diff --git "a/130645/metadata.json" "b/130645/metadata.json" new file mode 100644--- /dev/null +++ "b/130645/metadata.json" @@ -0,0 +1,15592 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "130645", + "quality_score": 0.905, + "per_segment_quality_scores": [ + { + "start": 80.82, + "end": 80.94, + "probability": 0.0395 + }, + { + "start": 80.94, + "end": 80.94, + "probability": 0.2112 + }, + { + "start": 80.94, + "end": 82.2, + "probability": 0.3475 + }, + { + "start": 82.74, + "end": 83.77, + "probability": 0.7724 + }, + { + "start": 84.18, + "end": 84.7, + "probability": 0.6208 + }, + { + "start": 85.06, + "end": 85.06, + "probability": 0.223 + }, + { + "start": 85.06, + "end": 85.94, + "probability": 0.2302 + }, + { + "start": 86.0, + "end": 87.46, + "probability": 0.4978 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.14, + "end": 120.76, + "probability": 0.0391 + }, + { + "start": 121.38, + "end": 126.32, + "probability": 0.951 + }, + { + "start": 127.1, + "end": 129.54, + "probability": 0.9034 + }, + { + "start": 130.52, + "end": 132.6, + "probability": 0.8696 + }, + { + "start": 132.94, + "end": 135.58, + "probability": 0.9932 + }, + { + "start": 136.44, + "end": 137.34, + "probability": 0.9131 + }, + { + "start": 137.72, + "end": 139.44, + "probability": 0.9163 + }, + { + "start": 139.78, + "end": 141.94, + "probability": 0.7858 + }, + { + "start": 142.28, + "end": 143.48, + "probability": 0.4841 + }, + { + "start": 143.74, + "end": 146.14, + "probability": 0.9661 + }, + { + "start": 146.96, + "end": 148.24, + "probability": 0.9211 + }, + { + "start": 148.3, + "end": 151.28, + "probability": 0.8335 + }, + { + "start": 152.42, + "end": 157.02, + "probability": 0.7463 + }, + { + "start": 158.34, + "end": 158.64, + "probability": 0.6962 + }, + { + "start": 158.82, + "end": 159.6, + "probability": 0.9656 + }, + { + "start": 159.94, + "end": 162.6, + "probability": 0.9564 + }, + { + "start": 163.46, + "end": 167.82, + "probability": 0.9208 + }, + { + "start": 168.52, + "end": 169.82, + "probability": 0.9243 + }, + { + "start": 170.42, + "end": 172.48, + "probability": 0.959 + }, + { + "start": 172.76, + "end": 173.52, + "probability": 0.9469 + }, + { + "start": 173.98, + "end": 174.7, + "probability": 0.9844 + }, + { + "start": 175.1, + "end": 175.76, + "probability": 0.8096 + }, + { + "start": 176.18, + "end": 178.32, + "probability": 0.9386 + }, + { + "start": 179.06, + "end": 181.12, + "probability": 0.9247 + }, + { + "start": 181.64, + "end": 183.56, + "probability": 0.8124 + }, + { + "start": 185.34, + "end": 185.34, + "probability": 0.6211 + }, + { + "start": 185.34, + "end": 188.52, + "probability": 0.9259 + }, + { + "start": 189.28, + "end": 191.32, + "probability": 0.9839 + }, + { + "start": 191.52, + "end": 194.46, + "probability": 0.8069 + }, + { + "start": 195.8, + "end": 197.54, + "probability": 0.8222 + }, + { + "start": 198.32, + "end": 200.0, + "probability": 0.9438 + }, + { + "start": 200.32, + "end": 205.38, + "probability": 0.8685 + }, + { + "start": 206.08, + "end": 206.64, + "probability": 0.7677 + }, + { + "start": 207.1, + "end": 207.94, + "probability": 0.9517 + }, + { + "start": 208.42, + "end": 210.82, + "probability": 0.9241 + }, + { + "start": 211.78, + "end": 213.76, + "probability": 0.8329 + }, + { + "start": 213.86, + "end": 214.62, + "probability": 0.8484 + }, + { + "start": 215.06, + "end": 218.0, + "probability": 0.9495 + }, + { + "start": 218.0, + "end": 221.12, + "probability": 0.9839 + }, + { + "start": 221.68, + "end": 223.05, + "probability": 0.9922 + }, + { + "start": 223.2, + "end": 227.3, + "probability": 0.9683 + }, + { + "start": 227.84, + "end": 229.22, + "probability": 0.953 + }, + { + "start": 229.78, + "end": 230.02, + "probability": 0.8989 + }, + { + "start": 230.22, + "end": 231.76, + "probability": 0.9446 + }, + { + "start": 234.22, + "end": 234.81, + "probability": 0.6259 + }, + { + "start": 234.92, + "end": 237.48, + "probability": 0.8974 + }, + { + "start": 237.88, + "end": 238.72, + "probability": 0.357 + }, + { + "start": 238.72, + "end": 239.42, + "probability": 0.7684 + }, + { + "start": 239.56, + "end": 240.7, + "probability": 0.9379 + }, + { + "start": 240.82, + "end": 242.58, + "probability": 0.8599 + }, + { + "start": 243.32, + "end": 249.18, + "probability": 0.9889 + }, + { + "start": 250.16, + "end": 252.48, + "probability": 0.8496 + }, + { + "start": 253.34, + "end": 257.84, + "probability": 0.8408 + }, + { + "start": 258.52, + "end": 259.48, + "probability": 0.7425 + }, + { + "start": 259.56, + "end": 261.02, + "probability": 0.8381 + }, + { + "start": 261.18, + "end": 263.38, + "probability": 0.9826 + }, + { + "start": 264.62, + "end": 265.86, + "probability": 0.5016 + }, + { + "start": 266.56, + "end": 268.46, + "probability": 0.9712 + }, + { + "start": 269.26, + "end": 270.6, + "probability": 0.903 + }, + { + "start": 271.28, + "end": 272.26, + "probability": 0.9246 + }, + { + "start": 272.38, + "end": 274.2, + "probability": 0.9486 + }, + { + "start": 274.64, + "end": 277.12, + "probability": 0.9673 + }, + { + "start": 278.18, + "end": 281.42, + "probability": 0.9816 + }, + { + "start": 282.14, + "end": 285.24, + "probability": 0.9045 + }, + { + "start": 285.74, + "end": 286.4, + "probability": 0.7268 + }, + { + "start": 286.7, + "end": 287.24, + "probability": 0.9779 + }, + { + "start": 287.26, + "end": 287.8, + "probability": 0.7023 + }, + { + "start": 288.38, + "end": 290.94, + "probability": 0.9857 + }, + { + "start": 291.8, + "end": 292.46, + "probability": 0.9712 + }, + { + "start": 293.2, + "end": 294.4, + "probability": 0.7432 + }, + { + "start": 295.2, + "end": 297.68, + "probability": 0.9556 + }, + { + "start": 298.2, + "end": 299.48, + "probability": 0.6829 + }, + { + "start": 299.54, + "end": 299.96, + "probability": 0.5653 + }, + { + "start": 301.0, + "end": 302.12, + "probability": 0.9658 + }, + { + "start": 302.61, + "end": 305.52, + "probability": 0.9351 + }, + { + "start": 306.28, + "end": 308.86, + "probability": 0.9939 + }, + { + "start": 309.62, + "end": 310.56, + "probability": 0.979 + }, + { + "start": 311.34, + "end": 314.44, + "probability": 0.9776 + }, + { + "start": 315.08, + "end": 320.66, + "probability": 0.9827 + }, + { + "start": 321.38, + "end": 322.05, + "probability": 0.8467 + }, + { + "start": 322.74, + "end": 323.7, + "probability": 0.7151 + }, + { + "start": 323.86, + "end": 326.6, + "probability": 0.9956 + }, + { + "start": 327.06, + "end": 327.34, + "probability": 0.7913 + }, + { + "start": 328.72, + "end": 329.2, + "probability": 0.792 + }, + { + "start": 329.84, + "end": 331.04, + "probability": 0.8077 + }, + { + "start": 339.58, + "end": 341.34, + "probability": 0.5229 + }, + { + "start": 342.4, + "end": 344.8, + "probability": 0.976 + }, + { + "start": 344.8, + "end": 347.18, + "probability": 0.982 + }, + { + "start": 348.36, + "end": 351.27, + "probability": 0.9453 + }, + { + "start": 351.56, + "end": 352.04, + "probability": 0.1629 + }, + { + "start": 352.52, + "end": 355.5, + "probability": 0.9922 + }, + { + "start": 355.5, + "end": 360.56, + "probability": 0.8729 + }, + { + "start": 361.74, + "end": 364.62, + "probability": 0.9859 + }, + { + "start": 365.34, + "end": 371.22, + "probability": 0.9805 + }, + { + "start": 371.22, + "end": 375.58, + "probability": 0.9985 + }, + { + "start": 377.44, + "end": 379.06, + "probability": 0.6389 + }, + { + "start": 380.52, + "end": 381.48, + "probability": 0.7124 + }, + { + "start": 392.74, + "end": 393.68, + "probability": 0.5027 + }, + { + "start": 394.66, + "end": 397.4, + "probability": 0.6116 + }, + { + "start": 398.38, + "end": 402.38, + "probability": 0.9589 + }, + { + "start": 403.84, + "end": 412.0, + "probability": 0.9902 + }, + { + "start": 412.9, + "end": 416.14, + "probability": 0.762 + }, + { + "start": 417.1, + "end": 420.24, + "probability": 0.7894 + }, + { + "start": 421.9, + "end": 426.9, + "probability": 0.9971 + }, + { + "start": 427.8, + "end": 430.04, + "probability": 0.9777 + }, + { + "start": 430.94, + "end": 435.34, + "probability": 0.957 + }, + { + "start": 436.02, + "end": 438.8, + "probability": 0.9404 + }, + { + "start": 438.98, + "end": 439.52, + "probability": 0.9535 + }, + { + "start": 439.62, + "end": 440.22, + "probability": 0.8408 + }, + { + "start": 440.36, + "end": 440.86, + "probability": 0.7296 + }, + { + "start": 442.62, + "end": 446.82, + "probability": 0.9836 + }, + { + "start": 447.44, + "end": 449.2, + "probability": 0.9893 + }, + { + "start": 449.92, + "end": 455.32, + "probability": 0.9931 + }, + { + "start": 459.84, + "end": 460.38, + "probability": 0.7385 + }, + { + "start": 461.22, + "end": 462.12, + "probability": 0.9307 + }, + { + "start": 463.4, + "end": 464.04, + "probability": 0.8047 + }, + { + "start": 470.28, + "end": 473.8, + "probability": 0.8459 + }, + { + "start": 474.5, + "end": 480.08, + "probability": 0.9813 + }, + { + "start": 480.78, + "end": 484.62, + "probability": 0.9783 + }, + { + "start": 484.62, + "end": 489.38, + "probability": 0.9928 + }, + { + "start": 490.24, + "end": 490.94, + "probability": 0.5001 + }, + { + "start": 491.54, + "end": 493.1, + "probability": 0.7038 + }, + { + "start": 493.76, + "end": 498.26, + "probability": 0.9939 + }, + { + "start": 499.02, + "end": 502.9, + "probability": 0.9989 + }, + { + "start": 504.0, + "end": 506.5, + "probability": 0.9783 + }, + { + "start": 506.72, + "end": 507.62, + "probability": 0.8257 + }, + { + "start": 509.12, + "end": 511.18, + "probability": 0.9955 + }, + { + "start": 511.26, + "end": 512.72, + "probability": 0.9409 + }, + { + "start": 513.34, + "end": 515.88, + "probability": 0.9712 + }, + { + "start": 516.94, + "end": 519.25, + "probability": 0.9888 + }, + { + "start": 520.42, + "end": 525.68, + "probability": 0.8758 + }, + { + "start": 526.4, + "end": 527.6, + "probability": 0.8631 + }, + { + "start": 527.72, + "end": 528.9, + "probability": 0.7898 + }, + { + "start": 528.96, + "end": 529.98, + "probability": 0.4886 + }, + { + "start": 530.04, + "end": 532.16, + "probability": 0.5742 + }, + { + "start": 533.12, + "end": 534.12, + "probability": 0.3986 + }, + { + "start": 534.4, + "end": 535.26, + "probability": 0.309 + }, + { + "start": 535.92, + "end": 537.48, + "probability": 0.8643 + }, + { + "start": 538.26, + "end": 538.36, + "probability": 0.6421 + }, + { + "start": 539.3, + "end": 540.68, + "probability": 0.9839 + }, + { + "start": 540.7, + "end": 543.1, + "probability": 0.9287 + }, + { + "start": 543.5, + "end": 547.18, + "probability": 0.8408 + }, + { + "start": 547.82, + "end": 547.82, + "probability": 0.6555 + }, + { + "start": 547.82, + "end": 547.82, + "probability": 0.3554 + }, + { + "start": 547.82, + "end": 549.14, + "probability": 0.5284 + }, + { + "start": 551.48, + "end": 553.56, + "probability": 0.786 + }, + { + "start": 553.64, + "end": 554.32, + "probability": 0.7848 + }, + { + "start": 554.38, + "end": 556.94, + "probability": 0.6395 + }, + { + "start": 557.7, + "end": 558.6, + "probability": 0.8274 + }, + { + "start": 559.56, + "end": 561.16, + "probability": 0.4736 + }, + { + "start": 573.62, + "end": 574.6, + "probability": 0.7354 + }, + { + "start": 575.96, + "end": 577.46, + "probability": 0.4986 + }, + { + "start": 578.78, + "end": 582.12, + "probability": 0.8405 + }, + { + "start": 583.84, + "end": 588.76, + "probability": 0.9951 + }, + { + "start": 588.76, + "end": 594.78, + "probability": 0.9574 + }, + { + "start": 596.2, + "end": 599.78, + "probability": 0.5807 + }, + { + "start": 600.82, + "end": 606.16, + "probability": 0.938 + }, + { + "start": 607.12, + "end": 609.26, + "probability": 0.4801 + }, + { + "start": 610.64, + "end": 613.76, + "probability": 0.8325 + }, + { + "start": 614.36, + "end": 618.54, + "probability": 0.9647 + }, + { + "start": 619.64, + "end": 620.74, + "probability": 0.7448 + }, + { + "start": 621.48, + "end": 622.18, + "probability": 0.7603 + }, + { + "start": 623.38, + "end": 624.68, + "probability": 0.9775 + }, + { + "start": 626.14, + "end": 633.44, + "probability": 0.8874 + }, + { + "start": 634.14, + "end": 636.84, + "probability": 0.8272 + }, + { + "start": 637.0, + "end": 637.98, + "probability": 0.5622 + }, + { + "start": 638.68, + "end": 641.86, + "probability": 0.9905 + }, + { + "start": 642.48, + "end": 643.18, + "probability": 0.6301 + }, + { + "start": 643.76, + "end": 645.59, + "probability": 0.7335 + }, + { + "start": 646.58, + "end": 648.02, + "probability": 0.9465 + }, + { + "start": 648.74, + "end": 651.64, + "probability": 0.9824 + }, + { + "start": 652.18, + "end": 653.16, + "probability": 0.8121 + }, + { + "start": 653.76, + "end": 654.7, + "probability": 0.9163 + }, + { + "start": 655.26, + "end": 659.42, + "probability": 0.9799 + }, + { + "start": 659.42, + "end": 664.5, + "probability": 0.9818 + }, + { + "start": 664.9, + "end": 665.58, + "probability": 0.7411 + }, + { + "start": 665.82, + "end": 667.2, + "probability": 0.6607 + }, + { + "start": 668.2, + "end": 668.86, + "probability": 0.2049 + }, + { + "start": 669.46, + "end": 669.68, + "probability": 0.3257 + }, + { + "start": 669.68, + "end": 676.02, + "probability": 0.4915 + }, + { + "start": 676.34, + "end": 676.78, + "probability": 0.2399 + }, + { + "start": 677.72, + "end": 681.2, + "probability": 0.9596 + }, + { + "start": 681.5, + "end": 681.52, + "probability": 0.0836 + }, + { + "start": 681.56, + "end": 683.8, + "probability": 0.9637 + }, + { + "start": 683.88, + "end": 684.24, + "probability": 0.6309 + }, + { + "start": 684.42, + "end": 685.26, + "probability": 0.3446 + }, + { + "start": 685.32, + "end": 686.44, + "probability": 0.6769 + }, + { + "start": 686.44, + "end": 688.06, + "probability": 0.953 + }, + { + "start": 688.12, + "end": 688.38, + "probability": 0.756 + }, + { + "start": 688.4, + "end": 689.82, + "probability": 0.9362 + }, + { + "start": 689.84, + "end": 690.52, + "probability": 0.7145 + }, + { + "start": 690.58, + "end": 691.04, + "probability": 0.6353 + }, + { + "start": 691.04, + "end": 691.36, + "probability": 0.8729 + }, + { + "start": 692.08, + "end": 693.76, + "probability": 0.88 + }, + { + "start": 696.74, + "end": 697.9, + "probability": 0.5572 + }, + { + "start": 698.5, + "end": 700.18, + "probability": 0.7606 + }, + { + "start": 701.4, + "end": 706.21, + "probability": 0.9534 + }, + { + "start": 707.56, + "end": 710.32, + "probability": 0.9271 + }, + { + "start": 710.5, + "end": 711.06, + "probability": 0.7741 + }, + { + "start": 711.12, + "end": 712.08, + "probability": 0.9232 + }, + { + "start": 712.54, + "end": 715.94, + "probability": 0.9126 + }, + { + "start": 716.32, + "end": 720.2, + "probability": 0.9121 + }, + { + "start": 720.5, + "end": 723.98, + "probability": 0.9282 + }, + { + "start": 724.48, + "end": 725.16, + "probability": 0.9442 + }, + { + "start": 725.98, + "end": 727.2, + "probability": 0.9885 + }, + { + "start": 727.52, + "end": 730.38, + "probability": 0.8287 + }, + { + "start": 730.66, + "end": 732.38, + "probability": 0.9922 + }, + { + "start": 733.44, + "end": 733.88, + "probability": 0.596 + }, + { + "start": 733.98, + "end": 740.42, + "probability": 0.8466 + }, + { + "start": 740.42, + "end": 752.94, + "probability": 0.9784 + }, + { + "start": 753.28, + "end": 755.5, + "probability": 0.9393 + }, + { + "start": 755.88, + "end": 756.46, + "probability": 0.5134 + }, + { + "start": 757.16, + "end": 761.32, + "probability": 0.9416 + }, + { + "start": 761.46, + "end": 767.78, + "probability": 0.9474 + }, + { + "start": 768.64, + "end": 773.4, + "probability": 0.872 + }, + { + "start": 773.52, + "end": 774.26, + "probability": 0.9411 + }, + { + "start": 774.28, + "end": 775.34, + "probability": 0.7192 + }, + { + "start": 775.86, + "end": 780.74, + "probability": 0.9561 + }, + { + "start": 781.54, + "end": 782.12, + "probability": 0.902 + }, + { + "start": 782.22, + "end": 783.7, + "probability": 0.8307 + }, + { + "start": 784.0, + "end": 787.18, + "probability": 0.9006 + }, + { + "start": 787.18, + "end": 790.18, + "probability": 0.8914 + }, + { + "start": 790.68, + "end": 793.98, + "probability": 0.936 + }, + { + "start": 793.98, + "end": 797.76, + "probability": 0.9135 + }, + { + "start": 797.92, + "end": 798.52, + "probability": 0.4119 + }, + { + "start": 798.54, + "end": 798.88, + "probability": 0.8222 + }, + { + "start": 799.6, + "end": 805.16, + "probability": 0.9868 + }, + { + "start": 806.16, + "end": 809.26, + "probability": 0.6019 + }, + { + "start": 809.32, + "end": 812.84, + "probability": 0.8865 + }, + { + "start": 813.56, + "end": 813.78, + "probability": 0.8504 + }, + { + "start": 814.6, + "end": 816.58, + "probability": 0.7013 + }, + { + "start": 817.02, + "end": 817.62, + "probability": 0.8379 + }, + { + "start": 818.2, + "end": 819.18, + "probability": 0.8574 + }, + { + "start": 819.74, + "end": 820.78, + "probability": 0.8035 + }, + { + "start": 821.22, + "end": 822.44, + "probability": 0.9946 + }, + { + "start": 823.06, + "end": 823.54, + "probability": 0.815 + }, + { + "start": 824.54, + "end": 825.04, + "probability": 0.7449 + }, + { + "start": 825.12, + "end": 827.72, + "probability": 0.8878 + }, + { + "start": 828.58, + "end": 833.22, + "probability": 0.6724 + }, + { + "start": 834.22, + "end": 835.82, + "probability": 0.8837 + }, + { + "start": 835.88, + "end": 839.0, + "probability": 0.929 + }, + { + "start": 853.36, + "end": 856.66, + "probability": 0.6229 + }, + { + "start": 857.58, + "end": 858.6, + "probability": 0.5439 + }, + { + "start": 858.66, + "end": 859.8, + "probability": 0.8529 + }, + { + "start": 859.88, + "end": 862.56, + "probability": 0.981 + }, + { + "start": 862.56, + "end": 866.74, + "probability": 0.781 + }, + { + "start": 868.24, + "end": 870.58, + "probability": 0.9367 + }, + { + "start": 871.12, + "end": 871.54, + "probability": 0.4714 + }, + { + "start": 871.64, + "end": 873.7, + "probability": 0.9991 + }, + { + "start": 873.7, + "end": 875.96, + "probability": 0.9875 + }, + { + "start": 876.34, + "end": 876.84, + "probability": 0.7884 + }, + { + "start": 876.94, + "end": 878.56, + "probability": 0.9927 + }, + { + "start": 879.04, + "end": 881.6, + "probability": 0.9982 + }, + { + "start": 882.02, + "end": 885.28, + "probability": 0.9959 + }, + { + "start": 885.42, + "end": 886.86, + "probability": 0.6227 + }, + { + "start": 886.9, + "end": 887.3, + "probability": 0.76 + }, + { + "start": 887.4, + "end": 889.6, + "probability": 0.9001 + }, + { + "start": 889.6, + "end": 892.76, + "probability": 0.9661 + }, + { + "start": 893.47, + "end": 896.68, + "probability": 0.9912 + }, + { + "start": 896.68, + "end": 899.42, + "probability": 0.9985 + }, + { + "start": 899.5, + "end": 900.9, + "probability": 0.8089 + }, + { + "start": 901.56, + "end": 903.36, + "probability": 0.9213 + }, + { + "start": 903.58, + "end": 907.1, + "probability": 0.9382 + }, + { + "start": 907.26, + "end": 910.18, + "probability": 0.9966 + }, + { + "start": 912.7, + "end": 917.36, + "probability": 0.9629 + }, + { + "start": 917.84, + "end": 923.38, + "probability": 0.9373 + }, + { + "start": 923.38, + "end": 926.28, + "probability": 0.9985 + }, + { + "start": 926.62, + "end": 930.22, + "probability": 0.9061 + }, + { + "start": 930.74, + "end": 932.58, + "probability": 0.8071 + }, + { + "start": 932.92, + "end": 935.38, + "probability": 0.9427 + }, + { + "start": 935.94, + "end": 938.86, + "probability": 0.9169 + }, + { + "start": 940.2, + "end": 941.02, + "probability": 0.8071 + }, + { + "start": 948.65, + "end": 952.52, + "probability": 0.7666 + }, + { + "start": 952.7, + "end": 953.5, + "probability": 0.5787 + }, + { + "start": 953.6, + "end": 954.06, + "probability": 0.7301 + }, + { + "start": 954.12, + "end": 954.84, + "probability": 0.3309 + }, + { + "start": 955.1, + "end": 955.78, + "probability": 0.8106 + }, + { + "start": 955.84, + "end": 956.62, + "probability": 0.7824 + }, + { + "start": 956.66, + "end": 957.56, + "probability": 0.9436 + }, + { + "start": 958.44, + "end": 959.0, + "probability": 0.971 + }, + { + "start": 959.14, + "end": 959.56, + "probability": 0.5482 + }, + { + "start": 959.66, + "end": 960.26, + "probability": 0.6867 + }, + { + "start": 960.34, + "end": 961.34, + "probability": 0.7674 + }, + { + "start": 961.4, + "end": 962.24, + "probability": 0.9475 + }, + { + "start": 962.34, + "end": 962.86, + "probability": 0.9153 + }, + { + "start": 962.94, + "end": 963.78, + "probability": 0.5629 + }, + { + "start": 963.84, + "end": 964.72, + "probability": 0.6349 + }, + { + "start": 965.5, + "end": 967.05, + "probability": 0.9004 + }, + { + "start": 967.76, + "end": 968.62, + "probability": 0.5869 + }, + { + "start": 968.74, + "end": 969.5, + "probability": 0.8174 + }, + { + "start": 969.66, + "end": 970.36, + "probability": 0.9655 + }, + { + "start": 970.58, + "end": 971.52, + "probability": 0.789 + }, + { + "start": 971.62, + "end": 972.62, + "probability": 0.9559 + }, + { + "start": 972.78, + "end": 973.36, + "probability": 0.9651 + }, + { + "start": 973.5, + "end": 975.54, + "probability": 0.6809 + }, + { + "start": 977.52, + "end": 979.5, + "probability": 0.5055 + }, + { + "start": 979.6, + "end": 980.92, + "probability": 0.8318 + }, + { + "start": 981.14, + "end": 983.38, + "probability": 0.2169 + }, + { + "start": 983.48, + "end": 983.68, + "probability": 0.0802 + }, + { + "start": 984.06, + "end": 986.96, + "probability": 0.7723 + }, + { + "start": 987.96, + "end": 988.94, + "probability": 0.5029 + }, + { + "start": 990.06, + "end": 990.91, + "probability": 0.9038 + }, + { + "start": 991.72, + "end": 992.26, + "probability": 0.9172 + }, + { + "start": 992.84, + "end": 993.4, + "probability": 0.1546 + }, + { + "start": 998.12, + "end": 998.52, + "probability": 0.3112 + }, + { + "start": 998.82, + "end": 998.88, + "probability": 0.6208 + }, + { + "start": 999.58, + "end": 1000.64, + "probability": 0.6707 + }, + { + "start": 1000.7, + "end": 1005.8, + "probability": 0.3683 + }, + { + "start": 1005.8, + "end": 1008.7, + "probability": 0.8613 + }, + { + "start": 1009.2, + "end": 1010.68, + "probability": 0.7593 + }, + { + "start": 1010.74, + "end": 1012.46, + "probability": 0.0998 + }, + { + "start": 1012.76, + "end": 1014.18, + "probability": 0.5679 + }, + { + "start": 1014.74, + "end": 1016.76, + "probability": 0.8167 + }, + { + "start": 1016.82, + "end": 1018.54, + "probability": 0.9196 + }, + { + "start": 1019.18, + "end": 1019.74, + "probability": 0.3845 + }, + { + "start": 1020.02, + "end": 1020.58, + "probability": 0.5754 + }, + { + "start": 1032.2, + "end": 1034.38, + "probability": 0.7386 + }, + { + "start": 1036.62, + "end": 1047.32, + "probability": 0.9788 + }, + { + "start": 1047.36, + "end": 1048.48, + "probability": 0.8113 + }, + { + "start": 1048.8, + "end": 1051.0, + "probability": 0.9839 + }, + { + "start": 1053.78, + "end": 1057.98, + "probability": 0.9771 + }, + { + "start": 1059.2, + "end": 1059.66, + "probability": 0.4874 + }, + { + "start": 1059.74, + "end": 1065.1, + "probability": 0.9457 + }, + { + "start": 1065.34, + "end": 1065.96, + "probability": 0.7674 + }, + { + "start": 1066.68, + "end": 1069.5, + "probability": 0.5509 + }, + { + "start": 1070.08, + "end": 1070.78, + "probability": 0.8986 + }, + { + "start": 1071.96, + "end": 1074.58, + "probability": 0.9627 + }, + { + "start": 1077.26, + "end": 1084.09, + "probability": 0.8165 + }, + { + "start": 1084.8, + "end": 1087.64, + "probability": 0.5978 + }, + { + "start": 1087.72, + "end": 1088.66, + "probability": 0.9457 + }, + { + "start": 1089.32, + "end": 1090.9, + "probability": 0.3493 + }, + { + "start": 1090.9, + "end": 1091.4, + "probability": 0.7021 + }, + { + "start": 1092.32, + "end": 1094.72, + "probability": 0.8761 + }, + { + "start": 1095.25, + "end": 1097.94, + "probability": 0.8445 + }, + { + "start": 1099.66, + "end": 1104.46, + "probability": 0.7269 + }, + { + "start": 1104.46, + "end": 1104.69, + "probability": 0.2531 + }, + { + "start": 1104.86, + "end": 1105.52, + "probability": 0.4063 + }, + { + "start": 1105.52, + "end": 1105.94, + "probability": 0.8595 + }, + { + "start": 1107.68, + "end": 1108.0, + "probability": 0.4782 + }, + { + "start": 1113.68, + "end": 1117.2, + "probability": 0.9969 + }, + { + "start": 1118.72, + "end": 1123.72, + "probability": 0.7818 + }, + { + "start": 1124.64, + "end": 1126.96, + "probability": 0.996 + }, + { + "start": 1128.1, + "end": 1130.14, + "probability": 0.9968 + }, + { + "start": 1132.18, + "end": 1138.16, + "probability": 0.9976 + }, + { + "start": 1138.16, + "end": 1143.02, + "probability": 0.9994 + }, + { + "start": 1144.46, + "end": 1148.14, + "probability": 0.9997 + }, + { + "start": 1148.32, + "end": 1150.46, + "probability": 0.9949 + }, + { + "start": 1152.0, + "end": 1158.96, + "probability": 0.9946 + }, + { + "start": 1159.56, + "end": 1162.22, + "probability": 0.9746 + }, + { + "start": 1162.98, + "end": 1164.92, + "probability": 0.9968 + }, + { + "start": 1166.46, + "end": 1169.72, + "probability": 0.8558 + }, + { + "start": 1169.76, + "end": 1173.84, + "probability": 0.9298 + }, + { + "start": 1175.74, + "end": 1180.36, + "probability": 0.4767 + }, + { + "start": 1181.18, + "end": 1183.32, + "probability": 0.8646 + }, + { + "start": 1184.7, + "end": 1184.86, + "probability": 0.2446 + }, + { + "start": 1186.3, + "end": 1187.88, + "probability": 0.0483 + }, + { + "start": 1187.88, + "end": 1188.78, + "probability": 0.1304 + }, + { + "start": 1189.68, + "end": 1192.82, + "probability": 0.799 + }, + { + "start": 1192.94, + "end": 1195.72, + "probability": 0.9004 + }, + { + "start": 1196.34, + "end": 1202.8, + "probability": 0.9595 + }, + { + "start": 1204.66, + "end": 1209.2, + "probability": 0.0881 + }, + { + "start": 1210.6, + "end": 1211.36, + "probability": 0.0306 + }, + { + "start": 1211.36, + "end": 1211.36, + "probability": 0.1286 + }, + { + "start": 1211.36, + "end": 1215.72, + "probability": 0.9451 + }, + { + "start": 1215.8, + "end": 1217.34, + "probability": 0.3071 + }, + { + "start": 1217.5, + "end": 1219.78, + "probability": 0.8914 + }, + { + "start": 1219.8, + "end": 1220.98, + "probability": 0.962 + }, + { + "start": 1221.22, + "end": 1227.14, + "probability": 0.8206 + }, + { + "start": 1227.8, + "end": 1230.54, + "probability": 0.9438 + }, + { + "start": 1230.54, + "end": 1230.62, + "probability": 0.1664 + }, + { + "start": 1230.86, + "end": 1231.11, + "probability": 0.4674 + }, + { + "start": 1232.18, + "end": 1239.92, + "probability": 0.7451 + }, + { + "start": 1240.08, + "end": 1240.76, + "probability": 0.7272 + }, + { + "start": 1241.38, + "end": 1243.67, + "probability": 0.9788 + }, + { + "start": 1244.56, + "end": 1248.0, + "probability": 0.9774 + }, + { + "start": 1248.0, + "end": 1250.62, + "probability": 0.5267 + }, + { + "start": 1250.64, + "end": 1253.42, + "probability": 0.8446 + }, + { + "start": 1253.6, + "end": 1255.3, + "probability": 0.7499 + }, + { + "start": 1255.72, + "end": 1258.0, + "probability": 0.9054 + }, + { + "start": 1258.06, + "end": 1260.38, + "probability": 0.7653 + }, + { + "start": 1260.78, + "end": 1262.72, + "probability": 0.762 + }, + { + "start": 1262.72, + "end": 1263.16, + "probability": 0.7103 + }, + { + "start": 1263.4, + "end": 1266.16, + "probability": 0.9609 + }, + { + "start": 1266.26, + "end": 1266.74, + "probability": 0.8266 + }, + { + "start": 1266.8, + "end": 1267.2, + "probability": 0.8026 + }, + { + "start": 1267.22, + "end": 1268.18, + "probability": 0.0778 + }, + { + "start": 1268.2, + "end": 1269.38, + "probability": 0.9588 + }, + { + "start": 1269.48, + "end": 1269.6, + "probability": 0.9325 + }, + { + "start": 1269.6, + "end": 1270.36, + "probability": 0.6452 + }, + { + "start": 1270.66, + "end": 1271.84, + "probability": 0.9668 + }, + { + "start": 1272.4, + "end": 1277.5, + "probability": 0.6283 + }, + { + "start": 1279.84, + "end": 1285.6, + "probability": 0.9364 + }, + { + "start": 1286.78, + "end": 1289.24, + "probability": 0.9338 + }, + { + "start": 1289.88, + "end": 1291.68, + "probability": 0.9513 + }, + { + "start": 1296.46, + "end": 1297.14, + "probability": 0.7726 + }, + { + "start": 1301.06, + "end": 1307.0, + "probability": 0.9904 + }, + { + "start": 1308.22, + "end": 1311.62, + "probability": 0.6588 + }, + { + "start": 1312.08, + "end": 1314.52, + "probability": 0.5031 + }, + { + "start": 1315.88, + "end": 1319.16, + "probability": 0.5775 + }, + { + "start": 1320.24, + "end": 1324.64, + "probability": 0.3103 + }, + { + "start": 1326.4, + "end": 1330.06, + "probability": 0.0096 + }, + { + "start": 1330.62, + "end": 1332.73, + "probability": 0.0733 + }, + { + "start": 1334.85, + "end": 1336.78, + "probability": 0.916 + }, + { + "start": 1336.78, + "end": 1337.07, + "probability": 0.034 + }, + { + "start": 1337.92, + "end": 1338.06, + "probability": 0.2757 + }, + { + "start": 1338.06, + "end": 1341.34, + "probability": 0.0959 + }, + { + "start": 1343.76, + "end": 1345.09, + "probability": 0.0392 + }, + { + "start": 1347.56, + "end": 1347.8, + "probability": 0.015 + }, + { + "start": 1352.24, + "end": 1353.94, + "probability": 0.4284 + }, + { + "start": 1378.86, + "end": 1379.92, + "probability": 0.8262 + }, + { + "start": 1380.56, + "end": 1382.1, + "probability": 0.7119 + }, + { + "start": 1383.78, + "end": 1387.34, + "probability": 0.9174 + }, + { + "start": 1388.78, + "end": 1389.0, + "probability": 0.9535 + }, + { + "start": 1389.74, + "end": 1392.14, + "probability": 0.9504 + }, + { + "start": 1392.22, + "end": 1397.58, + "probability": 0.6812 + }, + { + "start": 1398.1, + "end": 1401.06, + "probability": 0.8354 + }, + { + "start": 1401.82, + "end": 1405.64, + "probability": 0.8963 + }, + { + "start": 1405.82, + "end": 1412.16, + "probability": 0.8987 + }, + { + "start": 1415.04, + "end": 1418.84, + "probability": 0.9175 + }, + { + "start": 1419.0, + "end": 1421.92, + "probability": 0.715 + }, + { + "start": 1422.18, + "end": 1422.54, + "probability": 0.1319 + }, + { + "start": 1422.72, + "end": 1424.86, + "probability": 0.529 + }, + { + "start": 1425.0, + "end": 1427.44, + "probability": 0.687 + }, + { + "start": 1427.46, + "end": 1428.96, + "probability": 0.79 + }, + { + "start": 1429.1, + "end": 1429.4, + "probability": 0.4297 + }, + { + "start": 1429.48, + "end": 1430.12, + "probability": 0.9253 + }, + { + "start": 1431.02, + "end": 1432.4, + "probability": 0.5599 + }, + { + "start": 1432.48, + "end": 1433.02, + "probability": 0.6958 + }, + { + "start": 1433.42, + "end": 1435.24, + "probability": 0.8582 + }, + { + "start": 1435.46, + "end": 1437.75, + "probability": 0.6381 + }, + { + "start": 1438.64, + "end": 1438.82, + "probability": 0.3544 + }, + { + "start": 1438.82, + "end": 1438.84, + "probability": 0.2955 + }, + { + "start": 1438.84, + "end": 1442.04, + "probability": 0.9897 + }, + { + "start": 1442.36, + "end": 1443.1, + "probability": 0.7305 + }, + { + "start": 1443.38, + "end": 1443.9, + "probability": 0.3458 + }, + { + "start": 1444.48, + "end": 1445.5, + "probability": 0.6702 + }, + { + "start": 1446.68, + "end": 1451.26, + "probability": 0.8712 + }, + { + "start": 1451.96, + "end": 1456.54, + "probability": 0.9177 + }, + { + "start": 1457.22, + "end": 1459.38, + "probability": 0.9304 + }, + { + "start": 1459.54, + "end": 1461.18, + "probability": 0.8192 + }, + { + "start": 1461.38, + "end": 1463.46, + "probability": 0.893 + }, + { + "start": 1467.36, + "end": 1468.18, + "probability": 0.6102 + }, + { + "start": 1469.62, + "end": 1470.48, + "probability": 0.8837 + }, + { + "start": 1471.14, + "end": 1476.52, + "probability": 0.9753 + }, + { + "start": 1478.26, + "end": 1481.54, + "probability": 0.0182 + }, + { + "start": 1483.1, + "end": 1486.92, + "probability": 0.0172 + }, + { + "start": 1499.28, + "end": 1500.74, + "probability": 0.805 + }, + { + "start": 1523.92, + "end": 1525.14, + "probability": 0.8024 + }, + { + "start": 1526.7, + "end": 1530.76, + "probability": 0.9871 + }, + { + "start": 1531.64, + "end": 1534.94, + "probability": 0.9982 + }, + { + "start": 1535.64, + "end": 1538.61, + "probability": 0.9626 + }, + { + "start": 1539.22, + "end": 1541.04, + "probability": 0.7941 + }, + { + "start": 1542.08, + "end": 1545.06, + "probability": 0.9953 + }, + { + "start": 1545.06, + "end": 1548.78, + "probability": 0.9992 + }, + { + "start": 1549.68, + "end": 1554.42, + "probability": 0.8323 + }, + { + "start": 1554.58, + "end": 1556.32, + "probability": 0.9204 + }, + { + "start": 1557.3, + "end": 1559.8, + "probability": 0.977 + }, + { + "start": 1560.56, + "end": 1562.24, + "probability": 0.9927 + }, + { + "start": 1563.4, + "end": 1564.84, + "probability": 0.9761 + }, + { + "start": 1565.48, + "end": 1566.86, + "probability": 0.9438 + }, + { + "start": 1567.52, + "end": 1571.18, + "probability": 0.9936 + }, + { + "start": 1571.18, + "end": 1575.36, + "probability": 0.9718 + }, + { + "start": 1575.94, + "end": 1580.64, + "probability": 0.9718 + }, + { + "start": 1581.9, + "end": 1583.06, + "probability": 0.9762 + }, + { + "start": 1583.78, + "end": 1584.52, + "probability": 0.9807 + }, + { + "start": 1585.22, + "end": 1585.96, + "probability": 0.8383 + }, + { + "start": 1586.74, + "end": 1589.52, + "probability": 0.9854 + }, + { + "start": 1590.32, + "end": 1592.5, + "probability": 0.9906 + }, + { + "start": 1593.92, + "end": 1600.56, + "probability": 0.9854 + }, + { + "start": 1601.42, + "end": 1604.42, + "probability": 0.6388 + }, + { + "start": 1605.1, + "end": 1608.49, + "probability": 0.9909 + }, + { + "start": 1608.52, + "end": 1612.76, + "probability": 0.9935 + }, + { + "start": 1613.4, + "end": 1615.1, + "probability": 0.7661 + }, + { + "start": 1615.64, + "end": 1617.0, + "probability": 0.9264 + }, + { + "start": 1617.94, + "end": 1622.3, + "probability": 0.954 + }, + { + "start": 1622.76, + "end": 1627.26, + "probability": 0.9915 + }, + { + "start": 1628.1, + "end": 1632.78, + "probability": 0.9526 + }, + { + "start": 1633.56, + "end": 1637.86, + "probability": 0.9519 + }, + { + "start": 1637.86, + "end": 1642.32, + "probability": 0.9882 + }, + { + "start": 1642.54, + "end": 1643.5, + "probability": 0.8589 + }, + { + "start": 1644.12, + "end": 1649.94, + "probability": 0.9339 + }, + { + "start": 1650.92, + "end": 1655.9, + "probability": 0.9982 + }, + { + "start": 1655.9, + "end": 1662.24, + "probability": 0.9966 + }, + { + "start": 1662.24, + "end": 1669.06, + "probability": 0.972 + }, + { + "start": 1670.36, + "end": 1677.2, + "probability": 0.9952 + }, + { + "start": 1677.24, + "end": 1683.1, + "probability": 0.9911 + }, + { + "start": 1683.6, + "end": 1685.41, + "probability": 0.9437 + }, + { + "start": 1686.18, + "end": 1692.78, + "probability": 0.9854 + }, + { + "start": 1693.9, + "end": 1695.72, + "probability": 0.763 + }, + { + "start": 1696.58, + "end": 1699.0, + "probability": 0.9884 + }, + { + "start": 1699.52, + "end": 1703.2, + "probability": 0.972 + }, + { + "start": 1703.82, + "end": 1704.56, + "probability": 0.6267 + }, + { + "start": 1705.6, + "end": 1709.78, + "probability": 0.9858 + }, + { + "start": 1709.78, + "end": 1713.82, + "probability": 0.9982 + }, + { + "start": 1714.6, + "end": 1717.68, + "probability": 0.8472 + }, + { + "start": 1718.7, + "end": 1719.99, + "probability": 0.9854 + }, + { + "start": 1720.7, + "end": 1724.5, + "probability": 0.9165 + }, + { + "start": 1725.62, + "end": 1726.08, + "probability": 0.6889 + }, + { + "start": 1726.36, + "end": 1731.24, + "probability": 0.827 + }, + { + "start": 1731.78, + "end": 1733.78, + "probability": 0.9774 + }, + { + "start": 1734.64, + "end": 1736.76, + "probability": 0.9955 + }, + { + "start": 1737.38, + "end": 1739.08, + "probability": 0.9955 + }, + { + "start": 1740.14, + "end": 1740.98, + "probability": 0.9681 + }, + { + "start": 1742.12, + "end": 1746.78, + "probability": 0.9618 + }, + { + "start": 1747.54, + "end": 1748.84, + "probability": 0.998 + }, + { + "start": 1749.52, + "end": 1755.32, + "probability": 0.998 + }, + { + "start": 1756.4, + "end": 1758.1, + "probability": 0.9663 + }, + { + "start": 1758.84, + "end": 1760.66, + "probability": 0.9122 + }, + { + "start": 1761.86, + "end": 1765.5, + "probability": 0.9801 + }, + { + "start": 1766.58, + "end": 1768.42, + "probability": 0.9711 + }, + { + "start": 1769.12, + "end": 1769.72, + "probability": 0.9515 + }, + { + "start": 1770.38, + "end": 1772.22, + "probability": 0.9763 + }, + { + "start": 1773.12, + "end": 1774.72, + "probability": 0.9282 + }, + { + "start": 1775.64, + "end": 1778.92, + "probability": 0.9962 + }, + { + "start": 1778.92, + "end": 1782.7, + "probability": 0.999 + }, + { + "start": 1783.9, + "end": 1786.68, + "probability": 0.9941 + }, + { + "start": 1787.3, + "end": 1792.04, + "probability": 0.9989 + }, + { + "start": 1793.44, + "end": 1796.01, + "probability": 0.9972 + }, + { + "start": 1796.44, + "end": 1801.94, + "probability": 0.9674 + }, + { + "start": 1802.88, + "end": 1804.82, + "probability": 0.9837 + }, + { + "start": 1805.38, + "end": 1808.1, + "probability": 0.7555 + }, + { + "start": 1809.06, + "end": 1811.26, + "probability": 0.9291 + }, + { + "start": 1811.86, + "end": 1815.96, + "probability": 0.9927 + }, + { + "start": 1816.6, + "end": 1819.54, + "probability": 0.9816 + }, + { + "start": 1820.36, + "end": 1822.68, + "probability": 0.9711 + }, + { + "start": 1823.5, + "end": 1825.34, + "probability": 0.9809 + }, + { + "start": 1826.0, + "end": 1827.56, + "probability": 0.9777 + }, + { + "start": 1828.4, + "end": 1834.16, + "probability": 0.9966 + }, + { + "start": 1835.4, + "end": 1837.56, + "probability": 0.4968 + }, + { + "start": 1838.14, + "end": 1839.88, + "probability": 0.7426 + }, + { + "start": 1840.78, + "end": 1845.92, + "probability": 0.9956 + }, + { + "start": 1848.06, + "end": 1849.34, + "probability": 0.8052 + }, + { + "start": 1849.76, + "end": 1850.8, + "probability": 0.9675 + }, + { + "start": 1851.74, + "end": 1853.84, + "probability": 0.702 + }, + { + "start": 1855.98, + "end": 1859.76, + "probability": 0.9868 + }, + { + "start": 1859.76, + "end": 1863.64, + "probability": 0.9888 + }, + { + "start": 1864.58, + "end": 1866.05, + "probability": 0.9971 + }, + { + "start": 1867.36, + "end": 1870.2, + "probability": 0.9105 + }, + { + "start": 1870.76, + "end": 1875.7, + "probability": 0.8908 + }, + { + "start": 1876.64, + "end": 1880.84, + "probability": 0.9937 + }, + { + "start": 1881.9, + "end": 1884.89, + "probability": 0.9453 + }, + { + "start": 1885.4, + "end": 1888.28, + "probability": 0.9966 + }, + { + "start": 1888.9, + "end": 1891.18, + "probability": 0.9939 + }, + { + "start": 1892.6, + "end": 1897.2, + "probability": 0.9948 + }, + { + "start": 1897.2, + "end": 1901.06, + "probability": 0.9993 + }, + { + "start": 1901.98, + "end": 1907.16, + "probability": 0.9927 + }, + { + "start": 1908.36, + "end": 1912.1, + "probability": 0.9956 + }, + { + "start": 1913.08, + "end": 1915.4, + "probability": 0.868 + }, + { + "start": 1916.7, + "end": 1917.82, + "probability": 0.9255 + }, + { + "start": 1917.9, + "end": 1922.42, + "probability": 0.9946 + }, + { + "start": 1923.06, + "end": 1924.64, + "probability": 0.9878 + }, + { + "start": 1925.66, + "end": 1926.62, + "probability": 0.3652 + }, + { + "start": 1927.62, + "end": 1929.6, + "probability": 0.9765 + }, + { + "start": 1931.08, + "end": 1934.04, + "probability": 0.9697 + }, + { + "start": 1934.76, + "end": 1941.6, + "probability": 0.9646 + }, + { + "start": 1941.78, + "end": 1942.42, + "probability": 0.8272 + }, + { + "start": 1943.04, + "end": 1946.62, + "probability": 0.9871 + }, + { + "start": 1947.24, + "end": 1948.12, + "probability": 0.7988 + }, + { + "start": 1949.34, + "end": 1956.08, + "probability": 0.9958 + }, + { + "start": 1957.52, + "end": 1958.64, + "probability": 0.9036 + }, + { + "start": 1959.44, + "end": 1961.08, + "probability": 0.9002 + }, + { + "start": 1961.82, + "end": 1963.46, + "probability": 0.991 + }, + { + "start": 1964.38, + "end": 1966.46, + "probability": 0.9973 + }, + { + "start": 1967.04, + "end": 1969.26, + "probability": 0.9913 + }, + { + "start": 1970.32, + "end": 1971.54, + "probability": 0.6639 + }, + { + "start": 1972.94, + "end": 1974.08, + "probability": 0.7571 + }, + { + "start": 1974.78, + "end": 1980.08, + "probability": 0.8172 + }, + { + "start": 1980.9, + "end": 1984.92, + "probability": 0.977 + }, + { + "start": 1985.42, + "end": 1992.56, + "probability": 0.9963 + }, + { + "start": 1994.16, + "end": 1997.72, + "probability": 0.995 + }, + { + "start": 1997.72, + "end": 2002.04, + "probability": 0.9651 + }, + { + "start": 2002.98, + "end": 2003.68, + "probability": 0.6897 + }, + { + "start": 2004.34, + "end": 2008.7, + "probability": 0.9749 + }, + { + "start": 2009.84, + "end": 2013.36, + "probability": 0.8901 + }, + { + "start": 2013.74, + "end": 2015.32, + "probability": 0.8932 + }, + { + "start": 2017.58, + "end": 2018.14, + "probability": 0.7013 + }, + { + "start": 2018.74, + "end": 2023.54, + "probability": 0.9683 + }, + { + "start": 2023.62, + "end": 2025.96, + "probability": 0.9105 + }, + { + "start": 2026.42, + "end": 2028.54, + "probability": 0.9266 + }, + { + "start": 2029.38, + "end": 2034.38, + "probability": 0.9868 + }, + { + "start": 2035.64, + "end": 2038.48, + "probability": 0.9965 + }, + { + "start": 2039.06, + "end": 2040.64, + "probability": 0.988 + }, + { + "start": 2041.12, + "end": 2047.38, + "probability": 0.9801 + }, + { + "start": 2048.96, + "end": 2051.06, + "probability": 0.9932 + }, + { + "start": 2051.66, + "end": 2055.44, + "probability": 0.9572 + }, + { + "start": 2056.52, + "end": 2060.06, + "probability": 0.9366 + }, + { + "start": 2060.86, + "end": 2063.54, + "probability": 0.9954 + }, + { + "start": 2064.16, + "end": 2066.22, + "probability": 0.9718 + }, + { + "start": 2068.22, + "end": 2071.6, + "probability": 0.999 + }, + { + "start": 2072.64, + "end": 2076.36, + "probability": 0.9861 + }, + { + "start": 2078.0, + "end": 2080.42, + "probability": 0.9706 + }, + { + "start": 2081.88, + "end": 2084.88, + "probability": 0.9248 + }, + { + "start": 2085.38, + "end": 2091.42, + "probability": 0.9958 + }, + { + "start": 2092.68, + "end": 2097.18, + "probability": 0.9948 + }, + { + "start": 2098.24, + "end": 2102.68, + "probability": 0.9982 + }, + { + "start": 2104.08, + "end": 2105.86, + "probability": 0.8621 + }, + { + "start": 2106.42, + "end": 2111.32, + "probability": 0.9948 + }, + { + "start": 2112.4, + "end": 2117.42, + "probability": 0.9766 + }, + { + "start": 2117.42, + "end": 2122.48, + "probability": 0.9989 + }, + { + "start": 2123.34, + "end": 2125.2, + "probability": 0.9091 + }, + { + "start": 2125.92, + "end": 2127.12, + "probability": 0.6875 + }, + { + "start": 2128.42, + "end": 2130.9, + "probability": 0.846 + }, + { + "start": 2131.46, + "end": 2132.34, + "probability": 0.5469 + }, + { + "start": 2133.08, + "end": 2133.72, + "probability": 0.721 + }, + { + "start": 2134.36, + "end": 2137.2, + "probability": 0.9948 + }, + { + "start": 2137.76, + "end": 2140.74, + "probability": 0.9846 + }, + { + "start": 2141.4, + "end": 2146.2, + "probability": 0.9488 + }, + { + "start": 2147.88, + "end": 2153.56, + "probability": 0.979 + }, + { + "start": 2153.56, + "end": 2156.62, + "probability": 0.9985 + }, + { + "start": 2157.6, + "end": 2162.38, + "probability": 0.9942 + }, + { + "start": 2163.72, + "end": 2166.08, + "probability": 0.9963 + }, + { + "start": 2166.6, + "end": 2169.48, + "probability": 0.925 + }, + { + "start": 2170.64, + "end": 2172.06, + "probability": 0.9419 + }, + { + "start": 2172.64, + "end": 2174.46, + "probability": 0.9593 + }, + { + "start": 2174.98, + "end": 2180.54, + "probability": 0.9967 + }, + { + "start": 2182.32, + "end": 2184.84, + "probability": 0.9976 + }, + { + "start": 2185.66, + "end": 2186.98, + "probability": 0.9971 + }, + { + "start": 2188.36, + "end": 2192.72, + "probability": 0.9962 + }, + { + "start": 2193.9, + "end": 2195.53, + "probability": 0.8682 + }, + { + "start": 2196.54, + "end": 2201.46, + "probability": 0.9165 + }, + { + "start": 2202.86, + "end": 2206.26, + "probability": 0.9888 + }, + { + "start": 2206.72, + "end": 2209.8, + "probability": 0.9984 + }, + { + "start": 2210.68, + "end": 2216.85, + "probability": 0.9984 + }, + { + "start": 2217.08, + "end": 2225.88, + "probability": 0.9917 + }, + { + "start": 2226.28, + "end": 2227.4, + "probability": 0.8586 + }, + { + "start": 2228.96, + "end": 2232.38, + "probability": 0.9553 + }, + { + "start": 2233.26, + "end": 2235.38, + "probability": 0.9986 + }, + { + "start": 2236.4, + "end": 2240.68, + "probability": 0.998 + }, + { + "start": 2240.68, + "end": 2245.06, + "probability": 0.9985 + }, + { + "start": 2246.18, + "end": 2249.96, + "probability": 0.7712 + }, + { + "start": 2251.02, + "end": 2253.98, + "probability": 0.9858 + }, + { + "start": 2254.58, + "end": 2257.58, + "probability": 0.9815 + }, + { + "start": 2258.8, + "end": 2263.26, + "probability": 0.957 + }, + { + "start": 2264.3, + "end": 2266.94, + "probability": 0.9961 + }, + { + "start": 2268.16, + "end": 2273.32, + "probability": 0.9938 + }, + { + "start": 2274.32, + "end": 2279.36, + "probability": 0.9062 + }, + { + "start": 2279.98, + "end": 2286.24, + "probability": 0.9932 + }, + { + "start": 2287.08, + "end": 2289.42, + "probability": 0.2818 + }, + { + "start": 2289.62, + "end": 2295.98, + "probability": 0.9878 + }, + { + "start": 2295.98, + "end": 2303.04, + "probability": 0.9613 + }, + { + "start": 2305.22, + "end": 2309.94, + "probability": 0.9277 + }, + { + "start": 2311.38, + "end": 2316.96, + "probability": 0.9915 + }, + { + "start": 2318.06, + "end": 2319.96, + "probability": 0.9912 + }, + { + "start": 2320.68, + "end": 2322.42, + "probability": 0.9901 + }, + { + "start": 2324.0, + "end": 2325.0, + "probability": 0.9375 + }, + { + "start": 2326.02, + "end": 2330.46, + "probability": 0.9037 + }, + { + "start": 2331.04, + "end": 2335.7, + "probability": 0.9956 + }, + { + "start": 2336.54, + "end": 2337.5, + "probability": 0.8418 + }, + { + "start": 2338.22, + "end": 2339.3, + "probability": 0.7492 + }, + { + "start": 2340.54, + "end": 2346.42, + "probability": 0.9968 + }, + { + "start": 2346.42, + "end": 2352.44, + "probability": 0.9945 + }, + { + "start": 2353.42, + "end": 2360.14, + "probability": 0.9963 + }, + { + "start": 2360.86, + "end": 2362.14, + "probability": 0.9985 + }, + { + "start": 2363.04, + "end": 2364.06, + "probability": 0.2883 + }, + { + "start": 2364.58, + "end": 2365.26, + "probability": 0.7819 + }, + { + "start": 2366.6, + "end": 2371.14, + "probability": 0.9519 + }, + { + "start": 2372.3, + "end": 2374.64, + "probability": 0.9875 + }, + { + "start": 2374.64, + "end": 2378.56, + "probability": 0.9436 + }, + { + "start": 2378.92, + "end": 2380.78, + "probability": 0.9183 + }, + { + "start": 2381.42, + "end": 2383.72, + "probability": 0.9166 + }, + { + "start": 2384.58, + "end": 2389.62, + "probability": 0.9633 + }, + { + "start": 2390.06, + "end": 2391.98, + "probability": 0.9263 + }, + { + "start": 2393.28, + "end": 2396.42, + "probability": 0.9942 + }, + { + "start": 2397.62, + "end": 2403.28, + "probability": 0.9921 + }, + { + "start": 2403.82, + "end": 2407.7, + "probability": 0.8806 + }, + { + "start": 2408.76, + "end": 2413.2, + "probability": 0.9932 + }, + { + "start": 2414.28, + "end": 2419.42, + "probability": 0.9976 + }, + { + "start": 2420.28, + "end": 2423.64, + "probability": 0.9578 + }, + { + "start": 2423.76, + "end": 2424.0, + "probability": 0.6665 + }, + { + "start": 2424.0, + "end": 2426.3, + "probability": 0.866 + }, + { + "start": 2426.48, + "end": 2426.94, + "probability": 0.5487 + }, + { + "start": 2427.06, + "end": 2432.94, + "probability": 0.9683 + }, + { + "start": 2432.98, + "end": 2433.84, + "probability": 0.8696 + }, + { + "start": 2433.94, + "end": 2435.54, + "probability": 0.9523 + }, + { + "start": 2435.54, + "end": 2436.28, + "probability": 0.3504 + }, + { + "start": 2436.84, + "end": 2438.02, + "probability": 0.7471 + }, + { + "start": 2438.3, + "end": 2439.54, + "probability": 0.9971 + }, + { + "start": 2441.74, + "end": 2443.5, + "probability": 0.8441 + }, + { + "start": 2476.04, + "end": 2479.04, + "probability": 0.6775 + }, + { + "start": 2480.2, + "end": 2480.84, + "probability": 0.7921 + }, + { + "start": 2481.0, + "end": 2485.0, + "probability": 0.957 + }, + { + "start": 2485.88, + "end": 2487.32, + "probability": 0.3912 + }, + { + "start": 2488.5, + "end": 2489.0, + "probability": 0.2847 + }, + { + "start": 2489.84, + "end": 2497.06, + "probability": 0.0246 + }, + { + "start": 2498.34, + "end": 2500.84, + "probability": 0.004 + }, + { + "start": 2516.88, + "end": 2518.16, + "probability": 0.005 + }, + { + "start": 2549.14, + "end": 2552.48, + "probability": 0.7161 + }, + { + "start": 2561.6, + "end": 2562.32, + "probability": 0.045 + }, + { + "start": 2562.32, + "end": 2562.32, + "probability": 0.1744 + }, + { + "start": 2562.32, + "end": 2568.4, + "probability": 0.8799 + }, + { + "start": 2569.22, + "end": 2572.66, + "probability": 0.8758 + }, + { + "start": 2572.88, + "end": 2575.36, + "probability": 0.9753 + }, + { + "start": 2575.5, + "end": 2577.26, + "probability": 0.5296 + }, + { + "start": 2578.1, + "end": 2579.64, + "probability": 0.9785 + }, + { + "start": 2580.42, + "end": 2584.28, + "probability": 0.9982 + }, + { + "start": 2585.02, + "end": 2589.06, + "probability": 0.9646 + }, + { + "start": 2590.04, + "end": 2593.52, + "probability": 0.806 + }, + { + "start": 2594.5, + "end": 2595.6, + "probability": 0.705 + }, + { + "start": 2598.56, + "end": 2600.66, + "probability": 0.9384 + }, + { + "start": 2600.82, + "end": 2601.84, + "probability": 0.93 + }, + { + "start": 2602.14, + "end": 2602.88, + "probability": 0.908 + }, + { + "start": 2603.46, + "end": 2604.4, + "probability": 0.7935 + }, + { + "start": 2605.46, + "end": 2607.92, + "probability": 0.9683 + }, + { + "start": 2608.54, + "end": 2610.4, + "probability": 0.8585 + }, + { + "start": 2611.32, + "end": 2613.01, + "probability": 0.858 + }, + { + "start": 2613.78, + "end": 2615.0, + "probability": 0.6963 + }, + { + "start": 2616.88, + "end": 2619.46, + "probability": 0.9951 + }, + { + "start": 2620.26, + "end": 2624.16, + "probability": 0.8948 + }, + { + "start": 2625.16, + "end": 2630.0, + "probability": 0.6607 + }, + { + "start": 2630.5, + "end": 2631.2, + "probability": 0.7753 + }, + { + "start": 2631.84, + "end": 2636.66, + "probability": 0.9944 + }, + { + "start": 2637.2, + "end": 2642.28, + "probability": 0.6873 + }, + { + "start": 2642.48, + "end": 2646.6, + "probability": 0.5542 + }, + { + "start": 2647.34, + "end": 2648.34, + "probability": 0.6967 + }, + { + "start": 2648.42, + "end": 2649.98, + "probability": 0.9944 + }, + { + "start": 2650.4, + "end": 2650.72, + "probability": 0.7661 + }, + { + "start": 2650.96, + "end": 2651.24, + "probability": 0.2643 + }, + { + "start": 2651.24, + "end": 2654.7, + "probability": 0.9071 + }, + { + "start": 2654.82, + "end": 2655.62, + "probability": 0.4198 + }, + { + "start": 2656.24, + "end": 2657.4, + "probability": 0.9103 + }, + { + "start": 2658.0, + "end": 2662.92, + "probability": 0.9712 + }, + { + "start": 2663.16, + "end": 2663.26, + "probability": 0.6172 + }, + { + "start": 2663.8, + "end": 2666.44, + "probability": 0.8781 + }, + { + "start": 2666.52, + "end": 2667.46, + "probability": 0.981 + }, + { + "start": 2667.8, + "end": 2668.68, + "probability": 0.662 + }, + { + "start": 2668.82, + "end": 2669.84, + "probability": 0.8386 + }, + { + "start": 2670.08, + "end": 2675.38, + "probability": 0.5475 + }, + { + "start": 2675.38, + "end": 2677.68, + "probability": 0.8684 + }, + { + "start": 2678.44, + "end": 2680.28, + "probability": 0.7364 + }, + { + "start": 2682.96, + "end": 2686.24, + "probability": 0.8672 + }, + { + "start": 2687.12, + "end": 2688.7, + "probability": 0.6149 + }, + { + "start": 2689.26, + "end": 2694.24, + "probability": 0.9852 + }, + { + "start": 2694.24, + "end": 2697.6, + "probability": 0.9971 + }, + { + "start": 2697.74, + "end": 2699.56, + "probability": 0.4403 + }, + { + "start": 2699.98, + "end": 2700.9, + "probability": 0.5444 + }, + { + "start": 2701.08, + "end": 2701.34, + "probability": 0.5269 + }, + { + "start": 2701.94, + "end": 2702.8, + "probability": 0.8013 + }, + { + "start": 2704.1, + "end": 2705.2, + "probability": 0.8481 + }, + { + "start": 2706.74, + "end": 2707.6, + "probability": 0.9915 + }, + { + "start": 2707.7, + "end": 2709.42, + "probability": 0.9537 + }, + { + "start": 2709.9, + "end": 2711.78, + "probability": 0.7583 + }, + { + "start": 2712.64, + "end": 2714.5, + "probability": 0.9926 + }, + { + "start": 2715.1, + "end": 2725.4, + "probability": 0.9905 + }, + { + "start": 2727.24, + "end": 2728.92, + "probability": 0.9642 + }, + { + "start": 2729.52, + "end": 2730.5, + "probability": 0.8609 + }, + { + "start": 2730.64, + "end": 2731.46, + "probability": 0.9275 + }, + { + "start": 2731.62, + "end": 2732.08, + "probability": 0.8849 + }, + { + "start": 2732.14, + "end": 2733.84, + "probability": 0.703 + }, + { + "start": 2733.98, + "end": 2736.28, + "probability": 0.9312 + }, + { + "start": 2737.14, + "end": 2738.05, + "probability": 0.4846 + }, + { + "start": 2738.22, + "end": 2739.44, + "probability": 0.7199 + }, + { + "start": 2739.8, + "end": 2741.4, + "probability": 0.9731 + }, + { + "start": 2741.84, + "end": 2743.52, + "probability": 0.9919 + }, + { + "start": 2744.22, + "end": 2745.88, + "probability": 0.8501 + }, + { + "start": 2746.52, + "end": 2748.72, + "probability": 0.9901 + }, + { + "start": 2749.9, + "end": 2750.94, + "probability": 0.9572 + }, + { + "start": 2751.46, + "end": 2752.1, + "probability": 0.7988 + }, + { + "start": 2755.98, + "end": 2757.54, + "probability": 0.7176 + }, + { + "start": 2759.98, + "end": 2759.98, + "probability": 0.6936 + }, + { + "start": 2759.98, + "end": 2763.3, + "probability": 0.9531 + }, + { + "start": 2766.16, + "end": 2769.84, + "probability": 0.972 + }, + { + "start": 2771.04, + "end": 2772.36, + "probability": 0.9673 + }, + { + "start": 2774.26, + "end": 2775.78, + "probability": 0.9346 + }, + { + "start": 2777.24, + "end": 2779.2, + "probability": 0.7923 + }, + { + "start": 2779.32, + "end": 2779.32, + "probability": 0.4325 + }, + { + "start": 2779.32, + "end": 2780.8, + "probability": 0.5653 + }, + { + "start": 2781.34, + "end": 2783.8, + "probability": 0.9937 + }, + { + "start": 2785.48, + "end": 2786.93, + "probability": 0.9912 + }, + { + "start": 2787.44, + "end": 2788.78, + "probability": 0.9125 + }, + { + "start": 2790.26, + "end": 2790.52, + "probability": 0.4986 + }, + { + "start": 2790.6, + "end": 2795.84, + "probability": 0.9781 + }, + { + "start": 2796.36, + "end": 2798.86, + "probability": 0.8848 + }, + { + "start": 2799.42, + "end": 2802.7, + "probability": 0.9884 + }, + { + "start": 2804.78, + "end": 2808.02, + "probability": 0.9963 + }, + { + "start": 2808.88, + "end": 2811.18, + "probability": 0.8996 + }, + { + "start": 2812.84, + "end": 2813.54, + "probability": 0.3464 + }, + { + "start": 2814.0, + "end": 2819.44, + "probability": 0.6877 + }, + { + "start": 2821.0, + "end": 2822.12, + "probability": 0.5557 + }, + { + "start": 2824.0, + "end": 2829.94, + "probability": 0.9824 + }, + { + "start": 2830.1, + "end": 2830.66, + "probability": 0.4992 + }, + { + "start": 2831.48, + "end": 2833.58, + "probability": 0.7092 + }, + { + "start": 2833.64, + "end": 2836.22, + "probability": 0.9782 + }, + { + "start": 2837.2, + "end": 2838.72, + "probability": 0.8974 + }, + { + "start": 2839.48, + "end": 2840.7, + "probability": 0.9871 + }, + { + "start": 2841.2, + "end": 2846.34, + "probability": 0.779 + }, + { + "start": 2846.82, + "end": 2849.92, + "probability": 0.9368 + }, + { + "start": 2849.92, + "end": 2850.86, + "probability": 0.7324 + }, + { + "start": 2852.04, + "end": 2853.46, + "probability": 0.8647 + }, + { + "start": 2854.32, + "end": 2855.72, + "probability": 0.6687 + }, + { + "start": 2858.18, + "end": 2859.78, + "probability": 0.6723 + }, + { + "start": 2861.56, + "end": 2864.9, + "probability": 0.8634 + }, + { + "start": 2866.74, + "end": 2867.36, + "probability": 0.7504 + }, + { + "start": 2867.46, + "end": 2868.14, + "probability": 0.5417 + }, + { + "start": 2868.16, + "end": 2872.52, + "probability": 0.9698 + }, + { + "start": 2872.88, + "end": 2876.2, + "probability": 0.912 + }, + { + "start": 2876.3, + "end": 2876.92, + "probability": 0.8116 + }, + { + "start": 2877.88, + "end": 2879.76, + "probability": 0.9751 + }, + { + "start": 2879.84, + "end": 2883.68, + "probability": 0.8313 + }, + { + "start": 2883.86, + "end": 2884.42, + "probability": 0.84 + }, + { + "start": 2885.7, + "end": 2886.34, + "probability": 0.6996 + }, + { + "start": 2886.94, + "end": 2888.68, + "probability": 0.7614 + }, + { + "start": 2888.84, + "end": 2889.4, + "probability": 0.5524 + }, + { + "start": 2892.54, + "end": 2894.5, + "probability": 0.9091 + }, + { + "start": 2894.94, + "end": 2897.27, + "probability": 0.9844 + }, + { + "start": 2897.37, + "end": 2897.47, + "probability": 0.6304 + }, + { + "start": 2899.55, + "end": 2903.61, + "probability": 0.8795 + }, + { + "start": 2904.27, + "end": 2908.75, + "probability": 0.9626 + }, + { + "start": 2908.97, + "end": 2909.59, + "probability": 0.2765 + }, + { + "start": 2910.41, + "end": 2914.75, + "probability": 0.9408 + }, + { + "start": 2915.21, + "end": 2917.51, + "probability": 0.982 + }, + { + "start": 2918.35, + "end": 2921.23, + "probability": 0.779 + }, + { + "start": 2921.77, + "end": 2923.38, + "probability": 0.8982 + }, + { + "start": 2924.43, + "end": 2926.39, + "probability": 0.7925 + }, + { + "start": 2927.37, + "end": 2930.81, + "probability": 0.9692 + }, + { + "start": 2930.81, + "end": 2935.11, + "probability": 0.8866 + }, + { + "start": 2935.91, + "end": 2940.69, + "probability": 0.9928 + }, + { + "start": 2942.05, + "end": 2947.59, + "probability": 0.9636 + }, + { + "start": 2947.97, + "end": 2948.79, + "probability": 0.7383 + }, + { + "start": 2949.21, + "end": 2950.59, + "probability": 0.7377 + }, + { + "start": 2952.49, + "end": 2952.59, + "probability": 0.06 + }, + { + "start": 2952.59, + "end": 2953.71, + "probability": 0.2661 + }, + { + "start": 2953.91, + "end": 2955.43, + "probability": 0.3807 + }, + { + "start": 2955.67, + "end": 2956.45, + "probability": 0.0746 + }, + { + "start": 2959.85, + "end": 2959.93, + "probability": 0.0734 + }, + { + "start": 2959.93, + "end": 2961.69, + "probability": 0.6125 + }, + { + "start": 2961.83, + "end": 2964.13, + "probability": 0.7588 + }, + { + "start": 2964.37, + "end": 2965.23, + "probability": 0.6548 + }, + { + "start": 2965.39, + "end": 2966.71, + "probability": 0.8954 + }, + { + "start": 2967.15, + "end": 2968.13, + "probability": 0.6694 + }, + { + "start": 2968.45, + "end": 2971.59, + "probability": 0.0648 + }, + { + "start": 2971.59, + "end": 2972.19, + "probability": 0.1922 + }, + { + "start": 2972.19, + "end": 2976.23, + "probability": 0.1467 + }, + { + "start": 2976.59, + "end": 2981.61, + "probability": 0.2229 + }, + { + "start": 2985.61, + "end": 2993.99, + "probability": 0.14 + }, + { + "start": 3007.97, + "end": 3009.55, + "probability": 0.0586 + }, + { + "start": 3009.81, + "end": 3012.73, + "probability": 0.3038 + }, + { + "start": 3014.29, + "end": 3016.33, + "probability": 0.0761 + }, + { + "start": 3016.71, + "end": 3017.51, + "probability": 0.3537 + }, + { + "start": 3017.51, + "end": 3020.07, + "probability": 0.0307 + }, + { + "start": 3020.45, + "end": 3022.21, + "probability": 0.0357 + }, + { + "start": 3022.95, + "end": 3027.73, + "probability": 0.0628 + }, + { + "start": 3027.73, + "end": 3032.63, + "probability": 0.0277 + }, + { + "start": 3032.75, + "end": 3035.47, + "probability": 0.203 + }, + { + "start": 3035.47, + "end": 3035.83, + "probability": 0.1719 + }, + { + "start": 3035.93, + "end": 3036.74, + "probability": 0.1234 + }, + { + "start": 3037.07, + "end": 3037.63, + "probability": 0.0499 + }, + { + "start": 3037.93, + "end": 3037.93, + "probability": 0.0112 + }, + { + "start": 3037.93, + "end": 3037.93, + "probability": 0.1194 + }, + { + "start": 3037.93, + "end": 3038.39, + "probability": 0.0655 + }, + { + "start": 3038.49, + "end": 3039.45, + "probability": 0.0193 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.18, + "end": 3044.6, + "probability": 0.3842 + }, + { + "start": 3044.6, + "end": 3044.62, + "probability": 0.628 + }, + { + "start": 3044.7, + "end": 3046.06, + "probability": 0.302 + }, + { + "start": 3046.47, + "end": 3047.76, + "probability": 0.3683 + }, + { + "start": 3047.76, + "end": 3047.82, + "probability": 0.5063 + }, + { + "start": 3047.82, + "end": 3048.16, + "probability": 0.0148 + }, + { + "start": 3048.22, + "end": 3048.22, + "probability": 0.6675 + }, + { + "start": 3049.02, + "end": 3049.94, + "probability": 0.0216 + }, + { + "start": 3051.56, + "end": 3051.7, + "probability": 0.4536 + }, + { + "start": 3053.78, + "end": 3058.4, + "probability": 0.3059 + }, + { + "start": 3058.52, + "end": 3059.84, + "probability": 0.5712 + }, + { + "start": 3060.62, + "end": 3063.66, + "probability": 0.5125 + }, + { + "start": 3063.66, + "end": 3064.5, + "probability": 0.6987 + }, + { + "start": 3064.62, + "end": 3066.02, + "probability": 0.6878 + }, + { + "start": 3066.34, + "end": 3070.3, + "probability": 0.7831 + }, + { + "start": 3070.42, + "end": 3076.2, + "probability": 0.4686 + }, + { + "start": 3076.2, + "end": 3081.66, + "probability": 0.6043 + }, + { + "start": 3081.68, + "end": 3081.7, + "probability": 0.4812 + }, + { + "start": 3081.78, + "end": 3087.8, + "probability": 0.3203 + }, + { + "start": 3089.22, + "end": 3090.96, + "probability": 0.0116 + }, + { + "start": 3090.96, + "end": 3095.72, + "probability": 0.0684 + }, + { + "start": 3095.72, + "end": 3095.84, + "probability": 0.1583 + }, + { + "start": 3095.84, + "end": 3097.36, + "probability": 0.2021 + }, + { + "start": 3097.9, + "end": 3097.9, + "probability": 0.0088 + }, + { + "start": 3103.08, + "end": 3106.4, + "probability": 0.1036 + }, + { + "start": 3107.46, + "end": 3108.12, + "probability": 0.8323 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3160.0, + "end": 3160.0, + "probability": 0.0 + }, + { + "start": 3164.96, + "end": 3166.46, + "probability": 0.251 + }, + { + "start": 3167.68, + "end": 3170.84, + "probability": 0.2273 + }, + { + "start": 3173.58, + "end": 3175.82, + "probability": 0.1261 + }, + { + "start": 3178.62, + "end": 3182.56, + "probability": 0.1677 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.0, + "end": 3284.0, + "probability": 0.0 + }, + { + "start": 3284.2, + "end": 3288.16, + "probability": 0.9666 + }, + { + "start": 3288.78, + "end": 3289.76, + "probability": 0.3134 + }, + { + "start": 3290.28, + "end": 3294.8, + "probability": 0.9803 + }, + { + "start": 3295.66, + "end": 3297.9, + "probability": 0.8984 + }, + { + "start": 3298.64, + "end": 3300.32, + "probability": 0.9915 + }, + { + "start": 3300.9, + "end": 3302.06, + "probability": 0.7642 + }, + { + "start": 3302.7, + "end": 3303.52, + "probability": 0.907 + }, + { + "start": 3304.24, + "end": 3305.58, + "probability": 0.9854 + }, + { + "start": 3306.8, + "end": 3311.98, + "probability": 0.9733 + }, + { + "start": 3313.24, + "end": 3320.09, + "probability": 0.9922 + }, + { + "start": 3321.92, + "end": 3327.26, + "probability": 0.9946 + }, + { + "start": 3328.24, + "end": 3329.3, + "probability": 0.9365 + }, + { + "start": 3329.48, + "end": 3333.42, + "probability": 0.9902 + }, + { + "start": 3335.42, + "end": 3336.12, + "probability": 0.6895 + }, + { + "start": 3337.24, + "end": 3338.5, + "probability": 0.8015 + }, + { + "start": 3339.2, + "end": 3341.16, + "probability": 0.6768 + }, + { + "start": 3341.96, + "end": 3348.1, + "probability": 0.97 + }, + { + "start": 3350.04, + "end": 3353.78, + "probability": 0.4642 + }, + { + "start": 3354.44, + "end": 3357.24, + "probability": 0.953 + }, + { + "start": 3357.96, + "end": 3360.34, + "probability": 0.9615 + }, + { + "start": 3361.38, + "end": 3366.32, + "probability": 0.8862 + }, + { + "start": 3367.04, + "end": 3368.9, + "probability": 0.9751 + }, + { + "start": 3369.48, + "end": 3373.06, + "probability": 0.7755 + }, + { + "start": 3374.44, + "end": 3378.28, + "probability": 0.6922 + }, + { + "start": 3378.66, + "end": 3384.12, + "probability": 0.9123 + }, + { + "start": 3385.28, + "end": 3389.06, + "probability": 0.7326 + }, + { + "start": 3389.06, + "end": 3393.2, + "probability": 0.9689 + }, + { + "start": 3393.82, + "end": 3396.18, + "probability": 0.9431 + }, + { + "start": 3397.22, + "end": 3398.44, + "probability": 0.9887 + }, + { + "start": 3399.02, + "end": 3401.3, + "probability": 0.9988 + }, + { + "start": 3401.88, + "end": 3408.9, + "probability": 0.9966 + }, + { + "start": 3409.46, + "end": 3410.51, + "probability": 0.5324 + }, + { + "start": 3411.16, + "end": 3414.08, + "probability": 0.9013 + }, + { + "start": 3414.9, + "end": 3419.54, + "probability": 0.8982 + }, + { + "start": 3420.34, + "end": 3422.32, + "probability": 0.8974 + }, + { + "start": 3423.14, + "end": 3429.18, + "probability": 0.9946 + }, + { + "start": 3429.84, + "end": 3435.68, + "probability": 0.8889 + }, + { + "start": 3436.2, + "end": 3437.4, + "probability": 0.8077 + }, + { + "start": 3437.88, + "end": 3442.18, + "probability": 0.9813 + }, + { + "start": 3442.74, + "end": 3444.28, + "probability": 0.9243 + }, + { + "start": 3446.94, + "end": 3447.56, + "probability": 0.6985 + }, + { + "start": 3448.54, + "end": 3450.56, + "probability": 0.9767 + }, + { + "start": 3450.86, + "end": 3452.74, + "probability": 0.7648 + }, + { + "start": 3452.84, + "end": 3453.32, + "probability": 0.2413 + }, + { + "start": 3455.28, + "end": 3455.98, + "probability": 0.8686 + }, + { + "start": 3457.06, + "end": 3459.72, + "probability": 0.8738 + }, + { + "start": 3460.36, + "end": 3462.7, + "probability": 0.8874 + }, + { + "start": 3463.96, + "end": 3465.89, + "probability": 0.2967 + }, + { + "start": 3466.54, + "end": 3467.18, + "probability": 0.7603 + }, + { + "start": 3467.22, + "end": 3468.36, + "probability": 0.978 + }, + { + "start": 3468.5, + "end": 3469.22, + "probability": 0.7303 + }, + { + "start": 3469.3, + "end": 3470.44, + "probability": 0.8342 + }, + { + "start": 3471.82, + "end": 3472.4, + "probability": 0.7421 + }, + { + "start": 3472.48, + "end": 3472.98, + "probability": 0.926 + }, + { + "start": 3473.08, + "end": 3473.76, + "probability": 0.8282 + }, + { + "start": 3473.84, + "end": 3474.52, + "probability": 0.9359 + }, + { + "start": 3475.02, + "end": 3476.16, + "probability": 0.848 + }, + { + "start": 3476.24, + "end": 3476.88, + "probability": 0.9407 + }, + { + "start": 3476.96, + "end": 3477.66, + "probability": 0.4898 + }, + { + "start": 3477.7, + "end": 3478.34, + "probability": 0.7528 + }, + { + "start": 3479.04, + "end": 3481.66, + "probability": 0.5361 + }, + { + "start": 3485.72, + "end": 3487.86, + "probability": 0.3331 + }, + { + "start": 3488.8, + "end": 3489.82, + "probability": 0.6951 + }, + { + "start": 3490.82, + "end": 3491.68, + "probability": 0.2971 + }, + { + "start": 3496.1, + "end": 3498.76, + "probability": 0.7414 + }, + { + "start": 3499.28, + "end": 3500.84, + "probability": 0.9399 + }, + { + "start": 3501.98, + "end": 3504.6, + "probability": 0.9619 + }, + { + "start": 3507.86, + "end": 3509.83, + "probability": 0.6764 + }, + { + "start": 3511.48, + "end": 3511.96, + "probability": 0.1791 + }, + { + "start": 3512.6, + "end": 3513.18, + "probability": 0.7494 + }, + { + "start": 3520.02, + "end": 3521.72, + "probability": 0.2352 + }, + { + "start": 3521.74, + "end": 3523.88, + "probability": 0.8153 + }, + { + "start": 3525.18, + "end": 3526.0, + "probability": 0.9641 + }, + { + "start": 3526.2, + "end": 3526.42, + "probability": 0.346 + }, + { + "start": 3526.7, + "end": 3527.36, + "probability": 0.814 + }, + { + "start": 3534.64, + "end": 3535.32, + "probability": 0.7242 + }, + { + "start": 3535.36, + "end": 3537.83, + "probability": 0.866 + }, + { + "start": 3538.74, + "end": 3543.24, + "probability": 0.6168 + }, + { + "start": 3544.64, + "end": 3547.58, + "probability": 0.0576 + }, + { + "start": 3547.62, + "end": 3550.06, + "probability": 0.1007 + }, + { + "start": 3551.18, + "end": 3554.96, + "probability": 0.0034 + }, + { + "start": 3561.54, + "end": 3563.4, + "probability": 0.5061 + }, + { + "start": 3563.5, + "end": 3565.8, + "probability": 0.9321 + }, + { + "start": 3566.3, + "end": 3571.68, + "probability": 0.5371 + }, + { + "start": 3572.78, + "end": 3575.84, + "probability": 0.332 + }, + { + "start": 3578.6, + "end": 3580.44, + "probability": 0.27 + }, + { + "start": 3586.82, + "end": 3586.9, + "probability": 0.1118 + }, + { + "start": 3586.9, + "end": 3588.34, + "probability": 0.7618 + }, + { + "start": 3588.84, + "end": 3592.24, + "probability": 0.5916 + }, + { + "start": 3592.72, + "end": 3596.4, + "probability": 0.9798 + }, + { + "start": 3598.34, + "end": 3600.36, + "probability": 0.9486 + }, + { + "start": 3601.64, + "end": 3604.42, + "probability": 0.6544 + }, + { + "start": 3605.14, + "end": 3607.4, + "probability": 0.8429 + }, + { + "start": 3607.7, + "end": 3609.38, + "probability": 0.6624 + }, + { + "start": 3609.56, + "end": 3609.92, + "probability": 0.4011 + }, + { + "start": 3614.4, + "end": 3614.86, + "probability": 0.0313 + }, + { + "start": 3615.04, + "end": 3615.86, + "probability": 0.3985 + }, + { + "start": 3617.14, + "end": 3619.3, + "probability": 0.7892 + }, + { + "start": 3619.54, + "end": 3624.8, + "probability": 0.9803 + }, + { + "start": 3625.7, + "end": 3626.46, + "probability": 0.6236 + }, + { + "start": 3627.94, + "end": 3629.62, + "probability": 0.9831 + }, + { + "start": 3631.2, + "end": 3632.44, + "probability": 0.6273 + }, + { + "start": 3633.0, + "end": 3634.48, + "probability": 0.9121 + }, + { + "start": 3634.88, + "end": 3637.12, + "probability": 0.8674 + }, + { + "start": 3637.22, + "end": 3639.44, + "probability": 0.8727 + }, + { + "start": 3640.34, + "end": 3644.28, + "probability": 0.9634 + }, + { + "start": 3644.56, + "end": 3645.62, + "probability": 0.8203 + }, + { + "start": 3645.94, + "end": 3647.28, + "probability": 0.9672 + }, + { + "start": 3647.4, + "end": 3648.78, + "probability": 0.8536 + }, + { + "start": 3648.8, + "end": 3651.53, + "probability": 0.9868 + }, + { + "start": 3652.3, + "end": 3652.62, + "probability": 0.3711 + }, + { + "start": 3652.68, + "end": 3655.58, + "probability": 0.9922 + }, + { + "start": 3655.58, + "end": 3658.52, + "probability": 0.9724 + }, + { + "start": 3659.0, + "end": 3660.46, + "probability": 0.5181 + }, + { + "start": 3660.8, + "end": 3661.4, + "probability": 0.8325 + }, + { + "start": 3661.64, + "end": 3666.92, + "probability": 0.9702 + }, + { + "start": 3667.76, + "end": 3671.14, + "probability": 0.8244 + }, + { + "start": 3671.78, + "end": 3675.1, + "probability": 0.9888 + }, + { + "start": 3675.66, + "end": 3681.7, + "probability": 0.9985 + }, + { + "start": 3681.86, + "end": 3682.82, + "probability": 0.9797 + }, + { + "start": 3683.0, + "end": 3687.08, + "probability": 0.9917 + }, + { + "start": 3687.52, + "end": 3689.7, + "probability": 0.9993 + }, + { + "start": 3690.68, + "end": 3693.02, + "probability": 0.9473 + }, + { + "start": 3693.52, + "end": 3695.7, + "probability": 0.9963 + }, + { + "start": 3696.62, + "end": 3698.38, + "probability": 0.8797 + }, + { + "start": 3698.5, + "end": 3700.74, + "probability": 0.8199 + }, + { + "start": 3700.84, + "end": 3701.28, + "probability": 0.9149 + }, + { + "start": 3701.86, + "end": 3706.94, + "probability": 0.9893 + }, + { + "start": 3707.6, + "end": 3709.58, + "probability": 0.9964 + }, + { + "start": 3709.94, + "end": 3710.78, + "probability": 0.7372 + }, + { + "start": 3710.84, + "end": 3713.26, + "probability": 0.989 + }, + { + "start": 3713.72, + "end": 3715.28, + "probability": 0.8707 + }, + { + "start": 3716.38, + "end": 3720.08, + "probability": 0.9924 + }, + { + "start": 3720.1, + "end": 3724.34, + "probability": 0.9894 + }, + { + "start": 3724.6, + "end": 3727.24, + "probability": 0.988 + }, + { + "start": 3727.38, + "end": 3728.54, + "probability": 0.998 + }, + { + "start": 3729.6, + "end": 3730.36, + "probability": 0.917 + }, + { + "start": 3731.08, + "end": 3731.66, + "probability": 0.8387 + }, + { + "start": 3731.7, + "end": 3733.68, + "probability": 0.986 + }, + { + "start": 3733.82, + "end": 3737.42, + "probability": 0.9946 + }, + { + "start": 3737.84, + "end": 3738.8, + "probability": 0.9924 + }, + { + "start": 3738.94, + "end": 3740.52, + "probability": 0.8857 + }, + { + "start": 3740.66, + "end": 3740.84, + "probability": 0.4762 + }, + { + "start": 3740.88, + "end": 3741.74, + "probability": 0.7886 + }, + { + "start": 3742.2, + "end": 3744.64, + "probability": 0.9715 + }, + { + "start": 3744.86, + "end": 3745.74, + "probability": 0.8956 + }, + { + "start": 3746.16, + "end": 3747.06, + "probability": 0.9578 + }, + { + "start": 3747.18, + "end": 3750.78, + "probability": 0.9983 + }, + { + "start": 3751.54, + "end": 3751.96, + "probability": 0.4444 + }, + { + "start": 3752.08, + "end": 3754.24, + "probability": 0.7495 + }, + { + "start": 3754.32, + "end": 3757.16, + "probability": 0.9919 + }, + { + "start": 3757.9, + "end": 3762.46, + "probability": 0.9742 + }, + { + "start": 3763.16, + "end": 3764.42, + "probability": 0.8977 + }, + { + "start": 3764.88, + "end": 3768.98, + "probability": 0.9948 + }, + { + "start": 3769.12, + "end": 3772.86, + "probability": 0.8526 + }, + { + "start": 3772.92, + "end": 3776.76, + "probability": 0.9902 + }, + { + "start": 3777.38, + "end": 3781.18, + "probability": 0.967 + }, + { + "start": 3781.24, + "end": 3781.52, + "probability": 0.902 + }, + { + "start": 3781.6, + "end": 3783.4, + "probability": 0.8908 + }, + { + "start": 3783.52, + "end": 3787.34, + "probability": 0.9939 + }, + { + "start": 3787.38, + "end": 3787.98, + "probability": 0.8852 + }, + { + "start": 3788.12, + "end": 3790.66, + "probability": 0.9219 + }, + { + "start": 3791.32, + "end": 3792.28, + "probability": 0.6717 + }, + { + "start": 3793.14, + "end": 3799.5, + "probability": 0.8806 + }, + { + "start": 3799.76, + "end": 3804.92, + "probability": 0.9515 + }, + { + "start": 3805.86, + "end": 3808.58, + "probability": 0.9966 + }, + { + "start": 3808.58, + "end": 3812.24, + "probability": 0.9848 + }, + { + "start": 3812.6, + "end": 3814.9, + "probability": 0.5583 + }, + { + "start": 3815.32, + "end": 3817.42, + "probability": 0.7641 + }, + { + "start": 3817.5, + "end": 3818.74, + "probability": 0.8776 + }, + { + "start": 3819.38, + "end": 3825.7, + "probability": 0.9932 + }, + { + "start": 3825.7, + "end": 3830.68, + "probability": 0.9995 + }, + { + "start": 3830.74, + "end": 3834.86, + "probability": 0.9995 + }, + { + "start": 3835.44, + "end": 3836.7, + "probability": 0.6697 + }, + { + "start": 3836.9, + "end": 3837.18, + "probability": 0.4651 + }, + { + "start": 3837.36, + "end": 3840.62, + "probability": 0.9958 + }, + { + "start": 3841.28, + "end": 3844.5, + "probability": 0.9808 + }, + { + "start": 3844.62, + "end": 3845.0, + "probability": 0.6546 + }, + { + "start": 3845.12, + "end": 3845.4, + "probability": 0.8205 + }, + { + "start": 3846.76, + "end": 3849.42, + "probability": 0.8503 + }, + { + "start": 3850.04, + "end": 3850.48, + "probability": 0.477 + }, + { + "start": 3852.38, + "end": 3853.76, + "probability": 0.5625 + }, + { + "start": 3862.16, + "end": 3865.94, + "probability": 0.7274 + }, + { + "start": 3866.52, + "end": 3868.08, + "probability": 0.876 + }, + { + "start": 3868.22, + "end": 3871.26, + "probability": 0.9718 + }, + { + "start": 3871.6, + "end": 3874.9, + "probability": 0.9985 + }, + { + "start": 3875.46, + "end": 3877.34, + "probability": 0.9849 + }, + { + "start": 3877.78, + "end": 3879.46, + "probability": 0.9883 + }, + { + "start": 3879.68, + "end": 3884.08, + "probability": 0.9935 + }, + { + "start": 3884.82, + "end": 3889.06, + "probability": 0.9922 + }, + { + "start": 3889.46, + "end": 3890.98, + "probability": 0.9928 + }, + { + "start": 3891.82, + "end": 3894.42, + "probability": 0.9845 + }, + { + "start": 3894.52, + "end": 3895.74, + "probability": 0.7267 + }, + { + "start": 3896.18, + "end": 3897.5, + "probability": 0.9503 + }, + { + "start": 3898.24, + "end": 3903.48, + "probability": 0.8855 + }, + { + "start": 3904.06, + "end": 3907.06, + "probability": 0.9818 + }, + { + "start": 3907.86, + "end": 3910.1, + "probability": 0.8063 + }, + { + "start": 3910.62, + "end": 3911.8, + "probability": 0.8496 + }, + { + "start": 3912.18, + "end": 3912.62, + "probability": 0.9066 + }, + { + "start": 3912.66, + "end": 3914.22, + "probability": 0.99 + }, + { + "start": 3914.52, + "end": 3915.82, + "probability": 0.9673 + }, + { + "start": 3915.86, + "end": 3917.74, + "probability": 0.6968 + }, + { + "start": 3918.22, + "end": 3921.74, + "probability": 0.9775 + }, + { + "start": 3922.1, + "end": 3927.28, + "probability": 0.962 + }, + { + "start": 3928.06, + "end": 3928.92, + "probability": 0.988 + }, + { + "start": 3932.1, + "end": 3933.92, + "probability": 0.6778 + }, + { + "start": 3934.34, + "end": 3934.48, + "probability": 0.6717 + }, + { + "start": 3935.46, + "end": 3936.32, + "probability": 0.6493 + }, + { + "start": 3936.4, + "end": 3938.52, + "probability": 0.8325 + }, + { + "start": 3938.64, + "end": 3939.64, + "probability": 0.8253 + }, + { + "start": 3940.22, + "end": 3942.28, + "probability": 0.9541 + }, + { + "start": 3942.28, + "end": 3944.86, + "probability": 0.4838 + }, + { + "start": 3945.26, + "end": 3946.36, + "probability": 0.5427 + }, + { + "start": 3946.58, + "end": 3947.98, + "probability": 0.9776 + }, + { + "start": 3948.06, + "end": 3948.16, + "probability": 0.6578 + }, + { + "start": 3949.18, + "end": 3950.0, + "probability": 0.3441 + }, + { + "start": 3950.06, + "end": 3952.18, + "probability": 0.775 + }, + { + "start": 3952.18, + "end": 3954.62, + "probability": 0.9915 + }, + { + "start": 3955.18, + "end": 3957.76, + "probability": 0.761 + }, + { + "start": 3957.86, + "end": 3963.62, + "probability": 0.9442 + }, + { + "start": 3964.48, + "end": 3965.72, + "probability": 0.6636 + }, + { + "start": 3978.06, + "end": 3978.42, + "probability": 0.6715 + }, + { + "start": 3978.56, + "end": 3980.62, + "probability": 0.6711 + }, + { + "start": 3981.78, + "end": 3985.24, + "probability": 0.9863 + }, + { + "start": 3985.26, + "end": 3988.08, + "probability": 0.9971 + }, + { + "start": 3988.28, + "end": 3989.94, + "probability": 0.853 + }, + { + "start": 3990.36, + "end": 3992.44, + "probability": 0.9885 + }, + { + "start": 3993.74, + "end": 3996.56, + "probability": 0.982 + }, + { + "start": 3996.56, + "end": 4001.5, + "probability": 0.9988 + }, + { + "start": 4002.2, + "end": 4005.1, + "probability": 0.9908 + }, + { + "start": 4005.1, + "end": 4009.02, + "probability": 0.9961 + }, + { + "start": 4010.2, + "end": 4010.42, + "probability": 0.5114 + }, + { + "start": 4010.94, + "end": 4012.86, + "probability": 0.9988 + }, + { + "start": 4013.56, + "end": 4016.22, + "probability": 0.9425 + }, + { + "start": 4016.22, + "end": 4018.66, + "probability": 0.9872 + }, + { + "start": 4019.28, + "end": 4019.46, + "probability": 0.3716 + }, + { + "start": 4019.64, + "end": 4023.24, + "probability": 0.9937 + }, + { + "start": 4023.96, + "end": 4027.37, + "probability": 0.9435 + }, + { + "start": 4029.36, + "end": 4030.92, + "probability": 0.9481 + }, + { + "start": 4031.44, + "end": 4033.2, + "probability": 0.9521 + }, + { + "start": 4034.08, + "end": 4035.52, + "probability": 0.677 + }, + { + "start": 4036.2, + "end": 4036.76, + "probability": 0.7613 + }, + { + "start": 4036.9, + "end": 4038.98, + "probability": 0.8403 + }, + { + "start": 4039.4, + "end": 4042.26, + "probability": 0.9639 + }, + { + "start": 4043.1, + "end": 4048.04, + "probability": 0.9313 + }, + { + "start": 4048.04, + "end": 4052.1, + "probability": 0.9924 + }, + { + "start": 4052.32, + "end": 4054.78, + "probability": 0.7987 + }, + { + "start": 4055.48, + "end": 4058.36, + "probability": 0.9651 + }, + { + "start": 4058.6, + "end": 4059.8, + "probability": 0.7754 + }, + { + "start": 4060.24, + "end": 4063.32, + "probability": 0.9821 + }, + { + "start": 4063.45, + "end": 4066.88, + "probability": 0.9463 + }, + { + "start": 4066.92, + "end": 4068.62, + "probability": 0.8114 + }, + { + "start": 4069.68, + "end": 4072.18, + "probability": 0.9961 + }, + { + "start": 4072.18, + "end": 4075.76, + "probability": 0.9399 + }, + { + "start": 4075.84, + "end": 4079.14, + "probability": 0.9946 + }, + { + "start": 4079.64, + "end": 4083.58, + "probability": 0.9567 + }, + { + "start": 4084.52, + "end": 4088.54, + "probability": 0.9951 + }, + { + "start": 4088.54, + "end": 4092.52, + "probability": 0.9978 + }, + { + "start": 4093.3, + "end": 4097.14, + "probability": 0.8014 + }, + { + "start": 4097.68, + "end": 4100.06, + "probability": 0.3122 + }, + { + "start": 4100.58, + "end": 4103.82, + "probability": 0.9745 + }, + { + "start": 4104.08, + "end": 4105.92, + "probability": 0.8245 + }, + { + "start": 4105.96, + "end": 4107.36, + "probability": 0.8698 + }, + { + "start": 4107.94, + "end": 4108.36, + "probability": 0.7223 + }, + { + "start": 4109.54, + "end": 4111.38, + "probability": 0.9976 + }, + { + "start": 4111.38, + "end": 4114.12, + "probability": 0.871 + }, + { + "start": 4114.12, + "end": 4114.4, + "probability": 0.2036 + }, + { + "start": 4114.42, + "end": 4114.78, + "probability": 0.6789 + }, + { + "start": 4114.82, + "end": 4117.04, + "probability": 0.9938 + }, + { + "start": 4117.48, + "end": 4120.74, + "probability": 0.9121 + }, + { + "start": 4121.96, + "end": 4124.1, + "probability": 0.9557 + }, + { + "start": 4124.1, + "end": 4126.85, + "probability": 0.9451 + }, + { + "start": 4126.98, + "end": 4130.06, + "probability": 0.9727 + }, + { + "start": 4131.68, + "end": 4132.44, + "probability": 0.7403 + }, + { + "start": 4134.72, + "end": 4137.6, + "probability": 0.8398 + }, + { + "start": 4139.44, + "end": 4141.34, + "probability": 0.8687 + }, + { + "start": 4167.5, + "end": 4172.0, + "probability": 0.5298 + }, + { + "start": 4175.04, + "end": 4179.88, + "probability": 0.6551 + }, + { + "start": 4183.06, + "end": 4190.38, + "probability": 0.9126 + }, + { + "start": 4193.22, + "end": 4200.98, + "probability": 0.9978 + }, + { + "start": 4202.16, + "end": 4205.8, + "probability": 0.9812 + }, + { + "start": 4207.88, + "end": 4211.32, + "probability": 0.989 + }, + { + "start": 4212.56, + "end": 4219.26, + "probability": 0.9609 + }, + { + "start": 4220.42, + "end": 4224.26, + "probability": 0.9963 + }, + { + "start": 4224.32, + "end": 4228.68, + "probability": 0.9927 + }, + { + "start": 4229.14, + "end": 4231.2, + "probability": 0.9728 + }, + { + "start": 4232.1, + "end": 4235.68, + "probability": 0.9865 + }, + { + "start": 4236.96, + "end": 4239.27, + "probability": 0.9857 + }, + { + "start": 4241.12, + "end": 4248.1, + "probability": 0.9814 + }, + { + "start": 4249.36, + "end": 4249.99, + "probability": 0.9357 + }, + { + "start": 4251.3, + "end": 4253.32, + "probability": 0.7372 + }, + { + "start": 4254.24, + "end": 4257.12, + "probability": 0.5862 + }, + { + "start": 4258.78, + "end": 4265.0, + "probability": 0.951 + }, + { + "start": 4265.72, + "end": 4267.52, + "probability": 0.9297 + }, + { + "start": 4269.7, + "end": 4275.68, + "probability": 0.9595 + }, + { + "start": 4276.18, + "end": 4277.16, + "probability": 0.813 + }, + { + "start": 4277.24, + "end": 4278.1, + "probability": 0.5663 + }, + { + "start": 4281.08, + "end": 4286.46, + "probability": 0.9907 + }, + { + "start": 4288.66, + "end": 4291.84, + "probability": 0.9917 + }, + { + "start": 4293.04, + "end": 4293.84, + "probability": 0.9263 + }, + { + "start": 4294.92, + "end": 4296.94, + "probability": 0.9611 + }, + { + "start": 4298.64, + "end": 4299.44, + "probability": 0.5954 + }, + { + "start": 4300.2, + "end": 4302.96, + "probability": 0.6643 + }, + { + "start": 4304.1, + "end": 4305.58, + "probability": 0.8955 + }, + { + "start": 4306.18, + "end": 4307.3, + "probability": 0.6424 + }, + { + "start": 4310.14, + "end": 4316.26, + "probability": 0.5617 + }, + { + "start": 4317.22, + "end": 4323.64, + "probability": 0.8961 + }, + { + "start": 4323.8, + "end": 4326.2, + "probability": 0.8798 + }, + { + "start": 4327.54, + "end": 4335.9, + "probability": 0.9437 + }, + { + "start": 4336.12, + "end": 4336.72, + "probability": 0.4945 + }, + { + "start": 4337.64, + "end": 4339.22, + "probability": 0.8174 + }, + { + "start": 4339.86, + "end": 4344.32, + "probability": 0.9288 + }, + { + "start": 4346.22, + "end": 4347.54, + "probability": 0.8797 + }, + { + "start": 4348.38, + "end": 4354.18, + "probability": 0.992 + }, + { + "start": 4354.66, + "end": 4355.24, + "probability": 0.8566 + }, + { + "start": 4356.82, + "end": 4357.3, + "probability": 0.6291 + }, + { + "start": 4357.38, + "end": 4358.78, + "probability": 0.7616 + }, + { + "start": 4359.72, + "end": 4360.42, + "probability": 0.569 + }, + { + "start": 4361.08, + "end": 4363.14, + "probability": 0.8766 + }, + { + "start": 4363.18, + "end": 4366.2, + "probability": 0.725 + }, + { + "start": 4366.98, + "end": 4367.8, + "probability": 0.1888 + }, + { + "start": 4370.18, + "end": 4372.08, + "probability": 0.9915 + }, + { + "start": 4373.6, + "end": 4375.02, + "probability": 0.5382 + }, + { + "start": 4375.77, + "end": 4377.76, + "probability": 0.834 + }, + { + "start": 4378.52, + "end": 4378.98, + "probability": 0.0309 + }, + { + "start": 4389.8, + "end": 4390.44, + "probability": 0.0374 + }, + { + "start": 4404.48, + "end": 4405.68, + "probability": 0.0023 + }, + { + "start": 4407.34, + "end": 4408.14, + "probability": 0.1157 + }, + { + "start": 4475.24, + "end": 4475.34, + "probability": 0.2262 + }, + { + "start": 4477.18, + "end": 4477.92, + "probability": 0.6774 + }, + { + "start": 4479.92, + "end": 4481.28, + "probability": 0.9362 + }, + { + "start": 4482.56, + "end": 4484.04, + "probability": 0.8874 + }, + { + "start": 4485.26, + "end": 4488.54, + "probability": 0.8195 + }, + { + "start": 4490.1, + "end": 4490.94, + "probability": 0.9836 + }, + { + "start": 4492.06, + "end": 4495.66, + "probability": 0.9668 + }, + { + "start": 4496.3, + "end": 4498.44, + "probability": 0.9778 + }, + { + "start": 4502.1, + "end": 4504.92, + "probability": 0.8493 + }, + { + "start": 4507.5, + "end": 4509.0, + "probability": 0.8349 + }, + { + "start": 4513.78, + "end": 4520.36, + "probability": 0.9906 + }, + { + "start": 4523.02, + "end": 4523.22, + "probability": 0.379 + }, + { + "start": 4524.42, + "end": 4525.18, + "probability": 0.9065 + }, + { + "start": 4525.94, + "end": 4533.79, + "probability": 0.9969 + }, + { + "start": 4534.82, + "end": 4536.1, + "probability": 0.6825 + }, + { + "start": 4538.52, + "end": 4539.1, + "probability": 0.7499 + }, + { + "start": 4539.82, + "end": 4543.54, + "probability": 0.921 + }, + { + "start": 4545.6, + "end": 4548.32, + "probability": 0.9357 + }, + { + "start": 4549.62, + "end": 4554.88, + "probability": 0.9972 + }, + { + "start": 4556.54, + "end": 4557.64, + "probability": 0.6564 + }, + { + "start": 4559.04, + "end": 4559.9, + "probability": 0.5526 + }, + { + "start": 4560.7, + "end": 4562.1, + "probability": 0.9632 + }, + { + "start": 4562.88, + "end": 4566.24, + "probability": 0.905 + }, + { + "start": 4567.08, + "end": 4569.56, + "probability": 0.6749 + }, + { + "start": 4570.48, + "end": 4572.44, + "probability": 0.7793 + }, + { + "start": 4573.14, + "end": 4575.64, + "probability": 0.9917 + }, + { + "start": 4576.7, + "end": 4582.2, + "probability": 0.9319 + }, + { + "start": 4583.5, + "end": 4585.76, + "probability": 0.9952 + }, + { + "start": 4586.62, + "end": 4588.52, + "probability": 0.6892 + }, + { + "start": 4588.54, + "end": 4590.42, + "probability": 0.167 + }, + { + "start": 4590.46, + "end": 4590.52, + "probability": 0.6027 + }, + { + "start": 4590.52, + "end": 4591.04, + "probability": 0.7681 + }, + { + "start": 4591.04, + "end": 4591.74, + "probability": 0.612 + }, + { + "start": 4594.0, + "end": 4596.56, + "probability": 0.8059 + }, + { + "start": 4598.24, + "end": 4599.11, + "probability": 0.5203 + }, + { + "start": 4601.88, + "end": 4605.06, + "probability": 0.647 + }, + { + "start": 4605.16, + "end": 4605.36, + "probability": 0.1077 + }, + { + "start": 4605.36, + "end": 4607.54, + "probability": 0.9196 + }, + { + "start": 4607.78, + "end": 4608.06, + "probability": 0.7327 + }, + { + "start": 4609.12, + "end": 4611.59, + "probability": 0.8493 + }, + { + "start": 4611.9, + "end": 4615.8, + "probability": 0.3276 + }, + { + "start": 4615.98, + "end": 4617.32, + "probability": 0.7816 + }, + { + "start": 4617.32, + "end": 4618.02, + "probability": 0.1981 + }, + { + "start": 4618.24, + "end": 4621.02, + "probability": 0.7872 + }, + { + "start": 4621.02, + "end": 4622.25, + "probability": 0.2206 + }, + { + "start": 4622.72, + "end": 4623.58, + "probability": 0.1285 + }, + { + "start": 4623.64, + "end": 4623.64, + "probability": 0.1702 + }, + { + "start": 4623.64, + "end": 4623.64, + "probability": 0.1388 + }, + { + "start": 4623.64, + "end": 4623.64, + "probability": 0.1821 + }, + { + "start": 4623.64, + "end": 4623.64, + "probability": 0.5069 + }, + { + "start": 4623.64, + "end": 4625.7, + "probability": 0.4239 + }, + { + "start": 4626.12, + "end": 4626.88, + "probability": 0.8665 + }, + { + "start": 4627.42, + "end": 4630.14, + "probability": 0.6247 + }, + { + "start": 4630.36, + "end": 4630.4, + "probability": 0.3224 + }, + { + "start": 4630.42, + "end": 4631.42, + "probability": 0.7189 + }, + { + "start": 4634.06, + "end": 4635.08, + "probability": 0.2438 + }, + { + "start": 4635.8, + "end": 4636.46, + "probability": 0.3322 + }, + { + "start": 4637.14, + "end": 4637.86, + "probability": 0.7286 + }, + { + "start": 4637.86, + "end": 4637.86, + "probability": 0.6031 + }, + { + "start": 4637.86, + "end": 4638.42, + "probability": 0.9327 + }, + { + "start": 4638.8, + "end": 4640.18, + "probability": 0.7541 + }, + { + "start": 4640.92, + "end": 4642.12, + "probability": 0.8235 + }, + { + "start": 4648.4, + "end": 4650.66, + "probability": 0.7727 + }, + { + "start": 4650.76, + "end": 4652.5, + "probability": 0.8932 + }, + { + "start": 4653.64, + "end": 4654.47, + "probability": 0.5724 + }, + { + "start": 4660.16, + "end": 4662.5, + "probability": 0.6111 + }, + { + "start": 4663.84, + "end": 4666.58, + "probability": 0.7547 + }, + { + "start": 4667.98, + "end": 4670.15, + "probability": 0.8337 + }, + { + "start": 4671.04, + "end": 4676.44, + "probability": 0.3146 + }, + { + "start": 4677.48, + "end": 4678.4, + "probability": 0.41 + }, + { + "start": 4683.58, + "end": 4683.74, + "probability": 0.1189 + }, + { + "start": 4685.54, + "end": 4690.56, + "probability": 0.9694 + }, + { + "start": 4691.28, + "end": 4693.1, + "probability": 0.8312 + }, + { + "start": 4694.34, + "end": 4700.48, + "probability": 0.9569 + }, + { + "start": 4700.48, + "end": 4705.08, + "probability": 0.7703 + }, + { + "start": 4705.58, + "end": 4709.22, + "probability": 0.5131 + }, + { + "start": 4709.22, + "end": 4711.02, + "probability": 0.956 + }, + { + "start": 4711.52, + "end": 4717.12, + "probability": 0.961 + }, + { + "start": 4717.22, + "end": 4721.04, + "probability": 0.7838 + }, + { + "start": 4721.56, + "end": 4724.0, + "probability": 0.8564 + }, + { + "start": 4725.24, + "end": 4729.14, + "probability": 0.6893 + }, + { + "start": 4729.68, + "end": 4730.78, + "probability": 0.9259 + }, + { + "start": 4731.8, + "end": 4736.62, + "probability": 0.6978 + }, + { + "start": 4737.18, + "end": 4741.5, + "probability": 0.7595 + }, + { + "start": 4743.18, + "end": 4744.12, + "probability": 0.2776 + }, + { + "start": 4746.56, + "end": 4750.92, + "probability": 0.1884 + }, + { + "start": 4752.48, + "end": 4754.48, + "probability": 0.5739 + }, + { + "start": 4755.42, + "end": 4761.26, + "probability": 0.7413 + }, + { + "start": 4761.82, + "end": 4766.32, + "probability": 0.7892 + }, + { + "start": 4766.42, + "end": 4768.48, + "probability": 0.9863 + }, + { + "start": 4768.54, + "end": 4771.62, + "probability": 0.8407 + }, + { + "start": 4772.6, + "end": 4772.84, + "probability": 0.7159 + }, + { + "start": 4773.92, + "end": 4775.4, + "probability": 0.9371 + }, + { + "start": 4775.54, + "end": 4777.88, + "probability": 0.8823 + }, + { + "start": 4779.04, + "end": 4782.93, + "probability": 0.9592 + }, + { + "start": 4784.72, + "end": 4785.38, + "probability": 0.5916 + }, + { + "start": 4785.46, + "end": 4790.34, + "probability": 0.9743 + }, + { + "start": 4790.98, + "end": 4792.78, + "probability": 0.9757 + }, + { + "start": 4793.52, + "end": 4795.74, + "probability": 0.9108 + }, + { + "start": 4796.46, + "end": 4798.82, + "probability": 0.8346 + }, + { + "start": 4799.58, + "end": 4801.14, + "probability": 0.8921 + }, + { + "start": 4801.9, + "end": 4807.4, + "probability": 0.9931 + }, + { + "start": 4808.3, + "end": 4814.86, + "probability": 0.9594 + }, + { + "start": 4815.04, + "end": 4817.56, + "probability": 0.9946 + }, + { + "start": 4817.88, + "end": 4820.1, + "probability": 0.7712 + }, + { + "start": 4821.12, + "end": 4826.76, + "probability": 0.8455 + }, + { + "start": 4827.04, + "end": 4830.78, + "probability": 0.9551 + }, + { + "start": 4831.36, + "end": 4835.08, + "probability": 0.9933 + }, + { + "start": 4835.46, + "end": 4840.48, + "probability": 0.962 + }, + { + "start": 4840.7, + "end": 4843.48, + "probability": 0.9966 + }, + { + "start": 4843.66, + "end": 4843.92, + "probability": 0.726 + }, + { + "start": 4844.68, + "end": 4845.7, + "probability": 0.7441 + }, + { + "start": 4846.06, + "end": 4849.56, + "probability": 0.9265 + }, + { + "start": 4849.66, + "end": 4849.86, + "probability": 0.6633 + }, + { + "start": 4852.2, + "end": 4852.68, + "probability": 0.5553 + }, + { + "start": 4852.82, + "end": 4854.0, + "probability": 0.8439 + }, + { + "start": 4854.28, + "end": 4854.64, + "probability": 0.3111 + }, + { + "start": 4854.78, + "end": 4856.28, + "probability": 0.6636 + }, + { + "start": 4856.38, + "end": 4857.0, + "probability": 0.5004 + }, + { + "start": 4857.76, + "end": 4859.28, + "probability": 0.8846 + }, + { + "start": 4860.32, + "end": 4860.96, + "probability": 0.525 + }, + { + "start": 4861.1, + "end": 4862.06, + "probability": 0.6398 + }, + { + "start": 4862.32, + "end": 4862.58, + "probability": 0.4517 + }, + { + "start": 4862.72, + "end": 4863.8, + "probability": 0.8983 + }, + { + "start": 4881.46, + "end": 4882.82, + "probability": 0.6096 + }, + { + "start": 4883.66, + "end": 4884.58, + "probability": 0.6725 + }, + { + "start": 4885.54, + "end": 4888.42, + "probability": 0.7959 + }, + { + "start": 4888.52, + "end": 4889.76, + "probability": 0.7571 + }, + { + "start": 4890.52, + "end": 4893.4, + "probability": 0.9788 + }, + { + "start": 4893.66, + "end": 4895.06, + "probability": 0.9948 + }, + { + "start": 4895.66, + "end": 4898.56, + "probability": 0.9929 + }, + { + "start": 4899.42, + "end": 4900.96, + "probability": 0.9974 + }, + { + "start": 4901.56, + "end": 4907.46, + "probability": 0.996 + }, + { + "start": 4908.34, + "end": 4909.49, + "probability": 0.9666 + }, + { + "start": 4910.52, + "end": 4914.12, + "probability": 0.9993 + }, + { + "start": 4914.66, + "end": 4917.72, + "probability": 0.7928 + }, + { + "start": 4918.7, + "end": 4919.9, + "probability": 0.897 + }, + { + "start": 4920.98, + "end": 4922.36, + "probability": 0.8147 + }, + { + "start": 4923.18, + "end": 4924.32, + "probability": 0.9099 + }, + { + "start": 4924.96, + "end": 4927.68, + "probability": 0.8079 + }, + { + "start": 4928.38, + "end": 4932.02, + "probability": 0.9334 + }, + { + "start": 4933.46, + "end": 4938.0, + "probability": 0.9968 + }, + { + "start": 4938.76, + "end": 4940.7, + "probability": 0.9569 + }, + { + "start": 4941.36, + "end": 4944.94, + "probability": 0.998 + }, + { + "start": 4946.26, + "end": 4948.24, + "probability": 0.8131 + }, + { + "start": 4949.52, + "end": 4950.72, + "probability": 0.6694 + }, + { + "start": 4951.64, + "end": 4954.3, + "probability": 0.9868 + }, + { + "start": 4954.52, + "end": 4955.79, + "probability": 0.8502 + }, + { + "start": 4957.54, + "end": 4962.16, + "probability": 0.9979 + }, + { + "start": 4963.24, + "end": 4966.18, + "probability": 0.9652 + }, + { + "start": 4967.1, + "end": 4971.32, + "probability": 0.871 + }, + { + "start": 4972.12, + "end": 4973.4, + "probability": 0.9554 + }, + { + "start": 4974.8, + "end": 4975.46, + "probability": 0.8864 + }, + { + "start": 4976.28, + "end": 4978.42, + "probability": 0.9744 + }, + { + "start": 4979.06, + "end": 4984.04, + "probability": 0.957 + }, + { + "start": 4985.36, + "end": 4989.14, + "probability": 0.9986 + }, + { + "start": 4989.84, + "end": 4997.36, + "probability": 0.9976 + }, + { + "start": 4998.0, + "end": 5001.04, + "probability": 0.9977 + }, + { + "start": 5001.82, + "end": 5003.1, + "probability": 0.9604 + }, + { + "start": 5004.58, + "end": 5005.38, + "probability": 0.4625 + }, + { + "start": 5006.5, + "end": 5009.8, + "probability": 0.6194 + }, + { + "start": 5010.68, + "end": 5014.2, + "probability": 0.799 + }, + { + "start": 5016.8, + "end": 5020.38, + "probability": 0.9195 + }, + { + "start": 5021.4, + "end": 5024.1, + "probability": 0.7764 + }, + { + "start": 5025.56, + "end": 5029.0, + "probability": 0.8521 + }, + { + "start": 5029.84, + "end": 5032.4, + "probability": 0.9958 + }, + { + "start": 5033.28, + "end": 5036.78, + "probability": 0.9976 + }, + { + "start": 5037.62, + "end": 5040.6, + "probability": 0.9987 + }, + { + "start": 5041.46, + "end": 5044.94, + "probability": 0.999 + }, + { + "start": 5045.5, + "end": 5046.18, + "probability": 0.7761 + }, + { + "start": 5047.52, + "end": 5049.32, + "probability": 0.9007 + }, + { + "start": 5049.98, + "end": 5051.58, + "probability": 0.9247 + }, + { + "start": 5052.56, + "end": 5054.22, + "probability": 0.8673 + }, + { + "start": 5054.94, + "end": 5056.98, + "probability": 0.7198 + }, + { + "start": 5057.7, + "end": 5058.44, + "probability": 0.4498 + }, + { + "start": 5058.5, + "end": 5064.26, + "probability": 0.9283 + }, + { + "start": 5065.1, + "end": 5067.92, + "probability": 0.9868 + }, + { + "start": 5069.64, + "end": 5074.94, + "probability": 0.9393 + }, + { + "start": 5076.02, + "end": 5076.32, + "probability": 0.7598 + }, + { + "start": 5078.26, + "end": 5078.86, + "probability": 0.735 + }, + { + "start": 5082.88, + "end": 5083.84, + "probability": 0.9456 + }, + { + "start": 5084.68, + "end": 5085.18, + "probability": 0.8453 + }, + { + "start": 5087.32, + "end": 5088.9, + "probability": 0.8046 + }, + { + "start": 5088.98, + "end": 5090.84, + "probability": 0.9779 + }, + { + "start": 5090.84, + "end": 5093.34, + "probability": 0.9845 + }, + { + "start": 5093.54, + "end": 5094.6, + "probability": 0.7733 + }, + { + "start": 5094.98, + "end": 5096.66, + "probability": 0.9543 + }, + { + "start": 5097.38, + "end": 5099.42, + "probability": 0.502 + }, + { + "start": 5100.04, + "end": 5102.48, + "probability": 0.2519 + }, + { + "start": 5117.96, + "end": 5121.8, + "probability": 0.9673 + }, + { + "start": 5121.9, + "end": 5126.46, + "probability": 0.5804 + }, + { + "start": 5126.56, + "end": 5127.34, + "probability": 0.0565 + }, + { + "start": 5130.6, + "end": 5131.28, + "probability": 0.0079 + }, + { + "start": 5131.3, + "end": 5131.64, + "probability": 0.0202 + }, + { + "start": 5131.64, + "end": 5131.64, + "probability": 0.0788 + }, + { + "start": 5131.64, + "end": 5133.22, + "probability": 0.2693 + }, + { + "start": 5133.22, + "end": 5133.89, + "probability": 0.0275 + }, + { + "start": 5135.68, + "end": 5136.92, + "probability": 0.4735 + }, + { + "start": 5137.34, + "end": 5137.66, + "probability": 0.2171 + }, + { + "start": 5137.66, + "end": 5137.66, + "probability": 0.1174 + }, + { + "start": 5137.66, + "end": 5138.26, + "probability": 0.3961 + }, + { + "start": 5140.08, + "end": 5142.26, + "probability": 0.0356 + }, + { + "start": 5155.48, + "end": 5156.28, + "probability": 0.031 + }, + { + "start": 5157.0, + "end": 5161.5, + "probability": 0.5097 + }, + { + "start": 5161.56, + "end": 5162.08, + "probability": 0.5564 + }, + { + "start": 5162.14, + "end": 5163.4, + "probability": 0.614 + }, + { + "start": 5163.92, + "end": 5167.28, + "probability": 0.0482 + }, + { + "start": 5167.28, + "end": 5169.26, + "probability": 0.0231 + }, + { + "start": 5178.38, + "end": 5181.88, + "probability": 0.099 + }, + { + "start": 5185.2, + "end": 5188.38, + "probability": 0.1149 + }, + { + "start": 5188.44, + "end": 5188.44, + "probability": 0.1877 + }, + { + "start": 5188.7, + "end": 5189.54, + "probability": 0.2605 + }, + { + "start": 5189.55, + "end": 5189.62, + "probability": 0.029 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5190.0, + "end": 5190.0, + "probability": 0.0 + }, + { + "start": 5191.48, + "end": 5195.26, + "probability": 0.9978 + }, + { + "start": 5195.72, + "end": 5197.38, + "probability": 0.4747 + }, + { + "start": 5197.42, + "end": 5199.26, + "probability": 0.9541 + }, + { + "start": 5199.26, + "end": 5201.88, + "probability": 0.9917 + }, + { + "start": 5202.0, + "end": 5203.43, + "probability": 0.9428 + }, + { + "start": 5203.76, + "end": 5205.58, + "probability": 0.4907 + }, + { + "start": 5205.58, + "end": 5208.6, + "probability": 0.9623 + }, + { + "start": 5209.84, + "end": 5210.24, + "probability": 0.6193 + }, + { + "start": 5210.38, + "end": 5212.3, + "probability": 0.7064 + }, + { + "start": 5212.42, + "end": 5213.1, + "probability": 0.5428 + }, + { + "start": 5213.2, + "end": 5215.6, + "probability": 0.9954 + }, + { + "start": 5217.12, + "end": 5217.26, + "probability": 0.4205 + }, + { + "start": 5217.34, + "end": 5217.68, + "probability": 0.7076 + }, + { + "start": 5217.76, + "end": 5220.36, + "probability": 0.9123 + }, + { + "start": 5220.38, + "end": 5223.3, + "probability": 0.9608 + }, + { + "start": 5223.76, + "end": 5225.93, + "probability": 0.9412 + }, + { + "start": 5226.5, + "end": 5227.08, + "probability": 0.8049 + }, + { + "start": 5227.2, + "end": 5230.5, + "probability": 0.794 + }, + { + "start": 5230.5, + "end": 5232.98, + "probability": 0.9341 + }, + { + "start": 5233.46, + "end": 5236.68, + "probability": 0.8866 + }, + { + "start": 5237.42, + "end": 5239.54, + "probability": 0.775 + }, + { + "start": 5240.0, + "end": 5241.84, + "probability": 0.7845 + }, + { + "start": 5242.04, + "end": 5243.06, + "probability": 0.9062 + }, + { + "start": 5243.5, + "end": 5244.49, + "probability": 0.9497 + }, + { + "start": 5244.66, + "end": 5245.6, + "probability": 0.9678 + }, + { + "start": 5246.16, + "end": 5249.08, + "probability": 0.7842 + }, + { + "start": 5249.58, + "end": 5251.96, + "probability": 0.9945 + }, + { + "start": 5251.98, + "end": 5254.44, + "probability": 0.9951 + }, + { + "start": 5254.6, + "end": 5256.36, + "probability": 0.7294 + }, + { + "start": 5257.36, + "end": 5261.39, + "probability": 0.9896 + }, + { + "start": 5263.08, + "end": 5268.78, + "probability": 0.9911 + }, + { + "start": 5268.78, + "end": 5277.36, + "probability": 0.995 + }, + { + "start": 5277.84, + "end": 5286.74, + "probability": 0.9951 + }, + { + "start": 5287.74, + "end": 5292.4, + "probability": 0.684 + }, + { + "start": 5292.48, + "end": 5296.5, + "probability": 0.9582 + }, + { + "start": 5296.66, + "end": 5300.08, + "probability": 0.9683 + }, + { + "start": 5300.16, + "end": 5303.36, + "probability": 0.978 + }, + { + "start": 5303.52, + "end": 5306.22, + "probability": 0.8746 + }, + { + "start": 5306.74, + "end": 5313.78, + "probability": 0.7204 + }, + { + "start": 5314.88, + "end": 5315.76, + "probability": 0.8647 + }, + { + "start": 5316.14, + "end": 5320.58, + "probability": 0.9556 + }, + { + "start": 5320.58, + "end": 5326.28, + "probability": 0.9196 + }, + { + "start": 5326.76, + "end": 5328.74, + "probability": 0.7923 + }, + { + "start": 5329.14, + "end": 5329.78, + "probability": 0.721 + }, + { + "start": 5330.02, + "end": 5330.52, + "probability": 0.9542 + }, + { + "start": 5330.64, + "end": 5331.28, + "probability": 0.8755 + }, + { + "start": 5331.36, + "end": 5336.56, + "probability": 0.991 + }, + { + "start": 5336.56, + "end": 5337.9, + "probability": 0.6411 + }, + { + "start": 5337.94, + "end": 5339.94, + "probability": 0.9941 + }, + { + "start": 5341.5, + "end": 5345.44, + "probability": 0.0481 + }, + { + "start": 5345.72, + "end": 5346.38, + "probability": 0.7758 + }, + { + "start": 5348.42, + "end": 5349.12, + "probability": 0.6926 + }, + { + "start": 5349.2, + "end": 5351.49, + "probability": 0.8257 + }, + { + "start": 5352.96, + "end": 5354.58, + "probability": 0.5925 + }, + { + "start": 5355.82, + "end": 5358.14, + "probability": 0.9428 + }, + { + "start": 5358.16, + "end": 5358.82, + "probability": 0.5295 + }, + { + "start": 5360.92, + "end": 5360.96, + "probability": 0.4822 + }, + { + "start": 5360.96, + "end": 5361.28, + "probability": 0.0995 + }, + { + "start": 5366.2, + "end": 5368.18, + "probability": 0.2363 + }, + { + "start": 5371.94, + "end": 5373.58, + "probability": 0.7534 + }, + { + "start": 5374.38, + "end": 5375.42, + "probability": 0.9301 + }, + { + "start": 5376.84, + "end": 5384.46, + "probability": 0.9918 + }, + { + "start": 5385.52, + "end": 5387.44, + "probability": 0.91 + }, + { + "start": 5388.48, + "end": 5389.72, + "probability": 0.7598 + }, + { + "start": 5390.64, + "end": 5393.06, + "probability": 0.6247 + }, + { + "start": 5393.62, + "end": 5394.78, + "probability": 0.7211 + }, + { + "start": 5395.48, + "end": 5396.46, + "probability": 0.9079 + }, + { + "start": 5397.16, + "end": 5399.52, + "probability": 0.7216 + }, + { + "start": 5400.32, + "end": 5403.48, + "probability": 0.9989 + }, + { + "start": 5404.86, + "end": 5406.8, + "probability": 0.9338 + }, + { + "start": 5407.58, + "end": 5410.62, + "probability": 0.9979 + }, + { + "start": 5411.36, + "end": 5413.54, + "probability": 0.7533 + }, + { + "start": 5414.46, + "end": 5416.02, + "probability": 0.5508 + }, + { + "start": 5417.14, + "end": 5418.84, + "probability": 0.9824 + }, + { + "start": 5419.56, + "end": 5421.5, + "probability": 0.9132 + }, + { + "start": 5425.36, + "end": 5428.36, + "probability": 0.9838 + }, + { + "start": 5428.98, + "end": 5431.48, + "probability": 0.9837 + }, + { + "start": 5432.2, + "end": 5433.88, + "probability": 0.9508 + }, + { + "start": 5434.22, + "end": 5438.24, + "probability": 0.8558 + }, + { + "start": 5438.98, + "end": 5443.62, + "probability": 0.9808 + }, + { + "start": 5444.62, + "end": 5445.38, + "probability": 0.618 + }, + { + "start": 5446.18, + "end": 5448.3, + "probability": 0.9763 + }, + { + "start": 5448.92, + "end": 5450.22, + "probability": 0.7572 + }, + { + "start": 5450.8, + "end": 5454.88, + "probability": 0.9449 + }, + { + "start": 5456.44, + "end": 5461.42, + "probability": 0.9962 + }, + { + "start": 5462.66, + "end": 5468.84, + "probability": 0.9945 + }, + { + "start": 5469.36, + "end": 5472.18, + "probability": 0.9951 + }, + { + "start": 5472.76, + "end": 5474.32, + "probability": 0.9028 + }, + { + "start": 5475.58, + "end": 5476.3, + "probability": 0.8037 + }, + { + "start": 5477.16, + "end": 5480.56, + "probability": 0.9078 + }, + { + "start": 5481.26, + "end": 5485.24, + "probability": 0.7959 + }, + { + "start": 5486.22, + "end": 5489.38, + "probability": 0.9383 + }, + { + "start": 5490.32, + "end": 5493.32, + "probability": 0.839 + }, + { + "start": 5494.2, + "end": 5498.0, + "probability": 0.9981 + }, + { + "start": 5498.74, + "end": 5501.48, + "probability": 0.9961 + }, + { + "start": 5502.06, + "end": 5506.74, + "probability": 0.6933 + }, + { + "start": 5508.66, + "end": 5512.08, + "probability": 0.9976 + }, + { + "start": 5512.8, + "end": 5515.9, + "probability": 0.9978 + }, + { + "start": 5516.48, + "end": 5517.2, + "probability": 0.7257 + }, + { + "start": 5518.54, + "end": 5522.1, + "probability": 0.9863 + }, + { + "start": 5522.84, + "end": 5524.62, + "probability": 0.991 + }, + { + "start": 5525.16, + "end": 5527.22, + "probability": 0.9959 + }, + { + "start": 5527.84, + "end": 5528.6, + "probability": 0.7804 + }, + { + "start": 5528.72, + "end": 5535.72, + "probability": 0.9764 + }, + { + "start": 5536.66, + "end": 5538.9, + "probability": 0.9837 + }, + { + "start": 5539.88, + "end": 5546.0, + "probability": 0.9874 + }, + { + "start": 5546.44, + "end": 5551.66, + "probability": 0.9984 + }, + { + "start": 5552.42, + "end": 5559.26, + "probability": 0.994 + }, + { + "start": 5559.64, + "end": 5560.54, + "probability": 0.9906 + }, + { + "start": 5561.48, + "end": 5562.3, + "probability": 0.7565 + }, + { + "start": 5563.14, + "end": 5568.2, + "probability": 0.9448 + }, + { + "start": 5568.36, + "end": 5569.0, + "probability": 0.759 + }, + { + "start": 5570.04, + "end": 5570.54, + "probability": 0.4204 + }, + { + "start": 5574.76, + "end": 5578.54, + "probability": 0.6302 + }, + { + "start": 5580.06, + "end": 5580.92, + "probability": 0.7825 + }, + { + "start": 5582.86, + "end": 5583.98, + "probability": 0.8631 + }, + { + "start": 5587.14, + "end": 5587.54, + "probability": 0.1461 + }, + { + "start": 5591.04, + "end": 5591.6, + "probability": 0.2062 + }, + { + "start": 5614.62, + "end": 5618.38, + "probability": 0.8107 + }, + { + "start": 5618.98, + "end": 5622.12, + "probability": 0.9328 + }, + { + "start": 5622.72, + "end": 5623.64, + "probability": 0.722 + }, + { + "start": 5624.12, + "end": 5628.14, + "probability": 0.9883 + }, + { + "start": 5628.48, + "end": 5635.26, + "probability": 0.9759 + }, + { + "start": 5636.16, + "end": 5640.16, + "probability": 0.9937 + }, + { + "start": 5640.16, + "end": 5644.24, + "probability": 0.9971 + }, + { + "start": 5645.38, + "end": 5649.2, + "probability": 0.8767 + }, + { + "start": 5649.76, + "end": 5651.18, + "probability": 0.8564 + }, + { + "start": 5651.96, + "end": 5658.1, + "probability": 0.9973 + }, + { + "start": 5658.1, + "end": 5664.36, + "probability": 0.9932 + }, + { + "start": 5665.14, + "end": 5670.82, + "probability": 0.972 + }, + { + "start": 5670.94, + "end": 5671.94, + "probability": 0.6556 + }, + { + "start": 5672.04, + "end": 5673.57, + "probability": 0.7942 + }, + { + "start": 5674.36, + "end": 5677.62, + "probability": 0.9803 + }, + { + "start": 5678.62, + "end": 5683.24, + "probability": 0.9979 + }, + { + "start": 5683.82, + "end": 5686.56, + "probability": 0.9747 + }, + { + "start": 5687.06, + "end": 5689.14, + "probability": 0.998 + }, + { + "start": 5690.16, + "end": 5691.28, + "probability": 0.9485 + }, + { + "start": 5692.0, + "end": 5694.48, + "probability": 0.9111 + }, + { + "start": 5694.9, + "end": 5698.56, + "probability": 0.9802 + }, + { + "start": 5698.96, + "end": 5701.57, + "probability": 0.9512 + }, + { + "start": 5702.42, + "end": 5707.76, + "probability": 0.9463 + }, + { + "start": 5708.34, + "end": 5714.36, + "probability": 0.8595 + }, + { + "start": 5714.8, + "end": 5715.86, + "probability": 0.788 + }, + { + "start": 5716.14, + "end": 5716.78, + "probability": 0.7916 + }, + { + "start": 5717.08, + "end": 5719.36, + "probability": 0.9766 + }, + { + "start": 5720.26, + "end": 5723.8, + "probability": 0.9951 + }, + { + "start": 5723.8, + "end": 5728.5, + "probability": 0.9989 + }, + { + "start": 5729.78, + "end": 5731.02, + "probability": 0.6 + }, + { + "start": 5732.54, + "end": 5735.88, + "probability": 0.9718 + }, + { + "start": 5736.38, + "end": 5738.24, + "probability": 0.9344 + }, + { + "start": 5738.68, + "end": 5740.44, + "probability": 0.9559 + }, + { + "start": 5740.88, + "end": 5743.1, + "probability": 0.991 + }, + { + "start": 5743.68, + "end": 5745.74, + "probability": 0.911 + }, + { + "start": 5746.34, + "end": 5747.74, + "probability": 0.9156 + }, + { + "start": 5748.88, + "end": 5753.44, + "probability": 0.9955 + }, + { + "start": 5753.94, + "end": 5758.88, + "probability": 0.986 + }, + { + "start": 5759.9, + "end": 5761.46, + "probability": 0.9867 + }, + { + "start": 5762.24, + "end": 5762.74, + "probability": 0.5493 + }, + { + "start": 5763.8, + "end": 5764.56, + "probability": 0.8386 + }, + { + "start": 5765.52, + "end": 5768.94, + "probability": 0.8899 + }, + { + "start": 5769.5, + "end": 5772.62, + "probability": 0.9224 + }, + { + "start": 5773.26, + "end": 5774.06, + "probability": 0.9841 + }, + { + "start": 5774.68, + "end": 5777.22, + "probability": 0.9435 + }, + { + "start": 5777.52, + "end": 5781.54, + "probability": 0.9727 + }, + { + "start": 5782.0, + "end": 5785.74, + "probability": 0.9238 + }, + { + "start": 5786.22, + "end": 5789.8, + "probability": 0.9204 + }, + { + "start": 5790.92, + "end": 5792.12, + "probability": 0.7239 + }, + { + "start": 5792.62, + "end": 5793.22, + "probability": 0.874 + }, + { + "start": 5793.68, + "end": 5795.64, + "probability": 0.6467 + }, + { + "start": 5828.82, + "end": 5831.52, + "probability": 0.7626 + }, + { + "start": 5833.08, + "end": 5836.94, + "probability": 0.9379 + }, + { + "start": 5837.98, + "end": 5839.9, + "probability": 0.3351 + }, + { + "start": 5841.74, + "end": 5843.52, + "probability": 0.9902 + }, + { + "start": 5844.12, + "end": 5844.8, + "probability": 0.9513 + }, + { + "start": 5845.46, + "end": 5847.12, + "probability": 0.9694 + }, + { + "start": 5848.38, + "end": 5852.38, + "probability": 0.8775 + }, + { + "start": 5852.6, + "end": 5858.5, + "probability": 0.9875 + }, + { + "start": 5858.54, + "end": 5863.74, + "probability": 0.9419 + }, + { + "start": 5865.0, + "end": 5869.76, + "probability": 0.9854 + }, + { + "start": 5871.78, + "end": 5873.04, + "probability": 0.6664 + }, + { + "start": 5874.08, + "end": 5875.42, + "probability": 0.9133 + }, + { + "start": 5876.04, + "end": 5881.2, + "probability": 0.9491 + }, + { + "start": 5881.2, + "end": 5884.62, + "probability": 0.9294 + }, + { + "start": 5885.78, + "end": 5887.3, + "probability": 0.9743 + }, + { + "start": 5887.9, + "end": 5888.16, + "probability": 0.17 + }, + { + "start": 5888.2, + "end": 5889.25, + "probability": 0.763 + }, + { + "start": 5891.9, + "end": 5894.22, + "probability": 0.9397 + }, + { + "start": 5894.54, + "end": 5895.14, + "probability": 0.96 + }, + { + "start": 5896.98, + "end": 5898.2, + "probability": 0.9981 + }, + { + "start": 5899.86, + "end": 5901.0, + "probability": 0.8597 + }, + { + "start": 5901.88, + "end": 5904.1, + "probability": 0.9984 + }, + { + "start": 5904.14, + "end": 5905.56, + "probability": 0.9967 + }, + { + "start": 5906.46, + "end": 5907.24, + "probability": 0.9521 + }, + { + "start": 5907.32, + "end": 5908.64, + "probability": 0.9761 + }, + { + "start": 5908.7, + "end": 5909.8, + "probability": 0.987 + }, + { + "start": 5909.84, + "end": 5911.04, + "probability": 0.6888 + }, + { + "start": 5911.08, + "end": 5911.18, + "probability": 0.6995 + }, + { + "start": 5912.38, + "end": 5914.56, + "probability": 0.9824 + }, + { + "start": 5915.46, + "end": 5919.16, + "probability": 0.9888 + }, + { + "start": 5920.26, + "end": 5923.02, + "probability": 0.9676 + }, + { + "start": 5923.44, + "end": 5926.2, + "probability": 0.5056 + }, + { + "start": 5926.34, + "end": 5929.36, + "probability": 0.8666 + }, + { + "start": 5930.4, + "end": 5931.6, + "probability": 0.8965 + }, + { + "start": 5932.6, + "end": 5933.76, + "probability": 0.7047 + }, + { + "start": 5934.48, + "end": 5937.64, + "probability": 0.979 + }, + { + "start": 5937.74, + "end": 5938.92, + "probability": 0.6663 + }, + { + "start": 5939.78, + "end": 5942.88, + "probability": 0.9977 + }, + { + "start": 5944.32, + "end": 5945.9, + "probability": 0.8245 + }, + { + "start": 5946.48, + "end": 5949.46, + "probability": 0.9939 + }, + { + "start": 5949.46, + "end": 5953.22, + "probability": 0.9555 + }, + { + "start": 5953.78, + "end": 5955.02, + "probability": 0.9367 + }, + { + "start": 5955.64, + "end": 5956.08, + "probability": 0.2085 + }, + { + "start": 5956.08, + "end": 5957.04, + "probability": 0.8641 + }, + { + "start": 5957.12, + "end": 5958.76, + "probability": 0.9858 + }, + { + "start": 5959.86, + "end": 5962.02, + "probability": 0.9351 + }, + { + "start": 5962.28, + "end": 5963.58, + "probability": 0.9734 + }, + { + "start": 5963.68, + "end": 5965.46, + "probability": 0.92 + }, + { + "start": 5965.76, + "end": 5967.98, + "probability": 0.1315 + }, + { + "start": 5967.98, + "end": 5971.2, + "probability": 0.9742 + }, + { + "start": 5972.4, + "end": 5973.96, + "probability": 0.9556 + }, + { + "start": 5974.98, + "end": 5977.0, + "probability": 0.7551 + }, + { + "start": 5977.34, + "end": 5978.86, + "probability": 0.9956 + }, + { + "start": 5978.94, + "end": 5981.36, + "probability": 0.9946 + }, + { + "start": 5981.7, + "end": 5982.86, + "probability": 0.8252 + }, + { + "start": 5983.44, + "end": 5989.84, + "probability": 0.9821 + }, + { + "start": 5989.86, + "end": 5992.16, + "probability": 0.9969 + }, + { + "start": 5992.26, + "end": 5995.5, + "probability": 0.9976 + }, + { + "start": 5995.84, + "end": 5997.46, + "probability": 0.736 + }, + { + "start": 5997.78, + "end": 6003.42, + "probability": 0.9764 + }, + { + "start": 6003.76, + "end": 6004.28, + "probability": 0.9505 + }, + { + "start": 6004.58, + "end": 6005.02, + "probability": 0.8009 + }, + { + "start": 6007.16, + "end": 6009.04, + "probability": 0.9882 + }, + { + "start": 6009.72, + "end": 6011.04, + "probability": 0.992 + }, + { + "start": 6012.1, + "end": 6013.26, + "probability": 0.918 + }, + { + "start": 6013.36, + "end": 6016.04, + "probability": 0.8106 + }, + { + "start": 6016.1, + "end": 6019.66, + "probability": 0.9756 + }, + { + "start": 6019.74, + "end": 6021.5, + "probability": 0.7216 + }, + { + "start": 6021.9, + "end": 6024.27, + "probability": 0.8862 + }, + { + "start": 6026.06, + "end": 6028.76, + "probability": 0.8321 + }, + { + "start": 6028.86, + "end": 6029.76, + "probability": 0.6213 + }, + { + "start": 6029.84, + "end": 6030.4, + "probability": 0.9364 + }, + { + "start": 6030.5, + "end": 6031.32, + "probability": 0.9351 + }, + { + "start": 6031.58, + "end": 6032.58, + "probability": 0.9744 + }, + { + "start": 6033.66, + "end": 6034.58, + "probability": 0.9146 + }, + { + "start": 6035.14, + "end": 6038.24, + "probability": 0.7923 + }, + { + "start": 6038.32, + "end": 6038.88, + "probability": 0.6757 + }, + { + "start": 6038.92, + "end": 6039.24, + "probability": 0.8299 + }, + { + "start": 6039.44, + "end": 6039.7, + "probability": 0.7563 + }, + { + "start": 6040.56, + "end": 6042.08, + "probability": 0.9954 + }, + { + "start": 6042.82, + "end": 6046.68, + "probability": 0.9828 + }, + { + "start": 6047.24, + "end": 6051.62, + "probability": 0.9506 + }, + { + "start": 6051.68, + "end": 6054.1, + "probability": 0.9648 + }, + { + "start": 6054.52, + "end": 6056.12, + "probability": 0.75 + }, + { + "start": 6056.34, + "end": 6058.4, + "probability": 0.996 + }, + { + "start": 6059.02, + "end": 6060.14, + "probability": 0.8141 + }, + { + "start": 6066.88, + "end": 6066.98, + "probability": 0.6709 + }, + { + "start": 6068.7, + "end": 6069.72, + "probability": 0.8881 + }, + { + "start": 6083.18, + "end": 6083.6, + "probability": 0.6984 + }, + { + "start": 6083.66, + "end": 6087.64, + "probability": 0.945 + }, + { + "start": 6087.64, + "end": 6088.22, + "probability": 0.4771 + }, + { + "start": 6088.28, + "end": 6089.32, + "probability": 0.7508 + }, + { + "start": 6089.44, + "end": 6090.42, + "probability": 0.9547 + }, + { + "start": 6091.5, + "end": 6091.86, + "probability": 0.7383 + }, + { + "start": 6095.44, + "end": 6098.76, + "probability": 0.0002 + }, + { + "start": 6102.84, + "end": 6103.96, + "probability": 0.1104 + }, + { + "start": 6107.42, + "end": 6109.92, + "probability": 0.5272 + }, + { + "start": 6110.04, + "end": 6112.04, + "probability": 0.8374 + }, + { + "start": 6112.14, + "end": 6115.44, + "probability": 0.9196 + }, + { + "start": 6115.48, + "end": 6116.0, + "probability": 0.5298 + }, + { + "start": 6116.62, + "end": 6119.46, + "probability": 0.693 + }, + { + "start": 6120.44, + "end": 6126.58, + "probability": 0.1163 + }, + { + "start": 6126.58, + "end": 6128.66, + "probability": 0.4767 + }, + { + "start": 6128.66, + "end": 6129.52, + "probability": 0.6952 + }, + { + "start": 6129.54, + "end": 6130.0, + "probability": 0.1653 + }, + { + "start": 6134.62, + "end": 6136.34, + "probability": 0.382 + }, + { + "start": 6136.74, + "end": 6140.12, + "probability": 0.6695 + }, + { + "start": 6140.3, + "end": 6140.92, + "probability": 0.618 + }, + { + "start": 6141.58, + "end": 6142.48, + "probability": 0.5528 + }, + { + "start": 6142.64, + "end": 6144.0, + "probability": 0.913 + }, + { + "start": 6144.06, + "end": 6146.72, + "probability": 0.9839 + }, + { + "start": 6149.44, + "end": 6150.04, + "probability": 0.821 + }, + { + "start": 6150.1, + "end": 6152.14, + "probability": 0.9226 + }, + { + "start": 6152.14, + "end": 6154.88, + "probability": 0.9085 + }, + { + "start": 6155.4, + "end": 6157.7, + "probability": 0.4351 + }, + { + "start": 6157.8, + "end": 6159.94, + "probability": 0.3986 + }, + { + "start": 6160.14, + "end": 6161.88, + "probability": 0.98 + }, + { + "start": 6162.48, + "end": 6163.86, + "probability": 0.9989 + }, + { + "start": 6164.46, + "end": 6166.36, + "probability": 0.9552 + }, + { + "start": 6174.68, + "end": 6177.26, + "probability": 0.7903 + }, + { + "start": 6177.28, + "end": 6178.96, + "probability": 0.7507 + }, + { + "start": 6179.12, + "end": 6179.68, + "probability": 0.8193 + }, + { + "start": 6179.82, + "end": 6181.16, + "probability": 0.7081 + }, + { + "start": 6181.88, + "end": 6186.04, + "probability": 0.9903 + }, + { + "start": 6186.04, + "end": 6192.9, + "probability": 0.9253 + }, + { + "start": 6194.22, + "end": 6196.46, + "probability": 0.9023 + }, + { + "start": 6196.56, + "end": 6196.56, + "probability": 0.3973 + }, + { + "start": 6196.56, + "end": 6197.54, + "probability": 0.9563 + }, + { + "start": 6198.4, + "end": 6208.22, + "probability": 0.7788 + }, + { + "start": 6208.22, + "end": 6213.44, + "probability": 0.9561 + }, + { + "start": 6215.34, + "end": 6215.34, + "probability": 0.2469 + }, + { + "start": 6215.34, + "end": 6216.47, + "probability": 0.6458 + }, + { + "start": 6216.58, + "end": 6217.98, + "probability": 0.834 + }, + { + "start": 6218.3, + "end": 6218.54, + "probability": 0.3236 + }, + { + "start": 6218.56, + "end": 6224.52, + "probability": 0.9634 + }, + { + "start": 6225.48, + "end": 6226.98, + "probability": 0.8072 + }, + { + "start": 6227.02, + "end": 6229.26, + "probability": 0.8521 + }, + { + "start": 6229.96, + "end": 6232.42, + "probability": 0.9746 + }, + { + "start": 6232.48, + "end": 6233.56, + "probability": 0.9888 + }, + { + "start": 6234.74, + "end": 6240.68, + "probability": 0.9902 + }, + { + "start": 6241.44, + "end": 6242.08, + "probability": 0.7851 + }, + { + "start": 6242.7, + "end": 6246.5, + "probability": 0.9617 + }, + { + "start": 6246.64, + "end": 6247.51, + "probability": 0.9176 + }, + { + "start": 6247.58, + "end": 6248.13, + "probability": 0.7482 + }, + { + "start": 6248.74, + "end": 6249.9, + "probability": 0.7662 + }, + { + "start": 6249.96, + "end": 6250.7, + "probability": 0.9917 + }, + { + "start": 6251.3, + "end": 6253.42, + "probability": 0.9807 + }, + { + "start": 6253.82, + "end": 6254.63, + "probability": 0.8053 + }, + { + "start": 6255.42, + "end": 6256.94, + "probability": 0.8033 + }, + { + "start": 6257.4, + "end": 6262.3, + "probability": 0.861 + }, + { + "start": 6263.22, + "end": 6266.2, + "probability": 0.7476 + }, + { + "start": 6267.96, + "end": 6271.26, + "probability": 0.9141 + }, + { + "start": 6271.26, + "end": 6278.98, + "probability": 0.9946 + }, + { + "start": 6279.6, + "end": 6284.88, + "probability": 0.9689 + }, + { + "start": 6285.04, + "end": 6286.02, + "probability": 0.5273 + }, + { + "start": 6287.4, + "end": 6289.93, + "probability": 0.989 + }, + { + "start": 6290.8, + "end": 6292.68, + "probability": 0.994 + }, + { + "start": 6293.56, + "end": 6295.04, + "probability": 0.9721 + }, + { + "start": 6295.62, + "end": 6297.3, + "probability": 0.9619 + }, + { + "start": 6297.44, + "end": 6298.38, + "probability": 0.8159 + }, + { + "start": 6298.5, + "end": 6300.78, + "probability": 0.8642 + }, + { + "start": 6301.36, + "end": 6303.75, + "probability": 0.9517 + }, + { + "start": 6304.4, + "end": 6307.0, + "probability": 0.8445 + }, + { + "start": 6307.1, + "end": 6312.74, + "probability": 0.8098 + }, + { + "start": 6312.78, + "end": 6313.86, + "probability": 0.7336 + }, + { + "start": 6314.7, + "end": 6317.78, + "probability": 0.8513 + }, + { + "start": 6318.26, + "end": 6320.7, + "probability": 0.931 + }, + { + "start": 6320.8, + "end": 6322.84, + "probability": 0.7843 + }, + { + "start": 6322.92, + "end": 6324.64, + "probability": 0.984 + }, + { + "start": 6324.98, + "end": 6329.11, + "probability": 0.9803 + }, + { + "start": 6329.36, + "end": 6331.19, + "probability": 0.9893 + }, + { + "start": 6332.46, + "end": 6336.86, + "probability": 0.9944 + }, + { + "start": 6337.4, + "end": 6341.78, + "probability": 0.9742 + }, + { + "start": 6342.56, + "end": 6344.44, + "probability": 0.7382 + }, + { + "start": 6344.56, + "end": 6345.38, + "probability": 0.8632 + }, + { + "start": 6345.42, + "end": 6348.9, + "probability": 0.9983 + }, + { + "start": 6349.7, + "end": 6350.62, + "probability": 0.967 + }, + { + "start": 6350.68, + "end": 6354.38, + "probability": 0.96 + }, + { + "start": 6354.42, + "end": 6360.12, + "probability": 0.9727 + }, + { + "start": 6360.26, + "end": 6361.26, + "probability": 0.8629 + }, + { + "start": 6361.76, + "end": 6362.46, + "probability": 0.587 + }, + { + "start": 6362.54, + "end": 6366.46, + "probability": 0.9937 + }, + { + "start": 6367.16, + "end": 6367.59, + "probability": 0.9031 + }, + { + "start": 6367.88, + "end": 6371.11, + "probability": 0.9099 + }, + { + "start": 6372.16, + "end": 6377.84, + "probability": 0.9085 + }, + { + "start": 6378.48, + "end": 6379.88, + "probability": 0.9278 + }, + { + "start": 6380.62, + "end": 6384.6, + "probability": 0.627 + }, + { + "start": 6384.84, + "end": 6387.04, + "probability": 0.7335 + }, + { + "start": 6387.18, + "end": 6391.88, + "probability": 0.9404 + }, + { + "start": 6392.18, + "end": 6393.22, + "probability": 0.9651 + }, + { + "start": 6393.36, + "end": 6394.86, + "probability": 0.9959 + }, + { + "start": 6395.36, + "end": 6397.4, + "probability": 0.9995 + }, + { + "start": 6398.24, + "end": 6398.92, + "probability": 0.9098 + }, + { + "start": 6399.0, + "end": 6402.14, + "probability": 0.9164 + }, + { + "start": 6402.36, + "end": 6404.36, + "probability": 0.8698 + }, + { + "start": 6404.4, + "end": 6408.24, + "probability": 0.9478 + }, + { + "start": 6409.3, + "end": 6412.78, + "probability": 0.6563 + }, + { + "start": 6412.82, + "end": 6417.74, + "probability": 0.9508 + }, + { + "start": 6417.82, + "end": 6420.6, + "probability": 0.989 + }, + { + "start": 6420.7, + "end": 6423.56, + "probability": 0.9135 + }, + { + "start": 6423.6, + "end": 6426.14, + "probability": 0.9673 + }, + { + "start": 6426.24, + "end": 6430.59, + "probability": 0.9352 + }, + { + "start": 6431.42, + "end": 6432.42, + "probability": 0.832 + }, + { + "start": 6433.08, + "end": 6436.74, + "probability": 0.9302 + }, + { + "start": 6437.44, + "end": 6439.04, + "probability": 0.4497 + }, + { + "start": 6439.16, + "end": 6439.68, + "probability": 0.9051 + }, + { + "start": 6439.76, + "end": 6440.66, + "probability": 0.8386 + }, + { + "start": 6440.72, + "end": 6443.91, + "probability": 0.9498 + }, + { + "start": 6444.44, + "end": 6445.74, + "probability": 0.8409 + }, + { + "start": 6445.8, + "end": 6448.76, + "probability": 0.9752 + }, + { + "start": 6449.42, + "end": 6449.9, + "probability": 0.7286 + }, + { + "start": 6450.12, + "end": 6452.0, + "probability": 0.9393 + }, + { + "start": 6452.12, + "end": 6452.32, + "probability": 0.7855 + }, + { + "start": 6456.38, + "end": 6459.38, + "probability": 0.9621 + }, + { + "start": 6461.18, + "end": 6463.74, + "probability": 0.6802 + }, + { + "start": 6464.02, + "end": 6464.88, + "probability": 0.8547 + }, + { + "start": 6464.92, + "end": 6465.58, + "probability": 0.8386 + }, + { + "start": 6465.7, + "end": 6466.66, + "probability": 0.3318 + }, + { + "start": 6466.8, + "end": 6468.58, + "probability": 0.7524 + }, + { + "start": 6469.64, + "end": 6472.34, + "probability": 0.9742 + }, + { + "start": 6477.48, + "end": 6477.48, + "probability": 0.0756 + }, + { + "start": 6496.66, + "end": 6498.9, + "probability": 0.6427 + }, + { + "start": 6499.08, + "end": 6500.14, + "probability": 0.6462 + }, + { + "start": 6501.04, + "end": 6502.78, + "probability": 0.6163 + }, + { + "start": 6503.42, + "end": 6506.86, + "probability": 0.9988 + }, + { + "start": 6507.72, + "end": 6510.9, + "probability": 0.9482 + }, + { + "start": 6510.9, + "end": 6515.7, + "probability": 0.9875 + }, + { + "start": 6516.44, + "end": 6519.9, + "probability": 0.9505 + }, + { + "start": 6520.8, + "end": 6525.58, + "probability": 0.9876 + }, + { + "start": 6526.38, + "end": 6527.82, + "probability": 0.96 + }, + { + "start": 6529.74, + "end": 6530.96, + "probability": 0.999 + }, + { + "start": 6532.78, + "end": 6536.06, + "probability": 0.8338 + }, + { + "start": 6537.1, + "end": 6540.08, + "probability": 0.9428 + }, + { + "start": 6541.0, + "end": 6542.22, + "probability": 0.8199 + }, + { + "start": 6543.8, + "end": 6544.88, + "probability": 0.6102 + }, + { + "start": 6546.6, + "end": 6550.74, + "probability": 0.9672 + }, + { + "start": 6552.0, + "end": 6552.0, + "probability": 0.2822 + }, + { + "start": 6552.0, + "end": 6554.3, + "probability": 0.981 + }, + { + "start": 6554.34, + "end": 6554.94, + "probability": 0.7151 + }, + { + "start": 6557.72, + "end": 6561.02, + "probability": 0.9966 + }, + { + "start": 6563.08, + "end": 6563.96, + "probability": 0.9867 + }, + { + "start": 6564.56, + "end": 6566.07, + "probability": 0.9995 + }, + { + "start": 6566.96, + "end": 6569.4, + "probability": 0.88 + }, + { + "start": 6570.58, + "end": 6574.2, + "probability": 0.9884 + }, + { + "start": 6575.1, + "end": 6578.86, + "probability": 0.9963 + }, + { + "start": 6578.86, + "end": 6583.98, + "probability": 0.7521 + }, + { + "start": 6585.2, + "end": 6588.4, + "probability": 0.9941 + }, + { + "start": 6588.52, + "end": 6590.98, + "probability": 0.9976 + }, + { + "start": 6591.36, + "end": 6596.42, + "probability": 0.9924 + }, + { + "start": 6597.48, + "end": 6599.14, + "probability": 0.886 + }, + { + "start": 6600.24, + "end": 6600.36, + "probability": 0.0192 + }, + { + "start": 6600.36, + "end": 6601.42, + "probability": 0.4376 + }, + { + "start": 6601.58, + "end": 6603.1, + "probability": 0.96 + }, + { + "start": 6603.18, + "end": 6604.46, + "probability": 0.8765 + }, + { + "start": 6605.16, + "end": 6607.5, + "probability": 0.9941 + }, + { + "start": 6608.1, + "end": 6610.02, + "probability": 0.882 + }, + { + "start": 6610.72, + "end": 6613.7, + "probability": 0.9692 + }, + { + "start": 6613.84, + "end": 6614.9, + "probability": 0.9337 + }, + { + "start": 6615.42, + "end": 6617.1, + "probability": 0.9952 + }, + { + "start": 6617.2, + "end": 6620.62, + "probability": 0.965 + }, + { + "start": 6621.2, + "end": 6623.26, + "probability": 0.9832 + }, + { + "start": 6624.12, + "end": 6625.06, + "probability": 0.8219 + }, + { + "start": 6625.7, + "end": 6628.06, + "probability": 0.9155 + }, + { + "start": 6629.36, + "end": 6632.3, + "probability": 0.8001 + }, + { + "start": 6634.0, + "end": 6635.0, + "probability": 0.9451 + }, + { + "start": 6635.14, + "end": 6637.24, + "probability": 0.989 + }, + { + "start": 6637.42, + "end": 6639.86, + "probability": 0.9357 + }, + { + "start": 6640.04, + "end": 6642.46, + "probability": 0.9971 + }, + { + "start": 6642.58, + "end": 6643.76, + "probability": 0.8728 + }, + { + "start": 6644.12, + "end": 6646.58, + "probability": 0.9168 + }, + { + "start": 6647.26, + "end": 6649.96, + "probability": 0.9621 + }, + { + "start": 6650.4, + "end": 6651.64, + "probability": 0.9736 + }, + { + "start": 6651.7, + "end": 6652.96, + "probability": 0.9751 + }, + { + "start": 6653.44, + "end": 6653.92, + "probability": 0.7521 + }, + { + "start": 6654.48, + "end": 6656.28, + "probability": 0.9941 + }, + { + "start": 6658.46, + "end": 6661.84, + "probability": 0.9962 + }, + { + "start": 6663.58, + "end": 6664.4, + "probability": 0.7869 + }, + { + "start": 6665.72, + "end": 6666.58, + "probability": 0.7526 + }, + { + "start": 6666.64, + "end": 6671.08, + "probability": 0.9894 + }, + { + "start": 6671.18, + "end": 6671.97, + "probability": 0.6493 + }, + { + "start": 6672.3, + "end": 6676.56, + "probability": 0.8625 + }, + { + "start": 6677.37, + "end": 6679.94, + "probability": 0.9574 + }, + { + "start": 6680.74, + "end": 6682.72, + "probability": 0.9591 + }, + { + "start": 6683.78, + "end": 6688.98, + "probability": 0.9888 + }, + { + "start": 6689.6, + "end": 6690.78, + "probability": 0.8926 + }, + { + "start": 6692.14, + "end": 6695.96, + "probability": 0.8848 + }, + { + "start": 6696.52, + "end": 6700.38, + "probability": 0.9888 + }, + { + "start": 6701.16, + "end": 6702.72, + "probability": 0.8959 + }, + { + "start": 6702.78, + "end": 6705.38, + "probability": 0.965 + }, + { + "start": 6705.98, + "end": 6708.76, + "probability": 0.9983 + }, + { + "start": 6709.04, + "end": 6710.4, + "probability": 0.9976 + }, + { + "start": 6711.26, + "end": 6715.34, + "probability": 0.9113 + }, + { + "start": 6715.7, + "end": 6717.28, + "probability": 0.687 + }, + { + "start": 6717.4, + "end": 6722.54, + "probability": 0.975 + }, + { + "start": 6723.08, + "end": 6725.7, + "probability": 0.8502 + }, + { + "start": 6725.82, + "end": 6727.88, + "probability": 0.9972 + }, + { + "start": 6728.24, + "end": 6730.22, + "probability": 0.9492 + }, + { + "start": 6730.86, + "end": 6734.22, + "probability": 0.7625 + }, + { + "start": 6734.48, + "end": 6734.72, + "probability": 0.7467 + }, + { + "start": 6736.06, + "end": 6736.7, + "probability": 0.7089 + }, + { + "start": 6736.84, + "end": 6738.22, + "probability": 0.9597 + }, + { + "start": 6739.44, + "end": 6741.14, + "probability": 0.7568 + }, + { + "start": 6742.06, + "end": 6745.06, + "probability": 0.8489 + }, + { + "start": 6770.5, + "end": 6772.7, + "probability": 0.7498 + }, + { + "start": 6774.76, + "end": 6775.62, + "probability": 0.9663 + }, + { + "start": 6777.22, + "end": 6777.9, + "probability": 0.7188 + }, + { + "start": 6780.02, + "end": 6780.9, + "probability": 0.9815 + }, + { + "start": 6782.48, + "end": 6783.12, + "probability": 0.8454 + }, + { + "start": 6784.36, + "end": 6793.68, + "probability": 0.8239 + }, + { + "start": 6794.38, + "end": 6795.16, + "probability": 0.9294 + }, + { + "start": 6796.88, + "end": 6799.2, + "probability": 0.5541 + }, + { + "start": 6800.78, + "end": 6802.1, + "probability": 0.9746 + }, + { + "start": 6802.7, + "end": 6804.18, + "probability": 0.6445 + }, + { + "start": 6804.76, + "end": 6806.0, + "probability": 0.9977 + }, + { + "start": 6806.82, + "end": 6807.72, + "probability": 0.939 + }, + { + "start": 6810.88, + "end": 6812.68, + "probability": 0.9836 + }, + { + "start": 6814.18, + "end": 6815.7, + "probability": 0.6844 + }, + { + "start": 6819.1, + "end": 6819.92, + "probability": 0.8931 + }, + { + "start": 6824.68, + "end": 6826.88, + "probability": 0.9893 + }, + { + "start": 6826.98, + "end": 6828.7, + "probability": 0.9325 + }, + { + "start": 6830.14, + "end": 6831.72, + "probability": 0.9849 + }, + { + "start": 6835.98, + "end": 6837.34, + "probability": 0.9509 + }, + { + "start": 6843.18, + "end": 6844.14, + "probability": 0.4448 + }, + { + "start": 6848.88, + "end": 6854.06, + "probability": 0.9922 + }, + { + "start": 6855.42, + "end": 6856.4, + "probability": 0.842 + }, + { + "start": 6857.74, + "end": 6859.26, + "probability": 0.9772 + }, + { + "start": 6861.5, + "end": 6862.5, + "probability": 0.998 + }, + { + "start": 6864.86, + "end": 6865.98, + "probability": 0.8458 + }, + { + "start": 6867.06, + "end": 6871.32, + "probability": 0.9971 + }, + { + "start": 6872.88, + "end": 6874.1, + "probability": 0.5002 + }, + { + "start": 6875.88, + "end": 6876.78, + "probability": 0.9924 + }, + { + "start": 6878.48, + "end": 6881.12, + "probability": 0.9655 + }, + { + "start": 6883.28, + "end": 6884.5, + "probability": 0.9956 + }, + { + "start": 6886.0, + "end": 6887.14, + "probability": 0.7979 + }, + { + "start": 6889.02, + "end": 6890.43, + "probability": 0.9953 + }, + { + "start": 6893.5, + "end": 6894.68, + "probability": 0.8345 + }, + { + "start": 6896.18, + "end": 6897.68, + "probability": 0.9782 + }, + { + "start": 6899.22, + "end": 6902.0, + "probability": 0.8378 + }, + { + "start": 6903.38, + "end": 6904.68, + "probability": 0.7151 + }, + { + "start": 6906.42, + "end": 6908.4, + "probability": 0.8838 + }, + { + "start": 6909.42, + "end": 6910.42, + "probability": 0.5074 + }, + { + "start": 6911.74, + "end": 6915.3, + "probability": 0.8458 + }, + { + "start": 6915.38, + "end": 6915.72, + "probability": 0.7327 + }, + { + "start": 6916.58, + "end": 6918.6, + "probability": 0.7054 + }, + { + "start": 6919.74, + "end": 6920.28, + "probability": 0.46 + }, + { + "start": 6922.16, + "end": 6924.4, + "probability": 0.6479 + }, + { + "start": 6925.32, + "end": 6927.38, + "probability": 0.9186 + }, + { + "start": 6928.1, + "end": 6929.44, + "probability": 0.9678 + }, + { + "start": 6930.08, + "end": 6930.58, + "probability": 0.9445 + }, + { + "start": 6932.18, + "end": 6933.98, + "probability": 0.6352 + }, + { + "start": 6934.14, + "end": 6934.82, + "probability": 0.6899 + }, + { + "start": 6935.26, + "end": 6936.9, + "probability": 0.717 + }, + { + "start": 6937.02, + "end": 6937.7, + "probability": 0.7152 + }, + { + "start": 6938.36, + "end": 6939.72, + "probability": 0.9445 + }, + { + "start": 6939.94, + "end": 6940.52, + "probability": 0.8651 + }, + { + "start": 6941.02, + "end": 6942.64, + "probability": 0.9684 + }, + { + "start": 6942.88, + "end": 6943.42, + "probability": 0.8822 + }, + { + "start": 6946.8, + "end": 6947.32, + "probability": 0.5023 + }, + { + "start": 6947.32, + "end": 6947.32, + "probability": 0.3696 + }, + { + "start": 6947.32, + "end": 6947.7, + "probability": 0.7705 + }, + { + "start": 6947.84, + "end": 6948.12, + "probability": 0.5456 + }, + { + "start": 6948.36, + "end": 6950.06, + "probability": 0.6255 + }, + { + "start": 6952.76, + "end": 6956.88, + "probability": 0.7029 + }, + { + "start": 6957.72, + "end": 6959.36, + "probability": 0.1032 + }, + { + "start": 6959.58, + "end": 6959.58, + "probability": 0.5257 + }, + { + "start": 6960.4, + "end": 6962.24, + "probability": 0.0511 + }, + { + "start": 6962.5, + "end": 6963.12, + "probability": 0.2992 + }, + { + "start": 6963.14, + "end": 6964.8, + "probability": 0.3496 + }, + { + "start": 6964.86, + "end": 6966.3, + "probability": 0.9282 + }, + { + "start": 6967.72, + "end": 6969.76, + "probability": 0.0087 + }, + { + "start": 6973.26, + "end": 6975.22, + "probability": 0.7297 + }, + { + "start": 6976.98, + "end": 6983.18, + "probability": 0.9758 + }, + { + "start": 6984.06, + "end": 6986.72, + "probability": 0.9891 + }, + { + "start": 6987.76, + "end": 6991.2, + "probability": 0.7823 + }, + { + "start": 6991.82, + "end": 6993.26, + "probability": 0.6767 + }, + { + "start": 6993.88, + "end": 6994.64, + "probability": 0.5956 + }, + { + "start": 6995.08, + "end": 6995.8, + "probability": 0.9487 + }, + { + "start": 6995.94, + "end": 6997.3, + "probability": 0.6394 + }, + { + "start": 6998.1, + "end": 6998.98, + "probability": 0.585 + }, + { + "start": 6999.98, + "end": 7001.84, + "probability": 0.9066 + }, + { + "start": 7002.46, + "end": 7005.82, + "probability": 0.9883 + }, + { + "start": 7006.62, + "end": 7009.82, + "probability": 0.9549 + }, + { + "start": 7011.06, + "end": 7011.74, + "probability": 0.6087 + }, + { + "start": 7013.38, + "end": 7015.56, + "probability": 0.9514 + }, + { + "start": 7016.48, + "end": 7018.38, + "probability": 0.81 + }, + { + "start": 7019.46, + "end": 7021.76, + "probability": 0.6902 + }, + { + "start": 7023.2, + "end": 7028.28, + "probability": 0.9399 + }, + { + "start": 7028.28, + "end": 7034.18, + "probability": 0.7734 + }, + { + "start": 7034.2, + "end": 7035.82, + "probability": 0.7008 + }, + { + "start": 7036.44, + "end": 7038.38, + "probability": 0.7871 + }, + { + "start": 7039.04, + "end": 7042.2, + "probability": 0.6327 + }, + { + "start": 7042.72, + "end": 7047.28, + "probability": 0.9197 + }, + { + "start": 7048.18, + "end": 7050.42, + "probability": 0.916 + }, + { + "start": 7052.24, + "end": 7056.96, + "probability": 0.9984 + }, + { + "start": 7057.86, + "end": 7063.92, + "probability": 0.9699 + }, + { + "start": 7065.68, + "end": 7067.0, + "probability": 0.8742 + }, + { + "start": 7068.52, + "end": 7070.78, + "probability": 0.8577 + }, + { + "start": 7073.48, + "end": 7077.0, + "probability": 0.994 + }, + { + "start": 7078.36, + "end": 7082.18, + "probability": 0.9243 + }, + { + "start": 7083.52, + "end": 7088.68, + "probability": 0.9743 + }, + { + "start": 7089.4, + "end": 7091.54, + "probability": 0.9769 + }, + { + "start": 7091.66, + "end": 7093.64, + "probability": 0.3288 + }, + { + "start": 7093.64, + "end": 7096.14, + "probability": 0.7587 + }, + { + "start": 7099.58, + "end": 7100.46, + "probability": 0.5129 + }, + { + "start": 7101.88, + "end": 7103.0, + "probability": 0.6429 + }, + { + "start": 7104.14, + "end": 7105.64, + "probability": 0.7729 + }, + { + "start": 7117.64, + "end": 7119.96, + "probability": 0.7272 + }, + { + "start": 7122.04, + "end": 7123.06, + "probability": 0.1461 + }, + { + "start": 7123.14, + "end": 7124.82, + "probability": 0.7483 + }, + { + "start": 7124.9, + "end": 7126.74, + "probability": 0.7404 + }, + { + "start": 7126.86, + "end": 7127.0, + "probability": 0.6104 + }, + { + "start": 7127.08, + "end": 7127.86, + "probability": 0.9946 + }, + { + "start": 7128.8, + "end": 7129.7, + "probability": 0.9753 + }, + { + "start": 7129.76, + "end": 7129.9, + "probability": 0.7811 + }, + { + "start": 7129.96, + "end": 7130.54, + "probability": 0.913 + }, + { + "start": 7130.68, + "end": 7133.34, + "probability": 0.749 + }, + { + "start": 7133.44, + "end": 7134.92, + "probability": 0.9741 + }, + { + "start": 7135.1, + "end": 7135.52, + "probability": 0.8308 + }, + { + "start": 7135.56, + "end": 7136.42, + "probability": 0.7499 + }, + { + "start": 7136.58, + "end": 7137.82, + "probability": 0.8502 + }, + { + "start": 7138.08, + "end": 7139.3, + "probability": 0.9181 + }, + { + "start": 7139.46, + "end": 7141.51, + "probability": 0.9941 + }, + { + "start": 7142.52, + "end": 7144.08, + "probability": 0.9258 + }, + { + "start": 7144.62, + "end": 7146.8, + "probability": 0.8417 + }, + { + "start": 7146.94, + "end": 7147.2, + "probability": 0.4925 + }, + { + "start": 7147.26, + "end": 7148.32, + "probability": 0.8545 + }, + { + "start": 7148.88, + "end": 7151.34, + "probability": 0.7708 + }, + { + "start": 7152.46, + "end": 7154.8, + "probability": 0.8599 + }, + { + "start": 7155.18, + "end": 7157.56, + "probability": 0.933 + }, + { + "start": 7158.04, + "end": 7161.64, + "probability": 0.7785 + }, + { + "start": 7162.06, + "end": 7162.9, + "probability": 0.756 + }, + { + "start": 7163.04, + "end": 7166.68, + "probability": 0.9541 + }, + { + "start": 7167.54, + "end": 7167.96, + "probability": 0.9603 + }, + { + "start": 7168.16, + "end": 7169.26, + "probability": 0.6519 + }, + { + "start": 7169.34, + "end": 7170.04, + "probability": 0.9839 + }, + { + "start": 7170.66, + "end": 7171.62, + "probability": 0.6768 + }, + { + "start": 7171.74, + "end": 7173.24, + "probability": 0.769 + }, + { + "start": 7173.96, + "end": 7177.26, + "probability": 0.9489 + }, + { + "start": 7177.42, + "end": 7179.24, + "probability": 0.6477 + }, + { + "start": 7179.92, + "end": 7181.48, + "probability": 0.9088 + }, + { + "start": 7182.08, + "end": 7183.84, + "probability": 0.9016 + }, + { + "start": 7185.4, + "end": 7189.48, + "probability": 0.8926 + }, + { + "start": 7189.5, + "end": 7190.96, + "probability": 0.7124 + }, + { + "start": 7191.06, + "end": 7191.59, + "probability": 0.627 + }, + { + "start": 7192.6, + "end": 7194.9, + "probability": 0.7728 + }, + { + "start": 7195.4, + "end": 7197.8, + "probability": 0.4238 + }, + { + "start": 7198.89, + "end": 7202.68, + "probability": 0.8223 + }, + { + "start": 7202.92, + "end": 7203.12, + "probability": 0.4634 + }, + { + "start": 7203.84, + "end": 7206.88, + "probability": 0.8092 + }, + { + "start": 7207.84, + "end": 7209.3, + "probability": 0.6877 + }, + { + "start": 7209.44, + "end": 7211.55, + "probability": 0.7828 + }, + { + "start": 7212.46, + "end": 7215.74, + "probability": 0.5524 + }, + { + "start": 7216.3, + "end": 7217.38, + "probability": 0.5108 + }, + { + "start": 7217.64, + "end": 7219.64, + "probability": 0.633 + }, + { + "start": 7220.26, + "end": 7221.1, + "probability": 0.6206 + }, + { + "start": 7221.4, + "end": 7225.24, + "probability": 0.8168 + }, + { + "start": 7225.36, + "end": 7226.46, + "probability": 0.5411 + }, + { + "start": 7227.28, + "end": 7228.16, + "probability": 0.7535 + }, + { + "start": 7228.18, + "end": 7232.28, + "probability": 0.9647 + }, + { + "start": 7232.28, + "end": 7234.4, + "probability": 0.4867 + }, + { + "start": 7234.84, + "end": 7235.44, + "probability": 0.8416 + }, + { + "start": 7235.64, + "end": 7237.78, + "probability": 0.9129 + }, + { + "start": 7237.84, + "end": 7240.88, + "probability": 0.655 + }, + { + "start": 7241.44, + "end": 7242.56, + "probability": 0.8598 + }, + { + "start": 7242.76, + "end": 7243.4, + "probability": 0.5762 + }, + { + "start": 7243.48, + "end": 7244.0, + "probability": 0.951 + }, + { + "start": 7244.52, + "end": 7245.6, + "probability": 0.9792 + }, + { + "start": 7246.16, + "end": 7247.24, + "probability": 0.74 + }, + { + "start": 7247.64, + "end": 7249.86, + "probability": 0.5434 + }, + { + "start": 7250.82, + "end": 7251.6, + "probability": 0.9568 + }, + { + "start": 7251.82, + "end": 7253.04, + "probability": 0.7646 + }, + { + "start": 7253.8, + "end": 7255.1, + "probability": 0.847 + }, + { + "start": 7255.66, + "end": 7256.02, + "probability": 0.096 + }, + { + "start": 7256.16, + "end": 7259.93, + "probability": 0.8515 + }, + { + "start": 7261.22, + "end": 7265.98, + "probability": 0.8741 + }, + { + "start": 7266.74, + "end": 7267.84, + "probability": 0.5855 + }, + { + "start": 7268.68, + "end": 7272.24, + "probability": 0.9811 + }, + { + "start": 7274.62, + "end": 7277.9, + "probability": 0.7501 + }, + { + "start": 7278.14, + "end": 7280.4, + "probability": 0.9746 + }, + { + "start": 7281.12, + "end": 7281.92, + "probability": 0.8281 + }, + { + "start": 7283.69, + "end": 7290.45, + "probability": 0.1531 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.0, + "end": 7404.0, + "probability": 0.0 + }, + { + "start": 7404.18, + "end": 7406.48, + "probability": 0.0619 + }, + { + "start": 7410.54, + "end": 7417.8, + "probability": 0.057 + }, + { + "start": 7417.8, + "end": 7418.04, + "probability": 0.1602 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.0, + "end": 7529.0, + "probability": 0.0 + }, + { + "start": 7529.48, + "end": 7529.72, + "probability": 0.2387 + }, + { + "start": 7529.72, + "end": 7529.72, + "probability": 0.0672 + }, + { + "start": 7529.72, + "end": 7529.72, + "probability": 0.1774 + }, + { + "start": 7529.72, + "end": 7529.72, + "probability": 0.0433 + }, + { + "start": 7529.72, + "end": 7530.6, + "probability": 0.098 + }, + { + "start": 7530.6, + "end": 7531.06, + "probability": 0.6695 + }, + { + "start": 7531.14, + "end": 7532.4, + "probability": 0.5974 + }, + { + "start": 7532.88, + "end": 7533.84, + "probability": 0.9874 + }, + { + "start": 7533.98, + "end": 7534.9, + "probability": 0.9619 + }, + { + "start": 7535.6, + "end": 7539.26, + "probability": 0.9728 + }, + { + "start": 7539.78, + "end": 7541.96, + "probability": 0.9744 + }, + { + "start": 7542.36, + "end": 7544.5, + "probability": 0.9944 + }, + { + "start": 7545.26, + "end": 7546.8, + "probability": 0.9868 + }, + { + "start": 7546.86, + "end": 7548.82, + "probability": 0.9946 + }, + { + "start": 7549.26, + "end": 7553.54, + "probability": 0.8159 + }, + { + "start": 7553.74, + "end": 7556.68, + "probability": 0.9633 + }, + { + "start": 7557.1, + "end": 7559.64, + "probability": 0.9493 + }, + { + "start": 7559.76, + "end": 7560.64, + "probability": 0.9713 + }, + { + "start": 7560.7, + "end": 7561.3, + "probability": 0.9861 + }, + { + "start": 7561.36, + "end": 7562.48, + "probability": 0.8496 + }, + { + "start": 7562.56, + "end": 7563.6, + "probability": 0.9758 + }, + { + "start": 7564.82, + "end": 7565.66, + "probability": 0.1487 + }, + { + "start": 7565.66, + "end": 7566.76, + "probability": 0.8638 + }, + { + "start": 7566.84, + "end": 7569.54, + "probability": 0.9913 + }, + { + "start": 7569.58, + "end": 7573.96, + "probability": 0.9504 + }, + { + "start": 7574.1, + "end": 7577.78, + "probability": 0.9546 + }, + { + "start": 7578.18, + "end": 7580.08, + "probability": 0.9777 + }, + { + "start": 7580.8, + "end": 7582.88, + "probability": 0.9963 + }, + { + "start": 7584.37, + "end": 7589.56, + "probability": 0.9984 + }, + { + "start": 7589.72, + "end": 7590.5, + "probability": 0.8258 + }, + { + "start": 7590.64, + "end": 7594.88, + "probability": 0.9927 + }, + { + "start": 7594.88, + "end": 7597.9, + "probability": 0.9953 + }, + { + "start": 7598.66, + "end": 7599.9, + "probability": 0.9269 + }, + { + "start": 7600.44, + "end": 7602.74, + "probability": 0.9965 + }, + { + "start": 7602.74, + "end": 7606.22, + "probability": 0.9972 + }, + { + "start": 7606.84, + "end": 7607.94, + "probability": 0.9919 + }, + { + "start": 7608.08, + "end": 7609.38, + "probability": 0.983 + }, + { + "start": 7609.8, + "end": 7614.8, + "probability": 0.9839 + }, + { + "start": 7615.12, + "end": 7618.54, + "probability": 0.996 + }, + { + "start": 7618.68, + "end": 7619.26, + "probability": 0.8908 + }, + { + "start": 7619.34, + "end": 7620.2, + "probability": 0.8856 + }, + { + "start": 7622.2, + "end": 7623.88, + "probability": 0.1924 + }, + { + "start": 7624.48, + "end": 7626.76, + "probability": 0.731 + }, + { + "start": 7626.84, + "end": 7627.34, + "probability": 0.7001 + }, + { + "start": 7627.36, + "end": 7628.1, + "probability": 0.9182 + }, + { + "start": 7628.86, + "end": 7630.58, + "probability": 0.8553 + }, + { + "start": 7630.64, + "end": 7631.92, + "probability": 0.9489 + }, + { + "start": 7632.0, + "end": 7633.88, + "probability": 0.774 + }, + { + "start": 7634.32, + "end": 7639.34, + "probability": 0.7303 + }, + { + "start": 7640.26, + "end": 7646.24, + "probability": 0.9136 + }, + { + "start": 7646.72, + "end": 7648.52, + "probability": 0.9198 + }, + { + "start": 7648.6, + "end": 7652.08, + "probability": 0.8716 + }, + { + "start": 7652.08, + "end": 7654.46, + "probability": 0.9945 + }, + { + "start": 7654.58, + "end": 7657.66, + "probability": 0.8959 + }, + { + "start": 7658.16, + "end": 7659.6, + "probability": 0.9651 + }, + { + "start": 7660.14, + "end": 7664.16, + "probability": 0.9915 + }, + { + "start": 7664.48, + "end": 7667.94, + "probability": 0.3285 + }, + { + "start": 7667.94, + "end": 7668.71, + "probability": 0.6723 + }, + { + "start": 7669.34, + "end": 7673.72, + "probability": 0.9919 + }, + { + "start": 7674.08, + "end": 7675.54, + "probability": 0.9395 + }, + { + "start": 7676.26, + "end": 7678.88, + "probability": 0.9982 + }, + { + "start": 7680.16, + "end": 7682.44, + "probability": 0.9294 + }, + { + "start": 7682.5, + "end": 7688.8, + "probability": 0.9549 + }, + { + "start": 7689.56, + "end": 7691.78, + "probability": 0.667 + }, + { + "start": 7691.78, + "end": 7697.26, + "probability": 0.9851 + }, + { + "start": 7697.4, + "end": 7698.84, + "probability": 0.7605 + }, + { + "start": 7699.74, + "end": 7701.66, + "probability": 0.9939 + }, + { + "start": 7701.76, + "end": 7702.86, + "probability": 0.6437 + }, + { + "start": 7703.28, + "end": 7704.2, + "probability": 0.9852 + }, + { + "start": 7704.34, + "end": 7705.59, + "probability": 0.8853 + }, + { + "start": 7706.14, + "end": 7710.82, + "probability": 0.9932 + }, + { + "start": 7712.18, + "end": 7712.98, + "probability": 0.6099 + }, + { + "start": 7714.22, + "end": 7719.08, + "probability": 0.8497 + }, + { + "start": 7719.32, + "end": 7723.48, + "probability": 0.9868 + }, + { + "start": 7723.6, + "end": 7725.56, + "probability": 0.9966 + }, + { + "start": 7725.88, + "end": 7727.56, + "probability": 0.9462 + }, + { + "start": 7728.08, + "end": 7731.5, + "probability": 0.9661 + }, + { + "start": 7731.62, + "end": 7734.96, + "probability": 0.6262 + }, + { + "start": 7735.5, + "end": 7738.16, + "probability": 0.9844 + }, + { + "start": 7738.72, + "end": 7742.98, + "probability": 0.9951 + }, + { + "start": 7744.24, + "end": 7745.52, + "probability": 0.8506 + }, + { + "start": 7746.05, + "end": 7753.42, + "probability": 0.9766 + }, + { + "start": 7753.84, + "end": 7755.14, + "probability": 0.5047 + }, + { + "start": 7755.24, + "end": 7758.82, + "probability": 0.9151 + }, + { + "start": 7760.8, + "end": 7761.78, + "probability": 0.7644 + }, + { + "start": 7762.12, + "end": 7762.8, + "probability": 0.9815 + }, + { + "start": 7762.88, + "end": 7767.36, + "probability": 0.9621 + }, + { + "start": 7767.66, + "end": 7772.06, + "probability": 0.9964 + }, + { + "start": 7773.18, + "end": 7774.86, + "probability": 0.9978 + }, + { + "start": 7774.9, + "end": 7776.9, + "probability": 0.8449 + }, + { + "start": 7777.38, + "end": 7778.52, + "probability": 0.8606 + }, + { + "start": 7779.08, + "end": 7779.72, + "probability": 0.3891 + }, + { + "start": 7779.8, + "end": 7780.92, + "probability": 0.9436 + }, + { + "start": 7781.02, + "end": 7782.6, + "probability": 0.9528 + }, + { + "start": 7782.92, + "end": 7786.0, + "probability": 0.9551 + }, + { + "start": 7786.1, + "end": 7788.6, + "probability": 0.8018 + }, + { + "start": 7789.52, + "end": 7790.98, + "probability": 0.9404 + }, + { + "start": 7791.46, + "end": 7795.32, + "probability": 0.9708 + }, + { + "start": 7795.8, + "end": 7796.96, + "probability": 0.9474 + }, + { + "start": 7797.02, + "end": 7799.52, + "probability": 0.838 + }, + { + "start": 7800.08, + "end": 7800.84, + "probability": 0.6469 + }, + { + "start": 7801.54, + "end": 7804.2, + "probability": 0.9609 + }, + { + "start": 7804.2, + "end": 7808.52, + "probability": 0.9844 + }, + { + "start": 7808.92, + "end": 7809.42, + "probability": 0.7153 + }, + { + "start": 7810.3, + "end": 7812.8, + "probability": 0.908 + }, + { + "start": 7814.36, + "end": 7816.04, + "probability": 0.9877 + }, + { + "start": 7816.2, + "end": 7817.3, + "probability": 0.8148 + }, + { + "start": 7817.38, + "end": 7819.32, + "probability": 0.9971 + }, + { + "start": 7819.6, + "end": 7820.4, + "probability": 0.964 + }, + { + "start": 7821.16, + "end": 7825.8, + "probability": 0.9826 + }, + { + "start": 7826.02, + "end": 7828.82, + "probability": 0.9771 + }, + { + "start": 7829.58, + "end": 7834.0, + "probability": 0.841 + }, + { + "start": 7834.84, + "end": 7836.52, + "probability": 0.7772 + }, + { + "start": 7836.7, + "end": 7840.04, + "probability": 0.9883 + }, + { + "start": 7840.04, + "end": 7843.02, + "probability": 0.9932 + }, + { + "start": 7843.64, + "end": 7847.06, + "probability": 0.9052 + }, + { + "start": 7847.72, + "end": 7849.32, + "probability": 0.746 + }, + { + "start": 7849.92, + "end": 7852.02, + "probability": 0.9681 + }, + { + "start": 7852.86, + "end": 7857.22, + "probability": 0.9866 + }, + { + "start": 7857.22, + "end": 7860.8, + "probability": 0.9968 + }, + { + "start": 7861.66, + "end": 7864.14, + "probability": 0.625 + }, + { + "start": 7864.76, + "end": 7866.44, + "probability": 0.8036 + }, + { + "start": 7867.12, + "end": 7869.3, + "probability": 0.8141 + }, + { + "start": 7870.1, + "end": 7873.26, + "probability": 0.9692 + }, + { + "start": 7873.94, + "end": 7874.44, + "probability": 0.4557 + }, + { + "start": 7875.04, + "end": 7875.52, + "probability": 0.9763 + }, + { + "start": 7876.06, + "end": 7878.2, + "probability": 0.7373 + }, + { + "start": 7879.28, + "end": 7880.42, + "probability": 0.4995 + }, + { + "start": 7880.98, + "end": 7885.2, + "probability": 0.9932 + }, + { + "start": 7885.86, + "end": 7889.24, + "probability": 0.9974 + }, + { + "start": 7889.46, + "end": 7893.92, + "probability": 0.9496 + }, + { + "start": 7894.44, + "end": 7895.73, + "probability": 0.9662 + }, + { + "start": 7896.6, + "end": 7899.88, + "probability": 0.9631 + }, + { + "start": 7900.86, + "end": 7901.34, + "probability": 0.7888 + }, + { + "start": 7902.84, + "end": 7904.9, + "probability": 0.9941 + }, + { + "start": 7905.48, + "end": 7908.72, + "probability": 0.985 + }, + { + "start": 7909.06, + "end": 7910.62, + "probability": 0.8354 + }, + { + "start": 7911.02, + "end": 7911.9, + "probability": 0.8892 + }, + { + "start": 7912.16, + "end": 7912.8, + "probability": 0.9834 + }, + { + "start": 7913.64, + "end": 7914.36, + "probability": 0.76 + }, + { + "start": 7915.16, + "end": 7916.82, + "probability": 0.8496 + }, + { + "start": 7917.86, + "end": 7923.68, + "probability": 0.9272 + }, + { + "start": 7924.78, + "end": 7928.66, + "probability": 0.9541 + }, + { + "start": 7929.56, + "end": 7932.42, + "probability": 0.7345 + }, + { + "start": 7933.12, + "end": 7933.82, + "probability": 0.9189 + }, + { + "start": 7934.46, + "end": 7936.4, + "probability": 0.1781 + }, + { + "start": 7936.4, + "end": 7937.16, + "probability": 0.8167 + }, + { + "start": 7937.62, + "end": 7940.8, + "probability": 0.8691 + }, + { + "start": 7941.0, + "end": 7941.94, + "probability": 0.5688 + }, + { + "start": 7941.94, + "end": 7943.22, + "probability": 0.8477 + }, + { + "start": 7944.84, + "end": 7950.86, + "probability": 0.9837 + }, + { + "start": 7950.86, + "end": 7954.98, + "probability": 0.9854 + }, + { + "start": 7955.36, + "end": 7959.54, + "probability": 0.9756 + }, + { + "start": 7959.98, + "end": 7961.66, + "probability": 0.5077 + }, + { + "start": 7961.72, + "end": 7962.48, + "probability": 0.6654 + }, + { + "start": 7962.56, + "end": 7963.32, + "probability": 0.5253 + }, + { + "start": 7963.76, + "end": 7964.54, + "probability": 0.9269 + }, + { + "start": 7964.66, + "end": 7965.06, + "probability": 0.4188 + }, + { + "start": 7965.54, + "end": 7967.38, + "probability": 0.9332 + }, + { + "start": 7967.92, + "end": 7969.46, + "probability": 0.9136 + }, + { + "start": 7970.86, + "end": 7973.3, + "probability": 0.9274 + }, + { + "start": 7973.42, + "end": 7974.34, + "probability": 0.8962 + }, + { + "start": 7974.84, + "end": 7977.26, + "probability": 0.906 + }, + { + "start": 7977.66, + "end": 7979.0, + "probability": 0.9893 + }, + { + "start": 7979.5, + "end": 7983.46, + "probability": 0.7842 + }, + { + "start": 7983.54, + "end": 7983.8, + "probability": 0.682 + }, + { + "start": 7984.1, + "end": 7985.5, + "probability": 0.9185 + }, + { + "start": 7986.34, + "end": 7989.2, + "probability": 0.8989 + }, + { + "start": 7989.24, + "end": 7994.46, + "probability": 0.9916 + }, + { + "start": 7995.08, + "end": 7997.98, + "probability": 0.9987 + }, + { + "start": 7998.42, + "end": 8002.28, + "probability": 0.9882 + }, + { + "start": 8002.7, + "end": 8003.82, + "probability": 0.9726 + }, + { + "start": 8003.96, + "end": 8004.4, + "probability": 0.4711 + }, + { + "start": 8005.02, + "end": 8005.62, + "probability": 0.4785 + }, + { + "start": 8006.04, + "end": 8006.72, + "probability": 0.8153 + }, + { + "start": 8008.04, + "end": 8009.04, + "probability": 0.4726 + }, + { + "start": 8013.36, + "end": 8013.88, + "probability": 0.8108 + }, + { + "start": 8015.43, + "end": 8018.69, + "probability": 0.8721 + }, + { + "start": 8018.98, + "end": 8019.88, + "probability": 0.6112 + }, + { + "start": 8020.58, + "end": 8022.18, + "probability": 0.9558 + }, + { + "start": 8022.52, + "end": 8024.0, + "probability": 0.8516 + }, + { + "start": 8025.46, + "end": 8026.02, + "probability": 0.3357 + }, + { + "start": 8031.26, + "end": 8031.64, + "probability": 0.0024 + }, + { + "start": 8035.44, + "end": 8036.68, + "probability": 0.6347 + }, + { + "start": 8037.28, + "end": 8037.82, + "probability": 0.5747 + }, + { + "start": 8038.0, + "end": 8039.05, + "probability": 0.8589 + }, + { + "start": 8039.48, + "end": 8041.48, + "probability": 0.849 + }, + { + "start": 8041.58, + "end": 8041.94, + "probability": 0.4807 + }, + { + "start": 8042.16, + "end": 8043.18, + "probability": 0.9878 + }, + { + "start": 8043.62, + "end": 8044.72, + "probability": 0.9844 + }, + { + "start": 8046.14, + "end": 8048.9, + "probability": 0.8339 + }, + { + "start": 8048.9, + "end": 8051.98, + "probability": 0.8903 + }, + { + "start": 8052.42, + "end": 8054.9, + "probability": 0.8481 + }, + { + "start": 8055.36, + "end": 8057.51, + "probability": 0.9269 + }, + { + "start": 8058.78, + "end": 8060.04, + "probability": 0.9786 + }, + { + "start": 8060.58, + "end": 8062.72, + "probability": 0.9923 + }, + { + "start": 8063.2, + "end": 8064.74, + "probability": 0.8908 + }, + { + "start": 8065.18, + "end": 8065.94, + "probability": 0.8403 + }, + { + "start": 8067.18, + "end": 8070.74, + "probability": 0.9628 + }, + { + "start": 8071.68, + "end": 8075.34, + "probability": 0.9302 + }, + { + "start": 8075.88, + "end": 8078.86, + "probability": 0.8847 + }, + { + "start": 8080.18, + "end": 8081.46, + "probability": 0.9586 + }, + { + "start": 8082.32, + "end": 8083.5, + "probability": 0.9276 + }, + { + "start": 8084.32, + "end": 8087.44, + "probability": 0.8704 + }, + { + "start": 8088.2, + "end": 8093.04, + "probability": 0.9934 + }, + { + "start": 8093.46, + "end": 8095.72, + "probability": 0.942 + }, + { + "start": 8096.5, + "end": 8099.1, + "probability": 0.9117 + }, + { + "start": 8099.1, + "end": 8101.6, + "probability": 0.6738 + }, + { + "start": 8102.82, + "end": 8106.72, + "probability": 0.934 + }, + { + "start": 8107.58, + "end": 8112.06, + "probability": 0.991 + }, + { + "start": 8112.6, + "end": 8119.8, + "probability": 0.7412 + }, + { + "start": 8120.34, + "end": 8124.3, + "probability": 0.7231 + }, + { + "start": 8124.78, + "end": 8128.0, + "probability": 0.8376 + }, + { + "start": 8128.08, + "end": 8128.74, + "probability": 0.715 + }, + { + "start": 8129.5, + "end": 8130.46, + "probability": 0.949 + }, + { + "start": 8131.34, + "end": 8134.56, + "probability": 0.7203 + }, + { + "start": 8135.24, + "end": 8138.07, + "probability": 0.9846 + }, + { + "start": 8138.9, + "end": 8142.88, + "probability": 0.9906 + }, + { + "start": 8142.88, + "end": 8146.46, + "probability": 0.9958 + }, + { + "start": 8146.82, + "end": 8148.76, + "probability": 0.9932 + }, + { + "start": 8149.88, + "end": 8152.68, + "probability": 0.988 + }, + { + "start": 8152.68, + "end": 8154.96, + "probability": 0.9797 + }, + { + "start": 8156.02, + "end": 8160.3, + "probability": 0.988 + }, + { + "start": 8161.08, + "end": 8163.24, + "probability": 0.5325 + }, + { + "start": 8163.4, + "end": 8164.4, + "probability": 0.8898 + }, + { + "start": 8164.5, + "end": 8165.04, + "probability": 0.9028 + }, + { + "start": 8165.18, + "end": 8165.6, + "probability": 0.9277 + }, + { + "start": 8165.8, + "end": 8166.98, + "probability": 0.9474 + }, + { + "start": 8167.88, + "end": 8170.4, + "probability": 0.9576 + }, + { + "start": 8170.54, + "end": 8172.96, + "probability": 0.9793 + }, + { + "start": 8173.62, + "end": 8176.24, + "probability": 0.9442 + }, + { + "start": 8176.92, + "end": 8178.44, + "probability": 0.9943 + }, + { + "start": 8178.76, + "end": 8180.64, + "probability": 0.699 + }, + { + "start": 8181.14, + "end": 8183.6, + "probability": 0.5466 + }, + { + "start": 8183.66, + "end": 8187.36, + "probability": 0.9937 + }, + { + "start": 8187.46, + "end": 8188.68, + "probability": 0.9959 + }, + { + "start": 8189.46, + "end": 8191.14, + "probability": 0.8362 + }, + { + "start": 8191.74, + "end": 8191.74, + "probability": 0.4971 + }, + { + "start": 8191.74, + "end": 8193.16, + "probability": 0.6146 + }, + { + "start": 8194.89, + "end": 8200.64, + "probability": 0.9743 + }, + { + "start": 8200.64, + "end": 8204.26, + "probability": 0.9956 + }, + { + "start": 8204.62, + "end": 8206.74, + "probability": 0.9905 + }, + { + "start": 8206.88, + "end": 8208.3, + "probability": 0.7832 + }, + { + "start": 8208.86, + "end": 8210.52, + "probability": 0.9756 + }, + { + "start": 8211.58, + "end": 8216.56, + "probability": 0.8053 + }, + { + "start": 8216.56, + "end": 8223.26, + "probability": 0.9534 + }, + { + "start": 8223.72, + "end": 8226.78, + "probability": 0.9773 + }, + { + "start": 8227.8, + "end": 8229.5, + "probability": 0.9735 + }, + { + "start": 8230.0, + "end": 8233.22, + "probability": 0.9912 + }, + { + "start": 8233.74, + "end": 8236.5, + "probability": 0.9705 + }, + { + "start": 8237.12, + "end": 8238.6, + "probability": 0.7249 + }, + { + "start": 8239.02, + "end": 8242.38, + "probability": 0.9364 + }, + { + "start": 8243.0, + "end": 8244.3, + "probability": 0.9897 + }, + { + "start": 8244.96, + "end": 8246.96, + "probability": 0.9139 + }, + { + "start": 8247.62, + "end": 8251.6, + "probability": 0.9891 + }, + { + "start": 8252.36, + "end": 8252.96, + "probability": 0.4546 + }, + { + "start": 8252.96, + "end": 8253.7, + "probability": 0.7259 + }, + { + "start": 8254.12, + "end": 8255.9, + "probability": 0.988 + }, + { + "start": 8256.34, + "end": 8257.62, + "probability": 0.9551 + }, + { + "start": 8258.22, + "end": 8261.18, + "probability": 0.9557 + }, + { + "start": 8261.68, + "end": 8263.82, + "probability": 0.9805 + }, + { + "start": 8264.24, + "end": 8266.28, + "probability": 0.962 + }, + { + "start": 8266.7, + "end": 8270.76, + "probability": 0.7539 + }, + { + "start": 8271.62, + "end": 8272.64, + "probability": 0.7467 + }, + { + "start": 8272.84, + "end": 8275.74, + "probability": 0.8712 + }, + { + "start": 8276.4, + "end": 8279.3, + "probability": 0.9668 + }, + { + "start": 8279.92, + "end": 8281.13, + "probability": 0.9331 + }, + { + "start": 8281.64, + "end": 8281.74, + "probability": 0.4535 + }, + { + "start": 8281.88, + "end": 8283.46, + "probability": 0.7011 + }, + { + "start": 8283.54, + "end": 8285.76, + "probability": 0.9204 + }, + { + "start": 8286.4, + "end": 8290.1, + "probability": 0.9896 + }, + { + "start": 8290.92, + "end": 8293.64, + "probability": 0.9764 + }, + { + "start": 8293.76, + "end": 8294.4, + "probability": 0.8942 + }, + { + "start": 8295.08, + "end": 8296.14, + "probability": 0.8515 + }, + { + "start": 8296.7, + "end": 8301.7, + "probability": 0.8906 + }, + { + "start": 8302.6, + "end": 8303.66, + "probability": 0.9879 + }, + { + "start": 8304.6, + "end": 8306.88, + "probability": 0.9854 + }, + { + "start": 8306.88, + "end": 8309.72, + "probability": 0.9965 + }, + { + "start": 8310.42, + "end": 8314.32, + "probability": 0.8061 + }, + { + "start": 8314.98, + "end": 8314.98, + "probability": 0.4296 + }, + { + "start": 8315.08, + "end": 8319.98, + "probability": 0.9627 + }, + { + "start": 8320.86, + "end": 8321.34, + "probability": 0.6782 + }, + { + "start": 8321.36, + "end": 8321.58, + "probability": 0.9558 + }, + { + "start": 8321.6, + "end": 8322.51, + "probability": 0.9287 + }, + { + "start": 8322.94, + "end": 8324.14, + "probability": 0.8034 + }, + { + "start": 8324.68, + "end": 8326.3, + "probability": 0.8469 + }, + { + "start": 8326.58, + "end": 8327.52, + "probability": 0.8763 + }, + { + "start": 8327.94, + "end": 8329.24, + "probability": 0.9968 + }, + { + "start": 8329.48, + "end": 8329.76, + "probability": 0.8929 + }, + { + "start": 8330.92, + "end": 8331.72, + "probability": 0.4321 + }, + { + "start": 8331.98, + "end": 8335.58, + "probability": 0.9785 + }, + { + "start": 8335.86, + "end": 8337.06, + "probability": 0.7668 + }, + { + "start": 8338.04, + "end": 8338.72, + "probability": 0.6239 + }, + { + "start": 8339.48, + "end": 8341.32, + "probability": 0.7001 + }, + { + "start": 8342.02, + "end": 8344.08, + "probability": 0.8425 + }, + { + "start": 8344.72, + "end": 8346.86, + "probability": 0.8006 + }, + { + "start": 8347.38, + "end": 8348.0, + "probability": 0.9573 + }, + { + "start": 8348.78, + "end": 8350.84, + "probability": 0.9708 + }, + { + "start": 8351.58, + "end": 8352.5, + "probability": 0.8781 + }, + { + "start": 8355.98, + "end": 8356.78, + "probability": 0.9289 + }, + { + "start": 8357.74, + "end": 8359.58, + "probability": 0.5801 + }, + { + "start": 8359.6, + "end": 8360.18, + "probability": 0.5576 + }, + { + "start": 8360.38, + "end": 8361.44, + "probability": 0.4676 + }, + { + "start": 8362.0, + "end": 8362.6, + "probability": 0.9247 + }, + { + "start": 8362.68, + "end": 8363.32, + "probability": 0.7829 + }, + { + "start": 8363.4, + "end": 8363.88, + "probability": 0.8587 + }, + { + "start": 8364.0, + "end": 8364.74, + "probability": 0.8587 + }, + { + "start": 8364.76, + "end": 8365.34, + "probability": 0.501 + }, + { + "start": 8365.82, + "end": 8366.56, + "probability": 0.6753 + }, + { + "start": 8367.46, + "end": 8368.14, + "probability": 0.8898 + }, + { + "start": 8369.1, + "end": 8374.48, + "probability": 0.7136 + }, + { + "start": 8374.96, + "end": 8376.2, + "probability": 0.9372 + }, + { + "start": 8392.02, + "end": 8393.1, + "probability": 0.6373 + }, + { + "start": 8393.84, + "end": 8394.9, + "probability": 0.6477 + }, + { + "start": 8396.54, + "end": 8399.76, + "probability": 0.8057 + }, + { + "start": 8401.74, + "end": 8402.78, + "probability": 0.9852 + }, + { + "start": 8404.4, + "end": 8407.34, + "probability": 0.9987 + }, + { + "start": 8407.34, + "end": 8411.54, + "probability": 0.7861 + }, + { + "start": 8412.44, + "end": 8413.88, + "probability": 0.8341 + }, + { + "start": 8414.96, + "end": 8416.6, + "probability": 0.7835 + }, + { + "start": 8417.48, + "end": 8420.38, + "probability": 0.9531 + }, + { + "start": 8420.96, + "end": 8423.32, + "probability": 0.9865 + }, + { + "start": 8424.44, + "end": 8426.34, + "probability": 0.9494 + }, + { + "start": 8427.08, + "end": 8430.14, + "probability": 0.9985 + }, + { + "start": 8431.46, + "end": 8433.26, + "probability": 0.9292 + }, + { + "start": 8433.98, + "end": 8437.24, + "probability": 0.991 + }, + { + "start": 8438.18, + "end": 8439.98, + "probability": 0.9672 + }, + { + "start": 8440.64, + "end": 8442.26, + "probability": 0.9316 + }, + { + "start": 8443.46, + "end": 8445.5, + "probability": 0.9912 + }, + { + "start": 8446.84, + "end": 8448.46, + "probability": 0.985 + }, + { + "start": 8450.62, + "end": 8455.54, + "probability": 0.9968 + }, + { + "start": 8456.12, + "end": 8458.76, + "probability": 0.9582 + }, + { + "start": 8459.36, + "end": 8463.46, + "probability": 0.9816 + }, + { + "start": 8464.04, + "end": 8465.24, + "probability": 0.9573 + }, + { + "start": 8466.04, + "end": 8468.82, + "probability": 0.9528 + }, + { + "start": 8469.6, + "end": 8474.5, + "probability": 0.8419 + }, + { + "start": 8475.4, + "end": 8481.56, + "probability": 0.9985 + }, + { + "start": 8481.9, + "end": 8488.12, + "probability": 0.9986 + }, + { + "start": 8488.62, + "end": 8490.56, + "probability": 0.8495 + }, + { + "start": 8490.66, + "end": 8492.24, + "probability": 0.7068 + }, + { + "start": 8492.78, + "end": 8495.58, + "probability": 0.9631 + }, + { + "start": 8496.14, + "end": 8499.16, + "probability": 0.7979 + }, + { + "start": 8499.84, + "end": 8502.64, + "probability": 0.9811 + }, + { + "start": 8503.58, + "end": 8506.14, + "probability": 0.9934 + }, + { + "start": 8507.06, + "end": 8510.28, + "probability": 0.8705 + }, + { + "start": 8510.9, + "end": 8513.24, + "probability": 0.9977 + }, + { + "start": 8513.82, + "end": 8517.1, + "probability": 0.9745 + }, + { + "start": 8517.92, + "end": 8520.28, + "probability": 0.9997 + }, + { + "start": 8521.16, + "end": 8524.2, + "probability": 0.9919 + }, + { + "start": 8524.94, + "end": 8525.6, + "probability": 0.7476 + }, + { + "start": 8526.46, + "end": 8529.68, + "probability": 0.9672 + }, + { + "start": 8530.44, + "end": 8533.82, + "probability": 0.9862 + }, + { + "start": 8534.42, + "end": 8536.64, + "probability": 0.7433 + }, + { + "start": 8537.62, + "end": 8541.22, + "probability": 0.9875 + }, + { + "start": 8542.1, + "end": 8546.84, + "probability": 0.9961 + }, + { + "start": 8546.84, + "end": 8550.96, + "probability": 0.9878 + }, + { + "start": 8551.94, + "end": 8554.04, + "probability": 0.9952 + }, + { + "start": 8554.78, + "end": 8556.28, + "probability": 0.8138 + }, + { + "start": 8556.76, + "end": 8558.56, + "probability": 0.997 + }, + { + "start": 8559.12, + "end": 8561.4, + "probability": 0.8805 + }, + { + "start": 8562.14, + "end": 8563.04, + "probability": 0.8023 + }, + { + "start": 8563.68, + "end": 8567.46, + "probability": 0.9952 + }, + { + "start": 8568.16, + "end": 8573.04, + "probability": 0.9963 + }, + { + "start": 8573.94, + "end": 8575.16, + "probability": 0.6498 + }, + { + "start": 8575.2, + "end": 8575.2, + "probability": 0.5242 + }, + { + "start": 8575.2, + "end": 8578.28, + "probability": 0.5524 + }, + { + "start": 8578.98, + "end": 8578.98, + "probability": 0.6915 + }, + { + "start": 8579.14, + "end": 8580.12, + "probability": 0.7593 + }, + { + "start": 8581.48, + "end": 8584.08, + "probability": 0.8121 + }, + { + "start": 8584.26, + "end": 8586.2, + "probability": 0.821 + }, + { + "start": 8587.12, + "end": 8590.48, + "probability": 0.7567 + }, + { + "start": 8590.6, + "end": 8592.68, + "probability": 0.8979 + }, + { + "start": 8595.42, + "end": 8596.84, + "probability": 0.6818 + }, + { + "start": 8597.48, + "end": 8599.52, + "probability": 0.9512 + }, + { + "start": 8600.96, + "end": 8602.64, + "probability": 0.2137 + }, + { + "start": 8602.64, + "end": 8605.72, + "probability": 0.9128 + }, + { + "start": 8606.16, + "end": 8606.68, + "probability": 0.9477 + }, + { + "start": 8606.94, + "end": 8606.94, + "probability": 0.3619 + }, + { + "start": 8606.98, + "end": 8609.56, + "probability": 0.9554 + }, + { + "start": 8609.76, + "end": 8610.62, + "probability": 0.7093 + }, + { + "start": 8611.64, + "end": 8612.88, + "probability": 0.916 + }, + { + "start": 8613.32, + "end": 8614.7, + "probability": 0.88 + }, + { + "start": 8614.8, + "end": 8615.44, + "probability": 0.727 + }, + { + "start": 8615.56, + "end": 8616.22, + "probability": 0.8403 + }, + { + "start": 8616.86, + "end": 8618.18, + "probability": 0.8401 + }, + { + "start": 8620.86, + "end": 8621.56, + "probability": 0.9075 + }, + { + "start": 8623.5, + "end": 8625.6, + "probability": 0.8506 + }, + { + "start": 8625.82, + "end": 8628.2, + "probability": 0.6516 + }, + { + "start": 8628.64, + "end": 8629.54, + "probability": 0.6168 + }, + { + "start": 8631.38, + "end": 8632.22, + "probability": 0.2551 + }, + { + "start": 8632.3, + "end": 8632.3, + "probability": 0.047 + }, + { + "start": 8632.3, + "end": 8632.3, + "probability": 0.3966 + }, + { + "start": 8632.3, + "end": 8633.37, + "probability": 0.5861 + }, + { + "start": 8634.12, + "end": 8635.56, + "probability": 0.6661 + }, + { + "start": 8635.64, + "end": 8637.64, + "probability": 0.6938 + }, + { + "start": 8638.46, + "end": 8642.68, + "probability": 0.989 + }, + { + "start": 8642.78, + "end": 8644.26, + "probability": 0.6251 + }, + { + "start": 8644.8, + "end": 8646.22, + "probability": 0.9747 + }, + { + "start": 8647.34, + "end": 8648.32, + "probability": 0.9908 + }, + { + "start": 8649.56, + "end": 8653.18, + "probability": 0.9971 + }, + { + "start": 8653.18, + "end": 8657.7, + "probability": 0.991 + }, + { + "start": 8657.8, + "end": 8658.54, + "probability": 0.9056 + }, + { + "start": 8658.86, + "end": 8659.8, + "probability": 0.9335 + }, + { + "start": 8660.28, + "end": 8661.06, + "probability": 0.7931 + }, + { + "start": 8661.1, + "end": 8661.98, + "probability": 0.4978 + }, + { + "start": 8662.14, + "end": 8662.72, + "probability": 0.3642 + }, + { + "start": 8663.46, + "end": 8664.88, + "probability": 0.9185 + }, + { + "start": 8665.5, + "end": 8667.56, + "probability": 0.8959 + }, + { + "start": 8667.68, + "end": 8668.64, + "probability": 0.9777 + }, + { + "start": 8669.3, + "end": 8670.28, + "probability": 0.9814 + }, + { + "start": 8670.34, + "end": 8671.84, + "probability": 0.9769 + }, + { + "start": 8672.38, + "end": 8676.34, + "probability": 0.9402 + }, + { + "start": 8676.62, + "end": 8676.94, + "probability": 0.5982 + }, + { + "start": 8677.3, + "end": 8677.88, + "probability": 0.9602 + }, + { + "start": 8677.9, + "end": 8678.6, + "probability": 0.9226 + }, + { + "start": 8678.7, + "end": 8682.26, + "probability": 0.9739 + }, + { + "start": 8682.52, + "end": 8685.6, + "probability": 0.9924 + }, + { + "start": 8686.12, + "end": 8687.04, + "probability": 0.8133 + }, + { + "start": 8687.6, + "end": 8689.66, + "probability": 0.9079 + }, + { + "start": 8690.18, + "end": 8691.32, + "probability": 0.9951 + }, + { + "start": 8692.46, + "end": 8693.72, + "probability": 0.9672 + }, + { + "start": 8693.86, + "end": 8694.92, + "probability": 0.9668 + }, + { + "start": 8695.08, + "end": 8695.9, + "probability": 0.8723 + }, + { + "start": 8696.8, + "end": 8698.5, + "probability": 0.9828 + }, + { + "start": 8699.06, + "end": 8700.2, + "probability": 0.9564 + }, + { + "start": 8700.28, + "end": 8702.16, + "probability": 0.9927 + }, + { + "start": 8702.98, + "end": 8703.64, + "probability": 0.7189 + }, + { + "start": 8704.08, + "end": 8704.9, + "probability": 0.9124 + }, + { + "start": 8705.22, + "end": 8709.64, + "probability": 0.8744 + }, + { + "start": 8710.36, + "end": 8714.1, + "probability": 0.9379 + }, + { + "start": 8714.7, + "end": 8715.22, + "probability": 0.9855 + }, + { + "start": 8715.72, + "end": 8720.1, + "probability": 0.9497 + }, + { + "start": 8720.24, + "end": 8723.38, + "probability": 0.9434 + }, + { + "start": 8723.9, + "end": 8726.64, + "probability": 0.9521 + }, + { + "start": 8727.44, + "end": 8727.78, + "probability": 0.9008 + }, + { + "start": 8728.08, + "end": 8730.52, + "probability": 0.9941 + }, + { + "start": 8730.62, + "end": 8732.72, + "probability": 0.9068 + }, + { + "start": 8732.9, + "end": 8734.39, + "probability": 0.9976 + }, + { + "start": 8735.08, + "end": 8735.6, + "probability": 0.9976 + }, + { + "start": 8736.2, + "end": 8736.76, + "probability": 0.9412 + }, + { + "start": 8736.9, + "end": 8737.6, + "probability": 0.93 + }, + { + "start": 8737.92, + "end": 8738.84, + "probability": 0.9927 + }, + { + "start": 8739.34, + "end": 8740.6, + "probability": 0.9823 + }, + { + "start": 8740.92, + "end": 8741.96, + "probability": 0.7362 + }, + { + "start": 8744.36, + "end": 8745.56, + "probability": 0.3709 + }, + { + "start": 8745.7, + "end": 8746.28, + "probability": 0.9042 + }, + { + "start": 8746.78, + "end": 8750.78, + "probability": 0.9975 + }, + { + "start": 8751.6, + "end": 8755.02, + "probability": 0.9921 + }, + { + "start": 8755.54, + "end": 8757.46, + "probability": 0.6764 + }, + { + "start": 8757.72, + "end": 8758.36, + "probability": 0.9364 + }, + { + "start": 8758.6, + "end": 8761.16, + "probability": 0.7048 + }, + { + "start": 8761.54, + "end": 8762.48, + "probability": 0.9793 + }, + { + "start": 8762.68, + "end": 8763.44, + "probability": 0.5879 + }, + { + "start": 8763.94, + "end": 8766.56, + "probability": 0.9624 + }, + { + "start": 8766.92, + "end": 8767.66, + "probability": 0.7725 + }, + { + "start": 8767.8, + "end": 8767.84, + "probability": 0.6648 + }, + { + "start": 8767.96, + "end": 8768.57, + "probability": 0.9927 + }, + { + "start": 8768.98, + "end": 8769.92, + "probability": 0.7582 + }, + { + "start": 8770.34, + "end": 8771.96, + "probability": 0.9798 + }, + { + "start": 8772.02, + "end": 8774.52, + "probability": 0.8819 + }, + { + "start": 8774.88, + "end": 8776.18, + "probability": 0.9633 + }, + { + "start": 8776.32, + "end": 8777.4, + "probability": 0.9422 + }, + { + "start": 8777.9, + "end": 8779.6, + "probability": 0.8821 + }, + { + "start": 8780.18, + "end": 8781.26, + "probability": 0.9235 + }, + { + "start": 8781.3, + "end": 8782.42, + "probability": 0.9168 + }, + { + "start": 8782.46, + "end": 8782.94, + "probability": 0.9088 + }, + { + "start": 8782.98, + "end": 8784.12, + "probability": 0.5698 + }, + { + "start": 8784.4, + "end": 8785.1, + "probability": 0.7726 + }, + { + "start": 8785.22, + "end": 8788.92, + "probability": 0.9403 + }, + { + "start": 8789.02, + "end": 8790.02, + "probability": 0.7577 + }, + { + "start": 8790.74, + "end": 8792.8, + "probability": 0.9602 + }, + { + "start": 8793.1, + "end": 8796.44, + "probability": 0.9902 + }, + { + "start": 8796.74, + "end": 8797.76, + "probability": 0.9371 + }, + { + "start": 8798.0, + "end": 8799.3, + "probability": 0.9805 + }, + { + "start": 8799.62, + "end": 8801.32, + "probability": 0.8543 + }, + { + "start": 8801.84, + "end": 8802.84, + "probability": 0.3876 + }, + { + "start": 8802.94, + "end": 8802.98, + "probability": 0.4444 + }, + { + "start": 8802.98, + "end": 8805.75, + "probability": 0.9414 + }, + { + "start": 8806.18, + "end": 8807.38, + "probability": 0.9795 + }, + { + "start": 8807.94, + "end": 8809.56, + "probability": 0.9898 + }, + { + "start": 8809.88, + "end": 8810.59, + "probability": 0.9798 + }, + { + "start": 8810.74, + "end": 8811.44, + "probability": 0.7838 + }, + { + "start": 8811.88, + "end": 8812.88, + "probability": 0.9359 + }, + { + "start": 8813.32, + "end": 8813.58, + "probability": 0.4745 + }, + { + "start": 8813.66, + "end": 8814.64, + "probability": 0.5578 + }, + { + "start": 8814.76, + "end": 8816.18, + "probability": 0.9685 + }, + { + "start": 8816.36, + "end": 8817.12, + "probability": 0.927 + }, + { + "start": 8817.68, + "end": 8818.6, + "probability": 0.8652 + }, + { + "start": 8820.08, + "end": 8822.08, + "probability": 0.6031 + }, + { + "start": 8822.2, + "end": 8822.44, + "probability": 0.8074 + }, + { + "start": 8822.94, + "end": 8824.18, + "probability": 0.8749 + }, + { + "start": 8824.52, + "end": 8826.42, + "probability": 0.9016 + }, + { + "start": 8826.48, + "end": 8829.08, + "probability": 0.9766 + }, + { + "start": 8829.62, + "end": 8830.42, + "probability": 0.923 + }, + { + "start": 8830.48, + "end": 8832.9, + "probability": 0.9495 + }, + { + "start": 8832.96, + "end": 8833.49, + "probability": 0.421 + }, + { + "start": 8834.3, + "end": 8835.34, + "probability": 0.9387 + }, + { + "start": 8835.88, + "end": 8838.24, + "probability": 0.9397 + }, + { + "start": 8839.0, + "end": 8839.5, + "probability": 0.8272 + }, + { + "start": 8839.58, + "end": 8840.32, + "probability": 0.7746 + }, + { + "start": 8840.46, + "end": 8842.94, + "probability": 0.9985 + }, + { + "start": 8843.02, + "end": 8845.34, + "probability": 0.9838 + }, + { + "start": 8846.18, + "end": 8848.44, + "probability": 0.9611 + }, + { + "start": 8848.84, + "end": 8849.24, + "probability": 0.7931 + }, + { + "start": 8849.64, + "end": 8851.18, + "probability": 0.9681 + }, + { + "start": 8851.66, + "end": 8852.86, + "probability": 0.8472 + }, + { + "start": 8852.86, + "end": 8852.86, + "probability": 0.6387 + }, + { + "start": 8852.9, + "end": 8853.77, + "probability": 0.9756 + }, + { + "start": 8854.5, + "end": 8854.92, + "probability": 0.7376 + }, + { + "start": 8854.98, + "end": 8856.12, + "probability": 0.9668 + }, + { + "start": 8856.48, + "end": 8858.68, + "probability": 0.9949 + }, + { + "start": 8859.44, + "end": 8860.38, + "probability": 0.9738 + }, + { + "start": 8861.12, + "end": 8863.13, + "probability": 0.9738 + }, + { + "start": 8863.4, + "end": 8864.52, + "probability": 0.9858 + }, + { + "start": 8864.7, + "end": 8866.2, + "probability": 0.9692 + }, + { + "start": 8866.3, + "end": 8867.04, + "probability": 0.8271 + }, + { + "start": 8868.06, + "end": 8871.2, + "probability": 0.6696 + }, + { + "start": 8871.2, + "end": 8871.6, + "probability": 0.3052 + }, + { + "start": 8871.6, + "end": 8871.6, + "probability": 0.5544 + }, + { + "start": 8871.6, + "end": 8872.12, + "probability": 0.9719 + }, + { + "start": 8872.34, + "end": 8874.29, + "probability": 0.7166 + }, + { + "start": 8874.96, + "end": 8876.68, + "probability": 0.963 + }, + { + "start": 8877.3, + "end": 8879.84, + "probability": 0.9399 + }, + { + "start": 8879.88, + "end": 8880.22, + "probability": 0.8395 + }, + { + "start": 8880.54, + "end": 8880.86, + "probability": 0.2552 + }, + { + "start": 8882.62, + "end": 8884.26, + "probability": 0.6013 + }, + { + "start": 8884.98, + "end": 8887.92, + "probability": 0.9636 + }, + { + "start": 8889.04, + "end": 8891.52, + "probability": 0.9918 + }, + { + "start": 8894.28, + "end": 8897.4, + "probability": 0.9995 + }, + { + "start": 8897.88, + "end": 8898.5, + "probability": 0.7708 + }, + { + "start": 8899.56, + "end": 8903.46, + "probability": 0.9764 + }, + { + "start": 8911.08, + "end": 8911.9, + "probability": 0.7243 + }, + { + "start": 8913.06, + "end": 8913.32, + "probability": 0.8409 + }, + { + "start": 8913.38, + "end": 8914.18, + "probability": 0.5833 + }, + { + "start": 8914.36, + "end": 8919.86, + "probability": 0.9858 + }, + { + "start": 8920.64, + "end": 8923.54, + "probability": 0.9551 + }, + { + "start": 8924.58, + "end": 8925.04, + "probability": 0.8403 + }, + { + "start": 8925.22, + "end": 8926.71, + "probability": 0.939 + }, + { + "start": 8927.76, + "end": 8928.18, + "probability": 0.568 + }, + { + "start": 8928.66, + "end": 8931.24, + "probability": 0.9679 + }, + { + "start": 8933.1, + "end": 8938.94, + "probability": 0.997 + }, + { + "start": 8939.04, + "end": 8939.52, + "probability": 0.8982 + }, + { + "start": 8940.12, + "end": 8941.82, + "probability": 0.9189 + }, + { + "start": 8944.66, + "end": 8945.94, + "probability": 0.5671 + }, + { + "start": 8945.94, + "end": 8946.86, + "probability": 0.2569 + }, + { + "start": 8947.44, + "end": 8952.34, + "probability": 0.9442 + }, + { + "start": 8952.68, + "end": 8955.84, + "probability": 0.9883 + }, + { + "start": 8956.26, + "end": 8957.2, + "probability": 0.9723 + }, + { + "start": 8957.3, + "end": 8957.9, + "probability": 0.8259 + }, + { + "start": 8958.34, + "end": 8959.9, + "probability": 0.9612 + }, + { + "start": 8960.42, + "end": 8960.7, + "probability": 0.5596 + }, + { + "start": 8961.06, + "end": 8963.83, + "probability": 0.7926 + }, + { + "start": 8964.4, + "end": 8968.98, + "probability": 0.9911 + }, + { + "start": 8969.14, + "end": 8971.02, + "probability": 0.6685 + }, + { + "start": 8971.56, + "end": 8976.58, + "probability": 0.9797 + }, + { + "start": 8976.58, + "end": 8981.58, + "probability": 0.9889 + }, + { + "start": 8981.58, + "end": 8987.36, + "probability": 0.9041 + }, + { + "start": 8987.72, + "end": 8988.64, + "probability": 0.5353 + }, + { + "start": 8989.02, + "end": 8990.48, + "probability": 0.5143 + }, + { + "start": 8991.0, + "end": 8993.76, + "probability": 0.9946 + }, + { + "start": 8994.26, + "end": 8994.9, + "probability": 0.808 + }, + { + "start": 8995.42, + "end": 8998.72, + "probability": 0.98 + }, + { + "start": 8998.72, + "end": 9003.94, + "probability": 0.9968 + }, + { + "start": 9004.42, + "end": 9010.52, + "probability": 0.999 + }, + { + "start": 9011.22, + "end": 9012.28, + "probability": 0.9434 + }, + { + "start": 9012.84, + "end": 9017.22, + "probability": 0.9815 + }, + { + "start": 9017.22, + "end": 9021.88, + "probability": 0.9975 + }, + { + "start": 9022.8, + "end": 9024.44, + "probability": 0.9963 + }, + { + "start": 9024.56, + "end": 9024.93, + "probability": 0.7983 + }, + { + "start": 9025.7, + "end": 9026.4, + "probability": 0.8727 + }, + { + "start": 9026.5, + "end": 9027.2, + "probability": 0.8418 + }, + { + "start": 9027.74, + "end": 9029.5, + "probability": 0.979 + }, + { + "start": 9030.12, + "end": 9030.54, + "probability": 0.9016 + }, + { + "start": 9031.56, + "end": 9032.96, + "probability": 0.9577 + }, + { + "start": 9033.48, + "end": 9035.32, + "probability": 0.9951 + }, + { + "start": 9035.92, + "end": 9040.66, + "probability": 0.9919 + }, + { + "start": 9041.18, + "end": 9042.04, + "probability": 0.9759 + }, + { + "start": 9043.06, + "end": 9047.84, + "probability": 0.9985 + }, + { + "start": 9048.28, + "end": 9049.86, + "probability": 0.8333 + }, + { + "start": 9049.9, + "end": 9050.25, + "probability": 0.9756 + }, + { + "start": 9050.48, + "end": 9052.46, + "probability": 0.9184 + }, + { + "start": 9053.06, + "end": 9054.02, + "probability": 0.7698 + }, + { + "start": 9054.44, + "end": 9055.62, + "probability": 0.9646 + }, + { + "start": 9055.68, + "end": 9057.24, + "probability": 0.9678 + }, + { + "start": 9057.88, + "end": 9064.32, + "probability": 0.996 + }, + { + "start": 9064.98, + "end": 9066.9, + "probability": 0.9882 + }, + { + "start": 9067.32, + "end": 9070.08, + "probability": 0.9905 + }, + { + "start": 9070.08, + "end": 9073.86, + "probability": 0.9967 + }, + { + "start": 9074.0, + "end": 9074.74, + "probability": 0.9313 + }, + { + "start": 9075.34, + "end": 9076.0, + "probability": 0.4098 + }, + { + "start": 9076.44, + "end": 9077.8, + "probability": 0.9591 + }, + { + "start": 9078.26, + "end": 9080.28, + "probability": 0.9507 + }, + { + "start": 9080.7, + "end": 9083.68, + "probability": 0.9961 + }, + { + "start": 9083.68, + "end": 9087.24, + "probability": 0.9951 + }, + { + "start": 9087.54, + "end": 9088.36, + "probability": 0.9744 + }, + { + "start": 9088.66, + "end": 9089.08, + "probability": 0.7983 + }, + { + "start": 9089.22, + "end": 9090.22, + "probability": 0.5207 + }, + { + "start": 9090.32, + "end": 9093.48, + "probability": 0.8091 + }, + { + "start": 9094.1, + "end": 9096.88, + "probability": 0.8363 + }, + { + "start": 9097.1, + "end": 9098.16, + "probability": 0.0988 + }, + { + "start": 9098.16, + "end": 9098.16, + "probability": 0.1981 + }, + { + "start": 9098.16, + "end": 9098.16, + "probability": 0.3353 + }, + { + "start": 9098.16, + "end": 9098.5, + "probability": 0.6536 + }, + { + "start": 9098.68, + "end": 9100.58, + "probability": 0.9759 + }, + { + "start": 9100.68, + "end": 9102.48, + "probability": 0.9158 + }, + { + "start": 9103.88, + "end": 9107.62, + "probability": 0.7876 + }, + { + "start": 9107.72, + "end": 9111.12, + "probability": 0.707 + }, + { + "start": 9111.26, + "end": 9112.34, + "probability": 0.6108 + }, + { + "start": 9112.7, + "end": 9114.02, + "probability": 0.8735 + }, + { + "start": 9114.46, + "end": 9115.44, + "probability": 0.8226 + }, + { + "start": 9115.56, + "end": 9117.44, + "probability": 0.8914 + }, + { + "start": 9118.71, + "end": 9119.6, + "probability": 0.0296 + }, + { + "start": 9124.83, + "end": 9125.8, + "probability": 0.2522 + }, + { + "start": 9128.7, + "end": 9130.08, + "probability": 0.0352 + }, + { + "start": 9130.34, + "end": 9130.48, + "probability": 0.048 + }, + { + "start": 9130.48, + "end": 9130.48, + "probability": 0.7983 + }, + { + "start": 9130.48, + "end": 9131.44, + "probability": 0.2666 + }, + { + "start": 9133.56, + "end": 9135.8, + "probability": 0.5293 + }, + { + "start": 9138.6, + "end": 9141.19, + "probability": 0.9888 + }, + { + "start": 9142.12, + "end": 9142.24, + "probability": 0.0314 + }, + { + "start": 9142.24, + "end": 9142.24, + "probability": 0.0734 + }, + { + "start": 9142.24, + "end": 9144.54, + "probability": 0.7897 + }, + { + "start": 9144.54, + "end": 9147.88, + "probability": 0.9941 + }, + { + "start": 9148.52, + "end": 9151.94, + "probability": 0.7255 + }, + { + "start": 9153.6, + "end": 9157.64, + "probability": 0.0975 + }, + { + "start": 9164.72, + "end": 9165.44, + "probability": 0.1365 + }, + { + "start": 9182.08, + "end": 9182.56, + "probability": 0.4106 + }, + { + "start": 9183.64, + "end": 9184.72, + "probability": 0.6162 + }, + { + "start": 9184.82, + "end": 9185.94, + "probability": 0.5955 + }, + { + "start": 9185.98, + "end": 9187.52, + "probability": 0.967 + }, + { + "start": 9187.68, + "end": 9190.5, + "probability": 0.9427 + }, + { + "start": 9190.62, + "end": 9194.26, + "probability": 0.9854 + }, + { + "start": 9194.36, + "end": 9197.74, + "probability": 0.8018 + }, + { + "start": 9197.84, + "end": 9199.54, + "probability": 0.6641 + }, + { + "start": 9199.7, + "end": 9200.86, + "probability": 0.9663 + }, + { + "start": 9200.92, + "end": 9201.78, + "probability": 0.9105 + }, + { + "start": 9201.9, + "end": 9202.16, + "probability": 0.7719 + }, + { + "start": 9202.72, + "end": 9203.4, + "probability": 0.6512 + }, + { + "start": 9204.04, + "end": 9208.22, + "probability": 0.0138 + }, + { + "start": 9222.22, + "end": 9222.86, + "probability": 0.4005 + }, + { + "start": 9224.98, + "end": 9227.78, + "probability": 0.0079 + }, + { + "start": 9228.28, + "end": 9231.44, + "probability": 0.716 + }, + { + "start": 9231.5, + "end": 9233.42, + "probability": 0.6903 + }, + { + "start": 9234.38, + "end": 9236.68, + "probability": 0.053 + }, + { + "start": 9236.68, + "end": 9236.68, + "probability": 0.064 + }, + { + "start": 9236.7, + "end": 9237.48, + "probability": 0.1306 + }, + { + "start": 9237.52, + "end": 9239.46, + "probability": 0.294 + }, + { + "start": 9241.08, + "end": 9241.94, + "probability": 0.1395 + }, + { + "start": 9243.3, + "end": 9243.68, + "probability": 0.1017 + }, + { + "start": 9243.68, + "end": 9244.46, + "probability": 0.0268 + }, + { + "start": 9244.48, + "end": 9246.1, + "probability": 0.0533 + }, + { + "start": 9259.62, + "end": 9259.62, + "probability": 0.0611 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.0, + "end": 9321.0, + "probability": 0.0 + }, + { + "start": 9321.02, + "end": 9324.52, + "probability": 0.9562 + }, + { + "start": 9326.26, + "end": 9333.08, + "probability": 0.9829 + }, + { + "start": 9334.68, + "end": 9336.74, + "probability": 0.9861 + }, + { + "start": 9338.9, + "end": 9343.66, + "probability": 0.9961 + }, + { + "start": 9344.44, + "end": 9344.82, + "probability": 0.8855 + }, + { + "start": 9346.34, + "end": 9348.46, + "probability": 0.9059 + }, + { + "start": 9349.24, + "end": 9350.92, + "probability": 0.7557 + }, + { + "start": 9352.24, + "end": 9352.98, + "probability": 0.9177 + }, + { + "start": 9354.52, + "end": 9357.86, + "probability": 0.9985 + }, + { + "start": 9357.86, + "end": 9361.08, + "probability": 0.992 + }, + { + "start": 9362.08, + "end": 9363.76, + "probability": 0.9642 + }, + { + "start": 9364.88, + "end": 9365.7, + "probability": 0.7345 + }, + { + "start": 9366.6, + "end": 9370.72, + "probability": 0.9875 + }, + { + "start": 9371.36, + "end": 9374.4, + "probability": 0.8976 + }, + { + "start": 9375.06, + "end": 9380.96, + "probability": 0.9896 + }, + { + "start": 9381.38, + "end": 9384.24, + "probability": 0.9364 + }, + { + "start": 9385.78, + "end": 9388.96, + "probability": 0.9806 + }, + { + "start": 9388.96, + "end": 9393.44, + "probability": 0.9932 + }, + { + "start": 9394.16, + "end": 9396.7, + "probability": 0.9619 + }, + { + "start": 9397.22, + "end": 9398.02, + "probability": 0.7875 + }, + { + "start": 9398.58, + "end": 9400.9, + "probability": 0.9975 + }, + { + "start": 9402.78, + "end": 9405.64, + "probability": 0.9932 + }, + { + "start": 9405.78, + "end": 9407.6, + "probability": 0.956 + }, + { + "start": 9408.32, + "end": 9411.76, + "probability": 0.9895 + }, + { + "start": 9412.48, + "end": 9417.44, + "probability": 0.9836 + }, + { + "start": 9418.38, + "end": 9420.38, + "probability": 0.9962 + }, + { + "start": 9421.2, + "end": 9425.5, + "probability": 0.9801 + }, + { + "start": 9426.22, + "end": 9431.56, + "probability": 0.9967 + }, + { + "start": 9432.34, + "end": 9433.52, + "probability": 0.9502 + }, + { + "start": 9433.78, + "end": 9434.3, + "probability": 0.7502 + }, + { + "start": 9434.78, + "end": 9435.96, + "probability": 0.6665 + }, + { + "start": 9436.14, + "end": 9437.86, + "probability": 0.9333 + }, + { + "start": 9438.8, + "end": 9442.8, + "probability": 0.6967 + }, + { + "start": 9442.84, + "end": 9443.36, + "probability": 0.4234 + }, + { + "start": 9444.41, + "end": 9446.6, + "probability": 0.8975 + }, + { + "start": 9447.12, + "end": 9447.7, + "probability": 0.6313 + }, + { + "start": 9448.48, + "end": 9451.42, + "probability": 0.6743 + }, + { + "start": 9452.38, + "end": 9453.02, + "probability": 0.7417 + }, + { + "start": 9453.06, + "end": 9453.42, + "probability": 0.7857 + }, + { + "start": 9453.48, + "end": 9454.74, + "probability": 0.815 + }, + { + "start": 9455.12, + "end": 9456.14, + "probability": 0.6151 + }, + { + "start": 9456.18, + "end": 9457.42, + "probability": 0.6523 + }, + { + "start": 9457.48, + "end": 9458.48, + "probability": 0.7961 + }, + { + "start": 9460.52, + "end": 9462.22, + "probability": 0.7875 + }, + { + "start": 9464.18, + "end": 9466.0, + "probability": 0.9051 + }, + { + "start": 9466.52, + "end": 9467.16, + "probability": 0.6356 + }, + { + "start": 9468.38, + "end": 9470.28, + "probability": 0.9055 + }, + { + "start": 9471.04, + "end": 9471.58, + "probability": 0.9535 + }, + { + "start": 9473.9, + "end": 9474.06, + "probability": 0.2057 + }, + { + "start": 9474.06, + "end": 9476.92, + "probability": 0.8059 + }, + { + "start": 9485.46, + "end": 9488.12, + "probability": 0.8119 + }, + { + "start": 9489.58, + "end": 9493.1, + "probability": 0.9643 + }, + { + "start": 9494.72, + "end": 9498.64, + "probability": 0.966 + }, + { + "start": 9499.74, + "end": 9503.86, + "probability": 0.978 + }, + { + "start": 9506.58, + "end": 9507.35, + "probability": 0.8536 + }, + { + "start": 9509.08, + "end": 9510.52, + "probability": 0.6953 + }, + { + "start": 9511.0, + "end": 9514.88, + "probability": 0.4797 + }, + { + "start": 9515.0, + "end": 9519.18, + "probability": 0.6863 + }, + { + "start": 9521.54, + "end": 9522.54, + "probability": 0.7883 + }, + { + "start": 9522.96, + "end": 9523.44, + "probability": 0.5942 + }, + { + "start": 9524.24, + "end": 9528.06, + "probability": 0.978 + }, + { + "start": 9529.32, + "end": 9531.24, + "probability": 0.8054 + }, + { + "start": 9533.86, + "end": 9540.04, + "probability": 0.7388 + }, + { + "start": 9541.56, + "end": 9544.59, + "probability": 0.9731 + }, + { + "start": 9545.76, + "end": 9546.36, + "probability": 0.1165 + }, + { + "start": 9546.4, + "end": 9548.71, + "probability": 0.6392 + }, + { + "start": 9548.8, + "end": 9549.92, + "probability": 0.4646 + }, + { + "start": 9550.06, + "end": 9554.0, + "probability": 0.6556 + }, + { + "start": 9555.02, + "end": 9556.14, + "probability": 0.5367 + }, + { + "start": 9556.16, + "end": 9556.44, + "probability": 0.2863 + }, + { + "start": 9556.44, + "end": 9557.16, + "probability": 0.2265 + }, + { + "start": 9557.48, + "end": 9557.5, + "probability": 0.2414 + }, + { + "start": 9558.56, + "end": 9559.26, + "probability": 0.0521 + }, + { + "start": 9559.64, + "end": 9562.48, + "probability": 0.5314 + }, + { + "start": 9562.7, + "end": 9562.98, + "probability": 0.0427 + }, + { + "start": 9562.98, + "end": 9562.98, + "probability": 0.3042 + }, + { + "start": 9562.98, + "end": 9564.34, + "probability": 0.3891 + }, + { + "start": 9564.96, + "end": 9566.02, + "probability": 0.523 + }, + { + "start": 9566.72, + "end": 9568.79, + "probability": 0.4695 + }, + { + "start": 9570.0, + "end": 9574.1, + "probability": 0.062 + }, + { + "start": 9574.1, + "end": 9574.1, + "probability": 0.2906 + }, + { + "start": 9574.1, + "end": 9578.64, + "probability": 0.8028 + }, + { + "start": 9579.98, + "end": 9582.44, + "probability": 0.8938 + }, + { + "start": 9583.14, + "end": 9583.96, + "probability": 0.9335 + }, + { + "start": 9584.48, + "end": 9590.42, + "probability": 0.9757 + }, + { + "start": 9591.44, + "end": 9599.0, + "probability": 0.9875 + }, + { + "start": 9599.64, + "end": 9607.74, + "probability": 0.9811 + }, + { + "start": 9607.94, + "end": 9608.72, + "probability": 0.7626 + }, + { + "start": 9608.84, + "end": 9611.94, + "probability": 0.7527 + }, + { + "start": 9612.22, + "end": 9614.1, + "probability": 0.9924 + }, + { + "start": 9615.28, + "end": 9616.48, + "probability": 0.7952 + }, + { + "start": 9617.38, + "end": 9617.66, + "probability": 0.4932 + }, + { + "start": 9618.36, + "end": 9620.54, + "probability": 0.8926 + }, + { + "start": 9621.5, + "end": 9623.02, + "probability": 0.9925 + }, + { + "start": 9625.74, + "end": 9628.72, + "probability": 0.0722 + }, + { + "start": 9628.72, + "end": 9629.7, + "probability": 0.0556 + }, + { + "start": 9629.7, + "end": 9633.64, + "probability": 0.9116 + }, + { + "start": 9634.6, + "end": 9636.31, + "probability": 0.8397 + }, + { + "start": 9637.3, + "end": 9638.66, + "probability": 0.0915 + }, + { + "start": 9639.28, + "end": 9639.94, + "probability": 0.2564 + }, + { + "start": 9640.38, + "end": 9641.0, + "probability": 0.236 + }, + { + "start": 9641.82, + "end": 9642.26, + "probability": 0.5913 + }, + { + "start": 9642.58, + "end": 9644.06, + "probability": 0.8936 + }, + { + "start": 9646.84, + "end": 9647.54, + "probability": 0.9409 + }, + { + "start": 9647.92, + "end": 9648.04, + "probability": 0.4347 + }, + { + "start": 9648.44, + "end": 9649.04, + "probability": 0.7583 + }, + { + "start": 9649.04, + "end": 9652.18, + "probability": 0.9119 + }, + { + "start": 9653.78, + "end": 9654.1, + "probability": 0.1926 + }, + { + "start": 9654.68, + "end": 9655.02, + "probability": 0.1094 + }, + { + "start": 9655.02, + "end": 9655.02, + "probability": 0.304 + }, + { + "start": 9655.02, + "end": 9656.94, + "probability": 0.576 + }, + { + "start": 9658.14, + "end": 9659.98, + "probability": 0.7472 + }, + { + "start": 9660.92, + "end": 9664.62, + "probability": 0.9044 + }, + { + "start": 9665.76, + "end": 9669.06, + "probability": 0.9941 + }, + { + "start": 9669.1, + "end": 9671.74, + "probability": 0.6358 + }, + { + "start": 9672.58, + "end": 9673.98, + "probability": 0.5923 + }, + { + "start": 9674.51, + "end": 9677.06, + "probability": 0.9941 + }, + { + "start": 9677.78, + "end": 9679.66, + "probability": 0.9718 + }, + { + "start": 9680.38, + "end": 9681.4, + "probability": 0.9277 + }, + { + "start": 9681.94, + "end": 9685.97, + "probability": 0.9797 + }, + { + "start": 9686.42, + "end": 9688.12, + "probability": 0.8088 + }, + { + "start": 9688.8, + "end": 9695.17, + "probability": 0.7899 + }, + { + "start": 9695.3, + "end": 9696.1, + "probability": 0.9056 + }, + { + "start": 9697.32, + "end": 9698.4, + "probability": 0.5756 + }, + { + "start": 9698.64, + "end": 9700.33, + "probability": 0.7629 + }, + { + "start": 9700.58, + "end": 9703.38, + "probability": 0.931 + }, + { + "start": 9704.98, + "end": 9706.82, + "probability": 0.7773 + }, + { + "start": 9706.96, + "end": 9709.38, + "probability": 0.7697 + }, + { + "start": 9709.96, + "end": 9713.02, + "probability": 0.6244 + }, + { + "start": 9713.5, + "end": 9716.04, + "probability": 0.6542 + }, + { + "start": 9716.1, + "end": 9717.26, + "probability": 0.1403 + }, + { + "start": 9718.24, + "end": 9719.58, + "probability": 0.0003 + }, + { + "start": 9727.12, + "end": 9728.34, + "probability": 0.2326 + }, + { + "start": 9730.53, + "end": 9733.44, + "probability": 0.714 + }, + { + "start": 9733.62, + "end": 9735.46, + "probability": 0.9893 + }, + { + "start": 9735.58, + "end": 9736.22, + "probability": 0.833 + }, + { + "start": 9736.32, + "end": 9737.08, + "probability": 0.6064 + }, + { + "start": 9737.14, + "end": 9737.58, + "probability": 0.753 + }, + { + "start": 9738.38, + "end": 9739.6, + "probability": 0.7433 + }, + { + "start": 9740.14, + "end": 9742.58, + "probability": 0.9512 + }, + { + "start": 9743.18, + "end": 9745.46, + "probability": 0.7953 + }, + { + "start": 9745.6, + "end": 9746.58, + "probability": 0.6484 + }, + { + "start": 9746.74, + "end": 9747.5, + "probability": 0.5948 + }, + { + "start": 9747.62, + "end": 9748.3, + "probability": 0.5404 + }, + { + "start": 9749.22, + "end": 9750.48, + "probability": 0.4816 + }, + { + "start": 9750.62, + "end": 9753.18, + "probability": 0.7807 + }, + { + "start": 9753.28, + "end": 9754.55, + "probability": 0.839 + }, + { + "start": 9755.52, + "end": 9758.3, + "probability": 0.9941 + }, + { + "start": 9759.74, + "end": 9765.52, + "probability": 0.9763 + }, + { + "start": 9766.16, + "end": 9767.14, + "probability": 0.8441 + }, + { + "start": 9767.7, + "end": 9769.06, + "probability": 0.8325 + }, + { + "start": 9769.22, + "end": 9769.74, + "probability": 0.8193 + }, + { + "start": 9769.86, + "end": 9770.66, + "probability": 0.6383 + }, + { + "start": 9770.74, + "end": 9771.82, + "probability": 0.9595 + }, + { + "start": 9772.46, + "end": 9774.04, + "probability": 0.9918 + }, + { + "start": 9774.8, + "end": 9778.14, + "probability": 0.9756 + }, + { + "start": 9779.68, + "end": 9781.78, + "probability": 0.936 + }, + { + "start": 9782.48, + "end": 9789.08, + "probability": 0.999 + }, + { + "start": 9790.52, + "end": 9794.06, + "probability": 0.9316 + }, + { + "start": 9794.06, + "end": 9798.76, + "probability": 0.9974 + }, + { + "start": 9798.78, + "end": 9800.82, + "probability": 0.8747 + }, + { + "start": 9802.36, + "end": 9807.3, + "probability": 0.9111 + }, + { + "start": 9808.0, + "end": 9808.82, + "probability": 0.8501 + }, + { + "start": 9809.0, + "end": 9812.8, + "probability": 0.9847 + }, + { + "start": 9813.08, + "end": 9813.82, + "probability": 0.9921 + }, + { + "start": 9814.18, + "end": 9816.8, + "probability": 0.9894 + }, + { + "start": 9817.36, + "end": 9818.32, + "probability": 0.6661 + }, + { + "start": 9818.96, + "end": 9820.14, + "probability": 0.9497 + }, + { + "start": 9820.46, + "end": 9825.4, + "probability": 0.9601 + }, + { + "start": 9825.78, + "end": 9829.26, + "probability": 0.9731 + }, + { + "start": 9829.26, + "end": 9833.32, + "probability": 0.9634 + }, + { + "start": 9833.36, + "end": 9833.8, + "probability": 0.7313 + }, + { + "start": 9834.4, + "end": 9835.44, + "probability": 0.6234 + }, + { + "start": 9836.03, + "end": 9839.9, + "probability": 0.803 + }, + { + "start": 9841.32, + "end": 9842.64, + "probability": 0.9673 + }, + { + "start": 9842.96, + "end": 9845.38, + "probability": 0.9302 + }, + { + "start": 9846.26, + "end": 9850.26, + "probability": 0.6786 + }, + { + "start": 9850.4, + "end": 9851.38, + "probability": 0.1778 + }, + { + "start": 9851.58, + "end": 9853.06, + "probability": 0.9285 + }, + { + "start": 9853.18, + "end": 9854.62, + "probability": 0.7016 + }, + { + "start": 9855.32, + "end": 9857.68, + "probability": 0.8521 + }, + { + "start": 9858.91, + "end": 9860.94, + "probability": 0.1344 + }, + { + "start": 9861.8, + "end": 9863.22, + "probability": 0.0178 + }, + { + "start": 9864.26, + "end": 9865.3, + "probability": 0.0362 + }, + { + "start": 9867.38, + "end": 9869.97, + "probability": 0.0057 + }, + { + "start": 9871.34, + "end": 9871.34, + "probability": 0.0242 + }, + { + "start": 9873.93, + "end": 9874.88, + "probability": 0.0964 + }, + { + "start": 9876.62, + "end": 9876.78, + "probability": 0.0981 + }, + { + "start": 9876.78, + "end": 9876.78, + "probability": 0.2099 + }, + { + "start": 9876.78, + "end": 9877.24, + "probability": 0.1079 + }, + { + "start": 9879.04, + "end": 9880.26, + "probability": 0.4561 + }, + { + "start": 9880.3, + "end": 9881.86, + "probability": 0.9429 + }, + { + "start": 9881.9, + "end": 9882.62, + "probability": 0.7898 + }, + { + "start": 9882.78, + "end": 9883.24, + "probability": 0.6492 + }, + { + "start": 9883.32, + "end": 9884.76, + "probability": 0.2643 + }, + { + "start": 9884.88, + "end": 9887.0, + "probability": 0.4216 + }, + { + "start": 9887.1, + "end": 9887.12, + "probability": 0.0005 + } + ], + "segments_count": 3115, + "words_count": 15492, + "avg_words_per_segment": 4.9734, + "avg_segment_duration": 2.1236, + "avg_words_per_minute": 84.0231, + "plenum_id": "130645", + "duration": 11062.67, + "title": null, + "plenum_date": "2024-10-29" +} \ No newline at end of file