.1, + "probability": 0.6689 + }, + { + "start": 18621.14, + "end": 18621.92, + "probability": 0.9489 + }, + { + "start": 18623.66, + "end": 18625.18, + "probability": 0.9381 + }, + { + "start": 18625.66, + "end": 18627.54, + "probability": 0.9868 + }, + { + "start": 18628.22, + "end": 18631.12, + "probability": 0.9118 + }, + { + "start": 18631.77, + "end": 18634.62, + "probability": 0.4344 + }, + { + "start": 18634.7, + "end": 18635.7, + "probability": 0.8331 + }, + { + "start": 18635.82, + "end": 18636.8, + "probability": 0.8792 + }, + { + "start": 18637.24, + "end": 18639.28, + "probability": 0.8014 + }, + { + "start": 18639.58, + "end": 18641.88, + "probability": 0.7747 + }, + { + "start": 18641.98, + "end": 18643.72, + "probability": 0.8008 + }, + { + "start": 18646.56, + "end": 18648.08, + "probability": 0.8979 + }, + { + "start": 18648.16, + "end": 18650.78, + "probability": 0.9238 + }, + { + "start": 18650.9, + "end": 18651.92, + "probability": 0.8502 + }, + { + "start": 18652.54, + "end": 18654.9, + "probability": 0.9976 + }, + { + "start": 18656.82, + "end": 18657.78, + "probability": 0.8882 + }, + { + "start": 18657.88, + "end": 18658.66, + "probability": 0.9691 + }, + { + "start": 18658.74, + "end": 18662.36, + "probability": 0.989 + }, + { + "start": 18662.56, + "end": 18663.42, + "probability": 0.7043 + }, + { + "start": 18664.76, + "end": 18665.88, + "probability": 0.7393 + }, + { + "start": 18667.5, + "end": 18671.07, + "probability": 0.9946 + }, + { + "start": 18672.28, + "end": 18673.38, + "probability": 0.8176 + }, + { + "start": 18675.74, + "end": 18677.7, + "probability": 0.9873 + }, + { + "start": 18677.8, + "end": 18680.32, + "probability": 0.7561 + }, + { + "start": 18680.66, + "end": 18681.8, + "probability": 0.3175 + }, + { + "start": 18682.58, + "end": 18685.38, + "probability": 0.7464 + }, + { + "start": 18687.28, + "end": 18689.86, + "probability": 0.9573 + }, + { + "start": 18691.38, + "end": 18691.66, + "probability": 0.2899 + }, + { + "start": 18691.84, + "end": 18692.16, + "probability": 0.4361 + }, + { + "start": 18692.24, + "end": 18693.18, + "probability": 0.8846 + }, + { + "start": 18693.28, + "end": 18694.3, + "probability": 0.8623 + }, + { + "start": 18694.36, + "end": 18695.02, + "probability": 0.3441 + }, + { + "start": 18695.08, + "end": 18696.18, + "probability": 0.9894 + }, + { + "start": 18696.26, + "end": 18697.28, + "probability": 0.9065 + }, + { + "start": 18697.52, + "end": 18698.66, + "probability": 0.9825 + }, + { + "start": 18698.78, + "end": 18700.2, + "probability": 0.9609 + }, + { + "start": 18700.46, + "end": 18701.46, + "probability": 0.7473 + }, + { + "start": 18701.66, + "end": 18703.9, + "probability": 0.9484 + }, + { + "start": 18705.18, + "end": 18706.72, + "probability": 0.7472 + }, + { + "start": 18706.92, + "end": 18707.58, + "probability": 0.9268 + }, + { + "start": 18708.2, + "end": 18710.61, + "probability": 0.9669 + }, + { + "start": 18711.42, + "end": 18713.42, + "probability": 0.9751 + }, + { + "start": 18714.1, + "end": 18715.5, + "probability": 0.467 + }, + { + "start": 18715.68, + "end": 18719.14, + "probability": 0.955 + }, + { + "start": 18720.4, + "end": 18721.88, + "probability": 0.9708 + }, + { + "start": 18722.52, + "end": 18724.24, + "probability": 0.9177 + }, + { + "start": 18724.84, + "end": 18727.32, + "probability": 0.7507 + }, + { + "start": 18728.08, + "end": 18730.18, + "probability": 0.5933 + }, + { + "start": 18730.96, + "end": 18732.56, + "probability": 0.9012 + }, + { + "start": 18733.82, + "end": 18734.9, + "probability": 0.5361 + }, + { + "start": 18735.36, + "end": 18738.44, + "probability": 0.9661 + }, + { + "start": 18738.56, + "end": 18739.62, + "probability": 0.8505 + }, + { + "start": 18739.82, + "end": 18742.92, + "probability": 0.8132 + }, + { + "start": 18743.08, + "end": 18744.41, + "probability": 0.6308 + }, + { + "start": 18744.52, + "end": 18745.5, + "probability": 0.5411 + }, + { + "start": 18745.68, + "end": 18746.7, + "probability": 0.5025 + }, + { + "start": 18746.86, + "end": 18747.36, + "probability": 0.4724 + }, + { + "start": 18747.4, + "end": 18748.42, + "probability": 0.699 + }, + { + "start": 18748.58, + "end": 18749.34, + "probability": 0.931 + }, + { + "start": 18750.0, + "end": 18750.6, + "probability": 0.9126 + }, + { + "start": 18750.68, + "end": 18751.44, + "probability": 0.7997 + }, + { + "start": 18751.74, + "end": 18757.7, + "probability": 0.7773 + }, + { + "start": 18757.98, + "end": 18759.48, + "probability": 0.8542 + }, + { + "start": 18759.56, + "end": 18760.98, + "probability": 0.9812 + }, + { + "start": 18761.36, + "end": 18764.2, + "probability": 0.9044 + }, + { + "start": 18764.88, + "end": 18767.52, + "probability": 0.8587 + }, + { + "start": 18767.6, + "end": 18767.94, + "probability": 0.8523 + }, + { + "start": 18768.34, + "end": 18770.2, + "probability": 0.6794 + }, + { + "start": 18770.44, + "end": 18773.74, + "probability": 0.9508 + }, + { + "start": 18773.82, + "end": 18774.52, + "probability": 0.4531 + }, + { + "start": 18774.8, + "end": 18776.34, + "probability": 0.8789 + }, + { + "start": 18777.06, + "end": 18781.9, + "probability": 0.9329 + }, + { + "start": 18791.44, + "end": 18793.89, + "probability": 0.736 + }, + { + "start": 18794.16, + "end": 18795.56, + "probability": 0.8584 + }, + { + "start": 18795.64, + "end": 18797.34, + "probability": 0.8451 + }, + { + "start": 18798.16, + "end": 18798.92, + "probability": 0.4141 + }, + { + "start": 18799.56, + "end": 18800.2, + "probability": 0.4673 + }, + { + "start": 18800.86, + "end": 18801.04, + "probability": 0.5037 + }, + { + "start": 18801.04, + "end": 18802.54, + "probability": 0.3413 + }, + { + "start": 18802.86, + "end": 18803.28, + "probability": 0.3629 + }, + { + "start": 18803.3, + "end": 18804.07, + "probability": 0.2418 + }, + { + "start": 18804.58, + "end": 18804.58, + "probability": 0.2761 + }, + { + "start": 18804.58, + "end": 18806.02, + "probability": 0.2326 + }, + { + "start": 18806.14, + "end": 18806.88, + "probability": 0.6514 + }, + { + "start": 18807.02, + "end": 18809.45, + "probability": 0.8187 + }, + { + "start": 18809.56, + "end": 18812.27, + "probability": 0.9925 + }, + { + "start": 18813.06, + "end": 18813.06, + "probability": 0.1748 + }, + { + "start": 18813.06, + "end": 18815.72, + "probability": 0.4296 + }, + { + "start": 18817.18, + "end": 18821.99, + "probability": 0.9763 + }, + { + "start": 18822.2, + "end": 18822.74, + "probability": 0.1652 + }, + { + "start": 18825.52, + "end": 18826.46, + "probability": 0.1248 + }, + { + "start": 18827.34, + "end": 18828.06, + "probability": 0.124 + }, + { + "start": 18828.06, + "end": 18832.46, + "probability": 0.9658 + }, + { + "start": 18832.82, + "end": 18836.33, + "probability": 0.9604 + }, + { + "start": 18836.9, + "end": 18837.22, + "probability": 0.2239 + }, + { + "start": 18838.02, + "end": 18840.28, + "probability": 0.0622 + }, + { + "start": 18843.31, + "end": 18845.82, + "probability": 0.9827 + }, + { + "start": 18845.94, + "end": 18850.08, + "probability": 0.9878 + }, + { + "start": 18850.14, + "end": 18851.54, + "probability": 0.9841 + }, + { + "start": 18852.38, + "end": 18853.18, + "probability": 0.917 + }, + { + "start": 18853.48, + "end": 18855.07, + "probability": 0.9822 + }, + { + "start": 18856.34, + "end": 18857.15, + "probability": 0.5299 + }, + { + "start": 18858.02, + "end": 18862.52, + "probability": 0.9902 + }, + { + "start": 18862.6, + "end": 18863.68, + "probability": 0.8626 + }, + { + "start": 18865.38, + "end": 18865.74, + "probability": 0.7111 + }, + { + "start": 18865.86, + "end": 18869.0, + "probability": 0.9922 + }, + { + "start": 18869.08, + "end": 18870.06, + "probability": 0.9219 + }, + { + "start": 18870.2, + "end": 18870.56, + "probability": 0.7369 + }, + { + "start": 18870.98, + "end": 18876.8, + "probability": 0.9838 + }, + { + "start": 18877.1, + "end": 18878.1, + "probability": 0.825 + }, + { + "start": 18878.12, + "end": 18878.64, + "probability": 0.616 + }, + { + "start": 18879.5, + "end": 18880.48, + "probability": 0.9031 + }, + { + "start": 18881.12, + "end": 18884.11, + "probability": 0.9673 + }, + { + "start": 18884.68, + "end": 18887.08, + "probability": 0.9698 + }, + { + "start": 18887.76, + "end": 18888.3, + "probability": 0.6343 + }, + { + "start": 18888.84, + "end": 18889.24, + "probability": 0.7745 + }, + { + "start": 18889.3, + "end": 18895.3, + "probability": 0.9771 + }, + { + "start": 18895.3, + "end": 18899.66, + "probability": 0.9772 + }, + { + "start": 18900.04, + "end": 18902.08, + "probability": 0.9436 + }, + { + "start": 18902.58, + "end": 18903.42, + "probability": 0.743 + }, + { + "start": 18903.54, + "end": 18906.42, + "probability": 0.9956 + }, + { + "start": 18906.42, + "end": 18909.32, + "probability": 0.9813 + }, + { + "start": 18910.0, + "end": 18913.42, + "probability": 0.9846 + }, + { + "start": 18913.9, + "end": 18917.37, + "probability": 0.8274 + }, + { + "start": 18918.1, + "end": 18921.02, + "probability": 0.9407 + }, + { + "start": 18921.4, + "end": 18922.14, + "probability": 0.6942 + }, + { + "start": 18922.38, + "end": 18922.52, + "probability": 0.0332 + }, + { + "start": 18922.52, + "end": 18924.74, + "probability": 0.541 + }, + { + "start": 18925.1, + "end": 18925.12, + "probability": 0.3286 + }, + { + "start": 18925.12, + "end": 18925.12, + "probability": 0.2855 + }, + { + "start": 18925.12, + "end": 18927.05, + "probability": 0.1086 + }, + { + "start": 18927.4, + "end": 18928.14, + "probability": 0.4001 + }, + { + "start": 18928.14, + "end": 18929.26, + "probability": 0.043 + }, + { + "start": 18930.62, + "end": 18932.1, + "probability": 0.5628 + }, + { + "start": 18932.1, + "end": 18932.92, + "probability": 0.0783 + }, + { + "start": 18933.12, + "end": 18934.0, + "probability": 0.4779 + }, + { + "start": 18934.0, + "end": 18935.28, + "probability": 0.1042 + }, + { + "start": 18935.46, + "end": 18939.08, + "probability": 0.0064 + }, + { + "start": 18939.36, + "end": 18941.0, + "probability": 0.0121 + }, + { + "start": 18941.16, + "end": 18946.5, + "probability": 0.0468 + }, + { + "start": 18946.5, + "end": 18947.48, + "probability": 0.0512 + }, + { + "start": 18948.18, + "end": 18949.26, + "probability": 0.0347 + }, + { + "start": 18950.25, + "end": 18953.5, + "probability": 0.0157 + }, + { + "start": 18953.5, + "end": 18953.5, + "probability": 0.0322 + }, + { + "start": 18953.5, + "end": 18953.5, + "probability": 0.1207 + }, + { + "start": 18953.5, + "end": 18953.5, + "probability": 0.0931 + }, + { + "start": 18953.5, + "end": 18954.82, + "probability": 0.0516 + }, + { + "start": 18955.34, + "end": 18958.92, + "probability": 0.7583 + }, + { + "start": 18959.16, + "end": 18963.1, + "probability": 0.9734 + }, + { + "start": 18963.36, + "end": 18969.42, + "probability": 0.9607 + }, + { + "start": 18969.42, + "end": 18973.42, + "probability": 0.9883 + }, + { + "start": 18975.62, + "end": 18975.98, + "probability": 0.1816 + }, + { + "start": 18975.98, + "end": 18978.0, + "probability": 0.6935 + }, + { + "start": 18978.14, + "end": 18980.62, + "probability": 0.7812 + }, + { + "start": 18981.1, + "end": 18984.84, + "probability": 0.9696 + }, + { + "start": 18984.84, + "end": 18989.42, + "probability": 0.9661 + }, + { + "start": 18989.8, + "end": 18991.5, + "probability": 0.9846 + }, + { + "start": 18991.72, + "end": 18993.97, + "probability": 0.9372 + }, + { + "start": 18995.0, + "end": 18997.24, + "probability": 0.9915 + }, + { + "start": 18997.62, + "end": 19001.72, + "probability": 0.9971 + }, + { + "start": 19002.1, + "end": 19006.94, + "probability": 0.9841 + }, + { + "start": 19007.32, + "end": 19007.32, + "probability": 0.0259 + }, + { + "start": 19007.32, + "end": 19012.38, + "probability": 0.9022 + }, + { + "start": 19012.46, + "end": 19014.77, + "probability": 0.975 + }, + { + "start": 19015.4, + "end": 19018.22, + "probability": 0.8073 + }, + { + "start": 19018.3, + "end": 19020.88, + "probability": 0.9795 + }, + { + "start": 19021.26, + "end": 19022.38, + "probability": 0.9593 + }, + { + "start": 19022.8, + "end": 19026.74, + "probability": 0.8976 + }, + { + "start": 19027.26, + "end": 19029.94, + "probability": 0.0954 + }, + { + "start": 19030.6, + "end": 19031.12, + "probability": 0.0343 + }, + { + "start": 19031.12, + "end": 19031.12, + "probability": 0.323 + }, + { + "start": 19031.12, + "end": 19031.34, + "probability": 0.322 + }, + { + "start": 19031.64, + "end": 19031.64, + "probability": 0.2087 + }, + { + "start": 19031.64, + "end": 19034.44, + "probability": 0.4862 + }, + { + "start": 19034.66, + "end": 19037.56, + "probability": 0.9799 + }, + { + "start": 19038.04, + "end": 19039.92, + "probability": 0.8853 + }, + { + "start": 19040.52, + "end": 19040.6, + "probability": 0.2577 + }, + { + "start": 19040.6, + "end": 19043.06, + "probability": 0.0696 + }, + { + "start": 19045.06, + "end": 19046.84, + "probability": 0.2762 + }, + { + "start": 19046.84, + "end": 19046.84, + "probability": 0.0592 + }, + { + "start": 19046.84, + "end": 19047.02, + "probability": 0.1439 + }, + { + "start": 19047.28, + "end": 19047.28, + "probability": 0.0548 + }, + { + "start": 19047.28, + "end": 19048.6, + "probability": 0.5693 + }, + { + "start": 19048.62, + "end": 19052.44, + "probability": 0.6074 + }, + { + "start": 19052.54, + "end": 19053.42, + "probability": 0.5674 + }, + { + "start": 19053.54, + "end": 19053.76, + "probability": 0.6855 + }, + { + "start": 19053.92, + "end": 19054.83, + "probability": 0.8937 + }, + { + "start": 19055.14, + "end": 19057.24, + "probability": 0.9366 + }, + { + "start": 19057.52, + "end": 19061.1, + "probability": 0.5655 + }, + { + "start": 19061.4, + "end": 19061.5, + "probability": 0.1754 + }, + { + "start": 19061.5, + "end": 19062.54, + "probability": 0.4279 + }, + { + "start": 19063.08, + "end": 19064.72, + "probability": 0.9005 + }, + { + "start": 19065.02, + "end": 19066.3, + "probability": 0.1367 + }, + { + "start": 19066.4, + "end": 19068.7, + "probability": 0.9858 + }, + { + "start": 19069.64, + "end": 19069.88, + "probability": 0.4245 + }, + { + "start": 19069.88, + "end": 19073.94, + "probability": 0.9759 + }, + { + "start": 19074.28, + "end": 19077.06, + "probability": 0.9775 + }, + { + "start": 19077.12, + "end": 19081.24, + "probability": 0.9952 + }, + { + "start": 19081.86, + "end": 19086.88, + "probability": 0.9972 + }, + { + "start": 19087.16, + "end": 19090.22, + "probability": 0.9124 + }, + { + "start": 19090.86, + "end": 19093.8, + "probability": 0.6868 + }, + { + "start": 19094.02, + "end": 19095.45, + "probability": 0.9896 + }, + { + "start": 19096.28, + "end": 19096.78, + "probability": 0.741 + }, + { + "start": 19096.9, + "end": 19101.08, + "probability": 0.9171 + }, + { + "start": 19101.56, + "end": 19103.46, + "probability": 0.9417 + }, + { + "start": 19103.82, + "end": 19106.54, + "probability": 0.9653 + }, + { + "start": 19106.66, + "end": 19109.06, + "probability": 0.7228 + }, + { + "start": 19109.2, + "end": 19109.26, + "probability": 0.4893 + }, + { + "start": 19109.26, + "end": 19110.08, + "probability": 0.8073 + }, + { + "start": 19110.58, + "end": 19115.6, + "probability": 0.8452 + }, + { + "start": 19116.0, + "end": 19116.4, + "probability": 0.7817 + }, + { + "start": 19116.62, + "end": 19118.84, + "probability": 0.9238 + }, + { + "start": 19119.08, + "end": 19122.44, + "probability": 0.9917 + }, + { + "start": 19122.6, + "end": 19125.06, + "probability": 0.8062 + }, + { + "start": 19125.66, + "end": 19125.76, + "probability": 0.0047 + }, + { + "start": 19126.5, + "end": 19127.08, + "probability": 0.1132 + }, + { + "start": 19127.08, + "end": 19129.58, + "probability": 0.7574 + }, + { + "start": 19129.6, + "end": 19130.22, + "probability": 0.5824 + }, + { + "start": 19130.4, + "end": 19132.42, + "probability": 0.1572 + }, + { + "start": 19133.28, + "end": 19134.7, + "probability": 0.2177 + }, + { + "start": 19135.1, + "end": 19138.62, + "probability": 0.269 + }, + { + "start": 19138.78, + "end": 19139.42, + "probability": 0.0768 + }, + { + "start": 19139.5, + "end": 19140.42, + "probability": 0.4467 + }, + { + "start": 19140.52, + "end": 19141.88, + "probability": 0.9381 + }, + { + "start": 19143.88, + "end": 19146.08, + "probability": 0.0165 + }, + { + "start": 19146.82, + "end": 19147.42, + "probability": 0.1511 + }, + { + "start": 19147.5, + "end": 19148.32, + "probability": 0.1476 + }, + { + "start": 19148.44, + "end": 19149.56, + "probability": 0.8899 + }, + { + "start": 19150.68, + "end": 19153.48, + "probability": 0.7125 + }, + { + "start": 19154.58, + "end": 19156.88, + "probability": 0.9248 + }, + { + "start": 19157.62, + "end": 19158.22, + "probability": 0.5381 + }, + { + "start": 19158.94, + "end": 19162.24, + "probability": 0.8256 + }, + { + "start": 19163.08, + "end": 19164.88, + "probability": 0.8152 + }, + { + "start": 19165.32, + "end": 19169.42, + "probability": 0.8505 + }, + { + "start": 19170.48, + "end": 19171.27, + "probability": 0.9912 + }, + { + "start": 19171.5, + "end": 19172.4, + "probability": 0.9629 + }, + { + "start": 19172.5, + "end": 19173.3, + "probability": 0.75 + }, + { + "start": 19173.82, + "end": 19174.57, + "probability": 0.97 + }, + { + "start": 19175.86, + "end": 19180.22, + "probability": 0.8279 + }, + { + "start": 19181.04, + "end": 19183.54, + "probability": 0.9669 + }, + { + "start": 19184.2, + "end": 19186.06, + "probability": 0.9088 + }, + { + "start": 19186.16, + "end": 19187.56, + "probability": 0.8014 + }, + { + "start": 19188.46, + "end": 19191.42, + "probability": 0.9514 + }, + { + "start": 19191.42, + "end": 19196.56, + "probability": 0.8639 + }, + { + "start": 19197.32, + "end": 19199.58, + "probability": 0.9502 + }, + { + "start": 19199.78, + "end": 19201.14, + "probability": 0.847 + }, + { + "start": 19201.82, + "end": 19202.6, + "probability": 0.3586 + }, + { + "start": 19202.74, + "end": 19204.1, + "probability": 0.8157 + }, + { + "start": 19204.72, + "end": 19205.8, + "probability": 0.9912 + }, + { + "start": 19206.62, + "end": 19208.24, + "probability": 0.9875 + }, + { + "start": 19208.42, + "end": 19209.88, + "probability": 0.9321 + }, + { + "start": 19210.36, + "end": 19211.56, + "probability": 0.9585 + }, + { + "start": 19212.08, + "end": 19213.89, + "probability": 0.9375 + }, + { + "start": 19216.02, + "end": 19216.14, + "probability": 0.0065 + }, + { + "start": 19216.64, + "end": 19216.64, + "probability": 0.0962 + }, + { + "start": 19216.8, + "end": 19216.94, + "probability": 0.1651 + }, + { + "start": 19216.94, + "end": 19216.94, + "probability": 0.2889 + }, + { + "start": 19216.94, + "end": 19217.78, + "probability": 0.5357 + }, + { + "start": 19218.66, + "end": 19220.13, + "probability": 0.8196 + }, + { + "start": 19220.64, + "end": 19221.5, + "probability": 0.2583 + }, + { + "start": 19222.78, + "end": 19222.98, + "probability": 0.1677 + }, + { + "start": 19223.1, + "end": 19224.77, + "probability": 0.0646 + }, + { + "start": 19225.26, + "end": 19227.94, + "probability": 0.2371 + }, + { + "start": 19229.06, + "end": 19230.9, + "probability": 0.6257 + }, + { + "start": 19231.76, + "end": 19231.76, + "probability": 0.6956 + }, + { + "start": 19231.86, + "end": 19233.22, + "probability": 0.7303 + }, + { + "start": 19233.72, + "end": 19239.76, + "probability": 0.9736 + }, + { + "start": 19239.76, + "end": 19246.64, + "probability": 0.9644 + }, + { + "start": 19248.65, + "end": 19252.3, + "probability": 0.6799 + }, + { + "start": 19253.34, + "end": 19255.12, + "probability": 0.8947 + }, + { + "start": 19256.11, + "end": 19259.5, + "probability": 0.9525 + }, + { + "start": 19260.08, + "end": 19263.06, + "probability": 0.9785 + }, + { + "start": 19263.96, + "end": 19264.9, + "probability": 0.8876 + }, + { + "start": 19264.94, + "end": 19270.3, + "probability": 0.9481 + }, + { + "start": 19270.61, + "end": 19274.0, + "probability": 0.9574 + }, + { + "start": 19275.33, + "end": 19277.7, + "probability": 0.9634 + }, + { + "start": 19278.36, + "end": 19279.82, + "probability": 0.9731 + }, + { + "start": 19280.7, + "end": 19281.94, + "probability": 0.9539 + }, + { + "start": 19282.96, + "end": 19287.66, + "probability": 0.9775 + }, + { + "start": 19287.8, + "end": 19288.55, + "probability": 0.9839 + }, + { + "start": 19289.08, + "end": 19289.76, + "probability": 0.5329 + }, + { + "start": 19290.38, + "end": 19293.64, + "probability": 0.9286 + }, + { + "start": 19293.78, + "end": 19294.38, + "probability": 0.8961 + }, + { + "start": 19294.54, + "end": 19295.58, + "probability": 0.8055 + }, + { + "start": 19295.64, + "end": 19299.94, + "probability": 0.9883 + }, + { + "start": 19300.74, + "end": 19303.1, + "probability": 0.9921 + }, + { + "start": 19303.2, + "end": 19309.65, + "probability": 0.5099 + }, + { + "start": 19310.84, + "end": 19312.76, + "probability": 0.6187 + }, + { + "start": 19313.34, + "end": 19316.22, + "probability": 0.9346 + }, + { + "start": 19316.52, + "end": 19321.38, + "probability": 0.8756 + }, + { + "start": 19321.94, + "end": 19328.7, + "probability": 0.8528 + }, + { + "start": 19328.94, + "end": 19332.6, + "probability": 0.636 + }, + { + "start": 19332.84, + "end": 19333.02, + "probability": 0.6661 + }, + { + "start": 19333.26, + "end": 19339.1, + "probability": 0.6443 + }, + { + "start": 19339.18, + "end": 19339.82, + "probability": 0.6875 + }, + { + "start": 19340.58, + "end": 19344.69, + "probability": 0.8574 + }, + { + "start": 19346.6, + "end": 19350.8, + "probability": 0.9247 + }, + { + "start": 19351.34, + "end": 19354.04, + "probability": 0.8084 + }, + { + "start": 19354.04, + "end": 19358.6, + "probability": 0.9837 + }, + { + "start": 19358.84, + "end": 19360.1, + "probability": 0.8147 + }, + { + "start": 19360.54, + "end": 19361.62, + "probability": 0.5219 + }, + { + "start": 19361.72, + "end": 19362.6, + "probability": 0.4501 + }, + { + "start": 19362.76, + "end": 19364.06, + "probability": 0.5831 + }, + { + "start": 19364.1, + "end": 19364.1, + "probability": 0.3742 + }, + { + "start": 19364.24, + "end": 19365.12, + "probability": 0.8564 + }, + { + "start": 19365.26, + "end": 19369.42, + "probability": 0.9946 + }, + { + "start": 19369.54, + "end": 19371.1, + "probability": 0.799 + }, + { + "start": 19371.54, + "end": 19377.86, + "probability": 0.9709 + }, + { + "start": 19377.98, + "end": 19378.36, + "probability": 0.681 + }, + { + "start": 19378.52, + "end": 19380.52, + "probability": 0.8845 + }, + { + "start": 19381.48, + "end": 19383.16, + "probability": 0.0351 + }, + { + "start": 19383.16, + "end": 19383.16, + "probability": 0.3173 + }, + { + "start": 19383.16, + "end": 19383.16, + "probability": 0.0828 + }, + { + "start": 19383.16, + "end": 19383.16, + "probability": 0.0449 + }, + { + "start": 19383.16, + "end": 19386.63, + "probability": 0.3305 + }, + { + "start": 19388.88, + "end": 19393.26, + "probability": 0.5152 + }, + { + "start": 19393.4, + "end": 19396.98, + "probability": 0.8667 + }, + { + "start": 19400.16, + "end": 19403.44, + "probability": 0.6389 + }, + { + "start": 19404.26, + "end": 19409.52, + "probability": 0.8664 + }, + { + "start": 19409.62, + "end": 19413.26, + "probability": 0.9705 + }, + { + "start": 19413.26, + "end": 19416.18, + "probability": 0.8166 + }, + { + "start": 19416.22, + "end": 19420.32, + "probability": 0.9922 + }, + { + "start": 19420.76, + "end": 19421.6, + "probability": 0.5533 + }, + { + "start": 19421.64, + "end": 19422.64, + "probability": 0.6267 + }, + { + "start": 19422.66, + "end": 19422.76, + "probability": 0.3757 + }, + { + "start": 19422.76, + "end": 19425.58, + "probability": 0.9232 + }, + { + "start": 19425.58, + "end": 19428.82, + "probability": 0.9953 + }, + { + "start": 19429.34, + "end": 19430.19, + "probability": 0.157 + }, + { + "start": 19431.16, + "end": 19432.9, + "probability": 0.9867 + }, + { + "start": 19433.3, + "end": 19434.17, + "probability": 0.9655 + }, + { + "start": 19436.4, + "end": 19436.86, + "probability": 0.0446 + }, + { + "start": 19436.94, + "end": 19438.26, + "probability": 0.4771 + }, + { + "start": 19439.06, + "end": 19440.6, + "probability": 0.8404 + }, + { + "start": 19441.66, + "end": 19446.84, + "probability": 0.8901 + }, + { + "start": 19448.14, + "end": 19454.74, + "probability": 0.7151 + }, + { + "start": 19455.88, + "end": 19457.24, + "probability": 0.9227 + }, + { + "start": 19458.68, + "end": 19459.78, + "probability": 0.9238 + }, + { + "start": 19460.06, + "end": 19461.38, + "probability": 0.9756 + }, + { + "start": 19461.88, + "end": 19463.3, + "probability": 0.9816 + }, + { + "start": 19465.1, + "end": 19468.1, + "probability": 0.4303 + }, + { + "start": 19468.36, + "end": 19470.84, + "probability": 0.3237 + }, + { + "start": 19471.52, + "end": 19477.64, + "probability": 0.9064 + }, + { + "start": 19477.84, + "end": 19479.26, + "probability": 0.7434 + }, + { + "start": 19480.16, + "end": 19480.32, + "probability": 0.2127 + }, + { + "start": 19480.38, + "end": 19481.08, + "probability": 0.9296 + }, + { + "start": 19481.28, + "end": 19483.5, + "probability": 0.9197 + }, + { + "start": 19483.6, + "end": 19484.12, + "probability": 0.7798 + }, + { + "start": 19485.12, + "end": 19490.02, + "probability": 0.7883 + }, + { + "start": 19491.42, + "end": 19494.16, + "probability": 0.9036 + }, + { + "start": 19495.0, + "end": 19498.0, + "probability": 0.9268 + }, + { + "start": 19498.04, + "end": 19499.12, + "probability": 0.8685 + }, + { + "start": 19499.18, + "end": 19500.36, + "probability": 0.9428 + }, + { + "start": 19500.44, + "end": 19501.24, + "probability": 0.7999 + }, + { + "start": 19501.82, + "end": 19501.82, + "probability": 0.0709 + }, + { + "start": 19501.82, + "end": 19504.13, + "probability": 0.0402 + }, + { + "start": 19504.36, + "end": 19505.0, + "probability": 0.5793 + }, + { + "start": 19505.38, + "end": 19508.26, + "probability": 0.4838 + }, + { + "start": 19508.54, + "end": 19511.54, + "probability": 0.9546 + }, + { + "start": 19511.74, + "end": 19512.02, + "probability": 0.7317 + }, + { + "start": 19512.12, + "end": 19513.56, + "probability": 0.9299 + }, + { + "start": 19513.72, + "end": 19514.32, + "probability": 0.3845 + }, + { + "start": 19514.7, + "end": 19514.76, + "probability": 0.0124 + }, + { + "start": 19514.76, + "end": 19514.76, + "probability": 0.0515 + }, + { + "start": 19514.76, + "end": 19515.67, + "probability": 0.4274 + }, + { + "start": 19516.24, + "end": 19519.02, + "probability": 0.4967 + }, + { + "start": 19519.8, + "end": 19520.42, + "probability": 0.7919 + }, + { + "start": 19520.5, + "end": 19521.79, + "probability": 0.9622 + }, + { + "start": 19522.34, + "end": 19529.14, + "probability": 0.8465 + }, + { + "start": 19529.14, + "end": 19530.58, + "probability": 0.5935 + }, + { + "start": 19531.02, + "end": 19531.24, + "probability": 0.3515 + }, + { + "start": 19531.24, + "end": 19532.36, + "probability": 0.9873 + }, + { + "start": 19532.5, + "end": 19538.7, + "probability": 0.9679 + }, + { + "start": 19538.78, + "end": 19542.46, + "probability": 0.9838 + }, + { + "start": 19543.42, + "end": 19548.36, + "probability": 0.9823 + }, + { + "start": 19548.44, + "end": 19550.64, + "probability": 0.9615 + }, + { + "start": 19551.22, + "end": 19551.66, + "probability": 0.2526 + }, + { + "start": 19551.7, + "end": 19555.78, + "probability": 0.9912 + }, + { + "start": 19556.32, + "end": 19561.28, + "probability": 0.8978 + }, + { + "start": 19561.28, + "end": 19565.22, + "probability": 0.9522 + }, + { + "start": 19565.63, + "end": 19567.01, + "probability": 0.0287 + }, + { + "start": 19568.06, + "end": 19568.74, + "probability": 0.0131 + }, + { + "start": 19568.74, + "end": 19568.92, + "probability": 0.2553 + }, + { + "start": 19569.55, + "end": 19571.4, + "probability": 0.2958 + }, + { + "start": 19571.78, + "end": 19573.2, + "probability": 0.1411 + }, + { + "start": 19574.3, + "end": 19575.74, + "probability": 0.0931 + }, + { + "start": 19576.14, + "end": 19577.82, + "probability": 0.2537 + }, + { + "start": 19577.82, + "end": 19579.86, + "probability": 0.5675 + }, + { + "start": 19580.2, + "end": 19580.94, + "probability": 0.6116 + }, + { + "start": 19582.16, + "end": 19583.96, + "probability": 0.6531 + }, + { + "start": 19584.44, + "end": 19587.28, + "probability": 0.9937 + }, + { + "start": 19587.88, + "end": 19588.98, + "probability": 0.7325 + }, + { + "start": 19589.06, + "end": 19590.68, + "probability": 0.9894 + }, + { + "start": 19590.74, + "end": 19591.7, + "probability": 0.7786 + }, + { + "start": 19594.32, + "end": 19594.32, + "probability": 0.2264 + }, + { + "start": 19594.32, + "end": 19596.9, + "probability": 0.9639 + }, + { + "start": 19597.76, + "end": 19597.84, + "probability": 0.0092 + }, + { + "start": 19597.84, + "end": 19598.18, + "probability": 0.7742 + }, + { + "start": 19598.6, + "end": 19599.78, + "probability": 0.8813 + }, + { + "start": 19600.08, + "end": 19601.2, + "probability": 0.6815 + }, + { + "start": 19601.26, + "end": 19602.36, + "probability": 0.9419 + }, + { + "start": 19602.56, + "end": 19604.0, + "probability": 0.9749 + }, + { + "start": 19604.34, + "end": 19604.78, + "probability": 0.5572 + }, + { + "start": 19604.9, + "end": 19606.62, + "probability": 0.8196 + }, + { + "start": 19606.72, + "end": 19611.1, + "probability": 0.9619 + }, + { + "start": 19611.1, + "end": 19615.42, + "probability": 0.9953 + }, + { + "start": 19616.54, + "end": 19618.12, + "probability": 0.7335 + }, + { + "start": 19618.32, + "end": 19619.84, + "probability": 0.7461 + }, + { + "start": 19620.18, + "end": 19623.56, + "probability": 0.9165 + }, + { + "start": 19624.72, + "end": 19626.98, + "probability": 0.6756 + }, + { + "start": 19627.08, + "end": 19633.76, + "probability": 0.8647 + }, + { + "start": 19633.82, + "end": 19636.76, + "probability": 0.9619 + }, + { + "start": 19636.76, + "end": 19641.84, + "probability": 0.7918 + }, + { + "start": 19642.24, + "end": 19643.86, + "probability": 0.5357 + }, + { + "start": 19644.38, + "end": 19645.1, + "probability": 0.8216 + }, + { + "start": 19645.16, + "end": 19650.44, + "probability": 0.9834 + }, + { + "start": 19651.28, + "end": 19651.8, + "probability": 0.5677 + }, + { + "start": 19651.96, + "end": 19652.98, + "probability": 0.7367 + }, + { + "start": 19653.1, + "end": 19654.74, + "probability": 0.8618 + }, + { + "start": 19655.38, + "end": 19658.79, + "probability": 0.9795 + }, + { + "start": 19660.62, + "end": 19664.12, + "probability": 0.8493 + }, + { + "start": 19665.08, + "end": 19668.96, + "probability": 0.7699 + }, + { + "start": 19669.16, + "end": 19670.7, + "probability": 0.9088 + }, + { + "start": 19671.0, + "end": 19674.94, + "probability": 0.9377 + }, + { + "start": 19674.94, + "end": 19676.63, + "probability": 0.9766 + }, + { + "start": 19678.04, + "end": 19678.56, + "probability": 0.8165 + }, + { + "start": 19678.72, + "end": 19680.8, + "probability": 0.577 + }, + { + "start": 19680.86, + "end": 19684.64, + "probability": 0.981 + }, + { + "start": 19684.66, + "end": 19685.04, + "probability": 0.4551 + }, + { + "start": 19685.38, + "end": 19687.22, + "probability": 0.9549 + }, + { + "start": 19687.38, + "end": 19690.73, + "probability": 0.993 + }, + { + "start": 19691.22, + "end": 19694.32, + "probability": 0.8501 + }, + { + "start": 19694.55, + "end": 19696.98, + "probability": 0.9431 + }, + { + "start": 19697.32, + "end": 19701.98, + "probability": 0.9909 + }, + { + "start": 19702.5, + "end": 19706.2, + "probability": 0.8267 + }, + { + "start": 19707.58, + "end": 19712.16, + "probability": 0.9912 + }, + { + "start": 19713.24, + "end": 19717.4, + "probability": 0.9492 + }, + { + "start": 19717.62, + "end": 19718.12, + "probability": 0.8678 + }, + { + "start": 19719.68, + "end": 19720.32, + "probability": 0.8499 + }, + { + "start": 19720.94, + "end": 19722.08, + "probability": 0.8652 + }, + { + "start": 19723.14, + "end": 19725.02, + "probability": 0.7101 + }, + { + "start": 19725.64, + "end": 19726.44, + "probability": 0.9678 + }, + { + "start": 19727.0, + "end": 19731.48, + "probability": 0.9863 + }, + { + "start": 19732.62, + "end": 19735.26, + "probability": 0.9881 + }, + { + "start": 19735.26, + "end": 19742.02, + "probability": 0.9641 + }, + { + "start": 19742.02, + "end": 19746.46, + "probability": 0.9951 + }, + { + "start": 19746.92, + "end": 19749.2, + "probability": 0.9385 + }, + { + "start": 19750.5, + "end": 19751.4, + "probability": 0.4644 + }, + { + "start": 19751.42, + "end": 19751.99, + "probability": 0.8782 + }, + { + "start": 19752.18, + "end": 19756.27, + "probability": 0.9819 + }, + { + "start": 19756.36, + "end": 19761.52, + "probability": 0.988 + }, + { + "start": 19761.74, + "end": 19762.5, + "probability": 0.8659 + }, + { + "start": 19762.54, + "end": 19763.58, + "probability": 0.9613 + }, + { + "start": 19763.86, + "end": 19764.46, + "probability": 0.8511 + }, + { + "start": 19764.54, + "end": 19765.24, + "probability": 0.8177 + }, + { + "start": 19765.34, + "end": 19766.26, + "probability": 0.7919 + }, + { + "start": 19766.58, + "end": 19767.22, + "probability": 0.8055 + }, + { + "start": 19767.86, + "end": 19769.36, + "probability": 0.7578 + }, + { + "start": 19770.06, + "end": 19775.72, + "probability": 0.9062 + }, + { + "start": 19775.96, + "end": 19779.9, + "probability": 0.9209 + }, + { + "start": 19780.4, + "end": 19780.4, + "probability": 0.748 + }, + { + "start": 19780.92, + "end": 19783.7, + "probability": 0.9232 + }, + { + "start": 19783.98, + "end": 19786.14, + "probability": 0.9364 + }, + { + "start": 19786.6, + "end": 19787.38, + "probability": 0.815 + }, + { + "start": 19787.46, + "end": 19789.68, + "probability": 0.8103 + }, + { + "start": 19790.64, + "end": 19792.96, + "probability": 0.1471 + }, + { + "start": 19793.04, + "end": 19796.04, + "probability": 0.1107 + }, + { + "start": 19796.36, + "end": 19797.41, + "probability": 0.5299 + }, + { + "start": 19797.62, + "end": 19797.96, + "probability": 0.0268 + }, + { + "start": 19797.96, + "end": 19797.96, + "probability": 0.1899 + }, + { + "start": 19797.96, + "end": 19797.96, + "probability": 0.2702 + }, + { + "start": 19797.96, + "end": 19801.76, + "probability": 0.9899 + }, + { + "start": 19801.78, + "end": 19802.48, + "probability": 0.7412 + }, + { + "start": 19802.86, + "end": 19804.58, + "probability": 0.6804 + }, + { + "start": 19805.18, + "end": 19806.6, + "probability": 0.7463 + }, + { + "start": 19806.76, + "end": 19810.3, + "probability": 0.7971 + }, + { + "start": 19811.0, + "end": 19813.17, + "probability": 0.7212 + }, + { + "start": 19813.94, + "end": 19815.88, + "probability": 0.9776 + }, + { + "start": 19818.28, + "end": 19819.04, + "probability": 0.6138 + }, + { + "start": 19819.14, + "end": 19819.92, + "probability": 0.7311 + }, + { + "start": 19820.02, + "end": 19822.12, + "probability": 0.6957 + }, + { + "start": 19823.08, + "end": 19823.24, + "probability": 0.4146 + }, + { + "start": 19823.26, + "end": 19824.74, + "probability": 0.7805 + }, + { + "start": 19824.82, + "end": 19829.78, + "probability": 0.9827 + }, + { + "start": 19830.78, + "end": 19835.78, + "probability": 0.9951 + }, + { + "start": 19835.94, + "end": 19837.6, + "probability": 0.9418 + }, + { + "start": 19837.7, + "end": 19838.24, + "probability": 0.7826 + }, + { + "start": 19838.64, + "end": 19839.32, + "probability": 0.9116 + }, + { + "start": 19839.8, + "end": 19844.48, + "probability": 0.9464 + }, + { + "start": 19844.56, + "end": 19845.82, + "probability": 0.72 + }, + { + "start": 19846.48, + "end": 19847.86, + "probability": 0.5678 + }, + { + "start": 19848.4, + "end": 19850.16, + "probability": 0.939 + }, + { + "start": 19851.02, + "end": 19851.5, + "probability": 0.4446 + }, + { + "start": 19851.74, + "end": 19852.25, + "probability": 0.3364 + }, + { + "start": 19853.68, + "end": 19855.54, + "probability": 0.9958 + }, + { + "start": 19855.96, + "end": 19855.96, + "probability": 0.073 + }, + { + "start": 19855.96, + "end": 19857.46, + "probability": 0.8887 + }, + { + "start": 19858.34, + "end": 19860.2, + "probability": 0.9377 + }, + { + "start": 19860.62, + "end": 19862.75, + "probability": 0.9613 + }, + { + "start": 19863.38, + "end": 19868.62, + "probability": 0.7546 + }, + { + "start": 19868.72, + "end": 19869.52, + "probability": 0.9107 + }, + { + "start": 19869.8, + "end": 19870.98, + "probability": 0.8972 + }, + { + "start": 19871.48, + "end": 19876.64, + "probability": 0.8675 + }, + { + "start": 19877.04, + "end": 19879.84, + "probability": 0.9734 + }, + { + "start": 19879.94, + "end": 19880.22, + "probability": 0.8654 + }, + { + "start": 19881.12, + "end": 19882.78, + "probability": 0.9385 + }, + { + "start": 19883.42, + "end": 19884.64, + "probability": 0.907 + }, + { + "start": 19885.48, + "end": 19889.52, + "probability": 0.9844 + }, + { + "start": 19889.52, + "end": 19894.74, + "probability": 0.9921 + }, + { + "start": 19895.14, + "end": 19896.86, + "probability": 0.9971 + }, + { + "start": 19897.6, + "end": 19898.74, + "probability": 0.9567 + }, + { + "start": 19899.22, + "end": 19901.19, + "probability": 0.9912 + }, + { + "start": 19901.58, + "end": 19903.7, + "probability": 0.9647 + }, + { + "start": 19904.64, + "end": 19907.02, + "probability": 0.7665 + }, + { + "start": 19907.6, + "end": 19910.76, + "probability": 0.9552 + }, + { + "start": 19914.32, + "end": 19918.6, + "probability": 0.9169 + }, + { + "start": 19920.34, + "end": 19926.44, + "probability": 0.9839 + }, + { + "start": 19926.44, + "end": 19932.7, + "probability": 0.9404 + }, + { + "start": 19933.64, + "end": 19934.96, + "probability": 0.7979 + }, + { + "start": 19935.56, + "end": 19937.1, + "probability": 0.7433 + }, + { + "start": 19937.98, + "end": 19940.12, + "probability": 0.1763 + }, + { + "start": 19941.68, + "end": 19942.72, + "probability": 0.5463 + }, + { + "start": 19942.84, + "end": 19943.54, + "probability": 0.7367 + }, + { + "start": 19943.74, + "end": 19945.08, + "probability": 0.6994 + }, + { + "start": 19945.2, + "end": 19945.96, + "probability": 0.8371 + }, + { + "start": 19946.98, + "end": 19951.24, + "probability": 0.887 + }, + { + "start": 19951.92, + "end": 19954.74, + "probability": 0.7526 + }, + { + "start": 19956.66, + "end": 19964.7, + "probability": 0.9457 + }, + { + "start": 19964.78, + "end": 19968.22, + "probability": 0.9087 + }, + { + "start": 19968.76, + "end": 19974.4, + "probability": 0.8193 + }, + { + "start": 19975.54, + "end": 19976.6, + "probability": 0.6908 + }, + { + "start": 19976.98, + "end": 19979.1, + "probability": 0.5033 + }, + { + "start": 19979.38, + "end": 19982.72, + "probability": 0.7077 + }, + { + "start": 19983.04, + "end": 19984.54, + "probability": 0.8237 + }, + { + "start": 19985.18, + "end": 19987.34, + "probability": 0.9846 + }, + { + "start": 19987.56, + "end": 19989.62, + "probability": 0.4192 + }, + { + "start": 19990.14, + "end": 19991.44, + "probability": 0.6294 + }, + { + "start": 19992.62, + "end": 19993.66, + "probability": 0.4806 + }, + { + "start": 20010.2, + "end": 20015.09, + "probability": 0.3076 + }, + { + "start": 20017.66, + "end": 20018.2, + "probability": 0.0999 + }, + { + "start": 20018.48, + "end": 20021.06, + "probability": 0.866 + }, + { + "start": 20021.12, + "end": 20022.18, + "probability": 0.3718 + }, + { + "start": 20022.42, + "end": 20023.48, + "probability": 0.5346 + }, + { + "start": 20023.94, + "end": 20025.62, + "probability": 0.9763 + }, + { + "start": 20026.28, + "end": 20030.54, + "probability": 0.6968 + }, + { + "start": 20030.86, + "end": 20032.68, + "probability": 0.8687 + }, + { + "start": 20032.82, + "end": 20034.96, + "probability": 0.8844 + }, + { + "start": 20035.1, + "end": 20035.84, + "probability": 0.8835 + }, + { + "start": 20059.42, + "end": 20060.42, + "probability": 0.9512 + }, + { + "start": 20064.14, + "end": 20066.02, + "probability": 0.5979 + }, + { + "start": 20067.48, + "end": 20072.76, + "probability": 0.9482 + }, + { + "start": 20072.76, + "end": 20079.14, + "probability": 0.9847 + }, + { + "start": 20082.58, + "end": 20085.45, + "probability": 0.8775 + }, + { + "start": 20087.26, + "end": 20093.14, + "probability": 0.8484 + }, + { + "start": 20094.26, + "end": 20095.5, + "probability": 0.6606 + }, + { + "start": 20097.3, + "end": 20098.36, + "probability": 0.5702 + }, + { + "start": 20100.44, + "end": 20102.66, + "probability": 0.7185 + }, + { + "start": 20104.36, + "end": 20106.76, + "probability": 0.8662 + }, + { + "start": 20110.44, + "end": 20118.32, + "probability": 0.9851 + }, + { + "start": 20120.58, + "end": 20120.8, + "probability": 0.5189 + }, + { + "start": 20121.0, + "end": 20123.06, + "probability": 0.9909 + }, + { + "start": 20123.06, + "end": 20126.08, + "probability": 0.9626 + }, + { + "start": 20126.08, + "end": 20129.02, + "probability": 0.936 + }, + { + "start": 20130.32, + "end": 20134.54, + "probability": 0.969 + }, + { + "start": 20137.72, + "end": 20140.6, + "probability": 0.8 + }, + { + "start": 20143.56, + "end": 20145.32, + "probability": 0.8291 + }, + { + "start": 20148.24, + "end": 20149.3, + "probability": 0.9898 + }, + { + "start": 20152.42, + "end": 20154.18, + "probability": 0.9964 + }, + { + "start": 20155.86, + "end": 20159.48, + "probability": 0.8289 + }, + { + "start": 20161.32, + "end": 20162.9, + "probability": 0.9198 + }, + { + "start": 20164.96, + "end": 20168.84, + "probability": 0.9942 + }, + { + "start": 20170.82, + "end": 20171.16, + "probability": 0.7462 + }, + { + "start": 20171.32, + "end": 20178.96, + "probability": 0.964 + }, + { + "start": 20180.66, + "end": 20181.28, + "probability": 0.8181 + }, + { + "start": 20183.6, + "end": 20187.82, + "probability": 0.9693 + }, + { + "start": 20190.94, + "end": 20192.32, + "probability": 0.7093 + }, + { + "start": 20193.36, + "end": 20196.4, + "probability": 0.9315 + }, + { + "start": 20196.98, + "end": 20199.44, + "probability": 0.9545 + }, + { + "start": 20199.48, + "end": 20200.52, + "probability": 0.7839 + }, + { + "start": 20201.98, + "end": 20202.34, + "probability": 0.5488 + }, + { + "start": 20205.96, + "end": 20206.82, + "probability": 0.8316 + }, + { + "start": 20208.3, + "end": 20210.72, + "probability": 0.9193 + }, + { + "start": 20213.24, + "end": 20215.04, + "probability": 0.7415 + }, + { + "start": 20215.9, + "end": 20216.76, + "probability": 0.9114 + }, + { + "start": 20216.84, + "end": 20218.18, + "probability": 0.7595 + }, + { + "start": 20218.42, + "end": 20222.77, + "probability": 0.9848 + }, + { + "start": 20224.7, + "end": 20225.78, + "probability": 0.9314 + }, + { + "start": 20226.48, + "end": 20230.86, + "probability": 0.9811 + }, + { + "start": 20231.82, + "end": 20233.72, + "probability": 0.8139 + }, + { + "start": 20236.66, + "end": 20238.86, + "probability": 0.6903 + }, + { + "start": 20239.72, + "end": 20240.58, + "probability": 0.7504 + }, + { + "start": 20242.44, + "end": 20244.76, + "probability": 0.9956 + }, + { + "start": 20245.42, + "end": 20247.0, + "probability": 0.9607 + }, + { + "start": 20247.44, + "end": 20249.83, + "probability": 0.925 + }, + { + "start": 20250.02, + "end": 20250.4, + "probability": 0.3395 + }, + { + "start": 20250.52, + "end": 20252.56, + "probability": 0.995 + }, + { + "start": 20253.28, + "end": 20254.36, + "probability": 0.9912 + }, + { + "start": 20255.66, + "end": 20259.6, + "probability": 0.9752 + }, + { + "start": 20260.84, + "end": 20264.48, + "probability": 0.0826 + }, + { + "start": 20266.62, + "end": 20266.78, + "probability": 0.9038 + }, + { + "start": 20270.1, + "end": 20270.9, + "probability": 0.9563 + }, + { + "start": 20273.08, + "end": 20273.7, + "probability": 0.8199 + }, + { + "start": 20275.52, + "end": 20277.88, + "probability": 0.9137 + }, + { + "start": 20280.02, + "end": 20281.98, + "probability": 0.9226 + }, + { + "start": 20282.96, + "end": 20284.58, + "probability": 0.9753 + }, + { + "start": 20285.24, + "end": 20285.66, + "probability": 0.5287 + }, + { + "start": 20285.84, + "end": 20286.4, + "probability": 0.9534 + }, + { + "start": 20288.68, + "end": 20291.68, + "probability": 0.9858 + }, + { + "start": 20291.84, + "end": 20295.62, + "probability": 0.9225 + }, + { + "start": 20297.7, + "end": 20299.46, + "probability": 0.998 + }, + { + "start": 20300.08, + "end": 20301.96, + "probability": 0.9851 + }, + { + "start": 20305.58, + "end": 20306.74, + "probability": 0.9719 + }, + { + "start": 20308.34, + "end": 20310.42, + "probability": 0.8768 + }, + { + "start": 20310.58, + "end": 20312.09, + "probability": 0.9971 + }, + { + "start": 20313.44, + "end": 20314.12, + "probability": 0.5355 + }, + { + "start": 20314.24, + "end": 20320.28, + "probability": 0.8545 + }, + { + "start": 20322.78, + "end": 20323.92, + "probability": 0.9972 + }, + { + "start": 20324.06, + "end": 20326.39, + "probability": 0.9953 + }, + { + "start": 20329.28, + "end": 20333.3, + "probability": 0.955 + }, + { + "start": 20334.06, + "end": 20334.92, + "probability": 0.902 + }, + { + "start": 20335.32, + "end": 20336.2, + "probability": 0.7299 + }, + { + "start": 20336.92, + "end": 20338.82, + "probability": 0.9636 + }, + { + "start": 20339.86, + "end": 20346.56, + "probability": 0.9844 + }, + { + "start": 20348.3, + "end": 20350.98, + "probability": 0.9816 + }, + { + "start": 20352.9, + "end": 20356.54, + "probability": 0.6792 + }, + { + "start": 20357.4, + "end": 20358.54, + "probability": 0.9596 + }, + { + "start": 20358.62, + "end": 20359.72, + "probability": 0.9396 + }, + { + "start": 20359.9, + "end": 20360.9, + "probability": 0.8564 + }, + { + "start": 20363.42, + "end": 20364.84, + "probability": 0.984 + }, + { + "start": 20368.14, + "end": 20369.3, + "probability": 0.9523 + }, + { + "start": 20373.32, + "end": 20374.36, + "probability": 0.8169 + }, + { + "start": 20375.26, + "end": 20378.44, + "probability": 0.9842 + }, + { + "start": 20380.14, + "end": 20381.48, + "probability": 0.7196 + }, + { + "start": 20383.28, + "end": 20384.24, + "probability": 0.7399 + }, + { + "start": 20387.2, + "end": 20393.14, + "probability": 0.9407 + }, + { + "start": 20393.24, + "end": 20394.88, + "probability": 0.9277 + }, + { + "start": 20398.16, + "end": 20401.5, + "probability": 0.9779 + }, + { + "start": 20402.5, + "end": 20403.24, + "probability": 0.9541 + }, + { + "start": 20404.18, + "end": 20404.52, + "probability": 0.8604 + }, + { + "start": 20407.68, + "end": 20411.18, + "probability": 0.9229 + }, + { + "start": 20412.64, + "end": 20416.22, + "probability": 0.9675 + }, + { + "start": 20416.8, + "end": 20417.58, + "probability": 0.8392 + }, + { + "start": 20419.18, + "end": 20424.4, + "probability": 0.9748 + }, + { + "start": 20424.7, + "end": 20425.28, + "probability": 0.7071 + }, + { + "start": 20429.42, + "end": 20430.6, + "probability": 0.9699 + }, + { + "start": 20432.4, + "end": 20433.2, + "probability": 0.9055 + }, + { + "start": 20434.3, + "end": 20436.58, + "probability": 0.98 + }, + { + "start": 20438.08, + "end": 20440.18, + "probability": 0.921 + }, + { + "start": 20441.08, + "end": 20442.52, + "probability": 0.9795 + }, + { + "start": 20443.36, + "end": 20443.96, + "probability": 0.9375 + }, + { + "start": 20444.78, + "end": 20447.92, + "probability": 0.9202 + }, + { + "start": 20449.36, + "end": 20452.8, + "probability": 0.9616 + }, + { + "start": 20453.58, + "end": 20456.12, + "probability": 0.8372 + }, + { + "start": 20456.72, + "end": 20459.16, + "probability": 0.9901 + }, + { + "start": 20461.42, + "end": 20462.5, + "probability": 0.9879 + }, + { + "start": 20463.86, + "end": 20467.86, + "probability": 0.7516 + }, + { + "start": 20468.58, + "end": 20469.56, + "probability": 0.9368 + }, + { + "start": 20474.0, + "end": 20477.4, + "probability": 0.8994 + }, + { + "start": 20479.9, + "end": 20482.64, + "probability": 0.7713 + }, + { + "start": 20485.22, + "end": 20487.46, + "probability": 0.8745 + }, + { + "start": 20488.44, + "end": 20490.3, + "probability": 0.5505 + }, + { + "start": 20490.5, + "end": 20492.56, + "probability": 0.9863 + }, + { + "start": 20492.56, + "end": 20493.52, + "probability": 0.9893 + }, + { + "start": 20493.54, + "end": 20494.36, + "probability": 0.9873 + }, + { + "start": 20494.42, + "end": 20494.95, + "probability": 0.9722 + }, + { + "start": 20495.4, + "end": 20495.99, + "probability": 0.9684 + }, + { + "start": 20496.3, + "end": 20497.96, + "probability": 0.8564 + }, + { + "start": 20498.2, + "end": 20498.92, + "probability": 0.3192 + }, + { + "start": 20499.08, + "end": 20499.88, + "probability": 0.8777 + }, + { + "start": 20501.58, + "end": 20504.72, + "probability": 0.9457 + }, + { + "start": 20506.5, + "end": 20509.92, + "probability": 0.9385 + }, + { + "start": 20511.24, + "end": 20512.64, + "probability": 0.9348 + }, + { + "start": 20513.28, + "end": 20515.48, + "probability": 0.8988 + }, + { + "start": 20515.88, + "end": 20519.02, + "probability": 0.5068 + }, + { + "start": 20519.04, + "end": 20521.38, + "probability": 0.9889 + }, + { + "start": 20523.7, + "end": 20524.78, + "probability": 0.8424 + }, + { + "start": 20525.84, + "end": 20529.06, + "probability": 0.9392 + }, + { + "start": 20529.82, + "end": 20530.9, + "probability": 0.7944 + }, + { + "start": 20532.04, + "end": 20533.26, + "probability": 0.9459 + }, + { + "start": 20534.78, + "end": 20536.1, + "probability": 0.7983 + }, + { + "start": 20537.46, + "end": 20539.4, + "probability": 0.9365 + }, + { + "start": 20539.48, + "end": 20544.6, + "probability": 0.9028 + }, + { + "start": 20545.34, + "end": 20548.1, + "probability": 0.7274 + }, + { + "start": 20548.62, + "end": 20550.24, + "probability": 0.9802 + }, + { + "start": 20550.72, + "end": 20556.08, + "probability": 0.9351 + }, + { + "start": 20558.94, + "end": 20562.33, + "probability": 0.8286 + }, + { + "start": 20563.36, + "end": 20564.84, + "probability": 0.7568 + }, + { + "start": 20565.14, + "end": 20567.0, + "probability": 0.9929 + }, + { + "start": 20568.7, + "end": 20570.08, + "probability": 0.9273 + }, + { + "start": 20571.0, + "end": 20575.38, + "probability": 0.9746 + }, + { + "start": 20576.64, + "end": 20578.26, + "probability": 0.575 + }, + { + "start": 20579.98, + "end": 20586.92, + "probability": 0.9928 + }, + { + "start": 20587.1, + "end": 20588.17, + "probability": 0.9618 + }, + { + "start": 20589.3, + "end": 20591.54, + "probability": 0.665 + }, + { + "start": 20592.96, + "end": 20598.22, + "probability": 0.96 + }, + { + "start": 20598.52, + "end": 20599.7, + "probability": 0.6173 + }, + { + "start": 20599.8, + "end": 20600.2, + "probability": 0.2166 + }, + { + "start": 20600.22, + "end": 20600.82, + "probability": 0.4611 + }, + { + "start": 20600.86, + "end": 20601.7, + "probability": 0.8352 + }, + { + "start": 20603.54, + "end": 20605.7, + "probability": 0.9609 + }, + { + "start": 20607.66, + "end": 20613.22, + "probability": 0.7885 + }, + { + "start": 20614.04, + "end": 20617.4, + "probability": 0.9302 + }, + { + "start": 20618.24, + "end": 20619.52, + "probability": 0.9587 + }, + { + "start": 20619.62, + "end": 20622.1, + "probability": 0.6839 + }, + { + "start": 20622.22, + "end": 20622.59, + "probability": 0.9198 + }, + { + "start": 20623.26, + "end": 20624.12, + "probability": 0.8242 + }, + { + "start": 20625.46, + "end": 20629.84, + "probability": 0.9585 + }, + { + "start": 20630.76, + "end": 20631.48, + "probability": 0.8876 + }, + { + "start": 20632.1, + "end": 20635.22, + "probability": 0.9472 + }, + { + "start": 20639.48, + "end": 20642.3, + "probability": 0.9875 + }, + { + "start": 20643.4, + "end": 20645.48, + "probability": 0.9722 + }, + { + "start": 20647.4, + "end": 20650.9, + "probability": 0.754 + }, + { + "start": 20652.28, + "end": 20653.64, + "probability": 0.8914 + }, + { + "start": 20653.76, + "end": 20654.9, + "probability": 0.9406 + }, + { + "start": 20657.46, + "end": 20659.34, + "probability": 0.979 + }, + { + "start": 20661.3, + "end": 20667.1, + "probability": 0.9712 + }, + { + "start": 20668.37, + "end": 20671.5, + "probability": 0.5352 + }, + { + "start": 20672.72, + "end": 20674.18, + "probability": 0.8555 + }, + { + "start": 20675.88, + "end": 20677.26, + "probability": 0.9173 + }, + { + "start": 20680.44, + "end": 20681.18, + "probability": 0.9206 + }, + { + "start": 20681.24, + "end": 20683.06, + "probability": 0.9793 + }, + { + "start": 20683.24, + "end": 20685.62, + "probability": 0.9619 + }, + { + "start": 20685.62, + "end": 20688.56, + "probability": 0.899 + }, + { + "start": 20689.08, + "end": 20690.92, + "probability": 0.8109 + }, + { + "start": 20691.06, + "end": 20691.22, + "probability": 0.4015 + }, + { + "start": 20691.34, + "end": 20692.36, + "probability": 0.9092 + }, + { + "start": 20693.48, + "end": 20695.8, + "probability": 0.8369 + }, + { + "start": 20696.52, + "end": 20702.44, + "probability": 0.9956 + }, + { + "start": 20702.44, + "end": 20706.78, + "probability": 0.9902 + }, + { + "start": 20708.24, + "end": 20711.72, + "probability": 0.8253 + }, + { + "start": 20712.66, + "end": 20717.24, + "probability": 0.9458 + }, + { + "start": 20718.08, + "end": 20719.3, + "probability": 0.8097 + }, + { + "start": 20720.5, + "end": 20721.98, + "probability": 0.9405 + }, + { + "start": 20722.26, + "end": 20724.88, + "probability": 0.9296 + }, + { + "start": 20725.74, + "end": 20730.1, + "probability": 0.979 + }, + { + "start": 20730.62, + "end": 20731.0, + "probability": 0.7191 + }, + { + "start": 20731.18, + "end": 20734.32, + "probability": 0.9776 + }, + { + "start": 20734.64, + "end": 20735.12, + "probability": 0.8287 + }, + { + "start": 20735.18, + "end": 20736.98, + "probability": 0.7063 + }, + { + "start": 20737.02, + "end": 20741.66, + "probability": 0.8701 + }, + { + "start": 20754.88, + "end": 20760.02, + "probability": 0.6654 + }, + { + "start": 20761.34, + "end": 20764.3, + "probability": 0.9509 + }, + { + "start": 20764.64, + "end": 20766.12, + "probability": 0.9903 + }, + { + "start": 20766.52, + "end": 20771.12, + "probability": 0.9677 + }, + { + "start": 20771.84, + "end": 20772.36, + "probability": 0.7217 + }, + { + "start": 20772.52, + "end": 20775.42, + "probability": 0.9644 + }, + { + "start": 20775.54, + "end": 20776.64, + "probability": 0.8809 + }, + { + "start": 20777.32, + "end": 20780.78, + "probability": 0.983 + }, + { + "start": 20780.78, + "end": 20784.92, + "probability": 0.9808 + }, + { + "start": 20785.24, + "end": 20786.54, + "probability": 0.8253 + }, + { + "start": 20787.28, + "end": 20791.72, + "probability": 0.9695 + }, + { + "start": 20792.42, + "end": 20795.66, + "probability": 0.9894 + }, + { + "start": 20796.14, + "end": 20800.32, + "probability": 0.916 + }, + { + "start": 20800.32, + "end": 20803.92, + "probability": 0.7995 + }, + { + "start": 20804.44, + "end": 20807.4, + "probability": 0.9653 + }, + { + "start": 20808.44, + "end": 20811.8, + "probability": 0.6847 + }, + { + "start": 20811.9, + "end": 20814.02, + "probability": 0.7066 + }, + { + "start": 20814.58, + "end": 20816.74, + "probability": 0.8314 + }, + { + "start": 20817.56, + "end": 20823.08, + "probability": 0.642 + }, + { + "start": 20823.94, + "end": 20828.4, + "probability": 0.8763 + }, + { + "start": 20828.86, + "end": 20831.86, + "probability": 0.8787 + }, + { + "start": 20832.42, + "end": 20833.5, + "probability": 0.9198 + }, + { + "start": 20834.32, + "end": 20837.34, + "probability": 0.754 + }, + { + "start": 20837.4, + "end": 20844.48, + "probability": 0.7655 + }, + { + "start": 20844.82, + "end": 20847.24, + "probability": 0.8081 + }, + { + "start": 20847.72, + "end": 20851.44, + "probability": 0.9124 + }, + { + "start": 20851.82, + "end": 20856.86, + "probability": 0.8434 + }, + { + "start": 20857.32, + "end": 20859.74, + "probability": 0.7427 + }, + { + "start": 20860.06, + "end": 20860.94, + "probability": 0.8384 + }, + { + "start": 20861.02, + "end": 20865.7, + "probability": 0.9463 + }, + { + "start": 20865.9, + "end": 20867.92, + "probability": 0.7113 + }, + { + "start": 20868.14, + "end": 20871.4, + "probability": 0.6656 + }, + { + "start": 20871.6, + "end": 20872.02, + "probability": 0.954 + }, + { + "start": 20872.12, + "end": 20874.12, + "probability": 0.9279 + }, + { + "start": 20874.72, + "end": 20877.22, + "probability": 0.9878 + }, + { + "start": 20877.98, + "end": 20880.44, + "probability": 0.948 + }, + { + "start": 20880.96, + "end": 20882.62, + "probability": 0.6637 + }, + { + "start": 20882.82, + "end": 20887.72, + "probability": 0.9902 + }, + { + "start": 20887.98, + "end": 20889.46, + "probability": 0.5714 + }, + { + "start": 20889.59, + "end": 20892.84, + "probability": 0.9749 + }, + { + "start": 20893.32, + "end": 20896.56, + "probability": 0.6221 + }, + { + "start": 20897.72, + "end": 20898.42, + "probability": 0.2733 + }, + { + "start": 20898.5, + "end": 20902.28, + "probability": 0.9504 + }, + { + "start": 20903.24, + "end": 20905.56, + "probability": 0.0798 + }, + { + "start": 20907.38, + "end": 20910.72, + "probability": 0.0661 + }, + { + "start": 20911.48, + "end": 20911.62, + "probability": 0.3571 + }, + { + "start": 20911.8, + "end": 20912.02, + "probability": 0.0516 + }, + { + "start": 20912.12, + "end": 20912.12, + "probability": 0.029 + }, + { + "start": 20912.12, + "end": 20912.12, + "probability": 0.1741 + }, + { + "start": 20912.12, + "end": 20913.96, + "probability": 0.1245 + }, + { + "start": 20918.4, + "end": 20920.14, + "probability": 0.3449 + }, + { + "start": 20920.14, + "end": 20921.12, + "probability": 0.6143 + }, + { + "start": 20921.52, + "end": 20922.12, + "probability": 0.4228 + }, + { + "start": 20922.2, + "end": 20923.83, + "probability": 0.5302 + }, + { + "start": 20924.84, + "end": 20925.74, + "probability": 0.9649 + }, + { + "start": 20925.86, + "end": 20933.08, + "probability": 0.8541 + }, + { + "start": 20933.24, + "end": 20935.93, + "probability": 0.9797 + }, + { + "start": 20936.1, + "end": 20936.92, + "probability": 0.9626 + }, + { + "start": 20937.12, + "end": 20938.36, + "probability": 0.7839 + }, + { + "start": 20938.7, + "end": 20941.36, + "probability": 0.9912 + }, + { + "start": 20941.48, + "end": 20942.82, + "probability": 0.7006 + }, + { + "start": 20943.16, + "end": 20945.84, + "probability": 0.8689 + }, + { + "start": 20946.54, + "end": 20947.68, + "probability": 0.5894 + }, + { + "start": 20947.82, + "end": 20952.18, + "probability": 0.943 + }, + { + "start": 20952.4, + "end": 20955.38, + "probability": 0.7869 + }, + { + "start": 20955.68, + "end": 20959.18, + "probability": 0.8459 + }, + { + "start": 20959.18, + "end": 20961.86, + "probability": 0.9539 + }, + { + "start": 20962.2, + "end": 20964.48, + "probability": 0.9497 + }, + { + "start": 20965.0, + "end": 20970.72, + "probability": 0.9913 + }, + { + "start": 20971.14, + "end": 20974.38, + "probability": 0.9844 + }, + { + "start": 20974.54, + "end": 20975.86, + "probability": 0.992 + }, + { + "start": 20975.92, + "end": 20976.72, + "probability": 0.9482 + }, + { + "start": 20977.2, + "end": 20978.04, + "probability": 0.9135 + }, + { + "start": 20978.1, + "end": 20979.66, + "probability": 0.9679 + }, + { + "start": 20979.76, + "end": 20981.14, + "probability": 0.9147 + }, + { + "start": 20981.2, + "end": 20983.72, + "probability": 0.9912 + }, + { + "start": 20984.04, + "end": 20986.32, + "probability": 0.8031 + }, + { + "start": 20986.42, + "end": 20989.36, + "probability": 0.9969 + }, + { + "start": 20989.58, + "end": 20991.6, + "probability": 0.998 + }, + { + "start": 20992.06, + "end": 20993.7, + "probability": 0.9521 + }, + { + "start": 20994.5, + "end": 20996.24, + "probability": 0.9594 + }, + { + "start": 20996.58, + "end": 20996.78, + "probability": 0.7435 + }, + { + "start": 20997.02, + "end": 20997.02, + "probability": 0.0284 + }, + { + "start": 20997.02, + "end": 20997.14, + "probability": 0.2125 + }, + { + "start": 20997.14, + "end": 20999.86, + "probability": 0.4967 + }, + { + "start": 21001.12, + "end": 21003.04, + "probability": 0.9149 + }, + { + "start": 21003.26, + "end": 21005.84, + "probability": 0.9921 + }, + { + "start": 21005.96, + "end": 21008.8, + "probability": 0.9053 + }, + { + "start": 21008.96, + "end": 21011.18, + "probability": 0.645 + }, + { + "start": 21011.74, + "end": 21012.58, + "probability": 0.1877 + }, + { + "start": 21012.58, + "end": 21013.3, + "probability": 0.2703 + }, + { + "start": 21014.04, + "end": 21014.88, + "probability": 0.4831 + }, + { + "start": 21014.98, + "end": 21015.42, + "probability": 0.8561 + }, + { + "start": 21016.72, + "end": 21018.66, + "probability": 0.5593 + }, + { + "start": 21018.76, + "end": 21022.69, + "probability": 0.7227 + }, + { + "start": 21026.54, + "end": 21027.42, + "probability": 0.038 + }, + { + "start": 21027.48, + "end": 21028.16, + "probability": 0.6698 + }, + { + "start": 21029.76, + "end": 21030.78, + "probability": 0.0828 + }, + { + "start": 21045.72, + "end": 21045.98, + "probability": 0.2275 + }, + { + "start": 21045.98, + "end": 21049.1, + "probability": 0.7909 + }, + { + "start": 21056.26, + "end": 21058.72, + "probability": 0.6522 + }, + { + "start": 21059.56, + "end": 21062.04, + "probability": 0.7065 + }, + { + "start": 21062.04, + "end": 21064.58, + "probability": 0.9895 + }, + { + "start": 21065.72, + "end": 21067.84, + "probability": 0.5175 + }, + { + "start": 21067.94, + "end": 21069.14, + "probability": 0.6891 + }, + { + "start": 21069.24, + "end": 21072.0, + "probability": 0.7528 + }, + { + "start": 21072.64, + "end": 21079.24, + "probability": 0.9873 + }, + { + "start": 21079.48, + "end": 21081.42, + "probability": 0.3846 + }, + { + "start": 21083.0, + "end": 21085.92, + "probability": 0.0853 + }, + { + "start": 21085.98, + "end": 21086.2, + "probability": 0.7773 + }, + { + "start": 21087.3, + "end": 21088.12, + "probability": 0.3338 + }, + { + "start": 21088.16, + "end": 21089.74, + "probability": 0.975 + }, + { + "start": 21089.84, + "end": 21091.34, + "probability": 0.6523 + }, + { + "start": 21091.48, + "end": 21093.02, + "probability": 0.8618 + }, + { + "start": 21093.12, + "end": 21094.18, + "probability": 0.2467 + } + ], + "segments_count": 6990, + "words_count": 35232, + "avg_words_per_segment": 5.0403, + "avg_segment_duration": 2.3086, + "avg_words_per_minute": 100.1599, + "plenum_id": "29610", + "duration": 21105.45, + "title": null, + "plenum_date": "2013-06-26" +} \ No newline at end of file