diff --git "a/51228/metadata.json" "b/51228/metadata.json" new file mode 100644--- /dev/null +++ "b/51228/metadata.json" @@ -0,0 +1,40112 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "51228", + "quality_score": 0.9009, + "per_segment_quality_scores": [ + { + "start": 43.14, + "end": 43.72, + "probability": 0.8005 + }, + { + "start": 46.66, + "end": 48.08, + "probability": 0.724 + }, + { + "start": 48.2, + "end": 49.62, + "probability": 0.8486 + }, + { + "start": 49.68, + "end": 51.38, + "probability": 0.8308 + }, + { + "start": 52.02, + "end": 54.14, + "probability": 0.9521 + }, + { + "start": 54.74, + "end": 57.7, + "probability": 0.8952 + }, + { + "start": 58.32, + "end": 60.36, + "probability": 0.4033 + }, + { + "start": 61.89, + "end": 65.3, + "probability": 0.9485 + }, + { + "start": 66.04, + "end": 68.0, + "probability": 0.6345 + }, + { + "start": 68.74, + "end": 71.56, + "probability": 0.9082 + }, + { + "start": 71.62, + "end": 73.16, + "probability": 0.4164 + }, + { + "start": 73.86, + "end": 75.56, + "probability": 0.9031 + }, + { + "start": 75.84, + "end": 79.68, + "probability": 0.6724 + }, + { + "start": 83.0, + "end": 84.5, + "probability": 0.5646 + }, + { + "start": 84.5, + "end": 87.36, + "probability": 0.884 + }, + { + "start": 88.52, + "end": 90.9, + "probability": 0.8436 + }, + { + "start": 91.4, + "end": 92.44, + "probability": 0.4637 + }, + { + "start": 93.12, + "end": 97.24, + "probability": 0.214 + }, + { + "start": 101.14, + "end": 105.24, + "probability": 0.0331 + }, + { + "start": 108.7, + "end": 116.46, + "probability": 0.0255 + }, + { + "start": 117.29, + "end": 120.5, + "probability": 0.0253 + }, + { + "start": 123.62, + "end": 126.18, + "probability": 0.1946 + }, + { + "start": 128.26, + "end": 128.76, + "probability": 0.0627 + }, + { + "start": 128.86, + "end": 130.32, + "probability": 0.0982 + }, + { + "start": 130.32, + "end": 130.78, + "probability": 0.0599 + }, + { + "start": 131.02, + "end": 131.74, + "probability": 0.0278 + }, + { + "start": 131.78, + "end": 131.84, + "probability": 0.0636 + }, + { + "start": 131.84, + "end": 131.98, + "probability": 0.0322 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.22, + "end": 134.82, + "probability": 0.5135 + }, + { + "start": 135.46, + "end": 138.48, + "probability": 0.9861 + }, + { + "start": 139.14, + "end": 142.55, + "probability": 0.9681 + }, + { + "start": 142.78, + "end": 143.56, + "probability": 0.6122 + }, + { + "start": 149.06, + "end": 150.16, + "probability": 0.99 + }, + { + "start": 151.24, + "end": 152.56, + "probability": 0.4946 + }, + { + "start": 154.02, + "end": 154.34, + "probability": 0.4742 + }, + { + "start": 154.86, + "end": 159.52, + "probability": 0.9965 + }, + { + "start": 160.38, + "end": 164.22, + "probability": 0.9321 + }, + { + "start": 164.22, + "end": 168.12, + "probability": 0.9978 + }, + { + "start": 168.8, + "end": 169.78, + "probability": 0.8035 + }, + { + "start": 170.84, + "end": 172.22, + "probability": 0.9177 + }, + { + "start": 172.6, + "end": 174.18, + "probability": 0.9956 + }, + { + "start": 174.84, + "end": 176.76, + "probability": 0.9956 + }, + { + "start": 177.64, + "end": 179.02, + "probability": 0.9648 + }, + { + "start": 180.64, + "end": 184.8, + "probability": 0.9717 + }, + { + "start": 185.14, + "end": 189.72, + "probability": 0.7244 + }, + { + "start": 190.86, + "end": 193.38, + "probability": 0.9973 + }, + { + "start": 193.38, + "end": 196.3, + "probability": 0.9994 + }, + { + "start": 197.08, + "end": 198.2, + "probability": 0.887 + }, + { + "start": 198.28, + "end": 198.9, + "probability": 0.8898 + }, + { + "start": 199.0, + "end": 200.48, + "probability": 0.9925 + }, + { + "start": 201.0, + "end": 203.32, + "probability": 0.9423 + }, + { + "start": 204.64, + "end": 210.26, + "probability": 0.8742 + }, + { + "start": 210.9, + "end": 216.7, + "probability": 0.9937 + }, + { + "start": 217.54, + "end": 221.28, + "probability": 0.9876 + }, + { + "start": 222.06, + "end": 224.74, + "probability": 0.9968 + }, + { + "start": 224.78, + "end": 225.46, + "probability": 0.7076 + }, + { + "start": 226.06, + "end": 229.06, + "probability": 0.9458 + }, + { + "start": 229.66, + "end": 234.6, + "probability": 0.9944 + }, + { + "start": 236.06, + "end": 240.18, + "probability": 0.9949 + }, + { + "start": 240.7, + "end": 243.56, + "probability": 0.9956 + }, + { + "start": 244.18, + "end": 245.84, + "probability": 0.9824 + }, + { + "start": 246.72, + "end": 249.98, + "probability": 0.9989 + }, + { + "start": 250.52, + "end": 253.66, + "probability": 0.9063 + }, + { + "start": 254.7, + "end": 258.72, + "probability": 0.9741 + }, + { + "start": 260.12, + "end": 262.94, + "probability": 0.9142 + }, + { + "start": 263.6, + "end": 266.02, + "probability": 0.9875 + }, + { + "start": 266.14, + "end": 268.82, + "probability": 0.8111 + }, + { + "start": 270.24, + "end": 270.74, + "probability": 0.567 + }, + { + "start": 270.84, + "end": 275.94, + "probability": 0.983 + }, + { + "start": 275.94, + "end": 280.18, + "probability": 0.991 + }, + { + "start": 281.16, + "end": 284.24, + "probability": 0.9993 + }, + { + "start": 284.74, + "end": 285.78, + "probability": 0.9449 + }, + { + "start": 286.4, + "end": 287.78, + "probability": 0.9875 + }, + { + "start": 288.08, + "end": 291.2, + "probability": 0.9878 + }, + { + "start": 292.4, + "end": 295.42, + "probability": 0.9973 + }, + { + "start": 295.42, + "end": 298.9, + "probability": 0.9992 + }, + { + "start": 299.7, + "end": 301.62, + "probability": 0.9854 + }, + { + "start": 301.88, + "end": 304.0, + "probability": 0.8318 + }, + { + "start": 304.44, + "end": 306.14, + "probability": 0.8799 + }, + { + "start": 306.26, + "end": 307.98, + "probability": 0.9985 + }, + { + "start": 308.82, + "end": 311.3, + "probability": 0.981 + }, + { + "start": 312.06, + "end": 313.5, + "probability": 0.9995 + }, + { + "start": 314.64, + "end": 317.52, + "probability": 0.9438 + }, + { + "start": 317.84, + "end": 321.98, + "probability": 0.9935 + }, + { + "start": 322.84, + "end": 324.2, + "probability": 0.9958 + }, + { + "start": 326.22, + "end": 328.9, + "probability": 0.976 + }, + { + "start": 328.98, + "end": 330.44, + "probability": 0.8611 + }, + { + "start": 330.66, + "end": 331.58, + "probability": 0.7622 + }, + { + "start": 331.68, + "end": 332.32, + "probability": 0.775 + }, + { + "start": 333.04, + "end": 338.28, + "probability": 0.9914 + }, + { + "start": 338.64, + "end": 339.64, + "probability": 0.8703 + }, + { + "start": 340.5, + "end": 345.38, + "probability": 0.9919 + }, + { + "start": 346.14, + "end": 348.56, + "probability": 0.9907 + }, + { + "start": 349.18, + "end": 353.38, + "probability": 0.9919 + }, + { + "start": 354.34, + "end": 359.54, + "probability": 0.9945 + }, + { + "start": 359.6, + "end": 363.16, + "probability": 0.9932 + }, + { + "start": 363.66, + "end": 366.06, + "probability": 0.8424 + }, + { + "start": 367.36, + "end": 374.34, + "probability": 0.93 + }, + { + "start": 375.2, + "end": 377.04, + "probability": 0.9714 + }, + { + "start": 378.18, + "end": 382.32, + "probability": 0.993 + }, + { + "start": 383.16, + "end": 385.24, + "probability": 0.8575 + }, + { + "start": 385.88, + "end": 387.2, + "probability": 0.9551 + }, + { + "start": 387.24, + "end": 391.34, + "probability": 0.8594 + }, + { + "start": 391.96, + "end": 393.52, + "probability": 0.9881 + }, + { + "start": 394.3, + "end": 397.84, + "probability": 0.9248 + }, + { + "start": 397.84, + "end": 400.32, + "probability": 0.9983 + }, + { + "start": 400.4, + "end": 401.68, + "probability": 0.8704 + }, + { + "start": 402.36, + "end": 402.78, + "probability": 0.9507 + }, + { + "start": 403.68, + "end": 406.0, + "probability": 0.9934 + }, + { + "start": 406.34, + "end": 409.02, + "probability": 0.9814 + }, + { + "start": 410.62, + "end": 411.38, + "probability": 0.9698 + }, + { + "start": 411.98, + "end": 415.9, + "probability": 0.9899 + }, + { + "start": 415.9, + "end": 418.84, + "probability": 0.9917 + }, + { + "start": 419.68, + "end": 421.54, + "probability": 0.9956 + }, + { + "start": 421.82, + "end": 423.34, + "probability": 0.9534 + }, + { + "start": 423.7, + "end": 424.56, + "probability": 0.9023 + }, + { + "start": 424.68, + "end": 430.16, + "probability": 0.9285 + }, + { + "start": 430.62, + "end": 432.3, + "probability": 0.9961 + }, + { + "start": 433.14, + "end": 434.16, + "probability": 0.9081 + }, + { + "start": 435.2, + "end": 436.62, + "probability": 0.9963 + }, + { + "start": 437.28, + "end": 441.02, + "probability": 0.9483 + }, + { + "start": 441.1, + "end": 442.04, + "probability": 0.536 + }, + { + "start": 442.44, + "end": 442.98, + "probability": 0.5399 + }, + { + "start": 443.9, + "end": 445.54, + "probability": 0.9431 + }, + { + "start": 445.86, + "end": 449.28, + "probability": 0.8979 + }, + { + "start": 449.36, + "end": 450.3, + "probability": 0.7634 + }, + { + "start": 451.32, + "end": 453.06, + "probability": 0.9773 + }, + { + "start": 453.08, + "end": 455.14, + "probability": 0.961 + }, + { + "start": 455.84, + "end": 458.84, + "probability": 0.9551 + }, + { + "start": 458.94, + "end": 459.52, + "probability": 0.6356 + }, + { + "start": 459.56, + "end": 460.64, + "probability": 0.8759 + }, + { + "start": 461.08, + "end": 463.0, + "probability": 0.9359 + }, + { + "start": 463.74, + "end": 464.68, + "probability": 0.9832 + }, + { + "start": 465.38, + "end": 467.84, + "probability": 0.9805 + }, + { + "start": 468.08, + "end": 470.44, + "probability": 0.9968 + }, + { + "start": 470.56, + "end": 473.34, + "probability": 0.9645 + }, + { + "start": 473.78, + "end": 476.44, + "probability": 0.9683 + }, + { + "start": 476.92, + "end": 481.36, + "probability": 0.9834 + }, + { + "start": 481.68, + "end": 486.16, + "probability": 0.9865 + }, + { + "start": 486.56, + "end": 490.8, + "probability": 0.9933 + }, + { + "start": 490.8, + "end": 495.12, + "probability": 0.9831 + }, + { + "start": 496.68, + "end": 502.28, + "probability": 0.9857 + }, + { + "start": 502.66, + "end": 503.38, + "probability": 0.8286 + }, + { + "start": 503.68, + "end": 504.54, + "probability": 0.9133 + }, + { + "start": 504.6, + "end": 505.64, + "probability": 0.9233 + }, + { + "start": 505.94, + "end": 506.92, + "probability": 0.9254 + }, + { + "start": 507.4, + "end": 510.1, + "probability": 0.8503 + }, + { + "start": 510.9, + "end": 512.06, + "probability": 0.7536 + }, + { + "start": 512.34, + "end": 513.72, + "probability": 0.9562 + }, + { + "start": 513.84, + "end": 517.6, + "probability": 0.9469 + }, + { + "start": 517.6, + "end": 522.58, + "probability": 0.983 + }, + { + "start": 523.4, + "end": 528.18, + "probability": 0.9737 + }, + { + "start": 528.7, + "end": 532.41, + "probability": 0.9673 + }, + { + "start": 532.92, + "end": 539.46, + "probability": 0.9915 + }, + { + "start": 539.56, + "end": 542.64, + "probability": 0.9646 + }, + { + "start": 543.36, + "end": 547.44, + "probability": 0.9469 + }, + { + "start": 548.34, + "end": 550.24, + "probability": 0.9603 + }, + { + "start": 551.56, + "end": 552.1, + "probability": 0.7682 + }, + { + "start": 552.88, + "end": 554.18, + "probability": 0.9796 + }, + { + "start": 554.28, + "end": 556.0, + "probability": 0.991 + }, + { + "start": 556.38, + "end": 559.42, + "probability": 0.9901 + }, + { + "start": 560.0, + "end": 561.76, + "probability": 0.9917 + }, + { + "start": 562.34, + "end": 564.22, + "probability": 0.979 + }, + { + "start": 564.78, + "end": 567.84, + "probability": 0.9909 + }, + { + "start": 568.44, + "end": 568.74, + "probability": 0.696 + }, + { + "start": 569.84, + "end": 570.22, + "probability": 0.797 + }, + { + "start": 570.92, + "end": 572.62, + "probability": 0.9119 + }, + { + "start": 572.72, + "end": 575.74, + "probability": 0.9412 + }, + { + "start": 576.6, + "end": 579.9, + "probability": 0.9978 + }, + { + "start": 580.0, + "end": 581.44, + "probability": 0.8275 + }, + { + "start": 582.7, + "end": 583.62, + "probability": 0.9105 + }, + { + "start": 583.76, + "end": 585.78, + "probability": 0.9648 + }, + { + "start": 585.86, + "end": 586.46, + "probability": 0.7587 + }, + { + "start": 586.6, + "end": 588.28, + "probability": 0.9862 + }, + { + "start": 588.6, + "end": 591.62, + "probability": 0.9886 + }, + { + "start": 591.72, + "end": 593.74, + "probability": 0.9941 + }, + { + "start": 594.64, + "end": 595.88, + "probability": 0.7358 + }, + { + "start": 596.32, + "end": 599.86, + "probability": 0.9187 + }, + { + "start": 600.36, + "end": 603.12, + "probability": 0.9842 + }, + { + "start": 603.5, + "end": 606.18, + "probability": 0.8484 + }, + { + "start": 606.18, + "end": 608.56, + "probability": 0.9985 + }, + { + "start": 609.44, + "end": 614.14, + "probability": 0.9776 + }, + { + "start": 614.78, + "end": 619.74, + "probability": 0.9801 + }, + { + "start": 619.88, + "end": 620.62, + "probability": 0.8292 + }, + { + "start": 620.92, + "end": 623.58, + "probability": 0.9933 + }, + { + "start": 624.18, + "end": 625.78, + "probability": 0.7842 + }, + { + "start": 626.12, + "end": 626.9, + "probability": 0.9829 + }, + { + "start": 626.94, + "end": 629.82, + "probability": 0.9824 + }, + { + "start": 629.82, + "end": 632.56, + "probability": 0.866 + }, + { + "start": 632.86, + "end": 636.76, + "probability": 0.9858 + }, + { + "start": 637.24, + "end": 639.92, + "probability": 0.9746 + }, + { + "start": 641.12, + "end": 641.66, + "probability": 0.7541 + }, + { + "start": 642.1, + "end": 645.94, + "probability": 0.8668 + }, + { + "start": 645.94, + "end": 648.82, + "probability": 0.991 + }, + { + "start": 649.3, + "end": 650.94, + "probability": 0.9164 + }, + { + "start": 651.28, + "end": 654.9, + "probability": 0.9738 + }, + { + "start": 655.5, + "end": 657.84, + "probability": 0.966 + }, + { + "start": 658.04, + "end": 661.68, + "probability": 0.9732 + }, + { + "start": 664.62, + "end": 666.02, + "probability": 0.7882 + }, + { + "start": 666.02, + "end": 668.38, + "probability": 0.9254 + }, + { + "start": 669.46, + "end": 670.58, + "probability": 0.8684 + }, + { + "start": 671.0, + "end": 675.14, + "probability": 0.9833 + }, + { + "start": 675.48, + "end": 676.4, + "probability": 0.7625 + }, + { + "start": 676.48, + "end": 678.76, + "probability": 0.9485 + }, + { + "start": 679.28, + "end": 681.76, + "probability": 0.8712 + }, + { + "start": 682.22, + "end": 686.34, + "probability": 0.9739 + }, + { + "start": 687.56, + "end": 688.6, + "probability": 0.908 + }, + { + "start": 688.66, + "end": 689.32, + "probability": 0.974 + }, + { + "start": 689.7, + "end": 691.76, + "probability": 0.9097 + }, + { + "start": 692.4, + "end": 697.54, + "probability": 0.9353 + }, + { + "start": 698.12, + "end": 703.58, + "probability": 0.9769 + }, + { + "start": 704.14, + "end": 705.7, + "probability": 0.8953 + }, + { + "start": 706.48, + "end": 710.18, + "probability": 0.8998 + }, + { + "start": 710.32, + "end": 711.48, + "probability": 0.7977 + }, + { + "start": 712.42, + "end": 713.3, + "probability": 0.9155 + }, + { + "start": 714.02, + "end": 716.36, + "probability": 0.9775 + }, + { + "start": 716.76, + "end": 717.92, + "probability": 0.9667 + }, + { + "start": 718.84, + "end": 719.56, + "probability": 0.6354 + }, + { + "start": 719.98, + "end": 722.26, + "probability": 0.9917 + }, + { + "start": 722.62, + "end": 723.64, + "probability": 0.8868 + }, + { + "start": 724.18, + "end": 726.24, + "probability": 0.9897 + }, + { + "start": 726.56, + "end": 731.32, + "probability": 0.9902 + }, + { + "start": 731.44, + "end": 732.28, + "probability": 0.7251 + }, + { + "start": 732.62, + "end": 733.6, + "probability": 0.8389 + }, + { + "start": 734.38, + "end": 736.78, + "probability": 0.9902 + }, + { + "start": 737.18, + "end": 740.6, + "probability": 0.9748 + }, + { + "start": 741.38, + "end": 742.4, + "probability": 0.7752 + }, + { + "start": 742.46, + "end": 743.14, + "probability": 0.6421 + }, + { + "start": 743.3, + "end": 745.74, + "probability": 0.9853 + }, + { + "start": 746.06, + "end": 749.06, + "probability": 0.9397 + }, + { + "start": 749.46, + "end": 752.84, + "probability": 0.9966 + }, + { + "start": 753.16, + "end": 755.46, + "probability": 0.9966 + }, + { + "start": 756.58, + "end": 759.56, + "probability": 0.9885 + }, + { + "start": 759.88, + "end": 762.82, + "probability": 0.9921 + }, + { + "start": 763.28, + "end": 763.38, + "probability": 0.7076 + }, + { + "start": 764.92, + "end": 767.82, + "probability": 0.9575 + }, + { + "start": 768.94, + "end": 775.72, + "probability": 0.9937 + }, + { + "start": 775.98, + "end": 780.72, + "probability": 0.9974 + }, + { + "start": 781.68, + "end": 783.98, + "probability": 0.9912 + }, + { + "start": 784.22, + "end": 786.96, + "probability": 0.9822 + }, + { + "start": 786.96, + "end": 789.16, + "probability": 0.8601 + }, + { + "start": 794.14, + "end": 799.22, + "probability": 0.6779 + }, + { + "start": 800.7, + "end": 804.9, + "probability": 0.99 + }, + { + "start": 805.58, + "end": 809.5, + "probability": 0.9973 + }, + { + "start": 810.4, + "end": 811.76, + "probability": 0.8188 + }, + { + "start": 812.54, + "end": 814.12, + "probability": 0.9235 + }, + { + "start": 815.48, + "end": 822.18, + "probability": 0.9966 + }, + { + "start": 822.28, + "end": 827.54, + "probability": 0.9993 + }, + { + "start": 828.16, + "end": 830.22, + "probability": 0.9861 + }, + { + "start": 831.36, + "end": 834.94, + "probability": 0.9648 + }, + { + "start": 834.94, + "end": 840.06, + "probability": 0.9994 + }, + { + "start": 841.62, + "end": 844.38, + "probability": 0.997 + }, + { + "start": 844.38, + "end": 848.4, + "probability": 0.999 + }, + { + "start": 848.6, + "end": 849.5, + "probability": 0.6631 + }, + { + "start": 849.92, + "end": 853.5, + "probability": 0.9978 + }, + { + "start": 853.88, + "end": 857.94, + "probability": 0.9945 + }, + { + "start": 858.9, + "end": 861.68, + "probability": 0.9979 + }, + { + "start": 862.44, + "end": 866.7, + "probability": 0.9841 + }, + { + "start": 866.7, + "end": 872.12, + "probability": 0.9908 + }, + { + "start": 874.1, + "end": 880.06, + "probability": 0.9741 + }, + { + "start": 880.72, + "end": 882.42, + "probability": 0.9971 + }, + { + "start": 883.04, + "end": 884.16, + "probability": 0.8899 + }, + { + "start": 884.86, + "end": 887.92, + "probability": 0.9954 + }, + { + "start": 888.7, + "end": 889.94, + "probability": 0.9424 + }, + { + "start": 890.36, + "end": 892.7, + "probability": 0.9771 + }, + { + "start": 893.24, + "end": 895.58, + "probability": 0.9922 + }, + { + "start": 895.58, + "end": 899.72, + "probability": 0.998 + }, + { + "start": 900.66, + "end": 905.32, + "probability": 0.9878 + }, + { + "start": 905.32, + "end": 912.32, + "probability": 0.9995 + }, + { + "start": 912.94, + "end": 914.62, + "probability": 0.8517 + }, + { + "start": 915.24, + "end": 918.76, + "probability": 0.9937 + }, + { + "start": 920.18, + "end": 923.58, + "probability": 0.9801 + }, + { + "start": 924.24, + "end": 927.62, + "probability": 0.9592 + }, + { + "start": 928.3, + "end": 931.56, + "probability": 0.9979 + }, + { + "start": 932.18, + "end": 935.76, + "probability": 0.9889 + }, + { + "start": 935.76, + "end": 939.16, + "probability": 0.9998 + }, + { + "start": 940.5, + "end": 942.16, + "probability": 0.8198 + }, + { + "start": 942.58, + "end": 945.48, + "probability": 0.9963 + }, + { + "start": 945.48, + "end": 948.6, + "probability": 0.9892 + }, + { + "start": 949.66, + "end": 953.24, + "probability": 0.9937 + }, + { + "start": 953.24, + "end": 956.68, + "probability": 0.9986 + }, + { + "start": 956.78, + "end": 961.5, + "probability": 0.9466 + }, + { + "start": 961.84, + "end": 968.18, + "probability": 0.9746 + }, + { + "start": 969.16, + "end": 974.34, + "probability": 0.9824 + }, + { + "start": 974.34, + "end": 980.28, + "probability": 0.9995 + }, + { + "start": 981.06, + "end": 984.28, + "probability": 0.9982 + }, + { + "start": 985.68, + "end": 988.08, + "probability": 0.9985 + }, + { + "start": 988.08, + "end": 992.0, + "probability": 0.9973 + }, + { + "start": 993.04, + "end": 996.1, + "probability": 0.9757 + }, + { + "start": 996.62, + "end": 1002.2, + "probability": 0.884 + }, + { + "start": 1002.98, + "end": 1006.16, + "probability": 0.771 + }, + { + "start": 1007.08, + "end": 1010.91, + "probability": 0.9673 + }, + { + "start": 1011.64, + "end": 1016.52, + "probability": 0.9751 + }, + { + "start": 1017.46, + "end": 1019.88, + "probability": 0.9618 + }, + { + "start": 1020.46, + "end": 1024.06, + "probability": 0.8102 + }, + { + "start": 1025.26, + "end": 1026.96, + "probability": 0.8283 + }, + { + "start": 1027.08, + "end": 1029.02, + "probability": 0.9911 + }, + { + "start": 1029.44, + "end": 1030.54, + "probability": 0.8778 + }, + { + "start": 1030.6, + "end": 1034.74, + "probability": 0.9863 + }, + { + "start": 1035.4, + "end": 1037.14, + "probability": 0.6006 + }, + { + "start": 1037.74, + "end": 1039.62, + "probability": 0.9422 + }, + { + "start": 1040.16, + "end": 1045.98, + "probability": 0.9924 + }, + { + "start": 1047.1, + "end": 1048.68, + "probability": 0.9591 + }, + { + "start": 1049.28, + "end": 1054.0, + "probability": 0.9685 + }, + { + "start": 1054.86, + "end": 1056.78, + "probability": 0.8174 + }, + { + "start": 1057.34, + "end": 1059.56, + "probability": 0.9741 + }, + { + "start": 1060.28, + "end": 1063.74, + "probability": 0.9814 + }, + { + "start": 1064.54, + "end": 1066.88, + "probability": 0.9912 + }, + { + "start": 1067.54, + "end": 1070.28, + "probability": 0.9976 + }, + { + "start": 1070.92, + "end": 1075.96, + "probability": 0.9819 + }, + { + "start": 1077.24, + "end": 1081.38, + "probability": 0.9343 + }, + { + "start": 1082.34, + "end": 1083.44, + "probability": 0.873 + }, + { + "start": 1083.56, + "end": 1084.14, + "probability": 0.9843 + }, + { + "start": 1084.44, + "end": 1085.68, + "probability": 0.979 + }, + { + "start": 1085.78, + "end": 1086.84, + "probability": 0.6346 + }, + { + "start": 1087.36, + "end": 1090.6, + "probability": 0.9946 + }, + { + "start": 1091.98, + "end": 1096.34, + "probability": 0.9955 + }, + { + "start": 1096.86, + "end": 1099.4, + "probability": 0.9715 + }, + { + "start": 1100.18, + "end": 1107.22, + "probability": 0.9968 + }, + { + "start": 1107.66, + "end": 1113.96, + "probability": 0.9987 + }, + { + "start": 1115.7, + "end": 1119.76, + "probability": 0.9973 + }, + { + "start": 1120.34, + "end": 1122.58, + "probability": 0.9268 + }, + { + "start": 1122.9, + "end": 1124.3, + "probability": 0.8168 + }, + { + "start": 1124.7, + "end": 1128.08, + "probability": 0.9917 + }, + { + "start": 1128.08, + "end": 1131.76, + "probability": 0.9824 + }, + { + "start": 1132.84, + "end": 1136.6, + "probability": 0.9821 + }, + { + "start": 1137.58, + "end": 1142.12, + "probability": 0.9912 + }, + { + "start": 1142.76, + "end": 1144.56, + "probability": 0.9882 + }, + { + "start": 1146.38, + "end": 1150.5, + "probability": 0.9914 + }, + { + "start": 1150.5, + "end": 1156.64, + "probability": 0.917 + }, + { + "start": 1156.64, + "end": 1161.64, + "probability": 0.9889 + }, + { + "start": 1162.68, + "end": 1163.74, + "probability": 0.9851 + }, + { + "start": 1164.72, + "end": 1168.28, + "probability": 0.8555 + }, + { + "start": 1168.94, + "end": 1172.94, + "probability": 0.9803 + }, + { + "start": 1173.9, + "end": 1178.1, + "probability": 0.9434 + }, + { + "start": 1178.72, + "end": 1179.96, + "probability": 0.928 + }, + { + "start": 1180.42, + "end": 1183.32, + "probability": 0.8888 + }, + { + "start": 1184.04, + "end": 1188.74, + "probability": 0.9726 + }, + { + "start": 1191.26, + "end": 1196.12, + "probability": 0.9936 + }, + { + "start": 1196.84, + "end": 1199.5, + "probability": 0.999 + }, + { + "start": 1199.5, + "end": 1202.46, + "probability": 0.7255 + }, + { + "start": 1203.64, + "end": 1206.52, + "probability": 0.9956 + }, + { + "start": 1207.14, + "end": 1208.46, + "probability": 0.8886 + }, + { + "start": 1209.62, + "end": 1211.66, + "probability": 0.9141 + }, + { + "start": 1212.14, + "end": 1214.36, + "probability": 0.9904 + }, + { + "start": 1215.2, + "end": 1217.2, + "probability": 0.9772 + }, + { + "start": 1217.5, + "end": 1219.74, + "probability": 0.9551 + }, + { + "start": 1220.52, + "end": 1222.92, + "probability": 0.9775 + }, + { + "start": 1223.5, + "end": 1224.98, + "probability": 0.9429 + }, + { + "start": 1225.32, + "end": 1227.44, + "probability": 0.9107 + }, + { + "start": 1227.86, + "end": 1230.54, + "probability": 0.9755 + }, + { + "start": 1231.94, + "end": 1236.14, + "probability": 0.9989 + }, + { + "start": 1236.62, + "end": 1237.96, + "probability": 0.9551 + }, + { + "start": 1238.94, + "end": 1245.36, + "probability": 0.9938 + }, + { + "start": 1246.06, + "end": 1247.72, + "probability": 0.8953 + }, + { + "start": 1248.88, + "end": 1251.82, + "probability": 0.9979 + }, + { + "start": 1253.0, + "end": 1258.54, + "probability": 0.9878 + }, + { + "start": 1260.2, + "end": 1266.08, + "probability": 0.998 + }, + { + "start": 1267.58, + "end": 1269.7, + "probability": 0.9943 + }, + { + "start": 1269.7, + "end": 1272.42, + "probability": 0.9991 + }, + { + "start": 1272.92, + "end": 1273.88, + "probability": 0.9753 + }, + { + "start": 1274.4, + "end": 1277.32, + "probability": 0.9861 + }, + { + "start": 1277.84, + "end": 1281.06, + "probability": 0.9535 + }, + { + "start": 1281.68, + "end": 1285.14, + "probability": 0.9955 + }, + { + "start": 1286.38, + "end": 1289.18, + "probability": 0.9968 + }, + { + "start": 1289.18, + "end": 1292.38, + "probability": 0.9965 + }, + { + "start": 1293.16, + "end": 1297.2, + "probability": 0.9802 + }, + { + "start": 1297.8, + "end": 1298.46, + "probability": 0.7503 + }, + { + "start": 1299.12, + "end": 1299.32, + "probability": 0.9007 + }, + { + "start": 1300.5, + "end": 1303.64, + "probability": 0.9957 + }, + { + "start": 1304.22, + "end": 1307.72, + "probability": 0.996 + }, + { + "start": 1308.2, + "end": 1309.3, + "probability": 0.9774 + }, + { + "start": 1310.3, + "end": 1314.96, + "probability": 0.9983 + }, + { + "start": 1315.96, + "end": 1317.92, + "probability": 0.7522 + }, + { + "start": 1318.4, + "end": 1321.18, + "probability": 0.9811 + }, + { + "start": 1322.46, + "end": 1324.94, + "probability": 0.9991 + }, + { + "start": 1324.94, + "end": 1328.06, + "probability": 0.9843 + }, + { + "start": 1328.54, + "end": 1332.62, + "probability": 0.9989 + }, + { + "start": 1333.98, + "end": 1336.24, + "probability": 0.9439 + }, + { + "start": 1336.24, + "end": 1340.02, + "probability": 0.9391 + }, + { + "start": 1340.48, + "end": 1343.64, + "probability": 0.9858 + }, + { + "start": 1345.24, + "end": 1348.42, + "probability": 0.9932 + }, + { + "start": 1348.96, + "end": 1351.84, + "probability": 0.9971 + }, + { + "start": 1352.76, + "end": 1355.04, + "probability": 0.9086 + }, + { + "start": 1355.12, + "end": 1356.48, + "probability": 0.8953 + }, + { + "start": 1357.02, + "end": 1359.14, + "probability": 0.9895 + }, + { + "start": 1360.12, + "end": 1360.66, + "probability": 0.5112 + }, + { + "start": 1361.82, + "end": 1365.64, + "probability": 0.9803 + }, + { + "start": 1366.42, + "end": 1369.7, + "probability": 0.9911 + }, + { + "start": 1369.7, + "end": 1373.36, + "probability": 0.9907 + }, + { + "start": 1374.68, + "end": 1376.14, + "probability": 0.9871 + }, + { + "start": 1376.6, + "end": 1378.46, + "probability": 0.8135 + }, + { + "start": 1378.96, + "end": 1379.7, + "probability": 0.8221 + }, + { + "start": 1380.54, + "end": 1383.66, + "probability": 0.9912 + }, + { + "start": 1384.62, + "end": 1384.76, + "probability": 0.6516 + }, + { + "start": 1384.94, + "end": 1388.48, + "probability": 0.9871 + }, + { + "start": 1389.04, + "end": 1389.78, + "probability": 0.6369 + }, + { + "start": 1391.26, + "end": 1393.64, + "probability": 0.9257 + }, + { + "start": 1394.02, + "end": 1395.96, + "probability": 0.9916 + }, + { + "start": 1396.36, + "end": 1398.96, + "probability": 0.9513 + }, + { + "start": 1399.88, + "end": 1404.14, + "probability": 0.8887 + }, + { + "start": 1421.06, + "end": 1423.82, + "probability": 0.6608 + }, + { + "start": 1424.44, + "end": 1427.86, + "probability": 0.985 + }, + { + "start": 1428.94, + "end": 1434.04, + "probability": 0.993 + }, + { + "start": 1435.66, + "end": 1439.78, + "probability": 0.9548 + }, + { + "start": 1440.36, + "end": 1443.7, + "probability": 0.8384 + }, + { + "start": 1445.16, + "end": 1451.52, + "probability": 0.996 + }, + { + "start": 1451.52, + "end": 1457.4, + "probability": 0.9952 + }, + { + "start": 1457.56, + "end": 1462.16, + "probability": 0.9699 + }, + { + "start": 1462.22, + "end": 1470.16, + "probability": 0.999 + }, + { + "start": 1470.96, + "end": 1473.2, + "probability": 0.9971 + }, + { + "start": 1473.36, + "end": 1479.06, + "probability": 0.9977 + }, + { + "start": 1479.82, + "end": 1485.58, + "probability": 0.9939 + }, + { + "start": 1485.74, + "end": 1488.89, + "probability": 0.998 + }, + { + "start": 1489.06, + "end": 1490.04, + "probability": 0.7425 + }, + { + "start": 1492.34, + "end": 1493.64, + "probability": 0.9401 + }, + { + "start": 1494.26, + "end": 1497.36, + "probability": 0.9878 + }, + { + "start": 1498.22, + "end": 1501.06, + "probability": 0.9962 + }, + { + "start": 1504.46, + "end": 1507.1, + "probability": 0.8125 + }, + { + "start": 1507.32, + "end": 1509.3, + "probability": 0.0161 + }, + { + "start": 1509.3, + "end": 1511.48, + "probability": 0.9456 + }, + { + "start": 1515.48, + "end": 1518.74, + "probability": 0.567 + }, + { + "start": 1518.86, + "end": 1519.42, + "probability": 0.9817 + }, + { + "start": 1519.54, + "end": 1520.82, + "probability": 0.9147 + }, + { + "start": 1521.04, + "end": 1524.88, + "probability": 0.9923 + }, + { + "start": 1525.7, + "end": 1531.73, + "probability": 0.9974 + }, + { + "start": 1533.1, + "end": 1533.6, + "probability": 0.5102 + }, + { + "start": 1533.66, + "end": 1540.36, + "probability": 0.9635 + }, + { + "start": 1540.6, + "end": 1543.58, + "probability": 0.9265 + }, + { + "start": 1543.6, + "end": 1545.38, + "probability": 0.8199 + }, + { + "start": 1545.8, + "end": 1550.14, + "probability": 0.9491 + }, + { + "start": 1550.5, + "end": 1554.52, + "probability": 0.974 + }, + { + "start": 1554.8, + "end": 1556.8, + "probability": 0.7082 + }, + { + "start": 1557.48, + "end": 1562.96, + "probability": 0.9865 + }, + { + "start": 1563.04, + "end": 1564.28, + "probability": 0.9942 + }, + { + "start": 1565.04, + "end": 1565.42, + "probability": 0.5682 + }, + { + "start": 1566.48, + "end": 1567.6, + "probability": 0.2406 + }, + { + "start": 1568.43, + "end": 1571.55, + "probability": 0.844 + }, + { + "start": 1571.66, + "end": 1573.22, + "probability": 0.7299 + }, + { + "start": 1573.56, + "end": 1575.14, + "probability": 0.8931 + }, + { + "start": 1575.22, + "end": 1577.14, + "probability": 0.9429 + }, + { + "start": 1577.6, + "end": 1580.42, + "probability": 0.9033 + }, + { + "start": 1580.78, + "end": 1583.46, + "probability": 0.7631 + }, + { + "start": 1583.6, + "end": 1589.46, + "probability": 0.9849 + }, + { + "start": 1589.68, + "end": 1592.24, + "probability": 0.9935 + }, + { + "start": 1592.84, + "end": 1594.2, + "probability": 0.8918 + }, + { + "start": 1594.72, + "end": 1598.74, + "probability": 0.9517 + }, + { + "start": 1599.44, + "end": 1604.0, + "probability": 0.8551 + }, + { + "start": 1604.3, + "end": 1607.7, + "probability": 0.976 + }, + { + "start": 1607.84, + "end": 1611.04, + "probability": 0.5752 + }, + { + "start": 1611.54, + "end": 1615.4, + "probability": 0.7271 + }, + { + "start": 1616.32, + "end": 1617.98, + "probability": 0.7012 + }, + { + "start": 1618.06, + "end": 1619.34, + "probability": 0.7598 + }, + { + "start": 1619.54, + "end": 1621.5, + "probability": 0.6871 + }, + { + "start": 1621.62, + "end": 1624.46, + "probability": 0.9683 + }, + { + "start": 1625.18, + "end": 1629.42, + "probability": 0.9535 + }, + { + "start": 1629.42, + "end": 1633.38, + "probability": 0.9616 + }, + { + "start": 1633.44, + "end": 1639.58, + "probability": 0.9932 + }, + { + "start": 1639.64, + "end": 1644.28, + "probability": 0.9853 + }, + { + "start": 1644.88, + "end": 1645.38, + "probability": 0.3189 + }, + { + "start": 1645.42, + "end": 1645.7, + "probability": 0.7082 + }, + { + "start": 1645.74, + "end": 1648.44, + "probability": 0.9855 + }, + { + "start": 1649.58, + "end": 1655.58, + "probability": 0.9905 + }, + { + "start": 1655.98, + "end": 1658.32, + "probability": 0.9229 + }, + { + "start": 1658.52, + "end": 1660.99, + "probability": 0.8864 + }, + { + "start": 1661.78, + "end": 1664.04, + "probability": 0.9276 + }, + { + "start": 1664.1, + "end": 1665.78, + "probability": 0.9006 + }, + { + "start": 1666.44, + "end": 1667.62, + "probability": 0.4372 + }, + { + "start": 1667.7, + "end": 1669.48, + "probability": 0.9968 + }, + { + "start": 1669.64, + "end": 1670.7, + "probability": 0.7939 + }, + { + "start": 1670.72, + "end": 1673.83, + "probability": 0.2815 + }, + { + "start": 1674.18, + "end": 1676.02, + "probability": 0.3011 + }, + { + "start": 1676.16, + "end": 1679.8, + "probability": 0.9927 + }, + { + "start": 1680.44, + "end": 1682.2, + "probability": 0.0277 + }, + { + "start": 1682.2, + "end": 1682.2, + "probability": 0.1887 + }, + { + "start": 1682.2, + "end": 1685.44, + "probability": 0.9543 + }, + { + "start": 1686.26, + "end": 1689.86, + "probability": 0.9888 + }, + { + "start": 1690.52, + "end": 1693.86, + "probability": 0.9272 + }, + { + "start": 1694.44, + "end": 1696.54, + "probability": 0.9689 + }, + { + "start": 1696.68, + "end": 1699.94, + "probability": 0.9209 + }, + { + "start": 1701.14, + "end": 1702.55, + "probability": 0.4997 + }, + { + "start": 1702.88, + "end": 1703.12, + "probability": 0.2755 + }, + { + "start": 1703.16, + "end": 1708.32, + "probability": 0.9927 + }, + { + "start": 1708.42, + "end": 1708.87, + "probability": 0.918 + }, + { + "start": 1709.32, + "end": 1711.72, + "probability": 0.9861 + }, + { + "start": 1712.44, + "end": 1713.14, + "probability": 0.8216 + }, + { + "start": 1713.2, + "end": 1715.38, + "probability": 0.9684 + }, + { + "start": 1715.46, + "end": 1722.7, + "probability": 0.9455 + }, + { + "start": 1723.4, + "end": 1730.08, + "probability": 0.9922 + }, + { + "start": 1730.46, + "end": 1731.4, + "probability": 0.7162 + }, + { + "start": 1731.68, + "end": 1734.38, + "probability": 0.9981 + }, + { + "start": 1734.44, + "end": 1736.88, + "probability": 0.9814 + }, + { + "start": 1737.46, + "end": 1741.32, + "probability": 0.8943 + }, + { + "start": 1742.7, + "end": 1748.06, + "probability": 0.8135 + }, + { + "start": 1748.34, + "end": 1750.88, + "probability": 0.8955 + }, + { + "start": 1750.96, + "end": 1753.1, + "probability": 0.9736 + }, + { + "start": 1753.93, + "end": 1757.87, + "probability": 0.9901 + }, + { + "start": 1758.66, + "end": 1763.2, + "probability": 0.9944 + }, + { + "start": 1763.42, + "end": 1763.77, + "probability": 0.9971 + }, + { + "start": 1764.66, + "end": 1766.54, + "probability": 0.9833 + }, + { + "start": 1766.58, + "end": 1768.79, + "probability": 0.9978 + }, + { + "start": 1770.08, + "end": 1773.42, + "probability": 0.9961 + }, + { + "start": 1773.42, + "end": 1777.32, + "probability": 0.9985 + }, + { + "start": 1778.02, + "end": 1778.7, + "probability": 0.7073 + }, + { + "start": 1778.9, + "end": 1779.48, + "probability": 0.5945 + }, + { + "start": 1779.68, + "end": 1783.62, + "probability": 0.9937 + }, + { + "start": 1784.36, + "end": 1785.5, + "probability": 0.9445 + }, + { + "start": 1785.58, + "end": 1790.2, + "probability": 0.7364 + }, + { + "start": 1790.36, + "end": 1791.24, + "probability": 0.6888 + }, + { + "start": 1792.16, + "end": 1792.56, + "probability": 0.9143 + }, + { + "start": 1793.3, + "end": 1795.94, + "probability": 0.6402 + }, + { + "start": 1796.54, + "end": 1799.44, + "probability": 0.8655 + }, + { + "start": 1799.94, + "end": 1800.44, + "probability": 0.5399 + }, + { + "start": 1800.5, + "end": 1800.84, + "probability": 0.7707 + }, + { + "start": 1800.94, + "end": 1801.7, + "probability": 0.8753 + }, + { + "start": 1802.88, + "end": 1806.7, + "probability": 0.9605 + }, + { + "start": 1806.7, + "end": 1811.34, + "probability": 0.9909 + }, + { + "start": 1811.4, + "end": 1812.78, + "probability": 0.9977 + }, + { + "start": 1812.86, + "end": 1813.52, + "probability": 0.8365 + }, + { + "start": 1813.96, + "end": 1816.28, + "probability": 0.7482 + }, + { + "start": 1816.86, + "end": 1819.2, + "probability": 0.9318 + }, + { + "start": 1819.92, + "end": 1826.5, + "probability": 0.8999 + }, + { + "start": 1828.42, + "end": 1831.26, + "probability": 0.9797 + }, + { + "start": 1831.36, + "end": 1838.12, + "probability": 0.895 + }, + { + "start": 1838.5, + "end": 1839.56, + "probability": 0.9657 + }, + { + "start": 1839.74, + "end": 1841.19, + "probability": 0.9184 + }, + { + "start": 1841.74, + "end": 1842.82, + "probability": 0.941 + }, + { + "start": 1843.04, + "end": 1844.82, + "probability": 0.6186 + }, + { + "start": 1845.24, + "end": 1848.1, + "probability": 0.9767 + }, + { + "start": 1848.6, + "end": 1853.5, + "probability": 0.998 + }, + { + "start": 1854.4, + "end": 1859.18, + "probability": 0.9954 + }, + { + "start": 1859.56, + "end": 1862.86, + "probability": 0.9971 + }, + { + "start": 1862.86, + "end": 1867.22, + "probability": 0.9832 + }, + { + "start": 1867.9, + "end": 1868.74, + "probability": 0.7232 + }, + { + "start": 1869.46, + "end": 1871.72, + "probability": 0.8525 + }, + { + "start": 1872.62, + "end": 1874.84, + "probability": 0.7153 + }, + { + "start": 1875.16, + "end": 1875.42, + "probability": 0.605 + }, + { + "start": 1875.58, + "end": 1878.38, + "probability": 0.9544 + }, + { + "start": 1878.52, + "end": 1880.02, + "probability": 0.9329 + }, + { + "start": 1880.26, + "end": 1883.92, + "probability": 0.943 + }, + { + "start": 1883.94, + "end": 1887.88, + "probability": 0.9878 + }, + { + "start": 1887.88, + "end": 1892.74, + "probability": 0.9946 + }, + { + "start": 1892.78, + "end": 1900.55, + "probability": 0.9902 + }, + { + "start": 1900.9, + "end": 1900.9, + "probability": 0.6737 + }, + { + "start": 1900.9, + "end": 1904.18, + "probability": 0.9669 + }, + { + "start": 1904.32, + "end": 1906.82, + "probability": 0.943 + }, + { + "start": 1907.4, + "end": 1911.62, + "probability": 0.9946 + }, + { + "start": 1912.18, + "end": 1912.9, + "probability": 0.7668 + }, + { + "start": 1913.0, + "end": 1918.16, + "probability": 0.9678 + }, + { + "start": 1918.16, + "end": 1924.97, + "probability": 0.8923 + }, + { + "start": 1925.3, + "end": 1930.84, + "probability": 0.9667 + }, + { + "start": 1930.84, + "end": 1935.96, + "probability": 0.9974 + }, + { + "start": 1936.3, + "end": 1942.96, + "probability": 0.9882 + }, + { + "start": 1943.14, + "end": 1944.71, + "probability": 0.9958 + }, + { + "start": 1945.44, + "end": 1948.26, + "probability": 0.9132 + }, + { + "start": 1948.36, + "end": 1950.48, + "probability": 0.9818 + }, + { + "start": 1950.96, + "end": 1954.28, + "probability": 0.9857 + }, + { + "start": 1954.38, + "end": 1960.86, + "probability": 0.9736 + }, + { + "start": 1961.2, + "end": 1965.82, + "probability": 0.9907 + }, + { + "start": 1965.82, + "end": 1969.85, + "probability": 0.9874 + }, + { + "start": 1970.46, + "end": 1971.14, + "probability": 0.8591 + }, + { + "start": 1971.34, + "end": 1974.38, + "probability": 0.9453 + }, + { + "start": 1974.52, + "end": 1976.5, + "probability": 0.9362 + }, + { + "start": 1976.96, + "end": 1981.64, + "probability": 0.98 + }, + { + "start": 1981.64, + "end": 1987.14, + "probability": 0.9996 + }, + { + "start": 1987.14, + "end": 1993.42, + "probability": 0.797 + }, + { + "start": 1993.7, + "end": 1997.84, + "probability": 0.8185 + }, + { + "start": 1998.22, + "end": 1999.06, + "probability": 0.7224 + }, + { + "start": 1999.18, + "end": 2000.54, + "probability": 0.9896 + }, + { + "start": 2001.18, + "end": 2004.74, + "probability": 0.9962 + }, + { + "start": 2005.04, + "end": 2006.2, + "probability": 0.9932 + }, + { + "start": 2006.9, + "end": 2007.62, + "probability": 0.8706 + }, + { + "start": 2008.02, + "end": 2008.73, + "probability": 0.9575 + }, + { + "start": 2009.94, + "end": 2012.21, + "probability": 0.9792 + }, + { + "start": 2012.64, + "end": 2016.12, + "probability": 0.9827 + }, + { + "start": 2016.52, + "end": 2017.14, + "probability": 0.9517 + }, + { + "start": 2017.22, + "end": 2018.9, + "probability": 0.9453 + }, + { + "start": 2019.28, + "end": 2027.68, + "probability": 0.9939 + }, + { + "start": 2027.76, + "end": 2031.3, + "probability": 0.9572 + }, + { + "start": 2031.84, + "end": 2034.36, + "probability": 0.9973 + }, + { + "start": 2034.78, + "end": 2037.9, + "probability": 0.9976 + }, + { + "start": 2037.9, + "end": 2042.54, + "probability": 0.9937 + }, + { + "start": 2043.26, + "end": 2046.6, + "probability": 0.8901 + }, + { + "start": 2047.04, + "end": 2049.7, + "probability": 0.9223 + }, + { + "start": 2050.28, + "end": 2052.56, + "probability": 0.9554 + }, + { + "start": 2052.74, + "end": 2053.08, + "probability": 0.7321 + }, + { + "start": 2053.38, + "end": 2056.0, + "probability": 0.9341 + }, + { + "start": 2056.22, + "end": 2058.86, + "probability": 0.8498 + }, + { + "start": 2059.2, + "end": 2061.08, + "probability": 0.8252 + }, + { + "start": 2061.54, + "end": 2067.68, + "probability": 0.8424 + }, + { + "start": 2067.68, + "end": 2073.72, + "probability": 0.9316 + }, + { + "start": 2074.2, + "end": 2076.38, + "probability": 0.8557 + }, + { + "start": 2076.44, + "end": 2077.76, + "probability": 0.9531 + }, + { + "start": 2078.16, + "end": 2083.06, + "probability": 0.9178 + }, + { + "start": 2083.1, + "end": 2086.98, + "probability": 0.9928 + }, + { + "start": 2087.1, + "end": 2092.84, + "probability": 0.9946 + }, + { + "start": 2093.34, + "end": 2096.02, + "probability": 0.9976 + }, + { + "start": 2096.34, + "end": 2096.48, + "probability": 0.4372 + }, + { + "start": 2096.56, + "end": 2096.68, + "probability": 0.4978 + }, + { + "start": 2096.8, + "end": 2097.9, + "probability": 0.9143 + }, + { + "start": 2098.54, + "end": 2103.46, + "probability": 0.999 + }, + { + "start": 2103.9, + "end": 2107.54, + "probability": 0.9948 + }, + { + "start": 2107.68, + "end": 2114.4, + "probability": 0.9946 + }, + { + "start": 2114.96, + "end": 2116.24, + "probability": 0.9222 + }, + { + "start": 2116.78, + "end": 2119.22, + "probability": 0.7637 + }, + { + "start": 2119.78, + "end": 2121.82, + "probability": 0.9976 + }, + { + "start": 2122.12, + "end": 2126.02, + "probability": 0.9751 + }, + { + "start": 2126.02, + "end": 2129.64, + "probability": 0.9936 + }, + { + "start": 2129.78, + "end": 2130.42, + "probability": 0.542 + }, + { + "start": 2131.16, + "end": 2136.15, + "probability": 0.8618 + }, + { + "start": 2136.62, + "end": 2139.02, + "probability": 0.8703 + }, + { + "start": 2139.14, + "end": 2140.16, + "probability": 0.8125 + }, + { + "start": 2140.7, + "end": 2142.64, + "probability": 0.5089 + }, + { + "start": 2143.1, + "end": 2147.64, + "probability": 0.9634 + }, + { + "start": 2149.04, + "end": 2149.92, + "probability": 0.7692 + }, + { + "start": 2150.1, + "end": 2153.08, + "probability": 0.8955 + }, + { + "start": 2153.14, + "end": 2157.76, + "probability": 0.9643 + }, + { + "start": 2158.26, + "end": 2161.03, + "probability": 0.9873 + }, + { + "start": 2162.04, + "end": 2168.18, + "probability": 0.9681 + }, + { + "start": 2168.3, + "end": 2171.5, + "probability": 0.9735 + }, + { + "start": 2171.68, + "end": 2174.24, + "probability": 0.8981 + }, + { + "start": 2174.38, + "end": 2178.02, + "probability": 0.9272 + }, + { + "start": 2179.3, + "end": 2184.22, + "probability": 0.9927 + }, + { + "start": 2184.32, + "end": 2186.94, + "probability": 0.7256 + }, + { + "start": 2187.1, + "end": 2190.32, + "probability": 0.9277 + }, + { + "start": 2191.16, + "end": 2198.36, + "probability": 0.9807 + }, + { + "start": 2198.62, + "end": 2205.54, + "probability": 0.9954 + }, + { + "start": 2205.54, + "end": 2211.52, + "probability": 0.9945 + }, + { + "start": 2212.24, + "end": 2214.72, + "probability": 0.7983 + }, + { + "start": 2215.92, + "end": 2220.9, + "probability": 0.9945 + }, + { + "start": 2221.58, + "end": 2223.22, + "probability": 0.9639 + }, + { + "start": 2223.34, + "end": 2223.9, + "probability": 0.9274 + }, + { + "start": 2224.36, + "end": 2228.16, + "probability": 0.9799 + }, + { + "start": 2228.16, + "end": 2231.4, + "probability": 0.9855 + }, + { + "start": 2232.02, + "end": 2232.9, + "probability": 0.7113 + }, + { + "start": 2233.06, + "end": 2235.62, + "probability": 0.993 + }, + { + "start": 2235.82, + "end": 2246.16, + "probability": 0.9905 + }, + { + "start": 2247.1, + "end": 2249.5, + "probability": 0.9604 + }, + { + "start": 2249.76, + "end": 2253.06, + "probability": 0.9749 + }, + { + "start": 2253.1, + "end": 2259.62, + "probability": 0.8959 + }, + { + "start": 2259.72, + "end": 2264.92, + "probability": 0.9946 + }, + { + "start": 2264.92, + "end": 2270.62, + "probability": 0.9922 + }, + { + "start": 2270.9, + "end": 2271.62, + "probability": 0.6678 + }, + { + "start": 2273.32, + "end": 2276.74, + "probability": 0.9955 + }, + { + "start": 2277.4, + "end": 2281.34, + "probability": 0.9858 + }, + { + "start": 2282.02, + "end": 2286.46, + "probability": 0.9917 + }, + { + "start": 2286.56, + "end": 2287.51, + "probability": 0.8984 + }, + { + "start": 2288.9, + "end": 2290.64, + "probability": 0.953 + }, + { + "start": 2291.24, + "end": 2294.96, + "probability": 0.7675 + }, + { + "start": 2295.74, + "end": 2302.98, + "probability": 0.977 + }, + { + "start": 2303.22, + "end": 2307.7, + "probability": 0.8021 + }, + { + "start": 2308.22, + "end": 2312.48, + "probability": 0.9917 + }, + { + "start": 2312.94, + "end": 2317.88, + "probability": 0.9985 + }, + { + "start": 2318.1, + "end": 2318.86, + "probability": 0.752 + }, + { + "start": 2319.22, + "end": 2320.34, + "probability": 0.9927 + }, + { + "start": 2320.78, + "end": 2321.54, + "probability": 0.8701 + }, + { + "start": 2321.98, + "end": 2323.34, + "probability": 0.9718 + }, + { + "start": 2323.9, + "end": 2324.83, + "probability": 0.891 + }, + { + "start": 2324.92, + "end": 2326.45, + "probability": 0.877 + }, + { + "start": 2327.4, + "end": 2333.2, + "probability": 0.9904 + }, + { + "start": 2333.9, + "end": 2335.58, + "probability": 0.7932 + }, + { + "start": 2336.36, + "end": 2341.11, + "probability": 0.9452 + }, + { + "start": 2342.26, + "end": 2343.28, + "probability": 0.9929 + }, + { + "start": 2343.34, + "end": 2344.47, + "probability": 0.9243 + }, + { + "start": 2345.88, + "end": 2348.24, + "probability": 0.99 + }, + { + "start": 2348.62, + "end": 2349.88, + "probability": 0.83 + }, + { + "start": 2350.32, + "end": 2354.43, + "probability": 0.9713 + }, + { + "start": 2356.46, + "end": 2358.64, + "probability": 0.9141 + }, + { + "start": 2359.38, + "end": 2363.98, + "probability": 0.9977 + }, + { + "start": 2364.1, + "end": 2365.46, + "probability": 0.9481 + }, + { + "start": 2365.5, + "end": 2367.1, + "probability": 0.978 + }, + { + "start": 2367.76, + "end": 2371.04, + "probability": 0.9858 + }, + { + "start": 2371.18, + "end": 2374.38, + "probability": 0.991 + }, + { + "start": 2374.52, + "end": 2379.28, + "probability": 0.9956 + }, + { + "start": 2379.68, + "end": 2384.48, + "probability": 0.9884 + }, + { + "start": 2385.24, + "end": 2387.32, + "probability": 0.9235 + }, + { + "start": 2388.44, + "end": 2393.74, + "probability": 0.9712 + }, + { + "start": 2394.6, + "end": 2397.94, + "probability": 0.9941 + }, + { + "start": 2398.26, + "end": 2398.84, + "probability": 0.6588 + }, + { + "start": 2398.94, + "end": 2401.2, + "probability": 0.9409 + }, + { + "start": 2401.72, + "end": 2404.12, + "probability": 0.9689 + }, + { + "start": 2404.64, + "end": 2407.74, + "probability": 0.9521 + }, + { + "start": 2408.2, + "end": 2408.62, + "probability": 0.6948 + }, + { + "start": 2408.74, + "end": 2411.4, + "probability": 0.9902 + }, + { + "start": 2411.94, + "end": 2415.49, + "probability": 0.9849 + }, + { + "start": 2416.02, + "end": 2418.18, + "probability": 0.9784 + }, + { + "start": 2418.52, + "end": 2420.6, + "probability": 0.9751 + }, + { + "start": 2420.68, + "end": 2426.36, + "probability": 0.9838 + }, + { + "start": 2426.58, + "end": 2428.26, + "probability": 0.9966 + }, + { + "start": 2428.78, + "end": 2432.32, + "probability": 0.8845 + }, + { + "start": 2433.0, + "end": 2435.06, + "probability": 0.9932 + }, + { + "start": 2438.44, + "end": 2443.4, + "probability": 0.3682 + }, + { + "start": 2444.48, + "end": 2445.46, + "probability": 0.9672 + }, + { + "start": 2445.94, + "end": 2447.32, + "probability": 0.8608 + }, + { + "start": 2447.86, + "end": 2447.86, + "probability": 0.2304 + }, + { + "start": 2447.86, + "end": 2452.6, + "probability": 0.9893 + }, + { + "start": 2453.0, + "end": 2455.1, + "probability": 0.9816 + }, + { + "start": 2455.2, + "end": 2459.5, + "probability": 0.9804 + }, + { + "start": 2459.9, + "end": 2463.1, + "probability": 0.8821 + }, + { + "start": 2463.68, + "end": 2464.86, + "probability": 0.6727 + }, + { + "start": 2465.06, + "end": 2466.54, + "probability": 0.8168 + }, + { + "start": 2466.74, + "end": 2473.62, + "probability": 0.9871 + }, + { + "start": 2475.1, + "end": 2476.2, + "probability": 0.0338 + }, + { + "start": 2476.38, + "end": 2476.72, + "probability": 0.4547 + }, + { + "start": 2476.76, + "end": 2478.18, + "probability": 0.6049 + }, + { + "start": 2478.18, + "end": 2479.36, + "probability": 0.4247 + }, + { + "start": 2480.28, + "end": 2481.86, + "probability": 0.8878 + }, + { + "start": 2481.86, + "end": 2482.94, + "probability": 0.791 + }, + { + "start": 2483.14, + "end": 2483.48, + "probability": 0.8728 + }, + { + "start": 2484.8, + "end": 2485.62, + "probability": 0.9055 + }, + { + "start": 2486.06, + "end": 2487.48, + "probability": 0.6557 + }, + { + "start": 2487.74, + "end": 2494.1, + "probability": 0.9614 + }, + { + "start": 2494.72, + "end": 2500.95, + "probability": 0.8477 + }, + { + "start": 2501.62, + "end": 2502.22, + "probability": 0.6276 + }, + { + "start": 2502.38, + "end": 2503.04, + "probability": 0.9568 + }, + { + "start": 2503.08, + "end": 2508.28, + "probability": 0.9992 + }, + { + "start": 2508.98, + "end": 2514.58, + "probability": 0.9998 + }, + { + "start": 2514.58, + "end": 2520.17, + "probability": 0.999 + }, + { + "start": 2520.36, + "end": 2525.38, + "probability": 0.9696 + }, + { + "start": 2525.38, + "end": 2529.74, + "probability": 0.9883 + }, + { + "start": 2530.34, + "end": 2531.74, + "probability": 0.7206 + }, + { + "start": 2532.02, + "end": 2536.14, + "probability": 0.976 + }, + { + "start": 2536.2, + "end": 2536.62, + "probability": 0.8526 + }, + { + "start": 2537.4, + "end": 2538.94, + "probability": 0.7465 + }, + { + "start": 2539.86, + "end": 2541.3, + "probability": 0.7536 + }, + { + "start": 2541.44, + "end": 2541.78, + "probability": 0.1465 + }, + { + "start": 2542.22, + "end": 2542.28, + "probability": 0.0439 + }, + { + "start": 2542.28, + "end": 2544.58, + "probability": 0.5293 + }, + { + "start": 2545.32, + "end": 2549.14, + "probability": 0.8435 + }, + { + "start": 2549.52, + "end": 2550.94, + "probability": 0.77 + }, + { + "start": 2552.22, + "end": 2555.68, + "probability": 0.8645 + }, + { + "start": 2564.8, + "end": 2566.82, + "probability": 0.9288 + }, + { + "start": 2567.42, + "end": 2569.08, + "probability": 0.7318 + }, + { + "start": 2569.18, + "end": 2569.4, + "probability": 0.4562 + }, + { + "start": 2572.84, + "end": 2575.4, + "probability": 0.5841 + }, + { + "start": 2576.64, + "end": 2579.18, + "probability": 0.8972 + }, + { + "start": 2579.76, + "end": 2580.76, + "probability": 0.9157 + }, + { + "start": 2581.82, + "end": 2583.9, + "probability": 0.882 + }, + { + "start": 2584.54, + "end": 2587.0, + "probability": 0.5495 + }, + { + "start": 2587.04, + "end": 2588.58, + "probability": 0.9299 + }, + { + "start": 2589.02, + "end": 2592.9, + "probability": 0.967 + }, + { + "start": 2596.02, + "end": 2598.48, + "probability": 0.7973 + }, + { + "start": 2599.56, + "end": 2601.68, + "probability": 0.7343 + }, + { + "start": 2602.64, + "end": 2605.54, + "probability": 0.9682 + }, + { + "start": 2606.36, + "end": 2610.84, + "probability": 0.7983 + }, + { + "start": 2612.48, + "end": 2615.5, + "probability": 0.9224 + }, + { + "start": 2615.5, + "end": 2616.64, + "probability": 0.9522 + }, + { + "start": 2617.62, + "end": 2619.84, + "probability": 0.9772 + }, + { + "start": 2620.56, + "end": 2624.06, + "probability": 0.8256 + }, + { + "start": 2624.14, + "end": 2626.65, + "probability": 0.9692 + }, + { + "start": 2627.46, + "end": 2628.66, + "probability": 0.8799 + }, + { + "start": 2629.8, + "end": 2633.68, + "probability": 0.8003 + }, + { + "start": 2634.48, + "end": 2637.6, + "probability": 0.975 + }, + { + "start": 2638.26, + "end": 2639.18, + "probability": 0.6882 + }, + { + "start": 2639.5, + "end": 2644.18, + "probability": 0.9508 + }, + { + "start": 2644.9, + "end": 2648.42, + "probability": 0.5912 + }, + { + "start": 2650.76, + "end": 2656.34, + "probability": 0.9912 + }, + { + "start": 2656.48, + "end": 2662.08, + "probability": 0.9845 + }, + { + "start": 2662.88, + "end": 2666.8, + "probability": 0.9652 + }, + { + "start": 2667.72, + "end": 2669.98, + "probability": 0.8472 + }, + { + "start": 2670.76, + "end": 2672.22, + "probability": 0.7529 + }, + { + "start": 2672.92, + "end": 2675.08, + "probability": 0.9563 + }, + { + "start": 2675.68, + "end": 2679.86, + "probability": 0.9701 + }, + { + "start": 2679.86, + "end": 2682.96, + "probability": 0.9991 + }, + { + "start": 2684.52, + "end": 2691.68, + "probability": 0.9763 + }, + { + "start": 2691.68, + "end": 2700.24, + "probability": 0.9938 + }, + { + "start": 2700.76, + "end": 2706.44, + "probability": 0.993 + }, + { + "start": 2707.24, + "end": 2708.42, + "probability": 0.5992 + }, + { + "start": 2709.56, + "end": 2710.86, + "probability": 0.8718 + }, + { + "start": 2711.5, + "end": 2717.22, + "probability": 0.656 + }, + { + "start": 2717.22, + "end": 2720.28, + "probability": 0.9738 + }, + { + "start": 2720.7, + "end": 2721.96, + "probability": 0.5166 + }, + { + "start": 2722.52, + "end": 2723.66, + "probability": 0.733 + }, + { + "start": 2724.24, + "end": 2726.2, + "probability": 0.5478 + }, + { + "start": 2726.72, + "end": 2727.38, + "probability": 0.9604 + }, + { + "start": 2727.78, + "end": 2728.66, + "probability": 0.9348 + }, + { + "start": 2729.04, + "end": 2733.0, + "probability": 0.9593 + }, + { + "start": 2733.44, + "end": 2736.56, + "probability": 0.9909 + }, + { + "start": 2736.68, + "end": 2737.46, + "probability": 0.8684 + }, + { + "start": 2737.78, + "end": 2742.98, + "probability": 0.8394 + }, + { + "start": 2743.7, + "end": 2745.54, + "probability": 0.9486 + }, + { + "start": 2745.58, + "end": 2748.88, + "probability": 0.6936 + }, + { + "start": 2749.74, + "end": 2751.94, + "probability": 0.9331 + }, + { + "start": 2752.36, + "end": 2752.9, + "probability": 0.8958 + }, + { + "start": 2753.34, + "end": 2756.12, + "probability": 0.7515 + }, + { + "start": 2756.24, + "end": 2756.7, + "probability": 0.4262 + }, + { + "start": 2756.72, + "end": 2757.5, + "probability": 0.5046 + }, + { + "start": 2758.24, + "end": 2759.16, + "probability": 0.9595 + }, + { + "start": 2759.58, + "end": 2761.74, + "probability": 0.7567 + }, + { + "start": 2762.54, + "end": 2764.46, + "probability": 0.5919 + }, + { + "start": 2765.0, + "end": 2770.22, + "probability": 0.8289 + }, + { + "start": 2770.22, + "end": 2772.28, + "probability": 0.762 + }, + { + "start": 2772.3, + "end": 2773.18, + "probability": 0.9292 + }, + { + "start": 2774.34, + "end": 2776.76, + "probability": 0.6272 + }, + { + "start": 2777.3, + "end": 2779.5, + "probability": 0.8468 + }, + { + "start": 2780.12, + "end": 2784.34, + "probability": 0.9391 + }, + { + "start": 2784.8, + "end": 2786.44, + "probability": 0.1369 + }, + { + "start": 2787.38, + "end": 2789.75, + "probability": 0.9144 + }, + { + "start": 2790.48, + "end": 2792.97, + "probability": 0.6574 + }, + { + "start": 2793.36, + "end": 2797.36, + "probability": 0.9215 + }, + { + "start": 2797.92, + "end": 2799.92, + "probability": 0.7217 + }, + { + "start": 2800.38, + "end": 2800.9, + "probability": 0.5951 + }, + { + "start": 2802.22, + "end": 2803.8, + "probability": 0.9851 + }, + { + "start": 2804.58, + "end": 2809.96, + "probability": 0.6988 + }, + { + "start": 2810.36, + "end": 2810.96, + "probability": 0.8759 + }, + { + "start": 2811.18, + "end": 2811.76, + "probability": 0.8767 + }, + { + "start": 2812.04, + "end": 2812.7, + "probability": 0.8105 + }, + { + "start": 2812.82, + "end": 2812.94, + "probability": 0.4036 + }, + { + "start": 2812.96, + "end": 2813.94, + "probability": 0.9067 + }, + { + "start": 2813.94, + "end": 2815.26, + "probability": 0.4597 + }, + { + "start": 2815.78, + "end": 2817.96, + "probability": 0.5341 + }, + { + "start": 2819.08, + "end": 2819.6, + "probability": 0.3303 + }, + { + "start": 2819.6, + "end": 2820.78, + "probability": 0.5316 + }, + { + "start": 2822.6, + "end": 2827.76, + "probability": 0.8882 + }, + { + "start": 2828.86, + "end": 2831.98, + "probability": 0.8704 + }, + { + "start": 2832.66, + "end": 2837.14, + "probability": 0.9792 + }, + { + "start": 2837.14, + "end": 2842.52, + "probability": 0.959 + }, + { + "start": 2842.52, + "end": 2846.18, + "probability": 0.831 + }, + { + "start": 2846.98, + "end": 2850.88, + "probability": 0.9702 + }, + { + "start": 2851.22, + "end": 2854.94, + "probability": 0.9858 + }, + { + "start": 2855.58, + "end": 2860.9, + "probability": 0.9666 + }, + { + "start": 2861.24, + "end": 2863.88, + "probability": 0.8758 + }, + { + "start": 2863.98, + "end": 2868.32, + "probability": 0.9633 + }, + { + "start": 2868.42, + "end": 2870.24, + "probability": 0.8394 + }, + { + "start": 2870.76, + "end": 2873.74, + "probability": 0.987 + }, + { + "start": 2873.74, + "end": 2876.86, + "probability": 0.916 + }, + { + "start": 2877.32, + "end": 2880.48, + "probability": 0.9576 + }, + { + "start": 2881.1, + "end": 2883.86, + "probability": 0.9724 + }, + { + "start": 2884.66, + "end": 2887.9, + "probability": 0.9837 + }, + { + "start": 2888.32, + "end": 2891.32, + "probability": 0.9965 + }, + { + "start": 2892.1, + "end": 2893.1, + "probability": 0.3578 + }, + { + "start": 2893.94, + "end": 2898.94, + "probability": 0.9766 + }, + { + "start": 2899.46, + "end": 2899.95, + "probability": 0.6697 + }, + { + "start": 2900.5, + "end": 2905.8, + "probability": 0.9111 + }, + { + "start": 2907.38, + "end": 2911.06, + "probability": 0.9415 + }, + { + "start": 2912.02, + "end": 2918.26, + "probability": 0.9832 + }, + { + "start": 2918.26, + "end": 2922.8, + "probability": 0.9868 + }, + { + "start": 2923.32, + "end": 2925.94, + "probability": 0.8617 + }, + { + "start": 2927.38, + "end": 2931.24, + "probability": 0.9338 + }, + { + "start": 2931.62, + "end": 2936.1, + "probability": 0.9353 + }, + { + "start": 2938.1, + "end": 2940.2, + "probability": 0.853 + }, + { + "start": 2940.86, + "end": 2942.24, + "probability": 0.3603 + }, + { + "start": 2943.0, + "end": 2948.08, + "probability": 0.788 + }, + { + "start": 2948.08, + "end": 2952.28, + "probability": 0.9803 + }, + { + "start": 2952.48, + "end": 2956.9, + "probability": 0.8397 + }, + { + "start": 2957.04, + "end": 2959.38, + "probability": 0.8506 + }, + { + "start": 2960.16, + "end": 2965.2, + "probability": 0.9422 + }, + { + "start": 2965.2, + "end": 2970.9, + "probability": 0.9751 + }, + { + "start": 2971.9, + "end": 2976.42, + "probability": 0.925 + }, + { + "start": 2977.58, + "end": 2980.32, + "probability": 0.6828 + }, + { + "start": 2980.94, + "end": 2982.17, + "probability": 0.6332 + }, + { + "start": 2983.08, + "end": 2985.98, + "probability": 0.6832 + }, + { + "start": 2986.86, + "end": 2990.69, + "probability": 0.6157 + }, + { + "start": 2991.36, + "end": 2993.38, + "probability": 0.9131 + }, + { + "start": 2993.98, + "end": 2998.24, + "probability": 0.8613 + }, + { + "start": 2999.7, + "end": 3001.46, + "probability": 0.8862 + }, + { + "start": 3002.38, + "end": 3003.3, + "probability": 0.8451 + }, + { + "start": 3003.92, + "end": 3005.04, + "probability": 0.4822 + }, + { + "start": 3005.4, + "end": 3006.56, + "probability": 0.9475 + }, + { + "start": 3006.66, + "end": 3007.54, + "probability": 0.8729 + }, + { + "start": 3007.86, + "end": 3011.32, + "probability": 0.9858 + }, + { + "start": 3013.3, + "end": 3016.06, + "probability": 0.9259 + }, + { + "start": 3016.88, + "end": 3023.2, + "probability": 0.9072 + }, + { + "start": 3023.2, + "end": 3029.32, + "probability": 0.952 + }, + { + "start": 3030.2, + "end": 3032.76, + "probability": 0.8198 + }, + { + "start": 3033.48, + "end": 3034.26, + "probability": 0.8844 + }, + { + "start": 3034.88, + "end": 3038.1, + "probability": 0.8091 + }, + { + "start": 3038.96, + "end": 3039.4, + "probability": 0.7082 + }, + { + "start": 3040.16, + "end": 3041.12, + "probability": 0.8556 + }, + { + "start": 3041.26, + "end": 3044.04, + "probability": 0.7922 + }, + { + "start": 3044.3, + "end": 3045.46, + "probability": 0.8076 + }, + { + "start": 3046.2, + "end": 3049.98, + "probability": 0.9888 + }, + { + "start": 3050.78, + "end": 3054.36, + "probability": 0.9822 + }, + { + "start": 3055.12, + "end": 3057.54, + "probability": 0.8384 + }, + { + "start": 3059.18, + "end": 3062.7, + "probability": 0.9268 + }, + { + "start": 3062.7, + "end": 3065.68, + "probability": 0.9899 + }, + { + "start": 3066.08, + "end": 3067.22, + "probability": 0.8489 + }, + { + "start": 3067.9, + "end": 3068.76, + "probability": 0.3932 + }, + { + "start": 3069.26, + "end": 3073.84, + "probability": 0.7721 + }, + { + "start": 3074.28, + "end": 3078.64, + "probability": 0.9155 + }, + { + "start": 3079.18, + "end": 3081.26, + "probability": 0.9854 + }, + { + "start": 3081.6, + "end": 3082.34, + "probability": 0.7939 + }, + { + "start": 3082.84, + "end": 3084.18, + "probability": 0.995 + }, + { + "start": 3086.08, + "end": 3086.92, + "probability": 0.7537 + }, + { + "start": 3087.88, + "end": 3090.54, + "probability": 0.9414 + }, + { + "start": 3091.18, + "end": 3094.36, + "probability": 0.9925 + }, + { + "start": 3095.02, + "end": 3100.86, + "probability": 0.9613 + }, + { + "start": 3101.04, + "end": 3105.02, + "probability": 0.9671 + }, + { + "start": 3105.02, + "end": 3109.38, + "probability": 0.9752 + }, + { + "start": 3110.14, + "end": 3110.24, + "probability": 0.0273 + }, + { + "start": 3110.36, + "end": 3112.5, + "probability": 0.9617 + }, + { + "start": 3112.64, + "end": 3117.0, + "probability": 0.9053 + }, + { + "start": 3117.18, + "end": 3120.02, + "probability": 0.7917 + }, + { + "start": 3120.14, + "end": 3121.0, + "probability": 0.755 + }, + { + "start": 3121.38, + "end": 3122.48, + "probability": 0.7634 + }, + { + "start": 3122.8, + "end": 3123.88, + "probability": 0.9414 + }, + { + "start": 3124.16, + "end": 3126.72, + "probability": 0.6175 + }, + { + "start": 3127.36, + "end": 3129.78, + "probability": 0.6738 + }, + { + "start": 3129.86, + "end": 3130.54, + "probability": 0.9741 + }, + { + "start": 3131.28, + "end": 3132.26, + "probability": 0.9873 + }, + { + "start": 3132.28, + "end": 3134.76, + "probability": 0.8187 + }, + { + "start": 3134.76, + "end": 3134.97, + "probability": 0.2752 + }, + { + "start": 3135.42, + "end": 3136.82, + "probability": 0.6024 + }, + { + "start": 3137.12, + "end": 3139.5, + "probability": 0.7062 + }, + { + "start": 3140.18, + "end": 3141.18, + "probability": 0.9413 + }, + { + "start": 3141.68, + "end": 3142.78, + "probability": 0.897 + }, + { + "start": 3142.86, + "end": 3145.66, + "probability": 0.8318 + }, + { + "start": 3146.28, + "end": 3147.36, + "probability": 0.7079 + }, + { + "start": 3147.78, + "end": 3148.58, + "probability": 0.5539 + }, + { + "start": 3148.98, + "end": 3153.8, + "probability": 0.9377 + }, + { + "start": 3154.66, + "end": 3157.62, + "probability": 0.9217 + }, + { + "start": 3158.06, + "end": 3163.14, + "probability": 0.9731 + }, + { + "start": 3164.02, + "end": 3165.36, + "probability": 0.8949 + }, + { + "start": 3166.46, + "end": 3169.86, + "probability": 0.9096 + }, + { + "start": 3171.36, + "end": 3173.78, + "probability": 0.907 + }, + { + "start": 3173.9, + "end": 3177.02, + "probability": 0.9958 + }, + { + "start": 3177.5, + "end": 3179.68, + "probability": 0.8678 + }, + { + "start": 3179.84, + "end": 3180.34, + "probability": 0.6155 + }, + { + "start": 3180.46, + "end": 3180.84, + "probability": 0.2681 + }, + { + "start": 3180.88, + "end": 3181.92, + "probability": 0.5706 + }, + { + "start": 3182.76, + "end": 3184.24, + "probability": 0.6724 + }, + { + "start": 3184.78, + "end": 3188.76, + "probability": 0.9875 + }, + { + "start": 3190.34, + "end": 3191.06, + "probability": 0.4791 + }, + { + "start": 3191.46, + "end": 3192.66, + "probability": 0.8492 + }, + { + "start": 3193.87, + "end": 3197.82, + "probability": 0.8677 + }, + { + "start": 3198.12, + "end": 3198.2, + "probability": 0.1471 + }, + { + "start": 3198.2, + "end": 3201.0, + "probability": 0.895 + }, + { + "start": 3201.36, + "end": 3203.02, + "probability": 0.6676 + }, + { + "start": 3204.24, + "end": 3205.6, + "probability": 0.8773 + }, + { + "start": 3209.36, + "end": 3210.24, + "probability": 0.4337 + }, + { + "start": 3210.64, + "end": 3213.12, + "probability": 0.9733 + }, + { + "start": 3213.68, + "end": 3214.76, + "probability": 0.9647 + }, + { + "start": 3234.88, + "end": 3236.1, + "probability": 0.5019 + }, + { + "start": 3236.22, + "end": 3236.22, + "probability": 0.4855 + }, + { + "start": 3236.22, + "end": 3237.6, + "probability": 0.6202 + }, + { + "start": 3237.78, + "end": 3239.9, + "probability": 0.8029 + }, + { + "start": 3240.02, + "end": 3242.16, + "probability": 0.9478 + }, + { + "start": 3242.32, + "end": 3243.38, + "probability": 0.9816 + }, + { + "start": 3243.46, + "end": 3248.52, + "probability": 0.9246 + }, + { + "start": 3248.52, + "end": 3252.6, + "probability": 0.6439 + }, + { + "start": 3252.6, + "end": 3256.14, + "probability": 0.9886 + }, + { + "start": 3256.64, + "end": 3256.82, + "probability": 0.7831 + }, + { + "start": 3257.88, + "end": 3262.58, + "probability": 0.8407 + }, + { + "start": 3263.32, + "end": 3263.66, + "probability": 0.9382 + }, + { + "start": 3263.72, + "end": 3265.9, + "probability": 0.9987 + }, + { + "start": 3266.26, + "end": 3267.68, + "probability": 0.9945 + }, + { + "start": 3268.24, + "end": 3272.08, + "probability": 0.9941 + }, + { + "start": 3272.08, + "end": 3276.52, + "probability": 0.9948 + }, + { + "start": 3276.7, + "end": 3276.88, + "probability": 0.8115 + }, + { + "start": 3276.98, + "end": 3280.02, + "probability": 0.9893 + }, + { + "start": 3281.0, + "end": 3288.34, + "probability": 0.9724 + }, + { + "start": 3288.42, + "end": 3290.62, + "probability": 0.9967 + }, + { + "start": 3291.68, + "end": 3293.08, + "probability": 0.968 + }, + { + "start": 3293.16, + "end": 3293.56, + "probability": 0.7965 + }, + { + "start": 3293.66, + "end": 3294.5, + "probability": 0.645 + }, + { + "start": 3294.58, + "end": 3299.1, + "probability": 0.9951 + }, + { + "start": 3299.1, + "end": 3302.4, + "probability": 0.9976 + }, + { + "start": 3302.56, + "end": 3304.94, + "probability": 0.9016 + }, + { + "start": 3305.68, + "end": 3310.24, + "probability": 0.9972 + }, + { + "start": 3311.02, + "end": 3312.74, + "probability": 0.9928 + }, + { + "start": 3313.52, + "end": 3315.22, + "probability": 0.8516 + }, + { + "start": 3315.4, + "end": 3316.02, + "probability": 0.8736 + }, + { + "start": 3316.14, + "end": 3320.02, + "probability": 0.9971 + }, + { + "start": 3320.16, + "end": 3323.54, + "probability": 0.9697 + }, + { + "start": 3324.08, + "end": 3327.1, + "probability": 0.976 + }, + { + "start": 3327.68, + "end": 3327.9, + "probability": 0.871 + }, + { + "start": 3329.44, + "end": 3332.32, + "probability": 0.8779 + }, + { + "start": 3332.6, + "end": 3334.8, + "probability": 0.6689 + }, + { + "start": 3335.0, + "end": 3338.06, + "probability": 0.9966 + }, + { + "start": 3339.3, + "end": 3339.96, + "probability": 0.5078 + }, + { + "start": 3340.7, + "end": 3341.9, + "probability": 0.8234 + }, + { + "start": 3342.06, + "end": 3345.28, + "probability": 0.9772 + }, + { + "start": 3365.36, + "end": 3367.2, + "probability": 0.7142 + }, + { + "start": 3368.24, + "end": 3371.29, + "probability": 0.8187 + }, + { + "start": 3372.86, + "end": 3377.34, + "probability": 0.9852 + }, + { + "start": 3379.28, + "end": 3383.06, + "probability": 0.9873 + }, + { + "start": 3383.06, + "end": 3387.86, + "probability": 0.9946 + }, + { + "start": 3388.06, + "end": 3389.78, + "probability": 0.9916 + }, + { + "start": 3391.58, + "end": 3397.12, + "probability": 0.648 + }, + { + "start": 3397.14, + "end": 3398.72, + "probability": 0.56 + }, + { + "start": 3400.04, + "end": 3402.94, + "probability": 0.817 + }, + { + "start": 3404.12, + "end": 3406.52, + "probability": 0.9731 + }, + { + "start": 3407.42, + "end": 3410.98, + "probability": 0.8501 + }, + { + "start": 3412.66, + "end": 3416.96, + "probability": 0.9737 + }, + { + "start": 3418.8, + "end": 3419.82, + "probability": 0.8579 + }, + { + "start": 3420.68, + "end": 3422.02, + "probability": 0.8188 + }, + { + "start": 3423.78, + "end": 3425.2, + "probability": 0.9914 + }, + { + "start": 3427.42, + "end": 3429.8, + "probability": 0.9807 + }, + { + "start": 3430.72, + "end": 3432.06, + "probability": 0.796 + }, + { + "start": 3433.78, + "end": 3439.74, + "probability": 0.9494 + }, + { + "start": 3440.46, + "end": 3442.22, + "probability": 0.9971 + }, + { + "start": 3443.66, + "end": 3444.78, + "probability": 0.8088 + }, + { + "start": 3446.88, + "end": 3450.96, + "probability": 0.8713 + }, + { + "start": 3452.2, + "end": 3454.56, + "probability": 0.9488 + }, + { + "start": 3455.26, + "end": 3457.53, + "probability": 0.9956 + }, + { + "start": 3458.0, + "end": 3459.84, + "probability": 0.9434 + }, + { + "start": 3461.16, + "end": 3462.52, + "probability": 0.9637 + }, + { + "start": 3463.8, + "end": 3466.18, + "probability": 0.933 + }, + { + "start": 3467.8, + "end": 3469.4, + "probability": 0.4493 + }, + { + "start": 3470.58, + "end": 3473.5, + "probability": 0.7549 + }, + { + "start": 3474.66, + "end": 3477.4, + "probability": 0.9713 + }, + { + "start": 3477.48, + "end": 3478.78, + "probability": 0.7512 + }, + { + "start": 3479.32, + "end": 3481.42, + "probability": 0.9199 + }, + { + "start": 3482.16, + "end": 3485.42, + "probability": 0.8094 + }, + { + "start": 3486.0, + "end": 3489.06, + "probability": 0.981 + }, + { + "start": 3490.1, + "end": 3492.14, + "probability": 0.9934 + }, + { + "start": 3493.08, + "end": 3495.38, + "probability": 0.8947 + }, + { + "start": 3497.58, + "end": 3502.48, + "probability": 0.979 + }, + { + "start": 3502.52, + "end": 3503.34, + "probability": 0.8052 + }, + { + "start": 3504.12, + "end": 3505.9, + "probability": 0.9829 + }, + { + "start": 3507.72, + "end": 3512.9, + "probability": 0.8369 + }, + { + "start": 3514.46, + "end": 3515.56, + "probability": 0.8093 + }, + { + "start": 3515.58, + "end": 3517.56, + "probability": 0.9784 + }, + { + "start": 3518.82, + "end": 3524.26, + "probability": 0.9214 + }, + { + "start": 3524.52, + "end": 3524.74, + "probability": 0.0931 + }, + { + "start": 3524.76, + "end": 3525.48, + "probability": 0.7594 + }, + { + "start": 3525.58, + "end": 3529.68, + "probability": 0.9531 + }, + { + "start": 3529.74, + "end": 3533.72, + "probability": 0.9932 + }, + { + "start": 3535.16, + "end": 3540.1, + "probability": 0.9857 + }, + { + "start": 3540.18, + "end": 3541.5, + "probability": 0.7119 + }, + { + "start": 3542.22, + "end": 3545.1, + "probability": 0.9976 + }, + { + "start": 3545.82, + "end": 3550.56, + "probability": 0.9858 + }, + { + "start": 3551.88, + "end": 3554.28, + "probability": 0.9937 + }, + { + "start": 3555.76, + "end": 3558.48, + "probability": 0.8896 + }, + { + "start": 3560.16, + "end": 3561.86, + "probability": 0.701 + }, + { + "start": 3562.66, + "end": 3564.9, + "probability": 0.8484 + }, + { + "start": 3564.9, + "end": 3569.62, + "probability": 0.7211 + }, + { + "start": 3569.82, + "end": 3570.2, + "probability": 0.9493 + }, + { + "start": 3571.28, + "end": 3574.1, + "probability": 0.9819 + }, + { + "start": 3575.22, + "end": 3576.54, + "probability": 0.7158 + }, + { + "start": 3577.86, + "end": 3578.72, + "probability": 0.9734 + }, + { + "start": 3580.96, + "end": 3581.88, + "probability": 0.7478 + }, + { + "start": 3583.78, + "end": 3584.72, + "probability": 0.743 + }, + { + "start": 3586.16, + "end": 3587.6, + "probability": 0.9495 + }, + { + "start": 3588.24, + "end": 3589.8, + "probability": 0.9761 + }, + { + "start": 3590.66, + "end": 3593.03, + "probability": 0.9515 + }, + { + "start": 3595.24, + "end": 3596.7, + "probability": 0.7222 + }, + { + "start": 3596.74, + "end": 3597.82, + "probability": 0.5908 + }, + { + "start": 3597.86, + "end": 3598.4, + "probability": 0.6139 + }, + { + "start": 3598.82, + "end": 3600.86, + "probability": 0.9832 + }, + { + "start": 3601.42, + "end": 3602.54, + "probability": 0.913 + }, + { + "start": 3603.8, + "end": 3605.88, + "probability": 0.8634 + }, + { + "start": 3605.9, + "end": 3606.2, + "probability": 0.88 + }, + { + "start": 3606.24, + "end": 3610.1, + "probability": 0.9883 + }, + { + "start": 3612.38, + "end": 3615.22, + "probability": 0.9883 + }, + { + "start": 3616.84, + "end": 3618.3, + "probability": 0.8456 + }, + { + "start": 3618.42, + "end": 3620.04, + "probability": 0.9285 + }, + { + "start": 3620.54, + "end": 3623.82, + "probability": 0.7963 + }, + { + "start": 3623.88, + "end": 3624.22, + "probability": 0.5933 + }, + { + "start": 3624.68, + "end": 3625.92, + "probability": 0.9293 + }, + { + "start": 3626.64, + "end": 3627.9, + "probability": 0.7237 + }, + { + "start": 3630.58, + "end": 3631.64, + "probability": 0.9829 + }, + { + "start": 3632.22, + "end": 3635.14, + "probability": 0.9387 + }, + { + "start": 3636.22, + "end": 3638.08, + "probability": 0.6434 + }, + { + "start": 3638.76, + "end": 3640.19, + "probability": 0.9946 + }, + { + "start": 3641.44, + "end": 3645.32, + "probability": 0.9844 + }, + { + "start": 3646.68, + "end": 3650.32, + "probability": 0.9884 + }, + { + "start": 3651.64, + "end": 3653.68, + "probability": 0.9905 + }, + { + "start": 3655.26, + "end": 3655.28, + "probability": 0.3237 + }, + { + "start": 3655.38, + "end": 3655.96, + "probability": 0.8135 + }, + { + "start": 3656.22, + "end": 3656.9, + "probability": 0.8278 + }, + { + "start": 3657.0, + "end": 3658.0, + "probability": 0.7434 + }, + { + "start": 3658.14, + "end": 3658.38, + "probability": 0.5999 + }, + { + "start": 3658.68, + "end": 3659.8, + "probability": 0.9219 + }, + { + "start": 3661.12, + "end": 3665.7, + "probability": 0.9242 + }, + { + "start": 3667.6, + "end": 3670.92, + "probability": 0.9124 + }, + { + "start": 3672.0, + "end": 3672.7, + "probability": 0.5798 + }, + { + "start": 3673.82, + "end": 3674.44, + "probability": 0.6993 + }, + { + "start": 3675.12, + "end": 3680.74, + "probability": 0.9751 + }, + { + "start": 3681.26, + "end": 3683.04, + "probability": 0.9944 + }, + { + "start": 3683.6, + "end": 3685.54, + "probability": 0.9524 + }, + { + "start": 3687.74, + "end": 3689.98, + "probability": 0.9644 + }, + { + "start": 3690.0, + "end": 3691.72, + "probability": 0.8769 + }, + { + "start": 3692.56, + "end": 3693.73, + "probability": 0.9673 + }, + { + "start": 3693.88, + "end": 3696.72, + "probability": 0.9937 + }, + { + "start": 3696.72, + "end": 3701.4, + "probability": 0.9103 + }, + { + "start": 3703.54, + "end": 3706.62, + "probability": 0.9243 + }, + { + "start": 3707.58, + "end": 3708.38, + "probability": 0.6116 + }, + { + "start": 3709.68, + "end": 3713.16, + "probability": 0.9852 + }, + { + "start": 3714.9, + "end": 3717.04, + "probability": 0.9014 + }, + { + "start": 3718.38, + "end": 3720.54, + "probability": 0.9361 + }, + { + "start": 3723.34, + "end": 3727.0, + "probability": 0.9752 + }, + { + "start": 3729.24, + "end": 3730.46, + "probability": 0.9653 + }, + { + "start": 3730.54, + "end": 3730.76, + "probability": 0.6822 + }, + { + "start": 3730.82, + "end": 3733.27, + "probability": 0.9923 + }, + { + "start": 3733.54, + "end": 3734.14, + "probability": 0.8152 + }, + { + "start": 3734.62, + "end": 3735.82, + "probability": 0.943 + }, + { + "start": 3736.98, + "end": 3737.56, + "probability": 0.9499 + }, + { + "start": 3738.64, + "end": 3742.9, + "probability": 0.887 + }, + { + "start": 3743.0, + "end": 3744.7, + "probability": 0.9739 + }, + { + "start": 3745.64, + "end": 3747.02, + "probability": 0.9387 + }, + { + "start": 3748.56, + "end": 3751.1, + "probability": 0.998 + }, + { + "start": 3752.2, + "end": 3754.02, + "probability": 0.8467 + }, + { + "start": 3754.66, + "end": 3755.74, + "probability": 0.8872 + }, + { + "start": 3757.14, + "end": 3762.76, + "probability": 0.9636 + }, + { + "start": 3763.52, + "end": 3765.14, + "probability": 0.9742 + }, + { + "start": 3765.68, + "end": 3766.62, + "probability": 0.9954 + }, + { + "start": 3768.24, + "end": 3768.54, + "probability": 0.7396 + }, + { + "start": 3768.62, + "end": 3770.22, + "probability": 0.9557 + }, + { + "start": 3770.38, + "end": 3771.36, + "probability": 0.6523 + }, + { + "start": 3771.98, + "end": 3773.04, + "probability": 0.6695 + }, + { + "start": 3774.12, + "end": 3774.62, + "probability": 0.4352 + }, + { + "start": 3775.52, + "end": 3775.52, + "probability": 0.1078 + }, + { + "start": 3775.62, + "end": 3777.36, + "probability": 0.0306 + }, + { + "start": 3778.38, + "end": 3780.92, + "probability": 0.8558 + }, + { + "start": 3782.0, + "end": 3784.76, + "probability": 0.998 + }, + { + "start": 3784.82, + "end": 3787.68, + "probability": 0.9972 + }, + { + "start": 3787.68, + "end": 3791.5, + "probability": 0.9991 + }, + { + "start": 3793.54, + "end": 3794.86, + "probability": 0.6419 + }, + { + "start": 3795.94, + "end": 3796.68, + "probability": 0.7839 + }, + { + "start": 3797.72, + "end": 3798.52, + "probability": 0.7271 + }, + { + "start": 3799.08, + "end": 3802.86, + "probability": 0.9092 + }, + { + "start": 3804.0, + "end": 3807.12, + "probability": 0.8803 + }, + { + "start": 3807.78, + "end": 3808.94, + "probability": 0.6669 + }, + { + "start": 3809.32, + "end": 3811.68, + "probability": 0.9344 + }, + { + "start": 3813.06, + "end": 3817.8, + "probability": 0.9905 + }, + { + "start": 3820.0, + "end": 3820.38, + "probability": 0.3543 + }, + { + "start": 3820.54, + "end": 3821.28, + "probability": 0.7494 + }, + { + "start": 3821.5, + "end": 3821.92, + "probability": 0.7186 + }, + { + "start": 3822.18, + "end": 3823.64, + "probability": 0.9166 + }, + { + "start": 3823.72, + "end": 3823.98, + "probability": 0.8244 + }, + { + "start": 3824.04, + "end": 3824.76, + "probability": 0.9169 + }, + { + "start": 3824.78, + "end": 3826.64, + "probability": 0.8564 + }, + { + "start": 3828.22, + "end": 3830.94, + "probability": 0.9688 + }, + { + "start": 3832.06, + "end": 3833.96, + "probability": 0.9941 + }, + { + "start": 3834.88, + "end": 3835.86, + "probability": 0.9899 + }, + { + "start": 3835.98, + "end": 3838.66, + "probability": 0.9967 + }, + { + "start": 3839.94, + "end": 3843.74, + "probability": 0.907 + }, + { + "start": 3844.9, + "end": 3848.14, + "probability": 0.9236 + }, + { + "start": 3848.14, + "end": 3851.08, + "probability": 0.9706 + }, + { + "start": 3852.08, + "end": 3853.36, + "probability": 0.7278 + }, + { + "start": 3854.04, + "end": 3854.96, + "probability": 0.7167 + }, + { + "start": 3855.86, + "end": 3858.4, + "probability": 0.9457 + }, + { + "start": 3858.8, + "end": 3860.3, + "probability": 0.8444 + }, + { + "start": 3860.58, + "end": 3862.14, + "probability": 0.9868 + }, + { + "start": 3863.3, + "end": 3865.42, + "probability": 0.6986 + }, + { + "start": 3867.8, + "end": 3870.82, + "probability": 0.6284 + }, + { + "start": 3871.42, + "end": 3872.3, + "probability": 0.6284 + }, + { + "start": 3873.28, + "end": 3873.82, + "probability": 0.6989 + }, + { + "start": 3873.98, + "end": 3875.0, + "probability": 0.7427 + }, + { + "start": 3875.2, + "end": 3876.42, + "probability": 0.9497 + }, + { + "start": 3877.22, + "end": 3880.66, + "probability": 0.9667 + }, + { + "start": 3883.94, + "end": 3884.68, + "probability": 0.8611 + }, + { + "start": 3885.76, + "end": 3886.36, + "probability": 0.5933 + }, + { + "start": 3887.04, + "end": 3889.34, + "probability": 0.9888 + }, + { + "start": 3889.34, + "end": 3890.86, + "probability": 0.9983 + }, + { + "start": 3890.98, + "end": 3892.26, + "probability": 0.9866 + }, + { + "start": 3892.34, + "end": 3895.12, + "probability": 0.6523 + }, + { + "start": 3896.42, + "end": 3899.48, + "probability": 0.9713 + }, + { + "start": 3900.48, + "end": 3901.18, + "probability": 0.5112 + }, + { + "start": 3901.22, + "end": 3901.82, + "probability": 0.593 + }, + { + "start": 3902.62, + "end": 3905.5, + "probability": 0.8501 + }, + { + "start": 3906.3, + "end": 3908.74, + "probability": 0.9175 + }, + { + "start": 3909.76, + "end": 3910.64, + "probability": 0.8489 + }, + { + "start": 3911.34, + "end": 3912.64, + "probability": 0.684 + }, + { + "start": 3912.72, + "end": 3917.58, + "probability": 0.9785 + }, + { + "start": 3917.58, + "end": 3921.48, + "probability": 0.7787 + }, + { + "start": 3923.6, + "end": 3927.02, + "probability": 0.8569 + }, + { + "start": 3927.08, + "end": 3927.73, + "probability": 0.9951 + }, + { + "start": 3928.36, + "end": 3930.62, + "probability": 0.8911 + }, + { + "start": 3931.72, + "end": 3932.92, + "probability": 0.9932 + }, + { + "start": 3933.0, + "end": 3933.98, + "probability": 0.9725 + }, + { + "start": 3934.14, + "end": 3934.28, + "probability": 0.0201 + }, + { + "start": 3934.78, + "end": 3937.32, + "probability": 0.9795 + }, + { + "start": 3937.46, + "end": 3941.36, + "probability": 0.9624 + }, + { + "start": 3941.44, + "end": 3943.58, + "probability": 0.9423 + }, + { + "start": 3943.9, + "end": 3945.16, + "probability": 0.8981 + }, + { + "start": 3945.24, + "end": 3946.24, + "probability": 0.7427 + }, + { + "start": 3947.16, + "end": 3950.36, + "probability": 0.9656 + }, + { + "start": 3951.16, + "end": 3953.26, + "probability": 0.8278 + }, + { + "start": 3954.64, + "end": 3956.74, + "probability": 0.8635 + }, + { + "start": 3957.54, + "end": 3959.1, + "probability": 0.9857 + }, + { + "start": 3959.24, + "end": 3961.18, + "probability": 0.9966 + }, + { + "start": 3961.32, + "end": 3962.82, + "probability": 0.4987 + }, + { + "start": 3962.98, + "end": 3963.96, + "probability": 0.7159 + }, + { + "start": 3965.7, + "end": 3967.1, + "probability": 0.9614 + }, + { + "start": 3968.78, + "end": 3975.84, + "probability": 0.4555 + }, + { + "start": 3975.84, + "end": 3976.47, + "probability": 0.7839 + }, + { + "start": 3977.68, + "end": 3980.46, + "probability": 0.8938 + }, + { + "start": 3980.98, + "end": 3983.06, + "probability": 0.9369 + }, + { + "start": 3983.08, + "end": 3986.02, + "probability": 0.9594 + }, + { + "start": 3986.56, + "end": 3989.88, + "probability": 0.9152 + }, + { + "start": 3990.3, + "end": 3991.62, + "probability": 0.9412 + }, + { + "start": 3992.38, + "end": 3993.8, + "probability": 0.9958 + }, + { + "start": 3994.56, + "end": 3996.46, + "probability": 0.9162 + }, + { + "start": 3997.88, + "end": 3999.32, + "probability": 0.9637 + }, + { + "start": 3999.52, + "end": 4000.84, + "probability": 0.7933 + }, + { + "start": 4002.1, + "end": 4004.02, + "probability": 0.9485 + }, + { + "start": 4004.06, + "end": 4005.12, + "probability": 0.9524 + }, + { + "start": 4005.4, + "end": 4007.12, + "probability": 0.9346 + }, + { + "start": 4007.56, + "end": 4012.16, + "probability": 0.9729 + }, + { + "start": 4012.54, + "end": 4014.22, + "probability": 0.9966 + }, + { + "start": 4014.24, + "end": 4014.52, + "probability": 0.5437 + }, + { + "start": 4015.0, + "end": 4016.16, + "probability": 0.9655 + }, + { + "start": 4016.98, + "end": 4018.12, + "probability": 0.3659 + }, + { + "start": 4019.0, + "end": 4019.34, + "probability": 0.3751 + }, + { + "start": 4019.48, + "end": 4021.06, + "probability": 0.493 + }, + { + "start": 4021.42, + "end": 4026.08, + "probability": 0.9724 + }, + { + "start": 4026.36, + "end": 4027.54, + "probability": 0.9047 + }, + { + "start": 4042.08, + "end": 4043.26, + "probability": 0.5285 + }, + { + "start": 4044.56, + "end": 4047.04, + "probability": 0.6441 + }, + { + "start": 4048.8, + "end": 4050.18, + "probability": 0.5059 + }, + { + "start": 4050.76, + "end": 4051.84, + "probability": 0.9243 + }, + { + "start": 4051.9, + "end": 4056.26, + "probability": 0.8369 + }, + { + "start": 4057.14, + "end": 4062.56, + "probability": 0.9871 + }, + { + "start": 4062.56, + "end": 4066.36, + "probability": 0.9971 + }, + { + "start": 4066.54, + "end": 4067.74, + "probability": 0.9219 + }, + { + "start": 4069.08, + "end": 4070.86, + "probability": 0.6909 + }, + { + "start": 4070.94, + "end": 4072.92, + "probability": 0.9918 + }, + { + "start": 4073.14, + "end": 4075.6, + "probability": 0.0099 + }, + { + "start": 4075.6, + "end": 4077.36, + "probability": 0.0187 + }, + { + "start": 4077.36, + "end": 4080.58, + "probability": 0.9647 + }, + { + "start": 4080.7, + "end": 4085.0, + "probability": 0.987 + }, + { + "start": 4085.78, + "end": 4089.08, + "probability": 0.8843 + }, + { + "start": 4089.48, + "end": 4091.22, + "probability": 0.9921 + }, + { + "start": 4092.1, + "end": 4092.52, + "probability": 0.2457 + }, + { + "start": 4095.2, + "end": 4097.0, + "probability": 0.0053 + }, + { + "start": 4097.0, + "end": 4098.4, + "probability": 0.5045 + }, + { + "start": 4098.52, + "end": 4100.1, + "probability": 0.6639 + }, + { + "start": 4100.26, + "end": 4101.38, + "probability": 0.6741 + }, + { + "start": 4101.4, + "end": 4103.34, + "probability": 0.856 + }, + { + "start": 4103.56, + "end": 4104.22, + "probability": 0.7299 + }, + { + "start": 4104.24, + "end": 4107.08, + "probability": 0.5171 + }, + { + "start": 4107.42, + "end": 4108.6, + "probability": 0.5472 + }, + { + "start": 4108.68, + "end": 4110.04, + "probability": 0.9393 + }, + { + "start": 4110.08, + "end": 4115.08, + "probability": 0.9852 + }, + { + "start": 4115.74, + "end": 4118.24, + "probability": 0.9766 + }, + { + "start": 4118.3, + "end": 4119.46, + "probability": 0.8959 + }, + { + "start": 4119.52, + "end": 4121.3, + "probability": 0.9937 + }, + { + "start": 4121.9, + "end": 4124.78, + "probability": 0.7515 + }, + { + "start": 4125.24, + "end": 4128.36, + "probability": 0.7249 + }, + { + "start": 4129.04, + "end": 4132.92, + "probability": 0.757 + }, + { + "start": 4133.38, + "end": 4134.92, + "probability": 0.8624 + }, + { + "start": 4135.02, + "end": 4135.34, + "probability": 0.3682 + }, + { + "start": 4135.4, + "end": 4138.32, + "probability": 0.9029 + }, + { + "start": 4138.4, + "end": 4140.72, + "probability": 0.8188 + }, + { + "start": 4140.84, + "end": 4141.84, + "probability": 0.7506 + }, + { + "start": 4142.12, + "end": 4142.58, + "probability": 0.0419 + }, + { + "start": 4142.92, + "end": 4142.92, + "probability": 0.1379 + }, + { + "start": 4143.06, + "end": 4145.86, + "probability": 0.6457 + }, + { + "start": 4146.62, + "end": 4148.8, + "probability": 0.7519 + }, + { + "start": 4149.5, + "end": 4149.52, + "probability": 0.7974 + }, + { + "start": 4151.28, + "end": 4154.38, + "probability": 0.7751 + }, + { + "start": 4154.9, + "end": 4160.46, + "probability": 0.6553 + }, + { + "start": 4161.56, + "end": 4163.28, + "probability": 0.9727 + }, + { + "start": 4163.84, + "end": 4165.42, + "probability": 0.9717 + }, + { + "start": 4165.84, + "end": 4168.52, + "probability": 0.9746 + }, + { + "start": 4168.64, + "end": 4169.44, + "probability": 0.9324 + }, + { + "start": 4169.5, + "end": 4169.9, + "probability": 0.3991 + }, + { + "start": 4170.26, + "end": 4171.56, + "probability": 0.1882 + }, + { + "start": 4171.88, + "end": 4172.72, + "probability": 0.0896 + }, + { + "start": 4172.8, + "end": 4173.5, + "probability": 0.2885 + }, + { + "start": 4174.24, + "end": 4176.16, + "probability": 0.4718 + }, + { + "start": 4176.68, + "end": 4179.16, + "probability": 0.3378 + }, + { + "start": 4179.8, + "end": 4180.32, + "probability": 0.271 + }, + { + "start": 4180.48, + "end": 4182.31, + "probability": 0.1149 + }, + { + "start": 4182.68, + "end": 4183.82, + "probability": 0.3116 + }, + { + "start": 4183.86, + "end": 4186.88, + "probability": 0.1967 + }, + { + "start": 4187.18, + "end": 4187.18, + "probability": 0.011 + }, + { + "start": 4188.62, + "end": 4188.92, + "probability": 0.0591 + }, + { + "start": 4188.92, + "end": 4189.78, + "probability": 0.2797 + }, + { + "start": 4189.88, + "end": 4190.37, + "probability": 0.8894 + }, + { + "start": 4190.95, + "end": 4193.34, + "probability": 0.9971 + }, + { + "start": 4193.44, + "end": 4195.67, + "probability": 0.4522 + }, + { + "start": 4195.82, + "end": 4196.26, + "probability": 0.8248 + }, + { + "start": 4196.32, + "end": 4197.34, + "probability": 0.8976 + }, + { + "start": 4197.86, + "end": 4199.91, + "probability": 0.5243 + }, + { + "start": 4200.92, + "end": 4201.7, + "probability": 0.6622 + }, + { + "start": 4201.78, + "end": 4202.26, + "probability": 0.1423 + }, + { + "start": 4202.54, + "end": 4208.96, + "probability": 0.9453 + }, + { + "start": 4209.26, + "end": 4210.32, + "probability": 0.355 + }, + { + "start": 4210.32, + "end": 4213.94, + "probability": 0.8083 + }, + { + "start": 4213.94, + "end": 4216.24, + "probability": 0.7386 + }, + { + "start": 4216.32, + "end": 4218.9, + "probability": 0.6323 + }, + { + "start": 4220.2, + "end": 4221.68, + "probability": 0.0702 + }, + { + "start": 4221.68, + "end": 4222.14, + "probability": 0.4961 + }, + { + "start": 4222.38, + "end": 4222.78, + "probability": 0.3845 + }, + { + "start": 4222.84, + "end": 4224.89, + "probability": 0.9791 + }, + { + "start": 4225.3, + "end": 4227.06, + "probability": 0.7155 + }, + { + "start": 4227.22, + "end": 4231.46, + "probability": 0.985 + }, + { + "start": 4231.66, + "end": 4234.44, + "probability": 0.9069 + }, + { + "start": 4235.04, + "end": 4237.04, + "probability": 0.9952 + }, + { + "start": 4237.26, + "end": 4239.5, + "probability": 0.9629 + }, + { + "start": 4240.38, + "end": 4241.74, + "probability": 0.8012 + }, + { + "start": 4241.82, + "end": 4243.22, + "probability": 0.8909 + }, + { + "start": 4243.6, + "end": 4244.76, + "probability": 0.9385 + }, + { + "start": 4245.26, + "end": 4249.96, + "probability": 0.9941 + }, + { + "start": 4250.68, + "end": 4252.9, + "probability": 0.6989 + }, + { + "start": 4253.98, + "end": 4255.28, + "probability": 0.9912 + }, + { + "start": 4255.52, + "end": 4258.0, + "probability": 0.9952 + }, + { + "start": 4258.42, + "end": 4261.56, + "probability": 0.6932 + }, + { + "start": 4261.7, + "end": 4263.48, + "probability": 0.9317 + }, + { + "start": 4264.36, + "end": 4270.94, + "probability": 0.9706 + }, + { + "start": 4270.94, + "end": 4275.76, + "probability": 0.9897 + }, + { + "start": 4276.36, + "end": 4279.56, + "probability": 0.973 + }, + { + "start": 4280.24, + "end": 4283.09, + "probability": 0.9702 + }, + { + "start": 4284.62, + "end": 4286.02, + "probability": 0.7126 + }, + { + "start": 4286.24, + "end": 4289.94, + "probability": 0.9905 + }, + { + "start": 4290.96, + "end": 4292.44, + "probability": 0.8076 + }, + { + "start": 4292.46, + "end": 4293.04, + "probability": 0.9684 + }, + { + "start": 4293.06, + "end": 4293.96, + "probability": 0.9474 + }, + { + "start": 4294.0, + "end": 4295.36, + "probability": 0.9594 + }, + { + "start": 4296.12, + "end": 4298.94, + "probability": 0.9976 + }, + { + "start": 4299.98, + "end": 4302.32, + "probability": 0.9971 + }, + { + "start": 4302.36, + "end": 4303.8, + "probability": 0.973 + }, + { + "start": 4305.24, + "end": 4311.16, + "probability": 0.981 + }, + { + "start": 4311.2, + "end": 4314.36, + "probability": 0.9988 + }, + { + "start": 4314.36, + "end": 4318.48, + "probability": 0.9991 + }, + { + "start": 4318.76, + "end": 4322.7, + "probability": 0.9972 + }, + { + "start": 4322.7, + "end": 4327.18, + "probability": 0.9935 + }, + { + "start": 4327.86, + "end": 4328.1, + "probability": 0.3411 + }, + { + "start": 4328.2, + "end": 4333.32, + "probability": 0.8281 + }, + { + "start": 4333.76, + "end": 4333.94, + "probability": 0.8766 + }, + { + "start": 4334.02, + "end": 4338.02, + "probability": 0.988 + }, + { + "start": 4338.88, + "end": 4343.9, + "probability": 0.993 + }, + { + "start": 4346.78, + "end": 4349.72, + "probability": 0.9976 + }, + { + "start": 4350.48, + "end": 4351.38, + "probability": 0.0187 + }, + { + "start": 4351.84, + "end": 4353.5, + "probability": 0.1412 + }, + { + "start": 4353.64, + "end": 4359.18, + "probability": 0.9893 + }, + { + "start": 4360.4, + "end": 4362.06, + "probability": 0.9641 + }, + { + "start": 4362.16, + "end": 4363.96, + "probability": 0.9458 + }, + { + "start": 4364.54, + "end": 4365.89, + "probability": 0.9902 + }, + { + "start": 4366.14, + "end": 4371.06, + "probability": 0.9948 + }, + { + "start": 4371.66, + "end": 4372.0, + "probability": 0.5549 + }, + { + "start": 4372.24, + "end": 4373.46, + "probability": 0.5821 + }, + { + "start": 4373.48, + "end": 4373.7, + "probability": 0.8407 + }, + { + "start": 4373.72, + "end": 4377.98, + "probability": 0.9367 + }, + { + "start": 4378.1, + "end": 4381.32, + "probability": 0.9828 + }, + { + "start": 4381.64, + "end": 4382.68, + "probability": 0.989 + }, + { + "start": 4382.8, + "end": 4388.86, + "probability": 0.9988 + }, + { + "start": 4388.86, + "end": 4393.64, + "probability": 0.9725 + }, + { + "start": 4393.7, + "end": 4399.58, + "probability": 0.9897 + }, + { + "start": 4400.46, + "end": 4404.24, + "probability": 0.999 + }, + { + "start": 4404.78, + "end": 4406.56, + "probability": 0.8916 + }, + { + "start": 4410.16, + "end": 4413.42, + "probability": 0.9963 + }, + { + "start": 4414.58, + "end": 4420.76, + "probability": 0.9787 + }, + { + "start": 4421.34, + "end": 4422.88, + "probability": 0.9732 + }, + { + "start": 4423.38, + "end": 4424.54, + "probability": 0.5145 + }, + { + "start": 4424.62, + "end": 4426.34, + "probability": 0.9391 + }, + { + "start": 4426.42, + "end": 4429.18, + "probability": 0.973 + }, + { + "start": 4431.86, + "end": 4435.32, + "probability": 0.7647 + }, + { + "start": 4435.86, + "end": 4436.7, + "probability": 0.9633 + }, + { + "start": 4437.42, + "end": 4438.92, + "probability": 0.9191 + }, + { + "start": 4438.98, + "end": 4439.64, + "probability": 0.9528 + }, + { + "start": 4439.68, + "end": 4442.68, + "probability": 0.9838 + }, + { + "start": 4442.84, + "end": 4444.78, + "probability": 0.961 + }, + { + "start": 4444.8, + "end": 4448.47, + "probability": 0.9873 + }, + { + "start": 4449.08, + "end": 4449.82, + "probability": 0.6338 + }, + { + "start": 4449.99, + "end": 4451.14, + "probability": 0.9658 + }, + { + "start": 4451.4, + "end": 4455.22, + "probability": 0.9771 + }, + { + "start": 4456.12, + "end": 4459.42, + "probability": 0.9853 + }, + { + "start": 4459.42, + "end": 4462.82, + "probability": 0.9958 + }, + { + "start": 4462.98, + "end": 4463.8, + "probability": 0.9856 + }, + { + "start": 4463.86, + "end": 4465.0, + "probability": 0.7114 + }, + { + "start": 4465.06, + "end": 4470.15, + "probability": 0.9948 + }, + { + "start": 4470.54, + "end": 4471.1, + "probability": 0.3409 + }, + { + "start": 4475.22, + "end": 4475.9, + "probability": 0.0818 + }, + { + "start": 4483.76, + "end": 4484.18, + "probability": 0.4116 + }, + { + "start": 4486.56, + "end": 4489.66, + "probability": 0.809 + }, + { + "start": 4490.1, + "end": 4491.04, + "probability": 0.1902 + }, + { + "start": 4491.2, + "end": 4494.16, + "probability": 0.0387 + }, + { + "start": 4494.84, + "end": 4495.8, + "probability": 0.0569 + }, + { + "start": 4497.07, + "end": 4497.66, + "probability": 0.036 + }, + { + "start": 4499.96, + "end": 4503.06, + "probability": 0.0803 + }, + { + "start": 4503.06, + "end": 4504.2, + "probability": 0.0414 + }, + { + "start": 4504.98, + "end": 4505.78, + "probability": 0.0052 + }, + { + "start": 4505.78, + "end": 4506.08, + "probability": 0.0225 + }, + { + "start": 4506.22, + "end": 4506.82, + "probability": 0.0173 + }, + { + "start": 4506.82, + "end": 4509.64, + "probability": 0.1077 + }, + { + "start": 4509.64, + "end": 4513.36, + "probability": 0.1178 + }, + { + "start": 4513.58, + "end": 4514.88, + "probability": 0.0635 + }, + { + "start": 4532.82, + "end": 4534.8, + "probability": 0.0466 + }, + { + "start": 4534.8, + "end": 4536.32, + "probability": 0.0487 + }, + { + "start": 4537.0, + "end": 4539.44, + "probability": 0.1798 + }, + { + "start": 4539.44, + "end": 4543.34, + "probability": 0.2313 + }, + { + "start": 4545.19, + "end": 4548.6, + "probability": 0.069 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.0, + "end": 4551.0, + "probability": 0.0 + }, + { + "start": 4551.1, + "end": 4551.68, + "probability": 0.0557 + }, + { + "start": 4551.68, + "end": 4551.68, + "probability": 0.0569 + }, + { + "start": 4551.68, + "end": 4551.68, + "probability": 0.0764 + }, + { + "start": 4551.68, + "end": 4551.84, + "probability": 0.0353 + }, + { + "start": 4551.84, + "end": 4552.36, + "probability": 0.0496 + }, + { + "start": 4552.74, + "end": 4554.32, + "probability": 0.178 + }, + { + "start": 4561.28, + "end": 4561.84, + "probability": 0.6117 + }, + { + "start": 4561.9, + "end": 4564.1, + "probability": 0.9276 + }, + { + "start": 4564.3, + "end": 4565.26, + "probability": 0.5614 + }, + { + "start": 4565.36, + "end": 4566.02, + "probability": 0.9037 + }, + { + "start": 4566.14, + "end": 4567.72, + "probability": 0.7068 + }, + { + "start": 4568.38, + "end": 4569.88, + "probability": 0.8554 + }, + { + "start": 4570.24, + "end": 4571.18, + "probability": 0.9871 + }, + { + "start": 4571.28, + "end": 4571.46, + "probability": 0.8095 + }, + { + "start": 4571.84, + "end": 4572.48, + "probability": 0.8243 + }, + { + "start": 4572.96, + "end": 4579.3, + "probability": 0.9674 + }, + { + "start": 4579.4, + "end": 4580.3, + "probability": 0.8237 + }, + { + "start": 4580.46, + "end": 4582.58, + "probability": 0.7748 + }, + { + "start": 4583.1, + "end": 4585.1, + "probability": 0.9655 + }, + { + "start": 4585.68, + "end": 4590.8, + "probability": 0.989 + }, + { + "start": 4591.16, + "end": 4594.84, + "probability": 0.9725 + }, + { + "start": 4595.12, + "end": 4597.02, + "probability": 0.6781 + }, + { + "start": 4597.24, + "end": 4598.26, + "probability": 0.5207 + }, + { + "start": 4598.7, + "end": 4600.3, + "probability": 0.6602 + }, + { + "start": 4600.5, + "end": 4600.5, + "probability": 0.2881 + }, + { + "start": 4601.24, + "end": 4603.04, + "probability": 0.615 + }, + { + "start": 4603.34, + "end": 4604.12, + "probability": 0.8303 + }, + { + "start": 4604.18, + "end": 4606.7, + "probability": 0.9948 + }, + { + "start": 4607.28, + "end": 4608.62, + "probability": 0.8496 + }, + { + "start": 4608.68, + "end": 4612.78, + "probability": 0.9971 + }, + { + "start": 4612.82, + "end": 4613.36, + "probability": 0.7311 + }, + { + "start": 4613.46, + "end": 4614.72, + "probability": 0.6765 + }, + { + "start": 4614.98, + "end": 4620.18, + "probability": 0.969 + }, + { + "start": 4620.34, + "end": 4623.1, + "probability": 0.9972 + }, + { + "start": 4623.72, + "end": 4628.38, + "probability": 0.9993 + }, + { + "start": 4628.38, + "end": 4634.48, + "probability": 0.9974 + }, + { + "start": 4634.84, + "end": 4638.5, + "probability": 0.9757 + }, + { + "start": 4639.14, + "end": 4639.74, + "probability": 0.7579 + }, + { + "start": 4639.86, + "end": 4643.62, + "probability": 0.9342 + }, + { + "start": 4644.02, + "end": 4649.44, + "probability": 0.9851 + }, + { + "start": 4649.94, + "end": 4650.96, + "probability": 0.8916 + }, + { + "start": 4651.06, + "end": 4651.72, + "probability": 0.8271 + }, + { + "start": 4651.86, + "end": 4654.96, + "probability": 0.9885 + }, + { + "start": 4655.04, + "end": 4657.84, + "probability": 0.9993 + }, + { + "start": 4657.84, + "end": 4661.22, + "probability": 0.9983 + }, + { + "start": 4661.24, + "end": 4662.26, + "probability": 0.7271 + }, + { + "start": 4662.32, + "end": 4664.08, + "probability": 0.9544 + }, + { + "start": 4664.52, + "end": 4666.8, + "probability": 0.9983 + }, + { + "start": 4667.14, + "end": 4668.12, + "probability": 0.8732 + }, + { + "start": 4668.3, + "end": 4670.84, + "probability": 0.9929 + }, + { + "start": 4671.22, + "end": 4677.08, + "probability": 0.9512 + }, + { + "start": 4677.54, + "end": 4678.56, + "probability": 0.7598 + }, + { + "start": 4679.0, + "end": 4682.76, + "probability": 0.996 + }, + { + "start": 4683.18, + "end": 4685.76, + "probability": 0.9943 + }, + { + "start": 4686.46, + "end": 4688.78, + "probability": 0.9479 + }, + { + "start": 4688.92, + "end": 4691.6, + "probability": 0.9916 + }, + { + "start": 4691.96, + "end": 4697.64, + "probability": 0.9741 + }, + { + "start": 4698.26, + "end": 4704.32, + "probability": 0.9957 + }, + { + "start": 4704.92, + "end": 4710.36, + "probability": 0.9948 + }, + { + "start": 4710.36, + "end": 4716.58, + "probability": 0.996 + }, + { + "start": 4716.88, + "end": 4717.1, + "probability": 0.6547 + }, + { + "start": 4717.74, + "end": 4723.74, + "probability": 0.5341 + }, + { + "start": 4723.9, + "end": 4727.74, + "probability": 0.7743 + }, + { + "start": 4729.26, + "end": 4730.64, + "probability": 0.7583 + }, + { + "start": 4731.08, + "end": 4732.5, + "probability": 0.812 + }, + { + "start": 4732.72, + "end": 4735.28, + "probability": 0.6678 + }, + { + "start": 4736.15, + "end": 4738.22, + "probability": 0.6563 + }, + { + "start": 4739.0, + "end": 4742.42, + "probability": 0.6734 + }, + { + "start": 4742.5, + "end": 4743.84, + "probability": 0.4237 + }, + { + "start": 4745.06, + "end": 4746.82, + "probability": 0.5892 + }, + { + "start": 4747.52, + "end": 4751.3, + "probability": 0.7241 + }, + { + "start": 4751.88, + "end": 4754.18, + "probability": 0.0801 + }, + { + "start": 4754.18, + "end": 4755.44, + "probability": 0.6993 + }, + { + "start": 4755.88, + "end": 4757.18, + "probability": 0.7363 + }, + { + "start": 4757.78, + "end": 4761.12, + "probability": 0.9963 + }, + { + "start": 4761.12, + "end": 4765.04, + "probability": 0.964 + }, + { + "start": 4765.6, + "end": 4768.12, + "probability": 0.1442 + }, + { + "start": 4769.0, + "end": 4770.4, + "probability": 0.58 + }, + { + "start": 4771.24, + "end": 4771.42, + "probability": 0.7366 + }, + { + "start": 4772.26, + "end": 4773.86, + "probability": 0.7875 + }, + { + "start": 4774.12, + "end": 4778.54, + "probability": 0.8694 + }, + { + "start": 4779.92, + "end": 4780.84, + "probability": 0.6035 + }, + { + "start": 4781.24, + "end": 4782.34, + "probability": 0.954 + }, + { + "start": 4782.38, + "end": 4784.06, + "probability": 0.7413 + }, + { + "start": 4784.2, + "end": 4786.2, + "probability": 0.9697 + }, + { + "start": 4786.22, + "end": 4786.88, + "probability": 0.7812 + }, + { + "start": 4787.52, + "end": 4789.02, + "probability": 0.9903 + }, + { + "start": 4792.06, + "end": 4793.16, + "probability": 0.3903 + }, + { + "start": 4794.08, + "end": 4796.94, + "probability": 0.5366 + }, + { + "start": 4798.66, + "end": 4799.0, + "probability": 0.9688 + }, + { + "start": 4799.54, + "end": 4802.76, + "probability": 0.7396 + }, + { + "start": 4803.42, + "end": 4804.34, + "probability": 0.6818 + }, + { + "start": 4805.46, + "end": 4810.84, + "probability": 0.9941 + }, + { + "start": 4812.83, + "end": 4815.62, + "probability": 0.9352 + }, + { + "start": 4815.98, + "end": 4817.46, + "probability": 0.9717 + }, + { + "start": 4817.6, + "end": 4819.98, + "probability": 0.9678 + }, + { + "start": 4820.54, + "end": 4824.58, + "probability": 0.8733 + }, + { + "start": 4825.38, + "end": 4828.98, + "probability": 0.9878 + }, + { + "start": 4829.32, + "end": 4829.76, + "probability": 0.7289 + }, + { + "start": 4830.38, + "end": 4835.3, + "probability": 0.9823 + }, + { + "start": 4835.42, + "end": 4836.52, + "probability": 0.9441 + }, + { + "start": 4837.36, + "end": 4840.36, + "probability": 0.9905 + }, + { + "start": 4841.14, + "end": 4842.06, + "probability": 0.8592 + }, + { + "start": 4843.0, + "end": 4845.88, + "probability": 0.8999 + }, + { + "start": 4845.98, + "end": 4846.54, + "probability": 0.8182 + }, + { + "start": 4847.14, + "end": 4855.38, + "probability": 0.9896 + }, + { + "start": 4855.38, + "end": 4862.82, + "probability": 0.9925 + }, + { + "start": 4863.86, + "end": 4867.02, + "probability": 0.9485 + }, + { + "start": 4868.16, + "end": 4872.68, + "probability": 0.9839 + }, + { + "start": 4872.68, + "end": 4876.64, + "probability": 0.9393 + }, + { + "start": 4877.38, + "end": 4882.96, + "probability": 0.9923 + }, + { + "start": 4882.96, + "end": 4888.54, + "probability": 0.9963 + }, + { + "start": 4889.26, + "end": 4892.8, + "probability": 0.9941 + }, + { + "start": 4892.8, + "end": 4898.34, + "probability": 0.9878 + }, + { + "start": 4899.62, + "end": 4901.66, + "probability": 0.9843 + }, + { + "start": 4902.48, + "end": 4906.5, + "probability": 0.9777 + }, + { + "start": 4906.62, + "end": 4909.22, + "probability": 0.9276 + }, + { + "start": 4909.56, + "end": 4910.26, + "probability": 0.9327 + }, + { + "start": 4911.06, + "end": 4912.22, + "probability": 0.9354 + }, + { + "start": 4912.8, + "end": 4914.06, + "probability": 0.8447 + }, + { + "start": 4914.18, + "end": 4916.36, + "probability": 0.8366 + }, + { + "start": 4916.74, + "end": 4918.22, + "probability": 0.9663 + }, + { + "start": 4918.38, + "end": 4920.24, + "probability": 0.6583 + }, + { + "start": 4921.16, + "end": 4924.24, + "probability": 0.8315 + }, + { + "start": 4924.42, + "end": 4926.6, + "probability": 0.8977 + }, + { + "start": 4927.6, + "end": 4929.88, + "probability": 0.9136 + }, + { + "start": 4930.56, + "end": 4934.06, + "probability": 0.9881 + }, + { + "start": 4934.06, + "end": 4938.64, + "probability": 0.9959 + }, + { + "start": 4939.32, + "end": 4941.94, + "probability": 0.9949 + }, + { + "start": 4942.28, + "end": 4948.1, + "probability": 0.9318 + }, + { + "start": 4948.52, + "end": 4955.73, + "probability": 0.9692 + }, + { + "start": 4958.38, + "end": 4960.64, + "probability": 0.9954 + }, + { + "start": 4960.96, + "end": 4964.06, + "probability": 0.9906 + }, + { + "start": 4964.06, + "end": 4968.22, + "probability": 0.7365 + }, + { + "start": 4969.0, + "end": 4970.26, + "probability": 0.6945 + }, + { + "start": 4970.98, + "end": 4971.08, + "probability": 0.8936 + }, + { + "start": 4971.98, + "end": 4973.6, + "probability": 0.7948 + }, + { + "start": 4974.16, + "end": 4977.94, + "probability": 0.9914 + }, + { + "start": 4978.72, + "end": 4980.82, + "probability": 0.9327 + }, + { + "start": 4981.28, + "end": 4982.8, + "probability": 0.9271 + }, + { + "start": 4983.46, + "end": 4986.36, + "probability": 0.7006 + }, + { + "start": 4986.8, + "end": 4987.73, + "probability": 0.9931 + }, + { + "start": 4988.3, + "end": 4988.76, + "probability": 0.9052 + }, + { + "start": 4989.18, + "end": 4989.84, + "probability": 0.7702 + }, + { + "start": 4990.28, + "end": 4990.62, + "probability": 0.9507 + }, + { + "start": 4990.96, + "end": 4992.24, + "probability": 0.989 + }, + { + "start": 4992.34, + "end": 4995.06, + "probability": 0.9777 + }, + { + "start": 4995.58, + "end": 4996.86, + "probability": 0.9844 + }, + { + "start": 4998.0, + "end": 4999.88, + "probability": 0.9917 + }, + { + "start": 5000.34, + "end": 5005.16, + "probability": 0.9744 + }, + { + "start": 5005.28, + "end": 5006.32, + "probability": 0.5267 + }, + { + "start": 5006.66, + "end": 5006.96, + "probability": 0.3454 + }, + { + "start": 5006.96, + "end": 5008.58, + "probability": 0.9771 + }, + { + "start": 5008.6, + "end": 5010.74, + "probability": 0.9556 + }, + { + "start": 5011.7, + "end": 5014.22, + "probability": 0.6278 + }, + { + "start": 5024.9, + "end": 5025.81, + "probability": 0.9084 + }, + { + "start": 5027.68, + "end": 5029.9, + "probability": 0.844 + }, + { + "start": 5032.14, + "end": 5034.96, + "probability": 0.9932 + }, + { + "start": 5034.98, + "end": 5035.44, + "probability": 0.979 + }, + { + "start": 5035.46, + "end": 5036.0, + "probability": 0.7093 + }, + { + "start": 5036.0, + "end": 5037.06, + "probability": 0.9883 + }, + { + "start": 5038.36, + "end": 5041.3, + "probability": 0.9763 + }, + { + "start": 5045.1, + "end": 5046.4, + "probability": 0.7752 + }, + { + "start": 5047.54, + "end": 5050.58, + "probability": 0.9675 + }, + { + "start": 5051.22, + "end": 5053.52, + "probability": 0.936 + }, + { + "start": 5055.82, + "end": 5056.62, + "probability": 0.9158 + }, + { + "start": 5058.14, + "end": 5060.9, + "probability": 0.7285 + }, + { + "start": 5063.86, + "end": 5065.68, + "probability": 0.9755 + }, + { + "start": 5067.42, + "end": 5071.86, + "probability": 0.8636 + }, + { + "start": 5075.32, + "end": 5076.52, + "probability": 0.9011 + }, + { + "start": 5077.22, + "end": 5081.94, + "probability": 0.8649 + }, + { + "start": 5082.9, + "end": 5084.76, + "probability": 0.8865 + }, + { + "start": 5087.18, + "end": 5087.66, + "probability": 0.6364 + }, + { + "start": 5088.98, + "end": 5089.9, + "probability": 0.438 + }, + { + "start": 5091.06, + "end": 5091.66, + "probability": 0.9785 + }, + { + "start": 5093.58, + "end": 5095.62, + "probability": 0.8774 + }, + { + "start": 5099.64, + "end": 5100.38, + "probability": 0.6023 + }, + { + "start": 5105.26, + "end": 5111.66, + "probability": 0.8295 + }, + { + "start": 5111.74, + "end": 5112.6, + "probability": 0.8472 + }, + { + "start": 5113.94, + "end": 5115.1, + "probability": 0.8558 + }, + { + "start": 5115.6, + "end": 5121.08, + "probability": 0.7569 + }, + { + "start": 5123.82, + "end": 5125.48, + "probability": 0.279 + }, + { + "start": 5126.3, + "end": 5128.37, + "probability": 0.6922 + }, + { + "start": 5129.96, + "end": 5132.02, + "probability": 0.6571 + }, + { + "start": 5133.98, + "end": 5135.26, + "probability": 0.83 + }, + { + "start": 5136.4, + "end": 5138.91, + "probability": 0.8163 + }, + { + "start": 5141.1, + "end": 5141.3, + "probability": 0.9751 + }, + { + "start": 5141.94, + "end": 5143.9, + "probability": 0.9862 + }, + { + "start": 5145.64, + "end": 5149.5, + "probability": 0.7928 + }, + { + "start": 5150.14, + "end": 5151.02, + "probability": 0.8407 + }, + { + "start": 5152.02, + "end": 5153.2, + "probability": 0.9379 + }, + { + "start": 5154.56, + "end": 5156.34, + "probability": 0.8236 + }, + { + "start": 5158.0, + "end": 5158.0, + "probability": 0.2922 + }, + { + "start": 5158.0, + "end": 5158.96, + "probability": 0.5517 + }, + { + "start": 5160.0, + "end": 5163.48, + "probability": 0.9116 + }, + { + "start": 5165.08, + "end": 5166.38, + "probability": 0.8758 + }, + { + "start": 5168.86, + "end": 5172.06, + "probability": 0.9786 + }, + { + "start": 5173.26, + "end": 5175.18, + "probability": 0.7096 + }, + { + "start": 5176.68, + "end": 5180.96, + "probability": 0.9455 + }, + { + "start": 5181.08, + "end": 5182.28, + "probability": 0.9929 + }, + { + "start": 5184.84, + "end": 5188.42, + "probability": 0.8986 + }, + { + "start": 5189.32, + "end": 5192.36, + "probability": 0.9539 + }, + { + "start": 5193.6, + "end": 5200.04, + "probability": 0.9446 + }, + { + "start": 5201.0, + "end": 5202.66, + "probability": 0.8831 + }, + { + "start": 5203.42, + "end": 5205.98, + "probability": 0.9821 + }, + { + "start": 5206.36, + "end": 5207.26, + "probability": 0.8704 + }, + { + "start": 5207.72, + "end": 5208.02, + "probability": 0.8066 + }, + { + "start": 5208.88, + "end": 5209.26, + "probability": 0.411 + }, + { + "start": 5209.28, + "end": 5210.38, + "probability": 0.9074 + }, + { + "start": 5210.8, + "end": 5211.08, + "probability": 0.4883 + }, + { + "start": 5212.18, + "end": 5214.52, + "probability": 0.667 + }, + { + "start": 5215.48, + "end": 5217.02, + "probability": 0.5425 + }, + { + "start": 5218.18, + "end": 5218.82, + "probability": 0.416 + }, + { + "start": 5218.98, + "end": 5221.44, + "probability": 0.9554 + }, + { + "start": 5222.4, + "end": 5225.88, + "probability": 0.9756 + }, + { + "start": 5226.66, + "end": 5231.72, + "probability": 0.7797 + }, + { + "start": 5232.9, + "end": 5236.06, + "probability": 0.6672 + }, + { + "start": 5236.96, + "end": 5238.22, + "probability": 0.8061 + }, + { + "start": 5238.84, + "end": 5244.06, + "probability": 0.8546 + }, + { + "start": 5244.36, + "end": 5247.08, + "probability": 0.8554 + }, + { + "start": 5247.76, + "end": 5251.72, + "probability": 0.8151 + }, + { + "start": 5252.7, + "end": 5253.4, + "probability": 0.5364 + }, + { + "start": 5255.28, + "end": 5258.4, + "probability": 0.6217 + }, + { + "start": 5258.88, + "end": 5260.3, + "probability": 0.5274 + }, + { + "start": 5260.72, + "end": 5265.22, + "probability": 0.8819 + }, + { + "start": 5265.28, + "end": 5267.0, + "probability": 0.9123 + }, + { + "start": 5267.5, + "end": 5269.18, + "probability": 0.9176 + }, + { + "start": 5269.26, + "end": 5270.78, + "probability": 0.9957 + }, + { + "start": 5271.42, + "end": 5275.18, + "probability": 0.8787 + }, + { + "start": 5275.86, + "end": 5279.88, + "probability": 0.9971 + }, + { + "start": 5280.38, + "end": 5280.82, + "probability": 0.5975 + }, + { + "start": 5280.88, + "end": 5281.96, + "probability": 0.8227 + }, + { + "start": 5282.28, + "end": 5284.12, + "probability": 0.984 + }, + { + "start": 5285.86, + "end": 5287.72, + "probability": 0.9525 + }, + { + "start": 5288.58, + "end": 5290.28, + "probability": 0.7227 + }, + { + "start": 5290.38, + "end": 5292.6, + "probability": 0.6245 + }, + { + "start": 5293.4, + "end": 5295.8, + "probability": 0.7927 + }, + { + "start": 5302.96, + "end": 5306.74, + "probability": 0.5301 + }, + { + "start": 5308.81, + "end": 5309.58, + "probability": 0.6832 + }, + { + "start": 5310.7, + "end": 5314.34, + "probability": 0.9737 + }, + { + "start": 5314.5, + "end": 5316.09, + "probability": 0.9099 + }, + { + "start": 5316.3, + "end": 5320.5, + "probability": 0.9882 + }, + { + "start": 5321.8, + "end": 5325.18, + "probability": 0.9971 + }, + { + "start": 5325.32, + "end": 5327.72, + "probability": 0.9795 + }, + { + "start": 5328.48, + "end": 5330.68, + "probability": 0.9674 + }, + { + "start": 5330.92, + "end": 5332.04, + "probability": 0.8649 + }, + { + "start": 5332.14, + "end": 5334.68, + "probability": 0.9744 + }, + { + "start": 5335.26, + "end": 5339.18, + "probability": 0.995 + }, + { + "start": 5339.18, + "end": 5345.06, + "probability": 0.993 + }, + { + "start": 5345.56, + "end": 5346.54, + "probability": 0.7434 + }, + { + "start": 5346.7, + "end": 5348.58, + "probability": 0.9724 + }, + { + "start": 5349.22, + "end": 5350.22, + "probability": 0.9942 + }, + { + "start": 5350.8, + "end": 5351.88, + "probability": 0.9348 + }, + { + "start": 5353.22, + "end": 5356.92, + "probability": 0.9972 + }, + { + "start": 5357.74, + "end": 5359.12, + "probability": 0.8096 + }, + { + "start": 5359.22, + "end": 5359.78, + "probability": 0.6921 + }, + { + "start": 5359.94, + "end": 5360.08, + "probability": 0.9195 + }, + { + "start": 5360.16, + "end": 5361.48, + "probability": 0.9972 + }, + { + "start": 5362.08, + "end": 5363.16, + "probability": 0.9314 + }, + { + "start": 5364.32, + "end": 5365.14, + "probability": 0.9742 + }, + { + "start": 5366.18, + "end": 5368.68, + "probability": 0.9917 + }, + { + "start": 5368.68, + "end": 5371.2, + "probability": 0.9903 + }, + { + "start": 5371.28, + "end": 5375.92, + "probability": 0.9961 + }, + { + "start": 5375.92, + "end": 5378.92, + "probability": 0.997 + }, + { + "start": 5379.32, + "end": 5380.52, + "probability": 0.9291 + }, + { + "start": 5380.64, + "end": 5382.12, + "probability": 0.9072 + }, + { + "start": 5382.14, + "end": 5387.44, + "probability": 0.9985 + }, + { + "start": 5388.44, + "end": 5393.36, + "probability": 0.9963 + }, + { + "start": 5394.02, + "end": 5394.14, + "probability": 0.0576 + }, + { + "start": 5394.16, + "end": 5398.62, + "probability": 0.9924 + }, + { + "start": 5398.64, + "end": 5402.82, + "probability": 0.9515 + }, + { + "start": 5402.96, + "end": 5404.3, + "probability": 0.9624 + }, + { + "start": 5405.22, + "end": 5406.2, + "probability": 0.619 + }, + { + "start": 5406.86, + "end": 5408.14, + "probability": 0.9883 + }, + { + "start": 5408.76, + "end": 5410.5, + "probability": 0.9971 + }, + { + "start": 5410.98, + "end": 5417.66, + "probability": 0.9972 + }, + { + "start": 5417.66, + "end": 5422.84, + "probability": 0.998 + }, + { + "start": 5423.02, + "end": 5425.02, + "probability": 0.9872 + }, + { + "start": 5425.4, + "end": 5427.86, + "probability": 0.9531 + }, + { + "start": 5428.44, + "end": 5432.01, + "probability": 0.9989 + }, + { + "start": 5432.04, + "end": 5435.04, + "probability": 0.9992 + }, + { + "start": 5435.18, + "end": 5440.18, + "probability": 0.9844 + }, + { + "start": 5440.34, + "end": 5442.84, + "probability": 0.9795 + }, + { + "start": 5443.3, + "end": 5444.46, + "probability": 0.8988 + }, + { + "start": 5444.66, + "end": 5447.28, + "probability": 0.9598 + }, + { + "start": 5447.74, + "end": 5448.65, + "probability": 0.9783 + }, + { + "start": 5449.34, + "end": 5450.28, + "probability": 0.8294 + }, + { + "start": 5450.54, + "end": 5451.77, + "probability": 0.9612 + }, + { + "start": 5452.28, + "end": 5457.62, + "probability": 0.9829 + }, + { + "start": 5457.96, + "end": 5463.27, + "probability": 0.9987 + }, + { + "start": 5463.32, + "end": 5465.54, + "probability": 0.9019 + }, + { + "start": 5465.76, + "end": 5466.14, + "probability": 0.7073 + }, + { + "start": 5466.84, + "end": 5468.72, + "probability": 0.7058 + }, + { + "start": 5468.96, + "end": 5471.48, + "probability": 0.9663 + }, + { + "start": 5472.12, + "end": 5475.26, + "probability": 0.4564 + }, + { + "start": 5477.46, + "end": 5479.96, + "probability": 0.773 + }, + { + "start": 5479.96, + "end": 5480.3, + "probability": 0.5488 + }, + { + "start": 5481.42, + "end": 5481.98, + "probability": 0.5455 + }, + { + "start": 5482.46, + "end": 5489.36, + "probability": 0.9396 + }, + { + "start": 5490.74, + "end": 5494.18, + "probability": 0.8923 + }, + { + "start": 5494.18, + "end": 5497.72, + "probability": 0.8328 + }, + { + "start": 5497.98, + "end": 5503.56, + "probability": 0.9868 + }, + { + "start": 5504.98, + "end": 5509.5, + "probability": 0.9617 + }, + { + "start": 5510.18, + "end": 5513.64, + "probability": 0.9822 + }, + { + "start": 5514.5, + "end": 5516.64, + "probability": 0.6803 + }, + { + "start": 5516.72, + "end": 5521.66, + "probability": 0.8984 + }, + { + "start": 5521.8, + "end": 5524.54, + "probability": 0.9705 + }, + { + "start": 5524.72, + "end": 5526.26, + "probability": 0.9478 + }, + { + "start": 5526.7, + "end": 5532.84, + "probability": 0.7894 + }, + { + "start": 5532.84, + "end": 5539.34, + "probability": 0.9851 + }, + { + "start": 5540.16, + "end": 5541.44, + "probability": 0.478 + }, + { + "start": 5541.6, + "end": 5542.28, + "probability": 0.8262 + }, + { + "start": 5542.38, + "end": 5546.74, + "probability": 0.7094 + }, + { + "start": 5547.24, + "end": 5548.28, + "probability": 0.9779 + }, + { + "start": 5548.94, + "end": 5550.38, + "probability": 0.8615 + }, + { + "start": 5551.18, + "end": 5554.18, + "probability": 0.932 + }, + { + "start": 5554.88, + "end": 5559.16, + "probability": 0.8199 + }, + { + "start": 5559.92, + "end": 5562.98, + "probability": 0.8731 + }, + { + "start": 5562.98, + "end": 5568.34, + "probability": 0.6601 + }, + { + "start": 5568.42, + "end": 5570.26, + "probability": 0.7812 + }, + { + "start": 5570.42, + "end": 5573.98, + "probability": 0.9547 + }, + { + "start": 5574.88, + "end": 5575.36, + "probability": 0.8453 + }, + { + "start": 5576.08, + "end": 5581.22, + "probability": 0.9725 + }, + { + "start": 5581.38, + "end": 5582.14, + "probability": 0.6896 + }, + { + "start": 5582.94, + "end": 5587.66, + "probability": 0.9691 + }, + { + "start": 5588.14, + "end": 5588.88, + "probability": 0.9189 + }, + { + "start": 5589.02, + "end": 5589.74, + "probability": 0.7616 + }, + { + "start": 5590.34, + "end": 5599.16, + "probability": 0.8697 + }, + { + "start": 5600.1, + "end": 5605.38, + "probability": 0.9707 + }, + { + "start": 5605.38, + "end": 5612.2, + "probability": 0.9932 + }, + { + "start": 5612.92, + "end": 5613.42, + "probability": 0.9681 + }, + { + "start": 5616.5, + "end": 5617.04, + "probability": 0.4874 + }, + { + "start": 5617.38, + "end": 5620.02, + "probability": 0.7631 + }, + { + "start": 5620.62, + "end": 5621.84, + "probability": 0.9191 + }, + { + "start": 5622.4, + "end": 5627.4, + "probability": 0.9258 + }, + { + "start": 5627.94, + "end": 5628.94, + "probability": 0.6791 + }, + { + "start": 5629.04, + "end": 5629.74, + "probability": 0.6107 + }, + { + "start": 5629.78, + "end": 5630.5, + "probability": 0.5257 + }, + { + "start": 5630.96, + "end": 5633.38, + "probability": 0.9701 + }, + { + "start": 5633.5, + "end": 5634.4, + "probability": 0.7452 + }, + { + "start": 5635.22, + "end": 5636.3, + "probability": 0.6657 + }, + { + "start": 5636.36, + "end": 5637.64, + "probability": 0.6849 + }, + { + "start": 5637.78, + "end": 5639.88, + "probability": 0.8931 + }, + { + "start": 5640.32, + "end": 5641.74, + "probability": 0.9067 + }, + { + "start": 5642.62, + "end": 5643.06, + "probability": 0.513 + }, + { + "start": 5643.1, + "end": 5643.7, + "probability": 0.707 + }, + { + "start": 5644.04, + "end": 5647.86, + "probability": 0.9568 + }, + { + "start": 5648.86, + "end": 5651.94, + "probability": 0.9227 + }, + { + "start": 5652.56, + "end": 5657.08, + "probability": 0.9748 + }, + { + "start": 5657.46, + "end": 5658.5, + "probability": 0.7638 + }, + { + "start": 5659.44, + "end": 5661.3, + "probability": 0.7478 + }, + { + "start": 5661.86, + "end": 5664.16, + "probability": 0.791 + }, + { + "start": 5664.62, + "end": 5666.12, + "probability": 0.5862 + }, + { + "start": 5666.46, + "end": 5671.02, + "probability": 0.9269 + }, + { + "start": 5671.48, + "end": 5675.2, + "probability": 0.9634 + }, + { + "start": 5676.06, + "end": 5680.06, + "probability": 0.9081 + }, + { + "start": 5680.64, + "end": 5682.86, + "probability": 0.9019 + }, + { + "start": 5682.86, + "end": 5685.64, + "probability": 0.9639 + }, + { + "start": 5685.8, + "end": 5687.58, + "probability": 0.9908 + }, + { + "start": 5687.64, + "end": 5688.74, + "probability": 0.9727 + }, + { + "start": 5689.24, + "end": 5690.52, + "probability": 0.9521 + }, + { + "start": 5691.22, + "end": 5695.64, + "probability": 0.9292 + }, + { + "start": 5696.08, + "end": 5698.56, + "probability": 0.9295 + }, + { + "start": 5698.82, + "end": 5699.8, + "probability": 0.751 + }, + { + "start": 5700.52, + "end": 5701.44, + "probability": 0.9551 + }, + { + "start": 5701.82, + "end": 5702.08, + "probability": 0.7874 + }, + { + "start": 5702.42, + "end": 5704.62, + "probability": 0.9644 + }, + { + "start": 5704.76, + "end": 5707.93, + "probability": 0.939 + }, + { + "start": 5708.38, + "end": 5709.6, + "probability": 0.3929 + }, + { + "start": 5709.64, + "end": 5712.42, + "probability": 0.884 + }, + { + "start": 5716.48, + "end": 5719.16, + "probability": 0.7135 + }, + { + "start": 5720.22, + "end": 5721.74, + "probability": 0.8538 + }, + { + "start": 5724.66, + "end": 5725.16, + "probability": 0.7162 + }, + { + "start": 5725.64, + "end": 5728.36, + "probability": 0.911 + }, + { + "start": 5729.97, + "end": 5734.46, + "probability": 0.9208 + }, + { + "start": 5734.54, + "end": 5736.3, + "probability": 0.7666 + }, + { + "start": 5736.86, + "end": 5737.6, + "probability": 0.5913 + }, + { + "start": 5738.1, + "end": 5738.16, + "probability": 0.4288 + }, + { + "start": 5738.16, + "end": 5740.62, + "probability": 0.9634 + }, + { + "start": 5741.62, + "end": 5745.66, + "probability": 0.9823 + }, + { + "start": 5746.38, + "end": 5749.88, + "probability": 0.9849 + }, + { + "start": 5750.88, + "end": 5756.58, + "probability": 0.9547 + }, + { + "start": 5757.5, + "end": 5766.86, + "probability": 0.9766 + }, + { + "start": 5767.18, + "end": 5767.34, + "probability": 0.2816 + }, + { + "start": 5767.34, + "end": 5767.34, + "probability": 0.0879 + }, + { + "start": 5767.34, + "end": 5769.14, + "probability": 0.7522 + }, + { + "start": 5770.58, + "end": 5774.62, + "probability": 0.4637 + }, + { + "start": 5777.1, + "end": 5777.4, + "probability": 0.1046 + }, + { + "start": 5777.4, + "end": 5777.4, + "probability": 0.396 + }, + { + "start": 5777.4, + "end": 5777.4, + "probability": 0.0402 + }, + { + "start": 5777.4, + "end": 5778.68, + "probability": 0.3238 + }, + { + "start": 5779.14, + "end": 5782.42, + "probability": 0.9261 + }, + { + "start": 5782.8, + "end": 5785.26, + "probability": 0.9973 + }, + { + "start": 5785.26, + "end": 5788.86, + "probability": 0.9989 + }, + { + "start": 5789.4, + "end": 5792.54, + "probability": 0.9995 + }, + { + "start": 5792.64, + "end": 5793.5, + "probability": 0.998 + }, + { + "start": 5794.52, + "end": 5795.13, + "probability": 0.9412 + }, + { + "start": 5796.06, + "end": 5799.02, + "probability": 0.866 + }, + { + "start": 5799.32, + "end": 5800.6, + "probability": 0.6664 + }, + { + "start": 5800.6, + "end": 5800.66, + "probability": 0.0064 + }, + { + "start": 5800.66, + "end": 5802.86, + "probability": 0.7512 + }, + { + "start": 5802.88, + "end": 5803.98, + "probability": 0.7153 + }, + { + "start": 5804.08, + "end": 5805.26, + "probability": 0.166 + }, + { + "start": 5805.5, + "end": 5809.12, + "probability": 0.4811 + }, + { + "start": 5809.12, + "end": 5809.56, + "probability": 0.2105 + }, + { + "start": 5809.56, + "end": 5809.56, + "probability": 0.1247 + }, + { + "start": 5809.56, + "end": 5809.56, + "probability": 0.2112 + }, + { + "start": 5809.56, + "end": 5809.56, + "probability": 0.1572 + }, + { + "start": 5809.56, + "end": 5810.5, + "probability": 0.2845 + }, + { + "start": 5810.64, + "end": 5811.44, + "probability": 0.6266 + }, + { + "start": 5811.56, + "end": 5813.02, + "probability": 0.8184 + }, + { + "start": 5813.1, + "end": 5813.7, + "probability": 0.8398 + }, + { + "start": 5813.98, + "end": 5816.26, + "probability": 0.8446 + }, + { + "start": 5816.48, + "end": 5821.64, + "probability": 0.9462 + }, + { + "start": 5823.2, + "end": 5824.54, + "probability": 0.7808 + }, + { + "start": 5824.66, + "end": 5826.2, + "probability": 0.99 + }, + { + "start": 5826.24, + "end": 5827.28, + "probability": 0.9692 + }, + { + "start": 5828.12, + "end": 5829.0, + "probability": 0.7181 + }, + { + "start": 5829.14, + "end": 5830.16, + "probability": 0.7688 + }, + { + "start": 5831.42, + "end": 5834.9, + "probability": 0.9929 + }, + { + "start": 5835.04, + "end": 5837.04, + "probability": 0.9439 + }, + { + "start": 5837.16, + "end": 5838.2, + "probability": 0.9143 + }, + { + "start": 5838.22, + "end": 5839.28, + "probability": 0.9583 + }, + { + "start": 5839.64, + "end": 5840.96, + "probability": 0.8802 + }, + { + "start": 5841.86, + "end": 5844.8, + "probability": 0.9974 + }, + { + "start": 5845.72, + "end": 5850.2, + "probability": 0.9956 + }, + { + "start": 5850.2, + "end": 5855.74, + "probability": 0.9956 + }, + { + "start": 5856.24, + "end": 5857.56, + "probability": 0.9354 + }, + { + "start": 5858.04, + "end": 5859.34, + "probability": 0.9963 + }, + { + "start": 5859.72, + "end": 5860.36, + "probability": 0.7543 + }, + { + "start": 5860.5, + "end": 5864.2, + "probability": 0.9933 + }, + { + "start": 5864.78, + "end": 5865.68, + "probability": 0.5833 + }, + { + "start": 5866.8, + "end": 5868.56, + "probability": 0.9844 + }, + { + "start": 5868.72, + "end": 5870.24, + "probability": 0.9773 + }, + { + "start": 5871.64, + "end": 5874.78, + "probability": 0.7048 + }, + { + "start": 5874.88, + "end": 5876.5, + "probability": 0.6565 + }, + { + "start": 5876.58, + "end": 5878.5, + "probability": 0.8976 + }, + { + "start": 5878.56, + "end": 5879.78, + "probability": 0.8485 + }, + { + "start": 5880.38, + "end": 5882.2, + "probability": 0.9847 + }, + { + "start": 5882.56, + "end": 5885.26, + "probability": 0.9917 + }, + { + "start": 5885.34, + "end": 5887.3, + "probability": 0.9989 + }, + { + "start": 5887.74, + "end": 5887.8, + "probability": 0.2102 + }, + { + "start": 5887.8, + "end": 5889.92, + "probability": 0.9587 + }, + { + "start": 5889.96, + "end": 5892.36, + "probability": 0.9942 + }, + { + "start": 5892.56, + "end": 5893.4, + "probability": 0.9702 + }, + { + "start": 5893.5, + "end": 5894.2, + "probability": 0.8909 + }, + { + "start": 5895.7, + "end": 5897.02, + "probability": 0.9011 + }, + { + "start": 5897.1, + "end": 5899.72, + "probability": 0.9855 + }, + { + "start": 5899.9, + "end": 5900.1, + "probability": 0.6869 + }, + { + "start": 5900.18, + "end": 5901.76, + "probability": 0.9649 + }, + { + "start": 5901.82, + "end": 5903.18, + "probability": 0.9845 + }, + { + "start": 5903.56, + "end": 5904.46, + "probability": 0.338 + }, + { + "start": 5905.48, + "end": 5908.86, + "probability": 0.9895 + }, + { + "start": 5908.94, + "end": 5909.3, + "probability": 0.801 + }, + { + "start": 5909.68, + "end": 5910.26, + "probability": 0.6843 + }, + { + "start": 5910.32, + "end": 5911.16, + "probability": 0.5185 + }, + { + "start": 5911.28, + "end": 5912.98, + "probability": 0.9924 + }, + { + "start": 5913.54, + "end": 5915.46, + "probability": 0.9066 + }, + { + "start": 5915.52, + "end": 5915.74, + "probability": 0.5255 + }, + { + "start": 5915.84, + "end": 5917.98, + "probability": 0.8799 + }, + { + "start": 5918.1, + "end": 5918.74, + "probability": 0.9524 + }, + { + "start": 5918.86, + "end": 5919.48, + "probability": 0.9916 + }, + { + "start": 5919.56, + "end": 5920.2, + "probability": 0.9215 + }, + { + "start": 5920.24, + "end": 5921.22, + "probability": 0.5388 + }, + { + "start": 5922.5, + "end": 5927.08, + "probability": 0.9845 + }, + { + "start": 5927.54, + "end": 5929.38, + "probability": 0.9843 + }, + { + "start": 5929.74, + "end": 5930.16, + "probability": 0.6629 + }, + { + "start": 5930.22, + "end": 5931.82, + "probability": 0.9985 + }, + { + "start": 5932.02, + "end": 5934.16, + "probability": 0.9577 + }, + { + "start": 5934.38, + "end": 5936.6, + "probability": 0.9771 + }, + { + "start": 5936.86, + "end": 5937.82, + "probability": 0.563 + }, + { + "start": 5938.2, + "end": 5938.46, + "probability": 0.7309 + }, + { + "start": 5939.04, + "end": 5941.52, + "probability": 0.9072 + }, + { + "start": 5941.98, + "end": 5944.86, + "probability": 0.9282 + }, + { + "start": 5944.92, + "end": 5945.82, + "probability": 0.4833 + }, + { + "start": 5946.18, + "end": 5947.94, + "probability": 0.8628 + }, + { + "start": 5963.72, + "end": 5964.02, + "probability": 0.6586 + }, + { + "start": 5964.58, + "end": 5966.94, + "probability": 0.7391 + }, + { + "start": 5974.88, + "end": 5975.72, + "probability": 0.5248 + }, + { + "start": 5976.32, + "end": 5977.78, + "probability": 0.8179 + }, + { + "start": 5978.8, + "end": 5985.28, + "probability": 0.9739 + }, + { + "start": 5987.92, + "end": 5989.02, + "probability": 0.9344 + }, + { + "start": 5990.46, + "end": 5991.08, + "probability": 0.4392 + }, + { + "start": 5995.34, + "end": 5998.64, + "probability": 0.9291 + }, + { + "start": 5999.56, + "end": 6001.14, + "probability": 0.8851 + }, + { + "start": 6002.54, + "end": 6004.78, + "probability": 0.9855 + }, + { + "start": 6006.14, + "end": 6006.36, + "probability": 0.4941 + }, + { + "start": 6006.4, + "end": 6007.32, + "probability": 0.9023 + }, + { + "start": 6007.4, + "end": 6011.24, + "probability": 0.9977 + }, + { + "start": 6011.24, + "end": 6014.06, + "probability": 0.9978 + }, + { + "start": 6015.88, + "end": 6018.8, + "probability": 0.843 + }, + { + "start": 6018.88, + "end": 6019.24, + "probability": 0.4302 + }, + { + "start": 6020.1, + "end": 6022.1, + "probability": 0.9585 + }, + { + "start": 6023.1, + "end": 6027.2, + "probability": 0.9482 + }, + { + "start": 6028.74, + "end": 6030.68, + "probability": 0.9755 + }, + { + "start": 6030.7, + "end": 6031.12, + "probability": 0.9507 + }, + { + "start": 6031.22, + "end": 6034.66, + "probability": 0.9959 + }, + { + "start": 6035.76, + "end": 6038.66, + "probability": 0.9643 + }, + { + "start": 6039.24, + "end": 6040.45, + "probability": 0.8134 + }, + { + "start": 6041.94, + "end": 6046.5, + "probability": 0.9816 + }, + { + "start": 6046.56, + "end": 6047.56, + "probability": 0.5795 + }, + { + "start": 6048.3, + "end": 6051.36, + "probability": 0.9605 + }, + { + "start": 6052.44, + "end": 6053.52, + "probability": 0.9765 + }, + { + "start": 6054.06, + "end": 6056.06, + "probability": 0.991 + }, + { + "start": 6056.41, + "end": 6058.72, + "probability": 0.8856 + }, + { + "start": 6059.24, + "end": 6059.8, + "probability": 0.4906 + }, + { + "start": 6060.62, + "end": 6061.96, + "probability": 0.9954 + }, + { + "start": 6062.02, + "end": 6062.86, + "probability": 0.949 + }, + { + "start": 6062.94, + "end": 6063.42, + "probability": 0.9562 + }, + { + "start": 6065.18, + "end": 6068.64, + "probability": 0.9988 + }, + { + "start": 6070.0, + "end": 6074.56, + "probability": 0.9915 + }, + { + "start": 6074.6, + "end": 6075.42, + "probability": 0.7091 + }, + { + "start": 6075.48, + "end": 6076.2, + "probability": 0.6934 + }, + { + "start": 6077.18, + "end": 6078.62, + "probability": 0.8972 + }, + { + "start": 6079.8, + "end": 6083.5, + "probability": 0.9976 + }, + { + "start": 6084.92, + "end": 6088.12, + "probability": 0.9987 + }, + { + "start": 6088.76, + "end": 6089.5, + "probability": 0.6994 + }, + { + "start": 6089.96, + "end": 6091.24, + "probability": 0.7766 + }, + { + "start": 6091.4, + "end": 6093.68, + "probability": 0.9423 + }, + { + "start": 6094.74, + "end": 6096.06, + "probability": 0.786 + }, + { + "start": 6096.98, + "end": 6098.42, + "probability": 0.7531 + }, + { + "start": 6098.5, + "end": 6100.16, + "probability": 0.9653 + }, + { + "start": 6100.92, + "end": 6102.76, + "probability": 0.7359 + }, + { + "start": 6105.72, + "end": 6108.24, + "probability": 0.9861 + }, + { + "start": 6108.34, + "end": 6108.6, + "probability": 0.4897 + }, + { + "start": 6108.64, + "end": 6109.44, + "probability": 0.5843 + }, + { + "start": 6109.98, + "end": 6111.18, + "probability": 0.6155 + }, + { + "start": 6112.02, + "end": 6115.38, + "probability": 0.9617 + }, + { + "start": 6116.14, + "end": 6116.5, + "probability": 0.5305 + }, + { + "start": 6116.52, + "end": 6117.78, + "probability": 0.6219 + }, + { + "start": 6117.78, + "end": 6118.9, + "probability": 0.8729 + }, + { + "start": 6119.86, + "end": 6122.0, + "probability": 0.8721 + }, + { + "start": 6122.7, + "end": 6124.86, + "probability": 0.9934 + }, + { + "start": 6125.44, + "end": 6126.26, + "probability": 0.8126 + }, + { + "start": 6127.54, + "end": 6128.9, + "probability": 0.9653 + }, + { + "start": 6129.96, + "end": 6131.48, + "probability": 0.9892 + }, + { + "start": 6132.12, + "end": 6134.48, + "probability": 0.9994 + }, + { + "start": 6135.48, + "end": 6136.3, + "probability": 0.8775 + }, + { + "start": 6136.96, + "end": 6139.66, + "probability": 0.998 + }, + { + "start": 6141.24, + "end": 6143.42, + "probability": 0.987 + }, + { + "start": 6143.42, + "end": 6146.86, + "probability": 0.9961 + }, + { + "start": 6147.4, + "end": 6148.84, + "probability": 0.9707 + }, + { + "start": 6149.9, + "end": 6151.5, + "probability": 0.84 + }, + { + "start": 6152.34, + "end": 6154.92, + "probability": 0.9971 + }, + { + "start": 6154.92, + "end": 6160.14, + "probability": 0.9904 + }, + { + "start": 6160.66, + "end": 6161.66, + "probability": 0.8805 + }, + { + "start": 6162.26, + "end": 6166.22, + "probability": 0.9794 + }, + { + "start": 6167.54, + "end": 6168.08, + "probability": 0.7652 + }, + { + "start": 6168.18, + "end": 6168.78, + "probability": 0.7688 + }, + { + "start": 6168.94, + "end": 6169.92, + "probability": 0.9937 + }, + { + "start": 6169.92, + "end": 6171.06, + "probability": 0.5004 + }, + { + "start": 6171.18, + "end": 6174.58, + "probability": 0.697 + }, + { + "start": 6174.92, + "end": 6175.56, + "probability": 0.6468 + }, + { + "start": 6175.68, + "end": 6177.68, + "probability": 0.897 + }, + { + "start": 6177.92, + "end": 6182.98, + "probability": 0.9827 + }, + { + "start": 6184.0, + "end": 6185.08, + "probability": 0.4958 + }, + { + "start": 6185.76, + "end": 6186.52, + "probability": 0.8643 + }, + { + "start": 6187.12, + "end": 6189.7, + "probability": 0.2879 + }, + { + "start": 6189.76, + "end": 6190.12, + "probability": 0.8635 + }, + { + "start": 6190.96, + "end": 6192.82, + "probability": 0.937 + }, + { + "start": 6192.88, + "end": 6195.42, + "probability": 0.6541 + }, + { + "start": 6195.84, + "end": 6196.6, + "probability": 0.2969 + }, + { + "start": 6196.6, + "end": 6198.86, + "probability": 0.9751 + }, + { + "start": 6214.4, + "end": 6216.44, + "probability": 0.8857 + }, + { + "start": 6217.26, + "end": 6219.32, + "probability": 0.8019 + }, + { + "start": 6219.86, + "end": 6223.66, + "probability": 0.656 + }, + { + "start": 6224.26, + "end": 6225.66, + "probability": 0.7742 + }, + { + "start": 6226.9, + "end": 6228.92, + "probability": 0.7683 + }, + { + "start": 6229.68, + "end": 6230.7, + "probability": 0.6317 + }, + { + "start": 6231.12, + "end": 6232.2, + "probability": 0.5166 + }, + { + "start": 6232.42, + "end": 6234.34, + "probability": 0.9849 + }, + { + "start": 6235.96, + "end": 6240.78, + "probability": 0.9661 + }, + { + "start": 6241.38, + "end": 6245.68, + "probability": 0.9946 + }, + { + "start": 6246.4, + "end": 6247.72, + "probability": 0.6177 + }, + { + "start": 6248.24, + "end": 6249.74, + "probability": 0.9346 + }, + { + "start": 6250.96, + "end": 6253.58, + "probability": 0.9904 + }, + { + "start": 6253.78, + "end": 6255.24, + "probability": 0.52 + }, + { + "start": 6255.7, + "end": 6257.86, + "probability": 0.9593 + }, + { + "start": 6259.24, + "end": 6262.34, + "probability": 0.9811 + }, + { + "start": 6263.74, + "end": 6267.76, + "probability": 0.753 + }, + { + "start": 6268.28, + "end": 6269.12, + "probability": 0.5655 + }, + { + "start": 6270.34, + "end": 6274.88, + "probability": 0.6588 + }, + { + "start": 6275.48, + "end": 6277.92, + "probability": 0.8973 + }, + { + "start": 6278.84, + "end": 6281.5, + "probability": 0.9938 + }, + { + "start": 6281.84, + "end": 6284.68, + "probability": 0.7377 + }, + { + "start": 6285.16, + "end": 6289.38, + "probability": 0.6425 + }, + { + "start": 6289.54, + "end": 6292.24, + "probability": 0.6589 + }, + { + "start": 6293.22, + "end": 6294.54, + "probability": 0.9459 + }, + { + "start": 6295.22, + "end": 6297.58, + "probability": 0.9745 + }, + { + "start": 6297.82, + "end": 6298.37, + "probability": 0.9851 + }, + { + "start": 6299.3, + "end": 6299.87, + "probability": 0.9849 + }, + { + "start": 6300.5, + "end": 6301.09, + "probability": 0.9941 + }, + { + "start": 6301.82, + "end": 6304.36, + "probability": 0.9529 + }, + { + "start": 6304.42, + "end": 6305.24, + "probability": 0.89 + }, + { + "start": 6305.44, + "end": 6307.84, + "probability": 0.9629 + }, + { + "start": 6309.22, + "end": 6312.26, + "probability": 0.6458 + }, + { + "start": 6313.24, + "end": 6314.44, + "probability": 0.6172 + }, + { + "start": 6314.86, + "end": 6322.18, + "probability": 0.7211 + }, + { + "start": 6323.24, + "end": 6323.58, + "probability": 0.6992 + }, + { + "start": 6324.46, + "end": 6325.62, + "probability": 0.9883 + }, + { + "start": 6326.22, + "end": 6329.82, + "probability": 0.9928 + }, + { + "start": 6330.36, + "end": 6337.38, + "probability": 0.9936 + }, + { + "start": 6337.58, + "end": 6338.76, + "probability": 0.5736 + }, + { + "start": 6339.28, + "end": 6343.36, + "probability": 0.798 + }, + { + "start": 6343.42, + "end": 6347.92, + "probability": 0.9475 + }, + { + "start": 6349.14, + "end": 6354.54, + "probability": 0.9633 + }, + { + "start": 6354.62, + "end": 6359.3, + "probability": 0.8051 + }, + { + "start": 6359.76, + "end": 6364.32, + "probability": 0.9187 + }, + { + "start": 6364.64, + "end": 6365.72, + "probability": 0.3294 + }, + { + "start": 6365.92, + "end": 6367.94, + "probability": 0.9917 + }, + { + "start": 6368.38, + "end": 6373.58, + "probability": 0.9888 + }, + { + "start": 6374.14, + "end": 6376.6, + "probability": 0.7101 + }, + { + "start": 6376.92, + "end": 6378.64, + "probability": 0.8843 + }, + { + "start": 6378.84, + "end": 6379.46, + "probability": 0.8979 + }, + { + "start": 6379.58, + "end": 6383.9, + "probability": 0.8667 + }, + { + "start": 6384.4, + "end": 6385.29, + "probability": 0.9583 + }, + { + "start": 6385.68, + "end": 6386.78, + "probability": 0.8203 + }, + { + "start": 6387.44, + "end": 6389.13, + "probability": 0.843 + }, + { + "start": 6389.92, + "end": 6394.88, + "probability": 0.9916 + }, + { + "start": 6394.88, + "end": 6398.34, + "probability": 0.9481 + }, + { + "start": 6400.64, + "end": 6405.37, + "probability": 0.9716 + }, + { + "start": 6406.04, + "end": 6408.72, + "probability": 0.5511 + }, + { + "start": 6409.08, + "end": 6411.24, + "probability": 0.8839 + }, + { + "start": 6411.5, + "end": 6414.64, + "probability": 0.9775 + }, + { + "start": 6414.76, + "end": 6416.36, + "probability": 0.5685 + }, + { + "start": 6416.36, + "end": 6416.72, + "probability": 0.4 + }, + { + "start": 6417.02, + "end": 6420.46, + "probability": 0.7929 + }, + { + "start": 6421.16, + "end": 6422.4, + "probability": 0.962 + }, + { + "start": 6422.44, + "end": 6423.26, + "probability": 0.8974 + }, + { + "start": 6423.38, + "end": 6428.82, + "probability": 0.7863 + }, + { + "start": 6429.68, + "end": 6433.5, + "probability": 0.9163 + }, + { + "start": 6436.76, + "end": 6438.12, + "probability": 0.3323 + }, + { + "start": 6438.6, + "end": 6440.66, + "probability": 0.8112 + }, + { + "start": 6441.46, + "end": 6443.92, + "probability": 0.9473 + }, + { + "start": 6444.76, + "end": 6447.56, + "probability": 0.9092 + }, + { + "start": 6447.96, + "end": 6455.56, + "probability": 0.8737 + }, + { + "start": 6456.18, + "end": 6460.14, + "probability": 0.9728 + }, + { + "start": 6462.2, + "end": 6464.0, + "probability": 0.9372 + }, + { + "start": 6464.12, + "end": 6465.18, + "probability": 0.6947 + }, + { + "start": 6465.22, + "end": 6467.98, + "probability": 0.9487 + }, + { + "start": 6468.68, + "end": 6470.84, + "probability": 0.8329 + }, + { + "start": 6471.44, + "end": 6474.12, + "probability": 0.9559 + }, + { + "start": 6475.16, + "end": 6477.18, + "probability": 0.9036 + }, + { + "start": 6477.76, + "end": 6480.48, + "probability": 0.7021 + }, + { + "start": 6481.04, + "end": 6482.18, + "probability": 0.923 + }, + { + "start": 6482.9, + "end": 6485.3, + "probability": 0.978 + }, + { + "start": 6485.78, + "end": 6487.38, + "probability": 0.9023 + }, + { + "start": 6487.86, + "end": 6492.78, + "probability": 0.9834 + }, + { + "start": 6494.26, + "end": 6496.46, + "probability": 0.6769 + }, + { + "start": 6496.78, + "end": 6498.96, + "probability": 0.9009 + }, + { + "start": 6500.3, + "end": 6501.16, + "probability": 0.4947 + }, + { + "start": 6502.9, + "end": 6504.86, + "probability": 0.898 + }, + { + "start": 6522.74, + "end": 6525.49, + "probability": 0.8574 + }, + { + "start": 6533.46, + "end": 6535.0, + "probability": 0.5953 + }, + { + "start": 6536.32, + "end": 6537.84, + "probability": 0.9495 + }, + { + "start": 6538.86, + "end": 6544.66, + "probability": 0.9897 + }, + { + "start": 6546.36, + "end": 6548.0, + "probability": 0.9573 + }, + { + "start": 6548.38, + "end": 6550.76, + "probability": 0.9893 + }, + { + "start": 6551.8, + "end": 6554.84, + "probability": 0.999 + }, + { + "start": 6555.3, + "end": 6560.14, + "probability": 0.9767 + }, + { + "start": 6561.16, + "end": 6565.34, + "probability": 0.9087 + }, + { + "start": 6565.46, + "end": 6568.48, + "probability": 0.9481 + }, + { + "start": 6569.52, + "end": 6570.98, + "probability": 0.8578 + }, + { + "start": 6571.06, + "end": 6572.24, + "probability": 0.8236 + }, + { + "start": 6572.36, + "end": 6576.28, + "probability": 0.7423 + }, + { + "start": 6576.28, + "end": 6580.0, + "probability": 0.9414 + }, + { + "start": 6580.12, + "end": 6581.66, + "probability": 0.9644 + }, + { + "start": 6582.04, + "end": 6582.36, + "probability": 0.868 + }, + { + "start": 6583.4, + "end": 6585.0, + "probability": 0.9622 + }, + { + "start": 6585.98, + "end": 6586.8, + "probability": 0.9449 + }, + { + "start": 6587.34, + "end": 6588.06, + "probability": 0.7636 + }, + { + "start": 6588.18, + "end": 6588.82, + "probability": 0.7114 + }, + { + "start": 6588.82, + "end": 6590.72, + "probability": 0.9698 + }, + { + "start": 6591.28, + "end": 6594.74, + "probability": 0.9869 + }, + { + "start": 6594.74, + "end": 6598.42, + "probability": 0.9708 + }, + { + "start": 6599.32, + "end": 6603.02, + "probability": 0.9951 + }, + { + "start": 6603.6, + "end": 6604.86, + "probability": 0.9174 + }, + { + "start": 6605.04, + "end": 6606.64, + "probability": 0.933 + }, + { + "start": 6607.06, + "end": 6611.9, + "probability": 0.9684 + }, + { + "start": 6612.02, + "end": 6614.86, + "probability": 0.9688 + }, + { + "start": 6615.26, + "end": 6619.76, + "probability": 0.98 + }, + { + "start": 6620.14, + "end": 6622.86, + "probability": 0.8345 + }, + { + "start": 6622.98, + "end": 6624.28, + "probability": 0.9406 + }, + { + "start": 6624.76, + "end": 6627.28, + "probability": 0.9924 + }, + { + "start": 6627.42, + "end": 6628.18, + "probability": 0.9495 + }, + { + "start": 6629.22, + "end": 6629.98, + "probability": 0.82 + }, + { + "start": 6630.1, + "end": 6630.64, + "probability": 0.6227 + }, + { + "start": 6630.84, + "end": 6635.74, + "probability": 0.9935 + }, + { + "start": 6635.74, + "end": 6641.72, + "probability": 0.9971 + }, + { + "start": 6642.3, + "end": 6643.22, + "probability": 0.7144 + }, + { + "start": 6643.64, + "end": 6647.62, + "probability": 0.9972 + }, + { + "start": 6648.24, + "end": 6651.14, + "probability": 0.9208 + }, + { + "start": 6651.54, + "end": 6653.92, + "probability": 0.9969 + }, + { + "start": 6654.76, + "end": 6658.38, + "probability": 0.9552 + }, + { + "start": 6658.74, + "end": 6661.64, + "probability": 0.8698 + }, + { + "start": 6662.42, + "end": 6664.3, + "probability": 0.9918 + }, + { + "start": 6664.96, + "end": 6666.9, + "probability": 0.9917 + }, + { + "start": 6667.52, + "end": 6668.18, + "probability": 0.7378 + }, + { + "start": 6668.3, + "end": 6669.22, + "probability": 0.6017 + }, + { + "start": 6669.3, + "end": 6670.66, + "probability": 0.6569 + }, + { + "start": 6670.82, + "end": 6672.26, + "probability": 0.9354 + }, + { + "start": 6672.7, + "end": 6673.81, + "probability": 0.9966 + }, + { + "start": 6686.64, + "end": 6689.56, + "probability": 0.5292 + }, + { + "start": 6689.56, + "end": 6691.7, + "probability": 0.0609 + }, + { + "start": 6692.82, + "end": 6698.32, + "probability": 0.0693 + }, + { + "start": 6699.76, + "end": 6704.7, + "probability": 0.2806 + }, + { + "start": 6705.48, + "end": 6705.54, + "probability": 0.0352 + }, + { + "start": 6705.54, + "end": 6705.54, + "probability": 0.0574 + }, + { + "start": 6705.54, + "end": 6705.54, + "probability": 0.0267 + }, + { + "start": 6705.54, + "end": 6705.54, + "probability": 0.2375 + }, + { + "start": 6705.54, + "end": 6710.64, + "probability": 0.6566 + }, + { + "start": 6711.12, + "end": 6716.42, + "probability": 0.8015 + }, + { + "start": 6716.52, + "end": 6716.76, + "probability": 0.3593 + }, + { + "start": 6716.84, + "end": 6718.12, + "probability": 0.8146 + }, + { + "start": 6718.58, + "end": 6723.6, + "probability": 0.8074 + }, + { + "start": 6724.12, + "end": 6726.28, + "probability": 0.4724 + }, + { + "start": 6726.28, + "end": 6726.68, + "probability": 0.3145 + }, + { + "start": 6726.7, + "end": 6729.26, + "probability": 0.8687 + }, + { + "start": 6729.86, + "end": 6732.24, + "probability": 0.9559 + }, + { + "start": 6732.72, + "end": 6735.2, + "probability": 0.9779 + }, + { + "start": 6735.76, + "end": 6738.94, + "probability": 0.9761 + }, + { + "start": 6739.58, + "end": 6741.4, + "probability": 0.9915 + }, + { + "start": 6741.62, + "end": 6743.16, + "probability": 0.9799 + }, + { + "start": 6743.64, + "end": 6745.02, + "probability": 0.9835 + }, + { + "start": 6745.44, + "end": 6750.26, + "probability": 0.9822 + }, + { + "start": 6750.62, + "end": 6752.24, + "probability": 0.7801 + }, + { + "start": 6752.32, + "end": 6752.32, + "probability": 0.5634 + }, + { + "start": 6752.68, + "end": 6753.38, + "probability": 0.9607 + }, + { + "start": 6753.76, + "end": 6757.84, + "probability": 0.9666 + }, + { + "start": 6758.38, + "end": 6762.84, + "probability": 0.822 + }, + { + "start": 6763.42, + "end": 6766.42, + "probability": 0.9207 + }, + { + "start": 6766.44, + "end": 6769.78, + "probability": 0.7609 + }, + { + "start": 6770.44, + "end": 6776.9, + "probability": 0.9627 + }, + { + "start": 6777.16, + "end": 6778.28, + "probability": 0.739 + }, + { + "start": 6783.54, + "end": 6786.98, + "probability": 0.5091 + }, + { + "start": 6787.48, + "end": 6789.34, + "probability": 0.5117 + }, + { + "start": 6790.28, + "end": 6791.42, + "probability": 0.9178 + }, + { + "start": 6791.54, + "end": 6794.8, + "probability": 0.9695 + }, + { + "start": 6795.28, + "end": 6799.2, + "probability": 0.9723 + }, + { + "start": 6802.42, + "end": 6806.22, + "probability": 0.7127 + }, + { + "start": 6806.6, + "end": 6809.74, + "probability": 0.9056 + }, + { + "start": 6810.22, + "end": 6811.44, + "probability": 0.9746 + }, + { + "start": 6811.6, + "end": 6813.32, + "probability": 0.7478 + }, + { + "start": 6813.5, + "end": 6815.16, + "probability": 0.9917 + }, + { + "start": 6815.8, + "end": 6816.0, + "probability": 0.5516 + }, + { + "start": 6816.12, + "end": 6818.26, + "probability": 0.8564 + }, + { + "start": 6818.54, + "end": 6818.62, + "probability": 0.238 + }, + { + "start": 6818.66, + "end": 6820.31, + "probability": 0.6809 + }, + { + "start": 6820.68, + "end": 6822.7, + "probability": 0.9658 + }, + { + "start": 6822.88, + "end": 6823.68, + "probability": 0.7083 + }, + { + "start": 6823.86, + "end": 6827.44, + "probability": 0.9595 + }, + { + "start": 6828.38, + "end": 6829.08, + "probability": 0.7209 + }, + { + "start": 6829.18, + "end": 6839.98, + "probability": 0.9458 + }, + { + "start": 6840.06, + "end": 6841.72, + "probability": 0.8397 + }, + { + "start": 6842.44, + "end": 6843.52, + "probability": 0.734 + }, + { + "start": 6844.56, + "end": 6846.75, + "probability": 0.957 + }, + { + "start": 6847.48, + "end": 6848.62, + "probability": 0.859 + }, + { + "start": 6849.14, + "end": 6853.48, + "probability": 0.609 + }, + { + "start": 6854.18, + "end": 6854.72, + "probability": 0.8567 + }, + { + "start": 6854.98, + "end": 6855.54, + "probability": 0.5263 + }, + { + "start": 6856.56, + "end": 6858.6, + "probability": 0.9321 + }, + { + "start": 6858.62, + "end": 6859.5, + "probability": 0.7365 + }, + { + "start": 6859.86, + "end": 6860.44, + "probability": 0.7642 + }, + { + "start": 6860.62, + "end": 6863.7, + "probability": 0.9914 + }, + { + "start": 6863.84, + "end": 6867.68, + "probability": 0.8483 + }, + { + "start": 6868.82, + "end": 6872.68, + "probability": 0.8983 + }, + { + "start": 6873.64, + "end": 6874.92, + "probability": 0.7073 + }, + { + "start": 6875.88, + "end": 6879.14, + "probability": 0.9863 + }, + { + "start": 6879.42, + "end": 6880.5, + "probability": 0.6843 + }, + { + "start": 6881.06, + "end": 6884.56, + "probability": 0.8425 + }, + { + "start": 6885.26, + "end": 6887.88, + "probability": 0.8604 + }, + { + "start": 6888.6, + "end": 6890.08, + "probability": 0.9656 + }, + { + "start": 6890.92, + "end": 6892.76, + "probability": 0.9048 + }, + { + "start": 6893.14, + "end": 6893.7, + "probability": 0.7321 + }, + { + "start": 6894.16, + "end": 6897.52, + "probability": 0.9682 + }, + { + "start": 6897.6, + "end": 6899.64, + "probability": 0.969 + }, + { + "start": 6900.16, + "end": 6900.86, + "probability": 0.7772 + }, + { + "start": 6901.0, + "end": 6905.26, + "probability": 0.9399 + }, + { + "start": 6905.68, + "end": 6909.4, + "probability": 0.8649 + }, + { + "start": 6910.46, + "end": 6911.14, + "probability": 0.6227 + }, + { + "start": 6911.86, + "end": 6914.04, + "probability": 0.7865 + }, + { + "start": 6914.76, + "end": 6915.38, + "probability": 0.7364 + }, + { + "start": 6915.84, + "end": 6923.52, + "probability": 0.9851 + }, + { + "start": 6923.94, + "end": 6925.48, + "probability": 0.9296 + }, + { + "start": 6925.92, + "end": 6927.3, + "probability": 0.7756 + }, + { + "start": 6928.44, + "end": 6929.3, + "probability": 0.9891 + }, + { + "start": 6929.96, + "end": 6935.0, + "probability": 0.7827 + }, + { + "start": 6935.68, + "end": 6937.38, + "probability": 0.6293 + }, + { + "start": 6937.76, + "end": 6941.1, + "probability": 0.9193 + }, + { + "start": 6941.16, + "end": 6942.52, + "probability": 0.933 + }, + { + "start": 6943.02, + "end": 6945.44, + "probability": 0.9663 + }, + { + "start": 6945.84, + "end": 6947.12, + "probability": 0.9307 + }, + { + "start": 6947.68, + "end": 6948.54, + "probability": 0.0563 + }, + { + "start": 6949.1, + "end": 6950.42, + "probability": 0.6865 + }, + { + "start": 6951.08, + "end": 6954.54, + "probability": 0.4304 + }, + { + "start": 6954.54, + "end": 6958.34, + "probability": 0.5431 + }, + { + "start": 6958.94, + "end": 6960.7, + "probability": 0.9705 + }, + { + "start": 6961.36, + "end": 6965.4, + "probability": 0.809 + }, + { + "start": 6965.96, + "end": 6966.62, + "probability": 0.8568 + }, + { + "start": 6969.28, + "end": 6971.9, + "probability": 0.5025 + }, + { + "start": 6972.04, + "end": 6973.18, + "probability": 0.6219 + }, + { + "start": 6973.58, + "end": 6976.96, + "probability": 0.7529 + }, + { + "start": 6977.1, + "end": 6977.92, + "probability": 0.769 + }, + { + "start": 6978.14, + "end": 6980.22, + "probability": 0.9261 + }, + { + "start": 6981.52, + "end": 6983.84, + "probability": 0.8563 + }, + { + "start": 6984.36, + "end": 6985.28, + "probability": 0.9246 + }, + { + "start": 6985.6, + "end": 6986.54, + "probability": 0.9724 + }, + { + "start": 6987.0, + "end": 6990.06, + "probability": 0.8851 + }, + { + "start": 6990.88, + "end": 6993.5, + "probability": 0.974 + }, + { + "start": 6994.06, + "end": 6996.88, + "probability": 0.9946 + }, + { + "start": 6997.44, + "end": 6999.24, + "probability": 0.8384 + }, + { + "start": 6999.86, + "end": 7001.14, + "probability": 0.9514 + }, + { + "start": 7001.62, + "end": 7003.28, + "probability": 0.8213 + }, + { + "start": 7003.34, + "end": 7006.46, + "probability": 0.9403 + }, + { + "start": 7006.9, + "end": 7007.46, + "probability": 0.5376 + }, + { + "start": 7007.56, + "end": 7009.74, + "probability": 0.7982 + }, + { + "start": 7010.32, + "end": 7014.22, + "probability": 0.8377 + }, + { + "start": 7018.56, + "end": 7021.22, + "probability": 0.2505 + }, + { + "start": 7040.1, + "end": 7040.88, + "probability": 0.4123 + }, + { + "start": 7044.04, + "end": 7047.0, + "probability": 0.9945 + }, + { + "start": 7047.98, + "end": 7048.76, + "probability": 0.752 + }, + { + "start": 7048.82, + "end": 7052.56, + "probability": 0.8518 + }, + { + "start": 7052.6, + "end": 7053.46, + "probability": 0.8148 + }, + { + "start": 7053.64, + "end": 7055.64, + "probability": 0.5221 + }, + { + "start": 7056.06, + "end": 7057.06, + "probability": 0.6504 + }, + { + "start": 7057.66, + "end": 7061.32, + "probability": 0.9775 + }, + { + "start": 7063.12, + "end": 7063.6, + "probability": 0.6581 + }, + { + "start": 7065.6, + "end": 7066.38, + "probability": 0.6221 + }, + { + "start": 7066.68, + "end": 7067.72, + "probability": 0.9696 + }, + { + "start": 7067.84, + "end": 7069.18, + "probability": 0.8231 + }, + { + "start": 7070.8, + "end": 7072.88, + "probability": 0.9654 + }, + { + "start": 7074.04, + "end": 7075.82, + "probability": 0.9457 + }, + { + "start": 7076.84, + "end": 7079.36, + "probability": 0.9886 + }, + { + "start": 7081.0, + "end": 7084.46, + "probability": 0.9719 + }, + { + "start": 7086.24, + "end": 7087.56, + "probability": 0.9137 + }, + { + "start": 7088.24, + "end": 7090.13, + "probability": 0.0365 + }, + { + "start": 7091.08, + "end": 7092.14, + "probability": 0.2882 + }, + { + "start": 7092.32, + "end": 7095.18, + "probability": 0.9915 + }, + { + "start": 7096.68, + "end": 7100.08, + "probability": 0.9888 + }, + { + "start": 7101.54, + "end": 7105.1, + "probability": 0.9706 + }, + { + "start": 7107.78, + "end": 7108.94, + "probability": 0.789 + }, + { + "start": 7110.1, + "end": 7111.52, + "probability": 0.9601 + }, + { + "start": 7113.08, + "end": 7114.24, + "probability": 0.7803 + }, + { + "start": 7116.1, + "end": 7117.71, + "probability": 0.8132 + }, + { + "start": 7118.84, + "end": 7120.08, + "probability": 0.9868 + }, + { + "start": 7120.74, + "end": 7121.56, + "probability": 0.9487 + }, + { + "start": 7123.06, + "end": 7125.34, + "probability": 0.7877 + }, + { + "start": 7126.14, + "end": 7132.2, + "probability": 0.9782 + }, + { + "start": 7132.9, + "end": 7138.28, + "probability": 0.9795 + }, + { + "start": 7139.5, + "end": 7141.86, + "probability": 0.9745 + }, + { + "start": 7142.66, + "end": 7143.24, + "probability": 0.7612 + }, + { + "start": 7144.28, + "end": 7147.28, + "probability": 0.7135 + }, + { + "start": 7148.26, + "end": 7149.08, + "probability": 0.9773 + }, + { + "start": 7149.66, + "end": 7151.28, + "probability": 0.9753 + }, + { + "start": 7152.84, + "end": 7153.66, + "probability": 0.8285 + }, + { + "start": 7155.56, + "end": 7157.62, + "probability": 0.9639 + }, + { + "start": 7158.24, + "end": 7159.36, + "probability": 0.9832 + }, + { + "start": 7162.14, + "end": 7162.96, + "probability": 0.8232 + }, + { + "start": 7163.22, + "end": 7167.22, + "probability": 0.9613 + }, + { + "start": 7167.7, + "end": 7169.52, + "probability": 0.7927 + }, + { + "start": 7170.46, + "end": 7171.41, + "probability": 0.9324 + }, + { + "start": 7171.56, + "end": 7172.44, + "probability": 0.7859 + }, + { + "start": 7172.62, + "end": 7173.8, + "probability": 0.8984 + }, + { + "start": 7174.1, + "end": 7174.86, + "probability": 0.9191 + }, + { + "start": 7175.0, + "end": 7178.74, + "probability": 0.9755 + }, + { + "start": 7179.16, + "end": 7180.44, + "probability": 0.8346 + }, + { + "start": 7181.42, + "end": 7183.58, + "probability": 0.9866 + }, + { + "start": 7183.7, + "end": 7184.58, + "probability": 0.7806 + }, + { + "start": 7185.0, + "end": 7186.22, + "probability": 0.8127 + }, + { + "start": 7187.3, + "end": 7188.68, + "probability": 0.9217 + }, + { + "start": 7189.42, + "end": 7192.2, + "probability": 0.706 + }, + { + "start": 7193.96, + "end": 7197.7, + "probability": 0.968 + }, + { + "start": 7199.76, + "end": 7203.34, + "probability": 0.9897 + }, + { + "start": 7206.04, + "end": 7208.28, + "probability": 0.7834 + }, + { + "start": 7208.46, + "end": 7213.3, + "probability": 0.9312 + }, + { + "start": 7213.32, + "end": 7214.66, + "probability": 0.8503 + }, + { + "start": 7215.94, + "end": 7217.62, + "probability": 0.2378 + }, + { + "start": 7218.46, + "end": 7218.88, + "probability": 0.4665 + }, + { + "start": 7219.8, + "end": 7221.02, + "probability": 0.9473 + }, + { + "start": 7221.04, + "end": 7223.79, + "probability": 0.8119 + }, + { + "start": 7225.66, + "end": 7228.0, + "probability": 0.9894 + }, + { + "start": 7228.24, + "end": 7230.62, + "probability": 0.9839 + }, + { + "start": 7231.54, + "end": 7234.1, + "probability": 0.9797 + }, + { + "start": 7235.24, + "end": 7236.72, + "probability": 0.9608 + }, + { + "start": 7236.98, + "end": 7238.1, + "probability": 0.9858 + }, + { + "start": 7239.38, + "end": 7240.92, + "probability": 0.9948 + }, + { + "start": 7242.18, + "end": 7243.16, + "probability": 0.9868 + }, + { + "start": 7244.56, + "end": 7245.38, + "probability": 0.8672 + }, + { + "start": 7245.64, + "end": 7250.0, + "probability": 0.8559 + }, + { + "start": 7250.1, + "end": 7255.02, + "probability": 0.9146 + }, + { + "start": 7255.12, + "end": 7256.6, + "probability": 0.8438 + }, + { + "start": 7256.78, + "end": 7258.4, + "probability": 0.7766 + }, + { + "start": 7259.38, + "end": 7261.76, + "probability": 0.9606 + }, + { + "start": 7262.02, + "end": 7262.52, + "probability": 0.9254 + }, + { + "start": 7262.7, + "end": 7265.24, + "probability": 0.9624 + }, + { + "start": 7265.5, + "end": 7268.31, + "probability": 0.9334 + }, + { + "start": 7269.34, + "end": 7270.12, + "probability": 0.8096 + }, + { + "start": 7270.92, + "end": 7274.28, + "probability": 0.93 + }, + { + "start": 7275.96, + "end": 7281.22, + "probability": 0.8383 + }, + { + "start": 7281.84, + "end": 7288.22, + "probability": 0.9898 + }, + { + "start": 7288.92, + "end": 7291.41, + "probability": 0.7997 + }, + { + "start": 7293.02, + "end": 7300.42, + "probability": 0.8639 + }, + { + "start": 7301.08, + "end": 7304.2, + "probability": 0.9733 + }, + { + "start": 7305.76, + "end": 7306.44, + "probability": 0.9561 + }, + { + "start": 7308.06, + "end": 7309.18, + "probability": 0.9263 + }, + { + "start": 7310.76, + "end": 7315.58, + "probability": 0.758 + }, + { + "start": 7316.44, + "end": 7319.44, + "probability": 0.9139 + }, + { + "start": 7320.58, + "end": 7323.5, + "probability": 0.902 + }, + { + "start": 7323.9, + "end": 7325.17, + "probability": 0.7459 + }, + { + "start": 7325.76, + "end": 7326.4, + "probability": 0.777 + }, + { + "start": 7327.04, + "end": 7328.34, + "probability": 0.8228 + }, + { + "start": 7329.24, + "end": 7330.06, + "probability": 0.9902 + }, + { + "start": 7330.9, + "end": 7332.0, + "probability": 0.62 + }, + { + "start": 7332.74, + "end": 7336.06, + "probability": 0.9727 + }, + { + "start": 7336.7, + "end": 7337.56, + "probability": 0.9457 + }, + { + "start": 7338.32, + "end": 7341.68, + "probability": 0.7987 + }, + { + "start": 7343.54, + "end": 7348.12, + "probability": 0.9298 + }, + { + "start": 7350.16, + "end": 7353.04, + "probability": 0.9572 + }, + { + "start": 7353.56, + "end": 7357.62, + "probability": 0.967 + }, + { + "start": 7358.8, + "end": 7359.88, + "probability": 0.6312 + }, + { + "start": 7360.18, + "end": 7363.06, + "probability": 0.8525 + }, + { + "start": 7363.36, + "end": 7363.88, + "probability": 0.702 + }, + { + "start": 7364.04, + "end": 7364.64, + "probability": 0.7774 + }, + { + "start": 7365.08, + "end": 7365.7, + "probability": 0.8236 + }, + { + "start": 7366.08, + "end": 7369.29, + "probability": 0.9842 + }, + { + "start": 7372.24, + "end": 7374.14, + "probability": 0.9268 + }, + { + "start": 7374.98, + "end": 7376.28, + "probability": 0.981 + }, + { + "start": 7376.74, + "end": 7382.54, + "probability": 0.9833 + }, + { + "start": 7383.76, + "end": 7387.46, + "probability": 0.9751 + }, + { + "start": 7388.82, + "end": 7393.24, + "probability": 0.9971 + }, + { + "start": 7395.6, + "end": 7396.5, + "probability": 0.7574 + }, + { + "start": 7397.36, + "end": 7399.48, + "probability": 0.9658 + }, + { + "start": 7402.38, + "end": 7403.56, + "probability": 0.936 + }, + { + "start": 7404.68, + "end": 7408.06, + "probability": 0.9648 + }, + { + "start": 7409.26, + "end": 7410.84, + "probability": 0.9119 + }, + { + "start": 7411.8, + "end": 7414.0, + "probability": 0.9383 + }, + { + "start": 7415.16, + "end": 7418.04, + "probability": 0.9267 + }, + { + "start": 7418.2, + "end": 7419.1, + "probability": 0.8355 + }, + { + "start": 7419.16, + "end": 7421.6, + "probability": 0.908 + }, + { + "start": 7422.34, + "end": 7425.36, + "probability": 0.9686 + }, + { + "start": 7426.66, + "end": 7428.76, + "probability": 0.9291 + }, + { + "start": 7429.3, + "end": 7430.04, + "probability": 0.9644 + }, + { + "start": 7430.14, + "end": 7433.66, + "probability": 0.9806 + }, + { + "start": 7435.66, + "end": 7438.28, + "probability": 0.9782 + }, + { + "start": 7438.34, + "end": 7439.64, + "probability": 0.8494 + }, + { + "start": 7439.7, + "end": 7440.48, + "probability": 0.9817 + }, + { + "start": 7440.96, + "end": 7443.4, + "probability": 0.8683 + }, + { + "start": 7444.08, + "end": 7445.24, + "probability": 0.9917 + }, + { + "start": 7445.3, + "end": 7449.54, + "probability": 0.9878 + }, + { + "start": 7449.9, + "end": 7453.7, + "probability": 0.9963 + }, + { + "start": 7454.58, + "end": 7457.68, + "probability": 0.8647 + }, + { + "start": 7458.84, + "end": 7461.32, + "probability": 0.9952 + }, + { + "start": 7462.12, + "end": 7465.12, + "probability": 0.7368 + }, + { + "start": 7465.76, + "end": 7471.68, + "probability": 0.9482 + }, + { + "start": 7471.82, + "end": 7472.88, + "probability": 0.7776 + }, + { + "start": 7473.14, + "end": 7474.4, + "probability": 0.7944 + }, + { + "start": 7475.76, + "end": 7479.94, + "probability": 0.982 + }, + { + "start": 7480.98, + "end": 7483.58, + "probability": 0.9823 + }, + { + "start": 7484.38, + "end": 7487.72, + "probability": 0.9889 + }, + { + "start": 7487.98, + "end": 7488.78, + "probability": 0.8199 + }, + { + "start": 7488.98, + "end": 7489.7, + "probability": 0.9636 + }, + { + "start": 7489.96, + "end": 7490.78, + "probability": 0.9542 + }, + { + "start": 7490.82, + "end": 7491.82, + "probability": 0.8712 + }, + { + "start": 7492.86, + "end": 7493.7, + "probability": 0.9993 + }, + { + "start": 7497.36, + "end": 7500.7, + "probability": 0.9811 + }, + { + "start": 7501.06, + "end": 7502.08, + "probability": 0.6434 + }, + { + "start": 7503.84, + "end": 7506.6, + "probability": 0.9288 + }, + { + "start": 7507.6, + "end": 7509.02, + "probability": 0.9951 + }, + { + "start": 7509.16, + "end": 7510.18, + "probability": 0.8982 + }, + { + "start": 7510.58, + "end": 7512.0, + "probability": 0.9813 + }, + { + "start": 7512.56, + "end": 7514.66, + "probability": 0.9839 + }, + { + "start": 7515.26, + "end": 7516.88, + "probability": 0.9829 + }, + { + "start": 7518.82, + "end": 7519.52, + "probability": 0.7738 + }, + { + "start": 7520.34, + "end": 7524.38, + "probability": 0.9412 + }, + { + "start": 7524.52, + "end": 7526.08, + "probability": 0.7296 + }, + { + "start": 7526.22, + "end": 7526.36, + "probability": 0.2965 + }, + { + "start": 7526.54, + "end": 7527.52, + "probability": 0.0599 + }, + { + "start": 7527.58, + "end": 7528.0, + "probability": 0.0424 + }, + { + "start": 7529.58, + "end": 7534.44, + "probability": 0.9408 + }, + { + "start": 7535.04, + "end": 7537.62, + "probability": 0.8368 + }, + { + "start": 7537.91, + "end": 7538.34, + "probability": 0.1791 + }, + { + "start": 7538.44, + "end": 7544.02, + "probability": 0.93 + }, + { + "start": 7544.12, + "end": 7546.24, + "probability": 0.1559 + }, + { + "start": 7546.98, + "end": 7546.98, + "probability": 0.0324 + }, + { + "start": 7546.98, + "end": 7548.74, + "probability": 0.9298 + }, + { + "start": 7548.82, + "end": 7549.54, + "probability": 0.4309 + }, + { + "start": 7549.58, + "end": 7550.08, + "probability": 0.8978 + }, + { + "start": 7550.18, + "end": 7551.28, + "probability": 0.552 + }, + { + "start": 7551.84, + "end": 7552.1, + "probability": 0.5581 + }, + { + "start": 7552.1, + "end": 7553.82, + "probability": 0.4617 + }, + { + "start": 7553.88, + "end": 7555.4, + "probability": 0.9758 + }, + { + "start": 7556.26, + "end": 7561.98, + "probability": 0.951 + }, + { + "start": 7562.34, + "end": 7562.41, + "probability": 0.0024 + }, + { + "start": 7562.74, + "end": 7564.33, + "probability": 0.7198 + }, + { + "start": 7564.9, + "end": 7565.8, + "probability": 0.5328 + }, + { + "start": 7566.04, + "end": 7568.78, + "probability": 0.885 + }, + { + "start": 7569.88, + "end": 7570.26, + "probability": 0.8972 + }, + { + "start": 7570.38, + "end": 7570.98, + "probability": 0.5473 + }, + { + "start": 7571.2, + "end": 7572.24, + "probability": 0.6818 + }, + { + "start": 7572.38, + "end": 7572.42, + "probability": 0.2234 + }, + { + "start": 7572.42, + "end": 7574.68, + "probability": 0.4319 + }, + { + "start": 7574.76, + "end": 7575.8, + "probability": 0.9308 + }, + { + "start": 7576.14, + "end": 7577.68, + "probability": 0.8853 + }, + { + "start": 7577.68, + "end": 7580.18, + "probability": 0.9547 + }, + { + "start": 7580.5, + "end": 7584.4, + "probability": 0.989 + }, + { + "start": 7584.54, + "end": 7584.88, + "probability": 0.0871 + }, + { + "start": 7585.1, + "end": 7585.4, + "probability": 0.1556 + }, + { + "start": 7585.4, + "end": 7585.4, + "probability": 0.059 + }, + { + "start": 7585.4, + "end": 7587.96, + "probability": 0.6434 + }, + { + "start": 7588.44, + "end": 7589.94, + "probability": 0.8217 + }, + { + "start": 7589.94, + "end": 7591.4, + "probability": 0.856 + }, + { + "start": 7591.74, + "end": 7597.18, + "probability": 0.8208 + }, + { + "start": 7597.3, + "end": 7598.74, + "probability": 0.7447 + }, + { + "start": 7599.9, + "end": 7600.24, + "probability": 0.6926 + }, + { + "start": 7603.68, + "end": 7607.24, + "probability": 0.8141 + }, + { + "start": 7607.88, + "end": 7609.66, + "probability": 0.7686 + }, + { + "start": 7611.24, + "end": 7611.76, + "probability": 0.7079 + }, + { + "start": 7612.62, + "end": 7614.51, + "probability": 0.9921 + }, + { + "start": 7615.16, + "end": 7618.06, + "probability": 0.9131 + }, + { + "start": 7619.64, + "end": 7624.78, + "probability": 0.9875 + }, + { + "start": 7625.78, + "end": 7626.66, + "probability": 0.8527 + }, + { + "start": 7626.8, + "end": 7627.7, + "probability": 0.7837 + }, + { + "start": 7628.12, + "end": 7632.94, + "probability": 0.9369 + }, + { + "start": 7633.04, + "end": 7633.48, + "probability": 0.9331 + }, + { + "start": 7633.48, + "end": 7634.02, + "probability": 0.6552 + }, + { + "start": 7634.6, + "end": 7635.32, + "probability": 0.8357 + }, + { + "start": 7636.68, + "end": 7638.04, + "probability": 0.9927 + }, + { + "start": 7638.16, + "end": 7638.54, + "probability": 0.9257 + }, + { + "start": 7638.62, + "end": 7642.38, + "probability": 0.9973 + }, + { + "start": 7642.96, + "end": 7643.56, + "probability": 0.7452 + }, + { + "start": 7645.52, + "end": 7650.14, + "probability": 0.7795 + }, + { + "start": 7651.28, + "end": 7653.08, + "probability": 0.9504 + }, + { + "start": 7655.02, + "end": 7659.98, + "probability": 0.9276 + }, + { + "start": 7660.14, + "end": 7663.5, + "probability": 0.9806 + }, + { + "start": 7666.26, + "end": 7666.92, + "probability": 0.1097 + }, + { + "start": 7666.92, + "end": 7673.22, + "probability": 0.9785 + }, + { + "start": 7673.22, + "end": 7677.9, + "probability": 0.9994 + }, + { + "start": 7678.28, + "end": 7680.02, + "probability": 0.9976 + }, + { + "start": 7680.78, + "end": 7681.06, + "probability": 0.7429 + }, + { + "start": 7681.1, + "end": 7682.0, + "probability": 0.9581 + }, + { + "start": 7682.08, + "end": 7683.5, + "probability": 0.9482 + }, + { + "start": 7683.74, + "end": 7684.68, + "probability": 0.6076 + }, + { + "start": 7684.74, + "end": 7686.08, + "probability": 0.8868 + }, + { + "start": 7686.72, + "end": 7687.48, + "probability": 0.7114 + }, + { + "start": 7687.8, + "end": 7688.4, + "probability": 0.8134 + }, + { + "start": 7689.06, + "end": 7689.8, + "probability": 0.915 + }, + { + "start": 7690.86, + "end": 7691.02, + "probability": 0.6267 + }, + { + "start": 7691.16, + "end": 7698.1, + "probability": 0.8453 + }, + { + "start": 7698.7, + "end": 7699.82, + "probability": 0.9326 + }, + { + "start": 7700.4, + "end": 7701.73, + "probability": 0.9966 + }, + { + "start": 7702.32, + "end": 7703.26, + "probability": 0.1816 + }, + { + "start": 7703.4, + "end": 7703.74, + "probability": 0.328 + }, + { + "start": 7703.74, + "end": 7704.47, + "probability": 0.7711 + }, + { + "start": 7704.72, + "end": 7705.08, + "probability": 0.1675 + }, + { + "start": 7705.24, + "end": 7706.68, + "probability": 0.8511 + }, + { + "start": 7707.02, + "end": 7708.34, + "probability": 0.8721 + }, + { + "start": 7708.42, + "end": 7709.58, + "probability": 0.8426 + }, + { + "start": 7709.58, + "end": 7712.62, + "probability": 0.9639 + }, + { + "start": 7712.96, + "end": 7714.52, + "probability": 0.8979 + }, + { + "start": 7715.46, + "end": 7718.41, + "probability": 0.9924 + }, + { + "start": 7718.6, + "end": 7720.02, + "probability": 0.7458 + }, + { + "start": 7720.24, + "end": 7721.22, + "probability": 0.9069 + }, + { + "start": 7721.32, + "end": 7723.9, + "probability": 0.8608 + }, + { + "start": 7724.04, + "end": 7724.76, + "probability": 0.9719 + }, + { + "start": 7724.84, + "end": 7726.58, + "probability": 0.9827 + }, + { + "start": 7726.7, + "end": 7728.0, + "probability": 0.7465 + }, + { + "start": 7728.46, + "end": 7730.12, + "probability": 0.8532 + }, + { + "start": 7730.68, + "end": 7734.0, + "probability": 0.7883 + }, + { + "start": 7734.34, + "end": 7737.36, + "probability": 0.4637 + }, + { + "start": 7737.4, + "end": 7739.0, + "probability": 0.5006 + }, + { + "start": 7739.0, + "end": 7739.04, + "probability": 0.6099 + }, + { + "start": 7739.04, + "end": 7739.96, + "probability": 0.6791 + }, + { + "start": 7739.96, + "end": 7740.6, + "probability": 0.5596 + }, + { + "start": 7740.62, + "end": 7742.46, + "probability": 0.9961 + }, + { + "start": 7743.26, + "end": 7746.94, + "probability": 0.2889 + }, + { + "start": 7746.98, + "end": 7748.06, + "probability": 0.7647 + }, + { + "start": 7748.06, + "end": 7748.8, + "probability": 0.6004 + }, + { + "start": 7749.4, + "end": 7752.72, + "probability": 0.9608 + }, + { + "start": 7753.06, + "end": 7755.32, + "probability": 0.9454 + }, + { + "start": 7755.86, + "end": 7757.4, + "probability": 0.2383 + }, + { + "start": 7757.48, + "end": 7758.98, + "probability": 0.7414 + }, + { + "start": 7759.32, + "end": 7759.58, + "probability": 0.14 + }, + { + "start": 7759.58, + "end": 7759.78, + "probability": 0.0874 + }, + { + "start": 7759.78, + "end": 7761.32, + "probability": 0.8544 + }, + { + "start": 7761.86, + "end": 7763.6, + "probability": 0.6893 + }, + { + "start": 7764.3, + "end": 7767.62, + "probability": 0.8044 + }, + { + "start": 7767.72, + "end": 7770.22, + "probability": 0.865 + }, + { + "start": 7770.86, + "end": 7772.56, + "probability": 0.6222 + }, + { + "start": 7772.82, + "end": 7773.88, + "probability": 0.4735 + }, + { + "start": 7774.0, + "end": 7775.5, + "probability": 0.7308 + }, + { + "start": 7775.76, + "end": 7777.58, + "probability": 0.8921 + }, + { + "start": 7778.3, + "end": 7779.7, + "probability": 0.9943 + }, + { + "start": 7779.78, + "end": 7782.66, + "probability": 0.9565 + }, + { + "start": 7782.86, + "end": 7784.36, + "probability": 0.9598 + }, + { + "start": 7784.44, + "end": 7786.56, + "probability": 0.8114 + }, + { + "start": 7786.9, + "end": 7789.26, + "probability": 0.9945 + }, + { + "start": 7789.96, + "end": 7793.4, + "probability": 0.9254 + }, + { + "start": 7793.92, + "end": 7795.12, + "probability": 0.7834 + }, + { + "start": 7795.12, + "end": 7796.2, + "probability": 0.4129 + }, + { + "start": 7796.58, + "end": 7797.86, + "probability": 0.8436 + }, + { + "start": 7798.14, + "end": 7801.56, + "probability": 0.9583 + }, + { + "start": 7801.64, + "end": 7804.54, + "probability": 0.994 + }, + { + "start": 7804.74, + "end": 7807.12, + "probability": 0.9539 + }, + { + "start": 7807.16, + "end": 7808.26, + "probability": 0.6569 + }, + { + "start": 7808.5, + "end": 7809.26, + "probability": 0.7607 + }, + { + "start": 7809.42, + "end": 7810.44, + "probability": 0.7517 + }, + { + "start": 7810.48, + "end": 7810.54, + "probability": 0.0783 + }, + { + "start": 7810.54, + "end": 7811.1, + "probability": 0.2637 + }, + { + "start": 7811.18, + "end": 7812.4, + "probability": 0.7734 + }, + { + "start": 7812.44, + "end": 7813.44, + "probability": 0.8608 + }, + { + "start": 7813.56, + "end": 7814.81, + "probability": 0.8059 + }, + { + "start": 7815.2, + "end": 7815.7, + "probability": 0.425 + }, + { + "start": 7815.98, + "end": 7816.02, + "probability": 0.2019 + }, + { + "start": 7816.02, + "end": 7816.76, + "probability": 0.8147 + }, + { + "start": 7817.4, + "end": 7819.3, + "probability": 0.8838 + }, + { + "start": 7819.44, + "end": 7820.14, + "probability": 0.413 + }, + { + "start": 7820.96, + "end": 7823.06, + "probability": 0.8746 + }, + { + "start": 7823.06, + "end": 7825.88, + "probability": 0.7667 + }, + { + "start": 7825.94, + "end": 7829.12, + "probability": 0.4807 + }, + { + "start": 7829.54, + "end": 7830.24, + "probability": 0.8965 + }, + { + "start": 7830.32, + "end": 7832.38, + "probability": 0.9768 + }, + { + "start": 7832.42, + "end": 7832.9, + "probability": 0.8444 + }, + { + "start": 7833.04, + "end": 7833.7, + "probability": 0.875 + }, + { + "start": 7833.87, + "end": 7835.78, + "probability": 0.1792 + }, + { + "start": 7835.96, + "end": 7837.96, + "probability": 0.9619 + }, + { + "start": 7838.0, + "end": 7838.74, + "probability": 0.2625 + }, + { + "start": 7838.74, + "end": 7841.12, + "probability": 0.9583 + }, + { + "start": 7841.12, + "end": 7842.7, + "probability": 0.7861 + }, + { + "start": 7843.18, + "end": 7844.38, + "probability": 0.8577 + }, + { + "start": 7844.38, + "end": 7845.56, + "probability": 0.6729 + }, + { + "start": 7845.86, + "end": 7847.78, + "probability": 0.8303 + }, + { + "start": 7848.5, + "end": 7848.62, + "probability": 0.1095 + }, + { + "start": 7848.62, + "end": 7849.98, + "probability": 0.9707 + }, + { + "start": 7850.32, + "end": 7853.9, + "probability": 0.8569 + }, + { + "start": 7854.42, + "end": 7859.26, + "probability": 0.9343 + }, + { + "start": 7859.52, + "end": 7863.8, + "probability": 0.4416 + }, + { + "start": 7865.44, + "end": 7865.78, + "probability": 0.1093 + }, + { + "start": 7865.78, + "end": 7865.78, + "probability": 0.3028 + }, + { + "start": 7865.78, + "end": 7865.78, + "probability": 0.0579 + }, + { + "start": 7865.78, + "end": 7865.78, + "probability": 0.1098 + }, + { + "start": 7865.78, + "end": 7865.78, + "probability": 0.0345 + }, + { + "start": 7865.78, + "end": 7866.68, + "probability": 0.2435 + }, + { + "start": 7866.68, + "end": 7867.54, + "probability": 0.8519 + }, + { + "start": 7868.1, + "end": 7868.46, + "probability": 0.2089 + }, + { + "start": 7868.52, + "end": 7869.84, + "probability": 0.8752 + }, + { + "start": 7869.94, + "end": 7871.66, + "probability": 0.972 + }, + { + "start": 7872.02, + "end": 7873.62, + "probability": 0.4763 + }, + { + "start": 7873.94, + "end": 7874.58, + "probability": 0.3893 + }, + { + "start": 7875.04, + "end": 7875.84, + "probability": 0.4148 + }, + { + "start": 7875.94, + "end": 7877.04, + "probability": 0.6517 + }, + { + "start": 7877.08, + "end": 7877.2, + "probability": 0.0695 + }, + { + "start": 7877.2, + "end": 7877.3, + "probability": 0.0261 + }, + { + "start": 7877.3, + "end": 7877.3, + "probability": 0.0019 + }, + { + "start": 7877.3, + "end": 7877.3, + "probability": 0.029 + }, + { + "start": 7877.3, + "end": 7877.76, + "probability": 0.4176 + }, + { + "start": 7877.76, + "end": 7878.02, + "probability": 0.6389 + }, + { + "start": 7878.04, + "end": 7878.44, + "probability": 0.0478 + }, + { + "start": 7878.46, + "end": 7879.38, + "probability": 0.8667 + }, + { + "start": 7879.38, + "end": 7882.98, + "probability": 0.1668 + }, + { + "start": 7884.2, + "end": 7884.52, + "probability": 0.0165 + }, + { + "start": 7884.7, + "end": 7884.7, + "probability": 0.2242 + }, + { + "start": 7884.7, + "end": 7884.7, + "probability": 0.0106 + }, + { + "start": 7884.7, + "end": 7884.7, + "probability": 0.2548 + }, + { + "start": 7884.7, + "end": 7886.84, + "probability": 0.8187 + }, + { + "start": 7886.84, + "end": 7888.14, + "probability": 0.6114 + }, + { + "start": 7888.26, + "end": 7889.19, + "probability": 0.9237 + }, + { + "start": 7889.38, + "end": 7890.9, + "probability": 0.4127 + }, + { + "start": 7891.54, + "end": 7891.54, + "probability": 0.0082 + }, + { + "start": 7894.48, + "end": 7894.52, + "probability": 0.0133 + }, + { + "start": 7895.04, + "end": 7895.16, + "probability": 0.0048 + }, + { + "start": 7895.16, + "end": 7895.16, + "probability": 0.0738 + }, + { + "start": 7895.16, + "end": 7895.16, + "probability": 0.2994 + }, + { + "start": 7895.16, + "end": 7895.54, + "probability": 0.2094 + }, + { + "start": 7895.54, + "end": 7895.54, + "probability": 0.1879 + }, + { + "start": 7895.54, + "end": 7895.54, + "probability": 0.3119 + }, + { + "start": 7895.84, + "end": 7897.42, + "probability": 0.6818 + }, + { + "start": 7897.46, + "end": 7898.22, + "probability": 0.7392 + }, + { + "start": 7898.4, + "end": 7900.16, + "probability": 0.8529 + }, + { + "start": 7900.42, + "end": 7902.64, + "probability": 0.9675 + }, + { + "start": 7902.68, + "end": 7902.91, + "probability": 0.1701 + }, + { + "start": 7903.16, + "end": 7904.36, + "probability": 0.6993 + }, + { + "start": 7904.38, + "end": 7906.68, + "probability": 0.9655 + }, + { + "start": 7906.7, + "end": 7907.35, + "probability": 0.237 + }, + { + "start": 7907.5, + "end": 7908.5, + "probability": 0.022 + }, + { + "start": 7908.54, + "end": 7909.4, + "probability": 0.6453 + }, + { + "start": 7909.48, + "end": 7910.58, + "probability": 0.9856 + }, + { + "start": 7910.88, + "end": 7912.51, + "probability": 0.9849 + }, + { + "start": 7912.84, + "end": 7914.0, + "probability": 0.7315 + }, + { + "start": 7914.16, + "end": 7914.18, + "probability": 0.0554 + }, + { + "start": 7914.18, + "end": 7915.54, + "probability": 0.0377 + }, + { + "start": 7916.16, + "end": 7916.88, + "probability": 0.4324 + }, + { + "start": 7917.12, + "end": 7918.48, + "probability": 0.5202 + }, + { + "start": 7918.58, + "end": 7918.66, + "probability": 0.4833 + }, + { + "start": 7918.66, + "end": 7922.2, + "probability": 0.6716 + }, + { + "start": 7925.96, + "end": 7926.12, + "probability": 0.0203 + }, + { + "start": 7926.12, + "end": 7926.12, + "probability": 0.2957 + }, + { + "start": 7926.12, + "end": 7926.88, + "probability": 0.2205 + }, + { + "start": 7926.88, + "end": 7927.56, + "probability": 0.0718 + }, + { + "start": 7927.56, + "end": 7927.84, + "probability": 0.0482 + }, + { + "start": 7927.84, + "end": 7931.32, + "probability": 0.5872 + }, + { + "start": 7931.34, + "end": 7932.4, + "probability": 0.5569 + }, + { + "start": 7932.44, + "end": 7932.82, + "probability": 0.0136 + }, + { + "start": 7933.3, + "end": 7935.96, + "probability": 0.998 + }, + { + "start": 7935.96, + "end": 7939.3, + "probability": 0.9995 + }, + { + "start": 7939.4, + "end": 7940.18, + "probability": 0.8193 + }, + { + "start": 7940.68, + "end": 7943.74, + "probability": 0.0372 + }, + { + "start": 7947.8, + "end": 7948.44, + "probability": 0.0196 + }, + { + "start": 7949.62, + "end": 7949.84, + "probability": 0.0446 + }, + { + "start": 7949.84, + "end": 7949.84, + "probability": 0.2343 + }, + { + "start": 7949.84, + "end": 7949.84, + "probability": 0.1512 + }, + { + "start": 7949.84, + "end": 7949.84, + "probability": 0.0989 + }, + { + "start": 7949.84, + "end": 7954.09, + "probability": 0.6437 + }, + { + "start": 7954.16, + "end": 7957.74, + "probability": 0.9689 + }, + { + "start": 7958.34, + "end": 7962.78, + "probability": 0.9012 + }, + { + "start": 7963.14, + "end": 7966.92, + "probability": 0.9966 + }, + { + "start": 7966.92, + "end": 7969.54, + "probability": 0.9599 + }, + { + "start": 7970.7, + "end": 7973.08, + "probability": 0.7675 + }, + { + "start": 7973.14, + "end": 7974.66, + "probability": 0.834 + }, + { + "start": 7976.88, + "end": 7980.1, + "probability": 0.9731 + }, + { + "start": 7981.56, + "end": 7983.9, + "probability": 0.6769 + }, + { + "start": 7986.82, + "end": 7990.28, + "probability": 0.7694 + }, + { + "start": 7991.58, + "end": 7997.54, + "probability": 0.8587 + }, + { + "start": 7997.92, + "end": 8001.62, + "probability": 0.9963 + }, + { + "start": 8002.28, + "end": 8004.86, + "probability": 0.8977 + }, + { + "start": 8005.48, + "end": 8006.18, + "probability": 0.6263 + }, + { + "start": 8006.46, + "end": 8007.08, + "probability": 0.9208 + }, + { + "start": 8007.58, + "end": 8009.36, + "probability": 0.6778 + }, + { + "start": 8009.84, + "end": 8021.42, + "probability": 0.0285 + }, + { + "start": 8025.16, + "end": 8030.42, + "probability": 0.7783 + }, + { + "start": 8032.12, + "end": 8032.12, + "probability": 0.1336 + }, + { + "start": 8032.12, + "end": 8032.12, + "probability": 0.4236 + }, + { + "start": 8032.12, + "end": 8035.72, + "probability": 0.929 + }, + { + "start": 8035.72, + "end": 8039.78, + "probability": 0.9584 + }, + { + "start": 8039.84, + "end": 8041.4, + "probability": 0.9283 + }, + { + "start": 8042.2, + "end": 8045.58, + "probability": 0.7574 + }, + { + "start": 8046.24, + "end": 8052.22, + "probability": 0.9958 + }, + { + "start": 8052.62, + "end": 8053.86, + "probability": 0.6745 + }, + { + "start": 8054.56, + "end": 8055.2, + "probability": 0.6608 + }, + { + "start": 8055.34, + "end": 8055.94, + "probability": 0.626 + }, + { + "start": 8055.96, + "end": 8057.28, + "probability": 0.5631 + }, + { + "start": 8058.32, + "end": 8060.12, + "probability": 0.0488 + }, + { + "start": 8063.4, + "end": 8064.76, + "probability": 0.0293 + }, + { + "start": 8067.14, + "end": 8069.58, + "probability": 0.0864 + }, + { + "start": 8070.9, + "end": 8072.26, + "probability": 0.0464 + }, + { + "start": 8072.26, + "end": 8075.16, + "probability": 0.796 + }, + { + "start": 8075.84, + "end": 8079.6, + "probability": 0.8614 + }, + { + "start": 8080.84, + "end": 8084.94, + "probability": 0.991 + }, + { + "start": 8084.98, + "end": 8086.95, + "probability": 0.7578 + }, + { + "start": 8087.32, + "end": 8087.96, + "probability": 0.5312 + }, + { + "start": 8088.08, + "end": 8088.7, + "probability": 0.5204 + }, + { + "start": 8088.7, + "end": 8089.56, + "probability": 0.3859 + }, + { + "start": 8092.88, + "end": 8094.74, + "probability": 0.5166 + }, + { + "start": 8096.1, + "end": 8103.14, + "probability": 0.2124 + }, + { + "start": 8104.86, + "end": 8105.98, + "probability": 0.2041 + }, + { + "start": 8105.98, + "end": 8108.84, + "probability": 0.8067 + }, + { + "start": 8109.42, + "end": 8114.64, + "probability": 0.8542 + }, + { + "start": 8115.78, + "end": 8119.1, + "probability": 0.9459 + }, + { + "start": 8119.1, + "end": 8121.94, + "probability": 0.9883 + }, + { + "start": 8123.2, + "end": 8123.88, + "probability": 0.5766 + }, + { + "start": 8123.92, + "end": 8125.34, + "probability": 0.9478 + }, + { + "start": 8126.08, + "end": 8127.88, + "probability": 0.3432 + }, + { + "start": 8138.08, + "end": 8141.06, + "probability": 0.0917 + }, + { + "start": 8141.06, + "end": 8144.6, + "probability": 0.6562 + }, + { + "start": 8145.02, + "end": 8147.48, + "probability": 0.8193 + }, + { + "start": 8148.18, + "end": 8151.31, + "probability": 0.9321 + }, + { + "start": 8151.84, + "end": 8154.47, + "probability": 0.9141 + }, + { + "start": 8155.34, + "end": 8157.38, + "probability": 0.8387 + }, + { + "start": 8157.54, + "end": 8162.06, + "probability": 0.6433 + }, + { + "start": 8163.98, + "end": 8167.76, + "probability": 0.7493 + }, + { + "start": 8168.1, + "end": 8170.32, + "probability": 0.9811 + }, + { + "start": 8172.42, + "end": 8176.7, + "probability": 0.9301 + }, + { + "start": 8176.88, + "end": 8180.3, + "probability": 0.947 + }, + { + "start": 8188.77, + "end": 8194.16, + "probability": 0.7335 + }, + { + "start": 8194.74, + "end": 8196.2, + "probability": 0.7666 + }, + { + "start": 8197.0, + "end": 8199.74, + "probability": 0.9953 + }, + { + "start": 8199.74, + "end": 8205.28, + "probability": 0.9954 + }, + { + "start": 8205.44, + "end": 8208.66, + "probability": 0.9233 + }, + { + "start": 8208.66, + "end": 8211.08, + "probability": 0.8332 + }, + { + "start": 8211.76, + "end": 8215.76, + "probability": 0.9597 + }, + { + "start": 8216.4, + "end": 8221.62, + "probability": 0.9858 + }, + { + "start": 8221.62, + "end": 8226.48, + "probability": 0.9093 + }, + { + "start": 8227.7, + "end": 8230.72, + "probability": 0.9988 + }, + { + "start": 8230.72, + "end": 8235.02, + "probability": 0.9846 + }, + { + "start": 8235.84, + "end": 8239.22, + "probability": 0.908 + }, + { + "start": 8240.26, + "end": 8241.88, + "probability": 0.9634 + }, + { + "start": 8241.88, + "end": 8245.04, + "probability": 0.9916 + }, + { + "start": 8246.66, + "end": 8250.48, + "probability": 0.9548 + }, + { + "start": 8251.22, + "end": 8256.54, + "probability": 0.8512 + }, + { + "start": 8257.4, + "end": 8261.66, + "probability": 0.9097 + }, + { + "start": 8261.76, + "end": 8264.86, + "probability": 0.8403 + }, + { + "start": 8265.32, + "end": 8270.78, + "probability": 0.8859 + }, + { + "start": 8271.36, + "end": 8275.28, + "probability": 0.9917 + }, + { + "start": 8275.38, + "end": 8278.28, + "probability": 0.8928 + }, + { + "start": 8279.24, + "end": 8282.62, + "probability": 0.9613 + }, + { + "start": 8282.62, + "end": 8285.14, + "probability": 0.9967 + }, + { + "start": 8285.7, + "end": 8286.5, + "probability": 0.9609 + }, + { + "start": 8287.08, + "end": 8290.04, + "probability": 0.9493 + }, + { + "start": 8290.54, + "end": 8293.8, + "probability": 0.9911 + }, + { + "start": 8293.8, + "end": 8297.5, + "probability": 0.9953 + }, + { + "start": 8298.18, + "end": 8302.2, + "probability": 0.7958 + }, + { + "start": 8303.46, + "end": 8305.86, + "probability": 0.1971 + }, + { + "start": 8306.54, + "end": 8310.12, + "probability": 0.8708 + }, + { + "start": 8310.64, + "end": 8313.28, + "probability": 0.9316 + }, + { + "start": 8313.9, + "end": 8317.4, + "probability": 0.955 + }, + { + "start": 8317.88, + "end": 8321.14, + "probability": 0.9795 + }, + { + "start": 8321.8, + "end": 8324.42, + "probability": 0.9479 + }, + { + "start": 8324.94, + "end": 8326.84, + "probability": 0.8707 + }, + { + "start": 8327.4, + "end": 8328.36, + "probability": 0.3818 + }, + { + "start": 8328.9, + "end": 8332.48, + "probability": 0.8406 + }, + { + "start": 8332.48, + "end": 8335.06, + "probability": 0.8384 + }, + { + "start": 8335.86, + "end": 8338.94, + "probability": 0.835 + }, + { + "start": 8338.94, + "end": 8343.46, + "probability": 0.9972 + }, + { + "start": 8343.96, + "end": 8344.88, + "probability": 0.8599 + }, + { + "start": 8344.96, + "end": 8349.18, + "probability": 0.9847 + }, + { + "start": 8349.28, + "end": 8352.18, + "probability": 0.9854 + }, + { + "start": 8352.18, + "end": 8354.68, + "probability": 0.9427 + }, + { + "start": 8355.38, + "end": 8357.1, + "probability": 0.9906 + }, + { + "start": 8358.56, + "end": 8364.74, + "probability": 0.9893 + }, + { + "start": 8365.34, + "end": 8368.34, + "probability": 0.2386 + }, + { + "start": 8368.34, + "end": 8369.52, + "probability": 0.1826 + }, + { + "start": 8370.46, + "end": 8371.3, + "probability": 0.5787 + }, + { + "start": 8371.42, + "end": 8372.78, + "probability": 0.9539 + }, + { + "start": 8374.52, + "end": 8376.26, + "probability": 0.9352 + }, + { + "start": 8377.1, + "end": 8380.58, + "probability": 0.8628 + }, + { + "start": 8380.62, + "end": 8381.0, + "probability": 0.6426 + }, + { + "start": 8382.42, + "end": 8387.26, + "probability": 0.847 + }, + { + "start": 8387.34, + "end": 8388.82, + "probability": 0.9765 + }, + { + "start": 8389.44, + "end": 8393.25, + "probability": 0.9862 + }, + { + "start": 8393.94, + "end": 8394.52, + "probability": 0.7105 + }, + { + "start": 8394.68, + "end": 8397.4, + "probability": 0.7668 + }, + { + "start": 8398.26, + "end": 8401.56, + "probability": 0.8882 + }, + { + "start": 8402.0, + "end": 8403.84, + "probability": 0.9461 + }, + { + "start": 8404.42, + "end": 8406.18, + "probability": 0.7658 + }, + { + "start": 8406.18, + "end": 8408.34, + "probability": 0.9782 + }, + { + "start": 8408.98, + "end": 8413.06, + "probability": 0.8994 + }, + { + "start": 8413.86, + "end": 8417.48, + "probability": 0.9507 + }, + { + "start": 8417.48, + "end": 8421.78, + "probability": 0.9924 + }, + { + "start": 8422.36, + "end": 8424.24, + "probability": 0.8571 + }, + { + "start": 8424.6, + "end": 8427.04, + "probability": 0.9903 + }, + { + "start": 8427.04, + "end": 8429.34, + "probability": 0.998 + }, + { + "start": 8429.88, + "end": 8434.92, + "probability": 0.9906 + }, + { + "start": 8435.7, + "end": 8439.32, + "probability": 0.9954 + }, + { + "start": 8439.32, + "end": 8442.38, + "probability": 0.9713 + }, + { + "start": 8444.06, + "end": 8448.78, + "probability": 0.8814 + }, + { + "start": 8448.78, + "end": 8451.52, + "probability": 0.8901 + }, + { + "start": 8452.34, + "end": 8455.14, + "probability": 0.9722 + }, + { + "start": 8455.78, + "end": 8459.36, + "probability": 0.9204 + }, + { + "start": 8459.36, + "end": 8461.92, + "probability": 0.9954 + }, + { + "start": 8462.44, + "end": 8464.26, + "probability": 0.9382 + }, + { + "start": 8464.68, + "end": 8465.76, + "probability": 0.9514 + }, + { + "start": 8465.92, + "end": 8467.16, + "probability": 0.8951 + }, + { + "start": 8467.6, + "end": 8469.3, + "probability": 0.7036 + }, + { + "start": 8469.84, + "end": 8472.74, + "probability": 0.9701 + }, + { + "start": 8472.74, + "end": 8477.14, + "probability": 0.9266 + }, + { + "start": 8477.6, + "end": 8478.08, + "probability": 0.5971 + }, + { + "start": 8478.62, + "end": 8479.58, + "probability": 0.7346 + }, + { + "start": 8479.7, + "end": 8481.02, + "probability": 0.7921 + }, + { + "start": 8481.16, + "end": 8486.08, + "probability": 0.9259 + }, + { + "start": 8486.74, + "end": 8488.72, + "probability": 0.9438 + }, + { + "start": 8489.38, + "end": 8494.36, + "probability": 0.9946 + }, + { + "start": 8494.98, + "end": 8495.56, + "probability": 0.7266 + }, + { + "start": 8495.98, + "end": 8499.06, + "probability": 0.8189 + }, + { + "start": 8499.06, + "end": 8503.22, + "probability": 0.9241 + }, + { + "start": 8503.7, + "end": 8507.2, + "probability": 0.9851 + }, + { + "start": 8507.9, + "end": 8510.5, + "probability": 0.8665 + }, + { + "start": 8510.5, + "end": 8514.32, + "probability": 0.9753 + }, + { + "start": 8514.8, + "end": 8518.6, + "probability": 0.8857 + }, + { + "start": 8518.62, + "end": 8522.5, + "probability": 0.8304 + }, + { + "start": 8522.96, + "end": 8524.82, + "probability": 0.9902 + }, + { + "start": 8525.68, + "end": 8529.58, + "probability": 0.9469 + }, + { + "start": 8530.14, + "end": 8531.16, + "probability": 0.7873 + }, + { + "start": 8532.0, + "end": 8535.88, + "probability": 0.9235 + }, + { + "start": 8536.38, + "end": 8537.54, + "probability": 0.8793 + }, + { + "start": 8537.64, + "end": 8541.18, + "probability": 0.8726 + }, + { + "start": 8541.18, + "end": 8544.64, + "probability": 0.7848 + }, + { + "start": 8545.18, + "end": 8547.16, + "probability": 0.7357 + }, + { + "start": 8547.64, + "end": 8549.8, + "probability": 0.8052 + }, + { + "start": 8550.28, + "end": 8554.68, + "probability": 0.7548 + }, + { + "start": 8555.22, + "end": 8559.22, + "probability": 0.978 + }, + { + "start": 8559.22, + "end": 8561.7, + "probability": 0.9972 + }, + { + "start": 8561.86, + "end": 8562.28, + "probability": 0.7616 + }, + { + "start": 8562.82, + "end": 8563.72, + "probability": 0.5503 + }, + { + "start": 8564.06, + "end": 8566.0, + "probability": 0.9709 + }, + { + "start": 8566.88, + "end": 8568.06, + "probability": 0.9103 + }, + { + "start": 8568.36, + "end": 8570.62, + "probability": 0.9884 + }, + { + "start": 8580.06, + "end": 8580.06, + "probability": 0.4711 + }, + { + "start": 8580.06, + "end": 8583.04, + "probability": 0.9349 + }, + { + "start": 8583.32, + "end": 8584.18, + "probability": 0.8816 + }, + { + "start": 8585.02, + "end": 8585.9, + "probability": 0.3499 + }, + { + "start": 8588.44, + "end": 8590.06, + "probability": 0.6414 + }, + { + "start": 8596.68, + "end": 8600.46, + "probability": 0.7596 + }, + { + "start": 8602.14, + "end": 8603.46, + "probability": 0.8351 + }, + { + "start": 8605.02, + "end": 8612.42, + "probability": 0.9523 + }, + { + "start": 8612.42, + "end": 8616.26, + "probability": 0.999 + }, + { + "start": 8617.26, + "end": 8618.1, + "probability": 0.9393 + }, + { + "start": 8619.31, + "end": 8622.44, + "probability": 0.9893 + }, + { + "start": 8622.44, + "end": 8623.36, + "probability": 0.3313 + }, + { + "start": 8623.62, + "end": 8624.96, + "probability": 0.2127 + }, + { + "start": 8624.96, + "end": 8630.48, + "probability": 0.8809 + }, + { + "start": 8631.24, + "end": 8631.92, + "probability": 0.5942 + }, + { + "start": 8632.9, + "end": 8636.84, + "probability": 0.978 + }, + { + "start": 8637.7, + "end": 8641.26, + "probability": 0.9272 + }, + { + "start": 8642.34, + "end": 8649.7, + "probability": 0.9925 + }, + { + "start": 8650.34, + "end": 8651.86, + "probability": 0.6503 + }, + { + "start": 8653.08, + "end": 8658.86, + "probability": 0.9895 + }, + { + "start": 8660.4, + "end": 8662.0, + "probability": 0.445 + }, + { + "start": 8662.08, + "end": 8662.38, + "probability": 0.4228 + }, + { + "start": 8662.38, + "end": 8662.56, + "probability": 0.4196 + }, + { + "start": 8662.56, + "end": 8663.28, + "probability": 0.2615 + }, + { + "start": 8663.4, + "end": 8664.24, + "probability": 0.5264 + }, + { + "start": 8664.32, + "end": 8668.74, + "probability": 0.9797 + }, + { + "start": 8669.26, + "end": 8673.72, + "probability": 0.978 + }, + { + "start": 8674.08, + "end": 8675.3, + "probability": 0.9291 + }, + { + "start": 8675.54, + "end": 8676.74, + "probability": 0.9255 + }, + { + "start": 8677.38, + "end": 8683.1, + "probability": 0.9091 + }, + { + "start": 8683.16, + "end": 8686.28, + "probability": 0.9764 + }, + { + "start": 8686.9, + "end": 8688.86, + "probability": 0.9956 + }, + { + "start": 8689.52, + "end": 8695.38, + "probability": 0.9888 + }, + { + "start": 8695.8, + "end": 8697.84, + "probability": 0.9507 + }, + { + "start": 8697.96, + "end": 8700.98, + "probability": 0.9937 + }, + { + "start": 8701.34, + "end": 8704.84, + "probability": 0.9866 + }, + { + "start": 8705.46, + "end": 8709.82, + "probability": 0.9349 + }, + { + "start": 8709.94, + "end": 8712.2, + "probability": 0.9563 + }, + { + "start": 8712.8, + "end": 8717.62, + "probability": 0.9556 + }, + { + "start": 8718.4, + "end": 8720.2, + "probability": 0.9136 + }, + { + "start": 8720.62, + "end": 8721.56, + "probability": 0.8565 + }, + { + "start": 8721.9, + "end": 8723.12, + "probability": 0.8887 + }, + { + "start": 8723.38, + "end": 8724.52, + "probability": 0.786 + }, + { + "start": 8724.92, + "end": 8726.27, + "probability": 0.9934 + }, + { + "start": 8727.42, + "end": 8733.32, + "probability": 0.9282 + }, + { + "start": 8734.26, + "end": 8742.2, + "probability": 0.9481 + }, + { + "start": 8742.78, + "end": 8743.96, + "probability": 0.953 + }, + { + "start": 8744.74, + "end": 8747.22, + "probability": 0.9978 + }, + { + "start": 8747.8, + "end": 8748.83, + "probability": 0.9819 + }, + { + "start": 8750.24, + "end": 8751.68, + "probability": 0.9872 + }, + { + "start": 8752.04, + "end": 8753.14, + "probability": 0.6431 + }, + { + "start": 8753.28, + "end": 8754.92, + "probability": 0.8651 + }, + { + "start": 8756.66, + "end": 8760.42, + "probability": 0.9771 + }, + { + "start": 8761.16, + "end": 8762.02, + "probability": 0.9847 + }, + { + "start": 8762.4, + "end": 8763.5, + "probability": 0.8602 + }, + { + "start": 8764.48, + "end": 8768.44, + "probability": 0.9912 + }, + { + "start": 8768.98, + "end": 8770.94, + "probability": 0.9919 + }, + { + "start": 8771.24, + "end": 8774.92, + "probability": 0.6495 + }, + { + "start": 8775.5, + "end": 8779.44, + "probability": 0.9764 + }, + { + "start": 8780.38, + "end": 8782.16, + "probability": 0.9935 + }, + { + "start": 8783.1, + "end": 8786.22, + "probability": 0.9648 + }, + { + "start": 8786.94, + "end": 8789.52, + "probability": 0.9874 + }, + { + "start": 8789.82, + "end": 8793.12, + "probability": 0.9876 + }, + { + "start": 8793.84, + "end": 8798.48, + "probability": 0.9889 + }, + { + "start": 8799.3, + "end": 8800.36, + "probability": 0.8076 + }, + { + "start": 8800.8, + "end": 8801.56, + "probability": 0.9296 + }, + { + "start": 8801.96, + "end": 8805.56, + "probability": 0.9791 + }, + { + "start": 8806.26, + "end": 8807.68, + "probability": 0.9679 + }, + { + "start": 8808.44, + "end": 8811.18, + "probability": 0.9857 + }, + { + "start": 8812.36, + "end": 8813.7, + "probability": 0.9888 + }, + { + "start": 8815.02, + "end": 8815.46, + "probability": 0.7994 + }, + { + "start": 8816.02, + "end": 8817.52, + "probability": 0.9875 + }, + { + "start": 8818.08, + "end": 8819.44, + "probability": 0.7866 + }, + { + "start": 8820.04, + "end": 8822.82, + "probability": 0.9878 + }, + { + "start": 8823.38, + "end": 8824.9, + "probability": 0.9896 + }, + { + "start": 8825.72, + "end": 8829.48, + "probability": 0.9836 + }, + { + "start": 8829.48, + "end": 8833.5, + "probability": 0.9747 + }, + { + "start": 8834.04, + "end": 8839.86, + "probability": 0.9868 + }, + { + "start": 8840.22, + "end": 8842.84, + "probability": 0.9497 + }, + { + "start": 8843.82, + "end": 8850.62, + "probability": 0.9941 + }, + { + "start": 8851.16, + "end": 8852.09, + "probability": 0.9282 + }, + { + "start": 8852.98, + "end": 8853.91, + "probability": 0.967 + }, + { + "start": 8855.12, + "end": 8856.54, + "probability": 0.8908 + }, + { + "start": 8857.08, + "end": 8860.16, + "probability": 0.9751 + }, + { + "start": 8860.56, + "end": 8861.78, + "probability": 0.848 + }, + { + "start": 8862.74, + "end": 8868.94, + "probability": 0.8084 + }, + { + "start": 8869.6, + "end": 8871.0, + "probability": 0.7964 + }, + { + "start": 8871.4, + "end": 8871.8, + "probability": 0.468 + }, + { + "start": 8872.32, + "end": 8874.14, + "probability": 0.6759 + }, + { + "start": 8874.9, + "end": 8875.1, + "probability": 0.3928 + }, + { + "start": 8875.92, + "end": 8881.62, + "probability": 0.8607 + }, + { + "start": 8882.56, + "end": 8883.98, + "probability": 0.9888 + }, + { + "start": 8884.72, + "end": 8885.66, + "probability": 0.9206 + }, + { + "start": 8886.06, + "end": 8887.18, + "probability": 0.8315 + }, + { + "start": 8887.48, + "end": 8889.36, + "probability": 0.9893 + }, + { + "start": 8889.58, + "end": 8891.51, + "probability": 0.7702 + }, + { + "start": 8891.9, + "end": 8893.7, + "probability": 0.9974 + }, + { + "start": 8894.06, + "end": 8896.24, + "probability": 0.9797 + }, + { + "start": 8896.56, + "end": 8900.3, + "probability": 0.96 + }, + { + "start": 8900.6, + "end": 8901.52, + "probability": 0.9843 + }, + { + "start": 8902.18, + "end": 8902.3, + "probability": 0.8813 + }, + { + "start": 8903.66, + "end": 8905.36, + "probability": 0.3414 + }, + { + "start": 8906.08, + "end": 8908.26, + "probability": 0.9942 + }, + { + "start": 8908.32, + "end": 8912.42, + "probability": 0.96 + }, + { + "start": 8913.28, + "end": 8917.04, + "probability": 0.9681 + }, + { + "start": 8917.38, + "end": 8919.36, + "probability": 0.9613 + }, + { + "start": 8920.32, + "end": 8922.06, + "probability": 0.7622 + }, + { + "start": 8922.96, + "end": 8925.3, + "probability": 0.8365 + }, + { + "start": 8925.92, + "end": 8928.22, + "probability": 0.9946 + }, + { + "start": 8929.36, + "end": 8930.62, + "probability": 0.9244 + }, + { + "start": 8930.68, + "end": 8932.64, + "probability": 0.8975 + }, + { + "start": 8933.36, + "end": 8934.98, + "probability": 0.9292 + }, + { + "start": 8934.98, + "end": 8937.62, + "probability": 0.9956 + }, + { + "start": 8938.2, + "end": 8938.78, + "probability": 0.9805 + }, + { + "start": 8939.7, + "end": 8940.22, + "probability": 0.6704 + }, + { + "start": 8940.62, + "end": 8943.56, + "probability": 0.7794 + }, + { + "start": 8944.04, + "end": 8946.46, + "probability": 0.8486 + }, + { + "start": 8947.62, + "end": 8949.36, + "probability": 0.9946 + }, + { + "start": 8949.36, + "end": 8952.08, + "probability": 0.997 + }, + { + "start": 8952.56, + "end": 8956.9, + "probability": 0.9944 + }, + { + "start": 8957.38, + "end": 8959.27, + "probability": 0.9937 + }, + { + "start": 8959.86, + "end": 8962.56, + "probability": 0.9628 + }, + { + "start": 8962.96, + "end": 8964.1, + "probability": 0.8898 + }, + { + "start": 8965.12, + "end": 8969.58, + "probability": 0.9073 + }, + { + "start": 8970.88, + "end": 8973.08, + "probability": 0.7812 + }, + { + "start": 8973.26, + "end": 8976.4, + "probability": 0.8101 + }, + { + "start": 8977.0, + "end": 8978.6, + "probability": 0.9824 + }, + { + "start": 8979.56, + "end": 8981.38, + "probability": 0.9302 + }, + { + "start": 8981.98, + "end": 8983.18, + "probability": 0.9517 + }, + { + "start": 8983.62, + "end": 8988.66, + "probability": 0.991 + }, + { + "start": 8989.06, + "end": 8992.22, + "probability": 0.9741 + }, + { + "start": 8992.66, + "end": 8997.22, + "probability": 0.9419 + }, + { + "start": 8997.66, + "end": 8999.6, + "probability": 0.9346 + }, + { + "start": 9000.16, + "end": 9001.46, + "probability": 0.989 + }, + { + "start": 9002.24, + "end": 9005.62, + "probability": 0.9498 + }, + { + "start": 9006.1, + "end": 9007.88, + "probability": 0.905 + }, + { + "start": 9008.62, + "end": 9009.5, + "probability": 0.9409 + }, + { + "start": 9010.42, + "end": 9013.66, + "probability": 0.9036 + }, + { + "start": 9014.26, + "end": 9014.92, + "probability": 0.7817 + }, + { + "start": 9015.12, + "end": 9015.48, + "probability": 0.7872 + }, + { + "start": 9015.62, + "end": 9016.26, + "probability": 0.9421 + }, + { + "start": 9016.62, + "end": 9019.28, + "probability": 0.8794 + }, + { + "start": 9019.72, + "end": 9022.34, + "probability": 0.8615 + }, + { + "start": 9023.06, + "end": 9024.46, + "probability": 0.9377 + }, + { + "start": 9024.88, + "end": 9026.68, + "probability": 0.8511 + }, + { + "start": 9026.7, + "end": 9028.1, + "probability": 0.9752 + }, + { + "start": 9028.48, + "end": 9030.58, + "probability": 0.9827 + }, + { + "start": 9031.1, + "end": 9031.64, + "probability": 0.4375 + }, + { + "start": 9031.7, + "end": 9033.42, + "probability": 0.8127 + }, + { + "start": 9033.82, + "end": 9034.88, + "probability": 0.7681 + }, + { + "start": 9035.32, + "end": 9038.36, + "probability": 0.9336 + }, + { + "start": 9039.32, + "end": 9039.76, + "probability": 0.8612 + }, + { + "start": 9039.78, + "end": 9040.62, + "probability": 0.96 + }, + { + "start": 9041.0, + "end": 9046.04, + "probability": 0.9984 + }, + { + "start": 9046.04, + "end": 9049.78, + "probability": 0.999 + }, + { + "start": 9050.32, + "end": 9051.16, + "probability": 0.6622 + }, + { + "start": 9051.86, + "end": 9053.12, + "probability": 0.8574 + }, + { + "start": 9053.6, + "end": 9055.02, + "probability": 0.942 + }, + { + "start": 9055.42, + "end": 9056.82, + "probability": 0.948 + }, + { + "start": 9057.5, + "end": 9058.4, + "probability": 0.7109 + }, + { + "start": 9058.92, + "end": 9061.18, + "probability": 0.9994 + }, + { + "start": 9061.56, + "end": 9062.96, + "probability": 0.6927 + }, + { + "start": 9063.46, + "end": 9065.46, + "probability": 0.998 + }, + { + "start": 9065.78, + "end": 9068.68, + "probability": 0.9578 + }, + { + "start": 9069.08, + "end": 9071.38, + "probability": 0.8057 + }, + { + "start": 9071.76, + "end": 9074.78, + "probability": 0.9894 + }, + { + "start": 9075.24, + "end": 9076.94, + "probability": 0.9463 + }, + { + "start": 9077.06, + "end": 9077.42, + "probability": 0.8762 + }, + { + "start": 9078.42, + "end": 9079.48, + "probability": 0.3078 + }, + { + "start": 9079.48, + "end": 9080.5, + "probability": 0.0171 + }, + { + "start": 9085.0, + "end": 9085.04, + "probability": 0.1228 + }, + { + "start": 9085.04, + "end": 9085.7, + "probability": 0.1292 + }, + { + "start": 9085.95, + "end": 9089.26, + "probability": 0.7687 + }, + { + "start": 9093.44, + "end": 9095.2, + "probability": 0.2598 + }, + { + "start": 9096.04, + "end": 9097.14, + "probability": 0.528 + }, + { + "start": 9097.46, + "end": 9098.48, + "probability": 0.6111 + }, + { + "start": 9099.08, + "end": 9100.04, + "probability": 0.8103 + }, + { + "start": 9100.2, + "end": 9104.5, + "probability": 0.7542 + }, + { + "start": 9105.04, + "end": 9108.12, + "probability": 0.9633 + }, + { + "start": 9109.06, + "end": 9112.32, + "probability": 0.9929 + }, + { + "start": 9115.94, + "end": 9116.38, + "probability": 0.2764 + }, + { + "start": 9116.38, + "end": 9117.66, + "probability": 0.7522 + }, + { + "start": 9117.7, + "end": 9122.36, + "probability": 0.9561 + }, + { + "start": 9122.96, + "end": 9127.3, + "probability": 0.9968 + }, + { + "start": 9127.3, + "end": 9132.04, + "probability": 0.9948 + }, + { + "start": 9133.3, + "end": 9134.66, + "probability": 0.9595 + }, + { + "start": 9134.8, + "end": 9138.58, + "probability": 0.744 + }, + { + "start": 9139.28, + "end": 9143.48, + "probability": 0.8298 + }, + { + "start": 9143.64, + "end": 9145.78, + "probability": 0.9829 + }, + { + "start": 9145.9, + "end": 9146.38, + "probability": 0.9338 + }, + { + "start": 9146.46, + "end": 9147.22, + "probability": 0.9651 + }, + { + "start": 9148.44, + "end": 9154.24, + "probability": 0.9618 + }, + { + "start": 9154.24, + "end": 9158.38, + "probability": 0.9956 + }, + { + "start": 9159.48, + "end": 9165.92, + "probability": 0.968 + }, + { + "start": 9165.92, + "end": 9172.86, + "probability": 0.9556 + }, + { + "start": 9173.48, + "end": 9176.22, + "probability": 0.9883 + }, + { + "start": 9176.38, + "end": 9178.28, + "probability": 0.7262 + }, + { + "start": 9178.68, + "end": 9179.32, + "probability": 0.9447 + }, + { + "start": 9180.96, + "end": 9186.66, + "probability": 0.9902 + }, + { + "start": 9186.86, + "end": 9187.08, + "probability": 0.3154 + }, + { + "start": 9187.22, + "end": 9191.56, + "probability": 0.9774 + }, + { + "start": 9192.12, + "end": 9198.7, + "probability": 0.9985 + }, + { + "start": 9198.7, + "end": 9206.08, + "probability": 0.9985 + }, + { + "start": 9206.88, + "end": 9210.56, + "probability": 0.9858 + }, + { + "start": 9212.68, + "end": 9213.84, + "probability": 0.6019 + }, + { + "start": 9213.84, + "end": 9213.98, + "probability": 0.3921 + }, + { + "start": 9214.08, + "end": 9216.96, + "probability": 0.8411 + }, + { + "start": 9217.36, + "end": 9220.17, + "probability": 0.9946 + }, + { + "start": 9221.66, + "end": 9223.1, + "probability": 0.97 + }, + { + "start": 9223.52, + "end": 9224.0, + "probability": 0.6061 + }, + { + "start": 9224.24, + "end": 9225.78, + "probability": 0.9225 + }, + { + "start": 9226.06, + "end": 9231.44, + "probability": 0.9551 + }, + { + "start": 9231.58, + "end": 9235.6, + "probability": 0.9871 + }, + { + "start": 9236.12, + "end": 9237.4, + "probability": 0.8682 + }, + { + "start": 9237.82, + "end": 9239.14, + "probability": 0.9224 + }, + { + "start": 9239.68, + "end": 9241.73, + "probability": 0.998 + }, + { + "start": 9243.8, + "end": 9246.92, + "probability": 0.9873 + }, + { + "start": 9247.68, + "end": 9250.46, + "probability": 0.9795 + }, + { + "start": 9251.04, + "end": 9256.46, + "probability": 0.9664 + }, + { + "start": 9257.66, + "end": 9261.0, + "probability": 0.9789 + }, + { + "start": 9261.8, + "end": 9265.5, + "probability": 0.999 + }, + { + "start": 9266.1, + "end": 9266.5, + "probability": 0.8849 + }, + { + "start": 9266.8, + "end": 9275.32, + "probability": 0.9739 + }, + { + "start": 9276.72, + "end": 9278.82, + "probability": 0.5257 + }, + { + "start": 9279.42, + "end": 9282.78, + "probability": 0.8308 + }, + { + "start": 9283.34, + "end": 9288.26, + "probability": 0.9795 + }, + { + "start": 9290.42, + "end": 9291.74, + "probability": 0.9907 + }, + { + "start": 9292.5, + "end": 9296.74, + "probability": 0.9937 + }, + { + "start": 9297.24, + "end": 9301.14, + "probability": 0.7964 + }, + { + "start": 9305.06, + "end": 9309.44, + "probability": 0.9831 + }, + { + "start": 9309.44, + "end": 9313.24, + "probability": 0.752 + }, + { + "start": 9313.9, + "end": 9316.5, + "probability": 0.939 + }, + { + "start": 9317.22, + "end": 9322.56, + "probability": 0.9552 + }, + { + "start": 9323.6, + "end": 9325.8, + "probability": 0.9954 + }, + { + "start": 9327.6, + "end": 9329.3, + "probability": 0.9625 + }, + { + "start": 9329.44, + "end": 9332.8, + "probability": 0.9004 + }, + { + "start": 9332.86, + "end": 9333.48, + "probability": 0.8569 + }, + { + "start": 9334.0, + "end": 9334.38, + "probability": 0.7529 + }, + { + "start": 9334.48, + "end": 9335.46, + "probability": 0.7258 + }, + { + "start": 9335.46, + "end": 9336.8, + "probability": 0.5434 + }, + { + "start": 9336.96, + "end": 9338.58, + "probability": 0.8193 + }, + { + "start": 9338.76, + "end": 9339.32, + "probability": 0.6054 + }, + { + "start": 9339.68, + "end": 9340.06, + "probability": 0.5153 + }, + { + "start": 9340.36, + "end": 9341.86, + "probability": 0.8093 + }, + { + "start": 9342.08, + "end": 9342.58, + "probability": 0.4752 + }, + { + "start": 9342.58, + "end": 9343.44, + "probability": 0.0722 + }, + { + "start": 9343.54, + "end": 9344.88, + "probability": 0.2435 + }, + { + "start": 9344.98, + "end": 9348.3, + "probability": 0.9718 + }, + { + "start": 9348.96, + "end": 9349.38, + "probability": 0.2717 + }, + { + "start": 9350.0, + "end": 9353.9, + "probability": 0.9836 + }, + { + "start": 9353.98, + "end": 9354.84, + "probability": 0.6606 + }, + { + "start": 9354.92, + "end": 9357.36, + "probability": 0.9976 + }, + { + "start": 9357.46, + "end": 9358.22, + "probability": 0.7424 + }, + { + "start": 9358.54, + "end": 9359.48, + "probability": 0.9685 + }, + { + "start": 9359.66, + "end": 9360.66, + "probability": 0.9622 + }, + { + "start": 9361.04, + "end": 9366.62, + "probability": 0.8806 + }, + { + "start": 9366.68, + "end": 9371.68, + "probability": 0.9597 + }, + { + "start": 9375.56, + "end": 9377.84, + "probability": 0.7206 + }, + { + "start": 9377.86, + "end": 9378.62, + "probability": 0.6863 + }, + { + "start": 9378.82, + "end": 9380.3, + "probability": 0.9798 + }, + { + "start": 9381.48, + "end": 9383.12, + "probability": 0.9849 + }, + { + "start": 9383.22, + "end": 9386.22, + "probability": 0.9075 + }, + { + "start": 9386.98, + "end": 9389.32, + "probability": 0.8608 + }, + { + "start": 9389.76, + "end": 9391.37, + "probability": 0.5475 + }, + { + "start": 9391.78, + "end": 9394.78, + "probability": 0.7529 + }, + { + "start": 9395.54, + "end": 9398.86, + "probability": 0.4329 + }, + { + "start": 9398.92, + "end": 9399.7, + "probability": 0.6333 + }, + { + "start": 9399.84, + "end": 9402.36, + "probability": 0.9658 + }, + { + "start": 9402.68, + "end": 9404.04, + "probability": 0.9675 + }, + { + "start": 9404.16, + "end": 9408.94, + "probability": 0.8606 + }, + { + "start": 9409.02, + "end": 9410.8, + "probability": 0.8137 + }, + { + "start": 9411.14, + "end": 9413.04, + "probability": 0.6977 + }, + { + "start": 9413.72, + "end": 9413.72, + "probability": 0.4015 + }, + { + "start": 9413.72, + "end": 9417.42, + "probability": 0.9247 + }, + { + "start": 9417.9, + "end": 9419.86, + "probability": 0.8862 + }, + { + "start": 9420.94, + "end": 9421.28, + "probability": 0.4576 + }, + { + "start": 9421.28, + "end": 9421.84, + "probability": 0.4004 + }, + { + "start": 9422.16, + "end": 9423.4, + "probability": 0.8096 + }, + { + "start": 9426.02, + "end": 9428.66, + "probability": 0.9871 + }, + { + "start": 9429.48, + "end": 9436.76, + "probability": 0.9891 + }, + { + "start": 9437.2, + "end": 9438.44, + "probability": 0.5461 + }, + { + "start": 9438.94, + "end": 9441.94, + "probability": 0.7443 + }, + { + "start": 9442.12, + "end": 9442.84, + "probability": 0.5721 + }, + { + "start": 9442.94, + "end": 9445.46, + "probability": 0.8854 + }, + { + "start": 9448.0, + "end": 9449.24, + "probability": 0.9152 + }, + { + "start": 9454.48, + "end": 9455.06, + "probability": 0.921 + }, + { + "start": 9467.78, + "end": 9468.22, + "probability": 0.2785 + }, + { + "start": 9468.86, + "end": 9469.56, + "probability": 0.6831 + }, + { + "start": 9470.56, + "end": 9471.06, + "probability": 0.8781 + }, + { + "start": 9471.64, + "end": 9473.04, + "probability": 0.8384 + }, + { + "start": 9474.3, + "end": 9475.76, + "probability": 0.8526 + }, + { + "start": 9476.87, + "end": 9479.2, + "probability": 0.7398 + }, + { + "start": 9480.88, + "end": 9486.16, + "probability": 0.8686 + }, + { + "start": 9486.28, + "end": 9487.22, + "probability": 0.8445 + }, + { + "start": 9487.32, + "end": 9488.7, + "probability": 0.7081 + }, + { + "start": 9490.32, + "end": 9495.64, + "probability": 0.9824 + }, + { + "start": 9496.5, + "end": 9501.18, + "probability": 0.7914 + }, + { + "start": 9501.26, + "end": 9510.46, + "probability": 0.997 + }, + { + "start": 9510.56, + "end": 9514.84, + "probability": 0.5404 + }, + { + "start": 9515.04, + "end": 9520.82, + "probability": 0.7315 + }, + { + "start": 9520.96, + "end": 9521.36, + "probability": 0.6837 + }, + { + "start": 9521.44, + "end": 9522.34, + "probability": 0.6524 + }, + { + "start": 9522.82, + "end": 9530.22, + "probability": 0.8657 + }, + { + "start": 9530.3, + "end": 9530.5, + "probability": 0.0111 + }, + { + "start": 9530.5, + "end": 9530.5, + "probability": 0.1147 + }, + { + "start": 9530.5, + "end": 9532.98, + "probability": 0.8267 + }, + { + "start": 9533.22, + "end": 9534.64, + "probability": 0.6817 + }, + { + "start": 9534.82, + "end": 9536.65, + "probability": 0.8937 + }, + { + "start": 9536.82, + "end": 9542.48, + "probability": 0.9939 + }, + { + "start": 9542.96, + "end": 9543.34, + "probability": 0.0451 + }, + { + "start": 9545.32, + "end": 9546.76, + "probability": 0.3291 + }, + { + "start": 9546.76, + "end": 9548.44, + "probability": 0.6135 + }, + { + "start": 9548.44, + "end": 9549.26, + "probability": 0.2538 + }, + { + "start": 9549.38, + "end": 9550.14, + "probability": 0.7788 + }, + { + "start": 9550.98, + "end": 9552.04, + "probability": 0.0719 + }, + { + "start": 9552.04, + "end": 9552.04, + "probability": 0.0825 + }, + { + "start": 9552.04, + "end": 9552.24, + "probability": 0.3889 + }, + { + "start": 9552.52, + "end": 9554.86, + "probability": 0.8254 + }, + { + "start": 9554.9, + "end": 9555.87, + "probability": 0.7812 + }, + { + "start": 9556.16, + "end": 9556.84, + "probability": 0.071 + }, + { + "start": 9556.84, + "end": 9558.94, + "probability": 0.6575 + }, + { + "start": 9559.18, + "end": 9559.52, + "probability": 0.5903 + }, + { + "start": 9559.62, + "end": 9566.74, + "probability": 0.9673 + }, + { + "start": 9566.98, + "end": 9568.4, + "probability": 0.668 + }, + { + "start": 9568.92, + "end": 9571.44, + "probability": 0.247 + }, + { + "start": 9571.98, + "end": 9572.1, + "probability": 0.0433 + }, + { + "start": 9572.1, + "end": 9573.84, + "probability": 0.3584 + }, + { + "start": 9573.92, + "end": 9574.06, + "probability": 0.0993 + }, + { + "start": 9574.06, + "end": 9575.32, + "probability": 0.6177 + }, + { + "start": 9575.38, + "end": 9576.36, + "probability": 0.9408 + }, + { + "start": 9576.42, + "end": 9577.12, + "probability": 0.8023 + }, + { + "start": 9577.18, + "end": 9578.62, + "probability": 0.9934 + }, + { + "start": 9578.76, + "end": 9582.48, + "probability": 0.3786 + }, + { + "start": 9582.6, + "end": 9583.22, + "probability": 0.2242 + }, + { + "start": 9583.28, + "end": 9587.82, + "probability": 0.875 + }, + { + "start": 9588.3, + "end": 9589.52, + "probability": 0.9845 + }, + { + "start": 9589.88, + "end": 9590.46, + "probability": 0.6992 + }, + { + "start": 9590.58, + "end": 9591.12, + "probability": 0.8231 + }, + { + "start": 9591.36, + "end": 9594.12, + "probability": 0.9801 + }, + { + "start": 9594.62, + "end": 9596.62, + "probability": 0.371 + }, + { + "start": 9597.12, + "end": 9597.36, + "probability": 0.4212 + }, + { + "start": 9597.46, + "end": 9599.52, + "probability": 0.7266 + }, + { + "start": 9599.74, + "end": 9600.74, + "probability": 0.6836 + }, + { + "start": 9601.3, + "end": 9602.84, + "probability": 0.7993 + }, + { + "start": 9603.0, + "end": 9607.46, + "probability": 0.9763 + }, + { + "start": 9607.9, + "end": 9608.86, + "probability": 0.7133 + }, + { + "start": 9608.94, + "end": 9612.46, + "probability": 0.8894 + }, + { + "start": 9612.92, + "end": 9618.3, + "probability": 0.8743 + }, + { + "start": 9618.56, + "end": 9619.4, + "probability": 0.7855 + }, + { + "start": 9619.78, + "end": 9620.64, + "probability": 0.9563 + }, + { + "start": 9620.82, + "end": 9623.84, + "probability": 0.8412 + }, + { + "start": 9623.98, + "end": 9628.26, + "probability": 0.9501 + }, + { + "start": 9628.3, + "end": 9629.34, + "probability": 0.8707 + }, + { + "start": 9630.5, + "end": 9631.84, + "probability": 0.74 + }, + { + "start": 9632.82, + "end": 9634.24, + "probability": 0.9186 + }, + { + "start": 9635.02, + "end": 9636.42, + "probability": 0.8984 + }, + { + "start": 9637.34, + "end": 9638.84, + "probability": 0.8532 + }, + { + "start": 9639.9, + "end": 9640.8, + "probability": 0.6366 + }, + { + "start": 9641.5, + "end": 9644.46, + "probability": 0.9091 + }, + { + "start": 9645.22, + "end": 9647.52, + "probability": 0.9326 + }, + { + "start": 9647.56, + "end": 9650.92, + "probability": 0.9906 + }, + { + "start": 9651.66, + "end": 9653.64, + "probability": 0.5553 + }, + { + "start": 9655.56, + "end": 9656.92, + "probability": 0.6558 + }, + { + "start": 9657.74, + "end": 9659.52, + "probability": 0.7788 + }, + { + "start": 9660.24, + "end": 9661.98, + "probability": 0.7844 + }, + { + "start": 9662.06, + "end": 9667.03, + "probability": 0.9752 + }, + { + "start": 9668.72, + "end": 9671.92, + "probability": 0.826 + }, + { + "start": 9672.46, + "end": 9673.68, + "probability": 0.9226 + }, + { + "start": 9673.84, + "end": 9676.58, + "probability": 0.9829 + }, + { + "start": 9677.62, + "end": 9679.3, + "probability": 0.9941 + }, + { + "start": 9679.48, + "end": 9680.14, + "probability": 0.9893 + }, + { + "start": 9680.32, + "end": 9681.48, + "probability": 0.8018 + }, + { + "start": 9682.1, + "end": 9684.54, + "probability": 0.9012 + }, + { + "start": 9685.52, + "end": 9687.06, + "probability": 0.8962 + }, + { + "start": 9688.06, + "end": 9689.14, + "probability": 0.6772 + }, + { + "start": 9689.72, + "end": 9691.72, + "probability": 0.8863 + }, + { + "start": 9692.46, + "end": 9695.06, + "probability": 0.9701 + }, + { + "start": 9695.2, + "end": 9698.8, + "probability": 0.9561 + }, + { + "start": 9698.84, + "end": 9701.42, + "probability": 0.7673 + }, + { + "start": 9702.02, + "end": 9706.38, + "probability": 0.9619 + }, + { + "start": 9707.24, + "end": 9708.76, + "probability": 0.9336 + }, + { + "start": 9708.92, + "end": 9709.68, + "probability": 0.6203 + }, + { + "start": 9709.88, + "end": 9710.26, + "probability": 0.8292 + }, + { + "start": 9710.3, + "end": 9712.4, + "probability": 0.7593 + }, + { + "start": 9713.54, + "end": 9718.46, + "probability": 0.9761 + }, + { + "start": 9719.64, + "end": 9720.68, + "probability": 0.9264 + }, + { + "start": 9722.08, + "end": 9723.82, + "probability": 0.9856 + }, + { + "start": 9724.6, + "end": 9728.74, + "probability": 0.9868 + }, + { + "start": 9729.46, + "end": 9733.32, + "probability": 0.7699 + }, + { + "start": 9733.68, + "end": 9735.08, + "probability": 0.8177 + }, + { + "start": 9736.46, + "end": 9737.2, + "probability": 0.6562 + }, + { + "start": 9737.8, + "end": 9744.58, + "probability": 0.8894 + }, + { + "start": 9745.32, + "end": 9748.14, + "probability": 0.5026 + }, + { + "start": 9748.86, + "end": 9752.9, + "probability": 0.9636 + }, + { + "start": 9753.72, + "end": 9756.44, + "probability": 0.9321 + }, + { + "start": 9757.58, + "end": 9758.66, + "probability": 0.8567 + }, + { + "start": 9758.78, + "end": 9759.64, + "probability": 0.7193 + }, + { + "start": 9759.98, + "end": 9761.1, + "probability": 0.902 + }, + { + "start": 9761.2, + "end": 9762.08, + "probability": 0.9496 + }, + { + "start": 9762.1, + "end": 9762.82, + "probability": 0.7054 + }, + { + "start": 9763.78, + "end": 9765.56, + "probability": 0.8701 + }, + { + "start": 9766.1, + "end": 9767.44, + "probability": 0.6794 + }, + { + "start": 9767.84, + "end": 9768.74, + "probability": 0.8641 + }, + { + "start": 9768.86, + "end": 9771.46, + "probability": 0.9396 + }, + { + "start": 9771.5, + "end": 9772.86, + "probability": 0.9784 + }, + { + "start": 9773.48, + "end": 9776.58, + "probability": 0.9609 + }, + { + "start": 9777.48, + "end": 9781.16, + "probability": 0.7659 + }, + { + "start": 9782.74, + "end": 9783.2, + "probability": 0.9104 + }, + { + "start": 9783.72, + "end": 9786.46, + "probability": 0.7343 + }, + { + "start": 9787.38, + "end": 9788.54, + "probability": 0.7651 + }, + { + "start": 9789.14, + "end": 9793.72, + "probability": 0.964 + }, + { + "start": 9794.42, + "end": 9797.18, + "probability": 0.7063 + }, + { + "start": 9797.96, + "end": 9799.32, + "probability": 0.9491 + }, + { + "start": 9799.4, + "end": 9800.66, + "probability": 0.9811 + }, + { + "start": 9801.12, + "end": 9804.74, + "probability": 0.9216 + }, + { + "start": 9805.12, + "end": 9807.18, + "probability": 0.9125 + }, + { + "start": 9810.36, + "end": 9810.9, + "probability": 0.3892 + }, + { + "start": 9811.44, + "end": 9813.56, + "probability": 0.6453 + }, + { + "start": 9814.08, + "end": 9815.24, + "probability": 0.988 + }, + { + "start": 9815.64, + "end": 9819.04, + "probability": 0.7391 + }, + { + "start": 9819.34, + "end": 9819.98, + "probability": 0.9502 + }, + { + "start": 9820.74, + "end": 9821.94, + "probability": 0.8975 + }, + { + "start": 9822.86, + "end": 9825.42, + "probability": 0.918 + }, + { + "start": 9826.18, + "end": 9828.2, + "probability": 0.9022 + }, + { + "start": 9829.34, + "end": 9833.38, + "probability": 0.8539 + }, + { + "start": 9834.78, + "end": 9837.66, + "probability": 0.8956 + }, + { + "start": 9838.24, + "end": 9840.36, + "probability": 0.954 + }, + { + "start": 9841.2, + "end": 9843.37, + "probability": 0.9336 + }, + { + "start": 9845.52, + "end": 9846.56, + "probability": 0.9922 + }, + { + "start": 9847.56, + "end": 9852.86, + "probability": 0.75 + }, + { + "start": 9853.98, + "end": 9858.94, + "probability": 0.907 + }, + { + "start": 9859.08, + "end": 9861.4, + "probability": 0.7564 + }, + { + "start": 9862.76, + "end": 9864.59, + "probability": 0.801 + }, + { + "start": 9866.84, + "end": 9869.22, + "probability": 0.9089 + }, + { + "start": 9870.26, + "end": 9871.56, + "probability": 0.5399 + }, + { + "start": 9872.72, + "end": 9873.58, + "probability": 0.5846 + }, + { + "start": 9874.48, + "end": 9881.38, + "probability": 0.9353 + }, + { + "start": 9882.08, + "end": 9886.7, + "probability": 0.9743 + }, + { + "start": 9887.5, + "end": 9887.68, + "probability": 0.4098 + }, + { + "start": 9887.76, + "end": 9888.18, + "probability": 0.8773 + }, + { + "start": 9888.38, + "end": 9893.14, + "probability": 0.9934 + }, + { + "start": 9893.14, + "end": 9897.0, + "probability": 0.9977 + }, + { + "start": 9897.04, + "end": 9901.62, + "probability": 0.9004 + }, + { + "start": 9902.34, + "end": 9906.82, + "probability": 0.6179 + }, + { + "start": 9908.28, + "end": 9909.9, + "probability": 0.7509 + }, + { + "start": 9911.32, + "end": 9916.34, + "probability": 0.9067 + }, + { + "start": 9916.86, + "end": 9917.24, + "probability": 0.8167 + }, + { + "start": 9917.34, + "end": 9918.9, + "probability": 0.8183 + }, + { + "start": 9919.1, + "end": 9921.42, + "probability": 0.9834 + }, + { + "start": 9921.94, + "end": 9924.96, + "probability": 0.9012 + }, + { + "start": 9924.96, + "end": 9928.0, + "probability": 0.9919 + }, + { + "start": 9928.78, + "end": 9930.54, + "probability": 0.6186 + }, + { + "start": 9931.52, + "end": 9936.4, + "probability": 0.9326 + }, + { + "start": 9936.64, + "end": 9941.72, + "probability": 0.9663 + }, + { + "start": 9941.72, + "end": 9945.58, + "probability": 0.9979 + }, + { + "start": 9945.68, + "end": 9946.28, + "probability": 0.4048 + }, + { + "start": 9946.28, + "end": 9947.04, + "probability": 0.4509 + }, + { + "start": 9947.26, + "end": 9949.06, + "probability": 0.8243 + }, + { + "start": 9949.74, + "end": 9951.38, + "probability": 0.9727 + }, + { + "start": 9951.6, + "end": 9954.98, + "probability": 0.9814 + }, + { + "start": 9956.06, + "end": 9958.64, + "probability": 0.7725 + }, + { + "start": 9958.64, + "end": 9959.19, + "probability": 0.2438 + }, + { + "start": 9960.06, + "end": 9961.38, + "probability": 0.9943 + }, + { + "start": 9961.46, + "end": 9961.54, + "probability": 0.5625 + }, + { + "start": 9961.72, + "end": 9963.04, + "probability": 0.946 + }, + { + "start": 9963.68, + "end": 9967.56, + "probability": 0.9778 + }, + { + "start": 9968.52, + "end": 9972.46, + "probability": 0.8805 + }, + { + "start": 9972.62, + "end": 9975.0, + "probability": 0.9097 + }, + { + "start": 9975.1, + "end": 9976.22, + "probability": 0.9718 + }, + { + "start": 9976.48, + "end": 9977.86, + "probability": 0.8497 + }, + { + "start": 9977.86, + "end": 9978.02, + "probability": 0.7902 + }, + { + "start": 9978.02, + "end": 9980.02, + "probability": 0.5392 + }, + { + "start": 9980.42, + "end": 9981.52, + "probability": 0.9146 + }, + { + "start": 9982.1, + "end": 9983.78, + "probability": 0.8545 + }, + { + "start": 9984.16, + "end": 9984.92, + "probability": 0.5685 + }, + { + "start": 9985.2, + "end": 9986.28, + "probability": 0.9724 + }, + { + "start": 9987.68, + "end": 9988.5, + "probability": 0.446 + }, + { + "start": 9993.78, + "end": 9995.66, + "probability": 0.2212 + }, + { + "start": 9996.7, + "end": 9998.08, + "probability": 0.7072 + }, + { + "start": 10003.76, + "end": 10004.84, + "probability": 0.7184 + }, + { + "start": 10005.4, + "end": 10006.1, + "probability": 0.7432 + }, + { + "start": 10006.94, + "end": 10009.42, + "probability": 0.8674 + }, + { + "start": 10009.64, + "end": 10010.26, + "probability": 0.871 + }, + { + "start": 10011.86, + "end": 10012.54, + "probability": 0.0647 + }, + { + "start": 10013.78, + "end": 10014.08, + "probability": 0.8207 + }, + { + "start": 10015.1, + "end": 10016.42, + "probability": 0.775 + }, + { + "start": 10017.58, + "end": 10019.7, + "probability": 0.752 + }, + { + "start": 10020.28, + "end": 10020.7, + "probability": 0.2266 + }, + { + "start": 10021.58, + "end": 10024.62, + "probability": 0.9368 + }, + { + "start": 10025.88, + "end": 10028.78, + "probability": 0.9795 + }, + { + "start": 10031.6, + "end": 10033.56, + "probability": 0.6615 + }, + { + "start": 10034.9, + "end": 10038.64, + "probability": 0.9875 + }, + { + "start": 10039.66, + "end": 10040.14, + "probability": 0.8343 + }, + { + "start": 10041.54, + "end": 10042.06, + "probability": 0.9469 + }, + { + "start": 10043.08, + "end": 10047.16, + "probability": 0.9805 + }, + { + "start": 10047.78, + "end": 10052.48, + "probability": 0.8282 + }, + { + "start": 10053.74, + "end": 10054.54, + "probability": 0.9868 + }, + { + "start": 10055.96, + "end": 10060.5, + "probability": 0.9296 + }, + { + "start": 10061.46, + "end": 10062.16, + "probability": 0.6938 + }, + { + "start": 10064.5, + "end": 10070.98, + "probability": 0.9814 + }, + { + "start": 10073.22, + "end": 10077.22, + "probability": 0.7495 + }, + { + "start": 10078.78, + "end": 10083.36, + "probability": 0.9458 + }, + { + "start": 10084.78, + "end": 10087.48, + "probability": 0.7959 + }, + { + "start": 10090.18, + "end": 10090.22, + "probability": 0.3943 + }, + { + "start": 10092.2, + "end": 10096.04, + "probability": 0.9756 + }, + { + "start": 10096.86, + "end": 10098.42, + "probability": 0.9453 + }, + { + "start": 10099.18, + "end": 10106.18, + "probability": 0.7766 + }, + { + "start": 10107.86, + "end": 10110.68, + "probability": 0.9834 + }, + { + "start": 10110.76, + "end": 10111.48, + "probability": 0.8924 + }, + { + "start": 10111.6, + "end": 10112.22, + "probability": 0.6523 + }, + { + "start": 10115.22, + "end": 10122.9, + "probability": 0.991 + }, + { + "start": 10125.26, + "end": 10126.38, + "probability": 0.8425 + }, + { + "start": 10129.34, + "end": 10130.26, + "probability": 0.7328 + }, + { + "start": 10134.62, + "end": 10139.52, + "probability": 0.9884 + }, + { + "start": 10141.1, + "end": 10142.98, + "probability": 0.8611 + }, + { + "start": 10144.9, + "end": 10148.42, + "probability": 0.478 + }, + { + "start": 10149.26, + "end": 10154.5, + "probability": 0.9033 + }, + { + "start": 10155.06, + "end": 10155.6, + "probability": 0.924 + }, + { + "start": 10157.44, + "end": 10158.62, + "probability": 0.9335 + }, + { + "start": 10163.24, + "end": 10164.94, + "probability": 0.6074 + }, + { + "start": 10167.94, + "end": 10171.06, + "probability": 0.9878 + }, + { + "start": 10174.56, + "end": 10175.68, + "probability": 0.6841 + }, + { + "start": 10176.6, + "end": 10177.4, + "probability": 0.9673 + }, + { + "start": 10179.54, + "end": 10181.4, + "probability": 0.6155 + }, + { + "start": 10182.24, + "end": 10183.54, + "probability": 0.7368 + }, + { + "start": 10186.42, + "end": 10186.98, + "probability": 0.7811 + }, + { + "start": 10189.08, + "end": 10195.2, + "probability": 0.7896 + }, + { + "start": 10195.94, + "end": 10197.44, + "probability": 0.8693 + }, + { + "start": 10197.98, + "end": 10198.38, + "probability": 0.4344 + }, + { + "start": 10200.88, + "end": 10206.84, + "probability": 0.5953 + }, + { + "start": 10208.56, + "end": 10211.02, + "probability": 0.9783 + }, + { + "start": 10212.62, + "end": 10213.02, + "probability": 0.7075 + }, + { + "start": 10216.24, + "end": 10216.74, + "probability": 0.6565 + }, + { + "start": 10218.42, + "end": 10221.06, + "probability": 0.9871 + }, + { + "start": 10221.26, + "end": 10223.76, + "probability": 0.9034 + }, + { + "start": 10224.7, + "end": 10226.28, + "probability": 0.966 + }, + { + "start": 10227.02, + "end": 10228.94, + "probability": 0.9927 + }, + { + "start": 10230.16, + "end": 10232.1, + "probability": 0.8395 + }, + { + "start": 10236.82, + "end": 10238.8, + "probability": 0.6272 + }, + { + "start": 10239.32, + "end": 10242.18, + "probability": 0.475 + }, + { + "start": 10242.24, + "end": 10245.06, + "probability": 0.8341 + }, + { + "start": 10248.9, + "end": 10251.22, + "probability": 0.8252 + }, + { + "start": 10253.32, + "end": 10254.2, + "probability": 0.7867 + }, + { + "start": 10254.34, + "end": 10255.54, + "probability": 0.8607 + }, + { + "start": 10255.6, + "end": 10257.82, + "probability": 0.8466 + }, + { + "start": 10258.06, + "end": 10259.51, + "probability": 0.8462 + }, + { + "start": 10260.42, + "end": 10260.98, + "probability": 0.0425 + }, + { + "start": 10261.38, + "end": 10261.48, + "probability": 0.5464 + }, + { + "start": 10263.96, + "end": 10265.78, + "probability": 0.8578 + }, + { + "start": 10266.88, + "end": 10267.73, + "probability": 0.8009 + }, + { + "start": 10268.82, + "end": 10272.04, + "probability": 0.9594 + }, + { + "start": 10274.32, + "end": 10275.96, + "probability": 0.9749 + }, + { + "start": 10276.04, + "end": 10277.92, + "probability": 0.557 + }, + { + "start": 10279.74, + "end": 10281.54, + "probability": 0.9851 + }, + { + "start": 10282.46, + "end": 10284.52, + "probability": 0.7886 + }, + { + "start": 10285.58, + "end": 10286.38, + "probability": 0.7912 + }, + { + "start": 10286.68, + "end": 10288.4, + "probability": 0.978 + }, + { + "start": 10288.44, + "end": 10289.0, + "probability": 0.5203 + }, + { + "start": 10289.08, + "end": 10290.76, + "probability": 0.8876 + }, + { + "start": 10291.28, + "end": 10292.52, + "probability": 0.7567 + }, + { + "start": 10293.25, + "end": 10297.14, + "probability": 0.7824 + }, + { + "start": 10298.54, + "end": 10301.3, + "probability": 0.7935 + }, + { + "start": 10302.78, + "end": 10303.92, + "probability": 0.8719 + }, + { + "start": 10307.84, + "end": 10312.82, + "probability": 0.9494 + }, + { + "start": 10314.56, + "end": 10319.88, + "probability": 0.9271 + }, + { + "start": 10321.44, + "end": 10323.32, + "probability": 0.7684 + }, + { + "start": 10324.04, + "end": 10325.46, + "probability": 0.9658 + }, + { + "start": 10326.54, + "end": 10327.48, + "probability": 0.6918 + }, + { + "start": 10329.36, + "end": 10332.68, + "probability": 0.9812 + }, + { + "start": 10334.98, + "end": 10336.56, + "probability": 0.7324 + }, + { + "start": 10337.74, + "end": 10339.9, + "probability": 0.6338 + }, + { + "start": 10340.02, + "end": 10341.4, + "probability": 0.9792 + }, + { + "start": 10342.76, + "end": 10343.14, + "probability": 0.4419 + }, + { + "start": 10343.66, + "end": 10346.3, + "probability": 0.6252 + }, + { + "start": 10346.9, + "end": 10349.28, + "probability": 0.9194 + }, + { + "start": 10349.28, + "end": 10351.92, + "probability": 0.7707 + }, + { + "start": 10354.92, + "end": 10355.06, + "probability": 0.0599 + }, + { + "start": 10356.92, + "end": 10357.78, + "probability": 0.1347 + }, + { + "start": 10357.78, + "end": 10357.78, + "probability": 0.2639 + }, + { + "start": 10357.78, + "end": 10359.0, + "probability": 0.6358 + }, + { + "start": 10359.44, + "end": 10363.28, + "probability": 0.4334 + }, + { + "start": 10363.52, + "end": 10368.12, + "probability": 0.9924 + }, + { + "start": 10370.2, + "end": 10372.58, + "probability": 0.8481 + }, + { + "start": 10372.58, + "end": 10373.32, + "probability": 0.5136 + }, + { + "start": 10373.74, + "end": 10374.36, + "probability": 0.5769 + }, + { + "start": 10374.9, + "end": 10377.12, + "probability": 0.605 + }, + { + "start": 10377.24, + "end": 10378.8, + "probability": 0.9639 + }, + { + "start": 10379.4, + "end": 10380.76, + "probability": 0.6425 + }, + { + "start": 10381.52, + "end": 10384.5, + "probability": 0.8715 + }, + { + "start": 10384.58, + "end": 10384.84, + "probability": 0.2351 + }, + { + "start": 10385.1, + "end": 10385.98, + "probability": 0.9561 + }, + { + "start": 10387.14, + "end": 10389.14, + "probability": 0.4904 + }, + { + "start": 10404.56, + "end": 10405.08, + "probability": 0.5278 + }, + { + "start": 10405.16, + "end": 10405.96, + "probability": 0.6541 + }, + { + "start": 10406.02, + "end": 10409.06, + "probability": 0.9803 + }, + { + "start": 10409.66, + "end": 10412.76, + "probability": 0.9673 + }, + { + "start": 10413.5, + "end": 10415.24, + "probability": 0.9812 + }, + { + "start": 10415.92, + "end": 10417.48, + "probability": 0.9321 + }, + { + "start": 10421.42, + "end": 10424.34, + "probability": 0.7599 + }, + { + "start": 10425.32, + "end": 10428.84, + "probability": 0.9941 + }, + { + "start": 10429.3, + "end": 10430.16, + "probability": 0.761 + }, + { + "start": 10431.08, + "end": 10440.32, + "probability": 0.9259 + }, + { + "start": 10441.18, + "end": 10444.52, + "probability": 0.367 + }, + { + "start": 10444.84, + "end": 10449.74, + "probability": 0.9645 + }, + { + "start": 10451.64, + "end": 10453.76, + "probability": 0.9554 + }, + { + "start": 10455.1, + "end": 10457.18, + "probability": 0.9698 + }, + { + "start": 10457.64, + "end": 10460.28, + "probability": 0.9871 + }, + { + "start": 10461.22, + "end": 10462.16, + "probability": 0.6794 + }, + { + "start": 10462.96, + "end": 10466.5, + "probability": 0.9729 + }, + { + "start": 10467.62, + "end": 10471.86, + "probability": 0.9906 + }, + { + "start": 10473.6, + "end": 10474.54, + "probability": 0.8854 + }, + { + "start": 10477.32, + "end": 10481.72, + "probability": 0.9963 + }, + { + "start": 10482.58, + "end": 10486.04, + "probability": 0.9907 + }, + { + "start": 10487.34, + "end": 10488.86, + "probability": 0.8333 + }, + { + "start": 10489.96, + "end": 10491.8, + "probability": 0.9874 + }, + { + "start": 10491.86, + "end": 10493.54, + "probability": 0.8936 + }, + { + "start": 10493.82, + "end": 10495.56, + "probability": 0.6646 + }, + { + "start": 10496.28, + "end": 10496.96, + "probability": 0.7985 + }, + { + "start": 10497.5, + "end": 10498.26, + "probability": 0.7916 + }, + { + "start": 10500.12, + "end": 10502.58, + "probability": 0.9976 + }, + { + "start": 10503.48, + "end": 10507.3, + "probability": 0.8108 + }, + { + "start": 10508.66, + "end": 10510.06, + "probability": 0.8308 + }, + { + "start": 10510.18, + "end": 10512.02, + "probability": 0.9888 + }, + { + "start": 10512.36, + "end": 10513.28, + "probability": 0.9983 + }, + { + "start": 10513.9, + "end": 10514.72, + "probability": 0.9069 + }, + { + "start": 10515.32, + "end": 10516.31, + "probability": 0.7177 + }, + { + "start": 10517.1, + "end": 10519.66, + "probability": 0.9987 + }, + { + "start": 10519.72, + "end": 10521.64, + "probability": 0.925 + }, + { + "start": 10521.7, + "end": 10528.62, + "probability": 0.9689 + }, + { + "start": 10530.82, + "end": 10531.32, + "probability": 0.1991 + }, + { + "start": 10531.32, + "end": 10533.74, + "probability": 0.0049 + }, + { + "start": 10533.74, + "end": 10535.32, + "probability": 0.0606 + }, + { + "start": 10536.04, + "end": 10538.54, + "probability": 0.8256 + }, + { + "start": 10538.6, + "end": 10539.56, + "probability": 0.5726 + }, + { + "start": 10539.66, + "end": 10540.06, + "probability": 0.5536 + }, + { + "start": 10540.06, + "end": 10540.84, + "probability": 0.8897 + }, + { + "start": 10541.02, + "end": 10542.22, + "probability": 0.8479 + }, + { + "start": 10542.32, + "end": 10543.94, + "probability": 0.9967 + }, + { + "start": 10544.14, + "end": 10545.08, + "probability": 0.5056 + }, + { + "start": 10545.58, + "end": 10548.46, + "probability": 0.9894 + }, + { + "start": 10554.4, + "end": 10559.72, + "probability": 0.9746 + }, + { + "start": 10559.94, + "end": 10566.84, + "probability": 0.8135 + }, + { + "start": 10568.02, + "end": 10570.1, + "probability": 0.8705 + }, + { + "start": 10571.3, + "end": 10573.36, + "probability": 0.7454 + }, + { + "start": 10573.5, + "end": 10575.17, + "probability": 0.4119 + }, + { + "start": 10575.18, + "end": 10576.6, + "probability": 0.4481 + }, + { + "start": 10576.82, + "end": 10577.32, + "probability": 0.1392 + }, + { + "start": 10577.42, + "end": 10578.44, + "probability": 0.5553 + }, + { + "start": 10579.22, + "end": 10579.96, + "probability": 0.783 + }, + { + "start": 10580.08, + "end": 10581.02, + "probability": 0.2553 + }, + { + "start": 10585.04, + "end": 10587.76, + "probability": 0.3826 + }, + { + "start": 10588.38, + "end": 10590.04, + "probability": 0.5126 + }, + { + "start": 10590.58, + "end": 10591.1, + "probability": 0.1831 + }, + { + "start": 10591.62, + "end": 10592.6, + "probability": 0.4844 + }, + { + "start": 10593.58, + "end": 10597.08, + "probability": 0.972 + }, + { + "start": 10597.08, + "end": 10600.14, + "probability": 0.1297 + }, + { + "start": 10600.98, + "end": 10602.22, + "probability": 0.4434 + }, + { + "start": 10602.34, + "end": 10603.88, + "probability": 0.8331 + }, + { + "start": 10605.18, + "end": 10612.7, + "probability": 0.757 + }, + { + "start": 10613.7, + "end": 10618.38, + "probability": 0.9183 + }, + { + "start": 10619.02, + "end": 10622.8, + "probability": 0.9853 + }, + { + "start": 10623.08, + "end": 10624.44, + "probability": 0.9271 + }, + { + "start": 10624.94, + "end": 10627.4, + "probability": 0.9829 + }, + { + "start": 10627.76, + "end": 10628.54, + "probability": 0.867 + }, + { + "start": 10628.84, + "end": 10630.16, + "probability": 0.8845 + }, + { + "start": 10630.72, + "end": 10631.66, + "probability": 0.9271 + }, + { + "start": 10632.92, + "end": 10633.8, + "probability": 0.7598 + }, + { + "start": 10634.96, + "end": 10636.9, + "probability": 0.9859 + }, + { + "start": 10638.1, + "end": 10638.56, + "probability": 0.8168 + }, + { + "start": 10638.66, + "end": 10640.0, + "probability": 0.8887 + }, + { + "start": 10640.14, + "end": 10642.12, + "probability": 0.9717 + }, + { + "start": 10642.74, + "end": 10643.74, + "probability": 0.7875 + }, + { + "start": 10644.44, + "end": 10646.02, + "probability": 0.9152 + }, + { + "start": 10646.14, + "end": 10649.94, + "probability": 0.9178 + }, + { + "start": 10650.66, + "end": 10652.52, + "probability": 0.8828 + }, + { + "start": 10656.26, + "end": 10658.26, + "probability": 0.9917 + }, + { + "start": 10658.4, + "end": 10664.12, + "probability": 0.9898 + }, + { + "start": 10665.56, + "end": 10670.56, + "probability": 0.9925 + }, + { + "start": 10670.94, + "end": 10671.1, + "probability": 0.7357 + }, + { + "start": 10671.42, + "end": 10672.36, + "probability": 0.877 + }, + { + "start": 10672.98, + "end": 10676.38, + "probability": 0.998 + }, + { + "start": 10679.36, + "end": 10684.98, + "probability": 0.8368 + }, + { + "start": 10685.8, + "end": 10686.45, + "probability": 0.934 + }, + { + "start": 10687.92, + "end": 10689.53, + "probability": 0.9849 + }, + { + "start": 10690.44, + "end": 10692.13, + "probability": 0.9982 + }, + { + "start": 10692.72, + "end": 10695.8, + "probability": 0.9541 + }, + { + "start": 10697.7, + "end": 10698.4, + "probability": 0.8054 + }, + { + "start": 10699.22, + "end": 10700.7, + "probability": 0.8555 + }, + { + "start": 10700.82, + "end": 10701.62, + "probability": 0.8842 + }, + { + "start": 10701.7, + "end": 10703.76, + "probability": 0.998 + }, + { + "start": 10705.26, + "end": 10706.0, + "probability": 0.7285 + }, + { + "start": 10706.26, + "end": 10707.58, + "probability": 0.9768 + }, + { + "start": 10707.76, + "end": 10709.2, + "probability": 0.9946 + }, + { + "start": 10709.84, + "end": 10710.5, + "probability": 0.8714 + }, + { + "start": 10711.72, + "end": 10713.76, + "probability": 0.4897 + }, + { + "start": 10715.18, + "end": 10716.85, + "probability": 0.9976 + }, + { + "start": 10717.66, + "end": 10721.52, + "probability": 0.9884 + }, + { + "start": 10721.8, + "end": 10723.56, + "probability": 0.9809 + }, + { + "start": 10723.62, + "end": 10730.44, + "probability": 0.9908 + }, + { + "start": 10731.32, + "end": 10734.3, + "probability": 0.8613 + }, + { + "start": 10734.74, + "end": 10735.54, + "probability": 0.9851 + }, + { + "start": 10735.94, + "end": 10741.96, + "probability": 0.9836 + }, + { + "start": 10743.08, + "end": 10746.58, + "probability": 0.9438 + }, + { + "start": 10747.66, + "end": 10749.04, + "probability": 0.8862 + }, + { + "start": 10749.1, + "end": 10750.0, + "probability": 0.98 + }, + { + "start": 10750.04, + "end": 10750.7, + "probability": 0.9568 + }, + { + "start": 10750.88, + "end": 10751.94, + "probability": 0.8533 + }, + { + "start": 10752.0, + "end": 10756.6, + "probability": 0.873 + }, + { + "start": 10758.34, + "end": 10759.2, + "probability": 0.6384 + }, + { + "start": 10759.56, + "end": 10760.68, + "probability": 0.9634 + }, + { + "start": 10760.84, + "end": 10761.44, + "probability": 0.7681 + }, + { + "start": 10761.52, + "end": 10763.56, + "probability": 0.9603 + }, + { + "start": 10764.14, + "end": 10766.56, + "probability": 0.98 + }, + { + "start": 10766.94, + "end": 10771.74, + "probability": 0.9983 + }, + { + "start": 10771.74, + "end": 10774.62, + "probability": 0.9995 + }, + { + "start": 10774.76, + "end": 10775.42, + "probability": 0.4604 + }, + { + "start": 10775.56, + "end": 10777.0, + "probability": 0.9267 + }, + { + "start": 10777.12, + "end": 10778.62, + "probability": 0.9814 + }, + { + "start": 10779.4, + "end": 10784.88, + "probability": 0.9824 + }, + { + "start": 10784.88, + "end": 10789.36, + "probability": 0.9897 + }, + { + "start": 10790.06, + "end": 10791.0, + "probability": 0.8579 + }, + { + "start": 10792.1, + "end": 10794.36, + "probability": 0.8301 + }, + { + "start": 10795.2, + "end": 10797.02, + "probability": 0.9784 + }, + { + "start": 10797.12, + "end": 10797.34, + "probability": 0.8268 + }, + { + "start": 10797.36, + "end": 10798.04, + "probability": 0.8138 + }, + { + "start": 10798.08, + "end": 10799.93, + "probability": 0.9965 + }, + { + "start": 10800.1, + "end": 10803.56, + "probability": 0.7876 + }, + { + "start": 10804.1, + "end": 10807.04, + "probability": 0.999 + }, + { + "start": 10807.04, + "end": 10810.3, + "probability": 0.9954 + }, + { + "start": 10810.7, + "end": 10814.52, + "probability": 0.998 + }, + { + "start": 10816.06, + "end": 10817.54, + "probability": 0.9764 + }, + { + "start": 10818.32, + "end": 10820.42, + "probability": 0.9897 + }, + { + "start": 10820.46, + "end": 10822.34, + "probability": 0.9771 + }, + { + "start": 10822.46, + "end": 10823.38, + "probability": 0.9045 + }, + { + "start": 10824.2, + "end": 10826.04, + "probability": 0.9751 + }, + { + "start": 10826.1, + "end": 10832.92, + "probability": 0.8959 + }, + { + "start": 10833.28, + "end": 10836.7, + "probability": 0.9709 + }, + { + "start": 10839.62, + "end": 10846.5, + "probability": 0.9955 + }, + { + "start": 10846.66, + "end": 10847.0, + "probability": 0.9239 + }, + { + "start": 10847.1, + "end": 10848.94, + "probability": 0.9765 + }, + { + "start": 10849.66, + "end": 10852.4, + "probability": 0.999 + }, + { + "start": 10852.4, + "end": 10857.94, + "probability": 0.9958 + }, + { + "start": 10860.46, + "end": 10864.34, + "probability": 0.9846 + }, + { + "start": 10865.32, + "end": 10866.2, + "probability": 0.7939 + }, + { + "start": 10867.5, + "end": 10870.38, + "probability": 0.9976 + }, + { + "start": 10870.66, + "end": 10872.22, + "probability": 0.9946 + }, + { + "start": 10872.32, + "end": 10875.98, + "probability": 0.9724 + }, + { + "start": 10876.1, + "end": 10878.26, + "probability": 0.8417 + }, + { + "start": 10878.4, + "end": 10879.6, + "probability": 0.4392 + }, + { + "start": 10880.42, + "end": 10883.28, + "probability": 0.8427 + }, + { + "start": 10883.46, + "end": 10883.98, + "probability": 0.9492 + }, + { + "start": 10884.0, + "end": 10885.94, + "probability": 0.9435 + }, + { + "start": 10886.96, + "end": 10888.64, + "probability": 0.3329 + }, + { + "start": 10891.22, + "end": 10892.06, + "probability": 0.8163 + }, + { + "start": 10892.52, + "end": 10894.75, + "probability": 0.9935 + }, + { + "start": 10894.84, + "end": 10895.44, + "probability": 0.5758 + }, + { + "start": 10895.5, + "end": 10898.12, + "probability": 0.984 + }, + { + "start": 10898.42, + "end": 10902.14, + "probability": 0.9919 + }, + { + "start": 10902.5, + "end": 10904.68, + "probability": 0.9857 + }, + { + "start": 10905.44, + "end": 10907.26, + "probability": 0.9541 + }, + { + "start": 10907.8, + "end": 10911.88, + "probability": 0.9726 + }, + { + "start": 10912.44, + "end": 10913.56, + "probability": 0.9731 + }, + { + "start": 10913.66, + "end": 10919.36, + "probability": 0.9909 + }, + { + "start": 10919.68, + "end": 10921.3, + "probability": 0.8711 + }, + { + "start": 10921.82, + "end": 10926.14, + "probability": 0.8401 + }, + { + "start": 10926.52, + "end": 10926.7, + "probability": 0.7441 + }, + { + "start": 10927.2, + "end": 10928.84, + "probability": 0.6396 + }, + { + "start": 10929.52, + "end": 10935.92, + "probability": 0.6287 + }, + { + "start": 10936.38, + "end": 10937.64, + "probability": 0.8809 + }, + { + "start": 10937.72, + "end": 10938.8, + "probability": 0.5336 + }, + { + "start": 10938.86, + "end": 10940.26, + "probability": 0.7993 + }, + { + "start": 10940.34, + "end": 10941.62, + "probability": 0.9635 + }, + { + "start": 10942.34, + "end": 10945.62, + "probability": 0.9875 + }, + { + "start": 10945.62, + "end": 10950.18, + "probability": 0.4707 + }, + { + "start": 10950.38, + "end": 10952.12, + "probability": 0.092 + }, + { + "start": 10952.52, + "end": 10953.78, + "probability": 0.8557 + }, + { + "start": 10954.22, + "end": 10956.63, + "probability": 0.8123 + }, + { + "start": 10956.94, + "end": 10958.42, + "probability": 0.732 + }, + { + "start": 10959.08, + "end": 10961.98, + "probability": 0.9102 + }, + { + "start": 10962.48, + "end": 10964.06, + "probability": 0.1519 + }, + { + "start": 10964.5, + "end": 10968.24, + "probability": 0.8309 + }, + { + "start": 10968.78, + "end": 10970.4, + "probability": 0.852 + }, + { + "start": 10970.48, + "end": 10971.62, + "probability": 0.9907 + }, + { + "start": 10971.96, + "end": 10972.98, + "probability": 0.9307 + }, + { + "start": 10974.93, + "end": 10976.78, + "probability": 0.7468 + }, + { + "start": 10976.86, + "end": 10979.96, + "probability": 0.6419 + }, + { + "start": 10979.96, + "end": 10984.34, + "probability": 0.9211 + }, + { + "start": 10985.64, + "end": 10988.0, + "probability": 0.508 + }, + { + "start": 10988.96, + "end": 10989.24, + "probability": 0.6296 + }, + { + "start": 10990.58, + "end": 10993.22, + "probability": 0.7796 + }, + { + "start": 10994.46, + "end": 10996.36, + "probability": 0.7687 + }, + { + "start": 10997.66, + "end": 10998.4, + "probability": 0.0014 + }, + { + "start": 11000.26, + "end": 11000.44, + "probability": 0.6953 + }, + { + "start": 11001.2, + "end": 11001.64, + "probability": 0.6216 + }, + { + "start": 11001.86, + "end": 11002.06, + "probability": 0.6323 + }, + { + "start": 11011.36, + "end": 11013.18, + "probability": 0.775 + }, + { + "start": 11013.78, + "end": 11015.46, + "probability": 0.6549 + }, + { + "start": 11016.88, + "end": 11019.54, + "probability": 0.8252 + }, + { + "start": 11019.62, + "end": 11022.36, + "probability": 0.981 + }, + { + "start": 11023.8, + "end": 11026.34, + "probability": 0.9744 + }, + { + "start": 11026.78, + "end": 11030.66, + "probability": 0.9609 + }, + { + "start": 11031.6, + "end": 11034.68, + "probability": 0.5517 + }, + { + "start": 11034.98, + "end": 11037.22, + "probability": 0.7834 + }, + { + "start": 11038.46, + "end": 11042.88, + "probability": 0.9688 + }, + { + "start": 11043.3, + "end": 11045.44, + "probability": 0.7798 + }, + { + "start": 11045.5, + "end": 11048.04, + "probability": 0.979 + }, + { + "start": 11049.32, + "end": 11053.38, + "probability": 0.8477 + }, + { + "start": 11053.56, + "end": 11055.96, + "probability": 0.9512 + }, + { + "start": 11056.48, + "end": 11057.34, + "probability": 0.9434 + }, + { + "start": 11058.6, + "end": 11061.12, + "probability": 0.9053 + }, + { + "start": 11061.2, + "end": 11064.42, + "probability": 0.7867 + }, + { + "start": 11065.3, + "end": 11066.42, + "probability": 0.3907 + }, + { + "start": 11067.88, + "end": 11072.02, + "probability": 0.988 + }, + { + "start": 11072.16, + "end": 11073.82, + "probability": 0.7341 + }, + { + "start": 11075.16, + "end": 11077.1, + "probability": 0.9712 + }, + { + "start": 11078.12, + "end": 11081.92, + "probability": 0.8122 + }, + { + "start": 11082.82, + "end": 11085.2, + "probability": 0.8703 + }, + { + "start": 11086.88, + "end": 11086.96, + "probability": 0.9019 + }, + { + "start": 11088.08, + "end": 11089.64, + "probability": 0.8027 + }, + { + "start": 11090.78, + "end": 11092.24, + "probability": 0.8694 + }, + { + "start": 11093.34, + "end": 11096.9, + "probability": 0.9598 + }, + { + "start": 11097.32, + "end": 11098.44, + "probability": 0.2872 + }, + { + "start": 11098.7, + "end": 11099.46, + "probability": 0.5725 + }, + { + "start": 11099.8, + "end": 11104.36, + "probability": 0.8724 + }, + { + "start": 11104.5, + "end": 11105.54, + "probability": 0.7711 + }, + { + "start": 11105.88, + "end": 11106.84, + "probability": 0.8964 + }, + { + "start": 11107.56, + "end": 11109.7, + "probability": 0.6322 + }, + { + "start": 11109.82, + "end": 11112.72, + "probability": 0.8242 + }, + { + "start": 11113.0, + "end": 11117.2, + "probability": 0.9487 + }, + { + "start": 11118.12, + "end": 11120.18, + "probability": 0.8521 + }, + { + "start": 11120.32, + "end": 11121.02, + "probability": 0.77 + }, + { + "start": 11121.16, + "end": 11122.5, + "probability": 0.7129 + }, + { + "start": 11123.98, + "end": 11125.2, + "probability": 0.7001 + }, + { + "start": 11126.52, + "end": 11129.74, + "probability": 0.718 + }, + { + "start": 11131.52, + "end": 11134.3, + "probability": 0.9846 + }, + { + "start": 11135.16, + "end": 11139.3, + "probability": 0.78 + }, + { + "start": 11139.98, + "end": 11141.32, + "probability": 0.9404 + }, + { + "start": 11141.76, + "end": 11143.52, + "probability": 0.9863 + }, + { + "start": 11145.02, + "end": 11146.18, + "probability": 0.8628 + }, + { + "start": 11146.96, + "end": 11147.9, + "probability": 0.7437 + }, + { + "start": 11149.72, + "end": 11156.38, + "probability": 0.9082 + }, + { + "start": 11157.14, + "end": 11157.86, + "probability": 0.6295 + }, + { + "start": 11160.28, + "end": 11162.2, + "probability": 0.5906 + }, + { + "start": 11162.5, + "end": 11164.04, + "probability": 0.946 + }, + { + "start": 11165.5, + "end": 11169.44, + "probability": 0.8372 + }, + { + "start": 11170.02, + "end": 11173.48, + "probability": 0.974 + }, + { + "start": 11175.14, + "end": 11176.72, + "probability": 0.8137 + }, + { + "start": 11177.46, + "end": 11180.68, + "probability": 0.9019 + }, + { + "start": 11180.82, + "end": 11181.5, + "probability": 0.8097 + }, + { + "start": 11181.76, + "end": 11183.06, + "probability": 0.8754 + }, + { + "start": 11183.12, + "end": 11184.16, + "probability": 0.4796 + }, + { + "start": 11184.86, + "end": 11185.78, + "probability": 0.6967 + }, + { + "start": 11186.7, + "end": 11190.36, + "probability": 0.9292 + }, + { + "start": 11190.48, + "end": 11194.36, + "probability": 0.9484 + }, + { + "start": 11194.42, + "end": 11195.62, + "probability": 0.976 + }, + { + "start": 11196.84, + "end": 11197.54, + "probability": 0.9009 + }, + { + "start": 11198.56, + "end": 11200.16, + "probability": 0.3345 + }, + { + "start": 11201.4, + "end": 11204.02, + "probability": 0.891 + }, + { + "start": 11205.8, + "end": 11209.04, + "probability": 0.8023 + }, + { + "start": 11209.74, + "end": 11212.04, + "probability": 0.8719 + }, + { + "start": 11213.08, + "end": 11218.46, + "probability": 0.8697 + }, + { + "start": 11219.64, + "end": 11222.42, + "probability": 0.8976 + }, + { + "start": 11223.42, + "end": 11227.36, + "probability": 0.826 + }, + { + "start": 11227.62, + "end": 11229.06, + "probability": 0.709 + }, + { + "start": 11229.56, + "end": 11239.16, + "probability": 0.9639 + }, + { + "start": 11239.9, + "end": 11240.98, + "probability": 0.8281 + }, + { + "start": 11241.96, + "end": 11243.74, + "probability": 0.9989 + }, + { + "start": 11244.22, + "end": 11247.74, + "probability": 0.8963 + }, + { + "start": 11248.38, + "end": 11250.98, + "probability": 0.9844 + }, + { + "start": 11252.02, + "end": 11253.8, + "probability": 0.7334 + }, + { + "start": 11254.2, + "end": 11255.16, + "probability": 0.9802 + }, + { + "start": 11256.8, + "end": 11261.46, + "probability": 0.9067 + }, + { + "start": 11262.36, + "end": 11265.18, + "probability": 0.9595 + }, + { + "start": 11265.98, + "end": 11266.34, + "probability": 0.5422 + }, + { + "start": 11266.98, + "end": 11268.92, + "probability": 0.9619 + }, + { + "start": 11269.82, + "end": 11271.74, + "probability": 0.9873 + }, + { + "start": 11272.14, + "end": 11273.4, + "probability": 0.226 + }, + { + "start": 11273.5, + "end": 11274.26, + "probability": 0.766 + }, + { + "start": 11275.28, + "end": 11276.2, + "probability": 0.9489 + }, + { + "start": 11277.06, + "end": 11279.76, + "probability": 0.8649 + }, + { + "start": 11280.54, + "end": 11282.0, + "probability": 0.7555 + }, + { + "start": 11282.02, + "end": 11286.98, + "probability": 0.994 + }, + { + "start": 11287.3, + "end": 11288.0, + "probability": 0.4058 + }, + { + "start": 11288.04, + "end": 11289.06, + "probability": 0.4756 + }, + { + "start": 11289.1, + "end": 11289.6, + "probability": 0.6852 + }, + { + "start": 11290.26, + "end": 11291.18, + "probability": 0.6594 + }, + { + "start": 11291.72, + "end": 11292.14, + "probability": 0.2885 + }, + { + "start": 11292.38, + "end": 11295.16, + "probability": 0.9887 + }, + { + "start": 11296.32, + "end": 11298.68, + "probability": 0.9589 + }, + { + "start": 11298.86, + "end": 11300.26, + "probability": 0.9119 + }, + { + "start": 11300.38, + "end": 11303.34, + "probability": 0.9579 + }, + { + "start": 11303.44, + "end": 11307.92, + "probability": 0.7473 + }, + { + "start": 11308.66, + "end": 11311.54, + "probability": 0.704 + }, + { + "start": 11312.04, + "end": 11313.5, + "probability": 0.6448 + }, + { + "start": 11313.92, + "end": 11314.04, + "probability": 0.1169 + }, + { + "start": 11314.04, + "end": 11315.98, + "probability": 0.667 + }, + { + "start": 11316.46, + "end": 11318.44, + "probability": 0.6801 + }, + { + "start": 11318.68, + "end": 11324.8, + "probability": 0.9878 + }, + { + "start": 11325.6, + "end": 11326.48, + "probability": 0.4941 + }, + { + "start": 11327.02, + "end": 11329.06, + "probability": 0.6255 + }, + { + "start": 11329.54, + "end": 11331.22, + "probability": 0.7994 + }, + { + "start": 11331.62, + "end": 11333.22, + "probability": 0.9795 + }, + { + "start": 11333.92, + "end": 11335.12, + "probability": 0.8607 + }, + { + "start": 11335.86, + "end": 11337.5, + "probability": 0.8839 + }, + { + "start": 11337.72, + "end": 11339.26, + "probability": 0.9951 + }, + { + "start": 11339.82, + "end": 11342.24, + "probability": 0.9601 + }, + { + "start": 11342.58, + "end": 11346.34, + "probability": 0.9634 + }, + { + "start": 11347.36, + "end": 11351.48, + "probability": 0.9945 + }, + { + "start": 11352.0, + "end": 11352.48, + "probability": 0.6292 + }, + { + "start": 11352.9, + "end": 11355.38, + "probability": 0.9648 + }, + { + "start": 11355.64, + "end": 11357.58, + "probability": 0.9735 + }, + { + "start": 11358.07, + "end": 11360.47, + "probability": 0.9932 + }, + { + "start": 11361.1, + "end": 11366.24, + "probability": 0.9868 + }, + { + "start": 11366.24, + "end": 11371.12, + "probability": 0.9827 + }, + { + "start": 11371.68, + "end": 11380.52, + "probability": 0.9932 + }, + { + "start": 11380.68, + "end": 11386.76, + "probability": 0.9985 + }, + { + "start": 11387.48, + "end": 11388.64, + "probability": 0.7902 + }, + { + "start": 11389.26, + "end": 11392.3, + "probability": 0.9987 + }, + { + "start": 11392.88, + "end": 11394.88, + "probability": 0.8369 + }, + { + "start": 11395.5, + "end": 11401.84, + "probability": 0.9813 + }, + { + "start": 11402.42, + "end": 11408.86, + "probability": 0.896 + }, + { + "start": 11409.4, + "end": 11413.6, + "probability": 0.9423 + }, + { + "start": 11414.3, + "end": 11417.14, + "probability": 0.8146 + }, + { + "start": 11417.68, + "end": 11423.54, + "probability": 0.901 + }, + { + "start": 11423.96, + "end": 11425.0, + "probability": 0.877 + }, + { + "start": 11425.16, + "end": 11426.74, + "probability": 0.9685 + }, + { + "start": 11427.58, + "end": 11432.46, + "probability": 0.9463 + }, + { + "start": 11432.74, + "end": 11434.04, + "probability": 0.8403 + }, + { + "start": 11435.44, + "end": 11439.06, + "probability": 0.9743 + }, + { + "start": 11439.98, + "end": 11441.26, + "probability": 0.7916 + }, + { + "start": 11441.54, + "end": 11442.4, + "probability": 0.8482 + }, + { + "start": 11443.1, + "end": 11443.66, + "probability": 0.9413 + }, + { + "start": 11443.88, + "end": 11444.92, + "probability": 0.8973 + }, + { + "start": 11444.98, + "end": 11445.26, + "probability": 0.6947 + }, + { + "start": 11445.42, + "end": 11447.44, + "probability": 0.9832 + }, + { + "start": 11447.82, + "end": 11451.32, + "probability": 0.9251 + }, + { + "start": 11451.58, + "end": 11453.26, + "probability": 0.9854 + }, + { + "start": 11454.26, + "end": 11458.46, + "probability": 0.6967 + }, + { + "start": 11459.6, + "end": 11460.58, + "probability": 0.8436 + }, + { + "start": 11461.22, + "end": 11468.42, + "probability": 0.8427 + }, + { + "start": 11468.9, + "end": 11469.8, + "probability": 0.325 + }, + { + "start": 11470.26, + "end": 11471.08, + "probability": 0.7544 + }, + { + "start": 11471.08, + "end": 11471.86, + "probability": 0.4674 + }, + { + "start": 11472.38, + "end": 11473.28, + "probability": 0.9514 + }, + { + "start": 11473.88, + "end": 11474.68, + "probability": 0.6219 + }, + { + "start": 11476.59, + "end": 11479.48, + "probability": 0.2977 + }, + { + "start": 11479.66, + "end": 11480.32, + "probability": 0.5008 + }, + { + "start": 11480.46, + "end": 11483.56, + "probability": 0.9481 + }, + { + "start": 11483.8, + "end": 11484.88, + "probability": 0.942 + }, + { + "start": 11485.02, + "end": 11485.66, + "probability": 0.4969 + }, + { + "start": 11486.08, + "end": 11492.2, + "probability": 0.7837 + }, + { + "start": 11492.52, + "end": 11493.3, + "probability": 0.3323 + }, + { + "start": 11493.3, + "end": 11494.26, + "probability": 0.7345 + }, + { + "start": 11494.84, + "end": 11495.4, + "probability": 0.0024 + }, + { + "start": 11495.58, + "end": 11497.1, + "probability": 0.7097 + }, + { + "start": 11497.18, + "end": 11503.92, + "probability": 0.5996 + }, + { + "start": 11504.82, + "end": 11505.0, + "probability": 0.2875 + }, + { + "start": 11505.0, + "end": 11507.19, + "probability": 0.8066 + }, + { + "start": 11509.48, + "end": 11510.54, + "probability": 0.7081 + }, + { + "start": 11510.54, + "end": 11512.66, + "probability": 0.6982 + }, + { + "start": 11513.02, + "end": 11514.4, + "probability": 0.9478 + }, + { + "start": 11514.58, + "end": 11515.04, + "probability": 0.0657 + }, + { + "start": 11515.5, + "end": 11518.52, + "probability": 0.7972 + }, + { + "start": 11518.64, + "end": 11520.14, + "probability": 0.984 + }, + { + "start": 11520.32, + "end": 11521.34, + "probability": 0.5132 + }, + { + "start": 11521.52, + "end": 11523.44, + "probability": 0.2845 + }, + { + "start": 11524.14, + "end": 11527.16, + "probability": 0.3152 + }, + { + "start": 11527.34, + "end": 11529.18, + "probability": 0.621 + }, + { + "start": 11529.38, + "end": 11531.94, + "probability": 0.8434 + }, + { + "start": 11532.3, + "end": 11534.46, + "probability": 0.9299 + }, + { + "start": 11535.48, + "end": 11539.68, + "probability": 0.6183 + }, + { + "start": 11539.76, + "end": 11541.6, + "probability": 0.4711 + }, + { + "start": 11541.66, + "end": 11543.1, + "probability": 0.889 + }, + { + "start": 11543.2, + "end": 11544.14, + "probability": 0.9541 + }, + { + "start": 11545.32, + "end": 11547.64, + "probability": 0.4834 + }, + { + "start": 11547.76, + "end": 11548.2, + "probability": 0.5438 + }, + { + "start": 11548.5, + "end": 11551.5, + "probability": 0.9505 + }, + { + "start": 11552.08, + "end": 11552.7, + "probability": 0.2776 + }, + { + "start": 11552.98, + "end": 11553.98, + "probability": 0.5682 + }, + { + "start": 11554.8, + "end": 11556.12, + "probability": 0.9553 + }, + { + "start": 11569.14, + "end": 11570.4, + "probability": 0.5677 + }, + { + "start": 11570.4, + "end": 11570.4, + "probability": 0.0335 + }, + { + "start": 11570.4, + "end": 11570.4, + "probability": 0.4012 + }, + { + "start": 11570.4, + "end": 11570.4, + "probability": 0.0564 + }, + { + "start": 11570.4, + "end": 11570.4, + "probability": 0.0654 + }, + { + "start": 11570.4, + "end": 11572.01, + "probability": 0.3885 + }, + { + "start": 11572.5, + "end": 11573.84, + "probability": 0.8242 + }, + { + "start": 11575.62, + "end": 11578.54, + "probability": 0.7894 + }, + { + "start": 11591.36, + "end": 11593.4, + "probability": 0.0514 + }, + { + "start": 11593.4, + "end": 11593.4, + "probability": 0.0586 + }, + { + "start": 11593.4, + "end": 11593.4, + "probability": 0.2643 + }, + { + "start": 11593.4, + "end": 11593.4, + "probability": 0.0455 + }, + { + "start": 11593.4, + "end": 11593.4, + "probability": 0.0445 + }, + { + "start": 11593.4, + "end": 11595.76, + "probability": 0.2647 + }, + { + "start": 11596.32, + "end": 11600.38, + "probability": 0.8116 + }, + { + "start": 11600.72, + "end": 11602.22, + "probability": 0.9116 + }, + { + "start": 11602.52, + "end": 11603.54, + "probability": 0.9407 + }, + { + "start": 11603.62, + "end": 11604.8, + "probability": 0.8981 + }, + { + "start": 11605.32, + "end": 11611.3, + "probability": 0.8821 + }, + { + "start": 11611.98, + "end": 11616.08, + "probability": 0.7808 + }, + { + "start": 11616.48, + "end": 11620.96, + "probability": 0.794 + }, + { + "start": 11621.62, + "end": 11624.18, + "probability": 0.9005 + }, + { + "start": 11624.2, + "end": 11625.88, + "probability": 0.676 + }, + { + "start": 11626.32, + "end": 11627.36, + "probability": 0.9539 + }, + { + "start": 11627.6, + "end": 11628.42, + "probability": 0.3535 + }, + { + "start": 11629.08, + "end": 11632.0, + "probability": 0.8895 + }, + { + "start": 11632.46, + "end": 11634.2, + "probability": 0.9682 + }, + { + "start": 11634.6, + "end": 11639.36, + "probability": 0.8914 + }, + { + "start": 11639.98, + "end": 11642.12, + "probability": 0.98 + }, + { + "start": 11643.2, + "end": 11645.42, + "probability": 0.9072 + }, + { + "start": 11645.46, + "end": 11646.12, + "probability": 0.5235 + }, + { + "start": 11646.24, + "end": 11649.34, + "probability": 0.9899 + }, + { + "start": 11650.12, + "end": 11658.86, + "probability": 0.9894 + }, + { + "start": 11659.14, + "end": 11660.28, + "probability": 0.9666 + }, + { + "start": 11660.9, + "end": 11662.56, + "probability": 0.9383 + }, + { + "start": 11662.76, + "end": 11664.2, + "probability": 0.0114 + }, + { + "start": 11664.2, + "end": 11664.24, + "probability": 0.2018 + }, + { + "start": 11665.02, + "end": 11667.06, + "probability": 0.6276 + }, + { + "start": 11667.72, + "end": 11667.82, + "probability": 0.189 + }, + { + "start": 11667.82, + "end": 11667.92, + "probability": 0.4234 + }, + { + "start": 11668.71, + "end": 11671.14, + "probability": 0.1398 + }, + { + "start": 11675.28, + "end": 11677.12, + "probability": 0.2421 + }, + { + "start": 11688.08, + "end": 11690.2, + "probability": 0.761 + }, + { + "start": 11692.77, + "end": 11696.02, + "probability": 0.261 + }, + { + "start": 11700.7, + "end": 11701.48, + "probability": 0.1633 + }, + { + "start": 11703.0, + "end": 11707.15, + "probability": 0.0323 + }, + { + "start": 11707.22, + "end": 11708.12, + "probability": 0.1771 + }, + { + "start": 11708.46, + "end": 11708.8, + "probability": 0.1122 + }, + { + "start": 11708.8, + "end": 11709.56, + "probability": 0.1164 + }, + { + "start": 11709.82, + "end": 11711.6, + "probability": 0.0233 + }, + { + "start": 11714.22, + "end": 11717.56, + "probability": 0.1831 + }, + { + "start": 11719.16, + "end": 11721.88, + "probability": 0.0183 + }, + { + "start": 11721.88, + "end": 11722.2, + "probability": 0.2391 + }, + { + "start": 11723.24, + "end": 11723.6, + "probability": 0.4339 + }, + { + "start": 11723.6, + "end": 11724.12, + "probability": 0.04 + }, + { + "start": 11724.12, + "end": 11724.28, + "probability": 0.0122 + }, + { + "start": 11724.28, + "end": 11729.26, + "probability": 0.0062 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.0, + "end": 11766.0, + "probability": 0.0 + }, + { + "start": 11766.18, + "end": 11766.72, + "probability": 0.055 + }, + { + "start": 11766.72, + "end": 11766.72, + "probability": 0.0284 + }, + { + "start": 11766.72, + "end": 11767.96, + "probability": 0.2291 + }, + { + "start": 11768.28, + "end": 11770.02, + "probability": 0.7791 + }, + { + "start": 11770.04, + "end": 11771.44, + "probability": 0.883 + }, + { + "start": 11771.52, + "end": 11772.66, + "probability": 0.4006 + }, + { + "start": 11773.64, + "end": 11775.4, + "probability": 0.9961 + }, + { + "start": 11776.9, + "end": 11777.46, + "probability": 0.7653 + }, + { + "start": 11778.28, + "end": 11780.6, + "probability": 0.8818 + }, + { + "start": 11781.38, + "end": 11782.6, + "probability": 0.7999 + }, + { + "start": 11784.16, + "end": 11786.9, + "probability": 0.4689 + }, + { + "start": 11787.24, + "end": 11789.3, + "probability": 0.9776 + }, + { + "start": 11789.4, + "end": 11791.46, + "probability": 0.9467 + }, + { + "start": 11791.8, + "end": 11792.95, + "probability": 0.994 + }, + { + "start": 11793.49, + "end": 11798.36, + "probability": 0.998 + }, + { + "start": 11799.48, + "end": 11803.72, + "probability": 0.9979 + }, + { + "start": 11805.28, + "end": 11809.56, + "probability": 0.9237 + }, + { + "start": 11809.68, + "end": 11810.92, + "probability": 0.5954 + }, + { + "start": 11811.98, + "end": 11814.78, + "probability": 0.9108 + }, + { + "start": 11815.56, + "end": 11816.36, + "probability": 0.8499 + }, + { + "start": 11817.12, + "end": 11818.32, + "probability": 0.9689 + }, + { + "start": 11819.2, + "end": 11820.4, + "probability": 0.986 + }, + { + "start": 11821.46, + "end": 11823.0, + "probability": 0.7189 + }, + { + "start": 11823.12, + "end": 11824.16, + "probability": 0.8616 + }, + { + "start": 11824.52, + "end": 11825.2, + "probability": 0.821 + }, + { + "start": 11825.3, + "end": 11825.5, + "probability": 0.6047 + }, + { + "start": 11825.6, + "end": 11826.32, + "probability": 0.8256 + }, + { + "start": 11827.16, + "end": 11827.9, + "probability": 0.8872 + }, + { + "start": 11828.62, + "end": 11829.22, + "probability": 0.7224 + }, + { + "start": 11829.3, + "end": 11830.94, + "probability": 0.5646 + }, + { + "start": 11831.34, + "end": 11833.56, + "probability": 0.9198 + }, + { + "start": 11833.72, + "end": 11837.76, + "probability": 0.9857 + }, + { + "start": 11838.38, + "end": 11840.06, + "probability": 0.8918 + }, + { + "start": 11840.38, + "end": 11841.98, + "probability": 0.9035 + }, + { + "start": 11842.08, + "end": 11844.94, + "probability": 0.9819 + }, + { + "start": 11845.06, + "end": 11845.48, + "probability": 0.3287 + }, + { + "start": 11845.6, + "end": 11847.36, + "probability": 0.9421 + }, + { + "start": 11848.08, + "end": 11849.56, + "probability": 0.8393 + }, + { + "start": 11849.94, + "end": 11851.0, + "probability": 0.9054 + }, + { + "start": 11851.36, + "end": 11853.56, + "probability": 0.9563 + }, + { + "start": 11853.78, + "end": 11854.78, + "probability": 0.7061 + }, + { + "start": 11854.8, + "end": 11855.56, + "probability": 0.7149 + }, + { + "start": 11856.74, + "end": 11859.34, + "probability": 0.937 + }, + { + "start": 11859.44, + "end": 11860.06, + "probability": 0.9619 + }, + { + "start": 11860.28, + "end": 11861.18, + "probability": 0.9988 + }, + { + "start": 11862.24, + "end": 11865.0, + "probability": 0.8462 + }, + { + "start": 11865.5, + "end": 11866.04, + "probability": 0.6993 + }, + { + "start": 11866.56, + "end": 11867.32, + "probability": 0.7933 + }, + { + "start": 11867.48, + "end": 11870.54, + "probability": 0.9857 + }, + { + "start": 11871.32, + "end": 11871.8, + "probability": 0.9515 + }, + { + "start": 11872.48, + "end": 11872.9, + "probability": 0.5348 + }, + { + "start": 11873.96, + "end": 11876.88, + "probability": 0.7853 + }, + { + "start": 11877.62, + "end": 11878.78, + "probability": 0.9021 + }, + { + "start": 11880.52, + "end": 11882.61, + "probability": 0.8506 + }, + { + "start": 11883.72, + "end": 11885.02, + "probability": 0.9832 + }, + { + "start": 11885.68, + "end": 11887.06, + "probability": 0.9873 + }, + { + "start": 11887.62, + "end": 11888.98, + "probability": 0.9951 + }, + { + "start": 11889.84, + "end": 11893.32, + "probability": 0.9954 + }, + { + "start": 11894.08, + "end": 11896.38, + "probability": 0.9971 + }, + { + "start": 11896.5, + "end": 11900.98, + "probability": 0.9639 + }, + { + "start": 11901.84, + "end": 11902.7, + "probability": 0.9665 + }, + { + "start": 11904.34, + "end": 11905.28, + "probability": 0.9084 + }, + { + "start": 11905.44, + "end": 11907.38, + "probability": 0.988 + }, + { + "start": 11908.3, + "end": 11914.32, + "probability": 0.9936 + }, + { + "start": 11915.34, + "end": 11916.94, + "probability": 0.8042 + }, + { + "start": 11917.52, + "end": 11918.98, + "probability": 0.9082 + }, + { + "start": 11919.5, + "end": 11923.02, + "probability": 0.9109 + }, + { + "start": 11923.56, + "end": 11928.78, + "probability": 0.9893 + }, + { + "start": 11930.46, + "end": 11930.78, + "probability": 0.7573 + }, + { + "start": 11932.02, + "end": 11933.96, + "probability": 0.6434 + }, + { + "start": 11934.14, + "end": 11934.94, + "probability": 0.8596 + }, + { + "start": 11935.88, + "end": 11938.28, + "probability": 0.7491 + }, + { + "start": 11938.36, + "end": 11941.4, + "probability": 0.9543 + }, + { + "start": 11942.98, + "end": 11944.08, + "probability": 0.8296 + }, + { + "start": 11944.24, + "end": 11945.2, + "probability": 0.8331 + }, + { + "start": 11945.26, + "end": 11946.64, + "probability": 0.9939 + }, + { + "start": 11947.34, + "end": 11949.38, + "probability": 0.9891 + }, + { + "start": 11950.12, + "end": 11951.6, + "probability": 0.9903 + }, + { + "start": 11952.18, + "end": 11954.78, + "probability": 0.2852 + }, + { + "start": 11954.78, + "end": 11957.16, + "probability": 0.5218 + }, + { + "start": 11958.08, + "end": 11960.6, + "probability": 0.9985 + }, + { + "start": 11960.6, + "end": 11964.16, + "probability": 0.9932 + }, + { + "start": 11964.84, + "end": 11965.64, + "probability": 0.8965 + }, + { + "start": 11966.84, + "end": 11968.36, + "probability": 0.5733 + }, + { + "start": 11969.14, + "end": 11971.5, + "probability": 0.8608 + }, + { + "start": 11971.86, + "end": 11975.96, + "probability": 0.9915 + }, + { + "start": 11976.6, + "end": 11977.06, + "probability": 0.8054 + }, + { + "start": 11978.84, + "end": 11980.26, + "probability": 0.9829 + }, + { + "start": 11980.88, + "end": 11984.48, + "probability": 0.9743 + }, + { + "start": 11984.86, + "end": 11986.56, + "probability": 0.9003 + }, + { + "start": 11986.6, + "end": 11988.72, + "probability": 0.9943 + }, + { + "start": 11989.26, + "end": 11990.46, + "probability": 0.9736 + }, + { + "start": 11991.35, + "end": 11992.52, + "probability": 0.7953 + }, + { + "start": 11993.42, + "end": 11994.6, + "probability": 0.8219 + }, + { + "start": 11996.04, + "end": 11998.36, + "probability": 0.9071 + }, + { + "start": 12000.14, + "end": 12002.28, + "probability": 0.2499 + }, + { + "start": 12003.9, + "end": 12005.14, + "probability": 0.3321 + }, + { + "start": 12015.48, + "end": 12015.74, + "probability": 0.2607 + }, + { + "start": 12015.74, + "end": 12015.74, + "probability": 0.3496 + }, + { + "start": 12015.78, + "end": 12016.91, + "probability": 0.9221 + }, + { + "start": 12018.2, + "end": 12020.52, + "probability": 0.6338 + }, + { + "start": 12021.98, + "end": 12024.28, + "probability": 0.9646 + }, + { + "start": 12024.98, + "end": 12030.18, + "probability": 0.8866 + }, + { + "start": 12031.28, + "end": 12031.72, + "probability": 0.6105 + }, + { + "start": 12031.78, + "end": 12038.7, + "probability": 0.9884 + }, + { + "start": 12039.36, + "end": 12044.68, + "probability": 0.9751 + }, + { + "start": 12045.3, + "end": 12047.22, + "probability": 0.9635 + }, + { + "start": 12049.18, + "end": 12049.58, + "probability": 0.7601 + }, + { + "start": 12050.02, + "end": 12050.7, + "probability": 0.6343 + }, + { + "start": 12050.82, + "end": 12051.62, + "probability": 0.9371 + }, + { + "start": 12051.72, + "end": 12057.78, + "probability": 0.9132 + }, + { + "start": 12060.82, + "end": 12062.62, + "probability": 0.7437 + }, + { + "start": 12063.64, + "end": 12065.86, + "probability": 0.9502 + }, + { + "start": 12066.58, + "end": 12067.78, + "probability": 0.9877 + }, + { + "start": 12068.3, + "end": 12072.86, + "probability": 0.9606 + }, + { + "start": 12073.48, + "end": 12074.24, + "probability": 0.862 + }, + { + "start": 12075.14, + "end": 12079.38, + "probability": 0.993 + }, + { + "start": 12080.16, + "end": 12081.6, + "probability": 0.8745 + }, + { + "start": 12083.22, + "end": 12083.98, + "probability": 0.9795 + }, + { + "start": 12084.58, + "end": 12088.13, + "probability": 0.9861 + }, + { + "start": 12089.0, + "end": 12093.94, + "probability": 0.9616 + }, + { + "start": 12094.8, + "end": 12096.9, + "probability": 0.9392 + }, + { + "start": 12097.94, + "end": 12098.47, + "probability": 0.8922 + }, + { + "start": 12099.56, + "end": 12103.74, + "probability": 0.9252 + }, + { + "start": 12105.24, + "end": 12108.48, + "probability": 0.8514 + }, + { + "start": 12109.76, + "end": 12112.76, + "probability": 0.9634 + }, + { + "start": 12114.12, + "end": 12116.14, + "probability": 0.9578 + }, + { + "start": 12117.08, + "end": 12119.3, + "probability": 0.8733 + }, + { + "start": 12120.28, + "end": 12122.66, + "probability": 0.9037 + }, + { + "start": 12123.76, + "end": 12126.66, + "probability": 0.9648 + }, + { + "start": 12127.16, + "end": 12128.32, + "probability": 0.9838 + }, + { + "start": 12129.86, + "end": 12131.56, + "probability": 0.9268 + }, + { + "start": 12132.1, + "end": 12133.76, + "probability": 0.7217 + }, + { + "start": 12135.8, + "end": 12137.06, + "probability": 0.9393 + }, + { + "start": 12137.78, + "end": 12144.02, + "probability": 0.9945 + }, + { + "start": 12144.98, + "end": 12145.62, + "probability": 0.938 + }, + { + "start": 12146.4, + "end": 12150.52, + "probability": 0.9971 + }, + { + "start": 12151.48, + "end": 12154.54, + "probability": 0.9893 + }, + { + "start": 12155.56, + "end": 12157.0, + "probability": 0.986 + }, + { + "start": 12157.84, + "end": 12160.72, + "probability": 0.9629 + }, + { + "start": 12161.56, + "end": 12164.06, + "probability": 0.9305 + }, + { + "start": 12165.68, + "end": 12170.86, + "probability": 0.9933 + }, + { + "start": 12170.92, + "end": 12174.08, + "probability": 0.9805 + }, + { + "start": 12175.52, + "end": 12177.74, + "probability": 0.8791 + }, + { + "start": 12178.82, + "end": 12179.34, + "probability": 0.7844 + }, + { + "start": 12179.4, + "end": 12182.88, + "probability": 0.7476 + }, + { + "start": 12182.88, + "end": 12186.3, + "probability": 0.9988 + }, + { + "start": 12186.82, + "end": 12191.42, + "probability": 0.999 + }, + { + "start": 12192.46, + "end": 12192.98, + "probability": 0.9897 + }, + { + "start": 12193.8, + "end": 12195.6, + "probability": 0.9968 + }, + { + "start": 12196.3, + "end": 12202.7, + "probability": 0.984 + }, + { + "start": 12204.3, + "end": 12204.3, + "probability": 0.5064 + }, + { + "start": 12204.32, + "end": 12206.12, + "probability": 0.6813 + }, + { + "start": 12206.82, + "end": 12209.36, + "probability": 0.8483 + }, + { + "start": 12210.34, + "end": 12213.58, + "probability": 0.9956 + }, + { + "start": 12214.4, + "end": 12217.78, + "probability": 0.9863 + }, + { + "start": 12218.46, + "end": 12219.14, + "probability": 0.7961 + }, + { + "start": 12219.86, + "end": 12221.26, + "probability": 0.9739 + }, + { + "start": 12221.9, + "end": 12222.26, + "probability": 0.907 + }, + { + "start": 12222.74, + "end": 12223.3, + "probability": 0.7703 + }, + { + "start": 12223.74, + "end": 12225.88, + "probability": 0.8501 + }, + { + "start": 12226.4, + "end": 12228.1, + "probability": 0.6951 + }, + { + "start": 12229.22, + "end": 12231.72, + "probability": 0.4529 + }, + { + "start": 12231.72, + "end": 12231.79, + "probability": 0.6332 + }, + { + "start": 12235.48, + "end": 12237.32, + "probability": 0.0181 + }, + { + "start": 12237.32, + "end": 12237.36, + "probability": 0.1804 + }, + { + "start": 12237.36, + "end": 12239.62, + "probability": 0.0363 + }, + { + "start": 12239.64, + "end": 12239.64, + "probability": 0.0061 + }, + { + "start": 12239.94, + "end": 12239.94, + "probability": 0.1779 + }, + { + "start": 12239.94, + "end": 12241.28, + "probability": 0.0593 + }, + { + "start": 12244.68, + "end": 12245.98, + "probability": 0.2074 + }, + { + "start": 12254.68, + "end": 12254.88, + "probability": 0.1057 + }, + { + "start": 12257.54, + "end": 12258.4, + "probability": 0.2897 + }, + { + "start": 12273.64, + "end": 12277.5, + "probability": 0.9961 + }, + { + "start": 12277.5, + "end": 12281.08, + "probability": 0.9976 + }, + { + "start": 12282.82, + "end": 12282.82, + "probability": 0.1562 + }, + { + "start": 12283.04, + "end": 12283.86, + "probability": 0.7934 + }, + { + "start": 12284.02, + "end": 12285.64, + "probability": 0.9954 + }, + { + "start": 12285.66, + "end": 12289.76, + "probability": 0.9872 + }, + { + "start": 12290.74, + "end": 12298.12, + "probability": 0.9938 + }, + { + "start": 12298.78, + "end": 12301.3, + "probability": 0.8726 + }, + { + "start": 12302.46, + "end": 12304.5, + "probability": 0.8635 + }, + { + "start": 12305.06, + "end": 12306.8, + "probability": 0.7088 + }, + { + "start": 12307.46, + "end": 12309.3, + "probability": 0.8069 + }, + { + "start": 12309.88, + "end": 12313.8, + "probability": 0.8278 + }, + { + "start": 12314.4, + "end": 12320.16, + "probability": 0.9496 + }, + { + "start": 12321.34, + "end": 12321.34, + "probability": 0.4516 + }, + { + "start": 12321.5, + "end": 12322.4, + "probability": 0.5687 + }, + { + "start": 12322.54, + "end": 12325.84, + "probability": 0.9843 + }, + { + "start": 12326.9, + "end": 12328.03, + "probability": 0.9935 + }, + { + "start": 12328.92, + "end": 12333.24, + "probability": 0.9358 + }, + { + "start": 12333.98, + "end": 12336.94, + "probability": 0.9912 + }, + { + "start": 12337.64, + "end": 12340.02, + "probability": 0.9958 + }, + { + "start": 12341.72, + "end": 12341.8, + "probability": 0.552 + }, + { + "start": 12341.8, + "end": 12344.34, + "probability": 0.9917 + }, + { + "start": 12344.34, + "end": 12350.04, + "probability": 0.958 + }, + { + "start": 12351.58, + "end": 12356.68, + "probability": 0.9941 + }, + { + "start": 12358.04, + "end": 12362.64, + "probability": 0.9975 + }, + { + "start": 12363.4, + "end": 12364.28, + "probability": 0.6245 + }, + { + "start": 12365.4, + "end": 12368.76, + "probability": 0.9298 + }, + { + "start": 12369.3, + "end": 12370.58, + "probability": 0.9756 + }, + { + "start": 12371.26, + "end": 12373.0, + "probability": 0.7926 + }, + { + "start": 12373.86, + "end": 12377.09, + "probability": 0.9937 + }, + { + "start": 12377.68, + "end": 12380.82, + "probability": 0.9743 + }, + { + "start": 12381.4, + "end": 12382.18, + "probability": 0.5554 + }, + { + "start": 12382.78, + "end": 12387.56, + "probability": 0.991 + }, + { + "start": 12387.64, + "end": 12395.16, + "probability": 0.969 + }, + { + "start": 12396.1, + "end": 12396.1, + "probability": 0.0129 + }, + { + "start": 12396.26, + "end": 12397.08, + "probability": 0.8707 + }, + { + "start": 12397.22, + "end": 12399.68, + "probability": 0.8861 + }, + { + "start": 12399.74, + "end": 12400.32, + "probability": 0.823 + }, + { + "start": 12400.64, + "end": 12404.52, + "probability": 0.897 + }, + { + "start": 12404.74, + "end": 12407.86, + "probability": 0.9328 + }, + { + "start": 12409.0, + "end": 12410.78, + "probability": 0.8097 + }, + { + "start": 12411.3, + "end": 12413.62, + "probability": 0.9976 + }, + { + "start": 12413.78, + "end": 12415.98, + "probability": 0.9883 + }, + { + "start": 12416.54, + "end": 12418.88, + "probability": 0.6481 + }, + { + "start": 12419.72, + "end": 12423.14, + "probability": 0.9673 + }, + { + "start": 12423.88, + "end": 12425.54, + "probability": 0.9673 + }, + { + "start": 12426.52, + "end": 12429.22, + "probability": 0.9988 + }, + { + "start": 12429.22, + "end": 12433.94, + "probability": 0.9985 + }, + { + "start": 12435.04, + "end": 12438.18, + "probability": 0.9797 + }, + { + "start": 12438.78, + "end": 12439.94, + "probability": 0.8942 + }, + { + "start": 12440.62, + "end": 12442.08, + "probability": 0.9754 + }, + { + "start": 12442.86, + "end": 12444.0, + "probability": 0.6255 + }, + { + "start": 12445.26, + "end": 12446.36, + "probability": 0.8399 + }, + { + "start": 12446.42, + "end": 12450.8, + "probability": 0.9058 + }, + { + "start": 12451.3, + "end": 12456.1, + "probability": 0.9489 + }, + { + "start": 12456.7, + "end": 12458.06, + "probability": 0.9784 + }, + { + "start": 12458.64, + "end": 12461.38, + "probability": 0.8586 + }, + { + "start": 12462.24, + "end": 12463.48, + "probability": 0.958 + }, + { + "start": 12464.51, + "end": 12469.74, + "probability": 0.9886 + }, + { + "start": 12470.28, + "end": 12474.84, + "probability": 0.9563 + }, + { + "start": 12476.46, + "end": 12480.3, + "probability": 0.9922 + }, + { + "start": 12480.46, + "end": 12485.52, + "probability": 0.9857 + }, + { + "start": 12486.7, + "end": 12486.7, + "probability": 0.4362 + }, + { + "start": 12486.82, + "end": 12487.66, + "probability": 0.9303 + }, + { + "start": 12487.8, + "end": 12491.82, + "probability": 0.9706 + }, + { + "start": 12493.12, + "end": 12496.46, + "probability": 0.998 + }, + { + "start": 12497.12, + "end": 12499.58, + "probability": 0.897 + }, + { + "start": 12500.26, + "end": 12504.32, + "probability": 0.9899 + }, + { + "start": 12504.56, + "end": 12505.44, + "probability": 0.9602 + }, + { + "start": 12505.5, + "end": 12509.6, + "probability": 0.9257 + }, + { + "start": 12509.68, + "end": 12511.86, + "probability": 0.9493 + }, + { + "start": 12512.5, + "end": 12515.54, + "probability": 0.9934 + }, + { + "start": 12516.34, + "end": 12517.68, + "probability": 0.9107 + }, + { + "start": 12518.78, + "end": 12520.6, + "probability": 0.7378 + }, + { + "start": 12522.3, + "end": 12525.8, + "probability": 0.9924 + }, + { + "start": 12526.62, + "end": 12529.5, + "probability": 0.9962 + }, + { + "start": 12530.26, + "end": 12536.42, + "probability": 0.9897 + }, + { + "start": 12536.84, + "end": 12539.7, + "probability": 0.7826 + }, + { + "start": 12539.7, + "end": 12543.5, + "probability": 0.978 + }, + { + "start": 12544.14, + "end": 12545.22, + "probability": 0.8521 + }, + { + "start": 12545.42, + "end": 12551.12, + "probability": 0.9058 + }, + { + "start": 12551.52, + "end": 12552.56, + "probability": 0.9721 + }, + { + "start": 12553.44, + "end": 12553.88, + "probability": 0.8888 + }, + { + "start": 12554.5, + "end": 12555.22, + "probability": 0.9204 + }, + { + "start": 12557.06, + "end": 12558.94, + "probability": 0.7318 + }, + { + "start": 12559.5, + "end": 12563.62, + "probability": 0.8138 + }, + { + "start": 12564.42, + "end": 12568.54, + "probability": 0.8681 + }, + { + "start": 12569.14, + "end": 12570.78, + "probability": 0.9714 + }, + { + "start": 12571.16, + "end": 12575.7, + "probability": 0.9583 + }, + { + "start": 12575.98, + "end": 12576.48, + "probability": 0.8527 + }, + { + "start": 12576.7, + "end": 12577.12, + "probability": 0.579 + }, + { + "start": 12578.0, + "end": 12580.96, + "probability": 0.7671 + }, + { + "start": 12581.73, + "end": 12583.52, + "probability": 0.965 + }, + { + "start": 12593.68, + "end": 12596.5, + "probability": 0.7214 + }, + { + "start": 12597.6, + "end": 12599.74, + "probability": 0.9882 + }, + { + "start": 12600.78, + "end": 12603.42, + "probability": 0.985 + }, + { + "start": 12605.14, + "end": 12607.32, + "probability": 0.9805 + }, + { + "start": 12608.7, + "end": 12611.14, + "probability": 0.9731 + }, + { + "start": 12611.98, + "end": 12613.68, + "probability": 0.9916 + }, + { + "start": 12614.32, + "end": 12614.98, + "probability": 0.9417 + }, + { + "start": 12615.88, + "end": 12618.58, + "probability": 0.925 + }, + { + "start": 12619.2, + "end": 12622.08, + "probability": 0.8625 + }, + { + "start": 12622.1, + "end": 12623.64, + "probability": 0.6787 + }, + { + "start": 12623.66, + "end": 12625.0, + "probability": 0.8975 + }, + { + "start": 12625.1, + "end": 12625.78, + "probability": 0.8551 + }, + { + "start": 12626.34, + "end": 12626.4, + "probability": 0.2447 + }, + { + "start": 12626.4, + "end": 12626.74, + "probability": 0.2714 + }, + { + "start": 12627.14, + "end": 12628.4, + "probability": 0.9875 + }, + { + "start": 12630.56, + "end": 12634.98, + "probability": 0.9757 + }, + { + "start": 12635.22, + "end": 12638.46, + "probability": 0.9937 + }, + { + "start": 12639.06, + "end": 12641.26, + "probability": 0.8657 + }, + { + "start": 12642.52, + "end": 12647.84, + "probability": 0.9963 + }, + { + "start": 12649.06, + "end": 12650.5, + "probability": 0.7947 + }, + { + "start": 12651.34, + "end": 12652.36, + "probability": 0.9862 + }, + { + "start": 12653.08, + "end": 12658.34, + "probability": 0.995 + }, + { + "start": 12658.82, + "end": 12663.38, + "probability": 0.9886 + }, + { + "start": 12664.2, + "end": 12664.52, + "probability": 0.2374 + }, + { + "start": 12665.06, + "end": 12667.48, + "probability": 0.9749 + }, + { + "start": 12668.98, + "end": 12672.64, + "probability": 0.9513 + }, + { + "start": 12673.5, + "end": 12675.53, + "probability": 0.7285 + }, + { + "start": 12676.38, + "end": 12679.0, + "probability": 0.9956 + }, + { + "start": 12680.3, + "end": 12682.44, + "probability": 0.7869 + }, + { + "start": 12682.6, + "end": 12684.92, + "probability": 0.8732 + }, + { + "start": 12686.08, + "end": 12689.16, + "probability": 0.9862 + }, + { + "start": 12690.5, + "end": 12693.72, + "probability": 0.9858 + }, + { + "start": 12694.12, + "end": 12694.8, + "probability": 0.6776 + }, + { + "start": 12695.24, + "end": 12697.1, + "probability": 0.9524 + }, + { + "start": 12697.24, + "end": 12697.42, + "probability": 0.9517 + }, + { + "start": 12697.68, + "end": 12700.08, + "probability": 0.9071 + }, + { + "start": 12700.42, + "end": 12702.08, + "probability": 0.9861 + }, + { + "start": 12702.58, + "end": 12703.22, + "probability": 0.9258 + }, + { + "start": 12704.22, + "end": 12705.09, + "probability": 0.981 + }, + { + "start": 12706.06, + "end": 12708.54, + "probability": 0.9739 + }, + { + "start": 12709.3, + "end": 12711.9, + "probability": 0.9898 + }, + { + "start": 12712.8, + "end": 12714.5, + "probability": 0.8432 + }, + { + "start": 12714.84, + "end": 12715.92, + "probability": 0.9475 + }, + { + "start": 12715.96, + "end": 12716.12, + "probability": 0.7194 + }, + { + "start": 12717.04, + "end": 12717.92, + "probability": 0.6909 + }, + { + "start": 12718.84, + "end": 12721.39, + "probability": 0.9921 + }, + { + "start": 12722.4, + "end": 12723.58, + "probability": 0.9632 + }, + { + "start": 12723.64, + "end": 12724.68, + "probability": 0.8413 + }, + { + "start": 12725.08, + "end": 12725.86, + "probability": 0.7902 + }, + { + "start": 12726.1, + "end": 12729.9, + "probability": 0.9742 + }, + { + "start": 12730.52, + "end": 12734.12, + "probability": 0.9912 + }, + { + "start": 12734.42, + "end": 12734.72, + "probability": 0.8303 + }, + { + "start": 12734.9, + "end": 12738.5, + "probability": 0.9967 + }, + { + "start": 12738.92, + "end": 12741.22, + "probability": 0.9927 + }, + { + "start": 12742.4, + "end": 12745.06, + "probability": 0.8946 + }, + { + "start": 12745.86, + "end": 12747.34, + "probability": 0.8759 + }, + { + "start": 12748.04, + "end": 12751.96, + "probability": 0.9878 + }, + { + "start": 12752.92, + "end": 12758.1, + "probability": 0.9767 + }, + { + "start": 12758.34, + "end": 12759.46, + "probability": 0.9671 + }, + { + "start": 12759.58, + "end": 12763.36, + "probability": 0.9653 + }, + { + "start": 12763.68, + "end": 12764.4, + "probability": 0.671 + }, + { + "start": 12764.66, + "end": 12765.54, + "probability": 0.8195 + }, + { + "start": 12766.0, + "end": 12768.58, + "probability": 0.9893 + }, + { + "start": 12770.5, + "end": 12774.36, + "probability": 0.994 + }, + { + "start": 12775.02, + "end": 12776.36, + "probability": 0.9873 + }, + { + "start": 12776.74, + "end": 12779.38, + "probability": 0.9493 + }, + { + "start": 12780.18, + "end": 12781.54, + "probability": 0.9964 + }, + { + "start": 12781.6, + "end": 12782.26, + "probability": 0.995 + }, + { + "start": 12782.36, + "end": 12782.8, + "probability": 0.875 + }, + { + "start": 12783.22, + "end": 12784.12, + "probability": 0.9868 + }, + { + "start": 12784.72, + "end": 12785.26, + "probability": 0.6594 + }, + { + "start": 12785.36, + "end": 12786.22, + "probability": 0.657 + }, + { + "start": 12786.32, + "end": 12787.7, + "probability": 0.9854 + }, + { + "start": 12788.48, + "end": 12791.0, + "probability": 0.9883 + }, + { + "start": 12791.56, + "end": 12793.64, + "probability": 0.9115 + }, + { + "start": 12794.0, + "end": 12796.04, + "probability": 0.9559 + }, + { + "start": 12796.38, + "end": 12798.36, + "probability": 0.9201 + }, + { + "start": 12798.9, + "end": 12800.56, + "probability": 0.7525 + }, + { + "start": 12801.02, + "end": 12803.36, + "probability": 0.9653 + }, + { + "start": 12804.02, + "end": 12805.22, + "probability": 0.9521 + }, + { + "start": 12806.5, + "end": 12808.72, + "probability": 0.9678 + }, + { + "start": 12809.78, + "end": 12813.98, + "probability": 0.9978 + }, + { + "start": 12815.0, + "end": 12817.94, + "probability": 0.9976 + }, + { + "start": 12818.36, + "end": 12819.2, + "probability": 0.6354 + }, + { + "start": 12819.28, + "end": 12824.16, + "probability": 0.9504 + }, + { + "start": 12825.5, + "end": 12826.98, + "probability": 0.8543 + }, + { + "start": 12827.44, + "end": 12827.88, + "probability": 0.8476 + }, + { + "start": 12828.42, + "end": 12829.5, + "probability": 0.9959 + }, + { + "start": 12829.72, + "end": 12830.06, + "probability": 0.78 + }, + { + "start": 12830.78, + "end": 12835.32, + "probability": 0.7599 + }, + { + "start": 12836.68, + "end": 12837.28, + "probability": 0.9382 + }, + { + "start": 12837.36, + "end": 12838.26, + "probability": 0.3693 + }, + { + "start": 12838.68, + "end": 12842.42, + "probability": 0.9862 + }, + { + "start": 12843.2, + "end": 12848.52, + "probability": 0.9707 + }, + { + "start": 12849.5, + "end": 12852.02, + "probability": 0.9932 + }, + { + "start": 12852.88, + "end": 12854.34, + "probability": 0.7695 + }, + { + "start": 12855.08, + "end": 12860.84, + "probability": 0.9928 + }, + { + "start": 12862.46, + "end": 12863.24, + "probability": 0.9478 + }, + { + "start": 12863.78, + "end": 12865.98, + "probability": 0.967 + }, + { + "start": 12866.6, + "end": 12868.66, + "probability": 0.9901 + }, + { + "start": 12870.0, + "end": 12873.34, + "probability": 0.9792 + }, + { + "start": 12873.34, + "end": 12877.22, + "probability": 0.9958 + }, + { + "start": 12878.56, + "end": 12880.44, + "probability": 0.9982 + }, + { + "start": 12881.54, + "end": 12882.74, + "probability": 0.8325 + }, + { + "start": 12883.54, + "end": 12887.48, + "probability": 0.9973 + }, + { + "start": 12888.3, + "end": 12889.48, + "probability": 0.8442 + }, + { + "start": 12890.12, + "end": 12891.72, + "probability": 0.9924 + }, + { + "start": 12893.5, + "end": 12895.3, + "probability": 0.9837 + }, + { + "start": 12895.7, + "end": 12901.72, + "probability": 0.9842 + }, + { + "start": 12901.72, + "end": 12907.5, + "probability": 0.9892 + }, + { + "start": 12907.82, + "end": 12910.52, + "probability": 0.9658 + }, + { + "start": 12910.52, + "end": 12913.24, + "probability": 0.9694 + }, + { + "start": 12913.66, + "end": 12915.28, + "probability": 0.6512 + }, + { + "start": 12916.02, + "end": 12916.88, + "probability": 0.8999 + }, + { + "start": 12917.46, + "end": 12920.46, + "probability": 0.9948 + }, + { + "start": 12920.52, + "end": 12924.12, + "probability": 0.9939 + }, + { + "start": 12924.64, + "end": 12928.54, + "probability": 0.9797 + }, + { + "start": 12928.54, + "end": 12931.84, + "probability": 0.9989 + }, + { + "start": 12932.1, + "end": 12935.26, + "probability": 0.958 + }, + { + "start": 12935.56, + "end": 12936.06, + "probability": 0.7239 + }, + { + "start": 12936.1, + "end": 12936.52, + "probability": 0.8584 + }, + { + "start": 12937.76, + "end": 12939.5, + "probability": 0.9563 + }, + { + "start": 12939.56, + "end": 12940.32, + "probability": 0.7623 + }, + { + "start": 12940.56, + "end": 12941.16, + "probability": 0.4302 + }, + { + "start": 12941.34, + "end": 12943.1, + "probability": 0.8568 + }, + { + "start": 12948.1, + "end": 12949.4, + "probability": 0.9694 + }, + { + "start": 12956.66, + "end": 12958.32, + "probability": 0.0891 + }, + { + "start": 12958.32, + "end": 12959.3, + "probability": 0.4834 + }, + { + "start": 12960.64, + "end": 12961.82, + "probability": 0.6756 + }, + { + "start": 12963.58, + "end": 12965.34, + "probability": 0.8843 + }, + { + "start": 12967.34, + "end": 12974.16, + "probability": 0.9891 + }, + { + "start": 12974.58, + "end": 12976.82, + "probability": 0.9905 + }, + { + "start": 12977.34, + "end": 12978.44, + "probability": 0.1312 + }, + { + "start": 12978.44, + "end": 12979.8, + "probability": 0.8026 + }, + { + "start": 12980.16, + "end": 12983.78, + "probability": 0.96 + }, + { + "start": 12984.76, + "end": 12987.26, + "probability": 0.9805 + }, + { + "start": 12987.54, + "end": 12989.88, + "probability": 0.9943 + }, + { + "start": 12990.44, + "end": 12990.98, + "probability": 0.7723 + }, + { + "start": 12991.2, + "end": 12992.24, + "probability": 0.9898 + }, + { + "start": 12992.52, + "end": 12993.9, + "probability": 0.9581 + }, + { + "start": 12994.22, + "end": 12997.6, + "probability": 0.9385 + }, + { + "start": 12997.82, + "end": 12999.88, + "probability": 0.8861 + }, + { + "start": 13000.44, + "end": 13004.42, + "probability": 0.9875 + }, + { + "start": 13004.64, + "end": 13007.42, + "probability": 0.9933 + }, + { + "start": 13007.96, + "end": 13010.42, + "probability": 0.9683 + }, + { + "start": 13010.42, + "end": 13013.46, + "probability": 0.9877 + }, + { + "start": 13013.8, + "end": 13015.77, + "probability": 0.998 + }, + { + "start": 13016.38, + "end": 13018.88, + "probability": 0.9879 + }, + { + "start": 13019.48, + "end": 13021.94, + "probability": 0.9983 + }, + { + "start": 13022.3, + "end": 13025.68, + "probability": 0.823 + }, + { + "start": 13026.18, + "end": 13027.93, + "probability": 0.9832 + }, + { + "start": 13028.72, + "end": 13032.46, + "probability": 0.9922 + }, + { + "start": 13032.58, + "end": 13035.76, + "probability": 0.9799 + }, + { + "start": 13036.02, + "end": 13039.38, + "probability": 0.9373 + }, + { + "start": 13039.68, + "end": 13040.36, + "probability": 0.796 + }, + { + "start": 13040.4, + "end": 13041.12, + "probability": 0.9923 + }, + { + "start": 13041.2, + "end": 13041.82, + "probability": 0.6136 + }, + { + "start": 13042.04, + "end": 13042.76, + "probability": 0.5264 + }, + { + "start": 13042.94, + "end": 13045.0, + "probability": 0.9468 + }, + { + "start": 13045.32, + "end": 13045.84, + "probability": 0.6336 + }, + { + "start": 13045.92, + "end": 13050.14, + "probability": 0.9429 + }, + { + "start": 13050.52, + "end": 13053.74, + "probability": 0.9944 + }, + { + "start": 13054.08, + "end": 13056.74, + "probability": 0.9943 + }, + { + "start": 13057.34, + "end": 13059.3, + "probability": 0.9838 + }, + { + "start": 13059.88, + "end": 13063.5, + "probability": 0.9933 + }, + { + "start": 13063.56, + "end": 13067.76, + "probability": 0.995 + }, + { + "start": 13068.44, + "end": 13069.2, + "probability": 0.8472 + }, + { + "start": 13070.14, + "end": 13073.38, + "probability": 0.9554 + }, + { + "start": 13075.2, + "end": 13076.74, + "probability": 0.9954 + }, + { + "start": 13077.54, + "end": 13078.46, + "probability": 0.9305 + }, + { + "start": 13079.22, + "end": 13080.02, + "probability": 0.8657 + }, + { + "start": 13080.8, + "end": 13082.74, + "probability": 0.9645 + }, + { + "start": 13082.88, + "end": 13085.3, + "probability": 0.9855 + }, + { + "start": 13085.32, + "end": 13086.38, + "probability": 0.9194 + }, + { + "start": 13086.66, + "end": 13090.91, + "probability": 0.9935 + }, + { + "start": 13091.06, + "end": 13094.58, + "probability": 0.9827 + }, + { + "start": 13096.16, + "end": 13098.84, + "probability": 0.9943 + }, + { + "start": 13099.9, + "end": 13102.08, + "probability": 0.9922 + }, + { + "start": 13102.62, + "end": 13104.16, + "probability": 0.9907 + }, + { + "start": 13105.18, + "end": 13106.52, + "probability": 0.9492 + }, + { + "start": 13107.08, + "end": 13111.48, + "probability": 0.9958 + }, + { + "start": 13111.58, + "end": 13112.68, + "probability": 0.9989 + }, + { + "start": 13113.2, + "end": 13118.2, + "probability": 0.9985 + }, + { + "start": 13118.78, + "end": 13122.2, + "probability": 0.953 + }, + { + "start": 13123.78, + "end": 13124.82, + "probability": 0.8155 + }, + { + "start": 13125.32, + "end": 13126.8, + "probability": 0.9828 + }, + { + "start": 13127.48, + "end": 13128.84, + "probability": 0.9795 + }, + { + "start": 13129.94, + "end": 13133.02, + "probability": 0.8864 + }, + { + "start": 13133.82, + "end": 13136.86, + "probability": 0.9811 + }, + { + "start": 13140.04, + "end": 13142.28, + "probability": 0.976 + }, + { + "start": 13143.46, + "end": 13145.28, + "probability": 0.999 + }, + { + "start": 13146.6, + "end": 13147.66, + "probability": 0.7923 + }, + { + "start": 13148.6, + "end": 13149.2, + "probability": 0.5727 + }, + { + "start": 13150.12, + "end": 13151.36, + "probability": 0.9517 + }, + { + "start": 13152.64, + "end": 13154.5, + "probability": 0.9941 + }, + { + "start": 13154.64, + "end": 13156.28, + "probability": 0.7785 + }, + { + "start": 13156.34, + "end": 13157.23, + "probability": 0.9067 + }, + { + "start": 13158.19, + "end": 13161.45, + "probability": 0.9204 + }, + { + "start": 13161.78, + "end": 13163.26, + "probability": 0.9979 + }, + { + "start": 13163.3, + "end": 13166.58, + "probability": 0.9958 + }, + { + "start": 13167.72, + "end": 13168.79, + "probability": 0.9897 + }, + { + "start": 13168.94, + "end": 13171.24, + "probability": 0.9204 + }, + { + "start": 13171.24, + "end": 13173.78, + "probability": 0.9971 + }, + { + "start": 13175.52, + "end": 13176.78, + "probability": 0.921 + }, + { + "start": 13177.32, + "end": 13178.08, + "probability": 0.7129 + }, + { + "start": 13178.42, + "end": 13184.78, + "probability": 0.9841 + }, + { + "start": 13185.18, + "end": 13185.8, + "probability": 0.8756 + }, + { + "start": 13186.34, + "end": 13190.12, + "probability": 0.8152 + }, + { + "start": 13190.62, + "end": 13191.4, + "probability": 0.3682 + }, + { + "start": 13192.52, + "end": 13194.94, + "probability": 0.8086 + }, + { + "start": 13195.48, + "end": 13197.46, + "probability": 0.9956 + }, + { + "start": 13198.64, + "end": 13200.26, + "probability": 0.9897 + }, + { + "start": 13201.74, + "end": 13203.64, + "probability": 0.9573 + }, + { + "start": 13204.22, + "end": 13206.81, + "probability": 0.9925 + }, + { + "start": 13208.04, + "end": 13210.0, + "probability": 0.9966 + }, + { + "start": 13210.44, + "end": 13212.52, + "probability": 0.9993 + }, + { + "start": 13212.52, + "end": 13215.54, + "probability": 0.9971 + }, + { + "start": 13216.46, + "end": 13219.66, + "probability": 0.9922 + }, + { + "start": 13219.94, + "end": 13221.12, + "probability": 0.9605 + }, + { + "start": 13221.26, + "end": 13224.04, + "probability": 0.9717 + }, + { + "start": 13226.2, + "end": 13227.86, + "probability": 0.9905 + }, + { + "start": 13228.38, + "end": 13231.8, + "probability": 0.9282 + }, + { + "start": 13232.48, + "end": 13234.84, + "probability": 0.9984 + }, + { + "start": 13234.84, + "end": 13238.52, + "probability": 0.9943 + }, + { + "start": 13239.86, + "end": 13241.44, + "probability": 0.9931 + }, + { + "start": 13243.46, + "end": 13243.74, + "probability": 0.7463 + }, + { + "start": 13244.72, + "end": 13244.96, + "probability": 0.7155 + }, + { + "start": 13246.08, + "end": 13249.2, + "probability": 0.8415 + }, + { + "start": 13262.12, + "end": 13263.98, + "probability": 0.5654 + }, + { + "start": 13265.76, + "end": 13267.86, + "probability": 0.6182 + }, + { + "start": 13269.88, + "end": 13272.3, + "probability": 0.9704 + }, + { + "start": 13273.72, + "end": 13275.46, + "probability": 0.9889 + }, + { + "start": 13276.88, + "end": 13279.14, + "probability": 0.9704 + }, + { + "start": 13281.52, + "end": 13283.12, + "probability": 0.7488 + }, + { + "start": 13284.04, + "end": 13287.27, + "probability": 0.6427 + }, + { + "start": 13290.02, + "end": 13291.06, + "probability": 0.4038 + }, + { + "start": 13293.28, + "end": 13298.12, + "probability": 0.9114 + }, + { + "start": 13299.36, + "end": 13299.94, + "probability": 0.4748 + }, + { + "start": 13301.26, + "end": 13303.96, + "probability": 0.7825 + }, + { + "start": 13303.96, + "end": 13309.04, + "probability": 0.5665 + }, + { + "start": 13313.24, + "end": 13321.62, + "probability": 0.4983 + }, + { + "start": 13322.5, + "end": 13326.3, + "probability": 0.9814 + }, + { + "start": 13327.06, + "end": 13329.9, + "probability": 0.8384 + }, + { + "start": 13330.06, + "end": 13331.44, + "probability": 0.4875 + }, + { + "start": 13331.48, + "end": 13332.2, + "probability": 0.908 + }, + { + "start": 13332.44, + "end": 13335.32, + "probability": 0.5945 + }, + { + "start": 13336.84, + "end": 13338.26, + "probability": 0.504 + }, + { + "start": 13339.24, + "end": 13339.82, + "probability": 0.6517 + }, + { + "start": 13340.92, + "end": 13341.94, + "probability": 0.7246 + }, + { + "start": 13343.68, + "end": 13345.14, + "probability": 0.8555 + }, + { + "start": 13347.86, + "end": 13348.86, + "probability": 0.7283 + }, + { + "start": 13350.9, + "end": 13352.18, + "probability": 0.8111 + }, + { + "start": 13352.48, + "end": 13352.48, + "probability": 0.071 + }, + { + "start": 13352.48, + "end": 13353.56, + "probability": 0.5589 + }, + { + "start": 13353.68, + "end": 13354.5, + "probability": 0.7236 + }, + { + "start": 13354.62, + "end": 13355.24, + "probability": 0.7268 + }, + { + "start": 13355.52, + "end": 13355.84, + "probability": 0.2489 + }, + { + "start": 13359.1, + "end": 13361.44, + "probability": 0.6244 + }, + { + "start": 13364.16, + "end": 13366.98, + "probability": 0.9752 + }, + { + "start": 13367.82, + "end": 13369.04, + "probability": 0.9846 + }, + { + "start": 13370.64, + "end": 13371.84, + "probability": 0.7236 + }, + { + "start": 13374.0, + "end": 13375.77, + "probability": 0.9895 + }, + { + "start": 13377.52, + "end": 13378.57, + "probability": 0.8147 + }, + { + "start": 13380.4, + "end": 13382.98, + "probability": 0.7676 + }, + { + "start": 13384.84, + "end": 13385.56, + "probability": 0.7985 + }, + { + "start": 13386.12, + "end": 13387.02, + "probability": 0.9423 + }, + { + "start": 13389.7, + "end": 13391.96, + "probability": 0.9263 + }, + { + "start": 13393.6, + "end": 13394.2, + "probability": 0.9034 + }, + { + "start": 13395.82, + "end": 13397.22, + "probability": 0.7813 + }, + { + "start": 13399.02, + "end": 13402.84, + "probability": 0.81 + }, + { + "start": 13403.52, + "end": 13405.74, + "probability": 0.9745 + }, + { + "start": 13407.06, + "end": 13408.18, + "probability": 0.4028 + }, + { + "start": 13410.2, + "end": 13411.36, + "probability": 0.8428 + }, + { + "start": 13411.92, + "end": 13412.96, + "probability": 0.9893 + }, + { + "start": 13414.16, + "end": 13416.62, + "probability": 0.9363 + }, + { + "start": 13417.74, + "end": 13418.38, + "probability": 0.9399 + }, + { + "start": 13419.34, + "end": 13420.5, + "probability": 0.7422 + }, + { + "start": 13421.32, + "end": 13423.4, + "probability": 0.8178 + }, + { + "start": 13424.62, + "end": 13427.08, + "probability": 0.9951 + }, + { + "start": 13428.3, + "end": 13429.64, + "probability": 0.9604 + }, + { + "start": 13431.24, + "end": 13431.28, + "probability": 0.7451 + }, + { + "start": 13431.98, + "end": 13433.18, + "probability": 0.922 + }, + { + "start": 13433.92, + "end": 13434.72, + "probability": 0.6003 + }, + { + "start": 13436.16, + "end": 13439.79, + "probability": 0.9712 + }, + { + "start": 13440.04, + "end": 13440.68, + "probability": 0.6913 + }, + { + "start": 13441.0, + "end": 13441.64, + "probability": 0.8274 + }, + { + "start": 13444.68, + "end": 13445.04, + "probability": 0.5191 + }, + { + "start": 13446.46, + "end": 13448.62, + "probability": 0.6248 + }, + { + "start": 13449.9, + "end": 13453.2, + "probability": 0.7945 + }, + { + "start": 13454.38, + "end": 13455.46, + "probability": 0.8841 + }, + { + "start": 13456.26, + "end": 13458.88, + "probability": 0.8956 + }, + { + "start": 13460.48, + "end": 13462.86, + "probability": 0.9922 + }, + { + "start": 13464.4, + "end": 13466.04, + "probability": 0.8524 + }, + { + "start": 13467.92, + "end": 13470.9, + "probability": 0.7645 + }, + { + "start": 13472.16, + "end": 13473.9, + "probability": 0.7464 + }, + { + "start": 13475.62, + "end": 13477.12, + "probability": 0.5424 + }, + { + "start": 13481.8, + "end": 13483.64, + "probability": 0.9915 + }, + { + "start": 13485.0, + "end": 13486.74, + "probability": 0.4991 + }, + { + "start": 13487.3, + "end": 13489.98, + "probability": 0.8519 + }, + { + "start": 13490.62, + "end": 13491.22, + "probability": 0.051 + }, + { + "start": 13492.8, + "end": 13494.5, + "probability": 0.8878 + }, + { + "start": 13496.3, + "end": 13500.08, + "probability": 0.9775 + }, + { + "start": 13500.42, + "end": 13503.16, + "probability": 0.8735 + }, + { + "start": 13503.8, + "end": 13505.46, + "probability": 0.423 + }, + { + "start": 13506.76, + "end": 13508.7, + "probability": 0.7943 + }, + { + "start": 13510.9, + "end": 13512.62, + "probability": 0.8456 + }, + { + "start": 13513.48, + "end": 13515.78, + "probability": 0.8971 + }, + { + "start": 13516.64, + "end": 13518.38, + "probability": 0.9875 + }, + { + "start": 13518.8, + "end": 13521.56, + "probability": 0.9829 + }, + { + "start": 13522.3, + "end": 13525.08, + "probability": 0.8583 + }, + { + "start": 13527.08, + "end": 13529.74, + "probability": 0.9775 + }, + { + "start": 13531.44, + "end": 13532.08, + "probability": 0.8025 + }, + { + "start": 13532.38, + "end": 13534.28, + "probability": 0.7617 + }, + { + "start": 13535.5, + "end": 13539.5, + "probability": 0.7971 + }, + { + "start": 13540.3, + "end": 13543.38, + "probability": 0.7655 + }, + { + "start": 13544.26, + "end": 13545.84, + "probability": 0.9719 + }, + { + "start": 13546.56, + "end": 13547.76, + "probability": 0.9402 + }, + { + "start": 13550.76, + "end": 13552.58, + "probability": 0.8472 + }, + { + "start": 13555.0, + "end": 13555.81, + "probability": 0.3028 + }, + { + "start": 13557.34, + "end": 13558.46, + "probability": 0.9831 + }, + { + "start": 13559.78, + "end": 13560.48, + "probability": 0.9788 + }, + { + "start": 13560.9, + "end": 13563.42, + "probability": 0.9858 + }, + { + "start": 13564.32, + "end": 13566.3, + "probability": 0.5602 + }, + { + "start": 13567.2, + "end": 13568.36, + "probability": 0.6221 + }, + { + "start": 13570.18, + "end": 13571.66, + "probability": 0.7404 + }, + { + "start": 13571.86, + "end": 13572.56, + "probability": 0.6065 + }, + { + "start": 13572.76, + "end": 13573.84, + "probability": 0.894 + }, + { + "start": 13573.96, + "end": 13576.16, + "probability": 0.6306 + }, + { + "start": 13576.4, + "end": 13577.96, + "probability": 0.918 + }, + { + "start": 13577.98, + "end": 13578.8, + "probability": 0.5959 + }, + { + "start": 13579.66, + "end": 13581.34, + "probability": 0.5122 + }, + { + "start": 13581.4, + "end": 13582.44, + "probability": 0.8178 + }, + { + "start": 13582.44, + "end": 13583.1, + "probability": 0.4607 + }, + { + "start": 13585.0, + "end": 13589.08, + "probability": 0.8611 + }, + { + "start": 13589.74, + "end": 13591.58, + "probability": 0.5626 + }, + { + "start": 13592.54, + "end": 13593.12, + "probability": 0.9585 + }, + { + "start": 13593.4, + "end": 13594.65, + "probability": 0.5259 + }, + { + "start": 13595.22, + "end": 13595.68, + "probability": 0.2119 + }, + { + "start": 13596.22, + "end": 13597.14, + "probability": 0.0627 + }, + { + "start": 13597.62, + "end": 13599.08, + "probability": 0.3274 + }, + { + "start": 13599.64, + "end": 13601.0, + "probability": 0.4282 + }, + { + "start": 13602.94, + "end": 13603.94, + "probability": 0.1885 + }, + { + "start": 13603.94, + "end": 13603.96, + "probability": 0.1392 + }, + { + "start": 13604.06, + "end": 13608.1, + "probability": 0.7824 + }, + { + "start": 13608.6, + "end": 13609.52, + "probability": 0.9137 + }, + { + "start": 13610.22, + "end": 13610.68, + "probability": 0.3533 + }, + { + "start": 13610.74, + "end": 13611.68, + "probability": 0.9474 + }, + { + "start": 13612.06, + "end": 13612.78, + "probability": 0.8409 + }, + { + "start": 13612.82, + "end": 13614.06, + "probability": 0.6843 + }, + { + "start": 13614.82, + "end": 13615.92, + "probability": 0.9307 + }, + { + "start": 13617.52, + "end": 13617.72, + "probability": 0.9915 + }, + { + "start": 13618.34, + "end": 13620.14, + "probability": 0.9205 + }, + { + "start": 13633.14, + "end": 13633.24, + "probability": 0.7255 + }, + { + "start": 13633.24, + "end": 13634.29, + "probability": 0.8308 + }, + { + "start": 13643.22, + "end": 13643.84, + "probability": 0.5309 + }, + { + "start": 13644.96, + "end": 13646.36, + "probability": 0.8609 + }, + { + "start": 13646.46, + "end": 13647.88, + "probability": 0.9823 + }, + { + "start": 13648.14, + "end": 13648.66, + "probability": 0.7885 + }, + { + "start": 13649.82, + "end": 13652.02, + "probability": 0.9331 + }, + { + "start": 13653.3, + "end": 13658.44, + "probability": 0.9847 + }, + { + "start": 13659.42, + "end": 13660.85, + "probability": 0.9441 + }, + { + "start": 13661.06, + "end": 13662.32, + "probability": 0.9589 + }, + { + "start": 13663.06, + "end": 13663.6, + "probability": 0.8201 + }, + { + "start": 13664.18, + "end": 13664.87, + "probability": 0.8278 + }, + { + "start": 13666.54, + "end": 13667.02, + "probability": 0.6389 + }, + { + "start": 13667.12, + "end": 13667.68, + "probability": 0.7996 + }, + { + "start": 13667.78, + "end": 13671.0, + "probability": 0.9348 + }, + { + "start": 13671.04, + "end": 13671.86, + "probability": 0.4985 + }, + { + "start": 13672.82, + "end": 13675.64, + "probability": 0.9817 + }, + { + "start": 13676.96, + "end": 13681.22, + "probability": 0.9925 + }, + { + "start": 13681.34, + "end": 13687.52, + "probability": 0.7803 + }, + { + "start": 13687.92, + "end": 13689.48, + "probability": 0.5556 + }, + { + "start": 13690.44, + "end": 13692.28, + "probability": 0.8323 + }, + { + "start": 13692.36, + "end": 13693.56, + "probability": 0.5022 + }, + { + "start": 13694.04, + "end": 13697.68, + "probability": 0.8317 + }, + { + "start": 13698.12, + "end": 13698.36, + "probability": 0.4493 + }, + { + "start": 13702.34, + "end": 13704.58, + "probability": 0.9045 + }, + { + "start": 13707.12, + "end": 13708.82, + "probability": 0.8267 + }, + { + "start": 13709.56, + "end": 13710.62, + "probability": 0.8159 + }, + { + "start": 13711.12, + "end": 13712.82, + "probability": 0.7673 + }, + { + "start": 13712.94, + "end": 13714.14, + "probability": 0.8447 + }, + { + "start": 13714.72, + "end": 13717.92, + "probability": 0.7122 + }, + { + "start": 13719.78, + "end": 13721.16, + "probability": 0.9769 + }, + { + "start": 13722.84, + "end": 13729.26, + "probability": 0.8159 + }, + { + "start": 13729.38, + "end": 13730.16, + "probability": 0.6543 + }, + { + "start": 13730.38, + "end": 13731.08, + "probability": 0.7276 + }, + { + "start": 13732.22, + "end": 13733.56, + "probability": 0.8694 + }, + { + "start": 13733.84, + "end": 13734.54, + "probability": 0.917 + }, + { + "start": 13734.9, + "end": 13740.44, + "probability": 0.6791 + }, + { + "start": 13740.68, + "end": 13741.04, + "probability": 0.9276 + }, + { + "start": 13742.34, + "end": 13746.14, + "probability": 0.9747 + }, + { + "start": 13746.46, + "end": 13747.58, + "probability": 0.9404 + }, + { + "start": 13747.96, + "end": 13750.14, + "probability": 0.9302 + }, + { + "start": 13750.58, + "end": 13753.3, + "probability": 0.7597 + }, + { + "start": 13753.74, + "end": 13755.02, + "probability": 0.9025 + }, + { + "start": 13755.6, + "end": 13756.52, + "probability": 0.8689 + }, + { + "start": 13757.12, + "end": 13761.82, + "probability": 0.9635 + }, + { + "start": 13763.22, + "end": 13765.78, + "probability": 0.9956 + }, + { + "start": 13765.94, + "end": 13769.36, + "probability": 0.9761 + }, + { + "start": 13770.22, + "end": 13772.58, + "probability": 0.9956 + }, + { + "start": 13772.78, + "end": 13775.84, + "probability": 0.9692 + }, + { + "start": 13776.5, + "end": 13779.5, + "probability": 0.979 + }, + { + "start": 13780.56, + "end": 13782.34, + "probability": 0.8284 + }, + { + "start": 13782.4, + "end": 13782.68, + "probability": 0.8234 + }, + { + "start": 13782.84, + "end": 13785.8, + "probability": 0.8499 + }, + { + "start": 13788.24, + "end": 13789.22, + "probability": 0.3141 + }, + { + "start": 13790.76, + "end": 13793.64, + "probability": 0.9297 + }, + { + "start": 13794.22, + "end": 13795.04, + "probability": 0.7682 + }, + { + "start": 13795.96, + "end": 13796.56, + "probability": 0.8125 + }, + { + "start": 13797.08, + "end": 13800.1, + "probability": 0.8469 + }, + { + "start": 13801.82, + "end": 13806.24, + "probability": 0.9138 + }, + { + "start": 13809.12, + "end": 13811.38, + "probability": 0.4972 + }, + { + "start": 13811.58, + "end": 13812.76, + "probability": 0.9514 + }, + { + "start": 13813.5, + "end": 13816.04, + "probability": 0.9507 + }, + { + "start": 13816.92, + "end": 13819.1, + "probability": 0.7543 + }, + { + "start": 13819.54, + "end": 13820.86, + "probability": 0.752 + }, + { + "start": 13821.3, + "end": 13822.06, + "probability": 0.6737 + }, + { + "start": 13822.42, + "end": 13823.66, + "probability": 0.5672 + }, + { + "start": 13823.94, + "end": 13826.8, + "probability": 0.334 + }, + { + "start": 13827.36, + "end": 13828.77, + "probability": 0.9431 + }, + { + "start": 13831.46, + "end": 13832.78, + "probability": 0.8501 + }, + { + "start": 13833.5, + "end": 13838.5, + "probability": 0.9592 + }, + { + "start": 13840.28, + "end": 13847.44, + "probability": 0.826 + }, + { + "start": 13848.02, + "end": 13849.44, + "probability": 0.6625 + }, + { + "start": 13850.18, + "end": 13851.16, + "probability": 0.8848 + }, + { + "start": 13852.0, + "end": 13855.68, + "probability": 0.9348 + }, + { + "start": 13856.2, + "end": 13859.08, + "probability": 0.9428 + }, + { + "start": 13862.8, + "end": 13865.06, + "probability": 0.7968 + }, + { + "start": 13866.04, + "end": 13869.2, + "probability": 0.9837 + }, + { + "start": 13869.76, + "end": 13872.88, + "probability": 0.9788 + }, + { + "start": 13873.7, + "end": 13876.32, + "probability": 0.9497 + }, + { + "start": 13877.76, + "end": 13880.6, + "probability": 0.9813 + }, + { + "start": 13882.06, + "end": 13883.11, + "probability": 0.9789 + }, + { + "start": 13883.84, + "end": 13885.25, + "probability": 0.947 + }, + { + "start": 13885.92, + "end": 13886.58, + "probability": 0.5881 + }, + { + "start": 13887.26, + "end": 13888.94, + "probability": 0.7802 + }, + { + "start": 13889.48, + "end": 13892.0, + "probability": 0.8542 + }, + { + "start": 13892.48, + "end": 13892.84, + "probability": 0.7134 + }, + { + "start": 13893.14, + "end": 13895.24, + "probability": 0.7757 + }, + { + "start": 13896.6, + "end": 13897.18, + "probability": 0.6756 + }, + { + "start": 13899.06, + "end": 13901.46, + "probability": 0.9292 + }, + { + "start": 13901.56, + "end": 13902.12, + "probability": 0.5562 + }, + { + "start": 13902.18, + "end": 13902.3, + "probability": 0.7811 + }, + { + "start": 13902.38, + "end": 13902.68, + "probability": 0.7534 + }, + { + "start": 13903.06, + "end": 13904.34, + "probability": 0.9893 + }, + { + "start": 13921.58, + "end": 13921.74, + "probability": 0.6442 + }, + { + "start": 13921.74, + "end": 13922.3, + "probability": 0.9577 + }, + { + "start": 13922.94, + "end": 13923.4, + "probability": 0.8402 + }, + { + "start": 13923.4, + "end": 13924.62, + "probability": 0.5571 + }, + { + "start": 13925.02, + "end": 13928.3, + "probability": 0.5166 + }, + { + "start": 13928.66, + "end": 13938.62, + "probability": 0.9348 + }, + { + "start": 13940.04, + "end": 13944.72, + "probability": 0.9863 + }, + { + "start": 13946.24, + "end": 13946.86, + "probability": 0.9316 + }, + { + "start": 13947.5, + "end": 13948.4, + "probability": 0.1513 + }, + { + "start": 13949.5, + "end": 13950.74, + "probability": 0.8167 + }, + { + "start": 13951.74, + "end": 13953.48, + "probability": 0.3285 + }, + { + "start": 13953.48, + "end": 13954.72, + "probability": 0.8014 + }, + { + "start": 13954.78, + "end": 13956.3, + "probability": 0.9763 + }, + { + "start": 13956.8, + "end": 13958.46, + "probability": 0.2321 + }, + { + "start": 13958.68, + "end": 13959.56, + "probability": 0.4512 + }, + { + "start": 13960.88, + "end": 13961.42, + "probability": 0.6054 + }, + { + "start": 13961.64, + "end": 13962.28, + "probability": 0.4267 + }, + { + "start": 13963.4, + "end": 13965.06, + "probability": 0.6835 + }, + { + "start": 13965.22, + "end": 13966.41, + "probability": 0.8617 + }, + { + "start": 13966.74, + "end": 13966.78, + "probability": 0.51 + }, + { + "start": 13966.78, + "end": 13968.98, + "probability": 0.6833 + }, + { + "start": 13968.98, + "end": 13970.03, + "probability": 0.5131 + }, + { + "start": 13971.36, + "end": 13971.62, + "probability": 0.7907 + }, + { + "start": 13971.82, + "end": 13971.82, + "probability": 0.7835 + }, + { + "start": 13972.06, + "end": 13972.38, + "probability": 0.3576 + }, + { + "start": 13973.3, + "end": 13973.46, + "probability": 0.1323 + }, + { + "start": 13973.46, + "end": 13973.46, + "probability": 0.017 + }, + { + "start": 13973.46, + "end": 13978.06, + "probability": 0.8013 + }, + { + "start": 13978.06, + "end": 13981.54, + "probability": 0.9915 + }, + { + "start": 13981.74, + "end": 13982.22, + "probability": 0.6044 + }, + { + "start": 13984.66, + "end": 13986.36, + "probability": 0.643 + }, + { + "start": 13987.98, + "end": 13991.53, + "probability": 0.853 + }, + { + "start": 13993.2, + "end": 13995.6, + "probability": 0.9375 + }, + { + "start": 13998.68, + "end": 13999.04, + "probability": 0.2828 + }, + { + "start": 14000.14, + "end": 14001.6, + "probability": 0.6819 + }, + { + "start": 14002.52, + "end": 14005.06, + "probability": 0.5533 + }, + { + "start": 14005.6, + "end": 14007.18, + "probability": 0.7961 + }, + { + "start": 14007.24, + "end": 14007.82, + "probability": 0.6945 + }, + { + "start": 14009.0, + "end": 14014.98, + "probability": 0.8384 + }, + { + "start": 14015.9, + "end": 14016.52, + "probability": 0.9099 + }, + { + "start": 14016.7, + "end": 14019.94, + "probability": 0.9067 + }, + { + "start": 14021.14, + "end": 14021.7, + "probability": 0.6292 + }, + { + "start": 14023.34, + "end": 14025.86, + "probability": 0.9789 + }, + { + "start": 14026.1, + "end": 14027.98, + "probability": 0.9232 + }, + { + "start": 14030.44, + "end": 14032.59, + "probability": 0.9803 + }, + { + "start": 14034.3, + "end": 14037.08, + "probability": 0.9401 + }, + { + "start": 14038.48, + "end": 14040.6, + "probability": 0.7407 + }, + { + "start": 14040.68, + "end": 14044.66, + "probability": 0.9945 + }, + { + "start": 14046.38, + "end": 14049.32, + "probability": 0.9429 + }, + { + "start": 14051.64, + "end": 14055.44, + "probability": 0.8262 + }, + { + "start": 14056.08, + "end": 14056.86, + "probability": 0.9882 + }, + { + "start": 14057.46, + "end": 14062.84, + "probability": 0.7201 + }, + { + "start": 14063.88, + "end": 14071.4, + "probability": 0.9547 + }, + { + "start": 14072.56, + "end": 14075.92, + "probability": 0.7856 + }, + { + "start": 14076.96, + "end": 14078.02, + "probability": 0.6779 + }, + { + "start": 14079.0, + "end": 14080.54, + "probability": 0.9547 + }, + { + "start": 14082.44, + "end": 14087.66, + "probability": 0.9779 + }, + { + "start": 14088.9, + "end": 14093.88, + "probability": 0.9854 + }, + { + "start": 14095.5, + "end": 14096.48, + "probability": 0.7861 + }, + { + "start": 14098.78, + "end": 14101.44, + "probability": 0.5656 + }, + { + "start": 14102.56, + "end": 14103.24, + "probability": 0.6236 + }, + { + "start": 14103.48, + "end": 14103.96, + "probability": 0.8945 + }, + { + "start": 14104.1, + "end": 14105.1, + "probability": 0.9824 + }, + { + "start": 14105.3, + "end": 14107.14, + "probability": 0.8699 + }, + { + "start": 14107.24, + "end": 14107.34, + "probability": 0.1429 + }, + { + "start": 14107.58, + "end": 14108.06, + "probability": 0.0379 + }, + { + "start": 14108.06, + "end": 14111.42, + "probability": 0.9907 + }, + { + "start": 14112.3, + "end": 14115.6, + "probability": 0.9396 + }, + { + "start": 14115.64, + "end": 14118.1, + "probability": 0.8535 + }, + { + "start": 14118.9, + "end": 14120.1, + "probability": 0.7148 + }, + { + "start": 14121.12, + "end": 14124.6, + "probability": 0.9552 + }, + { + "start": 14124.84, + "end": 14127.38, + "probability": 0.958 + }, + { + "start": 14128.82, + "end": 14129.92, + "probability": 0.9302 + }, + { + "start": 14130.68, + "end": 14131.96, + "probability": 0.3484 + }, + { + "start": 14133.46, + "end": 14133.68, + "probability": 0.0655 + }, + { + "start": 14133.68, + "end": 14138.48, + "probability": 0.9052 + }, + { + "start": 14138.54, + "end": 14140.3, + "probability": 0.9106 + }, + { + "start": 14140.54, + "end": 14141.42, + "probability": 0.2465 + }, + { + "start": 14142.28, + "end": 14142.89, + "probability": 0.9058 + }, + { + "start": 14143.88, + "end": 14146.16, + "probability": 0.5037 + }, + { + "start": 14146.3, + "end": 14150.7, + "probability": 0.9795 + }, + { + "start": 14150.86, + "end": 14153.38, + "probability": 0.464 + }, + { + "start": 14153.84, + "end": 14159.62, + "probability": 0.8344 + }, + { + "start": 14160.14, + "end": 14160.63, + "probability": 0.8564 + }, + { + "start": 14160.86, + "end": 14163.34, + "probability": 0.5784 + }, + { + "start": 14165.7, + "end": 14165.8, + "probability": 0.0386 + }, + { + "start": 14165.8, + "end": 14165.8, + "probability": 0.1498 + }, + { + "start": 14165.8, + "end": 14166.62, + "probability": 0.8051 + }, + { + "start": 14166.74, + "end": 14167.22, + "probability": 0.3056 + }, + { + "start": 14168.13, + "end": 14168.68, + "probability": 0.0544 + }, + { + "start": 14168.78, + "end": 14169.14, + "probability": 0.2982 + }, + { + "start": 14169.14, + "end": 14171.36, + "probability": 0.819 + }, + { + "start": 14171.48, + "end": 14173.7, + "probability": 0.874 + }, + { + "start": 14173.8, + "end": 14174.16, + "probability": 0.5954 + }, + { + "start": 14174.5, + "end": 14174.98, + "probability": 0.3175 + }, + { + "start": 14174.98, + "end": 14174.98, + "probability": 0.0708 + }, + { + "start": 14174.98, + "end": 14174.98, + "probability": 0.0068 + }, + { + "start": 14174.98, + "end": 14175.58, + "probability": 0.429 + }, + { + "start": 14175.58, + "end": 14175.58, + "probability": 0.1048 + }, + { + "start": 14175.58, + "end": 14176.24, + "probability": 0.6228 + }, + { + "start": 14176.32, + "end": 14177.3, + "probability": 0.9021 + }, + { + "start": 14177.94, + "end": 14182.26, + "probability": 0.8428 + }, + { + "start": 14182.5, + "end": 14185.16, + "probability": 0.8572 + }, + { + "start": 14185.84, + "end": 14189.54, + "probability": 0.9427 + }, + { + "start": 14190.28, + "end": 14192.68, + "probability": 0.9062 + }, + { + "start": 14193.04, + "end": 14197.42, + "probability": 0.7988 + }, + { + "start": 14198.26, + "end": 14200.68, + "probability": 0.9906 + }, + { + "start": 14201.76, + "end": 14204.74, + "probability": 0.9972 + }, + { + "start": 14205.56, + "end": 14208.16, + "probability": 0.8854 + }, + { + "start": 14209.06, + "end": 14212.36, + "probability": 0.9821 + }, + { + "start": 14213.02, + "end": 14219.78, + "probability": 0.9846 + }, + { + "start": 14220.04, + "end": 14223.28, + "probability": 0.925 + }, + { + "start": 14224.72, + "end": 14227.76, + "probability": 0.932 + }, + { + "start": 14227.84, + "end": 14231.04, + "probability": 0.7482 + }, + { + "start": 14232.56, + "end": 14235.1, + "probability": 0.9604 + }, + { + "start": 14235.22, + "end": 14241.18, + "probability": 0.9729 + }, + { + "start": 14242.22, + "end": 14245.44, + "probability": 0.9705 + }, + { + "start": 14246.2, + "end": 14248.68, + "probability": 0.8981 + }, + { + "start": 14249.54, + "end": 14250.74, + "probability": 0.5028 + }, + { + "start": 14253.18, + "end": 14254.96, + "probability": 0.6909 + }, + { + "start": 14255.06, + "end": 14256.9, + "probability": 0.8032 + }, + { + "start": 14256.98, + "end": 14261.1, + "probability": 0.8252 + }, + { + "start": 14261.82, + "end": 14263.05, + "probability": 0.9878 + }, + { + "start": 14264.04, + "end": 14269.68, + "probability": 0.968 + }, + { + "start": 14269.76, + "end": 14271.3, + "probability": 0.8512 + }, + { + "start": 14271.74, + "end": 14273.13, + "probability": 0.9863 + }, + { + "start": 14273.94, + "end": 14275.42, + "probability": 0.5513 + }, + { + "start": 14279.72, + "end": 14282.82, + "probability": 0.9294 + }, + { + "start": 14283.76, + "end": 14286.22, + "probability": 0.6986 + }, + { + "start": 14286.3, + "end": 14288.72, + "probability": 0.8562 + }, + { + "start": 14288.86, + "end": 14294.84, + "probability": 0.9588 + }, + { + "start": 14295.22, + "end": 14297.92, + "probability": 0.9886 + }, + { + "start": 14298.1, + "end": 14301.38, + "probability": 0.8784 + }, + { + "start": 14302.32, + "end": 14308.35, + "probability": 0.9888 + }, + { + "start": 14308.96, + "end": 14315.22, + "probability": 0.983 + }, + { + "start": 14315.32, + "end": 14319.38, + "probability": 0.9817 + }, + { + "start": 14319.66, + "end": 14325.84, + "probability": 0.9841 + }, + { + "start": 14327.34, + "end": 14329.3, + "probability": 0.6286 + }, + { + "start": 14330.12, + "end": 14335.58, + "probability": 0.9922 + }, + { + "start": 14335.68, + "end": 14340.78, + "probability": 0.9627 + }, + { + "start": 14341.44, + "end": 14347.04, + "probability": 0.9983 + }, + { + "start": 14348.06, + "end": 14348.62, + "probability": 0.7289 + }, + { + "start": 14348.82, + "end": 14349.7, + "probability": 0.9754 + }, + { + "start": 14350.38, + "end": 14353.26, + "probability": 0.9558 + }, + { + "start": 14354.56, + "end": 14357.34, + "probability": 0.968 + }, + { + "start": 14358.5, + "end": 14366.4, + "probability": 0.9785 + }, + { + "start": 14366.96, + "end": 14366.96, + "probability": 0.1347 + }, + { + "start": 14366.96, + "end": 14368.05, + "probability": 0.9961 + }, + { + "start": 14368.78, + "end": 14369.16, + "probability": 0.5041 + }, + { + "start": 14369.24, + "end": 14370.15, + "probability": 0.8664 + }, + { + "start": 14370.68, + "end": 14372.08, + "probability": 0.9072 + }, + { + "start": 14372.94, + "end": 14376.92, + "probability": 0.9417 + }, + { + "start": 14377.2, + "end": 14377.66, + "probability": 0.8398 + }, + { + "start": 14377.9, + "end": 14377.9, + "probability": 0.0772 + }, + { + "start": 14377.9, + "end": 14382.62, + "probability": 0.1153 + }, + { + "start": 14382.74, + "end": 14383.3, + "probability": 0.8264 + }, + { + "start": 14398.28, + "end": 14399.78, + "probability": 0.0594 + }, + { + "start": 14401.04, + "end": 14402.4, + "probability": 0.362 + }, + { + "start": 14402.4, + "end": 14403.37, + "probability": 0.5124 + }, + { + "start": 14404.54, + "end": 14404.54, + "probability": 0.173 + }, + { + "start": 14405.08, + "end": 14405.95, + "probability": 0.0946 + }, + { + "start": 14406.94, + "end": 14408.12, + "probability": 0.0982 + }, + { + "start": 14408.14, + "end": 14408.6, + "probability": 0.218 + }, + { + "start": 14410.04, + "end": 14411.7, + "probability": 0.1736 + }, + { + "start": 14412.68, + "end": 14416.26, + "probability": 0.1201 + }, + { + "start": 14417.2, + "end": 14419.58, + "probability": 0.0558 + }, + { + "start": 14420.46, + "end": 14421.62, + "probability": 0.5349 + }, + { + "start": 14423.32, + "end": 14424.16, + "probability": 0.0382 + }, + { + "start": 14426.88, + "end": 14427.56, + "probability": 0.0001 + }, + { + "start": 14431.84, + "end": 14432.92, + "probability": 0.0915 + }, + { + "start": 14432.92, + "end": 14435.32, + "probability": 0.1375 + }, + { + "start": 14435.56, + "end": 14436.88, + "probability": 0.0766 + }, + { + "start": 14439.14, + "end": 14441.68, + "probability": 0.0224 + }, + { + "start": 14442.3, + "end": 14444.26, + "probability": 0.136 + }, + { + "start": 14444.96, + "end": 14445.84, + "probability": 0.2158 + }, + { + "start": 14447.04, + "end": 14449.82, + "probability": 0.0121 + }, + { + "start": 14449.82, + "end": 14449.92, + "probability": 0.0271 + }, + { + "start": 14452.47, + "end": 14452.54, + "probability": 0.0335 + }, + { + "start": 14452.6, + "end": 14452.6, + "probability": 0.2586 + }, + { + "start": 14452.76, + "end": 14453.96, + "probability": 0.0218 + }, + { + "start": 14455.26, + "end": 14457.74, + "probability": 0.0174 + }, + { + "start": 14458.46, + "end": 14459.98, + "probability": 0.064 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.0, + "end": 14461.0, + "probability": 0.0 + }, + { + "start": 14461.5, + "end": 14461.78, + "probability": 0.0909 + }, + { + "start": 14461.78, + "end": 14461.78, + "probability": 0.2841 + }, + { + "start": 14461.78, + "end": 14461.78, + "probability": 0.007 + }, + { + "start": 14461.78, + "end": 14461.78, + "probability": 0.1739 + }, + { + "start": 14461.78, + "end": 14463.5, + "probability": 0.2534 + }, + { + "start": 14464.18, + "end": 14465.64, + "probability": 0.5503 + }, + { + "start": 14466.8, + "end": 14469.48, + "probability": 0.6026 + }, + { + "start": 14469.52, + "end": 14470.15, + "probability": 0.6016 + }, + { + "start": 14471.16, + "end": 14472.02, + "probability": 0.0502 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14582.0, + "probability": 0.0 + }, + { + "start": 14582.0, + "end": 14583.52, + "probability": 0.9958 + }, + { + "start": 14584.08, + "end": 14586.42, + "probability": 0.782 + }, + { + "start": 14586.98, + "end": 14592.92, + "probability": 0.9934 + }, + { + "start": 14593.14, + "end": 14597.26, + "probability": 0.9956 + }, + { + "start": 14598.18, + "end": 14602.18, + "probability": 0.9864 + }, + { + "start": 14602.74, + "end": 14604.38, + "probability": 0.9124 + }, + { + "start": 14606.52, + "end": 14607.32, + "probability": 0.9285 + }, + { + "start": 14607.4, + "end": 14608.24, + "probability": 0.8539 + }, + { + "start": 14608.82, + "end": 14610.08, + "probability": 0.9621 + }, + { + "start": 14611.4, + "end": 14615.4, + "probability": 0.98 + }, + { + "start": 14617.94, + "end": 14618.52, + "probability": 0.873 + }, + { + "start": 14619.88, + "end": 14623.14, + "probability": 0.9471 + }, + { + "start": 14624.06, + "end": 14627.8, + "probability": 0.9639 + }, + { + "start": 14627.92, + "end": 14629.12, + "probability": 0.9906 + }, + { + "start": 14629.18, + "end": 14631.48, + "probability": 0.9099 + }, + { + "start": 14631.98, + "end": 14637.64, + "probability": 0.9741 + }, + { + "start": 14637.9, + "end": 14639.32, + "probability": 0.968 + }, + { + "start": 14639.86, + "end": 14644.4, + "probability": 0.991 + }, + { + "start": 14644.5, + "end": 14645.76, + "probability": 0.7336 + }, + { + "start": 14646.52, + "end": 14647.82, + "probability": 0.9338 + }, + { + "start": 14648.58, + "end": 14648.74, + "probability": 0.5316 + }, + { + "start": 14649.28, + "end": 14653.1, + "probability": 0.9446 + }, + { + "start": 14653.54, + "end": 14654.12, + "probability": 0.9853 + }, + { + "start": 14658.96, + "end": 14661.51, + "probability": 0.9917 + }, + { + "start": 14661.54, + "end": 14663.94, + "probability": 0.9885 + }, + { + "start": 14664.62, + "end": 14665.38, + "probability": 0.9929 + }, + { + "start": 14665.98, + "end": 14666.48, + "probability": 0.3853 + }, + { + "start": 14666.5, + "end": 14668.42, + "probability": 0.978 + }, + { + "start": 14668.52, + "end": 14669.48, + "probability": 0.6939 + }, + { + "start": 14669.5, + "end": 14671.12, + "probability": 0.5996 + }, + { + "start": 14671.12, + "end": 14672.38, + "probability": 0.499 + }, + { + "start": 14673.14, + "end": 14675.74, + "probability": 0.946 + }, + { + "start": 14675.88, + "end": 14678.22, + "probability": 0.6633 + }, + { + "start": 14678.38, + "end": 14683.28, + "probability": 0.9785 + }, + { + "start": 14683.62, + "end": 14685.3, + "probability": 0.8873 + }, + { + "start": 14685.64, + "end": 14688.76, + "probability": 0.7899 + }, + { + "start": 14689.18, + "end": 14693.3, + "probability": 0.7671 + }, + { + "start": 14693.54, + "end": 14694.02, + "probability": 0.4639 + }, + { + "start": 14695.12, + "end": 14700.38, + "probability": 0.6646 + }, + { + "start": 14702.5, + "end": 14702.8, + "probability": 0.2018 + }, + { + "start": 14702.8, + "end": 14703.08, + "probability": 0.0589 + }, + { + "start": 14703.08, + "end": 14703.44, + "probability": 0.043 + }, + { + "start": 14703.44, + "end": 14703.44, + "probability": 0.0483 + }, + { + "start": 14703.44, + "end": 14703.44, + "probability": 0.0836 + }, + { + "start": 14703.44, + "end": 14704.52, + "probability": 0.424 + }, + { + "start": 14704.58, + "end": 14707.73, + "probability": 0.9015 + }, + { + "start": 14708.84, + "end": 14711.36, + "probability": 0.7979 + }, + { + "start": 14711.44, + "end": 14714.32, + "probability": 0.9722 + }, + { + "start": 14715.0, + "end": 14717.5, + "probability": 0.4067 + }, + { + "start": 14718.52, + "end": 14719.68, + "probability": 0.9477 + }, + { + "start": 14722.58, + "end": 14723.58, + "probability": 0.595 + }, + { + "start": 14727.18, + "end": 14729.18, + "probability": 0.7542 + }, + { + "start": 14733.4, + "end": 14737.82, + "probability": 0.9956 + }, + { + "start": 14739.16, + "end": 14740.22, + "probability": 0.9214 + }, + { + "start": 14740.3, + "end": 14741.48, + "probability": 0.4927 + }, + { + "start": 14741.68, + "end": 14743.06, + "probability": 0.4127 + }, + { + "start": 14743.12, + "end": 14747.64, + "probability": 0.6667 + }, + { + "start": 14748.18, + "end": 14750.38, + "probability": 0.893 + }, + { + "start": 14751.32, + "end": 14753.5, + "probability": 0.9388 + }, + { + "start": 14753.8, + "end": 14755.1, + "probability": 0.9878 + }, + { + "start": 14755.26, + "end": 14757.24, + "probability": 0.8174 + }, + { + "start": 14758.12, + "end": 14760.06, + "probability": 0.792 + }, + { + "start": 14761.28, + "end": 14766.62, + "probability": 0.9765 + }, + { + "start": 14767.28, + "end": 14768.66, + "probability": 0.8794 + }, + { + "start": 14769.26, + "end": 14772.7, + "probability": 0.9907 + }, + { + "start": 14772.74, + "end": 14773.7, + "probability": 0.8962 + }, + { + "start": 14774.14, + "end": 14776.18, + "probability": 0.9594 + }, + { + "start": 14776.42, + "end": 14780.14, + "probability": 0.9011 + }, + { + "start": 14780.8, + "end": 14785.54, + "probability": 0.9833 + }, + { + "start": 14785.64, + "end": 14786.34, + "probability": 0.8744 + }, + { + "start": 14787.42, + "end": 14790.1, + "probability": 0.9541 + }, + { + "start": 14790.86, + "end": 14791.86, + "probability": 0.6857 + }, + { + "start": 14792.78, + "end": 14794.12, + "probability": 0.9974 + }, + { + "start": 14794.9, + "end": 14796.56, + "probability": 0.7627 + }, + { + "start": 14796.96, + "end": 14797.96, + "probability": 0.7563 + }, + { + "start": 14799.12, + "end": 14799.62, + "probability": 0.9292 + }, + { + "start": 14800.14, + "end": 14801.24, + "probability": 0.8722 + }, + { + "start": 14801.26, + "end": 14801.98, + "probability": 0.9888 + }, + { + "start": 14802.06, + "end": 14802.68, + "probability": 0.835 + }, + { + "start": 14802.92, + "end": 14803.76, + "probability": 0.9381 + }, + { + "start": 14804.26, + "end": 14804.66, + "probability": 0.8613 + }, + { + "start": 14804.82, + "end": 14807.02, + "probability": 0.9927 + }, + { + "start": 14807.12, + "end": 14807.98, + "probability": 0.978 + }, + { + "start": 14808.76, + "end": 14811.96, + "probability": 0.7404 + }, + { + "start": 14812.92, + "end": 14813.94, + "probability": 0.8473 + }, + { + "start": 14814.02, + "end": 14814.1, + "probability": 0.6301 + }, + { + "start": 14814.14, + "end": 14815.04, + "probability": 0.6908 + }, + { + "start": 14815.14, + "end": 14817.1, + "probability": 0.7927 + }, + { + "start": 14817.5, + "end": 14820.48, + "probability": 0.9185 + }, + { + "start": 14821.2, + "end": 14823.5, + "probability": 0.7112 + }, + { + "start": 14824.08, + "end": 14828.32, + "probability": 0.855 + }, + { + "start": 14828.62, + "end": 14832.22, + "probability": 0.9681 + }, + { + "start": 14832.6, + "end": 14834.6, + "probability": 0.9884 + }, + { + "start": 14834.9, + "end": 14838.42, + "probability": 0.9912 + }, + { + "start": 14838.42, + "end": 14842.96, + "probability": 0.9608 + }, + { + "start": 14843.48, + "end": 14843.76, + "probability": 0.6015 + }, + { + "start": 14845.14, + "end": 14845.76, + "probability": 0.9398 + }, + { + "start": 14845.9, + "end": 14848.14, + "probability": 0.9817 + }, + { + "start": 14848.46, + "end": 14850.84, + "probability": 0.9238 + }, + { + "start": 14851.64, + "end": 14853.4, + "probability": 0.7378 + }, + { + "start": 14853.6, + "end": 14859.06, + "probability": 0.9375 + }, + { + "start": 14859.06, + "end": 14864.52, + "probability": 0.7988 + }, + { + "start": 14864.76, + "end": 14866.18, + "probability": 0.8785 + }, + { + "start": 14866.58, + "end": 14872.42, + "probability": 0.99 + }, + { + "start": 14872.76, + "end": 14873.08, + "probability": 0.676 + }, + { + "start": 14873.72, + "end": 14876.28, + "probability": 0.7643 + }, + { + "start": 14896.58, + "end": 14897.64, + "probability": 0.4783 + }, + { + "start": 14903.18, + "end": 14905.42, + "probability": 0.9468 + }, + { + "start": 14906.02, + "end": 14909.68, + "probability": 0.9642 + }, + { + "start": 14909.92, + "end": 14914.58, + "probability": 0.9762 + }, + { + "start": 14915.22, + "end": 14917.76, + "probability": 0.9939 + }, + { + "start": 14918.58, + "end": 14923.9, + "probability": 0.6501 + }, + { + "start": 14924.7, + "end": 14927.44, + "probability": 0.9751 + }, + { + "start": 14928.32, + "end": 14929.6, + "probability": 0.9832 + }, + { + "start": 14930.78, + "end": 14933.36, + "probability": 0.9673 + }, + { + "start": 14934.3, + "end": 14940.4, + "probability": 0.9901 + }, + { + "start": 14941.0, + "end": 14948.88, + "probability": 0.9969 + }, + { + "start": 14949.52, + "end": 14951.08, + "probability": 0.6687 + }, + { + "start": 14951.4, + "end": 14956.1, + "probability": 0.9942 + }, + { + "start": 14956.14, + "end": 14957.8, + "probability": 0.9532 + }, + { + "start": 14958.88, + "end": 14960.86, + "probability": 0.9922 + }, + { + "start": 14961.5, + "end": 14961.74, + "probability": 0.2481 + }, + { + "start": 14963.26, + "end": 14969.26, + "probability": 0.9917 + }, + { + "start": 14969.66, + "end": 14970.1, + "probability": 0.09 + }, + { + "start": 14970.2, + "end": 14973.52, + "probability": 0.6847 + }, + { + "start": 14975.12, + "end": 14977.76, + "probability": 0.8676 + }, + { + "start": 14979.02, + "end": 14983.26, + "probability": 0.926 + }, + { + "start": 14984.52, + "end": 14985.7, + "probability": 0.9895 + }, + { + "start": 14987.48, + "end": 14993.38, + "probability": 0.9387 + }, + { + "start": 14993.56, + "end": 14994.56, + "probability": 0.8086 + }, + { + "start": 14994.56, + "end": 14997.66, + "probability": 0.9031 + }, + { + "start": 14998.12, + "end": 14999.06, + "probability": 0.7467 + }, + { + "start": 15000.06, + "end": 15002.62, + "probability": 0.8126 + }, + { + "start": 15002.86, + "end": 15005.08, + "probability": 0.9677 + }, + { + "start": 15006.48, + "end": 15009.64, + "probability": 0.8896 + }, + { + "start": 15010.66, + "end": 15012.26, + "probability": 0.4828 + }, + { + "start": 15013.48, + "end": 15015.82, + "probability": 0.9793 + }, + { + "start": 15016.44, + "end": 15017.9, + "probability": 0.9913 + }, + { + "start": 15018.52, + "end": 15022.4, + "probability": 0.995 + }, + { + "start": 15022.9, + "end": 15027.22, + "probability": 0.8276 + }, + { + "start": 15028.46, + "end": 15029.16, + "probability": 0.5103 + }, + { + "start": 15029.36, + "end": 15032.18, + "probability": 0.8608 + }, + { + "start": 15032.32, + "end": 15034.78, + "probability": 0.8734 + }, + { + "start": 15035.34, + "end": 15037.12, + "probability": 0.8909 + }, + { + "start": 15037.76, + "end": 15042.58, + "probability": 0.9486 + }, + { + "start": 15043.96, + "end": 15050.18, + "probability": 0.9664 + }, + { + "start": 15050.76, + "end": 15056.82, + "probability": 0.9982 + }, + { + "start": 15056.82, + "end": 15062.56, + "probability": 0.9974 + }, + { + "start": 15062.68, + "end": 15063.88, + "probability": 0.8191 + }, + { + "start": 15064.4, + "end": 15066.42, + "probability": 0.9929 + }, + { + "start": 15067.62, + "end": 15068.14, + "probability": 0.7479 + }, + { + "start": 15068.52, + "end": 15069.48, + "probability": 0.9129 + }, + { + "start": 15070.44, + "end": 15071.48, + "probability": 0.984 + }, + { + "start": 15072.3, + "end": 15076.76, + "probability": 0.9937 + }, + { + "start": 15076.76, + "end": 15081.24, + "probability": 0.9983 + }, + { + "start": 15082.2, + "end": 15083.97, + "probability": 0.8779 + }, + { + "start": 15084.86, + "end": 15085.3, + "probability": 0.9746 + }, + { + "start": 15085.98, + "end": 15089.72, + "probability": 0.999 + }, + { + "start": 15090.3, + "end": 15095.44, + "probability": 0.998 + }, + { + "start": 15096.18, + "end": 15098.4, + "probability": 0.847 + }, + { + "start": 15098.48, + "end": 15101.42, + "probability": 0.9824 + }, + { + "start": 15102.14, + "end": 15102.32, + "probability": 0.2863 + }, + { + "start": 15102.32, + "end": 15102.96, + "probability": 0.584 + }, + { + "start": 15104.14, + "end": 15109.34, + "probability": 0.9951 + }, + { + "start": 15109.82, + "end": 15110.7, + "probability": 0.7844 + }, + { + "start": 15110.82, + "end": 15116.98, + "probability": 0.9875 + }, + { + "start": 15117.68, + "end": 15121.94, + "probability": 0.9941 + }, + { + "start": 15121.94, + "end": 15126.3, + "probability": 0.9839 + }, + { + "start": 15126.48, + "end": 15129.9, + "probability": 0.9919 + }, + { + "start": 15130.2, + "end": 15130.66, + "probability": 0.7125 + }, + { + "start": 15131.0, + "end": 15133.42, + "probability": 0.9497 + }, + { + "start": 15134.94, + "end": 15137.32, + "probability": 0.9841 + }, + { + "start": 15149.96, + "end": 15151.68, + "probability": 0.7289 + }, + { + "start": 15155.54, + "end": 15156.58, + "probability": 0.4871 + }, + { + "start": 15157.32, + "end": 15160.32, + "probability": 0.8011 + }, + { + "start": 15160.94, + "end": 15161.94, + "probability": 0.6711 + }, + { + "start": 15163.92, + "end": 15168.8, + "probability": 0.962 + }, + { + "start": 15169.64, + "end": 15176.18, + "probability": 0.9074 + }, + { + "start": 15176.3, + "end": 15177.14, + "probability": 0.716 + }, + { + "start": 15177.28, + "end": 15182.04, + "probability": 0.9783 + }, + { + "start": 15183.1, + "end": 15185.2, + "probability": 0.9711 + }, + { + "start": 15186.02, + "end": 15187.64, + "probability": 0.9244 + }, + { + "start": 15188.16, + "end": 15190.94, + "probability": 0.5257 + }, + { + "start": 15192.02, + "end": 15195.26, + "probability": 0.9482 + }, + { + "start": 15195.38, + "end": 15196.2, + "probability": 0.7273 + }, + { + "start": 15196.98, + "end": 15198.84, + "probability": 0.9791 + }, + { + "start": 15199.26, + "end": 15200.82, + "probability": 0.925 + }, + { + "start": 15201.78, + "end": 15204.04, + "probability": 0.7787 + }, + { + "start": 15204.62, + "end": 15207.64, + "probability": 0.9545 + }, + { + "start": 15208.32, + "end": 15210.04, + "probability": 0.9468 + }, + { + "start": 15210.2, + "end": 15212.76, + "probability": 0.9657 + }, + { + "start": 15214.94, + "end": 15221.76, + "probability": 0.958 + }, + { + "start": 15222.9, + "end": 15227.74, + "probability": 0.9209 + }, + { + "start": 15228.54, + "end": 15229.69, + "probability": 0.8003 + }, + { + "start": 15230.64, + "end": 15233.5, + "probability": 0.8692 + }, + { + "start": 15234.0, + "end": 15239.0, + "probability": 0.9749 + }, + { + "start": 15240.04, + "end": 15243.38, + "probability": 0.6072 + }, + { + "start": 15243.98, + "end": 15248.54, + "probability": 0.9506 + }, + { + "start": 15249.66, + "end": 15253.66, + "probability": 0.9968 + }, + { + "start": 15253.66, + "end": 15257.34, + "probability": 0.95 + }, + { + "start": 15262.28, + "end": 15263.56, + "probability": 0.7985 + }, + { + "start": 15264.32, + "end": 15265.0, + "probability": 0.8845 + }, + { + "start": 15265.08, + "end": 15267.64, + "probability": 0.9624 + }, + { + "start": 15268.34, + "end": 15273.76, + "probability": 0.981 + }, + { + "start": 15273.9, + "end": 15276.36, + "probability": 0.9032 + }, + { + "start": 15276.88, + "end": 15278.48, + "probability": 0.819 + }, + { + "start": 15278.7, + "end": 15282.82, + "probability": 0.8486 + }, + { + "start": 15282.82, + "end": 15286.96, + "probability": 0.988 + }, + { + "start": 15286.96, + "end": 15291.66, + "probability": 0.9811 + }, + { + "start": 15291.94, + "end": 15295.5, + "probability": 0.9673 + }, + { + "start": 15295.98, + "end": 15296.7, + "probability": 0.9893 + }, + { + "start": 15298.26, + "end": 15300.5, + "probability": 0.9506 + }, + { + "start": 15301.08, + "end": 15305.2, + "probability": 0.9868 + }, + { + "start": 15305.4, + "end": 15307.06, + "probability": 0.9673 + }, + { + "start": 15307.54, + "end": 15310.56, + "probability": 0.9927 + }, + { + "start": 15310.7, + "end": 15314.3, + "probability": 0.9801 + }, + { + "start": 15314.3, + "end": 15318.34, + "probability": 0.9951 + }, + { + "start": 15318.96, + "end": 15319.96, + "probability": 0.5168 + }, + { + "start": 15320.4, + "end": 15320.88, + "probability": 0.8727 + }, + { + "start": 15321.1, + "end": 15325.38, + "probability": 0.9869 + }, + { + "start": 15326.34, + "end": 15329.22, + "probability": 0.9878 + }, + { + "start": 15330.06, + "end": 15333.26, + "probability": 0.9355 + }, + { + "start": 15333.94, + "end": 15335.1, + "probability": 0.9078 + }, + { + "start": 15335.18, + "end": 15339.86, + "probability": 0.9843 + }, + { + "start": 15341.24, + "end": 15345.2, + "probability": 0.8686 + }, + { + "start": 15346.02, + "end": 15349.46, + "probability": 0.9899 + }, + { + "start": 15349.64, + "end": 15350.66, + "probability": 0.8211 + }, + { + "start": 15351.0, + "end": 15353.58, + "probability": 0.9683 + }, + { + "start": 15354.18, + "end": 15355.76, + "probability": 0.9262 + }, + { + "start": 15356.32, + "end": 15357.02, + "probability": 0.9531 + }, + { + "start": 15358.08, + "end": 15360.5, + "probability": 0.9949 + }, + { + "start": 15361.42, + "end": 15365.32, + "probability": 0.989 + }, + { + "start": 15366.74, + "end": 15368.9, + "probability": 0.7982 + }, + { + "start": 15369.1, + "end": 15374.96, + "probability": 0.9733 + }, + { + "start": 15375.46, + "end": 15377.68, + "probability": 0.9955 + }, + { + "start": 15378.1, + "end": 15383.06, + "probability": 0.9155 + }, + { + "start": 15383.7, + "end": 15384.3, + "probability": 0.2173 + }, + { + "start": 15384.4, + "end": 15390.4, + "probability": 0.9878 + }, + { + "start": 15390.4, + "end": 15396.62, + "probability": 0.9382 + }, + { + "start": 15396.62, + "end": 15402.08, + "probability": 0.9966 + }, + { + "start": 15402.64, + "end": 15404.32, + "probability": 0.8574 + }, + { + "start": 15404.86, + "end": 15406.96, + "probability": 0.9709 + }, + { + "start": 15407.08, + "end": 15407.38, + "probability": 0.65 + }, + { + "start": 15408.54, + "end": 15409.34, + "probability": 0.7535 + }, + { + "start": 15410.18, + "end": 15413.72, + "probability": 0.9482 + }, + { + "start": 15413.76, + "end": 15414.22, + "probability": 0.9272 + }, + { + "start": 15420.38, + "end": 15420.38, + "probability": 0.0029 + }, + { + "start": 15420.38, + "end": 15420.38, + "probability": 0.0292 + }, + { + "start": 15420.38, + "end": 15420.38, + "probability": 0.1161 + }, + { + "start": 15420.38, + "end": 15420.38, + "probability": 0.0315 + }, + { + "start": 15420.38, + "end": 15420.38, + "probability": 0.0396 + }, + { + "start": 15420.38, + "end": 15420.38, + "probability": 0.0062 + }, + { + "start": 15421.5, + "end": 15422.22, + "probability": 0.4716 + }, + { + "start": 15450.95, + "end": 15455.61, + "probability": 0.9968 + }, + { + "start": 15455.61, + "end": 15461.35, + "probability": 0.9994 + }, + { + "start": 15461.99, + "end": 15463.21, + "probability": 0.637 + }, + { + "start": 15463.47, + "end": 15466.87, + "probability": 0.9806 + }, + { + "start": 15467.63, + "end": 15469.17, + "probability": 0.9835 + }, + { + "start": 15469.71, + "end": 15470.67, + "probability": 0.4098 + }, + { + "start": 15471.11, + "end": 15471.71, + "probability": 0.9547 + }, + { + "start": 15471.75, + "end": 15474.25, + "probability": 0.9888 + }, + { + "start": 15474.53, + "end": 15476.41, + "probability": 0.9914 + }, + { + "start": 15476.47, + "end": 15479.99, + "probability": 0.8036 + }, + { + "start": 15480.59, + "end": 15482.93, + "probability": 0.9983 + }, + { + "start": 15483.67, + "end": 15484.87, + "probability": 0.9357 + }, + { + "start": 15485.93, + "end": 15490.69, + "probability": 0.9937 + }, + { + "start": 15491.53, + "end": 15496.87, + "probability": 0.9956 + }, + { + "start": 15497.91, + "end": 15503.97, + "probability": 0.9967 + }, + { + "start": 15503.97, + "end": 15511.83, + "probability": 0.9947 + }, + { + "start": 15511.95, + "end": 15514.09, + "probability": 0.9988 + }, + { + "start": 15514.93, + "end": 15523.17, + "probability": 0.9789 + }, + { + "start": 15523.85, + "end": 15527.56, + "probability": 0.5773 + }, + { + "start": 15527.69, + "end": 15532.33, + "probability": 0.9331 + }, + { + "start": 15533.21, + "end": 15538.01, + "probability": 0.936 + }, + { + "start": 15538.75, + "end": 15539.63, + "probability": 0.7978 + }, + { + "start": 15540.23, + "end": 15544.73, + "probability": 0.6634 + }, + { + "start": 15545.73, + "end": 15549.01, + "probability": 0.9551 + }, + { + "start": 15549.47, + "end": 15551.47, + "probability": 0.9932 + }, + { + "start": 15551.87, + "end": 15557.89, + "probability": 0.9736 + }, + { + "start": 15558.17, + "end": 15559.87, + "probability": 0.9744 + }, + { + "start": 15560.03, + "end": 15561.17, + "probability": 0.9024 + }, + { + "start": 15561.27, + "end": 15566.19, + "probability": 0.9176 + }, + { + "start": 15566.27, + "end": 15568.75, + "probability": 0.9615 + }, + { + "start": 15568.89, + "end": 15571.75, + "probability": 0.9917 + }, + { + "start": 15573.41, + "end": 15575.77, + "probability": 0.9713 + }, + { + "start": 15575.87, + "end": 15576.77, + "probability": 0.6561 + }, + { + "start": 15576.83, + "end": 15578.91, + "probability": 0.7141 + }, + { + "start": 15579.33, + "end": 15586.79, + "probability": 0.9879 + }, + { + "start": 15587.17, + "end": 15587.69, + "probability": 0.787 + }, + { + "start": 15587.83, + "end": 15592.33, + "probability": 0.981 + }, + { + "start": 15592.89, + "end": 15594.35, + "probability": 0.6127 + }, + { + "start": 15595.15, + "end": 15596.89, + "probability": 0.7092 + }, + { + "start": 15597.65, + "end": 15598.39, + "probability": 0.5359 + }, + { + "start": 15598.61, + "end": 15599.81, + "probability": 0.8294 + }, + { + "start": 15599.87, + "end": 15604.53, + "probability": 0.889 + }, + { + "start": 15604.63, + "end": 15607.31, + "probability": 0.9937 + }, + { + "start": 15607.93, + "end": 15608.87, + "probability": 0.9135 + }, + { + "start": 15609.41, + "end": 15615.49, + "probability": 0.9749 + }, + { + "start": 15616.25, + "end": 15619.19, + "probability": 0.9933 + }, + { + "start": 15619.31, + "end": 15620.25, + "probability": 0.8787 + }, + { + "start": 15620.33, + "end": 15621.53, + "probability": 0.9331 + }, + { + "start": 15622.09, + "end": 15626.57, + "probability": 0.9966 + }, + { + "start": 15626.57, + "end": 15632.65, + "probability": 0.9629 + }, + { + "start": 15633.51, + "end": 15634.13, + "probability": 0.5538 + }, + { + "start": 15634.81, + "end": 15636.35, + "probability": 0.8755 + }, + { + "start": 15637.09, + "end": 15640.25, + "probability": 0.9512 + }, + { + "start": 15641.03, + "end": 15647.95, + "probability": 0.9073 + }, + { + "start": 15648.84, + "end": 15652.03, + "probability": 0.997 + }, + { + "start": 15652.65, + "end": 15654.89, + "probability": 0.9977 + }, + { + "start": 15655.59, + "end": 15660.47, + "probability": 0.7722 + }, + { + "start": 15660.89, + "end": 15662.09, + "probability": 0.9596 + }, + { + "start": 15662.49, + "end": 15663.53, + "probability": 0.8348 + }, + { + "start": 15663.65, + "end": 15665.79, + "probability": 0.8846 + }, + { + "start": 15665.79, + "end": 15665.95, + "probability": 0.6209 + }, + { + "start": 15666.01, + "end": 15666.49, + "probability": 0.8281 + }, + { + "start": 15666.57, + "end": 15667.85, + "probability": 0.9631 + }, + { + "start": 15668.05, + "end": 15668.57, + "probability": 0.879 + }, + { + "start": 15669.15, + "end": 15671.57, + "probability": 0.7601 + }, + { + "start": 15671.65, + "end": 15675.23, + "probability": 0.9771 + }, + { + "start": 15675.29, + "end": 15676.39, + "probability": 0.9477 + }, + { + "start": 15676.89, + "end": 15677.87, + "probability": 0.9111 + }, + { + "start": 15678.99, + "end": 15683.35, + "probability": 0.9305 + }, + { + "start": 15683.96, + "end": 15687.48, + "probability": 0.5801 + }, + { + "start": 15688.73, + "end": 15689.05, + "probability": 0.4791 + }, + { + "start": 15689.15, + "end": 15690.13, + "probability": 0.9373 + }, + { + "start": 15690.27, + "end": 15695.71, + "probability": 0.9751 + }, + { + "start": 15696.51, + "end": 15700.51, + "probability": 0.9559 + }, + { + "start": 15700.69, + "end": 15703.71, + "probability": 0.9199 + }, + { + "start": 15704.25, + "end": 15705.77, + "probability": 0.7825 + }, + { + "start": 15706.01, + "end": 15706.41, + "probability": 0.8672 + }, + { + "start": 15706.55, + "end": 15707.23, + "probability": 0.8277 + }, + { + "start": 15707.27, + "end": 15709.84, + "probability": 0.9802 + }, + { + "start": 15710.76, + "end": 15712.75, + "probability": 0.9297 + }, + { + "start": 15713.23, + "end": 15715.55, + "probability": 0.9413 + }, + { + "start": 15715.55, + "end": 15719.57, + "probability": 0.969 + }, + { + "start": 15721.03, + "end": 15722.83, + "probability": 0.0246 + }, + { + "start": 15724.42, + "end": 15728.87, + "probability": 0.4788 + }, + { + "start": 15728.89, + "end": 15732.47, + "probability": 0.6549 + }, + { + "start": 15733.47, + "end": 15735.97, + "probability": 0.9473 + }, + { + "start": 15736.13, + "end": 15741.57, + "probability": 0.9958 + }, + { + "start": 15742.21, + "end": 15745.99, + "probability": 0.9897 + }, + { + "start": 15746.67, + "end": 15751.21, + "probability": 0.9059 + }, + { + "start": 15751.37, + "end": 15754.65, + "probability": 0.993 + }, + { + "start": 15755.01, + "end": 15757.31, + "probability": 0.9966 + }, + { + "start": 15758.01, + "end": 15761.21, + "probability": 0.9964 + }, + { + "start": 15761.73, + "end": 15762.75, + "probability": 0.9168 + }, + { + "start": 15762.85, + "end": 15766.65, + "probability": 0.9939 + }, + { + "start": 15767.27, + "end": 15775.1, + "probability": 0.902 + }, + { + "start": 15775.87, + "end": 15777.67, + "probability": 0.839 + }, + { + "start": 15778.17, + "end": 15780.59, + "probability": 0.974 + }, + { + "start": 15781.59, + "end": 15786.89, + "probability": 0.8962 + }, + { + "start": 15787.81, + "end": 15792.79, + "probability": 0.9578 + }, + { + "start": 15793.21, + "end": 15796.63, + "probability": 0.9819 + }, + { + "start": 15796.63, + "end": 15801.65, + "probability": 0.4531 + }, + { + "start": 15802.01, + "end": 15805.47, + "probability": 0.7286 + }, + { + "start": 15806.27, + "end": 15808.27, + "probability": 0.7389 + }, + { + "start": 15808.33, + "end": 15812.85, + "probability": 0.9958 + }, + { + "start": 15813.47, + "end": 15821.27, + "probability": 0.9148 + }, + { + "start": 15822.09, + "end": 15826.99, + "probability": 0.8516 + }, + { + "start": 15827.05, + "end": 15828.27, + "probability": 0.9711 + }, + { + "start": 15828.47, + "end": 15829.33, + "probability": 0.9761 + }, + { + "start": 15829.87, + "end": 15831.79, + "probability": 0.9925 + }, + { + "start": 15831.89, + "end": 15837.39, + "probability": 0.945 + }, + { + "start": 15838.31, + "end": 15840.11, + "probability": 0.7096 + }, + { + "start": 15840.91, + "end": 15843.71, + "probability": 0.9204 + }, + { + "start": 15844.25, + "end": 15845.83, + "probability": 0.8496 + }, + { + "start": 15846.65, + "end": 15854.47, + "probability": 0.8689 + }, + { + "start": 15854.57, + "end": 15855.95, + "probability": 0.9937 + }, + { + "start": 15856.05, + "end": 15862.45, + "probability": 0.9842 + }, + { + "start": 15862.45, + "end": 15867.69, + "probability": 0.9756 + }, + { + "start": 15868.51, + "end": 15872.99, + "probability": 0.8862 + }, + { + "start": 15874.05, + "end": 15878.55, + "probability": 0.9973 + }, + { + "start": 15878.55, + "end": 15883.43, + "probability": 0.9952 + }, + { + "start": 15884.81, + "end": 15892.63, + "probability": 0.9797 + }, + { + "start": 15893.55, + "end": 15894.83, + "probability": 0.9796 + }, + { + "start": 15896.63, + "end": 15901.11, + "probability": 0.7139 + }, + { + "start": 15903.41, + "end": 15905.79, + "probability": 0.9708 + }, + { + "start": 15906.77, + "end": 15907.41, + "probability": 0.7374 + }, + { + "start": 15907.49, + "end": 15908.27, + "probability": 0.9139 + }, + { + "start": 15908.37, + "end": 15913.47, + "probability": 0.9064 + }, + { + "start": 15913.53, + "end": 15917.97, + "probability": 0.9562 + }, + { + "start": 15918.11, + "end": 15923.67, + "probability": 0.8975 + }, + { + "start": 15924.33, + "end": 15928.45, + "probability": 0.933 + }, + { + "start": 15928.55, + "end": 15930.97, + "probability": 0.9459 + }, + { + "start": 15931.17, + "end": 15931.29, + "probability": 0.5126 + }, + { + "start": 15931.41, + "end": 15932.43, + "probability": 0.8842 + }, + { + "start": 15932.49, + "end": 15936.83, + "probability": 0.9778 + }, + { + "start": 15937.47, + "end": 15942.75, + "probability": 0.9609 + }, + { + "start": 15942.75, + "end": 15947.55, + "probability": 0.9934 + }, + { + "start": 15948.07, + "end": 15949.58, + "probability": 0.9938 + }, + { + "start": 15950.57, + "end": 15951.63, + "probability": 0.883 + }, + { + "start": 15951.81, + "end": 15952.85, + "probability": 0.7612 + }, + { + "start": 15952.97, + "end": 15956.59, + "probability": 0.9376 + }, + { + "start": 15957.33, + "end": 15961.65, + "probability": 0.9538 + }, + { + "start": 15961.71, + "end": 15963.17, + "probability": 0.7994 + }, + { + "start": 15964.07, + "end": 15964.83, + "probability": 0.7771 + }, + { + "start": 15965.13, + "end": 15974.47, + "probability": 0.9745 + }, + { + "start": 15974.61, + "end": 15975.61, + "probability": 0.998 + }, + { + "start": 15976.57, + "end": 15979.31, + "probability": 0.9497 + }, + { + "start": 15979.45, + "end": 15979.45, + "probability": 0.1624 + }, + { + "start": 15980.17, + "end": 15982.53, + "probability": 0.0989 + }, + { + "start": 15982.95, + "end": 15983.57, + "probability": 0.6262 + }, + { + "start": 15983.65, + "end": 15985.47, + "probability": 0.7634 + }, + { + "start": 15985.55, + "end": 15987.43, + "probability": 0.6575 + }, + { + "start": 15988.13, + "end": 15990.15, + "probability": 0.3479 + }, + { + "start": 15990.99, + "end": 15994.47, + "probability": 0.9424 + }, + { + "start": 15994.47, + "end": 15998.95, + "probability": 0.9678 + }, + { + "start": 15999.67, + "end": 16005.87, + "probability": 0.9517 + }, + { + "start": 16005.95, + "end": 16009.83, + "probability": 0.927 + }, + { + "start": 16010.57, + "end": 16014.41, + "probability": 0.9392 + }, + { + "start": 16014.95, + "end": 16015.77, + "probability": 0.947 + }, + { + "start": 16016.69, + "end": 16021.21, + "probability": 0.9907 + }, + { + "start": 16021.39, + "end": 16026.13, + "probability": 0.9927 + }, + { + "start": 16026.63, + "end": 16027.13, + "probability": 0.6809 + }, + { + "start": 16028.91, + "end": 16032.83, + "probability": 0.972 + }, + { + "start": 16033.33, + "end": 16036.93, + "probability": 0.6309 + }, + { + "start": 16037.43, + "end": 16041.59, + "probability": 0.9757 + }, + { + "start": 16042.19, + "end": 16050.63, + "probability": 0.8531 + }, + { + "start": 16050.83, + "end": 16051.93, + "probability": 0.9454 + }, + { + "start": 16061.95, + "end": 16062.03, + "probability": 0.2476 + }, + { + "start": 16062.03, + "end": 16062.45, + "probability": 0.4272 + }, + { + "start": 16063.65, + "end": 16067.51, + "probability": 0.9207 + }, + { + "start": 16067.59, + "end": 16068.21, + "probability": 0.7261 + }, + { + "start": 16069.17, + "end": 16069.21, + "probability": 0.2883 + }, + { + "start": 16069.21, + "end": 16069.81, + "probability": 0.7452 + }, + { + "start": 16070.29, + "end": 16071.13, + "probability": 0.9591 + }, + { + "start": 16071.17, + "end": 16073.87, + "probability": 0.9467 + }, + { + "start": 16074.93, + "end": 16077.73, + "probability": 0.0197 + }, + { + "start": 16079.81, + "end": 16080.45, + "probability": 0.0635 + }, + { + "start": 16091.23, + "end": 16091.87, + "probability": 0.0607 + }, + { + "start": 16091.87, + "end": 16094.41, + "probability": 0.0345 + }, + { + "start": 16095.01, + "end": 16095.37, + "probability": 0.178 + }, + { + "start": 16095.53, + "end": 16097.71, + "probability": 0.0756 + }, + { + "start": 16100.31, + "end": 16101.17, + "probability": 0.2448 + }, + { + "start": 16101.17, + "end": 16101.17, + "probability": 0.0929 + }, + { + "start": 16101.17, + "end": 16101.91, + "probability": 0.1658 + }, + { + "start": 16102.01, + "end": 16106.15, + "probability": 0.4967 + }, + { + "start": 16106.31, + "end": 16107.57, + "probability": 0.7817 + }, + { + "start": 16107.57, + "end": 16108.73, + "probability": 0.8622 + }, + { + "start": 16111.41, + "end": 16115.11, + "probability": 0.7046 + }, + { + "start": 16124.21, + "end": 16125.95, + "probability": 0.1027 + }, + { + "start": 16125.95, + "end": 16133.17, + "probability": 0.7093 + }, + { + "start": 16133.85, + "end": 16141.41, + "probability": 0.2278 + }, + { + "start": 16142.11, + "end": 16142.29, + "probability": 0.0092 + }, + { + "start": 16149.47, + "end": 16150.71, + "probability": 0.0369 + }, + { + "start": 16155.61, + "end": 16159.65, + "probability": 0.1665 + }, + { + "start": 16160.43, + "end": 16165.45, + "probability": 0.0923 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.0, + "end": 16168.0, + "probability": 0.0 + }, + { + "start": 16168.3, + "end": 16169.4, + "probability": 0.0828 + }, + { + "start": 16169.4, + "end": 16170.2, + "probability": 0.1422 + }, + { + "start": 16170.76, + "end": 16171.5, + "probability": 0.0196 + }, + { + "start": 16171.78, + "end": 16173.38, + "probability": 0.0194 + }, + { + "start": 16182.42, + "end": 16182.92, + "probability": 0.0365 + }, + { + "start": 16184.22, + "end": 16185.34, + "probability": 0.1062 + }, + { + "start": 16186.34, + "end": 16188.96, + "probability": 0.17 + }, + { + "start": 16189.42, + "end": 16191.82, + "probability": 0.0993 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.0, + "end": 16288.0, + "probability": 0.0 + }, + { + "start": 16288.06, + "end": 16291.48, + "probability": 0.4739 + }, + { + "start": 16291.58, + "end": 16294.4, + "probability": 0.7588 + }, + { + "start": 16295.26, + "end": 16295.54, + "probability": 0.4471 + }, + { + "start": 16296.1, + "end": 16296.68, + "probability": 0.9712 + }, + { + "start": 16297.34, + "end": 16297.96, + "probability": 0.936 + }, + { + "start": 16298.3, + "end": 16298.78, + "probability": 0.9676 + }, + { + "start": 16300.12, + "end": 16302.6, + "probability": 0.7164 + }, + { + "start": 16303.2, + "end": 16303.34, + "probability": 0.9297 + }, + { + "start": 16304.06, + "end": 16305.78, + "probability": 0.9338 + }, + { + "start": 16306.18, + "end": 16306.7, + "probability": 0.5096 + }, + { + "start": 16306.92, + "end": 16307.34, + "probability": 0.8467 + }, + { + "start": 16308.72, + "end": 16309.66, + "probability": 0.9702 + }, + { + "start": 16310.88, + "end": 16312.86, + "probability": 0.9665 + }, + { + "start": 16313.5, + "end": 16315.22, + "probability": 0.4726 + }, + { + "start": 16316.0, + "end": 16321.04, + "probability": 0.0478 + }, + { + "start": 16323.22, + "end": 16325.98, + "probability": 0.0998 + }, + { + "start": 16340.28, + "end": 16340.72, + "probability": 0.0676 + }, + { + "start": 16343.06, + "end": 16344.78, + "probability": 0.0174 + }, + { + "start": 16348.2, + "end": 16348.8, + "probability": 0.0417 + }, + { + "start": 16348.8, + "end": 16350.1, + "probability": 0.0773 + }, + { + "start": 16350.16, + "end": 16350.56, + "probability": 0.0129 + }, + { + "start": 16350.56, + "end": 16351.44, + "probability": 0.0851 + }, + { + "start": 16351.66, + "end": 16351.78, + "probability": 0.0958 + }, + { + "start": 16351.78, + "end": 16353.0, + "probability": 0.1208 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.0, + "end": 16414.0, + "probability": 0.0 + }, + { + "start": 16414.2, + "end": 16415.56, + "probability": 0.2676 + }, + { + "start": 16416.26, + "end": 16418.38, + "probability": 0.8875 + }, + { + "start": 16419.12, + "end": 16420.06, + "probability": 0.915 + }, + { + "start": 16421.0, + "end": 16421.26, + "probability": 0.4619 + }, + { + "start": 16421.96, + "end": 16423.84, + "probability": 0.333 + }, + { + "start": 16429.8, + "end": 16430.96, + "probability": 0.1895 + }, + { + "start": 16433.36, + "end": 16437.88, + "probability": 0.6565 + }, + { + "start": 16437.9, + "end": 16438.9, + "probability": 0.8019 + }, + { + "start": 16449.7, + "end": 16451.92, + "probability": 0.1219 + }, + { + "start": 16453.22, + "end": 16458.32, + "probability": 0.568 + }, + { + "start": 16458.84, + "end": 16460.86, + "probability": 0.7683 + }, + { + "start": 16461.0, + "end": 16461.9, + "probability": 0.4878 + }, + { + "start": 16463.7, + "end": 16465.56, + "probability": 0.8644 + }, + { + "start": 16465.7, + "end": 16466.12, + "probability": 0.6732 + }, + { + "start": 16466.66, + "end": 16470.58, + "probability": 0.8908 + }, + { + "start": 16474.84, + "end": 16475.32, + "probability": 0.4627 + }, + { + "start": 16475.32, + "end": 16475.82, + "probability": 0.508 + }, + { + "start": 16475.84, + "end": 16475.84, + "probability": 0.3379 + }, + { + "start": 16475.94, + "end": 16476.36, + "probability": 0.4643 + }, + { + "start": 16476.44, + "end": 16480.18, + "probability": 0.7517 + }, + { + "start": 16480.44, + "end": 16481.24, + "probability": 0.6995 + }, + { + "start": 16481.44, + "end": 16481.86, + "probability": 0.5696 + }, + { + "start": 16481.86, + "end": 16482.14, + "probability": 0.3916 + }, + { + "start": 16482.4, + "end": 16482.48, + "probability": 0.3624 + }, + { + "start": 16482.48, + "end": 16483.26, + "probability": 0.6708 + }, + { + "start": 16483.36, + "end": 16484.26, + "probability": 0.9145 + }, + { + "start": 16485.18, + "end": 16490.98, + "probability": 0.0041 + }, + { + "start": 16492.7, + "end": 16493.18, + "probability": 0.1371 + }, + { + "start": 16497.84, + "end": 16498.98, + "probability": 0.7226 + }, + { + "start": 16499.52, + "end": 16499.98, + "probability": 0.9182 + }, + { + "start": 16502.48, + "end": 16503.7, + "probability": 0.0948 + }, + { + "start": 16505.33, + "end": 16507.5, + "probability": 0.7856 + }, + { + "start": 16508.26, + "end": 16509.08, + "probability": 0.3671 + }, + { + "start": 16509.76, + "end": 16513.54, + "probability": 0.9546 + }, + { + "start": 16514.22, + "end": 16517.46, + "probability": 0.8701 + }, + { + "start": 16522.82, + "end": 16523.8, + "probability": 0.54 + }, + { + "start": 16523.88, + "end": 16526.52, + "probability": 0.9318 + }, + { + "start": 16526.54, + "end": 16530.96, + "probability": 0.9202 + }, + { + "start": 16532.26, + "end": 16532.82, + "probability": 0.55 + }, + { + "start": 16533.14, + "end": 16534.6, + "probability": 0.6844 + }, + { + "start": 16534.66, + "end": 16535.54, + "probability": 0.6797 + }, + { + "start": 16535.58, + "end": 16537.5, + "probability": 0.8914 + }, + { + "start": 16538.94, + "end": 16539.38, + "probability": 0.1096 + }, + { + "start": 16539.38, + "end": 16540.06, + "probability": 0.6557 + }, + { + "start": 16540.7, + "end": 16542.36, + "probability": 0.0358 + }, + { + "start": 16542.36, + "end": 16543.06, + "probability": 0.5502 + }, + { + "start": 16543.1, + "end": 16543.26, + "probability": 0.549 + }, + { + "start": 16543.28, + "end": 16546.92, + "probability": 0.8281 + }, + { + "start": 16547.14, + "end": 16550.28, + "probability": 0.9628 + }, + { + "start": 16550.66, + "end": 16552.02, + "probability": 0.8404 + }, + { + "start": 16553.0, + "end": 16558.04, + "probability": 0.076 + }, + { + "start": 16564.44, + "end": 16566.72, + "probability": 0.0544 + }, + { + "start": 16567.66, + "end": 16568.54, + "probability": 0.0164 + }, + { + "start": 16568.7, + "end": 16569.05, + "probability": 0.0639 + }, + { + "start": 16571.26, + "end": 16572.48, + "probability": 0.8035 + }, + { + "start": 16572.58, + "end": 16578.14, + "probability": 0.9803 + }, + { + "start": 16578.26, + "end": 16583.88, + "probability": 0.9956 + }, + { + "start": 16584.38, + "end": 16585.32, + "probability": 0.7279 + }, + { + "start": 16585.56, + "end": 16589.66, + "probability": 0.9715 + }, + { + "start": 16590.0, + "end": 16593.42, + "probability": 0.9948 + }, + { + "start": 16593.42, + "end": 16596.66, + "probability": 0.9516 + }, + { + "start": 16596.76, + "end": 16597.64, + "probability": 0.8992 + }, + { + "start": 16597.7, + "end": 16597.98, + "probability": 0.3155 + }, + { + "start": 16599.6, + "end": 16602.9, + "probability": 0.8693 + }, + { + "start": 16603.64, + "end": 16604.16, + "probability": 0.6023 + }, + { + "start": 16604.28, + "end": 16604.9, + "probability": 0.6932 + }, + { + "start": 16605.18, + "end": 16606.34, + "probability": 0.6756 + }, + { + "start": 16606.52, + "end": 16609.12, + "probability": 0.9151 + }, + { + "start": 16610.4, + "end": 16614.48, + "probability": 0.3137 + }, + { + "start": 16616.66, + "end": 16618.52, + "probability": 0.4224 + }, + { + "start": 16618.78, + "end": 16619.84, + "probability": 0.036 + }, + { + "start": 16619.84, + "end": 16620.06, + "probability": 0.1089 + }, + { + "start": 16623.02, + "end": 16627.68, + "probability": 0.502 + }, + { + "start": 16628.22, + "end": 16630.86, + "probability": 0.8073 + }, + { + "start": 16630.98, + "end": 16632.72, + "probability": 0.3385 + }, + { + "start": 16632.98, + "end": 16635.82, + "probability": 0.9147 + }, + { + "start": 16636.74, + "end": 16640.32, + "probability": 0.9723 + }, + { + "start": 16640.98, + "end": 16641.52, + "probability": 0.754 + }, + { + "start": 16641.66, + "end": 16644.66, + "probability": 0.9803 + }, + { + "start": 16644.66, + "end": 16647.88, + "probability": 0.8944 + }, + { + "start": 16649.56, + "end": 16651.18, + "probability": 0.3339 + }, + { + "start": 16652.96, + "end": 16655.4, + "probability": 0.2746 + }, + { + "start": 16658.88, + "end": 16659.28, + "probability": 0.6358 + }, + { + "start": 16670.48, + "end": 16671.56, + "probability": 0.3407 + }, + { + "start": 16671.62, + "end": 16672.6, + "probability": 0.6368 + }, + { + "start": 16673.55, + "end": 16678.76, + "probability": 0.9536 + }, + { + "start": 16684.76, + "end": 16690.34, + "probability": 0.3101 + }, + { + "start": 16690.92, + "end": 16693.62, + "probability": 0.7681 + }, + { + "start": 16693.62, + "end": 16693.62, + "probability": 0.7227 + }, + { + "start": 16693.62, + "end": 16694.12, + "probability": 0.6308 + }, + { + "start": 16694.3, + "end": 16695.96, + "probability": 0.7448 + }, + { + "start": 16697.68, + "end": 16698.99, + "probability": 0.9392 + }, + { + "start": 16699.54, + "end": 16700.46, + "probability": 0.8592 + }, + { + "start": 16702.26, + "end": 16705.2, + "probability": 0.6798 + }, + { + "start": 16706.28, + "end": 16707.74, + "probability": 0.8018 + }, + { + "start": 16707.76, + "end": 16710.64, + "probability": 0.8389 + }, + { + "start": 16710.82, + "end": 16712.66, + "probability": 0.1487 + }, + { + "start": 16713.42, + "end": 16717.98, + "probability": 0.981 + }, + { + "start": 16718.94, + "end": 16722.24, + "probability": 0.8287 + }, + { + "start": 16722.86, + "end": 16726.6, + "probability": 0.9267 + }, + { + "start": 16727.36, + "end": 16731.82, + "probability": 0.9835 + }, + { + "start": 16731.94, + "end": 16732.78, + "probability": 0.5366 + }, + { + "start": 16733.52, + "end": 16735.06, + "probability": 0.7781 + }, + { + "start": 16735.7, + "end": 16736.62, + "probability": 0.7791 + }, + { + "start": 16737.22, + "end": 16740.36, + "probability": 0.7635 + }, + { + "start": 16741.08, + "end": 16745.2, + "probability": 0.8242 + }, + { + "start": 16745.78, + "end": 16746.58, + "probability": 0.8885 + }, + { + "start": 16746.68, + "end": 16747.32, + "probability": 0.8961 + }, + { + "start": 16747.4, + "end": 16748.24, + "probability": 0.7862 + }, + { + "start": 16748.74, + "end": 16749.5, + "probability": 0.8063 + }, + { + "start": 16749.6, + "end": 16751.76, + "probability": 0.8143 + }, + { + "start": 16755.3, + "end": 16756.54, + "probability": 0.5392 + }, + { + "start": 16756.78, + "end": 16759.18, + "probability": 0.394 + }, + { + "start": 16759.78, + "end": 16760.5, + "probability": 0.768 + }, + { + "start": 16760.66, + "end": 16764.32, + "probability": 0.7824 + }, + { + "start": 16764.58, + "end": 16766.18, + "probability": 0.555 + }, + { + "start": 16766.66, + "end": 16769.62, + "probability": 0.8928 + }, + { + "start": 16771.06, + "end": 16774.14, + "probability": 0.9308 + }, + { + "start": 16774.64, + "end": 16776.48, + "probability": 0.2509 + }, + { + "start": 16776.9, + "end": 16778.08, + "probability": 0.6701 + }, + { + "start": 16778.18, + "end": 16779.0, + "probability": 0.7862 + }, + { + "start": 16779.64, + "end": 16780.92, + "probability": 0.6955 + }, + { + "start": 16781.16, + "end": 16782.34, + "probability": 0.8968 + }, + { + "start": 16782.78, + "end": 16786.04, + "probability": 0.9602 + }, + { + "start": 16786.4, + "end": 16787.9, + "probability": 0.7902 + }, + { + "start": 16787.96, + "end": 16788.58, + "probability": 0.9581 + }, + { + "start": 16789.26, + "end": 16791.6, + "probability": 0.9627 + }, + { + "start": 16792.18, + "end": 16793.42, + "probability": 0.9929 + }, + { + "start": 16794.0, + "end": 16795.28, + "probability": 0.8118 + }, + { + "start": 16795.66, + "end": 16797.56, + "probability": 0.903 + }, + { + "start": 16797.62, + "end": 16798.24, + "probability": 0.7963 + }, + { + "start": 16798.84, + "end": 16801.72, + "probability": 0.9466 + }, + { + "start": 16802.46, + "end": 16803.06, + "probability": 0.7083 + }, + { + "start": 16803.48, + "end": 16805.5, + "probability": 0.3792 + }, + { + "start": 16814.06, + "end": 16815.68, + "probability": 0.6813 + }, + { + "start": 16815.82, + "end": 16818.48, + "probability": 0.992 + }, + { + "start": 16819.16, + "end": 16824.0, + "probability": 0.8091 + }, + { + "start": 16824.48, + "end": 16825.88, + "probability": 0.8867 + }, + { + "start": 16826.72, + "end": 16828.28, + "probability": 0.9463 + }, + { + "start": 16832.7, + "end": 16835.98, + "probability": 0.2758 + }, + { + "start": 16837.28, + "end": 16839.38, + "probability": 0.8333 + }, + { + "start": 16839.64, + "end": 16843.02, + "probability": 0.9464 + }, + { + "start": 16843.1, + "end": 16846.6, + "probability": 0.9619 + }, + { + "start": 16850.6, + "end": 16851.98, + "probability": 0.7525 + }, + { + "start": 16852.04, + "end": 16855.86, + "probability": 0.9783 + }, + { + "start": 16855.96, + "end": 16857.58, + "probability": 0.934 + }, + { + "start": 16862.34, + "end": 16863.32, + "probability": 0.6644 + }, + { + "start": 16883.2, + "end": 16886.88, + "probability": 0.5098 + }, + { + "start": 16886.88, + "end": 16888.0, + "probability": 0.0176 + }, + { + "start": 16888.0, + "end": 16891.32, + "probability": 0.0296 + }, + { + "start": 16891.32, + "end": 16893.46, + "probability": 0.0519 + }, + { + "start": 16893.46, + "end": 16895.26, + "probability": 0.1166 + }, + { + "start": 16895.38, + "end": 16898.0, + "probability": 0.1336 + }, + { + "start": 16900.64, + "end": 16906.78, + "probability": 0.1621 + }, + { + "start": 16908.5, + "end": 16908.8, + "probability": 0.0316 + }, + { + "start": 16910.36, + "end": 16915.9, + "probability": 0.0572 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.0, + "end": 16949.0, + "probability": 0.0 + }, + { + "start": 16949.2, + "end": 16950.08, + "probability": 0.5064 + }, + { + "start": 16950.08, + "end": 16951.26, + "probability": 0.3451 + }, + { + "start": 16951.84, + "end": 16954.16, + "probability": 0.9884 + }, + { + "start": 16954.16, + "end": 16957.1, + "probability": 0.7246 + }, + { + "start": 16958.04, + "end": 16959.72, + "probability": 0.6375 + }, + { + "start": 16960.32, + "end": 16962.02, + "probability": 0.4281 + }, + { + "start": 16962.58, + "end": 16963.88, + "probability": 0.9232 + }, + { + "start": 16964.48, + "end": 16965.28, + "probability": 0.9321 + }, + { + "start": 16968.22, + "end": 16970.3, + "probability": 0.2889 + }, + { + "start": 16970.94, + "end": 16973.8, + "probability": 0.3724 + }, + { + "start": 16974.54, + "end": 16975.2, + "probability": 0.7175 + }, + { + "start": 16975.38, + "end": 16980.04, + "probability": 0.9733 + }, + { + "start": 16981.06, + "end": 16982.1, + "probability": 0.6319 + }, + { + "start": 16983.0, + "end": 16987.72, + "probability": 0.3724 + }, + { + "start": 16987.84, + "end": 16990.02, + "probability": 0.4851 + }, + { + "start": 16990.14, + "end": 16992.22, + "probability": 0.9733 + }, + { + "start": 16992.5, + "end": 16996.96, + "probability": 0.9897 + }, + { + "start": 16997.48, + "end": 16999.34, + "probability": 0.2852 + }, + { + "start": 17000.44, + "end": 17005.52, + "probability": 0.9691 + }, + { + "start": 17006.42, + "end": 17010.52, + "probability": 0.5598 + }, + { + "start": 17011.14, + "end": 17013.24, + "probability": 0.9381 + }, + { + "start": 17013.24, + "end": 17016.18, + "probability": 0.9898 + }, + { + "start": 17016.68, + "end": 17019.69, + "probability": 0.9492 + }, + { + "start": 17019.96, + "end": 17023.16, + "probability": 0.9924 + }, + { + "start": 17023.26, + "end": 17024.3, + "probability": 0.9085 + }, + { + "start": 17025.02, + "end": 17027.64, + "probability": 0.9966 + }, + { + "start": 17027.64, + "end": 17030.9, + "probability": 0.9495 + }, + { + "start": 17031.54, + "end": 17032.08, + "probability": 0.7724 + }, + { + "start": 17032.68, + "end": 17034.94, + "probability": 0.8901 + }, + { + "start": 17035.42, + "end": 17038.14, + "probability": 0.936 + }, + { + "start": 17038.76, + "end": 17042.62, + "probability": 0.981 + }, + { + "start": 17043.42, + "end": 17043.76, + "probability": 0.953 + }, + { + "start": 17044.7, + "end": 17048.94, + "probability": 0.9954 + }, + { + "start": 17049.78, + "end": 17050.2, + "probability": 0.6694 + }, + { + "start": 17050.82, + "end": 17053.74, + "probability": 0.9856 + }, + { + "start": 17053.88, + "end": 17057.9, + "probability": 0.9888 + }, + { + "start": 17058.46, + "end": 17061.56, + "probability": 0.9933 + }, + { + "start": 17062.12, + "end": 17065.68, + "probability": 0.9398 + }, + { + "start": 17065.9, + "end": 17066.12, + "probability": 0.7095 + }, + { + "start": 17066.56, + "end": 17067.44, + "probability": 0.6218 + }, + { + "start": 17067.76, + "end": 17069.96, + "probability": 0.9749 + }, + { + "start": 17070.24, + "end": 17071.92, + "probability": 0.8468 + }, + { + "start": 17073.08, + "end": 17074.16, + "probability": 0.7644 + }, + { + "start": 17075.36, + "end": 17077.76, + "probability": 0.8991 + }, + { + "start": 17083.71, + "end": 17086.92, + "probability": 0.9 + }, + { + "start": 17087.12, + "end": 17089.74, + "probability": 0.798 + }, + { + "start": 17090.78, + "end": 17094.58, + "probability": 0.9266 + }, + { + "start": 17094.58, + "end": 17099.64, + "probability": 0.856 + }, + { + "start": 17100.36, + "end": 17103.64, + "probability": 0.7691 + }, + { + "start": 17103.78, + "end": 17108.58, + "probability": 0.532 + }, + { + "start": 17108.6, + "end": 17109.3, + "probability": 0.7996 + }, + { + "start": 17109.3, + "end": 17110.0, + "probability": 0.703 + }, + { + "start": 17110.06, + "end": 17110.8, + "probability": 0.813 + }, + { + "start": 17112.92, + "end": 17113.3, + "probability": 0.0441 + }, + { + "start": 17117.64, + "end": 17124.62, + "probability": 0.0386 + }, + { + "start": 17127.46, + "end": 17128.16, + "probability": 0.5406 + }, + { + "start": 17129.21, + "end": 17129.66, + "probability": 0.0061 + }, + { + "start": 17133.8, + "end": 17134.22, + "probability": 0.0149 + }, + { + "start": 17134.78, + "end": 17134.78, + "probability": 0.0429 + }, + { + "start": 17134.78, + "end": 17138.98, + "probability": 0.5682 + }, + { + "start": 17139.36, + "end": 17139.62, + "probability": 0.5768 + }, + { + "start": 17142.92, + "end": 17147.06, + "probability": 0.4582 + }, + { + "start": 17151.14, + "end": 17152.26, + "probability": 0.1109 + }, + { + "start": 17160.9, + "end": 17164.7, + "probability": 0.8055 + }, + { + "start": 17165.12, + "end": 17165.66, + "probability": 0.3936 + }, + { + "start": 17165.96, + "end": 17166.98, + "probability": 0.8286 + }, + { + "start": 17167.48, + "end": 17167.92, + "probability": 0.6299 + }, + { + "start": 17168.12, + "end": 17169.12, + "probability": 0.7556 + }, + { + "start": 17169.74, + "end": 17172.28, + "probability": 0.5504 + }, + { + "start": 17173.32, + "end": 17177.24, + "probability": 0.7613 + }, + { + "start": 17177.32, + "end": 17178.92, + "probability": 0.4826 + }, + { + "start": 17179.38, + "end": 17181.14, + "probability": 0.9391 + }, + { + "start": 17181.62, + "end": 17186.5, + "probability": 0.9904 + }, + { + "start": 17186.54, + "end": 17187.1, + "probability": 0.9484 + }, + { + "start": 17200.54, + "end": 17203.34, + "probability": 0.5146 + }, + { + "start": 17205.26, + "end": 17209.1, + "probability": 0.4314 + }, + { + "start": 17211.2, + "end": 17211.92, + "probability": 0.8232 + }, + { + "start": 17212.92, + "end": 17216.2, + "probability": 0.9926 + }, + { + "start": 17216.97, + "end": 17219.58, + "probability": 0.3289 + }, + { + "start": 17220.46, + "end": 17224.3, + "probability": 0.8931 + }, + { + "start": 17225.18, + "end": 17228.48, + "probability": 0.9633 + }, + { + "start": 17228.76, + "end": 17229.9, + "probability": 0.4717 + }, + { + "start": 17231.94, + "end": 17235.88, + "probability": 0.9863 + }, + { + "start": 17235.98, + "end": 17238.06, + "probability": 0.974 + }, + { + "start": 17238.84, + "end": 17240.9, + "probability": 0.9875 + }, + { + "start": 17241.5, + "end": 17245.32, + "probability": 0.9907 + }, + { + "start": 17246.4, + "end": 17246.84, + "probability": 0.6956 + }, + { + "start": 17247.04, + "end": 17249.86, + "probability": 0.9829 + }, + { + "start": 17249.86, + "end": 17253.42, + "probability": 0.9839 + }, + { + "start": 17253.58, + "end": 17257.34, + "probability": 0.9599 + }, + { + "start": 17258.02, + "end": 17260.14, + "probability": 0.9719 + }, + { + "start": 17261.26, + "end": 17266.74, + "probability": 0.9931 + }, + { + "start": 17266.92, + "end": 17269.63, + "probability": 0.9009 + }, + { + "start": 17270.4, + "end": 17275.2, + "probability": 0.9849 + }, + { + "start": 17276.24, + "end": 17277.72, + "probability": 0.955 + }, + { + "start": 17277.76, + "end": 17280.7, + "probability": 0.9954 + }, + { + "start": 17281.56, + "end": 17282.54, + "probability": 0.7001 + }, + { + "start": 17283.3, + "end": 17284.64, + "probability": 0.934 + }, + { + "start": 17284.74, + "end": 17288.97, + "probability": 0.8633 + }, + { + "start": 17290.08, + "end": 17291.46, + "probability": 0.8843 + }, + { + "start": 17291.56, + "end": 17296.94, + "probability": 0.8553 + }, + { + "start": 17297.12, + "end": 17302.12, + "probability": 0.9663 + }, + { + "start": 17302.12, + "end": 17306.64, + "probability": 0.9924 + }, + { + "start": 17306.64, + "end": 17311.41, + "probability": 0.87 + }, + { + "start": 17311.72, + "end": 17317.84, + "probability": 0.9917 + }, + { + "start": 17319.2, + "end": 17320.52, + "probability": 0.9499 + }, + { + "start": 17322.54, + "end": 17324.86, + "probability": 0.9671 + }, + { + "start": 17324.86, + "end": 17327.64, + "probability": 0.9966 + }, + { + "start": 17328.76, + "end": 17332.72, + "probability": 0.9964 + }, + { + "start": 17333.36, + "end": 17335.6, + "probability": 0.9905 + }, + { + "start": 17335.6, + "end": 17339.62, + "probability": 0.7719 + }, + { + "start": 17339.62, + "end": 17342.14, + "probability": 0.9112 + }, + { + "start": 17342.62, + "end": 17344.4, + "probability": 0.9903 + }, + { + "start": 17345.18, + "end": 17348.26, + "probability": 0.8477 + }, + { + "start": 17348.28, + "end": 17351.62, + "probability": 0.9712 + }, + { + "start": 17352.48, + "end": 17352.96, + "probability": 0.6995 + }, + { + "start": 17353.06, + "end": 17356.72, + "probability": 0.9958 + }, + { + "start": 17357.32, + "end": 17363.78, + "probability": 0.9609 + }, + { + "start": 17364.04, + "end": 17365.76, + "probability": 0.5522 + }, + { + "start": 17366.62, + "end": 17370.84, + "probability": 0.7109 + }, + { + "start": 17371.38, + "end": 17374.7, + "probability": 0.9949 + }, + { + "start": 17375.22, + "end": 17376.2, + "probability": 0.9937 + }, + { + "start": 17376.72, + "end": 17377.02, + "probability": 0.6398 + }, + { + "start": 17377.16, + "end": 17380.64, + "probability": 0.998 + }, + { + "start": 17381.36, + "end": 17383.28, + "probability": 0.9798 + }, + { + "start": 17383.28, + "end": 17385.62, + "probability": 0.8105 + }, + { + "start": 17386.24, + "end": 17390.94, + "probability": 0.9981 + }, + { + "start": 17391.78, + "end": 17393.48, + "probability": 0.7461 + }, + { + "start": 17393.94, + "end": 17398.18, + "probability": 0.8284 + }, + { + "start": 17398.4, + "end": 17399.66, + "probability": 0.5797 + }, + { + "start": 17399.66, + "end": 17399.96, + "probability": 0.7723 + }, + { + "start": 17400.64, + "end": 17400.92, + "probability": 0.703 + }, + { + "start": 17401.72, + "end": 17403.14, + "probability": 0.7388 + }, + { + "start": 17403.16, + "end": 17405.26, + "probability": 0.9938 + }, + { + "start": 17407.72, + "end": 17408.26, + "probability": 0.6736 + }, + { + "start": 17408.5, + "end": 17412.2, + "probability": 0.6702 + }, + { + "start": 17412.26, + "end": 17413.96, + "probability": 0.4715 + }, + { + "start": 17414.48, + "end": 17415.44, + "probability": 0.6634 + }, + { + "start": 17416.0, + "end": 17420.1, + "probability": 0.7879 + }, + { + "start": 17420.18, + "end": 17420.66, + "probability": 0.6686 + }, + { + "start": 17420.7, + "end": 17421.16, + "probability": 0.6698 + }, + { + "start": 17421.16, + "end": 17421.96, + "probability": 0.9676 + }, + { + "start": 17426.9, + "end": 17427.58, + "probability": 0.0001 + }, + { + "start": 17441.3, + "end": 17441.58, + "probability": 0.0584 + }, + { + "start": 17441.58, + "end": 17443.3, + "probability": 0.3917 + }, + { + "start": 17444.34, + "end": 17445.3, + "probability": 0.6178 + }, + { + "start": 17446.0, + "end": 17448.48, + "probability": 0.933 + }, + { + "start": 17448.82, + "end": 17452.4, + "probability": 0.9708 + }, + { + "start": 17459.96, + "end": 17462.84, + "probability": 0.7448 + }, + { + "start": 17463.26, + "end": 17466.76, + "probability": 0.0071 + }, + { + "start": 17467.5, + "end": 17473.96, + "probability": 0.009 + }, + { + "start": 17474.98, + "end": 17475.3, + "probability": 0.0993 + }, + { + "start": 17476.9, + "end": 17480.2, + "probability": 0.7852 + }, + { + "start": 17480.4, + "end": 17484.68, + "probability": 0.8429 + }, + { + "start": 17487.48, + "end": 17492.72, + "probability": 0.9049 + }, + { + "start": 17492.72, + "end": 17498.5, + "probability": 0.9376 + }, + { + "start": 17499.34, + "end": 17499.68, + "probability": 0.0001 + }, + { + "start": 17500.44, + "end": 17501.2, + "probability": 0.1373 + }, + { + "start": 17501.78, + "end": 17503.92, + "probability": 0.8632 + }, + { + "start": 17504.48, + "end": 17506.36, + "probability": 0.987 + }, + { + "start": 17506.92, + "end": 17510.92, + "probability": 0.9402 + }, + { + "start": 17511.54, + "end": 17512.1, + "probability": 0.8956 + }, + { + "start": 17513.32, + "end": 17517.96, + "probability": 0.6766 + }, + { + "start": 17526.54, + "end": 17527.36, + "probability": 0.54 + }, + { + "start": 17528.42, + "end": 17529.2, + "probability": 0.9474 + }, + { + "start": 17530.96, + "end": 17535.12, + "probability": 0.7078 + }, + { + "start": 17537.46, + "end": 17540.04, + "probability": 0.4472 + }, + { + "start": 17540.14, + "end": 17543.18, + "probability": 0.9036 + }, + { + "start": 17543.44, + "end": 17547.66, + "probability": 0.0164 + }, + { + "start": 17549.04, + "end": 17552.92, + "probability": 0.9664 + }, + { + "start": 17554.58, + "end": 17555.92, + "probability": 0.7277 + }, + { + "start": 17556.09, + "end": 17560.82, + "probability": 0.0653 + }, + { + "start": 17560.82, + "end": 17561.16, + "probability": 0.353 + }, + { + "start": 17561.88, + "end": 17562.74, + "probability": 0.1874 + }, + { + "start": 17573.88, + "end": 17574.84, + "probability": 0.2901 + }, + { + "start": 17578.02, + "end": 17579.24, + "probability": 0.3634 + }, + { + "start": 17580.18, + "end": 17581.0, + "probability": 0.7281 + }, + { + "start": 17585.74, + "end": 17586.4, + "probability": 0.5416 + }, + { + "start": 17606.78, + "end": 17610.86, + "probability": 0.9937 + }, + { + "start": 17610.86, + "end": 17616.66, + "probability": 0.9308 + }, + { + "start": 17617.4, + "end": 17622.42, + "probability": 0.789 + }, + { + "start": 17623.14, + "end": 17625.58, + "probability": 0.9023 + }, + { + "start": 17626.16, + "end": 17628.56, + "probability": 0.9814 + }, + { + "start": 17629.56, + "end": 17631.68, + "probability": 0.9658 + }, + { + "start": 17631.84, + "end": 17632.36, + "probability": 0.4787 + }, + { + "start": 17632.52, + "end": 17633.9, + "probability": 0.9709 + }, + { + "start": 17635.02, + "end": 17637.3, + "probability": 0.9792 + }, + { + "start": 17637.3, + "end": 17639.72, + "probability": 0.9844 + }, + { + "start": 17640.48, + "end": 17640.7, + "probability": 0.3252 + }, + { + "start": 17640.76, + "end": 17641.28, + "probability": 0.9181 + }, + { + "start": 17641.34, + "end": 17645.28, + "probability": 0.9717 + }, + { + "start": 17646.02, + "end": 17649.22, + "probability": 0.9432 + }, + { + "start": 17649.22, + "end": 17654.54, + "probability": 0.9946 + }, + { + "start": 17655.38, + "end": 17656.54, + "probability": 0.8398 + }, + { + "start": 17657.36, + "end": 17657.74, + "probability": 0.5253 + }, + { + "start": 17657.78, + "end": 17660.12, + "probability": 0.9877 + }, + { + "start": 17660.16, + "end": 17663.39, + "probability": 0.8176 + }, + { + "start": 17663.44, + "end": 17666.54, + "probability": 0.9845 + }, + { + "start": 17667.48, + "end": 17672.76, + "probability": 0.9827 + }, + { + "start": 17672.76, + "end": 17677.28, + "probability": 0.9238 + }, + { + "start": 17677.94, + "end": 17678.34, + "probability": 0.4912 + }, + { + "start": 17678.46, + "end": 17681.08, + "probability": 0.9976 + }, + { + "start": 17681.08, + "end": 17685.04, + "probability": 0.9811 + }, + { + "start": 17690.88, + "end": 17692.36, + "probability": 0.9962 + }, + { + "start": 17693.18, + "end": 17695.2, + "probability": 0.9993 + }, + { + "start": 17696.44, + "end": 17699.5, + "probability": 0.8086 + }, + { + "start": 17700.1, + "end": 17702.26, + "probability": 0.9854 + }, + { + "start": 17702.4, + "end": 17705.22, + "probability": 0.98 + }, + { + "start": 17705.25, + "end": 17708.88, + "probability": 0.9985 + }, + { + "start": 17709.48, + "end": 17713.9, + "probability": 0.9887 + }, + { + "start": 17714.42, + "end": 17718.18, + "probability": 0.9078 + }, + { + "start": 17718.94, + "end": 17722.6, + "probability": 0.9891 + }, + { + "start": 17722.6, + "end": 17727.88, + "probability": 0.9987 + }, + { + "start": 17727.94, + "end": 17733.08, + "probability": 0.9951 + }, + { + "start": 17733.66, + "end": 17734.66, + "probability": 0.935 + }, + { + "start": 17734.94, + "end": 17735.36, + "probability": 0.5599 + }, + { + "start": 17735.4, + "end": 17738.78, + "probability": 0.9781 + }, + { + "start": 17738.78, + "end": 17742.56, + "probability": 0.9933 + }, + { + "start": 17742.74, + "end": 17748.06, + "probability": 0.9318 + }, + { + "start": 17748.6, + "end": 17751.84, + "probability": 0.9811 + }, + { + "start": 17752.62, + "end": 17756.5, + "probability": 0.9278 + }, + { + "start": 17757.02, + "end": 17759.34, + "probability": 0.9927 + }, + { + "start": 17759.46, + "end": 17761.36, + "probability": 0.8621 + }, + { + "start": 17761.88, + "end": 17764.48, + "probability": 0.9906 + }, + { + "start": 17764.48, + "end": 17768.08, + "probability": 0.964 + }, + { + "start": 17768.76, + "end": 17771.62, + "probability": 0.9305 + }, + { + "start": 17772.3, + "end": 17775.54, + "probability": 0.9968 + }, + { + "start": 17775.58, + "end": 17778.66, + "probability": 0.8092 + }, + { + "start": 17778.74, + "end": 17779.2, + "probability": 0.7778 + }, + { + "start": 17779.88, + "end": 17783.84, + "probability": 0.922 + }, + { + "start": 17784.82, + "end": 17785.5, + "probability": 0.7475 + }, + { + "start": 17785.58, + "end": 17786.44, + "probability": 0.9475 + }, + { + "start": 17786.54, + "end": 17788.96, + "probability": 0.8874 + }, + { + "start": 17789.54, + "end": 17792.16, + "probability": 0.7606 + }, + { + "start": 17795.18, + "end": 17795.68, + "probability": 0.6373 + }, + { + "start": 17796.2, + "end": 17798.74, + "probability": 0.9226 + }, + { + "start": 17799.44, + "end": 17803.71, + "probability": 0.8626 + }, + { + "start": 17804.44, + "end": 17804.8, + "probability": 0.0719 + }, + { + "start": 17805.52, + "end": 17807.32, + "probability": 0.8416 + }, + { + "start": 17808.82, + "end": 17809.36, + "probability": 0.3169 + }, + { + "start": 17810.16, + "end": 17812.06, + "probability": 0.8487 + }, + { + "start": 17812.56, + "end": 17817.66, + "probability": 0.6853 + }, + { + "start": 17818.36, + "end": 17819.46, + "probability": 0.8549 + }, + { + "start": 17819.8, + "end": 17825.26, + "probability": 0.9922 + }, + { + "start": 17827.42, + "end": 17827.42, + "probability": 0.2578 + }, + { + "start": 17830.78, + "end": 17836.72, + "probability": 0.9893 + }, + { + "start": 17836.72, + "end": 17842.54, + "probability": 0.8311 + }, + { + "start": 17842.64, + "end": 17844.18, + "probability": 0.3792 + }, + { + "start": 17844.54, + "end": 17845.52, + "probability": 0.9356 + }, + { + "start": 17846.1, + "end": 17846.84, + "probability": 0.8727 + }, + { + "start": 17847.16, + "end": 17847.86, + "probability": 0.7367 + }, + { + "start": 17859.72, + "end": 17859.74, + "probability": 0.0026 + }, + { + "start": 17859.74, + "end": 17859.76, + "probability": 0.1021 + }, + { + "start": 17859.76, + "end": 17859.78, + "probability": 0.0532 + }, + { + "start": 17859.78, + "end": 17859.78, + "probability": 0.0455 + }, + { + "start": 17859.78, + "end": 17859.78, + "probability": 0.0363 + }, + { + "start": 17864.9, + "end": 17865.48, + "probability": 0.4948 + }, + { + "start": 17877.02, + "end": 17877.72, + "probability": 0.2808 + }, + { + "start": 17879.26, + "end": 17881.7, + "probability": 0.47 + }, + { + "start": 17882.94, + "end": 17888.32, + "probability": 0.5801 + }, + { + "start": 17888.34, + "end": 17889.28, + "probability": 0.5245 + }, + { + "start": 17889.32, + "end": 17889.98, + "probability": 0.9078 + }, + { + "start": 17889.98, + "end": 17890.6, + "probability": 0.7413 + }, + { + "start": 17890.9, + "end": 17891.4, + "probability": 0.0145 + }, + { + "start": 17905.68, + "end": 17906.4, + "probability": 0.0172 + }, + { + "start": 17906.4, + "end": 17906.4, + "probability": 0.0318 + }, + { + "start": 17906.4, + "end": 17906.4, + "probability": 0.019 + }, + { + "start": 17906.4, + "end": 17906.4, + "probability": 0.1055 + }, + { + "start": 17906.4, + "end": 17909.12, + "probability": 0.7025 + }, + { + "start": 17909.26, + "end": 17912.68, + "probability": 0.7688 + }, + { + "start": 17913.22, + "end": 17917.62, + "probability": 0.9941 + }, + { + "start": 17918.34, + "end": 17921.0, + "probability": 0.7205 + }, + { + "start": 17921.48, + "end": 17923.64, + "probability": 0.9409 + }, + { + "start": 17923.76, + "end": 17923.76, + "probability": 0.0002 + }, + { + "start": 17925.7, + "end": 17928.06, + "probability": 0.9575 + }, + { + "start": 17937.24, + "end": 17938.38, + "probability": 0.3106 + }, + { + "start": 17938.46, + "end": 17939.66, + "probability": 0.8651 + }, + { + "start": 17939.86, + "end": 17942.42, + "probability": 0.9012 + }, + { + "start": 17943.38, + "end": 17945.42, + "probability": 0.9079 + }, + { + "start": 17946.28, + "end": 17948.84, + "probability": 0.9783 + }, + { + "start": 17949.96, + "end": 17952.5, + "probability": 0.9379 + }, + { + "start": 17953.08, + "end": 17953.76, + "probability": 0.7293 + }, + { + "start": 17955.26, + "end": 17961.56, + "probability": 0.9036 + }, + { + "start": 17962.12, + "end": 17964.96, + "probability": 0.9922 + }, + { + "start": 17965.52, + "end": 17967.04, + "probability": 0.8745 + }, + { + "start": 17967.52, + "end": 17970.9, + "probability": 0.998 + }, + { + "start": 17971.04, + "end": 17976.48, + "probability": 0.9062 + }, + { + "start": 17977.54, + "end": 17980.0, + "probability": 0.6631 + }, + { + "start": 17980.48, + "end": 17982.34, + "probability": 0.8674 + }, + { + "start": 17982.86, + "end": 17985.18, + "probability": 0.7421 + }, + { + "start": 17985.72, + "end": 17987.56, + "probability": 0.9902 + }, + { + "start": 17988.16, + "end": 17990.68, + "probability": 0.9755 + }, + { + "start": 17991.2, + "end": 17996.06, + "probability": 0.9902 + }, + { + "start": 17996.62, + "end": 18001.44, + "probability": 0.7554 + }, + { + "start": 18001.94, + "end": 18004.38, + "probability": 0.8016 + }, + { + "start": 18004.8, + "end": 18007.6, + "probability": 0.8983 + }, + { + "start": 18008.14, + "end": 18011.96, + "probability": 0.9529 + }, + { + "start": 18012.68, + "end": 18018.58, + "probability": 0.7393 + }, + { + "start": 18019.18, + "end": 18023.22, + "probability": 0.9408 + }, + { + "start": 18023.84, + "end": 18025.26, + "probability": 0.8663 + }, + { + "start": 18025.26, + "end": 18027.36, + "probability": 0.9922 + }, + { + "start": 18027.92, + "end": 18030.76, + "probability": 0.5574 + }, + { + "start": 18030.96, + "end": 18034.18, + "probability": 0.9853 + }, + { + "start": 18034.78, + "end": 18037.28, + "probability": 0.8951 + }, + { + "start": 18037.38, + "end": 18037.98, + "probability": 0.8909 + }, + { + "start": 18041.7, + "end": 18043.64, + "probability": 0.9487 + }, + { + "start": 18044.54, + "end": 18048.79, + "probability": 0.6416 + }, + { + "start": 18053.44, + "end": 18054.24, + "probability": 0.3142 + }, + { + "start": 18055.74, + "end": 18058.8, + "probability": 0.8346 + }, + { + "start": 18058.92, + "end": 18062.54, + "probability": 0.7049 + }, + { + "start": 18062.66, + "end": 18064.86, + "probability": 0.7394 + }, + { + "start": 18073.56, + "end": 18074.0, + "probability": 0.2593 + }, + { + "start": 18075.7, + "end": 18078.36, + "probability": 0.6929 + }, + { + "start": 18079.3, + "end": 18082.3, + "probability": 0.5377 + }, + { + "start": 18083.52, + "end": 18085.14, + "probability": 0.8865 + }, + { + "start": 18085.96, + "end": 18086.64, + "probability": 0.9007 + }, + { + "start": 18087.3, + "end": 18090.7, + "probability": 0.8836 + }, + { + "start": 18090.8, + "end": 18093.14, + "probability": 0.9211 + }, + { + "start": 18093.58, + "end": 18095.66, + "probability": 0.5918 + }, + { + "start": 18096.7, + "end": 18096.8, + "probability": 0.3328 + }, + { + "start": 18097.37, + "end": 18097.56, + "probability": 0.0222 + }, + { + "start": 18097.56, + "end": 18097.82, + "probability": 0.6591 + }, + { + "start": 18098.32, + "end": 18098.96, + "probability": 0.9641 + }, + { + "start": 18100.32, + "end": 18105.0, + "probability": 0.9873 + }, + { + "start": 18105.16, + "end": 18108.24, + "probability": 0.496 + }, + { + "start": 18108.84, + "end": 18116.44, + "probability": 0.8147 + }, + { + "start": 18120.12, + "end": 18122.56, + "probability": 0.8373 + }, + { + "start": 18123.16, + "end": 18125.18, + "probability": 0.6245 + }, + { + "start": 18126.38, + "end": 18130.06, + "probability": 0.355 + }, + { + "start": 18130.9, + "end": 18136.74, + "probability": 0.6927 + }, + { + "start": 18137.6, + "end": 18144.36, + "probability": 0.7171 + }, + { + "start": 18147.04, + "end": 18149.5, + "probability": 0.8967 + }, + { + "start": 18150.32, + "end": 18155.02, + "probability": 0.7861 + }, + { + "start": 18155.02, + "end": 18159.4, + "probability": 0.9218 + }, + { + "start": 18160.18, + "end": 18162.12, + "probability": 0.6387 + }, + { + "start": 18163.6, + "end": 18166.58, + "probability": 0.9242 + }, + { + "start": 18167.22, + "end": 18170.18, + "probability": 0.5993 + }, + { + "start": 18170.78, + "end": 18172.6, + "probability": 0.9424 + }, + { + "start": 18173.38, + "end": 18174.72, + "probability": 0.9543 + }, + { + "start": 18175.64, + "end": 18178.18, + "probability": 0.9922 + }, + { + "start": 18178.86, + "end": 18185.88, + "probability": 0.8494 + }, + { + "start": 18186.42, + "end": 18187.18, + "probability": 0.5754 + }, + { + "start": 18187.8, + "end": 18190.88, + "probability": 0.5033 + }, + { + "start": 18191.44, + "end": 18192.44, + "probability": 0.9897 + }, + { + "start": 18194.1, + "end": 18196.48, + "probability": 0.6885 + }, + { + "start": 18197.44, + "end": 18201.46, + "probability": 0.8354 + }, + { + "start": 18201.92, + "end": 18203.3, + "probability": 0.9478 + }, + { + "start": 18203.82, + "end": 18207.0, + "probability": 0.9246 + }, + { + "start": 18207.32, + "end": 18210.14, + "probability": 0.8877 + }, + { + "start": 18211.88, + "end": 18213.7, + "probability": 0.3419 + }, + { + "start": 18213.72, + "end": 18214.16, + "probability": 0.6919 + }, + { + "start": 18214.26, + "end": 18215.78, + "probability": 0.8448 + }, + { + "start": 18215.92, + "end": 18216.8, + "probability": 0.769 + }, + { + "start": 18216.84, + "end": 18218.88, + "probability": 0.7297 + }, + { + "start": 18219.02, + "end": 18219.8, + "probability": 0.0429 + }, + { + "start": 18220.18, + "end": 18222.06, + "probability": 0.9229 + }, + { + "start": 18222.68, + "end": 18222.82, + "probability": 0.1242 + }, + { + "start": 18222.96, + "end": 18223.52, + "probability": 0.9456 + }, + { + "start": 18225.72, + "end": 18227.28, + "probability": 0.1569 + }, + { + "start": 18228.26, + "end": 18229.2, + "probability": 0.019 + }, + { + "start": 18229.36, + "end": 18230.7, + "probability": 0.6547 + }, + { + "start": 18230.72, + "end": 18232.06, + "probability": 0.7003 + }, + { + "start": 18232.38, + "end": 18235.1, + "probability": 0.5799 + }, + { + "start": 18235.62, + "end": 18239.3, + "probability": 0.7839 + }, + { + "start": 18239.42, + "end": 18240.76, + "probability": 0.4685 + }, + { + "start": 18241.1, + "end": 18242.38, + "probability": 0.807 + }, + { + "start": 18242.72, + "end": 18243.4, + "probability": 0.6974 + }, + { + "start": 18243.54, + "end": 18243.94, + "probability": 0.2996 + }, + { + "start": 18243.96, + "end": 18244.9, + "probability": 0.5781 + }, + { + "start": 18245.64, + "end": 18246.88, + "probability": 0.0068 + }, + { + "start": 18246.88, + "end": 18248.28, + "probability": 0.0063 + }, + { + "start": 18252.08, + "end": 18253.54, + "probability": 0.1339 + }, + { + "start": 18261.78, + "end": 18265.2, + "probability": 0.5116 + }, + { + "start": 18265.24, + "end": 18269.06, + "probability": 0.9504 + }, + { + "start": 18269.08, + "end": 18271.78, + "probability": 0.8147 + }, + { + "start": 18272.16, + "end": 18274.78, + "probability": 0.5107 + }, + { + "start": 18275.16, + "end": 18277.88, + "probability": 0.6206 + }, + { + "start": 18278.46, + "end": 18279.1, + "probability": 0.6768 + }, + { + "start": 18279.18, + "end": 18279.64, + "probability": 0.7655 + }, + { + "start": 18279.76, + "end": 18280.76, + "probability": 0.6827 + }, + { + "start": 18297.02, + "end": 18297.46, + "probability": 0.3239 + }, + { + "start": 18297.46, + "end": 18297.46, + "probability": 0.3054 + }, + { + "start": 18297.46, + "end": 18297.46, + "probability": 0.09 + }, + { + "start": 18297.46, + "end": 18299.76, + "probability": 0.773 + }, + { + "start": 18300.04, + "end": 18302.14, + "probability": 0.8831 + }, + { + "start": 18302.66, + "end": 18304.68, + "probability": 0.5259 + }, + { + "start": 18305.34, + "end": 18307.72, + "probability": 0.799 + }, + { + "start": 18307.8, + "end": 18310.42, + "probability": 0.9535 + }, + { + "start": 18313.16, + "end": 18316.66, + "probability": 0.7601 + }, + { + "start": 18317.1, + "end": 18318.32, + "probability": 0.4312 + }, + { + "start": 18318.42, + "end": 18321.56, + "probability": 0.9577 + }, + { + "start": 18322.28, + "end": 18323.84, + "probability": 0.8322 + }, + { + "start": 18325.38, + "end": 18328.46, + "probability": 0.8169 + }, + { + "start": 18329.14, + "end": 18332.56, + "probability": 0.8984 + }, + { + "start": 18333.16, + "end": 18335.22, + "probability": 0.7115 + }, + { + "start": 18336.48, + "end": 18337.9, + "probability": 0.6166 + }, + { + "start": 18337.92, + "end": 18339.9, + "probability": 0.8046 + }, + { + "start": 18340.62, + "end": 18342.94, + "probability": 0.8439 + }, + { + "start": 18343.02, + "end": 18344.36, + "probability": 0.9035 + }, + { + "start": 18344.96, + "end": 18349.06, + "probability": 0.9619 + }, + { + "start": 18349.84, + "end": 18351.14, + "probability": 0.7056 + }, + { + "start": 18352.04, + "end": 18355.1, + "probability": 0.8337 + }, + { + "start": 18355.1, + "end": 18358.02, + "probability": 0.9775 + }, + { + "start": 18358.6, + "end": 18363.79, + "probability": 0.7143 + }, + { + "start": 18365.66, + "end": 18368.26, + "probability": 0.8147 + }, + { + "start": 18369.08, + "end": 18373.42, + "probability": 0.859 + }, + { + "start": 18373.42, + "end": 18376.36, + "probability": 0.9691 + }, + { + "start": 18377.28, + "end": 18379.68, + "probability": 0.9971 + }, + { + "start": 18380.22, + "end": 18384.66, + "probability": 0.9882 + }, + { + "start": 18384.66, + "end": 18388.36, + "probability": 0.5362 + }, + { + "start": 18389.04, + "end": 18391.08, + "probability": 0.838 + }, + { + "start": 18392.94, + "end": 18395.34, + "probability": 0.4752 + }, + { + "start": 18396.66, + "end": 18399.52, + "probability": 0.5285 + }, + { + "start": 18399.66, + "end": 18401.02, + "probability": 0.7373 + }, + { + "start": 18402.12, + "end": 18405.54, + "probability": 0.9168 + }, + { + "start": 18406.1, + "end": 18407.52, + "probability": 0.7673 + }, + { + "start": 18407.54, + "end": 18411.54, + "probability": 0.943 + }, + { + "start": 18412.0, + "end": 18415.32, + "probability": 0.9643 + }, + { + "start": 18416.32, + "end": 18418.68, + "probability": 0.9831 + }, + { + "start": 18419.22, + "end": 18423.74, + "probability": 0.8876 + }, + { + "start": 18424.66, + "end": 18428.32, + "probability": 0.5179 + }, + { + "start": 18429.44, + "end": 18430.18, + "probability": 0.0829 + }, + { + "start": 18432.48, + "end": 18435.62, + "probability": 0.2462 + }, + { + "start": 18436.24, + "end": 18436.78, + "probability": 0.4354 + }, + { + "start": 18436.78, + "end": 18438.42, + "probability": 0.5112 + }, + { + "start": 18438.46, + "end": 18440.5, + "probability": 0.2732 + }, + { + "start": 18440.6, + "end": 18441.34, + "probability": 0.6468 + }, + { + "start": 18441.6, + "end": 18445.6, + "probability": 0.1202 + }, + { + "start": 18446.36, + "end": 18448.12, + "probability": 0.6382 + }, + { + "start": 18448.26, + "end": 18451.84, + "probability": 0.6673 + }, + { + "start": 18452.36, + "end": 18454.6, + "probability": 0.9983 + }, + { + "start": 18455.18, + "end": 18460.06, + "probability": 0.6698 + }, + { + "start": 18460.06, + "end": 18464.86, + "probability": 0.9817 + }, + { + "start": 18465.34, + "end": 18466.4, + "probability": 0.7101 + }, + { + "start": 18467.06, + "end": 18469.18, + "probability": 0.8184 + }, + { + "start": 18469.26, + "end": 18475.18, + "probability": 0.691 + }, + { + "start": 18475.4, + "end": 18479.98, + "probability": 0.9831 + }, + { + "start": 18480.08, + "end": 18480.38, + "probability": 0.7508 + }, + { + "start": 18480.9, + "end": 18482.86, + "probability": 0.5277 + }, + { + "start": 18493.28, + "end": 18497.34, + "probability": 0.2989 + }, + { + "start": 18498.34, + "end": 18500.28, + "probability": 0.7819 + }, + { + "start": 18501.06, + "end": 18506.04, + "probability": 0.9878 + }, + { + "start": 18506.48, + "end": 18507.12, + "probability": 0.9827 + }, + { + "start": 18508.4, + "end": 18513.2, + "probability": 0.712 + }, + { + "start": 18514.62, + "end": 18520.64, + "probability": 0.7158 + }, + { + "start": 18521.48, + "end": 18527.26, + "probability": 0.9219 + }, + { + "start": 18527.8, + "end": 18534.04, + "probability": 0.9353 + }, + { + "start": 18534.56, + "end": 18538.42, + "probability": 0.9485 + }, + { + "start": 18551.16, + "end": 18554.7, + "probability": 0.9262 + }, + { + "start": 18554.7, + "end": 18559.16, + "probability": 0.7168 + }, + { + "start": 18560.06, + "end": 18564.8, + "probability": 0.9793 + }, + { + "start": 18564.8, + "end": 18568.22, + "probability": 0.9839 + }, + { + "start": 18568.6, + "end": 18568.82, + "probability": 0.5211 + }, + { + "start": 18569.92, + "end": 18571.88, + "probability": 0.7142 + }, + { + "start": 18572.2, + "end": 18576.1, + "probability": 0.9009 + }, + { + "start": 18576.24, + "end": 18577.74, + "probability": 0.9021 + }, + { + "start": 18578.52, + "end": 18581.22, + "probability": 0.9631 + }, + { + "start": 18581.22, + "end": 18585.0, + "probability": 0.5676 + }, + { + "start": 18585.1, + "end": 18585.62, + "probability": 0.5532 + }, + { + "start": 18585.74, + "end": 18586.76, + "probability": 0.2816 + }, + { + "start": 18587.56, + "end": 18588.4, + "probability": 0.0252 + }, + { + "start": 18602.02, + "end": 18602.38, + "probability": 0.0189 + }, + { + "start": 18602.38, + "end": 18606.78, + "probability": 0.6898 + }, + { + "start": 18607.32, + "end": 18609.16, + "probability": 0.8783 + }, + { + "start": 18609.28, + "end": 18613.04, + "probability": 0.7693 + }, + { + "start": 18613.24, + "end": 18613.84, + "probability": 0.6934 + }, + { + "start": 18613.86, + "end": 18614.38, + "probability": 0.4883 + }, + { + "start": 18627.28, + "end": 18627.88, + "probability": 0.009 + }, + { + "start": 18628.5, + "end": 18631.4, + "probability": 0.3411 + }, + { + "start": 18631.4, + "end": 18631.4, + "probability": 0.2575 + }, + { + "start": 18631.4, + "end": 18631.4, + "probability": 0.0946 + }, + { + "start": 18631.4, + "end": 18636.22, + "probability": 0.8976 + }, + { + "start": 18636.78, + "end": 18639.94, + "probability": 0.9152 + }, + { + "start": 18640.18, + "end": 18641.72, + "probability": 0.3606 + }, + { + "start": 18642.08, + "end": 18647.7, + "probability": 0.9833 + }, + { + "start": 18649.08, + "end": 18652.32, + "probability": 0.714 + }, + { + "start": 18652.42, + "end": 18653.96, + "probability": 0.8837 + }, + { + "start": 18654.46, + "end": 18655.56, + "probability": 0.6625 + }, + { + "start": 18656.12, + "end": 18658.44, + "probability": 0.9294 + }, + { + "start": 18659.18, + "end": 18660.48, + "probability": 0.9022 + }, + { + "start": 18661.74, + "end": 18663.14, + "probability": 0.7762 + }, + { + "start": 18663.38, + "end": 18664.4, + "probability": 0.7452 + }, + { + "start": 18681.54, + "end": 18684.32, + "probability": 0.3368 + }, + { + "start": 18684.32, + "end": 18684.6, + "probability": 0.543 + }, + { + "start": 18685.24, + "end": 18686.42, + "probability": 0.7982 + }, + { + "start": 18686.62, + "end": 18688.62, + "probability": 0.9236 + }, + { + "start": 18691.02, + "end": 18692.82, + "probability": 0.6616 + }, + { + "start": 18693.7, + "end": 18695.34, + "probability": 0.8141 + }, + { + "start": 18696.66, + "end": 18698.84, + "probability": 0.6235 + }, + { + "start": 18699.0, + "end": 18700.38, + "probability": 0.144 + }, + { + "start": 18700.56, + "end": 18702.6, + "probability": 0.9586 + }, + { + "start": 18703.02, + "end": 18703.6, + "probability": 0.3679 + }, + { + "start": 18703.8, + "end": 18705.28, + "probability": 0.9763 + }, + { + "start": 18706.66, + "end": 18707.96, + "probability": 0.8948 + }, + { + "start": 18711.02, + "end": 18714.48, + "probability": 0.8936 + }, + { + "start": 18715.18, + "end": 18717.36, + "probability": 0.9719 + }, + { + "start": 18717.76, + "end": 18721.43, + "probability": 0.9888 + }, + { + "start": 18722.34, + "end": 18724.02, + "probability": 0.9493 + }, + { + "start": 18724.08, + "end": 18729.46, + "probability": 0.9502 + }, + { + "start": 18730.26, + "end": 18732.36, + "probability": 0.6592 + }, + { + "start": 18732.48, + "end": 18736.67, + "probability": 0.7809 + }, + { + "start": 18738.06, + "end": 18739.86, + "probability": 0.6002 + }, + { + "start": 18739.94, + "end": 18743.28, + "probability": 0.9464 + }, + { + "start": 18743.28, + "end": 18745.1, + "probability": 0.9287 + }, + { + "start": 18746.42, + "end": 18749.92, + "probability": 0.874 + }, + { + "start": 18750.68, + "end": 18754.68, + "probability": 0.9744 + }, + { + "start": 18755.8, + "end": 18757.72, + "probability": 0.7803 + }, + { + "start": 18757.88, + "end": 18760.52, + "probability": 0.577 + }, + { + "start": 18760.96, + "end": 18763.82, + "probability": 0.8497 + }, + { + "start": 18764.8, + "end": 18765.54, + "probability": 0.7037 + }, + { + "start": 18766.44, + "end": 18768.38, + "probability": 0.7368 + }, + { + "start": 18768.38, + "end": 18770.34, + "probability": 0.9089 + }, + { + "start": 18770.36, + "end": 18774.78, + "probability": 0.877 + }, + { + "start": 18775.52, + "end": 18779.22, + "probability": 0.8244 + }, + { + "start": 18780.04, + "end": 18781.9, + "probability": 0.7528 + }, + { + "start": 18781.9, + "end": 18785.74, + "probability": 0.903 + }, + { + "start": 18785.92, + "end": 18789.98, + "probability": 0.9512 + }, + { + "start": 18790.64, + "end": 18793.16, + "probability": 0.7139 + }, + { + "start": 18793.96, + "end": 18795.36, + "probability": 0.9271 + }, + { + "start": 18797.62, + "end": 18799.02, + "probability": 0.7393 + }, + { + "start": 18799.04, + "end": 18801.74, + "probability": 0.9448 + }, + { + "start": 18801.74, + "end": 18804.84, + "probability": 0.9653 + }, + { + "start": 18804.9, + "end": 18805.3, + "probability": 0.4061 + }, + { + "start": 18805.44, + "end": 18807.82, + "probability": 0.9897 + }, + { + "start": 18807.82, + "end": 18811.42, + "probability": 0.8703 + }, + { + "start": 18811.58, + "end": 18816.3, + "probability": 0.7878 + }, + { + "start": 18816.3, + "end": 18820.82, + "probability": 0.9765 + }, + { + "start": 18821.52, + "end": 18824.96, + "probability": 0.9116 + }, + { + "start": 18825.18, + "end": 18829.32, + "probability": 0.7977 + }, + { + "start": 18829.32, + "end": 18833.34, + "probability": 0.96 + }, + { + "start": 18834.04, + "end": 18836.96, + "probability": 0.999 + }, + { + "start": 18837.86, + "end": 18840.66, + "probability": 0.9874 + }, + { + "start": 18840.66, + "end": 18842.86, + "probability": 0.9985 + }, + { + "start": 18843.76, + "end": 18848.5, + "probability": 0.9686 + }, + { + "start": 18850.32, + "end": 18854.06, + "probability": 0.9178 + }, + { + "start": 18854.06, + "end": 18856.06, + "probability": 0.9989 + }, + { + "start": 18856.16, + "end": 18857.06, + "probability": 0.8285 + }, + { + "start": 18857.18, + "end": 18859.72, + "probability": 0.9863 + }, + { + "start": 18859.72, + "end": 18863.56, + "probability": 0.9878 + }, + { + "start": 18863.66, + "end": 18864.36, + "probability": 0.7632 + }, + { + "start": 18864.88, + "end": 18867.2, + "probability": 0.9361 + }, + { + "start": 18867.64, + "end": 18872.97, + "probability": 0.9757 + }, + { + "start": 18873.82, + "end": 18876.28, + "probability": 0.6906 + }, + { + "start": 18877.12, + "end": 18879.4, + "probability": 0.9871 + }, + { + "start": 18880.24, + "end": 18883.16, + "probability": 0.9867 + }, + { + "start": 18885.16, + "end": 18886.9, + "probability": 0.6922 + }, + { + "start": 18889.58, + "end": 18892.94, + "probability": 0.9456 + }, + { + "start": 18893.1, + "end": 18895.28, + "probability": 0.8413 + }, + { + "start": 18895.74, + "end": 18897.28, + "probability": 0.9363 + }, + { + "start": 18897.38, + "end": 18900.57, + "probability": 0.9624 + }, + { + "start": 18901.84, + "end": 18902.59, + "probability": 0.0967 + }, + { + "start": 18923.48, + "end": 18923.48, + "probability": 0.0438 + }, + { + "start": 18923.48, + "end": 18923.76, + "probability": 0.2761 + }, + { + "start": 18924.7, + "end": 18925.4, + "probability": 0.707 + }, + { + "start": 18925.98, + "end": 18927.52, + "probability": 0.512 + }, + { + "start": 18927.72, + "end": 18928.64, + "probability": 0.7951 + }, + { + "start": 18928.76, + "end": 18929.16, + "probability": 0.8373 + }, + { + "start": 18930.41, + "end": 18932.23, + "probability": 0.9772 + }, + { + "start": 18932.8, + "end": 18937.06, + "probability": 0.9775 + }, + { + "start": 18937.14, + "end": 18938.7, + "probability": 0.9956 + }, + { + "start": 18939.26, + "end": 18944.0, + "probability": 0.996 + }, + { + "start": 18944.0, + "end": 18949.74, + "probability": 0.8924 + }, + { + "start": 18949.98, + "end": 18951.82, + "probability": 0.8417 + }, + { + "start": 18952.24, + "end": 18955.58, + "probability": 0.9987 + }, + { + "start": 18957.17, + "end": 18959.9, + "probability": 0.9956 + }, + { + "start": 18960.12, + "end": 18961.98, + "probability": 0.9429 + }, + { + "start": 18962.06, + "end": 18963.48, + "probability": 0.9767 + }, + { + "start": 18964.14, + "end": 18968.04, + "probability": 0.982 + }, + { + "start": 18968.5, + "end": 18969.04, + "probability": 0.7261 + }, + { + "start": 18969.48, + "end": 18973.92, + "probability": 0.9585 + }, + { + "start": 18973.92, + "end": 18978.62, + "probability": 0.9448 + }, + { + "start": 18979.08, + "end": 18981.32, + "probability": 0.7899 + }, + { + "start": 18981.46, + "end": 18983.28, + "probability": 0.9959 + }, + { + "start": 18983.3, + "end": 18985.62, + "probability": 0.9552 + }, + { + "start": 18985.72, + "end": 18993.66, + "probability": 0.9869 + }, + { + "start": 18994.16, + "end": 18997.26, + "probability": 0.9959 + }, + { + "start": 18998.18, + "end": 18999.44, + "probability": 0.9797 + }, + { + "start": 19000.08, + "end": 19003.08, + "probability": 0.9063 + }, + { + "start": 19003.4, + "end": 19004.9, + "probability": 0.959 + }, + { + "start": 19005.2, + "end": 19008.92, + "probability": 0.9056 + }, + { + "start": 19008.92, + "end": 19013.08, + "probability": 0.9866 + }, + { + "start": 19013.54, + "end": 19016.62, + "probability": 0.9411 + }, + { + "start": 19017.0, + "end": 19018.8, + "probability": 0.9546 + }, + { + "start": 19019.16, + "end": 19021.44, + "probability": 0.6136 + }, + { + "start": 19022.02, + "end": 19022.74, + "probability": 0.9229 + }, + { + "start": 19022.9, + "end": 19028.78, + "probability": 0.9425 + }, + { + "start": 19029.22, + "end": 19031.7, + "probability": 0.9775 + }, + { + "start": 19031.78, + "end": 19032.72, + "probability": 0.996 + }, + { + "start": 19033.66, + "end": 19037.56, + "probability": 0.9875 + }, + { + "start": 19037.64, + "end": 19038.22, + "probability": 0.7158 + }, + { + "start": 19038.26, + "end": 19038.6, + "probability": 0.9216 + }, + { + "start": 19038.66, + "end": 19039.8, + "probability": 0.9893 + }, + { + "start": 19040.4, + "end": 19044.34, + "probability": 0.8384 + }, + { + "start": 19044.96, + "end": 19049.8, + "probability": 0.8836 + }, + { + "start": 19050.34, + "end": 19051.1, + "probability": 0.9351 + }, + { + "start": 19051.4, + "end": 19053.42, + "probability": 0.5001 + }, + { + "start": 19053.58, + "end": 19054.66, + "probability": 0.9937 + }, + { + "start": 19055.14, + "end": 19055.66, + "probability": 0.9491 + }, + { + "start": 19056.2, + "end": 19059.54, + "probability": 0.8489 + }, + { + "start": 19060.0, + "end": 19061.42, + "probability": 0.9686 + }, + { + "start": 19061.92, + "end": 19063.12, + "probability": 0.9455 + }, + { + "start": 19063.22, + "end": 19064.18, + "probability": 0.7512 + }, + { + "start": 19064.46, + "end": 19065.62, + "probability": 0.9929 + }, + { + "start": 19066.16, + "end": 19068.7, + "probability": 0.9851 + }, + { + "start": 19068.92, + "end": 19070.22, + "probability": 0.9496 + }, + { + "start": 19070.28, + "end": 19071.62, + "probability": 0.9824 + }, + { + "start": 19072.04, + "end": 19074.14, + "probability": 0.9675 + }, + { + "start": 19074.52, + "end": 19075.38, + "probability": 0.9638 + }, + { + "start": 19075.66, + "end": 19078.46, + "probability": 0.9824 + }, + { + "start": 19078.76, + "end": 19079.72, + "probability": 0.9946 + }, + { + "start": 19080.4, + "end": 19081.0, + "probability": 0.8472 + }, + { + "start": 19081.08, + "end": 19082.02, + "probability": 0.8805 + }, + { + "start": 19082.38, + "end": 19086.84, + "probability": 0.9662 + }, + { + "start": 19086.84, + "end": 19091.84, + "probability": 0.9432 + }, + { + "start": 19092.2, + "end": 19093.14, + "probability": 0.9766 + }, + { + "start": 19093.56, + "end": 19096.84, + "probability": 0.944 + }, + { + "start": 19097.26, + "end": 19098.52, + "probability": 0.9932 + }, + { + "start": 19099.0, + "end": 19100.28, + "probability": 0.9199 + }, + { + "start": 19100.62, + "end": 19103.44, + "probability": 0.9781 + }, + { + "start": 19103.74, + "end": 19104.32, + "probability": 0.8574 + }, + { + "start": 19104.84, + "end": 19105.18, + "probability": 0.8964 + }, + { + "start": 19106.08, + "end": 19108.26, + "probability": 0.8779 + }, + { + "start": 19109.6, + "end": 19111.98, + "probability": 0.873 + }, + { + "start": 19112.04, + "end": 19114.34, + "probability": 0.5969 + }, + { + "start": 19115.08, + "end": 19116.26, + "probability": 0.4111 + }, + { + "start": 19116.54, + "end": 19118.04, + "probability": 0.9324 + }, + { + "start": 19118.18, + "end": 19119.14, + "probability": 0.9263 + }, + { + "start": 19129.04, + "end": 19130.94, + "probability": 0.9884 + }, + { + "start": 19131.18, + "end": 19132.12, + "probability": 0.7751 + }, + { + "start": 19132.6, + "end": 19134.42, + "probability": 0.6667 + }, + { + "start": 19134.66, + "end": 19135.94, + "probability": 0.6174 + }, + { + "start": 19136.22, + "end": 19137.38, + "probability": 0.8868 + }, + { + "start": 19137.58, + "end": 19138.5, + "probability": 0.8688 + }, + { + "start": 19138.64, + "end": 19139.06, + "probability": 0.7981 + }, + { + "start": 19139.84, + "end": 19143.88, + "probability": 0.8608 + }, + { + "start": 19144.58, + "end": 19145.98, + "probability": 0.8138 + }, + { + "start": 19146.06, + "end": 19146.76, + "probability": 0.8133 + }, + { + "start": 19146.88, + "end": 19148.12, + "probability": 0.9246 + }, + { + "start": 19148.3, + "end": 19148.88, + "probability": 0.4953 + }, + { + "start": 19150.26, + "end": 19156.74, + "probability": 0.9819 + }, + { + "start": 19157.36, + "end": 19159.66, + "probability": 0.9699 + }, + { + "start": 19161.2, + "end": 19162.02, + "probability": 0.9216 + }, + { + "start": 19162.92, + "end": 19164.08, + "probability": 0.0275 + }, + { + "start": 19165.3, + "end": 19168.96, + "probability": 0.9663 + }, + { + "start": 19170.74, + "end": 19171.36, + "probability": 0.4836 + }, + { + "start": 19172.34, + "end": 19176.46, + "probability": 0.8695 + }, + { + "start": 19177.32, + "end": 19181.83, + "probability": 0.9785 + }, + { + "start": 19182.22, + "end": 19183.3, + "probability": 0.8838 + }, + { + "start": 19183.34, + "end": 19185.68, + "probability": 0.7878 + }, + { + "start": 19186.14, + "end": 19190.84, + "probability": 0.6418 + }, + { + "start": 19191.74, + "end": 19193.84, + "probability": 0.65 + }, + { + "start": 19194.46, + "end": 19196.92, + "probability": 0.8757 + }, + { + "start": 19197.84, + "end": 19201.24, + "probability": 0.8892 + }, + { + "start": 19201.88, + "end": 19205.48, + "probability": 0.4989 + }, + { + "start": 19206.32, + "end": 19209.66, + "probability": 0.9404 + }, + { + "start": 19210.48, + "end": 19211.4, + "probability": 0.7607 + }, + { + "start": 19212.22, + "end": 19214.04, + "probability": 0.9752 + }, + { + "start": 19214.82, + "end": 19216.6, + "probability": 0.7748 + }, + { + "start": 19217.16, + "end": 19218.98, + "probability": 0.9539 + }, + { + "start": 19219.56, + "end": 19222.14, + "probability": 0.7316 + }, + { + "start": 19223.34, + "end": 19226.74, + "probability": 0.9344 + }, + { + "start": 19227.46, + "end": 19229.12, + "probability": 0.9075 + }, + { + "start": 19229.62, + "end": 19233.92, + "probability": 0.9672 + }, + { + "start": 19233.92, + "end": 19240.98, + "probability": 0.8352 + }, + { + "start": 19241.4, + "end": 19245.5, + "probability": 0.8348 + }, + { + "start": 19245.96, + "end": 19247.52, + "probability": 0.7672 + }, + { + "start": 19248.26, + "end": 19248.86, + "probability": 0.8798 + }, + { + "start": 19249.64, + "end": 19251.24, + "probability": 0.975 + }, + { + "start": 19251.8, + "end": 19252.84, + "probability": 0.9941 + }, + { + "start": 19253.02, + "end": 19253.54, + "probability": 0.9014 + }, + { + "start": 19253.78, + "end": 19256.06, + "probability": 0.9228 + }, + { + "start": 19256.44, + "end": 19258.1, + "probability": 0.8946 + }, + { + "start": 19259.04, + "end": 19259.86, + "probability": 0.9668 + }, + { + "start": 19262.7, + "end": 19265.1, + "probability": 0.7699 + }, + { + "start": 19266.06, + "end": 19267.98, + "probability": 0.7725 + }, + { + "start": 19268.4, + "end": 19268.66, + "probability": 0.4971 + }, + { + "start": 19268.82, + "end": 19269.46, + "probability": 0.7157 + }, + { + "start": 19269.62, + "end": 19274.06, + "probability": 0.8964 + }, + { + "start": 19274.54, + "end": 19275.98, + "probability": 0.9802 + }, + { + "start": 19277.28, + "end": 19277.62, + "probability": 0.0252 + }, + { + "start": 19277.62, + "end": 19279.24, + "probability": 0.5263 + }, + { + "start": 19279.24, + "end": 19283.04, + "probability": 0.3047 + }, + { + "start": 19283.26, + "end": 19288.56, + "probability": 0.8278 + }, + { + "start": 19289.36, + "end": 19290.62, + "probability": 0.7863 + }, + { + "start": 19290.72, + "end": 19294.62, + "probability": 0.9171 + }, + { + "start": 19295.18, + "end": 19296.67, + "probability": 0.9987 + }, + { + "start": 19297.96, + "end": 19301.56, + "probability": 0.689 + }, + { + "start": 19302.26, + "end": 19306.14, + "probability": 0.9819 + }, + { + "start": 19306.5, + "end": 19310.92, + "probability": 0.9304 + }, + { + "start": 19311.13, + "end": 19312.94, + "probability": 0.4081 + }, + { + "start": 19313.54, + "end": 19314.12, + "probability": 0.4979 + }, + { + "start": 19314.28, + "end": 19315.56, + "probability": 0.6105 + }, + { + "start": 19316.44, + "end": 19317.3, + "probability": 0.7665 + }, + { + "start": 19317.42, + "end": 19318.18, + "probability": 0.8426 + }, + { + "start": 19318.28, + "end": 19319.58, + "probability": 0.545 + }, + { + "start": 19319.62, + "end": 19320.44, + "probability": 0.8678 + }, + { + "start": 19320.62, + "end": 19325.62, + "probability": 0.9039 + }, + { + "start": 19325.8, + "end": 19328.24, + "probability": 0.836 + }, + { + "start": 19328.96, + "end": 19332.4, + "probability": 0.9875 + }, + { + "start": 19335.56, + "end": 19339.66, + "probability": 0.9162 + }, + { + "start": 19340.1, + "end": 19341.66, + "probability": 0.6535 + }, + { + "start": 19341.8, + "end": 19342.58, + "probability": 0.8055 + }, + { + "start": 19343.24, + "end": 19345.0, + "probability": 0.9661 + }, + { + "start": 19345.06, + "end": 19345.4, + "probability": 0.7002 + }, + { + "start": 19346.24, + "end": 19346.93, + "probability": 0.9408 + }, + { + "start": 19347.14, + "end": 19347.72, + "probability": 0.426 + }, + { + "start": 19348.94, + "end": 19350.12, + "probability": 0.954 + }, + { + "start": 19350.28, + "end": 19352.62, + "probability": 0.7784 + }, + { + "start": 19352.84, + "end": 19354.3, + "probability": 0.3709 + }, + { + "start": 19354.86, + "end": 19361.14, + "probability": 0.9981 + }, + { + "start": 19361.9, + "end": 19364.41, + "probability": 0.9791 + }, + { + "start": 19364.68, + "end": 19365.88, + "probability": 0.0485 + }, + { + "start": 19366.58, + "end": 19367.5, + "probability": 0.8762 + }, + { + "start": 19368.08, + "end": 19368.7, + "probability": 0.5353 + }, + { + "start": 19369.06, + "end": 19369.52, + "probability": 0.2937 + }, + { + "start": 19369.98, + "end": 19371.24, + "probability": 0.8387 + }, + { + "start": 19371.29, + "end": 19372.12, + "probability": 0.4169 + }, + { + "start": 19372.24, + "end": 19373.54, + "probability": 0.7792 + }, + { + "start": 19373.64, + "end": 19374.44, + "probability": 0.8405 + }, + { + "start": 19374.84, + "end": 19377.88, + "probability": 0.946 + }, + { + "start": 19378.2, + "end": 19379.92, + "probability": 0.7222 + }, + { + "start": 19380.28, + "end": 19385.64, + "probability": 0.8628 + }, + { + "start": 19385.64, + "end": 19386.68, + "probability": 0.9673 + }, + { + "start": 19386.78, + "end": 19389.14, + "probability": 0.9849 + }, + { + "start": 19389.68, + "end": 19391.16, + "probability": 0.9844 + }, + { + "start": 19391.38, + "end": 19394.18, + "probability": 0.9358 + }, + { + "start": 19394.18, + "end": 19397.94, + "probability": 0.9818 + }, + { + "start": 19398.08, + "end": 19399.68, + "probability": 0.9314 + }, + { + "start": 19400.42, + "end": 19401.92, + "probability": 0.9941 + }, + { + "start": 19402.96, + "end": 19404.24, + "probability": 0.6827 + }, + { + "start": 19405.04, + "end": 19408.12, + "probability": 0.8329 + }, + { + "start": 19408.72, + "end": 19411.62, + "probability": 0.9041 + }, + { + "start": 19412.16, + "end": 19414.36, + "probability": 0.9771 + }, + { + "start": 19415.08, + "end": 19418.08, + "probability": 0.8238 + }, + { + "start": 19437.04, + "end": 19438.28, + "probability": 0.4892 + }, + { + "start": 19439.3, + "end": 19440.26, + "probability": 0.2389 + }, + { + "start": 19442.02, + "end": 19443.18, + "probability": 0.889 + }, + { + "start": 19443.5, + "end": 19445.76, + "probability": 0.9628 + }, + { + "start": 19446.28, + "end": 19448.92, + "probability": 0.9653 + }, + { + "start": 19449.56, + "end": 19450.86, + "probability": 0.9116 + }, + { + "start": 19451.38, + "end": 19454.28, + "probability": 0.9753 + }, + { + "start": 19455.14, + "end": 19457.62, + "probability": 0.9898 + }, + { + "start": 19458.3, + "end": 19459.66, + "probability": 0.9648 + }, + { + "start": 19460.18, + "end": 19464.02, + "probability": 0.9625 + }, + { + "start": 19464.76, + "end": 19466.18, + "probability": 0.9592 + }, + { + "start": 19467.42, + "end": 19468.04, + "probability": 0.8261 + }, + { + "start": 19468.14, + "end": 19473.14, + "probability": 0.8864 + }, + { + "start": 19474.24, + "end": 19475.7, + "probability": 0.1422 + }, + { + "start": 19477.06, + "end": 19478.76, + "probability": 0.2411 + }, + { + "start": 19478.84, + "end": 19482.78, + "probability": 0.8844 + }, + { + "start": 19482.96, + "end": 19489.32, + "probability": 0.9424 + }, + { + "start": 19490.02, + "end": 19493.54, + "probability": 0.934 + }, + { + "start": 19493.9, + "end": 19500.3, + "probability": 0.9251 + }, + { + "start": 19501.18, + "end": 19502.84, + "probability": 0.8986 + }, + { + "start": 19503.64, + "end": 19504.24, + "probability": 0.4974 + }, + { + "start": 19505.24, + "end": 19506.74, + "probability": 0.8449 + }, + { + "start": 19507.46, + "end": 19511.98, + "probability": 0.862 + }, + { + "start": 19512.54, + "end": 19519.16, + "probability": 0.9616 + }, + { + "start": 19520.24, + "end": 19523.64, + "probability": 0.9328 + }, + { + "start": 19523.64, + "end": 19526.22, + "probability": 0.971 + }, + { + "start": 19526.64, + "end": 19527.24, + "probability": 0.6915 + }, + { + "start": 19528.14, + "end": 19528.58, + "probability": 0.3557 + }, + { + "start": 19529.0, + "end": 19530.41, + "probability": 0.939 + }, + { + "start": 19530.8, + "end": 19533.2, + "probability": 0.9002 + }, + { + "start": 19533.72, + "end": 19536.98, + "probability": 0.9497 + }, + { + "start": 19537.56, + "end": 19540.76, + "probability": 0.9966 + }, + { + "start": 19541.84, + "end": 19544.36, + "probability": 0.7844 + }, + { + "start": 19545.18, + "end": 19547.24, + "probability": 0.7139 + }, + { + "start": 19547.44, + "end": 19550.16, + "probability": 0.9549 + }, + { + "start": 19551.0, + "end": 19553.62, + "probability": 0.9976 + }, + { + "start": 19554.48, + "end": 19555.72, + "probability": 0.9716 + }, + { + "start": 19556.5, + "end": 19557.28, + "probability": 0.7096 + }, + { + "start": 19558.06, + "end": 19560.58, + "probability": 0.9375 + }, + { + "start": 19561.72, + "end": 19564.1, + "probability": 0.0755 + }, + { + "start": 19565.56, + "end": 19569.86, + "probability": 0.9491 + }, + { + "start": 19570.56, + "end": 19573.18, + "probability": 0.9902 + }, + { + "start": 19574.1, + "end": 19578.3, + "probability": 0.9849 + }, + { + "start": 19578.38, + "end": 19579.38, + "probability": 0.8569 + }, + { + "start": 19581.24, + "end": 19582.88, + "probability": 0.0766 + }, + { + "start": 19583.64, + "end": 19585.32, + "probability": 0.5054 + }, + { + "start": 19585.88, + "end": 19587.64, + "probability": 0.9492 + }, + { + "start": 19588.38, + "end": 19594.26, + "probability": 0.9604 + }, + { + "start": 19594.4, + "end": 19595.22, + "probability": 0.8659 + }, + { + "start": 19597.31, + "end": 19600.38, + "probability": 0.9681 + }, + { + "start": 19601.52, + "end": 19604.88, + "probability": 0.7801 + }, + { + "start": 19606.16, + "end": 19608.06, + "probability": 0.0148 + }, + { + "start": 19608.64, + "end": 19609.32, + "probability": 0.038 + }, + { + "start": 19609.32, + "end": 19609.32, + "probability": 0.0829 + }, + { + "start": 19609.32, + "end": 19611.42, + "probability": 0.0674 + }, + { + "start": 19612.54, + "end": 19615.02, + "probability": 0.0297 + }, + { + "start": 19615.58, + "end": 19619.18, + "probability": 0.0386 + }, + { + "start": 19619.7, + "end": 19625.96, + "probability": 0.0434 + }, + { + "start": 19627.96, + "end": 19630.0, + "probability": 0.6657 + }, + { + "start": 19630.12, + "end": 19631.46, + "probability": 0.7059 + }, + { + "start": 19631.96, + "end": 19633.28, + "probability": 0.8559 + }, + { + "start": 19649.98, + "end": 19653.18, + "probability": 0.8231 + }, + { + "start": 19654.38, + "end": 19656.5, + "probability": 0.7666 + }, + { + "start": 19656.58, + "end": 19657.8, + "probability": 0.5534 + }, + { + "start": 19659.92, + "end": 19660.36, + "probability": 0.9191 + }, + { + "start": 19662.04, + "end": 19662.72, + "probability": 0.7247 + }, + { + "start": 19662.78, + "end": 19664.44, + "probability": 0.9979 + }, + { + "start": 19665.52, + "end": 19667.05, + "probability": 0.6489 + }, + { + "start": 19667.82, + "end": 19668.8, + "probability": 0.983 + }, + { + "start": 19679.34, + "end": 19683.34, + "probability": 0.9201 + }, + { + "start": 19684.36, + "end": 19685.18, + "probability": 0.7242 + }, + { + "start": 19685.32, + "end": 19687.88, + "probability": 0.9004 + }, + { + "start": 19688.8, + "end": 19690.78, + "probability": 0.9867 + }, + { + "start": 19691.1, + "end": 19693.04, + "probability": 0.6736 + }, + { + "start": 19694.5, + "end": 19697.8, + "probability": 0.9788 + }, + { + "start": 19698.34, + "end": 19699.8, + "probability": 0.8965 + }, + { + "start": 19700.92, + "end": 19703.7, + "probability": 0.5222 + }, + { + "start": 19705.98, + "end": 19708.84, + "probability": 0.8137 + }, + { + "start": 19710.24, + "end": 19713.66, + "probability": 0.9263 + }, + { + "start": 19713.86, + "end": 19714.98, + "probability": 0.6227 + }, + { + "start": 19716.34, + "end": 19717.02, + "probability": 0.4421 + }, + { + "start": 19717.4, + "end": 19720.54, + "probability": 0.8596 + }, + { + "start": 19720.84, + "end": 19722.8, + "probability": 0.5862 + }, + { + "start": 19722.96, + "end": 19723.74, + "probability": 0.8285 + }, + { + "start": 19724.24, + "end": 19725.62, + "probability": 0.9705 + }, + { + "start": 19726.5, + "end": 19728.2, + "probability": 0.9651 + }, + { + "start": 19728.76, + "end": 19731.52, + "probability": 0.7506 + }, + { + "start": 19732.72, + "end": 19733.23, + "probability": 0.9873 + }, + { + "start": 19735.8, + "end": 19736.7, + "probability": 0.7754 + }, + { + "start": 19737.5, + "end": 19738.12, + "probability": 0.8702 + }, + { + "start": 19739.74, + "end": 19741.18, + "probability": 0.815 + }, + { + "start": 19742.18, + "end": 19744.72, + "probability": 0.9746 + }, + { + "start": 19745.44, + "end": 19748.68, + "probability": 0.8496 + }, + { + "start": 19749.58, + "end": 19752.86, + "probability": 0.9795 + }, + { + "start": 19753.54, + "end": 19755.58, + "probability": 0.8686 + }, + { + "start": 19756.42, + "end": 19757.98, + "probability": 0.9287 + }, + { + "start": 19758.54, + "end": 19765.52, + "probability": 0.9628 + }, + { + "start": 19765.58, + "end": 19766.5, + "probability": 0.8867 + }, + { + "start": 19766.86, + "end": 19771.04, + "probability": 0.902 + }, + { + "start": 19771.46, + "end": 19772.58, + "probability": 0.8472 + }, + { + "start": 19773.54, + "end": 19774.48, + "probability": 0.6968 + }, + { + "start": 19775.12, + "end": 19776.4, + "probability": 0.9678 + }, + { + "start": 19777.42, + "end": 19779.28, + "probability": 0.8258 + }, + { + "start": 19780.22, + "end": 19781.92, + "probability": 0.7916 + }, + { + "start": 19782.34, + "end": 19785.38, + "probability": 0.9774 + }, + { + "start": 19786.1, + "end": 19789.84, + "probability": 0.9773 + }, + { + "start": 19790.6, + "end": 19792.76, + "probability": 0.8811 + }, + { + "start": 19793.52, + "end": 19796.46, + "probability": 0.708 + }, + { + "start": 19797.16, + "end": 19802.72, + "probability": 0.9609 + }, + { + "start": 19803.44, + "end": 19804.98, + "probability": 0.7811 + }, + { + "start": 19805.4, + "end": 19805.76, + "probability": 0.8101 + }, + { + "start": 19805.76, + "end": 19808.08, + "probability": 0.9648 + }, + { + "start": 19808.44, + "end": 19809.9, + "probability": 0.9535 + }, + { + "start": 19810.4, + "end": 19810.66, + "probability": 0.6842 + }, + { + "start": 19810.8, + "end": 19813.4, + "probability": 0.5242 + }, + { + "start": 19813.48, + "end": 19814.8, + "probability": 0.7957 + }, + { + "start": 19815.28, + "end": 19818.12, + "probability": 0.9233 + }, + { + "start": 19818.52, + "end": 19819.7, + "probability": 0.9923 + }, + { + "start": 19820.02, + "end": 19827.06, + "probability": 0.9836 + }, + { + "start": 19827.46, + "end": 19828.3, + "probability": 0.6068 + }, + { + "start": 19828.7, + "end": 19834.36, + "probability": 0.887 + }, + { + "start": 19834.38, + "end": 19836.12, + "probability": 0.6848 + }, + { + "start": 19837.18, + "end": 19839.16, + "probability": 0.9684 + }, + { + "start": 19839.38, + "end": 19842.24, + "probability": 0.9006 + }, + { + "start": 19843.04, + "end": 19844.48, + "probability": 0.7628 + }, + { + "start": 19866.26, + "end": 19867.7, + "probability": 0.6085 + }, + { + "start": 19868.76, + "end": 19871.52, + "probability": 0.6427 + }, + { + "start": 19878.66, + "end": 19879.92, + "probability": 0.4683 + }, + { + "start": 19881.18, + "end": 19882.54, + "probability": 0.9846 + }, + { + "start": 19883.62, + "end": 19884.24, + "probability": 0.6182 + }, + { + "start": 19884.34, + "end": 19885.24, + "probability": 0.2635 + }, + { + "start": 19886.84, + "end": 19887.66, + "probability": 0.9482 + }, + { + "start": 19888.72, + "end": 19889.4, + "probability": 0.7407 + }, + { + "start": 19890.16, + "end": 19893.3, + "probability": 0.6934 + }, + { + "start": 19894.04, + "end": 19897.34, + "probability": 0.9718 + }, + { + "start": 19898.92, + "end": 19903.1, + "probability": 0.9078 + }, + { + "start": 19904.68, + "end": 19906.0, + "probability": 0.5696 + }, + { + "start": 19907.18, + "end": 19909.42, + "probability": 0.9995 + }, + { + "start": 19910.44, + "end": 19912.86, + "probability": 0.9738 + }, + { + "start": 19914.58, + "end": 19917.48, + "probability": 0.9359 + }, + { + "start": 19918.62, + "end": 19925.14, + "probability": 0.9949 + }, + { + "start": 19926.46, + "end": 19928.38, + "probability": 0.9955 + }, + { + "start": 19928.48, + "end": 19929.22, + "probability": 0.5598 + }, + { + "start": 19929.38, + "end": 19930.24, + "probability": 0.6613 + }, + { + "start": 19930.96, + "end": 19931.66, + "probability": 0.5686 + }, + { + "start": 19932.2, + "end": 19936.16, + "probability": 0.9622 + }, + { + "start": 19937.54, + "end": 19938.78, + "probability": 0.985 + }, + { + "start": 19938.9, + "end": 19941.94, + "probability": 0.9556 + }, + { + "start": 19942.68, + "end": 19944.02, + "probability": 0.9575 + }, + { + "start": 19944.78, + "end": 19953.14, + "probability": 0.8114 + }, + { + "start": 19953.18, + "end": 19957.7, + "probability": 0.9912 + }, + { + "start": 19958.64, + "end": 19961.58, + "probability": 0.9643 + }, + { + "start": 19962.3, + "end": 19963.86, + "probability": 0.9564 + }, + { + "start": 19964.58, + "end": 19970.7, + "probability": 0.9865 + }, + { + "start": 19971.0, + "end": 19972.24, + "probability": 0.8355 + }, + { + "start": 19972.96, + "end": 19976.6, + "probability": 0.9749 + }, + { + "start": 19976.86, + "end": 19977.36, + "probability": 0.8304 + }, + { + "start": 19977.8, + "end": 19979.1, + "probability": 0.751 + }, + { + "start": 19980.26, + "end": 19981.16, + "probability": 0.7103 + }, + { + "start": 19981.82, + "end": 19984.9, + "probability": 0.9736 + }, + { + "start": 19985.62, + "end": 19989.92, + "probability": 0.9931 + }, + { + "start": 19989.92, + "end": 19995.5, + "probability": 0.9963 + }, + { + "start": 19996.06, + "end": 19997.74, + "probability": 0.9753 + }, + { + "start": 19998.34, + "end": 20000.72, + "probability": 0.9824 + }, + { + "start": 20001.06, + "end": 20003.76, + "probability": 0.9917 + }, + { + "start": 20003.8, + "end": 20005.34, + "probability": 0.9886 + }, + { + "start": 20005.74, + "end": 20006.84, + "probability": 0.983 + }, + { + "start": 20007.56, + "end": 20008.65, + "probability": 0.9868 + }, + { + "start": 20009.06, + "end": 20014.92, + "probability": 0.9967 + }, + { + "start": 20015.38, + "end": 20018.92, + "probability": 0.9756 + }, + { + "start": 20019.48, + "end": 20021.92, + "probability": 0.9977 + }, + { + "start": 20022.36, + "end": 20023.14, + "probability": 0.7763 + }, + { + "start": 20023.52, + "end": 20024.1, + "probability": 0.7138 + }, + { + "start": 20024.56, + "end": 20027.0, + "probability": 0.9917 + }, + { + "start": 20027.38, + "end": 20030.74, + "probability": 0.991 + }, + { + "start": 20031.18, + "end": 20032.7, + "probability": 0.8799 + }, + { + "start": 20033.68, + "end": 20035.14, + "probability": 0.972 + }, + { + "start": 20035.74, + "end": 20039.7, + "probability": 0.9478 + }, + { + "start": 20040.36, + "end": 20044.44, + "probability": 0.9967 + }, + { + "start": 20044.64, + "end": 20045.54, + "probability": 0.9321 + }, + { + "start": 20045.98, + "end": 20047.0, + "probability": 0.8199 + }, + { + "start": 20047.82, + "end": 20048.9, + "probability": 0.4919 + }, + { + "start": 20049.54, + "end": 20051.12, + "probability": 0.9917 + }, + { + "start": 20051.94, + "end": 20055.58, + "probability": 0.9121 + }, + { + "start": 20056.08, + "end": 20058.86, + "probability": 0.8012 + }, + { + "start": 20059.3, + "end": 20062.62, + "probability": 0.9875 + }, + { + "start": 20062.94, + "end": 20065.52, + "probability": 0.6594 + }, + { + "start": 20065.56, + "end": 20066.73, + "probability": 0.9934 + }, + { + "start": 20067.38, + "end": 20070.36, + "probability": 0.9979 + }, + { + "start": 20070.98, + "end": 20076.1, + "probability": 0.9966 + }, + { + "start": 20076.46, + "end": 20077.3, + "probability": 0.9793 + }, + { + "start": 20077.78, + "end": 20078.54, + "probability": 0.9942 + }, + { + "start": 20078.92, + "end": 20080.0, + "probability": 0.9078 + }, + { + "start": 20080.1, + "end": 20081.4, + "probability": 0.996 + }, + { + "start": 20081.76, + "end": 20083.61, + "probability": 0.9679 + }, + { + "start": 20084.56, + "end": 20089.78, + "probability": 0.9899 + }, + { + "start": 20089.78, + "end": 20092.16, + "probability": 0.9847 + }, + { + "start": 20092.34, + "end": 20094.26, + "probability": 0.9971 + }, + { + "start": 20094.86, + "end": 20094.86, + "probability": 0.2772 + }, + { + "start": 20094.92, + "end": 20101.6, + "probability": 0.9885 + }, + { + "start": 20101.86, + "end": 20101.86, + "probability": 0.6038 + }, + { + "start": 20102.06, + "end": 20103.4, + "probability": 0.9829 + }, + { + "start": 20104.2, + "end": 20109.46, + "probability": 0.9932 + }, + { + "start": 20110.42, + "end": 20114.14, + "probability": 0.9449 + }, + { + "start": 20115.48, + "end": 20117.6, + "probability": 0.9844 + }, + { + "start": 20118.48, + "end": 20121.6, + "probability": 0.9487 + }, + { + "start": 20121.94, + "end": 20126.42, + "probability": 0.7503 + }, + { + "start": 20126.42, + "end": 20129.78, + "probability": 0.9442 + }, + { + "start": 20129.94, + "end": 20130.18, + "probability": 0.5816 + }, + { + "start": 20130.34, + "end": 20132.82, + "probability": 0.996 + }, + { + "start": 20133.58, + "end": 20136.48, + "probability": 0.9985 + }, + { + "start": 20137.04, + "end": 20138.02, + "probability": 0.6011 + }, + { + "start": 20138.34, + "end": 20139.44, + "probability": 0.828 + }, + { + "start": 20139.74, + "end": 20143.1, + "probability": 0.8264 + }, + { + "start": 20143.98, + "end": 20146.22, + "probability": 0.8902 + }, + { + "start": 20146.5, + "end": 20148.04, + "probability": 0.9969 + }, + { + "start": 20148.42, + "end": 20149.44, + "probability": 0.9752 + }, + { + "start": 20149.52, + "end": 20150.68, + "probability": 0.8945 + }, + { + "start": 20150.82, + "end": 20151.4, + "probability": 0.8254 + }, + { + "start": 20152.08, + "end": 20153.52, + "probability": 0.8104 + }, + { + "start": 20154.52, + "end": 20155.1, + "probability": 0.5722 + }, + { + "start": 20155.74, + "end": 20157.12, + "probability": 0.8509 + }, + { + "start": 20158.36, + "end": 20159.08, + "probability": 0.8665 + }, + { + "start": 20161.17, + "end": 20162.68, + "probability": 0.8827 + }, + { + "start": 20162.76, + "end": 20163.28, + "probability": 0.9044 + }, + { + "start": 20163.56, + "end": 20165.24, + "probability": 0.4482 + }, + { + "start": 20166.12, + "end": 20168.4, + "probability": 0.5059 + }, + { + "start": 20168.6, + "end": 20170.28, + "probability": 0.7906 + }, + { + "start": 20178.26, + "end": 20179.6, + "probability": 0.6987 + }, + { + "start": 20180.22, + "end": 20180.48, + "probability": 0.5887 + }, + { + "start": 20190.16, + "end": 20190.78, + "probability": 0.5756 + }, + { + "start": 20190.84, + "end": 20193.38, + "probability": 0.697 + }, + { + "start": 20194.98, + "end": 20197.52, + "probability": 0.6297 + }, + { + "start": 20197.7, + "end": 20199.86, + "probability": 0.8688 + }, + { + "start": 20202.1, + "end": 20207.48, + "probability": 0.866 + }, + { + "start": 20207.5, + "end": 20209.28, + "probability": 0.6684 + }, + { + "start": 20209.44, + "end": 20209.9, + "probability": 0.3244 + }, + { + "start": 20210.14, + "end": 20211.2, + "probability": 0.464 + }, + { + "start": 20211.74, + "end": 20213.64, + "probability": 0.6873 + }, + { + "start": 20214.42, + "end": 20218.9, + "probability": 0.954 + }, + { + "start": 20219.16, + "end": 20220.78, + "probability": 0.959 + }, + { + "start": 20221.42, + "end": 20222.14, + "probability": 0.497 + }, + { + "start": 20222.78, + "end": 20224.76, + "probability": 0.9683 + }, + { + "start": 20225.04, + "end": 20225.9, + "probability": 0.7816 + }, + { + "start": 20225.98, + "end": 20226.92, + "probability": 0.6877 + }, + { + "start": 20226.96, + "end": 20227.16, + "probability": 0.9163 + }, + { + "start": 20227.28, + "end": 20228.76, + "probability": 0.8963 + }, + { + "start": 20229.26, + "end": 20232.4, + "probability": 0.9725 + }, + { + "start": 20232.82, + "end": 20236.58, + "probability": 0.9589 + }, + { + "start": 20237.06, + "end": 20241.24, + "probability": 0.9807 + }, + { + "start": 20241.28, + "end": 20243.02, + "probability": 0.9395 + }, + { + "start": 20243.3, + "end": 20243.78, + "probability": 0.4723 + }, + { + "start": 20243.84, + "end": 20244.04, + "probability": 0.9128 + }, + { + "start": 20244.12, + "end": 20245.48, + "probability": 0.6992 + }, + { + "start": 20245.9, + "end": 20247.04, + "probability": 0.8048 + }, + { + "start": 20247.88, + "end": 20251.1, + "probability": 0.9884 + }, + { + "start": 20251.14, + "end": 20257.66, + "probability": 0.7961 + }, + { + "start": 20258.72, + "end": 20262.9, + "probability": 0.7968 + }, + { + "start": 20263.84, + "end": 20270.41, + "probability": 0.8831 + }, + { + "start": 20270.9, + "end": 20271.54, + "probability": 0.7406 + }, + { + "start": 20271.68, + "end": 20274.9, + "probability": 0.5187 + }, + { + "start": 20274.9, + "end": 20277.6, + "probability": 0.7404 + }, + { + "start": 20277.72, + "end": 20279.44, + "probability": 0.8302 + }, + { + "start": 20279.9, + "end": 20281.0, + "probability": 0.9236 + }, + { + "start": 20281.18, + "end": 20282.08, + "probability": 0.6606 + }, + { + "start": 20282.44, + "end": 20285.8, + "probability": 0.9376 + }, + { + "start": 20286.34, + "end": 20288.03, + "probability": 0.998 + }, + { + "start": 20288.72, + "end": 20291.5, + "probability": 0.979 + }, + { + "start": 20291.5, + "end": 20294.64, + "probability": 0.9965 + }, + { + "start": 20295.52, + "end": 20298.54, + "probability": 0.983 + }, + { + "start": 20299.1, + "end": 20304.64, + "probability": 0.9941 + }, + { + "start": 20304.64, + "end": 20311.16, + "probability": 0.999 + }, + { + "start": 20312.9, + "end": 20316.2, + "probability": 0.9675 + }, + { + "start": 20317.36, + "end": 20320.48, + "probability": 0.9927 + }, + { + "start": 20321.88, + "end": 20324.86, + "probability": 0.7781 + }, + { + "start": 20326.4, + "end": 20331.78, + "probability": 0.9775 + }, + { + "start": 20332.02, + "end": 20333.36, + "probability": 0.9407 + }, + { + "start": 20333.46, + "end": 20337.6, + "probability": 0.9794 + }, + { + "start": 20337.74, + "end": 20339.34, + "probability": 0.9202 + }, + { + "start": 20339.68, + "end": 20341.94, + "probability": 0.9823 + }, + { + "start": 20343.24, + "end": 20347.3, + "probability": 0.8308 + }, + { + "start": 20348.04, + "end": 20350.06, + "probability": 0.9844 + }, + { + "start": 20351.02, + "end": 20356.02, + "probability": 0.9838 + }, + { + "start": 20356.5, + "end": 20361.58, + "probability": 0.9889 + }, + { + "start": 20362.12, + "end": 20364.06, + "probability": 0.7817 + }, + { + "start": 20364.16, + "end": 20364.96, + "probability": 0.9027 + }, + { + "start": 20365.28, + "end": 20367.38, + "probability": 0.9858 + }, + { + "start": 20367.84, + "end": 20370.12, + "probability": 0.9903 + }, + { + "start": 20370.48, + "end": 20372.1, + "probability": 0.9954 + }, + { + "start": 20372.36, + "end": 20374.54, + "probability": 0.9726 + }, + { + "start": 20375.34, + "end": 20377.02, + "probability": 0.6783 + }, + { + "start": 20377.3, + "end": 20380.42, + "probability": 0.9858 + }, + { + "start": 20380.78, + "end": 20382.44, + "probability": 0.9355 + }, + { + "start": 20382.76, + "end": 20385.54, + "probability": 0.9591 + }, + { + "start": 20385.94, + "end": 20389.72, + "probability": 0.9792 + }, + { + "start": 20391.42, + "end": 20393.24, + "probability": 0.9937 + }, + { + "start": 20393.34, + "end": 20394.38, + "probability": 0.9485 + }, + { + "start": 20394.48, + "end": 20396.9, + "probability": 0.9836 + }, + { + "start": 20397.16, + "end": 20403.72, + "probability": 0.9259 + }, + { + "start": 20403.86, + "end": 20406.12, + "probability": 0.9302 + }, + { + "start": 20406.28, + "end": 20408.94, + "probability": 0.9551 + }, + { + "start": 20409.02, + "end": 20410.16, + "probability": 0.6791 + }, + { + "start": 20410.68, + "end": 20413.82, + "probability": 0.8798 + }, + { + "start": 20414.72, + "end": 20416.04, + "probability": 0.8596 + }, + { + "start": 20416.64, + "end": 20418.92, + "probability": 0.6919 + }, + { + "start": 20419.0, + "end": 20419.52, + "probability": 0.802 + }, + { + "start": 20420.0, + "end": 20421.98, + "probability": 0.4773 + }, + { + "start": 20422.06, + "end": 20423.3, + "probability": 0.8848 + }, + { + "start": 20423.86, + "end": 20424.48, + "probability": 0.6403 + }, + { + "start": 20424.82, + "end": 20426.42, + "probability": 0.8811 + }, + { + "start": 20428.6, + "end": 20432.48, + "probability": 0.7667 + }, + { + "start": 20439.88, + "end": 20440.74, + "probability": 0.6508 + }, + { + "start": 20442.44, + "end": 20444.52, + "probability": 0.0196 + }, + { + "start": 20444.66, + "end": 20445.92, + "probability": 0.5559 + }, + { + "start": 20446.76, + "end": 20448.92, + "probability": 0.7897 + }, + { + "start": 20449.46, + "end": 20450.22, + "probability": 0.7132 + }, + { + "start": 20451.06, + "end": 20452.78, + "probability": 0.051 + }, + { + "start": 20453.34, + "end": 20454.26, + "probability": 0.9857 + }, + { + "start": 20455.14, + "end": 20456.68, + "probability": 0.6215 + }, + { + "start": 20456.78, + "end": 20457.6, + "probability": 0.6614 + }, + { + "start": 20458.52, + "end": 20461.1, + "probability": 0.9668 + }, + { + "start": 20462.78, + "end": 20463.68, + "probability": 0.9973 + }, + { + "start": 20465.1, + "end": 20466.3, + "probability": 0.8805 + }, + { + "start": 20467.28, + "end": 20469.2, + "probability": 0.9976 + }, + { + "start": 20470.46, + "end": 20471.18, + "probability": 0.9812 + }, + { + "start": 20472.4, + "end": 20473.52, + "probability": 0.9587 + }, + { + "start": 20473.64, + "end": 20474.61, + "probability": 0.8709 + }, + { + "start": 20474.72, + "end": 20475.78, + "probability": 0.8325 + }, + { + "start": 20476.56, + "end": 20481.54, + "probability": 0.9957 + }, + { + "start": 20481.9, + "end": 20483.54, + "probability": 0.9913 + }, + { + "start": 20485.24, + "end": 20486.15, + "probability": 0.9746 + }, + { + "start": 20487.4, + "end": 20491.32, + "probability": 0.9645 + }, + { + "start": 20492.24, + "end": 20494.96, + "probability": 0.9956 + }, + { + "start": 20495.68, + "end": 20496.96, + "probability": 0.9962 + }, + { + "start": 20497.5, + "end": 20499.18, + "probability": 0.8917 + }, + { + "start": 20500.46, + "end": 20502.54, + "probability": 0.9456 + }, + { + "start": 20503.6, + "end": 20505.54, + "probability": 0.9386 + }, + { + "start": 20506.72, + "end": 20507.56, + "probability": 0.7542 + }, + { + "start": 20507.62, + "end": 20508.02, + "probability": 0.9323 + }, + { + "start": 20508.1, + "end": 20509.78, + "probability": 0.8399 + }, + { + "start": 20510.38, + "end": 20512.08, + "probability": 0.9946 + }, + { + "start": 20512.54, + "end": 20514.84, + "probability": 0.508 + }, + { + "start": 20515.82, + "end": 20515.82, + "probability": 0.0021 + }, + { + "start": 20516.96, + "end": 20517.06, + "probability": 0.1914 + }, + { + "start": 20517.06, + "end": 20517.32, + "probability": 0.5156 + }, + { + "start": 20517.47, + "end": 20518.08, + "probability": 0.6541 + }, + { + "start": 20518.16, + "end": 20519.66, + "probability": 0.5605 + }, + { + "start": 20521.44, + "end": 20525.38, + "probability": 0.9626 + }, + { + "start": 20525.94, + "end": 20530.52, + "probability": 0.8276 + }, + { + "start": 20531.04, + "end": 20533.38, + "probability": 0.9857 + }, + { + "start": 20533.54, + "end": 20538.2, + "probability": 0.9614 + }, + { + "start": 20539.9, + "end": 20542.6, + "probability": 0.9896 + }, + { + "start": 20542.92, + "end": 20545.86, + "probability": 0.1346 + }, + { + "start": 20545.86, + "end": 20545.86, + "probability": 0.2643 + }, + { + "start": 20545.86, + "end": 20546.48, + "probability": 0.6812 + }, + { + "start": 20546.84, + "end": 20551.16, + "probability": 0.9507 + }, + { + "start": 20551.3, + "end": 20552.22, + "probability": 0.9512 + }, + { + "start": 20553.47, + "end": 20555.98, + "probability": 0.8876 + }, + { + "start": 20556.44, + "end": 20559.98, + "probability": 0.1895 + }, + { + "start": 20560.22, + "end": 20562.2, + "probability": 0.3049 + }, + { + "start": 20562.4, + "end": 20562.74, + "probability": 0.6253 + }, + { + "start": 20563.26, + "end": 20564.36, + "probability": 0.8242 + }, + { + "start": 20564.76, + "end": 20566.98, + "probability": 0.9848 + }, + { + "start": 20567.84, + "end": 20568.78, + "probability": 0.9647 + }, + { + "start": 20569.26, + "end": 20574.24, + "probability": 0.9146 + }, + { + "start": 20575.28, + "end": 20577.77, + "probability": 0.6234 + }, + { + "start": 20578.3, + "end": 20585.14, + "probability": 0.995 + }, + { + "start": 20585.3, + "end": 20585.72, + "probability": 0.3243 + }, + { + "start": 20585.92, + "end": 20590.38, + "probability": 0.7687 + }, + { + "start": 20590.64, + "end": 20591.48, + "probability": 0.6273 + }, + { + "start": 20591.56, + "end": 20592.89, + "probability": 0.9354 + }, + { + "start": 20593.58, + "end": 20594.7, + "probability": 0.1023 + }, + { + "start": 20594.92, + "end": 20595.62, + "probability": 0.6384 + }, + { + "start": 20596.56, + "end": 20597.48, + "probability": 0.4848 + }, + { + "start": 20597.48, + "end": 20599.74, + "probability": 0.5281 + }, + { + "start": 20600.08, + "end": 20600.58, + "probability": 0.9197 + }, + { + "start": 20601.86, + "end": 20603.58, + "probability": 0.8546 + }, + { + "start": 20603.84, + "end": 20605.12, + "probability": 0.053 + }, + { + "start": 20606.2, + "end": 20606.44, + "probability": 0.0039 + }, + { + "start": 20606.44, + "end": 20606.56, + "probability": 0.0782 + }, + { + "start": 20606.62, + "end": 20607.28, + "probability": 0.6362 + }, + { + "start": 20607.46, + "end": 20608.54, + "probability": 0.2955 + }, + { + "start": 20608.54, + "end": 20610.18, + "probability": 0.3361 + }, + { + "start": 20610.66, + "end": 20611.04, + "probability": 0.4269 + }, + { + "start": 20611.04, + "end": 20611.82, + "probability": 0.3557 + }, + { + "start": 20612.34, + "end": 20613.16, + "probability": 0.6891 + }, + { + "start": 20614.28, + "end": 20615.54, + "probability": 0.4033 + }, + { + "start": 20616.2, + "end": 20618.84, + "probability": 0.9775 + }, + { + "start": 20619.76, + "end": 20621.59, + "probability": 0.9941 + }, + { + "start": 20623.84, + "end": 20625.02, + "probability": 0.7089 + }, + { + "start": 20625.58, + "end": 20626.98, + "probability": 0.7233 + }, + { + "start": 20627.64, + "end": 20628.52, + "probability": 0.5751 + }, + { + "start": 20628.74, + "end": 20629.88, + "probability": 0.8594 + }, + { + "start": 20630.36, + "end": 20631.66, + "probability": 0.9956 + }, + { + "start": 20633.94, + "end": 20636.58, + "probability": 0.8132 + }, + { + "start": 20637.8, + "end": 20638.3, + "probability": 0.6708 + }, + { + "start": 20638.38, + "end": 20639.99, + "probability": 0.9956 + }, + { + "start": 20640.73, + "end": 20646.77, + "probability": 0.9631 + }, + { + "start": 20646.91, + "end": 20647.77, + "probability": 0.7899 + }, + { + "start": 20648.59, + "end": 20652.47, + "probability": 0.9966 + }, + { + "start": 20653.97, + "end": 20658.95, + "probability": 0.9199 + }, + { + "start": 20659.73, + "end": 20666.69, + "probability": 0.9784 + }, + { + "start": 20667.13, + "end": 20668.11, + "probability": 0.8115 + }, + { + "start": 20668.41, + "end": 20669.43, + "probability": 0.8302 + }, + { + "start": 20669.51, + "end": 20673.65, + "probability": 0.9377 + }, + { + "start": 20673.81, + "end": 20674.47, + "probability": 0.9177 + }, + { + "start": 20674.81, + "end": 20675.71, + "probability": 0.8404 + }, + { + "start": 20675.97, + "end": 20677.55, + "probability": 0.6804 + }, + { + "start": 20677.61, + "end": 20678.49, + "probability": 0.1632 + }, + { + "start": 20678.51, + "end": 20679.29, + "probability": 0.127 + }, + { + "start": 20679.63, + "end": 20679.73, + "probability": 0.2298 + }, + { + "start": 20681.57, + "end": 20683.39, + "probability": 0.2836 + }, + { + "start": 20684.47, + "end": 20686.16, + "probability": 0.2817 + }, + { + "start": 20686.49, + "end": 20689.93, + "probability": 0.5731 + }, + { + "start": 20689.93, + "end": 20690.6, + "probability": 0.0316 + }, + { + "start": 20691.17, + "end": 20693.05, + "probability": 0.6143 + }, + { + "start": 20693.07, + "end": 20694.17, + "probability": 0.5405 + }, + { + "start": 20694.85, + "end": 20697.85, + "probability": 0.9989 + }, + { + "start": 20697.85, + "end": 20701.13, + "probability": 0.6849 + }, + { + "start": 20701.13, + "end": 20701.87, + "probability": 0.3561 + }, + { + "start": 20701.99, + "end": 20703.81, + "probability": 0.4116 + }, + { + "start": 20704.11, + "end": 20704.21, + "probability": 0.2522 + }, + { + "start": 20704.31, + "end": 20704.75, + "probability": 0.6063 + }, + { + "start": 20704.87, + "end": 20705.41, + "probability": 0.6359 + }, + { + "start": 20705.55, + "end": 20706.65, + "probability": 0.5427 + }, + { + "start": 20706.65, + "end": 20712.23, + "probability": 0.9706 + }, + { + "start": 20712.69, + "end": 20717.41, + "probability": 0.9364 + }, + { + "start": 20717.77, + "end": 20718.72, + "probability": 0.9785 + }, + { + "start": 20719.72, + "end": 20720.79, + "probability": 0.1077 + }, + { + "start": 20720.89, + "end": 20721.69, + "probability": 0.2614 + }, + { + "start": 20722.29, + "end": 20723.35, + "probability": 0.1545 + }, + { + "start": 20723.49, + "end": 20723.81, + "probability": 0.2219 + }, + { + "start": 20725.23, + "end": 20726.77, + "probability": 0.3317 + }, + { + "start": 20726.91, + "end": 20727.31, + "probability": 0.0462 + }, + { + "start": 20727.31, + "end": 20728.15, + "probability": 0.4974 + }, + { + "start": 20728.85, + "end": 20729.49, + "probability": 0.4837 + }, + { + "start": 20729.49, + "end": 20731.19, + "probability": 0.8364 + }, + { + "start": 20731.19, + "end": 20733.45, + "probability": 0.593 + }, + { + "start": 20733.53, + "end": 20733.83, + "probability": 0.8491 + }, + { + "start": 20734.01, + "end": 20735.4, + "probability": 0.8595 + }, + { + "start": 20735.71, + "end": 20738.11, + "probability": 0.6395 + }, + { + "start": 20739.63, + "end": 20743.21, + "probability": 0.358 + }, + { + "start": 20743.27, + "end": 20744.53, + "probability": 0.3029 + }, + { + "start": 20745.07, + "end": 20746.13, + "probability": 0.516 + }, + { + "start": 20746.23, + "end": 20749.47, + "probability": 0.3549 + }, + { + "start": 20750.41, + "end": 20753.35, + "probability": 0.8647 + }, + { + "start": 20753.59, + "end": 20754.05, + "probability": 0.0986 + }, + { + "start": 20754.53, + "end": 20755.19, + "probability": 0.1858 + }, + { + "start": 20755.23, + "end": 20756.61, + "probability": 0.7569 + }, + { + "start": 20756.79, + "end": 20760.37, + "probability": 0.9669 + }, + { + "start": 20760.37, + "end": 20765.05, + "probability": 0.9347 + }, + { + "start": 20765.33, + "end": 20768.91, + "probability": 0.9335 + }, + { + "start": 20769.23, + "end": 20770.29, + "probability": 0.725 + }, + { + "start": 20771.15, + "end": 20776.13, + "probability": 0.5986 + }, + { + "start": 20779.99, + "end": 20785.25, + "probability": 0.9982 + }, + { + "start": 20785.33, + "end": 20788.51, + "probability": 0.9732 + }, + { + "start": 20789.55, + "end": 20793.35, + "probability": 0.9983 + }, + { + "start": 20793.35, + "end": 20796.33, + "probability": 0.998 + }, + { + "start": 20797.05, + "end": 20800.69, + "probability": 0.9667 + }, + { + "start": 20800.89, + "end": 20806.47, + "probability": 0.9786 + }, + { + "start": 20807.19, + "end": 20807.19, + "probability": 0.0426 + }, + { + "start": 20807.19, + "end": 20810.21, + "probability": 0.9939 + }, + { + "start": 20810.21, + "end": 20815.31, + "probability": 0.878 + }, + { + "start": 20816.71, + "end": 20820.49, + "probability": 0.9982 + }, + { + "start": 20820.49, + "end": 20824.77, + "probability": 0.9976 + }, + { + "start": 20825.41, + "end": 20826.43, + "probability": 0.7134 + }, + { + "start": 20826.49, + "end": 20827.69, + "probability": 0.8197 + }, + { + "start": 20827.73, + "end": 20829.05, + "probability": 0.8555 + }, + { + "start": 20829.73, + "end": 20834.47, + "probability": 0.9991 + }, + { + "start": 20834.47, + "end": 20839.03, + "probability": 0.9602 + }, + { + "start": 20839.31, + "end": 20840.25, + "probability": 0.3456 + }, + { + "start": 20840.77, + "end": 20843.41, + "probability": 0.8971 + }, + { + "start": 20844.19, + "end": 20844.81, + "probability": 0.9907 + }, + { + "start": 20845.45, + "end": 20846.91, + "probability": 0.9657 + }, + { + "start": 20847.43, + "end": 20848.67, + "probability": 0.9915 + }, + { + "start": 20850.37, + "end": 20856.95, + "probability": 0.7432 + }, + { + "start": 20857.53, + "end": 20860.77, + "probability": 0.9634 + }, + { + "start": 20861.07, + "end": 20861.67, + "probability": 0.869 + }, + { + "start": 20862.79, + "end": 20863.53, + "probability": 0.706 + }, + { + "start": 20863.57, + "end": 20864.77, + "probability": 0.5369 + }, + { + "start": 20864.87, + "end": 20866.27, + "probability": 0.6275 + }, + { + "start": 20866.63, + "end": 20870.35, + "probability": 0.9854 + }, + { + "start": 20871.37, + "end": 20881.03, + "probability": 0.6944 + }, + { + "start": 20882.17, + "end": 20887.31, + "probability": 0.994 + }, + { + "start": 20888.09, + "end": 20891.27, + "probability": 0.9964 + }, + { + "start": 20891.91, + "end": 20892.63, + "probability": 0.7574 + }, + { + "start": 20892.85, + "end": 20894.99, + "probability": 0.9891 + }, + { + "start": 20894.99, + "end": 20897.39, + "probability": 0.9309 + }, + { + "start": 20898.05, + "end": 20904.75, + "probability": 0.9491 + }, + { + "start": 20905.05, + "end": 20908.51, + "probability": 0.9882 + }, + { + "start": 20908.63, + "end": 20909.71, + "probability": 0.7769 + }, + { + "start": 20910.09, + "end": 20910.85, + "probability": 0.9515 + }, + { + "start": 20910.97, + "end": 20911.77, + "probability": 0.9538 + }, + { + "start": 20911.89, + "end": 20912.33, + "probability": 0.5204 + }, + { + "start": 20913.83, + "end": 20913.93, + "probability": 0.9602 + }, + { + "start": 20916.57, + "end": 20917.59, + "probability": 0.4813 + }, + { + "start": 20919.39, + "end": 20920.79, + "probability": 0.7494 + }, + { + "start": 20920.91, + "end": 20923.49, + "probability": 0.9391 + }, + { + "start": 20923.63, + "end": 20924.79, + "probability": 0.9728 + }, + { + "start": 20924.85, + "end": 20925.91, + "probability": 0.9878 + }, + { + "start": 20926.49, + "end": 20929.57, + "probability": 0.9792 + }, + { + "start": 20930.27, + "end": 20932.65, + "probability": 0.9915 + }, + { + "start": 20933.99, + "end": 20937.53, + "probability": 0.9916 + }, + { + "start": 20938.05, + "end": 20941.03, + "probability": 0.9978 + }, + { + "start": 20941.49, + "end": 20945.13, + "probability": 0.9992 + }, + { + "start": 20945.65, + "end": 20949.17, + "probability": 0.9888 + }, + { + "start": 20949.95, + "end": 20951.87, + "probability": 0.824 + }, + { + "start": 20952.63, + "end": 20954.03, + "probability": 0.8571 + }, + { + "start": 20954.67, + "end": 20955.77, + "probability": 0.9602 + }, + { + "start": 20955.83, + "end": 20956.81, + "probability": 0.9538 + }, + { + "start": 20957.25, + "end": 20960.81, + "probability": 0.9813 + }, + { + "start": 20962.65, + "end": 20964.07, + "probability": 0.9419 + }, + { + "start": 20965.69, + "end": 20967.71, + "probability": 0.9978 + }, + { + "start": 20968.81, + "end": 20969.29, + "probability": 0.4082 + }, + { + "start": 20970.09, + "end": 20971.13, + "probability": 0.5359 + }, + { + "start": 20971.47, + "end": 20973.51, + "probability": 0.8691 + }, + { + "start": 20973.51, + "end": 20976.37, + "probability": 0.8979 + }, + { + "start": 20977.17, + "end": 20980.03, + "probability": 0.9382 + }, + { + "start": 20980.73, + "end": 20982.51, + "probability": 0.7702 + }, + { + "start": 20983.01, + "end": 20986.65, + "probability": 0.9776 + }, + { + "start": 20988.61, + "end": 20990.73, + "probability": 0.8264 + }, + { + "start": 20991.45, + "end": 20998.79, + "probability": 0.9857 + }, + { + "start": 20999.23, + "end": 21003.73, + "probability": 0.9876 + }, + { + "start": 21004.43, + "end": 21008.63, + "probability": 0.9889 + }, + { + "start": 21008.79, + "end": 21012.43, + "probability": 0.8179 + }, + { + "start": 21012.67, + "end": 21012.97, + "probability": 0.4921 + }, + { + "start": 21012.99, + "end": 21013.03, + "probability": 0.1351 + }, + { + "start": 21013.09, + "end": 21016.63, + "probability": 0.9523 + }, + { + "start": 21016.75, + "end": 21019.13, + "probability": 0.9792 + }, + { + "start": 21019.83, + "end": 21022.21, + "probability": 0.9981 + }, + { + "start": 21022.57, + "end": 21026.29, + "probability": 0.9697 + }, + { + "start": 21026.43, + "end": 21027.75, + "probability": 0.6855 + }, + { + "start": 21028.13, + "end": 21030.45, + "probability": 0.9683 + }, + { + "start": 21031.07, + "end": 21035.29, + "probability": 0.9944 + }, + { + "start": 21036.19, + "end": 21038.15, + "probability": 0.9952 + }, + { + "start": 21038.53, + "end": 21041.57, + "probability": 0.9991 + }, + { + "start": 21041.61, + "end": 21045.43, + "probability": 0.9951 + }, + { + "start": 21045.95, + "end": 21046.47, + "probability": 0.7725 + }, + { + "start": 21046.91, + "end": 21048.97, + "probability": 0.8585 + }, + { + "start": 21048.99, + "end": 21051.61, + "probability": 0.6067 + }, + { + "start": 21051.83, + "end": 21054.31, + "probability": 0.7054 + }, + { + "start": 21054.93, + "end": 21060.75, + "probability": 0.7311 + }, + { + "start": 21061.61, + "end": 21066.71, + "probability": 0.9209 + }, + { + "start": 21067.27, + "end": 21070.71, + "probability": 0.6546 + }, + { + "start": 21070.87, + "end": 21071.61, + "probability": 0.616 + }, + { + "start": 21071.63, + "end": 21072.19, + "probability": 0.441 + }, + { + "start": 21072.25, + "end": 21073.17, + "probability": 0.7047 + }, + { + "start": 21073.51, + "end": 21085.29, + "probability": 0.0228 + }, + { + "start": 21089.63, + "end": 21092.75, + "probability": 0.2612 + }, + { + "start": 21093.41, + "end": 21095.39, + "probability": 0.1213 + }, + { + "start": 21097.89, + "end": 21101.31, + "probability": 0.1773 + }, + { + "start": 21102.09, + "end": 21107.01, + "probability": 0.0206 + }, + { + "start": 21107.49, + "end": 21109.95, + "probability": 0.0899 + }, + { + "start": 21110.11, + "end": 21112.25, + "probability": 0.1123 + }, + { + "start": 21117.06, + "end": 21117.35, + "probability": 0.0941 + }, + { + "start": 21117.35, + "end": 21117.95, + "probability": 0.132 + }, + { + "start": 21119.47, + "end": 21121.73, + "probability": 0.0758 + }, + { + "start": 21123.73, + "end": 21125.83, + "probability": 0.0283 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.0, + "end": 21144.0, + "probability": 0.0 + }, + { + "start": 21144.26, + "end": 21144.28, + "probability": 0.0242 + }, + { + "start": 21144.28, + "end": 21146.4, + "probability": 0.624 + }, + { + "start": 21150.02, + "end": 21150.96, + "probability": 0.1998 + }, + { + "start": 21152.32, + "end": 21154.74, + "probability": 0.5066 + }, + { + "start": 21156.4, + "end": 21157.06, + "probability": 0.4998 + }, + { + "start": 21157.3, + "end": 21159.71, + "probability": 0.7723 + }, + { + "start": 21159.72, + "end": 21163.64, + "probability": 0.714 + }, + { + "start": 21164.32, + "end": 21165.76, + "probability": 0.1886 + }, + { + "start": 21166.9, + "end": 21168.14, + "probability": 0.5895 + }, + { + "start": 21168.48, + "end": 21173.66, + "probability": 0.8887 + }, + { + "start": 21174.88, + "end": 21175.78, + "probability": 0.0685 + }, + { + "start": 21200.58, + "end": 21203.28, + "probability": 0.6395 + }, + { + "start": 21204.16, + "end": 21206.16, + "probability": 0.9271 + }, + { + "start": 21206.38, + "end": 21206.94, + "probability": 0.4994 + }, + { + "start": 21207.54, + "end": 21208.98, + "probability": 0.8907 + }, + { + "start": 21209.34, + "end": 21209.66, + "probability": 0.7317 + }, + { + "start": 21209.72, + "end": 21211.98, + "probability": 0.5923 + }, + { + "start": 21213.78, + "end": 21218.18, + "probability": 0.4505 + }, + { + "start": 21218.58, + "end": 21219.2, + "probability": 0.6352 + }, + { + "start": 21220.52, + "end": 21222.8, + "probability": 0.8459 + }, + { + "start": 21223.36, + "end": 21223.62, + "probability": 0.4131 + }, + { + "start": 21223.86, + "end": 21223.93, + "probability": 0.0229 + }, + { + "start": 21225.52, + "end": 21226.32, + "probability": 0.3845 + }, + { + "start": 21226.46, + "end": 21227.06, + "probability": 0.7062 + }, + { + "start": 21227.12, + "end": 21230.56, + "probability": 0.4807 + }, + { + "start": 21231.22, + "end": 21232.0, + "probability": 0.8316 + }, + { + "start": 21232.99, + "end": 21235.62, + "probability": 0.903 + }, + { + "start": 21235.78, + "end": 21239.14, + "probability": 0.7943 + }, + { + "start": 21239.16, + "end": 21239.16, + "probability": 0.1414 + }, + { + "start": 21239.16, + "end": 21242.28, + "probability": 0.79 + }, + { + "start": 21242.94, + "end": 21243.6, + "probability": 0.1267 + }, + { + "start": 21244.24, + "end": 21244.42, + "probability": 0.0682 + }, + { + "start": 21245.32, + "end": 21252.04, + "probability": 0.7877 + }, + { + "start": 21253.1, + "end": 21255.78, + "probability": 0.8904 + }, + { + "start": 21256.52, + "end": 21260.58, + "probability": 0.9253 + }, + { + "start": 21261.48, + "end": 21266.18, + "probability": 0.9677 + }, + { + "start": 21267.16, + "end": 21269.9, + "probability": 0.9829 + }, + { + "start": 21269.9, + "end": 21274.16, + "probability": 0.9982 + }, + { + "start": 21277.78, + "end": 21277.88, + "probability": 0.525 + }, + { + "start": 21278.56, + "end": 21279.18, + "probability": 0.9353 + }, + { + "start": 21280.12, + "end": 21285.0, + "probability": 0.8821 + }, + { + "start": 21285.38, + "end": 21288.7, + "probability": 0.7445 + }, + { + "start": 21290.16, + "end": 21293.86, + "probability": 0.9789 + }, + { + "start": 21294.78, + "end": 21298.16, + "probability": 0.8655 + }, + { + "start": 21299.96, + "end": 21302.78, + "probability": 0.9543 + }, + { + "start": 21302.78, + "end": 21306.1, + "probability": 0.7206 + }, + { + "start": 21306.14, + "end": 21307.84, + "probability": 0.6626 + }, + { + "start": 21308.26, + "end": 21310.58, + "probability": 0.8625 + }, + { + "start": 21311.66, + "end": 21314.94, + "probability": 0.6086 + }, + { + "start": 21315.48, + "end": 21317.2, + "probability": 0.8903 + }, + { + "start": 21318.36, + "end": 21320.14, + "probability": 0.5993 + }, + { + "start": 21321.12, + "end": 21323.3, + "probability": 0.911 + }, + { + "start": 21323.92, + "end": 21326.12, + "probability": 0.7184 + }, + { + "start": 21326.48, + "end": 21327.04, + "probability": 0.5522 + }, + { + "start": 21327.7, + "end": 21330.64, + "probability": 0.8669 + }, + { + "start": 21330.82, + "end": 21331.96, + "probability": 0.8672 + }, + { + "start": 21332.0, + "end": 21332.42, + "probability": 0.7311 + }, + { + "start": 21332.52, + "end": 21334.0, + "probability": 0.7943 + }, + { + "start": 21334.74, + "end": 21336.16, + "probability": 0.7206 + }, + { + "start": 21344.78, + "end": 21346.2, + "probability": 0.7544 + }, + { + "start": 21351.08, + "end": 21353.56, + "probability": 0.9466 + }, + { + "start": 21353.62, + "end": 21354.22, + "probability": 0.5493 + }, + { + "start": 21354.28, + "end": 21355.56, + "probability": 0.9834 + }, + { + "start": 21356.16, + "end": 21358.7, + "probability": 0.9921 + }, + { + "start": 21359.28, + "end": 21360.24, + "probability": 0.7326 + }, + { + "start": 21361.3, + "end": 21362.1, + "probability": 0.861 + }, + { + "start": 21364.86, + "end": 21366.6, + "probability": 0.4538 + }, + { + "start": 21366.78, + "end": 21366.8, + "probability": 0.4095 + }, + { + "start": 21366.8, + "end": 21367.72, + "probability": 0.4881 + }, + { + "start": 21367.8, + "end": 21368.28, + "probability": 0.488 + }, + { + "start": 21369.52, + "end": 21370.66, + "probability": 0.6374 + }, + { + "start": 21370.7, + "end": 21372.38, + "probability": 0.9626 + }, + { + "start": 21372.42, + "end": 21373.28, + "probability": 0.9738 + }, + { + "start": 21373.38, + "end": 21377.56, + "probability": 0.9952 + }, + { + "start": 21377.7, + "end": 21378.33, + "probability": 0.9527 + }, + { + "start": 21379.44, + "end": 21380.8, + "probability": 0.9841 + }, + { + "start": 21381.28, + "end": 21382.76, + "probability": 0.9651 + }, + { + "start": 21383.68, + "end": 21385.7, + "probability": 0.7076 + }, + { + "start": 21386.94, + "end": 21390.32, + "probability": 0.8383 + }, + { + "start": 21391.34, + "end": 21392.94, + "probability": 0.8507 + }, + { + "start": 21393.72, + "end": 21394.88, + "probability": 0.9907 + }, + { + "start": 21395.52, + "end": 21398.12, + "probability": 0.9933 + }, + { + "start": 21399.56, + "end": 21399.96, + "probability": 0.6234 + }, + { + "start": 21400.54, + "end": 21403.4, + "probability": 0.971 + }, + { + "start": 21404.08, + "end": 21405.0, + "probability": 0.5709 + }, + { + "start": 21405.7, + "end": 21407.42, + "probability": 0.9497 + }, + { + "start": 21408.28, + "end": 21409.32, + "probability": 0.8893 + }, + { + "start": 21410.02, + "end": 21412.82, + "probability": 0.8527 + }, + { + "start": 21413.64, + "end": 21414.36, + "probability": 0.9507 + }, + { + "start": 21414.58, + "end": 21415.1, + "probability": 0.7279 + }, + { + "start": 21415.16, + "end": 21416.38, + "probability": 0.9888 + }, + { + "start": 21417.08, + "end": 21422.36, + "probability": 0.9926 + }, + { + "start": 21422.98, + "end": 21427.08, + "probability": 0.9122 + }, + { + "start": 21428.36, + "end": 21432.34, + "probability": 0.999 + }, + { + "start": 21433.52, + "end": 21434.38, + "probability": 0.7498 + }, + { + "start": 21435.56, + "end": 21437.14, + "probability": 0.9941 + }, + { + "start": 21437.62, + "end": 21438.64, + "probability": 0.8152 + }, + { + "start": 21439.12, + "end": 21441.5, + "probability": 0.9993 + }, + { + "start": 21442.28, + "end": 21443.26, + "probability": 0.6883 + }, + { + "start": 21443.68, + "end": 21443.68, + "probability": 0.6128 + }, + { + "start": 21443.68, + "end": 21444.62, + "probability": 0.5784 + }, + { + "start": 21445.54, + "end": 21446.58, + "probability": 0.9926 + }, + { + "start": 21447.44, + "end": 21449.38, + "probability": 0.9962 + }, + { + "start": 21450.28, + "end": 21451.3, + "probability": 0.9858 + }, + { + "start": 21453.26, + "end": 21456.46, + "probability": 0.9125 + }, + { + "start": 21456.96, + "end": 21457.61, + "probability": 0.9434 + }, + { + "start": 21459.22, + "end": 21459.7, + "probability": 0.8292 + }, + { + "start": 21462.62, + "end": 21466.8, + "probability": 0.999 + }, + { + "start": 21466.8, + "end": 21470.56, + "probability": 0.9986 + }, + { + "start": 21471.7, + "end": 21474.68, + "probability": 0.9912 + }, + { + "start": 21474.74, + "end": 21475.88, + "probability": 0.972 + }, + { + "start": 21476.32, + "end": 21478.42, + "probability": 0.9867 + }, + { + "start": 21478.88, + "end": 21480.92, + "probability": 0.9905 + }, + { + "start": 21481.48, + "end": 21482.1, + "probability": 0.7245 + }, + { + "start": 21482.62, + "end": 21485.18, + "probability": 0.9883 + }, + { + "start": 21485.62, + "end": 21487.46, + "probability": 0.8243 + }, + { + "start": 21487.62, + "end": 21492.08, + "probability": 0.729 + }, + { + "start": 21493.62, + "end": 21497.52, + "probability": 0.8326 + }, + { + "start": 21498.08, + "end": 21498.46, + "probability": 0.7904 + }, + { + "start": 21499.2, + "end": 21500.42, + "probability": 0.9931 + }, + { + "start": 21503.02, + "end": 21503.6, + "probability": 0.5593 + }, + { + "start": 21504.26, + "end": 21504.9, + "probability": 0.7679 + }, + { + "start": 21505.22, + "end": 21506.01, + "probability": 0.7752 + }, + { + "start": 21506.26, + "end": 21508.66, + "probability": 0.9775 + }, + { + "start": 21509.18, + "end": 21512.38, + "probability": 0.9861 + }, + { + "start": 21514.42, + "end": 21516.52, + "probability": 0.9187 + }, + { + "start": 21516.9, + "end": 21518.4, + "probability": 0.9941 + }, + { + "start": 21519.08, + "end": 21519.46, + "probability": 0.9535 + }, + { + "start": 21521.16, + "end": 21523.46, + "probability": 0.9747 + }, + { + "start": 21523.98, + "end": 21528.82, + "probability": 0.9834 + }, + { + "start": 21529.56, + "end": 21530.9, + "probability": 0.9603 + }, + { + "start": 21531.7, + "end": 21536.4, + "probability": 0.9884 + }, + { + "start": 21537.18, + "end": 21539.67, + "probability": 0.8723 + }, + { + "start": 21541.01, + "end": 21548.48, + "probability": 0.9985 + }, + { + "start": 21549.04, + "end": 21551.16, + "probability": 0.9805 + }, + { + "start": 21551.56, + "end": 21552.02, + "probability": 0.752 + }, + { + "start": 21552.6, + "end": 21554.2, + "probability": 0.8585 + }, + { + "start": 21554.26, + "end": 21555.96, + "probability": 0.9644 + }, + { + "start": 21556.74, + "end": 21557.32, + "probability": 0.5447 + }, + { + "start": 21558.16, + "end": 21559.76, + "probability": 0.7865 + }, + { + "start": 21560.34, + "end": 21561.06, + "probability": 0.7932 + }, + { + "start": 21562.08, + "end": 21563.44, + "probability": 0.8892 + }, + { + "start": 21567.04, + "end": 21568.86, + "probability": 0.0618 + }, + { + "start": 21585.72, + "end": 21586.2, + "probability": 0.1601 + }, + { + "start": 21586.78, + "end": 21588.72, + "probability": 0.6421 + }, + { + "start": 21590.7, + "end": 21592.96, + "probability": 0.896 + }, + { + "start": 21593.1, + "end": 21595.81, + "probability": 0.8525 + }, + { + "start": 21596.58, + "end": 21601.72, + "probability": 0.7974 + }, + { + "start": 21602.92, + "end": 21605.66, + "probability": 0.9907 + }, + { + "start": 21606.3, + "end": 21607.58, + "probability": 0.4413 + }, + { + "start": 21608.4, + "end": 21609.18, + "probability": 0.7826 + }, + { + "start": 21610.24, + "end": 21613.62, + "probability": 0.8056 + }, + { + "start": 21614.28, + "end": 21616.34, + "probability": 0.9058 + }, + { + "start": 21617.5, + "end": 21620.66, + "probability": 0.7867 + }, + { + "start": 21621.7, + "end": 21628.58, + "probability": 0.9633 + }, + { + "start": 21629.52, + "end": 21632.52, + "probability": 0.9757 + }, + { + "start": 21632.64, + "end": 21635.64, + "probability": 0.9861 + }, + { + "start": 21636.4, + "end": 21642.64, + "probability": 0.9162 + }, + { + "start": 21643.06, + "end": 21644.14, + "probability": 0.7424 + }, + { + "start": 21645.3, + "end": 21646.0, + "probability": 0.8608 + }, + { + "start": 21647.7, + "end": 21649.48, + "probability": 0.7036 + }, + { + "start": 21650.46, + "end": 21653.28, + "probability": 0.9788 + }, + { + "start": 21654.2, + "end": 21654.8, + "probability": 0.4204 + }, + { + "start": 21656.0, + "end": 21656.52, + "probability": 0.9788 + }, + { + "start": 21657.2, + "end": 21658.81, + "probability": 0.9925 + }, + { + "start": 21659.78, + "end": 21665.12, + "probability": 0.8085 + }, + { + "start": 21665.54, + "end": 21667.03, + "probability": 0.6973 + }, + { + "start": 21667.72, + "end": 21672.4, + "probability": 0.8222 + }, + { + "start": 21672.8, + "end": 21675.06, + "probability": 0.957 + }, + { + "start": 21675.62, + "end": 21675.92, + "probability": 0.8176 + }, + { + "start": 21676.02, + "end": 21677.02, + "probability": 0.8027 + }, + { + "start": 21677.74, + "end": 21680.02, + "probability": 0.9557 + }, + { + "start": 21680.46, + "end": 21681.88, + "probability": 0.9922 + }, + { + "start": 21682.6, + "end": 21683.44, + "probability": 0.7531 + }, + { + "start": 21683.74, + "end": 21684.62, + "probability": 0.9203 + }, + { + "start": 21684.78, + "end": 21688.58, + "probability": 0.8342 + }, + { + "start": 21688.9, + "end": 21694.92, + "probability": 0.944 + }, + { + "start": 21694.92, + "end": 21699.82, + "probability": 0.9639 + }, + { + "start": 21700.04, + "end": 21700.48, + "probability": 0.8692 + }, + { + "start": 21701.34, + "end": 21701.82, + "probability": 0.7916 + }, + { + "start": 21702.72, + "end": 21708.24, + "probability": 0.9927 + }, + { + "start": 21708.24, + "end": 21713.88, + "probability": 0.8096 + }, + { + "start": 21714.6, + "end": 21719.22, + "probability": 0.9528 + }, + { + "start": 21719.92, + "end": 21726.88, + "probability": 0.9967 + }, + { + "start": 21728.91, + "end": 21735.06, + "probability": 0.998 + }, + { + "start": 21735.06, + "end": 21741.06, + "probability": 0.9961 + }, + { + "start": 21741.08, + "end": 21746.3, + "probability": 0.7542 + }, + { + "start": 21746.3, + "end": 21748.52, + "probability": 0.9115 + }, + { + "start": 21749.24, + "end": 21750.82, + "probability": 0.9471 + }, + { + "start": 21751.54, + "end": 21755.6, + "probability": 0.9782 + }, + { + "start": 21755.6, + "end": 21760.08, + "probability": 0.9604 + }, + { + "start": 21761.32, + "end": 21763.14, + "probability": 0.9659 + }, + { + "start": 21766.18, + "end": 21769.46, + "probability": 0.9816 + }, + { + "start": 21769.68, + "end": 21770.42, + "probability": 0.9482 + }, + { + "start": 21771.16, + "end": 21771.54, + "probability": 0.327 + }, + { + "start": 21771.76, + "end": 21771.82, + "probability": 0.7246 + }, + { + "start": 21771.98, + "end": 21772.42, + "probability": 0.8607 + }, + { + "start": 21774.18, + "end": 21776.3, + "probability": 0.5197 + }, + { + "start": 21776.4, + "end": 21781.3, + "probability": 0.9698 + }, + { + "start": 21782.34, + "end": 21786.8, + "probability": 0.9619 + }, + { + "start": 21787.42, + "end": 21788.26, + "probability": 0.8264 + }, + { + "start": 21788.46, + "end": 21794.5, + "probability": 0.9863 + }, + { + "start": 21794.86, + "end": 21798.28, + "probability": 0.7304 + }, + { + "start": 21798.6, + "end": 21802.8, + "probability": 0.9794 + }, + { + "start": 21803.62, + "end": 21805.34, + "probability": 0.8474 + }, + { + "start": 21805.66, + "end": 21807.14, + "probability": 0.7128 + }, + { + "start": 21807.86, + "end": 21808.62, + "probability": 0.4011 + }, + { + "start": 21809.5, + "end": 21811.94, + "probability": 0.8456 + }, + { + "start": 21812.8, + "end": 21813.9, + "probability": 0.9746 + }, + { + "start": 21828.37, + "end": 21831.86, + "probability": 0.883 + }, + { + "start": 21832.48, + "end": 21833.58, + "probability": 0.6886 + }, + { + "start": 21834.18, + "end": 21835.56, + "probability": 0.5347 + }, + { + "start": 21836.32, + "end": 21837.92, + "probability": 0.826 + }, + { + "start": 21839.18, + "end": 21843.6, + "probability": 0.9766 + }, + { + "start": 21843.92, + "end": 21847.04, + "probability": 0.99 + }, + { + "start": 21848.16, + "end": 21851.12, + "probability": 0.9946 + }, + { + "start": 21851.8, + "end": 21859.42, + "probability": 0.9768 + }, + { + "start": 21860.1, + "end": 21865.08, + "probability": 0.995 + }, + { + "start": 21865.76, + "end": 21867.72, + "probability": 0.794 + }, + { + "start": 21868.02, + "end": 21870.68, + "probability": 0.9937 + }, + { + "start": 21871.34, + "end": 21876.72, + "probability": 0.9854 + }, + { + "start": 21877.6, + "end": 21882.52, + "probability": 0.9824 + }, + { + "start": 21882.58, + "end": 21883.58, + "probability": 0.9326 + }, + { + "start": 21884.34, + "end": 21889.2, + "probability": 0.9966 + }, + { + "start": 21889.84, + "end": 21893.4, + "probability": 0.8997 + }, + { + "start": 21893.52, + "end": 21896.6, + "probability": 0.9883 + }, + { + "start": 21896.82, + "end": 21899.6, + "probability": 0.991 + }, + { + "start": 21899.9, + "end": 21902.06, + "probability": 0.9949 + }, + { + "start": 21902.76, + "end": 21903.12, + "probability": 0.3068 + }, + { + "start": 21903.16, + "end": 21907.26, + "probability": 0.9893 + }, + { + "start": 21908.54, + "end": 21913.38, + "probability": 0.985 + }, + { + "start": 21913.58, + "end": 21915.5, + "probability": 0.8215 + }, + { + "start": 21915.88, + "end": 21917.6, + "probability": 0.988 + }, + { + "start": 21918.18, + "end": 21919.58, + "probability": 0.6547 + }, + { + "start": 21919.68, + "end": 21921.08, + "probability": 0.8324 + }, + { + "start": 21921.12, + "end": 21922.7, + "probability": 0.6613 + }, + { + "start": 21923.82, + "end": 21925.9, + "probability": 0.9048 + }, + { + "start": 21926.6, + "end": 21930.31, + "probability": 0.9338 + }, + { + "start": 21931.48, + "end": 21933.7, + "probability": 0.9753 + }, + { + "start": 21934.26, + "end": 21937.04, + "probability": 0.93 + }, + { + "start": 21937.1, + "end": 21938.76, + "probability": 0.9722 + }, + { + "start": 21939.5, + "end": 21940.66, + "probability": 0.8533 + }, + { + "start": 21941.42, + "end": 21945.08, + "probability": 0.968 + }, + { + "start": 21945.6, + "end": 21947.7, + "probability": 0.9731 + }, + { + "start": 21948.32, + "end": 21952.12, + "probability": 0.9681 + }, + { + "start": 21952.48, + "end": 21953.84, + "probability": 0.7865 + }, + { + "start": 21954.38, + "end": 21955.4, + "probability": 0.9382 + }, + { + "start": 21955.82, + "end": 21957.38, + "probability": 0.9802 + }, + { + "start": 21958.42, + "end": 21959.96, + "probability": 0.9607 + }, + { + "start": 21960.68, + "end": 21961.18, + "probability": 0.7669 + }, + { + "start": 21961.48, + "end": 21963.9, + "probability": 0.7773 + }, + { + "start": 21964.42, + "end": 21966.88, + "probability": 0.9798 + }, + { + "start": 21967.5, + "end": 21968.6, + "probability": 0.9505 + }, + { + "start": 21968.66, + "end": 21971.82, + "probability": 0.9985 + }, + { + "start": 21972.32, + "end": 21973.74, + "probability": 0.9508 + }, + { + "start": 21974.2, + "end": 21977.06, + "probability": 0.9899 + }, + { + "start": 21978.32, + "end": 21979.51, + "probability": 0.9995 + }, + { + "start": 21980.06, + "end": 21988.94, + "probability": 0.976 + }, + { + "start": 21989.56, + "end": 21993.04, + "probability": 0.9191 + }, + { + "start": 21993.9, + "end": 21997.7, + "probability": 0.9489 + }, + { + "start": 21998.24, + "end": 22000.7, + "probability": 0.992 + }, + { + "start": 22000.76, + "end": 22002.5, + "probability": 0.5619 + }, + { + "start": 22002.5, + "end": 22008.46, + "probability": 0.9902 + }, + { + "start": 22009.18, + "end": 22012.58, + "probability": 0.7387 + }, + { + "start": 22013.18, + "end": 22016.18, + "probability": 0.9939 + }, + { + "start": 22016.46, + "end": 22018.96, + "probability": 0.9741 + }, + { + "start": 22019.94, + "end": 22028.52, + "probability": 0.9834 + }, + { + "start": 22029.18, + "end": 22031.56, + "probability": 0.9971 + }, + { + "start": 22031.96, + "end": 22033.4, + "probability": 0.8593 + }, + { + "start": 22033.68, + "end": 22033.8, + "probability": 0.9054 + }, + { + "start": 22034.36, + "end": 22036.02, + "probability": 0.9484 + }, + { + "start": 22036.1, + "end": 22037.6, + "probability": 0.9808 + }, + { + "start": 22053.36, + "end": 22057.92, + "probability": 0.654 + }, + { + "start": 22058.84, + "end": 22062.02, + "probability": 0.9614 + }, + { + "start": 22062.56, + "end": 22064.9, + "probability": 0.9839 + }, + { + "start": 22064.96, + "end": 22068.4, + "probability": 0.9444 + }, + { + "start": 22068.48, + "end": 22070.44, + "probability": 0.9635 + }, + { + "start": 22070.52, + "end": 22070.7, + "probability": 0.2555 + }, + { + "start": 22070.78, + "end": 22072.88, + "probability": 0.9852 + }, + { + "start": 22073.28, + "end": 22073.7, + "probability": 0.8135 + }, + { + "start": 22073.88, + "end": 22074.64, + "probability": 0.8473 + }, + { + "start": 22074.96, + "end": 22076.78, + "probability": 0.9912 + }, + { + "start": 22077.4, + "end": 22078.18, + "probability": 0.1799 + }, + { + "start": 22078.2, + "end": 22078.64, + "probability": 0.3337 + }, + { + "start": 22079.64, + "end": 22082.04, + "probability": 0.8394 + }, + { + "start": 22082.16, + "end": 22083.84, + "probability": 0.5826 + }, + { + "start": 22084.1, + "end": 22084.96, + "probability": 0.636 + }, + { + "start": 22085.64, + "end": 22087.78, + "probability": 0.9832 + }, + { + "start": 22087.86, + "end": 22092.32, + "probability": 0.9922 + }, + { + "start": 22093.6, + "end": 22095.94, + "probability": 0.9089 + }, + { + "start": 22095.96, + "end": 22099.1, + "probability": 0.9097 + }, + { + "start": 22099.56, + "end": 22100.19, + "probability": 0.4551 + }, + { + "start": 22100.58, + "end": 22101.84, + "probability": 0.8003 + }, + { + "start": 22102.54, + "end": 22104.04, + "probability": 0.9854 + }, + { + "start": 22104.24, + "end": 22106.37, + "probability": 0.9841 + }, + { + "start": 22107.36, + "end": 22108.56, + "probability": 0.6227 + }, + { + "start": 22109.14, + "end": 22112.5, + "probability": 0.9446 + }, + { + "start": 22112.5, + "end": 22115.32, + "probability": 0.9445 + }, + { + "start": 22115.88, + "end": 22117.72, + "probability": 0.9557 + }, + { + "start": 22118.32, + "end": 22123.3, + "probability": 0.9455 + }, + { + "start": 22123.94, + "end": 22126.18, + "probability": 0.9878 + }, + { + "start": 22126.7, + "end": 22127.02, + "probability": 0.5362 + }, + { + "start": 22127.14, + "end": 22128.26, + "probability": 0.9968 + }, + { + "start": 22128.36, + "end": 22131.5, + "probability": 0.8713 + }, + { + "start": 22131.66, + "end": 22133.44, + "probability": 0.8292 + }, + { + "start": 22134.82, + "end": 22137.82, + "probability": 0.998 + }, + { + "start": 22138.36, + "end": 22142.8, + "probability": 0.9668 + }, + { + "start": 22143.08, + "end": 22143.77, + "probability": 0.9548 + }, + { + "start": 22144.52, + "end": 22144.88, + "probability": 0.8554 + }, + { + "start": 22145.0, + "end": 22150.04, + "probability": 0.7514 + }, + { + "start": 22150.1, + "end": 22152.58, + "probability": 0.8875 + }, + { + "start": 22153.56, + "end": 22156.18, + "probability": 0.9699 + }, + { + "start": 22156.66, + "end": 22158.06, + "probability": 0.5268 + }, + { + "start": 22158.72, + "end": 22161.66, + "probability": 0.9683 + }, + { + "start": 22162.28, + "end": 22164.22, + "probability": 0.9766 + }, + { + "start": 22164.3, + "end": 22164.5, + "probability": 0.8284 + }, + { + "start": 22165.3, + "end": 22167.4, + "probability": 0.9907 + }, + { + "start": 22167.54, + "end": 22169.76, + "probability": 0.985 + }, + { + "start": 22170.48, + "end": 22171.84, + "probability": 0.8669 + }, + { + "start": 22172.22, + "end": 22172.92, + "probability": 0.587 + }, + { + "start": 22173.38, + "end": 22174.64, + "probability": 0.905 + }, + { + "start": 22175.48, + "end": 22179.1, + "probability": 0.8189 + }, + { + "start": 22186.02, + "end": 22187.98, + "probability": 0.8197 + }, + { + "start": 22188.68, + "end": 22189.42, + "probability": 0.8085 + }, + { + "start": 22190.1, + "end": 22192.64, + "probability": 0.6426 + }, + { + "start": 22193.28, + "end": 22195.42, + "probability": 0.9012 + }, + { + "start": 22196.14, + "end": 22197.8, + "probability": 0.7192 + }, + { + "start": 22198.4, + "end": 22199.14, + "probability": 0.7267 + }, + { + "start": 22199.82, + "end": 22201.94, + "probability": 0.9757 + }, + { + "start": 22202.46, + "end": 22205.3, + "probability": 0.9868 + }, + { + "start": 22206.3, + "end": 22208.6, + "probability": 0.8604 + }, + { + "start": 22209.72, + "end": 22212.78, + "probability": 0.9569 + }, + { + "start": 22214.4, + "end": 22219.04, + "probability": 0.835 + }, + { + "start": 22219.8, + "end": 22219.9, + "probability": 0.0746 + }, + { + "start": 22220.42, + "end": 22222.94, + "probability": 0.6917 + }, + { + "start": 22223.52, + "end": 22224.24, + "probability": 0.6358 + }, + { + "start": 22224.28, + "end": 22224.76, + "probability": 0.6952 + }, + { + "start": 22224.82, + "end": 22225.66, + "probability": 0.795 + }, + { + "start": 22243.03, + "end": 22245.88, + "probability": 0.4748 + }, + { + "start": 22245.88, + "end": 22248.22, + "probability": 0.4202 + }, + { + "start": 22248.82, + "end": 22248.94, + "probability": 0.0237 + }, + { + "start": 22249.5, + "end": 22250.58, + "probability": 0.4454 + }, + { + "start": 22251.24, + "end": 22252.48, + "probability": 0.2525 + }, + { + "start": 22253.08, + "end": 22253.62, + "probability": 0.6064 + }, + { + "start": 22261.82, + "end": 22263.44, + "probability": 0.2366 + }, + { + "start": 22266.56, + "end": 22267.02, + "probability": 0.0552 + }, + { + "start": 22267.02, + "end": 22269.24, + "probability": 0.0257 + }, + { + "start": 22269.84, + "end": 22270.06, + "probability": 0.0238 + }, + { + "start": 22271.47, + "end": 22275.54, + "probability": 0.3102 + }, + { + "start": 22290.87, + "end": 22291.38, + "probability": 0.0246 + }, + { + "start": 22300.9, + "end": 22301.56, + "probability": 0.344 + }, + { + "start": 22302.24, + "end": 22303.92, + "probability": 0.0109 + }, + { + "start": 22303.92, + "end": 22304.38, + "probability": 0.312 + }, + { + "start": 22307.26, + "end": 22307.6, + "probability": 0.0162 + }, + { + "start": 22308.77, + "end": 22311.7, + "probability": 0.0974 + }, + { + "start": 22312.42, + "end": 22314.38, + "probability": 0.0334 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.0, + "end": 22323.0, + "probability": 0.0 + }, + { + "start": 22323.46, + "end": 22324.1, + "probability": 0.127 + }, + { + "start": 22326.2, + "end": 22328.96, + "probability": 0.0562 + }, + { + "start": 22328.96, + "end": 22329.38, + "probability": 0.0241 + }, + { + "start": 22337.5, + "end": 22341.08, + "probability": 0.0682 + }, + { + "start": 22341.63, + "end": 22342.34, + "probability": 0.0456 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.0, + "end": 22461.0, + "probability": 0.0 + }, + { + "start": 22461.52, + "end": 22461.82, + "probability": 0.0463 + }, + { + "start": 22461.82, + "end": 22461.82, + "probability": 0.0728 + }, + { + "start": 22461.82, + "end": 22461.9, + "probability": 0.1457 + }, + { + "start": 22461.9, + "end": 22465.62, + "probability": 0.7239 + }, + { + "start": 22466.06, + "end": 22471.28, + "probability": 0.7603 + }, + { + "start": 22472.0, + "end": 22473.6, + "probability": 0.938 + }, + { + "start": 22474.22, + "end": 22476.56, + "probability": 0.7015 + }, + { + "start": 22476.9, + "end": 22477.42, + "probability": 0.777 + }, + { + "start": 22478.82, + "end": 22481.12, + "probability": 0.8935 + }, + { + "start": 22481.84, + "end": 22483.87, + "probability": 0.9963 + }, + { + "start": 22484.92, + "end": 22485.74, + "probability": 0.7295 + }, + { + "start": 22485.82, + "end": 22486.2, + "probability": 0.9497 + }, + { + "start": 22486.28, + "end": 22489.8, + "probability": 0.9326 + }, + { + "start": 22490.58, + "end": 22491.14, + "probability": 0.7346 + }, + { + "start": 22491.78, + "end": 22496.07, + "probability": 0.8416 + }, + { + "start": 22497.12, + "end": 22500.24, + "probability": 0.9573 + }, + { + "start": 22501.04, + "end": 22504.62, + "probability": 0.9301 + }, + { + "start": 22504.62, + "end": 22507.24, + "probability": 0.9112 + }, + { + "start": 22507.78, + "end": 22510.0, + "probability": 0.981 + }, + { + "start": 22510.66, + "end": 22512.64, + "probability": 0.9702 + }, + { + "start": 22513.18, + "end": 22516.3, + "probability": 0.8381 + }, + { + "start": 22516.88, + "end": 22521.26, + "probability": 0.9966 + }, + { + "start": 22521.88, + "end": 22523.76, + "probability": 0.9961 + }, + { + "start": 22524.28, + "end": 22525.14, + "probability": 0.9907 + }, + { + "start": 22525.76, + "end": 22526.64, + "probability": 0.5899 + }, + { + "start": 22526.68, + "end": 22527.36, + "probability": 0.8444 + }, + { + "start": 22528.58, + "end": 22531.58, + "probability": 0.9705 + }, + { + "start": 22532.18, + "end": 22535.98, + "probability": 0.8112 + }, + { + "start": 22537.0, + "end": 22541.12, + "probability": 0.9926 + }, + { + "start": 22541.7, + "end": 22543.18, + "probability": 0.7422 + }, + { + "start": 22543.94, + "end": 22545.5, + "probability": 0.9905 + }, + { + "start": 22546.84, + "end": 22551.68, + "probability": 0.9836 + }, + { + "start": 22552.66, + "end": 22558.96, + "probability": 0.941 + }, + { + "start": 22559.46, + "end": 22562.48, + "probability": 0.9141 + }, + { + "start": 22562.52, + "end": 22563.61, + "probability": 0.9722 + }, + { + "start": 22564.2, + "end": 22565.12, + "probability": 0.9374 + }, + { + "start": 22565.44, + "end": 22569.78, + "probability": 0.8274 + }, + { + "start": 22571.26, + "end": 22575.66, + "probability": 0.9388 + }, + { + "start": 22575.72, + "end": 22583.18, + "probability": 0.9948 + }, + { + "start": 22583.92, + "end": 22586.86, + "probability": 0.7459 + }, + { + "start": 22586.88, + "end": 22587.5, + "probability": 0.6757 + }, + { + "start": 22587.56, + "end": 22589.16, + "probability": 0.9805 + }, + { + "start": 22590.04, + "end": 22591.28, + "probability": 0.9132 + }, + { + "start": 22591.98, + "end": 22594.2, + "probability": 0.9862 + }, + { + "start": 22594.26, + "end": 22595.26, + "probability": 0.9632 + }, + { + "start": 22595.84, + "end": 22597.0, + "probability": 0.3617 + }, + { + "start": 22597.12, + "end": 22599.62, + "probability": 0.8048 + }, + { + "start": 22599.82, + "end": 22603.8, + "probability": 0.9097 + }, + { + "start": 22605.36, + "end": 22615.1, + "probability": 0.9888 + }, + { + "start": 22615.7, + "end": 22619.92, + "probability": 0.967 + }, + { + "start": 22619.92, + "end": 22623.3, + "probability": 0.9943 + }, + { + "start": 22624.32, + "end": 22626.94, + "probability": 0.9854 + }, + { + "start": 22627.72, + "end": 22628.96, + "probability": 0.8622 + }, + { + "start": 22629.66, + "end": 22630.98, + "probability": 0.5672 + }, + { + "start": 22631.46, + "end": 22633.6, + "probability": 0.9783 + }, + { + "start": 22633.7, + "end": 22634.16, + "probability": 0.7365 + }, + { + "start": 22635.34, + "end": 22636.94, + "probability": 0.8989 + }, + { + "start": 22637.12, + "end": 22637.22, + "probability": 0.9268 + }, + { + "start": 22638.56, + "end": 22641.18, + "probability": 0.967 + }, + { + "start": 22643.16, + "end": 22645.06, + "probability": 0.8911 + }, + { + "start": 22645.12, + "end": 22647.58, + "probability": 0.8825 + }, + { + "start": 22648.7, + "end": 22649.88, + "probability": 0.7331 + }, + { + "start": 22650.5, + "end": 22651.0, + "probability": 0.7983 + }, + { + "start": 22651.92, + "end": 22653.22, + "probability": 0.9726 + }, + { + "start": 22653.74, + "end": 22654.38, + "probability": 0.9624 + }, + { + "start": 22655.22, + "end": 22657.7, + "probability": 0.8914 + }, + { + "start": 22658.62, + "end": 22659.84, + "probability": 0.8965 + }, + { + "start": 22682.04, + "end": 22682.92, + "probability": 0.2003 + }, + { + "start": 22683.78, + "end": 22684.72, + "probability": 0.6118 + }, + { + "start": 22685.44, + "end": 22686.48, + "probability": 0.6919 + }, + { + "start": 22688.1, + "end": 22690.7, + "probability": 0.8283 + }, + { + "start": 22691.8, + "end": 22696.54, + "probability": 0.799 + }, + { + "start": 22697.86, + "end": 22701.66, + "probability": 0.9199 + }, + { + "start": 22702.56, + "end": 22705.3, + "probability": 0.9781 + }, + { + "start": 22706.02, + "end": 22707.94, + "probability": 0.9395 + }, + { + "start": 22708.8, + "end": 22710.52, + "probability": 0.6295 + }, + { + "start": 22710.66, + "end": 22716.2, + "probability": 0.9368 + }, + { + "start": 22716.34, + "end": 22717.8, + "probability": 0.931 + }, + { + "start": 22718.3, + "end": 22719.02, + "probability": 0.6872 + }, + { + "start": 22719.2, + "end": 22720.74, + "probability": 0.835 + }, + { + "start": 22721.58, + "end": 22724.66, + "probability": 0.9551 + }, + { + "start": 22725.85, + "end": 22730.9, + "probability": 0.8317 + }, + { + "start": 22732.2, + "end": 22732.96, + "probability": 0.9912 + }, + { + "start": 22733.92, + "end": 22736.38, + "probability": 0.9646 + }, + { + "start": 22736.96, + "end": 22742.12, + "probability": 0.792 + }, + { + "start": 22742.26, + "end": 22745.32, + "probability": 0.8092 + }, + { + "start": 22746.98, + "end": 22748.66, + "probability": 0.8914 + }, + { + "start": 22749.14, + "end": 22751.04, + "probability": 0.9644 + }, + { + "start": 22751.44, + "end": 22753.56, + "probability": 0.9846 + }, + { + "start": 22754.76, + "end": 22758.55, + "probability": 0.8911 + }, + { + "start": 22759.38, + "end": 22760.42, + "probability": 0.9424 + }, + { + "start": 22761.0, + "end": 22766.2, + "probability": 0.5544 + }, + { + "start": 22766.86, + "end": 22769.24, + "probability": 0.7804 + }, + { + "start": 22769.28, + "end": 22772.88, + "probability": 0.9867 + }, + { + "start": 22772.88, + "end": 22778.26, + "probability": 0.9799 + }, + { + "start": 22778.82, + "end": 22779.6, + "probability": 0.894 + }, + { + "start": 22779.96, + "end": 22780.5, + "probability": 0.4974 + }, + { + "start": 22780.52, + "end": 22781.89, + "probability": 0.9268 + }, + { + "start": 22782.96, + "end": 22785.98, + "probability": 0.0463 + }, + { + "start": 22786.9, + "end": 22789.68, + "probability": 0.9302 + }, + { + "start": 22790.58, + "end": 22793.34, + "probability": 0.9821 + }, + { + "start": 22793.82, + "end": 22800.6, + "probability": 0.8918 + }, + { + "start": 22800.68, + "end": 22803.04, + "probability": 0.8073 + }, + { + "start": 22803.82, + "end": 22806.7, + "probability": 0.7127 + }, + { + "start": 22807.34, + "end": 22808.9, + "probability": 0.8309 + }, + { + "start": 22810.1, + "end": 22813.02, + "probability": 0.8077 + }, + { + "start": 22813.22, + "end": 22816.14, + "probability": 0.7945 + }, + { + "start": 22816.26, + "end": 22816.7, + "probability": 0.9229 + }, + { + "start": 22816.96, + "end": 22819.0, + "probability": 0.9277 + }, + { + "start": 22819.66, + "end": 22823.34, + "probability": 0.9774 + }, + { + "start": 22823.54, + "end": 22824.04, + "probability": 0.7323 + }, + { + "start": 22824.16, + "end": 22827.92, + "probability": 0.9663 + }, + { + "start": 22828.76, + "end": 22830.52, + "probability": 0.8786 + }, + { + "start": 22830.84, + "end": 22837.26, + "probability": 0.9963 + }, + { + "start": 22837.94, + "end": 22840.28, + "probability": 0.7155 + }, + { + "start": 22840.4, + "end": 22845.98, + "probability": 0.541 + }, + { + "start": 22846.5, + "end": 22850.64, + "probability": 0.7869 + }, + { + "start": 22850.74, + "end": 22851.06, + "probability": 0.7131 + }, + { + "start": 22851.74, + "end": 22853.14, + "probability": 0.9157 + }, + { + "start": 22853.96, + "end": 22855.2, + "probability": 0.7087 + }, + { + "start": 22855.94, + "end": 22858.72, + "probability": 0.9459 + }, + { + "start": 22859.28, + "end": 22861.34, + "probability": 0.5195 + }, + { + "start": 22861.62, + "end": 22864.94, + "probability": 0.7651 + }, + { + "start": 22865.16, + "end": 22868.76, + "probability": 0.7827 + }, + { + "start": 22869.32, + "end": 22873.16, + "probability": 0.9779 + }, + { + "start": 22873.2, + "end": 22874.62, + "probability": 0.9444 + }, + { + "start": 22874.7, + "end": 22875.4, + "probability": 0.8254 + }, + { + "start": 22876.1, + "end": 22879.14, + "probability": 0.8193 + }, + { + "start": 22880.22, + "end": 22884.58, + "probability": 0.9877 + }, + { + "start": 22884.68, + "end": 22889.64, + "probability": 0.9761 + }, + { + "start": 22890.18, + "end": 22892.42, + "probability": 0.9712 + }, + { + "start": 22892.96, + "end": 22893.56, + "probability": 0.6931 + }, + { + "start": 22894.18, + "end": 22895.4, + "probability": 0.9077 + }, + { + "start": 22895.5, + "end": 22899.54, + "probability": 0.923 + }, + { + "start": 22900.14, + "end": 22901.26, + "probability": 0.8823 + }, + { + "start": 22901.58, + "end": 22901.72, + "probability": 0.7287 + }, + { + "start": 22902.42, + "end": 22903.9, + "probability": 0.6415 + }, + { + "start": 22903.98, + "end": 22904.24, + "probability": 0.912 + }, + { + "start": 22904.56, + "end": 22908.78, + "probability": 0.8358 + }, + { + "start": 22909.52, + "end": 22910.0, + "probability": 0.6472 + }, + { + "start": 22910.1, + "end": 22910.5, + "probability": 0.8843 + }, + { + "start": 22910.5, + "end": 22912.6, + "probability": 0.9545 + }, + { + "start": 22912.76, + "end": 22912.78, + "probability": 0.0007 + }, + { + "start": 22913.58, + "end": 22916.4, + "probability": 0.6193 + }, + { + "start": 22916.66, + "end": 22917.1, + "probability": 0.1942 + }, + { + "start": 22917.1, + "end": 22917.1, + "probability": 0.3347 + }, + { + "start": 22917.1, + "end": 22917.74, + "probability": 0.4645 + }, + { + "start": 22917.82, + "end": 22919.52, + "probability": 0.7125 + }, + { + "start": 22919.76, + "end": 22920.62, + "probability": 0.5446 + }, + { + "start": 22921.06, + "end": 22923.18, + "probability": 0.6686 + }, + { + "start": 22923.2, + "end": 22924.06, + "probability": 0.5276 + }, + { + "start": 22924.3, + "end": 22926.24, + "probability": 0.986 + }, + { + "start": 22926.7, + "end": 22927.28, + "probability": 0.4799 + }, + { + "start": 22927.84, + "end": 22929.4, + "probability": 0.9413 + }, + { + "start": 22929.72, + "end": 22930.4, + "probability": 0.9236 + }, + { + "start": 22930.62, + "end": 22932.14, + "probability": 0.9674 + }, + { + "start": 22932.18, + "end": 22932.82, + "probability": 0.7063 + }, + { + "start": 22933.86, + "end": 22935.08, + "probability": 0.6704 + }, + { + "start": 22935.94, + "end": 22936.52, + "probability": 0.8511 + }, + { + "start": 22937.06, + "end": 22938.54, + "probability": 0.6459 + }, + { + "start": 22938.66, + "end": 22939.26, + "probability": 0.6552 + }, + { + "start": 22939.46, + "end": 22940.42, + "probability": 0.774 + }, + { + "start": 22941.08, + "end": 22941.64, + "probability": 0.8848 + }, + { + "start": 22942.2, + "end": 22947.3, + "probability": 0.7018 + }, + { + "start": 22947.82, + "end": 22948.4, + "probability": 0.0228 + }, + { + "start": 22948.4, + "end": 22948.4, + "probability": 0.4031 + }, + { + "start": 22948.4, + "end": 22948.96, + "probability": 0.7161 + }, + { + "start": 22949.2, + "end": 22949.86, + "probability": 0.8385 + }, + { + "start": 22950.34, + "end": 22951.86, + "probability": 0.8332 + }, + { + "start": 22952.62, + "end": 22953.26, + "probability": 0.7018 + }, + { + "start": 22953.66, + "end": 22956.14, + "probability": 0.8473 + }, + { + "start": 22968.62, + "end": 22969.46, + "probability": 0.3913 + }, + { + "start": 22970.08, + "end": 22971.57, + "probability": 0.5355 + }, + { + "start": 22971.88, + "end": 22975.82, + "probability": 0.9691 + }, + { + "start": 22976.4, + "end": 22979.09, + "probability": 0.979 + }, + { + "start": 22980.16, + "end": 22985.22, + "probability": 0.9939 + }, + { + "start": 22985.32, + "end": 22988.3, + "probability": 0.9994 + }, + { + "start": 22989.9, + "end": 22990.6, + "probability": 0.5529 + }, + { + "start": 22991.26, + "end": 22994.84, + "probability": 0.9875 + }, + { + "start": 22994.84, + "end": 22999.14, + "probability": 0.9972 + }, + { + "start": 22999.9, + "end": 23001.78, + "probability": 0.6822 + }, + { + "start": 23002.72, + "end": 23002.72, + "probability": 0.0597 + }, + { + "start": 23002.72, + "end": 23008.42, + "probability": 0.8595 + }, + { + "start": 23009.66, + "end": 23010.72, + "probability": 0.8829 + }, + { + "start": 23010.98, + "end": 23013.14, + "probability": 0.9836 + }, + { + "start": 23013.26, + "end": 23013.92, + "probability": 0.8075 + }, + { + "start": 23014.88, + "end": 23017.82, + "probability": 0.9704 + }, + { + "start": 23018.1, + "end": 23020.5, + "probability": 0.697 + }, + { + "start": 23020.58, + "end": 23023.06, + "probability": 0.9862 + }, + { + "start": 23024.26, + "end": 23027.54, + "probability": 0.8558 + }, + { + "start": 23027.54, + "end": 23030.54, + "probability": 0.9969 + }, + { + "start": 23031.2, + "end": 23037.28, + "probability": 0.9971 + }, + { + "start": 23038.86, + "end": 23040.34, + "probability": 0.9792 + }, + { + "start": 23040.56, + "end": 23041.2, + "probability": 0.8401 + }, + { + "start": 23041.38, + "end": 23042.48, + "probability": 0.8914 + }, + { + "start": 23042.8, + "end": 23045.6, + "probability": 0.9962 + }, + { + "start": 23046.58, + "end": 23047.2, + "probability": 0.9418 + }, + { + "start": 23047.34, + "end": 23047.94, + "probability": 0.778 + }, + { + "start": 23048.02, + "end": 23048.8, + "probability": 0.8729 + }, + { + "start": 23049.0, + "end": 23049.53, + "probability": 0.7562 + }, + { + "start": 23049.82, + "end": 23050.9, + "probability": 0.9535 + }, + { + "start": 23051.5, + "end": 23053.24, + "probability": 0.9614 + }, + { + "start": 23053.68, + "end": 23054.22, + "probability": 0.9271 + }, + { + "start": 23054.36, + "end": 23054.82, + "probability": 0.8162 + }, + { + "start": 23054.84, + "end": 23058.22, + "probability": 0.9284 + }, + { + "start": 23058.38, + "end": 23065.38, + "probability": 0.9868 + }, + { + "start": 23065.62, + "end": 23066.44, + "probability": 0.6109 + }, + { + "start": 23066.92, + "end": 23067.8, + "probability": 0.6201 + }, + { + "start": 23068.34, + "end": 23071.18, + "probability": 0.694 + }, + { + "start": 23071.98, + "end": 23075.26, + "probability": 0.9552 + }, + { + "start": 23076.08, + "end": 23082.3, + "probability": 0.9956 + }, + { + "start": 23083.18, + "end": 23086.36, + "probability": 0.9876 + }, + { + "start": 23087.3, + "end": 23089.16, + "probability": 0.7614 + }, + { + "start": 23089.48, + "end": 23093.24, + "probability": 0.9139 + }, + { + "start": 23094.52, + "end": 23096.98, + "probability": 0.9895 + }, + { + "start": 23096.98, + "end": 23100.52, + "probability": 0.9536 + }, + { + "start": 23101.54, + "end": 23101.7, + "probability": 0.7406 + }, + { + "start": 23102.3, + "end": 23103.74, + "probability": 0.8809 + }, + { + "start": 23103.84, + "end": 23107.8, + "probability": 0.8784 + }, + { + "start": 23108.56, + "end": 23110.88, + "probability": 0.7493 + }, + { + "start": 23111.28, + "end": 23112.1, + "probability": 0.9481 + }, + { + "start": 23112.22, + "end": 23113.52, + "probability": 0.9879 + }, + { + "start": 23113.62, + "end": 23114.54, + "probability": 0.8798 + }, + { + "start": 23115.12, + "end": 23115.86, + "probability": 0.5069 + }, + { + "start": 23115.94, + "end": 23122.9, + "probability": 0.9787 + }, + { + "start": 23123.4, + "end": 23126.36, + "probability": 0.9522 + }, + { + "start": 23126.52, + "end": 23128.86, + "probability": 0.9825 + }, + { + "start": 23129.02, + "end": 23130.5, + "probability": 0.9715 + }, + { + "start": 23131.14, + "end": 23133.88, + "probability": 0.9952 + }, + { + "start": 23134.76, + "end": 23138.3, + "probability": 0.9869 + }, + { + "start": 23138.5, + "end": 23140.52, + "probability": 0.8966 + }, + { + "start": 23140.6, + "end": 23142.6, + "probability": 0.9752 + }, + { + "start": 23143.26, + "end": 23145.64, + "probability": 0.9644 + }, + { + "start": 23146.04, + "end": 23146.32, + "probability": 0.9431 + }, + { + "start": 23146.46, + "end": 23149.96, + "probability": 0.9909 + }, + { + "start": 23150.46, + "end": 23153.28, + "probability": 0.9798 + }, + { + "start": 23153.8, + "end": 23157.06, + "probability": 0.9941 + }, + { + "start": 23157.72, + "end": 23162.62, + "probability": 0.8645 + }, + { + "start": 23163.1, + "end": 23163.58, + "probability": 0.7577 + }, + { + "start": 23164.08, + "end": 23166.32, + "probability": 0.7098 + }, + { + "start": 23166.8, + "end": 23167.36, + "probability": 0.5048 + }, + { + "start": 23167.62, + "end": 23167.98, + "probability": 0.0135 + }, + { + "start": 23167.98, + "end": 23171.82, + "probability": 0.8694 + }, + { + "start": 23172.36, + "end": 23174.14, + "probability": 0.4292 + }, + { + "start": 23174.54, + "end": 23175.76, + "probability": 0.3436 + }, + { + "start": 23175.92, + "end": 23177.0, + "probability": 0.8098 + }, + { + "start": 23177.56, + "end": 23178.2, + "probability": 0.6487 + }, + { + "start": 23178.22, + "end": 23178.74, + "probability": 0.4195 + }, + { + "start": 23178.76, + "end": 23179.68, + "probability": 0.5494 + }, + { + "start": 23199.12, + "end": 23200.62, + "probability": 0.2356 + }, + { + "start": 23200.62, + "end": 23203.74, + "probability": 0.4575 + }, + { + "start": 23204.16, + "end": 23205.34, + "probability": 0.3139 + }, + { + "start": 23207.9, + "end": 23211.56, + "probability": 0.5739 + }, + { + "start": 23214.8, + "end": 23216.92, + "probability": 0.0602 + }, + { + "start": 23217.6, + "end": 23221.2, + "probability": 0.0226 + }, + { + "start": 23221.96, + "end": 23225.1, + "probability": 0.2054 + }, + { + "start": 23225.66, + "end": 23226.54, + "probability": 0.0828 + }, + { + "start": 23228.28, + "end": 23229.0, + "probability": 0.1421 + }, + { + "start": 23231.66, + "end": 23232.5, + "probability": 0.0762 + }, + { + "start": 23257.52, + "end": 23260.24, + "probability": 0.0414 + }, + { + "start": 23260.24, + "end": 23260.34, + "probability": 0.0013 + }, + { + "start": 23261.15, + "end": 23261.15, + "probability": 0.0 + }, + { + "start": 23261.15, + "end": 23261.15, + "probability": 0.0 + }, + { + "start": 23261.15, + "end": 23261.15, + "probability": 0.0 + }, + { + "start": 23261.15, + "end": 23261.15, + "probability": 0.0 + }, + { + "start": 23261.15, + "end": 23261.15, + "probability": 0.0 + }, + { + "start": 23261.15, + "end": 23261.15, + "probability": 0.0 + } + ], + "segments_count": 8019, + "words_count": 39140, + "avg_words_per_segment": 4.8809, + "avg_segment_duration": 2.0995, + "avg_words_per_minute": 100.958, + "plenum_id": "51228", + "duration": 23261.15, + "title": null, + "plenum_date": "2016-03-14" +} \ No newline at end of file