diff --git "a/128984/metadata.json" "b/128984/metadata.json" new file mode 100644--- /dev/null +++ "b/128984/metadata.json" @@ -0,0 +1,107782 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "128984", + "quality_score": 0.8717, + "per_segment_quality_scores": [ + { + "start": 0.9, + "end": 3.86, + "probability": 0.0472 + }, + { + "start": 63.9, + "end": 64.8, + "probability": 0.1183 + }, + { + "start": 66.52, + "end": 70.46, + "probability": 0.629 + }, + { + "start": 71.12, + "end": 77.28, + "probability": 0.9603 + }, + { + "start": 77.28, + "end": 82.32, + "probability": 0.9889 + }, + { + "start": 83.04, + "end": 87.46, + "probability": 0.9829 + }, + { + "start": 88.04, + "end": 88.56, + "probability": 0.5668 + }, + { + "start": 89.56, + "end": 90.04, + "probability": 0.7518 + }, + { + "start": 101.82, + "end": 102.42, + "probability": 0.4652 + }, + { + "start": 103.0, + "end": 104.22, + "probability": 0.6458 + }, + { + "start": 105.5, + "end": 106.92, + "probability": 0.6832 + }, + { + "start": 107.0, + "end": 112.0, + "probability": 0.9485 + }, + { + "start": 113.36, + "end": 114.82, + "probability": 0.9565 + }, + { + "start": 115.44, + "end": 117.9, + "probability": 0.978 + }, + { + "start": 117.96, + "end": 123.38, + "probability": 0.7277 + }, + { + "start": 123.92, + "end": 127.98, + "probability": 0.9881 + }, + { + "start": 129.18, + "end": 133.56, + "probability": 0.8292 + }, + { + "start": 134.18, + "end": 139.34, + "probability": 0.965 + }, + { + "start": 139.46, + "end": 146.78, + "probability": 0.8982 + }, + { + "start": 147.72, + "end": 154.24, + "probability": 0.9908 + }, + { + "start": 154.94, + "end": 155.48, + "probability": 0.6659 + }, + { + "start": 155.8, + "end": 156.16, + "probability": 0.9558 + }, + { + "start": 157.1, + "end": 159.0, + "probability": 0.894 + }, + { + "start": 159.24, + "end": 161.12, + "probability": 0.672 + }, + { + "start": 161.28, + "end": 161.94, + "probability": 0.6737 + }, + { + "start": 162.06, + "end": 163.2, + "probability": 0.7319 + }, + { + "start": 163.82, + "end": 164.18, + "probability": 0.4207 + }, + { + "start": 164.24, + "end": 164.68, + "probability": 0.8844 + }, + { + "start": 164.76, + "end": 167.06, + "probability": 0.9878 + }, + { + "start": 168.0, + "end": 172.04, + "probability": 0.7473 + }, + { + "start": 172.34, + "end": 173.14, + "probability": 0.6663 + }, + { + "start": 173.32, + "end": 174.1, + "probability": 0.9473 + }, + { + "start": 174.32, + "end": 175.02, + "probability": 0.6004 + }, + { + "start": 175.44, + "end": 177.34, + "probability": 0.7091 + }, + { + "start": 177.82, + "end": 180.02, + "probability": 0.9889 + }, + { + "start": 180.54, + "end": 181.24, + "probability": 0.8383 + }, + { + "start": 181.72, + "end": 186.87, + "probability": 0.6452 + }, + { + "start": 187.7, + "end": 191.74, + "probability": 0.6626 + }, + { + "start": 191.8, + "end": 194.78, + "probability": 0.7257 + }, + { + "start": 195.06, + "end": 197.74, + "probability": 0.805 + }, + { + "start": 197.74, + "end": 202.34, + "probability": 0.678 + }, + { + "start": 202.87, + "end": 204.66, + "probability": 0.9764 + }, + { + "start": 205.6, + "end": 206.28, + "probability": 0.7421 + }, + { + "start": 206.54, + "end": 211.9, + "probability": 0.825 + }, + { + "start": 211.98, + "end": 212.72, + "probability": 0.8 + }, + { + "start": 212.96, + "end": 214.43, + "probability": 0.8849 + }, + { + "start": 215.18, + "end": 216.78, + "probability": 0.9155 + }, + { + "start": 217.5, + "end": 220.16, + "probability": 0.8487 + }, + { + "start": 221.18, + "end": 223.88, + "probability": 0.4569 + }, + { + "start": 224.84, + "end": 228.36, + "probability": 0.8264 + }, + { + "start": 228.86, + "end": 233.96, + "probability": 0.9708 + }, + { + "start": 235.04, + "end": 237.4, + "probability": 0.7704 + }, + { + "start": 238.56, + "end": 240.78, + "probability": 0.8184 + }, + { + "start": 241.24, + "end": 244.4, + "probability": 0.973 + }, + { + "start": 244.56, + "end": 245.06, + "probability": 0.4437 + }, + { + "start": 245.54, + "end": 246.56, + "probability": 0.4597 + }, + { + "start": 247.24, + "end": 248.94, + "probability": 0.6091 + }, + { + "start": 249.12, + "end": 250.4, + "probability": 0.9626 + }, + { + "start": 250.48, + "end": 252.07, + "probability": 0.4645 + }, + { + "start": 253.22, + "end": 256.46, + "probability": 0.913 + }, + { + "start": 257.62, + "end": 258.06, + "probability": 0.5083 + }, + { + "start": 258.62, + "end": 259.4, + "probability": 0.2319 + }, + { + "start": 259.66, + "end": 264.02, + "probability": 0.9124 + }, + { + "start": 265.36, + "end": 266.48, + "probability": 0.2936 + }, + { + "start": 266.54, + "end": 269.08, + "probability": 0.7456 + }, + { + "start": 269.92, + "end": 271.52, + "probability": 0.9672 + }, + { + "start": 271.64, + "end": 271.9, + "probability": 0.4204 + }, + { + "start": 271.98, + "end": 273.34, + "probability": 0.3899 + }, + { + "start": 273.42, + "end": 273.82, + "probability": 0.8243 + }, + { + "start": 275.84, + "end": 275.84, + "probability": 0.1094 + }, + { + "start": 275.84, + "end": 275.84, + "probability": 0.0924 + }, + { + "start": 275.84, + "end": 276.28, + "probability": 0.4004 + }, + { + "start": 276.44, + "end": 277.98, + "probability": 0.5885 + }, + { + "start": 278.24, + "end": 281.74, + "probability": 0.8729 + }, + { + "start": 281.9, + "end": 282.82, + "probability": 0.2947 + }, + { + "start": 283.1, + "end": 285.98, + "probability": 0.8593 + }, + { + "start": 287.4, + "end": 293.3, + "probability": 0.8903 + }, + { + "start": 293.73, + "end": 296.62, + "probability": 0.2531 + }, + { + "start": 296.78, + "end": 304.44, + "probability": 0.8292 + }, + { + "start": 305.6, + "end": 306.66, + "probability": 0.4995 + }, + { + "start": 307.12, + "end": 310.56, + "probability": 0.7461 + }, + { + "start": 310.68, + "end": 312.56, + "probability": 0.9771 + }, + { + "start": 313.22, + "end": 314.68, + "probability": 0.7104 + }, + { + "start": 315.14, + "end": 318.16, + "probability": 0.9648 + }, + { + "start": 318.38, + "end": 322.02, + "probability": 0.8899 + }, + { + "start": 322.5, + "end": 327.34, + "probability": 0.6459 + }, + { + "start": 327.5, + "end": 327.82, + "probability": 0.3199 + }, + { + "start": 327.82, + "end": 328.2, + "probability": 0.7317 + }, + { + "start": 328.28, + "end": 329.78, + "probability": 0.7987 + }, + { + "start": 329.92, + "end": 330.7, + "probability": 0.4086 + }, + { + "start": 330.86, + "end": 335.02, + "probability": 0.8403 + }, + { + "start": 335.02, + "end": 338.82, + "probability": 0.9026 + }, + { + "start": 339.22, + "end": 342.46, + "probability": 0.9939 + }, + { + "start": 342.6, + "end": 345.46, + "probability": 0.9887 + }, + { + "start": 346.1, + "end": 350.32, + "probability": 0.9959 + }, + { + "start": 351.14, + "end": 353.2, + "probability": 0.7765 + }, + { + "start": 354.08, + "end": 356.3, + "probability": 0.7779 + }, + { + "start": 356.56, + "end": 358.12, + "probability": 0.6313 + }, + { + "start": 358.24, + "end": 360.44, + "probability": 0.8802 + }, + { + "start": 361.2, + "end": 365.94, + "probability": 0.9158 + }, + { + "start": 365.94, + "end": 369.14, + "probability": 0.8076 + }, + { + "start": 369.52, + "end": 374.36, + "probability": 0.9304 + }, + { + "start": 374.76, + "end": 374.86, + "probability": 0.392 + }, + { + "start": 375.0, + "end": 377.96, + "probability": 0.9558 + }, + { + "start": 378.84, + "end": 380.16, + "probability": 0.6736 + }, + { + "start": 380.26, + "end": 382.0, + "probability": 0.7666 + }, + { + "start": 382.08, + "end": 382.62, + "probability": 0.4518 + }, + { + "start": 382.76, + "end": 383.86, + "probability": 0.724 + }, + { + "start": 384.9, + "end": 387.7, + "probability": 0.7498 + }, + { + "start": 388.28, + "end": 393.52, + "probability": 0.4411 + }, + { + "start": 394.22, + "end": 395.18, + "probability": 0.8801 + }, + { + "start": 396.04, + "end": 400.14, + "probability": 0.966 + }, + { + "start": 400.22, + "end": 404.69, + "probability": 0.9722 + }, + { + "start": 405.18, + "end": 409.92, + "probability": 0.98 + }, + { + "start": 410.04, + "end": 414.56, + "probability": 0.8755 + }, + { + "start": 414.64, + "end": 417.0, + "probability": 0.9945 + }, + { + "start": 417.16, + "end": 418.4, + "probability": 0.7002 + }, + { + "start": 419.54, + "end": 419.96, + "probability": 0.4118 + }, + { + "start": 421.37, + "end": 422.24, + "probability": 0.8321 + }, + { + "start": 422.96, + "end": 426.1, + "probability": 0.7714 + }, + { + "start": 426.7, + "end": 428.18, + "probability": 0.7827 + }, + { + "start": 428.78, + "end": 429.38, + "probability": 0.9204 + }, + { + "start": 432.26, + "end": 432.6, + "probability": 0.5986 + }, + { + "start": 433.16, + "end": 436.74, + "probability": 0.7344 + }, + { + "start": 437.32, + "end": 438.86, + "probability": 0.7271 + }, + { + "start": 440.4, + "end": 447.54, + "probability": 0.7487 + }, + { + "start": 447.7, + "end": 450.2, + "probability": 0.8951 + }, + { + "start": 450.64, + "end": 453.96, + "probability": 0.9602 + }, + { + "start": 454.08, + "end": 458.64, + "probability": 0.6174 + }, + { + "start": 458.76, + "end": 459.84, + "probability": 0.7953 + }, + { + "start": 460.7, + "end": 462.64, + "probability": 0.3516 + }, + { + "start": 463.0, + "end": 466.88, + "probability": 0.9646 + }, + { + "start": 466.88, + "end": 469.4, + "probability": 0.9658 + }, + { + "start": 469.8, + "end": 470.88, + "probability": 0.7964 + }, + { + "start": 471.34, + "end": 472.02, + "probability": 0.3112 + }, + { + "start": 472.18, + "end": 473.58, + "probability": 0.9957 + }, + { + "start": 473.6, + "end": 478.6, + "probability": 0.7956 + }, + { + "start": 478.72, + "end": 482.7, + "probability": 0.9536 + }, + { + "start": 483.38, + "end": 485.38, + "probability": 0.9875 + }, + { + "start": 485.38, + "end": 488.36, + "probability": 0.9927 + }, + { + "start": 488.74, + "end": 492.14, + "probability": 0.6665 + }, + { + "start": 492.48, + "end": 493.8, + "probability": 0.9891 + }, + { + "start": 494.1, + "end": 495.92, + "probability": 0.9185 + }, + { + "start": 496.28, + "end": 501.02, + "probability": 0.9951 + }, + { + "start": 501.02, + "end": 501.72, + "probability": 0.7954 + }, + { + "start": 501.76, + "end": 504.66, + "probability": 0.9932 + }, + { + "start": 504.66, + "end": 507.48, + "probability": 0.9645 + }, + { + "start": 507.68, + "end": 509.18, + "probability": 0.9017 + }, + { + "start": 509.2, + "end": 509.7, + "probability": 0.7558 + }, + { + "start": 519.9, + "end": 521.46, + "probability": 0.9463 + }, + { + "start": 521.76, + "end": 522.9, + "probability": 0.913 + }, + { + "start": 523.12, + "end": 530.32, + "probability": 0.9792 + }, + { + "start": 530.4, + "end": 531.92, + "probability": 0.9754 + }, + { + "start": 533.02, + "end": 541.3, + "probability": 0.9923 + }, + { + "start": 542.08, + "end": 545.9, + "probability": 0.9972 + }, + { + "start": 546.44, + "end": 549.22, + "probability": 0.6716 + }, + { + "start": 554.06, + "end": 555.3, + "probability": 0.9834 + }, + { + "start": 555.4, + "end": 557.03, + "probability": 0.9922 + }, + { + "start": 557.9, + "end": 558.94, + "probability": 0.9734 + }, + { + "start": 559.12, + "end": 561.68, + "probability": 0.9958 + }, + { + "start": 561.8, + "end": 562.9, + "probability": 0.6304 + }, + { + "start": 562.96, + "end": 566.16, + "probability": 0.7501 + }, + { + "start": 566.22, + "end": 568.38, + "probability": 0.9548 + }, + { + "start": 570.24, + "end": 574.26, + "probability": 0.8259 + }, + { + "start": 574.46, + "end": 578.6, + "probability": 0.8058 + }, + { + "start": 579.14, + "end": 580.42, + "probability": 0.747 + }, + { + "start": 580.58, + "end": 582.38, + "probability": 0.9883 + }, + { + "start": 582.44, + "end": 584.84, + "probability": 0.92 + }, + { + "start": 585.26, + "end": 586.94, + "probability": 0.8721 + }, + { + "start": 586.96, + "end": 589.94, + "probability": 0.7461 + }, + { + "start": 590.24, + "end": 593.08, + "probability": 0.8125 + }, + { + "start": 593.56, + "end": 593.56, + "probability": 0.6586 + }, + { + "start": 593.6, + "end": 594.19, + "probability": 0.6696 + }, + { + "start": 594.7, + "end": 595.44, + "probability": 0.9268 + }, + { + "start": 595.5, + "end": 600.6, + "probability": 0.905 + }, + { + "start": 600.82, + "end": 601.98, + "probability": 0.5759 + }, + { + "start": 602.2, + "end": 604.76, + "probability": 0.7964 + }, + { + "start": 605.3, + "end": 606.04, + "probability": 0.3286 + }, + { + "start": 606.04, + "end": 606.74, + "probability": 0.5839 + }, + { + "start": 606.82, + "end": 610.48, + "probability": 0.9893 + }, + { + "start": 610.54, + "end": 612.1, + "probability": 0.9089 + }, + { + "start": 613.12, + "end": 617.42, + "probability": 0.9242 + }, + { + "start": 617.8, + "end": 620.82, + "probability": 0.6512 + }, + { + "start": 620.96, + "end": 622.08, + "probability": 0.9164 + }, + { + "start": 622.18, + "end": 626.8, + "probability": 0.8644 + }, + { + "start": 626.92, + "end": 628.62, + "probability": 0.5898 + }, + { + "start": 628.94, + "end": 633.32, + "probability": 0.8735 + }, + { + "start": 633.32, + "end": 636.42, + "probability": 0.9883 + }, + { + "start": 637.04, + "end": 639.5, + "probability": 0.5003 + }, + { + "start": 639.62, + "end": 641.78, + "probability": 0.9839 + }, + { + "start": 641.78, + "end": 644.12, + "probability": 0.9904 + }, + { + "start": 644.6, + "end": 645.14, + "probability": 0.8493 + }, + { + "start": 645.5, + "end": 646.78, + "probability": 0.7771 + }, + { + "start": 646.86, + "end": 648.16, + "probability": 0.8204 + }, + { + "start": 648.62, + "end": 650.44, + "probability": 0.9556 + }, + { + "start": 650.52, + "end": 652.38, + "probability": 0.7898 + }, + { + "start": 652.72, + "end": 657.2, + "probability": 0.9933 + }, + { + "start": 657.66, + "end": 659.1, + "probability": 0.9591 + }, + { + "start": 659.24, + "end": 664.86, + "probability": 0.9822 + }, + { + "start": 665.44, + "end": 668.48, + "probability": 0.9784 + }, + { + "start": 668.74, + "end": 673.08, + "probability": 0.9673 + }, + { + "start": 673.54, + "end": 676.34, + "probability": 0.9775 + }, + { + "start": 676.88, + "end": 678.1, + "probability": 0.7063 + }, + { + "start": 678.68, + "end": 680.57, + "probability": 0.9937 + }, + { + "start": 680.74, + "end": 681.5, + "probability": 0.9215 + }, + { + "start": 681.56, + "end": 682.14, + "probability": 0.9767 + }, + { + "start": 682.18, + "end": 683.3, + "probability": 0.9544 + }, + { + "start": 683.8, + "end": 686.5, + "probability": 0.8105 + }, + { + "start": 687.22, + "end": 688.24, + "probability": 0.7519 + }, + { + "start": 688.26, + "end": 691.44, + "probability": 0.9806 + }, + { + "start": 691.8, + "end": 694.68, + "probability": 0.9642 + }, + { + "start": 694.84, + "end": 695.14, + "probability": 0.5695 + }, + { + "start": 695.22, + "end": 695.84, + "probability": 0.6069 + }, + { + "start": 696.18, + "end": 696.54, + "probability": 0.6676 + }, + { + "start": 696.6, + "end": 700.16, + "probability": 0.863 + }, + { + "start": 700.52, + "end": 704.04, + "probability": 0.8826 + }, + { + "start": 704.52, + "end": 707.7, + "probability": 0.7385 + }, + { + "start": 708.22, + "end": 711.1, + "probability": 0.8242 + }, + { + "start": 711.22, + "end": 712.54, + "probability": 0.9159 + }, + { + "start": 712.9, + "end": 714.1, + "probability": 0.9907 + }, + { + "start": 714.18, + "end": 715.7, + "probability": 0.9839 + }, + { + "start": 716.14, + "end": 719.18, + "probability": 0.5761 + }, + { + "start": 719.52, + "end": 722.5, + "probability": 0.9932 + }, + { + "start": 722.66, + "end": 723.12, + "probability": 0.7295 + }, + { + "start": 723.16, + "end": 725.62, + "probability": 0.8694 + }, + { + "start": 726.12, + "end": 728.52, + "probability": 0.8289 + }, + { + "start": 729.12, + "end": 729.64, + "probability": 0.4959 + }, + { + "start": 730.08, + "end": 731.24, + "probability": 0.9976 + }, + { + "start": 731.3, + "end": 733.84, + "probability": 0.874 + }, + { + "start": 734.26, + "end": 737.44, + "probability": 0.8905 + }, + { + "start": 737.7, + "end": 740.36, + "probability": 0.7102 + }, + { + "start": 740.52, + "end": 740.96, + "probability": 0.7001 + }, + { + "start": 741.44, + "end": 741.68, + "probability": 0.5416 + }, + { + "start": 741.82, + "end": 746.2, + "probability": 0.9408 + }, + { + "start": 746.56, + "end": 748.56, + "probability": 0.9627 + }, + { + "start": 748.76, + "end": 750.2, + "probability": 0.8998 + }, + { + "start": 750.24, + "end": 753.86, + "probability": 0.9346 + }, + { + "start": 754.16, + "end": 758.36, + "probability": 0.9454 + }, + { + "start": 758.94, + "end": 759.62, + "probability": 0.8965 + }, + { + "start": 760.1, + "end": 762.42, + "probability": 0.9385 + }, + { + "start": 762.82, + "end": 765.66, + "probability": 0.7557 + }, + { + "start": 766.4, + "end": 767.18, + "probability": 0.4616 + }, + { + "start": 768.56, + "end": 772.12, + "probability": 0.9182 + }, + { + "start": 772.24, + "end": 774.16, + "probability": 0.2863 + }, + { + "start": 774.36, + "end": 775.92, + "probability": 0.0903 + }, + { + "start": 776.58, + "end": 777.6, + "probability": 0.6746 + }, + { + "start": 777.74, + "end": 778.56, + "probability": 0.8664 + }, + { + "start": 778.62, + "end": 779.62, + "probability": 0.4331 + }, + { + "start": 780.02, + "end": 783.84, + "probability": 0.8311 + }, + { + "start": 784.2, + "end": 787.62, + "probability": 0.6331 + }, + { + "start": 787.78, + "end": 789.1, + "probability": 0.9868 + }, + { + "start": 789.2, + "end": 793.86, + "probability": 0.9623 + }, + { + "start": 794.1, + "end": 795.52, + "probability": 0.9526 + }, + { + "start": 795.58, + "end": 797.0, + "probability": 0.9949 + }, + { + "start": 797.64, + "end": 800.36, + "probability": 0.965 + }, + { + "start": 801.28, + "end": 804.06, + "probability": 0.785 + }, + { + "start": 804.5, + "end": 805.52, + "probability": 0.9489 + }, + { + "start": 806.04, + "end": 808.28, + "probability": 0.778 + }, + { + "start": 808.44, + "end": 809.36, + "probability": 0.9568 + }, + { + "start": 809.84, + "end": 813.34, + "probability": 0.6345 + }, + { + "start": 813.94, + "end": 818.08, + "probability": 0.5555 + }, + { + "start": 818.22, + "end": 819.1, + "probability": 0.7065 + }, + { + "start": 819.76, + "end": 825.34, + "probability": 0.6204 + }, + { + "start": 825.36, + "end": 829.58, + "probability": 0.9399 + }, + { + "start": 830.14, + "end": 831.96, + "probability": 0.7637 + }, + { + "start": 832.52, + "end": 837.3, + "probability": 0.9037 + }, + { + "start": 837.72, + "end": 838.82, + "probability": 0.926 + }, + { + "start": 839.36, + "end": 841.84, + "probability": 0.9786 + }, + { + "start": 841.98, + "end": 843.08, + "probability": 0.8791 + }, + { + "start": 844.7, + "end": 847.26, + "probability": 0.9943 + }, + { + "start": 847.34, + "end": 851.56, + "probability": 0.9607 + }, + { + "start": 851.62, + "end": 853.1, + "probability": 0.9803 + }, + { + "start": 853.78, + "end": 855.42, + "probability": 0.9233 + }, + { + "start": 855.94, + "end": 857.1, + "probability": 0.949 + }, + { + "start": 857.56, + "end": 863.05, + "probability": 0.7061 + }, + { + "start": 863.58, + "end": 866.54, + "probability": 0.4771 + }, + { + "start": 867.4, + "end": 868.6, + "probability": 0.7788 + }, + { + "start": 868.82, + "end": 870.9, + "probability": 0.6233 + }, + { + "start": 871.0, + "end": 873.38, + "probability": 0.9219 + }, + { + "start": 873.44, + "end": 875.0, + "probability": 0.9359 + }, + { + "start": 875.48, + "end": 876.54, + "probability": 0.7544 + }, + { + "start": 876.86, + "end": 877.54, + "probability": 0.5745 + }, + { + "start": 877.64, + "end": 878.0, + "probability": 0.7191 + }, + { + "start": 878.1, + "end": 878.46, + "probability": 0.7197 + }, + { + "start": 878.54, + "end": 880.33, + "probability": 0.8073 + }, + { + "start": 880.6, + "end": 881.46, + "probability": 0.364 + }, + { + "start": 881.62, + "end": 883.58, + "probability": 0.6675 + }, + { + "start": 883.86, + "end": 889.64, + "probability": 0.9645 + }, + { + "start": 890.02, + "end": 892.14, + "probability": 0.9101 + }, + { + "start": 892.2, + "end": 893.48, + "probability": 0.9119 + }, + { + "start": 893.56, + "end": 896.68, + "probability": 0.8599 + }, + { + "start": 897.12, + "end": 899.0, + "probability": 0.6477 + }, + { + "start": 899.68, + "end": 901.08, + "probability": 0.9478 + }, + { + "start": 901.28, + "end": 905.92, + "probability": 0.9423 + }, + { + "start": 906.06, + "end": 907.56, + "probability": 0.955 + }, + { + "start": 907.68, + "end": 908.9, + "probability": 0.9294 + }, + { + "start": 908.9, + "end": 909.26, + "probability": 0.3528 + }, + { + "start": 909.5, + "end": 910.7, + "probability": 0.7241 + }, + { + "start": 911.5, + "end": 912.56, + "probability": 0.4272 + }, + { + "start": 912.72, + "end": 914.3, + "probability": 0.6935 + }, + { + "start": 914.46, + "end": 915.75, + "probability": 0.1214 + }, + { + "start": 916.38, + "end": 918.02, + "probability": 0.4414 + }, + { + "start": 918.08, + "end": 918.64, + "probability": 0.0676 + }, + { + "start": 918.92, + "end": 920.36, + "probability": 0.36 + }, + { + "start": 920.36, + "end": 920.42, + "probability": 0.3814 + }, + { + "start": 920.42, + "end": 921.26, + "probability": 0.5153 + }, + { + "start": 921.42, + "end": 922.33, + "probability": 0.8008 + }, + { + "start": 922.78, + "end": 926.82, + "probability": 0.5763 + }, + { + "start": 927.1, + "end": 928.28, + "probability": 0.9829 + }, + { + "start": 928.32, + "end": 929.8, + "probability": 0.7705 + }, + { + "start": 929.8, + "end": 931.56, + "probability": 0.489 + }, + { + "start": 931.7, + "end": 932.64, + "probability": 0.6181 + }, + { + "start": 932.66, + "end": 933.02, + "probability": 0.3435 + }, + { + "start": 933.08, + "end": 934.06, + "probability": 0.7254 + }, + { + "start": 935.66, + "end": 936.36, + "probability": 0.4373 + }, + { + "start": 936.92, + "end": 938.5, + "probability": 0.8798 + }, + { + "start": 938.64, + "end": 941.76, + "probability": 0.9744 + }, + { + "start": 942.24, + "end": 943.42, + "probability": 0.9763 + }, + { + "start": 943.94, + "end": 946.72, + "probability": 0.9874 + }, + { + "start": 948.02, + "end": 950.25, + "probability": 0.5469 + }, + { + "start": 950.48, + "end": 950.91, + "probability": 0.9875 + }, + { + "start": 951.18, + "end": 951.78, + "probability": 0.9647 + }, + { + "start": 951.88, + "end": 952.14, + "probability": 0.9735 + }, + { + "start": 952.26, + "end": 954.38, + "probability": 0.9766 + }, + { + "start": 954.56, + "end": 956.76, + "probability": 0.9603 + }, + { + "start": 957.12, + "end": 959.36, + "probability": 0.9158 + }, + { + "start": 959.7, + "end": 963.24, + "probability": 0.7548 + }, + { + "start": 963.32, + "end": 964.26, + "probability": 0.7112 + }, + { + "start": 964.26, + "end": 965.34, + "probability": 0.9674 + }, + { + "start": 965.42, + "end": 966.68, + "probability": 0.4764 + }, + { + "start": 967.3, + "end": 967.54, + "probability": 0.8081 + }, + { + "start": 967.62, + "end": 968.86, + "probability": 0.5929 + }, + { + "start": 969.24, + "end": 970.9, + "probability": 0.1657 + }, + { + "start": 971.1, + "end": 973.22, + "probability": 0.638 + }, + { + "start": 973.76, + "end": 977.7, + "probability": 0.9213 + }, + { + "start": 977.84, + "end": 978.38, + "probability": 0.4396 + }, + { + "start": 978.4, + "end": 979.44, + "probability": 0.8693 + }, + { + "start": 979.86, + "end": 981.6, + "probability": 0.4677 + }, + { + "start": 981.68, + "end": 982.38, + "probability": 0.9673 + }, + { + "start": 982.84, + "end": 983.72, + "probability": 0.1808 + }, + { + "start": 984.0, + "end": 986.68, + "probability": 0.6994 + }, + { + "start": 986.8, + "end": 987.38, + "probability": 0.9399 + }, + { + "start": 987.74, + "end": 992.02, + "probability": 0.8975 + }, + { + "start": 993.16, + "end": 996.38, + "probability": 0.8601 + }, + { + "start": 996.96, + "end": 998.92, + "probability": 0.654 + }, + { + "start": 999.06, + "end": 1000.82, + "probability": 0.9345 + }, + { + "start": 1001.52, + "end": 1006.82, + "probability": 0.8902 + }, + { + "start": 1007.36, + "end": 1010.18, + "probability": 0.8936 + }, + { + "start": 1010.82, + "end": 1013.6, + "probability": 0.9255 + }, + { + "start": 1014.22, + "end": 1015.98, + "probability": 0.6262 + }, + { + "start": 1016.08, + "end": 1016.6, + "probability": 0.7993 + }, + { + "start": 1017.08, + "end": 1019.66, + "probability": 0.9537 + }, + { + "start": 1020.06, + "end": 1022.32, + "probability": 0.7903 + }, + { + "start": 1022.36, + "end": 1026.56, + "probability": 0.8172 + }, + { + "start": 1027.08, + "end": 1033.17, + "probability": 0.7461 + }, + { + "start": 1034.02, + "end": 1035.04, + "probability": 0.7815 + }, + { + "start": 1035.62, + "end": 1036.82, + "probability": 0.9783 + }, + { + "start": 1036.94, + "end": 1039.28, + "probability": 0.8575 + }, + { + "start": 1039.78, + "end": 1041.94, + "probability": 0.9774 + }, + { + "start": 1042.46, + "end": 1045.3, + "probability": 0.9686 + }, + { + "start": 1045.88, + "end": 1048.14, + "probability": 0.9488 + }, + { + "start": 1048.78, + "end": 1051.88, + "probability": 0.7497 + }, + { + "start": 1052.44, + "end": 1054.6, + "probability": 0.9878 + }, + { + "start": 1054.84, + "end": 1055.34, + "probability": 0.2438 + }, + { + "start": 1055.88, + "end": 1059.82, + "probability": 0.9126 + }, + { + "start": 1060.22, + "end": 1061.0, + "probability": 0.9053 + }, + { + "start": 1061.24, + "end": 1061.94, + "probability": 0.842 + }, + { + "start": 1062.26, + "end": 1063.46, + "probability": 0.8562 + }, + { + "start": 1063.56, + "end": 1067.76, + "probability": 0.9883 + }, + { + "start": 1067.84, + "end": 1069.0, + "probability": 0.8567 + }, + { + "start": 1069.44, + "end": 1071.32, + "probability": 0.8653 + }, + { + "start": 1072.2, + "end": 1076.9, + "probability": 0.4606 + }, + { + "start": 1076.98, + "end": 1079.76, + "probability": 0.8325 + }, + { + "start": 1080.18, + "end": 1081.48, + "probability": 0.5792 + }, + { + "start": 1081.74, + "end": 1081.94, + "probability": 0.066 + }, + { + "start": 1082.68, + "end": 1086.12, + "probability": 0.7342 + }, + { + "start": 1086.94, + "end": 1091.48, + "probability": 0.7188 + }, + { + "start": 1091.76, + "end": 1093.62, + "probability": 0.3264 + }, + { + "start": 1094.44, + "end": 1095.12, + "probability": 0.5661 + }, + { + "start": 1095.32, + "end": 1096.86, + "probability": 0.6 + }, + { + "start": 1097.5, + "end": 1099.22, + "probability": 0.988 + }, + { + "start": 1099.44, + "end": 1102.3, + "probability": 0.6337 + }, + { + "start": 1102.3, + "end": 1105.54, + "probability": 0.8551 + }, + { + "start": 1105.8, + "end": 1106.9, + "probability": 0.3155 + }, + { + "start": 1107.34, + "end": 1108.34, + "probability": 0.7648 + }, + { + "start": 1108.38, + "end": 1112.88, + "probability": 0.9189 + }, + { + "start": 1113.36, + "end": 1114.8, + "probability": 0.7079 + }, + { + "start": 1114.9, + "end": 1116.64, + "probability": 0.9181 + }, + { + "start": 1117.46, + "end": 1117.86, + "probability": 0.8003 + }, + { + "start": 1118.2, + "end": 1121.27, + "probability": 0.9431 + }, + { + "start": 1121.64, + "end": 1122.0, + "probability": 0.9429 + }, + { + "start": 1123.32, + "end": 1123.8, + "probability": 0.3469 + }, + { + "start": 1124.02, + "end": 1124.28, + "probability": 0.9019 + }, + { + "start": 1124.9, + "end": 1126.6, + "probability": 0.5445 + }, + { + "start": 1128.16, + "end": 1131.56, + "probability": 0.7598 + }, + { + "start": 1131.68, + "end": 1133.28, + "probability": 0.8593 + }, + { + "start": 1133.34, + "end": 1136.06, + "probability": 0.7708 + }, + { + "start": 1136.98, + "end": 1138.88, + "probability": 0.7303 + }, + { + "start": 1139.58, + "end": 1141.58, + "probability": 0.8319 + }, + { + "start": 1141.72, + "end": 1143.02, + "probability": 0.5403 + }, + { + "start": 1143.04, + "end": 1144.76, + "probability": 0.91 + }, + { + "start": 1145.52, + "end": 1146.32, + "probability": 0.8308 + }, + { + "start": 1146.46, + "end": 1147.96, + "probability": 0.7173 + }, + { + "start": 1148.56, + "end": 1149.34, + "probability": 0.717 + }, + { + "start": 1149.34, + "end": 1150.08, + "probability": 0.9575 + }, + { + "start": 1150.14, + "end": 1150.3, + "probability": 0.5536 + }, + { + "start": 1150.34, + "end": 1151.16, + "probability": 0.7612 + }, + { + "start": 1151.28, + "end": 1151.89, + "probability": 0.9945 + }, + { + "start": 1152.66, + "end": 1153.4, + "probability": 0.8774 + }, + { + "start": 1153.48, + "end": 1154.24, + "probability": 0.8689 + }, + { + "start": 1154.3, + "end": 1155.14, + "probability": 0.968 + }, + { + "start": 1155.5, + "end": 1157.04, + "probability": 0.8987 + }, + { + "start": 1157.04, + "end": 1159.98, + "probability": 0.9864 + }, + { + "start": 1160.14, + "end": 1162.28, + "probability": 0.8003 + }, + { + "start": 1162.98, + "end": 1163.98, + "probability": 0.915 + }, + { + "start": 1164.12, + "end": 1165.9, + "probability": 0.998 + }, + { + "start": 1166.46, + "end": 1168.48, + "probability": 0.9892 + }, + { + "start": 1168.58, + "end": 1169.66, + "probability": 0.7466 + }, + { + "start": 1169.74, + "end": 1170.7, + "probability": 0.9725 + }, + { + "start": 1171.16, + "end": 1172.74, + "probability": 0.7461 + }, + { + "start": 1172.86, + "end": 1173.2, + "probability": 0.464 + }, + { + "start": 1173.84, + "end": 1176.56, + "probability": 0.8925 + }, + { + "start": 1176.8, + "end": 1177.26, + "probability": 0.5208 + }, + { + "start": 1177.64, + "end": 1179.66, + "probability": 0.9211 + }, + { + "start": 1180.14, + "end": 1181.82, + "probability": 0.8088 + }, + { + "start": 1182.46, + "end": 1184.14, + "probability": 0.9321 + }, + { + "start": 1184.2, + "end": 1185.59, + "probability": 0.5107 + }, + { + "start": 1187.12, + "end": 1190.22, + "probability": 0.5485 + }, + { + "start": 1190.68, + "end": 1193.3, + "probability": 0.5348 + }, + { + "start": 1193.3, + "end": 1196.72, + "probability": 0.9371 + }, + { + "start": 1197.12, + "end": 1198.2, + "probability": 0.9263 + }, + { + "start": 1198.52, + "end": 1200.04, + "probability": 0.9198 + }, + { + "start": 1200.1, + "end": 1201.48, + "probability": 0.7487 + }, + { + "start": 1201.6, + "end": 1204.06, + "probability": 0.9091 + }, + { + "start": 1204.14, + "end": 1212.46, + "probability": 0.9935 + }, + { + "start": 1212.56, + "end": 1212.86, + "probability": 0.5411 + }, + { + "start": 1212.96, + "end": 1213.8, + "probability": 0.925 + }, + { + "start": 1213.84, + "end": 1214.36, + "probability": 0.5083 + }, + { + "start": 1214.46, + "end": 1215.02, + "probability": 0.9016 + }, + { + "start": 1215.14, + "end": 1216.23, + "probability": 0.979 + }, + { + "start": 1217.16, + "end": 1218.6, + "probability": 0.9501 + }, + { + "start": 1218.74, + "end": 1220.58, + "probability": 0.9634 + }, + { + "start": 1220.8, + "end": 1221.96, + "probability": 0.6435 + }, + { + "start": 1222.46, + "end": 1223.24, + "probability": 0.6386 + }, + { + "start": 1223.24, + "end": 1227.64, + "probability": 0.5771 + }, + { + "start": 1227.94, + "end": 1229.3, + "probability": 0.3194 + }, + { + "start": 1229.42, + "end": 1234.82, + "probability": 0.938 + }, + { + "start": 1235.1, + "end": 1235.98, + "probability": 0.6626 + }, + { + "start": 1236.06, + "end": 1237.22, + "probability": 0.4514 + }, + { + "start": 1237.92, + "end": 1238.6, + "probability": 0.6539 + }, + { + "start": 1238.74, + "end": 1243.18, + "probability": 0.9844 + }, + { + "start": 1243.34, + "end": 1244.4, + "probability": 0.4751 + }, + { + "start": 1244.44, + "end": 1245.96, + "probability": 0.8577 + }, + { + "start": 1246.36, + "end": 1248.94, + "probability": 0.6544 + }, + { + "start": 1250.98, + "end": 1254.72, + "probability": 0.7836 + }, + { + "start": 1254.82, + "end": 1255.98, + "probability": 0.3103 + }, + { + "start": 1256.16, + "end": 1256.74, + "probability": 0.2277 + }, + { + "start": 1256.74, + "end": 1261.7, + "probability": 0.8709 + }, + { + "start": 1261.74, + "end": 1263.26, + "probability": 0.3407 + }, + { + "start": 1263.8, + "end": 1266.72, + "probability": 0.8579 + }, + { + "start": 1266.9, + "end": 1267.92, + "probability": 0.5919 + }, + { + "start": 1268.4, + "end": 1269.9, + "probability": 0.9512 + }, + { + "start": 1270.42, + "end": 1271.04, + "probability": 0.6513 + }, + { + "start": 1271.2, + "end": 1272.24, + "probability": 0.9084 + }, + { + "start": 1272.28, + "end": 1276.64, + "probability": 0.613 + }, + { + "start": 1277.26, + "end": 1280.38, + "probability": 0.647 + }, + { + "start": 1280.48, + "end": 1281.34, + "probability": 0.6718 + }, + { + "start": 1281.48, + "end": 1283.48, + "probability": 0.8785 + }, + { + "start": 1283.6, + "end": 1284.28, + "probability": 0.8398 + }, + { + "start": 1284.34, + "end": 1285.3, + "probability": 0.6763 + }, + { + "start": 1285.6, + "end": 1287.0, + "probability": 0.5299 + }, + { + "start": 1287.08, + "end": 1288.16, + "probability": 0.9536 + }, + { + "start": 1288.42, + "end": 1289.86, + "probability": 0.9839 + }, + { + "start": 1290.34, + "end": 1292.28, + "probability": 0.9907 + }, + { + "start": 1292.96, + "end": 1293.52, + "probability": 0.5159 + }, + { + "start": 1293.76, + "end": 1295.54, + "probability": 0.7361 + }, + { + "start": 1295.64, + "end": 1296.44, + "probability": 0.7632 + }, + { + "start": 1296.52, + "end": 1297.02, + "probability": 0.7016 + }, + { + "start": 1297.28, + "end": 1299.7, + "probability": 0.6294 + }, + { + "start": 1300.24, + "end": 1303.42, + "probability": 0.5471 + }, + { + "start": 1303.42, + "end": 1304.96, + "probability": 0.49 + }, + { + "start": 1305.02, + "end": 1306.06, + "probability": 0.7628 + }, + { + "start": 1306.66, + "end": 1309.73, + "probability": 0.6367 + }, + { + "start": 1310.12, + "end": 1311.96, + "probability": 0.944 + }, + { + "start": 1312.04, + "end": 1313.1, + "probability": 0.7953 + }, + { + "start": 1313.18, + "end": 1315.19, + "probability": 0.6011 + }, + { + "start": 1315.4, + "end": 1318.6, + "probability": 0.7802 + }, + { + "start": 1318.78, + "end": 1319.52, + "probability": 0.608 + }, + { + "start": 1320.1, + "end": 1320.56, + "probability": 0.6402 + }, + { + "start": 1321.18, + "end": 1325.6, + "probability": 0.5018 + }, + { + "start": 1325.9, + "end": 1328.4, + "probability": 0.7788 + }, + { + "start": 1328.62, + "end": 1328.62, + "probability": 0.1221 + }, + { + "start": 1328.62, + "end": 1329.06, + "probability": 0.234 + }, + { + "start": 1329.08, + "end": 1330.88, + "probability": 0.597 + }, + { + "start": 1331.54, + "end": 1336.04, + "probability": 0.8062 + }, + { + "start": 1336.52, + "end": 1341.08, + "probability": 0.9256 + }, + { + "start": 1341.46, + "end": 1342.72, + "probability": 0.7959 + }, + { + "start": 1342.76, + "end": 1343.52, + "probability": 0.7115 + }, + { + "start": 1343.56, + "end": 1345.22, + "probability": 0.9592 + }, + { + "start": 1345.44, + "end": 1346.38, + "probability": 0.9867 + }, + { + "start": 1346.44, + "end": 1349.1, + "probability": 0.6376 + }, + { + "start": 1349.32, + "end": 1350.82, + "probability": 0.7045 + }, + { + "start": 1350.82, + "end": 1351.51, + "probability": 0.5476 + }, + { + "start": 1353.22, + "end": 1354.8, + "probability": 0.4884 + }, + { + "start": 1355.52, + "end": 1356.02, + "probability": 0.7496 + }, + { + "start": 1356.38, + "end": 1358.62, + "probability": 0.9705 + }, + { + "start": 1362.44, + "end": 1363.48, + "probability": 0.4988 + }, + { + "start": 1364.08, + "end": 1364.54, + "probability": 0.802 + }, + { + "start": 1367.2, + "end": 1369.36, + "probability": 0.7065 + }, + { + "start": 1372.36, + "end": 1374.08, + "probability": 0.9905 + }, + { + "start": 1374.22, + "end": 1374.94, + "probability": 0.9138 + }, + { + "start": 1375.04, + "end": 1376.2, + "probability": 0.5383 + }, + { + "start": 1376.62, + "end": 1377.78, + "probability": 0.917 + }, + { + "start": 1378.14, + "end": 1379.38, + "probability": 0.9279 + }, + { + "start": 1380.06, + "end": 1382.52, + "probability": 0.751 + }, + { + "start": 1382.58, + "end": 1383.9, + "probability": 0.8997 + }, + { + "start": 1384.0, + "end": 1388.08, + "probability": 0.9126 + }, + { + "start": 1388.42, + "end": 1388.6, + "probability": 0.8959 + }, + { + "start": 1388.72, + "end": 1391.92, + "probability": 0.9599 + }, + { + "start": 1392.58, + "end": 1394.68, + "probability": 0.7546 + }, + { + "start": 1395.08, + "end": 1397.46, + "probability": 0.9897 + }, + { + "start": 1398.74, + "end": 1402.12, + "probability": 0.84 + }, + { + "start": 1402.24, + "end": 1403.1, + "probability": 0.9001 + }, + { + "start": 1403.58, + "end": 1406.66, + "probability": 0.6974 + }, + { + "start": 1406.7, + "end": 1410.08, + "probability": 0.7964 + }, + { + "start": 1410.12, + "end": 1413.12, + "probability": 0.9966 + }, + { + "start": 1413.72, + "end": 1417.8, + "probability": 0.9294 + }, + { + "start": 1418.4, + "end": 1419.4, + "probability": 0.6408 + }, + { + "start": 1419.84, + "end": 1423.64, + "probability": 0.998 + }, + { + "start": 1424.28, + "end": 1426.44, + "probability": 0.9948 + }, + { + "start": 1426.94, + "end": 1430.72, + "probability": 0.9951 + }, + { + "start": 1431.38, + "end": 1433.72, + "probability": 0.9878 + }, + { + "start": 1434.14, + "end": 1435.2, + "probability": 0.7668 + }, + { + "start": 1435.64, + "end": 1439.68, + "probability": 0.9943 + }, + { + "start": 1440.28, + "end": 1441.96, + "probability": 0.512 + }, + { + "start": 1442.48, + "end": 1443.7, + "probability": 0.912 + }, + { + "start": 1444.36, + "end": 1445.56, + "probability": 0.8547 + }, + { + "start": 1446.04, + "end": 1447.56, + "probability": 0.9045 + }, + { + "start": 1448.1, + "end": 1449.46, + "probability": 0.8987 + }, + { + "start": 1449.82, + "end": 1452.06, + "probability": 0.9978 + }, + { + "start": 1452.06, + "end": 1456.66, + "probability": 0.9979 + }, + { + "start": 1456.96, + "end": 1460.52, + "probability": 0.9841 + }, + { + "start": 1461.14, + "end": 1462.32, + "probability": 0.854 + }, + { + "start": 1462.5, + "end": 1462.92, + "probability": 0.4872 + }, + { + "start": 1462.98, + "end": 1464.5, + "probability": 0.7542 + }, + { + "start": 1464.6, + "end": 1470.2, + "probability": 0.9781 + }, + { + "start": 1470.56, + "end": 1471.2, + "probability": 0.8672 + }, + { + "start": 1471.38, + "end": 1471.6, + "probability": 0.7162 + }, + { + "start": 1472.02, + "end": 1473.84, + "probability": 0.6749 + }, + { + "start": 1473.92, + "end": 1476.3, + "probability": 0.8422 + }, + { + "start": 1476.6, + "end": 1478.0, + "probability": 0.751 + }, + { + "start": 1478.04, + "end": 1480.66, + "probability": 0.9849 + }, + { + "start": 1482.38, + "end": 1483.56, + "probability": 0.8401 + }, + { + "start": 1483.72, + "end": 1486.06, + "probability": 0.9972 + }, + { + "start": 1486.06, + "end": 1490.0, + "probability": 0.9451 + }, + { + "start": 1490.76, + "end": 1493.94, + "probability": 0.448 + }, + { + "start": 1494.32, + "end": 1496.5, + "probability": 0.982 + }, + { + "start": 1496.66, + "end": 1499.62, + "probability": 0.7435 + }, + { + "start": 1500.34, + "end": 1501.52, + "probability": 0.6867 + }, + { + "start": 1501.7, + "end": 1502.69, + "probability": 0.4989 + }, + { + "start": 1502.92, + "end": 1503.94, + "probability": 0.5215 + }, + { + "start": 1504.04, + "end": 1505.22, + "probability": 0.4151 + }, + { + "start": 1505.4, + "end": 1508.42, + "probability": 0.6599 + }, + { + "start": 1508.52, + "end": 1509.58, + "probability": 0.5251 + }, + { + "start": 1509.68, + "end": 1510.7, + "probability": 0.9646 + }, + { + "start": 1511.72, + "end": 1514.0, + "probability": 0.5732 + }, + { + "start": 1514.42, + "end": 1517.46, + "probability": 0.9907 + }, + { + "start": 1517.54, + "end": 1518.66, + "probability": 0.9949 + }, + { + "start": 1519.02, + "end": 1519.9, + "probability": 0.7563 + }, + { + "start": 1520.04, + "end": 1521.02, + "probability": 0.7881 + }, + { + "start": 1521.24, + "end": 1521.74, + "probability": 0.3633 + }, + { + "start": 1521.74, + "end": 1525.32, + "probability": 0.9668 + }, + { + "start": 1526.06, + "end": 1530.56, + "probability": 0.5744 + }, + { + "start": 1531.28, + "end": 1532.82, + "probability": 0.9655 + }, + { + "start": 1532.96, + "end": 1533.98, + "probability": 0.6189 + }, + { + "start": 1534.08, + "end": 1535.16, + "probability": 0.5949 + }, + { + "start": 1535.24, + "end": 1536.22, + "probability": 0.5132 + }, + { + "start": 1536.48, + "end": 1537.28, + "probability": 0.726 + }, + { + "start": 1537.54, + "end": 1538.0, + "probability": 0.4298 + }, + { + "start": 1539.14, + "end": 1539.93, + "probability": 0.5252 + }, + { + "start": 1540.58, + "end": 1545.96, + "probability": 0.4995 + }, + { + "start": 1546.83, + "end": 1549.6, + "probability": 0.7499 + }, + { + "start": 1549.7, + "end": 1551.48, + "probability": 0.9309 + }, + { + "start": 1551.6, + "end": 1553.78, + "probability": 0.7494 + }, + { + "start": 1554.14, + "end": 1555.5, + "probability": 0.3915 + }, + { + "start": 1556.04, + "end": 1559.0, + "probability": 0.95 + }, + { + "start": 1560.14, + "end": 1562.7, + "probability": 0.8621 + }, + { + "start": 1562.86, + "end": 1565.9, + "probability": 0.963 + }, + { + "start": 1566.96, + "end": 1568.8, + "probability": 0.9665 + }, + { + "start": 1568.9, + "end": 1570.96, + "probability": 0.9987 + }, + { + "start": 1571.38, + "end": 1573.36, + "probability": 0.9973 + }, + { + "start": 1573.84, + "end": 1574.44, + "probability": 0.9582 + }, + { + "start": 1574.52, + "end": 1575.52, + "probability": 0.9589 + }, + { + "start": 1575.68, + "end": 1576.22, + "probability": 0.7957 + }, + { + "start": 1576.56, + "end": 1578.68, + "probability": 0.8652 + }, + { + "start": 1579.06, + "end": 1581.72, + "probability": 0.9893 + }, + { + "start": 1582.26, + "end": 1584.5, + "probability": 0.2242 + }, + { + "start": 1584.5, + "end": 1585.14, + "probability": 0.3783 + }, + { + "start": 1585.62, + "end": 1587.06, + "probability": 0.6102 + }, + { + "start": 1587.22, + "end": 1588.46, + "probability": 0.5425 + }, + { + "start": 1588.62, + "end": 1591.6, + "probability": 0.6704 + }, + { + "start": 1593.58, + "end": 1594.28, + "probability": 0.1173 + }, + { + "start": 1594.7, + "end": 1595.48, + "probability": 0.681 + }, + { + "start": 1595.82, + "end": 1596.8, + "probability": 0.9761 + }, + { + "start": 1596.92, + "end": 1597.72, + "probability": 0.9769 + }, + { + "start": 1597.86, + "end": 1598.6, + "probability": 0.9456 + }, + { + "start": 1598.68, + "end": 1602.04, + "probability": 0.9831 + }, + { + "start": 1603.0, + "end": 1603.48, + "probability": 0.3257 + }, + { + "start": 1605.61, + "end": 1606.63, + "probability": 0.124 + }, + { + "start": 1607.12, + "end": 1608.72, + "probability": 0.8414 + }, + { + "start": 1608.84, + "end": 1609.77, + "probability": 0.9678 + }, + { + "start": 1610.14, + "end": 1611.5, + "probability": 0.8188 + }, + { + "start": 1611.62, + "end": 1613.02, + "probability": 0.7704 + }, + { + "start": 1613.22, + "end": 1614.79, + "probability": 0.9185 + }, + { + "start": 1615.26, + "end": 1616.4, + "probability": 0.9907 + }, + { + "start": 1616.6, + "end": 1619.76, + "probability": 0.9771 + }, + { + "start": 1619.86, + "end": 1620.92, + "probability": 0.6464 + }, + { + "start": 1621.2, + "end": 1622.78, + "probability": 0.7772 + }, + { + "start": 1623.38, + "end": 1624.86, + "probability": 0.634 + }, + { + "start": 1624.86, + "end": 1625.06, + "probability": 0.3814 + }, + { + "start": 1625.12, + "end": 1628.16, + "probability": 0.835 + }, + { + "start": 1629.72, + "end": 1631.26, + "probability": 0.3674 + }, + { + "start": 1631.78, + "end": 1632.1, + "probability": 0.6437 + }, + { + "start": 1632.26, + "end": 1635.08, + "probability": 0.7952 + }, + { + "start": 1635.14, + "end": 1636.28, + "probability": 0.6214 + }, + { + "start": 1636.38, + "end": 1637.56, + "probability": 0.8801 + }, + { + "start": 1638.28, + "end": 1639.33, + "probability": 0.8955 + }, + { + "start": 1639.84, + "end": 1646.01, + "probability": 0.9258 + }, + { + "start": 1646.42, + "end": 1648.98, + "probability": 0.9201 + }, + { + "start": 1649.32, + "end": 1650.02, + "probability": 0.698 + }, + { + "start": 1650.07, + "end": 1652.36, + "probability": 0.6589 + }, + { + "start": 1652.36, + "end": 1653.94, + "probability": 0.6738 + }, + { + "start": 1654.28, + "end": 1654.36, + "probability": 0.0744 + }, + { + "start": 1654.36, + "end": 1655.01, + "probability": 0.9014 + }, + { + "start": 1655.46, + "end": 1656.44, + "probability": 0.4378 + }, + { + "start": 1657.61, + "end": 1657.68, + "probability": 0.6365 + }, + { + "start": 1657.74, + "end": 1659.28, + "probability": 0.6781 + }, + { + "start": 1659.52, + "end": 1661.54, + "probability": 0.802 + }, + { + "start": 1662.08, + "end": 1667.68, + "probability": 0.9476 + }, + { + "start": 1667.86, + "end": 1669.46, + "probability": 0.7994 + }, + { + "start": 1670.32, + "end": 1672.3, + "probability": 0.8939 + }, + { + "start": 1672.38, + "end": 1673.56, + "probability": 0.5537 + }, + { + "start": 1674.39, + "end": 1674.86, + "probability": 0.6758 + }, + { + "start": 1675.58, + "end": 1676.08, + "probability": 0.8732 + }, + { + "start": 1676.18, + "end": 1677.16, + "probability": 0.4489 + }, + { + "start": 1677.44, + "end": 1677.98, + "probability": 0.9027 + }, + { + "start": 1678.0, + "end": 1678.66, + "probability": 0.9149 + }, + { + "start": 1678.96, + "end": 1679.62, + "probability": 0.9692 + }, + { + "start": 1679.94, + "end": 1681.54, + "probability": 0.6014 + }, + { + "start": 1681.64, + "end": 1683.56, + "probability": 0.9525 + }, + { + "start": 1683.86, + "end": 1685.06, + "probability": 0.9725 + }, + { + "start": 1685.54, + "end": 1687.92, + "probability": 0.9664 + }, + { + "start": 1688.4, + "end": 1689.67, + "probability": 0.869 + }, + { + "start": 1690.08, + "end": 1691.2, + "probability": 0.784 + }, + { + "start": 1691.38, + "end": 1693.82, + "probability": 0.9818 + }, + { + "start": 1693.86, + "end": 1695.82, + "probability": 0.9818 + }, + { + "start": 1696.42, + "end": 1702.32, + "probability": 0.9665 + }, + { + "start": 1702.72, + "end": 1704.57, + "probability": 0.9961 + }, + { + "start": 1705.02, + "end": 1705.76, + "probability": 0.8463 + }, + { + "start": 1705.92, + "end": 1709.82, + "probability": 0.9985 + }, + { + "start": 1710.44, + "end": 1713.22, + "probability": 0.9482 + }, + { + "start": 1713.7, + "end": 1714.38, + "probability": 0.8148 + }, + { + "start": 1714.56, + "end": 1718.3, + "probability": 0.9968 + }, + { + "start": 1718.8, + "end": 1719.52, + "probability": 0.6256 + }, + { + "start": 1719.64, + "end": 1721.16, + "probability": 0.6476 + }, + { + "start": 1721.64, + "end": 1722.66, + "probability": 0.8047 + }, + { + "start": 1722.82, + "end": 1726.62, + "probability": 0.8477 + }, + { + "start": 1727.38, + "end": 1728.56, + "probability": 0.9359 + }, + { + "start": 1729.32, + "end": 1733.6, + "probability": 0.9844 + }, + { + "start": 1734.92, + "end": 1736.74, + "probability": 0.8984 + }, + { + "start": 1736.78, + "end": 1740.68, + "probability": 0.998 + }, + { + "start": 1741.26, + "end": 1745.94, + "probability": 0.998 + }, + { + "start": 1746.2, + "end": 1750.12, + "probability": 0.9994 + }, + { + "start": 1750.54, + "end": 1752.06, + "probability": 0.9729 + }, + { + "start": 1752.14, + "end": 1752.62, + "probability": 0.453 + }, + { + "start": 1752.72, + "end": 1753.42, + "probability": 0.5409 + }, + { + "start": 1753.96, + "end": 1755.42, + "probability": 0.9128 + }, + { + "start": 1755.62, + "end": 1757.36, + "probability": 0.9749 + }, + { + "start": 1757.72, + "end": 1760.42, + "probability": 0.9403 + }, + { + "start": 1761.54, + "end": 1763.84, + "probability": 0.9956 + }, + { + "start": 1764.5, + "end": 1765.5, + "probability": 0.7792 + }, + { + "start": 1765.84, + "end": 1769.88, + "probability": 0.9868 + }, + { + "start": 1770.72, + "end": 1772.12, + "probability": 0.7653 + }, + { + "start": 1773.1, + "end": 1777.16, + "probability": 0.8604 + }, + { + "start": 1777.52, + "end": 1782.24, + "probability": 0.9453 + }, + { + "start": 1783.0, + "end": 1788.14, + "probability": 0.9791 + }, + { + "start": 1788.94, + "end": 1790.6, + "probability": 0.4822 + }, + { + "start": 1790.76, + "end": 1794.98, + "probability": 0.8224 + }, + { + "start": 1795.6, + "end": 1797.8, + "probability": 0.9761 + }, + { + "start": 1798.72, + "end": 1803.62, + "probability": 0.9817 + }, + { + "start": 1804.06, + "end": 1804.54, + "probability": 0.5354 + }, + { + "start": 1804.66, + "end": 1805.78, + "probability": 0.7268 + }, + { + "start": 1806.48, + "end": 1809.44, + "probability": 0.8414 + }, + { + "start": 1810.1, + "end": 1811.9, + "probability": 0.8408 + }, + { + "start": 1812.8, + "end": 1816.82, + "probability": 0.9042 + }, + { + "start": 1817.22, + "end": 1819.82, + "probability": 0.9754 + }, + { + "start": 1820.46, + "end": 1823.48, + "probability": 0.9866 + }, + { + "start": 1824.38, + "end": 1832.0, + "probability": 0.9937 + }, + { + "start": 1832.18, + "end": 1835.7, + "probability": 0.8748 + }, + { + "start": 1836.08, + "end": 1837.12, + "probability": 0.9717 + }, + { + "start": 1837.52, + "end": 1840.04, + "probability": 0.995 + }, + { + "start": 1840.46, + "end": 1842.52, + "probability": 0.9314 + }, + { + "start": 1842.78, + "end": 1846.84, + "probability": 0.999 + }, + { + "start": 1847.26, + "end": 1848.41, + "probability": 0.9975 + }, + { + "start": 1848.64, + "end": 1849.38, + "probability": 0.902 + }, + { + "start": 1849.88, + "end": 1855.4, + "probability": 0.9396 + }, + { + "start": 1855.4, + "end": 1861.68, + "probability": 0.9991 + }, + { + "start": 1861.88, + "end": 1863.0, + "probability": 0.6916 + }, + { + "start": 1863.48, + "end": 1865.86, + "probability": 0.9971 + }, + { + "start": 1865.88, + "end": 1866.68, + "probability": 0.6888 + }, + { + "start": 1867.58, + "end": 1869.06, + "probability": 0.6598 + }, + { + "start": 1869.18, + "end": 1872.32, + "probability": 0.9473 + }, + { + "start": 1873.0, + "end": 1874.88, + "probability": 0.9248 + }, + { + "start": 1875.62, + "end": 1878.3, + "probability": 0.6264 + }, + { + "start": 1879.82, + "end": 1881.9, + "probability": 0.8782 + }, + { + "start": 1882.34, + "end": 1885.88, + "probability": 0.8759 + }, + { + "start": 1886.04, + "end": 1887.68, + "probability": 0.875 + }, + { + "start": 1888.3, + "end": 1891.36, + "probability": 0.8889 + }, + { + "start": 1891.72, + "end": 1892.82, + "probability": 0.5506 + }, + { + "start": 1892.9, + "end": 1893.9, + "probability": 0.6949 + }, + { + "start": 1893.9, + "end": 1895.52, + "probability": 0.7106 + }, + { + "start": 1895.56, + "end": 1897.88, + "probability": 0.9403 + }, + { + "start": 1898.04, + "end": 1899.8, + "probability": 0.7688 + }, + { + "start": 1900.6, + "end": 1902.52, + "probability": 0.7095 + }, + { + "start": 1902.6, + "end": 1904.94, + "probability": 0.9683 + }, + { + "start": 1905.6, + "end": 1906.6, + "probability": 0.889 + }, + { + "start": 1906.74, + "end": 1908.02, + "probability": 0.8295 + }, + { + "start": 1908.06, + "end": 1908.42, + "probability": 0.7206 + }, + { + "start": 1908.48, + "end": 1909.76, + "probability": 0.8009 + }, + { + "start": 1910.18, + "end": 1912.02, + "probability": 0.3555 + }, + { + "start": 1912.14, + "end": 1914.93, + "probability": 0.9575 + }, + { + "start": 1915.66, + "end": 1920.42, + "probability": 0.7783 + }, + { + "start": 1920.44, + "end": 1921.99, + "probability": 0.299 + }, + { + "start": 1922.34, + "end": 1924.8, + "probability": 0.6885 + }, + { + "start": 1924.8, + "end": 1928.38, + "probability": 0.6426 + }, + { + "start": 1929.02, + "end": 1929.42, + "probability": 0.6537 + }, + { + "start": 1929.44, + "end": 1929.94, + "probability": 0.4837 + }, + { + "start": 1930.22, + "end": 1932.0, + "probability": 0.9095 + }, + { + "start": 1932.46, + "end": 1933.52, + "probability": 0.939 + }, + { + "start": 1933.96, + "end": 1936.96, + "probability": 0.9519 + }, + { + "start": 1937.16, + "end": 1938.4, + "probability": 0.9312 + }, + { + "start": 1939.08, + "end": 1941.12, + "probability": 0.9616 + }, + { + "start": 1941.18, + "end": 1942.04, + "probability": 0.7239 + }, + { + "start": 1942.38, + "end": 1944.7, + "probability": 0.9497 + }, + { + "start": 1945.22, + "end": 1949.5, + "probability": 0.8285 + }, + { + "start": 1950.08, + "end": 1954.92, + "probability": 0.9241 + }, + { + "start": 1955.34, + "end": 1957.8, + "probability": 0.8595 + }, + { + "start": 1958.16, + "end": 1959.3, + "probability": 0.9113 + }, + { + "start": 1959.52, + "end": 1960.96, + "probability": 0.9557 + }, + { + "start": 1961.14, + "end": 1961.36, + "probability": 0.8151 + }, + { + "start": 1961.96, + "end": 1963.48, + "probability": 0.8519 + }, + { + "start": 1963.56, + "end": 1964.2, + "probability": 0.923 + }, + { + "start": 1967.56, + "end": 1968.92, + "probability": 0.5759 + }, + { + "start": 1970.06, + "end": 1972.83, + "probability": 0.7192 + }, + { + "start": 1973.06, + "end": 1976.52, + "probability": 0.9921 + }, + { + "start": 1976.74, + "end": 1979.2, + "probability": 0.9949 + }, + { + "start": 1980.26, + "end": 1981.26, + "probability": 0.501 + }, + { + "start": 1988.8, + "end": 1992.14, + "probability": 0.985 + }, + { + "start": 1992.18, + "end": 1993.12, + "probability": 0.6787 + }, + { + "start": 2002.14, + "end": 2003.56, + "probability": 0.7659 + }, + { + "start": 2004.2, + "end": 2007.18, + "probability": 0.8741 + }, + { + "start": 2009.3, + "end": 2011.47, + "probability": 0.9874 + }, + { + "start": 2012.28, + "end": 2013.4, + "probability": 0.8246 + }, + { + "start": 2014.06, + "end": 2015.02, + "probability": 0.9124 + }, + { + "start": 2017.22, + "end": 2018.26, + "probability": 0.83 + }, + { + "start": 2018.96, + "end": 2019.86, + "probability": 0.6707 + }, + { + "start": 2020.76, + "end": 2020.76, + "probability": 0.3545 + }, + { + "start": 2020.78, + "end": 2026.84, + "probability": 0.9512 + }, + { + "start": 2027.72, + "end": 2029.52, + "probability": 0.9934 + }, + { + "start": 2030.14, + "end": 2034.76, + "probability": 0.8586 + }, + { + "start": 2034.84, + "end": 2035.38, + "probability": 0.9587 + }, + { + "start": 2035.62, + "end": 2036.38, + "probability": 0.9808 + }, + { + "start": 2036.54, + "end": 2038.02, + "probability": 0.7761 + }, + { + "start": 2040.82, + "end": 2041.1, + "probability": 0.0668 + }, + { + "start": 2041.1, + "end": 2041.1, + "probability": 0.2111 + }, + { + "start": 2041.1, + "end": 2041.1, + "probability": 0.2264 + }, + { + "start": 2041.1, + "end": 2043.5, + "probability": 0.5563 + }, + { + "start": 2043.92, + "end": 2048.34, + "probability": 0.9692 + }, + { + "start": 2049.12, + "end": 2051.08, + "probability": 0.7419 + }, + { + "start": 2051.58, + "end": 2058.38, + "probability": 0.9859 + }, + { + "start": 2058.74, + "end": 2060.12, + "probability": 0.9766 + }, + { + "start": 2060.4, + "end": 2062.2, + "probability": 0.8219 + }, + { + "start": 2062.64, + "end": 2062.66, + "probability": 0.2109 + }, + { + "start": 2062.66, + "end": 2066.6, + "probability": 0.6438 + }, + { + "start": 2066.6, + "end": 2071.36, + "probability": 0.6765 + }, + { + "start": 2071.84, + "end": 2076.06, + "probability": 0.7756 + }, + { + "start": 2076.06, + "end": 2079.52, + "probability": 0.98 + }, + { + "start": 2080.0, + "end": 2082.2, + "probability": 0.9009 + }, + { + "start": 2082.7, + "end": 2085.08, + "probability": 0.8635 + }, + { + "start": 2086.49, + "end": 2087.08, + "probability": 0.1681 + }, + { + "start": 2087.08, + "end": 2087.08, + "probability": 0.2885 + }, + { + "start": 2087.08, + "end": 2087.7, + "probability": 0.5434 + }, + { + "start": 2087.88, + "end": 2089.24, + "probability": 0.9369 + }, + { + "start": 2089.6, + "end": 2090.6, + "probability": 0.9183 + }, + { + "start": 2090.86, + "end": 2098.38, + "probability": 0.9076 + }, + { + "start": 2098.76, + "end": 2103.2, + "probability": 0.9297 + }, + { + "start": 2103.84, + "end": 2107.92, + "probability": 0.8834 + }, + { + "start": 2108.46, + "end": 2109.04, + "probability": 0.9417 + }, + { + "start": 2109.28, + "end": 2109.82, + "probability": 0.9328 + }, + { + "start": 2110.02, + "end": 2110.5, + "probability": 0.9657 + }, + { + "start": 2110.6, + "end": 2111.08, + "probability": 0.9688 + }, + { + "start": 2111.34, + "end": 2119.78, + "probability": 0.9736 + }, + { + "start": 2120.4, + "end": 2124.6, + "probability": 0.9219 + }, + { + "start": 2125.52, + "end": 2128.52, + "probability": 0.9829 + }, + { + "start": 2129.06, + "end": 2132.14, + "probability": 0.9785 + }, + { + "start": 2134.0, + "end": 2134.5, + "probability": 0.9138 + }, + { + "start": 2135.28, + "end": 2136.12, + "probability": 0.6341 + }, + { + "start": 2136.68, + "end": 2141.06, + "probability": 0.9891 + }, + { + "start": 2141.54, + "end": 2143.26, + "probability": 0.935 + }, + { + "start": 2143.62, + "end": 2145.66, + "probability": 0.9797 + }, + { + "start": 2146.04, + "end": 2147.66, + "probability": 0.9917 + }, + { + "start": 2147.88, + "end": 2150.86, + "probability": 0.9153 + }, + { + "start": 2151.18, + "end": 2152.88, + "probability": 0.9957 + }, + { + "start": 2153.08, + "end": 2153.88, + "probability": 0.8342 + }, + { + "start": 2154.06, + "end": 2158.9, + "probability": 0.9966 + }, + { + "start": 2160.12, + "end": 2160.94, + "probability": 0.574 + }, + { + "start": 2161.52, + "end": 2162.28, + "probability": 0.5735 + }, + { + "start": 2162.82, + "end": 2164.48, + "probability": 0.8892 + }, + { + "start": 2165.06, + "end": 2170.4, + "probability": 0.9966 + }, + { + "start": 2170.64, + "end": 2173.86, + "probability": 0.9672 + }, + { + "start": 2173.86, + "end": 2177.64, + "probability": 0.8725 + }, + { + "start": 2178.54, + "end": 2181.24, + "probability": 0.9054 + }, + { + "start": 2181.72, + "end": 2186.0, + "probability": 0.9062 + }, + { + "start": 2186.0, + "end": 2187.44, + "probability": 0.1234 + }, + { + "start": 2187.44, + "end": 2188.28, + "probability": 0.1033 + }, + { + "start": 2188.28, + "end": 2188.28, + "probability": 0.1638 + }, + { + "start": 2188.28, + "end": 2188.28, + "probability": 0.2814 + }, + { + "start": 2188.28, + "end": 2188.36, + "probability": 0.3815 + }, + { + "start": 2188.46, + "end": 2189.12, + "probability": 0.4391 + }, + { + "start": 2189.47, + "end": 2194.42, + "probability": 0.9474 + }, + { + "start": 2194.86, + "end": 2198.52, + "probability": 0.7568 + }, + { + "start": 2198.68, + "end": 2199.7, + "probability": 0.0648 + }, + { + "start": 2199.7, + "end": 2201.08, + "probability": 0.8306 + }, + { + "start": 2201.32, + "end": 2205.48, + "probability": 0.8661 + }, + { + "start": 2205.8, + "end": 2207.68, + "probability": 0.9227 + }, + { + "start": 2208.24, + "end": 2211.9, + "probability": 0.981 + }, + { + "start": 2212.42, + "end": 2215.06, + "probability": 0.9457 + }, + { + "start": 2216.46, + "end": 2220.86, + "probability": 0.9908 + }, + { + "start": 2222.02, + "end": 2225.52, + "probability": 0.9813 + }, + { + "start": 2226.54, + "end": 2229.62, + "probability": 0.9296 + }, + { + "start": 2230.36, + "end": 2232.16, + "probability": 0.9279 + }, + { + "start": 2232.74, + "end": 2235.04, + "probability": 0.9707 + }, + { + "start": 2236.28, + "end": 2237.0, + "probability": 0.8156 + }, + { + "start": 2237.54, + "end": 2238.34, + "probability": 0.5192 + }, + { + "start": 2238.94, + "end": 2243.22, + "probability": 0.9907 + }, + { + "start": 2243.56, + "end": 2247.28, + "probability": 0.9398 + }, + { + "start": 2247.7, + "end": 2251.0, + "probability": 0.7875 + }, + { + "start": 2251.14, + "end": 2254.66, + "probability": 0.0951 + }, + { + "start": 2254.96, + "end": 2255.1, + "probability": 0.0224 + }, + { + "start": 2255.14, + "end": 2256.44, + "probability": 0.116 + }, + { + "start": 2256.82, + "end": 2259.2, + "probability": 0.0412 + }, + { + "start": 2260.38, + "end": 2260.38, + "probability": 0.0417 + }, + { + "start": 2261.1, + "end": 2261.1, + "probability": 0.3255 + }, + { + "start": 2261.1, + "end": 2261.1, + "probability": 0.0822 + }, + { + "start": 2261.1, + "end": 2261.1, + "probability": 0.1033 + }, + { + "start": 2261.1, + "end": 2263.82, + "probability": 0.2223 + }, + { + "start": 2264.84, + "end": 2269.88, + "probability": 0.0017 + }, + { + "start": 2276.82, + "end": 2278.32, + "probability": 0.0426 + }, + { + "start": 2278.38, + "end": 2279.16, + "probability": 0.1268 + }, + { + "start": 2279.16, + "end": 2279.42, + "probability": 0.0889 + }, + { + "start": 2279.42, + "end": 2279.6, + "probability": 0.0433 + }, + { + "start": 2281.58, + "end": 2284.56, + "probability": 0.1104 + }, + { + "start": 2286.02, + "end": 2286.1, + "probability": 0.0598 + }, + { + "start": 2286.1, + "end": 2291.14, + "probability": 0.0146 + }, + { + "start": 2291.14, + "end": 2291.14, + "probability": 0.2448 + }, + { + "start": 2296.62, + "end": 2298.74, + "probability": 0.1853 + }, + { + "start": 2299.39, + "end": 2300.2, + "probability": 0.0097 + }, + { + "start": 2314.08, + "end": 2315.22, + "probability": 0.0063 + }, + { + "start": 2315.44, + "end": 2318.1, + "probability": 0.0776 + }, + { + "start": 2318.1, + "end": 2318.2, + "probability": 0.1211 + }, + { + "start": 2318.46, + "end": 2318.46, + "probability": 0.0189 + }, + { + "start": 2318.46, + "end": 2319.9, + "probability": 0.211 + }, + { + "start": 2320.86, + "end": 2323.26, + "probability": 0.0108 + }, + { + "start": 2323.62, + "end": 2333.08, + "probability": 0.0165 + }, + { + "start": 2333.2, + "end": 2335.98, + "probability": 0.0447 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2337.0, + "end": 2337.0, + "probability": 0.0 + }, + { + "start": 2352.92, + "end": 2355.52, + "probability": 0.0189 + }, + { + "start": 2356.16, + "end": 2366.93, + "probability": 0.0574 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2462.0, + "end": 2462.0, + "probability": 0.0 + }, + { + "start": 2482.34, + "end": 2484.36, + "probability": 0.0136 + }, + { + "start": 2484.36, + "end": 2485.71, + "probability": 0.0442 + }, + { + "start": 2488.45, + "end": 2490.4, + "probability": 0.0228 + }, + { + "start": 2507.0, + "end": 2509.06, + "probability": 0.0155 + }, + { + "start": 2509.74, + "end": 2509.94, + "probability": 0.1592 + }, + { + "start": 2510.98, + "end": 2511.66, + "probability": 0.1468 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.0, + "end": 2585.0, + "probability": 0.0 + }, + { + "start": 2585.54, + "end": 2587.46, + "probability": 0.0192 + }, + { + "start": 2589.64, + "end": 2591.08, + "probability": 0.1552 + }, + { + "start": 2591.18, + "end": 2591.52, + "probability": 0.0087 + }, + { + "start": 2592.82, + "end": 2594.72, + "probability": 0.0561 + }, + { + "start": 2596.52, + "end": 2598.98, + "probability": 0.059 + }, + { + "start": 2598.98, + "end": 2599.64, + "probability": 0.3479 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2710.0, + "end": 2710.0, + "probability": 0.0 + }, + { + "start": 2711.52, + "end": 2711.62, + "probability": 0.1464 + }, + { + "start": 2711.62, + "end": 2716.7, + "probability": 0.9973 + }, + { + "start": 2717.98, + "end": 2722.76, + "probability": 0.9904 + }, + { + "start": 2724.12, + "end": 2724.94, + "probability": 0.9478 + }, + { + "start": 2725.12, + "end": 2729.62, + "probability": 0.9646 + }, + { + "start": 2730.7, + "end": 2733.28, + "probability": 0.6783 + }, + { + "start": 2733.36, + "end": 2735.86, + "probability": 0.9801 + }, + { + "start": 2736.98, + "end": 2738.78, + "probability": 0.8899 + }, + { + "start": 2739.54, + "end": 2740.5, + "probability": 0.8387 + }, + { + "start": 2741.64, + "end": 2744.56, + "probability": 0.9918 + }, + { + "start": 2745.3, + "end": 2747.9, + "probability": 0.9989 + }, + { + "start": 2747.94, + "end": 2749.36, + "probability": 0.7424 + }, + { + "start": 2750.2, + "end": 2753.16, + "probability": 0.9327 + }, + { + "start": 2753.16, + "end": 2756.38, + "probability": 0.9814 + }, + { + "start": 2757.46, + "end": 2758.54, + "probability": 0.7974 + }, + { + "start": 2759.92, + "end": 2761.58, + "probability": 0.5376 + }, + { + "start": 2762.52, + "end": 2764.12, + "probability": 0.9339 + }, + { + "start": 2765.5, + "end": 2766.5, + "probability": 0.881 + }, + { + "start": 2768.42, + "end": 2772.6, + "probability": 0.9944 + }, + { + "start": 2773.1, + "end": 2775.32, + "probability": 0.9411 + }, + { + "start": 2776.86, + "end": 2777.92, + "probability": 0.9027 + }, + { + "start": 2779.3, + "end": 2779.88, + "probability": 0.5619 + }, + { + "start": 2780.96, + "end": 2781.66, + "probability": 0.9456 + }, + { + "start": 2782.48, + "end": 2783.4, + "probability": 0.9132 + }, + { + "start": 2784.3, + "end": 2786.66, + "probability": 0.9178 + }, + { + "start": 2787.46, + "end": 2789.56, + "probability": 0.9951 + }, + { + "start": 2790.16, + "end": 2791.02, + "probability": 0.9551 + }, + { + "start": 2792.68, + "end": 2794.94, + "probability": 0.9828 + }, + { + "start": 2795.7, + "end": 2798.86, + "probability": 0.936 + }, + { + "start": 2799.9, + "end": 2800.72, + "probability": 0.4187 + }, + { + "start": 2801.54, + "end": 2803.8, + "probability": 0.9707 + }, + { + "start": 2804.98, + "end": 2806.56, + "probability": 0.9688 + }, + { + "start": 2807.92, + "end": 2809.92, + "probability": 0.6893 + }, + { + "start": 2810.76, + "end": 2812.76, + "probability": 0.9619 + }, + { + "start": 2814.69, + "end": 2818.02, + "probability": 0.0085 + }, + { + "start": 2818.02, + "end": 2818.02, + "probability": 0.0051 + }, + { + "start": 2818.02, + "end": 2818.18, + "probability": 0.0437 + }, + { + "start": 2818.18, + "end": 2820.12, + "probability": 0.486 + }, + { + "start": 2820.92, + "end": 2823.54, + "probability": 0.9395 + }, + { + "start": 2824.66, + "end": 2828.44, + "probability": 0.9596 + }, + { + "start": 2829.62, + "end": 2831.21, + "probability": 0.9624 + }, + { + "start": 2832.1, + "end": 2834.34, + "probability": 0.9983 + }, + { + "start": 2835.5, + "end": 2839.08, + "probability": 0.9968 + }, + { + "start": 2840.14, + "end": 2842.88, + "probability": 0.9775 + }, + { + "start": 2843.48, + "end": 2845.48, + "probability": 0.985 + }, + { + "start": 2847.56, + "end": 2849.66, + "probability": 0.9966 + }, + { + "start": 2850.38, + "end": 2852.68, + "probability": 0.9462 + }, + { + "start": 2853.48, + "end": 2855.8, + "probability": 0.9953 + }, + { + "start": 2856.58, + "end": 2857.91, + "probability": 0.9132 + }, + { + "start": 2858.88, + "end": 2862.1, + "probability": 0.8921 + }, + { + "start": 2864.16, + "end": 2865.3, + "probability": 0.9939 + }, + { + "start": 2865.84, + "end": 2867.49, + "probability": 0.9911 + }, + { + "start": 2868.56, + "end": 2869.92, + "probability": 0.9452 + }, + { + "start": 2870.52, + "end": 2872.66, + "probability": 0.9984 + }, + { + "start": 2873.8, + "end": 2874.82, + "probability": 0.9208 + }, + { + "start": 2875.3, + "end": 2876.54, + "probability": 0.5891 + }, + { + "start": 2876.7, + "end": 2878.6, + "probability": 0.8591 + }, + { + "start": 2879.06, + "end": 2880.36, + "probability": 0.847 + }, + { + "start": 2880.52, + "end": 2881.46, + "probability": 0.9762 + }, + { + "start": 2882.12, + "end": 2883.02, + "probability": 0.9701 + }, + { + "start": 2883.84, + "end": 2885.5, + "probability": 0.9131 + }, + { + "start": 2886.3, + "end": 2888.24, + "probability": 0.8573 + }, + { + "start": 2888.84, + "end": 2890.46, + "probability": 0.9512 + }, + { + "start": 2890.84, + "end": 2891.16, + "probability": 0.2234 + }, + { + "start": 2892.24, + "end": 2893.74, + "probability": 0.7928 + }, + { + "start": 2894.18, + "end": 2895.52, + "probability": 0.9971 + }, + { + "start": 2896.38, + "end": 2897.36, + "probability": 0.9785 + }, + { + "start": 2897.94, + "end": 2898.14, + "probability": 0.8552 + }, + { + "start": 2898.54, + "end": 2899.08, + "probability": 0.7981 + }, + { + "start": 2899.34, + "end": 2902.1, + "probability": 0.9421 + }, + { + "start": 2921.8, + "end": 2923.72, + "probability": 0.8929 + }, + { + "start": 2928.2, + "end": 2929.66, + "probability": 0.972 + }, + { + "start": 2930.6, + "end": 2934.28, + "probability": 0.9549 + }, + { + "start": 2935.94, + "end": 2942.12, + "probability": 0.9956 + }, + { + "start": 2943.0, + "end": 2944.06, + "probability": 0.9849 + }, + { + "start": 2945.74, + "end": 2947.12, + "probability": 0.9645 + }, + { + "start": 2947.78, + "end": 2948.52, + "probability": 0.9825 + }, + { + "start": 2948.94, + "end": 2949.22, + "probability": 0.4215 + }, + { + "start": 2949.52, + "end": 2949.94, + "probability": 0.5653 + }, + { + "start": 2950.5, + "end": 2957.12, + "probability": 0.9962 + }, + { + "start": 2958.14, + "end": 2958.78, + "probability": 0.7917 + }, + { + "start": 2958.92, + "end": 2961.24, + "probability": 0.9201 + }, + { + "start": 2961.3, + "end": 2964.66, + "probability": 0.9676 + }, + { + "start": 2965.34, + "end": 2966.86, + "probability": 0.9708 + }, + { + "start": 2967.52, + "end": 2969.32, + "probability": 0.9963 + }, + { + "start": 2969.46, + "end": 2972.01, + "probability": 0.9937 + }, + { + "start": 2972.72, + "end": 2974.5, + "probability": 0.891 + }, + { + "start": 2974.54, + "end": 2975.88, + "probability": 0.979 + }, + { + "start": 2976.74, + "end": 2980.08, + "probability": 0.988 + }, + { + "start": 2980.64, + "end": 2983.04, + "probability": 0.9836 + }, + { + "start": 2984.86, + "end": 2986.01, + "probability": 0.8744 + }, + { + "start": 2988.0, + "end": 2988.64, + "probability": 0.6593 + }, + { + "start": 2988.82, + "end": 2991.0, + "probability": 0.9766 + }, + { + "start": 2991.28, + "end": 2994.6, + "probability": 0.3321 + }, + { + "start": 2997.52, + "end": 2998.14, + "probability": 0.012 + }, + { + "start": 2998.14, + "end": 2998.14, + "probability": 0.077 + }, + { + "start": 2998.14, + "end": 2998.14, + "probability": 0.1527 + }, + { + "start": 2998.14, + "end": 2999.68, + "probability": 0.9517 + }, + { + "start": 3000.84, + "end": 3004.2, + "probability": 0.9578 + }, + { + "start": 3004.82, + "end": 3006.5, + "probability": 0.9326 + }, + { + "start": 3007.22, + "end": 3011.78, + "probability": 0.9733 + }, + { + "start": 3012.82, + "end": 3015.94, + "probability": 0.9922 + }, + { + "start": 3016.74, + "end": 3019.58, + "probability": 0.9939 + }, + { + "start": 3020.44, + "end": 3021.86, + "probability": 0.9465 + }, + { + "start": 3022.36, + "end": 3022.94, + "probability": 0.9783 + }, + { + "start": 3023.1, + "end": 3026.86, + "probability": 0.9596 + }, + { + "start": 3027.78, + "end": 3031.52, + "probability": 0.9809 + }, + { + "start": 3032.58, + "end": 3037.16, + "probability": 0.9872 + }, + { + "start": 3039.22, + "end": 3042.0, + "probability": 0.9206 + }, + { + "start": 3043.14, + "end": 3044.34, + "probability": 0.8658 + }, + { + "start": 3045.4, + "end": 3046.64, + "probability": 0.7779 + }, + { + "start": 3046.76, + "end": 3051.2, + "probability": 0.989 + }, + { + "start": 3051.92, + "end": 3053.62, + "probability": 0.803 + }, + { + "start": 3054.24, + "end": 3055.64, + "probability": 0.9448 + }, + { + "start": 3056.3, + "end": 3059.84, + "probability": 0.9085 + }, + { + "start": 3061.16, + "end": 3062.66, + "probability": 0.9093 + }, + { + "start": 3063.66, + "end": 3067.84, + "probability": 0.9528 + }, + { + "start": 3068.72, + "end": 3073.06, + "probability": 0.9988 + }, + { + "start": 3073.22, + "end": 3077.56, + "probability": 0.9915 + }, + { + "start": 3078.54, + "end": 3080.88, + "probability": 0.9868 + }, + { + "start": 3082.1, + "end": 3083.84, + "probability": 0.9401 + }, + { + "start": 3084.56, + "end": 3090.6, + "probability": 0.9172 + }, + { + "start": 3090.72, + "end": 3090.72, + "probability": 0.1959 + }, + { + "start": 3090.72, + "end": 3091.42, + "probability": 0.5423 + }, + { + "start": 3091.56, + "end": 3092.06, + "probability": 0.6821 + }, + { + "start": 3092.18, + "end": 3094.02, + "probability": 0.936 + }, + { + "start": 3095.0, + "end": 3097.98, + "probability": 0.7093 + }, + { + "start": 3098.52, + "end": 3099.82, + "probability": 0.9762 + }, + { + "start": 3100.4, + "end": 3104.14, + "probability": 0.9772 + }, + { + "start": 3104.2, + "end": 3105.89, + "probability": 0.9882 + }, + { + "start": 3106.82, + "end": 3109.54, + "probability": 0.9152 + }, + { + "start": 3109.62, + "end": 3113.52, + "probability": 0.8938 + }, + { + "start": 3114.38, + "end": 3116.65, + "probability": 0.8418 + }, + { + "start": 3117.2, + "end": 3119.56, + "probability": 0.7452 + }, + { + "start": 3120.12, + "end": 3121.52, + "probability": 0.958 + }, + { + "start": 3122.26, + "end": 3127.32, + "probability": 0.9922 + }, + { + "start": 3128.28, + "end": 3129.26, + "probability": 0.7716 + }, + { + "start": 3129.42, + "end": 3130.3, + "probability": 0.8116 + }, + { + "start": 3130.68, + "end": 3131.81, + "probability": 0.8553 + }, + { + "start": 3132.18, + "end": 3132.69, + "probability": 0.9757 + }, + { + "start": 3133.74, + "end": 3136.68, + "probability": 0.9953 + }, + { + "start": 3137.24, + "end": 3139.28, + "probability": 0.8458 + }, + { + "start": 3139.88, + "end": 3140.45, + "probability": 0.958 + }, + { + "start": 3142.04, + "end": 3143.44, + "probability": 0.9821 + }, + { + "start": 3143.94, + "end": 3145.9, + "probability": 0.9574 + }, + { + "start": 3145.92, + "end": 3151.8, + "probability": 0.9646 + }, + { + "start": 3152.44, + "end": 3153.22, + "probability": 0.7085 + }, + { + "start": 3153.92, + "end": 3154.68, + "probability": 0.7529 + }, + { + "start": 3155.66, + "end": 3156.7, + "probability": 0.7496 + }, + { + "start": 3157.38, + "end": 3162.76, + "probability": 0.9749 + }, + { + "start": 3163.28, + "end": 3167.46, + "probability": 0.8979 + }, + { + "start": 3168.28, + "end": 3169.3, + "probability": 0.9944 + }, + { + "start": 3169.9, + "end": 3171.94, + "probability": 0.8204 + }, + { + "start": 3172.58, + "end": 3174.84, + "probability": 0.8209 + }, + { + "start": 3176.02, + "end": 3178.52, + "probability": 0.9937 + }, + { + "start": 3179.62, + "end": 3183.86, + "probability": 0.9913 + }, + { + "start": 3184.36, + "end": 3187.26, + "probability": 0.9875 + }, + { + "start": 3187.8, + "end": 3190.76, + "probability": 0.6749 + }, + { + "start": 3190.96, + "end": 3191.12, + "probability": 0.3906 + }, + { + "start": 3191.43, + "end": 3192.56, + "probability": 0.7523 + }, + { + "start": 3192.72, + "end": 3192.76, + "probability": 0.5742 + }, + { + "start": 3192.76, + "end": 3193.3, + "probability": 0.3965 + }, + { + "start": 3193.48, + "end": 3194.34, + "probability": 0.7827 + }, + { + "start": 3194.64, + "end": 3195.42, + "probability": 0.6945 + }, + { + "start": 3195.46, + "end": 3197.24, + "probability": 0.9403 + }, + { + "start": 3197.24, + "end": 3198.79, + "probability": 0.907 + }, + { + "start": 3199.2, + "end": 3199.36, + "probability": 0.465 + }, + { + "start": 3199.36, + "end": 3199.98, + "probability": 0.978 + }, + { + "start": 3200.06, + "end": 3201.2, + "probability": 0.9966 + }, + { + "start": 3201.32, + "end": 3206.78, + "probability": 0.1996 + }, + { + "start": 3206.78, + "end": 3206.78, + "probability": 0.0745 + }, + { + "start": 3206.78, + "end": 3206.78, + "probability": 0.1275 + }, + { + "start": 3206.78, + "end": 3207.22, + "probability": 0.03 + }, + { + "start": 3207.78, + "end": 3209.36, + "probability": 0.7389 + }, + { + "start": 3209.44, + "end": 3210.52, + "probability": 0.7948 + }, + { + "start": 3210.8, + "end": 3211.32, + "probability": 0.7568 + }, + { + "start": 3211.42, + "end": 3212.0, + "probability": 0.9758 + }, + { + "start": 3212.18, + "end": 3212.84, + "probability": 0.9175 + }, + { + "start": 3213.04, + "end": 3213.86, + "probability": 0.9037 + }, + { + "start": 3214.28, + "end": 3215.02, + "probability": 0.916 + }, + { + "start": 3215.46, + "end": 3216.38, + "probability": 0.9698 + }, + { + "start": 3216.48, + "end": 3218.74, + "probability": 0.8857 + }, + { + "start": 3219.34, + "end": 3221.78, + "probability": 0.9938 + }, + { + "start": 3221.92, + "end": 3224.88, + "probability": 0.7712 + }, + { + "start": 3224.94, + "end": 3225.54, + "probability": 0.7187 + }, + { + "start": 3226.34, + "end": 3228.04, + "probability": 0.9639 + }, + { + "start": 3228.12, + "end": 3231.18, + "probability": 0.9675 + }, + { + "start": 3231.72, + "end": 3234.66, + "probability": 0.9962 + }, + { + "start": 3234.94, + "end": 3236.56, + "probability": 0.999 + }, + { + "start": 3237.06, + "end": 3238.06, + "probability": 0.7994 + }, + { + "start": 3238.42, + "end": 3242.0, + "probability": 0.8446 + }, + { + "start": 3242.0, + "end": 3243.88, + "probability": 0.9703 + }, + { + "start": 3244.24, + "end": 3246.62, + "probability": 0.9948 + }, + { + "start": 3247.26, + "end": 3253.08, + "probability": 0.9919 + }, + { + "start": 3253.6, + "end": 3255.0, + "probability": 0.9894 + }, + { + "start": 3255.26, + "end": 3257.98, + "probability": 0.9904 + }, + { + "start": 3258.38, + "end": 3260.78, + "probability": 0.9839 + }, + { + "start": 3261.26, + "end": 3262.2, + "probability": 0.7812 + }, + { + "start": 3262.32, + "end": 3263.12, + "probability": 0.9513 + }, + { + "start": 3263.4, + "end": 3265.9, + "probability": 0.717 + }, + { + "start": 3266.28, + "end": 3266.88, + "probability": 0.8093 + }, + { + "start": 3267.08, + "end": 3267.8, + "probability": 0.5873 + }, + { + "start": 3267.84, + "end": 3269.84, + "probability": 0.866 + }, + { + "start": 3288.98, + "end": 3290.7, + "probability": 0.8814 + }, + { + "start": 3292.88, + "end": 3294.36, + "probability": 0.8646 + }, + { + "start": 3295.34, + "end": 3296.78, + "probability": 0.9546 + }, + { + "start": 3297.9, + "end": 3300.38, + "probability": 0.9569 + }, + { + "start": 3302.24, + "end": 3304.04, + "probability": 0.7992 + }, + { + "start": 3305.06, + "end": 3305.86, + "probability": 0.7496 + }, + { + "start": 3307.0, + "end": 3307.73, + "probability": 0.9919 + }, + { + "start": 3308.78, + "end": 3314.98, + "probability": 0.9491 + }, + { + "start": 3316.06, + "end": 3318.36, + "probability": 0.9776 + }, + { + "start": 3319.62, + "end": 3321.06, + "probability": 0.7894 + }, + { + "start": 3321.9, + "end": 3322.82, + "probability": 0.9398 + }, + { + "start": 3323.56, + "end": 3327.78, + "probability": 0.9955 + }, + { + "start": 3328.92, + "end": 3329.88, + "probability": 0.998 + }, + { + "start": 3331.18, + "end": 3333.24, + "probability": 0.9939 + }, + { + "start": 3334.74, + "end": 3338.98, + "probability": 0.9994 + }, + { + "start": 3339.84, + "end": 3345.2, + "probability": 0.999 + }, + { + "start": 3346.08, + "end": 3351.9, + "probability": 0.9952 + }, + { + "start": 3352.62, + "end": 3354.72, + "probability": 0.9982 + }, + { + "start": 3355.58, + "end": 3359.16, + "probability": 0.9937 + }, + { + "start": 3361.4, + "end": 3367.3, + "probability": 0.9494 + }, + { + "start": 3368.72, + "end": 3371.2, + "probability": 0.9767 + }, + { + "start": 3372.06, + "end": 3372.78, + "probability": 0.9139 + }, + { + "start": 3373.8, + "end": 3376.22, + "probability": 0.8537 + }, + { + "start": 3377.04, + "end": 3377.78, + "probability": 0.9802 + }, + { + "start": 3378.64, + "end": 3380.6, + "probability": 0.6671 + }, + { + "start": 3382.26, + "end": 3387.7, + "probability": 0.9514 + }, + { + "start": 3388.2, + "end": 3390.32, + "probability": 0.9891 + }, + { + "start": 3391.36, + "end": 3392.58, + "probability": 0.9033 + }, + { + "start": 3393.86, + "end": 3395.44, + "probability": 0.9968 + }, + { + "start": 3396.2, + "end": 3400.96, + "probability": 0.9366 + }, + { + "start": 3401.48, + "end": 3403.16, + "probability": 0.9482 + }, + { + "start": 3403.9, + "end": 3407.78, + "probability": 0.9741 + }, + { + "start": 3409.14, + "end": 3412.88, + "probability": 0.8561 + }, + { + "start": 3413.98, + "end": 3415.3, + "probability": 0.9385 + }, + { + "start": 3415.92, + "end": 3420.72, + "probability": 0.9403 + }, + { + "start": 3421.56, + "end": 3422.82, + "probability": 0.8895 + }, + { + "start": 3423.42, + "end": 3424.76, + "probability": 0.9454 + }, + { + "start": 3425.54, + "end": 3427.78, + "probability": 0.9102 + }, + { + "start": 3428.38, + "end": 3436.32, + "probability": 0.9833 + }, + { + "start": 3437.1, + "end": 3439.34, + "probability": 0.6927 + }, + { + "start": 3440.46, + "end": 3443.5, + "probability": 0.9263 + }, + { + "start": 3443.64, + "end": 3444.06, + "probability": 0.711 + }, + { + "start": 3444.6, + "end": 3444.96, + "probability": 0.5696 + }, + { + "start": 3445.02, + "end": 3447.24, + "probability": 0.9167 + }, + { + "start": 3447.42, + "end": 3450.62, + "probability": 0.3704 + }, + { + "start": 3452.3, + "end": 3454.64, + "probability": 0.1091 + }, + { + "start": 3455.84, + "end": 3457.92, + "probability": 0.5298 + }, + { + "start": 3458.14, + "end": 3460.62, + "probability": 0.6177 + }, + { + "start": 3461.02, + "end": 3465.94, + "probability": 0.2114 + }, + { + "start": 3466.0, + "end": 3468.24, + "probability": 0.5359 + }, + { + "start": 3468.5, + "end": 3469.4, + "probability": 0.4809 + }, + { + "start": 3469.44, + "end": 3472.44, + "probability": 0.6888 + }, + { + "start": 3472.48, + "end": 3473.64, + "probability": 0.5748 + }, + { + "start": 3474.62, + "end": 3475.18, + "probability": 0.3438 + }, + { + "start": 3475.18, + "end": 3476.84, + "probability": 0.5406 + }, + { + "start": 3477.42, + "end": 3477.9, + "probability": 0.7641 + }, + { + "start": 3479.3, + "end": 3480.56, + "probability": 0.7038 + }, + { + "start": 3480.56, + "end": 3482.96, + "probability": 0.8229 + }, + { + "start": 3483.0, + "end": 3485.72, + "probability": 0.9907 + }, + { + "start": 3487.48, + "end": 3490.6, + "probability": 0.9877 + }, + { + "start": 3490.7, + "end": 3493.28, + "probability": 0.9361 + }, + { + "start": 3495.58, + "end": 3499.6, + "probability": 0.996 + }, + { + "start": 3499.72, + "end": 3500.06, + "probability": 0.6236 + }, + { + "start": 3500.14, + "end": 3503.04, + "probability": 0.9939 + }, + { + "start": 3503.18, + "end": 3504.28, + "probability": 0.3862 + }, + { + "start": 3504.28, + "end": 3509.5, + "probability": 0.7569 + }, + { + "start": 3509.5, + "end": 3512.88, + "probability": 0.9941 + }, + { + "start": 3512.88, + "end": 3517.58, + "probability": 0.9961 + }, + { + "start": 3517.64, + "end": 3524.52, + "probability": 0.9118 + }, + { + "start": 3524.7, + "end": 3525.02, + "probability": 0.89 + }, + { + "start": 3525.08, + "end": 3526.64, + "probability": 0.7922 + }, + { + "start": 3526.82, + "end": 3530.7, + "probability": 0.9836 + }, + { + "start": 3531.66, + "end": 3532.5, + "probability": 0.9259 + }, + { + "start": 3533.86, + "end": 3536.86, + "probability": 0.9966 + }, + { + "start": 3537.38, + "end": 3538.91, + "probability": 0.9951 + }, + { + "start": 3540.14, + "end": 3540.56, + "probability": 0.5762 + }, + { + "start": 3540.56, + "end": 3546.7, + "probability": 0.9938 + }, + { + "start": 3547.66, + "end": 3549.9, + "probability": 0.9785 + }, + { + "start": 3550.6, + "end": 3558.26, + "probability": 0.9477 + }, + { + "start": 3558.44, + "end": 3559.3, + "probability": 0.8192 + }, + { + "start": 3560.18, + "end": 3561.0, + "probability": 0.9956 + }, + { + "start": 3562.14, + "end": 3565.3, + "probability": 0.9086 + }, + { + "start": 3566.4, + "end": 3566.9, + "probability": 0.6778 + }, + { + "start": 3567.0, + "end": 3571.35, + "probability": 0.9856 + }, + { + "start": 3572.5, + "end": 3579.38, + "probability": 0.9753 + }, + { + "start": 3579.8, + "end": 3584.08, + "probability": 0.9655 + }, + { + "start": 3585.06, + "end": 3587.02, + "probability": 0.5995 + }, + { + "start": 3587.82, + "end": 3589.98, + "probability": 0.7659 + }, + { + "start": 3590.54, + "end": 3591.74, + "probability": 0.9849 + }, + { + "start": 3591.98, + "end": 3595.48, + "probability": 0.939 + }, + { + "start": 3596.22, + "end": 3598.04, + "probability": 0.8323 + }, + { + "start": 3602.12, + "end": 3610.62, + "probability": 0.9879 + }, + { + "start": 3610.68, + "end": 3611.4, + "probability": 0.8482 + }, + { + "start": 3612.46, + "end": 3619.1, + "probability": 0.994 + }, + { + "start": 3619.34, + "end": 3620.38, + "probability": 0.5754 + }, + { + "start": 3621.62, + "end": 3623.45, + "probability": 0.9839 + }, + { + "start": 3623.64, + "end": 3633.12, + "probability": 0.9731 + }, + { + "start": 3633.96, + "end": 3638.82, + "probability": 0.993 + }, + { + "start": 3639.86, + "end": 3642.48, + "probability": 0.9978 + }, + { + "start": 3642.62, + "end": 3649.44, + "probability": 0.9932 + }, + { + "start": 3653.4, + "end": 3655.18, + "probability": 0.9985 + }, + { + "start": 3655.98, + "end": 3661.0, + "probability": 0.9967 + }, + { + "start": 3661.26, + "end": 3662.33, + "probability": 0.9897 + }, + { + "start": 3662.88, + "end": 3668.92, + "probability": 0.9987 + }, + { + "start": 3669.72, + "end": 3673.34, + "probability": 0.9904 + }, + { + "start": 3674.72, + "end": 3678.54, + "probability": 0.9993 + }, + { + "start": 3679.33, + "end": 3680.48, + "probability": 0.5348 + }, + { + "start": 3680.56, + "end": 3689.14, + "probability": 0.9967 + }, + { + "start": 3689.52, + "end": 3691.74, + "probability": 0.0119 + }, + { + "start": 3691.74, + "end": 3691.84, + "probability": 0.2578 + }, + { + "start": 3691.92, + "end": 3692.86, + "probability": 0.1276 + }, + { + "start": 3693.28, + "end": 3693.84, + "probability": 0.1526 + }, + { + "start": 3693.88, + "end": 3696.3, + "probability": 0.7402 + }, + { + "start": 3696.76, + "end": 3698.18, + "probability": 0.7232 + }, + { + "start": 3698.18, + "end": 3698.95, + "probability": 0.9227 + }, + { + "start": 3699.04, + "end": 3700.14, + "probability": 0.9687 + }, + { + "start": 3700.38, + "end": 3706.48, + "probability": 0.9253 + }, + { + "start": 3706.72, + "end": 3707.56, + "probability": 0.9426 + }, + { + "start": 3707.98, + "end": 3714.3, + "probability": 0.5338 + }, + { + "start": 3714.3, + "end": 3716.94, + "probability": 0.2119 + }, + { + "start": 3721.64, + "end": 3722.7, + "probability": 0.3631 + }, + { + "start": 3723.0, + "end": 3724.76, + "probability": 0.027 + }, + { + "start": 3726.48, + "end": 3729.16, + "probability": 0.0819 + }, + { + "start": 3729.16, + "end": 3729.16, + "probability": 0.1485 + }, + { + "start": 3729.16, + "end": 3731.12, + "probability": 0.5491 + }, + { + "start": 3731.98, + "end": 3733.87, + "probability": 0.0746 + }, + { + "start": 3734.52, + "end": 3735.48, + "probability": 0.2078 + }, + { + "start": 3736.44, + "end": 3736.79, + "probability": 0.028 + }, + { + "start": 3737.16, + "end": 3741.62, + "probability": 0.0957 + }, + { + "start": 3743.44, + "end": 3745.86, + "probability": 0.5532 + }, + { + "start": 3745.86, + "end": 3746.23, + "probability": 0.1103 + }, + { + "start": 3749.14, + "end": 3750.3, + "probability": 0.3637 + }, + { + "start": 3750.68, + "end": 3754.38, + "probability": 0.117 + }, + { + "start": 3756.72, + "end": 3759.4, + "probability": 0.5198 + }, + { + "start": 3765.14, + "end": 3766.54, + "probability": 0.7937 + }, + { + "start": 3767.86, + "end": 3768.94, + "probability": 0.1894 + }, + { + "start": 3769.5, + "end": 3770.98, + "probability": 0.2555 + }, + { + "start": 3772.46, + "end": 3772.46, + "probability": 0.0588 + }, + { + "start": 3773.32, + "end": 3774.1, + "probability": 0.4866 + }, + { + "start": 3774.18, + "end": 3774.88, + "probability": 0.1693 + }, + { + "start": 3775.06, + "end": 3775.24, + "probability": 0.1562 + }, + { + "start": 3777.76, + "end": 3781.78, + "probability": 0.1949 + }, + { + "start": 3781.78, + "end": 3781.78, + "probability": 0.3458 + }, + { + "start": 3781.78, + "end": 3782.95, + "probability": 0.0186 + }, + { + "start": 3783.48, + "end": 3783.62, + "probability": 0.1396 + }, + { + "start": 3783.66, + "end": 3783.66, + "probability": 0.5182 + }, + { + "start": 3783.98, + "end": 3786.7, + "probability": 0.8702 + }, + { + "start": 3799.2, + "end": 3800.86, + "probability": 0.288 + }, + { + "start": 3801.38, + "end": 3802.82, + "probability": 0.3449 + }, + { + "start": 3803.04, + "end": 3804.12, + "probability": 0.0965 + }, + { + "start": 3805.2, + "end": 3806.6, + "probability": 0.0515 + }, + { + "start": 3807.02, + "end": 3808.3, + "probability": 0.1989 + }, + { + "start": 3808.54, + "end": 3808.74, + "probability": 0.027 + }, + { + "start": 3808.74, + "end": 3808.8, + "probability": 0.0717 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.0, + "end": 3809.0, + "probability": 0.0 + }, + { + "start": 3809.04, + "end": 3811.12, + "probability": 0.0218 + }, + { + "start": 3811.62, + "end": 3811.8, + "probability": 0.2812 + }, + { + "start": 3811.8, + "end": 3811.8, + "probability": 0.4643 + }, + { + "start": 3811.8, + "end": 3811.8, + "probability": 0.035 + }, + { + "start": 3811.8, + "end": 3812.68, + "probability": 0.303 + }, + { + "start": 3812.9, + "end": 3813.02, + "probability": 0.3224 + }, + { + "start": 3813.02, + "end": 3814.74, + "probability": 0.8525 + }, + { + "start": 3814.76, + "end": 3815.28, + "probability": 0.7267 + }, + { + "start": 3816.42, + "end": 3818.18, + "probability": 0.9279 + }, + { + "start": 3819.14, + "end": 3820.42, + "probability": 0.1719 + }, + { + "start": 3820.6, + "end": 3826.44, + "probability": 0.0626 + }, + { + "start": 3826.44, + "end": 3829.23, + "probability": 0.1164 + }, + { + "start": 3835.8, + "end": 3836.12, + "probability": 0.2639 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.0, + "end": 3932.0, + "probability": 0.0 + }, + { + "start": 3932.92, + "end": 3933.32, + "probability": 0.0706 + }, + { + "start": 3933.32, + "end": 3933.32, + "probability": 0.0349 + }, + { + "start": 3933.32, + "end": 3936.46, + "probability": 0.8718 + }, + { + "start": 3937.0, + "end": 3942.42, + "probability": 0.8985 + }, + { + "start": 3943.24, + "end": 3948.4, + "probability": 0.9767 + }, + { + "start": 3949.32, + "end": 3951.74, + "probability": 0.8593 + }, + { + "start": 3952.38, + "end": 3955.16, + "probability": 0.7751 + }, + { + "start": 3955.74, + "end": 3960.7, + "probability": 0.9896 + }, + { + "start": 3961.62, + "end": 3965.74, + "probability": 0.9641 + }, + { + "start": 3966.42, + "end": 3970.2, + "probability": 0.9954 + }, + { + "start": 3970.58, + "end": 3975.18, + "probability": 0.9215 + }, + { + "start": 3975.18, + "end": 3981.08, + "probability": 0.9907 + }, + { + "start": 3981.88, + "end": 3984.1, + "probability": 0.7555 + }, + { + "start": 3984.78, + "end": 3989.4, + "probability": 0.9795 + }, + { + "start": 3989.96, + "end": 3994.16, + "probability": 0.929 + }, + { + "start": 3994.88, + "end": 3999.94, + "probability": 0.9966 + }, + { + "start": 4000.62, + "end": 4002.94, + "probability": 0.9801 + }, + { + "start": 4003.7, + "end": 4006.9, + "probability": 0.0629 + }, + { + "start": 4011.04, + "end": 4011.9, + "probability": 0.0134 + }, + { + "start": 4011.9, + "end": 4011.9, + "probability": 0.0322 + }, + { + "start": 4011.9, + "end": 4011.9, + "probability": 0.032 + }, + { + "start": 4011.9, + "end": 4013.55, + "probability": 0.2468 + }, + { + "start": 4014.64, + "end": 4018.04, + "probability": 0.8285 + }, + { + "start": 4018.48, + "end": 4021.18, + "probability": 0.9437 + }, + { + "start": 4021.78, + "end": 4027.48, + "probability": 0.8913 + }, + { + "start": 4027.48, + "end": 4027.48, + "probability": 0.1558 + }, + { + "start": 4027.48, + "end": 4029.54, + "probability": 0.8396 + }, + { + "start": 4029.64, + "end": 4029.7, + "probability": 0.6934 + }, + { + "start": 4029.76, + "end": 4034.42, + "probability": 0.9772 + }, + { + "start": 4034.54, + "end": 4040.78, + "probability": 0.9454 + }, + { + "start": 4041.32, + "end": 4041.76, + "probability": 0.6703 + }, + { + "start": 4041.82, + "end": 4043.96, + "probability": 0.8531 + }, + { + "start": 4044.78, + "end": 4045.98, + "probability": 0.6557 + }, + { + "start": 4046.18, + "end": 4047.58, + "probability": 0.0436 + }, + { + "start": 4062.1, + "end": 4063.38, + "probability": 0.9612 + }, + { + "start": 4063.38, + "end": 4063.76, + "probability": 0.3445 + }, + { + "start": 4067.0, + "end": 4068.3, + "probability": 0.9843 + }, + { + "start": 4069.3, + "end": 4071.18, + "probability": 0.8927 + }, + { + "start": 4072.14, + "end": 4072.72, + "probability": 0.777 + }, + { + "start": 4072.76, + "end": 4078.04, + "probability": 0.991 + }, + { + "start": 4079.06, + "end": 4082.88, + "probability": 0.9841 + }, + { + "start": 4083.74, + "end": 4085.22, + "probability": 0.9893 + }, + { + "start": 4085.8, + "end": 4087.4, + "probability": 0.9964 + }, + { + "start": 4088.66, + "end": 4089.48, + "probability": 0.9548 + }, + { + "start": 4090.64, + "end": 4094.18, + "probability": 0.8948 + }, + { + "start": 4095.06, + "end": 4098.56, + "probability": 0.9929 + }, + { + "start": 4099.24, + "end": 4102.88, + "probability": 0.9932 + }, + { + "start": 4102.96, + "end": 4109.14, + "probability": 0.9863 + }, + { + "start": 4109.86, + "end": 4114.44, + "probability": 0.9935 + }, + { + "start": 4114.68, + "end": 4114.68, + "probability": 0.0084 + }, + { + "start": 4114.68, + "end": 4114.84, + "probability": 0.0765 + }, + { + "start": 4114.84, + "end": 4114.84, + "probability": 0.4817 + }, + { + "start": 4114.9, + "end": 4119.94, + "probability": 0.9489 + }, + { + "start": 4120.36, + "end": 4121.64, + "probability": 0.9501 + }, + { + "start": 4121.64, + "end": 4123.66, + "probability": 0.8442 + }, + { + "start": 4124.52, + "end": 4128.6, + "probability": 0.9973 + }, + { + "start": 4129.58, + "end": 4134.82, + "probability": 0.9875 + }, + { + "start": 4135.46, + "end": 4140.74, + "probability": 0.9984 + }, + { + "start": 4141.22, + "end": 4146.74, + "probability": 0.9984 + }, + { + "start": 4147.42, + "end": 4148.0, + "probability": 0.7766 + }, + { + "start": 4148.74, + "end": 4149.18, + "probability": 0.9832 + }, + { + "start": 4149.74, + "end": 4150.26, + "probability": 0.5377 + }, + { + "start": 4151.04, + "end": 4154.72, + "probability": 0.9779 + }, + { + "start": 4155.62, + "end": 4156.61, + "probability": 0.9731 + }, + { + "start": 4156.82, + "end": 4158.94, + "probability": 0.9398 + }, + { + "start": 4159.76, + "end": 4161.48, + "probability": 0.9969 + }, + { + "start": 4162.02, + "end": 4164.26, + "probability": 0.9951 + }, + { + "start": 4165.32, + "end": 4168.78, + "probability": 0.882 + }, + { + "start": 4169.62, + "end": 4175.06, + "probability": 0.958 + }, + { + "start": 4175.86, + "end": 4178.16, + "probability": 0.9612 + }, + { + "start": 4179.0, + "end": 4181.76, + "probability": 0.9971 + }, + { + "start": 4182.52, + "end": 4184.34, + "probability": 0.9926 + }, + { + "start": 4184.94, + "end": 4185.5, + "probability": 0.7815 + }, + { + "start": 4186.26, + "end": 4186.72, + "probability": 0.9384 + }, + { + "start": 4187.34, + "end": 4190.02, + "probability": 0.9966 + }, + { + "start": 4190.76, + "end": 4196.0, + "probability": 0.993 + }, + { + "start": 4197.1, + "end": 4200.38, + "probability": 0.9875 + }, + { + "start": 4201.18, + "end": 4204.57, + "probability": 0.9974 + }, + { + "start": 4205.14, + "end": 4208.58, + "probability": 0.9727 + }, + { + "start": 4209.02, + "end": 4209.61, + "probability": 0.9795 + }, + { + "start": 4210.02, + "end": 4210.98, + "probability": 0.907 + }, + { + "start": 4211.1, + "end": 4213.56, + "probability": 0.9965 + }, + { + "start": 4214.4, + "end": 4219.78, + "probability": 0.9127 + }, + { + "start": 4220.5, + "end": 4222.91, + "probability": 0.4193 + }, + { + "start": 4223.86, + "end": 4224.92, + "probability": 0.8743 + }, + { + "start": 4225.5, + "end": 4229.08, + "probability": 0.8833 + }, + { + "start": 4229.8, + "end": 4234.16, + "probability": 0.9767 + }, + { + "start": 4234.64, + "end": 4236.28, + "probability": 0.9223 + }, + { + "start": 4236.8, + "end": 4241.42, + "probability": 0.7629 + }, + { + "start": 4241.82, + "end": 4242.42, + "probability": 0.5787 + }, + { + "start": 4243.08, + "end": 4245.44, + "probability": 0.9697 + }, + { + "start": 4246.34, + "end": 4250.68, + "probability": 0.9501 + }, + { + "start": 4251.2, + "end": 4257.12, + "probability": 0.8975 + }, + { + "start": 4257.6, + "end": 4257.6, + "probability": 0.0534 + }, + { + "start": 4257.6, + "end": 4258.91, + "probability": 0.8799 + }, + { + "start": 4259.4, + "end": 4260.34, + "probability": 0.9505 + }, + { + "start": 4260.68, + "end": 4261.64, + "probability": 0.9862 + }, + { + "start": 4261.94, + "end": 4267.26, + "probability": 0.9845 + }, + { + "start": 4267.78, + "end": 4269.82, + "probability": 0.9541 + }, + { + "start": 4270.32, + "end": 4270.5, + "probability": 0.5536 + }, + { + "start": 4270.58, + "end": 4273.22, + "probability": 0.8006 + }, + { + "start": 4294.86, + "end": 4296.7, + "probability": 0.5795 + }, + { + "start": 4299.54, + "end": 4302.14, + "probability": 0.7498 + }, + { + "start": 4303.08, + "end": 4307.1, + "probability": 0.998 + }, + { + "start": 4307.2, + "end": 4310.74, + "probability": 0.9973 + }, + { + "start": 4311.38, + "end": 4314.68, + "probability": 0.9944 + }, + { + "start": 4315.66, + "end": 4319.46, + "probability": 0.9987 + }, + { + "start": 4319.8, + "end": 4320.66, + "probability": 0.67 + }, + { + "start": 4321.5, + "end": 4324.64, + "probability": 0.9948 + }, + { + "start": 4325.52, + "end": 4327.54, + "probability": 0.7982 + }, + { + "start": 4327.98, + "end": 4331.84, + "probability": 0.9921 + }, + { + "start": 4332.6, + "end": 4336.52, + "probability": 0.9935 + }, + { + "start": 4337.22, + "end": 4338.78, + "probability": 0.9819 + }, + { + "start": 4338.84, + "end": 4345.3, + "probability": 0.9978 + }, + { + "start": 4346.2, + "end": 4349.7, + "probability": 0.998 + }, + { + "start": 4350.24, + "end": 4353.6, + "probability": 0.8687 + }, + { + "start": 4354.6, + "end": 4359.68, + "probability": 0.9866 + }, + { + "start": 4359.8, + "end": 4362.38, + "probability": 0.9737 + }, + { + "start": 4363.38, + "end": 4365.58, + "probability": 0.9979 + }, + { + "start": 4366.14, + "end": 4369.92, + "probability": 0.9972 + }, + { + "start": 4370.62, + "end": 4372.98, + "probability": 0.9924 + }, + { + "start": 4373.54, + "end": 4377.5, + "probability": 0.999 + }, + { + "start": 4378.94, + "end": 4384.02, + "probability": 0.9823 + }, + { + "start": 4384.46, + "end": 4385.01, + "probability": 0.0219 + }, + { + "start": 4385.84, + "end": 4390.9, + "probability": 0.9955 + }, + { + "start": 4391.58, + "end": 4392.78, + "probability": 0.9981 + }, + { + "start": 4393.7, + "end": 4395.06, + "probability": 0.9879 + }, + { + "start": 4395.16, + "end": 4396.84, + "probability": 0.9584 + }, + { + "start": 4397.26, + "end": 4397.8, + "probability": 0.9897 + }, + { + "start": 4398.9, + "end": 4402.7, + "probability": 0.9861 + }, + { + "start": 4403.9, + "end": 4407.7, + "probability": 0.9989 + }, + { + "start": 4408.28, + "end": 4411.82, + "probability": 0.9878 + }, + { + "start": 4411.82, + "end": 4415.32, + "probability": 0.9885 + }, + { + "start": 4415.4, + "end": 4417.4, + "probability": 0.9938 + }, + { + "start": 4418.32, + "end": 4421.42, + "probability": 0.9926 + }, + { + "start": 4421.42, + "end": 4425.56, + "probability": 0.9993 + }, + { + "start": 4426.36, + "end": 4430.04, + "probability": 0.9635 + }, + { + "start": 4430.6, + "end": 4434.06, + "probability": 0.9915 + }, + { + "start": 4435.48, + "end": 4439.2, + "probability": 0.9966 + }, + { + "start": 4440.12, + "end": 4443.77, + "probability": 0.9944 + }, + { + "start": 4445.52, + "end": 4447.94, + "probability": 0.9976 + }, + { + "start": 4448.6, + "end": 4450.68, + "probability": 0.8197 + }, + { + "start": 4450.82, + "end": 4455.48, + "probability": 0.9921 + }, + { + "start": 4456.3, + "end": 4457.4, + "probability": 0.4978 + }, + { + "start": 4458.24, + "end": 4460.78, + "probability": 0.9992 + }, + { + "start": 4461.12, + "end": 4464.22, + "probability": 0.969 + }, + { + "start": 4465.04, + "end": 4468.28, + "probability": 0.9758 + }, + { + "start": 4469.2, + "end": 4472.92, + "probability": 0.9875 + }, + { + "start": 4472.92, + "end": 4477.2, + "probability": 0.9828 + }, + { + "start": 4477.9, + "end": 4483.12, + "probability": 0.9985 + }, + { + "start": 4484.04, + "end": 4487.8, + "probability": 0.9849 + }, + { + "start": 4488.74, + "end": 4489.26, + "probability": 0.6112 + }, + { + "start": 4489.74, + "end": 4490.72, + "probability": 0.896 + }, + { + "start": 4499.3, + "end": 4500.44, + "probability": 0.7373 + }, + { + "start": 4500.78, + "end": 4502.72, + "probability": 0.7086 + }, + { + "start": 4502.82, + "end": 4504.04, + "probability": 0.9254 + }, + { + "start": 4505.22, + "end": 4507.1, + "probability": 0.9821 + }, + { + "start": 4508.3, + "end": 4509.3, + "probability": 0.7411 + }, + { + "start": 4509.5, + "end": 4512.38, + "probability": 0.9937 + }, + { + "start": 4512.54, + "end": 4513.4, + "probability": 0.9395 + }, + { + "start": 4513.92, + "end": 4515.74, + "probability": 0.8037 + }, + { + "start": 4516.56, + "end": 4519.46, + "probability": 0.9883 + }, + { + "start": 4520.5, + "end": 4524.26, + "probability": 0.9979 + }, + { + "start": 4524.96, + "end": 4525.86, + "probability": 0.9038 + }, + { + "start": 4525.92, + "end": 4526.76, + "probability": 0.4023 + }, + { + "start": 4526.8, + "end": 4527.68, + "probability": 0.4941 + }, + { + "start": 4528.14, + "end": 4529.78, + "probability": 0.728 + }, + { + "start": 4529.82, + "end": 4531.34, + "probability": 0.932 + }, + { + "start": 4531.86, + "end": 4532.66, + "probability": 0.5505 + }, + { + "start": 4533.24, + "end": 4534.14, + "probability": 0.8462 + }, + { + "start": 4534.98, + "end": 4539.52, + "probability": 0.9541 + }, + { + "start": 4539.88, + "end": 4540.9, + "probability": 0.9884 + }, + { + "start": 4542.02, + "end": 4546.82, + "probability": 0.9846 + }, + { + "start": 4547.18, + "end": 4549.22, + "probability": 0.9966 + }, + { + "start": 4549.54, + "end": 4550.56, + "probability": 0.9971 + }, + { + "start": 4551.58, + "end": 4556.98, + "probability": 0.9671 + }, + { + "start": 4557.64, + "end": 4559.86, + "probability": 0.983 + }, + { + "start": 4561.02, + "end": 4563.0, + "probability": 0.9404 + }, + { + "start": 4563.18, + "end": 4563.4, + "probability": 0.5613 + }, + { + "start": 4563.46, + "end": 4564.56, + "probability": 0.837 + }, + { + "start": 4565.2, + "end": 4567.52, + "probability": 0.8489 + }, + { + "start": 4568.4, + "end": 4570.18, + "probability": 0.7959 + }, + { + "start": 4571.58, + "end": 4572.3, + "probability": 0.9434 + }, + { + "start": 4573.08, + "end": 4575.52, + "probability": 0.9563 + }, + { + "start": 4575.88, + "end": 4578.98, + "probability": 0.9957 + }, + { + "start": 4579.3, + "end": 4581.46, + "probability": 0.9962 + }, + { + "start": 4582.76, + "end": 4584.7, + "probability": 0.9833 + }, + { + "start": 4584.82, + "end": 4585.44, + "probability": 0.8243 + }, + { + "start": 4585.64, + "end": 4586.08, + "probability": 0.899 + }, + { + "start": 4586.46, + "end": 4587.46, + "probability": 0.8933 + }, + { + "start": 4587.8, + "end": 4589.38, + "probability": 0.9724 + }, + { + "start": 4589.9, + "end": 4591.54, + "probability": 0.9508 + }, + { + "start": 4592.14, + "end": 4595.04, + "probability": 0.4757 + }, + { + "start": 4595.04, + "end": 4595.34, + "probability": 0.5636 + }, + { + "start": 4595.5, + "end": 4597.86, + "probability": 0.973 + }, + { + "start": 4598.26, + "end": 4599.72, + "probability": 0.9795 + }, + { + "start": 4600.34, + "end": 4602.52, + "probability": 0.9502 + }, + { + "start": 4603.06, + "end": 4603.94, + "probability": 0.895 + }, + { + "start": 4604.58, + "end": 4609.22, + "probability": 0.9782 + }, + { + "start": 4609.72, + "end": 4613.38, + "probability": 0.9941 + }, + { + "start": 4613.6, + "end": 4614.74, + "probability": 0.9078 + }, + { + "start": 4615.3, + "end": 4616.34, + "probability": 0.8667 + }, + { + "start": 4616.44, + "end": 4622.36, + "probability": 0.9712 + }, + { + "start": 4622.38, + "end": 4622.76, + "probability": 0.9032 + }, + { + "start": 4624.04, + "end": 4627.82, + "probability": 0.9822 + }, + { + "start": 4628.32, + "end": 4628.98, + "probability": 0.3873 + }, + { + "start": 4629.26, + "end": 4631.5, + "probability": 0.8091 + }, + { + "start": 4633.08, + "end": 4634.92, + "probability": 0.903 + }, + { + "start": 4635.28, + "end": 4637.62, + "probability": 0.9971 + }, + { + "start": 4638.0, + "end": 4638.68, + "probability": 0.9124 + }, + { + "start": 4639.02, + "end": 4640.56, + "probability": 0.9956 + }, + { + "start": 4642.04, + "end": 4644.72, + "probability": 0.8556 + }, + { + "start": 4646.24, + "end": 4649.82, + "probability": 0.9033 + }, + { + "start": 4650.2, + "end": 4652.33, + "probability": 0.969 + }, + { + "start": 4653.32, + "end": 4654.78, + "probability": 0.9833 + }, + { + "start": 4655.82, + "end": 4656.48, + "probability": 0.7118 + }, + { + "start": 4657.1, + "end": 4657.44, + "probability": 0.9546 + }, + { + "start": 4657.98, + "end": 4659.89, + "probability": 0.9634 + }, + { + "start": 4660.96, + "end": 4663.5, + "probability": 0.9966 + }, + { + "start": 4663.94, + "end": 4665.52, + "probability": 0.9784 + }, + { + "start": 4666.44, + "end": 4667.98, + "probability": 0.9941 + }, + { + "start": 4668.4, + "end": 4671.24, + "probability": 0.9576 + }, + { + "start": 4672.54, + "end": 4674.24, + "probability": 0.9871 + }, + { + "start": 4675.66, + "end": 4680.02, + "probability": 0.9943 + }, + { + "start": 4680.5, + "end": 4682.16, + "probability": 0.5695 + }, + { + "start": 4683.04, + "end": 4687.04, + "probability": 0.9936 + }, + { + "start": 4687.36, + "end": 4689.52, + "probability": 0.9673 + }, + { + "start": 4690.0, + "end": 4690.56, + "probability": 0.9194 + }, + { + "start": 4691.66, + "end": 4692.89, + "probability": 0.9985 + }, + { + "start": 4693.4, + "end": 4694.65, + "probability": 0.9928 + }, + { + "start": 4695.24, + "end": 4698.48, + "probability": 0.9924 + }, + { + "start": 4699.16, + "end": 4703.1, + "probability": 0.7189 + }, + { + "start": 4703.5, + "end": 4705.24, + "probability": 0.9809 + }, + { + "start": 4705.24, + "end": 4705.96, + "probability": 0.3371 + }, + { + "start": 4706.42, + "end": 4708.72, + "probability": 0.8325 + }, + { + "start": 4709.22, + "end": 4709.85, + "probability": 0.8184 + }, + { + "start": 4710.08, + "end": 4712.86, + "probability": 0.994 + }, + { + "start": 4713.04, + "end": 4713.26, + "probability": 0.414 + }, + { + "start": 4713.26, + "end": 4713.72, + "probability": 0.3131 + }, + { + "start": 4713.72, + "end": 4716.44, + "probability": 0.9248 + }, + { + "start": 4737.54, + "end": 4739.28, + "probability": 0.8672 + }, + { + "start": 4740.96, + "end": 4742.08, + "probability": 0.7869 + }, + { + "start": 4742.46, + "end": 4743.38, + "probability": 0.8984 + }, + { + "start": 4743.46, + "end": 4744.16, + "probability": 0.9258 + }, + { + "start": 4744.98, + "end": 4746.18, + "probability": 0.8711 + }, + { + "start": 4747.04, + "end": 4750.2, + "probability": 0.996 + }, + { + "start": 4751.22, + "end": 4757.3, + "probability": 0.9983 + }, + { + "start": 4758.0, + "end": 4760.82, + "probability": 0.9966 + }, + { + "start": 4761.42, + "end": 4762.56, + "probability": 0.8467 + }, + { + "start": 4762.86, + "end": 4765.54, + "probability": 0.9984 + }, + { + "start": 4766.1, + "end": 4769.6, + "probability": 0.9839 + }, + { + "start": 4770.62, + "end": 4773.92, + "probability": 0.8759 + }, + { + "start": 4774.52, + "end": 4779.94, + "probability": 0.9949 + }, + { + "start": 4780.38, + "end": 4782.54, + "probability": 0.8979 + }, + { + "start": 4784.32, + "end": 4784.78, + "probability": 0.6738 + }, + { + "start": 4785.68, + "end": 4790.74, + "probability": 0.9888 + }, + { + "start": 4791.32, + "end": 4792.8, + "probability": 0.5561 + }, + { + "start": 4794.0, + "end": 4794.56, + "probability": 0.6719 + }, + { + "start": 4795.3, + "end": 4798.58, + "probability": 0.9887 + }, + { + "start": 4799.22, + "end": 4801.16, + "probability": 0.9848 + }, + { + "start": 4803.0, + "end": 4804.12, + "probability": 0.4297 + }, + { + "start": 4804.86, + "end": 4810.14, + "probability": 0.9849 + }, + { + "start": 4810.78, + "end": 4812.66, + "probability": 0.989 + }, + { + "start": 4813.34, + "end": 4815.7, + "probability": 0.9779 + }, + { + "start": 4816.4, + "end": 4820.24, + "probability": 0.8064 + }, + { + "start": 4820.9, + "end": 4822.7, + "probability": 0.9944 + }, + { + "start": 4827.22, + "end": 4828.24, + "probability": 0.9932 + }, + { + "start": 4829.04, + "end": 4830.7, + "probability": 0.979 + }, + { + "start": 4831.52, + "end": 4832.86, + "probability": 0.9948 + }, + { + "start": 4833.2, + "end": 4833.88, + "probability": 0.8751 + }, + { + "start": 4834.36, + "end": 4835.5, + "probability": 0.9956 + }, + { + "start": 4836.3, + "end": 4838.42, + "probability": 0.9814 + }, + { + "start": 4838.94, + "end": 4840.75, + "probability": 0.941 + }, + { + "start": 4841.74, + "end": 4844.02, + "probability": 0.9976 + }, + { + "start": 4844.58, + "end": 4848.06, + "probability": 0.9722 + }, + { + "start": 4848.06, + "end": 4851.44, + "probability": 0.9904 + }, + { + "start": 4852.18, + "end": 4855.34, + "probability": 0.9797 + }, + { + "start": 4855.9, + "end": 4858.52, + "probability": 0.7168 + }, + { + "start": 4858.74, + "end": 4860.19, + "probability": 0.7735 + }, + { + "start": 4860.94, + "end": 4864.88, + "probability": 0.9624 + }, + { + "start": 4865.46, + "end": 4867.02, + "probability": 0.9533 + }, + { + "start": 4867.1, + "end": 4867.2, + "probability": 0.6315 + }, + { + "start": 4867.42, + "end": 4867.5, + "probability": 0.8025 + }, + { + "start": 4867.54, + "end": 4868.26, + "probability": 0.972 + }, + { + "start": 4868.54, + "end": 4868.74, + "probability": 0.5837 + }, + { + "start": 4869.42, + "end": 4870.06, + "probability": 0.871 + }, + { + "start": 4870.5, + "end": 4874.96, + "probability": 0.7866 + }, + { + "start": 4875.36, + "end": 4879.48, + "probability": 0.9691 + }, + { + "start": 4880.06, + "end": 4881.43, + "probability": 0.9968 + }, + { + "start": 4882.0, + "end": 4882.96, + "probability": 0.9827 + }, + { + "start": 4883.0, + "end": 4883.48, + "probability": 0.8331 + }, + { + "start": 4883.92, + "end": 4885.88, + "probability": 0.9141 + }, + { + "start": 4886.72, + "end": 4887.34, + "probability": 0.6427 + }, + { + "start": 4888.22, + "end": 4889.1, + "probability": 0.8918 + }, + { + "start": 4889.7, + "end": 4890.74, + "probability": 0.966 + }, + { + "start": 4891.34, + "end": 4896.64, + "probability": 0.9976 + }, + { + "start": 4896.9, + "end": 4900.78, + "probability": 0.9985 + }, + { + "start": 4901.2, + "end": 4902.04, + "probability": 0.9757 + }, + { + "start": 4902.62, + "end": 4903.1, + "probability": 0.5731 + }, + { + "start": 4903.18, + "end": 4906.26, + "probability": 0.7139 + }, + { + "start": 4906.44, + "end": 4907.22, + "probability": 0.7605 + }, + { + "start": 4907.26, + "end": 4908.86, + "probability": 0.9424 + }, + { + "start": 4908.9, + "end": 4909.4, + "probability": 0.9023 + }, + { + "start": 4920.94, + "end": 4921.68, + "probability": 0.8999 + }, + { + "start": 4925.84, + "end": 4927.8, + "probability": 0.8259 + }, + { + "start": 4928.14, + "end": 4929.68, + "probability": 0.4995 + }, + { + "start": 4929.84, + "end": 4931.3, + "probability": 0.6983 + }, + { + "start": 4932.78, + "end": 4935.04, + "probability": 0.8499 + }, + { + "start": 4936.84, + "end": 4940.56, + "probability": 0.6572 + }, + { + "start": 4941.18, + "end": 4946.64, + "probability": 0.9738 + }, + { + "start": 4947.06, + "end": 4947.74, + "probability": 0.3704 + }, + { + "start": 4947.86, + "end": 4948.16, + "probability": 0.7211 + }, + { + "start": 4948.22, + "end": 4949.06, + "probability": 0.9426 + }, + { + "start": 4949.4, + "end": 4951.62, + "probability": 0.9904 + }, + { + "start": 4951.7, + "end": 4952.16, + "probability": 0.7559 + }, + { + "start": 4952.5, + "end": 4954.6, + "probability": 0.9876 + }, + { + "start": 4955.46, + "end": 4959.22, + "probability": 0.8874 + }, + { + "start": 4959.86, + "end": 4961.28, + "probability": 0.9315 + }, + { + "start": 4961.46, + "end": 4963.66, + "probability": 0.9183 + }, + { + "start": 4964.44, + "end": 4967.88, + "probability": 0.9965 + }, + { + "start": 4968.02, + "end": 4969.34, + "probability": 0.9896 + }, + { + "start": 4969.68, + "end": 4972.06, + "probability": 0.9991 + }, + { + "start": 4972.98, + "end": 4974.0, + "probability": 0.0066 + }, + { + "start": 4974.0, + "end": 4974.0, + "probability": 0.1473 + }, + { + "start": 4974.0, + "end": 4976.86, + "probability": 0.8638 + }, + { + "start": 4977.62, + "end": 4978.54, + "probability": 0.8901 + }, + { + "start": 4979.02, + "end": 4981.8, + "probability": 0.9788 + }, + { + "start": 4981.8, + "end": 4985.62, + "probability": 0.9565 + }, + { + "start": 4985.76, + "end": 4987.8, + "probability": 0.8467 + }, + { + "start": 4987.88, + "end": 4991.28, + "probability": 0.9918 + }, + { + "start": 4991.96, + "end": 4994.04, + "probability": 0.8276 + }, + { + "start": 4994.2, + "end": 4995.66, + "probability": 0.6899 + }, + { + "start": 4995.96, + "end": 4997.82, + "probability": 0.9927 + }, + { + "start": 4997.94, + "end": 5001.98, + "probability": 0.6691 + }, + { + "start": 5002.48, + "end": 5004.66, + "probability": 0.9885 + }, + { + "start": 5005.0, + "end": 5005.6, + "probability": 0.4217 + }, + { + "start": 5006.18, + "end": 5007.84, + "probability": 0.6633 + }, + { + "start": 5007.96, + "end": 5007.96, + "probability": 0.3545 + }, + { + "start": 5007.96, + "end": 5009.58, + "probability": 0.4596 + }, + { + "start": 5009.92, + "end": 5013.02, + "probability": 0.9958 + }, + { + "start": 5013.02, + "end": 5015.7, + "probability": 0.9985 + }, + { + "start": 5016.02, + "end": 5019.18, + "probability": 0.9392 + }, + { + "start": 5019.32, + "end": 5024.18, + "probability": 0.7141 + }, + { + "start": 5024.26, + "end": 5025.3, + "probability": 0.8915 + }, + { + "start": 5025.56, + "end": 5031.14, + "probability": 0.7971 + }, + { + "start": 5031.22, + "end": 5033.98, + "probability": 0.9283 + }, + { + "start": 5034.26, + "end": 5036.28, + "probability": 0.9768 + }, + { + "start": 5036.4, + "end": 5038.56, + "probability": 0.9414 + }, + { + "start": 5038.7, + "end": 5040.14, + "probability": 0.9835 + }, + { + "start": 5040.38, + "end": 5041.52, + "probability": 0.9985 + }, + { + "start": 5041.64, + "end": 5043.48, + "probability": 0.9929 + }, + { + "start": 5043.98, + "end": 5045.52, + "probability": 0.912 + }, + { + "start": 5045.56, + "end": 5047.42, + "probability": 0.9352 + }, + { + "start": 5047.92, + "end": 5049.54, + "probability": 0.9863 + }, + { + "start": 5049.62, + "end": 5053.98, + "probability": 0.9849 + }, + { + "start": 5054.36, + "end": 5055.8, + "probability": 0.9288 + }, + { + "start": 5056.24, + "end": 5058.64, + "probability": 0.9091 + }, + { + "start": 5059.38, + "end": 5060.6, + "probability": 0.9868 + }, + { + "start": 5060.88, + "end": 5062.19, + "probability": 0.98 + }, + { + "start": 5062.56, + "end": 5065.28, + "probability": 0.9929 + }, + { + "start": 5065.98, + "end": 5068.34, + "probability": 0.9913 + }, + { + "start": 5068.38, + "end": 5072.9, + "probability": 0.9912 + }, + { + "start": 5073.6, + "end": 5074.31, + "probability": 0.5092 + }, + { + "start": 5075.68, + "end": 5080.4, + "probability": 0.8189 + }, + { + "start": 5080.48, + "end": 5081.04, + "probability": 0.4666 + }, + { + "start": 5081.04, + "end": 5081.58, + "probability": 0.8326 + }, + { + "start": 5081.66, + "end": 5082.83, + "probability": 0.8521 + }, + { + "start": 5084.26, + "end": 5085.22, + "probability": 0.8737 + }, + { + "start": 5085.32, + "end": 5087.08, + "probability": 0.9185 + }, + { + "start": 5087.14, + "end": 5087.96, + "probability": 0.8914 + }, + { + "start": 5088.1, + "end": 5089.34, + "probability": 0.9852 + }, + { + "start": 5089.42, + "end": 5092.88, + "probability": 0.9927 + }, + { + "start": 5093.04, + "end": 5094.08, + "probability": 0.4295 + }, + { + "start": 5094.44, + "end": 5098.64, + "probability": 0.7074 + }, + { + "start": 5098.64, + "end": 5098.66, + "probability": 0.0945 + }, + { + "start": 5098.66, + "end": 5103.4, + "probability": 0.5453 + }, + { + "start": 5103.66, + "end": 5103.72, + "probability": 0.5269 + }, + { + "start": 5103.72, + "end": 5108.5, + "probability": 0.7879 + }, + { + "start": 5108.58, + "end": 5111.16, + "probability": 0.647 + }, + { + "start": 5111.26, + "end": 5116.92, + "probability": 0.6256 + }, + { + "start": 5118.16, + "end": 5120.84, + "probability": 0.9933 + }, + { + "start": 5120.98, + "end": 5121.14, + "probability": 0.2056 + }, + { + "start": 5122.0, + "end": 5122.92, + "probability": 0.2631 + }, + { + "start": 5123.1, + "end": 5127.4, + "probability": 0.9375 + }, + { + "start": 5127.72, + "end": 5129.52, + "probability": 0.8814 + }, + { + "start": 5129.9, + "end": 5133.1, + "probability": 0.6997 + }, + { + "start": 5133.36, + "end": 5134.64, + "probability": 0.9331 + }, + { + "start": 5134.78, + "end": 5135.9, + "probability": 0.7637 + }, + { + "start": 5136.02, + "end": 5137.26, + "probability": 0.9634 + }, + { + "start": 5137.42, + "end": 5138.62, + "probability": 0.9446 + }, + { + "start": 5138.94, + "end": 5141.32, + "probability": 0.9829 + }, + { + "start": 5141.34, + "end": 5142.72, + "probability": 0.7269 + }, + { + "start": 5143.02, + "end": 5144.0, + "probability": 0.9225 + }, + { + "start": 5144.18, + "end": 5145.72, + "probability": 0.8667 + }, + { + "start": 5145.96, + "end": 5146.96, + "probability": 0.8752 + }, + { + "start": 5147.14, + "end": 5149.72, + "probability": 0.924 + }, + { + "start": 5149.88, + "end": 5151.2, + "probability": 0.9587 + }, + { + "start": 5151.24, + "end": 5152.82, + "probability": 0.9902 + }, + { + "start": 5153.2, + "end": 5153.54, + "probability": 0.8176 + }, + { + "start": 5153.66, + "end": 5154.48, + "probability": 0.7044 + }, + { + "start": 5155.1, + "end": 5157.64, + "probability": 0.9976 + }, + { + "start": 5158.02, + "end": 5159.62, + "probability": 0.918 + }, + { + "start": 5160.24, + "end": 5161.26, + "probability": 0.8142 + }, + { + "start": 5161.36, + "end": 5164.04, + "probability": 0.9668 + }, + { + "start": 5164.66, + "end": 5169.26, + "probability": 0.9982 + }, + { + "start": 5169.9, + "end": 5170.98, + "probability": 0.71 + }, + { + "start": 5171.7, + "end": 5175.94, + "probability": 0.9563 + }, + { + "start": 5176.86, + "end": 5177.58, + "probability": 0.901 + }, + { + "start": 5199.04, + "end": 5201.12, + "probability": 0.7736 + }, + { + "start": 5203.32, + "end": 5205.32, + "probability": 0.9943 + }, + { + "start": 5206.6, + "end": 5210.8, + "probability": 0.9668 + }, + { + "start": 5212.96, + "end": 5216.02, + "probability": 0.9958 + }, + { + "start": 5219.34, + "end": 5220.54, + "probability": 0.3882 + }, + { + "start": 5220.54, + "end": 5221.74, + "probability": 0.7551 + }, + { + "start": 5222.88, + "end": 5227.76, + "probability": 0.9777 + }, + { + "start": 5227.84, + "end": 5231.88, + "probability": 0.8846 + }, + { + "start": 5232.82, + "end": 5233.12, + "probability": 0.2642 + }, + { + "start": 5235.04, + "end": 5237.56, + "probability": 0.7942 + }, + { + "start": 5238.56, + "end": 5240.34, + "probability": 0.6622 + }, + { + "start": 5242.74, + "end": 5243.58, + "probability": 0.3743 + }, + { + "start": 5244.68, + "end": 5245.62, + "probability": 0.732 + }, + { + "start": 5246.44, + "end": 5247.96, + "probability": 0.7767 + }, + { + "start": 5249.02, + "end": 5251.58, + "probability": 0.9868 + }, + { + "start": 5251.92, + "end": 5252.4, + "probability": 0.6604 + }, + { + "start": 5252.5, + "end": 5253.2, + "probability": 0.8421 + }, + { + "start": 5253.34, + "end": 5253.84, + "probability": 0.5445 + }, + { + "start": 5253.94, + "end": 5254.9, + "probability": 0.3426 + }, + { + "start": 5258.42, + "end": 5261.38, + "probability": 0.571 + }, + { + "start": 5262.06, + "end": 5262.84, + "probability": 0.7301 + }, + { + "start": 5263.83, + "end": 5265.95, + "probability": 0.7782 + }, + { + "start": 5266.22, + "end": 5267.26, + "probability": 0.9078 + }, + { + "start": 5267.9, + "end": 5269.3, + "probability": 0.9884 + }, + { + "start": 5271.28, + "end": 5271.94, + "probability": 0.8103 + }, + { + "start": 5272.78, + "end": 5275.14, + "probability": 0.8819 + }, + { + "start": 5276.16, + "end": 5277.82, + "probability": 0.9907 + }, + { + "start": 5278.76, + "end": 5280.44, + "probability": 0.9919 + }, + { + "start": 5281.74, + "end": 5282.18, + "probability": 0.0059 + }, + { + "start": 5283.02, + "end": 5285.34, + "probability": 0.2146 + }, + { + "start": 5286.58, + "end": 5286.58, + "probability": 0.1757 + }, + { + "start": 5286.58, + "end": 5286.58, + "probability": 0.0407 + }, + { + "start": 5286.58, + "end": 5288.4, + "probability": 0.5553 + }, + { + "start": 5289.56, + "end": 5290.34, + "probability": 0.8225 + }, + { + "start": 5291.02, + "end": 5296.1, + "probability": 0.9625 + }, + { + "start": 5297.08, + "end": 5299.56, + "probability": 0.9955 + }, + { + "start": 5301.2, + "end": 5301.76, + "probability": 0.9783 + }, + { + "start": 5303.14, + "end": 5304.16, + "probability": 0.9731 + }, + { + "start": 5304.24, + "end": 5307.49, + "probability": 0.9983 + }, + { + "start": 5308.58, + "end": 5309.1, + "probability": 0.6765 + }, + { + "start": 5309.18, + "end": 5312.18, + "probability": 0.4189 + }, + { + "start": 5312.38, + "end": 5312.54, + "probability": 0.4901 + }, + { + "start": 5312.58, + "end": 5313.22, + "probability": 0.8494 + }, + { + "start": 5313.5, + "end": 5315.88, + "probability": 0.6883 + }, + { + "start": 5315.88, + "end": 5317.42, + "probability": 0.5734 + }, + { + "start": 5317.76, + "end": 5323.2, + "probability": 0.3101 + }, + { + "start": 5323.44, + "end": 5324.9, + "probability": 0.6534 + }, + { + "start": 5326.2, + "end": 5328.58, + "probability": 0.6729 + }, + { + "start": 5329.12, + "end": 5329.12, + "probability": 0.1406 + }, + { + "start": 5329.12, + "end": 5329.12, + "probability": 0.0809 + }, + { + "start": 5329.12, + "end": 5329.12, + "probability": 0.3889 + }, + { + "start": 5329.12, + "end": 5329.56, + "probability": 0.4355 + }, + { + "start": 5329.68, + "end": 5330.9, + "probability": 0.9609 + }, + { + "start": 5331.52, + "end": 5332.76, + "probability": 0.4352 + }, + { + "start": 5333.06, + "end": 5337.2, + "probability": 0.7948 + }, + { + "start": 5337.3, + "end": 5337.76, + "probability": 0.805 + }, + { + "start": 5337.84, + "end": 5338.08, + "probability": 0.436 + }, + { + "start": 5338.28, + "end": 5339.32, + "probability": 0.8683 + }, + { + "start": 5339.74, + "end": 5341.22, + "probability": 0.4521 + }, + { + "start": 5341.32, + "end": 5341.32, + "probability": 0.0972 + }, + { + "start": 5341.32, + "end": 5343.74, + "probability": 0.7269 + }, + { + "start": 5344.42, + "end": 5346.14, + "probability": 0.9646 + }, + { + "start": 5346.34, + "end": 5349.22, + "probability": 0.9832 + }, + { + "start": 5349.46, + "end": 5349.86, + "probability": 0.765 + }, + { + "start": 5350.68, + "end": 5354.9, + "probability": 0.8352 + }, + { + "start": 5355.04, + "end": 5355.56, + "probability": 0.5246 + }, + { + "start": 5355.62, + "end": 5356.42, + "probability": 0.9794 + }, + { + "start": 5357.18, + "end": 5358.18, + "probability": 0.8918 + }, + { + "start": 5358.42, + "end": 5359.56, + "probability": 0.8988 + }, + { + "start": 5359.6, + "end": 5362.32, + "probability": 0.9392 + }, + { + "start": 5362.5, + "end": 5364.3, + "probability": 0.9608 + }, + { + "start": 5364.66, + "end": 5365.34, + "probability": 0.4744 + }, + { + "start": 5365.6, + "end": 5366.62, + "probability": 0.7148 + }, + { + "start": 5367.22, + "end": 5370.6, + "probability": 0.7027 + }, + { + "start": 5370.98, + "end": 5371.88, + "probability": 0.4214 + }, + { + "start": 5372.5, + "end": 5375.86, + "probability": 0.8835 + }, + { + "start": 5376.74, + "end": 5377.68, + "probability": 0.9961 + }, + { + "start": 5377.76, + "end": 5378.46, + "probability": 0.9946 + }, + { + "start": 5378.54, + "end": 5380.5, + "probability": 0.1203 + }, + { + "start": 5380.76, + "end": 5383.56, + "probability": 0.9989 + }, + { + "start": 5383.76, + "end": 5386.14, + "probability": 0.9944 + }, + { + "start": 5386.22, + "end": 5388.38, + "probability": 0.8595 + }, + { + "start": 5388.96, + "end": 5389.56, + "probability": 0.9575 + }, + { + "start": 5391.66, + "end": 5395.14, + "probability": 0.9756 + }, + { + "start": 5395.6, + "end": 5396.7, + "probability": 0.9507 + }, + { + "start": 5397.44, + "end": 5399.56, + "probability": 0.5132 + }, + { + "start": 5399.7, + "end": 5403.66, + "probability": 0.9558 + }, + { + "start": 5404.12, + "end": 5405.2, + "probability": 0.7626 + }, + { + "start": 5405.24, + "end": 5406.38, + "probability": 0.8498 + }, + { + "start": 5406.56, + "end": 5407.5, + "probability": 0.7263 + }, + { + "start": 5408.1, + "end": 5409.28, + "probability": 0.9496 + }, + { + "start": 5409.44, + "end": 5409.93, + "probability": 0.7739 + }, + { + "start": 5410.74, + "end": 5411.28, + "probability": 0.8589 + }, + { + "start": 5411.98, + "end": 5413.52, + "probability": 0.9958 + }, + { + "start": 5413.64, + "end": 5415.54, + "probability": 0.9938 + }, + { + "start": 5415.86, + "end": 5416.62, + "probability": 0.8484 + }, + { + "start": 5417.14, + "end": 5418.14, + "probability": 0.8164 + }, + { + "start": 5419.08, + "end": 5419.12, + "probability": 0.1404 + }, + { + "start": 5419.12, + "end": 5420.36, + "probability": 0.9639 + }, + { + "start": 5420.9, + "end": 5422.06, + "probability": 0.9387 + }, + { + "start": 5422.36, + "end": 5423.6, + "probability": 0.9312 + }, + { + "start": 5423.7, + "end": 5426.22, + "probability": 0.9359 + }, + { + "start": 5426.62, + "end": 5430.0, + "probability": 0.9968 + }, + { + "start": 5430.64, + "end": 5431.8, + "probability": 0.9214 + }, + { + "start": 5432.48, + "end": 5437.28, + "probability": 0.9927 + }, + { + "start": 5437.28, + "end": 5437.28, + "probability": 0.0299 + }, + { + "start": 5437.28, + "end": 5437.28, + "probability": 0.0292 + }, + { + "start": 5437.28, + "end": 5438.4, + "probability": 0.6147 + }, + { + "start": 5439.82, + "end": 5444.62, + "probability": 0.9788 + }, + { + "start": 5445.3, + "end": 5452.9, + "probability": 0.9953 + }, + { + "start": 5453.82, + "end": 5459.28, + "probability": 0.935 + }, + { + "start": 5459.96, + "end": 5460.92, + "probability": 0.8711 + }, + { + "start": 5461.46, + "end": 5462.82, + "probability": 0.7526 + }, + { + "start": 5463.64, + "end": 5463.64, + "probability": 0.0223 + }, + { + "start": 5463.64, + "end": 5468.72, + "probability": 0.9838 + }, + { + "start": 5469.38, + "end": 5475.58, + "probability": 0.8557 + }, + { + "start": 5475.58, + "end": 5476.1, + "probability": 0.0807 + }, + { + "start": 5478.92, + "end": 5480.12, + "probability": 0.1044 + }, + { + "start": 5480.32, + "end": 5483.4, + "probability": 0.4071 + }, + { + "start": 5483.46, + "end": 5484.9, + "probability": 0.2271 + }, + { + "start": 5485.14, + "end": 5485.14, + "probability": 0.164 + }, + { + "start": 5485.14, + "end": 5487.33, + "probability": 0.6188 + }, + { + "start": 5488.28, + "end": 5488.82, + "probability": 0.3352 + }, + { + "start": 5489.82, + "end": 5491.15, + "probability": 0.0251 + }, + { + "start": 5491.76, + "end": 5495.78, + "probability": 0.1024 + }, + { + "start": 5497.36, + "end": 5501.68, + "probability": 0.2986 + }, + { + "start": 5502.84, + "end": 5503.4, + "probability": 0.0713 + }, + { + "start": 5503.8, + "end": 5505.48, + "probability": 0.2596 + }, + { + "start": 5505.56, + "end": 5505.74, + "probability": 0.0049 + }, + { + "start": 5506.62, + "end": 5507.3, + "probability": 0.0004 + }, + { + "start": 5507.3, + "end": 5508.8, + "probability": 0.0825 + }, + { + "start": 5509.54, + "end": 5511.44, + "probability": 0.1401 + }, + { + "start": 5513.7, + "end": 5513.82, + "probability": 0.0634 + }, + { + "start": 5514.74, + "end": 5515.3, + "probability": 0.1131 + }, + { + "start": 5515.3, + "end": 5515.44, + "probability": 0.1199 + }, + { + "start": 5517.83, + "end": 5520.0, + "probability": 0.1986 + }, + { + "start": 5521.66, + "end": 5521.66, + "probability": 0.0469 + }, + { + "start": 5521.66, + "end": 5521.66, + "probability": 0.0406 + }, + { + "start": 5521.66, + "end": 5521.66, + "probability": 0.0349 + }, + { + "start": 5521.66, + "end": 5521.66, + "probability": 0.067 + }, + { + "start": 5521.66, + "end": 5523.1, + "probability": 0.9719 + }, + { + "start": 5524.1, + "end": 5525.8, + "probability": 0.8608 + }, + { + "start": 5527.9, + "end": 5531.92, + "probability": 0.5522 + }, + { + "start": 5533.66, + "end": 5534.5, + "probability": 0.3821 + }, + { + "start": 5534.62, + "end": 5535.49, + "probability": 0.4499 + }, + { + "start": 5537.56, + "end": 5538.68, + "probability": 0.6002 + }, + { + "start": 5539.6, + "end": 5542.28, + "probability": 0.9812 + }, + { + "start": 5543.5, + "end": 5545.66, + "probability": 0.9806 + }, + { + "start": 5546.5, + "end": 5549.12, + "probability": 0.9463 + }, + { + "start": 5550.28, + "end": 5552.64, + "probability": 0.9718 + }, + { + "start": 5553.6, + "end": 5554.94, + "probability": 0.9678 + }, + { + "start": 5555.9, + "end": 5558.63, + "probability": 0.201 + }, + { + "start": 5560.58, + "end": 5560.64, + "probability": 0.0086 + }, + { + "start": 5560.64, + "end": 5560.64, + "probability": 0.0712 + }, + { + "start": 5560.64, + "end": 5560.64, + "probability": 0.1286 + }, + { + "start": 5560.64, + "end": 5561.36, + "probability": 0.0389 + }, + { + "start": 5561.36, + "end": 5565.08, + "probability": 0.8048 + }, + { + "start": 5566.86, + "end": 5568.09, + "probability": 0.7215 + }, + { + "start": 5569.12, + "end": 5570.26, + "probability": 0.903 + }, + { + "start": 5570.74, + "end": 5572.5, + "probability": 0.8828 + }, + { + "start": 5573.14, + "end": 5575.71, + "probability": 0.9354 + }, + { + "start": 5576.76, + "end": 5579.7, + "probability": 0.9866 + }, + { + "start": 5580.0, + "end": 5581.34, + "probability": 0.9973 + }, + { + "start": 5581.84, + "end": 5584.12, + "probability": 0.98 + }, + { + "start": 5585.9, + "end": 5586.7, + "probability": 0.7069 + }, + { + "start": 5587.14, + "end": 5588.82, + "probability": 0.999 + }, + { + "start": 5589.68, + "end": 5591.5, + "probability": 0.9647 + }, + { + "start": 5591.62, + "end": 5594.2, + "probability": 0.9916 + }, + { + "start": 5595.3, + "end": 5596.18, + "probability": 0.0644 + }, + { + "start": 5596.42, + "end": 5596.46, + "probability": 0.4079 + }, + { + "start": 5596.46, + "end": 5599.14, + "probability": 0.8719 + }, + { + "start": 5599.62, + "end": 5601.06, + "probability": 0.9285 + }, + { + "start": 5601.42, + "end": 5602.02, + "probability": 0.9334 + }, + { + "start": 5602.48, + "end": 5603.54, + "probability": 0.7739 + }, + { + "start": 5604.34, + "end": 5605.66, + "probability": 0.8533 + }, + { + "start": 5606.82, + "end": 5608.14, + "probability": 0.9991 + }, + { + "start": 5608.76, + "end": 5610.8, + "probability": 0.849 + }, + { + "start": 5611.98, + "end": 5613.66, + "probability": 0.3505 + }, + { + "start": 5613.88, + "end": 5615.02, + "probability": 0.2758 + }, + { + "start": 5615.74, + "end": 5617.46, + "probability": 0.3384 + }, + { + "start": 5618.46, + "end": 5619.52, + "probability": 0.4216 + }, + { + "start": 5619.52, + "end": 5619.52, + "probability": 0.1381 + }, + { + "start": 5619.52, + "end": 5619.52, + "probability": 0.2836 + }, + { + "start": 5619.52, + "end": 5619.52, + "probability": 0.2459 + }, + { + "start": 5619.52, + "end": 5619.98, + "probability": 0.1451 + }, + { + "start": 5621.04, + "end": 5623.12, + "probability": 0.6886 + }, + { + "start": 5623.7, + "end": 5625.0, + "probability": 0.8279 + }, + { + "start": 5625.84, + "end": 5628.12, + "probability": 0.8164 + }, + { + "start": 5628.24, + "end": 5629.1, + "probability": 0.7496 + }, + { + "start": 5629.64, + "end": 5631.12, + "probability": 0.9984 + }, + { + "start": 5631.62, + "end": 5633.64, + "probability": 0.9563 + }, + { + "start": 5633.8, + "end": 5634.58, + "probability": 0.6095 + }, + { + "start": 5634.82, + "end": 5638.68, + "probability": 0.9695 + }, + { + "start": 5639.38, + "end": 5641.26, + "probability": 0.831 + }, + { + "start": 5641.7, + "end": 5643.38, + "probability": 0.9647 + }, + { + "start": 5643.76, + "end": 5646.7, + "probability": 0.9946 + }, + { + "start": 5647.14, + "end": 5648.94, + "probability": 0.828 + }, + { + "start": 5649.7, + "end": 5653.94, + "probability": 0.9009 + }, + { + "start": 5654.5, + "end": 5654.74, + "probability": 0.0486 + }, + { + "start": 5657.78, + "end": 5659.3, + "probability": 0.0087 + }, + { + "start": 5660.8, + "end": 5663.72, + "probability": 0.5244 + }, + { + "start": 5663.72, + "end": 5664.88, + "probability": 0.1041 + }, + { + "start": 5665.0, + "end": 5666.44, + "probability": 0.5476 + }, + { + "start": 5667.16, + "end": 5667.8, + "probability": 0.5809 + }, + { + "start": 5667.98, + "end": 5668.12, + "probability": 0.3349 + }, + { + "start": 5668.12, + "end": 5668.32, + "probability": 0.4933 + }, + { + "start": 5668.32, + "end": 5669.66, + "probability": 0.6978 + }, + { + "start": 5670.4, + "end": 5673.52, + "probability": 0.9964 + }, + { + "start": 5674.72, + "end": 5676.22, + "probability": 0.7774 + }, + { + "start": 5676.3, + "end": 5678.04, + "probability": 0.9625 + }, + { + "start": 5678.1, + "end": 5679.86, + "probability": 0.8173 + }, + { + "start": 5680.16, + "end": 5681.52, + "probability": 0.9497 + }, + { + "start": 5681.78, + "end": 5682.6, + "probability": 0.9275 + }, + { + "start": 5683.06, + "end": 5684.18, + "probability": 0.986 + }, + { + "start": 5684.72, + "end": 5686.9, + "probability": 0.9239 + }, + { + "start": 5687.14, + "end": 5688.66, + "probability": 0.5474 + }, + { + "start": 5689.46, + "end": 5690.26, + "probability": 0.9004 + }, + { + "start": 5690.68, + "end": 5692.78, + "probability": 0.7214 + }, + { + "start": 5692.82, + "end": 5693.38, + "probability": 0.5615 + }, + { + "start": 5693.94, + "end": 5694.98, + "probability": 0.6597 + }, + { + "start": 5695.08, + "end": 5695.64, + "probability": 0.6629 + }, + { + "start": 5695.72, + "end": 5697.01, + "probability": 0.9613 + }, + { + "start": 5697.28, + "end": 5698.32, + "probability": 0.7341 + }, + { + "start": 5698.42, + "end": 5699.06, + "probability": 0.8982 + }, + { + "start": 5699.14, + "end": 5700.48, + "probability": 0.942 + }, + { + "start": 5700.64, + "end": 5701.98, + "probability": 0.7156 + }, + { + "start": 5702.04, + "end": 5703.24, + "probability": 0.8947 + }, + { + "start": 5703.3, + "end": 5703.88, + "probability": 0.9169 + }, + { + "start": 5704.9, + "end": 5705.92, + "probability": 0.1916 + }, + { + "start": 5708.56, + "end": 5710.98, + "probability": 0.751 + }, + { + "start": 5711.26, + "end": 5711.84, + "probability": 0.7241 + }, + { + "start": 5711.94, + "end": 5712.38, + "probability": 0.9294 + }, + { + "start": 5713.13, + "end": 5716.32, + "probability": 0.8353 + }, + { + "start": 5716.32, + "end": 5717.56, + "probability": 0.2145 + }, + { + "start": 5717.9, + "end": 5721.3, + "probability": 0.4208 + }, + { + "start": 5722.58, + "end": 5723.08, + "probability": 0.2304 + }, + { + "start": 5723.08, + "end": 5725.2, + "probability": 0.0599 + }, + { + "start": 5725.67, + "end": 5727.98, + "probability": 0.0438 + }, + { + "start": 5729.02, + "end": 5733.64, + "probability": 0.1768 + }, + { + "start": 5734.28, + "end": 5736.06, + "probability": 0.2845 + }, + { + "start": 5736.62, + "end": 5739.88, + "probability": 0.655 + }, + { + "start": 5750.64, + "end": 5751.42, + "probability": 0.1396 + }, + { + "start": 5754.1, + "end": 5754.2, + "probability": 0.0197 + }, + { + "start": 5756.46, + "end": 5757.89, + "probability": 0.0081 + }, + { + "start": 5758.38, + "end": 5758.4, + "probability": 0.0604 + }, + { + "start": 5758.4, + "end": 5758.4, + "probability": 0.0952 + }, + { + "start": 5758.4, + "end": 5763.22, + "probability": 0.0535 + }, + { + "start": 5764.5, + "end": 5765.26, + "probability": 0.1731 + }, + { + "start": 5766.38, + "end": 5766.58, + "probability": 0.0858 + }, + { + "start": 5769.73, + "end": 5771.44, + "probability": 0.1007 + }, + { + "start": 5772.3, + "end": 5772.76, + "probability": 0.0993 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5811.0, + "end": 5811.0, + "probability": 0.0 + }, + { + "start": 5812.59, + "end": 5817.28, + "probability": 0.1061 + }, + { + "start": 5820.99, + "end": 5821.2, + "probability": 0.0753 + }, + { + "start": 5821.26, + "end": 5824.26, + "probability": 0.0481 + }, + { + "start": 5824.98, + "end": 5826.52, + "probability": 0.0909 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.0, + "end": 5934.0, + "probability": 0.0 + }, + { + "start": 5934.12, + "end": 5935.3, + "probability": 0.1182 + }, + { + "start": 5936.66, + "end": 5937.2, + "probability": 0.0365 + }, + { + "start": 5938.86, + "end": 5940.56, + "probability": 0.9122 + }, + { + "start": 5941.04, + "end": 5947.72, + "probability": 0.9941 + }, + { + "start": 5948.02, + "end": 5948.02, + "probability": 0.1471 + }, + { + "start": 5948.02, + "end": 5948.58, + "probability": 0.6763 + }, + { + "start": 5948.6, + "end": 5953.16, + "probability": 0.9822 + }, + { + "start": 5953.84, + "end": 5953.94, + "probability": 0.0951 + }, + { + "start": 5953.94, + "end": 5955.34, + "probability": 0.9575 + }, + { + "start": 5956.26, + "end": 5956.56, + "probability": 0.9195 + }, + { + "start": 5956.62, + "end": 5959.88, + "probability": 0.2763 + }, + { + "start": 5959.92, + "end": 5963.34, + "probability": 0.0777 + }, + { + "start": 5964.24, + "end": 5967.52, + "probability": 0.8034 + }, + { + "start": 5967.52, + "end": 5968.32, + "probability": 0.2242 + }, + { + "start": 5968.32, + "end": 5969.22, + "probability": 0.1809 + }, + { + "start": 5970.28, + "end": 5971.3, + "probability": 0.991 + }, + { + "start": 5972.93, + "end": 5976.04, + "probability": 0.8837 + }, + { + "start": 5977.8, + "end": 5979.39, + "probability": 0.073 + }, + { + "start": 5981.2, + "end": 5981.34, + "probability": 0.1776 + }, + { + "start": 5982.48, + "end": 5986.42, + "probability": 0.9089 + }, + { + "start": 5990.48, + "end": 5991.56, + "probability": 0.7118 + }, + { + "start": 5993.08, + "end": 5994.18, + "probability": 0.9833 + }, + { + "start": 5995.36, + "end": 5996.13, + "probability": 0.874 + }, + { + "start": 5998.12, + "end": 5999.12, + "probability": 0.952 + }, + { + "start": 6000.04, + "end": 6002.06, + "probability": 0.8362 + }, + { + "start": 6004.1, + "end": 6005.66, + "probability": 0.9949 + }, + { + "start": 6007.1, + "end": 6008.9, + "probability": 0.998 + }, + { + "start": 6010.38, + "end": 6013.04, + "probability": 0.938 + }, + { + "start": 6014.46, + "end": 6015.24, + "probability": 0.811 + }, + { + "start": 6016.8, + "end": 6019.38, + "probability": 0.8076 + }, + { + "start": 6020.62, + "end": 6023.68, + "probability": 0.4136 + }, + { + "start": 6024.32, + "end": 6024.5, + "probability": 0.2632 + }, + { + "start": 6024.5, + "end": 6027.4, + "probability": 0.7821 + }, + { + "start": 6028.26, + "end": 6031.56, + "probability": 0.7064 + }, + { + "start": 6031.64, + "end": 6032.34, + "probability": 0.8233 + }, + { + "start": 6033.04, + "end": 6034.78, + "probability": 0.9888 + }, + { + "start": 6035.5, + "end": 6035.5, + "probability": 0.7133 + }, + { + "start": 6035.5, + "end": 6042.22, + "probability": 0.908 + }, + { + "start": 6043.94, + "end": 6045.68, + "probability": 0.9458 + }, + { + "start": 6046.14, + "end": 6046.7, + "probability": 0.4153 + }, + { + "start": 6047.28, + "end": 6051.36, + "probability": 0.9955 + }, + { + "start": 6052.8, + "end": 6056.76, + "probability": 0.9905 + }, + { + "start": 6057.82, + "end": 6060.7, + "probability": 0.2479 + }, + { + "start": 6060.7, + "end": 6063.23, + "probability": 0.6971 + }, + { + "start": 6065.22, + "end": 6065.48, + "probability": 0.4161 + }, + { + "start": 6065.48, + "end": 6065.76, + "probability": 0.3237 + }, + { + "start": 6065.76, + "end": 6067.12, + "probability": 0.8289 + }, + { + "start": 6067.12, + "end": 6067.14, + "probability": 0.5479 + }, + { + "start": 6067.14, + "end": 6070.1, + "probability": 0.9958 + }, + { + "start": 6070.78, + "end": 6073.52, + "probability": 0.9935 + }, + { + "start": 6074.14, + "end": 6074.16, + "probability": 0.3447 + }, + { + "start": 6074.16, + "end": 6077.42, + "probability": 0.9488 + }, + { + "start": 6077.62, + "end": 6078.24, + "probability": 0.4325 + }, + { + "start": 6078.44, + "end": 6081.06, + "probability": 0.9966 + }, + { + "start": 6081.06, + "end": 6081.48, + "probability": 0.7809 + }, + { + "start": 6081.66, + "end": 6084.28, + "probability": 0.998 + }, + { + "start": 6084.4, + "end": 6088.84, + "probability": 0.996 + }, + { + "start": 6089.0, + "end": 6090.54, + "probability": 0.0482 + }, + { + "start": 6091.24, + "end": 6092.32, + "probability": 0.6641 + }, + { + "start": 6092.58, + "end": 6093.52, + "probability": 0.6683 + }, + { + "start": 6095.02, + "end": 6095.2, + "probability": 0.0387 + }, + { + "start": 6095.2, + "end": 6095.2, + "probability": 0.415 + }, + { + "start": 6095.2, + "end": 6097.1, + "probability": 0.6984 + }, + { + "start": 6103.58, + "end": 6106.56, + "probability": 0.7582 + }, + { + "start": 6106.66, + "end": 6111.44, + "probability": 0.7737 + }, + { + "start": 6111.44, + "end": 6112.8, + "probability": 0.8591 + }, + { + "start": 6113.36, + "end": 6114.72, + "probability": 0.928 + }, + { + "start": 6115.23, + "end": 6119.26, + "probability": 0.3608 + }, + { + "start": 6120.08, + "end": 6123.72, + "probability": 0.5941 + }, + { + "start": 6124.1, + "end": 6126.56, + "probability": 0.3919 + }, + { + "start": 6127.68, + "end": 6130.74, + "probability": 0.73 + }, + { + "start": 6132.64, + "end": 6135.9, + "probability": 0.9008 + }, + { + "start": 6137.5, + "end": 6142.76, + "probability": 0.8757 + }, + { + "start": 6142.98, + "end": 6146.98, + "probability": 0.9906 + }, + { + "start": 6148.74, + "end": 6149.53, + "probability": 0.937 + }, + { + "start": 6149.72, + "end": 6155.06, + "probability": 0.9897 + }, + { + "start": 6155.5, + "end": 6159.3, + "probability": 0.6722 + }, + { + "start": 6159.44, + "end": 6159.54, + "probability": 0.538 + }, + { + "start": 6159.54, + "end": 6162.54, + "probability": 0.9976 + }, + { + "start": 6163.28, + "end": 6166.48, + "probability": 0.8073 + }, + { + "start": 6166.78, + "end": 6168.94, + "probability": 0.3823 + }, + { + "start": 6168.94, + "end": 6169.77, + "probability": 0.9747 + }, + { + "start": 6171.3, + "end": 6176.28, + "probability": 0.9414 + }, + { + "start": 6179.04, + "end": 6184.12, + "probability": 0.8638 + }, + { + "start": 6185.72, + "end": 6186.56, + "probability": 0.9021 + }, + { + "start": 6186.64, + "end": 6187.04, + "probability": 0.7545 + }, + { + "start": 6187.16, + "end": 6188.62, + "probability": 0.8898 + }, + { + "start": 6188.66, + "end": 6189.44, + "probability": 0.6912 + }, + { + "start": 6189.54, + "end": 6190.42, + "probability": 0.5647 + }, + { + "start": 6190.54, + "end": 6194.32, + "probability": 0.9987 + }, + { + "start": 6194.32, + "end": 6197.54, + "probability": 0.9956 + }, + { + "start": 6197.74, + "end": 6198.68, + "probability": 0.7593 + }, + { + "start": 6198.84, + "end": 6199.16, + "probability": 0.9496 + }, + { + "start": 6199.3, + "end": 6199.78, + "probability": 0.7598 + }, + { + "start": 6200.06, + "end": 6200.06, + "probability": 0.6205 + }, + { + "start": 6200.24, + "end": 6201.56, + "probability": 0.9519 + }, + { + "start": 6201.76, + "end": 6202.14, + "probability": 0.0127 + }, + { + "start": 6202.14, + "end": 6207.02, + "probability": 0.7771 + }, + { + "start": 6207.62, + "end": 6208.0, + "probability": 0.8533 + }, + { + "start": 6209.29, + "end": 6214.6, + "probability": 0.9995 + }, + { + "start": 6215.88, + "end": 6216.7, + "probability": 0.9871 + }, + { + "start": 6217.92, + "end": 6223.02, + "probability": 0.9848 + }, + { + "start": 6224.36, + "end": 6228.16, + "probability": 0.9974 + }, + { + "start": 6228.88, + "end": 6231.18, + "probability": 0.9626 + }, + { + "start": 6231.48, + "end": 6234.66, + "probability": 0.9067 + }, + { + "start": 6235.08, + "end": 6235.74, + "probability": 0.5038 + }, + { + "start": 6236.4, + "end": 6238.92, + "probability": 0.9803 + }, + { + "start": 6239.66, + "end": 6240.94, + "probability": 0.9966 + }, + { + "start": 6240.98, + "end": 6243.5, + "probability": 0.9143 + }, + { + "start": 6244.4, + "end": 6248.5, + "probability": 0.9429 + }, + { + "start": 6249.58, + "end": 6250.92, + "probability": 0.897 + }, + { + "start": 6251.0, + "end": 6253.0, + "probability": 0.9825 + }, + { + "start": 6253.12, + "end": 6255.32, + "probability": 0.7908 + }, + { + "start": 6256.06, + "end": 6259.74, + "probability": 0.9485 + }, + { + "start": 6260.78, + "end": 6263.1, + "probability": 0.9776 + }, + { + "start": 6264.98, + "end": 6266.1, + "probability": 0.9912 + }, + { + "start": 6267.24, + "end": 6270.74, + "probability": 0.9581 + }, + { + "start": 6270.84, + "end": 6271.46, + "probability": 0.4392 + }, + { + "start": 6272.08, + "end": 6273.42, + "probability": 0.9729 + }, + { + "start": 6274.3, + "end": 6274.46, + "probability": 0.2308 + }, + { + "start": 6274.46, + "end": 6282.04, + "probability": 0.964 + }, + { + "start": 6282.04, + "end": 6287.66, + "probability": 0.9662 + }, + { + "start": 6288.02, + "end": 6289.94, + "probability": 0.4499 + }, + { + "start": 6290.56, + "end": 6293.08, + "probability": 0.9938 + }, + { + "start": 6293.14, + "end": 6296.84, + "probability": 0.7561 + }, + { + "start": 6296.9, + "end": 6297.52, + "probability": 0.7648 + }, + { + "start": 6297.52, + "end": 6300.26, + "probability": 0.9821 + }, + { + "start": 6301.08, + "end": 6303.3, + "probability": 0.9835 + }, + { + "start": 6303.34, + "end": 6304.46, + "probability": 0.7636 + }, + { + "start": 6305.5, + "end": 6307.74, + "probability": 0.9906 + }, + { + "start": 6308.4, + "end": 6312.54, + "probability": 0.9931 + }, + { + "start": 6312.98, + "end": 6315.48, + "probability": 0.959 + }, + { + "start": 6316.44, + "end": 6316.6, + "probability": 0.147 + }, + { + "start": 6316.6, + "end": 6316.6, + "probability": 0.255 + }, + { + "start": 6316.6, + "end": 6317.82, + "probability": 0.8241 + }, + { + "start": 6317.96, + "end": 6321.5, + "probability": 0.3098 + }, + { + "start": 6321.52, + "end": 6325.58, + "probability": 0.7862 + }, + { + "start": 6325.66, + "end": 6326.26, + "probability": 0.8338 + }, + { + "start": 6326.58, + "end": 6329.04, + "probability": 0.9985 + }, + { + "start": 6329.92, + "end": 6330.78, + "probability": 0.7418 + }, + { + "start": 6331.78, + "end": 6334.14, + "probability": 0.994 + }, + { + "start": 6335.84, + "end": 6337.34, + "probability": 0.2679 + }, + { + "start": 6337.96, + "end": 6341.22, + "probability": 0.9968 + }, + { + "start": 6341.22, + "end": 6345.22, + "probability": 0.9988 + }, + { + "start": 6346.34, + "end": 6348.88, + "probability": 0.9816 + }, + { + "start": 6349.44, + "end": 6351.68, + "probability": 0.981 + }, + { + "start": 6351.84, + "end": 6353.46, + "probability": 0.6909 + }, + { + "start": 6353.92, + "end": 6357.06, + "probability": 0.9461 + }, + { + "start": 6358.88, + "end": 6363.14, + "probability": 0.7905 + }, + { + "start": 6364.22, + "end": 6365.22, + "probability": 0.6127 + }, + { + "start": 6366.26, + "end": 6367.2, + "probability": 0.7767 + }, + { + "start": 6368.04, + "end": 6372.88, + "probability": 0.9958 + }, + { + "start": 6373.18, + "end": 6379.52, + "probability": 0.9934 + }, + { + "start": 6380.67, + "end": 6382.68, + "probability": 0.953 + }, + { + "start": 6383.56, + "end": 6386.2, + "probability": 0.9875 + }, + { + "start": 6387.02, + "end": 6390.04, + "probability": 0.89 + }, + { + "start": 6390.66, + "end": 6394.72, + "probability": 0.9932 + }, + { + "start": 6395.7, + "end": 6398.74, + "probability": 0.9956 + }, + { + "start": 6399.76, + "end": 6400.9, + "probability": 0.3674 + }, + { + "start": 6401.1, + "end": 6402.35, + "probability": 0.8302 + }, + { + "start": 6402.56, + "end": 6404.1, + "probability": 0.5629 + }, + { + "start": 6404.18, + "end": 6406.84, + "probability": 0.9801 + }, + { + "start": 6408.24, + "end": 6415.62, + "probability": 0.9969 + }, + { + "start": 6416.44, + "end": 6416.98, + "probability": 0.841 + }, + { + "start": 6418.1, + "end": 6420.38, + "probability": 0.9531 + }, + { + "start": 6421.54, + "end": 6425.0, + "probability": 0.9198 + }, + { + "start": 6426.2, + "end": 6429.12, + "probability": 0.992 + }, + { + "start": 6430.12, + "end": 6432.98, + "probability": 0.9891 + }, + { + "start": 6434.26, + "end": 6439.54, + "probability": 0.9943 + }, + { + "start": 6440.86, + "end": 6443.76, + "probability": 0.4387 + }, + { + "start": 6444.34, + "end": 6449.34, + "probability": 0.9462 + }, + { + "start": 6449.86, + "end": 6453.12, + "probability": 0.4645 + }, + { + "start": 6455.96, + "end": 6458.24, + "probability": 0.5072 + }, + { + "start": 6458.26, + "end": 6458.98, + "probability": 0.5257 + }, + { + "start": 6459.2, + "end": 6462.48, + "probability": 0.905 + }, + { + "start": 6463.1, + "end": 6464.63, + "probability": 0.8928 + }, + { + "start": 6464.94, + "end": 6465.02, + "probability": 0.4975 + }, + { + "start": 6465.08, + "end": 6465.22, + "probability": 0.7841 + }, + { + "start": 6465.3, + "end": 6466.8, + "probability": 0.9945 + }, + { + "start": 6466.84, + "end": 6467.87, + "probability": 0.991 + }, + { + "start": 6468.82, + "end": 6470.86, + "probability": 0.6412 + }, + { + "start": 6471.48, + "end": 6475.62, + "probability": 0.9969 + }, + { + "start": 6476.3, + "end": 6481.04, + "probability": 0.9907 + }, + { + "start": 6481.52, + "end": 6486.9, + "probability": 0.9942 + }, + { + "start": 6486.9, + "end": 6487.45, + "probability": 0.5799 + }, + { + "start": 6488.2, + "end": 6491.82, + "probability": 0.9316 + }, + { + "start": 6492.1, + "end": 6495.2, + "probability": 0.8879 + }, + { + "start": 6495.32, + "end": 6497.0, + "probability": 0.9609 + }, + { + "start": 6498.62, + "end": 6500.94, + "probability": 0.6021 + }, + { + "start": 6500.94, + "end": 6501.52, + "probability": 0.6183 + }, + { + "start": 6502.2, + "end": 6504.3, + "probability": 0.1036 + }, + { + "start": 6504.44, + "end": 6505.4, + "probability": 0.9805 + }, + { + "start": 6505.5, + "end": 6506.92, + "probability": 0.9102 + }, + { + "start": 6507.06, + "end": 6510.2, + "probability": 0.998 + }, + { + "start": 6511.16, + "end": 6516.16, + "probability": 0.9988 + }, + { + "start": 6516.5, + "end": 6517.5, + "probability": 0.8328 + }, + { + "start": 6518.78, + "end": 6520.52, + "probability": 0.4628 + }, + { + "start": 6520.84, + "end": 6522.86, + "probability": 0.2506 + }, + { + "start": 6522.92, + "end": 6528.62, + "probability": 0.9406 + }, + { + "start": 6529.8, + "end": 6532.06, + "probability": 0.825 + }, + { + "start": 6532.46, + "end": 6536.92, + "probability": 0.9977 + }, + { + "start": 6537.28, + "end": 6541.22, + "probability": 0.9855 + }, + { + "start": 6541.4, + "end": 6543.2, + "probability": 0.6995 + }, + { + "start": 6543.2, + "end": 6546.58, + "probability": 0.992 + }, + { + "start": 6546.8, + "end": 6552.82, + "probability": 0.9979 + }, + { + "start": 6554.94, + "end": 6554.94, + "probability": 0.172 + }, + { + "start": 6554.94, + "end": 6560.34, + "probability": 0.9857 + }, + { + "start": 6561.1, + "end": 6564.92, + "probability": 0.7129 + }, + { + "start": 6565.66, + "end": 6569.68, + "probability": 0.9985 + }, + { + "start": 6570.3, + "end": 6572.24, + "probability": 0.7937 + }, + { + "start": 6573.04, + "end": 6574.82, + "probability": 0.8875 + }, + { + "start": 6575.32, + "end": 6577.16, + "probability": 0.9937 + }, + { + "start": 6577.18, + "end": 6577.95, + "probability": 0.9802 + }, + { + "start": 6578.08, + "end": 6584.1, + "probability": 0.9009 + }, + { + "start": 6584.88, + "end": 6587.92, + "probability": 0.9394 + }, + { + "start": 6588.34, + "end": 6594.76, + "probability": 0.991 + }, + { + "start": 6594.78, + "end": 6600.72, + "probability": 0.9991 + }, + { + "start": 6601.14, + "end": 6603.38, + "probability": 0.7376 + }, + { + "start": 6603.6, + "end": 6605.78, + "probability": 0.6465 + }, + { + "start": 6605.92, + "end": 6607.38, + "probability": 0.1509 + }, + { + "start": 6607.38, + "end": 6609.46, + "probability": 0.5362 + }, + { + "start": 6609.48, + "end": 6610.1, + "probability": 0.6622 + }, + { + "start": 6610.12, + "end": 6611.34, + "probability": 0.0416 + }, + { + "start": 6612.1, + "end": 6616.0, + "probability": 0.2244 + }, + { + "start": 6616.08, + "end": 6616.78, + "probability": 0.6502 + }, + { + "start": 6617.3, + "end": 6618.66, + "probability": 0.2281 + }, + { + "start": 6618.94, + "end": 6621.68, + "probability": 0.9902 + }, + { + "start": 6622.12, + "end": 6626.07, + "probability": 0.9424 + }, + { + "start": 6626.28, + "end": 6630.26, + "probability": 0.9993 + }, + { + "start": 6630.8, + "end": 6632.3, + "probability": 0.7896 + }, + { + "start": 6632.8, + "end": 6637.12, + "probability": 0.9958 + }, + { + "start": 6637.52, + "end": 6638.28, + "probability": 0.9071 + }, + { + "start": 6638.82, + "end": 6641.82, + "probability": 0.5682 + }, + { + "start": 6641.82, + "end": 6644.3, + "probability": 0.7032 + }, + { + "start": 6645.88, + "end": 6648.3, + "probability": 0.8444 + }, + { + "start": 6648.42, + "end": 6649.38, + "probability": 0.8859 + }, + { + "start": 6649.48, + "end": 6651.46, + "probability": 0.7281 + }, + { + "start": 6651.9, + "end": 6652.74, + "probability": 0.9369 + }, + { + "start": 6652.94, + "end": 6653.68, + "probability": 0.8036 + }, + { + "start": 6653.86, + "end": 6654.32, + "probability": 0.0747 + }, + { + "start": 6658.09, + "end": 6661.08, + "probability": 0.7559 + }, + { + "start": 6662.16, + "end": 6662.98, + "probability": 0.2733 + }, + { + "start": 6663.42, + "end": 6666.02, + "probability": 0.6554 + }, + { + "start": 6666.6, + "end": 6666.92, + "probability": 0.9741 + }, + { + "start": 6667.66, + "end": 6670.76, + "probability": 0.6971 + }, + { + "start": 6671.96, + "end": 6675.88, + "probability": 0.8737 + }, + { + "start": 6676.78, + "end": 6678.88, + "probability": 0.9554 + }, + { + "start": 6680.21, + "end": 6682.16, + "probability": 0.8438 + }, + { + "start": 6682.82, + "end": 6684.06, + "probability": 0.8048 + }, + { + "start": 6686.96, + "end": 6688.22, + "probability": 0.3093 + }, + { + "start": 6688.94, + "end": 6691.68, + "probability": 0.6121 + }, + { + "start": 6692.86, + "end": 6696.16, + "probability": 0.9349 + }, + { + "start": 6696.84, + "end": 6698.58, + "probability": 0.9749 + }, + { + "start": 6699.0, + "end": 6701.78, + "probability": 0.9562 + }, + { + "start": 6702.28, + "end": 6704.54, + "probability": 0.8608 + }, + { + "start": 6705.02, + "end": 6707.22, + "probability": 0.9864 + }, + { + "start": 6707.94, + "end": 6710.32, + "probability": 0.9858 + }, + { + "start": 6711.04, + "end": 6713.52, + "probability": 0.9731 + }, + { + "start": 6717.66, + "end": 6721.72, + "probability": 0.6819 + }, + { + "start": 6723.24, + "end": 6726.34, + "probability": 0.9578 + }, + { + "start": 6727.1, + "end": 6727.58, + "probability": 0.7959 + }, + { + "start": 6728.2, + "end": 6729.2, + "probability": 0.8689 + }, + { + "start": 6730.44, + "end": 6732.44, + "probability": 0.8501 + }, + { + "start": 6733.0, + "end": 6733.6, + "probability": 0.9854 + }, + { + "start": 6735.46, + "end": 6736.3, + "probability": 0.9671 + }, + { + "start": 6736.82, + "end": 6739.14, + "probability": 0.9731 + }, + { + "start": 6739.96, + "end": 6740.46, + "probability": 0.9583 + }, + { + "start": 6741.34, + "end": 6742.46, + "probability": 0.9836 + }, + { + "start": 6743.1, + "end": 6746.48, + "probability": 0.6354 + }, + { + "start": 6746.76, + "end": 6749.94, + "probability": 0.7378 + }, + { + "start": 6751.24, + "end": 6755.14, + "probability": 0.9159 + }, + { + "start": 6756.26, + "end": 6757.56, + "probability": 0.5488 + }, + { + "start": 6759.08, + "end": 6763.58, + "probability": 0.9863 + }, + { + "start": 6764.36, + "end": 6764.84, + "probability": 0.9902 + }, + { + "start": 6765.46, + "end": 6766.38, + "probability": 0.97 + }, + { + "start": 6767.9, + "end": 6769.78, + "probability": 0.9612 + }, + { + "start": 6770.48, + "end": 6770.72, + "probability": 0.503 + }, + { + "start": 6771.86, + "end": 6772.66, + "probability": 0.6619 + }, + { + "start": 6773.46, + "end": 6773.88, + "probability": 0.9349 + }, + { + "start": 6774.64, + "end": 6775.64, + "probability": 0.7662 + }, + { + "start": 6777.84, + "end": 6779.64, + "probability": 0.8039 + }, + { + "start": 6781.8, + "end": 6784.42, + "probability": 0.988 + }, + { + "start": 6785.04, + "end": 6789.78, + "probability": 0.8943 + }, + { + "start": 6791.1, + "end": 6792.62, + "probability": 0.9688 + }, + { + "start": 6793.36, + "end": 6795.56, + "probability": 0.9772 + }, + { + "start": 6796.3, + "end": 6797.78, + "probability": 0.6968 + }, + { + "start": 6798.38, + "end": 6798.8, + "probability": 0.6875 + }, + { + "start": 6799.6, + "end": 6800.58, + "probability": 0.5223 + }, + { + "start": 6801.26, + "end": 6804.2, + "probability": 0.8638 + }, + { + "start": 6804.7, + "end": 6807.22, + "probability": 0.8915 + }, + { + "start": 6807.7, + "end": 6809.28, + "probability": 0.8684 + }, + { + "start": 6812.12, + "end": 6813.12, + "probability": 0.73 + }, + { + "start": 6813.9, + "end": 6818.9, + "probability": 0.7921 + }, + { + "start": 6820.46, + "end": 6820.98, + "probability": 0.985 + }, + { + "start": 6822.12, + "end": 6824.48, + "probability": 0.8069 + }, + { + "start": 6825.5, + "end": 6826.52, + "probability": 0.5008 + }, + { + "start": 6826.84, + "end": 6829.28, + "probability": 0.9347 + }, + { + "start": 6829.46, + "end": 6832.2, + "probability": 0.8547 + }, + { + "start": 6833.99, + "end": 6837.06, + "probability": 0.9882 + }, + { + "start": 6837.7, + "end": 6838.14, + "probability": 0.7318 + }, + { + "start": 6838.74, + "end": 6840.7, + "probability": 0.5132 + }, + { + "start": 6841.58, + "end": 6844.38, + "probability": 0.8196 + }, + { + "start": 6844.94, + "end": 6846.9, + "probability": 0.9677 + }, + { + "start": 6849.96, + "end": 6853.0, + "probability": 0.6835 + }, + { + "start": 6855.12, + "end": 6858.2, + "probability": 0.8231 + }, + { + "start": 6859.2, + "end": 6859.5, + "probability": 0.9338 + }, + { + "start": 6860.36, + "end": 6861.48, + "probability": 0.9308 + }, + { + "start": 6863.2, + "end": 6865.02, + "probability": 0.9838 + }, + { + "start": 6866.24, + "end": 6868.58, + "probability": 0.9519 + }, + { + "start": 6870.98, + "end": 6872.82, + "probability": 0.9671 + }, + { + "start": 6874.48, + "end": 6876.0, + "probability": 0.975 + }, + { + "start": 6876.94, + "end": 6879.8, + "probability": 0.5435 + }, + { + "start": 6880.86, + "end": 6882.38, + "probability": 0.8076 + }, + { + "start": 6886.09, + "end": 6889.22, + "probability": 0.6433 + }, + { + "start": 6894.5, + "end": 6896.32, + "probability": 0.8767 + }, + { + "start": 6897.38, + "end": 6897.94, + "probability": 0.9901 + }, + { + "start": 6898.72, + "end": 6901.06, + "probability": 0.8736 + }, + { + "start": 6902.22, + "end": 6903.64, + "probability": 0.8696 + }, + { + "start": 6904.94, + "end": 6905.98, + "probability": 0.9871 + }, + { + "start": 6906.98, + "end": 6907.86, + "probability": 0.5579 + }, + { + "start": 6908.62, + "end": 6911.12, + "probability": 0.8453 + }, + { + "start": 6913.62, + "end": 6915.46, + "probability": 0.7338 + }, + { + "start": 6916.22, + "end": 6919.76, + "probability": 0.8789 + }, + { + "start": 6922.38, + "end": 6926.2, + "probability": 0.9875 + }, + { + "start": 6926.76, + "end": 6927.76, + "probability": 0.7357 + }, + { + "start": 6930.72, + "end": 6931.18, + "probability": 0.7485 + }, + { + "start": 6931.86, + "end": 6933.16, + "probability": 0.9307 + }, + { + "start": 6935.48, + "end": 6937.82, + "probability": 0.7935 + }, + { + "start": 6938.5, + "end": 6942.84, + "probability": 0.864 + }, + { + "start": 6944.4, + "end": 6946.76, + "probability": 0.9624 + }, + { + "start": 6947.9, + "end": 6950.28, + "probability": 0.9637 + }, + { + "start": 6950.9, + "end": 6952.6, + "probability": 0.9162 + }, + { + "start": 6953.76, + "end": 6955.82, + "probability": 0.8372 + }, + { + "start": 6958.96, + "end": 6960.1, + "probability": 0.4594 + }, + { + "start": 6960.86, + "end": 6962.48, + "probability": 0.7248 + }, + { + "start": 6963.6, + "end": 6966.72, + "probability": 0.9214 + }, + { + "start": 6968.34, + "end": 6972.88, + "probability": 0.7049 + }, + { + "start": 6973.52, + "end": 6977.34, + "probability": 0.8813 + }, + { + "start": 6978.02, + "end": 6980.08, + "probability": 0.8284 + }, + { + "start": 6981.24, + "end": 6983.18, + "probability": 0.872 + }, + { + "start": 6984.6, + "end": 6985.04, + "probability": 0.9939 + }, + { + "start": 6985.66, + "end": 6986.84, + "probability": 0.7098 + }, + { + "start": 6987.46, + "end": 6988.9, + "probability": 0.5997 + }, + { + "start": 6989.6, + "end": 6992.84, + "probability": 0.9409 + }, + { + "start": 6993.4, + "end": 6994.74, + "probability": 0.8226 + }, + { + "start": 6995.88, + "end": 6997.88, + "probability": 0.9626 + }, + { + "start": 6999.18, + "end": 6999.82, + "probability": 0.9881 + }, + { + "start": 7000.4, + "end": 7002.3, + "probability": 0.9219 + }, + { + "start": 7003.04, + "end": 7004.0, + "probability": 0.8566 + }, + { + "start": 7006.76, + "end": 7012.14, + "probability": 0.8104 + }, + { + "start": 7013.66, + "end": 7019.82, + "probability": 0.856 + }, + { + "start": 7020.34, + "end": 7026.22, + "probability": 0.9793 + }, + { + "start": 7027.12, + "end": 7030.28, + "probability": 0.9939 + }, + { + "start": 7031.3, + "end": 7039.32, + "probability": 0.9044 + }, + { + "start": 7044.18, + "end": 7045.5, + "probability": 0.6841 + }, + { + "start": 7046.5, + "end": 7048.56, + "probability": 0.7316 + }, + { + "start": 7049.42, + "end": 7049.62, + "probability": 0.8598 + }, + { + "start": 7053.28, + "end": 7055.8, + "probability": 0.8621 + }, + { + "start": 7057.02, + "end": 7058.92, + "probability": 0.8371 + }, + { + "start": 7060.17, + "end": 7062.92, + "probability": 0.9733 + }, + { + "start": 7067.88, + "end": 7072.3, + "probability": 0.6081 + }, + { + "start": 7073.18, + "end": 7073.5, + "probability": 0.7527 + }, + { + "start": 7074.74, + "end": 7079.08, + "probability": 0.953 + }, + { + "start": 7080.7, + "end": 7081.36, + "probability": 0.9642 + }, + { + "start": 7081.88, + "end": 7083.4, + "probability": 0.8897 + }, + { + "start": 7085.0, + "end": 7087.78, + "probability": 0.9849 + }, + { + "start": 7088.44, + "end": 7092.8, + "probability": 0.9749 + }, + { + "start": 7093.36, + "end": 7094.18, + "probability": 0.6234 + }, + { + "start": 7095.56, + "end": 7096.16, + "probability": 0.9448 + }, + { + "start": 7097.8, + "end": 7098.96, + "probability": 0.8267 + }, + { + "start": 7099.64, + "end": 7100.82, + "probability": 0.9972 + }, + { + "start": 7101.5, + "end": 7102.48, + "probability": 0.9384 + }, + { + "start": 7103.2, + "end": 7105.36, + "probability": 0.9919 + }, + { + "start": 7106.12, + "end": 7108.3, + "probability": 0.908 + }, + { + "start": 7108.98, + "end": 7111.32, + "probability": 0.8618 + }, + { + "start": 7114.82, + "end": 7120.26, + "probability": 0.7428 + }, + { + "start": 7120.84, + "end": 7122.26, + "probability": 0.342 + }, + { + "start": 7123.76, + "end": 7124.34, + "probability": 0.973 + }, + { + "start": 7127.58, + "end": 7128.34, + "probability": 0.4722 + }, + { + "start": 7130.23, + "end": 7132.94, + "probability": 0.9019 + }, + { + "start": 7134.14, + "end": 7136.5, + "probability": 0.9639 + }, + { + "start": 7137.56, + "end": 7141.82, + "probability": 0.7342 + }, + { + "start": 7143.42, + "end": 7144.24, + "probability": 0.9875 + }, + { + "start": 7145.32, + "end": 7146.72, + "probability": 0.4802 + }, + { + "start": 7147.94, + "end": 7149.56, + "probability": 0.862 + }, + { + "start": 7150.64, + "end": 7152.34, + "probability": 0.9141 + }, + { + "start": 7153.14, + "end": 7155.52, + "probability": 0.9209 + }, + { + "start": 7155.64, + "end": 7158.0, + "probability": 0.7141 + }, + { + "start": 7160.44, + "end": 7163.0, + "probability": 0.702 + }, + { + "start": 7165.06, + "end": 7167.24, + "probability": 0.9597 + }, + { + "start": 7168.14, + "end": 7170.88, + "probability": 0.5587 + }, + { + "start": 7172.2, + "end": 7173.52, + "probability": 0.9274 + }, + { + "start": 7174.18, + "end": 7180.14, + "probability": 0.5175 + }, + { + "start": 7181.0, + "end": 7184.48, + "probability": 0.9654 + }, + { + "start": 7185.78, + "end": 7187.54, + "probability": 0.9454 + }, + { + "start": 7188.56, + "end": 7190.26, + "probability": 0.9485 + }, + { + "start": 7190.9, + "end": 7194.42, + "probability": 0.8461 + }, + { + "start": 7196.0, + "end": 7197.06, + "probability": 0.9035 + }, + { + "start": 7197.72, + "end": 7199.12, + "probability": 0.9155 + }, + { + "start": 7203.34, + "end": 7204.16, + "probability": 0.401 + }, + { + "start": 7206.65, + "end": 7211.42, + "probability": 0.9164 + }, + { + "start": 7211.72, + "end": 7212.3, + "probability": 0.1599 + }, + { + "start": 7213.56, + "end": 7214.84, + "probability": 0.9855 + }, + { + "start": 7216.22, + "end": 7216.32, + "probability": 0.0467 + }, + { + "start": 7217.78, + "end": 7218.74, + "probability": 0.6868 + }, + { + "start": 7219.28, + "end": 7219.64, + "probability": 0.9754 + }, + { + "start": 7221.22, + "end": 7223.93, + "probability": 0.6653 + }, + { + "start": 7223.94, + "end": 7224.86, + "probability": 0.9767 + }, + { + "start": 7254.62, + "end": 7255.44, + "probability": 0.0191 + }, + { + "start": 7329.08, + "end": 7333.36, + "probability": 0.6913 + }, + { + "start": 7333.52, + "end": 7335.44, + "probability": 0.9927 + }, + { + "start": 7336.46, + "end": 7338.52, + "probability": 0.9473 + }, + { + "start": 7338.54, + "end": 7339.92, + "probability": 0.9673 + }, + { + "start": 7340.46, + "end": 7343.66, + "probability": 0.9849 + }, + { + "start": 7344.22, + "end": 7347.82, + "probability": 0.8959 + }, + { + "start": 7348.44, + "end": 7351.3, + "probability": 0.9676 + }, + { + "start": 7353.52, + "end": 7355.8, + "probability": 0.945 + }, + { + "start": 7355.88, + "end": 7356.58, + "probability": 0.8772 + }, + { + "start": 7356.62, + "end": 7358.36, + "probability": 0.7988 + }, + { + "start": 7358.54, + "end": 7358.7, + "probability": 0.6578 + }, + { + "start": 7358.8, + "end": 7359.92, + "probability": 0.798 + }, + { + "start": 7360.88, + "end": 7362.82, + "probability": 0.7962 + }, + { + "start": 7363.5, + "end": 7368.36, + "probability": 0.9866 + }, + { + "start": 7368.96, + "end": 7370.54, + "probability": 0.9744 + }, + { + "start": 7371.48, + "end": 7378.12, + "probability": 0.9957 + }, + { + "start": 7378.52, + "end": 7380.54, + "probability": 0.8635 + }, + { + "start": 7381.18, + "end": 7387.4, + "probability": 0.9883 + }, + { + "start": 7387.9, + "end": 7391.46, + "probability": 0.9969 + }, + { + "start": 7392.46, + "end": 7395.56, + "probability": 0.9712 + }, + { + "start": 7396.3, + "end": 7397.27, + "probability": 0.9504 + }, + { + "start": 7398.1, + "end": 7401.4, + "probability": 0.9501 + }, + { + "start": 7402.0, + "end": 7404.84, + "probability": 0.9823 + }, + { + "start": 7406.14, + "end": 7408.06, + "probability": 0.991 + }, + { + "start": 7408.64, + "end": 7411.5, + "probability": 0.9986 + }, + { + "start": 7412.02, + "end": 7416.38, + "probability": 0.9955 + }, + { + "start": 7416.96, + "end": 7419.2, + "probability": 0.9452 + }, + { + "start": 7420.02, + "end": 7425.18, + "probability": 0.9621 + }, + { + "start": 7426.04, + "end": 7427.74, + "probability": 0.8117 + }, + { + "start": 7427.84, + "end": 7434.14, + "probability": 0.9784 + }, + { + "start": 7434.14, + "end": 7442.76, + "probability": 0.9421 + }, + { + "start": 7443.36, + "end": 7447.3, + "probability": 0.9982 + }, + { + "start": 7448.0, + "end": 7450.64, + "probability": 0.9995 + }, + { + "start": 7451.5, + "end": 7453.16, + "probability": 0.9684 + }, + { + "start": 7454.1, + "end": 7455.4, + "probability": 0.9705 + }, + { + "start": 7456.26, + "end": 7461.74, + "probability": 0.8989 + }, + { + "start": 7462.32, + "end": 7467.06, + "probability": 0.9866 + }, + { + "start": 7467.06, + "end": 7470.92, + "probability": 0.9429 + }, + { + "start": 7471.56, + "end": 7475.54, + "probability": 0.988 + }, + { + "start": 7476.46, + "end": 7477.7, + "probability": 0.8719 + }, + { + "start": 7478.48, + "end": 7480.48, + "probability": 0.6919 + }, + { + "start": 7481.12, + "end": 7482.0, + "probability": 0.8315 + }, + { + "start": 7482.64, + "end": 7484.32, + "probability": 0.99 + }, + { + "start": 7485.94, + "end": 7487.42, + "probability": 0.9819 + }, + { + "start": 7487.96, + "end": 7490.62, + "probability": 0.9822 + }, + { + "start": 7491.14, + "end": 7495.66, + "probability": 0.9035 + }, + { + "start": 7496.2, + "end": 7496.86, + "probability": 0.5282 + }, + { + "start": 7497.52, + "end": 7498.58, + "probability": 0.7794 + }, + { + "start": 7499.28, + "end": 7500.8, + "probability": 0.9922 + }, + { + "start": 7501.58, + "end": 7505.02, + "probability": 0.9267 + }, + { + "start": 7505.88, + "end": 7510.57, + "probability": 0.9575 + }, + { + "start": 7510.8, + "end": 7512.7, + "probability": 0.9867 + }, + { + "start": 7513.62, + "end": 7518.32, + "probability": 0.9944 + }, + { + "start": 7519.0, + "end": 7520.56, + "probability": 0.9534 + }, + { + "start": 7521.54, + "end": 7524.2, + "probability": 0.9909 + }, + { + "start": 7524.8, + "end": 7527.4, + "probability": 0.959 + }, + { + "start": 7528.46, + "end": 7529.11, + "probability": 0.9448 + }, + { + "start": 7530.08, + "end": 7532.5, + "probability": 0.9939 + }, + { + "start": 7533.34, + "end": 7537.66, + "probability": 0.9958 + }, + { + "start": 7538.14, + "end": 7541.0, + "probability": 0.9788 + }, + { + "start": 7541.58, + "end": 7542.18, + "probability": 0.8604 + }, + { + "start": 7543.18, + "end": 7544.96, + "probability": 0.8864 + }, + { + "start": 7545.56, + "end": 7548.18, + "probability": 0.8014 + }, + { + "start": 7548.88, + "end": 7551.14, + "probability": 0.7705 + }, + { + "start": 7551.86, + "end": 7557.5, + "probability": 0.9814 + }, + { + "start": 7558.92, + "end": 7560.92, + "probability": 0.9948 + }, + { + "start": 7561.64, + "end": 7564.48, + "probability": 0.9987 + }, + { + "start": 7565.18, + "end": 7567.0, + "probability": 0.9969 + }, + { + "start": 7567.66, + "end": 7573.14, + "probability": 0.9207 + }, + { + "start": 7573.96, + "end": 7576.86, + "probability": 0.9946 + }, + { + "start": 7577.26, + "end": 7580.16, + "probability": 0.9234 + }, + { + "start": 7580.9, + "end": 7583.4, + "probability": 0.9957 + }, + { + "start": 7583.96, + "end": 7586.8, + "probability": 0.9984 + }, + { + "start": 7587.24, + "end": 7589.4, + "probability": 0.998 + }, + { + "start": 7590.22, + "end": 7591.38, + "probability": 0.9296 + }, + { + "start": 7591.6, + "end": 7593.0, + "probability": 0.9795 + }, + { + "start": 7593.94, + "end": 7595.5, + "probability": 0.9899 + }, + { + "start": 7596.16, + "end": 7600.02, + "probability": 0.9984 + }, + { + "start": 7600.02, + "end": 7603.84, + "probability": 0.999 + }, + { + "start": 7604.52, + "end": 7605.08, + "probability": 0.5549 + }, + { + "start": 7605.7, + "end": 7608.12, + "probability": 0.9616 + }, + { + "start": 7609.04, + "end": 7611.64, + "probability": 0.4833 + }, + { + "start": 7612.46, + "end": 7616.2, + "probability": 0.9894 + }, + { + "start": 7616.72, + "end": 7619.04, + "probability": 0.9922 + }, + { + "start": 7619.76, + "end": 7621.94, + "probability": 0.9795 + }, + { + "start": 7621.94, + "end": 7624.76, + "probability": 0.9801 + }, + { + "start": 7625.26, + "end": 7630.78, + "probability": 0.995 + }, + { + "start": 7631.48, + "end": 7634.74, + "probability": 0.9995 + }, + { + "start": 7634.74, + "end": 7639.82, + "probability": 0.9712 + }, + { + "start": 7641.0, + "end": 7641.5, + "probability": 0.9403 + }, + { + "start": 7642.02, + "end": 7645.74, + "probability": 0.9863 + }, + { + "start": 7646.06, + "end": 7646.86, + "probability": 0.5629 + }, + { + "start": 7646.92, + "end": 7647.6, + "probability": 0.6801 + }, + { + "start": 7648.14, + "end": 7653.06, + "probability": 0.9896 + }, + { + "start": 7653.68, + "end": 7655.84, + "probability": 0.8492 + }, + { + "start": 7656.5, + "end": 7660.74, + "probability": 0.9572 + }, + { + "start": 7661.52, + "end": 7662.46, + "probability": 0.6349 + }, + { + "start": 7663.1, + "end": 7664.84, + "probability": 0.9227 + }, + { + "start": 7685.32, + "end": 7685.62, + "probability": 0.1944 + }, + { + "start": 7686.38, + "end": 7689.14, + "probability": 0.9943 + }, + { + "start": 7695.0, + "end": 7695.94, + "probability": 0.5796 + }, + { + "start": 7696.06, + "end": 7697.15, + "probability": 0.6127 + }, + { + "start": 7698.04, + "end": 7699.96, + "probability": 0.8409 + }, + { + "start": 7700.14, + "end": 7705.98, + "probability": 0.9366 + }, + { + "start": 7707.76, + "end": 7713.48, + "probability": 0.8711 + }, + { + "start": 7714.46, + "end": 7717.41, + "probability": 0.9189 + }, + { + "start": 7719.44, + "end": 7720.6, + "probability": 0.4603 + }, + { + "start": 7720.6, + "end": 7725.26, + "probability": 0.9341 + }, + { + "start": 7725.4, + "end": 7725.9, + "probability": 0.8903 + }, + { + "start": 7726.98, + "end": 7735.14, + "probability": 0.9913 + }, + { + "start": 7736.28, + "end": 7740.02, + "probability": 0.9802 + }, + { + "start": 7740.96, + "end": 7743.99, + "probability": 0.9385 + }, + { + "start": 7745.08, + "end": 7747.97, + "probability": 0.8376 + }, + { + "start": 7749.76, + "end": 7751.44, + "probability": 0.9831 + }, + { + "start": 7751.7, + "end": 7758.08, + "probability": 0.9612 + }, + { + "start": 7758.9, + "end": 7759.72, + "probability": 0.5347 + }, + { + "start": 7760.48, + "end": 7762.3, + "probability": 0.8018 + }, + { + "start": 7762.58, + "end": 7763.16, + "probability": 0.9282 + }, + { + "start": 7763.34, + "end": 7768.58, + "probability": 0.9806 + }, + { + "start": 7770.22, + "end": 7772.5, + "probability": 0.8571 + }, + { + "start": 7772.98, + "end": 7774.2, + "probability": 0.9158 + }, + { + "start": 7774.52, + "end": 7776.26, + "probability": 0.9609 + }, + { + "start": 7776.38, + "end": 7778.22, + "probability": 0.9023 + }, + { + "start": 7778.76, + "end": 7783.36, + "probability": 0.9669 + }, + { + "start": 7784.52, + "end": 7788.32, + "probability": 0.7734 + }, + { + "start": 7788.4, + "end": 7795.02, + "probability": 0.9603 + }, + { + "start": 7795.64, + "end": 7796.76, + "probability": 0.8193 + }, + { + "start": 7797.76, + "end": 7800.02, + "probability": 0.9645 + }, + { + "start": 7800.54, + "end": 7802.84, + "probability": 0.9462 + }, + { + "start": 7803.46, + "end": 7804.18, + "probability": 0.8232 + }, + { + "start": 7804.9, + "end": 7806.26, + "probability": 0.6628 + }, + { + "start": 7806.98, + "end": 7808.56, + "probability": 0.9831 + }, + { + "start": 7809.38, + "end": 7813.7, + "probability": 0.7593 + }, + { + "start": 7814.24, + "end": 7815.48, + "probability": 0.969 + }, + { + "start": 7815.58, + "end": 7817.62, + "probability": 0.9894 + }, + { + "start": 7817.64, + "end": 7820.58, + "probability": 0.9536 + }, + { + "start": 7821.14, + "end": 7823.0, + "probability": 0.9739 + }, + { + "start": 7824.28, + "end": 7826.67, + "probability": 0.7806 + }, + { + "start": 7827.5, + "end": 7829.72, + "probability": 0.9005 + }, + { + "start": 7830.24, + "end": 7832.2, + "probability": 0.8755 + }, + { + "start": 7833.22, + "end": 7834.52, + "probability": 0.9895 + }, + { + "start": 7835.1, + "end": 7838.56, + "probability": 0.9933 + }, + { + "start": 7839.16, + "end": 7846.9, + "probability": 0.9932 + }, + { + "start": 7847.5, + "end": 7851.66, + "probability": 0.9751 + }, + { + "start": 7851.94, + "end": 7852.72, + "probability": 0.999 + }, + { + "start": 7853.38, + "end": 7855.04, + "probability": 0.8833 + }, + { + "start": 7855.92, + "end": 7865.22, + "probability": 0.8036 + }, + { + "start": 7865.4, + "end": 7869.78, + "probability": 0.998 + }, + { + "start": 7870.92, + "end": 7872.58, + "probability": 0.8241 + }, + { + "start": 7873.64, + "end": 7877.92, + "probability": 0.9756 + }, + { + "start": 7881.3, + "end": 7889.02, + "probability": 0.9827 + }, + { + "start": 7889.46, + "end": 7894.88, + "probability": 0.9326 + }, + { + "start": 7895.56, + "end": 7898.22, + "probability": 0.9891 + }, + { + "start": 7898.32, + "end": 7898.76, + "probability": 0.6733 + }, + { + "start": 7898.94, + "end": 7900.98, + "probability": 0.8356 + }, + { + "start": 7901.26, + "end": 7902.82, + "probability": 0.9043 + }, + { + "start": 7902.96, + "end": 7903.74, + "probability": 0.9068 + }, + { + "start": 7904.08, + "end": 7906.36, + "probability": 0.9897 + }, + { + "start": 7906.68, + "end": 7908.76, + "probability": 0.9472 + }, + { + "start": 7908.84, + "end": 7909.1, + "probability": 0.6987 + }, + { + "start": 7909.16, + "end": 7914.22, + "probability": 0.8987 + }, + { + "start": 7914.36, + "end": 7915.1, + "probability": 0.8826 + }, + { + "start": 7915.18, + "end": 7916.84, + "probability": 0.9063 + }, + { + "start": 7917.68, + "end": 7921.74, + "probability": 0.9981 + }, + { + "start": 7922.02, + "end": 7923.12, + "probability": 0.9139 + }, + { + "start": 7923.2, + "end": 7925.15, + "probability": 0.9005 + }, + { + "start": 7925.4, + "end": 7930.2, + "probability": 0.7942 + }, + { + "start": 7930.48, + "end": 7933.48, + "probability": 0.9928 + }, + { + "start": 7933.52, + "end": 7936.68, + "probability": 0.9427 + }, + { + "start": 7937.2, + "end": 7940.82, + "probability": 0.9971 + }, + { + "start": 7940.82, + "end": 7945.44, + "probability": 0.9879 + }, + { + "start": 7945.54, + "end": 7946.64, + "probability": 0.9043 + }, + { + "start": 7948.12, + "end": 7949.98, + "probability": 0.9114 + }, + { + "start": 7950.42, + "end": 7951.02, + "probability": 0.8336 + }, + { + "start": 7951.04, + "end": 7951.86, + "probability": 0.8141 + }, + { + "start": 7952.1, + "end": 7954.9, + "probability": 0.9863 + }, + { + "start": 7954.96, + "end": 7956.54, + "probability": 0.887 + }, + { + "start": 7957.38, + "end": 7960.78, + "probability": 0.9815 + }, + { + "start": 7961.52, + "end": 7961.94, + "probability": 0.2389 + }, + { + "start": 7961.94, + "end": 7964.64, + "probability": 0.9915 + }, + { + "start": 7965.22, + "end": 7970.64, + "probability": 0.9274 + }, + { + "start": 7971.3, + "end": 7973.64, + "probability": 0.7529 + }, + { + "start": 7974.04, + "end": 7979.13, + "probability": 0.835 + }, + { + "start": 7980.04, + "end": 7982.82, + "probability": 0.9805 + }, + { + "start": 7982.9, + "end": 7987.06, + "probability": 0.9333 + }, + { + "start": 7987.42, + "end": 7987.78, + "probability": 0.9873 + }, + { + "start": 7988.58, + "end": 7992.08, + "probability": 0.9806 + }, + { + "start": 7992.3, + "end": 7994.74, + "probability": 0.9734 + }, + { + "start": 7995.36, + "end": 8000.3, + "probability": 0.9894 + }, + { + "start": 8000.4, + "end": 8002.04, + "probability": 0.9218 + }, + { + "start": 8002.5, + "end": 8004.18, + "probability": 0.9867 + }, + { + "start": 8004.3, + "end": 8006.64, + "probability": 0.9783 + }, + { + "start": 8007.0, + "end": 8015.12, + "probability": 0.9831 + }, + { + "start": 8015.62, + "end": 8019.9, + "probability": 0.7693 + }, + { + "start": 8020.38, + "end": 8021.51, + "probability": 0.8975 + }, + { + "start": 8021.94, + "end": 8022.6, + "probability": 0.9319 + }, + { + "start": 8022.72, + "end": 8023.96, + "probability": 0.9883 + }, + { + "start": 8024.02, + "end": 8028.18, + "probability": 0.9319 + }, + { + "start": 8028.58, + "end": 8030.4, + "probability": 0.7207 + }, + { + "start": 8031.74, + "end": 8035.56, + "probability": 0.9753 + }, + { + "start": 8035.96, + "end": 8039.88, + "probability": 0.9961 + }, + { + "start": 8040.32, + "end": 8043.42, + "probability": 0.9878 + }, + { + "start": 8043.62, + "end": 8044.26, + "probability": 0.7902 + }, + { + "start": 8045.06, + "end": 8046.62, + "probability": 0.9919 + }, + { + "start": 8046.84, + "end": 8049.62, + "probability": 0.9629 + }, + { + "start": 8049.64, + "end": 8051.52, + "probability": 0.7812 + }, + { + "start": 8051.88, + "end": 8054.06, + "probability": 0.9082 + }, + { + "start": 8054.18, + "end": 8055.26, + "probability": 0.9736 + }, + { + "start": 8055.46, + "end": 8056.96, + "probability": 0.5465 + }, + { + "start": 8057.08, + "end": 8059.5, + "probability": 0.9189 + }, + { + "start": 8059.8, + "end": 8062.3, + "probability": 0.9863 + }, + { + "start": 8062.66, + "end": 8065.64, + "probability": 0.9437 + }, + { + "start": 8066.26, + "end": 8070.52, + "probability": 0.8073 + }, + { + "start": 8070.6, + "end": 8073.86, + "probability": 0.9779 + }, + { + "start": 8073.98, + "end": 8077.24, + "probability": 0.98 + }, + { + "start": 8077.24, + "end": 8082.18, + "probability": 0.9997 + }, + { + "start": 8083.76, + "end": 8084.84, + "probability": 0.585 + }, + { + "start": 8085.42, + "end": 8086.44, + "probability": 0.8233 + }, + { + "start": 8086.94, + "end": 8090.44, + "probability": 0.9748 + }, + { + "start": 8090.62, + "end": 8092.46, + "probability": 0.923 + }, + { + "start": 8093.26, + "end": 8097.14, + "probability": 0.7346 + }, + { + "start": 8097.66, + "end": 8099.96, + "probability": 0.9116 + }, + { + "start": 8100.0, + "end": 8100.58, + "probability": 0.9021 + }, + { + "start": 8100.72, + "end": 8101.1, + "probability": 0.5145 + }, + { + "start": 8101.2, + "end": 8102.0, + "probability": 0.6378 + }, + { + "start": 8102.36, + "end": 8104.86, + "probability": 0.8853 + }, + { + "start": 8104.98, + "end": 8109.6, + "probability": 0.9946 + }, + { + "start": 8109.68, + "end": 8114.26, + "probability": 0.9858 + }, + { + "start": 8114.82, + "end": 8117.12, + "probability": 0.866 + }, + { + "start": 8117.44, + "end": 8119.4, + "probability": 0.9766 + }, + { + "start": 8119.54, + "end": 8119.64, + "probability": 0.7252 + }, + { + "start": 8120.42, + "end": 8126.5, + "probability": 0.9976 + }, + { + "start": 8127.18, + "end": 8130.48, + "probability": 0.9137 + }, + { + "start": 8131.04, + "end": 8136.8, + "probability": 0.8179 + }, + { + "start": 8137.04, + "end": 8137.5, + "probability": 0.9312 + }, + { + "start": 8137.92, + "end": 8138.98, + "probability": 0.9082 + }, + { + "start": 8140.44, + "end": 8142.28, + "probability": 0.9365 + }, + { + "start": 8142.88, + "end": 8143.46, + "probability": 0.9941 + }, + { + "start": 8144.82, + "end": 8149.86, + "probability": 0.9974 + }, + { + "start": 8150.22, + "end": 8151.5, + "probability": 0.8724 + }, + { + "start": 8151.84, + "end": 8152.5, + "probability": 0.9067 + }, + { + "start": 8152.68, + "end": 8155.92, + "probability": 0.9556 + }, + { + "start": 8156.14, + "end": 8157.1, + "probability": 0.6422 + }, + { + "start": 8157.58, + "end": 8160.16, + "probability": 0.9945 + }, + { + "start": 8161.16, + "end": 8168.38, + "probability": 0.9716 + }, + { + "start": 8169.04, + "end": 8173.18, + "probability": 0.9955 + }, + { + "start": 8173.44, + "end": 8174.04, + "probability": 0.8971 + }, + { + "start": 8174.62, + "end": 8176.96, + "probability": 0.9668 + }, + { + "start": 8177.56, + "end": 8180.6, + "probability": 0.9645 + }, + { + "start": 8181.26, + "end": 8183.82, + "probability": 0.9205 + }, + { + "start": 8184.5, + "end": 8188.24, + "probability": 0.9922 + }, + { + "start": 8189.18, + "end": 8190.16, + "probability": 0.7482 + }, + { + "start": 8190.54, + "end": 8190.82, + "probability": 0.7878 + }, + { + "start": 8191.6, + "end": 8193.3, + "probability": 0.9281 + }, + { + "start": 8193.92, + "end": 8194.5, + "probability": 0.8393 + }, + { + "start": 8220.62, + "end": 8221.32, + "probability": 0.7158 + }, + { + "start": 8221.5, + "end": 8222.88, + "probability": 0.9821 + }, + { + "start": 8223.08, + "end": 8224.08, + "probability": 0.8083 + }, + { + "start": 8224.24, + "end": 8226.7, + "probability": 0.8129 + }, + { + "start": 8227.5, + "end": 8230.32, + "probability": 0.9697 + }, + { + "start": 8230.9, + "end": 8233.64, + "probability": 0.9904 + }, + { + "start": 8234.08, + "end": 8237.3, + "probability": 0.9911 + }, + { + "start": 8237.88, + "end": 8242.08, + "probability": 0.8056 + }, + { + "start": 8243.54, + "end": 8246.54, + "probability": 0.8928 + }, + { + "start": 8247.58, + "end": 8250.82, + "probability": 0.9802 + }, + { + "start": 8251.08, + "end": 8254.26, + "probability": 0.8844 + }, + { + "start": 8254.86, + "end": 8257.04, + "probability": 0.9953 + }, + { + "start": 8258.04, + "end": 8258.8, + "probability": 0.6963 + }, + { + "start": 8259.04, + "end": 8260.92, + "probability": 0.9753 + }, + { + "start": 8261.04, + "end": 8263.08, + "probability": 0.984 + }, + { + "start": 8263.82, + "end": 8265.42, + "probability": 0.9179 + }, + { + "start": 8265.9, + "end": 8268.66, + "probability": 0.9857 + }, + { + "start": 8268.88, + "end": 8271.86, + "probability": 0.9779 + }, + { + "start": 8272.8, + "end": 8281.5, + "probability": 0.9943 + }, + { + "start": 8282.82, + "end": 8287.96, + "probability": 0.9956 + }, + { + "start": 8288.62, + "end": 8291.8, + "probability": 0.897 + }, + { + "start": 8293.0, + "end": 8297.38, + "probability": 0.9941 + }, + { + "start": 8298.08, + "end": 8302.6, + "probability": 0.9755 + }, + { + "start": 8304.46, + "end": 8306.74, + "probability": 0.9969 + }, + { + "start": 8307.82, + "end": 8309.08, + "probability": 0.766 + }, + { + "start": 8309.6, + "end": 8310.68, + "probability": 0.8118 + }, + { + "start": 8311.32, + "end": 8314.76, + "probability": 0.9597 + }, + { + "start": 8315.54, + "end": 8317.94, + "probability": 0.9949 + }, + { + "start": 8318.74, + "end": 8320.26, + "probability": 0.9346 + }, + { + "start": 8321.0, + "end": 8324.52, + "probability": 0.9966 + }, + { + "start": 8325.12, + "end": 8327.68, + "probability": 0.9958 + }, + { + "start": 8327.74, + "end": 8331.62, + "probability": 0.9969 + }, + { + "start": 8331.86, + "end": 8333.0, + "probability": 0.6237 + }, + { + "start": 8333.96, + "end": 8337.28, + "probability": 0.9239 + }, + { + "start": 8337.28, + "end": 8340.42, + "probability": 0.9972 + }, + { + "start": 8341.3, + "end": 8344.04, + "probability": 0.9926 + }, + { + "start": 8344.66, + "end": 8350.46, + "probability": 0.998 + }, + { + "start": 8351.14, + "end": 8352.5, + "probability": 0.9277 + }, + { + "start": 8353.2, + "end": 8355.14, + "probability": 0.9791 + }, + { + "start": 8355.52, + "end": 8358.48, + "probability": 0.9987 + }, + { + "start": 8358.86, + "end": 8361.72, + "probability": 0.9995 + }, + { + "start": 8362.22, + "end": 8364.96, + "probability": 0.9926 + }, + { + "start": 8365.04, + "end": 8366.04, + "probability": 0.8916 + }, + { + "start": 8366.46, + "end": 8372.96, + "probability": 0.9791 + }, + { + "start": 8373.98, + "end": 8381.34, + "probability": 0.9929 + }, + { + "start": 8381.38, + "end": 8389.4, + "probability": 0.9989 + }, + { + "start": 8390.16, + "end": 8393.04, + "probability": 0.8194 + }, + { + "start": 8393.66, + "end": 8395.68, + "probability": 0.9836 + }, + { + "start": 8396.26, + "end": 8401.06, + "probability": 0.9914 + }, + { + "start": 8402.02, + "end": 8403.82, + "probability": 0.5793 + }, + { + "start": 8404.4, + "end": 8406.28, + "probability": 0.8014 + }, + { + "start": 8406.34, + "end": 8408.94, + "probability": 0.9698 + }, + { + "start": 8409.08, + "end": 8411.16, + "probability": 0.8348 + }, + { + "start": 8411.88, + "end": 8415.26, + "probability": 0.983 + }, + { + "start": 8416.42, + "end": 8422.26, + "probability": 0.9972 + }, + { + "start": 8422.26, + "end": 8427.5, + "probability": 0.9997 + }, + { + "start": 8428.32, + "end": 8431.48, + "probability": 0.9981 + }, + { + "start": 8432.24, + "end": 8437.12, + "probability": 0.9722 + }, + { + "start": 8437.12, + "end": 8440.36, + "probability": 0.9706 + }, + { + "start": 8440.7, + "end": 8443.1, + "probability": 0.7887 + }, + { + "start": 8443.82, + "end": 8445.76, + "probability": 0.8378 + }, + { + "start": 8446.28, + "end": 8448.64, + "probability": 0.8669 + }, + { + "start": 8449.18, + "end": 8451.28, + "probability": 0.9867 + }, + { + "start": 8451.9, + "end": 8456.14, + "probability": 0.9802 + }, + { + "start": 8457.04, + "end": 8457.4, + "probability": 0.8486 + }, + { + "start": 8457.54, + "end": 8458.74, + "probability": 0.9822 + }, + { + "start": 8459.2, + "end": 8462.68, + "probability": 0.9816 + }, + { + "start": 8463.14, + "end": 8465.04, + "probability": 0.8877 + }, + { + "start": 8465.08, + "end": 8466.0, + "probability": 0.801 + }, + { + "start": 8467.52, + "end": 8469.2, + "probability": 0.9637 + }, + { + "start": 8469.82, + "end": 8474.18, + "probability": 0.9881 + }, + { + "start": 8475.0, + "end": 8477.78, + "probability": 0.9936 + }, + { + "start": 8478.22, + "end": 8480.66, + "probability": 0.9568 + }, + { + "start": 8481.02, + "end": 8485.14, + "probability": 0.9769 + }, + { + "start": 8486.02, + "end": 8489.42, + "probability": 0.9965 + }, + { + "start": 8489.42, + "end": 8495.34, + "probability": 0.9946 + }, + { + "start": 8496.2, + "end": 8499.56, + "probability": 0.9672 + }, + { + "start": 8500.08, + "end": 8503.3, + "probability": 0.8215 + }, + { + "start": 8503.88, + "end": 8508.44, + "probability": 0.994 + }, + { + "start": 8508.94, + "end": 8513.06, + "probability": 0.9988 + }, + { + "start": 8513.66, + "end": 8513.86, + "probability": 0.9759 + }, + { + "start": 8515.08, + "end": 8516.22, + "probability": 0.7543 + }, + { + "start": 8516.88, + "end": 8517.68, + "probability": 0.5017 + }, + { + "start": 8518.18, + "end": 8522.5, + "probability": 0.9973 + }, + { + "start": 8523.46, + "end": 8526.86, + "probability": 0.9757 + }, + { + "start": 8526.86, + "end": 8530.56, + "probability": 0.9966 + }, + { + "start": 8531.08, + "end": 8533.74, + "probability": 0.9701 + }, + { + "start": 8534.46, + "end": 8540.28, + "probability": 0.9972 + }, + { + "start": 8540.94, + "end": 8543.8, + "probability": 0.9841 + }, + { + "start": 8544.52, + "end": 8549.56, + "probability": 0.9873 + }, + { + "start": 8549.56, + "end": 8554.18, + "probability": 0.9794 + }, + { + "start": 8554.64, + "end": 8557.38, + "probability": 0.9548 + }, + { + "start": 8558.32, + "end": 8565.6, + "probability": 0.994 + }, + { + "start": 8565.68, + "end": 8566.7, + "probability": 0.8606 + }, + { + "start": 8566.98, + "end": 8567.88, + "probability": 0.9506 + }, + { + "start": 8568.38, + "end": 8569.28, + "probability": 0.9897 + }, + { + "start": 8570.32, + "end": 8575.3, + "probability": 0.9685 + }, + { + "start": 8576.1, + "end": 8580.56, + "probability": 0.9784 + }, + { + "start": 8581.16, + "end": 8582.72, + "probability": 0.9248 + }, + { + "start": 8583.52, + "end": 8588.58, + "probability": 0.9932 + }, + { + "start": 8589.16, + "end": 8593.02, + "probability": 0.9967 + }, + { + "start": 8593.02, + "end": 8596.4, + "probability": 0.9997 + }, + { + "start": 8597.26, + "end": 8599.52, + "probability": 0.9918 + }, + { + "start": 8600.26, + "end": 8603.76, + "probability": 0.952 + }, + { + "start": 8603.76, + "end": 8607.88, + "probability": 0.999 + }, + { + "start": 8608.62, + "end": 8612.96, + "probability": 0.99 + }, + { + "start": 8613.08, + "end": 8619.06, + "probability": 0.9943 + }, + { + "start": 8619.9, + "end": 8624.92, + "probability": 0.9918 + }, + { + "start": 8625.02, + "end": 8629.62, + "probability": 0.9971 + }, + { + "start": 8630.28, + "end": 8636.96, + "probability": 0.9925 + }, + { + "start": 8637.98, + "end": 8639.28, + "probability": 0.8266 + }, + { + "start": 8639.42, + "end": 8641.14, + "probability": 0.8271 + }, + { + "start": 8641.32, + "end": 8642.86, + "probability": 0.8778 + }, + { + "start": 8644.02, + "end": 8646.6, + "probability": 0.9045 + }, + { + "start": 8647.18, + "end": 8651.22, + "probability": 0.9993 + }, + { + "start": 8651.22, + "end": 8655.6, + "probability": 0.9976 + }, + { + "start": 8656.54, + "end": 8662.78, + "probability": 0.9983 + }, + { + "start": 8662.78, + "end": 8669.88, + "probability": 0.9988 + }, + { + "start": 8670.92, + "end": 8673.78, + "probability": 0.9634 + }, + { + "start": 8674.4, + "end": 8676.26, + "probability": 0.9956 + }, + { + "start": 8677.22, + "end": 8681.5, + "probability": 0.9951 + }, + { + "start": 8681.82, + "end": 8683.98, + "probability": 0.9644 + }, + { + "start": 8684.06, + "end": 8687.18, + "probability": 0.9178 + }, + { + "start": 8688.1, + "end": 8693.16, + "probability": 0.9709 + }, + { + "start": 8694.12, + "end": 8699.46, + "probability": 0.997 + }, + { + "start": 8699.46, + "end": 8703.98, + "probability": 0.998 + }, + { + "start": 8704.7, + "end": 8706.12, + "probability": 0.8988 + }, + { + "start": 8707.18, + "end": 8707.6, + "probability": 0.8238 + }, + { + "start": 8707.64, + "end": 8711.13, + "probability": 0.9863 + }, + { + "start": 8711.74, + "end": 8715.3, + "probability": 0.9922 + }, + { + "start": 8715.98, + "end": 8717.94, + "probability": 0.9961 + }, + { + "start": 8718.86, + "end": 8720.48, + "probability": 0.8236 + }, + { + "start": 8721.06, + "end": 8724.2, + "probability": 0.9956 + }, + { + "start": 8724.72, + "end": 8730.72, + "probability": 0.9565 + }, + { + "start": 8731.3, + "end": 8733.34, + "probability": 0.9806 + }, + { + "start": 8734.0, + "end": 8737.16, + "probability": 0.8236 + }, + { + "start": 8737.9, + "end": 8739.38, + "probability": 0.9862 + }, + { + "start": 8740.04, + "end": 8741.1, + "probability": 0.9372 + }, + { + "start": 8741.26, + "end": 8743.94, + "probability": 0.9661 + }, + { + "start": 8744.36, + "end": 8745.36, + "probability": 0.797 + }, + { + "start": 8745.76, + "end": 8746.82, + "probability": 0.9415 + }, + { + "start": 8747.22, + "end": 8748.92, + "probability": 0.9799 + }, + { + "start": 8749.92, + "end": 8753.84, + "probability": 0.9382 + }, + { + "start": 8754.36, + "end": 8757.96, + "probability": 0.9909 + }, + { + "start": 8758.64, + "end": 8762.3, + "probability": 0.911 + }, + { + "start": 8763.12, + "end": 8763.86, + "probability": 0.9906 + }, + { + "start": 8765.0, + "end": 8766.68, + "probability": 0.9895 + }, + { + "start": 8767.3, + "end": 8771.48, + "probability": 0.9673 + }, + { + "start": 8772.02, + "end": 8773.82, + "probability": 0.9271 + }, + { + "start": 8775.12, + "end": 8778.22, + "probability": 0.9603 + }, + { + "start": 8778.96, + "end": 8781.18, + "probability": 0.7942 + }, + { + "start": 8781.92, + "end": 8787.1, + "probability": 0.9378 + }, + { + "start": 8787.92, + "end": 8790.84, + "probability": 0.7482 + }, + { + "start": 8791.84, + "end": 8796.36, + "probability": 0.9209 + }, + { + "start": 8796.98, + "end": 8801.1, + "probability": 0.9746 + }, + { + "start": 8801.82, + "end": 8803.56, + "probability": 0.9423 + }, + { + "start": 8804.22, + "end": 8809.14, + "probability": 0.943 + }, + { + "start": 8809.8, + "end": 8813.7, + "probability": 0.9866 + }, + { + "start": 8814.26, + "end": 8816.06, + "probability": 0.8869 + }, + { + "start": 8816.58, + "end": 8822.28, + "probability": 0.9643 + }, + { + "start": 8822.86, + "end": 8823.88, + "probability": 0.7606 + }, + { + "start": 8824.38, + "end": 8829.02, + "probability": 0.9751 + }, + { + "start": 8829.42, + "end": 8829.9, + "probability": 0.8704 + }, + { + "start": 8830.16, + "end": 8832.28, + "probability": 0.9824 + }, + { + "start": 8832.48, + "end": 8835.12, + "probability": 0.8073 + }, + { + "start": 8836.3, + "end": 8838.1, + "probability": 0.8018 + }, + { + "start": 8838.84, + "end": 8842.38, + "probability": 0.9791 + }, + { + "start": 8842.46, + "end": 8845.88, + "probability": 0.8799 + }, + { + "start": 8846.22, + "end": 8847.82, + "probability": 0.5796 + }, + { + "start": 8848.66, + "end": 8852.56, + "probability": 0.9389 + }, + { + "start": 8852.8, + "end": 8856.0, + "probability": 0.9749 + }, + { + "start": 8856.08, + "end": 8858.98, + "probability": 0.9097 + }, + { + "start": 8881.66, + "end": 8882.24, + "probability": 0.5576 + }, + { + "start": 8883.36, + "end": 8886.06, + "probability": 0.2608 + }, + { + "start": 8886.94, + "end": 8890.38, + "probability": 0.2474 + }, + { + "start": 8890.54, + "end": 8891.48, + "probability": 0.1548 + }, + { + "start": 8892.76, + "end": 8893.38, + "probability": 0.0568 + }, + { + "start": 8902.24, + "end": 8903.12, + "probability": 0.2475 + }, + { + "start": 8906.96, + "end": 8909.72, + "probability": 0.3939 + }, + { + "start": 8910.88, + "end": 8915.16, + "probability": 0.9759 + }, + { + "start": 8915.36, + "end": 8915.72, + "probability": 0.8793 + }, + { + "start": 8916.66, + "end": 8919.08, + "probability": 0.8824 + }, + { + "start": 8919.86, + "end": 8922.54, + "probability": 0.9924 + }, + { + "start": 8922.96, + "end": 8927.84, + "probability": 0.9961 + }, + { + "start": 8927.84, + "end": 8934.92, + "probability": 0.9992 + }, + { + "start": 8936.34, + "end": 8939.26, + "probability": 0.8615 + }, + { + "start": 8939.46, + "end": 8942.26, + "probability": 0.8875 + }, + { + "start": 8943.1, + "end": 8943.64, + "probability": 0.9557 + }, + { + "start": 8944.72, + "end": 8946.4, + "probability": 0.8068 + }, + { + "start": 8947.06, + "end": 8951.4, + "probability": 0.9629 + }, + { + "start": 8951.98, + "end": 8954.74, + "probability": 0.8595 + }, + { + "start": 8955.54, + "end": 8958.42, + "probability": 0.9753 + }, + { + "start": 8959.54, + "end": 8960.84, + "probability": 0.9904 + }, + { + "start": 8961.0, + "end": 8961.8, + "probability": 0.5055 + }, + { + "start": 8961.84, + "end": 8963.36, + "probability": 0.9958 + }, + { + "start": 8963.36, + "end": 8963.85, + "probability": 0.9642 + }, + { + "start": 8965.42, + "end": 8968.52, + "probability": 0.8733 + }, + { + "start": 8968.62, + "end": 8969.18, + "probability": 0.9495 + }, + { + "start": 8969.78, + "end": 8970.54, + "probability": 0.9861 + }, + { + "start": 8975.92, + "end": 8978.42, + "probability": 0.9845 + }, + { + "start": 8978.6, + "end": 8981.76, + "probability": 0.9312 + }, + { + "start": 8981.86, + "end": 8984.82, + "probability": 0.9186 + }, + { + "start": 8984.98, + "end": 8986.44, + "probability": 0.8048 + }, + { + "start": 8987.08, + "end": 8989.66, + "probability": 0.9875 + }, + { + "start": 8990.16, + "end": 8991.0, + "probability": 0.7319 + }, + { + "start": 8991.88, + "end": 8996.04, + "probability": 0.9954 + }, + { + "start": 8996.86, + "end": 8997.82, + "probability": 0.9201 + }, + { + "start": 8998.1, + "end": 9000.29, + "probability": 0.9474 + }, + { + "start": 9000.82, + "end": 9004.66, + "probability": 0.884 + }, + { + "start": 9005.56, + "end": 9010.02, + "probability": 0.9905 + }, + { + "start": 9010.86, + "end": 9014.94, + "probability": 0.9969 + }, + { + "start": 9016.22, + "end": 9017.24, + "probability": 0.9961 + }, + { + "start": 9019.12, + "end": 9021.82, + "probability": 0.9892 + }, + { + "start": 9021.9, + "end": 9023.28, + "probability": 0.9012 + }, + { + "start": 9023.34, + "end": 9025.2, + "probability": 0.9858 + }, + { + "start": 9025.72, + "end": 9028.64, + "probability": 0.9172 + }, + { + "start": 9030.46, + "end": 9031.18, + "probability": 0.8244 + }, + { + "start": 9032.08, + "end": 9036.36, + "probability": 0.7983 + }, + { + "start": 9037.06, + "end": 9038.86, + "probability": 0.864 + }, + { + "start": 9039.22, + "end": 9042.34, + "probability": 0.9838 + }, + { + "start": 9042.34, + "end": 9044.56, + "probability": 0.991 + }, + { + "start": 9045.3, + "end": 9046.72, + "probability": 0.8998 + }, + { + "start": 9047.36, + "end": 9049.3, + "probability": 0.9543 + }, + { + "start": 9049.3, + "end": 9052.62, + "probability": 0.9751 + }, + { + "start": 9052.82, + "end": 9056.22, + "probability": 0.9974 + }, + { + "start": 9056.22, + "end": 9059.14, + "probability": 0.8092 + }, + { + "start": 9059.72, + "end": 9061.56, + "probability": 0.9644 + }, + { + "start": 9062.22, + "end": 9064.64, + "probability": 0.9928 + }, + { + "start": 9064.7, + "end": 9066.1, + "probability": 0.974 + }, + { + "start": 9066.46, + "end": 9066.92, + "probability": 0.7569 + }, + { + "start": 9073.68, + "end": 9076.38, + "probability": 0.9689 + }, + { + "start": 9076.94, + "end": 9078.62, + "probability": 0.5929 + }, + { + "start": 9080.2, + "end": 9081.7, + "probability": 0.5206 + }, + { + "start": 9082.39, + "end": 9084.44, + "probability": 0.9859 + }, + { + "start": 9085.52, + "end": 9087.6, + "probability": 0.1337 + }, + { + "start": 9088.48, + "end": 9089.08, + "probability": 0.7048 + }, + { + "start": 9089.16, + "end": 9092.82, + "probability": 0.9531 + }, + { + "start": 9102.08, + "end": 9103.54, + "probability": 0.6596 + }, + { + "start": 9109.78, + "end": 9112.52, + "probability": 0.4275 + }, + { + "start": 9112.96, + "end": 9113.58, + "probability": 0.8701 + }, + { + "start": 9113.64, + "end": 9118.78, + "probability": 0.9232 + }, + { + "start": 9119.54, + "end": 9121.12, + "probability": 0.8646 + }, + { + "start": 9123.24, + "end": 9125.12, + "probability": 0.7483 + }, + { + "start": 9125.86, + "end": 9126.97, + "probability": 0.9495 + }, + { + "start": 9127.88, + "end": 9128.78, + "probability": 0.7904 + }, + { + "start": 9129.52, + "end": 9131.6, + "probability": 0.8139 + }, + { + "start": 9131.66, + "end": 9133.16, + "probability": 0.9742 + }, + { + "start": 9134.6, + "end": 9136.72, + "probability": 0.9767 + }, + { + "start": 9138.14, + "end": 9139.18, + "probability": 0.5001 + }, + { + "start": 9141.06, + "end": 9144.0, + "probability": 0.8747 + }, + { + "start": 9144.74, + "end": 9147.84, + "probability": 0.9792 + }, + { + "start": 9147.96, + "end": 9151.32, + "probability": 0.8418 + }, + { + "start": 9151.4, + "end": 9153.02, + "probability": 0.7099 + }, + { + "start": 9153.76, + "end": 9155.7, + "probability": 0.9635 + }, + { + "start": 9155.7, + "end": 9157.98, + "probability": 0.9929 + }, + { + "start": 9158.86, + "end": 9161.68, + "probability": 0.847 + }, + { + "start": 9162.3, + "end": 9165.34, + "probability": 0.9 + }, + { + "start": 9166.38, + "end": 9166.8, + "probability": 0.737 + }, + { + "start": 9166.92, + "end": 9169.46, + "probability": 0.7922 + }, + { + "start": 9169.5, + "end": 9171.08, + "probability": 0.9783 + }, + { + "start": 9171.62, + "end": 9173.88, + "probability": 0.9843 + }, + { + "start": 9173.88, + "end": 9176.82, + "probability": 0.9846 + }, + { + "start": 9177.9, + "end": 9179.28, + "probability": 0.7546 + }, + { + "start": 9179.36, + "end": 9180.68, + "probability": 0.9253 + }, + { + "start": 9181.4, + "end": 9184.74, + "probability": 0.8104 + }, + { + "start": 9185.32, + "end": 9187.98, + "probability": 0.8288 + }, + { + "start": 9188.82, + "end": 9190.58, + "probability": 0.5995 + }, + { + "start": 9191.18, + "end": 9194.92, + "probability": 0.772 + }, + { + "start": 9195.12, + "end": 9197.3, + "probability": 0.9117 + }, + { + "start": 9197.96, + "end": 9199.34, + "probability": 0.952 + }, + { + "start": 9200.86, + "end": 9203.24, + "probability": 0.7541 + }, + { + "start": 9203.34, + "end": 9204.08, + "probability": 0.8513 + }, + { + "start": 9204.2, + "end": 9206.58, + "probability": 0.7894 + }, + { + "start": 9207.16, + "end": 9209.14, + "probability": 0.922 + }, + { + "start": 9209.24, + "end": 9210.42, + "probability": 0.9821 + }, + { + "start": 9210.5, + "end": 9211.24, + "probability": 0.8475 + }, + { + "start": 9211.96, + "end": 9215.0, + "probability": 0.8369 + }, + { + "start": 9215.12, + "end": 9217.88, + "probability": 0.8841 + }, + { + "start": 9218.56, + "end": 9219.44, + "probability": 0.7249 + }, + { + "start": 9219.54, + "end": 9222.66, + "probability": 0.9282 + }, + { + "start": 9223.22, + "end": 9224.54, + "probability": 0.9927 + }, + { + "start": 9224.66, + "end": 9226.46, + "probability": 0.9859 + }, + { + "start": 9227.02, + "end": 9228.54, + "probability": 0.7886 + }, + { + "start": 9228.98, + "end": 9230.7, + "probability": 0.9447 + }, + { + "start": 9230.7, + "end": 9232.9, + "probability": 0.9735 + }, + { + "start": 9232.98, + "end": 9233.5, + "probability": 0.737 + }, + { + "start": 9233.58, + "end": 9234.96, + "probability": 0.5934 + }, + { + "start": 9235.36, + "end": 9236.94, + "probability": 0.8191 + }, + { + "start": 9236.94, + "end": 9238.8, + "probability": 0.9809 + }, + { + "start": 9239.48, + "end": 9240.04, + "probability": 0.4433 + }, + { + "start": 9240.16, + "end": 9244.44, + "probability": 0.9302 + }, + { + "start": 9245.08, + "end": 9245.44, + "probability": 0.3725 + }, + { + "start": 9245.5, + "end": 9247.28, + "probability": 0.6388 + }, + { + "start": 9247.28, + "end": 9249.24, + "probability": 0.9472 + }, + { + "start": 9249.76, + "end": 9252.98, + "probability": 0.9897 + }, + { + "start": 9253.66, + "end": 9256.68, + "probability": 0.9961 + }, + { + "start": 9256.68, + "end": 9259.94, + "probability": 0.9965 + }, + { + "start": 9260.04, + "end": 9262.02, + "probability": 0.7067 + }, + { + "start": 9262.54, + "end": 9264.14, + "probability": 0.8475 + }, + { + "start": 9264.72, + "end": 9265.7, + "probability": 0.8832 + }, + { + "start": 9266.52, + "end": 9268.98, + "probability": 0.9774 + }, + { + "start": 9269.46, + "end": 9271.26, + "probability": 0.9458 + }, + { + "start": 9271.52, + "end": 9273.0, + "probability": 0.8896 + }, + { + "start": 9273.74, + "end": 9275.34, + "probability": 0.9803 + }, + { + "start": 9275.34, + "end": 9277.32, + "probability": 0.8614 + }, + { + "start": 9277.94, + "end": 9280.98, + "probability": 0.9867 + }, + { + "start": 9281.66, + "end": 9283.04, + "probability": 0.8804 + }, + { + "start": 9283.2, + "end": 9284.86, + "probability": 0.9292 + }, + { + "start": 9285.4, + "end": 9287.5, + "probability": 0.9416 + }, + { + "start": 9288.04, + "end": 9292.1, + "probability": 0.9754 + }, + { + "start": 9292.2, + "end": 9292.52, + "probability": 0.7476 + }, + { + "start": 9292.92, + "end": 9293.68, + "probability": 0.7772 + }, + { + "start": 9293.82, + "end": 9295.04, + "probability": 0.8231 + }, + { + "start": 9295.92, + "end": 9299.44, + "probability": 0.7758 + }, + { + "start": 9299.54, + "end": 9300.04, + "probability": 0.1944 + }, + { + "start": 9300.28, + "end": 9302.26, + "probability": 0.7528 + }, + { + "start": 9303.36, + "end": 9305.38, + "probability": 0.7951 + }, + { + "start": 9307.02, + "end": 9308.54, + "probability": 0.4808 + }, + { + "start": 9309.4, + "end": 9310.52, + "probability": 0.6842 + }, + { + "start": 9311.04, + "end": 9311.66, + "probability": 0.0252 + }, + { + "start": 9312.38, + "end": 9314.54, + "probability": 0.4814 + }, + { + "start": 9315.3, + "end": 9316.56, + "probability": 0.6313 + }, + { + "start": 9316.71, + "end": 9318.32, + "probability": 0.364 + }, + { + "start": 9318.32, + "end": 9318.78, + "probability": 0.2701 + }, + { + "start": 9318.8, + "end": 9320.6, + "probability": 0.5609 + }, + { + "start": 9320.62, + "end": 9321.2, + "probability": 0.8943 + }, + { + "start": 9322.18, + "end": 9324.48, + "probability": 0.5997 + }, + { + "start": 9325.24, + "end": 9326.88, + "probability": 0.7125 + }, + { + "start": 9327.5, + "end": 9328.92, + "probability": 0.714 + }, + { + "start": 9329.48, + "end": 9331.82, + "probability": 0.6514 + }, + { + "start": 9332.58, + "end": 9333.56, + "probability": 0.8088 + }, + { + "start": 9334.42, + "end": 9338.02, + "probability": 0.8751 + }, + { + "start": 9338.56, + "end": 9339.42, + "probability": 0.9064 + }, + { + "start": 9340.2, + "end": 9341.16, + "probability": 0.8636 + }, + { + "start": 9344.2, + "end": 9347.92, + "probability": 0.5992 + }, + { + "start": 9348.02, + "end": 9349.14, + "probability": 0.8266 + }, + { + "start": 9349.26, + "end": 9349.94, + "probability": 0.7433 + }, + { + "start": 9350.56, + "end": 9351.24, + "probability": 0.7339 + }, + { + "start": 9351.24, + "end": 9352.76, + "probability": 0.789 + }, + { + "start": 9353.1, + "end": 9354.8, + "probability": 0.8997 + }, + { + "start": 9354.88, + "end": 9359.56, + "probability": 0.7563 + }, + { + "start": 9363.74, + "end": 9364.24, + "probability": 0.0601 + }, + { + "start": 9364.24, + "end": 9364.64, + "probability": 0.461 + }, + { + "start": 9364.82, + "end": 9365.78, + "probability": 0.6505 + }, + { + "start": 9365.9, + "end": 9367.12, + "probability": 0.5144 + }, + { + "start": 9367.48, + "end": 9369.34, + "probability": 0.6793 + }, + { + "start": 9369.36, + "end": 9370.38, + "probability": 0.7939 + }, + { + "start": 9370.38, + "end": 9370.9, + "probability": 0.7395 + }, + { + "start": 9371.52, + "end": 9372.76, + "probability": 0.356 + }, + { + "start": 9375.76, + "end": 9376.34, + "probability": 0.3035 + }, + { + "start": 9377.22, + "end": 9380.1, + "probability": 0.5247 + }, + { + "start": 9381.04, + "end": 9382.26, + "probability": 0.6706 + }, + { + "start": 9382.36, + "end": 9383.28, + "probability": 0.6896 + }, + { + "start": 9383.42, + "end": 9385.98, + "probability": 0.8366 + }, + { + "start": 9386.04, + "end": 9387.0, + "probability": 0.7408 + }, + { + "start": 9387.23, + "end": 9388.44, + "probability": 0.2591 + }, + { + "start": 9388.44, + "end": 9389.21, + "probability": 0.5399 + }, + { + "start": 9389.36, + "end": 9390.4, + "probability": 0.543 + }, + { + "start": 9391.52, + "end": 9393.28, + "probability": 0.8653 + }, + { + "start": 9393.32, + "end": 9394.84, + "probability": 0.9509 + }, + { + "start": 9394.9, + "end": 9395.96, + "probability": 0.8557 + }, + { + "start": 9396.02, + "end": 9396.96, + "probability": 0.4574 + }, + { + "start": 9397.04, + "end": 9397.7, + "probability": 0.6084 + }, + { + "start": 9398.26, + "end": 9399.1, + "probability": 0.5742 + }, + { + "start": 9400.24, + "end": 9401.68, + "probability": 0.7654 + }, + { + "start": 9402.4, + "end": 9404.34, + "probability": 0.7644 + }, + { + "start": 9404.38, + "end": 9405.6, + "probability": 0.7518 + }, + { + "start": 9405.7, + "end": 9407.52, + "probability": 0.7749 + }, + { + "start": 9407.68, + "end": 9408.58, + "probability": 0.1981 + }, + { + "start": 9408.66, + "end": 9409.96, + "probability": 0.5043 + }, + { + "start": 9411.44, + "end": 9414.52, + "probability": 0.5336 + }, + { + "start": 9414.6, + "end": 9415.5, + "probability": 0.8364 + }, + { + "start": 9415.56, + "end": 9416.32, + "probability": 0.7992 + }, + { + "start": 9417.56, + "end": 9418.12, + "probability": 0.7047 + }, + { + "start": 9419.26, + "end": 9419.98, + "probability": 0.851 + }, + { + "start": 9420.88, + "end": 9423.0, + "probability": 0.9291 + }, + { + "start": 9423.56, + "end": 9425.22, + "probability": 0.9159 + }, + { + "start": 9426.64, + "end": 9428.1, + "probability": 0.8875 + }, + { + "start": 9429.54, + "end": 9430.1, + "probability": 0.8921 + }, + { + "start": 9430.1, + "end": 9431.08, + "probability": 0.7094 + }, + { + "start": 9431.1, + "end": 9432.06, + "probability": 0.8191 + }, + { + "start": 9432.06, + "end": 9433.06, + "probability": 0.7905 + }, + { + "start": 9433.08, + "end": 9435.7, + "probability": 0.8639 + }, + { + "start": 9436.42, + "end": 9436.86, + "probability": 0.6862 + }, + { + "start": 9437.62, + "end": 9439.44, + "probability": 0.8322 + }, + { + "start": 9440.46, + "end": 9441.96, + "probability": 0.4695 + }, + { + "start": 9443.06, + "end": 9446.44, + "probability": 0.3448 + }, + { + "start": 9449.74, + "end": 9452.06, + "probability": 0.7441 + }, + { + "start": 9452.58, + "end": 9453.14, + "probability": 0.7406 + }, + { + "start": 9453.18, + "end": 9454.24, + "probability": 0.6085 + }, + { + "start": 9454.28, + "end": 9455.4, + "probability": 0.8475 + }, + { + "start": 9455.46, + "end": 9457.34, + "probability": 0.9348 + }, + { + "start": 9457.34, + "end": 9458.64, + "probability": 0.6096 + }, + { + "start": 9458.72, + "end": 9459.88, + "probability": 0.9162 + }, + { + "start": 9459.98, + "end": 9461.28, + "probability": 0.908 + }, + { + "start": 9461.36, + "end": 9462.52, + "probability": 0.6488 + }, + { + "start": 9462.68, + "end": 9463.26, + "probability": 0.9006 + }, + { + "start": 9463.88, + "end": 9464.68, + "probability": 0.2055 + }, + { + "start": 9465.62, + "end": 9466.18, + "probability": 0.5901 + }, + { + "start": 9466.88, + "end": 9467.67, + "probability": 0.7705 + }, + { + "start": 9469.22, + "end": 9470.2, + "probability": 0.6196 + }, + { + "start": 9470.52, + "end": 9473.46, + "probability": 0.5543 + }, + { + "start": 9473.6, + "end": 9475.5, + "probability": 0.7987 + }, + { + "start": 9476.92, + "end": 9478.4, + "probability": 0.7949 + }, + { + "start": 9479.12, + "end": 9481.7, + "probability": 0.8705 + }, + { + "start": 9482.82, + "end": 9483.32, + "probability": 0.9668 + }, + { + "start": 9483.86, + "end": 9485.3, + "probability": 0.6949 + }, + { + "start": 9485.86, + "end": 9487.16, + "probability": 0.5671 + }, + { + "start": 9487.88, + "end": 9489.6, + "probability": 0.946 + }, + { + "start": 9490.36, + "end": 9490.8, + "probability": 0.7679 + }, + { + "start": 9490.92, + "end": 9492.24, + "probability": 0.8962 + }, + { + "start": 9492.26, + "end": 9494.32, + "probability": 0.7741 + }, + { + "start": 9494.38, + "end": 9495.88, + "probability": 0.6798 + }, + { + "start": 9497.66, + "end": 9498.02, + "probability": 0.8091 + }, + { + "start": 9499.38, + "end": 9500.0, + "probability": 0.4831 + }, + { + "start": 9500.52, + "end": 9501.96, + "probability": 0.5943 + }, + { + "start": 9502.02, + "end": 9502.9, + "probability": 0.8976 + }, + { + "start": 9502.92, + "end": 9503.82, + "probability": 0.9152 + }, + { + "start": 9503.88, + "end": 9505.18, + "probability": 0.7235 + }, + { + "start": 9505.2, + "end": 9506.2, + "probability": 0.7867 + }, + { + "start": 9506.26, + "end": 9507.14, + "probability": 0.5061 + }, + { + "start": 9512.9, + "end": 9513.06, + "probability": 0.4971 + }, + { + "start": 9515.16, + "end": 9517.28, + "probability": 0.7046 + }, + { + "start": 9519.22, + "end": 9520.58, + "probability": 0.889 + }, + { + "start": 9521.58, + "end": 9522.0, + "probability": 0.5479 + }, + { + "start": 9524.46, + "end": 9525.18, + "probability": 0.8189 + }, + { + "start": 9525.24, + "end": 9526.6, + "probability": 0.7472 + }, + { + "start": 9526.7, + "end": 9528.12, + "probability": 0.8745 + }, + { + "start": 9528.66, + "end": 9530.12, + "probability": 0.9287 + }, + { + "start": 9530.12, + "end": 9531.48, + "probability": 0.844 + }, + { + "start": 9531.56, + "end": 9532.88, + "probability": 0.9904 + }, + { + "start": 9535.52, + "end": 9536.6, + "probability": 0.8133 + }, + { + "start": 9537.82, + "end": 9539.36, + "probability": 0.8422 + }, + { + "start": 9540.0, + "end": 9541.36, + "probability": 0.9076 + }, + { + "start": 9545.14, + "end": 9545.54, + "probability": 0.4877 + }, + { + "start": 9547.36, + "end": 9548.12, + "probability": 0.5817 + }, + { + "start": 9548.44, + "end": 9549.52, + "probability": 0.6568 + }, + { + "start": 9549.56, + "end": 9551.54, + "probability": 0.9514 + }, + { + "start": 9551.94, + "end": 9553.5, + "probability": 0.8811 + }, + { + "start": 9553.58, + "end": 9555.95, + "probability": 0.211 + }, + { + "start": 9556.84, + "end": 9558.24, + "probability": 0.3552 + }, + { + "start": 9558.68, + "end": 9559.58, + "probability": 0.1729 + }, + { + "start": 9559.58, + "end": 9559.58, + "probability": 0.4906 + }, + { + "start": 9559.58, + "end": 9560.41, + "probability": 0.6414 + }, + { + "start": 9561.96, + "end": 9562.14, + "probability": 0.0758 + }, + { + "start": 9566.52, + "end": 9568.64, + "probability": 0.3889 + }, + { + "start": 9569.14, + "end": 9570.4, + "probability": 0.7503 + }, + { + "start": 9570.56, + "end": 9572.0, + "probability": 0.6056 + }, + { + "start": 9572.08, + "end": 9573.04, + "probability": 0.4105 + }, + { + "start": 9573.26, + "end": 9573.86, + "probability": 0.6942 + }, + { + "start": 9574.6, + "end": 9575.9, + "probability": 0.6973 + }, + { + "start": 9578.1, + "end": 9582.2, + "probability": 0.0218 + }, + { + "start": 9586.24, + "end": 9586.66, + "probability": 0.0264 + }, + { + "start": 9586.68, + "end": 9588.24, + "probability": 0.0611 + }, + { + "start": 9588.24, + "end": 9589.12, + "probability": 0.5037 + }, + { + "start": 9590.28, + "end": 9592.26, + "probability": 0.0598 + }, + { + "start": 9593.94, + "end": 9596.44, + "probability": 0.2479 + }, + { + "start": 9598.66, + "end": 9600.2, + "probability": 0.009 + }, + { + "start": 9600.32, + "end": 9601.58, + "probability": 0.1059 + }, + { + "start": 9601.68, + "end": 9602.2, + "probability": 0.6722 + }, + { + "start": 9602.84, + "end": 9603.7, + "probability": 0.0946 + }, + { + "start": 9603.7, + "end": 9606.7, + "probability": 0.3407 + }, + { + "start": 9606.76, + "end": 9607.76, + "probability": 0.38 + }, + { + "start": 9607.84, + "end": 9610.06, + "probability": 0.2749 + }, + { + "start": 9610.2, + "end": 9610.84, + "probability": 0.71 + }, + { + "start": 9611.48, + "end": 9613.68, + "probability": 0.1553 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.0, + "end": 9818.0, + "probability": 0.0 + }, + { + "start": 9818.8, + "end": 9819.04, + "probability": 0.0942 + }, + { + "start": 9820.0, + "end": 9820.12, + "probability": 0.2942 + }, + { + "start": 9820.12, + "end": 9820.38, + "probability": 0.3206 + }, + { + "start": 9820.98, + "end": 9823.02, + "probability": 0.5862 + }, + { + "start": 9823.36, + "end": 9823.93, + "probability": 0.6705 + }, + { + "start": 9824.38, + "end": 9825.58, + "probability": 0.7409 + }, + { + "start": 9826.42, + "end": 9827.36, + "probability": 0.9442 + }, + { + "start": 9827.9, + "end": 9829.58, + "probability": 0.6015 + }, + { + "start": 9830.12, + "end": 9831.86, + "probability": 0.7341 + }, + { + "start": 9831.86, + "end": 9834.48, + "probability": 0.8267 + }, + { + "start": 9836.23, + "end": 9838.12, + "probability": 0.422 + }, + { + "start": 9838.26, + "end": 9839.34, + "probability": 0.3385 + }, + { + "start": 9839.44, + "end": 9839.86, + "probability": 0.1875 + }, + { + "start": 9841.04, + "end": 9842.36, + "probability": 0.4171 + }, + { + "start": 9842.54, + "end": 9843.65, + "probability": 0.9971 + }, + { + "start": 9844.04, + "end": 9844.79, + "probability": 0.6364 + }, + { + "start": 9845.32, + "end": 9846.14, + "probability": 0.7922 + }, + { + "start": 9846.14, + "end": 9849.1, + "probability": 0.8954 + }, + { + "start": 9849.36, + "end": 9850.93, + "probability": 0.9774 + }, + { + "start": 9851.02, + "end": 9852.1, + "probability": 0.9783 + }, + { + "start": 9852.9, + "end": 9855.06, + "probability": 0.7523 + }, + { + "start": 9855.36, + "end": 9856.06, + "probability": 0.7961 + }, + { + "start": 9856.84, + "end": 9859.66, + "probability": 0.8742 + }, + { + "start": 9861.0, + "end": 9861.32, + "probability": 0.1889 + }, + { + "start": 9861.76, + "end": 9864.06, + "probability": 0.4446 + }, + { + "start": 9864.06, + "end": 9864.78, + "probability": 0.7488 + }, + { + "start": 9871.46, + "end": 9873.3, + "probability": 0.5239 + }, + { + "start": 9873.92, + "end": 9876.86, + "probability": 0.6097 + }, + { + "start": 9877.88, + "end": 9878.48, + "probability": 0.6044 + }, + { + "start": 9879.4, + "end": 9880.06, + "probability": 0.8118 + }, + { + "start": 9880.68, + "end": 9883.0, + "probability": 0.8179 + }, + { + "start": 9885.64, + "end": 9888.76, + "probability": 0.9131 + }, + { + "start": 9889.42, + "end": 9892.94, + "probability": 0.8328 + }, + { + "start": 9892.96, + "end": 9893.78, + "probability": 0.8766 + }, + { + "start": 9893.84, + "end": 9894.62, + "probability": 0.8966 + }, + { + "start": 9895.14, + "end": 9896.34, + "probability": 0.6182 + }, + { + "start": 9896.9, + "end": 9898.4, + "probability": 0.8823 + }, + { + "start": 9898.52, + "end": 9900.22, + "probability": 0.9954 + }, + { + "start": 9901.74, + "end": 9902.78, + "probability": 0.9929 + }, + { + "start": 9903.1, + "end": 9905.06, + "probability": 0.7668 + }, + { + "start": 9905.68, + "end": 9906.36, + "probability": 0.1703 + }, + { + "start": 9911.1, + "end": 9912.18, + "probability": 0.1609 + }, + { + "start": 9917.19, + "end": 9918.38, + "probability": 0.0948 + }, + { + "start": 9919.04, + "end": 9921.72, + "probability": 0.0502 + }, + { + "start": 9924.23, + "end": 9924.78, + "probability": 0.0686 + }, + { + "start": 9925.42, + "end": 9926.64, + "probability": 0.0872 + }, + { + "start": 9930.98, + "end": 9930.98, + "probability": 0.0992 + }, + { + "start": 9930.98, + "end": 9933.94, + "probability": 0.0193 + }, + { + "start": 9934.08, + "end": 9934.4, + "probability": 0.0039 + }, + { + "start": 9934.4, + "end": 9934.4, + "probability": 0.0269 + }, + { + "start": 9935.62, + "end": 9935.76, + "probability": 0.0019 + }, + { + "start": 9941.88, + "end": 9942.6, + "probability": 0.0295 + }, + { + "start": 9943.22, + "end": 9943.74, + "probability": 0.014 + }, + { + "start": 9943.74, + "end": 9945.06, + "probability": 0.2391 + }, + { + "start": 9969.96, + "end": 9970.06, + "probability": 0.3068 + }, + { + "start": 9971.54, + "end": 9973.74, + "probability": 0.9524 + }, + { + "start": 9974.64, + "end": 9977.48, + "probability": 0.9932 + }, + { + "start": 9978.48, + "end": 9979.9, + "probability": 0.8522 + }, + { + "start": 9980.52, + "end": 9981.29, + "probability": 0.9462 + }, + { + "start": 9981.78, + "end": 9984.18, + "probability": 0.9603 + }, + { + "start": 9984.84, + "end": 9985.98, + "probability": 0.8336 + }, + { + "start": 9986.48, + "end": 9987.9, + "probability": 0.7662 + }, + { + "start": 9988.36, + "end": 9989.6, + "probability": 0.7692 + }, + { + "start": 9990.16, + "end": 9992.28, + "probability": 0.9973 + }, + { + "start": 9992.28, + "end": 9994.66, + "probability": 0.9801 + }, + { + "start": 9996.14, + "end": 9999.96, + "probability": 0.9925 + }, + { + "start": 10000.28, + "end": 10001.37, + "probability": 0.9993 + }, + { + "start": 10002.8, + "end": 10003.26, + "probability": 0.9683 + }, + { + "start": 10003.88, + "end": 10004.7, + "probability": 0.8633 + }, + { + "start": 10005.52, + "end": 10006.12, + "probability": 0.692 + }, + { + "start": 10006.58, + "end": 10007.26, + "probability": 0.9498 + }, + { + "start": 10007.64, + "end": 10010.14, + "probability": 0.9706 + }, + { + "start": 10011.56, + "end": 10013.3, + "probability": 0.9904 + }, + { + "start": 10015.04, + "end": 10015.32, + "probability": 0.9659 + }, + { + "start": 10015.88, + "end": 10017.96, + "probability": 0.9979 + }, + { + "start": 10019.08, + "end": 10020.72, + "probability": 0.9863 + }, + { + "start": 10021.56, + "end": 10022.96, + "probability": 0.9952 + }, + { + "start": 10023.06, + "end": 10025.26, + "probability": 0.7529 + }, + { + "start": 10025.92, + "end": 10027.06, + "probability": 0.998 + }, + { + "start": 10028.48, + "end": 10031.22, + "probability": 0.9855 + }, + { + "start": 10031.8, + "end": 10033.94, + "probability": 0.9568 + }, + { + "start": 10034.5, + "end": 10035.22, + "probability": 0.8388 + }, + { + "start": 10035.82, + "end": 10036.38, + "probability": 0.9913 + }, + { + "start": 10037.86, + "end": 10041.68, + "probability": 0.9893 + }, + { + "start": 10042.48, + "end": 10046.54, + "probability": 0.984 + }, + { + "start": 10046.9, + "end": 10048.78, + "probability": 0.6802 + }, + { + "start": 10049.88, + "end": 10052.7, + "probability": 0.9976 + }, + { + "start": 10054.72, + "end": 10055.6, + "probability": 0.8883 + }, + { + "start": 10055.68, + "end": 10057.4, + "probability": 0.9232 + }, + { + "start": 10057.7, + "end": 10062.1, + "probability": 0.9693 + }, + { + "start": 10062.52, + "end": 10063.98, + "probability": 0.935 + }, + { + "start": 10064.72, + "end": 10067.26, + "probability": 0.9278 + }, + { + "start": 10067.54, + "end": 10068.2, + "probability": 0.8276 + }, + { + "start": 10068.3, + "end": 10071.3, + "probability": 0.9437 + }, + { + "start": 10071.82, + "end": 10073.22, + "probability": 0.8278 + }, + { + "start": 10073.68, + "end": 10076.44, + "probability": 0.987 + }, + { + "start": 10077.54, + "end": 10080.16, + "probability": 0.9966 + }, + { + "start": 10080.16, + "end": 10085.5, + "probability": 0.8589 + }, + { + "start": 10086.14, + "end": 10087.46, + "probability": 0.9868 + }, + { + "start": 10087.94, + "end": 10091.58, + "probability": 0.9612 + }, + { + "start": 10091.96, + "end": 10093.22, + "probability": 0.8272 + }, + { + "start": 10094.12, + "end": 10094.58, + "probability": 0.8135 + }, + { + "start": 10095.04, + "end": 10098.1, + "probability": 0.9285 + }, + { + "start": 10098.5, + "end": 10099.9, + "probability": 0.9977 + }, + { + "start": 10102.04, + "end": 10104.84, + "probability": 0.9961 + }, + { + "start": 10105.04, + "end": 10106.96, + "probability": 0.6681 + }, + { + "start": 10107.38, + "end": 10111.86, + "probability": 0.9902 + }, + { + "start": 10112.54, + "end": 10115.6, + "probability": 0.9941 + }, + { + "start": 10118.7, + "end": 10119.9, + "probability": 0.7475 + }, + { + "start": 10120.46, + "end": 10122.51, + "probability": 0.9883 + }, + { + "start": 10122.58, + "end": 10124.78, + "probability": 0.999 + }, + { + "start": 10125.44, + "end": 10126.04, + "probability": 0.4969 + }, + { + "start": 10126.08, + "end": 10126.9, + "probability": 0.5794 + }, + { + "start": 10127.26, + "end": 10131.06, + "probability": 0.984 + }, + { + "start": 10131.32, + "end": 10135.1, + "probability": 0.9988 + }, + { + "start": 10135.72, + "end": 10137.0, + "probability": 0.7552 + }, + { + "start": 10137.4, + "end": 10142.14, + "probability": 0.9679 + }, + { + "start": 10143.14, + "end": 10144.04, + "probability": 0.8813 + }, + { + "start": 10144.48, + "end": 10144.84, + "probability": 0.485 + }, + { + "start": 10144.96, + "end": 10145.7, + "probability": 0.8082 + }, + { + "start": 10145.76, + "end": 10151.46, + "probability": 0.9808 + }, + { + "start": 10152.06, + "end": 10153.44, + "probability": 0.9973 + }, + { + "start": 10153.8, + "end": 10155.82, + "probability": 0.9525 + }, + { + "start": 10156.1, + "end": 10157.16, + "probability": 0.7761 + }, + { + "start": 10157.84, + "end": 10159.32, + "probability": 0.9893 + }, + { + "start": 10159.82, + "end": 10161.24, + "probability": 0.7064 + }, + { + "start": 10161.72, + "end": 10162.88, + "probability": 0.9861 + }, + { + "start": 10165.78, + "end": 10168.02, + "probability": 0.9881 + }, + { + "start": 10168.46, + "end": 10169.64, + "probability": 0.939 + }, + { + "start": 10170.12, + "end": 10171.4, + "probability": 0.9638 + }, + { + "start": 10171.46, + "end": 10172.32, + "probability": 0.8867 + }, + { + "start": 10172.48, + "end": 10174.04, + "probability": 0.9706 + }, + { + "start": 10175.5, + "end": 10178.1, + "probability": 0.9866 + }, + { + "start": 10178.14, + "end": 10180.6, + "probability": 0.9914 + }, + { + "start": 10180.9, + "end": 10183.2, + "probability": 0.9913 + }, + { + "start": 10183.28, + "end": 10185.56, + "probability": 0.9948 + }, + { + "start": 10186.62, + "end": 10187.12, + "probability": 0.5811 + }, + { + "start": 10187.68, + "end": 10188.32, + "probability": 0.7959 + }, + { + "start": 10188.48, + "end": 10190.53, + "probability": 0.9739 + }, + { + "start": 10191.9, + "end": 10194.08, + "probability": 0.993 + }, + { + "start": 10194.46, + "end": 10195.64, + "probability": 0.7448 + }, + { + "start": 10195.7, + "end": 10197.58, + "probability": 0.9826 + }, + { + "start": 10198.88, + "end": 10200.62, + "probability": 0.5966 + }, + { + "start": 10200.72, + "end": 10201.5, + "probability": 0.8425 + }, + { + "start": 10201.6, + "end": 10203.04, + "probability": 0.9577 + }, + { + "start": 10203.08, + "end": 10203.54, + "probability": 0.5941 + }, + { + "start": 10203.84, + "end": 10205.3, + "probability": 0.998 + }, + { + "start": 10206.92, + "end": 10209.6, + "probability": 0.9535 + }, + { + "start": 10209.68, + "end": 10210.48, + "probability": 0.99 + }, + { + "start": 10211.88, + "end": 10212.32, + "probability": 0.5237 + }, + { + "start": 10212.54, + "end": 10216.78, + "probability": 0.9416 + }, + { + "start": 10217.18, + "end": 10218.22, + "probability": 0.9932 + }, + { + "start": 10219.98, + "end": 10222.44, + "probability": 0.995 + }, + { + "start": 10222.44, + "end": 10225.12, + "probability": 0.997 + }, + { + "start": 10225.56, + "end": 10225.92, + "probability": 0.8654 + }, + { + "start": 10226.02, + "end": 10226.96, + "probability": 0.7535 + }, + { + "start": 10227.02, + "end": 10227.86, + "probability": 0.7743 + }, + { + "start": 10228.16, + "end": 10229.12, + "probability": 0.8302 + }, + { + "start": 10229.7, + "end": 10230.94, + "probability": 0.9814 + }, + { + "start": 10231.78, + "end": 10233.9, + "probability": 0.9963 + }, + { + "start": 10234.12, + "end": 10235.28, + "probability": 0.9126 + }, + { + "start": 10235.74, + "end": 10237.06, + "probability": 0.9795 + }, + { + "start": 10249.9, + "end": 10252.06, + "probability": 0.2144 + }, + { + "start": 10262.42, + "end": 10264.26, + "probability": 0.135 + }, + { + "start": 10267.69, + "end": 10268.5, + "probability": 0.0906 + }, + { + "start": 10268.5, + "end": 10268.62, + "probability": 0.0952 + }, + { + "start": 10269.72, + "end": 10271.66, + "probability": 0.0686 + }, + { + "start": 10273.1, + "end": 10274.1, + "probability": 0.1352 + }, + { + "start": 10274.1, + "end": 10276.8, + "probability": 0.0533 + }, + { + "start": 10278.04, + "end": 10280.12, + "probability": 0.015 + }, + { + "start": 10280.38, + "end": 10280.38, + "probability": 0.2101 + }, + { + "start": 10280.44, + "end": 10282.85, + "probability": 0.0375 + }, + { + "start": 10283.26, + "end": 10284.03, + "probability": 0.0435 + }, + { + "start": 10286.1, + "end": 10287.96, + "probability": 0.0397 + }, + { + "start": 10288.07, + "end": 10290.5, + "probability": 0.1505 + }, + { + "start": 10290.66, + "end": 10292.4, + "probability": 0.1597 + }, + { + "start": 10292.56, + "end": 10293.1, + "probability": 0.0207 + }, + { + "start": 10293.1, + "end": 10293.3, + "probability": 0.0932 + }, + { + "start": 10293.58, + "end": 10293.72, + "probability": 0.0369 + }, + { + "start": 10294.86, + "end": 10295.68, + "probability": 0.1583 + }, + { + "start": 10295.82, + "end": 10296.54, + "probability": 0.6472 + }, + { + "start": 10309.3, + "end": 10310.52, + "probability": 0.1018 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.0, + "end": 10331.0, + "probability": 0.0 + }, + { + "start": 10331.2, + "end": 10331.26, + "probability": 0.019 + }, + { + "start": 10331.54, + "end": 10332.92, + "probability": 0.9935 + }, + { + "start": 10333.36, + "end": 10338.02, + "probability": 0.6668 + }, + { + "start": 10338.7, + "end": 10341.96, + "probability": 0.9423 + }, + { + "start": 10342.68, + "end": 10344.48, + "probability": 0.9508 + }, + { + "start": 10344.82, + "end": 10346.3, + "probability": 0.3659 + }, + { + "start": 10346.5, + "end": 10347.21, + "probability": 0.4832 + }, + { + "start": 10347.36, + "end": 10349.74, + "probability": 0.5726 + }, + { + "start": 10350.44, + "end": 10350.96, + "probability": 0.8652 + }, + { + "start": 10351.5, + "end": 10354.88, + "probability": 0.9044 + }, + { + "start": 10355.4, + "end": 10358.4, + "probability": 0.8573 + }, + { + "start": 10358.76, + "end": 10359.28, + "probability": 0.9451 + }, + { + "start": 10359.92, + "end": 10361.68, + "probability": 0.9866 + }, + { + "start": 10362.92, + "end": 10365.8, + "probability": 0.5928 + }, + { + "start": 10366.46, + "end": 10369.64, + "probability": 0.9043 + }, + { + "start": 10381.04, + "end": 10382.79, + "probability": 0.2357 + }, + { + "start": 10383.16, + "end": 10384.6, + "probability": 0.8303 + }, + { + "start": 10386.98, + "end": 10391.68, + "probability": 0.9808 + }, + { + "start": 10393.54, + "end": 10394.64, + "probability": 0.8181 + }, + { + "start": 10395.56, + "end": 10398.96, + "probability": 0.9922 + }, + { + "start": 10399.06, + "end": 10403.41, + "probability": 0.9967 + }, + { + "start": 10403.6, + "end": 10404.64, + "probability": 0.8648 + }, + { + "start": 10405.5, + "end": 10407.18, + "probability": 0.8746 + }, + { + "start": 10408.34, + "end": 10412.72, + "probability": 0.7773 + }, + { + "start": 10412.92, + "end": 10413.94, + "probability": 0.8987 + }, + { + "start": 10415.7, + "end": 10418.92, + "probability": 0.9792 + }, + { + "start": 10420.14, + "end": 10425.36, + "probability": 0.8396 + }, + { + "start": 10426.02, + "end": 10430.96, + "probability": 0.9583 + }, + { + "start": 10432.39, + "end": 10436.42, + "probability": 0.8534 + }, + { + "start": 10439.96, + "end": 10443.1, + "probability": 0.94 + }, + { + "start": 10443.34, + "end": 10445.36, + "probability": 0.5576 + }, + { + "start": 10446.36, + "end": 10449.94, + "probability": 0.9542 + }, + { + "start": 10449.94, + "end": 10454.2, + "probability": 0.9896 + }, + { + "start": 10454.98, + "end": 10465.18, + "probability": 0.8484 + }, + { + "start": 10465.18, + "end": 10465.74, + "probability": 0.5718 + }, + { + "start": 10470.0, + "end": 10471.92, + "probability": 0.671 + }, + { + "start": 10473.0, + "end": 10473.77, + "probability": 0.9956 + }, + { + "start": 10474.22, + "end": 10476.96, + "probability": 0.6922 + }, + { + "start": 10476.96, + "end": 10477.64, + "probability": 0.0273 + }, + { + "start": 10477.76, + "end": 10479.36, + "probability": 0.7068 + }, + { + "start": 10479.48, + "end": 10481.44, + "probability": 0.832 + }, + { + "start": 10481.46, + "end": 10484.08, + "probability": 0.9819 + }, + { + "start": 10484.68, + "end": 10485.46, + "probability": 0.7246 + }, + { + "start": 10485.58, + "end": 10485.96, + "probability": 0.5507 + }, + { + "start": 10485.98, + "end": 10490.12, + "probability": 0.9603 + }, + { + "start": 10490.92, + "end": 10491.22, + "probability": 0.6843 + }, + { + "start": 10491.3, + "end": 10492.92, + "probability": 0.5196 + }, + { + "start": 10493.38, + "end": 10496.74, + "probability": 0.89 + }, + { + "start": 10497.18, + "end": 10497.38, + "probability": 0.5032 + }, + { + "start": 10497.44, + "end": 10500.54, + "probability": 0.9155 + }, + { + "start": 10500.54, + "end": 10503.62, + "probability": 0.9895 + }, + { + "start": 10504.12, + "end": 10505.46, + "probability": 0.991 + }, + { + "start": 10506.58, + "end": 10508.06, + "probability": 0.9848 + }, + { + "start": 10508.14, + "end": 10510.38, + "probability": 0.9823 + }, + { + "start": 10510.48, + "end": 10512.28, + "probability": 0.4821 + }, + { + "start": 10512.9, + "end": 10515.7, + "probability": 0.937 + }, + { + "start": 10515.86, + "end": 10520.74, + "probability": 0.8275 + }, + { + "start": 10520.92, + "end": 10523.92, + "probability": 0.9492 + }, + { + "start": 10524.5, + "end": 10526.62, + "probability": 0.9298 + }, + { + "start": 10527.36, + "end": 10529.14, + "probability": 0.8963 + }, + { + "start": 10529.3, + "end": 10533.3, + "probability": 0.7707 + }, + { + "start": 10533.34, + "end": 10534.42, + "probability": 0.7151 + }, + { + "start": 10534.58, + "end": 10534.94, + "probability": 0.4634 + }, + { + "start": 10534.94, + "end": 10538.58, + "probability": 0.9832 + }, + { + "start": 10539.24, + "end": 10539.62, + "probability": 0.645 + }, + { + "start": 10539.68, + "end": 10543.28, + "probability": 0.8554 + }, + { + "start": 10543.34, + "end": 10545.1, + "probability": 0.9412 + }, + { + "start": 10546.2, + "end": 10547.06, + "probability": 0.9942 + }, + { + "start": 10547.58, + "end": 10550.36, + "probability": 0.9456 + }, + { + "start": 10550.36, + "end": 10550.43, + "probability": 0.0902 + }, + { + "start": 10550.7, + "end": 10550.86, + "probability": 0.2502 + }, + { + "start": 10551.08, + "end": 10556.12, + "probability": 0.9596 + }, + { + "start": 10558.98, + "end": 10560.84, + "probability": 0.7671 + }, + { + "start": 10561.82, + "end": 10562.62, + "probability": 0.8099 + }, + { + "start": 10563.2, + "end": 10566.92, + "probability": 0.9912 + }, + { + "start": 10567.24, + "end": 10570.54, + "probability": 0.9869 + }, + { + "start": 10570.66, + "end": 10571.82, + "probability": 0.8685 + }, + { + "start": 10572.26, + "end": 10575.3, + "probability": 0.9963 + }, + { + "start": 10575.34, + "end": 10575.82, + "probability": 0.81 + }, + { + "start": 10575.98, + "end": 10576.82, + "probability": 0.8446 + }, + { + "start": 10576.96, + "end": 10577.18, + "probability": 0.8161 + }, + { + "start": 10577.86, + "end": 10578.52, + "probability": 0.9526 + }, + { + "start": 10578.94, + "end": 10579.68, + "probability": 0.7061 + }, + { + "start": 10579.76, + "end": 10580.3, + "probability": 0.9557 + }, + { + "start": 10582.68, + "end": 10584.1, + "probability": 0.7778 + }, + { + "start": 10584.18, + "end": 10586.18, + "probability": 0.9675 + }, + { + "start": 10586.18, + "end": 10589.04, + "probability": 0.6144 + }, + { + "start": 10589.08, + "end": 10589.86, + "probability": 0.7828 + }, + { + "start": 10589.88, + "end": 10590.6, + "probability": 0.8263 + }, + { + "start": 10590.76, + "end": 10591.94, + "probability": 0.418 + }, + { + "start": 10592.7, + "end": 10593.82, + "probability": 0.9458 + }, + { + "start": 10593.98, + "end": 10594.72, + "probability": 0.5344 + }, + { + "start": 10595.54, + "end": 10596.48, + "probability": 0.6125 + }, + { + "start": 10598.84, + "end": 10600.32, + "probability": 0.0333 + }, + { + "start": 10600.86, + "end": 10601.24, + "probability": 0.8225 + }, + { + "start": 10601.3, + "end": 10603.72, + "probability": 0.783 + }, + { + "start": 10604.3, + "end": 10605.28, + "probability": 0.7999 + }, + { + "start": 10605.3, + "end": 10606.12, + "probability": 0.8415 + }, + { + "start": 10606.18, + "end": 10606.82, + "probability": 0.7537 + }, + { + "start": 10606.98, + "end": 10608.1, + "probability": 0.7067 + }, + { + "start": 10608.14, + "end": 10609.26, + "probability": 0.6579 + }, + { + "start": 10610.52, + "end": 10612.32, + "probability": 0.2743 + }, + { + "start": 10613.86, + "end": 10615.72, + "probability": 0.8228 + }, + { + "start": 10615.72, + "end": 10616.92, + "probability": 0.8667 + }, + { + "start": 10617.48, + "end": 10617.92, + "probability": 0.8835 + }, + { + "start": 10619.22, + "end": 10620.42, + "probability": 0.8362 + }, + { + "start": 10621.9, + "end": 10623.18, + "probability": 0.8622 + }, + { + "start": 10629.42, + "end": 10630.5, + "probability": 0.5033 + }, + { + "start": 10632.58, + "end": 10633.3, + "probability": 0.7776 + }, + { + "start": 10639.28, + "end": 10640.62, + "probability": 0.7323 + }, + { + "start": 10640.62, + "end": 10641.76, + "probability": 0.5562 + }, + { + "start": 10641.8, + "end": 10642.64, + "probability": 0.4691 + }, + { + "start": 10642.72, + "end": 10644.0, + "probability": 0.5216 + }, + { + "start": 10644.0, + "end": 10645.88, + "probability": 0.6466 + }, + { + "start": 10645.96, + "end": 10649.32, + "probability": 0.567 + }, + { + "start": 10649.38, + "end": 10650.2, + "probability": 0.4168 + }, + { + "start": 10650.3, + "end": 10652.06, + "probability": 0.7474 + }, + { + "start": 10653.64, + "end": 10654.0, + "probability": 0.4036 + }, + { + "start": 10654.88, + "end": 10656.85, + "probability": 0.5972 + }, + { + "start": 10657.82, + "end": 10658.14, + "probability": 0.0445 + }, + { + "start": 10658.68, + "end": 10658.78, + "probability": 0.9245 + }, + { + "start": 10660.96, + "end": 10661.36, + "probability": 0.0892 + }, + { + "start": 10661.52, + "end": 10662.6, + "probability": 0.5148 + }, + { + "start": 10662.66, + "end": 10663.42, + "probability": 0.32 + }, + { + "start": 10663.46, + "end": 10665.24, + "probability": 0.4687 + }, + { + "start": 10665.36, + "end": 10667.24, + "probability": 0.2862 + }, + { + "start": 10668.3, + "end": 10670.98, + "probability": 0.3505 + }, + { + "start": 10671.36, + "end": 10671.98, + "probability": 0.0489 + }, + { + "start": 10671.98, + "end": 10673.08, + "probability": 0.7573 + }, + { + "start": 10673.62, + "end": 10676.28, + "probability": 0.1438 + }, + { + "start": 10676.84, + "end": 10679.82, + "probability": 0.1665 + }, + { + "start": 10679.82, + "end": 10681.38, + "probability": 0.107 + }, + { + "start": 10681.76, + "end": 10682.7, + "probability": 0.5754 + }, + { + "start": 10683.37, + "end": 10683.72, + "probability": 0.0435 + }, + { + "start": 10683.74, + "end": 10685.34, + "probability": 0.1747 + }, + { + "start": 10685.56, + "end": 10686.42, + "probability": 0.0436 + }, + { + "start": 10686.42, + "end": 10686.96, + "probability": 0.182 + }, + { + "start": 10687.74, + "end": 10689.52, + "probability": 0.0247 + }, + { + "start": 10693.54, + "end": 10693.64, + "probability": 0.0294 + }, + { + "start": 10694.78, + "end": 10696.86, + "probability": 0.0921 + }, + { + "start": 10698.28, + "end": 10700.29, + "probability": 0.2394 + }, + { + "start": 10707.28, + "end": 10707.62, + "probability": 0.0157 + }, + { + "start": 10707.62, + "end": 10710.34, + "probability": 0.0389 + }, + { + "start": 10710.62, + "end": 10711.54, + "probability": 0.6049 + }, + { + "start": 10712.18, + "end": 10713.58, + "probability": 0.0658 + }, + { + "start": 10714.58, + "end": 10717.92, + "probability": 0.1818 + }, + { + "start": 10719.4, + "end": 10723.52, + "probability": 0.3947 + }, + { + "start": 10724.48, + "end": 10725.86, + "probability": 0.0289 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.0, + "end": 10879.0, + "probability": 0.0 + }, + { + "start": 10879.16, + "end": 10881.84, + "probability": 0.7221 + }, + { + "start": 10882.9, + "end": 10883.36, + "probability": 0.1902 + }, + { + "start": 10883.44, + "end": 10884.6, + "probability": 0.3369 + }, + { + "start": 10884.72, + "end": 10885.52, + "probability": 0.7783 + }, + { + "start": 10885.6, + "end": 10886.82, + "probability": 0.7598 + }, + { + "start": 10889.02, + "end": 10890.26, + "probability": 0.3911 + }, + { + "start": 10890.98, + "end": 10891.44, + "probability": 0.6663 + }, + { + "start": 10894.1, + "end": 10894.78, + "probability": 0.6412 + }, + { + "start": 10894.78, + "end": 10895.78, + "probability": 0.6042 + }, + { + "start": 10896.06, + "end": 10898.06, + "probability": 0.5843 + }, + { + "start": 10898.1, + "end": 10899.24, + "probability": 0.7397 + }, + { + "start": 10900.2, + "end": 10902.06, + "probability": 0.8073 + }, + { + "start": 10902.7, + "end": 10904.54, + "probability": 0.6455 + }, + { + "start": 10905.7, + "end": 10907.18, + "probability": 0.9366 + }, + { + "start": 10908.96, + "end": 10909.82, + "probability": 0.6969 + }, + { + "start": 10910.52, + "end": 10911.18, + "probability": 0.3941 + }, + { + "start": 10911.22, + "end": 10912.14, + "probability": 0.7568 + }, + { + "start": 10912.28, + "end": 10913.72, + "probability": 0.6231 + }, + { + "start": 10913.82, + "end": 10915.6, + "probability": 0.6771 + }, + { + "start": 10917.5, + "end": 10918.78, + "probability": 0.923 + }, + { + "start": 10918.82, + "end": 10920.44, + "probability": 0.9395 + }, + { + "start": 10920.54, + "end": 10921.3, + "probability": 0.327 + }, + { + "start": 10921.4, + "end": 10922.48, + "probability": 0.6281 + }, + { + "start": 10922.5, + "end": 10923.24, + "probability": 0.9146 + }, + { + "start": 10926.68, + "end": 10928.76, + "probability": 0.4831 + }, + { + "start": 10930.1, + "end": 10930.6, + "probability": 0.7812 + }, + { + "start": 10932.02, + "end": 10932.54, + "probability": 0.6256 + }, + { + "start": 10932.6, + "end": 10933.72, + "probability": 0.8567 + }, + { + "start": 10933.76, + "end": 10934.74, + "probability": 0.6282 + }, + { + "start": 10934.86, + "end": 10935.94, + "probability": 0.9868 + }, + { + "start": 10936.46, + "end": 10940.7, + "probability": 0.5542 + }, + { + "start": 10941.68, + "end": 10943.16, + "probability": 0.6224 + }, + { + "start": 10943.2, + "end": 10944.74, + "probability": 0.7054 + }, + { + "start": 10944.86, + "end": 10946.74, + "probability": 0.8459 + }, + { + "start": 10947.32, + "end": 10948.58, + "probability": 0.8153 + }, + { + "start": 10948.66, + "end": 10949.58, + "probability": 0.5247 + }, + { + "start": 10949.62, + "end": 10950.58, + "probability": 0.8566 + }, + { + "start": 10952.2, + "end": 10953.36, + "probability": 0.0871 + }, + { + "start": 10953.36, + "end": 10954.04, + "probability": 0.4095 + }, + { + "start": 10954.1, + "end": 10955.16, + "probability": 0.2849 + }, + { + "start": 10955.2, + "end": 10956.3, + "probability": 0.3864 + }, + { + "start": 10958.02, + "end": 10959.52, + "probability": 0.2168 + }, + { + "start": 10962.16, + "end": 10964.42, + "probability": 0.4792 + }, + { + "start": 10964.62, + "end": 10965.12, + "probability": 0.1372 + }, + { + "start": 10965.24, + "end": 10966.88, + "probability": 0.4106 + }, + { + "start": 10966.9, + "end": 10968.47, + "probability": 0.6318 + }, + { + "start": 10969.28, + "end": 10970.66, + "probability": 0.6967 + }, + { + "start": 10970.74, + "end": 10973.0, + "probability": 0.4555 + }, + { + "start": 10973.04, + "end": 10974.6, + "probability": 0.7178 + }, + { + "start": 10977.3, + "end": 10978.4, + "probability": 0.5011 + }, + { + "start": 10978.44, + "end": 10979.46, + "probability": 0.6053 + }, + { + "start": 10979.62, + "end": 10980.74, + "probability": 0.8182 + }, + { + "start": 10981.96, + "end": 10983.32, + "probability": 0.9373 + }, + { + "start": 10983.42, + "end": 10984.42, + "probability": 0.8342 + }, + { + "start": 10984.52, + "end": 10985.18, + "probability": 0.9134 + }, + { + "start": 10986.76, + "end": 10987.54, + "probability": 0.8291 + }, + { + "start": 10988.14, + "end": 10989.02, + "probability": 0.8816 + }, + { + "start": 10989.72, + "end": 10990.54, + "probability": 0.735 + }, + { + "start": 10991.42, + "end": 10992.38, + "probability": 0.6128 + }, + { + "start": 10992.64, + "end": 10993.58, + "probability": 0.5769 + }, + { + "start": 10993.7, + "end": 10995.08, + "probability": 0.7724 + }, + { + "start": 10995.14, + "end": 10997.08, + "probability": 0.8653 + }, + { + "start": 10997.26, + "end": 10998.44, + "probability": 0.777 + }, + { + "start": 11000.06, + "end": 11002.52, + "probability": 0.877 + }, + { + "start": 11003.22, + "end": 11004.12, + "probability": 0.9249 + }, + { + "start": 11004.9, + "end": 11005.3, + "probability": 0.906 + }, + { + "start": 11006.6, + "end": 11008.22, + "probability": 0.7962 + }, + { + "start": 11008.34, + "end": 11008.86, + "probability": 0.4139 + }, + { + "start": 11008.86, + "end": 11009.42, + "probability": 0.3291 + }, + { + "start": 11009.58, + "end": 11010.98, + "probability": 0.754 + }, + { + "start": 11011.06, + "end": 11012.58, + "probability": 0.818 + }, + { + "start": 11012.58, + "end": 11013.84, + "probability": 0.7527 + }, + { + "start": 11013.86, + "end": 11015.04, + "probability": 0.8725 + }, + { + "start": 11015.14, + "end": 11020.9, + "probability": 0.2562 + }, + { + "start": 11022.48, + "end": 11023.9, + "probability": 0.1882 + }, + { + "start": 11024.98, + "end": 11024.98, + "probability": 0.5031 + }, + { + "start": 11024.98, + "end": 11025.54, + "probability": 0.4853 + }, + { + "start": 11025.78, + "end": 11027.26, + "probability": 0.8522 + }, + { + "start": 11027.38, + "end": 11027.96, + "probability": 0.791 + }, + { + "start": 11029.54, + "end": 11030.92, + "probability": 0.7496 + }, + { + "start": 11036.02, + "end": 11037.7, + "probability": 0.4847 + }, + { + "start": 11037.78, + "end": 11039.12, + "probability": 0.835 + }, + { + "start": 11041.28, + "end": 11041.52, + "probability": 0.5521 + }, + { + "start": 11044.22, + "end": 11045.02, + "probability": 0.5224 + }, + { + "start": 11045.14, + "end": 11046.12, + "probability": 0.4659 + }, + { + "start": 11046.16, + "end": 11047.26, + "probability": 0.6841 + }, + { + "start": 11047.26, + "end": 11048.2, + "probability": 0.9054 + }, + { + "start": 11048.54, + "end": 11049.1, + "probability": 0.8893 + }, + { + "start": 11049.66, + "end": 11051.32, + "probability": 0.8336 + }, + { + "start": 11052.36, + "end": 11054.34, + "probability": 0.661 + }, + { + "start": 11055.2, + "end": 11056.16, + "probability": 0.1327 + }, + { + "start": 11057.46, + "end": 11058.14, + "probability": 0.4146 + }, + { + "start": 11058.74, + "end": 11059.18, + "probability": 0.8088 + }, + { + "start": 11060.88, + "end": 11063.72, + "probability": 0.8149 + }, + { + "start": 11064.64, + "end": 11065.98, + "probability": 0.4804 + }, + { + "start": 11066.14, + "end": 11068.2, + "probability": 0.9629 + }, + { + "start": 11068.2, + "end": 11069.5, + "probability": 0.6354 + }, + { + "start": 11069.56, + "end": 11070.7, + "probability": 0.911 + }, + { + "start": 11070.74, + "end": 11072.2, + "probability": 0.8707 + }, + { + "start": 11072.76, + "end": 11073.66, + "probability": 0.9622 + }, + { + "start": 11074.32, + "end": 11074.98, + "probability": 0.851 + }, + { + "start": 11075.06, + "end": 11077.28, + "probability": 0.5603 + }, + { + "start": 11077.44, + "end": 11078.58, + "probability": 0.6464 + }, + { + "start": 11078.58, + "end": 11079.3, + "probability": 0.8265 + }, + { + "start": 11080.52, + "end": 11080.84, + "probability": 0.7925 + }, + { + "start": 11083.82, + "end": 11084.84, + "probability": 0.406 + }, + { + "start": 11085.84, + "end": 11087.18, + "probability": 0.6789 + }, + { + "start": 11087.22, + "end": 11088.26, + "probability": 0.6252 + }, + { + "start": 11088.36, + "end": 11090.14, + "probability": 0.956 + }, + { + "start": 11090.98, + "end": 11092.86, + "probability": 0.8213 + }, + { + "start": 11093.56, + "end": 11094.46, + "probability": 0.9216 + }, + { + "start": 11095.1, + "end": 11095.88, + "probability": 0.9248 + }, + { + "start": 11096.56, + "end": 11098.47, + "probability": 0.6994 + }, + { + "start": 11102.6, + "end": 11106.3, + "probability": 0.6247 + }, + { + "start": 11107.1, + "end": 11108.8, + "probability": 0.3376 + }, + { + "start": 11108.92, + "end": 11110.06, + "probability": 0.0855 + }, + { + "start": 11110.6, + "end": 11113.96, + "probability": 0.6575 + }, + { + "start": 11115.18, + "end": 11116.8, + "probability": 0.7559 + }, + { + "start": 11117.98, + "end": 11119.1, + "probability": 0.5404 + }, + { + "start": 11120.98, + "end": 11122.72, + "probability": 0.1093 + }, + { + "start": 11123.8, + "end": 11124.04, + "probability": 0.0109 + }, + { + "start": 11124.04, + "end": 11124.52, + "probability": 0.0534 + }, + { + "start": 11127.1, + "end": 11127.36, + "probability": 0.3544 + }, + { + "start": 11130.48, + "end": 11130.9, + "probability": 0.0023 + }, + { + "start": 11133.64, + "end": 11134.48, + "probability": 0.4844 + }, + { + "start": 11143.12, + "end": 11143.5, + "probability": 0.0269 + }, + { + "start": 11144.48, + "end": 11144.92, + "probability": 0.1182 + }, + { + "start": 11147.7, + "end": 11150.56, + "probability": 0.0235 + }, + { + "start": 11152.76, + "end": 11153.46, + "probability": 0.094 + }, + { + "start": 11156.28, + "end": 11156.86, + "probability": 0.0288 + }, + { + "start": 11159.28, + "end": 11160.14, + "probability": 0.0496 + }, + { + "start": 11161.34, + "end": 11162.82, + "probability": 0.0663 + }, + { + "start": 11163.92, + "end": 11165.5, + "probability": 0.0279 + }, + { + "start": 11168.72, + "end": 11169.42, + "probability": 0.0145 + }, + { + "start": 11256.22, + "end": 11258.6, + "probability": 0.5933 + }, + { + "start": 11260.16, + "end": 11262.24, + "probability": 0.4061 + }, + { + "start": 11262.98, + "end": 11265.56, + "probability": 0.6678 + }, + { + "start": 11265.8, + "end": 11266.1, + "probability": 0.3465 + }, + { + "start": 11266.88, + "end": 11267.96, + "probability": 0.7605 + }, + { + "start": 11267.98, + "end": 11268.86, + "probability": 0.5246 + }, + { + "start": 11268.88, + "end": 11269.82, + "probability": 0.5729 + }, + { + "start": 11269.96, + "end": 11273.74, + "probability": 0.8215 + }, + { + "start": 11274.38, + "end": 11274.9, + "probability": 0.6661 + }, + { + "start": 11274.96, + "end": 11275.8, + "probability": 0.522 + }, + { + "start": 11276.0, + "end": 11277.9, + "probability": 0.9491 + }, + { + "start": 11278.55, + "end": 11278.92, + "probability": 0.6274 + }, + { + "start": 11279.06, + "end": 11282.68, + "probability": 0.9922 + }, + { + "start": 11282.7, + "end": 11286.54, + "probability": 0.789 + }, + { + "start": 11286.58, + "end": 11287.6, + "probability": 0.5008 + }, + { + "start": 11287.64, + "end": 11289.38, + "probability": 0.5527 + }, + { + "start": 11290.36, + "end": 11292.26, + "probability": 0.9458 + }, + { + "start": 11292.34, + "end": 11294.56, + "probability": 0.3655 + }, + { + "start": 11294.64, + "end": 11295.64, + "probability": 0.4046 + }, + { + "start": 11296.72, + "end": 11298.68, + "probability": 0.9748 + }, + { + "start": 11299.64, + "end": 11302.14, + "probability": 0.7599 + }, + { + "start": 11302.14, + "end": 11304.57, + "probability": 0.5551 + }, + { + "start": 11309.26, + "end": 11311.75, + "probability": 0.6069 + }, + { + "start": 11313.38, + "end": 11313.92, + "probability": 0.6318 + }, + { + "start": 11314.04, + "end": 11314.64, + "probability": 0.3168 + }, + { + "start": 11314.74, + "end": 11315.18, + "probability": 0.7958 + }, + { + "start": 11315.26, + "end": 11316.48, + "probability": 0.5813 + }, + { + "start": 11329.6, + "end": 11331.36, + "probability": 0.1599 + }, + { + "start": 11333.54, + "end": 11334.02, + "probability": 0.0168 + }, + { + "start": 11334.02, + "end": 11335.62, + "probability": 0.0449 + }, + { + "start": 11335.62, + "end": 11338.88, + "probability": 0.077 + }, + { + "start": 11339.36, + "end": 11346.57, + "probability": 0.0445 + }, + { + "start": 11347.14, + "end": 11347.68, + "probability": 0.0644 + }, + { + "start": 11348.46, + "end": 11350.94, + "probability": 0.0383 + }, + { + "start": 11353.32, + "end": 11354.78, + "probability": 0.092 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11407.0, + "end": 11407.0, + "probability": 0.0 + }, + { + "start": 11419.32, + "end": 11429.4, + "probability": 0.1685 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.0, + "end": 11528.0, + "probability": 0.0 + }, + { + "start": 11528.22, + "end": 11528.52, + "probability": 0.0596 + }, + { + "start": 11529.04, + "end": 11529.62, + "probability": 0.4378 + }, + { + "start": 11530.76, + "end": 11532.48, + "probability": 0.8851 + }, + { + "start": 11532.54, + "end": 11537.2, + "probability": 0.9489 + }, + { + "start": 11537.56, + "end": 11540.94, + "probability": 0.9644 + }, + { + "start": 11541.1, + "end": 11543.74, + "probability": 0.9995 + }, + { + "start": 11544.18, + "end": 11544.94, + "probability": 0.6667 + }, + { + "start": 11545.72, + "end": 11548.94, + "probability": 0.9985 + }, + { + "start": 11549.18, + "end": 11553.74, + "probability": 0.9776 + }, + { + "start": 11554.26, + "end": 11555.86, + "probability": 0.7988 + }, + { + "start": 11556.32, + "end": 11559.08, + "probability": 0.984 + }, + { + "start": 11559.08, + "end": 11562.84, + "probability": 0.9407 + }, + { + "start": 11563.18, + "end": 11566.06, + "probability": 0.8587 + }, + { + "start": 11566.72, + "end": 11567.88, + "probability": 0.9744 + }, + { + "start": 11568.06, + "end": 11573.46, + "probability": 0.9495 + }, + { + "start": 11573.48, + "end": 11578.2, + "probability": 0.9802 + }, + { + "start": 11578.84, + "end": 11584.0, + "probability": 0.9802 + }, + { + "start": 11584.0, + "end": 11587.86, + "probability": 0.8342 + }, + { + "start": 11588.3, + "end": 11592.0, + "probability": 0.9818 + }, + { + "start": 11592.22, + "end": 11596.64, + "probability": 0.9858 + }, + { + "start": 11597.28, + "end": 11604.94, + "probability": 0.8351 + }, + { + "start": 11605.46, + "end": 11606.8, + "probability": 0.6201 + }, + { + "start": 11606.86, + "end": 11607.81, + "probability": 0.9019 + }, + { + "start": 11608.36, + "end": 11609.61, + "probability": 0.8223 + }, + { + "start": 11609.92, + "end": 11610.44, + "probability": 0.5267 + }, + { + "start": 11610.56, + "end": 11611.52, + "probability": 0.9766 + }, + { + "start": 11611.88, + "end": 11613.0, + "probability": 0.9839 + }, + { + "start": 11613.1, + "end": 11616.0, + "probability": 0.988 + }, + { + "start": 11616.0, + "end": 11621.04, + "probability": 0.9772 + }, + { + "start": 11621.52, + "end": 11624.88, + "probability": 0.9954 + }, + { + "start": 11624.88, + "end": 11628.0, + "probability": 0.9985 + }, + { + "start": 11628.28, + "end": 11628.7, + "probability": 0.8768 + }, + { + "start": 11629.56, + "end": 11630.68, + "probability": 0.6823 + }, + { + "start": 11630.98, + "end": 11636.14, + "probability": 0.8835 + }, + { + "start": 11655.12, + "end": 11656.46, + "probability": 0.5998 + }, + { + "start": 11657.92, + "end": 11660.26, + "probability": 0.7507 + }, + { + "start": 11661.08, + "end": 11663.52, + "probability": 0.9976 + }, + { + "start": 11664.16, + "end": 11668.34, + "probability": 0.9757 + }, + { + "start": 11668.64, + "end": 11669.3, + "probability": 0.5331 + }, + { + "start": 11669.42, + "end": 11670.64, + "probability": 0.5322 + }, + { + "start": 11671.46, + "end": 11673.32, + "probability": 0.8932 + }, + { + "start": 11673.74, + "end": 11676.54, + "probability": 0.7957 + }, + { + "start": 11676.56, + "end": 11680.34, + "probability": 0.8674 + }, + { + "start": 11680.88, + "end": 11683.68, + "probability": 0.998 + }, + { + "start": 11683.86, + "end": 11687.66, + "probability": 0.9121 + }, + { + "start": 11688.06, + "end": 11690.9, + "probability": 0.7559 + }, + { + "start": 11691.7, + "end": 11693.46, + "probability": 0.6068 + }, + { + "start": 11693.9, + "end": 11696.12, + "probability": 0.6089 + }, + { + "start": 11698.2, + "end": 11698.98, + "probability": 0.5984 + }, + { + "start": 11699.94, + "end": 11704.88, + "probability": 0.8526 + }, + { + "start": 11705.28, + "end": 11706.98, + "probability": 0.9222 + }, + { + "start": 11707.76, + "end": 11708.46, + "probability": 0.9604 + }, + { + "start": 11713.1, + "end": 11718.78, + "probability": 0.963 + }, + { + "start": 11718.86, + "end": 11721.14, + "probability": 0.7055 + }, + { + "start": 11721.38, + "end": 11721.66, + "probability": 0.0211 + }, + { + "start": 11722.34, + "end": 11722.72, + "probability": 0.4426 + }, + { + "start": 11722.82, + "end": 11723.92, + "probability": 0.2944 + }, + { + "start": 11723.98, + "end": 11724.88, + "probability": 0.8167 + }, + { + "start": 11724.88, + "end": 11726.02, + "probability": 0.48 + }, + { + "start": 11726.92, + "end": 11730.04, + "probability": 0.6968 + }, + { + "start": 11730.08, + "end": 11731.0, + "probability": 0.6021 + }, + { + "start": 11731.02, + "end": 11731.92, + "probability": 0.6184 + }, + { + "start": 11732.04, + "end": 11733.08, + "probability": 0.5765 + }, + { + "start": 11733.14, + "end": 11734.86, + "probability": 0.5396 + }, + { + "start": 11735.86, + "end": 11737.68, + "probability": 0.6816 + }, + { + "start": 11737.72, + "end": 11739.02, + "probability": 0.6376 + }, + { + "start": 11739.44, + "end": 11741.74, + "probability": 0.7869 + }, + { + "start": 11741.86, + "end": 11743.2, + "probability": 0.7666 + }, + { + "start": 11743.24, + "end": 11744.2, + "probability": 0.7804 + }, + { + "start": 11744.22, + "end": 11745.02, + "probability": 0.8384 + }, + { + "start": 11745.1, + "end": 11746.22, + "probability": 0.7559 + }, + { + "start": 11747.1, + "end": 11752.4, + "probability": 0.5533 + }, + { + "start": 11752.4, + "end": 11752.96, + "probability": 0.1797 + }, + { + "start": 11752.96, + "end": 11753.17, + "probability": 0.2441 + }, + { + "start": 11753.3, + "end": 11754.04, + "probability": 0.4258 + }, + { + "start": 11754.04, + "end": 11755.44, + "probability": 0.6512 + }, + { + "start": 11756.78, + "end": 11761.54, + "probability": 0.5424 + }, + { + "start": 11761.64, + "end": 11762.84, + "probability": 0.7767 + }, + { + "start": 11762.88, + "end": 11764.32, + "probability": 0.7294 + }, + { + "start": 11764.68, + "end": 11767.9, + "probability": 0.3991 + }, + { + "start": 11767.94, + "end": 11768.84, + "probability": 0.5567 + }, + { + "start": 11770.28, + "end": 11771.72, + "probability": 0.0751 + }, + { + "start": 11771.72, + "end": 11772.24, + "probability": 0.1514 + }, + { + "start": 11772.58, + "end": 11773.86, + "probability": 0.2984 + }, + { + "start": 11773.86, + "end": 11774.72, + "probability": 0.3896 + }, + { + "start": 11774.76, + "end": 11775.88, + "probability": 0.4011 + }, + { + "start": 11776.18, + "end": 11777.46, + "probability": 0.5094 + }, + { + "start": 11779.46, + "end": 11780.38, + "probability": 0.3419 + }, + { + "start": 11781.69, + "end": 11782.9, + "probability": 0.0382 + }, + { + "start": 11783.12, + "end": 11785.22, + "probability": 0.1275 + }, + { + "start": 11785.22, + "end": 11785.72, + "probability": 0.257 + }, + { + "start": 11786.22, + "end": 11788.59, + "probability": 0.385 + }, + { + "start": 11789.68, + "end": 11790.68, + "probability": 0.3088 + }, + { + "start": 11791.8, + "end": 11795.46, + "probability": 0.3598 + }, + { + "start": 11795.46, + "end": 11797.11, + "probability": 0.0859 + }, + { + "start": 11797.62, + "end": 11799.72, + "probability": 0.1673 + }, + { + "start": 11799.72, + "end": 11800.42, + "probability": 0.054 + }, + { + "start": 11800.52, + "end": 11801.66, + "probability": 0.1974 + }, + { + "start": 11802.91, + "end": 11804.04, + "probability": 0.0956 + }, + { + "start": 11804.4, + "end": 11805.68, + "probability": 0.1179 + }, + { + "start": 11806.52, + "end": 11808.62, + "probability": 0.1714 + }, + { + "start": 11808.7, + "end": 11809.98, + "probability": 0.2631 + }, + { + "start": 11809.98, + "end": 11810.92, + "probability": 0.1608 + }, + { + "start": 11811.02, + "end": 11811.92, + "probability": 0.2421 + }, + { + "start": 11811.92, + "end": 11813.7, + "probability": 0.0164 + }, + { + "start": 11813.84, + "end": 11816.1, + "probability": 0.4404 + }, + { + "start": 11817.24, + "end": 11821.86, + "probability": 0.4009 + }, + { + "start": 11824.07, + "end": 11826.24, + "probability": 0.2907 + }, + { + "start": 11829.26, + "end": 11829.76, + "probability": 0.3591 + }, + { + "start": 11830.64, + "end": 11831.66, + "probability": 0.3815 + }, + { + "start": 11831.66, + "end": 11832.8, + "probability": 0.2219 + }, + { + "start": 11832.8, + "end": 11834.16, + "probability": 0.6154 + }, + { + "start": 11834.34, + "end": 11834.78, + "probability": 0.6001 + }, + { + "start": 11836.06, + "end": 11836.2, + "probability": 0.1551 + }, + { + "start": 11838.5, + "end": 11844.38, + "probability": 0.2383 + }, + { + "start": 11847.2, + "end": 11849.14, + "probability": 0.1173 + }, + { + "start": 11850.91, + "end": 11851.4, + "probability": 0.314 + }, + { + "start": 11851.4, + "end": 11851.4, + "probability": 0.0364 + }, + { + "start": 11851.4, + "end": 11851.4, + "probability": 0.1267 + }, + { + "start": 11851.4, + "end": 11851.58, + "probability": 0.3577 + }, + { + "start": 11851.92, + "end": 11852.2, + "probability": 0.0995 + }, + { + "start": 11853.86, + "end": 11853.96, + "probability": 0.0794 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.0, + "end": 11864.0, + "probability": 0.0 + }, + { + "start": 11864.2, + "end": 11865.78, + "probability": 0.469 + }, + { + "start": 11865.78, + "end": 11866.02, + "probability": 0.0177 + }, + { + "start": 11866.82, + "end": 11868.8, + "probability": 0.5169 + }, + { + "start": 11868.9, + "end": 11871.02, + "probability": 0.2146 + }, + { + "start": 11871.02, + "end": 11872.2, + "probability": 0.5041 + }, + { + "start": 11872.3, + "end": 11874.78, + "probability": 0.5729 + }, + { + "start": 11874.88, + "end": 11875.7, + "probability": 0.1151 + }, + { + "start": 11875.72, + "end": 11876.48, + "probability": 0.2048 + }, + { + "start": 11876.78, + "end": 11877.6, + "probability": 0.5757 + }, + { + "start": 11877.64, + "end": 11878.46, + "probability": 0.6599 + }, + { + "start": 11878.46, + "end": 11879.42, + "probability": 0.7389 + }, + { + "start": 11879.46, + "end": 11881.17, + "probability": 0.3318 + }, + { + "start": 11881.74, + "end": 11882.5, + "probability": 0.3211 + }, + { + "start": 11883.96, + "end": 11885.0, + "probability": 0.9532 + }, + { + "start": 11888.14, + "end": 11888.58, + "probability": 0.4271 + }, + { + "start": 11888.68, + "end": 11889.62, + "probability": 0.7241 + }, + { + "start": 11889.76, + "end": 11890.64, + "probability": 0.8469 + }, + { + "start": 11890.78, + "end": 11891.64, + "probability": 0.8177 + }, + { + "start": 11891.64, + "end": 11892.4, + "probability": 0.7573 + }, + { + "start": 11892.42, + "end": 11893.66, + "probability": 0.7595 + }, + { + "start": 11894.24, + "end": 11894.64, + "probability": 0.5061 + }, + { + "start": 11896.3, + "end": 11896.37, + "probability": 0.1098 + }, + { + "start": 11896.74, + "end": 11898.64, + "probability": 0.6413 + }, + { + "start": 11898.68, + "end": 11900.24, + "probability": 0.7011 + }, + { + "start": 11900.28, + "end": 11901.2, + "probability": 0.3758 + }, + { + "start": 11901.22, + "end": 11901.94, + "probability": 0.6999 + }, + { + "start": 11902.0, + "end": 11903.7, + "probability": 0.6572 + }, + { + "start": 11903.72, + "end": 11904.62, + "probability": 0.2753 + }, + { + "start": 11904.62, + "end": 11904.98, + "probability": 0.0429 + }, + { + "start": 11904.98, + "end": 11905.52, + "probability": 0.6447 + }, + { + "start": 11905.58, + "end": 11907.32, + "probability": 0.8132 + }, + { + "start": 11907.88, + "end": 11909.08, + "probability": 0.3477 + }, + { + "start": 11909.16, + "end": 11912.24, + "probability": 0.7095 + }, + { + "start": 11912.32, + "end": 11913.68, + "probability": 0.7711 + }, + { + "start": 11913.7, + "end": 11914.58, + "probability": 0.7863 + }, + { + "start": 11914.62, + "end": 11915.82, + "probability": 0.5886 + }, + { + "start": 11915.96, + "end": 11917.52, + "probability": 0.7249 + }, + { + "start": 11917.52, + "end": 11919.82, + "probability": 0.6059 + }, + { + "start": 11920.96, + "end": 11921.72, + "probability": 0.5391 + }, + { + "start": 11921.76, + "end": 11923.78, + "probability": 0.3538 + }, + { + "start": 11923.78, + "end": 11924.84, + "probability": 0.4703 + }, + { + "start": 11924.88, + "end": 11926.96, + "probability": 0.825 + }, + { + "start": 11928.58, + "end": 11933.82, + "probability": 0.6458 + }, + { + "start": 11935.33, + "end": 11935.4, + "probability": 0.2856 + }, + { + "start": 11944.04, + "end": 11944.62, + "probability": 0.0195 + }, + { + "start": 11945.62, + "end": 11945.72, + "probability": 0.0069 + }, + { + "start": 11946.4, + "end": 11947.74, + "probability": 0.0986 + }, + { + "start": 11947.74, + "end": 11948.72, + "probability": 0.2831 + }, + { + "start": 11949.04, + "end": 11950.7, + "probability": 0.2797 + }, + { + "start": 11951.36, + "end": 11953.7, + "probability": 0.3149 + }, + { + "start": 11954.32, + "end": 11957.74, + "probability": 0.8127 + }, + { + "start": 11958.96, + "end": 11959.34, + "probability": 0.1248 + }, + { + "start": 11959.34, + "end": 11959.86, + "probability": 0.1204 + }, + { + "start": 11960.08, + "end": 11961.2, + "probability": 0.309 + }, + { + "start": 11961.56, + "end": 11963.12, + "probability": 0.291 + }, + { + "start": 11979.72, + "end": 11980.86, + "probability": 0.0528 + }, + { + "start": 11981.46, + "end": 11982.28, + "probability": 0.2219 + }, + { + "start": 11982.28, + "end": 11983.04, + "probability": 0.206 + }, + { + "start": 11983.16, + "end": 11985.3, + "probability": 0.1602 + }, + { + "start": 11986.0, + "end": 11987.56, + "probability": 0.332 + }, + { + "start": 11988.52, + "end": 11990.3, + "probability": 0.788 + }, + { + "start": 11992.19, + "end": 11996.36, + "probability": 0.0825 + }, + { + "start": 12005.56, + "end": 12006.46, + "probability": 0.0445 + }, + { + "start": 12008.08, + "end": 12008.6, + "probability": 0.0441 + }, + { + "start": 12009.56, + "end": 12009.9, + "probability": 0.0473 + }, + { + "start": 12010.2, + "end": 12011.3, + "probability": 0.1947 + }, + { + "start": 12011.68, + "end": 12013.2, + "probability": 0.3316 + }, + { + "start": 12014.2, + "end": 12016.88, + "probability": 0.6607 + }, + { + "start": 12017.56, + "end": 12018.5, + "probability": 0.044 + }, + { + "start": 12020.12, + "end": 12020.32, + "probability": 0.0575 + }, + { + "start": 12021.22, + "end": 12022.8, + "probability": 0.6873 + }, + { + "start": 12024.42, + "end": 12024.86, + "probability": 0.1542 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.6, + "end": 12202.54, + "probability": 0.0772 + }, + { + "start": 12202.54, + "end": 12203.34, + "probability": 0.0135 + }, + { + "start": 12211.42, + "end": 12212.3, + "probability": 0.0601 + }, + { + "start": 12212.3, + "end": 12212.3, + "probability": 0.0348 + }, + { + "start": 12212.32, + "end": 12215.57, + "probability": 0.0104 + }, + { + "start": 12217.2, + "end": 12220.56, + "probability": 0.1195 + }, + { + "start": 12225.54, + "end": 12226.6, + "probability": 0.5711 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.0, + "end": 12370.0, + "probability": 0.0 + }, + { + "start": 12370.12, + "end": 12370.98, + "probability": 0.4316 + }, + { + "start": 12371.42, + "end": 12372.3, + "probability": 0.4228 + }, + { + "start": 12373.34, + "end": 12374.78, + "probability": 0.9003 + }, + { + "start": 12375.82, + "end": 12378.4, + "probability": 0.4987 + }, + { + "start": 12378.4, + "end": 12379.38, + "probability": 0.7119 + }, + { + "start": 12379.8, + "end": 12380.6, + "probability": 0.9769 + }, + { + "start": 12381.1, + "end": 12382.26, + "probability": 0.9687 + }, + { + "start": 12382.3, + "end": 12383.64, + "probability": 0.9934 + }, + { + "start": 12383.78, + "end": 12385.94, + "probability": 0.7909 + }, + { + "start": 12386.1, + "end": 12387.12, + "probability": 0.2701 + }, + { + "start": 12387.5, + "end": 12389.8, + "probability": 0.696 + }, + { + "start": 12389.94, + "end": 12394.16, + "probability": 0.4856 + }, + { + "start": 12394.22, + "end": 12394.66, + "probability": 0.7848 + }, + { + "start": 12395.16, + "end": 12396.22, + "probability": 0.6974 + }, + { + "start": 12396.32, + "end": 12400.04, + "probability": 0.7431 + }, + { + "start": 12400.18, + "end": 12400.66, + "probability": 0.8314 + }, + { + "start": 12401.7, + "end": 12403.56, + "probability": 0.8605 + }, + { + "start": 12407.14, + "end": 12408.48, + "probability": 0.6121 + }, + { + "start": 12408.6, + "end": 12409.6, + "probability": 0.9778 + }, + { + "start": 12417.54, + "end": 12418.92, + "probability": 0.4356 + }, + { + "start": 12418.92, + "end": 12419.76, + "probability": 0.6304 + }, + { + "start": 12422.12, + "end": 12423.86, + "probability": 0.7276 + }, + { + "start": 12424.26, + "end": 12425.24, + "probability": 0.8958 + }, + { + "start": 12426.34, + "end": 12427.4, + "probability": 0.8838 + }, + { + "start": 12427.48, + "end": 12428.36, + "probability": 0.8814 + }, + { + "start": 12428.46, + "end": 12429.54, + "probability": 0.9398 + }, + { + "start": 12429.74, + "end": 12430.68, + "probability": 0.6636 + }, + { + "start": 12431.66, + "end": 12435.16, + "probability": 0.9963 + }, + { + "start": 12436.48, + "end": 12440.16, + "probability": 0.9981 + }, + { + "start": 12442.98, + "end": 12446.62, + "probability": 0.9958 + }, + { + "start": 12447.26, + "end": 12449.02, + "probability": 0.8798 + }, + { + "start": 12449.64, + "end": 12451.32, + "probability": 0.998 + }, + { + "start": 12455.02, + "end": 12457.14, + "probability": 0.6191 + }, + { + "start": 12457.54, + "end": 12463.04, + "probability": 0.8983 + }, + { + "start": 12463.78, + "end": 12465.67, + "probability": 0.7527 + }, + { + "start": 12466.32, + "end": 12467.34, + "probability": 0.9806 + }, + { + "start": 12468.32, + "end": 12469.78, + "probability": 0.9653 + }, + { + "start": 12470.56, + "end": 12474.08, + "probability": 0.9393 + }, + { + "start": 12474.66, + "end": 12476.74, + "probability": 0.9865 + }, + { + "start": 12477.54, + "end": 12479.2, + "probability": 0.791 + }, + { + "start": 12480.62, + "end": 12484.36, + "probability": 0.9971 + }, + { + "start": 12484.94, + "end": 12488.22, + "probability": 0.6837 + }, + { + "start": 12489.38, + "end": 12491.0, + "probability": 0.6902 + }, + { + "start": 12491.08, + "end": 12494.92, + "probability": 0.9642 + }, + { + "start": 12495.52, + "end": 12498.88, + "probability": 0.8579 + }, + { + "start": 12500.42, + "end": 12502.94, + "probability": 0.9944 + }, + { + "start": 12502.94, + "end": 12506.34, + "probability": 0.9937 + }, + { + "start": 12507.36, + "end": 12510.1, + "probability": 0.973 + }, + { + "start": 12510.94, + "end": 12512.29, + "probability": 0.9544 + }, + { + "start": 12513.7, + "end": 12515.92, + "probability": 0.9461 + }, + { + "start": 12517.9, + "end": 12518.78, + "probability": 0.9887 + }, + { + "start": 12519.6, + "end": 12523.88, + "probability": 0.9827 + }, + { + "start": 12524.08, + "end": 12527.62, + "probability": 0.9692 + }, + { + "start": 12531.1, + "end": 12531.22, + "probability": 0.3985 + }, + { + "start": 12532.66, + "end": 12535.34, + "probability": 0.9952 + }, + { + "start": 12535.52, + "end": 12538.02, + "probability": 0.7522 + }, + { + "start": 12538.6, + "end": 12540.32, + "probability": 0.9261 + }, + { + "start": 12540.94, + "end": 12544.84, + "probability": 0.9641 + }, + { + "start": 12544.84, + "end": 12547.18, + "probability": 0.9899 + }, + { + "start": 12547.88, + "end": 12550.42, + "probability": 0.8882 + }, + { + "start": 12551.42, + "end": 12552.07, + "probability": 0.9492 + }, + { + "start": 12552.98, + "end": 12558.42, + "probability": 0.9645 + }, + { + "start": 12558.54, + "end": 12559.2, + "probability": 0.7719 + }, + { + "start": 12559.32, + "end": 12560.42, + "probability": 0.7698 + }, + { + "start": 12560.6, + "end": 12563.06, + "probability": 0.6657 + }, + { + "start": 12563.06, + "end": 12566.58, + "probability": 0.8996 + }, + { + "start": 12582.7, + "end": 12583.6, + "probability": 0.7997 + }, + { + "start": 12584.16, + "end": 12586.82, + "probability": 0.9764 + }, + { + "start": 12590.72, + "end": 12591.68, + "probability": 0.5394 + }, + { + "start": 12591.82, + "end": 12594.48, + "probability": 0.9948 + }, + { + "start": 12595.38, + "end": 12603.12, + "probability": 0.8101 + }, + { + "start": 12603.6, + "end": 12604.16, + "probability": 0.2695 + }, + { + "start": 12604.18, + "end": 12604.66, + "probability": 0.8129 + }, + { + "start": 12604.94, + "end": 12607.06, + "probability": 0.5751 + }, + { + "start": 12607.62, + "end": 12609.1, + "probability": 0.7826 + }, + { + "start": 12610.32, + "end": 12611.1, + "probability": 0.2444 + }, + { + "start": 12612.46, + "end": 12615.52, + "probability": 0.9382 + }, + { + "start": 12616.14, + "end": 12618.24, + "probability": 0.9008 + }, + { + "start": 12619.02, + "end": 12619.9, + "probability": 0.551 + }, + { + "start": 12620.1, + "end": 12621.86, + "probability": 0.8972 + }, + { + "start": 12622.36, + "end": 12624.48, + "probability": 0.8481 + }, + { + "start": 12624.72, + "end": 12625.38, + "probability": 0.6676 + }, + { + "start": 12626.06, + "end": 12626.7, + "probability": 0.4861 + }, + { + "start": 12626.8, + "end": 12628.4, + "probability": 0.8178 + }, + { + "start": 12628.52, + "end": 12630.28, + "probability": 0.555 + }, + { + "start": 12631.3, + "end": 12633.46, + "probability": 0.8338 + }, + { + "start": 12633.84, + "end": 12635.44, + "probability": 0.9644 + }, + { + "start": 12635.9, + "end": 12638.26, + "probability": 0.9428 + }, + { + "start": 12639.12, + "end": 12640.94, + "probability": 0.7964 + }, + { + "start": 12641.46, + "end": 12643.2, + "probability": 0.8997 + }, + { + "start": 12643.6, + "end": 12645.74, + "probability": 0.9575 + }, + { + "start": 12646.2, + "end": 12647.96, + "probability": 0.9268 + }, + { + "start": 12648.84, + "end": 12651.38, + "probability": 0.6991 + }, + { + "start": 12651.68, + "end": 12653.66, + "probability": 0.9654 + }, + { + "start": 12653.88, + "end": 12655.6, + "probability": 0.9535 + }, + { + "start": 12658.11, + "end": 12660.2, + "probability": 0.685 + }, + { + "start": 12661.12, + "end": 12663.1, + "probability": 0.9486 + }, + { + "start": 12663.44, + "end": 12665.64, + "probability": 0.9908 + }, + { + "start": 12665.96, + "end": 12667.8, + "probability": 0.98 + }, + { + "start": 12667.98, + "end": 12669.98, + "probability": 0.9216 + }, + { + "start": 12670.18, + "end": 12671.92, + "probability": 0.9399 + }, + { + "start": 12672.06, + "end": 12672.72, + "probability": 0.6304 + }, + { + "start": 12676.18, + "end": 12679.18, + "probability": 0.4348 + }, + { + "start": 12681.26, + "end": 12681.68, + "probability": 0.7837 + }, + { + "start": 12682.74, + "end": 12683.54, + "probability": 0.7536 + }, + { + "start": 12684.34, + "end": 12685.54, + "probability": 0.959 + }, + { + "start": 12686.16, + "end": 12688.18, + "probability": 0.9233 + }, + { + "start": 12688.32, + "end": 12690.34, + "probability": 0.9942 + }, + { + "start": 12690.76, + "end": 12692.82, + "probability": 0.9709 + }, + { + "start": 12693.18, + "end": 12696.46, + "probability": 0.979 + }, + { + "start": 12697.3, + "end": 12697.5, + "probability": 0.1486 + }, + { + "start": 12697.5, + "end": 12698.28, + "probability": 0.5402 + }, + { + "start": 12698.58, + "end": 12700.88, + "probability": 0.8064 + }, + { + "start": 12701.14, + "end": 12701.96, + "probability": 0.903 + }, + { + "start": 12702.52, + "end": 12706.9, + "probability": 0.9524 + }, + { + "start": 12707.58, + "end": 12708.84, + "probability": 0.9644 + }, + { + "start": 12709.0, + "end": 12710.54, + "probability": 0.947 + }, + { + "start": 12711.02, + "end": 12713.58, + "probability": 0.66 + }, + { + "start": 12713.72, + "end": 12718.28, + "probability": 0.9019 + }, + { + "start": 12718.44, + "end": 12720.88, + "probability": 0.8405 + }, + { + "start": 12721.12, + "end": 12722.62, + "probability": 0.8605 + }, + { + "start": 12722.86, + "end": 12723.48, + "probability": 0.9672 + }, + { + "start": 12724.32, + "end": 12725.38, + "probability": 0.6026 + }, + { + "start": 12725.5, + "end": 12727.4, + "probability": 0.5437 + }, + { + "start": 12727.4, + "end": 12727.98, + "probability": 0.7587 + }, + { + "start": 12728.68, + "end": 12729.82, + "probability": 0.7791 + }, + { + "start": 12730.44, + "end": 12731.96, + "probability": 0.8689 + }, + { + "start": 12732.4, + "end": 12734.2, + "probability": 0.9847 + }, + { + "start": 12734.4, + "end": 12736.0, + "probability": 0.9217 + }, + { + "start": 12736.68, + "end": 12738.38, + "probability": 0.9445 + }, + { + "start": 12738.68, + "end": 12740.44, + "probability": 0.9529 + }, + { + "start": 12740.6, + "end": 12742.42, + "probability": 0.7878 + }, + { + "start": 12742.72, + "end": 12743.36, + "probability": 0.9637 + }, + { + "start": 12746.36, + "end": 12747.02, + "probability": 0.6044 + }, + { + "start": 12747.24, + "end": 12748.66, + "probability": 0.7897 + }, + { + "start": 12748.92, + "end": 12750.84, + "probability": 0.9473 + }, + { + "start": 12751.46, + "end": 12753.5, + "probability": 0.9573 + }, + { + "start": 12753.78, + "end": 12755.72, + "probability": 0.9735 + }, + { + "start": 12756.1, + "end": 12757.7, + "probability": 0.963 + }, + { + "start": 12758.02, + "end": 12760.02, + "probability": 0.9879 + }, + { + "start": 12760.12, + "end": 12761.82, + "probability": 0.8842 + }, + { + "start": 12764.16, + "end": 12764.88, + "probability": 0.72 + }, + { + "start": 12765.5, + "end": 12765.78, + "probability": 0.0256 + }, + { + "start": 12765.78, + "end": 12766.26, + "probability": 0.5693 + }, + { + "start": 12766.36, + "end": 12767.84, + "probability": 0.7274 + }, + { + "start": 12769.36, + "end": 12769.76, + "probability": 0.8669 + }, + { + "start": 12774.32, + "end": 12775.16, + "probability": 0.7826 + }, + { + "start": 12775.52, + "end": 12777.3, + "probability": 0.7393 + }, + { + "start": 12777.38, + "end": 12779.28, + "probability": 0.9679 + }, + { + "start": 12779.5, + "end": 12780.98, + "probability": 0.9711 + }, + { + "start": 12781.32, + "end": 12783.16, + "probability": 0.8826 + }, + { + "start": 12783.42, + "end": 12784.1, + "probability": 0.9858 + }, + { + "start": 12784.62, + "end": 12786.88, + "probability": 0.9072 + }, + { + "start": 12787.5, + "end": 12788.3, + "probability": 0.3511 + }, + { + "start": 12788.32, + "end": 12790.36, + "probability": 0.5637 + }, + { + "start": 12790.66, + "end": 12792.96, + "probability": 0.9046 + }, + { + "start": 12793.18, + "end": 12795.4, + "probability": 0.9154 + }, + { + "start": 12795.56, + "end": 12797.26, + "probability": 0.9838 + }, + { + "start": 12797.6, + "end": 12798.32, + "probability": 0.9173 + }, + { + "start": 12798.86, + "end": 12803.2, + "probability": 0.9295 + }, + { + "start": 12805.24, + "end": 12807.76, + "probability": 0.8243 + }, + { + "start": 12808.5, + "end": 12809.92, + "probability": 0.9712 + }, + { + "start": 12810.32, + "end": 12812.42, + "probability": 0.9906 + }, + { + "start": 12812.6, + "end": 12813.38, + "probability": 0.9624 + }, + { + "start": 12816.56, + "end": 12820.24, + "probability": 0.7102 + }, + { + "start": 12820.8, + "end": 12824.64, + "probability": 0.8049 + }, + { + "start": 12825.16, + "end": 12827.28, + "probability": 0.7696 + }, + { + "start": 12827.8, + "end": 12828.52, + "probability": 0.9406 + }, + { + "start": 12828.56, + "end": 12830.24, + "probability": 0.755 + }, + { + "start": 12830.48, + "end": 12831.24, + "probability": 0.6998 + }, + { + "start": 12831.8, + "end": 12835.4, + "probability": 0.922 + }, + { + "start": 12835.94, + "end": 12836.66, + "probability": 0.9869 + }, + { + "start": 12837.24, + "end": 12837.88, + "probability": 0.9146 + }, + { + "start": 12838.42, + "end": 12840.96, + "probability": 0.8888 + }, + { + "start": 12841.96, + "end": 12843.3, + "probability": 0.7163 + }, + { + "start": 12843.76, + "end": 12845.14, + "probability": 0.6835 + }, + { + "start": 12845.28, + "end": 12847.42, + "probability": 0.965 + }, + { + "start": 12847.56, + "end": 12849.18, + "probability": 0.9174 + }, + { + "start": 12850.0, + "end": 12851.72, + "probability": 0.969 + }, + { + "start": 12852.54, + "end": 12852.96, + "probability": 0.8171 + }, + { + "start": 12855.26, + "end": 12856.18, + "probability": 0.8676 + }, + { + "start": 12856.8, + "end": 12858.9, + "probability": 0.9656 + }, + { + "start": 12860.14, + "end": 12863.06, + "probability": 0.9813 + }, + { + "start": 12863.6, + "end": 12864.4, + "probability": 0.2181 + }, + { + "start": 12864.94, + "end": 12866.94, + "probability": 0.8703 + }, + { + "start": 12867.14, + "end": 12869.02, + "probability": 0.886 + }, + { + "start": 12869.18, + "end": 12871.16, + "probability": 0.9303 + }, + { + "start": 12871.82, + "end": 12875.16, + "probability": 0.6956 + }, + { + "start": 12876.0, + "end": 12876.42, + "probability": 0.6024 + }, + { + "start": 12878.14, + "end": 12881.56, + "probability": 0.9273 + }, + { + "start": 12882.58, + "end": 12884.72, + "probability": 0.9781 + }, + { + "start": 12885.6, + "end": 12887.32, + "probability": 0.912 + }, + { + "start": 12887.46, + "end": 12889.54, + "probability": 0.9622 + }, + { + "start": 12889.64, + "end": 12891.77, + "probability": 0.9064 + }, + { + "start": 12892.16, + "end": 12894.18, + "probability": 0.8296 + }, + { + "start": 12894.66, + "end": 12896.72, + "probability": 0.8437 + }, + { + "start": 12896.86, + "end": 12898.7, + "probability": 0.9021 + }, + { + "start": 12900.1, + "end": 12901.94, + "probability": 0.9749 + }, + { + "start": 12902.54, + "end": 12904.26, + "probability": 0.8909 + }, + { + "start": 12904.82, + "end": 12908.54, + "probability": 0.8635 + }, + { + "start": 12908.86, + "end": 12911.58, + "probability": 0.5425 + }, + { + "start": 12913.82, + "end": 12916.82, + "probability": 0.3162 + }, + { + "start": 12917.18, + "end": 12919.2, + "probability": 0.7842 + }, + { + "start": 12919.32, + "end": 12920.7, + "probability": 0.8383 + }, + { + "start": 12923.1, + "end": 12923.82, + "probability": 0.967 + }, + { + "start": 12924.82, + "end": 12924.82, + "probability": 0.0238 + }, + { + "start": 12924.82, + "end": 12925.24, + "probability": 0.3875 + }, + { + "start": 12926.02, + "end": 12927.86, + "probability": 0.8135 + }, + { + "start": 12927.9, + "end": 12929.22, + "probability": 0.8732 + }, + { + "start": 12929.34, + "end": 12931.34, + "probability": 0.795 + }, + { + "start": 12932.16, + "end": 12933.98, + "probability": 0.8217 + }, + { + "start": 12934.8, + "end": 12936.3, + "probability": 0.9145 + }, + { + "start": 12937.41, + "end": 12939.38, + "probability": 0.4702 + }, + { + "start": 12939.38, + "end": 12940.1, + "probability": 0.739 + }, + { + "start": 12940.22, + "end": 12940.8, + "probability": 0.7768 + }, + { + "start": 12941.64, + "end": 12942.66, + "probability": 0.7228 + }, + { + "start": 12942.84, + "end": 12944.58, + "probability": 0.7914 + }, + { + "start": 12944.8, + "end": 12946.7, + "probability": 0.9496 + }, + { + "start": 12946.84, + "end": 12947.46, + "probability": 0.85 + }, + { + "start": 12948.08, + "end": 12948.82, + "probability": 0.7645 + }, + { + "start": 12950.52, + "end": 12952.38, + "probability": 0.7994 + }, + { + "start": 12952.64, + "end": 12954.08, + "probability": 0.743 + }, + { + "start": 12954.72, + "end": 12956.68, + "probability": 0.8755 + }, + { + "start": 12956.78, + "end": 12958.7, + "probability": 0.8281 + }, + { + "start": 12958.74, + "end": 12960.18, + "probability": 0.9486 + }, + { + "start": 12960.32, + "end": 12961.18, + "probability": 0.9847 + }, + { + "start": 12961.9, + "end": 12962.7, + "probability": 0.9641 + }, + { + "start": 12963.0, + "end": 12965.08, + "probability": 0.9334 + }, + { + "start": 12965.16, + "end": 12966.74, + "probability": 0.7719 + }, + { + "start": 12967.48, + "end": 12969.64, + "probability": 0.8656 + }, + { + "start": 12969.78, + "end": 12971.22, + "probability": 0.8826 + }, + { + "start": 12971.62, + "end": 12972.3, + "probability": 0.9769 + }, + { + "start": 12974.2, + "end": 12975.26, + "probability": 0.4067 + }, + { + "start": 12975.34, + "end": 12976.56, + "probability": 0.9135 + }, + { + "start": 12976.6, + "end": 12978.56, + "probability": 0.8825 + }, + { + "start": 12978.6, + "end": 12980.36, + "probability": 0.8615 + }, + { + "start": 12980.54, + "end": 12981.86, + "probability": 0.7451 + }, + { + "start": 12982.08, + "end": 12982.68, + "probability": 0.6264 + }, + { + "start": 12983.24, + "end": 12986.44, + "probability": 0.9172 + }, + { + "start": 12986.98, + "end": 12987.68, + "probability": 0.9031 + }, + { + "start": 12987.78, + "end": 12989.52, + "probability": 0.9019 + }, + { + "start": 12989.62, + "end": 12991.6, + "probability": 0.9034 + }, + { + "start": 12993.1, + "end": 12993.54, + "probability": 0.9121 + }, + { + "start": 12995.98, + "end": 12996.54, + "probability": 0.2376 + }, + { + "start": 12996.58, + "end": 12998.16, + "probability": 0.4131 + }, + { + "start": 12998.26, + "end": 12999.42, + "probability": 0.9387 + }, + { + "start": 12999.54, + "end": 13001.0, + "probability": 0.8611 + }, + { + "start": 13001.14, + "end": 13003.1, + "probability": 0.9237 + }, + { + "start": 13003.18, + "end": 13005.14, + "probability": 0.8674 + }, + { + "start": 13005.22, + "end": 13006.06, + "probability": 0.8454 + }, + { + "start": 13006.58, + "end": 13008.64, + "probability": 0.7482 + }, + { + "start": 13009.36, + "end": 13011.1, + "probability": 0.8386 + }, + { + "start": 13011.72, + "end": 13012.54, + "probability": 0.762 + }, + { + "start": 13012.72, + "end": 13014.18, + "probability": 0.3981 + }, + { + "start": 13014.4, + "end": 13016.6, + "probability": 0.8539 + }, + { + "start": 13017.76, + "end": 13020.14, + "probability": 0.703 + }, + { + "start": 13020.82, + "end": 13023.88, + "probability": 0.8 + }, + { + "start": 13025.58, + "end": 13026.08, + "probability": 0.7551 + }, + { + "start": 13026.22, + "end": 13027.64, + "probability": 0.9185 + }, + { + "start": 13027.78, + "end": 13029.3, + "probability": 0.9228 + }, + { + "start": 13029.4, + "end": 13030.12, + "probability": 0.9664 + }, + { + "start": 13034.62, + "end": 13036.66, + "probability": 0.7379 + }, + { + "start": 13037.38, + "end": 13038.74, + "probability": 0.8726 + }, + { + "start": 13038.96, + "end": 13040.82, + "probability": 0.8427 + }, + { + "start": 13040.84, + "end": 13042.1, + "probability": 0.8797 + }, + { + "start": 13042.22, + "end": 13043.26, + "probability": 0.8772 + }, + { + "start": 13043.44, + "end": 13044.98, + "probability": 0.887 + }, + { + "start": 13045.08, + "end": 13046.66, + "probability": 0.9634 + }, + { + "start": 13047.41, + "end": 13048.26, + "probability": 0.0798 + }, + { + "start": 13048.3, + "end": 13049.46, + "probability": 0.4559 + }, + { + "start": 13049.56, + "end": 13050.16, + "probability": 0.7556 + }, + { + "start": 13050.8, + "end": 13053.72, + "probability": 0.7598 + }, + { + "start": 13056.26, + "end": 13057.12, + "probability": 0.9434 + }, + { + "start": 13057.22, + "end": 13058.44, + "probability": 0.9417 + }, + { + "start": 13058.48, + "end": 13059.9, + "probability": 0.8228 + }, + { + "start": 13060.02, + "end": 13060.66, + "probability": 0.6277 + }, + { + "start": 13061.22, + "end": 13062.08, + "probability": 0.6425 + }, + { + "start": 13062.18, + "end": 13063.68, + "probability": 0.8636 + }, + { + "start": 13063.72, + "end": 13065.3, + "probability": 0.8242 + }, + { + "start": 13065.46, + "end": 13066.22, + "probability": 0.9741 + }, + { + "start": 13066.92, + "end": 13068.76, + "probability": 0.8189 + }, + { + "start": 13069.72, + "end": 13070.95, + "probability": 0.7034 + }, + { + "start": 13071.6, + "end": 13073.22, + "probability": 0.9796 + }, + { + "start": 13074.08, + "end": 13075.62, + "probability": 0.7915 + }, + { + "start": 13075.76, + "end": 13077.16, + "probability": 0.5089 + }, + { + "start": 13077.28, + "end": 13078.64, + "probability": 0.8481 + }, + { + "start": 13078.78, + "end": 13079.42, + "probability": 0.6693 + }, + { + "start": 13080.24, + "end": 13083.06, + "probability": 0.9855 + }, + { + "start": 13086.42, + "end": 13087.42, + "probability": 0.7645 + }, + { + "start": 13088.1, + "end": 13089.48, + "probability": 0.6517 + }, + { + "start": 13089.56, + "end": 13090.7, + "probability": 0.7358 + }, + { + "start": 13090.86, + "end": 13093.24, + "probability": 0.7543 + }, + { + "start": 13093.24, + "end": 13094.88, + "probability": 0.8176 + }, + { + "start": 13095.82, + "end": 13099.62, + "probability": 0.7316 + }, + { + "start": 13099.82, + "end": 13099.82, + "probability": 0.3406 + }, + { + "start": 13099.82, + "end": 13100.31, + "probability": 0.3656 + }, + { + "start": 13100.42, + "end": 13101.98, + "probability": 0.6811 + }, + { + "start": 13102.2, + "end": 13102.88, + "probability": 0.8739 + }, + { + "start": 13103.56, + "end": 13107.68, + "probability": 0.6185 + }, + { + "start": 13108.94, + "end": 13109.08, + "probability": 0.0095 + }, + { + "start": 13109.08, + "end": 13109.52, + "probability": 0.1299 + }, + { + "start": 13109.52, + "end": 13110.8, + "probability": 0.565 + }, + { + "start": 13110.84, + "end": 13111.96, + "probability": 0.7064 + }, + { + "start": 13112.12, + "end": 13113.62, + "probability": 0.9205 + }, + { + "start": 13113.74, + "end": 13115.1, + "probability": 0.755 + }, + { + "start": 13115.76, + "end": 13116.52, + "probability": 0.9453 + }, + { + "start": 13117.36, + "end": 13118.3, + "probability": 0.7957 + }, + { + "start": 13119.68, + "end": 13121.02, + "probability": 0.0465 + }, + { + "start": 13121.02, + "end": 13121.58, + "probability": 0.6017 + }, + { + "start": 13121.74, + "end": 13122.26, + "probability": 0.6583 + }, + { + "start": 13122.88, + "end": 13123.6, + "probability": 0.6772 + }, + { + "start": 13123.68, + "end": 13125.4, + "probability": 0.7717 + }, + { + "start": 13125.58, + "end": 13126.82, + "probability": 0.7805 + }, + { + "start": 13126.9, + "end": 13127.88, + "probability": 0.5601 + }, + { + "start": 13129.48, + "end": 13130.3, + "probability": 0.6331 + }, + { + "start": 13131.0, + "end": 13135.38, + "probability": 0.3019 + }, + { + "start": 13136.38, + "end": 13137.34, + "probability": 0.601 + }, + { + "start": 13137.46, + "end": 13139.38, + "probability": 0.81 + }, + { + "start": 13139.44, + "end": 13140.74, + "probability": 0.4771 + }, + { + "start": 13140.78, + "end": 13142.26, + "probability": 0.9088 + }, + { + "start": 13142.32, + "end": 13144.16, + "probability": 0.8901 + }, + { + "start": 13144.36, + "end": 13145.9, + "probability": 0.6195 + }, + { + "start": 13145.94, + "end": 13147.32, + "probability": 0.9057 + }, + { + "start": 13147.34, + "end": 13149.16, + "probability": 0.8215 + }, + { + "start": 13149.32, + "end": 13150.44, + "probability": 0.6948 + }, + { + "start": 13150.6, + "end": 13151.3, + "probability": 0.8214 + }, + { + "start": 13151.82, + "end": 13154.06, + "probability": 0.7194 + }, + { + "start": 13156.47, + "end": 13157.22, + "probability": 0.0672 + }, + { + "start": 13157.94, + "end": 13160.58, + "probability": 0.6803 + }, + { + "start": 13161.06, + "end": 13162.28, + "probability": 0.3893 + }, + { + "start": 13163.02, + "end": 13164.88, + "probability": 0.6689 + }, + { + "start": 13195.8, + "end": 13199.3, + "probability": 0.7563 + }, + { + "start": 13199.4, + "end": 13203.24, + "probability": 0.6577 + }, + { + "start": 13203.88, + "end": 13207.76, + "probability": 0.8345 + }, + { + "start": 13208.38, + "end": 13211.38, + "probability": 0.8755 + }, + { + "start": 13212.24, + "end": 13213.33, + "probability": 0.329 + }, + { + "start": 13214.32, + "end": 13215.36, + "probability": 0.2842 + }, + { + "start": 13215.78, + "end": 13216.26, + "probability": 0.8173 + }, + { + "start": 13216.9, + "end": 13218.28, + "probability": 0.8348 + }, + { + "start": 13218.92, + "end": 13223.58, + "probability": 0.9694 + }, + { + "start": 13224.28, + "end": 13226.82, + "probability": 0.9479 + }, + { + "start": 13227.46, + "end": 13228.14, + "probability": 0.3668 + }, + { + "start": 13228.22, + "end": 13229.7, + "probability": 0.6463 + }, + { + "start": 13229.82, + "end": 13231.12, + "probability": 0.8015 + }, + { + "start": 13231.2, + "end": 13233.0, + "probability": 0.7739 + }, + { + "start": 13233.12, + "end": 13234.54, + "probability": 0.4415 + }, + { + "start": 13235.46, + "end": 13237.06, + "probability": 0.8779 + }, + { + "start": 13237.08, + "end": 13238.3, + "probability": 0.9446 + }, + { + "start": 13238.6, + "end": 13240.48, + "probability": 0.7923 + }, + { + "start": 13240.5, + "end": 13241.96, + "probability": 0.6306 + }, + { + "start": 13244.24, + "end": 13245.7, + "probability": 0.8372 + }, + { + "start": 13245.84, + "end": 13247.28, + "probability": 0.9339 + }, + { + "start": 13247.32, + "end": 13248.78, + "probability": 0.446 + }, + { + "start": 13249.46, + "end": 13251.68, + "probability": 0.6166 + }, + { + "start": 13251.78, + "end": 13253.68, + "probability": 0.8461 + }, + { + "start": 13254.64, + "end": 13254.9, + "probability": 0.7661 + }, + { + "start": 13257.02, + "end": 13259.76, + "probability": 0.8913 + }, + { + "start": 13260.56, + "end": 13262.24, + "probability": 0.6769 + }, + { + "start": 13262.32, + "end": 13264.1, + "probability": 0.7389 + }, + { + "start": 13264.2, + "end": 13265.98, + "probability": 0.8573 + }, + { + "start": 13266.04, + "end": 13267.6, + "probability": 0.8758 + }, + { + "start": 13268.3, + "end": 13269.78, + "probability": 0.9055 + }, + { + "start": 13270.4, + "end": 13270.7, + "probability": 0.8857 + }, + { + "start": 13271.92, + "end": 13272.6, + "probability": 0.9486 + }, + { + "start": 13274.32, + "end": 13278.34, + "probability": 0.9652 + }, + { + "start": 13280.12, + "end": 13280.86, + "probability": 0.9651 + }, + { + "start": 13281.76, + "end": 13285.08, + "probability": 0.8778 + }, + { + "start": 13285.8, + "end": 13288.34, + "probability": 0.6809 + }, + { + "start": 13289.98, + "end": 13290.36, + "probability": 0.7581 + }, + { + "start": 13291.3, + "end": 13293.78, + "probability": 0.7221 + }, + { + "start": 13294.48, + "end": 13295.28, + "probability": 0.5596 + }, + { + "start": 13295.42, + "end": 13297.42, + "probability": 0.8084 + }, + { + "start": 13297.6, + "end": 13298.84, + "probability": 0.7721 + }, + { + "start": 13298.98, + "end": 13300.54, + "probability": 0.9156 + }, + { + "start": 13301.52, + "end": 13302.82, + "probability": 0.9497 + }, + { + "start": 13302.9, + "end": 13304.84, + "probability": 0.853 + }, + { + "start": 13305.0, + "end": 13306.26, + "probability": 0.4253 + }, + { + "start": 13308.2, + "end": 13308.54, + "probability": 0.7327 + }, + { + "start": 13309.54, + "end": 13312.56, + "probability": 0.5173 + }, + { + "start": 13313.2, + "end": 13314.06, + "probability": 0.9008 + }, + { + "start": 13315.18, + "end": 13316.68, + "probability": 0.6938 + }, + { + "start": 13316.84, + "end": 13318.56, + "probability": 0.8196 + }, + { + "start": 13318.62, + "end": 13319.16, + "probability": 0.7665 + }, + { + "start": 13319.7, + "end": 13321.35, + "probability": 0.3327 + }, + { + "start": 13321.9, + "end": 13324.46, + "probability": 0.5593 + }, + { + "start": 13325.58, + "end": 13326.22, + "probability": 0.4359 + }, + { + "start": 13327.0, + "end": 13327.96, + "probability": 0.5538 + }, + { + "start": 13328.06, + "end": 13329.18, + "probability": 0.6522 + }, + { + "start": 13329.42, + "end": 13331.26, + "probability": 0.6173 + }, + { + "start": 13332.66, + "end": 13334.18, + "probability": 0.5383 + }, + { + "start": 13334.3, + "end": 13335.86, + "probability": 0.9154 + }, + { + "start": 13335.94, + "end": 13336.8, + "probability": 0.748 + }, + { + "start": 13338.04, + "end": 13339.3, + "probability": 0.9458 + }, + { + "start": 13339.4, + "end": 13341.14, + "probability": 0.9082 + }, + { + "start": 13341.26, + "end": 13342.44, + "probability": 0.7862 + }, + { + "start": 13342.74, + "end": 13343.36, + "probability": 0.9364 + }, + { + "start": 13346.86, + "end": 13348.86, + "probability": 0.5708 + }, + { + "start": 13350.36, + "end": 13351.76, + "probability": 0.82 + }, + { + "start": 13351.78, + "end": 13353.06, + "probability": 0.7535 + }, + { + "start": 13353.18, + "end": 13354.42, + "probability": 0.818 + }, + { + "start": 13354.6, + "end": 13355.76, + "probability": 0.833 + }, + { + "start": 13357.3, + "end": 13359.64, + "probability": 0.9541 + }, + { + "start": 13361.02, + "end": 13362.92, + "probability": 0.792 + }, + { + "start": 13362.96, + "end": 13364.78, + "probability": 0.964 + }, + { + "start": 13365.02, + "end": 13366.48, + "probability": 0.8692 + }, + { + "start": 13367.64, + "end": 13367.98, + "probability": 0.8723 + }, + { + "start": 13368.78, + "end": 13371.42, + "probability": 0.8121 + }, + { + "start": 13372.4, + "end": 13374.06, + "probability": 0.9685 + }, + { + "start": 13374.14, + "end": 13375.48, + "probability": 0.974 + }, + { + "start": 13376.76, + "end": 13378.18, + "probability": 0.2204 + }, + { + "start": 13378.18, + "end": 13379.22, + "probability": 0.7935 + }, + { + "start": 13379.34, + "end": 13381.0, + "probability": 0.6456 + }, + { + "start": 13381.0, + "end": 13382.52, + "probability": 0.6084 + }, + { + "start": 13383.24, + "end": 13385.26, + "probability": 0.9128 + }, + { + "start": 13386.2, + "end": 13389.94, + "probability": 0.7974 + }, + { + "start": 13391.04, + "end": 13392.52, + "probability": 0.8269 + }, + { + "start": 13392.62, + "end": 13394.16, + "probability": 0.6505 + }, + { + "start": 13394.76, + "end": 13395.12, + "probability": 0.8562 + }, + { + "start": 13395.9, + "end": 13396.56, + "probability": 0.5921 + }, + { + "start": 13396.64, + "end": 13398.06, + "probability": 0.9627 + }, + { + "start": 13398.14, + "end": 13399.38, + "probability": 0.8873 + }, + { + "start": 13399.96, + "end": 13401.5, + "probability": 0.987 + }, + { + "start": 13401.62, + "end": 13403.48, + "probability": 0.773 + }, + { + "start": 13404.28, + "end": 13406.06, + "probability": 0.9271 + }, + { + "start": 13406.22, + "end": 13408.28, + "probability": 0.8963 + }, + { + "start": 13408.32, + "end": 13409.8, + "probability": 0.9117 + }, + { + "start": 13410.18, + "end": 13412.54, + "probability": 0.6867 + }, + { + "start": 13412.62, + "end": 13414.26, + "probability": 0.8422 + }, + { + "start": 13415.32, + "end": 13417.3, + "probability": 0.9227 + }, + { + "start": 13417.58, + "end": 13419.0, + "probability": 0.7798 + }, + { + "start": 13419.08, + "end": 13420.78, + "probability": 0.8496 + }, + { + "start": 13420.86, + "end": 13421.94, + "probability": 0.9228 + }, + { + "start": 13422.1, + "end": 13423.36, + "probability": 0.8602 + }, + { + "start": 13424.12, + "end": 13427.52, + "probability": 0.8237 + }, + { + "start": 13440.42, + "end": 13441.4, + "probability": 0.5091 + }, + { + "start": 13443.44, + "end": 13444.94, + "probability": 0.0595 + }, + { + "start": 13445.2, + "end": 13448.32, + "probability": 0.0916 + }, + { + "start": 13449.86, + "end": 13450.72, + "probability": 0.4218 + }, + { + "start": 13451.4, + "end": 13452.72, + "probability": 0.1523 + }, + { + "start": 13455.18, + "end": 13455.88, + "probability": 0.2515 + }, + { + "start": 13455.88, + "end": 13456.88, + "probability": 0.5875 + }, + { + "start": 13457.6, + "end": 13457.96, + "probability": 0.7886 + }, + { + "start": 13460.16, + "end": 13463.26, + "probability": 0.6855 + }, + { + "start": 13463.8, + "end": 13465.22, + "probability": 0.9225 + }, + { + "start": 13465.34, + "end": 13466.82, + "probability": 0.7754 + }, + { + "start": 13466.94, + "end": 13468.14, + "probability": 0.925 + }, + { + "start": 13468.98, + "end": 13469.84, + "probability": 0.969 + }, + { + "start": 13472.84, + "end": 13477.34, + "probability": 0.5425 + }, + { + "start": 13477.98, + "end": 13479.6, + "probability": 0.9603 + }, + { + "start": 13480.88, + "end": 13482.3, + "probability": 0.8784 + }, + { + "start": 13482.44, + "end": 13484.36, + "probability": 0.813 + }, + { + "start": 13484.4, + "end": 13485.94, + "probability": 0.6474 + }, + { + "start": 13486.3, + "end": 13487.76, + "probability": 0.9351 + }, + { + "start": 13488.26, + "end": 13489.86, + "probability": 0.7654 + }, + { + "start": 13490.44, + "end": 13492.96, + "probability": 0.8664 + }, + { + "start": 13493.88, + "end": 13495.58, + "probability": 0.8821 + }, + { + "start": 13495.76, + "end": 13497.06, + "probability": 0.6538 + }, + { + "start": 13497.1, + "end": 13497.8, + "probability": 0.9244 + }, + { + "start": 13498.9, + "end": 13499.9, + "probability": 0.7244 + }, + { + "start": 13500.08, + "end": 13503.96, + "probability": 0.4992 + }, + { + "start": 13504.04, + "end": 13504.32, + "probability": 0.8607 + }, + { + "start": 13504.86, + "end": 13505.46, + "probability": 0.384 + }, + { + "start": 13505.56, + "end": 13507.36, + "probability": 0.2617 + }, + { + "start": 13507.46, + "end": 13508.6, + "probability": 0.677 + }, + { + "start": 13508.72, + "end": 13510.48, + "probability": 0.69 + }, + { + "start": 13512.12, + "end": 13513.6, + "probability": 0.2442 + }, + { + "start": 13513.6, + "end": 13513.95, + "probability": 0.5261 + }, + { + "start": 13514.32, + "end": 13515.36, + "probability": 0.7045 + }, + { + "start": 13515.84, + "end": 13517.16, + "probability": 0.6521 + }, + { + "start": 13517.22, + "end": 13518.92, + "probability": 0.6774 + }, + { + "start": 13519.0, + "end": 13520.28, + "probability": 0.874 + }, + { + "start": 13520.36, + "end": 13521.86, + "probability": 0.8329 + }, + { + "start": 13523.18, + "end": 13524.56, + "probability": 0.8352 + }, + { + "start": 13524.7, + "end": 13526.56, + "probability": 0.6722 + }, + { + "start": 13526.64, + "end": 13528.74, + "probability": 0.8603 + }, + { + "start": 13529.04, + "end": 13530.2, + "probability": 0.8595 + }, + { + "start": 13530.22, + "end": 13531.96, + "probability": 0.711 + }, + { + "start": 13532.66, + "end": 13534.02, + "probability": 0.8868 + }, + { + "start": 13534.14, + "end": 13535.62, + "probability": 0.7284 + }, + { + "start": 13535.68, + "end": 13537.82, + "probability": 0.857 + }, + { + "start": 13537.9, + "end": 13538.6, + "probability": 0.8831 + }, + { + "start": 13539.18, + "end": 13539.74, + "probability": 0.8901 + }, + { + "start": 13539.86, + "end": 13541.12, + "probability": 0.9839 + }, + { + "start": 13541.24, + "end": 13542.88, + "probability": 0.9763 + }, + { + "start": 13543.54, + "end": 13545.04, + "probability": 0.9316 + }, + { + "start": 13545.08, + "end": 13546.5, + "probability": 0.8975 + }, + { + "start": 13548.97, + "end": 13549.74, + "probability": 0.2984 + }, + { + "start": 13549.84, + "end": 13551.48, + "probability": 0.6508 + }, + { + "start": 13552.22, + "end": 13553.6, + "probability": 0.7867 + }, + { + "start": 13553.72, + "end": 13554.84, + "probability": 0.8536 + }, + { + "start": 13554.96, + "end": 13556.46, + "probability": 0.9545 + }, + { + "start": 13556.54, + "end": 13558.08, + "probability": 0.9052 + }, + { + "start": 13558.18, + "end": 13559.78, + "probability": 0.8917 + }, + { + "start": 13560.5, + "end": 13561.98, + "probability": 0.6056 + }, + { + "start": 13562.1, + "end": 13563.7, + "probability": 0.7595 + }, + { + "start": 13563.76, + "end": 13565.44, + "probability": 0.7978 + }, + { + "start": 13566.38, + "end": 13569.4, + "probability": 0.8567 + }, + { + "start": 13570.46, + "end": 13571.72, + "probability": 0.5413 + }, + { + "start": 13571.9, + "end": 13573.42, + "probability": 0.7134 + }, + { + "start": 13574.02, + "end": 13576.74, + "probability": 0.7864 + }, + { + "start": 13576.84, + "end": 13579.7, + "probability": 0.88 + }, + { + "start": 13579.78, + "end": 13581.64, + "probability": 0.7358 + }, + { + "start": 13581.88, + "end": 13583.25, + "probability": 0.4694 + }, + { + "start": 13583.3, + "end": 13585.28, + "probability": 0.6969 + }, + { + "start": 13586.4, + "end": 13586.4, + "probability": 0.0188 + }, + { + "start": 13586.4, + "end": 13587.04, + "probability": 0.3205 + }, + { + "start": 13587.1, + "end": 13588.66, + "probability": 0.7819 + }, + { + "start": 13588.74, + "end": 13590.0, + "probability": 0.7069 + }, + { + "start": 13590.04, + "end": 13590.64, + "probability": 0.9294 + }, + { + "start": 13591.16, + "end": 13591.78, + "probability": 0.5408 + }, + { + "start": 13591.78, + "end": 13593.02, + "probability": 0.8652 + }, + { + "start": 13593.16, + "end": 13594.52, + "probability": 0.9272 + }, + { + "start": 13594.64, + "end": 13596.96, + "probability": 0.8915 + }, + { + "start": 13598.38, + "end": 13598.6, + "probability": 0.1432 + }, + { + "start": 13598.6, + "end": 13599.88, + "probability": 0.7321 + }, + { + "start": 13600.06, + "end": 13601.54, + "probability": 0.6972 + }, + { + "start": 13602.18, + "end": 13603.78, + "probability": 0.9076 + }, + { + "start": 13603.8, + "end": 13604.98, + "probability": 0.7996 + }, + { + "start": 13605.12, + "end": 13606.34, + "probability": 0.8723 + }, + { + "start": 13607.52, + "end": 13608.9, + "probability": 0.9406 + }, + { + "start": 13608.98, + "end": 13610.72, + "probability": 0.9401 + }, + { + "start": 13611.06, + "end": 13612.78, + "probability": 0.8953 + }, + { + "start": 13612.82, + "end": 13614.2, + "probability": 0.627 + }, + { + "start": 13615.14, + "end": 13616.76, + "probability": 0.8309 + }, + { + "start": 13618.18, + "end": 13620.3, + "probability": 0.9179 + }, + { + "start": 13621.38, + "end": 13622.22, + "probability": 0.9179 + }, + { + "start": 13622.24, + "end": 13623.42, + "probability": 0.9109 + }, + { + "start": 13623.46, + "end": 13625.16, + "probability": 0.9095 + }, + { + "start": 13626.27, + "end": 13628.04, + "probability": 0.4407 + }, + { + "start": 13628.04, + "end": 13628.53, + "probability": 0.369 + }, + { + "start": 13628.88, + "end": 13631.22, + "probability": 0.5654 + }, + { + "start": 13631.4, + "end": 13633.3, + "probability": 0.883 + }, + { + "start": 13634.12, + "end": 13635.87, + "probability": 0.7492 + }, + { + "start": 13636.32, + "end": 13637.66, + "probability": 0.9438 + }, + { + "start": 13637.8, + "end": 13639.16, + "probability": 0.9468 + }, + { + "start": 13639.2, + "end": 13639.88, + "probability": 0.6681 + }, + { + "start": 13640.54, + "end": 13641.28, + "probability": 0.7707 + }, + { + "start": 13641.32, + "end": 13642.68, + "probability": 0.9759 + }, + { + "start": 13642.72, + "end": 13644.06, + "probability": 0.9738 + }, + { + "start": 13644.72, + "end": 13646.16, + "probability": 0.7812 + }, + { + "start": 13646.18, + "end": 13652.34, + "probability": 0.8125 + }, + { + "start": 13652.48, + "end": 13653.9, + "probability": 0.6746 + }, + { + "start": 13653.98, + "end": 13654.64, + "probability": 0.729 + }, + { + "start": 13655.32, + "end": 13657.88, + "probability": 0.7278 + }, + { + "start": 13658.8, + "end": 13660.18, + "probability": 0.6473 + }, + { + "start": 13660.18, + "end": 13661.44, + "probability": 0.6927 + }, + { + "start": 13661.46, + "end": 13662.6, + "probability": 0.8969 + }, + { + "start": 13662.68, + "end": 13664.28, + "probability": 0.8117 + }, + { + "start": 13664.4, + "end": 13665.44, + "probability": 0.633 + }, + { + "start": 13665.54, + "end": 13667.43, + "probability": 0.7729 + }, + { + "start": 13667.7, + "end": 13670.06, + "probability": 0.4861 + }, + { + "start": 13670.1, + "end": 13671.44, + "probability": 0.733 + }, + { + "start": 13671.46, + "end": 13672.78, + "probability": 0.9668 + }, + { + "start": 13673.38, + "end": 13676.2, + "probability": 0.9869 + }, + { + "start": 13676.98, + "end": 13679.82, + "probability": 0.987 + }, + { + "start": 13680.76, + "end": 13682.68, + "probability": 0.5873 + }, + { + "start": 13682.74, + "end": 13684.28, + "probability": 0.8843 + }, + { + "start": 13685.56, + "end": 13688.08, + "probability": 0.9596 + }, + { + "start": 13689.34, + "end": 13690.74, + "probability": 0.9764 + }, + { + "start": 13690.78, + "end": 13692.8, + "probability": 0.7911 + }, + { + "start": 13693.0, + "end": 13694.82, + "probability": 0.9731 + }, + { + "start": 13695.28, + "end": 13696.82, + "probability": 0.589 + }, + { + "start": 13698.56, + "end": 13700.3, + "probability": 0.8948 + }, + { + "start": 13700.4, + "end": 13701.74, + "probability": 0.4064 + }, + { + "start": 13702.42, + "end": 13705.36, + "probability": 0.6445 + }, + { + "start": 13705.88, + "end": 13711.96, + "probability": 0.8992 + }, + { + "start": 13712.62, + "end": 13714.02, + "probability": 0.9275 + }, + { + "start": 13714.08, + "end": 13715.96, + "probability": 0.9295 + }, + { + "start": 13715.96, + "end": 13718.18, + "probability": 0.937 + }, + { + "start": 13718.8, + "end": 13718.8, + "probability": 0.1262 + }, + { + "start": 13718.8, + "end": 13721.62, + "probability": 0.9287 + }, + { + "start": 13722.12, + "end": 13723.69, + "probability": 0.3109 + }, + { + "start": 13724.36, + "end": 13724.68, + "probability": 0.7744 + }, + { + "start": 13733.24, + "end": 13734.16, + "probability": 0.638 + }, + { + "start": 13737.52, + "end": 13739.34, + "probability": 0.5363 + }, + { + "start": 13740.44, + "end": 13741.08, + "probability": 0.3613 + }, + { + "start": 13741.36, + "end": 13742.1, + "probability": 0.7741 + }, + { + "start": 13742.94, + "end": 13745.32, + "probability": 0.041 + }, + { + "start": 13750.76, + "end": 13751.98, + "probability": 0.5934 + }, + { + "start": 13760.24, + "end": 13760.88, + "probability": 0.5718 + }, + { + "start": 13760.88, + "end": 13761.08, + "probability": 0.5053 + }, + { + "start": 13763.36, + "end": 13765.46, + "probability": 0.2008 + }, + { + "start": 13766.04, + "end": 13767.16, + "probability": 0.0754 + }, + { + "start": 13770.02, + "end": 13771.52, + "probability": 0.603 + }, + { + "start": 13771.52, + "end": 13775.05, + "probability": 0.5143 + }, + { + "start": 13775.3, + "end": 13775.32, + "probability": 0.0601 + }, + { + "start": 13777.88, + "end": 13780.32, + "probability": 0.4714 + }, + { + "start": 13780.32, + "end": 13780.32, + "probability": 0.1837 + }, + { + "start": 13780.32, + "end": 13780.58, + "probability": 0.0289 + }, + { + "start": 13782.42, + "end": 13784.16, + "probability": 0.0573 + }, + { + "start": 13786.0, + "end": 13788.14, + "probability": 0.0715 + }, + { + "start": 13823.0, + "end": 13823.0, + "probability": 0.0 + }, + { + "start": 13823.0, + "end": 13823.0, + "probability": 0.0 + }, + { + "start": 13823.0, + "end": 13823.0, + "probability": 0.0 + }, + { + "start": 13823.42, + "end": 13823.94, + "probability": 0.1943 + }, + { + "start": 13823.94, + "end": 13824.8, + "probability": 0.5568 + }, + { + "start": 13825.04, + "end": 13826.92, + "probability": 0.2596 + }, + { + "start": 13827.06, + "end": 13828.36, + "probability": 0.6044 + }, + { + "start": 13828.58, + "end": 13828.98, + "probability": 0.3188 + }, + { + "start": 13839.68, + "end": 13843.14, + "probability": 0.0963 + }, + { + "start": 13843.14, + "end": 13843.18, + "probability": 0.0623 + }, + { + "start": 13843.18, + "end": 13843.46, + "probability": 0.1154 + }, + { + "start": 13845.18, + "end": 13848.29, + "probability": 0.0162 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.0, + "end": 13962.0, + "probability": 0.0 + }, + { + "start": 13962.54, + "end": 13963.12, + "probability": 0.0725 + }, + { + "start": 13963.12, + "end": 13963.12, + "probability": 0.1006 + }, + { + "start": 13963.12, + "end": 13963.12, + "probability": 0.0329 + }, + { + "start": 13963.12, + "end": 13968.34, + "probability": 0.4894 + }, + { + "start": 13969.42, + "end": 13969.48, + "probability": 0.088 + }, + { + "start": 13969.48, + "end": 13971.6, + "probability": 0.2591 + }, + { + "start": 13971.68, + "end": 13977.48, + "probability": 0.3166 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.0, + "end": 14085.0, + "probability": 0.0 + }, + { + "start": 14085.16, + "end": 14087.36, + "probability": 0.0129 + }, + { + "start": 14088.7, + "end": 14089.43, + "probability": 0.5557 + }, + { + "start": 14090.3, + "end": 14091.02, + "probability": 0.8571 + }, + { + "start": 14102.38, + "end": 14103.7, + "probability": 0.7526 + }, + { + "start": 14104.86, + "end": 14106.62, + "probability": 0.6615 + }, + { + "start": 14129.3, + "end": 14132.2, + "probability": 0.5921 + }, + { + "start": 14132.3, + "end": 14134.16, + "probability": 0.7498 + }, + { + "start": 14134.18, + "end": 14135.82, + "probability": 0.9 + }, + { + "start": 14140.58, + "end": 14145.16, + "probability": 0.3909 + }, + { + "start": 14149.42, + "end": 14152.62, + "probability": 0.6772 + }, + { + "start": 14153.77, + "end": 14155.64, + "probability": 0.6621 + }, + { + "start": 14155.74, + "end": 14157.86, + "probability": 0.7279 + }, + { + "start": 14158.16, + "end": 14159.34, + "probability": 0.7691 + }, + { + "start": 14159.9, + "end": 14161.49, + "probability": 0.9722 + }, + { + "start": 14162.54, + "end": 14166.5, + "probability": 0.7355 + }, + { + "start": 14166.82, + "end": 14167.84, + "probability": 0.013 + }, + { + "start": 14181.38, + "end": 14186.54, + "probability": 0.0588 + }, + { + "start": 14190.2, + "end": 14191.74, + "probability": 0.0715 + }, + { + "start": 14193.6, + "end": 14196.07, + "probability": 0.0978 + }, + { + "start": 14238.46, + "end": 14243.36, + "probability": 0.9629 + }, + { + "start": 14243.56, + "end": 14244.32, + "probability": 0.9093 + }, + { + "start": 14244.4, + "end": 14249.02, + "probability": 0.9776 + }, + { + "start": 14249.18, + "end": 14250.34, + "probability": 0.2397 + }, + { + "start": 14251.34, + "end": 14252.24, + "probability": 0.812 + }, + { + "start": 14253.82, + "end": 14259.46, + "probability": 0.9849 + }, + { + "start": 14259.46, + "end": 14264.32, + "probability": 0.9446 + }, + { + "start": 14264.42, + "end": 14264.72, + "probability": 0.4949 + }, + { + "start": 14270.12, + "end": 14272.34, + "probability": 0.2702 + }, + { + "start": 14273.52, + "end": 14273.62, + "probability": 0.2377 + }, + { + "start": 14273.62, + "end": 14273.76, + "probability": 0.1467 + }, + { + "start": 14273.76, + "end": 14275.4, + "probability": 0.0439 + }, + { + "start": 14277.46, + "end": 14277.56, + "probability": 0.2459 + }, + { + "start": 14279.12, + "end": 14284.14, + "probability": 0.5542 + }, + { + "start": 14284.7, + "end": 14291.4, + "probability": 0.0277 + }, + { + "start": 14296.44, + "end": 14299.14, + "probability": 0.5573 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14419.0, + "end": 14419.0, + "probability": 0.0 + }, + { + "start": 14423.53, + "end": 14424.78, + "probability": 0.0029 + }, + { + "start": 14428.18, + "end": 14431.88, + "probability": 0.511 + }, + { + "start": 14440.2, + "end": 14444.42, + "probability": 0.5983 + }, + { + "start": 14452.32, + "end": 14452.74, + "probability": 0.5147 + }, + { + "start": 14467.74, + "end": 14472.24, + "probability": 0.5449 + }, + { + "start": 14482.84, + "end": 14488.56, + "probability": 0.3706 + }, + { + "start": 14489.22, + "end": 14491.58, + "probability": 0.1154 + }, + { + "start": 14496.0, + "end": 14498.54, + "probability": 0.0155 + }, + { + "start": 14500.88, + "end": 14504.92, + "probability": 0.5784 + }, + { + "start": 14506.86, + "end": 14508.76, + "probability": 0.2252 + }, + { + "start": 14549.0, + "end": 14549.0, + "probability": 0.0 + }, + { + "start": 14549.4, + "end": 14551.92, + "probability": 0.0484 + }, + { + "start": 14556.6, + "end": 14563.04, + "probability": 0.5304 + }, + { + "start": 14564.3, + "end": 14565.38, + "probability": 0.2624 + }, + { + "start": 14565.78, + "end": 14568.08, + "probability": 0.0174 + }, + { + "start": 14568.74, + "end": 14569.56, + "probability": 0.8133 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.0, + "end": 14671.0, + "probability": 0.0 + }, + { + "start": 14671.32, + "end": 14673.12, + "probability": 0.4917 + }, + { + "start": 14679.4, + "end": 14679.62, + "probability": 0.6511 + }, + { + "start": 14690.48, + "end": 14691.48, + "probability": 0.0447 + }, + { + "start": 14693.95, + "end": 14697.84, + "probability": 0.1757 + }, + { + "start": 14705.62, + "end": 14708.1, + "probability": 0.5141 + }, + { + "start": 14721.6, + "end": 14723.94, + "probability": 0.4893 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.12, + "end": 14797.74, + "probability": 0.0123 + }, + { + "start": 14802.56, + "end": 14806.98, + "probability": 0.6094 + }, + { + "start": 14807.58, + "end": 14809.08, + "probability": 0.8684 + }, + { + "start": 14818.52, + "end": 14823.92, + "probability": 0.2385 + }, + { + "start": 14825.74, + "end": 14826.23, + "probability": 0.0148 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14933.0, + "end": 14933.0, + "probability": 0.0 + }, + { + "start": 14934.3, + "end": 14934.84, + "probability": 0.015 + }, + { + "start": 14935.42, + "end": 14937.82, + "probability": 0.0287 + }, + { + "start": 14939.36, + "end": 14940.88, + "probability": 0.0263 + }, + { + "start": 14944.02, + "end": 14944.18, + "probability": 0.0202 + }, + { + "start": 14944.7, + "end": 14948.84, + "probability": 0.0558 + }, + { + "start": 15055.0, + "end": 15055.0, + "probability": 0.0 + }, + { + "start": 15055.0, + "end": 15055.0, + "probability": 0.0 + }, + { + "start": 15055.0, + "end": 15055.0, + "probability": 0.0 + }, + { + "start": 15055.0, + "end": 15055.0, + "probability": 0.0 + }, + { + "start": 15055.0, + "end": 15055.0, + "probability": 0.0 + }, + { + "start": 15055.0, + "end": 15055.0, + "probability": 0.0 + }, + { + "start": 15055.42, + "end": 15059.32, + "probability": 0.2321 + }, + { + "start": 15059.32, + "end": 15059.32, + "probability": 0.134 + }, + { + "start": 15059.32, + "end": 15061.88, + "probability": 0.6299 + }, + { + "start": 15062.86, + "end": 15062.96, + "probability": 0.1309 + }, + { + "start": 15062.96, + "end": 15062.96, + "probability": 0.0074 + }, + { + "start": 15062.96, + "end": 15062.96, + "probability": 0.0153 + }, + { + "start": 15062.96, + "end": 15066.86, + "probability": 0.643 + }, + { + "start": 15070.9, + "end": 15070.94, + "probability": 0.0893 + }, + { + "start": 15070.94, + "end": 15072.96, + "probability": 0.2585 + }, + { + "start": 15072.96, + "end": 15073.6, + "probability": 0.4977 + }, + { + "start": 15073.7, + "end": 15074.72, + "probability": 0.8057 + }, + { + "start": 15075.14, + "end": 15076.34, + "probability": 0.8906 + }, + { + "start": 15076.36, + "end": 15077.48, + "probability": 0.532 + }, + { + "start": 15078.74, + "end": 15084.0, + "probability": 0.2926 + }, + { + "start": 15084.0, + "end": 15085.14, + "probability": 0.2425 + }, + { + "start": 15086.54, + "end": 15086.8, + "probability": 0.5049 + }, + { + "start": 15086.8, + "end": 15086.8, + "probability": 0.0218 + }, + { + "start": 15086.8, + "end": 15088.78, + "probability": 0.6625 + }, + { + "start": 15089.2, + "end": 15089.78, + "probability": 0.4519 + }, + { + "start": 15089.84, + "end": 15094.02, + "probability": 0.8098 + }, + { + "start": 15096.5, + "end": 15098.26, + "probability": 0.2518 + }, + { + "start": 15098.62, + "end": 15100.62, + "probability": 0.8064 + }, + { + "start": 15109.9, + "end": 15113.38, + "probability": 0.7387 + }, + { + "start": 15113.92, + "end": 15114.08, + "probability": 0.0065 + }, + { + "start": 15115.16, + "end": 15120.12, + "probability": 0.6846 + }, + { + "start": 15120.46, + "end": 15121.68, + "probability": 0.0655 + }, + { + "start": 15121.76, + "end": 15122.54, + "probability": 0.2741 + }, + { + "start": 15122.54, + "end": 15123.82, + "probability": 0.54 + }, + { + "start": 15123.88, + "end": 15125.04, + "probability": 0.8748 + }, + { + "start": 15125.12, + "end": 15127.24, + "probability": 0.7823 + }, + { + "start": 15127.36, + "end": 15134.14, + "probability": 0.6826 + }, + { + "start": 15134.74, + "end": 15137.82, + "probability": 0.3396 + }, + { + "start": 15138.9, + "end": 15141.86, + "probability": 0.9449 + }, + { + "start": 15142.66, + "end": 15146.0, + "probability": 0.9978 + }, + { + "start": 15146.2, + "end": 15147.54, + "probability": 0.934 + }, + { + "start": 15148.06, + "end": 15148.36, + "probability": 0.9691 + }, + { + "start": 15148.48, + "end": 15155.0, + "probability": 0.8268 + }, + { + "start": 15155.76, + "end": 15159.3, + "probability": 0.8633 + }, + { + "start": 15159.36, + "end": 15160.0, + "probability": 0.8273 + }, + { + "start": 15161.37, + "end": 15164.18, + "probability": 0.9561 + }, + { + "start": 15164.8, + "end": 15165.98, + "probability": 0.6405 + }, + { + "start": 15176.98, + "end": 15178.96, + "probability": 0.7209 + }, + { + "start": 15179.2, + "end": 15181.24, + "probability": 0.4704 + }, + { + "start": 15181.92, + "end": 15183.8, + "probability": 0.8088 + }, + { + "start": 15184.47, + "end": 15191.7, + "probability": 0.9816 + }, + { + "start": 15192.12, + "end": 15198.64, + "probability": 0.9995 + }, + { + "start": 15199.12, + "end": 15201.32, + "probability": 0.9207 + }, + { + "start": 15201.98, + "end": 15206.98, + "probability": 0.9967 + }, + { + "start": 15207.54, + "end": 15211.0, + "probability": 0.9952 + }, + { + "start": 15211.44, + "end": 15215.02, + "probability": 0.9827 + }, + { + "start": 15216.88, + "end": 15222.64, + "probability": 0.9993 + }, + { + "start": 15223.56, + "end": 15226.54, + "probability": 0.9369 + }, + { + "start": 15227.26, + "end": 15228.98, + "probability": 0.8876 + }, + { + "start": 15229.6, + "end": 15232.48, + "probability": 0.7161 + }, + { + "start": 15232.92, + "end": 15234.22, + "probability": 0.9803 + }, + { + "start": 15235.96, + "end": 15240.88, + "probability": 0.9894 + }, + { + "start": 15241.62, + "end": 15244.86, + "probability": 0.9731 + }, + { + "start": 15244.92, + "end": 15247.3, + "probability": 0.8977 + }, + { + "start": 15248.02, + "end": 15250.76, + "probability": 0.9937 + }, + { + "start": 15252.42, + "end": 15258.38, + "probability": 0.9974 + }, + { + "start": 15259.02, + "end": 15259.84, + "probability": 0.837 + }, + { + "start": 15260.56, + "end": 15262.86, + "probability": 0.9967 + }, + { + "start": 15263.44, + "end": 15264.84, + "probability": 0.919 + }, + { + "start": 15265.26, + "end": 15266.68, + "probability": 0.9875 + }, + { + "start": 15267.18, + "end": 15269.26, + "probability": 0.9776 + }, + { + "start": 15270.36, + "end": 15275.98, + "probability": 0.9798 + }, + { + "start": 15276.66, + "end": 15278.48, + "probability": 0.9723 + }, + { + "start": 15280.96, + "end": 15285.98, + "probability": 0.999 + }, + { + "start": 15287.02, + "end": 15290.72, + "probability": 0.9781 + }, + { + "start": 15290.9, + "end": 15296.16, + "probability": 0.988 + }, + { + "start": 15296.72, + "end": 15302.3, + "probability": 0.9972 + }, + { + "start": 15303.3, + "end": 15306.06, + "probability": 0.6804 + }, + { + "start": 15306.76, + "end": 15310.58, + "probability": 0.9854 + }, + { + "start": 15311.36, + "end": 15314.84, + "probability": 0.9927 + }, + { + "start": 15316.24, + "end": 15320.38, + "probability": 0.9917 + }, + { + "start": 15321.74, + "end": 15324.1, + "probability": 0.4533 + }, + { + "start": 15324.94, + "end": 15329.08, + "probability": 0.882 + }, + { + "start": 15330.08, + "end": 15334.14, + "probability": 0.9929 + }, + { + "start": 15335.24, + "end": 15339.3, + "probability": 0.95 + }, + { + "start": 15340.6, + "end": 15347.0, + "probability": 0.9105 + }, + { + "start": 15349.36, + "end": 15352.14, + "probability": 0.8834 + }, + { + "start": 15352.66, + "end": 15354.52, + "probability": 0.9869 + }, + { + "start": 15355.08, + "end": 15358.78, + "probability": 0.9967 + }, + { + "start": 15359.66, + "end": 15362.56, + "probability": 0.9972 + }, + { + "start": 15363.16, + "end": 15368.7, + "probability": 0.9692 + }, + { + "start": 15369.22, + "end": 15374.14, + "probability": 0.9744 + }, + { + "start": 15375.24, + "end": 15379.46, + "probability": 0.9854 + }, + { + "start": 15379.46, + "end": 15383.52, + "probability": 0.6668 + }, + { + "start": 15384.68, + "end": 15387.92, + "probability": 0.9969 + }, + { + "start": 15388.62, + "end": 15392.68, + "probability": 0.9975 + }, + { + "start": 15393.66, + "end": 15398.74, + "probability": 0.9846 + }, + { + "start": 15398.86, + "end": 15402.76, + "probability": 0.9884 + }, + { + "start": 15403.74, + "end": 15404.5, + "probability": 0.8764 + }, + { + "start": 15405.3, + "end": 15410.46, + "probability": 0.9824 + }, + { + "start": 15411.22, + "end": 15414.82, + "probability": 0.9989 + }, + { + "start": 15415.5, + "end": 15417.2, + "probability": 0.9982 + }, + { + "start": 15417.74, + "end": 15419.08, + "probability": 0.7076 + }, + { + "start": 15419.6, + "end": 15421.86, + "probability": 0.9922 + }, + { + "start": 15422.38, + "end": 15425.72, + "probability": 0.9863 + }, + { + "start": 15427.0, + "end": 15428.2, + "probability": 0.9085 + }, + { + "start": 15429.34, + "end": 15434.58, + "probability": 0.9956 + }, + { + "start": 15435.36, + "end": 15438.6, + "probability": 0.8968 + }, + { + "start": 15439.1, + "end": 15439.82, + "probability": 0.9803 + }, + { + "start": 15440.24, + "end": 15440.88, + "probability": 0.9536 + }, + { + "start": 15441.26, + "end": 15441.9, + "probability": 0.9907 + }, + { + "start": 15442.38, + "end": 15443.36, + "probability": 0.9866 + }, + { + "start": 15443.72, + "end": 15444.38, + "probability": 0.9529 + }, + { + "start": 15444.48, + "end": 15445.0, + "probability": 0.8724 + }, + { + "start": 15445.1, + "end": 15445.56, + "probability": 0.9125 + }, + { + "start": 15446.68, + "end": 15450.78, + "probability": 0.9461 + }, + { + "start": 15450.78, + "end": 15453.88, + "probability": 0.9967 + }, + { + "start": 15454.98, + "end": 15459.78, + "probability": 0.9935 + }, + { + "start": 15460.42, + "end": 15464.78, + "probability": 0.9943 + }, + { + "start": 15465.58, + "end": 15468.28, + "probability": 0.9961 + }, + { + "start": 15469.02, + "end": 15472.38, + "probability": 0.9976 + }, + { + "start": 15473.3, + "end": 15477.64, + "probability": 0.9817 + }, + { + "start": 15477.64, + "end": 15480.6, + "probability": 0.9916 + }, + { + "start": 15481.92, + "end": 15487.12, + "probability": 0.9958 + }, + { + "start": 15487.54, + "end": 15490.76, + "probability": 0.9961 + }, + { + "start": 15491.9, + "end": 15494.6, + "probability": 0.8855 + }, + { + "start": 15495.42, + "end": 15499.29, + "probability": 0.9792 + }, + { + "start": 15499.4, + "end": 15503.2, + "probability": 0.9983 + }, + { + "start": 15503.72, + "end": 15505.06, + "probability": 0.9968 + }, + { + "start": 15505.76, + "end": 15509.6, + "probability": 0.9877 + }, + { + "start": 15510.08, + "end": 15512.94, + "probability": 0.9955 + }, + { + "start": 15513.06, + "end": 15513.83, + "probability": 0.9474 + }, + { + "start": 15514.34, + "end": 15516.0, + "probability": 0.9823 + }, + { + "start": 15516.66, + "end": 15519.44, + "probability": 0.9983 + }, + { + "start": 15520.14, + "end": 15523.94, + "probability": 0.9815 + }, + { + "start": 15524.0, + "end": 15527.94, + "probability": 0.9922 + }, + { + "start": 15528.6, + "end": 15529.46, + "probability": 0.8005 + }, + { + "start": 15530.04, + "end": 15534.42, + "probability": 0.0468 + }, + { + "start": 15534.42, + "end": 15535.32, + "probability": 0.0059 + }, + { + "start": 15535.42, + "end": 15537.6, + "probability": 0.0075 + }, + { + "start": 15557.14, + "end": 15557.26, + "probability": 0.0923 + }, + { + "start": 15557.26, + "end": 15557.26, + "probability": 0.4161 + }, + { + "start": 15557.26, + "end": 15557.26, + "probability": 0.0203 + }, + { + "start": 15557.26, + "end": 15557.26, + "probability": 0.0265 + }, + { + "start": 15557.26, + "end": 15557.26, + "probability": 0.0376 + }, + { + "start": 15557.26, + "end": 15558.12, + "probability": 0.5838 + }, + { + "start": 15560.34, + "end": 15562.2, + "probability": 0.6708 + }, + { + "start": 15562.94, + "end": 15564.56, + "probability": 0.4895 + }, + { + "start": 15565.38, + "end": 15566.36, + "probability": 0.8556 + }, + { + "start": 15567.04, + "end": 15569.18, + "probability": 0.9327 + }, + { + "start": 15569.18, + "end": 15569.62, + "probability": 0.841 + }, + { + "start": 15569.82, + "end": 15572.54, + "probability": 0.2708 + }, + { + "start": 15574.68, + "end": 15579.34, + "probability": 0.263 + }, + { + "start": 15579.8, + "end": 15580.22, + "probability": 0.6755 + }, + { + "start": 15580.82, + "end": 15580.82, + "probability": 0.0761 + }, + { + "start": 15580.82, + "end": 15580.82, + "probability": 0.2048 + }, + { + "start": 15580.82, + "end": 15580.82, + "probability": 0.3116 + }, + { + "start": 15580.82, + "end": 15580.82, + "probability": 0.2392 + }, + { + "start": 15580.82, + "end": 15581.31, + "probability": 0.5727 + }, + { + "start": 15581.8, + "end": 15584.52, + "probability": 0.8333 + }, + { + "start": 15585.02, + "end": 15586.34, + "probability": 0.9062 + }, + { + "start": 15586.86, + "end": 15588.7, + "probability": 0.8756 + }, + { + "start": 15589.64, + "end": 15590.8, + "probability": 0.9798 + }, + { + "start": 15591.52, + "end": 15592.02, + "probability": 0.9389 + }, + { + "start": 15592.54, + "end": 15594.4, + "probability": 0.9417 + }, + { + "start": 15594.9, + "end": 15595.22, + "probability": 0.4714 + }, + { + "start": 15595.28, + "end": 15595.86, + "probability": 0.8049 + }, + { + "start": 15596.06, + "end": 15597.42, + "probability": 0.8151 + }, + { + "start": 15598.0, + "end": 15598.56, + "probability": 0.3163 + }, + { + "start": 15599.04, + "end": 15600.38, + "probability": 0.9819 + }, + { + "start": 15600.74, + "end": 15602.84, + "probability": 0.822 + }, + { + "start": 15603.12, + "end": 15603.58, + "probability": 0.6067 + }, + { + "start": 15604.94, + "end": 15606.6, + "probability": 0.7321 + }, + { + "start": 15606.88, + "end": 15608.64, + "probability": 0.6802 + }, + { + "start": 15608.72, + "end": 15609.76, + "probability": 0.8779 + }, + { + "start": 15610.48, + "end": 15611.71, + "probability": 0.5615 + }, + { + "start": 15611.98, + "end": 15613.3, + "probability": 0.8984 + }, + { + "start": 15613.32, + "end": 15615.11, + "probability": 0.7146 + }, + { + "start": 15615.54, + "end": 15616.1, + "probability": 0.4097 + }, + { + "start": 15616.28, + "end": 15616.58, + "probability": 0.3656 + }, + { + "start": 15616.99, + "end": 15620.52, + "probability": 0.6886 + }, + { + "start": 15621.22, + "end": 15624.86, + "probability": 0.9722 + }, + { + "start": 15624.9, + "end": 15626.08, + "probability": 0.686 + }, + { + "start": 15626.16, + "end": 15626.64, + "probability": 0.386 + }, + { + "start": 15626.8, + "end": 15632.46, + "probability": 0.998 + }, + { + "start": 15633.65, + "end": 15634.32, + "probability": 0.3912 + }, + { + "start": 15634.32, + "end": 15635.04, + "probability": 0.8452 + }, + { + "start": 15635.28, + "end": 15636.7, + "probability": 0.7269 + }, + { + "start": 15640.48, + "end": 15641.74, + "probability": 0.4388 + }, + { + "start": 15642.48, + "end": 15643.04, + "probability": 0.6435 + }, + { + "start": 15643.32, + "end": 15644.56, + "probability": 0.4761 + }, + { + "start": 15644.6, + "end": 15645.7, + "probability": 0.4981 + }, + { + "start": 15646.16, + "end": 15648.64, + "probability": 0.9792 + }, + { + "start": 15649.76, + "end": 15650.3, + "probability": 0.5414 + }, + { + "start": 15652.2, + "end": 15654.94, + "probability": 0.5922 + }, + { + "start": 15655.9, + "end": 15656.02, + "probability": 0.3584 + }, + { + "start": 15657.06, + "end": 15657.76, + "probability": 0.4792 + }, + { + "start": 15659.64, + "end": 15661.76, + "probability": 0.7573 + }, + { + "start": 15661.76, + "end": 15662.6, + "probability": 0.7134 + }, + { + "start": 15662.72, + "end": 15663.52, + "probability": 0.7461 + }, + { + "start": 15664.1, + "end": 15665.06, + "probability": 0.8574 + }, + { + "start": 15666.26, + "end": 15666.64, + "probability": 0.4319 + }, + { + "start": 15669.7, + "end": 15670.5, + "probability": 0.1138 + }, + { + "start": 15670.5, + "end": 15671.93, + "probability": 0.652 + }, + { + "start": 15672.04, + "end": 15673.7, + "probability": 0.8822 + }, + { + "start": 15673.84, + "end": 15674.74, + "probability": 0.8701 + }, + { + "start": 15675.46, + "end": 15676.78, + "probability": 0.8579 + }, + { + "start": 15677.14, + "end": 15678.06, + "probability": 0.8763 + }, + { + "start": 15681.44, + "end": 15682.66, + "probability": 0.7481 + }, + { + "start": 15683.9, + "end": 15685.52, + "probability": 0.8347 + }, + { + "start": 15686.26, + "end": 15688.48, + "probability": 0.975 + }, + { + "start": 15689.34, + "end": 15689.84, + "probability": 0.8452 + }, + { + "start": 15690.5, + "end": 15691.6, + "probability": 0.4496 + }, + { + "start": 15692.6, + "end": 15693.0, + "probability": 0.7796 + }, + { + "start": 15693.56, + "end": 15694.9, + "probability": 0.8806 + }, + { + "start": 15695.76, + "end": 15696.12, + "probability": 0.7247 + }, + { + "start": 15696.18, + "end": 15698.52, + "probability": 0.9494 + }, + { + "start": 15698.64, + "end": 15699.12, + "probability": 0.4381 + }, + { + "start": 15699.36, + "end": 15700.3, + "probability": 0.773 + }, + { + "start": 15700.32, + "end": 15701.56, + "probability": 0.1458 + }, + { + "start": 15701.93, + "end": 15703.24, + "probability": 0.8813 + }, + { + "start": 15703.4, + "end": 15703.86, + "probability": 0.6326 + }, + { + "start": 15703.94, + "end": 15704.3, + "probability": 0.766 + }, + { + "start": 15704.36, + "end": 15704.62, + "probability": 0.9666 + }, + { + "start": 15704.64, + "end": 15707.94, + "probability": 0.6625 + }, + { + "start": 15708.26, + "end": 15710.06, + "probability": 0.9962 + }, + { + "start": 15710.12, + "end": 15710.96, + "probability": 0.4702 + }, + { + "start": 15711.08, + "end": 15714.06, + "probability": 0.6809 + }, + { + "start": 15714.94, + "end": 15717.34, + "probability": 0.9919 + }, + { + "start": 15717.92, + "end": 15720.94, + "probability": 0.9628 + }, + { + "start": 15722.36, + "end": 15724.36, + "probability": 0.4564 + }, + { + "start": 15724.48, + "end": 15725.26, + "probability": 0.553 + }, + { + "start": 15726.08, + "end": 15730.44, + "probability": 0.9949 + }, + { + "start": 15734.26, + "end": 15736.34, + "probability": 0.8917 + }, + { + "start": 15736.34, + "end": 15738.34, + "probability": 0.5415 + }, + { + "start": 15738.52, + "end": 15740.31, + "probability": 0.8118 + }, + { + "start": 15741.58, + "end": 15743.7, + "probability": 0.8133 + }, + { + "start": 15743.78, + "end": 15744.56, + "probability": 0.4186 + }, + { + "start": 15744.92, + "end": 15745.46, + "probability": 0.6514 + }, + { + "start": 15746.12, + "end": 15748.1, + "probability": 0.8511 + }, + { + "start": 15748.46, + "end": 15750.5, + "probability": 0.9622 + }, + { + "start": 15751.08, + "end": 15753.2, + "probability": 0.689 + }, + { + "start": 15753.26, + "end": 15753.8, + "probability": 0.7542 + }, + { + "start": 15754.08, + "end": 15755.34, + "probability": 0.8164 + }, + { + "start": 15755.86, + "end": 15756.2, + "probability": 0.0553 + }, + { + "start": 15756.94, + "end": 15757.52, + "probability": 0.0153 + }, + { + "start": 15761.88, + "end": 15765.92, + "probability": 0.8269 + }, + { + "start": 15766.72, + "end": 15770.84, + "probability": 0.7092 + }, + { + "start": 15772.3, + "end": 15776.18, + "probability": 0.5987 + }, + { + "start": 15776.28, + "end": 15780.5, + "probability": 0.982 + }, + { + "start": 15781.84, + "end": 15783.02, + "probability": 0.9482 + }, + { + "start": 15783.04, + "end": 15785.2, + "probability": 0.5899 + }, + { + "start": 15788.35, + "end": 15790.36, + "probability": 0.3968 + }, + { + "start": 15791.14, + "end": 15792.08, + "probability": 0.7215 + }, + { + "start": 15793.06, + "end": 15795.28, + "probability": 0.9532 + }, + { + "start": 15796.34, + "end": 15797.5, + "probability": 0.9908 + }, + { + "start": 15798.16, + "end": 15800.25, + "probability": 0.7601 + }, + { + "start": 15801.1, + "end": 15802.24, + "probability": 0.6278 + }, + { + "start": 15802.9, + "end": 15803.6, + "probability": 0.686 + }, + { + "start": 15804.3, + "end": 15806.42, + "probability": 0.1268 + }, + { + "start": 15806.42, + "end": 15810.1, + "probability": 0.985 + }, + { + "start": 15810.64, + "end": 15812.52, + "probability": 0.8164 + }, + { + "start": 15812.62, + "end": 15813.94, + "probability": 0.7879 + }, + { + "start": 15814.56, + "end": 15818.02, + "probability": 0.7951 + }, + { + "start": 15818.24, + "end": 15819.38, + "probability": 0.5541 + }, + { + "start": 15820.2, + "end": 15820.96, + "probability": 0.6839 + }, + { + "start": 15821.06, + "end": 15823.04, + "probability": 0.1035 + }, + { + "start": 15823.26, + "end": 15823.98, + "probability": 0.077 + }, + { + "start": 15825.18, + "end": 15826.0, + "probability": 0.4282 + }, + { + "start": 15826.02, + "end": 15830.04, + "probability": 0.0618 + }, + { + "start": 15833.03, + "end": 15833.81, + "probability": 0.1204 + }, + { + "start": 15834.7, + "end": 15837.16, + "probability": 0.0623 + }, + { + "start": 15838.38, + "end": 15839.52, + "probability": 0.076 + }, + { + "start": 15839.52, + "end": 15841.0, + "probability": 0.1007 + }, + { + "start": 15841.26, + "end": 15844.02, + "probability": 0.606 + }, + { + "start": 15844.38, + "end": 15848.14, + "probability": 0.9305 + }, + { + "start": 15848.14, + "end": 15852.9, + "probability": 0.9774 + }, + { + "start": 15853.08, + "end": 15854.24, + "probability": 0.5468 + }, + { + "start": 15854.34, + "end": 15855.88, + "probability": 0.7378 + }, + { + "start": 15856.02, + "end": 15856.12, + "probability": 0.7938 + }, + { + "start": 15856.2, + "end": 15856.76, + "probability": 0.7852 + }, + { + "start": 15856.78, + "end": 15858.12, + "probability": 0.4941 + }, + { + "start": 15858.36, + "end": 15861.14, + "probability": 0.7776 + }, + { + "start": 15861.4, + "end": 15862.96, + "probability": 0.3929 + }, + { + "start": 15863.16, + "end": 15866.2, + "probability": 0.2326 + }, + { + "start": 15866.24, + "end": 15867.46, + "probability": 0.7919 + }, + { + "start": 15867.54, + "end": 15868.84, + "probability": 0.8789 + }, + { + "start": 15868.92, + "end": 15871.32, + "probability": 0.5172 + }, + { + "start": 15872.08, + "end": 15874.0, + "probability": 0.7546 + }, + { + "start": 15874.02, + "end": 15874.1, + "probability": 0.5036 + }, + { + "start": 15874.1, + "end": 15875.94, + "probability": 0.5825 + }, + { + "start": 15876.22, + "end": 15877.1, + "probability": 0.6624 + }, + { + "start": 15877.54, + "end": 15879.76, + "probability": 0.9894 + }, + { + "start": 15880.15, + "end": 15883.04, + "probability": 0.8857 + }, + { + "start": 15883.5, + "end": 15887.06, + "probability": 0.9848 + }, + { + "start": 15888.0, + "end": 15889.7, + "probability": 0.5693 + }, + { + "start": 15890.28, + "end": 15890.84, + "probability": 0.6156 + }, + { + "start": 15891.32, + "end": 15896.7, + "probability": 0.5697 + }, + { + "start": 15897.68, + "end": 15905.08, + "probability": 0.9349 + }, + { + "start": 15906.16, + "end": 15906.74, + "probability": 0.4666 + }, + { + "start": 15906.86, + "end": 15907.78, + "probability": 0.7432 + }, + { + "start": 15907.82, + "end": 15912.48, + "probability": 0.8631 + }, + { + "start": 15913.18, + "end": 15913.8, + "probability": 0.7053 + }, + { + "start": 15915.76, + "end": 15917.5, + "probability": 0.7341 + }, + { + "start": 15917.7, + "end": 15918.98, + "probability": 0.6622 + }, + { + "start": 15919.82, + "end": 15921.32, + "probability": 0.83 + }, + { + "start": 15921.86, + "end": 15922.28, + "probability": 0.5316 + }, + { + "start": 15922.32, + "end": 15922.62, + "probability": 0.8662 + }, + { + "start": 15922.86, + "end": 15926.16, + "probability": 0.9871 + }, + { + "start": 15926.18, + "end": 15933.32, + "probability": 0.9157 + }, + { + "start": 15935.14, + "end": 15936.5, + "probability": 0.5394 + }, + { + "start": 15937.26, + "end": 15938.64, + "probability": 0.6059 + }, + { + "start": 15938.64, + "end": 15939.8, + "probability": 0.895 + }, + { + "start": 15940.5, + "end": 15942.92, + "probability": 0.7375 + }, + { + "start": 15944.16, + "end": 15945.12, + "probability": 0.4345 + }, + { + "start": 15945.7, + "end": 15946.22, + "probability": 0.9436 + }, + { + "start": 15946.96, + "end": 15949.84, + "probability": 0.8364 + }, + { + "start": 15949.96, + "end": 15951.08, + "probability": 0.5237 + }, + { + "start": 15952.4, + "end": 15955.06, + "probability": 0.9321 + }, + { + "start": 15955.14, + "end": 15956.26, + "probability": 0.6152 + }, + { + "start": 15956.54, + "end": 15957.44, + "probability": 0.8265 + }, + { + "start": 15957.44, + "end": 15958.62, + "probability": 0.2431 + }, + { + "start": 15958.62, + "end": 15959.58, + "probability": 0.561 + }, + { + "start": 15960.08, + "end": 15963.96, + "probability": 0.356 + }, + { + "start": 15963.96, + "end": 15965.38, + "probability": 0.3089 + }, + { + "start": 15965.52, + "end": 15967.04, + "probability": 0.1225 + }, + { + "start": 15967.78, + "end": 15970.26, + "probability": 0.4691 + }, + { + "start": 15970.5, + "end": 15970.6, + "probability": 0.242 + }, + { + "start": 15970.6, + "end": 15971.38, + "probability": 0.5736 + }, + { + "start": 15971.38, + "end": 15973.08, + "probability": 0.3069 + }, + { + "start": 15973.3, + "end": 15974.67, + "probability": 0.7756 + }, + { + "start": 15975.08, + "end": 15976.3, + "probability": 0.7482 + }, + { + "start": 15976.5, + "end": 15977.24, + "probability": 0.3666 + }, + { + "start": 15977.4, + "end": 15978.4, + "probability": 0.6577 + }, + { + "start": 15978.7, + "end": 15982.06, + "probability": 0.9844 + }, + { + "start": 15982.98, + "end": 15985.46, + "probability": 0.758 + }, + { + "start": 15986.38, + "end": 15988.92, + "probability": 0.8503 + }, + { + "start": 15990.26, + "end": 15992.28, + "probability": 0.8745 + }, + { + "start": 15992.86, + "end": 15996.03, + "probability": 0.9125 + }, + { + "start": 15996.24, + "end": 16001.82, + "probability": 0.9647 + }, + { + "start": 16002.52, + "end": 16003.14, + "probability": 0.3494 + }, + { + "start": 16004.53, + "end": 16008.8, + "probability": 0.6403 + }, + { + "start": 16008.96, + "end": 16013.18, + "probability": 0.9043 + }, + { + "start": 16013.94, + "end": 16015.52, + "probability": 0.7791 + }, + { + "start": 16015.6, + "end": 16016.1, + "probability": 0.8646 + }, + { + "start": 16016.3, + "end": 16018.51, + "probability": 0.987 + }, + { + "start": 16019.12, + "end": 16020.64, + "probability": 0.9453 + }, + { + "start": 16021.32, + "end": 16026.6, + "probability": 0.9066 + }, + { + "start": 16027.28, + "end": 16030.07, + "probability": 0.1263 + }, + { + "start": 16030.5, + "end": 16032.96, + "probability": 0.7285 + }, + { + "start": 16033.06, + "end": 16033.66, + "probability": 0.3719 + }, + { + "start": 16033.66, + "end": 16034.1, + "probability": 0.2663 + }, + { + "start": 16034.1, + "end": 16039.2, + "probability": 0.8884 + }, + { + "start": 16039.32, + "end": 16040.0, + "probability": 0.3719 + }, + { + "start": 16040.44, + "end": 16041.72, + "probability": 0.9661 + }, + { + "start": 16042.18, + "end": 16042.97, + "probability": 0.9736 + }, + { + "start": 16043.38, + "end": 16043.82, + "probability": 0.7203 + }, + { + "start": 16044.18, + "end": 16044.98, + "probability": 0.6281 + }, + { + "start": 16045.18, + "end": 16047.08, + "probability": 0.9728 + }, + { + "start": 16048.98, + "end": 16050.98, + "probability": 0.1347 + }, + { + "start": 16051.06, + "end": 16051.92, + "probability": 0.0966 + }, + { + "start": 16052.22, + "end": 16055.5, + "probability": 0.6392 + }, + { + "start": 16055.66, + "end": 16056.44, + "probability": 0.5649 + }, + { + "start": 16056.6, + "end": 16056.74, + "probability": 0.2411 + }, + { + "start": 16057.18, + "end": 16062.96, + "probability": 0.6933 + }, + { + "start": 16063.48, + "end": 16065.38, + "probability": 0.4421 + }, + { + "start": 16065.44, + "end": 16065.5, + "probability": 0.0472 + }, + { + "start": 16065.5, + "end": 16066.56, + "probability": 0.4149 + }, + { + "start": 16066.9, + "end": 16068.78, + "probability": 0.8048 + }, + { + "start": 16068.96, + "end": 16071.0, + "probability": 0.1958 + }, + { + "start": 16071.2, + "end": 16072.82, + "probability": 0.8984 + }, + { + "start": 16072.84, + "end": 16075.34, + "probability": 0.7588 + }, + { + "start": 16075.68, + "end": 16078.04, + "probability": 0.9429 + }, + { + "start": 16078.56, + "end": 16079.98, + "probability": 0.4579 + }, + { + "start": 16080.96, + "end": 16085.94, + "probability": 0.7526 + }, + { + "start": 16086.2, + "end": 16087.56, + "probability": 0.1167 + }, + { + "start": 16096.0, + "end": 16097.6, + "probability": 0.2387 + }, + { + "start": 16097.84, + "end": 16099.3, + "probability": 0.4357 + }, + { + "start": 16099.84, + "end": 16103.18, + "probability": 0.7992 + }, + { + "start": 16103.82, + "end": 16107.94, + "probability": 0.9937 + }, + { + "start": 16107.94, + "end": 16113.94, + "probability": 0.984 + }, + { + "start": 16114.44, + "end": 16120.88, + "probability": 0.9529 + }, + { + "start": 16122.72, + "end": 16125.06, + "probability": 0.93 + }, + { + "start": 16125.38, + "end": 16127.68, + "probability": 0.5608 + }, + { + "start": 16127.84, + "end": 16130.59, + "probability": 0.9259 + }, + { + "start": 16131.48, + "end": 16132.6, + "probability": 0.8145 + }, + { + "start": 16132.8, + "end": 16135.7, + "probability": 0.8156 + }, + { + "start": 16136.32, + "end": 16138.5, + "probability": 0.9846 + }, + { + "start": 16139.34, + "end": 16140.4, + "probability": 0.9539 + }, + { + "start": 16140.5, + "end": 16141.34, + "probability": 0.9346 + }, + { + "start": 16141.52, + "end": 16143.1, + "probability": 0.9058 + }, + { + "start": 16143.78, + "end": 16145.78, + "probability": 0.7611 + }, + { + "start": 16146.72, + "end": 16147.8, + "probability": 0.8667 + }, + { + "start": 16148.54, + "end": 16152.56, + "probability": 0.9541 + }, + { + "start": 16152.56, + "end": 16156.94, + "probability": 0.9823 + }, + { + "start": 16158.0, + "end": 16164.22, + "probability": 0.9678 + }, + { + "start": 16164.68, + "end": 16170.04, + "probability": 0.9327 + }, + { + "start": 16170.22, + "end": 16173.46, + "probability": 0.9976 + }, + { + "start": 16173.66, + "end": 16175.06, + "probability": 0.9067 + }, + { + "start": 16175.12, + "end": 16175.7, + "probability": 0.7253 + }, + { + "start": 16177.96, + "end": 16179.74, + "probability": 0.2975 + }, + { + "start": 16180.41, + "end": 16183.02, + "probability": 0.9103 + }, + { + "start": 16183.62, + "end": 16183.82, + "probability": 0.4402 + }, + { + "start": 16183.98, + "end": 16188.92, + "probability": 0.9736 + }, + { + "start": 16189.64, + "end": 16195.06, + "probability": 0.9976 + }, + { + "start": 16195.52, + "end": 16198.78, + "probability": 0.8922 + }, + { + "start": 16199.78, + "end": 16202.18, + "probability": 0.9844 + }, + { + "start": 16204.02, + "end": 16206.46, + "probability": 0.8651 + }, + { + "start": 16206.82, + "end": 16207.92, + "probability": 0.8962 + }, + { + "start": 16207.92, + "end": 16209.98, + "probability": 0.6137 + }, + { + "start": 16210.24, + "end": 16214.86, + "probability": 0.8832 + }, + { + "start": 16215.22, + "end": 16215.62, + "probability": 0.7484 + }, + { + "start": 16215.64, + "end": 16216.74, + "probability": 0.9698 + }, + { + "start": 16217.06, + "end": 16220.1, + "probability": 0.983 + }, + { + "start": 16220.66, + "end": 16223.46, + "probability": 0.9891 + }, + { + "start": 16224.38, + "end": 16225.8, + "probability": 0.766 + }, + { + "start": 16225.88, + "end": 16227.0, + "probability": 0.4963 + }, + { + "start": 16227.0, + "end": 16227.74, + "probability": 0.4866 + }, + { + "start": 16227.74, + "end": 16229.34, + "probability": 0.546 + }, + { + "start": 16229.68, + "end": 16230.48, + "probability": 0.8547 + }, + { + "start": 16243.4, + "end": 16244.88, + "probability": 0.7018 + }, + { + "start": 16248.44, + "end": 16250.74, + "probability": 0.2619 + }, + { + "start": 16250.76, + "end": 16252.14, + "probability": 0.542 + }, + { + "start": 16252.4, + "end": 16253.14, + "probability": 0.8251 + }, + { + "start": 16253.32, + "end": 16257.86, + "probability": 0.981 + }, + { + "start": 16258.66, + "end": 16261.96, + "probability": 0.949 + }, + { + "start": 16262.64, + "end": 16264.34, + "probability": 0.4531 + }, + { + "start": 16264.54, + "end": 16265.36, + "probability": 0.5739 + }, + { + "start": 16267.2, + "end": 16267.36, + "probability": 0.5049 + }, + { + "start": 16269.88, + "end": 16270.62, + "probability": 0.7721 + }, + { + "start": 16271.54, + "end": 16278.46, + "probability": 0.7991 + }, + { + "start": 16279.1, + "end": 16282.12, + "probability": 0.9687 + }, + { + "start": 16282.66, + "end": 16283.57, + "probability": 0.9738 + }, + { + "start": 16286.43, + "end": 16288.96, + "probability": 0.9346 + }, + { + "start": 16290.97, + "end": 16293.7, + "probability": 0.95 + }, + { + "start": 16294.58, + "end": 16296.76, + "probability": 0.9553 + }, + { + "start": 16297.28, + "end": 16297.83, + "probability": 0.9843 + }, + { + "start": 16298.18, + "end": 16300.38, + "probability": 0.9928 + }, + { + "start": 16300.48, + "end": 16300.72, + "probability": 0.7989 + }, + { + "start": 16300.78, + "end": 16301.04, + "probability": 0.9618 + }, + { + "start": 16301.14, + "end": 16301.42, + "probability": 0.5704 + }, + { + "start": 16301.54, + "end": 16301.98, + "probability": 0.8519 + }, + { + "start": 16302.64, + "end": 16303.4, + "probability": 0.4191 + }, + { + "start": 16303.9, + "end": 16305.39, + "probability": 0.9907 + }, + { + "start": 16306.58, + "end": 16310.24, + "probability": 0.9888 + }, + { + "start": 16311.16, + "end": 16317.02, + "probability": 0.9884 + }, + { + "start": 16317.42, + "end": 16317.86, + "probability": 0.8896 + }, + { + "start": 16317.9, + "end": 16320.16, + "probability": 0.9977 + }, + { + "start": 16320.8, + "end": 16323.84, + "probability": 0.998 + }, + { + "start": 16324.74, + "end": 16326.14, + "probability": 0.9343 + }, + { + "start": 16326.24, + "end": 16331.08, + "probability": 0.9965 + }, + { + "start": 16331.08, + "end": 16335.48, + "probability": 0.9925 + }, + { + "start": 16335.94, + "end": 16337.58, + "probability": 0.9984 + }, + { + "start": 16337.64, + "end": 16340.18, + "probability": 0.9866 + }, + { + "start": 16340.22, + "end": 16340.64, + "probability": 0.7449 + }, + { + "start": 16341.0, + "end": 16342.28, + "probability": 0.4703 + }, + { + "start": 16342.54, + "end": 16347.86, + "probability": 0.8383 + }, + { + "start": 16348.0, + "end": 16348.62, + "probability": 0.7683 + }, + { + "start": 16357.1, + "end": 16357.98, + "probability": 0.591 + }, + { + "start": 16360.98, + "end": 16361.7, + "probability": 0.7377 + }, + { + "start": 16361.76, + "end": 16365.78, + "probability": 0.9937 + }, + { + "start": 16366.02, + "end": 16367.98, + "probability": 0.9135 + }, + { + "start": 16368.46, + "end": 16369.41, + "probability": 0.9775 + }, + { + "start": 16370.32, + "end": 16371.46, + "probability": 0.8875 + }, + { + "start": 16372.16, + "end": 16374.5, + "probability": 0.866 + }, + { + "start": 16380.88, + "end": 16383.14, + "probability": 0.8049 + }, + { + "start": 16383.68, + "end": 16387.06, + "probability": 0.7915 + }, + { + "start": 16387.86, + "end": 16391.14, + "probability": 0.6612 + }, + { + "start": 16391.22, + "end": 16391.68, + "probability": 0.9703 + }, + { + "start": 16392.24, + "end": 16393.8, + "probability": 0.9676 + }, + { + "start": 16393.88, + "end": 16398.52, + "probability": 0.9845 + }, + { + "start": 16399.94, + "end": 16402.32, + "probability": 0.3363 + }, + { + "start": 16402.86, + "end": 16404.34, + "probability": 0.992 + }, + { + "start": 16405.04, + "end": 16405.24, + "probability": 0.5065 + }, + { + "start": 16407.44, + "end": 16411.46, + "probability": 0.5301 + }, + { + "start": 16412.38, + "end": 16414.52, + "probability": 0.7893 + }, + { + "start": 16415.82, + "end": 16418.9, + "probability": 0.8388 + }, + { + "start": 16419.56, + "end": 16420.54, + "probability": 0.887 + }, + { + "start": 16421.36, + "end": 16423.14, + "probability": 0.9752 + }, + { + "start": 16424.22, + "end": 16424.66, + "probability": 0.9939 + }, + { + "start": 16425.48, + "end": 16426.2, + "probability": 0.7117 + }, + { + "start": 16426.86, + "end": 16429.14, + "probability": 0.7143 + }, + { + "start": 16430.16, + "end": 16430.88, + "probability": 0.4862 + }, + { + "start": 16432.16, + "end": 16432.48, + "probability": 0.3047 + }, + { + "start": 16435.16, + "end": 16435.94, + "probability": 0.2305 + }, + { + "start": 16439.68, + "end": 16443.36, + "probability": 0.642 + }, + { + "start": 16444.9, + "end": 16448.18, + "probability": 0.6379 + }, + { + "start": 16449.44, + "end": 16451.33, + "probability": 0.5093 + }, + { + "start": 16452.44, + "end": 16453.49, + "probability": 0.7054 + }, + { + "start": 16455.94, + "end": 16458.98, + "probability": 0.6663 + }, + { + "start": 16460.12, + "end": 16460.72, + "probability": 0.8262 + }, + { + "start": 16461.1, + "end": 16464.2, + "probability": 0.0406 + }, + { + "start": 16464.88, + "end": 16467.58, + "probability": 0.3954 + }, + { + "start": 16468.2, + "end": 16470.24, + "probability": 0.7786 + }, + { + "start": 16471.3, + "end": 16473.22, + "probability": 0.9261 + }, + { + "start": 16476.28, + "end": 16477.34, + "probability": 0.34 + }, + { + "start": 16484.46, + "end": 16487.72, + "probability": 0.6379 + }, + { + "start": 16489.38, + "end": 16491.42, + "probability": 0.8274 + }, + { + "start": 16493.96, + "end": 16495.8, + "probability": 0.7304 + }, + { + "start": 16497.34, + "end": 16498.76, + "probability": 0.9508 + }, + { + "start": 16499.6, + "end": 16501.28, + "probability": 0.9692 + }, + { + "start": 16503.02, + "end": 16504.72, + "probability": 0.978 + }, + { + "start": 16506.36, + "end": 16508.2, + "probability": 0.656 + }, + { + "start": 16509.52, + "end": 16511.26, + "probability": 0.9556 + }, + { + "start": 16513.3, + "end": 16515.98, + "probability": 0.9473 + }, + { + "start": 16516.86, + "end": 16519.16, + "probability": 0.8003 + }, + { + "start": 16522.0, + "end": 16523.66, + "probability": 0.9613 + }, + { + "start": 16524.54, + "end": 16524.92, + "probability": 0.9915 + }, + { + "start": 16527.82, + "end": 16529.14, + "probability": 0.4177 + }, + { + "start": 16530.62, + "end": 16533.32, + "probability": 0.6913 + }, + { + "start": 16534.04, + "end": 16534.68, + "probability": 0.7177 + }, + { + "start": 16537.1, + "end": 16541.86, + "probability": 0.9006 + }, + { + "start": 16543.6, + "end": 16545.56, + "probability": 0.9956 + }, + { + "start": 16545.62, + "end": 16547.5, + "probability": 0.9725 + }, + { + "start": 16547.74, + "end": 16550.5, + "probability": 0.9761 + }, + { + "start": 16551.48, + "end": 16552.94, + "probability": 0.8143 + }, + { + "start": 16553.76, + "end": 16554.12, + "probability": 0.8098 + }, + { + "start": 16555.44, + "end": 16559.22, + "probability": 0.9163 + }, + { + "start": 16562.76, + "end": 16564.24, + "probability": 0.6689 + }, + { + "start": 16565.04, + "end": 16566.0, + "probability": 0.9244 + }, + { + "start": 16567.02, + "end": 16573.38, + "probability": 0.9659 + }, + { + "start": 16574.1, + "end": 16575.35, + "probability": 0.8589 + }, + { + "start": 16576.88, + "end": 16579.52, + "probability": 0.7352 + }, + { + "start": 16580.14, + "end": 16586.16, + "probability": 0.948 + }, + { + "start": 16587.38, + "end": 16590.36, + "probability": 0.9066 + }, + { + "start": 16592.1, + "end": 16597.68, + "probability": 0.599 + }, + { + "start": 16598.22, + "end": 16599.94, + "probability": 0.3636 + }, + { + "start": 16600.76, + "end": 16602.88, + "probability": 0.7715 + }, + { + "start": 16604.08, + "end": 16605.18, + "probability": 0.556 + }, + { + "start": 16606.36, + "end": 16607.48, + "probability": 0.8098 + }, + { + "start": 16610.5, + "end": 16613.42, + "probability": 0.5497 + }, + { + "start": 16614.38, + "end": 16614.72, + "probability": 0.7357 + }, + { + "start": 16615.98, + "end": 16616.8, + "probability": 0.9174 + }, + { + "start": 16618.04, + "end": 16620.22, + "probability": 0.9338 + }, + { + "start": 16621.28, + "end": 16624.2, + "probability": 0.9832 + }, + { + "start": 16625.74, + "end": 16626.6, + "probability": 0.8531 + }, + { + "start": 16628.46, + "end": 16631.62, + "probability": 0.9037 + }, + { + "start": 16632.46, + "end": 16634.14, + "probability": 0.8385 + }, + { + "start": 16634.7, + "end": 16636.46, + "probability": 0.9743 + }, + { + "start": 16637.2, + "end": 16640.7, + "probability": 0.7676 + }, + { + "start": 16641.64, + "end": 16644.44, + "probability": 0.9238 + }, + { + "start": 16645.3, + "end": 16647.24, + "probability": 0.9407 + }, + { + "start": 16648.02, + "end": 16652.74, + "probability": 0.7242 + }, + { + "start": 16661.84, + "end": 16663.94, + "probability": 0.3422 + }, + { + "start": 16664.62, + "end": 16666.52, + "probability": 0.6729 + }, + { + "start": 16668.54, + "end": 16670.18, + "probability": 0.8042 + }, + { + "start": 16671.66, + "end": 16672.46, + "probability": 0.9805 + }, + { + "start": 16673.1, + "end": 16673.96, + "probability": 0.8715 + }, + { + "start": 16677.8, + "end": 16678.2, + "probability": 0.7944 + }, + { + "start": 16678.72, + "end": 16679.68, + "probability": 0.7378 + }, + { + "start": 16680.94, + "end": 16681.38, + "probability": 0.987 + }, + { + "start": 16682.58, + "end": 16683.66, + "probability": 0.7625 + }, + { + "start": 16684.9, + "end": 16688.74, + "probability": 0.8758 + }, + { + "start": 16689.42, + "end": 16690.06, + "probability": 0.9539 + }, + { + "start": 16691.28, + "end": 16695.98, + "probability": 0.8711 + }, + { + "start": 16697.3, + "end": 16702.52, + "probability": 0.8556 + }, + { + "start": 16703.4, + "end": 16703.66, + "probability": 0.566 + }, + { + "start": 16704.86, + "end": 16706.15, + "probability": 0.782 + }, + { + "start": 16707.02, + "end": 16710.42, + "probability": 0.8218 + }, + { + "start": 16712.4, + "end": 16715.66, + "probability": 0.8991 + }, + { + "start": 16720.14, + "end": 16722.3, + "probability": 0.7949 + }, + { + "start": 16722.86, + "end": 16728.06, + "probability": 0.9181 + }, + { + "start": 16730.62, + "end": 16732.86, + "probability": 0.6743 + }, + { + "start": 16733.8, + "end": 16735.52, + "probability": 0.8083 + }, + { + "start": 16735.54, + "end": 16741.2, + "probability": 0.9311 + }, + { + "start": 16742.74, + "end": 16745.2, + "probability": 0.9851 + }, + { + "start": 16748.82, + "end": 16752.58, + "probability": 0.6275 + }, + { + "start": 16753.48, + "end": 16754.82, + "probability": 0.7895 + }, + { + "start": 16756.28, + "end": 16756.76, + "probability": 0.9629 + }, + { + "start": 16757.7, + "end": 16758.68, + "probability": 0.9517 + }, + { + "start": 16762.8, + "end": 16764.7, + "probability": 0.9409 + }, + { + "start": 16765.24, + "end": 16766.1, + "probability": 0.8202 + }, + { + "start": 16767.2, + "end": 16767.68, + "probability": 0.9868 + }, + { + "start": 16768.46, + "end": 16769.3, + "probability": 0.8683 + }, + { + "start": 16771.98, + "end": 16774.46, + "probability": 0.0918 + }, + { + "start": 16783.02, + "end": 16784.1, + "probability": 0.8068 + }, + { + "start": 16786.76, + "end": 16789.12, + "probability": 0.2048 + }, + { + "start": 16797.96, + "end": 16798.84, + "probability": 0.5434 + }, + { + "start": 16799.62, + "end": 16800.72, + "probability": 0.2545 + }, + { + "start": 16801.78, + "end": 16802.44, + "probability": 0.3278 + }, + { + "start": 16803.0, + "end": 16804.1, + "probability": 0.2378 + }, + { + "start": 16804.9, + "end": 16805.16, + "probability": 0.6823 + }, + { + "start": 16806.3, + "end": 16807.06, + "probability": 0.6255 + }, + { + "start": 16808.62, + "end": 16810.08, + "probability": 0.8329 + }, + { + "start": 16812.74, + "end": 16813.16, + "probability": 0.7203 + }, + { + "start": 16814.22, + "end": 16814.96, + "probability": 0.8029 + }, + { + "start": 16818.62, + "end": 16820.36, + "probability": 0.9392 + }, + { + "start": 16820.94, + "end": 16821.28, + "probability": 0.9871 + }, + { + "start": 16822.32, + "end": 16823.14, + "probability": 0.4919 + }, + { + "start": 16824.04, + "end": 16826.28, + "probability": 0.8557 + }, + { + "start": 16827.04, + "end": 16828.02, + "probability": 0.8319 + }, + { + "start": 16828.74, + "end": 16829.04, + "probability": 0.8823 + }, + { + "start": 16829.86, + "end": 16831.28, + "probability": 0.8644 + }, + { + "start": 16832.2, + "end": 16834.42, + "probability": 0.9592 + }, + { + "start": 16834.46, + "end": 16836.32, + "probability": 0.9888 + }, + { + "start": 16836.98, + "end": 16837.32, + "probability": 0.9846 + }, + { + "start": 16838.4, + "end": 16839.4, + "probability": 0.8425 + }, + { + "start": 16842.94, + "end": 16846.4, + "probability": 0.8894 + }, + { + "start": 16850.81, + "end": 16850.93, + "probability": 0.1215 + }, + { + "start": 16859.4, + "end": 16859.7, + "probability": 0.4969 + }, + { + "start": 16861.72, + "end": 16862.54, + "probability": 0.6769 + }, + { + "start": 16865.62, + "end": 16866.84, + "probability": 0.6092 + }, + { + "start": 16869.2, + "end": 16869.68, + "probability": 0.9707 + }, + { + "start": 16870.36, + "end": 16871.18, + "probability": 0.821 + }, + { + "start": 16873.58, + "end": 16875.12, + "probability": 0.7554 + }, + { + "start": 16877.68, + "end": 16878.48, + "probability": 0.8323 + }, + { + "start": 16880.84, + "end": 16882.76, + "probability": 0.7798 + }, + { + "start": 16883.22, + "end": 16886.02, + "probability": 0.8421 + }, + { + "start": 16886.68, + "end": 16889.84, + "probability": 0.7434 + }, + { + "start": 16893.68, + "end": 16894.3, + "probability": 0.6076 + }, + { + "start": 16895.86, + "end": 16899.12, + "probability": 0.7709 + }, + { + "start": 16900.72, + "end": 16902.32, + "probability": 0.7867 + }, + { + "start": 16903.56, + "end": 16904.02, + "probability": 0.9784 + }, + { + "start": 16905.58, + "end": 16906.58, + "probability": 0.892 + }, + { + "start": 16907.62, + "end": 16907.96, + "probability": 0.9629 + }, + { + "start": 16909.1, + "end": 16910.48, + "probability": 0.8354 + }, + { + "start": 16911.64, + "end": 16913.52, + "probability": 0.9159 + }, + { + "start": 16914.06, + "end": 16915.78, + "probability": 0.9161 + }, + { + "start": 16915.78, + "end": 16916.28, + "probability": 0.4149 + }, + { + "start": 16916.62, + "end": 16920.12, + "probability": 0.3808 + }, + { + "start": 16920.76, + "end": 16921.58, + "probability": 0.2469 + }, + { + "start": 16921.66, + "end": 16923.86, + "probability": 0.6746 + }, + { + "start": 16924.1, + "end": 16924.86, + "probability": 0.8568 + }, + { + "start": 16925.7, + "end": 16926.54, + "probability": 0.6731 + }, + { + "start": 16928.22, + "end": 16929.98, + "probability": 0.3438 + }, + { + "start": 16930.46, + "end": 16931.96, + "probability": 0.9032 + }, + { + "start": 16932.18, + "end": 16933.46, + "probability": 0.9389 + }, + { + "start": 16934.12, + "end": 16935.6, + "probability": 0.9179 + }, + { + "start": 16936.7, + "end": 16938.26, + "probability": 0.9852 + }, + { + "start": 16939.34, + "end": 16940.88, + "probability": 0.9729 + }, + { + "start": 16942.0, + "end": 16945.32, + "probability": 0.9233 + }, + { + "start": 16947.16, + "end": 16948.0, + "probability": 0.9828 + }, + { + "start": 16948.84, + "end": 16950.12, + "probability": 0.3841 + }, + { + "start": 16951.5, + "end": 16954.44, + "probability": 0.9733 + }, + { + "start": 16955.86, + "end": 16957.3, + "probability": 0.992 + }, + { + "start": 16958.18, + "end": 16959.68, + "probability": 0.9873 + }, + { + "start": 16961.08, + "end": 16964.16, + "probability": 0.3642 + }, + { + "start": 16964.16, + "end": 16965.18, + "probability": 0.2715 + }, + { + "start": 16966.04, + "end": 16967.13, + "probability": 0.7422 + }, + { + "start": 16967.64, + "end": 16969.18, + "probability": 0.5094 + }, + { + "start": 16970.0, + "end": 16971.48, + "probability": 0.6755 + }, + { + "start": 16972.02, + "end": 16973.56, + "probability": 0.807 + }, + { + "start": 16978.48, + "end": 16980.52, + "probability": 0.1543 + }, + { + "start": 16981.22, + "end": 16982.12, + "probability": 0.6672 + }, + { + "start": 16983.24, + "end": 16985.1, + "probability": 0.7697 + }, + { + "start": 16986.6, + "end": 16986.94, + "probability": 0.931 + }, + { + "start": 16989.06, + "end": 16991.82, + "probability": 0.8913 + }, + { + "start": 16992.4, + "end": 16995.92, + "probability": 0.9251 + }, + { + "start": 16997.52, + "end": 16999.48, + "probability": 0.9256 + }, + { + "start": 17001.32, + "end": 17003.2, + "probability": 0.8622 + }, + { + "start": 17004.08, + "end": 17005.68, + "probability": 0.9674 + }, + { + "start": 17006.46, + "end": 17011.22, + "probability": 0.8445 + }, + { + "start": 17012.54, + "end": 17014.42, + "probability": 0.9358 + }, + { + "start": 17015.34, + "end": 17017.96, + "probability": 0.9949 + }, + { + "start": 17019.34, + "end": 17020.84, + "probability": 0.8899 + }, + { + "start": 17021.54, + "end": 17023.2, + "probability": 0.9052 + }, + { + "start": 17023.24, + "end": 17025.14, + "probability": 0.7314 + }, + { + "start": 17026.2, + "end": 17028.0, + "probability": 0.9332 + }, + { + "start": 17028.76, + "end": 17031.34, + "probability": 0.9844 + }, + { + "start": 17032.02, + "end": 17033.62, + "probability": 0.9096 + }, + { + "start": 17034.26, + "end": 17035.12, + "probability": 0.9313 + }, + { + "start": 17037.0, + "end": 17039.61, + "probability": 0.6902 + }, + { + "start": 17039.74, + "end": 17041.96, + "probability": 0.5916 + }, + { + "start": 17042.86, + "end": 17046.12, + "probability": 0.9344 + }, + { + "start": 17048.34, + "end": 17050.02, + "probability": 0.5015 + }, + { + "start": 17052.2, + "end": 17053.14, + "probability": 0.607 + }, + { + "start": 17054.12, + "end": 17055.72, + "probability": 0.9528 + }, + { + "start": 17056.78, + "end": 17057.4, + "probability": 0.7164 + }, + { + "start": 17058.8, + "end": 17059.62, + "probability": 0.641 + }, + { + "start": 17060.16, + "end": 17063.32, + "probability": 0.9512 + }, + { + "start": 17064.54, + "end": 17066.24, + "probability": 0.7722 + }, + { + "start": 17066.46, + "end": 17068.42, + "probability": 0.9528 + }, + { + "start": 17068.52, + "end": 17070.72, + "probability": 0.9358 + }, + { + "start": 17071.44, + "end": 17073.6, + "probability": 0.9282 + }, + { + "start": 17073.78, + "end": 17075.2, + "probability": 0.4665 + }, + { + "start": 17080.14, + "end": 17084.52, + "probability": 0.803 + }, + { + "start": 17085.02, + "end": 17087.56, + "probability": 0.0811 + }, + { + "start": 17087.56, + "end": 17090.68, + "probability": 0.9084 + }, + { + "start": 17091.7, + "end": 17091.78, + "probability": 0.2009 + }, + { + "start": 17091.78, + "end": 17093.76, + "probability": 0.7428 + }, + { + "start": 17096.14, + "end": 17099.1, + "probability": 0.0 + }, + { + "start": 17101.92, + "end": 17104.1, + "probability": 0.0253 + }, + { + "start": 17144.78, + "end": 17147.33, + "probability": 0.1417 + }, + { + "start": 17181.14, + "end": 17181.3, + "probability": 0.0002 + }, + { + "start": 17181.3, + "end": 17181.72, + "probability": 0.0134 + }, + { + "start": 17181.72, + "end": 17184.14, + "probability": 0.6288 + }, + { + "start": 17184.22, + "end": 17185.42, + "probability": 0.6543 + }, + { + "start": 17186.12, + "end": 17187.72, + "probability": 0.3018 + }, + { + "start": 17188.2, + "end": 17193.4, + "probability": 0.9749 + }, + { + "start": 17194.66, + "end": 17196.66, + "probability": 0.3207 + }, + { + "start": 17197.22, + "end": 17198.76, + "probability": 0.7507 + }, + { + "start": 17200.02, + "end": 17204.96, + "probability": 0.9604 + }, + { + "start": 17205.4, + "end": 17205.56, + "probability": 0.8743 + }, + { + "start": 17207.3, + "end": 17208.08, + "probability": 0.6267 + }, + { + "start": 17208.89, + "end": 17211.12, + "probability": 0.812 + }, + { + "start": 17211.26, + "end": 17212.16, + "probability": 0.9087 + }, + { + "start": 17212.18, + "end": 17212.76, + "probability": 0.7684 + }, + { + "start": 17212.9, + "end": 17213.16, + "probability": 0.7319 + }, + { + "start": 17213.5, + "end": 17216.48, + "probability": 0.9688 + }, + { + "start": 17217.2, + "end": 17217.96, + "probability": 0.9219 + }, + { + "start": 17219.48, + "end": 17223.39, + "probability": 0.7082 + }, + { + "start": 17224.06, + "end": 17225.5, + "probability": 0.9782 + }, + { + "start": 17225.62, + "end": 17228.44, + "probability": 0.994 + }, + { + "start": 17228.56, + "end": 17231.46, + "probability": 0.7308 + }, + { + "start": 17231.52, + "end": 17231.98, + "probability": 0.561 + }, + { + "start": 17232.26, + "end": 17232.74, + "probability": 0.6165 + }, + { + "start": 17232.74, + "end": 17233.46, + "probability": 0.7315 + }, + { + "start": 17233.64, + "end": 17234.0, + "probability": 0.8784 + }, + { + "start": 17234.02, + "end": 17234.76, + "probability": 0.8402 + }, + { + "start": 17235.04, + "end": 17235.14, + "probability": 0.7887 + }, + { + "start": 17235.74, + "end": 17236.84, + "probability": 0.9618 + }, + { + "start": 17237.84, + "end": 17238.7, + "probability": 0.7949 + }, + { + "start": 17239.34, + "end": 17241.74, + "probability": 0.6706 + }, + { + "start": 17242.58, + "end": 17243.24, + "probability": 0.6775 + }, + { + "start": 17243.24, + "end": 17243.84, + "probability": 0.9628 + }, + { + "start": 17244.28, + "end": 17245.64, + "probability": 0.4121 + }, + { + "start": 17245.68, + "end": 17246.1, + "probability": 0.2233 + }, + { + "start": 17246.38, + "end": 17246.66, + "probability": 0.9237 + }, + { + "start": 17246.7, + "end": 17247.26, + "probability": 0.3622 + }, + { + "start": 17247.36, + "end": 17247.72, + "probability": 0.9084 + }, + { + "start": 17247.74, + "end": 17248.66, + "probability": 0.4842 + }, + { + "start": 17249.22, + "end": 17249.68, + "probability": 0.7516 + }, + { + "start": 17249.76, + "end": 17250.42, + "probability": 0.7068 + }, + { + "start": 17250.44, + "end": 17254.2, + "probability": 0.9911 + }, + { + "start": 17254.48, + "end": 17256.4, + "probability": 0.9906 + }, + { + "start": 17256.76, + "end": 17258.58, + "probability": 0.6556 + }, + { + "start": 17259.06, + "end": 17264.96, + "probability": 0.9971 + }, + { + "start": 17265.8, + "end": 17268.6, + "probability": 0.9948 + }, + { + "start": 17268.74, + "end": 17269.16, + "probability": 0.8421 + }, + { + "start": 17269.78, + "end": 17273.7, + "probability": 0.9946 + }, + { + "start": 17274.08, + "end": 17277.62, + "probability": 0.9985 + }, + { + "start": 17277.8, + "end": 17278.22, + "probability": 0.62 + }, + { + "start": 17278.9, + "end": 17281.9, + "probability": 0.7746 + }, + { + "start": 17282.3, + "end": 17282.54, + "probability": 0.9282 + }, + { + "start": 17282.84, + "end": 17285.4, + "probability": 0.9508 + }, + { + "start": 17285.44, + "end": 17286.58, + "probability": 0.7369 + }, + { + "start": 17288.04, + "end": 17288.66, + "probability": 0.7323 + }, + { + "start": 17289.48, + "end": 17293.08, + "probability": 0.9939 + }, + { + "start": 17293.66, + "end": 17296.92, + "probability": 0.8404 + }, + { + "start": 17297.28, + "end": 17299.48, + "probability": 0.9803 + }, + { + "start": 17299.88, + "end": 17301.46, + "probability": 0.9278 + }, + { + "start": 17302.1, + "end": 17305.9, + "probability": 0.8783 + }, + { + "start": 17306.44, + "end": 17307.54, + "probability": 0.8291 + }, + { + "start": 17308.58, + "end": 17309.16, + "probability": 0.2735 + }, + { + "start": 17309.16, + "end": 17309.18, + "probability": 0.2637 + }, + { + "start": 17309.18, + "end": 17309.48, + "probability": 0.4378 + }, + { + "start": 17309.48, + "end": 17309.98, + "probability": 0.9635 + }, + { + "start": 17310.12, + "end": 17311.64, + "probability": 0.9858 + }, + { + "start": 17311.7, + "end": 17312.42, + "probability": 0.6895 + }, + { + "start": 17312.62, + "end": 17312.62, + "probability": 0.051 + }, + { + "start": 17312.62, + "end": 17313.2, + "probability": 0.6658 + }, + { + "start": 17313.62, + "end": 17314.92, + "probability": 0.8195 + }, + { + "start": 17315.18, + "end": 17316.68, + "probability": 0.8281 + }, + { + "start": 17316.82, + "end": 17319.42, + "probability": 0.8702 + }, + { + "start": 17319.58, + "end": 17320.04, + "probability": 0.2037 + }, + { + "start": 17320.06, + "end": 17320.06, + "probability": 0.6202 + }, + { + "start": 17320.06, + "end": 17322.66, + "probability": 0.6059 + }, + { + "start": 17322.96, + "end": 17324.18, + "probability": 0.9305 + }, + { + "start": 17324.46, + "end": 17326.3, + "probability": 0.9955 + }, + { + "start": 17326.54, + "end": 17328.08, + "probability": 0.7359 + }, + { + "start": 17328.18, + "end": 17330.88, + "probability": 0.9915 + }, + { + "start": 17331.86, + "end": 17334.58, + "probability": 0.9421 + }, + { + "start": 17335.2, + "end": 17336.87, + "probability": 0.8706 + }, + { + "start": 17337.32, + "end": 17338.0, + "probability": 0.747 + }, + { + "start": 17338.34, + "end": 17339.18, + "probability": 0.7005 + }, + { + "start": 17339.5, + "end": 17340.68, + "probability": 0.6106 + }, + { + "start": 17341.2, + "end": 17342.98, + "probability": 0.9985 + }, + { + "start": 17343.2, + "end": 17344.39, + "probability": 0.9474 + }, + { + "start": 17344.84, + "end": 17345.4, + "probability": 0.7516 + }, + { + "start": 17345.42, + "end": 17346.6, + "probability": 0.909 + }, + { + "start": 17346.82, + "end": 17349.48, + "probability": 0.964 + }, + { + "start": 17351.48, + "end": 17353.1, + "probability": 0.6649 + }, + { + "start": 17353.3, + "end": 17353.84, + "probability": 0.5276 + }, + { + "start": 17354.04, + "end": 17359.38, + "probability": 0.6612 + }, + { + "start": 17359.5, + "end": 17362.64, + "probability": 0.6748 + }, + { + "start": 17362.76, + "end": 17364.28, + "probability": 0.3402 + }, + { + "start": 17364.72, + "end": 17366.38, + "probability": 0.8945 + }, + { + "start": 17366.46, + "end": 17368.96, + "probability": 0.875 + }, + { + "start": 17369.82, + "end": 17373.84, + "probability": 0.9287 + }, + { + "start": 17403.78, + "end": 17405.32, + "probability": 0.6109 + }, + { + "start": 17406.76, + "end": 17409.0, + "probability": 0.7499 + }, + { + "start": 17410.34, + "end": 17413.5, + "probability": 0.8075 + }, + { + "start": 17414.76, + "end": 17420.32, + "probability": 0.9834 + }, + { + "start": 17421.32, + "end": 17423.3, + "probability": 0.8225 + }, + { + "start": 17423.94, + "end": 17424.78, + "probability": 0.722 + }, + { + "start": 17427.16, + "end": 17430.9, + "probability": 0.9387 + }, + { + "start": 17431.92, + "end": 17434.5, + "probability": 0.9895 + }, + { + "start": 17435.34, + "end": 17438.6, + "probability": 0.9662 + }, + { + "start": 17439.66, + "end": 17440.8, + "probability": 0.9832 + }, + { + "start": 17440.92, + "end": 17441.46, + "probability": 0.8608 + }, + { + "start": 17441.54, + "end": 17443.38, + "probability": 0.8098 + }, + { + "start": 17444.26, + "end": 17445.6, + "probability": 0.6587 + }, + { + "start": 17446.5, + "end": 17449.84, + "probability": 0.9989 + }, + { + "start": 17451.4, + "end": 17452.44, + "probability": 0.5848 + }, + { + "start": 17456.08, + "end": 17460.4, + "probability": 0.7321 + }, + { + "start": 17463.94, + "end": 17465.52, + "probability": 0.5135 + }, + { + "start": 17466.22, + "end": 17470.66, + "probability": 0.8256 + }, + { + "start": 17471.24, + "end": 17474.74, + "probability": 0.8712 + }, + { + "start": 17475.66, + "end": 17477.64, + "probability": 0.9746 + }, + { + "start": 17478.58, + "end": 17480.26, + "probability": 0.8644 + }, + { + "start": 17481.68, + "end": 17485.22, + "probability": 0.7375 + }, + { + "start": 17486.2, + "end": 17487.56, + "probability": 0.9301 + }, + { + "start": 17489.0, + "end": 17493.86, + "probability": 0.9902 + }, + { + "start": 17494.32, + "end": 17495.08, + "probability": 0.6965 + }, + { + "start": 17495.16, + "end": 17500.19, + "probability": 0.9985 + }, + { + "start": 17501.2, + "end": 17503.59, + "probability": 0.999 + }, + { + "start": 17504.84, + "end": 17506.9, + "probability": 0.7505 + }, + { + "start": 17508.26, + "end": 17509.59, + "probability": 0.5083 + }, + { + "start": 17510.64, + "end": 17511.6, + "probability": 0.8596 + }, + { + "start": 17512.5, + "end": 17513.26, + "probability": 0.6615 + }, + { + "start": 17513.86, + "end": 17514.58, + "probability": 0.9692 + }, + { + "start": 17515.7, + "end": 17516.54, + "probability": 0.8693 + }, + { + "start": 17516.86, + "end": 17520.22, + "probability": 0.8957 + }, + { + "start": 17521.1, + "end": 17522.28, + "probability": 0.9949 + }, + { + "start": 17523.06, + "end": 17524.24, + "probability": 0.9678 + }, + { + "start": 17525.7, + "end": 17527.06, + "probability": 0.5717 + }, + { + "start": 17527.64, + "end": 17530.56, + "probability": 0.9516 + }, + { + "start": 17531.42, + "end": 17534.44, + "probability": 0.6966 + }, + { + "start": 17535.44, + "end": 17537.98, + "probability": 0.8019 + }, + { + "start": 17538.86, + "end": 17542.38, + "probability": 0.9091 + }, + { + "start": 17544.76, + "end": 17552.58, + "probability": 0.9031 + }, + { + "start": 17552.72, + "end": 17553.78, + "probability": 0.4274 + }, + { + "start": 17553.82, + "end": 17554.34, + "probability": 0.8871 + }, + { + "start": 17554.7, + "end": 17556.34, + "probability": 0.9805 + }, + { + "start": 17556.84, + "end": 17564.3, + "probability": 0.9277 + }, + { + "start": 17564.34, + "end": 17566.48, + "probability": 0.6754 + }, + { + "start": 17575.66, + "end": 17579.42, + "probability": 0.9783 + }, + { + "start": 17579.5, + "end": 17580.42, + "probability": 0.9874 + }, + { + "start": 17581.0, + "end": 17581.66, + "probability": 0.5887 + }, + { + "start": 17583.82, + "end": 17584.8, + "probability": 0.9329 + }, + { + "start": 17586.08, + "end": 17589.26, + "probability": 0.9178 + }, + { + "start": 17590.06, + "end": 17592.04, + "probability": 0.9669 + }, + { + "start": 17592.96, + "end": 17594.26, + "probability": 0.7909 + }, + { + "start": 17594.96, + "end": 17596.88, + "probability": 0.7541 + }, + { + "start": 17597.04, + "end": 17598.98, + "probability": 0.0918 + }, + { + "start": 17598.98, + "end": 17603.44, + "probability": 0.9092 + }, + { + "start": 17603.9, + "end": 17607.98, + "probability": 0.8129 + }, + { + "start": 17608.08, + "end": 17609.13, + "probability": 0.4747 + }, + { + "start": 17610.02, + "end": 17613.42, + "probability": 0.9027 + }, + { + "start": 17613.82, + "end": 17615.9, + "probability": 0.7623 + }, + { + "start": 17616.62, + "end": 17618.55, + "probability": 0.7344 + }, + { + "start": 17619.44, + "end": 17621.4, + "probability": 0.9746 + }, + { + "start": 17622.08, + "end": 17624.06, + "probability": 0.9678 + }, + { + "start": 17624.62, + "end": 17626.69, + "probability": 0.9783 + }, + { + "start": 17627.24, + "end": 17629.4, + "probability": 0.9828 + }, + { + "start": 17630.4, + "end": 17632.9, + "probability": 0.9854 + }, + { + "start": 17636.5, + "end": 17637.6, + "probability": 0.8375 + }, + { + "start": 17638.98, + "end": 17640.86, + "probability": 0.9899 + }, + { + "start": 17641.5, + "end": 17646.86, + "probability": 0.9845 + }, + { + "start": 17648.54, + "end": 17650.04, + "probability": 0.8005 + }, + { + "start": 17651.74, + "end": 17653.56, + "probability": 0.8352 + }, + { + "start": 17654.04, + "end": 17656.32, + "probability": 0.9886 + }, + { + "start": 17657.3, + "end": 17659.34, + "probability": 0.7996 + }, + { + "start": 17659.38, + "end": 17662.82, + "probability": 0.8067 + }, + { + "start": 17663.42, + "end": 17665.55, + "probability": 0.9648 + }, + { + "start": 17666.48, + "end": 17668.0, + "probability": 0.9749 + }, + { + "start": 17670.68, + "end": 17673.41, + "probability": 0.8265 + }, + { + "start": 17674.24, + "end": 17677.44, + "probability": 0.9106 + }, + { + "start": 17677.5, + "end": 17680.52, + "probability": 0.8657 + }, + { + "start": 17681.44, + "end": 17688.14, + "probability": 0.9605 + }, + { + "start": 17689.0, + "end": 17689.56, + "probability": 0.8183 + }, + { + "start": 17690.5, + "end": 17691.09, + "probability": 0.9321 + }, + { + "start": 17692.19, + "end": 17693.24, + "probability": 0.5547 + }, + { + "start": 17693.24, + "end": 17695.28, + "probability": 0.9695 + }, + { + "start": 17696.26, + "end": 17697.5, + "probability": 0.806 + }, + { + "start": 17698.16, + "end": 17698.52, + "probability": 0.6081 + }, + { + "start": 17698.76, + "end": 17702.08, + "probability": 0.8368 + }, + { + "start": 17702.4, + "end": 17704.86, + "probability": 0.9222 + }, + { + "start": 17706.0, + "end": 17709.86, + "probability": 0.7089 + }, + { + "start": 17710.64, + "end": 17712.58, + "probability": 0.9683 + }, + { + "start": 17717.48, + "end": 17719.38, + "probability": 0.805 + }, + { + "start": 17721.76, + "end": 17723.94, + "probability": 0.9993 + }, + { + "start": 17725.28, + "end": 17728.26, + "probability": 0.9502 + }, + { + "start": 17729.3, + "end": 17732.04, + "probability": 0.7844 + }, + { + "start": 17732.76, + "end": 17733.5, + "probability": 0.8898 + }, + { + "start": 17733.68, + "end": 17735.26, + "probability": 0.0188 + }, + { + "start": 17735.52, + "end": 17737.94, + "probability": 0.9067 + }, + { + "start": 17738.7, + "end": 17740.6, + "probability": 0.4126 + }, + { + "start": 17741.58, + "end": 17746.34, + "probability": 0.9057 + }, + { + "start": 17746.54, + "end": 17749.48, + "probability": 0.7644 + }, + { + "start": 17749.76, + "end": 17750.36, + "probability": 0.5368 + }, + { + "start": 17750.58, + "end": 17754.31, + "probability": 0.8538 + }, + { + "start": 17754.74, + "end": 17756.04, + "probability": 0.0903 + }, + { + "start": 17756.36, + "end": 17757.06, + "probability": 0.0836 + }, + { + "start": 17758.34, + "end": 17758.58, + "probability": 0.1234 + }, + { + "start": 17758.82, + "end": 17760.88, + "probability": 0.8069 + }, + { + "start": 17760.88, + "end": 17762.7, + "probability": 0.4999 + }, + { + "start": 17762.7, + "end": 17763.6, + "probability": 0.566 + }, + { + "start": 17763.64, + "end": 17764.66, + "probability": 0.7794 + }, + { + "start": 17765.08, + "end": 17766.38, + "probability": 0.7725 + }, + { + "start": 17766.38, + "end": 17766.6, + "probability": 0.2745 + }, + { + "start": 17766.6, + "end": 17768.24, + "probability": 0.6979 + }, + { + "start": 17768.9, + "end": 17770.34, + "probability": 0.4498 + }, + { + "start": 17770.9, + "end": 17772.3, + "probability": 0.0819 + }, + { + "start": 17772.76, + "end": 17774.68, + "probability": 0.0813 + }, + { + "start": 17774.68, + "end": 17780.26, + "probability": 0.6162 + }, + { + "start": 17780.26, + "end": 17783.52, + "probability": 0.9479 + }, + { + "start": 17783.52, + "end": 17784.28, + "probability": 0.2289 + }, + { + "start": 17785.43, + "end": 17788.14, + "probability": 0.3734 + }, + { + "start": 17788.14, + "end": 17789.32, + "probability": 0.3156 + }, + { + "start": 17790.32, + "end": 17790.96, + "probability": 0.9019 + }, + { + "start": 17791.36, + "end": 17795.68, + "probability": 0.9963 + }, + { + "start": 17796.76, + "end": 17798.91, + "probability": 0.8151 + }, + { + "start": 17799.7, + "end": 17804.74, + "probability": 0.9963 + }, + { + "start": 17805.04, + "end": 17806.02, + "probability": 0.8613 + }, + { + "start": 17806.24, + "end": 17809.68, + "probability": 0.9081 + }, + { + "start": 17810.3, + "end": 17813.82, + "probability": 0.9975 + }, + { + "start": 17814.68, + "end": 17815.72, + "probability": 0.8972 + }, + { + "start": 17816.18, + "end": 17817.92, + "probability": 0.8563 + }, + { + "start": 17818.42, + "end": 17822.12, + "probability": 0.9934 + }, + { + "start": 17822.92, + "end": 17826.54, + "probability": 0.9902 + }, + { + "start": 17826.88, + "end": 17827.78, + "probability": 0.7049 + }, + { + "start": 17828.14, + "end": 17829.88, + "probability": 0.8931 + }, + { + "start": 17830.86, + "end": 17833.8, + "probability": 0.7627 + }, + { + "start": 17834.58, + "end": 17835.96, + "probability": 0.5811 + }, + { + "start": 17838.44, + "end": 17843.24, + "probability": 0.9507 + }, + { + "start": 17843.48, + "end": 17849.24, + "probability": 0.9902 + }, + { + "start": 17849.24, + "end": 17856.36, + "probability": 0.979 + }, + { + "start": 17856.94, + "end": 17861.84, + "probability": 0.6017 + }, + { + "start": 17862.42, + "end": 17866.98, + "probability": 0.788 + }, + { + "start": 17867.12, + "end": 17869.0, + "probability": 0.9912 + }, + { + "start": 17869.68, + "end": 17871.36, + "probability": 0.774 + }, + { + "start": 17872.04, + "end": 17874.04, + "probability": 0.723 + }, + { + "start": 17874.18, + "end": 17876.2, + "probability": 0.8948 + }, + { + "start": 17876.68, + "end": 17878.44, + "probability": 0.9758 + }, + { + "start": 17879.47, + "end": 17883.0, + "probability": 0.8266 + }, + { + "start": 17883.52, + "end": 17884.54, + "probability": 0.9445 + }, + { + "start": 17885.04, + "end": 17891.46, + "probability": 0.4734 + }, + { + "start": 17893.21, + "end": 17896.8, + "probability": 0.9995 + }, + { + "start": 17896.8, + "end": 17900.22, + "probability": 0.9949 + }, + { + "start": 17900.6, + "end": 17902.88, + "probability": 0.9985 + }, + { + "start": 17903.56, + "end": 17904.12, + "probability": 0.7219 + }, + { + "start": 17905.72, + "end": 17907.7, + "probability": 0.9392 + }, + { + "start": 17908.6, + "end": 17909.58, + "probability": 0.9591 + }, + { + "start": 17910.38, + "end": 17913.16, + "probability": 0.6546 + }, + { + "start": 17914.76, + "end": 17917.62, + "probability": 0.7603 + }, + { + "start": 17918.72, + "end": 17920.1, + "probability": 0.8721 + }, + { + "start": 17920.86, + "end": 17925.08, + "probability": 0.7482 + }, + { + "start": 17925.44, + "end": 17926.32, + "probability": 0.8324 + }, + { + "start": 17928.04, + "end": 17931.42, + "probability": 0.7293 + }, + { + "start": 17931.52, + "end": 17936.52, + "probability": 0.6322 + }, + { + "start": 17937.32, + "end": 17940.16, + "probability": 0.9186 + }, + { + "start": 17940.98, + "end": 17945.94, + "probability": 0.6337 + }, + { + "start": 17946.94, + "end": 17947.94, + "probability": 0.5894 + }, + { + "start": 17949.46, + "end": 17951.86, + "probability": 0.5516 + }, + { + "start": 17953.3, + "end": 17958.18, + "probability": 0.9889 + }, + { + "start": 17958.8, + "end": 17961.32, + "probability": 0.9993 + }, + { + "start": 17962.12, + "end": 17965.3, + "probability": 0.8741 + }, + { + "start": 17965.4, + "end": 17967.08, + "probability": 0.9392 + }, + { + "start": 17967.6, + "end": 17968.56, + "probability": 0.8206 + }, + { + "start": 17968.9, + "end": 17973.68, + "probability": 0.9904 + }, + { + "start": 17973.98, + "end": 17974.18, + "probability": 0.6372 + }, + { + "start": 17974.9, + "end": 17975.56, + "probability": 0.9128 + }, + { + "start": 17976.14, + "end": 17977.66, + "probability": 0.9223 + }, + { + "start": 17977.94, + "end": 17978.69, + "probability": 0.9521 + }, + { + "start": 17979.34, + "end": 17981.52, + "probability": 0.4307 + }, + { + "start": 17982.22, + "end": 17982.54, + "probability": 0.8199 + }, + { + "start": 17983.54, + "end": 17986.18, + "probability": 0.9611 + }, + { + "start": 17987.24, + "end": 17988.76, + "probability": 0.731 + }, + { + "start": 17989.8, + "end": 17991.22, + "probability": 0.9362 + }, + { + "start": 17991.7, + "end": 17994.92, + "probability": 0.9824 + }, + { + "start": 17995.44, + "end": 17997.0, + "probability": 0.6917 + }, + { + "start": 17998.14, + "end": 17999.4, + "probability": 0.9232 + }, + { + "start": 18000.46, + "end": 18001.54, + "probability": 0.5295 + }, + { + "start": 18001.82, + "end": 18003.18, + "probability": 0.8273 + }, + { + "start": 18003.58, + "end": 18005.38, + "probability": 0.8652 + }, + { + "start": 18006.18, + "end": 18008.02, + "probability": 0.6427 + }, + { + "start": 18008.74, + "end": 18011.09, + "probability": 0.6675 + }, + { + "start": 18011.88, + "end": 18013.8, + "probability": 0.9388 + }, + { + "start": 18014.08, + "end": 18015.26, + "probability": 0.9541 + }, + { + "start": 18015.32, + "end": 18015.86, + "probability": 0.6533 + }, + { + "start": 18015.9, + "end": 18016.39, + "probability": 0.4808 + }, + { + "start": 18017.14, + "end": 18019.16, + "probability": 0.9603 + }, + { + "start": 18019.44, + "end": 18020.46, + "probability": 0.7986 + }, + { + "start": 18021.22, + "end": 18022.6, + "probability": 0.9106 + }, + { + "start": 18023.5, + "end": 18025.42, + "probability": 0.4529 + }, + { + "start": 18026.08, + "end": 18026.58, + "probability": 0.8238 + }, + { + "start": 18026.9, + "end": 18029.25, + "probability": 0.0324 + }, + { + "start": 18029.7, + "end": 18031.66, + "probability": 0.9312 + }, + { + "start": 18031.78, + "end": 18032.86, + "probability": 0.6911 + }, + { + "start": 18032.96, + "end": 18033.68, + "probability": 0.852 + }, + { + "start": 18033.92, + "end": 18034.74, + "probability": 0.7099 + }, + { + "start": 18037.0, + "end": 18039.38, + "probability": 0.1228 + }, + { + "start": 18041.8, + "end": 18042.3, + "probability": 0.4106 + }, + { + "start": 18044.06, + "end": 18046.62, + "probability": 0.7053 + }, + { + "start": 18046.7, + "end": 18048.66, + "probability": 0.8315 + }, + { + "start": 18048.92, + "end": 18049.06, + "probability": 0.4215 + }, + { + "start": 18049.7, + "end": 18051.54, + "probability": 0.3233 + }, + { + "start": 18051.6, + "end": 18052.92, + "probability": 0.7985 + }, + { + "start": 18054.96, + "end": 18056.74, + "probability": 0.7908 + }, + { + "start": 18056.74, + "end": 18059.18, + "probability": 0.9336 + }, + { + "start": 18059.92, + "end": 18060.72, + "probability": 0.6763 + }, + { + "start": 18060.78, + "end": 18063.1, + "probability": 0.9604 + }, + { + "start": 18063.1, + "end": 18067.54, + "probability": 0.9525 + }, + { + "start": 18067.82, + "end": 18074.52, + "probability": 0.9444 + }, + { + "start": 18076.34, + "end": 18080.84, + "probability": 0.8604 + }, + { + "start": 18080.88, + "end": 18082.64, + "probability": 0.4472 + }, + { + "start": 18083.35, + "end": 18088.2, + "probability": 0.9927 + }, + { + "start": 18088.86, + "end": 18091.06, + "probability": 0.6817 + }, + { + "start": 18091.28, + "end": 18095.38, + "probability": 0.5245 + }, + { + "start": 18097.18, + "end": 18101.02, + "probability": 0.4707 + }, + { + "start": 18101.12, + "end": 18101.61, + "probability": 0.8569 + }, + { + "start": 18102.22, + "end": 18107.24, + "probability": 0.6929 + }, + { + "start": 18107.26, + "end": 18113.26, + "probability": 0.9967 + }, + { + "start": 18113.26, + "end": 18119.64, + "probability": 0.9712 + }, + { + "start": 18120.14, + "end": 18121.64, + "probability": 0.9985 + }, + { + "start": 18122.7, + "end": 18125.9, + "probability": 0.2634 + }, + { + "start": 18125.98, + "end": 18127.92, + "probability": 0.9958 + }, + { + "start": 18128.2, + "end": 18137.46, + "probability": 0.8608 + }, + { + "start": 18137.46, + "end": 18141.6, + "probability": 0.9995 + }, + { + "start": 18146.62, + "end": 18147.26, + "probability": 0.0742 + }, + { + "start": 18149.38, + "end": 18154.7, + "probability": 0.4746 + }, + { + "start": 18155.28, + "end": 18157.23, + "probability": 0.55 + }, + { + "start": 18158.08, + "end": 18159.66, + "probability": 0.308 + }, + { + "start": 18160.08, + "end": 18161.28, + "probability": 0.1044 + }, + { + "start": 18162.14, + "end": 18164.14, + "probability": 0.6251 + }, + { + "start": 18164.8, + "end": 18165.86, + "probability": 0.005 + }, + { + "start": 18166.65, + "end": 18167.98, + "probability": 0.9365 + }, + { + "start": 18168.02, + "end": 18169.12, + "probability": 0.7322 + }, + { + "start": 18169.82, + "end": 18172.1, + "probability": 0.6109 + }, + { + "start": 18172.38, + "end": 18177.72, + "probability": 0.9977 + }, + { + "start": 18178.42, + "end": 18180.48, + "probability": 0.6687 + }, + { + "start": 18180.66, + "end": 18182.44, + "probability": 0.8183 + }, + { + "start": 18182.9, + "end": 18183.42, + "probability": 0.7433 + }, + { + "start": 18183.5, + "end": 18184.24, + "probability": 0.6326 + }, + { + "start": 18184.28, + "end": 18184.84, + "probability": 0.5491 + }, + { + "start": 18184.88, + "end": 18186.56, + "probability": 0.9415 + }, + { + "start": 18187.36, + "end": 18188.82, + "probability": 0.8882 + }, + { + "start": 18188.98, + "end": 18190.2, + "probability": 0.9819 + }, + { + "start": 18190.8, + "end": 18192.68, + "probability": 0.9376 + }, + { + "start": 18192.88, + "end": 18194.4, + "probability": 0.7344 + }, + { + "start": 18195.18, + "end": 18196.9, + "probability": 0.9102 + }, + { + "start": 18198.92, + "end": 18200.8, + "probability": 0.7419 + }, + { + "start": 18201.16, + "end": 18205.02, + "probability": 0.9944 + }, + { + "start": 18205.34, + "end": 18208.36, + "probability": 0.9923 + }, + { + "start": 18208.96, + "end": 18212.32, + "probability": 0.9712 + }, + { + "start": 18212.86, + "end": 18218.54, + "probability": 0.9495 + }, + { + "start": 18219.34, + "end": 18223.4, + "probability": 0.98 + }, + { + "start": 18224.04, + "end": 18225.52, + "probability": 0.969 + }, + { + "start": 18226.52, + "end": 18227.32, + "probability": 0.8468 + }, + { + "start": 18228.84, + "end": 18231.78, + "probability": 0.9937 + }, + { + "start": 18231.82, + "end": 18237.42, + "probability": 0.98 + }, + { + "start": 18238.18, + "end": 18241.7, + "probability": 0.9634 + }, + { + "start": 18242.9, + "end": 18248.5, + "probability": 0.9986 + }, + { + "start": 18249.16, + "end": 18250.18, + "probability": 0.7947 + }, + { + "start": 18250.26, + "end": 18250.86, + "probability": 0.8766 + }, + { + "start": 18252.06, + "end": 18256.6, + "probability": 0.9601 + }, + { + "start": 18256.6, + "end": 18261.6, + "probability": 0.9984 + }, + { + "start": 18263.2, + "end": 18269.64, + "probability": 0.9964 + }, + { + "start": 18270.32, + "end": 18275.76, + "probability": 0.8788 + }, + { + "start": 18276.48, + "end": 18276.48, + "probability": 0.0708 + }, + { + "start": 18276.48, + "end": 18280.06, + "probability": 0.974 + }, + { + "start": 18281.02, + "end": 18282.76, + "probability": 0.9961 + }, + { + "start": 18282.98, + "end": 18283.4, + "probability": 0.9798 + }, + { + "start": 18283.84, + "end": 18284.94, + "probability": 0.9818 + }, + { + "start": 18285.0, + "end": 18287.82, + "probability": 0.9966 + }, + { + "start": 18288.66, + "end": 18292.0, + "probability": 0.9957 + }, + { + "start": 18292.24, + "end": 18293.24, + "probability": 0.9434 + }, + { + "start": 18294.5, + "end": 18295.87, + "probability": 0.9868 + }, + { + "start": 18296.36, + "end": 18299.1, + "probability": 0.9895 + }, + { + "start": 18299.1, + "end": 18301.38, + "probability": 0.8603 + }, + { + "start": 18303.08, + "end": 18304.74, + "probability": 0.9914 + }, + { + "start": 18305.22, + "end": 18307.2, + "probability": 0.6996 + }, + { + "start": 18307.82, + "end": 18311.9, + "probability": 0.842 + }, + { + "start": 18313.14, + "end": 18315.26, + "probability": 0.9517 + }, + { + "start": 18315.98, + "end": 18318.24, + "probability": 0.8943 + }, + { + "start": 18318.82, + "end": 18324.56, + "probability": 0.9904 + }, + { + "start": 18325.07, + "end": 18326.92, + "probability": 0.3192 + }, + { + "start": 18326.92, + "end": 18328.44, + "probability": 0.3153 + }, + { + "start": 18328.44, + "end": 18330.64, + "probability": 0.9904 + }, + { + "start": 18332.42, + "end": 18333.46, + "probability": 0.1502 + }, + { + "start": 18333.46, + "end": 18337.5, + "probability": 0.9454 + }, + { + "start": 18338.2, + "end": 18346.38, + "probability": 0.985 + }, + { + "start": 18346.46, + "end": 18347.09, + "probability": 0.9702 + }, + { + "start": 18347.34, + "end": 18348.5, + "probability": 0.9929 + }, + { + "start": 18348.66, + "end": 18351.96, + "probability": 0.1538 + }, + { + "start": 18351.96, + "end": 18351.96, + "probability": 0.2439 + }, + { + "start": 18351.96, + "end": 18352.46, + "probability": 0.1257 + }, + { + "start": 18352.46, + "end": 18354.78, + "probability": 0.5185 + }, + { + "start": 18355.26, + "end": 18358.43, + "probability": 0.9824 + }, + { + "start": 18358.88, + "end": 18360.08, + "probability": 0.5717 + }, + { + "start": 18360.44, + "end": 18361.26, + "probability": 0.2994 + }, + { + "start": 18361.46, + "end": 18362.04, + "probability": 0.465 + }, + { + "start": 18362.06, + "end": 18362.67, + "probability": 0.7928 + }, + { + "start": 18363.04, + "end": 18365.72, + "probability": 0.4362 + }, + { + "start": 18365.84, + "end": 18367.28, + "probability": 0.8562 + }, + { + "start": 18367.34, + "end": 18368.34, + "probability": 0.8984 + }, + { + "start": 18368.44, + "end": 18369.34, + "probability": 0.8457 + }, + { + "start": 18369.34, + "end": 18371.32, + "probability": 0.8487 + }, + { + "start": 18371.42, + "end": 18372.68, + "probability": 0.8597 + }, + { + "start": 18372.7, + "end": 18373.28, + "probability": 0.4662 + }, + { + "start": 18373.79, + "end": 18375.72, + "probability": 0.6621 + }, + { + "start": 18375.74, + "end": 18377.14, + "probability": 0.9788 + }, + { + "start": 18377.44, + "end": 18379.06, + "probability": 0.9163 + }, + { + "start": 18379.14, + "end": 18380.96, + "probability": 0.8656 + }, + { + "start": 18381.46, + "end": 18383.11, + "probability": 0.1293 + }, + { + "start": 18383.92, + "end": 18385.48, + "probability": 0.6893 + }, + { + "start": 18386.14, + "end": 18387.27, + "probability": 0.892 + }, + { + "start": 18387.36, + "end": 18390.06, + "probability": 0.9896 + }, + { + "start": 18390.16, + "end": 18390.8, + "probability": 0.9978 + }, + { + "start": 18391.4, + "end": 18396.38, + "probability": 0.979 + }, + { + "start": 18397.12, + "end": 18399.94, + "probability": 0.6199 + }, + { + "start": 18400.0, + "end": 18402.03, + "probability": 0.5984 + }, + { + "start": 18402.96, + "end": 18405.84, + "probability": 0.7067 + }, + { + "start": 18406.4, + "end": 18409.96, + "probability": 0.9943 + }, + { + "start": 18409.96, + "end": 18414.11, + "probability": 0.9927 + }, + { + "start": 18414.48, + "end": 18417.6, + "probability": 0.8693 + }, + { + "start": 18418.72, + "end": 18419.44, + "probability": 0.4357 + }, + { + "start": 18419.48, + "end": 18420.74, + "probability": 0.7104 + }, + { + "start": 18420.84, + "end": 18422.17, + "probability": 0.5852 + }, + { + "start": 18423.28, + "end": 18426.4, + "probability": 0.7679 + }, + { + "start": 18426.4, + "end": 18430.45, + "probability": 0.4871 + }, + { + "start": 18431.2, + "end": 18431.97, + "probability": 0.4522 + }, + { + "start": 18432.84, + "end": 18435.26, + "probability": 0.7709 + }, + { + "start": 18435.32, + "end": 18435.52, + "probability": 0.7393 + }, + { + "start": 18435.6, + "end": 18436.32, + "probability": 0.8901 + }, + { + "start": 18437.1, + "end": 18439.18, + "probability": 0.8983 + }, + { + "start": 18440.42, + "end": 18441.56, + "probability": 0.7572 + }, + { + "start": 18442.64, + "end": 18444.58, + "probability": 0.8472 + }, + { + "start": 18444.8, + "end": 18447.43, + "probability": 0.9941 + }, + { + "start": 18449.14, + "end": 18451.14, + "probability": 0.9365 + }, + { + "start": 18451.26, + "end": 18452.4, + "probability": 0.9417 + }, + { + "start": 18452.48, + "end": 18453.7, + "probability": 0.7313 + }, + { + "start": 18454.58, + "end": 18455.58, + "probability": 0.6314 + }, + { + "start": 18456.34, + "end": 18462.04, + "probability": 0.9309 + }, + { + "start": 18462.04, + "end": 18466.84, + "probability": 0.8628 + }, + { + "start": 18467.34, + "end": 18472.28, + "probability": 0.8184 + }, + { + "start": 18472.38, + "end": 18473.7, + "probability": 0.8446 + }, + { + "start": 18474.94, + "end": 18477.84, + "probability": 0.9964 + }, + { + "start": 18478.36, + "end": 18483.62, + "probability": 0.931 + }, + { + "start": 18483.62, + "end": 18486.36, + "probability": 0.9989 + }, + { + "start": 18487.94, + "end": 18489.67, + "probability": 0.7887 + }, + { + "start": 18489.94, + "end": 18490.68, + "probability": 0.7607 + }, + { + "start": 18491.46, + "end": 18492.7, + "probability": 0.965 + }, + { + "start": 18492.72, + "end": 18493.72, + "probability": 0.0615 + }, + { + "start": 18494.26, + "end": 18497.4, + "probability": 0.804 + }, + { + "start": 18497.66, + "end": 18497.94, + "probability": 0.1262 + }, + { + "start": 18498.2, + "end": 18499.56, + "probability": 0.4804 + }, + { + "start": 18499.9, + "end": 18506.24, + "probability": 0.2519 + }, + { + "start": 18506.7, + "end": 18508.18, + "probability": 0.761 + }, + { + "start": 18508.34, + "end": 18508.92, + "probability": 0.8925 + }, + { + "start": 18510.08, + "end": 18515.22, + "probability": 0.7801 + }, + { + "start": 18515.34, + "end": 18519.8, + "probability": 0.9896 + }, + { + "start": 18519.88, + "end": 18522.94, + "probability": 0.974 + }, + { + "start": 18523.1, + "end": 18524.48, + "probability": 0.9301 + }, + { + "start": 18525.04, + "end": 18525.08, + "probability": 0.0647 + }, + { + "start": 18525.08, + "end": 18527.36, + "probability": 0.6489 + }, + { + "start": 18527.76, + "end": 18528.62, + "probability": 0.5822 + }, + { + "start": 18529.18, + "end": 18532.96, + "probability": 0.9491 + }, + { + "start": 18533.02, + "end": 18533.8, + "probability": 0.9478 + }, + { + "start": 18534.18, + "end": 18534.81, + "probability": 0.9883 + }, + { + "start": 18539.12, + "end": 18540.14, + "probability": 0.1113 + }, + { + "start": 18540.3, + "end": 18544.22, + "probability": 0.0434 + }, + { + "start": 18546.18, + "end": 18546.52, + "probability": 0.1346 + }, + { + "start": 18547.14, + "end": 18547.48, + "probability": 0.62 + }, + { + "start": 18547.7, + "end": 18553.5, + "probability": 0.4895 + }, + { + "start": 18553.66, + "end": 18554.7, + "probability": 0.7578 + }, + { + "start": 18555.68, + "end": 18556.6, + "probability": 0.3109 + }, + { + "start": 18556.72, + "end": 18556.86, + "probability": 0.4802 + }, + { + "start": 18557.04, + "end": 18558.92, + "probability": 0.6623 + }, + { + "start": 18559.0, + "end": 18562.16, + "probability": 0.9585 + }, + { + "start": 18562.18, + "end": 18564.22, + "probability": 0.8171 + }, + { + "start": 18564.64, + "end": 18567.22, + "probability": 0.9932 + }, + { + "start": 18568.04, + "end": 18570.68, + "probability": 0.998 + }, + { + "start": 18571.42, + "end": 18573.16, + "probability": 0.8118 + }, + { + "start": 18573.2, + "end": 18574.86, + "probability": 0.9961 + }, + { + "start": 18575.88, + "end": 18577.9, + "probability": 0.606 + }, + { + "start": 18578.0, + "end": 18578.67, + "probability": 0.7921 + }, + { + "start": 18580.26, + "end": 18582.38, + "probability": 0.9192 + }, + { + "start": 18582.52, + "end": 18587.34, + "probability": 0.9843 + }, + { + "start": 18588.44, + "end": 18592.49, + "probability": 0.9348 + }, + { + "start": 18593.92, + "end": 18595.54, + "probability": 0.999 + }, + { + "start": 18596.38, + "end": 18599.78, + "probability": 0.98 + }, + { + "start": 18600.9, + "end": 18601.9, + "probability": 0.9989 + }, + { + "start": 18603.62, + "end": 18608.3, + "probability": 0.9987 + }, + { + "start": 18608.4, + "end": 18609.26, + "probability": 0.8882 + }, + { + "start": 18609.26, + "end": 18614.16, + "probability": 0.9685 + }, + { + "start": 18614.66, + "end": 18617.62, + "probability": 0.9668 + }, + { + "start": 18617.68, + "end": 18620.72, + "probability": 0.9992 + }, + { + "start": 18621.28, + "end": 18623.74, + "probability": 0.9336 + }, + { + "start": 18623.8, + "end": 18625.46, + "probability": 0.9879 + }, + { + "start": 18626.18, + "end": 18628.58, + "probability": 0.9838 + }, + { + "start": 18629.38, + "end": 18635.28, + "probability": 0.9506 + }, + { + "start": 18635.4, + "end": 18635.52, + "probability": 0.5439 + }, + { + "start": 18635.6, + "end": 18636.32, + "probability": 0.374 + }, + { + "start": 18636.32, + "end": 18639.78, + "probability": 0.8754 + }, + { + "start": 18640.46, + "end": 18641.35, + "probability": 0.9081 + }, + { + "start": 18654.32, + "end": 18655.92, + "probability": 0.7671 + }, + { + "start": 18657.2, + "end": 18660.36, + "probability": 0.9891 + }, + { + "start": 18660.9, + "end": 18664.86, + "probability": 0.9903 + }, + { + "start": 18665.06, + "end": 18665.44, + "probability": 0.9062 + }, + { + "start": 18666.08, + "end": 18669.26, + "probability": 0.9946 + }, + { + "start": 18669.86, + "end": 18675.22, + "probability": 0.9622 + }, + { + "start": 18675.68, + "end": 18676.18, + "probability": 0.8497 + }, + { + "start": 18676.28, + "end": 18677.04, + "probability": 0.9017 + }, + { + "start": 18677.12, + "end": 18678.34, + "probability": 0.8674 + }, + { + "start": 18678.64, + "end": 18681.48, + "probability": 0.9236 + }, + { + "start": 18681.72, + "end": 18686.7, + "probability": 0.7793 + }, + { + "start": 18686.78, + "end": 18689.68, + "probability": 0.9972 + }, + { + "start": 18690.08, + "end": 18691.08, + "probability": 0.68 + }, + { + "start": 18691.74, + "end": 18693.96, + "probability": 0.7768 + }, + { + "start": 18694.24, + "end": 18697.24, + "probability": 0.8941 + }, + { + "start": 18697.58, + "end": 18698.86, + "probability": 0.8719 + }, + { + "start": 18699.73, + "end": 18702.44, + "probability": 0.981 + }, + { + "start": 18702.68, + "end": 18703.3, + "probability": 0.8096 + }, + { + "start": 18703.38, + "end": 18705.14, + "probability": 0.9895 + }, + { + "start": 18705.54, + "end": 18706.3, + "probability": 0.6952 + }, + { + "start": 18706.64, + "end": 18706.96, + "probability": 0.6649 + }, + { + "start": 18707.9, + "end": 18709.86, + "probability": 0.9574 + }, + { + "start": 18710.54, + "end": 18713.36, + "probability": 0.803 + }, + { + "start": 18714.04, + "end": 18718.3, + "probability": 0.6131 + }, + { + "start": 18718.82, + "end": 18722.92, + "probability": 0.9947 + }, + { + "start": 18723.02, + "end": 18724.09, + "probability": 0.7772 + }, + { + "start": 18724.76, + "end": 18725.16, + "probability": 0.9216 + }, + { + "start": 18725.22, + "end": 18731.36, + "probability": 0.9573 + }, + { + "start": 18731.58, + "end": 18732.14, + "probability": 0.3825 + }, + { + "start": 18732.18, + "end": 18732.68, + "probability": 0.7037 + }, + { + "start": 18732.76, + "end": 18733.82, + "probability": 0.8457 + }, + { + "start": 18734.54, + "end": 18736.1, + "probability": 0.8662 + }, + { + "start": 18736.54, + "end": 18739.46, + "probability": 0.8095 + }, + { + "start": 18739.54, + "end": 18741.52, + "probability": 0.9636 + }, + { + "start": 18742.06, + "end": 18746.08, + "probability": 0.8806 + }, + { + "start": 18746.32, + "end": 18747.66, + "probability": 0.9222 + }, + { + "start": 18748.06, + "end": 18750.12, + "probability": 0.7993 + }, + { + "start": 18750.12, + "end": 18752.78, + "probability": 0.9954 + }, + { + "start": 18753.28, + "end": 18756.98, + "probability": 0.6404 + }, + { + "start": 18757.5, + "end": 18763.28, + "probability": 0.9812 + }, + { + "start": 18764.06, + "end": 18766.68, + "probability": 0.6931 + }, + { + "start": 18767.06, + "end": 18770.57, + "probability": 0.8323 + }, + { + "start": 18771.1, + "end": 18772.98, + "probability": 0.9348 + }, + { + "start": 18773.44, + "end": 18776.4, + "probability": 0.9954 + }, + { + "start": 18776.58, + "end": 18778.38, + "probability": 0.8055 + }, + { + "start": 18778.52, + "end": 18779.9, + "probability": 0.9776 + }, + { + "start": 18780.0, + "end": 18781.38, + "probability": 0.9046 + }, + { + "start": 18781.46, + "end": 18785.26, + "probability": 0.9002 + }, + { + "start": 18786.58, + "end": 18792.54, + "probability": 0.842 + }, + { + "start": 18792.6, + "end": 18793.42, + "probability": 0.7971 + }, + { + "start": 18793.76, + "end": 18794.86, + "probability": 0.645 + }, + { + "start": 18795.06, + "end": 18795.96, + "probability": 0.5655 + }, + { + "start": 18796.04, + "end": 18797.52, + "probability": 0.8542 + }, + { + "start": 18797.94, + "end": 18799.76, + "probability": 0.7646 + }, + { + "start": 18800.24, + "end": 18801.76, + "probability": 0.1813 + }, + { + "start": 18801.88, + "end": 18803.36, + "probability": 0.7825 + }, + { + "start": 18803.46, + "end": 18805.48, + "probability": 0.3203 + }, + { + "start": 18805.88, + "end": 18808.08, + "probability": 0.5254 + }, + { + "start": 18808.1, + "end": 18808.66, + "probability": 0.8164 + }, + { + "start": 18808.96, + "end": 18814.46, + "probability": 0.7893 + }, + { + "start": 18814.46, + "end": 18817.56, + "probability": 0.999 + }, + { + "start": 18818.44, + "end": 18823.08, + "probability": 0.9612 + }, + { + "start": 18823.84, + "end": 18827.64, + "probability": 0.9785 + }, + { + "start": 18828.42, + "end": 18832.64, + "probability": 0.9463 + }, + { + "start": 18833.36, + "end": 18833.66, + "probability": 0.5285 + }, + { + "start": 18833.82, + "end": 18834.78, + "probability": 0.8609 + }, + { + "start": 18834.86, + "end": 18836.34, + "probability": 0.7395 + }, + { + "start": 18836.34, + "end": 18841.16, + "probability": 0.966 + }, + { + "start": 18841.34, + "end": 18843.72, + "probability": 0.9915 + }, + { + "start": 18844.0, + "end": 18844.58, + "probability": 0.8866 + }, + { + "start": 18845.64, + "end": 18847.78, + "probability": 0.0068 + }, + { + "start": 18847.78, + "end": 18847.78, + "probability": 0.4678 + }, + { + "start": 18847.78, + "end": 18851.86, + "probability": 0.9053 + }, + { + "start": 18852.76, + "end": 18853.06, + "probability": 0.8145 + }, + { + "start": 18853.14, + "end": 18853.38, + "probability": 0.4501 + }, + { + "start": 18853.46, + "end": 18854.52, + "probability": 0.944 + }, + { + "start": 18854.62, + "end": 18855.44, + "probability": 0.9659 + }, + { + "start": 18855.92, + "end": 18856.6, + "probability": 0.9177 + }, + { + "start": 18860.2, + "end": 18860.24, + "probability": 0.1912 + }, + { + "start": 18860.24, + "end": 18860.24, + "probability": 0.0214 + }, + { + "start": 18860.24, + "end": 18860.94, + "probability": 0.3725 + }, + { + "start": 18865.16, + "end": 18867.88, + "probability": 0.916 + }, + { + "start": 18873.2, + "end": 18873.64, + "probability": 0.2844 + }, + { + "start": 18875.74, + "end": 18879.26, + "probability": 0.1252 + }, + { + "start": 18879.26, + "end": 18879.26, + "probability": 0.0299 + }, + { + "start": 18879.64, + "end": 18879.74, + "probability": 0.0476 + }, + { + "start": 18879.74, + "end": 18879.74, + "probability": 0.0317 + }, + { + "start": 18879.74, + "end": 18882.88, + "probability": 0.7188 + }, + { + "start": 18883.34, + "end": 18894.5, + "probability": 0.7851 + }, + { + "start": 18894.76, + "end": 18897.68, + "probability": 0.6169 + }, + { + "start": 18897.86, + "end": 18899.64, + "probability": 0.365 + }, + { + "start": 18899.8, + "end": 18900.82, + "probability": 0.6405 + }, + { + "start": 18900.82, + "end": 18903.32, + "probability": 0.4416 + }, + { + "start": 18904.0, + "end": 18906.08, + "probability": 0.7697 + }, + { + "start": 18906.22, + "end": 18910.56, + "probability": 0.9808 + }, + { + "start": 18911.24, + "end": 18911.76, + "probability": 0.012 + }, + { + "start": 18914.4, + "end": 18914.64, + "probability": 0.211 + }, + { + "start": 18914.64, + "end": 18915.04, + "probability": 0.1493 + }, + { + "start": 18916.06, + "end": 18916.84, + "probability": 0.0247 + }, + { + "start": 18916.84, + "end": 18916.84, + "probability": 0.1103 + }, + { + "start": 18916.84, + "end": 18917.33, + "probability": 0.815 + }, + { + "start": 18917.88, + "end": 18919.52, + "probability": 0.207 + }, + { + "start": 18920.4, + "end": 18923.86, + "probability": 0.937 + }, + { + "start": 18924.0, + "end": 18925.32, + "probability": 0.6633 + }, + { + "start": 18925.42, + "end": 18926.42, + "probability": 0.0678 + }, + { + "start": 18927.0, + "end": 18927.56, + "probability": 0.0583 + }, + { + "start": 18927.56, + "end": 18929.12, + "probability": 0.2544 + }, + { + "start": 18929.52, + "end": 18930.0, + "probability": 0.6714 + }, + { + "start": 18930.54, + "end": 18931.56, + "probability": 0.8794 + }, + { + "start": 18932.46, + "end": 18933.2, + "probability": 0.0178 + }, + { + "start": 18933.2, + "end": 18933.38, + "probability": 0.3021 + }, + { + "start": 18933.38, + "end": 18935.48, + "probability": 0.9906 + }, + { + "start": 18936.46, + "end": 18937.06, + "probability": 0.6195 + }, + { + "start": 18937.1, + "end": 18937.5, + "probability": 0.8591 + }, + { + "start": 18937.56, + "end": 18938.98, + "probability": 0.4998 + }, + { + "start": 18939.96, + "end": 18943.04, + "probability": 0.8757 + }, + { + "start": 18943.18, + "end": 18944.08, + "probability": 0.2333 + }, + { + "start": 18944.08, + "end": 18946.3, + "probability": 0.9327 + }, + { + "start": 18946.9, + "end": 18948.34, + "probability": 0.5266 + }, + { + "start": 18948.58, + "end": 18952.92, + "probability": 0.9643 + }, + { + "start": 18952.92, + "end": 18954.26, + "probability": 0.7057 + }, + { + "start": 18955.38, + "end": 18955.94, + "probability": 0.9777 + }, + { + "start": 18956.7, + "end": 18957.32, + "probability": 0.8368 + }, + { + "start": 18963.26, + "end": 18964.02, + "probability": 0.674 + }, + { + "start": 18964.1, + "end": 18964.88, + "probability": 0.7303 + }, + { + "start": 18964.98, + "end": 18969.46, + "probability": 0.9759 + }, + { + "start": 18970.0, + "end": 18971.8, + "probability": 0.9589 + }, + { + "start": 18971.8, + "end": 18972.24, + "probability": 0.853 + }, + { + "start": 18972.3, + "end": 18973.48, + "probability": 0.7467 + }, + { + "start": 18974.66, + "end": 18975.87, + "probability": 0.0463 + }, + { + "start": 18976.18, + "end": 18976.74, + "probability": 0.6625 + }, + { + "start": 18977.22, + "end": 18978.6, + "probability": 0.8287 + }, + { + "start": 18978.72, + "end": 18979.32, + "probability": 0.9489 + }, + { + "start": 18979.36, + "end": 18981.42, + "probability": 0.2179 + }, + { + "start": 18981.7, + "end": 18981.96, + "probability": 0.8346 + }, + { + "start": 18982.62, + "end": 18983.06, + "probability": 0.9552 + }, + { + "start": 18986.65, + "end": 18989.42, + "probability": 0.6713 + }, + { + "start": 18989.42, + "end": 18994.66, + "probability": 0.9953 + }, + { + "start": 18994.98, + "end": 18997.42, + "probability": 0.9132 + }, + { + "start": 18999.06, + "end": 19002.24, + "probability": 0.9824 + }, + { + "start": 19002.36, + "end": 19003.62, + "probability": 0.6505 + }, + { + "start": 19004.12, + "end": 19005.74, + "probability": 0.9855 + }, + { + "start": 19005.86, + "end": 19008.49, + "probability": 0.9888 + }, + { + "start": 19009.86, + "end": 19013.98, + "probability": 0.8263 + }, + { + "start": 19015.16, + "end": 19017.14, + "probability": 0.9906 + }, + { + "start": 19017.18, + "end": 19017.62, + "probability": 0.6664 + }, + { + "start": 19017.68, + "end": 19017.8, + "probability": 0.0336 + }, + { + "start": 19018.04, + "end": 19018.18, + "probability": 0.7994 + }, + { + "start": 19018.18, + "end": 19018.18, + "probability": 0.5803 + }, + { + "start": 19018.18, + "end": 19018.18, + "probability": 0.3535 + }, + { + "start": 19018.18, + "end": 19019.44, + "probability": 0.5113 + }, + { + "start": 19019.74, + "end": 19022.6, + "probability": 0.5898 + }, + { + "start": 19022.7, + "end": 19025.82, + "probability": 0.9053 + }, + { + "start": 19026.34, + "end": 19030.14, + "probability": 0.9976 + }, + { + "start": 19030.56, + "end": 19035.46, + "probability": 0.9994 + }, + { + "start": 19035.54, + "end": 19037.12, + "probability": 0.9949 + }, + { + "start": 19037.68, + "end": 19041.12, + "probability": 0.9825 + }, + { + "start": 19041.82, + "end": 19048.76, + "probability": 0.9907 + }, + { + "start": 19049.3, + "end": 19052.16, + "probability": 0.9986 + }, + { + "start": 19052.5, + "end": 19054.96, + "probability": 0.958 + }, + { + "start": 19055.14, + "end": 19057.96, + "probability": 0.9075 + }, + { + "start": 19058.98, + "end": 19060.16, + "probability": 0.8093 + }, + { + "start": 19060.46, + "end": 19061.96, + "probability": 0.875 + }, + { + "start": 19062.04, + "end": 19063.8, + "probability": 0.8651 + }, + { + "start": 19064.12, + "end": 19070.2, + "probability": 0.9722 + }, + { + "start": 19071.42, + "end": 19072.7, + "probability": 0.7082 + }, + { + "start": 19073.34, + "end": 19076.54, + "probability": 0.987 + }, + { + "start": 19076.98, + "end": 19077.14, + "probability": 0.6711 + }, + { + "start": 19077.26, + "end": 19079.61, + "probability": 0.9985 + }, + { + "start": 19080.22, + "end": 19082.42, + "probability": 0.9974 + }, + { + "start": 19083.28, + "end": 19085.92, + "probability": 0.999 + }, + { + "start": 19086.36, + "end": 19088.7, + "probability": 0.0266 + }, + { + "start": 19089.14, + "end": 19090.28, + "probability": 0.2951 + }, + { + "start": 19090.36, + "end": 19090.84, + "probability": 0.5729 + }, + { + "start": 19091.18, + "end": 19092.26, + "probability": 0.9196 + }, + { + "start": 19092.44, + "end": 19093.02, + "probability": 0.503 + }, + { + "start": 19093.74, + "end": 19094.3, + "probability": 0.398 + }, + { + "start": 19094.38, + "end": 19095.84, + "probability": 0.9303 + }, + { + "start": 19096.47, + "end": 19096.82, + "probability": 0.1263 + }, + { + "start": 19096.82, + "end": 19097.66, + "probability": 0.688 + }, + { + "start": 19097.66, + "end": 19098.8, + "probability": 0.4067 + }, + { + "start": 19098.82, + "end": 19101.48, + "probability": 0.9763 + }, + { + "start": 19102.24, + "end": 19103.26, + "probability": 0.7637 + }, + { + "start": 19103.72, + "end": 19103.86, + "probability": 0.759 + }, + { + "start": 19103.86, + "end": 19104.3, + "probability": 0.343 + }, + { + "start": 19104.38, + "end": 19107.11, + "probability": 0.9955 + }, + { + "start": 19107.26, + "end": 19107.26, + "probability": 0.0089 + }, + { + "start": 19107.36, + "end": 19109.94, + "probability": 0.34 + }, + { + "start": 19110.34, + "end": 19111.14, + "probability": 0.2961 + }, + { + "start": 19111.14, + "end": 19112.1, + "probability": 0.4697 + }, + { + "start": 19112.2, + "end": 19117.6, + "probability": 0.9954 + }, + { + "start": 19120.34, + "end": 19121.9, + "probability": 0.2213 + }, + { + "start": 19121.9, + "end": 19125.14, + "probability": 0.3381 + }, + { + "start": 19125.67, + "end": 19125.74, + "probability": 0.0347 + }, + { + "start": 19125.74, + "end": 19125.84, + "probability": 0.1088 + }, + { + "start": 19126.98, + "end": 19128.18, + "probability": 0.2597 + }, + { + "start": 19128.56, + "end": 19128.62, + "probability": 0.0943 + }, + { + "start": 19129.69, + "end": 19129.78, + "probability": 0.4788 + }, + { + "start": 19130.68, + "end": 19132.6, + "probability": 0.0912 + }, + { + "start": 19132.98, + "end": 19133.74, + "probability": 0.0123 + }, + { + "start": 19133.82, + "end": 19135.08, + "probability": 0.2774 + }, + { + "start": 19135.1, + "end": 19136.94, + "probability": 0.0815 + }, + { + "start": 19137.16, + "end": 19139.36, + "probability": 0.0795 + }, + { + "start": 19139.36, + "end": 19139.72, + "probability": 0.0566 + }, + { + "start": 19141.84, + "end": 19144.12, + "probability": 0.2747 + }, + { + "start": 19144.12, + "end": 19144.78, + "probability": 0.3675 + }, + { + "start": 19144.94, + "end": 19146.44, + "probability": 0.3478 + }, + { + "start": 19146.44, + "end": 19146.54, + "probability": 0.4357 + }, + { + "start": 19146.54, + "end": 19147.56, + "probability": 0.4589 + }, + { + "start": 19149.84, + "end": 19152.16, + "probability": 0.0459 + }, + { + "start": 19152.16, + "end": 19152.16, + "probability": 0.0902 + }, + { + "start": 19164.88, + "end": 19166.24, + "probability": 0.1614 + }, + { + "start": 19167.38, + "end": 19168.46, + "probability": 0.497 + }, + { + "start": 19168.46, + "end": 19168.58, + "probability": 0.5385 + }, + { + "start": 19168.58, + "end": 19168.58, + "probability": 0.0545 + }, + { + "start": 19168.58, + "end": 19170.7, + "probability": 0.2332 + }, + { + "start": 19171.66, + "end": 19174.74, + "probability": 0.0503 + }, + { + "start": 19175.12, + "end": 19175.24, + "probability": 0.113 + }, + { + "start": 19175.24, + "end": 19176.82, + "probability": 0.1732 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19177.0, + "end": 19177.0, + "probability": 0.0 + }, + { + "start": 19183.04, + "end": 19186.02, + "probability": 0.5274 + }, + { + "start": 19191.02, + "end": 19196.18, + "probability": 0.0227 + }, + { + "start": 19204.12, + "end": 19208.44, + "probability": 0.036 + }, + { + "start": 19209.14, + "end": 19209.16, + "probability": 0.0002 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.0, + "end": 19303.0, + "probability": 0.0 + }, + { + "start": 19303.16, + "end": 19303.16, + "probability": 0.3493 + }, + { + "start": 19303.16, + "end": 19303.16, + "probability": 0.2075 + }, + { + "start": 19303.16, + "end": 19303.16, + "probability": 0.1605 + }, + { + "start": 19303.16, + "end": 19303.51, + "probability": 0.1457 + }, + { + "start": 19305.16, + "end": 19307.68, + "probability": 0.518 + }, + { + "start": 19307.68, + "end": 19312.62, + "probability": 0.8731 + }, + { + "start": 19313.56, + "end": 19313.56, + "probability": 0.1926 + }, + { + "start": 19313.56, + "end": 19315.73, + "probability": 0.9727 + }, + { + "start": 19317.18, + "end": 19322.94, + "probability": 0.9647 + }, + { + "start": 19323.08, + "end": 19326.66, + "probability": 0.9187 + }, + { + "start": 19326.66, + "end": 19330.64, + "probability": 0.9961 + }, + { + "start": 19331.72, + "end": 19335.82, + "probability": 0.9927 + }, + { + "start": 19335.96, + "end": 19336.24, + "probability": 0.4588 + }, + { + "start": 19336.32, + "end": 19337.68, + "probability": 0.982 + }, + { + "start": 19337.74, + "end": 19340.02, + "probability": 0.9914 + }, + { + "start": 19340.1, + "end": 19341.5, + "probability": 0.9888 + }, + { + "start": 19342.46, + "end": 19343.48, + "probability": 0.6605 + }, + { + "start": 19346.84, + "end": 19348.74, + "probability": 0.9867 + }, + { + "start": 19348.92, + "end": 19351.32, + "probability": 0.981 + }, + { + "start": 19352.48, + "end": 19354.2, + "probability": 0.9435 + }, + { + "start": 19355.44, + "end": 19358.8, + "probability": 0.9948 + }, + { + "start": 19359.44, + "end": 19361.74, + "probability": 0.9833 + }, + { + "start": 19362.46, + "end": 19366.38, + "probability": 0.9965 + }, + { + "start": 19367.1, + "end": 19368.18, + "probability": 0.9774 + }, + { + "start": 19369.02, + "end": 19370.26, + "probability": 0.9857 + }, + { + "start": 19371.02, + "end": 19374.94, + "probability": 0.9968 + }, + { + "start": 19374.94, + "end": 19378.8, + "probability": 0.9977 + }, + { + "start": 19378.98, + "end": 19383.12, + "probability": 0.9819 + }, + { + "start": 19383.28, + "end": 19383.58, + "probability": 0.7727 + }, + { + "start": 19385.13, + "end": 19389.7, + "probability": 0.9694 + }, + { + "start": 19390.76, + "end": 19392.88, + "probability": 0.8636 + }, + { + "start": 19393.4, + "end": 19399.08, + "probability": 0.992 + }, + { + "start": 19400.22, + "end": 19401.0, + "probability": 0.9729 + }, + { + "start": 19402.52, + "end": 19407.38, + "probability": 0.9861 + }, + { + "start": 19408.16, + "end": 19409.38, + "probability": 0.755 + }, + { + "start": 19409.86, + "end": 19411.14, + "probability": 0.981 + }, + { + "start": 19411.64, + "end": 19412.88, + "probability": 0.9646 + }, + { + "start": 19413.04, + "end": 19414.9, + "probability": 0.9736 + }, + { + "start": 19414.98, + "end": 19417.1, + "probability": 0.9953 + }, + { + "start": 19417.48, + "end": 19420.08, + "probability": 0.9617 + }, + { + "start": 19420.08, + "end": 19422.94, + "probability": 0.9995 + }, + { + "start": 19423.94, + "end": 19428.86, + "probability": 0.9787 + }, + { + "start": 19428.92, + "end": 19430.48, + "probability": 0.8872 + }, + { + "start": 19431.0, + "end": 19431.34, + "probability": 0.7216 + }, + { + "start": 19431.38, + "end": 19432.1, + "probability": 0.7523 + }, + { + "start": 19432.3, + "end": 19434.86, + "probability": 0.9962 + }, + { + "start": 19437.7, + "end": 19443.38, + "probability": 0.5528 + }, + { + "start": 19443.58, + "end": 19446.88, + "probability": 0.7677 + }, + { + "start": 19447.08, + "end": 19449.34, + "probability": 0.7191 + }, + { + "start": 19449.52, + "end": 19451.78, + "probability": 0.2175 + }, + { + "start": 19452.14, + "end": 19454.12, + "probability": 0.8914 + }, + { + "start": 19454.52, + "end": 19455.24, + "probability": 0.4689 + }, + { + "start": 19456.46, + "end": 19456.98, + "probability": 0.271 + }, + { + "start": 19457.02, + "end": 19457.08, + "probability": 0.1305 + }, + { + "start": 19457.08, + "end": 19457.08, + "probability": 0.151 + }, + { + "start": 19457.08, + "end": 19457.57, + "probability": 0.1128 + }, + { + "start": 19458.02, + "end": 19458.06, + "probability": 0.1008 + }, + { + "start": 19458.16, + "end": 19459.94, + "probability": 0.5428 + }, + { + "start": 19461.42, + "end": 19464.26, + "probability": 0.4486 + }, + { + "start": 19464.36, + "end": 19465.32, + "probability": 0.2461 + }, + { + "start": 19465.54, + "end": 19465.8, + "probability": 0.0558 + }, + { + "start": 19465.8, + "end": 19465.92, + "probability": 0.1927 + }, + { + "start": 19465.92, + "end": 19471.8, + "probability": 0.7879 + }, + { + "start": 19472.08, + "end": 19473.94, + "probability": 0.9412 + }, + { + "start": 19474.14, + "end": 19478.77, + "probability": 0.9735 + }, + { + "start": 19480.0, + "end": 19482.04, + "probability": 0.5155 + }, + { + "start": 19482.26, + "end": 19483.92, + "probability": 0.8211 + }, + { + "start": 19483.92, + "end": 19486.46, + "probability": 0.4156 + }, + { + "start": 19486.58, + "end": 19487.62, + "probability": 0.2611 + }, + { + "start": 19487.76, + "end": 19488.78, + "probability": 0.8443 + }, + { + "start": 19488.88, + "end": 19490.16, + "probability": 0.89 + }, + { + "start": 19490.36, + "end": 19491.68, + "probability": 0.001 + }, + { + "start": 19491.98, + "end": 19492.68, + "probability": 0.0 + }, + { + "start": 19492.68, + "end": 19498.4, + "probability": 0.9762 + }, + { + "start": 19498.48, + "end": 19500.05, + "probability": 0.957 + }, + { + "start": 19500.7, + "end": 19501.04, + "probability": 0.5055 + }, + { + "start": 19501.14, + "end": 19502.9, + "probability": 0.9485 + }, + { + "start": 19502.94, + "end": 19504.6, + "probability": 0.8259 + }, + { + "start": 19504.7, + "end": 19505.94, + "probability": 0.5995 + }, + { + "start": 19506.96, + "end": 19508.14, + "probability": 0.7474 + }, + { + "start": 19509.54, + "end": 19514.92, + "probability": 0.9932 + }, + { + "start": 19517.86, + "end": 19522.18, + "probability": 0.9449 + }, + { + "start": 19522.56, + "end": 19523.72, + "probability": 0.9092 + }, + { + "start": 19524.72, + "end": 19525.06, + "probability": 0.4714 + }, + { + "start": 19525.3, + "end": 19528.04, + "probability": 0.0832 + }, + { + "start": 19528.26, + "end": 19530.49, + "probability": 0.7301 + }, + { + "start": 19530.9, + "end": 19531.18, + "probability": 0.9552 + }, + { + "start": 19531.24, + "end": 19532.54, + "probability": 0.7809 + }, + { + "start": 19532.62, + "end": 19534.6, + "probability": 0.9951 + }, + { + "start": 19536.48, + "end": 19538.84, + "probability": 0.7818 + }, + { + "start": 19538.94, + "end": 19541.11, + "probability": 0.8609 + }, + { + "start": 19541.94, + "end": 19545.26, + "probability": 0.9731 + }, + { + "start": 19545.92, + "end": 19551.45, + "probability": 0.9929 + }, + { + "start": 19551.84, + "end": 19553.92, + "probability": 0.9966 + }, + { + "start": 19554.32, + "end": 19555.92, + "probability": 0.9943 + }, + { + "start": 19557.28, + "end": 19558.9, + "probability": 0.9558 + }, + { + "start": 19558.98, + "end": 19561.88, + "probability": 0.8898 + }, + { + "start": 19562.16, + "end": 19567.02, + "probability": 0.9924 + }, + { + "start": 19567.98, + "end": 19570.34, + "probability": 0.9845 + }, + { + "start": 19570.42, + "end": 19572.78, + "probability": 0.9119 + }, + { + "start": 19572.9, + "end": 19574.18, + "probability": 0.9719 + }, + { + "start": 19574.64, + "end": 19578.26, + "probability": 0.9423 + }, + { + "start": 19578.42, + "end": 19581.0, + "probability": 0.9622 + }, + { + "start": 19581.42, + "end": 19583.02, + "probability": 0.9474 + }, + { + "start": 19583.82, + "end": 19588.42, + "probability": 0.9993 + }, + { + "start": 19589.1, + "end": 19591.38, + "probability": 0.7905 + }, + { + "start": 19593.02, + "end": 19595.44, + "probability": 0.967 + }, + { + "start": 19595.56, + "end": 19596.82, + "probability": 0.998 + }, + { + "start": 19596.9, + "end": 19598.56, + "probability": 0.9268 + }, + { + "start": 19599.38, + "end": 19604.52, + "probability": 0.9785 + }, + { + "start": 19604.78, + "end": 19606.44, + "probability": 0.9034 + }, + { + "start": 19606.52, + "end": 19608.63, + "probability": 0.9813 + }, + { + "start": 19608.84, + "end": 19611.86, + "probability": 0.8618 + }, + { + "start": 19613.26, + "end": 19617.84, + "probability": 0.9856 + }, + { + "start": 19618.02, + "end": 19619.34, + "probability": 0.8331 + }, + { + "start": 19620.38, + "end": 19624.7, + "probability": 0.9834 + }, + { + "start": 19625.76, + "end": 19627.16, + "probability": 0.8792 + }, + { + "start": 19627.22, + "end": 19627.84, + "probability": 0.9514 + }, + { + "start": 19627.92, + "end": 19628.54, + "probability": 0.2805 + }, + { + "start": 19628.66, + "end": 19630.66, + "probability": 0.9985 + }, + { + "start": 19631.32, + "end": 19633.74, + "probability": 0.9033 + }, + { + "start": 19634.48, + "end": 19638.06, + "probability": 0.9107 + }, + { + "start": 19638.28, + "end": 19640.0, + "probability": 0.9725 + }, + { + "start": 19640.12, + "end": 19642.02, + "probability": 0.994 + }, + { + "start": 19642.36, + "end": 19644.18, + "probability": 0.9211 + }, + { + "start": 19644.42, + "end": 19645.68, + "probability": 0.6813 + }, + { + "start": 19645.76, + "end": 19647.58, + "probability": 0.9968 + }, + { + "start": 19648.64, + "end": 19651.72, + "probability": 0.9854 + }, + { + "start": 19652.9, + "end": 19656.78, + "probability": 0.9294 + }, + { + "start": 19656.9, + "end": 19660.42, + "probability": 0.9912 + }, + { + "start": 19661.8, + "end": 19663.04, + "probability": 0.9941 + }, + { + "start": 19663.08, + "end": 19664.52, + "probability": 0.9956 + }, + { + "start": 19664.6, + "end": 19666.24, + "probability": 0.9932 + }, + { + "start": 19666.72, + "end": 19670.2, + "probability": 0.9914 + }, + { + "start": 19670.56, + "end": 19673.0, + "probability": 0.9956 + }, + { + "start": 19673.4, + "end": 19674.38, + "probability": 0.8219 + }, + { + "start": 19674.48, + "end": 19675.31, + "probability": 0.9941 + }, + { + "start": 19676.5, + "end": 19678.46, + "probability": 0.9315 + }, + { + "start": 19678.96, + "end": 19682.26, + "probability": 0.9872 + }, + { + "start": 19682.26, + "end": 19685.1, + "probability": 0.8451 + }, + { + "start": 19685.2, + "end": 19687.46, + "probability": 0.9905 + }, + { + "start": 19687.76, + "end": 19691.7, + "probability": 0.9949 + }, + { + "start": 19691.82, + "end": 19693.84, + "probability": 0.8362 + }, + { + "start": 19694.08, + "end": 19694.62, + "probability": 0.926 + }, + { + "start": 19694.78, + "end": 19696.72, + "probability": 0.9943 + }, + { + "start": 19697.44, + "end": 19700.18, + "probability": 0.9744 + }, + { + "start": 19700.18, + "end": 19702.72, + "probability": 0.799 + }, + { + "start": 19702.88, + "end": 19704.9, + "probability": 0.9941 + }, + { + "start": 19705.14, + "end": 19708.76, + "probability": 0.9853 + }, + { + "start": 19709.16, + "end": 19710.6, + "probability": 0.911 + }, + { + "start": 19710.66, + "end": 19712.42, + "probability": 0.9538 + }, + { + "start": 19713.42, + "end": 19716.14, + "probability": 0.9984 + }, + { + "start": 19716.82, + "end": 19718.18, + "probability": 0.8656 + }, + { + "start": 19718.92, + "end": 19722.66, + "probability": 0.8484 + }, + { + "start": 19723.08, + "end": 19724.34, + "probability": 0.8528 + }, + { + "start": 19724.54, + "end": 19726.96, + "probability": 0.9958 + }, + { + "start": 19727.9, + "end": 19731.28, + "probability": 0.9958 + }, + { + "start": 19731.84, + "end": 19734.62, + "probability": 0.9679 + }, + { + "start": 19735.36, + "end": 19738.76, + "probability": 0.9769 + }, + { + "start": 19739.8, + "end": 19740.3, + "probability": 0.5795 + }, + { + "start": 19740.34, + "end": 19741.76, + "probability": 0.9456 + }, + { + "start": 19742.0, + "end": 19743.06, + "probability": 0.9531 + }, + { + "start": 19743.18, + "end": 19745.06, + "probability": 0.9498 + }, + { + "start": 19745.14, + "end": 19747.54, + "probability": 0.9729 + }, + { + "start": 19747.54, + "end": 19751.68, + "probability": 0.9863 + }, + { + "start": 19751.86, + "end": 19752.9, + "probability": 0.9882 + }, + { + "start": 19753.16, + "end": 19753.72, + "probability": 0.6289 + }, + { + "start": 19753.96, + "end": 19755.36, + "probability": 0.7915 + }, + { + "start": 19755.36, + "end": 19760.36, + "probability": 0.9941 + }, + { + "start": 19761.0, + "end": 19768.6, + "probability": 0.8052 + }, + { + "start": 19768.7, + "end": 19768.94, + "probability": 0.8557 + }, + { + "start": 19769.06, + "end": 19769.48, + "probability": 0.8761 + }, + { + "start": 19769.58, + "end": 19772.64, + "probability": 0.916 + }, + { + "start": 19772.86, + "end": 19773.16, + "probability": 0.5662 + }, + { + "start": 19774.66, + "end": 19776.16, + "probability": 0.7827 + }, + { + "start": 19776.34, + "end": 19780.24, + "probability": 0.1579 + }, + { + "start": 19780.24, + "end": 19781.16, + "probability": 0.354 + }, + { + "start": 19784.98, + "end": 19786.1, + "probability": 0.5423 + }, + { + "start": 19787.21, + "end": 19791.06, + "probability": 0.0655 + }, + { + "start": 19791.12, + "end": 19793.78, + "probability": 0.7068 + }, + { + "start": 19793.94, + "end": 19795.0, + "probability": 0.5249 + }, + { + "start": 19795.04, + "end": 19798.88, + "probability": 0.7514 + }, + { + "start": 19799.06, + "end": 19800.06, + "probability": 0.8622 + }, + { + "start": 19800.18, + "end": 19800.86, + "probability": 0.5431 + }, + { + "start": 19800.88, + "end": 19801.3, + "probability": 0.7022 + }, + { + "start": 19801.36, + "end": 19802.76, + "probability": 0.8741 + }, + { + "start": 19802.96, + "end": 19805.24, + "probability": 0.7767 + }, + { + "start": 19809.1, + "end": 19811.4, + "probability": 0.964 + }, + { + "start": 19811.54, + "end": 19814.26, + "probability": 0.9986 + }, + { + "start": 19815.4, + "end": 19816.84, + "probability": 0.999 + }, + { + "start": 19816.96, + "end": 19818.06, + "probability": 0.9922 + }, + { + "start": 19818.28, + "end": 19819.56, + "probability": 0.0882 + }, + { + "start": 19819.56, + "end": 19820.52, + "probability": 0.6259 + }, + { + "start": 19821.88, + "end": 19822.06, + "probability": 0.2609 + }, + { + "start": 19823.02, + "end": 19829.38, + "probability": 0.6403 + }, + { + "start": 19829.62, + "end": 19830.92, + "probability": 0.7886 + }, + { + "start": 19830.96, + "end": 19831.88, + "probability": 0.248 + }, + { + "start": 19832.64, + "end": 19834.14, + "probability": 0.2522 + }, + { + "start": 19834.72, + "end": 19835.54, + "probability": 0.7142 + }, + { + "start": 19835.96, + "end": 19841.72, + "probability": 0.3633 + }, + { + "start": 19845.37, + "end": 19848.62, + "probability": 0.9742 + }, + { + "start": 19848.96, + "end": 19851.14, + "probability": 0.9763 + }, + { + "start": 19851.62, + "end": 19852.4, + "probability": 0.8813 + }, + { + "start": 19852.46, + "end": 19852.78, + "probability": 0.7434 + }, + { + "start": 19852.86, + "end": 19852.96, + "probability": 0.8553 + }, + { + "start": 19853.06, + "end": 19853.82, + "probability": 0.8459 + }, + { + "start": 19854.42, + "end": 19857.46, + "probability": 0.9219 + }, + { + "start": 19857.62, + "end": 19858.42, + "probability": 0.5932 + }, + { + "start": 19858.56, + "end": 19860.28, + "probability": 0.9885 + }, + { + "start": 19860.48, + "end": 19861.04, + "probability": 0.4436 + }, + { + "start": 19861.68, + "end": 19864.28, + "probability": 0.9426 + }, + { + "start": 19864.98, + "end": 19868.14, + "probability": 0.96 + }, + { + "start": 19868.14, + "end": 19872.44, + "probability": 0.9033 + }, + { + "start": 19873.22, + "end": 19875.82, + "probability": 0.9769 + }, + { + "start": 19876.06, + "end": 19879.4, + "probability": 0.9959 + }, + { + "start": 19880.06, + "end": 19884.06, + "probability": 0.9879 + }, + { + "start": 19885.0, + "end": 19888.24, + "probability": 0.8357 + }, + { + "start": 19888.72, + "end": 19895.96, + "probability": 0.989 + }, + { + "start": 19896.22, + "end": 19901.14, + "probability": 0.9963 + }, + { + "start": 19901.34, + "end": 19903.02, + "probability": 0.9618 + }, + { + "start": 19903.48, + "end": 19907.38, + "probability": 0.9966 + }, + { + "start": 19907.38, + "end": 19911.74, + "probability": 0.9907 + }, + { + "start": 19912.24, + "end": 19915.48, + "probability": 0.9983 + }, + { + "start": 19915.64, + "end": 19916.74, + "probability": 0.9795 + }, + { + "start": 19916.9, + "end": 19918.48, + "probability": 0.68 + }, + { + "start": 19918.74, + "end": 19919.0, + "probability": 0.8367 + }, + { + "start": 19919.3, + "end": 19919.5, + "probability": 0.1805 + }, + { + "start": 19919.5, + "end": 19921.4, + "probability": 0.8501 + }, + { + "start": 19921.42, + "end": 19922.28, + "probability": 0.7895 + }, + { + "start": 19922.96, + "end": 19924.8, + "probability": 0.8846 + }, + { + "start": 19925.28, + "end": 19930.52, + "probability": 0.6771 + }, + { + "start": 19934.66, + "end": 19935.12, + "probability": 0.7746 + }, + { + "start": 19935.44, + "end": 19938.22, + "probability": 0.0483 + }, + { + "start": 19946.56, + "end": 19951.08, + "probability": 0.3807 + }, + { + "start": 19951.16, + "end": 19955.06, + "probability": 0.3353 + }, + { + "start": 19955.3, + "end": 19955.58, + "probability": 0.4515 + }, + { + "start": 19955.64, + "end": 19956.78, + "probability": 0.4722 + }, + { + "start": 19956.78, + "end": 19958.68, + "probability": 0.4494 + }, + { + "start": 19958.68, + "end": 19959.56, + "probability": 0.0512 + }, + { + "start": 19959.56, + "end": 19960.0, + "probability": 0.324 + }, + { + "start": 19960.0, + "end": 19961.86, + "probability": 0.8834 + }, + { + "start": 19961.96, + "end": 19964.38, + "probability": 0.9979 + }, + { + "start": 19965.18, + "end": 19966.96, + "probability": 0.9961 + }, + { + "start": 19967.26, + "end": 19969.24, + "probability": 0.9928 + }, + { + "start": 19969.66, + "end": 19975.44, + "probability": 0.9714 + }, + { + "start": 19975.74, + "end": 19976.97, + "probability": 0.9653 + }, + { + "start": 19977.6, + "end": 19981.06, + "probability": 0.4728 + }, + { + "start": 19981.34, + "end": 19982.27, + "probability": 0.8629 + }, + { + "start": 19982.94, + "end": 19983.73, + "probability": 0.8086 + }, + { + "start": 19984.8, + "end": 19988.62, + "probability": 0.9935 + }, + { + "start": 19988.98, + "end": 19990.14, + "probability": 0.9108 + }, + { + "start": 19990.5, + "end": 19990.7, + "probability": 0.2572 + }, + { + "start": 19990.84, + "end": 19992.02, + "probability": 0.9684 + }, + { + "start": 19992.12, + "end": 19993.86, + "probability": 0.9588 + }, + { + "start": 19993.98, + "end": 19996.1, + "probability": 0.9904 + }, + { + "start": 19996.14, + "end": 20001.56, + "probability": 0.9941 + }, + { + "start": 20001.92, + "end": 20003.02, + "probability": 0.6684 + }, + { + "start": 20003.08, + "end": 20004.32, + "probability": 0.9845 + }, + { + "start": 20004.52, + "end": 20004.94, + "probability": 0.6584 + }, + { + "start": 20005.08, + "end": 20005.48, + "probability": 0.7247 + }, + { + "start": 20007.06, + "end": 20009.1, + "probability": 0.6416 + }, + { + "start": 20010.12, + "end": 20012.36, + "probability": 0.8437 + }, + { + "start": 20013.2, + "end": 20015.86, + "probability": 0.6752 + }, + { + "start": 20016.64, + "end": 20017.53, + "probability": 0.5673 + }, + { + "start": 20017.8, + "end": 20018.42, + "probability": 0.8513 + }, + { + "start": 20025.18, + "end": 20028.56, + "probability": 0.1947 + }, + { + "start": 20031.43, + "end": 20032.72, + "probability": 0.056 + }, + { + "start": 20033.12, + "end": 20034.6, + "probability": 0.266 + }, + { + "start": 20035.72, + "end": 20035.8, + "probability": 0.0251 + }, + { + "start": 20035.8, + "end": 20035.84, + "probability": 0.0384 + }, + { + "start": 20035.84, + "end": 20035.84, + "probability": 0.3761 + }, + { + "start": 20035.84, + "end": 20035.84, + "probability": 0.0321 + }, + { + "start": 20035.84, + "end": 20037.04, + "probability": 0.4069 + }, + { + "start": 20037.66, + "end": 20039.5, + "probability": 0.3505 + }, + { + "start": 20039.78, + "end": 20042.12, + "probability": 0.8152 + }, + { + "start": 20043.63, + "end": 20048.82, + "probability": 0.9608 + }, + { + "start": 20048.88, + "end": 20050.2, + "probability": 0.811 + }, + { + "start": 20050.32, + "end": 20051.88, + "probability": 0.6049 + }, + { + "start": 20053.32, + "end": 20055.42, + "probability": 0.939 + }, + { + "start": 20055.46, + "end": 20056.02, + "probability": 0.3749 + }, + { + "start": 20056.56, + "end": 20058.6, + "probability": 0.4064 + }, + { + "start": 20061.14, + "end": 20061.72, + "probability": 0.0735 + }, + { + "start": 20063.78, + "end": 20063.88, + "probability": 0.301 + }, + { + "start": 20073.64, + "end": 20075.16, + "probability": 0.1166 + }, + { + "start": 20081.06, + "end": 20086.9, + "probability": 0.9989 + }, + { + "start": 20087.06, + "end": 20088.24, + "probability": 0.7469 + }, + { + "start": 20088.8, + "end": 20090.62, + "probability": 0.9949 + }, + { + "start": 20091.2, + "end": 20092.46, + "probability": 0.9415 + }, + { + "start": 20093.98, + "end": 20096.64, + "probability": 0.9887 + }, + { + "start": 20096.78, + "end": 20097.02, + "probability": 0.7736 + }, + { + "start": 20097.12, + "end": 20097.54, + "probability": 0.8169 + }, + { + "start": 20097.58, + "end": 20098.48, + "probability": 0.73 + }, + { + "start": 20099.66, + "end": 20099.8, + "probability": 0.6516 + }, + { + "start": 20101.02, + "end": 20102.94, + "probability": 0.8437 + }, + { + "start": 20104.14, + "end": 20106.44, + "probability": 0.988 + }, + { + "start": 20106.44, + "end": 20109.32, + "probability": 0.9992 + }, + { + "start": 20109.36, + "end": 20113.02, + "probability": 0.8989 + }, + { + "start": 20113.74, + "end": 20115.68, + "probability": 0.9608 + }, + { + "start": 20116.76, + "end": 20118.42, + "probability": 0.9987 + }, + { + "start": 20118.66, + "end": 20119.08, + "probability": 0.9726 + }, + { + "start": 20119.24, + "end": 20120.34, + "probability": 0.9204 + }, + { + "start": 20120.42, + "end": 20122.08, + "probability": 0.5 + }, + { + "start": 20123.8, + "end": 20131.24, + "probability": 0.9818 + }, + { + "start": 20133.74, + "end": 20139.54, + "probability": 0.8625 + }, + { + "start": 20140.8, + "end": 20141.5, + "probability": 0.6937 + }, + { + "start": 20142.34, + "end": 20145.54, + "probability": 0.9963 + }, + { + "start": 20145.54, + "end": 20149.4, + "probability": 0.9073 + }, + { + "start": 20150.54, + "end": 20152.26, + "probability": 0.9651 + }, + { + "start": 20153.42, + "end": 20157.4, + "probability": 0.9866 + }, + { + "start": 20158.58, + "end": 20158.88, + "probability": 0.9728 + }, + { + "start": 20158.98, + "end": 20163.02, + "probability": 0.9717 + }, + { + "start": 20163.5, + "end": 20167.02, + "probability": 0.996 + }, + { + "start": 20167.02, + "end": 20169.76, + "probability": 0.9985 + }, + { + "start": 20170.42, + "end": 20172.8, + "probability": 0.9955 + }, + { + "start": 20173.58, + "end": 20177.24, + "probability": 0.996 + }, + { + "start": 20177.88, + "end": 20178.66, + "probability": 0.616 + }, + { + "start": 20181.04, + "end": 20182.06, + "probability": 0.8429 + }, + { + "start": 20182.28, + "end": 20182.96, + "probability": 0.8657 + }, + { + "start": 20183.16, + "end": 20187.3, + "probability": 0.8796 + }, + { + "start": 20188.24, + "end": 20190.12, + "probability": 0.98 + }, + { + "start": 20190.84, + "end": 20194.28, + "probability": 0.9941 + }, + { + "start": 20195.68, + "end": 20196.68, + "probability": 0.9585 + }, + { + "start": 20197.66, + "end": 20200.4, + "probability": 0.8672 + }, + { + "start": 20201.78, + "end": 20207.98, + "probability": 0.999 + }, + { + "start": 20208.82, + "end": 20212.56, + "probability": 0.995 + }, + { + "start": 20212.72, + "end": 20218.04, + "probability": 0.9901 + }, + { + "start": 20219.22, + "end": 20220.26, + "probability": 0.8633 + }, + { + "start": 20221.68, + "end": 20224.88, + "probability": 0.8781 + }, + { + "start": 20225.86, + "end": 20230.26, + "probability": 0.9966 + }, + { + "start": 20232.02, + "end": 20241.22, + "probability": 0.9904 + }, + { + "start": 20242.8, + "end": 20244.54, + "probability": 0.9873 + }, + { + "start": 20246.56, + "end": 20247.36, + "probability": 0.9349 + }, + { + "start": 20248.0, + "end": 20252.68, + "probability": 0.9847 + }, + { + "start": 20253.6, + "end": 20257.08, + "probability": 0.9863 + }, + { + "start": 20258.0, + "end": 20261.48, + "probability": 0.989 + }, + { + "start": 20261.48, + "end": 20266.22, + "probability": 0.9934 + }, + { + "start": 20266.34, + "end": 20267.66, + "probability": 0.9756 + }, + { + "start": 20267.82, + "end": 20269.16, + "probability": 0.9635 + }, + { + "start": 20271.46, + "end": 20274.26, + "probability": 0.9977 + }, + { + "start": 20274.48, + "end": 20281.78, + "probability": 0.9923 + }, + { + "start": 20282.82, + "end": 20285.46, + "probability": 0.972 + }, + { + "start": 20285.54, + "end": 20286.38, + "probability": 0.6809 + }, + { + "start": 20287.1, + "end": 20290.9, + "probability": 0.9979 + }, + { + "start": 20291.96, + "end": 20292.36, + "probability": 0.8691 + }, + { + "start": 20293.2, + "end": 20294.64, + "probability": 0.9729 + }, + { + "start": 20295.5, + "end": 20297.32, + "probability": 0.9796 + }, + { + "start": 20299.2, + "end": 20301.68, + "probability": 0.9629 + }, + { + "start": 20302.22, + "end": 20306.48, + "probability": 0.9912 + }, + { + "start": 20307.52, + "end": 20308.58, + "probability": 0.6456 + }, + { + "start": 20308.7, + "end": 20312.56, + "probability": 0.9006 + }, + { + "start": 20312.7, + "end": 20313.62, + "probability": 0.7991 + }, + { + "start": 20314.1, + "end": 20317.7, + "probability": 0.9535 + }, + { + "start": 20318.14, + "end": 20321.28, + "probability": 0.9677 + }, + { + "start": 20323.6, + "end": 20325.66, + "probability": 0.9957 + }, + { + "start": 20326.34, + "end": 20327.3, + "probability": 0.8321 + }, + { + "start": 20327.44, + "end": 20329.62, + "probability": 0.8846 + }, + { + "start": 20329.7, + "end": 20334.14, + "probability": 0.9934 + }, + { + "start": 20334.68, + "end": 20335.44, + "probability": 0.9662 + }, + { + "start": 20336.18, + "end": 20337.08, + "probability": 0.9787 + }, + { + "start": 20337.96, + "end": 20338.95, + "probability": 0.9436 + }, + { + "start": 20339.64, + "end": 20341.24, + "probability": 0.9819 + }, + { + "start": 20341.9, + "end": 20343.28, + "probability": 0.9578 + }, + { + "start": 20345.86, + "end": 20346.14, + "probability": 0.1027 + }, + { + "start": 20346.14, + "end": 20346.92, + "probability": 0.5701 + }, + { + "start": 20348.96, + "end": 20349.66, + "probability": 0.7122 + }, + { + "start": 20350.52, + "end": 20355.98, + "probability": 0.9978 + }, + { + "start": 20356.96, + "end": 20360.46, + "probability": 0.9812 + }, + { + "start": 20361.44, + "end": 20362.82, + "probability": 0.9917 + }, + { + "start": 20362.88, + "end": 20365.48, + "probability": 0.9967 + }, + { + "start": 20366.32, + "end": 20369.83, + "probability": 0.9912 + }, + { + "start": 20371.08, + "end": 20371.98, + "probability": 0.7066 + }, + { + "start": 20372.5, + "end": 20375.16, + "probability": 0.8603 + }, + { + "start": 20375.74, + "end": 20380.18, + "probability": 0.9905 + }, + { + "start": 20381.78, + "end": 20383.26, + "probability": 0.999 + }, + { + "start": 20383.38, + "end": 20386.26, + "probability": 0.9221 + }, + { + "start": 20386.46, + "end": 20389.02, + "probability": 0.9967 + }, + { + "start": 20389.1, + "end": 20392.64, + "probability": 0.9698 + }, + { + "start": 20394.86, + "end": 20399.74, + "probability": 0.9924 + }, + { + "start": 20401.36, + "end": 20403.44, + "probability": 0.9966 + }, + { + "start": 20403.66, + "end": 20406.34, + "probability": 0.9896 + }, + { + "start": 20406.84, + "end": 20409.36, + "probability": 0.9866 + }, + { + "start": 20409.46, + "end": 20413.7, + "probability": 0.9893 + }, + { + "start": 20414.16, + "end": 20415.88, + "probability": 0.9819 + }, + { + "start": 20416.08, + "end": 20417.32, + "probability": 0.9941 + }, + { + "start": 20417.56, + "end": 20419.5, + "probability": 0.9379 + }, + { + "start": 20420.88, + "end": 20422.88, + "probability": 0.9757 + }, + { + "start": 20423.56, + "end": 20425.65, + "probability": 0.7688 + }, + { + "start": 20426.44, + "end": 20430.32, + "probability": 0.9983 + }, + { + "start": 20431.3, + "end": 20432.76, + "probability": 0.9932 + }, + { + "start": 20432.92, + "end": 20434.68, + "probability": 0.9976 + }, + { + "start": 20434.76, + "end": 20436.22, + "probability": 0.9993 + }, + { + "start": 20437.02, + "end": 20438.69, + "probability": 0.9875 + }, + { + "start": 20438.78, + "end": 20441.54, + "probability": 0.8864 + }, + { + "start": 20441.68, + "end": 20442.76, + "probability": 0.7593 + }, + { + "start": 20443.1, + "end": 20444.52, + "probability": 0.9829 + }, + { + "start": 20444.9, + "end": 20446.24, + "probability": 0.989 + }, + { + "start": 20447.58, + "end": 20449.42, + "probability": 0.9639 + }, + { + "start": 20453.42, + "end": 20457.54, + "probability": 0.9974 + }, + { + "start": 20457.54, + "end": 20462.64, + "probability": 0.9968 + }, + { + "start": 20463.32, + "end": 20466.94, + "probability": 0.9987 + }, + { + "start": 20467.2, + "end": 20471.9, + "probability": 0.8259 + }, + { + "start": 20472.3, + "end": 20473.78, + "probability": 0.8998 + }, + { + "start": 20474.8, + "end": 20479.6, + "probability": 0.9987 + }, + { + "start": 20480.68, + "end": 20485.86, + "probability": 0.9958 + }, + { + "start": 20485.96, + "end": 20487.78, + "probability": 0.9644 + }, + { + "start": 20488.38, + "end": 20493.58, + "probability": 0.9741 + }, + { + "start": 20494.36, + "end": 20497.44, + "probability": 0.9985 + }, + { + "start": 20497.44, + "end": 20501.88, + "probability": 0.9639 + }, + { + "start": 20502.66, + "end": 20505.5, + "probability": 0.9959 + }, + { + "start": 20506.24, + "end": 20508.08, + "probability": 0.9917 + }, + { + "start": 20508.44, + "end": 20511.52, + "probability": 0.9932 + }, + { + "start": 20512.86, + "end": 20513.44, + "probability": 0.8028 + }, + { + "start": 20514.08, + "end": 20522.96, + "probability": 0.9623 + }, + { + "start": 20524.24, + "end": 20528.6, + "probability": 0.8681 + }, + { + "start": 20528.6, + "end": 20535.54, + "probability": 0.9971 + }, + { + "start": 20536.52, + "end": 20542.75, + "probability": 0.9903 + }, + { + "start": 20544.62, + "end": 20547.44, + "probability": 0.8894 + }, + { + "start": 20549.18, + "end": 20552.24, + "probability": 0.9982 + }, + { + "start": 20552.24, + "end": 20555.3, + "probability": 0.9989 + }, + { + "start": 20555.88, + "end": 20557.82, + "probability": 0.9965 + }, + { + "start": 20559.52, + "end": 20563.02, + "probability": 0.9338 + }, + { + "start": 20563.94, + "end": 20564.68, + "probability": 0.7902 + }, + { + "start": 20564.74, + "end": 20565.32, + "probability": 0.7775 + }, + { + "start": 20565.4, + "end": 20570.42, + "probability": 0.98 + }, + { + "start": 20571.78, + "end": 20573.74, + "probability": 0.9866 + }, + { + "start": 20575.9, + "end": 20576.6, + "probability": 0.7939 + }, + { + "start": 20577.62, + "end": 20578.29, + "probability": 0.9509 + }, + { + "start": 20579.36, + "end": 20580.82, + "probability": 0.9615 + }, + { + "start": 20581.02, + "end": 20582.54, + "probability": 0.9922 + }, + { + "start": 20583.3, + "end": 20585.02, + "probability": 0.9006 + }, + { + "start": 20585.94, + "end": 20587.4, + "probability": 0.9862 + }, + { + "start": 20587.84, + "end": 20591.76, + "probability": 0.8949 + }, + { + "start": 20592.92, + "end": 20596.26, + "probability": 0.9967 + }, + { + "start": 20596.41, + "end": 20598.38, + "probability": 0.54 + }, + { + "start": 20598.44, + "end": 20600.04, + "probability": 0.9777 + }, + { + "start": 20602.16, + "end": 20605.02, + "probability": 0.9374 + }, + { + "start": 20605.74, + "end": 20608.66, + "probability": 0.9807 + }, + { + "start": 20608.86, + "end": 20610.14, + "probability": 0.9474 + }, + { + "start": 20610.58, + "end": 20612.42, + "probability": 0.9872 + }, + { + "start": 20614.76, + "end": 20617.68, + "probability": 0.8712 + }, + { + "start": 20618.26, + "end": 20620.68, + "probability": 0.998 + }, + { + "start": 20621.38, + "end": 20624.7, + "probability": 0.8954 + }, + { + "start": 20625.24, + "end": 20629.28, + "probability": 0.9962 + }, + { + "start": 20629.68, + "end": 20633.32, + "probability": 0.9703 + }, + { + "start": 20633.76, + "end": 20635.2, + "probability": 0.9035 + }, + { + "start": 20635.68, + "end": 20638.56, + "probability": 0.9636 + }, + { + "start": 20639.28, + "end": 20639.84, + "probability": 0.9165 + }, + { + "start": 20640.22, + "end": 20641.42, + "probability": 0.9883 + }, + { + "start": 20641.44, + "end": 20642.76, + "probability": 0.9874 + }, + { + "start": 20642.84, + "end": 20643.8, + "probability": 0.943 + }, + { + "start": 20644.7, + "end": 20648.12, + "probability": 0.9969 + }, + { + "start": 20648.12, + "end": 20652.46, + "probability": 0.9991 + }, + { + "start": 20654.26, + "end": 20655.68, + "probability": 0.8522 + }, + { + "start": 20655.76, + "end": 20656.92, + "probability": 0.8488 + }, + { + "start": 20657.38, + "end": 20660.46, + "probability": 0.9966 + }, + { + "start": 20660.58, + "end": 20662.96, + "probability": 0.9122 + }, + { + "start": 20662.96, + "end": 20668.22, + "probability": 0.9946 + }, + { + "start": 20668.96, + "end": 20671.72, + "probability": 0.8931 + }, + { + "start": 20672.28, + "end": 20673.4, + "probability": 0.6003 + }, + { + "start": 20674.29, + "end": 20676.96, + "probability": 0.9766 + }, + { + "start": 20677.3, + "end": 20677.78, + "probability": 0.8724 + }, + { + "start": 20678.64, + "end": 20679.38, + "probability": 0.5283 + }, + { + "start": 20679.94, + "end": 20680.44, + "probability": 0.7057 + }, + { + "start": 20681.0, + "end": 20681.6, + "probability": 0.7082 + }, + { + "start": 20682.44, + "end": 20682.9, + "probability": 0.7721 + }, + { + "start": 20706.48, + "end": 20708.4, + "probability": 0.6195 + }, + { + "start": 20708.48, + "end": 20709.76, + "probability": 0.8879 + }, + { + "start": 20710.12, + "end": 20711.5, + "probability": 0.6359 + }, + { + "start": 20711.95, + "end": 20716.74, + "probability": 0.9844 + }, + { + "start": 20717.36, + "end": 20719.1, + "probability": 0.9614 + }, + { + "start": 20719.2, + "end": 20721.94, + "probability": 0.9963 + }, + { + "start": 20721.94, + "end": 20724.86, + "probability": 0.9975 + }, + { + "start": 20725.54, + "end": 20730.18, + "probability": 0.9938 + }, + { + "start": 20730.28, + "end": 20735.68, + "probability": 0.9937 + }, + { + "start": 20736.32, + "end": 20738.39, + "probability": 0.9868 + }, + { + "start": 20739.12, + "end": 20744.34, + "probability": 0.9888 + }, + { + "start": 20744.34, + "end": 20748.98, + "probability": 0.9829 + }, + { + "start": 20749.7, + "end": 20751.52, + "probability": 0.8228 + }, + { + "start": 20751.52, + "end": 20756.04, + "probability": 0.9981 + }, + { + "start": 20757.88, + "end": 20762.86, + "probability": 0.9956 + }, + { + "start": 20763.08, + "end": 20766.8, + "probability": 0.9918 + }, + { + "start": 20767.02, + "end": 20772.42, + "probability": 0.9966 + }, + { + "start": 20772.52, + "end": 20774.81, + "probability": 0.8577 + }, + { + "start": 20776.64, + "end": 20778.08, + "probability": 0.9777 + }, + { + "start": 20778.26, + "end": 20779.68, + "probability": 0.9355 + }, + { + "start": 20779.7, + "end": 20783.08, + "probability": 0.8215 + }, + { + "start": 20783.08, + "end": 20786.08, + "probability": 0.9961 + }, + { + "start": 20786.86, + "end": 20793.34, + "probability": 0.9977 + }, + { + "start": 20793.88, + "end": 20797.98, + "probability": 0.9622 + }, + { + "start": 20798.12, + "end": 20800.42, + "probability": 0.416 + }, + { + "start": 20801.0, + "end": 20806.18, + "probability": 0.8727 + }, + { + "start": 20807.84, + "end": 20809.04, + "probability": 0.7167 + }, + { + "start": 20809.2, + "end": 20809.64, + "probability": 0.9032 + }, + { + "start": 20809.66, + "end": 20812.08, + "probability": 0.975 + }, + { + "start": 20812.22, + "end": 20812.86, + "probability": 0.8829 + }, + { + "start": 20813.06, + "end": 20815.02, + "probability": 0.9792 + }, + { + "start": 20815.46, + "end": 20819.48, + "probability": 0.9789 + }, + { + "start": 20819.68, + "end": 20821.88, + "probability": 0.8491 + }, + { + "start": 20822.54, + "end": 20828.04, + "probability": 0.8955 + }, + { + "start": 20828.08, + "end": 20832.56, + "probability": 0.9644 + }, + { + "start": 20833.49, + "end": 20838.38, + "probability": 0.9875 + }, + { + "start": 20838.92, + "end": 20844.38, + "probability": 0.8749 + }, + { + "start": 20844.96, + "end": 20849.34, + "probability": 0.9971 + }, + { + "start": 20849.34, + "end": 20853.98, + "probability": 0.996 + }, + { + "start": 20854.64, + "end": 20861.36, + "probability": 0.991 + }, + { + "start": 20861.46, + "end": 20865.36, + "probability": 0.9949 + }, + { + "start": 20866.04, + "end": 20867.54, + "probability": 0.7 + }, + { + "start": 20868.59, + "end": 20870.72, + "probability": 0.9907 + }, + { + "start": 20870.78, + "end": 20872.1, + "probability": 0.9966 + }, + { + "start": 20872.32, + "end": 20879.3, + "probability": 0.9805 + }, + { + "start": 20879.96, + "end": 20881.82, + "probability": 0.9255 + }, + { + "start": 20882.1, + "end": 20886.1, + "probability": 0.9825 + }, + { + "start": 20886.1, + "end": 20886.34, + "probability": 0.7061 + }, + { + "start": 20887.38, + "end": 20887.98, + "probability": 0.5927 + }, + { + "start": 20889.06, + "end": 20891.26, + "probability": 0.8009 + }, + { + "start": 20891.3, + "end": 20893.4, + "probability": 0.6458 + }, + { + "start": 20896.38, + "end": 20897.98, + "probability": 0.6781 + }, + { + "start": 20900.86, + "end": 20902.7, + "probability": 0.9299 + }, + { + "start": 20903.36, + "end": 20907.08, + "probability": 0.222 + }, + { + "start": 20908.16, + "end": 20912.84, + "probability": 0.0192 + }, + { + "start": 20915.86, + "end": 20919.02, + "probability": 0.074 + }, + { + "start": 20920.7, + "end": 20923.1, + "probability": 0.0488 + }, + { + "start": 20926.12, + "end": 20930.12, + "probability": 0.4104 + }, + { + "start": 20931.0, + "end": 20931.38, + "probability": 0.2889 + }, + { + "start": 20932.12, + "end": 20934.16, + "probability": 0.7068 + }, + { + "start": 20934.8, + "end": 20934.86, + "probability": 0.771 + }, + { + "start": 20938.76, + "end": 20940.78, + "probability": 0.3642 + }, + { + "start": 20943.68, + "end": 20948.78, + "probability": 0.6649 + }, + { + "start": 20948.78, + "end": 20953.04, + "probability": 0.9327 + }, + { + "start": 20953.16, + "end": 20954.04, + "probability": 0.8522 + }, + { + "start": 20954.96, + "end": 20955.82, + "probability": 0.8793 + }, + { + "start": 20956.84, + "end": 20959.58, + "probability": 0.7441 + }, + { + "start": 20960.33, + "end": 20963.88, + "probability": 0.8181 + }, + { + "start": 20963.94, + "end": 20966.4, + "probability": 0.3323 + }, + { + "start": 20966.48, + "end": 20971.14, + "probability": 0.9858 + }, + { + "start": 20971.14, + "end": 20976.46, + "probability": 0.9983 + }, + { + "start": 20976.48, + "end": 20978.86, + "probability": 0.8357 + }, + { + "start": 20979.52, + "end": 20980.36, + "probability": 0.4491 + }, + { + "start": 20981.28, + "end": 20984.1, + "probability": 0.731 + }, + { + "start": 20984.68, + "end": 20984.94, + "probability": 0.8201 + }, + { + "start": 20986.2, + "end": 20986.74, + "probability": 0.7164 + }, + { + "start": 20989.78, + "end": 20992.36, + "probability": 0.7292 + }, + { + "start": 20992.92, + "end": 20993.13, + "probability": 0.5047 + }, + { + "start": 20993.78, + "end": 20997.12, + "probability": 0.9895 + }, + { + "start": 20997.12, + "end": 20999.62, + "probability": 0.8545 + }, + { + "start": 20999.66, + "end": 21002.14, + "probability": 0.9614 + }, + { + "start": 21002.8, + "end": 21003.34, + "probability": 0.8623 + }, + { + "start": 21003.5, + "end": 21007.02, + "probability": 0.9863 + }, + { + "start": 21007.58, + "end": 21015.25, + "probability": 0.5528 + }, + { + "start": 21016.36, + "end": 21018.4, + "probability": 0.9652 + }, + { + "start": 21019.0, + "end": 21020.1, + "probability": 0.8442 + }, + { + "start": 21020.16, + "end": 21020.6, + "probability": 0.8857 + }, + { + "start": 21021.34, + "end": 21025.1, + "probability": 0.0142 + }, + { + "start": 21025.74, + "end": 21031.16, + "probability": 0.6293 + }, + { + "start": 21032.48, + "end": 21034.72, + "probability": 0.8285 + }, + { + "start": 21035.66, + "end": 21037.4, + "probability": 0.8753 + }, + { + "start": 21038.04, + "end": 21041.28, + "probability": 0.8613 + }, + { + "start": 21041.98, + "end": 21046.9, + "probability": 0.9501 + }, + { + "start": 21048.12, + "end": 21051.46, + "probability": 0.4985 + }, + { + "start": 21058.6, + "end": 21062.56, + "probability": 0.5234 + }, + { + "start": 21063.7, + "end": 21064.68, + "probability": 0.5564 + }, + { + "start": 21065.74, + "end": 21066.94, + "probability": 0.8748 + }, + { + "start": 21069.18, + "end": 21069.96, + "probability": 0.7432 + }, + { + "start": 21071.06, + "end": 21072.36, + "probability": 0.112 + }, + { + "start": 21072.76, + "end": 21075.13, + "probability": 0.5178 + }, + { + "start": 21075.32, + "end": 21077.26, + "probability": 0.8864 + }, + { + "start": 21078.1, + "end": 21080.44, + "probability": 0.7723 + }, + { + "start": 21082.92, + "end": 21087.52, + "probability": 0.7539 + }, + { + "start": 21091.58, + "end": 21092.72, + "probability": 0.2696 + }, + { + "start": 21094.11, + "end": 21096.42, + "probability": 0.9055 + }, + { + "start": 21098.14, + "end": 21101.14, + "probability": 0.9334 + }, + { + "start": 21107.82, + "end": 21111.14, + "probability": 0.596 + }, + { + "start": 21112.6, + "end": 21119.38, + "probability": 0.3438 + }, + { + "start": 21121.06, + "end": 21122.78, + "probability": 0.8988 + }, + { + "start": 21123.92, + "end": 21126.9, + "probability": 0.9417 + }, + { + "start": 21128.8, + "end": 21130.76, + "probability": 0.9216 + }, + { + "start": 21131.3, + "end": 21138.96, + "probability": 0.9307 + }, + { + "start": 21139.94, + "end": 21140.66, + "probability": 0.4674 + }, + { + "start": 21140.78, + "end": 21142.04, + "probability": 0.5729 + }, + { + "start": 21143.06, + "end": 21143.82, + "probability": 0.9292 + }, + { + "start": 21143.94, + "end": 21144.82, + "probability": 0.8463 + }, + { + "start": 21145.94, + "end": 21150.3, + "probability": 0.8669 + }, + { + "start": 21150.44, + "end": 21151.22, + "probability": 0.7363 + }, + { + "start": 21151.42, + "end": 21152.0, + "probability": 0.8916 + }, + { + "start": 21155.2, + "end": 21156.2, + "probability": 0.0354 + }, + { + "start": 21156.98, + "end": 21157.1, + "probability": 0.0667 + }, + { + "start": 21157.1, + "end": 21158.72, + "probability": 0.8003 + }, + { + "start": 21158.74, + "end": 21163.06, + "probability": 0.738 + }, + { + "start": 21167.58, + "end": 21172.14, + "probability": 0.4882 + }, + { + "start": 21174.9, + "end": 21175.9, + "probability": 0.3169 + }, + { + "start": 21176.99, + "end": 21184.12, + "probability": 0.6595 + }, + { + "start": 21185.64, + "end": 21188.3, + "probability": 0.9722 + }, + { + "start": 21189.22, + "end": 21189.92, + "probability": 0.9399 + }, + { + "start": 21194.56, + "end": 21197.36, + "probability": 0.7145 + }, + { + "start": 21198.1, + "end": 21199.7, + "probability": 0.7434 + }, + { + "start": 21200.5, + "end": 21202.04, + "probability": 0.9556 + }, + { + "start": 21203.38, + "end": 21207.78, + "probability": 0.924 + }, + { + "start": 21208.36, + "end": 21215.34, + "probability": 0.7966 + }, + { + "start": 21216.18, + "end": 21218.18, + "probability": 0.8142 + }, + { + "start": 21219.76, + "end": 21222.54, + "probability": 0.6007 + }, + { + "start": 21223.56, + "end": 21225.18, + "probability": 0.7951 + }, + { + "start": 21227.2, + "end": 21231.0, + "probability": 0.6426 + }, + { + "start": 21232.3, + "end": 21238.46, + "probability": 0.8767 + }, + { + "start": 21242.48, + "end": 21245.26, + "probability": 0.6305 + }, + { + "start": 21247.88, + "end": 21248.76, + "probability": 0.2283 + }, + { + "start": 21251.34, + "end": 21253.4, + "probability": 0.7299 + }, + { + "start": 21254.26, + "end": 21256.98, + "probability": 0.7943 + }, + { + "start": 21257.34, + "end": 21259.0, + "probability": 0.5683 + }, + { + "start": 21259.12, + "end": 21260.74, + "probability": 0.9197 + }, + { + "start": 21261.5, + "end": 21263.92, + "probability": 0.9363 + }, + { + "start": 21264.66, + "end": 21265.04, + "probability": 0.9634 + }, + { + "start": 21265.92, + "end": 21266.8, + "probability": 0.6847 + }, + { + "start": 21267.86, + "end": 21268.76, + "probability": 0.6176 + }, + { + "start": 21273.16, + "end": 21273.58, + "probability": 0.9373 + }, + { + "start": 21276.68, + "end": 21277.32, + "probability": 0.5701 + }, + { + "start": 21278.36, + "end": 21278.66, + "probability": 0.971 + }, + { + "start": 21279.18, + "end": 21280.22, + "probability": 0.8977 + }, + { + "start": 21281.92, + "end": 21284.1, + "probability": 0.9215 + }, + { + "start": 21285.98, + "end": 21287.62, + "probability": 0.8595 + }, + { + "start": 21289.84, + "end": 21291.22, + "probability": 0.9441 + }, + { + "start": 21292.12, + "end": 21294.38, + "probability": 0.967 + }, + { + "start": 21295.52, + "end": 21297.56, + "probability": 0.9756 + }, + { + "start": 21298.46, + "end": 21299.86, + "probability": 0.9425 + }, + { + "start": 21300.4, + "end": 21301.9, + "probability": 0.6194 + }, + { + "start": 21302.92, + "end": 21305.22, + "probability": 0.8745 + }, + { + "start": 21309.82, + "end": 21314.56, + "probability": 0.5818 + }, + { + "start": 21316.07, + "end": 21319.22, + "probability": 0.7228 + }, + { + "start": 21321.04, + "end": 21322.54, + "probability": 0.8959 + }, + { + "start": 21324.12, + "end": 21325.54, + "probability": 0.9814 + }, + { + "start": 21326.8, + "end": 21327.18, + "probability": 0.9751 + }, + { + "start": 21328.24, + "end": 21329.0, + "probability": 0.9112 + }, + { + "start": 21330.02, + "end": 21331.7, + "probability": 0.7869 + }, + { + "start": 21333.48, + "end": 21334.32, + "probability": 0.5009 + }, + { + "start": 21336.8, + "end": 21340.22, + "probability": 0.8416 + }, + { + "start": 21341.6, + "end": 21343.56, + "probability": 0.8903 + }, + { + "start": 21344.26, + "end": 21348.0, + "probability": 0.9792 + }, + { + "start": 21348.58, + "end": 21351.34, + "probability": 0.5208 + }, + { + "start": 21352.42, + "end": 21354.32, + "probability": 0.7769 + }, + { + "start": 21355.12, + "end": 21358.34, + "probability": 0.9034 + }, + { + "start": 21360.2, + "end": 21363.4, + "probability": 0.8062 + }, + { + "start": 21369.0, + "end": 21371.46, + "probability": 0.7311 + }, + { + "start": 21372.28, + "end": 21374.34, + "probability": 0.8356 + }, + { + "start": 21376.02, + "end": 21377.86, + "probability": 0.8115 + }, + { + "start": 21379.02, + "end": 21379.44, + "probability": 0.9959 + }, + { + "start": 21380.22, + "end": 21381.12, + "probability": 0.7836 + }, + { + "start": 21384.56, + "end": 21389.12, + "probability": 0.8221 + }, + { + "start": 21390.1, + "end": 21391.96, + "probability": 0.8455 + }, + { + "start": 21392.48, + "end": 21395.5, + "probability": 0.8602 + }, + { + "start": 21395.54, + "end": 21403.22, + "probability": 0.8274 + }, + { + "start": 21403.72, + "end": 21406.44, + "probability": 0.9517 + }, + { + "start": 21407.76, + "end": 21409.92, + "probability": 0.8159 + }, + { + "start": 21411.14, + "end": 21411.36, + "probability": 0.7694 + }, + { + "start": 21412.5, + "end": 21413.72, + "probability": 0.622 + }, + { + "start": 21414.5, + "end": 21417.72, + "probability": 0.9242 + }, + { + "start": 21422.7, + "end": 21426.94, + "probability": 0.8539 + }, + { + "start": 21428.18, + "end": 21428.5, + "probability": 0.9919 + }, + { + "start": 21429.34, + "end": 21430.4, + "probability": 0.8047 + }, + { + "start": 21431.36, + "end": 21433.48, + "probability": 0.9617 + }, + { + "start": 21434.78, + "end": 21437.24, + "probability": 0.941 + }, + { + "start": 21438.28, + "end": 21441.42, + "probability": 0.9154 + }, + { + "start": 21442.0, + "end": 21443.72, + "probability": 0.5056 + }, + { + "start": 21444.8, + "end": 21446.96, + "probability": 0.6778 + }, + { + "start": 21447.98, + "end": 21449.62, + "probability": 0.7704 + }, + { + "start": 21450.32, + "end": 21452.02, + "probability": 0.9264 + }, + { + "start": 21453.12, + "end": 21454.92, + "probability": 0.9686 + }, + { + "start": 21457.02, + "end": 21459.32, + "probability": 0.9862 + }, + { + "start": 21460.4, + "end": 21462.42, + "probability": 0.9833 + }, + { + "start": 21463.0, + "end": 21465.62, + "probability": 0.8854 + }, + { + "start": 21468.1, + "end": 21468.94, + "probability": 0.328 + }, + { + "start": 21470.22, + "end": 21472.0, + "probability": 0.4674 + }, + { + "start": 21472.52, + "end": 21472.8, + "probability": 0.7272 + }, + { + "start": 21473.46, + "end": 21474.86, + "probability": 0.8979 + }, + { + "start": 21475.54, + "end": 21477.74, + "probability": 0.9727 + }, + { + "start": 21479.6, + "end": 21483.24, + "probability": 0.9792 + }, + { + "start": 21483.44, + "end": 21487.36, + "probability": 0.8918 + }, + { + "start": 21487.82, + "end": 21489.96, + "probability": 0.92 + }, + { + "start": 21491.31, + "end": 21494.48, + "probability": 0.5603 + }, + { + "start": 21497.78, + "end": 21499.28, + "probability": 0.714 + }, + { + "start": 21500.2, + "end": 21505.2, + "probability": 0.8776 + }, + { + "start": 21507.2, + "end": 21508.94, + "probability": 0.6521 + }, + { + "start": 21509.68, + "end": 21510.8, + "probability": 0.8062 + }, + { + "start": 21512.78, + "end": 21514.54, + "probability": 0.8847 + }, + { + "start": 21515.3, + "end": 21517.3, + "probability": 0.8496 + }, + { + "start": 21518.54, + "end": 21521.26, + "probability": 0.8542 + }, + { + "start": 21522.68, + "end": 21525.7, + "probability": 0.885 + }, + { + "start": 21526.96, + "end": 21528.02, + "probability": 0.7397 + }, + { + "start": 21529.16, + "end": 21531.16, + "probability": 0.8866 + }, + { + "start": 21533.46, + "end": 21536.32, + "probability": 0.6699 + }, + { + "start": 21540.51, + "end": 21545.44, + "probability": 0.6287 + }, + { + "start": 21547.06, + "end": 21547.84, + "probability": 0.9856 + }, + { + "start": 21549.04, + "end": 21552.42, + "probability": 0.7441 + }, + { + "start": 21553.18, + "end": 21557.74, + "probability": 0.0248 + }, + { + "start": 21558.2, + "end": 21559.62, + "probability": 0.8972 + }, + { + "start": 21559.7, + "end": 21561.28, + "probability": 0.875 + }, + { + "start": 21562.16, + "end": 21563.92, + "probability": 0.8408 + }, + { + "start": 21564.4, + "end": 21566.28, + "probability": 0.8309 + }, + { + "start": 21566.28, + "end": 21568.96, + "probability": 0.9261 + }, + { + "start": 21569.5, + "end": 21572.96, + "probability": 0.3816 + }, + { + "start": 21574.6, + "end": 21576.4, + "probability": 0.7362 + }, + { + "start": 21577.6, + "end": 21578.9, + "probability": 0.8498 + }, + { + "start": 21578.98, + "end": 21580.5, + "probability": 0.8997 + }, + { + "start": 21580.96, + "end": 21581.24, + "probability": 0.7158 + }, + { + "start": 21582.65, + "end": 21583.94, + "probability": 0.8936 + }, + { + "start": 21585.06, + "end": 21585.3, + "probability": 0.9751 + }, + { + "start": 21587.04, + "end": 21587.98, + "probability": 0.7903 + }, + { + "start": 21590.06, + "end": 21592.94, + "probability": 0.8489 + }, + { + "start": 21594.0, + "end": 21598.34, + "probability": 0.8586 + }, + { + "start": 21599.04, + "end": 21601.54, + "probability": 0.9404 + }, + { + "start": 21602.22, + "end": 21603.68, + "probability": 0.9509 + }, + { + "start": 21604.88, + "end": 21607.58, + "probability": 0.9514 + }, + { + "start": 21608.72, + "end": 21609.94, + "probability": 0.7418 + }, + { + "start": 21609.98, + "end": 21612.24, + "probability": 0.7896 + }, + { + "start": 21612.32, + "end": 21613.92, + "probability": 0.4519 + }, + { + "start": 21614.18, + "end": 21615.64, + "probability": 0.6935 + }, + { + "start": 21617.82, + "end": 21619.38, + "probability": 0.9749 + }, + { + "start": 21619.56, + "end": 21621.22, + "probability": 0.9099 + }, + { + "start": 21621.42, + "end": 21624.26, + "probability": 0.912 + }, + { + "start": 21626.42, + "end": 21627.98, + "probability": 0.8828 + }, + { + "start": 21628.58, + "end": 21629.46, + "probability": 0.6494 + }, + { + "start": 21629.98, + "end": 21632.24, + "probability": 0.513 + }, + { + "start": 21634.5, + "end": 21640.76, + "probability": 0.5018 + }, + { + "start": 21642.5, + "end": 21643.36, + "probability": 0.6544 + }, + { + "start": 21644.72, + "end": 21646.1, + "probability": 0.5964 + }, + { + "start": 21646.72, + "end": 21649.86, + "probability": 0.8881 + }, + { + "start": 21650.82, + "end": 21652.58, + "probability": 0.751 + }, + { + "start": 21653.54, + "end": 21655.46, + "probability": 0.8714 + }, + { + "start": 21656.72, + "end": 21658.36, + "probability": 0.972 + }, + { + "start": 21659.64, + "end": 21662.0, + "probability": 0.8023 + }, + { + "start": 21665.98, + "end": 21666.88, + "probability": 0.5849 + }, + { + "start": 21667.2, + "end": 21670.02, + "probability": 0.8792 + }, + { + "start": 21670.22, + "end": 21671.64, + "probability": 0.7794 + }, + { + "start": 21671.7, + "end": 21673.2, + "probability": 0.8492 + }, + { + "start": 21673.36, + "end": 21677.84, + "probability": 0.8946 + }, + { + "start": 21678.72, + "end": 21680.76, + "probability": 0.8885 + }, + { + "start": 21682.78, + "end": 21683.98, + "probability": 0.7279 + }, + { + "start": 21686.82, + "end": 21689.34, + "probability": 0.5289 + }, + { + "start": 21690.66, + "end": 21692.66, + "probability": 0.5547 + }, + { + "start": 21693.48, + "end": 21695.44, + "probability": 0.9212 + }, + { + "start": 21695.48, + "end": 21697.14, + "probability": 0.8578 + }, + { + "start": 21697.28, + "end": 21706.16, + "probability": 0.9812 + }, + { + "start": 21706.62, + "end": 21706.72, + "probability": 0.2911 + }, + { + "start": 21707.06, + "end": 21708.08, + "probability": 0.3648 + }, + { + "start": 21708.4, + "end": 21709.28, + "probability": 0.6676 + }, + { + "start": 21709.32, + "end": 21710.4, + "probability": 0.6933 + }, + { + "start": 21710.52, + "end": 21712.78, + "probability": 0.3462 + }, + { + "start": 21712.84, + "end": 21715.7, + "probability": 0.1586 + }, + { + "start": 21715.72, + "end": 21718.84, + "probability": 0.5795 + }, + { + "start": 21718.96, + "end": 21719.96, + "probability": 0.783 + }, + { + "start": 21721.34, + "end": 21721.92, + "probability": 0.8336 + }, + { + "start": 21723.66, + "end": 21725.66, + "probability": 0.008 + }, + { + "start": 21743.28, + "end": 21747.5, + "probability": 0.0399 + }, + { + "start": 21829.28, + "end": 21829.38, + "probability": 0.2918 + }, + { + "start": 21830.08, + "end": 21830.12, + "probability": 0.0443 + }, + { + "start": 21830.12, + "end": 21830.36, + "probability": 0.3394 + }, + { + "start": 21830.6, + "end": 21835.7, + "probability": 0.9299 + }, + { + "start": 21836.76, + "end": 21840.6, + "probability": 0.3844 + }, + { + "start": 21845.22, + "end": 21846.24, + "probability": 0.0511 + }, + { + "start": 21846.7, + "end": 21848.74, + "probability": 0.8248 + }, + { + "start": 21848.88, + "end": 21853.02, + "probability": 0.5879 + }, + { + "start": 21853.84, + "end": 21855.66, + "probability": 0.7001 + }, + { + "start": 21855.84, + "end": 21857.32, + "probability": 0.9257 + }, + { + "start": 21858.66, + "end": 21859.82, + "probability": 0.5286 + }, + { + "start": 21859.86, + "end": 21861.5, + "probability": 0.7263 + }, + { + "start": 21861.5, + "end": 21863.86, + "probability": 0.2087 + }, + { + "start": 21870.99, + "end": 21873.42, + "probability": 0.171 + }, + { + "start": 21873.42, + "end": 21873.42, + "probability": 0.0595 + }, + { + "start": 21873.42, + "end": 21873.5, + "probability": 0.0349 + }, + { + "start": 21873.5, + "end": 21875.56, + "probability": 0.4332 + }, + { + "start": 21875.64, + "end": 21876.12, + "probability": 0.4284 + }, + { + "start": 21877.14, + "end": 21882.98, + "probability": 0.8669 + }, + { + "start": 21882.98, + "end": 21883.48, + "probability": 0.1793 + }, + { + "start": 21898.16, + "end": 21904.52, + "probability": 0.985 + }, + { + "start": 21905.14, + "end": 21906.24, + "probability": 0.8159 + }, + { + "start": 21907.78, + "end": 21912.92, + "probability": 0.9985 + }, + { + "start": 21912.94, + "end": 21915.5, + "probability": 0.2459 + }, + { + "start": 21915.88, + "end": 21917.8, + "probability": 0.5396 + }, + { + "start": 21917.96, + "end": 21919.92, + "probability": 0.7593 + }, + { + "start": 21919.92, + "end": 21921.36, + "probability": 0.2035 + }, + { + "start": 21922.87, + "end": 21928.32, + "probability": 0.7151 + }, + { + "start": 21928.44, + "end": 21928.44, + "probability": 0.3877 + }, + { + "start": 21928.48, + "end": 21930.3, + "probability": 0.4216 + }, + { + "start": 21931.34, + "end": 21935.02, + "probability": 0.889 + }, + { + "start": 21935.04, + "end": 21937.14, + "probability": 0.8772 + }, + { + "start": 21937.52, + "end": 21938.2, + "probability": 0.3371 + }, + { + "start": 21938.7, + "end": 21939.62, + "probability": 0.5056 + }, + { + "start": 21939.62, + "end": 21940.88, + "probability": 0.8039 + }, + { + "start": 21944.04, + "end": 21951.78, + "probability": 0.3034 + }, + { + "start": 21952.28, + "end": 21953.62, + "probability": 0.1914 + }, + { + "start": 21955.28, + "end": 21956.8, + "probability": 0.0553 + }, + { + "start": 21958.14, + "end": 21960.6, + "probability": 0.5589 + }, + { + "start": 21960.66, + "end": 21961.3, + "probability": 0.6925 + }, + { + "start": 21961.66, + "end": 21963.5, + "probability": 0.8823 + }, + { + "start": 21963.6, + "end": 21964.1, + "probability": 0.446 + }, + { + "start": 21964.22, + "end": 21966.56, + "probability": 0.998 + }, + { + "start": 21967.46, + "end": 21969.28, + "probability": 0.9289 + }, + { + "start": 21969.5, + "end": 21971.76, + "probability": 0.989 + }, + { + "start": 21971.84, + "end": 21974.42, + "probability": 0.7718 + }, + { + "start": 21974.48, + "end": 21975.68, + "probability": 0.8501 + }, + { + "start": 21976.54, + "end": 21979.54, + "probability": 0.9474 + }, + { + "start": 21979.6, + "end": 21980.04, + "probability": 0.8564 + }, + { + "start": 21983.06, + "end": 21985.88, + "probability": 0.039 + }, + { + "start": 21987.76, + "end": 21988.1, + "probability": 0.0 + }, + { + "start": 21991.48, + "end": 21993.88, + "probability": 0.9047 + }, + { + "start": 21994.6, + "end": 21995.0, + "probability": 0.3798 + }, + { + "start": 21995.88, + "end": 21997.46, + "probability": 0.9343 + }, + { + "start": 21997.9, + "end": 21998.96, + "probability": 0.736 + }, + { + "start": 22000.72, + "end": 22001.6, + "probability": 0.8237 + }, + { + "start": 22002.54, + "end": 22008.52, + "probability": 0.9211 + }, + { + "start": 22009.77, + "end": 22012.2, + "probability": 0.8672 + }, + { + "start": 22012.32, + "end": 22014.01, + "probability": 0.3188 + }, + { + "start": 22016.66, + "end": 22019.32, + "probability": 0.9793 + }, + { + "start": 22019.4, + "end": 22021.8, + "probability": 0.7289 + }, + { + "start": 22023.78, + "end": 22025.14, + "probability": 0.8757 + }, + { + "start": 22025.2, + "end": 22026.22, + "probability": 0.5854 + }, + { + "start": 22026.3, + "end": 22027.68, + "probability": 0.7328 + }, + { + "start": 22028.2, + "end": 22028.2, + "probability": 0.1694 + }, + { + "start": 22039.93, + "end": 22043.08, + "probability": 0.1446 + }, + { + "start": 22043.2, + "end": 22046.16, + "probability": 0.0391 + }, + { + "start": 22046.5, + "end": 22047.8, + "probability": 0.1076 + }, + { + "start": 22047.8, + "end": 22048.62, + "probability": 0.0293 + }, + { + "start": 22056.06, + "end": 22059.12, + "probability": 0.4941 + }, + { + "start": 22059.2, + "end": 22060.33, + "probability": 0.9808 + }, + { + "start": 22061.04, + "end": 22062.84, + "probability": 0.7188 + }, + { + "start": 22069.06, + "end": 22070.04, + "probability": 0.777 + }, + { + "start": 22070.1, + "end": 22071.54, + "probability": 0.9584 + }, + { + "start": 22071.6, + "end": 22076.02, + "probability": 0.9663 + }, + { + "start": 22076.7, + "end": 22077.84, + "probability": 0.4139 + }, + { + "start": 22078.12, + "end": 22080.2, + "probability": 0.977 + }, + { + "start": 22081.32, + "end": 22083.14, + "probability": 0.9961 + }, + { + "start": 22083.18, + "end": 22083.64, + "probability": 0.4738 + }, + { + "start": 22089.26, + "end": 22090.96, + "probability": 0.7408 + }, + { + "start": 22094.6, + "end": 22095.94, + "probability": 0.7594 + }, + { + "start": 22096.92, + "end": 22098.86, + "probability": 0.9146 + }, + { + "start": 22100.78, + "end": 22102.92, + "probability": 0.7623 + }, + { + "start": 22108.3, + "end": 22110.64, + "probability": 0.8163 + }, + { + "start": 22111.86, + "end": 22114.88, + "probability": 0.4471 + }, + { + "start": 22117.02, + "end": 22118.22, + "probability": 0.9642 + }, + { + "start": 22123.44, + "end": 22124.14, + "probability": 0.828 + }, + { + "start": 22125.32, + "end": 22126.34, + "probability": 0.833 + }, + { + "start": 22127.0, + "end": 22127.78, + "probability": 0.8482 + }, + { + "start": 22129.56, + "end": 22132.04, + "probability": 0.9936 + }, + { + "start": 22133.48, + "end": 22135.06, + "probability": 0.7351 + }, + { + "start": 22137.22, + "end": 22140.98, + "probability": 0.8742 + }, + { + "start": 22143.36, + "end": 22146.06, + "probability": 0.9896 + }, + { + "start": 22148.0, + "end": 22148.68, + "probability": 0.8654 + }, + { + "start": 22149.98, + "end": 22150.74, + "probability": 0.6935 + }, + { + "start": 22152.14, + "end": 22155.86, + "probability": 0.9778 + }, + { + "start": 22157.44, + "end": 22159.1, + "probability": 0.9985 + }, + { + "start": 22160.04, + "end": 22160.52, + "probability": 0.9434 + }, + { + "start": 22162.3, + "end": 22165.82, + "probability": 0.9995 + }, + { + "start": 22166.42, + "end": 22167.26, + "probability": 0.7813 + }, + { + "start": 22168.38, + "end": 22169.96, + "probability": 0.9933 + }, + { + "start": 22172.7, + "end": 22173.24, + "probability": 0.4951 + }, + { + "start": 22173.94, + "end": 22176.96, + "probability": 0.9936 + }, + { + "start": 22178.32, + "end": 22179.96, + "probability": 0.9572 + }, + { + "start": 22181.04, + "end": 22182.08, + "probability": 0.7862 + }, + { + "start": 22183.7, + "end": 22184.4, + "probability": 0.8724 + }, + { + "start": 22185.44, + "end": 22186.64, + "probability": 0.8888 + }, + { + "start": 22187.86, + "end": 22189.66, + "probability": 0.9271 + }, + { + "start": 22190.74, + "end": 22194.5, + "probability": 0.9762 + }, + { + "start": 22196.0, + "end": 22199.26, + "probability": 0.9875 + }, + { + "start": 22200.1, + "end": 22202.82, + "probability": 0.9261 + }, + { + "start": 22204.24, + "end": 22205.56, + "probability": 0.9878 + }, + { + "start": 22207.4, + "end": 22208.56, + "probability": 0.9735 + }, + { + "start": 22210.78, + "end": 22215.56, + "probability": 0.9946 + }, + { + "start": 22217.14, + "end": 22219.34, + "probability": 0.9978 + }, + { + "start": 22220.14, + "end": 22221.04, + "probability": 0.94 + }, + { + "start": 22222.22, + "end": 22223.12, + "probability": 0.6113 + }, + { + "start": 22225.08, + "end": 22227.08, + "probability": 0.9009 + }, + { + "start": 22230.3, + "end": 22232.28, + "probability": 0.8488 + }, + { + "start": 22233.42, + "end": 22234.24, + "probability": 0.4163 + }, + { + "start": 22236.18, + "end": 22236.84, + "probability": 0.7738 + }, + { + "start": 22237.98, + "end": 22240.42, + "probability": 0.6541 + }, + { + "start": 22241.12, + "end": 22243.22, + "probability": 0.7686 + }, + { + "start": 22244.3, + "end": 22246.28, + "probability": 0.999 + }, + { + "start": 22247.8, + "end": 22250.38, + "probability": 0.9965 + }, + { + "start": 22251.64, + "end": 22253.16, + "probability": 0.9911 + }, + { + "start": 22254.78, + "end": 22256.18, + "probability": 0.9985 + }, + { + "start": 22256.72, + "end": 22257.58, + "probability": 0.9812 + }, + { + "start": 22258.56, + "end": 22261.2, + "probability": 0.9971 + }, + { + "start": 22262.14, + "end": 22264.18, + "probability": 0.9989 + }, + { + "start": 22265.38, + "end": 22266.8, + "probability": 0.949 + }, + { + "start": 22268.02, + "end": 22269.1, + "probability": 0.9306 + }, + { + "start": 22270.82, + "end": 22272.98, + "probability": 0.0632 + }, + { + "start": 22273.02, + "end": 22275.84, + "probability": 0.5218 + }, + { + "start": 22277.28, + "end": 22277.52, + "probability": 0.1078 + }, + { + "start": 22277.58, + "end": 22278.9, + "probability": 0.5335 + }, + { + "start": 22278.94, + "end": 22279.16, + "probability": 0.2014 + }, + { + "start": 22279.16, + "end": 22280.68, + "probability": 0.5531 + }, + { + "start": 22280.72, + "end": 22281.56, + "probability": 0.7874 + }, + { + "start": 22281.78, + "end": 22290.36, + "probability": 0.9739 + }, + { + "start": 22290.82, + "end": 22291.98, + "probability": 0.5554 + }, + { + "start": 22292.1, + "end": 22293.8, + "probability": 0.9908 + }, + { + "start": 22295.7, + "end": 22298.92, + "probability": 0.617 + }, + { + "start": 22299.39, + "end": 22300.6, + "probability": 0.5257 + }, + { + "start": 22300.94, + "end": 22302.74, + "probability": 0.2165 + }, + { + "start": 22302.86, + "end": 22304.3, + "probability": 0.9703 + }, + { + "start": 22304.94, + "end": 22306.24, + "probability": 0.9562 + }, + { + "start": 22307.08, + "end": 22307.78, + "probability": 0.9919 + }, + { + "start": 22309.24, + "end": 22310.66, + "probability": 0.8886 + }, + { + "start": 22311.5, + "end": 22312.64, + "probability": 0.9245 + }, + { + "start": 22313.46, + "end": 22314.74, + "probability": 0.9706 + }, + { + "start": 22316.08, + "end": 22319.2, + "probability": 0.9895 + }, + { + "start": 22321.18, + "end": 22327.04, + "probability": 0.998 + }, + { + "start": 22332.32, + "end": 22335.02, + "probability": 0.3977 + }, + { + "start": 22335.84, + "end": 22337.34, + "probability": 0.8654 + }, + { + "start": 22339.2, + "end": 22341.04, + "probability": 0.8005 + }, + { + "start": 22341.94, + "end": 22342.66, + "probability": 0.9154 + }, + { + "start": 22344.28, + "end": 22349.62, + "probability": 0.9799 + }, + { + "start": 22351.38, + "end": 22352.3, + "probability": 0.753 + }, + { + "start": 22354.84, + "end": 22358.5, + "probability": 0.9946 + }, + { + "start": 22359.04, + "end": 22359.98, + "probability": 0.9281 + }, + { + "start": 22361.42, + "end": 22364.8, + "probability": 0.9985 + }, + { + "start": 22365.92, + "end": 22370.12, + "probability": 0.9989 + }, + { + "start": 22371.16, + "end": 22372.32, + "probability": 0.9756 + }, + { + "start": 22373.06, + "end": 22374.48, + "probability": 0.7627 + }, + { + "start": 22376.72, + "end": 22378.24, + "probability": 0.8622 + }, + { + "start": 22381.4, + "end": 22384.88, + "probability": 0.8884 + }, + { + "start": 22386.04, + "end": 22390.16, + "probability": 0.9854 + }, + { + "start": 22391.46, + "end": 22393.44, + "probability": 0.9412 + }, + { + "start": 22394.2, + "end": 22397.32, + "probability": 0.9646 + }, + { + "start": 22399.2, + "end": 22401.26, + "probability": 0.9614 + }, + { + "start": 22401.38, + "end": 22404.0, + "probability": 0.9882 + }, + { + "start": 22405.78, + "end": 22411.02, + "probability": 0.8636 + }, + { + "start": 22411.14, + "end": 22412.42, + "probability": 0.998 + }, + { + "start": 22413.06, + "end": 22417.22, + "probability": 0.565 + }, + { + "start": 22418.02, + "end": 22419.72, + "probability": 0.551 + }, + { + "start": 22420.3, + "end": 22422.54, + "probability": 0.8618 + }, + { + "start": 22425.16, + "end": 22426.84, + "probability": 0.8234 + }, + { + "start": 22427.62, + "end": 22430.2, + "probability": 0.7233 + }, + { + "start": 22430.56, + "end": 22432.12, + "probability": 0.9749 + }, + { + "start": 22432.56, + "end": 22437.02, + "probability": 0.9974 + }, + { + "start": 22439.38, + "end": 22439.98, + "probability": 0.8699 + }, + { + "start": 22440.38, + "end": 22441.84, + "probability": 0.9787 + }, + { + "start": 22441.94, + "end": 22444.0, + "probability": 0.9985 + }, + { + "start": 22444.88, + "end": 22446.08, + "probability": 0.9897 + }, + { + "start": 22448.06, + "end": 22450.58, + "probability": 0.8872 + }, + { + "start": 22452.54, + "end": 22456.46, + "probability": 0.9608 + }, + { + "start": 22458.26, + "end": 22462.4, + "probability": 0.998 + }, + { + "start": 22464.62, + "end": 22466.86, + "probability": 0.9359 + }, + { + "start": 22468.16, + "end": 22470.44, + "probability": 0.9958 + }, + { + "start": 22470.98, + "end": 22471.58, + "probability": 0.7311 + }, + { + "start": 22471.8, + "end": 22472.2, + "probability": 0.9215 + }, + { + "start": 22472.32, + "end": 22474.36, + "probability": 0.962 + }, + { + "start": 22474.5, + "end": 22475.96, + "probability": 0.937 + }, + { + "start": 22477.26, + "end": 22481.5, + "probability": 0.9854 + }, + { + "start": 22482.12, + "end": 22483.24, + "probability": 0.3338 + }, + { + "start": 22483.48, + "end": 22484.7, + "probability": 0.5238 + }, + { + "start": 22484.86, + "end": 22486.5, + "probability": 0.6871 + }, + { + "start": 22487.7, + "end": 22488.56, + "probability": 0.7786 + }, + { + "start": 22489.86, + "end": 22493.22, + "probability": 0.8929 + }, + { + "start": 22493.84, + "end": 22498.46, + "probability": 0.9884 + }, + { + "start": 22499.34, + "end": 22501.22, + "probability": 0.9583 + }, + { + "start": 22501.48, + "end": 22507.66, + "probability": 0.9993 + }, + { + "start": 22509.32, + "end": 22513.68, + "probability": 0.7537 + }, + { + "start": 22514.52, + "end": 22519.06, + "probability": 0.9956 + }, + { + "start": 22519.92, + "end": 22520.88, + "probability": 0.999 + }, + { + "start": 22521.6, + "end": 22522.98, + "probability": 0.9865 + }, + { + "start": 22523.98, + "end": 22525.38, + "probability": 0.7602 + }, + { + "start": 22526.7, + "end": 22531.16, + "probability": 0.9976 + }, + { + "start": 22531.82, + "end": 22532.86, + "probability": 0.8903 + }, + { + "start": 22534.58, + "end": 22537.04, + "probability": 0.7894 + }, + { + "start": 22537.64, + "end": 22540.58, + "probability": 0.9932 + }, + { + "start": 22541.78, + "end": 22542.34, + "probability": 0.873 + }, + { + "start": 22542.44, + "end": 22543.4, + "probability": 0.9496 + }, + { + "start": 22544.82, + "end": 22547.44, + "probability": 0.9553 + }, + { + "start": 22549.56, + "end": 22550.82, + "probability": 0.8477 + }, + { + "start": 22553.44, + "end": 22555.78, + "probability": 0.918 + }, + { + "start": 22555.8, + "end": 22556.63, + "probability": 0.941 + }, + { + "start": 22557.22, + "end": 22561.06, + "probability": 0.9917 + }, + { + "start": 22563.12, + "end": 22564.92, + "probability": 0.8044 + }, + { + "start": 22566.76, + "end": 22568.38, + "probability": 0.9454 + }, + { + "start": 22569.44, + "end": 22570.05, + "probability": 0.9392 + }, + { + "start": 22571.08, + "end": 22574.14, + "probability": 0.9953 + }, + { + "start": 22574.3, + "end": 22575.88, + "probability": 0.9507 + }, + { + "start": 22576.42, + "end": 22579.36, + "probability": 0.9722 + }, + { + "start": 22580.78, + "end": 22583.26, + "probability": 0.9954 + }, + { + "start": 22586.12, + "end": 22589.0, + "probability": 0.9939 + }, + { + "start": 22589.0, + "end": 22592.32, + "probability": 0.9947 + }, + { + "start": 22593.94, + "end": 22595.98, + "probability": 0.9374 + }, + { + "start": 22596.58, + "end": 22597.52, + "probability": 0.6196 + }, + { + "start": 22598.78, + "end": 22600.96, + "probability": 0.6732 + }, + { + "start": 22601.88, + "end": 22606.62, + "probability": 0.9199 + }, + { + "start": 22607.44, + "end": 22609.72, + "probability": 0.897 + }, + { + "start": 22610.84, + "end": 22611.76, + "probability": 0.796 + }, + { + "start": 22612.7, + "end": 22614.46, + "probability": 0.9924 + }, + { + "start": 22614.56, + "end": 22619.28, + "probability": 0.7085 + }, + { + "start": 22625.84, + "end": 22625.84, + "probability": 0.0261 + }, + { + "start": 22625.84, + "end": 22625.84, + "probability": 0.1239 + }, + { + "start": 22625.84, + "end": 22625.84, + "probability": 0.1013 + }, + { + "start": 22625.84, + "end": 22625.84, + "probability": 0.0883 + }, + { + "start": 22625.84, + "end": 22625.86, + "probability": 0.0913 + }, + { + "start": 22625.86, + "end": 22625.94, + "probability": 0.0327 + }, + { + "start": 22625.94, + "end": 22625.94, + "probability": 0.1939 + }, + { + "start": 22659.08, + "end": 22664.3, + "probability": 0.9692 + }, + { + "start": 22665.18, + "end": 22665.56, + "probability": 0.7164 + }, + { + "start": 22666.2, + "end": 22668.36, + "probability": 0.818 + }, + { + "start": 22669.0, + "end": 22673.34, + "probability": 0.9771 + }, + { + "start": 22673.86, + "end": 22676.84, + "probability": 0.9954 + }, + { + "start": 22677.6, + "end": 22678.16, + "probability": 0.8877 + }, + { + "start": 22679.98, + "end": 22682.72, + "probability": 0.9912 + }, + { + "start": 22683.5, + "end": 22688.22, + "probability": 0.994 + }, + { + "start": 22688.34, + "end": 22694.34, + "probability": 0.9972 + }, + { + "start": 22695.22, + "end": 22697.06, + "probability": 0.9943 + }, + { + "start": 22697.66, + "end": 22702.14, + "probability": 0.8934 + }, + { + "start": 22702.86, + "end": 22703.76, + "probability": 0.8086 + }, + { + "start": 22704.34, + "end": 22705.96, + "probability": 0.9829 + }, + { + "start": 22706.98, + "end": 22712.36, + "probability": 0.9956 + }, + { + "start": 22713.16, + "end": 22717.34, + "probability": 0.9968 + }, + { + "start": 22718.46, + "end": 22722.64, + "probability": 0.9351 + }, + { + "start": 22723.34, + "end": 22730.04, + "probability": 0.9919 + }, + { + "start": 22730.52, + "end": 22732.5, + "probability": 0.7932 + }, + { + "start": 22734.3, + "end": 22738.0, + "probability": 0.9208 + }, + { + "start": 22738.72, + "end": 22739.56, + "probability": 0.9878 + }, + { + "start": 22740.2, + "end": 22742.18, + "probability": 0.9729 + }, + { + "start": 22742.88, + "end": 22747.12, + "probability": 0.9959 + }, + { + "start": 22747.64, + "end": 22748.62, + "probability": 0.7974 + }, + { + "start": 22749.24, + "end": 22750.72, + "probability": 0.9575 + }, + { + "start": 22751.36, + "end": 22752.85, + "probability": 0.9606 + }, + { + "start": 22754.2, + "end": 22756.56, + "probability": 0.9818 + }, + { + "start": 22757.62, + "end": 22759.24, + "probability": 0.8596 + }, + { + "start": 22759.28, + "end": 22761.56, + "probability": 0.9282 + }, + { + "start": 22762.33, + "end": 22764.92, + "probability": 0.9182 + }, + { + "start": 22767.9, + "end": 22772.66, + "probability": 0.9963 + }, + { + "start": 22772.66, + "end": 22777.0, + "probability": 0.9907 + }, + { + "start": 22778.58, + "end": 22781.74, + "probability": 0.7019 + }, + { + "start": 22782.3, + "end": 22784.24, + "probability": 0.7764 + }, + { + "start": 22784.8, + "end": 22790.02, + "probability": 0.9992 + }, + { + "start": 22790.86, + "end": 22794.62, + "probability": 0.7711 + }, + { + "start": 22795.3, + "end": 22799.02, + "probability": 0.9984 + }, + { + "start": 22799.86, + "end": 22803.7, + "probability": 0.991 + }, + { + "start": 22803.7, + "end": 22807.74, + "probability": 0.9976 + }, + { + "start": 22807.78, + "end": 22809.5, + "probability": 0.7554 + }, + { + "start": 22810.08, + "end": 22813.82, + "probability": 0.9688 + }, + { + "start": 22813.82, + "end": 22818.48, + "probability": 0.9969 + }, + { + "start": 22822.7, + "end": 22822.7, + "probability": 0.0156 + }, + { + "start": 22822.7, + "end": 22827.92, + "probability": 0.9478 + }, + { + "start": 22827.92, + "end": 22832.92, + "probability": 0.993 + }, + { + "start": 22833.7, + "end": 22840.42, + "probability": 0.9975 + }, + { + "start": 22841.02, + "end": 22845.16, + "probability": 0.8882 + }, + { + "start": 22846.1, + "end": 22853.44, + "probability": 0.9976 + }, + { + "start": 22853.48, + "end": 22854.28, + "probability": 0.8961 + }, + { + "start": 22854.82, + "end": 22859.6, + "probability": 0.9907 + }, + { + "start": 22860.38, + "end": 22863.08, + "probability": 0.9604 + }, + { + "start": 22863.48, + "end": 22866.38, + "probability": 0.9961 + }, + { + "start": 22866.42, + "end": 22868.62, + "probability": 0.6717 + }, + { + "start": 22868.62, + "end": 22871.28, + "probability": 0.9972 + }, + { + "start": 22871.56, + "end": 22872.44, + "probability": 0.3833 + }, + { + "start": 22873.62, + "end": 22875.42, + "probability": 0.7897 + }, + { + "start": 22875.84, + "end": 22879.7, + "probability": 0.9983 + }, + { + "start": 22880.28, + "end": 22886.88, + "probability": 0.9935 + }, + { + "start": 22887.66, + "end": 22890.62, + "probability": 0.9784 + }, + { + "start": 22891.74, + "end": 22895.28, + "probability": 0.9707 + }, + { + "start": 22895.28, + "end": 22898.3, + "probability": 0.9932 + }, + { + "start": 22898.88, + "end": 22904.88, + "probability": 0.9809 + }, + { + "start": 22905.9, + "end": 22912.12, + "probability": 0.9965 + }, + { + "start": 22912.66, + "end": 22913.78, + "probability": 0.7252 + }, + { + "start": 22915.14, + "end": 22915.86, + "probability": 0.8063 + }, + { + "start": 22915.96, + "end": 22916.88, + "probability": 0.8759 + }, + { + "start": 22916.92, + "end": 22919.08, + "probability": 0.9289 + }, + { + "start": 22919.48, + "end": 22919.82, + "probability": 0.431 + }, + { + "start": 22920.44, + "end": 22924.48, + "probability": 0.9681 + }, + { + "start": 22925.12, + "end": 22931.0, + "probability": 0.894 + }, + { + "start": 22931.76, + "end": 22936.64, + "probability": 0.9804 + }, + { + "start": 22937.24, + "end": 22939.12, + "probability": 0.9492 + }, + { + "start": 22939.6, + "end": 22940.76, + "probability": 0.8371 + }, + { + "start": 22940.88, + "end": 22942.06, + "probability": 0.6274 + }, + { + "start": 22942.72, + "end": 22944.2, + "probability": 0.688 + }, + { + "start": 22944.5, + "end": 22945.62, + "probability": 0.9841 + }, + { + "start": 22945.7, + "end": 22946.58, + "probability": 0.9253 + }, + { + "start": 22946.66, + "end": 22947.96, + "probability": 0.8027 + }, + { + "start": 22948.26, + "end": 22949.36, + "probability": 0.6833 + }, + { + "start": 22949.58, + "end": 22950.34, + "probability": 0.9147 + }, + { + "start": 22950.38, + "end": 22952.68, + "probability": 0.9146 + }, + { + "start": 22952.76, + "end": 22953.88, + "probability": 0.8465 + }, + { + "start": 22954.24, + "end": 22956.98, + "probability": 0.824 + }, + { + "start": 22957.2, + "end": 22962.36, + "probability": 0.9592 + }, + { + "start": 22962.5, + "end": 22966.88, + "probability": 0.9939 + }, + { + "start": 22967.22, + "end": 22968.2, + "probability": 0.9884 + }, + { + "start": 22970.72, + "end": 22976.08, + "probability": 0.9945 + }, + { + "start": 22976.58, + "end": 22981.18, + "probability": 0.916 + }, + { + "start": 22981.6, + "end": 22984.4, + "probability": 0.9925 + }, + { + "start": 22984.72, + "end": 22986.96, + "probability": 0.9974 + }, + { + "start": 22987.52, + "end": 22993.72, + "probability": 0.9968 + }, + { + "start": 22994.16, + "end": 22996.8, + "probability": 0.9329 + }, + { + "start": 22997.76, + "end": 22999.42, + "probability": 0.9452 + }, + { + "start": 23000.02, + "end": 23003.08, + "probability": 0.965 + }, + { + "start": 23004.2, + "end": 23005.42, + "probability": 0.9693 + }, + { + "start": 23005.74, + "end": 23007.06, + "probability": 0.5483 + }, + { + "start": 23007.44, + "end": 23012.06, + "probability": 0.9938 + }, + { + "start": 23012.86, + "end": 23014.92, + "probability": 0.9893 + }, + { + "start": 23015.98, + "end": 23018.58, + "probability": 0.9944 + }, + { + "start": 23019.12, + "end": 23023.5, + "probability": 0.9631 + }, + { + "start": 23023.58, + "end": 23026.2, + "probability": 0.6317 + }, + { + "start": 23026.88, + "end": 23029.8, + "probability": 0.9724 + }, + { + "start": 23030.7, + "end": 23037.36, + "probability": 0.9495 + }, + { + "start": 23037.54, + "end": 23040.34, + "probability": 0.8802 + }, + { + "start": 23040.5, + "end": 23040.78, + "probability": 0.435 + }, + { + "start": 23040.78, + "end": 23041.6, + "probability": 0.6587 + }, + { + "start": 23041.6, + "end": 23041.92, + "probability": 0.8092 + }, + { + "start": 23042.6, + "end": 23044.06, + "probability": 0.9951 + }, + { + "start": 23044.32, + "end": 23045.48, + "probability": 0.7988 + }, + { + "start": 23046.02, + "end": 23048.56, + "probability": 0.9739 + }, + { + "start": 23049.08, + "end": 23050.9, + "probability": 0.6612 + }, + { + "start": 23051.42, + "end": 23052.3, + "probability": 0.7361 + }, + { + "start": 23053.04, + "end": 23054.96, + "probability": 0.9137 + }, + { + "start": 23055.3, + "end": 23058.3, + "probability": 0.9975 + }, + { + "start": 23058.68, + "end": 23059.34, + "probability": 0.7621 + }, + { + "start": 23059.82, + "end": 23065.14, + "probability": 0.9952 + }, + { + "start": 23065.26, + "end": 23067.64, + "probability": 0.9245 + }, + { + "start": 23068.1, + "end": 23069.0, + "probability": 0.9561 + }, + { + "start": 23069.58, + "end": 23071.58, + "probability": 0.9922 + }, + { + "start": 23072.18, + "end": 23076.42, + "probability": 0.9841 + }, + { + "start": 23077.66, + "end": 23079.0, + "probability": 0.8138 + }, + { + "start": 23079.34, + "end": 23080.67, + "probability": 0.991 + }, + { + "start": 23081.18, + "end": 23082.2, + "probability": 0.9368 + }, + { + "start": 23082.38, + "end": 23087.42, + "probability": 0.9945 + }, + { + "start": 23088.28, + "end": 23089.48, + "probability": 0.9727 + }, + { + "start": 23090.46, + "end": 23091.96, + "probability": 0.9901 + }, + { + "start": 23092.52, + "end": 23098.32, + "probability": 0.991 + }, + { + "start": 23098.78, + "end": 23099.56, + "probability": 0.782 + }, + { + "start": 23099.7, + "end": 23102.36, + "probability": 0.9739 + }, + { + "start": 23102.78, + "end": 23103.28, + "probability": 0.4506 + }, + { + "start": 23103.38, + "end": 23105.22, + "probability": 0.9436 + }, + { + "start": 23105.78, + "end": 23112.06, + "probability": 0.9902 + }, + { + "start": 23112.98, + "end": 23117.12, + "probability": 0.9124 + }, + { + "start": 23117.56, + "end": 23120.06, + "probability": 0.9583 + }, + { + "start": 23121.04, + "end": 23123.78, + "probability": 0.9323 + }, + { + "start": 23125.26, + "end": 23126.5, + "probability": 0.5575 + }, + { + "start": 23127.02, + "end": 23131.39, + "probability": 0.923 + }, + { + "start": 23132.36, + "end": 23133.76, + "probability": 0.7742 + }, + { + "start": 23134.22, + "end": 23139.68, + "probability": 0.8231 + }, + { + "start": 23139.72, + "end": 23141.08, + "probability": 0.86 + }, + { + "start": 23141.84, + "end": 23143.88, + "probability": 0.8188 + }, + { + "start": 23144.24, + "end": 23148.5, + "probability": 0.9878 + }, + { + "start": 23148.94, + "end": 23150.26, + "probability": 0.972 + }, + { + "start": 23150.32, + "end": 23154.16, + "probability": 0.9924 + }, + { + "start": 23154.8, + "end": 23157.0, + "probability": 0.6899 + }, + { + "start": 23157.48, + "end": 23163.08, + "probability": 0.9812 + }, + { + "start": 23163.28, + "end": 23164.04, + "probability": 0.8463 + }, + { + "start": 23164.12, + "end": 23165.44, + "probability": 0.9651 + }, + { + "start": 23165.86, + "end": 23170.82, + "probability": 0.9967 + }, + { + "start": 23171.32, + "end": 23172.48, + "probability": 0.8191 + }, + { + "start": 23172.84, + "end": 23174.82, + "probability": 0.9363 + }, + { + "start": 23175.12, + "end": 23179.9, + "probability": 0.9852 + }, + { + "start": 23180.24, + "end": 23184.32, + "probability": 0.9703 + }, + { + "start": 23184.78, + "end": 23186.4, + "probability": 0.9878 + }, + { + "start": 23186.8, + "end": 23188.24, + "probability": 0.9621 + }, + { + "start": 23188.66, + "end": 23191.38, + "probability": 0.9803 + }, + { + "start": 23192.4, + "end": 23196.94, + "probability": 0.9802 + }, + { + "start": 23197.42, + "end": 23202.76, + "probability": 0.9946 + }, + { + "start": 23203.1, + "end": 23205.38, + "probability": 0.7861 + }, + { + "start": 23206.02, + "end": 23206.5, + "probability": 0.0702 + }, + { + "start": 23206.5, + "end": 23209.64, + "probability": 0.9141 + }, + { + "start": 23210.42, + "end": 23211.0, + "probability": 0.9902 + }, + { + "start": 23211.62, + "end": 23212.94, + "probability": 0.9989 + }, + { + "start": 23213.6, + "end": 23215.66, + "probability": 0.9685 + }, + { + "start": 23216.1, + "end": 23218.74, + "probability": 0.9592 + }, + { + "start": 23218.9, + "end": 23222.58, + "probability": 0.9928 + }, + { + "start": 23222.58, + "end": 23225.96, + "probability": 0.9996 + }, + { + "start": 23226.8, + "end": 23230.8, + "probability": 0.9985 + }, + { + "start": 23231.04, + "end": 23237.38, + "probability": 0.9978 + }, + { + "start": 23237.6, + "end": 23240.08, + "probability": 0.8701 + }, + { + "start": 23240.78, + "end": 23246.75, + "probability": 0.9906 + }, + { + "start": 23247.4, + "end": 23247.5, + "probability": 0.6941 + }, + { + "start": 23247.5, + "end": 23255.3, + "probability": 0.9989 + }, + { + "start": 23255.86, + "end": 23256.56, + "probability": 0.6831 + }, + { + "start": 23256.56, + "end": 23259.8, + "probability": 0.7277 + }, + { + "start": 23260.08, + "end": 23260.76, + "probability": 0.9283 + }, + { + "start": 23261.14, + "end": 23261.9, + "probability": 0.5789 + }, + { + "start": 23262.1, + "end": 23262.84, + "probability": 0.752 + }, + { + "start": 23263.02, + "end": 23264.34, + "probability": 0.9098 + }, + { + "start": 23264.48, + "end": 23265.34, + "probability": 0.6441 + }, + { + "start": 23265.38, + "end": 23266.28, + "probability": 0.9198 + }, + { + "start": 23269.94, + "end": 23277.97, + "probability": 0.853 + }, + { + "start": 23294.98, + "end": 23297.46, + "probability": 0.754 + }, + { + "start": 23298.44, + "end": 23301.18, + "probability": 0.9597 + }, + { + "start": 23302.7, + "end": 23307.04, + "probability": 0.9624 + }, + { + "start": 23307.66, + "end": 23308.76, + "probability": 0.069 + }, + { + "start": 23309.16, + "end": 23310.22, + "probability": 0.4322 + }, + { + "start": 23310.44, + "end": 23313.72, + "probability": 0.8683 + }, + { + "start": 23313.72, + "end": 23317.64, + "probability": 0.9954 + }, + { + "start": 23317.76, + "end": 23318.12, + "probability": 0.5611 + }, + { + "start": 23318.12, + "end": 23319.7, + "probability": 0.6599 + }, + { + "start": 23319.86, + "end": 23324.64, + "probability": 0.9606 + }, + { + "start": 23325.46, + "end": 23328.78, + "probability": 0.9933 + }, + { + "start": 23328.86, + "end": 23329.54, + "probability": 0.5589 + }, + { + "start": 23329.98, + "end": 23330.62, + "probability": 0.828 + }, + { + "start": 23332.92, + "end": 23333.74, + "probability": 0.891 + }, + { + "start": 23333.96, + "end": 23336.3, + "probability": 0.2675 + }, + { + "start": 23336.3, + "end": 23340.76, + "probability": 0.996 + }, + { + "start": 23341.01, + "end": 23346.4, + "probability": 0.9958 + }, + { + "start": 23347.7, + "end": 23347.74, + "probability": 0.3164 + }, + { + "start": 23347.74, + "end": 23348.82, + "probability": 0.9914 + }, + { + "start": 23348.94, + "end": 23350.08, + "probability": 0.7742 + }, + { + "start": 23350.22, + "end": 23351.48, + "probability": 0.8822 + }, + { + "start": 23352.32, + "end": 23354.3, + "probability": 0.9842 + }, + { + "start": 23355.14, + "end": 23356.6, + "probability": 0.9661 + }, + { + "start": 23357.5, + "end": 23360.92, + "probability": 0.9935 + }, + { + "start": 23362.28, + "end": 23362.94, + "probability": 0.0104 + }, + { + "start": 23362.94, + "end": 23363.66, + "probability": 0.5063 + }, + { + "start": 23363.66, + "end": 23366.52, + "probability": 0.9601 + }, + { + "start": 23367.62, + "end": 23371.84, + "probability": 0.9769 + }, + { + "start": 23372.28, + "end": 23375.02, + "probability": 0.9907 + }, + { + "start": 23375.2, + "end": 23376.28, + "probability": 0.8664 + }, + { + "start": 23377.3, + "end": 23380.42, + "probability": 0.0057 + }, + { + "start": 23380.42, + "end": 23380.52, + "probability": 0.026 + }, + { + "start": 23380.52, + "end": 23386.2, + "probability": 0.9736 + }, + { + "start": 23386.42, + "end": 23389.28, + "probability": 0.7162 + }, + { + "start": 23390.0, + "end": 23390.26, + "probability": 0.0518 + }, + { + "start": 23390.26, + "end": 23392.36, + "probability": 0.8528 + }, + { + "start": 23392.9, + "end": 23397.68, + "probability": 0.995 + }, + { + "start": 23397.9, + "end": 23401.3, + "probability": 0.9947 + }, + { + "start": 23401.74, + "end": 23402.96, + "probability": 0.9512 + }, + { + "start": 23404.0, + "end": 23407.48, + "probability": 0.9784 + }, + { + "start": 23408.26, + "end": 23409.38, + "probability": 0.9258 + }, + { + "start": 23410.04, + "end": 23412.6, + "probability": 0.9603 + }, + { + "start": 23413.2, + "end": 23415.86, + "probability": 0.9807 + }, + { + "start": 23415.94, + "end": 23419.62, + "probability": 0.9874 + }, + { + "start": 23420.26, + "end": 23420.82, + "probability": 0.7884 + }, + { + "start": 23421.74, + "end": 23426.18, + "probability": 0.989 + }, + { + "start": 23426.18, + "end": 23429.74, + "probability": 0.9911 + }, + { + "start": 23430.4, + "end": 23431.28, + "probability": 0.9483 + }, + { + "start": 23432.14, + "end": 23437.46, + "probability": 0.83 + }, + { + "start": 23438.2, + "end": 23445.46, + "probability": 0.9861 + }, + { + "start": 23446.02, + "end": 23446.3, + "probability": 0.332 + }, + { + "start": 23446.48, + "end": 23448.84, + "probability": 0.9273 + }, + { + "start": 23449.12, + "end": 23452.88, + "probability": 0.999 + }, + { + "start": 23453.54, + "end": 23454.98, + "probability": 0.937 + }, + { + "start": 23455.66, + "end": 23457.22, + "probability": 0.9924 + }, + { + "start": 23458.42, + "end": 23458.48, + "probability": 0.7477 + }, + { + "start": 23458.5, + "end": 23462.38, + "probability": 0.9961 + }, + { + "start": 23462.58, + "end": 23463.38, + "probability": 0.9268 + }, + { + "start": 23463.52, + "end": 23467.0, + "probability": 0.9984 + }, + { + "start": 23467.38, + "end": 23467.92, + "probability": 0.4077 + }, + { + "start": 23468.34, + "end": 23471.24, + "probability": 0.963 + }, + { + "start": 23471.72, + "end": 23474.4, + "probability": 0.8625 + }, + { + "start": 23474.78, + "end": 23476.22, + "probability": 0.1246 + }, + { + "start": 23476.74, + "end": 23479.48, + "probability": 0.2963 + }, + { + "start": 23482.52, + "end": 23483.34, + "probability": 0.0071 + }, + { + "start": 23483.34, + "end": 23483.34, + "probability": 0.4593 + }, + { + "start": 23483.34, + "end": 23483.34, + "probability": 0.1164 + }, + { + "start": 23483.34, + "end": 23486.34, + "probability": 0.3251 + }, + { + "start": 23487.28, + "end": 23492.98, + "probability": 0.9569 + }, + { + "start": 23496.14, + "end": 23496.86, + "probability": 0.0827 + }, + { + "start": 23497.58, + "end": 23499.52, + "probability": 0.4402 + }, + { + "start": 23499.54, + "end": 23500.12, + "probability": 0.4809 + }, + { + "start": 23500.12, + "end": 23504.4, + "probability": 0.4075 + }, + { + "start": 23504.5, + "end": 23505.12, + "probability": 0.0045 + }, + { + "start": 23505.12, + "end": 23505.49, + "probability": 0.6882 + }, + { + "start": 23506.76, + "end": 23509.96, + "probability": 0.9199 + }, + { + "start": 23510.0, + "end": 23512.46, + "probability": 0.3784 + }, + { + "start": 23512.5, + "end": 23513.34, + "probability": 0.5153 + }, + { + "start": 23513.52, + "end": 23518.14, + "probability": 0.4338 + }, + { + "start": 23518.72, + "end": 23519.28, + "probability": 0.4405 + }, + { + "start": 23519.28, + "end": 23525.4, + "probability": 0.8405 + }, + { + "start": 23526.18, + "end": 23530.92, + "probability": 0.9503 + }, + { + "start": 23531.38, + "end": 23532.45, + "probability": 0.9468 + }, + { + "start": 23532.6, + "end": 23532.67, + "probability": 0.1255 + }, + { + "start": 23532.88, + "end": 23534.02, + "probability": 0.1793 + }, + { + "start": 23534.58, + "end": 23536.72, + "probability": 0.9871 + }, + { + "start": 23536.82, + "end": 23537.58, + "probability": 0.8699 + }, + { + "start": 23537.98, + "end": 23541.4, + "probability": 0.0914 + }, + { + "start": 23541.66, + "end": 23542.52, + "probability": 0.5608 + }, + { + "start": 23542.78, + "end": 23543.08, + "probability": 0.3764 + }, + { + "start": 23543.14, + "end": 23543.82, + "probability": 0.0058 + }, + { + "start": 23543.82, + "end": 23546.85, + "probability": 0.8196 + }, + { + "start": 23547.02, + "end": 23553.36, + "probability": 0.0583 + }, + { + "start": 23555.54, + "end": 23556.52, + "probability": 0.0829 + }, + { + "start": 23556.52, + "end": 23557.5, + "probability": 0.3221 + }, + { + "start": 23558.22, + "end": 23559.76, + "probability": 0.3525 + }, + { + "start": 23559.76, + "end": 23559.76, + "probability": 0.4272 + }, + { + "start": 23559.76, + "end": 23560.81, + "probability": 0.7808 + }, + { + "start": 23560.92, + "end": 23562.12, + "probability": 0.9838 + }, + { + "start": 23563.18, + "end": 23568.94, + "probability": 0.9154 + }, + { + "start": 23568.94, + "end": 23571.35, + "probability": 0.0509 + }, + { + "start": 23571.7, + "end": 23572.44, + "probability": 0.1328 + }, + { + "start": 23572.44, + "end": 23574.3, + "probability": 0.8476 + }, + { + "start": 23577.08, + "end": 23578.98, + "probability": 0.4489 + }, + { + "start": 23579.5, + "end": 23582.0, + "probability": 0.9974 + }, + { + "start": 23582.52, + "end": 23586.54, + "probability": 0.9033 + }, + { + "start": 23586.76, + "end": 23591.18, + "probability": 0.9885 + }, + { + "start": 23591.24, + "end": 23593.26, + "probability": 0.7603 + }, + { + "start": 23593.84, + "end": 23597.4, + "probability": 0.9896 + }, + { + "start": 23598.24, + "end": 23602.76, + "probability": 0.0817 + }, + { + "start": 23604.74, + "end": 23604.84, + "probability": 0.6817 + }, + { + "start": 23604.84, + "end": 23605.56, + "probability": 0.2578 + }, + { + "start": 23605.72, + "end": 23610.08, + "probability": 0.9924 + }, + { + "start": 23610.44, + "end": 23611.48, + "probability": 0.9009 + }, + { + "start": 23611.8, + "end": 23614.38, + "probability": 0.9969 + }, + { + "start": 23614.76, + "end": 23616.46, + "probability": 0.9749 + }, + { + "start": 23616.88, + "end": 23617.06, + "probability": 0.8202 + }, + { + "start": 23617.1, + "end": 23618.88, + "probability": 0.9964 + }, + { + "start": 23618.98, + "end": 23621.4, + "probability": 0.9718 + }, + { + "start": 23621.66, + "end": 23622.32, + "probability": 0.7475 + }, + { + "start": 23622.5, + "end": 23623.56, + "probability": 0.9768 + }, + { + "start": 23623.96, + "end": 23626.76, + "probability": 0.9969 + }, + { + "start": 23627.18, + "end": 23630.26, + "probability": 0.9654 + }, + { + "start": 23630.26, + "end": 23634.24, + "probability": 0.9984 + }, + { + "start": 23634.54, + "end": 23638.66, + "probability": 0.9924 + }, + { + "start": 23639.06, + "end": 23640.72, + "probability": 0.9829 + }, + { + "start": 23641.02, + "end": 23644.84, + "probability": 0.9866 + }, + { + "start": 23644.84, + "end": 23647.82, + "probability": 0.9987 + }, + { + "start": 23648.3, + "end": 23648.62, + "probability": 0.2723 + }, + { + "start": 23648.64, + "end": 23650.58, + "probability": 0.903 + }, + { + "start": 23650.86, + "end": 23651.82, + "probability": 0.9212 + }, + { + "start": 23652.08, + "end": 23654.04, + "probability": 0.9884 + }, + { + "start": 23654.56, + "end": 23658.34, + "probability": 0.9491 + }, + { + "start": 23659.06, + "end": 23660.06, + "probability": 0.2241 + }, + { + "start": 23660.44, + "end": 23665.68, + "probability": 0.3931 + }, + { + "start": 23666.4, + "end": 23670.96, + "probability": 0.9866 + }, + { + "start": 23671.78, + "end": 23673.9, + "probability": 0.8716 + }, + { + "start": 23674.92, + "end": 23678.74, + "probability": 0.9941 + }, + { + "start": 23679.16, + "end": 23679.72, + "probability": 0.1868 + }, + { + "start": 23680.26, + "end": 23681.4, + "probability": 0.5126 + }, + { + "start": 23681.5, + "end": 23682.49, + "probability": 0.9526 + }, + { + "start": 23685.05, + "end": 23691.46, + "probability": 0.9794 + }, + { + "start": 23691.82, + "end": 23693.18, + "probability": 0.9751 + }, + { + "start": 23693.82, + "end": 23696.26, + "probability": 0.9956 + }, + { + "start": 23696.76, + "end": 23697.82, + "probability": 0.7405 + }, + { + "start": 23699.4, + "end": 23704.54, + "probability": 0.9915 + }, + { + "start": 23704.54, + "end": 23711.08, + "probability": 0.9948 + }, + { + "start": 23712.12, + "end": 23715.94, + "probability": 0.9881 + }, + { + "start": 23715.94, + "end": 23720.9, + "probability": 0.9975 + }, + { + "start": 23722.0, + "end": 23725.69, + "probability": 0.9739 + }, + { + "start": 23726.22, + "end": 23731.1, + "probability": 0.9908 + }, + { + "start": 23732.24, + "end": 23736.04, + "probability": 0.9915 + }, + { + "start": 23739.84, + "end": 23743.78, + "probability": 0.9747 + }, + { + "start": 23744.08, + "end": 23744.88, + "probability": 0.7959 + }, + { + "start": 23745.0, + "end": 23749.62, + "probability": 0.9862 + }, + { + "start": 23750.2, + "end": 23753.74, + "probability": 0.9969 + }, + { + "start": 23754.5, + "end": 23757.86, + "probability": 0.9619 + }, + { + "start": 23758.2, + "end": 23759.3, + "probability": 0.8099 + }, + { + "start": 23759.42, + "end": 23764.22, + "probability": 0.9935 + }, + { + "start": 23764.64, + "end": 23768.04, + "probability": 0.9987 + }, + { + "start": 23768.48, + "end": 23769.28, + "probability": 0.6161 + }, + { + "start": 23769.64, + "end": 23773.52, + "probability": 0.9841 + }, + { + "start": 23773.84, + "end": 23774.64, + "probability": 0.7508 + }, + { + "start": 23774.78, + "end": 23775.94, + "probability": 0.863 + }, + { + "start": 23776.26, + "end": 23777.34, + "probability": 0.5679 + }, + { + "start": 23777.7, + "end": 23778.95, + "probability": 0.7437 + }, + { + "start": 23780.06, + "end": 23781.36, + "probability": 0.9276 + }, + { + "start": 23781.74, + "end": 23783.0, + "probability": 0.9619 + }, + { + "start": 23783.4, + "end": 23785.7, + "probability": 0.9729 + }, + { + "start": 23786.86, + "end": 23790.18, + "probability": 0.983 + }, + { + "start": 23790.64, + "end": 23791.79, + "probability": 0.9988 + }, + { + "start": 23792.46, + "end": 23793.7, + "probability": 0.9857 + }, + { + "start": 23794.0, + "end": 23796.26, + "probability": 0.9695 + }, + { + "start": 23796.62, + "end": 23799.32, + "probability": 0.9804 + }, + { + "start": 23799.52, + "end": 23804.62, + "probability": 0.9978 + }, + { + "start": 23805.12, + "end": 23807.72, + "probability": 0.0122 + }, + { + "start": 23807.72, + "end": 23808.4, + "probability": 0.0291 + }, + { + "start": 23808.96, + "end": 23810.7, + "probability": 0.522 + }, + { + "start": 23810.7, + "end": 23813.52, + "probability": 0.6242 + }, + { + "start": 23813.82, + "end": 23816.1, + "probability": 0.8757 + }, + { + "start": 23816.12, + "end": 23816.52, + "probability": 0.013 + }, + { + "start": 23816.52, + "end": 23817.36, + "probability": 0.9167 + }, + { + "start": 23818.26, + "end": 23819.92, + "probability": 0.6832 + }, + { + "start": 23820.2, + "end": 23821.8, + "probability": 0.911 + }, + { + "start": 23822.26, + "end": 23824.52, + "probability": 0.6651 + }, + { + "start": 23824.9, + "end": 23825.64, + "probability": 0.9517 + }, + { + "start": 23825.72, + "end": 23827.16, + "probability": 0.9261 + }, + { + "start": 23827.42, + "end": 23829.32, + "probability": 0.8282 + }, + { + "start": 23829.89, + "end": 23832.86, + "probability": 0.5461 + }, + { + "start": 23833.48, + "end": 23836.32, + "probability": 0.3499 + }, + { + "start": 23836.6, + "end": 23837.36, + "probability": 0.6018 + }, + { + "start": 23837.6, + "end": 23839.98, + "probability": 0.9923 + }, + { + "start": 23840.32, + "end": 23846.48, + "probability": 0.888 + }, + { + "start": 23846.82, + "end": 23854.44, + "probability": 0.98 + }, + { + "start": 23854.84, + "end": 23855.29, + "probability": 0.7033 + }, + { + "start": 23858.04, + "end": 23861.54, + "probability": 0.3493 + }, + { + "start": 23861.74, + "end": 23862.7, + "probability": 0.6029 + }, + { + "start": 23862.7, + "end": 23864.31, + "probability": 0.1402 + }, + { + "start": 23865.82, + "end": 23871.68, + "probability": 0.9492 + }, + { + "start": 23872.62, + "end": 23879.24, + "probability": 0.9985 + }, + { + "start": 23879.66, + "end": 23883.78, + "probability": 0.9362 + }, + { + "start": 23883.96, + "end": 23886.42, + "probability": 0.662 + }, + { + "start": 23886.64, + "end": 23889.04, + "probability": 0.9061 + }, + { + "start": 23889.36, + "end": 23890.98, + "probability": 0.8548 + }, + { + "start": 23893.5, + "end": 23896.76, + "probability": 0.7771 + }, + { + "start": 23897.86, + "end": 23901.6, + "probability": 0.4626 + }, + { + "start": 23901.66, + "end": 23902.82, + "probability": 0.9473 + }, + { + "start": 23904.78, + "end": 23907.56, + "probability": 0.7704 + }, + { + "start": 23907.64, + "end": 23912.34, + "probability": 0.9941 + }, + { + "start": 23912.56, + "end": 23913.04, + "probability": 0.8176 + }, + { + "start": 23914.88, + "end": 23919.78, + "probability": 0.9597 + }, + { + "start": 23920.8, + "end": 23922.84, + "probability": 0.9148 + }, + { + "start": 23923.7, + "end": 23929.0, + "probability": 0.9924 + }, + { + "start": 23929.0, + "end": 23934.14, + "probability": 0.9827 + }, + { + "start": 23934.58, + "end": 23935.62, + "probability": 0.8763 + }, + { + "start": 23936.3, + "end": 23937.76, + "probability": 0.5538 + }, + { + "start": 23938.36, + "end": 23941.12, + "probability": 0.998 + }, + { + "start": 23941.12, + "end": 23943.94, + "probability": 0.9952 + }, + { + "start": 23944.78, + "end": 23947.96, + "probability": 0.9904 + }, + { + "start": 23948.32, + "end": 23952.52, + "probability": 0.9986 + }, + { + "start": 23952.86, + "end": 23957.94, + "probability": 0.999 + }, + { + "start": 23958.26, + "end": 23964.04, + "probability": 0.9918 + }, + { + "start": 23964.54, + "end": 23967.68, + "probability": 0.7724 + }, + { + "start": 23968.1, + "end": 23973.38, + "probability": 0.895 + }, + { + "start": 23973.46, + "end": 23974.48, + "probability": 0.782 + }, + { + "start": 23974.54, + "end": 23976.59, + "probability": 0.9196 + }, + { + "start": 23977.38, + "end": 23979.28, + "probability": 0.9698 + }, + { + "start": 23979.52, + "end": 23983.62, + "probability": 0.9982 + }, + { + "start": 23984.0, + "end": 23986.78, + "probability": 0.916 + }, + { + "start": 23987.14, + "end": 23988.78, + "probability": 0.9414 + }, + { + "start": 23989.28, + "end": 23989.86, + "probability": 0.8315 + }, + { + "start": 23990.72, + "end": 23993.26, + "probability": 0.9694 + }, + { + "start": 23993.54, + "end": 23995.9, + "probability": 0.9824 + }, + { + "start": 23996.04, + "end": 23998.68, + "probability": 0.7944 + }, + { + "start": 23998.86, + "end": 24000.13, + "probability": 0.8561 + }, + { + "start": 24000.72, + "end": 24005.8, + "probability": 0.9985 + }, + { + "start": 24006.12, + "end": 24011.5, + "probability": 0.9854 + }, + { + "start": 24011.68, + "end": 24014.06, + "probability": 0.8386 + }, + { + "start": 24014.44, + "end": 24016.56, + "probability": 0.9056 + }, + { + "start": 24016.72, + "end": 24017.44, + "probability": 0.8682 + }, + { + "start": 24017.94, + "end": 24018.36, + "probability": 0.2651 + }, + { + "start": 24018.54, + "end": 24020.78, + "probability": 0.2373 + }, + { + "start": 24021.69, + "end": 24023.64, + "probability": 0.6955 + }, + { + "start": 24024.04, + "end": 24024.53, + "probability": 0.3695 + }, + { + "start": 24025.08, + "end": 24025.64, + "probability": 0.0528 + }, + { + "start": 24026.32, + "end": 24030.98, + "probability": 0.2437 + }, + { + "start": 24032.66, + "end": 24032.72, + "probability": 0.3794 + }, + { + "start": 24032.72, + "end": 24033.74, + "probability": 0.536 + }, + { + "start": 24033.74, + "end": 24034.66, + "probability": 0.0555 + }, + { + "start": 24035.0, + "end": 24035.3, + "probability": 0.0885 + }, + { + "start": 24035.3, + "end": 24036.96, + "probability": 0.0567 + }, + { + "start": 24037.88, + "end": 24040.62, + "probability": 0.9378 + }, + { + "start": 24041.4, + "end": 24041.42, + "probability": 0.2178 + }, + { + "start": 24041.42, + "end": 24042.84, + "probability": 0.117 + }, + { + "start": 24042.88, + "end": 24046.3, + "probability": 0.7699 + }, + { + "start": 24046.42, + "end": 24047.32, + "probability": 0.3698 + }, + { + "start": 24047.66, + "end": 24051.14, + "probability": 0.6593 + }, + { + "start": 24051.71, + "end": 24053.88, + "probability": 0.6931 + }, + { + "start": 24053.98, + "end": 24054.68, + "probability": 0.8014 + }, + { + "start": 24054.98, + "end": 24055.7, + "probability": 0.5698 + }, + { + "start": 24057.2, + "end": 24057.32, + "probability": 0.1128 + }, + { + "start": 24057.32, + "end": 24059.58, + "probability": 0.5649 + }, + { + "start": 24059.8, + "end": 24061.34, + "probability": 0.2508 + }, + { + "start": 24062.8, + "end": 24063.8, + "probability": 0.2993 + }, + { + "start": 24064.38, + "end": 24065.38, + "probability": 0.3463 + }, + { + "start": 24065.82, + "end": 24065.82, + "probability": 0.0275 + }, + { + "start": 24065.82, + "end": 24065.82, + "probability": 0.254 + }, + { + "start": 24065.82, + "end": 24066.53, + "probability": 0.7233 + }, + { + "start": 24067.9, + "end": 24067.92, + "probability": 0.4475 + }, + { + "start": 24067.92, + "end": 24071.02, + "probability": 0.5694 + }, + { + "start": 24072.04, + "end": 24079.06, + "probability": 0.9678 + }, + { + "start": 24079.58, + "end": 24080.44, + "probability": 0.1414 + }, + { + "start": 24081.16, + "end": 24084.27, + "probability": 0.9913 + }, + { + "start": 24084.78, + "end": 24085.7, + "probability": 0.5952 + }, + { + "start": 24086.12, + "end": 24088.5, + "probability": 0.8794 + }, + { + "start": 24093.42, + "end": 24099.83, + "probability": 0.1406 + }, + { + "start": 24099.92, + "end": 24099.92, + "probability": 0.6373 + }, + { + "start": 24099.92, + "end": 24099.92, + "probability": 0.0975 + }, + { + "start": 24099.92, + "end": 24100.18, + "probability": 0.0252 + }, + { + "start": 24101.6, + "end": 24105.04, + "probability": 0.7416 + }, + { + "start": 24105.94, + "end": 24107.56, + "probability": 0.7581 + }, + { + "start": 24107.7, + "end": 24108.0, + "probability": 0.0336 + }, + { + "start": 24108.1, + "end": 24108.4, + "probability": 0.0574 + }, + { + "start": 24108.4, + "end": 24108.4, + "probability": 0.2402 + }, + { + "start": 24108.4, + "end": 24110.02, + "probability": 0.5132 + }, + { + "start": 24110.62, + "end": 24113.24, + "probability": 0.9609 + }, + { + "start": 24113.24, + "end": 24116.12, + "probability": 0.9758 + }, + { + "start": 24116.18, + "end": 24119.76, + "probability": 0.8055 + }, + { + "start": 24120.12, + "end": 24120.92, + "probability": 0.3969 + }, + { + "start": 24121.06, + "end": 24122.06, + "probability": 0.7325 + }, + { + "start": 24125.44, + "end": 24125.44, + "probability": 0.4106 + }, + { + "start": 24127.21, + "end": 24130.42, + "probability": 0.1135 + }, + { + "start": 24132.21, + "end": 24137.08, + "probability": 0.0617 + }, + { + "start": 24137.08, + "end": 24137.14, + "probability": 0.0758 + }, + { + "start": 24137.14, + "end": 24137.14, + "probability": 0.034 + }, + { + "start": 24137.14, + "end": 24139.4, + "probability": 0.32 + }, + { + "start": 24139.62, + "end": 24142.16, + "probability": 0.6943 + }, + { + "start": 24143.04, + "end": 24146.36, + "probability": 0.7559 + }, + { + "start": 24147.38, + "end": 24149.2, + "probability": 0.2124 + }, + { + "start": 24149.2, + "end": 24150.74, + "probability": 0.003 + }, + { + "start": 24151.04, + "end": 24151.18, + "probability": 0.0503 + }, + { + "start": 24152.42, + "end": 24152.6, + "probability": 0.2903 + }, + { + "start": 24152.6, + "end": 24152.6, + "probability": 0.3779 + }, + { + "start": 24152.6, + "end": 24152.74, + "probability": 0.1064 + }, + { + "start": 24153.94, + "end": 24155.69, + "probability": 0.9377 + }, + { + "start": 24156.5, + "end": 24158.74, + "probability": 0.677 + }, + { + "start": 24158.82, + "end": 24160.72, + "probability": 0.7134 + }, + { + "start": 24160.72, + "end": 24161.36, + "probability": 0.2626 + }, + { + "start": 24162.24, + "end": 24162.5, + "probability": 0.3506 + }, + { + "start": 24162.52, + "end": 24163.58, + "probability": 0.9307 + }, + { + "start": 24164.24, + "end": 24165.22, + "probability": 0.4599 + }, + { + "start": 24165.36, + "end": 24165.96, + "probability": 0.7867 + }, + { + "start": 24166.5, + "end": 24166.7, + "probability": 0.9459 + }, + { + "start": 24166.92, + "end": 24169.36, + "probability": 0.9279 + }, + { + "start": 24169.42, + "end": 24171.96, + "probability": 0.9911 + }, + { + "start": 24172.04, + "end": 24175.06, + "probability": 0.8284 + }, + { + "start": 24175.62, + "end": 24176.48, + "probability": 0.567 + }, + { + "start": 24178.82, + "end": 24178.82, + "probability": 0.01 + }, + { + "start": 24178.82, + "end": 24180.74, + "probability": 0.7754 + }, + { + "start": 24181.38, + "end": 24184.52, + "probability": 0.8523 + }, + { + "start": 24184.62, + "end": 24185.56, + "probability": 0.8679 + }, + { + "start": 24185.78, + "end": 24188.71, + "probability": 0.9926 + }, + { + "start": 24188.88, + "end": 24189.74, + "probability": 0.6702 + }, + { + "start": 24189.84, + "end": 24191.26, + "probability": 0.6151 + }, + { + "start": 24191.44, + "end": 24193.68, + "probability": 0.4347 + }, + { + "start": 24193.8, + "end": 24194.5, + "probability": 0.6053 + }, + { + "start": 24194.84, + "end": 24196.54, + "probability": 0.9662 + }, + { + "start": 24197.24, + "end": 24199.72, + "probability": 0.9947 + }, + { + "start": 24199.94, + "end": 24202.98, + "probability": 0.9985 + }, + { + "start": 24202.98, + "end": 24206.46, + "probability": 0.9967 + }, + { + "start": 24207.3, + "end": 24208.72, + "probability": 0.888 + }, + { + "start": 24209.12, + "end": 24210.15, + "probability": 0.6643 + }, + { + "start": 24210.88, + "end": 24211.3, + "probability": 0.5054 + }, + { + "start": 24211.3, + "end": 24212.36, + "probability": 0.7357 + }, + { + "start": 24212.86, + "end": 24214.17, + "probability": 0.9187 + }, + { + "start": 24214.32, + "end": 24215.52, + "probability": 0.6595 + }, + { + "start": 24215.66, + "end": 24216.66, + "probability": 0.9575 + }, + { + "start": 24218.9, + "end": 24222.12, + "probability": 0.1669 + }, + { + "start": 24222.12, + "end": 24231.04, + "probability": 0.0482 + }, + { + "start": 24231.04, + "end": 24231.56, + "probability": 0.0241 + }, + { + "start": 24235.08, + "end": 24235.5, + "probability": 0.2078 + }, + { + "start": 24235.5, + "end": 24235.5, + "probability": 0.1407 + }, + { + "start": 24235.5, + "end": 24238.02, + "probability": 0.5164 + }, + { + "start": 24238.54, + "end": 24240.92, + "probability": 0.7757 + }, + { + "start": 24241.04, + "end": 24242.3, + "probability": 0.5062 + }, + { + "start": 24242.84, + "end": 24246.62, + "probability": 0.8694 + }, + { + "start": 24246.62, + "end": 24249.08, + "probability": 0.9854 + }, + { + "start": 24249.64, + "end": 24253.24, + "probability": 0.6663 + }, + { + "start": 24253.74, + "end": 24254.98, + "probability": 0.5992 + }, + { + "start": 24259.62, + "end": 24264.36, + "probability": 0.7463 + }, + { + "start": 24264.64, + "end": 24267.36, + "probability": 0.7672 + }, + { + "start": 24268.0, + "end": 24269.7, + "probability": 0.9568 + }, + { + "start": 24277.84, + "end": 24279.66, + "probability": 0.7324 + }, + { + "start": 24280.92, + "end": 24284.14, + "probability": 0.9787 + }, + { + "start": 24284.86, + "end": 24286.54, + "probability": 0.9135 + }, + { + "start": 24287.14, + "end": 24292.22, + "probability": 0.9972 + }, + { + "start": 24292.82, + "end": 24294.0, + "probability": 0.9766 + }, + { + "start": 24294.34, + "end": 24297.26, + "probability": 0.9969 + }, + { + "start": 24298.14, + "end": 24300.8, + "probability": 0.8185 + }, + { + "start": 24301.52, + "end": 24301.92, + "probability": 0.4067 + }, + { + "start": 24302.0, + "end": 24302.88, + "probability": 0.8985 + }, + { + "start": 24303.36, + "end": 24303.58, + "probability": 0.6965 + }, + { + "start": 24303.68, + "end": 24304.06, + "probability": 0.4899 + }, + { + "start": 24304.28, + "end": 24304.44, + "probability": 0.7927 + }, + { + "start": 24304.48, + "end": 24305.1, + "probability": 0.8542 + }, + { + "start": 24305.12, + "end": 24306.36, + "probability": 0.9561 + }, + { + "start": 24307.24, + "end": 24307.46, + "probability": 0.3182 + }, + { + "start": 24307.62, + "end": 24313.26, + "probability": 0.8837 + }, + { + "start": 24313.84, + "end": 24315.12, + "probability": 0.6611 + }, + { + "start": 24315.5, + "end": 24321.76, + "probability": 0.9932 + }, + { + "start": 24322.2, + "end": 24323.84, + "probability": 0.9988 + }, + { + "start": 24323.92, + "end": 24324.28, + "probability": 0.9968 + }, + { + "start": 24325.04, + "end": 24325.28, + "probability": 0.8202 + }, + { + "start": 24325.28, + "end": 24327.54, + "probability": 0.9975 + }, + { + "start": 24327.54, + "end": 24330.16, + "probability": 0.9614 + }, + { + "start": 24330.54, + "end": 24333.28, + "probability": 0.991 + }, + { + "start": 24333.36, + "end": 24334.44, + "probability": 0.96 + }, + { + "start": 24334.86, + "end": 24336.28, + "probability": 0.9605 + }, + { + "start": 24337.12, + "end": 24337.76, + "probability": 0.8886 + }, + { + "start": 24338.98, + "end": 24341.82, + "probability": 0.9659 + }, + { + "start": 24342.66, + "end": 24343.44, + "probability": 0.76 + }, + { + "start": 24343.82, + "end": 24345.1, + "probability": 0.9387 + }, + { + "start": 24345.54, + "end": 24348.56, + "probability": 0.9775 + }, + { + "start": 24348.86, + "end": 24351.4, + "probability": 0.9906 + }, + { + "start": 24351.58, + "end": 24352.68, + "probability": 0.8718 + }, + { + "start": 24353.04, + "end": 24354.06, + "probability": 0.9542 + }, + { + "start": 24354.58, + "end": 24354.98, + "probability": 0.7661 + }, + { + "start": 24355.36, + "end": 24359.36, + "probability": 0.9858 + }, + { + "start": 24360.74, + "end": 24361.88, + "probability": 0.9758 + }, + { + "start": 24362.34, + "end": 24364.92, + "probability": 0.9817 + }, + { + "start": 24365.44, + "end": 24366.05, + "probability": 0.9756 + }, + { + "start": 24367.24, + "end": 24367.56, + "probability": 0.9326 + }, + { + "start": 24368.2, + "end": 24371.18, + "probability": 0.9868 + }, + { + "start": 24371.64, + "end": 24374.3, + "probability": 0.8785 + }, + { + "start": 24374.88, + "end": 24376.54, + "probability": 0.9415 + }, + { + "start": 24376.94, + "end": 24379.66, + "probability": 0.9971 + }, + { + "start": 24380.22, + "end": 24382.38, + "probability": 0.9941 + }, + { + "start": 24383.0, + "end": 24384.01, + "probability": 0.9864 + }, + { + "start": 24385.0, + "end": 24388.42, + "probability": 0.9895 + }, + { + "start": 24388.98, + "end": 24392.36, + "probability": 0.5872 + }, + { + "start": 24392.52, + "end": 24393.61, + "probability": 0.8381 + }, + { + "start": 24394.14, + "end": 24395.46, + "probability": 0.9904 + }, + { + "start": 24396.5, + "end": 24397.64, + "probability": 0.8221 + }, + { + "start": 24397.98, + "end": 24399.06, + "probability": 0.7408 + }, + { + "start": 24399.14, + "end": 24400.68, + "probability": 0.7752 + }, + { + "start": 24400.98, + "end": 24405.72, + "probability": 0.8967 + }, + { + "start": 24405.82, + "end": 24408.28, + "probability": 0.9863 + }, + { + "start": 24409.04, + "end": 24413.24, + "probability": 0.9816 + }, + { + "start": 24413.24, + "end": 24416.82, + "probability": 0.9979 + }, + { + "start": 24417.6, + "end": 24421.14, + "probability": 0.9915 + }, + { + "start": 24422.08, + "end": 24426.26, + "probability": 0.9539 + }, + { + "start": 24426.88, + "end": 24430.8, + "probability": 0.9928 + }, + { + "start": 24431.26, + "end": 24434.16, + "probability": 0.9661 + }, + { + "start": 24434.52, + "end": 24435.66, + "probability": 0.8848 + }, + { + "start": 24436.06, + "end": 24440.3, + "probability": 0.9827 + }, + { + "start": 24440.3, + "end": 24444.12, + "probability": 0.9973 + }, + { + "start": 24444.7, + "end": 24445.08, + "probability": 0.9346 + }, + { + "start": 24445.8, + "end": 24448.5, + "probability": 0.8303 + }, + { + "start": 24448.7, + "end": 24450.52, + "probability": 0.936 + }, + { + "start": 24450.82, + "end": 24452.42, + "probability": 0.8855 + }, + { + "start": 24452.72, + "end": 24453.04, + "probability": 0.6 + }, + { + "start": 24454.06, + "end": 24454.36, + "probability": 0.6878 + }, + { + "start": 24454.94, + "end": 24455.98, + "probability": 0.9185 + }, + { + "start": 24456.86, + "end": 24459.32, + "probability": 0.9889 + }, + { + "start": 24459.78, + "end": 24461.12, + "probability": 0.9424 + }, + { + "start": 24461.26, + "end": 24462.02, + "probability": 0.9762 + }, + { + "start": 24462.16, + "end": 24463.4, + "probability": 0.8325 + }, + { + "start": 24464.0, + "end": 24469.0, + "probability": 0.9911 + }, + { + "start": 24469.2, + "end": 24469.92, + "probability": 0.7838 + }, + { + "start": 24470.02, + "end": 24470.44, + "probability": 0.8462 + }, + { + "start": 24471.34, + "end": 24473.0, + "probability": 0.903 + }, + { + "start": 24473.64, + "end": 24477.17, + "probability": 0.9971 + }, + { + "start": 24478.12, + "end": 24480.4, + "probability": 0.9982 + }, + { + "start": 24480.72, + "end": 24482.14, + "probability": 0.9951 + }, + { + "start": 24482.62, + "end": 24485.44, + "probability": 0.9422 + }, + { + "start": 24486.1, + "end": 24487.48, + "probability": 0.926 + }, + { + "start": 24488.16, + "end": 24489.22, + "probability": 0.9924 + }, + { + "start": 24489.9, + "end": 24493.66, + "probability": 0.9751 + }, + { + "start": 24493.66, + "end": 24497.74, + "probability": 0.9993 + }, + { + "start": 24498.22, + "end": 24502.82, + "probability": 0.9956 + }, + { + "start": 24504.16, + "end": 24509.25, + "probability": 0.9939 + }, + { + "start": 24510.18, + "end": 24511.62, + "probability": 0.9993 + }, + { + "start": 24511.74, + "end": 24513.4, + "probability": 0.8888 + }, + { + "start": 24514.78, + "end": 24517.1, + "probability": 0.9684 + }, + { + "start": 24517.5, + "end": 24521.25, + "probability": 0.9478 + }, + { + "start": 24521.4, + "end": 24524.38, + "probability": 0.6514 + }, + { + "start": 24525.26, + "end": 24526.48, + "probability": 0.8994 + }, + { + "start": 24526.66, + "end": 24529.22, + "probability": 0.8247 + }, + { + "start": 24529.34, + "end": 24529.83, + "probability": 0.9712 + }, + { + "start": 24530.28, + "end": 24532.88, + "probability": 0.895 + }, + { + "start": 24533.82, + "end": 24534.85, + "probability": 0.9878 + }, + { + "start": 24535.76, + "end": 24540.6, + "probability": 0.9613 + }, + { + "start": 24540.6, + "end": 24544.7, + "probability": 0.9949 + }, + { + "start": 24545.08, + "end": 24547.92, + "probability": 0.9738 + }, + { + "start": 24547.92, + "end": 24551.42, + "probability": 0.9971 + }, + { + "start": 24551.94, + "end": 24553.76, + "probability": 0.9906 + }, + { + "start": 24554.28, + "end": 24555.2, + "probability": 0.9142 + }, + { + "start": 24556.26, + "end": 24557.64, + "probability": 0.9817 + }, + { + "start": 24557.8, + "end": 24560.36, + "probability": 0.7572 + }, + { + "start": 24560.38, + "end": 24561.68, + "probability": 0.4528 + }, + { + "start": 24561.68, + "end": 24563.12, + "probability": 0.9777 + }, + { + "start": 24563.5, + "end": 24564.02, + "probability": 0.9569 + }, + { + "start": 24564.54, + "end": 24564.9, + "probability": 0.5823 + }, + { + "start": 24564.98, + "end": 24565.83, + "probability": 0.7903 + }, + { + "start": 24566.58, + "end": 24567.7, + "probability": 0.9839 + }, + { + "start": 24568.36, + "end": 24572.44, + "probability": 0.7528 + }, + { + "start": 24573.44, + "end": 24577.86, + "probability": 0.9966 + }, + { + "start": 24578.32, + "end": 24581.66, + "probability": 0.9972 + }, + { + "start": 24582.56, + "end": 24584.52, + "probability": 0.9987 + }, + { + "start": 24585.14, + "end": 24588.8, + "probability": 0.9108 + }, + { + "start": 24589.58, + "end": 24592.54, + "probability": 0.9958 + }, + { + "start": 24593.14, + "end": 24597.06, + "probability": 0.9976 + }, + { + "start": 24597.06, + "end": 24602.44, + "probability": 0.9971 + }, + { + "start": 24602.9, + "end": 24604.12, + "probability": 0.9903 + }, + { + "start": 24604.54, + "end": 24609.32, + "probability": 0.9959 + }, + { + "start": 24609.38, + "end": 24610.56, + "probability": 0.7556 + }, + { + "start": 24610.7, + "end": 24614.5, + "probability": 0.9918 + }, + { + "start": 24615.26, + "end": 24620.62, + "probability": 0.9951 + }, + { + "start": 24621.08, + "end": 24623.9, + "probability": 0.9784 + }, + { + "start": 24625.1, + "end": 24626.38, + "probability": 0.8613 + }, + { + "start": 24626.5, + "end": 24628.34, + "probability": 0.8857 + }, + { + "start": 24629.18, + "end": 24632.22, + "probability": 0.6789 + }, + { + "start": 24632.76, + "end": 24633.98, + "probability": 0.801 + }, + { + "start": 24634.64, + "end": 24636.8, + "probability": 0.998 + }, + { + "start": 24636.9, + "end": 24641.08, + "probability": 0.969 + }, + { + "start": 24641.44, + "end": 24642.66, + "probability": 0.9134 + }, + { + "start": 24643.2, + "end": 24645.58, + "probability": 0.9988 + }, + { + "start": 24645.58, + "end": 24647.96, + "probability": 0.9697 + }, + { + "start": 24648.42, + "end": 24650.7, + "probability": 0.9716 + }, + { + "start": 24651.06, + "end": 24651.68, + "probability": 0.8334 + }, + { + "start": 24652.2, + "end": 24653.03, + "probability": 0.4417 + }, + { + "start": 24653.4, + "end": 24653.98, + "probability": 0.4941 + }, + { + "start": 24657.36, + "end": 24659.78, + "probability": 0.8018 + }, + { + "start": 24683.62, + "end": 24685.68, + "probability": 0.6377 + }, + { + "start": 24685.86, + "end": 24686.2, + "probability": 0.9122 + }, + { + "start": 24686.26, + "end": 24687.82, + "probability": 0.8659 + }, + { + "start": 24688.79, + "end": 24692.38, + "probability": 0.8879 + }, + { + "start": 24698.06, + "end": 24701.96, + "probability": 0.7779 + }, + { + "start": 24703.5, + "end": 24709.98, + "probability": 0.9218 + }, + { + "start": 24709.98, + "end": 24714.22, + "probability": 0.9773 + }, + { + "start": 24714.26, + "end": 24714.86, + "probability": 0.4815 + }, + { + "start": 24715.06, + "end": 24718.28, + "probability": 0.6654 + }, + { + "start": 24718.4, + "end": 24719.58, + "probability": 0.6925 + }, + { + "start": 24719.66, + "end": 24722.88, + "probability": 0.9393 + }, + { + "start": 24722.96, + "end": 24727.88, + "probability": 0.9318 + }, + { + "start": 24728.1, + "end": 24731.06, + "probability": 0.8302 + }, + { + "start": 24731.46, + "end": 24734.98, + "probability": 0.9974 + }, + { + "start": 24735.04, + "end": 24738.08, + "probability": 0.9835 + }, + { + "start": 24738.16, + "end": 24741.11, + "probability": 0.9801 + }, + { + "start": 24742.08, + "end": 24744.58, + "probability": 0.758 + }, + { + "start": 24745.18, + "end": 24746.92, + "probability": 0.6234 + }, + { + "start": 24746.98, + "end": 24748.12, + "probability": 0.952 + }, + { + "start": 24748.72, + "end": 24754.72, + "probability": 0.9348 + }, + { + "start": 24754.98, + "end": 24758.18, + "probability": 0.976 + }, + { + "start": 24758.26, + "end": 24763.54, + "probability": 0.9868 + }, + { + "start": 24764.0, + "end": 24764.72, + "probability": 0.7329 + }, + { + "start": 24764.78, + "end": 24768.12, + "probability": 0.983 + }, + { + "start": 24768.12, + "end": 24771.76, + "probability": 0.8888 + }, + { + "start": 24771.84, + "end": 24773.56, + "probability": 0.8064 + }, + { + "start": 24773.68, + "end": 24775.86, + "probability": 0.9805 + }, + { + "start": 24777.02, + "end": 24778.72, + "probability": 0.9395 + }, + { + "start": 24778.98, + "end": 24782.16, + "probability": 0.9644 + }, + { + "start": 24783.08, + "end": 24786.22, + "probability": 0.9986 + }, + { + "start": 24786.36, + "end": 24788.0, + "probability": 0.8496 + }, + { + "start": 24789.14, + "end": 24794.14, + "probability": 0.9725 + }, + { + "start": 24794.32, + "end": 24797.66, + "probability": 0.9882 + }, + { + "start": 24798.06, + "end": 24800.12, + "probability": 0.9942 + }, + { + "start": 24800.86, + "end": 24803.64, + "probability": 0.9948 + }, + { + "start": 24805.7, + "end": 24808.7, + "probability": 0.9899 + }, + { + "start": 24808.8, + "end": 24811.38, + "probability": 0.9787 + }, + { + "start": 24812.02, + "end": 24814.36, + "probability": 0.9954 + }, + { + "start": 24814.44, + "end": 24815.24, + "probability": 0.5641 + }, + { + "start": 24815.8, + "end": 24820.08, + "probability": 0.9917 + }, + { + "start": 24821.22, + "end": 24824.02, + "probability": 0.524 + }, + { + "start": 24826.17, + "end": 24828.36, + "probability": 0.9126 + }, + { + "start": 24828.36, + "end": 24828.94, + "probability": 0.7769 + }, + { + "start": 24829.98, + "end": 24832.72, + "probability": 0.998 + }, + { + "start": 24833.12, + "end": 24834.42, + "probability": 0.9276 + }, + { + "start": 24834.8, + "end": 24836.88, + "probability": 0.9951 + }, + { + "start": 24837.0, + "end": 24838.34, + "probability": 0.7769 + }, + { + "start": 24838.48, + "end": 24842.3, + "probability": 0.9419 + }, + { + "start": 24842.38, + "end": 24844.94, + "probability": 0.9697 + }, + { + "start": 24845.08, + "end": 24848.7, + "probability": 0.8713 + }, + { + "start": 24850.5, + "end": 24856.76, + "probability": 0.9883 + }, + { + "start": 24857.54, + "end": 24859.8, + "probability": 0.8469 + }, + { + "start": 24860.3, + "end": 24860.94, + "probability": 0.9257 + }, + { + "start": 24861.06, + "end": 24864.3, + "probability": 0.9768 + }, + { + "start": 24864.5, + "end": 24868.52, + "probability": 0.9088 + }, + { + "start": 24869.52, + "end": 24871.66, + "probability": 0.9387 + }, + { + "start": 24872.08, + "end": 24872.96, + "probability": 0.7173 + }, + { + "start": 24874.32, + "end": 24876.08, + "probability": 0.8153 + }, + { + "start": 24876.7, + "end": 24876.96, + "probability": 0.7262 + }, + { + "start": 24877.18, + "end": 24883.38, + "probability": 0.985 + }, + { + "start": 24883.6, + "end": 24885.22, + "probability": 0.9976 + }, + { + "start": 24885.84, + "end": 24889.54, + "probability": 0.9922 + }, + { + "start": 24890.0, + "end": 24894.36, + "probability": 0.769 + }, + { + "start": 24894.92, + "end": 24896.94, + "probability": 0.9271 + }, + { + "start": 24897.58, + "end": 24899.92, + "probability": 0.9948 + }, + { + "start": 24900.12, + "end": 24903.48, + "probability": 0.9681 + }, + { + "start": 24903.56, + "end": 24906.07, + "probability": 0.967 + }, + { + "start": 24906.38, + "end": 24906.88, + "probability": 0.9753 + }, + { + "start": 24907.54, + "end": 24908.03, + "probability": 0.5272 + }, + { + "start": 24908.65, + "end": 24914.86, + "probability": 0.9807 + }, + { + "start": 24915.56, + "end": 24916.64, + "probability": 0.7186 + }, + { + "start": 24916.74, + "end": 24920.76, + "probability": 0.8422 + }, + { + "start": 24920.86, + "end": 24922.66, + "probability": 0.9641 + }, + { + "start": 24922.74, + "end": 24924.1, + "probability": 0.8966 + }, + { + "start": 24924.84, + "end": 24927.64, + "probability": 0.9266 + }, + { + "start": 24928.08, + "end": 24931.62, + "probability": 0.98 + }, + { + "start": 24931.8, + "end": 24933.64, + "probability": 0.949 + }, + { + "start": 24933.74, + "end": 24939.42, + "probability": 0.979 + }, + { + "start": 24939.48, + "end": 24943.68, + "probability": 0.9838 + }, + { + "start": 24943.86, + "end": 24946.88, + "probability": 0.9985 + }, + { + "start": 24947.02, + "end": 24951.22, + "probability": 0.9476 + }, + { + "start": 24951.64, + "end": 24954.2, + "probability": 0.9653 + }, + { + "start": 24954.8, + "end": 24956.04, + "probability": 0.9219 + }, + { + "start": 24956.08, + "end": 24961.54, + "probability": 0.9702 + }, + { + "start": 24962.96, + "end": 24966.64, + "probability": 0.9915 + }, + { + "start": 24966.82, + "end": 24968.98, + "probability": 0.9012 + }, + { + "start": 24969.68, + "end": 24971.68, + "probability": 0.8463 + }, + { + "start": 24972.82, + "end": 24977.92, + "probability": 0.9438 + }, + { + "start": 24978.9, + "end": 24981.94, + "probability": 0.9957 + }, + { + "start": 24982.62, + "end": 24987.92, + "probability": 0.996 + }, + { + "start": 24988.14, + "end": 24993.0, + "probability": 0.998 + }, + { + "start": 24993.0, + "end": 24998.2, + "probability": 0.9989 + }, + { + "start": 24999.68, + "end": 25004.62, + "probability": 0.9448 + }, + { + "start": 25006.18, + "end": 25006.74, + "probability": 0.8468 + }, + { + "start": 25006.82, + "end": 25007.88, + "probability": 0.8925 + }, + { + "start": 25008.52, + "end": 25010.04, + "probability": 0.927 + }, + { + "start": 25010.78, + "end": 25014.3, + "probability": 0.9565 + }, + { + "start": 25014.48, + "end": 25018.02, + "probability": 0.9998 + }, + { + "start": 25018.16, + "end": 25019.74, + "probability": 0.6664 + }, + { + "start": 25020.18, + "end": 25022.02, + "probability": 0.8884 + }, + { + "start": 25022.64, + "end": 25027.06, + "probability": 0.9861 + }, + { + "start": 25027.24, + "end": 25028.96, + "probability": 0.9954 + }, + { + "start": 25029.08, + "end": 25030.4, + "probability": 0.9943 + }, + { + "start": 25030.98, + "end": 25032.58, + "probability": 0.8372 + }, + { + "start": 25033.66, + "end": 25037.94, + "probability": 0.9955 + }, + { + "start": 25037.94, + "end": 25044.22, + "probability": 0.9938 + }, + { + "start": 25044.36, + "end": 25045.06, + "probability": 0.9498 + }, + { + "start": 25045.24, + "end": 25045.66, + "probability": 0.9604 + }, + { + "start": 25045.82, + "end": 25046.52, + "probability": 0.9605 + }, + { + "start": 25047.0, + "end": 25047.7, + "probability": 0.9286 + }, + { + "start": 25047.88, + "end": 25054.24, + "probability": 0.9686 + }, + { + "start": 25055.36, + "end": 25061.52, + "probability": 0.9239 + }, + { + "start": 25062.56, + "end": 25063.68, + "probability": 0.999 + }, + { + "start": 25064.0, + "end": 25064.96, + "probability": 0.9068 + }, + { + "start": 25065.2, + "end": 25069.66, + "probability": 0.9311 + }, + { + "start": 25069.7, + "end": 25073.8, + "probability": 0.9971 + }, + { + "start": 25073.94, + "end": 25077.96, + "probability": 0.9974 + }, + { + "start": 25078.44, + "end": 25078.88, + "probability": 0.6772 + }, + { + "start": 25079.04, + "end": 25084.12, + "probability": 0.9995 + }, + { + "start": 25084.64, + "end": 25088.8, + "probability": 0.9977 + }, + { + "start": 25088.8, + "end": 25093.5, + "probability": 0.9811 + }, + { + "start": 25093.98, + "end": 25097.5, + "probability": 0.9351 + }, + { + "start": 25098.0, + "end": 25103.34, + "probability": 0.9975 + }, + { + "start": 25103.44, + "end": 25109.5, + "probability": 0.9456 + }, + { + "start": 25109.5, + "end": 25114.19, + "probability": 0.9906 + }, + { + "start": 25116.88, + "end": 25123.86, + "probability": 0.9666 + }, + { + "start": 25123.86, + "end": 25131.78, + "probability": 0.7694 + }, + { + "start": 25131.78, + "end": 25135.94, + "probability": 0.8827 + }, + { + "start": 25137.2, + "end": 25143.38, + "probability": 0.9785 + }, + { + "start": 25143.44, + "end": 25146.18, + "probability": 0.9844 + }, + { + "start": 25146.82, + "end": 25152.06, + "probability": 0.9638 + }, + { + "start": 25153.46, + "end": 25156.08, + "probability": 0.9744 + }, + { + "start": 25156.6, + "end": 25160.71, + "probability": 0.994 + }, + { + "start": 25160.74, + "end": 25164.88, + "probability": 0.9995 + }, + { + "start": 25165.06, + "end": 25167.18, + "probability": 0.9725 + }, + { + "start": 25168.16, + "end": 25168.9, + "probability": 0.4806 + }, + { + "start": 25169.08, + "end": 25169.74, + "probability": 0.4055 + }, + { + "start": 25170.0, + "end": 25173.96, + "probability": 0.991 + }, + { + "start": 25174.54, + "end": 25176.38, + "probability": 0.9866 + }, + { + "start": 25177.64, + "end": 25182.4, + "probability": 0.9722 + }, + { + "start": 25182.64, + "end": 25185.1, + "probability": 0.8062 + }, + { + "start": 25185.7, + "end": 25188.45, + "probability": 0.9856 + }, + { + "start": 25189.71, + "end": 25192.54, + "probability": 0.9224 + }, + { + "start": 25193.12, + "end": 25198.3, + "probability": 0.9714 + }, + { + "start": 25198.3, + "end": 25203.64, + "probability": 0.9781 + }, + { + "start": 25205.16, + "end": 25211.12, + "probability": 0.9952 + }, + { + "start": 25211.9, + "end": 25213.42, + "probability": 0.9922 + }, + { + "start": 25214.54, + "end": 25217.76, + "probability": 0.9956 + }, + { + "start": 25219.34, + "end": 25222.8, + "probability": 0.9595 + }, + { + "start": 25222.98, + "end": 25223.22, + "probability": 0.8513 + }, + { + "start": 25223.32, + "end": 25224.31, + "probability": 0.7989 + }, + { + "start": 25224.96, + "end": 25228.76, + "probability": 0.9608 + }, + { + "start": 25228.76, + "end": 25233.04, + "probability": 0.9501 + }, + { + "start": 25233.42, + "end": 25235.82, + "probability": 0.9963 + }, + { + "start": 25236.46, + "end": 25239.96, + "probability": 0.9959 + }, + { + "start": 25239.96, + "end": 25245.0, + "probability": 0.9937 + }, + { + "start": 25245.72, + "end": 25247.52, + "probability": 0.9966 + }, + { + "start": 25247.52, + "end": 25250.4, + "probability": 0.9992 + }, + { + "start": 25250.96, + "end": 25253.92, + "probability": 0.9948 + }, + { + "start": 25255.6, + "end": 25257.36, + "probability": 0.9982 + }, + { + "start": 25257.56, + "end": 25259.98, + "probability": 0.9993 + }, + { + "start": 25261.18, + "end": 25265.24, + "probability": 0.9925 + }, + { + "start": 25265.88, + "end": 25269.66, + "probability": 0.9934 + }, + { + "start": 25269.66, + "end": 25274.28, + "probability": 0.9415 + }, + { + "start": 25275.58, + "end": 25279.8, + "probability": 0.9964 + }, + { + "start": 25280.38, + "end": 25281.0, + "probability": 0.9685 + }, + { + "start": 25281.22, + "end": 25284.34, + "probability": 0.993 + }, + { + "start": 25284.58, + "end": 25288.34, + "probability": 0.9011 + }, + { + "start": 25288.4, + "end": 25291.82, + "probability": 0.9702 + }, + { + "start": 25298.1, + "end": 25305.94, + "probability": 0.9978 + }, + { + "start": 25305.98, + "end": 25306.56, + "probability": 0.7723 + }, + { + "start": 25307.06, + "end": 25313.14, + "probability": 0.994 + }, + { + "start": 25313.32, + "end": 25315.02, + "probability": 0.9421 + }, + { + "start": 25315.56, + "end": 25316.45, + "probability": 0.7116 + }, + { + "start": 25317.1, + "end": 25319.06, + "probability": 0.8563 + }, + { + "start": 25319.7, + "end": 25321.36, + "probability": 0.9354 + }, + { + "start": 25321.4, + "end": 25322.28, + "probability": 0.5779 + }, + { + "start": 25322.48, + "end": 25327.7, + "probability": 0.9441 + }, + { + "start": 25328.2, + "end": 25331.14, + "probability": 0.9984 + }, + { + "start": 25332.02, + "end": 25337.0, + "probability": 0.9986 + }, + { + "start": 25337.6, + "end": 25340.72, + "probability": 0.9971 + }, + { + "start": 25340.72, + "end": 25345.76, + "probability": 0.9953 + }, + { + "start": 25345.82, + "end": 25346.26, + "probability": 0.7384 + }, + { + "start": 25346.42, + "end": 25347.54, + "probability": 0.5148 + }, + { + "start": 25348.22, + "end": 25349.36, + "probability": 0.7829 + }, + { + "start": 25349.48, + "end": 25352.38, + "probability": 0.9708 + }, + { + "start": 25352.38, + "end": 25353.48, + "probability": 0.9103 + }, + { + "start": 25375.62, + "end": 25377.38, + "probability": 0.9655 + }, + { + "start": 25377.62, + "end": 25378.74, + "probability": 0.5448 + }, + { + "start": 25378.88, + "end": 25380.42, + "probability": 0.9513 + }, + { + "start": 25381.02, + "end": 25383.04, + "probability": 0.9556 + }, + { + "start": 25383.36, + "end": 25383.78, + "probability": 0.7549 + }, + { + "start": 25385.0, + "end": 25387.16, + "probability": 0.7993 + }, + { + "start": 25387.26, + "end": 25388.25, + "probability": 0.9895 + }, + { + "start": 25388.52, + "end": 25389.22, + "probability": 0.9436 + }, + { + "start": 25390.0, + "end": 25390.0, + "probability": 0.0237 + }, + { + "start": 25390.66, + "end": 25391.62, + "probability": 0.804 + }, + { + "start": 25392.42, + "end": 25393.28, + "probability": 0.2158 + }, + { + "start": 25393.56, + "end": 25394.52, + "probability": 0.0325 + }, + { + "start": 25394.52, + "end": 25396.62, + "probability": 0.7953 + }, + { + "start": 25397.16, + "end": 25398.16, + "probability": 0.8721 + }, + { + "start": 25398.3, + "end": 25400.9, + "probability": 0.9714 + }, + { + "start": 25400.9, + "end": 25404.05, + "probability": 0.8395 + }, + { + "start": 25405.2, + "end": 25408.22, + "probability": 0.9741 + }, + { + "start": 25408.32, + "end": 25409.54, + "probability": 0.6762 + }, + { + "start": 25409.7, + "end": 25411.66, + "probability": 0.9189 + }, + { + "start": 25412.24, + "end": 25412.96, + "probability": 0.7764 + }, + { + "start": 25413.46, + "end": 25414.85, + "probability": 0.9985 + }, + { + "start": 25415.1, + "end": 25417.62, + "probability": 0.9703 + }, + { + "start": 25417.96, + "end": 25420.18, + "probability": 0.9831 + }, + { + "start": 25420.3, + "end": 25421.6, + "probability": 0.8715 + }, + { + "start": 25422.22, + "end": 25423.72, + "probability": 0.5542 + }, + { + "start": 25423.8, + "end": 25425.58, + "probability": 0.7382 + }, + { + "start": 25425.7, + "end": 25428.6, + "probability": 0.9948 + }, + { + "start": 25428.6, + "end": 25432.7, + "probability": 0.9992 + }, + { + "start": 25433.38, + "end": 25435.71, + "probability": 0.7292 + }, + { + "start": 25436.64, + "end": 25440.83, + "probability": 0.9887 + }, + { + "start": 25441.76, + "end": 25444.37, + "probability": 0.9982 + }, + { + "start": 25444.96, + "end": 25449.5, + "probability": 0.9875 + }, + { + "start": 25449.8, + "end": 25450.5, + "probability": 0.8857 + }, + { + "start": 25451.46, + "end": 25457.24, + "probability": 0.9912 + }, + { + "start": 25457.54, + "end": 25459.42, + "probability": 0.9939 + }, + { + "start": 25459.76, + "end": 25461.7, + "probability": 0.9956 + }, + { + "start": 25462.18, + "end": 25467.08, + "probability": 0.9901 + }, + { + "start": 25467.54, + "end": 25470.16, + "probability": 0.9971 + }, + { + "start": 25470.78, + "end": 25473.8, + "probability": 0.9552 + }, + { + "start": 25474.1, + "end": 25479.3, + "probability": 0.9071 + }, + { + "start": 25479.56, + "end": 25480.44, + "probability": 0.7189 + }, + { + "start": 25480.5, + "end": 25483.1, + "probability": 0.9943 + }, + { + "start": 25483.8, + "end": 25487.24, + "probability": 0.9401 + }, + { + "start": 25487.38, + "end": 25488.7, + "probability": 0.9953 + }, + { + "start": 25489.52, + "end": 25494.1, + "probability": 0.7628 + }, + { + "start": 25494.66, + "end": 25496.32, + "probability": 0.8578 + }, + { + "start": 25496.44, + "end": 25499.04, + "probability": 0.8999 + }, + { + "start": 25500.34, + "end": 25501.3, + "probability": 0.0086 + }, + { + "start": 25501.3, + "end": 25503.04, + "probability": 0.9399 + }, + { + "start": 25503.12, + "end": 25504.61, + "probability": 0.9988 + }, + { + "start": 25505.16, + "end": 25507.5, + "probability": 0.9468 + }, + { + "start": 25507.94, + "end": 25508.5, + "probability": 0.5496 + }, + { + "start": 25509.04, + "end": 25513.2, + "probability": 0.9942 + }, + { + "start": 25513.86, + "end": 25516.38, + "probability": 0.9731 + }, + { + "start": 25518.02, + "end": 25519.44, + "probability": 0.1504 + }, + { + "start": 25519.44, + "end": 25520.59, + "probability": 0.9504 + }, + { + "start": 25521.46, + "end": 25523.9, + "probability": 0.9652 + }, + { + "start": 25524.44, + "end": 25526.58, + "probability": 0.9854 + }, + { + "start": 25527.06, + "end": 25528.62, + "probability": 0.9893 + }, + { + "start": 25528.8, + "end": 25529.36, + "probability": 0.5676 + }, + { + "start": 25529.5, + "end": 25530.27, + "probability": 0.709 + }, + { + "start": 25531.04, + "end": 25534.14, + "probability": 0.9563 + }, + { + "start": 25534.24, + "end": 25538.2, + "probability": 0.9968 + }, + { + "start": 25538.5, + "end": 25539.3, + "probability": 0.9076 + }, + { + "start": 25539.52, + "end": 25542.42, + "probability": 0.9935 + }, + { + "start": 25542.64, + "end": 25543.73, + "probability": 0.9951 + }, + { + "start": 25544.2, + "end": 25546.54, + "probability": 0.9964 + }, + { + "start": 25546.86, + "end": 25550.0, + "probability": 0.9993 + }, + { + "start": 25550.3, + "end": 25553.9, + "probability": 0.934 + }, + { + "start": 25555.98, + "end": 25558.94, + "probability": 0.9121 + }, + { + "start": 25559.08, + "end": 25559.3, + "probability": 0.7788 + }, + { + "start": 25559.32, + "end": 25561.22, + "probability": 0.9866 + }, + { + "start": 25561.32, + "end": 25562.44, + "probability": 0.8072 + }, + { + "start": 25562.54, + "end": 25565.24, + "probability": 0.9219 + }, + { + "start": 25566.5, + "end": 25571.5, + "probability": 0.9969 + }, + { + "start": 25572.22, + "end": 25573.78, + "probability": 0.9912 + }, + { + "start": 25573.9, + "end": 25575.88, + "probability": 0.9877 + }, + { + "start": 25575.98, + "end": 25578.68, + "probability": 0.9918 + }, + { + "start": 25578.68, + "end": 25582.02, + "probability": 0.999 + }, + { + "start": 25582.46, + "end": 25582.9, + "probability": 0.8098 + }, + { + "start": 25582.94, + "end": 25586.5, + "probability": 0.9692 + }, + { + "start": 25586.5, + "end": 25591.68, + "probability": 0.999 + }, + { + "start": 25591.78, + "end": 25596.76, + "probability": 0.9765 + }, + { + "start": 25597.36, + "end": 25599.52, + "probability": 0.9985 + }, + { + "start": 25599.52, + "end": 25599.54, + "probability": 0.3544 + }, + { + "start": 25599.54, + "end": 25602.62, + "probability": 0.9985 + }, + { + "start": 25602.68, + "end": 25605.82, + "probability": 0.9905 + }, + { + "start": 25606.12, + "end": 25609.36, + "probability": 0.9978 + }, + { + "start": 25609.42, + "end": 25609.76, + "probability": 0.7385 + }, + { + "start": 25611.02, + "end": 25611.46, + "probability": 0.8544 + }, + { + "start": 25612.28, + "end": 25613.42, + "probability": 0.6965 + }, + { + "start": 25619.48, + "end": 25620.42, + "probability": 0.2202 + }, + { + "start": 25621.0, + "end": 25627.44, + "probability": 0.9901 + }, + { + "start": 25628.32, + "end": 25630.26, + "probability": 0.9681 + }, + { + "start": 25630.26, + "end": 25632.44, + "probability": 0.998 + }, + { + "start": 25632.62, + "end": 25634.78, + "probability": 0.4248 + }, + { + "start": 25635.14, + "end": 25638.6, + "probability": 0.8521 + }, + { + "start": 25639.16, + "end": 25639.68, + "probability": 0.5477 + }, + { + "start": 25642.82, + "end": 25643.88, + "probability": 0.2161 + }, + { + "start": 25646.12, + "end": 25647.88, + "probability": 0.1487 + }, + { + "start": 25647.88, + "end": 25647.88, + "probability": 0.0872 + }, + { + "start": 25650.61, + "end": 25650.68, + "probability": 0.0659 + }, + { + "start": 25650.68, + "end": 25653.0, + "probability": 0.285 + }, + { + "start": 25653.1, + "end": 25656.76, + "probability": 0.5084 + }, + { + "start": 25657.38, + "end": 25659.1, + "probability": 0.7694 + }, + { + "start": 25659.6, + "end": 25664.82, + "probability": 0.7527 + }, + { + "start": 25665.49, + "end": 25669.34, + "probability": 0.7853 + }, + { + "start": 25669.34, + "end": 25669.4, + "probability": 0.4517 + }, + { + "start": 25669.4, + "end": 25670.92, + "probability": 0.8579 + }, + { + "start": 25671.28, + "end": 25672.38, + "probability": 0.7694 + }, + { + "start": 25673.84, + "end": 25674.56, + "probability": 0.8483 + }, + { + "start": 25676.56, + "end": 25677.4, + "probability": 0.1441 + }, + { + "start": 25691.38, + "end": 25693.08, + "probability": 0.6718 + }, + { + "start": 25694.08, + "end": 25697.8, + "probability": 0.8758 + }, + { + "start": 25698.58, + "end": 25699.9, + "probability": 0.7906 + }, + { + "start": 25699.96, + "end": 25708.08, + "probability": 0.8013 + }, + { + "start": 25708.28, + "end": 25708.92, + "probability": 0.4492 + }, + { + "start": 25709.16, + "end": 25709.34, + "probability": 0.0319 + }, + { + "start": 25709.34, + "end": 25709.92, + "probability": 0.3456 + }, + { + "start": 25710.36, + "end": 25711.26, + "probability": 0.0975 + }, + { + "start": 25711.26, + "end": 25711.28, + "probability": 0.5309 + }, + { + "start": 25711.94, + "end": 25714.6, + "probability": 0.9785 + }, + { + "start": 25715.98, + "end": 25719.56, + "probability": 0.9509 + }, + { + "start": 25721.84, + "end": 25725.36, + "probability": 0.9934 + }, + { + "start": 25725.36, + "end": 25729.8, + "probability": 0.9969 + }, + { + "start": 25731.14, + "end": 25734.7, + "probability": 0.965 + }, + { + "start": 25735.58, + "end": 25739.82, + "probability": 0.8611 + }, + { + "start": 25740.34, + "end": 25747.32, + "probability": 0.9496 + }, + { + "start": 25748.1, + "end": 25749.94, + "probability": 0.9979 + }, + { + "start": 25751.48, + "end": 25759.58, + "probability": 0.9756 + }, + { + "start": 25760.64, + "end": 25765.72, + "probability": 0.8857 + }, + { + "start": 25766.8, + "end": 25770.88, + "probability": 0.9971 + }, + { + "start": 25772.14, + "end": 25777.04, + "probability": 0.993 + }, + { + "start": 25778.14, + "end": 25781.82, + "probability": 0.9539 + }, + { + "start": 25782.78, + "end": 25787.26, + "probability": 0.9178 + }, + { + "start": 25788.34, + "end": 25790.09, + "probability": 0.9966 + }, + { + "start": 25791.06, + "end": 25792.58, + "probability": 0.9474 + }, + { + "start": 25793.36, + "end": 25797.7, + "probability": 0.9834 + }, + { + "start": 25800.26, + "end": 25803.24, + "probability": 0.9812 + }, + { + "start": 25803.92, + "end": 25806.54, + "probability": 0.661 + }, + { + "start": 25807.7, + "end": 25809.82, + "probability": 0.969 + }, + { + "start": 25810.96, + "end": 25813.5, + "probability": 0.6892 + }, + { + "start": 25814.66, + "end": 25816.22, + "probability": 0.4701 + }, + { + "start": 25817.04, + "end": 25823.94, + "probability": 0.9923 + }, + { + "start": 25823.94, + "end": 25829.46, + "probability": 0.886 + }, + { + "start": 25830.98, + "end": 25832.3, + "probability": 0.8582 + }, + { + "start": 25832.96, + "end": 25839.0, + "probability": 0.966 + }, + { + "start": 25840.2, + "end": 25842.66, + "probability": 0.9967 + }, + { + "start": 25843.46, + "end": 25844.1, + "probability": 0.9715 + }, + { + "start": 25844.72, + "end": 25847.04, + "probability": 0.9295 + }, + { + "start": 25848.36, + "end": 25849.02, + "probability": 0.8947 + }, + { + "start": 25849.28, + "end": 25850.04, + "probability": 0.577 + }, + { + "start": 25850.48, + "end": 25854.6, + "probability": 0.9303 + }, + { + "start": 25855.44, + "end": 25858.54, + "probability": 0.9836 + }, + { + "start": 25859.46, + "end": 25863.02, + "probability": 0.962 + }, + { + "start": 25863.58, + "end": 25863.94, + "probability": 0.9119 + }, + { + "start": 25865.42, + "end": 25872.12, + "probability": 0.9826 + }, + { + "start": 25873.02, + "end": 25874.14, + "probability": 0.9451 + }, + { + "start": 25874.82, + "end": 25876.94, + "probability": 0.9441 + }, + { + "start": 25877.56, + "end": 25878.64, + "probability": 0.8669 + }, + { + "start": 25879.14, + "end": 25881.0, + "probability": 0.9045 + }, + { + "start": 25881.42, + "end": 25882.98, + "probability": 0.9541 + }, + { + "start": 25883.28, + "end": 25885.4, + "probability": 0.9823 + }, + { + "start": 25885.92, + "end": 25886.98, + "probability": 0.8627 + }, + { + "start": 25887.56, + "end": 25891.24, + "probability": 0.9661 + }, + { + "start": 25892.2, + "end": 25895.92, + "probability": 0.9049 + }, + { + "start": 25896.68, + "end": 25902.94, + "probability": 0.9826 + }, + { + "start": 25903.46, + "end": 25905.1, + "probability": 0.9483 + }, + { + "start": 25905.64, + "end": 25909.74, + "probability": 0.9688 + }, + { + "start": 25910.3, + "end": 25911.52, + "probability": 0.8352 + }, + { + "start": 25911.7, + "end": 25913.12, + "probability": 0.9629 + }, + { + "start": 25913.58, + "end": 25915.56, + "probability": 0.8272 + }, + { + "start": 25916.84, + "end": 25921.16, + "probability": 0.9814 + }, + { + "start": 25921.72, + "end": 25924.7, + "probability": 0.941 + }, + { + "start": 25925.78, + "end": 25926.5, + "probability": 0.4433 + }, + { + "start": 25927.16, + "end": 25930.02, + "probability": 0.6141 + }, + { + "start": 25931.42, + "end": 25934.86, + "probability": 0.9946 + }, + { + "start": 25935.1, + "end": 25935.36, + "probability": 0.6268 + }, + { + "start": 25936.86, + "end": 25937.52, + "probability": 0.608 + }, + { + "start": 25938.92, + "end": 25943.02, + "probability": 0.8345 + }, + { + "start": 25946.46, + "end": 25948.06, + "probability": 0.7989 + }, + { + "start": 25948.84, + "end": 25949.82, + "probability": 0.1325 + }, + { + "start": 25951.36, + "end": 25952.66, + "probability": 0.297 + }, + { + "start": 25953.4, + "end": 25953.6, + "probability": 0.2925 + }, + { + "start": 25954.66, + "end": 25956.84, + "probability": 0.0516 + }, + { + "start": 25957.02, + "end": 25961.24, + "probability": 0.1636 + }, + { + "start": 25961.38, + "end": 25963.1, + "probability": 0.0818 + }, + { + "start": 25963.7, + "end": 25964.36, + "probability": 0.0511 + }, + { + "start": 25966.44, + "end": 25966.52, + "probability": 0.009 + }, + { + "start": 25970.56, + "end": 25972.06, + "probability": 0.2054 + }, + { + "start": 25973.1, + "end": 25974.06, + "probability": 0.1188 + }, + { + "start": 25976.58, + "end": 25977.06, + "probability": 0.1529 + }, + { + "start": 25981.95, + "end": 25983.2, + "probability": 0.0185 + }, + { + "start": 25983.34, + "end": 25983.41, + "probability": 0.3354 + }, + { + "start": 25985.78, + "end": 25988.1, + "probability": 0.8686 + }, + { + "start": 25988.72, + "end": 25991.31, + "probability": 0.9509 + }, + { + "start": 25992.28, + "end": 25995.38, + "probability": 0.9279 + }, + { + "start": 25996.2, + "end": 25999.68, + "probability": 0.9846 + }, + { + "start": 26000.78, + "end": 26001.66, + "probability": 0.9022 + }, + { + "start": 26003.08, + "end": 26004.38, + "probability": 0.7541 + }, + { + "start": 26004.62, + "end": 26005.74, + "probability": 0.767 + }, + { + "start": 26005.88, + "end": 26006.98, + "probability": 0.8923 + }, + { + "start": 26007.9, + "end": 26010.02, + "probability": 0.3377 + }, + { + "start": 26010.42, + "end": 26011.76, + "probability": 0.0223 + }, + { + "start": 26012.16, + "end": 26013.62, + "probability": 0.0836 + }, + { + "start": 26013.8, + "end": 26015.14, + "probability": 0.1787 + }, + { + "start": 26016.5, + "end": 26018.8, + "probability": 0.4417 + }, + { + "start": 26019.04, + "end": 26021.42, + "probability": 0.7428 + }, + { + "start": 26021.84, + "end": 26024.96, + "probability": 0.9307 + }, + { + "start": 26025.08, + "end": 26028.32, + "probability": 0.1687 + }, + { + "start": 26030.38, + "end": 26034.68, + "probability": 0.761 + }, + { + "start": 26034.96, + "end": 26036.3, + "probability": 0.9135 + }, + { + "start": 26036.64, + "end": 26041.8, + "probability": 0.9501 + }, + { + "start": 26041.98, + "end": 26043.0, + "probability": 0.8765 + }, + { + "start": 26043.0, + "end": 26043.02, + "probability": 0.0826 + }, + { + "start": 26043.62, + "end": 26043.86, + "probability": 0.214 + }, + { + "start": 26043.88, + "end": 26043.88, + "probability": 0.1368 + }, + { + "start": 26043.88, + "end": 26045.96, + "probability": 0.7646 + }, + { + "start": 26046.48, + "end": 26048.94, + "probability": 0.9966 + }, + { + "start": 26050.0, + "end": 26052.88, + "probability": 0.9884 + }, + { + "start": 26053.02, + "end": 26054.48, + "probability": 0.9133 + }, + { + "start": 26055.84, + "end": 26057.4, + "probability": 0.9526 + }, + { + "start": 26057.84, + "end": 26058.1, + "probability": 0.369 + }, + { + "start": 26059.88, + "end": 26061.1, + "probability": 0.6229 + }, + { + "start": 26061.88, + "end": 26063.58, + "probability": 0.995 + }, + { + "start": 26064.46, + "end": 26069.54, + "probability": 0.9692 + }, + { + "start": 26069.6, + "end": 26070.62, + "probability": 0.9673 + }, + { + "start": 26071.2, + "end": 26077.54, + "probability": 0.9782 + }, + { + "start": 26078.24, + "end": 26082.08, + "probability": 0.9931 + }, + { + "start": 26082.34, + "end": 26082.7, + "probability": 0.8965 + }, + { + "start": 26083.46, + "end": 26086.46, + "probability": 0.9402 + }, + { + "start": 26087.5, + "end": 26090.42, + "probability": 0.977 + }, + { + "start": 26091.26, + "end": 26093.48, + "probability": 0.8487 + }, + { + "start": 26094.5, + "end": 26097.5, + "probability": 0.9873 + }, + { + "start": 26097.56, + "end": 26100.74, + "probability": 0.9922 + }, + { + "start": 26101.7, + "end": 26102.88, + "probability": 0.9528 + }, + { + "start": 26103.7, + "end": 26106.82, + "probability": 0.9845 + }, + { + "start": 26107.58, + "end": 26110.4, + "probability": 0.818 + }, + { + "start": 26111.28, + "end": 26115.24, + "probability": 0.9886 + }, + { + "start": 26116.04, + "end": 26117.34, + "probability": 0.865 + }, + { + "start": 26118.14, + "end": 26120.16, + "probability": 0.9594 + }, + { + "start": 26120.92, + "end": 26123.28, + "probability": 0.9806 + }, + { + "start": 26124.12, + "end": 26127.26, + "probability": 0.9967 + }, + { + "start": 26127.92, + "end": 26130.04, + "probability": 0.9958 + }, + { + "start": 26130.74, + "end": 26135.0, + "probability": 0.9583 + }, + { + "start": 26135.7, + "end": 26136.82, + "probability": 0.9911 + }, + { + "start": 26138.16, + "end": 26140.8, + "probability": 0.9919 + }, + { + "start": 26141.62, + "end": 26143.3, + "probability": 0.9945 + }, + { + "start": 26144.28, + "end": 26150.04, + "probability": 0.9992 + }, + { + "start": 26150.9, + "end": 26154.16, + "probability": 0.9962 + }, + { + "start": 26154.82, + "end": 26159.06, + "probability": 0.9927 + }, + { + "start": 26159.82, + "end": 26161.74, + "probability": 0.998 + }, + { + "start": 26162.36, + "end": 26162.68, + "probability": 0.9852 + }, + { + "start": 26163.0, + "end": 26167.08, + "probability": 0.9973 + }, + { + "start": 26168.4, + "end": 26171.1, + "probability": 0.9751 + }, + { + "start": 26171.8, + "end": 26174.48, + "probability": 0.9959 + }, + { + "start": 26174.48, + "end": 26178.0, + "probability": 0.9927 + }, + { + "start": 26178.06, + "end": 26178.84, + "probability": 0.8115 + }, + { + "start": 26179.14, + "end": 26179.36, + "probability": 0.5834 + }, + { + "start": 26179.38, + "end": 26180.66, + "probability": 0.9954 + }, + { + "start": 26180.76, + "end": 26181.78, + "probability": 0.8168 + }, + { + "start": 26181.84, + "end": 26182.38, + "probability": 0.949 + }, + { + "start": 26182.4, + "end": 26182.98, + "probability": 0.663 + }, + { + "start": 26183.06, + "end": 26183.28, + "probability": 0.8691 + }, + { + "start": 26183.3, + "end": 26184.56, + "probability": 0.9442 + }, + { + "start": 26185.4, + "end": 26186.76, + "probability": 0.8288 + }, + { + "start": 26187.84, + "end": 26191.22, + "probability": 0.9775 + }, + { + "start": 26191.24, + "end": 26194.02, + "probability": 0.9978 + }, + { + "start": 26195.02, + "end": 26199.5, + "probability": 0.8423 + }, + { + "start": 26200.24, + "end": 26202.04, + "probability": 0.9762 + }, + { + "start": 26202.96, + "end": 26205.82, + "probability": 0.9929 + }, + { + "start": 26206.26, + "end": 26207.84, + "probability": 0.7824 + }, + { + "start": 26208.42, + "end": 26208.62, + "probability": 0.1204 + }, + { + "start": 26208.62, + "end": 26209.0, + "probability": 0.632 + }, + { + "start": 26209.82, + "end": 26212.9, + "probability": 0.774 + }, + { + "start": 26213.26, + "end": 26217.1, + "probability": 0.9503 + }, + { + "start": 26217.22, + "end": 26218.7, + "probability": 0.9919 + }, + { + "start": 26219.3, + "end": 26222.04, + "probability": 0.9973 + }, + { + "start": 26222.54, + "end": 26223.62, + "probability": 0.8197 + }, + { + "start": 26223.74, + "end": 26226.74, + "probability": 0.9927 + }, + { + "start": 26227.68, + "end": 26228.58, + "probability": 0.9389 + }, + { + "start": 26229.64, + "end": 26230.38, + "probability": 0.9794 + }, + { + "start": 26230.9, + "end": 26233.28, + "probability": 0.9866 + }, + { + "start": 26234.04, + "end": 26235.72, + "probability": 0.9868 + }, + { + "start": 26235.84, + "end": 26239.28, + "probability": 0.9924 + }, + { + "start": 26239.28, + "end": 26242.46, + "probability": 0.9935 + }, + { + "start": 26243.78, + "end": 26247.14, + "probability": 0.9934 + }, + { + "start": 26248.16, + "end": 26250.2, + "probability": 0.913 + }, + { + "start": 26250.8, + "end": 26251.34, + "probability": 0.0606 + }, + { + "start": 26251.8, + "end": 26252.7, + "probability": 0.0542 + }, + { + "start": 26253.22, + "end": 26254.38, + "probability": 0.5113 + }, + { + "start": 26254.54, + "end": 26256.12, + "probability": 0.7136 + }, + { + "start": 26256.22, + "end": 26256.76, + "probability": 0.8344 + }, + { + "start": 26257.02, + "end": 26261.12, + "probability": 0.5915 + }, + { + "start": 26261.58, + "end": 26264.66, + "probability": 0.633 + }, + { + "start": 26265.52, + "end": 26265.66, + "probability": 0.3357 + }, + { + "start": 26265.78, + "end": 26266.28, + "probability": 0.8152 + }, + { + "start": 26266.4, + "end": 26268.85, + "probability": 0.8654 + }, + { + "start": 26275.92, + "end": 26279.23, + "probability": 0.2556 + }, + { + "start": 26279.36, + "end": 26281.2, + "probability": 0.4343 + }, + { + "start": 26281.42, + "end": 26283.74, + "probability": 0.199 + }, + { + "start": 26283.88, + "end": 26286.63, + "probability": 0.752 + }, + { + "start": 26287.24, + "end": 26288.7, + "probability": 0.8438 + }, + { + "start": 26289.32, + "end": 26289.88, + "probability": 0.7184 + }, + { + "start": 26295.34, + "end": 26295.72, + "probability": 0.2809 + }, + { + "start": 26296.38, + "end": 26296.54, + "probability": 0.0138 + }, + { + "start": 26296.54, + "end": 26297.28, + "probability": 0.0616 + }, + { + "start": 26298.52, + "end": 26298.97, + "probability": 0.0482 + }, + { + "start": 26299.0, + "end": 26300.9, + "probability": 0.0503 + }, + { + "start": 26301.04, + "end": 26302.24, + "probability": 0.546 + }, + { + "start": 26302.44, + "end": 26304.2, + "probability": 0.6422 + }, + { + "start": 26305.28, + "end": 26308.78, + "probability": 0.1665 + }, + { + "start": 26309.56, + "end": 26311.22, + "probability": 0.8455 + }, + { + "start": 26311.84, + "end": 26315.1, + "probability": 0.9921 + }, + { + "start": 26315.48, + "end": 26317.0, + "probability": 0.1355 + }, + { + "start": 26317.82, + "end": 26321.61, + "probability": 0.3144 + }, + { + "start": 26322.24, + "end": 26323.2, + "probability": 0.9656 + }, + { + "start": 26323.4, + "end": 26323.88, + "probability": 0.5889 + }, + { + "start": 26324.0, + "end": 26326.56, + "probability": 0.6406 + }, + { + "start": 26326.56, + "end": 26330.84, + "probability": 0.9666 + }, + { + "start": 26331.39, + "end": 26334.16, + "probability": 0.9134 + }, + { + "start": 26334.16, + "end": 26334.78, + "probability": 0.0714 + }, + { + "start": 26335.0, + "end": 26335.54, + "probability": 0.5685 + }, + { + "start": 26335.6, + "end": 26338.61, + "probability": 0.8667 + }, + { + "start": 26339.76, + "end": 26340.24, + "probability": 0.6477 + }, + { + "start": 26340.36, + "end": 26341.94, + "probability": 0.9937 + }, + { + "start": 26342.22, + "end": 26344.24, + "probability": 0.9824 + }, + { + "start": 26344.72, + "end": 26346.08, + "probability": 0.59 + }, + { + "start": 26346.2, + "end": 26348.14, + "probability": 0.2222 + }, + { + "start": 26348.3, + "end": 26351.42, + "probability": 0.9471 + }, + { + "start": 26351.52, + "end": 26353.24, + "probability": 0.7676 + }, + { + "start": 26354.34, + "end": 26356.5, + "probability": 0.9337 + }, + { + "start": 26359.72, + "end": 26361.22, + "probability": 0.1869 + }, + { + "start": 26361.3, + "end": 26365.14, + "probability": 0.2416 + }, + { + "start": 26365.64, + "end": 26367.48, + "probability": 0.639 + }, + { + "start": 26368.92, + "end": 26369.18, + "probability": 0.3496 + }, + { + "start": 26369.7, + "end": 26370.06, + "probability": 0.0387 + }, + { + "start": 26370.06, + "end": 26370.1, + "probability": 0.0258 + }, + { + "start": 26370.1, + "end": 26370.16, + "probability": 0.368 + }, + { + "start": 26370.26, + "end": 26372.3, + "probability": 0.9065 + }, + { + "start": 26372.46, + "end": 26372.68, + "probability": 0.5348 + }, + { + "start": 26374.12, + "end": 26374.12, + "probability": 0.0843 + }, + { + "start": 26374.12, + "end": 26377.9, + "probability": 0.7181 + }, + { + "start": 26380.14, + "end": 26381.94, + "probability": 0.8564 + }, + { + "start": 26382.76, + "end": 26385.3, + "probability": 0.9978 + }, + { + "start": 26386.2, + "end": 26390.78, + "probability": 0.9991 + }, + { + "start": 26390.92, + "end": 26395.54, + "probability": 0.9954 + }, + { + "start": 26396.18, + "end": 26397.44, + "probability": 0.9984 + }, + { + "start": 26399.2, + "end": 26402.88, + "probability": 0.9466 + }, + { + "start": 26402.96, + "end": 26403.88, + "probability": 0.8339 + }, + { + "start": 26404.06, + "end": 26405.63, + "probability": 0.978 + }, + { + "start": 26406.66, + "end": 26409.74, + "probability": 0.9933 + }, + { + "start": 26410.06, + "end": 26411.6, + "probability": 0.9489 + }, + { + "start": 26411.96, + "end": 26415.89, + "probability": 0.9979 + }, + { + "start": 26417.8, + "end": 26419.2, + "probability": 0.9167 + }, + { + "start": 26420.0, + "end": 26423.28, + "probability": 0.9996 + }, + { + "start": 26423.28, + "end": 26427.32, + "probability": 0.9624 + }, + { + "start": 26428.04, + "end": 26429.5, + "probability": 0.9401 + }, + { + "start": 26430.22, + "end": 26436.02, + "probability": 0.9209 + }, + { + "start": 26436.02, + "end": 26440.42, + "probability": 0.9969 + }, + { + "start": 26441.04, + "end": 26444.85, + "probability": 0.8568 + }, + { + "start": 26446.14, + "end": 26449.02, + "probability": 0.9966 + }, + { + "start": 26449.1, + "end": 26449.9, + "probability": 0.7717 + }, + { + "start": 26449.98, + "end": 26451.7, + "probability": 0.7955 + }, + { + "start": 26452.02, + "end": 26456.56, + "probability": 0.9162 + }, + { + "start": 26457.62, + "end": 26459.3, + "probability": 0.7685 + }, + { + "start": 26459.84, + "end": 26460.42, + "probability": 0.8202 + }, + { + "start": 26460.96, + "end": 26464.1, + "probability": 0.9827 + }, + { + "start": 26464.48, + "end": 26467.28, + "probability": 0.9371 + }, + { + "start": 26467.96, + "end": 26469.22, + "probability": 0.9678 + }, + { + "start": 26469.52, + "end": 26469.78, + "probability": 0.4196 + }, + { + "start": 26470.04, + "end": 26470.88, + "probability": 0.6935 + }, + { + "start": 26471.06, + "end": 26476.2, + "probability": 0.9814 + }, + { + "start": 26476.46, + "end": 26478.44, + "probability": 0.9195 + }, + { + "start": 26478.74, + "end": 26481.92, + "probability": 0.7213 + }, + { + "start": 26482.2, + "end": 26486.6, + "probability": 0.9946 + }, + { + "start": 26487.64, + "end": 26487.72, + "probability": 0.0661 + }, + { + "start": 26487.72, + "end": 26491.17, + "probability": 0.8711 + }, + { + "start": 26495.1, + "end": 26497.32, + "probability": 0.5592 + }, + { + "start": 26497.48, + "end": 26498.32, + "probability": 0.73 + }, + { + "start": 26498.44, + "end": 26500.24, + "probability": 0.8166 + }, + { + "start": 26500.28, + "end": 26503.72, + "probability": 0.9236 + }, + { + "start": 26504.1, + "end": 26507.48, + "probability": 0.9087 + }, + { + "start": 26507.48, + "end": 26510.58, + "probability": 0.8523 + }, + { + "start": 26510.7, + "end": 26510.98, + "probability": 0.8121 + }, + { + "start": 26511.42, + "end": 26512.26, + "probability": 0.518 + }, + { + "start": 26512.58, + "end": 26514.24, + "probability": 0.9738 + }, + { + "start": 26514.44, + "end": 26516.23, + "probability": 0.8521 + }, + { + "start": 26516.62, + "end": 26520.44, + "probability": 0.9162 + }, + { + "start": 26520.82, + "end": 26525.46, + "probability": 0.9837 + }, + { + "start": 26525.66, + "end": 26527.36, + "probability": 0.748 + }, + { + "start": 26527.5, + "end": 26528.89, + "probability": 0.9382 + }, + { + "start": 26529.24, + "end": 26530.76, + "probability": 0.78 + }, + { + "start": 26530.98, + "end": 26532.8, + "probability": 0.9828 + }, + { + "start": 26533.46, + "end": 26533.8, + "probability": 0.0754 + }, + { + "start": 26533.96, + "end": 26535.18, + "probability": 0.5579 + }, + { + "start": 26535.26, + "end": 26536.38, + "probability": 0.6154 + }, + { + "start": 26537.4, + "end": 26537.74, + "probability": 0.351 + }, + { + "start": 26537.74, + "end": 26539.28, + "probability": 0.0587 + }, + { + "start": 26540.23, + "end": 26540.68, + "probability": 0.0129 + }, + { + "start": 26540.68, + "end": 26540.68, + "probability": 0.1233 + }, + { + "start": 26540.68, + "end": 26540.68, + "probability": 0.1405 + }, + { + "start": 26540.68, + "end": 26541.22, + "probability": 0.2982 + }, + { + "start": 26541.66, + "end": 26542.9, + "probability": 0.9629 + }, + { + "start": 26542.9, + "end": 26543.94, + "probability": 0.4626 + }, + { + "start": 26543.94, + "end": 26545.16, + "probability": 0.7181 + }, + { + "start": 26545.28, + "end": 26546.92, + "probability": 0.6725 + }, + { + "start": 26547.05, + "end": 26549.14, + "probability": 0.3824 + }, + { + "start": 26549.2, + "end": 26550.24, + "probability": 0.0631 + }, + { + "start": 26550.26, + "end": 26551.32, + "probability": 0.3068 + }, + { + "start": 26551.82, + "end": 26551.82, + "probability": 0.1469 + }, + { + "start": 26551.82, + "end": 26551.82, + "probability": 0.3693 + }, + { + "start": 26551.82, + "end": 26551.82, + "probability": 0.7675 + }, + { + "start": 26551.92, + "end": 26553.12, + "probability": 0.633 + }, + { + "start": 26553.24, + "end": 26553.59, + "probability": 0.2299 + }, + { + "start": 26555.28, + "end": 26556.04, + "probability": 0.0049 + }, + { + "start": 26556.04, + "end": 26556.54, + "probability": 0.5005 + }, + { + "start": 26557.48, + "end": 26558.18, + "probability": 0.5453 + }, + { + "start": 26558.42, + "end": 26559.3, + "probability": 0.9612 + }, + { + "start": 26559.84, + "end": 26561.7, + "probability": 0.9054 + }, + { + "start": 26561.9, + "end": 26563.48, + "probability": 0.9358 + }, + { + "start": 26563.5, + "end": 26564.59, + "probability": 0.7977 + }, + { + "start": 26564.62, + "end": 26565.4, + "probability": 0.5455 + }, + { + "start": 26565.56, + "end": 26567.02, + "probability": 0.8712 + }, + { + "start": 26567.36, + "end": 26568.97, + "probability": 0.9906 + }, + { + "start": 26569.4, + "end": 26571.64, + "probability": 0.9417 + }, + { + "start": 26572.06, + "end": 26572.46, + "probability": 0.8398 + }, + { + "start": 26572.92, + "end": 26573.04, + "probability": 0.0725 + }, + { + "start": 26573.16, + "end": 26573.98, + "probability": 0.0101 + }, + { + "start": 26574.08, + "end": 26574.78, + "probability": 0.7349 + }, + { + "start": 26574.96, + "end": 26578.84, + "probability": 0.9337 + }, + { + "start": 26579.26, + "end": 26580.36, + "probability": 0.8787 + }, + { + "start": 26581.0, + "end": 26582.98, + "probability": 0.8431 + }, + { + "start": 26590.26, + "end": 26591.52, + "probability": 0.1409 + }, + { + "start": 26591.52, + "end": 26591.52, + "probability": 0.0482 + }, + { + "start": 26591.52, + "end": 26591.9, + "probability": 0.2778 + }, + { + "start": 26592.32, + "end": 26597.2, + "probability": 0.9328 + }, + { + "start": 26597.68, + "end": 26598.46, + "probability": 0.6962 + }, + { + "start": 26599.18, + "end": 26602.14, + "probability": 0.8766 + }, + { + "start": 26602.36, + "end": 26603.33, + "probability": 0.779 + }, + { + "start": 26603.88, + "end": 26604.64, + "probability": 0.557 + }, + { + "start": 26605.16, + "end": 26605.96, + "probability": 0.8844 + }, + { + "start": 26606.66, + "end": 26609.0, + "probability": 0.8112 + }, + { + "start": 26609.24, + "end": 26610.04, + "probability": 0.8303 + }, + { + "start": 26610.28, + "end": 26611.38, + "probability": 0.9266 + }, + { + "start": 26611.76, + "end": 26616.52, + "probability": 0.9827 + }, + { + "start": 26616.98, + "end": 26618.94, + "probability": 0.8211 + }, + { + "start": 26619.02, + "end": 26620.9, + "probability": 0.8988 + }, + { + "start": 26621.28, + "end": 26622.52, + "probability": 0.9707 + }, + { + "start": 26622.88, + "end": 26624.05, + "probability": 0.9844 + }, + { + "start": 26624.68, + "end": 26631.36, + "probability": 0.9282 + }, + { + "start": 26631.6, + "end": 26632.8, + "probability": 0.6435 + }, + { + "start": 26633.12, + "end": 26638.5, + "probability": 0.9509 + }, + { + "start": 26638.7, + "end": 26639.67, + "probability": 0.8237 + }, + { + "start": 26640.24, + "end": 26643.38, + "probability": 0.8366 + }, + { + "start": 26643.66, + "end": 26644.76, + "probability": 0.0715 + }, + { + "start": 26652.56, + "end": 26655.1, + "probability": 0.3238 + }, + { + "start": 26655.18, + "end": 26656.32, + "probability": 0.0737 + }, + { + "start": 26656.58, + "end": 26662.38, + "probability": 0.1072 + }, + { + "start": 26662.38, + "end": 26663.1, + "probability": 0.0446 + }, + { + "start": 26663.5, + "end": 26665.34, + "probability": 0.0581 + }, + { + "start": 26665.34, + "end": 26665.54, + "probability": 0.1733 + }, + { + "start": 26665.72, + "end": 26669.22, + "probability": 0.0396 + }, + { + "start": 26669.22, + "end": 26673.06, + "probability": 0.0231 + }, + { + "start": 26674.6, + "end": 26675.7, + "probability": 0.0165 + }, + { + "start": 26675.7, + "end": 26676.14, + "probability": 0.0229 + }, + { + "start": 26676.14, + "end": 26676.32, + "probability": 0.1588 + }, + { + "start": 26676.32, + "end": 26676.92, + "probability": 0.0245 + }, + { + "start": 26677.26, + "end": 26678.48, + "probability": 0.0878 + }, + { + "start": 26680.32, + "end": 26680.44, + "probability": 0.1012 + }, + { + "start": 26684.9, + "end": 26685.6, + "probability": 0.1546 + }, + { + "start": 26685.6, + "end": 26686.6, + "probability": 0.0496 + }, + { + "start": 26686.6, + "end": 26689.2, + "probability": 0.0151 + }, + { + "start": 26689.2, + "end": 26689.5, + "probability": 0.0789 + }, + { + "start": 26689.5, + "end": 26690.46, + "probability": 0.0294 + }, + { + "start": 26690.52, + "end": 26690.76, + "probability": 0.0046 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.0, + "end": 26717.0, + "probability": 0.0 + }, + { + "start": 26717.08, + "end": 26717.52, + "probability": 0.0157 + }, + { + "start": 26717.52, + "end": 26717.52, + "probability": 0.0773 + }, + { + "start": 26717.52, + "end": 26721.82, + "probability": 0.6953 + }, + { + "start": 26722.26, + "end": 26722.9, + "probability": 0.9157 + }, + { + "start": 26723.26, + "end": 26725.34, + "probability": 0.6147 + }, + { + "start": 26725.44, + "end": 26728.12, + "probability": 0.8761 + }, + { + "start": 26728.38, + "end": 26732.4, + "probability": 0.7734 + }, + { + "start": 26732.4, + "end": 26734.2, + "probability": 0.2493 + }, + { + "start": 26734.32, + "end": 26736.56, + "probability": 0.1902 + }, + { + "start": 26736.58, + "end": 26739.02, + "probability": 0.1279 + }, + { + "start": 26739.28, + "end": 26739.76, + "probability": 0.0666 + }, + { + "start": 26753.44, + "end": 26754.43, + "probability": 0.0222 + }, + { + "start": 26755.5, + "end": 26759.72, + "probability": 0.2383 + }, + { + "start": 26759.76, + "end": 26760.4, + "probability": 0.0314 + }, + { + "start": 26760.4, + "end": 26761.14, + "probability": 0.0226 + }, + { + "start": 26761.14, + "end": 26761.94, + "probability": 0.0847 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26840.0, + "end": 26840.0, + "probability": 0.0 + }, + { + "start": 26841.54, + "end": 26842.04, + "probability": 0.1099 + }, + { + "start": 26842.04, + "end": 26842.04, + "probability": 0.0863 + }, + { + "start": 26842.04, + "end": 26843.02, + "probability": 0.2191 + }, + { + "start": 26844.14, + "end": 26846.98, + "probability": 0.9659 + }, + { + "start": 26847.7, + "end": 26848.38, + "probability": 0.862 + }, + { + "start": 26849.42, + "end": 26850.58, + "probability": 0.9964 + }, + { + "start": 26850.78, + "end": 26852.76, + "probability": 0.9646 + }, + { + "start": 26854.08, + "end": 26855.04, + "probability": 0.7396 + }, + { + "start": 26856.0, + "end": 26856.64, + "probability": 0.3923 + }, + { + "start": 26857.36, + "end": 26859.84, + "probability": 0.9531 + }, + { + "start": 26860.56, + "end": 26861.14, + "probability": 0.1061 + }, + { + "start": 26862.8, + "end": 26863.8, + "probability": 0.9751 + }, + { + "start": 26863.9, + "end": 26864.88, + "probability": 0.8765 + }, + { + "start": 26864.96, + "end": 26865.78, + "probability": 0.9127 + }, + { + "start": 26865.92, + "end": 26866.58, + "probability": 0.9541 + }, + { + "start": 26866.74, + "end": 26867.3, + "probability": 0.9117 + }, + { + "start": 26868.66, + "end": 26869.86, + "probability": 0.5108 + }, + { + "start": 26871.94, + "end": 26871.94, + "probability": 0.0115 + }, + { + "start": 26871.94, + "end": 26871.94, + "probability": 0.3811 + }, + { + "start": 26871.94, + "end": 26873.02, + "probability": 0.6771 + }, + { + "start": 26873.7, + "end": 26874.1, + "probability": 0.6923 + }, + { + "start": 26876.82, + "end": 26877.98, + "probability": 0.2612 + }, + { + "start": 26878.54, + "end": 26880.96, + "probability": 0.4227 + }, + { + "start": 26881.44, + "end": 26887.78, + "probability": 0.9937 + }, + { + "start": 26888.36, + "end": 26890.3, + "probability": 0.9984 + }, + { + "start": 26891.04, + "end": 26894.1, + "probability": 0.9409 + }, + { + "start": 26894.66, + "end": 26896.2, + "probability": 0.9623 + }, + { + "start": 26899.62, + "end": 26901.78, + "probability": 0.9973 + }, + { + "start": 26902.76, + "end": 26903.82, + "probability": 0.9568 + }, + { + "start": 26904.62, + "end": 26905.26, + "probability": 0.8188 + }, + { + "start": 26906.84, + "end": 26911.04, + "probability": 0.9847 + }, + { + "start": 26911.9, + "end": 26914.94, + "probability": 0.9968 + }, + { + "start": 26915.52, + "end": 26917.95, + "probability": 0.9937 + }, + { + "start": 26918.36, + "end": 26920.78, + "probability": 0.9979 + }, + { + "start": 26921.8, + "end": 26922.74, + "probability": 0.9838 + }, + { + "start": 26923.9, + "end": 26924.44, + "probability": 0.6418 + }, + { + "start": 26924.94, + "end": 26929.84, + "probability": 0.9658 + }, + { + "start": 26929.84, + "end": 26932.3, + "probability": 0.9883 + }, + { + "start": 26933.14, + "end": 26934.12, + "probability": 0.9674 + }, + { + "start": 26934.26, + "end": 26937.24, + "probability": 0.9805 + }, + { + "start": 26938.0, + "end": 26940.96, + "probability": 0.997 + }, + { + "start": 26940.96, + "end": 26943.72, + "probability": 0.9948 + }, + { + "start": 26943.9, + "end": 26947.32, + "probability": 0.9889 + }, + { + "start": 26948.1, + "end": 26948.68, + "probability": 0.6294 + }, + { + "start": 26948.86, + "end": 26950.08, + "probability": 0.9114 + }, + { + "start": 26950.62, + "end": 26952.56, + "probability": 0.9744 + }, + { + "start": 26953.26, + "end": 26953.86, + "probability": 0.9822 + }, + { + "start": 26954.78, + "end": 26955.28, + "probability": 0.2432 + }, + { + "start": 26955.42, + "end": 26955.98, + "probability": 0.8958 + }, + { + "start": 26956.56, + "end": 26956.68, + "probability": 0.0306 + }, + { + "start": 26956.68, + "end": 26957.88, + "probability": 0.59 + }, + { + "start": 26958.4, + "end": 26959.8, + "probability": 0.7744 + }, + { + "start": 26960.18, + "end": 26962.64, + "probability": 0.998 + }, + { + "start": 26962.96, + "end": 26964.32, + "probability": 0.5682 + }, + { + "start": 26964.36, + "end": 26965.13, + "probability": 0.9373 + }, + { + "start": 26965.46, + "end": 26967.4, + "probability": 0.048 + }, + { + "start": 26967.42, + "end": 26967.8, + "probability": 0.2363 + }, + { + "start": 26968.28, + "end": 26968.96, + "probability": 0.8355 + }, + { + "start": 26969.06, + "end": 26969.84, + "probability": 0.805 + }, + { + "start": 26969.92, + "end": 26970.74, + "probability": 0.6172 + }, + { + "start": 26971.31, + "end": 26973.2, + "probability": 0.5927 + }, + { + "start": 26973.38, + "end": 26974.34, + "probability": 0.8372 + }, + { + "start": 26974.51, + "end": 26976.78, + "probability": 0.6667 + }, + { + "start": 26976.96, + "end": 26977.54, + "probability": 0.1464 + }, + { + "start": 26978.04, + "end": 26978.52, + "probability": 0.293 + }, + { + "start": 26978.68, + "end": 26978.68, + "probability": 0.3732 + }, + { + "start": 26978.72, + "end": 26980.08, + "probability": 0.5483 + }, + { + "start": 26980.48, + "end": 26982.0, + "probability": 0.4793 + }, + { + "start": 26982.26, + "end": 26983.77, + "probability": 0.8607 + }, + { + "start": 26983.98, + "end": 26983.98, + "probability": 0.3253 + }, + { + "start": 26985.22, + "end": 26988.18, + "probability": 0.7126 + }, + { + "start": 26995.8, + "end": 26998.78, + "probability": 0.8099 + }, + { + "start": 26999.58, + "end": 27002.4, + "probability": 0.8999 + }, + { + "start": 27002.58, + "end": 27002.94, + "probability": 0.9664 + }, + { + "start": 27003.46, + "end": 27008.14, + "probability": 0.9384 + }, + { + "start": 27008.86, + "end": 27009.28, + "probability": 0.3192 + }, + { + "start": 27010.02, + "end": 27010.92, + "probability": 0.9821 + }, + { + "start": 27011.3, + "end": 27011.92, + "probability": 0.453 + }, + { + "start": 27011.98, + "end": 27016.58, + "probability": 0.9935 + }, + { + "start": 27016.7, + "end": 27018.68, + "probability": 0.9888 + }, + { + "start": 27018.72, + "end": 27021.14, + "probability": 0.9814 + }, + { + "start": 27021.64, + "end": 27023.52, + "probability": 0.9939 + }, + { + "start": 27023.86, + "end": 27024.48, + "probability": 0.9067 + }, + { + "start": 27025.02, + "end": 27025.52, + "probability": 0.3669 + }, + { + "start": 27025.52, + "end": 27032.08, + "probability": 0.6329 + }, + { + "start": 27032.14, + "end": 27034.7, + "probability": 0.6486 + }, + { + "start": 27036.94, + "end": 27038.76, + "probability": 0.7121 + }, + { + "start": 27038.82, + "end": 27040.08, + "probability": 0.729 + }, + { + "start": 27040.14, + "end": 27041.88, + "probability": 0.9763 + }, + { + "start": 27042.3, + "end": 27047.84, + "probability": 0.7455 + }, + { + "start": 27048.22, + "end": 27049.92, + "probability": 0.6539 + }, + { + "start": 27050.18, + "end": 27051.64, + "probability": 0.9897 + }, + { + "start": 27052.2, + "end": 27054.22, + "probability": 0.9856 + }, + { + "start": 27054.5, + "end": 27055.78, + "probability": 0.9415 + }, + { + "start": 27056.02, + "end": 27057.52, + "probability": 0.805 + }, + { + "start": 27057.92, + "end": 27060.94, + "probability": 0.6849 + }, + { + "start": 27061.0, + "end": 27061.54, + "probability": 0.4402 + }, + { + "start": 27061.9, + "end": 27064.88, + "probability": 0.9688 + }, + { + "start": 27065.1, + "end": 27068.0, + "probability": 0.8361 + }, + { + "start": 27068.12, + "end": 27071.02, + "probability": 0.7661 + }, + { + "start": 27071.2, + "end": 27072.22, + "probability": 0.6812 + }, + { + "start": 27072.66, + "end": 27074.84, + "probability": 0.9954 + }, + { + "start": 27075.42, + "end": 27077.1, + "probability": 0.731 + }, + { + "start": 27078.14, + "end": 27082.46, + "probability": 0.8901 + }, + { + "start": 27082.6, + "end": 27084.86, + "probability": 0.5491 + }, + { + "start": 27085.02, + "end": 27086.48, + "probability": 0.6591 + }, + { + "start": 27088.22, + "end": 27089.9, + "probability": 0.7098 + }, + { + "start": 27090.16, + "end": 27091.82, + "probability": 0.807 + }, + { + "start": 27092.02, + "end": 27093.3, + "probability": 0.9932 + }, + { + "start": 27093.5, + "end": 27097.06, + "probability": 0.8263 + }, + { + "start": 27097.48, + "end": 27098.76, + "probability": 0.3428 + }, + { + "start": 27099.14, + "end": 27101.26, + "probability": 0.7384 + }, + { + "start": 27101.9, + "end": 27103.46, + "probability": 0.7494 + }, + { + "start": 27104.84, + "end": 27105.66, + "probability": 0.1534 + }, + { + "start": 27105.66, + "end": 27107.02, + "probability": 0.5008 + }, + { + "start": 27112.32, + "end": 27114.18, + "probability": 0.7611 + }, + { + "start": 27114.38, + "end": 27116.18, + "probability": 0.7695 + }, + { + "start": 27116.28, + "end": 27118.88, + "probability": 0.829 + }, + { + "start": 27119.16, + "end": 27120.46, + "probability": 0.9023 + }, + { + "start": 27121.48, + "end": 27125.58, + "probability": 0.9929 + }, + { + "start": 27125.58, + "end": 27132.48, + "probability": 0.9751 + }, + { + "start": 27133.34, + "end": 27137.32, + "probability": 0.9714 + }, + { + "start": 27138.02, + "end": 27145.3, + "probability": 0.9962 + }, + { + "start": 27145.3, + "end": 27152.02, + "probability": 0.9954 + }, + { + "start": 27152.66, + "end": 27155.68, + "probability": 0.9539 + }, + { + "start": 27156.4, + "end": 27157.5, + "probability": 0.6947 + }, + { + "start": 27157.68, + "end": 27161.7, + "probability": 0.9757 + }, + { + "start": 27161.7, + "end": 27166.4, + "probability": 0.9932 + }, + { + "start": 27167.28, + "end": 27172.4, + "probability": 0.9227 + }, + { + "start": 27172.5, + "end": 27174.02, + "probability": 0.7247 + }, + { + "start": 27174.7, + "end": 27176.02, + "probability": 0.7897 + }, + { + "start": 27176.64, + "end": 27180.28, + "probability": 0.9875 + }, + { + "start": 27180.46, + "end": 27183.32, + "probability": 0.8328 + }, + { + "start": 27183.46, + "end": 27185.24, + "probability": 0.9617 + }, + { + "start": 27185.78, + "end": 27187.94, + "probability": 0.9844 + }, + { + "start": 27188.32, + "end": 27191.8, + "probability": 0.9805 + }, + { + "start": 27192.38, + "end": 27195.66, + "probability": 0.9966 + }, + { + "start": 27195.66, + "end": 27200.82, + "probability": 0.9956 + }, + { + "start": 27201.32, + "end": 27203.58, + "probability": 0.8481 + }, + { + "start": 27203.78, + "end": 27204.5, + "probability": 0.5125 + }, + { + "start": 27204.6, + "end": 27206.62, + "probability": 0.9951 + }, + { + "start": 27206.72, + "end": 27211.42, + "probability": 0.9938 + }, + { + "start": 27211.42, + "end": 27213.56, + "probability": 0.9937 + }, + { + "start": 27213.76, + "end": 27216.06, + "probability": 0.9878 + }, + { + "start": 27217.06, + "end": 27219.66, + "probability": 0.9972 + }, + { + "start": 27219.78, + "end": 27224.3, + "probability": 0.995 + }, + { + "start": 27224.86, + "end": 27227.54, + "probability": 0.8664 + }, + { + "start": 27228.88, + "end": 27232.12, + "probability": 0.8776 + }, + { + "start": 27233.06, + "end": 27234.08, + "probability": 0.773 + }, + { + "start": 27234.68, + "end": 27235.38, + "probability": 0.9405 + }, + { + "start": 27235.64, + "end": 27240.5, + "probability": 0.969 + }, + { + "start": 27241.32, + "end": 27244.02, + "probability": 0.9922 + }, + { + "start": 27244.8, + "end": 27245.93, + "probability": 0.9985 + }, + { + "start": 27247.1, + "end": 27249.96, + "probability": 0.9536 + }, + { + "start": 27250.7, + "end": 27256.44, + "probability": 0.9942 + }, + { + "start": 27256.68, + "end": 27258.1, + "probability": 0.9556 + }, + { + "start": 27258.28, + "end": 27263.66, + "probability": 0.9954 + }, + { + "start": 27264.4, + "end": 27268.68, + "probability": 0.9819 + }, + { + "start": 27269.46, + "end": 27273.88, + "probability": 0.9954 + }, + { + "start": 27273.88, + "end": 27278.32, + "probability": 0.9823 + }, + { + "start": 27278.46, + "end": 27286.66, + "probability": 0.9889 + }, + { + "start": 27287.44, + "end": 27289.06, + "probability": 0.9455 + }, + { + "start": 27289.76, + "end": 27294.14, + "probability": 0.9968 + }, + { + "start": 27294.92, + "end": 27297.04, + "probability": 0.6746 + }, + { + "start": 27297.86, + "end": 27298.74, + "probability": 0.9768 + }, + { + "start": 27300.98, + "end": 27301.88, + "probability": 0.9423 + }, + { + "start": 27301.94, + "end": 27303.18, + "probability": 0.8594 + }, + { + "start": 27303.28, + "end": 27305.86, + "probability": 0.9883 + }, + { + "start": 27306.46, + "end": 27307.64, + "probability": 0.8804 + }, + { + "start": 27308.42, + "end": 27310.5, + "probability": 0.9907 + }, + { + "start": 27311.16, + "end": 27314.3, + "probability": 0.9979 + }, + { + "start": 27315.4, + "end": 27316.58, + "probability": 0.9454 + }, + { + "start": 27318.22, + "end": 27321.54, + "probability": 0.9453 + }, + { + "start": 27322.26, + "end": 27324.64, + "probability": 0.9658 + }, + { + "start": 27325.48, + "end": 27330.56, + "probability": 0.9939 + }, + { + "start": 27331.08, + "end": 27336.7, + "probability": 0.9976 + }, + { + "start": 27337.46, + "end": 27338.52, + "probability": 0.8656 + }, + { + "start": 27338.66, + "end": 27343.92, + "probability": 0.9897 + }, + { + "start": 27343.92, + "end": 27349.04, + "probability": 0.9846 + }, + { + "start": 27350.08, + "end": 27353.66, + "probability": 0.9971 + }, + { + "start": 27353.66, + "end": 27359.16, + "probability": 0.9984 + }, + { + "start": 27360.58, + "end": 27361.1, + "probability": 0.9783 + }, + { + "start": 27361.66, + "end": 27362.74, + "probability": 0.818 + }, + { + "start": 27362.76, + "end": 27368.62, + "probability": 0.9824 + }, + { + "start": 27369.3, + "end": 27370.96, + "probability": 0.9743 + }, + { + "start": 27371.88, + "end": 27376.94, + "probability": 0.9904 + }, + { + "start": 27377.8, + "end": 27379.84, + "probability": 0.9855 + }, + { + "start": 27380.78, + "end": 27383.5, + "probability": 0.9827 + }, + { + "start": 27384.86, + "end": 27389.76, + "probability": 0.9935 + }, + { + "start": 27390.6, + "end": 27391.16, + "probability": 0.601 + }, + { + "start": 27391.3, + "end": 27392.34, + "probability": 0.7674 + }, + { + "start": 27392.52, + "end": 27400.18, + "probability": 0.9937 + }, + { + "start": 27400.7, + "end": 27403.27, + "probability": 0.9995 + }, + { + "start": 27403.86, + "end": 27406.44, + "probability": 0.7657 + }, + { + "start": 27407.52, + "end": 27409.84, + "probability": 0.8304 + }, + { + "start": 27410.44, + "end": 27411.56, + "probability": 0.6062 + }, + { + "start": 27412.8, + "end": 27413.52, + "probability": 0.9238 + }, + { + "start": 27414.42, + "end": 27415.46, + "probability": 0.5607 + }, + { + "start": 27416.44, + "end": 27418.06, + "probability": 0.9827 + }, + { + "start": 27419.28, + "end": 27422.7, + "probability": 0.978 + }, + { + "start": 27422.9, + "end": 27424.48, + "probability": 0.8333 + }, + { + "start": 27425.64, + "end": 27428.52, + "probability": 0.8529 + }, + { + "start": 27430.0, + "end": 27435.88, + "probability": 0.7996 + }, + { + "start": 27436.84, + "end": 27442.2, + "probability": 0.8217 + }, + { + "start": 27442.9, + "end": 27447.76, + "probability": 0.9934 + }, + { + "start": 27449.46, + "end": 27450.38, + "probability": 0.928 + }, + { + "start": 27451.08, + "end": 27452.32, + "probability": 0.9572 + }, + { + "start": 27452.98, + "end": 27458.83, + "probability": 0.9956 + }, + { + "start": 27459.5, + "end": 27463.2, + "probability": 0.9951 + }, + { + "start": 27464.48, + "end": 27465.58, + "probability": 0.9543 + }, + { + "start": 27465.78, + "end": 27469.18, + "probability": 0.9894 + }, + { + "start": 27469.2, + "end": 27472.68, + "probability": 0.9989 + }, + { + "start": 27473.6, + "end": 27478.72, + "probability": 0.981 + }, + { + "start": 27479.24, + "end": 27481.32, + "probability": 0.8514 + }, + { + "start": 27481.92, + "end": 27485.22, + "probability": 0.9451 + }, + { + "start": 27485.84, + "end": 27489.32, + "probability": 0.9875 + }, + { + "start": 27490.24, + "end": 27490.92, + "probability": 0.9163 + }, + { + "start": 27491.26, + "end": 27492.28, + "probability": 0.9723 + }, + { + "start": 27492.44, + "end": 27493.58, + "probability": 0.9686 + }, + { + "start": 27493.8, + "end": 27494.46, + "probability": 0.86 + }, + { + "start": 27494.68, + "end": 27495.52, + "probability": 0.8632 + }, + { + "start": 27495.88, + "end": 27496.96, + "probability": 0.4447 + }, + { + "start": 27497.8, + "end": 27504.88, + "probability": 0.986 + }, + { + "start": 27505.32, + "end": 27506.62, + "probability": 0.9875 + }, + { + "start": 27507.32, + "end": 27508.75, + "probability": 0.9961 + }, + { + "start": 27509.46, + "end": 27513.22, + "probability": 0.9585 + }, + { + "start": 27513.6, + "end": 27516.72, + "probability": 0.837 + }, + { + "start": 27517.58, + "end": 27521.04, + "probability": 0.9927 + }, + { + "start": 27522.48, + "end": 27525.28, + "probability": 0.9243 + }, + { + "start": 27526.52, + "end": 27531.7, + "probability": 0.9895 + }, + { + "start": 27532.34, + "end": 27537.5, + "probability": 0.9899 + }, + { + "start": 27537.9, + "end": 27542.48, + "probability": 0.9749 + }, + { + "start": 27542.48, + "end": 27547.2, + "probability": 0.9442 + }, + { + "start": 27548.18, + "end": 27550.42, + "probability": 0.9973 + }, + { + "start": 27550.9, + "end": 27553.26, + "probability": 0.9807 + }, + { + "start": 27553.64, + "end": 27555.0, + "probability": 0.9531 + }, + { + "start": 27556.3, + "end": 27562.56, + "probability": 0.9954 + }, + { + "start": 27562.56, + "end": 27569.36, + "probability": 0.9949 + }, + { + "start": 27570.44, + "end": 27576.04, + "probability": 0.9873 + }, + { + "start": 27577.12, + "end": 27578.15, + "probability": 0.7475 + }, + { + "start": 27578.96, + "end": 27582.44, + "probability": 0.9889 + }, + { + "start": 27583.2, + "end": 27587.22, + "probability": 0.999 + }, + { + "start": 27588.42, + "end": 27590.2, + "probability": 0.9907 + }, + { + "start": 27591.66, + "end": 27594.02, + "probability": 0.9544 + }, + { + "start": 27594.82, + "end": 27599.12, + "probability": 0.9968 + }, + { + "start": 27600.06, + "end": 27602.14, + "probability": 0.8093 + }, + { + "start": 27603.0, + "end": 27605.66, + "probability": 0.9922 + }, + { + "start": 27606.64, + "end": 27611.22, + "probability": 0.9966 + }, + { + "start": 27611.22, + "end": 27616.18, + "probability": 0.9987 + }, + { + "start": 27616.88, + "end": 27617.4, + "probability": 0.9819 + }, + { + "start": 27617.94, + "end": 27618.86, + "probability": 0.9751 + }, + { + "start": 27619.44, + "end": 27621.58, + "probability": 0.9773 + }, + { + "start": 27622.26, + "end": 27625.84, + "probability": 0.9976 + }, + { + "start": 27626.36, + "end": 27630.08, + "probability": 0.9841 + }, + { + "start": 27630.68, + "end": 27634.68, + "probability": 0.9945 + }, + { + "start": 27636.32, + "end": 27636.32, + "probability": 0.3745 + }, + { + "start": 27637.2, + "end": 27639.9, + "probability": 0.9897 + }, + { + "start": 27640.52, + "end": 27641.94, + "probability": 0.4879 + }, + { + "start": 27642.6, + "end": 27644.16, + "probability": 0.9365 + }, + { + "start": 27644.68, + "end": 27645.66, + "probability": 0.8185 + }, + { + "start": 27645.68, + "end": 27646.48, + "probability": 0.8037 + }, + { + "start": 27646.58, + "end": 27650.26, + "probability": 0.96 + }, + { + "start": 27650.8, + "end": 27652.46, + "probability": 0.9678 + }, + { + "start": 27652.96, + "end": 27654.5, + "probability": 0.9692 + }, + { + "start": 27655.04, + "end": 27659.56, + "probability": 0.9985 + }, + { + "start": 27659.56, + "end": 27663.7, + "probability": 0.9995 + }, + { + "start": 27664.28, + "end": 27666.48, + "probability": 0.8591 + }, + { + "start": 27666.88, + "end": 27669.14, + "probability": 0.9884 + }, + { + "start": 27669.54, + "end": 27673.64, + "probability": 0.9912 + }, + { + "start": 27674.16, + "end": 27678.04, + "probability": 0.8241 + }, + { + "start": 27678.1, + "end": 27680.38, + "probability": 0.9465 + }, + { + "start": 27680.74, + "end": 27685.56, + "probability": 0.975 + }, + { + "start": 27685.56, + "end": 27689.48, + "probability": 0.9919 + }, + { + "start": 27689.58, + "end": 27689.92, + "probability": 0.7811 + }, + { + "start": 27690.8, + "end": 27691.62, + "probability": 0.8442 + }, + { + "start": 27691.72, + "end": 27692.54, + "probability": 0.9692 + }, + { + "start": 27692.62, + "end": 27692.92, + "probability": 0.7129 + }, + { + "start": 27692.96, + "end": 27695.8, + "probability": 0.695 + }, + { + "start": 27695.8, + "end": 27696.04, + "probability": 0.0676 + }, + { + "start": 27696.4, + "end": 27699.08, + "probability": 0.8696 + }, + { + "start": 27699.96, + "end": 27700.22, + "probability": 0.4237 + }, + { + "start": 27700.24, + "end": 27702.88, + "probability": 0.9095 + }, + { + "start": 27703.36, + "end": 27703.62, + "probability": 0.8731 + }, + { + "start": 27703.66, + "end": 27705.36, + "probability": 0.7538 + }, + { + "start": 27705.56, + "end": 27707.06, + "probability": 0.99 + }, + { + "start": 27708.28, + "end": 27711.16, + "probability": 0.9778 + }, + { + "start": 27711.4, + "end": 27712.82, + "probability": 0.2747 + }, + { + "start": 27713.08, + "end": 27716.28, + "probability": 0.7513 + }, + { + "start": 27716.84, + "end": 27718.92, + "probability": 0.6151 + }, + { + "start": 27722.28, + "end": 27723.16, + "probability": 0.818 + }, + { + "start": 27723.86, + "end": 27726.1, + "probability": 0.9331 + }, + { + "start": 27726.52, + "end": 27729.66, + "probability": 0.1267 + }, + { + "start": 27730.0, + "end": 27730.0, + "probability": 0.4578 + }, + { + "start": 27730.0, + "end": 27730.76, + "probability": 0.9741 + }, + { + "start": 27731.74, + "end": 27732.36, + "probability": 0.876 + }, + { + "start": 27734.08, + "end": 27737.42, + "probability": 0.9722 + }, + { + "start": 27737.56, + "end": 27738.06, + "probability": 0.6736 + }, + { + "start": 27739.14, + "end": 27741.46, + "probability": 0.7908 + }, + { + "start": 27741.66, + "end": 27742.88, + "probability": 0.8352 + }, + { + "start": 27744.79, + "end": 27746.8, + "probability": 0.8452 + }, + { + "start": 27747.72, + "end": 27748.02, + "probability": 0.8108 + }, + { + "start": 27748.66, + "end": 27751.56, + "probability": 0.828 + }, + { + "start": 27752.54, + "end": 27754.32, + "probability": 0.9932 + }, + { + "start": 27754.44, + "end": 27755.78, + "probability": 0.9792 + }, + { + "start": 27755.82, + "end": 27757.44, + "probability": 0.9966 + }, + { + "start": 27757.7, + "end": 27759.0, + "probability": 0.9952 + }, + { + "start": 27759.96, + "end": 27760.62, + "probability": 0.9927 + }, + { + "start": 27760.7, + "end": 27762.72, + "probability": 0.9792 + }, + { + "start": 27762.8, + "end": 27763.5, + "probability": 0.8393 + }, + { + "start": 27763.8, + "end": 27764.72, + "probability": 0.5397 + }, + { + "start": 27764.8, + "end": 27767.04, + "probability": 0.6824 + }, + { + "start": 27767.14, + "end": 27769.34, + "probability": 0.8301 + }, + { + "start": 27772.2, + "end": 27773.48, + "probability": 0.8544 + }, + { + "start": 27774.82, + "end": 27776.92, + "probability": 0.999 + }, + { + "start": 27777.18, + "end": 27779.62, + "probability": 0.8837 + }, + { + "start": 27779.68, + "end": 27780.56, + "probability": 0.7327 + }, + { + "start": 27784.02, + "end": 27785.06, + "probability": 0.9985 + }, + { + "start": 27786.58, + "end": 27791.22, + "probability": 0.7664 + }, + { + "start": 27792.38, + "end": 27793.66, + "probability": 0.2667 + }, + { + "start": 27793.98, + "end": 27795.86, + "probability": 0.9679 + }, + { + "start": 27796.4, + "end": 27796.58, + "probability": 0.0298 + }, + { + "start": 27798.5, + "end": 27799.02, + "probability": 0.9906 + }, + { + "start": 27799.92, + "end": 27800.32, + "probability": 0.1924 + }, + { + "start": 27800.9, + "end": 27802.32, + "probability": 0.9336 + }, + { + "start": 27803.7, + "end": 27805.29, + "probability": 0.8036 + }, + { + "start": 27805.88, + "end": 27806.88, + "probability": 0.5658 + }, + { + "start": 27806.92, + "end": 27807.26, + "probability": 0.8934 + }, + { + "start": 27809.3, + "end": 27809.96, + "probability": 0.9222 + }, + { + "start": 27810.18, + "end": 27810.92, + "probability": 0.7431 + }, + { + "start": 27812.2, + "end": 27812.4, + "probability": 0.0752 + }, + { + "start": 27812.4, + "end": 27814.4, + "probability": 0.564 + }, + { + "start": 27814.4, + "end": 27814.42, + "probability": 0.5649 + }, + { + "start": 27814.42, + "end": 27815.59, + "probability": 0.9481 + }, + { + "start": 27816.18, + "end": 27816.34, + "probability": 0.0666 + }, + { + "start": 27816.34, + "end": 27821.48, + "probability": 0.9163 + }, + { + "start": 27821.68, + "end": 27823.17, + "probability": 0.9829 + }, + { + "start": 27823.68, + "end": 27824.52, + "probability": 0.6448 + }, + { + "start": 27824.6, + "end": 27827.36, + "probability": 0.9829 + }, + { + "start": 27828.41, + "end": 27832.58, + "probability": 0.9865 + }, + { + "start": 27832.78, + "end": 27833.2, + "probability": 0.8065 + }, + { + "start": 27833.92, + "end": 27834.48, + "probability": 0.8671 + }, + { + "start": 27834.64, + "end": 27836.78, + "probability": 0.9457 + }, + { + "start": 27836.96, + "end": 27837.46, + "probability": 0.7886 + }, + { + "start": 27837.6, + "end": 27840.77, + "probability": 0.9977 + }, + { + "start": 27841.04, + "end": 27843.98, + "probability": 0.9966 + }, + { + "start": 27844.28, + "end": 27844.86, + "probability": 0.8915 + }, + { + "start": 27845.04, + "end": 27845.54, + "probability": 0.7435 + }, + { + "start": 27845.62, + "end": 27846.92, + "probability": 0.9924 + }, + { + "start": 27847.32, + "end": 27848.52, + "probability": 0.9922 + }, + { + "start": 27849.3, + "end": 27850.62, + "probability": 0.8131 + }, + { + "start": 27850.68, + "end": 27854.8, + "probability": 0.7751 + }, + { + "start": 27854.92, + "end": 27858.54, + "probability": 0.9826 + }, + { + "start": 27859.36, + "end": 27861.04, + "probability": 0.9186 + }, + { + "start": 27861.64, + "end": 27864.08, + "probability": 0.9627 + }, + { + "start": 27864.66, + "end": 27867.72, + "probability": 0.9967 + }, + { + "start": 27868.14, + "end": 27869.28, + "probability": 0.9827 + }, + { + "start": 27870.36, + "end": 27875.62, + "probability": 0.9871 + }, + { + "start": 27875.62, + "end": 27881.18, + "probability": 0.9955 + }, + { + "start": 27883.22, + "end": 27885.98, + "probability": 0.8745 + }, + { + "start": 27886.98, + "end": 27888.78, + "probability": 0.9507 + }, + { + "start": 27888.9, + "end": 27892.6, + "probability": 0.9834 + }, + { + "start": 27892.8, + "end": 27893.71, + "probability": 0.951 + }, + { + "start": 27894.18, + "end": 27896.73, + "probability": 0.9888 + }, + { + "start": 27897.7, + "end": 27898.44, + "probability": 0.8692 + }, + { + "start": 27899.5, + "end": 27903.04, + "probability": 0.927 + }, + { + "start": 27903.32, + "end": 27904.66, + "probability": 0.959 + }, + { + "start": 27905.58, + "end": 27909.48, + "probability": 0.9617 + }, + { + "start": 27909.64, + "end": 27911.19, + "probability": 0.9611 + }, + { + "start": 27912.24, + "end": 27918.18, + "probability": 0.9943 + }, + { + "start": 27918.76, + "end": 27919.9, + "probability": 0.9331 + }, + { + "start": 27920.12, + "end": 27920.94, + "probability": 0.6672 + }, + { + "start": 27921.52, + "end": 27925.58, + "probability": 0.9689 + }, + { + "start": 27925.84, + "end": 27929.8, + "probability": 0.9462 + }, + { + "start": 27930.5, + "end": 27934.56, + "probability": 0.965 + }, + { + "start": 27934.62, + "end": 27936.4, + "probability": 0.9709 + }, + { + "start": 27937.16, + "end": 27937.78, + "probability": 0.6271 + }, + { + "start": 27938.22, + "end": 27939.7, + "probability": 0.9465 + }, + { + "start": 27940.06, + "end": 27941.38, + "probability": 0.8788 + }, + { + "start": 27941.48, + "end": 27944.52, + "probability": 0.9195 + }, + { + "start": 27944.6, + "end": 27945.96, + "probability": 0.8647 + }, + { + "start": 27946.62, + "end": 27949.73, + "probability": 0.9899 + }, + { + "start": 27950.96, + "end": 27952.48, + "probability": 0.8911 + }, + { + "start": 27953.12, + "end": 27957.06, + "probability": 0.9337 + }, + { + "start": 27957.6, + "end": 27960.16, + "probability": 0.9766 + }, + { + "start": 27960.22, + "end": 27962.5, + "probability": 0.9907 + }, + { + "start": 27962.84, + "end": 27964.24, + "probability": 0.7001 + }, + { + "start": 27964.36, + "end": 27964.74, + "probability": 0.8772 + }, + { + "start": 27965.7, + "end": 27968.06, + "probability": 0.9822 + }, + { + "start": 27968.88, + "end": 27970.06, + "probability": 0.9821 + }, + { + "start": 27970.82, + "end": 27971.2, + "probability": 0.924 + }, + { + "start": 27971.78, + "end": 27975.16, + "probability": 0.99 + }, + { + "start": 27976.04, + "end": 27978.94, + "probability": 0.9979 + }, + { + "start": 27979.16, + "end": 27980.0, + "probability": 0.6484 + }, + { + "start": 27980.1, + "end": 27982.78, + "probability": 0.8984 + }, + { + "start": 27983.28, + "end": 27984.64, + "probability": 0.9572 + }, + { + "start": 27984.7, + "end": 27986.82, + "probability": 0.9657 + }, + { + "start": 27988.02, + "end": 27990.14, + "probability": 0.9697 + }, + { + "start": 27991.44, + "end": 27992.8, + "probability": 0.1298 + }, + { + "start": 27993.14, + "end": 27993.92, + "probability": 0.5148 + }, + { + "start": 27994.02, + "end": 27997.22, + "probability": 0.9642 + }, + { + "start": 27999.72, + "end": 27999.79, + "probability": 0.0099 + }, + { + "start": 28001.42, + "end": 28003.04, + "probability": 0.1631 + }, + { + "start": 28003.2, + "end": 28006.3, + "probability": 0.9525 + }, + { + "start": 28006.4, + "end": 28007.22, + "probability": 0.2901 + }, + { + "start": 28007.3, + "end": 28009.02, + "probability": 0.5858 + }, + { + "start": 28009.12, + "end": 28009.94, + "probability": 0.7359 + }, + { + "start": 28009.98, + "end": 28013.3, + "probability": 0.8592 + }, + { + "start": 28013.3, + "end": 28014.36, + "probability": 0.0808 + }, + { + "start": 28014.36, + "end": 28015.48, + "probability": 0.602 + }, + { + "start": 28016.36, + "end": 28016.36, + "probability": 0.2465 + }, + { + "start": 28016.36, + "end": 28016.46, + "probability": 0.0097 + }, + { + "start": 28016.56, + "end": 28018.66, + "probability": 0.7566 + }, + { + "start": 28018.92, + "end": 28020.38, + "probability": 0.636 + }, + { + "start": 28020.74, + "end": 28024.06, + "probability": 0.7959 + }, + { + "start": 28024.26, + "end": 28025.22, + "probability": 0.6331 + }, + { + "start": 28025.54, + "end": 28025.92, + "probability": 0.027 + }, + { + "start": 28027.16, + "end": 28028.04, + "probability": 0.0099 + }, + { + "start": 28028.04, + "end": 28028.04, + "probability": 0.0277 + }, + { + "start": 28028.04, + "end": 28029.22, + "probability": 0.3393 + }, + { + "start": 28029.4, + "end": 28033.14, + "probability": 0.343 + }, + { + "start": 28033.42, + "end": 28033.94, + "probability": 0.4263 + }, + { + "start": 28033.94, + "end": 28034.46, + "probability": 0.8342 + }, + { + "start": 28034.64, + "end": 28040.42, + "probability": 0.9933 + }, + { + "start": 28041.54, + "end": 28042.34, + "probability": 0.8798 + }, + { + "start": 28043.02, + "end": 28044.38, + "probability": 0.7671 + }, + { + "start": 28044.48, + "end": 28046.44, + "probability": 0.8975 + }, + { + "start": 28046.96, + "end": 28048.06, + "probability": 0.9574 + }, + { + "start": 28048.1, + "end": 28048.26, + "probability": 0.9656 + }, + { + "start": 28048.26, + "end": 28049.06, + "probability": 0.9406 + }, + { + "start": 28049.14, + "end": 28050.4, + "probability": 0.9919 + }, + { + "start": 28050.56, + "end": 28051.08, + "probability": 0.6812 + }, + { + "start": 28051.22, + "end": 28053.16, + "probability": 0.9702 + }, + { + "start": 28053.6, + "end": 28054.42, + "probability": 0.9897 + }, + { + "start": 28054.86, + "end": 28058.34, + "probability": 0.9943 + }, + { + "start": 28058.96, + "end": 28060.62, + "probability": 0.9924 + }, + { + "start": 28061.66, + "end": 28062.92, + "probability": 0.9736 + }, + { + "start": 28063.0, + "end": 28063.5, + "probability": 0.9293 + }, + { + "start": 28063.9, + "end": 28064.84, + "probability": 0.8843 + }, + { + "start": 28066.08, + "end": 28067.16, + "probability": 0.962 + }, + { + "start": 28067.32, + "end": 28070.96, + "probability": 0.9482 + }, + { + "start": 28071.04, + "end": 28073.17, + "probability": 0.989 + }, + { + "start": 28073.54, + "end": 28075.88, + "probability": 0.5879 + }, + { + "start": 28076.0, + "end": 28076.8, + "probability": 0.8071 + }, + { + "start": 28076.94, + "end": 28077.94, + "probability": 0.9604 + }, + { + "start": 28078.02, + "end": 28078.78, + "probability": 0.9694 + }, + { + "start": 28079.42, + "end": 28080.44, + "probability": 0.799 + }, + { + "start": 28081.42, + "end": 28084.06, + "probability": 0.9531 + }, + { + "start": 28084.8, + "end": 28089.94, + "probability": 0.9971 + }, + { + "start": 28090.42, + "end": 28090.88, + "probability": 0.8981 + }, + { + "start": 28090.98, + "end": 28091.48, + "probability": 0.9031 + }, + { + "start": 28091.56, + "end": 28092.86, + "probability": 0.6378 + }, + { + "start": 28092.86, + "end": 28095.14, + "probability": 0.9588 + }, + { + "start": 28096.37, + "end": 28099.28, + "probability": 0.951 + }, + { + "start": 28100.62, + "end": 28102.16, + "probability": 0.7328 + }, + { + "start": 28102.69, + "end": 28105.08, + "probability": 0.9904 + }, + { + "start": 28105.32, + "end": 28106.9, + "probability": 0.9829 + }, + { + "start": 28107.08, + "end": 28108.86, + "probability": 0.9894 + }, + { + "start": 28109.3, + "end": 28110.82, + "probability": 0.7708 + }, + { + "start": 28111.02, + "end": 28112.66, + "probability": 0.8304 + }, + { + "start": 28113.24, + "end": 28115.2, + "probability": 0.9551 + }, + { + "start": 28116.24, + "end": 28118.32, + "probability": 0.906 + }, + { + "start": 28119.48, + "end": 28121.26, + "probability": 0.8914 + }, + { + "start": 28121.34, + "end": 28122.85, + "probability": 0.9846 + }, + { + "start": 28123.26, + "end": 28124.5, + "probability": 0.76 + }, + { + "start": 28125.1, + "end": 28128.62, + "probability": 0.9833 + }, + { + "start": 28128.78, + "end": 28129.24, + "probability": 0.8892 + }, + { + "start": 28129.64, + "end": 28131.16, + "probability": 0.9561 + }, + { + "start": 28131.86, + "end": 28133.18, + "probability": 0.7702 + }, + { + "start": 28133.72, + "end": 28136.58, + "probability": 0.9811 + }, + { + "start": 28137.1, + "end": 28138.9, + "probability": 0.9023 + }, + { + "start": 28139.08, + "end": 28140.86, + "probability": 0.9964 + }, + { + "start": 28142.02, + "end": 28144.24, + "probability": 0.9937 + }, + { + "start": 28144.58, + "end": 28145.42, + "probability": 0.9708 + }, + { + "start": 28145.56, + "end": 28147.16, + "probability": 0.9241 + }, + { + "start": 28147.24, + "end": 28147.9, + "probability": 0.6271 + }, + { + "start": 28148.38, + "end": 28149.73, + "probability": 0.9591 + }, + { + "start": 28150.58, + "end": 28153.84, + "probability": 0.9888 + }, + { + "start": 28154.7, + "end": 28155.88, + "probability": 0.8338 + }, + { + "start": 28156.18, + "end": 28157.72, + "probability": 0.864 + }, + { + "start": 28157.78, + "end": 28159.55, + "probability": 0.9058 + }, + { + "start": 28159.9, + "end": 28161.14, + "probability": 0.9214 + }, + { + "start": 28161.26, + "end": 28162.26, + "probability": 0.9918 + }, + { + "start": 28162.36, + "end": 28163.64, + "probability": 0.9555 + }, + { + "start": 28164.18, + "end": 28166.16, + "probability": 0.7522 + }, + { + "start": 28166.74, + "end": 28168.78, + "probability": 0.7921 + }, + { + "start": 28173.1, + "end": 28174.76, + "probability": 0.8429 + }, + { + "start": 28175.38, + "end": 28177.28, + "probability": 0.996 + }, + { + "start": 28177.44, + "end": 28180.86, + "probability": 0.9969 + }, + { + "start": 28181.22, + "end": 28182.38, + "probability": 0.8149 + }, + { + "start": 28184.32, + "end": 28186.76, + "probability": 0.9985 + }, + { + "start": 28186.96, + "end": 28187.32, + "probability": 0.887 + }, + { + "start": 28188.14, + "end": 28190.62, + "probability": 0.9513 + }, + { + "start": 28190.74, + "end": 28191.06, + "probability": 0.798 + }, + { + "start": 28191.36, + "end": 28192.98, + "probability": 0.9496 + }, + { + "start": 28193.36, + "end": 28194.59, + "probability": 0.9878 + }, + { + "start": 28195.13, + "end": 28198.71, + "probability": 0.9978 + }, + { + "start": 28199.51, + "end": 28200.59, + "probability": 0.7764 + }, + { + "start": 28204.45, + "end": 28205.23, + "probability": 0.8666 + }, + { + "start": 28208.49, + "end": 28209.23, + "probability": 0.8443 + }, + { + "start": 28209.49, + "end": 28209.89, + "probability": 0.7147 + }, + { + "start": 28209.93, + "end": 28210.59, + "probability": 0.946 + }, + { + "start": 28211.37, + "end": 28213.93, + "probability": 0.985 + }, + { + "start": 28213.93, + "end": 28216.25, + "probability": 0.9967 + }, + { + "start": 28217.01, + "end": 28219.32, + "probability": 0.9779 + }, + { + "start": 28219.45, + "end": 28220.27, + "probability": 0.6382 + }, + { + "start": 28220.37, + "end": 28221.03, + "probability": 0.533 + }, + { + "start": 28221.13, + "end": 28222.21, + "probability": 0.9274 + }, + { + "start": 28222.45, + "end": 28223.67, + "probability": 0.8639 + }, + { + "start": 28223.75, + "end": 28223.97, + "probability": 0.951 + }, + { + "start": 28224.19, + "end": 28225.47, + "probability": 0.8633 + }, + { + "start": 28225.87, + "end": 28228.07, + "probability": 0.9433 + }, + { + "start": 28228.21, + "end": 28232.19, + "probability": 0.1677 + }, + { + "start": 28237.87, + "end": 28238.51, + "probability": 0.0014 + }, + { + "start": 28239.31, + "end": 28239.87, + "probability": 0.0195 + }, + { + "start": 28239.87, + "end": 28239.87, + "probability": 0.1765 + }, + { + "start": 28239.87, + "end": 28239.87, + "probability": 0.0566 + }, + { + "start": 28239.87, + "end": 28240.11, + "probability": 0.0975 + }, + { + "start": 28240.11, + "end": 28240.11, + "probability": 0.1075 + }, + { + "start": 28240.11, + "end": 28242.89, + "probability": 0.8042 + }, + { + "start": 28242.95, + "end": 28245.13, + "probability": 0.8182 + }, + { + "start": 28245.27, + "end": 28245.81, + "probability": 0.088 + }, + { + "start": 28245.81, + "end": 28245.81, + "probability": 0.0221 + }, + { + "start": 28245.81, + "end": 28246.24, + "probability": 0.2716 + }, + { + "start": 28247.35, + "end": 28247.59, + "probability": 0.1233 + }, + { + "start": 28247.67, + "end": 28250.73, + "probability": 0.9329 + }, + { + "start": 28250.77, + "end": 28251.37, + "probability": 0.2418 + }, + { + "start": 28251.47, + "end": 28252.09, + "probability": 0.1562 + }, + { + "start": 28252.09, + "end": 28252.72, + "probability": 0.462 + }, + { + "start": 28252.99, + "end": 28253.67, + "probability": 0.1571 + }, + { + "start": 28253.67, + "end": 28254.61, + "probability": 0.1087 + }, + { + "start": 28254.61, + "end": 28257.71, + "probability": 0.1956 + }, + { + "start": 28257.93, + "end": 28260.53, + "probability": 0.9834 + }, + { + "start": 28260.71, + "end": 28260.77, + "probability": 0.36 + }, + { + "start": 28260.77, + "end": 28262.73, + "probability": 0.7693 + }, + { + "start": 28262.83, + "end": 28266.37, + "probability": 0.8004 + }, + { + "start": 28266.43, + "end": 28267.47, + "probability": 0.9131 + }, + { + "start": 28267.47, + "end": 28267.79, + "probability": 0.0567 + }, + { + "start": 28267.79, + "end": 28269.03, + "probability": 0.0781 + }, + { + "start": 28270.57, + "end": 28271.99, + "probability": 0.9277 + }, + { + "start": 28272.73, + "end": 28273.43, + "probability": 0.7231 + }, + { + "start": 28273.77, + "end": 28273.77, + "probability": 0.1102 + }, + { + "start": 28273.77, + "end": 28277.05, + "probability": 0.9103 + }, + { + "start": 28277.33, + "end": 28279.25, + "probability": 0.9966 + }, + { + "start": 28279.27, + "end": 28281.63, + "probability": 0.4245 + }, + { + "start": 28281.63, + "end": 28287.55, + "probability": 0.1795 + }, + { + "start": 28288.15, + "end": 28292.87, + "probability": 0.1931 + }, + { + "start": 28293.05, + "end": 28293.89, + "probability": 0.0877 + }, + { + "start": 28293.91, + "end": 28294.71, + "probability": 0.0824 + }, + { + "start": 28295.57, + "end": 28298.32, + "probability": 0.1399 + }, + { + "start": 28298.81, + "end": 28298.93, + "probability": 0.1635 + }, + { + "start": 28299.47, + "end": 28301.61, + "probability": 0.0959 + }, + { + "start": 28301.61, + "end": 28306.29, + "probability": 0.0288 + }, + { + "start": 28306.29, + "end": 28309.91, + "probability": 0.0327 + }, + { + "start": 28309.91, + "end": 28310.26, + "probability": 0.1131 + }, + { + "start": 28310.59, + "end": 28311.07, + "probability": 0.3045 + }, + { + "start": 28313.36, + "end": 28314.41, + "probability": 0.2796 + }, + { + "start": 28314.67, + "end": 28315.72, + "probability": 0.0373 + }, + { + "start": 28316.33, + "end": 28316.59, + "probability": 0.0161 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.0, + "end": 28317.0, + "probability": 0.0 + }, + { + "start": 28317.24, + "end": 28319.08, + "probability": 0.0466 + }, + { + "start": 28319.4, + "end": 28322.98, + "probability": 0.8034 + }, + { + "start": 28323.0, + "end": 28324.45, + "probability": 0.7265 + }, + { + "start": 28325.16, + "end": 28325.78, + "probability": 0.1983 + }, + { + "start": 28327.94, + "end": 28329.76, + "probability": 0.186 + }, + { + "start": 28330.5, + "end": 28331.48, + "probability": 0.1009 + }, + { + "start": 28331.76, + "end": 28332.06, + "probability": 0.3339 + }, + { + "start": 28332.06, + "end": 28332.06, + "probability": 0.2246 + }, + { + "start": 28332.06, + "end": 28333.04, + "probability": 0.3875 + }, + { + "start": 28333.12, + "end": 28336.14, + "probability": 0.6962 + }, + { + "start": 28336.14, + "end": 28338.5, + "probability": 0.8538 + }, + { + "start": 28340.3, + "end": 28342.34, + "probability": 0.1667 + }, + { + "start": 28342.98, + "end": 28344.38, + "probability": 0.9437 + }, + { + "start": 28345.24, + "end": 28347.88, + "probability": 0.4684 + }, + { + "start": 28347.88, + "end": 28349.85, + "probability": 0.5394 + }, + { + "start": 28350.92, + "end": 28351.82, + "probability": 0.6547 + }, + { + "start": 28351.88, + "end": 28355.56, + "probability": 0.8118 + }, + { + "start": 28355.98, + "end": 28357.4, + "probability": 0.1457 + }, + { + "start": 28357.4, + "end": 28358.2, + "probability": 0.626 + }, + { + "start": 28358.48, + "end": 28358.86, + "probability": 0.1055 + }, + { + "start": 28358.86, + "end": 28359.7, + "probability": 0.5151 + }, + { + "start": 28360.32, + "end": 28360.34, + "probability": 0.081 + }, + { + "start": 28360.34, + "end": 28361.02, + "probability": 0.8161 + }, + { + "start": 28361.86, + "end": 28364.92, + "probability": 0.8623 + }, + { + "start": 28366.04, + "end": 28368.06, + "probability": 0.0126 + }, + { + "start": 28368.44, + "end": 28371.18, + "probability": 0.0541 + }, + { + "start": 28371.18, + "end": 28371.92, + "probability": 0.0498 + }, + { + "start": 28373.06, + "end": 28374.56, + "probability": 0.2031 + }, + { + "start": 28376.82, + "end": 28379.82, + "probability": 0.4494 + }, + { + "start": 28381.02, + "end": 28382.22, + "probability": 0.0506 + }, + { + "start": 28382.84, + "end": 28387.58, + "probability": 0.3466 + }, + { + "start": 28388.14, + "end": 28391.88, + "probability": 0.0534 + }, + { + "start": 28391.88, + "end": 28391.88, + "probability": 0.127 + }, + { + "start": 28391.88, + "end": 28396.88, + "probability": 0.1587 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.0, + "end": 28439.0, + "probability": 0.0 + }, + { + "start": 28439.18, + "end": 28439.52, + "probability": 0.3995 + }, + { + "start": 28439.52, + "end": 28439.84, + "probability": 0.829 + }, + { + "start": 28440.2, + "end": 28441.52, + "probability": 0.9941 + }, + { + "start": 28441.96, + "end": 28444.18, + "probability": 0.5301 + }, + { + "start": 28444.68, + "end": 28447.98, + "probability": 0.9887 + }, + { + "start": 28447.98, + "end": 28451.64, + "probability": 0.9899 + }, + { + "start": 28452.04, + "end": 28452.8, + "probability": 0.7142 + }, + { + "start": 28452.9, + "end": 28453.66, + "probability": 0.7813 + }, + { + "start": 28454.26, + "end": 28455.04, + "probability": 0.8693 + }, + { + "start": 28455.82, + "end": 28457.08, + "probability": 0.9547 + }, + { + "start": 28457.5, + "end": 28462.52, + "probability": 0.9983 + }, + { + "start": 28462.88, + "end": 28465.72, + "probability": 0.9828 + }, + { + "start": 28465.9, + "end": 28466.38, + "probability": 0.6087 + }, + { + "start": 28466.54, + "end": 28468.28, + "probability": 0.8454 + }, + { + "start": 28468.76, + "end": 28470.28, + "probability": 0.9854 + }, + { + "start": 28470.74, + "end": 28474.18, + "probability": 0.9984 + }, + { + "start": 28474.44, + "end": 28478.0, + "probability": 0.9962 + }, + { + "start": 28478.44, + "end": 28480.26, + "probability": 0.999 + }, + { + "start": 28480.56, + "end": 28482.92, + "probability": 0.9795 + }, + { + "start": 28483.56, + "end": 28485.43, + "probability": 0.9316 + }, + { + "start": 28485.66, + "end": 28487.48, + "probability": 0.9702 + }, + { + "start": 28487.94, + "end": 28489.48, + "probability": 0.9613 + }, + { + "start": 28489.54, + "end": 28492.0, + "probability": 0.901 + }, + { + "start": 28492.7, + "end": 28496.56, + "probability": 0.6511 + }, + { + "start": 28497.16, + "end": 28500.04, + "probability": 0.9905 + }, + { + "start": 28500.38, + "end": 28503.3, + "probability": 0.9813 + }, + { + "start": 28503.46, + "end": 28505.78, + "probability": 0.7934 + }, + { + "start": 28506.26, + "end": 28508.54, + "probability": 0.8019 + }, + { + "start": 28508.92, + "end": 28514.5, + "probability": 0.9735 + }, + { + "start": 28515.14, + "end": 28515.98, + "probability": 0.795 + }, + { + "start": 28516.28, + "end": 28517.28, + "probability": 0.6208 + }, + { + "start": 28517.38, + "end": 28521.14, + "probability": 0.2152 + }, + { + "start": 28522.0, + "end": 28522.56, + "probability": 0.1677 + }, + { + "start": 28522.92, + "end": 28523.1, + "probability": 0.3669 + }, + { + "start": 28523.78, + "end": 28524.3, + "probability": 0.6066 + }, + { + "start": 28524.46, + "end": 28525.15, + "probability": 0.0795 + }, + { + "start": 28525.16, + "end": 28527.74, + "probability": 0.2255 + }, + { + "start": 28528.42, + "end": 28529.12, + "probability": 0.0305 + }, + { + "start": 28529.16, + "end": 28530.22, + "probability": 0.0111 + }, + { + "start": 28530.22, + "end": 28530.34, + "probability": 0.0568 + }, + { + "start": 28530.34, + "end": 28532.38, + "probability": 0.3676 + }, + { + "start": 28532.38, + "end": 28532.91, + "probability": 0.1262 + }, + { + "start": 28533.02, + "end": 28536.2, + "probability": 0.6722 + }, + { + "start": 28536.68, + "end": 28539.32, + "probability": 0.7601 + }, + { + "start": 28539.98, + "end": 28541.08, + "probability": 0.929 + }, + { + "start": 28541.48, + "end": 28543.42, + "probability": 0.9935 + }, + { + "start": 28543.92, + "end": 28546.72, + "probability": 0.9919 + }, + { + "start": 28547.86, + "end": 28547.88, + "probability": 0.0431 + }, + { + "start": 28547.88, + "end": 28547.88, + "probability": 0.1225 + }, + { + "start": 28547.88, + "end": 28547.88, + "probability": 0.107 + }, + { + "start": 28547.88, + "end": 28549.88, + "probability": 0.6007 + }, + { + "start": 28550.62, + "end": 28553.2, + "probability": 0.7774 + }, + { + "start": 28553.3, + "end": 28555.66, + "probability": 0.8111 + }, + { + "start": 28556.34, + "end": 28559.88, + "probability": 0.9874 + }, + { + "start": 28560.12, + "end": 28560.82, + "probability": 0.9038 + }, + { + "start": 28560.9, + "end": 28561.14, + "probability": 0.787 + }, + { + "start": 28561.82, + "end": 28563.74, + "probability": 0.8994 + }, + { + "start": 28563.86, + "end": 28565.34, + "probability": 0.9906 + }, + { + "start": 28565.76, + "end": 28566.52, + "probability": 0.9401 + }, + { + "start": 28566.72, + "end": 28568.3, + "probability": 0.9788 + }, + { + "start": 28568.38, + "end": 28569.5, + "probability": 0.9447 + }, + { + "start": 28570.12, + "end": 28571.64, + "probability": 0.8524 + }, + { + "start": 28572.42, + "end": 28575.94, + "probability": 0.9946 + }, + { + "start": 28576.5, + "end": 28580.8, + "probability": 0.9639 + }, + { + "start": 28581.24, + "end": 28584.9, + "probability": 0.9443 + }, + { + "start": 28585.54, + "end": 28587.9, + "probability": 0.8051 + }, + { + "start": 28588.14, + "end": 28592.08, + "probability": 0.9508 + }, + { + "start": 28592.44, + "end": 28594.04, + "probability": 0.7777 + }, + { + "start": 28599.0, + "end": 28599.96, + "probability": 0.0931 + }, + { + "start": 28599.96, + "end": 28599.96, + "probability": 0.0479 + }, + { + "start": 28600.1, + "end": 28600.86, + "probability": 0.0212 + }, + { + "start": 28600.86, + "end": 28602.66, + "probability": 0.1482 + }, + { + "start": 28604.18, + "end": 28606.16, + "probability": 0.0242 + }, + { + "start": 28607.32, + "end": 28608.86, + "probability": 0.0886 + }, + { + "start": 28614.94, + "end": 28615.04, + "probability": 0.4106 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0 + }, + { + "start": 28721.78, + "end": 28722.86, + "probability": 0.4189 + }, + { + "start": 28723.2, + "end": 28724.52, + "probability": 0.1623 + }, + { + "start": 28724.52, + "end": 28727.82, + "probability": 0.0311 + }, + { + "start": 28728.69, + "end": 28729.88, + "probability": 0.1433 + }, + { + "start": 28730.24, + "end": 28731.1, + "probability": 0.426 + }, + { + "start": 28736.98, + "end": 28737.1, + "probability": 0.0939 + }, + { + "start": 28737.86, + "end": 28738.12, + "probability": 0.0254 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28870.0, + "end": 28870.0, + "probability": 0.0 + }, + { + "start": 28907.22, + "end": 28909.12, + "probability": 0.019 + }, + { + "start": 28909.59, + "end": 28912.88, + "probability": 0.0769 + }, + { + "start": 28915.46, + "end": 28918.76, + "probability": 0.0489 + }, + { + "start": 28943.48, + "end": 28944.54, + "probability": 0.0231 + }, + { + "start": 28944.54, + "end": 28946.96, + "probability": 0.0812 + }, + { + "start": 28946.96, + "end": 28948.5, + "probability": 0.0769 + }, + { + "start": 28949.37, + "end": 28953.06, + "probability": 0.02 + }, + { + "start": 28953.06, + "end": 28953.22, + "probability": 0.0976 + }, + { + "start": 28953.99, + "end": 28959.71, + "probability": 0.0446 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29005.0, + "end": 29005.0, + "probability": 0.0 + }, + { + "start": 29018.84, + "end": 29019.54, + "probability": 0.0688 + }, + { + "start": 29019.66, + "end": 29027.02, + "probability": 0.0365 + }, + { + "start": 29029.56, + "end": 29034.62, + "probability": 0.1419 + }, + { + "start": 29034.62, + "end": 29035.86, + "probability": 0.0709 + }, + { + "start": 29036.16, + "end": 29038.18, + "probability": 0.0204 + }, + { + "start": 29038.66, + "end": 29038.78, + "probability": 0.2097 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29136.0, + "end": 29136.0, + "probability": 0.0 + }, + { + "start": 29145.42, + "end": 29146.38, + "probability": 0.5714 + }, + { + "start": 29146.68, + "end": 29147.18, + "probability": 0.0374 + }, + { + "start": 29147.18, + "end": 29149.48, + "probability": 0.0225 + }, + { + "start": 29150.58, + "end": 29154.4, + "probability": 0.1484 + }, + { + "start": 29154.4, + "end": 29154.4, + "probability": 0.0196 + }, + { + "start": 29154.4, + "end": 29156.48, + "probability": 0.4452 + }, + { + "start": 29156.66, + "end": 29157.04, + "probability": 0.5203 + }, + { + "start": 29157.04, + "end": 29161.74, + "probability": 0.1497 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.0, + "end": 29266.0, + "probability": 0.0 + }, + { + "start": 29266.14, + "end": 29266.7, + "probability": 0.0527 + }, + { + "start": 29266.94, + "end": 29267.76, + "probability": 0.0401 + }, + { + "start": 29268.0, + "end": 29270.36, + "probability": 0.0432 + }, + { + "start": 29274.72, + "end": 29276.24, + "probability": 0.5652 + }, + { + "start": 29283.26, + "end": 29284.6, + "probability": 0.0967 + }, + { + "start": 29285.34, + "end": 29286.78, + "probability": 0.0458 + }, + { + "start": 29287.06, + "end": 29287.34, + "probability": 0.1794 + }, + { + "start": 29287.81, + "end": 29292.18, + "probability": 0.1619 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.18, + "end": 29387.18, + "probability": 0.0288 + }, + { + "start": 29387.18, + "end": 29387.18, + "probability": 0.037 + }, + { + "start": 29387.18, + "end": 29387.93, + "probability": 0.2184 + }, + { + "start": 29389.18, + "end": 29390.42, + "probability": 0.8389 + }, + { + "start": 29390.48, + "end": 29392.04, + "probability": 0.9528 + }, + { + "start": 29392.92, + "end": 29395.12, + "probability": 0.9113 + }, + { + "start": 29395.28, + "end": 29396.28, + "probability": 0.8512 + }, + { + "start": 29396.94, + "end": 29399.14, + "probability": 0.9493 + }, + { + "start": 29399.26, + "end": 29399.7, + "probability": 0.77 + }, + { + "start": 29400.14, + "end": 29402.42, + "probability": 0.9725 + }, + { + "start": 29402.98, + "end": 29404.54, + "probability": 0.8736 + }, + { + "start": 29405.18, + "end": 29405.9, + "probability": 0.832 + }, + { + "start": 29406.34, + "end": 29409.97, + "probability": 0.4154 + }, + { + "start": 29410.4, + "end": 29411.3, + "probability": 0.5125 + }, + { + "start": 29411.9, + "end": 29412.62, + "probability": 0.8062 + }, + { + "start": 29413.4, + "end": 29417.1, + "probability": 0.9861 + }, + { + "start": 29417.1, + "end": 29419.24, + "probability": 0.9536 + }, + { + "start": 29419.26, + "end": 29419.26, + "probability": 0.14 + }, + { + "start": 29419.28, + "end": 29420.29, + "probability": 0.8661 + }, + { + "start": 29420.44, + "end": 29421.78, + "probability": 0.925 + }, + { + "start": 29422.22, + "end": 29423.44, + "probability": 0.7587 + }, + { + "start": 29423.48, + "end": 29423.82, + "probability": 0.7551 + }, + { + "start": 29424.08, + "end": 29428.96, + "probability": 0.7364 + }, + { + "start": 29429.32, + "end": 29433.24, + "probability": 0.9889 + }, + { + "start": 29434.58, + "end": 29434.92, + "probability": 0.9536 + }, + { + "start": 29435.38, + "end": 29439.0, + "probability": 0.9624 + }, + { + "start": 29440.8, + "end": 29441.16, + "probability": 0.1148 + }, + { + "start": 29445.16, + "end": 29446.12, + "probability": 0.0035 + }, + { + "start": 29450.21, + "end": 29451.54, + "probability": 0.0978 + }, + { + "start": 29451.64, + "end": 29453.5, + "probability": 0.2561 + }, + { + "start": 29454.14, + "end": 29455.3, + "probability": 0.6707 + }, + { + "start": 29456.06, + "end": 29457.34, + "probability": 0.947 + }, + { + "start": 29458.28, + "end": 29459.64, + "probability": 0.9888 + }, + { + "start": 29460.64, + "end": 29462.26, + "probability": 0.9301 + }, + { + "start": 29462.32, + "end": 29465.24, + "probability": 0.7938 + }, + { + "start": 29466.0, + "end": 29468.66, + "probability": 0.988 + }, + { + "start": 29470.06, + "end": 29472.08, + "probability": 0.237 + }, + { + "start": 29473.04, + "end": 29474.42, + "probability": 0.9225 + }, + { + "start": 29475.18, + "end": 29476.86, + "probability": 0.8188 + }, + { + "start": 29479.08, + "end": 29481.78, + "probability": 0.8387 + }, + { + "start": 29483.2, + "end": 29486.18, + "probability": 0.9629 + }, + { + "start": 29493.88, + "end": 29495.76, + "probability": 0.1407 + }, + { + "start": 29496.99, + "end": 29502.04, + "probability": 0.9287 + }, + { + "start": 29502.68, + "end": 29503.58, + "probability": 0.9902 + }, + { + "start": 29503.9, + "end": 29508.14, + "probability": 0.4363 + }, + { + "start": 29508.26, + "end": 29509.08, + "probability": 0.8655 + }, + { + "start": 29509.36, + "end": 29511.02, + "probability": 0.7916 + }, + { + "start": 29511.72, + "end": 29513.95, + "probability": 0.9614 + }, + { + "start": 29514.52, + "end": 29522.1, + "probability": 0.9983 + }, + { + "start": 29522.1, + "end": 29529.62, + "probability": 0.9367 + }, + { + "start": 29529.78, + "end": 29530.28, + "probability": 0.5119 + }, + { + "start": 29530.52, + "end": 29531.34, + "probability": 0.7176 + }, + { + "start": 29532.26, + "end": 29533.0, + "probability": 0.8304 + }, + { + "start": 29533.62, + "end": 29534.9, + "probability": 0.4326 + }, + { + "start": 29535.16, + "end": 29537.56, + "probability": 0.3187 + }, + { + "start": 29537.7, + "end": 29543.72, + "probability": 0.9985 + }, + { + "start": 29543.76, + "end": 29544.7, + "probability": 0.9924 + }, + { + "start": 29545.12, + "end": 29546.08, + "probability": 0.8904 + }, + { + "start": 29546.34, + "end": 29547.6, + "probability": 0.9871 + }, + { + "start": 29547.9, + "end": 29549.5, + "probability": 0.9792 + }, + { + "start": 29549.58, + "end": 29550.2, + "probability": 0.864 + }, + { + "start": 29551.94, + "end": 29553.98, + "probability": 0.8352 + }, + { + "start": 29554.72, + "end": 29558.12, + "probability": 0.9841 + }, + { + "start": 29559.1, + "end": 29560.76, + "probability": 0.7325 + }, + { + "start": 29560.88, + "end": 29563.26, + "probability": 0.9714 + }, + { + "start": 29563.36, + "end": 29565.9, + "probability": 0.9768 + }, + { + "start": 29566.22, + "end": 29567.72, + "probability": 0.2272 + }, + { + "start": 29568.04, + "end": 29569.46, + "probability": 0.8062 + }, + { + "start": 29571.08, + "end": 29571.92, + "probability": 0.9377 + }, + { + "start": 29581.75, + "end": 29584.56, + "probability": 0.6805 + }, + { + "start": 29585.34, + "end": 29589.1, + "probability": 0.9427 + }, + { + "start": 29589.24, + "end": 29595.1, + "probability": 0.9507 + }, + { + "start": 29595.68, + "end": 29600.02, + "probability": 0.9191 + }, + { + "start": 29600.64, + "end": 29604.78, + "probability": 0.9526 + }, + { + "start": 29605.36, + "end": 29611.78, + "probability": 0.9071 + }, + { + "start": 29613.58, + "end": 29615.94, + "probability": 0.9045 + }, + { + "start": 29616.69, + "end": 29622.44, + "probability": 0.8848 + }, + { + "start": 29623.66, + "end": 29627.54, + "probability": 0.9304 + }, + { + "start": 29627.78, + "end": 29630.28, + "probability": 0.9964 + }, + { + "start": 29631.44, + "end": 29639.9, + "probability": 0.972 + }, + { + "start": 29639.9, + "end": 29644.59, + "probability": 0.9784 + }, + { + "start": 29644.9, + "end": 29645.48, + "probability": 0.7614 + }, + { + "start": 29645.56, + "end": 29647.82, + "probability": 0.9834 + }, + { + "start": 29648.84, + "end": 29653.56, + "probability": 0.8518 + }, + { + "start": 29654.24, + "end": 29655.54, + "probability": 0.9105 + }, + { + "start": 29655.64, + "end": 29660.46, + "probability": 0.9881 + }, + { + "start": 29660.9, + "end": 29664.5, + "probability": 0.9665 + }, + { + "start": 29666.06, + "end": 29666.7, + "probability": 0.8965 + }, + { + "start": 29667.32, + "end": 29668.58, + "probability": 0.9937 + }, + { + "start": 29669.14, + "end": 29670.08, + "probability": 0.9948 + }, + { + "start": 29671.94, + "end": 29673.38, + "probability": 0.7082 + }, + { + "start": 29673.4, + "end": 29676.68, + "probability": 0.8355 + }, + { + "start": 29677.06, + "end": 29678.5, + "probability": 0.3805 + }, + { + "start": 29681.68, + "end": 29684.72, + "probability": 0.7885 + }, + { + "start": 29691.14, + "end": 29692.92, + "probability": 0.9622 + }, + { + "start": 29712.0, + "end": 29712.3, + "probability": 0.2386 + }, + { + "start": 29712.48, + "end": 29712.82, + "probability": 0.1659 + }, + { + "start": 29712.96, + "end": 29714.8, + "probability": 0.5798 + }, + { + "start": 29714.96, + "end": 29716.84, + "probability": 0.4 + }, + { + "start": 29716.94, + "end": 29717.46, + "probability": 0.8226 + }, + { + "start": 29732.36, + "end": 29732.98, + "probability": 0.7536 + }, + { + "start": 29733.06, + "end": 29736.44, + "probability": 0.9743 + }, + { + "start": 29736.52, + "end": 29736.86, + "probability": 0.3152 + }, + { + "start": 29736.94, + "end": 29737.79, + "probability": 0.8931 + }, + { + "start": 29739.12, + "end": 29742.42, + "probability": 0.9946 + }, + { + "start": 29742.72, + "end": 29744.34, + "probability": 0.9738 + }, + { + "start": 29745.06, + "end": 29745.84, + "probability": 0.8536 + }, + { + "start": 29745.92, + "end": 29748.22, + "probability": 0.8305 + }, + { + "start": 29748.46, + "end": 29748.54, + "probability": 0.5054 + }, + { + "start": 29748.54, + "end": 29749.5, + "probability": 0.4982 + }, + { + "start": 29749.66, + "end": 29750.74, + "probability": 0.851 + }, + { + "start": 29750.84, + "end": 29752.14, + "probability": 0.9678 + }, + { + "start": 29753.06, + "end": 29755.42, + "probability": 0.9272 + }, + { + "start": 29756.5, + "end": 29758.3, + "probability": 0.9833 + }, + { + "start": 29759.5, + "end": 29762.2, + "probability": 0.8128 + }, + { + "start": 29762.76, + "end": 29766.02, + "probability": 0.9966 + }, + { + "start": 29766.74, + "end": 29769.48, + "probability": 0.9843 + }, + { + "start": 29769.56, + "end": 29771.04, + "probability": 0.8367 + }, + { + "start": 29771.18, + "end": 29771.8, + "probability": 0.7287 + }, + { + "start": 29772.42, + "end": 29773.36, + "probability": 0.7903 + }, + { + "start": 29774.08, + "end": 29775.0, + "probability": 0.9797 + }, + { + "start": 29775.54, + "end": 29777.4, + "probability": 0.9506 + }, + { + "start": 29777.98, + "end": 29778.42, + "probability": 0.8371 + }, + { + "start": 29780.27, + "end": 29783.18, + "probability": 0.8189 + }, + { + "start": 29783.9, + "end": 29784.5, + "probability": 0.8785 + }, + { + "start": 29785.14, + "end": 29788.4, + "probability": 0.9869 + }, + { + "start": 29788.58, + "end": 29790.16, + "probability": 0.9712 + }, + { + "start": 29790.52, + "end": 29792.8, + "probability": 0.9977 + }, + { + "start": 29793.52, + "end": 29795.74, + "probability": 0.9688 + }, + { + "start": 29797.58, + "end": 29800.96, + "probability": 0.7733 + }, + { + "start": 29801.52, + "end": 29803.06, + "probability": 0.9857 + }, + { + "start": 29803.18, + "end": 29804.44, + "probability": 0.8826 + }, + { + "start": 29804.68, + "end": 29807.48, + "probability": 0.9751 + }, + { + "start": 29808.92, + "end": 29809.82, + "probability": 0.9738 + }, + { + "start": 29809.98, + "end": 29811.62, + "probability": 0.9743 + }, + { + "start": 29812.66, + "end": 29814.38, + "probability": 0.9963 + }, + { + "start": 29815.7, + "end": 29818.24, + "probability": 0.9975 + }, + { + "start": 29818.96, + "end": 29823.08, + "probability": 0.9947 + }, + { + "start": 29823.66, + "end": 29824.8, + "probability": 0.8282 + }, + { + "start": 29825.9, + "end": 29827.48, + "probability": 0.999 + }, + { + "start": 29829.64, + "end": 29832.78, + "probability": 0.9563 + }, + { + "start": 29833.64, + "end": 29836.14, + "probability": 0.9978 + }, + { + "start": 29837.62, + "end": 29842.24, + "probability": 0.9972 + }, + { + "start": 29843.3, + "end": 29844.72, + "probability": 0.9582 + }, + { + "start": 29845.36, + "end": 29847.48, + "probability": 0.9995 + }, + { + "start": 29848.74, + "end": 29850.94, + "probability": 0.9989 + }, + { + "start": 29851.86, + "end": 29854.76, + "probability": 0.9958 + }, + { + "start": 29855.26, + "end": 29856.38, + "probability": 0.4937 + }, + { + "start": 29856.72, + "end": 29858.54, + "probability": 0.9971 + }, + { + "start": 29859.2, + "end": 29861.74, + "probability": 0.9592 + }, + { + "start": 29865.56, + "end": 29869.2, + "probability": 0.8686 + }, + { + "start": 29870.48, + "end": 29875.98, + "probability": 0.9952 + }, + { + "start": 29878.1, + "end": 29878.74, + "probability": 0.5068 + }, + { + "start": 29879.68, + "end": 29881.46, + "probability": 0.9998 + }, + { + "start": 29882.46, + "end": 29883.48, + "probability": 0.9476 + }, + { + "start": 29885.72, + "end": 29886.96, + "probability": 0.9747 + }, + { + "start": 29887.34, + "end": 29888.96, + "probability": 0.9971 + }, + { + "start": 29889.38, + "end": 29892.14, + "probability": 0.976 + }, + { + "start": 29892.24, + "end": 29893.52, + "probability": 0.9968 + }, + { + "start": 29895.48, + "end": 29896.56, + "probability": 0.9565 + }, + { + "start": 29897.5, + "end": 29901.3, + "probability": 0.9971 + }, + { + "start": 29902.06, + "end": 29902.28, + "probability": 0.928 + }, + { + "start": 29903.14, + "end": 29903.26, + "probability": 0.4493 + }, + { + "start": 29903.6, + "end": 29904.46, + "probability": 0.6069 + }, + { + "start": 29904.54, + "end": 29908.0, + "probability": 0.8883 + }, + { + "start": 29908.68, + "end": 29910.6, + "probability": 0.7447 + }, + { + "start": 29910.86, + "end": 29913.26, + "probability": 0.7791 + }, + { + "start": 29913.36, + "end": 29914.7, + "probability": 0.7306 + }, + { + "start": 29915.62, + "end": 29916.12, + "probability": 0.7113 + }, + { + "start": 29916.64, + "end": 29916.74, + "probability": 0.3895 + }, + { + "start": 29931.04, + "end": 29932.8, + "probability": 0.1966 + }, + { + "start": 29935.9, + "end": 29939.5, + "probability": 0.4878 + }, + { + "start": 29939.6, + "end": 29941.8, + "probability": 0.8954 + }, + { + "start": 29941.92, + "end": 29942.66, + "probability": 0.2793 + }, + { + "start": 29947.58, + "end": 29951.0, + "probability": 0.3667 + }, + { + "start": 29951.12, + "end": 29953.02, + "probability": 0.0448 + }, + { + "start": 29961.56, + "end": 29965.18, + "probability": 0.1786 + }, + { + "start": 29965.52, + "end": 29968.26, + "probability": 0.0172 + }, + { + "start": 29968.96, + "end": 29969.64, + "probability": 0.0399 + }, + { + "start": 29970.88, + "end": 29975.23, + "probability": 0.0518 + }, + { + "start": 29975.26, + "end": 29975.82, + "probability": 0.0314 + }, + { + "start": 29982.32, + "end": 29983.32, + "probability": 0.0589 + }, + { + "start": 29984.02, + "end": 29989.82, + "probability": 0.0231 + }, + { + "start": 29990.33, + "end": 29993.52, + "probability": 0.0256 + }, + { + "start": 29994.04, + "end": 29996.66, + "probability": 0.0156 + }, + { + "start": 29996.66, + "end": 29996.66, + "probability": 0.0775 + }, + { + "start": 29996.66, + "end": 29998.88, + "probability": 0.0887 + }, + { + "start": 29998.88, + "end": 29999.42, + "probability": 0.001 + }, + { + "start": 30000.0, + "end": 30000.0, + "probability": 0.0 + }, + { + "start": 30000.0, + "end": 30000.0, + "probability": 0.0 + }, + { + "start": 30000.0, + "end": 30000.0, + "probability": 0.0 + }, + { + "start": 30000.0, + "end": 30000.0, + "probability": 0.0 + }, + { + "start": 30000.0, + "end": 30000.0, + "probability": 0.0 + }, + { + "start": 30000.18, + "end": 30001.26, + "probability": 0.6273 + }, + { + "start": 30003.64, + "end": 30004.58, + "probability": 0.4205 + }, + { + "start": 30004.72, + "end": 30005.0, + "probability": 0.1677 + }, + { + "start": 30005.0, + "end": 30005.28, + "probability": 0.3108 + }, + { + "start": 30005.3, + "end": 30005.64, + "probability": 0.116 + }, + { + "start": 30005.72, + "end": 30005.84, + "probability": 0.0185 + }, + { + "start": 30005.9, + "end": 30006.38, + "probability": 0.0145 + }, + { + "start": 30007.42, + "end": 30007.98, + "probability": 0.0282 + }, + { + "start": 30008.66, + "end": 30012.14, + "probability": 0.0391 + }, + { + "start": 30012.96, + "end": 30013.64, + "probability": 0.0302 + }, + { + "start": 30015.14, + "end": 30018.74, + "probability": 0.06 + }, + { + "start": 30018.74, + "end": 30018.74, + "probability": 0.0867 + }, + { + "start": 30018.98, + "end": 30019.88, + "probability": 0.0445 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.0, + "end": 30121.0, + "probability": 0.0 + }, + { + "start": 30121.56, + "end": 30121.56, + "probability": 0.2107 + }, + { + "start": 30121.56, + "end": 30123.52, + "probability": 0.9705 + }, + { + "start": 30123.6, + "end": 30124.86, + "probability": 0.7509 + }, + { + "start": 30124.96, + "end": 30126.06, + "probability": 0.9635 + }, + { + "start": 30126.56, + "end": 30130.98, + "probability": 0.822 + }, + { + "start": 30131.28, + "end": 30135.5, + "probability": 0.9886 + }, + { + "start": 30135.5, + "end": 30139.1, + "probability": 0.9857 + }, + { + "start": 30139.76, + "end": 30142.26, + "probability": 0.8741 + }, + { + "start": 30142.76, + "end": 30146.68, + "probability": 0.9954 + }, + { + "start": 30146.68, + "end": 30151.12, + "probability": 0.9994 + }, + { + "start": 30151.88, + "end": 30152.78, + "probability": 0.5711 + }, + { + "start": 30152.82, + "end": 30154.26, + "probability": 0.896 + }, + { + "start": 30154.5, + "end": 30156.02, + "probability": 0.9904 + }, + { + "start": 30157.14, + "end": 30159.68, + "probability": 0.9092 + }, + { + "start": 30160.3, + "end": 30163.26, + "probability": 0.8726 + }, + { + "start": 30163.26, + "end": 30167.08, + "probability": 0.9974 + }, + { + "start": 30167.2, + "end": 30168.38, + "probability": 0.7671 + }, + { + "start": 30168.7, + "end": 30169.38, + "probability": 0.7917 + }, + { + "start": 30169.48, + "end": 30172.06, + "probability": 0.972 + }, + { + "start": 30172.5, + "end": 30173.98, + "probability": 0.9833 + }, + { + "start": 30174.66, + "end": 30177.34, + "probability": 0.5336 + }, + { + "start": 30177.9, + "end": 30179.88, + "probability": 0.9611 + }, + { + "start": 30180.36, + "end": 30181.78, + "probability": 0.9465 + }, + { + "start": 30182.18, + "end": 30184.24, + "probability": 0.8328 + }, + { + "start": 30184.5, + "end": 30188.64, + "probability": 0.9766 + }, + { + "start": 30188.74, + "end": 30194.28, + "probability": 0.9941 + }, + { + "start": 30195.06, + "end": 30197.18, + "probability": 0.9717 + }, + { + "start": 30197.68, + "end": 30201.84, + "probability": 0.9487 + }, + { + "start": 30201.84, + "end": 30203.88, + "probability": 0.9896 + }, + { + "start": 30204.5, + "end": 30206.44, + "probability": 0.9958 + }, + { + "start": 30207.04, + "end": 30209.38, + "probability": 0.9961 + }, + { + "start": 30209.68, + "end": 30213.36, + "probability": 0.9937 + }, + { + "start": 30213.88, + "end": 30217.48, + "probability": 0.9701 + }, + { + "start": 30217.48, + "end": 30221.66, + "probability": 0.9886 + }, + { + "start": 30222.1, + "end": 30222.48, + "probability": 0.9042 + }, + { + "start": 30222.64, + "end": 30224.98, + "probability": 0.9688 + }, + { + "start": 30225.08, + "end": 30225.46, + "probability": 0.8014 + }, + { + "start": 30225.54, + "end": 30226.5, + "probability": 0.9566 + }, + { + "start": 30227.02, + "end": 30230.08, + "probability": 0.9907 + }, + { + "start": 30230.7, + "end": 30231.98, + "probability": 0.9275 + }, + { + "start": 30232.12, + "end": 30234.78, + "probability": 0.9744 + }, + { + "start": 30234.86, + "end": 30238.74, + "probability": 0.9979 + }, + { + "start": 30238.94, + "end": 30241.28, + "probability": 0.8621 + }, + { + "start": 30241.84, + "end": 30243.94, + "probability": 0.9432 + }, + { + "start": 30244.36, + "end": 30249.0, + "probability": 0.9931 + }, + { + "start": 30249.18, + "end": 30252.16, + "probability": 0.9927 + }, + { + "start": 30252.9, + "end": 30254.24, + "probability": 0.8101 + }, + { + "start": 30254.32, + "end": 30255.46, + "probability": 0.8962 + }, + { + "start": 30255.92, + "end": 30257.3, + "probability": 0.6261 + }, + { + "start": 30257.42, + "end": 30258.84, + "probability": 0.9729 + }, + { + "start": 30259.34, + "end": 30260.54, + "probability": 0.901 + }, + { + "start": 30260.6, + "end": 30265.93, + "probability": 0.9918 + }, + { + "start": 30266.06, + "end": 30267.68, + "probability": 0.9812 + }, + { + "start": 30268.4, + "end": 30269.52, + "probability": 0.9926 + }, + { + "start": 30269.64, + "end": 30270.24, + "probability": 0.9781 + }, + { + "start": 30270.36, + "end": 30270.8, + "probability": 0.9869 + }, + { + "start": 30270.86, + "end": 30271.46, + "probability": 0.8964 + }, + { + "start": 30271.94, + "end": 30274.0, + "probability": 0.9988 + }, + { + "start": 30274.08, + "end": 30277.06, + "probability": 0.9723 + }, + { + "start": 30277.06, + "end": 30279.64, + "probability": 0.9899 + }, + { + "start": 30280.1, + "end": 30281.66, + "probability": 0.8444 + }, + { + "start": 30281.86, + "end": 30282.84, + "probability": 0.9789 + }, + { + "start": 30283.44, + "end": 30286.96, + "probability": 0.9778 + }, + { + "start": 30287.12, + "end": 30289.06, + "probability": 0.8745 + }, + { + "start": 30289.66, + "end": 30293.82, + "probability": 0.97 + }, + { + "start": 30294.34, + "end": 30299.32, + "probability": 0.9861 + }, + { + "start": 30300.0, + "end": 30300.58, + "probability": 0.2637 + }, + { + "start": 30300.62, + "end": 30303.26, + "probability": 0.9482 + }, + { + "start": 30303.7, + "end": 30306.06, + "probability": 0.763 + }, + { + "start": 30306.62, + "end": 30309.92, + "probability": 0.9759 + }, + { + "start": 30310.46, + "end": 30312.74, + "probability": 0.9956 + }, + { + "start": 30312.74, + "end": 30315.62, + "probability": 0.7559 + }, + { + "start": 30316.14, + "end": 30317.52, + "probability": 0.9373 + }, + { + "start": 30317.7, + "end": 30319.46, + "probability": 0.8515 + }, + { + "start": 30319.8, + "end": 30321.56, + "probability": 0.9614 + }, + { + "start": 30321.66, + "end": 30323.84, + "probability": 0.9092 + }, + { + "start": 30323.94, + "end": 30327.14, + "probability": 0.9659 + }, + { + "start": 30327.7, + "end": 30330.38, + "probability": 0.9668 + }, + { + "start": 30330.52, + "end": 30333.42, + "probability": 0.9763 + }, + { + "start": 30333.88, + "end": 30336.76, + "probability": 0.8764 + }, + { + "start": 30336.76, + "end": 30338.82, + "probability": 0.9993 + }, + { + "start": 30339.32, + "end": 30341.56, + "probability": 0.9537 + }, + { + "start": 30341.66, + "end": 30344.76, + "probability": 0.9922 + }, + { + "start": 30344.82, + "end": 30347.26, + "probability": 0.998 + }, + { + "start": 30347.9, + "end": 30352.56, + "probability": 0.9967 + }, + { + "start": 30352.66, + "end": 30355.28, + "probability": 0.9863 + }, + { + "start": 30355.82, + "end": 30359.18, + "probability": 0.9954 + }, + { + "start": 30359.18, + "end": 30363.46, + "probability": 0.9618 + }, + { + "start": 30364.52, + "end": 30367.4, + "probability": 0.967 + }, + { + "start": 30367.58, + "end": 30367.84, + "probability": 0.8833 + }, + { + "start": 30367.92, + "end": 30369.5, + "probability": 0.9459 + }, + { + "start": 30370.08, + "end": 30374.26, + "probability": 0.984 + }, + { + "start": 30374.82, + "end": 30377.32, + "probability": 0.9786 + }, + { + "start": 30378.0, + "end": 30381.0, + "probability": 0.8832 + }, + { + "start": 30381.34, + "end": 30386.48, + "probability": 0.998 + }, + { + "start": 30386.6, + "end": 30387.74, + "probability": 0.8743 + }, + { + "start": 30388.42, + "end": 30388.94, + "probability": 0.8144 + }, + { + "start": 30389.0, + "end": 30393.72, + "probability": 0.9929 + }, + { + "start": 30393.78, + "end": 30394.9, + "probability": 0.9659 + }, + { + "start": 30395.6, + "end": 30398.6, + "probability": 0.9259 + }, + { + "start": 30398.8, + "end": 30400.22, + "probability": 0.9647 + }, + { + "start": 30400.72, + "end": 30404.48, + "probability": 0.984 + }, + { + "start": 30404.98, + "end": 30406.12, + "probability": 0.9946 + }, + { + "start": 30406.24, + "end": 30406.62, + "probability": 0.8258 + }, + { + "start": 30406.72, + "end": 30407.8, + "probability": 0.9937 + }, + { + "start": 30407.9, + "end": 30408.95, + "probability": 0.9421 + }, + { + "start": 30409.48, + "end": 30411.32, + "probability": 0.9841 + }, + { + "start": 30411.96, + "end": 30413.42, + "probability": 0.9803 + }, + { + "start": 30413.86, + "end": 30417.76, + "probability": 0.981 + }, + { + "start": 30418.46, + "end": 30421.0, + "probability": 0.9712 + }, + { + "start": 30421.0, + "end": 30424.4, + "probability": 0.9963 + }, + { + "start": 30424.58, + "end": 30427.1, + "probability": 0.9789 + }, + { + "start": 30427.58, + "end": 30431.56, + "probability": 0.9647 + }, + { + "start": 30432.08, + "end": 30436.92, + "probability": 0.9966 + }, + { + "start": 30437.0, + "end": 30437.8, + "probability": 0.4107 + }, + { + "start": 30437.94, + "end": 30440.98, + "probability": 0.9746 + }, + { + "start": 30440.98, + "end": 30443.66, + "probability": 0.994 + }, + { + "start": 30444.26, + "end": 30444.66, + "probability": 0.7855 + }, + { + "start": 30444.72, + "end": 30448.48, + "probability": 0.9862 + }, + { + "start": 30448.92, + "end": 30452.72, + "probability": 0.7122 + }, + { + "start": 30452.72, + "end": 30457.52, + "probability": 0.9886 + }, + { + "start": 30458.1, + "end": 30460.56, + "probability": 0.9939 + }, + { + "start": 30460.56, + "end": 30463.56, + "probability": 0.8921 + }, + { + "start": 30464.06, + "end": 30467.52, + "probability": 0.7447 + }, + { + "start": 30467.9, + "end": 30471.92, + "probability": 0.9976 + }, + { + "start": 30472.44, + "end": 30476.42, + "probability": 0.9893 + }, + { + "start": 30477.02, + "end": 30480.04, + "probability": 0.9959 + }, + { + "start": 30480.62, + "end": 30484.8, + "probability": 0.9677 + }, + { + "start": 30484.8, + "end": 30490.1, + "probability": 0.9995 + }, + { + "start": 30490.84, + "end": 30495.28, + "probability": 0.9961 + }, + { + "start": 30495.28, + "end": 30501.38, + "probability": 0.9972 + }, + { + "start": 30501.38, + "end": 30507.46, + "probability": 0.9984 + }, + { + "start": 30508.04, + "end": 30512.3, + "probability": 0.9117 + }, + { + "start": 30512.94, + "end": 30516.92, + "probability": 0.9985 + }, + { + "start": 30516.92, + "end": 30521.56, + "probability": 0.9998 + }, + { + "start": 30522.24, + "end": 30523.64, + "probability": 0.6162 + }, + { + "start": 30523.74, + "end": 30525.9, + "probability": 0.8529 + }, + { + "start": 30526.4, + "end": 30526.76, + "probability": 0.4139 + }, + { + "start": 30526.8, + "end": 30529.48, + "probability": 0.9239 + }, + { + "start": 30529.6, + "end": 30530.08, + "probability": 0.3737 + }, + { + "start": 30530.66, + "end": 30531.34, + "probability": 0.558 + }, + { + "start": 30532.76, + "end": 30534.3, + "probability": 0.9875 + }, + { + "start": 30534.4, + "end": 30535.9, + "probability": 0.8792 + }, + { + "start": 30536.38, + "end": 30537.76, + "probability": 0.632 + }, + { + "start": 30537.94, + "end": 30541.4, + "probability": 0.9753 + }, + { + "start": 30541.86, + "end": 30542.58, + "probability": 0.9449 + }, + { + "start": 30542.64, + "end": 30544.46, + "probability": 0.8441 + }, + { + "start": 30545.06, + "end": 30548.92, + "probability": 0.8361 + }, + { + "start": 30549.02, + "end": 30551.54, + "probability": 0.7691 + }, + { + "start": 30551.7, + "end": 30554.02, + "probability": 0.9405 + }, + { + "start": 30554.76, + "end": 30558.04, + "probability": 0.9554 + }, + { + "start": 30558.44, + "end": 30562.5, + "probability": 0.9927 + }, + { + "start": 30562.86, + "end": 30564.04, + "probability": 0.8457 + }, + { + "start": 30564.2, + "end": 30568.0, + "probability": 0.9648 + }, + { + "start": 30568.0, + "end": 30571.6, + "probability": 0.9719 + }, + { + "start": 30571.98, + "end": 30572.96, + "probability": 0.7278 + }, + { + "start": 30573.42, + "end": 30574.96, + "probability": 0.9242 + }, + { + "start": 30575.48, + "end": 30576.79, + "probability": 0.9575 + }, + { + "start": 30577.52, + "end": 30579.08, + "probability": 0.7739 + }, + { + "start": 30579.12, + "end": 30583.26, + "probability": 0.8057 + }, + { + "start": 30583.8, + "end": 30586.44, + "probability": 0.6647 + }, + { + "start": 30586.68, + "end": 30587.1, + "probability": 0.8194 + }, + { + "start": 30588.14, + "end": 30590.3, + "probability": 0.9049 + }, + { + "start": 30590.42, + "end": 30592.06, + "probability": 0.691 + }, + { + "start": 30592.3, + "end": 30592.54, + "probability": 0.7256 + }, + { + "start": 30592.82, + "end": 30594.3, + "probability": 0.6097 + }, + { + "start": 30595.42, + "end": 30596.74, + "probability": 0.9431 + }, + { + "start": 30596.84, + "end": 30597.82, + "probability": 0.9641 + }, + { + "start": 30598.0, + "end": 30600.3, + "probability": 0.9742 + }, + { + "start": 30600.66, + "end": 30601.82, + "probability": 0.5719 + }, + { + "start": 30601.94, + "end": 30603.4, + "probability": 0.9144 + }, + { + "start": 30603.5, + "end": 30603.72, + "probability": 0.763 + }, + { + "start": 30607.03, + "end": 30609.7, + "probability": 0.5326 + }, + { + "start": 30609.84, + "end": 30612.86, + "probability": 0.4833 + }, + { + "start": 30613.26, + "end": 30614.64, + "probability": 0.4832 + }, + { + "start": 30619.29, + "end": 30621.4, + "probability": 0.9395 + }, + { + "start": 30621.5, + "end": 30623.16, + "probability": 0.7902 + }, + { + "start": 30623.44, + "end": 30623.96, + "probability": 0.2348 + }, + { + "start": 30624.36, + "end": 30625.68, + "probability": 0.7297 + }, + { + "start": 30625.98, + "end": 30626.6, + "probability": 0.6245 + }, + { + "start": 30627.14, + "end": 30628.12, + "probability": 0.5163 + }, + { + "start": 30628.36, + "end": 30630.54, + "probability": 0.7243 + }, + { + "start": 30630.56, + "end": 30633.6, + "probability": 0.6238 + }, + { + "start": 30633.62, + "end": 30635.56, + "probability": 0.279 + }, + { + "start": 30636.73, + "end": 30639.66, + "probability": 0.943 + }, + { + "start": 30639.9, + "end": 30644.16, + "probability": 0.7598 + }, + { + "start": 30645.08, + "end": 30646.14, + "probability": 0.2573 + }, + { + "start": 30646.42, + "end": 30648.94, + "probability": 0.9094 + }, + { + "start": 30648.94, + "end": 30649.46, + "probability": 0.5 + }, + { + "start": 30649.84, + "end": 30654.58, + "probability": 0.9032 + }, + { + "start": 30657.86, + "end": 30658.62, + "probability": 0.9615 + }, + { + "start": 30658.68, + "end": 30658.9, + "probability": 0.8623 + }, + { + "start": 30658.98, + "end": 30661.0, + "probability": 0.4685 + }, + { + "start": 30661.04, + "end": 30661.82, + "probability": 0.5245 + }, + { + "start": 30661.92, + "end": 30662.2, + "probability": 0.325 + }, + { + "start": 30662.2, + "end": 30664.06, + "probability": 0.9314 + }, + { + "start": 30664.64, + "end": 30667.62, + "probability": 0.8676 + }, + { + "start": 30668.46, + "end": 30671.1, + "probability": 0.6976 + }, + { + "start": 30671.46, + "end": 30675.78, + "probability": 0.999 + }, + { + "start": 30676.2, + "end": 30678.2, + "probability": 0.9958 + }, + { + "start": 30678.84, + "end": 30679.84, + "probability": 0.9293 + }, + { + "start": 30680.34, + "end": 30681.28, + "probability": 0.8672 + }, + { + "start": 30681.38, + "end": 30682.26, + "probability": 0.8516 + }, + { + "start": 30683.26, + "end": 30685.58, + "probability": 0.9979 + }, + { + "start": 30686.08, + "end": 30688.38, + "probability": 0.9311 + }, + { + "start": 30688.9, + "end": 30692.76, + "probability": 0.9868 + }, + { + "start": 30693.66, + "end": 30695.08, + "probability": 0.9623 + }, + { + "start": 30695.6, + "end": 30698.4, + "probability": 0.9927 + }, + { + "start": 30699.52, + "end": 30701.02, + "probability": 0.7943 + }, + { + "start": 30701.64, + "end": 30703.54, + "probability": 0.9982 + }, + { + "start": 30704.18, + "end": 30707.42, + "probability": 0.9639 + }, + { + "start": 30707.5, + "end": 30710.78, + "probability": 0.996 + }, + { + "start": 30711.76, + "end": 30714.54, + "probability": 0.9739 + }, + { + "start": 30715.76, + "end": 30717.36, + "probability": 0.9355 + }, + { + "start": 30717.7, + "end": 30720.04, + "probability": 0.9985 + }, + { + "start": 30720.04, + "end": 30722.56, + "probability": 0.9997 + }, + { + "start": 30723.04, + "end": 30725.04, + "probability": 0.9347 + }, + { + "start": 30725.54, + "end": 30728.72, + "probability": 0.9976 + }, + { + "start": 30729.42, + "end": 30733.66, + "probability": 0.9799 + }, + { + "start": 30734.2, + "end": 30735.12, + "probability": 0.7756 + }, + { + "start": 30735.28, + "end": 30737.08, + "probability": 0.9886 + }, + { + "start": 30737.5, + "end": 30739.28, + "probability": 0.9792 + }, + { + "start": 30739.88, + "end": 30741.16, + "probability": 0.9951 + }, + { + "start": 30741.68, + "end": 30746.3, + "probability": 0.8045 + }, + { + "start": 30746.96, + "end": 30749.04, + "probability": 0.9305 + }, + { + "start": 30749.48, + "end": 30750.28, + "probability": 0.471 + }, + { + "start": 30750.72, + "end": 30755.18, + "probability": 0.9928 + }, + { + "start": 30755.84, + "end": 30758.08, + "probability": 0.9556 + }, + { + "start": 30758.58, + "end": 30760.14, + "probability": 0.9747 + }, + { + "start": 30760.6, + "end": 30761.78, + "probability": 0.9617 + }, + { + "start": 30762.16, + "end": 30763.74, + "probability": 0.9774 + }, + { + "start": 30764.34, + "end": 30766.44, + "probability": 0.936 + }, + { + "start": 30766.98, + "end": 30769.46, + "probability": 0.9511 + }, + { + "start": 30770.12, + "end": 30771.22, + "probability": 0.5487 + }, + { + "start": 30771.46, + "end": 30774.86, + "probability": 0.9894 + }, + { + "start": 30775.32, + "end": 30776.04, + "probability": 0.7639 + }, + { + "start": 30776.4, + "end": 30777.44, + "probability": 0.9773 + }, + { + "start": 30777.66, + "end": 30778.8, + "probability": 0.9577 + }, + { + "start": 30779.2, + "end": 30780.32, + "probability": 0.5764 + }, + { + "start": 30780.32, + "end": 30782.36, + "probability": 0.8564 + }, + { + "start": 30782.48, + "end": 30783.2, + "probability": 0.9318 + }, + { + "start": 30783.78, + "end": 30784.54, + "probability": 0.9341 + }, + { + "start": 30785.42, + "end": 30788.78, + "probability": 0.9116 + }, + { + "start": 30789.38, + "end": 30792.08, + "probability": 0.9884 + }, + { + "start": 30792.72, + "end": 30794.54, + "probability": 0.9881 + }, + { + "start": 30795.12, + "end": 30796.72, + "probability": 0.9941 + }, + { + "start": 30797.86, + "end": 30799.56, + "probability": 0.9921 + }, + { + "start": 30799.9, + "end": 30804.46, + "probability": 0.9622 + }, + { + "start": 30804.88, + "end": 30807.18, + "probability": 0.998 + }, + { + "start": 30807.7, + "end": 30809.5, + "probability": 0.9973 + }, + { + "start": 30810.08, + "end": 30812.86, + "probability": 0.965 + }, + { + "start": 30813.26, + "end": 30815.62, + "probability": 0.7504 + }, + { + "start": 30816.16, + "end": 30817.44, + "probability": 0.9505 + }, + { + "start": 30818.16, + "end": 30820.76, + "probability": 0.7334 + }, + { + "start": 30821.74, + "end": 30825.2, + "probability": 0.9673 + }, + { + "start": 30825.74, + "end": 30830.56, + "probability": 0.8522 + }, + { + "start": 30830.86, + "end": 30831.08, + "probability": 0.6764 + }, + { + "start": 30832.16, + "end": 30833.9, + "probability": 0.5445 + }, + { + "start": 30834.0, + "end": 30836.94, + "probability": 0.4788 + }, + { + "start": 30837.24, + "end": 30837.52, + "probability": 0.3722 + }, + { + "start": 30837.86, + "end": 30839.42, + "probability": 0.4573 + }, + { + "start": 30839.56, + "end": 30840.53, + "probability": 0.5804 + }, + { + "start": 30840.82, + "end": 30841.26, + "probability": 0.9166 + }, + { + "start": 30852.52, + "end": 30852.52, + "probability": 0.0236 + }, + { + "start": 30852.52, + "end": 30852.58, + "probability": 0.0169 + }, + { + "start": 30852.7, + "end": 30853.92, + "probability": 0.8201 + }, + { + "start": 30854.08, + "end": 30854.88, + "probability": 0.1978 + }, + { + "start": 30855.66, + "end": 30856.8, + "probability": 0.3636 + }, + { + "start": 30861.08, + "end": 30861.82, + "probability": 0.6132 + }, + { + "start": 30861.86, + "end": 30863.34, + "probability": 0.6473 + }, + { + "start": 30863.68, + "end": 30867.08, + "probability": 0.9824 + }, + { + "start": 30867.4, + "end": 30867.84, + "probability": 0.7294 + }, + { + "start": 30868.0, + "end": 30868.18, + "probability": 0.7806 + }, + { + "start": 30869.88, + "end": 30871.84, + "probability": 0.9871 + }, + { + "start": 30872.04, + "end": 30874.86, + "probability": 0.9366 + }, + { + "start": 30875.8, + "end": 30876.8, + "probability": 0.975 + }, + { + "start": 30876.9, + "end": 30880.02, + "probability": 0.9989 + }, + { + "start": 30880.89, + "end": 30884.22, + "probability": 0.9846 + }, + { + "start": 30884.3, + "end": 30885.98, + "probability": 0.937 + }, + { + "start": 30886.68, + "end": 30887.46, + "probability": 0.5278 + }, + { + "start": 30888.78, + "end": 30892.92, + "probability": 0.9946 + }, + { + "start": 30893.92, + "end": 30899.34, + "probability": 0.9588 + }, + { + "start": 30900.04, + "end": 30901.92, + "probability": 0.9943 + }, + { + "start": 30902.64, + "end": 30904.84, + "probability": 0.9828 + }, + { + "start": 30905.68, + "end": 30906.76, + "probability": 0.9452 + }, + { + "start": 30907.3, + "end": 30909.68, + "probability": 0.9685 + }, + { + "start": 30910.92, + "end": 30911.64, + "probability": 0.5448 + }, + { + "start": 30911.88, + "end": 30915.28, + "probability": 0.994 + }, + { + "start": 30916.02, + "end": 30917.68, + "probability": 0.9755 + }, + { + "start": 30918.82, + "end": 30922.14, + "probability": 0.9963 + }, + { + "start": 30922.14, + "end": 30926.62, + "probability": 0.9954 + }, + { + "start": 30926.84, + "end": 30929.46, + "probability": 0.9757 + }, + { + "start": 30930.08, + "end": 30930.68, + "probability": 0.403 + }, + { + "start": 30931.44, + "end": 30934.5, + "probability": 0.9906 + }, + { + "start": 30935.06, + "end": 30938.16, + "probability": 0.995 + }, + { + "start": 30938.5, + "end": 30941.64, + "probability": 0.9974 + }, + { + "start": 30942.48, + "end": 30944.66, + "probability": 0.9982 + }, + { + "start": 30945.44, + "end": 30946.65, + "probability": 0.6944 + }, + { + "start": 30947.32, + "end": 30948.44, + "probability": 0.5041 + }, + { + "start": 30949.34, + "end": 30956.24, + "probability": 0.9795 + }, + { + "start": 30957.06, + "end": 30958.5, + "probability": 0.9802 + }, + { + "start": 30960.3, + "end": 30962.76, + "probability": 0.9852 + }, + { + "start": 30962.84, + "end": 30963.54, + "probability": 0.9335 + }, + { + "start": 30964.18, + "end": 30965.36, + "probability": 0.8132 + }, + { + "start": 30965.96, + "end": 30968.96, + "probability": 0.9888 + }, + { + "start": 30969.6, + "end": 30971.12, + "probability": 0.9184 + }, + { + "start": 30972.32, + "end": 30979.17, + "probability": 0.9508 + }, + { + "start": 30979.68, + "end": 30982.08, + "probability": 0.9899 + }, + { + "start": 30982.7, + "end": 30983.74, + "probability": 0.7296 + }, + { + "start": 30984.44, + "end": 30985.68, + "probability": 0.9788 + }, + { + "start": 30987.04, + "end": 30987.94, + "probability": 0.9298 + }, + { + "start": 30988.68, + "end": 30991.92, + "probability": 0.9956 + }, + { + "start": 30992.32, + "end": 30993.9, + "probability": 0.9244 + }, + { + "start": 30994.18, + "end": 30995.64, + "probability": 0.6608 + }, + { + "start": 30996.08, + "end": 30996.92, + "probability": 0.8679 + }, + { + "start": 30997.56, + "end": 30998.34, + "probability": 0.9807 + }, + { + "start": 30999.2, + "end": 31002.48, + "probability": 0.995 + }, + { + "start": 31003.38, + "end": 31006.38, + "probability": 0.9324 + }, + { + "start": 31006.84, + "end": 31007.06, + "probability": 0.732 + }, + { + "start": 31008.58, + "end": 31012.12, + "probability": 0.6007 + }, + { + "start": 31012.58, + "end": 31016.34, + "probability": 0.7293 + }, + { + "start": 31016.96, + "end": 31019.38, + "probability": 0.8118 + }, + { + "start": 31019.66, + "end": 31021.1, + "probability": 0.5124 + }, + { + "start": 31022.32, + "end": 31023.96, + "probability": 0.8202 + }, + { + "start": 31028.02, + "end": 31029.9, + "probability": 0.9907 + }, + { + "start": 31030.0, + "end": 31031.84, + "probability": 0.9215 + }, + { + "start": 31031.96, + "end": 31034.32, + "probability": 0.6825 + }, + { + "start": 31035.14, + "end": 31037.42, + "probability": 0.8632 + }, + { + "start": 31037.84, + "end": 31038.96, + "probability": 0.972 + }, + { + "start": 31039.88, + "end": 31040.8, + "probability": 0.5551 + }, + { + "start": 31041.36, + "end": 31042.86, + "probability": 0.634 + }, + { + "start": 31044.48, + "end": 31045.74, + "probability": 0.8581 + }, + { + "start": 31045.86, + "end": 31046.3, + "probability": 0.9188 + }, + { + "start": 31046.7, + "end": 31047.82, + "probability": 0.9924 + }, + { + "start": 31048.6, + "end": 31052.4, + "probability": 0.9597 + }, + { + "start": 31054.3, + "end": 31058.02, + "probability": 0.9993 + }, + { + "start": 31059.04, + "end": 31066.3, + "probability": 0.9889 + }, + { + "start": 31067.8, + "end": 31070.24, + "probability": 0.9398 + }, + { + "start": 31071.4, + "end": 31074.06, + "probability": 0.9814 + }, + { + "start": 31074.52, + "end": 31075.22, + "probability": 0.9759 + }, + { + "start": 31075.34, + "end": 31075.98, + "probability": 0.8717 + }, + { + "start": 31076.46, + "end": 31079.84, + "probability": 0.9617 + }, + { + "start": 31082.42, + "end": 31083.46, + "probability": 0.9545 + }, + { + "start": 31084.54, + "end": 31084.66, + "probability": 0.2379 + }, + { + "start": 31084.66, + "end": 31085.08, + "probability": 0.3323 + }, + { + "start": 31085.1, + "end": 31090.26, + "probability": 0.7822 + }, + { + "start": 31090.34, + "end": 31090.34, + "probability": 0.0589 + }, + { + "start": 31090.34, + "end": 31092.26, + "probability": 0.8074 + }, + { + "start": 31093.1, + "end": 31097.6, + "probability": 0.994 + }, + { + "start": 31101.44, + "end": 31102.12, + "probability": 0.7766 + }, + { + "start": 31104.48, + "end": 31108.28, + "probability": 0.9131 + }, + { + "start": 31110.94, + "end": 31115.9, + "probability": 0.9863 + }, + { + "start": 31116.56, + "end": 31119.48, + "probability": 0.9648 + }, + { + "start": 31120.3, + "end": 31121.98, + "probability": 0.9994 + }, + { + "start": 31122.74, + "end": 31123.86, + "probability": 0.5209 + }, + { + "start": 31124.14, + "end": 31126.26, + "probability": 0.7795 + }, + { + "start": 31126.48, + "end": 31126.82, + "probability": 0.7701 + }, + { + "start": 31127.58, + "end": 31129.42, + "probability": 0.9773 + }, + { + "start": 31129.58, + "end": 31131.0, + "probability": 0.7313 + }, + { + "start": 31131.0, + "end": 31131.3, + "probability": 0.8024 + }, + { + "start": 31132.32, + "end": 31135.16, + "probability": 0.9746 + }, + { + "start": 31136.9, + "end": 31137.36, + "probability": 0.9604 + }, + { + "start": 31137.96, + "end": 31142.2, + "probability": 0.9983 + }, + { + "start": 31143.44, + "end": 31144.2, + "probability": 0.8585 + }, + { + "start": 31145.5, + "end": 31147.42, + "probability": 0.9976 + }, + { + "start": 31148.34, + "end": 31149.02, + "probability": 0.8955 + }, + { + "start": 31149.62, + "end": 31150.2, + "probability": 0.8567 + }, + { + "start": 31150.26, + "end": 31150.76, + "probability": 0.8832 + }, + { + "start": 31150.86, + "end": 31151.3, + "probability": 0.8662 + }, + { + "start": 31151.52, + "end": 31152.02, + "probability": 0.8763 + }, + { + "start": 31152.54, + "end": 31154.06, + "probability": 0.9707 + }, + { + "start": 31154.92, + "end": 31156.6, + "probability": 0.995 + }, + { + "start": 31157.26, + "end": 31161.9, + "probability": 0.9693 + }, + { + "start": 31162.84, + "end": 31165.44, + "probability": 0.8485 + }, + { + "start": 31166.44, + "end": 31168.66, + "probability": 0.8688 + }, + { + "start": 31169.54, + "end": 31170.28, + "probability": 0.6459 + }, + { + "start": 31172.2, + "end": 31176.98, + "probability": 0.9808 + }, + { + "start": 31179.25, + "end": 31183.06, + "probability": 0.9614 + }, + { + "start": 31183.06, + "end": 31185.6, + "probability": 0.9844 + }, + { + "start": 31186.56, + "end": 31187.26, + "probability": 0.7646 + }, + { + "start": 31187.44, + "end": 31191.98, + "probability": 0.9853 + }, + { + "start": 31192.28, + "end": 31192.8, + "probability": 0.7617 + }, + { + "start": 31192.9, + "end": 31193.62, + "probability": 0.9619 + }, + { + "start": 31194.16, + "end": 31198.48, + "probability": 0.9729 + }, + { + "start": 31198.52, + "end": 31200.98, + "probability": 0.9325 + }, + { + "start": 31201.54, + "end": 31203.36, + "probability": 0.1251 + }, + { + "start": 31203.36, + "end": 31204.44, + "probability": 0.9922 + }, + { + "start": 31205.68, + "end": 31207.7, + "probability": 0.8442 + }, + { + "start": 31208.7, + "end": 31211.0, + "probability": 0.9015 + }, + { + "start": 31212.24, + "end": 31213.28, + "probability": 0.7791 + }, + { + "start": 31213.54, + "end": 31214.48, + "probability": 0.4356 + }, + { + "start": 31214.78, + "end": 31218.42, + "probability": 0.7519 + }, + { + "start": 31219.24, + "end": 31224.52, + "probability": 0.8226 + }, + { + "start": 31225.62, + "end": 31232.76, + "probability": 0.6896 + }, + { + "start": 31233.0, + "end": 31233.62, + "probability": 0.69 + }, + { + "start": 31233.74, + "end": 31234.12, + "probability": 0.5869 + }, + { + "start": 31234.22, + "end": 31236.8, + "probability": 0.631 + }, + { + "start": 31239.1, + "end": 31239.77, + "probability": 0.4226 + }, + { + "start": 31240.9, + "end": 31240.97, + "probability": 0.4734 + }, + { + "start": 31241.74, + "end": 31245.32, + "probability": 0.7293 + }, + { + "start": 31245.46, + "end": 31247.96, + "probability": 0.837 + }, + { + "start": 31249.12, + "end": 31249.42, + "probability": 0.7353 + }, + { + "start": 31249.72, + "end": 31251.7, + "probability": 0.6693 + }, + { + "start": 31252.26, + "end": 31252.62, + "probability": 0.394 + }, + { + "start": 31253.34, + "end": 31257.14, + "probability": 0.9759 + }, + { + "start": 31257.14, + "end": 31260.96, + "probability": 0.6405 + }, + { + "start": 31261.06, + "end": 31262.6, + "probability": 0.2285 + }, + { + "start": 31262.82, + "end": 31263.84, + "probability": 0.9881 + }, + { + "start": 31264.46, + "end": 31265.1, + "probability": 0.3912 + }, + { + "start": 31265.12, + "end": 31265.36, + "probability": 0.8255 + }, + { + "start": 31267.22, + "end": 31268.18, + "probability": 0.5902 + }, + { + "start": 31276.5, + "end": 31278.18, + "probability": 0.6314 + }, + { + "start": 31278.84, + "end": 31284.58, + "probability": 0.6054 + }, + { + "start": 31284.58, + "end": 31284.98, + "probability": 0.8366 + }, + { + "start": 31285.56, + "end": 31286.52, + "probability": 0.5066 + }, + { + "start": 31286.52, + "end": 31287.36, + "probability": 0.3308 + }, + { + "start": 31287.36, + "end": 31288.6, + "probability": 0.6743 + }, + { + "start": 31288.68, + "end": 31289.72, + "probability": 0.8476 + }, + { + "start": 31290.28, + "end": 31292.44, + "probability": 0.7404 + }, + { + "start": 31292.5, + "end": 31293.66, + "probability": 0.5705 + }, + { + "start": 31294.1, + "end": 31296.38, + "probability": 0.9909 + }, + { + "start": 31296.66, + "end": 31296.86, + "probability": 0.7576 + }, + { + "start": 31297.68, + "end": 31298.4, + "probability": 0.0664 + }, + { + "start": 31298.46, + "end": 31300.46, + "probability": 0.6745 + }, + { + "start": 31300.68, + "end": 31301.76, + "probability": 0.7354 + }, + { + "start": 31301.98, + "end": 31304.74, + "probability": 0.8653 + }, + { + "start": 31305.2, + "end": 31309.2, + "probability": 0.9319 + }, + { + "start": 31309.22, + "end": 31310.88, + "probability": 0.9536 + }, + { + "start": 31311.1, + "end": 31313.64, + "probability": 0.9746 + }, + { + "start": 31314.16, + "end": 31316.66, + "probability": 0.7526 + }, + { + "start": 31317.2, + "end": 31320.74, + "probability": 0.9709 + }, + { + "start": 31321.62, + "end": 31323.54, + "probability": 0.9893 + }, + { + "start": 31323.68, + "end": 31325.7, + "probability": 0.949 + }, + { + "start": 31326.16, + "end": 31327.48, + "probability": 0.9839 + }, + { + "start": 31327.54, + "end": 31330.2, + "probability": 0.9249 + }, + { + "start": 31330.24, + "end": 31333.48, + "probability": 0.9761 + }, + { + "start": 31333.62, + "end": 31335.74, + "probability": 0.978 + }, + { + "start": 31335.76, + "end": 31336.52, + "probability": 0.7224 + }, + { + "start": 31336.88, + "end": 31338.5, + "probability": 0.9767 + }, + { + "start": 31338.62, + "end": 31339.46, + "probability": 0.5303 + }, + { + "start": 31339.46, + "end": 31340.7, + "probability": 0.9518 + }, + { + "start": 31340.76, + "end": 31341.44, + "probability": 0.6356 + }, + { + "start": 31341.48, + "end": 31343.48, + "probability": 0.7228 + }, + { + "start": 31344.24, + "end": 31345.42, + "probability": 0.9655 + }, + { + "start": 31345.7, + "end": 31348.82, + "probability": 0.8535 + }, + { + "start": 31348.88, + "end": 31350.02, + "probability": 0.944 + }, + { + "start": 31350.88, + "end": 31353.2, + "probability": 0.9249 + }, + { + "start": 31354.02, + "end": 31356.12, + "probability": 0.8164 + }, + { + "start": 31357.18, + "end": 31357.74, + "probability": 0.8815 + }, + { + "start": 31360.54, + "end": 31361.06, + "probability": 0.7777 + }, + { + "start": 31362.7, + "end": 31368.26, + "probability": 0.9678 + }, + { + "start": 31369.36, + "end": 31371.18, + "probability": 0.7556 + }, + { + "start": 31371.82, + "end": 31373.86, + "probability": 0.9562 + }, + { + "start": 31374.52, + "end": 31379.72, + "probability": 0.9945 + }, + { + "start": 31380.86, + "end": 31383.3, + "probability": 0.8905 + }, + { + "start": 31383.98, + "end": 31386.64, + "probability": 0.9761 + }, + { + "start": 31387.44, + "end": 31392.42, + "probability": 0.9326 + }, + { + "start": 31393.04, + "end": 31396.66, + "probability": 0.9575 + }, + { + "start": 31398.44, + "end": 31403.3, + "probability": 0.9946 + }, + { + "start": 31403.94, + "end": 31406.2, + "probability": 0.9863 + }, + { + "start": 31406.72, + "end": 31409.8, + "probability": 0.966 + }, + { + "start": 31410.62, + "end": 31413.14, + "probability": 0.9891 + }, + { + "start": 31415.02, + "end": 31416.36, + "probability": 0.7903 + }, + { + "start": 31418.38, + "end": 31424.68, + "probability": 0.9696 + }, + { + "start": 31425.52, + "end": 31431.6, + "probability": 0.9823 + }, + { + "start": 31432.62, + "end": 31433.54, + "probability": 0.9254 + }, + { + "start": 31434.2, + "end": 31435.2, + "probability": 0.9453 + }, + { + "start": 31435.98, + "end": 31438.32, + "probability": 0.9857 + }, + { + "start": 31438.92, + "end": 31441.48, + "probability": 0.9261 + }, + { + "start": 31442.14, + "end": 31447.08, + "probability": 0.9279 + }, + { + "start": 31447.5, + "end": 31450.28, + "probability": 0.9843 + }, + { + "start": 31450.82, + "end": 31453.16, + "probability": 0.8331 + }, + { + "start": 31454.9, + "end": 31456.34, + "probability": 0.6584 + }, + { + "start": 31457.02, + "end": 31458.56, + "probability": 0.8734 + }, + { + "start": 31460.14, + "end": 31462.48, + "probability": 0.814 + }, + { + "start": 31462.8, + "end": 31466.5, + "probability": 0.979 + }, + { + "start": 31467.48, + "end": 31471.2, + "probability": 0.9852 + }, + { + "start": 31472.04, + "end": 31476.98, + "probability": 0.8856 + }, + { + "start": 31477.92, + "end": 31480.22, + "probability": 0.9803 + }, + { + "start": 31481.52, + "end": 31487.18, + "probability": 0.9843 + }, + { + "start": 31488.86, + "end": 31492.36, + "probability": 0.9719 + }, + { + "start": 31493.78, + "end": 31495.18, + "probability": 0.7598 + }, + { + "start": 31499.68, + "end": 31502.36, + "probability": 0.9889 + }, + { + "start": 31504.06, + "end": 31510.7, + "probability": 0.9974 + }, + { + "start": 31510.86, + "end": 31513.2, + "probability": 0.9331 + }, + { + "start": 31513.74, + "end": 31518.8, + "probability": 0.9689 + }, + { + "start": 31519.4, + "end": 31524.68, + "probability": 0.8478 + }, + { + "start": 31524.84, + "end": 31525.98, + "probability": 0.6205 + }, + { + "start": 31526.06, + "end": 31529.74, + "probability": 0.9895 + }, + { + "start": 31530.64, + "end": 31533.7, + "probability": 0.8845 + }, + { + "start": 31534.78, + "end": 31537.28, + "probability": 0.8698 + }, + { + "start": 31537.98, + "end": 31539.38, + "probability": 0.9302 + }, + { + "start": 31539.72, + "end": 31540.32, + "probability": 0.4562 + }, + { + "start": 31540.38, + "end": 31541.84, + "probability": 0.8923 + }, + { + "start": 31541.86, + "end": 31544.16, + "probability": 0.9177 + }, + { + "start": 31544.24, + "end": 31544.36, + "probability": 0.7635 + }, + { + "start": 31545.0, + "end": 31546.74, + "probability": 0.5356 + }, + { + "start": 31546.76, + "end": 31547.78, + "probability": 0.7629 + }, + { + "start": 31548.0, + "end": 31550.14, + "probability": 0.9212 + }, + { + "start": 31550.14, + "end": 31553.76, + "probability": 0.6824 + }, + { + "start": 31553.92, + "end": 31555.2, + "probability": 0.794 + }, + { + "start": 31555.2, + "end": 31555.48, + "probability": 0.4076 + }, + { + "start": 31557.81, + "end": 31559.68, + "probability": 0.6762 + }, + { + "start": 31559.68, + "end": 31561.66, + "probability": 0.6521 + }, + { + "start": 31561.78, + "end": 31563.02, + "probability": 0.7204 + }, + { + "start": 31564.9, + "end": 31572.06, + "probability": 0.9813 + }, + { + "start": 31572.24, + "end": 31574.02, + "probability": 0.8898 + }, + { + "start": 31574.68, + "end": 31576.34, + "probability": 0.9473 + }, + { + "start": 31576.44, + "end": 31577.5, + "probability": 0.819 + }, + { + "start": 31577.68, + "end": 31578.02, + "probability": 0.3276 + }, + { + "start": 31578.02, + "end": 31583.0, + "probability": 0.894 + }, + { + "start": 31584.1, + "end": 31585.54, + "probability": 0.994 + }, + { + "start": 31585.88, + "end": 31589.04, + "probability": 0.8381 + }, + { + "start": 31591.26, + "end": 31594.28, + "probability": 0.9962 + }, + { + "start": 31594.6, + "end": 31597.38, + "probability": 0.9638 + }, + { + "start": 31597.98, + "end": 31600.86, + "probability": 0.8922 + }, + { + "start": 31601.72, + "end": 31605.8, + "probability": 0.9946 + }, + { + "start": 31611.26, + "end": 31613.04, + "probability": 0.6278 + }, + { + "start": 31614.3, + "end": 31617.2, + "probability": 0.9915 + }, + { + "start": 31618.48, + "end": 31622.2, + "probability": 0.8766 + }, + { + "start": 31622.96, + "end": 31627.28, + "probability": 0.9701 + }, + { + "start": 31628.1, + "end": 31631.68, + "probability": 0.8318 + }, + { + "start": 31631.72, + "end": 31634.22, + "probability": 0.9948 + }, + { + "start": 31634.86, + "end": 31636.62, + "probability": 0.7576 + }, + { + "start": 31636.7, + "end": 31637.62, + "probability": 0.8142 + }, + { + "start": 31637.72, + "end": 31640.42, + "probability": 0.9985 + }, + { + "start": 31641.58, + "end": 31644.32, + "probability": 0.9897 + }, + { + "start": 31644.32, + "end": 31652.38, + "probability": 0.9854 + }, + { + "start": 31653.34, + "end": 31654.94, + "probability": 0.9197 + }, + { + "start": 31656.28, + "end": 31660.84, + "probability": 0.9917 + }, + { + "start": 31662.36, + "end": 31662.9, + "probability": 0.7869 + }, + { + "start": 31663.46, + "end": 31665.72, + "probability": 0.9646 + }, + { + "start": 31665.82, + "end": 31666.25, + "probability": 0.9336 + }, + { + "start": 31667.36, + "end": 31668.78, + "probability": 0.8197 + }, + { + "start": 31668.8, + "end": 31669.72, + "probability": 0.8217 + }, + { + "start": 31670.28, + "end": 31673.02, + "probability": 0.9941 + }, + { + "start": 31674.24, + "end": 31676.84, + "probability": 0.9979 + }, + { + "start": 31676.84, + "end": 31679.62, + "probability": 0.9653 + }, + { + "start": 31680.78, + "end": 31682.32, + "probability": 0.7617 + }, + { + "start": 31682.4, + "end": 31684.14, + "probability": 0.9597 + }, + { + "start": 31684.22, + "end": 31685.5, + "probability": 0.9336 + }, + { + "start": 31685.68, + "end": 31688.74, + "probability": 0.9327 + }, + { + "start": 31689.54, + "end": 31690.48, + "probability": 0.8455 + }, + { + "start": 31690.58, + "end": 31693.74, + "probability": 0.9746 + }, + { + "start": 31693.98, + "end": 31698.78, + "probability": 0.9935 + }, + { + "start": 31699.88, + "end": 31702.8, + "probability": 0.9933 + }, + { + "start": 31703.18, + "end": 31710.42, + "probability": 0.9481 + }, + { + "start": 31711.34, + "end": 31715.96, + "probability": 0.9774 + }, + { + "start": 31716.58, + "end": 31720.2, + "probability": 0.7416 + }, + { + "start": 31721.16, + "end": 31723.7, + "probability": 0.9929 + }, + { + "start": 31724.74, + "end": 31728.52, + "probability": 0.9927 + }, + { + "start": 31729.04, + "end": 31731.42, + "probability": 0.9761 + }, + { + "start": 31732.32, + "end": 31735.62, + "probability": 0.9757 + }, + { + "start": 31737.26, + "end": 31738.16, + "probability": 0.8286 + }, + { + "start": 31738.26, + "end": 31738.48, + "probability": 0.5859 + }, + { + "start": 31738.52, + "end": 31742.48, + "probability": 0.975 + }, + { + "start": 31742.8, + "end": 31745.42, + "probability": 0.9591 + }, + { + "start": 31746.28, + "end": 31751.38, + "probability": 0.9966 + }, + { + "start": 31751.72, + "end": 31752.44, + "probability": 0.5939 + }, + { + "start": 31752.72, + "end": 31753.12, + "probability": 0.7034 + }, + { + "start": 31753.12, + "end": 31753.62, + "probability": 0.803 + }, + { + "start": 31754.22, + "end": 31756.5, + "probability": 0.8211 + }, + { + "start": 31758.22, + "end": 31760.66, + "probability": 0.9834 + }, + { + "start": 31761.24, + "end": 31763.2, + "probability": 0.8622 + }, + { + "start": 31763.98, + "end": 31764.94, + "probability": 0.849 + }, + { + "start": 31765.18, + "end": 31769.84, + "probability": 0.9971 + }, + { + "start": 31770.28, + "end": 31770.64, + "probability": 0.7128 + }, + { + "start": 31771.72, + "end": 31773.74, + "probability": 0.9858 + }, + { + "start": 31773.88, + "end": 31776.28, + "probability": 0.902 + }, + { + "start": 31776.4, + "end": 31779.16, + "probability": 0.9647 + }, + { + "start": 31779.28, + "end": 31780.6, + "probability": 0.9622 + }, + { + "start": 31782.36, + "end": 31786.04, + "probability": 0.994 + }, + { + "start": 31786.14, + "end": 31786.65, + "probability": 0.9479 + }, + { + "start": 31786.98, + "end": 31791.42, + "probability": 0.696 + }, + { + "start": 31796.85, + "end": 31799.24, + "probability": 0.848 + }, + { + "start": 31799.88, + "end": 31801.22, + "probability": 0.9277 + }, + { + "start": 31803.71, + "end": 31806.68, + "probability": 0.901 + }, + { + "start": 31816.1, + "end": 31817.88, + "probability": 0.9597 + }, + { + "start": 31818.04, + "end": 31818.12, + "probability": 0.0789 + }, + { + "start": 31818.26, + "end": 31818.38, + "probability": 0.149 + }, + { + "start": 31818.44, + "end": 31820.1, + "probability": 0.9207 + }, + { + "start": 31820.62, + "end": 31824.7, + "probability": 0.9558 + }, + { + "start": 31825.84, + "end": 31827.48, + "probability": 0.8694 + }, + { + "start": 31829.84, + "end": 31831.26, + "probability": 0.5964 + }, + { + "start": 31831.26, + "end": 31832.02, + "probability": 0.5751 + }, + { + "start": 31832.1, + "end": 31835.44, + "probability": 0.9327 + }, + { + "start": 31835.44, + "end": 31839.68, + "probability": 0.7784 + }, + { + "start": 31841.74, + "end": 31842.94, + "probability": 0.1893 + }, + { + "start": 31843.04, + "end": 31845.74, + "probability": 0.9995 + }, + { + "start": 31846.4, + "end": 31847.2, + "probability": 0.6096 + }, + { + "start": 31847.5, + "end": 31847.8, + "probability": 0.6786 + }, + { + "start": 31848.02, + "end": 31848.66, + "probability": 0.297 + }, + { + "start": 31848.7, + "end": 31849.84, + "probability": 0.985 + }, + { + "start": 31850.62, + "end": 31853.92, + "probability": 0.9953 + }, + { + "start": 31855.86, + "end": 31856.5, + "probability": 0.5302 + }, + { + "start": 31856.74, + "end": 31857.66, + "probability": 0.8065 + }, + { + "start": 31857.74, + "end": 31863.22, + "probability": 0.9806 + }, + { + "start": 31864.32, + "end": 31866.08, + "probability": 0.9736 + }, + { + "start": 31866.8, + "end": 31869.5, + "probability": 0.9857 + }, + { + "start": 31870.22, + "end": 31873.82, + "probability": 0.9939 + }, + { + "start": 31874.5, + "end": 31879.98, + "probability": 0.9961 + }, + { + "start": 31880.58, + "end": 31883.62, + "probability": 0.9957 + }, + { + "start": 31883.62, + "end": 31885.96, + "probability": 0.9786 + }, + { + "start": 31887.04, + "end": 31888.86, + "probability": 0.9833 + }, + { + "start": 31889.38, + "end": 31891.7, + "probability": 0.9964 + }, + { + "start": 31892.26, + "end": 31894.4, + "probability": 0.9771 + }, + { + "start": 31895.28, + "end": 31901.6, + "probability": 0.9799 + }, + { + "start": 31902.3, + "end": 31907.56, + "probability": 0.9927 + }, + { + "start": 31907.56, + "end": 31914.04, + "probability": 0.999 + }, + { + "start": 31914.66, + "end": 31916.28, + "probability": 0.1635 + }, + { + "start": 31917.14, + "end": 31920.86, + "probability": 0.9453 + }, + { + "start": 31920.86, + "end": 31924.1, + "probability": 0.9864 + }, + { + "start": 31925.2, + "end": 31925.62, + "probability": 0.1396 + }, + { + "start": 31925.62, + "end": 31926.6, + "probability": 0.3116 + }, + { + "start": 31930.22, + "end": 31930.34, + "probability": 0.1071 + }, + { + "start": 31930.34, + "end": 31930.83, + "probability": 0.4502 + }, + { + "start": 31931.68, + "end": 31934.34, + "probability": 0.2919 + }, + { + "start": 31935.02, + "end": 31936.84, + "probability": 0.0307 + }, + { + "start": 31938.86, + "end": 31941.26, + "probability": 0.1915 + }, + { + "start": 31941.5, + "end": 31942.38, + "probability": 0.2028 + }, + { + "start": 31943.12, + "end": 31943.46, + "probability": 0.896 + }, + { + "start": 31943.58, + "end": 31946.68, + "probability": 0.8764 + }, + { + "start": 31946.86, + "end": 31950.36, + "probability": 0.988 + }, + { + "start": 31950.54, + "end": 31951.66, + "probability": 0.5445 + }, + { + "start": 31951.7, + "end": 31954.62, + "probability": 0.8627 + }, + { + "start": 31954.82, + "end": 31959.44, + "probability": 0.989 + }, + { + "start": 31960.22, + "end": 31962.47, + "probability": 0.9707 + }, + { + "start": 31963.14, + "end": 31966.66, + "probability": 0.9883 + }, + { + "start": 31967.24, + "end": 31967.94, + "probability": 0.7482 + }, + { + "start": 31968.64, + "end": 31973.78, + "probability": 0.9788 + }, + { + "start": 31974.24, + "end": 31975.62, + "probability": 0.8976 + }, + { + "start": 31976.87, + "end": 31981.58, + "probability": 0.9961 + }, + { + "start": 31981.58, + "end": 31984.3, + "probability": 0.9922 + }, + { + "start": 31985.06, + "end": 31987.2, + "probability": 0.9977 + }, + { + "start": 31987.76, + "end": 31989.4, + "probability": 0.9835 + }, + { + "start": 31990.36, + "end": 31992.96, + "probability": 0.9975 + }, + { + "start": 31992.96, + "end": 31995.98, + "probability": 0.9981 + }, + { + "start": 31996.76, + "end": 32000.62, + "probability": 0.9982 + }, + { + "start": 32000.62, + "end": 32004.0, + "probability": 0.8367 + }, + { + "start": 32004.84, + "end": 32007.5, + "probability": 0.9987 + }, + { + "start": 32008.2, + "end": 32012.26, + "probability": 0.9941 + }, + { + "start": 32012.86, + "end": 32014.3, + "probability": 0.6463 + }, + { + "start": 32016.74, + "end": 32020.92, + "probability": 0.9971 + }, + { + "start": 32022.88, + "end": 32025.56, + "probability": 0.9975 + }, + { + "start": 32025.56, + "end": 32029.64, + "probability": 0.9546 + }, + { + "start": 32030.38, + "end": 32034.58, + "probability": 0.8728 + }, + { + "start": 32035.22, + "end": 32038.64, + "probability": 0.9934 + }, + { + "start": 32039.06, + "end": 32043.12, + "probability": 0.9877 + }, + { + "start": 32043.96, + "end": 32047.18, + "probability": 0.9917 + }, + { + "start": 32047.8, + "end": 32049.44, + "probability": 0.8506 + }, + { + "start": 32050.46, + "end": 32056.36, + "probability": 0.9984 + }, + { + "start": 32057.4, + "end": 32059.16, + "probability": 0.9967 + }, + { + "start": 32059.72, + "end": 32061.68, + "probability": 0.9772 + }, + { + "start": 32062.32, + "end": 32064.98, + "probability": 0.8104 + }, + { + "start": 32066.8, + "end": 32070.06, + "probability": 0.9523 + }, + { + "start": 32070.06, + "end": 32073.8, + "probability": 0.9983 + }, + { + "start": 32074.54, + "end": 32075.56, + "probability": 0.4277 + }, + { + "start": 32076.76, + "end": 32077.73, + "probability": 0.1732 + }, + { + "start": 32080.24, + "end": 32080.24, + "probability": 0.0638 + }, + { + "start": 32080.24, + "end": 32081.34, + "probability": 0.9658 + }, + { + "start": 32081.42, + "end": 32082.06, + "probability": 0.8192 + }, + { + "start": 32082.38, + "end": 32084.86, + "probability": 0.7969 + }, + { + "start": 32084.9, + "end": 32086.33, + "probability": 0.8662 + }, + { + "start": 32086.88, + "end": 32088.04, + "probability": 0.4915 + }, + { + "start": 32089.92, + "end": 32091.94, + "probability": 0.8689 + }, + { + "start": 32092.7, + "end": 32096.6, + "probability": 0.9529 + }, + { + "start": 32096.64, + "end": 32097.6, + "probability": 0.5415 + }, + { + "start": 32097.64, + "end": 32098.3, + "probability": 0.4853 + }, + { + "start": 32098.34, + "end": 32099.64, + "probability": 0.973 + }, + { + "start": 32100.26, + "end": 32101.54, + "probability": 0.9758 + }, + { + "start": 32102.38, + "end": 32106.14, + "probability": 0.9979 + }, + { + "start": 32106.84, + "end": 32107.6, + "probability": 0.7097 + }, + { + "start": 32108.6, + "end": 32111.76, + "probability": 0.996 + }, + { + "start": 32112.24, + "end": 32113.36, + "probability": 0.9134 + }, + { + "start": 32113.9, + "end": 32116.26, + "probability": 0.9937 + }, + { + "start": 32116.32, + "end": 32118.44, + "probability": 0.9901 + }, + { + "start": 32119.26, + "end": 32122.86, + "probability": 0.9252 + }, + { + "start": 32123.36, + "end": 32126.54, + "probability": 0.9791 + }, + { + "start": 32127.0, + "end": 32131.36, + "probability": 0.999 + }, + { + "start": 32132.56, + "end": 32137.1, + "probability": 0.9874 + }, + { + "start": 32137.62, + "end": 32139.24, + "probability": 0.8265 + }, + { + "start": 32139.96, + "end": 32147.6, + "probability": 0.9879 + }, + { + "start": 32147.6, + "end": 32152.72, + "probability": 0.9749 + }, + { + "start": 32152.86, + "end": 32153.24, + "probability": 0.5337 + }, + { + "start": 32154.02, + "end": 32157.58, + "probability": 0.9801 + }, + { + "start": 32158.02, + "end": 32159.86, + "probability": 0.6171 + }, + { + "start": 32161.4, + "end": 32162.72, + "probability": 0.8282 + }, + { + "start": 32163.1, + "end": 32163.98, + "probability": 0.9492 + }, + { + "start": 32164.86, + "end": 32167.18, + "probability": 0.3301 + }, + { + "start": 32167.78, + "end": 32168.04, + "probability": 0.0067 + }, + { + "start": 32168.04, + "end": 32168.87, + "probability": 0.5787 + }, + { + "start": 32170.22, + "end": 32171.58, + "probability": 0.8602 + }, + { + "start": 32172.52, + "end": 32173.14, + "probability": 0.1475 + }, + { + "start": 32174.2, + "end": 32175.34, + "probability": 0.9728 + }, + { + "start": 32175.4, + "end": 32177.2, + "probability": 0.9927 + }, + { + "start": 32178.56, + "end": 32179.38, + "probability": 0.9857 + }, + { + "start": 32180.56, + "end": 32181.13, + "probability": 0.9379 + }, + { + "start": 32181.66, + "end": 32184.14, + "probability": 0.6874 + }, + { + "start": 32184.24, + "end": 32184.5, + "probability": 0.7479 + }, + { + "start": 32184.62, + "end": 32185.72, + "probability": 0.8242 + }, + { + "start": 32185.76, + "end": 32187.34, + "probability": 0.9681 + }, + { + "start": 32187.54, + "end": 32188.18, + "probability": 0.6218 + }, + { + "start": 32188.18, + "end": 32188.42, + "probability": 0.9067 + }, + { + "start": 32189.02, + "end": 32189.95, + "probability": 0.7908 + }, + { + "start": 32190.52, + "end": 32191.74, + "probability": 0.7036 + }, + { + "start": 32192.92, + "end": 32196.04, + "probability": 0.9756 + }, + { + "start": 32196.16, + "end": 32197.62, + "probability": 0.567 + }, + { + "start": 32197.86, + "end": 32199.54, + "probability": 0.6009 + }, + { + "start": 32199.76, + "end": 32202.08, + "probability": 0.3714 + }, + { + "start": 32202.24, + "end": 32205.44, + "probability": 0.6901 + }, + { + "start": 32205.44, + "end": 32207.8, + "probability": 0.8605 + }, + { + "start": 32208.46, + "end": 32210.82, + "probability": 0.6415 + }, + { + "start": 32211.16, + "end": 32211.16, + "probability": 0.327 + }, + { + "start": 32211.16, + "end": 32213.5, + "probability": 0.6505 + }, + { + "start": 32213.7, + "end": 32214.6, + "probability": 0.6157 + }, + { + "start": 32214.6, + "end": 32215.02, + "probability": 0.1962 + }, + { + "start": 32215.2, + "end": 32216.2, + "probability": 0.9669 + }, + { + "start": 32216.74, + "end": 32222.82, + "probability": 0.8857 + }, + { + "start": 32223.53, + "end": 32226.52, + "probability": 0.938 + }, + { + "start": 32227.14, + "end": 32231.02, + "probability": 0.7715 + }, + { + "start": 32231.14, + "end": 32232.36, + "probability": 0.8395 + }, + { + "start": 32232.36, + "end": 32234.92, + "probability": 0.7743 + }, + { + "start": 32235.06, + "end": 32239.36, + "probability": 0.8854 + }, + { + "start": 32239.36, + "end": 32242.18, + "probability": 0.8904 + }, + { + "start": 32243.14, + "end": 32245.02, + "probability": 0.998 + }, + { + "start": 32246.2, + "end": 32247.7, + "probability": 0.8967 + }, + { + "start": 32247.8, + "end": 32249.26, + "probability": 0.9966 + }, + { + "start": 32249.94, + "end": 32252.3, + "probability": 0.9814 + }, + { + "start": 32252.36, + "end": 32258.4, + "probability": 0.0215 + }, + { + "start": 32258.4, + "end": 32258.4, + "probability": 0.041 + }, + { + "start": 32258.4, + "end": 32259.02, + "probability": 0.9795 + }, + { + "start": 32260.62, + "end": 32262.16, + "probability": 0.7865 + }, + { + "start": 32262.3, + "end": 32264.14, + "probability": 0.8978 + }, + { + "start": 32264.2, + "end": 32265.14, + "probability": 0.8477 + }, + { + "start": 32266.3, + "end": 32269.6, + "probability": 0.7493 + }, + { + "start": 32270.26, + "end": 32270.3, + "probability": 0.9502 + }, + { + "start": 32273.2, + "end": 32276.46, + "probability": 0.9873 + }, + { + "start": 32277.85, + "end": 32280.38, + "probability": 0.9966 + }, + { + "start": 32281.0, + "end": 32283.38, + "probability": 0.9617 + }, + { + "start": 32284.18, + "end": 32286.19, + "probability": 0.6476 + }, + { + "start": 32286.36, + "end": 32286.58, + "probability": 0.3496 + }, + { + "start": 32286.88, + "end": 32287.88, + "probability": 0.575 + }, + { + "start": 32289.1, + "end": 32291.56, + "probability": 0.9517 + }, + { + "start": 32293.37, + "end": 32297.34, + "probability": 0.9855 + }, + { + "start": 32297.92, + "end": 32298.34, + "probability": 0.5436 + }, + { + "start": 32298.42, + "end": 32302.02, + "probability": 0.9071 + }, + { + "start": 32302.2, + "end": 32306.08, + "probability": 0.946 + }, + { + "start": 32306.78, + "end": 32309.3, + "probability": 0.7724 + }, + { + "start": 32310.44, + "end": 32312.24, + "probability": 0.9371 + }, + { + "start": 32312.32, + "end": 32312.32, + "probability": 0.708 + }, + { + "start": 32312.34, + "end": 32316.62, + "probability": 0.9465 + }, + { + "start": 32316.62, + "end": 32321.52, + "probability": 0.9993 + }, + { + "start": 32324.24, + "end": 32328.18, + "probability": 0.9497 + }, + { + "start": 32329.42, + "end": 32334.88, + "probability": 0.1357 + }, + { + "start": 32334.88, + "end": 32338.53, + "probability": 0.8147 + }, + { + "start": 32340.36, + "end": 32341.5, + "probability": 0.9803 + }, + { + "start": 32341.6, + "end": 32342.6, + "probability": 0.997 + }, + { + "start": 32345.58, + "end": 32348.3, + "probability": 0.9938 + }, + { + "start": 32349.42, + "end": 32350.76, + "probability": 0.8693 + }, + { + "start": 32351.66, + "end": 32353.08, + "probability": 0.9163 + }, + { + "start": 32353.6, + "end": 32355.66, + "probability": 0.9393 + }, + { + "start": 32358.02, + "end": 32362.5, + "probability": 0.9509 + }, + { + "start": 32362.52, + "end": 32364.06, + "probability": 0.0695 + }, + { + "start": 32365.8, + "end": 32370.94, + "probability": 0.7298 + }, + { + "start": 32372.14, + "end": 32372.24, + "probability": 0.0023 + }, + { + "start": 32372.88, + "end": 32374.62, + "probability": 0.5073 + }, + { + "start": 32377.12, + "end": 32378.74, + "probability": 0.8688 + }, + { + "start": 32378.98, + "end": 32381.68, + "probability": 0.7455 + }, + { + "start": 32381.98, + "end": 32385.12, + "probability": 0.89 + }, + { + "start": 32385.35, + "end": 32385.4, + "probability": 0.0234 + }, + { + "start": 32385.4, + "end": 32385.82, + "probability": 0.4037 + }, + { + "start": 32385.86, + "end": 32387.02, + "probability": 0.9641 + }, + { + "start": 32387.88, + "end": 32389.46, + "probability": 0.8454 + }, + { + "start": 32389.6, + "end": 32391.42, + "probability": 0.9004 + }, + { + "start": 32391.42, + "end": 32393.62, + "probability": 0.9697 + }, + { + "start": 32393.98, + "end": 32396.36, + "probability": 0.9326 + }, + { + "start": 32396.56, + "end": 32399.32, + "probability": 0.8461 + }, + { + "start": 32399.9, + "end": 32403.0, + "probability": 0.7916 + }, + { + "start": 32403.12, + "end": 32404.76, + "probability": 0.1979 + }, + { + "start": 32405.22, + "end": 32406.56, + "probability": 0.9193 + }, + { + "start": 32407.18, + "end": 32409.18, + "probability": 0.6099 + }, + { + "start": 32409.4, + "end": 32410.78, + "probability": 0.6238 + }, + { + "start": 32416.28, + "end": 32419.3, + "probability": 0.1781 + }, + { + "start": 32436.7, + "end": 32439.96, + "probability": 0.3942 + }, + { + "start": 32440.74, + "end": 32442.26, + "probability": 0.2205 + }, + { + "start": 32442.62, + "end": 32443.94, + "probability": 0.7151 + }, + { + "start": 32443.94, + "end": 32444.84, + "probability": 0.4557 + }, + { + "start": 32445.82, + "end": 32450.8, + "probability": 0.1808 + }, + { + "start": 32450.8, + "end": 32452.26, + "probability": 0.9919 + }, + { + "start": 32463.72, + "end": 32467.38, + "probability": 0.919 + }, + { + "start": 32467.66, + "end": 32468.64, + "probability": 0.8117 + }, + { + "start": 32470.76, + "end": 32474.4, + "probability": 0.2702 + }, + { + "start": 32475.04, + "end": 32477.3, + "probability": 0.0134 + }, + { + "start": 32477.3, + "end": 32477.4, + "probability": 0.0988 + }, + { + "start": 32477.54, + "end": 32480.02, + "probability": 0.0705 + }, + { + "start": 32480.82, + "end": 32481.46, + "probability": 0.6301 + }, + { + "start": 32481.9, + "end": 32481.98, + "probability": 0.1778 + }, + { + "start": 32482.54, + "end": 32485.54, + "probability": 0.1266 + }, + { + "start": 32487.54, + "end": 32489.24, + "probability": 0.1047 + }, + { + "start": 32491.88, + "end": 32492.02, + "probability": 0.0299 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.0, + "end": 32511.0, + "probability": 0.0 + }, + { + "start": 32511.38, + "end": 32512.72, + "probability": 0.0842 + }, + { + "start": 32512.72, + "end": 32513.18, + "probability": 0.0395 + }, + { + "start": 32513.2, + "end": 32516.2, + "probability": 0.7384 + }, + { + "start": 32517.72, + "end": 32518.3, + "probability": 0.6341 + }, + { + "start": 32518.78, + "end": 32519.94, + "probability": 0.6045 + }, + { + "start": 32528.66, + "end": 32532.56, + "probability": 0.0767 + }, + { + "start": 32532.56, + "end": 32532.86, + "probability": 0.0705 + }, + { + "start": 32532.86, + "end": 32532.86, + "probability": 0.054 + }, + { + "start": 32532.86, + "end": 32538.2, + "probability": 0.5613 + }, + { + "start": 32539.22, + "end": 32540.08, + "probability": 0.4229 + }, + { + "start": 32543.08, + "end": 32544.0, + "probability": 0.4626 + }, + { + "start": 32547.3, + "end": 32548.36, + "probability": 0.53 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.0, + "end": 32675.0, + "probability": 0.0 + }, + { + "start": 32675.14, + "end": 32675.4, + "probability": 0.059 + }, + { + "start": 32675.4, + "end": 32676.24, + "probability": 0.3675 + }, + { + "start": 32677.61, + "end": 32681.4, + "probability": 0.8595 + }, + { + "start": 32681.68, + "end": 32682.66, + "probability": 0.0803 + }, + { + "start": 32682.86, + "end": 32683.24, + "probability": 0.2744 + }, + { + "start": 32683.24, + "end": 32684.86, + "probability": 0.552 + }, + { + "start": 32685.37, + "end": 32687.68, + "probability": 0.0361 + }, + { + "start": 32688.04, + "end": 32689.17, + "probability": 0.9535 + }, + { + "start": 32689.7, + "end": 32690.89, + "probability": 0.7721 + }, + { + "start": 32691.32, + "end": 32691.94, + "probability": 0.2327 + }, + { + "start": 32691.94, + "end": 32692.4, + "probability": 0.6044 + }, + { + "start": 32692.46, + "end": 32693.83, + "probability": 0.9628 + }, + { + "start": 32694.16, + "end": 32694.74, + "probability": 0.3975 + }, + { + "start": 32694.9, + "end": 32697.0, + "probability": 0.1577 + }, + { + "start": 32697.4, + "end": 32698.03, + "probability": 0.566 + }, + { + "start": 32698.24, + "end": 32699.62, + "probability": 0.8945 + }, + { + "start": 32699.82, + "end": 32700.24, + "probability": 0.8403 + }, + { + "start": 32700.54, + "end": 32703.63, + "probability": 0.3138 + }, + { + "start": 32703.7, + "end": 32703.84, + "probability": 0.1826 + }, + { + "start": 32703.84, + "end": 32704.46, + "probability": 0.1399 + }, + { + "start": 32704.52, + "end": 32705.01, + "probability": 0.4485 + }, + { + "start": 32705.36, + "end": 32707.72, + "probability": 0.8042 + }, + { + "start": 32707.96, + "end": 32708.04, + "probability": 0.0006 + }, + { + "start": 32709.28, + "end": 32709.52, + "probability": 0.0064 + }, + { + "start": 32709.52, + "end": 32710.21, + "probability": 0.1081 + }, + { + "start": 32711.48, + "end": 32712.7, + "probability": 0.2831 + }, + { + "start": 32712.8, + "end": 32713.16, + "probability": 0.2203 + }, + { + "start": 32713.28, + "end": 32714.02, + "probability": 0.7724 + }, + { + "start": 32714.62, + "end": 32715.94, + "probability": 0.4566 + }, + { + "start": 32716.2, + "end": 32718.6, + "probability": 0.6602 + }, + { + "start": 32719.42, + "end": 32719.86, + "probability": 0.2729 + }, + { + "start": 32719.92, + "end": 32721.55, + "probability": 0.332 + }, + { + "start": 32721.6, + "end": 32723.94, + "probability": 0.8006 + }, + { + "start": 32728.06, + "end": 32730.6, + "probability": 0.331 + }, + { + "start": 32731.48, + "end": 32732.42, + "probability": 0.1226 + }, + { + "start": 32735.12, + "end": 32737.78, + "probability": 0.8019 + }, + { + "start": 32737.86, + "end": 32739.16, + "probability": 0.9018 + }, + { + "start": 32739.3, + "end": 32743.0, + "probability": 0.8828 + }, + { + "start": 32743.08, + "end": 32745.46, + "probability": 0.6847 + }, + { + "start": 32745.62, + "end": 32746.04, + "probability": 0.6309 + }, + { + "start": 32746.76, + "end": 32747.44, + "probability": 0.4749 + }, + { + "start": 32747.54, + "end": 32749.72, + "probability": 0.7189 + }, + { + "start": 32749.84, + "end": 32750.54, + "probability": 0.7288 + }, + { + "start": 32750.98, + "end": 32753.56, + "probability": 0.6336 + }, + { + "start": 32753.58, + "end": 32753.94, + "probability": 0.5191 + }, + { + "start": 32753.94, + "end": 32755.36, + "probability": 0.6069 + }, + { + "start": 32755.42, + "end": 32756.7, + "probability": 0.4541 + }, + { + "start": 32756.94, + "end": 32757.56, + "probability": 0.5343 + }, + { + "start": 32757.56, + "end": 32758.8, + "probability": 0.4115 + }, + { + "start": 32758.84, + "end": 32761.12, + "probability": 0.9888 + }, + { + "start": 32761.26, + "end": 32763.44, + "probability": 0.9971 + }, + { + "start": 32763.52, + "end": 32763.77, + "probability": 0.9613 + }, + { + "start": 32764.54, + "end": 32764.84, + "probability": 0.7568 + }, + { + "start": 32765.16, + "end": 32771.88, + "probability": 0.804 + }, + { + "start": 32772.04, + "end": 32775.32, + "probability": 0.7633 + }, + { + "start": 32776.06, + "end": 32779.52, + "probability": 0.1297 + }, + { + "start": 32779.64, + "end": 32781.84, + "probability": 0.6572 + }, + { + "start": 32781.94, + "end": 32782.86, + "probability": 0.8517 + }, + { + "start": 32783.02, + "end": 32786.32, + "probability": 0.7146 + }, + { + "start": 32786.88, + "end": 32787.62, + "probability": 0.8362 + }, + { + "start": 32787.92, + "end": 32788.86, + "probability": 0.6978 + }, + { + "start": 32788.94, + "end": 32790.28, + "probability": 0.7707 + }, + { + "start": 32790.54, + "end": 32794.46, + "probability": 0.9739 + }, + { + "start": 32794.56, + "end": 32798.16, + "probability": 0.9941 + }, + { + "start": 32800.18, + "end": 32802.98, + "probability": 0.9653 + }, + { + "start": 32804.84, + "end": 32809.12, + "probability": 0.9683 + }, + { + "start": 32810.26, + "end": 32813.5, + "probability": 0.9912 + }, + { + "start": 32814.6, + "end": 32817.89, + "probability": 0.9335 + }, + { + "start": 32819.12, + "end": 32821.04, + "probability": 0.925 + }, + { + "start": 32822.73, + "end": 32825.76, + "probability": 0.9207 + }, + { + "start": 32826.86, + "end": 32830.56, + "probability": 0.9692 + }, + { + "start": 32831.96, + "end": 32834.86, + "probability": 0.5116 + }, + { + "start": 32834.88, + "end": 32835.4, + "probability": 0.543 + }, + { + "start": 32836.22, + "end": 32838.04, + "probability": 0.9336 + }, + { + "start": 32838.08, + "end": 32839.96, + "probability": 0.9513 + }, + { + "start": 32840.02, + "end": 32840.36, + "probability": 0.8502 + }, + { + "start": 32840.42, + "end": 32841.46, + "probability": 0.9052 + }, + { + "start": 32841.76, + "end": 32845.94, + "probability": 0.815 + }, + { + "start": 32846.06, + "end": 32846.3, + "probability": 0.7328 + }, + { + "start": 32847.26, + "end": 32848.44, + "probability": 0.8741 + }, + { + "start": 32848.78, + "end": 32851.6, + "probability": 0.8859 + }, + { + "start": 32852.0, + "end": 32852.96, + "probability": 0.833 + }, + { + "start": 32853.98, + "end": 32855.8, + "probability": 0.3574 + }, + { + "start": 32855.88, + "end": 32858.58, + "probability": 0.9979 + }, + { + "start": 32859.28, + "end": 32861.87, + "probability": 0.9873 + }, + { + "start": 32862.46, + "end": 32867.14, + "probability": 0.9842 + }, + { + "start": 32867.14, + "end": 32872.02, + "probability": 0.7171 + }, + { + "start": 32872.82, + "end": 32873.7, + "probability": 0.9143 + }, + { + "start": 32873.86, + "end": 32874.64, + "probability": 0.8264 + }, + { + "start": 32874.74, + "end": 32880.88, + "probability": 0.9979 + }, + { + "start": 32881.52, + "end": 32884.36, + "probability": 0.9258 + }, + { + "start": 32885.56, + "end": 32890.34, + "probability": 0.9246 + }, + { + "start": 32890.9, + "end": 32895.26, + "probability": 0.9872 + }, + { + "start": 32895.9, + "end": 32897.74, + "probability": 0.9933 + }, + { + "start": 32898.5, + "end": 32901.06, + "probability": 0.9622 + }, + { + "start": 32901.48, + "end": 32904.94, + "probability": 0.973 + }, + { + "start": 32905.22, + "end": 32910.32, + "probability": 0.9314 + }, + { + "start": 32911.84, + "end": 32914.22, + "probability": 0.632 + }, + { + "start": 32914.24, + "end": 32917.92, + "probability": 0.9549 + }, + { + "start": 32917.92, + "end": 32920.32, + "probability": 0.5701 + }, + { + "start": 32920.68, + "end": 32921.84, + "probability": 0.8495 + }, + { + "start": 32922.72, + "end": 32923.42, + "probability": 0.6841 + }, + { + "start": 32923.5, + "end": 32926.74, + "probability": 0.8325 + }, + { + "start": 32926.84, + "end": 32931.38, + "probability": 0.7985 + }, + { + "start": 32931.84, + "end": 32933.66, + "probability": 0.8804 + }, + { + "start": 32933.88, + "end": 32937.08, + "probability": 0.7281 + }, + { + "start": 32938.06, + "end": 32941.9, + "probability": 0.6712 + }, + { + "start": 32943.0, + "end": 32943.32, + "probability": 0.3335 + }, + { + "start": 32943.32, + "end": 32943.74, + "probability": 0.8675 + }, + { + "start": 32943.82, + "end": 32945.24, + "probability": 0.9722 + }, + { + "start": 32945.28, + "end": 32946.78, + "probability": 0.8629 + }, + { + "start": 32946.86, + "end": 32948.72, + "probability": 0.9774 + }, + { + "start": 32949.36, + "end": 32951.52, + "probability": 0.9694 + }, + { + "start": 32951.66, + "end": 32953.31, + "probability": 0.8935 + }, + { + "start": 32954.48, + "end": 32958.38, + "probability": 0.9659 + }, + { + "start": 32958.86, + "end": 32961.94, + "probability": 0.9409 + }, + { + "start": 32963.72, + "end": 32965.1, + "probability": 0.9716 + }, + { + "start": 32965.28, + "end": 32967.04, + "probability": 0.999 + }, + { + "start": 32967.68, + "end": 32969.6, + "probability": 0.4361 + }, + { + "start": 32970.74, + "end": 32971.38, + "probability": 0.4532 + }, + { + "start": 32971.44, + "end": 32974.36, + "probability": 0.9941 + }, + { + "start": 32975.0, + "end": 32979.24, + "probability": 0.8706 + }, + { + "start": 32979.76, + "end": 32982.04, + "probability": 0.9854 + }, + { + "start": 32982.84, + "end": 32985.26, + "probability": 0.8275 + }, + { + "start": 32985.92, + "end": 32988.4, + "probability": 0.9897 + }, + { + "start": 32988.7, + "end": 32991.28, + "probability": 0.9683 + }, + { + "start": 32992.64, + "end": 32995.8, + "probability": 0.9762 + }, + { + "start": 32996.5, + "end": 32997.6, + "probability": 0.9929 + }, + { + "start": 32998.2, + "end": 33001.66, + "probability": 0.9882 + }, + { + "start": 33001.72, + "end": 33002.1, + "probability": 0.8579 + }, + { + "start": 33002.14, + "end": 33003.98, + "probability": 0.6906 + }, + { + "start": 33004.64, + "end": 33005.75, + "probability": 0.9882 + }, + { + "start": 33005.9, + "end": 33006.44, + "probability": 0.5612 + }, + { + "start": 33006.58, + "end": 33008.19, + "probability": 0.8599 + }, + { + "start": 33008.58, + "end": 33010.22, + "probability": 0.9537 + }, + { + "start": 33011.0, + "end": 33012.36, + "probability": 0.9834 + }, + { + "start": 33012.76, + "end": 33015.38, + "probability": 0.9792 + }, + { + "start": 33016.14, + "end": 33018.04, + "probability": 0.9891 + }, + { + "start": 33018.88, + "end": 33020.3, + "probability": 0.9961 + }, + { + "start": 33020.9, + "end": 33023.6, + "probability": 0.9804 + }, + { + "start": 33024.1, + "end": 33030.08, + "probability": 0.8791 + }, + { + "start": 33030.42, + "end": 33032.48, + "probability": 0.7343 + }, + { + "start": 33034.1, + "end": 33036.84, + "probability": 0.9777 + }, + { + "start": 33036.92, + "end": 33037.95, + "probability": 0.9565 + }, + { + "start": 33038.26, + "end": 33039.58, + "probability": 0.9875 + }, + { + "start": 33039.98, + "end": 33041.7, + "probability": 0.9172 + }, + { + "start": 33041.92, + "end": 33044.7, + "probability": 0.5421 + }, + { + "start": 33044.76, + "end": 33045.48, + "probability": 0.7096 + }, + { + "start": 33045.86, + "end": 33047.14, + "probability": 0.9629 + }, + { + "start": 33047.26, + "end": 33048.98, + "probability": 0.9512 + }, + { + "start": 33049.02, + "end": 33052.56, + "probability": 0.8745 + }, + { + "start": 33053.14, + "end": 33055.42, + "probability": 0.8626 + }, + { + "start": 33056.7, + "end": 33061.58, + "probability": 0.9921 + }, + { + "start": 33062.1, + "end": 33063.84, + "probability": 0.966 + }, + { + "start": 33064.78, + "end": 33065.96, + "probability": 0.9974 + }, + { + "start": 33066.54, + "end": 33069.48, + "probability": 0.9089 + }, + { + "start": 33070.42, + "end": 33071.74, + "probability": 0.9922 + }, + { + "start": 33072.1, + "end": 33072.32, + "probability": 0.889 + }, + { + "start": 33072.38, + "end": 33075.02, + "probability": 0.9886 + }, + { + "start": 33075.6, + "end": 33080.9, + "probability": 0.9921 + }, + { + "start": 33081.56, + "end": 33086.1, + "probability": 0.9193 + }, + { + "start": 33086.66, + "end": 33090.18, + "probability": 0.9961 + }, + { + "start": 33090.48, + "end": 33092.17, + "probability": 0.9952 + }, + { + "start": 33092.76, + "end": 33093.12, + "probability": 0.3827 + }, + { + "start": 33093.28, + "end": 33093.78, + "probability": 0.4691 + }, + { + "start": 33094.16, + "end": 33095.8, + "probability": 0.9976 + }, + { + "start": 33096.14, + "end": 33097.36, + "probability": 0.9905 + }, + { + "start": 33097.98, + "end": 33101.04, + "probability": 0.9775 + }, + { + "start": 33101.6, + "end": 33102.48, + "probability": 0.8643 + }, + { + "start": 33103.14, + "end": 33107.76, + "probability": 0.9729 + }, + { + "start": 33108.98, + "end": 33111.3, + "probability": 0.9763 + }, + { + "start": 33111.74, + "end": 33112.86, + "probability": 0.976 + }, + { + "start": 33113.06, + "end": 33114.06, + "probability": 0.9897 + }, + { + "start": 33114.54, + "end": 33116.76, + "probability": 0.923 + }, + { + "start": 33117.2, + "end": 33118.86, + "probability": 0.4066 + }, + { + "start": 33119.3, + "end": 33120.74, + "probability": 0.9665 + }, + { + "start": 33121.5, + "end": 33121.9, + "probability": 0.4439 + }, + { + "start": 33122.02, + "end": 33126.38, + "probability": 0.9961 + }, + { + "start": 33127.34, + "end": 33133.84, + "probability": 0.9995 + }, + { + "start": 33133.84, + "end": 33140.6, + "probability": 0.9966 + }, + { + "start": 33140.92, + "end": 33144.46, + "probability": 0.8899 + }, + { + "start": 33145.34, + "end": 33147.68, + "probability": 0.961 + }, + { + "start": 33148.64, + "end": 33154.14, + "probability": 0.9769 + }, + { + "start": 33154.16, + "end": 33155.58, + "probability": 0.9504 + }, + { + "start": 33156.48, + "end": 33157.3, + "probability": 0.8059 + }, + { + "start": 33157.46, + "end": 33158.06, + "probability": 0.8821 + }, + { + "start": 33158.48, + "end": 33161.08, + "probability": 0.9484 + }, + { + "start": 33161.46, + "end": 33162.56, + "probability": 0.8587 + }, + { + "start": 33162.88, + "end": 33163.42, + "probability": 0.716 + }, + { + "start": 33163.42, + "end": 33163.88, + "probability": 0.9765 + }, + { + "start": 33163.96, + "end": 33166.74, + "probability": 0.9771 + }, + { + "start": 33167.24, + "end": 33169.56, + "probability": 0.9882 + }, + { + "start": 33170.02, + "end": 33173.74, + "probability": 0.9923 + }, + { + "start": 33174.4, + "end": 33177.72, + "probability": 0.9951 + }, + { + "start": 33178.08, + "end": 33178.84, + "probability": 0.9617 + }, + { + "start": 33180.14, + "end": 33182.82, + "probability": 0.6696 + }, + { + "start": 33182.9, + "end": 33185.9, + "probability": 0.8885 + }, + { + "start": 33186.52, + "end": 33188.54, + "probability": 0.9973 + }, + { + "start": 33189.18, + "end": 33192.38, + "probability": 0.9772 + }, + { + "start": 33193.04, + "end": 33198.16, + "probability": 0.9438 + }, + { + "start": 33198.16, + "end": 33202.32, + "probability": 0.9576 + }, + { + "start": 33202.32, + "end": 33206.24, + "probability": 0.9977 + }, + { + "start": 33207.06, + "end": 33211.08, + "probability": 0.9829 + }, + { + "start": 33211.12, + "end": 33212.26, + "probability": 0.8527 + }, + { + "start": 33213.04, + "end": 33215.6, + "probability": 0.8447 + }, + { + "start": 33216.4, + "end": 33218.84, + "probability": 0.8343 + }, + { + "start": 33219.48, + "end": 33220.36, + "probability": 0.7115 + }, + { + "start": 33220.52, + "end": 33223.64, + "probability": 0.998 + }, + { + "start": 33223.74, + "end": 33224.8, + "probability": 0.671 + }, + { + "start": 33227.74, + "end": 33229.14, + "probability": 0.5835 + }, + { + "start": 33229.74, + "end": 33233.82, + "probability": 0.9798 + }, + { + "start": 33233.96, + "end": 33234.76, + "probability": 0.7529 + }, + { + "start": 33235.58, + "end": 33238.7, + "probability": 0.9897 + }, + { + "start": 33239.42, + "end": 33241.18, + "probability": 0.8223 + }, + { + "start": 33242.36, + "end": 33243.1, + "probability": 0.9324 + }, + { + "start": 33243.34, + "end": 33245.3, + "probability": 0.9873 + }, + { + "start": 33245.58, + "end": 33247.7, + "probability": 0.9889 + }, + { + "start": 33247.96, + "end": 33248.38, + "probability": 0.8466 + }, + { + "start": 33250.48, + "end": 33252.36, + "probability": 0.7425 + }, + { + "start": 33252.46, + "end": 33256.24, + "probability": 0.7566 + }, + { + "start": 33257.22, + "end": 33262.1, + "probability": 0.7149 + }, + { + "start": 33262.88, + "end": 33265.36, + "probability": 0.7588 + }, + { + "start": 33266.02, + "end": 33267.36, + "probability": 0.5657 + }, + { + "start": 33267.54, + "end": 33268.96, + "probability": 0.9498 + }, + { + "start": 33282.4, + "end": 33282.98, + "probability": 0.6588 + }, + { + "start": 33287.22, + "end": 33289.12, + "probability": 0.9036 + }, + { + "start": 33289.68, + "end": 33290.54, + "probability": 0.6788 + }, + { + "start": 33291.64, + "end": 33298.16, + "probability": 0.5846 + }, + { + "start": 33298.98, + "end": 33300.82, + "probability": 0.8406 + }, + { + "start": 33302.52, + "end": 33305.3, + "probability": 0.9908 + }, + { + "start": 33305.92, + "end": 33307.12, + "probability": 0.9473 + }, + { + "start": 33308.06, + "end": 33313.4, + "probability": 0.9615 + }, + { + "start": 33314.06, + "end": 33317.24, + "probability": 0.754 + }, + { + "start": 33318.3, + "end": 33323.02, + "probability": 0.8247 + }, + { + "start": 33323.02, + "end": 33328.48, + "probability": 0.9769 + }, + { + "start": 33329.76, + "end": 33332.48, + "probability": 0.9244 + }, + { + "start": 33333.06, + "end": 33336.42, + "probability": 0.8741 + }, + { + "start": 33337.06, + "end": 33342.06, + "probability": 0.9787 + }, + { + "start": 33343.12, + "end": 33345.94, + "probability": 0.5777 + }, + { + "start": 33346.36, + "end": 33352.48, + "probability": 0.905 + }, + { + "start": 33352.48, + "end": 33359.42, + "probability": 0.9712 + }, + { + "start": 33359.98, + "end": 33360.86, + "probability": 0.7557 + }, + { + "start": 33361.62, + "end": 33368.58, + "probability": 0.9851 + }, + { + "start": 33368.84, + "end": 33373.06, + "probability": 0.8189 + }, + { + "start": 33373.6, + "end": 33379.3, + "probability": 0.9917 + }, + { + "start": 33379.3, + "end": 33386.12, + "probability": 0.9917 + }, + { + "start": 33386.24, + "end": 33387.62, + "probability": 0.9253 + }, + { + "start": 33388.28, + "end": 33388.64, + "probability": 0.33 + }, + { + "start": 33388.8, + "end": 33391.24, + "probability": 0.4418 + }, + { + "start": 33391.28, + "end": 33396.62, + "probability": 0.9033 + }, + { + "start": 33397.12, + "end": 33404.42, + "probability": 0.9933 + }, + { + "start": 33404.68, + "end": 33405.68, + "probability": 0.884 + }, + { + "start": 33407.8, + "end": 33410.38, + "probability": 0.698 + }, + { + "start": 33410.74, + "end": 33413.62, + "probability": 0.6584 + }, + { + "start": 33413.9, + "end": 33414.58, + "probability": 0.8323 + }, + { + "start": 33414.76, + "end": 33416.98, + "probability": 0.9764 + }, + { + "start": 33417.08, + "end": 33418.28, + "probability": 0.9285 + }, + { + "start": 33418.28, + "end": 33419.48, + "probability": 0.8898 + }, + { + "start": 33419.62, + "end": 33420.23, + "probability": 0.9419 + }, + { + "start": 33420.34, + "end": 33420.64, + "probability": 0.3919 + }, + { + "start": 33421.76, + "end": 33422.78, + "probability": 0.6941 + }, + { + "start": 33423.28, + "end": 33424.38, + "probability": 0.8107 + }, + { + "start": 33424.48, + "end": 33424.87, + "probability": 0.9072 + }, + { + "start": 33425.04, + "end": 33425.66, + "probability": 0.8958 + }, + { + "start": 33425.94, + "end": 33428.82, + "probability": 0.9613 + }, + { + "start": 33428.86, + "end": 33429.26, + "probability": 0.5706 + }, + { + "start": 33429.4, + "end": 33430.1, + "probability": 0.8422 + }, + { + "start": 33430.16, + "end": 33430.5, + "probability": 0.798 + }, + { + "start": 33431.04, + "end": 33431.64, + "probability": 0.79 + }, + { + "start": 33431.72, + "end": 33432.72, + "probability": 0.8109 + }, + { + "start": 33433.46, + "end": 33434.88, + "probability": 0.9463 + }, + { + "start": 33442.74, + "end": 33443.14, + "probability": 0.4954 + }, + { + "start": 33443.28, + "end": 33444.66, + "probability": 0.9763 + }, + { + "start": 33445.26, + "end": 33447.74, + "probability": 0.9139 + }, + { + "start": 33448.46, + "end": 33449.5, + "probability": 0.0135 + }, + { + "start": 33452.0, + "end": 33453.16, + "probability": 0.382 + }, + { + "start": 33455.25, + "end": 33457.36, + "probability": 0.1926 + }, + { + "start": 33457.66, + "end": 33458.96, + "probability": 0.4665 + }, + { + "start": 33459.1, + "end": 33459.92, + "probability": 0.222 + }, + { + "start": 33461.04, + "end": 33462.24, + "probability": 0.7187 + }, + { + "start": 33463.14, + "end": 33467.72, + "probability": 0.9143 + }, + { + "start": 33467.92, + "end": 33470.76, + "probability": 0.7922 + }, + { + "start": 33470.96, + "end": 33474.6, + "probability": 0.9519 + }, + { + "start": 33476.06, + "end": 33476.8, + "probability": 0.9049 + }, + { + "start": 33477.56, + "end": 33480.02, + "probability": 0.9675 + }, + { + "start": 33480.1, + "end": 33481.08, + "probability": 0.666 + }, + { + "start": 33481.54, + "end": 33484.6, + "probability": 0.0926 + }, + { + "start": 33484.78, + "end": 33487.18, + "probability": 0.6671 + }, + { + "start": 33487.62, + "end": 33488.72, + "probability": 0.8826 + }, + { + "start": 33488.82, + "end": 33489.64, + "probability": 0.7361 + }, + { + "start": 33490.52, + "end": 33493.08, + "probability": 0.816 + }, + { + "start": 33494.32, + "end": 33495.92, + "probability": 0.9826 + }, + { + "start": 33496.02, + "end": 33498.04, + "probability": 0.1351 + }, + { + "start": 33498.3, + "end": 33499.84, + "probability": 0.9848 + }, + { + "start": 33500.3, + "end": 33500.68, + "probability": 0.5637 + }, + { + "start": 33500.72, + "end": 33505.22, + "probability": 0.9829 + }, + { + "start": 33505.36, + "end": 33505.5, + "probability": 0.5025 + }, + { + "start": 33505.5, + "end": 33507.28, + "probability": 0.8652 + }, + { + "start": 33508.56, + "end": 33515.22, + "probability": 0.9889 + }, + { + "start": 33515.22, + "end": 33520.46, + "probability": 0.9993 + }, + { + "start": 33521.84, + "end": 33528.32, + "probability": 0.9985 + }, + { + "start": 33528.56, + "end": 33530.1, + "probability": 0.9129 + }, + { + "start": 33530.66, + "end": 33532.3, + "probability": 0.7584 + }, + { + "start": 33533.34, + "end": 33540.74, + "probability": 0.9971 + }, + { + "start": 33540.74, + "end": 33548.1, + "probability": 0.9962 + }, + { + "start": 33548.78, + "end": 33548.86, + "probability": 0.0313 + }, + { + "start": 33548.86, + "end": 33548.86, + "probability": 0.3518 + }, + { + "start": 33548.86, + "end": 33556.02, + "probability": 0.9154 + }, + { + "start": 33557.06, + "end": 33561.16, + "probability": 0.9286 + }, + { + "start": 33561.68, + "end": 33562.84, + "probability": 0.7272 + }, + { + "start": 33563.38, + "end": 33569.54, + "probability": 0.9954 + }, + { + "start": 33570.04, + "end": 33571.54, + "probability": 0.7783 + }, + { + "start": 33572.1, + "end": 33573.72, + "probability": 0.9475 + }, + { + "start": 33574.32, + "end": 33581.04, + "probability": 0.9846 + }, + { + "start": 33582.34, + "end": 33587.6, + "probability": 0.9909 + }, + { + "start": 33587.6, + "end": 33593.3, + "probability": 0.9953 + }, + { + "start": 33593.94, + "end": 33597.0, + "probability": 0.998 + }, + { + "start": 33597.3, + "end": 33601.2, + "probability": 0.855 + }, + { + "start": 33601.5, + "end": 33603.26, + "probability": 0.4949 + }, + { + "start": 33603.82, + "end": 33611.06, + "probability": 0.9539 + }, + { + "start": 33611.62, + "end": 33616.12, + "probability": 0.9807 + }, + { + "start": 33616.82, + "end": 33623.04, + "probability": 0.9694 + }, + { + "start": 33623.48, + "end": 33624.38, + "probability": 0.6809 + }, + { + "start": 33624.48, + "end": 33625.38, + "probability": 0.8367 + }, + { + "start": 33625.46, + "end": 33626.92, + "probability": 0.905 + }, + { + "start": 33627.36, + "end": 33628.98, + "probability": 0.8997 + }, + { + "start": 33629.3, + "end": 33633.92, + "probability": 0.9791 + }, + { + "start": 33634.12, + "end": 33635.88, + "probability": 0.9751 + }, + { + "start": 33636.88, + "end": 33639.26, + "probability": 0.8894 + }, + { + "start": 33640.08, + "end": 33643.58, + "probability": 0.7681 + }, + { + "start": 33644.32, + "end": 33647.2, + "probability": 0.9879 + }, + { + "start": 33647.2, + "end": 33651.76, + "probability": 0.9087 + }, + { + "start": 33652.36, + "end": 33653.66, + "probability": 0.8092 + }, + { + "start": 33654.24, + "end": 33659.88, + "probability": 0.9402 + }, + { + "start": 33660.96, + "end": 33661.9, + "probability": 0.951 + }, + { + "start": 33662.0, + "end": 33663.8, + "probability": 0.7622 + }, + { + "start": 33664.48, + "end": 33666.98, + "probability": 0.8086 + }, + { + "start": 33667.86, + "end": 33671.78, + "probability": 0.9671 + }, + { + "start": 33672.38, + "end": 33677.1, + "probability": 0.9614 + }, + { + "start": 33677.7, + "end": 33678.6, + "probability": 0.8762 + }, + { + "start": 33679.36, + "end": 33684.28, + "probability": 0.8237 + }, + { + "start": 33684.74, + "end": 33690.07, + "probability": 0.9871 + }, + { + "start": 33690.14, + "end": 33697.14, + "probability": 0.9912 + }, + { + "start": 33697.44, + "end": 33697.56, + "probability": 0.6606 + }, + { + "start": 33697.6, + "end": 33700.96, + "probability": 0.6298 + }, + { + "start": 33701.36, + "end": 33706.46, + "probability": 0.9972 + }, + { + "start": 33706.6, + "end": 33709.36, + "probability": 0.7491 + }, + { + "start": 33709.48, + "end": 33710.04, + "probability": 0.7559 + }, + { + "start": 33711.48, + "end": 33715.32, + "probability": 0.5882 + }, + { + "start": 33716.26, + "end": 33717.94, + "probability": 0.1621 + }, + { + "start": 33720.1, + "end": 33725.2, + "probability": 0.8625 + }, + { + "start": 33725.36, + "end": 33729.4, + "probability": 0.8014 + }, + { + "start": 33729.96, + "end": 33733.62, + "probability": 0.4955 + }, + { + "start": 33734.58, + "end": 33735.22, + "probability": 0.6823 + }, + { + "start": 33736.54, + "end": 33736.54, + "probability": 0.3489 + }, + { + "start": 33741.56, + "end": 33744.62, + "probability": 0.1456 + }, + { + "start": 33751.6, + "end": 33754.12, + "probability": 0.5175 + }, + { + "start": 33755.45, + "end": 33757.24, + "probability": 0.6658 + }, + { + "start": 33761.06, + "end": 33761.98, + "probability": 0.0655 + }, + { + "start": 33761.98, + "end": 33764.38, + "probability": 0.4796 + }, + { + "start": 33766.0, + "end": 33768.5, + "probability": 0.8964 + }, + { + "start": 33768.64, + "end": 33770.95, + "probability": 0.6788 + }, + { + "start": 33771.98, + "end": 33773.1, + "probability": 0.2201 + }, + { + "start": 33773.18, + "end": 33780.88, + "probability": 0.8736 + }, + { + "start": 33782.32, + "end": 33786.6, + "probability": 0.7485 + }, + { + "start": 33786.82, + "end": 33790.28, + "probability": 0.3027 + }, + { + "start": 33793.02, + "end": 33794.64, + "probability": 0.3508 + }, + { + "start": 33795.44, + "end": 33797.2, + "probability": 0.6714 + }, + { + "start": 33797.3, + "end": 33799.6, + "probability": 0.7114 + }, + { + "start": 33799.76, + "end": 33802.34, + "probability": 0.9741 + }, + { + "start": 33802.7, + "end": 33805.26, + "probability": 0.752 + }, + { + "start": 33806.19, + "end": 33810.24, + "probability": 0.7966 + }, + { + "start": 33811.14, + "end": 33812.12, + "probability": 0.1085 + }, + { + "start": 33815.44, + "end": 33818.64, + "probability": 0.811 + }, + { + "start": 33818.72, + "end": 33819.64, + "probability": 0.7482 + }, + { + "start": 33824.06, + "end": 33824.56, + "probability": 0.179 + }, + { + "start": 33824.66, + "end": 33825.64, + "probability": 0.3449 + }, + { + "start": 33825.68, + "end": 33829.1, + "probability": 0.9741 + }, + { + "start": 33829.8, + "end": 33830.32, + "probability": 0.5951 + }, + { + "start": 33830.74, + "end": 33832.44, + "probability": 0.7796 + }, + { + "start": 33833.34, + "end": 33835.52, + "probability": 0.9355 + }, + { + "start": 33835.72, + "end": 33837.72, + "probability": 0.6974 + }, + { + "start": 33837.9, + "end": 33839.48, + "probability": 0.1089 + }, + { + "start": 33839.54, + "end": 33841.28, + "probability": 0.6659 + }, + { + "start": 33841.36, + "end": 33843.47, + "probability": 0.5463 + }, + { + "start": 33844.44, + "end": 33845.42, + "probability": 0.6968 + }, + { + "start": 33846.68, + "end": 33848.88, + "probability": 0.0771 + }, + { + "start": 33871.3, + "end": 33873.38, + "probability": 0.2164 + }, + { + "start": 33873.48, + "end": 33875.78, + "probability": 0.659 + }, + { + "start": 33875.88, + "end": 33877.36, + "probability": 0.119 + }, + { + "start": 33877.96, + "end": 33879.15, + "probability": 0.0284 + }, + { + "start": 33879.58, + "end": 33880.29, + "probability": 0.5727 + }, + { + "start": 33882.48, + "end": 33885.12, + "probability": 0.0866 + }, + { + "start": 33885.14, + "end": 33886.5, + "probability": 0.1733 + }, + { + "start": 33892.26, + "end": 33892.42, + "probability": 0.0404 + }, + { + "start": 33892.42, + "end": 33892.42, + "probability": 0.1092 + }, + { + "start": 33892.42, + "end": 33892.42, + "probability": 0.0372 + }, + { + "start": 33892.42, + "end": 33894.01, + "probability": 0.2086 + }, + { + "start": 33896.56, + "end": 33896.84, + "probability": 0.1934 + }, + { + "start": 33896.84, + "end": 33900.74, + "probability": 0.5447 + }, + { + "start": 33905.2, + "end": 33905.9, + "probability": 0.5861 + }, + { + "start": 33907.2, + "end": 33907.5, + "probability": 0.4886 + }, + { + "start": 33907.6, + "end": 33912.06, + "probability": 0.8373 + }, + { + "start": 33913.48, + "end": 33914.0, + "probability": 0.8017 + }, + { + "start": 33917.04, + "end": 33919.1, + "probability": 0.5477 + }, + { + "start": 33920.52, + "end": 33922.6, + "probability": 0.8662 + }, + { + "start": 33924.79, + "end": 33928.06, + "probability": 0.9735 + }, + { + "start": 33928.06, + "end": 33932.44, + "probability": 0.9546 + }, + { + "start": 33932.44, + "end": 33934.14, + "probability": 0.2231 + }, + { + "start": 33934.14, + "end": 33939.88, + "probability": 0.7343 + }, + { + "start": 33941.02, + "end": 33943.22, + "probability": 0.7224 + }, + { + "start": 33944.16, + "end": 33945.74, + "probability": 0.6203 + }, + { + "start": 33946.44, + "end": 33949.28, + "probability": 0.9288 + }, + { + "start": 33952.46, + "end": 33955.4, + "probability": 0.805 + }, + { + "start": 33956.48, + "end": 33963.16, + "probability": 0.998 + }, + { + "start": 33964.26, + "end": 33966.7, + "probability": 0.7119 + }, + { + "start": 33967.22, + "end": 33969.38, + "probability": 0.9754 + }, + { + "start": 33970.2, + "end": 33972.66, + "probability": 0.9685 + }, + { + "start": 33974.32, + "end": 33977.94, + "probability": 0.9729 + }, + { + "start": 33979.72, + "end": 33981.34, + "probability": 0.9988 + }, + { + "start": 33982.32, + "end": 33988.33, + "probability": 0.9683 + }, + { + "start": 33989.68, + "end": 33992.02, + "probability": 0.8682 + }, + { + "start": 33994.54, + "end": 33998.02, + "probability": 0.9448 + }, + { + "start": 33998.02, + "end": 34001.96, + "probability": 0.8792 + }, + { + "start": 34003.18, + "end": 34006.68, + "probability": 0.996 + }, + { + "start": 34007.46, + "end": 34009.02, + "probability": 0.9788 + }, + { + "start": 34011.26, + "end": 34015.04, + "probability": 0.9976 + }, + { + "start": 34016.46, + "end": 34020.1, + "probability": 0.9143 + }, + { + "start": 34022.16, + "end": 34024.24, + "probability": 0.9621 + }, + { + "start": 34024.8, + "end": 34028.74, + "probability": 0.9944 + }, + { + "start": 34028.82, + "end": 34029.89, + "probability": 0.9854 + }, + { + "start": 34030.96, + "end": 34032.47, + "probability": 0.8565 + }, + { + "start": 34032.62, + "end": 34034.22, + "probability": 0.7633 + }, + { + "start": 34034.22, + "end": 34034.72, + "probability": 0.8642 + }, + { + "start": 34034.94, + "end": 34035.56, + "probability": 0.9272 + }, + { + "start": 34035.86, + "end": 34037.06, + "probability": 0.773 + }, + { + "start": 34037.32, + "end": 34040.32, + "probability": 0.9741 + }, + { + "start": 34040.9, + "end": 34042.19, + "probability": 0.0429 + }, + { + "start": 34043.02, + "end": 34044.02, + "probability": 0.9092 + }, + { + "start": 34044.36, + "end": 34048.0, + "probability": 0.0278 + }, + { + "start": 34050.92, + "end": 34054.24, + "probability": 0.9327 + }, + { + "start": 34055.16, + "end": 34056.66, + "probability": 0.4245 + }, + { + "start": 34057.3, + "end": 34060.82, + "probability": 0.9863 + }, + { + "start": 34060.82, + "end": 34062.48, + "probability": 0.7885 + }, + { + "start": 34063.12, + "end": 34064.68, + "probability": 0.9489 + }, + { + "start": 34065.22, + "end": 34065.72, + "probability": 0.8823 + }, + { + "start": 34066.72, + "end": 34067.06, + "probability": 0.7192 + }, + { + "start": 34067.08, + "end": 34071.72, + "probability": 0.9756 + }, + { + "start": 34072.08, + "end": 34073.06, + "probability": 0.9937 + }, + { + "start": 34074.44, + "end": 34077.8, + "probability": 0.8827 + }, + { + "start": 34078.66, + "end": 34081.7, + "probability": 0.9683 + }, + { + "start": 34083.0, + "end": 34084.78, + "probability": 0.9812 + }, + { + "start": 34086.38, + "end": 34089.18, + "probability": 0.9597 + }, + { + "start": 34091.66, + "end": 34093.32, + "probability": 0.839 + }, + { + "start": 34094.2, + "end": 34095.92, + "probability": 0.9058 + }, + { + "start": 34096.84, + "end": 34097.68, + "probability": 0.5352 + }, + { + "start": 34098.84, + "end": 34101.98, + "probability": 0.9678 + }, + { + "start": 34102.18, + "end": 34103.5, + "probability": 0.8793 + }, + { + "start": 34104.12, + "end": 34105.06, + "probability": 0.8425 + }, + { + "start": 34105.76, + "end": 34106.46, + "probability": 0.4004 + }, + { + "start": 34106.62, + "end": 34108.26, + "probability": 0.9093 + }, + { + "start": 34108.48, + "end": 34111.26, + "probability": 0.6755 + }, + { + "start": 34111.86, + "end": 34112.48, + "probability": 0.369 + }, + { + "start": 34112.74, + "end": 34114.74, + "probability": 0.7041 + }, + { + "start": 34114.8, + "end": 34117.44, + "probability": 0.8445 + }, + { + "start": 34117.72, + "end": 34118.7, + "probability": 0.9546 + }, + { + "start": 34119.96, + "end": 34122.4, + "probability": 0.6596 + }, + { + "start": 34123.48, + "end": 34128.48, + "probability": 0.9086 + }, + { + "start": 34128.8, + "end": 34131.66, + "probability": 0.9249 + }, + { + "start": 34132.2, + "end": 34135.56, + "probability": 0.9985 + }, + { + "start": 34135.56, + "end": 34139.96, + "probability": 0.9988 + }, + { + "start": 34140.54, + "end": 34145.68, + "probability": 0.917 + }, + { + "start": 34146.14, + "end": 34149.14, + "probability": 0.9953 + }, + { + "start": 34149.42, + "end": 34152.26, + "probability": 0.9221 + }, + { + "start": 34152.52, + "end": 34153.7, + "probability": 0.9432 + }, + { + "start": 34154.0, + "end": 34154.44, + "probability": 0.9044 + }, + { + "start": 34154.84, + "end": 34155.5, + "probability": 0.7721 + }, + { + "start": 34158.46, + "end": 34160.6, + "probability": 0.5005 + }, + { + "start": 34161.26, + "end": 34165.64, + "probability": 0.8003 + }, + { + "start": 34171.18, + "end": 34171.68, + "probability": 0.779 + }, + { + "start": 34178.22, + "end": 34178.96, + "probability": 0.9083 + }, + { + "start": 34179.58, + "end": 34181.58, + "probability": 0.7299 + }, + { + "start": 34182.66, + "end": 34183.54, + "probability": 0.958 + }, + { + "start": 34183.66, + "end": 34188.28, + "probability": 0.9854 + }, + { + "start": 34189.46, + "end": 34191.82, + "probability": 0.8962 + }, + { + "start": 34192.46, + "end": 34193.25, + "probability": 0.9944 + }, + { + "start": 34194.76, + "end": 34196.0, + "probability": 0.7969 + }, + { + "start": 34196.54, + "end": 34197.72, + "probability": 0.8307 + }, + { + "start": 34198.4, + "end": 34205.68, + "probability": 0.9867 + }, + { + "start": 34206.1, + "end": 34209.06, + "probability": 0.9988 + }, + { + "start": 34209.58, + "end": 34213.98, + "probability": 0.0994 + }, + { + "start": 34214.54, + "end": 34215.54, + "probability": 0.1651 + }, + { + "start": 34216.82, + "end": 34216.94, + "probability": 0.0027 + }, + { + "start": 34216.94, + "end": 34216.94, + "probability": 0.0209 + }, + { + "start": 34216.94, + "end": 34217.66, + "probability": 0.2169 + }, + { + "start": 34218.72, + "end": 34220.24, + "probability": 0.6794 + }, + { + "start": 34220.3, + "end": 34223.52, + "probability": 0.9277 + }, + { + "start": 34224.04, + "end": 34225.1, + "probability": 0.9506 + }, + { + "start": 34227.16, + "end": 34229.4, + "probability": 0.9864 + }, + { + "start": 34230.36, + "end": 34232.68, + "probability": 0.9976 + }, + { + "start": 34232.68, + "end": 34235.1, + "probability": 0.9966 + }, + { + "start": 34235.86, + "end": 34237.26, + "probability": 0.9998 + }, + { + "start": 34238.26, + "end": 34241.68, + "probability": 0.9293 + }, + { + "start": 34242.22, + "end": 34242.88, + "probability": 0.8101 + }, + { + "start": 34243.26, + "end": 34245.76, + "probability": 0.9977 + }, + { + "start": 34246.22, + "end": 34247.42, + "probability": 0.9361 + }, + { + "start": 34248.74, + "end": 34249.88, + "probability": 0.9957 + }, + { + "start": 34251.64, + "end": 34252.86, + "probability": 0.998 + }, + { + "start": 34253.86, + "end": 34257.7, + "probability": 0.9958 + }, + { + "start": 34257.7, + "end": 34259.26, + "probability": 0.9597 + }, + { + "start": 34259.88, + "end": 34263.2, + "probability": 0.9556 + }, + { + "start": 34265.22, + "end": 34266.58, + "probability": 0.9387 + }, + { + "start": 34270.3, + "end": 34271.78, + "probability": 0.7283 + }, + { + "start": 34272.34, + "end": 34275.76, + "probability": 0.9917 + }, + { + "start": 34276.74, + "end": 34280.36, + "probability": 0.9785 + }, + { + "start": 34281.9, + "end": 34282.72, + "probability": 0.9493 + }, + { + "start": 34283.92, + "end": 34287.26, + "probability": 0.9848 + }, + { + "start": 34287.26, + "end": 34291.8, + "probability": 0.9995 + }, + { + "start": 34292.0, + "end": 34293.82, + "probability": 0.6119 + }, + { + "start": 34295.06, + "end": 34297.58, + "probability": 0.9386 + }, + { + "start": 34298.2, + "end": 34300.96, + "probability": 0.9838 + }, + { + "start": 34301.16, + "end": 34303.22, + "probability": 0.9538 + }, + { + "start": 34304.08, + "end": 34309.66, + "probability": 0.9962 + }, + { + "start": 34309.66, + "end": 34314.5, + "probability": 0.9946 + }, + { + "start": 34314.96, + "end": 34316.26, + "probability": 0.2343 + }, + { + "start": 34316.32, + "end": 34316.86, + "probability": 0.7262 + }, + { + "start": 34317.86, + "end": 34321.16, + "probability": 0.9656 + }, + { + "start": 34321.16, + "end": 34325.14, + "probability": 0.9587 + }, + { + "start": 34326.64, + "end": 34328.98, + "probability": 0.802 + }, + { + "start": 34329.5, + "end": 34333.54, + "probability": 0.9963 + }, + { + "start": 34334.12, + "end": 34335.34, + "probability": 0.9993 + }, + { + "start": 34335.9, + "end": 34339.32, + "probability": 0.9998 + }, + { + "start": 34339.5, + "end": 34343.32, + "probability": 0.9974 + }, + { + "start": 34344.42, + "end": 34345.88, + "probability": 0.8084 + }, + { + "start": 34345.92, + "end": 34350.02, + "probability": 0.9414 + }, + { + "start": 34350.1, + "end": 34354.78, + "probability": 0.0279 + }, + { + "start": 34356.2, + "end": 34359.04, + "probability": 0.1448 + }, + { + "start": 34359.48, + "end": 34360.8, + "probability": 0.0232 + }, + { + "start": 34363.32, + "end": 34364.04, + "probability": 0.7047 + }, + { + "start": 34364.12, + "end": 34367.48, + "probability": 0.8888 + }, + { + "start": 34368.6, + "end": 34371.78, + "probability": 0.6232 + }, + { + "start": 34375.02, + "end": 34376.48, + "probability": 0.3642 + }, + { + "start": 34376.6, + "end": 34377.02, + "probability": 0.8289 + }, + { + "start": 34377.12, + "end": 34378.52, + "probability": 0.8543 + }, + { + "start": 34378.56, + "end": 34385.08, + "probability": 0.987 + }, + { + "start": 34385.54, + "end": 34385.84, + "probability": 0.1347 + }, + { + "start": 34385.84, + "end": 34388.2, + "probability": 0.1002 + }, + { + "start": 34388.44, + "end": 34389.4, + "probability": 0.6535 + }, + { + "start": 34389.76, + "end": 34390.73, + "probability": 0.0749 + }, + { + "start": 34390.98, + "end": 34393.66, + "probability": 0.122 + }, + { + "start": 34393.68, + "end": 34395.86, + "probability": 0.8019 + }, + { + "start": 34396.04, + "end": 34396.44, + "probability": 0.622 + }, + { + "start": 34397.41, + "end": 34399.24, + "probability": 0.078 + }, + { + "start": 34399.24, + "end": 34400.66, + "probability": 0.2732 + }, + { + "start": 34400.66, + "end": 34403.82, + "probability": 0.8011 + }, + { + "start": 34404.58, + "end": 34408.14, + "probability": 0.8072 + }, + { + "start": 34409.0, + "end": 34410.0, + "probability": 0.6935 + }, + { + "start": 34411.22, + "end": 34411.22, + "probability": 0.5124 + }, + { + "start": 34411.92, + "end": 34414.82, + "probability": 0.9949 + }, + { + "start": 34414.82, + "end": 34415.26, + "probability": 0.7655 + }, + { + "start": 34415.46, + "end": 34415.66, + "probability": 0.8656 + }, + { + "start": 34416.1, + "end": 34417.36, + "probability": 0.7375 + }, + { + "start": 34418.02, + "end": 34418.7, + "probability": 0.9564 + }, + { + "start": 34419.32, + "end": 34422.96, + "probability": 0.8352 + }, + { + "start": 34423.72, + "end": 34424.38, + "probability": 0.7356 + }, + { + "start": 34425.14, + "end": 34425.62, + "probability": 0.8598 + }, + { + "start": 34427.44, + "end": 34430.02, + "probability": 0.1512 + }, + { + "start": 34430.3, + "end": 34431.46, + "probability": 0.9426 + }, + { + "start": 34432.18, + "end": 34432.7, + "probability": 0.6227 + }, + { + "start": 34432.8, + "end": 34434.7, + "probability": 0.9126 + }, + { + "start": 34435.18, + "end": 34435.7, + "probability": 0.906 + }, + { + "start": 34435.84, + "end": 34436.58, + "probability": 0.6761 + }, + { + "start": 34436.74, + "end": 34437.38, + "probability": 0.772 + }, + { + "start": 34437.48, + "end": 34438.06, + "probability": 0.1222 + }, + { + "start": 34438.46, + "end": 34438.46, + "probability": 0.2134 + }, + { + "start": 34438.46, + "end": 34439.28, + "probability": 0.8754 + }, + { + "start": 34439.8, + "end": 34441.38, + "probability": 0.9075 + }, + { + "start": 34441.86, + "end": 34442.84, + "probability": 0.4072 + }, + { + "start": 34442.84, + "end": 34446.1, + "probability": 0.9134 + }, + { + "start": 34447.04, + "end": 34449.36, + "probability": 0.9721 + }, + { + "start": 34450.62, + "end": 34452.96, + "probability": 0.9213 + }, + { + "start": 34453.06, + "end": 34455.41, + "probability": 0.9951 + }, + { + "start": 34456.5, + "end": 34458.3, + "probability": 0.9465 + }, + { + "start": 34459.22, + "end": 34463.52, + "probability": 0.8693 + }, + { + "start": 34463.7, + "end": 34464.72, + "probability": 0.9276 + }, + { + "start": 34465.12, + "end": 34469.74, + "probability": 0.8601 + }, + { + "start": 34470.16, + "end": 34470.58, + "probability": 0.5089 + }, + { + "start": 34471.3, + "end": 34473.42, + "probability": 0.9105 + }, + { + "start": 34473.94, + "end": 34476.98, + "probability": 0.8875 + }, + { + "start": 34478.0, + "end": 34479.48, + "probability": 0.9424 + }, + { + "start": 34479.62, + "end": 34479.76, + "probability": 0.7878 + }, + { + "start": 34481.1, + "end": 34481.18, + "probability": 0.1734 + }, + { + "start": 34481.18, + "end": 34481.54, + "probability": 0.547 + }, + { + "start": 34481.54, + "end": 34482.38, + "probability": 0.3377 + }, + { + "start": 34483.14, + "end": 34483.48, + "probability": 0.5406 + }, + { + "start": 34483.48, + "end": 34484.4, + "probability": 0.8597 + }, + { + "start": 34485.06, + "end": 34488.46, + "probability": 0.8634 + }, + { + "start": 34488.8, + "end": 34489.2, + "probability": 0.9792 + }, + { + "start": 34490.16, + "end": 34491.06, + "probability": 0.5464 + }, + { + "start": 34491.2, + "end": 34492.16, + "probability": 0.8434 + }, + { + "start": 34492.26, + "end": 34494.88, + "probability": 0.9963 + }, + { + "start": 34495.08, + "end": 34495.64, + "probability": 0.9542 + }, + { + "start": 34496.5, + "end": 34500.54, + "probability": 0.9778 + }, + { + "start": 34501.14, + "end": 34501.9, + "probability": 0.8909 + }, + { + "start": 34502.06, + "end": 34502.62, + "probability": 0.6208 + }, + { + "start": 34502.74, + "end": 34503.4, + "probability": 0.9851 + }, + { + "start": 34503.46, + "end": 34508.12, + "probability": 0.9899 + }, + { + "start": 34508.64, + "end": 34510.4, + "probability": 0.9784 + }, + { + "start": 34511.26, + "end": 34512.52, + "probability": 0.6465 + }, + { + "start": 34513.08, + "end": 34516.08, + "probability": 0.8583 + }, + { + "start": 34516.82, + "end": 34517.96, + "probability": 0.9839 + }, + { + "start": 34518.96, + "end": 34522.76, + "probability": 0.6327 + }, + { + "start": 34523.74, + "end": 34524.46, + "probability": 0.7166 + }, + { + "start": 34525.14, + "end": 34531.32, + "probability": 0.9947 + }, + { + "start": 34532.02, + "end": 34533.16, + "probability": 0.7091 + }, + { + "start": 34534.04, + "end": 34534.98, + "probability": 0.8494 + }, + { + "start": 34536.44, + "end": 34538.5, + "probability": 0.9825 + }, + { + "start": 34539.02, + "end": 34545.52, + "probability": 0.9489 + }, + { + "start": 34546.88, + "end": 34548.06, + "probability": 0.677 + }, + { + "start": 34548.62, + "end": 34553.2, + "probability": 0.9841 + }, + { + "start": 34553.9, + "end": 34554.56, + "probability": 0.8555 + }, + { + "start": 34555.56, + "end": 34557.18, + "probability": 0.9893 + }, + { + "start": 34557.92, + "end": 34558.82, + "probability": 0.675 + }, + { + "start": 34559.68, + "end": 34561.64, + "probability": 0.9943 + }, + { + "start": 34562.28, + "end": 34564.88, + "probability": 0.973 + }, + { + "start": 34565.68, + "end": 34568.24, + "probability": 0.9958 + }, + { + "start": 34569.76, + "end": 34570.74, + "probability": 0.7483 + }, + { + "start": 34571.36, + "end": 34572.76, + "probability": 0.9354 + }, + { + "start": 34573.28, + "end": 34576.66, + "probability": 0.8741 + }, + { + "start": 34577.2, + "end": 34582.58, + "probability": 0.9485 + }, + { + "start": 34583.48, + "end": 34588.92, + "probability": 0.9268 + }, + { + "start": 34589.92, + "end": 34590.46, + "probability": 0.5872 + }, + { + "start": 34590.98, + "end": 34591.64, + "probability": 0.9117 + }, + { + "start": 34592.7, + "end": 34596.28, + "probability": 0.9681 + }, + { + "start": 34597.0, + "end": 34599.94, + "probability": 0.9694 + }, + { + "start": 34600.94, + "end": 34602.1, + "probability": 0.9438 + }, + { + "start": 34603.86, + "end": 34606.96, + "probability": 0.6478 + }, + { + "start": 34607.12, + "end": 34609.78, + "probability": 0.977 + }, + { + "start": 34610.9, + "end": 34617.32, + "probability": 0.9801 + }, + { + "start": 34618.26, + "end": 34620.42, + "probability": 0.9994 + }, + { + "start": 34620.94, + "end": 34622.98, + "probability": 0.998 + }, + { + "start": 34623.6, + "end": 34626.22, + "probability": 0.9976 + }, + { + "start": 34626.94, + "end": 34630.66, + "probability": 0.8953 + }, + { + "start": 34631.36, + "end": 34637.18, + "probability": 0.9954 + }, + { + "start": 34638.26, + "end": 34638.7, + "probability": 0.7688 + }, + { + "start": 34639.54, + "end": 34641.4, + "probability": 0.7532 + }, + { + "start": 34641.96, + "end": 34645.94, + "probability": 0.9978 + }, + { + "start": 34646.76, + "end": 34650.1, + "probability": 0.9688 + }, + { + "start": 34650.94, + "end": 34652.66, + "probability": 0.8754 + }, + { + "start": 34653.56, + "end": 34653.92, + "probability": 0.3661 + }, + { + "start": 34654.68, + "end": 34657.08, + "probability": 0.9918 + }, + { + "start": 34658.22, + "end": 34664.44, + "probability": 0.9984 + }, + { + "start": 34665.26, + "end": 34666.52, + "probability": 0.7809 + }, + { + "start": 34667.04, + "end": 34670.54, + "probability": 0.7897 + }, + { + "start": 34671.9, + "end": 34679.76, + "probability": 0.9851 + }, + { + "start": 34679.96, + "end": 34680.6, + "probability": 0.8036 + }, + { + "start": 34683.34, + "end": 34683.92, + "probability": 0.8884 + }, + { + "start": 34685.94, + "end": 34688.82, + "probability": 0.2302 + }, + { + "start": 34688.82, + "end": 34690.23, + "probability": 0.5496 + }, + { + "start": 34691.84, + "end": 34692.1, + "probability": 0.8493 + }, + { + "start": 34694.3, + "end": 34698.82, + "probability": 0.9819 + }, + { + "start": 34699.48, + "end": 34702.4, + "probability": 0.9527 + }, + { + "start": 34702.4, + "end": 34705.38, + "probability": 0.9851 + }, + { + "start": 34706.3, + "end": 34709.64, + "probability": 0.3951 + }, + { + "start": 34709.7, + "end": 34712.4, + "probability": 0.8187 + }, + { + "start": 34713.96, + "end": 34714.5, + "probability": 0.6154 + }, + { + "start": 34715.42, + "end": 34717.52, + "probability": 0.1205 + }, + { + "start": 34735.04, + "end": 34738.28, + "probability": 0.7232 + }, + { + "start": 34738.28, + "end": 34742.44, + "probability": 0.7624 + }, + { + "start": 34749.12, + "end": 34750.12, + "probability": 0.2892 + }, + { + "start": 34751.34, + "end": 34752.46, + "probability": 0.3482 + }, + { + "start": 34754.14, + "end": 34755.98, + "probability": 0.035 + }, + { + "start": 34757.54, + "end": 34757.9, + "probability": 0.0 + }, + { + "start": 34759.13, + "end": 34759.2, + "probability": 0.1025 + }, + { + "start": 34759.2, + "end": 34763.42, + "probability": 0.0413 + }, + { + "start": 34763.86, + "end": 34767.56, + "probability": 0.0907 + }, + { + "start": 34769.0, + "end": 34770.02, + "probability": 0.0547 + }, + { + "start": 34770.62, + "end": 34772.22, + "probability": 0.0679 + }, + { + "start": 34772.22, + "end": 34772.52, + "probability": 0.1354 + }, + { + "start": 34772.62, + "end": 34774.51, + "probability": 0.4693 + }, + { + "start": 34775.98, + "end": 34776.72, + "probability": 0.0623 + }, + { + "start": 34785.0, + "end": 34786.62, + "probability": 0.2893 + }, + { + "start": 34787.34, + "end": 34789.72, + "probability": 0.2549 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.0, + "end": 34856.0, + "probability": 0.0 + }, + { + "start": 34856.44, + "end": 34857.0, + "probability": 0.0964 + }, + { + "start": 34865.06, + "end": 34866.26, + "probability": 0.0899 + }, + { + "start": 34866.26, + "end": 34869.58, + "probability": 0.1443 + }, + { + "start": 34870.21, + "end": 34875.2, + "probability": 0.0591 + }, + { + "start": 34875.2, + "end": 34877.46, + "probability": 0.0187 + }, + { + "start": 34877.58, + "end": 34877.58, + "probability": 0.2397 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.0, + "end": 34985.0, + "probability": 0.0 + }, + { + "start": 34985.02, + "end": 34985.38, + "probability": 0.3321 + }, + { + "start": 34985.38, + "end": 34989.74, + "probability": 0.7075 + }, + { + "start": 34990.68, + "end": 34991.82, + "probability": 0.5067 + }, + { + "start": 34994.22, + "end": 34995.84, + "probability": 0.8492 + }, + { + "start": 34995.96, + "end": 34997.56, + "probability": 0.6949 + }, + { + "start": 34997.74, + "end": 34999.76, + "probability": 0.088 + }, + { + "start": 35000.32, + "end": 35005.36, + "probability": 0.9546 + }, + { + "start": 35005.36, + "end": 35012.08, + "probability": 0.8727 + }, + { + "start": 35012.28, + "end": 35014.4, + "probability": 0.8302 + }, + { + "start": 35015.84, + "end": 35017.4, + "probability": 0.155 + }, + { + "start": 35021.2, + "end": 35026.16, + "probability": 0.7634 + }, + { + "start": 35026.32, + "end": 35028.31, + "probability": 0.528 + }, + { + "start": 35028.78, + "end": 35031.84, + "probability": 0.8369 + }, + { + "start": 35033.1, + "end": 35035.14, + "probability": 0.7368 + }, + { + "start": 35035.14, + "end": 35037.94, + "probability": 0.912 + }, + { + "start": 35039.6, + "end": 35042.02, + "probability": 0.6941 + }, + { + "start": 35042.6, + "end": 35046.32, + "probability": 0.9238 + }, + { + "start": 35046.32, + "end": 35049.04, + "probability": 0.9375 + }, + { + "start": 35049.16, + "end": 35051.3, + "probability": 0.2233 + }, + { + "start": 35051.36, + "end": 35055.26, + "probability": 0.8814 + }, + { + "start": 35058.58, + "end": 35063.76, + "probability": 0.8117 + }, + { + "start": 35063.86, + "end": 35064.9, + "probability": 0.8706 + }, + { + "start": 35065.42, + "end": 35065.42, + "probability": 0.3187 + }, + { + "start": 35065.42, + "end": 35066.3, + "probability": 0.6288 + }, + { + "start": 35066.38, + "end": 35067.6, + "probability": 0.9177 + }, + { + "start": 35068.38, + "end": 35071.02, + "probability": 0.9956 + }, + { + "start": 35082.46, + "end": 35087.6, + "probability": 0.9807 + }, + { + "start": 35088.24, + "end": 35091.36, + "probability": 0.9767 + }, + { + "start": 35091.36, + "end": 35094.48, + "probability": 0.9985 + }, + { + "start": 35095.06, + "end": 35098.44, + "probability": 0.9836 + }, + { + "start": 35099.08, + "end": 35101.28, + "probability": 0.9985 + }, + { + "start": 35101.76, + "end": 35103.96, + "probability": 0.9967 + }, + { + "start": 35104.52, + "end": 35107.02, + "probability": 0.8601 + }, + { + "start": 35107.48, + "end": 35109.28, + "probability": 0.9799 + }, + { + "start": 35109.88, + "end": 35111.3, + "probability": 0.7071 + }, + { + "start": 35111.4, + "end": 35113.18, + "probability": 0.9284 + }, + { + "start": 35113.56, + "end": 35116.92, + "probability": 0.9839 + }, + { + "start": 35117.56, + "end": 35120.24, + "probability": 0.9923 + }, + { + "start": 35120.66, + "end": 35124.38, + "probability": 0.9697 + }, + { + "start": 35124.76, + "end": 35125.64, + "probability": 0.874 + }, + { + "start": 35125.74, + "end": 35129.06, + "probability": 0.9382 + }, + { + "start": 35129.06, + "end": 35131.66, + "probability": 0.9959 + }, + { + "start": 35132.12, + "end": 35134.38, + "probability": 0.5451 + }, + { + "start": 35135.1, + "end": 35136.34, + "probability": 0.9338 + }, + { + "start": 35136.82, + "end": 35141.14, + "probability": 0.9766 + }, + { + "start": 35141.28, + "end": 35141.52, + "probability": 0.6157 + }, + { + "start": 35143.68, + "end": 35144.32, + "probability": 0.8431 + }, + { + "start": 35145.34, + "end": 35146.26, + "probability": 0.2243 + }, + { + "start": 35146.78, + "end": 35148.7, + "probability": 0.6681 + }, + { + "start": 35149.3, + "end": 35153.6, + "probability": 0.9512 + }, + { + "start": 35160.82, + "end": 35161.76, + "probability": 0.7005 + }, + { + "start": 35161.82, + "end": 35163.68, + "probability": 0.8193 + }, + { + "start": 35163.82, + "end": 35165.56, + "probability": 0.9378 + }, + { + "start": 35166.16, + "end": 35168.16, + "probability": 0.9702 + }, + { + "start": 35168.24, + "end": 35169.24, + "probability": 0.7199 + }, + { + "start": 35169.36, + "end": 35169.9, + "probability": 0.9958 + }, + { + "start": 35170.42, + "end": 35171.52, + "probability": 0.9434 + }, + { + "start": 35172.48, + "end": 35176.68, + "probability": 0.9603 + }, + { + "start": 35176.86, + "end": 35178.28, + "probability": 0.2952 + }, + { + "start": 35179.48, + "end": 35183.08, + "probability": 0.9881 + }, + { + "start": 35183.08, + "end": 35186.16, + "probability": 0.9972 + }, + { + "start": 35186.2, + "end": 35188.88, + "probability": 0.9487 + }, + { + "start": 35189.0, + "end": 35190.36, + "probability": 0.3767 + }, + { + "start": 35190.62, + "end": 35193.64, + "probability": 0.9855 + }, + { + "start": 35193.64, + "end": 35196.62, + "probability": 0.9978 + }, + { + "start": 35197.64, + "end": 35202.98, + "probability": 0.9864 + }, + { + "start": 35202.98, + "end": 35208.6, + "probability": 0.9866 + }, + { + "start": 35209.16, + "end": 35213.86, + "probability": 0.9255 + }, + { + "start": 35213.94, + "end": 35218.48, + "probability": 0.9969 + }, + { + "start": 35219.52, + "end": 35223.94, + "probability": 0.9976 + }, + { + "start": 35224.82, + "end": 35227.46, + "probability": 0.9792 + }, + { + "start": 35228.06, + "end": 35232.48, + "probability": 0.9957 + }, + { + "start": 35233.08, + "end": 35235.94, + "probability": 0.8786 + }, + { + "start": 35236.06, + "end": 35236.82, + "probability": 0.4822 + }, + { + "start": 35236.88, + "end": 35237.5, + "probability": 0.7129 + }, + { + "start": 35238.24, + "end": 35240.67, + "probability": 0.6529 + }, + { + "start": 35241.86, + "end": 35245.02, + "probability": 0.9888 + }, + { + "start": 35245.26, + "end": 35245.82, + "probability": 0.5705 + }, + { + "start": 35246.64, + "end": 35249.46, + "probability": 0.986 + }, + { + "start": 35249.5, + "end": 35251.1, + "probability": 0.6574 + }, + { + "start": 35254.06, + "end": 35256.1, + "probability": 0.7412 + }, + { + "start": 35256.18, + "end": 35257.28, + "probability": 0.9679 + }, + { + "start": 35257.42, + "end": 35257.84, + "probability": 0.3897 + }, + { + "start": 35257.84, + "end": 35259.4, + "probability": 0.9863 + }, + { + "start": 35260.04, + "end": 35261.52, + "probability": 0.8216 + }, + { + "start": 35262.16, + "end": 35263.4, + "probability": 0.9395 + }, + { + "start": 35263.56, + "end": 35265.92, + "probability": 0.8528 + }, + { + "start": 35266.6, + "end": 35272.4, + "probability": 0.9827 + }, + { + "start": 35272.48, + "end": 35275.14, + "probability": 0.959 + }, + { + "start": 35275.14, + "end": 35276.28, + "probability": 0.542 + }, + { + "start": 35276.36, + "end": 35277.47, + "probability": 0.0795 + }, + { + "start": 35277.62, + "end": 35279.9, + "probability": 0.9949 + }, + { + "start": 35279.98, + "end": 35280.16, + "probability": 0.8348 + }, + { + "start": 35281.24, + "end": 35282.26, + "probability": 0.4594 + }, + { + "start": 35283.12, + "end": 35287.46, + "probability": 0.9248 + }, + { + "start": 35289.08, + "end": 35294.52, + "probability": 0.8578 + }, + { + "start": 35294.68, + "end": 35297.2, + "probability": 0.147 + }, + { + "start": 35297.38, + "end": 35300.64, + "probability": 0.7528 + }, + { + "start": 35301.58, + "end": 35302.38, + "probability": 0.8193 + }, + { + "start": 35311.4, + "end": 35315.74, + "probability": 0.0321 + }, + { + "start": 35315.75, + "end": 35316.06, + "probability": 0.1024 + }, + { + "start": 35316.06, + "end": 35316.1, + "probability": 0.0693 + }, + { + "start": 35316.6, + "end": 35318.0, + "probability": 0.0958 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.0, + "end": 35410.0, + "probability": 0.0 + }, + { + "start": 35410.16, + "end": 35410.64, + "probability": 0.0729 + }, + { + "start": 35410.98, + "end": 35411.0, + "probability": 0.1849 + }, + { + "start": 35411.0, + "end": 35416.12, + "probability": 0.2791 + }, + { + "start": 35416.38, + "end": 35417.52, + "probability": 0.0802 + }, + { + "start": 35419.16, + "end": 35419.86, + "probability": 0.0391 + }, + { + "start": 35420.74, + "end": 35421.44, + "probability": 0.0663 + }, + { + "start": 35421.52, + "end": 35421.72, + "probability": 0.064 + }, + { + "start": 35421.72, + "end": 35423.68, + "probability": 0.0998 + }, + { + "start": 35423.68, + "end": 35425.5, + "probability": 0.0055 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35533.42, + "end": 35537.98, + "probability": 0.9988 + }, + { + "start": 35539.02, + "end": 35542.84, + "probability": 0.9987 + }, + { + "start": 35543.4, + "end": 35546.88, + "probability": 0.9388 + }, + { + "start": 35546.96, + "end": 35548.94, + "probability": 0.8491 + }, + { + "start": 35549.52, + "end": 35554.14, + "probability": 0.9894 + }, + { + "start": 35554.74, + "end": 35560.1, + "probability": 0.9973 + }, + { + "start": 35560.8, + "end": 35564.58, + "probability": 0.9934 + }, + { + "start": 35564.58, + "end": 35569.78, + "probability": 0.9927 + }, + { + "start": 35570.48, + "end": 35575.46, + "probability": 0.9867 + }, + { + "start": 35576.06, + "end": 35580.4, + "probability": 0.9268 + }, + { + "start": 35580.82, + "end": 35583.9, + "probability": 0.9976 + }, + { + "start": 35584.24, + "end": 35588.68, + "probability": 0.9966 + }, + { + "start": 35589.26, + "end": 35591.22, + "probability": 0.9876 + }, + { + "start": 35591.56, + "end": 35593.68, + "probability": 0.9829 + }, + { + "start": 35593.86, + "end": 35598.82, + "probability": 0.9937 + }, + { + "start": 35599.42, + "end": 35603.42, + "probability": 0.9844 + }, + { + "start": 35603.98, + "end": 35604.58, + "probability": 0.8119 + }, + { + "start": 35605.14, + "end": 35606.24, + "probability": 0.8707 + }, + { + "start": 35607.1, + "end": 35611.52, + "probability": 0.9956 + }, + { + "start": 35611.52, + "end": 35616.3, + "probability": 0.9976 + }, + { + "start": 35616.94, + "end": 35620.82, + "probability": 0.898 + }, + { + "start": 35621.3, + "end": 35623.48, + "probability": 0.8479 + }, + { + "start": 35623.8, + "end": 35625.16, + "probability": 0.996 + }, + { + "start": 35625.3, + "end": 35630.32, + "probability": 0.9338 + }, + { + "start": 35630.88, + "end": 35632.02, + "probability": 0.6943 + }, + { + "start": 35632.54, + "end": 35634.58, + "probability": 0.9919 + }, + { + "start": 35635.8, + "end": 35640.52, + "probability": 0.9992 + }, + { + "start": 35640.52, + "end": 35647.06, + "probability": 0.9993 + }, + { + "start": 35648.18, + "end": 35652.44, + "probability": 0.993 + }, + { + "start": 35652.44, + "end": 35656.72, + "probability": 0.9967 + }, + { + "start": 35657.42, + "end": 35661.6, + "probability": 0.9964 + }, + { + "start": 35661.68, + "end": 35662.78, + "probability": 0.9947 + }, + { + "start": 35662.9, + "end": 35663.96, + "probability": 0.9895 + }, + { + "start": 35664.06, + "end": 35666.28, + "probability": 0.9516 + }, + { + "start": 35667.1, + "end": 35673.22, + "probability": 0.9901 + }, + { + "start": 35674.64, + "end": 35680.62, + "probability": 0.9933 + }, + { + "start": 35680.92, + "end": 35682.32, + "probability": 0.7949 + }, + { + "start": 35682.88, + "end": 35688.7, + "probability": 0.9984 + }, + { + "start": 35688.84, + "end": 35690.16, + "probability": 0.9907 + }, + { + "start": 35690.78, + "end": 35694.92, + "probability": 0.9968 + }, + { + "start": 35694.92, + "end": 35698.48, + "probability": 0.8607 + }, + { + "start": 35698.82, + "end": 35700.18, + "probability": 0.9901 + }, + { + "start": 35700.4, + "end": 35704.64, + "probability": 0.9913 + }, + { + "start": 35705.46, + "end": 35709.28, + "probability": 0.9674 + }, + { + "start": 35709.8, + "end": 35711.6, + "probability": 0.9824 + }, + { + "start": 35712.32, + "end": 35714.52, + "probability": 0.8842 + }, + { + "start": 35715.06, + "end": 35717.16, + "probability": 0.9707 + }, + { + "start": 35717.6, + "end": 35719.12, + "probability": 0.9928 + }, + { + "start": 35719.36, + "end": 35721.92, + "probability": 0.8098 + }, + { + "start": 35722.36, + "end": 35726.36, + "probability": 0.9932 + }, + { + "start": 35727.1, + "end": 35730.86, + "probability": 0.9779 + }, + { + "start": 35731.52, + "end": 35733.58, + "probability": 0.9885 + }, + { + "start": 35733.82, + "end": 35734.54, + "probability": 0.9831 + }, + { + "start": 35734.8, + "end": 35738.3, + "probability": 0.9893 + }, + { + "start": 35739.2, + "end": 35741.1, + "probability": 0.997 + }, + { + "start": 35741.6, + "end": 35745.86, + "probability": 0.9946 + }, + { + "start": 35746.46, + "end": 35750.36, + "probability": 0.9795 + }, + { + "start": 35750.36, + "end": 35753.82, + "probability": 0.9946 + }, + { + "start": 35754.24, + "end": 35758.26, + "probability": 0.9977 + }, + { + "start": 35758.74, + "end": 35759.88, + "probability": 0.8391 + }, + { + "start": 35760.36, + "end": 35762.78, + "probability": 0.9855 + }, + { + "start": 35763.54, + "end": 35766.42, + "probability": 0.9978 + }, + { + "start": 35766.78, + "end": 35768.12, + "probability": 0.9901 + }, + { + "start": 35768.62, + "end": 35771.52, + "probability": 0.9831 + }, + { + "start": 35772.2, + "end": 35775.58, + "probability": 0.9602 + }, + { + "start": 35776.34, + "end": 35778.82, + "probability": 0.995 + }, + { + "start": 35779.34, + "end": 35782.42, + "probability": 0.951 + }, + { + "start": 35782.84, + "end": 35784.9, + "probability": 0.884 + }, + { + "start": 35785.58, + "end": 35791.04, + "probability": 0.991 + }, + { + "start": 35791.1, + "end": 35792.0, + "probability": 0.8945 + }, + { + "start": 35792.34, + "end": 35792.84, + "probability": 0.4727 + }, + { + "start": 35793.28, + "end": 35794.52, + "probability": 0.9601 + }, + { + "start": 35794.88, + "end": 35796.06, + "probability": 0.8255 + }, + { + "start": 35796.4, + "end": 35798.38, + "probability": 0.8673 + }, + { + "start": 35798.78, + "end": 35800.66, + "probability": 0.9667 + }, + { + "start": 35801.26, + "end": 35805.34, + "probability": 0.9873 + }, + { + "start": 35806.3, + "end": 35806.98, + "probability": 0.7794 + }, + { + "start": 35807.24, + "end": 35807.98, + "probability": 0.8355 + }, + { + "start": 35808.78, + "end": 35812.32, + "probability": 0.8194 + }, + { + "start": 35812.91, + "end": 35816.26, + "probability": 0.6504 + }, + { + "start": 35817.3, + "end": 35818.58, + "probability": 0.8737 + }, + { + "start": 35833.56, + "end": 35835.52, + "probability": 0.5246 + }, + { + "start": 35836.76, + "end": 35841.68, + "probability": 0.9929 + }, + { + "start": 35842.28, + "end": 35846.28, + "probability": 0.9946 + }, + { + "start": 35846.92, + "end": 35850.24, + "probability": 0.998 + }, + { + "start": 35850.94, + "end": 35854.16, + "probability": 0.9893 + }, + { + "start": 35855.08, + "end": 35856.99, + "probability": 0.9894 + }, + { + "start": 35858.34, + "end": 35861.0, + "probability": 0.9932 + }, + { + "start": 35861.0, + "end": 35863.08, + "probability": 0.532 + }, + { + "start": 35864.84, + "end": 35867.64, + "probability": 0.9424 + }, + { + "start": 35867.72, + "end": 35872.54, + "probability": 0.9879 + }, + { + "start": 35873.18, + "end": 35876.62, + "probability": 0.9937 + }, + { + "start": 35877.36, + "end": 35879.9, + "probability": 0.9985 + }, + { + "start": 35880.36, + "end": 35885.6, + "probability": 0.9928 + }, + { + "start": 35886.56, + "end": 35889.3, + "probability": 0.983 + }, + { + "start": 35890.12, + "end": 35892.58, + "probability": 0.8305 + }, + { + "start": 35892.98, + "end": 35896.54, + "probability": 0.9827 + }, + { + "start": 35897.06, + "end": 35902.55, + "probability": 0.9649 + }, + { + "start": 35903.82, + "end": 35906.8, + "probability": 0.8781 + }, + { + "start": 35907.34, + "end": 35911.74, + "probability": 0.9863 + }, + { + "start": 35912.8, + "end": 35914.04, + "probability": 0.8727 + }, + { + "start": 35914.4, + "end": 35917.6, + "probability": 0.9267 + }, + { + "start": 35918.12, + "end": 35922.2, + "probability": 0.9901 + }, + { + "start": 35922.92, + "end": 35927.94, + "probability": 0.9821 + }, + { + "start": 35928.58, + "end": 35930.56, + "probability": 0.9877 + }, + { + "start": 35931.58, + "end": 35935.04, + "probability": 0.9963 + }, + { + "start": 35935.38, + "end": 35938.76, + "probability": 0.9985 + }, + { + "start": 35938.76, + "end": 35942.78, + "probability": 0.9836 + }, + { + "start": 35943.16, + "end": 35946.4, + "probability": 0.9949 + }, + { + "start": 35947.06, + "end": 35954.0, + "probability": 0.981 + }, + { + "start": 35955.0, + "end": 35958.62, + "probability": 0.9959 + }, + { + "start": 35959.06, + "end": 35961.92, + "probability": 0.9957 + }, + { + "start": 35962.62, + "end": 35966.0, + "probability": 0.9953 + }, + { + "start": 35966.7, + "end": 35969.68, + "probability": 0.8953 + }, + { + "start": 35969.68, + "end": 35973.3, + "probability": 0.9318 + }, + { + "start": 35973.54, + "end": 35974.76, + "probability": 0.9692 + }, + { + "start": 35975.76, + "end": 35978.15, + "probability": 0.9919 + }, + { + "start": 35979.1, + "end": 35982.82, + "probability": 0.998 + }, + { + "start": 35983.58, + "end": 35984.84, + "probability": 0.9389 + }, + { + "start": 35985.74, + "end": 35988.8, + "probability": 0.9908 + }, + { + "start": 35989.44, + "end": 35992.96, + "probability": 0.9861 + }, + { + "start": 35993.62, + "end": 35998.16, + "probability": 0.9989 + }, + { + "start": 35998.78, + "end": 35999.46, + "probability": 0.7588 + }, + { + "start": 35999.92, + "end": 36005.2, + "probability": 0.9656 + }, + { + "start": 36005.78, + "end": 36007.92, + "probability": 0.9829 + }, + { + "start": 36008.66, + "end": 36008.92, + "probability": 0.845 + }, + { + "start": 36009.04, + "end": 36014.7, + "probability": 0.9925 + }, + { + "start": 36015.6, + "end": 36018.9, + "probability": 0.9637 + }, + { + "start": 36018.96, + "end": 36020.62, + "probability": 0.9971 + }, + { + "start": 36021.04, + "end": 36026.36, + "probability": 0.9055 + }, + { + "start": 36027.12, + "end": 36030.34, + "probability": 0.9978 + }, + { + "start": 36030.68, + "end": 36032.42, + "probability": 0.9869 + }, + { + "start": 36032.96, + "end": 36034.82, + "probability": 0.8876 + }, + { + "start": 36034.94, + "end": 36035.42, + "probability": 0.8202 + }, + { + "start": 36035.74, + "end": 36036.26, + "probability": 0.8494 + }, + { + "start": 36037.42, + "end": 36040.62, + "probability": 0.9303 + }, + { + "start": 36040.98, + "end": 36042.16, + "probability": 0.8391 + }, + { + "start": 36043.91, + "end": 36047.78, + "probability": 0.9888 + }, + { + "start": 36073.28, + "end": 36073.58, + "probability": 0.6897 + }, + { + "start": 36078.3, + "end": 36084.18, + "probability": 0.9073 + }, + { + "start": 36084.32, + "end": 36085.36, + "probability": 0.8198 + }, + { + "start": 36086.14, + "end": 36088.3, + "probability": 0.9336 + }, + { + "start": 36089.1, + "end": 36092.55, + "probability": 0.7689 + }, + { + "start": 36093.3, + "end": 36095.68, + "probability": 0.9564 + }, + { + "start": 36096.48, + "end": 36097.56, + "probability": 0.911 + }, + { + "start": 36098.04, + "end": 36100.32, + "probability": 0.9955 + }, + { + "start": 36100.44, + "end": 36102.28, + "probability": 0.9941 + }, + { + "start": 36103.0, + "end": 36106.82, + "probability": 0.9867 + }, + { + "start": 36107.54, + "end": 36109.86, + "probability": 0.76 + }, + { + "start": 36109.86, + "end": 36112.58, + "probability": 0.9558 + }, + { + "start": 36113.38, + "end": 36113.97, + "probability": 0.9248 + }, + { + "start": 36115.16, + "end": 36121.4, + "probability": 0.9731 + }, + { + "start": 36121.56, + "end": 36124.0, + "probability": 0.9653 + }, + { + "start": 36124.86, + "end": 36125.6, + "probability": 0.9189 + }, + { + "start": 36126.5, + "end": 36129.16, + "probability": 0.8757 + }, + { + "start": 36129.16, + "end": 36133.6, + "probability": 0.9938 + }, + { + "start": 36133.72, + "end": 36137.74, + "probability": 0.6696 + }, + { + "start": 36138.44, + "end": 36139.66, + "probability": 0.6366 + }, + { + "start": 36140.66, + "end": 36143.0, + "probability": 0.5616 + }, + { + "start": 36143.02, + "end": 36145.8, + "probability": 0.9327 + }, + { + "start": 36145.8, + "end": 36149.74, + "probability": 0.5026 + }, + { + "start": 36150.48, + "end": 36153.66, + "probability": 0.9161 + }, + { + "start": 36154.06, + "end": 36157.62, + "probability": 0.9968 + }, + { + "start": 36157.62, + "end": 36161.76, + "probability": 0.9977 + }, + { + "start": 36162.3, + "end": 36162.64, + "probability": 0.6811 + }, + { + "start": 36162.9, + "end": 36164.68, + "probability": 0.5292 + }, + { + "start": 36165.52, + "end": 36167.96, + "probability": 0.7733 + }, + { + "start": 36168.54, + "end": 36169.8, + "probability": 0.8669 + }, + { + "start": 36170.64, + "end": 36171.26, + "probability": 0.9377 + }, + { + "start": 36171.84, + "end": 36174.0, + "probability": 0.7757 + }, + { + "start": 36181.08, + "end": 36184.76, + "probability": 0.8072 + }, + { + "start": 36184.94, + "end": 36186.52, + "probability": 0.7221 + }, + { + "start": 36186.64, + "end": 36188.06, + "probability": 0.1844 + }, + { + "start": 36188.24, + "end": 36192.26, + "probability": 0.9162 + }, + { + "start": 36193.0, + "end": 36193.44, + "probability": 0.4444 + }, + { + "start": 36193.86, + "end": 36193.88, + "probability": 0.2887 + }, + { + "start": 36205.34, + "end": 36205.96, + "probability": 0.2178 + }, + { + "start": 36207.78, + "end": 36208.96, + "probability": 0.0003 + }, + { + "start": 36210.38, + "end": 36211.18, + "probability": 0.2406 + }, + { + "start": 36211.72, + "end": 36211.82, + "probability": 0.8123 + }, + { + "start": 36216.76, + "end": 36218.64, + "probability": 0.403 + }, + { + "start": 36218.64, + "end": 36220.22, + "probability": 0.6407 + }, + { + "start": 36220.48, + "end": 36221.0, + "probability": 0.5297 + }, + { + "start": 36228.1, + "end": 36232.08, + "probability": 0.2167 + }, + { + "start": 36234.91, + "end": 36235.66, + "probability": 0.0951 + }, + { + "start": 36235.66, + "end": 36237.2, + "probability": 0.0621 + }, + { + "start": 36237.98, + "end": 36239.28, + "probability": 0.2555 + }, + { + "start": 36239.38, + "end": 36241.04, + "probability": 0.6086 + }, + { + "start": 36241.38, + "end": 36242.92, + "probability": 0.3191 + }, + { + "start": 36243.16, + "end": 36243.9, + "probability": 0.6755 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.0, + "end": 36313.0, + "probability": 0.0 + }, + { + "start": 36313.1, + "end": 36313.18, + "probability": 0.0848 + }, + { + "start": 36313.18, + "end": 36316.24, + "probability": 0.9722 + }, + { + "start": 36317.04, + "end": 36319.4, + "probability": 0.7135 + }, + { + "start": 36320.78, + "end": 36325.72, + "probability": 0.9602 + }, + { + "start": 36326.34, + "end": 36328.78, + "probability": 0.7512 + }, + { + "start": 36329.3, + "end": 36331.26, + "probability": 0.9919 + }, + { + "start": 36332.04, + "end": 36335.44, + "probability": 0.9854 + }, + { + "start": 36335.98, + "end": 36339.02, + "probability": 0.9746 + }, + { + "start": 36339.58, + "end": 36342.06, + "probability": 0.9971 + }, + { + "start": 36342.06, + "end": 36345.74, + "probability": 0.9995 + }, + { + "start": 36346.52, + "end": 36348.72, + "probability": 0.5132 + }, + { + "start": 36349.44, + "end": 36352.26, + "probability": 0.9918 + }, + { + "start": 36352.26, + "end": 36355.58, + "probability": 0.9989 + }, + { + "start": 36356.12, + "end": 36361.46, + "probability": 0.9901 + }, + { + "start": 36362.1, + "end": 36367.7, + "probability": 0.9951 + }, + { + "start": 36368.48, + "end": 36372.08, + "probability": 0.9832 + }, + { + "start": 36372.92, + "end": 36376.08, + "probability": 0.9326 + }, + { + "start": 36376.08, + "end": 36379.5, + "probability": 0.9955 + }, + { + "start": 36380.28, + "end": 36381.18, + "probability": 0.7679 + }, + { + "start": 36381.46, + "end": 36382.4, + "probability": 0.6936 + }, + { + "start": 36382.5, + "end": 36386.86, + "probability": 0.9138 + }, + { + "start": 36386.94, + "end": 36387.94, + "probability": 0.869 + }, + { + "start": 36388.26, + "end": 36389.16, + "probability": 0.57 + }, + { + "start": 36389.62, + "end": 36393.76, + "probability": 0.9927 + }, + { + "start": 36394.24, + "end": 36394.34, + "probability": 0.6181 + }, + { + "start": 36394.4, + "end": 36398.48, + "probability": 0.9859 + }, + { + "start": 36398.48, + "end": 36402.26, + "probability": 0.9836 + }, + { + "start": 36402.66, + "end": 36402.96, + "probability": 0.7295 + }, + { + "start": 36403.02, + "end": 36404.04, + "probability": 0.7543 + }, + { + "start": 36404.42, + "end": 36411.86, + "probability": 0.9669 + }, + { + "start": 36412.36, + "end": 36417.34, + "probability": 0.9975 + }, + { + "start": 36417.94, + "end": 36418.16, + "probability": 0.6622 + }, + { + "start": 36418.28, + "end": 36419.14, + "probability": 0.7505 + }, + { + "start": 36419.34, + "end": 36424.1, + "probability": 0.9123 + }, + { + "start": 36424.1, + "end": 36428.66, + "probability": 0.9974 + }, + { + "start": 36429.1, + "end": 36435.24, + "probability": 0.9878 + }, + { + "start": 36435.46, + "end": 36435.6, + "probability": 0.7139 + }, + { + "start": 36435.66, + "end": 36439.18, + "probability": 0.9911 + }, + { + "start": 36439.7, + "end": 36439.94, + "probability": 0.8966 + }, + { + "start": 36441.14, + "end": 36441.66, + "probability": 0.8846 + }, + { + "start": 36443.0, + "end": 36444.06, + "probability": 0.4793 + }, + { + "start": 36445.06, + "end": 36445.58, + "probability": 0.779 + }, + { + "start": 36447.15, + "end": 36449.58, + "probability": 0.5861 + }, + { + "start": 36449.88, + "end": 36454.12, + "probability": 0.934 + }, + { + "start": 36454.62, + "end": 36454.88, + "probability": 0.7424 + }, + { + "start": 36456.04, + "end": 36460.6, + "probability": 0.1665 + }, + { + "start": 36463.5, + "end": 36463.5, + "probability": 0.1058 + }, + { + "start": 36463.5, + "end": 36467.34, + "probability": 0.1412 + }, + { + "start": 36468.78, + "end": 36469.26, + "probability": 0.3445 + }, + { + "start": 36469.96, + "end": 36473.26, + "probability": 0.7164 + }, + { + "start": 36476.62, + "end": 36477.62, + "probability": 0.3386 + }, + { + "start": 36478.32, + "end": 36482.14, + "probability": 0.7356 + }, + { + "start": 36482.28, + "end": 36484.63, + "probability": 0.3668 + }, + { + "start": 36485.3, + "end": 36487.52, + "probability": 0.9017 + }, + { + "start": 36488.5, + "end": 36492.24, + "probability": 0.6556 + }, + { + "start": 36492.42, + "end": 36493.48, + "probability": 0.9816 + }, + { + "start": 36493.58, + "end": 36496.16, + "probability": 0.7654 + }, + { + "start": 36496.58, + "end": 36498.02, + "probability": 0.9671 + }, + { + "start": 36498.54, + "end": 36499.66, + "probability": 0.9507 + }, + { + "start": 36500.98, + "end": 36502.84, + "probability": 0.9066 + }, + { + "start": 36504.02, + "end": 36511.08, + "probability": 0.9181 + }, + { + "start": 36511.86, + "end": 36516.52, + "probability": 0.9858 + }, + { + "start": 36517.0, + "end": 36519.86, + "probability": 0.8765 + }, + { + "start": 36521.02, + "end": 36524.17, + "probability": 0.9884 + }, + { + "start": 36525.26, + "end": 36528.86, + "probability": 0.323 + }, + { + "start": 36528.86, + "end": 36529.46, + "probability": 0.0426 + }, + { + "start": 36529.46, + "end": 36529.46, + "probability": 0.0247 + }, + { + "start": 36529.46, + "end": 36529.46, + "probability": 0.0858 + }, + { + "start": 36529.46, + "end": 36529.46, + "probability": 0.1271 + }, + { + "start": 36529.46, + "end": 36529.46, + "probability": 0.0427 + }, + { + "start": 36529.46, + "end": 36531.53, + "probability": 0.6538 + }, + { + "start": 36531.96, + "end": 36531.96, + "probability": 0.1342 + }, + { + "start": 36532.02, + "end": 36532.84, + "probability": 0.3877 + }, + { + "start": 36533.28, + "end": 36533.76, + "probability": 0.7347 + }, + { + "start": 36533.92, + "end": 36535.18, + "probability": 0.9924 + }, + { + "start": 36535.28, + "end": 36536.06, + "probability": 0.8865 + }, + { + "start": 36536.16, + "end": 36540.52, + "probability": 0.958 + }, + { + "start": 36541.36, + "end": 36543.38, + "probability": 0.9854 + }, + { + "start": 36543.46, + "end": 36546.34, + "probability": 0.9528 + }, + { + "start": 36546.38, + "end": 36548.7, + "probability": 0.9618 + }, + { + "start": 36550.28, + "end": 36552.94, + "probability": 0.9434 + }, + { + "start": 36553.16, + "end": 36555.94, + "probability": 0.9493 + }, + { + "start": 36557.12, + "end": 36559.54, + "probability": 0.7808 + }, + { + "start": 36560.24, + "end": 36565.44, + "probability": 0.9806 + }, + { + "start": 36566.24, + "end": 36566.8, + "probability": 0.6087 + }, + { + "start": 36566.82, + "end": 36568.42, + "probability": 0.9741 + }, + { + "start": 36568.58, + "end": 36569.36, + "probability": 0.8734 + }, + { + "start": 36570.48, + "end": 36575.9, + "probability": 0.9854 + }, + { + "start": 36576.66, + "end": 36577.53, + "probability": 0.9995 + }, + { + "start": 36578.56, + "end": 36580.66, + "probability": 0.7812 + }, + { + "start": 36581.42, + "end": 36584.62, + "probability": 0.7227 + }, + { + "start": 36585.64, + "end": 36586.78, + "probability": 0.7173 + }, + { + "start": 36587.4, + "end": 36592.94, + "probability": 0.6208 + }, + { + "start": 36593.64, + "end": 36595.34, + "probability": 0.239 + }, + { + "start": 36596.44, + "end": 36600.02, + "probability": 0.8474 + }, + { + "start": 36601.26, + "end": 36602.48, + "probability": 0.8939 + }, + { + "start": 36603.52, + "end": 36610.78, + "probability": 0.9898 + }, + { + "start": 36611.38, + "end": 36613.2, + "probability": 0.9893 + }, + { + "start": 36613.28, + "end": 36615.42, + "probability": 0.7458 + }, + { + "start": 36615.5, + "end": 36618.94, + "probability": 0.9893 + }, + { + "start": 36620.34, + "end": 36623.6, + "probability": 0.9443 + }, + { + "start": 36624.36, + "end": 36626.34, + "probability": 0.7403 + }, + { + "start": 36627.0, + "end": 36630.52, + "probability": 0.9951 + }, + { + "start": 36630.62, + "end": 36632.3, + "probability": 0.7551 + }, + { + "start": 36633.08, + "end": 36635.36, + "probability": 0.9354 + }, + { + "start": 36636.18, + "end": 36638.46, + "probability": 0.9259 + }, + { + "start": 36639.18, + "end": 36640.7, + "probability": 0.9807 + }, + { + "start": 36640.8, + "end": 36641.6, + "probability": 0.9017 + }, + { + "start": 36643.02, + "end": 36645.02, + "probability": 0.9867 + }, + { + "start": 36646.22, + "end": 36647.36, + "probability": 0.9943 + }, + { + "start": 36647.44, + "end": 36649.83, + "probability": 0.9958 + }, + { + "start": 36650.7, + "end": 36655.0, + "probability": 0.9923 + }, + { + "start": 36655.54, + "end": 36659.22, + "probability": 0.8252 + }, + { + "start": 36660.12, + "end": 36663.4, + "probability": 0.999 + }, + { + "start": 36664.12, + "end": 36665.46, + "probability": 0.9797 + }, + { + "start": 36665.6, + "end": 36666.38, + "probability": 0.8973 + }, + { + "start": 36666.48, + "end": 36667.34, + "probability": 0.939 + }, + { + "start": 36667.56, + "end": 36669.36, + "probability": 0.9294 + }, + { + "start": 36669.44, + "end": 36670.86, + "probability": 0.6712 + }, + { + "start": 36672.34, + "end": 36674.2, + "probability": 0.9678 + }, + { + "start": 36677.24, + "end": 36678.28, + "probability": 0.7617 + }, + { + "start": 36678.34, + "end": 36680.06, + "probability": 0.9878 + }, + { + "start": 36680.1, + "end": 36681.44, + "probability": 0.9627 + }, + { + "start": 36682.68, + "end": 36683.18, + "probability": 0.9945 + }, + { + "start": 36683.94, + "end": 36684.12, + "probability": 0.2252 + }, + { + "start": 36684.82, + "end": 36686.61, + "probability": 0.986 + }, + { + "start": 36687.68, + "end": 36688.44, + "probability": 0.0694 + }, + { + "start": 36689.06, + "end": 36689.82, + "probability": 0.5203 + }, + { + "start": 36689.88, + "end": 36690.74, + "probability": 0.3858 + }, + { + "start": 36691.2, + "end": 36693.76, + "probability": 0.4259 + }, + { + "start": 36693.98, + "end": 36700.58, + "probability": 0.9786 + }, + { + "start": 36701.1, + "end": 36702.04, + "probability": 0.04 + }, + { + "start": 36702.28, + "end": 36703.78, + "probability": 0.535 + }, + { + "start": 36703.78, + "end": 36704.0, + "probability": 0.2143 + }, + { + "start": 36704.06, + "end": 36705.17, + "probability": 0.8723 + }, + { + "start": 36706.84, + "end": 36708.08, + "probability": 0.9783 + }, + { + "start": 36708.42, + "end": 36712.76, + "probability": 0.9207 + }, + { + "start": 36713.48, + "end": 36715.16, + "probability": 0.9966 + }, + { + "start": 36715.52, + "end": 36717.66, + "probability": 0.9119 + }, + { + "start": 36718.18, + "end": 36720.48, + "probability": 0.9987 + }, + { + "start": 36720.62, + "end": 36721.94, + "probability": 0.0808 + }, + { + "start": 36722.88, + "end": 36724.76, + "probability": 0.9756 + }, + { + "start": 36725.86, + "end": 36730.38, + "probability": 0.9679 + }, + { + "start": 36731.44, + "end": 36734.3, + "probability": 0.9972 + }, + { + "start": 36734.66, + "end": 36735.48, + "probability": 0.863 + }, + { + "start": 36736.54, + "end": 36737.3, + "probability": 0.831 + }, + { + "start": 36738.06, + "end": 36740.8, + "probability": 0.9124 + }, + { + "start": 36741.96, + "end": 36745.16, + "probability": 0.9647 + }, + { + "start": 36745.7, + "end": 36747.76, + "probability": 0.9697 + }, + { + "start": 36748.64, + "end": 36749.96, + "probability": 0.8909 + }, + { + "start": 36751.36, + "end": 36754.62, + "probability": 0.9294 + }, + { + "start": 36755.86, + "end": 36758.14, + "probability": 0.9565 + }, + { + "start": 36759.28, + "end": 36761.78, + "probability": 0.8609 + }, + { + "start": 36763.16, + "end": 36765.86, + "probability": 0.9403 + }, + { + "start": 36767.5, + "end": 36768.54, + "probability": 0.9197 + }, + { + "start": 36769.22, + "end": 36770.8, + "probability": 0.996 + }, + { + "start": 36771.36, + "end": 36773.76, + "probability": 0.9962 + }, + { + "start": 36775.38, + "end": 36777.38, + "probability": 0.9355 + }, + { + "start": 36777.9, + "end": 36779.78, + "probability": 0.9955 + }, + { + "start": 36780.66, + "end": 36782.16, + "probability": 0.9995 + }, + { + "start": 36782.68, + "end": 36784.42, + "probability": 0.9916 + }, + { + "start": 36785.0, + "end": 36786.84, + "probability": 0.9942 + }, + { + "start": 36787.72, + "end": 36789.82, + "probability": 0.7617 + }, + { + "start": 36790.46, + "end": 36793.16, + "probability": 0.8279 + }, + { + "start": 36794.46, + "end": 36795.24, + "probability": 0.9233 + }, + { + "start": 36795.98, + "end": 36798.22, + "probability": 0.9397 + }, + { + "start": 36799.12, + "end": 36800.2, + "probability": 0.9789 + }, + { + "start": 36800.9, + "end": 36804.2, + "probability": 0.7917 + }, + { + "start": 36804.2, + "end": 36805.06, + "probability": 0.8111 + }, + { + "start": 36807.38, + "end": 36810.12, + "probability": 0.8348 + }, + { + "start": 36810.5, + "end": 36813.19, + "probability": 0.972 + }, + { + "start": 36813.66, + "end": 36817.24, + "probability": 0.7703 + }, + { + "start": 36817.3, + "end": 36820.56, + "probability": 0.8839 + }, + { + "start": 36821.78, + "end": 36828.08, + "probability": 0.9564 + }, + { + "start": 36828.72, + "end": 36828.78, + "probability": 0.0358 + }, + { + "start": 36828.78, + "end": 36828.78, + "probability": 0.6109 + }, + { + "start": 36828.78, + "end": 36833.42, + "probability": 0.9596 + }, + { + "start": 36834.08, + "end": 36835.62, + "probability": 0.9728 + }, + { + "start": 36836.44, + "end": 36837.66, + "probability": 0.9655 + }, + { + "start": 36839.08, + "end": 36841.5, + "probability": 0.8291 + }, + { + "start": 36842.26, + "end": 36846.76, + "probability": 0.9547 + }, + { + "start": 36846.76, + "end": 36851.34, + "probability": 0.972 + }, + { + "start": 36852.14, + "end": 36855.08, + "probability": 0.9941 + }, + { + "start": 36856.28, + "end": 36858.08, + "probability": 0.9976 + }, + { + "start": 36859.5, + "end": 36862.16, + "probability": 0.998 + }, + { + "start": 36863.18, + "end": 36867.48, + "probability": 0.9911 + }, + { + "start": 36867.54, + "end": 36868.4, + "probability": 0.9277 + }, + { + "start": 36868.58, + "end": 36869.3, + "probability": 0.6532 + }, + { + "start": 36870.52, + "end": 36872.02, + "probability": 0.6755 + }, + { + "start": 36872.2, + "end": 36878.0, + "probability": 0.9937 + }, + { + "start": 36878.56, + "end": 36880.7, + "probability": 0.9703 + }, + { + "start": 36881.34, + "end": 36883.44, + "probability": 0.8767 + }, + { + "start": 36884.24, + "end": 36887.42, + "probability": 0.9951 + }, + { + "start": 36888.0, + "end": 36891.56, + "probability": 0.992 + }, + { + "start": 36891.56, + "end": 36896.52, + "probability": 0.8913 + }, + { + "start": 36897.18, + "end": 36897.83, + "probability": 0.8254 + }, + { + "start": 36898.12, + "end": 36899.8, + "probability": 0.8918 + }, + { + "start": 36900.08, + "end": 36901.0, + "probability": 0.7942 + }, + { + "start": 36901.18, + "end": 36902.72, + "probability": 0.7861 + }, + { + "start": 36903.6, + "end": 36905.52, + "probability": 0.8711 + }, + { + "start": 36906.26, + "end": 36906.92, + "probability": 0.9681 + }, + { + "start": 36907.06, + "end": 36908.0, + "probability": 0.9276 + }, + { + "start": 36908.46, + "end": 36910.14, + "probability": 0.9839 + }, + { + "start": 36910.82, + "end": 36911.14, + "probability": 0.6944 + }, + { + "start": 36911.36, + "end": 36913.98, + "probability": 0.9351 + }, + { + "start": 36915.02, + "end": 36919.94, + "probability": 0.8776 + }, + { + "start": 36920.7, + "end": 36921.66, + "probability": 0.6329 + }, + { + "start": 36922.3, + "end": 36922.56, + "probability": 0.2534 + }, + { + "start": 36922.56, + "end": 36923.72, + "probability": 0.6566 + }, + { + "start": 36925.12, + "end": 36925.82, + "probability": 0.9606 + }, + { + "start": 36926.38, + "end": 36928.6, + "probability": 0.8507 + }, + { + "start": 36928.8, + "end": 36934.28, + "probability": 0.8991 + }, + { + "start": 36934.28, + "end": 36937.72, + "probability": 0.923 + }, + { + "start": 36938.56, + "end": 36942.24, + "probability": 0.5101 + }, + { + "start": 36942.98, + "end": 36943.7, + "probability": 0.7572 + }, + { + "start": 36944.2, + "end": 36947.18, + "probability": 0.0609 + }, + { + "start": 36947.18, + "end": 36951.24, + "probability": 0.1555 + }, + { + "start": 36958.6, + "end": 36962.5, + "probability": 0.0747 + }, + { + "start": 36967.08, + "end": 36967.46, + "probability": 0.1579 + }, + { + "start": 36967.98, + "end": 36968.76, + "probability": 0.1631 + }, + { + "start": 36969.74, + "end": 36969.74, + "probability": 0.4109 + }, + { + "start": 36969.96, + "end": 36970.44, + "probability": 0.4459 + }, + { + "start": 36970.54, + "end": 36972.02, + "probability": 0.8126 + }, + { + "start": 36972.12, + "end": 36976.36, + "probability": 0.6655 + }, + { + "start": 36976.82, + "end": 36979.84, + "probability": 0.9861 + }, + { + "start": 36980.18, + "end": 36981.88, + "probability": 0.7535 + }, + { + "start": 36982.32, + "end": 36986.1, + "probability": 0.9819 + }, + { + "start": 36987.52, + "end": 36994.4, + "probability": 0.9008 + }, + { + "start": 36994.5, + "end": 36996.8, + "probability": 0.1954 + }, + { + "start": 36997.0, + "end": 36998.72, + "probability": 0.9877 + }, + { + "start": 36999.5, + "end": 37003.68, + "probability": 0.9596 + }, + { + "start": 37006.52, + "end": 37011.76, + "probability": 0.9768 + }, + { + "start": 37013.56, + "end": 37017.2, + "probability": 0.874 + }, + { + "start": 37018.08, + "end": 37022.12, + "probability": 0.516 + }, + { + "start": 37023.1, + "end": 37025.22, + "probability": 0.8755 + }, + { + "start": 37025.98, + "end": 37029.4, + "probability": 0.6706 + }, + { + "start": 37029.62, + "end": 37030.88, + "probability": 0.1616 + }, + { + "start": 37031.0, + "end": 37033.63, + "probability": 0.7829 + }, + { + "start": 37034.56, + "end": 37037.8, + "probability": 0.7543 + }, + { + "start": 37039.32, + "end": 37042.04, + "probability": 0.7016 + }, + { + "start": 37042.18, + "end": 37043.46, + "probability": 0.946 + }, + { + "start": 37046.12, + "end": 37049.3, + "probability": 0.964 + }, + { + "start": 37049.3, + "end": 37051.82, + "probability": 0.7622 + }, + { + "start": 37052.62, + "end": 37056.34, + "probability": 0.5055 + }, + { + "start": 37057.98, + "end": 37059.62, + "probability": 0.5355 + }, + { + "start": 37060.7, + "end": 37060.86, + "probability": 0.3494 + }, + { + "start": 37061.92, + "end": 37063.06, + "probability": 0.1657 + }, + { + "start": 37076.4, + "end": 37080.42, + "probability": 0.7401 + }, + { + "start": 37080.72, + "end": 37081.04, + "probability": 0.0328 + }, + { + "start": 37086.24, + "end": 37090.04, + "probability": 0.2286 + }, + { + "start": 37092.74, + "end": 37094.22, + "probability": 0.0739 + }, + { + "start": 37094.94, + "end": 37096.66, + "probability": 0.0327 + }, + { + "start": 37097.06, + "end": 37098.8, + "probability": 0.028 + }, + { + "start": 37098.8, + "end": 37099.16, + "probability": 0.0496 + }, + { + "start": 37099.84, + "end": 37103.08, + "probability": 0.0852 + }, + { + "start": 37103.08, + "end": 37103.08, + "probability": 0.1356 + }, + { + "start": 37103.08, + "end": 37107.78, + "probability": 0.3241 + }, + { + "start": 37109.36, + "end": 37115.09, + "probability": 0.8807 + }, + { + "start": 37115.92, + "end": 37119.9, + "probability": 0.9663 + }, + { + "start": 37120.3, + "end": 37121.26, + "probability": 0.8682 + }, + { + "start": 37135.2, + "end": 37136.52, + "probability": 0.2878 + }, + { + "start": 37139.02, + "end": 37142.86, + "probability": 0.5061 + }, + { + "start": 37142.94, + "end": 37144.06, + "probability": 0.4765 + }, + { + "start": 37144.12, + "end": 37144.78, + "probability": 0.6554 + }, + { + "start": 37144.92, + "end": 37145.6, + "probability": 0.7026 + }, + { + "start": 37146.92, + "end": 37149.2, + "probability": 0.7391 + }, + { + "start": 37152.0, + "end": 37152.77, + "probability": 0.6735 + }, + { + "start": 37156.08, + "end": 37159.68, + "probability": 0.4403 + }, + { + "start": 37159.82, + "end": 37159.92, + "probability": 0.2813 + }, + { + "start": 37160.04, + "end": 37161.9, + "probability": 0.3486 + }, + { + "start": 37161.92, + "end": 37165.8, + "probability": 0.8371 + }, + { + "start": 37165.8, + "end": 37166.85, + "probability": 0.9503 + }, + { + "start": 37167.42, + "end": 37169.2, + "probability": 0.6421 + }, + { + "start": 37169.42, + "end": 37170.78, + "probability": 0.0268 + }, + { + "start": 37170.78, + "end": 37170.78, + "probability": 0.0386 + }, + { + "start": 37170.78, + "end": 37171.47, + "probability": 0.2389 + }, + { + "start": 37172.78, + "end": 37173.34, + "probability": 0.582 + }, + { + "start": 37175.1, + "end": 37175.44, + "probability": 0.7065 + }, + { + "start": 37175.94, + "end": 37177.16, + "probability": 0.7454 + }, + { + "start": 37177.26, + "end": 37180.0, + "probability": 0.3973 + }, + { + "start": 37183.3, + "end": 37183.9, + "probability": 0.9462 + }, + { + "start": 37187.58, + "end": 37187.9, + "probability": 0.2166 + }, + { + "start": 37187.9, + "end": 37191.14, + "probability": 0.9365 + }, + { + "start": 37192.2, + "end": 37193.66, + "probability": 0.7828 + }, + { + "start": 37194.7, + "end": 37195.74, + "probability": 0.9651 + }, + { + "start": 37196.62, + "end": 37201.4, + "probability": 0.978 + }, + { + "start": 37202.18, + "end": 37214.68, + "probability": 0.7458 + }, + { + "start": 37215.8, + "end": 37217.08, + "probability": 0.8322 + }, + { + "start": 37218.14, + "end": 37221.38, + "probability": 0.8694 + }, + { + "start": 37222.98, + "end": 37223.4, + "probability": 0.535 + }, + { + "start": 37224.56, + "end": 37231.88, + "probability": 0.9104 + }, + { + "start": 37233.06, + "end": 37234.6, + "probability": 0.8537 + }, + { + "start": 37235.0, + "end": 37235.94, + "probability": 0.6129 + }, + { + "start": 37236.04, + "end": 37238.08, + "probability": 0.9427 + }, + { + "start": 37238.68, + "end": 37241.18, + "probability": 0.9701 + }, + { + "start": 37242.1, + "end": 37242.76, + "probability": 0.4531 + }, + { + "start": 37243.6, + "end": 37243.66, + "probability": 0.0734 + }, + { + "start": 37243.66, + "end": 37246.26, + "probability": 0.9509 + }, + { + "start": 37246.78, + "end": 37247.9, + "probability": 0.7537 + }, + { + "start": 37248.4, + "end": 37248.4, + "probability": 0.1703 + }, + { + "start": 37248.4, + "end": 37250.64, + "probability": 0.5774 + }, + { + "start": 37251.44, + "end": 37255.4, + "probability": 0.3383 + }, + { + "start": 37255.6, + "end": 37257.76, + "probability": 0.2764 + }, + { + "start": 37257.76, + "end": 37262.92, + "probability": 0.7609 + }, + { + "start": 37263.54, + "end": 37263.54, + "probability": 0.2436 + }, + { + "start": 37263.54, + "end": 37265.1, + "probability": 0.3902 + }, + { + "start": 37265.24, + "end": 37266.34, + "probability": 0.6042 + }, + { + "start": 37269.64, + "end": 37269.72, + "probability": 0.2129 + }, + { + "start": 37269.72, + "end": 37269.72, + "probability": 0.0974 + }, + { + "start": 37269.72, + "end": 37269.72, + "probability": 0.2687 + }, + { + "start": 37269.72, + "end": 37274.54, + "probability": 0.5483 + }, + { + "start": 37274.94, + "end": 37276.02, + "probability": 0.3655 + }, + { + "start": 37276.08, + "end": 37277.54, + "probability": 0.3772 + }, + { + "start": 37277.98, + "end": 37281.5, + "probability": 0.9795 + }, + { + "start": 37281.64, + "end": 37288.58, + "probability": 0.9064 + }, + { + "start": 37289.14, + "end": 37293.58, + "probability": 0.9878 + }, + { + "start": 37294.28, + "end": 37297.24, + "probability": 0.9478 + }, + { + "start": 37298.76, + "end": 37299.2, + "probability": 0.8816 + }, + { + "start": 37299.62, + "end": 37307.04, + "probability": 0.972 + }, + { + "start": 37307.6, + "end": 37313.44, + "probability": 0.5671 + }, + { + "start": 37314.18, + "end": 37318.58, + "probability": 0.8993 + }, + { + "start": 37319.32, + "end": 37327.1, + "probability": 0.8398 + }, + { + "start": 37328.02, + "end": 37334.78, + "probability": 0.9568 + }, + { + "start": 37335.38, + "end": 37341.04, + "probability": 0.9431 + }, + { + "start": 37341.04, + "end": 37346.72, + "probability": 0.9231 + }, + { + "start": 37347.18, + "end": 37352.96, + "probability": 0.9856 + }, + { + "start": 37352.96, + "end": 37359.48, + "probability": 0.9937 + }, + { + "start": 37360.14, + "end": 37361.36, + "probability": 0.6468 + }, + { + "start": 37361.84, + "end": 37363.24, + "probability": 0.6562 + }, + { + "start": 37363.5, + "end": 37365.24, + "probability": 0.5581 + }, + { + "start": 37365.72, + "end": 37366.84, + "probability": 0.7919 + }, + { + "start": 37367.18, + "end": 37368.82, + "probability": 0.3011 + }, + { + "start": 37368.82, + "end": 37368.84, + "probability": 0.1709 + }, + { + "start": 37368.84, + "end": 37371.08, + "probability": 0.3573 + }, + { + "start": 37373.48, + "end": 37376.58, + "probability": 0.3368 + }, + { + "start": 37376.72, + "end": 37379.42, + "probability": 0.309 + }, + { + "start": 37380.18, + "end": 37380.18, + "probability": 0.074 + }, + { + "start": 37380.18, + "end": 37381.76, + "probability": 0.1506 + }, + { + "start": 37381.76, + "end": 37381.76, + "probability": 0.0845 + }, + { + "start": 37381.76, + "end": 37384.92, + "probability": 0.4834 + }, + { + "start": 37385.48, + "end": 37385.5, + "probability": 0.0738 + }, + { + "start": 37385.5, + "end": 37388.44, + "probability": 0.6005 + }, + { + "start": 37389.38, + "end": 37389.4, + "probability": 0.1732 + }, + { + "start": 37389.4, + "end": 37393.46, + "probability": 0.7676 + }, + { + "start": 37394.04, + "end": 37394.16, + "probability": 0.2975 + }, + { + "start": 37394.16, + "end": 37394.72, + "probability": 0.4456 + }, + { + "start": 37395.28, + "end": 37396.04, + "probability": 0.5594 + }, + { + "start": 37398.0, + "end": 37398.44, + "probability": 0.3585 + }, + { + "start": 37398.58, + "end": 37398.76, + "probability": 0.6151 + }, + { + "start": 37398.76, + "end": 37403.6, + "probability": 0.7209 + }, + { + "start": 37403.64, + "end": 37405.42, + "probability": 0.6517 + }, + { + "start": 37405.44, + "end": 37407.24, + "probability": 0.7092 + }, + { + "start": 37407.44, + "end": 37408.56, + "probability": 0.7961 + }, + { + "start": 37408.78, + "end": 37413.06, + "probability": 0.7006 + }, + { + "start": 37413.3, + "end": 37414.68, + "probability": 0.7809 + }, + { + "start": 37415.08, + "end": 37416.3, + "probability": 0.7097 + }, + { + "start": 37416.36, + "end": 37416.84, + "probability": 0.566 + }, + { + "start": 37416.96, + "end": 37417.36, + "probability": 0.5438 + }, + { + "start": 37417.62, + "end": 37420.56, + "probability": 0.8779 + }, + { + "start": 37421.32, + "end": 37421.56, + "probability": 0.1071 + }, + { + "start": 37421.56, + "end": 37422.06, + "probability": 0.0964 + }, + { + "start": 37422.06, + "end": 37425.02, + "probability": 0.5861 + }, + { + "start": 37425.38, + "end": 37427.88, + "probability": 0.8047 + }, + { + "start": 37428.42, + "end": 37435.64, + "probability": 0.8867 + }, + { + "start": 37435.64, + "end": 37441.0, + "probability": 0.1869 + }, + { + "start": 37441.0, + "end": 37442.54, + "probability": 0.4383 + }, + { + "start": 37442.92, + "end": 37444.6, + "probability": 0.7247 + }, + { + "start": 37445.06, + "end": 37447.02, + "probability": 0.7652 + }, + { + "start": 37447.5, + "end": 37453.84, + "probability": 0.9725 + }, + { + "start": 37454.22, + "end": 37458.78, + "probability": 0.8799 + }, + { + "start": 37459.28, + "end": 37460.36, + "probability": 0.6686 + }, + { + "start": 37460.7, + "end": 37463.86, + "probability": 0.6482 + }, + { + "start": 37464.34, + "end": 37466.04, + "probability": 0.7618 + }, + { + "start": 37466.1, + "end": 37469.48, + "probability": 0.7564 + }, + { + "start": 37469.9, + "end": 37472.18, + "probability": 0.799 + }, + { + "start": 37472.68, + "end": 37474.68, + "probability": 0.8567 + }, + { + "start": 37474.68, + "end": 37478.84, + "probability": 0.6814 + }, + { + "start": 37479.58, + "end": 37479.58, + "probability": 0.0621 + }, + { + "start": 37479.58, + "end": 37480.68, + "probability": 0.5145 + }, + { + "start": 37481.38, + "end": 37487.24, + "probability": 0.7443 + }, + { + "start": 37487.72, + "end": 37488.7, + "probability": 0.8245 + }, + { + "start": 37489.04, + "end": 37490.02, + "probability": 0.5212 + }, + { + "start": 37490.68, + "end": 37493.04, + "probability": 0.9095 + }, + { + "start": 37493.54, + "end": 37496.92, + "probability": 0.9283 + }, + { + "start": 37497.36, + "end": 37499.41, + "probability": 0.8173 + }, + { + "start": 37500.14, + "end": 37502.38, + "probability": 0.8176 + }, + { + "start": 37502.92, + "end": 37504.94, + "probability": 0.8583 + }, + { + "start": 37505.36, + "end": 37513.02, + "probability": 0.9907 + }, + { + "start": 37513.56, + "end": 37516.7, + "probability": 0.7566 + }, + { + "start": 37517.28, + "end": 37521.74, + "probability": 0.8223 + }, + { + "start": 37522.22, + "end": 37532.14, + "probability": 0.9951 + }, + { + "start": 37532.64, + "end": 37535.36, + "probability": 0.8822 + }, + { + "start": 37536.02, + "end": 37537.98, + "probability": 0.7337 + }, + { + "start": 37538.54, + "end": 37540.84, + "probability": 0.9932 + }, + { + "start": 37541.62, + "end": 37543.38, + "probability": 0.9361 + }, + { + "start": 37543.94, + "end": 37546.04, + "probability": 0.698 + }, + { + "start": 37546.54, + "end": 37547.78, + "probability": 0.9807 + }, + { + "start": 37548.18, + "end": 37549.26, + "probability": 0.9828 + }, + { + "start": 37549.6, + "end": 37550.64, + "probability": 0.8572 + }, + { + "start": 37551.04, + "end": 37552.0, + "probability": 0.9199 + }, + { + "start": 37552.54, + "end": 37557.34, + "probability": 0.8013 + }, + { + "start": 37557.86, + "end": 37559.66, + "probability": 0.8889 + }, + { + "start": 37560.18, + "end": 37561.52, + "probability": 0.9858 + }, + { + "start": 37562.36, + "end": 37567.78, + "probability": 0.9674 + }, + { + "start": 37568.26, + "end": 37571.06, + "probability": 0.9047 + }, + { + "start": 37571.58, + "end": 37574.12, + "probability": 0.8676 + }, + { + "start": 37574.4, + "end": 37579.42, + "probability": 0.7478 + }, + { + "start": 37579.82, + "end": 37589.48, + "probability": 0.9585 + }, + { + "start": 37590.02, + "end": 37593.8, + "probability": 0.7639 + }, + { + "start": 37593.86, + "end": 37600.78, + "probability": 0.8293 + }, + { + "start": 37601.26, + "end": 37609.51, + "probability": 0.991 + }, + { + "start": 37609.68, + "end": 37615.88, + "probability": 0.9279 + }, + { + "start": 37616.54, + "end": 37622.54, + "probability": 0.9295 + }, + { + "start": 37622.72, + "end": 37624.14, + "probability": 0.9627 + }, + { + "start": 37624.78, + "end": 37626.34, + "probability": 0.8408 + }, + { + "start": 37627.94, + "end": 37629.9, + "probability": 0.7939 + }, + { + "start": 37630.46, + "end": 37634.92, + "probability": 0.9746 + }, + { + "start": 37635.18, + "end": 37643.46, + "probability": 0.9024 + }, + { + "start": 37644.38, + "end": 37645.58, + "probability": 0.4005 + }, + { + "start": 37646.04, + "end": 37654.0, + "probability": 0.9839 + }, + { + "start": 37654.44, + "end": 37658.92, + "probability": 0.9905 + }, + { + "start": 37659.3, + "end": 37660.38, + "probability": 0.8041 + }, + { + "start": 37660.78, + "end": 37664.64, + "probability": 0.9295 + }, + { + "start": 37665.42, + "end": 37669.5, + "probability": 0.966 + }, + { + "start": 37669.88, + "end": 37670.88, + "probability": 0.9585 + }, + { + "start": 37671.38, + "end": 37678.5, + "probability": 0.9777 + }, + { + "start": 37678.86, + "end": 37681.0, + "probability": 0.8905 + }, + { + "start": 37681.16, + "end": 37681.72, + "probability": 0.1982 + }, + { + "start": 37682.32, + "end": 37684.46, + "probability": 0.9669 + }, + { + "start": 37684.9, + "end": 37686.08, + "probability": 0.8166 + }, + { + "start": 37686.38, + "end": 37687.64, + "probability": 0.6827 + }, + { + "start": 37688.28, + "end": 37690.48, + "probability": 0.951 + }, + { + "start": 37691.02, + "end": 37694.8, + "probability": 0.9907 + }, + { + "start": 37695.28, + "end": 37700.82, + "probability": 0.9037 + }, + { + "start": 37701.46, + "end": 37704.14, + "probability": 0.948 + }, + { + "start": 37704.58, + "end": 37706.28, + "probability": 0.6407 + }, + { + "start": 37707.02, + "end": 37709.12, + "probability": 0.5159 + }, + { + "start": 37709.68, + "end": 37712.74, + "probability": 0.7064 + }, + { + "start": 37713.46, + "end": 37718.16, + "probability": 0.6732 + }, + { + "start": 37719.1, + "end": 37720.32, + "probability": 0.9758 + }, + { + "start": 37720.96, + "end": 37730.66, + "probability": 0.9927 + }, + { + "start": 37730.72, + "end": 37734.06, + "probability": 0.8004 + }, + { + "start": 37734.62, + "end": 37736.48, + "probability": 0.7956 + }, + { + "start": 37737.06, + "end": 37739.72, + "probability": 0.8206 + }, + { + "start": 37740.1, + "end": 37741.16, + "probability": 0.9814 + }, + { + "start": 37741.72, + "end": 37743.14, + "probability": 0.7778 + }, + { + "start": 37743.78, + "end": 37748.28, + "probability": 0.6695 + }, + { + "start": 37748.88, + "end": 37753.36, + "probability": 0.9404 + }, + { + "start": 37753.82, + "end": 37755.0, + "probability": 0.9177 + }, + { + "start": 37755.32, + "end": 37757.0, + "probability": 0.9292 + }, + { + "start": 37757.38, + "end": 37758.7, + "probability": 0.6722 + }, + { + "start": 37759.12, + "end": 37760.7, + "probability": 0.7243 + }, + { + "start": 37760.96, + "end": 37762.7, + "probability": 0.9185 + }, + { + "start": 37763.16, + "end": 37764.8, + "probability": 0.8142 + }, + { + "start": 37765.42, + "end": 37767.48, + "probability": 0.6093 + }, + { + "start": 37767.66, + "end": 37771.66, + "probability": 0.4941 + }, + { + "start": 37771.96, + "end": 37772.22, + "probability": 0.4934 + }, + { + "start": 37772.32, + "end": 37777.3, + "probability": 0.9596 + }, + { + "start": 37778.1, + "end": 37779.42, + "probability": 0.3058 + }, + { + "start": 37780.0, + "end": 37782.92, + "probability": 0.2178 + }, + { + "start": 37782.92, + "end": 37782.98, + "probability": 0.0438 + }, + { + "start": 37782.98, + "end": 37782.98, + "probability": 0.0269 + }, + { + "start": 37782.98, + "end": 37782.98, + "probability": 0.0524 + }, + { + "start": 37782.98, + "end": 37783.64, + "probability": 0.2589 + }, + { + "start": 37783.76, + "end": 37785.8, + "probability": 0.1397 + }, + { + "start": 37786.12, + "end": 37786.8, + "probability": 0.5442 + }, + { + "start": 37787.04, + "end": 37788.45, + "probability": 0.6801 + }, + { + "start": 37789.0, + "end": 37789.24, + "probability": 0.2288 + }, + { + "start": 37789.24, + "end": 37789.24, + "probability": 0.6378 + }, + { + "start": 37789.24, + "end": 37789.82, + "probability": 0.2745 + }, + { + "start": 37790.02, + "end": 37793.54, + "probability": 0.6722 + }, + { + "start": 37793.62, + "end": 37794.34, + "probability": 0.8853 + }, + { + "start": 37795.48, + "end": 37800.3, + "probability": 0.5223 + }, + { + "start": 37800.42, + "end": 37801.86, + "probability": 0.7545 + }, + { + "start": 37802.12, + "end": 37804.16, + "probability": 0.7573 + }, + { + "start": 37804.16, + "end": 37806.24, + "probability": 0.9652 + }, + { + "start": 37806.42, + "end": 37815.74, + "probability": 0.757 + }, + { + "start": 37816.68, + "end": 37819.46, + "probability": 0.2738 + }, + { + "start": 37819.66, + "end": 37819.82, + "probability": 0.4781 + }, + { + "start": 37820.2, + "end": 37821.04, + "probability": 0.8007 + }, + { + "start": 37821.22, + "end": 37822.04, + "probability": 0.8835 + }, + { + "start": 37822.18, + "end": 37823.38, + "probability": 0.6569 + }, + { + "start": 37824.66, + "end": 37825.72, + "probability": 0.9454 + }, + { + "start": 37825.78, + "end": 37827.76, + "probability": 0.8881 + }, + { + "start": 37827.86, + "end": 37828.38, + "probability": 0.6414 + }, + { + "start": 37831.34, + "end": 37831.44, + "probability": 0.0005 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.0, + "end": 37938.0, + "probability": 0.0 + }, + { + "start": 37938.12, + "end": 37938.24, + "probability": 0.225 + }, + { + "start": 37938.24, + "end": 37938.24, + "probability": 0.0099 + }, + { + "start": 37938.24, + "end": 37939.1, + "probability": 0.1156 + }, + { + "start": 37939.34, + "end": 37939.72, + "probability": 0.4472 + }, + { + "start": 37939.82, + "end": 37942.02, + "probability": 0.8068 + }, + { + "start": 37942.22, + "end": 37943.7, + "probability": 0.9437 + }, + { + "start": 37944.68, + "end": 37947.5, + "probability": 0.9638 + }, + { + "start": 37947.96, + "end": 37953.46, + "probability": 0.7285 + }, + { + "start": 37954.1, + "end": 37955.48, + "probability": 0.8769 + }, + { + "start": 37955.78, + "end": 37957.2, + "probability": 0.9224 + }, + { + "start": 37957.48, + "end": 37963.36, + "probability": 0.7594 + }, + { + "start": 37963.94, + "end": 37966.76, + "probability": 0.8481 + }, + { + "start": 37967.46, + "end": 37968.72, + "probability": 0.7043 + }, + { + "start": 37968.96, + "end": 37976.72, + "probability": 0.8959 + }, + { + "start": 37977.16, + "end": 37983.12, + "probability": 0.979 + }, + { + "start": 37983.32, + "end": 37983.82, + "probability": 0.0228 + }, + { + "start": 37983.82, + "end": 37983.84, + "probability": 0.1954 + }, + { + "start": 37983.84, + "end": 37984.22, + "probability": 0.0546 + }, + { + "start": 37984.7, + "end": 37984.7, + "probability": 0.1186 + }, + { + "start": 37986.5, + "end": 37987.66, + "probability": 0.3617 + }, + { + "start": 37989.16, + "end": 37992.16, + "probability": 0.2155 + }, + { + "start": 37992.42, + "end": 37994.36, + "probability": 0.1378 + }, + { + "start": 37994.48, + "end": 37997.0, + "probability": 0.5037 + }, + { + "start": 37999.96, + "end": 38002.78, + "probability": 0.7725 + }, + { + "start": 38003.16, + "end": 38003.95, + "probability": 0.0394 + }, + { + "start": 38004.22, + "end": 38004.38, + "probability": 0.1005 + }, + { + "start": 38004.54, + "end": 38004.54, + "probability": 0.2528 + }, + { + "start": 38004.54, + "end": 38005.74, + "probability": 0.3263 + }, + { + "start": 38005.98, + "end": 38010.54, + "probability": 0.8682 + }, + { + "start": 38010.7, + "end": 38016.34, + "probability": 0.77 + }, + { + "start": 38017.24, + "end": 38018.1, + "probability": 0.0729 + }, + { + "start": 38018.1, + "end": 38018.1, + "probability": 0.169 + }, + { + "start": 38018.1, + "end": 38018.4, + "probability": 0.2484 + }, + { + "start": 38018.48, + "end": 38019.26, + "probability": 0.9301 + }, + { + "start": 38028.22, + "end": 38031.18, + "probability": 0.7353 + }, + { + "start": 38032.52, + "end": 38033.9, + "probability": 0.5703 + }, + { + "start": 38034.92, + "end": 38037.36, + "probability": 0.5288 + }, + { + "start": 38037.96, + "end": 38039.86, + "probability": 0.8193 + }, + { + "start": 38040.2, + "end": 38041.86, + "probability": 0.3147 + }, + { + "start": 38042.28, + "end": 38043.84, + "probability": 0.59 + }, + { + "start": 38044.36, + "end": 38044.96, + "probability": 0.5568 + }, + { + "start": 38045.72, + "end": 38050.74, + "probability": 0.9812 + }, + { + "start": 38051.14, + "end": 38053.96, + "probability": 0.6395 + }, + { + "start": 38054.36, + "end": 38055.2, + "probability": 0.7144 + }, + { + "start": 38055.48, + "end": 38060.64, + "probability": 0.7955 + }, + { + "start": 38061.08, + "end": 38062.26, + "probability": 0.9284 + }, + { + "start": 38062.46, + "end": 38065.46, + "probability": 0.8107 + }, + { + "start": 38065.48, + "end": 38070.64, + "probability": 0.9467 + }, + { + "start": 38072.04, + "end": 38074.28, + "probability": 0.5815 + }, + { + "start": 38075.18, + "end": 38076.4, + "probability": 0.6215 + }, + { + "start": 38079.42, + "end": 38080.92, + "probability": 0.9888 + }, + { + "start": 38081.56, + "end": 38085.28, + "probability": 0.6617 + }, + { + "start": 38085.7, + "end": 38086.02, + "probability": 0.0444 + }, + { + "start": 38086.02, + "end": 38086.02, + "probability": 0.0711 + }, + { + "start": 38086.02, + "end": 38086.38, + "probability": 0.3178 + }, + { + "start": 38086.8, + "end": 38088.62, + "probability": 0.3872 + }, + { + "start": 38088.62, + "end": 38089.62, + "probability": 0.9547 + }, + { + "start": 38089.72, + "end": 38090.48, + "probability": 0.3423 + }, + { + "start": 38090.6, + "end": 38096.44, + "probability": 0.2362 + }, + { + "start": 38096.78, + "end": 38099.08, + "probability": 0.2267 + }, + { + "start": 38099.78, + "end": 38099.98, + "probability": 0.3411 + }, + { + "start": 38100.12, + "end": 38100.3, + "probability": 0.5079 + }, + { + "start": 38102.96, + "end": 38106.24, + "probability": 0.0303 + }, + { + "start": 38106.28, + "end": 38106.34, + "probability": 0.2408 + }, + { + "start": 38111.78, + "end": 38114.6, + "probability": 0.33 + }, + { + "start": 38115.12, + "end": 38115.9, + "probability": 0.6702 + }, + { + "start": 38115.94, + "end": 38116.86, + "probability": 0.3267 + }, + { + "start": 38116.94, + "end": 38119.94, + "probability": 0.7722 + }, + { + "start": 38120.12, + "end": 38120.7, + "probability": 0.4344 + }, + { + "start": 38121.32, + "end": 38122.62, + "probability": 0.0891 + }, + { + "start": 38122.82, + "end": 38123.54, + "probability": 0.186 + }, + { + "start": 38124.5, + "end": 38125.58, + "probability": 0.2344 + }, + { + "start": 38126.89, + "end": 38127.96, + "probability": 0.5128 + }, + { + "start": 38128.2, + "end": 38128.36, + "probability": 0.3887 + }, + { + "start": 38128.84, + "end": 38129.27, + "probability": 0.628 + }, + { + "start": 38129.86, + "end": 38130.02, + "probability": 0.3229 + }, + { + "start": 38130.66, + "end": 38131.06, + "probability": 0.1708 + }, + { + "start": 38131.26, + "end": 38132.74, + "probability": 0.0731 + }, + { + "start": 38133.0, + "end": 38133.58, + "probability": 0.1447 + }, + { + "start": 38134.08, + "end": 38134.4, + "probability": 0.3055 + }, + { + "start": 38134.4, + "end": 38134.9, + "probability": 0.1796 + }, + { + "start": 38135.87, + "end": 38136.8, + "probability": 0.0129 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.0, + "probability": 0.0 + }, + { + "start": 38175.0, + "end": 38175.2, + "probability": 0.0434 + }, + { + "start": 38175.2, + "end": 38176.02, + "probability": 0.2623 + }, + { + "start": 38176.54, + "end": 38179.54, + "probability": 0.1182 + }, + { + "start": 38179.92, + "end": 38180.82, + "probability": 0.198 + }, + { + "start": 38180.82, + "end": 38182.34, + "probability": 0.7952 + }, + { + "start": 38182.4, + "end": 38183.34, + "probability": 0.1426 + }, + { + "start": 38183.88, + "end": 38185.58, + "probability": 0.2807 + }, + { + "start": 38186.21, + "end": 38186.58, + "probability": 0.2143 + }, + { + "start": 38186.58, + "end": 38187.18, + "probability": 0.45 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38295.0, + "probability": 0.0 + }, + { + "start": 38295.0, + "end": 38297.34, + "probability": 0.0533 + }, + { + "start": 38300.36, + "end": 38301.34, + "probability": 0.1659 + }, + { + "start": 38302.02, + "end": 38303.66, + "probability": 0.3947 + }, + { + "start": 38303.92, + "end": 38307.63, + "probability": 0.5923 + }, + { + "start": 38308.04, + "end": 38308.4, + "probability": 0.5974 + }, + { + "start": 38308.7, + "end": 38311.22, + "probability": 0.6095 + }, + { + "start": 38311.22, + "end": 38312.18, + "probability": 0.9113 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.0, + "end": 38423.0, + "probability": 0.0 + }, + { + "start": 38423.14, + "end": 38424.02, + "probability": 0.74 + }, + { + "start": 38424.66, + "end": 38427.96, + "probability": 0.5858 + }, + { + "start": 38427.96, + "end": 38429.0, + "probability": 0.3842 + }, + { + "start": 38429.04, + "end": 38430.52, + "probability": 0.5825 + }, + { + "start": 38430.92, + "end": 38431.38, + "probability": 0.6025 + }, + { + "start": 38431.38, + "end": 38431.89, + "probability": 0.3883 + }, + { + "start": 38431.98, + "end": 38432.93, + "probability": 0.2752 + }, + { + "start": 38433.34, + "end": 38434.56, + "probability": 0.6383 + }, + { + "start": 38434.86, + "end": 38436.7, + "probability": 0.8104 + }, + { + "start": 38437.48, + "end": 38438.84, + "probability": 0.426 + }, + { + "start": 38439.0, + "end": 38439.42, + "probability": 0.743 + }, + { + "start": 38439.44, + "end": 38441.31, + "probability": 0.9786 + }, + { + "start": 38441.5, + "end": 38442.84, + "probability": 0.7263 + }, + { + "start": 38443.52, + "end": 38446.02, + "probability": 0.9854 + }, + { + "start": 38446.4, + "end": 38446.5, + "probability": 0.6604 + }, + { + "start": 38447.56, + "end": 38451.82, + "probability": 0.9797 + }, + { + "start": 38451.82, + "end": 38455.54, + "probability": 0.9778 + }, + { + "start": 38456.04, + "end": 38456.88, + "probability": 0.5809 + }, + { + "start": 38457.3, + "end": 38457.98, + "probability": 0.6798 + }, + { + "start": 38459.02, + "end": 38461.0, + "probability": 0.9535 + }, + { + "start": 38462.06, + "end": 38465.74, + "probability": 0.942 + }, + { + "start": 38465.74, + "end": 38468.7, + "probability": 0.9604 + }, + { + "start": 38469.66, + "end": 38472.54, + "probability": 0.9 + }, + { + "start": 38472.92, + "end": 38474.76, + "probability": 0.7998 + }, + { + "start": 38475.34, + "end": 38476.38, + "probability": 0.9263 + }, + { + "start": 38476.76, + "end": 38477.88, + "probability": 0.817 + }, + { + "start": 38479.02, + "end": 38480.24, + "probability": 0.9618 + }, + { + "start": 38481.62, + "end": 38485.2, + "probability": 0.9974 + }, + { + "start": 38485.42, + "end": 38486.22, + "probability": 0.6032 + }, + { + "start": 38488.08, + "end": 38490.04, + "probability": 0.9262 + }, + { + "start": 38490.66, + "end": 38491.88, + "probability": 0.88 + }, + { + "start": 38492.88, + "end": 38494.06, + "probability": 0.9998 + }, + { + "start": 38495.06, + "end": 38499.06, + "probability": 0.9914 + }, + { + "start": 38500.04, + "end": 38500.86, + "probability": 0.7613 + }, + { + "start": 38502.24, + "end": 38505.78, + "probability": 0.9434 + }, + { + "start": 38506.64, + "end": 38508.52, + "probability": 0.9658 + }, + { + "start": 38508.96, + "end": 38511.08, + "probability": 0.9987 + }, + { + "start": 38511.6, + "end": 38515.16, + "probability": 0.9771 + }, + { + "start": 38515.34, + "end": 38515.64, + "probability": 0.6014 + }, + { + "start": 38515.7, + "end": 38516.7, + "probability": 0.9893 + }, + { + "start": 38517.7, + "end": 38518.46, + "probability": 0.9086 + }, + { + "start": 38520.84, + "end": 38521.94, + "probability": 0.5187 + }, + { + "start": 38522.78, + "end": 38526.42, + "probability": 0.9949 + }, + { + "start": 38527.98, + "end": 38530.68, + "probability": 0.8571 + }, + { + "start": 38532.18, + "end": 38533.34, + "probability": 0.1338 + }, + { + "start": 38533.34, + "end": 38533.34, + "probability": 0.0056 + }, + { + "start": 38533.34, + "end": 38534.02, + "probability": 0.3321 + }, + { + "start": 38534.1, + "end": 38534.84, + "probability": 0.2728 + }, + { + "start": 38536.1, + "end": 38536.46, + "probability": 0.0522 + }, + { + "start": 38536.46, + "end": 38537.1, + "probability": 0.0251 + }, + { + "start": 38537.1, + "end": 38538.58, + "probability": 0.3443 + }, + { + "start": 38538.94, + "end": 38542.14, + "probability": 0.5505 + }, + { + "start": 38542.62, + "end": 38543.42, + "probability": 0.921 + }, + { + "start": 38544.26, + "end": 38545.5, + "probability": 0.6635 + }, + { + "start": 38546.7, + "end": 38550.12, + "probability": 0.8495 + }, + { + "start": 38551.78, + "end": 38557.54, + "probability": 0.9991 + }, + { + "start": 38558.3, + "end": 38561.4, + "probability": 0.9968 + }, + { + "start": 38562.04, + "end": 38565.3, + "probability": 0.9849 + }, + { + "start": 38566.16, + "end": 38568.88, + "probability": 0.9487 + }, + { + "start": 38570.12, + "end": 38574.86, + "probability": 0.9554 + }, + { + "start": 38574.86, + "end": 38578.78, + "probability": 0.9999 + }, + { + "start": 38579.9, + "end": 38584.4, + "probability": 0.9874 + }, + { + "start": 38584.4, + "end": 38589.24, + "probability": 0.9964 + }, + { + "start": 38589.96, + "end": 38591.94, + "probability": 0.8543 + }, + { + "start": 38592.58, + "end": 38595.3, + "probability": 0.9645 + }, + { + "start": 38596.14, + "end": 38600.62, + "probability": 0.9839 + }, + { + "start": 38601.38, + "end": 38603.8, + "probability": 0.7074 + }, + { + "start": 38604.64, + "end": 38608.74, + "probability": 0.9569 + }, + { + "start": 38608.92, + "end": 38611.54, + "probability": 0.8682 + }, + { + "start": 38612.72, + "end": 38614.48, + "probability": 0.9494 + }, + { + "start": 38615.04, + "end": 38616.64, + "probability": 0.9683 + }, + { + "start": 38617.96, + "end": 38618.6, + "probability": 0.0049 + }, + { + "start": 38618.6, + "end": 38618.6, + "probability": 0.1145 + }, + { + "start": 38618.6, + "end": 38618.7, + "probability": 0.2131 + }, + { + "start": 38619.26, + "end": 38622.42, + "probability": 0.9734 + }, + { + "start": 38623.64, + "end": 38627.4, + "probability": 0.9855 + }, + { + "start": 38629.34, + "end": 38632.35, + "probability": 0.9165 + }, + { + "start": 38632.96, + "end": 38633.68, + "probability": 0.9918 + }, + { + "start": 38634.42, + "end": 38635.74, + "probability": 0.9785 + }, + { + "start": 38635.96, + "end": 38641.9, + "probability": 0.9667 + }, + { + "start": 38642.06, + "end": 38643.2, + "probability": 0.962 + }, + { + "start": 38643.76, + "end": 38645.38, + "probability": 0.7213 + }, + { + "start": 38646.24, + "end": 38647.68, + "probability": 0.8816 + }, + { + "start": 38648.14, + "end": 38654.32, + "probability": 0.9113 + }, + { + "start": 38655.18, + "end": 38657.14, + "probability": 0.9594 + }, + { + "start": 38657.74, + "end": 38661.78, + "probability": 0.966 + }, + { + "start": 38662.22, + "end": 38663.8, + "probability": 0.7646 + }, + { + "start": 38664.04, + "end": 38667.46, + "probability": 0.8341 + }, + { + "start": 38668.02, + "end": 38671.48, + "probability": 0.9968 + }, + { + "start": 38672.4, + "end": 38673.64, + "probability": 0.7102 + }, + { + "start": 38674.74, + "end": 38676.68, + "probability": 0.9927 + }, + { + "start": 38676.76, + "end": 38677.38, + "probability": 0.8343 + }, + { + "start": 38677.72, + "end": 38678.82, + "probability": 0.835 + }, + { + "start": 38679.58, + "end": 38680.7, + "probability": 0.9492 + }, + { + "start": 38681.24, + "end": 38683.22, + "probability": 0.8 + }, + { + "start": 38684.76, + "end": 38687.92, + "probability": 0.9904 + }, + { + "start": 38688.7, + "end": 38690.1, + "probability": 0.6631 + }, + { + "start": 38690.16, + "end": 38693.46, + "probability": 0.999 + }, + { + "start": 38694.06, + "end": 38696.52, + "probability": 0.9597 + }, + { + "start": 38696.74, + "end": 38696.94, + "probability": 0.464 + }, + { + "start": 38697.02, + "end": 38697.92, + "probability": 0.6943 + }, + { + "start": 38698.26, + "end": 38699.1, + "probability": 0.7381 + }, + { + "start": 38699.7, + "end": 38700.94, + "probability": 0.9108 + }, + { + "start": 38701.82, + "end": 38702.86, + "probability": 0.8581 + }, + { + "start": 38703.84, + "end": 38706.2, + "probability": 0.6834 + }, + { + "start": 38706.32, + "end": 38712.42, + "probability": 0.9979 + }, + { + "start": 38712.5, + "end": 38715.54, + "probability": 0.9964 + }, + { + "start": 38715.86, + "end": 38719.22, + "probability": 0.9876 + }, + { + "start": 38719.6, + "end": 38720.8, + "probability": 0.9922 + }, + { + "start": 38720.94, + "end": 38722.12, + "probability": 0.1854 + }, + { + "start": 38722.4, + "end": 38723.02, + "probability": 0.0737 + }, + { + "start": 38723.26, + "end": 38724.13, + "probability": 0.2795 + }, + { + "start": 38725.0, + "end": 38726.3, + "probability": 0.7393 + }, + { + "start": 38726.78, + "end": 38728.48, + "probability": 0.598 + }, + { + "start": 38728.6, + "end": 38730.06, + "probability": 0.2903 + }, + { + "start": 38730.2, + "end": 38730.98, + "probability": 0.3331 + }, + { + "start": 38732.56, + "end": 38733.88, + "probability": 0.1426 + }, + { + "start": 38733.88, + "end": 38733.88, + "probability": 0.1228 + }, + { + "start": 38733.88, + "end": 38734.44, + "probability": 0.1672 + }, + { + "start": 38734.58, + "end": 38735.4, + "probability": 0.5236 + }, + { + "start": 38735.82, + "end": 38737.86, + "probability": 0.0212 + }, + { + "start": 38737.94, + "end": 38739.38, + "probability": 0.4167 + }, + { + "start": 38740.22, + "end": 38743.16, + "probability": 0.3059 + }, + { + "start": 38743.72, + "end": 38747.74, + "probability": 0.7205 + }, + { + "start": 38747.76, + "end": 38748.72, + "probability": 0.0542 + }, + { + "start": 38749.06, + "end": 38751.14, + "probability": 0.9429 + }, + { + "start": 38751.64, + "end": 38758.22, + "probability": 0.9961 + }, + { + "start": 38758.4, + "end": 38758.94, + "probability": 0.7318 + }, + { + "start": 38759.42, + "end": 38760.18, + "probability": 0.7903 + }, + { + "start": 38760.64, + "end": 38761.36, + "probability": 0.2275 + }, + { + "start": 38764.8, + "end": 38767.38, + "probability": 0.5485 + }, + { + "start": 38782.14, + "end": 38783.16, + "probability": 0.2468 + }, + { + "start": 38783.28, + "end": 38785.46, + "probability": 0.7598 + }, + { + "start": 38793.32, + "end": 38794.78, + "probability": 0.2271 + }, + { + "start": 38794.84, + "end": 38801.94, + "probability": 0.7642 + }, + { + "start": 38802.94, + "end": 38806.04, + "probability": 0.5809 + }, + { + "start": 38811.85, + "end": 38813.4, + "probability": 0.973 + }, + { + "start": 38815.06, + "end": 38817.56, + "probability": 0.618 + }, + { + "start": 38817.56, + "end": 38819.48, + "probability": 0.9241 + }, + { + "start": 38819.86, + "end": 38823.48, + "probability": 0.6685 + }, + { + "start": 38823.64, + "end": 38825.62, + "probability": 0.5833 + }, + { + "start": 38827.06, + "end": 38830.56, + "probability": 0.9741 + }, + { + "start": 38831.5, + "end": 38836.22, + "probability": 0.6964 + }, + { + "start": 38836.22, + "end": 38839.4, + "probability": 0.9324 + }, + { + "start": 38842.54, + "end": 38843.94, + "probability": 0.4837 + }, + { + "start": 38844.7, + "end": 38849.74, + "probability": 0.1513 + }, + { + "start": 38851.64, + "end": 38853.28, + "probability": 0.0732 + }, + { + "start": 38856.94, + "end": 38858.3, + "probability": 0.3677 + }, + { + "start": 38858.94, + "end": 38860.22, + "probability": 0.7372 + }, + { + "start": 38861.48, + "end": 38865.52, + "probability": 0.885 + }, + { + "start": 38865.52, + "end": 38870.96, + "probability": 0.7948 + }, + { + "start": 38871.62, + "end": 38874.22, + "probability": 0.4777 + }, + { + "start": 38885.92, + "end": 38887.3, + "probability": 0.897 + }, + { + "start": 38888.28, + "end": 38889.24, + "probability": 0.6579 + }, + { + "start": 38889.32, + "end": 38891.52, + "probability": 0.995 + }, + { + "start": 38892.7, + "end": 38894.5, + "probability": 0.6634 + }, + { + "start": 38894.62, + "end": 38896.46, + "probability": 0.9421 + }, + { + "start": 38896.56, + "end": 38898.1, + "probability": 0.9837 + }, + { + "start": 38898.5, + "end": 38901.36, + "probability": 0.7649 + }, + { + "start": 38902.76, + "end": 38904.1, + "probability": 0.6152 + }, + { + "start": 38904.2, + "end": 38905.62, + "probability": 0.9036 + }, + { + "start": 38906.62, + "end": 38909.66, + "probability": 0.7438 + }, + { + "start": 38917.12, + "end": 38919.82, + "probability": 0.9854 + }, + { + "start": 38923.44, + "end": 38924.14, + "probability": 0.4039 + }, + { + "start": 38924.7, + "end": 38927.98, + "probability": 0.9797 + }, + { + "start": 38927.98, + "end": 38931.98, + "probability": 0.9458 + }, + { + "start": 38932.74, + "end": 38936.02, + "probability": 0.9886 + }, + { + "start": 38936.78, + "end": 38938.48, + "probability": 0.9854 + }, + { + "start": 38939.04, + "end": 38940.08, + "probability": 0.9715 + }, + { + "start": 38940.92, + "end": 38944.26, + "probability": 0.1737 + }, + { + "start": 38945.82, + "end": 38946.54, + "probability": 0.3036 + }, + { + "start": 38948.83, + "end": 38950.56, + "probability": 0.2839 + }, + { + "start": 38955.68, + "end": 38955.78, + "probability": 0.2179 + }, + { + "start": 38975.74, + "end": 38981.54, + "probability": 0.7378 + }, + { + "start": 38981.54, + "end": 38985.18, + "probability": 0.9811 + }, + { + "start": 38985.42, + "end": 38986.66, + "probability": 0.791 + }, + { + "start": 38986.96, + "end": 38988.28, + "probability": 0.5552 + }, + { + "start": 38988.82, + "end": 38991.36, + "probability": 0.9843 + }, + { + "start": 38992.3, + "end": 38993.92, + "probability": 0.9495 + }, + { + "start": 38993.94, + "end": 38994.8, + "probability": 0.9006 + }, + { + "start": 38994.92, + "end": 38997.46, + "probability": 0.8932 + }, + { + "start": 38997.6, + "end": 38998.48, + "probability": 0.9409 + }, + { + "start": 38998.5, + "end": 39001.0, + "probability": 0.9945 + }, + { + "start": 39001.76, + "end": 39002.28, + "probability": 0.7023 + }, + { + "start": 39002.4, + "end": 39006.2, + "probability": 0.9626 + }, + { + "start": 39006.34, + "end": 39009.4, + "probability": 0.8938 + }, + { + "start": 39009.9, + "end": 39013.14, + "probability": 0.9134 + }, + { + "start": 39013.8, + "end": 39016.02, + "probability": 0.9024 + }, + { + "start": 39017.38, + "end": 39017.98, + "probability": 0.7495 + }, + { + "start": 39018.04, + "end": 39019.08, + "probability": 0.9886 + }, + { + "start": 39019.2, + "end": 39019.98, + "probability": 0.9312 + }, + { + "start": 39020.1, + "end": 39021.3, + "probability": 0.9849 + }, + { + "start": 39021.46, + "end": 39022.44, + "probability": 0.9138 + }, + { + "start": 39025.62, + "end": 39031.56, + "probability": 0.7586 + }, + { + "start": 39031.7, + "end": 39032.14, + "probability": 0.5301 + }, + { + "start": 39033.0, + "end": 39034.4, + "probability": 0.9364 + }, + { + "start": 39035.18, + "end": 39035.86, + "probability": 0.7865 + }, + { + "start": 39035.86, + "end": 39036.48, + "probability": 0.5136 + }, + { + "start": 39036.5, + "end": 39037.47, + "probability": 0.4797 + }, + { + "start": 39037.6, + "end": 39038.74, + "probability": 0.9097 + }, + { + "start": 39039.56, + "end": 39039.94, + "probability": 0.9528 + }, + { + "start": 39040.74, + "end": 39043.56, + "probability": 0.5845 + }, + { + "start": 39044.48, + "end": 39049.64, + "probability": 0.9925 + }, + { + "start": 39049.92, + "end": 39052.32, + "probability": 0.8887 + }, + { + "start": 39053.06, + "end": 39055.66, + "probability": 0.8904 + }, + { + "start": 39056.48, + "end": 39061.3, + "probability": 0.994 + }, + { + "start": 39062.1, + "end": 39064.78, + "probability": 0.9954 + }, + { + "start": 39065.62, + "end": 39068.84, + "probability": 0.9167 + }, + { + "start": 39068.84, + "end": 39071.56, + "probability": 0.9644 + }, + { + "start": 39072.36, + "end": 39076.2, + "probability": 0.9868 + }, + { + "start": 39076.98, + "end": 39079.78, + "probability": 0.9916 + }, + { + "start": 39079.94, + "end": 39081.58, + "probability": 0.9039 + }, + { + "start": 39081.76, + "end": 39084.16, + "probability": 0.8342 + }, + { + "start": 39084.74, + "end": 39088.14, + "probability": 0.9879 + }, + { + "start": 39089.06, + "end": 39094.64, + "probability": 0.9761 + }, + { + "start": 39095.54, + "end": 39097.88, + "probability": 0.977 + }, + { + "start": 39098.42, + "end": 39101.82, + "probability": 0.9918 + }, + { + "start": 39102.28, + "end": 39105.48, + "probability": 0.9794 + }, + { + "start": 39105.6, + "end": 39109.06, + "probability": 0.9917 + }, + { + "start": 39109.2, + "end": 39109.98, + "probability": 0.9771 + }, + { + "start": 39110.54, + "end": 39112.88, + "probability": 0.995 + }, + { + "start": 39113.68, + "end": 39118.24, + "probability": 0.9409 + }, + { + "start": 39118.78, + "end": 39122.5, + "probability": 0.9634 + }, + { + "start": 39123.1, + "end": 39128.0, + "probability": 0.99 + }, + { + "start": 39128.16, + "end": 39133.06, + "probability": 0.9819 + }, + { + "start": 39133.08, + "end": 39137.2, + "probability": 0.9949 + }, + { + "start": 39138.1, + "end": 39141.72, + "probability": 0.9948 + }, + { + "start": 39142.28, + "end": 39147.2, + "probability": 0.995 + }, + { + "start": 39147.2, + "end": 39152.68, + "probability": 0.9779 + }, + { + "start": 39152.82, + "end": 39153.26, + "probability": 0.3545 + }, + { + "start": 39153.26, + "end": 39156.42, + "probability": 0.9671 + }, + { + "start": 39156.58, + "end": 39159.9, + "probability": 0.9162 + }, + { + "start": 39160.36, + "end": 39164.88, + "probability": 0.9749 + }, + { + "start": 39164.88, + "end": 39169.42, + "probability": 0.9961 + }, + { + "start": 39170.0, + "end": 39171.76, + "probability": 0.9349 + }, + { + "start": 39172.2, + "end": 39177.72, + "probability": 0.9912 + }, + { + "start": 39177.96, + "end": 39178.48, + "probability": 0.5668 + }, + { + "start": 39179.02, + "end": 39182.22, + "probability": 0.9838 + }, + { + "start": 39182.3, + "end": 39184.9, + "probability": 0.8115 + }, + { + "start": 39185.1, + "end": 39189.24, + "probability": 0.9989 + }, + { + "start": 39189.24, + "end": 39194.36, + "probability": 0.9995 + }, + { + "start": 39194.36, + "end": 39200.62, + "probability": 0.9991 + }, + { + "start": 39201.46, + "end": 39204.34, + "probability": 0.9816 + }, + { + "start": 39205.62, + "end": 39207.12, + "probability": 0.7453 + }, + { + "start": 39207.38, + "end": 39210.46, + "probability": 0.9538 + }, + { + "start": 39210.98, + "end": 39212.0, + "probability": 0.9303 + }, + { + "start": 39212.04, + "end": 39214.9, + "probability": 0.874 + }, + { + "start": 39215.32, + "end": 39215.64, + "probability": 0.4698 + }, + { + "start": 39216.28, + "end": 39220.27, + "probability": 0.9197 + }, + { + "start": 39220.72, + "end": 39224.34, + "probability": 0.9805 + }, + { + "start": 39224.56, + "end": 39228.9, + "probability": 0.9957 + }, + { + "start": 39229.08, + "end": 39230.34, + "probability": 0.9163 + }, + { + "start": 39230.4, + "end": 39233.2, + "probability": 0.8832 + }, + { + "start": 39234.54, + "end": 39239.32, + "probability": 0.9284 + }, + { + "start": 39239.86, + "end": 39244.6, + "probability": 0.9965 + }, + { + "start": 39244.68, + "end": 39245.98, + "probability": 0.7671 + }, + { + "start": 39246.5, + "end": 39250.72, + "probability": 0.9651 + }, + { + "start": 39251.64, + "end": 39253.44, + "probability": 0.5558 + }, + { + "start": 39254.18, + "end": 39256.02, + "probability": 0.9932 + }, + { + "start": 39256.92, + "end": 39259.24, + "probability": 0.9609 + }, + { + "start": 39259.9, + "end": 39262.58, + "probability": 0.7547 + }, + { + "start": 39262.66, + "end": 39265.7, + "probability": 0.9419 + }, + { + "start": 39265.7, + "end": 39268.66, + "probability": 0.9833 + }, + { + "start": 39272.06, + "end": 39272.68, + "probability": 0.3171 + }, + { + "start": 39272.8, + "end": 39273.92, + "probability": 0.7548 + }, + { + "start": 39274.04, + "end": 39277.38, + "probability": 0.9751 + }, + { + "start": 39277.44, + "end": 39279.74, + "probability": 0.9972 + }, + { + "start": 39280.14, + "end": 39280.44, + "probability": 0.9595 + }, + { + "start": 39280.5, + "end": 39282.58, + "probability": 0.9457 + }, + { + "start": 39283.32, + "end": 39284.38, + "probability": 0.8943 + }, + { + "start": 39284.5, + "end": 39284.82, + "probability": 0.5908 + }, + { + "start": 39284.86, + "end": 39286.92, + "probability": 0.9832 + }, + { + "start": 39286.94, + "end": 39288.26, + "probability": 0.8198 + }, + { + "start": 39288.54, + "end": 39291.12, + "probability": 0.741 + }, + { + "start": 39291.5, + "end": 39296.9, + "probability": 0.9605 + }, + { + "start": 39297.96, + "end": 39301.94, + "probability": 0.9833 + }, + { + "start": 39301.94, + "end": 39306.72, + "probability": 0.9998 + }, + { + "start": 39306.72, + "end": 39313.12, + "probability": 0.9917 + }, + { + "start": 39313.12, + "end": 39318.06, + "probability": 0.9974 + }, + { + "start": 39318.2, + "end": 39321.5, + "probability": 0.9912 + }, + { + "start": 39321.84, + "end": 39324.52, + "probability": 0.9971 + }, + { + "start": 39324.72, + "end": 39326.04, + "probability": 0.0528 + }, + { + "start": 39326.04, + "end": 39330.94, + "probability": 0.7933 + }, + { + "start": 39331.0, + "end": 39333.08, + "probability": 0.7329 + }, + { + "start": 39333.26, + "end": 39334.6, + "probability": 0.9363 + }, + { + "start": 39334.82, + "end": 39338.24, + "probability": 0.9712 + }, + { + "start": 39338.92, + "end": 39340.98, + "probability": 0.984 + }, + { + "start": 39341.7, + "end": 39345.34, + "probability": 0.9463 + }, + { + "start": 39345.38, + "end": 39346.98, + "probability": 0.9969 + }, + { + "start": 39347.04, + "end": 39348.24, + "probability": 0.8008 + }, + { + "start": 39348.84, + "end": 39352.68, + "probability": 0.9973 + }, + { + "start": 39352.8, + "end": 39353.98, + "probability": 0.8672 + }, + { + "start": 39354.08, + "end": 39355.34, + "probability": 0.9917 + }, + { + "start": 39355.46, + "end": 39356.9, + "probability": 0.9951 + }, + { + "start": 39357.46, + "end": 39363.42, + "probability": 0.9604 + }, + { + "start": 39363.48, + "end": 39366.74, + "probability": 0.3735 + }, + { + "start": 39375.4, + "end": 39376.88, + "probability": 0.0468 + }, + { + "start": 39376.88, + "end": 39376.88, + "probability": 0.0562 + }, + { + "start": 39376.88, + "end": 39376.88, + "probability": 0.1445 + }, + { + "start": 39376.88, + "end": 39376.88, + "probability": 0.0341 + }, + { + "start": 39376.88, + "end": 39377.46, + "probability": 0.5511 + }, + { + "start": 39377.64, + "end": 39378.24, + "probability": 0.6393 + }, + { + "start": 39378.56, + "end": 39387.46, + "probability": 0.8947 + }, + { + "start": 39387.46, + "end": 39393.26, + "probability": 0.9995 + }, + { + "start": 39393.88, + "end": 39395.24, + "probability": 0.7895 + }, + { + "start": 39396.0, + "end": 39398.36, + "probability": 0.949 + }, + { + "start": 39399.04, + "end": 39402.62, + "probability": 0.9686 + }, + { + "start": 39403.94, + "end": 39405.4, + "probability": 0.7962 + }, + { + "start": 39406.4, + "end": 39410.26, + "probability": 0.6534 + }, + { + "start": 39410.86, + "end": 39413.1, + "probability": 0.9657 + }, + { + "start": 39414.22, + "end": 39416.76, + "probability": 0.8325 + }, + { + "start": 39417.84, + "end": 39419.62, + "probability": 0.9443 + }, + { + "start": 39419.7, + "end": 39421.02, + "probability": 0.5027 + }, + { + "start": 39421.1, + "end": 39424.44, + "probability": 0.8318 + }, + { + "start": 39424.92, + "end": 39426.52, + "probability": 0.9043 + }, + { + "start": 39427.5, + "end": 39431.96, + "probability": 0.9874 + }, + { + "start": 39431.96, + "end": 39435.3, + "probability": 0.9986 + }, + { + "start": 39435.44, + "end": 39437.06, + "probability": 0.666 + }, + { + "start": 39437.62, + "end": 39441.3, + "probability": 0.8309 + }, + { + "start": 39441.74, + "end": 39442.1, + "probability": 0.6906 + }, + { + "start": 39442.1, + "end": 39445.48, + "probability": 0.9364 + }, + { + "start": 39445.9, + "end": 39450.34, + "probability": 0.9653 + }, + { + "start": 39451.04, + "end": 39456.94, + "probability": 0.9957 + }, + { + "start": 39457.06, + "end": 39459.76, + "probability": 0.9869 + }, + { + "start": 39459.78, + "end": 39462.48, + "probability": 0.6921 + }, + { + "start": 39463.02, + "end": 39463.76, + "probability": 0.6824 + }, + { + "start": 39464.3, + "end": 39465.94, + "probability": 0.9528 + }, + { + "start": 39476.58, + "end": 39478.22, + "probability": 0.5414 + }, + { + "start": 39479.92, + "end": 39482.1, + "probability": 0.6838 + }, + { + "start": 39482.7, + "end": 39485.44, + "probability": 0.9932 + }, + { + "start": 39485.44, + "end": 39487.38, + "probability": 0.9673 + }, + { + "start": 39489.82, + "end": 39491.64, + "probability": 0.8733 + }, + { + "start": 39491.84, + "end": 39494.24, + "probability": 0.9729 + }, + { + "start": 39497.02, + "end": 39497.6, + "probability": 0.6146 + }, + { + "start": 39497.8, + "end": 39501.82, + "probability": 0.9977 + }, + { + "start": 39502.16, + "end": 39503.12, + "probability": 0.9692 + }, + { + "start": 39504.3, + "end": 39512.06, + "probability": 0.9903 + }, + { + "start": 39512.18, + "end": 39512.38, + "probability": 0.7215 + }, + { + "start": 39512.44, + "end": 39513.02, + "probability": 0.9629 + }, + { + "start": 39513.7, + "end": 39515.76, + "probability": 0.9759 + }, + { + "start": 39517.56, + "end": 39518.5, + "probability": 0.9606 + }, + { + "start": 39519.26, + "end": 39520.44, + "probability": 0.9639 + }, + { + "start": 39520.98, + "end": 39523.48, + "probability": 0.794 + }, + { + "start": 39523.54, + "end": 39525.02, + "probability": 0.9902 + }, + { + "start": 39526.34, + "end": 39528.1, + "probability": 0.7871 + }, + { + "start": 39528.78, + "end": 39531.36, + "probability": 0.8173 + }, + { + "start": 39531.96, + "end": 39533.18, + "probability": 0.8568 + }, + { + "start": 39533.84, + "end": 39536.2, + "probability": 0.9531 + }, + { + "start": 39536.92, + "end": 39540.58, + "probability": 0.8195 + }, + { + "start": 39540.76, + "end": 39543.98, + "probability": 0.8589 + }, + { + "start": 39544.14, + "end": 39545.68, + "probability": 0.9533 + }, + { + "start": 39546.26, + "end": 39547.68, + "probability": 0.9954 + }, + { + "start": 39548.52, + "end": 39549.92, + "probability": 0.9753 + }, + { + "start": 39551.28, + "end": 39555.34, + "probability": 0.9292 + }, + { + "start": 39556.74, + "end": 39557.4, + "probability": 0.6808 + }, + { + "start": 39557.68, + "end": 39561.6, + "probability": 0.9625 + }, + { + "start": 39563.14, + "end": 39566.16, + "probability": 0.9971 + }, + { + "start": 39566.72, + "end": 39569.7, + "probability": 0.8277 + }, + { + "start": 39570.54, + "end": 39574.58, + "probability": 0.9943 + }, + { + "start": 39575.06, + "end": 39576.28, + "probability": 0.9458 + }, + { + "start": 39577.44, + "end": 39580.8, + "probability": 0.993 + }, + { + "start": 39580.88, + "end": 39583.84, + "probability": 0.9686 + }, + { + "start": 39584.72, + "end": 39591.08, + "probability": 0.9914 + }, + { + "start": 39591.42, + "end": 39594.4, + "probability": 0.9944 + }, + { + "start": 39595.32, + "end": 39596.8, + "probability": 0.9987 + }, + { + "start": 39598.28, + "end": 39600.32, + "probability": 0.9758 + }, + { + "start": 39601.02, + "end": 39605.6, + "probability": 0.9912 + }, + { + "start": 39606.1, + "end": 39609.98, + "probability": 0.9948 + }, + { + "start": 39610.78, + "end": 39613.74, + "probability": 0.9967 + }, + { + "start": 39613.88, + "end": 39614.02, + "probability": 0.3256 + }, + { + "start": 39614.02, + "end": 39616.98, + "probability": 0.9833 + }, + { + "start": 39617.02, + "end": 39618.74, + "probability": 0.9839 + }, + { + "start": 39620.18, + "end": 39623.36, + "probability": 0.9864 + }, + { + "start": 39624.68, + "end": 39626.7, + "probability": 0.9961 + }, + { + "start": 39627.26, + "end": 39631.12, + "probability": 0.9918 + }, + { + "start": 39632.16, + "end": 39632.24, + "probability": 0.0217 + }, + { + "start": 39632.36, + "end": 39632.84, + "probability": 0.881 + }, + { + "start": 39633.12, + "end": 39638.58, + "probability": 0.9775 + }, + { + "start": 39639.08, + "end": 39643.1, + "probability": 0.9868 + }, + { + "start": 39643.72, + "end": 39644.47, + "probability": 0.9578 + }, + { + "start": 39644.76, + "end": 39648.24, + "probability": 0.9976 + }, + { + "start": 39648.44, + "end": 39651.16, + "probability": 0.95 + }, + { + "start": 39651.66, + "end": 39652.5, + "probability": 0.8666 + }, + { + "start": 39653.3, + "end": 39655.7, + "probability": 0.9157 + }, + { + "start": 39655.94, + "end": 39656.64, + "probability": 0.5455 + }, + { + "start": 39657.2, + "end": 39657.62, + "probability": 0.7315 + }, + { + "start": 39657.68, + "end": 39659.16, + "probability": 0.9197 + }, + { + "start": 39659.62, + "end": 39660.04, + "probability": 0.6757 + }, + { + "start": 39660.1, + "end": 39661.12, + "probability": 0.9493 + }, + { + "start": 39661.6, + "end": 39666.42, + "probability": 0.9943 + }, + { + "start": 39668.08, + "end": 39670.74, + "probability": 0.9461 + }, + { + "start": 39672.64, + "end": 39673.04, + "probability": 0.1182 + }, + { + "start": 39673.04, + "end": 39675.17, + "probability": 0.9218 + }, + { + "start": 39676.34, + "end": 39677.8, + "probability": 0.259 + }, + { + "start": 39679.0, + "end": 39688.58, + "probability": 0.132 + }, + { + "start": 39688.58, + "end": 39692.9, + "probability": 0.1127 + }, + { + "start": 39692.92, + "end": 39694.1, + "probability": 0.419 + }, + { + "start": 39694.2, + "end": 39696.34, + "probability": 0.7005 + }, + { + "start": 39696.56, + "end": 39700.36, + "probability": 0.7819 + }, + { + "start": 39700.58, + "end": 39701.58, + "probability": 0.9804 + }, + { + "start": 39701.96, + "end": 39702.46, + "probability": 0.4997 + }, + { + "start": 39702.5, + "end": 39705.28, + "probability": 0.8473 + }, + { + "start": 39705.4, + "end": 39708.2, + "probability": 0.9291 + }, + { + "start": 39708.86, + "end": 39711.52, + "probability": 0.738 + }, + { + "start": 39712.24, + "end": 39712.42, + "probability": 0.2155 + }, + { + "start": 39712.42, + "end": 39713.36, + "probability": 0.1822 + }, + { + "start": 39713.76, + "end": 39717.6, + "probability": 0.99 + }, + { + "start": 39717.6, + "end": 39720.04, + "probability": 0.358 + }, + { + "start": 39720.14, + "end": 39721.7, + "probability": 0.7402 + }, + { + "start": 39721.76, + "end": 39723.28, + "probability": 0.8367 + }, + { + "start": 39723.38, + "end": 39725.12, + "probability": 0.7816 + }, + { + "start": 39725.36, + "end": 39725.94, + "probability": 0.2677 + }, + { + "start": 39726.18, + "end": 39730.05, + "probability": 0.9799 + }, + { + "start": 39731.62, + "end": 39733.18, + "probability": 0.9721 + }, + { + "start": 39734.14, + "end": 39736.68, + "probability": 0.9994 + }, + { + "start": 39736.69, + "end": 39738.86, + "probability": 0.1745 + }, + { + "start": 39739.08, + "end": 39741.44, + "probability": 0.1339 + }, + { + "start": 39741.48, + "end": 39744.62, + "probability": 0.0465 + }, + { + "start": 39745.5, + "end": 39745.88, + "probability": 0.014 + }, + { + "start": 39745.88, + "end": 39745.88, + "probability": 0.0626 + }, + { + "start": 39745.88, + "end": 39746.3, + "probability": 0.071 + }, + { + "start": 39746.42, + "end": 39748.38, + "probability": 0.4805 + }, + { + "start": 39748.84, + "end": 39749.02, + "probability": 0.0954 + }, + { + "start": 39749.02, + "end": 39750.94, + "probability": 0.9304 + }, + { + "start": 39751.16, + "end": 39751.9, + "probability": 0.4061 + }, + { + "start": 39752.22, + "end": 39754.58, + "probability": 0.8416 + }, + { + "start": 39755.62, + "end": 39756.88, + "probability": 0.5774 + }, + { + "start": 39757.56, + "end": 39759.18, + "probability": 0.8179 + }, + { + "start": 39759.26, + "end": 39759.33, + "probability": 0.5562 + }, + { + "start": 39759.66, + "end": 39761.32, + "probability": 0.8431 + }, + { + "start": 39761.42, + "end": 39762.24, + "probability": 0.4754 + }, + { + "start": 39762.28, + "end": 39765.94, + "probability": 0.2947 + }, + { + "start": 39767.66, + "end": 39768.12, + "probability": 0.4692 + }, + { + "start": 39768.12, + "end": 39768.12, + "probability": 0.1963 + }, + { + "start": 39768.12, + "end": 39768.12, + "probability": 0.1814 + }, + { + "start": 39768.12, + "end": 39768.24, + "probability": 0.4131 + }, + { + "start": 39768.38, + "end": 39770.74, + "probability": 0.5606 + }, + { + "start": 39770.8, + "end": 39771.97, + "probability": 0.4759 + }, + { + "start": 39774.88, + "end": 39775.4, + "probability": 0.286 + }, + { + "start": 39775.4, + "end": 39775.4, + "probability": 0.0324 + }, + { + "start": 39775.4, + "end": 39776.26, + "probability": 0.1685 + }, + { + "start": 39776.52, + "end": 39777.46, + "probability": 0.5366 + }, + { + "start": 39777.6, + "end": 39781.62, + "probability": 0.8849 + }, + { + "start": 39782.04, + "end": 39784.34, + "probability": 0.8293 + }, + { + "start": 39784.46, + "end": 39785.36, + "probability": 0.747 + }, + { + "start": 39785.64, + "end": 39792.16, + "probability": 0.9987 + }, + { + "start": 39792.26, + "end": 39792.58, + "probability": 0.3898 + }, + { + "start": 39792.8, + "end": 39798.6, + "probability": 0.9856 + }, + { + "start": 39798.6, + "end": 39805.18, + "probability": 0.9917 + }, + { + "start": 39805.52, + "end": 39806.66, + "probability": 0.6935 + }, + { + "start": 39807.4, + "end": 39808.26, + "probability": 0.6813 + }, + { + "start": 39808.36, + "end": 39811.1, + "probability": 0.8737 + }, + { + "start": 39811.18, + "end": 39811.8, + "probability": 0.9096 + }, + { + "start": 39813.7, + "end": 39814.78, + "probability": 0.1942 + }, + { + "start": 39839.52, + "end": 39841.92, + "probability": 0.6367 + }, + { + "start": 39844.96, + "end": 39852.08, + "probability": 0.7456 + }, + { + "start": 39852.94, + "end": 39854.6, + "probability": 0.7205 + }, + { + "start": 39855.88, + "end": 39860.34, + "probability": 0.519 + }, + { + "start": 39861.04, + "end": 39865.1, + "probability": 0.5815 + }, + { + "start": 39865.84, + "end": 39868.62, + "probability": 0.7788 + }, + { + "start": 39869.48, + "end": 39875.08, + "probability": 0.9802 + }, + { + "start": 39875.76, + "end": 39880.74, + "probability": 0.8826 + }, + { + "start": 39881.28, + "end": 39884.26, + "probability": 0.7837 + }, + { + "start": 39884.88, + "end": 39886.46, + "probability": 0.6883 + }, + { + "start": 39887.04, + "end": 39894.84, + "probability": 0.7839 + }, + { + "start": 39895.58, + "end": 39904.0, + "probability": 0.9768 + }, + { + "start": 39904.46, + "end": 39907.92, + "probability": 0.7686 + }, + { + "start": 39908.46, + "end": 39912.8, + "probability": 0.9701 + }, + { + "start": 39913.8, + "end": 39918.78, + "probability": 0.96 + }, + { + "start": 39919.16, + "end": 39921.98, + "probability": 0.8173 + }, + { + "start": 39922.2, + "end": 39923.25, + "probability": 0.3693 + }, + { + "start": 39924.04, + "end": 39927.08, + "probability": 0.9006 + }, + { + "start": 39927.42, + "end": 39931.72, + "probability": 0.8168 + }, + { + "start": 39932.16, + "end": 39934.54, + "probability": 0.6413 + }, + { + "start": 39934.98, + "end": 39939.82, + "probability": 0.998 + }, + { + "start": 39939.82, + "end": 39942.58, + "probability": 0.9071 + }, + { + "start": 39943.3, + "end": 39946.36, + "probability": 0.8017 + }, + { + "start": 39947.2, + "end": 39949.7, + "probability": 0.9235 + }, + { + "start": 39950.28, + "end": 39955.62, + "probability": 0.8557 + }, + { + "start": 39955.72, + "end": 39958.84, + "probability": 0.8843 + }, + { + "start": 39959.38, + "end": 39969.42, + "probability": 0.8555 + }, + { + "start": 39969.9, + "end": 39973.08, + "probability": 0.8184 + }, + { + "start": 39973.66, + "end": 39980.46, + "probability": 0.9441 + }, + { + "start": 39981.12, + "end": 39985.3, + "probability": 0.8098 + }, + { + "start": 39985.82, + "end": 39988.52, + "probability": 0.8305 + }, + { + "start": 39988.56, + "end": 39994.18, + "probability": 0.0815 + }, + { + "start": 39994.18, + "end": 39994.18, + "probability": 0.0752 + }, + { + "start": 39994.18, + "end": 39996.43, + "probability": 0.8994 + }, + { + "start": 39997.02, + "end": 39998.9, + "probability": 0.8489 + }, + { + "start": 39999.28, + "end": 40001.9, + "probability": 0.6259 + }, + { + "start": 40003.12, + "end": 40007.02, + "probability": 0.8672 + }, + { + "start": 40007.64, + "end": 40011.94, + "probability": 0.9964 + }, + { + "start": 40012.98, + "end": 40017.38, + "probability": 0.9754 + }, + { + "start": 40018.02, + "end": 40023.1, + "probability": 0.9549 + }, + { + "start": 40023.14, + "end": 40029.22, + "probability": 0.9875 + }, + { + "start": 40029.8, + "end": 40032.0, + "probability": 0.3229 + }, + { + "start": 40032.58, + "end": 40037.58, + "probability": 0.67 + }, + { + "start": 40037.62, + "end": 40042.38, + "probability": 0.7402 + }, + { + "start": 40042.68, + "end": 40046.24, + "probability": 0.7879 + }, + { + "start": 40047.7, + "end": 40048.1, + "probability": 0.0456 + }, + { + "start": 40048.4, + "end": 40049.06, + "probability": 0.742 + }, + { + "start": 40049.5, + "end": 40053.58, + "probability": 0.8442 + }, + { + "start": 40057.8, + "end": 40059.14, + "probability": 0.7078 + }, + { + "start": 40077.74, + "end": 40080.12, + "probability": 0.7312 + }, + { + "start": 40081.72, + "end": 40082.76, + "probability": 0.6524 + }, + { + "start": 40084.66, + "end": 40086.14, + "probability": 0.9055 + }, + { + "start": 40088.0, + "end": 40089.34, + "probability": 0.9124 + }, + { + "start": 40090.7, + "end": 40097.18, + "probability": 0.9796 + }, + { + "start": 40098.66, + "end": 40101.02, + "probability": 0.9016 + }, + { + "start": 40101.66, + "end": 40105.12, + "probability": 0.8867 + }, + { + "start": 40106.16, + "end": 40110.12, + "probability": 0.9974 + }, + { + "start": 40111.38, + "end": 40115.8, + "probability": 0.9829 + }, + { + "start": 40116.82, + "end": 40118.8, + "probability": 0.9517 + }, + { + "start": 40119.86, + "end": 40122.24, + "probability": 0.9712 + }, + { + "start": 40122.78, + "end": 40128.92, + "probability": 0.9992 + }, + { + "start": 40131.12, + "end": 40135.62, + "probability": 0.7524 + }, + { + "start": 40136.34, + "end": 40138.34, + "probability": 0.6668 + }, + { + "start": 40139.0, + "end": 40139.96, + "probability": 0.7643 + }, + { + "start": 40140.62, + "end": 40141.52, + "probability": 0.622 + }, + { + "start": 40141.92, + "end": 40146.6, + "probability": 0.8318 + }, + { + "start": 40147.96, + "end": 40150.66, + "probability": 0.8835 + }, + { + "start": 40151.94, + "end": 40152.5, + "probability": 0.9238 + }, + { + "start": 40153.42, + "end": 40153.87, + "probability": 0.9722 + }, + { + "start": 40155.06, + "end": 40155.45, + "probability": 0.8419 + }, + { + "start": 40156.74, + "end": 40158.04, + "probability": 0.3204 + }, + { + "start": 40159.02, + "end": 40161.2, + "probability": 0.9395 + }, + { + "start": 40161.82, + "end": 40162.8, + "probability": 0.9779 + }, + { + "start": 40163.84, + "end": 40165.08, + "probability": 0.976 + }, + { + "start": 40166.82, + "end": 40167.4, + "probability": 0.9923 + }, + { + "start": 40167.96, + "end": 40170.06, + "probability": 0.9415 + }, + { + "start": 40170.94, + "end": 40171.96, + "probability": 0.9027 + }, + { + "start": 40172.76, + "end": 40174.1, + "probability": 0.9766 + }, + { + "start": 40174.58, + "end": 40175.42, + "probability": 0.7961 + }, + { + "start": 40175.72, + "end": 40178.58, + "probability": 0.8757 + }, + { + "start": 40179.1, + "end": 40182.18, + "probability": 0.9753 + }, + { + "start": 40183.38, + "end": 40187.16, + "probability": 0.9914 + }, + { + "start": 40187.7, + "end": 40193.88, + "probability": 0.9675 + }, + { + "start": 40195.28, + "end": 40196.96, + "probability": 0.9932 + }, + { + "start": 40197.74, + "end": 40201.96, + "probability": 0.9972 + }, + { + "start": 40202.46, + "end": 40207.18, + "probability": 0.9812 + }, + { + "start": 40207.96, + "end": 40210.76, + "probability": 0.9757 + }, + { + "start": 40211.36, + "end": 40215.46, + "probability": 0.992 + }, + { + "start": 40215.76, + "end": 40218.94, + "probability": 0.9316 + }, + { + "start": 40220.92, + "end": 40222.08, + "probability": 0.9854 + }, + { + "start": 40222.88, + "end": 40227.06, + "probability": 0.9727 + }, + { + "start": 40228.3, + "end": 40230.96, + "probability": 0.988 + }, + { + "start": 40232.04, + "end": 40232.58, + "probability": 0.8335 + }, + { + "start": 40233.78, + "end": 40235.34, + "probability": 0.9559 + }, + { + "start": 40236.18, + "end": 40239.08, + "probability": 0.9878 + }, + { + "start": 40240.5, + "end": 40241.9, + "probability": 0.8195 + }, + { + "start": 40242.54, + "end": 40244.58, + "probability": 0.7617 + }, + { + "start": 40244.98, + "end": 40247.98, + "probability": 0.9591 + }, + { + "start": 40248.68, + "end": 40250.58, + "probability": 0.8662 + }, + { + "start": 40251.3, + "end": 40255.28, + "probability": 0.9832 + }, + { + "start": 40256.5, + "end": 40260.24, + "probability": 0.9609 + }, + { + "start": 40261.06, + "end": 40266.54, + "probability": 0.9985 + }, + { + "start": 40267.26, + "end": 40267.96, + "probability": 0.8618 + }, + { + "start": 40268.52, + "end": 40269.6, + "probability": 0.9758 + }, + { + "start": 40270.44, + "end": 40270.9, + "probability": 0.8655 + }, + { + "start": 40271.58, + "end": 40276.36, + "probability": 0.9466 + }, + { + "start": 40276.94, + "end": 40279.22, + "probability": 0.89 + }, + { + "start": 40279.9, + "end": 40282.9, + "probability": 0.9858 + }, + { + "start": 40284.18, + "end": 40287.06, + "probability": 0.8382 + }, + { + "start": 40287.6, + "end": 40290.66, + "probability": 0.9894 + }, + { + "start": 40293.4, + "end": 40295.36, + "probability": 0.8896 + }, + { + "start": 40295.98, + "end": 40300.3, + "probability": 0.9334 + }, + { + "start": 40301.0, + "end": 40301.96, + "probability": 0.9609 + }, + { + "start": 40302.66, + "end": 40304.3, + "probability": 0.9568 + }, + { + "start": 40304.84, + "end": 40305.26, + "probability": 0.9377 + }, + { + "start": 40305.34, + "end": 40305.95, + "probability": 0.9453 + }, + { + "start": 40306.6, + "end": 40311.24, + "probability": 0.9946 + }, + { + "start": 40312.24, + "end": 40314.16, + "probability": 0.7909 + }, + { + "start": 40314.86, + "end": 40320.8, + "probability": 0.9756 + }, + { + "start": 40321.8, + "end": 40323.94, + "probability": 0.9886 + }, + { + "start": 40324.74, + "end": 40326.4, + "probability": 0.9868 + }, + { + "start": 40327.06, + "end": 40328.26, + "probability": 0.7098 + }, + { + "start": 40328.66, + "end": 40329.68, + "probability": 0.8508 + }, + { + "start": 40330.04, + "end": 40332.98, + "probability": 0.9574 + }, + { + "start": 40334.42, + "end": 40338.78, + "probability": 0.8013 + }, + { + "start": 40339.5, + "end": 40343.28, + "probability": 0.9772 + }, + { + "start": 40344.1, + "end": 40347.08, + "probability": 0.9794 + }, + { + "start": 40347.7, + "end": 40351.0, + "probability": 0.9278 + }, + { + "start": 40351.82, + "end": 40354.56, + "probability": 0.9576 + }, + { + "start": 40355.1, + "end": 40357.72, + "probability": 0.9757 + }, + { + "start": 40358.6, + "end": 40361.46, + "probability": 0.9895 + }, + { + "start": 40361.46, + "end": 40364.94, + "probability": 0.9985 + }, + { + "start": 40366.7, + "end": 40368.66, + "probability": 0.7707 + }, + { + "start": 40368.66, + "end": 40371.22, + "probability": 0.9673 + }, + { + "start": 40371.76, + "end": 40375.0, + "probability": 0.7588 + }, + { + "start": 40375.48, + "end": 40380.3, + "probability": 0.9736 + }, + { + "start": 40380.36, + "end": 40383.06, + "probability": 0.9035 + }, + { + "start": 40383.18, + "end": 40383.36, + "probability": 0.6911 + }, + { + "start": 40384.8, + "end": 40385.62, + "probability": 0.8843 + }, + { + "start": 40386.8, + "end": 40389.78, + "probability": 0.9041 + }, + { + "start": 40390.34, + "end": 40391.16, + "probability": 0.8454 + }, + { + "start": 40392.18, + "end": 40395.0, + "probability": 0.8512 + }, + { + "start": 40396.06, + "end": 40398.52, + "probability": 0.9537 + }, + { + "start": 40399.56, + "end": 40400.28, + "probability": 0.9754 + }, + { + "start": 40400.86, + "end": 40402.38, + "probability": 0.8108 + }, + { + "start": 40403.3, + "end": 40404.18, + "probability": 0.7419 + }, + { + "start": 40404.72, + "end": 40407.34, + "probability": 0.9521 + }, + { + "start": 40408.22, + "end": 40410.62, + "probability": 0.9048 + }, + { + "start": 40411.92, + "end": 40412.8, + "probability": 0.6516 + }, + { + "start": 40413.48, + "end": 40417.36, + "probability": 0.9778 + }, + { + "start": 40418.08, + "end": 40421.88, + "probability": 0.9556 + }, + { + "start": 40422.74, + "end": 40424.52, + "probability": 0.9976 + }, + { + "start": 40425.34, + "end": 40427.88, + "probability": 0.8629 + }, + { + "start": 40428.62, + "end": 40432.08, + "probability": 0.9901 + }, + { + "start": 40432.78, + "end": 40435.3, + "probability": 0.6279 + }, + { + "start": 40435.82, + "end": 40436.46, + "probability": 0.698 + }, + { + "start": 40437.04, + "end": 40437.66, + "probability": 0.7941 + }, + { + "start": 40438.38, + "end": 40442.16, + "probability": 0.9848 + }, + { + "start": 40442.78, + "end": 40444.2, + "probability": 0.9628 + }, + { + "start": 40445.12, + "end": 40448.34, + "probability": 0.9767 + }, + { + "start": 40448.54, + "end": 40450.24, + "probability": 0.8337 + }, + { + "start": 40451.12, + "end": 40453.62, + "probability": 0.9474 + }, + { + "start": 40455.3, + "end": 40457.1, + "probability": 0.8408 + }, + { + "start": 40457.48, + "end": 40460.2, + "probability": 0.9598 + }, + { + "start": 40460.36, + "end": 40460.72, + "probability": 0.7662 + }, + { + "start": 40461.84, + "end": 40463.78, + "probability": 0.6826 + }, + { + "start": 40464.44, + "end": 40466.0, + "probability": 0.7514 + }, + { + "start": 40466.66, + "end": 40471.72, + "probability": 0.9117 + }, + { + "start": 40472.16, + "end": 40474.0, + "probability": 0.8143 + }, + { + "start": 40474.64, + "end": 40477.18, + "probability": 0.6071 + }, + { + "start": 40478.24, + "end": 40478.98, + "probability": 0.9764 + }, + { + "start": 40479.5, + "end": 40480.24, + "probability": 0.7019 + }, + { + "start": 40480.8, + "end": 40486.02, + "probability": 0.955 + }, + { + "start": 40487.2, + "end": 40488.94, + "probability": 0.8598 + }, + { + "start": 40489.5, + "end": 40492.02, + "probability": 0.9692 + }, + { + "start": 40492.68, + "end": 40494.26, + "probability": 0.8749 + }, + { + "start": 40494.88, + "end": 40498.24, + "probability": 0.9736 + }, + { + "start": 40498.82, + "end": 40504.34, + "probability": 0.9396 + }, + { + "start": 40504.92, + "end": 40505.36, + "probability": 0.6493 + }, + { + "start": 40505.88, + "end": 40506.88, + "probability": 0.9291 + }, + { + "start": 40507.74, + "end": 40509.86, + "probability": 0.9426 + }, + { + "start": 40510.28, + "end": 40513.3, + "probability": 0.973 + }, + { + "start": 40513.94, + "end": 40515.01, + "probability": 0.9824 + }, + { + "start": 40515.36, + "end": 40515.84, + "probability": 0.3579 + }, + { + "start": 40515.9, + "end": 40516.68, + "probability": 0.4795 + }, + { + "start": 40517.02, + "end": 40522.6, + "probability": 0.9829 + }, + { + "start": 40523.3, + "end": 40525.06, + "probability": 0.9922 + }, + { + "start": 40525.58, + "end": 40526.34, + "probability": 0.937 + }, + { + "start": 40526.46, + "end": 40528.36, + "probability": 0.7866 + }, + { + "start": 40528.44, + "end": 40532.98, + "probability": 0.9733 + }, + { + "start": 40533.32, + "end": 40534.9, + "probability": 0.7113 + }, + { + "start": 40535.24, + "end": 40538.12, + "probability": 0.9856 + }, + { + "start": 40538.56, + "end": 40540.28, + "probability": 0.7788 + }, + { + "start": 40540.64, + "end": 40541.66, + "probability": 0.9768 + }, + { + "start": 40541.98, + "end": 40543.02, + "probability": 0.9872 + }, + { + "start": 40543.14, + "end": 40543.54, + "probability": 0.9785 + }, + { + "start": 40544.06, + "end": 40547.14, + "probability": 0.9321 + }, + { + "start": 40547.56, + "end": 40550.88, + "probability": 0.8401 + }, + { + "start": 40550.92, + "end": 40551.28, + "probability": 0.7629 + }, + { + "start": 40552.3, + "end": 40553.02, + "probability": 0.6935 + }, + { + "start": 40553.14, + "end": 40554.6, + "probability": 0.9139 + }, + { + "start": 40554.68, + "end": 40556.92, + "probability": 0.9498 + }, + { + "start": 40570.12, + "end": 40570.2, + "probability": 0.8144 + }, + { + "start": 40570.2, + "end": 40571.42, + "probability": 0.5853 + }, + { + "start": 40579.58, + "end": 40579.98, + "probability": 0.8406 + }, + { + "start": 40580.76, + "end": 40581.5, + "probability": 0.5712 + }, + { + "start": 40581.56, + "end": 40582.32, + "probability": 0.6803 + }, + { + "start": 40582.76, + "end": 40587.28, + "probability": 0.9545 + }, + { + "start": 40587.36, + "end": 40588.86, + "probability": 0.9844 + }, + { + "start": 40589.8, + "end": 40591.22, + "probability": 0.9214 + }, + { + "start": 40591.84, + "end": 40595.48, + "probability": 0.98 + }, + { + "start": 40596.12, + "end": 40599.12, + "probability": 0.8876 + }, + { + "start": 40599.86, + "end": 40602.48, + "probability": 0.9406 + }, + { + "start": 40603.3, + "end": 40604.2, + "probability": 0.666 + }, + { + "start": 40604.4, + "end": 40607.8, + "probability": 0.9855 + }, + { + "start": 40608.4, + "end": 40609.34, + "probability": 0.8319 + }, + { + "start": 40609.5, + "end": 40611.82, + "probability": 0.9736 + }, + { + "start": 40612.5, + "end": 40614.32, + "probability": 0.9644 + }, + { + "start": 40614.9, + "end": 40618.18, + "probability": 0.917 + }, + { + "start": 40618.18, + "end": 40622.62, + "probability": 0.917 + }, + { + "start": 40623.2, + "end": 40624.68, + "probability": 0.9973 + }, + { + "start": 40624.86, + "end": 40627.12, + "probability": 0.9521 + }, + { + "start": 40627.96, + "end": 40630.36, + "probability": 0.795 + }, + { + "start": 40631.14, + "end": 40633.96, + "probability": 0.9946 + }, + { + "start": 40633.96, + "end": 40637.54, + "probability": 0.9983 + }, + { + "start": 40638.06, + "end": 40640.8, + "probability": 0.9579 + }, + { + "start": 40641.42, + "end": 40645.84, + "probability": 0.9674 + }, + { + "start": 40646.06, + "end": 40646.46, + "probability": 0.6175 + }, + { + "start": 40647.52, + "end": 40651.3, + "probability": 0.986 + }, + { + "start": 40652.1, + "end": 40653.98, + "probability": 0.9957 + }, + { + "start": 40654.6, + "end": 40655.32, + "probability": 0.6088 + }, + { + "start": 40655.84, + "end": 40657.18, + "probability": 0.8694 + }, + { + "start": 40657.68, + "end": 40661.74, + "probability": 0.988 + }, + { + "start": 40662.12, + "end": 40662.5, + "probability": 0.8403 + }, + { + "start": 40662.68, + "end": 40663.28, + "probability": 0.3074 + }, + { + "start": 40663.38, + "end": 40664.8, + "probability": 0.7685 + }, + { + "start": 40665.82, + "end": 40666.4, + "probability": 0.6379 + }, + { + "start": 40667.14, + "end": 40671.16, + "probability": 0.996 + }, + { + "start": 40671.84, + "end": 40674.03, + "probability": 0.994 + }, + { + "start": 40674.74, + "end": 40675.82, + "probability": 0.8523 + }, + { + "start": 40676.46, + "end": 40678.04, + "probability": 0.9279 + }, + { + "start": 40678.86, + "end": 40680.9, + "probability": 0.8776 + }, + { + "start": 40681.66, + "end": 40684.18, + "probability": 0.9495 + }, + { + "start": 40684.74, + "end": 40685.9, + "probability": 0.8349 + }, + { + "start": 40686.78, + "end": 40689.12, + "probability": 0.7712 + }, + { + "start": 40689.72, + "end": 40693.08, + "probability": 0.7177 + }, + { + "start": 40693.8, + "end": 40696.02, + "probability": 0.9715 + }, + { + "start": 40696.5, + "end": 40697.2, + "probability": 0.6789 + }, + { + "start": 40697.64, + "end": 40700.26, + "probability": 0.9567 + }, + { + "start": 40700.96, + "end": 40703.88, + "probability": 0.9963 + }, + { + "start": 40704.68, + "end": 40707.82, + "probability": 0.9904 + }, + { + "start": 40708.72, + "end": 40711.57, + "probability": 0.9961 + }, + { + "start": 40712.56, + "end": 40713.62, + "probability": 0.9996 + }, + { + "start": 40714.36, + "end": 40717.02, + "probability": 0.9797 + }, + { + "start": 40717.84, + "end": 40723.56, + "probability": 0.997 + }, + { + "start": 40724.22, + "end": 40726.78, + "probability": 0.9966 + }, + { + "start": 40727.66, + "end": 40729.88, + "probability": 0.9769 + }, + { + "start": 40730.58, + "end": 40732.78, + "probability": 0.9946 + }, + { + "start": 40733.44, + "end": 40734.96, + "probability": 0.9709 + }, + { + "start": 40736.04, + "end": 40736.58, + "probability": 0.7431 + }, + { + "start": 40737.34, + "end": 40740.9, + "probability": 0.909 + }, + { + "start": 40741.36, + "end": 40745.55, + "probability": 0.9803 + }, + { + "start": 40746.58, + "end": 40749.6, + "probability": 0.9977 + }, + { + "start": 40749.6, + "end": 40750.76, + "probability": 0.7639 + }, + { + "start": 40751.04, + "end": 40752.3, + "probability": 0.67 + }, + { + "start": 40753.38, + "end": 40756.32, + "probability": 0.9425 + }, + { + "start": 40757.24, + "end": 40757.48, + "probability": 0.8235 + }, + { + "start": 40758.18, + "end": 40758.86, + "probability": 0.9576 + }, + { + "start": 40759.24, + "end": 40760.7, + "probability": 0.8752 + }, + { + "start": 40761.18, + "end": 40764.6, + "probability": 0.7715 + }, + { + "start": 40764.62, + "end": 40769.74, + "probability": 0.5721 + }, + { + "start": 40769.74, + "end": 40772.96, + "probability": 0.5059 + }, + { + "start": 40773.0, + "end": 40779.6, + "probability": 0.9974 + }, + { + "start": 40779.98, + "end": 40780.94, + "probability": 0.8328 + }, + { + "start": 40781.32, + "end": 40782.88, + "probability": 0.9152 + }, + { + "start": 40783.3, + "end": 40786.12, + "probability": 0.9923 + }, + { + "start": 40786.12, + "end": 40786.5, + "probability": 0.7271 + }, + { + "start": 40787.08, + "end": 40788.18, + "probability": 0.8397 + }, + { + "start": 40789.18, + "end": 40789.82, + "probability": 0.4051 + }, + { + "start": 40789.9, + "end": 40790.58, + "probability": 0.9314 + }, + { + "start": 40791.24, + "end": 40793.22, + "probability": 0.6828 + }, + { + "start": 40793.34, + "end": 40794.18, + "probability": 0.7196 + }, + { + "start": 40794.18, + "end": 40795.62, + "probability": 0.7491 + }, + { + "start": 40796.2, + "end": 40796.78, + "probability": 0.4887 + }, + { + "start": 40796.84, + "end": 40799.3, + "probability": 0.9702 + }, + { + "start": 40821.52, + "end": 40822.98, + "probability": 0.5769 + }, + { + "start": 40824.72, + "end": 40831.62, + "probability": 0.974 + }, + { + "start": 40832.22, + "end": 40835.34, + "probability": 0.9536 + }, + { + "start": 40835.98, + "end": 40841.54, + "probability": 0.9736 + }, + { + "start": 40842.74, + "end": 40845.64, + "probability": 0.9949 + }, + { + "start": 40846.56, + "end": 40849.0, + "probability": 0.9971 + }, + { + "start": 40849.84, + "end": 40853.4, + "probability": 0.7486 + }, + { + "start": 40854.36, + "end": 40859.36, + "probability": 0.8253 + }, + { + "start": 40859.86, + "end": 40859.98, + "probability": 0.3174 + }, + { + "start": 40860.02, + "end": 40861.12, + "probability": 0.9092 + }, + { + "start": 40861.46, + "end": 40864.18, + "probability": 0.7582 + }, + { + "start": 40865.08, + "end": 40866.0, + "probability": 0.5573 + }, + { + "start": 40866.64, + "end": 40868.56, + "probability": 0.6648 + }, + { + "start": 40869.88, + "end": 40873.54, + "probability": 0.7167 + }, + { + "start": 40874.08, + "end": 40875.12, + "probability": 0.8857 + }, + { + "start": 40875.84, + "end": 40877.1, + "probability": 0.9753 + }, + { + "start": 40877.82, + "end": 40878.18, + "probability": 0.7818 + }, + { + "start": 40878.44, + "end": 40879.08, + "probability": 0.8614 + }, + { + "start": 40879.18, + "end": 40881.96, + "probability": 0.9413 + }, + { + "start": 40881.96, + "end": 40885.08, + "probability": 0.852 + }, + { + "start": 40886.26, + "end": 40892.26, + "probability": 0.9915 + }, + { + "start": 40893.16, + "end": 40894.94, + "probability": 0.9923 + }, + { + "start": 40895.5, + "end": 40900.34, + "probability": 0.8344 + }, + { + "start": 40901.44, + "end": 40907.4, + "probability": 0.9919 + }, + { + "start": 40907.42, + "end": 40911.9, + "probability": 0.7407 + }, + { + "start": 40913.16, + "end": 40920.26, + "probability": 0.9894 + }, + { + "start": 40920.84, + "end": 40924.4, + "probability": 0.8964 + }, + { + "start": 40924.56, + "end": 40925.86, + "probability": 0.7806 + }, + { + "start": 40926.84, + "end": 40933.0, + "probability": 0.0818 + }, + { + "start": 40933.0, + "end": 40933.0, + "probability": 0.0762 + }, + { + "start": 40933.0, + "end": 40933.0, + "probability": 0.0416 + }, + { + "start": 40933.0, + "end": 40933.0, + "probability": 0.0248 + }, + { + "start": 40933.0, + "end": 40938.22, + "probability": 0.7955 + }, + { + "start": 40938.58, + "end": 40939.24, + "probability": 0.6936 + }, + { + "start": 40939.72, + "end": 40940.6, + "probability": 0.9506 + }, + { + "start": 40940.6, + "end": 40944.28, + "probability": 0.9159 + }, + { + "start": 40944.88, + "end": 40946.84, + "probability": 0.9944 + }, + { + "start": 40947.28, + "end": 40949.88, + "probability": 0.821 + }, + { + "start": 40950.24, + "end": 40954.98, + "probability": 0.7558 + }, + { + "start": 40955.1, + "end": 40955.38, + "probability": 0.2522 + }, + { + "start": 40955.46, + "end": 40955.72, + "probability": 0.9111 + }, + { + "start": 40956.32, + "end": 40957.58, + "probability": 0.5644 + }, + { + "start": 40957.82, + "end": 40958.0, + "probability": 0.224 + }, + { + "start": 40958.04, + "end": 40966.76, + "probability": 0.9525 + }, + { + "start": 40967.42, + "end": 40968.74, + "probability": 0.9791 + }, + { + "start": 40969.14, + "end": 40973.18, + "probability": 0.9929 + }, + { + "start": 40973.72, + "end": 40976.22, + "probability": 0.933 + }, + { + "start": 40977.02, + "end": 40978.24, + "probability": 0.0251 + }, + { + "start": 40978.24, + "end": 40981.82, + "probability": 0.7721 + }, + { + "start": 40981.94, + "end": 40983.32, + "probability": 0.7875 + }, + { + "start": 40983.92, + "end": 40985.66, + "probability": 0.9446 + }, + { + "start": 40986.06, + "end": 40988.12, + "probability": 0.868 + }, + { + "start": 40988.56, + "end": 40989.8, + "probability": 0.9812 + }, + { + "start": 40990.18, + "end": 40992.68, + "probability": 0.4746 + }, + { + "start": 40993.18, + "end": 40994.72, + "probability": 0.7475 + }, + { + "start": 40994.96, + "end": 40999.32, + "probability": 0.9196 + }, + { + "start": 40999.8, + "end": 41001.68, + "probability": 0.9209 + }, + { + "start": 41002.2, + "end": 41003.98, + "probability": 0.9884 + }, + { + "start": 41004.28, + "end": 41006.62, + "probability": 0.9915 + }, + { + "start": 41006.84, + "end": 41009.32, + "probability": 0.8045 + }, + { + "start": 41009.82, + "end": 41012.86, + "probability": 0.9308 + }, + { + "start": 41012.96, + "end": 41020.48, + "probability": 0.9644 + }, + { + "start": 41021.12, + "end": 41024.12, + "probability": 0.6257 + }, + { + "start": 41024.62, + "end": 41026.07, + "probability": 0.0378 + }, + { + "start": 41026.57, + "end": 41028.08, + "probability": 0.0802 + }, + { + "start": 41028.08, + "end": 41028.59, + "probability": 0.1321 + }, + { + "start": 41029.56, + "end": 41034.14, + "probability": 0.0558 + }, + { + "start": 41034.16, + "end": 41035.28, + "probability": 0.4374 + }, + { + "start": 41035.36, + "end": 41036.92, + "probability": 0.3792 + }, + { + "start": 41038.54, + "end": 41039.06, + "probability": 0.1679 + }, + { + "start": 41039.06, + "end": 41039.6, + "probability": 0.0736 + }, + { + "start": 41039.6, + "end": 41039.94, + "probability": 0.2705 + }, + { + "start": 41040.64, + "end": 41041.96, + "probability": 0.2806 + }, + { + "start": 41042.68, + "end": 41043.74, + "probability": 0.6572 + }, + { + "start": 41043.76, + "end": 41045.33, + "probability": 0.8716 + }, + { + "start": 41045.78, + "end": 41046.18, + "probability": 0.0611 + }, + { + "start": 41049.48, + "end": 41049.78, + "probability": 0.0342 + }, + { + "start": 41050.7, + "end": 41051.5, + "probability": 0.1737 + }, + { + "start": 41051.5, + "end": 41054.08, + "probability": 0.017 + }, + { + "start": 41054.38, + "end": 41055.32, + "probability": 0.0391 + }, + { + "start": 41056.12, + "end": 41056.8, + "probability": 0.0389 + }, + { + "start": 41056.8, + "end": 41060.0, + "probability": 0.0953 + }, + { + "start": 41063.84, + "end": 41065.42, + "probability": 0.008 + }, + { + "start": 41065.42, + "end": 41065.72, + "probability": 0.0412 + }, + { + "start": 41065.72, + "end": 41067.98, + "probability": 0.1811 + }, + { + "start": 41069.1, + "end": 41069.92, + "probability": 0.0396 + }, + { + "start": 41070.2, + "end": 41071.34, + "probability": 0.3672 + }, + { + "start": 41073.28, + "end": 41076.66, + "probability": 0.1234 + }, + { + "start": 41076.76, + "end": 41083.08, + "probability": 0.377 + }, + { + "start": 41083.26, + "end": 41087.38, + "probability": 0.1298 + }, + { + "start": 41087.92, + "end": 41088.56, + "probability": 0.0787 + }, + { + "start": 41088.56, + "end": 41089.85, + "probability": 0.0339 + }, + { + "start": 41090.68, + "end": 41091.12, + "probability": 0.187 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41103.0, + "end": 41103.0, + "probability": 0.0 + }, + { + "start": 41107.62, + "end": 41111.52, + "probability": 0.3011 + }, + { + "start": 41111.62, + "end": 41113.57, + "probability": 0.0741 + }, + { + "start": 41114.82, + "end": 41115.72, + "probability": 0.4419 + }, + { + "start": 41116.54, + "end": 41120.96, + "probability": 0.9221 + }, + { + "start": 41121.18, + "end": 41122.0, + "probability": 0.1159 + }, + { + "start": 41122.08, + "end": 41123.1, + "probability": 0.143 + }, + { + "start": 41124.2, + "end": 41129.22, + "probability": 0.1616 + }, + { + "start": 41129.46, + "end": 41130.06, + "probability": 0.6058 + }, + { + "start": 41130.1, + "end": 41131.98, + "probability": 0.8629 + }, + { + "start": 41132.06, + "end": 41132.54, + "probability": 0.9138 + }, + { + "start": 41134.22, + "end": 41135.2, + "probability": 0.8347 + }, + { + "start": 41135.24, + "end": 41136.2, + "probability": 0.8676 + }, + { + "start": 41136.44, + "end": 41141.45, + "probability": 0.9866 + }, + { + "start": 41142.6, + "end": 41145.0, + "probability": 0.691 + }, + { + "start": 41146.44, + "end": 41149.34, + "probability": 0.9956 + }, + { + "start": 41149.62, + "end": 41151.58, + "probability": 0.9463 + }, + { + "start": 41152.8, + "end": 41157.22, + "probability": 0.9889 + }, + { + "start": 41159.46, + "end": 41160.98, + "probability": 0.9854 + }, + { + "start": 41161.26, + "end": 41166.62, + "probability": 0.9912 + }, + { + "start": 41166.8, + "end": 41169.38, + "probability": 0.981 + }, + { + "start": 41170.3, + "end": 41172.6, + "probability": 0.9924 + }, + { + "start": 41175.0, + "end": 41178.82, + "probability": 0.9854 + }, + { + "start": 41178.9, + "end": 41181.9, + "probability": 0.9766 + }, + { + "start": 41182.56, + "end": 41189.2, + "probability": 0.974 + }, + { + "start": 41189.48, + "end": 41192.76, + "probability": 0.9873 + }, + { + "start": 41194.6, + "end": 41197.08, + "probability": 0.9938 + }, + { + "start": 41197.86, + "end": 41200.94, + "probability": 0.678 + }, + { + "start": 41201.46, + "end": 41205.22, + "probability": 0.995 + }, + { + "start": 41205.82, + "end": 41208.36, + "probability": 0.9907 + }, + { + "start": 41210.1, + "end": 41211.7, + "probability": 0.9384 + }, + { + "start": 41212.36, + "end": 41216.52, + "probability": 0.9926 + }, + { + "start": 41217.16, + "end": 41219.58, + "probability": 0.9989 + }, + { + "start": 41219.72, + "end": 41222.96, + "probability": 0.9968 + }, + { + "start": 41224.2, + "end": 41226.82, + "probability": 0.9989 + }, + { + "start": 41227.3, + "end": 41229.17, + "probability": 0.896 + }, + { + "start": 41229.58, + "end": 41230.86, + "probability": 0.9771 + }, + { + "start": 41231.24, + "end": 41232.32, + "probability": 0.575 + }, + { + "start": 41233.16, + "end": 41235.0, + "probability": 0.8984 + }, + { + "start": 41235.18, + "end": 41236.64, + "probability": 0.9886 + }, + { + "start": 41237.04, + "end": 41238.22, + "probability": 0.8342 + }, + { + "start": 41238.9, + "end": 41240.64, + "probability": 0.6333 + }, + { + "start": 41241.76, + "end": 41245.16, + "probability": 0.9382 + }, + { + "start": 41247.24, + "end": 41247.66, + "probability": 0.4988 + }, + { + "start": 41249.96, + "end": 41251.02, + "probability": 0.4551 + }, + { + "start": 41251.1, + "end": 41251.8, + "probability": 0.9208 + }, + { + "start": 41252.2, + "end": 41255.64, + "probability": 0.9685 + }, + { + "start": 41255.78, + "end": 41256.44, + "probability": 0.8478 + }, + { + "start": 41257.08, + "end": 41259.78, + "probability": 0.9784 + }, + { + "start": 41260.7, + "end": 41261.76, + "probability": 0.9512 + }, + { + "start": 41262.2, + "end": 41263.3, + "probability": 0.9593 + }, + { + "start": 41263.76, + "end": 41264.94, + "probability": 0.9666 + }, + { + "start": 41265.36, + "end": 41267.36, + "probability": 0.9955 + }, + { + "start": 41267.88, + "end": 41268.88, + "probability": 0.9972 + }, + { + "start": 41269.86, + "end": 41271.64, + "probability": 0.9326 + }, + { + "start": 41272.72, + "end": 41274.08, + "probability": 0.9354 + }, + { + "start": 41274.22, + "end": 41275.34, + "probability": 0.959 + }, + { + "start": 41275.4, + "end": 41275.9, + "probability": 0.287 + }, + { + "start": 41276.02, + "end": 41277.86, + "probability": 0.8916 + }, + { + "start": 41278.34, + "end": 41280.38, + "probability": 0.8993 + }, + { + "start": 41280.7, + "end": 41284.14, + "probability": 0.9889 + }, + { + "start": 41284.6, + "end": 41290.3, + "probability": 0.9896 + }, + { + "start": 41290.82, + "end": 41293.54, + "probability": 0.9987 + }, + { + "start": 41293.86, + "end": 41295.54, + "probability": 0.998 + }, + { + "start": 41296.02, + "end": 41298.38, + "probability": 0.9778 + }, + { + "start": 41298.88, + "end": 41303.38, + "probability": 0.7303 + }, + { + "start": 41303.44, + "end": 41304.84, + "probability": 0.9695 + }, + { + "start": 41304.92, + "end": 41306.18, + "probability": 0.9605 + }, + { + "start": 41307.14, + "end": 41307.58, + "probability": 0.5476 + }, + { + "start": 41308.24, + "end": 41310.0, + "probability": 0.9395 + }, + { + "start": 41311.9, + "end": 41314.92, + "probability": 0.6338 + }, + { + "start": 41315.82, + "end": 41316.79, + "probability": 0.8501 + }, + { + "start": 41317.66, + "end": 41318.96, + "probability": 0.9684 + }, + { + "start": 41319.1, + "end": 41320.82, + "probability": 0.9871 + }, + { + "start": 41320.82, + "end": 41324.94, + "probability": 0.8816 + }, + { + "start": 41325.4, + "end": 41328.52, + "probability": 0.9908 + }, + { + "start": 41329.08, + "end": 41333.14, + "probability": 0.9643 + }, + { + "start": 41333.94, + "end": 41338.42, + "probability": 0.9472 + }, + { + "start": 41338.96, + "end": 41342.6, + "probability": 0.9985 + }, + { + "start": 41343.16, + "end": 41343.56, + "probability": 0.8271 + }, + { + "start": 41344.3, + "end": 41346.91, + "probability": 0.9851 + }, + { + "start": 41346.98, + "end": 41349.5, + "probability": 0.9593 + }, + { + "start": 41349.94, + "end": 41350.88, + "probability": 0.8792 + }, + { + "start": 41351.64, + "end": 41352.6, + "probability": 0.6658 + }, + { + "start": 41352.72, + "end": 41354.2, + "probability": 0.993 + }, + { + "start": 41354.46, + "end": 41356.19, + "probability": 0.4953 + }, + { + "start": 41356.86, + "end": 41360.5, + "probability": 0.9896 + }, + { + "start": 41361.02, + "end": 41362.3, + "probability": 0.3478 + }, + { + "start": 41362.84, + "end": 41365.62, + "probability": 0.7683 + }, + { + "start": 41365.74, + "end": 41366.4, + "probability": 0.9805 + }, + { + "start": 41368.08, + "end": 41368.82, + "probability": 0.6549 + }, + { + "start": 41369.44, + "end": 41370.8, + "probability": 0.8804 + }, + { + "start": 41371.32, + "end": 41373.18, + "probability": 0.8038 + }, + { + "start": 41374.04, + "end": 41375.8, + "probability": 0.6399 + }, + { + "start": 41377.3, + "end": 41380.6, + "probability": 0.7888 + }, + { + "start": 41381.16, + "end": 41382.68, + "probability": 0.8716 + }, + { + "start": 41383.84, + "end": 41384.74, + "probability": 0.901 + }, + { + "start": 41385.16, + "end": 41386.36, + "probability": 0.9828 + }, + { + "start": 41386.68, + "end": 41387.16, + "probability": 0.3777 + }, + { + "start": 41387.18, + "end": 41388.2, + "probability": 0.9328 + }, + { + "start": 41388.26, + "end": 41388.78, + "probability": 0.5519 + }, + { + "start": 41389.48, + "end": 41390.36, + "probability": 0.9434 + }, + { + "start": 41390.44, + "end": 41390.86, + "probability": 0.9196 + }, + { + "start": 41390.96, + "end": 41392.78, + "probability": 0.9522 + }, + { + "start": 41393.9, + "end": 41394.6, + "probability": 0.9097 + }, + { + "start": 41395.36, + "end": 41396.78, + "probability": 0.9259 + }, + { + "start": 41398.18, + "end": 41399.02, + "probability": 0.7136 + }, + { + "start": 41412.2, + "end": 41412.9, + "probability": 0.9941 + }, + { + "start": 41413.5, + "end": 41416.4, + "probability": 0.1482 + }, + { + "start": 41416.48, + "end": 41418.46, + "probability": 0.589 + }, + { + "start": 41420.06, + "end": 41422.98, + "probability": 0.9879 + }, + { + "start": 41423.06, + "end": 41424.98, + "probability": 0.9903 + }, + { + "start": 41426.92, + "end": 41427.83, + "probability": 0.5247 + }, + { + "start": 41428.24, + "end": 41431.56, + "probability": 0.9595 + }, + { + "start": 41432.44, + "end": 41435.32, + "probability": 0.9915 + }, + { + "start": 41435.98, + "end": 41437.18, + "probability": 0.7083 + }, + { + "start": 41437.72, + "end": 41439.24, + "probability": 0.9329 + }, + { + "start": 41439.76, + "end": 41441.22, + "probability": 0.8894 + }, + { + "start": 41442.14, + "end": 41444.62, + "probability": 0.5435 + }, + { + "start": 41445.22, + "end": 41447.47, + "probability": 0.6168 + }, + { + "start": 41447.76, + "end": 41448.42, + "probability": 0.5689 + }, + { + "start": 41448.54, + "end": 41448.8, + "probability": 0.0773 + }, + { + "start": 41448.86, + "end": 41450.4, + "probability": 0.7876 + }, + { + "start": 41450.94, + "end": 41453.2, + "probability": 0.9272 + }, + { + "start": 41453.2, + "end": 41456.38, + "probability": 0.626 + }, + { + "start": 41457.32, + "end": 41458.15, + "probability": 0.873 + }, + { + "start": 41458.98, + "end": 41461.71, + "probability": 0.9468 + }, + { + "start": 41462.36, + "end": 41464.86, + "probability": 0.8812 + }, + { + "start": 41465.74, + "end": 41466.7, + "probability": 0.897 + }, + { + "start": 41467.52, + "end": 41468.08, + "probability": 0.5415 + }, + { + "start": 41468.9, + "end": 41471.08, + "probability": 0.8967 + }, + { + "start": 41471.18, + "end": 41472.22, + "probability": 0.8427 + }, + { + "start": 41472.72, + "end": 41473.68, + "probability": 0.5728 + }, + { + "start": 41473.74, + "end": 41474.46, + "probability": 0.4519 + }, + { + "start": 41475.4, + "end": 41477.7, + "probability": 0.7979 + }, + { + "start": 41478.16, + "end": 41480.68, + "probability": 0.9492 + }, + { + "start": 41481.64, + "end": 41482.1, + "probability": 0.3734 + }, + { + "start": 41482.32, + "end": 41483.66, + "probability": 0.7148 + }, + { + "start": 41484.18, + "end": 41485.81, + "probability": 0.6243 + }, + { + "start": 41486.38, + "end": 41489.14, + "probability": 0.9585 + }, + { + "start": 41489.6, + "end": 41491.92, + "probability": 0.7266 + }, + { + "start": 41492.74, + "end": 41495.98, + "probability": 0.896 + }, + { + "start": 41496.68, + "end": 41498.9, + "probability": 0.7173 + }, + { + "start": 41499.34, + "end": 41501.49, + "probability": 0.9785 + }, + { + "start": 41502.04, + "end": 41503.98, + "probability": 0.4233 + }, + { + "start": 41504.62, + "end": 41506.58, + "probability": 0.8818 + }, + { + "start": 41507.1, + "end": 41508.06, + "probability": 0.926 + }, + { + "start": 41508.66, + "end": 41509.8, + "probability": 0.7212 + }, + { + "start": 41510.72, + "end": 41511.88, + "probability": 0.9468 + }, + { + "start": 41512.58, + "end": 41513.34, + "probability": 0.7187 + }, + { + "start": 41513.6, + "end": 41514.14, + "probability": 0.6292 + }, + { + "start": 41514.54, + "end": 41515.02, + "probability": 0.4928 + }, + { + "start": 41515.46, + "end": 41517.54, + "probability": 0.8721 + }, + { + "start": 41518.7, + "end": 41521.82, + "probability": 0.9644 + }, + { + "start": 41522.56, + "end": 41524.92, + "probability": 0.9768 + }, + { + "start": 41525.28, + "end": 41527.08, + "probability": 0.8149 + }, + { + "start": 41527.88, + "end": 41529.91, + "probability": 0.6504 + }, + { + "start": 41530.0, + "end": 41532.4, + "probability": 0.9697 + }, + { + "start": 41532.72, + "end": 41534.2, + "probability": 0.9775 + }, + { + "start": 41534.66, + "end": 41536.62, + "probability": 0.7871 + }, + { + "start": 41537.0, + "end": 41538.51, + "probability": 0.9414 + }, + { + "start": 41538.8, + "end": 41539.36, + "probability": 0.3171 + }, + { + "start": 41539.62, + "end": 41541.24, + "probability": 0.6582 + }, + { + "start": 41541.3, + "end": 41542.62, + "probability": 0.8872 + }, + { + "start": 41543.18, + "end": 41545.4, + "probability": 0.3474 + }, + { + "start": 41545.94, + "end": 41547.9, + "probability": 0.9141 + }, + { + "start": 41548.34, + "end": 41548.82, + "probability": 0.64 + }, + { + "start": 41548.86, + "end": 41549.32, + "probability": 0.2897 + }, + { + "start": 41550.12, + "end": 41552.68, + "probability": 0.9425 + }, + { + "start": 41553.38, + "end": 41554.51, + "probability": 0.8496 + }, + { + "start": 41555.26, + "end": 41556.4, + "probability": 0.9601 + }, + { + "start": 41556.94, + "end": 41558.78, + "probability": 0.936 + }, + { + "start": 41559.14, + "end": 41560.96, + "probability": 0.9365 + }, + { + "start": 41561.7, + "end": 41564.42, + "probability": 0.8969 + }, + { + "start": 41565.02, + "end": 41567.34, + "probability": 0.9553 + }, + { + "start": 41567.96, + "end": 41569.66, + "probability": 0.9719 + }, + { + "start": 41569.66, + "end": 41574.08, + "probability": 0.7826 + }, + { + "start": 41574.76, + "end": 41579.72, + "probability": 0.7378 + }, + { + "start": 41580.16, + "end": 41583.26, + "probability": 0.8634 + }, + { + "start": 41584.0, + "end": 41587.28, + "probability": 0.9893 + }, + { + "start": 41587.34, + "end": 41588.08, + "probability": 0.7469 + }, + { + "start": 41588.66, + "end": 41589.64, + "probability": 0.9229 + }, + { + "start": 41590.12, + "end": 41592.0, + "probability": 0.9478 + }, + { + "start": 41592.0, + "end": 41596.26, + "probability": 0.7783 + }, + { + "start": 41596.5, + "end": 41598.08, + "probability": 0.5776 + }, + { + "start": 41598.82, + "end": 41600.55, + "probability": 0.8953 + }, + { + "start": 41600.66, + "end": 41602.46, + "probability": 0.9846 + }, + { + "start": 41602.84, + "end": 41603.24, + "probability": 0.0058 + }, + { + "start": 41603.24, + "end": 41604.4, + "probability": 0.2986 + }, + { + "start": 41604.44, + "end": 41607.46, + "probability": 0.6365 + }, + { + "start": 41607.96, + "end": 41609.82, + "probability": 0.5308 + }, + { + "start": 41610.14, + "end": 41611.08, + "probability": 0.3257 + }, + { + "start": 41611.14, + "end": 41612.84, + "probability": 0.7329 + }, + { + "start": 41613.3, + "end": 41614.56, + "probability": 0.9443 + }, + { + "start": 41615.08, + "end": 41615.16, + "probability": 0.0267 + }, + { + "start": 41615.16, + "end": 41619.3, + "probability": 0.4159 + }, + { + "start": 41620.16, + "end": 41620.9, + "probability": 0.5416 + }, + { + "start": 41621.44, + "end": 41622.08, + "probability": 0.6869 + }, + { + "start": 41622.62, + "end": 41623.02, + "probability": 0.8494 + }, + { + "start": 41623.52, + "end": 41624.36, + "probability": 0.451 + }, + { + "start": 41624.54, + "end": 41626.92, + "probability": 0.6679 + }, + { + "start": 41630.2, + "end": 41630.2, + "probability": 0.0386 + }, + { + "start": 41639.96, + "end": 41643.58, + "probability": 0.1467 + }, + { + "start": 41643.58, + "end": 41645.16, + "probability": 0.1489 + }, + { + "start": 41645.9, + "end": 41646.1, + "probability": 0.0091 + }, + { + "start": 41646.1, + "end": 41648.68, + "probability": 0.2295 + }, + { + "start": 41648.68, + "end": 41650.58, + "probability": 0.2788 + }, + { + "start": 41657.66, + "end": 41659.4, + "probability": 0.5885 + }, + { + "start": 41660.73, + "end": 41663.62, + "probability": 0.917 + }, + { + "start": 41663.72, + "end": 41666.34, + "probability": 0.9965 + }, + { + "start": 41666.94, + "end": 41668.42, + "probability": 0.7388 + }, + { + "start": 41669.34, + "end": 41672.42, + "probability": 0.8814 + }, + { + "start": 41673.04, + "end": 41675.84, + "probability": 0.9766 + }, + { + "start": 41677.22, + "end": 41682.08, + "probability": 0.9971 + }, + { + "start": 41683.1, + "end": 41685.56, + "probability": 0.9967 + }, + { + "start": 41686.2, + "end": 41688.96, + "probability": 0.9966 + }, + { + "start": 41689.28, + "end": 41695.02, + "probability": 0.9896 + }, + { + "start": 41695.62, + "end": 41696.62, + "probability": 0.889 + }, + { + "start": 41697.0, + "end": 41697.86, + "probability": 0.8592 + }, + { + "start": 41698.2, + "end": 41699.44, + "probability": 0.9629 + }, + { + "start": 41699.94, + "end": 41700.14, + "probability": 0.9944 + }, + { + "start": 41700.86, + "end": 41704.04, + "probability": 0.9752 + }, + { + "start": 41704.82, + "end": 41709.26, + "probability": 0.8188 + }, + { + "start": 41710.48, + "end": 41710.88, + "probability": 0.0739 + }, + { + "start": 41710.88, + "end": 41710.88, + "probability": 0.1952 + }, + { + "start": 41710.88, + "end": 41713.58, + "probability": 0.5119 + }, + { + "start": 41714.32, + "end": 41716.72, + "probability": 0.9964 + }, + { + "start": 41716.88, + "end": 41717.14, + "probability": 0.9431 + }, + { + "start": 41717.68, + "end": 41720.78, + "probability": 0.931 + }, + { + "start": 41721.32, + "end": 41724.56, + "probability": 0.9705 + }, + { + "start": 41724.86, + "end": 41728.38, + "probability": 0.9941 + }, + { + "start": 41728.88, + "end": 41730.54, + "probability": 0.985 + }, + { + "start": 41731.22, + "end": 41734.24, + "probability": 0.8744 + }, + { + "start": 41735.16, + "end": 41741.0, + "probability": 0.9617 + }, + { + "start": 41741.24, + "end": 41744.9, + "probability": 0.9808 + }, + { + "start": 41745.44, + "end": 41750.6, + "probability": 0.9908 + }, + { + "start": 41751.54, + "end": 41754.66, + "probability": 0.999 + }, + { + "start": 41755.22, + "end": 41756.92, + "probability": 0.9763 + }, + { + "start": 41757.32, + "end": 41762.0, + "probability": 0.7224 + }, + { + "start": 41762.36, + "end": 41765.9, + "probability": 0.996 + }, + { + "start": 41766.76, + "end": 41767.3, + "probability": 0.8032 + }, + { + "start": 41767.74, + "end": 41768.12, + "probability": 0.644 + }, + { + "start": 41768.4, + "end": 41772.98, + "probability": 0.9935 + }, + { + "start": 41773.36, + "end": 41774.3, + "probability": 0.4303 + }, + { + "start": 41774.58, + "end": 41776.68, + "probability": 0.9362 + }, + { + "start": 41777.24, + "end": 41779.96, + "probability": 0.9989 + }, + { + "start": 41780.06, + "end": 41781.04, + "probability": 0.9053 + }, + { + "start": 41781.54, + "end": 41784.44, + "probability": 0.9598 + }, + { + "start": 41784.92, + "end": 41790.76, + "probability": 0.9394 + }, + { + "start": 41791.36, + "end": 41796.28, + "probability": 0.9911 + }, + { + "start": 41796.58, + "end": 41797.1, + "probability": 0.8846 + }, + { + "start": 41797.66, + "end": 41798.2, + "probability": 0.658 + }, + { + "start": 41798.34, + "end": 41801.1, + "probability": 0.841 + }, + { + "start": 41829.66, + "end": 41832.56, + "probability": 0.7521 + }, + { + "start": 41834.08, + "end": 41837.14, + "probability": 0.9985 + }, + { + "start": 41837.14, + "end": 41840.76, + "probability": 0.9985 + }, + { + "start": 41841.64, + "end": 41845.86, + "probability": 0.9749 + }, + { + "start": 41846.18, + "end": 41849.8, + "probability": 0.9847 + }, + { + "start": 41850.4, + "end": 41854.9, + "probability": 0.9905 + }, + { + "start": 41855.82, + "end": 41858.46, + "probability": 0.9963 + }, + { + "start": 41858.46, + "end": 41862.34, + "probability": 0.9986 + }, + { + "start": 41862.86, + "end": 41864.96, + "probability": 0.9304 + }, + { + "start": 41865.34, + "end": 41869.78, + "probability": 0.9587 + }, + { + "start": 41870.12, + "end": 41870.93, + "probability": 0.9172 + }, + { + "start": 41872.0, + "end": 41876.3, + "probability": 0.9947 + }, + { + "start": 41877.12, + "end": 41881.76, + "probability": 0.9668 + }, + { + "start": 41882.58, + "end": 41884.06, + "probability": 0.9751 + }, + { + "start": 41884.76, + "end": 41888.76, + "probability": 0.9778 + }, + { + "start": 41888.76, + "end": 41893.2, + "probability": 0.8658 + }, + { + "start": 41893.7, + "end": 41897.96, + "probability": 0.9529 + }, + { + "start": 41898.72, + "end": 41902.22, + "probability": 0.9964 + }, + { + "start": 41902.22, + "end": 41908.44, + "probability": 0.9945 + }, + { + "start": 41908.44, + "end": 41912.64, + "probability": 0.9216 + }, + { + "start": 41913.26, + "end": 41914.54, + "probability": 0.8772 + }, + { + "start": 41915.24, + "end": 41916.74, + "probability": 0.7208 + }, + { + "start": 41917.12, + "end": 41923.14, + "probability": 0.992 + }, + { + "start": 41923.14, + "end": 41928.02, + "probability": 0.9977 + }, + { + "start": 41928.98, + "end": 41930.4, + "probability": 0.552 + }, + { + "start": 41931.62, + "end": 41931.64, + "probability": 0.8623 + }, + { + "start": 41932.16, + "end": 41936.74, + "probability": 0.9772 + }, + { + "start": 41937.22, + "end": 41941.16, + "probability": 0.9773 + }, + { + "start": 41941.72, + "end": 41942.56, + "probability": 0.9149 + }, + { + "start": 41942.64, + "end": 41944.16, + "probability": 0.9748 + }, + { + "start": 41944.5, + "end": 41949.28, + "probability": 0.9932 + }, + { + "start": 41949.28, + "end": 41954.36, + "probability": 0.994 + }, + { + "start": 41954.98, + "end": 41959.58, + "probability": 0.9902 + }, + { + "start": 41959.58, + "end": 41966.26, + "probability": 0.999 + }, + { + "start": 41966.98, + "end": 41972.16, + "probability": 0.9895 + }, + { + "start": 41972.52, + "end": 41975.46, + "probability": 0.9984 + }, + { + "start": 41975.46, + "end": 41979.12, + "probability": 0.9985 + }, + { + "start": 41979.72, + "end": 41983.38, + "probability": 0.9989 + }, + { + "start": 41983.38, + "end": 41988.2, + "probability": 0.9686 + }, + { + "start": 41988.7, + "end": 41990.02, + "probability": 0.8989 + }, + { + "start": 41990.46, + "end": 41995.0, + "probability": 0.99 + }, + { + "start": 41995.62, + "end": 41998.88, + "probability": 0.9766 + }, + { + "start": 41999.0, + "end": 42004.4, + "probability": 0.9739 + }, + { + "start": 42004.66, + "end": 42008.04, + "probability": 0.9808 + }, + { + "start": 42008.04, + "end": 42012.3, + "probability": 0.9993 + }, + { + "start": 42013.0, + "end": 42014.6, + "probability": 0.782 + }, + { + "start": 42014.6, + "end": 42019.82, + "probability": 0.9532 + }, + { + "start": 42020.04, + "end": 42020.92, + "probability": 0.7155 + }, + { + "start": 42021.06, + "end": 42025.38, + "probability": 0.7747 + }, + { + "start": 42026.0, + "end": 42029.8, + "probability": 0.9985 + }, + { + "start": 42029.92, + "end": 42032.24, + "probability": 0.9667 + }, + { + "start": 42032.24, + "end": 42035.86, + "probability": 0.8182 + }, + { + "start": 42036.32, + "end": 42037.76, + "probability": 0.3986 + }, + { + "start": 42038.16, + "end": 42039.9, + "probability": 0.6707 + }, + { + "start": 42039.96, + "end": 42041.04, + "probability": 0.7806 + }, + { + "start": 42041.56, + "end": 42044.68, + "probability": 0.9982 + }, + { + "start": 42044.68, + "end": 42047.86, + "probability": 0.9983 + }, + { + "start": 42047.86, + "end": 42047.88, + "probability": 0.014 + }, + { + "start": 42047.88, + "end": 42048.7, + "probability": 0.4655 + }, + { + "start": 42049.2, + "end": 42050.02, + "probability": 0.8546 + }, + { + "start": 42050.4, + "end": 42051.14, + "probability": 0.7584 + }, + { + "start": 42051.24, + "end": 42055.9, + "probability": 0.9821 + }, + { + "start": 42056.34, + "end": 42056.4, + "probability": 0.3108 + }, + { + "start": 42056.4, + "end": 42061.64, + "probability": 0.9817 + }, + { + "start": 42061.74, + "end": 42062.02, + "probability": 0.8295 + }, + { + "start": 42062.38, + "end": 42062.98, + "probability": 0.6985 + }, + { + "start": 42063.12, + "end": 42065.5, + "probability": 0.6191 + }, + { + "start": 42086.08, + "end": 42089.2, + "probability": 0.6614 + }, + { + "start": 42090.56, + "end": 42092.78, + "probability": 0.914 + }, + { + "start": 42093.4, + "end": 42097.56, + "probability": 0.9673 + }, + { + "start": 42097.56, + "end": 42103.18, + "probability": 0.9915 + }, + { + "start": 42103.28, + "end": 42111.64, + "probability": 0.9969 + }, + { + "start": 42112.34, + "end": 42118.88, + "probability": 0.9827 + }, + { + "start": 42119.02, + "end": 42119.44, + "probability": 0.3491 + }, + { + "start": 42120.02, + "end": 42123.62, + "probability": 0.9987 + }, + { + "start": 42124.1, + "end": 42125.94, + "probability": 0.8908 + }, + { + "start": 42126.36, + "end": 42133.16, + "probability": 0.9534 + }, + { + "start": 42133.82, + "end": 42140.2, + "probability": 0.9966 + }, + { + "start": 42140.5, + "end": 42143.06, + "probability": 0.7729 + }, + { + "start": 42143.24, + "end": 42144.16, + "probability": 0.8965 + }, + { + "start": 42144.66, + "end": 42146.1, + "probability": 0.9695 + }, + { + "start": 42146.22, + "end": 42147.44, + "probability": 0.9369 + }, + { + "start": 42147.66, + "end": 42148.36, + "probability": 0.7963 + }, + { + "start": 42148.5, + "end": 42150.26, + "probability": 0.6495 + }, + { + "start": 42150.42, + "end": 42152.2, + "probability": 0.9671 + }, + { + "start": 42152.36, + "end": 42154.28, + "probability": 0.936 + }, + { + "start": 42155.08, + "end": 42157.58, + "probability": 0.6273 + }, + { + "start": 42157.78, + "end": 42158.5, + "probability": 0.0014 + }, + { + "start": 42158.62, + "end": 42163.36, + "probability": 0.5303 + }, + { + "start": 42164.24, + "end": 42164.24, + "probability": 0.0138 + }, + { + "start": 42164.24, + "end": 42170.42, + "probability": 0.9492 + }, + { + "start": 42170.42, + "end": 42175.92, + "probability": 0.9475 + }, + { + "start": 42176.04, + "end": 42180.84, + "probability": 0.2148 + }, + { + "start": 42180.88, + "end": 42182.5, + "probability": 0.1128 + }, + { + "start": 42183.34, + "end": 42183.34, + "probability": 0.0729 + }, + { + "start": 42185.9, + "end": 42186.86, + "probability": 0.0734 + }, + { + "start": 42187.5, + "end": 42187.5, + "probability": 0.0107 + }, + { + "start": 42187.5, + "end": 42187.5, + "probability": 0.0557 + }, + { + "start": 42187.5, + "end": 42187.5, + "probability": 0.1342 + }, + { + "start": 42187.5, + "end": 42190.26, + "probability": 0.9729 + }, + { + "start": 42190.26, + "end": 42190.28, + "probability": 0.1732 + }, + { + "start": 42190.28, + "end": 42190.28, + "probability": 0.2155 + }, + { + "start": 42190.28, + "end": 42195.36, + "probability": 0.0491 + }, + { + "start": 42195.36, + "end": 42199.24, + "probability": 0.2847 + }, + { + "start": 42199.36, + "end": 42199.68, + "probability": 0.0872 + }, + { + "start": 42200.2, + "end": 42200.84, + "probability": 0.2714 + }, + { + "start": 42200.84, + "end": 42201.0, + "probability": 0.205 + }, + { + "start": 42201.0, + "end": 42202.88, + "probability": 0.0022 + }, + { + "start": 42203.86, + "end": 42206.82, + "probability": 0.4578 + }, + { + "start": 42207.58, + "end": 42207.9, + "probability": 0.2961 + }, + { + "start": 42208.02, + "end": 42208.9, + "probability": 0.5188 + }, + { + "start": 42209.14, + "end": 42214.17, + "probability": 0.9692 + }, + { + "start": 42214.98, + "end": 42219.08, + "probability": 0.9772 + }, + { + "start": 42219.08, + "end": 42219.15, + "probability": 0.3813 + }, + { + "start": 42222.62, + "end": 42224.02, + "probability": 0.6361 + }, + { + "start": 42224.36, + "end": 42227.54, + "probability": 0.584 + }, + { + "start": 42227.58, + "end": 42232.32, + "probability": 0.8829 + }, + { + "start": 42232.32, + "end": 42234.14, + "probability": 0.6735 + }, + { + "start": 42234.48, + "end": 42241.64, + "probability": 0.8816 + }, + { + "start": 42241.88, + "end": 42247.3, + "probability": 0.8856 + }, + { + "start": 42247.7, + "end": 42247.7, + "probability": 0.2601 + }, + { + "start": 42247.74, + "end": 42249.3, + "probability": 0.9349 + }, + { + "start": 42250.2, + "end": 42254.36, + "probability": 0.6081 + }, + { + "start": 42254.64, + "end": 42257.04, + "probability": 0.9926 + }, + { + "start": 42257.1, + "end": 42260.94, + "probability": 0.9136 + }, + { + "start": 42261.36, + "end": 42265.18, + "probability": 0.1432 + }, + { + "start": 42266.4, + "end": 42267.6, + "probability": 0.1847 + }, + { + "start": 42267.6, + "end": 42268.98, + "probability": 0.0433 + }, + { + "start": 42269.44, + "end": 42272.24, + "probability": 0.6216 + }, + { + "start": 42272.24, + "end": 42272.82, + "probability": 0.1195 + }, + { + "start": 42273.06, + "end": 42276.48, + "probability": 0.0889 + }, + { + "start": 42278.98, + "end": 42279.3, + "probability": 0.0341 + }, + { + "start": 42279.32, + "end": 42279.66, + "probability": 0.0555 + }, + { + "start": 42279.66, + "end": 42279.66, + "probability": 0.0704 + }, + { + "start": 42279.66, + "end": 42279.66, + "probability": 0.1744 + }, + { + "start": 42279.66, + "end": 42283.06, + "probability": 0.8252 + }, + { + "start": 42283.22, + "end": 42287.76, + "probability": 0.8558 + }, + { + "start": 42288.32, + "end": 42291.34, + "probability": 0.6734 + }, + { + "start": 42291.86, + "end": 42294.1, + "probability": 0.6886 + }, + { + "start": 42294.18, + "end": 42294.28, + "probability": 0.6569 + }, + { + "start": 42294.28, + "end": 42296.42, + "probability": 0.989 + }, + { + "start": 42297.12, + "end": 42297.94, + "probability": 0.5435 + }, + { + "start": 42298.56, + "end": 42302.64, + "probability": 0.81 + }, + { + "start": 42302.96, + "end": 42305.4, + "probability": 0.5308 + }, + { + "start": 42305.76, + "end": 42308.44, + "probability": 0.8979 + }, + { + "start": 42308.82, + "end": 42311.58, + "probability": 0.8611 + }, + { + "start": 42311.94, + "end": 42313.14, + "probability": 0.0975 + }, + { + "start": 42313.36, + "end": 42317.12, + "probability": 0.2687 + }, + { + "start": 42317.46, + "end": 42320.46, + "probability": 0.503 + }, + { + "start": 42320.66, + "end": 42322.58, + "probability": 0.6886 + }, + { + "start": 42322.82, + "end": 42325.74, + "probability": 0.722 + }, + { + "start": 42325.9, + "end": 42329.18, + "probability": 0.359 + }, + { + "start": 42329.36, + "end": 42330.33, + "probability": 0.6614 + }, + { + "start": 42331.58, + "end": 42335.52, + "probability": 0.1849 + }, + { + "start": 42335.58, + "end": 42336.22, + "probability": 0.0205 + }, + { + "start": 42336.22, + "end": 42341.69, + "probability": 0.0964 + }, + { + "start": 42342.52, + "end": 42345.22, + "probability": 0.1505 + }, + { + "start": 42348.24, + "end": 42351.38, + "probability": 0.7321 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42423.0, + "end": 42423.0, + "probability": 0.0 + }, + { + "start": 42427.44, + "end": 42429.3, + "probability": 0.7707 + }, + { + "start": 42430.66, + "end": 42431.8, + "probability": 0.6544 + }, + { + "start": 42432.76, + "end": 42434.26, + "probability": 0.8097 + }, + { + "start": 42435.22, + "end": 42439.3, + "probability": 0.9927 + }, + { + "start": 42440.04, + "end": 42442.4, + "probability": 0.4958 + }, + { + "start": 42442.78, + "end": 42444.82, + "probability": 0.812 + }, + { + "start": 42444.94, + "end": 42446.44, + "probability": 0.9159 + }, + { + "start": 42446.44, + "end": 42447.04, + "probability": 0.5734 + }, + { + "start": 42447.04, + "end": 42448.6, + "probability": 0.8226 + }, + { + "start": 42449.02, + "end": 42451.32, + "probability": 0.103 + }, + { + "start": 42451.34, + "end": 42454.1, + "probability": 0.9035 + }, + { + "start": 42454.34, + "end": 42454.64, + "probability": 0.2876 + }, + { + "start": 42454.7, + "end": 42455.12, + "probability": 0.1959 + }, + { + "start": 42455.26, + "end": 42455.62, + "probability": 0.3759 + }, + { + "start": 42455.66, + "end": 42457.4, + "probability": 0.8857 + }, + { + "start": 42458.12, + "end": 42458.76, + "probability": 0.0257 + }, + { + "start": 42458.98, + "end": 42459.36, + "probability": 0.2257 + }, + { + "start": 42459.36, + "end": 42460.54, + "probability": 0.2483 + }, + { + "start": 42460.74, + "end": 42462.2, + "probability": 0.4307 + }, + { + "start": 42462.26, + "end": 42464.32, + "probability": 0.981 + }, + { + "start": 42464.36, + "end": 42465.0, + "probability": 0.6577 + }, + { + "start": 42465.24, + "end": 42466.54, + "probability": 0.0134 + }, + { + "start": 42469.48, + "end": 42470.0, + "probability": 0.2186 + }, + { + "start": 42470.0, + "end": 42470.02, + "probability": 0.6506 + }, + { + "start": 42470.02, + "end": 42470.16, + "probability": 0.3368 + }, + { + "start": 42470.18, + "end": 42470.86, + "probability": 0.2635 + }, + { + "start": 42471.9, + "end": 42473.1, + "probability": 0.1361 + }, + { + "start": 42473.36, + "end": 42474.86, + "probability": 0.5489 + }, + { + "start": 42475.14, + "end": 42476.76, + "probability": 0.9 + }, + { + "start": 42476.84, + "end": 42484.31, + "probability": 0.9831 + }, + { + "start": 42485.84, + "end": 42487.0, + "probability": 0.9153 + }, + { + "start": 42488.98, + "end": 42489.98, + "probability": 0.4613 + }, + { + "start": 42490.82, + "end": 42492.02, + "probability": 0.4905 + }, + { + "start": 42492.08, + "end": 42492.8, + "probability": 0.7572 + }, + { + "start": 42492.98, + "end": 42493.28, + "probability": 0.5302 + }, + { + "start": 42493.28, + "end": 42498.06, + "probability": 0.8723 + }, + { + "start": 42498.36, + "end": 42502.9, + "probability": 0.9851 + }, + { + "start": 42506.2, + "end": 42508.96, + "probability": 0.9459 + }, + { + "start": 42509.84, + "end": 42513.26, + "probability": 0.8273 + }, + { + "start": 42514.48, + "end": 42520.68, + "probability": 0.9969 + }, + { + "start": 42522.44, + "end": 42525.72, + "probability": 0.9281 + }, + { + "start": 42526.26, + "end": 42528.86, + "probability": 0.9084 + }, + { + "start": 42530.24, + "end": 42531.56, + "probability": 0.9572 + }, + { + "start": 42532.22, + "end": 42534.9, + "probability": 0.7326 + }, + { + "start": 42537.28, + "end": 42538.3, + "probability": 0.842 + }, + { + "start": 42540.54, + "end": 42541.82, + "probability": 0.7303 + }, + { + "start": 42541.82, + "end": 42544.74, + "probability": 0.5923 + }, + { + "start": 42544.8, + "end": 42545.9, + "probability": 0.7647 + }, + { + "start": 42547.64, + "end": 42548.44, + "probability": 0.5007 + }, + { + "start": 42551.56, + "end": 42554.1, + "probability": 0.7754 + }, + { + "start": 42556.04, + "end": 42563.52, + "probability": 0.9759 + }, + { + "start": 42566.38, + "end": 42568.66, + "probability": 0.997 + }, + { + "start": 42570.96, + "end": 42573.5, + "probability": 0.8737 + }, + { + "start": 42574.72, + "end": 42578.26, + "probability": 0.8488 + }, + { + "start": 42578.8, + "end": 42581.16, + "probability": 0.7001 + }, + { + "start": 42582.64, + "end": 42583.3, + "probability": 0.9032 + }, + { + "start": 42584.36, + "end": 42585.94, + "probability": 0.7374 + }, + { + "start": 42588.7, + "end": 42590.5, + "probability": 0.9904 + }, + { + "start": 42592.6, + "end": 42594.46, + "probability": 0.8867 + }, + { + "start": 42595.9, + "end": 42596.68, + "probability": 0.8231 + }, + { + "start": 42597.76, + "end": 42600.56, + "probability": 0.993 + }, + { + "start": 42601.44, + "end": 42603.8, + "probability": 0.9533 + }, + { + "start": 42604.82, + "end": 42605.94, + "probability": 0.9099 + }, + { + "start": 42606.82, + "end": 42607.68, + "probability": 0.7774 + }, + { + "start": 42608.78, + "end": 42610.94, + "probability": 0.6632 + }, + { + "start": 42610.94, + "end": 42610.94, + "probability": 0.1482 + }, + { + "start": 42610.94, + "end": 42612.7, + "probability": 0.7811 + }, + { + "start": 42612.7, + "end": 42613.58, + "probability": 0.7673 + }, + { + "start": 42613.72, + "end": 42613.98, + "probability": 0.9214 + }, + { + "start": 42614.38, + "end": 42614.38, + "probability": 0.3211 + }, + { + "start": 42614.38, + "end": 42617.1, + "probability": 0.9282 + }, + { + "start": 42618.16, + "end": 42618.82, + "probability": 0.0454 + }, + { + "start": 42618.82, + "end": 42619.44, + "probability": 0.2204 + }, + { + "start": 42619.44, + "end": 42619.54, + "probability": 0.4333 + }, + { + "start": 42619.54, + "end": 42621.4, + "probability": 0.3605 + }, + { + "start": 42621.54, + "end": 42625.58, + "probability": 0.7402 + }, + { + "start": 42625.64, + "end": 42626.68, + "probability": 0.4381 + }, + { + "start": 42626.68, + "end": 42628.62, + "probability": 0.4351 + }, + { + "start": 42628.8, + "end": 42631.54, + "probability": 0.7537 + }, + { + "start": 42631.56, + "end": 42633.5, + "probability": 0.0671 + }, + { + "start": 42633.5, + "end": 42634.24, + "probability": 0.373 + }, + { + "start": 42634.44, + "end": 42635.08, + "probability": 0.0396 + }, + { + "start": 42638.82, + "end": 42639.68, + "probability": 0.1894 + }, + { + "start": 42639.68, + "end": 42639.68, + "probability": 0.143 + }, + { + "start": 42639.68, + "end": 42641.72, + "probability": 0.068 + }, + { + "start": 42641.92, + "end": 42644.2, + "probability": 0.1472 + }, + { + "start": 42644.34, + "end": 42645.1, + "probability": 0.659 + }, + { + "start": 42645.36, + "end": 42647.34, + "probability": 0.2122 + }, + { + "start": 42648.5, + "end": 42650.56, + "probability": 0.3721 + }, + { + "start": 42651.58, + "end": 42653.92, + "probability": 0.9541 + }, + { + "start": 42655.82, + "end": 42658.14, + "probability": 0.9545 + }, + { + "start": 42659.26, + "end": 42667.54, + "probability": 0.9829 + }, + { + "start": 42668.48, + "end": 42670.3, + "probability": 0.7171 + }, + { + "start": 42671.8, + "end": 42676.86, + "probability": 0.9966 + }, + { + "start": 42677.92, + "end": 42678.78, + "probability": 0.8501 + }, + { + "start": 42679.36, + "end": 42684.16, + "probability": 0.8953 + }, + { + "start": 42684.52, + "end": 42684.94, + "probability": 0.779 + }, + { + "start": 42686.18, + "end": 42687.0, + "probability": 0.7456 + }, + { + "start": 42687.68, + "end": 42689.82, + "probability": 0.855 + }, + { + "start": 42690.76, + "end": 42693.44, + "probability": 0.9044 + }, + { + "start": 42696.06, + "end": 42698.4, + "probability": 0.7476 + }, + { + "start": 42698.4, + "end": 42698.4, + "probability": 0.4833 + }, + { + "start": 42698.4, + "end": 42699.08, + "probability": 0.7941 + }, + { + "start": 42699.94, + "end": 42700.74, + "probability": 0.7817 + }, + { + "start": 42701.38, + "end": 42702.64, + "probability": 0.6951 + }, + { + "start": 42703.98, + "end": 42704.8, + "probability": 0.7243 + }, + { + "start": 42706.14, + "end": 42708.02, + "probability": 0.8096 + }, + { + "start": 42708.2, + "end": 42709.8, + "probability": 0.8631 + }, + { + "start": 42713.04, + "end": 42713.6, + "probability": 0.0816 + }, + { + "start": 42713.6, + "end": 42714.22, + "probability": 0.1419 + }, + { + "start": 42714.9, + "end": 42716.28, + "probability": 0.7246 + }, + { + "start": 42717.12, + "end": 42717.12, + "probability": 0.1271 + }, + { + "start": 42717.12, + "end": 42717.26, + "probability": 0.2313 + }, + { + "start": 42717.64, + "end": 42718.7, + "probability": 0.8589 + }, + { + "start": 42718.84, + "end": 42719.98, + "probability": 0.8389 + }, + { + "start": 42720.4, + "end": 42722.8, + "probability": 0.8789 + }, + { + "start": 42725.86, + "end": 42726.72, + "probability": 0.3481 + }, + { + "start": 42727.02, + "end": 42729.14, + "probability": 0.5173 + }, + { + "start": 42735.12, + "end": 42735.94, + "probability": 0.2764 + }, + { + "start": 42736.2, + "end": 42739.29, + "probability": 0.8044 + }, + { + "start": 42741.3, + "end": 42744.7, + "probability": 0.772 + }, + { + "start": 42746.6, + "end": 42747.84, + "probability": 0.2331 + }, + { + "start": 42749.47, + "end": 42752.38, + "probability": 0.843 + }, + { + "start": 42752.52, + "end": 42752.74, + "probability": 0.9298 + }, + { + "start": 42753.52, + "end": 42754.22, + "probability": 0.6162 + }, + { + "start": 42755.62, + "end": 42759.84, + "probability": 0.9562 + }, + { + "start": 42760.62, + "end": 42765.26, + "probability": 0.9989 + }, + { + "start": 42765.82, + "end": 42769.92, + "probability": 0.9949 + }, + { + "start": 42771.32, + "end": 42772.4, + "probability": 0.9995 + }, + { + "start": 42774.52, + "end": 42778.92, + "probability": 0.8071 + }, + { + "start": 42780.34, + "end": 42782.94, + "probability": 0.9643 + }, + { + "start": 42783.3, + "end": 42784.1, + "probability": 0.5398 + }, + { + "start": 42784.7, + "end": 42785.48, + "probability": 0.9278 + }, + { + "start": 42786.2, + "end": 42789.94, + "probability": 0.9982 + }, + { + "start": 42789.94, + "end": 42794.56, + "probability": 0.9879 + }, + { + "start": 42795.26, + "end": 42795.8, + "probability": 0.8466 + }, + { + "start": 42796.68, + "end": 42799.18, + "probability": 0.9377 + }, + { + "start": 42799.8, + "end": 42802.76, + "probability": 0.9974 + }, + { + "start": 42803.92, + "end": 42806.3, + "probability": 0.9932 + }, + { + "start": 42807.08, + "end": 42810.75, + "probability": 0.9082 + }, + { + "start": 42812.26, + "end": 42814.88, + "probability": 0.9545 + }, + { + "start": 42815.88, + "end": 42818.7, + "probability": 0.4963 + }, + { + "start": 42819.22, + "end": 42819.78, + "probability": 0.7078 + }, + { + "start": 42819.92, + "end": 42821.3, + "probability": 0.9927 + }, + { + "start": 42822.08, + "end": 42823.5, + "probability": 0.9729 + }, + { + "start": 42824.0, + "end": 42827.62, + "probability": 0.9707 + }, + { + "start": 42828.48, + "end": 42829.78, + "probability": 0.9864 + }, + { + "start": 42830.34, + "end": 42834.2, + "probability": 0.9317 + }, + { + "start": 42834.74, + "end": 42836.95, + "probability": 0.972 + }, + { + "start": 42837.98, + "end": 42841.46, + "probability": 0.9516 + }, + { + "start": 42842.6, + "end": 42844.4, + "probability": 0.8615 + }, + { + "start": 42844.56, + "end": 42845.98, + "probability": 0.9846 + }, + { + "start": 42846.26, + "end": 42846.88, + "probability": 0.4951 + }, + { + "start": 42847.08, + "end": 42848.04, + "probability": 0.8816 + }, + { + "start": 42848.22, + "end": 42849.22, + "probability": 0.9952 + }, + { + "start": 42849.28, + "end": 42850.18, + "probability": 0.994 + }, + { + "start": 42850.38, + "end": 42851.19, + "probability": 0.9635 + }, + { + "start": 42852.12, + "end": 42855.94, + "probability": 0.9751 + }, + { + "start": 42857.12, + "end": 42858.32, + "probability": 0.9404 + }, + { + "start": 42858.94, + "end": 42860.4, + "probability": 0.9714 + }, + { + "start": 42861.36, + "end": 42862.5, + "probability": 0.7771 + }, + { + "start": 42863.54, + "end": 42866.12, + "probability": 0.989 + }, + { + "start": 42866.8, + "end": 42871.08, + "probability": 0.8752 + }, + { + "start": 42871.82, + "end": 42875.02, + "probability": 0.9939 + }, + { + "start": 42876.06, + "end": 42876.72, + "probability": 0.9124 + }, + { + "start": 42876.86, + "end": 42877.84, + "probability": 0.809 + }, + { + "start": 42878.2, + "end": 42879.18, + "probability": 0.6412 + }, + { + "start": 42879.64, + "end": 42882.6, + "probability": 0.973 + }, + { + "start": 42883.8, + "end": 42884.38, + "probability": 0.7961 + }, + { + "start": 42885.06, + "end": 42889.98, + "probability": 0.8964 + }, + { + "start": 42890.16, + "end": 42891.24, + "probability": 0.8945 + }, + { + "start": 42891.24, + "end": 42893.22, + "probability": 0.9904 + }, + { + "start": 42893.64, + "end": 42895.96, + "probability": 0.9705 + }, + { + "start": 42897.22, + "end": 42902.4, + "probability": 0.9917 + }, + { + "start": 42902.84, + "end": 42905.96, + "probability": 0.9883 + }, + { + "start": 42906.06, + "end": 42908.14, + "probability": 0.9789 + }, + { + "start": 42908.28, + "end": 42909.64, + "probability": 0.8278 + }, + { + "start": 42909.8, + "end": 42911.54, + "probability": 0.9857 + }, + { + "start": 42911.62, + "end": 42913.22, + "probability": 0.999 + }, + { + "start": 42914.36, + "end": 42915.16, + "probability": 0.8585 + }, + { + "start": 42915.4, + "end": 42916.12, + "probability": 0.6543 + }, + { + "start": 42916.3, + "end": 42917.66, + "probability": 0.9453 + }, + { + "start": 42918.34, + "end": 42919.56, + "probability": 0.7409 + }, + { + "start": 42920.08, + "end": 42923.12, + "probability": 0.8519 + }, + { + "start": 42924.86, + "end": 42928.04, + "probability": 0.9566 + }, + { + "start": 42928.3, + "end": 42929.08, + "probability": 0.4421 + }, + { + "start": 42929.54, + "end": 42930.48, + "probability": 0.9375 + }, + { + "start": 42930.58, + "end": 42936.14, + "probability": 0.8452 + }, + { + "start": 42936.58, + "end": 42937.72, + "probability": 0.7916 + }, + { + "start": 42937.94, + "end": 42939.18, + "probability": 0.9786 + }, + { + "start": 42939.5, + "end": 42940.6, + "probability": 0.8971 + }, + { + "start": 42940.74, + "end": 42943.41, + "probability": 0.9614 + }, + { + "start": 42943.52, + "end": 42946.6, + "probability": 0.9988 + }, + { + "start": 42947.24, + "end": 42952.32, + "probability": 0.9686 + }, + { + "start": 42952.42, + "end": 42953.42, + "probability": 0.6682 + }, + { + "start": 42953.56, + "end": 42954.34, + "probability": 0.7767 + }, + { + "start": 42954.46, + "end": 42956.91, + "probability": 0.8428 + }, + { + "start": 42958.04, + "end": 42958.74, + "probability": 0.2935 + }, + { + "start": 42958.76, + "end": 42960.89, + "probability": 0.7276 + }, + { + "start": 42983.14, + "end": 42985.86, + "probability": 0.9918 + }, + { + "start": 42985.86, + "end": 42988.56, + "probability": 0.9974 + }, + { + "start": 42989.28, + "end": 42989.9, + "probability": 0.9929 + }, + { + "start": 42990.92, + "end": 42991.76, + "probability": 0.415 + }, + { + "start": 42992.84, + "end": 42995.02, + "probability": 0.9814 + }, + { + "start": 42995.86, + "end": 43000.2, + "probability": 0.9165 + }, + { + "start": 43000.8, + "end": 43001.51, + "probability": 0.9723 + }, + { + "start": 43002.26, + "end": 43004.04, + "probability": 0.6984 + }, + { + "start": 43004.74, + "end": 43006.28, + "probability": 0.986 + }, + { + "start": 43007.12, + "end": 43009.51, + "probability": 0.9772 + }, + { + "start": 43010.04, + "end": 43010.83, + "probability": 0.9506 + }, + { + "start": 43011.86, + "end": 43013.5, + "probability": 0.9154 + }, + { + "start": 43014.14, + "end": 43015.5, + "probability": 0.9788 + }, + { + "start": 43016.18, + "end": 43023.64, + "probability": 0.8729 + }, + { + "start": 43024.5, + "end": 43025.88, + "probability": 0.6533 + }, + { + "start": 43026.4, + "end": 43031.18, + "probability": 0.984 + }, + { + "start": 43031.94, + "end": 43033.02, + "probability": 0.9829 + }, + { + "start": 43033.16, + "end": 43033.42, + "probability": 0.7918 + }, + { + "start": 43033.54, + "end": 43033.72, + "probability": 0.8109 + }, + { + "start": 43033.8, + "end": 43035.24, + "probability": 0.9653 + }, + { + "start": 43035.3, + "end": 43036.54, + "probability": 0.8412 + }, + { + "start": 43037.08, + "end": 43038.3, + "probability": 0.5768 + }, + { + "start": 43039.02, + "end": 43039.02, + "probability": 0.0321 + }, + { + "start": 43039.02, + "end": 43040.88, + "probability": 0.9836 + }, + { + "start": 43041.58, + "end": 43042.7, + "probability": 0.8924 + }, + { + "start": 43043.06, + "end": 43046.91, + "probability": 0.9968 + }, + { + "start": 43047.48, + "end": 43049.19, + "probability": 0.9985 + }, + { + "start": 43049.56, + "end": 43052.18, + "probability": 0.9568 + }, + { + "start": 43052.74, + "end": 43054.32, + "probability": 0.9995 + }, + { + "start": 43054.66, + "end": 43054.98, + "probability": 0.9683 + }, + { + "start": 43055.78, + "end": 43057.8, + "probability": 0.9583 + }, + { + "start": 43058.9, + "end": 43061.94, + "probability": 0.97 + }, + { + "start": 43062.76, + "end": 43064.5, + "probability": 0.9251 + }, + { + "start": 43065.24, + "end": 43069.5, + "probability": 0.8583 + }, + { + "start": 43070.46, + "end": 43071.86, + "probability": 0.9976 + }, + { + "start": 43072.52, + "end": 43076.08, + "probability": 0.9815 + }, + { + "start": 43076.44, + "end": 43077.43, + "probability": 0.9108 + }, + { + "start": 43077.82, + "end": 43078.14, + "probability": 0.9148 + }, + { + "start": 43078.9, + "end": 43079.88, + "probability": 0.0364 + }, + { + "start": 43080.76, + "end": 43082.84, + "probability": 0.364 + }, + { + "start": 43082.84, + "end": 43083.5, + "probability": 0.6465 + }, + { + "start": 43083.5, + "end": 43086.54, + "probability": 0.4855 + }, + { + "start": 43086.86, + "end": 43089.07, + "probability": 0.9723 + }, + { + "start": 43089.52, + "end": 43092.72, + "probability": 0.9675 + }, + { + "start": 43093.1, + "end": 43094.94, + "probability": 0.7692 + }, + { + "start": 43095.24, + "end": 43097.18, + "probability": 0.9628 + }, + { + "start": 43097.48, + "end": 43098.24, + "probability": 0.7454 + }, + { + "start": 43098.7, + "end": 43099.46, + "probability": 0.4265 + }, + { + "start": 43099.68, + "end": 43102.16, + "probability": 0.8484 + }, + { + "start": 43102.46, + "end": 43103.4, + "probability": 0.9795 + }, + { + "start": 43103.74, + "end": 43104.7, + "probability": 0.9937 + }, + { + "start": 43104.9, + "end": 43106.13, + "probability": 0.9907 + }, + { + "start": 43106.66, + "end": 43109.01, + "probability": 0.9333 + }, + { + "start": 43109.3, + "end": 43110.92, + "probability": 0.6658 + }, + { + "start": 43111.06, + "end": 43113.95, + "probability": 0.9989 + }, + { + "start": 43114.96, + "end": 43116.26, + "probability": 0.9796 + }, + { + "start": 43116.6, + "end": 43117.64, + "probability": 0.9722 + }, + { + "start": 43117.88, + "end": 43118.84, + "probability": 0.717 + }, + { + "start": 43118.9, + "end": 43120.76, + "probability": 0.9873 + }, + { + "start": 43121.1, + "end": 43123.4, + "probability": 0.7507 + }, + { + "start": 43123.86, + "end": 43124.24, + "probability": 0.631 + }, + { + "start": 43124.56, + "end": 43127.84, + "probability": 0.8837 + }, + { + "start": 43128.26, + "end": 43129.92, + "probability": 0.9705 + }, + { + "start": 43130.3, + "end": 43130.92, + "probability": 0.9144 + }, + { + "start": 43131.0, + "end": 43132.18, + "probability": 0.982 + }, + { + "start": 43132.7, + "end": 43134.94, + "probability": 0.7741 + }, + { + "start": 43135.28, + "end": 43137.8, + "probability": 0.9556 + }, + { + "start": 43138.08, + "end": 43138.86, + "probability": 0.7596 + }, + { + "start": 43139.22, + "end": 43140.5, + "probability": 0.9526 + }, + { + "start": 43140.9, + "end": 43141.48, + "probability": 0.9644 + }, + { + "start": 43141.68, + "end": 43142.3, + "probability": 0.8076 + }, + { + "start": 43142.54, + "end": 43145.56, + "probability": 0.9854 + }, + { + "start": 43145.9, + "end": 43151.94, + "probability": 0.8494 + }, + { + "start": 43152.4, + "end": 43152.83, + "probability": 0.6102 + }, + { + "start": 43153.8, + "end": 43155.62, + "probability": 0.9946 + }, + { + "start": 43155.62, + "end": 43157.29, + "probability": 0.9995 + }, + { + "start": 43157.48, + "end": 43158.17, + "probability": 0.9961 + }, + { + "start": 43158.78, + "end": 43161.68, + "probability": 0.9952 + }, + { + "start": 43162.38, + "end": 43163.06, + "probability": 0.9939 + }, + { + "start": 43163.66, + "end": 43165.82, + "probability": 0.9943 + }, + { + "start": 43166.38, + "end": 43168.34, + "probability": 0.4951 + }, + { + "start": 43168.6, + "end": 43169.12, + "probability": 0.885 + }, + { + "start": 43169.74, + "end": 43172.14, + "probability": 0.9961 + }, + { + "start": 43172.14, + "end": 43173.96, + "probability": 0.9958 + }, + { + "start": 43174.28, + "end": 43175.98, + "probability": 0.9546 + }, + { + "start": 43176.5, + "end": 43177.82, + "probability": 0.8442 + }, + { + "start": 43178.5, + "end": 43181.02, + "probability": 0.9358 + }, + { + "start": 43181.5, + "end": 43184.66, + "probability": 0.9351 + }, + { + "start": 43185.02, + "end": 43186.48, + "probability": 0.9848 + }, + { + "start": 43187.0, + "end": 43188.4, + "probability": 0.9014 + }, + { + "start": 43188.82, + "end": 43190.18, + "probability": 0.9545 + }, + { + "start": 43190.18, + "end": 43190.8, + "probability": 0.6597 + }, + { + "start": 43191.12, + "end": 43191.86, + "probability": 0.8405 + }, + { + "start": 43192.38, + "end": 43194.58, + "probability": 0.55 + }, + { + "start": 43194.96, + "end": 43198.94, + "probability": 0.9459 + }, + { + "start": 43199.0, + "end": 43200.62, + "probability": 0.8388 + }, + { + "start": 43200.66, + "end": 43201.62, + "probability": 0.9967 + }, + { + "start": 43202.32, + "end": 43204.8, + "probability": 0.9845 + }, + { + "start": 43205.08, + "end": 43207.28, + "probability": 0.9094 + }, + { + "start": 43207.28, + "end": 43207.9, + "probability": 0.7224 + }, + { + "start": 43209.06, + "end": 43211.1, + "probability": 0.7941 + }, + { + "start": 43229.58, + "end": 43231.68, + "probability": 0.5099 + }, + { + "start": 43235.17, + "end": 43237.25, + "probability": 0.7497 + }, + { + "start": 43239.59, + "end": 43240.97, + "probability": 0.2004 + }, + { + "start": 43243.13, + "end": 43244.95, + "probability": 0.887 + }, + { + "start": 43245.75, + "end": 43249.27, + "probability": 0.7882 + }, + { + "start": 43250.83, + "end": 43250.93, + "probability": 0.9004 + }, + { + "start": 43251.73, + "end": 43254.31, + "probability": 0.9656 + }, + { + "start": 43255.43, + "end": 43257.63, + "probability": 0.9616 + }, + { + "start": 43258.69, + "end": 43261.19, + "probability": 0.9564 + }, + { + "start": 43262.61, + "end": 43264.45, + "probability": 0.8305 + }, + { + "start": 43265.07, + "end": 43268.05, + "probability": 0.9491 + }, + { + "start": 43268.05, + "end": 43271.28, + "probability": 0.999 + }, + { + "start": 43272.19, + "end": 43274.51, + "probability": 0.7046 + }, + { + "start": 43274.61, + "end": 43276.73, + "probability": 0.7362 + }, + { + "start": 43276.81, + "end": 43277.73, + "probability": 0.2605 + }, + { + "start": 43278.37, + "end": 43279.01, + "probability": 0.4329 + }, + { + "start": 43279.01, + "end": 43280.07, + "probability": 0.9876 + }, + { + "start": 43280.31, + "end": 43280.85, + "probability": 0.8099 + }, + { + "start": 43280.93, + "end": 43282.99, + "probability": 0.7437 + }, + { + "start": 43283.43, + "end": 43286.81, + "probability": 0.9188 + }, + { + "start": 43287.43, + "end": 43288.78, + "probability": 0.8999 + }, + { + "start": 43288.85, + "end": 43289.79, + "probability": 0.9917 + }, + { + "start": 43290.23, + "end": 43294.39, + "probability": 0.9902 + }, + { + "start": 43295.29, + "end": 43296.12, + "probability": 0.7657 + }, + { + "start": 43296.83, + "end": 43300.47, + "probability": 0.9889 + }, + { + "start": 43301.11, + "end": 43304.81, + "probability": 0.9974 + }, + { + "start": 43304.81, + "end": 43308.65, + "probability": 0.999 + }, + { + "start": 43309.39, + "end": 43313.71, + "probability": 0.9965 + }, + { + "start": 43313.97, + "end": 43314.41, + "probability": 0.8755 + }, + { + "start": 43314.51, + "end": 43320.87, + "probability": 0.993 + }, + { + "start": 43320.87, + "end": 43326.29, + "probability": 0.9978 + }, + { + "start": 43327.05, + "end": 43332.37, + "probability": 0.9985 + }, + { + "start": 43332.37, + "end": 43338.31, + "probability": 0.999 + }, + { + "start": 43338.95, + "end": 43344.07, + "probability": 0.9972 + }, + { + "start": 43345.39, + "end": 43349.85, + "probability": 0.9978 + }, + { + "start": 43350.57, + "end": 43353.93, + "probability": 0.9953 + }, + { + "start": 43354.43, + "end": 43358.13, + "probability": 0.9985 + }, + { + "start": 43358.79, + "end": 43362.17, + "probability": 0.9817 + }, + { + "start": 43362.79, + "end": 43366.47, + "probability": 0.9906 + }, + { + "start": 43366.47, + "end": 43371.11, + "probability": 0.99 + }, + { + "start": 43371.81, + "end": 43374.21, + "probability": 0.943 + }, + { + "start": 43374.83, + "end": 43379.67, + "probability": 0.9623 + }, + { + "start": 43380.39, + "end": 43383.57, + "probability": 0.9613 + }, + { + "start": 43383.57, + "end": 43387.33, + "probability": 0.866 + }, + { + "start": 43387.83, + "end": 43389.33, + "probability": 0.9802 + }, + { + "start": 43389.43, + "end": 43394.75, + "probability": 0.8045 + }, + { + "start": 43394.75, + "end": 43398.27, + "probability": 0.9878 + }, + { + "start": 43398.73, + "end": 43399.29, + "probability": 0.7663 + }, + { + "start": 43399.85, + "end": 43403.41, + "probability": 0.9953 + }, + { + "start": 43403.75, + "end": 43404.75, + "probability": 0.3534 + }, + { + "start": 43404.83, + "end": 43408.51, + "probability": 0.9852 + }, + { + "start": 43409.41, + "end": 43411.31, + "probability": 0.8813 + }, + { + "start": 43411.81, + "end": 43416.57, + "probability": 0.9909 + }, + { + "start": 43417.15, + "end": 43421.57, + "probability": 0.9947 + }, + { + "start": 43422.31, + "end": 43427.61, + "probability": 0.9686 + }, + { + "start": 43427.63, + "end": 43433.01, + "probability": 0.9861 + }, + { + "start": 43433.45, + "end": 43436.69, + "probability": 0.9513 + }, + { + "start": 43436.69, + "end": 43440.49, + "probability": 0.998 + }, + { + "start": 43440.83, + "end": 43447.57, + "probability": 0.9881 + }, + { + "start": 43447.83, + "end": 43448.21, + "probability": 0.5036 + }, + { + "start": 43448.31, + "end": 43450.91, + "probability": 0.849 + }, + { + "start": 43451.39, + "end": 43453.54, + "probability": 0.9988 + }, + { + "start": 43454.03, + "end": 43455.69, + "probability": 0.8958 + }, + { + "start": 43456.23, + "end": 43459.43, + "probability": 0.9725 + }, + { + "start": 43459.55, + "end": 43462.23, + "probability": 0.9566 + }, + { + "start": 43462.77, + "end": 43465.33, + "probability": 0.9396 + }, + { + "start": 43465.75, + "end": 43468.23, + "probability": 0.8813 + }, + { + "start": 43468.61, + "end": 43469.19, + "probability": 0.8638 + }, + { + "start": 43470.17, + "end": 43471.81, + "probability": 0.87 + }, + { + "start": 43472.07, + "end": 43472.61, + "probability": 0.7644 + }, + { + "start": 43473.13, + "end": 43475.71, + "probability": 0.908 + }, + { + "start": 43475.93, + "end": 43476.35, + "probability": 0.8621 + }, + { + "start": 43477.81, + "end": 43479.23, + "probability": 0.1327 + }, + { + "start": 43481.37, + "end": 43486.85, + "probability": 0.1523 + }, + { + "start": 43515.43, + "end": 43517.85, + "probability": 0.972 + }, + { + "start": 43518.01, + "end": 43520.15, + "probability": 0.8595 + }, + { + "start": 43520.29, + "end": 43522.25, + "probability": 0.9495 + }, + { + "start": 43523.87, + "end": 43527.65, + "probability": 0.9956 + }, + { + "start": 43527.67, + "end": 43532.78, + "probability": 0.9489 + }, + { + "start": 43533.71, + "end": 43535.89, + "probability": 0.7971 + }, + { + "start": 43537.15, + "end": 43539.85, + "probability": 0.9553 + }, + { + "start": 43540.17, + "end": 43542.87, + "probability": 0.9587 + }, + { + "start": 43544.41, + "end": 43546.77, + "probability": 0.9944 + }, + { + "start": 43547.45, + "end": 43548.17, + "probability": 0.7604 + }, + { + "start": 43549.31, + "end": 43550.09, + "probability": 0.7741 + }, + { + "start": 43550.19, + "end": 43555.13, + "probability": 0.9971 + }, + { + "start": 43555.73, + "end": 43558.11, + "probability": 0.9946 + }, + { + "start": 43558.87, + "end": 43559.07, + "probability": 0.9591 + }, + { + "start": 43560.29, + "end": 43562.47, + "probability": 0.9861 + }, + { + "start": 43562.77, + "end": 43564.67, + "probability": 0.9974 + }, + { + "start": 43566.39, + "end": 43570.05, + "probability": 0.9992 + }, + { + "start": 43570.37, + "end": 43571.73, + "probability": 0.8826 + }, + { + "start": 43572.39, + "end": 43578.51, + "probability": 0.9932 + }, + { + "start": 43579.03, + "end": 43583.23, + "probability": 0.9914 + }, + { + "start": 43584.15, + "end": 43587.15, + "probability": 0.9822 + }, + { + "start": 43587.71, + "end": 43592.57, + "probability": 0.7019 + }, + { + "start": 43594.13, + "end": 43597.17, + "probability": 0.9469 + }, + { + "start": 43601.47, + "end": 43606.65, + "probability": 0.9585 + }, + { + "start": 43606.71, + "end": 43608.11, + "probability": 0.9586 + }, + { + "start": 43608.71, + "end": 43612.01, + "probability": 0.9979 + }, + { + "start": 43612.01, + "end": 43617.75, + "probability": 0.998 + }, + { + "start": 43617.95, + "end": 43618.43, + "probability": 0.3441 + }, + { + "start": 43619.21, + "end": 43621.69, + "probability": 0.9977 + }, + { + "start": 43622.33, + "end": 43624.59, + "probability": 0.9738 + }, + { + "start": 43626.97, + "end": 43629.53, + "probability": 0.9912 + }, + { + "start": 43630.83, + "end": 43632.11, + "probability": 0.9919 + }, + { + "start": 43632.75, + "end": 43634.69, + "probability": 0.926 + }, + { + "start": 43635.19, + "end": 43635.91, + "probability": 0.9134 + }, + { + "start": 43636.01, + "end": 43638.85, + "probability": 0.9622 + }, + { + "start": 43639.21, + "end": 43640.91, + "probability": 0.9724 + }, + { + "start": 43641.55, + "end": 43643.31, + "probability": 0.9756 + }, + { + "start": 43643.77, + "end": 43648.69, + "probability": 0.9921 + }, + { + "start": 43649.21, + "end": 43652.97, + "probability": 0.9775 + }, + { + "start": 43654.43, + "end": 43655.65, + "probability": 0.9109 + }, + { + "start": 43656.21, + "end": 43656.87, + "probability": 0.8669 + }, + { + "start": 43656.95, + "end": 43657.55, + "probability": 0.8084 + }, + { + "start": 43657.63, + "end": 43657.95, + "probability": 0.8101 + }, + { + "start": 43658.01, + "end": 43658.43, + "probability": 0.9269 + }, + { + "start": 43658.51, + "end": 43659.03, + "probability": 0.7822 + }, + { + "start": 43659.13, + "end": 43659.43, + "probability": 0.4538 + }, + { + "start": 43659.53, + "end": 43660.35, + "probability": 0.9357 + }, + { + "start": 43660.87, + "end": 43663.89, + "probability": 0.9661 + }, + { + "start": 43663.93, + "end": 43667.51, + "probability": 0.9728 + }, + { + "start": 43667.65, + "end": 43669.15, + "probability": 0.927 + }, + { + "start": 43669.93, + "end": 43673.77, + "probability": 0.9617 + }, + { + "start": 43674.39, + "end": 43675.21, + "probability": 0.8318 + }, + { + "start": 43676.13, + "end": 43679.51, + "probability": 0.9656 + }, + { + "start": 43679.61, + "end": 43681.87, + "probability": 0.9753 + }, + { + "start": 43682.65, + "end": 43685.21, + "probability": 0.9661 + }, + { + "start": 43685.83, + "end": 43693.69, + "probability": 0.8336 + }, + { + "start": 43694.49, + "end": 43696.67, + "probability": 0.7336 + }, + { + "start": 43696.69, + "end": 43702.29, + "probability": 0.9946 + }, + { + "start": 43702.71, + "end": 43703.05, + "probability": 0.7356 + }, + { + "start": 43703.11, + "end": 43703.83, + "probability": 0.9781 + }, + { + "start": 43703.85, + "end": 43705.39, + "probability": 0.994 + }, + { + "start": 43705.61, + "end": 43705.89, + "probability": 0.4612 + }, + { + "start": 43706.31, + "end": 43707.07, + "probability": 0.6729 + }, + { + "start": 43707.19, + "end": 43709.29, + "probability": 0.6669 + }, + { + "start": 43710.39, + "end": 43711.21, + "probability": 0.4868 + }, + { + "start": 43711.21, + "end": 43712.87, + "probability": 0.9297 + }, + { + "start": 43731.05, + "end": 43731.77, + "probability": 0.6415 + }, + { + "start": 43733.79, + "end": 43736.33, + "probability": 0.9871 + }, + { + "start": 43736.79, + "end": 43739.7, + "probability": 0.9924 + }, + { + "start": 43740.89, + "end": 43743.75, + "probability": 0.9608 + }, + { + "start": 43743.75, + "end": 43747.67, + "probability": 0.9985 + }, + { + "start": 43748.31, + "end": 43752.53, + "probability": 0.8004 + }, + { + "start": 43754.09, + "end": 43755.39, + "probability": 0.8851 + }, + { + "start": 43756.91, + "end": 43760.55, + "probability": 0.9927 + }, + { + "start": 43761.01, + "end": 43762.91, + "probability": 0.964 + }, + { + "start": 43763.57, + "end": 43766.45, + "probability": 0.9507 + }, + { + "start": 43766.99, + "end": 43768.73, + "probability": 0.983 + }, + { + "start": 43769.13, + "end": 43773.45, + "probability": 0.9975 + }, + { + "start": 43774.69, + "end": 43778.37, + "probability": 0.9942 + }, + { + "start": 43780.91, + "end": 43785.81, + "probability": 0.9878 + }, + { + "start": 43786.61, + "end": 43788.73, + "probability": 0.9851 + }, + { + "start": 43789.95, + "end": 43791.51, + "probability": 0.8587 + }, + { + "start": 43792.17, + "end": 43794.61, + "probability": 0.9474 + }, + { + "start": 43797.45, + "end": 43798.87, + "probability": 0.9991 + }, + { + "start": 43798.97, + "end": 43801.17, + "probability": 0.9977 + }, + { + "start": 43801.73, + "end": 43803.53, + "probability": 0.9837 + }, + { + "start": 43803.93, + "end": 43808.19, + "probability": 0.9552 + }, + { + "start": 43808.33, + "end": 43809.83, + "probability": 0.969 + }, + { + "start": 43809.87, + "end": 43810.57, + "probability": 0.7227 + }, + { + "start": 43811.41, + "end": 43812.31, + "probability": 0.9937 + }, + { + "start": 43812.55, + "end": 43813.23, + "probability": 0.9753 + }, + { + "start": 43814.93, + "end": 43816.17, + "probability": 0.9963 + }, + { + "start": 43817.53, + "end": 43821.41, + "probability": 0.9898 + }, + { + "start": 43824.33, + "end": 43824.75, + "probability": 0.9577 + }, + { + "start": 43826.61, + "end": 43827.99, + "probability": 0.0691 + }, + { + "start": 43828.57, + "end": 43830.37, + "probability": 0.8239 + }, + { + "start": 43831.07, + "end": 43831.69, + "probability": 0.8553 + }, + { + "start": 43832.35, + "end": 43832.37, + "probability": 0.4677 + }, + { + "start": 43832.37, + "end": 43834.07, + "probability": 0.8766 + }, + { + "start": 43834.61, + "end": 43839.41, + "probability": 0.9746 + }, + { + "start": 43839.41, + "end": 43844.49, + "probability": 0.9978 + }, + { + "start": 43845.09, + "end": 43847.21, + "probability": 0.9917 + }, + { + "start": 43848.43, + "end": 43850.43, + "probability": 0.9919 + }, + { + "start": 43851.29, + "end": 43853.19, + "probability": 0.9574 + }, + { + "start": 43853.69, + "end": 43855.91, + "probability": 0.965 + }, + { + "start": 43856.27, + "end": 43861.13, + "probability": 0.9771 + }, + { + "start": 43861.51, + "end": 43864.37, + "probability": 0.9909 + }, + { + "start": 43864.99, + "end": 43868.67, + "probability": 0.9891 + }, + { + "start": 43868.67, + "end": 43873.99, + "probability": 0.9987 + }, + { + "start": 43874.89, + "end": 43882.91, + "probability": 0.9949 + }, + { + "start": 43883.97, + "end": 43886.75, + "probability": 0.9988 + }, + { + "start": 43888.13, + "end": 43889.17, + "probability": 0.8963 + }, + { + "start": 43889.85, + "end": 43891.95, + "probability": 0.9327 + }, + { + "start": 43892.61, + "end": 43896.85, + "probability": 0.8414 + }, + { + "start": 43896.91, + "end": 43901.59, + "probability": 0.9807 + }, + { + "start": 43901.65, + "end": 43903.15, + "probability": 0.9668 + }, + { + "start": 43904.19, + "end": 43908.35, + "probability": 0.9279 + }, + { + "start": 43908.81, + "end": 43909.87, + "probability": 0.7159 + }, + { + "start": 43910.75, + "end": 43913.41, + "probability": 0.7972 + }, + { + "start": 43913.83, + "end": 43919.29, + "probability": 0.8542 + }, + { + "start": 43919.45, + "end": 43920.97, + "probability": 0.5562 + }, + { + "start": 43921.15, + "end": 43922.67, + "probability": 0.8597 + }, + { + "start": 43923.17, + "end": 43927.85, + "probability": 0.9934 + }, + { + "start": 43927.85, + "end": 43932.33, + "probability": 0.9952 + }, + { + "start": 43932.35, + "end": 43934.25, + "probability": 0.8044 + }, + { + "start": 43935.05, + "end": 43936.97, + "probability": 0.9225 + }, + { + "start": 43937.43, + "end": 43939.91, + "probability": 0.9786 + }, + { + "start": 43940.41, + "end": 43942.17, + "probability": 0.7252 + }, + { + "start": 43942.23, + "end": 43944.11, + "probability": 0.9483 + }, + { + "start": 43944.29, + "end": 43946.93, + "probability": 0.9885 + }, + { + "start": 43947.25, + "end": 43951.43, + "probability": 0.7438 + }, + { + "start": 43951.97, + "end": 43955.19, + "probability": 0.7742 + }, + { + "start": 43955.27, + "end": 43955.27, + "probability": 0.5838 + }, + { + "start": 43955.27, + "end": 43956.39, + "probability": 0.7967 + }, + { + "start": 43956.61, + "end": 43960.17, + "probability": 0.9178 + }, + { + "start": 43960.97, + "end": 43961.19, + "probability": 0.4793 + }, + { + "start": 43961.19, + "end": 43961.45, + "probability": 0.8182 + }, + { + "start": 43962.31, + "end": 43963.55, + "probability": 0.8418 + }, + { + "start": 43963.93, + "end": 43964.53, + "probability": 0.4553 + }, + { + "start": 43964.67, + "end": 43966.07, + "probability": 0.6433 + }, + { + "start": 43966.29, + "end": 43968.11, + "probability": 0.8531 + }, + { + "start": 43968.29, + "end": 43969.71, + "probability": 0.9314 + }, + { + "start": 43971.07, + "end": 43971.75, + "probability": 0.9571 + }, + { + "start": 43971.87, + "end": 43973.33, + "probability": 0.7119 + }, + { + "start": 43973.43, + "end": 43973.91, + "probability": 0.9478 + }, + { + "start": 43974.41, + "end": 43975.67, + "probability": 0.9906 + }, + { + "start": 43976.05, + "end": 43976.65, + "probability": 0.9353 + }, + { + "start": 43976.81, + "end": 43977.99, + "probability": 0.9559 + }, + { + "start": 43978.09, + "end": 43979.35, + "probability": 0.6624 + }, + { + "start": 43979.85, + "end": 43981.31, + "probability": 0.9767 + }, + { + "start": 43982.29, + "end": 43984.55, + "probability": 0.8737 + }, + { + "start": 43986.09, + "end": 43987.11, + "probability": 0.9655 + }, + { + "start": 43987.67, + "end": 43989.33, + "probability": 0.9921 + }, + { + "start": 43990.25, + "end": 43990.93, + "probability": 0.7385 + }, + { + "start": 43991.01, + "end": 43993.16, + "probability": 0.8286 + }, + { + "start": 43994.23, + "end": 43994.75, + "probability": 0.1112 + }, + { + "start": 43994.75, + "end": 43995.57, + "probability": 0.6476 + }, + { + "start": 43995.81, + "end": 43996.57, + "probability": 0.0826 + }, + { + "start": 43996.57, + "end": 43997.29, + "probability": 0.0549 + }, + { + "start": 44019.65, + "end": 44019.87, + "probability": 0.0246 + }, + { + "start": 44019.87, + "end": 44021.39, + "probability": 0.8043 + }, + { + "start": 44021.91, + "end": 44025.31, + "probability": 0.7384 + }, + { + "start": 44026.69, + "end": 44028.65, + "probability": 0.9976 + }, + { + "start": 44030.37, + "end": 44032.99, + "probability": 0.9972 + }, + { + "start": 44033.93, + "end": 44035.87, + "probability": 0.9681 + }, + { + "start": 44036.81, + "end": 44038.53, + "probability": 0.9956 + }, + { + "start": 44039.03, + "end": 44040.34, + "probability": 0.9502 + }, + { + "start": 44040.51, + "end": 44040.61, + "probability": 0.2142 + }, + { + "start": 44041.87, + "end": 44043.27, + "probability": 0.9834 + }, + { + "start": 44044.41, + "end": 44045.97, + "probability": 0.9919 + }, + { + "start": 44046.67, + "end": 44047.71, + "probability": 0.9856 + }, + { + "start": 44047.79, + "end": 44048.35, + "probability": 0.723 + }, + { + "start": 44048.89, + "end": 44052.08, + "probability": 0.9585 + }, + { + "start": 44053.03, + "end": 44054.57, + "probability": 0.6016 + }, + { + "start": 44056.45, + "end": 44058.97, + "probability": 0.9906 + }, + { + "start": 44060.41, + "end": 44062.71, + "probability": 0.9952 + }, + { + "start": 44063.85, + "end": 44066.13, + "probability": 0.7871 + }, + { + "start": 44067.11, + "end": 44068.49, + "probability": 0.8621 + }, + { + "start": 44070.27, + "end": 44071.43, + "probability": 0.9279 + }, + { + "start": 44072.31, + "end": 44072.92, + "probability": 0.6243 + }, + { + "start": 44074.37, + "end": 44076.25, + "probability": 0.7327 + }, + { + "start": 44077.37, + "end": 44081.13, + "probability": 0.9932 + }, + { + "start": 44081.13, + "end": 44083.51, + "probability": 0.9106 + }, + { + "start": 44083.51, + "end": 44084.63, + "probability": 0.7812 + }, + { + "start": 44086.25, + "end": 44089.43, + "probability": 0.9993 + }, + { + "start": 44089.97, + "end": 44093.66, + "probability": 0.985 + }, + { + "start": 44095.51, + "end": 44098.65, + "probability": 0.6663 + }, + { + "start": 44099.39, + "end": 44102.71, + "probability": 0.9724 + }, + { + "start": 44103.31, + "end": 44104.17, + "probability": 0.9916 + }, + { + "start": 44105.21, + "end": 44106.45, + "probability": 0.9686 + }, + { + "start": 44107.13, + "end": 44109.77, + "probability": 0.9851 + }, + { + "start": 44110.21, + "end": 44112.21, + "probability": 0.9993 + }, + { + "start": 44112.21, + "end": 44115.99, + "probability": 0.9985 + }, + { + "start": 44116.13, + "end": 44116.81, + "probability": 0.6175 + }, + { + "start": 44117.55, + "end": 44118.5, + "probability": 0.9573 + }, + { + "start": 44118.93, + "end": 44119.21, + "probability": 0.6009 + }, + { + "start": 44119.25, + "end": 44120.11, + "probability": 0.9592 + }, + { + "start": 44121.41, + "end": 44123.25, + "probability": 0.9532 + }, + { + "start": 44123.95, + "end": 44125.83, + "probability": 0.9447 + }, + { + "start": 44126.89, + "end": 44128.31, + "probability": 0.9897 + }, + { + "start": 44128.93, + "end": 44133.47, + "probability": 0.8705 + }, + { + "start": 44134.43, + "end": 44138.23, + "probability": 0.9014 + }, + { + "start": 44138.53, + "end": 44139.45, + "probability": 0.8421 + }, + { + "start": 44141.55, + "end": 44144.35, + "probability": 0.9359 + }, + { + "start": 44145.51, + "end": 44147.57, + "probability": 0.9807 + }, + { + "start": 44147.97, + "end": 44150.99, + "probability": 0.9915 + }, + { + "start": 44152.39, + "end": 44152.53, + "probability": 0.811 + }, + { + "start": 44153.21, + "end": 44154.23, + "probability": 0.6367 + }, + { + "start": 44154.99, + "end": 44155.05, + "probability": 0.1172 + }, + { + "start": 44155.05, + "end": 44157.29, + "probability": 0.8202 + }, + { + "start": 44158.69, + "end": 44159.35, + "probability": 0.5283 + }, + { + "start": 44159.45, + "end": 44159.99, + "probability": 0.977 + }, + { + "start": 44162.45, + "end": 44163.59, + "probability": 0.6092 + }, + { + "start": 44183.45, + "end": 44183.45, + "probability": 0.0243 + }, + { + "start": 44183.45, + "end": 44186.17, + "probability": 0.7112 + }, + { + "start": 44187.09, + "end": 44190.73, + "probability": 0.86 + }, + { + "start": 44191.87, + "end": 44198.31, + "probability": 0.8716 + }, + { + "start": 44198.31, + "end": 44201.63, + "probability": 0.9995 + }, + { + "start": 44202.45, + "end": 44203.55, + "probability": 0.9985 + }, + { + "start": 44205.01, + "end": 44206.01, + "probability": 0.9644 + }, + { + "start": 44206.35, + "end": 44208.93, + "probability": 0.9971 + }, + { + "start": 44209.63, + "end": 44215.19, + "probability": 0.9526 + }, + { + "start": 44215.35, + "end": 44216.01, + "probability": 0.5952 + }, + { + "start": 44216.09, + "end": 44218.21, + "probability": 0.9235 + }, + { + "start": 44219.95, + "end": 44223.69, + "probability": 0.4647 + }, + { + "start": 44225.45, + "end": 44229.83, + "probability": 0.8189 + }, + { + "start": 44231.17, + "end": 44234.27, + "probability": 0.9426 + }, + { + "start": 44234.27, + "end": 44238.57, + "probability": 0.7025 + }, + { + "start": 44240.81, + "end": 44247.49, + "probability": 0.9918 + }, + { + "start": 44248.61, + "end": 44254.85, + "probability": 0.9939 + }, + { + "start": 44255.79, + "end": 44258.35, + "probability": 0.8739 + }, + { + "start": 44258.45, + "end": 44260.97, + "probability": 0.5984 + }, + { + "start": 44261.79, + "end": 44263.99, + "probability": 0.7202 + }, + { + "start": 44265.13, + "end": 44265.55, + "probability": 0.0482 + }, + { + "start": 44265.55, + "end": 44265.55, + "probability": 0.0215 + }, + { + "start": 44265.55, + "end": 44266.97, + "probability": 0.4555 + }, + { + "start": 44267.51, + "end": 44269.85, + "probability": 0.457 + }, + { + "start": 44270.39, + "end": 44272.37, + "probability": 0.929 + }, + { + "start": 44272.89, + "end": 44275.59, + "probability": 0.6928 + }, + { + "start": 44275.69, + "end": 44277.81, + "probability": 0.9724 + }, + { + "start": 44278.79, + "end": 44278.99, + "probability": 0.2857 + }, + { + "start": 44279.23, + "end": 44282.51, + "probability": 0.9741 + }, + { + "start": 44282.79, + "end": 44284.25, + "probability": 0.5532 + }, + { + "start": 44284.41, + "end": 44285.15, + "probability": 0.5656 + }, + { + "start": 44285.27, + "end": 44288.31, + "probability": 0.309 + }, + { + "start": 44288.57, + "end": 44290.47, + "probability": 0.5994 + }, + { + "start": 44291.67, + "end": 44296.69, + "probability": 0.8467 + }, + { + "start": 44296.81, + "end": 44297.29, + "probability": 0.67 + }, + { + "start": 44297.37, + "end": 44298.17, + "probability": 0.8361 + }, + { + "start": 44299.09, + "end": 44299.53, + "probability": 0.2902 + }, + { + "start": 44299.61, + "end": 44303.83, + "probability": 0.9264 + }, + { + "start": 44304.03, + "end": 44306.81, + "probability": 0.9765 + }, + { + "start": 44306.97, + "end": 44308.37, + "probability": 0.89 + }, + { + "start": 44309.45, + "end": 44312.63, + "probability": 0.8887 + }, + { + "start": 44313.47, + "end": 44316.11, + "probability": 0.9929 + }, + { + "start": 44316.89, + "end": 44318.47, + "probability": 0.7477 + }, + { + "start": 44319.97, + "end": 44320.68, + "probability": 0.1279 + }, + { + "start": 44321.95, + "end": 44328.07, + "probability": 0.9824 + }, + { + "start": 44328.27, + "end": 44330.91, + "probability": 0.0663 + }, + { + "start": 44330.91, + "end": 44330.98, + "probability": 0.1417 + }, + { + "start": 44331.39, + "end": 44331.59, + "probability": 0.153 + }, + { + "start": 44333.91, + "end": 44335.07, + "probability": 0.1753 + }, + { + "start": 44335.07, + "end": 44336.41, + "probability": 0.3778 + }, + { + "start": 44336.65, + "end": 44338.81, + "probability": 0.0989 + }, + { + "start": 44340.47, + "end": 44341.27, + "probability": 0.0044 + }, + { + "start": 44345.01, + "end": 44345.27, + "probability": 0.0732 + }, + { + "start": 44345.27, + "end": 44346.79, + "probability": 0.0187 + }, + { + "start": 44346.79, + "end": 44348.64, + "probability": 0.0612 + }, + { + "start": 44349.47, + "end": 44351.09, + "probability": 0.2471 + }, + { + "start": 44357.51, + "end": 44358.27, + "probability": 0.1294 + }, + { + "start": 44358.75, + "end": 44359.79, + "probability": 0.065 + }, + { + "start": 44359.83, + "end": 44362.63, + "probability": 0.0576 + }, + { + "start": 44364.25, + "end": 44366.91, + "probability": 0.1736 + }, + { + "start": 44368.39, + "end": 44368.97, + "probability": 0.0115 + }, + { + "start": 44371.23, + "end": 44371.51, + "probability": 0.0372 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.0, + "probability": 0.0 + }, + { + "start": 44421.0, + "end": 44421.52, + "probability": 0.725 + }, + { + "start": 44421.96, + "end": 44423.87, + "probability": 0.8223 + }, + { + "start": 44425.2, + "end": 44425.86, + "probability": 0.1018 + }, + { + "start": 44428.74, + "end": 44428.82, + "probability": 0.0 + }, + { + "start": 44442.0, + "end": 44442.82, + "probability": 0.011 + }, + { + "start": 44443.3, + "end": 44445.06, + "probability": 0.9642 + }, + { + "start": 44445.06, + "end": 44446.32, + "probability": 0.8752 + }, + { + "start": 44446.54, + "end": 44449.98, + "probability": 0.9882 + }, + { + "start": 44450.72, + "end": 44453.8, + "probability": 0.9571 + }, + { + "start": 44454.48, + "end": 44457.84, + "probability": 0.9954 + }, + { + "start": 44459.12, + "end": 44460.26, + "probability": 0.5819 + }, + { + "start": 44461.08, + "end": 44463.52, + "probability": 0.813 + }, + { + "start": 44465.0, + "end": 44466.78, + "probability": 0.886 + }, + { + "start": 44466.96, + "end": 44468.56, + "probability": 0.9815 + }, + { + "start": 44469.2, + "end": 44471.46, + "probability": 0.9885 + }, + { + "start": 44471.84, + "end": 44474.12, + "probability": 0.9283 + }, + { + "start": 44474.46, + "end": 44476.78, + "probability": 0.9481 + }, + { + "start": 44477.34, + "end": 44479.14, + "probability": 0.9644 + }, + { + "start": 44480.16, + "end": 44484.22, + "probability": 0.9121 + }, + { + "start": 44484.94, + "end": 44486.62, + "probability": 0.906 + }, + { + "start": 44486.76, + "end": 44489.06, + "probability": 0.7501 + }, + { + "start": 44489.3, + "end": 44490.54, + "probability": 0.969 + }, + { + "start": 44490.7, + "end": 44491.12, + "probability": 0.4351 + }, + { + "start": 44491.86, + "end": 44492.06, + "probability": 0.2629 + }, + { + "start": 44492.18, + "end": 44493.04, + "probability": 0.9833 + }, + { + "start": 44493.22, + "end": 44495.66, + "probability": 0.978 + }, + { + "start": 44496.24, + "end": 44497.16, + "probability": 0.9105 + }, + { + "start": 44497.82, + "end": 44500.4, + "probability": 0.9578 + }, + { + "start": 44500.84, + "end": 44504.3, + "probability": 0.8259 + }, + { + "start": 44504.84, + "end": 44506.38, + "probability": 0.9956 + }, + { + "start": 44506.5, + "end": 44509.48, + "probability": 0.9941 + }, + { + "start": 44509.62, + "end": 44510.76, + "probability": 0.8883 + }, + { + "start": 44510.88, + "end": 44511.54, + "probability": 0.95 + }, + { + "start": 44511.96, + "end": 44513.99, + "probability": 0.8842 + }, + { + "start": 44514.8, + "end": 44519.42, + "probability": 0.9913 + }, + { + "start": 44519.98, + "end": 44523.2, + "probability": 0.9964 + }, + { + "start": 44523.66, + "end": 44526.32, + "probability": 0.8971 + }, + { + "start": 44526.66, + "end": 44528.54, + "probability": 0.9967 + }, + { + "start": 44528.94, + "end": 44529.78, + "probability": 0.9881 + }, + { + "start": 44530.3, + "end": 44531.4, + "probability": 0.8848 + }, + { + "start": 44531.76, + "end": 44534.62, + "probability": 0.9829 + }, + { + "start": 44534.98, + "end": 44538.24, + "probability": 0.9917 + }, + { + "start": 44538.84, + "end": 44541.86, + "probability": 0.9967 + }, + { + "start": 44542.28, + "end": 44543.66, + "probability": 0.9865 + }, + { + "start": 44544.32, + "end": 44545.24, + "probability": 0.5023 + }, + { + "start": 44545.58, + "end": 44548.01, + "probability": 0.8892 + }, + { + "start": 44548.64, + "end": 44551.62, + "probability": 0.9383 + }, + { + "start": 44551.86, + "end": 44554.34, + "probability": 0.9541 + }, + { + "start": 44554.7, + "end": 44557.56, + "probability": 0.9978 + }, + { + "start": 44557.88, + "end": 44560.0, + "probability": 0.9967 + }, + { + "start": 44560.02, + "end": 44561.86, + "probability": 0.9463 + }, + { + "start": 44562.24, + "end": 44563.42, + "probability": 0.998 + }, + { + "start": 44563.8, + "end": 44565.56, + "probability": 0.9906 + }, + { + "start": 44566.26, + "end": 44568.8, + "probability": 0.832 + }, + { + "start": 44569.68, + "end": 44571.96, + "probability": 0.9931 + }, + { + "start": 44572.02, + "end": 44573.42, + "probability": 0.9538 + }, + { + "start": 44573.48, + "end": 44575.06, + "probability": 0.9006 + }, + { + "start": 44575.66, + "end": 44575.86, + "probability": 0.9176 + }, + { + "start": 44575.96, + "end": 44578.72, + "probability": 0.9708 + }, + { + "start": 44579.32, + "end": 44579.48, + "probability": 0.4569 + }, + { + "start": 44579.94, + "end": 44580.76, + "probability": 0.8086 + }, + { + "start": 44581.02, + "end": 44583.16, + "probability": 0.8092 + }, + { + "start": 44583.2, + "end": 44583.96, + "probability": 0.9539 + }, + { + "start": 44584.32, + "end": 44585.64, + "probability": 0.6927 + }, + { + "start": 44585.64, + "end": 44588.16, + "probability": 0.9847 + }, + { + "start": 44588.54, + "end": 44589.26, + "probability": 0.6713 + }, + { + "start": 44589.32, + "end": 44591.76, + "probability": 0.9978 + }, + { + "start": 44591.94, + "end": 44594.44, + "probability": 0.7547 + }, + { + "start": 44595.16, + "end": 44597.6, + "probability": 0.9904 + }, + { + "start": 44598.36, + "end": 44599.3, + "probability": 0.9801 + }, + { + "start": 44599.46, + "end": 44602.86, + "probability": 0.8872 + }, + { + "start": 44603.44, + "end": 44606.12, + "probability": 0.8782 + }, + { + "start": 44607.02, + "end": 44607.66, + "probability": 0.2985 + }, + { + "start": 44607.8, + "end": 44608.51, + "probability": 0.832 + }, + { + "start": 44608.94, + "end": 44609.88, + "probability": 0.8662 + }, + { + "start": 44610.0, + "end": 44611.46, + "probability": 0.9253 + }, + { + "start": 44611.52, + "end": 44612.94, + "probability": 0.5502 + }, + { + "start": 44613.42, + "end": 44614.84, + "probability": 0.9714 + }, + { + "start": 44615.2, + "end": 44615.92, + "probability": 0.8258 + }, + { + "start": 44616.0, + "end": 44620.12, + "probability": 0.8568 + }, + { + "start": 44620.52, + "end": 44621.62, + "probability": 0.9361 + }, + { + "start": 44621.78, + "end": 44623.8, + "probability": 0.9905 + }, + { + "start": 44623.8, + "end": 44626.5, + "probability": 0.7444 + }, + { + "start": 44626.56, + "end": 44627.68, + "probability": 0.0622 + }, + { + "start": 44628.04, + "end": 44628.46, + "probability": 0.0247 + }, + { + "start": 44628.76, + "end": 44630.25, + "probability": 0.73 + }, + { + "start": 44630.64, + "end": 44632.36, + "probability": 0.8315 + }, + { + "start": 44632.74, + "end": 44636.18, + "probability": 0.9843 + }, + { + "start": 44636.24, + "end": 44640.08, + "probability": 0.8957 + }, + { + "start": 44640.16, + "end": 44640.82, + "probability": 0.5617 + }, + { + "start": 44640.88, + "end": 44642.3, + "probability": 0.6938 + }, + { + "start": 44642.4, + "end": 44643.14, + "probability": 0.8828 + }, + { + "start": 44643.98, + "end": 44645.78, + "probability": 0.6544 + }, + { + "start": 44645.86, + "end": 44646.34, + "probability": 0.8796 + }, + { + "start": 44646.44, + "end": 44646.96, + "probability": 0.9839 + }, + { + "start": 44647.04, + "end": 44647.64, + "probability": 0.6557 + }, + { + "start": 44647.76, + "end": 44649.78, + "probability": 0.938 + }, + { + "start": 44649.86, + "end": 44651.03, + "probability": 0.9047 + }, + { + "start": 44651.4, + "end": 44652.52, + "probability": 0.9713 + }, + { + "start": 44652.8, + "end": 44653.34, + "probability": 0.1224 + }, + { + "start": 44653.34, + "end": 44653.34, + "probability": 0.0131 + }, + { + "start": 44653.34, + "end": 44653.9, + "probability": 0.9153 + }, + { + "start": 44654.76, + "end": 44658.0, + "probability": 0.9864 + }, + { + "start": 44658.44, + "end": 44660.14, + "probability": 0.6667 + }, + { + "start": 44660.7, + "end": 44661.0, + "probability": 0.0165 + }, + { + "start": 44661.0, + "end": 44662.05, + "probability": 0.4766 + }, + { + "start": 44662.54, + "end": 44662.8, + "probability": 0.3046 + }, + { + "start": 44663.04, + "end": 44665.03, + "probability": 0.9281 + }, + { + "start": 44665.12, + "end": 44666.14, + "probability": 0.9272 + }, + { + "start": 44666.54, + "end": 44667.44, + "probability": 0.5046 + }, + { + "start": 44668.56, + "end": 44669.32, + "probability": 0.9587 + }, + { + "start": 44669.46, + "end": 44672.14, + "probability": 0.8704 + }, + { + "start": 44672.4, + "end": 44674.0, + "probability": 0.808 + }, + { + "start": 44674.2, + "end": 44675.74, + "probability": 0.8132 + }, + { + "start": 44675.88, + "end": 44677.81, + "probability": 0.7451 + }, + { + "start": 44677.94, + "end": 44681.04, + "probability": 0.514 + }, + { + "start": 44681.32, + "end": 44683.52, + "probability": 0.6715 + }, + { + "start": 44683.86, + "end": 44689.22, + "probability": 0.9922 + }, + { + "start": 44689.28, + "end": 44689.54, + "probability": 0.7435 + }, + { + "start": 44689.82, + "end": 44690.42, + "probability": 0.6831 + }, + { + "start": 44690.5, + "end": 44691.92, + "probability": 0.9105 + }, + { + "start": 44693.9, + "end": 44694.54, + "probability": 0.4796 + }, + { + "start": 44694.68, + "end": 44695.78, + "probability": 0.9173 + }, + { + "start": 44711.4, + "end": 44713.16, + "probability": 0.5398 + }, + { + "start": 44714.2, + "end": 44721.06, + "probability": 0.9792 + }, + { + "start": 44721.48, + "end": 44722.0, + "probability": 0.6834 + }, + { + "start": 44722.1, + "end": 44722.92, + "probability": 0.9753 + }, + { + "start": 44723.46, + "end": 44726.36, + "probability": 0.9854 + }, + { + "start": 44726.82, + "end": 44727.88, + "probability": 0.9897 + }, + { + "start": 44729.84, + "end": 44731.98, + "probability": 0.9985 + }, + { + "start": 44732.7, + "end": 44734.14, + "probability": 0.754 + }, + { + "start": 44734.24, + "end": 44735.54, + "probability": 0.8144 + }, + { + "start": 44736.02, + "end": 44739.6, + "probability": 0.877 + }, + { + "start": 44740.26, + "end": 44744.8, + "probability": 0.9785 + }, + { + "start": 44745.82, + "end": 44749.48, + "probability": 0.9907 + }, + { + "start": 44750.2, + "end": 44751.7, + "probability": 0.9872 + }, + { + "start": 44751.82, + "end": 44753.54, + "probability": 0.8694 + }, + { + "start": 44754.02, + "end": 44756.92, + "probability": 0.9594 + }, + { + "start": 44757.6, + "end": 44758.76, + "probability": 0.8292 + }, + { + "start": 44759.24, + "end": 44763.66, + "probability": 0.9727 + }, + { + "start": 44763.92, + "end": 44767.86, + "probability": 0.9946 + }, + { + "start": 44769.04, + "end": 44771.26, + "probability": 0.8494 + }, + { + "start": 44771.78, + "end": 44774.48, + "probability": 0.9478 + }, + { + "start": 44775.08, + "end": 44781.34, + "probability": 0.1399 + }, + { + "start": 44781.42, + "end": 44783.2, + "probability": 0.3931 + }, + { + "start": 44783.24, + "end": 44787.12, + "probability": 0.8804 + }, + { + "start": 44787.12, + "end": 44790.98, + "probability": 0.9943 + }, + { + "start": 44791.7, + "end": 44795.68, + "probability": 0.9832 + }, + { + "start": 44795.68, + "end": 44798.86, + "probability": 0.8936 + }, + { + "start": 44799.66, + "end": 44800.64, + "probability": 0.9686 + }, + { + "start": 44802.08, + "end": 44803.84, + "probability": 0.922 + }, + { + "start": 44804.38, + "end": 44805.54, + "probability": 0.9929 + }, + { + "start": 44806.16, + "end": 44809.18, + "probability": 0.9984 + }, + { + "start": 44810.36, + "end": 44812.58, + "probability": 0.9229 + }, + { + "start": 44813.62, + "end": 44817.12, + "probability": 0.9737 + }, + { + "start": 44817.24, + "end": 44817.8, + "probability": 0.193 + }, + { + "start": 44818.2, + "end": 44819.88, + "probability": 0.9338 + }, + { + "start": 44820.48, + "end": 44822.94, + "probability": 0.9245 + }, + { + "start": 44824.04, + "end": 44825.32, + "probability": 0.9833 + }, + { + "start": 44826.04, + "end": 44828.76, + "probability": 0.9041 + }, + { + "start": 44829.48, + "end": 44830.92, + "probability": 0.8916 + }, + { + "start": 44830.92, + "end": 44834.04, + "probability": 0.9927 + }, + { + "start": 44835.2, + "end": 44839.0, + "probability": 0.8956 + }, + { + "start": 44840.48, + "end": 44841.06, + "probability": 0.9585 + }, + { + "start": 44842.1, + "end": 44843.6, + "probability": 0.8039 + }, + { + "start": 44844.28, + "end": 44844.9, + "probability": 0.2877 + }, + { + "start": 44845.16, + "end": 44849.3, + "probability": 0.9672 + }, + { + "start": 44849.74, + "end": 44851.38, + "probability": 0.7604 + }, + { + "start": 44851.94, + "end": 44852.76, + "probability": 0.9785 + }, + { + "start": 44854.04, + "end": 44855.6, + "probability": 0.7259 + }, + { + "start": 44855.72, + "end": 44856.02, + "probability": 0.4949 + }, + { + "start": 44856.08, + "end": 44860.36, + "probability": 0.8237 + }, + { + "start": 44860.88, + "end": 44864.18, + "probability": 0.9752 + }, + { + "start": 44864.64, + "end": 44869.58, + "probability": 0.9735 + }, + { + "start": 44870.74, + "end": 44873.86, + "probability": 0.9937 + }, + { + "start": 44874.08, + "end": 44876.44, + "probability": 0.9646 + }, + { + "start": 44877.1, + "end": 44879.4, + "probability": 0.9683 + }, + { + "start": 44879.6, + "end": 44882.28, + "probability": 0.9952 + }, + { + "start": 44882.56, + "end": 44884.22, + "probability": 0.9902 + }, + { + "start": 44885.02, + "end": 44887.46, + "probability": 0.9942 + }, + { + "start": 44887.9, + "end": 44889.64, + "probability": 0.943 + }, + { + "start": 44890.32, + "end": 44890.76, + "probability": 0.8004 + }, + { + "start": 44891.06, + "end": 44891.76, + "probability": 0.9045 + }, + { + "start": 44891.86, + "end": 44892.94, + "probability": 0.5429 + }, + { + "start": 44893.5, + "end": 44896.58, + "probability": 0.825 + }, + { + "start": 44896.86, + "end": 44896.86, + "probability": 0.1284 + }, + { + "start": 44896.86, + "end": 44898.38, + "probability": 0.9368 + }, + { + "start": 44898.42, + "end": 44898.94, + "probability": 0.8653 + }, + { + "start": 44899.54, + "end": 44900.48, + "probability": 0.7921 + }, + { + "start": 44900.6, + "end": 44902.88, + "probability": 0.9559 + }, + { + "start": 44906.4, + "end": 44908.32, + "probability": 0.5986 + }, + { + "start": 44909.98, + "end": 44911.24, + "probability": 0.4967 + }, + { + "start": 44911.66, + "end": 44913.14, + "probability": 0.9833 + }, + { + "start": 44915.84, + "end": 44917.38, + "probability": 0.7723 + }, + { + "start": 44920.52, + "end": 44921.9, + "probability": 0.122 + }, + { + "start": 44923.68, + "end": 44923.86, + "probability": 0.0132 + }, + { + "start": 44925.68, + "end": 44926.34, + "probability": 0.1841 + }, + { + "start": 44940.04, + "end": 44940.9, + "probability": 0.5494 + }, + { + "start": 44942.06, + "end": 44944.5, + "probability": 0.7755 + }, + { + "start": 44944.76, + "end": 44947.52, + "probability": 0.913 + }, + { + "start": 44947.52, + "end": 44947.52, + "probability": 0.5203 + }, + { + "start": 44947.52, + "end": 44948.7, + "probability": 0.3728 + }, + { + "start": 44948.72, + "end": 44950.98, + "probability": 0.9907 + }, + { + "start": 44950.98, + "end": 44951.08, + "probability": 0.7161 + }, + { + "start": 44951.6, + "end": 44952.06, + "probability": 0.6072 + }, + { + "start": 44952.68, + "end": 44956.2, + "probability": 0.1652 + }, + { + "start": 44956.22, + "end": 44956.72, + "probability": 0.6635 + }, + { + "start": 44956.74, + "end": 44957.08, + "probability": 0.9493 + }, + { + "start": 44958.58, + "end": 44959.48, + "probability": 0.5695 + }, + { + "start": 44960.38, + "end": 44961.74, + "probability": 0.6857 + }, + { + "start": 44962.5, + "end": 44972.54, + "probability": 0.9268 + }, + { + "start": 44973.6, + "end": 44977.54, + "probability": 0.9115 + }, + { + "start": 44978.54, + "end": 44985.98, + "probability": 0.9922 + }, + { + "start": 44987.02, + "end": 44988.94, + "probability": 0.8683 + }, + { + "start": 44989.74, + "end": 44991.34, + "probability": 0.9738 + }, + { + "start": 44991.96, + "end": 44992.52, + "probability": 0.847 + }, + { + "start": 44993.08, + "end": 44993.88, + "probability": 0.7978 + }, + { + "start": 44994.98, + "end": 44998.34, + "probability": 0.9413 + }, + { + "start": 44999.88, + "end": 45000.6, + "probability": 0.9739 + }, + { + "start": 45001.24, + "end": 45002.62, + "probability": 0.8715 + }, + { + "start": 45002.8, + "end": 45008.74, + "probability": 0.9324 + }, + { + "start": 45010.38, + "end": 45015.82, + "probability": 0.9963 + }, + { + "start": 45017.6, + "end": 45022.26, + "probability": 0.9985 + }, + { + "start": 45024.2, + "end": 45026.08, + "probability": 0.8463 + }, + { + "start": 45026.08, + "end": 45028.9, + "probability": 0.8987 + }, + { + "start": 45028.94, + "end": 45029.76, + "probability": 0.6914 + }, + { + "start": 45030.08, + "end": 45030.88, + "probability": 0.4038 + }, + { + "start": 45032.08, + "end": 45035.2, + "probability": 0.8222 + }, + { + "start": 45035.48, + "end": 45036.06, + "probability": 0.0335 + }, + { + "start": 45039.24, + "end": 45041.42, + "probability": 0.9886 + }, + { + "start": 45041.62, + "end": 45041.64, + "probability": 0.2879 + }, + { + "start": 45041.64, + "end": 45042.94, + "probability": 0.5828 + }, + { + "start": 45043.16, + "end": 45045.66, + "probability": 0.858 + }, + { + "start": 45046.37, + "end": 45048.06, + "probability": 0.5429 + }, + { + "start": 45048.08, + "end": 45048.6, + "probability": 0.6428 + }, + { + "start": 45048.6, + "end": 45049.32, + "probability": 0.5711 + }, + { + "start": 45049.44, + "end": 45051.5, + "probability": 0.7619 + }, + { + "start": 45051.58, + "end": 45054.8, + "probability": 0.6018 + }, + { + "start": 45054.94, + "end": 45057.38, + "probability": 0.4302 + }, + { + "start": 45057.58, + "end": 45059.13, + "probability": 0.9888 + }, + { + "start": 45059.66, + "end": 45061.24, + "probability": 0.3137 + }, + { + "start": 45061.44, + "end": 45061.51, + "probability": 0.0007 + }, + { + "start": 45061.96, + "end": 45063.68, + "probability": 0.8123 + }, + { + "start": 45063.8, + "end": 45065.96, + "probability": 0.7074 + }, + { + "start": 45066.48, + "end": 45068.84, + "probability": 0.79 + }, + { + "start": 45068.9, + "end": 45070.54, + "probability": 0.2745 + }, + { + "start": 45071.26, + "end": 45073.34, + "probability": 0.3083 + }, + { + "start": 45073.34, + "end": 45075.54, + "probability": 0.8452 + }, + { + "start": 45078.2, + "end": 45079.7, + "probability": 0.1652 + }, + { + "start": 45079.7, + "end": 45079.78, + "probability": 0.1743 + }, + { + "start": 45079.78, + "end": 45079.78, + "probability": 0.1332 + }, + { + "start": 45079.78, + "end": 45079.78, + "probability": 0.1597 + }, + { + "start": 45079.78, + "end": 45079.78, + "probability": 0.6242 + }, + { + "start": 45079.78, + "end": 45081.54, + "probability": 0.6137 + }, + { + "start": 45081.54, + "end": 45082.66, + "probability": 0.7695 + }, + { + "start": 45084.38, + "end": 45088.5, + "probability": 0.1189 + }, + { + "start": 45088.62, + "end": 45089.64, + "probability": 0.7296 + }, + { + "start": 45089.68, + "end": 45091.44, + "probability": 0.3717 + }, + { + "start": 45091.96, + "end": 45094.32, + "probability": 0.5517 + }, + { + "start": 45094.32, + "end": 45094.32, + "probability": 0.0103 + }, + { + "start": 45094.32, + "end": 45096.92, + "probability": 0.3446 + }, + { + "start": 45098.6, + "end": 45099.72, + "probability": 0.2065 + }, + { + "start": 45100.56, + "end": 45103.32, + "probability": 0.968 + }, + { + "start": 45104.14, + "end": 45105.36, + "probability": 0.9027 + }, + { + "start": 45106.42, + "end": 45108.18, + "probability": 0.6257 + }, + { + "start": 45108.22, + "end": 45108.38, + "probability": 0.0607 + }, + { + "start": 45108.38, + "end": 45115.84, + "probability": 0.9492 + }, + { + "start": 45116.6, + "end": 45121.12, + "probability": 0.8876 + }, + { + "start": 45121.38, + "end": 45123.21, + "probability": 0.9946 + }, + { + "start": 45124.2, + "end": 45126.16, + "probability": 0.9971 + }, + { + "start": 45126.82, + "end": 45128.38, + "probability": 0.8294 + }, + { + "start": 45131.22, + "end": 45131.22, + "probability": 0.2492 + }, + { + "start": 45131.22, + "end": 45131.22, + "probability": 0.1763 + }, + { + "start": 45131.22, + "end": 45133.14, + "probability": 0.8057 + }, + { + "start": 45134.55, + "end": 45137.88, + "probability": 0.6641 + }, + { + "start": 45138.54, + "end": 45141.14, + "probability": 0.809 + }, + { + "start": 45141.14, + "end": 45142.1, + "probability": 0.917 + }, + { + "start": 45142.3, + "end": 45142.9, + "probability": 0.4453 + }, + { + "start": 45142.92, + "end": 45143.24, + "probability": 0.772 + }, + { + "start": 45145.48, + "end": 45148.88, + "probability": 0.0401 + }, + { + "start": 45149.46, + "end": 45151.6, + "probability": 0.0069 + }, + { + "start": 45156.17, + "end": 45159.08, + "probability": 0.6688 + }, + { + "start": 45159.92, + "end": 45165.6, + "probability": 0.1529 + }, + { + "start": 45165.66, + "end": 45166.28, + "probability": 0.4411 + }, + { + "start": 45167.2, + "end": 45167.9, + "probability": 0.2452 + }, + { + "start": 45172.34, + "end": 45173.58, + "probability": 0.2503 + }, + { + "start": 45189.44, + "end": 45192.54, + "probability": 0.6511 + }, + { + "start": 45193.26, + "end": 45197.6, + "probability": 0.9186 + }, + { + "start": 45199.11, + "end": 45201.38, + "probability": 0.0367 + }, + { + "start": 45201.38, + "end": 45205.34, + "probability": 0.6268 + }, + { + "start": 45205.38, + "end": 45206.34, + "probability": 0.5966 + }, + { + "start": 45206.8, + "end": 45208.3, + "probability": 0.9611 + }, + { + "start": 45209.78, + "end": 45210.56, + "probability": 0.0132 + }, + { + "start": 45227.04, + "end": 45229.58, + "probability": 0.7466 + }, + { + "start": 45232.87, + "end": 45235.36, + "probability": 0.5655 + }, + { + "start": 45235.36, + "end": 45238.8, + "probability": 0.9247 + }, + { + "start": 45238.84, + "end": 45239.24, + "probability": 0.5458 + }, + { + "start": 45239.52, + "end": 45241.86, + "probability": 0.7433 + }, + { + "start": 45243.54, + "end": 45244.78, + "probability": 0.7554 + }, + { + "start": 45244.8, + "end": 45246.02, + "probability": 0.7399 + }, + { + "start": 45246.1, + "end": 45247.44, + "probability": 0.6798 + }, + { + "start": 45247.76, + "end": 45250.24, + "probability": 0.9692 + }, + { + "start": 45250.48, + "end": 45256.42, + "probability": 0.9966 + }, + { + "start": 45258.6, + "end": 45266.63, + "probability": 0.9696 + }, + { + "start": 45266.66, + "end": 45273.26, + "probability": 0.8236 + }, + { + "start": 45274.4, + "end": 45275.76, + "probability": 0.5043 + }, + { + "start": 45275.78, + "end": 45276.93, + "probability": 0.6734 + }, + { + "start": 45277.22, + "end": 45281.98, + "probability": 0.981 + }, + { + "start": 45282.9, + "end": 45283.74, + "probability": 0.5154 + }, + { + "start": 45285.52, + "end": 45287.34, + "probability": 0.3429 + }, + { + "start": 45287.46, + "end": 45288.78, + "probability": 0.6427 + }, + { + "start": 45288.94, + "end": 45290.88, + "probability": 0.822 + }, + { + "start": 45291.28, + "end": 45291.6, + "probability": 0.1922 + }, + { + "start": 45291.6, + "end": 45292.9, + "probability": 0.7376 + }, + { + "start": 45292.92, + "end": 45293.94, + "probability": 0.9497 + }, + { + "start": 45294.24, + "end": 45296.08, + "probability": 0.3105 + }, + { + "start": 45296.49, + "end": 45299.0, + "probability": 0.7827 + }, + { + "start": 45299.0, + "end": 45300.19, + "probability": 0.8677 + }, + { + "start": 45300.22, + "end": 45301.52, + "probability": 0.9785 + }, + { + "start": 45301.98, + "end": 45306.14, + "probability": 0.0717 + }, + { + "start": 45318.1, + "end": 45320.7, + "probability": 0.9668 + }, + { + "start": 45321.48, + "end": 45322.44, + "probability": 0.1356 + }, + { + "start": 45323.1, + "end": 45324.3, + "probability": 0.0771 + }, + { + "start": 45326.4, + "end": 45326.4, + "probability": 0.1987 + }, + { + "start": 45326.86, + "end": 45327.99, + "probability": 0.1667 + }, + { + "start": 45329.24, + "end": 45329.78, + "probability": 0.2404 + }, + { + "start": 45330.16, + "end": 45332.8, + "probability": 0.471 + }, + { + "start": 45332.8, + "end": 45333.84, + "probability": 0.6017 + }, + { + "start": 45334.69, + "end": 45336.73, + "probability": 0.1915 + }, + { + "start": 45337.94, + "end": 45342.28, + "probability": 0.1598 + }, + { + "start": 45342.6, + "end": 45345.32, + "probability": 0.3338 + }, + { + "start": 45345.7, + "end": 45346.2, + "probability": 0.4632 + }, + { + "start": 45346.78, + "end": 45348.12, + "probability": 0.0537 + }, + { + "start": 45349.2, + "end": 45350.22, + "probability": 0.0215 + }, + { + "start": 45350.22, + "end": 45352.63, + "probability": 0.1159 + }, + { + "start": 45353.16, + "end": 45354.88, + "probability": 0.0416 + }, + { + "start": 45355.34, + "end": 45355.34, + "probability": 0.0186 + }, + { + "start": 45356.14, + "end": 45358.62, + "probability": 0.0449 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.0, + "end": 45379.0, + "probability": 0.0 + }, + { + "start": 45379.68, + "end": 45379.88, + "probability": 0.0305 + }, + { + "start": 45379.88, + "end": 45380.02, + "probability": 0.1612 + }, + { + "start": 45380.02, + "end": 45380.94, + "probability": 0.4699 + }, + { + "start": 45381.28, + "end": 45384.44, + "probability": 0.8499 + }, + { + "start": 45384.86, + "end": 45386.4, + "probability": 0.9384 + }, + { + "start": 45386.76, + "end": 45388.55, + "probability": 0.9553 + }, + { + "start": 45389.1, + "end": 45396.5, + "probability": 0.9335 + }, + { + "start": 45397.36, + "end": 45397.36, + "probability": 0.1234 + }, + { + "start": 45397.36, + "end": 45400.19, + "probability": 0.9888 + }, + { + "start": 45400.2, + "end": 45403.44, + "probability": 0.2772 + }, + { + "start": 45403.52, + "end": 45405.64, + "probability": 0.9429 + }, + { + "start": 45406.42, + "end": 45409.91, + "probability": 0.9849 + }, + { + "start": 45410.54, + "end": 45411.98, + "probability": 0.9797 + }, + { + "start": 45412.56, + "end": 45417.4, + "probability": 0.5664 + }, + { + "start": 45417.42, + "end": 45421.76, + "probability": 0.8712 + }, + { + "start": 45422.02, + "end": 45423.04, + "probability": 0.2635 + }, + { + "start": 45423.1, + "end": 45424.94, + "probability": 0.5986 + }, + { + "start": 45425.34, + "end": 45431.08, + "probability": 0.9517 + }, + { + "start": 45431.7, + "end": 45434.16, + "probability": 0.8655 + }, + { + "start": 45434.28, + "end": 45444.16, + "probability": 0.9082 + }, + { + "start": 45444.26, + "end": 45444.89, + "probability": 0.9472 + }, + { + "start": 45447.44, + "end": 45449.58, + "probability": 0.3961 + }, + { + "start": 45450.48, + "end": 45451.16, + "probability": 0.3305 + }, + { + "start": 45451.4, + "end": 45454.6, + "probability": 0.5514 + }, + { + "start": 45454.6, + "end": 45456.42, + "probability": 0.6203 + }, + { + "start": 45456.96, + "end": 45463.54, + "probability": 0.9528 + }, + { + "start": 45464.18, + "end": 45465.52, + "probability": 0.6292 + }, + { + "start": 45466.26, + "end": 45467.2, + "probability": 0.749 + }, + { + "start": 45467.42, + "end": 45473.08, + "probability": 0.9791 + }, + { + "start": 45473.5, + "end": 45475.24, + "probability": 0.7723 + }, + { + "start": 45475.8, + "end": 45479.92, + "probability": 0.9757 + }, + { + "start": 45480.42, + "end": 45482.78, + "probability": 0.7339 + }, + { + "start": 45483.3, + "end": 45484.88, + "probability": 0.6287 + }, + { + "start": 45484.92, + "end": 45491.68, + "probability": 0.9322 + }, + { + "start": 45491.7, + "end": 45495.88, + "probability": 0.978 + }, + { + "start": 45496.18, + "end": 45501.88, + "probability": 0.9951 + }, + { + "start": 45502.32, + "end": 45506.44, + "probability": 0.6297 + }, + { + "start": 45506.86, + "end": 45508.1, + "probability": 0.9469 + }, + { + "start": 45508.36, + "end": 45508.64, + "probability": 0.6998 + }, + { + "start": 45508.64, + "end": 45509.34, + "probability": 0.5457 + }, + { + "start": 45509.58, + "end": 45511.52, + "probability": 0.8954 + }, + { + "start": 45529.5, + "end": 45530.22, + "probability": 0.356 + }, + { + "start": 45532.08, + "end": 45535.38, + "probability": 0.9785 + }, + { + "start": 45537.04, + "end": 45538.39, + "probability": 0.9224 + }, + { + "start": 45539.86, + "end": 45543.4, + "probability": 0.9648 + }, + { + "start": 45545.1, + "end": 45547.46, + "probability": 0.9893 + }, + { + "start": 45550.08, + "end": 45553.3, + "probability": 0.998 + }, + { + "start": 45555.5, + "end": 45558.26, + "probability": 0.6566 + }, + { + "start": 45560.34, + "end": 45563.86, + "probability": 0.8407 + }, + { + "start": 45565.02, + "end": 45567.36, + "probability": 0.5995 + }, + { + "start": 45569.16, + "end": 45570.54, + "probability": 0.8871 + }, + { + "start": 45571.62, + "end": 45573.52, + "probability": 0.604 + }, + { + "start": 45576.08, + "end": 45582.08, + "probability": 0.9983 + }, + { + "start": 45583.38, + "end": 45585.36, + "probability": 0.9051 + }, + { + "start": 45586.6, + "end": 45590.42, + "probability": 0.9917 + }, + { + "start": 45592.62, + "end": 45593.22, + "probability": 0.983 + }, + { + "start": 45594.7, + "end": 45597.56, + "probability": 0.898 + }, + { + "start": 45599.18, + "end": 45602.08, + "probability": 0.9953 + }, + { + "start": 45603.32, + "end": 45609.52, + "probability": 0.9954 + }, + { + "start": 45610.0, + "end": 45610.66, + "probability": 0.9772 + }, + { + "start": 45611.9, + "end": 45613.54, + "probability": 0.9859 + }, + { + "start": 45615.88, + "end": 45617.42, + "probability": 0.8926 + }, + { + "start": 45618.72, + "end": 45620.4, + "probability": 0.6024 + }, + { + "start": 45621.32, + "end": 45626.04, + "probability": 0.9696 + }, + { + "start": 45627.56, + "end": 45631.1, + "probability": 0.9878 + }, + { + "start": 45632.6, + "end": 45635.42, + "probability": 0.8171 + }, + { + "start": 45635.48, + "end": 45636.94, + "probability": 0.2537 + }, + { + "start": 45637.14, + "end": 45646.54, + "probability": 0.9671 + }, + { + "start": 45647.86, + "end": 45649.2, + "probability": 0.9443 + }, + { + "start": 45649.34, + "end": 45655.74, + "probability": 0.9971 + }, + { + "start": 45656.1, + "end": 45657.0, + "probability": 0.1711 + }, + { + "start": 45657.96, + "end": 45665.22, + "probability": 0.9417 + }, + { + "start": 45666.24, + "end": 45667.22, + "probability": 0.9377 + }, + { + "start": 45668.1, + "end": 45672.3, + "probability": 0.9868 + }, + { + "start": 45674.12, + "end": 45676.88, + "probability": 0.8909 + }, + { + "start": 45677.54, + "end": 45678.86, + "probability": 0.8147 + }, + { + "start": 45679.7, + "end": 45683.44, + "probability": 0.9826 + }, + { + "start": 45684.5, + "end": 45687.89, + "probability": 0.526 + }, + { + "start": 45688.8, + "end": 45688.8, + "probability": 0.1019 + }, + { + "start": 45689.04, + "end": 45689.12, + "probability": 0.5561 + }, + { + "start": 45689.12, + "end": 45691.36, + "probability": 0.8127 + }, + { + "start": 45692.66, + "end": 45695.42, + "probability": 0.9956 + }, + { + "start": 45699.18, + "end": 45700.08, + "probability": 0.3374 + }, + { + "start": 45700.94, + "end": 45702.66, + "probability": 0.8799 + }, + { + "start": 45703.46, + "end": 45707.22, + "probability": 0.7866 + }, + { + "start": 45707.72, + "end": 45708.46, + "probability": 0.1816 + }, + { + "start": 45708.48, + "end": 45709.24, + "probability": 0.8708 + }, + { + "start": 45709.66, + "end": 45711.12, + "probability": 0.7826 + }, + { + "start": 45711.54, + "end": 45715.84, + "probability": 0.7478 + }, + { + "start": 45716.04, + "end": 45716.6, + "probability": 0.6923 + }, + { + "start": 45716.62, + "end": 45723.04, + "probability": 0.9873 + }, + { + "start": 45723.28, + "end": 45723.44, + "probability": 0.0729 + }, + { + "start": 45723.62, + "end": 45723.62, + "probability": 0.3912 + }, + { + "start": 45723.62, + "end": 45724.42, + "probability": 0.7506 + }, + { + "start": 45725.12, + "end": 45729.56, + "probability": 0.8245 + }, + { + "start": 45730.6, + "end": 45732.18, + "probability": 0.1893 + }, + { + "start": 45732.56, + "end": 45732.88, + "probability": 0.0295 + }, + { + "start": 45748.98, + "end": 45750.72, + "probability": 0.1587 + }, + { + "start": 45754.32, + "end": 45754.7, + "probability": 0.8135 + }, + { + "start": 45755.4, + "end": 45755.56, + "probability": 0.0924 + }, + { + "start": 45755.56, + "end": 45758.8, + "probability": 0.7649 + }, + { + "start": 45760.6, + "end": 45768.24, + "probability": 0.998 + }, + { + "start": 45769.4, + "end": 45771.6, + "probability": 0.9795 + }, + { + "start": 45772.7, + "end": 45777.0, + "probability": 0.9904 + }, + { + "start": 45779.34, + "end": 45784.6, + "probability": 0.9912 + }, + { + "start": 45785.94, + "end": 45787.84, + "probability": 0.689 + }, + { + "start": 45788.9, + "end": 45789.5, + "probability": 0.9935 + }, + { + "start": 45790.2, + "end": 45793.0, + "probability": 0.9965 + }, + { + "start": 45794.7, + "end": 45797.48, + "probability": 0.967 + }, + { + "start": 45799.24, + "end": 45801.45, + "probability": 0.9719 + }, + { + "start": 45802.16, + "end": 45808.94, + "probability": 0.9982 + }, + { + "start": 45809.9, + "end": 45811.46, + "probability": 0.9733 + }, + { + "start": 45813.82, + "end": 45815.72, + "probability": 0.7974 + }, + { + "start": 45817.6, + "end": 45823.32, + "probability": 0.9951 + }, + { + "start": 45823.54, + "end": 45830.6, + "probability": 0.9872 + }, + { + "start": 45833.24, + "end": 45836.0, + "probability": 0.5053 + }, + { + "start": 45838.94, + "end": 45841.44, + "probability": 0.6943 + }, + { + "start": 45842.08, + "end": 45845.92, + "probability": 0.9673 + }, + { + "start": 45846.64, + "end": 45851.16, + "probability": 0.9559 + }, + { + "start": 45852.3, + "end": 45856.18, + "probability": 0.9989 + }, + { + "start": 45856.18, + "end": 45860.7, + "probability": 0.996 + }, + { + "start": 45863.03, + "end": 45865.14, + "probability": 0.9678 + }, + { + "start": 45865.66, + "end": 45867.5, + "probability": 0.992 + }, + { + "start": 45868.06, + "end": 45870.5, + "probability": 0.6023 + }, + { + "start": 45870.94, + "end": 45872.68, + "probability": 0.9856 + }, + { + "start": 45872.76, + "end": 45873.9, + "probability": 0.964 + }, + { + "start": 45874.66, + "end": 45877.48, + "probability": 0.8879 + }, + { + "start": 45878.24, + "end": 45882.18, + "probability": 0.9957 + }, + { + "start": 45882.18, + "end": 45887.8, + "probability": 0.9961 + }, + { + "start": 45888.36, + "end": 45890.52, + "probability": 0.8821 + }, + { + "start": 45891.18, + "end": 45892.92, + "probability": 0.8524 + }, + { + "start": 45898.08, + "end": 45903.26, + "probability": 0.993 + }, + { + "start": 45904.48, + "end": 45910.38, + "probability": 0.9702 + }, + { + "start": 45911.5, + "end": 45916.7, + "probability": 0.9976 + }, + { + "start": 45916.98, + "end": 45919.9, + "probability": 0.9575 + }, + { + "start": 45920.06, + "end": 45921.48, + "probability": 0.8408 + }, + { + "start": 45921.96, + "end": 45922.95, + "probability": 0.9331 + }, + { + "start": 45923.78, + "end": 45924.98, + "probability": 0.9117 + }, + { + "start": 45925.22, + "end": 45931.3, + "probability": 0.9963 + }, + { + "start": 45931.3, + "end": 45938.26, + "probability": 0.9443 + }, + { + "start": 45939.6, + "end": 45944.44, + "probability": 0.9092 + }, + { + "start": 45945.08, + "end": 45947.18, + "probability": 0.8323 + }, + { + "start": 45947.96, + "end": 45948.08, + "probability": 0.117 + }, + { + "start": 45948.34, + "end": 45951.74, + "probability": 0.99 + }, + { + "start": 45952.42, + "end": 45954.3, + "probability": 0.9548 + }, + { + "start": 45954.86, + "end": 45959.72, + "probability": 0.948 + }, + { + "start": 45959.82, + "end": 45960.64, + "probability": 0.9533 + }, + { + "start": 45961.88, + "end": 45963.8, + "probability": 0.5627 + }, + { + "start": 45964.22, + "end": 45966.5, + "probability": 0.9622 + }, + { + "start": 45966.6, + "end": 45967.0, + "probability": 0.8082 + }, + { + "start": 45967.36, + "end": 45967.94, + "probability": 0.7369 + }, + { + "start": 45968.02, + "end": 45971.59, + "probability": 0.9937 + }, + { + "start": 45971.92, + "end": 45972.56, + "probability": 0.4807 + }, + { + "start": 45972.6, + "end": 45973.8, + "probability": 0.982 + }, + { + "start": 45973.84, + "end": 45974.66, + "probability": 0.9428 + }, + { + "start": 45993.2, + "end": 45995.44, + "probability": 0.762 + }, + { + "start": 45996.04, + "end": 45997.24, + "probability": 0.7664 + }, + { + "start": 45998.7, + "end": 45999.92, + "probability": 0.9854 + }, + { + "start": 46000.58, + "end": 46006.33, + "probability": 0.9758 + }, + { + "start": 46006.96, + "end": 46010.26, + "probability": 0.9908 + }, + { + "start": 46010.34, + "end": 46010.98, + "probability": 0.7152 + }, + { + "start": 46012.26, + "end": 46015.24, + "probability": 0.5103 + }, + { + "start": 46015.24, + "end": 46017.3, + "probability": 0.8037 + }, + { + "start": 46017.9, + "end": 46018.78, + "probability": 0.9374 + }, + { + "start": 46018.86, + "end": 46019.46, + "probability": 0.7003 + }, + { + "start": 46019.6, + "end": 46023.74, + "probability": 0.9305 + }, + { + "start": 46024.56, + "end": 46025.3, + "probability": 0.9377 + }, + { + "start": 46025.4, + "end": 46026.24, + "probability": 0.6818 + }, + { + "start": 46026.4, + "end": 46027.42, + "probability": 0.572 + }, + { + "start": 46027.42, + "end": 46029.28, + "probability": 0.9618 + }, + { + "start": 46030.1, + "end": 46033.58, + "probability": 0.9438 + }, + { + "start": 46034.54, + "end": 46035.16, + "probability": 0.8575 + }, + { + "start": 46035.26, + "end": 46035.82, + "probability": 0.9391 + }, + { + "start": 46036.14, + "end": 46038.44, + "probability": 0.9556 + }, + { + "start": 46038.52, + "end": 46039.94, + "probability": 0.7929 + }, + { + "start": 46040.3, + "end": 46041.12, + "probability": 0.9938 + }, + { + "start": 46041.78, + "end": 46043.36, + "probability": 0.7594 + }, + { + "start": 46043.94, + "end": 46045.76, + "probability": 0.9447 + }, + { + "start": 46045.8, + "end": 46047.7, + "probability": 0.8354 + }, + { + "start": 46047.74, + "end": 46049.34, + "probability": 0.9927 + }, + { + "start": 46049.82, + "end": 46052.96, + "probability": 0.9875 + }, + { + "start": 46053.84, + "end": 46056.02, + "probability": 0.7612 + }, + { + "start": 46056.58, + "end": 46057.52, + "probability": 0.8007 + }, + { + "start": 46058.42, + "end": 46058.52, + "probability": 0.1707 + }, + { + "start": 46059.06, + "end": 46062.04, + "probability": 0.9604 + }, + { + "start": 46062.68, + "end": 46064.98, + "probability": 0.9555 + }, + { + "start": 46065.68, + "end": 46068.7, + "probability": 0.9813 + }, + { + "start": 46069.18, + "end": 46070.52, + "probability": 0.9183 + }, + { + "start": 46071.42, + "end": 46076.46, + "probability": 0.9824 + }, + { + "start": 46077.76, + "end": 46080.18, + "probability": 0.9945 + }, + { + "start": 46081.44, + "end": 46086.96, + "probability": 0.9895 + }, + { + "start": 46086.96, + "end": 46089.52, + "probability": 0.7448 + }, + { + "start": 46089.58, + "end": 46091.04, + "probability": 0.8238 + }, + { + "start": 46091.59, + "end": 46099.14, + "probability": 0.9157 + }, + { + "start": 46099.24, + "end": 46103.72, + "probability": 0.937 + }, + { + "start": 46104.22, + "end": 46105.36, + "probability": 0.8016 + }, + { + "start": 46105.42, + "end": 46106.62, + "probability": 0.9135 + }, + { + "start": 46108.28, + "end": 46112.72, + "probability": 0.9887 + }, + { + "start": 46113.4, + "end": 46115.54, + "probability": 0.9988 + }, + { + "start": 46115.54, + "end": 46117.9, + "probability": 0.985 + }, + { + "start": 46118.6, + "end": 46122.64, + "probability": 0.9995 + }, + { + "start": 46122.64, + "end": 46127.18, + "probability": 0.9956 + }, + { + "start": 46127.76, + "end": 46131.14, + "probability": 0.9932 + }, + { + "start": 46131.14, + "end": 46134.9, + "probability": 0.9994 + }, + { + "start": 46137.1, + "end": 46140.62, + "probability": 0.9648 + }, + { + "start": 46141.74, + "end": 46143.72, + "probability": 0.936 + }, + { + "start": 46144.8, + "end": 46146.26, + "probability": 0.985 + }, + { + "start": 46147.26, + "end": 46148.68, + "probability": 0.9856 + }, + { + "start": 46149.38, + "end": 46150.46, + "probability": 0.876 + }, + { + "start": 46150.82, + "end": 46155.78, + "probability": 0.7178 + }, + { + "start": 46156.36, + "end": 46158.96, + "probability": 0.8486 + }, + { + "start": 46159.4, + "end": 46163.34, + "probability": 0.971 + }, + { + "start": 46164.02, + "end": 46165.4, + "probability": 0.9635 + }, + { + "start": 46166.26, + "end": 46168.22, + "probability": 0.985 + }, + { + "start": 46168.38, + "end": 46172.36, + "probability": 0.9967 + }, + { + "start": 46172.96, + "end": 46176.1, + "probability": 0.9956 + }, + { + "start": 46176.62, + "end": 46177.7, + "probability": 0.9511 + }, + { + "start": 46179.14, + "end": 46180.12, + "probability": 0.9937 + }, + { + "start": 46180.76, + "end": 46182.06, + "probability": 0.9979 + }, + { + "start": 46183.28, + "end": 46187.85, + "probability": 0.9946 + }, + { + "start": 46189.38, + "end": 46192.14, + "probability": 0.8288 + }, + { + "start": 46192.9, + "end": 46193.48, + "probability": 0.8582 + }, + { + "start": 46195.24, + "end": 46197.62, + "probability": 0.9978 + }, + { + "start": 46198.42, + "end": 46202.7, + "probability": 0.9834 + }, + { + "start": 46203.28, + "end": 46205.64, + "probability": 0.9771 + }, + { + "start": 46205.8, + "end": 46206.84, + "probability": 0.9954 + }, + { + "start": 46206.98, + "end": 46207.42, + "probability": 0.8515 + }, + { + "start": 46207.5, + "end": 46207.84, + "probability": 0.984 + }, + { + "start": 46207.96, + "end": 46208.74, + "probability": 0.7254 + }, + { + "start": 46209.24, + "end": 46211.22, + "probability": 0.9832 + }, + { + "start": 46211.52, + "end": 46212.5, + "probability": 0.9814 + }, + { + "start": 46213.16, + "end": 46213.82, + "probability": 0.9948 + }, + { + "start": 46214.72, + "end": 46217.56, + "probability": 0.9966 + }, + { + "start": 46221.43, + "end": 46226.0, + "probability": 0.9767 + }, + { + "start": 46227.52, + "end": 46230.72, + "probability": 0.5068 + }, + { + "start": 46231.62, + "end": 46232.94, + "probability": 0.8916 + }, + { + "start": 46233.52, + "end": 46235.06, + "probability": 0.436 + }, + { + "start": 46236.5, + "end": 46238.48, + "probability": 0.9885 + }, + { + "start": 46238.84, + "end": 46240.22, + "probability": 0.9443 + }, + { + "start": 46240.82, + "end": 46242.32, + "probability": 0.8247 + }, + { + "start": 46243.12, + "end": 46245.84, + "probability": 0.8838 + }, + { + "start": 46246.58, + "end": 46250.4, + "probability": 0.5811 + }, + { + "start": 46251.3, + "end": 46254.0, + "probability": 0.6484 + }, + { + "start": 46254.46, + "end": 46256.5, + "probability": 0.959 + }, + { + "start": 46257.4, + "end": 46259.21, + "probability": 0.99 + }, + { + "start": 46259.74, + "end": 46261.64, + "probability": 0.9226 + }, + { + "start": 46262.7, + "end": 46263.42, + "probability": 0.9034 + }, + { + "start": 46264.68, + "end": 46267.5, + "probability": 0.9902 + }, + { + "start": 46268.46, + "end": 46271.52, + "probability": 0.9589 + }, + { + "start": 46271.58, + "end": 46273.76, + "probability": 0.8593 + }, + { + "start": 46274.36, + "end": 46276.58, + "probability": 0.8901 + }, + { + "start": 46277.78, + "end": 46278.88, + "probability": 0.8228 + }, + { + "start": 46278.96, + "end": 46280.86, + "probability": 0.9938 + }, + { + "start": 46282.34, + "end": 46284.38, + "probability": 0.9834 + }, + { + "start": 46284.38, + "end": 46287.4, + "probability": 0.9775 + }, + { + "start": 46287.86, + "end": 46289.04, + "probability": 0.9639 + }, + { + "start": 46289.64, + "end": 46293.74, + "probability": 0.9727 + }, + { + "start": 46294.5, + "end": 46296.86, + "probability": 0.9731 + }, + { + "start": 46297.58, + "end": 46298.82, + "probability": 0.9932 + }, + { + "start": 46299.66, + "end": 46302.12, + "probability": 0.9336 + }, + { + "start": 46302.76, + "end": 46304.66, + "probability": 0.9163 + }, + { + "start": 46305.34, + "end": 46306.94, + "probability": 0.6685 + }, + { + "start": 46307.46, + "end": 46308.36, + "probability": 0.9326 + }, + { + "start": 46308.78, + "end": 46313.5, + "probability": 0.8887 + }, + { + "start": 46314.04, + "end": 46315.94, + "probability": 0.8848 + }, + { + "start": 46316.52, + "end": 46319.11, + "probability": 0.8602 + }, + { + "start": 46320.14, + "end": 46321.98, + "probability": 0.9005 + }, + { + "start": 46322.26, + "end": 46329.02, + "probability": 0.9678 + }, + { + "start": 46329.08, + "end": 46330.32, + "probability": 0.894 + }, + { + "start": 46331.14, + "end": 46334.2, + "probability": 0.766 + }, + { + "start": 46334.3, + "end": 46334.3, + "probability": 0.719 + }, + { + "start": 46334.3, + "end": 46336.84, + "probability": 0.7771 + }, + { + "start": 46336.94, + "end": 46341.12, + "probability": 0.7133 + }, + { + "start": 46351.8, + "end": 46352.58, + "probability": 0.2765 + }, + { + "start": 46352.58, + "end": 46353.32, + "probability": 0.0257 + }, + { + "start": 46355.72, + "end": 46357.54, + "probability": 0.7171 + }, + { + "start": 46360.04, + "end": 46363.9, + "probability": 0.8942 + }, + { + "start": 46365.58, + "end": 46369.68, + "probability": 0.8916 + }, + { + "start": 46370.88, + "end": 46372.67, + "probability": 0.9738 + }, + { + "start": 46372.82, + "end": 46373.96, + "probability": 0.9539 + }, + { + "start": 46375.1, + "end": 46375.86, + "probability": 0.9509 + }, + { + "start": 46376.52, + "end": 46377.4, + "probability": 0.9853 + }, + { + "start": 46378.72, + "end": 46381.16, + "probability": 0.976 + }, + { + "start": 46381.38, + "end": 46386.34, + "probability": 0.996 + }, + { + "start": 46386.96, + "end": 46387.58, + "probability": 0.9345 + }, + { + "start": 46388.3, + "end": 46388.9, + "probability": 0.8177 + }, + { + "start": 46389.64, + "end": 46390.72, + "probability": 0.7364 + }, + { + "start": 46390.78, + "end": 46393.04, + "probability": 0.9681 + }, + { + "start": 46394.06, + "end": 46394.52, + "probability": 0.0731 + }, + { + "start": 46394.56, + "end": 46397.0, + "probability": 0.6869 + }, + { + "start": 46397.84, + "end": 46399.06, + "probability": 0.3568 + }, + { + "start": 46400.08, + "end": 46401.3, + "probability": 0.9811 + }, + { + "start": 46401.34, + "end": 46401.94, + "probability": 0.6715 + }, + { + "start": 46403.28, + "end": 46405.76, + "probability": 0.7798 + }, + { + "start": 46407.22, + "end": 46409.5, + "probability": 0.9715 + }, + { + "start": 46409.5, + "end": 46412.02, + "probability": 0.9444 + }, + { + "start": 46414.66, + "end": 46415.46, + "probability": 0.7628 + }, + { + "start": 46416.0, + "end": 46417.34, + "probability": 0.6925 + }, + { + "start": 46417.44, + "end": 46420.88, + "probability": 0.936 + }, + { + "start": 46422.38, + "end": 46425.42, + "probability": 0.1106 + }, + { + "start": 46425.59, + "end": 46425.66, + "probability": 0.5205 + }, + { + "start": 46425.66, + "end": 46425.66, + "probability": 0.2344 + }, + { + "start": 46425.84, + "end": 46426.02, + "probability": 0.1316 + }, + { + "start": 46426.44, + "end": 46427.8, + "probability": 0.8542 + }, + { + "start": 46428.56, + "end": 46430.34, + "probability": 0.9938 + }, + { + "start": 46430.82, + "end": 46433.3, + "probability": 0.9884 + }, + { + "start": 46433.38, + "end": 46434.46, + "probability": 0.9742 + }, + { + "start": 46435.2, + "end": 46435.96, + "probability": 0.2722 + }, + { + "start": 46436.8, + "end": 46439.92, + "probability": 0.9135 + }, + { + "start": 46440.53, + "end": 46443.84, + "probability": 0.767 + }, + { + "start": 46446.38, + "end": 46447.54, + "probability": 0.9808 + }, + { + "start": 46448.2, + "end": 46451.96, + "probability": 0.9333 + }, + { + "start": 46452.12, + "end": 46454.46, + "probability": 0.7696 + }, + { + "start": 46454.54, + "end": 46457.16, + "probability": 0.9944 + }, + { + "start": 46457.16, + "end": 46458.88, + "probability": 0.9915 + }, + { + "start": 46459.48, + "end": 46462.9, + "probability": 0.9802 + }, + { + "start": 46463.06, + "end": 46463.71, + "probability": 0.9295 + }, + { + "start": 46464.06, + "end": 46465.18, + "probability": 0.8016 + }, + { + "start": 46465.78, + "end": 46467.28, + "probability": 0.9451 + }, + { + "start": 46467.8, + "end": 46470.44, + "probability": 0.9921 + }, + { + "start": 46470.92, + "end": 46472.88, + "probability": 0.9194 + }, + { + "start": 46474.64, + "end": 46476.17, + "probability": 0.9851 + }, + { + "start": 46477.04, + "end": 46480.78, + "probability": 0.9234 + }, + { + "start": 46481.64, + "end": 46482.3, + "probability": 0.9909 + }, + { + "start": 46482.38, + "end": 46483.18, + "probability": 0.7577 + }, + { + "start": 46483.3, + "end": 46484.0, + "probability": 0.8684 + }, + { + "start": 46484.26, + "end": 46485.8, + "probability": 0.9678 + }, + { + "start": 46485.86, + "end": 46486.38, + "probability": 0.9705 + }, + { + "start": 46486.5, + "end": 46488.66, + "probability": 0.9921 + }, + { + "start": 46490.28, + "end": 46490.98, + "probability": 0.7359 + }, + { + "start": 46491.12, + "end": 46493.04, + "probability": 0.9544 + }, + { + "start": 46493.04, + "end": 46495.28, + "probability": 0.9599 + }, + { + "start": 46496.46, + "end": 46497.12, + "probability": 0.8129 + }, + { + "start": 46497.4, + "end": 46499.02, + "probability": 0.9135 + }, + { + "start": 46499.08, + "end": 46499.6, + "probability": 0.8647 + }, + { + "start": 46499.74, + "end": 46500.24, + "probability": 0.7753 + }, + { + "start": 46500.38, + "end": 46500.78, + "probability": 0.61 + }, + { + "start": 46500.9, + "end": 46501.63, + "probability": 0.7769 + }, + { + "start": 46502.46, + "end": 46508.44, + "probability": 0.9611 + }, + { + "start": 46509.68, + "end": 46510.98, + "probability": 0.9868 + }, + { + "start": 46511.04, + "end": 46512.06, + "probability": 0.9214 + }, + { + "start": 46512.12, + "end": 46513.9, + "probability": 0.9813 + }, + { + "start": 46513.98, + "end": 46517.34, + "probability": 0.9866 + }, + { + "start": 46517.42, + "end": 46519.42, + "probability": 0.9966 + }, + { + "start": 46519.42, + "end": 46521.74, + "probability": 0.9977 + }, + { + "start": 46523.02, + "end": 46525.38, + "probability": 0.9299 + }, + { + "start": 46525.6, + "end": 46527.3, + "probability": 0.8971 + }, + { + "start": 46527.4, + "end": 46529.04, + "probability": 0.8445 + }, + { + "start": 46530.62, + "end": 46531.26, + "probability": 0.7703 + }, + { + "start": 46533.4, + "end": 46536.3, + "probability": 0.938 + }, + { + "start": 46536.44, + "end": 46536.98, + "probability": 0.8567 + }, + { + "start": 46537.3, + "end": 46538.24, + "probability": 0.9004 + }, + { + "start": 46538.88, + "end": 46540.08, + "probability": 0.9848 + }, + { + "start": 46540.68, + "end": 46541.44, + "probability": 0.9531 + }, + { + "start": 46541.96, + "end": 46542.96, + "probability": 0.9855 + }, + { + "start": 46543.04, + "end": 46544.3, + "probability": 0.9301 + }, + { + "start": 46544.36, + "end": 46546.13, + "probability": 0.9761 + }, + { + "start": 46547.06, + "end": 46547.22, + "probability": 0.6508 + }, + { + "start": 46547.44, + "end": 46548.34, + "probability": 0.853 + }, + { + "start": 46550.82, + "end": 46553.02, + "probability": 0.9392 + }, + { + "start": 46553.06, + "end": 46553.95, + "probability": 0.9951 + }, + { + "start": 46554.02, + "end": 46554.96, + "probability": 0.7835 + }, + { + "start": 46555.04, + "end": 46555.18, + "probability": 0.9699 + }, + { + "start": 46555.24, + "end": 46556.98, + "probability": 0.9177 + }, + { + "start": 46557.02, + "end": 46557.68, + "probability": 0.9927 + }, + { + "start": 46557.74, + "end": 46558.22, + "probability": 0.882 + }, + { + "start": 46558.36, + "end": 46558.76, + "probability": 0.4618 + }, + { + "start": 46560.08, + "end": 46564.08, + "probability": 0.8954 + }, + { + "start": 46564.5, + "end": 46565.12, + "probability": 0.2675 + }, + { + "start": 46566.58, + "end": 46568.9, + "probability": 0.9849 + }, + { + "start": 46568.96, + "end": 46570.24, + "probability": 0.9877 + }, + { + "start": 46571.84, + "end": 46574.5, + "probability": 0.9937 + }, + { + "start": 46574.58, + "end": 46577.8, + "probability": 0.9053 + }, + { + "start": 46579.86, + "end": 46581.6, + "probability": 0.9878 + }, + { + "start": 46582.4, + "end": 46584.78, + "probability": 0.7531 + }, + { + "start": 46586.52, + "end": 46587.82, + "probability": 0.9866 + }, + { + "start": 46588.26, + "end": 46592.82, + "probability": 0.995 + }, + { + "start": 46592.82, + "end": 46596.34, + "probability": 0.9901 + }, + { + "start": 46596.86, + "end": 46600.24, + "probability": 0.7237 + }, + { + "start": 46601.08, + "end": 46601.4, + "probability": 0.79 + }, + { + "start": 46601.5, + "end": 46605.5, + "probability": 0.9966 + }, + { + "start": 46605.72, + "end": 46607.58, + "probability": 0.8428 + }, + { + "start": 46609.22, + "end": 46610.96, + "probability": 0.9954 + }, + { + "start": 46611.04, + "end": 46613.2, + "probability": 0.9886 + }, + { + "start": 46614.18, + "end": 46619.16, + "probability": 0.985 + }, + { + "start": 46619.18, + "end": 46620.26, + "probability": 0.648 + }, + { + "start": 46620.36, + "end": 46621.14, + "probability": 0.6012 + }, + { + "start": 46621.32, + "end": 46622.82, + "probability": 0.9456 + }, + { + "start": 46624.02, + "end": 46627.84, + "probability": 0.9534 + }, + { + "start": 46628.26, + "end": 46629.74, + "probability": 0.9764 + }, + { + "start": 46630.1, + "end": 46631.5, + "probability": 0.9257 + }, + { + "start": 46631.6, + "end": 46634.9, + "probability": 0.8555 + }, + { + "start": 46636.46, + "end": 46638.54, + "probability": 0.8648 + }, + { + "start": 46638.92, + "end": 46640.28, + "probability": 0.8715 + }, + { + "start": 46640.38, + "end": 46643.64, + "probability": 0.9741 + }, + { + "start": 46643.94, + "end": 46646.88, + "probability": 0.5577 + }, + { + "start": 46647.52, + "end": 46651.12, + "probability": 0.9888 + }, + { + "start": 46651.28, + "end": 46653.48, + "probability": 0.9128 + }, + { + "start": 46655.04, + "end": 46655.86, + "probability": 0.8219 + }, + { + "start": 46655.88, + "end": 46656.66, + "probability": 0.955 + }, + { + "start": 46657.02, + "end": 46658.17, + "probability": 0.7763 + }, + { + "start": 46658.48, + "end": 46661.9, + "probability": 0.9315 + }, + { + "start": 46662.32, + "end": 46663.72, + "probability": 0.9823 + }, + { + "start": 46666.54, + "end": 46668.14, + "probability": 0.9634 + }, + { + "start": 46668.46, + "end": 46668.81, + "probability": 0.7583 + }, + { + "start": 46668.9, + "end": 46670.46, + "probability": 0.8334 + }, + { + "start": 46670.5, + "end": 46672.46, + "probability": 0.9561 + }, + { + "start": 46673.02, + "end": 46675.88, + "probability": 0.9968 + }, + { + "start": 46676.36, + "end": 46677.84, + "probability": 0.9468 + }, + { + "start": 46677.92, + "end": 46678.22, + "probability": 0.9542 + }, + { + "start": 46678.28, + "end": 46682.2, + "probability": 0.9909 + }, + { + "start": 46682.24, + "end": 46683.66, + "probability": 0.973 + }, + { + "start": 46683.74, + "end": 46685.52, + "probability": 0.9271 + }, + { + "start": 46685.84, + "end": 46686.82, + "probability": 0.999 + }, + { + "start": 46686.92, + "end": 46688.8, + "probability": 0.7435 + }, + { + "start": 46689.84, + "end": 46691.64, + "probability": 0.9742 + }, + { + "start": 46691.72, + "end": 46693.52, + "probability": 0.8533 + }, + { + "start": 46694.54, + "end": 46695.32, + "probability": 0.7811 + }, + { + "start": 46695.38, + "end": 46698.62, + "probability": 0.9688 + }, + { + "start": 46698.88, + "end": 46700.78, + "probability": 0.9688 + }, + { + "start": 46701.3, + "end": 46701.96, + "probability": 0.7225 + }, + { + "start": 46702.54, + "end": 46704.96, + "probability": 0.9937 + }, + { + "start": 46705.06, + "end": 46705.59, + "probability": 0.7925 + }, + { + "start": 46706.18, + "end": 46706.58, + "probability": 0.9434 + }, + { + "start": 46706.84, + "end": 46707.62, + "probability": 0.9804 + }, + { + "start": 46707.96, + "end": 46709.98, + "probability": 0.9675 + }, + { + "start": 46710.32, + "end": 46711.22, + "probability": 0.9657 + }, + { + "start": 46711.48, + "end": 46712.42, + "probability": 0.5037 + }, + { + "start": 46712.44, + "end": 46714.92, + "probability": 0.9821 + }, + { + "start": 46715.54, + "end": 46717.9, + "probability": 0.9491 + }, + { + "start": 46717.96, + "end": 46720.72, + "probability": 0.9219 + }, + { + "start": 46720.74, + "end": 46721.09, + "probability": 0.9656 + }, + { + "start": 46721.74, + "end": 46723.39, + "probability": 0.9644 + }, + { + "start": 46723.56, + "end": 46723.56, + "probability": 0.648 + }, + { + "start": 46723.56, + "end": 46726.66, + "probability": 0.9746 + }, + { + "start": 46727.04, + "end": 46731.18, + "probability": 0.9906 + }, + { + "start": 46731.54, + "end": 46732.04, + "probability": 0.9383 + }, + { + "start": 46732.12, + "end": 46732.64, + "probability": 0.9468 + }, + { + "start": 46732.94, + "end": 46733.56, + "probability": 0.8958 + }, + { + "start": 46733.7, + "end": 46734.18, + "probability": 0.3605 + }, + { + "start": 46734.3, + "end": 46734.86, + "probability": 0.5216 + }, + { + "start": 46734.86, + "end": 46735.04, + "probability": 0.737 + }, + { + "start": 46735.28, + "end": 46736.16, + "probability": 0.9714 + }, + { + "start": 46736.22, + "end": 46737.8, + "probability": 0.7082 + }, + { + "start": 46738.2, + "end": 46738.8, + "probability": 0.9926 + }, + { + "start": 46738.94, + "end": 46743.2, + "probability": 0.9808 + }, + { + "start": 46743.52, + "end": 46744.02, + "probability": 0.8633 + }, + { + "start": 46744.32, + "end": 46744.98, + "probability": 0.9816 + }, + { + "start": 46745.08, + "end": 46746.1, + "probability": 0.6207 + }, + { + "start": 46746.1, + "end": 46746.12, + "probability": 0.5126 + }, + { + "start": 46746.24, + "end": 46748.06, + "probability": 0.7639 + }, + { + "start": 46748.36, + "end": 46750.58, + "probability": 0.9552 + }, + { + "start": 46750.86, + "end": 46751.8, + "probability": 0.872 + }, + { + "start": 46752.22, + "end": 46753.02, + "probability": 0.933 + }, + { + "start": 46753.08, + "end": 46753.28, + "probability": 0.9208 + }, + { + "start": 46753.56, + "end": 46753.98, + "probability": 0.6793 + }, + { + "start": 46754.08, + "end": 46756.7, + "probability": 0.7255 + }, + { + "start": 46756.8, + "end": 46758.56, + "probability": 0.2766 + }, + { + "start": 46761.26, + "end": 46762.84, + "probability": 0.4854 + }, + { + "start": 46762.9, + "end": 46763.0, + "probability": 0.7341 + }, + { + "start": 46764.16, + "end": 46766.08, + "probability": 0.9131 + }, + { + "start": 46766.22, + "end": 46768.26, + "probability": 0.0099 + }, + { + "start": 46780.76, + "end": 46782.66, + "probability": 0.5415 + }, + { + "start": 46782.66, + "end": 46786.32, + "probability": 0.2307 + }, + { + "start": 46789.4, + "end": 46789.98, + "probability": 0.2696 + }, + { + "start": 46790.16, + "end": 46793.38, + "probability": 0.9654 + }, + { + "start": 46793.58, + "end": 46795.47, + "probability": 0.395 + }, + { + "start": 46796.26, + "end": 46796.4, + "probability": 0.5225 + }, + { + "start": 46796.62, + "end": 46797.6, + "probability": 0.0296 + }, + { + "start": 46804.4, + "end": 46807.32, + "probability": 0.5169 + }, + { + "start": 46808.68, + "end": 46808.68, + "probability": 0.7158 + }, + { + "start": 46808.68, + "end": 46808.68, + "probability": 0.9322 + }, + { + "start": 46808.68, + "end": 46809.6, + "probability": 0.5141 + }, + { + "start": 46813.54, + "end": 46816.68, + "probability": 0.6973 + }, + { + "start": 46831.43, + "end": 46836.6, + "probability": 0.9886 + }, + { + "start": 46836.62, + "end": 46839.16, + "probability": 0.67 + }, + { + "start": 46840.83, + "end": 46842.64, + "probability": 0.9032 + }, + { + "start": 46842.8, + "end": 46844.17, + "probability": 0.8269 + }, + { + "start": 46844.5, + "end": 46844.78, + "probability": 0.1462 + }, + { + "start": 46844.78, + "end": 46846.86, + "probability": 0.6513 + }, + { + "start": 46848.08, + "end": 46849.62, + "probability": 0.0485 + }, + { + "start": 46849.62, + "end": 46849.7, + "probability": 0.0046 + }, + { + "start": 46849.82, + "end": 46850.42, + "probability": 0.6886 + }, + { + "start": 46851.72, + "end": 46852.86, + "probability": 0.805 + }, + { + "start": 46852.92, + "end": 46855.42, + "probability": 0.722 + }, + { + "start": 46855.52, + "end": 46856.44, + "probability": 0.8328 + }, + { + "start": 46859.74, + "end": 46862.98, + "probability": 0.7069 + }, + { + "start": 46863.22, + "end": 46863.54, + "probability": 0.8424 + }, + { + "start": 46863.68, + "end": 46866.36, + "probability": 0.0254 + }, + { + "start": 46866.68, + "end": 46868.44, + "probability": 0.9189 + }, + { + "start": 46873.65, + "end": 46877.04, + "probability": 0.7705 + }, + { + "start": 46879.54, + "end": 46880.94, + "probability": 0.8334 + }, + { + "start": 46881.06, + "end": 46885.38, + "probability": 0.813 + }, + { + "start": 46885.98, + "end": 46887.3, + "probability": 0.9921 + }, + { + "start": 46891.86, + "end": 46893.6, + "probability": 0.672 + }, + { + "start": 46894.16, + "end": 46899.92, + "probability": 0.8641 + }, + { + "start": 46900.64, + "end": 46904.74, + "probability": 0.9954 + }, + { + "start": 46906.18, + "end": 46907.44, + "probability": 0.9849 + }, + { + "start": 46908.24, + "end": 46911.68, + "probability": 0.9969 + }, + { + "start": 46914.06, + "end": 46914.32, + "probability": 0.0384 + }, + { + "start": 46914.32, + "end": 46914.32, + "probability": 0.3703 + }, + { + "start": 46914.32, + "end": 46915.66, + "probability": 0.506 + }, + { + "start": 46916.3, + "end": 46916.92, + "probability": 0.5592 + }, + { + "start": 46917.04, + "end": 46918.88, + "probability": 0.695 + }, + { + "start": 46918.96, + "end": 46919.66, + "probability": 0.5395 + }, + { + "start": 46920.02, + "end": 46920.96, + "probability": 0.851 + }, + { + "start": 46921.3, + "end": 46922.88, + "probability": 0.586 + }, + { + "start": 46922.96, + "end": 46923.62, + "probability": 0.9297 + }, + { + "start": 46923.82, + "end": 46926.66, + "probability": 0.962 + }, + { + "start": 46926.78, + "end": 46928.84, + "probability": 0.8353 + }, + { + "start": 46929.34, + "end": 46932.52, + "probability": 0.9964 + }, + { + "start": 46933.18, + "end": 46933.78, + "probability": 0.2437 + }, + { + "start": 46933.92, + "end": 46934.78, + "probability": 0.655 + }, + { + "start": 46934.82, + "end": 46936.32, + "probability": 0.9743 + }, + { + "start": 46937.06, + "end": 46937.54, + "probability": 0.4005 + }, + { + "start": 46938.22, + "end": 46940.86, + "probability": 0.743 + }, + { + "start": 46941.68, + "end": 46948.16, + "probability": 0.9666 + }, + { + "start": 46949.24, + "end": 46950.46, + "probability": 0.685 + }, + { + "start": 46951.2, + "end": 46955.74, + "probability": 0.9788 + }, + { + "start": 46955.74, + "end": 46960.42, + "probability": 0.8979 + }, + { + "start": 46960.58, + "end": 46963.3, + "probability": 0.4541 + }, + { + "start": 46963.82, + "end": 46967.84, + "probability": 0.6151 + }, + { + "start": 46968.42, + "end": 46970.24, + "probability": 0.5993 + }, + { + "start": 46970.56, + "end": 46975.28, + "probability": 0.9854 + }, + { + "start": 46975.28, + "end": 46980.84, + "probability": 0.8825 + }, + { + "start": 46981.64, + "end": 46982.59, + "probability": 0.6902 + }, + { + "start": 46985.26, + "end": 46987.8, + "probability": 0.9764 + }, + { + "start": 46989.04, + "end": 46992.66, + "probability": 0.4798 + }, + { + "start": 46993.4, + "end": 46995.32, + "probability": 0.9868 + }, + { + "start": 46995.84, + "end": 46998.34, + "probability": 0.9792 + }, + { + "start": 46998.7, + "end": 47002.84, + "probability": 0.981 + }, + { + "start": 47002.9, + "end": 47005.98, + "probability": 0.9883 + }, + { + "start": 47006.56, + "end": 47011.68, + "probability": 0.9296 + }, + { + "start": 47012.64, + "end": 47013.5, + "probability": 0.9021 + }, + { + "start": 47015.14, + "end": 47016.64, + "probability": 0.9971 + }, + { + "start": 47017.22, + "end": 47019.14, + "probability": 0.9819 + }, + { + "start": 47019.98, + "end": 47020.9, + "probability": 0.8066 + }, + { + "start": 47022.02, + "end": 47025.7, + "probability": 0.9646 + }, + { + "start": 47025.7, + "end": 47030.58, + "probability": 0.9958 + }, + { + "start": 47031.54, + "end": 47031.88, + "probability": 0.3542 + }, + { + "start": 47031.98, + "end": 47034.18, + "probability": 0.9818 + }, + { + "start": 47035.7, + "end": 47042.74, + "probability": 0.9972 + }, + { + "start": 47044.44, + "end": 47048.36, + "probability": 0.9976 + }, + { + "start": 47048.4, + "end": 47051.22, + "probability": 0.7484 + }, + { + "start": 47051.8, + "end": 47059.04, + "probability": 0.9952 + }, + { + "start": 47060.24, + "end": 47060.92, + "probability": 0.7961 + }, + { + "start": 47061.26, + "end": 47062.42, + "probability": 0.9463 + }, + { + "start": 47062.52, + "end": 47064.2, + "probability": 0.8225 + }, + { + "start": 47066.96, + "end": 47070.16, + "probability": 0.8034 + }, + { + "start": 47070.42, + "end": 47072.02, + "probability": 0.6927 + }, + { + "start": 47072.8, + "end": 47075.74, + "probability": 0.9795 + }, + { + "start": 47076.48, + "end": 47080.88, + "probability": 0.5233 + }, + { + "start": 47081.6, + "end": 47082.1, + "probability": 0.824 + }, + { + "start": 47082.18, + "end": 47087.46, + "probability": 0.9167 + }, + { + "start": 47087.88, + "end": 47090.28, + "probability": 0.8467 + }, + { + "start": 47090.76, + "end": 47092.84, + "probability": 0.9571 + }, + { + "start": 47092.98, + "end": 47098.96, + "probability": 0.91 + }, + { + "start": 47099.42, + "end": 47101.62, + "probability": 0.8679 + }, + { + "start": 47101.76, + "end": 47104.52, + "probability": 0.6355 + }, + { + "start": 47105.6, + "end": 47106.24, + "probability": 0.3789 + }, + { + "start": 47107.5, + "end": 47107.64, + "probability": 0.0518 + }, + { + "start": 47107.64, + "end": 47108.5, + "probability": 0.358 + }, + { + "start": 47108.56, + "end": 47110.98, + "probability": 0.3521 + }, + { + "start": 47111.32, + "end": 47114.26, + "probability": 0.5318 + }, + { + "start": 47115.62, + "end": 47118.3, + "probability": 0.9893 + }, + { + "start": 47118.44, + "end": 47119.58, + "probability": 0.2916 + }, + { + "start": 47119.68, + "end": 47120.08, + "probability": 0.2182 + }, + { + "start": 47120.18, + "end": 47121.56, + "probability": 0.6634 + }, + { + "start": 47121.96, + "end": 47123.42, + "probability": 0.8319 + }, + { + "start": 47123.58, + "end": 47125.5, + "probability": 0.6597 + }, + { + "start": 47125.9, + "end": 47127.68, + "probability": 0.9404 + }, + { + "start": 47128.76, + "end": 47133.58, + "probability": 0.523 + }, + { + "start": 47133.58, + "end": 47137.86, + "probability": 0.9827 + }, + { + "start": 47137.86, + "end": 47143.02, + "probability": 0.9825 + }, + { + "start": 47143.62, + "end": 47148.58, + "probability": 0.8812 + }, + { + "start": 47148.58, + "end": 47154.26, + "probability": 0.9847 + }, + { + "start": 47154.26, + "end": 47159.4, + "probability": 0.7784 + }, + { + "start": 47159.9, + "end": 47160.34, + "probability": 0.4144 + }, + { + "start": 47161.12, + "end": 47164.78, + "probability": 0.979 + }, + { + "start": 47164.78, + "end": 47169.1, + "probability": 0.9576 + }, + { + "start": 47169.48, + "end": 47171.12, + "probability": 0.9812 + }, + { + "start": 47171.76, + "end": 47175.78, + "probability": 0.9961 + }, + { + "start": 47175.78, + "end": 47179.9, + "probability": 0.8306 + }, + { + "start": 47180.26, + "end": 47182.78, + "probability": 0.9443 + }, + { + "start": 47182.92, + "end": 47183.74, + "probability": 0.8422 + }, + { + "start": 47184.34, + "end": 47185.7, + "probability": 0.9568 + }, + { + "start": 47186.36, + "end": 47191.86, + "probability": 0.8939 + }, + { + "start": 47192.2, + "end": 47193.58, + "probability": 0.9751 + }, + { + "start": 47194.14, + "end": 47194.5, + "probability": 0.4531 + }, + { + "start": 47194.62, + "end": 47195.57, + "probability": 0.7626 + }, + { + "start": 47195.86, + "end": 47196.44, + "probability": 0.383 + }, + { + "start": 47196.52, + "end": 47198.0, + "probability": 0.6412 + }, + { + "start": 47198.06, + "end": 47198.66, + "probability": 0.2299 + }, + { + "start": 47198.72, + "end": 47200.84, + "probability": 0.8599 + }, + { + "start": 47200.94, + "end": 47202.56, + "probability": 0.9928 + }, + { + "start": 47202.64, + "end": 47203.12, + "probability": 0.9736 + }, + { + "start": 47204.5, + "end": 47205.3, + "probability": 0.7979 + }, + { + "start": 47206.7, + "end": 47211.9, + "probability": 0.998 + }, + { + "start": 47212.54, + "end": 47213.88, + "probability": 0.9978 + }, + { + "start": 47214.14, + "end": 47215.37, + "probability": 0.9224 + }, + { + "start": 47215.9, + "end": 47217.3, + "probability": 0.6356 + }, + { + "start": 47217.34, + "end": 47220.32, + "probability": 0.9928 + }, + { + "start": 47220.88, + "end": 47221.82, + "probability": 0.7407 + }, + { + "start": 47222.24, + "end": 47223.82, + "probability": 0.9607 + }, + { + "start": 47224.18, + "end": 47226.4, + "probability": 0.8618 + }, + { + "start": 47227.1, + "end": 47228.98, + "probability": 0.8987 + }, + { + "start": 47229.06, + "end": 47229.84, + "probability": 0.782 + }, + { + "start": 47230.24, + "end": 47231.24, + "probability": 0.939 + }, + { + "start": 47231.6, + "end": 47234.24, + "probability": 0.8708 + }, + { + "start": 47234.98, + "end": 47238.18, + "probability": 0.9979 + }, + { + "start": 47238.74, + "end": 47241.46, + "probability": 0.9889 + }, + { + "start": 47242.02, + "end": 47246.38, + "probability": 0.9602 + }, + { + "start": 47246.38, + "end": 47247.86, + "probability": 0.853 + }, + { + "start": 47248.56, + "end": 47250.04, + "probability": 0.8003 + }, + { + "start": 47250.48, + "end": 47253.28, + "probability": 0.9878 + }, + { + "start": 47253.5, + "end": 47255.9, + "probability": 0.9307 + }, + { + "start": 47256.16, + "end": 47258.16, + "probability": 0.9968 + }, + { + "start": 47258.7, + "end": 47260.82, + "probability": 0.9685 + }, + { + "start": 47261.58, + "end": 47264.8, + "probability": 0.9988 + }, + { + "start": 47265.04, + "end": 47269.3, + "probability": 0.9985 + }, + { + "start": 47270.0, + "end": 47274.82, + "probability": 0.948 + }, + { + "start": 47275.66, + "end": 47278.32, + "probability": 0.889 + }, + { + "start": 47278.36, + "end": 47279.12, + "probability": 0.924 + }, + { + "start": 47279.26, + "end": 47280.0, + "probability": 0.8827 + }, + { + "start": 47280.02, + "end": 47280.76, + "probability": 0.9191 + }, + { + "start": 47280.82, + "end": 47282.02, + "probability": 0.8404 + }, + { + "start": 47282.46, + "end": 47283.84, + "probability": 0.9402 + }, + { + "start": 47284.54, + "end": 47286.88, + "probability": 0.9956 + }, + { + "start": 47287.52, + "end": 47289.52, + "probability": 0.9748 + }, + { + "start": 47289.98, + "end": 47292.76, + "probability": 0.9933 + }, + { + "start": 47293.0, + "end": 47299.26, + "probability": 0.9977 + }, + { + "start": 47299.3, + "end": 47303.16, + "probability": 0.9049 + }, + { + "start": 47303.72, + "end": 47304.4, + "probability": 0.6406 + }, + { + "start": 47305.06, + "end": 47306.6, + "probability": 0.9631 + }, + { + "start": 47306.94, + "end": 47309.04, + "probability": 0.9984 + }, + { + "start": 47310.84, + "end": 47314.5, + "probability": 0.9573 + }, + { + "start": 47314.8, + "end": 47315.64, + "probability": 0.8851 + }, + { + "start": 47315.76, + "end": 47316.9, + "probability": 0.5233 + }, + { + "start": 47317.91, + "end": 47319.6, + "probability": 0.9521 + }, + { + "start": 47319.82, + "end": 47321.6, + "probability": 0.8404 + }, + { + "start": 47321.78, + "end": 47324.26, + "probability": 0.8894 + }, + { + "start": 47324.64, + "end": 47326.0, + "probability": 0.9257 + }, + { + "start": 47326.26, + "end": 47328.9, + "probability": 0.8569 + }, + { + "start": 47329.84, + "end": 47332.26, + "probability": 0.8361 + }, + { + "start": 47332.93, + "end": 47336.88, + "probability": 0.8201 + }, + { + "start": 47337.02, + "end": 47337.54, + "probability": 0.7356 + }, + { + "start": 47337.72, + "end": 47338.43, + "probability": 0.803 + }, + { + "start": 47339.0, + "end": 47342.1, + "probability": 0.9829 + }, + { + "start": 47342.22, + "end": 47343.54, + "probability": 0.819 + }, + { + "start": 47344.46, + "end": 47345.14, + "probability": 0.4189 + }, + { + "start": 47345.54, + "end": 47348.5, + "probability": 0.839 + }, + { + "start": 47348.8, + "end": 47349.34, + "probability": 0.675 + }, + { + "start": 47349.46, + "end": 47350.76, + "probability": 0.5106 + }, + { + "start": 47351.18, + "end": 47354.86, + "probability": 0.9924 + }, + { + "start": 47355.76, + "end": 47358.7, + "probability": 0.9059 + }, + { + "start": 47359.22, + "end": 47363.16, + "probability": 0.9714 + }, + { + "start": 47363.8, + "end": 47366.68, + "probability": 0.9957 + }, + { + "start": 47367.28, + "end": 47372.24, + "probability": 0.9308 + }, + { + "start": 47372.3, + "end": 47374.2, + "probability": 0.9637 + }, + { + "start": 47374.64, + "end": 47375.12, + "probability": 0.9207 + }, + { + "start": 47375.52, + "end": 47380.78, + "probability": 0.9535 + }, + { + "start": 47380.98, + "end": 47381.78, + "probability": 0.9159 + }, + { + "start": 47382.34, + "end": 47387.9, + "probability": 0.8992 + }, + { + "start": 47388.42, + "end": 47391.0, + "probability": 0.7242 + }, + { + "start": 47391.58, + "end": 47394.64, + "probability": 0.7523 + }, + { + "start": 47395.02, + "end": 47398.3, + "probability": 0.9893 + }, + { + "start": 47398.56, + "end": 47404.18, + "probability": 0.8564 + }, + { + "start": 47404.6, + "end": 47406.28, + "probability": 0.9632 + }, + { + "start": 47407.18, + "end": 47410.82, + "probability": 0.9819 + }, + { + "start": 47411.62, + "end": 47414.8, + "probability": 0.9023 + }, + { + "start": 47415.5, + "end": 47416.36, + "probability": 0.5783 + }, + { + "start": 47416.68, + "end": 47417.62, + "probability": 0.9578 + }, + { + "start": 47417.72, + "end": 47418.57, + "probability": 0.958 + }, + { + "start": 47419.4, + "end": 47420.24, + "probability": 0.8672 + }, + { + "start": 47421.04, + "end": 47423.46, + "probability": 0.9738 + }, + { + "start": 47423.96, + "end": 47426.9, + "probability": 0.9928 + }, + { + "start": 47427.44, + "end": 47430.44, + "probability": 0.9917 + }, + { + "start": 47430.92, + "end": 47433.06, + "probability": 0.8794 + }, + { + "start": 47433.88, + "end": 47435.3, + "probability": 0.5985 + }, + { + "start": 47435.5, + "end": 47439.96, + "probability": 0.9131 + }, + { + "start": 47440.08, + "end": 47442.44, + "probability": 0.9272 + }, + { + "start": 47442.44, + "end": 47444.96, + "probability": 0.8062 + }, + { + "start": 47445.1, + "end": 47445.96, + "probability": 0.8715 + }, + { + "start": 47446.12, + "end": 47446.72, + "probability": 0.3732 + }, + { + "start": 47447.06, + "end": 47449.07, + "probability": 0.7852 + }, + { + "start": 47449.34, + "end": 47452.14, + "probability": 0.6111 + }, + { + "start": 47452.24, + "end": 47454.54, + "probability": 0.8874 + }, + { + "start": 47454.58, + "end": 47458.02, + "probability": 0.9177 + }, + { + "start": 47458.1, + "end": 47459.22, + "probability": 0.3862 + }, + { + "start": 47459.39, + "end": 47460.56, + "probability": 0.155 + }, + { + "start": 47460.56, + "end": 47462.38, + "probability": 0.685 + }, + { + "start": 47462.64, + "end": 47463.98, + "probability": 0.4775 + }, + { + "start": 47464.04, + "end": 47465.14, + "probability": 0.3993 + }, + { + "start": 47465.14, + "end": 47465.62, + "probability": 0.3266 + }, + { + "start": 47465.66, + "end": 47465.66, + "probability": 0.6903 + }, + { + "start": 47465.7, + "end": 47465.96, + "probability": 0.9177 + }, + { + "start": 47466.64, + "end": 47470.2, + "probability": 0.989 + }, + { + "start": 47471.06, + "end": 47474.34, + "probability": 0.7922 + }, + { + "start": 47474.38, + "end": 47476.16, + "probability": 0.936 + }, + { + "start": 47476.56, + "end": 47477.88, + "probability": 0.9961 + }, + { + "start": 47477.92, + "end": 47478.66, + "probability": 0.9282 + }, + { + "start": 47478.98, + "end": 47482.92, + "probability": 0.5922 + }, + { + "start": 47483.06, + "end": 47485.34, + "probability": 0.9519 + }, + { + "start": 47485.85, + "end": 47488.86, + "probability": 0.9625 + }, + { + "start": 47489.18, + "end": 47490.2, + "probability": 0.9307 + }, + { + "start": 47490.28, + "end": 47492.08, + "probability": 0.7536 + }, + { + "start": 47492.72, + "end": 47496.04, + "probability": 0.539 + }, + { + "start": 47496.3, + "end": 47498.16, + "probability": 0.3905 + }, + { + "start": 47498.24, + "end": 47500.68, + "probability": 0.7109 + }, + { + "start": 47500.68, + "end": 47506.74, + "probability": 0.9808 + }, + { + "start": 47506.82, + "end": 47507.91, + "probability": 0.9907 + }, + { + "start": 47507.98, + "end": 47509.27, + "probability": 0.4655 + }, + { + "start": 47509.4, + "end": 47510.8, + "probability": 0.9456 + }, + { + "start": 47510.92, + "end": 47514.88, + "probability": 0.9795 + }, + { + "start": 47515.08, + "end": 47518.31, + "probability": 0.1223 + }, + { + "start": 47518.56, + "end": 47519.28, + "probability": 0.1029 + }, + { + "start": 47519.78, + "end": 47521.08, + "probability": 0.8946 + }, + { + "start": 47525.05, + "end": 47528.34, + "probability": 0.8062 + }, + { + "start": 47529.0, + "end": 47535.14, + "probability": 0.8013 + }, + { + "start": 47535.72, + "end": 47541.3, + "probability": 0.9934 + }, + { + "start": 47541.52, + "end": 47542.66, + "probability": 0.8694 + }, + { + "start": 47542.9, + "end": 47544.76, + "probability": 0.4791 + }, + { + "start": 47544.76, + "end": 47545.82, + "probability": 0.5453 + }, + { + "start": 47545.84, + "end": 47548.74, + "probability": 0.7638 + }, + { + "start": 47549.22, + "end": 47549.56, + "probability": 0.8519 + }, + { + "start": 47550.58, + "end": 47551.28, + "probability": 0.8227 + }, + { + "start": 47552.48, + "end": 47554.8, + "probability": 0.9176 + }, + { + "start": 47554.86, + "end": 47555.84, + "probability": 0.9409 + }, + { + "start": 47555.9, + "end": 47558.48, + "probability": 0.9609 + }, + { + "start": 47558.6, + "end": 47558.82, + "probability": 0.6154 + }, + { + "start": 47558.82, + "end": 47559.54, + "probability": 0.8756 + }, + { + "start": 47559.62, + "end": 47560.3, + "probability": 0.9786 + }, + { + "start": 47560.42, + "end": 47561.06, + "probability": 0.9534 + }, + { + "start": 47561.22, + "end": 47561.92, + "probability": 0.8157 + }, + { + "start": 47562.4, + "end": 47564.18, + "probability": 0.8029 + }, + { + "start": 47564.88, + "end": 47570.79, + "probability": 0.9607 + }, + { + "start": 47582.9, + "end": 47586.56, + "probability": 0.959 + }, + { + "start": 47587.36, + "end": 47592.02, + "probability": 0.9004 + }, + { + "start": 47592.9, + "end": 47598.04, + "probability": 0.9965 + }, + { + "start": 47598.76, + "end": 47601.2, + "probability": 0.9951 + }, + { + "start": 47601.2, + "end": 47604.38, + "probability": 0.9985 + }, + { + "start": 47605.18, + "end": 47610.0, + "probability": 0.9971 + }, + { + "start": 47611.68, + "end": 47614.86, + "probability": 0.9983 + }, + { + "start": 47614.86, + "end": 47618.96, + "probability": 0.9791 + }, + { + "start": 47619.66, + "end": 47621.74, + "probability": 0.8133 + }, + { + "start": 47622.02, + "end": 47623.53, + "probability": 0.9963 + }, + { + "start": 47624.6, + "end": 47627.66, + "probability": 0.9936 + }, + { + "start": 47628.34, + "end": 47631.24, + "probability": 0.9892 + }, + { + "start": 47631.96, + "end": 47635.02, + "probability": 0.9317 + }, + { + "start": 47635.76, + "end": 47639.1, + "probability": 0.9839 + }, + { + "start": 47640.98, + "end": 47641.58, + "probability": 0.7546 + }, + { + "start": 47642.16, + "end": 47643.54, + "probability": 0.8609 + }, + { + "start": 47652.74, + "end": 47656.3, + "probability": 0.7083 + }, + { + "start": 47660.72, + "end": 47662.56, + "probability": 0.0519 + }, + { + "start": 47663.74, + "end": 47666.7, + "probability": 0.1418 + }, + { + "start": 47669.12, + "end": 47670.42, + "probability": 0.7372 + }, + { + "start": 47672.04, + "end": 47676.74, + "probability": 0.995 + }, + { + "start": 47677.62, + "end": 47682.56, + "probability": 0.994 + }, + { + "start": 47683.78, + "end": 47687.38, + "probability": 0.982 + }, + { + "start": 47687.38, + "end": 47692.52, + "probability": 0.9972 + }, + { + "start": 47693.3, + "end": 47699.28, + "probability": 0.9657 + }, + { + "start": 47700.0, + "end": 47706.84, + "probability": 0.9926 + }, + { + "start": 47708.58, + "end": 47711.44, + "probability": 0.9944 + }, + { + "start": 47711.48, + "end": 47715.96, + "probability": 0.9826 + }, + { + "start": 47716.7, + "end": 47720.7, + "probability": 0.9964 + }, + { + "start": 47720.7, + "end": 47725.14, + "probability": 0.9981 + }, + { + "start": 47725.94, + "end": 47730.3, + "probability": 0.9849 + }, + { + "start": 47730.62, + "end": 47732.54, + "probability": 0.8659 + }, + { + "start": 47733.12, + "end": 47734.62, + "probability": 0.9761 + }, + { + "start": 47736.08, + "end": 47736.78, + "probability": 0.0005 + }, + { + "start": 47738.84, + "end": 47741.52, + "probability": 0.1063 + }, + { + "start": 47741.62, + "end": 47741.74, + "probability": 0.1539 + }, + { + "start": 47741.9, + "end": 47742.32, + "probability": 0.0021 + }, + { + "start": 47743.58, + "end": 47744.3, + "probability": 0.0621 + }, + { + "start": 47744.3, + "end": 47744.37, + "probability": 0.0435 + }, + { + "start": 47744.92, + "end": 47746.52, + "probability": 0.1559 + }, + { + "start": 47749.47, + "end": 47750.58, + "probability": 0.4752 + }, + { + "start": 47754.72, + "end": 47757.54, + "probability": 0.8639 + }, + { + "start": 47768.22, + "end": 47768.8, + "probability": 0.7246 + }, + { + "start": 47768.88, + "end": 47770.6, + "probability": 0.7987 + }, + { + "start": 47770.66, + "end": 47771.52, + "probability": 0.911 + }, + { + "start": 47783.4, + "end": 47789.56, + "probability": 0.9464 + }, + { + "start": 47789.9, + "end": 47792.34, + "probability": 0.9865 + }, + { + "start": 47793.66, + "end": 47796.64, + "probability": 0.9073 + }, + { + "start": 47797.14, + "end": 47803.14, + "probability": 0.9942 + }, + { + "start": 47804.2, + "end": 47805.46, + "probability": 0.9439 + }, + { + "start": 47806.4, + "end": 47809.12, + "probability": 0.825 + }, + { + "start": 47810.58, + "end": 47812.96, + "probability": 0.8739 + }, + { + "start": 47813.68, + "end": 47819.44, + "probability": 0.981 + }, + { + "start": 47820.18, + "end": 47823.92, + "probability": 0.9946 + }, + { + "start": 47824.52, + "end": 47830.66, + "probability": 0.8964 + }, + { + "start": 47831.26, + "end": 47835.22, + "probability": 0.9255 + }, + { + "start": 47835.82, + "end": 47839.36, + "probability": 0.9264 + }, + { + "start": 47839.52, + "end": 47842.54, + "probability": 0.9982 + }, + { + "start": 47844.58, + "end": 47844.88, + "probability": 0.7068 + }, + { + "start": 47844.98, + "end": 47848.38, + "probability": 0.9854 + }, + { + "start": 47848.42, + "end": 47849.38, + "probability": 0.9327 + }, + { + "start": 47850.08, + "end": 47853.21, + "probability": 0.9874 + }, + { + "start": 47853.3, + "end": 47857.74, + "probability": 0.9325 + }, + { + "start": 47858.62, + "end": 47860.74, + "probability": 0.9859 + }, + { + "start": 47861.22, + "end": 47863.64, + "probability": 0.2315 + }, + { + "start": 47863.9, + "end": 47867.0, + "probability": 0.318 + }, + { + "start": 47867.12, + "end": 47869.91, + "probability": 0.8438 + }, + { + "start": 47870.6, + "end": 47870.86, + "probability": 0.0861 + }, + { + "start": 47871.02, + "end": 47873.76, + "probability": 0.5058 + }, + { + "start": 47874.12, + "end": 47876.66, + "probability": 0.421 + }, + { + "start": 47877.48, + "end": 47877.62, + "probability": 0.091 + }, + { + "start": 47877.72, + "end": 47878.08, + "probability": 0.726 + }, + { + "start": 47879.14, + "end": 47882.2, + "probability": 0.4619 + }, + { + "start": 47882.2, + "end": 47882.2, + "probability": 0.4162 + }, + { + "start": 47883.74, + "end": 47883.74, + "probability": 0.1231 + }, + { + "start": 47883.74, + "end": 47885.88, + "probability": 0.1792 + }, + { + "start": 47886.7, + "end": 47890.06, + "probability": 0.0343 + }, + { + "start": 47911.68, + "end": 47915.08, + "probability": 0.6477 + }, + { + "start": 47915.82, + "end": 47917.78, + "probability": 0.6379 + }, + { + "start": 47918.34, + "end": 47918.88, + "probability": 0.4893 + }, + { + "start": 47919.9, + "end": 47921.0, + "probability": 0.3802 + }, + { + "start": 47922.96, + "end": 47924.82, + "probability": 0.7225 + }, + { + "start": 47926.2, + "end": 47927.46, + "probability": 0.8739 + }, + { + "start": 47928.26, + "end": 47932.14, + "probability": 0.7522 + }, + { + "start": 47933.2, + "end": 47934.14, + "probability": 0.6508 + }, + { + "start": 47935.7, + "end": 47937.48, + "probability": 0.8792 + }, + { + "start": 47941.04, + "end": 47945.12, + "probability": 0.7271 + }, + { + "start": 47947.58, + "end": 47949.34, + "probability": 0.8072 + }, + { + "start": 47954.0, + "end": 47955.74, + "probability": 0.745 + }, + { + "start": 47958.44, + "end": 47958.98, + "probability": 0.9958 + }, + { + "start": 47960.26, + "end": 47961.24, + "probability": 0.9254 + }, + { + "start": 47962.06, + "end": 47964.56, + "probability": 0.965 + }, + { + "start": 47965.4, + "end": 47968.36, + "probability": 0.4097 + }, + { + "start": 47969.64, + "end": 47971.4, + "probability": 0.6867 + }, + { + "start": 47973.32, + "end": 47974.94, + "probability": 0.7082 + }, + { + "start": 47975.74, + "end": 47979.64, + "probability": 0.7804 + }, + { + "start": 47980.44, + "end": 47980.8, + "probability": 0.943 + }, + { + "start": 47981.74, + "end": 47982.84, + "probability": 0.8679 + }, + { + "start": 47984.02, + "end": 47985.52, + "probability": 0.9451 + }, + { + "start": 47987.3, + "end": 47987.48, + "probability": 0.0094 + }, + { + "start": 47988.04, + "end": 47992.0, + "probability": 0.899 + }, + { + "start": 47993.32, + "end": 47995.42, + "probability": 0.7886 + }, + { + "start": 47996.1, + "end": 47996.5, + "probability": 0.8996 + }, + { + "start": 47997.8, + "end": 47998.94, + "probability": 0.8673 + }, + { + "start": 48000.18, + "end": 48005.04, + "probability": 0.9232 + }, + { + "start": 48005.64, + "end": 48005.92, + "probability": 0.6582 + }, + { + "start": 48011.52, + "end": 48014.72, + "probability": 0.4251 + }, + { + "start": 48016.66, + "end": 48017.14, + "probability": 0.985 + }, + { + "start": 48017.74, + "end": 48018.86, + "probability": 0.7284 + }, + { + "start": 48019.84, + "end": 48020.32, + "probability": 0.9909 + }, + { + "start": 48021.22, + "end": 48023.86, + "probability": 0.9104 + }, + { + "start": 48024.74, + "end": 48026.2, + "probability": 0.8504 + }, + { + "start": 48029.08, + "end": 48029.82, + "probability": 0.9762 + }, + { + "start": 48030.76, + "end": 48034.76, + "probability": 0.9753 + }, + { + "start": 48035.42, + "end": 48036.48, + "probability": 0.7999 + }, + { + "start": 48037.36, + "end": 48038.84, + "probability": 0.8701 + }, + { + "start": 48039.36, + "end": 48039.84, + "probability": 0.9064 + }, + { + "start": 48040.4, + "end": 48041.66, + "probability": 0.7338 + }, + { + "start": 48044.76, + "end": 48046.4, + "probability": 0.7561 + }, + { + "start": 48047.18, + "end": 48047.72, + "probability": 0.9956 + }, + { + "start": 48051.1, + "end": 48051.84, + "probability": 0.483 + }, + { + "start": 48053.24, + "end": 48053.8, + "probability": 0.9775 + }, + { + "start": 48054.5, + "end": 48056.66, + "probability": 0.7428 + }, + { + "start": 48060.78, + "end": 48061.18, + "probability": 0.8494 + }, + { + "start": 48062.38, + "end": 48063.34, + "probability": 0.1628 + }, + { + "start": 48064.26, + "end": 48069.84, + "probability": 0.8349 + }, + { + "start": 48070.78, + "end": 48071.48, + "probability": 0.9951 + }, + { + "start": 48072.12, + "end": 48073.54, + "probability": 0.8792 + }, + { + "start": 48076.84, + "end": 48078.48, + "probability": 0.7615 + }, + { + "start": 48081.66, + "end": 48083.56, + "probability": 0.8105 + }, + { + "start": 48084.5, + "end": 48085.0, + "probability": 0.5897 + }, + { + "start": 48086.14, + "end": 48087.08, + "probability": 0.2126 + }, + { + "start": 48088.16, + "end": 48088.52, + "probability": 0.9751 + }, + { + "start": 48089.32, + "end": 48090.44, + "probability": 0.6719 + }, + { + "start": 48092.08, + "end": 48093.9, + "probability": 0.608 + }, + { + "start": 48096.3, + "end": 48097.92, + "probability": 0.9791 + }, + { + "start": 48099.0, + "end": 48099.26, + "probability": 0.9773 + }, + { + "start": 48100.18, + "end": 48100.56, + "probability": 0.8455 + }, + { + "start": 48101.92, + "end": 48102.38, + "probability": 0.9834 + }, + { + "start": 48103.08, + "end": 48103.78, + "probability": 0.864 + }, + { + "start": 48105.92, + "end": 48108.78, + "probability": 0.9347 + }, + { + "start": 48109.94, + "end": 48110.48, + "probability": 0.9941 + }, + { + "start": 48111.16, + "end": 48112.26, + "probability": 0.6942 + }, + { + "start": 48112.78, + "end": 48112.9, + "probability": 0.0197 + }, + { + "start": 48120.9, + "end": 48121.78, + "probability": 0.3322 + }, + { + "start": 48122.32, + "end": 48123.18, + "probability": 0.5847 + }, + { + "start": 48124.74, + "end": 48125.56, + "probability": 0.51 + }, + { + "start": 48126.56, + "end": 48127.66, + "probability": 0.7788 + }, + { + "start": 48128.68, + "end": 48129.72, + "probability": 0.9616 + }, + { + "start": 48130.78, + "end": 48132.58, + "probability": 0.887 + }, + { + "start": 48133.42, + "end": 48135.52, + "probability": 0.8944 + }, + { + "start": 48137.16, + "end": 48142.04, + "probability": 0.7223 + }, + { + "start": 48142.76, + "end": 48143.76, + "probability": 0.1212 + }, + { + "start": 48148.11, + "end": 48152.88, + "probability": 0.8794 + }, + { + "start": 48153.68, + "end": 48158.08, + "probability": 0.9559 + }, + { + "start": 48159.02, + "end": 48162.5, + "probability": 0.8905 + }, + { + "start": 48164.92, + "end": 48166.96, + "probability": 0.9658 + }, + { + "start": 48168.06, + "end": 48170.62, + "probability": 0.9775 + }, + { + "start": 48171.96, + "end": 48175.56, + "probability": 0.7847 + }, + { + "start": 48176.78, + "end": 48181.58, + "probability": 0.8718 + }, + { + "start": 48183.78, + "end": 48185.68, + "probability": 0.9556 + }, + { + "start": 48186.14, + "end": 48187.92, + "probability": 0.9479 + }, + { + "start": 48190.1, + "end": 48193.08, + "probability": 0.8925 + }, + { + "start": 48193.72, + "end": 48197.02, + "probability": 0.9546 + }, + { + "start": 48198.14, + "end": 48199.7, + "probability": 0.7416 + }, + { + "start": 48200.36, + "end": 48201.62, + "probability": 0.7359 + }, + { + "start": 48203.06, + "end": 48203.66, + "probability": 0.9819 + }, + { + "start": 48204.38, + "end": 48206.84, + "probability": 0.9639 + }, + { + "start": 48207.48, + "end": 48208.62, + "probability": 0.7957 + }, + { + "start": 48212.74, + "end": 48214.58, + "probability": 0.8345 + }, + { + "start": 48215.68, + "end": 48217.8, + "probability": 0.8578 + }, + { + "start": 48218.76, + "end": 48219.3, + "probability": 0.9741 + }, + { + "start": 48220.22, + "end": 48222.24, + "probability": 0.9701 + }, + { + "start": 48223.26, + "end": 48224.78, + "probability": 0.9155 + }, + { + "start": 48226.12, + "end": 48231.68, + "probability": 0.6933 + }, + { + "start": 48233.32, + "end": 48233.96, + "probability": 0.9938 + }, + { + "start": 48234.92, + "end": 48239.12, + "probability": 0.8507 + }, + { + "start": 48239.92, + "end": 48243.3, + "probability": 0.9788 + }, + { + "start": 48246.88, + "end": 48247.22, + "probability": 0.8617 + }, + { + "start": 48248.04, + "end": 48248.78, + "probability": 0.5584 + }, + { + "start": 48249.94, + "end": 48250.54, + "probability": 0.9839 + }, + { + "start": 48251.38, + "end": 48252.34, + "probability": 0.8471 + }, + { + "start": 48253.48, + "end": 48254.08, + "probability": 0.9888 + }, + { + "start": 48255.0, + "end": 48258.74, + "probability": 0.9398 + }, + { + "start": 48262.7, + "end": 48264.56, + "probability": 0.8315 + }, + { + "start": 48265.22, + "end": 48266.06, + "probability": 0.9086 + }, + { + "start": 48267.22, + "end": 48267.8, + "probability": 0.9189 + }, + { + "start": 48268.36, + "end": 48269.38, + "probability": 0.9104 + }, + { + "start": 48269.94, + "end": 48277.36, + "probability": 0.2624 + }, + { + "start": 48278.56, + "end": 48279.94, + "probability": 0.9157 + }, + { + "start": 48280.86, + "end": 48284.84, + "probability": 0.853 + }, + { + "start": 48289.94, + "end": 48293.64, + "probability": 0.8983 + }, + { + "start": 48294.4, + "end": 48297.84, + "probability": 0.9548 + }, + { + "start": 48299.18, + "end": 48300.02, + "probability": 0.6173 + }, + { + "start": 48312.36, + "end": 48313.5, + "probability": 0.566 + }, + { + "start": 48314.52, + "end": 48317.64, + "probability": 0.6786 + }, + { + "start": 48319.94, + "end": 48320.8, + "probability": 0.27 + }, + { + "start": 48336.22, + "end": 48341.76, + "probability": 0.3778 + }, + { + "start": 48342.04, + "end": 48344.32, + "probability": 0.8033 + }, + { + "start": 48345.14, + "end": 48347.82, + "probability": 0.8641 + }, + { + "start": 48349.1, + "end": 48349.62, + "probability": 0.9816 + }, + { + "start": 48350.76, + "end": 48357.56, + "probability": 0.5973 + }, + { + "start": 48361.58, + "end": 48362.1, + "probability": 0.9538 + }, + { + "start": 48362.9, + "end": 48363.98, + "probability": 0.8555 + }, + { + "start": 48365.26, + "end": 48365.76, + "probability": 0.9917 + }, + { + "start": 48366.7, + "end": 48367.46, + "probability": 0.7874 + }, + { + "start": 48368.82, + "end": 48371.06, + "probability": 0.9865 + }, + { + "start": 48371.64, + "end": 48372.24, + "probability": 0.9857 + }, + { + "start": 48373.72, + "end": 48374.5, + "probability": 0.9843 + }, + { + "start": 48375.22, + "end": 48376.98, + "probability": 0.954 + }, + { + "start": 48378.72, + "end": 48380.74, + "probability": 0.9033 + }, + { + "start": 48381.42, + "end": 48382.78, + "probability": 0.6552 + }, + { + "start": 48383.98, + "end": 48385.12, + "probability": 0.9092 + }, + { + "start": 48386.14, + "end": 48387.2, + "probability": 0.7852 + }, + { + "start": 48388.42, + "end": 48390.26, + "probability": 0.8472 + }, + { + "start": 48390.78, + "end": 48394.52, + "probability": 0.9331 + }, + { + "start": 48395.06, + "end": 48395.68, + "probability": 0.9538 + }, + { + "start": 48397.24, + "end": 48398.42, + "probability": 0.8289 + }, + { + "start": 48399.0, + "end": 48399.46, + "probability": 0.7881 + }, + { + "start": 48400.16, + "end": 48401.02, + "probability": 0.5131 + }, + { + "start": 48402.86, + "end": 48403.62, + "probability": 0.7999 + }, + { + "start": 48404.7, + "end": 48407.7, + "probability": 0.7196 + }, + { + "start": 48408.42, + "end": 48409.1, + "probability": 0.4685 + }, + { + "start": 48409.16, + "end": 48410.8, + "probability": 0.8216 + }, + { + "start": 48411.8, + "end": 48412.58, + "probability": 0.9848 + }, + { + "start": 48413.14, + "end": 48414.06, + "probability": 0.7651 + }, + { + "start": 48417.94, + "end": 48418.68, + "probability": 0.3368 + }, + { + "start": 48418.68, + "end": 48419.3, + "probability": 0.5856 + }, + { + "start": 48419.44, + "end": 48420.88, + "probability": 0.8253 + }, + { + "start": 48422.02, + "end": 48423.6, + "probability": 0.8796 + }, + { + "start": 48424.0, + "end": 48425.54, + "probability": 0.7941 + }, + { + "start": 48426.36, + "end": 48427.94, + "probability": 0.9175 + }, + { + "start": 48428.14, + "end": 48429.94, + "probability": 0.7695 + }, + { + "start": 48429.96, + "end": 48430.66, + "probability": 0.7398 + }, + { + "start": 48432.08, + "end": 48433.2, + "probability": 0.4028 + }, + { + "start": 48433.3, + "end": 48434.58, + "probability": 0.9666 + }, + { + "start": 48434.66, + "end": 48435.78, + "probability": 0.7633 + }, + { + "start": 48435.86, + "end": 48436.58, + "probability": 0.4925 + }, + { + "start": 48437.2, + "end": 48438.22, + "probability": 0.9696 + }, + { + "start": 48439.64, + "end": 48441.28, + "probability": 0.9464 + }, + { + "start": 48442.92, + "end": 48444.66, + "probability": 0.8901 + }, + { + "start": 48445.72, + "end": 48448.58, + "probability": 0.7017 + }, + { + "start": 48449.2, + "end": 48450.44, + "probability": 0.9006 + }, + { + "start": 48451.96, + "end": 48455.3, + "probability": 0.746 + }, + { + "start": 48455.98, + "end": 48456.46, + "probability": 0.9603 + }, + { + "start": 48458.88, + "end": 48459.94, + "probability": 0.8203 + }, + { + "start": 48462.46, + "end": 48466.4, + "probability": 0.8747 + }, + { + "start": 48466.82, + "end": 48468.02, + "probability": 0.5355 + }, + { + "start": 48468.18, + "end": 48468.76, + "probability": 0.5944 + }, + { + "start": 48469.4, + "end": 48470.24, + "probability": 0.5237 + }, + { + "start": 48472.26, + "end": 48473.12, + "probability": 0.9669 + }, + { + "start": 48476.54, + "end": 48477.3, + "probability": 0.5919 + }, + { + "start": 48478.8, + "end": 48479.42, + "probability": 0.6809 + }, + { + "start": 48481.28, + "end": 48482.12, + "probability": 0.7207 + }, + { + "start": 48483.08, + "end": 48483.9, + "probability": 0.8561 + }, + { + "start": 48484.44, + "end": 48488.06, + "probability": 0.8605 + }, + { + "start": 48489.24, + "end": 48492.22, + "probability": 0.9668 + }, + { + "start": 48492.94, + "end": 48494.8, + "probability": 0.9637 + }, + { + "start": 48495.5, + "end": 48496.48, + "probability": 0.5689 + }, + { + "start": 48498.1, + "end": 48499.48, + "probability": 0.9316 + }, + { + "start": 48500.26, + "end": 48501.9, + "probability": 0.8442 + }, + { + "start": 48501.96, + "end": 48503.78, + "probability": 0.807 + }, + { + "start": 48503.82, + "end": 48505.2, + "probability": 0.9036 + }, + { + "start": 48505.28, + "end": 48507.66, + "probability": 0.9664 + }, + { + "start": 48509.32, + "end": 48512.16, + "probability": 0.8794 + }, + { + "start": 48513.12, + "end": 48514.24, + "probability": 0.7437 + }, + { + "start": 48516.14, + "end": 48518.44, + "probability": 0.8746 + }, + { + "start": 48519.82, + "end": 48520.4, + "probability": 0.6836 + }, + { + "start": 48522.52, + "end": 48526.4, + "probability": 0.6833 + }, + { + "start": 48527.92, + "end": 48529.3, + "probability": 0.9827 + }, + { + "start": 48530.68, + "end": 48533.5, + "probability": 0.4948 + }, + { + "start": 48534.08, + "end": 48534.28, + "probability": 0.0363 + }, + { + "start": 48537.28, + "end": 48537.88, + "probability": 0.749 + }, + { + "start": 48541.72, + "end": 48542.84, + "probability": 0.6776 + }, + { + "start": 48543.12, + "end": 48544.56, + "probability": 0.7637 + }, + { + "start": 48544.66, + "end": 48546.16, + "probability": 0.919 + }, + { + "start": 48546.8, + "end": 48549.5, + "probability": 0.6733 + }, + { + "start": 48549.62, + "end": 48552.24, + "probability": 0.9577 + }, + { + "start": 48552.32, + "end": 48553.74, + "probability": 0.8434 + }, + { + "start": 48553.78, + "end": 48555.56, + "probability": 0.8206 + }, + { + "start": 48555.9, + "end": 48556.68, + "probability": 0.9749 + }, + { + "start": 48558.18, + "end": 48560.7, + "probability": 0.9974 + }, + { + "start": 48562.7, + "end": 48564.1, + "probability": 0.9219 + }, + { + "start": 48564.8, + "end": 48565.44, + "probability": 0.4624 + }, + { + "start": 48567.24, + "end": 48567.56, + "probability": 0.1191 + }, + { + "start": 48568.1, + "end": 48568.1, + "probability": 0.1497 + }, + { + "start": 48575.58, + "end": 48576.22, + "probability": 0.0165 + }, + { + "start": 48579.4, + "end": 48580.5, + "probability": 0.0 + }, + { + "start": 48593.54, + "end": 48597.28, + "probability": 0.0853 + }, + { + "start": 48627.12, + "end": 48627.22, + "probability": 0.0687 + }, + { + "start": 48630.6, + "end": 48630.7, + "probability": 0.0233 + }, + { + "start": 48633.86, + "end": 48638.36, + "probability": 0.0368 + }, + { + "start": 48648.48, + "end": 48650.1, + "probability": 0.0774 + }, + { + "start": 48670.64, + "end": 48674.84, + "probability": 0.3102 + }, + { + "start": 48683.08, + "end": 48687.02, + "probability": 0.0295 + }, + { + "start": 48687.38, + "end": 48687.4, + "probability": 0.6582 + }, + { + "start": 48694.46, + "end": 48695.98, + "probability": 0.0252 + }, + { + "start": 48700.9, + "end": 48700.94, + "probability": 0.1581 + }, + { + "start": 48700.94, + "end": 48702.02, + "probability": 0.1861 + }, + { + "start": 48702.6, + "end": 48702.6, + "probability": 0.1309 + }, + { + "start": 48702.6, + "end": 48704.04, + "probability": 0.5112 + }, + { + "start": 48706.02, + "end": 48710.1, + "probability": 0.7301 + }, + { + "start": 48712.08, + "end": 48713.48, + "probability": 0.7475 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48802.0, + "end": 48802.0, + "probability": 0.0 + }, + { + "start": 48809.86, + "end": 48812.42, + "probability": 0.0186 + }, + { + "start": 48813.24, + "end": 48814.16, + "probability": 0.0963 + }, + { + "start": 48814.42, + "end": 48814.42, + "probability": 0.0518 + }, + { + "start": 48814.42, + "end": 48814.72, + "probability": 0.0323 + }, + { + "start": 48814.86, + "end": 48815.12, + "probability": 0.0273 + }, + { + "start": 48815.24, + "end": 48815.56, + "probability": 0.0227 + }, + { + "start": 48816.1, + "end": 48818.78, + "probability": 0.0641 + }, + { + "start": 48819.42, + "end": 48819.84, + "probability": 0.0625 + }, + { + "start": 48819.84, + "end": 48819.84, + "probability": 0.0538 + }, + { + "start": 48819.84, + "end": 48819.84, + "probability": 0.0804 + }, + { + "start": 48819.84, + "end": 48820.2, + "probability": 0.3266 + }, + { + "start": 48826.88, + "end": 48828.96, + "probability": 0.2738 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48930.0, + "end": 48930.0, + "probability": 0.0 + }, + { + "start": 48944.14, + "end": 48950.3, + "probability": 0.043 + }, + { + "start": 48950.5, + "end": 48951.82, + "probability": 0.0555 + }, + { + "start": 48952.27, + "end": 48953.82, + "probability": 0.0374 + }, + { + "start": 48953.82, + "end": 48953.82, + "probability": 0.0674 + }, + { + "start": 48953.82, + "end": 48953.82, + "probability": 0.0115 + }, + { + "start": 48956.16, + "end": 48956.98, + "probability": 0.1169 + }, + { + "start": 48956.98, + "end": 48961.94, + "probability": 0.0777 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.0, + "end": 49051.0, + "probability": 0.0 + }, + { + "start": 49051.46, + "end": 49051.98, + "probability": 0.0344 + }, + { + "start": 49051.98, + "end": 49052.86, + "probability": 0.1864 + }, + { + "start": 49053.4, + "end": 49056.72, + "probability": 0.973 + }, + { + "start": 49057.2, + "end": 49059.44, + "probability": 0.9268 + }, + { + "start": 49060.18, + "end": 49063.74, + "probability": 0.9855 + }, + { + "start": 49063.84, + "end": 49064.32, + "probability": 0.733 + }, + { + "start": 49064.88, + "end": 49065.46, + "probability": 0.8175 + }, + { + "start": 49066.44, + "end": 49067.6, + "probability": 0.8133 + }, + { + "start": 49068.32, + "end": 49068.84, + "probability": 0.7258 + }, + { + "start": 49069.94, + "end": 49071.3, + "probability": 0.0499 + }, + { + "start": 49074.86, + "end": 49074.86, + "probability": 0.4904 + }, + { + "start": 49104.0, + "end": 49109.64, + "probability": 0.7438 + }, + { + "start": 49111.24, + "end": 49117.06, + "probability": 0.9887 + }, + { + "start": 49117.06, + "end": 49125.26, + "probability": 0.9951 + }, + { + "start": 49125.26, + "end": 49134.18, + "probability": 0.9973 + }, + { + "start": 49134.92, + "end": 49138.08, + "probability": 0.9995 + }, + { + "start": 49138.08, + "end": 49142.78, + "probability": 0.9987 + }, + { + "start": 49143.86, + "end": 49145.3, + "probability": 0.8543 + }, + { + "start": 49145.72, + "end": 49148.88, + "probability": 0.8647 + }, + { + "start": 49149.56, + "end": 49151.64, + "probability": 0.9877 + }, + { + "start": 49152.16, + "end": 49155.34, + "probability": 0.9988 + }, + { + "start": 49156.28, + "end": 49158.14, + "probability": 0.9135 + }, + { + "start": 49159.4, + "end": 49160.54, + "probability": 0.9805 + }, + { + "start": 49161.8, + "end": 49162.7, + "probability": 0.7974 + }, + { + "start": 49162.84, + "end": 49163.3, + "probability": 0.9633 + }, + { + "start": 49163.36, + "end": 49164.92, + "probability": 0.9588 + }, + { + "start": 49165.38, + "end": 49168.02, + "probability": 0.9935 + }, + { + "start": 49169.84, + "end": 49172.88, + "probability": 0.9961 + }, + { + "start": 49174.08, + "end": 49176.74, + "probability": 0.9929 + }, + { + "start": 49178.0, + "end": 49183.26, + "probability": 0.9854 + }, + { + "start": 49183.84, + "end": 49187.86, + "probability": 0.9867 + }, + { + "start": 49187.86, + "end": 49192.46, + "probability": 0.9956 + }, + { + "start": 49193.6, + "end": 49195.64, + "probability": 0.9097 + }, + { + "start": 49196.62, + "end": 49198.72, + "probability": 0.969 + }, + { + "start": 49199.52, + "end": 49206.76, + "probability": 0.9746 + }, + { + "start": 49207.76, + "end": 49211.98, + "probability": 0.8839 + }, + { + "start": 49212.84, + "end": 49213.74, + "probability": 0.9653 + }, + { + "start": 49214.38, + "end": 49216.44, + "probability": 0.9292 + }, + { + "start": 49216.88, + "end": 49220.68, + "probability": 0.9961 + }, + { + "start": 49221.12, + "end": 49221.6, + "probability": 0.8464 + }, + { + "start": 49221.82, + "end": 49222.88, + "probability": 0.8544 + }, + { + "start": 49223.61, + "end": 49227.44, + "probability": 0.9909 + }, + { + "start": 49228.02, + "end": 49234.6, + "probability": 0.9816 + }, + { + "start": 49235.4, + "end": 49237.0, + "probability": 0.7912 + }, + { + "start": 49237.4, + "end": 49243.74, + "probability": 0.886 + }, + { + "start": 49243.88, + "end": 49244.5, + "probability": 0.2874 + }, + { + "start": 49244.66, + "end": 49247.04, + "probability": 0.4974 + }, + { + "start": 49247.04, + "end": 49247.04, + "probability": 0.4427 + }, + { + "start": 49247.04, + "end": 49247.68, + "probability": 0.5975 + }, + { + "start": 49248.28, + "end": 49252.18, + "probability": 0.9617 + }, + { + "start": 49252.18, + "end": 49254.2, + "probability": 0.7256 + }, + { + "start": 49254.38, + "end": 49255.04, + "probability": 0.551 + }, + { + "start": 49256.24, + "end": 49256.7, + "probability": 0.2682 + }, + { + "start": 49256.7, + "end": 49257.12, + "probability": 0.0848 + }, + { + "start": 49257.22, + "end": 49263.02, + "probability": 0.2471 + }, + { + "start": 49263.4, + "end": 49266.34, + "probability": 0.9344 + }, + { + "start": 49266.74, + "end": 49267.78, + "probability": 0.2991 + }, + { + "start": 49268.04, + "end": 49270.46, + "probability": 0.3563 + }, + { + "start": 49271.36, + "end": 49277.02, + "probability": 0.996 + }, + { + "start": 49277.62, + "end": 49283.44, + "probability": 0.9935 + }, + { + "start": 49284.0, + "end": 49284.88, + "probability": 0.4877 + }, + { + "start": 49285.58, + "end": 49288.74, + "probability": 0.8655 + }, + { + "start": 49288.9, + "end": 49291.48, + "probability": 0.8536 + }, + { + "start": 49291.88, + "end": 49296.54, + "probability": 0.9972 + }, + { + "start": 49296.84, + "end": 49299.18, + "probability": 0.9643 + }, + { + "start": 49299.5, + "end": 49304.36, + "probability": 0.9963 + }, + { + "start": 49304.38, + "end": 49305.74, + "probability": 0.7727 + }, + { + "start": 49306.08, + "end": 49307.76, + "probability": 0.813 + }, + { + "start": 49308.06, + "end": 49316.36, + "probability": 0.9503 + }, + { + "start": 49316.7, + "end": 49318.72, + "probability": 0.5755 + }, + { + "start": 49318.96, + "end": 49319.18, + "probability": 0.6463 + }, + { + "start": 49319.18, + "end": 49324.08, + "probability": 0.9714 + }, + { + "start": 49324.34, + "end": 49329.86, + "probability": 0.7063 + }, + { + "start": 49329.86, + "end": 49335.59, + "probability": 0.5001 + }, + { + "start": 49336.2, + "end": 49336.82, + "probability": 0.54 + }, + { + "start": 49336.96, + "end": 49337.62, + "probability": 0.0203 + }, + { + "start": 49338.14, + "end": 49340.78, + "probability": 0.4056 + }, + { + "start": 49340.88, + "end": 49344.95, + "probability": 0.3836 + }, + { + "start": 49345.18, + "end": 49348.09, + "probability": 0.3283 + }, + { + "start": 49354.1, + "end": 49362.2, + "probability": 0.0904 + }, + { + "start": 49362.84, + "end": 49363.68, + "probability": 0.1085 + }, + { + "start": 49363.72, + "end": 49364.78, + "probability": 0.7521 + }, + { + "start": 49365.83, + "end": 49367.52, + "probability": 0.6507 + }, + { + "start": 49367.56, + "end": 49368.52, + "probability": 0.8281 + }, + { + "start": 49368.68, + "end": 49370.8, + "probability": 0.9468 + }, + { + "start": 49371.32, + "end": 49376.36, + "probability": 0.7261 + }, + { + "start": 49376.52, + "end": 49378.16, + "probability": 0.9612 + }, + { + "start": 49378.16, + "end": 49378.44, + "probability": 0.6428 + }, + { + "start": 49378.96, + "end": 49379.3, + "probability": 0.34 + }, + { + "start": 49379.3, + "end": 49380.16, + "probability": 0.7451 + }, + { + "start": 49380.56, + "end": 49382.68, + "probability": 0.8002 + }, + { + "start": 49383.02, + "end": 49383.9, + "probability": 0.837 + }, + { + "start": 49384.06, + "end": 49387.68, + "probability": 0.2698 + }, + { + "start": 49387.68, + "end": 49389.16, + "probability": 0.2779 + }, + { + "start": 49389.3, + "end": 49390.92, + "probability": 0.8458 + }, + { + "start": 49391.12, + "end": 49391.62, + "probability": 0.8407 + }, + { + "start": 49392.16, + "end": 49394.47, + "probability": 0.443 + }, + { + "start": 49394.6, + "end": 49395.68, + "probability": 0.1281 + }, + { + "start": 49396.1, + "end": 49396.9, + "probability": 0.6965 + }, + { + "start": 49396.92, + "end": 49397.57, + "probability": 0.6677 + }, + { + "start": 49397.72, + "end": 49398.26, + "probability": 0.8884 + }, + { + "start": 49399.36, + "end": 49401.02, + "probability": 0.2225 + }, + { + "start": 49401.14, + "end": 49401.84, + "probability": 0.6942 + }, + { + "start": 49402.32, + "end": 49402.66, + "probability": 0.4495 + }, + { + "start": 49403.1, + "end": 49404.8, + "probability": 0.7195 + }, + { + "start": 49405.48, + "end": 49407.84, + "probability": 0.8336 + }, + { + "start": 49409.1, + "end": 49412.9, + "probability": 0.9898 + }, + { + "start": 49413.4, + "end": 49414.0, + "probability": 0.9539 + }, + { + "start": 49414.34, + "end": 49416.62, + "probability": 0.7532 + }, + { + "start": 49416.74, + "end": 49417.87, + "probability": 0.86 + }, + { + "start": 49418.94, + "end": 49426.36, + "probability": 0.983 + }, + { + "start": 49426.44, + "end": 49434.04, + "probability": 0.9918 + }, + { + "start": 49436.02, + "end": 49437.16, + "probability": 0.8943 + }, + { + "start": 49437.46, + "end": 49437.94, + "probability": 0.8094 + }, + { + "start": 49438.26, + "end": 49439.46, + "probability": 0.9728 + }, + { + "start": 49439.86, + "end": 49441.08, + "probability": 0.9841 + }, + { + "start": 49441.66, + "end": 49443.7, + "probability": 0.9625 + }, + { + "start": 49446.1, + "end": 49447.62, + "probability": 0.9645 + }, + { + "start": 49449.16, + "end": 49450.38, + "probability": 0.9484 + }, + { + "start": 49451.12, + "end": 49452.9, + "probability": 0.93 + }, + { + "start": 49452.94, + "end": 49454.16, + "probability": 0.9805 + }, + { + "start": 49454.46, + "end": 49458.2, + "probability": 0.7036 + }, + { + "start": 49459.54, + "end": 49460.9, + "probability": 0.8887 + }, + { + "start": 49461.46, + "end": 49464.5, + "probability": 0.8854 + }, + { + "start": 49465.1, + "end": 49465.78, + "probability": 0.8286 + }, + { + "start": 49466.76, + "end": 49468.46, + "probability": 0.9915 + }, + { + "start": 49469.72, + "end": 49471.62, + "probability": 0.9478 + }, + { + "start": 49472.3, + "end": 49475.94, + "probability": 0.9579 + }, + { + "start": 49477.04, + "end": 49478.42, + "probability": 0.2905 + }, + { + "start": 49479.1, + "end": 49482.56, + "probability": 0.4204 + }, + { + "start": 49482.74, + "end": 49485.14, + "probability": 0.9742 + }, + { + "start": 49487.78, + "end": 49488.3, + "probability": 0.9192 + }, + { + "start": 49489.14, + "end": 49492.76, + "probability": 0.9948 + }, + { + "start": 49492.84, + "end": 49496.84, + "probability": 0.9846 + }, + { + "start": 49497.62, + "end": 49498.72, + "probability": 0.9902 + }, + { + "start": 49500.46, + "end": 49501.36, + "probability": 0.9736 + }, + { + "start": 49504.62, + "end": 49508.72, + "probability": 0.9953 + }, + { + "start": 49510.34, + "end": 49511.46, + "probability": 0.7197 + }, + { + "start": 49512.82, + "end": 49514.4, + "probability": 0.6404 + }, + { + "start": 49514.48, + "end": 49515.14, + "probability": 0.9884 + }, + { + "start": 49515.2, + "end": 49515.9, + "probability": 0.8074 + }, + { + "start": 49516.86, + "end": 49517.64, + "probability": 0.9043 + }, + { + "start": 49517.68, + "end": 49518.28, + "probability": 0.9182 + }, + { + "start": 49519.0, + "end": 49521.08, + "probability": 0.9951 + }, + { + "start": 49522.02, + "end": 49523.04, + "probability": 0.9971 + }, + { + "start": 49524.94, + "end": 49528.7, + "probability": 0.9611 + }, + { + "start": 49529.76, + "end": 49530.28, + "probability": 0.9705 + }, + { + "start": 49532.48, + "end": 49534.35, + "probability": 0.9849 + }, + { + "start": 49535.14, + "end": 49535.56, + "probability": 0.709 + }, + { + "start": 49536.6, + "end": 49537.2, + "probability": 0.9178 + }, + { + "start": 49537.66, + "end": 49538.88, + "probability": 0.8959 + }, + { + "start": 49539.48, + "end": 49540.22, + "probability": 0.4804 + }, + { + "start": 49541.42, + "end": 49542.9, + "probability": 0.8149 + }, + { + "start": 49543.0, + "end": 49543.4, + "probability": 0.2468 + }, + { + "start": 49543.58, + "end": 49545.12, + "probability": 0.7685 + }, + { + "start": 49545.6, + "end": 49546.34, + "probability": 0.5417 + }, + { + "start": 49547.18, + "end": 49548.2, + "probability": 0.9188 + }, + { + "start": 49556.14, + "end": 49556.3, + "probability": 0.0527 + }, + { + "start": 49576.56, + "end": 49577.62, + "probability": 0.8397 + }, + { + "start": 49578.24, + "end": 49578.62, + "probability": 0.7352 + }, + { + "start": 49580.18, + "end": 49586.06, + "probability": 0.921 + }, + { + "start": 49586.94, + "end": 49589.16, + "probability": 0.7124 + }, + { + "start": 49590.12, + "end": 49592.22, + "probability": 0.9995 + }, + { + "start": 49593.08, + "end": 49598.22, + "probability": 0.9773 + }, + { + "start": 49599.7, + "end": 49602.18, + "probability": 0.9988 + }, + { + "start": 49602.28, + "end": 49605.14, + "probability": 0.5129 + }, + { + "start": 49606.74, + "end": 49608.44, + "probability": 0.8556 + }, + { + "start": 49609.04, + "end": 49609.8, + "probability": 0.6387 + }, + { + "start": 49610.32, + "end": 49611.76, + "probability": 0.9229 + }, + { + "start": 49612.54, + "end": 49619.84, + "probability": 0.9908 + }, + { + "start": 49620.88, + "end": 49624.68, + "probability": 0.968 + }, + { + "start": 49625.6, + "end": 49628.92, + "probability": 0.9903 + }, + { + "start": 49629.18, + "end": 49631.1, + "probability": 0.8645 + }, + { + "start": 49633.84, + "end": 49640.38, + "probability": 0.8936 + }, + { + "start": 49641.5, + "end": 49647.34, + "probability": 0.9785 + }, + { + "start": 49649.78, + "end": 49653.56, + "probability": 0.9816 + }, + { + "start": 49654.7, + "end": 49655.96, + "probability": 0.9979 + }, + { + "start": 49656.86, + "end": 49658.5, + "probability": 0.9955 + }, + { + "start": 49659.46, + "end": 49663.04, + "probability": 0.9446 + }, + { + "start": 49663.76, + "end": 49665.2, + "probability": 0.8218 + }, + { + "start": 49666.48, + "end": 49670.32, + "probability": 0.7551 + }, + { + "start": 49671.18, + "end": 49675.18, + "probability": 0.9954 + }, + { + "start": 49677.74, + "end": 49679.1, + "probability": 0.978 + }, + { + "start": 49681.0, + "end": 49684.04, + "probability": 0.9189 + }, + { + "start": 49684.64, + "end": 49693.78, + "probability": 0.9878 + }, + { + "start": 49694.34, + "end": 49696.44, + "probability": 0.9099 + }, + { + "start": 49697.18, + "end": 49703.14, + "probability": 0.981 + }, + { + "start": 49704.6, + "end": 49706.72, + "probability": 0.9075 + }, + { + "start": 49707.82, + "end": 49712.22, + "probability": 0.9717 + }, + { + "start": 49712.88, + "end": 49717.76, + "probability": 0.9921 + }, + { + "start": 49718.92, + "end": 49727.22, + "probability": 0.7537 + }, + { + "start": 49727.8, + "end": 49732.7, + "probability": 0.9442 + }, + { + "start": 49733.72, + "end": 49736.28, + "probability": 0.5509 + }, + { + "start": 49738.28, + "end": 49743.08, + "probability": 0.9271 + }, + { + "start": 49744.28, + "end": 49751.18, + "probability": 0.9788 + }, + { + "start": 49752.0, + "end": 49752.86, + "probability": 0.8182 + }, + { + "start": 49753.52, + "end": 49757.3, + "probability": 0.9068 + }, + { + "start": 49757.9, + "end": 49763.34, + "probability": 0.9883 + }, + { + "start": 49763.4, + "end": 49767.2, + "probability": 0.9914 + }, + { + "start": 49767.98, + "end": 49776.84, + "probability": 0.9889 + }, + { + "start": 49778.5, + "end": 49778.86, + "probability": 0.71 + }, + { + "start": 49780.5, + "end": 49781.88, + "probability": 0.7863 + }, + { + "start": 49797.66, + "end": 49799.76, + "probability": 0.5106 + }, + { + "start": 49801.06, + "end": 49802.75, + "probability": 0.9935 + }, + { + "start": 49804.78, + "end": 49808.9, + "probability": 0.9364 + }, + { + "start": 49814.44, + "end": 49815.83, + "probability": 0.569 + }, + { + "start": 49818.27, + "end": 49823.32, + "probability": 0.4727 + }, + { + "start": 49824.1, + "end": 49829.98, + "probability": 0.9881 + }, + { + "start": 49832.8, + "end": 49833.02, + "probability": 0.1034 + }, + { + "start": 49834.46, + "end": 49835.32, + "probability": 0.8693 + }, + { + "start": 49835.38, + "end": 49836.2, + "probability": 0.7067 + }, + { + "start": 49836.38, + "end": 49839.78, + "probability": 0.7133 + }, + { + "start": 49841.94, + "end": 49844.38, + "probability": 0.9924 + }, + { + "start": 49845.38, + "end": 49846.54, + "probability": 0.7853 + }, + { + "start": 49848.68, + "end": 49851.2, + "probability": 0.9953 + }, + { + "start": 49852.02, + "end": 49854.24, + "probability": 0.8597 + }, + { + "start": 49857.46, + "end": 49858.46, + "probability": 0.9006 + }, + { + "start": 49858.46, + "end": 49861.96, + "probability": 0.8346 + }, + { + "start": 49864.16, + "end": 49866.9, + "probability": 0.4527 + }, + { + "start": 49868.66, + "end": 49870.04, + "probability": 0.8244 + }, + { + "start": 49870.4, + "end": 49872.48, + "probability": 0.9434 + }, + { + "start": 49873.42, + "end": 49875.94, + "probability": 0.9844 + }, + { + "start": 49878.52, + "end": 49881.0, + "probability": 0.8455 + }, + { + "start": 49882.1, + "end": 49883.14, + "probability": 0.7785 + }, + { + "start": 49886.34, + "end": 49889.22, + "probability": 0.8511 + }, + { + "start": 49891.62, + "end": 49894.1, + "probability": 0.6164 + }, + { + "start": 49895.74, + "end": 49897.68, + "probability": 0.9896 + }, + { + "start": 49899.26, + "end": 49900.02, + "probability": 0.844 + }, + { + "start": 49903.16, + "end": 49904.84, + "probability": 0.4507 + }, + { + "start": 49906.52, + "end": 49907.7, + "probability": 0.8643 + }, + { + "start": 49910.02, + "end": 49912.58, + "probability": 0.9001 + }, + { + "start": 49913.4, + "end": 49914.24, + "probability": 0.9551 + }, + { + "start": 49915.58, + "end": 49916.14, + "probability": 0.7741 + }, + { + "start": 49918.28, + "end": 49918.77, + "probability": 0.999 + }, + { + "start": 49920.62, + "end": 49922.52, + "probability": 0.479 + }, + { + "start": 49923.18, + "end": 49924.7, + "probability": 0.6665 + }, + { + "start": 49926.52, + "end": 49927.98, + "probability": 0.8938 + }, + { + "start": 49930.06, + "end": 49931.8, + "probability": 0.8874 + }, + { + "start": 49933.66, + "end": 49935.28, + "probability": 0.8105 + }, + { + "start": 49938.5, + "end": 49940.36, + "probability": 0.9442 + }, + { + "start": 49941.2, + "end": 49943.58, + "probability": 0.8021 + }, + { + "start": 49944.54, + "end": 49946.56, + "probability": 0.9005 + }, + { + "start": 49948.32, + "end": 49949.07, + "probability": 0.9845 + }, + { + "start": 49953.62, + "end": 49954.62, + "probability": 0.6296 + }, + { + "start": 49955.54, + "end": 49957.2, + "probability": 0.9604 + }, + { + "start": 49958.22, + "end": 49959.44, + "probability": 0.752 + }, + { + "start": 49959.5, + "end": 49961.18, + "probability": 0.9991 + }, + { + "start": 49962.1, + "end": 49964.5, + "probability": 0.8762 + }, + { + "start": 49965.2, + "end": 49966.9, + "probability": 0.998 + }, + { + "start": 49967.72, + "end": 49971.08, + "probability": 0.8597 + }, + { + "start": 49971.66, + "end": 49972.74, + "probability": 0.7937 + }, + { + "start": 49972.74, + "end": 49973.14, + "probability": 0.567 + }, + { + "start": 49973.88, + "end": 49974.54, + "probability": 0.6461 + }, + { + "start": 49974.94, + "end": 49978.46, + "probability": 0.8851 + }, + { + "start": 49980.62, + "end": 49984.0, + "probability": 0.9692 + }, + { + "start": 49984.4, + "end": 49985.42, + "probability": 0.9377 + }, + { + "start": 49985.82, + "end": 49990.76, + "probability": 0.9674 + }, + { + "start": 49991.02, + "end": 49995.92, + "probability": 0.9528 + }, + { + "start": 49996.34, + "end": 49997.95, + "probability": 0.4496 + }, + { + "start": 49997.98, + "end": 49998.4, + "probability": 0.6456 + }, + { + "start": 49998.92, + "end": 50000.4, + "probability": 0.9185 + }, + { + "start": 50000.48, + "end": 50001.14, + "probability": 0.2422 + }, + { + "start": 50001.32, + "end": 50002.68, + "probability": 0.8342 + }, + { + "start": 50002.74, + "end": 50004.68, + "probability": 0.7832 + }, + { + "start": 50004.92, + "end": 50006.92, + "probability": 0.4884 + }, + { + "start": 50007.3, + "end": 50010.96, + "probability": 0.4417 + }, + { + "start": 50011.1, + "end": 50013.04, + "probability": 0.9595 + }, + { + "start": 50013.06, + "end": 50016.34, + "probability": 0.227 + }, + { + "start": 50016.34, + "end": 50019.74, + "probability": 0.3885 + }, + { + "start": 50019.82, + "end": 50022.08, + "probability": 0.7419 + }, + { + "start": 50022.92, + "end": 50026.22, + "probability": 0.7484 + }, + { + "start": 50029.44, + "end": 50034.04, + "probability": 0.8281 + }, + { + "start": 50035.84, + "end": 50036.66, + "probability": 0.2284 + }, + { + "start": 50036.84, + "end": 50037.08, + "probability": 0.5871 + }, + { + "start": 50037.26, + "end": 50037.74, + "probability": 0.4633 + }, + { + "start": 50038.14, + "end": 50039.7, + "probability": 0.4965 + }, + { + "start": 50040.14, + "end": 50041.76, + "probability": 0.2958 + }, + { + "start": 50042.1, + "end": 50043.82, + "probability": 0.623 + }, + { + "start": 50044.22, + "end": 50046.12, + "probability": 0.4746 + }, + { + "start": 50046.12, + "end": 50049.26, + "probability": 0.8808 + }, + { + "start": 50049.26, + "end": 50055.88, + "probability": 0.8675 + }, + { + "start": 50056.16, + "end": 50057.18, + "probability": 0.6457 + }, + { + "start": 50057.34, + "end": 50059.58, + "probability": 0.3365 + }, + { + "start": 50059.66, + "end": 50063.08, + "probability": 0.3192 + }, + { + "start": 50063.69, + "end": 50064.03, + "probability": 0.1733 + }, + { + "start": 50068.38, + "end": 50074.38, + "probability": 0.7789 + }, + { + "start": 50075.58, + "end": 50079.98, + "probability": 0.8662 + }, + { + "start": 50080.56, + "end": 50088.86, + "probability": 0.9759 + }, + { + "start": 50089.58, + "end": 50093.96, + "probability": 0.1307 + }, + { + "start": 50094.48, + "end": 50094.74, + "probability": 0.0237 + }, + { + "start": 50094.74, + "end": 50094.74, + "probability": 0.0839 + }, + { + "start": 50094.74, + "end": 50098.29, + "probability": 0.208 + }, + { + "start": 50099.2, + "end": 50102.3, + "probability": 0.8018 + }, + { + "start": 50102.98, + "end": 50106.48, + "probability": 0.9523 + }, + { + "start": 50107.62, + "end": 50114.08, + "probability": 0.9552 + }, + { + "start": 50114.46, + "end": 50118.86, + "probability": 0.8508 + }, + { + "start": 50119.44, + "end": 50122.76, + "probability": 0.8305 + }, + { + "start": 50125.3, + "end": 50125.46, + "probability": 0.1226 + }, + { + "start": 50125.46, + "end": 50128.56, + "probability": 0.9011 + }, + { + "start": 50128.56, + "end": 50132.54, + "probability": 0.9814 + }, + { + "start": 50132.98, + "end": 50133.7, + "probability": 0.3332 + }, + { + "start": 50133.92, + "end": 50138.78, + "probability": 0.9205 + }, + { + "start": 50139.0, + "end": 50140.54, + "probability": 0.9355 + }, + { + "start": 50141.34, + "end": 50145.04, + "probability": 0.9812 + }, + { + "start": 50145.74, + "end": 50148.22, + "probability": 0.6695 + }, + { + "start": 50148.46, + "end": 50148.58, + "probability": 0.1321 + }, + { + "start": 50148.58, + "end": 50148.58, + "probability": 0.3009 + }, + { + "start": 50148.58, + "end": 50150.64, + "probability": 0.8778 + }, + { + "start": 50150.82, + "end": 50153.86, + "probability": 0.7484 + }, + { + "start": 50154.66, + "end": 50157.62, + "probability": 0.7382 + }, + { + "start": 50158.28, + "end": 50161.8, + "probability": 0.8566 + }, + { + "start": 50163.46, + "end": 50165.58, + "probability": 0.9836 + }, + { + "start": 50165.58, + "end": 50169.44, + "probability": 0.9861 + }, + { + "start": 50170.0, + "end": 50171.16, + "probability": 0.8874 + }, + { + "start": 50172.0, + "end": 50172.98, + "probability": 0.9271 + }, + { + "start": 50173.98, + "end": 50175.1, + "probability": 0.7411 + }, + { + "start": 50175.54, + "end": 50177.35, + "probability": 0.8576 + }, + { + "start": 50177.62, + "end": 50181.24, + "probability": 0.9794 + }, + { + "start": 50181.24, + "end": 50183.74, + "probability": 0.2577 + }, + { + "start": 50183.74, + "end": 50186.7, + "probability": 0.9702 + }, + { + "start": 50187.48, + "end": 50188.46, + "probability": 0.8798 + }, + { + "start": 50188.62, + "end": 50189.32, + "probability": 0.7258 + }, + { + "start": 50189.42, + "end": 50190.1, + "probability": 0.8653 + }, + { + "start": 50190.18, + "end": 50191.56, + "probability": 0.7143 + }, + { + "start": 50194.32, + "end": 50197.04, + "probability": 0.9526 + }, + { + "start": 50197.12, + "end": 50198.64, + "probability": 0.959 + }, + { + "start": 50199.26, + "end": 50200.18, + "probability": 0.9297 + }, + { + "start": 50201.02, + "end": 50204.46, + "probability": 0.9738 + }, + { + "start": 50205.2, + "end": 50208.28, + "probability": 0.8624 + }, + { + "start": 50208.36, + "end": 50211.74, + "probability": 0.9954 + }, + { + "start": 50212.86, + "end": 50213.78, + "probability": 0.7225 + }, + { + "start": 50214.7, + "end": 50218.7, + "probability": 0.9079 + }, + { + "start": 50218.7, + "end": 50221.38, + "probability": 0.9878 + }, + { + "start": 50223.28, + "end": 50226.76, + "probability": 0.9953 + }, + { + "start": 50226.76, + "end": 50228.92, + "probability": 0.9722 + }, + { + "start": 50229.76, + "end": 50232.14, + "probability": 0.999 + }, + { + "start": 50232.14, + "end": 50233.82, + "probability": 0.9405 + }, + { + "start": 50234.52, + "end": 50237.26, + "probability": 0.8814 + }, + { + "start": 50237.26, + "end": 50237.73, + "probability": 0.114 + }, + { + "start": 50238.32, + "end": 50245.66, + "probability": 0.9967 + }, + { + "start": 50245.66, + "end": 50246.16, + "probability": 0.2136 + }, + { + "start": 50246.16, + "end": 50246.82, + "probability": 0.304 + }, + { + "start": 50248.46, + "end": 50249.04, + "probability": 0.1017 + }, + { + "start": 50249.04, + "end": 50249.38, + "probability": 0.1194 + }, + { + "start": 50249.64, + "end": 50251.2, + "probability": 0.6107 + }, + { + "start": 50251.34, + "end": 50252.34, + "probability": 0.8769 + }, + { + "start": 50252.52, + "end": 50257.2, + "probability": 0.9738 + }, + { + "start": 50257.32, + "end": 50258.53, + "probability": 0.9938 + }, + { + "start": 50259.56, + "end": 50260.58, + "probability": 0.7547 + }, + { + "start": 50260.58, + "end": 50261.28, + "probability": 0.814 + }, + { + "start": 50261.44, + "end": 50262.84, + "probability": 0.8765 + }, + { + "start": 50263.34, + "end": 50266.22, + "probability": 0.9152 + }, + { + "start": 50266.54, + "end": 50269.08, + "probability": 0.9957 + }, + { + "start": 50269.74, + "end": 50271.52, + "probability": 0.9425 + }, + { + "start": 50271.68, + "end": 50275.0, + "probability": 0.8903 + }, + { + "start": 50275.9, + "end": 50276.94, + "probability": 0.2662 + }, + { + "start": 50277.98, + "end": 50280.3, + "probability": 0.6674 + }, + { + "start": 50280.4, + "end": 50286.38, + "probability": 0.8954 + }, + { + "start": 50286.98, + "end": 50288.45, + "probability": 0.2279 + }, + { + "start": 50291.82, + "end": 50292.1, + "probability": 0.0835 + }, + { + "start": 50292.1, + "end": 50293.78, + "probability": 0.0526 + }, + { + "start": 50293.9, + "end": 50294.28, + "probability": 0.3694 + }, + { + "start": 50294.36, + "end": 50294.5, + "probability": 0.0548 + }, + { + "start": 50294.5, + "end": 50298.3, + "probability": 0.4249 + }, + { + "start": 50298.38, + "end": 50299.66, + "probability": 0.6191 + }, + { + "start": 50300.0, + "end": 50301.04, + "probability": 0.2264 + }, + { + "start": 50301.14, + "end": 50301.72, + "probability": 0.1186 + }, + { + "start": 50301.84, + "end": 50302.92, + "probability": 0.4323 + }, + { + "start": 50303.22, + "end": 50306.42, + "probability": 0.6374 + }, + { + "start": 50306.58, + "end": 50307.54, + "probability": 0.2827 + }, + { + "start": 50308.1, + "end": 50310.0, + "probability": 0.168 + }, + { + "start": 50311.22, + "end": 50312.08, + "probability": 0.133 + }, + { + "start": 50312.08, + "end": 50318.14, + "probability": 0.525 + }, + { + "start": 50318.22, + "end": 50321.06, + "probability": 0.3789 + }, + { + "start": 50321.26, + "end": 50327.6, + "probability": 0.8583 + }, + { + "start": 50327.78, + "end": 50327.9, + "probability": 0.2523 + }, + { + "start": 50328.28, + "end": 50328.7, + "probability": 0.2062 + }, + { + "start": 50328.7, + "end": 50328.8, + "probability": 0.3818 + }, + { + "start": 50329.5, + "end": 50329.5, + "probability": 0.2952 + }, + { + "start": 50330.04, + "end": 50332.6, + "probability": 0.4404 + }, + { + "start": 50332.6, + "end": 50335.8, + "probability": 0.7282 + }, + { + "start": 50336.04, + "end": 50341.44, + "probability": 0.7133 + }, + { + "start": 50341.58, + "end": 50342.02, + "probability": 0.5364 + }, + { + "start": 50342.26, + "end": 50344.06, + "probability": 0.937 + }, + { + "start": 50344.44, + "end": 50345.62, + "probability": 0.0753 + }, + { + "start": 50345.62, + "end": 50347.8, + "probability": 0.987 + }, + { + "start": 50348.74, + "end": 50352.96, + "probability": 0.5259 + }, + { + "start": 50353.98, + "end": 50355.92, + "probability": 0.6586 + }, + { + "start": 50362.02, + "end": 50364.22, + "probability": 0.8662 + }, + { + "start": 50364.24, + "end": 50365.42, + "probability": 0.9255 + }, + { + "start": 50365.6, + "end": 50367.6, + "probability": 0.491 + }, + { + "start": 50369.49, + "end": 50371.32, + "probability": 0.4909 + }, + { + "start": 50371.32, + "end": 50373.84, + "probability": 0.8425 + }, + { + "start": 50373.86, + "end": 50374.86, + "probability": 0.4644 + }, + { + "start": 50376.06, + "end": 50377.36, + "probability": 0.3078 + }, + { + "start": 50377.36, + "end": 50380.08, + "probability": 0.3085 + }, + { + "start": 50380.28, + "end": 50384.62, + "probability": 0.9827 + }, + { + "start": 50385.18, + "end": 50385.74, + "probability": 0.8622 + }, + { + "start": 50386.7, + "end": 50388.46, + "probability": 0.7614 + }, + { + "start": 50391.24, + "end": 50396.22, + "probability": 0.9446 + }, + { + "start": 50396.28, + "end": 50400.34, + "probability": 0.8476 + }, + { + "start": 50400.76, + "end": 50402.24, + "probability": 0.9601 + }, + { + "start": 50402.3, + "end": 50403.44, + "probability": 0.8202 + }, + { + "start": 50403.58, + "end": 50406.4, + "probability": 0.6958 + }, + { + "start": 50407.04, + "end": 50408.0, + "probability": 0.7904 + }, + { + "start": 50408.66, + "end": 50409.34, + "probability": 0.3698 + }, + { + "start": 50410.34, + "end": 50415.0, + "probability": 0.527 + }, + { + "start": 50415.18, + "end": 50415.18, + "probability": 0.0281 + }, + { + "start": 50417.48, + "end": 50417.74, + "probability": 0.1008 + }, + { + "start": 50421.02, + "end": 50421.58, + "probability": 0.2418 + }, + { + "start": 50423.25, + "end": 50425.78, + "probability": 0.1406 + }, + { + "start": 50426.6, + "end": 50429.16, + "probability": 0.7816 + }, + { + "start": 50429.24, + "end": 50432.04, + "probability": 0.9895 + }, + { + "start": 50433.02, + "end": 50436.34, + "probability": 0.9572 + }, + { + "start": 50437.02, + "end": 50438.12, + "probability": 0.6726 + }, + { + "start": 50438.28, + "end": 50440.58, + "probability": 0.6918 + }, + { + "start": 50440.62, + "end": 50442.46, + "probability": 0.9378 + }, + { + "start": 50443.66, + "end": 50447.24, + "probability": 0.5829 + }, + { + "start": 50448.3, + "end": 50450.42, + "probability": 0.8396 + }, + { + "start": 50450.94, + "end": 50453.56, + "probability": 0.978 + }, + { + "start": 50454.46, + "end": 50456.32, + "probability": 0.9449 + }, + { + "start": 50456.9, + "end": 50457.56, + "probability": 0.6768 + }, + { + "start": 50458.7, + "end": 50459.54, + "probability": 0.9812 + }, + { + "start": 50459.66, + "end": 50461.64, + "probability": 0.8479 + }, + { + "start": 50462.16, + "end": 50462.66, + "probability": 0.5537 + }, + { + "start": 50462.68, + "end": 50464.66, + "probability": 0.9888 + }, + { + "start": 50464.68, + "end": 50465.66, + "probability": 0.8027 + }, + { + "start": 50465.72, + "end": 50467.62, + "probability": 0.6421 + }, + { + "start": 50467.72, + "end": 50469.4, + "probability": 0.4447 + }, + { + "start": 50470.14, + "end": 50471.9, + "probability": 0.8104 + }, + { + "start": 50474.24, + "end": 50476.52, + "probability": 0.2611 + }, + { + "start": 50479.42, + "end": 50479.42, + "probability": 0.0324 + }, + { + "start": 50479.42, + "end": 50479.42, + "probability": 0.191 + }, + { + "start": 50479.42, + "end": 50479.42, + "probability": 0.2863 + }, + { + "start": 50479.42, + "end": 50479.66, + "probability": 0.4552 + }, + { + "start": 50479.66, + "end": 50481.54, + "probability": 0.9481 + }, + { + "start": 50481.76, + "end": 50483.52, + "probability": 0.8779 + }, + { + "start": 50483.98, + "end": 50484.92, + "probability": 0.8845 + }, + { + "start": 50485.3, + "end": 50486.54, + "probability": 0.7104 + }, + { + "start": 50486.58, + "end": 50487.5, + "probability": 0.0829 + }, + { + "start": 50489.34, + "end": 50489.46, + "probability": 0.0221 + }, + { + "start": 50489.46, + "end": 50491.54, + "probability": 0.238 + }, + { + "start": 50491.54, + "end": 50492.9, + "probability": 0.2505 + }, + { + "start": 50492.9, + "end": 50493.64, + "probability": 0.7027 + }, + { + "start": 50493.66, + "end": 50496.41, + "probability": 0.7078 + }, + { + "start": 50497.2, + "end": 50498.18, + "probability": 0.7824 + }, + { + "start": 50498.28, + "end": 50500.62, + "probability": 0.7407 + }, + { + "start": 50500.64, + "end": 50500.98, + "probability": 0.5704 + }, + { + "start": 50501.06, + "end": 50504.14, + "probability": 0.9374 + }, + { + "start": 50504.9, + "end": 50505.98, + "probability": 0.4343 + }, + { + "start": 50506.16, + "end": 50507.5, + "probability": 0.7051 + }, + { + "start": 50507.58, + "end": 50509.82, + "probability": 0.7326 + }, + { + "start": 50510.54, + "end": 50511.6, + "probability": 0.5704 + }, + { + "start": 50512.7, + "end": 50513.75, + "probability": 0.6109 + }, + { + "start": 50515.06, + "end": 50516.14, + "probability": 0.8945 + }, + { + "start": 50516.78, + "end": 50519.91, + "probability": 0.9432 + }, + { + "start": 50521.64, + "end": 50521.76, + "probability": 0.3296 + }, + { + "start": 50521.76, + "end": 50521.96, + "probability": 0.4137 + }, + { + "start": 50522.9, + "end": 50523.7, + "probability": 0.4856 + }, + { + "start": 50523.88, + "end": 50525.74, + "probability": 0.1255 + }, + { + "start": 50525.92, + "end": 50527.28, + "probability": 0.4585 + }, + { + "start": 50527.36, + "end": 50528.7, + "probability": 0.7716 + }, + { + "start": 50529.14, + "end": 50530.83, + "probability": 0.3075 + }, + { + "start": 50531.46, + "end": 50532.98, + "probability": 0.7423 + }, + { + "start": 50533.5, + "end": 50534.28, + "probability": 0.8321 + }, + { + "start": 50534.32, + "end": 50535.28, + "probability": 0.927 + }, + { + "start": 50535.3, + "end": 50536.34, + "probability": 0.83 + }, + { + "start": 50537.08, + "end": 50540.7, + "probability": 0.9042 + }, + { + "start": 50541.8, + "end": 50543.02, + "probability": 0.8611 + }, + { + "start": 50543.5, + "end": 50544.87, + "probability": 0.9048 + }, + { + "start": 50545.08, + "end": 50546.54, + "probability": 0.9525 + }, + { + "start": 50549.6, + "end": 50552.9, + "probability": 0.5435 + }, + { + "start": 50553.24, + "end": 50554.1, + "probability": 0.894 + }, + { + "start": 50554.3, + "end": 50555.08, + "probability": 0.7404 + }, + { + "start": 50555.48, + "end": 50556.1, + "probability": 0.6067 + }, + { + "start": 50559.54, + "end": 50560.54, + "probability": 0.2394 + }, + { + "start": 50561.62, + "end": 50562.92, + "probability": 0.974 + }, + { + "start": 50562.96, + "end": 50565.32, + "probability": 0.5592 + }, + { + "start": 50566.2, + "end": 50567.18, + "probability": 0.9297 + }, + { + "start": 50567.32, + "end": 50569.44, + "probability": 0.6713 + }, + { + "start": 50570.04, + "end": 50571.72, + "probability": 0.987 + }, + { + "start": 50571.78, + "end": 50572.74, + "probability": 0.9405 + }, + { + "start": 50573.42, + "end": 50574.9, + "probability": 0.9701 + }, + { + "start": 50575.58, + "end": 50576.48, + "probability": 0.8025 + }, + { + "start": 50576.86, + "end": 50578.32, + "probability": 0.7684 + }, + { + "start": 50578.9, + "end": 50580.6, + "probability": 0.8758 + }, + { + "start": 50581.58, + "end": 50583.47, + "probability": 0.953 + }, + { + "start": 50584.0, + "end": 50585.12, + "probability": 0.793 + }, + { + "start": 50585.48, + "end": 50587.46, + "probability": 0.5643 + }, + { + "start": 50588.2, + "end": 50591.78, + "probability": 0.674 + }, + { + "start": 50592.46, + "end": 50593.62, + "probability": 0.8065 + }, + { + "start": 50593.72, + "end": 50595.58, + "probability": 0.512 + }, + { + "start": 50595.68, + "end": 50596.28, + "probability": 0.7756 + }, + { + "start": 50596.4, + "end": 50597.84, + "probability": 0.832 + }, + { + "start": 50598.72, + "end": 50601.64, + "probability": 0.7777 + }, + { + "start": 50601.8, + "end": 50602.3, + "probability": 0.4625 + }, + { + "start": 50602.8, + "end": 50606.5, + "probability": 0.5266 + }, + { + "start": 50607.06, + "end": 50608.72, + "probability": 0.8675 + }, + { + "start": 50608.76, + "end": 50609.48, + "probability": 0.8011 + }, + { + "start": 50610.36, + "end": 50612.54, + "probability": 0.6509 + }, + { + "start": 50612.76, + "end": 50613.28, + "probability": 0.873 + }, + { + "start": 50613.36, + "end": 50613.9, + "probability": 0.8906 + }, + { + "start": 50613.98, + "end": 50615.36, + "probability": 0.5622 + }, + { + "start": 50615.38, + "end": 50616.2, + "probability": 0.8105 + }, + { + "start": 50616.34, + "end": 50617.92, + "probability": 0.9755 + }, + { + "start": 50618.08, + "end": 50622.74, + "probability": 0.5413 + }, + { + "start": 50622.84, + "end": 50623.64, + "probability": 0.6971 + }, + { + "start": 50623.8, + "end": 50625.1, + "probability": 0.8792 + }, + { + "start": 50625.66, + "end": 50626.58, + "probability": 0.0017 + }, + { + "start": 50627.32, + "end": 50628.76, + "probability": 0.7509 + }, + { + "start": 50628.92, + "end": 50630.62, + "probability": 0.2989 + }, + { + "start": 50630.74, + "end": 50632.16, + "probability": 0.9824 + }, + { + "start": 50632.16, + "end": 50633.64, + "probability": 0.9048 + }, + { + "start": 50634.06, + "end": 50636.86, + "probability": 0.7131 + }, + { + "start": 50637.38, + "end": 50638.38, + "probability": 0.9783 + }, + { + "start": 50638.46, + "end": 50640.04, + "probability": 0.9497 + }, + { + "start": 50640.88, + "end": 50641.54, + "probability": 0.6561 + }, + { + "start": 50641.58, + "end": 50643.34, + "probability": 0.9256 + }, + { + "start": 50644.1, + "end": 50644.4, + "probability": 0.4596 + }, + { + "start": 50644.44, + "end": 50645.3, + "probability": 0.9309 + }, + { + "start": 50645.4, + "end": 50646.58, + "probability": 0.4671 + }, + { + "start": 50647.2, + "end": 50648.4, + "probability": 0.3999 + }, + { + "start": 50648.52, + "end": 50650.84, + "probability": 0.8704 + }, + { + "start": 50651.34, + "end": 50652.62, + "probability": 0.7929 + }, + { + "start": 50652.84, + "end": 50654.02, + "probability": 0.9108 + }, + { + "start": 50654.56, + "end": 50655.62, + "probability": 0.9537 + }, + { + "start": 50656.92, + "end": 50657.34, + "probability": 0.8714 + }, + { + "start": 50657.36, + "end": 50657.78, + "probability": 0.7399 + }, + { + "start": 50658.22, + "end": 50660.94, + "probability": 0.7898 + }, + { + "start": 50661.3, + "end": 50662.14, + "probability": 0.0598 + }, + { + "start": 50662.14, + "end": 50662.14, + "probability": 0.1095 + }, + { + "start": 50662.14, + "end": 50664.2, + "probability": 0.4949 + }, + { + "start": 50664.8, + "end": 50667.66, + "probability": 0.4218 + }, + { + "start": 50668.3, + "end": 50670.58, + "probability": 0.5527 + }, + { + "start": 50670.7, + "end": 50671.96, + "probability": 0.5107 + }, + { + "start": 50672.5, + "end": 50674.74, + "probability": 0.348 + }, + { + "start": 50675.78, + "end": 50676.92, + "probability": 0.1391 + }, + { + "start": 50677.02, + "end": 50681.42, + "probability": 0.4885 + }, + { + "start": 50683.45, + "end": 50689.8, + "probability": 0.6296 + }, + { + "start": 50690.12, + "end": 50691.28, + "probability": 0.0107 + }, + { + "start": 50694.06, + "end": 50695.34, + "probability": 0.2987 + }, + { + "start": 50695.52, + "end": 50696.6, + "probability": 0.7241 + }, + { + "start": 50696.7, + "end": 50697.84, + "probability": 0.753 + }, + { + "start": 50697.94, + "end": 50699.98, + "probability": 0.5663 + }, + { + "start": 50700.02, + "end": 50703.12, + "probability": 0.9686 + }, + { + "start": 50703.12, + "end": 50706.58, + "probability": 0.9944 + }, + { + "start": 50707.42, + "end": 50710.0, + "probability": 0.9993 + }, + { + "start": 50710.0, + "end": 50712.78, + "probability": 0.999 + }, + { + "start": 50712.9, + "end": 50714.8, + "probability": 0.9662 + }, + { + "start": 50715.46, + "end": 50716.5, + "probability": 0.9271 + }, + { + "start": 50716.74, + "end": 50718.58, + "probability": 0.9048 + }, + { + "start": 50718.8, + "end": 50721.9, + "probability": 0.9976 + }, + { + "start": 50722.38, + "end": 50725.52, + "probability": 0.9389 + }, + { + "start": 50726.14, + "end": 50729.68, + "probability": 0.9918 + }, + { + "start": 50730.5, + "end": 50735.88, + "probability": 0.9743 + }, + { + "start": 50736.4, + "end": 50741.48, + "probability": 0.9973 + }, + { + "start": 50742.14, + "end": 50745.08, + "probability": 0.9981 + }, + { + "start": 50745.08, + "end": 50748.18, + "probability": 0.9971 + }, + { + "start": 50748.8, + "end": 50750.82, + "probability": 0.9971 + }, + { + "start": 50751.2, + "end": 50753.48, + "probability": 0.9967 + }, + { + "start": 50754.16, + "end": 50755.1, + "probability": 0.9754 + }, + { + "start": 50755.22, + "end": 50755.74, + "probability": 0.711 + }, + { + "start": 50755.8, + "end": 50758.96, + "probability": 0.9951 + }, + { + "start": 50758.96, + "end": 50762.18, + "probability": 0.9332 + }, + { + "start": 50763.24, + "end": 50766.34, + "probability": 0.9137 + }, + { + "start": 50766.34, + "end": 50770.92, + "probability": 0.9191 + }, + { + "start": 50771.58, + "end": 50772.96, + "probability": 0.9647 + }, + { + "start": 50773.56, + "end": 50775.88, + "probability": 0.9903 + }, + { + "start": 50776.28, + "end": 50779.9, + "probability": 0.9905 + }, + { + "start": 50780.96, + "end": 50786.98, + "probability": 0.9929 + }, + { + "start": 50787.72, + "end": 50789.28, + "probability": 0.9973 + }, + { + "start": 50789.36, + "end": 50791.0, + "probability": 0.959 + }, + { + "start": 50792.3, + "end": 50797.5, + "probability": 0.9908 + }, + { + "start": 50797.78, + "end": 50798.08, + "probability": 0.6576 + }, + { + "start": 50798.28, + "end": 50802.42, + "probability": 0.9722 + }, + { + "start": 50802.42, + "end": 50807.94, + "probability": 0.8915 + }, + { + "start": 50808.94, + "end": 50811.04, + "probability": 0.9463 + }, + { + "start": 50811.14, + "end": 50814.34, + "probability": 0.9963 + }, + { + "start": 50814.34, + "end": 50818.78, + "probability": 0.9824 + }, + { + "start": 50819.34, + "end": 50820.4, + "probability": 0.9646 + }, + { + "start": 50821.0, + "end": 50821.44, + "probability": 0.5889 + }, + { + "start": 50821.5, + "end": 50824.1, + "probability": 0.9972 + }, + { + "start": 50824.1, + "end": 50829.9, + "probability": 0.8226 + }, + { + "start": 50830.02, + "end": 50831.8, + "probability": 0.9777 + }, + { + "start": 50832.34, + "end": 50833.74, + "probability": 0.7457 + }, + { + "start": 50833.92, + "end": 50837.32, + "probability": 0.9985 + }, + { + "start": 50837.88, + "end": 50839.7, + "probability": 0.9977 + }, + { + "start": 50839.76, + "end": 50844.24, + "probability": 0.9806 + }, + { + "start": 50844.9, + "end": 50846.9, + "probability": 0.6167 + }, + { + "start": 50847.14, + "end": 50851.46, + "probability": 0.9949 + }, + { + "start": 50851.46, + "end": 50855.24, + "probability": 0.9992 + }, + { + "start": 50855.7, + "end": 50859.48, + "probability": 0.9985 + }, + { + "start": 50859.48, + "end": 50864.28, + "probability": 0.9906 + }, + { + "start": 50864.7, + "end": 50869.94, + "probability": 0.9965 + }, + { + "start": 50870.58, + "end": 50873.5, + "probability": 0.999 + }, + { + "start": 50873.5, + "end": 50877.38, + "probability": 0.9995 + }, + { + "start": 50877.54, + "end": 50877.96, + "probability": 0.7458 + }, + { + "start": 50878.26, + "end": 50878.96, + "probability": 0.5553 + }, + { + "start": 50878.98, + "end": 50882.9, + "probability": 0.8245 + }, + { + "start": 50883.44, + "end": 50887.18, + "probability": 0.9886 + }, + { + "start": 50890.78, + "end": 50893.64, + "probability": 0.5268 + }, + { + "start": 50895.46, + "end": 50898.04, + "probability": 0.4059 + }, + { + "start": 50898.28, + "end": 50902.64, + "probability": 0.5657 + }, + { + "start": 50903.09, + "end": 50908.2, + "probability": 0.3034 + }, + { + "start": 50909.24, + "end": 50910.5, + "probability": 0.8092 + }, + { + "start": 50910.64, + "end": 50914.56, + "probability": 0.4748 + }, + { + "start": 50914.56, + "end": 50917.46, + "probability": 0.2796 + }, + { + "start": 50918.12, + "end": 50920.28, + "probability": 0.1323 + }, + { + "start": 50920.28, + "end": 50921.86, + "probability": 0.6268 + }, + { + "start": 50921.98, + "end": 50925.3, + "probability": 0.2143 + }, + { + "start": 50925.3, + "end": 50926.44, + "probability": 0.3104 + }, + { + "start": 50926.46, + "end": 50931.86, + "probability": 0.8277 + }, + { + "start": 50931.86, + "end": 50937.84, + "probability": 0.9931 + }, + { + "start": 50938.26, + "end": 50942.94, + "probability": 0.7887 + }, + { + "start": 50943.08, + "end": 50945.94, + "probability": 0.4155 + }, + { + "start": 50946.24, + "end": 50947.93, + "probability": 0.9482 + }, + { + "start": 50949.34, + "end": 50952.38, + "probability": 0.9834 + }, + { + "start": 50953.62, + "end": 50954.8, + "probability": 0.9685 + }, + { + "start": 50954.92, + "end": 50955.58, + "probability": 0.9341 + }, + { + "start": 50955.96, + "end": 50958.06, + "probability": 0.9969 + }, + { + "start": 50959.12, + "end": 50960.98, + "probability": 0.8955 + }, + { + "start": 50961.42, + "end": 50967.46, + "probability": 0.9585 + }, + { + "start": 50968.82, + "end": 50970.86, + "probability": 0.8835 + }, + { + "start": 50972.08, + "end": 50973.24, + "probability": 0.9378 + }, + { + "start": 50973.32, + "end": 50977.06, + "probability": 0.9836 + }, + { + "start": 50977.78, + "end": 50982.16, + "probability": 0.9958 + }, + { + "start": 50984.92, + "end": 50987.78, + "probability": 0.9342 + }, + { + "start": 50989.4, + "end": 50991.5, + "probability": 0.7485 + }, + { + "start": 50991.52, + "end": 50992.1, + "probability": 0.8593 + }, + { + "start": 50992.46, + "end": 50999.12, + "probability": 0.9706 + }, + { + "start": 51000.72, + "end": 51003.4, + "probability": 0.9111 + }, + { + "start": 51004.66, + "end": 51008.2, + "probability": 0.8735 + }, + { + "start": 51008.3, + "end": 51010.68, + "probability": 0.9888 + }, + { + "start": 51012.04, + "end": 51016.86, + "probability": 0.987 + }, + { + "start": 51018.32, + "end": 51022.22, + "probability": 0.9618 + }, + { + "start": 51022.22, + "end": 51026.24, + "probability": 0.9951 + }, + { + "start": 51026.36, + "end": 51029.04, + "probability": 0.7681 + }, + { + "start": 51029.72, + "end": 51031.78, + "probability": 0.9956 + }, + { + "start": 51034.26, + "end": 51038.12, + "probability": 0.9751 + }, + { + "start": 51039.32, + "end": 51045.02, + "probability": 0.9847 + }, + { + "start": 51045.58, + "end": 51047.74, + "probability": 0.991 + }, + { + "start": 51049.8, + "end": 51054.69, + "probability": 0.998 + }, + { + "start": 51054.72, + "end": 51057.28, + "probability": 0.835 + }, + { + "start": 51057.84, + "end": 51057.98, + "probability": 0.7703 + }, + { + "start": 51057.98, + "end": 51060.88, + "probability": 0.7167 + }, + { + "start": 51061.14, + "end": 51064.82, + "probability": 0.9875 + }, + { + "start": 51065.74, + "end": 51068.42, + "probability": 0.9891 + }, + { + "start": 51068.66, + "end": 51072.98, + "probability": 0.9897 + }, + { + "start": 51073.81, + "end": 51075.78, + "probability": 0.9262 + }, + { + "start": 51077.52, + "end": 51081.24, + "probability": 0.9923 + }, + { + "start": 51081.76, + "end": 51084.28, + "probability": 0.9897 + }, + { + "start": 51085.06, + "end": 51089.38, + "probability": 0.9954 + }, + { + "start": 51091.2, + "end": 51092.25, + "probability": 0.1871 + }, + { + "start": 51092.5, + "end": 51093.02, + "probability": 0.3182 + }, + { + "start": 51093.16, + "end": 51093.16, + "probability": 0.2298 + }, + { + "start": 51093.22, + "end": 51094.36, + "probability": 0.575 + }, + { + "start": 51094.38, + "end": 51100.92, + "probability": 0.9184 + }, + { + "start": 51100.92, + "end": 51108.18, + "probability": 0.9971 + }, + { + "start": 51108.52, + "end": 51109.0, + "probability": 0.7378 + }, + { + "start": 51109.12, + "end": 51109.84, + "probability": 0.7575 + }, + { + "start": 51110.84, + "end": 51113.72, + "probability": 0.1667 + }, + { + "start": 51114.95, + "end": 51115.16, + "probability": 0.2339 + }, + { + "start": 51115.16, + "end": 51115.16, + "probability": 0.0505 + }, + { + "start": 51115.16, + "end": 51118.88, + "probability": 0.2958 + }, + { + "start": 51119.28, + "end": 51119.5, + "probability": 0.8162 + }, + { + "start": 51119.64, + "end": 51121.7, + "probability": 0.8071 + }, + { + "start": 51121.7, + "end": 51125.14, + "probability": 0.7206 + }, + { + "start": 51125.26, + "end": 51125.26, + "probability": 0.0411 + }, + { + "start": 51125.26, + "end": 51125.74, + "probability": 0.0279 + }, + { + "start": 51125.82, + "end": 51126.32, + "probability": 0.2787 + }, + { + "start": 51126.38, + "end": 51129.04, + "probability": 0.5261 + }, + { + "start": 51129.28, + "end": 51131.6, + "probability": 0.793 + }, + { + "start": 51131.74, + "end": 51132.27, + "probability": 0.8083 + }, + { + "start": 51132.32, + "end": 51134.58, + "probability": 0.6704 + }, + { + "start": 51134.62, + "end": 51134.82, + "probability": 0.4102 + }, + { + "start": 51134.82, + "end": 51138.26, + "probability": 0.8983 + }, + { + "start": 51138.44, + "end": 51138.9, + "probability": 0.1005 + }, + { + "start": 51139.16, + "end": 51139.62, + "probability": 0.3535 + }, + { + "start": 51139.72, + "end": 51140.65, + "probability": 0.98 + }, + { + "start": 51141.72, + "end": 51143.56, + "probability": 0.8804 + }, + { + "start": 51143.62, + "end": 51147.52, + "probability": 0.4401 + }, + { + "start": 51149.32, + "end": 51151.58, + "probability": 0.2475 + }, + { + "start": 51151.76, + "end": 51151.76, + "probability": 0.2676 + }, + { + "start": 51152.14, + "end": 51152.74, + "probability": 0.0818 + }, + { + "start": 51152.9, + "end": 51158.3, + "probability": 0.16 + }, + { + "start": 51162.88, + "end": 51164.88, + "probability": 0.0735 + }, + { + "start": 51164.88, + "end": 51165.62, + "probability": 0.7101 + }, + { + "start": 51165.88, + "end": 51166.16, + "probability": 0.0659 + }, + { + "start": 51166.16, + "end": 51166.54, + "probability": 0.6064 + }, + { + "start": 51167.0, + "end": 51167.68, + "probability": 0.1361 + }, + { + "start": 51167.68, + "end": 51167.84, + "probability": 0.0471 + }, + { + "start": 51167.84, + "end": 51167.84, + "probability": 0.314 + }, + { + "start": 51167.84, + "end": 51173.71, + "probability": 0.4349 + }, + { + "start": 51197.0, + "end": 51197.0, + "probability": 0.0 + }, + { + "start": 51197.0, + "end": 51197.0, + "probability": 0.0 + }, + { + "start": 51197.0, + "end": 51197.0, + "probability": 0.0 + }, + { + "start": 51197.0, + "end": 51197.0, + "probability": 0.0 + }, + { + "start": 51197.2, + "end": 51197.34, + "probability": 0.0 + }, + { + "start": 51205.88, + "end": 51210.84, + "probability": 0.0751 + }, + { + "start": 51220.05, + "end": 51224.74, + "probability": 0.0994 + }, + { + "start": 51224.74, + "end": 51226.34, + "probability": 0.0412 + }, + { + "start": 51226.34, + "end": 51227.6, + "probability": 0.3984 + }, + { + "start": 51227.68, + "end": 51231.3, + "probability": 0.9175 + }, + { + "start": 51231.34, + "end": 51232.0, + "probability": 0.1022 + }, + { + "start": 51232.28, + "end": 51232.48, + "probability": 0.4192 + }, + { + "start": 51232.48, + "end": 51233.64, + "probability": 0.3201 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.0, + "end": 51321.0, + "probability": 0.0 + }, + { + "start": 51321.64, + "end": 51326.02, + "probability": 0.1063 + }, + { + "start": 51326.14, + "end": 51332.72, + "probability": 0.0558 + }, + { + "start": 51333.86, + "end": 51341.22, + "probability": 0.0454 + }, + { + "start": 51341.75, + "end": 51342.96, + "probability": 0.142 + }, + { + "start": 51342.96, + "end": 51345.14, + "probability": 0.2335 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.0, + "end": 51441.0, + "probability": 0.0 + }, + { + "start": 51441.66, + "end": 51441.9, + "probability": 0.0588 + }, + { + "start": 51441.9, + "end": 51443.02, + "probability": 0.3284 + }, + { + "start": 51443.08, + "end": 51446.34, + "probability": 0.892 + }, + { + "start": 51446.88, + "end": 51447.0, + "probability": 0.2743 + }, + { + "start": 51447.0, + "end": 51447.22, + "probability": 0.7323 + }, + { + "start": 51447.24, + "end": 51448.2, + "probability": 0.6187 + }, + { + "start": 51448.3, + "end": 51450.3, + "probability": 0.841 + }, + { + "start": 51450.38, + "end": 51450.78, + "probability": 0.7526 + }, + { + "start": 51451.22, + "end": 51451.66, + "probability": 0.786 + }, + { + "start": 51454.18, + "end": 51456.8, + "probability": 0.8071 + }, + { + "start": 51457.48, + "end": 51458.7, + "probability": 0.9314 + }, + { + "start": 51459.54, + "end": 51460.18, + "probability": 0.7389 + }, + { + "start": 51460.8, + "end": 51461.9, + "probability": 0.9186 + }, + { + "start": 51462.7, + "end": 51463.92, + "probability": 0.9669 + }, + { + "start": 51471.78, + "end": 51471.78, + "probability": 0.0998 + }, + { + "start": 51471.78, + "end": 51471.78, + "probability": 0.4381 + }, + { + "start": 51471.78, + "end": 51471.78, + "probability": 0.0935 + }, + { + "start": 51471.78, + "end": 51471.82, + "probability": 0.0527 + }, + { + "start": 51471.82, + "end": 51471.82, + "probability": 0.1212 + }, + { + "start": 51503.88, + "end": 51507.66, + "probability": 0.4319 + }, + { + "start": 51507.66, + "end": 51511.88, + "probability": 0.7371 + }, + { + "start": 51511.88, + "end": 51515.34, + "probability": 0.8876 + }, + { + "start": 51516.2, + "end": 51518.42, + "probability": 0.7719 + }, + { + "start": 51519.04, + "end": 51520.76, + "probability": 0.9296 + }, + { + "start": 51521.16, + "end": 51525.48, + "probability": 0.9748 + }, + { + "start": 51526.86, + "end": 51527.7, + "probability": 0.8619 + }, + { + "start": 51528.4, + "end": 51533.7, + "probability": 0.8713 + }, + { + "start": 51534.24, + "end": 51535.78, + "probability": 0.8755 + }, + { + "start": 51536.48, + "end": 51541.0, + "probability": 0.9008 + }, + { + "start": 51542.28, + "end": 51545.38, + "probability": 0.9427 + }, + { + "start": 51545.92, + "end": 51548.42, + "probability": 0.999 + }, + { + "start": 51549.34, + "end": 51553.1, + "probability": 0.9965 + }, + { + "start": 51554.02, + "end": 51558.77, + "probability": 0.7923 + }, + { + "start": 51559.32, + "end": 51562.0, + "probability": 0.9802 + }, + { + "start": 51562.8, + "end": 51571.34, + "probability": 0.9627 + }, + { + "start": 51573.14, + "end": 51575.02, + "probability": 0.9394 + }, + { + "start": 51575.12, + "end": 51575.6, + "probability": 0.8733 + }, + { + "start": 51575.78, + "end": 51577.89, + "probability": 0.9849 + }, + { + "start": 51578.76, + "end": 51581.44, + "probability": 0.9348 + }, + { + "start": 51581.98, + "end": 51586.2, + "probability": 0.9962 + }, + { + "start": 51586.9, + "end": 51589.44, + "probability": 0.9858 + }, + { + "start": 51589.98, + "end": 51591.22, + "probability": 0.9204 + }, + { + "start": 51591.36, + "end": 51592.02, + "probability": 0.8744 + }, + { + "start": 51592.08, + "end": 51593.18, + "probability": 0.9157 + }, + { + "start": 51593.54, + "end": 51596.3, + "probability": 0.9779 + }, + { + "start": 51597.1, + "end": 51599.76, + "probability": 0.9877 + }, + { + "start": 51601.28, + "end": 51606.8, + "probability": 0.9865 + }, + { + "start": 51606.86, + "end": 51607.68, + "probability": 0.9899 + }, + { + "start": 51608.26, + "end": 51614.1, + "probability": 0.9934 + }, + { + "start": 51615.16, + "end": 51618.06, + "probability": 0.9947 + }, + { + "start": 51618.06, + "end": 51622.66, + "probability": 0.9707 + }, + { + "start": 51623.6, + "end": 51625.68, + "probability": 0.9767 + }, + { + "start": 51626.78, + "end": 51628.5, + "probability": 0.9807 + }, + { + "start": 51628.98, + "end": 51630.74, + "probability": 0.4516 + }, + { + "start": 51631.16, + "end": 51635.04, + "probability": 0.9756 + }, + { + "start": 51636.04, + "end": 51638.9, + "probability": 0.7034 + }, + { + "start": 51639.12, + "end": 51643.46, + "probability": 0.9957 + }, + { + "start": 51644.22, + "end": 51647.04, + "probability": 0.9853 + }, + { + "start": 51647.04, + "end": 51651.4, + "probability": 0.9976 + }, + { + "start": 51652.08, + "end": 51653.26, + "probability": 0.8741 + }, + { + "start": 51653.82, + "end": 51659.18, + "probability": 0.9956 + }, + { + "start": 51659.72, + "end": 51660.74, + "probability": 0.8979 + }, + { + "start": 51661.32, + "end": 51662.02, + "probability": 0.5696 + }, + { + "start": 51662.14, + "end": 51668.18, + "probability": 0.9966 + }, + { + "start": 51668.54, + "end": 51669.26, + "probability": 0.8104 + }, + { + "start": 51669.72, + "end": 51670.28, + "probability": 0.6215 + }, + { + "start": 51670.38, + "end": 51672.93, + "probability": 0.7796 + }, + { + "start": 51673.74, + "end": 51677.28, + "probability": 0.9668 + }, + { + "start": 51701.26, + "end": 51702.94, + "probability": 0.7339 + }, + { + "start": 51703.68, + "end": 51704.48, + "probability": 0.7586 + }, + { + "start": 51705.8, + "end": 51708.4, + "probability": 0.8914 + }, + { + "start": 51709.38, + "end": 51712.58, + "probability": 0.8611 + }, + { + "start": 51712.58, + "end": 51715.74, + "probability": 0.8906 + }, + { + "start": 51716.24, + "end": 51717.82, + "probability": 0.9808 + }, + { + "start": 51718.34, + "end": 51719.08, + "probability": 0.7472 + }, + { + "start": 51719.8, + "end": 51720.78, + "probability": 0.6122 + }, + { + "start": 51721.26, + "end": 51721.64, + "probability": 0.9838 + }, + { + "start": 51723.58, + "end": 51725.12, + "probability": 0.9871 + }, + { + "start": 51725.78, + "end": 51730.74, + "probability": 0.8225 + }, + { + "start": 51731.22, + "end": 51733.38, + "probability": 0.9039 + }, + { + "start": 51733.76, + "end": 51735.2, + "probability": 0.7608 + }, + { + "start": 51736.46, + "end": 51741.32, + "probability": 0.9791 + }, + { + "start": 51741.32, + "end": 51746.54, + "probability": 0.9984 + }, + { + "start": 51747.68, + "end": 51752.17, + "probability": 0.9253 + }, + { + "start": 51753.16, + "end": 51754.06, + "probability": 0.8371 + }, + { + "start": 51754.78, + "end": 51755.2, + "probability": 0.8102 + }, + { + "start": 51755.3, + "end": 51758.8, + "probability": 0.9936 + }, + { + "start": 51759.84, + "end": 51763.18, + "probability": 0.9536 + }, + { + "start": 51763.34, + "end": 51763.62, + "probability": 0.6691 + }, + { + "start": 51763.68, + "end": 51764.22, + "probability": 0.6043 + }, + { + "start": 51764.74, + "end": 51765.06, + "probability": 0.7193 + }, + { + "start": 51765.24, + "end": 51765.84, + "probability": 0.5463 + }, + { + "start": 51766.34, + "end": 51769.8, + "probability": 0.9855 + }, + { + "start": 51770.96, + "end": 51772.64, + "probability": 0.9831 + }, + { + "start": 51773.22, + "end": 51774.54, + "probability": 0.8124 + }, + { + "start": 51775.42, + "end": 51776.58, + "probability": 0.7661 + }, + { + "start": 51777.14, + "end": 51779.46, + "probability": 0.8465 + }, + { + "start": 51779.8, + "end": 51781.78, + "probability": 0.9437 + }, + { + "start": 51782.7, + "end": 51784.06, + "probability": 0.7167 + }, + { + "start": 51784.78, + "end": 51785.9, + "probability": 0.9004 + }, + { + "start": 51786.58, + "end": 51789.16, + "probability": 0.8762 + }, + { + "start": 51790.54, + "end": 51794.38, + "probability": 0.9805 + }, + { + "start": 51794.38, + "end": 51798.44, + "probability": 0.9928 + }, + { + "start": 51799.08, + "end": 51800.2, + "probability": 0.6375 + }, + { + "start": 51802.18, + "end": 51805.98, + "probability": 0.9365 + }, + { + "start": 51806.72, + "end": 51808.04, + "probability": 0.8356 + }, + { + "start": 51809.6, + "end": 51811.76, + "probability": 0.9461 + }, + { + "start": 51812.8, + "end": 51815.5, + "probability": 0.9989 + }, + { + "start": 51815.5, + "end": 51818.48, + "probability": 0.9971 + }, + { + "start": 51819.0, + "end": 51822.28, + "probability": 0.9789 + }, + { + "start": 51823.12, + "end": 51825.42, + "probability": 0.9116 + }, + { + "start": 51826.18, + "end": 51826.94, + "probability": 0.8419 + }, + { + "start": 51827.56, + "end": 51832.24, + "probability": 0.9116 + }, + { + "start": 51833.1, + "end": 51835.46, + "probability": 0.7696 + }, + { + "start": 51836.3, + "end": 51838.6, + "probability": 0.9917 + }, + { + "start": 51838.6, + "end": 51842.0, + "probability": 0.9744 + }, + { + "start": 51842.76, + "end": 51846.15, + "probability": 0.7069 + }, + { + "start": 51846.98, + "end": 51851.6, + "probability": 0.9574 + }, + { + "start": 51852.94, + "end": 51856.4, + "probability": 0.9958 + }, + { + "start": 51856.48, + "end": 51861.04, + "probability": 0.9968 + }, + { + "start": 51862.48, + "end": 51863.54, + "probability": 0.6909 + }, + { + "start": 51863.74, + "end": 51864.82, + "probability": 0.9931 + }, + { + "start": 51865.2, + "end": 51867.6, + "probability": 0.9877 + }, + { + "start": 51868.24, + "end": 51871.74, + "probability": 0.9786 + }, + { + "start": 51872.28, + "end": 51873.7, + "probability": 0.9776 + }, + { + "start": 51874.38, + "end": 51875.58, + "probability": 0.5087 + }, + { + "start": 51876.18, + "end": 51878.08, + "probability": 0.9546 + }, + { + "start": 51879.3, + "end": 51880.34, + "probability": 0.4209 + }, + { + "start": 51880.98, + "end": 51883.44, + "probability": 0.9408 + }, + { + "start": 51884.38, + "end": 51885.96, + "probability": 0.9328 + }, + { + "start": 51891.26, + "end": 51894.12, + "probability": 0.6158 + }, + { + "start": 51894.74, + "end": 51896.98, + "probability": 0.9135 + }, + { + "start": 51897.5, + "end": 51898.22, + "probability": 0.2702 + }, + { + "start": 51899.04, + "end": 51900.5, + "probability": 0.8446 + }, + { + "start": 51901.3, + "end": 51903.24, + "probability": 0.9892 + }, + { + "start": 51903.92, + "end": 51904.82, + "probability": 0.9355 + }, + { + "start": 51905.54, + "end": 51908.02, + "probability": 0.8019 + }, + { + "start": 51908.64, + "end": 51911.06, + "probability": 0.9645 + }, + { + "start": 51911.6, + "end": 51913.7, + "probability": 0.9555 + }, + { + "start": 51915.2, + "end": 51916.02, + "probability": 0.9517 + }, + { + "start": 51916.48, + "end": 51917.32, + "probability": 0.8171 + }, + { + "start": 51917.82, + "end": 51920.18, + "probability": 0.861 + }, + { + "start": 51920.76, + "end": 51922.68, + "probability": 0.9694 + }, + { + "start": 51923.18, + "end": 51925.92, + "probability": 0.9949 + }, + { + "start": 51925.92, + "end": 51929.06, + "probability": 0.9987 + }, + { + "start": 51929.58, + "end": 51933.04, + "probability": 0.9604 + }, + { + "start": 51933.42, + "end": 51934.82, + "probability": 0.9925 + }, + { + "start": 51935.1, + "end": 51935.34, + "probability": 0.6423 + }, + { + "start": 51937.44, + "end": 51937.9, + "probability": 0.5148 + }, + { + "start": 51937.96, + "end": 51940.12, + "probability": 0.9287 + }, + { + "start": 51941.34, + "end": 51942.14, + "probability": 0.6735 + }, + { + "start": 51945.34, + "end": 51945.68, + "probability": 0.9875 + }, + { + "start": 51947.56, + "end": 51949.24, + "probability": 0.9937 + }, + { + "start": 51949.8, + "end": 51950.4, + "probability": 0.7585 + }, + { + "start": 51951.3, + "end": 51954.56, + "probability": 0.9452 + }, + { + "start": 51958.08, + "end": 51960.54, + "probability": 0.9869 + }, + { + "start": 51977.26, + "end": 51979.32, + "probability": 0.7264 + }, + { + "start": 51980.76, + "end": 51983.2, + "probability": 0.9824 + }, + { + "start": 51983.66, + "end": 51987.66, + "probability": 0.9727 + }, + { + "start": 51987.95, + "end": 51991.44, + "probability": 0.9694 + }, + { + "start": 51992.08, + "end": 51993.77, + "probability": 0.6504 + }, + { + "start": 52000.88, + "end": 52002.4, + "probability": 0.7133 + }, + { + "start": 52015.76, + "end": 52020.36, + "probability": 0.9261 + }, + { + "start": 52020.98, + "end": 52022.88, + "probability": 0.7556 + }, + { + "start": 52024.16, + "end": 52024.62, + "probability": 0.6743 + }, + { + "start": 52024.78, + "end": 52026.82, + "probability": 0.9794 + }, + { + "start": 52026.82, + "end": 52029.47, + "probability": 0.9529 + }, + { + "start": 52031.36, + "end": 52034.84, + "probability": 0.9367 + }, + { + "start": 52035.54, + "end": 52036.28, + "probability": 0.5418 + }, + { + "start": 52037.48, + "end": 52039.02, + "probability": 0.9905 + }, + { + "start": 52040.86, + "end": 52045.74, + "probability": 0.9697 + }, + { + "start": 52045.74, + "end": 52050.96, + "probability": 0.9959 + }, + { + "start": 52051.8, + "end": 52053.1, + "probability": 0.9496 + }, + { + "start": 52054.92, + "end": 52055.52, + "probability": 0.5004 + }, + { + "start": 52055.62, + "end": 52057.8, + "probability": 0.9954 + }, + { + "start": 52057.8, + "end": 52061.2, + "probability": 0.9905 + }, + { + "start": 52062.1, + "end": 52066.52, + "probability": 0.9597 + }, + { + "start": 52066.52, + "end": 52072.64, + "probability": 0.9954 + }, + { + "start": 52074.2, + "end": 52074.5, + "probability": 0.5595 + }, + { + "start": 52074.62, + "end": 52077.7, + "probability": 0.9947 + }, + { + "start": 52078.88, + "end": 52081.92, + "probability": 0.9307 + }, + { + "start": 52081.98, + "end": 52082.9, + "probability": 0.7444 + }, + { + "start": 52083.08, + "end": 52083.52, + "probability": 0.4243 + }, + { + "start": 52084.52, + "end": 52087.66, + "probability": 0.955 + }, + { + "start": 52089.62, + "end": 52091.43, + "probability": 0.9824 + }, + { + "start": 52092.7, + "end": 52094.2, + "probability": 0.9869 + }, + { + "start": 52095.02, + "end": 52098.86, + "probability": 0.9955 + }, + { + "start": 52100.4, + "end": 52104.96, + "probability": 0.9987 + }, + { + "start": 52106.1, + "end": 52108.68, + "probability": 0.9939 + }, + { + "start": 52108.88, + "end": 52112.7, + "probability": 0.9608 + }, + { + "start": 52112.7, + "end": 52116.78, + "probability": 0.9878 + }, + { + "start": 52116.96, + "end": 52118.94, + "probability": 0.816 + }, + { + "start": 52120.08, + "end": 52127.68, + "probability": 0.8983 + }, + { + "start": 52128.08, + "end": 52131.38, + "probability": 0.8946 + }, + { + "start": 52132.06, + "end": 52136.1, + "probability": 0.9307 + }, + { + "start": 52137.0, + "end": 52137.82, + "probability": 0.6335 + }, + { + "start": 52139.22, + "end": 52141.4, + "probability": 0.9778 + }, + { + "start": 52142.44, + "end": 52145.84, + "probability": 0.9875 + }, + { + "start": 52146.12, + "end": 52146.92, + "probability": 0.8623 + }, + { + "start": 52148.12, + "end": 52148.6, + "probability": 0.7828 + }, + { + "start": 52151.04, + "end": 52155.94, + "probability": 0.9314 + }, + { + "start": 52156.48, + "end": 52157.88, + "probability": 0.0234 + }, + { + "start": 52158.98, + "end": 52159.9, + "probability": 0.5556 + }, + { + "start": 52160.16, + "end": 52160.98, + "probability": 0.4842 + }, + { + "start": 52161.12, + "end": 52161.76, + "probability": 0.6162 + }, + { + "start": 52163.7, + "end": 52167.06, + "probability": 0.9667 + }, + { + "start": 52167.2, + "end": 52169.26, + "probability": 0.7631 + }, + { + "start": 52174.56, + "end": 52175.54, + "probability": 0.373 + }, + { + "start": 52182.54, + "end": 52182.72, + "probability": 0.3393 + }, + { + "start": 52182.72, + "end": 52185.32, + "probability": 0.7455 + }, + { + "start": 52186.04, + "end": 52186.9, + "probability": 0.7246 + }, + { + "start": 52187.92, + "end": 52190.04, + "probability": 0.8684 + }, + { + "start": 52190.66, + "end": 52193.56, + "probability": 0.7973 + }, + { + "start": 52194.32, + "end": 52197.7, + "probability": 0.9775 + }, + { + "start": 52197.84, + "end": 52199.3, + "probability": 0.8359 + }, + { + "start": 52217.0, + "end": 52219.8, + "probability": 0.3989 + }, + { + "start": 52220.84, + "end": 52221.82, + "probability": 0.6915 + }, + { + "start": 52223.44, + "end": 52227.22, + "probability": 0.8731 + }, + { + "start": 52229.2, + "end": 52232.75, + "probability": 0.9491 + }, + { + "start": 52235.04, + "end": 52238.82, + "probability": 0.9879 + }, + { + "start": 52239.1, + "end": 52239.4, + "probability": 0.7587 + }, + { + "start": 52240.96, + "end": 52243.76, + "probability": 0.9443 + }, + { + "start": 52244.4, + "end": 52245.94, + "probability": 0.952 + }, + { + "start": 52246.96, + "end": 52249.58, + "probability": 0.972 + }, + { + "start": 52249.74, + "end": 52251.82, + "probability": 0.887 + }, + { + "start": 52252.6, + "end": 52257.74, + "probability": 0.9987 + }, + { + "start": 52257.74, + "end": 52261.72, + "probability": 0.982 + }, + { + "start": 52263.13, + "end": 52267.06, + "probability": 0.9975 + }, + { + "start": 52268.16, + "end": 52274.08, + "probability": 0.9961 + }, + { + "start": 52274.66, + "end": 52278.88, + "probability": 0.9966 + }, + { + "start": 52278.88, + "end": 52283.72, + "probability": 0.978 + }, + { + "start": 52284.6, + "end": 52289.32, + "probability": 0.995 + }, + { + "start": 52290.04, + "end": 52292.6, + "probability": 0.9968 + }, + { + "start": 52292.84, + "end": 52295.14, + "probability": 0.9878 + }, + { + "start": 52295.92, + "end": 52299.94, + "probability": 0.9956 + }, + { + "start": 52301.02, + "end": 52302.64, + "probability": 0.8245 + }, + { + "start": 52303.4, + "end": 52310.2, + "probability": 0.828 + }, + { + "start": 52311.16, + "end": 52312.28, + "probability": 0.8695 + }, + { + "start": 52313.74, + "end": 52316.84, + "probability": 0.9761 + }, + { + "start": 52316.9, + "end": 52319.5, + "probability": 0.995 + }, + { + "start": 52319.84, + "end": 52323.02, + "probability": 0.8296 + }, + { + "start": 52323.54, + "end": 52326.62, + "probability": 0.8275 + }, + { + "start": 52328.98, + "end": 52331.98, + "probability": 0.9722 + }, + { + "start": 52334.76, + "end": 52338.01, + "probability": 0.9658 + }, + { + "start": 52338.5, + "end": 52341.82, + "probability": 0.9961 + }, + { + "start": 52344.1, + "end": 52346.92, + "probability": 0.9296 + }, + { + "start": 52347.86, + "end": 52349.34, + "probability": 0.985 + }, + { + "start": 52351.5, + "end": 52354.68, + "probability": 0.9897 + }, + { + "start": 52355.56, + "end": 52356.46, + "probability": 0.8035 + }, + { + "start": 52356.66, + "end": 52360.08, + "probability": 0.9465 + }, + { + "start": 52360.16, + "end": 52363.13, + "probability": 0.8813 + }, + { + "start": 52363.48, + "end": 52364.86, + "probability": 0.2299 + }, + { + "start": 52365.04, + "end": 52366.74, + "probability": 0.7038 + }, + { + "start": 52370.0, + "end": 52373.88, + "probability": 0.8794 + }, + { + "start": 52373.88, + "end": 52377.36, + "probability": 0.9916 + }, + { + "start": 52377.72, + "end": 52378.44, + "probability": 0.8927 + }, + { + "start": 52378.58, + "end": 52380.1, + "probability": 0.8735 + }, + { + "start": 52380.24, + "end": 52383.92, + "probability": 0.9612 + }, + { + "start": 52384.42, + "end": 52386.36, + "probability": 0.9683 + }, + { + "start": 52386.84, + "end": 52389.2, + "probability": 0.964 + }, + { + "start": 52389.72, + "end": 52392.66, + "probability": 0.8979 + }, + { + "start": 52393.7, + "end": 52395.84, + "probability": 0.4654 + }, + { + "start": 52396.26, + "end": 52398.04, + "probability": 0.6986 + }, + { + "start": 52399.4, + "end": 52405.32, + "probability": 0.9863 + }, + { + "start": 52407.5, + "end": 52409.28, + "probability": 0.9971 + }, + { + "start": 52409.94, + "end": 52411.88, + "probability": 0.9037 + }, + { + "start": 52411.88, + "end": 52412.54, + "probability": 0.3637 + }, + { + "start": 52412.62, + "end": 52413.08, + "probability": 0.7739 + }, + { + "start": 52413.18, + "end": 52414.42, + "probability": 0.8213 + }, + { + "start": 52414.56, + "end": 52415.75, + "probability": 0.5719 + }, + { + "start": 52415.86, + "end": 52417.15, + "probability": 0.8012 + }, + { + "start": 52417.42, + "end": 52418.02, + "probability": 0.0255 + }, + { + "start": 52418.04, + "end": 52419.46, + "probability": 0.8853 + }, + { + "start": 52419.84, + "end": 52423.56, + "probability": 0.9126 + }, + { + "start": 52423.58, + "end": 52426.48, + "probability": 0.9977 + }, + { + "start": 52426.74, + "end": 52428.0, + "probability": 0.7549 + }, + { + "start": 52428.66, + "end": 52431.3, + "probability": 0.998 + }, + { + "start": 52432.36, + "end": 52433.68, + "probability": 0.753 + }, + { + "start": 52434.52, + "end": 52435.76, + "probability": 0.8652 + }, + { + "start": 52436.38, + "end": 52441.5, + "probability": 0.9941 + }, + { + "start": 52441.7, + "end": 52447.74, + "probability": 0.9478 + }, + { + "start": 52448.24, + "end": 52451.7, + "probability": 0.9802 + }, + { + "start": 52452.6, + "end": 52453.7, + "probability": 0.785 + }, + { + "start": 52454.5, + "end": 52456.38, + "probability": 0.9797 + }, + { + "start": 52457.28, + "end": 52461.7, + "probability": 0.9836 + }, + { + "start": 52462.98, + "end": 52465.89, + "probability": 0.9933 + }, + { + "start": 52466.64, + "end": 52469.92, + "probability": 0.901 + }, + { + "start": 52470.0, + "end": 52471.16, + "probability": 0.7364 + }, + { + "start": 52472.5, + "end": 52472.88, + "probability": 0.7076 + }, + { + "start": 52472.98, + "end": 52476.36, + "probability": 0.9966 + }, + { + "start": 52476.36, + "end": 52481.92, + "probability": 0.9868 + }, + { + "start": 52482.78, + "end": 52483.92, + "probability": 0.9661 + }, + { + "start": 52483.92, + "end": 52484.96, + "probability": 0.7358 + }, + { + "start": 52485.22, + "end": 52486.18, + "probability": 0.727 + }, + { + "start": 52486.7, + "end": 52489.76, + "probability": 0.9435 + }, + { + "start": 52491.76, + "end": 52495.64, + "probability": 0.9928 + }, + { + "start": 52495.74, + "end": 52497.5, + "probability": 0.9867 + }, + { + "start": 52499.54, + "end": 52504.74, + "probability": 0.9969 + }, + { + "start": 52505.54, + "end": 52506.82, + "probability": 0.842 + }, + { + "start": 52506.98, + "end": 52508.52, + "probability": 0.9916 + }, + { + "start": 52509.12, + "end": 52511.16, + "probability": 0.9746 + }, + { + "start": 52512.9, + "end": 52516.19, + "probability": 0.9976 + }, + { + "start": 52517.22, + "end": 52520.33, + "probability": 0.9616 + }, + { + "start": 52521.02, + "end": 52522.18, + "probability": 0.9927 + }, + { + "start": 52524.68, + "end": 52528.54, + "probability": 0.7781 + }, + { + "start": 52529.68, + "end": 52531.06, + "probability": 0.9172 + }, + { + "start": 52531.4, + "end": 52532.1, + "probability": 0.9824 + }, + { + "start": 52532.68, + "end": 52535.48, + "probability": 0.9368 + }, + { + "start": 52536.88, + "end": 52542.1, + "probability": 0.959 + }, + { + "start": 52543.48, + "end": 52545.68, + "probability": 0.4822 + }, + { + "start": 52545.76, + "end": 52547.6, + "probability": 0.0231 + }, + { + "start": 52547.6, + "end": 52547.82, + "probability": 0.6419 + }, + { + "start": 52547.82, + "end": 52548.44, + "probability": 0.4155 + }, + { + "start": 52548.5, + "end": 52550.32, + "probability": 0.7059 + }, + { + "start": 52550.62, + "end": 52553.4, + "probability": 0.7842 + }, + { + "start": 52553.52, + "end": 52555.04, + "probability": 0.8918 + }, + { + "start": 52555.16, + "end": 52556.44, + "probability": 0.6662 + }, + { + "start": 52556.58, + "end": 52558.66, + "probability": 0.0651 + }, + { + "start": 52558.66, + "end": 52562.44, + "probability": 0.2158 + }, + { + "start": 52563.04, + "end": 52564.31, + "probability": 0.7186 + }, + { + "start": 52564.66, + "end": 52568.86, + "probability": 0.9554 + }, + { + "start": 52569.24, + "end": 52572.24, + "probability": 0.949 + }, + { + "start": 52572.62, + "end": 52576.5, + "probability": 0.9819 + }, + { + "start": 52576.64, + "end": 52580.64, + "probability": 0.9594 + }, + { + "start": 52581.3, + "end": 52581.82, + "probability": 0.7629 + }, + { + "start": 52581.9, + "end": 52584.48, + "probability": 0.8462 + }, + { + "start": 52584.9, + "end": 52586.32, + "probability": 0.9377 + }, + { + "start": 52586.98, + "end": 52589.24, + "probability": 0.9448 + }, + { + "start": 52589.24, + "end": 52593.38, + "probability": 0.9731 + }, + { + "start": 52594.58, + "end": 52595.21, + "probability": 0.8438 + }, + { + "start": 52595.84, + "end": 52596.76, + "probability": 0.9736 + }, + { + "start": 52597.26, + "end": 52598.24, + "probability": 0.9647 + }, + { + "start": 52598.72, + "end": 52599.66, + "probability": 0.6923 + }, + { + "start": 52600.22, + "end": 52600.88, + "probability": 0.0039 + }, + { + "start": 52601.0, + "end": 52602.33, + "probability": 0.7167 + }, + { + "start": 52602.84, + "end": 52606.52, + "probability": 0.4936 + }, + { + "start": 52607.34, + "end": 52608.89, + "probability": 0.7095 + }, + { + "start": 52609.04, + "end": 52610.24, + "probability": 0.2759 + }, + { + "start": 52610.48, + "end": 52612.66, + "probability": 0.2863 + }, + { + "start": 52612.88, + "end": 52613.98, + "probability": 0.0959 + }, + { + "start": 52615.8, + "end": 52615.94, + "probability": 0.0583 + }, + { + "start": 52615.94, + "end": 52616.64, + "probability": 0.7925 + }, + { + "start": 52616.64, + "end": 52618.6, + "probability": 0.8028 + }, + { + "start": 52618.72, + "end": 52621.38, + "probability": 0.9445 + }, + { + "start": 52622.57, + "end": 52627.02, + "probability": 0.9844 + }, + { + "start": 52627.56, + "end": 52629.5, + "probability": 0.8876 + }, + { + "start": 52629.5, + "end": 52629.9, + "probability": 0.367 + }, + { + "start": 52629.94, + "end": 52631.26, + "probability": 0.6544 + }, + { + "start": 52631.28, + "end": 52634.76, + "probability": 0.9084 + }, + { + "start": 52635.02, + "end": 52637.84, + "probability": 0.8826 + }, + { + "start": 52637.98, + "end": 52639.44, + "probability": 0.9837 + }, + { + "start": 52639.62, + "end": 52639.72, + "probability": 0.8141 + }, + { + "start": 52639.88, + "end": 52643.28, + "probability": 0.9908 + }, + { + "start": 52643.28, + "end": 52645.36, + "probability": 0.9434 + }, + { + "start": 52645.64, + "end": 52645.84, + "probability": 0.4837 + }, + { + "start": 52645.84, + "end": 52650.2, + "probability": 0.9986 + }, + { + "start": 52650.74, + "end": 52653.76, + "probability": 0.9834 + }, + { + "start": 52654.2, + "end": 52655.2, + "probability": 0.8372 + }, + { + "start": 52655.76, + "end": 52657.16, + "probability": 0.8696 + }, + { + "start": 52658.47, + "end": 52662.12, + "probability": 0.9084 + }, + { + "start": 52662.42, + "end": 52664.68, + "probability": 0.9951 + }, + { + "start": 52665.04, + "end": 52668.08, + "probability": 0.1645 + }, + { + "start": 52668.08, + "end": 52669.5, + "probability": 0.6206 + }, + { + "start": 52670.16, + "end": 52671.88, + "probability": 0.6815 + }, + { + "start": 52672.42, + "end": 52673.12, + "probability": 0.7377 + }, + { + "start": 52674.02, + "end": 52676.76, + "probability": 0.9702 + }, + { + "start": 52677.38, + "end": 52679.68, + "probability": 0.6661 + }, + { + "start": 52680.66, + "end": 52681.68, + "probability": 0.9976 + }, + { + "start": 52682.3, + "end": 52685.58, + "probability": 0.6685 + }, + { + "start": 52686.16, + "end": 52686.28, + "probability": 0.1965 + }, + { + "start": 52686.48, + "end": 52690.5, + "probability": 0.9634 + }, + { + "start": 52690.66, + "end": 52691.3, + "probability": 0.8736 + }, + { + "start": 52691.82, + "end": 52694.04, + "probability": 0.87 + }, + { + "start": 52694.6, + "end": 52699.22, + "probability": 0.9967 + }, + { + "start": 52699.28, + "end": 52706.44, + "probability": 0.9985 + }, + { + "start": 52706.86, + "end": 52710.9, + "probability": 0.9946 + }, + { + "start": 52710.9, + "end": 52718.92, + "probability": 0.9861 + }, + { + "start": 52718.92, + "end": 52721.28, + "probability": 0.8318 + }, + { + "start": 52721.62, + "end": 52722.74, + "probability": 0.6229 + }, + { + "start": 52722.88, + "end": 52724.02, + "probability": 0.7901 + }, + { + "start": 52724.12, + "end": 52726.46, + "probability": 0.9918 + }, + { + "start": 52727.24, + "end": 52728.9, + "probability": 0.4142 + }, + { + "start": 52729.2, + "end": 52729.76, + "probability": 0.5604 + }, + { + "start": 52729.94, + "end": 52730.8, + "probability": 0.7253 + }, + { + "start": 52730.88, + "end": 52733.22, + "probability": 0.8013 + }, + { + "start": 52733.38, + "end": 52734.42, + "probability": 0.7104 + }, + { + "start": 52734.44, + "end": 52737.24, + "probability": 0.9862 + }, + { + "start": 52737.24, + "end": 52740.82, + "probability": 0.9946 + }, + { + "start": 52740.92, + "end": 52742.28, + "probability": 0.6949 + }, + { + "start": 52742.44, + "end": 52743.26, + "probability": 0.4357 + }, + { + "start": 52743.34, + "end": 52743.36, + "probability": 0.6322 + }, + { + "start": 52743.36, + "end": 52744.12, + "probability": 0.4987 + }, + { + "start": 52744.22, + "end": 52744.3, + "probability": 0.6182 + }, + { + "start": 52744.34, + "end": 52745.6, + "probability": 0.5731 + }, + { + "start": 52745.62, + "end": 52745.62, + "probability": 0.7627 + }, + { + "start": 52745.62, + "end": 52748.74, + "probability": 0.6248 + }, + { + "start": 52748.8, + "end": 52749.12, + "probability": 0.7412 + }, + { + "start": 52749.28, + "end": 52750.02, + "probability": 0.858 + }, + { + "start": 52750.76, + "end": 52752.28, + "probability": 0.6227 + }, + { + "start": 52752.4, + "end": 52753.78, + "probability": 0.7862 + }, + { + "start": 52753.86, + "end": 52754.32, + "probability": 0.278 + }, + { + "start": 52754.32, + "end": 52754.68, + "probability": 0.0989 + }, + { + "start": 52754.74, + "end": 52758.24, + "probability": 0.5844 + }, + { + "start": 52760.24, + "end": 52760.88, + "probability": 0.2599 + }, + { + "start": 52760.88, + "end": 52760.9, + "probability": 0.0438 + }, + { + "start": 52760.9, + "end": 52761.32, + "probability": 0.9504 + }, + { + "start": 52761.88, + "end": 52762.06, + "probability": 0.2422 + }, + { + "start": 52762.14, + "end": 52763.34, + "probability": 0.8815 + }, + { + "start": 52763.5, + "end": 52765.51, + "probability": 0.7954 + }, + { + "start": 52766.02, + "end": 52766.82, + "probability": 0.7197 + }, + { + "start": 52767.0, + "end": 52770.72, + "probability": 0.7224 + }, + { + "start": 52773.76, + "end": 52773.78, + "probability": 0.0225 + }, + { + "start": 52773.78, + "end": 52773.78, + "probability": 0.6093 + }, + { + "start": 52773.78, + "end": 52776.6, + "probability": 0.8183 + }, + { + "start": 52776.86, + "end": 52776.88, + "probability": 0.2952 + }, + { + "start": 52777.12, + "end": 52782.94, + "probability": 0.9925 + }, + { + "start": 52783.0, + "end": 52784.6, + "probability": 0.1219 + }, + { + "start": 52784.92, + "end": 52789.06, + "probability": 0.9933 + }, + { + "start": 52789.14, + "end": 52790.1, + "probability": 0.8229 + }, + { + "start": 52790.28, + "end": 52791.32, + "probability": 0.7798 + }, + { + "start": 52791.34, + "end": 52792.2, + "probability": 0.3041 + }, + { + "start": 52792.22, + "end": 52796.3, + "probability": 0.9766 + }, + { + "start": 52796.3, + "end": 52799.7, + "probability": 0.9954 + }, + { + "start": 52800.26, + "end": 52805.94, + "probability": 0.929 + }, + { + "start": 52805.94, + "end": 52812.34, + "probability": 0.9972 + }, + { + "start": 52812.48, + "end": 52813.32, + "probability": 0.9823 + }, + { + "start": 52813.96, + "end": 52815.04, + "probability": 0.784 + }, + { + "start": 52815.24, + "end": 52816.55, + "probability": 0.782 + }, + { + "start": 52816.98, + "end": 52817.06, + "probability": 0.6962 + }, + { + "start": 52817.06, + "end": 52818.9, + "probability": 0.7454 + }, + { + "start": 52820.44, + "end": 52824.74, + "probability": 0.1732 + }, + { + "start": 52824.74, + "end": 52827.16, + "probability": 0.5355 + }, + { + "start": 52827.26, + "end": 52828.0, + "probability": 0.147 + }, + { + "start": 52828.06, + "end": 52828.92, + "probability": 0.4959 + }, + { + "start": 52829.12, + "end": 52833.78, + "probability": 0.5942 + }, + { + "start": 52834.14, + "end": 52835.32, + "probability": 0.9373 + }, + { + "start": 52837.48, + "end": 52840.1, + "probability": 0.1636 + }, + { + "start": 52876.64, + "end": 52878.32, + "probability": 0.4968 + }, + { + "start": 52880.06, + "end": 52880.68, + "probability": 0.6746 + }, + { + "start": 52880.78, + "end": 52885.72, + "probability": 0.7068 + }, + { + "start": 52886.86, + "end": 52888.22, + "probability": 0.9968 + }, + { + "start": 52888.92, + "end": 52889.98, + "probability": 0.9086 + }, + { + "start": 52890.84, + "end": 52893.68, + "probability": 0.9993 + }, + { + "start": 52894.08, + "end": 52894.4, + "probability": 0.3962 + }, + { + "start": 52896.48, + "end": 52897.26, + "probability": 0.5864 + }, + { + "start": 52898.14, + "end": 52898.46, + "probability": 0.8574 + }, + { + "start": 52899.08, + "end": 52899.92, + "probability": 0.9807 + }, + { + "start": 52900.74, + "end": 52904.26, + "probability": 0.9785 + }, + { + "start": 52904.86, + "end": 52905.94, + "probability": 0.9685 + }, + { + "start": 52906.0, + "end": 52906.12, + "probability": 0.7323 + }, + { + "start": 52906.3, + "end": 52908.78, + "probability": 0.9176 + }, + { + "start": 52909.2, + "end": 52910.53, + "probability": 0.9626 + }, + { + "start": 52911.3, + "end": 52914.06, + "probability": 0.8734 + }, + { + "start": 52914.74, + "end": 52919.74, + "probability": 0.9863 + }, + { + "start": 52919.92, + "end": 52920.02, + "probability": 0.6663 + }, + { + "start": 52921.42, + "end": 52922.12, + "probability": 0.9867 + }, + { + "start": 52923.32, + "end": 52927.46, + "probability": 0.5615 + }, + { + "start": 52928.06, + "end": 52930.62, + "probability": 0.8233 + }, + { + "start": 52930.66, + "end": 52931.7, + "probability": 0.9956 + }, + { + "start": 52932.06, + "end": 52933.04, + "probability": 0.2192 + }, + { + "start": 52933.34, + "end": 52934.42, + "probability": 0.9291 + }, + { + "start": 52935.26, + "end": 52938.4, + "probability": 0.3296 + }, + { + "start": 52939.18, + "end": 52939.74, + "probability": 0.2555 + }, + { + "start": 52940.28, + "end": 52940.3, + "probability": 0.1212 + }, + { + "start": 52940.3, + "end": 52940.72, + "probability": 0.4799 + }, + { + "start": 52940.84, + "end": 52942.29, + "probability": 0.683 + }, + { + "start": 52942.48, + "end": 52943.28, + "probability": 0.5253 + }, + { + "start": 52943.38, + "end": 52944.16, + "probability": 0.7747 + }, + { + "start": 52944.96, + "end": 52946.68, + "probability": 0.9541 + }, + { + "start": 52946.76, + "end": 52947.56, + "probability": 0.99 + }, + { + "start": 52948.9, + "end": 52952.84, + "probability": 0.7588 + }, + { + "start": 52953.74, + "end": 52957.22, + "probability": 0.8792 + }, + { + "start": 52958.32, + "end": 52960.34, + "probability": 0.9065 + }, + { + "start": 52960.78, + "end": 52964.96, + "probability": 0.9575 + }, + { + "start": 52965.64, + "end": 52966.7, + "probability": 0.9044 + }, + { + "start": 52967.16, + "end": 52971.0, + "probability": 0.9615 + }, + { + "start": 52971.54, + "end": 52971.86, + "probability": 0.4727 + }, + { + "start": 52971.98, + "end": 52972.36, + "probability": 0.7595 + }, + { + "start": 52972.86, + "end": 52973.78, + "probability": 0.8755 + }, + { + "start": 52973.84, + "end": 52975.5, + "probability": 0.9075 + }, + { + "start": 52976.12, + "end": 52978.8, + "probability": 0.9858 + }, + { + "start": 52978.84, + "end": 52984.8, + "probability": 0.9565 + }, + { + "start": 52988.34, + "end": 52989.62, + "probability": 0.6693 + }, + { + "start": 52990.58, + "end": 52990.76, + "probability": 0.7441 + }, + { + "start": 52991.5, + "end": 52992.72, + "probability": 0.9749 + }, + { + "start": 52993.56, + "end": 52996.58, + "probability": 0.9884 + }, + { + "start": 52996.58, + "end": 52999.32, + "probability": 0.9935 + }, + { + "start": 52999.86, + "end": 53003.06, + "probability": 0.9945 + }, + { + "start": 53003.36, + "end": 53005.0, + "probability": 0.679 + }, + { + "start": 53005.44, + "end": 53009.36, + "probability": 0.9888 + }, + { + "start": 53009.52, + "end": 53010.24, + "probability": 0.7917 + }, + { + "start": 53010.34, + "end": 53011.7, + "probability": 0.9836 + }, + { + "start": 53011.86, + "end": 53013.52, + "probability": 0.6935 + }, + { + "start": 53013.6, + "end": 53015.5, + "probability": 0.9127 + }, + { + "start": 53016.26, + "end": 53018.98, + "probability": 0.5892 + }, + { + "start": 53019.98, + "end": 53021.74, + "probability": 0.9046 + }, + { + "start": 53021.8, + "end": 53023.54, + "probability": 0.9922 + }, + { + "start": 53023.68, + "end": 53025.18, + "probability": 0.9346 + }, + { + "start": 53025.78, + "end": 53028.04, + "probability": 0.9605 + }, + { + "start": 53028.74, + "end": 53031.78, + "probability": 0.9857 + }, + { + "start": 53032.08, + "end": 53033.16, + "probability": 0.95 + }, + { + "start": 53033.9, + "end": 53034.34, + "probability": 0.7598 + }, + { + "start": 53035.02, + "end": 53039.14, + "probability": 0.9367 + }, + { + "start": 53039.42, + "end": 53039.98, + "probability": 0.8731 + }, + { + "start": 53041.06, + "end": 53041.96, + "probability": 0.6201 + }, + { + "start": 53042.76, + "end": 53043.82, + "probability": 0.8315 + }, + { + "start": 53044.26, + "end": 53045.94, + "probability": 0.9976 + }, + { + "start": 53046.34, + "end": 53047.96, + "probability": 0.8424 + }, + { + "start": 53048.88, + "end": 53051.3, + "probability": 0.983 + }, + { + "start": 53051.74, + "end": 53054.2, + "probability": 0.9744 + }, + { + "start": 53054.28, + "end": 53054.9, + "probability": 0.7978 + }, + { + "start": 53055.84, + "end": 53058.7, + "probability": 0.959 + }, + { + "start": 53059.1, + "end": 53066.69, + "probability": 0.5894 + }, + { + "start": 53067.14, + "end": 53068.74, + "probability": 0.2562 + }, + { + "start": 53069.14, + "end": 53070.02, + "probability": 0.6662 + }, + { + "start": 53070.28, + "end": 53070.66, + "probability": 0.7393 + }, + { + "start": 53070.76, + "end": 53072.28, + "probability": 0.9802 + }, + { + "start": 53072.4, + "end": 53074.16, + "probability": 0.9814 + }, + { + "start": 53074.78, + "end": 53075.16, + "probability": 0.7482 + }, + { + "start": 53075.28, + "end": 53079.7, + "probability": 0.9838 + }, + { + "start": 53080.18, + "end": 53081.42, + "probability": 0.9702 + }, + { + "start": 53081.54, + "end": 53082.84, + "probability": 0.9985 + }, + { + "start": 53083.46, + "end": 53085.58, + "probability": 0.9483 + }, + { + "start": 53085.68, + "end": 53087.16, + "probability": 0.9798 + }, + { + "start": 53087.38, + "end": 53091.58, + "probability": 0.9608 + }, + { + "start": 53091.78, + "end": 53094.02, + "probability": 0.9945 + }, + { + "start": 53094.36, + "end": 53097.71, + "probability": 0.6864 + }, + { + "start": 53099.08, + "end": 53100.27, + "probability": 0.8943 + }, + { + "start": 53101.0, + "end": 53103.78, + "probability": 0.9912 + }, + { + "start": 53104.24, + "end": 53106.98, + "probability": 0.9767 + }, + { + "start": 53107.28, + "end": 53108.12, + "probability": 0.5857 + }, + { + "start": 53108.28, + "end": 53109.52, + "probability": 0.9653 + }, + { + "start": 53109.6, + "end": 53112.64, + "probability": 0.9933 + }, + { + "start": 53112.8, + "end": 53113.04, + "probability": 0.8101 + }, + { + "start": 53113.16, + "end": 53115.96, + "probability": 0.9447 + }, + { + "start": 53116.14, + "end": 53117.72, + "probability": 0.9982 + }, + { + "start": 53118.52, + "end": 53119.32, + "probability": 0.9277 + }, + { + "start": 53119.62, + "end": 53119.88, + "probability": 0.7481 + }, + { + "start": 53120.28, + "end": 53124.42, + "probability": 0.9969 + }, + { + "start": 53124.54, + "end": 53125.48, + "probability": 0.8764 + }, + { + "start": 53125.78, + "end": 53126.4, + "probability": 0.813 + }, + { + "start": 53126.42, + "end": 53126.8, + "probability": 0.7331 + }, + { + "start": 53126.94, + "end": 53128.44, + "probability": 0.918 + }, + { + "start": 53129.0, + "end": 53130.07, + "probability": 0.9036 + }, + { + "start": 53130.42, + "end": 53132.67, + "probability": 0.9906 + }, + { + "start": 53132.98, + "end": 53133.78, + "probability": 0.9928 + }, + { + "start": 53133.84, + "end": 53134.66, + "probability": 0.9844 + }, + { + "start": 53135.8, + "end": 53137.98, + "probability": 0.9899 + }, + { + "start": 53138.1, + "end": 53140.04, + "probability": 0.7809 + }, + { + "start": 53140.5, + "end": 53142.86, + "probability": 0.8405 + }, + { + "start": 53142.86, + "end": 53144.98, + "probability": 0.911 + }, + { + "start": 53145.42, + "end": 53146.24, + "probability": 0.939 + }, + { + "start": 53146.48, + "end": 53147.2, + "probability": 0.9779 + }, + { + "start": 53147.38, + "end": 53148.76, + "probability": 0.9912 + }, + { + "start": 53148.76, + "end": 53149.34, + "probability": 0.9384 + }, + { + "start": 53149.46, + "end": 53149.96, + "probability": 0.9633 + }, + { + "start": 53150.12, + "end": 53151.43, + "probability": 0.9718 + }, + { + "start": 53151.58, + "end": 53154.1, + "probability": 0.8721 + }, + { + "start": 53154.16, + "end": 53156.22, + "probability": 0.8193 + }, + { + "start": 53156.84, + "end": 53157.62, + "probability": 0.8294 + }, + { + "start": 53158.2, + "end": 53160.18, + "probability": 0.9647 + }, + { + "start": 53160.42, + "end": 53161.28, + "probability": 0.3559 + }, + { + "start": 53161.6, + "end": 53163.78, + "probability": 0.6788 + }, + { + "start": 53164.68, + "end": 53168.0, + "probability": 0.8828 + }, + { + "start": 53168.76, + "end": 53169.64, + "probability": 0.9308 + }, + { + "start": 53169.88, + "end": 53172.8, + "probability": 0.9756 + }, + { + "start": 53172.84, + "end": 53174.08, + "probability": 0.847 + }, + { + "start": 53175.28, + "end": 53175.48, + "probability": 0.8235 + }, + { + "start": 53175.64, + "end": 53178.7, + "probability": 0.9917 + }, + { + "start": 53178.92, + "end": 53179.8, + "probability": 0.9705 + }, + { + "start": 53179.88, + "end": 53180.5, + "probability": 0.8662 + }, + { + "start": 53180.94, + "end": 53183.48, + "probability": 0.939 + }, + { + "start": 53183.8, + "end": 53184.74, + "probability": 0.8838 + }, + { + "start": 53185.0, + "end": 53185.46, + "probability": 0.5433 + }, + { + "start": 53185.78, + "end": 53188.39, + "probability": 0.8954 + }, + { + "start": 53188.66, + "end": 53191.3, + "probability": 0.9541 + }, + { + "start": 53191.46, + "end": 53195.44, + "probability": 0.9933 + }, + { + "start": 53196.28, + "end": 53196.48, + "probability": 0.308 + }, + { + "start": 53196.56, + "end": 53197.24, + "probability": 0.4204 + }, + { + "start": 53197.82, + "end": 53203.34, + "probability": 0.9894 + }, + { + "start": 53203.68, + "end": 53206.28, + "probability": 0.9961 + }, + { + "start": 53206.94, + "end": 53208.36, + "probability": 0.9578 + }, + { + "start": 53208.92, + "end": 53210.16, + "probability": 0.7231 + }, + { + "start": 53212.86, + "end": 53213.54, + "probability": 0.9809 + }, + { + "start": 53214.82, + "end": 53218.3, + "probability": 0.8656 + }, + { + "start": 53218.56, + "end": 53221.36, + "probability": 0.9161 + }, + { + "start": 53221.74, + "end": 53222.88, + "probability": 0.8668 + }, + { + "start": 53222.98, + "end": 53224.26, + "probability": 0.9839 + }, + { + "start": 53224.36, + "end": 53225.48, + "probability": 0.9552 + }, + { + "start": 53225.68, + "end": 53226.9, + "probability": 0.806 + }, + { + "start": 53227.32, + "end": 53232.8, + "probability": 0.9932 + }, + { + "start": 53232.88, + "end": 53236.34, + "probability": 0.9922 + }, + { + "start": 53236.46, + "end": 53240.02, + "probability": 0.9827 + }, + { + "start": 53240.32, + "end": 53244.66, + "probability": 0.9945 + }, + { + "start": 53244.82, + "end": 53249.34, + "probability": 0.9934 + }, + { + "start": 53249.34, + "end": 53252.94, + "probability": 0.9844 + }, + { + "start": 53253.02, + "end": 53254.06, + "probability": 0.9655 + }, + { + "start": 53254.46, + "end": 53255.8, + "probability": 0.7277 + }, + { + "start": 53255.92, + "end": 53258.0, + "probability": 0.9774 + }, + { + "start": 53258.46, + "end": 53259.1, + "probability": 0.9391 + }, + { + "start": 53259.74, + "end": 53261.18, + "probability": 0.9647 + }, + { + "start": 53263.52, + "end": 53265.48, + "probability": 0.8036 + }, + { + "start": 53265.56, + "end": 53267.64, + "probability": 0.9756 + }, + { + "start": 53268.08, + "end": 53271.64, + "probability": 0.88 + }, + { + "start": 53272.16, + "end": 53274.12, + "probability": 0.7261 + }, + { + "start": 53275.5, + "end": 53277.64, + "probability": 0.0546 + }, + { + "start": 53277.64, + "end": 53278.0, + "probability": 0.2077 + }, + { + "start": 53278.44, + "end": 53280.88, + "probability": 0.7352 + }, + { + "start": 53281.3, + "end": 53281.72, + "probability": 0.7553 + }, + { + "start": 53281.8, + "end": 53282.41, + "probability": 0.8926 + }, + { + "start": 53282.6, + "end": 53283.72, + "probability": 0.813 + }, + { + "start": 53283.74, + "end": 53285.1, + "probability": 0.5579 + }, + { + "start": 53285.24, + "end": 53287.5, + "probability": 0.9635 + }, + { + "start": 53288.14, + "end": 53289.08, + "probability": 0.9543 + }, + { + "start": 53289.44, + "end": 53290.46, + "probability": 0.973 + }, + { + "start": 53290.76, + "end": 53293.14, + "probability": 0.9205 + }, + { + "start": 53293.44, + "end": 53293.72, + "probability": 0.5205 + }, + { + "start": 53294.38, + "end": 53295.46, + "probability": 0.8596 + }, + { + "start": 53295.8, + "end": 53297.16, + "probability": 0.9595 + }, + { + "start": 53297.24, + "end": 53298.1, + "probability": 0.9934 + }, + { + "start": 53298.52, + "end": 53300.4, + "probability": 0.9905 + }, + { + "start": 53300.96, + "end": 53301.94, + "probability": 0.6408 + }, + { + "start": 53302.64, + "end": 53305.18, + "probability": 0.9521 + }, + { + "start": 53305.68, + "end": 53306.44, + "probability": 0.0241 + }, + { + "start": 53311.36, + "end": 53314.8, + "probability": 0.0427 + }, + { + "start": 53314.8, + "end": 53315.38, + "probability": 0.3409 + }, + { + "start": 53315.6, + "end": 53316.93, + "probability": 0.6508 + }, + { + "start": 53317.28, + "end": 53317.76, + "probability": 0.6129 + }, + { + "start": 53317.84, + "end": 53318.82, + "probability": 0.6734 + }, + { + "start": 53319.02, + "end": 53320.24, + "probability": 0.3921 + }, + { + "start": 53320.46, + "end": 53323.12, + "probability": 0.3494 + }, + { + "start": 53323.14, + "end": 53327.46, + "probability": 0.2072 + }, + { + "start": 53329.24, + "end": 53334.74, + "probability": 0.5218 + }, + { + "start": 53335.44, + "end": 53337.14, + "probability": 0.6696 + }, + { + "start": 53337.18, + "end": 53341.22, + "probability": 0.9893 + }, + { + "start": 53341.52, + "end": 53344.96, + "probability": 0.9952 + }, + { + "start": 53344.96, + "end": 53349.14, + "probability": 0.9904 + }, + { + "start": 53349.64, + "end": 53350.28, + "probability": 0.6958 + }, + { + "start": 53350.44, + "end": 53355.26, + "probability": 0.9684 + }, + { + "start": 53355.42, + "end": 53357.68, + "probability": 0.9557 + }, + { + "start": 53358.18, + "end": 53359.06, + "probability": 0.8584 + }, + { + "start": 53359.26, + "end": 53362.6, + "probability": 0.9917 + }, + { + "start": 53362.84, + "end": 53363.96, + "probability": 0.6146 + }, + { + "start": 53364.06, + "end": 53367.54, + "probability": 0.7146 + }, + { + "start": 53367.8, + "end": 53369.86, + "probability": 0.93 + }, + { + "start": 53369.98, + "end": 53370.22, + "probability": 0.6799 + }, + { + "start": 53370.59, + "end": 53374.58, + "probability": 0.8217 + }, + { + "start": 53375.1, + "end": 53376.82, + "probability": 0.6372 + }, + { + "start": 53376.94, + "end": 53379.24, + "probability": 0.7822 + }, + { + "start": 53379.28, + "end": 53380.18, + "probability": 0.6844 + }, + { + "start": 53380.3, + "end": 53380.56, + "probability": 0.6292 + }, + { + "start": 53380.64, + "end": 53382.12, + "probability": 0.6304 + }, + { + "start": 53382.44, + "end": 53384.2, + "probability": 0.0215 + }, + { + "start": 53393.68, + "end": 53394.76, + "probability": 0.6996 + }, + { + "start": 53395.08, + "end": 53399.04, + "probability": 0.4621 + }, + { + "start": 53401.36, + "end": 53402.76, + "probability": 0.2485 + }, + { + "start": 53405.04, + "end": 53408.38, + "probability": 0.5249 + }, + { + "start": 53408.5, + "end": 53412.94, + "probability": 0.7774 + }, + { + "start": 53413.62, + "end": 53414.72, + "probability": 0.7943 + }, + { + "start": 53414.78, + "end": 53416.15, + "probability": 0.9873 + }, + { + "start": 53417.2, + "end": 53421.5, + "probability": 0.9241 + }, + { + "start": 53421.68, + "end": 53423.56, + "probability": 0.6886 + }, + { + "start": 53426.36, + "end": 53426.84, + "probability": 0.3891 + }, + { + "start": 53426.84, + "end": 53426.84, + "probability": 0.2688 + }, + { + "start": 53426.84, + "end": 53427.6, + "probability": 0.714 + }, + { + "start": 53428.1, + "end": 53432.96, + "probability": 0.984 + }, + { + "start": 53433.44, + "end": 53437.64, + "probability": 0.9913 + }, + { + "start": 53437.76, + "end": 53439.6, + "probability": 0.671 + }, + { + "start": 53440.74, + "end": 53441.56, + "probability": 0.8588 + }, + { + "start": 53442.24, + "end": 53445.92, + "probability": 0.0807 + }, + { + "start": 53445.92, + "end": 53446.04, + "probability": 0.0165 + }, + { + "start": 53448.32, + "end": 53450.14, + "probability": 0.1249 + }, + { + "start": 53453.3, + "end": 53454.14, + "probability": 0.3544 + }, + { + "start": 53454.14, + "end": 53456.3, + "probability": 0.0521 + }, + { + "start": 53456.38, + "end": 53457.44, + "probability": 0.2372 + }, + { + "start": 53457.79, + "end": 53458.02, + "probability": 0.0569 + }, + { + "start": 53458.02, + "end": 53458.16, + "probability": 0.2267 + }, + { + "start": 53458.52, + "end": 53459.38, + "probability": 0.0228 + }, + { + "start": 53460.94, + "end": 53463.1, + "probability": 0.0199 + }, + { + "start": 53464.24, + "end": 53466.34, + "probability": 0.4552 + }, + { + "start": 53469.74, + "end": 53472.04, + "probability": 0.0981 + }, + { + "start": 53472.58, + "end": 53475.92, + "probability": 0.0808 + }, + { + "start": 53477.54, + "end": 53478.36, + "probability": 0.0951 + }, + { + "start": 53478.74, + "end": 53478.98, + "probability": 0.1739 + }, + { + "start": 53478.98, + "end": 53479.44, + "probability": 0.0626 + }, + { + "start": 53479.74, + "end": 53480.8, + "probability": 0.0427 + }, + { + "start": 53481.14, + "end": 53485.48, + "probability": 0.0913 + }, + { + "start": 53486.86, + "end": 53487.04, + "probability": 0.0436 + }, + { + "start": 53487.04, + "end": 53488.12, + "probability": 0.0238 + }, + { + "start": 53488.12, + "end": 53491.98, + "probability": 0.0185 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.0, + "end": 53492.0, + "probability": 0.0 + }, + { + "start": 53492.2, + "end": 53493.22, + "probability": 0.0688 + }, + { + "start": 53493.4, + "end": 53497.16, + "probability": 0.8737 + }, + { + "start": 53497.5, + "end": 53497.64, + "probability": 0.6614 + }, + { + "start": 53497.7, + "end": 53498.16, + "probability": 0.6534 + }, + { + "start": 53498.2, + "end": 53500.8, + "probability": 0.9376 + }, + { + "start": 53500.9, + "end": 53501.42, + "probability": 0.8833 + }, + { + "start": 53501.76, + "end": 53503.86, + "probability": 0.9085 + }, + { + "start": 53505.02, + "end": 53507.78, + "probability": 0.9741 + }, + { + "start": 53508.6, + "end": 53510.0, + "probability": 0.7367 + }, + { + "start": 53510.68, + "end": 53512.52, + "probability": 0.998 + }, + { + "start": 53512.7, + "end": 53513.24, + "probability": 0.7889 + }, + { + "start": 53513.8, + "end": 53514.7, + "probability": 0.6615 + }, + { + "start": 53515.44, + "end": 53516.14, + "probability": 0.4988 + }, + { + "start": 53516.14, + "end": 53517.48, + "probability": 0.7698 + }, + { + "start": 53517.94, + "end": 53518.55, + "probability": 0.9207 + }, + { + "start": 53518.78, + "end": 53519.86, + "probability": 0.973 + }, + { + "start": 53519.86, + "end": 53520.18, + "probability": 0.7644 + }, + { + "start": 53523.34, + "end": 53524.36, + "probability": 0.6407 + }, + { + "start": 53524.5, + "end": 53526.4, + "probability": 0.6308 + }, + { + "start": 53526.5, + "end": 53527.39, + "probability": 0.5879 + }, + { + "start": 53527.82, + "end": 53528.86, + "probability": 0.6117 + }, + { + "start": 53529.14, + "end": 53529.94, + "probability": 0.8704 + }, + { + "start": 53530.46, + "end": 53534.14, + "probability": 0.9725 + }, + { + "start": 53535.38, + "end": 53536.54, + "probability": 0.698 + }, + { + "start": 53536.86, + "end": 53538.78, + "probability": 0.777 + }, + { + "start": 53539.24, + "end": 53541.8, + "probability": 0.9106 + }, + { + "start": 53542.2, + "end": 53544.08, + "probability": 0.983 + }, + { + "start": 53544.2, + "end": 53544.54, + "probability": 0.6286 + }, + { + "start": 53545.18, + "end": 53547.36, + "probability": 0.9149 + }, + { + "start": 53549.06, + "end": 53551.78, + "probability": 0.9189 + }, + { + "start": 53553.18, + "end": 53553.74, + "probability": 0.6781 + }, + { + "start": 53553.84, + "end": 53554.2, + "probability": 0.7268 + }, + { + "start": 53554.46, + "end": 53555.96, + "probability": 0.8004 + }, + { + "start": 53556.72, + "end": 53556.98, + "probability": 0.9657 + }, + { + "start": 53557.62, + "end": 53558.94, + "probability": 0.6723 + }, + { + "start": 53559.56, + "end": 53562.56, + "probability": 0.915 + }, + { + "start": 53563.12, + "end": 53569.54, + "probability": 0.9941 + }, + { + "start": 53570.02, + "end": 53574.16, + "probability": 0.7681 + }, + { + "start": 53574.66, + "end": 53575.14, + "probability": 0.7284 + }, + { + "start": 53575.68, + "end": 53577.38, + "probability": 0.9421 + }, + { + "start": 53578.5, + "end": 53579.42, + "probability": 0.9257 + }, + { + "start": 53580.12, + "end": 53580.78, + "probability": 0.7197 + }, + { + "start": 53580.8, + "end": 53586.92, + "probability": 0.8053 + }, + { + "start": 53587.4, + "end": 53589.94, + "probability": 0.9516 + }, + { + "start": 53590.02, + "end": 53590.72, + "probability": 0.8212 + }, + { + "start": 53590.8, + "end": 53595.44, + "probability": 0.9858 + }, + { + "start": 53596.44, + "end": 53597.68, + "probability": 0.6996 + }, + { + "start": 53598.48, + "end": 53599.82, + "probability": 0.9211 + }, + { + "start": 53600.2, + "end": 53602.94, + "probability": 0.958 + }, + { + "start": 53603.36, + "end": 53610.9, + "probability": 0.9873 + }, + { + "start": 53610.9, + "end": 53617.88, + "probability": 0.9994 + }, + { + "start": 53617.88, + "end": 53622.84, + "probability": 0.94 + }, + { + "start": 53623.42, + "end": 53626.42, + "probability": 0.7906 + }, + { + "start": 53626.78, + "end": 53628.94, + "probability": 0.7251 + }, + { + "start": 53629.0, + "end": 53629.82, + "probability": 0.9577 + }, + { + "start": 53630.26, + "end": 53631.46, + "probability": 0.9309 + }, + { + "start": 53631.58, + "end": 53632.68, + "probability": 0.9614 + }, + { + "start": 53633.04, + "end": 53634.5, + "probability": 0.7237 + }, + { + "start": 53634.54, + "end": 53635.22, + "probability": 0.839 + }, + { + "start": 53635.34, + "end": 53635.7, + "probability": 0.9418 + }, + { + "start": 53636.1, + "end": 53636.88, + "probability": 0.9398 + }, + { + "start": 53637.76, + "end": 53640.14, + "probability": 0.7492 + }, + { + "start": 53641.36, + "end": 53642.08, + "probability": 0.8594 + }, + { + "start": 53642.98, + "end": 53649.96, + "probability": 0.9965 + }, + { + "start": 53650.5, + "end": 53651.48, + "probability": 0.9746 + }, + { + "start": 53651.58, + "end": 53653.9, + "probability": 0.9672 + }, + { + "start": 53654.04, + "end": 53654.68, + "probability": 0.7132 + }, + { + "start": 53655.1, + "end": 53656.94, + "probability": 0.8975 + }, + { + "start": 53657.4, + "end": 53661.82, + "probability": 0.9926 + }, + { + "start": 53661.88, + "end": 53663.19, + "probability": 0.9893 + }, + { + "start": 53663.64, + "end": 53666.02, + "probability": 0.9926 + }, + { + "start": 53666.88, + "end": 53670.26, + "probability": 0.9924 + }, + { + "start": 53670.42, + "end": 53671.22, + "probability": 0.8752 + }, + { + "start": 53671.36, + "end": 53672.94, + "probability": 0.9541 + }, + { + "start": 53673.82, + "end": 53673.9, + "probability": 0.2305 + }, + { + "start": 53673.9, + "end": 53674.92, + "probability": 0.8394 + }, + { + "start": 53676.46, + "end": 53677.54, + "probability": 0.797 + }, + { + "start": 53677.76, + "end": 53678.34, + "probability": 0.5538 + }, + { + "start": 53678.44, + "end": 53680.54, + "probability": 0.6687 + }, + { + "start": 53680.68, + "end": 53681.92, + "probability": 0.8897 + }, + { + "start": 53682.76, + "end": 53685.26, + "probability": 0.6914 + }, + { + "start": 53685.56, + "end": 53685.94, + "probability": 0.9258 + }, + { + "start": 53686.04, + "end": 53686.66, + "probability": 0.9021 + }, + { + "start": 53686.76, + "end": 53687.66, + "probability": 0.8311 + }, + { + "start": 53687.94, + "end": 53690.43, + "probability": 0.998 + }, + { + "start": 53691.3, + "end": 53694.48, + "probability": 0.9663 + }, + { + "start": 53694.54, + "end": 53695.12, + "probability": 0.7122 + }, + { + "start": 53695.64, + "end": 53697.52, + "probability": 0.9159 + }, + { + "start": 53697.96, + "end": 53698.46, + "probability": 0.8768 + }, + { + "start": 53698.56, + "end": 53699.18, + "probability": 0.773 + }, + { + "start": 53699.38, + "end": 53701.5, + "probability": 0.8892 + }, + { + "start": 53701.92, + "end": 53702.8, + "probability": 0.8942 + }, + { + "start": 53705.43, + "end": 53705.64, + "probability": 0.0673 + }, + { + "start": 53705.64, + "end": 53706.14, + "probability": 0.6877 + }, + { + "start": 53706.2, + "end": 53707.05, + "probability": 0.558 + }, + { + "start": 53707.44, + "end": 53708.1, + "probability": 0.6877 + }, + { + "start": 53708.14, + "end": 53709.5, + "probability": 0.7846 + }, + { + "start": 53709.68, + "end": 53711.3, + "probability": 0.4585 + }, + { + "start": 53711.42, + "end": 53716.06, + "probability": 0.6016 + }, + { + "start": 53716.06, + "end": 53719.62, + "probability": 0.9985 + }, + { + "start": 53720.1, + "end": 53721.0, + "probability": 0.7799 + }, + { + "start": 53721.06, + "end": 53722.86, + "probability": 0.9685 + }, + { + "start": 53723.52, + "end": 53725.98, + "probability": 0.9546 + }, + { + "start": 53726.12, + "end": 53726.82, + "probability": 0.7584 + }, + { + "start": 53727.34, + "end": 53727.58, + "probability": 0.8039 + }, + { + "start": 53727.94, + "end": 53730.4, + "probability": 0.9836 + }, + { + "start": 53730.6, + "end": 53731.02, + "probability": 0.9 + }, + { + "start": 53731.14, + "end": 53734.76, + "probability": 0.9382 + }, + { + "start": 53734.84, + "end": 53735.86, + "probability": 0.8714 + }, + { + "start": 53736.2, + "end": 53736.81, + "probability": 0.9515 + }, + { + "start": 53737.24, + "end": 53740.2, + "probability": 0.9937 + }, + { + "start": 53740.2, + "end": 53744.7, + "probability": 0.9047 + }, + { + "start": 53744.8, + "end": 53746.46, + "probability": 0.2796 + }, + { + "start": 53746.78, + "end": 53749.0, + "probability": 0.5579 + }, + { + "start": 53749.0, + "end": 53749.79, + "probability": 0.9062 + }, + { + "start": 53750.22, + "end": 53750.92, + "probability": 0.9817 + }, + { + "start": 53751.1, + "end": 53752.1, + "probability": 0.9302 + }, + { + "start": 53752.24, + "end": 53752.62, + "probability": 0.5811 + }, + { + "start": 53752.66, + "end": 53754.14, + "probability": 0.7229 + }, + { + "start": 53754.24, + "end": 53755.98, + "probability": 0.6864 + }, + { + "start": 53756.32, + "end": 53757.38, + "probability": 0.9136 + }, + { + "start": 53757.82, + "end": 53761.2, + "probability": 0.9641 + }, + { + "start": 53762.32, + "end": 53767.02, + "probability": 0.5863 + }, + { + "start": 53767.32, + "end": 53767.44, + "probability": 0.1581 + }, + { + "start": 53767.44, + "end": 53769.54, + "probability": 0.556 + }, + { + "start": 53769.68, + "end": 53773.42, + "probability": 0.7439 + }, + { + "start": 53773.52, + "end": 53774.34, + "probability": 0.3723 + }, + { + "start": 53774.38, + "end": 53775.24, + "probability": 0.5358 + }, + { + "start": 53775.34, + "end": 53777.91, + "probability": 0.77 + }, + { + "start": 53779.24, + "end": 53786.46, + "probability": 0.1438 + }, + { + "start": 53786.46, + "end": 53786.46, + "probability": 0.0602 + }, + { + "start": 53786.46, + "end": 53789.02, + "probability": 0.1118 + }, + { + "start": 53789.4, + "end": 53790.26, + "probability": 0.0196 + }, + { + "start": 53790.94, + "end": 53790.94, + "probability": 0.0779 + }, + { + "start": 53791.14, + "end": 53792.32, + "probability": 0.8478 + }, + { + "start": 53794.26, + "end": 53799.56, + "probability": 0.8998 + }, + { + "start": 53800.4, + "end": 53801.9, + "probability": 0.9658 + }, + { + "start": 53802.04, + "end": 53803.78, + "probability": 0.7308 + }, + { + "start": 53803.9, + "end": 53805.18, + "probability": 0.7363 + }, + { + "start": 53805.18, + "end": 53805.78, + "probability": 0.5366 + }, + { + "start": 53806.12, + "end": 53808.24, + "probability": 0.909 + }, + { + "start": 53808.88, + "end": 53810.04, + "probability": 0.9959 + }, + { + "start": 53810.34, + "end": 53814.36, + "probability": 0.9796 + }, + { + "start": 53814.36, + "end": 53818.42, + "probability": 0.9952 + }, + { + "start": 53818.62, + "end": 53818.88, + "probability": 0.1705 + }, + { + "start": 53819.0, + "end": 53820.28, + "probability": 0.9084 + }, + { + "start": 53820.42, + "end": 53821.9, + "probability": 0.8864 + }, + { + "start": 53822.38, + "end": 53827.32, + "probability": 0.9818 + }, + { + "start": 53828.2, + "end": 53830.16, + "probability": 0.6966 + }, + { + "start": 53830.42, + "end": 53831.46, + "probability": 0.9091 + }, + { + "start": 53831.76, + "end": 53832.7, + "probability": 0.904 + }, + { + "start": 53832.78, + "end": 53833.54, + "probability": 0.9768 + }, + { + "start": 53833.62, + "end": 53834.64, + "probability": 0.9786 + }, + { + "start": 53834.64, + "end": 53835.32, + "probability": 0.9116 + }, + { + "start": 53835.42, + "end": 53835.8, + "probability": 0.9111 + }, + { + "start": 53836.1, + "end": 53838.4, + "probability": 0.9671 + }, + { + "start": 53838.52, + "end": 53838.76, + "probability": 0.3693 + }, + { + "start": 53839.64, + "end": 53840.52, + "probability": 0.9505 + }, + { + "start": 53841.18, + "end": 53844.86, + "probability": 0.9839 + }, + { + "start": 53845.58, + "end": 53848.82, + "probability": 0.7692 + }, + { + "start": 53849.58, + "end": 53851.68, + "probability": 0.9961 + }, + { + "start": 53852.22, + "end": 53853.88, + "probability": 0.5715 + }, + { + "start": 53854.6, + "end": 53856.66, + "probability": 0.9369 + }, + { + "start": 53857.16, + "end": 53857.84, + "probability": 0.082 + }, + { + "start": 53858.36, + "end": 53859.68, + "probability": 0.9785 + }, + { + "start": 53859.94, + "end": 53862.54, + "probability": 0.991 + }, + { + "start": 53862.96, + "end": 53865.96, + "probability": 0.9946 + }, + { + "start": 53866.08, + "end": 53866.64, + "probability": 0.8231 + }, + { + "start": 53867.28, + "end": 53871.36, + "probability": 0.821 + }, + { + "start": 53871.52, + "end": 53873.76, + "probability": 0.9558 + }, + { + "start": 53874.38, + "end": 53878.44, + "probability": 0.9396 + }, + { + "start": 53878.96, + "end": 53881.26, + "probability": 0.8574 + }, + { + "start": 53881.58, + "end": 53882.4, + "probability": 0.6746 + }, + { + "start": 53882.98, + "end": 53885.26, + "probability": 0.9839 + }, + { + "start": 53885.7, + "end": 53890.26, + "probability": 0.9736 + }, + { + "start": 53891.22, + "end": 53894.8, + "probability": 0.8277 + }, + { + "start": 53895.2, + "end": 53895.94, + "probability": 0.9211 + }, + { + "start": 53896.06, + "end": 53897.1, + "probability": 0.9985 + }, + { + "start": 53897.2, + "end": 53897.98, + "probability": 0.8674 + }, + { + "start": 53898.06, + "end": 53899.08, + "probability": 0.9807 + }, + { + "start": 53899.18, + "end": 53900.18, + "probability": 0.9935 + }, + { + "start": 53900.64, + "end": 53901.76, + "probability": 0.8908 + }, + { + "start": 53901.86, + "end": 53902.79, + "probability": 0.9366 + }, + { + "start": 53903.18, + "end": 53903.92, + "probability": 0.9927 + }, + { + "start": 53904.02, + "end": 53906.14, + "probability": 0.9806 + }, + { + "start": 53906.5, + "end": 53907.44, + "probability": 0.7828 + }, + { + "start": 53907.56, + "end": 53909.9, + "probability": 0.9773 + }, + { + "start": 53910.12, + "end": 53911.2, + "probability": 0.9014 + }, + { + "start": 53912.3, + "end": 53912.4, + "probability": 0.3903 + }, + { + "start": 53912.9, + "end": 53913.36, + "probability": 0.9266 + }, + { + "start": 53913.94, + "end": 53914.92, + "probability": 0.9148 + }, + { + "start": 53915.6, + "end": 53915.98, + "probability": 0.8276 + }, + { + "start": 53916.36, + "end": 53918.26, + "probability": 0.9181 + }, + { + "start": 53918.72, + "end": 53919.24, + "probability": 0.666 + }, + { + "start": 53919.62, + "end": 53920.22, + "probability": 0.3323 + }, + { + "start": 53920.24, + "end": 53922.3, + "probability": 0.8501 + }, + { + "start": 53922.88, + "end": 53924.38, + "probability": 0.8945 + }, + { + "start": 53924.72, + "end": 53926.16, + "probability": 0.9593 + }, + { + "start": 53926.58, + "end": 53928.4, + "probability": 0.9859 + }, + { + "start": 53928.72, + "end": 53932.6, + "probability": 0.8948 + }, + { + "start": 53933.06, + "end": 53933.7, + "probability": 0.5768 + }, + { + "start": 53934.34, + "end": 53934.94, + "probability": 0.8627 + }, + { + "start": 53935.24, + "end": 53936.5, + "probability": 0.916 + }, + { + "start": 53936.84, + "end": 53937.3, + "probability": 0.9418 + }, + { + "start": 53938.42, + "end": 53938.96, + "probability": 0.9055 + }, + { + "start": 53940.16, + "end": 53941.76, + "probability": 0.7805 + }, + { + "start": 53941.86, + "end": 53943.9, + "probability": 0.9807 + }, + { + "start": 53944.72, + "end": 53945.52, + "probability": 0.5081 + }, + { + "start": 53949.52, + "end": 53951.72, + "probability": 0.6014 + }, + { + "start": 53951.92, + "end": 53957.74, + "probability": 0.2891 + }, + { + "start": 53957.74, + "end": 53958.32, + "probability": 0.0973 + }, + { + "start": 53959.08, + "end": 53960.06, + "probability": 0.316 + }, + { + "start": 53962.68, + "end": 53965.82, + "probability": 0.0969 + }, + { + "start": 53966.92, + "end": 53968.4, + "probability": 0.5585 + }, + { + "start": 53969.18, + "end": 53969.78, + "probability": 0.293 + }, + { + "start": 53972.1, + "end": 53974.62, + "probability": 0.1718 + }, + { + "start": 53975.42, + "end": 53975.8, + "probability": 0.42 + }, + { + "start": 53982.7, + "end": 53983.54, + "probability": 0.0758 + }, + { + "start": 53983.88, + "end": 53985.54, + "probability": 0.3605 + }, + { + "start": 53986.8, + "end": 53991.5, + "probability": 0.9344 + }, + { + "start": 53992.52, + "end": 53996.52, + "probability": 0.6037 + }, + { + "start": 53997.16, + "end": 53998.86, + "probability": 0.7191 + }, + { + "start": 54000.06, + "end": 54002.98, + "probability": 0.7007 + }, + { + "start": 54003.06, + "end": 54004.58, + "probability": 0.7346 + }, + { + "start": 54005.36, + "end": 54007.38, + "probability": 0.7943 + }, + { + "start": 54007.38, + "end": 54008.24, + "probability": 0.1633 + }, + { + "start": 54008.84, + "end": 54010.8, + "probability": 0.907 + }, + { + "start": 54014.12, + "end": 54019.58, + "probability": 0.6384 + }, + { + "start": 54020.36, + "end": 54023.9, + "probability": 0.8728 + }, + { + "start": 54024.74, + "end": 54026.29, + "probability": 0.9189 + }, + { + "start": 54027.28, + "end": 54028.58, + "probability": 0.9917 + }, + { + "start": 54028.64, + "end": 54032.44, + "probability": 0.9991 + }, + { + "start": 54034.44, + "end": 54035.71, + "probability": 0.9927 + }, + { + "start": 54036.5, + "end": 54037.46, + "probability": 0.7394 + }, + { + "start": 54038.16, + "end": 54040.6, + "probability": 0.9463 + }, + { + "start": 54041.44, + "end": 54044.28, + "probability": 0.9604 + }, + { + "start": 54044.76, + "end": 54046.82, + "probability": 0.9677 + }, + { + "start": 54047.44, + "end": 54052.32, + "probability": 0.9961 + }, + { + "start": 54052.44, + "end": 54055.26, + "probability": 0.9411 + }, + { + "start": 54055.26, + "end": 54058.34, + "probability": 0.9786 + }, + { + "start": 54058.48, + "end": 54059.76, + "probability": 0.9092 + }, + { + "start": 54060.34, + "end": 54061.5, + "probability": 0.9446 + }, + { + "start": 54062.14, + "end": 54064.8, + "probability": 0.8662 + }, + { + "start": 54065.24, + "end": 54067.04, + "probability": 0.6709 + }, + { + "start": 54067.52, + "end": 54068.94, + "probability": 0.7424 + }, + { + "start": 54069.0, + "end": 54070.2, + "probability": 0.9631 + }, + { + "start": 54070.88, + "end": 54071.89, + "probability": 0.9127 + }, + { + "start": 54072.34, + "end": 54073.34, + "probability": 0.9209 + }, + { + "start": 54073.64, + "end": 54075.12, + "probability": 0.5744 + }, + { + "start": 54075.16, + "end": 54081.28, + "probability": 0.9983 + }, + { + "start": 54082.1, + "end": 54083.92, + "probability": 0.8755 + }, + { + "start": 54085.22, + "end": 54085.22, + "probability": 0.2938 + }, + { + "start": 54085.22, + "end": 54085.22, + "probability": 0.1063 + }, + { + "start": 54085.22, + "end": 54085.22, + "probability": 0.0964 + }, + { + "start": 54085.22, + "end": 54087.38, + "probability": 0.7332 + }, + { + "start": 54087.56, + "end": 54088.84, + "probability": 0.1346 + }, + { + "start": 54088.88, + "end": 54093.68, + "probability": 0.6395 + }, + { + "start": 54094.26, + "end": 54097.5, + "probability": 0.8483 + }, + { + "start": 54097.62, + "end": 54099.64, + "probability": 0.7626 + }, + { + "start": 54099.78, + "end": 54101.32, + "probability": 0.2935 + }, + { + "start": 54101.74, + "end": 54101.76, + "probability": 0.2323 + }, + { + "start": 54101.76, + "end": 54101.76, + "probability": 0.3593 + }, + { + "start": 54101.76, + "end": 54108.76, + "probability": 0.5712 + }, + { + "start": 54109.16, + "end": 54109.24, + "probability": 0.2831 + }, + { + "start": 54109.24, + "end": 54109.86, + "probability": 0.6708 + }, + { + "start": 54110.5, + "end": 54110.7, + "probability": 0.1902 + }, + { + "start": 54110.84, + "end": 54110.98, + "probability": 0.007 + }, + { + "start": 54110.98, + "end": 54110.98, + "probability": 0.0454 + }, + { + "start": 54110.98, + "end": 54113.88, + "probability": 0.9611 + }, + { + "start": 54114.36, + "end": 54115.2, + "probability": 0.9431 + }, + { + "start": 54115.3, + "end": 54118.68, + "probability": 0.5212 + }, + { + "start": 54118.94, + "end": 54120.16, + "probability": 0.4613 + }, + { + "start": 54120.4, + "end": 54120.52, + "probability": 0.36 + }, + { + "start": 54120.52, + "end": 54121.8, + "probability": 0.6854 + }, + { + "start": 54125.14, + "end": 54130.54, + "probability": 0.7358 + }, + { + "start": 54131.96, + "end": 54135.4, + "probability": 0.9669 + }, + { + "start": 54135.4, + "end": 54139.32, + "probability": 0.862 + }, + { + "start": 54140.06, + "end": 54142.38, + "probability": 0.8056 + }, + { + "start": 54144.14, + "end": 54146.6, + "probability": 0.8656 + }, + { + "start": 54147.48, + "end": 54149.62, + "probability": 0.9179 + }, + { + "start": 54150.1, + "end": 54152.8, + "probability": 0.985 + }, + { + "start": 54153.2, + "end": 54155.76, + "probability": 0.9757 + }, + { + "start": 54156.94, + "end": 54160.72, + "probability": 0.9622 + }, + { + "start": 54161.44, + "end": 54162.04, + "probability": 0.4202 + }, + { + "start": 54163.1, + "end": 54166.14, + "probability": 0.9506 + }, + { + "start": 54167.72, + "end": 54171.34, + "probability": 0.9859 + }, + { + "start": 54171.34, + "end": 54176.02, + "probability": 0.9966 + }, + { + "start": 54177.34, + "end": 54177.86, + "probability": 0.3951 + }, + { + "start": 54178.86, + "end": 54185.74, + "probability": 0.9194 + }, + { + "start": 54186.62, + "end": 54189.5, + "probability": 0.813 + }, + { + "start": 54190.59, + "end": 54193.42, + "probability": 0.9691 + }, + { + "start": 54193.42, + "end": 54198.4, + "probability": 0.9944 + }, + { + "start": 54199.4, + "end": 54202.96, + "probability": 0.9902 + }, + { + "start": 54202.96, + "end": 54206.74, + "probability": 0.995 + }, + { + "start": 54207.22, + "end": 54207.64, + "probability": 0.786 + }, + { + "start": 54209.28, + "end": 54212.14, + "probability": 0.9546 + }, + { + "start": 54212.36, + "end": 54214.56, + "probability": 0.996 + }, + { + "start": 54215.98, + "end": 54219.8, + "probability": 0.972 + }, + { + "start": 54220.62, + "end": 54226.96, + "probability": 0.9854 + }, + { + "start": 54228.65, + "end": 54231.5, + "probability": 0.5729 + }, + { + "start": 54232.16, + "end": 54235.12, + "probability": 0.9809 + }, + { + "start": 54235.12, + "end": 54238.9, + "probability": 0.7743 + }, + { + "start": 54239.66, + "end": 54242.14, + "probability": 0.9297 + }, + { + "start": 54243.44, + "end": 54246.12, + "probability": 0.7697 + }, + { + "start": 54246.9, + "end": 54247.65, + "probability": 0.9711 + }, + { + "start": 54248.4, + "end": 54250.74, + "probability": 0.7089 + }, + { + "start": 54251.78, + "end": 54253.36, + "probability": 0.9967 + }, + { + "start": 54254.32, + "end": 54257.0, + "probability": 0.9803 + }, + { + "start": 54258.28, + "end": 54258.74, + "probability": 0.6769 + }, + { + "start": 54258.9, + "end": 54263.44, + "probability": 0.9979 + }, + { + "start": 54263.44, + "end": 54268.0, + "probability": 0.8634 + }, + { + "start": 54270.16, + "end": 54272.24, + "probability": 0.9635 + }, + { + "start": 54272.52, + "end": 54276.24, + "probability": 0.9639 + }, + { + "start": 54276.6, + "end": 54277.6, + "probability": 0.8548 + }, + { + "start": 54278.66, + "end": 54281.94, + "probability": 0.9982 + }, + { + "start": 54282.6, + "end": 54283.0, + "probability": 0.4518 + }, + { + "start": 54283.14, + "end": 54283.78, + "probability": 0.7313 + }, + { + "start": 54283.86, + "end": 54287.02, + "probability": 0.9854 + }, + { + "start": 54287.44, + "end": 54292.03, + "probability": 0.969 + }, + { + "start": 54293.92, + "end": 54295.94, + "probability": 0.87 + }, + { + "start": 54297.82, + "end": 54298.0, + "probability": 0.263 + }, + { + "start": 54298.02, + "end": 54301.86, + "probability": 0.9197 + }, + { + "start": 54302.28, + "end": 54303.96, + "probability": 0.9229 + }, + { + "start": 54304.86, + "end": 54309.32, + "probability": 0.9866 + }, + { + "start": 54310.52, + "end": 54311.48, + "probability": 0.8113 + }, + { + "start": 54311.58, + "end": 54319.46, + "probability": 0.9653 + }, + { + "start": 54320.78, + "end": 54322.34, + "probability": 0.9412 + }, + { + "start": 54324.28, + "end": 54328.78, + "probability": 0.9574 + }, + { + "start": 54329.88, + "end": 54331.54, + "probability": 0.9325 + }, + { + "start": 54332.3, + "end": 54333.62, + "probability": 0.8212 + }, + { + "start": 54334.08, + "end": 54337.44, + "probability": 0.9588 + }, + { + "start": 54338.62, + "end": 54342.24, + "probability": 0.9963 + }, + { + "start": 54342.6, + "end": 54343.34, + "probability": 0.7566 + }, + { + "start": 54343.5, + "end": 54344.52, + "probability": 0.9282 + }, + { + "start": 54344.68, + "end": 54345.9, + "probability": 0.9143 + }, + { + "start": 54346.32, + "end": 54348.86, + "probability": 0.9456 + }, + { + "start": 54349.54, + "end": 54352.04, + "probability": 0.9948 + }, + { + "start": 54352.1, + "end": 54353.29, + "probability": 0.9355 + }, + { + "start": 54354.52, + "end": 54355.08, + "probability": 0.8104 + }, + { + "start": 54356.0, + "end": 54357.29, + "probability": 0.853 + }, + { + "start": 54358.18, + "end": 54360.39, + "probability": 0.9091 + }, + { + "start": 54360.74, + "end": 54363.46, + "probability": 0.8198 + }, + { + "start": 54364.18, + "end": 54366.82, + "probability": 0.9851 + }, + { + "start": 54367.36, + "end": 54369.22, + "probability": 0.8911 + }, + { + "start": 54369.44, + "end": 54370.24, + "probability": 0.7943 + }, + { + "start": 54370.76, + "end": 54371.6, + "probability": 0.8019 + }, + { + "start": 54378.08, + "end": 54380.02, + "probability": 0.7433 + }, + { + "start": 54395.94, + "end": 54399.3, + "probability": 0.0285 + }, + { + "start": 54399.3, + "end": 54401.14, + "probability": 0.0576 + }, + { + "start": 54401.3, + "end": 54401.44, + "probability": 0.1734 + }, + { + "start": 54410.38, + "end": 54410.78, + "probability": 0.0836 + }, + { + "start": 54414.26, + "end": 54414.76, + "probability": 0.111 + }, + { + "start": 54423.48, + "end": 54423.96, + "probability": 0.0638 + }, + { + "start": 54436.2, + "end": 54437.18, + "probability": 0.5664 + }, + { + "start": 54441.94, + "end": 54444.9, + "probability": 0.7578 + }, + { + "start": 54445.34, + "end": 54447.56, + "probability": 0.8733 + }, + { + "start": 54447.8, + "end": 54452.08, + "probability": 0.9883 + }, + { + "start": 54452.26, + "end": 54454.34, + "probability": 0.5815 + }, + { + "start": 54454.4, + "end": 54456.3, + "probability": 0.9392 + }, + { + "start": 54456.82, + "end": 54459.08, + "probability": 0.9856 + }, + { + "start": 54459.16, + "end": 54460.84, + "probability": 0.9589 + }, + { + "start": 54461.5, + "end": 54464.68, + "probability": 0.62 + }, + { + "start": 54465.22, + "end": 54467.86, + "probability": 0.9977 + }, + { + "start": 54468.44, + "end": 54470.15, + "probability": 0.967 + }, + { + "start": 54470.52, + "end": 54472.46, + "probability": 0.9384 + }, + { + "start": 54472.84, + "end": 54475.8, + "probability": 0.9951 + }, + { + "start": 54477.18, + "end": 54479.29, + "probability": 0.9933 + }, + { + "start": 54479.38, + "end": 54480.48, + "probability": 0.9007 + }, + { + "start": 54480.9, + "end": 54483.74, + "probability": 0.9834 + }, + { + "start": 54483.74, + "end": 54486.86, + "probability": 0.9849 + }, + { + "start": 54486.92, + "end": 54489.12, + "probability": 0.993 + }, + { + "start": 54489.6, + "end": 54493.26, + "probability": 0.9606 + }, + { + "start": 54493.26, + "end": 54495.48, + "probability": 0.996 + }, + { + "start": 54496.22, + "end": 54498.56, + "probability": 0.9854 + }, + { + "start": 54499.0, + "end": 54500.68, + "probability": 0.9883 + }, + { + "start": 54501.14, + "end": 54504.78, + "probability": 0.7357 + }, + { + "start": 54505.46, + "end": 54505.94, + "probability": 0.6487 + }, + { + "start": 54506.0, + "end": 54508.88, + "probability": 0.9805 + }, + { + "start": 54508.88, + "end": 54511.6, + "probability": 0.905 + }, + { + "start": 54512.1, + "end": 54513.24, + "probability": 0.704 + }, + { + "start": 54513.36, + "end": 54515.24, + "probability": 0.9716 + }, + { + "start": 54515.74, + "end": 54519.14, + "probability": 0.7381 + }, + { + "start": 54519.26, + "end": 54520.5, + "probability": 0.9932 + }, + { + "start": 54520.56, + "end": 54522.44, + "probability": 0.98 + }, + { + "start": 54522.94, + "end": 54525.16, + "probability": 0.9924 + }, + { + "start": 54525.36, + "end": 54525.76, + "probability": 0.7688 + }, + { + "start": 54532.76, + "end": 54533.22, + "probability": 0.3741 + }, + { + "start": 54533.78, + "end": 54536.74, + "probability": 0.8508 + }, + { + "start": 54538.42, + "end": 54541.96, + "probability": 0.8677 + }, + { + "start": 54543.22, + "end": 54545.38, + "probability": 0.2558 + }, + { + "start": 54545.6, + "end": 54546.22, + "probability": 0.5016 + }, + { + "start": 54547.48, + "end": 54548.18, + "probability": 0.8794 + }, + { + "start": 54549.68, + "end": 54550.02, + "probability": 0.4264 + }, + { + "start": 54550.58, + "end": 54551.38, + "probability": 0.5762 + }, + { + "start": 54553.88, + "end": 54554.98, + "probability": 0.2519 + }, + { + "start": 54558.6, + "end": 54560.08, + "probability": 0.4151 + }, + { + "start": 54563.96, + "end": 54565.14, + "probability": 0.0933 + }, + { + "start": 54566.18, + "end": 54567.48, + "probability": 0.4728 + }, + { + "start": 54567.7, + "end": 54572.58, + "probability": 0.9747 + }, + { + "start": 54573.82, + "end": 54574.72, + "probability": 0.6876 + }, + { + "start": 54574.86, + "end": 54578.58, + "probability": 0.7893 + }, + { + "start": 54579.8, + "end": 54583.02, + "probability": 0.4996 + }, + { + "start": 54583.06, + "end": 54584.78, + "probability": 0.8512 + }, + { + "start": 54585.82, + "end": 54588.62, + "probability": 0.8898 + }, + { + "start": 54589.9, + "end": 54592.97, + "probability": 0.699 + }, + { + "start": 54608.32, + "end": 54612.68, + "probability": 0.614 + }, + { + "start": 54613.46, + "end": 54619.74, + "probability": 0.8164 + }, + { + "start": 54620.28, + "end": 54621.44, + "probability": 0.7229 + }, + { + "start": 54621.46, + "end": 54627.94, + "probability": 0.9957 + }, + { + "start": 54627.94, + "end": 54634.86, + "probability": 0.9535 + }, + { + "start": 54635.28, + "end": 54643.98, + "probability": 0.951 + }, + { + "start": 54644.48, + "end": 54646.74, + "probability": 0.9922 + }, + { + "start": 54647.28, + "end": 54647.92, + "probability": 0.8262 + }, + { + "start": 54648.12, + "end": 54648.92, + "probability": 0.9734 + }, + { + "start": 54649.3, + "end": 54654.88, + "probability": 0.9478 + }, + { + "start": 54655.4, + "end": 54657.28, + "probability": 0.9966 + }, + { + "start": 54657.76, + "end": 54658.54, + "probability": 0.8572 + }, + { + "start": 54658.9, + "end": 54661.9, + "probability": 0.9925 + }, + { + "start": 54661.9, + "end": 54666.68, + "probability": 0.9974 + }, + { + "start": 54667.2, + "end": 54670.82, + "probability": 0.9323 + }, + { + "start": 54670.82, + "end": 54675.46, + "probability": 0.9961 + }, + { + "start": 54675.46, + "end": 54679.52, + "probability": 0.9739 + }, + { + "start": 54682.0, + "end": 54682.74, + "probability": 0.661 + }, + { + "start": 54683.04, + "end": 54685.2, + "probability": 0.864 + }, + { + "start": 54687.28, + "end": 54689.4, + "probability": 0.7725 + }, + { + "start": 54689.94, + "end": 54690.96, + "probability": 0.8293 + }, + { + "start": 54692.48, + "end": 54693.52, + "probability": 0.1635 + }, + { + "start": 54694.6, + "end": 54696.0, + "probability": 0.1119 + }, + { + "start": 54698.06, + "end": 54701.7, + "probability": 0.0323 + }, + { + "start": 54714.9, + "end": 54717.7, + "probability": 0.0053 + }, + { + "start": 54719.38, + "end": 54719.94, + "probability": 0.9954 + }, + { + "start": 54721.02, + "end": 54721.48, + "probability": 0.4467 + }, + { + "start": 54722.64, + "end": 54723.86, + "probability": 0.4651 + }, + { + "start": 54724.0, + "end": 54730.52, + "probability": 0.9845 + }, + { + "start": 54730.94, + "end": 54732.54, + "probability": 0.9626 + }, + { + "start": 54733.32, + "end": 54734.58, + "probability": 0.9393 + }, + { + "start": 54735.06, + "end": 54739.48, + "probability": 0.9161 + }, + { + "start": 54739.48, + "end": 54743.36, + "probability": 0.9956 + }, + { + "start": 54745.48, + "end": 54749.34, + "probability": 0.9543 + }, + { + "start": 54750.52, + "end": 54754.14, + "probability": 0.9904 + }, + { + "start": 54755.28, + "end": 54756.48, + "probability": 0.9089 + }, + { + "start": 54757.64, + "end": 54758.16, + "probability": 0.9728 + }, + { + "start": 54759.44, + "end": 54759.95, + "probability": 0.9784 + }, + { + "start": 54761.14, + "end": 54761.87, + "probability": 0.9853 + }, + { + "start": 54762.88, + "end": 54765.52, + "probability": 0.9725 + }, + { + "start": 54766.46, + "end": 54767.39, + "probability": 0.9854 + }, + { + "start": 54768.68, + "end": 54773.34, + "probability": 0.9951 + }, + { + "start": 54774.16, + "end": 54775.3, + "probability": 0.8905 + }, + { + "start": 54776.3, + "end": 54781.7, + "probability": 0.9889 + }, + { + "start": 54781.7, + "end": 54789.14, + "probability": 0.9523 + }, + { + "start": 54790.16, + "end": 54796.96, + "probability": 0.9626 + }, + { + "start": 54798.1, + "end": 54804.56, + "probability": 0.9917 + }, + { + "start": 54805.72, + "end": 54807.84, + "probability": 0.8184 + }, + { + "start": 54809.22, + "end": 54816.96, + "probability": 0.9871 + }, + { + "start": 54817.92, + "end": 54819.86, + "probability": 0.9778 + }, + { + "start": 54820.84, + "end": 54822.38, + "probability": 0.7788 + }, + { + "start": 54823.58, + "end": 54824.82, + "probability": 0.993 + }, + { + "start": 54825.74, + "end": 54831.92, + "probability": 0.967 + }, + { + "start": 54833.18, + "end": 54834.06, + "probability": 0.8102 + }, + { + "start": 54835.24, + "end": 54840.5, + "probability": 0.9851 + }, + { + "start": 54840.5, + "end": 54845.98, + "probability": 0.9987 + }, + { + "start": 54846.52, + "end": 54847.32, + "probability": 0.9792 + }, + { + "start": 54849.06, + "end": 54853.86, + "probability": 0.9893 + }, + { + "start": 54853.88, + "end": 54857.48, + "probability": 0.9229 + }, + { + "start": 54858.04, + "end": 54861.72, + "probability": 0.9454 + }, + { + "start": 54862.64, + "end": 54863.14, + "probability": 0.1995 + }, + { + "start": 54863.88, + "end": 54867.42, + "probability": 0.9357 + }, + { + "start": 54868.22, + "end": 54872.88, + "probability": 0.9772 + }, + { + "start": 54873.54, + "end": 54875.6, + "probability": 0.9518 + }, + { + "start": 54876.56, + "end": 54878.78, + "probability": 0.7764 + }, + { + "start": 54879.32, + "end": 54881.62, + "probability": 0.9607 + }, + { + "start": 54882.1, + "end": 54884.8, + "probability": 0.9915 + }, + { + "start": 54885.46, + "end": 54886.23, + "probability": 0.6909 + }, + { + "start": 54887.16, + "end": 54888.72, + "probability": 0.9886 + }, + { + "start": 54888.78, + "end": 54889.26, + "probability": 0.9242 + }, + { + "start": 54890.32, + "end": 54890.92, + "probability": 0.7135 + }, + { + "start": 54891.16, + "end": 54892.68, + "probability": 0.9329 + }, + { + "start": 54892.78, + "end": 54893.52, + "probability": 0.4448 + }, + { + "start": 54893.94, + "end": 54895.1, + "probability": 0.7446 + }, + { + "start": 54895.18, + "end": 54896.0, + "probability": 0.6866 + }, + { + "start": 54896.26, + "end": 54897.84, + "probability": 0.8211 + }, + { + "start": 54898.3, + "end": 54899.78, + "probability": 0.8309 + }, + { + "start": 54901.36, + "end": 54902.8, + "probability": 0.8891 + }, + { + "start": 54903.1, + "end": 54904.76, + "probability": 0.7309 + }, + { + "start": 54908.06, + "end": 54909.86, + "probability": 0.9819 + }, + { + "start": 54921.32, + "end": 54923.44, + "probability": 0.7385 + }, + { + "start": 54925.02, + "end": 54928.84, + "probability": 0.992 + }, + { + "start": 54929.88, + "end": 54931.64, + "probability": 0.9912 + }, + { + "start": 54932.44, + "end": 54934.19, + "probability": 0.9944 + }, + { + "start": 54934.76, + "end": 54937.54, + "probability": 0.9915 + }, + { + "start": 54938.1, + "end": 54938.78, + "probability": 0.8506 + }, + { + "start": 54939.52, + "end": 54943.78, + "probability": 0.918 + }, + { + "start": 54944.56, + "end": 54950.28, + "probability": 0.9893 + }, + { + "start": 54951.14, + "end": 54956.0, + "probability": 0.9973 + }, + { + "start": 54956.0, + "end": 54961.38, + "probability": 0.9777 + }, + { + "start": 54961.66, + "end": 54961.96, + "probability": 0.3747 + }, + { + "start": 54962.1, + "end": 54962.46, + "probability": 0.8576 + }, + { + "start": 54962.46, + "end": 54963.48, + "probability": 0.7084 + }, + { + "start": 54965.26, + "end": 54966.52, + "probability": 0.7417 + }, + { + "start": 54966.86, + "end": 54967.04, + "probability": 0.8832 + }, + { + "start": 54967.3, + "end": 54976.5, + "probability": 0.9875 + }, + { + "start": 54978.44, + "end": 54984.98, + "probability": 0.9871 + }, + { + "start": 54985.34, + "end": 54987.7, + "probability": 0.9888 + }, + { + "start": 54987.88, + "end": 54988.68, + "probability": 0.4998 + }, + { + "start": 54988.82, + "end": 54992.26, + "probability": 0.9827 + }, + { + "start": 54992.98, + "end": 54995.96, + "probability": 0.9902 + }, + { + "start": 54996.8, + "end": 54999.18, + "probability": 0.729 + }, + { + "start": 55000.98, + "end": 55003.68, + "probability": 0.8836 + }, + { + "start": 55003.74, + "end": 55004.14, + "probability": 0.592 + }, + { + "start": 55004.22, + "end": 55006.1, + "probability": 0.9583 + }, + { + "start": 55006.28, + "end": 55007.48, + "probability": 0.9693 + }, + { + "start": 55007.72, + "end": 55009.1, + "probability": 0.8951 + }, + { + "start": 55009.8, + "end": 55012.24, + "probability": 0.9943 + }, + { + "start": 55012.38, + "end": 55013.22, + "probability": 0.9887 + }, + { + "start": 55013.56, + "end": 55014.2, + "probability": 0.935 + }, + { + "start": 55014.36, + "end": 55014.74, + "probability": 0.9453 + }, + { + "start": 55014.78, + "end": 55017.54, + "probability": 0.888 + }, + { + "start": 55018.16, + "end": 55020.86, + "probability": 0.9351 + }, + { + "start": 55020.9, + "end": 55021.54, + "probability": 0.7844 + }, + { + "start": 55021.72, + "end": 55022.34, + "probability": 0.9617 + }, + { + "start": 55023.4, + "end": 55024.73, + "probability": 0.9784 + }, + { + "start": 55025.26, + "end": 55026.84, + "probability": 0.7275 + }, + { + "start": 55026.92, + "end": 55028.8, + "probability": 0.97 + }, + { + "start": 55029.18, + "end": 55030.64, + "probability": 0.9731 + }, + { + "start": 55030.9, + "end": 55032.22, + "probability": 0.9947 + }, + { + "start": 55032.56, + "end": 55033.66, + "probability": 0.7935 + }, + { + "start": 55034.34, + "end": 55036.04, + "probability": 0.9713 + }, + { + "start": 55036.82, + "end": 55040.58, + "probability": 0.9944 + }, + { + "start": 55041.18, + "end": 55047.01, + "probability": 0.9809 + }, + { + "start": 55048.22, + "end": 55049.35, + "probability": 0.7578 + }, + { + "start": 55050.54, + "end": 55052.64, + "probability": 0.9969 + }, + { + "start": 55053.04, + "end": 55054.34, + "probability": 0.8906 + }, + { + "start": 55054.98, + "end": 55055.76, + "probability": 0.9119 + }, + { + "start": 55056.76, + "end": 55060.92, + "probability": 0.994 + }, + { + "start": 55061.56, + "end": 55063.02, + "probability": 0.7386 + }, + { + "start": 55063.96, + "end": 55065.18, + "probability": 0.6333 + }, + { + "start": 55065.76, + "end": 55071.12, + "probability": 0.9964 + }, + { + "start": 55071.9, + "end": 55073.0, + "probability": 0.8916 + }, + { + "start": 55073.62, + "end": 55074.54, + "probability": 0.9795 + }, + { + "start": 55075.24, + "end": 55077.78, + "probability": 0.989 + }, + { + "start": 55078.34, + "end": 55081.94, + "probability": 0.999 + }, + { + "start": 55082.7, + "end": 55087.26, + "probability": 0.9974 + }, + { + "start": 55087.84, + "end": 55089.92, + "probability": 0.8882 + }, + { + "start": 55089.92, + "end": 55090.56, + "probability": 0.8976 + }, + { + "start": 55091.26, + "end": 55092.54, + "probability": 0.9652 + }, + { + "start": 55093.16, + "end": 55094.68, + "probability": 0.9978 + }, + { + "start": 55095.06, + "end": 55095.42, + "probability": 0.687 + }, + { + "start": 55096.92, + "end": 55096.92, + "probability": 0.2463 + }, + { + "start": 55096.92, + "end": 55097.2, + "probability": 0.6676 + }, + { + "start": 55098.22, + "end": 55099.46, + "probability": 0.7631 + }, + { + "start": 55112.64, + "end": 55114.74, + "probability": 0.5357 + }, + { + "start": 55115.5, + "end": 55120.08, + "probability": 0.9832 + }, + { + "start": 55121.6, + "end": 55124.16, + "probability": 0.9883 + }, + { + "start": 55124.28, + "end": 55126.58, + "probability": 0.909 + }, + { + "start": 55127.86, + "end": 55130.6, + "probability": 0.9921 + }, + { + "start": 55131.52, + "end": 55132.9, + "probability": 0.7741 + }, + { + "start": 55133.06, + "end": 55133.52, + "probability": 0.7791 + }, + { + "start": 55133.78, + "end": 55134.72, + "probability": 0.637 + }, + { + "start": 55134.86, + "end": 55138.54, + "probability": 0.9385 + }, + { + "start": 55139.88, + "end": 55144.64, + "probability": 0.9868 + }, + { + "start": 55144.64, + "end": 55149.24, + "probability": 0.996 + }, + { + "start": 55149.34, + "end": 55151.9, + "probability": 0.9394 + }, + { + "start": 55152.32, + "end": 55153.34, + "probability": 0.9639 + }, + { + "start": 55153.56, + "end": 55154.32, + "probability": 0.9221 + }, + { + "start": 55155.82, + "end": 55158.8, + "probability": 0.9435 + }, + { + "start": 55159.46, + "end": 55160.18, + "probability": 0.7572 + }, + { + "start": 55161.02, + "end": 55162.19, + "probability": 0.9854 + }, + { + "start": 55162.62, + "end": 55167.2, + "probability": 0.9133 + }, + { + "start": 55167.82, + "end": 55168.66, + "probability": 0.7599 + }, + { + "start": 55169.32, + "end": 55170.0, + "probability": 0.9562 + }, + { + "start": 55171.26, + "end": 55172.84, + "probability": 0.9699 + }, + { + "start": 55172.92, + "end": 55174.3, + "probability": 0.4432 + }, + { + "start": 55174.82, + "end": 55176.96, + "probability": 0.9902 + }, + { + "start": 55177.4, + "end": 55182.38, + "probability": 0.6678 + }, + { + "start": 55182.68, + "end": 55185.5, + "probability": 0.9957 + }, + { + "start": 55186.36, + "end": 55187.04, + "probability": 0.5461 + }, + { + "start": 55187.16, + "end": 55188.62, + "probability": 0.8441 + }, + { + "start": 55188.7, + "end": 55190.54, + "probability": 0.628 + }, + { + "start": 55190.66, + "end": 55192.22, + "probability": 0.6824 + }, + { + "start": 55192.56, + "end": 55193.52, + "probability": 0.6183 + }, + { + "start": 55193.68, + "end": 55194.32, + "probability": 0.7864 + }, + { + "start": 55194.64, + "end": 55195.78, + "probability": 0.8149 + }, + { + "start": 55196.4, + "end": 55197.6, + "probability": 0.8821 + }, + { + "start": 55198.58, + "end": 55200.54, + "probability": 0.9818 + }, + { + "start": 55201.58, + "end": 55202.33, + "probability": 0.9893 + }, + { + "start": 55202.84, + "end": 55204.34, + "probability": 0.9429 + }, + { + "start": 55205.34, + "end": 55207.4, + "probability": 0.8218 + }, + { + "start": 55207.8, + "end": 55211.44, + "probability": 0.8829 + }, + { + "start": 55211.84, + "end": 55212.96, + "probability": 0.7772 + }, + { + "start": 55213.02, + "end": 55213.64, + "probability": 0.9316 + }, + { + "start": 55213.72, + "end": 55214.72, + "probability": 0.9542 + }, + { + "start": 55215.74, + "end": 55216.68, + "probability": 0.918 + }, + { + "start": 55216.92, + "end": 55220.5, + "probability": 0.9824 + }, + { + "start": 55221.48, + "end": 55222.16, + "probability": 0.5129 + }, + { + "start": 55223.08, + "end": 55226.36, + "probability": 0.8793 + }, + { + "start": 55227.42, + "end": 55228.26, + "probability": 0.9789 + }, + { + "start": 55228.42, + "end": 55229.0, + "probability": 0.885 + }, + { + "start": 55229.46, + "end": 55231.26, + "probability": 0.8636 + }, + { + "start": 55231.58, + "end": 55233.0, + "probability": 0.8232 + }, + { + "start": 55233.68, + "end": 55235.52, + "probability": 0.9837 + }, + { + "start": 55236.5, + "end": 55239.89, + "probability": 0.9242 + }, + { + "start": 55240.76, + "end": 55242.86, + "probability": 0.9656 + }, + { + "start": 55243.18, + "end": 55244.94, + "probability": 0.9127 + }, + { + "start": 55245.56, + "end": 55249.06, + "probability": 0.9967 + }, + { + "start": 55249.8, + "end": 55251.7, + "probability": 0.9628 + }, + { + "start": 55252.6, + "end": 55254.08, + "probability": 0.9595 + }, + { + "start": 55254.66, + "end": 55256.52, + "probability": 0.9695 + }, + { + "start": 55257.1, + "end": 55261.2, + "probability": 0.8997 + }, + { + "start": 55261.44, + "end": 55261.98, + "probability": 0.9468 + }, + { + "start": 55262.22, + "end": 55263.54, + "probability": 0.9658 + }, + { + "start": 55263.76, + "end": 55267.02, + "probability": 0.9792 + }, + { + "start": 55267.56, + "end": 55268.64, + "probability": 0.6667 + }, + { + "start": 55269.32, + "end": 55270.98, + "probability": 0.784 + }, + { + "start": 55271.84, + "end": 55274.14, + "probability": 0.7838 + }, + { + "start": 55274.98, + "end": 55276.24, + "probability": 0.9969 + }, + { + "start": 55276.7, + "end": 55278.06, + "probability": 0.9509 + }, + { + "start": 55279.24, + "end": 55281.08, + "probability": 0.8685 + }, + { + "start": 55282.46, + "end": 55283.36, + "probability": 0.5005 + }, + { + "start": 55283.38, + "end": 55284.52, + "probability": 0.7957 + }, + { + "start": 55284.88, + "end": 55286.32, + "probability": 0.9888 + }, + { + "start": 55288.14, + "end": 55288.9, + "probability": 0.9434 + }, + { + "start": 55288.96, + "end": 55290.48, + "probability": 0.8956 + }, + { + "start": 55290.56, + "end": 55292.98, + "probability": 0.8514 + }, + { + "start": 55293.04, + "end": 55294.38, + "probability": 0.95 + }, + { + "start": 55294.54, + "end": 55296.84, + "probability": 0.8891 + }, + { + "start": 55296.86, + "end": 55298.82, + "probability": 0.9771 + }, + { + "start": 55299.12, + "end": 55301.7, + "probability": 0.836 + }, + { + "start": 55301.78, + "end": 55303.92, + "probability": 0.9188 + }, + { + "start": 55304.66, + "end": 55305.62, + "probability": 0.9683 + }, + { + "start": 55305.66, + "end": 55306.48, + "probability": 0.988 + }, + { + "start": 55306.56, + "end": 55307.19, + "probability": 0.968 + }, + { + "start": 55307.8, + "end": 55309.24, + "probability": 0.96 + }, + { + "start": 55309.32, + "end": 55310.3, + "probability": 0.7169 + }, + { + "start": 55310.64, + "end": 55311.94, + "probability": 0.936 + }, + { + "start": 55312.18, + "end": 55314.0, + "probability": 0.9625 + }, + { + "start": 55314.04, + "end": 55314.48, + "probability": 0.8809 + }, + { + "start": 55315.94, + "end": 55316.82, + "probability": 0.8549 + }, + { + "start": 55317.66, + "end": 55317.96, + "probability": 0.9604 + }, + { + "start": 55318.52, + "end": 55319.52, + "probability": 0.6559 + }, + { + "start": 55321.01, + "end": 55323.98, + "probability": 0.8037 + }, + { + "start": 55325.86, + "end": 55326.44, + "probability": 0.5015 + }, + { + "start": 55326.6, + "end": 55327.76, + "probability": 0.7681 + }, + { + "start": 55344.32, + "end": 55345.36, + "probability": 0.7973 + }, + { + "start": 55345.36, + "end": 55345.5, + "probability": 0.1116 + }, + { + "start": 55345.6, + "end": 55346.74, + "probability": 0.4385 + }, + { + "start": 55347.7, + "end": 55349.18, + "probability": 0.901 + }, + { + "start": 55350.06, + "end": 55351.92, + "probability": 0.9541 + }, + { + "start": 55352.94, + "end": 55355.56, + "probability": 0.9941 + }, + { + "start": 55357.66, + "end": 55359.41, + "probability": 0.9949 + }, + { + "start": 55360.18, + "end": 55367.84, + "probability": 0.9738 + }, + { + "start": 55368.0, + "end": 55369.24, + "probability": 0.7687 + }, + { + "start": 55369.4, + "end": 55370.78, + "probability": 0.8369 + }, + { + "start": 55371.7, + "end": 55372.96, + "probability": 0.9785 + }, + { + "start": 55375.44, + "end": 55380.48, + "probability": 0.9472 + }, + { + "start": 55381.84, + "end": 55385.78, + "probability": 0.9836 + }, + { + "start": 55385.78, + "end": 55389.42, + "probability": 0.9059 + }, + { + "start": 55390.04, + "end": 55392.48, + "probability": 0.9637 + }, + { + "start": 55392.54, + "end": 55393.96, + "probability": 0.8664 + }, + { + "start": 55394.84, + "end": 55397.32, + "probability": 0.9495 + }, + { + "start": 55398.62, + "end": 55404.64, + "probability": 0.9856 + }, + { + "start": 55405.16, + "end": 55409.4, + "probability": 0.9203 + }, + { + "start": 55410.12, + "end": 55410.7, + "probability": 0.961 + }, + { + "start": 55411.22, + "end": 55411.96, + "probability": 0.4424 + }, + { + "start": 55413.06, + "end": 55413.85, + "probability": 0.7532 + }, + { + "start": 55414.92, + "end": 55418.54, + "probability": 0.9689 + }, + { + "start": 55420.86, + "end": 55424.68, + "probability": 0.7388 + }, + { + "start": 55424.72, + "end": 55425.88, + "probability": 0.9705 + }, + { + "start": 55427.22, + "end": 55429.18, + "probability": 0.8904 + }, + { + "start": 55431.14, + "end": 55433.52, + "probability": 0.9493 + }, + { + "start": 55435.3, + "end": 55442.0, + "probability": 0.9979 + }, + { + "start": 55443.86, + "end": 55447.8, + "probability": 0.9991 + }, + { + "start": 55449.56, + "end": 55454.6, + "probability": 0.9944 + }, + { + "start": 55455.2, + "end": 55456.81, + "probability": 0.9907 + }, + { + "start": 55457.98, + "end": 55459.24, + "probability": 0.719 + }, + { + "start": 55460.92, + "end": 55465.42, + "probability": 0.9862 + }, + { + "start": 55466.6, + "end": 55472.39, + "probability": 0.962 + }, + { + "start": 55473.54, + "end": 55476.06, + "probability": 0.9364 + }, + { + "start": 55481.52, + "end": 55481.52, + "probability": 0.0564 + }, + { + "start": 55481.52, + "end": 55483.8, + "probability": 0.9767 + }, + { + "start": 55483.9, + "end": 55485.06, + "probability": 0.9861 + }, + { + "start": 55486.76, + "end": 55490.34, + "probability": 0.9515 + }, + { + "start": 55491.26, + "end": 55492.84, + "probability": 0.9626 + }, + { + "start": 55494.24, + "end": 55498.2, + "probability": 0.9839 + }, + { + "start": 55498.2, + "end": 55501.7, + "probability": 0.9987 + }, + { + "start": 55502.42, + "end": 55505.7, + "probability": 0.8112 + }, + { + "start": 55505.96, + "end": 55507.32, + "probability": 0.9937 + }, + { + "start": 55507.9, + "end": 55512.44, + "probability": 0.9923 + }, + { + "start": 55512.92, + "end": 55513.94, + "probability": 0.999 + }, + { + "start": 55514.56, + "end": 55517.82, + "probability": 0.9978 + }, + { + "start": 55518.66, + "end": 55519.44, + "probability": 0.7015 + }, + { + "start": 55519.96, + "end": 55524.54, + "probability": 0.9387 + }, + { + "start": 55526.04, + "end": 55528.92, + "probability": 0.9937 + }, + { + "start": 55530.98, + "end": 55531.64, + "probability": 0.664 + }, + { + "start": 55531.7, + "end": 55533.04, + "probability": 0.9419 + }, + { + "start": 55536.98, + "end": 55537.06, + "probability": 0.2926 + }, + { + "start": 55550.89, + "end": 55554.52, + "probability": 0.7033 + }, + { + "start": 55558.18, + "end": 55561.88, + "probability": 0.9897 + }, + { + "start": 55562.8, + "end": 55564.08, + "probability": 0.5623 + }, + { + "start": 55565.46, + "end": 55568.58, + "probability": 0.8955 + }, + { + "start": 55569.33, + "end": 55573.49, + "probability": 0.4346 + }, + { + "start": 55575.26, + "end": 55578.64, + "probability": 0.8884 + }, + { + "start": 55579.36, + "end": 55581.7, + "probability": 0.8495 + }, + { + "start": 55582.34, + "end": 55587.06, + "probability": 0.9961 + }, + { + "start": 55589.26, + "end": 55591.16, + "probability": 0.9535 + }, + { + "start": 55592.54, + "end": 55593.16, + "probability": 0.8839 + }, + { + "start": 55595.1, + "end": 55598.56, + "probability": 0.9684 + }, + { + "start": 55598.66, + "end": 55599.14, + "probability": 0.6761 + }, + { + "start": 55599.7, + "end": 55602.07, + "probability": 0.7793 + }, + { + "start": 55603.02, + "end": 55604.1, + "probability": 0.9492 + }, + { + "start": 55605.14, + "end": 55606.5, + "probability": 0.9951 + }, + { + "start": 55607.3, + "end": 55611.9, + "probability": 0.9916 + }, + { + "start": 55613.08, + "end": 55618.86, + "probability": 0.8872 + }, + { + "start": 55619.94, + "end": 55620.56, + "probability": 0.2715 + }, + { + "start": 55621.76, + "end": 55627.0, + "probability": 0.9942 + }, + { + "start": 55628.72, + "end": 55629.46, + "probability": 0.9746 + }, + { + "start": 55629.98, + "end": 55633.18, + "probability": 0.9957 + }, + { + "start": 55633.9, + "end": 55634.88, + "probability": 0.9539 + }, + { + "start": 55635.52, + "end": 55636.52, + "probability": 0.8901 + }, + { + "start": 55637.92, + "end": 55639.02, + "probability": 0.9038 + }, + { + "start": 55639.66, + "end": 55640.78, + "probability": 0.5919 + }, + { + "start": 55642.08, + "end": 55643.54, + "probability": 0.9618 + }, + { + "start": 55644.68, + "end": 55645.97, + "probability": 0.9953 + }, + { + "start": 55646.96, + "end": 55648.72, + "probability": 0.9814 + }, + { + "start": 55649.88, + "end": 55651.86, + "probability": 0.7475 + }, + { + "start": 55653.38, + "end": 55655.28, + "probability": 0.9458 + }, + { + "start": 55657.04, + "end": 55663.58, + "probability": 0.9634 + }, + { + "start": 55664.3, + "end": 55668.24, + "probability": 0.9739 + }, + { + "start": 55668.24, + "end": 55671.42, + "probability": 0.999 + }, + { + "start": 55672.32, + "end": 55675.18, + "probability": 0.7731 + }, + { + "start": 55676.32, + "end": 55677.38, + "probability": 0.8713 + }, + { + "start": 55679.42, + "end": 55681.8, + "probability": 0.9585 + }, + { + "start": 55681.84, + "end": 55682.74, + "probability": 0.8146 + }, + { + "start": 55683.4, + "end": 55684.28, + "probability": 0.9796 + }, + { + "start": 55685.28, + "end": 55686.14, + "probability": 0.9803 + }, + { + "start": 55687.54, + "end": 55688.68, + "probability": 0.7264 + }, + { + "start": 55690.12, + "end": 55695.5, + "probability": 0.9645 + }, + { + "start": 55695.92, + "end": 55696.88, + "probability": 0.8596 + }, + { + "start": 55697.26, + "end": 55698.42, + "probability": 0.9888 + }, + { + "start": 55699.3, + "end": 55702.74, + "probability": 0.8728 + }, + { + "start": 55703.5, + "end": 55705.12, + "probability": 0.9138 + }, + { + "start": 55705.68, + "end": 55707.58, + "probability": 0.8285 + }, + { + "start": 55707.86, + "end": 55709.18, + "probability": 0.8068 + }, + { + "start": 55709.64, + "end": 55711.06, + "probability": 0.6267 + }, + { + "start": 55711.92, + "end": 55713.44, + "probability": 0.9672 + }, + { + "start": 55714.5, + "end": 55715.94, + "probability": 0.9596 + }, + { + "start": 55716.74, + "end": 55717.9, + "probability": 0.7794 + }, + { + "start": 55718.56, + "end": 55724.32, + "probability": 0.9947 + }, + { + "start": 55724.9, + "end": 55728.5, + "probability": 0.9995 + }, + { + "start": 55729.7, + "end": 55731.48, + "probability": 0.9876 + }, + { + "start": 55732.1, + "end": 55735.54, + "probability": 0.8851 + }, + { + "start": 55737.18, + "end": 55740.88, + "probability": 0.6177 + }, + { + "start": 55740.98, + "end": 55746.94, + "probability": 0.9916 + }, + { + "start": 55748.28, + "end": 55751.23, + "probability": 0.7379 + }, + { + "start": 55753.38, + "end": 55755.46, + "probability": 0.9404 + }, + { + "start": 55756.82, + "end": 55758.78, + "probability": 0.9805 + }, + { + "start": 55759.32, + "end": 55761.0, + "probability": 0.9287 + }, + { + "start": 55761.58, + "end": 55764.64, + "probability": 0.9955 + }, + { + "start": 55765.38, + "end": 55766.66, + "probability": 0.7302 + }, + { + "start": 55767.2, + "end": 55772.2, + "probability": 0.9922 + }, + { + "start": 55772.3, + "end": 55773.36, + "probability": 0.9938 + }, + { + "start": 55773.82, + "end": 55774.56, + "probability": 0.9957 + }, + { + "start": 55774.96, + "end": 55775.68, + "probability": 0.933 + }, + { + "start": 55776.02, + "end": 55777.08, + "probability": 0.7884 + }, + { + "start": 55777.18, + "end": 55778.12, + "probability": 0.983 + }, + { + "start": 55778.44, + "end": 55779.2, + "probability": 0.9247 + }, + { + "start": 55779.28, + "end": 55779.84, + "probability": 0.8879 + }, + { + "start": 55779.9, + "end": 55780.56, + "probability": 0.9592 + }, + { + "start": 55780.76, + "end": 55782.04, + "probability": 0.1659 + }, + { + "start": 55782.76, + "end": 55783.06, + "probability": 0.8467 + }, + { + "start": 55783.18, + "end": 55783.74, + "probability": 0.9574 + }, + { + "start": 55783.78, + "end": 55784.76, + "probability": 0.915 + }, + { + "start": 55785.06, + "end": 55785.96, + "probability": 0.8473 + }, + { + "start": 55786.1, + "end": 55790.2, + "probability": 0.9922 + }, + { + "start": 55790.5, + "end": 55793.24, + "probability": 0.4884 + }, + { + "start": 55793.84, + "end": 55795.94, + "probability": 0.8896 + }, + { + "start": 55796.66, + "end": 55800.32, + "probability": 0.9905 + }, + { + "start": 55800.86, + "end": 55802.28, + "probability": 0.8393 + }, + { + "start": 55802.76, + "end": 55805.36, + "probability": 0.9875 + }, + { + "start": 55805.82, + "end": 55806.96, + "probability": 0.9907 + }, + { + "start": 55810.32, + "end": 55810.96, + "probability": 0.6734 + }, + { + "start": 55810.98, + "end": 55811.92, + "probability": 0.75 + }, + { + "start": 55812.44, + "end": 55814.21, + "probability": 0.1451 + }, + { + "start": 55817.58, + "end": 55819.94, + "probability": 0.2575 + }, + { + "start": 55842.0, + "end": 55843.58, + "probability": 0.3714 + }, + { + "start": 55844.92, + "end": 55848.42, + "probability": 0.663 + }, + { + "start": 55849.84, + "end": 55852.82, + "probability": 0.9548 + }, + { + "start": 55854.48, + "end": 55857.58, + "probability": 0.7361 + }, + { + "start": 55858.36, + "end": 55859.6, + "probability": 0.6153 + }, + { + "start": 55860.86, + "end": 55861.82, + "probability": 0.9367 + }, + { + "start": 55864.1, + "end": 55865.54, + "probability": 0.7781 + }, + { + "start": 55867.22, + "end": 55873.7, + "probability": 0.9925 + }, + { + "start": 55874.32, + "end": 55875.08, + "probability": 0.727 + }, + { + "start": 55875.62, + "end": 55876.86, + "probability": 0.5802 + }, + { + "start": 55876.96, + "end": 55880.92, + "probability": 0.9844 + }, + { + "start": 55882.64, + "end": 55885.82, + "probability": 0.9946 + }, + { + "start": 55886.0, + "end": 55887.48, + "probability": 0.9893 + }, + { + "start": 55888.56, + "end": 55892.88, + "probability": 0.9902 + }, + { + "start": 55893.94, + "end": 55898.4, + "probability": 0.9971 + }, + { + "start": 55899.54, + "end": 55902.42, + "probability": 0.9526 + }, + { + "start": 55903.68, + "end": 55904.74, + "probability": 0.8534 + }, + { + "start": 55906.22, + "end": 55910.16, + "probability": 0.9897 + }, + { + "start": 55910.24, + "end": 55915.02, + "probability": 0.9938 + }, + { + "start": 55916.02, + "end": 55916.86, + "probability": 0.5362 + }, + { + "start": 55917.6, + "end": 55919.18, + "probability": 0.8982 + }, + { + "start": 55920.4, + "end": 55923.68, + "probability": 0.9625 + }, + { + "start": 55924.36, + "end": 55926.58, + "probability": 0.8632 + }, + { + "start": 55928.66, + "end": 55934.0, + "probability": 0.9895 + }, + { + "start": 55934.06, + "end": 55935.24, + "probability": 0.9412 + }, + { + "start": 55935.36, + "end": 55937.02, + "probability": 0.8472 + }, + { + "start": 55939.14, + "end": 55940.96, + "probability": 0.9844 + }, + { + "start": 55942.8, + "end": 55947.12, + "probability": 0.9857 + }, + { + "start": 55948.72, + "end": 55954.26, + "probability": 0.9931 + }, + { + "start": 55955.26, + "end": 55955.72, + "probability": 0.784 + }, + { + "start": 55957.38, + "end": 55968.68, + "probability": 0.9866 + }, + { + "start": 55968.9, + "end": 55969.86, + "probability": 0.9768 + }, + { + "start": 55971.86, + "end": 55973.46, + "probability": 0.9568 + }, + { + "start": 55974.52, + "end": 55977.32, + "probability": 0.9883 + }, + { + "start": 55977.46, + "end": 55982.04, + "probability": 0.9976 + }, + { + "start": 55983.34, + "end": 55984.7, + "probability": 0.6804 + }, + { + "start": 55984.84, + "end": 55986.14, + "probability": 0.9973 + }, + { + "start": 55986.76, + "end": 55989.66, + "probability": 0.9818 + }, + { + "start": 55991.28, + "end": 55993.4, + "probability": 0.999 + }, + { + "start": 55995.46, + "end": 56000.04, + "probability": 0.9724 + }, + { + "start": 56000.6, + "end": 56002.14, + "probability": 0.9765 + }, + { + "start": 56003.62, + "end": 56007.42, + "probability": 0.9933 + }, + { + "start": 56008.62, + "end": 56009.52, + "probability": 0.5674 + }, + { + "start": 56011.16, + "end": 56013.08, + "probability": 0.9912 + }, + { + "start": 56014.1, + "end": 56014.98, + "probability": 0.5692 + }, + { + "start": 56015.16, + "end": 56016.92, + "probability": 0.9788 + }, + { + "start": 56017.62, + "end": 56021.12, + "probability": 0.9969 + }, + { + "start": 56021.76, + "end": 56027.5, + "probability": 0.9957 + }, + { + "start": 56028.88, + "end": 56033.28, + "probability": 0.992 + }, + { + "start": 56033.82, + "end": 56038.9, + "probability": 0.8938 + }, + { + "start": 56039.34, + "end": 56039.56, + "probability": 0.5677 + }, + { + "start": 56041.08, + "end": 56041.08, + "probability": 0.2558 + }, + { + "start": 56041.08, + "end": 56042.1, + "probability": 0.6028 + }, + { + "start": 56060.08, + "end": 56060.54, + "probability": 0.4769 + }, + { + "start": 56060.58, + "end": 56062.18, + "probability": 0.6545 + }, + { + "start": 56062.78, + "end": 56064.08, + "probability": 0.9742 + }, + { + "start": 56064.16, + "end": 56065.48, + "probability": 0.8466 + }, + { + "start": 56065.52, + "end": 56066.78, + "probability": 0.9839 + }, + { + "start": 56067.94, + "end": 56071.12, + "probability": 0.9672 + }, + { + "start": 56072.16, + "end": 56077.74, + "probability": 0.9968 + }, + { + "start": 56077.74, + "end": 56084.18, + "probability": 0.998 + }, + { + "start": 56084.9, + "end": 56086.7, + "probability": 0.6694 + }, + { + "start": 56087.02, + "end": 56088.14, + "probability": 0.9297 + }, + { + "start": 56088.66, + "end": 56089.56, + "probability": 0.2022 + }, + { + "start": 56090.18, + "end": 56093.96, + "probability": 0.9953 + }, + { + "start": 56094.58, + "end": 56097.9, + "probability": 0.9578 + }, + { + "start": 56098.4, + "end": 56102.3, + "probability": 0.998 + }, + { + "start": 56102.72, + "end": 56106.98, + "probability": 0.9995 + }, + { + "start": 56106.98, + "end": 56110.24, + "probability": 0.9961 + }, + { + "start": 56110.68, + "end": 56113.92, + "probability": 0.5794 + }, + { + "start": 56114.6, + "end": 56115.48, + "probability": 0.9109 + }, + { + "start": 56116.0, + "end": 56119.1, + "probability": 0.9795 + }, + { + "start": 56119.2, + "end": 56120.02, + "probability": 0.7265 + }, + { + "start": 56120.64, + "end": 56122.5, + "probability": 0.9166 + }, + { + "start": 56123.08, + "end": 56124.0, + "probability": 0.5349 + }, + { + "start": 56124.38, + "end": 56127.22, + "probability": 0.9857 + }, + { + "start": 56127.64, + "end": 56128.64, + "probability": 0.3077 + }, + { + "start": 56129.7, + "end": 56131.42, + "probability": 0.9377 + }, + { + "start": 56131.56, + "end": 56132.56, + "probability": 0.9186 + }, + { + "start": 56132.66, + "end": 56136.76, + "probability": 0.9947 + }, + { + "start": 56137.58, + "end": 56140.58, + "probability": 0.9353 + }, + { + "start": 56140.68, + "end": 56141.14, + "probability": 0.7911 + }, + { + "start": 56141.18, + "end": 56141.44, + "probability": 0.4401 + }, + { + "start": 56141.9, + "end": 56145.34, + "probability": 0.9813 + }, + { + "start": 56145.48, + "end": 56150.54, + "probability": 0.9989 + }, + { + "start": 56151.18, + "end": 56152.7, + "probability": 0.9906 + }, + { + "start": 56153.04, + "end": 56155.52, + "probability": 0.9981 + }, + { + "start": 56155.96, + "end": 56157.2, + "probability": 0.9795 + }, + { + "start": 56157.32, + "end": 56158.76, + "probability": 0.9962 + }, + { + "start": 56159.32, + "end": 56160.02, + "probability": 0.9208 + }, + { + "start": 56160.16, + "end": 56162.8, + "probability": 0.9578 + }, + { + "start": 56163.48, + "end": 56165.96, + "probability": 0.7544 + }, + { + "start": 56166.54, + "end": 56168.44, + "probability": 0.9978 + }, + { + "start": 56168.68, + "end": 56174.82, + "probability": 0.9963 + }, + { + "start": 56175.14, + "end": 56177.14, + "probability": 0.9899 + }, + { + "start": 56177.44, + "end": 56178.08, + "probability": 0.768 + }, + { + "start": 56178.48, + "end": 56181.9, + "probability": 0.9908 + }, + { + "start": 56182.26, + "end": 56186.66, + "probability": 0.9849 + }, + { + "start": 56187.0, + "end": 56188.82, + "probability": 0.9922 + }, + { + "start": 56189.66, + "end": 56191.27, + "probability": 0.8799 + }, + { + "start": 56191.8, + "end": 56192.94, + "probability": 0.9772 + }, + { + "start": 56193.26, + "end": 56194.14, + "probability": 0.8369 + }, + { + "start": 56194.5, + "end": 56195.56, + "probability": 0.9536 + }, + { + "start": 56195.86, + "end": 56197.24, + "probability": 0.9769 + }, + { + "start": 56197.34, + "end": 56198.9, + "probability": 0.9914 + }, + { + "start": 56199.0, + "end": 56200.36, + "probability": 0.96 + }, + { + "start": 56200.88, + "end": 56201.86, + "probability": 0.6416 + }, + { + "start": 56202.4, + "end": 56205.06, + "probability": 0.9961 + }, + { + "start": 56205.1, + "end": 56209.94, + "probability": 0.9885 + }, + { + "start": 56210.92, + "end": 56212.42, + "probability": 0.8275 + }, + { + "start": 56212.92, + "end": 56213.92, + "probability": 0.9971 + }, + { + "start": 56214.14, + "end": 56216.1, + "probability": 0.7673 + }, + { + "start": 56216.44, + "end": 56218.86, + "probability": 0.9255 + }, + { + "start": 56219.18, + "end": 56220.48, + "probability": 0.7347 + }, + { + "start": 56220.58, + "end": 56224.16, + "probability": 0.9893 + }, + { + "start": 56224.16, + "end": 56228.0, + "probability": 0.9995 + }, + { + "start": 56228.16, + "end": 56230.16, + "probability": 0.9162 + }, + { + "start": 56231.0, + "end": 56236.54, + "probability": 0.998 + }, + { + "start": 56236.64, + "end": 56237.48, + "probability": 0.9341 + }, + { + "start": 56237.88, + "end": 56243.7, + "probability": 0.9953 + }, + { + "start": 56243.7, + "end": 56247.22, + "probability": 0.9453 + }, + { + "start": 56247.32, + "end": 56248.56, + "probability": 0.6972 + }, + { + "start": 56249.1, + "end": 56251.62, + "probability": 0.5166 + }, + { + "start": 56251.78, + "end": 56252.36, + "probability": 0.7856 + }, + { + "start": 56252.98, + "end": 56253.28, + "probability": 0.5131 + }, + { + "start": 56253.28, + "end": 56253.49, + "probability": 0.5388 + }, + { + "start": 56267.74, + "end": 56268.94, + "probability": 0.5989 + }, + { + "start": 56269.08, + "end": 56270.38, + "probability": 0.7236 + }, + { + "start": 56270.5, + "end": 56273.66, + "probability": 0.7895 + }, + { + "start": 56273.76, + "end": 56274.74, + "probability": 0.3293 + }, + { + "start": 56275.42, + "end": 56278.9, + "probability": 0.9797 + }, + { + "start": 56280.66, + "end": 56283.38, + "probability": 0.9865 + }, + { + "start": 56283.42, + "end": 56285.32, + "probability": 0.9066 + }, + { + "start": 56286.16, + "end": 56291.05, + "probability": 0.8325 + }, + { + "start": 56293.5, + "end": 56296.78, + "probability": 0.7954 + }, + { + "start": 56296.92, + "end": 56298.42, + "probability": 0.989 + }, + { + "start": 56299.94, + "end": 56301.63, + "probability": 0.9753 + }, + { + "start": 56302.12, + "end": 56303.12, + "probability": 0.9902 + }, + { + "start": 56304.0, + "end": 56304.94, + "probability": 0.9915 + }, + { + "start": 56305.84, + "end": 56310.3, + "probability": 0.9416 + }, + { + "start": 56310.9, + "end": 56312.82, + "probability": 0.9902 + }, + { + "start": 56313.02, + "end": 56315.1, + "probability": 0.9915 + }, + { + "start": 56315.1, + "end": 56317.63, + "probability": 0.9703 + }, + { + "start": 56317.84, + "end": 56318.64, + "probability": 0.9622 + }, + { + "start": 56318.72, + "end": 56320.3, + "probability": 0.5784 + }, + { + "start": 56320.42, + "end": 56320.94, + "probability": 0.5762 + }, + { + "start": 56321.04, + "end": 56323.64, + "probability": 0.9897 + }, + { + "start": 56323.64, + "end": 56325.12, + "probability": 0.9734 + }, + { + "start": 56327.1, + "end": 56331.38, + "probability": 0.9982 + }, + { + "start": 56331.6, + "end": 56332.66, + "probability": 0.9966 + }, + { + "start": 56332.8, + "end": 56334.08, + "probability": 0.9945 + }, + { + "start": 56335.5, + "end": 56337.92, + "probability": 0.9924 + }, + { + "start": 56338.48, + "end": 56339.2, + "probability": 0.2874 + }, + { + "start": 56339.46, + "end": 56340.9, + "probability": 0.9625 + }, + { + "start": 56342.12, + "end": 56342.8, + "probability": 0.8416 + }, + { + "start": 56343.42, + "end": 56345.6, + "probability": 0.9526 + }, + { + "start": 56345.64, + "end": 56346.96, + "probability": 0.7373 + }, + { + "start": 56347.2, + "end": 56349.78, + "probability": 0.918 + }, + { + "start": 56350.04, + "end": 56353.04, + "probability": 0.9922 + }, + { + "start": 56353.5, + "end": 56356.08, + "probability": 0.2907 + }, + { + "start": 56357.28, + "end": 56357.54, + "probability": 0.0555 + }, + { + "start": 56357.58, + "end": 56361.4, + "probability": 0.6459 + }, + { + "start": 56362.18, + "end": 56364.96, + "probability": 0.7347 + }, + { + "start": 56365.27, + "end": 56369.58, + "probability": 0.9163 + }, + { + "start": 56370.24, + "end": 56372.76, + "probability": 0.7166 + }, + { + "start": 56373.94, + "end": 56378.28, + "probability": 0.6553 + }, + { + "start": 56378.74, + "end": 56380.34, + "probability": 0.6968 + }, + { + "start": 56380.42, + "end": 56381.18, + "probability": 0.794 + }, + { + "start": 56381.92, + "end": 56384.92, + "probability": 0.9707 + }, + { + "start": 56384.92, + "end": 56389.7, + "probability": 0.9915 + }, + { + "start": 56393.7, + "end": 56393.8, + "probability": 0.0518 + }, + { + "start": 56393.8, + "end": 56393.8, + "probability": 0.0611 + }, + { + "start": 56393.8, + "end": 56393.8, + "probability": 0.2938 + }, + { + "start": 56393.8, + "end": 56394.82, + "probability": 0.1595 + }, + { + "start": 56395.14, + "end": 56398.14, + "probability": 0.3992 + }, + { + "start": 56398.92, + "end": 56402.08, + "probability": 0.9945 + }, + { + "start": 56402.28, + "end": 56404.18, + "probability": 0.9978 + }, + { + "start": 56404.46, + "end": 56406.16, + "probability": 0.9573 + }, + { + "start": 56406.86, + "end": 56410.38, + "probability": 0.8626 + }, + { + "start": 56410.9, + "end": 56411.9, + "probability": 0.9961 + }, + { + "start": 56414.71, + "end": 56417.59, + "probability": 0.9527 + }, + { + "start": 56417.85, + "end": 56420.14, + "probability": 0.7658 + }, + { + "start": 56420.93, + "end": 56421.51, + "probability": 0.9814 + }, + { + "start": 56422.91, + "end": 56426.38, + "probability": 0.9343 + }, + { + "start": 56426.81, + "end": 56429.15, + "probability": 0.781 + }, + { + "start": 56429.51, + "end": 56430.82, + "probability": 0.6875 + }, + { + "start": 56431.43, + "end": 56433.93, + "probability": 0.9911 + }, + { + "start": 56434.19, + "end": 56437.53, + "probability": 0.9351 + }, + { + "start": 56438.15, + "end": 56440.71, + "probability": 0.9957 + }, + { + "start": 56441.27, + "end": 56444.05, + "probability": 0.9967 + }, + { + "start": 56444.41, + "end": 56448.19, + "probability": 0.9092 + }, + { + "start": 56448.97, + "end": 56449.18, + "probability": 0.6665 + }, + { + "start": 56449.99, + "end": 56452.79, + "probability": 0.9515 + }, + { + "start": 56453.55, + "end": 56457.39, + "probability": 0.7945 + }, + { + "start": 56457.85, + "end": 56458.93, + "probability": 0.8581 + }, + { + "start": 56459.05, + "end": 56460.65, + "probability": 0.9507 + }, + { + "start": 56461.13, + "end": 56462.87, + "probability": 0.9941 + }, + { + "start": 56463.93, + "end": 56465.6, + "probability": 0.7705 + }, + { + "start": 56466.35, + "end": 56470.25, + "probability": 0.585 + }, + { + "start": 56470.31, + "end": 56471.15, + "probability": 0.7707 + }, + { + "start": 56471.53, + "end": 56473.29, + "probability": 0.9333 + }, + { + "start": 56473.51, + "end": 56473.85, + "probability": 0.5915 + }, + { + "start": 56473.87, + "end": 56477.09, + "probability": 0.7987 + }, + { + "start": 56477.41, + "end": 56478.17, + "probability": 0.8038 + }, + { + "start": 56479.53, + "end": 56480.79, + "probability": 0.5512 + }, + { + "start": 56481.67, + "end": 56484.07, + "probability": 0.6947 + }, + { + "start": 56484.45, + "end": 56485.85, + "probability": 0.8067 + }, + { + "start": 56486.31, + "end": 56489.05, + "probability": 0.707 + }, + { + "start": 56489.57, + "end": 56492.23, + "probability": 0.8728 + }, + { + "start": 56492.29, + "end": 56493.63, + "probability": 0.7424 + }, + { + "start": 56512.97, + "end": 56515.19, + "probability": 0.5207 + }, + { + "start": 56515.97, + "end": 56517.67, + "probability": 0.5124 + }, + { + "start": 56517.89, + "end": 56520.41, + "probability": 0.8909 + }, + { + "start": 56522.05, + "end": 56523.59, + "probability": 0.9644 + }, + { + "start": 56524.11, + "end": 56524.97, + "probability": 0.9971 + }, + { + "start": 56525.57, + "end": 56526.71, + "probability": 0.8179 + }, + { + "start": 56530.41, + "end": 56532.25, + "probability": 0.4445 + }, + { + "start": 56532.93, + "end": 56536.33, + "probability": 0.7181 + }, + { + "start": 56536.5, + "end": 56538.55, + "probability": 0.9106 + }, + { + "start": 56538.85, + "end": 56539.31, + "probability": 0.678 + }, + { + "start": 56542.39, + "end": 56542.59, + "probability": 0.3311 + }, + { + "start": 56542.69, + "end": 56543.75, + "probability": 0.8798 + }, + { + "start": 56544.19, + "end": 56544.89, + "probability": 0.6886 + }, + { + "start": 56545.11, + "end": 56547.51, + "probability": 0.6796 + }, + { + "start": 56547.87, + "end": 56547.87, + "probability": 0.7531 + }, + { + "start": 56547.87, + "end": 56550.83, + "probability": 0.7299 + }, + { + "start": 56551.59, + "end": 56553.15, + "probability": 0.8148 + }, + { + "start": 56554.95, + "end": 56557.39, + "probability": 0.9974 + }, + { + "start": 56558.41, + "end": 56559.19, + "probability": 0.8315 + }, + { + "start": 56560.67, + "end": 56561.45, + "probability": 0.9502 + }, + { + "start": 56562.07, + "end": 56565.09, + "probability": 0.9707 + }, + { + "start": 56565.77, + "end": 56567.07, + "probability": 0.9108 + }, + { + "start": 56569.01, + "end": 56571.27, + "probability": 0.9855 + }, + { + "start": 56572.81, + "end": 56574.83, + "probability": 0.9514 + }, + { + "start": 56576.07, + "end": 56582.55, + "probability": 0.9637 + }, + { + "start": 56582.55, + "end": 56586.51, + "probability": 0.8883 + }, + { + "start": 56587.17, + "end": 56590.85, + "probability": 0.9951 + }, + { + "start": 56591.93, + "end": 56592.95, + "probability": 0.6377 + }, + { + "start": 56594.35, + "end": 56594.73, + "probability": 0.8815 + }, + { + "start": 56594.93, + "end": 56598.51, + "probability": 0.9648 + }, + { + "start": 56600.11, + "end": 56601.27, + "probability": 0.9686 + }, + { + "start": 56602.25, + "end": 56604.53, + "probability": 0.8301 + }, + { + "start": 56605.45, + "end": 56606.7, + "probability": 0.875 + }, + { + "start": 56610.21, + "end": 56611.23, + "probability": 0.9265 + }, + { + "start": 56611.79, + "end": 56612.6, + "probability": 0.8727 + }, + { + "start": 56613.51, + "end": 56615.41, + "probability": 0.9807 + }, + { + "start": 56616.19, + "end": 56619.65, + "probability": 0.9647 + }, + { + "start": 56620.03, + "end": 56621.68, + "probability": 0.9954 + }, + { + "start": 56623.61, + "end": 56624.61, + "probability": 0.6328 + }, + { + "start": 56625.21, + "end": 56625.91, + "probability": 0.5286 + }, + { + "start": 56626.17, + "end": 56629.03, + "probability": 0.9555 + }, + { + "start": 56629.37, + "end": 56629.89, + "probability": 0.6577 + }, + { + "start": 56630.27, + "end": 56630.73, + "probability": 0.636 + }, + { + "start": 56631.35, + "end": 56632.45, + "probability": 0.9605 + }, + { + "start": 56633.01, + "end": 56634.97, + "probability": 0.9883 + }, + { + "start": 56635.89, + "end": 56638.99, + "probability": 0.7454 + }, + { + "start": 56640.13, + "end": 56642.25, + "probability": 0.9822 + }, + { + "start": 56643.11, + "end": 56644.23, + "probability": 0.9884 + }, + { + "start": 56645.47, + "end": 56648.09, + "probability": 0.8834 + }, + { + "start": 56648.95, + "end": 56652.61, + "probability": 0.9924 + }, + { + "start": 56654.05, + "end": 56656.97, + "probability": 0.822 + }, + { + "start": 56657.55, + "end": 56659.61, + "probability": 0.9698 + }, + { + "start": 56662.35, + "end": 56662.75, + "probability": 0.9021 + }, + { + "start": 56662.83, + "end": 56665.43, + "probability": 0.8244 + }, + { + "start": 56665.61, + "end": 56666.29, + "probability": 0.5453 + }, + { + "start": 56666.35, + "end": 56666.97, + "probability": 0.6348 + }, + { + "start": 56667.03, + "end": 56667.21, + "probability": 0.8129 + }, + { + "start": 56667.45, + "end": 56668.81, + "probability": 0.9384 + }, + { + "start": 56669.03, + "end": 56670.25, + "probability": 0.5897 + }, + { + "start": 56670.67, + "end": 56671.27, + "probability": 0.9775 + }, + { + "start": 56671.95, + "end": 56673.21, + "probability": 0.9781 + }, + { + "start": 56673.67, + "end": 56675.69, + "probability": 0.7114 + }, + { + "start": 56676.77, + "end": 56681.09, + "probability": 0.963 + }, + { + "start": 56681.65, + "end": 56685.59, + "probability": 0.9604 + }, + { + "start": 56686.25, + "end": 56687.39, + "probability": 0.9379 + }, + { + "start": 56687.65, + "end": 56692.27, + "probability": 0.9807 + }, + { + "start": 56692.99, + "end": 56695.81, + "probability": 0.7637 + }, + { + "start": 56696.55, + "end": 56699.41, + "probability": 0.7572 + }, + { + "start": 56700.13, + "end": 56702.35, + "probability": 0.9229 + }, + { + "start": 56702.75, + "end": 56703.01, + "probability": 0.9126 + }, + { + "start": 56703.09, + "end": 56704.93, + "probability": 0.9934 + }, + { + "start": 56705.39, + "end": 56707.39, + "probability": 0.9907 + }, + { + "start": 56707.75, + "end": 56708.77, + "probability": 0.8219 + }, + { + "start": 56709.43, + "end": 56714.51, + "probability": 0.9797 + }, + { + "start": 56715.29, + "end": 56717.83, + "probability": 0.7504 + }, + { + "start": 56718.05, + "end": 56722.63, + "probability": 0.9442 + }, + { + "start": 56722.89, + "end": 56724.17, + "probability": 0.9871 + }, + { + "start": 56724.29, + "end": 56725.49, + "probability": 0.9849 + }, + { + "start": 56725.67, + "end": 56726.15, + "probability": 0.87 + }, + { + "start": 56726.65, + "end": 56728.29, + "probability": 0.9868 + }, + { + "start": 56728.33, + "end": 56731.73, + "probability": 0.8705 + }, + { + "start": 56732.41, + "end": 56738.65, + "probability": 0.7924 + }, + { + "start": 56739.43, + "end": 56740.97, + "probability": 0.8183 + }, + { + "start": 56741.57, + "end": 56746.13, + "probability": 0.9571 + }, + { + "start": 56746.81, + "end": 56748.07, + "probability": 0.502 + }, + { + "start": 56748.41, + "end": 56750.95, + "probability": 0.7347 + }, + { + "start": 56751.85, + "end": 56752.79, + "probability": 0.4121 + }, + { + "start": 56753.27, + "end": 56754.83, + "probability": 0.9666 + }, + { + "start": 56755.21, + "end": 56756.39, + "probability": 0.7573 + }, + { + "start": 56756.45, + "end": 56758.47, + "probability": 0.9727 + }, + { + "start": 56758.73, + "end": 56759.07, + "probability": 0.6559 + }, + { + "start": 56759.27, + "end": 56759.27, + "probability": 0.6015 + }, + { + "start": 56759.31, + "end": 56761.61, + "probability": 0.7445 + }, + { + "start": 56775.49, + "end": 56776.45, + "probability": 0.6018 + }, + { + "start": 56776.59, + "end": 56777.97, + "probability": 0.568 + }, + { + "start": 56779.21, + "end": 56784.11, + "probability": 0.7798 + }, + { + "start": 56786.29, + "end": 56790.75, + "probability": 0.9888 + }, + { + "start": 56793.31, + "end": 56794.19, + "probability": 0.7131 + }, + { + "start": 56794.33, + "end": 56794.83, + "probability": 0.4779 + }, + { + "start": 56795.01, + "end": 56795.71, + "probability": 0.8158 + }, + { + "start": 56795.77, + "end": 56799.93, + "probability": 0.8926 + }, + { + "start": 56800.19, + "end": 56801.65, + "probability": 0.7649 + }, + { + "start": 56801.73, + "end": 56802.51, + "probability": 0.6418 + }, + { + "start": 56805.11, + "end": 56806.09, + "probability": 0.9456 + }, + { + "start": 56807.79, + "end": 56809.03, + "probability": 0.8481 + }, + { + "start": 56809.11, + "end": 56810.25, + "probability": 0.8738 + }, + { + "start": 56810.37, + "end": 56813.66, + "probability": 0.9993 + }, + { + "start": 56816.33, + "end": 56817.81, + "probability": 0.9938 + }, + { + "start": 56818.85, + "end": 56823.59, + "probability": 0.998 + }, + { + "start": 56824.55, + "end": 56826.27, + "probability": 0.9962 + }, + { + "start": 56827.13, + "end": 56831.38, + "probability": 0.5719 + }, + { + "start": 56833.21, + "end": 56836.19, + "probability": 0.6613 + }, + { + "start": 56836.89, + "end": 56838.27, + "probability": 0.9561 + }, + { + "start": 56839.05, + "end": 56842.05, + "probability": 0.926 + }, + { + "start": 56843.67, + "end": 56845.25, + "probability": 0.9723 + }, + { + "start": 56846.17, + "end": 56847.63, + "probability": 0.9556 + }, + { + "start": 56848.69, + "end": 56852.49, + "probability": 0.9224 + }, + { + "start": 56852.89, + "end": 56856.76, + "probability": 0.999 + }, + { + "start": 56856.99, + "end": 56860.07, + "probability": 0.9163 + }, + { + "start": 56860.71, + "end": 56865.09, + "probability": 0.9978 + }, + { + "start": 56865.61, + "end": 56866.87, + "probability": 0.9917 + }, + { + "start": 56867.75, + "end": 56871.65, + "probability": 0.9958 + }, + { + "start": 56872.13, + "end": 56875.53, + "probability": 0.9907 + }, + { + "start": 56877.33, + "end": 56884.01, + "probability": 0.9969 + }, + { + "start": 56884.37, + "end": 56888.57, + "probability": 0.9905 + }, + { + "start": 56889.25, + "end": 56891.95, + "probability": 0.9897 + }, + { + "start": 56892.65, + "end": 56894.31, + "probability": 0.5495 + }, + { + "start": 56894.85, + "end": 56896.09, + "probability": 0.94 + }, + { + "start": 56896.79, + "end": 56898.03, + "probability": 0.999 + }, + { + "start": 56898.27, + "end": 56900.53, + "probability": 0.9858 + }, + { + "start": 56900.75, + "end": 56903.17, + "probability": 0.8521 + }, + { + "start": 56904.23, + "end": 56909.23, + "probability": 0.9651 + }, + { + "start": 56909.27, + "end": 56910.17, + "probability": 0.7503 + }, + { + "start": 56910.31, + "end": 56910.71, + "probability": 0.6822 + }, + { + "start": 56910.75, + "end": 56914.23, + "probability": 0.9358 + }, + { + "start": 56915.45, + "end": 56920.63, + "probability": 0.7829 + }, + { + "start": 56922.71, + "end": 56927.25, + "probability": 0.9943 + }, + { + "start": 56927.87, + "end": 56930.39, + "probability": 0.9949 + }, + { + "start": 56931.33, + "end": 56932.53, + "probability": 0.9089 + }, + { + "start": 56932.97, + "end": 56934.23, + "probability": 0.989 + }, + { + "start": 56934.73, + "end": 56936.47, + "probability": 0.8726 + }, + { + "start": 56937.29, + "end": 56941.29, + "probability": 0.9172 + }, + { + "start": 56941.29, + "end": 56944.21, + "probability": 0.9985 + }, + { + "start": 56945.93, + "end": 56947.65, + "probability": 0.9941 + }, + { + "start": 56947.81, + "end": 56948.67, + "probability": 0.7741 + }, + { + "start": 56948.81, + "end": 56950.51, + "probability": 0.9978 + }, + { + "start": 56951.35, + "end": 56953.35, + "probability": 0.9974 + }, + { + "start": 56954.35, + "end": 56955.49, + "probability": 0.9358 + }, + { + "start": 56955.65, + "end": 56959.05, + "probability": 0.9341 + }, + { + "start": 56959.05, + "end": 56959.05, + "probability": 0.7124 + }, + { + "start": 56959.15, + "end": 56962.21, + "probability": 0.9093 + }, + { + "start": 56962.87, + "end": 56964.13, + "probability": 0.9377 + }, + { + "start": 56964.85, + "end": 56968.23, + "probability": 0.9429 + }, + { + "start": 56968.65, + "end": 56969.09, + "probability": 0.744 + }, + { + "start": 56969.61, + "end": 56971.43, + "probability": 0.683 + }, + { + "start": 56983.21, + "end": 56984.57, + "probability": 0.6323 + }, + { + "start": 56984.59, + "end": 56985.59, + "probability": 0.6709 + }, + { + "start": 56986.53, + "end": 56987.69, + "probability": 0.7321 + }, + { + "start": 56988.33, + "end": 56992.1, + "probability": 0.9276 + }, + { + "start": 56993.15, + "end": 56995.63, + "probability": 0.7512 + }, + { + "start": 56997.27, + "end": 56998.31, + "probability": 0.998 + }, + { + "start": 56998.37, + "end": 56998.67, + "probability": 0.8369 + }, + { + "start": 56998.89, + "end": 56999.57, + "probability": 0.8565 + }, + { + "start": 56999.67, + "end": 57000.67, + "probability": 0.9995 + }, + { + "start": 57001.93, + "end": 57002.65, + "probability": 0.7675 + }, + { + "start": 57003.75, + "end": 57005.67, + "probability": 0.948 + }, + { + "start": 57006.75, + "end": 57010.17, + "probability": 0.9746 + }, + { + "start": 57012.47, + "end": 57017.07, + "probability": 0.9993 + }, + { + "start": 57018.45, + "end": 57022.53, + "probability": 0.9886 + }, + { + "start": 57023.23, + "end": 57024.45, + "probability": 0.8293 + }, + { + "start": 57026.87, + "end": 57030.83, + "probability": 0.988 + }, + { + "start": 57032.61, + "end": 57034.61, + "probability": 0.9315 + }, + { + "start": 57034.71, + "end": 57035.07, + "probability": 0.9367 + }, + { + "start": 57035.15, + "end": 57036.17, + "probability": 0.5186 + }, + { + "start": 57037.51, + "end": 57039.63, + "probability": 0.9911 + }, + { + "start": 57041.17, + "end": 57042.23, + "probability": 0.9481 + }, + { + "start": 57042.97, + "end": 57045.77, + "probability": 0.9648 + }, + { + "start": 57046.93, + "end": 57051.25, + "probability": 0.9882 + }, + { + "start": 57051.31, + "end": 57051.97, + "probability": 0.9243 + }, + { + "start": 57054.27, + "end": 57057.53, + "probability": 0.7813 + }, + { + "start": 57058.97, + "end": 57061.87, + "probability": 0.8364 + }, + { + "start": 57062.81, + "end": 57064.43, + "probability": 0.9974 + }, + { + "start": 57065.09, + "end": 57067.85, + "probability": 0.873 + }, + { + "start": 57068.41, + "end": 57070.17, + "probability": 0.9993 + }, + { + "start": 57071.27, + "end": 57074.17, + "probability": 0.9967 + }, + { + "start": 57075.35, + "end": 57075.93, + "probability": 0.9655 + }, + { + "start": 57077.33, + "end": 57079.21, + "probability": 0.9968 + }, + { + "start": 57079.39, + "end": 57080.49, + "probability": 0.8576 + }, + { + "start": 57080.59, + "end": 57083.49, + "probability": 0.9193 + }, + { + "start": 57084.49, + "end": 57085.49, + "probability": 0.7766 + }, + { + "start": 57086.47, + "end": 57087.01, + "probability": 0.4951 + }, + { + "start": 57087.91, + "end": 57088.29, + "probability": 0.9366 + }, + { + "start": 57090.57, + "end": 57092.41, + "probability": 0.992 + }, + { + "start": 57093.21, + "end": 57094.03, + "probability": 0.4854 + }, + { + "start": 57094.57, + "end": 57096.33, + "probability": 0.597 + }, + { + "start": 57096.71, + "end": 57097.29, + "probability": 0.6299 + }, + { + "start": 57097.73, + "end": 57098.45, + "probability": 0.978 + }, + { + "start": 57100.05, + "end": 57101.85, + "probability": 0.9907 + }, + { + "start": 57103.15, + "end": 57106.37, + "probability": 0.5253 + }, + { + "start": 57106.53, + "end": 57111.11, + "probability": 0.8318 + }, + { + "start": 57111.89, + "end": 57115.35, + "probability": 0.9955 + }, + { + "start": 57115.87, + "end": 57116.33, + "probability": 0.995 + }, + { + "start": 57117.17, + "end": 57122.39, + "probability": 0.9943 + }, + { + "start": 57123.63, + "end": 57127.21, + "probability": 0.9618 + }, + { + "start": 57127.71, + "end": 57129.15, + "probability": 0.7926 + }, + { + "start": 57129.69, + "end": 57132.93, + "probability": 0.9971 + }, + { + "start": 57133.65, + "end": 57135.19, + "probability": 0.9979 + }, + { + "start": 57135.79, + "end": 57136.91, + "probability": 0.8076 + }, + { + "start": 57137.61, + "end": 57140.17, + "probability": 0.9185 + }, + { + "start": 57140.63, + "end": 57141.09, + "probability": 0.4867 + }, + { + "start": 57141.13, + "end": 57142.75, + "probability": 0.9486 + }, + { + "start": 57143.11, + "end": 57144.57, + "probability": 0.9858 + }, + { + "start": 57145.33, + "end": 57148.91, + "probability": 0.9955 + }, + { + "start": 57149.83, + "end": 57150.99, + "probability": 0.41 + }, + { + "start": 57151.09, + "end": 57152.09, + "probability": 0.6201 + }, + { + "start": 57152.21, + "end": 57153.33, + "probability": 0.8934 + }, + { + "start": 57153.83, + "end": 57156.05, + "probability": 0.9928 + }, + { + "start": 57156.37, + "end": 57157.65, + "probability": 0.6157 + }, + { + "start": 57158.05, + "end": 57159.07, + "probability": 0.9769 + }, + { + "start": 57159.97, + "end": 57160.75, + "probability": 0.8123 + }, + { + "start": 57160.99, + "end": 57163.31, + "probability": 0.918 + }, + { + "start": 57165.85, + "end": 57167.95, + "probability": 0.8277 + }, + { + "start": 57168.47, + "end": 57171.72, + "probability": 0.9875 + }, + { + "start": 57171.95, + "end": 57175.09, + "probability": 0.9771 + }, + { + "start": 57175.17, + "end": 57175.47, + "probability": 0.8159 + }, + { + "start": 57176.59, + "end": 57177.15, + "probability": 0.325 + }, + { + "start": 57177.17, + "end": 57178.63, + "probability": 0.9583 + }, + { + "start": 57180.31, + "end": 57181.33, + "probability": 0.6313 + }, + { + "start": 57195.17, + "end": 57197.31, + "probability": 0.6299 + }, + { + "start": 57198.01, + "end": 57198.35, + "probability": 0.3303 + }, + { + "start": 57198.55, + "end": 57199.63, + "probability": 0.5264 + }, + { + "start": 57202.07, + "end": 57206.05, + "probability": 0.8401 + }, + { + "start": 57207.61, + "end": 57209.65, + "probability": 0.9366 + }, + { + "start": 57211.89, + "end": 57214.13, + "probability": 0.756 + }, + { + "start": 57216.93, + "end": 57217.97, + "probability": 0.9234 + }, + { + "start": 57219.79, + "end": 57221.27, + "probability": 0.8127 + }, + { + "start": 57222.43, + "end": 57223.17, + "probability": 0.6815 + }, + { + "start": 57223.95, + "end": 57224.99, + "probability": 0.9197 + }, + { + "start": 57227.23, + "end": 57228.25, + "probability": 0.9829 + }, + { + "start": 57230.41, + "end": 57231.75, + "probability": 0.9225 + }, + { + "start": 57233.23, + "end": 57234.47, + "probability": 0.9441 + }, + { + "start": 57237.77, + "end": 57242.55, + "probability": 0.9519 + }, + { + "start": 57244.33, + "end": 57245.93, + "probability": 0.9939 + }, + { + "start": 57246.23, + "end": 57247.19, + "probability": 0.8868 + }, + { + "start": 57248.19, + "end": 57249.57, + "probability": 0.9846 + }, + { + "start": 57251.11, + "end": 57253.33, + "probability": 0.9958 + }, + { + "start": 57254.81, + "end": 57256.33, + "probability": 0.9223 + }, + { + "start": 57260.33, + "end": 57263.05, + "probability": 0.6834 + }, + { + "start": 57265.23, + "end": 57267.27, + "probability": 0.9338 + }, + { + "start": 57267.45, + "end": 57268.47, + "probability": 0.6424 + }, + { + "start": 57269.05, + "end": 57270.59, + "probability": 0.1304 + }, + { + "start": 57270.95, + "end": 57272.25, + "probability": 0.8346 + }, + { + "start": 57272.85, + "end": 57273.44, + "probability": 0.9866 + }, + { + "start": 57276.09, + "end": 57277.17, + "probability": 0.9949 + }, + { + "start": 57279.47, + "end": 57281.65, + "probability": 0.9973 + }, + { + "start": 57282.85, + "end": 57286.35, + "probability": 0.9837 + }, + { + "start": 57287.87, + "end": 57289.89, + "probability": 0.9631 + }, + { + "start": 57291.39, + "end": 57295.53, + "probability": 0.9976 + }, + { + "start": 57295.95, + "end": 57297.21, + "probability": 0.9781 + }, + { + "start": 57297.33, + "end": 57298.11, + "probability": 0.5204 + }, + { + "start": 57299.67, + "end": 57306.79, + "probability": 0.7795 + }, + { + "start": 57308.91, + "end": 57312.23, + "probability": 0.9985 + }, + { + "start": 57313.31, + "end": 57314.95, + "probability": 0.7661 + }, + { + "start": 57316.11, + "end": 57323.47, + "probability": 0.9517 + }, + { + "start": 57325.55, + "end": 57327.47, + "probability": 0.9875 + }, + { + "start": 57328.71, + "end": 57329.55, + "probability": 0.8593 + }, + { + "start": 57330.67, + "end": 57332.49, + "probability": 0.8879 + }, + { + "start": 57333.51, + "end": 57334.93, + "probability": 0.9906 + }, + { + "start": 57335.03, + "end": 57335.75, + "probability": 0.9826 + }, + { + "start": 57335.81, + "end": 57336.91, + "probability": 0.9831 + }, + { + "start": 57336.93, + "end": 57338.11, + "probability": 0.9331 + }, + { + "start": 57339.55, + "end": 57344.59, + "probability": 0.9972 + }, + { + "start": 57346.07, + "end": 57346.75, + "probability": 0.9572 + }, + { + "start": 57346.83, + "end": 57347.75, + "probability": 0.9835 + }, + { + "start": 57347.85, + "end": 57348.75, + "probability": 0.9948 + }, + { + "start": 57348.85, + "end": 57349.91, + "probability": 0.8868 + }, + { + "start": 57350.89, + "end": 57354.06, + "probability": 0.9907 + }, + { + "start": 57355.59, + "end": 57356.95, + "probability": 0.8932 + }, + { + "start": 57357.77, + "end": 57358.57, + "probability": 0.9765 + }, + { + "start": 57360.73, + "end": 57362.07, + "probability": 0.9174 + }, + { + "start": 57362.91, + "end": 57365.51, + "probability": 0.8931 + }, + { + "start": 57366.41, + "end": 57369.83, + "probability": 0.9199 + }, + { + "start": 57369.97, + "end": 57371.03, + "probability": 0.4995 + }, + { + "start": 57373.15, + "end": 57375.87, + "probability": 0.9951 + }, + { + "start": 57376.53, + "end": 57378.35, + "probability": 0.8287 + }, + { + "start": 57379.83, + "end": 57380.57, + "probability": 0.6293 + }, + { + "start": 57381.59, + "end": 57383.89, + "probability": 0.9018 + }, + { + "start": 57384.81, + "end": 57386.79, + "probability": 0.84 + }, + { + "start": 57386.91, + "end": 57386.91, + "probability": 0.1979 + }, + { + "start": 57386.91, + "end": 57387.39, + "probability": 0.3441 + }, + { + "start": 57388.25, + "end": 57390.29, + "probability": 0.6949 + }, + { + "start": 57391.01, + "end": 57393.77, + "probability": 0.8518 + }, + { + "start": 57394.59, + "end": 57398.03, + "probability": 0.9645 + }, + { + "start": 57398.11, + "end": 57398.39, + "probability": 0.8931 + }, + { + "start": 57398.95, + "end": 57399.25, + "probability": 0.3291 + }, + { + "start": 57399.27, + "end": 57401.49, + "probability": 0.6825 + }, + { + "start": 57401.89, + "end": 57403.17, + "probability": 0.7629 + }, + { + "start": 57423.61, + "end": 57424.53, + "probability": 0.5567 + }, + { + "start": 57425.77, + "end": 57430.37, + "probability": 0.7236 + }, + { + "start": 57431.69, + "end": 57431.93, + "probability": 0.8987 + }, + { + "start": 57432.49, + "end": 57433.59, + "probability": 0.8414 + }, + { + "start": 57433.89, + "end": 57434.37, + "probability": 0.4038 + }, + { + "start": 57434.39, + "end": 57437.81, + "probability": 0.8899 + }, + { + "start": 57438.23, + "end": 57440.39, + "probability": 0.867 + }, + { + "start": 57441.03, + "end": 57444.25, + "probability": 0.988 + }, + { + "start": 57444.71, + "end": 57449.49, + "probability": 0.8216 + }, + { + "start": 57450.21, + "end": 57456.05, + "probability": 0.8917 + }, + { + "start": 57456.25, + "end": 57462.45, + "probability": 0.9945 + }, + { + "start": 57463.93, + "end": 57466.57, + "probability": 0.8406 + }, + { + "start": 57466.57, + "end": 57471.89, + "probability": 0.984 + }, + { + "start": 57473.15, + "end": 57476.17, + "probability": 0.8518 + }, + { + "start": 57476.87, + "end": 57480.13, + "probability": 0.957 + }, + { + "start": 57481.19, + "end": 57483.83, + "probability": 0.5453 + }, + { + "start": 57484.41, + "end": 57486.45, + "probability": 0.8805 + }, + { + "start": 57486.97, + "end": 57489.35, + "probability": 0.6257 + }, + { + "start": 57490.45, + "end": 57491.43, + "probability": 0.1044 + }, + { + "start": 57491.99, + "end": 57495.21, + "probability": 0.7695 + }, + { + "start": 57496.27, + "end": 57499.85, + "probability": 0.5156 + }, + { + "start": 57501.27, + "end": 57501.37, + "probability": 0.1823 + }, + { + "start": 57501.37, + "end": 57503.81, + "probability": 0.9802 + }, + { + "start": 57504.05, + "end": 57504.65, + "probability": 0.2714 + }, + { + "start": 57504.77, + "end": 57505.29, + "probability": 0.9646 + }, + { + "start": 57505.85, + "end": 57509.95, + "probability": 0.9888 + }, + { + "start": 57510.65, + "end": 57513.37, + "probability": 0.7195 + }, + { + "start": 57514.31, + "end": 57515.17, + "probability": 0.245 + }, + { + "start": 57515.25, + "end": 57515.39, + "probability": 0.0616 + }, + { + "start": 57515.39, + "end": 57517.57, + "probability": 0.832 + }, + { + "start": 57517.79, + "end": 57521.77, + "probability": 0.9642 + }, + { + "start": 57522.07, + "end": 57523.23, + "probability": 0.318 + }, + { + "start": 57523.91, + "end": 57526.88, + "probability": 0.5459 + }, + { + "start": 57531.98, + "end": 57533.89, + "probability": 0.1628 + }, + { + "start": 57533.89, + "end": 57533.89, + "probability": 0.2879 + }, + { + "start": 57533.89, + "end": 57535.77, + "probability": 0.4986 + }, + { + "start": 57536.25, + "end": 57537.02, + "probability": 0.0775 + }, + { + "start": 57538.21, + "end": 57540.15, + "probability": 0.6948 + }, + { + "start": 57541.05, + "end": 57542.95, + "probability": 0.9568 + }, + { + "start": 57543.07, + "end": 57546.87, + "probability": 0.9953 + }, + { + "start": 57547.93, + "end": 57550.59, + "probability": 0.6575 + }, + { + "start": 57550.75, + "end": 57552.61, + "probability": 0.9457 + }, + { + "start": 57552.79, + "end": 57553.51, + "probability": 0.4933 + }, + { + "start": 57553.75, + "end": 57553.97, + "probability": 0.8393 + }, + { + "start": 57554.77, + "end": 57558.49, + "probability": 0.984 + }, + { + "start": 57559.77, + "end": 57563.37, + "probability": 0.9958 + }, + { + "start": 57563.71, + "end": 57569.17, + "probability": 0.9973 + }, + { + "start": 57569.31, + "end": 57572.37, + "probability": 0.7938 + }, + { + "start": 57573.23, + "end": 57575.85, + "probability": 0.9969 + }, + { + "start": 57576.37, + "end": 57581.11, + "probability": 0.8134 + }, + { + "start": 57581.15, + "end": 57581.67, + "probability": 0.2104 + }, + { + "start": 57581.77, + "end": 57583.49, + "probability": 0.8416 + }, + { + "start": 57583.99, + "end": 57584.79, + "probability": 0.6761 + }, + { + "start": 57584.97, + "end": 57587.81, + "probability": 0.9278 + }, + { + "start": 57588.29, + "end": 57592.75, + "probability": 0.7221 + }, + { + "start": 57592.97, + "end": 57598.05, + "probability": 0.938 + }, + { + "start": 57598.37, + "end": 57601.91, + "probability": 0.9485 + }, + { + "start": 57601.91, + "end": 57604.79, + "probability": 0.944 + }, + { + "start": 57605.47, + "end": 57609.41, + "probability": 0.8269 + }, + { + "start": 57609.47, + "end": 57611.83, + "probability": 0.5404 + }, + { + "start": 57611.97, + "end": 57611.99, + "probability": 0.2342 + }, + { + "start": 57611.99, + "end": 57615.69, + "probability": 0.6922 + }, + { + "start": 57615.79, + "end": 57615.99, + "probability": 0.4812 + }, + { + "start": 57615.99, + "end": 57620.37, + "probability": 0.5533 + }, + { + "start": 57621.07, + "end": 57630.53, + "probability": 0.8978 + }, + { + "start": 57630.79, + "end": 57632.25, + "probability": 0.3718 + }, + { + "start": 57632.47, + "end": 57633.29, + "probability": 0.6525 + }, + { + "start": 57633.41, + "end": 57634.25, + "probability": 0.9422 + }, + { + "start": 57634.99, + "end": 57636.17, + "probability": 0.9016 + }, + { + "start": 57637.03, + "end": 57637.95, + "probability": 0.7803 + }, + { + "start": 57638.19, + "end": 57639.21, + "probability": 0.9769 + }, + { + "start": 57650.41, + "end": 57650.71, + "probability": 0.6726 + }, + { + "start": 57650.81, + "end": 57651.89, + "probability": 0.9417 + }, + { + "start": 57652.03, + "end": 57653.53, + "probability": 0.9871 + }, + { + "start": 57655.39, + "end": 57656.51, + "probability": 0.988 + }, + { + "start": 57656.63, + "end": 57657.79, + "probability": 0.9485 + }, + { + "start": 57657.95, + "end": 57663.89, + "probability": 0.9435 + }, + { + "start": 57664.59, + "end": 57665.71, + "probability": 0.7135 + }, + { + "start": 57666.25, + "end": 57669.35, + "probability": 0.9689 + }, + { + "start": 57670.17, + "end": 57671.05, + "probability": 0.828 + }, + { + "start": 57671.73, + "end": 57675.09, + "probability": 0.9451 + }, + { + "start": 57675.09, + "end": 57678.33, + "probability": 0.983 + }, + { + "start": 57679.33, + "end": 57680.91, + "probability": 0.9907 + }, + { + "start": 57681.91, + "end": 57684.21, + "probability": 0.991 + }, + { + "start": 57684.37, + "end": 57686.42, + "probability": 0.9932 + }, + { + "start": 57687.35, + "end": 57691.05, + "probability": 0.9987 + }, + { + "start": 57692.05, + "end": 57695.45, + "probability": 0.9983 + }, + { + "start": 57695.49, + "end": 57700.11, + "probability": 0.9991 + }, + { + "start": 57701.05, + "end": 57703.87, + "probability": 0.9963 + }, + { + "start": 57704.55, + "end": 57708.47, + "probability": 0.9954 + }, + { + "start": 57709.13, + "end": 57713.91, + "probability": 0.9601 + }, + { + "start": 57715.27, + "end": 57719.21, + "probability": 0.9968 + }, + { + "start": 57719.99, + "end": 57723.79, + "probability": 0.7765 + }, + { + "start": 57724.53, + "end": 57728.69, + "probability": 0.8928 + }, + { + "start": 57729.69, + "end": 57733.45, + "probability": 0.9824 + }, + { + "start": 57733.45, + "end": 57737.11, + "probability": 0.9962 + }, + { + "start": 57737.63, + "end": 57738.59, + "probability": 0.5732 + }, + { + "start": 57739.01, + "end": 57743.91, + "probability": 0.9961 + }, + { + "start": 57744.95, + "end": 57749.19, + "probability": 0.9471 + }, + { + "start": 57749.29, + "end": 57751.57, + "probability": 0.9832 + }, + { + "start": 57751.69, + "end": 57754.79, + "probability": 0.9937 + }, + { + "start": 57755.73, + "end": 57758.19, + "probability": 0.8711 + }, + { + "start": 57758.25, + "end": 57762.91, + "probability": 0.9981 + }, + { + "start": 57762.97, + "end": 57767.37, + "probability": 0.9908 + }, + { + "start": 57768.01, + "end": 57772.97, + "probability": 0.9927 + }, + { + "start": 57773.55, + "end": 57779.55, + "probability": 0.9895 + }, + { + "start": 57780.29, + "end": 57784.15, + "probability": 0.998 + }, + { + "start": 57784.45, + "end": 57789.03, + "probability": 0.893 + }, + { + "start": 57789.59, + "end": 57793.79, + "probability": 0.9983 + }, + { + "start": 57794.31, + "end": 57796.77, + "probability": 0.9985 + }, + { + "start": 57797.47, + "end": 57801.29, + "probability": 0.9651 + }, + { + "start": 57801.87, + "end": 57802.65, + "probability": 0.8649 + }, + { + "start": 57804.33, + "end": 57805.31, + "probability": 0.6295 + }, + { + "start": 57806.05, + "end": 57806.79, + "probability": 0.8415 + }, + { + "start": 57807.17, + "end": 57810.07, + "probability": 0.9946 + }, + { + "start": 57810.79, + "end": 57811.63, + "probability": 0.8914 + }, + { + "start": 57812.37, + "end": 57817.31, + "probability": 0.9952 + }, + { + "start": 57818.07, + "end": 57818.95, + "probability": 0.321 + }, + { + "start": 57819.33, + "end": 57820.99, + "probability": 0.6862 + }, + { + "start": 57822.81, + "end": 57825.77, + "probability": 0.9082 + }, + { + "start": 57826.65, + "end": 57829.77, + "probability": 0.9935 + }, + { + "start": 57829.83, + "end": 57833.49, + "probability": 0.9989 + }, + { + "start": 57834.23, + "end": 57837.05, + "probability": 0.998 + }, + { + "start": 57837.05, + "end": 57837.65, + "probability": 0.7456 + }, + { + "start": 57837.97, + "end": 57840.23, + "probability": 0.9826 + }, + { + "start": 57840.55, + "end": 57841.67, + "probability": 0.9938 + }, + { + "start": 57843.41, + "end": 57844.53, + "probability": 0.7441 + }, + { + "start": 57859.85, + "end": 57862.63, + "probability": 0.7402 + }, + { + "start": 57863.65, + "end": 57866.37, + "probability": 0.7703 + }, + { + "start": 57866.43, + "end": 57870.05, + "probability": 0.985 + }, + { + "start": 57871.55, + "end": 57872.33, + "probability": 0.9871 + }, + { + "start": 57872.93, + "end": 57881.01, + "probability": 0.995 + }, + { + "start": 57881.59, + "end": 57882.75, + "probability": 0.5255 + }, + { + "start": 57883.47, + "end": 57884.39, + "probability": 0.8417 + }, + { + "start": 57884.91, + "end": 57886.03, + "probability": 0.7211 + }, + { + "start": 57886.47, + "end": 57887.59, + "probability": 0.9832 + }, + { + "start": 57887.99, + "end": 57889.33, + "probability": 0.9631 + }, + { + "start": 57889.79, + "end": 57890.75, + "probability": 0.9871 + }, + { + "start": 57891.29, + "end": 57893.89, + "probability": 0.9938 + }, + { + "start": 57894.41, + "end": 57896.95, + "probability": 0.9891 + }, + { + "start": 57897.55, + "end": 57898.57, + "probability": 0.6919 + }, + { + "start": 57899.17, + "end": 57900.19, + "probability": 0.8032 + }, + { + "start": 57900.83, + "end": 57903.67, + "probability": 0.9053 + }, + { + "start": 57904.27, + "end": 57909.57, + "probability": 0.9911 + }, + { + "start": 57910.51, + "end": 57916.25, + "probability": 0.9869 + }, + { + "start": 57916.41, + "end": 57920.05, + "probability": 0.9928 + }, + { + "start": 57920.65, + "end": 57921.95, + "probability": 0.8723 + }, + { + "start": 57922.55, + "end": 57925.05, + "probability": 0.9806 + }, + { + "start": 57925.79, + "end": 57927.21, + "probability": 0.9709 + }, + { + "start": 57927.65, + "end": 57928.87, + "probability": 0.9653 + }, + { + "start": 57929.21, + "end": 57930.77, + "probability": 0.9917 + }, + { + "start": 57930.93, + "end": 57931.29, + "probability": 0.8851 + }, + { + "start": 57931.63, + "end": 57931.93, + "probability": 0.7013 + }, + { + "start": 57932.05, + "end": 57932.47, + "probability": 0.9609 + }, + { + "start": 57932.75, + "end": 57933.17, + "probability": 0.9792 + }, + { + "start": 57933.29, + "end": 57933.49, + "probability": 0.9658 + }, + { + "start": 57933.61, + "end": 57933.99, + "probability": 0.9888 + }, + { + "start": 57934.11, + "end": 57934.43, + "probability": 0.9928 + }, + { + "start": 57934.55, + "end": 57934.89, + "probability": 0.9957 + }, + { + "start": 57934.99, + "end": 57935.39, + "probability": 0.9551 + }, + { + "start": 57935.43, + "end": 57935.85, + "probability": 0.9918 + }, + { + "start": 57935.95, + "end": 57936.29, + "probability": 0.9408 + }, + { + "start": 57936.67, + "end": 57936.93, + "probability": 0.9791 + }, + { + "start": 57936.97, + "end": 57937.43, + "probability": 0.8783 + }, + { + "start": 57937.51, + "end": 57937.73, + "probability": 0.8103 + }, + { + "start": 57937.83, + "end": 57938.31, + "probability": 0.889 + }, + { + "start": 57938.67, + "end": 57939.35, + "probability": 0.9706 + }, + { + "start": 57939.75, + "end": 57942.55, + "probability": 0.9857 + }, + { + "start": 57943.21, + "end": 57945.41, + "probability": 0.7968 + }, + { + "start": 57946.33, + "end": 57947.23, + "probability": 0.9545 + }, + { + "start": 57947.89, + "end": 57949.05, + "probability": 0.9438 + }, + { + "start": 57949.93, + "end": 57952.57, + "probability": 0.9971 + }, + { + "start": 57952.99, + "end": 57957.81, + "probability": 0.997 + }, + { + "start": 57957.87, + "end": 57958.73, + "probability": 0.8842 + }, + { + "start": 57959.31, + "end": 57961.55, + "probability": 0.9642 + }, + { + "start": 57962.07, + "end": 57963.39, + "probability": 0.9181 + }, + { + "start": 57964.21, + "end": 57965.63, + "probability": 0.8388 + }, + { + "start": 57966.61, + "end": 57969.65, + "probability": 0.9924 + }, + { + "start": 57970.37, + "end": 57972.91, + "probability": 0.9971 + }, + { + "start": 57973.61, + "end": 57975.41, + "probability": 0.9832 + }, + { + "start": 57976.41, + "end": 57976.81, + "probability": 0.8263 + }, + { + "start": 57977.33, + "end": 57981.35, + "probability": 0.9883 + }, + { + "start": 57982.15, + "end": 57983.71, + "probability": 0.9523 + }, + { + "start": 57984.47, + "end": 57984.81, + "probability": 0.9722 + }, + { + "start": 57985.33, + "end": 57986.67, + "probability": 0.987 + }, + { + "start": 57987.23, + "end": 57991.33, + "probability": 0.9953 + }, + { + "start": 57991.33, + "end": 57995.25, + "probability": 0.989 + }, + { + "start": 57996.55, + "end": 57999.49, + "probability": 0.8593 + }, + { + "start": 57999.87, + "end": 58000.59, + "probability": 0.8036 + }, + { + "start": 58000.91, + "end": 58001.77, + "probability": 0.8112 + }, + { + "start": 58002.25, + "end": 58006.01, + "probability": 0.9069 + }, + { + "start": 58006.51, + "end": 58011.57, + "probability": 0.9813 + }, + { + "start": 58012.55, + "end": 58015.67, + "probability": 0.9763 + }, + { + "start": 58016.23, + "end": 58020.81, + "probability": 0.9648 + }, + { + "start": 58021.45, + "end": 58023.81, + "probability": 0.9184 + }, + { + "start": 58024.29, + "end": 58025.42, + "probability": 0.9574 + }, + { + "start": 58025.77, + "end": 58030.87, + "probability": 0.9966 + }, + { + "start": 58031.35, + "end": 58033.13, + "probability": 0.5453 + }, + { + "start": 58033.55, + "end": 58035.83, + "probability": 0.9613 + }, + { + "start": 58036.35, + "end": 58037.95, + "probability": 0.9806 + }, + { + "start": 58038.43, + "end": 58039.79, + "probability": 0.9824 + }, + { + "start": 58040.85, + "end": 58041.29, + "probability": 0.3854 + }, + { + "start": 58041.33, + "end": 58042.27, + "probability": 0.8111 + }, + { + "start": 58042.35, + "end": 58043.01, + "probability": 0.711 + }, + { + "start": 58043.09, + "end": 58043.63, + "probability": 0.9658 + }, + { + "start": 58044.07, + "end": 58044.49, + "probability": 0.259 + }, + { + "start": 58044.91, + "end": 58045.55, + "probability": 0.8418 + }, + { + "start": 58048.67, + "end": 58049.01, + "probability": 0.9365 + }, + { + "start": 58066.97, + "end": 58070.58, + "probability": 0.5567 + }, + { + "start": 58073.49, + "end": 58077.97, + "probability": 0.9922 + }, + { + "start": 58078.01, + "end": 58081.35, + "probability": 0.9288 + }, + { + "start": 58082.15, + "end": 58083.25, + "probability": 0.9908 + }, + { + "start": 58083.73, + "end": 58084.91, + "probability": 0.9623 + }, + { + "start": 58085.23, + "end": 58088.13, + "probability": 0.9907 + }, + { + "start": 58088.57, + "end": 58089.55, + "probability": 0.7795 + }, + { + "start": 58090.03, + "end": 58090.41, + "probability": 0.9694 + }, + { + "start": 58091.27, + "end": 58092.03, + "probability": 0.9842 + }, + { + "start": 58092.33, + "end": 58093.07, + "probability": 0.8425 + }, + { + "start": 58093.65, + "end": 58094.25, + "probability": 0.9749 + }, + { + "start": 58095.05, + "end": 58100.13, + "probability": 0.9909 + }, + { + "start": 58100.65, + "end": 58101.29, + "probability": 0.6233 + }, + { + "start": 58102.07, + "end": 58106.39, + "probability": 0.9854 + }, + { + "start": 58106.47, + "end": 58110.19, + "probability": 0.9813 + }, + { + "start": 58111.07, + "end": 58114.63, + "probability": 0.9923 + }, + { + "start": 58115.97, + "end": 58117.01, + "probability": 0.6462 + }, + { + "start": 58117.29, + "end": 58117.85, + "probability": 0.8138 + }, + { + "start": 58118.71, + "end": 58120.61, + "probability": 0.9491 + }, + { + "start": 58122.11, + "end": 58124.97, + "probability": 0.9869 + }, + { + "start": 58126.01, + "end": 58129.81, + "probability": 0.7598 + }, + { + "start": 58130.71, + "end": 58134.45, + "probability": 0.9315 + }, + { + "start": 58135.19, + "end": 58135.65, + "probability": 0.7411 + }, + { + "start": 58135.73, + "end": 58136.65, + "probability": 0.8193 + }, + { + "start": 58137.47, + "end": 58139.17, + "probability": 0.894 + }, + { + "start": 58139.67, + "end": 58140.77, + "probability": 0.9875 + }, + { + "start": 58141.23, + "end": 58143.47, + "probability": 0.9966 + }, + { + "start": 58144.05, + "end": 58145.09, + "probability": 0.9995 + }, + { + "start": 58146.23, + "end": 58148.49, + "probability": 0.974 + }, + { + "start": 58149.35, + "end": 58156.43, + "probability": 0.9987 + }, + { + "start": 58156.55, + "end": 58156.99, + "probability": 0.8487 + }, + { + "start": 58157.69, + "end": 58161.41, + "probability": 0.9382 + }, + { + "start": 58162.35, + "end": 58163.41, + "probability": 0.8372 + }, + { + "start": 58163.99, + "end": 58164.91, + "probability": 0.9114 + }, + { + "start": 58165.47, + "end": 58166.93, + "probability": 0.9135 + }, + { + "start": 58167.57, + "end": 58168.03, + "probability": 0.5304 + }, + { + "start": 58168.55, + "end": 58170.69, + "probability": 0.7608 + }, + { + "start": 58171.33, + "end": 58175.29, + "probability": 0.9766 + }, + { + "start": 58177.91, + "end": 58178.85, + "probability": 0.5638 + }, + { + "start": 58178.85, + "end": 58181.61, + "probability": 0.5735 + }, + { + "start": 58182.35, + "end": 58185.19, + "probability": 0.9369 + }, + { + "start": 58186.05, + "end": 58193.71, + "probability": 0.9754 + }, + { + "start": 58194.19, + "end": 58197.45, + "probability": 0.9928 + }, + { + "start": 58197.67, + "end": 58199.69, + "probability": 0.7707 + }, + { + "start": 58199.79, + "end": 58202.59, + "probability": 0.7807 + }, + { + "start": 58202.69, + "end": 58203.3, + "probability": 0.7776 + }, + { + "start": 58204.21, + "end": 58204.51, + "probability": 0.5297 + }, + { + "start": 58205.51, + "end": 58209.01, + "probability": 0.9917 + }, + { + "start": 58210.55, + "end": 58211.71, + "probability": 0.71 + }, + { + "start": 58212.39, + "end": 58213.91, + "probability": 0.8824 + }, + { + "start": 58214.05, + "end": 58218.49, + "probability": 0.9967 + }, + { + "start": 58219.89, + "end": 58224.01, + "probability": 0.9716 + }, + { + "start": 58224.51, + "end": 58226.05, + "probability": 0.5228 + }, + { + "start": 58226.59, + "end": 58227.41, + "probability": 0.856 + }, + { + "start": 58228.21, + "end": 58229.43, + "probability": 0.9954 + }, + { + "start": 58230.47, + "end": 58231.69, + "probability": 0.7417 + }, + { + "start": 58232.49, + "end": 58235.57, + "probability": 0.882 + }, + { + "start": 58235.73, + "end": 58236.47, + "probability": 0.7835 + }, + { + "start": 58237.05, + "end": 58238.83, + "probability": 0.8524 + }, + { + "start": 58239.27, + "end": 58240.21, + "probability": 0.9932 + }, + { + "start": 58240.67, + "end": 58242.57, + "probability": 0.8662 + }, + { + "start": 58243.69, + "end": 58246.09, + "probability": 0.9981 + }, + { + "start": 58246.47, + "end": 58248.79, + "probability": 0.9865 + }, + { + "start": 58248.87, + "end": 58250.55, + "probability": 0.9572 + }, + { + "start": 58251.01, + "end": 58252.69, + "probability": 0.9917 + }, + { + "start": 58252.91, + "end": 58253.27, + "probability": 0.5045 + }, + { + "start": 58273.95, + "end": 58275.11, + "probability": 0.4452 + }, + { + "start": 58275.11, + "end": 58275.11, + "probability": 0.1254 + }, + { + "start": 58275.11, + "end": 58275.11, + "probability": 0.4665 + }, + { + "start": 58275.11, + "end": 58278.39, + "probability": 0.6502 + }, + { + "start": 58279.73, + "end": 58283.77, + "probability": 0.9774 + }, + { + "start": 58283.95, + "end": 58286.79, + "probability": 0.509 + }, + { + "start": 58287.25, + "end": 58288.11, + "probability": 0.7243 + }, + { + "start": 58289.43, + "end": 58292.17, + "probability": 0.9812 + }, + { + "start": 58292.75, + "end": 58296.01, + "probability": 0.8289 + }, + { + "start": 58296.01, + "end": 58299.71, + "probability": 0.9982 + }, + { + "start": 58301.27, + "end": 58302.78, + "probability": 0.8936 + }, + { + "start": 58303.45, + "end": 58305.42, + "probability": 0.8674 + }, + { + "start": 58306.11, + "end": 58307.02, + "probability": 0.9937 + }, + { + "start": 58307.91, + "end": 58309.91, + "probability": 0.9937 + }, + { + "start": 58310.17, + "end": 58313.33, + "probability": 0.9985 + }, + { + "start": 58313.41, + "end": 58316.27, + "probability": 0.9598 + }, + { + "start": 58316.51, + "end": 58317.69, + "probability": 0.994 + }, + { + "start": 58318.15, + "end": 58323.77, + "probability": 0.9964 + }, + { + "start": 58323.77, + "end": 58327.77, + "probability": 0.9919 + }, + { + "start": 58329.73, + "end": 58332.99, + "probability": 0.9878 + }, + { + "start": 58333.11, + "end": 58333.48, + "probability": 0.9644 + }, + { + "start": 58334.11, + "end": 58334.49, + "probability": 0.5591 + }, + { + "start": 58335.15, + "end": 58340.63, + "probability": 0.9851 + }, + { + "start": 58341.33, + "end": 58343.19, + "probability": 0.9347 + }, + { + "start": 58343.37, + "end": 58346.9, + "probability": 0.9985 + }, + { + "start": 58347.67, + "end": 58348.77, + "probability": 0.8659 + }, + { + "start": 58349.05, + "end": 58350.31, + "probability": 0.6843 + }, + { + "start": 58350.79, + "end": 58353.43, + "probability": 0.9976 + }, + { + "start": 58353.53, + "end": 58354.43, + "probability": 0.8596 + }, + { + "start": 58355.09, + "end": 58358.97, + "probability": 0.8796 + }, + { + "start": 58359.83, + "end": 58361.93, + "probability": 0.9972 + }, + { + "start": 58362.17, + "end": 58362.45, + "probability": 0.6753 + }, + { + "start": 58362.53, + "end": 58363.77, + "probability": 0.946 + }, + { + "start": 58364.63, + "end": 58367.47, + "probability": 0.9738 + }, + { + "start": 58367.55, + "end": 58368.14, + "probability": 0.8092 + }, + { + "start": 58371.45, + "end": 58371.71, + "probability": 0.0231 + }, + { + "start": 58371.71, + "end": 58374.53, + "probability": 0.9272 + }, + { + "start": 58374.61, + "end": 58375.47, + "probability": 0.7629 + }, + { + "start": 58376.25, + "end": 58380.47, + "probability": 0.9135 + }, + { + "start": 58380.55, + "end": 58381.07, + "probability": 0.6117 + }, + { + "start": 58381.21, + "end": 58381.97, + "probability": 0.9188 + }, + { + "start": 58382.01, + "end": 58382.68, + "probability": 0.861 + }, + { + "start": 58383.93, + "end": 58386.79, + "probability": 0.9719 + }, + { + "start": 58386.81, + "end": 58390.47, + "probability": 0.9976 + }, + { + "start": 58390.55, + "end": 58391.75, + "probability": 0.6876 + }, + { + "start": 58392.59, + "end": 58394.27, + "probability": 0.9128 + }, + { + "start": 58395.73, + "end": 58399.31, + "probability": 0.8956 + }, + { + "start": 58400.59, + "end": 58402.13, + "probability": 0.9629 + }, + { + "start": 58403.59, + "end": 58407.59, + "probability": 0.8287 + }, + { + "start": 58408.47, + "end": 58409.43, + "probability": 0.5018 + }, + { + "start": 58409.49, + "end": 58410.39, + "probability": 0.8955 + }, + { + "start": 58410.45, + "end": 58414.05, + "probability": 0.9946 + }, + { + "start": 58414.05, + "end": 58416.35, + "probability": 0.9959 + }, + { + "start": 58418.27, + "end": 58418.27, + "probability": 0.0317 + }, + { + "start": 58418.27, + "end": 58419.15, + "probability": 0.6532 + }, + { + "start": 58419.35, + "end": 58420.33, + "probability": 0.9946 + }, + { + "start": 58420.37, + "end": 58421.13, + "probability": 0.9932 + }, + { + "start": 58421.39, + "end": 58422.41, + "probability": 0.9935 + }, + { + "start": 58423.65, + "end": 58426.45, + "probability": 0.9173 + }, + { + "start": 58428.65, + "end": 58433.05, + "probability": 0.9808 + }, + { + "start": 58434.01, + "end": 58437.39, + "probability": 0.9997 + }, + { + "start": 58438.99, + "end": 58440.27, + "probability": 0.9995 + }, + { + "start": 58440.35, + "end": 58443.31, + "probability": 0.9885 + }, + { + "start": 58443.43, + "end": 58447.43, + "probability": 0.9838 + }, + { + "start": 58448.19, + "end": 58449.95, + "probability": 0.9299 + }, + { + "start": 58450.51, + "end": 58452.11, + "probability": 0.9971 + }, + { + "start": 58452.37, + "end": 58453.43, + "probability": 0.993 + }, + { + "start": 58454.05, + "end": 58458.41, + "probability": 0.9138 + }, + { + "start": 58458.65, + "end": 58459.65, + "probability": 0.4682 + }, + { + "start": 58459.65, + "end": 58460.07, + "probability": 0.9807 + }, + { + "start": 58461.3, + "end": 58464.09, + "probability": 0.9993 + }, + { + "start": 58464.89, + "end": 58468.99, + "probability": 0.9882 + }, + { + "start": 58469.19, + "end": 58469.37, + "probability": 0.4719 + }, + { + "start": 58469.47, + "end": 58470.21, + "probability": 0.7036 + }, + { + "start": 58470.79, + "end": 58473.81, + "probability": 0.9808 + }, + { + "start": 58473.91, + "end": 58474.43, + "probability": 0.9119 + }, + { + "start": 58474.93, + "end": 58475.21, + "probability": 0.365 + }, + { + "start": 58475.27, + "end": 58477.09, + "probability": 0.7657 + }, + { + "start": 58477.71, + "end": 58478.99, + "probability": 0.7054 + }, + { + "start": 58504.79, + "end": 58507.43, + "probability": 0.7705 + }, + { + "start": 58509.47, + "end": 58511.43, + "probability": 0.6519 + }, + { + "start": 58512.37, + "end": 58513.93, + "probability": 0.9682 + }, + { + "start": 58515.11, + "end": 58516.75, + "probability": 0.9058 + }, + { + "start": 58517.65, + "end": 58519.37, + "probability": 0.9377 + }, + { + "start": 58519.43, + "end": 58519.79, + "probability": 0.8704 + }, + { + "start": 58520.89, + "end": 58521.55, + "probability": 0.9616 + }, + { + "start": 58522.15, + "end": 58523.43, + "probability": 0.9774 + }, + { + "start": 58523.75, + "end": 58524.13, + "probability": 0.7951 + }, + { + "start": 58524.77, + "end": 58525.88, + "probability": 0.9595 + }, + { + "start": 58526.01, + "end": 58526.71, + "probability": 0.9761 + }, + { + "start": 58528.47, + "end": 58529.57, + "probability": 0.7616 + }, + { + "start": 58531.41, + "end": 58532.73, + "probability": 0.9333 + }, + { + "start": 58533.99, + "end": 58534.33, + "probability": 0.6716 + }, + { + "start": 58534.97, + "end": 58535.99, + "probability": 0.9639 + }, + { + "start": 58537.21, + "end": 58538.55, + "probability": 0.6709 + }, + { + "start": 58538.61, + "end": 58539.83, + "probability": 0.8573 + }, + { + "start": 58541.45, + "end": 58542.57, + "probability": 0.8258 + }, + { + "start": 58543.35, + "end": 58544.11, + "probability": 0.7971 + }, + { + "start": 58544.73, + "end": 58546.81, + "probability": 0.9281 + }, + { + "start": 58547.93, + "end": 58549.09, + "probability": 0.7531 + }, + { + "start": 58549.19, + "end": 58550.31, + "probability": 0.8465 + }, + { + "start": 58550.45, + "end": 58551.39, + "probability": 0.5995 + }, + { + "start": 58551.43, + "end": 58553.25, + "probability": 0.9585 + }, + { + "start": 58554.83, + "end": 58554.95, + "probability": 0.5103 + }, + { + "start": 58555.67, + "end": 58557.49, + "probability": 0.9902 + }, + { + "start": 58559.11, + "end": 58564.79, + "probability": 0.9883 + }, + { + "start": 58566.63, + "end": 58570.55, + "probability": 0.8487 + }, + { + "start": 58570.55, + "end": 58572.63, + "probability": 0.8083 + }, + { + "start": 58573.93, + "end": 58575.25, + "probability": 0.9439 + }, + { + "start": 58575.33, + "end": 58577.41, + "probability": 0.9951 + }, + { + "start": 58579.43, + "end": 58584.45, + "probability": 0.9299 + }, + { + "start": 58585.65, + "end": 58588.85, + "probability": 0.9995 + }, + { + "start": 58589.41, + "end": 58592.81, + "probability": 0.9861 + }, + { + "start": 58593.37, + "end": 58594.82, + "probability": 0.9971 + }, + { + "start": 58596.83, + "end": 58597.55, + "probability": 0.9027 + }, + { + "start": 58598.37, + "end": 58599.71, + "probability": 0.6319 + }, + { + "start": 58600.45, + "end": 58603.37, + "probability": 0.9166 + }, + { + "start": 58604.53, + "end": 58604.91, + "probability": 0.9421 + }, + { + "start": 58605.07, + "end": 58608.23, + "probability": 0.8832 + }, + { + "start": 58610.53, + "end": 58615.37, + "probability": 0.9961 + }, + { + "start": 58617.11, + "end": 58621.67, + "probability": 0.9569 + }, + { + "start": 58621.73, + "end": 58622.41, + "probability": 0.8774 + }, + { + "start": 58624.17, + "end": 58627.43, + "probability": 0.9832 + }, + { + "start": 58628.65, + "end": 58636.77, + "probability": 0.9946 + }, + { + "start": 58636.77, + "end": 58642.03, + "probability": 0.9941 + }, + { + "start": 58642.93, + "end": 58646.35, + "probability": 0.9487 + }, + { + "start": 58646.35, + "end": 58649.61, + "probability": 0.8741 + }, + { + "start": 58651.87, + "end": 58655.25, + "probability": 0.9392 + }, + { + "start": 58655.25, + "end": 58658.43, + "probability": 0.9992 + }, + { + "start": 58660.07, + "end": 58661.87, + "probability": 0.9611 + }, + { + "start": 58662.01, + "end": 58663.63, + "probability": 0.9512 + }, + { + "start": 58664.21, + "end": 58664.99, + "probability": 0.7789 + }, + { + "start": 58665.21, + "end": 58666.87, + "probability": 0.8212 + }, + { + "start": 58667.91, + "end": 58669.01, + "probability": 0.9786 + }, + { + "start": 58671.03, + "end": 58672.85, + "probability": 0.9482 + }, + { + "start": 58674.41, + "end": 58676.87, + "probability": 0.6094 + }, + { + "start": 58677.99, + "end": 58678.47, + "probability": 0.9956 + }, + { + "start": 58679.31, + "end": 58681.19, + "probability": 0.9978 + }, + { + "start": 58681.83, + "end": 58684.47, + "probability": 0.991 + }, + { + "start": 58684.73, + "end": 58685.55, + "probability": 0.5905 + }, + { + "start": 58686.11, + "end": 58686.57, + "probability": 0.4679 + }, + { + "start": 58686.67, + "end": 58687.97, + "probability": 0.5579 + }, + { + "start": 58688.11, + "end": 58689.55, + "probability": 0.6697 + }, + { + "start": 58695.79, + "end": 58696.65, + "probability": 0.7609 + }, + { + "start": 58696.79, + "end": 58697.65, + "probability": 0.8268 + }, + { + "start": 58697.73, + "end": 58700.35, + "probability": 0.9722 + }, + { + "start": 58700.41, + "end": 58701.71, + "probability": 0.9321 + }, + { + "start": 58703.28, + "end": 58708.65, + "probability": 0.9877 + }, + { + "start": 58708.73, + "end": 58710.67, + "probability": 0.9972 + }, + { + "start": 58712.05, + "end": 58715.03, + "probability": 0.7717 + }, + { + "start": 58715.79, + "end": 58720.01, + "probability": 0.9736 + }, + { + "start": 58720.67, + "end": 58723.87, + "probability": 0.9976 + }, + { + "start": 58723.87, + "end": 58726.61, + "probability": 0.9987 + }, + { + "start": 58727.09, + "end": 58730.93, + "probability": 0.9826 + }, + { + "start": 58731.39, + "end": 58734.72, + "probability": 0.9973 + }, + { + "start": 58735.17, + "end": 58736.31, + "probability": 0.999 + }, + { + "start": 58736.63, + "end": 58739.07, + "probability": 0.999 + }, + { + "start": 58740.19, + "end": 58743.27, + "probability": 0.9992 + }, + { + "start": 58744.07, + "end": 58746.17, + "probability": 0.9544 + }, + { + "start": 58747.93, + "end": 58750.01, + "probability": 0.8851 + }, + { + "start": 58750.37, + "end": 58753.61, + "probability": 0.9551 + }, + { + "start": 58753.61, + "end": 58757.73, + "probability": 0.9604 + }, + { + "start": 58759.25, + "end": 58759.39, + "probability": 0.4441 + }, + { + "start": 58759.39, + "end": 58759.39, + "probability": 0.1191 + }, + { + "start": 58759.39, + "end": 58759.91, + "probability": 0.3109 + }, + { + "start": 58760.07, + "end": 58761.53, + "probability": 0.0666 + }, + { + "start": 58761.87, + "end": 58765.09, + "probability": 0.0987 + }, + { + "start": 58765.11, + "end": 58768.53, + "probability": 0.9581 + }, + { + "start": 58768.93, + "end": 58769.97, + "probability": 0.9028 + }, + { + "start": 58770.21, + "end": 58771.13, + "probability": 0.9488 + }, + { + "start": 58771.39, + "end": 58772.33, + "probability": 0.9497 + }, + { + "start": 58772.43, + "end": 58773.03, + "probability": 0.8748 + }, + { + "start": 58773.13, + "end": 58775.57, + "probability": 0.984 + }, + { + "start": 58776.05, + "end": 58777.25, + "probability": 0.9681 + }, + { + "start": 58777.91, + "end": 58781.11, + "probability": 0.9923 + }, + { + "start": 58781.81, + "end": 58783.85, + "probability": 0.9292 + }, + { + "start": 58784.17, + "end": 58784.95, + "probability": 0.5169 + }, + { + "start": 58786.17, + "end": 58787.07, + "probability": 0.8779 + }, + { + "start": 58787.75, + "end": 58794.19, + "probability": 0.9932 + }, + { + "start": 58794.43, + "end": 58795.51, + "probability": 0.7543 + }, + { + "start": 58795.85, + "end": 58800.47, + "probability": 0.9832 + }, + { + "start": 58801.01, + "end": 58804.81, + "probability": 0.9813 + }, + { + "start": 58805.55, + "end": 58808.97, + "probability": 0.9903 + }, + { + "start": 58809.59, + "end": 58810.77, + "probability": 0.8684 + }, + { + "start": 58811.31, + "end": 58812.59, + "probability": 0.9261 + }, + { + "start": 58813.43, + "end": 58817.49, + "probability": 0.9927 + }, + { + "start": 58818.13, + "end": 58820.13, + "probability": 0.9891 + }, + { + "start": 58820.35, + "end": 58821.27, + "probability": 0.4631 + }, + { + "start": 58821.43, + "end": 58825.27, + "probability": 0.99 + }, + { + "start": 58825.59, + "end": 58826.59, + "probability": 0.8932 + }, + { + "start": 58826.87, + "end": 58828.03, + "probability": 0.9872 + }, + { + "start": 58828.37, + "end": 58828.95, + "probability": 0.9546 + }, + { + "start": 58829.01, + "end": 58830.05, + "probability": 0.923 + }, + { + "start": 58831.37, + "end": 58832.55, + "probability": 0.846 + }, + { + "start": 58832.95, + "end": 58835.55, + "probability": 0.9622 + }, + { + "start": 58835.55, + "end": 58837.31, + "probability": 0.7032 + }, + { + "start": 58838.07, + "end": 58840.13, + "probability": 0.9889 + }, + { + "start": 58840.17, + "end": 58844.23, + "probability": 0.9976 + }, + { + "start": 58845.27, + "end": 58845.69, + "probability": 0.8044 + }, + { + "start": 58845.75, + "end": 58847.09, + "probability": 0.9282 + }, + { + "start": 58847.35, + "end": 58848.93, + "probability": 0.8508 + }, + { + "start": 58848.93, + "end": 58852.03, + "probability": 0.9597 + }, + { + "start": 58852.29, + "end": 58852.29, + "probability": 0.1374 + }, + { + "start": 58852.29, + "end": 58852.69, + "probability": 0.0458 + }, + { + "start": 58853.83, + "end": 58856.57, + "probability": 0.1802 + }, + { + "start": 58856.73, + "end": 58859.33, + "probability": 0.9524 + }, + { + "start": 58859.77, + "end": 58860.33, + "probability": 0.5897 + }, + { + "start": 58860.33, + "end": 58864.11, + "probability": 0.8191 + }, + { + "start": 58864.19, + "end": 58866.65, + "probability": 0.9327 + }, + { + "start": 58866.69, + "end": 58867.05, + "probability": 0.8215 + }, + { + "start": 58867.35, + "end": 58869.21, + "probability": 0.0918 + }, + { + "start": 58869.53, + "end": 58871.87, + "probability": 0.4365 + }, + { + "start": 58871.91, + "end": 58872.75, + "probability": 0.8436 + }, + { + "start": 58873.17, + "end": 58875.85, + "probability": 0.9485 + }, + { + "start": 58876.17, + "end": 58877.61, + "probability": 0.8835 + }, + { + "start": 58877.71, + "end": 58882.17, + "probability": 0.9967 + }, + { + "start": 58882.17, + "end": 58885.63, + "probability": 0.7864 + }, + { + "start": 58885.63, + "end": 58886.73, + "probability": 0.0362 + }, + { + "start": 58887.09, + "end": 58888.57, + "probability": 0.5884 + }, + { + "start": 58888.81, + "end": 58890.78, + "probability": 0.9119 + }, + { + "start": 58891.83, + "end": 58893.31, + "probability": 0.8606 + }, + { + "start": 58893.53, + "end": 58895.65, + "probability": 0.9841 + }, + { + "start": 58895.97, + "end": 58897.55, + "probability": 0.5761 + }, + { + "start": 58897.55, + "end": 58900.69, + "probability": 0.7176 + }, + { + "start": 58900.71, + "end": 58902.61, + "probability": 0.9901 + }, + { + "start": 58902.67, + "end": 58905.21, + "probability": 0.9674 + }, + { + "start": 58905.21, + "end": 58905.69, + "probability": 0.5344 + }, + { + "start": 58905.69, + "end": 58906.4, + "probability": 0.213 + }, + { + "start": 58906.85, + "end": 58907.29, + "probability": 0.0417 + }, + { + "start": 58907.29, + "end": 58909.39, + "probability": 0.3929 + }, + { + "start": 58909.39, + "end": 58911.17, + "probability": 0.2324 + }, + { + "start": 58911.17, + "end": 58911.38, + "probability": 0.288 + }, + { + "start": 58912.09, + "end": 58916.33, + "probability": 0.9876 + }, + { + "start": 58916.33, + "end": 58920.45, + "probability": 0.9991 + }, + { + "start": 58920.73, + "end": 58921.79, + "probability": 0.8649 + }, + { + "start": 58921.85, + "end": 58924.23, + "probability": 0.9102 + }, + { + "start": 58924.31, + "end": 58927.89, + "probability": 0.2132 + }, + { + "start": 58928.99, + "end": 58928.99, + "probability": 0.5844 + }, + { + "start": 58928.99, + "end": 58929.97, + "probability": 0.6027 + }, + { + "start": 58930.07, + "end": 58930.61, + "probability": 0.5854 + }, + { + "start": 58930.73, + "end": 58931.41, + "probability": 0.908 + }, + { + "start": 58931.45, + "end": 58932.17, + "probability": 0.8671 + }, + { + "start": 58932.51, + "end": 58934.05, + "probability": 0.824 + }, + { + "start": 58934.57, + "end": 58935.93, + "probability": 0.8543 + }, + { + "start": 58944.61, + "end": 58945.93, + "probability": 0.2986 + }, + { + "start": 58947.01, + "end": 58947.41, + "probability": 0.5979 + }, + { + "start": 58947.85, + "end": 58949.56, + "probability": 0.3721 + }, + { + "start": 58951.71, + "end": 58954.39, + "probability": 0.3368 + }, + { + "start": 58960.16, + "end": 58964.97, + "probability": 0.765 + }, + { + "start": 58965.57, + "end": 58967.03, + "probability": 0.8083 + }, + { + "start": 58969.57, + "end": 58972.33, + "probability": 0.9984 + }, + { + "start": 58973.13, + "end": 58975.95, + "probability": 0.9082 + }, + { + "start": 58977.43, + "end": 58978.85, + "probability": 0.993 + }, + { + "start": 58978.93, + "end": 58979.93, + "probability": 0.8896 + }, + { + "start": 58980.33, + "end": 58981.61, + "probability": 0.8697 + }, + { + "start": 58983.29, + "end": 58987.17, + "probability": 0.8052 + }, + { + "start": 58988.03, + "end": 58991.49, + "probability": 0.9386 + }, + { + "start": 58992.23, + "end": 58994.01, + "probability": 0.9054 + }, + { + "start": 58994.71, + "end": 58996.25, + "probability": 0.9412 + }, + { + "start": 58996.85, + "end": 58999.47, + "probability": 0.9792 + }, + { + "start": 59000.39, + "end": 59001.05, + "probability": 0.9338 + }, + { + "start": 59001.33, + "end": 59002.37, + "probability": 0.9358 + }, + { + "start": 59002.85, + "end": 59003.75, + "probability": 0.9887 + }, + { + "start": 59004.21, + "end": 59005.77, + "probability": 0.9871 + }, + { + "start": 59006.19, + "end": 59007.29, + "probability": 0.9363 + }, + { + "start": 59007.69, + "end": 59009.57, + "probability": 0.9961 + }, + { + "start": 59010.55, + "end": 59011.62, + "probability": 0.8181 + }, + { + "start": 59012.43, + "end": 59014.83, + "probability": 0.8768 + }, + { + "start": 59015.71, + "end": 59019.15, + "probability": 0.9979 + }, + { + "start": 59019.71, + "end": 59021.31, + "probability": 0.9922 + }, + { + "start": 59022.01, + "end": 59022.87, + "probability": 0.7286 + }, + { + "start": 59023.39, + "end": 59023.92, + "probability": 0.8672 + }, + { + "start": 59025.43, + "end": 59026.79, + "probability": 0.788 + }, + { + "start": 59027.51, + "end": 59028.57, + "probability": 0.7886 + }, + { + "start": 59029.17, + "end": 59031.97, + "probability": 0.8833 + }, + { + "start": 59032.67, + "end": 59035.41, + "probability": 0.9809 + }, + { + "start": 59036.09, + "end": 59038.21, + "probability": 0.9966 + }, + { + "start": 59038.81, + "end": 59039.65, + "probability": 0.9425 + }, + { + "start": 59040.31, + "end": 59041.07, + "probability": 0.6087 + }, + { + "start": 59041.79, + "end": 59043.03, + "probability": 0.9026 + }, + { + "start": 59043.61, + "end": 59048.35, + "probability": 0.9746 + }, + { + "start": 59049.49, + "end": 59050.69, + "probability": 0.683 + }, + { + "start": 59051.45, + "end": 59053.84, + "probability": 0.9895 + }, + { + "start": 59054.45, + "end": 59055.55, + "probability": 0.8422 + }, + { + "start": 59056.19, + "end": 59058.77, + "probability": 0.9917 + }, + { + "start": 59059.45, + "end": 59060.69, + "probability": 0.8733 + }, + { + "start": 59061.31, + "end": 59063.31, + "probability": 0.9751 + }, + { + "start": 59063.95, + "end": 59066.33, + "probability": 0.873 + }, + { + "start": 59066.71, + "end": 59067.01, + "probability": 0.6756 + }, + { + "start": 59067.11, + "end": 59068.37, + "probability": 0.9896 + }, + { + "start": 59069.41, + "end": 59070.19, + "probability": 0.9747 + }, + { + "start": 59070.79, + "end": 59074.41, + "probability": 0.9938 + }, + { + "start": 59075.37, + "end": 59076.55, + "probability": 0.9868 + }, + { + "start": 59077.01, + "end": 59080.47, + "probability": 0.9772 + }, + { + "start": 59080.89, + "end": 59081.97, + "probability": 0.9536 + }, + { + "start": 59083.17, + "end": 59086.51, + "probability": 0.9848 + }, + { + "start": 59087.19, + "end": 59089.13, + "probability": 0.9968 + }, + { + "start": 59089.65, + "end": 59092.65, + "probability": 0.7852 + }, + { + "start": 59093.59, + "end": 59096.11, + "probability": 0.9897 + }, + { + "start": 59096.11, + "end": 59098.97, + "probability": 0.972 + }, + { + "start": 59099.69, + "end": 59101.35, + "probability": 0.9929 + }, + { + "start": 59101.73, + "end": 59103.44, + "probability": 0.6475 + }, + { + "start": 59104.41, + "end": 59105.37, + "probability": 0.8011 + }, + { + "start": 59106.11, + "end": 59107.33, + "probability": 0.9941 + }, + { + "start": 59107.95, + "end": 59110.23, + "probability": 0.987 + }, + { + "start": 59110.79, + "end": 59113.11, + "probability": 0.9631 + }, + { + "start": 59114.11, + "end": 59115.65, + "probability": 0.9729 + }, + { + "start": 59116.29, + "end": 59118.31, + "probability": 0.9655 + }, + { + "start": 59118.89, + "end": 59120.35, + "probability": 0.9962 + }, + { + "start": 59121.35, + "end": 59123.11, + "probability": 0.6175 + }, + { + "start": 59123.69, + "end": 59126.69, + "probability": 0.9704 + }, + { + "start": 59127.71, + "end": 59129.11, + "probability": 0.9685 + }, + { + "start": 59129.81, + "end": 59131.47, + "probability": 0.8371 + }, + { + "start": 59132.03, + "end": 59136.97, + "probability": 0.9813 + }, + { + "start": 59137.57, + "end": 59138.87, + "probability": 0.9274 + }, + { + "start": 59139.45, + "end": 59140.27, + "probability": 0.7958 + }, + { + "start": 59140.61, + "end": 59142.21, + "probability": 0.9902 + }, + { + "start": 59142.73, + "end": 59148.59, + "probability": 0.9749 + }, + { + "start": 59148.81, + "end": 59149.93, + "probability": 0.4795 + }, + { + "start": 59150.05, + "end": 59152.33, + "probability": 0.9772 + }, + { + "start": 59152.47, + "end": 59153.63, + "probability": 0.9901 + }, + { + "start": 59153.69, + "end": 59154.19, + "probability": 0.9759 + }, + { + "start": 59154.31, + "end": 59156.47, + "probability": 0.9423 + }, + { + "start": 59157.33, + "end": 59157.95, + "probability": 0.9849 + }, + { + "start": 59158.01, + "end": 59158.57, + "probability": 0.6394 + }, + { + "start": 59159.07, + "end": 59159.69, + "probability": 0.5517 + }, + { + "start": 59160.47, + "end": 59163.97, + "probability": 0.9928 + }, + { + "start": 59164.35, + "end": 59166.11, + "probability": 0.9961 + }, + { + "start": 59166.55, + "end": 59168.67, + "probability": 0.9951 + }, + { + "start": 59168.85, + "end": 59169.27, + "probability": 0.8988 + }, + { + "start": 59169.59, + "end": 59171.65, + "probability": 0.6225 + }, + { + "start": 59171.97, + "end": 59172.93, + "probability": 0.9531 + }, + { + "start": 59194.23, + "end": 59196.19, + "probability": 0.687 + }, + { + "start": 59197.71, + "end": 59201.07, + "probability": 0.5098 + }, + { + "start": 59202.27, + "end": 59206.41, + "probability": 0.9379 + }, + { + "start": 59207.23, + "end": 59210.41, + "probability": 0.9425 + }, + { + "start": 59211.09, + "end": 59214.93, + "probability": 0.9856 + }, + { + "start": 59215.67, + "end": 59219.61, + "probability": 0.949 + }, + { + "start": 59219.65, + "end": 59220.95, + "probability": 0.9028 + }, + { + "start": 59221.57, + "end": 59226.97, + "probability": 0.9902 + }, + { + "start": 59227.15, + "end": 59228.53, + "probability": 0.8998 + }, + { + "start": 59229.01, + "end": 59233.61, + "probability": 0.9902 + }, + { + "start": 59233.67, + "end": 59235.4, + "probability": 0.9015 + }, + { + "start": 59236.55, + "end": 59238.75, + "probability": 0.9896 + }, + { + "start": 59239.27, + "end": 59242.69, + "probability": 0.8325 + }, + { + "start": 59242.77, + "end": 59243.69, + "probability": 0.8734 + }, + { + "start": 59244.39, + "end": 59247.27, + "probability": 0.988 + }, + { + "start": 59247.91, + "end": 59252.19, + "probability": 0.842 + }, + { + "start": 59252.87, + "end": 59254.41, + "probability": 0.8773 + }, + { + "start": 59255.27, + "end": 59258.21, + "probability": 0.9818 + }, + { + "start": 59259.07, + "end": 59261.49, + "probability": 0.9949 + }, + { + "start": 59261.89, + "end": 59262.81, + "probability": 0.9101 + }, + { + "start": 59263.13, + "end": 59263.97, + "probability": 0.9929 + }, + { + "start": 59264.31, + "end": 59265.23, + "probability": 0.907 + }, + { + "start": 59265.35, + "end": 59266.39, + "probability": 0.9834 + }, + { + "start": 59266.89, + "end": 59268.95, + "probability": 0.9729 + }, + { + "start": 59269.69, + "end": 59274.55, + "probability": 0.957 + }, + { + "start": 59274.83, + "end": 59277.67, + "probability": 0.9875 + }, + { + "start": 59278.13, + "end": 59282.39, + "probability": 0.8375 + }, + { + "start": 59283.09, + "end": 59286.73, + "probability": 0.959 + }, + { + "start": 59287.39, + "end": 59290.33, + "probability": 0.9873 + }, + { + "start": 59290.69, + "end": 59293.63, + "probability": 0.9619 + }, + { + "start": 59295.05, + "end": 59296.89, + "probability": 0.8062 + }, + { + "start": 59297.51, + "end": 59299.25, + "probability": 0.0528 + }, + { + "start": 59299.85, + "end": 59301.27, + "probability": 0.808 + }, + { + "start": 59301.73, + "end": 59304.31, + "probability": 0.9639 + }, + { + "start": 59304.73, + "end": 59305.89, + "probability": 0.9817 + }, + { + "start": 59306.59, + "end": 59310.25, + "probability": 0.9763 + }, + { + "start": 59310.75, + "end": 59311.63, + "probability": 0.766 + }, + { + "start": 59312.13, + "end": 59313.63, + "probability": 0.6767 + }, + { + "start": 59313.93, + "end": 59315.13, + "probability": 0.7548 + }, + { + "start": 59315.59, + "end": 59317.83, + "probability": 0.9886 + }, + { + "start": 59319.55, + "end": 59321.61, + "probability": 0.9941 + }, + { + "start": 59322.39, + "end": 59324.63, + "probability": 0.9305 + }, + { + "start": 59324.73, + "end": 59326.15, + "probability": 0.9703 + }, + { + "start": 59326.65, + "end": 59328.47, + "probability": 0.9718 + }, + { + "start": 59328.65, + "end": 59330.31, + "probability": 0.8612 + }, + { + "start": 59330.59, + "end": 59333.13, + "probability": 0.9539 + }, + { + "start": 59333.49, + "end": 59334.93, + "probability": 0.7583 + }, + { + "start": 59335.37, + "end": 59336.69, + "probability": 0.8054 + }, + { + "start": 59337.13, + "end": 59337.85, + "probability": 0.8314 + }, + { + "start": 59338.65, + "end": 59341.13, + "probability": 0.7465 + }, + { + "start": 59341.65, + "end": 59343.69, + "probability": 0.9845 + }, + { + "start": 59344.17, + "end": 59345.77, + "probability": 0.96 + }, + { + "start": 59346.25, + "end": 59347.81, + "probability": 0.7766 + }, + { + "start": 59348.61, + "end": 59350.23, + "probability": 0.9963 + }, + { + "start": 59351.47, + "end": 59352.93, + "probability": 0.9553 + }, + { + "start": 59353.65, + "end": 59354.97, + "probability": 0.9928 + }, + { + "start": 59355.41, + "end": 59355.93, + "probability": 0.8931 + }, + { + "start": 59356.35, + "end": 59357.77, + "probability": 0.9729 + }, + { + "start": 59358.19, + "end": 59359.77, + "probability": 0.7761 + }, + { + "start": 59360.21, + "end": 59361.13, + "probability": 0.8789 + }, + { + "start": 59361.73, + "end": 59362.67, + "probability": 0.9917 + }, + { + "start": 59363.13, + "end": 59364.33, + "probability": 0.8438 + }, + { + "start": 59364.79, + "end": 59368.49, + "probability": 0.7611 + }, + { + "start": 59368.89, + "end": 59369.97, + "probability": 0.8885 + }, + { + "start": 59371.23, + "end": 59373.55, + "probability": 0.9927 + }, + { + "start": 59373.97, + "end": 59374.55, + "probability": 0.8843 + }, + { + "start": 59374.81, + "end": 59377.07, + "probability": 0.9743 + }, + { + "start": 59377.73, + "end": 59382.22, + "probability": 0.925 + }, + { + "start": 59383.25, + "end": 59386.47, + "probability": 0.6699 + }, + { + "start": 59386.87, + "end": 59390.35, + "probability": 0.9734 + }, + { + "start": 59391.15, + "end": 59393.11, + "probability": 0.6133 + }, + { + "start": 59393.19, + "end": 59394.05, + "probability": 0.8184 + }, + { + "start": 59417.97, + "end": 59419.23, + "probability": 0.7569 + }, + { + "start": 59420.47, + "end": 59421.79, + "probability": 0.5893 + }, + { + "start": 59422.95, + "end": 59425.93, + "probability": 0.9985 + }, + { + "start": 59427.31, + "end": 59432.01, + "probability": 0.9688 + }, + { + "start": 59432.79, + "end": 59434.81, + "probability": 0.8416 + }, + { + "start": 59435.01, + "end": 59438.73, + "probability": 0.9683 + }, + { + "start": 59439.65, + "end": 59445.75, + "probability": 0.9971 + }, + { + "start": 59446.97, + "end": 59449.45, + "probability": 0.866 + }, + { + "start": 59450.21, + "end": 59455.81, + "probability": 0.9639 + }, + { + "start": 59457.25, + "end": 59461.47, + "probability": 0.8783 + }, + { + "start": 59462.23, + "end": 59465.47, + "probability": 0.9281 + }, + { + "start": 59467.07, + "end": 59473.07, + "probability": 0.9437 + }, + { + "start": 59474.87, + "end": 59477.11, + "probability": 0.9903 + }, + { + "start": 59477.65, + "end": 59478.41, + "probability": 0.8052 + }, + { + "start": 59479.17, + "end": 59481.31, + "probability": 0.9965 + }, + { + "start": 59482.53, + "end": 59486.41, + "probability": 0.9774 + }, + { + "start": 59488.51, + "end": 59490.61, + "probability": 0.9664 + }, + { + "start": 59492.17, + "end": 59494.2, + "probability": 0.9976 + }, + { + "start": 59494.77, + "end": 59497.79, + "probability": 0.9598 + }, + { + "start": 59498.59, + "end": 59500.11, + "probability": 0.9556 + }, + { + "start": 59500.67, + "end": 59502.01, + "probability": 0.9911 + }, + { + "start": 59502.77, + "end": 59504.71, + "probability": 0.9653 + }, + { + "start": 59505.73, + "end": 59509.99, + "probability": 0.874 + }, + { + "start": 59510.69, + "end": 59515.05, + "probability": 0.97 + }, + { + "start": 59515.61, + "end": 59518.63, + "probability": 0.9857 + }, + { + "start": 59519.53, + "end": 59523.49, + "probability": 0.9774 + }, + { + "start": 59524.43, + "end": 59527.21, + "probability": 0.8705 + }, + { + "start": 59527.97, + "end": 59531.95, + "probability": 0.9128 + }, + { + "start": 59533.03, + "end": 59533.73, + "probability": 0.9073 + }, + { + "start": 59535.77, + "end": 59536.23, + "probability": 0.6741 + }, + { + "start": 59536.95, + "end": 59538.66, + "probability": 0.6538 + }, + { + "start": 59538.89, + "end": 59540.65, + "probability": 0.7706 + }, + { + "start": 59543.03, + "end": 59545.35, + "probability": 0.3278 + }, + { + "start": 59546.75, + "end": 59549.85, + "probability": 0.6199 + }, + { + "start": 59550.11, + "end": 59553.81, + "probability": 0.3987 + }, + { + "start": 59553.83, + "end": 59558.01, + "probability": 0.7932 + }, + { + "start": 59558.83, + "end": 59562.93, + "probability": 0.9485 + }, + { + "start": 59563.49, + "end": 59564.65, + "probability": 0.9622 + }, + { + "start": 59564.77, + "end": 59565.57, + "probability": 0.8053 + }, + { + "start": 59566.19, + "end": 59571.37, + "probability": 0.9718 + }, + { + "start": 59571.93, + "end": 59573.09, + "probability": 0.4834 + }, + { + "start": 59573.93, + "end": 59577.23, + "probability": 0.856 + }, + { + "start": 59577.29, + "end": 59578.93, + "probability": 0.9735 + }, + { + "start": 59579.75, + "end": 59582.11, + "probability": 0.9701 + }, + { + "start": 59582.91, + "end": 59586.63, + "probability": 0.954 + }, + { + "start": 59586.63, + "end": 59589.13, + "probability": 0.6982 + }, + { + "start": 59590.35, + "end": 59591.03, + "probability": 0.9607 + }, + { + "start": 59591.77, + "end": 59594.97, + "probability": 0.9958 + }, + { + "start": 59595.87, + "end": 59597.17, + "probability": 0.9784 + }, + { + "start": 59598.11, + "end": 59599.47, + "probability": 0.9941 + }, + { + "start": 59602.35, + "end": 59602.71, + "probability": 0.6224 + }, + { + "start": 59602.71, + "end": 59603.83, + "probability": 0.3076 + }, + { + "start": 59604.21, + "end": 59605.41, + "probability": 0.8206 + }, + { + "start": 59606.39, + "end": 59610.63, + "probability": 0.9915 + }, + { + "start": 59611.21, + "end": 59613.51, + "probability": 0.9686 + }, + { + "start": 59614.35, + "end": 59616.61, + "probability": 0.4908 + }, + { + "start": 59617.71, + "end": 59620.03, + "probability": 0.6713 + }, + { + "start": 59621.99, + "end": 59623.05, + "probability": 0.7242 + }, + { + "start": 59623.63, + "end": 59625.23, + "probability": 0.6031 + }, + { + "start": 59625.89, + "end": 59628.81, + "probability": 0.9429 + }, + { + "start": 59629.39, + "end": 59631.55, + "probability": 0.9609 + }, + { + "start": 59631.57, + "end": 59632.67, + "probability": 0.9652 + }, + { + "start": 59633.13, + "end": 59634.31, + "probability": 0.9601 + }, + { + "start": 59634.93, + "end": 59639.59, + "probability": 0.7957 + }, + { + "start": 59639.99, + "end": 59642.13, + "probability": 0.9456 + }, + { + "start": 59642.53, + "end": 59644.45, + "probability": 0.8391 + }, + { + "start": 59645.27, + "end": 59646.85, + "probability": 0.9941 + }, + { + "start": 59646.91, + "end": 59647.57, + "probability": 0.8952 + }, + { + "start": 59648.07, + "end": 59648.97, + "probability": 0.9331 + }, + { + "start": 59649.21, + "end": 59650.06, + "probability": 0.7282 + }, + { + "start": 59650.97, + "end": 59651.27, + "probability": 0.8992 + }, + { + "start": 59652.13, + "end": 59654.89, + "probability": 0.9689 + }, + { + "start": 59655.03, + "end": 59656.59, + "probability": 0.733 + }, + { + "start": 59657.35, + "end": 59658.81, + "probability": 0.9778 + }, + { + "start": 59659.29, + "end": 59660.49, + "probability": 0.9225 + }, + { + "start": 59660.83, + "end": 59661.99, + "probability": 0.7572 + }, + { + "start": 59662.33, + "end": 59664.39, + "probability": 0.7943 + }, + { + "start": 59664.47, + "end": 59667.99, + "probability": 0.9565 + }, + { + "start": 59668.85, + "end": 59671.31, + "probability": 0.9203 + }, + { + "start": 59672.41, + "end": 59673.79, + "probability": 0.9873 + }, + { + "start": 59673.95, + "end": 59675.57, + "probability": 0.8905 + }, + { + "start": 59675.79, + "end": 59677.21, + "probability": 0.9819 + }, + { + "start": 59677.77, + "end": 59680.57, + "probability": 0.9766 + }, + { + "start": 59680.57, + "end": 59683.11, + "probability": 0.9649 + }, + { + "start": 59683.87, + "end": 59684.27, + "probability": 0.7756 + }, + { + "start": 59684.39, + "end": 59686.15, + "probability": 0.9956 + }, + { + "start": 59686.51, + "end": 59689.21, + "probability": 0.9699 + }, + { + "start": 59689.85, + "end": 59691.5, + "probability": 0.9913 + }, + { + "start": 59692.43, + "end": 59693.43, + "probability": 0.9314 + }, + { + "start": 59694.09, + "end": 59697.19, + "probability": 0.9784 + }, + { + "start": 59697.55, + "end": 59699.53, + "probability": 0.855 + }, + { + "start": 59700.49, + "end": 59702.19, + "probability": 0.5977 + }, + { + "start": 59702.19, + "end": 59704.89, + "probability": 0.8765 + }, + { + "start": 59705.92, + "end": 59710.63, + "probability": 0.9956 + }, + { + "start": 59711.07, + "end": 59711.61, + "probability": 0.809 + }, + { + "start": 59712.09, + "end": 59715.55, + "probability": 0.7874 + }, + { + "start": 59715.73, + "end": 59716.81, + "probability": 0.7456 + }, + { + "start": 59717.43, + "end": 59718.87, + "probability": 0.8643 + }, + { + "start": 59719.55, + "end": 59721.28, + "probability": 0.9994 + }, + { + "start": 59721.99, + "end": 59723.74, + "probability": 0.99 + }, + { + "start": 59724.41, + "end": 59728.11, + "probability": 0.8737 + }, + { + "start": 59729.71, + "end": 59731.03, + "probability": 0.9441 + }, + { + "start": 59732.07, + "end": 59734.83, + "probability": 0.9941 + }, + { + "start": 59735.49, + "end": 59736.99, + "probability": 0.8782 + }, + { + "start": 59737.35, + "end": 59739.23, + "probability": 0.9834 + }, + { + "start": 59739.61, + "end": 59740.61, + "probability": 0.4492 + }, + { + "start": 59740.61, + "end": 59741.47, + "probability": 0.8301 + }, + { + "start": 59769.43, + "end": 59771.07, + "probability": 0.5957 + }, + { + "start": 59773.31, + "end": 59775.19, + "probability": 0.7979 + }, + { + "start": 59775.31, + "end": 59777.77, + "probability": 0.9937 + }, + { + "start": 59778.41, + "end": 59779.85, + "probability": 0.9297 + }, + { + "start": 59781.67, + "end": 59781.95, + "probability": 0.8206 + }, + { + "start": 59783.01, + "end": 59783.81, + "probability": 0.8369 + }, + { + "start": 59786.69, + "end": 59791.47, + "probability": 0.9942 + }, + { + "start": 59792.39, + "end": 59797.03, + "probability": 0.9965 + }, + { + "start": 59799.09, + "end": 59801.17, + "probability": 0.6919 + }, + { + "start": 59802.69, + "end": 59804.85, + "probability": 0.964 + }, + { + "start": 59806.67, + "end": 59809.95, + "probability": 0.9017 + }, + { + "start": 59811.49, + "end": 59814.03, + "probability": 0.8395 + }, + { + "start": 59815.79, + "end": 59818.25, + "probability": 0.9722 + }, + { + "start": 59819.73, + "end": 59820.69, + "probability": 0.9799 + }, + { + "start": 59822.15, + "end": 59825.93, + "probability": 0.8434 + }, + { + "start": 59826.47, + "end": 59829.03, + "probability": 0.9892 + }, + { + "start": 59830.63, + "end": 59835.05, + "probability": 0.9153 + }, + { + "start": 59836.35, + "end": 59839.45, + "probability": 0.9205 + }, + { + "start": 59839.89, + "end": 59841.45, + "probability": 0.9783 + }, + { + "start": 59842.57, + "end": 59845.03, + "probability": 0.9839 + }, + { + "start": 59846.21, + "end": 59847.73, + "probability": 0.9968 + }, + { + "start": 59848.83, + "end": 59852.31, + "probability": 0.8953 + }, + { + "start": 59853.91, + "end": 59858.27, + "probability": 0.9996 + }, + { + "start": 59859.69, + "end": 59864.21, + "probability": 0.9991 + }, + { + "start": 59865.93, + "end": 59868.41, + "probability": 0.9922 + }, + { + "start": 59869.11, + "end": 59870.23, + "probability": 0.8751 + }, + { + "start": 59872.51, + "end": 59873.98, + "probability": 0.9929 + }, + { + "start": 59875.31, + "end": 59877.9, + "probability": 0.8018 + }, + { + "start": 59878.69, + "end": 59879.47, + "probability": 0.9549 + }, + { + "start": 59880.97, + "end": 59883.53, + "probability": 0.9324 + }, + { + "start": 59883.59, + "end": 59884.77, + "probability": 0.8355 + }, + { + "start": 59885.11, + "end": 59887.15, + "probability": 0.9668 + }, + { + "start": 59887.89, + "end": 59889.27, + "probability": 0.9069 + }, + { + "start": 59891.01, + "end": 59896.01, + "probability": 0.9744 + }, + { + "start": 59896.09, + "end": 59898.75, + "probability": 0.9977 + }, + { + "start": 59900.43, + "end": 59901.41, + "probability": 0.9852 + }, + { + "start": 59902.13, + "end": 59903.45, + "probability": 0.7016 + }, + { + "start": 59904.21, + "end": 59906.39, + "probability": 0.9964 + }, + { + "start": 59907.15, + "end": 59907.43, + "probability": 0.7005 + }, + { + "start": 59909.45, + "end": 59912.95, + "probability": 0.6231 + }, + { + "start": 59914.59, + "end": 59915.35, + "probability": 0.6505 + }, + { + "start": 59916.21, + "end": 59917.25, + "probability": 0.9255 + }, + { + "start": 59918.93, + "end": 59919.87, + "probability": 0.5166 + }, + { + "start": 59920.39, + "end": 59920.99, + "probability": 0.8125 + }, + { + "start": 59923.31, + "end": 59924.07, + "probability": 0.9362 + }, + { + "start": 59925.05, + "end": 59926.05, + "probability": 0.9958 + }, + { + "start": 59927.49, + "end": 59928.33, + "probability": 0.7341 + }, + { + "start": 59928.91, + "end": 59932.47, + "probability": 0.6687 + }, + { + "start": 59933.03, + "end": 59933.05, + "probability": 0.0412 + }, + { + "start": 59933.35, + "end": 59933.93, + "probability": 0.4792 + }, + { + "start": 59934.21, + "end": 59936.49, + "probability": 0.9497 + }, + { + "start": 59945.93, + "end": 59949.31, + "probability": 0.6856 + }, + { + "start": 59950.57, + "end": 59955.43, + "probability": 0.988 + }, + { + "start": 59956.49, + "end": 59957.53, + "probability": 0.7235 + }, + { + "start": 59958.73, + "end": 59962.07, + "probability": 0.9921 + }, + { + "start": 59963.07, + "end": 59965.03, + "probability": 0.9941 + }, + { + "start": 59965.43, + "end": 59966.43, + "probability": 0.9604 + }, + { + "start": 59966.93, + "end": 59968.69, + "probability": 0.9499 + }, + { + "start": 59969.47, + "end": 59970.03, + "probability": 0.4308 + }, + { + "start": 59970.55, + "end": 59973.91, + "probability": 0.9547 + }, + { + "start": 59974.25, + "end": 59975.15, + "probability": 0.0893 + }, + { + "start": 59975.83, + "end": 59979.43, + "probability": 0.9445 + }, + { + "start": 59983.95, + "end": 59983.95, + "probability": 0.0566 + }, + { + "start": 59983.95, + "end": 59986.47, + "probability": 0.6415 + }, + { + "start": 59987.27, + "end": 59989.11, + "probability": 0.6284 + }, + { + "start": 59989.75, + "end": 59990.49, + "probability": 0.9202 + }, + { + "start": 59992.13, + "end": 59992.85, + "probability": 0.7365 + }, + { + "start": 59993.13, + "end": 59994.85, + "probability": 0.8928 + }, + { + "start": 59996.19, + "end": 59998.63, + "probability": 0.9971 + }, + { + "start": 59999.57, + "end": 60000.69, + "probability": 0.8833 + }, + { + "start": 60002.07, + "end": 60003.07, + "probability": 0.9765 + }, + { + "start": 60003.77, + "end": 60006.92, + "probability": 0.942 + }, + { + "start": 60007.57, + "end": 60009.97, + "probability": 0.996 + }, + { + "start": 60011.05, + "end": 60011.27, + "probability": 0.2285 + }, + { + "start": 60011.27, + "end": 60014.89, + "probability": 0.8257 + }, + { + "start": 60016.21, + "end": 60018.95, + "probability": 0.7797 + }, + { + "start": 60020.33, + "end": 60023.35, + "probability": 0.7681 + }, + { + "start": 60023.53, + "end": 60024.05, + "probability": 0.5591 + }, + { + "start": 60024.89, + "end": 60026.22, + "probability": 0.9914 + }, + { + "start": 60027.49, + "end": 60028.33, + "probability": 0.8656 + }, + { + "start": 60029.35, + "end": 60030.87, + "probability": 0.9232 + }, + { + "start": 60030.97, + "end": 60033.67, + "probability": 0.9973 + }, + { + "start": 60034.89, + "end": 60035.19, + "probability": 0.8717 + }, + { + "start": 60036.39, + "end": 60039.29, + "probability": 0.9986 + }, + { + "start": 60039.87, + "end": 60042.14, + "probability": 0.9832 + }, + { + "start": 60043.37, + "end": 60045.87, + "probability": 0.7961 + }, + { + "start": 60046.31, + "end": 60048.07, + "probability": 0.9474 + }, + { + "start": 60048.65, + "end": 60051.26, + "probability": 0.9917 + }, + { + "start": 60052.25, + "end": 60057.71, + "probability": 0.6759 + }, + { + "start": 60057.89, + "end": 60059.7, + "probability": 0.687 + }, + { + "start": 60060.53, + "end": 60062.19, + "probability": 0.211 + }, + { + "start": 60062.25, + "end": 60064.17, + "probability": 0.408 + }, + { + "start": 60064.69, + "end": 60068.39, + "probability": 0.5831 + }, + { + "start": 60068.51, + "end": 60069.23, + "probability": 0.4802 + }, + { + "start": 60069.85, + "end": 60070.33, + "probability": 0.6429 + }, + { + "start": 60072.31, + "end": 60073.13, + "probability": 0.9589 + }, + { + "start": 60073.45, + "end": 60073.85, + "probability": 0.3066 + }, + { + "start": 60074.89, + "end": 60075.55, + "probability": 0.4736 + }, + { + "start": 60075.83, + "end": 60077.85, + "probability": 0.7751 + }, + { + "start": 60078.19, + "end": 60079.95, + "probability": 0.854 + }, + { + "start": 60080.11, + "end": 60081.93, + "probability": 0.8739 + }, + { + "start": 60082.57, + "end": 60083.47, + "probability": 0.8883 + }, + { + "start": 60083.63, + "end": 60084.63, + "probability": 0.786 + }, + { + "start": 60084.89, + "end": 60086.55, + "probability": 0.9434 + }, + { + "start": 60086.71, + "end": 60088.29, + "probability": 0.7184 + }, + { + "start": 60089.31, + "end": 60093.33, + "probability": 0.9919 + }, + { + "start": 60093.98, + "end": 60095.07, + "probability": 0.2866 + }, + { + "start": 60095.23, + "end": 60096.92, + "probability": 0.9822 + }, + { + "start": 60098.23, + "end": 60099.53, + "probability": 0.614 + }, + { + "start": 60100.09, + "end": 60101.59, + "probability": 0.9246 + }, + { + "start": 60101.83, + "end": 60103.67, + "probability": 0.9694 + }, + { + "start": 60104.63, + "end": 60106.65, + "probability": 0.0735 + }, + { + "start": 60106.65, + "end": 60106.65, + "probability": 0.199 + }, + { + "start": 60106.69, + "end": 60110.43, + "probability": 0.1954 + }, + { + "start": 60110.99, + "end": 60113.65, + "probability": 0.1544 + }, + { + "start": 60113.65, + "end": 60113.65, + "probability": 0.0257 + }, + { + "start": 60113.65, + "end": 60113.65, + "probability": 0.0857 + }, + { + "start": 60113.79, + "end": 60113.79, + "probability": 0.363 + }, + { + "start": 60113.97, + "end": 60114.13, + "probability": 0.4447 + }, + { + "start": 60114.23, + "end": 60114.83, + "probability": 0.7963 + }, + { + "start": 60114.93, + "end": 60116.25, + "probability": 0.8052 + }, + { + "start": 60116.47, + "end": 60119.69, + "probability": 0.9075 + }, + { + "start": 60120.25, + "end": 60122.49, + "probability": 0.9189 + }, + { + "start": 60122.49, + "end": 60123.83, + "probability": 0.8702 + }, + { + "start": 60124.13, + "end": 60125.17, + "probability": 0.4575 + }, + { + "start": 60125.51, + "end": 60126.33, + "probability": 0.7074 + }, + { + "start": 60126.89, + "end": 60127.75, + "probability": 0.7759 + }, + { + "start": 60128.93, + "end": 60132.33, + "probability": 0.9694 + }, + { + "start": 60132.59, + "end": 60132.99, + "probability": 0.4339 + }, + { + "start": 60133.43, + "end": 60134.59, + "probability": 0.9258 + }, + { + "start": 60134.73, + "end": 60135.73, + "probability": 0.9273 + }, + { + "start": 60136.39, + "end": 60140.34, + "probability": 0.9951 + }, + { + "start": 60140.51, + "end": 60141.51, + "probability": 0.9896 + }, + { + "start": 60143.05, + "end": 60145.17, + "probability": 0.826 + }, + { + "start": 60146.09, + "end": 60149.93, + "probability": 0.8042 + }, + { + "start": 60150.31, + "end": 60151.89, + "probability": 0.9775 + }, + { + "start": 60153.03, + "end": 60156.21, + "probability": 0.9982 + }, + { + "start": 60157.01, + "end": 60160.15, + "probability": 0.9981 + }, + { + "start": 60160.91, + "end": 60166.47, + "probability": 0.9545 + }, + { + "start": 60166.93, + "end": 60169.19, + "probability": 0.8067 + }, + { + "start": 60169.71, + "end": 60173.15, + "probability": 0.9951 + }, + { + "start": 60174.11, + "end": 60175.25, + "probability": 0.98 + }, + { + "start": 60176.03, + "end": 60177.29, + "probability": 0.9576 + }, + { + "start": 60177.95, + "end": 60179.83, + "probability": 0.96 + }, + { + "start": 60180.43, + "end": 60181.41, + "probability": 0.8589 + }, + { + "start": 60181.93, + "end": 60182.67, + "probability": 0.6485 + }, + { + "start": 60183.19, + "end": 60184.05, + "probability": 0.9283 + }, + { + "start": 60184.57, + "end": 60188.07, + "probability": 0.9998 + }, + { + "start": 60188.07, + "end": 60193.19, + "probability": 0.9998 + }, + { + "start": 60193.85, + "end": 60196.05, + "probability": 0.9873 + }, + { + "start": 60196.63, + "end": 60198.57, + "probability": 0.8152 + }, + { + "start": 60198.71, + "end": 60199.07, + "probability": 0.8181 + }, + { + "start": 60200.01, + "end": 60200.47, + "probability": 0.5823 + }, + { + "start": 60200.53, + "end": 60201.69, + "probability": 0.878 + }, + { + "start": 60213.21, + "end": 60213.21, + "probability": 0.1227 + }, + { + "start": 60213.21, + "end": 60213.27, + "probability": 0.0863 + }, + { + "start": 60226.93, + "end": 60227.47, + "probability": 0.5129 + }, + { + "start": 60228.19, + "end": 60228.53, + "probability": 0.8005 + }, + { + "start": 60228.77, + "end": 60230.07, + "probability": 0.9066 + }, + { + "start": 60230.83, + "end": 60233.01, + "probability": 0.9632 + }, + { + "start": 60234.23, + "end": 60236.21, + "probability": 0.9719 + }, + { + "start": 60236.75, + "end": 60237.11, + "probability": 0.9224 + }, + { + "start": 60238.43, + "end": 60240.45, + "probability": 0.9803 + }, + { + "start": 60243.29, + "end": 60245.75, + "probability": 0.7046 + }, + { + "start": 60246.35, + "end": 60247.47, + "probability": 0.9156 + }, + { + "start": 60249.03, + "end": 60250.39, + "probability": 0.7944 + }, + { + "start": 60252.13, + "end": 60253.21, + "probability": 0.9897 + }, + { + "start": 60254.13, + "end": 60255.29, + "probability": 0.9872 + }, + { + "start": 60255.99, + "end": 60257.07, + "probability": 0.9822 + }, + { + "start": 60259.03, + "end": 60261.15, + "probability": 0.9993 + }, + { + "start": 60262.93, + "end": 60266.15, + "probability": 0.9918 + }, + { + "start": 60267.21, + "end": 60269.77, + "probability": 0.9681 + }, + { + "start": 60271.31, + "end": 60272.77, + "probability": 0.9979 + }, + { + "start": 60273.41, + "end": 60275.45, + "probability": 0.7898 + }, + { + "start": 60276.41, + "end": 60279.73, + "probability": 0.9845 + }, + { + "start": 60280.23, + "end": 60282.13, + "probability": 0.9876 + }, + { + "start": 60282.53, + "end": 60283.83, + "probability": 0.9134 + }, + { + "start": 60284.31, + "end": 60285.73, + "probability": 0.9932 + }, + { + "start": 60286.25, + "end": 60289.33, + "probability": 0.8899 + }, + { + "start": 60290.47, + "end": 60295.83, + "probability": 0.9982 + }, + { + "start": 60297.29, + "end": 60302.77, + "probability": 0.9972 + }, + { + "start": 60304.15, + "end": 60305.43, + "probability": 0.9978 + }, + { + "start": 60306.71, + "end": 60311.35, + "probability": 0.9987 + }, + { + "start": 60312.51, + "end": 60315.99, + "probability": 0.9715 + }, + { + "start": 60316.41, + "end": 60318.82, + "probability": 0.9932 + }, + { + "start": 60319.73, + "end": 60321.59, + "probability": 0.9627 + }, + { + "start": 60322.13, + "end": 60322.69, + "probability": 0.5762 + }, + { + "start": 60324.41, + "end": 60325.67, + "probability": 0.9985 + }, + { + "start": 60326.29, + "end": 60327.5, + "probability": 0.9976 + }, + { + "start": 60328.79, + "end": 60331.87, + "probability": 0.9989 + }, + { + "start": 60333.09, + "end": 60336.29, + "probability": 0.998 + }, + { + "start": 60336.73, + "end": 60341.35, + "probability": 0.9927 + }, + { + "start": 60341.89, + "end": 60343.01, + "probability": 0.9984 + }, + { + "start": 60343.97, + "end": 60346.69, + "probability": 0.9084 + }, + { + "start": 60347.95, + "end": 60350.61, + "probability": 0.9799 + }, + { + "start": 60350.95, + "end": 60352.81, + "probability": 0.9381 + }, + { + "start": 60354.11, + "end": 60354.87, + "probability": 0.6064 + }, + { + "start": 60356.29, + "end": 60358.89, + "probability": 0.9572 + }, + { + "start": 60359.33, + "end": 60364.63, + "probability": 0.9956 + }, + { + "start": 60365.93, + "end": 60366.51, + "probability": 0.9362 + }, + { + "start": 60368.41, + "end": 60370.39, + "probability": 0.9927 + }, + { + "start": 60371.11, + "end": 60375.23, + "probability": 0.9952 + }, + { + "start": 60375.31, + "end": 60376.39, + "probability": 0.6324 + }, + { + "start": 60376.43, + "end": 60379.01, + "probability": 0.9969 + }, + { + "start": 60379.89, + "end": 60380.25, + "probability": 0.4454 + }, + { + "start": 60381.31, + "end": 60383.85, + "probability": 0.9873 + }, + { + "start": 60384.59, + "end": 60386.09, + "probability": 0.989 + }, + { + "start": 60386.47, + "end": 60388.31, + "probability": 0.9851 + }, + { + "start": 60389.39, + "end": 60389.69, + "probability": 0.6438 + }, + { + "start": 60391.13, + "end": 60391.65, + "probability": 0.8124 + }, + { + "start": 60393.89, + "end": 60394.99, + "probability": 0.929 + }, + { + "start": 60395.45, + "end": 60398.47, + "probability": 0.0483 + }, + { + "start": 60409.11, + "end": 60409.33, + "probability": 0.0053 + }, + { + "start": 60409.35, + "end": 60410.47, + "probability": 0.842 + }, + { + "start": 60410.69, + "end": 60415.65, + "probability": 0.868 + }, + { + "start": 60416.15, + "end": 60416.73, + "probability": 0.9673 + }, + { + "start": 60417.89, + "end": 60420.13, + "probability": 0.7474 + }, + { + "start": 60421.61, + "end": 60423.37, + "probability": 0.9959 + }, + { + "start": 60424.77, + "end": 60427.21, + "probability": 0.9597 + }, + { + "start": 60428.43, + "end": 60430.75, + "probability": 0.9963 + }, + { + "start": 60431.93, + "end": 60433.77, + "probability": 0.9473 + }, + { + "start": 60434.57, + "end": 60437.17, + "probability": 0.892 + }, + { + "start": 60438.05, + "end": 60441.01, + "probability": 0.9887 + }, + { + "start": 60441.01, + "end": 60446.05, + "probability": 0.9713 + }, + { + "start": 60447.19, + "end": 60448.49, + "probability": 0.9282 + }, + { + "start": 60449.67, + "end": 60453.61, + "probability": 0.998 + }, + { + "start": 60454.25, + "end": 60456.01, + "probability": 0.9714 + }, + { + "start": 60456.99, + "end": 60461.03, + "probability": 0.9984 + }, + { + "start": 60462.03, + "end": 60465.31, + "probability": 0.9847 + }, + { + "start": 60466.09, + "end": 60467.37, + "probability": 0.9738 + }, + { + "start": 60468.15, + "end": 60469.83, + "probability": 0.9445 + }, + { + "start": 60470.41, + "end": 60472.25, + "probability": 0.9058 + }, + { + "start": 60472.91, + "end": 60475.47, + "probability": 0.9924 + }, + { + "start": 60476.07, + "end": 60478.21, + "probability": 0.951 + }, + { + "start": 60479.05, + "end": 60481.09, + "probability": 0.9163 + }, + { + "start": 60481.75, + "end": 60482.73, + "probability": 0.7342 + }, + { + "start": 60483.39, + "end": 60484.01, + "probability": 0.9364 + }, + { + "start": 60484.59, + "end": 60485.45, + "probability": 0.9167 + }, + { + "start": 60486.27, + "end": 60487.51, + "probability": 0.9321 + }, + { + "start": 60488.03, + "end": 60489.53, + "probability": 0.991 + }, + { + "start": 60490.17, + "end": 60491.49, + "probability": 0.9941 + }, + { + "start": 60492.03, + "end": 60492.93, + "probability": 0.9051 + }, + { + "start": 60493.51, + "end": 60494.11, + "probability": 0.927 + }, + { + "start": 60494.79, + "end": 60496.31, + "probability": 0.6724 + }, + { + "start": 60496.83, + "end": 60497.65, + "probability": 0.95 + }, + { + "start": 60498.67, + "end": 60499.96, + "probability": 0.985 + }, + { + "start": 60500.33, + "end": 60501.91, + "probability": 0.961 + }, + { + "start": 60502.25, + "end": 60503.73, + "probability": 0.9874 + }, + { + "start": 60504.03, + "end": 60505.67, + "probability": 0.8838 + }, + { + "start": 60506.27, + "end": 60509.67, + "probability": 0.9346 + }, + { + "start": 60510.23, + "end": 60511.21, + "probability": 0.961 + }, + { + "start": 60513.39, + "end": 60514.65, + "probability": 0.7981 + }, + { + "start": 60515.13, + "end": 60516.15, + "probability": 0.8944 + }, + { + "start": 60516.63, + "end": 60518.59, + "probability": 0.9963 + }, + { + "start": 60519.21, + "end": 60520.37, + "probability": 0.9663 + }, + { + "start": 60520.99, + "end": 60522.45, + "probability": 0.8584 + }, + { + "start": 60523.15, + "end": 60525.55, + "probability": 0.9841 + }, + { + "start": 60526.09, + "end": 60529.31, + "probability": 0.9521 + }, + { + "start": 60529.77, + "end": 60532.25, + "probability": 0.9815 + }, + { + "start": 60532.99, + "end": 60533.67, + "probability": 0.2171 + }, + { + "start": 60534.09, + "end": 60539.21, + "probability": 0.9961 + }, + { + "start": 60539.75, + "end": 60540.73, + "probability": 0.9598 + }, + { + "start": 60546.77, + "end": 60547.29, + "probability": 0.674 + }, + { + "start": 60548.41, + "end": 60549.65, + "probability": 0.9083 + }, + { + "start": 60550.13, + "end": 60550.71, + "probability": 0.6311 + }, + { + "start": 60550.81, + "end": 60552.05, + "probability": 0.9901 + }, + { + "start": 60552.15, + "end": 60552.69, + "probability": 0.6875 + }, + { + "start": 60553.21, + "end": 60554.29, + "probability": 0.9955 + }, + { + "start": 60571.53, + "end": 60572.97, + "probability": 0.6962 + }, + { + "start": 60574.35, + "end": 60575.37, + "probability": 0.4875 + }, + { + "start": 60576.53, + "end": 60577.57, + "probability": 0.2159 + }, + { + "start": 60577.79, + "end": 60578.79, + "probability": 0.6872 + }, + { + "start": 60578.81, + "end": 60582.77, + "probability": 0.9838 + }, + { + "start": 60586.43, + "end": 60589.85, + "probability": 0.8937 + }, + { + "start": 60590.47, + "end": 60591.23, + "probability": 0.9948 + }, + { + "start": 60594.29, + "end": 60598.27, + "probability": 0.9937 + }, + { + "start": 60599.25, + "end": 60600.63, + "probability": 0.8239 + }, + { + "start": 60601.51, + "end": 60605.09, + "probability": 0.9787 + }, + { + "start": 60605.69, + "end": 60607.32, + "probability": 0.8882 + }, + { + "start": 60608.45, + "end": 60613.15, + "probability": 0.9972 + }, + { + "start": 60614.67, + "end": 60615.95, + "probability": 0.8644 + }, + { + "start": 60616.95, + "end": 60619.25, + "probability": 0.9934 + }, + { + "start": 60620.2, + "end": 60623.23, + "probability": 0.9932 + }, + { + "start": 60623.45, + "end": 60625.31, + "probability": 0.8994 + }, + { + "start": 60625.41, + "end": 60628.39, + "probability": 0.8912 + }, + { + "start": 60629.59, + "end": 60633.59, + "probability": 0.9207 + }, + { + "start": 60634.95, + "end": 60637.27, + "probability": 0.9984 + }, + { + "start": 60637.71, + "end": 60637.97, + "probability": 0.1026 + }, + { + "start": 60638.03, + "end": 60640.89, + "probability": 0.8838 + }, + { + "start": 60641.03, + "end": 60642.41, + "probability": 0.8985 + }, + { + "start": 60643.45, + "end": 60643.55, + "probability": 0.5199 + }, + { + "start": 60643.71, + "end": 60644.53, + "probability": 0.9551 + }, + { + "start": 60644.65, + "end": 60645.49, + "probability": 0.5641 + }, + { + "start": 60645.61, + "end": 60649.32, + "probability": 0.9641 + }, + { + "start": 60650.31, + "end": 60651.56, + "probability": 0.9326 + }, + { + "start": 60652.45, + "end": 60656.61, + "probability": 0.9827 + }, + { + "start": 60657.33, + "end": 60657.97, + "probability": 0.9386 + }, + { + "start": 60658.57, + "end": 60659.37, + "probability": 0.742 + }, + { + "start": 60660.23, + "end": 60663.09, + "probability": 0.8861 + }, + { + "start": 60663.09, + "end": 60666.33, + "probability": 0.957 + }, + { + "start": 60667.51, + "end": 60672.23, + "probability": 0.9507 + }, + { + "start": 60672.43, + "end": 60674.71, + "probability": 0.7387 + }, + { + "start": 60674.73, + "end": 60677.19, + "probability": 0.884 + }, + { + "start": 60677.27, + "end": 60678.43, + "probability": 0.9455 + }, + { + "start": 60679.33, + "end": 60681.99, + "probability": 0.9622 + }, + { + "start": 60682.49, + "end": 60686.93, + "probability": 0.9186 + }, + { + "start": 60688.03, + "end": 60690.41, + "probability": 0.9829 + }, + { + "start": 60691.35, + "end": 60693.4, + "probability": 0.8535 + }, + { + "start": 60694.81, + "end": 60695.43, + "probability": 0.9118 + }, + { + "start": 60695.57, + "end": 60700.95, + "probability": 0.9634 + }, + { + "start": 60702.03, + "end": 60704.43, + "probability": 0.9878 + }, + { + "start": 60706.13, + "end": 60707.31, + "probability": 0.8163 + }, + { + "start": 60707.83, + "end": 60711.63, + "probability": 0.8491 + }, + { + "start": 60712.05, + "end": 60712.69, + "probability": 0.833 + }, + { + "start": 60712.77, + "end": 60714.73, + "probability": 0.9949 + }, + { + "start": 60715.71, + "end": 60716.25, + "probability": 0.7196 + }, + { + "start": 60716.33, + "end": 60717.89, + "probability": 0.8254 + }, + { + "start": 60717.95, + "end": 60719.09, + "probability": 0.9551 + }, + { + "start": 60719.21, + "end": 60719.85, + "probability": 0.4438 + }, + { + "start": 60719.97, + "end": 60722.19, + "probability": 0.9362 + }, + { + "start": 60722.25, + "end": 60723.43, + "probability": 0.9355 + }, + { + "start": 60723.71, + "end": 60725.2, + "probability": 0.8513 + }, + { + "start": 60726.19, + "end": 60728.69, + "probability": 0.7526 + }, + { + "start": 60729.29, + "end": 60732.53, + "probability": 0.995 + }, + { + "start": 60732.65, + "end": 60736.61, + "probability": 0.8068 + }, + { + "start": 60737.11, + "end": 60738.07, + "probability": 0.9651 + }, + { + "start": 60738.15, + "end": 60739.09, + "probability": 0.9722 + }, + { + "start": 60739.19, + "end": 60740.93, + "probability": 0.6162 + }, + { + "start": 60741.01, + "end": 60741.73, + "probability": 0.5959 + }, + { + "start": 60742.37, + "end": 60743.65, + "probability": 0.9976 + }, + { + "start": 60744.25, + "end": 60748.39, + "probability": 0.9738 + }, + { + "start": 60749.29, + "end": 60752.29, + "probability": 0.9382 + }, + { + "start": 60752.65, + "end": 60752.95, + "probability": 0.722 + }, + { + "start": 60755.05, + "end": 60755.31, + "probability": 0.7458 + }, + { + "start": 60756.19, + "end": 60757.31, + "probability": 0.9285 + }, + { + "start": 60757.91, + "end": 60759.03, + "probability": 0.8359 + }, + { + "start": 60759.63, + "end": 60761.37, + "probability": 0.9506 + }, + { + "start": 60762.63, + "end": 60763.29, + "probability": 0.6334 + }, + { + "start": 60764.45, + "end": 60766.25, + "probability": 0.9744 + }, + { + "start": 60767.31, + "end": 60767.95, + "probability": 0.951 + }, + { + "start": 60769.11, + "end": 60770.61, + "probability": 0.653 + }, + { + "start": 60775.39, + "end": 60778.09, + "probability": 0.6733 + }, + { + "start": 60780.25, + "end": 60782.55, + "probability": 0.9254 + }, + { + "start": 60796.57, + "end": 60799.75, + "probability": 0.0394 + }, + { + "start": 60800.09, + "end": 60802.36, + "probability": 0.0102 + }, + { + "start": 60802.69, + "end": 60805.05, + "probability": 0.1945 + }, + { + "start": 60805.05, + "end": 60805.93, + "probability": 0.0159 + }, + { + "start": 60832.45, + "end": 60837.15, + "probability": 0.9561 + }, + { + "start": 60837.81, + "end": 60838.49, + "probability": 0.4714 + }, + { + "start": 60840.13, + "end": 60842.91, + "probability": 0.9872 + }, + { + "start": 60843.49, + "end": 60844.57, + "probability": 0.999 + }, + { + "start": 60845.81, + "end": 60847.79, + "probability": 0.9697 + }, + { + "start": 60848.57, + "end": 60853.61, + "probability": 0.9938 + }, + { + "start": 60854.53, + "end": 60859.39, + "probability": 0.9497 + }, + { + "start": 60861.81, + "end": 60863.15, + "probability": 0.8376 + }, + { + "start": 60864.03, + "end": 60868.77, + "probability": 0.8815 + }, + { + "start": 60869.27, + "end": 60874.47, + "probability": 0.9971 + }, + { + "start": 60876.03, + "end": 60882.79, + "probability": 0.9915 + }, + { + "start": 60883.65, + "end": 60889.53, + "probability": 0.9844 + }, + { + "start": 60890.25, + "end": 60893.09, + "probability": 0.991 + }, + { + "start": 60894.05, + "end": 60895.05, + "probability": 0.9866 + }, + { + "start": 60895.71, + "end": 60897.17, + "probability": 0.9745 + }, + { + "start": 60898.77, + "end": 60900.81, + "probability": 0.9565 + }, + { + "start": 60900.91, + "end": 60906.63, + "probability": 0.9959 + }, + { + "start": 60907.27, + "end": 60908.87, + "probability": 0.9844 + }, + { + "start": 60910.21, + "end": 60914.09, + "probability": 0.9796 + }, + { + "start": 60915.11, + "end": 60920.43, + "probability": 0.9973 + }, + { + "start": 60921.61, + "end": 60927.49, + "probability": 0.9895 + }, + { + "start": 60927.59, + "end": 60928.45, + "probability": 0.9636 + }, + { + "start": 60929.55, + "end": 60935.03, + "probability": 0.9979 + }, + { + "start": 60935.97, + "end": 60937.09, + "probability": 0.8978 + }, + { + "start": 60937.71, + "end": 60938.71, + "probability": 0.8378 + }, + { + "start": 60939.65, + "end": 60940.95, + "probability": 0.8913 + }, + { + "start": 60942.09, + "end": 60943.85, + "probability": 0.8353 + }, + { + "start": 60944.51, + "end": 60946.99, + "probability": 0.9967 + }, + { + "start": 60947.71, + "end": 60953.11, + "probability": 0.9856 + }, + { + "start": 60955.03, + "end": 60957.91, + "probability": 0.6488 + }, + { + "start": 60958.15, + "end": 60961.71, + "probability": 0.9973 + }, + { + "start": 60962.27, + "end": 60963.17, + "probability": 0.9526 + }, + { + "start": 60963.85, + "end": 60966.39, + "probability": 0.8892 + }, + { + "start": 60967.05, + "end": 60971.31, + "probability": 0.998 + }, + { + "start": 60976.05, + "end": 60976.71, + "probability": 0.715 + }, + { + "start": 60978.55, + "end": 60979.49, + "probability": 0.8322 + }, + { + "start": 60980.13, + "end": 60981.07, + "probability": 0.6141 + }, + { + "start": 60982.59, + "end": 60983.31, + "probability": 0.6584 + }, + { + "start": 60984.13, + "end": 60985.55, + "probability": 0.9794 + }, + { + "start": 60986.27, + "end": 60986.99, + "probability": 0.9811 + }, + { + "start": 60987.55, + "end": 60988.79, + "probability": 0.9508 + }, + { + "start": 60990.47, + "end": 60992.09, + "probability": 0.5045 + }, + { + "start": 60992.13, + "end": 60993.77, + "probability": 0.9925 + }, + { + "start": 61019.69, + "end": 61021.71, + "probability": 0.659 + }, + { + "start": 61022.97, + "end": 61026.65, + "probability": 0.8582 + }, + { + "start": 61027.21, + "end": 61029.03, + "probability": 0.7611 + }, + { + "start": 61030.27, + "end": 61031.11, + "probability": 0.8653 + }, + { + "start": 61031.27, + "end": 61033.37, + "probability": 0.9984 + }, + { + "start": 61035.83, + "end": 61038.37, + "probability": 0.9741 + }, + { + "start": 61039.31, + "end": 61042.29, + "probability": 0.8295 + }, + { + "start": 61043.13, + "end": 61044.07, + "probability": 0.972 + }, + { + "start": 61044.59, + "end": 61046.71, + "probability": 0.9939 + }, + { + "start": 61048.05, + "end": 61049.05, + "probability": 0.9819 + }, + { + "start": 61049.93, + "end": 61057.35, + "probability": 0.959 + }, + { + "start": 61058.45, + "end": 61063.43, + "probability": 0.9948 + }, + { + "start": 61064.21, + "end": 61065.71, + "probability": 0.7612 + }, + { + "start": 61066.67, + "end": 61067.85, + "probability": 0.7835 + }, + { + "start": 61068.63, + "end": 61076.53, + "probability": 0.8402 + }, + { + "start": 61077.37, + "end": 61078.55, + "probability": 0.9219 + }, + { + "start": 61079.43, + "end": 61082.69, + "probability": 0.8208 + }, + { + "start": 61084.55, + "end": 61085.75, + "probability": 0.955 + }, + { + "start": 61085.87, + "end": 61090.23, + "probability": 0.9932 + }, + { + "start": 61091.25, + "end": 61094.39, + "probability": 0.9498 + }, + { + "start": 61095.13, + "end": 61097.15, + "probability": 0.9344 + }, + { + "start": 61097.63, + "end": 61099.23, + "probability": 0.9974 + }, + { + "start": 61099.33, + "end": 61100.91, + "probability": 0.7281 + }, + { + "start": 61102.35, + "end": 61104.67, + "probability": 0.9761 + }, + { + "start": 61105.77, + "end": 61106.93, + "probability": 0.9961 + }, + { + "start": 61107.17, + "end": 61108.99, + "probability": 0.5583 + }, + { + "start": 61109.87, + "end": 61111.73, + "probability": 0.9564 + }, + { + "start": 61112.59, + "end": 61114.91, + "probability": 0.8929 + }, + { + "start": 61115.91, + "end": 61119.19, + "probability": 0.9505 + }, + { + "start": 61120.13, + "end": 61121.97, + "probability": 0.9963 + }, + { + "start": 61123.21, + "end": 61128.93, + "probability": 0.9641 + }, + { + "start": 61129.83, + "end": 61130.45, + "probability": 0.7431 + }, + { + "start": 61130.85, + "end": 61136.17, + "probability": 0.9089 + }, + { + "start": 61136.71, + "end": 61140.75, + "probability": 0.9862 + }, + { + "start": 61141.79, + "end": 61144.37, + "probability": 0.8542 + }, + { + "start": 61144.49, + "end": 61145.15, + "probability": 0.9557 + }, + { + "start": 61146.93, + "end": 61151.47, + "probability": 0.9716 + }, + { + "start": 61152.13, + "end": 61155.77, + "probability": 0.8932 + }, + { + "start": 61156.49, + "end": 61159.37, + "probability": 0.8493 + }, + { + "start": 61159.61, + "end": 61161.61, + "probability": 0.5795 + }, + { + "start": 61162.47, + "end": 61162.71, + "probability": 0.9492 + }, + { + "start": 61163.83, + "end": 61164.65, + "probability": 0.7817 + }, + { + "start": 61165.81, + "end": 61167.19, + "probability": 0.5635 + }, + { + "start": 61168.01, + "end": 61170.63, + "probability": 0.8789 + }, + { + "start": 61171.81, + "end": 61172.89, + "probability": 0.9477 + }, + { + "start": 61173.63, + "end": 61176.23, + "probability": 0.9871 + }, + { + "start": 61176.87, + "end": 61177.57, + "probability": 0.958 + }, + { + "start": 61178.55, + "end": 61179.67, + "probability": 0.986 + }, + { + "start": 61180.21, + "end": 61182.19, + "probability": 0.9849 + }, + { + "start": 61183.49, + "end": 61186.35, + "probability": 0.9878 + }, + { + "start": 61187.69, + "end": 61190.49, + "probability": 0.993 + }, + { + "start": 61191.69, + "end": 61192.63, + "probability": 0.9456 + }, + { + "start": 61192.73, + "end": 61197.95, + "probability": 0.9948 + }, + { + "start": 61198.31, + "end": 61199.15, + "probability": 0.9662 + }, + { + "start": 61200.21, + "end": 61201.77, + "probability": 0.995 + }, + { + "start": 61202.79, + "end": 61204.55, + "probability": 0.925 + }, + { + "start": 61205.43, + "end": 61205.99, + "probability": 0.4272 + }, + { + "start": 61206.01, + "end": 61210.05, + "probability": 0.8416 + }, + { + "start": 61210.37, + "end": 61212.11, + "probability": 0.917 + }, + { + "start": 61212.55, + "end": 61215.41, + "probability": 0.8021 + }, + { + "start": 61215.59, + "end": 61216.51, + "probability": 0.8464 + }, + { + "start": 61217.05, + "end": 61219.83, + "probability": 0.7495 + }, + { + "start": 61219.89, + "end": 61222.97, + "probability": 0.9547 + }, + { + "start": 61223.81, + "end": 61226.71, + "probability": 0.2469 + }, + { + "start": 61227.11, + "end": 61229.33, + "probability": 0.9852 + }, + { + "start": 61230.45, + "end": 61231.89, + "probability": 0.9966 + }, + { + "start": 61232.85, + "end": 61234.63, + "probability": 0.8141 + }, + { + "start": 61235.23, + "end": 61239.07, + "probability": 0.9896 + }, + { + "start": 61239.15, + "end": 61239.87, + "probability": 0.5707 + }, + { + "start": 61240.15, + "end": 61240.45, + "probability": 0.7716 + }, + { + "start": 61241.11, + "end": 61242.29, + "probability": 0.7563 + }, + { + "start": 61243.51, + "end": 61244.03, + "probability": 0.2475 + }, + { + "start": 61244.83, + "end": 61246.11, + "probability": 0.8781 + }, + { + "start": 61261.79, + "end": 61262.69, + "probability": 0.0314 + }, + { + "start": 61263.01, + "end": 61264.27, + "probability": 0.1868 + }, + { + "start": 61264.27, + "end": 61264.67, + "probability": 0.0361 + }, + { + "start": 61264.67, + "end": 61264.71, + "probability": 0.0812 + }, + { + "start": 61290.27, + "end": 61292.69, + "probability": 0.3891 + }, + { + "start": 61294.03, + "end": 61296.11, + "probability": 0.8826 + }, + { + "start": 61297.53, + "end": 61300.17, + "probability": 0.8201 + }, + { + "start": 61301.73, + "end": 61302.43, + "probability": 0.922 + }, + { + "start": 61303.41, + "end": 61304.89, + "probability": 0.9801 + }, + { + "start": 61307.37, + "end": 61308.23, + "probability": 0.5428 + }, + { + "start": 61309.29, + "end": 61314.91, + "probability": 0.9853 + }, + { + "start": 61315.97, + "end": 61321.25, + "probability": 0.9941 + }, + { + "start": 61322.83, + "end": 61325.67, + "probability": 0.9843 + }, + { + "start": 61326.55, + "end": 61329.79, + "probability": 0.9969 + }, + { + "start": 61330.53, + "end": 61333.11, + "probability": 0.9994 + }, + { + "start": 61334.37, + "end": 61337.41, + "probability": 0.7863 + }, + { + "start": 61337.97, + "end": 61340.25, + "probability": 0.9982 + }, + { + "start": 61342.95, + "end": 61343.57, + "probability": 0.7191 + }, + { + "start": 61344.75, + "end": 61346.23, + "probability": 0.9827 + }, + { + "start": 61347.25, + "end": 61348.27, + "probability": 0.9473 + }, + { + "start": 61350.61, + "end": 61351.59, + "probability": 0.9722 + }, + { + "start": 61352.81, + "end": 61357.53, + "probability": 0.994 + }, + { + "start": 61359.31, + "end": 61363.19, + "probability": 0.8504 + }, + { + "start": 61364.27, + "end": 61364.33, + "probability": 0.6802 + }, + { + "start": 61365.29, + "end": 61368.63, + "probability": 0.9731 + }, + { + "start": 61369.91, + "end": 61371.33, + "probability": 0.949 + }, + { + "start": 61372.45, + "end": 61375.77, + "probability": 0.9543 + }, + { + "start": 61378.19, + "end": 61378.99, + "probability": 0.9078 + }, + { + "start": 61379.99, + "end": 61382.11, + "probability": 0.5568 + }, + { + "start": 61383.27, + "end": 61384.61, + "probability": 0.771 + }, + { + "start": 61385.81, + "end": 61389.03, + "probability": 0.9968 + }, + { + "start": 61390.85, + "end": 61391.97, + "probability": 0.3746 + }, + { + "start": 61392.75, + "end": 61394.81, + "probability": 0.9736 + }, + { + "start": 61395.61, + "end": 61398.45, + "probability": 0.9778 + }, + { + "start": 61399.37, + "end": 61401.63, + "probability": 0.9717 + }, + { + "start": 61405.15, + "end": 61410.37, + "probability": 0.9788 + }, + { + "start": 61411.57, + "end": 61414.67, + "probability": 0.9913 + }, + { + "start": 61415.99, + "end": 61417.31, + "probability": 0.9281 + }, + { + "start": 61418.19, + "end": 61422.39, + "probability": 0.9925 + }, + { + "start": 61423.25, + "end": 61428.21, + "probability": 0.993 + }, + { + "start": 61430.11, + "end": 61432.41, + "probability": 0.9854 + }, + { + "start": 61433.55, + "end": 61434.15, + "probability": 0.6763 + }, + { + "start": 61435.05, + "end": 61440.19, + "probability": 0.9972 + }, + { + "start": 61441.77, + "end": 61447.11, + "probability": 0.9471 + }, + { + "start": 61448.09, + "end": 61453.43, + "probability": 0.9976 + }, + { + "start": 61455.09, + "end": 61455.69, + "probability": 0.5655 + }, + { + "start": 61456.35, + "end": 61460.33, + "probability": 0.9993 + }, + { + "start": 61461.99, + "end": 61463.81, + "probability": 0.9975 + }, + { + "start": 61464.65, + "end": 61465.81, + "probability": 0.9622 + }, + { + "start": 61466.79, + "end": 61469.61, + "probability": 0.967 + }, + { + "start": 61471.11, + "end": 61474.11, + "probability": 0.9357 + }, + { + "start": 61475.57, + "end": 61476.09, + "probability": 0.5788 + }, + { + "start": 61477.07, + "end": 61479.37, + "probability": 0.8792 + }, + { + "start": 61480.45, + "end": 61484.47, + "probability": 0.9882 + }, + { + "start": 61485.97, + "end": 61486.47, + "probability": 0.9321 + }, + { + "start": 61487.51, + "end": 61493.25, + "probability": 0.9674 + }, + { + "start": 61493.25, + "end": 61497.23, + "probability": 0.945 + }, + { + "start": 61497.33, + "end": 61499.51, + "probability": 0.8136 + }, + { + "start": 61499.77, + "end": 61500.23, + "probability": 0.4961 + }, + { + "start": 61501.23, + "end": 61502.13, + "probability": 0.8361 + }, + { + "start": 61503.37, + "end": 61506.49, + "probability": 0.9767 + }, + { + "start": 61507.25, + "end": 61510.73, + "probability": 0.9984 + }, + { + "start": 61510.73, + "end": 61514.59, + "probability": 0.9966 + }, + { + "start": 61515.41, + "end": 61517.01, + "probability": 0.9729 + }, + { + "start": 61517.81, + "end": 61518.79, + "probability": 0.8574 + }, + { + "start": 61519.53, + "end": 61522.54, + "probability": 0.9414 + }, + { + "start": 61524.09, + "end": 61526.25, + "probability": 0.9893 + }, + { + "start": 61527.41, + "end": 61530.09, + "probability": 0.9468 + }, + { + "start": 61531.05, + "end": 61534.73, + "probability": 0.9943 + }, + { + "start": 61535.89, + "end": 61537.57, + "probability": 0.981 + }, + { + "start": 61538.49, + "end": 61539.99, + "probability": 0.9868 + }, + { + "start": 61540.55, + "end": 61540.83, + "probability": 0.7299 + }, + { + "start": 61540.85, + "end": 61541.25, + "probability": 0.6154 + }, + { + "start": 61542.09, + "end": 61544.65, + "probability": 0.9987 + }, + { + "start": 61545.49, + "end": 61547.53, + "probability": 0.9985 + }, + { + "start": 61547.53, + "end": 61550.67, + "probability": 0.9922 + }, + { + "start": 61551.39, + "end": 61553.99, + "probability": 0.9975 + }, + { + "start": 61554.25, + "end": 61557.13, + "probability": 0.9943 + }, + { + "start": 61557.51, + "end": 61558.05, + "probability": 0.7307 + }, + { + "start": 61558.93, + "end": 61559.05, + "probability": 0.5272 + }, + { + "start": 61559.85, + "end": 61560.43, + "probability": 0.6297 + }, + { + "start": 61561.11, + "end": 61563.25, + "probability": 0.9819 + }, + { + "start": 61564.11, + "end": 61566.05, + "probability": 0.8953 + }, + { + "start": 61566.75, + "end": 61568.87, + "probability": 0.425 + }, + { + "start": 61569.41, + "end": 61574.47, + "probability": 0.9927 + }, + { + "start": 61575.43, + "end": 61575.77, + "probability": 0.7137 + }, + { + "start": 61575.91, + "end": 61577.71, + "probability": 0.8297 + }, + { + "start": 61577.75, + "end": 61578.23, + "probability": 0.924 + }, + { + "start": 61580.43, + "end": 61582.59, + "probability": 0.1905 + }, + { + "start": 61593.91, + "end": 61595.19, + "probability": 0.4272 + }, + { + "start": 61595.73, + "end": 61597.83, + "probability": 0.0234 + }, + { + "start": 61620.75, + "end": 61622.51, + "probability": 0.7699 + }, + { + "start": 61623.95, + "end": 61627.13, + "probability": 0.6508 + }, + { + "start": 61627.31, + "end": 61627.67, + "probability": 0.0266 + }, + { + "start": 61628.07, + "end": 61632.29, + "probability": 0.6121 + }, + { + "start": 61634.21, + "end": 61636.65, + "probability": 0.9883 + }, + { + "start": 61637.97, + "end": 61639.49, + "probability": 0.9421 + }, + { + "start": 61640.49, + "end": 61645.15, + "probability": 0.9736 + }, + { + "start": 61646.61, + "end": 61650.69, + "probability": 0.991 + }, + { + "start": 61651.67, + "end": 61652.95, + "probability": 0.7125 + }, + { + "start": 61654.65, + "end": 61658.19, + "probability": 0.8556 + }, + { + "start": 61659.61, + "end": 61660.29, + "probability": 0.6331 + }, + { + "start": 61661.83, + "end": 61663.57, + "probability": 0.9478 + }, + { + "start": 61664.77, + "end": 61667.59, + "probability": 0.9118 + }, + { + "start": 61672.77, + "end": 61673.48, + "probability": 0.9839 + }, + { + "start": 61674.69, + "end": 61675.75, + "probability": 0.8127 + }, + { + "start": 61676.45, + "end": 61677.18, + "probability": 0.7427 + }, + { + "start": 61679.11, + "end": 61683.33, + "probability": 0.887 + }, + { + "start": 61684.35, + "end": 61686.19, + "probability": 0.8427 + }, + { + "start": 61688.89, + "end": 61691.45, + "probability": 0.9674 + }, + { + "start": 61692.57, + "end": 61693.66, + "probability": 0.5031 + }, + { + "start": 61694.39, + "end": 61695.81, + "probability": 0.9131 + }, + { + "start": 61696.79, + "end": 61698.89, + "probability": 0.97 + }, + { + "start": 61700.21, + "end": 61701.61, + "probability": 0.9946 + }, + { + "start": 61703.53, + "end": 61704.35, + "probability": 0.7791 + }, + { + "start": 61705.25, + "end": 61709.03, + "probability": 0.7951 + }, + { + "start": 61710.07, + "end": 61711.35, + "probability": 0.9396 + }, + { + "start": 61712.37, + "end": 61714.97, + "probability": 0.6965 + }, + { + "start": 61716.77, + "end": 61721.23, + "probability": 0.7281 + }, + { + "start": 61722.79, + "end": 61726.41, + "probability": 0.6595 + }, + { + "start": 61727.23, + "end": 61728.55, + "probability": 0.8745 + }, + { + "start": 61729.35, + "end": 61729.85, + "probability": 0.1126 + }, + { + "start": 61730.13, + "end": 61732.79, + "probability": 0.7787 + }, + { + "start": 61733.73, + "end": 61735.81, + "probability": 0.9878 + }, + { + "start": 61735.93, + "end": 61736.59, + "probability": 0.2995 + }, + { + "start": 61737.11, + "end": 61738.19, + "probability": 0.3408 + }, + { + "start": 61738.25, + "end": 61739.35, + "probability": 0.2831 + }, + { + "start": 61739.51, + "end": 61740.15, + "probability": 0.3908 + }, + { + "start": 61740.39, + "end": 61742.33, + "probability": 0.7396 + }, + { + "start": 61743.13, + "end": 61745.65, + "probability": 0.663 + }, + { + "start": 61748.47, + "end": 61750.41, + "probability": 0.834 + }, + { + "start": 61752.41, + "end": 61755.77, + "probability": 0.774 + }, + { + "start": 61755.85, + "end": 61756.93, + "probability": 0.8683 + }, + { + "start": 61757.67, + "end": 61757.95, + "probability": 0.5598 + }, + { + "start": 61757.95, + "end": 61761.03, + "probability": 0.9891 + }, + { + "start": 61761.63, + "end": 61765.07, + "probability": 0.9639 + }, + { + "start": 61766.13, + "end": 61767.81, + "probability": 0.9601 + }, + { + "start": 61768.45, + "end": 61772.41, + "probability": 0.5637 + }, + { + "start": 61772.51, + "end": 61773.27, + "probability": 0.6564 + }, + { + "start": 61773.53, + "end": 61776.16, + "probability": 0.9846 + }, + { + "start": 61776.83, + "end": 61777.62, + "probability": 0.8644 + }, + { + "start": 61778.05, + "end": 61780.02, + "probability": 0.9808 + }, + { + "start": 61780.71, + "end": 61782.47, + "probability": 0.7764 + }, + { + "start": 61783.01, + "end": 61784.83, + "probability": 0.8003 + }, + { + "start": 61786.83, + "end": 61789.41, + "probability": 0.9993 + }, + { + "start": 61790.31, + "end": 61792.39, + "probability": 0.9143 + }, + { + "start": 61793.57, + "end": 61797.47, + "probability": 0.94 + }, + { + "start": 61797.47, + "end": 61799.67, + "probability": 0.7429 + }, + { + "start": 61801.29, + "end": 61803.31, + "probability": 0.9648 + }, + { + "start": 61803.31, + "end": 61805.83, + "probability": 0.9961 + }, + { + "start": 61806.51, + "end": 61809.11, + "probability": 0.998 + }, + { + "start": 61809.95, + "end": 61811.09, + "probability": 0.7392 + }, + { + "start": 61811.25, + "end": 61812.07, + "probability": 0.514 + }, + { + "start": 61812.93, + "end": 61814.29, + "probability": 0.9282 + }, + { + "start": 61814.37, + "end": 61815.15, + "probability": 0.6385 + }, + { + "start": 61815.25, + "end": 61817.29, + "probability": 0.9856 + }, + { + "start": 61819.65, + "end": 61826.59, + "probability": 0.9935 + }, + { + "start": 61827.57, + "end": 61831.21, + "probability": 0.9484 + }, + { + "start": 61832.31, + "end": 61834.37, + "probability": 0.9943 + }, + { + "start": 61834.43, + "end": 61835.15, + "probability": 0.8102 + }, + { + "start": 61835.57, + "end": 61836.05, + "probability": 0.6242 + }, + { + "start": 61836.11, + "end": 61838.19, + "probability": 0.7528 + }, + { + "start": 61838.19, + "end": 61838.53, + "probability": 0.1122 + }, + { + "start": 61838.73, + "end": 61839.99, + "probability": 0.8693 + }, + { + "start": 61840.05, + "end": 61840.71, + "probability": 0.4454 + }, + { + "start": 61840.83, + "end": 61842.65, + "probability": 0.9792 + }, + { + "start": 61842.67, + "end": 61848.63, + "probability": 0.7456 + }, + { + "start": 61849.15, + "end": 61853.25, + "probability": 0.7778 + }, + { + "start": 61854.27, + "end": 61857.46, + "probability": 0.2286 + }, + { + "start": 61860.35, + "end": 61860.87, + "probability": 0.7099 + }, + { + "start": 61861.49, + "end": 61861.69, + "probability": 0.037 + }, + { + "start": 61862.49, + "end": 61862.87, + "probability": 0.5749 + }, + { + "start": 61864.09, + "end": 61865.21, + "probability": 0.1261 + }, + { + "start": 61865.33, + "end": 61867.51, + "probability": 0.127 + }, + { + "start": 61867.53, + "end": 61868.53, + "probability": 0.2473 + }, + { + "start": 61868.91, + "end": 61869.29, + "probability": 0.4683 + }, + { + "start": 61869.49, + "end": 61875.21, + "probability": 0.7436 + }, + { + "start": 61875.29, + "end": 61876.13, + "probability": 0.5756 + }, + { + "start": 61876.69, + "end": 61883.57, + "probability": 0.921 + }, + { + "start": 61883.67, + "end": 61885.97, + "probability": 0.0317 + }, + { + "start": 61886.99, + "end": 61889.77, + "probability": 0.9935 + }, + { + "start": 61892.12, + "end": 61895.23, + "probability": 0.8288 + }, + { + "start": 61895.41, + "end": 61897.59, + "probability": 0.8542 + }, + { + "start": 61898.05, + "end": 61899.15, + "probability": 0.604 + }, + { + "start": 61899.25, + "end": 61900.15, + "probability": 0.3057 + }, + { + "start": 61900.35, + "end": 61902.69, + "probability": 0.7698 + }, + { + "start": 61903.29, + "end": 61904.61, + "probability": 0.9475 + }, + { + "start": 61904.61, + "end": 61909.47, + "probability": 0.8981 + }, + { + "start": 61910.09, + "end": 61911.05, + "probability": 0.965 + }, + { + "start": 61911.21, + "end": 61912.59, + "probability": 0.8034 + }, + { + "start": 61913.03, + "end": 61917.71, + "probability": 0.6425 + }, + { + "start": 61918.57, + "end": 61919.57, + "probability": 0.8857 + }, + { + "start": 61921.19, + "end": 61924.37, + "probability": 0.6713 + }, + { + "start": 61924.39, + "end": 61925.61, + "probability": 0.5706 + }, + { + "start": 61926.15, + "end": 61931.53, + "probability": 0.8861 + }, + { + "start": 61948.03, + "end": 61948.77, + "probability": 0.582 + }, + { + "start": 61948.87, + "end": 61949.87, + "probability": 0.5125 + }, + { + "start": 61949.99, + "end": 61952.23, + "probability": 0.951 + }, + { + "start": 61952.85, + "end": 61952.87, + "probability": 0.8016 + }, + { + "start": 61952.95, + "end": 61958.07, + "probability": 0.8703 + }, + { + "start": 61962.59, + "end": 61964.38, + "probability": 0.7231 + }, + { + "start": 61966.17, + "end": 61968.75, + "probability": 0.7212 + }, + { + "start": 61969.37, + "end": 61972.65, + "probability": 0.9667 + }, + { + "start": 61972.85, + "end": 61976.91, + "probability": 0.9468 + }, + { + "start": 61977.33, + "end": 61977.87, + "probability": 0.8319 + }, + { + "start": 61978.45, + "end": 61980.97, + "probability": 0.9634 + }, + { + "start": 61982.17, + "end": 61988.73, + "probability": 0.9987 + }, + { + "start": 61988.73, + "end": 61995.25, + "probability": 0.9734 + }, + { + "start": 61995.45, + "end": 61996.93, + "probability": 0.8975 + }, + { + "start": 61997.49, + "end": 61998.6, + "probability": 0.5695 + }, + { + "start": 61999.18, + "end": 62002.43, + "probability": 0.9824 + }, + { + "start": 62002.95, + "end": 62005.01, + "probability": 0.9889 + }, + { + "start": 62005.49, + "end": 62010.37, + "probability": 0.9766 + }, + { + "start": 62010.37, + "end": 62016.69, + "probability": 0.9427 + }, + { + "start": 62016.73, + "end": 62019.97, + "probability": 0.9985 + }, + { + "start": 62021.01, + "end": 62022.77, + "probability": 0.9879 + }, + { + "start": 62022.87, + "end": 62024.21, + "probability": 0.7933 + }, + { + "start": 62024.21, + "end": 62026.93, + "probability": 0.9946 + }, + { + "start": 62027.55, + "end": 62030.73, + "probability": 0.9649 + }, + { + "start": 62031.17, + "end": 62032.08, + "probability": 0.8921 + }, + { + "start": 62032.27, + "end": 62032.97, + "probability": 0.8125 + }, + { + "start": 62033.67, + "end": 62034.91, + "probability": 0.9439 + }, + { + "start": 62034.97, + "end": 62036.39, + "probability": 0.9893 + }, + { + "start": 62036.47, + "end": 62036.99, + "probability": 0.8336 + }, + { + "start": 62037.15, + "end": 62037.61, + "probability": 0.6203 + }, + { + "start": 62037.65, + "end": 62039.05, + "probability": 0.8546 + }, + { + "start": 62040.01, + "end": 62042.73, + "probability": 0.918 + }, + { + "start": 62048.47, + "end": 62049.09, + "probability": 0.0006 + }, + { + "start": 62049.65, + "end": 62050.49, + "probability": 0.8447 + }, + { + "start": 62051.09, + "end": 62052.51, + "probability": 0.5578 + }, + { + "start": 62053.11, + "end": 62054.47, + "probability": 0.6274 + }, + { + "start": 62058.25, + "end": 62058.79, + "probability": 0.4231 + }, + { + "start": 62059.89, + "end": 62060.97, + "probability": 0.9263 + }, + { + "start": 62062.17, + "end": 62064.53, + "probability": 0.9861 + }, + { + "start": 62066.63, + "end": 62067.31, + "probability": 0.9738 + }, + { + "start": 62067.95, + "end": 62069.07, + "probability": 0.833 + }, + { + "start": 62072.59, + "end": 62073.19, + "probability": 0.6897 + }, + { + "start": 62073.61, + "end": 62074.49, + "probability": 0.3543 + }, + { + "start": 62074.49, + "end": 62076.63, + "probability": 0.8716 + }, + { + "start": 62077.75, + "end": 62082.35, + "probability": 0.5412 + }, + { + "start": 62082.79, + "end": 62084.53, + "probability": 0.8496 + }, + { + "start": 62086.93, + "end": 62087.45, + "probability": 0.7163 + }, + { + "start": 62087.59, + "end": 62091.01, + "probability": 0.7936 + }, + { + "start": 62092.19, + "end": 62093.95, + "probability": 0.9868 + }, + { + "start": 62094.83, + "end": 62096.91, + "probability": 0.9215 + }, + { + "start": 62098.03, + "end": 62098.61, + "probability": 0.4445 + }, + { + "start": 62099.15, + "end": 62100.95, + "probability": 0.674 + }, + { + "start": 62101.15, + "end": 62102.27, + "probability": 0.6089 + }, + { + "start": 62102.71, + "end": 62103.83, + "probability": 0.9095 + }, + { + "start": 62104.61, + "end": 62106.63, + "probability": 0.2315 + }, + { + "start": 62107.89, + "end": 62109.43, + "probability": 0.918 + }, + { + "start": 62110.87, + "end": 62115.37, + "probability": 0.9675 + }, + { + "start": 62116.01, + "end": 62117.71, + "probability": 0.6665 + }, + { + "start": 62122.27, + "end": 62122.89, + "probability": 0.1523 + }, + { + "start": 62123.67, + "end": 62124.77, + "probability": 0.5116 + }, + { + "start": 62126.71, + "end": 62128.61, + "probability": 0.8892 + }, + { + "start": 62130.41, + "end": 62131.37, + "probability": 0.9946 + }, + { + "start": 62133.17, + "end": 62135.09, + "probability": 0.8133 + }, + { + "start": 62135.85, + "end": 62137.15, + "probability": 0.9312 + }, + { + "start": 62138.11, + "end": 62139.65, + "probability": 0.8073 + }, + { + "start": 62140.21, + "end": 62141.09, + "probability": 0.8057 + }, + { + "start": 62141.19, + "end": 62142.63, + "probability": 0.728 + }, + { + "start": 62143.01, + "end": 62144.35, + "probability": 0.7728 + }, + { + "start": 62145.09, + "end": 62146.25, + "probability": 0.9476 + }, + { + "start": 62147.51, + "end": 62149.07, + "probability": 0.8628 + }, + { + "start": 62151.89, + "end": 62152.39, + "probability": 0.3619 + }, + { + "start": 62153.83, + "end": 62155.19, + "probability": 0.9131 + }, + { + "start": 62155.53, + "end": 62157.07, + "probability": 0.8959 + }, + { + "start": 62157.17, + "end": 62158.35, + "probability": 0.9023 + }, + { + "start": 62158.51, + "end": 62160.63, + "probability": 0.9554 + }, + { + "start": 62161.13, + "end": 62162.45, + "probability": 0.9965 + }, + { + "start": 62163.93, + "end": 62164.73, + "probability": 0.9862 + }, + { + "start": 62164.79, + "end": 62166.49, + "probability": 0.9438 + }, + { + "start": 62166.53, + "end": 62166.99, + "probability": 0.9874 + }, + { + "start": 62167.05, + "end": 62168.57, + "probability": 0.9875 + }, + { + "start": 62170.91, + "end": 62171.63, + "probability": 0.6255 + }, + { + "start": 62172.85, + "end": 62173.91, + "probability": 0.747 + }, + { + "start": 62177.05, + "end": 62180.01, + "probability": 0.6228 + }, + { + "start": 62180.85, + "end": 62182.67, + "probability": 0.9043 + }, + { + "start": 62185.05, + "end": 62186.55, + "probability": 0.9034 + }, + { + "start": 62187.41, + "end": 62189.37, + "probability": 0.8091 + }, + { + "start": 62189.83, + "end": 62190.45, + "probability": 0.924 + }, + { + "start": 62190.53, + "end": 62192.89, + "probability": 0.6266 + }, + { + "start": 62195.05, + "end": 62197.05, + "probability": 0.4132 + }, + { + "start": 62200.11, + "end": 62201.41, + "probability": 0.7248 + }, + { + "start": 62202.21, + "end": 62204.75, + "probability": 0.8924 + }, + { + "start": 62205.61, + "end": 62207.57, + "probability": 0.8524 + }, + { + "start": 62209.65, + "end": 62211.65, + "probability": 0.9297 + }, + { + "start": 62212.95, + "end": 62213.79, + "probability": 0.9087 + }, + { + "start": 62214.41, + "end": 62215.47, + "probability": 0.6356 + }, + { + "start": 62217.49, + "end": 62220.69, + "probability": 0.7754 + }, + { + "start": 62221.31, + "end": 62222.81, + "probability": 0.9879 + }, + { + "start": 62224.11, + "end": 62228.01, + "probability": 0.9725 + }, + { + "start": 62228.67, + "end": 62229.33, + "probability": 0.9619 + }, + { + "start": 62230.05, + "end": 62231.07, + "probability": 0.6457 + }, + { + "start": 62231.61, + "end": 62233.41, + "probability": 0.7615 + }, + { + "start": 62234.69, + "end": 62238.15, + "probability": 0.9173 + }, + { + "start": 62238.95, + "end": 62239.83, + "probability": 0.9791 + }, + { + "start": 62240.37, + "end": 62241.63, + "probability": 0.9932 + }, + { + "start": 62242.75, + "end": 62243.45, + "probability": 0.9779 + }, + { + "start": 62244.19, + "end": 62245.18, + "probability": 0.7132 + }, + { + "start": 62247.11, + "end": 62248.91, + "probability": 0.3667 + }, + { + "start": 62249.49, + "end": 62250.53, + "probability": 0.9131 + }, + { + "start": 62252.91, + "end": 62253.87, + "probability": 0.8612 + }, + { + "start": 62255.11, + "end": 62256.43, + "probability": 0.9021 + }, + { + "start": 62256.85, + "end": 62257.35, + "probability": 0.9829 + }, + { + "start": 62257.83, + "end": 62259.15, + "probability": 0.8379 + }, + { + "start": 62260.35, + "end": 62262.69, + "probability": 0.9895 + }, + { + "start": 62264.15, + "end": 62264.89, + "probability": 0.7469 + }, + { + "start": 62266.07, + "end": 62269.47, + "probability": 0.8617 + }, + { + "start": 62270.13, + "end": 62271.43, + "probability": 0.9497 + }, + { + "start": 62272.73, + "end": 62273.39, + "probability": 0.692 + }, + { + "start": 62273.97, + "end": 62275.19, + "probability": 0.9904 + }, + { + "start": 62276.87, + "end": 62280.32, + "probability": 0.7881 + }, + { + "start": 62280.99, + "end": 62282.47, + "probability": 0.9692 + }, + { + "start": 62285.37, + "end": 62285.99, + "probability": 0.9736 + }, + { + "start": 62287.07, + "end": 62289.49, + "probability": 0.7964 + }, + { + "start": 62291.57, + "end": 62292.71, + "probability": 0.8194 + }, + { + "start": 62292.83, + "end": 62293.23, + "probability": 0.5105 + }, + { + "start": 62293.39, + "end": 62294.75, + "probability": 0.9924 + }, + { + "start": 62295.71, + "end": 62297.29, + "probability": 0.9867 + }, + { + "start": 62297.83, + "end": 62300.05, + "probability": 0.9868 + }, + { + "start": 62300.73, + "end": 62301.99, + "probability": 0.9969 + }, + { + "start": 62307.69, + "end": 62308.47, + "probability": 0.7145 + }, + { + "start": 62308.67, + "end": 62310.43, + "probability": 0.8151 + }, + { + "start": 62314.43, + "end": 62314.69, + "probability": 0.4566 + }, + { + "start": 62316.17, + "end": 62317.67, + "probability": 0.717 + }, + { + "start": 62317.85, + "end": 62321.93, + "probability": 0.7274 + }, + { + "start": 62323.13, + "end": 62325.19, + "probability": 0.8885 + }, + { + "start": 62325.27, + "end": 62326.13, + "probability": 0.7388 + }, + { + "start": 62327.11, + "end": 62331.29, + "probability": 0.7437 + }, + { + "start": 62331.85, + "end": 62332.49, + "probability": 0.748 + }, + { + "start": 62334.43, + "end": 62337.69, + "probability": 0.9766 + }, + { + "start": 62339.45, + "end": 62340.51, + "probability": 0.9428 + }, + { + "start": 62341.05, + "end": 62343.21, + "probability": 0.9922 + }, + { + "start": 62343.31, + "end": 62344.39, + "probability": 0.8279 + }, + { + "start": 62344.57, + "end": 62345.67, + "probability": 0.761 + }, + { + "start": 62345.77, + "end": 62346.69, + "probability": 0.8228 + }, + { + "start": 62346.89, + "end": 62348.03, + "probability": 0.9192 + }, + { + "start": 62350.71, + "end": 62359.19, + "probability": 0.9868 + }, + { + "start": 62359.55, + "end": 62360.85, + "probability": 0.6269 + }, + { + "start": 62361.99, + "end": 62363.33, + "probability": 0.9755 + }, + { + "start": 62364.11, + "end": 62366.97, + "probability": 0.9877 + }, + { + "start": 62367.93, + "end": 62368.17, + "probability": 0.8962 + }, + { + "start": 62370.97, + "end": 62374.19, + "probability": 0.7204 + }, + { + "start": 62375.41, + "end": 62378.61, + "probability": 0.9919 + }, + { + "start": 62379.91, + "end": 62381.79, + "probability": 0.9985 + }, + { + "start": 62382.93, + "end": 62385.51, + "probability": 0.8228 + }, + { + "start": 62385.99, + "end": 62387.63, + "probability": 0.9349 + }, + { + "start": 62388.55, + "end": 62391.95, + "probability": 0.8083 + }, + { + "start": 62392.27, + "end": 62393.03, + "probability": 0.4022 + }, + { + "start": 62393.57, + "end": 62396.09, + "probability": 0.9728 + }, + { + "start": 62396.33, + "end": 62400.57, + "probability": 0.8281 + }, + { + "start": 62401.35, + "end": 62402.23, + "probability": 0.9468 + }, + { + "start": 62403.03, + "end": 62405.83, + "probability": 0.999 + }, + { + "start": 62406.53, + "end": 62408.83, + "probability": 0.9844 + }, + { + "start": 62411.79, + "end": 62412.05, + "probability": 0.0494 + }, + { + "start": 62412.05, + "end": 62413.71, + "probability": 0.9301 + }, + { + "start": 62414.85, + "end": 62417.81, + "probability": 0.8786 + }, + { + "start": 62418.51, + "end": 62421.77, + "probability": 0.9373 + }, + { + "start": 62422.41, + "end": 62423.87, + "probability": 0.8138 + }, + { + "start": 62424.21, + "end": 62425.62, + "probability": 0.6479 + }, + { + "start": 62427.43, + "end": 62427.99, + "probability": 0.575 + }, + { + "start": 62428.05, + "end": 62431.17, + "probability": 0.9208 + }, + { + "start": 62432.17, + "end": 62434.27, + "probability": 0.9609 + }, + { + "start": 62434.61, + "end": 62438.41, + "probability": 0.9042 + }, + { + "start": 62438.85, + "end": 62441.17, + "probability": 0.9929 + }, + { + "start": 62442.95, + "end": 62444.39, + "probability": 0.9723 + }, + { + "start": 62445.37, + "end": 62449.39, + "probability": 0.9321 + }, + { + "start": 62449.47, + "end": 62450.21, + "probability": 0.9971 + }, + { + "start": 62450.43, + "end": 62451.49, + "probability": 0.7747 + }, + { + "start": 62452.49, + "end": 62454.39, + "probability": 0.3866 + }, + { + "start": 62454.43, + "end": 62455.79, + "probability": 0.9207 + }, + { + "start": 62457.21, + "end": 62460.29, + "probability": 0.8687 + }, + { + "start": 62461.09, + "end": 62464.65, + "probability": 0.877 + }, + { + "start": 62465.01, + "end": 62466.9, + "probability": 0.9985 + }, + { + "start": 62467.43, + "end": 62470.37, + "probability": 0.9939 + }, + { + "start": 62470.37, + "end": 62470.43, + "probability": 0.4872 + }, + { + "start": 62470.45, + "end": 62473.71, + "probability": 0.8747 + }, + { + "start": 62474.51, + "end": 62477.71, + "probability": 0.0992 + }, + { + "start": 62477.71, + "end": 62480.59, + "probability": 0.953 + }, + { + "start": 62481.45, + "end": 62482.85, + "probability": 0.7041 + }, + { + "start": 62483.47, + "end": 62488.09, + "probability": 0.9785 + }, + { + "start": 62488.13, + "end": 62492.15, + "probability": 0.9328 + }, + { + "start": 62492.39, + "end": 62495.17, + "probability": 0.9692 + }, + { + "start": 62495.73, + "end": 62499.97, + "probability": 0.932 + }, + { + "start": 62500.73, + "end": 62503.73, + "probability": 0.9971 + }, + { + "start": 62503.85, + "end": 62504.77, + "probability": 0.8634 + }, + { + "start": 62504.99, + "end": 62506.13, + "probability": 0.566 + }, + { + "start": 62506.27, + "end": 62507.11, + "probability": 0.8686 + }, + { + "start": 62507.17, + "end": 62510.39, + "probability": 0.9539 + }, + { + "start": 62511.03, + "end": 62513.43, + "probability": 0.9749 + }, + { + "start": 62514.29, + "end": 62515.43, + "probability": 0.7843 + }, + { + "start": 62515.61, + "end": 62516.17, + "probability": 0.9178 + }, + { + "start": 62516.69, + "end": 62517.35, + "probability": 0.7816 + }, + { + "start": 62518.87, + "end": 62520.45, + "probability": 0.6542 + }, + { + "start": 62520.53, + "end": 62522.33, + "probability": 0.7556 + }, + { + "start": 62522.49, + "end": 62523.37, + "probability": 0.8224 + }, + { + "start": 62523.83, + "end": 62525.61, + "probability": 0.9146 + }, + { + "start": 62525.65, + "end": 62526.93, + "probability": 0.9625 + }, + { + "start": 62526.93, + "end": 62530.2, + "probability": 0.65 + }, + { + "start": 62530.95, + "end": 62536.35, + "probability": 0.5872 + }, + { + "start": 62538.43, + "end": 62542.13, + "probability": 0.2371 + }, + { + "start": 62555.69, + "end": 62559.57, + "probability": 0.24 + }, + { + "start": 62559.65, + "end": 62559.83, + "probability": 0.437 + }, + { + "start": 62560.65, + "end": 62565.97, + "probability": 0.4268 + }, + { + "start": 62567.17, + "end": 62567.31, + "probability": 0.0193 + }, + { + "start": 62569.15, + "end": 62571.39, + "probability": 0.1731 + }, + { + "start": 62577.58, + "end": 62579.31, + "probability": 0.0395 + }, + { + "start": 62579.45, + "end": 62582.13, + "probability": 0.4108 + }, + { + "start": 62583.21, + "end": 62587.81, + "probability": 0.0515 + }, + { + "start": 62587.81, + "end": 62589.45, + "probability": 0.3477 + }, + { + "start": 62590.85, + "end": 62591.56, + "probability": 0.0484 + }, + { + "start": 62595.33, + "end": 62596.39, + "probability": 0.0963 + }, + { + "start": 62597.75, + "end": 62598.49, + "probability": 0.0555 + }, + { + "start": 62599.77, + "end": 62601.63, + "probability": 0.0 + }, + { + "start": 62607.06, + "end": 62609.87, + "probability": 0.0417 + }, + { + "start": 62611.08, + "end": 62614.57, + "probability": 0.0818 + }, + { + "start": 62614.67, + "end": 62615.23, + "probability": 0.1777 + }, + { + "start": 62626.0, + "end": 62626.0, + "probability": 0.0 + }, + { + "start": 62626.0, + "end": 62626.0, + "probability": 0.0 + }, + { + "start": 62626.0, + "end": 62626.0, + "probability": 0.0 + }, + { + "start": 62626.0, + "end": 62626.0, + "probability": 0.0 + }, + { + "start": 62626.0, + "end": 62626.0, + "probability": 0.0 + }, + { + "start": 62626.0, + "end": 62626.1, + "probability": 0.2995 + }, + { + "start": 62626.1, + "end": 62627.14, + "probability": 0.9311 + }, + { + "start": 62627.24, + "end": 62628.72, + "probability": 0.9009 + }, + { + "start": 62629.48, + "end": 62632.04, + "probability": 0.9357 + }, + { + "start": 62632.76, + "end": 62636.58, + "probability": 0.994 + }, + { + "start": 62637.72, + "end": 62641.82, + "probability": 0.9985 + }, + { + "start": 62642.02, + "end": 62645.8, + "probability": 0.9419 + }, + { + "start": 62646.52, + "end": 62649.17, + "probability": 0.9756 + }, + { + "start": 62650.0, + "end": 62651.01, + "probability": 0.98 + }, + { + "start": 62651.44, + "end": 62652.7, + "probability": 0.4092 + }, + { + "start": 62654.92, + "end": 62655.82, + "probability": 0.7894 + }, + { + "start": 62656.04, + "end": 62659.66, + "probability": 0.9756 + }, + { + "start": 62659.84, + "end": 62663.7, + "probability": 0.8824 + }, + { + "start": 62664.44, + "end": 62669.98, + "probability": 0.9968 + }, + { + "start": 62671.3, + "end": 62672.35, + "probability": 0.9479 + }, + { + "start": 62672.92, + "end": 62677.88, + "probability": 0.8997 + }, + { + "start": 62677.96, + "end": 62682.54, + "probability": 0.9995 + }, + { + "start": 62683.3, + "end": 62684.16, + "probability": 0.8148 + }, + { + "start": 62684.84, + "end": 62686.14, + "probability": 0.8111 + }, + { + "start": 62686.14, + "end": 62686.86, + "probability": 0.7492 + }, + { + "start": 62691.12, + "end": 62692.24, + "probability": 0.1659 + }, + { + "start": 62692.38, + "end": 62694.58, + "probability": 0.9044 + }, + { + "start": 62694.76, + "end": 62695.34, + "probability": 0.4634 + }, + { + "start": 62695.8, + "end": 62696.88, + "probability": 0.9616 + }, + { + "start": 62697.3, + "end": 62697.88, + "probability": 0.856 + }, + { + "start": 62699.29, + "end": 62702.2, + "probability": 0.8614 + }, + { + "start": 62703.76, + "end": 62704.5, + "probability": 0.6871 + }, + { + "start": 62705.6, + "end": 62707.28, + "probability": 0.7035 + }, + { + "start": 62708.38, + "end": 62709.0, + "probability": 0.6438 + }, + { + "start": 62709.08, + "end": 62710.36, + "probability": 0.8817 + }, + { + "start": 62710.4, + "end": 62710.88, + "probability": 0.8464 + }, + { + "start": 62710.98, + "end": 62712.68, + "probability": 0.6753 + }, + { + "start": 62713.9, + "end": 62714.52, + "probability": 0.8376 + }, + { + "start": 62715.0, + "end": 62716.54, + "probability": 0.7351 + }, + { + "start": 62716.64, + "end": 62717.1, + "probability": 0.9154 + }, + { + "start": 62717.32, + "end": 62718.78, + "probability": 0.6179 + }, + { + "start": 62721.22, + "end": 62721.78, + "probability": 0.7178 + }, + { + "start": 62723.93, + "end": 62727.38, + "probability": 0.8652 + }, + { + "start": 62728.12, + "end": 62730.38, + "probability": 0.9164 + }, + { + "start": 62731.4, + "end": 62732.8, + "probability": 0.9621 + }, + { + "start": 62733.5, + "end": 62734.76, + "probability": 0.964 + }, + { + "start": 62735.86, + "end": 62736.4, + "probability": 0.427 + }, + { + "start": 62737.54, + "end": 62738.08, + "probability": 0.323 + }, + { + "start": 62738.84, + "end": 62740.08, + "probability": 0.771 + }, + { + "start": 62740.88, + "end": 62743.08, + "probability": 0.9685 + }, + { + "start": 62744.54, + "end": 62745.3, + "probability": 0.9681 + }, + { + "start": 62745.94, + "end": 62747.0, + "probability": 0.9552 + }, + { + "start": 62748.14, + "end": 62748.72, + "probability": 0.451 + }, + { + "start": 62749.38, + "end": 62750.78, + "probability": 0.9002 + }, + { + "start": 62752.04, + "end": 62753.8, + "probability": 0.6345 + }, + { + "start": 62755.56, + "end": 62756.36, + "probability": 0.9042 + }, + { + "start": 62757.24, + "end": 62758.56, + "probability": 0.9322 + }, + { + "start": 62758.88, + "end": 62759.5, + "probability": 0.4559 + }, + { + "start": 62759.84, + "end": 62761.1, + "probability": 0.9953 + }, + { + "start": 62761.2, + "end": 62761.72, + "probability": 0.8828 + }, + { + "start": 62762.22, + "end": 62763.86, + "probability": 0.7655 + }, + { + "start": 62764.44, + "end": 62765.2, + "probability": 0.9175 + }, + { + "start": 62765.96, + "end": 62768.4, + "probability": 0.9912 + }, + { + "start": 62769.57, + "end": 62772.42, + "probability": 0.9983 + }, + { + "start": 62779.88, + "end": 62780.36, + "probability": 0.4919 + }, + { + "start": 62780.46, + "end": 62781.06, + "probability": 0.7516 + }, + { + "start": 62786.96, + "end": 62789.08, + "probability": 0.5621 + }, + { + "start": 62789.1, + "end": 62790.04, + "probability": 0.6775 + }, + { + "start": 62793.24, + "end": 62795.5, + "probability": 0.9897 + }, + { + "start": 62795.5, + "end": 62800.08, + "probability": 0.6031 + }, + { + "start": 62800.16, + "end": 62804.3, + "probability": 0.8391 + }, + { + "start": 62804.52, + "end": 62804.98, + "probability": 0.5172 + }, + { + "start": 62811.24, + "end": 62811.34, + "probability": 0.2052 + }, + { + "start": 62820.56, + "end": 62824.36, + "probability": 0.8276 + }, + { + "start": 62824.36, + "end": 62828.42, + "probability": 0.5663 + }, + { + "start": 62828.5, + "end": 62829.4, + "probability": 0.6567 + }, + { + "start": 62830.86, + "end": 62833.16, + "probability": 0.7435 + }, + { + "start": 62834.18, + "end": 62834.5, + "probability": 0.0176 + }, + { + "start": 62836.38, + "end": 62836.38, + "probability": 0.1438 + }, + { + "start": 62850.26, + "end": 62851.14, + "probability": 0.19 + }, + { + "start": 62851.94, + "end": 62858.12, + "probability": 0.1002 + }, + { + "start": 62859.1, + "end": 62863.28, + "probability": 0.0211 + }, + { + "start": 62865.52, + "end": 62866.12, + "probability": 0.1041 + }, + { + "start": 62866.12, + "end": 62867.0, + "probability": 0.0824 + }, + { + "start": 62867.26, + "end": 62868.2, + "probability": 0.0778 + }, + { + "start": 62869.06, + "end": 62869.16, + "probability": 0.0499 + }, + { + "start": 62871.38, + "end": 62871.74, + "probability": 0.0529 + }, + { + "start": 62871.79, + "end": 62874.3, + "probability": 0.0297 + }, + { + "start": 62879.28, + "end": 62880.08, + "probability": 0.1028 + }, + { + "start": 62894.16, + "end": 62895.84, + "probability": 0.4569 + }, + { + "start": 62897.4, + "end": 62897.92, + "probability": 0.1613 + }, + { + "start": 62898.8, + "end": 62901.9, + "probability": 0.3 + }, + { + "start": 62903.22, + "end": 62906.1, + "probability": 0.0533 + }, + { + "start": 62906.1, + "end": 62906.26, + "probability": 0.0154 + }, + { + "start": 62907.46, + "end": 62908.98, + "probability": 0.0692 + }, + { + "start": 62909.0, + "end": 62909.0, + "probability": 0.0 + }, + { + "start": 62909.0, + "end": 62909.0, + "probability": 0.0 + }, + { + "start": 62909.0, + "end": 62909.0, + "probability": 0.0 + }, + { + "start": 62909.0, + "end": 62909.0, + "probability": 0.0 + }, + { + "start": 62909.0, + "end": 62909.0, + "probability": 0.0 + }, + { + "start": 62909.24, + "end": 62909.24, + "probability": 0.1589 + }, + { + "start": 62909.24, + "end": 62909.24, + "probability": 0.2086 + }, + { + "start": 62909.4, + "end": 62912.7, + "probability": 0.9885 + }, + { + "start": 62913.34, + "end": 62916.24, + "probability": 0.9849 + }, + { + "start": 62916.8, + "end": 62919.48, + "probability": 0.8411 + }, + { + "start": 62920.46, + "end": 62921.72, + "probability": 0.9734 + }, + { + "start": 62921.88, + "end": 62925.44, + "probability": 0.902 + }, + { + "start": 62926.02, + "end": 62929.5, + "probability": 0.9949 + }, + { + "start": 62929.5, + "end": 62933.28, + "probability": 0.9927 + }, + { + "start": 62933.88, + "end": 62936.48, + "probability": 0.9858 + }, + { + "start": 62936.58, + "end": 62938.34, + "probability": 0.7997 + }, + { + "start": 62939.02, + "end": 62940.84, + "probability": 0.8314 + }, + { + "start": 62941.38, + "end": 62945.62, + "probability": 0.997 + }, + { + "start": 62945.68, + "end": 62947.72, + "probability": 0.8579 + }, + { + "start": 62948.16, + "end": 62950.42, + "probability": 0.9927 + }, + { + "start": 62951.42, + "end": 62954.68, + "probability": 0.8667 + }, + { + "start": 62955.14, + "end": 62958.56, + "probability": 0.9648 + }, + { + "start": 62958.84, + "end": 62959.0, + "probability": 0.8635 + }, + { + "start": 62959.82, + "end": 62960.0, + "probability": 0.2711 + }, + { + "start": 62960.0, + "end": 62961.3, + "probability": 0.9083 + }, + { + "start": 62961.42, + "end": 62963.48, + "probability": 0.9479 + }, + { + "start": 62963.56, + "end": 62964.5, + "probability": 0.8971 + }, + { + "start": 62965.58, + "end": 62969.44, + "probability": 0.9893 + }, + { + "start": 62969.84, + "end": 62972.72, + "probability": 0.9909 + }, + { + "start": 62973.04, + "end": 62976.7, + "probability": 0.9991 + }, + { + "start": 62976.7, + "end": 62981.4, + "probability": 0.9995 + }, + { + "start": 62982.0, + "end": 62985.64, + "probability": 0.999 + }, + { + "start": 62985.64, + "end": 62989.74, + "probability": 0.9595 + }, + { + "start": 62990.14, + "end": 62991.3, + "probability": 0.958 + }, + { + "start": 62991.8, + "end": 62994.58, + "probability": 0.9839 + }, + { + "start": 62994.68, + "end": 62997.38, + "probability": 0.9939 + }, + { + "start": 62997.78, + "end": 63001.12, + "probability": 0.833 + }, + { + "start": 63001.68, + "end": 63005.24, + "probability": 0.9637 + }, + { + "start": 63005.24, + "end": 63008.34, + "probability": 0.9854 + }, + { + "start": 63008.8, + "end": 63011.4, + "probability": 0.9972 + }, + { + "start": 63011.74, + "end": 63014.24, + "probability": 0.9912 + }, + { + "start": 63014.74, + "end": 63017.82, + "probability": 0.9966 + }, + { + "start": 63017.82, + "end": 63020.44, + "probability": 0.8567 + }, + { + "start": 63020.56, + "end": 63021.24, + "probability": 0.7595 + }, + { + "start": 63021.9, + "end": 63024.9, + "probability": 0.825 + }, + { + "start": 63025.44, + "end": 63027.4, + "probability": 0.9307 + }, + { + "start": 63027.98, + "end": 63032.42, + "probability": 0.998 + }, + { + "start": 63032.5, + "end": 63035.08, + "probability": 0.9987 + }, + { + "start": 63035.6, + "end": 63036.84, + "probability": 0.8 + }, + { + "start": 63036.94, + "end": 63039.96, + "probability": 0.998 + }, + { + "start": 63040.42, + "end": 63041.08, + "probability": 0.8043 + }, + { + "start": 63041.16, + "end": 63044.6, + "probability": 0.9819 + }, + { + "start": 63045.16, + "end": 63049.16, + "probability": 0.993 + }, + { + "start": 63049.38, + "end": 63051.16, + "probability": 0.8964 + }, + { + "start": 63051.16, + "end": 63053.46, + "probability": 0.9861 + }, + { + "start": 63053.92, + "end": 63057.64, + "probability": 0.89 + }, + { + "start": 63058.2, + "end": 63059.84, + "probability": 0.6336 + }, + { + "start": 63059.96, + "end": 63060.6, + "probability": 0.8542 + }, + { + "start": 63060.68, + "end": 63061.98, + "probability": 0.9733 + }, + { + "start": 63062.56, + "end": 63064.36, + "probability": 0.7891 + }, + { + "start": 63064.92, + "end": 63066.04, + "probability": 0.656 + }, + { + "start": 63066.16, + "end": 63067.14, + "probability": 0.974 + }, + { + "start": 63067.22, + "end": 63069.38, + "probability": 0.8131 + }, + { + "start": 63069.4, + "end": 63074.14, + "probability": 0.9876 + }, + { + "start": 63074.4, + "end": 63075.12, + "probability": 0.6552 + }, + { + "start": 63075.2, + "end": 63077.76, + "probability": 0.8828 + }, + { + "start": 63078.04, + "end": 63078.24, + "probability": 0.8741 + }, + { + "start": 63078.96, + "end": 63083.08, + "probability": 0.5022 + }, + { + "start": 63083.36, + "end": 63084.98, + "probability": 0.9677 + }, + { + "start": 63089.08, + "end": 63091.64, + "probability": 0.6323 + }, + { + "start": 63091.94, + "end": 63091.94, + "probability": 0.0073 + }, + { + "start": 63092.65, + "end": 63095.65, + "probability": 0.2323 + }, + { + "start": 63095.78, + "end": 63095.82, + "probability": 0.0943 + }, + { + "start": 63096.5, + "end": 63102.74, + "probability": 0.9576 + }, + { + "start": 63102.74, + "end": 63106.38, + "probability": 0.7111 + }, + { + "start": 63106.42, + "end": 63108.62, + "probability": 0.6442 + }, + { + "start": 63109.56, + "end": 63116.34, + "probability": 0.081 + }, + { + "start": 63117.05, + "end": 63119.92, + "probability": 0.0172 + }, + { + "start": 63122.32, + "end": 63122.32, + "probability": 0.0235 + }, + { + "start": 63122.42, + "end": 63122.42, + "probability": 0.0574 + }, + { + "start": 63122.42, + "end": 63122.42, + "probability": 0.7452 + }, + { + "start": 63122.42, + "end": 63126.31, + "probability": 0.4798 + }, + { + "start": 63127.56, + "end": 63131.56, + "probability": 0.9811 + }, + { + "start": 63132.56, + "end": 63134.4, + "probability": 0.7496 + }, + { + "start": 63134.46, + "end": 63136.74, + "probability": 0.6733 + }, + { + "start": 63137.42, + "end": 63139.38, + "probability": 0.8469 + }, + { + "start": 63139.38, + "end": 63141.82, + "probability": 0.9224 + }, + { + "start": 63143.58, + "end": 63147.62, + "probability": 0.9148 + }, + { + "start": 63155.14, + "end": 63155.14, + "probability": 0.1584 + }, + { + "start": 63155.14, + "end": 63155.14, + "probability": 0.0942 + }, + { + "start": 63155.14, + "end": 63155.14, + "probability": 0.1111 + }, + { + "start": 63155.14, + "end": 63155.14, + "probability": 0.0071 + }, + { + "start": 63168.3, + "end": 63171.0, + "probability": 0.6968 + }, + { + "start": 63171.6, + "end": 63174.26, + "probability": 0.8848 + }, + { + "start": 63174.98, + "end": 63177.04, + "probability": 0.9941 + }, + { + "start": 63177.1, + "end": 63178.28, + "probability": 0.8148 + }, + { + "start": 63179.08, + "end": 63182.66, + "probability": 0.8467 + }, + { + "start": 63182.78, + "end": 63187.48, + "probability": 0.9355 + }, + { + "start": 63188.2, + "end": 63189.4, + "probability": 0.8019 + }, + { + "start": 63190.18, + "end": 63193.54, + "probability": 0.9924 + }, + { + "start": 63193.54, + "end": 63198.78, + "probability": 0.9984 + }, + { + "start": 63199.48, + "end": 63201.04, + "probability": 0.7155 + }, + { + "start": 63201.7, + "end": 63201.74, + "probability": 0.4854 + }, + { + "start": 63201.74, + "end": 63203.88, + "probability": 0.7635 + }, + { + "start": 63204.46, + "end": 63209.6, + "probability": 0.9966 + }, + { + "start": 63209.82, + "end": 63215.1, + "probability": 0.9789 + }, + { + "start": 63215.68, + "end": 63217.96, + "probability": 0.9776 + }, + { + "start": 63218.14, + "end": 63219.56, + "probability": 0.8524 + }, + { + "start": 63220.28, + "end": 63224.08, + "probability": 0.9954 + }, + { + "start": 63224.94, + "end": 63228.64, + "probability": 0.9751 + }, + { + "start": 63228.8, + "end": 63231.2, + "probability": 0.7436 + }, + { + "start": 63231.56, + "end": 63234.96, + "probability": 0.9662 + }, + { + "start": 63235.08, + "end": 63235.52, + "probability": 0.754 + }, + { + "start": 63235.98, + "end": 63236.14, + "probability": 0.3616 + }, + { + "start": 63237.3, + "end": 63239.1, + "probability": 0.3546 + }, + { + "start": 63239.96, + "end": 63239.96, + "probability": 0.665 + }, + { + "start": 63240.48, + "end": 63241.94, + "probability": 0.803 + }, + { + "start": 63242.72, + "end": 63243.06, + "probability": 0.2518 + }, + { + "start": 63243.22, + "end": 63244.08, + "probability": 0.629 + }, + { + "start": 63244.18, + "end": 63244.5, + "probability": 0.7592 + }, + { + "start": 63244.78, + "end": 63246.84, + "probability": 0.7648 + }, + { + "start": 63247.42, + "end": 63248.08, + "probability": 0.92 + }, + { + "start": 63248.7, + "end": 63249.74, + "probability": 0.9527 + }, + { + "start": 63249.82, + "end": 63250.3, + "probability": 0.8836 + }, + { + "start": 63250.36, + "end": 63252.32, + "probability": 0.9486 + }, + { + "start": 63253.22, + "end": 63253.76, + "probability": 0.4484 + }, + { + "start": 63257.16, + "end": 63259.42, + "probability": 0.6687 + }, + { + "start": 63260.84, + "end": 63263.12, + "probability": 0.8307 + }, + { + "start": 63264.18, + "end": 63266.44, + "probability": 0.8334 + }, + { + "start": 63267.6, + "end": 63269.32, + "probability": 0.6838 + }, + { + "start": 63270.78, + "end": 63273.36, + "probability": 0.7279 + }, + { + "start": 63274.06, + "end": 63274.96, + "probability": 0.6857 + }, + { + "start": 63275.04, + "end": 63275.42, + "probability": 0.9147 + }, + { + "start": 63275.56, + "end": 63277.06, + "probability": 0.6276 + }, + { + "start": 63277.08, + "end": 63278.04, + "probability": 0.5935 + }, + { + "start": 63278.68, + "end": 63279.56, + "probability": 0.8133 + }, + { + "start": 63281.06, + "end": 63283.22, + "probability": 0.9543 + }, + { + "start": 63287.3, + "end": 63287.86, + "probability": 0.5494 + }, + { + "start": 63287.86, + "end": 63287.86, + "probability": 0.2735 + }, + { + "start": 63287.86, + "end": 63288.14, + "probability": 0.5651 + }, + { + "start": 63288.96, + "end": 63289.46, + "probability": 0.7169 + }, + { + "start": 63289.58, + "end": 63290.84, + "probability": 0.8425 + }, + { + "start": 63290.98, + "end": 63291.52, + "probability": 0.7209 + }, + { + "start": 63291.62, + "end": 63292.98, + "probability": 0.9601 + }, + { + "start": 63294.48, + "end": 63295.12, + "probability": 0.7249 + }, + { + "start": 63295.58, + "end": 63297.0, + "probability": 0.9264 + }, + { + "start": 63297.08, + "end": 63297.56, + "probability": 0.6957 + }, + { + "start": 63297.64, + "end": 63298.52, + "probability": 0.7622 + }, + { + "start": 63298.58, + "end": 63298.92, + "probability": 0.3218 + }, + { + "start": 63299.52, + "end": 63300.74, + "probability": 0.7354 + }, + { + "start": 63300.92, + "end": 63301.64, + "probability": 0.9473 + }, + { + "start": 63301.72, + "end": 63302.88, + "probability": 0.8792 + }, + { + "start": 63302.88, + "end": 63303.36, + "probability": 0.6777 + }, + { + "start": 63303.88, + "end": 63305.02, + "probability": 0.9972 + }, + { + "start": 63305.9, + "end": 63306.82, + "probability": 0.8879 + }, + { + "start": 63307.86, + "end": 63308.38, + "probability": 0.8506 + }, + { + "start": 63314.2, + "end": 63317.1, + "probability": 0.7996 + }, + { + "start": 63317.1, + "end": 63319.98, + "probability": 0.6469 + }, + { + "start": 63319.98, + "end": 63322.02, + "probability": 0.7061 + }, + { + "start": 63322.92, + "end": 63324.12, + "probability": 0.7619 + }, + { + "start": 63327.02, + "end": 63328.58, + "probability": 0.1493 + }, + { + "start": 63329.8, + "end": 63331.56, + "probability": 0.0104 + }, + { + "start": 63339.18, + "end": 63342.12, + "probability": 0.1062 + }, + { + "start": 63343.04, + "end": 63345.73, + "probability": 0.6857 + }, + { + "start": 63346.82, + "end": 63349.14, + "probability": 0.1051 + }, + { + "start": 63352.56, + "end": 63353.28, + "probability": 0.5804 + }, + { + "start": 63353.64, + "end": 63354.2, + "probability": 0.7686 + }, + { + "start": 63356.04, + "end": 63356.14, + "probability": 0.9972 + }, + { + "start": 63357.84, + "end": 63359.88, + "probability": 0.9743 + }, + { + "start": 63359.88, + "end": 63360.7, + "probability": 0.3541 + }, + { + "start": 63361.32, + "end": 63366.58, + "probability": 0.9907 + }, + { + "start": 63366.7, + "end": 63367.86, + "probability": 0.5474 + }, + { + "start": 63367.88, + "end": 63371.04, + "probability": 0.9363 + }, + { + "start": 63372.56, + "end": 63374.92, + "probability": 0.801 + }, + { + "start": 63383.64, + "end": 63383.64, + "probability": 0.2802 + }, + { + "start": 63383.64, + "end": 63384.98, + "probability": 0.6379 + }, + { + "start": 63385.34, + "end": 63386.28, + "probability": 0.8185 + }, + { + "start": 63386.44, + "end": 63387.5, + "probability": 0.856 + }, + { + "start": 63388.54, + "end": 63392.44, + "probability": 0.9706 + }, + { + "start": 63392.66, + "end": 63396.4, + "probability": 0.8898 + }, + { + "start": 63396.56, + "end": 63397.62, + "probability": 0.6193 + }, + { + "start": 63398.56, + "end": 63401.32, + "probability": 0.9917 + }, + { + "start": 63402.0, + "end": 63403.52, + "probability": 0.9876 + }, + { + "start": 63404.38, + "end": 63404.68, + "probability": 0.3887 + }, + { + "start": 63404.7, + "end": 63406.06, + "probability": 0.9863 + }, + { + "start": 63406.18, + "end": 63412.1, + "probability": 0.8227 + }, + { + "start": 63412.78, + "end": 63415.72, + "probability": 0.9613 + }, + { + "start": 63416.22, + "end": 63417.58, + "probability": 0.9889 + }, + { + "start": 63418.1, + "end": 63422.9, + "probability": 0.9946 + }, + { + "start": 63424.12, + "end": 63426.8, + "probability": 0.8948 + }, + { + "start": 63427.02, + "end": 63429.84, + "probability": 0.5032 + }, + { + "start": 63430.0, + "end": 63435.64, + "probability": 0.9044 + }, + { + "start": 63436.5, + "end": 63437.94, + "probability": 0.6991 + }, + { + "start": 63438.68, + "end": 63439.58, + "probability": 0.6952 + }, + { + "start": 63439.64, + "end": 63440.54, + "probability": 0.962 + }, + { + "start": 63441.46, + "end": 63445.36, + "probability": 0.991 + }, + { + "start": 63445.96, + "end": 63450.52, + "probability": 0.9986 + }, + { + "start": 63450.52, + "end": 63455.74, + "probability": 0.9956 + }, + { + "start": 63456.34, + "end": 63459.24, + "probability": 0.9213 + }, + { + "start": 63460.1, + "end": 63462.26, + "probability": 0.9893 + }, + { + "start": 63463.02, + "end": 63466.76, + "probability": 0.9845 + }, + { + "start": 63466.76, + "end": 63471.2, + "probability": 0.9816 + }, + { + "start": 63471.98, + "end": 63476.22, + "probability": 0.9979 + }, + { + "start": 63476.22, + "end": 63480.54, + "probability": 0.9981 + }, + { + "start": 63480.98, + "end": 63481.98, + "probability": 0.9935 + }, + { + "start": 63483.4, + "end": 63483.84, + "probability": 0.6622 + }, + { + "start": 63484.88, + "end": 63487.52, + "probability": 0.8604 + }, + { + "start": 63488.32, + "end": 63490.3, + "probability": 0.9975 + }, + { + "start": 63491.26, + "end": 63493.18, + "probability": 0.9618 + }, + { + "start": 63493.76, + "end": 63494.34, + "probability": 0.8263 + }, + { + "start": 63495.04, + "end": 63498.34, + "probability": 0.9834 + }, + { + "start": 63498.94, + "end": 63504.91, + "probability": 0.9548 + }, + { + "start": 63506.14, + "end": 63511.34, + "probability": 0.915 + }, + { + "start": 63511.94, + "end": 63514.34, + "probability": 0.7576 + }, + { + "start": 63514.92, + "end": 63518.02, + "probability": 0.9948 + }, + { + "start": 63518.56, + "end": 63521.74, + "probability": 0.9948 + }, + { + "start": 63521.74, + "end": 63524.16, + "probability": 0.9976 + }, + { + "start": 63524.66, + "end": 63526.26, + "probability": 0.9634 + }, + { + "start": 63526.84, + "end": 63529.44, + "probability": 0.9981 + }, + { + "start": 63529.84, + "end": 63532.48, + "probability": 0.9984 + }, + { + "start": 63533.12, + "end": 63535.78, + "probability": 0.9719 + }, + { + "start": 63535.78, + "end": 63539.66, + "probability": 0.9919 + }, + { + "start": 63540.28, + "end": 63541.3, + "probability": 0.6682 + }, + { + "start": 63541.7, + "end": 63541.94, + "probability": 0.6388 + }, + { + "start": 63543.18, + "end": 63543.72, + "probability": 0.7195 + }, + { + "start": 63543.82, + "end": 63546.12, + "probability": 0.7768 + }, + { + "start": 63546.12, + "end": 63548.96, + "probability": 0.9878 + }, + { + "start": 63549.24, + "end": 63550.1, + "probability": 0.0253 + }, + { + "start": 63550.36, + "end": 63551.08, + "probability": 0.5306 + }, + { + "start": 63551.6, + "end": 63552.54, + "probability": 0.5054 + }, + { + "start": 63553.42, + "end": 63555.5, + "probability": 0.8996 + }, + { + "start": 63555.7, + "end": 63557.46, + "probability": 0.2902 + }, + { + "start": 63557.64, + "end": 63559.7, + "probability": 0.9716 + }, + { + "start": 63561.08, + "end": 63563.38, + "probability": 0.9626 + }, + { + "start": 63564.82, + "end": 63566.68, + "probability": 0.9048 + }, + { + "start": 63567.34, + "end": 63569.14, + "probability": 0.843 + }, + { + "start": 63569.54, + "end": 63573.04, + "probability": 0.6305 + }, + { + "start": 63574.22, + "end": 63575.29, + "probability": 0.8885 + }, + { + "start": 63576.38, + "end": 63578.26, + "probability": 0.5365 + }, + { + "start": 63579.74, + "end": 63582.68, + "probability": 0.6075 + }, + { + "start": 63584.56, + "end": 63586.18, + "probability": 0.6775 + }, + { + "start": 63590.7, + "end": 63591.3, + "probability": 0.1073 + }, + { + "start": 63592.1, + "end": 63593.36, + "probability": 0.5828 + }, + { + "start": 63596.26, + "end": 63596.86, + "probability": 0.6318 + }, + { + "start": 63597.26, + "end": 63598.66, + "probability": 0.9662 + }, + { + "start": 63598.72, + "end": 63599.16, + "probability": 0.7971 + }, + { + "start": 63599.26, + "end": 63600.22, + "probability": 0.8778 + }, + { + "start": 63600.28, + "end": 63600.66, + "probability": 0.9202 + }, + { + "start": 63600.8, + "end": 63602.5, + "probability": 0.83 + }, + { + "start": 63602.7, + "end": 63603.26, + "probability": 0.6823 + }, + { + "start": 63603.34, + "end": 63604.44, + "probability": 0.715 + }, + { + "start": 63605.1, + "end": 63607.86, + "probability": 0.9233 + }, + { + "start": 63608.98, + "end": 63609.52, + "probability": 0.8956 + }, + { + "start": 63610.06, + "end": 63610.86, + "probability": 0.9111 + }, + { + "start": 63611.0, + "end": 63611.54, + "probability": 0.9015 + }, + { + "start": 63611.6, + "end": 63613.24, + "probability": 0.8015 + }, + { + "start": 63613.26, + "end": 63613.9, + "probability": 0.7527 + }, + { + "start": 63614.6, + "end": 63615.54, + "probability": 0.9203 + }, + { + "start": 63615.6, + "end": 63616.14, + "probability": 0.6449 + }, + { + "start": 63616.6, + "end": 63617.56, + "probability": 0.8542 + }, + { + "start": 63618.8, + "end": 63619.34, + "probability": 0.879 + }, + { + "start": 63620.0, + "end": 63621.04, + "probability": 0.9913 + }, + { + "start": 63622.16, + "end": 63622.82, + "probability": 0.9719 + }, + { + "start": 63623.02, + "end": 63624.9, + "probability": 0.8083 + }, + { + "start": 63625.26, + "end": 63625.88, + "probability": 0.9821 + }, + { + "start": 63626.34, + "end": 63627.36, + "probability": 0.9555 + }, + { + "start": 63627.92, + "end": 63630.22, + "probability": 0.7274 + }, + { + "start": 63631.16, + "end": 63631.86, + "probability": 0.4716 + }, + { + "start": 63632.02, + "end": 63635.48, + "probability": 0.9468 + }, + { + "start": 63637.82, + "end": 63638.46, + "probability": 0.0458 + }, + { + "start": 63642.14, + "end": 63642.72, + "probability": 0.0926 + }, + { + "start": 63652.6, + "end": 63656.18, + "probability": 0.7481 + }, + { + "start": 63657.24, + "end": 63658.94, + "probability": 0.992 + }, + { + "start": 63659.0, + "end": 63661.2, + "probability": 0.9589 + }, + { + "start": 63662.36, + "end": 63663.1, + "probability": 0.0179 + }, + { + "start": 63663.62, + "end": 63664.26, + "probability": 0.0222 + }, + { + "start": 63665.04, + "end": 63666.32, + "probability": 0.0585 + }, + { + "start": 63667.14, + "end": 63668.2, + "probability": 0.1756 + }, + { + "start": 63670.54, + "end": 63673.9, + "probability": 0.0062 + }, + { + "start": 63674.48, + "end": 63675.34, + "probability": 0.0957 + }, + { + "start": 63676.78, + "end": 63678.88, + "probability": 0.1501 + }, + { + "start": 63680.26, + "end": 63683.36, + "probability": 0.7949 + }, + { + "start": 63683.46, + "end": 63685.26, + "probability": 0.9927 + }, + { + "start": 63685.26, + "end": 63688.02, + "probability": 0.9883 + }, + { + "start": 63688.16, + "end": 63690.54, + "probability": 0.7967 + }, + { + "start": 63691.96, + "end": 63694.72, + "probability": 0.2213 + }, + { + "start": 63695.98, + "end": 63695.98, + "probability": 0.8688 + }, + { + "start": 63696.2, + "end": 63696.48, + "probability": 0.743 + }, + { + "start": 63696.48, + "end": 63697.16, + "probability": 0.7638 + }, + { + "start": 63697.46, + "end": 63698.06, + "probability": 0.556 + }, + { + "start": 63698.12, + "end": 63699.84, + "probability": 0.7701 + }, + { + "start": 63700.06, + "end": 63702.88, + "probability": 0.7884 + }, + { + "start": 63702.98, + "end": 63704.74, + "probability": 0.7785 + }, + { + "start": 63704.82, + "end": 63707.03, + "probability": 0.5832 + }, + { + "start": 63708.06, + "end": 63709.42, + "probability": 0.8949 + }, + { + "start": 63713.46, + "end": 63716.78, + "probability": 0.3999 + }, + { + "start": 63717.2, + "end": 63718.68, + "probability": 0.894 + }, + { + "start": 63718.76, + "end": 63720.18, + "probability": 0.452 + }, + { + "start": 63720.3, + "end": 63722.3, + "probability": 0.5368 + }, + { + "start": 63722.6, + "end": 63747.3, + "probability": 0.628 + } + ], + "segments_count": 21553, + "words_count": 104321, + "avg_words_per_segment": 4.8402, + "avg_segment_duration": 1.9591, + "avg_words_per_minute": 98.1517, + "plenum_id": "128984", + "duration": 63771.26, + "title": null, + "plenum_date": "2024-07-17" +} \ No newline at end of file