diff --git "a/47063/metadata.json" "b/47063/metadata.json" new file mode 100644--- /dev/null +++ "b/47063/metadata.json" @@ -0,0 +1,19182 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "47063", + "quality_score": 0.9067, + "per_segment_quality_scores": [ + { + "start": 60.34, + "end": 61.34, + "probability": 0.569 + }, + { + "start": 65.22, + "end": 69.1, + "probability": 0.6759 + }, + { + "start": 69.78, + "end": 74.78, + "probability": 0.7094 + }, + { + "start": 74.88, + "end": 76.14, + "probability": 0.4625 + }, + { + "start": 76.76, + "end": 79.22, + "probability": 0.8447 + }, + { + "start": 80.16, + "end": 82.6, + "probability": 0.9663 + }, + { + "start": 83.14, + "end": 84.36, + "probability": 0.4098 + }, + { + "start": 85.02, + "end": 90.3, + "probability": 0.7804 + }, + { + "start": 90.52, + "end": 92.04, + "probability": 0.8682 + }, + { + "start": 92.78, + "end": 94.14, + "probability": 0.7061 + }, + { + "start": 94.22, + "end": 97.07, + "probability": 0.8464 + }, + { + "start": 97.7, + "end": 99.87, + "probability": 0.907 + }, + { + "start": 100.26, + "end": 100.82, + "probability": 0.5474 + }, + { + "start": 102.3, + "end": 103.44, + "probability": 0.9668 + }, + { + "start": 108.2, + "end": 109.24, + "probability": 0.1007 + }, + { + "start": 109.24, + "end": 109.52, + "probability": 0.071 + }, + { + "start": 122.44, + "end": 122.56, + "probability": 0.0558 + }, + { + "start": 125.28, + "end": 128.36, + "probability": 0.9181 + }, + { + "start": 130.08, + "end": 133.62, + "probability": 0.8901 + }, + { + "start": 134.28, + "end": 136.06, + "probability": 0.9546 + }, + { + "start": 140.96, + "end": 141.72, + "probability": 0.8004 + }, + { + "start": 141.86, + "end": 142.82, + "probability": 0.8018 + }, + { + "start": 142.98, + "end": 143.76, + "probability": 0.6706 + }, + { + "start": 144.18, + "end": 149.02, + "probability": 0.8878 + }, + { + "start": 150.3, + "end": 151.9, + "probability": 0.5802 + }, + { + "start": 153.88, + "end": 158.18, + "probability": 0.9911 + }, + { + "start": 159.54, + "end": 160.98, + "probability": 0.9722 + }, + { + "start": 163.25, + "end": 169.77, + "probability": 0.9472 + }, + { + "start": 172.34, + "end": 172.68, + "probability": 0.6356 + }, + { + "start": 174.22, + "end": 176.08, + "probability": 0.9889 + }, + { + "start": 177.5, + "end": 177.64, + "probability": 0.8545 + }, + { + "start": 180.2, + "end": 186.82, + "probability": 0.9229 + }, + { + "start": 188.36, + "end": 190.96, + "probability": 0.7749 + }, + { + "start": 191.38, + "end": 192.9, + "probability": 0.9647 + }, + { + "start": 192.98, + "end": 193.82, + "probability": 0.8243 + }, + { + "start": 195.0, + "end": 197.42, + "probability": 0.9696 + }, + { + "start": 198.04, + "end": 198.84, + "probability": 0.978 + }, + { + "start": 199.9, + "end": 203.64, + "probability": 0.6946 + }, + { + "start": 204.86, + "end": 208.68, + "probability": 0.9576 + }, + { + "start": 209.22, + "end": 209.94, + "probability": 0.6413 + }, + { + "start": 212.02, + "end": 216.26, + "probability": 0.8665 + }, + { + "start": 217.82, + "end": 218.6, + "probability": 0.9085 + }, + { + "start": 219.38, + "end": 221.04, + "probability": 0.9479 + }, + { + "start": 221.66, + "end": 223.76, + "probability": 0.9453 + }, + { + "start": 226.86, + "end": 229.14, + "probability": 0.8767 + }, + { + "start": 229.88, + "end": 233.4, + "probability": 0.9748 + }, + { + "start": 233.4, + "end": 238.5, + "probability": 0.6559 + }, + { + "start": 239.4, + "end": 241.84, + "probability": 0.6744 + }, + { + "start": 242.38, + "end": 244.26, + "probability": 0.713 + }, + { + "start": 245.24, + "end": 248.38, + "probability": 0.5908 + }, + { + "start": 248.5, + "end": 248.98, + "probability": 0.8091 + }, + { + "start": 250.08, + "end": 253.54, + "probability": 0.773 + }, + { + "start": 253.7, + "end": 256.46, + "probability": 0.885 + }, + { + "start": 256.88, + "end": 258.22, + "probability": 0.5393 + }, + { + "start": 258.8, + "end": 260.1, + "probability": 0.6374 + }, + { + "start": 261.22, + "end": 262.26, + "probability": 0.7907 + }, + { + "start": 262.4, + "end": 264.62, + "probability": 0.7294 + }, + { + "start": 264.88, + "end": 268.08, + "probability": 0.9858 + }, + { + "start": 268.84, + "end": 272.56, + "probability": 0.9824 + }, + { + "start": 272.56, + "end": 277.04, + "probability": 0.9576 + }, + { + "start": 277.7, + "end": 277.8, + "probability": 0.2347 + }, + { + "start": 277.86, + "end": 278.28, + "probability": 0.8721 + }, + { + "start": 278.44, + "end": 281.02, + "probability": 0.9653 + }, + { + "start": 281.14, + "end": 283.24, + "probability": 0.9727 + }, + { + "start": 283.78, + "end": 285.5, + "probability": 0.8933 + }, + { + "start": 290.12, + "end": 290.68, + "probability": 0.0739 + }, + { + "start": 290.68, + "end": 293.2, + "probability": 0.6862 + }, + { + "start": 294.16, + "end": 294.82, + "probability": 0.8299 + }, + { + "start": 294.88, + "end": 297.66, + "probability": 0.8709 + }, + { + "start": 297.74, + "end": 299.26, + "probability": 0.9871 + }, + { + "start": 299.78, + "end": 303.62, + "probability": 0.9959 + }, + { + "start": 304.52, + "end": 306.0, + "probability": 0.8166 + }, + { + "start": 306.66, + "end": 307.92, + "probability": 0.7563 + }, + { + "start": 308.78, + "end": 309.72, + "probability": 0.8147 + }, + { + "start": 310.52, + "end": 315.08, + "probability": 0.9988 + }, + { + "start": 315.78, + "end": 316.86, + "probability": 0.9761 + }, + { + "start": 317.26, + "end": 320.14, + "probability": 0.9763 + }, + { + "start": 320.44, + "end": 322.01, + "probability": 0.9941 + }, + { + "start": 322.9, + "end": 324.28, + "probability": 0.9943 + }, + { + "start": 324.38, + "end": 325.04, + "probability": 0.9849 + }, + { + "start": 325.34, + "end": 326.8, + "probability": 0.9732 + }, + { + "start": 328.1, + "end": 328.48, + "probability": 0.8722 + }, + { + "start": 329.56, + "end": 330.82, + "probability": 0.9802 + }, + { + "start": 331.86, + "end": 332.84, + "probability": 0.9829 + }, + { + "start": 333.54, + "end": 335.66, + "probability": 0.998 + }, + { + "start": 335.66, + "end": 338.5, + "probability": 0.9796 + }, + { + "start": 338.6, + "end": 339.04, + "probability": 0.8306 + }, + { + "start": 339.64, + "end": 341.66, + "probability": 0.9367 + }, + { + "start": 342.22, + "end": 347.04, + "probability": 0.9891 + }, + { + "start": 347.94, + "end": 349.74, + "probability": 0.9878 + }, + { + "start": 350.42, + "end": 355.88, + "probability": 0.9962 + }, + { + "start": 356.78, + "end": 359.46, + "probability": 0.9251 + }, + { + "start": 360.44, + "end": 361.71, + "probability": 0.9894 + }, + { + "start": 362.74, + "end": 366.12, + "probability": 0.9739 + }, + { + "start": 366.74, + "end": 368.64, + "probability": 0.9931 + }, + { + "start": 368.76, + "end": 372.74, + "probability": 0.9974 + }, + { + "start": 373.56, + "end": 374.99, + "probability": 0.9802 + }, + { + "start": 375.82, + "end": 377.74, + "probability": 0.925 + }, + { + "start": 378.42, + "end": 380.66, + "probability": 0.9792 + }, + { + "start": 381.36, + "end": 385.12, + "probability": 0.9783 + }, + { + "start": 385.92, + "end": 387.8, + "probability": 0.9568 + }, + { + "start": 388.72, + "end": 391.18, + "probability": 0.9946 + }, + { + "start": 391.66, + "end": 393.92, + "probability": 0.9855 + }, + { + "start": 394.16, + "end": 394.68, + "probability": 0.7637 + }, + { + "start": 395.28, + "end": 398.19, + "probability": 0.9988 + }, + { + "start": 398.92, + "end": 401.36, + "probability": 0.9904 + }, + { + "start": 401.88, + "end": 404.34, + "probability": 0.9802 + }, + { + "start": 404.4, + "end": 407.3, + "probability": 0.9253 + }, + { + "start": 408.4, + "end": 410.1, + "probability": 0.7776 + }, + { + "start": 410.4, + "end": 415.26, + "probability": 0.9828 + }, + { + "start": 416.06, + "end": 416.58, + "probability": 0.9652 + }, + { + "start": 417.42, + "end": 419.75, + "probability": 0.9966 + }, + { + "start": 420.6, + "end": 422.96, + "probability": 0.9194 + }, + { + "start": 423.82, + "end": 425.74, + "probability": 0.6543 + }, + { + "start": 425.82, + "end": 427.86, + "probability": 0.7067 + }, + { + "start": 427.88, + "end": 428.48, + "probability": 0.7242 + }, + { + "start": 428.54, + "end": 428.96, + "probability": 0.7941 + }, + { + "start": 429.28, + "end": 430.28, + "probability": 0.7242 + }, + { + "start": 431.5, + "end": 433.78, + "probability": 0.7514 + }, + { + "start": 436.5, + "end": 437.18, + "probability": 0.214 + }, + { + "start": 437.32, + "end": 438.34, + "probability": 0.6582 + }, + { + "start": 439.34, + "end": 440.88, + "probability": 0.9637 + }, + { + "start": 442.2, + "end": 443.18, + "probability": 0.8854 + }, + { + "start": 444.22, + "end": 446.8, + "probability": 0.9855 + }, + { + "start": 446.86, + "end": 449.06, + "probability": 0.8651 + }, + { + "start": 449.98, + "end": 450.4, + "probability": 0.9424 + }, + { + "start": 454.08, + "end": 457.36, + "probability": 0.6559 + }, + { + "start": 457.46, + "end": 460.18, + "probability": 0.927 + }, + { + "start": 460.8, + "end": 464.48, + "probability": 0.8276 + }, + { + "start": 465.52, + "end": 469.36, + "probability": 0.968 + }, + { + "start": 469.44, + "end": 473.34, + "probability": 0.9458 + }, + { + "start": 473.84, + "end": 475.18, + "probability": 0.9854 + }, + { + "start": 476.0, + "end": 479.32, + "probability": 0.9932 + }, + { + "start": 480.32, + "end": 482.92, + "probability": 0.9925 + }, + { + "start": 482.92, + "end": 485.72, + "probability": 0.9969 + }, + { + "start": 486.44, + "end": 490.92, + "probability": 0.837 + }, + { + "start": 490.96, + "end": 495.18, + "probability": 0.9757 + }, + { + "start": 495.4, + "end": 497.72, + "probability": 0.8902 + }, + { + "start": 498.52, + "end": 501.18, + "probability": 0.8974 + }, + { + "start": 502.32, + "end": 505.92, + "probability": 0.9802 + }, + { + "start": 506.1, + "end": 508.0, + "probability": 0.9238 + }, + { + "start": 508.54, + "end": 512.34, + "probability": 0.8716 + }, + { + "start": 512.34, + "end": 517.28, + "probability": 0.7914 + }, + { + "start": 517.42, + "end": 518.9, + "probability": 0.8153 + }, + { + "start": 519.44, + "end": 526.58, + "probability": 0.972 + }, + { + "start": 527.22, + "end": 531.08, + "probability": 0.9677 + }, + { + "start": 531.08, + "end": 538.0, + "probability": 0.9736 + }, + { + "start": 538.36, + "end": 543.14, + "probability": 0.9598 + }, + { + "start": 543.86, + "end": 545.8, + "probability": 0.6517 + }, + { + "start": 545.96, + "end": 548.86, + "probability": 0.9792 + }, + { + "start": 548.86, + "end": 551.46, + "probability": 0.6823 + }, + { + "start": 551.82, + "end": 553.96, + "probability": 0.9578 + }, + { + "start": 554.58, + "end": 559.66, + "probability": 0.8337 + }, + { + "start": 559.76, + "end": 559.92, + "probability": 0.6354 + }, + { + "start": 561.06, + "end": 563.54, + "probability": 0.663 + }, + { + "start": 563.6, + "end": 566.52, + "probability": 0.6729 + }, + { + "start": 567.45, + "end": 570.54, + "probability": 0.7798 + }, + { + "start": 574.54, + "end": 578.34, + "probability": 0.6711 + }, + { + "start": 580.48, + "end": 583.38, + "probability": 0.9107 + }, + { + "start": 584.92, + "end": 591.02, + "probability": 0.8113 + }, + { + "start": 591.6, + "end": 598.54, + "probability": 0.9952 + }, + { + "start": 598.94, + "end": 601.12, + "probability": 0.9296 + }, + { + "start": 602.76, + "end": 605.3, + "probability": 0.9501 + }, + { + "start": 606.84, + "end": 610.36, + "probability": 0.9841 + }, + { + "start": 610.94, + "end": 612.12, + "probability": 0.8742 + }, + { + "start": 612.98, + "end": 621.18, + "probability": 0.991 + }, + { + "start": 622.26, + "end": 623.66, + "probability": 0.951 + }, + { + "start": 624.88, + "end": 626.06, + "probability": 0.7649 + }, + { + "start": 626.78, + "end": 627.68, + "probability": 0.653 + }, + { + "start": 628.78, + "end": 631.8, + "probability": 0.9394 + }, + { + "start": 632.44, + "end": 639.54, + "probability": 0.937 + }, + { + "start": 640.84, + "end": 643.96, + "probability": 0.9845 + }, + { + "start": 644.78, + "end": 646.6, + "probability": 0.7734 + }, + { + "start": 647.04, + "end": 651.9, + "probability": 0.9245 + }, + { + "start": 653.3, + "end": 657.76, + "probability": 0.981 + }, + { + "start": 659.56, + "end": 660.9, + "probability": 0.9969 + }, + { + "start": 661.9, + "end": 666.03, + "probability": 0.99 + }, + { + "start": 667.34, + "end": 671.72, + "probability": 0.9938 + }, + { + "start": 671.72, + "end": 675.54, + "probability": 0.9949 + }, + { + "start": 676.1, + "end": 681.3, + "probability": 0.9985 + }, + { + "start": 682.24, + "end": 688.18, + "probability": 0.9972 + }, + { + "start": 689.48, + "end": 691.0, + "probability": 0.9847 + }, + { + "start": 691.44, + "end": 694.54, + "probability": 0.992 + }, + { + "start": 694.94, + "end": 696.66, + "probability": 0.81 + }, + { + "start": 696.74, + "end": 697.96, + "probability": 0.9345 + }, + { + "start": 698.06, + "end": 699.54, + "probability": 0.8025 + }, + { + "start": 699.9, + "end": 700.44, + "probability": 0.9956 + }, + { + "start": 701.38, + "end": 703.52, + "probability": 0.979 + }, + { + "start": 704.12, + "end": 705.98, + "probability": 0.9917 + }, + { + "start": 706.08, + "end": 706.96, + "probability": 0.6649 + }, + { + "start": 707.3, + "end": 708.6, + "probability": 0.8733 + }, + { + "start": 709.24, + "end": 710.72, + "probability": 0.9552 + }, + { + "start": 711.0, + "end": 711.58, + "probability": 0.7371 + }, + { + "start": 711.7, + "end": 713.96, + "probability": 0.8257 + }, + { + "start": 714.4, + "end": 716.1, + "probability": 0.9448 + }, + { + "start": 716.34, + "end": 719.24, + "probability": 0.9888 + }, + { + "start": 719.9, + "end": 720.3, + "probability": 0.9039 + }, + { + "start": 720.96, + "end": 726.78, + "probability": 0.9058 + }, + { + "start": 726.78, + "end": 729.88, + "probability": 0.8871 + }, + { + "start": 730.1, + "end": 730.36, + "probability": 0.7671 + }, + { + "start": 731.6, + "end": 733.4, + "probability": 0.5961 + }, + { + "start": 733.46, + "end": 735.46, + "probability": 0.6318 + }, + { + "start": 735.9, + "end": 736.46, + "probability": 0.6535 + }, + { + "start": 736.76, + "end": 737.98, + "probability": 0.9644 + }, + { + "start": 740.82, + "end": 743.1, + "probability": 0.7535 + }, + { + "start": 743.64, + "end": 744.0, + "probability": 0.8848 + }, + { + "start": 744.12, + "end": 746.26, + "probability": 0.9615 + }, + { + "start": 746.36, + "end": 748.22, + "probability": 0.9468 + }, + { + "start": 748.78, + "end": 751.64, + "probability": 0.9102 + }, + { + "start": 752.02, + "end": 755.0, + "probability": 0.951 + }, + { + "start": 755.06, + "end": 757.6, + "probability": 0.9861 + }, + { + "start": 758.46, + "end": 762.0, + "probability": 0.9924 + }, + { + "start": 762.0, + "end": 765.06, + "probability": 0.8795 + }, + { + "start": 765.16, + "end": 768.02, + "probability": 0.8914 + }, + { + "start": 769.02, + "end": 771.14, + "probability": 0.9952 + }, + { + "start": 771.14, + "end": 773.9, + "probability": 0.9956 + }, + { + "start": 774.68, + "end": 777.62, + "probability": 0.8494 + }, + { + "start": 777.78, + "end": 782.68, + "probability": 0.9098 + }, + { + "start": 782.8, + "end": 784.78, + "probability": 0.8507 + }, + { + "start": 784.86, + "end": 789.6, + "probability": 0.9983 + }, + { + "start": 789.6, + "end": 795.66, + "probability": 0.9945 + }, + { + "start": 796.38, + "end": 800.72, + "probability": 0.9927 + }, + { + "start": 800.74, + "end": 804.08, + "probability": 0.9982 + }, + { + "start": 804.48, + "end": 807.78, + "probability": 0.9974 + }, + { + "start": 807.86, + "end": 808.4, + "probability": 0.798 + }, + { + "start": 809.0, + "end": 811.14, + "probability": 0.5013 + }, + { + "start": 811.3, + "end": 815.9, + "probability": 0.7539 + }, + { + "start": 816.56, + "end": 817.56, + "probability": 0.9095 + }, + { + "start": 824.76, + "end": 826.02, + "probability": 0.6827 + }, + { + "start": 827.76, + "end": 833.28, + "probability": 0.9689 + }, + { + "start": 833.34, + "end": 840.8, + "probability": 0.9713 + }, + { + "start": 842.66, + "end": 845.74, + "probability": 0.5845 + }, + { + "start": 846.32, + "end": 847.98, + "probability": 0.6709 + }, + { + "start": 848.72, + "end": 849.94, + "probability": 0.8174 + }, + { + "start": 850.58, + "end": 854.2, + "probability": 0.9146 + }, + { + "start": 854.3, + "end": 856.94, + "probability": 0.8003 + }, + { + "start": 857.0, + "end": 858.59, + "probability": 0.9983 + }, + { + "start": 859.3, + "end": 863.14, + "probability": 0.9494 + }, + { + "start": 863.88, + "end": 870.72, + "probability": 0.8373 + }, + { + "start": 870.82, + "end": 875.06, + "probability": 0.5459 + }, + { + "start": 875.74, + "end": 876.56, + "probability": 0.6026 + }, + { + "start": 877.28, + "end": 878.7, + "probability": 0.4251 + }, + { + "start": 879.64, + "end": 880.74, + "probability": 0.002 + }, + { + "start": 880.9, + "end": 881.02, + "probability": 0.23 + }, + { + "start": 881.02, + "end": 881.9, + "probability": 0.2252 + }, + { + "start": 881.9, + "end": 885.88, + "probability": 0.5525 + }, + { + "start": 885.88, + "end": 888.4, + "probability": 0.5373 + }, + { + "start": 888.48, + "end": 890.08, + "probability": 0.5942 + }, + { + "start": 890.08, + "end": 891.5, + "probability": 0.8864 + }, + { + "start": 891.82, + "end": 893.24, + "probability": 0.8097 + }, + { + "start": 893.36, + "end": 895.54, + "probability": 0.8722 + }, + { + "start": 895.76, + "end": 898.66, + "probability": 0.4964 + }, + { + "start": 898.98, + "end": 899.9, + "probability": 0.1814 + }, + { + "start": 899.9, + "end": 900.3, + "probability": 0.3824 + }, + { + "start": 900.42, + "end": 902.28, + "probability": 0.5809 + }, + { + "start": 902.36, + "end": 904.6, + "probability": 0.7473 + }, + { + "start": 904.64, + "end": 906.18, + "probability": 0.9103 + }, + { + "start": 906.18, + "end": 907.74, + "probability": 0.789 + }, + { + "start": 908.0, + "end": 908.44, + "probability": 0.4202 + }, + { + "start": 908.82, + "end": 911.34, + "probability": 0.5581 + }, + { + "start": 911.4, + "end": 912.8, + "probability": 0.7796 + }, + { + "start": 913.08, + "end": 913.78, + "probability": 0.3357 + }, + { + "start": 914.7, + "end": 917.04, + "probability": 0.5069 + }, + { + "start": 917.12, + "end": 918.82, + "probability": 0.8019 + }, + { + "start": 918.84, + "end": 922.52, + "probability": 0.7115 + }, + { + "start": 922.66, + "end": 924.56, + "probability": 0.6076 + }, + { + "start": 924.9, + "end": 926.7, + "probability": 0.4452 + }, + { + "start": 928.1, + "end": 932.06, + "probability": 0.7772 + }, + { + "start": 932.28, + "end": 933.3, + "probability": 0.291 + }, + { + "start": 933.76, + "end": 936.18, + "probability": 0.4677 + }, + { + "start": 937.52, + "end": 938.38, + "probability": 0.5733 + }, + { + "start": 938.4, + "end": 940.18, + "probability": 0.834 + }, + { + "start": 940.26, + "end": 941.84, + "probability": 0.8682 + }, + { + "start": 941.98, + "end": 943.88, + "probability": 0.7036 + }, + { + "start": 944.16, + "end": 946.06, + "probability": 0.7105 + }, + { + "start": 946.06, + "end": 948.06, + "probability": 0.7427 + }, + { + "start": 948.06, + "end": 951.48, + "probability": 0.466 + }, + { + "start": 952.03, + "end": 955.7, + "probability": 0.2014 + }, + { + "start": 955.88, + "end": 956.9, + "probability": 0.4014 + }, + { + "start": 957.04, + "end": 962.76, + "probability": 0.5051 + }, + { + "start": 962.92, + "end": 964.52, + "probability": 0.6491 + }, + { + "start": 964.52, + "end": 966.0, + "probability": 0.786 + }, + { + "start": 967.4, + "end": 973.68, + "probability": 0.5989 + }, + { + "start": 974.26, + "end": 974.26, + "probability": 0.1429 + }, + { + "start": 974.26, + "end": 974.26, + "probability": 0.0661 + }, + { + "start": 974.26, + "end": 974.8, + "probability": 0.2451 + }, + { + "start": 975.26, + "end": 977.24, + "probability": 0.3439 + }, + { + "start": 977.24, + "end": 980.74, + "probability": 0.6347 + }, + { + "start": 981.44, + "end": 985.68, + "probability": 0.9345 + }, + { + "start": 986.22, + "end": 990.4, + "probability": 0.9886 + }, + { + "start": 990.94, + "end": 993.06, + "probability": 0.9956 + }, + { + "start": 993.62, + "end": 994.72, + "probability": 0.9341 + }, + { + "start": 995.42, + "end": 995.92, + "probability": 0.7743 + }, + { + "start": 996.48, + "end": 997.12, + "probability": 0.463 + }, + { + "start": 997.2, + "end": 1000.64, + "probability": 0.9336 + }, + { + "start": 1000.78, + "end": 1002.14, + "probability": 0.8791 + }, + { + "start": 1002.2, + "end": 1006.22, + "probability": 0.9678 + }, + { + "start": 1009.47, + "end": 1011.74, + "probability": 0.9424 + }, + { + "start": 1011.86, + "end": 1012.28, + "probability": 0.6071 + }, + { + "start": 1012.32, + "end": 1012.64, + "probability": 0.8059 + }, + { + "start": 1012.74, + "end": 1013.28, + "probability": 0.6232 + }, + { + "start": 1013.3, + "end": 1014.96, + "probability": 0.9314 + }, + { + "start": 1016.14, + "end": 1017.64, + "probability": 0.8259 + }, + { + "start": 1018.12, + "end": 1019.34, + "probability": 0.7019 + }, + { + "start": 1019.46, + "end": 1025.4, + "probability": 0.9564 + }, + { + "start": 1025.4, + "end": 1032.88, + "probability": 0.9978 + }, + { + "start": 1033.42, + "end": 1035.06, + "probability": 0.7211 + }, + { + "start": 1035.7, + "end": 1039.98, + "probability": 0.8042 + }, + { + "start": 1040.72, + "end": 1043.28, + "probability": 0.8817 + }, + { + "start": 1043.9, + "end": 1049.16, + "probability": 0.9924 + }, + { + "start": 1050.5, + "end": 1054.36, + "probability": 0.9992 + }, + { + "start": 1055.2, + "end": 1058.04, + "probability": 0.9804 + }, + { + "start": 1058.76, + "end": 1059.88, + "probability": 0.8755 + }, + { + "start": 1060.48, + "end": 1062.36, + "probability": 0.7593 + }, + { + "start": 1062.96, + "end": 1063.74, + "probability": 0.8341 + }, + { + "start": 1064.4, + "end": 1069.34, + "probability": 0.9365 + }, + { + "start": 1069.52, + "end": 1070.62, + "probability": 0.7432 + }, + { + "start": 1071.22, + "end": 1074.44, + "probability": 0.8846 + }, + { + "start": 1075.08, + "end": 1081.74, + "probability": 0.9883 + }, + { + "start": 1082.54, + "end": 1084.74, + "probability": 0.7505 + }, + { + "start": 1084.82, + "end": 1085.22, + "probability": 0.8169 + }, + { + "start": 1085.42, + "end": 1088.78, + "probability": 0.9639 + }, + { + "start": 1089.34, + "end": 1092.12, + "probability": 0.8471 + }, + { + "start": 1092.5, + "end": 1094.94, + "probability": 0.9745 + }, + { + "start": 1095.7, + "end": 1098.46, + "probability": 0.9775 + }, + { + "start": 1098.46, + "end": 1102.42, + "probability": 0.8495 + }, + { + "start": 1103.42, + "end": 1105.0, + "probability": 0.5456 + }, + { + "start": 1105.16, + "end": 1106.1, + "probability": 0.5036 + }, + { + "start": 1106.2, + "end": 1112.26, + "probability": 0.972 + }, + { + "start": 1112.26, + "end": 1116.98, + "probability": 0.8755 + }, + { + "start": 1117.22, + "end": 1118.02, + "probability": 0.7245 + }, + { + "start": 1118.76, + "end": 1120.08, + "probability": 0.8505 + }, + { + "start": 1120.64, + "end": 1123.02, + "probability": 0.966 + }, + { + "start": 1123.62, + "end": 1128.22, + "probability": 0.9541 + }, + { + "start": 1128.36, + "end": 1132.7, + "probability": 0.9788 + }, + { + "start": 1133.3, + "end": 1135.23, + "probability": 0.839 + }, + { + "start": 1135.96, + "end": 1140.44, + "probability": 0.9836 + }, + { + "start": 1141.16, + "end": 1142.18, + "probability": 0.9626 + }, + { + "start": 1142.82, + "end": 1145.18, + "probability": 0.9507 + }, + { + "start": 1156.4, + "end": 1157.56, + "probability": 0.5697 + }, + { + "start": 1157.56, + "end": 1157.56, + "probability": 0.0791 + }, + { + "start": 1157.56, + "end": 1157.56, + "probability": 0.0495 + }, + { + "start": 1157.56, + "end": 1159.48, + "probability": 0.1732 + }, + { + "start": 1160.6, + "end": 1163.7, + "probability": 0.9424 + }, + { + "start": 1164.38, + "end": 1166.02, + "probability": 0.8027 + }, + { + "start": 1166.1, + "end": 1171.26, + "probability": 0.9785 + }, + { + "start": 1171.26, + "end": 1175.8, + "probability": 0.8856 + }, + { + "start": 1176.2, + "end": 1176.56, + "probability": 0.6178 + }, + { + "start": 1177.14, + "end": 1179.34, + "probability": 0.9795 + }, + { + "start": 1179.92, + "end": 1181.12, + "probability": 0.9501 + }, + { + "start": 1181.76, + "end": 1187.42, + "probability": 0.9949 + }, + { + "start": 1187.96, + "end": 1189.72, + "probability": 0.9785 + }, + { + "start": 1189.86, + "end": 1190.08, + "probability": 0.7201 + }, + { + "start": 1190.34, + "end": 1191.74, + "probability": 0.6844 + }, + { + "start": 1192.04, + "end": 1193.86, + "probability": 0.9657 + }, + { + "start": 1193.88, + "end": 1194.42, + "probability": 0.7398 + }, + { + "start": 1194.44, + "end": 1195.16, + "probability": 0.5473 + }, + { + "start": 1195.54, + "end": 1196.82, + "probability": 0.9941 + }, + { + "start": 1198.96, + "end": 1199.76, + "probability": 0.6783 + }, + { + "start": 1199.88, + "end": 1200.86, + "probability": 0.6652 + }, + { + "start": 1201.69, + "end": 1205.69, + "probability": 0.9785 + }, + { + "start": 1206.56, + "end": 1206.74, + "probability": 0.769 + }, + { + "start": 1206.9, + "end": 1207.92, + "probability": 0.9958 + }, + { + "start": 1208.12, + "end": 1211.04, + "probability": 0.994 + }, + { + "start": 1212.12, + "end": 1217.0, + "probability": 0.9698 + }, + { + "start": 1217.52, + "end": 1219.5, + "probability": 0.8619 + }, + { + "start": 1220.22, + "end": 1223.56, + "probability": 0.6982 + }, + { + "start": 1224.16, + "end": 1226.2, + "probability": 0.9694 + }, + { + "start": 1226.46, + "end": 1227.06, + "probability": 0.8806 + }, + { + "start": 1227.32, + "end": 1227.86, + "probability": 0.6392 + }, + { + "start": 1228.28, + "end": 1231.08, + "probability": 0.9354 + }, + { + "start": 1231.58, + "end": 1232.24, + "probability": 0.916 + }, + { + "start": 1233.06, + "end": 1235.52, + "probability": 0.9322 + }, + { + "start": 1235.9, + "end": 1237.14, + "probability": 0.6198 + }, + { + "start": 1237.54, + "end": 1239.5, + "probability": 0.7776 + }, + { + "start": 1239.64, + "end": 1240.34, + "probability": 0.7383 + }, + { + "start": 1240.62, + "end": 1241.88, + "probability": 0.7303 + }, + { + "start": 1242.14, + "end": 1243.62, + "probability": 0.9932 + }, + { + "start": 1244.24, + "end": 1249.24, + "probability": 0.9052 + }, + { + "start": 1249.84, + "end": 1251.6, + "probability": 0.4428 + }, + { + "start": 1251.76, + "end": 1253.94, + "probability": 0.9624 + }, + { + "start": 1254.16, + "end": 1257.28, + "probability": 0.9635 + }, + { + "start": 1257.38, + "end": 1263.36, + "probability": 0.9146 + }, + { + "start": 1264.18, + "end": 1265.34, + "probability": 0.9097 + }, + { + "start": 1265.46, + "end": 1266.48, + "probability": 0.8138 + }, + { + "start": 1266.56, + "end": 1266.98, + "probability": 0.927 + }, + { + "start": 1267.04, + "end": 1268.02, + "probability": 0.5102 + }, + { + "start": 1268.26, + "end": 1270.33, + "probability": 0.6965 + }, + { + "start": 1271.38, + "end": 1272.12, + "probability": 0.6475 + }, + { + "start": 1272.7, + "end": 1275.22, + "probability": 0.9478 + }, + { + "start": 1275.92, + "end": 1277.48, + "probability": 0.9521 + }, + { + "start": 1277.86, + "end": 1280.98, + "probability": 0.994 + }, + { + "start": 1281.6, + "end": 1284.0, + "probability": 0.9419 + }, + { + "start": 1284.44, + "end": 1285.86, + "probability": 0.7743 + }, + { + "start": 1286.22, + "end": 1287.94, + "probability": 0.2204 + }, + { + "start": 1288.08, + "end": 1293.28, + "probability": 0.8828 + }, + { + "start": 1293.78, + "end": 1295.64, + "probability": 0.6303 + }, + { + "start": 1296.48, + "end": 1298.98, + "probability": 0.9517 + }, + { + "start": 1299.14, + "end": 1301.68, + "probability": 0.9232 + }, + { + "start": 1302.08, + "end": 1305.7, + "probability": 0.8594 + }, + { + "start": 1306.32, + "end": 1308.24, + "probability": 0.9888 + }, + { + "start": 1309.02, + "end": 1313.36, + "probability": 0.9552 + }, + { + "start": 1313.74, + "end": 1314.36, + "probability": 0.4758 + }, + { + "start": 1314.52, + "end": 1315.14, + "probability": 0.6592 + }, + { + "start": 1316.6, + "end": 1321.08, + "probability": 0.9046 + }, + { + "start": 1321.52, + "end": 1323.72, + "probability": 0.8931 + }, + { + "start": 1323.82, + "end": 1324.88, + "probability": 0.8933 + }, + { + "start": 1325.46, + "end": 1330.12, + "probability": 0.9467 + }, + { + "start": 1330.74, + "end": 1332.6, + "probability": 0.9642 + }, + { + "start": 1333.12, + "end": 1335.22, + "probability": 0.9863 + }, + { + "start": 1335.7, + "end": 1337.94, + "probability": 0.983 + }, + { + "start": 1338.82, + "end": 1341.04, + "probability": 0.9419 + }, + { + "start": 1342.1, + "end": 1343.82, + "probability": 0.0205 + }, + { + "start": 1344.36, + "end": 1344.92, + "probability": 0.431 + }, + { + "start": 1345.0, + "end": 1346.52, + "probability": 0.6664 + }, + { + "start": 1346.64, + "end": 1349.5, + "probability": 0.9955 + }, + { + "start": 1350.14, + "end": 1351.52, + "probability": 0.9941 + }, + { + "start": 1351.8, + "end": 1352.04, + "probability": 0.7772 + }, + { + "start": 1352.54, + "end": 1354.88, + "probability": 0.5583 + }, + { + "start": 1355.1, + "end": 1357.26, + "probability": 0.7937 + }, + { + "start": 1357.68, + "end": 1359.62, + "probability": 0.571 + }, + { + "start": 1360.2, + "end": 1361.24, + "probability": 0.7627 + }, + { + "start": 1361.98, + "end": 1362.8, + "probability": 0.7927 + }, + { + "start": 1363.7, + "end": 1366.44, + "probability": 0.6512 + }, + { + "start": 1367.06, + "end": 1369.38, + "probability": 0.8418 + }, + { + "start": 1370.92, + "end": 1375.36, + "probability": 0.9756 + }, + { + "start": 1375.36, + "end": 1382.1, + "probability": 0.9987 + }, + { + "start": 1382.84, + "end": 1383.72, + "probability": 0.7657 + }, + { + "start": 1384.68, + "end": 1387.9, + "probability": 0.998 + }, + { + "start": 1388.7, + "end": 1392.02, + "probability": 0.8796 + }, + { + "start": 1392.74, + "end": 1395.34, + "probability": 0.9901 + }, + { + "start": 1395.34, + "end": 1396.3, + "probability": 0.4398 + }, + { + "start": 1397.12, + "end": 1401.3, + "probability": 0.6161 + }, + { + "start": 1401.58, + "end": 1403.84, + "probability": 0.9551 + }, + { + "start": 1404.14, + "end": 1408.3, + "probability": 0.9189 + }, + { + "start": 1409.1, + "end": 1412.0, + "probability": 0.6685 + }, + { + "start": 1412.0, + "end": 1413.64, + "probability": 0.5916 + }, + { + "start": 1413.78, + "end": 1415.04, + "probability": 0.5669 + }, + { + "start": 1415.5, + "end": 1417.28, + "probability": 0.9935 + }, + { + "start": 1417.44, + "end": 1417.78, + "probability": 0.8032 + }, + { + "start": 1418.54, + "end": 1420.54, + "probability": 0.9521 + }, + { + "start": 1421.52, + "end": 1423.96, + "probability": 0.9062 + }, + { + "start": 1424.04, + "end": 1424.58, + "probability": 0.638 + }, + { + "start": 1424.6, + "end": 1425.74, + "probability": 0.9508 + }, + { + "start": 1427.0, + "end": 1429.3, + "probability": 0.8669 + }, + { + "start": 1430.54, + "end": 1432.44, + "probability": 0.9271 + }, + { + "start": 1433.2, + "end": 1435.56, + "probability": 0.873 + }, + { + "start": 1436.48, + "end": 1439.4, + "probability": 0.9873 + }, + { + "start": 1440.96, + "end": 1447.52, + "probability": 0.9736 + }, + { + "start": 1448.3, + "end": 1449.42, + "probability": 0.6395 + }, + { + "start": 1450.56, + "end": 1453.38, + "probability": 0.8617 + }, + { + "start": 1454.64, + "end": 1458.24, + "probability": 0.7558 + }, + { + "start": 1459.12, + "end": 1464.94, + "probability": 0.9628 + }, + { + "start": 1465.62, + "end": 1468.5, + "probability": 0.9255 + }, + { + "start": 1469.96, + "end": 1477.16, + "probability": 0.948 + }, + { + "start": 1478.1, + "end": 1483.22, + "probability": 0.757 + }, + { + "start": 1484.16, + "end": 1491.52, + "probability": 0.7914 + }, + { + "start": 1493.04, + "end": 1498.27, + "probability": 0.9492 + }, + { + "start": 1499.36, + "end": 1505.94, + "probability": 0.9267 + }, + { + "start": 1507.4, + "end": 1511.1, + "probability": 0.9993 + }, + { + "start": 1511.22, + "end": 1512.44, + "probability": 0.9826 + }, + { + "start": 1513.5, + "end": 1517.82, + "probability": 0.9638 + }, + { + "start": 1517.82, + "end": 1523.58, + "probability": 0.9644 + }, + { + "start": 1524.58, + "end": 1529.42, + "probability": 0.9424 + }, + { + "start": 1529.48, + "end": 1535.66, + "probability": 0.9564 + }, + { + "start": 1535.78, + "end": 1537.92, + "probability": 0.9873 + }, + { + "start": 1538.0, + "end": 1538.94, + "probability": 0.6816 + }, + { + "start": 1539.44, + "end": 1541.12, + "probability": 0.8982 + }, + { + "start": 1541.2, + "end": 1543.12, + "probability": 0.8947 + }, + { + "start": 1543.76, + "end": 1548.3, + "probability": 0.6713 + }, + { + "start": 1548.92, + "end": 1554.6, + "probability": 0.9528 + }, + { + "start": 1556.18, + "end": 1559.66, + "probability": 0.9422 + }, + { + "start": 1559.7, + "end": 1561.66, + "probability": 0.7446 + }, + { + "start": 1561.76, + "end": 1565.62, + "probability": 0.9895 + }, + { + "start": 1565.62, + "end": 1569.64, + "probability": 0.9959 + }, + { + "start": 1569.86, + "end": 1570.1, + "probability": 0.7787 + }, + { + "start": 1570.6, + "end": 1572.82, + "probability": 0.6015 + }, + { + "start": 1575.54, + "end": 1576.8, + "probability": 0.2656 + }, + { + "start": 1576.8, + "end": 1577.26, + "probability": 0.3347 + }, + { + "start": 1579.5, + "end": 1581.66, + "probability": 0.6357 + }, + { + "start": 1583.21, + "end": 1587.9, + "probability": 0.929 + }, + { + "start": 1588.54, + "end": 1590.04, + "probability": 0.5249 + }, + { + "start": 1590.16, + "end": 1590.58, + "probability": 0.8508 + }, + { + "start": 1590.76, + "end": 1595.2, + "probability": 0.9599 + }, + { + "start": 1595.26, + "end": 1596.35, + "probability": 0.772 + }, + { + "start": 1596.88, + "end": 1598.0, + "probability": 0.5005 + }, + { + "start": 1598.74, + "end": 1599.6, + "probability": 0.9093 + }, + { + "start": 1600.36, + "end": 1600.92, + "probability": 0.808 + }, + { + "start": 1601.4, + "end": 1602.16, + "probability": 0.8828 + }, + { + "start": 1602.8, + "end": 1607.78, + "probability": 0.9753 + }, + { + "start": 1608.06, + "end": 1609.32, + "probability": 0.8704 + }, + { + "start": 1609.76, + "end": 1614.02, + "probability": 0.7324 + }, + { + "start": 1616.02, + "end": 1617.96, + "probability": 0.8885 + }, + { + "start": 1618.92, + "end": 1620.31, + "probability": 0.8853 + }, + { + "start": 1620.94, + "end": 1622.94, + "probability": 0.9938 + }, + { + "start": 1623.2, + "end": 1625.5, + "probability": 0.9944 + }, + { + "start": 1625.92, + "end": 1626.56, + "probability": 0.4133 + }, + { + "start": 1627.12, + "end": 1631.22, + "probability": 0.9079 + }, + { + "start": 1631.36, + "end": 1632.44, + "probability": 0.6992 + }, + { + "start": 1633.02, + "end": 1634.26, + "probability": 0.7677 + }, + { + "start": 1634.3, + "end": 1635.37, + "probability": 0.9418 + }, + { + "start": 1635.84, + "end": 1639.2, + "probability": 0.9938 + }, + { + "start": 1640.0, + "end": 1640.72, + "probability": 0.9686 + }, + { + "start": 1641.24, + "end": 1642.62, + "probability": 0.9346 + }, + { + "start": 1642.9, + "end": 1643.08, + "probability": 0.4001 + }, + { + "start": 1643.18, + "end": 1644.18, + "probability": 0.9301 + }, + { + "start": 1644.64, + "end": 1647.56, + "probability": 0.9639 + }, + { + "start": 1647.56, + "end": 1652.46, + "probability": 0.8553 + }, + { + "start": 1652.52, + "end": 1655.02, + "probability": 0.995 + }, + { + "start": 1655.42, + "end": 1656.5, + "probability": 0.7025 + }, + { + "start": 1656.64, + "end": 1659.24, + "probability": 0.4174 + }, + { + "start": 1659.54, + "end": 1663.2, + "probability": 0.9957 + }, + { + "start": 1663.9, + "end": 1666.14, + "probability": 0.6463 + }, + { + "start": 1666.66, + "end": 1668.14, + "probability": 0.9351 + }, + { + "start": 1668.24, + "end": 1668.8, + "probability": 0.7515 + }, + { + "start": 1668.8, + "end": 1675.28, + "probability": 0.9674 + }, + { + "start": 1675.9, + "end": 1677.14, + "probability": 0.8331 + }, + { + "start": 1677.32, + "end": 1683.74, + "probability": 0.9927 + }, + { + "start": 1684.1, + "end": 1687.86, + "probability": 0.9701 + }, + { + "start": 1688.28, + "end": 1692.42, + "probability": 0.9512 + }, + { + "start": 1692.5, + "end": 1693.36, + "probability": 0.7741 + }, + { + "start": 1696.98, + "end": 1701.1, + "probability": 0.7413 + }, + { + "start": 1701.7, + "end": 1703.02, + "probability": 0.4214 + }, + { + "start": 1703.24, + "end": 1705.02, + "probability": 0.9565 + }, + { + "start": 1705.06, + "end": 1705.44, + "probability": 0.4511 + }, + { + "start": 1705.52, + "end": 1705.74, + "probability": 0.9365 + }, + { + "start": 1705.78, + "end": 1706.72, + "probability": 0.9413 + }, + { + "start": 1707.02, + "end": 1708.86, + "probability": 0.9334 + }, + { + "start": 1709.1, + "end": 1711.16, + "probability": 0.8765 + }, + { + "start": 1711.3, + "end": 1712.84, + "probability": 0.9946 + }, + { + "start": 1713.08, + "end": 1715.1, + "probability": 0.9961 + }, + { + "start": 1715.26, + "end": 1716.09, + "probability": 0.8331 + }, + { + "start": 1716.46, + "end": 1717.2, + "probability": 0.7024 + }, + { + "start": 1717.88, + "end": 1719.7, + "probability": 0.6674 + }, + { + "start": 1720.18, + "end": 1721.36, + "probability": 0.9611 + }, + { + "start": 1721.42, + "end": 1723.82, + "probability": 0.85 + }, + { + "start": 1724.24, + "end": 1727.5, + "probability": 0.9951 + }, + { + "start": 1727.58, + "end": 1729.02, + "probability": 0.9762 + }, + { + "start": 1729.1, + "end": 1731.28, + "probability": 0.8782 + }, + { + "start": 1732.36, + "end": 1734.88, + "probability": 0.8384 + }, + { + "start": 1735.16, + "end": 1737.7, + "probability": 0.9325 + }, + { + "start": 1738.4, + "end": 1740.82, + "probability": 0.8009 + }, + { + "start": 1740.86, + "end": 1742.22, + "probability": 0.6342 + }, + { + "start": 1742.96, + "end": 1746.52, + "probability": 0.849 + }, + { + "start": 1746.9, + "end": 1751.32, + "probability": 0.9888 + }, + { + "start": 1752.38, + "end": 1753.94, + "probability": 0.9474 + }, + { + "start": 1754.16, + "end": 1758.18, + "probability": 0.9797 + }, + { + "start": 1760.0, + "end": 1762.34, + "probability": 0.4939 + }, + { + "start": 1764.66, + "end": 1765.7, + "probability": 0.4542 + }, + { + "start": 1767.14, + "end": 1772.5, + "probability": 0.9302 + }, + { + "start": 1773.16, + "end": 1776.82, + "probability": 0.8092 + }, + { + "start": 1776.94, + "end": 1777.26, + "probability": 0.5729 + }, + { + "start": 1777.46, + "end": 1779.22, + "probability": 0.8224 + }, + { + "start": 1779.72, + "end": 1782.22, + "probability": 0.948 + }, + { + "start": 1782.34, + "end": 1783.04, + "probability": 0.4408 + }, + { + "start": 1783.12, + "end": 1785.46, + "probability": 0.9176 + }, + { + "start": 1785.94, + "end": 1788.24, + "probability": 0.985 + }, + { + "start": 1788.24, + "end": 1791.62, + "probability": 0.816 + }, + { + "start": 1791.98, + "end": 1794.36, + "probability": 0.8497 + }, + { + "start": 1794.62, + "end": 1796.1, + "probability": 0.9661 + }, + { + "start": 1796.58, + "end": 1799.78, + "probability": 0.925 + }, + { + "start": 1800.16, + "end": 1803.2, + "probability": 0.9843 + }, + { + "start": 1803.82, + "end": 1805.38, + "probability": 0.9757 + }, + { + "start": 1805.8, + "end": 1806.24, + "probability": 0.8588 + }, + { + "start": 1806.68, + "end": 1809.3, + "probability": 0.9986 + }, + { + "start": 1809.3, + "end": 1812.06, + "probability": 0.9304 + }, + { + "start": 1812.44, + "end": 1813.98, + "probability": 0.966 + }, + { + "start": 1814.32, + "end": 1816.84, + "probability": 0.933 + }, + { + "start": 1817.28, + "end": 1818.06, + "probability": 0.8287 + }, + { + "start": 1818.34, + "end": 1819.32, + "probability": 0.8814 + }, + { + "start": 1819.46, + "end": 1822.42, + "probability": 0.9823 + }, + { + "start": 1822.42, + "end": 1826.02, + "probability": 0.6359 + }, + { + "start": 1826.1, + "end": 1828.76, + "probability": 0.9983 + }, + { + "start": 1829.22, + "end": 1832.6, + "probability": 0.8759 + }, + { + "start": 1833.2, + "end": 1838.98, + "probability": 0.9895 + }, + { + "start": 1839.72, + "end": 1841.9, + "probability": 0.9984 + }, + { + "start": 1842.08, + "end": 1842.78, + "probability": 0.8974 + }, + { + "start": 1842.82, + "end": 1843.84, + "probability": 0.9237 + }, + { + "start": 1844.44, + "end": 1849.32, + "probability": 0.9934 + }, + { + "start": 1849.34, + "end": 1851.88, + "probability": 0.9911 + }, + { + "start": 1852.02, + "end": 1855.94, + "probability": 0.9864 + }, + { + "start": 1856.02, + "end": 1857.58, + "probability": 0.8717 + }, + { + "start": 1857.82, + "end": 1862.12, + "probability": 0.9914 + }, + { + "start": 1862.68, + "end": 1867.92, + "probability": 0.9261 + }, + { + "start": 1868.08, + "end": 1868.74, + "probability": 0.7292 + }, + { + "start": 1868.84, + "end": 1870.04, + "probability": 0.9526 + }, + { + "start": 1870.16, + "end": 1872.08, + "probability": 0.9719 + }, + { + "start": 1872.36, + "end": 1873.64, + "probability": 0.9909 + }, + { + "start": 1873.76, + "end": 1874.84, + "probability": 0.9331 + }, + { + "start": 1875.12, + "end": 1876.34, + "probability": 0.9746 + }, + { + "start": 1876.58, + "end": 1878.14, + "probability": 0.8837 + }, + { + "start": 1878.36, + "end": 1879.24, + "probability": 0.676 + }, + { + "start": 1879.24, + "end": 1879.42, + "probability": 0.2983 + }, + { + "start": 1879.52, + "end": 1880.82, + "probability": 0.9961 + }, + { + "start": 1880.92, + "end": 1882.06, + "probability": 0.6327 + }, + { + "start": 1882.24, + "end": 1883.28, + "probability": 0.917 + }, + { + "start": 1883.54, + "end": 1884.72, + "probability": 0.6515 + }, + { + "start": 1885.2, + "end": 1886.16, + "probability": 0.885 + }, + { + "start": 1886.24, + "end": 1886.92, + "probability": 0.9781 + }, + { + "start": 1887.04, + "end": 1888.28, + "probability": 0.9685 + }, + { + "start": 1888.58, + "end": 1890.92, + "probability": 0.8598 + }, + { + "start": 1891.26, + "end": 1893.6, + "probability": 0.9785 + }, + { + "start": 1894.04, + "end": 1894.72, + "probability": 0.7299 + }, + { + "start": 1894.8, + "end": 1896.95, + "probability": 0.9276 + }, + { + "start": 1897.34, + "end": 1900.0, + "probability": 0.9824 + }, + { + "start": 1900.39, + "end": 1904.34, + "probability": 0.9895 + }, + { + "start": 1905.16, + "end": 1908.14, + "probability": 0.994 + }, + { + "start": 1908.18, + "end": 1911.24, + "probability": 0.9952 + }, + { + "start": 1911.84, + "end": 1913.52, + "probability": 0.9308 + }, + { + "start": 1913.52, + "end": 1915.24, + "probability": 0.7814 + }, + { + "start": 1915.34, + "end": 1916.96, + "probability": 0.977 + }, + { + "start": 1917.3, + "end": 1919.56, + "probability": 0.9937 + }, + { + "start": 1919.58, + "end": 1922.42, + "probability": 0.8625 + }, + { + "start": 1922.52, + "end": 1923.2, + "probability": 0.7215 + }, + { + "start": 1923.93, + "end": 1925.16, + "probability": 0.0335 + }, + { + "start": 1925.5, + "end": 1925.72, + "probability": 0.6386 + }, + { + "start": 1925.9, + "end": 1928.74, + "probability": 0.8317 + }, + { + "start": 1931.5, + "end": 1932.04, + "probability": 0.4637 + }, + { + "start": 1932.32, + "end": 1934.74, + "probability": 0.5948 + }, + { + "start": 1935.28, + "end": 1940.16, + "probability": 0.982 + }, + { + "start": 1940.32, + "end": 1941.9, + "probability": 0.5606 + }, + { + "start": 1942.1, + "end": 1943.82, + "probability": 0.4803 + }, + { + "start": 1945.26, + "end": 1946.02, + "probability": 0.811 + }, + { + "start": 1946.24, + "end": 1948.28, + "probability": 0.9474 + }, + { + "start": 1948.34, + "end": 1949.14, + "probability": 0.8077 + }, + { + "start": 1951.42, + "end": 1953.98, + "probability": 0.277 + }, + { + "start": 1953.98, + "end": 1953.98, + "probability": 0.0173 + }, + { + "start": 1953.98, + "end": 1953.98, + "probability": 0.0646 + }, + { + "start": 1953.98, + "end": 1955.14, + "probability": 0.395 + }, + { + "start": 1955.14, + "end": 1956.88, + "probability": 0.7083 + }, + { + "start": 1957.42, + "end": 1957.42, + "probability": 0.327 + }, + { + "start": 1957.72, + "end": 1958.28, + "probability": 0.4689 + }, + { + "start": 1958.36, + "end": 1960.4, + "probability": 0.9803 + }, + { + "start": 1960.6, + "end": 1963.8, + "probability": 0.9966 + }, + { + "start": 1964.52, + "end": 1969.18, + "probability": 0.9419 + }, + { + "start": 1969.3, + "end": 1970.64, + "probability": 0.9507 + }, + { + "start": 1971.32, + "end": 1972.42, + "probability": 0.7239 + }, + { + "start": 1972.94, + "end": 1974.9, + "probability": 0.9331 + }, + { + "start": 1975.1, + "end": 1975.73, + "probability": 0.5518 + }, + { + "start": 1976.08, + "end": 1976.54, + "probability": 0.8 + }, + { + "start": 1976.92, + "end": 1980.76, + "probability": 0.9287 + }, + { + "start": 1980.94, + "end": 1981.18, + "probability": 0.5715 + }, + { + "start": 1981.3, + "end": 1982.04, + "probability": 0.7587 + }, + { + "start": 1982.32, + "end": 1987.14, + "probability": 0.9932 + }, + { + "start": 1987.78, + "end": 1990.54, + "probability": 0.9984 + }, + { + "start": 1991.06, + "end": 1993.92, + "probability": 0.998 + }, + { + "start": 1994.38, + "end": 1994.7, + "probability": 0.278 + }, + { + "start": 1994.88, + "end": 1995.42, + "probability": 0.9311 + }, + { + "start": 1995.48, + "end": 1999.6, + "probability": 0.985 + }, + { + "start": 1999.9, + "end": 2001.44, + "probability": 0.9366 + }, + { + "start": 2001.86, + "end": 2001.86, + "probability": 0.073 + }, + { + "start": 2002.04, + "end": 2002.46, + "probability": 0.7279 + }, + { + "start": 2002.62, + "end": 2003.82, + "probability": 0.9016 + }, + { + "start": 2003.88, + "end": 2005.18, + "probability": 0.7247 + }, + { + "start": 2005.48, + "end": 2007.22, + "probability": 0.9636 + }, + { + "start": 2007.52, + "end": 2010.06, + "probability": 0.8936 + }, + { + "start": 2010.28, + "end": 2012.82, + "probability": 0.9127 + }, + { + "start": 2013.54, + "end": 2014.56, + "probability": 0.9288 + }, + { + "start": 2014.82, + "end": 2017.34, + "probability": 0.7509 + }, + { + "start": 2017.48, + "end": 2018.74, + "probability": 0.9912 + }, + { + "start": 2019.56, + "end": 2023.32, + "probability": 0.9791 + }, + { + "start": 2023.32, + "end": 2026.66, + "probability": 0.9637 + }, + { + "start": 2027.28, + "end": 2027.82, + "probability": 0.2997 + }, + { + "start": 2028.16, + "end": 2030.04, + "probability": 0.9797 + }, + { + "start": 2030.04, + "end": 2032.62, + "probability": 0.9881 + }, + { + "start": 2032.72, + "end": 2033.14, + "probability": 0.7614 + }, + { + "start": 2033.36, + "end": 2035.26, + "probability": 0.6797 + }, + { + "start": 2035.36, + "end": 2036.44, + "probability": 0.8791 + }, + { + "start": 2050.8, + "end": 2054.0, + "probability": 0.9951 + }, + { + "start": 2054.54, + "end": 2058.82, + "probability": 0.7599 + }, + { + "start": 2059.76, + "end": 2063.26, + "probability": 0.9534 + }, + { + "start": 2063.6, + "end": 2064.38, + "probability": 0.8493 + }, + { + "start": 2064.42, + "end": 2066.38, + "probability": 0.9933 + }, + { + "start": 2066.94, + "end": 2068.0, + "probability": 0.9917 + }, + { + "start": 2068.92, + "end": 2072.7, + "probability": 0.649 + }, + { + "start": 2073.28, + "end": 2077.5, + "probability": 0.9533 + }, + { + "start": 2078.12, + "end": 2081.0, + "probability": 0.9972 + }, + { + "start": 2081.38, + "end": 2085.52, + "probability": 0.983 + }, + { + "start": 2086.34, + "end": 2090.26, + "probability": 0.998 + }, + { + "start": 2090.26, + "end": 2094.3, + "probability": 0.9985 + }, + { + "start": 2094.86, + "end": 2098.1, + "probability": 0.9963 + }, + { + "start": 2098.7, + "end": 2102.2, + "probability": 0.9908 + }, + { + "start": 2102.2, + "end": 2106.12, + "probability": 0.993 + }, + { + "start": 2107.04, + "end": 2109.94, + "probability": 0.988 + }, + { + "start": 2109.94, + "end": 2113.14, + "probability": 0.9948 + }, + { + "start": 2113.84, + "end": 2117.96, + "probability": 0.9006 + }, + { + "start": 2119.08, + "end": 2123.51, + "probability": 0.9678 + }, + { + "start": 2127.34, + "end": 2129.54, + "probability": 0.9962 + }, + { + "start": 2129.98, + "end": 2131.7, + "probability": 0.9973 + }, + { + "start": 2131.76, + "end": 2134.94, + "probability": 0.986 + }, + { + "start": 2134.94, + "end": 2137.78, + "probability": 0.9988 + }, + { + "start": 2139.06, + "end": 2143.96, + "probability": 0.9742 + }, + { + "start": 2144.68, + "end": 2145.72, + "probability": 0.8777 + }, + { + "start": 2145.86, + "end": 2146.7, + "probability": 0.9684 + }, + { + "start": 2146.82, + "end": 2150.76, + "probability": 0.9957 + }, + { + "start": 2151.04, + "end": 2152.68, + "probability": 0.974 + }, + { + "start": 2153.12, + "end": 2155.0, + "probability": 0.9956 + }, + { + "start": 2155.52, + "end": 2159.32, + "probability": 0.9888 + }, + { + "start": 2159.32, + "end": 2163.26, + "probability": 0.9939 + }, + { + "start": 2164.36, + "end": 2167.24, + "probability": 0.9826 + }, + { + "start": 2168.06, + "end": 2170.24, + "probability": 0.9971 + }, + { + "start": 2170.38, + "end": 2172.4, + "probability": 0.9932 + }, + { + "start": 2172.76, + "end": 2176.5, + "probability": 0.9636 + }, + { + "start": 2177.16, + "end": 2180.02, + "probability": 0.9846 + }, + { + "start": 2180.18, + "end": 2180.78, + "probability": 0.4683 + }, + { + "start": 2181.24, + "end": 2181.78, + "probability": 0.8152 + }, + { + "start": 2181.84, + "end": 2182.74, + "probability": 0.9389 + }, + { + "start": 2182.84, + "end": 2185.34, + "probability": 0.9541 + }, + { + "start": 2186.2, + "end": 2190.94, + "probability": 0.95 + }, + { + "start": 2191.44, + "end": 2195.6, + "probability": 0.6915 + }, + { + "start": 2196.48, + "end": 2198.48, + "probability": 0.6664 + }, + { + "start": 2199.22, + "end": 2202.02, + "probability": 0.9618 + }, + { + "start": 2210.92, + "end": 2211.56, + "probability": 0.5022 + }, + { + "start": 2211.7, + "end": 2213.02, + "probability": 0.7236 + }, + { + "start": 2213.2, + "end": 2216.04, + "probability": 0.9932 + }, + { + "start": 2216.1, + "end": 2221.58, + "probability": 0.9808 + }, + { + "start": 2222.64, + "end": 2224.96, + "probability": 0.7041 + }, + { + "start": 2225.12, + "end": 2228.22, + "probability": 0.9915 + }, + { + "start": 2228.32, + "end": 2229.26, + "probability": 0.7974 + }, + { + "start": 2229.32, + "end": 2231.28, + "probability": 0.8864 + }, + { + "start": 2231.7, + "end": 2235.18, + "probability": 0.5008 + }, + { + "start": 2235.8, + "end": 2240.0, + "probability": 0.9835 + }, + { + "start": 2240.84, + "end": 2241.68, + "probability": 0.872 + }, + { + "start": 2241.7, + "end": 2245.96, + "probability": 0.9984 + }, + { + "start": 2246.58, + "end": 2250.18, + "probability": 0.99 + }, + { + "start": 2250.18, + "end": 2253.68, + "probability": 0.9993 + }, + { + "start": 2253.9, + "end": 2255.52, + "probability": 0.2486 + }, + { + "start": 2255.52, + "end": 2258.26, + "probability": 0.9653 + }, + { + "start": 2258.36, + "end": 2259.6, + "probability": 0.8005 + }, + { + "start": 2260.22, + "end": 2263.78, + "probability": 0.9856 + }, + { + "start": 2263.96, + "end": 2267.32, + "probability": 0.9728 + }, + { + "start": 2267.76, + "end": 2272.14, + "probability": 0.9919 + }, + { + "start": 2272.18, + "end": 2273.96, + "probability": 0.9574 + }, + { + "start": 2274.18, + "end": 2279.76, + "probability": 0.5653 + }, + { + "start": 2279.76, + "end": 2279.92, + "probability": 0.5323 + }, + { + "start": 2280.0, + "end": 2280.9, + "probability": 0.9574 + }, + { + "start": 2280.94, + "end": 2284.42, + "probability": 0.9273 + }, + { + "start": 2285.78, + "end": 2285.78, + "probability": 0.614 + }, + { + "start": 2285.78, + "end": 2285.98, + "probability": 0.3839 + }, + { + "start": 2286.04, + "end": 2286.38, + "probability": 0.703 + }, + { + "start": 2286.56, + "end": 2289.58, + "probability": 0.9728 + }, + { + "start": 2289.66, + "end": 2290.31, + "probability": 0.9732 + }, + { + "start": 2290.62, + "end": 2292.87, + "probability": 0.8757 + }, + { + "start": 2293.32, + "end": 2294.16, + "probability": 0.8661 + }, + { + "start": 2294.62, + "end": 2297.51, + "probability": 0.868 + }, + { + "start": 2298.7, + "end": 2300.58, + "probability": 0.9861 + }, + { + "start": 2300.92, + "end": 2305.02, + "probability": 0.9799 + }, + { + "start": 2305.02, + "end": 2307.34, + "probability": 0.9174 + }, + { + "start": 2307.74, + "end": 2308.9, + "probability": 0.9338 + }, + { + "start": 2310.25, + "end": 2312.88, + "probability": 0.7667 + }, + { + "start": 2313.16, + "end": 2318.12, + "probability": 0.9578 + }, + { + "start": 2319.12, + "end": 2323.46, + "probability": 0.9961 + }, + { + "start": 2323.86, + "end": 2325.15, + "probability": 0.3914 + }, + { + "start": 2325.94, + "end": 2328.22, + "probability": 0.98 + }, + { + "start": 2328.8, + "end": 2333.26, + "probability": 0.9963 + }, + { + "start": 2333.44, + "end": 2334.52, + "probability": 0.92 + }, + { + "start": 2334.94, + "end": 2340.18, + "probability": 0.9453 + }, + { + "start": 2340.26, + "end": 2341.6, + "probability": 0.7949 + }, + { + "start": 2341.94, + "end": 2342.74, + "probability": 0.753 + }, + { + "start": 2343.1, + "end": 2344.08, + "probability": 0.9563 + }, + { + "start": 2344.18, + "end": 2345.24, + "probability": 0.9692 + }, + { + "start": 2345.46, + "end": 2349.22, + "probability": 0.9898 + }, + { + "start": 2349.48, + "end": 2349.64, + "probability": 0.6454 + }, + { + "start": 2349.82, + "end": 2351.18, + "probability": 0.8596 + }, + { + "start": 2351.28, + "end": 2353.3, + "probability": 0.705 + }, + { + "start": 2353.74, + "end": 2358.08, + "probability": 0.9758 + }, + { + "start": 2358.3, + "end": 2359.72, + "probability": 0.7692 + }, + { + "start": 2360.02, + "end": 2363.5, + "probability": 0.9235 + }, + { + "start": 2363.74, + "end": 2367.58, + "probability": 0.9146 + }, + { + "start": 2367.7, + "end": 2373.84, + "probability": 0.9984 + }, + { + "start": 2373.88, + "end": 2373.88, + "probability": 0.5042 + }, + { + "start": 2373.88, + "end": 2377.86, + "probability": 0.9939 + }, + { + "start": 2377.9, + "end": 2378.2, + "probability": 0.3878 + }, + { + "start": 2378.36, + "end": 2379.0, + "probability": 0.5272 + }, + { + "start": 2379.84, + "end": 2382.1, + "probability": 0.819 + }, + { + "start": 2390.54, + "end": 2392.84, + "probability": 0.7109 + }, + { + "start": 2394.7, + "end": 2398.56, + "probability": 0.8826 + }, + { + "start": 2398.74, + "end": 2400.84, + "probability": 0.9067 + }, + { + "start": 2401.52, + "end": 2405.8, + "probability": 0.8613 + }, + { + "start": 2406.78, + "end": 2413.76, + "probability": 0.9316 + }, + { + "start": 2414.02, + "end": 2415.78, + "probability": 0.5227 + }, + { + "start": 2424.5, + "end": 2424.5, + "probability": 0.2963 + }, + { + "start": 2424.5, + "end": 2427.84, + "probability": 0.639 + }, + { + "start": 2427.88, + "end": 2428.83, + "probability": 0.3009 + }, + { + "start": 2430.66, + "end": 2433.5, + "probability": 0.4106 + }, + { + "start": 2434.72, + "end": 2435.96, + "probability": 0.3125 + }, + { + "start": 2438.02, + "end": 2439.96, + "probability": 0.1531 + }, + { + "start": 2439.96, + "end": 2441.36, + "probability": 0.0876 + }, + { + "start": 2441.64, + "end": 2443.8, + "probability": 0.8314 + }, + { + "start": 2443.9, + "end": 2445.53, + "probability": 0.8883 + }, + { + "start": 2446.1, + "end": 2446.2, + "probability": 0.1047 + }, + { + "start": 2446.86, + "end": 2449.24, + "probability": 0.0965 + }, + { + "start": 2449.3, + "end": 2451.8, + "probability": 0.0256 + }, + { + "start": 2453.14, + "end": 2454.5, + "probability": 0.1861 + }, + { + "start": 2454.5, + "end": 2455.54, + "probability": 0.3366 + }, + { + "start": 2457.62, + "end": 2459.9, + "probability": 0.5853 + }, + { + "start": 2461.62, + "end": 2462.64, + "probability": 0.0214 + }, + { + "start": 2462.64, + "end": 2464.34, + "probability": 0.5344 + }, + { + "start": 2465.48, + "end": 2470.36, + "probability": 0.991 + }, + { + "start": 2470.36, + "end": 2474.04, + "probability": 0.9703 + }, + { + "start": 2474.44, + "end": 2478.08, + "probability": 0.9704 + }, + { + "start": 2478.86, + "end": 2479.16, + "probability": 0.0626 + }, + { + "start": 2479.68, + "end": 2481.98, + "probability": 0.7519 + }, + { + "start": 2482.12, + "end": 2483.1, + "probability": 0.8061 + }, + { + "start": 2483.66, + "end": 2485.46, + "probability": 0.8501 + }, + { + "start": 2488.56, + "end": 2491.48, + "probability": 0.6694 + }, + { + "start": 2491.76, + "end": 2493.58, + "probability": 0.979 + }, + { + "start": 2494.08, + "end": 2494.86, + "probability": 0.7289 + }, + { + "start": 2494.9, + "end": 2498.56, + "probability": 0.9256 + }, + { + "start": 2499.66, + "end": 2500.78, + "probability": 0.0187 + }, + { + "start": 2502.22, + "end": 2505.0, + "probability": 0.6349 + }, + { + "start": 2505.92, + "end": 2506.42, + "probability": 0.467 + }, + { + "start": 2507.0, + "end": 2511.98, + "probability": 0.9731 + }, + { + "start": 2512.48, + "end": 2514.38, + "probability": 0.6348 + }, + { + "start": 2514.66, + "end": 2515.36, + "probability": 0.2955 + }, + { + "start": 2517.18, + "end": 2519.42, + "probability": 0.859 + }, + { + "start": 2519.48, + "end": 2519.76, + "probability": 0.8571 + }, + { + "start": 2519.94, + "end": 2527.96, + "probability": 0.2964 + }, + { + "start": 2532.7, + "end": 2538.48, + "probability": 0.0395 + }, + { + "start": 2538.48, + "end": 2538.48, + "probability": 0.0379 + }, + { + "start": 2538.48, + "end": 2538.48, + "probability": 0.121 + }, + { + "start": 2538.48, + "end": 2538.48, + "probability": 0.0251 + }, + { + "start": 2538.48, + "end": 2538.62, + "probability": 0.1453 + }, + { + "start": 2539.2, + "end": 2541.72, + "probability": 0.6267 + }, + { + "start": 2541.72, + "end": 2545.34, + "probability": 0.9304 + }, + { + "start": 2546.2, + "end": 2550.06, + "probability": 0.7594 + }, + { + "start": 2550.12, + "end": 2553.67, + "probability": 0.7953 + }, + { + "start": 2555.8, + "end": 2557.92, + "probability": 0.7076 + }, + { + "start": 2557.92, + "end": 2559.46, + "probability": 0.859 + }, + { + "start": 2560.04, + "end": 2561.84, + "probability": 0.6998 + }, + { + "start": 2561.84, + "end": 2564.62, + "probability": 0.9933 + }, + { + "start": 2564.72, + "end": 2566.38, + "probability": 0.8832 + }, + { + "start": 2566.78, + "end": 2571.2, + "probability": 0.9901 + }, + { + "start": 2571.2, + "end": 2575.3, + "probability": 0.9842 + }, + { + "start": 2576.04, + "end": 2579.02, + "probability": 0.871 + }, + { + "start": 2580.96, + "end": 2582.2, + "probability": 0.1334 + }, + { + "start": 2582.32, + "end": 2582.5, + "probability": 0.02 + }, + { + "start": 2582.5, + "end": 2584.08, + "probability": 0.8376 + }, + { + "start": 2584.74, + "end": 2587.38, + "probability": 0.9364 + }, + { + "start": 2587.5, + "end": 2590.08, + "probability": 0.8394 + }, + { + "start": 2590.38, + "end": 2591.46, + "probability": 0.6335 + }, + { + "start": 2592.46, + "end": 2596.78, + "probability": 0.9922 + }, + { + "start": 2597.26, + "end": 2602.08, + "probability": 0.9956 + }, + { + "start": 2602.16, + "end": 2603.8, + "probability": 0.9846 + }, + { + "start": 2603.8, + "end": 2607.18, + "probability": 0.9883 + }, + { + "start": 2607.74, + "end": 2608.5, + "probability": 0.8084 + }, + { + "start": 2608.6, + "end": 2612.58, + "probability": 0.7349 + }, + { + "start": 2612.58, + "end": 2614.98, + "probability": 0.9645 + }, + { + "start": 2615.52, + "end": 2618.58, + "probability": 0.8898 + }, + { + "start": 2619.22, + "end": 2620.74, + "probability": 0.9653 + }, + { + "start": 2620.8, + "end": 2623.37, + "probability": 0.9878 + }, + { + "start": 2623.88, + "end": 2625.68, + "probability": 0.7142 + }, + { + "start": 2625.84, + "end": 2627.44, + "probability": 0.9922 + }, + { + "start": 2627.58, + "end": 2628.24, + "probability": 0.6172 + }, + { + "start": 2628.9, + "end": 2632.92, + "probability": 0.8565 + }, + { + "start": 2633.06, + "end": 2633.98, + "probability": 0.7692 + }, + { + "start": 2634.02, + "end": 2636.38, + "probability": 0.9278 + }, + { + "start": 2636.88, + "end": 2639.16, + "probability": 0.8633 + }, + { + "start": 2639.68, + "end": 2640.4, + "probability": 0.8087 + }, + { + "start": 2640.88, + "end": 2641.12, + "probability": 0.7247 + }, + { + "start": 2641.32, + "end": 2643.2, + "probability": 0.7061 + }, + { + "start": 2645.0, + "end": 2647.08, + "probability": 0.8965 + }, + { + "start": 2647.44, + "end": 2648.78, + "probability": 0.8129 + }, + { + "start": 2649.34, + "end": 2650.96, + "probability": 0.304 + }, + { + "start": 2652.02, + "end": 2653.04, + "probability": 0.9383 + }, + { + "start": 2654.3, + "end": 2655.74, + "probability": 0.6581 + }, + { + "start": 2655.84, + "end": 2660.82, + "probability": 0.4784 + }, + { + "start": 2661.48, + "end": 2665.06, + "probability": 0.8446 + }, + { + "start": 2666.32, + "end": 2667.88, + "probability": 0.2263 + }, + { + "start": 2668.16, + "end": 2671.78, + "probability": 0.7994 + }, + { + "start": 2672.48, + "end": 2673.5, + "probability": 0.7678 + }, + { + "start": 2673.58, + "end": 2675.12, + "probability": 0.5057 + }, + { + "start": 2675.26, + "end": 2681.34, + "probability": 0.9884 + }, + { + "start": 2681.94, + "end": 2682.62, + "probability": 0.5331 + }, + { + "start": 2682.74, + "end": 2686.92, + "probability": 0.6659 + }, + { + "start": 2688.1, + "end": 2692.66, + "probability": 0.6692 + }, + { + "start": 2692.7, + "end": 2698.58, + "probability": 0.7136 + }, + { + "start": 2698.72, + "end": 2702.52, + "probability": 0.7468 + }, + { + "start": 2702.88, + "end": 2704.14, + "probability": 0.5839 + }, + { + "start": 2704.14, + "end": 2706.82, + "probability": 0.9323 + }, + { + "start": 2706.9, + "end": 2707.46, + "probability": 0.7711 + }, + { + "start": 2707.46, + "end": 2708.78, + "probability": 0.7262 + }, + { + "start": 2708.98, + "end": 2712.22, + "probability": 0.2954 + }, + { + "start": 2712.24, + "end": 2714.12, + "probability": 0.9403 + }, + { + "start": 2714.64, + "end": 2716.22, + "probability": 0.8516 + }, + { + "start": 2717.0, + "end": 2717.46, + "probability": 0.3061 + }, + { + "start": 2717.6, + "end": 2721.94, + "probability": 0.5477 + }, + { + "start": 2722.44, + "end": 2724.4, + "probability": 0.7732 + }, + { + "start": 2724.44, + "end": 2725.02, + "probability": 0.3807 + }, + { + "start": 2725.58, + "end": 2728.02, + "probability": 0.9331 + }, + { + "start": 2728.72, + "end": 2730.34, + "probability": 0.6518 + }, + { + "start": 2730.8, + "end": 2732.12, + "probability": 0.5606 + }, + { + "start": 2732.56, + "end": 2735.84, + "probability": 0.9008 + }, + { + "start": 2735.94, + "end": 2736.82, + "probability": 0.5945 + }, + { + "start": 2737.06, + "end": 2738.9, + "probability": 0.6632 + }, + { + "start": 2739.02, + "end": 2740.36, + "probability": 0.8635 + }, + { + "start": 2742.18, + "end": 2745.52, + "probability": 0.6287 + }, + { + "start": 2746.72, + "end": 2748.72, + "probability": 0.9236 + }, + { + "start": 2750.0, + "end": 2750.64, + "probability": 0.4812 + }, + { + "start": 2751.22, + "end": 2753.88, + "probability": 0.466 + }, + { + "start": 2755.02, + "end": 2757.94, + "probability": 0.5059 + }, + { + "start": 2758.46, + "end": 2763.04, + "probability": 0.9711 + }, + { + "start": 2763.08, + "end": 2766.34, + "probability": 0.9692 + }, + { + "start": 2767.48, + "end": 2768.04, + "probability": 0.535 + }, + { + "start": 2768.04, + "end": 2769.64, + "probability": 0.7424 + }, + { + "start": 2774.94, + "end": 2779.08, + "probability": 0.7656 + }, + { + "start": 2780.22, + "end": 2782.4, + "probability": 0.9914 + }, + { + "start": 2782.8, + "end": 2785.18, + "probability": 0.9813 + }, + { + "start": 2786.22, + "end": 2788.76, + "probability": 0.8388 + }, + { + "start": 2789.02, + "end": 2793.78, + "probability": 0.6656 + }, + { + "start": 2793.82, + "end": 2796.88, + "probability": 0.9911 + }, + { + "start": 2797.54, + "end": 2799.54, + "probability": 0.4704 + }, + { + "start": 2800.12, + "end": 2802.7, + "probability": 0.8989 + }, + { + "start": 2802.78, + "end": 2806.22, + "probability": 0.9794 + }, + { + "start": 2806.32, + "end": 2810.02, + "probability": 0.7501 + }, + { + "start": 2810.14, + "end": 2811.88, + "probability": 0.6105 + }, + { + "start": 2812.2, + "end": 2815.68, + "probability": 0.8799 + }, + { + "start": 2816.24, + "end": 2817.8, + "probability": 0.6094 + }, + { + "start": 2817.9, + "end": 2821.06, + "probability": 0.9865 + }, + { + "start": 2821.32, + "end": 2822.86, + "probability": 0.9954 + }, + { + "start": 2823.92, + "end": 2825.52, + "probability": 0.5655 + }, + { + "start": 2826.22, + "end": 2826.64, + "probability": 0.5022 + }, + { + "start": 2826.72, + "end": 2827.96, + "probability": 0.873 + }, + { + "start": 2828.04, + "end": 2832.25, + "probability": 0.991 + }, + { + "start": 2833.06, + "end": 2836.46, + "probability": 0.9961 + }, + { + "start": 2836.72, + "end": 2838.62, + "probability": 0.755 + }, + { + "start": 2839.34, + "end": 2842.54, + "probability": 0.8879 + }, + { + "start": 2842.68, + "end": 2845.32, + "probability": 0.8417 + }, + { + "start": 2846.28, + "end": 2850.54, + "probability": 0.634 + }, + { + "start": 2850.62, + "end": 2854.88, + "probability": 0.6339 + }, + { + "start": 2855.08, + "end": 2856.4, + "probability": 0.7952 + }, + { + "start": 2857.0, + "end": 2859.68, + "probability": 0.4652 + }, + { + "start": 2859.76, + "end": 2862.7, + "probability": 0.9714 + }, + { + "start": 2862.7, + "end": 2867.54, + "probability": 0.9463 + }, + { + "start": 2868.28, + "end": 2869.66, + "probability": 0.8232 + }, + { + "start": 2870.24, + "end": 2872.88, + "probability": 0.7328 + }, + { + "start": 2873.64, + "end": 2873.78, + "probability": 0.3295 + }, + { + "start": 2873.78, + "end": 2875.54, + "probability": 0.941 + }, + { + "start": 2875.62, + "end": 2876.8, + "probability": 0.7884 + }, + { + "start": 2877.16, + "end": 2880.66, + "probability": 0.9849 + }, + { + "start": 2880.7, + "end": 2880.84, + "probability": 0.3341 + }, + { + "start": 2880.84, + "end": 2883.49, + "probability": 0.7522 + }, + { + "start": 2883.98, + "end": 2887.26, + "probability": 0.9921 + }, + { + "start": 2887.28, + "end": 2887.7, + "probability": 0.0322 + }, + { + "start": 2887.7, + "end": 2887.7, + "probability": 0.215 + }, + { + "start": 2887.7, + "end": 2887.7, + "probability": 0.3721 + }, + { + "start": 2887.7, + "end": 2887.7, + "probability": 0.3985 + }, + { + "start": 2887.7, + "end": 2887.7, + "probability": 0.4397 + }, + { + "start": 2887.7, + "end": 2887.7, + "probability": 0.1168 + }, + { + "start": 2887.7, + "end": 2890.9, + "probability": 0.6648 + }, + { + "start": 2894.1, + "end": 2896.62, + "probability": 0.6612 + }, + { + "start": 2896.78, + "end": 2897.3, + "probability": 0.6549 + }, + { + "start": 2915.44, + "end": 2917.68, + "probability": 0.7219 + }, + { + "start": 2929.24, + "end": 2929.68, + "probability": 0.0809 + }, + { + "start": 2931.4, + "end": 2933.02, + "probability": 0.7024 + }, + { + "start": 2934.12, + "end": 2935.9, + "probability": 0.7953 + }, + { + "start": 2937.08, + "end": 2938.18, + "probability": 0.7978 + }, + { + "start": 2939.22, + "end": 2941.6, + "probability": 0.9644 + }, + { + "start": 2942.56, + "end": 2943.52, + "probability": 0.7589 + }, + { + "start": 2944.64, + "end": 2946.64, + "probability": 0.6352 + }, + { + "start": 2948.1, + "end": 2948.56, + "probability": 0.1843 + }, + { + "start": 2949.46, + "end": 2950.84, + "probability": 0.8609 + }, + { + "start": 2951.8, + "end": 2954.4, + "probability": 0.669 + }, + { + "start": 2955.98, + "end": 2958.52, + "probability": 0.9354 + }, + { + "start": 2960.06, + "end": 2963.3, + "probability": 0.6076 + }, + { + "start": 2964.34, + "end": 2965.14, + "probability": 0.4703 + }, + { + "start": 2965.98, + "end": 2967.26, + "probability": 0.7855 + }, + { + "start": 2968.0, + "end": 2969.36, + "probability": 0.7694 + }, + { + "start": 2970.46, + "end": 2971.62, + "probability": 0.5737 + }, + { + "start": 2973.04, + "end": 2976.06, + "probability": 0.5683 + }, + { + "start": 2977.38, + "end": 2978.78, + "probability": 0.9742 + }, + { + "start": 2979.94, + "end": 2984.68, + "probability": 0.98 + }, + { + "start": 2985.72, + "end": 2991.28, + "probability": 0.9618 + }, + { + "start": 2992.56, + "end": 2997.4, + "probability": 0.9973 + }, + { + "start": 2998.58, + "end": 3001.88, + "probability": 0.9828 + }, + { + "start": 3002.8, + "end": 3006.16, + "probability": 0.9805 + }, + { + "start": 3006.86, + "end": 3011.52, + "probability": 0.993 + }, + { + "start": 3011.52, + "end": 3016.38, + "probability": 0.9644 + }, + { + "start": 3017.48, + "end": 3022.44, + "probability": 0.9875 + }, + { + "start": 3023.06, + "end": 3023.94, + "probability": 0.2945 + }, + { + "start": 3024.68, + "end": 3025.31, + "probability": 0.8329 + }, + { + "start": 3026.08, + "end": 3027.92, + "probability": 0.917 + }, + { + "start": 3028.74, + "end": 3031.48, + "probability": 0.9889 + }, + { + "start": 3032.46, + "end": 3041.98, + "probability": 0.9244 + }, + { + "start": 3042.1, + "end": 3042.76, + "probability": 0.9112 + }, + { + "start": 3043.22, + "end": 3045.92, + "probability": 0.9846 + }, + { + "start": 3046.4, + "end": 3049.02, + "probability": 0.8391 + }, + { + "start": 3051.34, + "end": 3056.64, + "probability": 0.8643 + }, + { + "start": 3058.12, + "end": 3062.5, + "probability": 0.9946 + }, + { + "start": 3066.22, + "end": 3071.88, + "probability": 0.9877 + }, + { + "start": 3073.64, + "end": 3080.1, + "probability": 0.9764 + }, + { + "start": 3080.66, + "end": 3084.48, + "probability": 0.7246 + }, + { + "start": 3085.08, + "end": 3088.7, + "probability": 0.9132 + }, + { + "start": 3088.8, + "end": 3091.18, + "probability": 0.9567 + }, + { + "start": 3091.74, + "end": 3095.42, + "probability": 0.9893 + }, + { + "start": 3096.3, + "end": 3099.04, + "probability": 0.9342 + }, + { + "start": 3102.18, + "end": 3104.54, + "probability": 0.6482 + }, + { + "start": 3105.36, + "end": 3109.34, + "probability": 0.9444 + }, + { + "start": 3110.16, + "end": 3112.0, + "probability": 0.9956 + }, + { + "start": 3113.78, + "end": 3116.62, + "probability": 0.8882 + }, + { + "start": 3117.54, + "end": 3118.97, + "probability": 0.9895 + }, + { + "start": 3120.26, + "end": 3121.75, + "probability": 0.9908 + }, + { + "start": 3122.78, + "end": 3124.42, + "probability": 0.976 + }, + { + "start": 3125.32, + "end": 3129.54, + "probability": 0.9846 + }, + { + "start": 3129.54, + "end": 3134.06, + "probability": 0.9915 + }, + { + "start": 3134.94, + "end": 3136.76, + "probability": 0.808 + }, + { + "start": 3137.56, + "end": 3139.44, + "probability": 0.9567 + }, + { + "start": 3140.38, + "end": 3144.88, + "probability": 0.939 + }, + { + "start": 3145.68, + "end": 3146.96, + "probability": 0.3271 + }, + { + "start": 3147.62, + "end": 3149.94, + "probability": 0.7817 + }, + { + "start": 3150.84, + "end": 3151.26, + "probability": 0.5276 + }, + { + "start": 3153.26, + "end": 3156.96, + "probability": 0.743 + }, + { + "start": 3157.5, + "end": 3165.34, + "probability": 0.7491 + }, + { + "start": 3165.8, + "end": 3167.44, + "probability": 0.6462 + }, + { + "start": 3168.56, + "end": 3170.14, + "probability": 0.8677 + }, + { + "start": 3170.56, + "end": 3176.7, + "probability": 0.9612 + }, + { + "start": 3177.38, + "end": 3178.96, + "probability": 0.7869 + }, + { + "start": 3181.42, + "end": 3186.32, + "probability": 0.8521 + }, + { + "start": 3187.28, + "end": 3192.46, + "probability": 0.9072 + }, + { + "start": 3192.92, + "end": 3195.82, + "probability": 0.8469 + }, + { + "start": 3197.34, + "end": 3200.72, + "probability": 0.9601 + }, + { + "start": 3202.46, + "end": 3206.36, + "probability": 0.917 + }, + { + "start": 3209.22, + "end": 3213.22, + "probability": 0.7239 + }, + { + "start": 3214.0, + "end": 3215.04, + "probability": 0.6263 + }, + { + "start": 3216.58, + "end": 3218.64, + "probability": 0.986 + }, + { + "start": 3218.72, + "end": 3219.78, + "probability": 0.6403 + }, + { + "start": 3220.88, + "end": 3225.08, + "probability": 0.9556 + }, + { + "start": 3226.12, + "end": 3227.82, + "probability": 0.9559 + }, + { + "start": 3229.06, + "end": 3232.1, + "probability": 0.8393 + }, + { + "start": 3232.62, + "end": 3239.52, + "probability": 0.9742 + }, + { + "start": 3242.9, + "end": 3246.34, + "probability": 0.9122 + }, + { + "start": 3247.6, + "end": 3250.02, + "probability": 0.9937 + }, + { + "start": 3251.34, + "end": 3253.12, + "probability": 0.9653 + }, + { + "start": 3253.52, + "end": 3255.78, + "probability": 0.9779 + }, + { + "start": 3256.7, + "end": 3264.16, + "probability": 0.9792 + }, + { + "start": 3265.0, + "end": 3266.44, + "probability": 0.4424 + }, + { + "start": 3267.44, + "end": 3271.08, + "probability": 0.9956 + }, + { + "start": 3272.4, + "end": 3273.7, + "probability": 0.836 + }, + { + "start": 3274.16, + "end": 3277.56, + "probability": 0.9354 + }, + { + "start": 3277.94, + "end": 3279.4, + "probability": 0.8731 + }, + { + "start": 3280.58, + "end": 3282.12, + "probability": 0.6418 + }, + { + "start": 3283.2, + "end": 3285.12, + "probability": 0.8417 + }, + { + "start": 3285.12, + "end": 3290.04, + "probability": 0.7585 + }, + { + "start": 3290.28, + "end": 3292.14, + "probability": 0.9609 + }, + { + "start": 3293.26, + "end": 3298.12, + "probability": 0.988 + }, + { + "start": 3299.46, + "end": 3303.74, + "probability": 0.9663 + }, + { + "start": 3303.94, + "end": 3307.44, + "probability": 0.9893 + }, + { + "start": 3308.32, + "end": 3313.8, + "probability": 0.9851 + }, + { + "start": 3314.52, + "end": 3318.42, + "probability": 0.9972 + }, + { + "start": 3319.16, + "end": 3324.84, + "probability": 0.9993 + }, + { + "start": 3325.14, + "end": 3326.46, + "probability": 0.4577 + }, + { + "start": 3326.54, + "end": 3328.7, + "probability": 0.436 + }, + { + "start": 3329.28, + "end": 3330.7, + "probability": 0.9634 + }, + { + "start": 3331.06, + "end": 3331.4, + "probability": 0.3618 + }, + { + "start": 3331.4, + "end": 3331.82, + "probability": 0.6734 + }, + { + "start": 3332.8, + "end": 3338.04, + "probability": 0.9955 + }, + { + "start": 3338.04, + "end": 3343.36, + "probability": 0.9709 + }, + { + "start": 3344.8, + "end": 3349.16, + "probability": 0.9956 + }, + { + "start": 3349.86, + "end": 3353.56, + "probability": 0.9602 + }, + { + "start": 3354.22, + "end": 3359.68, + "probability": 0.869 + }, + { + "start": 3359.68, + "end": 3363.68, + "probability": 0.9882 + }, + { + "start": 3364.58, + "end": 3367.76, + "probability": 0.9985 + }, + { + "start": 3367.76, + "end": 3372.28, + "probability": 0.9949 + }, + { + "start": 3373.22, + "end": 3377.06, + "probability": 0.9696 + }, + { + "start": 3377.26, + "end": 3379.74, + "probability": 0.9865 + }, + { + "start": 3381.76, + "end": 3386.26, + "probability": 0.9518 + }, + { + "start": 3386.86, + "end": 3388.64, + "probability": 0.8182 + }, + { + "start": 3389.24, + "end": 3394.24, + "probability": 0.6209 + }, + { + "start": 3394.8, + "end": 3400.98, + "probability": 0.8348 + }, + { + "start": 3402.32, + "end": 3405.56, + "probability": 0.9365 + }, + { + "start": 3405.56, + "end": 3409.3, + "probability": 0.995 + }, + { + "start": 3409.94, + "end": 3411.2, + "probability": 0.9222 + }, + { + "start": 3411.84, + "end": 3413.14, + "probability": 0.4485 + }, + { + "start": 3413.3, + "end": 3413.8, + "probability": 0.9626 + }, + { + "start": 3414.28, + "end": 3420.28, + "probability": 0.9947 + }, + { + "start": 3421.02, + "end": 3425.12, + "probability": 0.9946 + }, + { + "start": 3425.82, + "end": 3431.06, + "probability": 0.9752 + }, + { + "start": 3432.04, + "end": 3434.94, + "probability": 0.9229 + }, + { + "start": 3435.8, + "end": 3438.28, + "probability": 0.9742 + }, + { + "start": 3438.28, + "end": 3443.4, + "probability": 0.9806 + }, + { + "start": 3444.08, + "end": 3445.72, + "probability": 0.903 + }, + { + "start": 3445.98, + "end": 3446.82, + "probability": 0.7084 + }, + { + "start": 3447.12, + "end": 3449.14, + "probability": 0.8539 + }, + { + "start": 3450.0, + "end": 3451.14, + "probability": 0.692 + }, + { + "start": 3451.72, + "end": 3452.8, + "probability": 0.7437 + }, + { + "start": 3452.92, + "end": 3456.86, + "probability": 0.9148 + }, + { + "start": 3457.5, + "end": 3461.46, + "probability": 0.9021 + }, + { + "start": 3462.26, + "end": 3465.84, + "probability": 0.9941 + }, + { + "start": 3466.5, + "end": 3469.2, + "probability": 0.9805 + }, + { + "start": 3469.64, + "end": 3472.7, + "probability": 0.7074 + }, + { + "start": 3474.06, + "end": 3476.06, + "probability": 0.9361 + }, + { + "start": 3476.62, + "end": 3479.3, + "probability": 0.9092 + }, + { + "start": 3479.82, + "end": 3483.84, + "probability": 0.9892 + }, + { + "start": 3484.72, + "end": 3487.06, + "probability": 0.9963 + }, + { + "start": 3487.6, + "end": 3489.26, + "probability": 0.9728 + }, + { + "start": 3489.9, + "end": 3491.72, + "probability": 0.8891 + }, + { + "start": 3492.18, + "end": 3493.94, + "probability": 0.8348 + }, + { + "start": 3494.32, + "end": 3497.12, + "probability": 0.9812 + }, + { + "start": 3497.6, + "end": 3500.24, + "probability": 0.954 + }, + { + "start": 3500.98, + "end": 3504.02, + "probability": 0.9914 + }, + { + "start": 3504.48, + "end": 3509.08, + "probability": 0.9727 + }, + { + "start": 3510.38, + "end": 3517.88, + "probability": 0.761 + }, + { + "start": 3518.58, + "end": 3521.92, + "probability": 0.9238 + }, + { + "start": 3522.92, + "end": 3525.7, + "probability": 0.9298 + }, + { + "start": 3525.7, + "end": 3531.2, + "probability": 0.9463 + }, + { + "start": 3531.78, + "end": 3532.22, + "probability": 0.8825 + }, + { + "start": 3532.78, + "end": 3535.66, + "probability": 0.9437 + }, + { + "start": 3536.3, + "end": 3542.26, + "probability": 0.8477 + }, + { + "start": 3542.6, + "end": 3543.24, + "probability": 0.9573 + }, + { + "start": 3543.54, + "end": 3548.28, + "probability": 0.8916 + }, + { + "start": 3548.84, + "end": 3552.0, + "probability": 0.9957 + }, + { + "start": 3552.66, + "end": 3556.04, + "probability": 0.8935 + }, + { + "start": 3556.38, + "end": 3556.62, + "probability": 0.7069 + }, + { + "start": 3557.34, + "end": 3559.26, + "probability": 0.5941 + }, + { + "start": 3560.94, + "end": 3562.58, + "probability": 0.9798 + }, + { + "start": 3563.32, + "end": 3565.28, + "probability": 0.9889 + }, + { + "start": 3566.22, + "end": 3572.74, + "probability": 0.7608 + }, + { + "start": 3573.36, + "end": 3575.68, + "probability": 0.8383 + }, + { + "start": 3575.78, + "end": 3578.6, + "probability": 0.9491 + }, + { + "start": 3578.68, + "end": 3581.3, + "probability": 0.7835 + }, + { + "start": 3581.74, + "end": 3583.12, + "probability": 0.7162 + }, + { + "start": 3583.34, + "end": 3583.82, + "probability": 0.4962 + }, + { + "start": 3584.34, + "end": 3586.1, + "probability": 0.7215 + }, + { + "start": 3586.76, + "end": 3590.1, + "probability": 0.9533 + }, + { + "start": 3590.1, + "end": 3595.16, + "probability": 0.9835 + }, + { + "start": 3596.94, + "end": 3599.62, + "probability": 0.8247 + }, + { + "start": 3600.92, + "end": 3603.72, + "probability": 0.7942 + }, + { + "start": 3604.62, + "end": 3608.62, + "probability": 0.9966 + }, + { + "start": 3609.24, + "end": 3611.0, + "probability": 0.8428 + }, + { + "start": 3612.64, + "end": 3613.34, + "probability": 0.626 + }, + { + "start": 3614.16, + "end": 3615.22, + "probability": 0.6829 + }, + { + "start": 3617.74, + "end": 3624.66, + "probability": 0.8322 + }, + { + "start": 3625.42, + "end": 3625.78, + "probability": 0.8961 + }, + { + "start": 3625.98, + "end": 3628.84, + "probability": 0.6553 + }, + { + "start": 3629.36, + "end": 3629.56, + "probability": 0.5529 + }, + { + "start": 3630.56, + "end": 3631.9, + "probability": 0.649 + }, + { + "start": 3631.92, + "end": 3632.78, + "probability": 0.8074 + }, + { + "start": 3633.16, + "end": 3635.22, + "probability": 0.9565 + }, + { + "start": 3636.24, + "end": 3639.74, + "probability": 0.8959 + }, + { + "start": 3640.84, + "end": 3645.0, + "probability": 0.9409 + }, + { + "start": 3645.08, + "end": 3646.84, + "probability": 0.8815 + }, + { + "start": 3647.54, + "end": 3649.3, + "probability": 0.9565 + }, + { + "start": 3651.44, + "end": 3653.75, + "probability": 0.9236 + }, + { + "start": 3654.82, + "end": 3661.08, + "probability": 0.9956 + }, + { + "start": 3661.86, + "end": 3665.74, + "probability": 0.9938 + }, + { + "start": 3666.88, + "end": 3668.1, + "probability": 0.512 + }, + { + "start": 3668.18, + "end": 3669.48, + "probability": 0.9946 + }, + { + "start": 3669.58, + "end": 3672.86, + "probability": 0.8145 + }, + { + "start": 3672.98, + "end": 3676.34, + "probability": 0.9344 + }, + { + "start": 3676.36, + "end": 3677.48, + "probability": 0.774 + }, + { + "start": 3678.08, + "end": 3679.56, + "probability": 0.9595 + }, + { + "start": 3680.08, + "end": 3682.16, + "probability": 0.9402 + }, + { + "start": 3682.8, + "end": 3682.9, + "probability": 0.3832 + }, + { + "start": 3684.18, + "end": 3687.4, + "probability": 0.998 + }, + { + "start": 3687.4, + "end": 3690.4, + "probability": 0.999 + }, + { + "start": 3690.54, + "end": 3692.8, + "probability": 0.9522 + }, + { + "start": 3694.62, + "end": 3700.34, + "probability": 0.9617 + }, + { + "start": 3700.92, + "end": 3701.5, + "probability": 0.4857 + }, + { + "start": 3701.62, + "end": 3701.92, + "probability": 0.7818 + }, + { + "start": 3702.1, + "end": 3707.0, + "probability": 0.9766 + }, + { + "start": 3707.76, + "end": 3712.2, + "probability": 0.9953 + }, + { + "start": 3712.2, + "end": 3716.58, + "probability": 0.9586 + }, + { + "start": 3717.2, + "end": 3717.69, + "probability": 0.9741 + }, + { + "start": 3718.02, + "end": 3718.29, + "probability": 0.9869 + }, + { + "start": 3718.8, + "end": 3719.22, + "probability": 0.9902 + }, + { + "start": 3719.98, + "end": 3720.53, + "probability": 0.9907 + }, + { + "start": 3721.78, + "end": 3722.12, + "probability": 0.4472 + }, + { + "start": 3722.16, + "end": 3724.04, + "probability": 0.9609 + }, + { + "start": 3724.18, + "end": 3726.82, + "probability": 0.9761 + }, + { + "start": 3727.3, + "end": 3729.22, + "probability": 0.9539 + }, + { + "start": 3730.02, + "end": 3736.86, + "probability": 0.9942 + }, + { + "start": 3737.74, + "end": 3740.54, + "probability": 0.9973 + }, + { + "start": 3741.12, + "end": 3742.44, + "probability": 0.8756 + }, + { + "start": 3742.54, + "end": 3744.12, + "probability": 0.9414 + }, + { + "start": 3744.26, + "end": 3745.52, + "probability": 0.9236 + }, + { + "start": 3745.9, + "end": 3747.96, + "probability": 0.9454 + }, + { + "start": 3748.0, + "end": 3750.64, + "probability": 0.9579 + }, + { + "start": 3750.7, + "end": 3752.56, + "probability": 0.8292 + }, + { + "start": 3752.62, + "end": 3753.24, + "probability": 0.7977 + }, + { + "start": 3753.58, + "end": 3754.06, + "probability": 0.5911 + }, + { + "start": 3754.12, + "end": 3754.66, + "probability": 0.9395 + }, + { + "start": 3755.12, + "end": 3757.94, + "probability": 0.9919 + }, + { + "start": 3758.02, + "end": 3759.18, + "probability": 0.95 + }, + { + "start": 3760.02, + "end": 3762.1, + "probability": 0.9832 + }, + { + "start": 3762.52, + "end": 3763.62, + "probability": 0.9925 + }, + { + "start": 3764.1, + "end": 3764.78, + "probability": 0.9539 + }, + { + "start": 3764.98, + "end": 3765.66, + "probability": 0.9749 + }, + { + "start": 3765.78, + "end": 3767.26, + "probability": 0.9292 + }, + { + "start": 3768.06, + "end": 3770.3, + "probability": 0.9536 + }, + { + "start": 3771.06, + "end": 3773.96, + "probability": 0.8418 + }, + { + "start": 3773.96, + "end": 3777.32, + "probability": 0.9374 + }, + { + "start": 3779.0, + "end": 3783.16, + "probability": 0.8208 + }, + { + "start": 3783.78, + "end": 3786.4, + "probability": 0.9531 + }, + { + "start": 3786.82, + "end": 3788.31, + "probability": 0.8311 + }, + { + "start": 3789.38, + "end": 3794.04, + "probability": 0.8381 + }, + { + "start": 3794.99, + "end": 3798.21, + "probability": 0.9766 + }, + { + "start": 3798.46, + "end": 3801.32, + "probability": 0.9943 + }, + { + "start": 3801.34, + "end": 3801.56, + "probability": 0.6668 + }, + { + "start": 3801.64, + "end": 3806.7, + "probability": 0.9889 + }, + { + "start": 3807.1, + "end": 3807.68, + "probability": 0.8308 + }, + { + "start": 3807.86, + "end": 3811.0, + "probability": 0.9077 + }, + { + "start": 3811.42, + "end": 3812.98, + "probability": 0.9753 + }, + { + "start": 3812.98, + "end": 3815.0, + "probability": 0.9609 + }, + { + "start": 3815.16, + "end": 3815.74, + "probability": 0.5276 + }, + { + "start": 3816.04, + "end": 3819.26, + "probability": 0.9866 + }, + { + "start": 3819.66, + "end": 3822.58, + "probability": 0.9361 + }, + { + "start": 3823.4, + "end": 3826.08, + "probability": 0.7449 + }, + { + "start": 3826.14, + "end": 3828.98, + "probability": 0.9089 + }, + { + "start": 3828.98, + "end": 3832.82, + "probability": 0.9949 + }, + { + "start": 3834.04, + "end": 3834.46, + "probability": 0.7956 + }, + { + "start": 3834.74, + "end": 3836.12, + "probability": 0.8416 + }, + { + "start": 3836.32, + "end": 3839.26, + "probability": 0.7583 + }, + { + "start": 3839.54, + "end": 3840.18, + "probability": 0.8359 + }, + { + "start": 3840.54, + "end": 3845.4, + "probability": 0.9075 + }, + { + "start": 3845.86, + "end": 3850.72, + "probability": 0.712 + }, + { + "start": 3851.36, + "end": 3854.22, + "probability": 0.9868 + }, + { + "start": 3854.4, + "end": 3857.7, + "probability": 0.9952 + }, + { + "start": 3858.58, + "end": 3859.64, + "probability": 0.5624 + }, + { + "start": 3860.5, + "end": 3863.54, + "probability": 0.9461 + }, + { + "start": 3863.8, + "end": 3867.52, + "probability": 0.9885 + }, + { + "start": 3868.88, + "end": 3872.36, + "probability": 0.9907 + }, + { + "start": 3872.36, + "end": 3875.36, + "probability": 0.9394 + }, + { + "start": 3876.52, + "end": 3879.42, + "probability": 0.9423 + }, + { + "start": 3880.44, + "end": 3882.9, + "probability": 0.7649 + }, + { + "start": 3883.02, + "end": 3885.26, + "probability": 0.7761 + }, + { + "start": 3886.44, + "end": 3887.46, + "probability": 0.7509 + }, + { + "start": 3887.63, + "end": 3891.88, + "probability": 0.9851 + }, + { + "start": 3893.0, + "end": 3894.8, + "probability": 0.9976 + }, + { + "start": 3895.84, + "end": 3897.84, + "probability": 0.9539 + }, + { + "start": 3898.9, + "end": 3901.56, + "probability": 0.986 + }, + { + "start": 3903.24, + "end": 3905.34, + "probability": 0.9844 + }, + { + "start": 3906.68, + "end": 3909.44, + "probability": 0.9906 + }, + { + "start": 3909.68, + "end": 3910.96, + "probability": 0.9302 + }, + { + "start": 3911.66, + "end": 3912.57, + "probability": 0.6865 + }, + { + "start": 3913.94, + "end": 3916.28, + "probability": 0.9902 + }, + { + "start": 3916.44, + "end": 3917.26, + "probability": 0.8838 + }, + { + "start": 3917.4, + "end": 3918.0, + "probability": 0.9595 + }, + { + "start": 3919.34, + "end": 3919.97, + "probability": 0.7324 + }, + { + "start": 3920.14, + "end": 3923.94, + "probability": 0.9952 + }, + { + "start": 3925.02, + "end": 3927.46, + "probability": 0.9609 + }, + { + "start": 3928.1, + "end": 3931.88, + "probability": 0.9838 + }, + { + "start": 3933.18, + "end": 3934.78, + "probability": 0.753 + }, + { + "start": 3935.34, + "end": 3936.4, + "probability": 0.96 + }, + { + "start": 3936.98, + "end": 3937.58, + "probability": 0.6048 + }, + { + "start": 3937.76, + "end": 3938.94, + "probability": 0.9238 + }, + { + "start": 3938.96, + "end": 3942.2, + "probability": 0.981 + }, + { + "start": 3942.58, + "end": 3943.6, + "probability": 0.1432 + }, + { + "start": 3945.92, + "end": 3948.84, + "probability": 0.6537 + }, + { + "start": 3949.94, + "end": 3951.2, + "probability": 0.1325 + }, + { + "start": 3952.4, + "end": 3952.52, + "probability": 0.6665 + }, + { + "start": 3953.14, + "end": 3954.3, + "probability": 0.5548 + }, + { + "start": 3954.77, + "end": 3955.44, + "probability": 0.0359 + }, + { + "start": 3955.44, + "end": 3957.64, + "probability": 0.7154 + }, + { + "start": 3958.2, + "end": 3959.42, + "probability": 0.8839 + }, + { + "start": 3959.6, + "end": 3960.72, + "probability": 0.5829 + }, + { + "start": 3960.96, + "end": 3961.96, + "probability": 0.3749 + }, + { + "start": 3962.04, + "end": 3963.66, + "probability": 0.8242 + }, + { + "start": 3964.11, + "end": 3966.54, + "probability": 0.5532 + }, + { + "start": 3966.64, + "end": 3967.34, + "probability": 0.5325 + }, + { + "start": 3967.36, + "end": 3968.08, + "probability": 0.8652 + }, + { + "start": 3968.4, + "end": 3969.18, + "probability": 0.8104 + }, + { + "start": 3969.46, + "end": 3971.84, + "probability": 0.949 + }, + { + "start": 3972.68, + "end": 3974.46, + "probability": 0.7842 + }, + { + "start": 3975.14, + "end": 3977.26, + "probability": 0.6342 + }, + { + "start": 3977.26, + "end": 3977.48, + "probability": 0.3053 + }, + { + "start": 3977.54, + "end": 3979.16, + "probability": 0.1516 + }, + { + "start": 3979.34, + "end": 3980.76, + "probability": 0.5157 + }, + { + "start": 3980.76, + "end": 3980.8, + "probability": 0.1239 + }, + { + "start": 3980.88, + "end": 3982.62, + "probability": 0.9222 + }, + { + "start": 3982.98, + "end": 3986.26, + "probability": 0.6478 + }, + { + "start": 3986.26, + "end": 3990.76, + "probability": 0.9761 + }, + { + "start": 3990.86, + "end": 3992.9, + "probability": 0.9761 + }, + { + "start": 3993.44, + "end": 3996.06, + "probability": 0.9036 + }, + { + "start": 3996.18, + "end": 3998.54, + "probability": 0.8115 + }, + { + "start": 3998.88, + "end": 4000.36, + "probability": 0.9431 + }, + { + "start": 4001.14, + "end": 4002.96, + "probability": 0.6842 + }, + { + "start": 4003.3, + "end": 4004.7, + "probability": 0.5651 + }, + { + "start": 4005.0, + "end": 4005.54, + "probability": 0.7341 + }, + { + "start": 4005.62, + "end": 4006.12, + "probability": 0.7392 + }, + { + "start": 4006.82, + "end": 4008.16, + "probability": 0.2706 + }, + { + "start": 4008.5, + "end": 4009.48, + "probability": 0.003 + }, + { + "start": 4010.22, + "end": 4011.26, + "probability": 0.3278 + }, + { + "start": 4011.3, + "end": 4011.78, + "probability": 0.8903 + }, + { + "start": 4012.52, + "end": 4013.9, + "probability": 0.989 + }, + { + "start": 4016.06, + "end": 4017.62, + "probability": 0.8979 + }, + { + "start": 4019.1, + "end": 4023.06, + "probability": 0.9876 + }, + { + "start": 4023.58, + "end": 4025.48, + "probability": 0.9651 + }, + { + "start": 4025.98, + "end": 4030.9, + "probability": 0.7325 + }, + { + "start": 4031.44, + "end": 4034.04, + "probability": 0.9926 + }, + { + "start": 4034.84, + "end": 4036.48, + "probability": 0.9666 + }, + { + "start": 4036.66, + "end": 4037.38, + "probability": 0.6407 + }, + { + "start": 4037.72, + "end": 4039.72, + "probability": 0.7679 + }, + { + "start": 4040.04, + "end": 4043.08, + "probability": 0.9916 + }, + { + "start": 4043.54, + "end": 4044.34, + "probability": 0.5822 + }, + { + "start": 4044.34, + "end": 4045.6, + "probability": 0.8814 + }, + { + "start": 4046.24, + "end": 4046.94, + "probability": 0.7846 + }, + { + "start": 4047.44, + "end": 4048.96, + "probability": 0.6917 + }, + { + "start": 4049.48, + "end": 4051.68, + "probability": 0.9783 + }, + { + "start": 4052.4, + "end": 4053.66, + "probability": 0.7454 + }, + { + "start": 4056.12, + "end": 4057.74, + "probability": 0.5357 + }, + { + "start": 4058.08, + "end": 4058.24, + "probability": 0.3798 + }, + { + "start": 4058.36, + "end": 4058.56, + "probability": 0.0889 + }, + { + "start": 4058.56, + "end": 4059.4, + "probability": 0.5522 + }, + { + "start": 4062.04, + "end": 4067.6, + "probability": 0.9646 + }, + { + "start": 4069.2, + "end": 4069.82, + "probability": 0.5877 + }, + { + "start": 4070.78, + "end": 4073.1, + "probability": 0.9826 + }, + { + "start": 4073.62, + "end": 4074.46, + "probability": 0.6741 + }, + { + "start": 4074.92, + "end": 4076.62, + "probability": 0.8142 + }, + { + "start": 4077.84, + "end": 4081.64, + "probability": 0.9348 + }, + { + "start": 4083.56, + "end": 4084.22, + "probability": 0.8694 + }, + { + "start": 4085.16, + "end": 4087.04, + "probability": 0.8309 + }, + { + "start": 4088.46, + "end": 4088.96, + "probability": 0.6484 + }, + { + "start": 4089.42, + "end": 4091.28, + "probability": 0.9456 + }, + { + "start": 4091.38, + "end": 4092.6, + "probability": 0.5218 + }, + { + "start": 4092.8, + "end": 4093.2, + "probability": 0.8931 + }, + { + "start": 4097.06, + "end": 4102.36, + "probability": 0.6004 + }, + { + "start": 4108.74, + "end": 4111.33, + "probability": 0.0471 + }, + { + "start": 4115.14, + "end": 4118.1, + "probability": 0.9318 + }, + { + "start": 4118.2, + "end": 4118.46, + "probability": 0.8281 + }, + { + "start": 4118.94, + "end": 4119.84, + "probability": 0.7764 + }, + { + "start": 4121.04, + "end": 4123.38, + "probability": 0.6386 + }, + { + "start": 4124.48, + "end": 4128.34, + "probability": 0.9859 + }, + { + "start": 4128.38, + "end": 4130.34, + "probability": 0.7887 + }, + { + "start": 4130.34, + "end": 4136.8, + "probability": 0.7519 + }, + { + "start": 4138.1, + "end": 4142.68, + "probability": 0.7352 + }, + { + "start": 4144.14, + "end": 4147.58, + "probability": 0.9468 + }, + { + "start": 4150.2, + "end": 4151.92, + "probability": 0.9092 + }, + { + "start": 4153.24, + "end": 4153.68, + "probability": 0.9292 + }, + { + "start": 4155.92, + "end": 4157.12, + "probability": 0.8476 + }, + { + "start": 4160.01, + "end": 4164.5, + "probability": 0.9799 + }, + { + "start": 4165.96, + "end": 4170.18, + "probability": 0.9746 + }, + { + "start": 4171.14, + "end": 4175.86, + "probability": 0.9173 + }, + { + "start": 4176.9, + "end": 4180.08, + "probability": 0.9876 + }, + { + "start": 4180.84, + "end": 4181.94, + "probability": 0.9148 + }, + { + "start": 4183.24, + "end": 4185.15, + "probability": 0.9771 + }, + { + "start": 4187.5, + "end": 4188.38, + "probability": 0.9731 + }, + { + "start": 4189.0, + "end": 4192.9, + "probability": 0.9915 + }, + { + "start": 4194.6, + "end": 4197.82, + "probability": 0.66 + }, + { + "start": 4198.77, + "end": 4205.18, + "probability": 0.9927 + }, + { + "start": 4206.2, + "end": 4208.56, + "probability": 0.641 + }, + { + "start": 4209.86, + "end": 4211.1, + "probability": 0.9426 + }, + { + "start": 4211.22, + "end": 4215.92, + "probability": 0.9476 + }, + { + "start": 4217.9, + "end": 4221.9, + "probability": 0.8888 + }, + { + "start": 4223.18, + "end": 4227.38, + "probability": 0.9784 + }, + { + "start": 4228.38, + "end": 4231.4, + "probability": 0.9474 + }, + { + "start": 4232.02, + "end": 4235.14, + "probability": 0.9827 + }, + { + "start": 4235.78, + "end": 4236.88, + "probability": 0.9927 + }, + { + "start": 4237.08, + "end": 4238.84, + "probability": 0.64 + }, + { + "start": 4239.78, + "end": 4241.82, + "probability": 0.7924 + }, + { + "start": 4243.58, + "end": 4245.5, + "probability": 0.7744 + }, + { + "start": 4246.96, + "end": 4252.26, + "probability": 0.9937 + }, + { + "start": 4253.5, + "end": 4256.3, + "probability": 0.9938 + }, + { + "start": 4257.66, + "end": 4259.04, + "probability": 0.9989 + }, + { + "start": 4260.22, + "end": 4265.88, + "probability": 0.9674 + }, + { + "start": 4265.98, + "end": 4267.76, + "probability": 0.994 + }, + { + "start": 4268.44, + "end": 4270.86, + "probability": 0.996 + }, + { + "start": 4271.8, + "end": 4278.04, + "probability": 0.9935 + }, + { + "start": 4279.3, + "end": 4282.2, + "probability": 0.9895 + }, + { + "start": 4282.86, + "end": 4284.36, + "probability": 0.9993 + }, + { + "start": 4285.34, + "end": 4287.64, + "probability": 0.9855 + }, + { + "start": 4288.92, + "end": 4291.86, + "probability": 0.9288 + }, + { + "start": 4293.38, + "end": 4294.58, + "probability": 0.9044 + }, + { + "start": 4295.64, + "end": 4297.44, + "probability": 0.8501 + }, + { + "start": 4297.9, + "end": 4299.25, + "probability": 0.9917 + }, + { + "start": 4300.44, + "end": 4301.88, + "probability": 0.9766 + }, + { + "start": 4302.46, + "end": 4305.68, + "probability": 0.9261 + }, + { + "start": 4306.3, + "end": 4309.4, + "probability": 0.9194 + }, + { + "start": 4310.22, + "end": 4312.06, + "probability": 0.9116 + }, + { + "start": 4314.2, + "end": 4317.66, + "probability": 0.9942 + }, + { + "start": 4319.02, + "end": 4320.26, + "probability": 0.9976 + }, + { + "start": 4321.36, + "end": 4322.56, + "probability": 0.6655 + }, + { + "start": 4323.18, + "end": 4325.0, + "probability": 0.9219 + }, + { + "start": 4325.96, + "end": 4327.3, + "probability": 0.9945 + }, + { + "start": 4328.84, + "end": 4330.48, + "probability": 0.8243 + }, + { + "start": 4331.42, + "end": 4332.4, + "probability": 0.7212 + }, + { + "start": 4333.12, + "end": 4339.0, + "probability": 0.8037 + }, + { + "start": 4339.64, + "end": 4341.16, + "probability": 0.5904 + }, + { + "start": 4341.48, + "end": 4342.02, + "probability": 0.4986 + }, + { + "start": 4342.08, + "end": 4343.24, + "probability": 0.5104 + }, + { + "start": 4343.58, + "end": 4346.4, + "probability": 0.1838 + }, + { + "start": 4346.4, + "end": 4346.54, + "probability": 0.1478 + }, + { + "start": 4346.54, + "end": 4347.18, + "probability": 0.1986 + }, + { + "start": 4347.2, + "end": 4348.22, + "probability": 0.6236 + }, + { + "start": 4349.42, + "end": 4350.56, + "probability": 0.646 + }, + { + "start": 4351.52, + "end": 4353.18, + "probability": 0.8164 + }, + { + "start": 4353.96, + "end": 4357.14, + "probability": 0.9958 + }, + { + "start": 4358.66, + "end": 4362.02, + "probability": 0.9878 + }, + { + "start": 4363.44, + "end": 4367.62, + "probability": 0.6576 + }, + { + "start": 4369.09, + "end": 4370.49, + "probability": 0.5297 + }, + { + "start": 4371.48, + "end": 4371.98, + "probability": 0.6137 + }, + { + "start": 4374.92, + "end": 4375.32, + "probability": 0.5157 + }, + { + "start": 4375.56, + "end": 4381.44, + "probability": 0.7054 + }, + { + "start": 4381.44, + "end": 4384.3, + "probability": 0.9771 + }, + { + "start": 4385.06, + "end": 4385.83, + "probability": 0.7934 + }, + { + "start": 4387.3, + "end": 4388.28, + "probability": 0.5897 + }, + { + "start": 4389.04, + "end": 4389.58, + "probability": 0.9269 + }, + { + "start": 4390.36, + "end": 4391.22, + "probability": 0.5927 + }, + { + "start": 4392.38, + "end": 4396.86, + "probability": 0.98 + }, + { + "start": 4398.88, + "end": 4402.88, + "probability": 0.9991 + }, + { + "start": 4403.54, + "end": 4404.08, + "probability": 0.5074 + }, + { + "start": 4406.28, + "end": 4410.02, + "probability": 0.9809 + }, + { + "start": 4411.08, + "end": 4412.06, + "probability": 0.8286 + }, + { + "start": 4413.12, + "end": 4414.5, + "probability": 0.9048 + }, + { + "start": 4415.26, + "end": 4416.52, + "probability": 0.549 + }, + { + "start": 4417.02, + "end": 4420.48, + "probability": 0.7095 + }, + { + "start": 4421.34, + "end": 4423.08, + "probability": 0.9254 + }, + { + "start": 4423.74, + "end": 4425.44, + "probability": 0.7871 + }, + { + "start": 4426.36, + "end": 4427.0, + "probability": 0.7027 + }, + { + "start": 4429.04, + "end": 4430.56, + "probability": 0.9287 + }, + { + "start": 4431.24, + "end": 4432.96, + "probability": 0.7796 + }, + { + "start": 4433.74, + "end": 4436.76, + "probability": 0.8802 + }, + { + "start": 4437.4, + "end": 4442.58, + "probability": 0.9656 + }, + { + "start": 4443.52, + "end": 4446.16, + "probability": 0.9844 + }, + { + "start": 4446.74, + "end": 4447.54, + "probability": 0.4632 + }, + { + "start": 4448.9, + "end": 4449.6, + "probability": 0.7149 + }, + { + "start": 4449.7, + "end": 4457.0, + "probability": 0.9645 + }, + { + "start": 4457.32, + "end": 4457.97, + "probability": 0.7983 + }, + { + "start": 4458.84, + "end": 4460.36, + "probability": 0.9426 + }, + { + "start": 4461.18, + "end": 4462.63, + "probability": 0.9414 + }, + { + "start": 4463.6, + "end": 4464.56, + "probability": 0.3624 + }, + { + "start": 4465.12, + "end": 4466.26, + "probability": 0.9346 + }, + { + "start": 4466.58, + "end": 4468.78, + "probability": 0.9791 + }, + { + "start": 4469.72, + "end": 4471.63, + "probability": 0.7892 + }, + { + "start": 4472.44, + "end": 4473.66, + "probability": 0.9558 + }, + { + "start": 4474.24, + "end": 4477.54, + "probability": 0.9833 + }, + { + "start": 4478.58, + "end": 4479.3, + "probability": 0.9186 + }, + { + "start": 4480.22, + "end": 4483.14, + "probability": 0.9709 + }, + { + "start": 4483.74, + "end": 4486.72, + "probability": 0.9584 + }, + { + "start": 4487.38, + "end": 4489.92, + "probability": 0.9863 + }, + { + "start": 4491.18, + "end": 4493.9, + "probability": 0.8796 + }, + { + "start": 4495.12, + "end": 4496.54, + "probability": 0.8069 + }, + { + "start": 4497.66, + "end": 4499.22, + "probability": 0.9093 + }, + { + "start": 4501.76, + "end": 4504.08, + "probability": 0.9866 + }, + { + "start": 4504.6, + "end": 4510.1, + "probability": 0.8018 + }, + { + "start": 4510.1, + "end": 4514.64, + "probability": 0.9686 + }, + { + "start": 4515.56, + "end": 4516.42, + "probability": 0.6004 + }, + { + "start": 4516.5, + "end": 4517.34, + "probability": 0.6345 + }, + { + "start": 4517.5, + "end": 4522.9, + "probability": 0.8029 + }, + { + "start": 4524.82, + "end": 4526.32, + "probability": 0.9983 + }, + { + "start": 4527.18, + "end": 4529.48, + "probability": 0.9059 + }, + { + "start": 4530.84, + "end": 4535.96, + "probability": 0.959 + }, + { + "start": 4536.82, + "end": 4539.52, + "probability": 0.9197 + }, + { + "start": 4540.22, + "end": 4542.28, + "probability": 0.8613 + }, + { + "start": 4543.06, + "end": 4543.96, + "probability": 0.7851 + }, + { + "start": 4544.38, + "end": 4547.08, + "probability": 0.917 + }, + { + "start": 4547.82, + "end": 4549.28, + "probability": 0.7881 + }, + { + "start": 4549.6, + "end": 4555.7, + "probability": 0.9934 + }, + { + "start": 4556.26, + "end": 4557.72, + "probability": 0.979 + }, + { + "start": 4558.36, + "end": 4558.98, + "probability": 0.6262 + }, + { + "start": 4559.58, + "end": 4561.52, + "probability": 0.6486 + }, + { + "start": 4561.56, + "end": 4564.46, + "probability": 0.8977 + }, + { + "start": 4575.28, + "end": 4577.56, + "probability": 0.7711 + }, + { + "start": 4577.74, + "end": 4578.32, + "probability": 0.7858 + }, + { + "start": 4578.42, + "end": 4580.86, + "probability": 0.995 + }, + { + "start": 4581.86, + "end": 4583.44, + "probability": 0.8962 + }, + { + "start": 4583.76, + "end": 4585.02, + "probability": 0.8799 + }, + { + "start": 4585.28, + "end": 4586.64, + "probability": 0.8318 + }, + { + "start": 4586.78, + "end": 4587.62, + "probability": 0.8658 + }, + { + "start": 4588.06, + "end": 4590.36, + "probability": 0.9146 + }, + { + "start": 4590.4, + "end": 4592.02, + "probability": 0.9958 + }, + { + "start": 4592.44, + "end": 4592.92, + "probability": 0.9409 + }, + { + "start": 4598.36, + "end": 4600.98, + "probability": 0.9978 + }, + { + "start": 4601.08, + "end": 4603.28, + "probability": 0.9854 + }, + { + "start": 4605.32, + "end": 4607.78, + "probability": 0.9915 + }, + { + "start": 4608.66, + "end": 4612.08, + "probability": 0.8569 + }, + { + "start": 4613.64, + "end": 4617.42, + "probability": 0.9465 + }, + { + "start": 4617.46, + "end": 4619.02, + "probability": 0.8882 + }, + { + "start": 4619.1, + "end": 4622.76, + "probability": 0.9976 + }, + { + "start": 4622.8, + "end": 4625.16, + "probability": 0.8697 + }, + { + "start": 4626.82, + "end": 4630.98, + "probability": 0.9722 + }, + { + "start": 4632.3, + "end": 4633.44, + "probability": 0.5264 + }, + { + "start": 4633.46, + "end": 4635.8, + "probability": 0.9859 + }, + { + "start": 4635.8, + "end": 4639.5, + "probability": 0.9829 + }, + { + "start": 4640.48, + "end": 4641.96, + "probability": 0.9976 + }, + { + "start": 4642.74, + "end": 4645.64, + "probability": 0.9877 + }, + { + "start": 4646.6, + "end": 4650.84, + "probability": 0.99 + }, + { + "start": 4651.92, + "end": 4656.1, + "probability": 0.9946 + }, + { + "start": 4656.72, + "end": 4658.46, + "probability": 0.8442 + }, + { + "start": 4659.72, + "end": 4660.7, + "probability": 0.9841 + }, + { + "start": 4662.06, + "end": 4665.24, + "probability": 0.9324 + }, + { + "start": 4666.98, + "end": 4668.32, + "probability": 0.9092 + }, + { + "start": 4668.46, + "end": 4669.64, + "probability": 0.9914 + }, + { + "start": 4669.7, + "end": 4670.7, + "probability": 0.7944 + }, + { + "start": 4671.32, + "end": 4674.5, + "probability": 0.9408 + }, + { + "start": 4674.5, + "end": 4678.28, + "probability": 0.9887 + }, + { + "start": 4678.8, + "end": 4680.39, + "probability": 0.9958 + }, + { + "start": 4680.54, + "end": 4684.36, + "probability": 0.832 + }, + { + "start": 4685.28, + "end": 4685.82, + "probability": 0.7664 + }, + { + "start": 4685.88, + "end": 4686.58, + "probability": 0.9827 + }, + { + "start": 4686.72, + "end": 4687.9, + "probability": 0.9032 + }, + { + "start": 4688.04, + "end": 4689.91, + "probability": 0.9893 + }, + { + "start": 4690.02, + "end": 4692.85, + "probability": 0.9901 + }, + { + "start": 4693.72, + "end": 4697.71, + "probability": 0.9733 + }, + { + "start": 4698.52, + "end": 4700.34, + "probability": 0.8802 + }, + { + "start": 4700.62, + "end": 4704.5, + "probability": 0.9473 + }, + { + "start": 4706.58, + "end": 4709.42, + "probability": 0.8091 + }, + { + "start": 4709.56, + "end": 4711.9, + "probability": 0.9641 + }, + { + "start": 4712.06, + "end": 4712.4, + "probability": 0.7678 + }, + { + "start": 4712.46, + "end": 4714.84, + "probability": 0.9166 + }, + { + "start": 4715.32, + "end": 4717.5, + "probability": 0.9949 + }, + { + "start": 4718.88, + "end": 4722.98, + "probability": 0.9873 + }, + { + "start": 4724.78, + "end": 4727.46, + "probability": 0.5613 + }, + { + "start": 4729.18, + "end": 4733.1, + "probability": 0.9974 + }, + { + "start": 4733.88, + "end": 4735.14, + "probability": 0.9565 + }, + { + "start": 4735.36, + "end": 4736.29, + "probability": 0.8791 + }, + { + "start": 4736.82, + "end": 4739.12, + "probability": 0.9944 + }, + { + "start": 4739.12, + "end": 4742.62, + "probability": 0.9932 + }, + { + "start": 4743.86, + "end": 4746.2, + "probability": 0.5622 + }, + { + "start": 4747.16, + "end": 4749.24, + "probability": 0.956 + }, + { + "start": 4749.32, + "end": 4752.4, + "probability": 0.995 + }, + { + "start": 4752.4, + "end": 4755.68, + "probability": 0.9606 + }, + { + "start": 4756.9, + "end": 4758.16, + "probability": 0.7859 + }, + { + "start": 4760.26, + "end": 4761.32, + "probability": 0.9704 + }, + { + "start": 4761.58, + "end": 4763.78, + "probability": 0.7054 + }, + { + "start": 4763.88, + "end": 4764.74, + "probability": 0.8845 + }, + { + "start": 4765.18, + "end": 4765.7, + "probability": 0.804 + }, + { + "start": 4765.82, + "end": 4768.5, + "probability": 0.8715 + }, + { + "start": 4768.62, + "end": 4769.44, + "probability": 0.988 + }, + { + "start": 4769.46, + "end": 4770.18, + "probability": 0.9955 + }, + { + "start": 4770.18, + "end": 4770.62, + "probability": 0.9426 + }, + { + "start": 4770.62, + "end": 4772.42, + "probability": 0.9824 + }, + { + "start": 4774.04, + "end": 4779.22, + "probability": 0.9788 + }, + { + "start": 4780.1, + "end": 4782.06, + "probability": 0.9602 + }, + { + "start": 4782.54, + "end": 4784.9, + "probability": 0.9948 + }, + { + "start": 4784.9, + "end": 4787.96, + "probability": 0.9786 + }, + { + "start": 4789.5, + "end": 4794.64, + "probability": 0.9871 + }, + { + "start": 4795.38, + "end": 4797.14, + "probability": 0.8504 + }, + { + "start": 4798.1, + "end": 4804.88, + "probability": 0.9223 + }, + { + "start": 4805.64, + "end": 4806.7, + "probability": 0.9924 + }, + { + "start": 4806.74, + "end": 4807.12, + "probability": 0.7671 + }, + { + "start": 4807.2, + "end": 4812.48, + "probability": 0.9883 + }, + { + "start": 4812.7, + "end": 4815.38, + "probability": 0.9941 + }, + { + "start": 4816.22, + "end": 4817.2, + "probability": 0.7332 + }, + { + "start": 4817.78, + "end": 4820.24, + "probability": 0.9847 + }, + { + "start": 4820.8, + "end": 4821.52, + "probability": 0.7537 + }, + { + "start": 4821.9, + "end": 4828.5, + "probability": 0.9922 + }, + { + "start": 4829.02, + "end": 4831.38, + "probability": 0.9635 + }, + { + "start": 4833.22, + "end": 4834.14, + "probability": 0.8386 + }, + { + "start": 4835.92, + "end": 4836.26, + "probability": 0.4516 + }, + { + "start": 4836.3, + "end": 4839.56, + "probability": 0.9643 + }, + { + "start": 4839.72, + "end": 4843.4, + "probability": 0.9893 + }, + { + "start": 4843.48, + "end": 4846.17, + "probability": 0.998 + }, + { + "start": 4846.82, + "end": 4847.8, + "probability": 0.8431 + }, + { + "start": 4847.94, + "end": 4850.32, + "probability": 0.9792 + }, + { + "start": 4851.62, + "end": 4854.46, + "probability": 0.9963 + }, + { + "start": 4854.46, + "end": 4857.52, + "probability": 0.9932 + }, + { + "start": 4858.6, + "end": 4861.82, + "probability": 0.9573 + }, + { + "start": 4861.82, + "end": 4864.14, + "probability": 0.9863 + }, + { + "start": 4865.76, + "end": 4869.42, + "probability": 0.9465 + }, + { + "start": 4869.58, + "end": 4872.6, + "probability": 0.9833 + }, + { + "start": 4872.72, + "end": 4875.98, + "probability": 0.9827 + }, + { + "start": 4875.98, + "end": 4880.94, + "probability": 0.9958 + }, + { + "start": 4881.42, + "end": 4883.14, + "probability": 0.9188 + }, + { + "start": 4884.32, + "end": 4887.26, + "probability": 0.9995 + }, + { + "start": 4887.26, + "end": 4890.94, + "probability": 0.9978 + }, + { + "start": 4891.72, + "end": 4897.16, + "probability": 0.9961 + }, + { + "start": 4898.0, + "end": 4904.6, + "probability": 0.9949 + }, + { + "start": 4904.96, + "end": 4909.18, + "probability": 0.9852 + }, + { + "start": 4909.46, + "end": 4909.96, + "probability": 0.8091 + }, + { + "start": 4910.4, + "end": 4911.86, + "probability": 0.9204 + }, + { + "start": 4913.4, + "end": 4916.42, + "probability": 0.9955 + }, + { + "start": 4918.7, + "end": 4922.04, + "probability": 0.9933 + }, + { + "start": 4923.02, + "end": 4924.88, + "probability": 0.9841 + }, + { + "start": 4925.7, + "end": 4928.64, + "probability": 0.7331 + }, + { + "start": 4929.36, + "end": 4930.96, + "probability": 0.9773 + }, + { + "start": 4931.76, + "end": 4935.14, + "probability": 0.9959 + }, + { + "start": 4935.8, + "end": 4937.5, + "probability": 0.9986 + }, + { + "start": 4938.3, + "end": 4941.34, + "probability": 0.9912 + }, + { + "start": 4942.44, + "end": 4942.92, + "probability": 0.7427 + }, + { + "start": 4945.16, + "end": 4947.86, + "probability": 0.5971 + }, + { + "start": 4948.86, + "end": 4950.8, + "probability": 0.9342 + }, + { + "start": 4951.64, + "end": 4952.24, + "probability": 0.7508 + }, + { + "start": 4956.35, + "end": 4958.62, + "probability": 0.9824 + }, + { + "start": 4959.74, + "end": 4963.26, + "probability": 0.9746 + }, + { + "start": 4968.28, + "end": 4971.18, + "probability": 0.9548 + }, + { + "start": 4974.3, + "end": 4975.46, + "probability": 0.4128 + }, + { + "start": 4975.7, + "end": 4976.57, + "probability": 0.5021 + }, + { + "start": 4977.36, + "end": 4978.28, + "probability": 0.7454 + }, + { + "start": 4978.38, + "end": 4978.88, + "probability": 0.8946 + }, + { + "start": 4981.4, + "end": 4981.68, + "probability": 0.8652 + }, + { + "start": 4982.42, + "end": 4984.16, + "probability": 0.9893 + }, + { + "start": 4985.7, + "end": 4987.2, + "probability": 0.9146 + }, + { + "start": 4988.58, + "end": 4989.92, + "probability": 0.9583 + }, + { + "start": 4990.75, + "end": 4992.46, + "probability": 0.5992 + }, + { + "start": 4994.38, + "end": 5001.0, + "probability": 0.8966 + }, + { + "start": 5001.72, + "end": 5005.82, + "probability": 0.7945 + }, + { + "start": 5007.34, + "end": 5007.66, + "probability": 0.4488 + }, + { + "start": 5008.26, + "end": 5015.24, + "probability": 0.9795 + }, + { + "start": 5015.52, + "end": 5019.0, + "probability": 0.5163 + }, + { + "start": 5020.16, + "end": 5026.1, + "probability": 0.9429 + }, + { + "start": 5027.16, + "end": 5028.1, + "probability": 0.8581 + }, + { + "start": 5028.12, + "end": 5031.18, + "probability": 0.998 + }, + { + "start": 5032.4, + "end": 5033.9, + "probability": 0.7251 + }, + { + "start": 5037.08, + "end": 5039.64, + "probability": 0.8586 + }, + { + "start": 5040.96, + "end": 5044.46, + "probability": 0.9844 + }, + { + "start": 5045.42, + "end": 5048.16, + "probability": 0.7093 + }, + { + "start": 5059.06, + "end": 5063.22, + "probability": 0.9854 + }, + { + "start": 5064.02, + "end": 5067.42, + "probability": 0.9225 + }, + { + "start": 5067.98, + "end": 5069.2, + "probability": 0.5639 + }, + { + "start": 5070.66, + "end": 5071.48, + "probability": 0.0003 + }, + { + "start": 5075.36, + "end": 5077.8, + "probability": 0.0221 + }, + { + "start": 5077.8, + "end": 5077.8, + "probability": 0.0245 + }, + { + "start": 5077.8, + "end": 5077.8, + "probability": 0.0565 + }, + { + "start": 5077.8, + "end": 5077.8, + "probability": 0.0293 + }, + { + "start": 5077.8, + "end": 5079.28, + "probability": 0.629 + }, + { + "start": 5079.28, + "end": 5083.61, + "probability": 0.839 + }, + { + "start": 5084.44, + "end": 5087.82, + "probability": 0.8016 + }, + { + "start": 5087.82, + "end": 5090.02, + "probability": 0.6222 + }, + { + "start": 5090.44, + "end": 5092.26, + "probability": 0.823 + }, + { + "start": 5092.42, + "end": 5094.42, + "probability": 0.5027 + }, + { + "start": 5095.03, + "end": 5095.38, + "probability": 0.5026 + }, + { + "start": 5095.38, + "end": 5096.02, + "probability": 0.7552 + }, + { + "start": 5096.1, + "end": 5096.9, + "probability": 0.8015 + }, + { + "start": 5097.14, + "end": 5098.9, + "probability": 0.6237 + }, + { + "start": 5100.26, + "end": 5103.9, + "probability": 0.9873 + }, + { + "start": 5104.62, + "end": 5105.26, + "probability": 0.9829 + }, + { + "start": 5106.94, + "end": 5109.76, + "probability": 0.9338 + }, + { + "start": 5111.6, + "end": 5113.74, + "probability": 0.9937 + }, + { + "start": 5115.12, + "end": 5116.4, + "probability": 0.8618 + }, + { + "start": 5117.06, + "end": 5118.8, + "probability": 0.9232 + }, + { + "start": 5120.34, + "end": 5121.02, + "probability": 0.4777 + }, + { + "start": 5122.9, + "end": 5126.28, + "probability": 0.919 + }, + { + "start": 5128.06, + "end": 5131.3, + "probability": 0.9713 + }, + { + "start": 5131.84, + "end": 5132.26, + "probability": 0.7541 + }, + { + "start": 5134.06, + "end": 5136.7, + "probability": 0.9877 + }, + { + "start": 5137.6, + "end": 5138.58, + "probability": 0.6847 + }, + { + "start": 5138.7, + "end": 5139.42, + "probability": 0.9257 + }, + { + "start": 5142.74, + "end": 5146.52, + "probability": 0.823 + }, + { + "start": 5147.76, + "end": 5148.32, + "probability": 0.7272 + }, + { + "start": 5150.18, + "end": 5151.58, + "probability": 0.8702 + }, + { + "start": 5152.9, + "end": 5153.44, + "probability": 0.9739 + }, + { + "start": 5156.04, + "end": 5162.38, + "probability": 0.9574 + }, + { + "start": 5162.52, + "end": 5163.08, + "probability": 0.7233 + }, + { + "start": 5164.66, + "end": 5165.64, + "probability": 0.7279 + }, + { + "start": 5167.66, + "end": 5168.34, + "probability": 0.8879 + }, + { + "start": 5170.84, + "end": 5171.56, + "probability": 0.9849 + }, + { + "start": 5172.16, + "end": 5174.44, + "probability": 0.8112 + }, + { + "start": 5175.06, + "end": 5176.88, + "probability": 0.8181 + }, + { + "start": 5177.96, + "end": 5179.9, + "probability": 0.9839 + }, + { + "start": 5181.82, + "end": 5182.46, + "probability": 0.9376 + }, + { + "start": 5183.48, + "end": 5184.24, + "probability": 0.7886 + }, + { + "start": 5186.26, + "end": 5186.48, + "probability": 0.0 + }, + { + "start": 5188.6, + "end": 5191.12, + "probability": 0.9132 + }, + { + "start": 5192.64, + "end": 5193.74, + "probability": 0.781 + }, + { + "start": 5197.14, + "end": 5198.0, + "probability": 0.7686 + }, + { + "start": 5198.54, + "end": 5199.5, + "probability": 0.8722 + }, + { + "start": 5200.6, + "end": 5201.5, + "probability": 0.7324 + }, + { + "start": 5202.72, + "end": 5203.4, + "probability": 0.8477 + }, + { + "start": 5205.24, + "end": 5208.32, + "probability": 0.9393 + }, + { + "start": 5208.92, + "end": 5209.88, + "probability": 0.662 + }, + { + "start": 5210.4, + "end": 5214.42, + "probability": 0.9636 + }, + { + "start": 5214.9, + "end": 5215.5, + "probability": 0.9928 + }, + { + "start": 5217.02, + "end": 5217.26, + "probability": 0.6599 + }, + { + "start": 5219.3, + "end": 5221.04, + "probability": 0.4274 + }, + { + "start": 5221.24, + "end": 5222.08, + "probability": 0.7721 + }, + { + "start": 5223.12, + "end": 5224.58, + "probability": 0.8723 + }, + { + "start": 5224.88, + "end": 5226.18, + "probability": 0.9658 + }, + { + "start": 5229.74, + "end": 5231.14, + "probability": 0.79 + }, + { + "start": 5232.34, + "end": 5233.28, + "probability": 0.9913 + }, + { + "start": 5234.02, + "end": 5235.02, + "probability": 0.9885 + }, + { + "start": 5235.74, + "end": 5240.12, + "probability": 0.9849 + }, + { + "start": 5240.82, + "end": 5243.54, + "probability": 0.6481 + }, + { + "start": 5243.78, + "end": 5245.28, + "probability": 0.8462 + }, + { + "start": 5245.28, + "end": 5246.06, + "probability": 0.2771 + }, + { + "start": 5246.76, + "end": 5248.7, + "probability": 0.6753 + }, + { + "start": 5248.84, + "end": 5250.74, + "probability": 0.9158 + }, + { + "start": 5251.26, + "end": 5252.44, + "probability": 0.9971 + }, + { + "start": 5252.66, + "end": 5254.0, + "probability": 0.8836 + }, + { + "start": 5254.1, + "end": 5254.54, + "probability": 0.1225 + }, + { + "start": 5254.54, + "end": 5255.92, + "probability": 0.6871 + }, + { + "start": 5256.88, + "end": 5258.8, + "probability": 0.5625 + }, + { + "start": 5259.68, + "end": 5260.82, + "probability": 0.1375 + }, + { + "start": 5261.12, + "end": 5262.32, + "probability": 0.1494 + }, + { + "start": 5262.76, + "end": 5265.3, + "probability": 0.2178 + }, + { + "start": 5265.42, + "end": 5267.22, + "probability": 0.8952 + }, + { + "start": 5267.38, + "end": 5268.4, + "probability": 0.3856 + }, + { + "start": 5268.6, + "end": 5268.78, + "probability": 0.2117 + }, + { + "start": 5269.08, + "end": 5269.6, + "probability": 0.0799 + }, + { + "start": 5269.6, + "end": 5270.76, + "probability": 0.4307 + }, + { + "start": 5270.84, + "end": 5274.4, + "probability": 0.2426 + }, + { + "start": 5275.3, + "end": 5276.4, + "probability": 0.2616 + }, + { + "start": 5277.1, + "end": 5277.4, + "probability": 0.1197 + }, + { + "start": 5277.5, + "end": 5278.18, + "probability": 0.0697 + }, + { + "start": 5278.26, + "end": 5278.36, + "probability": 0.1319 + }, + { + "start": 5278.36, + "end": 5279.24, + "probability": 0.4187 + }, + { + "start": 5280.0, + "end": 5280.0, + "probability": 0.2883 + }, + { + "start": 5280.0, + "end": 5281.64, + "probability": 0.5646 + }, + { + "start": 5281.7, + "end": 5281.7, + "probability": 0.377 + }, + { + "start": 5281.8, + "end": 5283.86, + "probability": 0.3954 + }, + { + "start": 5284.34, + "end": 5285.8, + "probability": 0.0022 + }, + { + "start": 5286.44, + "end": 5287.32, + "probability": 0.0445 + }, + { + "start": 5287.42, + "end": 5287.76, + "probability": 0.0423 + }, + { + "start": 5287.76, + "end": 5289.07, + "probability": 0.3194 + }, + { + "start": 5289.88, + "end": 5290.14, + "probability": 0.3933 + }, + { + "start": 5290.14, + "end": 5290.14, + "probability": 0.273 + }, + { + "start": 5290.14, + "end": 5291.8, + "probability": 0.213 + }, + { + "start": 5291.9, + "end": 5291.9, + "probability": 0.2065 + }, + { + "start": 5291.9, + "end": 5293.56, + "probability": 0.2372 + }, + { + "start": 5293.84, + "end": 5293.94, + "probability": 0.039 + }, + { + "start": 5293.94, + "end": 5297.06, + "probability": 0.7445 + }, + { + "start": 5297.38, + "end": 5300.64, + "probability": 0.7212 + }, + { + "start": 5300.94, + "end": 5301.02, + "probability": 0.1626 + }, + { + "start": 5301.6, + "end": 5302.78, + "probability": 0.2301 + }, + { + "start": 5302.78, + "end": 5305.79, + "probability": 0.3402 + }, + { + "start": 5306.18, + "end": 5309.02, + "probability": 0.0256 + }, + { + "start": 5309.02, + "end": 5309.16, + "probability": 0.0877 + }, + { + "start": 5309.16, + "end": 5310.31, + "probability": 0.4598 + }, + { + "start": 5311.14, + "end": 5311.14, + "probability": 0.0183 + }, + { + "start": 5311.14, + "end": 5313.46, + "probability": 0.5015 + }, + { + "start": 5313.66, + "end": 5316.24, + "probability": 0.1077 + }, + { + "start": 5317.06, + "end": 5317.62, + "probability": 0.18 + }, + { + "start": 5317.66, + "end": 5317.74, + "probability": 0.0984 + }, + { + "start": 5317.74, + "end": 5319.46, + "probability": 0.7726 + }, + { + "start": 5319.48, + "end": 5319.92, + "probability": 0.0747 + }, + { + "start": 5320.69, + "end": 5320.76, + "probability": 0.0084 + }, + { + "start": 5320.76, + "end": 5320.76, + "probability": 0.4074 + }, + { + "start": 5320.76, + "end": 5322.37, + "probability": 0.7703 + }, + { + "start": 5322.66, + "end": 5323.82, + "probability": 0.7708 + }, + { + "start": 5324.0, + "end": 5324.3, + "probability": 0.6165 + }, + { + "start": 5325.22, + "end": 5327.74, + "probability": 0.8227 + }, + { + "start": 5327.84, + "end": 5329.26, + "probability": 0.7516 + }, + { + "start": 5329.38, + "end": 5329.68, + "probability": 0.453 + }, + { + "start": 5329.68, + "end": 5331.9, + "probability": 0.9868 + }, + { + "start": 5331.92, + "end": 5333.82, + "probability": 0.6346 + }, + { + "start": 5333.9, + "end": 5335.46, + "probability": 0.6199 + }, + { + "start": 5335.48, + "end": 5336.56, + "probability": 0.2802 + }, + { + "start": 5336.72, + "end": 5338.3, + "probability": 0.0277 + }, + { + "start": 5338.3, + "end": 5340.6, + "probability": 0.5592 + }, + { + "start": 5340.64, + "end": 5344.62, + "probability": 0.821 + }, + { + "start": 5345.82, + "end": 5347.62, + "probability": 0.0789 + }, + { + "start": 5347.82, + "end": 5348.08, + "probability": 0.7064 + }, + { + "start": 5348.44, + "end": 5348.84, + "probability": 0.6912 + }, + { + "start": 5348.9, + "end": 5349.0, + "probability": 0.1644 + }, + { + "start": 5349.02, + "end": 5350.98, + "probability": 0.1212 + }, + { + "start": 5351.08, + "end": 5351.48, + "probability": 0.3412 + }, + { + "start": 5351.48, + "end": 5352.42, + "probability": 0.2973 + }, + { + "start": 5352.42, + "end": 5352.48, + "probability": 0.1188 + }, + { + "start": 5352.48, + "end": 5352.48, + "probability": 0.0336 + }, + { + "start": 5352.48, + "end": 5353.36, + "probability": 0.6931 + }, + { + "start": 5353.78, + "end": 5355.62, + "probability": 0.895 + }, + { + "start": 5355.72, + "end": 5358.14, + "probability": 0.1541 + }, + { + "start": 5358.14, + "end": 5361.18, + "probability": 0.72 + }, + { + "start": 5361.88, + "end": 5363.74, + "probability": 0.6437 + }, + { + "start": 5363.8, + "end": 5366.82, + "probability": 0.908 + }, + { + "start": 5366.98, + "end": 5369.16, + "probability": 0.5066 + }, + { + "start": 5370.04, + "end": 5370.54, + "probability": 0.0924 + }, + { + "start": 5370.86, + "end": 5374.44, + "probability": 0.6134 + }, + { + "start": 5375.22, + "end": 5377.04, + "probability": 0.9688 + }, + { + "start": 5377.72, + "end": 5380.17, + "probability": 0.9788 + }, + { + "start": 5380.8, + "end": 5382.44, + "probability": 0.8178 + }, + { + "start": 5383.26, + "end": 5387.06, + "probability": 0.9663 + }, + { + "start": 5387.86, + "end": 5389.04, + "probability": 0.7746 + }, + { + "start": 5390.08, + "end": 5391.46, + "probability": 0.8076 + }, + { + "start": 5393.0, + "end": 5397.6, + "probability": 0.9685 + }, + { + "start": 5399.42, + "end": 5400.98, + "probability": 0.5682 + }, + { + "start": 5401.36, + "end": 5403.96, + "probability": 0.4139 + }, + { + "start": 5404.64, + "end": 5405.6, + "probability": 0.7675 + }, + { + "start": 5405.83, + "end": 5407.51, + "probability": 0.7607 + }, + { + "start": 5408.04, + "end": 5409.26, + "probability": 0.4673 + }, + { + "start": 5409.34, + "end": 5411.44, + "probability": 0.7075 + }, + { + "start": 5411.72, + "end": 5413.26, + "probability": 0.7024 + }, + { + "start": 5413.32, + "end": 5414.38, + "probability": 0.7434 + }, + { + "start": 5414.38, + "end": 5414.4, + "probability": 0.7159 + }, + { + "start": 5414.4, + "end": 5415.8, + "probability": 0.9128 + }, + { + "start": 5415.84, + "end": 5416.74, + "probability": 0.8335 + }, + { + "start": 5416.8, + "end": 5420.78, + "probability": 0.9092 + }, + { + "start": 5421.14, + "end": 5422.36, + "probability": 0.7286 + }, + { + "start": 5422.4, + "end": 5423.5, + "probability": 0.9836 + }, + { + "start": 5423.76, + "end": 5425.12, + "probability": 0.9614 + }, + { + "start": 5425.3, + "end": 5425.94, + "probability": 0.5227 + }, + { + "start": 5425.98, + "end": 5427.38, + "probability": 0.6908 + }, + { + "start": 5427.38, + "end": 5428.18, + "probability": 0.0278 + }, + { + "start": 5429.16, + "end": 5434.76, + "probability": 0.2732 + }, + { + "start": 5434.76, + "end": 5437.81, + "probability": 0.6227 + }, + { + "start": 5439.12, + "end": 5439.4, + "probability": 0.1178 + }, + { + "start": 5439.58, + "end": 5440.8, + "probability": 0.978 + }, + { + "start": 5440.9, + "end": 5441.73, + "probability": 0.9155 + }, + { + "start": 5442.34, + "end": 5444.9, + "probability": 0.7577 + }, + { + "start": 5445.16, + "end": 5447.07, + "probability": 0.1016 + }, + { + "start": 5448.2, + "end": 5450.72, + "probability": 0.1588 + }, + { + "start": 5451.32, + "end": 5453.04, + "probability": 0.0921 + }, + { + "start": 5453.54, + "end": 5453.54, + "probability": 0.0475 + }, + { + "start": 5453.54, + "end": 5453.54, + "probability": 0.1507 + }, + { + "start": 5453.54, + "end": 5455.47, + "probability": 0.0143 + }, + { + "start": 5456.6, + "end": 5460.58, + "probability": 0.0979 + }, + { + "start": 5461.48, + "end": 5461.54, + "probability": 0.0463 + }, + { + "start": 5461.54, + "end": 5461.62, + "probability": 0.0332 + }, + { + "start": 5461.62, + "end": 5461.62, + "probability": 0.0732 + }, + { + "start": 5461.62, + "end": 5462.04, + "probability": 0.1466 + }, + { + "start": 5463.02, + "end": 5463.8, + "probability": 0.6867 + }, + { + "start": 5463.82, + "end": 5470.62, + "probability": 0.8932 + }, + { + "start": 5471.7, + "end": 5474.38, + "probability": 0.7275 + }, + { + "start": 5474.52, + "end": 5475.72, + "probability": 0.9712 + }, + { + "start": 5476.18, + "end": 5476.74, + "probability": 0.4908 + }, + { + "start": 5477.68, + "end": 5480.98, + "probability": 0.3854 + }, + { + "start": 5481.3, + "end": 5483.16, + "probability": 0.5339 + }, + { + "start": 5483.36, + "end": 5483.42, + "probability": 0.0957 + }, + { + "start": 5483.42, + "end": 5485.28, + "probability": 0.7818 + }, + { + "start": 5485.86, + "end": 5488.1, + "probability": 0.29 + }, + { + "start": 5488.44, + "end": 5490.02, + "probability": 0.0409 + }, + { + "start": 5490.16, + "end": 5490.74, + "probability": 0.0634 + }, + { + "start": 5490.92, + "end": 5490.96, + "probability": 0.1973 + }, + { + "start": 5490.96, + "end": 5490.96, + "probability": 0.0196 + }, + { + "start": 5490.96, + "end": 5491.73, + "probability": 0.0474 + }, + { + "start": 5492.02, + "end": 5494.68, + "probability": 0.1382 + }, + { + "start": 5495.24, + "end": 5496.54, + "probability": 0.3778 + }, + { + "start": 5497.08, + "end": 5497.71, + "probability": 0.2087 + }, + { + "start": 5497.74, + "end": 5501.26, + "probability": 0.1416 + }, + { + "start": 5503.14, + "end": 5505.48, + "probability": 0.3211 + }, + { + "start": 5505.48, + "end": 5505.73, + "probability": 0.5499 + }, + { + "start": 5507.08, + "end": 5509.82, + "probability": 0.606 + }, + { + "start": 5510.0, + "end": 5510.48, + "probability": 0.6512 + }, + { + "start": 5510.58, + "end": 5510.8, + "probability": 0.0116 + }, + { + "start": 5510.8, + "end": 5511.78, + "probability": 0.8213 + }, + { + "start": 5511.78, + "end": 5512.72, + "probability": 0.4456 + }, + { + "start": 5512.94, + "end": 5516.14, + "probability": 0.0355 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.86, + "end": 5520.4, + "probability": 0.0437 + }, + { + "start": 5520.52, + "end": 5521.46, + "probability": 0.1548 + }, + { + "start": 5521.46, + "end": 5523.5, + "probability": 0.6641 + }, + { + "start": 5524.1, + "end": 5526.14, + "probability": 0.6116 + }, + { + "start": 5526.36, + "end": 5527.28, + "probability": 0.018 + }, + { + "start": 5529.38, + "end": 5529.76, + "probability": 0.0017 + }, + { + "start": 5529.94, + "end": 5530.8, + "probability": 0.0079 + }, + { + "start": 5530.8, + "end": 5530.8, + "probability": 0.0056 + }, + { + "start": 5530.8, + "end": 5531.56, + "probability": 0.0335 + }, + { + "start": 5531.78, + "end": 5532.16, + "probability": 0.2929 + }, + { + "start": 5532.36, + "end": 5533.26, + "probability": 0.6218 + }, + { + "start": 5533.26, + "end": 5537.56, + "probability": 0.3129 + }, + { + "start": 5537.58, + "end": 5537.58, + "probability": 0.5523 + }, + { + "start": 5537.7, + "end": 5538.44, + "probability": 0.8431 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.0, + "end": 5639.0, + "probability": 0.0 + }, + { + "start": 5639.36, + "end": 5639.4, + "probability": 0.0858 + }, + { + "start": 5639.4, + "end": 5639.4, + "probability": 0.3078 + }, + { + "start": 5639.4, + "end": 5641.08, + "probability": 0.1673 + }, + { + "start": 5641.08, + "end": 5643.82, + "probability": 0.4734 + }, + { + "start": 5643.82, + "end": 5644.66, + "probability": 0.1378 + }, + { + "start": 5645.04, + "end": 5646.06, + "probability": 0.7352 + }, + { + "start": 5646.08, + "end": 5647.53, + "probability": 0.5041 + }, + { + "start": 5647.66, + "end": 5649.88, + "probability": 0.542 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.0, + "end": 5766.0, + "probability": 0.0 + }, + { + "start": 5766.22, + "end": 5766.24, + "probability": 0.1377 + }, + { + "start": 5766.24, + "end": 5766.24, + "probability": 0.21 + }, + { + "start": 5766.24, + "end": 5770.2, + "probability": 0.9951 + }, + { + "start": 5770.92, + "end": 5772.18, + "probability": 0.809 + }, + { + "start": 5773.12, + "end": 5776.0, + "probability": 0.7003 + }, + { + "start": 5777.0, + "end": 5783.5, + "probability": 0.9623 + }, + { + "start": 5783.94, + "end": 5790.32, + "probability": 0.9961 + }, + { + "start": 5791.34, + "end": 5793.12, + "probability": 0.858 + }, + { + "start": 5793.76, + "end": 5797.14, + "probability": 0.9867 + }, + { + "start": 5798.36, + "end": 5804.12, + "probability": 0.7822 + }, + { + "start": 5804.66, + "end": 5807.96, + "probability": 0.9822 + }, + { + "start": 5808.6, + "end": 5809.62, + "probability": 0.8448 + }, + { + "start": 5810.3, + "end": 5815.24, + "probability": 0.8769 + }, + { + "start": 5815.96, + "end": 5820.42, + "probability": 0.9619 + }, + { + "start": 5822.0, + "end": 5824.9, + "probability": 0.9697 + }, + { + "start": 5825.68, + "end": 5826.82, + "probability": 0.9105 + }, + { + "start": 5826.96, + "end": 5828.46, + "probability": 0.9907 + }, + { + "start": 5828.54, + "end": 5830.49, + "probability": 0.5449 + }, + { + "start": 5832.2, + "end": 5832.9, + "probability": 0.7362 + }, + { + "start": 5833.46, + "end": 5834.18, + "probability": 0.8923 + }, + { + "start": 5834.24, + "end": 5837.04, + "probability": 0.9922 + }, + { + "start": 5838.5, + "end": 5841.96, + "probability": 0.6728 + }, + { + "start": 5842.76, + "end": 5843.74, + "probability": 0.8671 + }, + { + "start": 5844.82, + "end": 5848.44, + "probability": 0.9201 + }, + { + "start": 5849.26, + "end": 5855.72, + "probability": 0.8819 + }, + { + "start": 5857.06, + "end": 5861.39, + "probability": 0.9707 + }, + { + "start": 5862.38, + "end": 5866.96, + "probability": 0.9949 + }, + { + "start": 5867.52, + "end": 5869.18, + "probability": 0.9642 + }, + { + "start": 5870.08, + "end": 5873.4, + "probability": 0.9207 + }, + { + "start": 5873.5, + "end": 5875.66, + "probability": 0.9495 + }, + { + "start": 5876.14, + "end": 5881.28, + "probability": 0.9967 + }, + { + "start": 5881.86, + "end": 5885.64, + "probability": 0.9444 + }, + { + "start": 5886.14, + "end": 5891.68, + "probability": 0.498 + }, + { + "start": 5891.96, + "end": 5895.82, + "probability": 0.8745 + }, + { + "start": 5896.6, + "end": 5899.4, + "probability": 0.6934 + }, + { + "start": 5902.88, + "end": 5907.52, + "probability": 0.8113 + }, + { + "start": 5908.22, + "end": 5911.58, + "probability": 0.9872 + }, + { + "start": 5912.38, + "end": 5917.22, + "probability": 0.8608 + }, + { + "start": 5918.08, + "end": 5920.12, + "probability": 0.9815 + }, + { + "start": 5921.38, + "end": 5921.96, + "probability": 0.6087 + }, + { + "start": 5922.02, + "end": 5922.8, + "probability": 0.9116 + }, + { + "start": 5922.94, + "end": 5926.68, + "probability": 0.8 + }, + { + "start": 5927.46, + "end": 5931.64, + "probability": 0.9739 + }, + { + "start": 5932.56, + "end": 5935.02, + "probability": 0.6054 + }, + { + "start": 5936.14, + "end": 5939.78, + "probability": 0.8619 + }, + { + "start": 5940.56, + "end": 5943.62, + "probability": 0.8789 + }, + { + "start": 5944.16, + "end": 5945.82, + "probability": 0.7994 + }, + { + "start": 5946.51, + "end": 5951.7, + "probability": 0.9138 + }, + { + "start": 5951.9, + "end": 5955.42, + "probability": 0.947 + }, + { + "start": 5955.54, + "end": 5956.3, + "probability": 0.7852 + }, + { + "start": 5956.34, + "end": 5963.46, + "probability": 0.9868 + }, + { + "start": 5964.5, + "end": 5968.14, + "probability": 0.789 + }, + { + "start": 5968.92, + "end": 5971.86, + "probability": 0.5948 + }, + { + "start": 5972.54, + "end": 5974.88, + "probability": 0.5842 + }, + { + "start": 5975.62, + "end": 5978.76, + "probability": 0.9464 + }, + { + "start": 5979.08, + "end": 5982.2, + "probability": 0.9788 + }, + { + "start": 5983.26, + "end": 5987.42, + "probability": 0.82 + }, + { + "start": 5987.42, + "end": 5991.28, + "probability": 0.9979 + }, + { + "start": 5992.2, + "end": 5994.28, + "probability": 0.8105 + }, + { + "start": 5995.54, + "end": 6001.02, + "probability": 0.9233 + }, + { + "start": 6001.18, + "end": 6002.21, + "probability": 0.8928 + }, + { + "start": 6002.84, + "end": 6006.12, + "probability": 0.9797 + }, + { + "start": 6006.6, + "end": 6008.82, + "probability": 0.9656 + }, + { + "start": 6009.4, + "end": 6011.62, + "probability": 0.8104 + }, + { + "start": 6012.4, + "end": 6019.12, + "probability": 0.9922 + }, + { + "start": 6019.28, + "end": 6021.9, + "probability": 0.9403 + }, + { + "start": 6022.46, + "end": 6025.34, + "probability": 0.9749 + }, + { + "start": 6026.38, + "end": 6028.88, + "probability": 0.5797 + }, + { + "start": 6029.42, + "end": 6031.98, + "probability": 0.763 + }, + { + "start": 6032.64, + "end": 6036.26, + "probability": 0.9635 + }, + { + "start": 6036.86, + "end": 6040.06, + "probability": 0.9924 + }, + { + "start": 6041.0, + "end": 6041.8, + "probability": 0.9452 + }, + { + "start": 6043.24, + "end": 6046.58, + "probability": 0.7635 + }, + { + "start": 6047.49, + "end": 6051.82, + "probability": 0.7487 + }, + { + "start": 6052.96, + "end": 6057.24, + "probability": 0.9363 + }, + { + "start": 6058.1, + "end": 6059.86, + "probability": 0.7895 + }, + { + "start": 6060.86, + "end": 6061.2, + "probability": 0.8 + }, + { + "start": 6061.42, + "end": 6062.48, + "probability": 0.9233 + }, + { + "start": 6062.96, + "end": 6063.1, + "probability": 0.8107 + }, + { + "start": 6063.26, + "end": 6066.96, + "probability": 0.9644 + }, + { + "start": 6067.82, + "end": 6075.1, + "probability": 0.9186 + }, + { + "start": 6075.94, + "end": 6079.84, + "probability": 0.2182 + }, + { + "start": 6080.68, + "end": 6084.76, + "probability": 0.9584 + }, + { + "start": 6085.44, + "end": 6090.06, + "probability": 0.8792 + }, + { + "start": 6090.6, + "end": 6091.64, + "probability": 0.3446 + }, + { + "start": 6092.22, + "end": 6098.22, + "probability": 0.6179 + }, + { + "start": 6099.3, + "end": 6101.98, + "probability": 0.7237 + }, + { + "start": 6102.68, + "end": 6108.5, + "probability": 0.9753 + }, + { + "start": 6109.14, + "end": 6112.74, + "probability": 0.8218 + }, + { + "start": 6113.5, + "end": 6114.6, + "probability": 0.8926 + }, + { + "start": 6115.18, + "end": 6120.28, + "probability": 0.8508 + }, + { + "start": 6121.1, + "end": 6125.0, + "probability": 0.8707 + }, + { + "start": 6125.54, + "end": 6126.14, + "probability": 0.8855 + }, + { + "start": 6126.16, + "end": 6126.92, + "probability": 0.9793 + }, + { + "start": 6127.12, + "end": 6132.1, + "probability": 0.9896 + }, + { + "start": 6132.1, + "end": 6136.32, + "probability": 0.9876 + }, + { + "start": 6136.96, + "end": 6143.86, + "probability": 0.9937 + }, + { + "start": 6144.42, + "end": 6146.86, + "probability": 0.9934 + }, + { + "start": 6147.52, + "end": 6157.34, + "probability": 0.9422 + }, + { + "start": 6157.34, + "end": 6159.4, + "probability": 0.9829 + }, + { + "start": 6159.96, + "end": 6163.7, + "probability": 0.991 + }, + { + "start": 6164.44, + "end": 6169.1, + "probability": 0.9797 + }, + { + "start": 6169.48, + "end": 6171.74, + "probability": 0.9185 + }, + { + "start": 6172.72, + "end": 6175.34, + "probability": 0.5992 + }, + { + "start": 6179.1, + "end": 6183.6, + "probability": 0.7734 + }, + { + "start": 6184.3, + "end": 6189.0, + "probability": 0.9964 + }, + { + "start": 6191.24, + "end": 6192.06, + "probability": 0.475 + }, + { + "start": 6192.62, + "end": 6193.66, + "probability": 0.9448 + }, + { + "start": 6194.2, + "end": 6200.6, + "probability": 0.9039 + }, + { + "start": 6202.32, + "end": 6206.1, + "probability": 0.9919 + }, + { + "start": 6206.1, + "end": 6210.84, + "probability": 0.9928 + }, + { + "start": 6212.8, + "end": 6215.58, + "probability": 0.9537 + }, + { + "start": 6216.04, + "end": 6216.9, + "probability": 0.4967 + }, + { + "start": 6217.24, + "end": 6220.24, + "probability": 0.9365 + }, + { + "start": 6222.38, + "end": 6225.97, + "probability": 0.7461 + }, + { + "start": 6227.1, + "end": 6229.16, + "probability": 0.833 + }, + { + "start": 6229.98, + "end": 6231.2, + "probability": 0.6699 + }, + { + "start": 6234.92, + "end": 6236.66, + "probability": 0.5045 + }, + { + "start": 6237.82, + "end": 6239.7, + "probability": 0.5734 + }, + { + "start": 6240.34, + "end": 6242.88, + "probability": 0.8725 + }, + { + "start": 6243.62, + "end": 6245.0, + "probability": 0.6766 + }, + { + "start": 6245.06, + "end": 6248.94, + "probability": 0.8673 + }, + { + "start": 6249.06, + "end": 6252.36, + "probability": 0.8752 + }, + { + "start": 6252.92, + "end": 6253.72, + "probability": 0.9268 + }, + { + "start": 6253.84, + "end": 6257.82, + "probability": 0.9553 + }, + { + "start": 6258.34, + "end": 6260.36, + "probability": 0.9166 + }, + { + "start": 6262.66, + "end": 6263.0, + "probability": 0.5148 + }, + { + "start": 6263.82, + "end": 6265.66, + "probability": 0.7991 + }, + { + "start": 6266.64, + "end": 6267.72, + "probability": 0.8955 + }, + { + "start": 6267.86, + "end": 6268.56, + "probability": 0.7802 + }, + { + "start": 6269.08, + "end": 6271.98, + "probability": 0.5923 + }, + { + "start": 6272.9, + "end": 6275.08, + "probability": 0.9702 + }, + { + "start": 6275.86, + "end": 6279.06, + "probability": 0.9951 + }, + { + "start": 6279.06, + "end": 6282.84, + "probability": 0.9991 + }, + { + "start": 6283.74, + "end": 6286.14, + "probability": 0.9956 + }, + { + "start": 6286.96, + "end": 6288.54, + "probability": 0.7072 + }, + { + "start": 6289.38, + "end": 6290.34, + "probability": 0.8488 + }, + { + "start": 6290.46, + "end": 6293.64, + "probability": 0.9791 + }, + { + "start": 6294.49, + "end": 6298.4, + "probability": 0.8978 + }, + { + "start": 6299.16, + "end": 6302.42, + "probability": 0.9676 + }, + { + "start": 6303.02, + "end": 6304.04, + "probability": 0.931 + }, + { + "start": 6304.64, + "end": 6306.62, + "probability": 0.9797 + }, + { + "start": 6307.22, + "end": 6309.64, + "probability": 0.8751 + }, + { + "start": 6310.42, + "end": 6313.14, + "probability": 0.8747 + }, + { + "start": 6313.72, + "end": 6315.9, + "probability": 0.9896 + }, + { + "start": 6316.7, + "end": 6317.86, + "probability": 0.7214 + }, + { + "start": 6318.34, + "end": 6321.52, + "probability": 0.9949 + }, + { + "start": 6322.12, + "end": 6326.04, + "probability": 0.9919 + }, + { + "start": 6326.72, + "end": 6330.04, + "probability": 0.8909 + }, + { + "start": 6330.92, + "end": 6338.88, + "probability": 0.9771 + }, + { + "start": 6339.54, + "end": 6342.5, + "probability": 0.479 + }, + { + "start": 6345.02, + "end": 6347.48, + "probability": 0.8071 + }, + { + "start": 6348.3, + "end": 6350.58, + "probability": 0.9094 + }, + { + "start": 6351.28, + "end": 6357.06, + "probability": 0.9849 + }, + { + "start": 6357.88, + "end": 6362.76, + "probability": 0.9275 + }, + { + "start": 6363.58, + "end": 6364.88, + "probability": 0.0667 + }, + { + "start": 6366.14, + "end": 6366.96, + "probability": 0.4118 + }, + { + "start": 6366.96, + "end": 6370.28, + "probability": 0.9147 + }, + { + "start": 6370.58, + "end": 6371.28, + "probability": 0.8123 + }, + { + "start": 6371.84, + "end": 6375.14, + "probability": 0.9967 + }, + { + "start": 6376.46, + "end": 6379.32, + "probability": 0.0569 + }, + { + "start": 6379.32, + "end": 6382.68, + "probability": 0.3719 + }, + { + "start": 6383.38, + "end": 6385.4, + "probability": 0.5481 + }, + { + "start": 6386.38, + "end": 6387.94, + "probability": 0.5486 + }, + { + "start": 6389.86, + "end": 6391.98, + "probability": 0.7865 + }, + { + "start": 6392.62, + "end": 6397.86, + "probability": 0.9954 + }, + { + "start": 6398.38, + "end": 6402.92, + "probability": 0.9888 + }, + { + "start": 6403.96, + "end": 6405.68, + "probability": 0.8065 + }, + { + "start": 6405.78, + "end": 6407.95, + "probability": 0.9951 + }, + { + "start": 6408.54, + "end": 6414.44, + "probability": 0.9552 + }, + { + "start": 6414.44, + "end": 6418.54, + "probability": 0.9978 + }, + { + "start": 6419.18, + "end": 6424.86, + "probability": 0.9946 + }, + { + "start": 6427.6, + "end": 6428.84, + "probability": 0.1602 + }, + { + "start": 6428.84, + "end": 6431.89, + "probability": 0.7298 + }, + { + "start": 6432.4, + "end": 6437.56, + "probability": 0.9968 + }, + { + "start": 6438.22, + "end": 6439.24, + "probability": 0.6281 + }, + { + "start": 6439.66, + "end": 6442.14, + "probability": 0.7882 + }, + { + "start": 6442.58, + "end": 6444.56, + "probability": 0.7291 + }, + { + "start": 6445.08, + "end": 6447.18, + "probability": 0.9765 + }, + { + "start": 6447.68, + "end": 6449.16, + "probability": 0.8968 + }, + { + "start": 6449.64, + "end": 6451.18, + "probability": 0.9263 + }, + { + "start": 6451.28, + "end": 6452.24, + "probability": 0.4973 + }, + { + "start": 6452.7, + "end": 6454.42, + "probability": 0.9347 + }, + { + "start": 6455.0, + "end": 6457.58, + "probability": 0.9165 + }, + { + "start": 6458.34, + "end": 6459.6, + "probability": 0.9484 + }, + { + "start": 6460.06, + "end": 6463.12, + "probability": 0.9587 + }, + { + "start": 6463.84, + "end": 6466.86, + "probability": 0.993 + }, + { + "start": 6467.46, + "end": 6473.76, + "probability": 0.9886 + }, + { + "start": 6474.24, + "end": 6476.0, + "probability": 0.9399 + }, + { + "start": 6476.5, + "end": 6478.52, + "probability": 0.9641 + }, + { + "start": 6479.06, + "end": 6481.34, + "probability": 0.9912 + }, + { + "start": 6482.28, + "end": 6485.86, + "probability": 0.9968 + }, + { + "start": 6485.9, + "end": 6489.58, + "probability": 0.9891 + }, + { + "start": 6490.24, + "end": 6491.88, + "probability": 0.9587 + }, + { + "start": 6492.38, + "end": 6493.48, + "probability": 0.5821 + }, + { + "start": 6494.28, + "end": 6497.08, + "probability": 0.9689 + }, + { + "start": 6497.84, + "end": 6499.14, + "probability": 0.4637 + }, + { + "start": 6499.6, + "end": 6500.84, + "probability": 0.8478 + }, + { + "start": 6501.58, + "end": 6505.48, + "probability": 0.9048 + }, + { + "start": 6506.02, + "end": 6507.42, + "probability": 0.7896 + }, + { + "start": 6507.94, + "end": 6510.18, + "probability": 0.9943 + }, + { + "start": 6511.14, + "end": 6512.92, + "probability": 0.805 + }, + { + "start": 6513.56, + "end": 6514.94, + "probability": 0.9957 + }, + { + "start": 6515.48, + "end": 6519.08, + "probability": 0.96 + }, + { + "start": 6519.76, + "end": 6520.52, + "probability": 0.9542 + }, + { + "start": 6520.62, + "end": 6521.34, + "probability": 0.8664 + }, + { + "start": 6521.44, + "end": 6522.74, + "probability": 0.9222 + }, + { + "start": 6523.24, + "end": 6528.66, + "probability": 0.9795 + }, + { + "start": 6529.2, + "end": 6535.36, + "probability": 0.9309 + }, + { + "start": 6535.48, + "end": 6536.36, + "probability": 0.7491 + }, + { + "start": 6536.76, + "end": 6539.28, + "probability": 0.6016 + }, + { + "start": 6539.28, + "end": 6540.26, + "probability": 0.6782 + }, + { + "start": 6540.36, + "end": 6542.77, + "probability": 0.5776 + }, + { + "start": 6543.63, + "end": 6545.86, + "probability": 0.2765 + }, + { + "start": 6545.86, + "end": 6545.86, + "probability": 0.2075 + }, + { + "start": 6545.86, + "end": 6549.72, + "probability": 0.8229 + }, + { + "start": 6549.78, + "end": 6550.46, + "probability": 0.345 + }, + { + "start": 6550.5, + "end": 6552.62, + "probability": 0.9648 + }, + { + "start": 6562.0, + "end": 6562.24, + "probability": 0.7146 + }, + { + "start": 6563.58, + "end": 6568.8, + "probability": 0.9682 + }, + { + "start": 6568.92, + "end": 6569.8, + "probability": 0.6817 + }, + { + "start": 6570.72, + "end": 6572.58, + "probability": 0.9475 + }, + { + "start": 6572.88, + "end": 6577.88, + "probability": 0.9868 + }, + { + "start": 6578.6, + "end": 6580.44, + "probability": 0.8267 + }, + { + "start": 6581.0, + "end": 6581.6, + "probability": 0.9187 + }, + { + "start": 6582.14, + "end": 6582.76, + "probability": 0.9838 + }, + { + "start": 6583.86, + "end": 6585.62, + "probability": 0.9329 + }, + { + "start": 6586.1, + "end": 6586.78, + "probability": 0.9865 + }, + { + "start": 6586.82, + "end": 6587.74, + "probability": 0.853 + }, + { + "start": 6588.14, + "end": 6589.14, + "probability": 0.9929 + }, + { + "start": 6589.42, + "end": 6590.98, + "probability": 0.9554 + }, + { + "start": 6591.46, + "end": 6594.22, + "probability": 0.8198 + }, + { + "start": 6594.96, + "end": 6596.52, + "probability": 0.8781 + }, + { + "start": 6597.48, + "end": 6600.18, + "probability": 0.9707 + }, + { + "start": 6601.36, + "end": 6605.08, + "probability": 0.9714 + }, + { + "start": 6605.74, + "end": 6609.66, + "probability": 0.9946 + }, + { + "start": 6610.06, + "end": 6614.3, + "probability": 0.9966 + }, + { + "start": 6614.76, + "end": 6617.58, + "probability": 0.9973 + }, + { + "start": 6618.08, + "end": 6621.58, + "probability": 0.9668 + }, + { + "start": 6622.14, + "end": 6623.46, + "probability": 0.5143 + }, + { + "start": 6624.28, + "end": 6627.92, + "probability": 0.9782 + }, + { + "start": 6628.36, + "end": 6630.56, + "probability": 0.983 + }, + { + "start": 6630.94, + "end": 6634.98, + "probability": 0.9214 + }, + { + "start": 6635.7, + "end": 6638.48, + "probability": 0.9966 + }, + { + "start": 6638.48, + "end": 6642.02, + "probability": 0.9743 + }, + { + "start": 6642.72, + "end": 6647.32, + "probability": 0.9954 + }, + { + "start": 6648.88, + "end": 6650.82, + "probability": 0.6685 + }, + { + "start": 6651.56, + "end": 6654.24, + "probability": 0.9806 + }, + { + "start": 6655.2, + "end": 6659.62, + "probability": 0.9911 + }, + { + "start": 6659.62, + "end": 6663.72, + "probability": 0.9811 + }, + { + "start": 6664.86, + "end": 6671.14, + "probability": 0.9741 + }, + { + "start": 6671.82, + "end": 6676.2, + "probability": 0.9292 + }, + { + "start": 6676.72, + "end": 6678.52, + "probability": 0.8267 + }, + { + "start": 6679.12, + "end": 6683.22, + "probability": 0.9287 + }, + { + "start": 6683.6, + "end": 6685.04, + "probability": 0.8748 + }, + { + "start": 6685.52, + "end": 6688.94, + "probability": 0.9391 + }, + { + "start": 6689.3, + "end": 6689.58, + "probability": 0.8417 + }, + { + "start": 6690.6, + "end": 6692.5, + "probability": 0.3774 + }, + { + "start": 6692.66, + "end": 6694.26, + "probability": 0.8934 + }, + { + "start": 6695.18, + "end": 6698.7, + "probability": 0.9143 + }, + { + "start": 6698.8, + "end": 6700.98, + "probability": 0.9422 + }, + { + "start": 6701.68, + "end": 6702.73, + "probability": 0.9006 + }, + { + "start": 6702.92, + "end": 6705.51, + "probability": 0.8765 + }, + { + "start": 6706.1, + "end": 6707.48, + "probability": 0.9473 + }, + { + "start": 6707.48, + "end": 6708.08, + "probability": 0.6353 + }, + { + "start": 6708.2, + "end": 6708.78, + "probability": 0.5762 + }, + { + "start": 6708.92, + "end": 6709.14, + "probability": 0.3789 + }, + { + "start": 6726.6, + "end": 6726.72, + "probability": 0.3165 + }, + { + "start": 6726.72, + "end": 6728.6, + "probability": 0.2943 + }, + { + "start": 6728.72, + "end": 6728.9, + "probability": 0.2764 + }, + { + "start": 6728.94, + "end": 6734.4, + "probability": 0.9528 + }, + { + "start": 6736.5, + "end": 6736.74, + "probability": 0.5917 + }, + { + "start": 6736.74, + "end": 6737.38, + "probability": 0.7744 + }, + { + "start": 6737.44, + "end": 6741.38, + "probability": 0.8721 + }, + { + "start": 6742.66, + "end": 6745.28, + "probability": 0.2731 + }, + { + "start": 6745.28, + "end": 6745.28, + "probability": 0.2582 + }, + { + "start": 6745.28, + "end": 6745.28, + "probability": 0.111 + }, + { + "start": 6745.28, + "end": 6745.78, + "probability": 0.2279 + }, + { + "start": 6746.08, + "end": 6746.96, + "probability": 0.7737 + }, + { + "start": 6748.44, + "end": 6749.58, + "probability": 0.9456 + }, + { + "start": 6749.78, + "end": 6754.58, + "probability": 0.9915 + }, + { + "start": 6755.08, + "end": 6757.66, + "probability": 0.9712 + }, + { + "start": 6757.78, + "end": 6760.2, + "probability": 0.9849 + }, + { + "start": 6761.22, + "end": 6764.64, + "probability": 0.9424 + }, + { + "start": 6765.38, + "end": 6768.6, + "probability": 0.9407 + }, + { + "start": 6768.74, + "end": 6769.7, + "probability": 0.5383 + }, + { + "start": 6769.8, + "end": 6771.96, + "probability": 0.995 + }, + { + "start": 6772.86, + "end": 6774.32, + "probability": 0.92 + }, + { + "start": 6774.46, + "end": 6775.72, + "probability": 0.9753 + }, + { + "start": 6776.14, + "end": 6778.8, + "probability": 0.9611 + }, + { + "start": 6779.08, + "end": 6782.06, + "probability": 0.9733 + }, + { + "start": 6783.14, + "end": 6783.98, + "probability": 0.8585 + }, + { + "start": 6784.26, + "end": 6785.12, + "probability": 0.9848 + }, + { + "start": 6785.44, + "end": 6787.74, + "probability": 0.9875 + }, + { + "start": 6789.96, + "end": 6790.86, + "probability": 0.9319 + }, + { + "start": 6791.22, + "end": 6793.48, + "probability": 0.9938 + }, + { + "start": 6793.88, + "end": 6798.08, + "probability": 0.9968 + }, + { + "start": 6799.06, + "end": 6800.98, + "probability": 0.9676 + }, + { + "start": 6801.56, + "end": 6804.3, + "probability": 0.9928 + }, + { + "start": 6804.3, + "end": 6807.92, + "probability": 0.9978 + }, + { + "start": 6809.08, + "end": 6809.42, + "probability": 0.4389 + }, + { + "start": 6809.88, + "end": 6814.52, + "probability": 0.9977 + }, + { + "start": 6815.14, + "end": 6818.46, + "probability": 0.874 + }, + { + "start": 6819.48, + "end": 6823.68, + "probability": 0.9615 + }, + { + "start": 6824.22, + "end": 6828.7, + "probability": 0.9893 + }, + { + "start": 6829.72, + "end": 6831.12, + "probability": 0.977 + }, + { + "start": 6831.68, + "end": 6833.24, + "probability": 0.9847 + }, + { + "start": 6833.76, + "end": 6836.04, + "probability": 0.9778 + }, + { + "start": 6836.48, + "end": 6841.68, + "probability": 0.9844 + }, + { + "start": 6842.6, + "end": 6843.46, + "probability": 0.8091 + }, + { + "start": 6843.84, + "end": 6846.96, + "probability": 0.5401 + }, + { + "start": 6847.46, + "end": 6852.18, + "probability": 0.9194 + }, + { + "start": 6852.44, + "end": 6852.76, + "probability": 0.4202 + }, + { + "start": 6852.9, + "end": 6854.08, + "probability": 0.8542 + }, + { + "start": 6875.36, + "end": 6876.67, + "probability": 0.7585 + }, + { + "start": 6878.36, + "end": 6878.76, + "probability": 0.8939 + }, + { + "start": 6878.8, + "end": 6880.22, + "probability": 0.9927 + }, + { + "start": 6880.48, + "end": 6883.1, + "probability": 0.7402 + }, + { + "start": 6883.2, + "end": 6883.98, + "probability": 0.9532 + }, + { + "start": 6884.66, + "end": 6888.72, + "probability": 0.9944 + }, + { + "start": 6888.84, + "end": 6891.24, + "probability": 0.9858 + }, + { + "start": 6892.0, + "end": 6892.82, + "probability": 0.8232 + }, + { + "start": 6893.44, + "end": 6894.96, + "probability": 0.983 + }, + { + "start": 6895.02, + "end": 6896.32, + "probability": 0.9454 + }, + { + "start": 6896.58, + "end": 6897.42, + "probability": 0.9692 + }, + { + "start": 6898.08, + "end": 6900.52, + "probability": 0.8629 + }, + { + "start": 6901.16, + "end": 6904.12, + "probability": 0.988 + }, + { + "start": 6904.76, + "end": 6905.74, + "probability": 0.627 + }, + { + "start": 6907.0, + "end": 6910.68, + "probability": 0.7189 + }, + { + "start": 6912.04, + "end": 6917.08, + "probability": 0.6584 + }, + { + "start": 6917.16, + "end": 6919.46, + "probability": 0.97 + }, + { + "start": 6919.92, + "end": 6921.62, + "probability": 0.6942 + }, + { + "start": 6921.76, + "end": 6922.34, + "probability": 0.9465 + }, + { + "start": 6922.36, + "end": 6922.77, + "probability": 0.7502 + }, + { + "start": 6923.56, + "end": 6924.76, + "probability": 0.8032 + }, + { + "start": 6925.64, + "end": 6927.08, + "probability": 0.8419 + }, + { + "start": 6928.02, + "end": 6931.56, + "probability": 0.7191 + }, + { + "start": 6932.48, + "end": 6934.58, + "probability": 0.8864 + }, + { + "start": 6935.34, + "end": 6937.02, + "probability": 0.8564 + }, + { + "start": 6937.74, + "end": 6938.86, + "probability": 0.8292 + }, + { + "start": 6939.02, + "end": 6939.88, + "probability": 0.8962 + }, + { + "start": 6939.98, + "end": 6943.34, + "probability": 0.9932 + }, + { + "start": 6943.54, + "end": 6944.16, + "probability": 0.9645 + }, + { + "start": 6944.26, + "end": 6944.78, + "probability": 0.9555 + }, + { + "start": 6945.66, + "end": 6951.28, + "probability": 0.978 + }, + { + "start": 6951.82, + "end": 6952.02, + "probability": 0.2845 + }, + { + "start": 6952.08, + "end": 6956.28, + "probability": 0.7864 + }, + { + "start": 6956.36, + "end": 6960.93, + "probability": 0.9922 + }, + { + "start": 6962.8, + "end": 6964.34, + "probability": 0.7657 + }, + { + "start": 6964.94, + "end": 6965.48, + "probability": 0.701 + }, + { + "start": 6966.06, + "end": 6969.8, + "probability": 0.995 + }, + { + "start": 6972.82, + "end": 6973.64, + "probability": 0.8 + }, + { + "start": 6974.24, + "end": 6975.5, + "probability": 0.5711 + }, + { + "start": 6976.02, + "end": 6976.7, + "probability": 0.5589 + }, + { + "start": 6976.84, + "end": 6978.22, + "probability": 0.9921 + }, + { + "start": 6978.36, + "end": 6981.55, + "probability": 0.7802 + }, + { + "start": 6983.16, + "end": 6983.7, + "probability": 0.9789 + }, + { + "start": 6983.8, + "end": 6986.6, + "probability": 0.9901 + }, + { + "start": 6986.86, + "end": 6988.08, + "probability": 0.7682 + }, + { + "start": 6988.34, + "end": 6989.16, + "probability": 0.8382 + }, + { + "start": 6989.9, + "end": 6992.02, + "probability": 0.8373 + }, + { + "start": 6992.12, + "end": 6993.48, + "probability": 0.8238 + }, + { + "start": 6994.56, + "end": 6997.22, + "probability": 0.8201 + }, + { + "start": 6997.32, + "end": 6998.18, + "probability": 0.9788 + }, + { + "start": 6998.32, + "end": 7001.64, + "probability": 0.916 + }, + { + "start": 7003.48, + "end": 7004.54, + "probability": 0.9907 + }, + { + "start": 7005.48, + "end": 7006.04, + "probability": 0.7759 + }, + { + "start": 7007.38, + "end": 7009.48, + "probability": 0.8693 + }, + { + "start": 7009.56, + "end": 7009.94, + "probability": 0.4749 + }, + { + "start": 7009.98, + "end": 7016.58, + "probability": 0.97 + }, + { + "start": 7017.86, + "end": 7021.4, + "probability": 0.973 + }, + { + "start": 7022.16, + "end": 7022.4, + "probability": 0.9121 + }, + { + "start": 7023.78, + "end": 7025.5, + "probability": 0.8256 + }, + { + "start": 7026.0, + "end": 7029.12, + "probability": 0.9942 + }, + { + "start": 7029.72, + "end": 7030.98, + "probability": 0.8315 + }, + { + "start": 7032.06, + "end": 7032.3, + "probability": 0.7928 + }, + { + "start": 7032.42, + "end": 7035.14, + "probability": 0.7616 + }, + { + "start": 7035.14, + "end": 7036.26, + "probability": 0.6515 + }, + { + "start": 7036.74, + "end": 7039.1, + "probability": 0.9453 + }, + { + "start": 7040.18, + "end": 7045.48, + "probability": 0.9787 + }, + { + "start": 7045.48, + "end": 7048.54, + "probability": 0.9969 + }, + { + "start": 7049.26, + "end": 7050.06, + "probability": 0.935 + }, + { + "start": 7050.14, + "end": 7051.38, + "probability": 0.9387 + }, + { + "start": 7051.8, + "end": 7052.86, + "probability": 0.9913 + }, + { + "start": 7053.02, + "end": 7057.6, + "probability": 0.981 + }, + { + "start": 7057.72, + "end": 7059.22, + "probability": 0.9438 + }, + { + "start": 7059.68, + "end": 7060.58, + "probability": 0.9555 + }, + { + "start": 7060.74, + "end": 7065.19, + "probability": 0.8633 + }, + { + "start": 7068.06, + "end": 7070.16, + "probability": 0.982 + }, + { + "start": 7070.2, + "end": 7071.22, + "probability": 0.8751 + }, + { + "start": 7071.98, + "end": 7077.34, + "probability": 0.8779 + }, + { + "start": 7077.78, + "end": 7079.67, + "probability": 0.9241 + }, + { + "start": 7080.22, + "end": 7082.54, + "probability": 0.9491 + }, + { + "start": 7083.44, + "end": 7086.3, + "probability": 0.7107 + }, + { + "start": 7086.46, + "end": 7088.34, + "probability": 0.9473 + }, + { + "start": 7088.42, + "end": 7090.84, + "probability": 0.9009 + }, + { + "start": 7090.84, + "end": 7093.4, + "probability": 0.9086 + }, + { + "start": 7094.4, + "end": 7096.3, + "probability": 0.9795 + }, + { + "start": 7096.36, + "end": 7101.33, + "probability": 0.9976 + }, + { + "start": 7101.74, + "end": 7105.16, + "probability": 0.9609 + }, + { + "start": 7105.58, + "end": 7106.3, + "probability": 0.9645 + }, + { + "start": 7106.38, + "end": 7108.3, + "probability": 0.9971 + }, + { + "start": 7109.0, + "end": 7110.26, + "probability": 0.3858 + }, + { + "start": 7110.62, + "end": 7113.28, + "probability": 0.9401 + }, + { + "start": 7114.14, + "end": 7116.1, + "probability": 0.894 + }, + { + "start": 7116.76, + "end": 7117.12, + "probability": 0.3987 + }, + { + "start": 7120.34, + "end": 7123.52, + "probability": 0.6604 + }, + { + "start": 7124.06, + "end": 7127.44, + "probability": 0.863 + }, + { + "start": 7128.68, + "end": 7131.82, + "probability": 0.8222 + }, + { + "start": 7132.52, + "end": 7136.32, + "probability": 0.4011 + }, + { + "start": 7137.26, + "end": 7139.22, + "probability": 0.9801 + }, + { + "start": 7140.46, + "end": 7141.78, + "probability": 0.9585 + }, + { + "start": 7142.4, + "end": 7143.74, + "probability": 0.9773 + }, + { + "start": 7143.8, + "end": 7147.38, + "probability": 0.881 + }, + { + "start": 7147.99, + "end": 7151.66, + "probability": 0.9209 + }, + { + "start": 7151.7, + "end": 7152.98, + "probability": 0.9053 + }, + { + "start": 7153.5, + "end": 7153.98, + "probability": 0.4866 + }, + { + "start": 7154.02, + "end": 7156.58, + "probability": 0.4848 + }, + { + "start": 7157.08, + "end": 7157.78, + "probability": 0.7151 + }, + { + "start": 7157.82, + "end": 7160.7, + "probability": 0.7399 + }, + { + "start": 7161.32, + "end": 7163.7, + "probability": 0.9678 + }, + { + "start": 7164.76, + "end": 7169.84, + "probability": 0.9803 + }, + { + "start": 7171.26, + "end": 7173.34, + "probability": 0.8961 + }, + { + "start": 7173.86, + "end": 7176.76, + "probability": 0.9149 + }, + { + "start": 7176.84, + "end": 7180.26, + "probability": 0.7816 + }, + { + "start": 7181.58, + "end": 7186.1, + "probability": 0.9684 + }, + { + "start": 7186.2, + "end": 7188.2, + "probability": 0.8571 + }, + { + "start": 7188.24, + "end": 7190.8, + "probability": 0.9175 + }, + { + "start": 7191.74, + "end": 7195.06, + "probability": 0.9925 + }, + { + "start": 7196.24, + "end": 7197.26, + "probability": 0.9762 + }, + { + "start": 7197.42, + "end": 7200.17, + "probability": 0.9869 + }, + { + "start": 7200.4, + "end": 7203.06, + "probability": 0.8762 + }, + { + "start": 7203.8, + "end": 7208.45, + "probability": 0.9121 + }, + { + "start": 7209.56, + "end": 7210.88, + "probability": 0.9783 + }, + { + "start": 7211.14, + "end": 7212.64, + "probability": 0.9507 + }, + { + "start": 7213.1, + "end": 7214.54, + "probability": 0.7522 + }, + { + "start": 7215.34, + "end": 7217.65, + "probability": 0.7637 + }, + { + "start": 7218.54, + "end": 7221.4, + "probability": 0.9115 + }, + { + "start": 7221.44, + "end": 7221.84, + "probability": 0.6637 + }, + { + "start": 7221.9, + "end": 7224.5, + "probability": 0.9826 + }, + { + "start": 7224.96, + "end": 7225.7, + "probability": 0.6814 + }, + { + "start": 7225.78, + "end": 7227.74, + "probability": 0.9751 + }, + { + "start": 7227.8, + "end": 7229.26, + "probability": 0.994 + }, + { + "start": 7230.34, + "end": 7232.94, + "probability": 0.8385 + }, + { + "start": 7233.2, + "end": 7233.98, + "probability": 0.988 + }, + { + "start": 7234.46, + "end": 7234.74, + "probability": 0.6493 + }, + { + "start": 7234.8, + "end": 7234.96, + "probability": 0.6168 + }, + { + "start": 7234.98, + "end": 7235.36, + "probability": 0.8802 + }, + { + "start": 7235.44, + "end": 7237.04, + "probability": 0.9952 + }, + { + "start": 7237.44, + "end": 7239.18, + "probability": 0.9221 + }, + { + "start": 7239.98, + "end": 7241.66, + "probability": 0.998 + }, + { + "start": 7241.84, + "end": 7247.96, + "probability": 0.9032 + }, + { + "start": 7248.52, + "end": 7254.8, + "probability": 0.9611 + }, + { + "start": 7255.56, + "end": 7260.68, + "probability": 0.8655 + }, + { + "start": 7261.52, + "end": 7263.28, + "probability": 0.9049 + }, + { + "start": 7263.44, + "end": 7263.68, + "probability": 0.4778 + }, + { + "start": 7263.74, + "end": 7265.5, + "probability": 0.9575 + }, + { + "start": 7267.04, + "end": 7271.98, + "probability": 0.8283 + }, + { + "start": 7272.66, + "end": 7275.94, + "probability": 0.6623 + }, + { + "start": 7276.9, + "end": 7277.4, + "probability": 0.7635 + }, + { + "start": 7277.6, + "end": 7277.98, + "probability": 0.7159 + }, + { + "start": 7278.08, + "end": 7278.34, + "probability": 0.7762 + }, + { + "start": 7278.42, + "end": 7284.98, + "probability": 0.7274 + }, + { + "start": 7285.44, + "end": 7288.48, + "probability": 0.9677 + }, + { + "start": 7288.6, + "end": 7289.74, + "probability": 0.7018 + }, + { + "start": 7290.74, + "end": 7292.08, + "probability": 0.8953 + }, + { + "start": 7292.14, + "end": 7292.98, + "probability": 0.717 + }, + { + "start": 7293.04, + "end": 7294.16, + "probability": 0.8653 + }, + { + "start": 7294.32, + "end": 7300.24, + "probability": 0.9871 + }, + { + "start": 7300.28, + "end": 7303.32, + "probability": 0.8635 + }, + { + "start": 7303.76, + "end": 7307.58, + "probability": 0.9917 + }, + { + "start": 7308.2, + "end": 7309.52, + "probability": 0.7712 + }, + { + "start": 7310.88, + "end": 7314.98, + "probability": 0.9453 + }, + { + "start": 7315.52, + "end": 7317.56, + "probability": 0.8809 + }, + { + "start": 7318.9, + "end": 7320.9, + "probability": 0.9052 + }, + { + "start": 7321.64, + "end": 7322.32, + "probability": 0.9394 + }, + { + "start": 7323.02, + "end": 7325.86, + "probability": 0.9948 + }, + { + "start": 7326.56, + "end": 7330.66, + "probability": 0.9742 + }, + { + "start": 7330.66, + "end": 7334.34, + "probability": 0.9971 + }, + { + "start": 7334.76, + "end": 7337.82, + "probability": 0.991 + }, + { + "start": 7337.9, + "end": 7339.09, + "probability": 0.8566 + }, + { + "start": 7339.24, + "end": 7341.62, + "probability": 0.9258 + }, + { + "start": 7342.52, + "end": 7345.2, + "probability": 0.9375 + }, + { + "start": 7346.3, + "end": 7347.68, + "probability": 0.4573 + }, + { + "start": 7348.24, + "end": 7350.54, + "probability": 0.936 + }, + { + "start": 7351.32, + "end": 7352.88, + "probability": 0.9961 + }, + { + "start": 7353.68, + "end": 7357.02, + "probability": 0.9078 + }, + { + "start": 7357.02, + "end": 7361.62, + "probability": 0.9549 + }, + { + "start": 7362.6, + "end": 7366.1, + "probability": 0.8776 + }, + { + "start": 7366.24, + "end": 7367.48, + "probability": 0.8137 + }, + { + "start": 7367.96, + "end": 7368.88, + "probability": 0.9533 + }, + { + "start": 7369.56, + "end": 7370.9, + "probability": 0.7409 + }, + { + "start": 7371.46, + "end": 7373.92, + "probability": 0.8719 + }, + { + "start": 7374.52, + "end": 7375.68, + "probability": 0.7649 + }, + { + "start": 7375.8, + "end": 7376.46, + "probability": 0.8795 + }, + { + "start": 7376.78, + "end": 7378.26, + "probability": 0.989 + }, + { + "start": 7378.88, + "end": 7381.82, + "probability": 0.9722 + }, + { + "start": 7381.82, + "end": 7384.82, + "probability": 0.9929 + }, + { + "start": 7385.96, + "end": 7387.24, + "probability": 0.932 + }, + { + "start": 7387.34, + "end": 7387.96, + "probability": 0.7953 + }, + { + "start": 7388.08, + "end": 7388.49, + "probability": 0.9048 + }, + { + "start": 7389.06, + "end": 7390.92, + "probability": 0.9486 + }, + { + "start": 7391.24, + "end": 7392.12, + "probability": 0.8224 + }, + { + "start": 7392.2, + "end": 7395.72, + "probability": 0.9839 + }, + { + "start": 7396.7, + "end": 7400.78, + "probability": 0.9596 + }, + { + "start": 7400.78, + "end": 7405.84, + "probability": 0.9894 + }, + { + "start": 7406.48, + "end": 7407.88, + "probability": 0.4284 + }, + { + "start": 7408.56, + "end": 7411.28, + "probability": 0.9904 + }, + { + "start": 7411.44, + "end": 7416.12, + "probability": 0.9736 + }, + { + "start": 7416.66, + "end": 7418.16, + "probability": 0.7019 + }, + { + "start": 7418.76, + "end": 7419.9, + "probability": 0.7262 + }, + { + "start": 7420.32, + "end": 7421.06, + "probability": 0.9053 + }, + { + "start": 7421.14, + "end": 7423.52, + "probability": 0.995 + }, + { + "start": 7424.08, + "end": 7428.24, + "probability": 0.964 + }, + { + "start": 7428.42, + "end": 7431.02, + "probability": 0.9045 + }, + { + "start": 7432.3, + "end": 7437.32, + "probability": 0.8334 + }, + { + "start": 7438.42, + "end": 7442.32, + "probability": 0.9249 + }, + { + "start": 7443.26, + "end": 7445.04, + "probability": 0.8109 + }, + { + "start": 7445.44, + "end": 7448.08, + "probability": 0.9935 + }, + { + "start": 7448.74, + "end": 7451.12, + "probability": 0.9951 + }, + { + "start": 7451.78, + "end": 7452.0, + "probability": 0.3307 + }, + { + "start": 7452.02, + "end": 7452.8, + "probability": 0.8814 + }, + { + "start": 7452.96, + "end": 7457.8, + "probability": 0.7387 + }, + { + "start": 7458.0, + "end": 7459.62, + "probability": 0.8669 + }, + { + "start": 7460.2, + "end": 7462.52, + "probability": 0.9956 + }, + { + "start": 7463.2, + "end": 7463.78, + "probability": 0.7433 + }, + { + "start": 7463.98, + "end": 7466.04, + "probability": 0.9982 + }, + { + "start": 7466.7, + "end": 7471.14, + "probability": 0.9958 + }, + { + "start": 7472.6, + "end": 7476.82, + "probability": 0.9852 + }, + { + "start": 7476.88, + "end": 7477.42, + "probability": 0.4009 + }, + { + "start": 7477.58, + "end": 7478.08, + "probability": 0.729 + }, + { + "start": 7478.56, + "end": 7480.04, + "probability": 0.8754 + }, + { + "start": 7482.64, + "end": 7483.18, + "probability": 0.4488 + }, + { + "start": 7484.48, + "end": 7487.8, + "probability": 0.9172 + }, + { + "start": 7488.98, + "end": 7490.1, + "probability": 0.8284 + }, + { + "start": 7490.58, + "end": 7490.58, + "probability": 0.2583 + }, + { + "start": 7490.74, + "end": 7493.39, + "probability": 0.7402 + }, + { + "start": 7494.38, + "end": 7494.96, + "probability": 0.8201 + }, + { + "start": 7495.5, + "end": 7496.6, + "probability": 0.7749 + }, + { + "start": 7496.72, + "end": 7498.44, + "probability": 0.9343 + }, + { + "start": 7498.92, + "end": 7499.96, + "probability": 0.994 + }, + { + "start": 7500.58, + "end": 7505.66, + "probability": 0.984 + }, + { + "start": 7506.28, + "end": 7508.66, + "probability": 0.8991 + }, + { + "start": 7508.76, + "end": 7511.48, + "probability": 0.1045 + }, + { + "start": 7511.52, + "end": 7514.62, + "probability": 0.0524 + }, + { + "start": 7514.62, + "end": 7516.86, + "probability": 0.301 + }, + { + "start": 7517.14, + "end": 7517.52, + "probability": 0.7556 + }, + { + "start": 7518.32, + "end": 7519.14, + "probability": 0.6362 + }, + { + "start": 7519.3, + "end": 7519.68, + "probability": 0.336 + }, + { + "start": 7519.68, + "end": 7521.73, + "probability": 0.9873 + }, + { + "start": 7522.14, + "end": 7523.66, + "probability": 0.4849 + }, + { + "start": 7523.66, + "end": 7525.24, + "probability": 0.2527 + }, + { + "start": 7525.3, + "end": 7525.5, + "probability": 0.6111 + }, + { + "start": 7525.52, + "end": 7526.1, + "probability": 0.7461 + }, + { + "start": 7526.5, + "end": 7527.88, + "probability": 0.631 + }, + { + "start": 7528.9, + "end": 7529.52, + "probability": 0.7606 + }, + { + "start": 7542.96, + "end": 7544.44, + "probability": 0.3371 + }, + { + "start": 7544.58, + "end": 7544.68, + "probability": 0.5744 + }, + { + "start": 7544.72, + "end": 7545.6, + "probability": 0.5979 + }, + { + "start": 7546.08, + "end": 7546.96, + "probability": 0.7 + }, + { + "start": 7547.16, + "end": 7548.16, + "probability": 0.7557 + }, + { + "start": 7548.16, + "end": 7549.02, + "probability": 0.9613 + }, + { + "start": 7549.22, + "end": 7550.94, + "probability": 0.802 + }, + { + "start": 7551.74, + "end": 7553.18, + "probability": 0.8561 + }, + { + "start": 7553.82, + "end": 7554.65, + "probability": 0.6105 + }, + { + "start": 7555.0, + "end": 7555.76, + "probability": 0.8036 + }, + { + "start": 7555.84, + "end": 7557.68, + "probability": 0.9648 + }, + { + "start": 7557.78, + "end": 7558.56, + "probability": 0.6496 + }, + { + "start": 7558.74, + "end": 7560.5, + "probability": 0.865 + }, + { + "start": 7561.1, + "end": 7564.34, + "probability": 0.959 + }, + { + "start": 7564.48, + "end": 7568.0, + "probability": 0.9897 + }, + { + "start": 7569.2, + "end": 7572.6, + "probability": 0.6873 + }, + { + "start": 7572.6, + "end": 7573.9, + "probability": 0.958 + }, + { + "start": 7574.04, + "end": 7574.04, + "probability": 0.159 + }, + { + "start": 7574.04, + "end": 7575.14, + "probability": 0.8284 + }, + { + "start": 7575.42, + "end": 7579.22, + "probability": 0.9407 + }, + { + "start": 7579.32, + "end": 7579.36, + "probability": 0.0946 + }, + { + "start": 7579.36, + "end": 7583.56, + "probability": 0.7133 + }, + { + "start": 7583.68, + "end": 7586.15, + "probability": 0.992 + }, + { + "start": 7587.66, + "end": 7590.0, + "probability": 0.9902 + }, + { + "start": 7590.14, + "end": 7594.22, + "probability": 0.9669 + }, + { + "start": 7594.58, + "end": 7595.12, + "probability": 0.8696 + }, + { + "start": 7595.66, + "end": 7598.12, + "probability": 0.9963 + }, + { + "start": 7598.58, + "end": 7600.76, + "probability": 0.9442 + }, + { + "start": 7600.82, + "end": 7605.42, + "probability": 0.8907 + }, + { + "start": 7605.92, + "end": 7608.04, + "probability": 0.9662 + }, + { + "start": 7608.1, + "end": 7611.54, + "probability": 0.8196 + }, + { + "start": 7612.18, + "end": 7614.28, + "probability": 0.812 + }, + { + "start": 7614.62, + "end": 7617.98, + "probability": 0.9757 + }, + { + "start": 7618.56, + "end": 7622.18, + "probability": 0.9038 + }, + { + "start": 7622.54, + "end": 7623.46, + "probability": 0.6595 + }, + { + "start": 7623.58, + "end": 7624.86, + "probability": 0.7948 + }, + { + "start": 7625.14, + "end": 7628.02, + "probability": 0.8851 + }, + { + "start": 7628.12, + "end": 7632.48, + "probability": 0.9649 + }, + { + "start": 7632.9, + "end": 7636.58, + "probability": 0.9963 + }, + { + "start": 7636.84, + "end": 7642.82, + "probability": 0.9521 + }, + { + "start": 7643.06, + "end": 7647.16, + "probability": 0.9779 + }, + { + "start": 7647.38, + "end": 7651.42, + "probability": 0.8154 + }, + { + "start": 7652.0, + "end": 7653.03, + "probability": 0.9558 + }, + { + "start": 7653.64, + "end": 7656.44, + "probability": 0.9365 + }, + { + "start": 7657.06, + "end": 7661.61, + "probability": 0.9456 + }, + { + "start": 7662.24, + "end": 7666.32, + "probability": 0.9536 + }, + { + "start": 7666.88, + "end": 7672.0, + "probability": 0.9911 + }, + { + "start": 7673.12, + "end": 7676.7, + "probability": 0.9061 + }, + { + "start": 7677.68, + "end": 7680.24, + "probability": 0.9675 + }, + { + "start": 7680.62, + "end": 7684.83, + "probability": 0.9304 + }, + { + "start": 7686.2, + "end": 7691.92, + "probability": 0.9716 + }, + { + "start": 7692.92, + "end": 7693.54, + "probability": 0.7307 + }, + { + "start": 7693.68, + "end": 7695.28, + "probability": 0.6757 + }, + { + "start": 7695.32, + "end": 7698.64, + "probability": 0.7887 + }, + { + "start": 7699.26, + "end": 7702.44, + "probability": 0.8033 + }, + { + "start": 7702.74, + "end": 7703.08, + "probability": 0.4858 + }, + { + "start": 7703.08, + "end": 7703.66, + "probability": 0.6499 + }, + { + "start": 7703.72, + "end": 7706.88, + "probability": 0.9624 + }, + { + "start": 7707.12, + "end": 7709.36, + "probability": 0.9778 + }, + { + "start": 7709.42, + "end": 7711.34, + "probability": 0.9141 + }, + { + "start": 7711.48, + "end": 7714.58, + "probability": 0.8493 + }, + { + "start": 7714.66, + "end": 7717.22, + "probability": 0.8674 + }, + { + "start": 7717.34, + "end": 7723.04, + "probability": 0.8962 + }, + { + "start": 7723.32, + "end": 7725.06, + "probability": 0.997 + }, + { + "start": 7725.5, + "end": 7728.7, + "probability": 0.8122 + }, + { + "start": 7728.72, + "end": 7730.12, + "probability": 0.4524 + }, + { + "start": 7730.22, + "end": 7732.58, + "probability": 0.8314 + }, + { + "start": 7735.72, + "end": 7736.0, + "probability": 0.063 + }, + { + "start": 7737.18, + "end": 7738.18, + "probability": 0.8157 + }, + { + "start": 7738.22, + "end": 7740.08, + "probability": 0.9786 + }, + { + "start": 7740.18, + "end": 7741.8, + "probability": 0.8518 + }, + { + "start": 7742.38, + "end": 7746.28, + "probability": 0.7762 + }, + { + "start": 7746.64, + "end": 7748.96, + "probability": 0.9951 + }, + { + "start": 7749.02, + "end": 7751.44, + "probability": 0.9984 + }, + { + "start": 7751.54, + "end": 7751.62, + "probability": 0.8055 + }, + { + "start": 7751.7, + "end": 7755.84, + "probability": 0.9917 + }, + { + "start": 7755.9, + "end": 7756.2, + "probability": 0.8361 + }, + { + "start": 7756.6, + "end": 7759.42, + "probability": 0.9152 + }, + { + "start": 7759.8, + "end": 7761.8, + "probability": 0.6987 + }, + { + "start": 7763.88, + "end": 7763.98, + "probability": 0.1993 + }, + { + "start": 7763.98, + "end": 7764.85, + "probability": 0.5594 + }, + { + "start": 7765.1, + "end": 7767.06, + "probability": 0.7069 + }, + { + "start": 7767.92, + "end": 7768.2, + "probability": 0.0078 + }, + { + "start": 7768.2, + "end": 7769.31, + "probability": 0.262 + }, + { + "start": 7769.78, + "end": 7771.5, + "probability": 0.5087 + }, + { + "start": 7772.24, + "end": 7773.16, + "probability": 0.3348 + }, + { + "start": 7773.2, + "end": 7775.7, + "probability": 0.9354 + }, + { + "start": 7775.72, + "end": 7776.18, + "probability": 0.5565 + }, + { + "start": 7776.18, + "end": 7779.18, + "probability": 0.9629 + }, + { + "start": 7779.26, + "end": 7780.44, + "probability": 0.7944 + }, + { + "start": 7780.76, + "end": 7783.32, + "probability": 0.9919 + }, + { + "start": 7783.64, + "end": 7785.26, + "probability": 0.8759 + }, + { + "start": 7785.36, + "end": 7787.58, + "probability": 0.9175 + }, + { + "start": 7788.3, + "end": 7790.86, + "probability": 0.0806 + }, + { + "start": 7791.3, + "end": 7791.42, + "probability": 0.1459 + }, + { + "start": 7791.42, + "end": 7793.14, + "probability": 0.8552 + }, + { + "start": 7793.22, + "end": 7799.9, + "probability": 0.5602 + }, + { + "start": 7799.92, + "end": 7800.32, + "probability": 0.6256 + }, + { + "start": 7800.38, + "end": 7800.62, + "probability": 0.8642 + }, + { + "start": 7800.7, + "end": 7802.68, + "probability": 0.8367 + }, + { + "start": 7803.52, + "end": 7803.84, + "probability": 0.5697 + }, + { + "start": 7805.22, + "end": 7807.38, + "probability": 0.8889 + }, + { + "start": 7807.52, + "end": 7808.86, + "probability": 0.9785 + }, + { + "start": 7808.86, + "end": 7811.92, + "probability": 0.9414 + }, + { + "start": 7812.06, + "end": 7813.92, + "probability": 0.9674 + }, + { + "start": 7814.78, + "end": 7815.2, + "probability": 0.2569 + }, + { + "start": 7817.82, + "end": 7821.42, + "probability": 0.8254 + }, + { + "start": 7821.9, + "end": 7825.4, + "probability": 0.9655 + }, + { + "start": 7826.04, + "end": 7829.34, + "probability": 0.992 + }, + { + "start": 7829.46, + "end": 7830.5, + "probability": 0.6955 + }, + { + "start": 7830.74, + "end": 7831.46, + "probability": 0.8995 + }, + { + "start": 7831.48, + "end": 7833.06, + "probability": 0.8428 + }, + { + "start": 7833.18, + "end": 7836.24, + "probability": 0.9951 + }, + { + "start": 7836.84, + "end": 7837.2, + "probability": 0.7665 + }, + { + "start": 7837.32, + "end": 7837.58, + "probability": 0.8896 + }, + { + "start": 7837.82, + "end": 7838.1, + "probability": 0.4439 + }, + { + "start": 7838.26, + "end": 7839.1, + "probability": 0.6886 + }, + { + "start": 7839.16, + "end": 7839.64, + "probability": 0.7931 + }, + { + "start": 7839.82, + "end": 7840.16, + "probability": 0.8881 + }, + { + "start": 7840.24, + "end": 7840.94, + "probability": 0.7585 + }, + { + "start": 7841.36, + "end": 7842.34, + "probability": 0.9123 + }, + { + "start": 7843.18, + "end": 7844.78, + "probability": 0.1945 + }, + { + "start": 7845.24, + "end": 7845.24, + "probability": 0.5079 + }, + { + "start": 7845.24, + "end": 7849.36, + "probability": 0.8616 + }, + { + "start": 7849.52, + "end": 7852.04, + "probability": 0.9568 + }, + { + "start": 7852.88, + "end": 7855.94, + "probability": 0.8285 + }, + { + "start": 7856.43, + "end": 7858.46, + "probability": 0.7579 + }, + { + "start": 7858.84, + "end": 7862.34, + "probability": 0.9521 + }, + { + "start": 7862.52, + "end": 7863.48, + "probability": 0.7832 + }, + { + "start": 7863.6, + "end": 7864.76, + "probability": 0.8803 + }, + { + "start": 7864.88, + "end": 7865.94, + "probability": 0.6516 + }, + { + "start": 7866.34, + "end": 7867.42, + "probability": 0.7869 + }, + { + "start": 7867.58, + "end": 7867.62, + "probability": 0.185 + }, + { + "start": 7867.62, + "end": 7868.93, + "probability": 0.9713 + }, + { + "start": 7869.54, + "end": 7871.98, + "probability": 0.8835 + }, + { + "start": 7872.26, + "end": 7872.71, + "probability": 0.63 + }, + { + "start": 7874.1, + "end": 7878.0, + "probability": 0.9912 + }, + { + "start": 7878.2, + "end": 7881.8, + "probability": 0.9558 + }, + { + "start": 7881.9, + "end": 7883.18, + "probability": 0.8986 + }, + { + "start": 7883.18, + "end": 7885.28, + "probability": 0.8269 + }, + { + "start": 7885.68, + "end": 7886.1, + "probability": 0.4704 + }, + { + "start": 7886.1, + "end": 7886.56, + "probability": 0.8687 + }, + { + "start": 7886.67, + "end": 7889.1, + "probability": 0.9422 + }, + { + "start": 7889.14, + "end": 7889.52, + "probability": 0.8522 + }, + { + "start": 7889.64, + "end": 7890.26, + "probability": 0.7328 + }, + { + "start": 7890.72, + "end": 7891.82, + "probability": 0.9909 + }, + { + "start": 7892.54, + "end": 7893.62, + "probability": 0.9442 + }, + { + "start": 7915.56, + "end": 7917.76, + "probability": 0.8263 + }, + { + "start": 7918.7, + "end": 7920.34, + "probability": 0.9246 + }, + { + "start": 7921.48, + "end": 7922.76, + "probability": 0.9853 + }, + { + "start": 7922.9, + "end": 7925.0, + "probability": 0.9824 + }, + { + "start": 7926.48, + "end": 7930.3, + "probability": 0.9954 + }, + { + "start": 7930.3, + "end": 7934.28, + "probability": 0.9976 + }, + { + "start": 7934.92, + "end": 7940.18, + "probability": 0.8509 + }, + { + "start": 7940.88, + "end": 7944.38, + "probability": 0.9943 + }, + { + "start": 7944.38, + "end": 7948.38, + "probability": 0.948 + }, + { + "start": 7949.8, + "end": 7952.0, + "probability": 0.9921 + }, + { + "start": 7952.38, + "end": 7955.04, + "probability": 0.9909 + }, + { + "start": 7955.62, + "end": 7956.96, + "probability": 0.7091 + }, + { + "start": 7957.44, + "end": 7961.16, + "probability": 0.9771 + }, + { + "start": 7961.24, + "end": 7963.78, + "probability": 0.9962 + }, + { + "start": 7963.78, + "end": 7964.88, + "probability": 0.7108 + }, + { + "start": 7965.0, + "end": 7966.62, + "probability": 0.3182 + }, + { + "start": 7966.66, + "end": 7966.94, + "probability": 0.7933 + }, + { + "start": 7967.06, + "end": 7971.78, + "probability": 0.8963 + }, + { + "start": 7973.14, + "end": 7978.84, + "probability": 0.7326 + }, + { + "start": 7979.78, + "end": 7980.6, + "probability": 0.7545 + }, + { + "start": 7981.3, + "end": 7986.64, + "probability": 0.8536 + }, + { + "start": 7987.64, + "end": 7993.3, + "probability": 0.5115 + }, + { + "start": 7993.54, + "end": 7997.12, + "probability": 0.9463 + }, + { + "start": 7997.96, + "end": 8001.36, + "probability": 0.6553 + }, + { + "start": 8002.16, + "end": 8006.88, + "probability": 0.9395 + }, + { + "start": 8007.46, + "end": 8011.22, + "probability": 0.9802 + }, + { + "start": 8011.72, + "end": 8016.18, + "probability": 0.6 + }, + { + "start": 8016.78, + "end": 8018.56, + "probability": 0.9007 + }, + { + "start": 8019.12, + "end": 8022.7, + "probability": 0.7385 + }, + { + "start": 8023.76, + "end": 8025.74, + "probability": 0.8786 + }, + { + "start": 8026.26, + "end": 8030.84, + "probability": 0.898 + }, + { + "start": 8031.62, + "end": 8033.09, + "probability": 0.4614 + }, + { + "start": 8034.34, + "end": 8037.28, + "probability": 0.9797 + }, + { + "start": 8037.28, + "end": 8041.13, + "probability": 0.8371 + }, + { + "start": 8041.98, + "end": 8045.16, + "probability": 0.9878 + }, + { + "start": 8046.24, + "end": 8049.08, + "probability": 0.7488 + }, + { + "start": 8050.04, + "end": 8053.1, + "probability": 0.7333 + }, + { + "start": 8053.52, + "end": 8053.84, + "probability": 0.3974 + }, + { + "start": 8053.96, + "end": 8057.7, + "probability": 0.8818 + }, + { + "start": 8057.94, + "end": 8058.64, + "probability": 0.8301 + }, + { + "start": 8059.66, + "end": 8060.25, + "probability": 0.7646 + }, + { + "start": 8061.04, + "end": 8062.32, + "probability": 0.5721 + }, + { + "start": 8062.36, + "end": 8063.74, + "probability": 0.6647 + }, + { + "start": 8064.18, + "end": 8066.12, + "probability": 0.8 + }, + { + "start": 8066.68, + "end": 8070.32, + "probability": 0.8027 + }, + { + "start": 8070.88, + "end": 8072.44, + "probability": 0.8799 + }, + { + "start": 8072.8, + "end": 8075.12, + "probability": 0.8017 + }, + { + "start": 8075.92, + "end": 8078.3, + "probability": 0.5129 + }, + { + "start": 8081.12, + "end": 8084.9, + "probability": 0.8893 + }, + { + "start": 8086.72, + "end": 8088.0, + "probability": 0.1305 + }, + { + "start": 8091.62, + "end": 8092.24, + "probability": 0.6537 + }, + { + "start": 8093.0, + "end": 8099.12, + "probability": 0.7348 + }, + { + "start": 8099.78, + "end": 8103.76, + "probability": 0.8119 + }, + { + "start": 8103.84, + "end": 8104.36, + "probability": 0.3799 + }, + { + "start": 8105.18, + "end": 8105.94, + "probability": 0.6093 + }, + { + "start": 8105.94, + "end": 8106.48, + "probability": 0.5417 + }, + { + "start": 8106.82, + "end": 8108.06, + "probability": 0.6956 + }, + { + "start": 8108.36, + "end": 8113.85, + "probability": 0.7754 + }, + { + "start": 8115.22, + "end": 8116.86, + "probability": 0.9961 + }, + { + "start": 8117.58, + "end": 8121.38, + "probability": 0.8806 + }, + { + "start": 8122.2, + "end": 8126.76, + "probability": 0.976 + }, + { + "start": 8127.34, + "end": 8129.7, + "probability": 0.9814 + }, + { + "start": 8130.2, + "end": 8133.9, + "probability": 0.9918 + }, + { + "start": 8135.44, + "end": 8137.92, + "probability": 0.6529 + }, + { + "start": 8137.94, + "end": 8139.92, + "probability": 0.5141 + }, + { + "start": 8140.04, + "end": 8141.4, + "probability": 0.8835 + }, + { + "start": 8142.52, + "end": 8147.42, + "probability": 0.7377 + }, + { + "start": 8147.84, + "end": 8149.1, + "probability": 0.979 + }, + { + "start": 8149.3, + "end": 8149.86, + "probability": 0.9056 + }, + { + "start": 8151.06, + "end": 8154.34, + "probability": 0.9002 + }, + { + "start": 8154.58, + "end": 8157.79, + "probability": 0.8716 + }, + { + "start": 8158.92, + "end": 8159.9, + "probability": 0.9906 + }, + { + "start": 8160.86, + "end": 8162.86, + "probability": 0.9401 + }, + { + "start": 8163.06, + "end": 8164.12, + "probability": 0.8041 + }, + { + "start": 8164.28, + "end": 8165.8, + "probability": 0.845 + }, + { + "start": 8167.0, + "end": 8170.32, + "probability": 0.9288 + }, + { + "start": 8170.54, + "end": 8171.12, + "probability": 0.6638 + }, + { + "start": 8171.2, + "end": 8174.68, + "probability": 0.7398 + }, + { + "start": 8174.68, + "end": 8177.84, + "probability": 0.8761 + }, + { + "start": 8178.28, + "end": 8179.28, + "probability": 0.8381 + }, + { + "start": 8179.56, + "end": 8180.14, + "probability": 0.8874 + }, + { + "start": 8180.56, + "end": 8181.38, + "probability": 0.852 + }, + { + "start": 8181.5, + "end": 8182.42, + "probability": 0.7358 + }, + { + "start": 8182.92, + "end": 8186.6, + "probability": 0.9757 + }, + { + "start": 8188.18, + "end": 8191.42, + "probability": 0.5157 + }, + { + "start": 8191.82, + "end": 8193.1, + "probability": 0.9197 + }, + { + "start": 8194.04, + "end": 8196.0, + "probability": 0.3687 + }, + { + "start": 8196.5, + "end": 8201.18, + "probability": 0.9122 + }, + { + "start": 8201.72, + "end": 8202.86, + "probability": 0.8882 + }, + { + "start": 8203.36, + "end": 8206.08, + "probability": 0.9027 + }, + { + "start": 8206.46, + "end": 8209.1, + "probability": 0.8988 + }, + { + "start": 8209.1, + "end": 8212.08, + "probability": 0.7678 + }, + { + "start": 8212.98, + "end": 8213.3, + "probability": 0.5942 + }, + { + "start": 8213.4, + "end": 8218.54, + "probability": 0.9404 + }, + { + "start": 8218.54, + "end": 8223.56, + "probability": 0.9841 + }, + { + "start": 8223.56, + "end": 8228.9, + "probability": 0.8762 + }, + { + "start": 8230.08, + "end": 8233.48, + "probability": 0.833 + }, + { + "start": 8233.72, + "end": 8240.06, + "probability": 0.7552 + }, + { + "start": 8240.2, + "end": 8242.6, + "probability": 0.985 + }, + { + "start": 8243.4, + "end": 8248.34, + "probability": 0.9784 + }, + { + "start": 8248.34, + "end": 8255.04, + "probability": 0.8765 + }, + { + "start": 8255.6, + "end": 8258.45, + "probability": 0.7173 + }, + { + "start": 8258.92, + "end": 8262.32, + "probability": 0.7795 + }, + { + "start": 8263.56, + "end": 8268.46, + "probability": 0.8731 + }, + { + "start": 8269.36, + "end": 8271.08, + "probability": 0.9215 + }, + { + "start": 8271.08, + "end": 8271.2, + "probability": 0.4778 + }, + { + "start": 8271.2, + "end": 8271.92, + "probability": 0.4967 + }, + { + "start": 8272.06, + "end": 8273.0, + "probability": 0.2859 + }, + { + "start": 8274.04, + "end": 8275.54, + "probability": 0.6832 + }, + { + "start": 8276.22, + "end": 8280.54, + "probability": 0.4931 + }, + { + "start": 8281.14, + "end": 8284.08, + "probability": 0.8807 + }, + { + "start": 8284.28, + "end": 8284.48, + "probability": 0.8082 + }, + { + "start": 8285.32, + "end": 8286.0, + "probability": 0.761 + }, + { + "start": 8286.6, + "end": 8287.98, + "probability": 0.9847 + }, + { + "start": 8288.96, + "end": 8289.7, + "probability": 0.3343 + }, + { + "start": 8290.74, + "end": 8291.08, + "probability": 0.7251 + }, + { + "start": 8291.72, + "end": 8293.08, + "probability": 0.7843 + }, + { + "start": 8293.14, + "end": 8293.44, + "probability": 0.8119 + }, + { + "start": 8307.76, + "end": 8308.12, + "probability": 0.2822 + }, + { + "start": 8308.12, + "end": 8310.6, + "probability": 0.6155 + }, + { + "start": 8313.34, + "end": 8317.14, + "probability": 0.9066 + }, + { + "start": 8318.4, + "end": 8320.92, + "probability": 0.6101 + }, + { + "start": 8321.22, + "end": 8322.0, + "probability": 0.6736 + }, + { + "start": 8323.34, + "end": 8324.98, + "probability": 0.978 + }, + { + "start": 8325.76, + "end": 8326.48, + "probability": 0.8589 + }, + { + "start": 8326.66, + "end": 8327.44, + "probability": 0.6459 + }, + { + "start": 8327.54, + "end": 8328.2, + "probability": 0.5775 + }, + { + "start": 8328.26, + "end": 8329.38, + "probability": 0.5226 + }, + { + "start": 8330.3, + "end": 8332.7, + "probability": 0.8723 + }, + { + "start": 8332.84, + "end": 8335.0, + "probability": 0.7204 + }, + { + "start": 8335.82, + "end": 8340.82, + "probability": 0.9646 + }, + { + "start": 8341.16, + "end": 8342.76, + "probability": 0.9101 + }, + { + "start": 8343.28, + "end": 8345.72, + "probability": 0.9856 + }, + { + "start": 8346.34, + "end": 8346.36, + "probability": 0.4976 + }, + { + "start": 8347.54, + "end": 8351.16, + "probability": 0.6575 + }, + { + "start": 8351.36, + "end": 8352.02, + "probability": 0.5591 + }, + { + "start": 8352.1, + "end": 8353.02, + "probability": 0.7568 + }, + { + "start": 8353.58, + "end": 8358.12, + "probability": 0.8328 + }, + { + "start": 8358.44, + "end": 8359.36, + "probability": 0.7017 + }, + { + "start": 8359.46, + "end": 8362.08, + "probability": 0.8516 + }, + { + "start": 8362.16, + "end": 8362.86, + "probability": 0.6733 + }, + { + "start": 8363.0, + "end": 8363.84, + "probability": 0.6868 + }, + { + "start": 8364.08, + "end": 8364.92, + "probability": 0.9812 + }, + { + "start": 8366.22, + "end": 8368.7, + "probability": 0.8509 + }, + { + "start": 8371.18, + "end": 8374.65, + "probability": 0.8494 + }, + { + "start": 8375.0, + "end": 8375.38, + "probability": 0.5924 + }, + { + "start": 8376.22, + "end": 8377.9, + "probability": 0.7048 + }, + { + "start": 8379.3, + "end": 8382.5, + "probability": 0.4144 + }, + { + "start": 8386.22, + "end": 8388.24, + "probability": 0.8591 + }, + { + "start": 8389.52, + "end": 8390.76, + "probability": 0.6827 + }, + { + "start": 8390.86, + "end": 8391.2, + "probability": 0.2285 + }, + { + "start": 8391.24, + "end": 8392.88, + "probability": 0.6063 + }, + { + "start": 8393.0, + "end": 8393.5, + "probability": 0.8867 + }, + { + "start": 8394.92, + "end": 8400.7, + "probability": 0.751 + }, + { + "start": 8401.0, + "end": 8403.36, + "probability": 0.9663 + }, + { + "start": 8403.64, + "end": 8407.44, + "probability": 0.9316 + }, + { + "start": 8408.5, + "end": 8410.34, + "probability": 0.5845 + }, + { + "start": 8411.26, + "end": 8413.6, + "probability": 0.1107 + }, + { + "start": 8414.1, + "end": 8414.98, + "probability": 0.554 + }, + { + "start": 8415.06, + "end": 8415.88, + "probability": 0.463 + }, + { + "start": 8415.92, + "end": 8418.26, + "probability": 0.9631 + }, + { + "start": 8418.84, + "end": 8419.82, + "probability": 0.5789 + }, + { + "start": 8420.0, + "end": 8423.78, + "probability": 0.9731 + }, + { + "start": 8424.38, + "end": 8429.18, + "probability": 0.663 + }, + { + "start": 8429.7, + "end": 8432.76, + "probability": 0.811 + }, + { + "start": 8433.56, + "end": 8433.92, + "probability": 0.0372 + }, + { + "start": 8435.22, + "end": 8435.44, + "probability": 0.0078 + }, + { + "start": 8435.68, + "end": 8436.46, + "probability": 0.0386 + }, + { + "start": 8436.48, + "end": 8438.28, + "probability": 0.854 + }, + { + "start": 8440.72, + "end": 8442.96, + "probability": 0.8168 + }, + { + "start": 8444.24, + "end": 8447.28, + "probability": 0.9801 + }, + { + "start": 8447.28, + "end": 8449.84, + "probability": 0.8441 + }, + { + "start": 8450.62, + "end": 8453.14, + "probability": 0.725 + }, + { + "start": 8453.4, + "end": 8455.38, + "probability": 0.5067 + }, + { + "start": 8456.44, + "end": 8459.36, + "probability": 0.9396 + }, + { + "start": 8459.36, + "end": 8462.9, + "probability": 0.9478 + }, + { + "start": 8464.2, + "end": 8469.22, + "probability": 0.9923 + }, + { + "start": 8470.8, + "end": 8472.76, + "probability": 0.6225 + }, + { + "start": 8473.4, + "end": 8474.42, + "probability": 0.7405 + }, + { + "start": 8475.44, + "end": 8478.26, + "probability": 0.8522 + }, + { + "start": 8479.14, + "end": 8486.82, + "probability": 0.9678 + }, + { + "start": 8487.4, + "end": 8491.62, + "probability": 0.6092 + }, + { + "start": 8492.74, + "end": 8495.18, + "probability": 0.4956 + }, + { + "start": 8495.98, + "end": 8499.42, + "probability": 0.7087 + }, + { + "start": 8500.12, + "end": 8503.32, + "probability": 0.8881 + }, + { + "start": 8504.34, + "end": 8506.8, + "probability": 0.615 + }, + { + "start": 8508.1, + "end": 8511.78, + "probability": 0.5126 + }, + { + "start": 8512.72, + "end": 8518.28, + "probability": 0.7911 + }, + { + "start": 8519.5, + "end": 8525.56, + "probability": 0.8443 + }, + { + "start": 8526.78, + "end": 8530.54, + "probability": 0.9043 + }, + { + "start": 8531.36, + "end": 8533.25, + "probability": 0.5452 + }, + { + "start": 8534.14, + "end": 8538.16, + "probability": 0.7224 + }, + { + "start": 8538.58, + "end": 8540.52, + "probability": 0.932 + }, + { + "start": 8541.04, + "end": 8543.16, + "probability": 0.7193 + }, + { + "start": 8544.34, + "end": 8545.84, + "probability": 0.2708 + }, + { + "start": 8545.84, + "end": 8546.28, + "probability": 0.4867 + }, + { + "start": 8547.08, + "end": 8549.84, + "probability": 0.6787 + }, + { + "start": 8551.06, + "end": 8552.5, + "probability": 0.8729 + }, + { + "start": 8553.22, + "end": 8554.12, + "probability": 0.7815 + }, + { + "start": 8554.7, + "end": 8558.14, + "probability": 0.7111 + }, + { + "start": 8559.18, + "end": 8560.09, + "probability": 0.9943 + }, + { + "start": 8561.16, + "end": 8561.82, + "probability": 0.6152 + }, + { + "start": 8562.14, + "end": 8565.32, + "probability": 0.7472 + }, + { + "start": 8566.34, + "end": 8568.06, + "probability": 0.8451 + }, + { + "start": 8568.12, + "end": 8569.78, + "probability": 0.7871 + }, + { + "start": 8569.98, + "end": 8572.52, + "probability": 0.1496 + }, + { + "start": 8572.52, + "end": 8575.38, + "probability": 0.6958 + }, + { + "start": 8575.72, + "end": 8576.77, + "probability": 0.3965 + }, + { + "start": 8577.14, + "end": 8578.1, + "probability": 0.72 + }, + { + "start": 8578.24, + "end": 8580.54, + "probability": 0.3815 + }, + { + "start": 8580.9, + "end": 8582.16, + "probability": 0.8406 + }, + { + "start": 8582.8, + "end": 8583.52, + "probability": 0.6919 + }, + { + "start": 8583.72, + "end": 8584.67, + "probability": 0.9634 + }, + { + "start": 8585.52, + "end": 8587.22, + "probability": 0.9306 + }, + { + "start": 8587.3, + "end": 8588.18, + "probability": 0.5918 + }, + { + "start": 8588.46, + "end": 8589.52, + "probability": 0.9722 + }, + { + "start": 8590.32, + "end": 8592.12, + "probability": 0.6036 + }, + { + "start": 8592.98, + "end": 8593.06, + "probability": 0.0004 + }, + { + "start": 8593.62, + "end": 8594.26, + "probability": 0.166 + }, + { + "start": 8594.96, + "end": 8599.2, + "probability": 0.5026 + }, + { + "start": 8599.3, + "end": 8599.8, + "probability": 0.5969 + }, + { + "start": 8600.34, + "end": 8602.7, + "probability": 0.614 + }, + { + "start": 8603.8, + "end": 8607.92, + "probability": 0.8666 + }, + { + "start": 8607.92, + "end": 8611.26, + "probability": 0.9446 + }, + { + "start": 8611.94, + "end": 8616.12, + "probability": 0.7454 + }, + { + "start": 8620.04, + "end": 8623.44, + "probability": 0.6533 + }, + { + "start": 8623.82, + "end": 8624.84, + "probability": 0.503 + }, + { + "start": 8625.08, + "end": 8626.64, + "probability": 0.8006 + }, + { + "start": 8626.74, + "end": 8630.9, + "probability": 0.8445 + }, + { + "start": 8632.4, + "end": 8635.66, + "probability": 0.9722 + }, + { + "start": 8635.66, + "end": 8639.04, + "probability": 0.7251 + }, + { + "start": 8639.22, + "end": 8641.36, + "probability": 0.7747 + }, + { + "start": 8642.32, + "end": 8645.22, + "probability": 0.5769 + }, + { + "start": 8645.96, + "end": 8646.12, + "probability": 0.148 + }, + { + "start": 8646.42, + "end": 8652.98, + "probability": 0.5686 + }, + { + "start": 8653.96, + "end": 8654.14, + "probability": 0.7395 + }, + { + "start": 8654.24, + "end": 8658.28, + "probability": 0.9579 + }, + { + "start": 8659.08, + "end": 8659.36, + "probability": 0.0234 + }, + { + "start": 8659.46, + "end": 8663.7, + "probability": 0.9885 + }, + { + "start": 8663.7, + "end": 8669.94, + "probability": 0.8026 + }, + { + "start": 8670.58, + "end": 8670.82, + "probability": 0.4411 + }, + { + "start": 8670.98, + "end": 8673.4, + "probability": 0.9049 + }, + { + "start": 8674.12, + "end": 8674.38, + "probability": 0.3716 + }, + { + "start": 8674.7, + "end": 8678.0, + "probability": 0.96 + }, + { + "start": 8678.12, + "end": 8678.92, + "probability": 0.9372 + }, + { + "start": 8679.72, + "end": 8681.74, + "probability": 0.6786 + }, + { + "start": 8681.88, + "end": 8682.37, + "probability": 0.3657 + }, + { + "start": 8683.56, + "end": 8688.48, + "probability": 0.8379 + }, + { + "start": 8688.58, + "end": 8689.48, + "probability": 0.8563 + }, + { + "start": 8689.54, + "end": 8690.46, + "probability": 0.716 + }, + { + "start": 8690.72, + "end": 8693.66, + "probability": 0.747 + }, + { + "start": 8693.72, + "end": 8696.98, + "probability": 0.6689 + }, + { + "start": 8696.98, + "end": 8700.64, + "probability": 0.8614 + }, + { + "start": 8701.26, + "end": 8703.94, + "probability": 0.9012 + }, + { + "start": 8704.42, + "end": 8705.78, + "probability": 0.6209 + }, + { + "start": 8705.82, + "end": 8710.28, + "probability": 0.8548 + }, + { + "start": 8710.62, + "end": 8713.36, + "probability": 0.8937 + }, + { + "start": 8713.36, + "end": 8717.62, + "probability": 0.809 + }, + { + "start": 8718.1, + "end": 8718.56, + "probability": 0.9282 + }, + { + "start": 8718.86, + "end": 8720.66, + "probability": 0.7437 + }, + { + "start": 8720.66, + "end": 8724.12, + "probability": 0.6645 + }, + { + "start": 8724.26, + "end": 8727.1, + "probability": 0.6062 + }, + { + "start": 8727.62, + "end": 8730.24, + "probability": 0.877 + }, + { + "start": 8731.24, + "end": 8734.4, + "probability": 0.9203 + }, + { + "start": 8734.6, + "end": 8738.63, + "probability": 0.6366 + }, + { + "start": 8739.7, + "end": 8741.8, + "probability": 0.5883 + }, + { + "start": 8741.84, + "end": 8742.04, + "probability": 0.4501 + }, + { + "start": 8742.14, + "end": 8746.66, + "probability": 0.8422 + }, + { + "start": 8747.1, + "end": 8752.58, + "probability": 0.9188 + }, + { + "start": 8752.7, + "end": 8754.2, + "probability": 0.8841 + }, + { + "start": 8754.56, + "end": 8759.48, + "probability": 0.8652 + }, + { + "start": 8760.28, + "end": 8767.28, + "probability": 0.8241 + }, + { + "start": 8768.9, + "end": 8773.3, + "probability": 0.9497 + }, + { + "start": 8774.28, + "end": 8778.26, + "probability": 0.8278 + }, + { + "start": 8779.06, + "end": 8782.3, + "probability": 0.8981 + }, + { + "start": 8782.98, + "end": 8784.64, + "probability": 0.5761 + }, + { + "start": 8785.36, + "end": 8788.72, + "probability": 0.8932 + }, + { + "start": 8789.56, + "end": 8794.52, + "probability": 0.7348 + }, + { + "start": 8794.98, + "end": 8796.32, + "probability": 0.849 + }, + { + "start": 8797.88, + "end": 8801.18, + "probability": 0.8591 + }, + { + "start": 8801.26, + "end": 8802.78, + "probability": 0.9721 + }, + { + "start": 8803.82, + "end": 8804.22, + "probability": 0.8504 + }, + { + "start": 8804.32, + "end": 8805.66, + "probability": 0.9813 + }, + { + "start": 8805.8, + "end": 8808.82, + "probability": 0.8382 + }, + { + "start": 8808.88, + "end": 8813.9, + "probability": 0.9287 + }, + { + "start": 8815.38, + "end": 8818.22, + "probability": 0.9961 + }, + { + "start": 8819.24, + "end": 8824.34, + "probability": 0.6601 + }, + { + "start": 8825.62, + "end": 8828.08, + "probability": 0.8327 + }, + { + "start": 8829.9, + "end": 8831.74, + "probability": 0.73 + }, + { + "start": 8832.84, + "end": 8834.84, + "probability": 0.6 + }, + { + "start": 8836.58, + "end": 8838.32, + "probability": 0.0005 + }, + { + "start": 8838.54, + "end": 8838.78, + "probability": 0.7675 + }, + { + "start": 8839.56, + "end": 8840.26, + "probability": 0.5375 + }, + { + "start": 8840.98, + "end": 8841.64, + "probability": 0.5385 + }, + { + "start": 8841.8, + "end": 8842.32, + "probability": 0.5881 + }, + { + "start": 8842.94, + "end": 8844.21, + "probability": 0.9072 + }, + { + "start": 8844.78, + "end": 8845.98, + "probability": 0.8048 + }, + { + "start": 8846.22, + "end": 8848.02, + "probability": 0.901 + }, + { + "start": 8849.0, + "end": 8853.8, + "probability": 0.9564 + }, + { + "start": 8854.36, + "end": 8858.6, + "probability": 0.666 + }, + { + "start": 8859.86, + "end": 8860.42, + "probability": 0.7371 + }, + { + "start": 8861.78, + "end": 8862.74, + "probability": 0.9502 + }, + { + "start": 8863.32, + "end": 8864.78, + "probability": 0.6315 + }, + { + "start": 8865.72, + "end": 8867.86, + "probability": 0.7047 + }, + { + "start": 8868.94, + "end": 8869.4, + "probability": 0.8743 + }, + { + "start": 8869.6, + "end": 8873.42, + "probability": 0.6573 + }, + { + "start": 8873.84, + "end": 8876.38, + "probability": 0.858 + }, + { + "start": 8876.94, + "end": 8880.1, + "probability": 0.9628 + }, + { + "start": 8880.2, + "end": 8882.88, + "probability": 0.9772 + }, + { + "start": 8883.42, + "end": 8884.44, + "probability": 0.9285 + }, + { + "start": 8885.16, + "end": 8888.32, + "probability": 0.994 + }, + { + "start": 8889.0, + "end": 8889.7, + "probability": 0.6745 + }, + { + "start": 8889.96, + "end": 8891.44, + "probability": 0.8848 + }, + { + "start": 8891.62, + "end": 8892.22, + "probability": 0.7386 + }, + { + "start": 8892.62, + "end": 8893.26, + "probability": 0.7557 + }, + { + "start": 8893.46, + "end": 8894.3, + "probability": 0.6178 + }, + { + "start": 8894.36, + "end": 8895.46, + "probability": 0.9233 + }, + { + "start": 8897.52, + "end": 8898.56, + "probability": 0.1769 + }, + { + "start": 8899.82, + "end": 8899.82, + "probability": 0.2369 + }, + { + "start": 8899.82, + "end": 8899.82, + "probability": 0.0304 + }, + { + "start": 8899.82, + "end": 8900.62, + "probability": 0.4297 + }, + { + "start": 8902.32, + "end": 8903.18, + "probability": 0.4925 + }, + { + "start": 8903.8, + "end": 8904.62, + "probability": 0.4943 + }, + { + "start": 8905.24, + "end": 8905.48, + "probability": 0.5796 + }, + { + "start": 8905.48, + "end": 8906.18, + "probability": 0.8609 + }, + { + "start": 8906.36, + "end": 8907.22, + "probability": 0.8362 + }, + { + "start": 8909.1, + "end": 8910.4, + "probability": 0.9585 + }, + { + "start": 8912.98, + "end": 8914.16, + "probability": 0.634 + }, + { + "start": 8914.22, + "end": 8915.3, + "probability": 0.5086 + }, + { + "start": 8924.08, + "end": 8924.1, + "probability": 0.1516 + }, + { + "start": 8924.1, + "end": 8924.18, + "probability": 0.0377 + }, + { + "start": 8933.34, + "end": 8935.06, + "probability": 0.5302 + }, + { + "start": 8935.12, + "end": 8936.48, + "probability": 0.8113 + }, + { + "start": 8937.52, + "end": 8940.94, + "probability": 0.8241 + }, + { + "start": 8941.7, + "end": 8943.42, + "probability": 0.9447 + }, + { + "start": 8944.34, + "end": 8944.76, + "probability": 0.7898 + }, + { + "start": 8945.86, + "end": 8947.55, + "probability": 0.3219 + }, + { + "start": 8948.12, + "end": 8948.22, + "probability": 0.0412 + }, + { + "start": 8948.22, + "end": 8948.22, + "probability": 0.3343 + }, + { + "start": 8948.22, + "end": 8948.22, + "probability": 0.2749 + }, + { + "start": 8948.22, + "end": 8948.22, + "probability": 0.0686 + }, + { + "start": 8948.22, + "end": 8950.94, + "probability": 0.8576 + }, + { + "start": 8957.34, + "end": 8957.7, + "probability": 0.8529 + }, + { + "start": 8978.78, + "end": 8980.94, + "probability": 0.6973 + }, + { + "start": 8982.16, + "end": 8986.18, + "probability": 0.9764 + }, + { + "start": 8986.39, + "end": 8991.66, + "probability": 0.9275 + }, + { + "start": 8991.84, + "end": 8993.03, + "probability": 0.9824 + }, + { + "start": 8993.28, + "end": 8993.98, + "probability": 0.6643 + }, + { + "start": 8994.72, + "end": 8995.86, + "probability": 0.981 + }, + { + "start": 8996.88, + "end": 9000.66, + "probability": 0.9104 + }, + { + "start": 9001.42, + "end": 9005.54, + "probability": 0.6146 + }, + { + "start": 9006.36, + "end": 9006.36, + "probability": 0.9551 + }, + { + "start": 9006.36, + "end": 9006.97, + "probability": 0.3398 + }, + { + "start": 9009.12, + "end": 9010.04, + "probability": 0.5832 + }, + { + "start": 9010.48, + "end": 9011.52, + "probability": 0.7783 + }, + { + "start": 9011.6, + "end": 9013.74, + "probability": 0.6135 + }, + { + "start": 9013.74, + "end": 9014.62, + "probability": 0.9585 + }, + { + "start": 9015.92, + "end": 9016.7, + "probability": 0.4085 + }, + { + "start": 9016.76, + "end": 9016.92, + "probability": 0.6714 + }, + { + "start": 9017.06, + "end": 9021.06, + "probability": 0.9943 + }, + { + "start": 9022.42, + "end": 9024.08, + "probability": 0.957 + }, + { + "start": 9024.38, + "end": 9025.52, + "probability": 0.9352 + }, + { + "start": 9025.88, + "end": 9029.88, + "probability": 0.9759 + }, + { + "start": 9031.4, + "end": 9035.58, + "probability": 0.9949 + }, + { + "start": 9035.74, + "end": 9040.06, + "probability": 0.9844 + }, + { + "start": 9041.08, + "end": 9044.54, + "probability": 0.5295 + }, + { + "start": 9044.76, + "end": 9047.36, + "probability": 0.8855 + }, + { + "start": 9048.04, + "end": 9050.56, + "probability": 0.9756 + }, + { + "start": 9051.16, + "end": 9056.06, + "probability": 0.9858 + }, + { + "start": 9056.24, + "end": 9061.34, + "probability": 0.998 + }, + { + "start": 9063.08, + "end": 9065.08, + "probability": 0.9873 + }, + { + "start": 9067.54, + "end": 9068.04, + "probability": 0.0363 + }, + { + "start": 9068.04, + "end": 9070.48, + "probability": 0.946 + }, + { + "start": 9070.88, + "end": 9073.94, + "probability": 0.9954 + }, + { + "start": 9074.55, + "end": 9078.3, + "probability": 0.1447 + }, + { + "start": 9078.3, + "end": 9078.3, + "probability": 0.0553 + }, + { + "start": 9078.3, + "end": 9079.68, + "probability": 0.4991 + }, + { + "start": 9082.12, + "end": 9082.26, + "probability": 0.0928 + }, + { + "start": 9082.26, + "end": 9083.68, + "probability": 0.7939 + }, + { + "start": 9083.78, + "end": 9085.76, + "probability": 0.552 + }, + { + "start": 9085.76, + "end": 9091.94, + "probability": 0.9375 + }, + { + "start": 9092.64, + "end": 9096.32, + "probability": 0.8691 + }, + { + "start": 9096.7, + "end": 9097.7, + "probability": 0.9271 + }, + { + "start": 9097.8, + "end": 9098.54, + "probability": 0.96 + }, + { + "start": 9098.66, + "end": 9099.52, + "probability": 0.967 + }, + { + "start": 9099.96, + "end": 9102.32, + "probability": 0.9982 + }, + { + "start": 9102.38, + "end": 9103.0, + "probability": 0.6469 + }, + { + "start": 9103.72, + "end": 9104.84, + "probability": 0.949 + }, + { + "start": 9105.3, + "end": 9107.58, + "probability": 0.9967 + }, + { + "start": 9107.58, + "end": 9111.14, + "probability": 0.9922 + }, + { + "start": 9111.28, + "end": 9115.02, + "probability": 0.9496 + }, + { + "start": 9115.04, + "end": 9116.42, + "probability": 0.999 + }, + { + "start": 9116.58, + "end": 9117.92, + "probability": 0.999 + }, + { + "start": 9118.08, + "end": 9120.26, + "probability": 0.9912 + }, + { + "start": 9120.6, + "end": 9122.18, + "probability": 0.9644 + }, + { + "start": 9122.38, + "end": 9126.58, + "probability": 0.9931 + }, + { + "start": 9126.58, + "end": 9129.12, + "probability": 0.9994 + }, + { + "start": 9131.92, + "end": 9134.26, + "probability": 0.9873 + }, + { + "start": 9134.6, + "end": 9135.42, + "probability": 0.5886 + }, + { + "start": 9135.52, + "end": 9135.68, + "probability": 0.4059 + }, + { + "start": 9135.76, + "end": 9136.74, + "probability": 0.9359 + }, + { + "start": 9137.42, + "end": 9142.34, + "probability": 0.9977 + }, + { + "start": 9142.72, + "end": 9146.98, + "probability": 0.6928 + }, + { + "start": 9147.1, + "end": 9148.46, + "probability": 0.9889 + }, + { + "start": 9148.98, + "end": 9151.04, + "probability": 0.9916 + }, + { + "start": 9151.22, + "end": 9153.24, + "probability": 0.9383 + }, + { + "start": 9153.64, + "end": 9158.62, + "probability": 0.9907 + }, + { + "start": 9159.44, + "end": 9161.8, + "probability": 0.8181 + }, + { + "start": 9162.42, + "end": 9164.64, + "probability": 0.9979 + }, + { + "start": 9165.56, + "end": 9169.32, + "probability": 0.9981 + }, + { + "start": 9170.14, + "end": 9174.54, + "probability": 0.8037 + }, + { + "start": 9174.54, + "end": 9177.64, + "probability": 0.9688 + }, + { + "start": 9178.4, + "end": 9179.7, + "probability": 0.9292 + }, + { + "start": 9180.02, + "end": 9181.48, + "probability": 0.9669 + }, + { + "start": 9181.84, + "end": 9187.46, + "probability": 0.9922 + }, + { + "start": 9188.74, + "end": 9191.83, + "probability": 0.709 + }, + { + "start": 9192.38, + "end": 9197.4, + "probability": 0.9814 + }, + { + "start": 9198.42, + "end": 9201.62, + "probability": 0.9661 + }, + { + "start": 9202.26, + "end": 9205.26, + "probability": 0.996 + }, + { + "start": 9205.46, + "end": 9207.38, + "probability": 0.8792 + }, + { + "start": 9208.14, + "end": 9210.0, + "probability": 0.7928 + }, + { + "start": 9210.6, + "end": 9211.6, + "probability": 0.8555 + }, + { + "start": 9211.82, + "end": 9212.68, + "probability": 0.6701 + }, + { + "start": 9212.86, + "end": 9215.46, + "probability": 0.9015 + }, + { + "start": 9215.46, + "end": 9216.68, + "probability": 0.8976 + }, + { + "start": 9218.32, + "end": 9220.9, + "probability": 0.0098 + }, + { + "start": 9220.94, + "end": 9225.8, + "probability": 0.9749 + }, + { + "start": 9225.96, + "end": 9226.4, + "probability": 0.6346 + }, + { + "start": 9226.82, + "end": 9228.88, + "probability": 0.7665 + }, + { + "start": 9228.96, + "end": 9231.86, + "probability": 0.998 + }, + { + "start": 9232.76, + "end": 9236.94, + "probability": 0.9968 + }, + { + "start": 9237.64, + "end": 9239.4, + "probability": 0.9985 + }, + { + "start": 9239.96, + "end": 9244.74, + "probability": 0.974 + }, + { + "start": 9244.74, + "end": 9247.5, + "probability": 0.9929 + }, + { + "start": 9248.28, + "end": 9251.9, + "probability": 0.9962 + }, + { + "start": 9251.9, + "end": 9256.6, + "probability": 0.9966 + }, + { + "start": 9257.48, + "end": 9258.78, + "probability": 0.9697 + }, + { + "start": 9259.38, + "end": 9263.24, + "probability": 0.994 + }, + { + "start": 9264.12, + "end": 9266.64, + "probability": 0.9988 + }, + { + "start": 9266.7, + "end": 9270.28, + "probability": 0.8738 + }, + { + "start": 9270.46, + "end": 9272.12, + "probability": 0.8618 + }, + { + "start": 9272.54, + "end": 9277.98, + "probability": 0.9954 + }, + { + "start": 9278.34, + "end": 9279.76, + "probability": 0.9764 + }, + { + "start": 9279.86, + "end": 9281.84, + "probability": 0.9976 + }, + { + "start": 9281.84, + "end": 9285.12, + "probability": 0.8594 + }, + { + "start": 9286.0, + "end": 9288.72, + "probability": 0.9924 + }, + { + "start": 9289.6, + "end": 9291.22, + "probability": 0.989 + }, + { + "start": 9292.38, + "end": 9292.94, + "probability": 0.9198 + }, + { + "start": 9293.06, + "end": 9294.92, + "probability": 0.9725 + }, + { + "start": 9294.98, + "end": 9297.5, + "probability": 0.9819 + }, + { + "start": 9298.38, + "end": 9302.14, + "probability": 0.9706 + }, + { + "start": 9302.14, + "end": 9307.22, + "probability": 0.9922 + }, + { + "start": 9308.32, + "end": 9312.24, + "probability": 0.9398 + }, + { + "start": 9312.76, + "end": 9315.1, + "probability": 0.9139 + }, + { + "start": 9315.16, + "end": 9317.6, + "probability": 0.9925 + }, + { + "start": 9317.8, + "end": 9320.8, + "probability": 0.9951 + }, + { + "start": 9321.62, + "end": 9324.02, + "probability": 0.9759 + }, + { + "start": 9324.18, + "end": 9326.58, + "probability": 0.9641 + }, + { + "start": 9326.62, + "end": 9331.42, + "probability": 0.9099 + }, + { + "start": 9332.08, + "end": 9332.58, + "probability": 0.5754 + }, + { + "start": 9333.44, + "end": 9336.62, + "probability": 0.8566 + }, + { + "start": 9336.84, + "end": 9340.68, + "probability": 0.9756 + }, + { + "start": 9341.34, + "end": 9343.8, + "probability": 0.9382 + }, + { + "start": 9343.82, + "end": 9345.19, + "probability": 0.9941 + }, + { + "start": 9346.92, + "end": 9348.94, + "probability": 0.9155 + }, + { + "start": 9349.38, + "end": 9352.96, + "probability": 0.7205 + }, + { + "start": 9353.58, + "end": 9356.88, + "probability": 0.9863 + }, + { + "start": 9357.36, + "end": 9359.46, + "probability": 0.992 + }, + { + "start": 9359.94, + "end": 9361.1, + "probability": 0.7184 + }, + { + "start": 9361.22, + "end": 9364.84, + "probability": 0.9827 + }, + { + "start": 9366.22, + "end": 9368.88, + "probability": 0.9784 + }, + { + "start": 9369.5, + "end": 9373.78, + "probability": 0.8785 + }, + { + "start": 9373.94, + "end": 9377.8, + "probability": 0.9644 + }, + { + "start": 9378.48, + "end": 9380.38, + "probability": 0.739 + }, + { + "start": 9380.5, + "end": 9381.22, + "probability": 0.6301 + }, + { + "start": 9381.24, + "end": 9382.9, + "probability": 0.6647 + }, + { + "start": 9383.58, + "end": 9386.04, + "probability": 0.9952 + }, + { + "start": 9388.3, + "end": 9389.94, + "probability": 0.4118 + }, + { + "start": 9389.94, + "end": 9391.54, + "probability": 0.4052 + }, + { + "start": 9391.58, + "end": 9393.28, + "probability": 0.9119 + }, + { + "start": 9393.36, + "end": 9394.56, + "probability": 0.6921 + }, + { + "start": 9394.68, + "end": 9397.28, + "probability": 0.9084 + }, + { + "start": 9397.92, + "end": 9399.42, + "probability": 0.9663 + }, + { + "start": 9400.24, + "end": 9402.84, + "probability": 0.9439 + }, + { + "start": 9406.54, + "end": 9407.68, + "probability": 0.538 + }, + { + "start": 9407.84, + "end": 9410.46, + "probability": 0.8901 + }, + { + "start": 9410.6, + "end": 9411.12, + "probability": 0.7784 + }, + { + "start": 9411.28, + "end": 9411.28, + "probability": 0.5331 + }, + { + "start": 9411.3, + "end": 9412.74, + "probability": 0.7588 + }, + { + "start": 9429.8, + "end": 9431.36, + "probability": 0.7026 + }, + { + "start": 9432.44, + "end": 9432.6, + "probability": 0.7153 + }, + { + "start": 9433.46, + "end": 9436.44, + "probability": 0.7407 + }, + { + "start": 9437.66, + "end": 9441.6, + "probability": 0.9829 + }, + { + "start": 9442.64, + "end": 9443.98, + "probability": 0.8525 + }, + { + "start": 9445.34, + "end": 9447.08, + "probability": 0.7439 + }, + { + "start": 9447.9, + "end": 9448.6, + "probability": 0.7219 + }, + { + "start": 9450.58, + "end": 9452.86, + "probability": 0.981 + }, + { + "start": 9452.86, + "end": 9457.32, + "probability": 0.6766 + }, + { + "start": 9457.92, + "end": 9458.78, + "probability": 0.9034 + }, + { + "start": 9459.46, + "end": 9460.82, + "probability": 0.9701 + }, + { + "start": 9462.0, + "end": 9468.38, + "probability": 0.806 + }, + { + "start": 9469.64, + "end": 9478.6, + "probability": 0.2092 + }, + { + "start": 9479.72, + "end": 9488.34, + "probability": 0.4634 + }, + { + "start": 9488.76, + "end": 9492.39, + "probability": 0.5003 + }, + { + "start": 9492.92, + "end": 9498.54, + "probability": 0.9886 + }, + { + "start": 9498.72, + "end": 9504.84, + "probability": 0.9835 + }, + { + "start": 9506.28, + "end": 9511.72, + "probability": 0.985 + }, + { + "start": 9512.26, + "end": 9515.08, + "probability": 0.9534 + }, + { + "start": 9516.46, + "end": 9519.92, + "probability": 0.9973 + }, + { + "start": 9520.82, + "end": 9522.86, + "probability": 0.9946 + }, + { + "start": 9524.42, + "end": 9527.18, + "probability": 0.9866 + }, + { + "start": 9527.6, + "end": 9531.94, + "probability": 0.7769 + }, + { + "start": 9533.42, + "end": 9535.26, + "probability": 0.8768 + }, + { + "start": 9536.56, + "end": 9540.28, + "probability": 0.7671 + }, + { + "start": 9540.8, + "end": 9543.3, + "probability": 0.96 + }, + { + "start": 9544.52, + "end": 9547.54, + "probability": 0.9897 + }, + { + "start": 9549.32, + "end": 9552.78, + "probability": 0.9928 + }, + { + "start": 9553.82, + "end": 9556.54, + "probability": 0.7338 + }, + { + "start": 9557.62, + "end": 9560.76, + "probability": 0.92 + }, + { + "start": 9562.18, + "end": 9567.66, + "probability": 0.9332 + }, + { + "start": 9567.66, + "end": 9572.68, + "probability": 0.885 + }, + { + "start": 9573.58, + "end": 9576.86, + "probability": 0.8654 + }, + { + "start": 9578.4, + "end": 9587.5, + "probability": 0.9803 + }, + { + "start": 9588.52, + "end": 9591.48, + "probability": 0.8811 + }, + { + "start": 9592.28, + "end": 9592.98, + "probability": 0.2604 + }, + { + "start": 9593.02, + "end": 9594.08, + "probability": 0.886 + }, + { + "start": 9594.08, + "end": 9595.12, + "probability": 0.9075 + }, + { + "start": 9595.54, + "end": 9596.56, + "probability": 0.9934 + }, + { + "start": 9597.1, + "end": 9600.28, + "probability": 0.8007 + }, + { + "start": 9600.94, + "end": 9603.38, + "probability": 0.9768 + }, + { + "start": 9605.36, + "end": 9606.3, + "probability": 0.7697 + }, + { + "start": 9607.2, + "end": 9608.16, + "probability": 0.9719 + }, + { + "start": 9608.32, + "end": 9610.54, + "probability": 0.823 + }, + { + "start": 9610.84, + "end": 9612.3, + "probability": 0.3085 + }, + { + "start": 9612.36, + "end": 9615.26, + "probability": 0.8726 + }, + { + "start": 9615.56, + "end": 9617.66, + "probability": 0.9524 + }, + { + "start": 9618.84, + "end": 9622.54, + "probability": 0.6791 + }, + { + "start": 9622.72, + "end": 9623.92, + "probability": 0.299 + }, + { + "start": 9624.0, + "end": 9625.27, + "probability": 0.3559 + }, + { + "start": 9625.44, + "end": 9626.98, + "probability": 0.7126 + }, + { + "start": 9627.06, + "end": 9627.18, + "probability": 0.1786 + }, + { + "start": 9627.18, + "end": 9628.88, + "probability": 0.2043 + }, + { + "start": 9628.88, + "end": 9629.91, + "probability": 0.0208 + }, + { + "start": 9630.68, + "end": 9630.78, + "probability": 0.1785 + }, + { + "start": 9630.78, + "end": 9630.78, + "probability": 0.4384 + }, + { + "start": 9630.78, + "end": 9632.61, + "probability": 0.5188 + }, + { + "start": 9633.24, + "end": 9637.26, + "probability": 0.7353 + }, + { + "start": 9637.58, + "end": 9638.7, + "probability": 0.9254 + }, + { + "start": 9639.28, + "end": 9640.82, + "probability": 0.1158 + }, + { + "start": 9642.02, + "end": 9642.44, + "probability": 0.9605 + }, + { + "start": 9643.26, + "end": 9643.96, + "probability": 0.1669 + }, + { + "start": 9644.08, + "end": 9646.38, + "probability": 0.6544 + }, + { + "start": 9646.94, + "end": 9647.28, + "probability": 0.0466 + }, + { + "start": 9647.42, + "end": 9648.2, + "probability": 0.1682 + }, + { + "start": 9648.92, + "end": 9649.91, + "probability": 0.3057 + }, + { + "start": 9650.08, + "end": 9652.14, + "probability": 0.6298 + }, + { + "start": 9653.1, + "end": 9653.58, + "probability": 0.5205 + }, + { + "start": 9653.84, + "end": 9656.18, + "probability": 0.7856 + }, + { + "start": 9656.4, + "end": 9658.13, + "probability": 0.696 + }, + { + "start": 9658.82, + "end": 9659.84, + "probability": 0.9629 + }, + { + "start": 9662.42, + "end": 9666.23, + "probability": 0.5596 + }, + { + "start": 9666.32, + "end": 9667.48, + "probability": 0.1013 + }, + { + "start": 9668.26, + "end": 9669.2, + "probability": 0.0434 + }, + { + "start": 9670.7, + "end": 9671.88, + "probability": 0.0141 + }, + { + "start": 9671.94, + "end": 9673.49, + "probability": 0.1525 + }, + { + "start": 9673.78, + "end": 9675.22, + "probability": 0.3642 + }, + { + "start": 9676.52, + "end": 9683.64, + "probability": 0.626 + }, + { + "start": 9684.14, + "end": 9685.5, + "probability": 0.9114 + }, + { + "start": 9686.2, + "end": 9688.1, + "probability": 0.8683 + }, + { + "start": 9689.1, + "end": 9693.08, + "probability": 0.1219 + }, + { + "start": 9693.22, + "end": 9696.34, + "probability": 0.6214 + }, + { + "start": 9697.44, + "end": 9700.2, + "probability": 0.7725 + }, + { + "start": 9700.76, + "end": 9703.72, + "probability": 0.9613 + }, + { + "start": 9704.16, + "end": 9704.96, + "probability": 0.9114 + }, + { + "start": 9705.88, + "end": 9706.6, + "probability": 0.8226 + }, + { + "start": 9706.74, + "end": 9707.44, + "probability": 0.6132 + }, + { + "start": 9707.5, + "end": 9709.42, + "probability": 0.9484 + }, + { + "start": 9709.76, + "end": 9710.85, + "probability": 0.7425 + }, + { + "start": 9711.2, + "end": 9712.44, + "probability": 0.9425 + }, + { + "start": 9713.12, + "end": 9715.0, + "probability": 0.8101 + }, + { + "start": 9715.42, + "end": 9717.5, + "probability": 0.7857 + }, + { + "start": 9718.34, + "end": 9718.78, + "probability": 0.7921 + }, + { + "start": 9719.14, + "end": 9720.32, + "probability": 0.6081 + }, + { + "start": 9720.54, + "end": 9721.2, + "probability": 0.3655 + }, + { + "start": 9721.8, + "end": 9726.48, + "probability": 0.7794 + }, + { + "start": 9727.26, + "end": 9729.0, + "probability": 0.9735 + }, + { + "start": 9733.8, + "end": 9734.46, + "probability": 0.0754 + }, + { + "start": 9734.46, + "end": 9736.18, + "probability": 0.5955 + }, + { + "start": 9736.84, + "end": 9741.94, + "probability": 0.9891 + }, + { + "start": 9742.68, + "end": 9749.54, + "probability": 0.9489 + }, + { + "start": 9749.96, + "end": 9751.46, + "probability": 0.985 + }, + { + "start": 9751.8, + "end": 9753.08, + "probability": 0.6426 + }, + { + "start": 9753.44, + "end": 9756.12, + "probability": 0.7442 + }, + { + "start": 9756.36, + "end": 9757.64, + "probability": 0.8041 + }, + { + "start": 9758.42, + "end": 9765.64, + "probability": 0.9518 + }, + { + "start": 9765.64, + "end": 9771.36, + "probability": 0.8584 + }, + { + "start": 9772.52, + "end": 9774.18, + "probability": 0.6965 + }, + { + "start": 9774.98, + "end": 9778.74, + "probability": 0.9117 + }, + { + "start": 9778.8, + "end": 9783.68, + "probability": 0.9712 + }, + { + "start": 9784.28, + "end": 9788.52, + "probability": 0.9506 + }, + { + "start": 9788.64, + "end": 9789.22, + "probability": 0.6362 + }, + { + "start": 9789.36, + "end": 9790.0, + "probability": 0.3933 + }, + { + "start": 9790.62, + "end": 9793.13, + "probability": 0.9593 + }, + { + "start": 9794.26, + "end": 9795.62, + "probability": 0.8872 + }, + { + "start": 9797.42, + "end": 9799.26, + "probability": 0.9072 + }, + { + "start": 9799.56, + "end": 9802.8, + "probability": 0.9848 + }, + { + "start": 9803.54, + "end": 9805.3, + "probability": 0.6488 + }, + { + "start": 9806.3, + "end": 9807.84, + "probability": 0.5161 + }, + { + "start": 9808.36, + "end": 9810.24, + "probability": 0.7599 + }, + { + "start": 9810.84, + "end": 9811.26, + "probability": 0.9167 + }, + { + "start": 9811.5, + "end": 9812.16, + "probability": 0.6801 + }, + { + "start": 9812.88, + "end": 9815.28, + "probability": 0.9285 + }, + { + "start": 9816.48, + "end": 9817.62, + "probability": 0.5466 + }, + { + "start": 9818.24, + "end": 9821.38, + "probability": 0.96 + }, + { + "start": 9822.04, + "end": 9823.9, + "probability": 0.3864 + }, + { + "start": 9824.56, + "end": 9827.98, + "probability": 0.9845 + }, + { + "start": 9828.46, + "end": 9830.46, + "probability": 0.8926 + }, + { + "start": 9830.88, + "end": 9831.46, + "probability": 0.5257 + }, + { + "start": 9832.9, + "end": 9836.9, + "probability": 0.9425 + }, + { + "start": 9837.1, + "end": 9837.96, + "probability": 0.9153 + }, + { + "start": 9838.5, + "end": 9841.32, + "probability": 0.5625 + }, + { + "start": 9841.92, + "end": 9846.38, + "probability": 0.969 + }, + { + "start": 9846.7, + "end": 9851.6, + "probability": 0.9337 + }, + { + "start": 9853.78, + "end": 9855.22, + "probability": 0.013 + }, + { + "start": 9855.22, + "end": 9855.54, + "probability": 0.1858 + }, + { + "start": 9856.42, + "end": 9856.56, + "probability": 0.1926 + }, + { + "start": 9856.72, + "end": 9857.38, + "probability": 0.499 + }, + { + "start": 9857.54, + "end": 9858.28, + "probability": 0.2657 + }, + { + "start": 9858.94, + "end": 9859.64, + "probability": 0.6857 + }, + { + "start": 9862.24, + "end": 9862.8, + "probability": 0.2792 + }, + { + "start": 9862.8, + "end": 9862.8, + "probability": 0.0257 + }, + { + "start": 9862.8, + "end": 9862.87, + "probability": 0.6205 + }, + { + "start": 9864.18, + "end": 9865.66, + "probability": 0.3533 + }, + { + "start": 9866.38, + "end": 9867.56, + "probability": 0.9016 + }, + { + "start": 9868.46, + "end": 9871.64, + "probability": 0.6618 + }, + { + "start": 9872.18, + "end": 9876.92, + "probability": 0.9712 + }, + { + "start": 9877.78, + "end": 9879.28, + "probability": 0.962 + }, + { + "start": 9879.56, + "end": 9883.98, + "probability": 0.9639 + }, + { + "start": 9884.12, + "end": 9884.78, + "probability": 0.3782 + }, + { + "start": 9885.24, + "end": 9886.94, + "probability": 0.0937 + }, + { + "start": 9888.22, + "end": 9889.04, + "probability": 0.5942 + }, + { + "start": 9889.16, + "end": 9890.82, + "probability": 0.7395 + }, + { + "start": 9891.06, + "end": 9891.32, + "probability": 0.2741 + }, + { + "start": 9892.22, + "end": 9895.88, + "probability": 0.7939 + }, + { + "start": 9896.46, + "end": 9897.92, + "probability": 0.9475 + }, + { + "start": 9898.7, + "end": 9900.36, + "probability": 0.676 + }, + { + "start": 9900.72, + "end": 9902.66, + "probability": 0.5712 + }, + { + "start": 9902.94, + "end": 9903.22, + "probability": 0.7198 + }, + { + "start": 9903.28, + "end": 9904.5, + "probability": 0.8557 + }, + { + "start": 9905.94, + "end": 9910.1, + "probability": 0.979 + }, + { + "start": 9910.52, + "end": 9913.76, + "probability": 0.6436 + }, + { + "start": 9914.78, + "end": 9916.66, + "probability": 0.5739 + }, + { + "start": 9916.76, + "end": 9919.0, + "probability": 0.9131 + }, + { + "start": 9919.12, + "end": 9920.46, + "probability": 0.7654 + }, + { + "start": 9920.9, + "end": 9921.88, + "probability": 0.5744 + }, + { + "start": 9922.54, + "end": 9922.64, + "probability": 0.2379 + }, + { + "start": 9922.76, + "end": 9925.46, + "probability": 0.699 + }, + { + "start": 9925.48, + "end": 9925.98, + "probability": 0.6061 + }, + { + "start": 9926.04, + "end": 9926.34, + "probability": 0.413 + }, + { + "start": 9926.34, + "end": 9926.82, + "probability": 0.8082 + }, + { + "start": 9927.08, + "end": 9927.36, + "probability": 0.2271 + }, + { + "start": 9928.54, + "end": 9932.22, + "probability": 0.7568 + }, + { + "start": 9932.78, + "end": 9934.56, + "probability": 0.8957 + }, + { + "start": 9935.08, + "end": 9936.84, + "probability": 0.7302 + }, + { + "start": 9936.9, + "end": 9937.24, + "probability": 0.8598 + }, + { + "start": 9938.9, + "end": 9941.26, + "probability": 0.5674 + }, + { + "start": 9944.54, + "end": 9948.4, + "probability": 0.62 + }, + { + "start": 9948.9, + "end": 9949.6, + "probability": 0.5937 + }, + { + "start": 9950.73, + "end": 9955.1, + "probability": 0.8063 + }, + { + "start": 9956.52, + "end": 9958.12, + "probability": 0.8652 + }, + { + "start": 9958.5, + "end": 9959.28, + "probability": 0.818 + }, + { + "start": 9959.4, + "end": 9960.24, + "probability": 0.8112 + }, + { + "start": 9960.32, + "end": 9962.2, + "probability": 0.99 + }, + { + "start": 9962.78, + "end": 9964.5, + "probability": 0.9745 + }, + { + "start": 9964.62, + "end": 9966.62, + "probability": 0.9795 + }, + { + "start": 9966.74, + "end": 9968.26, + "probability": 0.8542 + }, + { + "start": 9969.0, + "end": 9970.82, + "probability": 0.7742 + }, + { + "start": 9970.96, + "end": 9974.18, + "probability": 0.9211 + }, + { + "start": 9977.06, + "end": 9980.24, + "probability": 0.96 + }, + { + "start": 9982.74, + "end": 9984.48, + "probability": 0.6785 + }, + { + "start": 10006.34, + "end": 10007.34, + "probability": 0.5934 + }, + { + "start": 10008.62, + "end": 10009.8, + "probability": 0.6632 + }, + { + "start": 10011.02, + "end": 10011.44, + "probability": 0.8661 + }, + { + "start": 10012.52, + "end": 10014.62, + "probability": 0.9835 + }, + { + "start": 10014.7, + "end": 10016.66, + "probability": 0.978 + }, + { + "start": 10017.74, + "end": 10018.74, + "probability": 0.4945 + }, + { + "start": 10019.1, + "end": 10022.5, + "probability": 0.968 + }, + { + "start": 10023.24, + "end": 10025.56, + "probability": 0.9495 + }, + { + "start": 10026.16, + "end": 10028.22, + "probability": 0.9546 + }, + { + "start": 10029.02, + "end": 10032.52, + "probability": 0.98 + }, + { + "start": 10033.16, + "end": 10035.96, + "probability": 0.9448 + }, + { + "start": 10036.48, + "end": 10039.2, + "probability": 0.8411 + }, + { + "start": 10039.34, + "end": 10041.28, + "probability": 0.9315 + }, + { + "start": 10041.5, + "end": 10041.96, + "probability": 0.6511 + }, + { + "start": 10042.62, + "end": 10043.6, + "probability": 0.9964 + }, + { + "start": 10045.46, + "end": 10047.38, + "probability": 0.8401 + }, + { + "start": 10048.3, + "end": 10052.96, + "probability": 0.9922 + }, + { + "start": 10054.78, + "end": 10058.14, + "probability": 0.994 + }, + { + "start": 10058.72, + "end": 10059.82, + "probability": 0.8305 + }, + { + "start": 10060.56, + "end": 10063.18, + "probability": 0.9658 + }, + { + "start": 10063.94, + "end": 10066.9, + "probability": 0.9116 + }, + { + "start": 10068.98, + "end": 10071.32, + "probability": 0.9915 + }, + { + "start": 10072.08, + "end": 10072.88, + "probability": 0.7767 + }, + { + "start": 10073.58, + "end": 10076.16, + "probability": 0.7528 + }, + { + "start": 10077.6, + "end": 10081.18, + "probability": 0.9004 + }, + { + "start": 10081.88, + "end": 10083.12, + "probability": 0.9671 + }, + { + "start": 10083.72, + "end": 10087.08, + "probability": 0.9965 + }, + { + "start": 10088.24, + "end": 10088.42, + "probability": 0.6484 + }, + { + "start": 10089.18, + "end": 10094.38, + "probability": 0.9799 + }, + { + "start": 10095.58, + "end": 10102.3, + "probability": 0.9979 + }, + { + "start": 10103.92, + "end": 10106.14, + "probability": 0.9578 + }, + { + "start": 10106.82, + "end": 10107.4, + "probability": 0.878 + }, + { + "start": 10108.12, + "end": 10111.02, + "probability": 0.928 + }, + { + "start": 10113.2, + "end": 10115.68, + "probability": 0.9919 + }, + { + "start": 10115.72, + "end": 10116.32, + "probability": 0.8531 + }, + { + "start": 10116.36, + "end": 10120.4, + "probability": 0.9744 + }, + { + "start": 10122.4, + "end": 10125.68, + "probability": 0.9966 + }, + { + "start": 10125.68, + "end": 10128.2, + "probability": 0.9984 + }, + { + "start": 10129.92, + "end": 10133.96, + "probability": 0.977 + }, + { + "start": 10134.52, + "end": 10136.28, + "probability": 0.8293 + }, + { + "start": 10137.2, + "end": 10140.18, + "probability": 0.993 + }, + { + "start": 10140.74, + "end": 10142.38, + "probability": 0.9778 + }, + { + "start": 10143.8, + "end": 10147.58, + "probability": 0.9263 + }, + { + "start": 10148.6, + "end": 10151.74, + "probability": 0.9718 + }, + { + "start": 10152.26, + "end": 10153.4, + "probability": 0.7493 + }, + { + "start": 10154.42, + "end": 10156.94, + "probability": 0.9547 + }, + { + "start": 10157.72, + "end": 10163.44, + "probability": 0.9828 + }, + { + "start": 10164.28, + "end": 10164.7, + "probability": 0.9354 + }, + { + "start": 10165.38, + "end": 10170.04, + "probability": 0.9932 + }, + { + "start": 10171.84, + "end": 10177.46, + "probability": 0.9296 + }, + { + "start": 10178.12, + "end": 10178.6, + "probability": 0.7881 + }, + { + "start": 10178.76, + "end": 10181.74, + "probability": 0.9813 + }, + { + "start": 10182.44, + "end": 10184.66, + "probability": 0.9568 + }, + { + "start": 10185.44, + "end": 10186.9, + "probability": 0.9978 + }, + { + "start": 10188.1, + "end": 10190.86, + "probability": 0.9341 + }, + { + "start": 10192.24, + "end": 10197.18, + "probability": 0.9972 + }, + { + "start": 10197.82, + "end": 10201.48, + "probability": 0.9922 + }, + { + "start": 10202.64, + "end": 10206.68, + "probability": 0.9976 + }, + { + "start": 10207.48, + "end": 10210.9, + "probability": 0.99 + }, + { + "start": 10211.42, + "end": 10213.8, + "probability": 0.9822 + }, + { + "start": 10214.48, + "end": 10215.54, + "probability": 0.9301 + }, + { + "start": 10216.16, + "end": 10217.16, + "probability": 0.9136 + }, + { + "start": 10217.92, + "end": 10221.14, + "probability": 0.995 + }, + { + "start": 10222.28, + "end": 10227.1, + "probability": 0.9947 + }, + { + "start": 10227.74, + "end": 10228.86, + "probability": 0.9891 + }, + { + "start": 10229.4, + "end": 10232.24, + "probability": 0.7939 + }, + { + "start": 10232.38, + "end": 10234.68, + "probability": 0.9698 + }, + { + "start": 10234.92, + "end": 10236.34, + "probability": 0.7607 + }, + { + "start": 10236.96, + "end": 10238.58, + "probability": 0.9806 + }, + { + "start": 10239.12, + "end": 10242.12, + "probability": 0.9863 + }, + { + "start": 10243.1, + "end": 10244.12, + "probability": 0.9328 + }, + { + "start": 10244.84, + "end": 10246.1, + "probability": 0.9842 + }, + { + "start": 10246.22, + "end": 10246.88, + "probability": 0.8554 + }, + { + "start": 10246.94, + "end": 10250.38, + "probability": 0.9896 + }, + { + "start": 10251.78, + "end": 10257.04, + "probability": 0.9912 + }, + { + "start": 10257.6, + "end": 10259.64, + "probability": 0.9976 + }, + { + "start": 10261.18, + "end": 10262.26, + "probability": 0.9901 + }, + { + "start": 10263.0, + "end": 10264.76, + "probability": 0.8057 + }, + { + "start": 10265.42, + "end": 10270.56, + "probability": 0.9983 + }, + { + "start": 10271.14, + "end": 10273.32, + "probability": 0.9578 + }, + { + "start": 10274.06, + "end": 10275.1, + "probability": 0.9993 + }, + { + "start": 10276.1, + "end": 10277.96, + "probability": 0.9229 + }, + { + "start": 10278.84, + "end": 10279.44, + "probability": 0.378 + }, + { + "start": 10280.12, + "end": 10282.34, + "probability": 0.7986 + }, + { + "start": 10282.96, + "end": 10284.8, + "probability": 0.7483 + }, + { + "start": 10285.46, + "end": 10289.58, + "probability": 0.9902 + }, + { + "start": 10289.66, + "end": 10290.52, + "probability": 0.96 + }, + { + "start": 10291.14, + "end": 10292.84, + "probability": 0.9967 + }, + { + "start": 10293.48, + "end": 10295.15, + "probability": 0.9432 + }, + { + "start": 10295.52, + "end": 10298.5, + "probability": 0.9882 + }, + { + "start": 10299.06, + "end": 10299.28, + "probability": 0.7626 + }, + { + "start": 10299.96, + "end": 10300.92, + "probability": 0.647 + }, + { + "start": 10301.18, + "end": 10302.04, + "probability": 0.87 + }, + { + "start": 10302.98, + "end": 10304.4, + "probability": 0.7667 + }, + { + "start": 10336.26, + "end": 10338.62, + "probability": 0.6201 + }, + { + "start": 10340.04, + "end": 10342.6, + "probability": 0.7424 + }, + { + "start": 10342.78, + "end": 10347.62, + "probability": 0.9639 + }, + { + "start": 10348.58, + "end": 10350.0, + "probability": 0.9619 + }, + { + "start": 10350.82, + "end": 10353.98, + "probability": 0.9759 + }, + { + "start": 10354.74, + "end": 10357.58, + "probability": 0.9801 + }, + { + "start": 10358.4, + "end": 10361.36, + "probability": 0.999 + }, + { + "start": 10361.36, + "end": 10364.24, + "probability": 0.9983 + }, + { + "start": 10364.56, + "end": 10369.94, + "probability": 0.9887 + }, + { + "start": 10370.58, + "end": 10372.68, + "probability": 0.9712 + }, + { + "start": 10372.78, + "end": 10374.18, + "probability": 0.9424 + }, + { + "start": 10374.32, + "end": 10376.44, + "probability": 0.9554 + }, + { + "start": 10377.56, + "end": 10378.8, + "probability": 0.7837 + }, + { + "start": 10379.04, + "end": 10384.2, + "probability": 0.9686 + }, + { + "start": 10384.86, + "end": 10387.56, + "probability": 0.978 + }, + { + "start": 10388.09, + "end": 10396.35, + "probability": 0.9358 + }, + { + "start": 10396.76, + "end": 10399.6, + "probability": 0.6449 + }, + { + "start": 10400.06, + "end": 10406.58, + "probability": 0.9883 + }, + { + "start": 10407.66, + "end": 10408.8, + "probability": 0.7825 + }, + { + "start": 10408.88, + "end": 10409.28, + "probability": 0.7275 + }, + { + "start": 10409.34, + "end": 10410.58, + "probability": 0.9601 + }, + { + "start": 10410.68, + "end": 10411.36, + "probability": 0.5997 + }, + { + "start": 10411.4, + "end": 10415.26, + "probability": 0.8722 + }, + { + "start": 10415.26, + "end": 10418.5, + "probability": 0.9966 + }, + { + "start": 10419.52, + "end": 10423.04, + "probability": 0.9928 + }, + { + "start": 10423.44, + "end": 10424.74, + "probability": 0.9818 + }, + { + "start": 10425.14, + "end": 10431.02, + "probability": 0.9796 + }, + { + "start": 10432.24, + "end": 10437.68, + "probability": 0.6198 + }, + { + "start": 10438.24, + "end": 10439.92, + "probability": 0.9961 + }, + { + "start": 10440.38, + "end": 10440.8, + "probability": 0.6132 + }, + { + "start": 10440.82, + "end": 10445.1, + "probability": 0.9067 + }, + { + "start": 10445.98, + "end": 10446.56, + "probability": 0.6859 + }, + { + "start": 10446.88, + "end": 10449.98, + "probability": 0.9912 + }, + { + "start": 10450.3, + "end": 10453.38, + "probability": 0.9821 + }, + { + "start": 10453.96, + "end": 10455.3, + "probability": 0.8213 + }, + { + "start": 10455.82, + "end": 10460.44, + "probability": 0.864 + }, + { + "start": 10460.86, + "end": 10464.14, + "probability": 0.9563 + }, + { + "start": 10464.26, + "end": 10464.98, + "probability": 0.872 + }, + { + "start": 10465.48, + "end": 10466.4, + "probability": 0.6483 + }, + { + "start": 10467.59, + "end": 10471.8, + "probability": 0.8942 + }, + { + "start": 10473.12, + "end": 10477.88, + "probability": 0.9539 + }, + { + "start": 10478.06, + "end": 10481.34, + "probability": 0.988 + }, + { + "start": 10481.88, + "end": 10482.88, + "probability": 0.7581 + }, + { + "start": 10483.08, + "end": 10487.56, + "probability": 0.8066 + }, + { + "start": 10488.06, + "end": 10488.36, + "probability": 0.5894 + }, + { + "start": 10488.52, + "end": 10490.88, + "probability": 0.9951 + }, + { + "start": 10490.94, + "end": 10494.18, + "probability": 0.9847 + }, + { + "start": 10495.22, + "end": 10496.54, + "probability": 0.9897 + }, + { + "start": 10496.68, + "end": 10498.22, + "probability": 0.949 + }, + { + "start": 10498.7, + "end": 10501.02, + "probability": 0.8397 + }, + { + "start": 10501.16, + "end": 10506.4, + "probability": 0.8959 + }, + { + "start": 10506.56, + "end": 10506.84, + "probability": 0.5127 + }, + { + "start": 10506.88, + "end": 10511.58, + "probability": 0.9971 + }, + { + "start": 10512.16, + "end": 10513.98, + "probability": 0.8945 + }, + { + "start": 10514.24, + "end": 10516.58, + "probability": 0.9767 + }, + { + "start": 10516.9, + "end": 10519.44, + "probability": 0.9033 + }, + { + "start": 10520.22, + "end": 10523.82, + "probability": 0.9846 + }, + { + "start": 10524.24, + "end": 10526.0, + "probability": 0.9836 + }, + { + "start": 10526.78, + "end": 10527.32, + "probability": 0.8634 + }, + { + "start": 10527.98, + "end": 10528.48, + "probability": 0.8887 + }, + { + "start": 10529.56, + "end": 10529.74, + "probability": 0.5963 + }, + { + "start": 10530.12, + "end": 10530.78, + "probability": 0.9896 + }, + { + "start": 10531.0, + "end": 10534.82, + "probability": 0.7201 + }, + { + "start": 10535.22, + "end": 10536.84, + "probability": 0.9602 + }, + { + "start": 10537.2, + "end": 10541.76, + "probability": 0.8995 + }, + { + "start": 10541.82, + "end": 10542.8, + "probability": 0.9702 + }, + { + "start": 10543.32, + "end": 10546.6, + "probability": 0.9329 + }, + { + "start": 10547.0, + "end": 10548.78, + "probability": 0.9922 + }, + { + "start": 10549.44, + "end": 10550.28, + "probability": 0.9603 + }, + { + "start": 10550.46, + "end": 10551.8, + "probability": 0.9964 + }, + { + "start": 10551.98, + "end": 10555.22, + "probability": 0.9937 + }, + { + "start": 10555.22, + "end": 10560.24, + "probability": 0.9875 + }, + { + "start": 10563.44, + "end": 10566.0, + "probability": 0.9934 + }, + { + "start": 10566.16, + "end": 10568.62, + "probability": 0.9129 + }, + { + "start": 10568.7, + "end": 10570.34, + "probability": 0.7363 + }, + { + "start": 10570.34, + "end": 10571.46, + "probability": 0.9089 + }, + { + "start": 10571.96, + "end": 10574.58, + "probability": 0.9156 + }, + { + "start": 10574.64, + "end": 10577.64, + "probability": 0.9971 + }, + { + "start": 10578.16, + "end": 10582.24, + "probability": 0.9772 + }, + { + "start": 10582.62, + "end": 10583.68, + "probability": 0.8862 + }, + { + "start": 10584.14, + "end": 10590.44, + "probability": 0.9912 + }, + { + "start": 10591.2, + "end": 10593.06, + "probability": 0.9989 + }, + { + "start": 10593.16, + "end": 10598.16, + "probability": 0.9978 + }, + { + "start": 10599.06, + "end": 10600.8, + "probability": 0.6218 + }, + { + "start": 10601.46, + "end": 10604.02, + "probability": 0.9635 + }, + { + "start": 10604.34, + "end": 10607.18, + "probability": 0.9364 + }, + { + "start": 10607.98, + "end": 10609.2, + "probability": 0.9917 + }, + { + "start": 10609.32, + "end": 10611.44, + "probability": 0.9699 + }, + { + "start": 10611.9, + "end": 10614.78, + "probability": 0.9492 + }, + { + "start": 10615.1, + "end": 10618.4, + "probability": 0.993 + }, + { + "start": 10619.44, + "end": 10622.8, + "probability": 0.7952 + }, + { + "start": 10623.2, + "end": 10629.4, + "probability": 0.9755 + }, + { + "start": 10629.5, + "end": 10629.99, + "probability": 0.9005 + }, + { + "start": 10630.28, + "end": 10633.06, + "probability": 0.9765 + }, + { + "start": 10633.18, + "end": 10637.0, + "probability": 0.9924 + }, + { + "start": 10637.38, + "end": 10637.82, + "probability": 0.7267 + }, + { + "start": 10638.12, + "end": 10639.24, + "probability": 0.9628 + }, + { + "start": 10639.4, + "end": 10642.86, + "probability": 0.9897 + }, + { + "start": 10642.98, + "end": 10644.83, + "probability": 0.1139 + }, + { + "start": 10646.16, + "end": 10646.56, + "probability": 0.0826 + }, + { + "start": 10646.66, + "end": 10649.56, + "probability": 0.9921 + }, + { + "start": 10649.7, + "end": 10650.9, + "probability": 0.9993 + }, + { + "start": 10651.24, + "end": 10651.94, + "probability": 0.725 + }, + { + "start": 10652.0, + "end": 10652.32, + "probability": 0.611 + }, + { + "start": 10652.44, + "end": 10655.78, + "probability": 0.9966 + }, + { + "start": 10655.84, + "end": 10656.76, + "probability": 0.7415 + }, + { + "start": 10657.2, + "end": 10660.2, + "probability": 0.9203 + }, + { + "start": 10660.78, + "end": 10661.7, + "probability": 0.4756 + }, + { + "start": 10661.96, + "end": 10663.24, + "probability": 0.9431 + }, + { + "start": 10663.4, + "end": 10666.4, + "probability": 0.9197 + }, + { + "start": 10666.82, + "end": 10668.22, + "probability": 0.8923 + }, + { + "start": 10668.34, + "end": 10669.18, + "probability": 0.3929 + }, + { + "start": 10669.36, + "end": 10670.62, + "probability": 0.8855 + }, + { + "start": 10670.94, + "end": 10675.14, + "probability": 0.8605 + }, + { + "start": 10675.46, + "end": 10678.18, + "probability": 0.8789 + }, + { + "start": 10678.68, + "end": 10680.6, + "probability": 0.8953 + }, + { + "start": 10681.52, + "end": 10684.04, + "probability": 0.9565 + }, + { + "start": 10684.4, + "end": 10685.66, + "probability": 0.9713 + }, + { + "start": 10686.08, + "end": 10689.94, + "probability": 0.9678 + }, + { + "start": 10690.26, + "end": 10691.52, + "probability": 0.839 + }, + { + "start": 10691.62, + "end": 10694.24, + "probability": 0.9818 + }, + { + "start": 10694.34, + "end": 10694.62, + "probability": 0.6528 + }, + { + "start": 10694.66, + "end": 10695.32, + "probability": 0.9406 + }, + { + "start": 10696.02, + "end": 10699.64, + "probability": 0.9922 + }, + { + "start": 10700.82, + "end": 10703.7, + "probability": 0.8808 + }, + { + "start": 10704.02, + "end": 10705.28, + "probability": 0.9229 + }, + { + "start": 10705.36, + "end": 10706.5, + "probability": 0.9938 + }, + { + "start": 10706.62, + "end": 10708.12, + "probability": 0.9463 + }, + { + "start": 10708.62, + "end": 10711.44, + "probability": 0.9932 + }, + { + "start": 10711.56, + "end": 10713.06, + "probability": 0.9957 + }, + { + "start": 10713.26, + "end": 10717.4, + "probability": 0.9851 + }, + { + "start": 10717.92, + "end": 10719.16, + "probability": 0.9595 + }, + { + "start": 10719.78, + "end": 10723.1, + "probability": 0.9465 + }, + { + "start": 10723.48, + "end": 10723.66, + "probability": 0.7467 + }, + { + "start": 10723.66, + "end": 10724.16, + "probability": 0.7468 + }, + { + "start": 10725.44, + "end": 10730.04, + "probability": 0.9244 + }, + { + "start": 10731.18, + "end": 10734.92, + "probability": 0.7573 + }, + { + "start": 10745.96, + "end": 10748.66, + "probability": 0.7052 + }, + { + "start": 10749.54, + "end": 10751.44, + "probability": 0.7735 + }, + { + "start": 10752.4, + "end": 10756.02, + "probability": 0.7428 + }, + { + "start": 10756.4, + "end": 10758.08, + "probability": 0.9691 + }, + { + "start": 10759.02, + "end": 10760.76, + "probability": 0.7687 + }, + { + "start": 10761.36, + "end": 10761.86, + "probability": 0.939 + }, + { + "start": 10762.4, + "end": 10763.26, + "probability": 0.7559 + }, + { + "start": 10763.5, + "end": 10765.0, + "probability": 0.9493 + }, + { + "start": 10765.12, + "end": 10770.7, + "probability": 0.9945 + }, + { + "start": 10770.84, + "end": 10773.4, + "probability": 0.9584 + }, + { + "start": 10774.08, + "end": 10776.28, + "probability": 0.7244 + }, + { + "start": 10777.54, + "end": 10778.1, + "probability": 0.1151 + }, + { + "start": 10778.1, + "end": 10781.58, + "probability": 0.9256 + }, + { + "start": 10782.44, + "end": 10784.28, + "probability": 0.9937 + }, + { + "start": 10784.6, + "end": 10786.46, + "probability": 0.8125 + }, + { + "start": 10787.38, + "end": 10789.86, + "probability": 0.8712 + }, + { + "start": 10790.9, + "end": 10794.34, + "probability": 0.9724 + }, + { + "start": 10794.82, + "end": 10795.3, + "probability": 0.8646 + }, + { + "start": 10796.4, + "end": 10797.96, + "probability": 0.8371 + }, + { + "start": 10798.52, + "end": 10799.48, + "probability": 0.9346 + }, + { + "start": 10800.36, + "end": 10801.5, + "probability": 0.9688 + }, + { + "start": 10801.78, + "end": 10802.42, + "probability": 0.9848 + }, + { + "start": 10802.52, + "end": 10805.16, + "probability": 0.9531 + }, + { + "start": 10806.06, + "end": 10808.46, + "probability": 0.906 + }, + { + "start": 10809.06, + "end": 10810.7, + "probability": 0.8851 + }, + { + "start": 10811.4, + "end": 10812.9, + "probability": 0.7974 + }, + { + "start": 10813.42, + "end": 10815.48, + "probability": 0.8969 + }, + { + "start": 10815.62, + "end": 10817.64, + "probability": 0.9936 + }, + { + "start": 10818.96, + "end": 10820.7, + "probability": 0.8384 + }, + { + "start": 10821.38, + "end": 10822.8, + "probability": 0.9381 + }, + { + "start": 10823.48, + "end": 10825.98, + "probability": 0.7929 + }, + { + "start": 10826.6, + "end": 10827.16, + "probability": 0.94 + }, + { + "start": 10827.84, + "end": 10830.6, + "probability": 0.9835 + }, + { + "start": 10832.44, + "end": 10836.04, + "probability": 0.9813 + }, + { + "start": 10836.68, + "end": 10837.92, + "probability": 0.7701 + }, + { + "start": 10838.38, + "end": 10840.42, + "probability": 0.9508 + }, + { + "start": 10840.98, + "end": 10841.98, + "probability": 0.823 + }, + { + "start": 10842.52, + "end": 10844.46, + "probability": 0.8386 + }, + { + "start": 10845.76, + "end": 10848.42, + "probability": 0.9856 + }, + { + "start": 10849.92, + "end": 10851.04, + "probability": 0.6852 + }, + { + "start": 10851.32, + "end": 10853.84, + "probability": 0.8271 + }, + { + "start": 10854.34, + "end": 10855.46, + "probability": 0.6972 + }, + { + "start": 10856.18, + "end": 10859.8, + "probability": 0.8481 + }, + { + "start": 10861.54, + "end": 10865.02, + "probability": 0.9644 + }, + { + "start": 10865.66, + "end": 10866.6, + "probability": 0.7993 + }, + { + "start": 10866.78, + "end": 10867.34, + "probability": 0.5095 + }, + { + "start": 10867.44, + "end": 10870.26, + "probability": 0.8065 + }, + { + "start": 10871.22, + "end": 10872.48, + "probability": 0.5461 + }, + { + "start": 10873.08, + "end": 10874.28, + "probability": 0.7799 + }, + { + "start": 10875.3, + "end": 10877.14, + "probability": 0.9626 + }, + { + "start": 10877.96, + "end": 10878.86, + "probability": 0.8455 + }, + { + "start": 10879.64, + "end": 10880.38, + "probability": 0.944 + }, + { + "start": 10881.08, + "end": 10884.58, + "probability": 0.9918 + }, + { + "start": 10885.8, + "end": 10891.04, + "probability": 0.8783 + }, + { + "start": 10891.48, + "end": 10893.26, + "probability": 0.757 + }, + { + "start": 10893.9, + "end": 10895.72, + "probability": 0.9766 + }, + { + "start": 10896.32, + "end": 10899.18, + "probability": 0.9641 + }, + { + "start": 10899.84, + "end": 10904.06, + "probability": 0.9909 + }, + { + "start": 10904.3, + "end": 10905.68, + "probability": 0.9793 + }, + { + "start": 10905.84, + "end": 10908.1, + "probability": 0.9934 + }, + { + "start": 10909.62, + "end": 10911.98, + "probability": 0.9685 + }, + { + "start": 10913.24, + "end": 10915.32, + "probability": 0.9286 + }, + { + "start": 10915.66, + "end": 10916.54, + "probability": 0.9626 + }, + { + "start": 10916.84, + "end": 10917.52, + "probability": 0.6159 + }, + { + "start": 10917.98, + "end": 10919.3, + "probability": 0.9878 + }, + { + "start": 10919.7, + "end": 10922.18, + "probability": 0.9685 + }, + { + "start": 10922.66, + "end": 10923.58, + "probability": 0.8326 + }, + { + "start": 10924.18, + "end": 10924.9, + "probability": 0.8831 + }, + { + "start": 10925.02, + "end": 10925.46, + "probability": 0.7727 + }, + { + "start": 10925.6, + "end": 10929.36, + "probability": 0.9715 + }, + { + "start": 10930.02, + "end": 10932.8, + "probability": 0.9821 + }, + { + "start": 10932.88, + "end": 10934.66, + "probability": 0.7642 + }, + { + "start": 10935.22, + "end": 10937.44, + "probability": 0.8996 + }, + { + "start": 10937.9, + "end": 10938.68, + "probability": 0.6699 + }, + { + "start": 10939.56, + "end": 10943.54, + "probability": 0.9946 + }, + { + "start": 10943.7, + "end": 10945.06, + "probability": 0.9049 + }, + { + "start": 10945.92, + "end": 10948.18, + "probability": 0.841 + }, + { + "start": 10948.48, + "end": 10949.38, + "probability": 0.9391 + }, + { + "start": 10950.3, + "end": 10951.12, + "probability": 0.7453 + }, + { + "start": 10951.26, + "end": 10953.66, + "probability": 0.9956 + }, + { + "start": 10953.66, + "end": 10957.42, + "probability": 0.985 + }, + { + "start": 10957.56, + "end": 10958.76, + "probability": 0.9902 + }, + { + "start": 10958.92, + "end": 10959.54, + "probability": 0.9873 + }, + { + "start": 10959.64, + "end": 10960.46, + "probability": 0.9918 + }, + { + "start": 10961.14, + "end": 10961.8, + "probability": 0.9663 + }, + { + "start": 10962.82, + "end": 10964.32, + "probability": 0.899 + }, + { + "start": 10964.5, + "end": 10966.44, + "probability": 0.9825 + }, + { + "start": 10967.0, + "end": 10968.92, + "probability": 0.9677 + }, + { + "start": 10968.98, + "end": 10971.4, + "probability": 0.9827 + }, + { + "start": 10971.46, + "end": 10972.68, + "probability": 0.9542 + }, + { + "start": 10973.7, + "end": 10976.16, + "probability": 0.9969 + }, + { + "start": 10976.96, + "end": 10977.52, + "probability": 0.7716 + }, + { + "start": 10978.44, + "end": 10979.36, + "probability": 0.9506 + }, + { + "start": 10979.56, + "end": 10980.3, + "probability": 0.8488 + }, + { + "start": 10980.56, + "end": 10983.58, + "probability": 0.9918 + }, + { + "start": 10984.64, + "end": 10987.32, + "probability": 0.9902 + }, + { + "start": 10988.08, + "end": 10989.42, + "probability": 0.9949 + }, + { + "start": 10990.26, + "end": 10991.28, + "probability": 0.9669 + }, + { + "start": 10991.96, + "end": 10994.64, + "probability": 0.8516 + }, + { + "start": 10994.7, + "end": 10996.88, + "probability": 0.9702 + }, + { + "start": 10997.8, + "end": 10998.4, + "probability": 0.9359 + }, + { + "start": 10998.56, + "end": 10999.27, + "probability": 0.2499 + }, + { + "start": 10999.3, + "end": 11001.38, + "probability": 0.1866 + }, + { + "start": 11002.56, + "end": 11003.2, + "probability": 0.3741 + }, + { + "start": 11003.78, + "end": 11004.64, + "probability": 0.2381 + }, + { + "start": 11006.06, + "end": 11006.54, + "probability": 0.2877 + }, + { + "start": 11006.54, + "end": 11006.54, + "probability": 0.5948 + }, + { + "start": 11006.54, + "end": 11007.44, + "probability": 0.3254 + }, + { + "start": 11035.58, + "end": 11038.2, + "probability": 0.3033 + }, + { + "start": 11048.3, + "end": 11049.34, + "probability": 0.3629 + }, + { + "start": 11049.46, + "end": 11051.06, + "probability": 0.9525 + }, + { + "start": 11051.28, + "end": 11058.88, + "probability": 0.7852 + }, + { + "start": 11059.14, + "end": 11067.06, + "probability": 0.9728 + }, + { + "start": 11069.92, + "end": 11069.92, + "probability": 0.3719 + }, + { + "start": 11069.92, + "end": 11073.64, + "probability": 0.9885 + }, + { + "start": 11074.58, + "end": 11078.42, + "probability": 0.9135 + }, + { + "start": 11079.26, + "end": 11082.9, + "probability": 0.8433 + }, + { + "start": 11083.44, + "end": 11086.38, + "probability": 0.9897 + }, + { + "start": 11086.38, + "end": 11089.5, + "probability": 0.7834 + }, + { + "start": 11089.68, + "end": 11092.22, + "probability": 0.9014 + }, + { + "start": 11093.18, + "end": 11096.92, + "probability": 0.9421 + }, + { + "start": 11097.64, + "end": 11099.18, + "probability": 0.8139 + }, + { + "start": 11100.42, + "end": 11105.26, + "probability": 0.978 + }, + { + "start": 11106.06, + "end": 11107.39, + "probability": 0.718 + }, + { + "start": 11107.64, + "end": 11108.6, + "probability": 0.9545 + }, + { + "start": 11109.1, + "end": 11110.79, + "probability": 0.9493 + }, + { + "start": 11112.36, + "end": 11115.98, + "probability": 0.8879 + }, + { + "start": 11117.24, + "end": 11121.06, + "probability": 0.9596 + }, + { + "start": 11121.58, + "end": 11126.25, + "probability": 0.9078 + }, + { + "start": 11127.16, + "end": 11133.24, + "probability": 0.8245 + }, + { + "start": 11133.32, + "end": 11139.76, + "probability": 0.8548 + }, + { + "start": 11139.76, + "end": 11146.76, + "probability": 0.9983 + }, + { + "start": 11147.11, + "end": 11151.0, + "probability": 0.9407 + }, + { + "start": 11151.9, + "end": 11156.2, + "probability": 0.8623 + }, + { + "start": 11156.28, + "end": 11160.58, + "probability": 0.8495 + }, + { + "start": 11160.72, + "end": 11161.84, + "probability": 0.957 + }, + { + "start": 11162.86, + "end": 11165.1, + "probability": 0.9157 + }, + { + "start": 11166.12, + "end": 11169.57, + "probability": 0.986 + }, + { + "start": 11170.12, + "end": 11174.54, + "probability": 0.96 + }, + { + "start": 11175.36, + "end": 11178.8, + "probability": 0.9717 + }, + { + "start": 11179.66, + "end": 11182.86, + "probability": 0.852 + }, + { + "start": 11183.92, + "end": 11186.4, + "probability": 0.9278 + }, + { + "start": 11187.16, + "end": 11191.36, + "probability": 0.9812 + }, + { + "start": 11192.34, + "end": 11196.14, + "probability": 0.96 + }, + { + "start": 11196.7, + "end": 11197.74, + "probability": 0.8538 + }, + { + "start": 11198.12, + "end": 11200.24, + "probability": 0.9046 + }, + { + "start": 11200.44, + "end": 11202.58, + "probability": 0.8527 + }, + { + "start": 11203.28, + "end": 11205.24, + "probability": 0.8774 + }, + { + "start": 11206.34, + "end": 11209.24, + "probability": 0.8285 + }, + { + "start": 11209.52, + "end": 11210.62, + "probability": 0.863 + }, + { + "start": 11210.7, + "end": 11212.2, + "probability": 0.7943 + }, + { + "start": 11212.78, + "end": 11217.04, + "probability": 0.8615 + }, + { + "start": 11217.62, + "end": 11217.78, + "probability": 0.6173 + }, + { + "start": 11217.82, + "end": 11223.71, + "probability": 0.9506 + }, + { + "start": 11224.08, + "end": 11226.46, + "probability": 0.7788 + }, + { + "start": 11227.04, + "end": 11229.44, + "probability": 0.9601 + }, + { + "start": 11230.06, + "end": 11231.02, + "probability": 0.834 + }, + { + "start": 11232.34, + "end": 11233.04, + "probability": 0.8426 + }, + { + "start": 11234.7, + "end": 11237.13, + "probability": 0.9344 + }, + { + "start": 11238.7, + "end": 11240.28, + "probability": 0.6158 + }, + { + "start": 11240.56, + "end": 11244.5, + "probability": 0.6481 + }, + { + "start": 11244.5, + "end": 11245.28, + "probability": 0.8105 + }, + { + "start": 11246.0, + "end": 11246.56, + "probability": 0.5766 + }, + { + "start": 11246.9, + "end": 11247.24, + "probability": 0.8308 + }, + { + "start": 11247.36, + "end": 11248.18, + "probability": 0.9912 + }, + { + "start": 11248.8, + "end": 11249.64, + "probability": 0.4837 + }, + { + "start": 11250.32, + "end": 11250.92, + "probability": 0.7738 + }, + { + "start": 11251.0, + "end": 11254.12, + "probability": 0.9713 + }, + { + "start": 11254.82, + "end": 11258.24, + "probability": 0.9861 + }, + { + "start": 11258.32, + "end": 11263.04, + "probability": 0.991 + }, + { + "start": 11263.12, + "end": 11264.12, + "probability": 0.8711 + }, + { + "start": 11264.64, + "end": 11266.74, + "probability": 0.9938 + }, + { + "start": 11267.28, + "end": 11269.44, + "probability": 0.957 + }, + { + "start": 11269.54, + "end": 11272.1, + "probability": 0.8058 + }, + { + "start": 11272.14, + "end": 11272.42, + "probability": 0.8975 + }, + { + "start": 11273.44, + "end": 11274.0, + "probability": 0.6192 + }, + { + "start": 11274.12, + "end": 11279.12, + "probability": 0.9641 + }, + { + "start": 11279.24, + "end": 11283.14, + "probability": 0.961 + }, + { + "start": 11283.98, + "end": 11286.4, + "probability": 0.9983 + }, + { + "start": 11287.0, + "end": 11289.52, + "probability": 0.9998 + }, + { + "start": 11291.32, + "end": 11292.7, + "probability": 0.9937 + }, + { + "start": 11292.86, + "end": 11293.42, + "probability": 0.9406 + }, + { + "start": 11293.46, + "end": 11298.08, + "probability": 0.9921 + }, + { + "start": 11298.88, + "end": 11302.0, + "probability": 0.8672 + }, + { + "start": 11302.0, + "end": 11304.16, + "probability": 0.9472 + }, + { + "start": 11305.06, + "end": 11309.04, + "probability": 0.9978 + }, + { + "start": 11309.32, + "end": 11312.8, + "probability": 0.7746 + }, + { + "start": 11312.8, + "end": 11315.9, + "probability": 0.9735 + }, + { + "start": 11316.54, + "end": 11317.28, + "probability": 0.7034 + }, + { + "start": 11317.88, + "end": 11321.66, + "probability": 0.9946 + }, + { + "start": 11321.96, + "end": 11323.92, + "probability": 0.9753 + }, + { + "start": 11324.0, + "end": 11324.54, + "probability": 0.6981 + }, + { + "start": 11325.0, + "end": 11326.54, + "probability": 0.9701 + }, + { + "start": 11327.84, + "end": 11329.82, + "probability": 0.8291 + }, + { + "start": 11330.64, + "end": 11335.88, + "probability": 0.9863 + }, + { + "start": 11336.66, + "end": 11339.62, + "probability": 0.9575 + }, + { + "start": 11340.16, + "end": 11344.58, + "probability": 0.8688 + }, + { + "start": 11345.72, + "end": 11347.88, + "probability": 0.7485 + }, + { + "start": 11348.84, + "end": 11353.26, + "probability": 0.7986 + }, + { + "start": 11353.4, + "end": 11357.1, + "probability": 0.6629 + }, + { + "start": 11358.28, + "end": 11364.08, + "probability": 0.9339 + }, + { + "start": 11365.04, + "end": 11365.82, + "probability": 0.7687 + }, + { + "start": 11365.9, + "end": 11369.48, + "probability": 0.8104 + }, + { + "start": 11369.66, + "end": 11373.02, + "probability": 0.9114 + }, + { + "start": 11373.94, + "end": 11375.64, + "probability": 0.741 + }, + { + "start": 11375.94, + "end": 11379.28, + "probability": 0.8721 + }, + { + "start": 11379.84, + "end": 11381.82, + "probability": 0.6489 + }, + { + "start": 11382.5, + "end": 11384.22, + "probability": 0.663 + }, + { + "start": 11384.38, + "end": 11385.5, + "probability": 0.6431 + }, + { + "start": 11386.98, + "end": 11389.28, + "probability": 0.6606 + }, + { + "start": 11389.34, + "end": 11392.02, + "probability": 0.9944 + }, + { + "start": 11392.02, + "end": 11396.68, + "probability": 0.9271 + }, + { + "start": 11396.84, + "end": 11397.4, + "probability": 0.7889 + }, + { + "start": 11397.72, + "end": 11398.36, + "probability": 0.7574 + }, + { + "start": 11401.68, + "end": 11403.66, + "probability": 0.8848 + }, + { + "start": 11404.64, + "end": 11406.66, + "probability": 0.3496 + }, + { + "start": 11407.76, + "end": 11408.22, + "probability": 0.9272 + }, + { + "start": 11408.34, + "end": 11410.0, + "probability": 0.8003 + }, + { + "start": 11410.04, + "end": 11412.16, + "probability": 0.8321 + }, + { + "start": 11413.16, + "end": 11414.56, + "probability": 0.9468 + }, + { + "start": 11415.38, + "end": 11416.5, + "probability": 0.4957 + }, + { + "start": 11417.32, + "end": 11419.94, + "probability": 0.9026 + }, + { + "start": 11420.62, + "end": 11422.98, + "probability": 0.9864 + }, + { + "start": 11423.46, + "end": 11425.34, + "probability": 0.9004 + }, + { + "start": 11425.96, + "end": 11427.66, + "probability": 0.5874 + }, + { + "start": 11428.16, + "end": 11428.37, + "probability": 0.2476 + }, + { + "start": 11430.6, + "end": 11432.76, + "probability": 0.4352 + }, + { + "start": 11434.12, + "end": 11434.5, + "probability": 0.135 + }, + { + "start": 11436.8, + "end": 11438.58, + "probability": 0.8831 + }, + { + "start": 11438.98, + "end": 11439.59, + "probability": 0.5669 + }, + { + "start": 11440.56, + "end": 11443.0, + "probability": 0.1843 + }, + { + "start": 11443.24, + "end": 11444.86, + "probability": 0.6195 + }, + { + "start": 11445.0, + "end": 11445.66, + "probability": 0.3045 + }, + { + "start": 11445.78, + "end": 11446.86, + "probability": 0.6253 + }, + { + "start": 11450.9, + "end": 11451.74, + "probability": 0.4075 + }, + { + "start": 11451.84, + "end": 11453.74, + "probability": 0.7849 + }, + { + "start": 11453.74, + "end": 11454.78, + "probability": 0.2932 + }, + { + "start": 11455.08, + "end": 11456.98, + "probability": 0.6603 + }, + { + "start": 11457.44, + "end": 11459.36, + "probability": 0.7607 + }, + { + "start": 11459.46, + "end": 11462.68, + "probability": 0.9965 + }, + { + "start": 11463.16, + "end": 11465.6, + "probability": 0.9918 + }, + { + "start": 11466.14, + "end": 11466.82, + "probability": 0.7775 + }, + { + "start": 11467.52, + "end": 11470.66, + "probability": 0.9825 + }, + { + "start": 11470.78, + "end": 11473.4, + "probability": 0.9961 + }, + { + "start": 11474.44, + "end": 11479.5, + "probability": 0.9976 + }, + { + "start": 11479.86, + "end": 11481.56, + "probability": 0.9824 + }, + { + "start": 11481.96, + "end": 11484.22, + "probability": 0.9898 + }, + { + "start": 11484.56, + "end": 11486.18, + "probability": 0.9974 + }, + { + "start": 11486.24, + "end": 11487.02, + "probability": 0.8337 + }, + { + "start": 11487.18, + "end": 11487.4, + "probability": 0.8224 + }, + { + "start": 11487.74, + "end": 11491.58, + "probability": 0.999 + }, + { + "start": 11491.76, + "end": 11493.82, + "probability": 0.8724 + }, + { + "start": 11494.24, + "end": 11496.9, + "probability": 0.92 + }, + { + "start": 11496.9, + "end": 11497.28, + "probability": 0.659 + }, + { + "start": 11497.3, + "end": 11497.4, + "probability": 0.6553 + }, + { + "start": 11498.0, + "end": 11498.22, + "probability": 0.5358 + }, + { + "start": 11498.76, + "end": 11502.0, + "probability": 0.8979 + }, + { + "start": 11502.0, + "end": 11504.36, + "probability": 0.9377 + }, + { + "start": 11504.58, + "end": 11508.16, + "probability": 0.9946 + }, + { + "start": 11508.7, + "end": 11511.92, + "probability": 0.9949 + }, + { + "start": 11511.92, + "end": 11514.94, + "probability": 0.9774 + }, + { + "start": 11515.02, + "end": 11517.62, + "probability": 0.9741 + }, + { + "start": 11518.04, + "end": 11520.36, + "probability": 0.873 + }, + { + "start": 11521.2, + "end": 11521.32, + "probability": 0.4175 + }, + { + "start": 11521.44, + "end": 11523.68, + "probability": 0.9669 + }, + { + "start": 11523.74, + "end": 11525.06, + "probability": 0.9035 + }, + { + "start": 11525.78, + "end": 11530.16, + "probability": 0.9869 + }, + { + "start": 11530.16, + "end": 11534.0, + "probability": 0.9956 + }, + { + "start": 11534.2, + "end": 11535.6, + "probability": 0.9937 + }, + { + "start": 11535.7, + "end": 11536.12, + "probability": 0.8336 + }, + { + "start": 11536.2, + "end": 11536.7, + "probability": 0.5544 + }, + { + "start": 11536.74, + "end": 11537.46, + "probability": 0.9541 + }, + { + "start": 11538.24, + "end": 11539.0, + "probability": 0.7933 + }, + { + "start": 11539.54, + "end": 11540.34, + "probability": 0.8562 + }, + { + "start": 11540.36, + "end": 11541.8, + "probability": 0.8104 + }, + { + "start": 11541.84, + "end": 11543.02, + "probability": 0.8322 + }, + { + "start": 11544.32, + "end": 11545.58, + "probability": 0.8887 + }, + { + "start": 11560.52, + "end": 11560.52, + "probability": 0.4263 + }, + { + "start": 11560.52, + "end": 11560.52, + "probability": 0.0563 + }, + { + "start": 11560.52, + "end": 11562.58, + "probability": 0.4548 + }, + { + "start": 11564.16, + "end": 11567.48, + "probability": 0.9853 + }, + { + "start": 11568.6, + "end": 11569.72, + "probability": 0.4166 + }, + { + "start": 11569.98, + "end": 11572.0, + "probability": 0.9274 + }, + { + "start": 11572.06, + "end": 11572.7, + "probability": 0.6545 + }, + { + "start": 11572.78, + "end": 11574.82, + "probability": 0.5044 + }, + { + "start": 11575.18, + "end": 11577.54, + "probability": 0.9302 + }, + { + "start": 11577.56, + "end": 11579.46, + "probability": 0.6186 + } + ], + "segments_count": 3833, + "words_count": 19698, + "avg_words_per_segment": 5.1391, + "avg_segment_duration": 2.2495, + "avg_words_per_minute": 101.7474, + "plenum_id": "47063", + "duration": 11615.83, + "title": null, + "plenum_date": "2015-11-24" +} \ No newline at end of file