diff --git "a/13683/metadata.json" "b/13683/metadata.json" new file mode 100644--- /dev/null +++ "b/13683/metadata.json" @@ -0,0 +1,14417 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "13683", + "quality_score": 0.8828, + "per_segment_quality_scores": [ + { + "start": 117.24, + "end": 117.88, + "probability": 0.0411 + }, + { + "start": 117.88, + "end": 118.58, + "probability": 0.1207 + }, + { + "start": 119.89, + "end": 120.2, + "probability": 0.1157 + }, + { + "start": 120.74, + "end": 122.3, + "probability": 0.0748 + }, + { + "start": 122.86, + "end": 126.36, + "probability": 0.018 + }, + { + "start": 129.86, + "end": 130.96, + "probability": 0.168 + }, + { + "start": 130.96, + "end": 131.26, + "probability": 0.072 + }, + { + "start": 131.72, + "end": 132.98, + "probability": 0.0941 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 147.46, + "end": 148.02, + "probability": 0.0956 + }, + { + "start": 148.02, + "end": 148.44, + "probability": 0.0342 + }, + { + "start": 149.26, + "end": 149.38, + "probability": 0.1667 + }, + { + "start": 150.92, + "end": 152.44, + "probability": 0.0532 + }, + { + "start": 152.44, + "end": 152.69, + "probability": 0.1809 + }, + { + "start": 162.86, + "end": 164.45, + "probability": 0.0829 + }, + { + "start": 166.98, + "end": 167.02, + "probability": 0.1358 + }, + { + "start": 168.02, + "end": 169.16, + "probability": 0.1515 + }, + { + "start": 169.16, + "end": 169.56, + "probability": 0.0897 + }, + { + "start": 170.7, + "end": 171.7, + "probability": 0.087 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.34, + "end": 256.8, + "probability": 0.1498 + }, + { + "start": 256.8, + "end": 258.22, + "probability": 0.6612 + }, + { + "start": 259.17, + "end": 260.78, + "probability": 0.4947 + }, + { + "start": 261.28, + "end": 263.0, + "probability": 0.8827 + }, + { + "start": 263.04, + "end": 264.64, + "probability": 0.9155 + }, + { + "start": 265.6, + "end": 267.16, + "probability": 0.8777 + }, + { + "start": 267.66, + "end": 269.94, + "probability": 0.5928 + }, + { + "start": 273.94, + "end": 274.36, + "probability": 0.5049 + }, + { + "start": 274.5, + "end": 277.42, + "probability": 0.6928 + }, + { + "start": 278.06, + "end": 279.26, + "probability": 0.9604 + }, + { + "start": 279.34, + "end": 280.08, + "probability": 0.9531 + }, + { + "start": 280.18, + "end": 283.66, + "probability": 0.9961 + }, + { + "start": 284.8, + "end": 288.46, + "probability": 0.9876 + }, + { + "start": 289.02, + "end": 289.36, + "probability": 0.4858 + }, + { + "start": 289.54, + "end": 290.24, + "probability": 0.927 + }, + { + "start": 290.38, + "end": 293.24, + "probability": 0.7418 + }, + { + "start": 293.64, + "end": 294.36, + "probability": 0.8092 + }, + { + "start": 294.96, + "end": 298.02, + "probability": 0.9895 + }, + { + "start": 298.02, + "end": 301.16, + "probability": 0.9732 + }, + { + "start": 301.72, + "end": 303.12, + "probability": 0.6674 + }, + { + "start": 303.34, + "end": 304.04, + "probability": 0.781 + }, + { + "start": 304.48, + "end": 307.24, + "probability": 0.9956 + }, + { + "start": 307.86, + "end": 309.3, + "probability": 0.9454 + }, + { + "start": 310.26, + "end": 312.44, + "probability": 0.8368 + }, + { + "start": 313.5, + "end": 314.99, + "probability": 0.6203 + }, + { + "start": 315.64, + "end": 316.3, + "probability": 0.9807 + }, + { + "start": 316.92, + "end": 320.7, + "probability": 0.8144 + }, + { + "start": 321.32, + "end": 323.74, + "probability": 0.8189 + }, + { + "start": 324.38, + "end": 325.52, + "probability": 0.6895 + }, + { + "start": 326.24, + "end": 329.74, + "probability": 0.9106 + }, + { + "start": 330.26, + "end": 331.7, + "probability": 0.8911 + }, + { + "start": 332.28, + "end": 333.14, + "probability": 0.6533 + }, + { + "start": 333.7, + "end": 334.82, + "probability": 0.9668 + }, + { + "start": 334.9, + "end": 337.5, + "probability": 0.8868 + }, + { + "start": 337.84, + "end": 340.64, + "probability": 0.875 + }, + { + "start": 341.38, + "end": 341.8, + "probability": 0.8721 + }, + { + "start": 342.62, + "end": 345.46, + "probability": 0.9055 + }, + { + "start": 346.0, + "end": 349.6, + "probability": 0.7989 + }, + { + "start": 349.6, + "end": 353.32, + "probability": 0.9894 + }, + { + "start": 353.5, + "end": 355.12, + "probability": 0.9912 + }, + { + "start": 356.04, + "end": 358.4, + "probability": 0.9462 + }, + { + "start": 358.62, + "end": 360.62, + "probability": 0.9796 + }, + { + "start": 361.1, + "end": 362.92, + "probability": 0.9083 + }, + { + "start": 363.12, + "end": 369.3, + "probability": 0.9959 + }, + { + "start": 369.68, + "end": 371.36, + "probability": 0.9951 + }, + { + "start": 371.7, + "end": 376.74, + "probability": 0.9838 + }, + { + "start": 377.28, + "end": 379.3, + "probability": 0.9946 + }, + { + "start": 379.66, + "end": 381.24, + "probability": 0.7496 + }, + { + "start": 381.6, + "end": 382.48, + "probability": 0.9391 + }, + { + "start": 382.62, + "end": 383.32, + "probability": 0.9186 + }, + { + "start": 383.46, + "end": 384.66, + "probability": 0.9615 + }, + { + "start": 385.42, + "end": 388.98, + "probability": 0.9355 + }, + { + "start": 390.04, + "end": 395.4, + "probability": 0.6101 + }, + { + "start": 395.98, + "end": 398.38, + "probability": 0.9526 + }, + { + "start": 398.38, + "end": 400.62, + "probability": 0.8047 + }, + { + "start": 401.72, + "end": 403.84, + "probability": 0.3594 + }, + { + "start": 404.12, + "end": 406.38, + "probability": 0.833 + }, + { + "start": 412.82, + "end": 413.76, + "probability": 0.4712 + }, + { + "start": 415.36, + "end": 417.02, + "probability": 0.7824 + }, + { + "start": 417.02, + "end": 421.64, + "probability": 0.8688 + }, + { + "start": 422.64, + "end": 425.66, + "probability": 0.9781 + }, + { + "start": 426.9, + "end": 429.24, + "probability": 0.9785 + }, + { + "start": 429.7, + "end": 431.56, + "probability": 0.9417 + }, + { + "start": 432.12, + "end": 435.9, + "probability": 0.9883 + }, + { + "start": 436.64, + "end": 437.68, + "probability": 0.7828 + }, + { + "start": 438.38, + "end": 441.56, + "probability": 0.8099 + }, + { + "start": 442.82, + "end": 448.24, + "probability": 0.9724 + }, + { + "start": 449.92, + "end": 450.56, + "probability": 0.8375 + }, + { + "start": 450.88, + "end": 454.14, + "probability": 0.393 + }, + { + "start": 459.46, + "end": 460.24, + "probability": 0.5887 + }, + { + "start": 460.54, + "end": 461.46, + "probability": 0.6649 + }, + { + "start": 461.68, + "end": 462.44, + "probability": 0.9677 + }, + { + "start": 462.5, + "end": 463.06, + "probability": 0.8478 + }, + { + "start": 463.14, + "end": 467.3, + "probability": 0.969 + }, + { + "start": 468.04, + "end": 472.06, + "probability": 0.8906 + }, + { + "start": 472.5, + "end": 473.58, + "probability": 0.885 + }, + { + "start": 474.48, + "end": 479.42, + "probability": 0.995 + }, + { + "start": 480.54, + "end": 481.08, + "probability": 0.7173 + }, + { + "start": 481.18, + "end": 482.14, + "probability": 0.725 + }, + { + "start": 482.26, + "end": 484.71, + "probability": 0.8557 + }, + { + "start": 485.1, + "end": 486.82, + "probability": 0.9307 + }, + { + "start": 487.38, + "end": 490.18, + "probability": 0.908 + }, + { + "start": 491.06, + "end": 495.28, + "probability": 0.974 + }, + { + "start": 495.38, + "end": 495.98, + "probability": 0.2923 + }, + { + "start": 496.94, + "end": 500.18, + "probability": 0.8984 + }, + { + "start": 500.94, + "end": 506.98, + "probability": 0.6711 + }, + { + "start": 507.34, + "end": 509.14, + "probability": 0.7918 + }, + { + "start": 510.26, + "end": 515.94, + "probability": 0.6656 + }, + { + "start": 516.32, + "end": 517.88, + "probability": 0.5908 + }, + { + "start": 518.4, + "end": 523.12, + "probability": 0.9816 + }, + { + "start": 523.5, + "end": 529.0, + "probability": 0.974 + }, + { + "start": 529.54, + "end": 535.62, + "probability": 0.9895 + }, + { + "start": 535.94, + "end": 537.32, + "probability": 0.6413 + }, + { + "start": 537.96, + "end": 542.04, + "probability": 0.937 + }, + { + "start": 542.44, + "end": 543.5, + "probability": 0.8904 + }, + { + "start": 543.58, + "end": 544.62, + "probability": 0.6553 + }, + { + "start": 544.62, + "end": 547.7, + "probability": 0.9614 + }, + { + "start": 548.9, + "end": 551.38, + "probability": 0.719 + }, + { + "start": 552.02, + "end": 554.94, + "probability": 0.858 + }, + { + "start": 555.4, + "end": 556.84, + "probability": 0.7671 + }, + { + "start": 556.98, + "end": 558.26, + "probability": 0.404 + }, + { + "start": 558.46, + "end": 562.16, + "probability": 0.9906 + }, + { + "start": 562.22, + "end": 562.44, + "probability": 0.8099 + }, + { + "start": 562.5, + "end": 563.04, + "probability": 0.4783 + }, + { + "start": 563.54, + "end": 565.36, + "probability": 0.8148 + }, + { + "start": 565.98, + "end": 568.68, + "probability": 0.6031 + }, + { + "start": 569.8, + "end": 570.92, + "probability": 0.548 + }, + { + "start": 572.42, + "end": 576.72, + "probability": 0.8716 + }, + { + "start": 577.32, + "end": 578.48, + "probability": 0.6863 + }, + { + "start": 579.08, + "end": 580.24, + "probability": 0.8989 + }, + { + "start": 580.66, + "end": 583.06, + "probability": 0.7284 + }, + { + "start": 584.06, + "end": 586.32, + "probability": 0.6536 + }, + { + "start": 586.88, + "end": 589.42, + "probability": 0.975 + }, + { + "start": 591.24, + "end": 593.36, + "probability": 0.9747 + }, + { + "start": 593.92, + "end": 596.56, + "probability": 0.9316 + }, + { + "start": 597.32, + "end": 601.32, + "probability": 0.9956 + }, + { + "start": 605.82, + "end": 606.36, + "probability": 0.3355 + }, + { + "start": 607.16, + "end": 609.06, + "probability": 0.5057 + }, + { + "start": 609.08, + "end": 609.4, + "probability": 0.7718 + }, + { + "start": 609.98, + "end": 613.84, + "probability": 0.9558 + }, + { + "start": 615.46, + "end": 620.52, + "probability": 0.9798 + }, + { + "start": 620.6, + "end": 624.64, + "probability": 0.9865 + }, + { + "start": 625.16, + "end": 627.28, + "probability": 0.9374 + }, + { + "start": 627.58, + "end": 628.74, + "probability": 0.89 + }, + { + "start": 629.66, + "end": 632.06, + "probability": 0.9951 + }, + { + "start": 632.2, + "end": 634.44, + "probability": 0.9614 + }, + { + "start": 635.04, + "end": 636.98, + "probability": 0.9904 + }, + { + "start": 637.7, + "end": 639.28, + "probability": 0.9932 + }, + { + "start": 639.82, + "end": 643.68, + "probability": 0.9657 + }, + { + "start": 643.84, + "end": 644.16, + "probability": 0.5851 + }, + { + "start": 644.28, + "end": 644.7, + "probability": 0.8223 + }, + { + "start": 645.08, + "end": 645.74, + "probability": 0.656 + }, + { + "start": 645.98, + "end": 646.08, + "probability": 0.6283 + }, + { + "start": 646.88, + "end": 650.62, + "probability": 0.9632 + }, + { + "start": 651.24, + "end": 652.42, + "probability": 0.9922 + }, + { + "start": 653.04, + "end": 653.62, + "probability": 0.596 + }, + { + "start": 653.86, + "end": 655.3, + "probability": 0.9534 + }, + { + "start": 655.4, + "end": 656.84, + "probability": 0.6137 + }, + { + "start": 657.24, + "end": 658.16, + "probability": 0.6098 + }, + { + "start": 658.68, + "end": 660.54, + "probability": 0.7987 + }, + { + "start": 661.0, + "end": 662.34, + "probability": 0.9639 + }, + { + "start": 663.36, + "end": 665.12, + "probability": 0.6861 + }, + { + "start": 665.4, + "end": 666.04, + "probability": 0.9263 + }, + { + "start": 666.7, + "end": 667.22, + "probability": 0.7462 + }, + { + "start": 668.98, + "end": 670.46, + "probability": 0.1286 + }, + { + "start": 670.46, + "end": 670.46, + "probability": 0.1532 + }, + { + "start": 670.46, + "end": 676.54, + "probability": 0.9718 + }, + { + "start": 677.42, + "end": 679.62, + "probability": 0.912 + }, + { + "start": 679.74, + "end": 680.6, + "probability": 0.8308 + }, + { + "start": 681.1, + "end": 682.06, + "probability": 0.8508 + }, + { + "start": 682.26, + "end": 684.86, + "probability": 0.9649 + }, + { + "start": 685.66, + "end": 687.45, + "probability": 0.9118 + }, + { + "start": 688.1, + "end": 689.64, + "probability": 0.8418 + }, + { + "start": 690.14, + "end": 691.08, + "probability": 0.7415 + }, + { + "start": 691.18, + "end": 694.55, + "probability": 0.9614 + }, + { + "start": 695.12, + "end": 699.32, + "probability": 0.9886 + }, + { + "start": 699.34, + "end": 704.0, + "probability": 0.5759 + }, + { + "start": 704.38, + "end": 707.44, + "probability": 0.9468 + }, + { + "start": 708.28, + "end": 710.06, + "probability": 0.8446 + }, + { + "start": 710.42, + "end": 713.08, + "probability": 0.9613 + }, + { + "start": 713.5, + "end": 714.9, + "probability": 0.8962 + }, + { + "start": 715.12, + "end": 720.98, + "probability": 0.9857 + }, + { + "start": 721.52, + "end": 722.78, + "probability": 0.824 + }, + { + "start": 723.34, + "end": 727.34, + "probability": 0.6701 + }, + { + "start": 727.44, + "end": 731.12, + "probability": 0.9008 + }, + { + "start": 731.74, + "end": 734.9, + "probability": 0.998 + }, + { + "start": 735.02, + "end": 736.15, + "probability": 0.9971 + }, + { + "start": 736.6, + "end": 737.12, + "probability": 0.8465 + }, + { + "start": 737.22, + "end": 738.56, + "probability": 0.623 + }, + { + "start": 739.28, + "end": 742.54, + "probability": 0.9946 + }, + { + "start": 742.66, + "end": 745.64, + "probability": 0.9827 + }, + { + "start": 746.0, + "end": 746.36, + "probability": 0.3158 + }, + { + "start": 747.94, + "end": 751.34, + "probability": 0.9935 + }, + { + "start": 751.44, + "end": 752.42, + "probability": 0.1444 + }, + { + "start": 753.44, + "end": 754.78, + "probability": 0.8696 + }, + { + "start": 755.04, + "end": 756.78, + "probability": 0.9436 + }, + { + "start": 757.9, + "end": 760.7, + "probability": 0.777 + }, + { + "start": 760.92, + "end": 762.44, + "probability": 0.8968 + }, + { + "start": 763.34, + "end": 763.7, + "probability": 0.011 + }, + { + "start": 763.76, + "end": 764.68, + "probability": 0.2414 + }, + { + "start": 768.08, + "end": 768.16, + "probability": 0.0385 + }, + { + "start": 768.16, + "end": 768.16, + "probability": 0.1591 + }, + { + "start": 768.16, + "end": 768.16, + "probability": 0.1005 + }, + { + "start": 768.16, + "end": 769.28, + "probability": 0.1174 + }, + { + "start": 769.4, + "end": 770.72, + "probability": 0.559 + }, + { + "start": 772.14, + "end": 772.28, + "probability": 0.2464 + }, + { + "start": 772.28, + "end": 773.7, + "probability": 0.6479 + }, + { + "start": 776.38, + "end": 777.44, + "probability": 0.8494 + }, + { + "start": 779.66, + "end": 785.96, + "probability": 0.9644 + }, + { + "start": 787.18, + "end": 791.54, + "probability": 0.9849 + }, + { + "start": 792.98, + "end": 794.72, + "probability": 0.887 + }, + { + "start": 796.48, + "end": 797.86, + "probability": 0.8315 + }, + { + "start": 797.98, + "end": 799.64, + "probability": 0.9408 + }, + { + "start": 799.88, + "end": 801.16, + "probability": 0.6664 + }, + { + "start": 801.68, + "end": 802.92, + "probability": 0.9368 + }, + { + "start": 806.26, + "end": 808.86, + "probability": 0.5484 + }, + { + "start": 810.14, + "end": 817.24, + "probability": 0.6809 + }, + { + "start": 818.98, + "end": 820.66, + "probability": 0.6654 + }, + { + "start": 823.23, + "end": 825.89, + "probability": 0.8864 + }, + { + "start": 826.84, + "end": 829.16, + "probability": 0.9141 + }, + { + "start": 829.54, + "end": 829.96, + "probability": 0.8766 + }, + { + "start": 830.1, + "end": 830.3, + "probability": 0.5277 + }, + { + "start": 831.4, + "end": 832.32, + "probability": 0.9326 + }, + { + "start": 832.46, + "end": 833.6, + "probability": 0.8141 + }, + { + "start": 834.12, + "end": 837.72, + "probability": 0.8929 + }, + { + "start": 838.0, + "end": 839.73, + "probability": 0.7397 + }, + { + "start": 841.34, + "end": 842.5, + "probability": 0.9543 + }, + { + "start": 843.7, + "end": 845.82, + "probability": 0.9822 + }, + { + "start": 845.98, + "end": 851.58, + "probability": 0.9832 + }, + { + "start": 852.5, + "end": 856.72, + "probability": 0.7946 + }, + { + "start": 857.24, + "end": 859.04, + "probability": 0.7146 + }, + { + "start": 860.84, + "end": 865.9, + "probability": 0.6102 + }, + { + "start": 866.48, + "end": 871.04, + "probability": 0.9763 + }, + { + "start": 871.04, + "end": 874.68, + "probability": 0.9836 + }, + { + "start": 875.16, + "end": 876.38, + "probability": 0.6328 + }, + { + "start": 876.42, + "end": 877.16, + "probability": 0.7181 + }, + { + "start": 877.24, + "end": 877.52, + "probability": 0.6447 + }, + { + "start": 877.54, + "end": 879.74, + "probability": 0.6035 + }, + { + "start": 879.74, + "end": 881.86, + "probability": 0.901 + }, + { + "start": 882.64, + "end": 886.8, + "probability": 0.9628 + }, + { + "start": 887.32, + "end": 889.08, + "probability": 0.6946 + }, + { + "start": 889.72, + "end": 892.04, + "probability": 0.897 + }, + { + "start": 897.94, + "end": 898.98, + "probability": 0.3713 + }, + { + "start": 901.28, + "end": 903.3, + "probability": 0.7151 + }, + { + "start": 904.04, + "end": 906.51, + "probability": 0.9922 + }, + { + "start": 907.3, + "end": 908.98, + "probability": 0.9667 + }, + { + "start": 909.58, + "end": 911.9, + "probability": 0.9685 + }, + { + "start": 912.46, + "end": 915.08, + "probability": 0.8682 + }, + { + "start": 915.72, + "end": 917.58, + "probability": 0.7501 + }, + { + "start": 918.12, + "end": 920.6, + "probability": 0.6799 + }, + { + "start": 921.22, + "end": 922.98, + "probability": 0.8 + }, + { + "start": 923.92, + "end": 926.42, + "probability": 0.8642 + }, + { + "start": 926.86, + "end": 930.36, + "probability": 0.9496 + }, + { + "start": 930.84, + "end": 933.82, + "probability": 0.9417 + }, + { + "start": 934.3, + "end": 935.14, + "probability": 0.7228 + }, + { + "start": 935.44, + "end": 936.02, + "probability": 0.9573 + }, + { + "start": 936.46, + "end": 940.02, + "probability": 0.9106 + }, + { + "start": 940.02, + "end": 943.44, + "probability": 0.8242 + }, + { + "start": 943.86, + "end": 944.26, + "probability": 0.8745 + }, + { + "start": 944.34, + "end": 946.94, + "probability": 0.816 + }, + { + "start": 947.54, + "end": 949.08, + "probability": 0.7299 + }, + { + "start": 949.48, + "end": 952.3, + "probability": 0.8913 + }, + { + "start": 953.06, + "end": 955.32, + "probability": 0.7871 + }, + { + "start": 955.86, + "end": 958.68, + "probability": 0.9376 + }, + { + "start": 959.02, + "end": 961.24, + "probability": 0.9855 + }, + { + "start": 961.4, + "end": 963.86, + "probability": 0.8491 + }, + { + "start": 964.2, + "end": 965.44, + "probability": 0.9866 + }, + { + "start": 965.92, + "end": 969.06, + "probability": 0.8907 + }, + { + "start": 969.06, + "end": 971.5, + "probability": 0.9913 + }, + { + "start": 971.68, + "end": 971.9, + "probability": 0.6844 + }, + { + "start": 972.22, + "end": 972.66, + "probability": 0.5858 + }, + { + "start": 972.88, + "end": 974.88, + "probability": 0.9307 + }, + { + "start": 975.52, + "end": 978.18, + "probability": 0.6887 + }, + { + "start": 978.82, + "end": 979.38, + "probability": 0.8074 + }, + { + "start": 980.42, + "end": 981.22, + "probability": 0.6604 + }, + { + "start": 981.4, + "end": 982.4, + "probability": 0.753 + }, + { + "start": 982.46, + "end": 983.04, + "probability": 0.7188 + }, + { + "start": 983.44, + "end": 987.04, + "probability": 0.9583 + }, + { + "start": 987.5, + "end": 988.52, + "probability": 0.8744 + }, + { + "start": 989.14, + "end": 991.26, + "probability": 0.9737 + }, + { + "start": 991.26, + "end": 994.04, + "probability": 0.9817 + }, + { + "start": 994.36, + "end": 996.03, + "probability": 0.8879 + }, + { + "start": 996.58, + "end": 997.94, + "probability": 0.5962 + }, + { + "start": 998.08, + "end": 1002.68, + "probability": 0.861 + }, + { + "start": 1002.92, + "end": 1003.84, + "probability": 0.9778 + }, + { + "start": 1004.4, + "end": 1006.04, + "probability": 0.2515 + }, + { + "start": 1006.04, + "end": 1006.04, + "probability": 0.3783 + }, + { + "start": 1006.04, + "end": 1007.26, + "probability": 0.6346 + }, + { + "start": 1007.32, + "end": 1008.36, + "probability": 0.5407 + }, + { + "start": 1008.48, + "end": 1008.48, + "probability": 0.2208 + }, + { + "start": 1008.52, + "end": 1008.62, + "probability": 0.1888 + }, + { + "start": 1008.62, + "end": 1011.66, + "probability": 0.943 + }, + { + "start": 1012.16, + "end": 1012.6, + "probability": 0.9357 + }, + { + "start": 1013.3, + "end": 1015.75, + "probability": 0.9875 + }, + { + "start": 1016.98, + "end": 1018.78, + "probability": 0.2387 + }, + { + "start": 1019.3, + "end": 1021.92, + "probability": 0.0998 + }, + { + "start": 1021.92, + "end": 1021.92, + "probability": 0.0063 + }, + { + "start": 1021.92, + "end": 1022.46, + "probability": 0.4128 + }, + { + "start": 1022.5, + "end": 1023.86, + "probability": 0.8178 + }, + { + "start": 1025.64, + "end": 1028.56, + "probability": 0.8167 + }, + { + "start": 1028.6, + "end": 1029.82, + "probability": 0.5808 + }, + { + "start": 1029.9, + "end": 1030.24, + "probability": 0.5222 + }, + { + "start": 1030.34, + "end": 1033.78, + "probability": 0.9821 + }, + { + "start": 1034.42, + "end": 1036.56, + "probability": 0.9577 + }, + { + "start": 1037.18, + "end": 1039.28, + "probability": 0.522 + }, + { + "start": 1039.46, + "end": 1040.16, + "probability": 0.7337 + }, + { + "start": 1040.82, + "end": 1043.64, + "probability": 0.6794 + }, + { + "start": 1043.78, + "end": 1045.24, + "probability": 0.9705 + }, + { + "start": 1045.36, + "end": 1047.4, + "probability": 0.7104 + }, + { + "start": 1047.84, + "end": 1050.08, + "probability": 0.8184 + }, + { + "start": 1051.04, + "end": 1054.04, + "probability": 0.8295 + }, + { + "start": 1054.68, + "end": 1055.26, + "probability": 0.8116 + }, + { + "start": 1056.0, + "end": 1057.58, + "probability": 0.8983 + }, + { + "start": 1058.1, + "end": 1061.52, + "probability": 0.9932 + }, + { + "start": 1062.32, + "end": 1065.82, + "probability": 0.9866 + }, + { + "start": 1065.82, + "end": 1068.36, + "probability": 0.9064 + }, + { + "start": 1068.88, + "end": 1069.52, + "probability": 0.8225 + }, + { + "start": 1069.74, + "end": 1072.86, + "probability": 0.7664 + }, + { + "start": 1073.24, + "end": 1078.62, + "probability": 0.898 + }, + { + "start": 1078.86, + "end": 1079.8, + "probability": 0.6918 + }, + { + "start": 1080.1, + "end": 1085.02, + "probability": 0.9589 + }, + { + "start": 1085.46, + "end": 1086.9, + "probability": 0.8845 + }, + { + "start": 1087.26, + "end": 1093.12, + "probability": 0.8262 + }, + { + "start": 1093.36, + "end": 1093.66, + "probability": 0.7682 + }, + { + "start": 1093.88, + "end": 1095.52, + "probability": 0.5717 + }, + { + "start": 1095.86, + "end": 1097.46, + "probability": 0.8234 + }, + { + "start": 1098.42, + "end": 1099.01, + "probability": 0.0953 + }, + { + "start": 1099.24, + "end": 1100.68, + "probability": 0.8297 + }, + { + "start": 1101.64, + "end": 1102.48, + "probability": 0.8929 + }, + { + "start": 1104.76, + "end": 1107.7, + "probability": 0.7913 + }, + { + "start": 1108.46, + "end": 1109.5, + "probability": 0.7784 + }, + { + "start": 1110.28, + "end": 1110.5, + "probability": 0.9399 + }, + { + "start": 1112.2, + "end": 1112.34, + "probability": 0.4427 + }, + { + "start": 1112.34, + "end": 1119.22, + "probability": 0.8443 + }, + { + "start": 1121.28, + "end": 1121.92, + "probability": 0.8623 + }, + { + "start": 1122.92, + "end": 1123.62, + "probability": 0.8436 + }, + { + "start": 1123.76, + "end": 1128.82, + "probability": 0.9932 + }, + { + "start": 1130.4, + "end": 1134.6, + "probability": 0.8546 + }, + { + "start": 1134.86, + "end": 1137.72, + "probability": 0.9819 + }, + { + "start": 1138.7, + "end": 1139.4, + "probability": 0.274 + }, + { + "start": 1139.66, + "end": 1143.1, + "probability": 0.8 + }, + { + "start": 1144.6, + "end": 1146.96, + "probability": 0.6046 + }, + { + "start": 1147.86, + "end": 1150.56, + "probability": 0.8856 + }, + { + "start": 1150.94, + "end": 1153.14, + "probability": 0.9956 + }, + { + "start": 1154.12, + "end": 1156.72, + "probability": 0.9468 + }, + { + "start": 1156.82, + "end": 1158.14, + "probability": 0.9966 + }, + { + "start": 1158.92, + "end": 1161.12, + "probability": 0.7952 + }, + { + "start": 1161.7, + "end": 1162.0, + "probability": 0.5977 + }, + { + "start": 1162.12, + "end": 1162.81, + "probability": 0.894 + }, + { + "start": 1163.24, + "end": 1164.0, + "probability": 0.881 + }, + { + "start": 1164.48, + "end": 1165.42, + "probability": 0.4492 + }, + { + "start": 1165.9, + "end": 1168.18, + "probability": 0.7533 + }, + { + "start": 1168.88, + "end": 1173.44, + "probability": 0.8571 + }, + { + "start": 1173.86, + "end": 1178.08, + "probability": 0.9224 + }, + { + "start": 1178.46, + "end": 1179.5, + "probability": 0.599 + }, + { + "start": 1179.64, + "end": 1181.56, + "probability": 0.9512 + }, + { + "start": 1181.66, + "end": 1182.82, + "probability": 0.9547 + }, + { + "start": 1183.24, + "end": 1187.02, + "probability": 0.5707 + }, + { + "start": 1187.34, + "end": 1189.44, + "probability": 0.9705 + }, + { + "start": 1189.72, + "end": 1190.14, + "probability": 0.8401 + }, + { + "start": 1190.4, + "end": 1191.0, + "probability": 0.6015 + }, + { + "start": 1191.2, + "end": 1192.74, + "probability": 0.7375 + }, + { + "start": 1193.68, + "end": 1199.32, + "probability": 0.7377 + }, + { + "start": 1201.3, + "end": 1203.08, + "probability": 0.9663 + }, + { + "start": 1204.16, + "end": 1206.16, + "probability": 0.3352 + }, + { + "start": 1208.42, + "end": 1209.96, + "probability": 0.9454 + }, + { + "start": 1210.94, + "end": 1212.52, + "probability": 0.7993 + }, + { + "start": 1212.52, + "end": 1214.72, + "probability": 0.727 + }, + { + "start": 1215.84, + "end": 1216.22, + "probability": 0.4948 + }, + { + "start": 1216.38, + "end": 1221.58, + "probability": 0.9852 + }, + { + "start": 1222.22, + "end": 1224.58, + "probability": 0.9841 + }, + { + "start": 1225.06, + "end": 1226.86, + "probability": 0.9727 + }, + { + "start": 1228.1, + "end": 1228.96, + "probability": 0.633 + }, + { + "start": 1229.72, + "end": 1234.84, + "probability": 0.8768 + }, + { + "start": 1235.38, + "end": 1237.44, + "probability": 0.8659 + }, + { + "start": 1237.94, + "end": 1238.52, + "probability": 0.8329 + }, + { + "start": 1238.8, + "end": 1240.52, + "probability": 0.9449 + }, + { + "start": 1240.98, + "end": 1243.74, + "probability": 0.8862 + }, + { + "start": 1243.74, + "end": 1247.27, + "probability": 0.8655 + }, + { + "start": 1247.52, + "end": 1248.14, + "probability": 0.8846 + }, + { + "start": 1248.76, + "end": 1249.74, + "probability": 0.6823 + }, + { + "start": 1250.34, + "end": 1252.44, + "probability": 0.8526 + }, + { + "start": 1253.02, + "end": 1254.74, + "probability": 0.9895 + }, + { + "start": 1255.3, + "end": 1255.66, + "probability": 0.6435 + }, + { + "start": 1257.4, + "end": 1258.12, + "probability": 0.9627 + }, + { + "start": 1258.76, + "end": 1260.44, + "probability": 0.9888 + }, + { + "start": 1261.1, + "end": 1262.88, + "probability": 0.6939 + }, + { + "start": 1263.64, + "end": 1265.82, + "probability": 0.8104 + }, + { + "start": 1266.3, + "end": 1269.18, + "probability": 0.9545 + }, + { + "start": 1269.58, + "end": 1270.78, + "probability": 0.7247 + }, + { + "start": 1271.24, + "end": 1274.42, + "probability": 0.9924 + }, + { + "start": 1274.42, + "end": 1278.14, + "probability": 0.9663 + }, + { + "start": 1278.84, + "end": 1281.32, + "probability": 0.6617 + }, + { + "start": 1282.26, + "end": 1285.9, + "probability": 0.7466 + }, + { + "start": 1286.46, + "end": 1287.3, + "probability": 0.8439 + }, + { + "start": 1287.72, + "end": 1291.04, + "probability": 0.9729 + }, + { + "start": 1291.34, + "end": 1292.04, + "probability": 0.6789 + }, + { + "start": 1292.48, + "end": 1293.76, + "probability": 0.9705 + }, + { + "start": 1294.1, + "end": 1296.36, + "probability": 0.7831 + }, + { + "start": 1296.62, + "end": 1297.22, + "probability": 0.3751 + }, + { + "start": 1297.32, + "end": 1298.7, + "probability": 0.988 + }, + { + "start": 1299.02, + "end": 1299.72, + "probability": 0.4666 + }, + { + "start": 1299.74, + "end": 1300.8, + "probability": 0.7113 + }, + { + "start": 1301.8, + "end": 1303.68, + "probability": 0.9946 + }, + { + "start": 1304.02, + "end": 1307.1, + "probability": 0.9963 + }, + { + "start": 1308.2, + "end": 1309.42, + "probability": 0.4778 + }, + { + "start": 1309.42, + "end": 1310.34, + "probability": 0.4725 + }, + { + "start": 1310.5, + "end": 1311.0, + "probability": 0.6219 + }, + { + "start": 1311.18, + "end": 1312.0, + "probability": 0.7796 + }, + { + "start": 1312.12, + "end": 1312.6, + "probability": 0.5536 + }, + { + "start": 1312.6, + "end": 1314.64, + "probability": 0.9568 + }, + { + "start": 1314.78, + "end": 1315.28, + "probability": 0.7097 + }, + { + "start": 1315.66, + "end": 1317.42, + "probability": 0.947 + }, + { + "start": 1318.04, + "end": 1318.92, + "probability": 0.8426 + }, + { + "start": 1319.5, + "end": 1324.66, + "probability": 0.9634 + }, + { + "start": 1325.92, + "end": 1327.64, + "probability": 0.7877 + }, + { + "start": 1327.78, + "end": 1328.6, + "probability": 0.489 + }, + { + "start": 1329.18, + "end": 1329.81, + "probability": 0.9727 + }, + { + "start": 1330.36, + "end": 1333.08, + "probability": 0.937 + }, + { + "start": 1333.08, + "end": 1335.2, + "probability": 0.7329 + }, + { + "start": 1335.5, + "end": 1338.74, + "probability": 0.8061 + }, + { + "start": 1339.26, + "end": 1339.26, + "probability": 0.0767 + }, + { + "start": 1339.26, + "end": 1340.9, + "probability": 0.5199 + }, + { + "start": 1341.34, + "end": 1343.32, + "probability": 0.7715 + }, + { + "start": 1343.84, + "end": 1345.94, + "probability": 0.9338 + }, + { + "start": 1346.24, + "end": 1346.38, + "probability": 0.7089 + }, + { + "start": 1346.44, + "end": 1350.18, + "probability": 0.9054 + }, + { + "start": 1350.32, + "end": 1351.3, + "probability": 0.7663 + }, + { + "start": 1351.5, + "end": 1352.8, + "probability": 0.7334 + }, + { + "start": 1353.3, + "end": 1357.02, + "probability": 0.946 + }, + { + "start": 1357.02, + "end": 1363.22, + "probability": 0.8788 + }, + { + "start": 1363.74, + "end": 1364.54, + "probability": 0.9094 + }, + { + "start": 1364.98, + "end": 1367.98, + "probability": 0.7645 + }, + { + "start": 1368.2, + "end": 1372.46, + "probability": 0.8752 + }, + { + "start": 1372.84, + "end": 1376.16, + "probability": 0.7181 + }, + { + "start": 1376.22, + "end": 1378.12, + "probability": 0.5893 + }, + { + "start": 1378.48, + "end": 1382.77, + "probability": 0.9859 + }, + { + "start": 1383.16, + "end": 1390.42, + "probability": 0.9814 + }, + { + "start": 1390.82, + "end": 1395.1, + "probability": 0.9951 + }, + { + "start": 1395.38, + "end": 1398.62, + "probability": 0.9869 + }, + { + "start": 1398.8, + "end": 1399.66, + "probability": 0.754 + }, + { + "start": 1399.8, + "end": 1400.64, + "probability": 0.4679 + }, + { + "start": 1400.72, + "end": 1402.26, + "probability": 0.7176 + }, + { + "start": 1404.82, + "end": 1404.92, + "probability": 0.2056 + }, + { + "start": 1404.92, + "end": 1404.92, + "probability": 0.2017 + }, + { + "start": 1404.92, + "end": 1405.29, + "probability": 0.1621 + }, + { + "start": 1406.52, + "end": 1408.18, + "probability": 0.4331 + }, + { + "start": 1408.54, + "end": 1410.72, + "probability": 0.7998 + }, + { + "start": 1411.42, + "end": 1412.86, + "probability": 0.9686 + }, + { + "start": 1414.22, + "end": 1417.1, + "probability": 0.6306 + }, + { + "start": 1418.32, + "end": 1419.28, + "probability": 0.9556 + }, + { + "start": 1420.74, + "end": 1425.44, + "probability": 0.9957 + }, + { + "start": 1426.4, + "end": 1430.32, + "probability": 0.9801 + }, + { + "start": 1431.42, + "end": 1433.78, + "probability": 0.998 + }, + { + "start": 1434.26, + "end": 1435.34, + "probability": 0.7703 + }, + { + "start": 1435.5, + "end": 1436.36, + "probability": 0.7548 + }, + { + "start": 1436.54, + "end": 1437.54, + "probability": 0.9658 + }, + { + "start": 1438.82, + "end": 1440.28, + "probability": 0.9706 + }, + { + "start": 1441.36, + "end": 1443.44, + "probability": 0.9876 + }, + { + "start": 1444.66, + "end": 1446.4, + "probability": 0.9792 + }, + { + "start": 1447.56, + "end": 1451.36, + "probability": 0.9915 + }, + { + "start": 1452.38, + "end": 1454.4, + "probability": 0.9795 + }, + { + "start": 1455.46, + "end": 1461.52, + "probability": 0.9955 + }, + { + "start": 1462.52, + "end": 1463.14, + "probability": 0.5838 + }, + { + "start": 1464.12, + "end": 1464.78, + "probability": 0.9665 + }, + { + "start": 1465.96, + "end": 1468.14, + "probability": 0.8466 + }, + { + "start": 1468.84, + "end": 1473.1, + "probability": 0.9791 + }, + { + "start": 1474.12, + "end": 1475.44, + "probability": 0.7842 + }, + { + "start": 1475.88, + "end": 1478.7, + "probability": 0.9882 + }, + { + "start": 1479.28, + "end": 1484.02, + "probability": 0.9863 + }, + { + "start": 1484.64, + "end": 1486.88, + "probability": 0.9892 + }, + { + "start": 1487.58, + "end": 1488.1, + "probability": 0.7073 + }, + { + "start": 1492.14, + "end": 1492.52, + "probability": 0.5295 + }, + { + "start": 1492.56, + "end": 1493.98, + "probability": 0.7732 + }, + { + "start": 1495.78, + "end": 1499.94, + "probability": 0.5234 + }, + { + "start": 1500.92, + "end": 1501.86, + "probability": 0.7971 + }, + { + "start": 1502.04, + "end": 1502.88, + "probability": 0.8225 + }, + { + "start": 1503.24, + "end": 1503.98, + "probability": 0.4846 + }, + { + "start": 1504.1, + "end": 1506.56, + "probability": 0.9678 + }, + { + "start": 1506.78, + "end": 1508.02, + "probability": 0.8818 + }, + { + "start": 1508.6, + "end": 1512.14, + "probability": 0.9939 + }, + { + "start": 1512.76, + "end": 1514.26, + "probability": 0.8913 + }, + { + "start": 1515.86, + "end": 1517.12, + "probability": 0.6314 + }, + { + "start": 1517.28, + "end": 1522.06, + "probability": 0.6767 + }, + { + "start": 1522.16, + "end": 1527.58, + "probability": 0.9612 + }, + { + "start": 1528.32, + "end": 1529.8, + "probability": 0.8814 + }, + { + "start": 1530.76, + "end": 1534.67, + "probability": 0.9756 + }, + { + "start": 1535.26, + "end": 1541.14, + "probability": 0.9281 + }, + { + "start": 1541.72, + "end": 1542.47, + "probability": 0.6685 + }, + { + "start": 1542.98, + "end": 1544.54, + "probability": 0.9902 + }, + { + "start": 1545.08, + "end": 1545.12, + "probability": 0.2624 + }, + { + "start": 1545.12, + "end": 1545.12, + "probability": 0.469 + }, + { + "start": 1545.12, + "end": 1549.46, + "probability": 0.8751 + }, + { + "start": 1549.52, + "end": 1552.08, + "probability": 0.9899 + }, + { + "start": 1552.8, + "end": 1554.54, + "probability": 0.9447 + }, + { + "start": 1554.76, + "end": 1556.64, + "probability": 0.9985 + }, + { + "start": 1557.24, + "end": 1557.92, + "probability": 0.8272 + }, + { + "start": 1558.34, + "end": 1561.62, + "probability": 0.9938 + }, + { + "start": 1563.1, + "end": 1564.1, + "probability": 0.8648 + }, + { + "start": 1564.82, + "end": 1569.46, + "probability": 0.7825 + }, + { + "start": 1570.6, + "end": 1573.6, + "probability": 0.9954 + }, + { + "start": 1573.6, + "end": 1578.36, + "probability": 0.9793 + }, + { + "start": 1578.78, + "end": 1578.98, + "probability": 0.7518 + }, + { + "start": 1579.34, + "end": 1579.74, + "probability": 0.5969 + }, + { + "start": 1579.88, + "end": 1581.82, + "probability": 0.6443 + }, + { + "start": 1588.22, + "end": 1589.26, + "probability": 0.5112 + }, + { + "start": 1589.26, + "end": 1589.5, + "probability": 0.6473 + }, + { + "start": 1589.62, + "end": 1590.72, + "probability": 0.7788 + }, + { + "start": 1591.16, + "end": 1591.36, + "probability": 0.5213 + }, + { + "start": 1591.48, + "end": 1596.56, + "probability": 0.9818 + }, + { + "start": 1597.3, + "end": 1600.58, + "probability": 0.7233 + }, + { + "start": 1600.8, + "end": 1604.9, + "probability": 0.9982 + }, + { + "start": 1605.02, + "end": 1610.64, + "probability": 0.9817 + }, + { + "start": 1611.26, + "end": 1613.24, + "probability": 0.8865 + }, + { + "start": 1613.36, + "end": 1615.44, + "probability": 0.8929 + }, + { + "start": 1615.5, + "end": 1616.84, + "probability": 0.9919 + }, + { + "start": 1617.48, + "end": 1619.83, + "probability": 0.9988 + }, + { + "start": 1621.06, + "end": 1621.64, + "probability": 0.7033 + }, + { + "start": 1621.78, + "end": 1622.42, + "probability": 0.5015 + }, + { + "start": 1622.48, + "end": 1626.62, + "probability": 0.8704 + }, + { + "start": 1627.94, + "end": 1630.88, + "probability": 0.9811 + }, + { + "start": 1630.88, + "end": 1634.16, + "probability": 0.8323 + }, + { + "start": 1634.32, + "end": 1635.18, + "probability": 0.9551 + }, + { + "start": 1636.04, + "end": 1637.28, + "probability": 0.8126 + }, + { + "start": 1637.48, + "end": 1641.32, + "probability": 0.9297 + }, + { + "start": 1641.58, + "end": 1643.88, + "probability": 0.995 + }, + { + "start": 1645.2, + "end": 1646.18, + "probability": 0.4821 + }, + { + "start": 1647.5, + "end": 1648.3, + "probability": 0.8673 + }, + { + "start": 1649.64, + "end": 1650.44, + "probability": 0.8585 + }, + { + "start": 1651.8, + "end": 1652.76, + "probability": 0.7637 + }, + { + "start": 1653.8, + "end": 1654.66, + "probability": 0.9004 + }, + { + "start": 1655.8, + "end": 1656.26, + "probability": 0.8779 + }, + { + "start": 1657.72, + "end": 1658.3, + "probability": 0.9888 + }, + { + "start": 1659.54, + "end": 1660.38, + "probability": 0.7645 + }, + { + "start": 1661.74, + "end": 1661.94, + "probability": 0.4606 + }, + { + "start": 1663.38, + "end": 1664.3, + "probability": 0.7729 + }, + { + "start": 1665.16, + "end": 1665.92, + "probability": 0.7893 + }, + { + "start": 1666.82, + "end": 1667.48, + "probability": 0.7322 + }, + { + "start": 1668.8, + "end": 1670.46, + "probability": 0.9529 + }, + { + "start": 1671.66, + "end": 1672.52, + "probability": 0.9156 + }, + { + "start": 1673.38, + "end": 1674.32, + "probability": 0.7782 + }, + { + "start": 1675.0, + "end": 1675.92, + "probability": 0.7836 + }, + { + "start": 1676.96, + "end": 1677.56, + "probability": 0.7093 + }, + { + "start": 1678.52, + "end": 1679.56, + "probability": 0.882 + }, + { + "start": 1680.42, + "end": 1681.02, + "probability": 0.9002 + }, + { + "start": 1682.18, + "end": 1684.38, + "probability": 0.8882 + }, + { + "start": 1684.62, + "end": 1685.48, + "probability": 0.8694 + }, + { + "start": 1685.58, + "end": 1686.58, + "probability": 0.5817 + }, + { + "start": 1686.98, + "end": 1688.84, + "probability": 0.7049 + }, + { + "start": 1690.12, + "end": 1692.34, + "probability": 0.7049 + }, + { + "start": 1693.16, + "end": 1695.02, + "probability": 0.944 + }, + { + "start": 1697.48, + "end": 1699.86, + "probability": 0.7636 + }, + { + "start": 1700.86, + "end": 1708.58, + "probability": 0.917 + }, + { + "start": 1709.6, + "end": 1711.0, + "probability": 0.9043 + }, + { + "start": 1712.16, + "end": 1712.7, + "probability": 0.8149 + }, + { + "start": 1712.88, + "end": 1713.56, + "probability": 0.7183 + }, + { + "start": 1714.02, + "end": 1720.8, + "probability": 0.8648 + }, + { + "start": 1721.32, + "end": 1725.64, + "probability": 0.9846 + }, + { + "start": 1725.86, + "end": 1728.22, + "probability": 0.9275 + }, + { + "start": 1728.94, + "end": 1731.82, + "probability": 0.6733 + }, + { + "start": 1731.88, + "end": 1733.12, + "probability": 0.6697 + }, + { + "start": 1733.4, + "end": 1734.86, + "probability": 0.9046 + }, + { + "start": 1735.2, + "end": 1743.36, + "probability": 0.9403 + }, + { + "start": 1744.83, + "end": 1748.26, + "probability": 0.9675 + }, + { + "start": 1748.66, + "end": 1754.06, + "probability": 0.9707 + }, + { + "start": 1755.0, + "end": 1755.82, + "probability": 0.9489 + }, + { + "start": 1756.68, + "end": 1758.36, + "probability": 0.9902 + }, + { + "start": 1758.54, + "end": 1759.66, + "probability": 0.9158 + }, + { + "start": 1760.08, + "end": 1765.32, + "probability": 0.9862 + }, + { + "start": 1765.48, + "end": 1767.8, + "probability": 0.9441 + }, + { + "start": 1768.56, + "end": 1768.84, + "probability": 0.8826 + }, + { + "start": 1769.12, + "end": 1772.4, + "probability": 0.9908 + }, + { + "start": 1772.84, + "end": 1775.0, + "probability": 0.8855 + }, + { + "start": 1775.66, + "end": 1776.22, + "probability": 0.5976 + }, + { + "start": 1776.38, + "end": 1776.96, + "probability": 0.5928 + }, + { + "start": 1777.02, + "end": 1779.88, + "probability": 0.9915 + }, + { + "start": 1781.14, + "end": 1784.6, + "probability": 0.9906 + }, + { + "start": 1786.08, + "end": 1786.18, + "probability": 0.0326 + }, + { + "start": 1786.18, + "end": 1787.82, + "probability": 0.539 + }, + { + "start": 1788.12, + "end": 1789.0, + "probability": 0.2889 + }, + { + "start": 1789.16, + "end": 1791.28, + "probability": 0.8384 + }, + { + "start": 1791.6, + "end": 1792.86, + "probability": 0.5885 + }, + { + "start": 1793.04, + "end": 1796.44, + "probability": 0.552 + }, + { + "start": 1796.58, + "end": 1796.88, + "probability": 0.3112 + }, + { + "start": 1796.88, + "end": 1797.48, + "probability": 0.2693 + }, + { + "start": 1797.78, + "end": 1798.98, + "probability": 0.5358 + }, + { + "start": 1799.22, + "end": 1800.64, + "probability": 0.6719 + }, + { + "start": 1800.84, + "end": 1803.56, + "probability": 0.8102 + }, + { + "start": 1803.9, + "end": 1804.9, + "probability": 0.3677 + }, + { + "start": 1804.9, + "end": 1806.58, + "probability": 0.3363 + }, + { + "start": 1806.76, + "end": 1807.62, + "probability": 0.1037 + }, + { + "start": 1807.86, + "end": 1813.34, + "probability": 0.8324 + }, + { + "start": 1814.06, + "end": 1815.32, + "probability": 0.1541 + }, + { + "start": 1815.4, + "end": 1815.9, + "probability": 0.0952 + }, + { + "start": 1816.26, + "end": 1816.54, + "probability": 0.3549 + }, + { + "start": 1816.7, + "end": 1816.72, + "probability": 0.207 + }, + { + "start": 1817.1, + "end": 1818.0, + "probability": 0.3357 + }, + { + "start": 1818.08, + "end": 1818.52, + "probability": 0.6554 + }, + { + "start": 1819.66, + "end": 1821.02, + "probability": 0.0102 + }, + { + "start": 1822.7, + "end": 1824.8, + "probability": 0.4994 + }, + { + "start": 1826.28, + "end": 1830.38, + "probability": 0.8706 + }, + { + "start": 1830.72, + "end": 1833.4, + "probability": 0.9897 + }, + { + "start": 1836.06, + "end": 1838.0, + "probability": 0.5634 + }, + { + "start": 1838.86, + "end": 1841.4, + "probability": 0.5525 + }, + { + "start": 1841.52, + "end": 1842.74, + "probability": 0.587 + }, + { + "start": 1843.04, + "end": 1843.96, + "probability": 0.9651 + }, + { + "start": 1844.12, + "end": 1845.3, + "probability": 0.9281 + }, + { + "start": 1847.04, + "end": 1849.44, + "probability": 0.9635 + }, + { + "start": 1849.54, + "end": 1853.3, + "probability": 0.9077 + }, + { + "start": 1853.5, + "end": 1854.34, + "probability": 0.7308 + }, + { + "start": 1854.42, + "end": 1856.64, + "probability": 0.9582 + }, + { + "start": 1859.04, + "end": 1860.72, + "probability": 0.7623 + }, + { + "start": 1860.72, + "end": 1861.62, + "probability": 0.7325 + }, + { + "start": 1861.88, + "end": 1867.84, + "probability": 0.9354 + }, + { + "start": 1867.84, + "end": 1872.98, + "probability": 0.9971 + }, + { + "start": 1873.1, + "end": 1874.63, + "probability": 0.6348 + }, + { + "start": 1876.2, + "end": 1878.36, + "probability": 0.8354 + }, + { + "start": 1879.26, + "end": 1880.71, + "probability": 0.6539 + }, + { + "start": 1881.04, + "end": 1881.64, + "probability": 0.8623 + }, + { + "start": 1882.4, + "end": 1883.96, + "probability": 0.6625 + }, + { + "start": 1884.48, + "end": 1885.32, + "probability": 0.8092 + }, + { + "start": 1886.02, + "end": 1887.94, + "probability": 0.6982 + }, + { + "start": 1888.42, + "end": 1890.62, + "probability": 0.6536 + }, + { + "start": 1891.28, + "end": 1893.62, + "probability": 0.5465 + }, + { + "start": 1894.46, + "end": 1896.91, + "probability": 0.8348 + }, + { + "start": 1897.34, + "end": 1898.54, + "probability": 0.8271 + }, + { + "start": 1899.14, + "end": 1900.5, + "probability": 0.8287 + }, + { + "start": 1900.56, + "end": 1904.6, + "probability": 0.9792 + }, + { + "start": 1905.18, + "end": 1908.7, + "probability": 0.9081 + }, + { + "start": 1909.28, + "end": 1913.64, + "probability": 0.9631 + }, + { + "start": 1914.06, + "end": 1917.12, + "probability": 0.7565 + }, + { + "start": 1917.5, + "end": 1920.44, + "probability": 0.989 + }, + { + "start": 1920.84, + "end": 1924.16, + "probability": 0.9669 + }, + { + "start": 1924.68, + "end": 1929.88, + "probability": 0.811 + }, + { + "start": 1930.26, + "end": 1933.26, + "probability": 0.8373 + }, + { + "start": 1933.76, + "end": 1935.22, + "probability": 0.8304 + }, + { + "start": 1935.52, + "end": 1939.88, + "probability": 0.8624 + }, + { + "start": 1940.26, + "end": 1943.96, + "probability": 0.6857 + }, + { + "start": 1944.34, + "end": 1946.1, + "probability": 0.6706 + }, + { + "start": 1946.46, + "end": 1946.78, + "probability": 0.4933 + }, + { + "start": 1946.86, + "end": 1947.14, + "probability": 0.5026 + }, + { + "start": 1947.28, + "end": 1950.34, + "probability": 0.9086 + }, + { + "start": 1950.46, + "end": 1952.13, + "probability": 0.9774 + }, + { + "start": 1952.64, + "end": 1953.12, + "probability": 0.7485 + }, + { + "start": 1953.44, + "end": 1953.98, + "probability": 0.4141 + }, + { + "start": 1954.0, + "end": 1955.1, + "probability": 0.9399 + }, + { + "start": 1955.46, + "end": 1958.74, + "probability": 0.9734 + }, + { + "start": 1958.92, + "end": 1961.12, + "probability": 0.6025 + }, + { + "start": 1961.16, + "end": 1962.4, + "probability": 0.762 + }, + { + "start": 1962.54, + "end": 1966.84, + "probability": 0.9805 + }, + { + "start": 1966.9, + "end": 1974.7, + "probability": 0.9339 + }, + { + "start": 1974.7, + "end": 1976.76, + "probability": 0.8532 + }, + { + "start": 1978.02, + "end": 1984.48, + "probability": 0.9802 + }, + { + "start": 1985.04, + "end": 1989.48, + "probability": 0.9847 + }, + { + "start": 1990.02, + "end": 1993.6, + "probability": 0.8119 + }, + { + "start": 1994.84, + "end": 2001.33, + "probability": 0.793 + }, + { + "start": 2001.56, + "end": 2003.3, + "probability": 0.9912 + }, + { + "start": 2004.04, + "end": 2004.36, + "probability": 0.1274 + }, + { + "start": 2005.34, + "end": 2006.56, + "probability": 0.6905 + }, + { + "start": 2007.5, + "end": 2009.52, + "probability": 0.8438 + }, + { + "start": 2009.66, + "end": 2014.04, + "probability": 0.8642 + }, + { + "start": 2014.22, + "end": 2016.86, + "probability": 0.748 + }, + { + "start": 2017.64, + "end": 2018.9, + "probability": 0.859 + }, + { + "start": 2019.48, + "end": 2022.74, + "probability": 0.7163 + }, + { + "start": 2023.26, + "end": 2028.26, + "probability": 0.9541 + }, + { + "start": 2028.96, + "end": 2029.9, + "probability": 0.5886 + }, + { + "start": 2029.98, + "end": 2032.3, + "probability": 0.7818 + }, + { + "start": 2032.42, + "end": 2036.14, + "probability": 0.9097 + }, + { + "start": 2036.68, + "end": 2038.14, + "probability": 0.1008 + }, + { + "start": 2038.34, + "end": 2042.7, + "probability": 0.7999 + }, + { + "start": 2042.92, + "end": 2044.38, + "probability": 0.0505 + }, + { + "start": 2045.06, + "end": 2045.8, + "probability": 0.7908 + }, + { + "start": 2045.8, + "end": 2046.72, + "probability": 0.5641 + }, + { + "start": 2046.84, + "end": 2050.2, + "probability": 0.832 + }, + { + "start": 2050.36, + "end": 2050.64, + "probability": 0.1074 + }, + { + "start": 2050.64, + "end": 2053.93, + "probability": 0.8101 + }, + { + "start": 2054.28, + "end": 2055.0, + "probability": 0.2566 + }, + { + "start": 2055.54, + "end": 2057.2, + "probability": 0.2047 + }, + { + "start": 2057.32, + "end": 2058.94, + "probability": 0.1807 + }, + { + "start": 2060.14, + "end": 2062.02, + "probability": 0.2514 + }, + { + "start": 2062.34, + "end": 2068.14, + "probability": 0.5913 + }, + { + "start": 2068.44, + "end": 2069.7, + "probability": 0.9878 + }, + { + "start": 2070.0, + "end": 2071.44, + "probability": 0.0909 + }, + { + "start": 2071.52, + "end": 2073.59, + "probability": 0.7026 + }, + { + "start": 2074.06, + "end": 2075.62, + "probability": 0.1149 + }, + { + "start": 2075.92, + "end": 2079.68, + "probability": 0.8784 + }, + { + "start": 2080.02, + "end": 2082.42, + "probability": 0.6946 + }, + { + "start": 2083.46, + "end": 2086.1, + "probability": 0.3614 + }, + { + "start": 2086.32, + "end": 2087.2, + "probability": 0.1958 + }, + { + "start": 2087.2, + "end": 2087.2, + "probability": 0.2971 + }, + { + "start": 2087.2, + "end": 2093.06, + "probability": 0.8175 + }, + { + "start": 2093.2, + "end": 2094.34, + "probability": 0.4469 + }, + { + "start": 2094.68, + "end": 2094.96, + "probability": 0.7225 + }, + { + "start": 2095.54, + "end": 2096.2, + "probability": 0.7244 + }, + { + "start": 2097.1, + "end": 2098.58, + "probability": 0.7967 + }, + { + "start": 2099.92, + "end": 2101.36, + "probability": 0.7035 + }, + { + "start": 2102.9, + "end": 2105.62, + "probability": 0.9754 + }, + { + "start": 2106.16, + "end": 2108.6, + "probability": 0.7649 + }, + { + "start": 2109.52, + "end": 2112.4, + "probability": 0.7226 + }, + { + "start": 2113.46, + "end": 2116.18, + "probability": 0.9958 + }, + { + "start": 2116.4, + "end": 2117.8, + "probability": 0.7387 + }, + { + "start": 2118.54, + "end": 2121.2, + "probability": 0.9269 + }, + { + "start": 2121.9, + "end": 2123.12, + "probability": 0.9885 + }, + { + "start": 2124.32, + "end": 2129.38, + "probability": 0.9973 + }, + { + "start": 2130.14, + "end": 2131.68, + "probability": 0.76 + }, + { + "start": 2132.68, + "end": 2134.3, + "probability": 0.9554 + }, + { + "start": 2134.46, + "end": 2134.74, + "probability": 0.8049 + }, + { + "start": 2135.02, + "end": 2136.54, + "probability": 0.7854 + }, + { + "start": 2136.88, + "end": 2138.84, + "probability": 0.9466 + }, + { + "start": 2139.2, + "end": 2140.38, + "probability": 0.8693 + }, + { + "start": 2140.46, + "end": 2141.76, + "probability": 0.9739 + }, + { + "start": 2147.16, + "end": 2148.18, + "probability": 0.6153 + }, + { + "start": 2148.34, + "end": 2149.2, + "probability": 0.7557 + }, + { + "start": 2149.62, + "end": 2149.8, + "probability": 0.4562 + }, + { + "start": 2149.9, + "end": 2152.84, + "probability": 0.8161 + }, + { + "start": 2153.32, + "end": 2154.96, + "probability": 0.8695 + }, + { + "start": 2155.42, + "end": 2158.64, + "probability": 0.9304 + }, + { + "start": 2159.08, + "end": 2159.68, + "probability": 0.8948 + }, + { + "start": 2159.78, + "end": 2161.12, + "probability": 0.9829 + }, + { + "start": 2161.88, + "end": 2166.58, + "probability": 0.9934 + }, + { + "start": 2166.6, + "end": 2167.82, + "probability": 0.9044 + }, + { + "start": 2168.24, + "end": 2169.26, + "probability": 0.7473 + }, + { + "start": 2169.46, + "end": 2171.6, + "probability": 0.9382 + }, + { + "start": 2171.84, + "end": 2174.88, + "probability": 0.9858 + }, + { + "start": 2176.08, + "end": 2176.98, + "probability": 0.2385 + }, + { + "start": 2177.5, + "end": 2182.38, + "probability": 0.9332 + }, + { + "start": 2182.96, + "end": 2183.4, + "probability": 0.5348 + }, + { + "start": 2183.5, + "end": 2187.64, + "probability": 0.9249 + }, + { + "start": 2188.24, + "end": 2190.82, + "probability": 0.999 + }, + { + "start": 2191.06, + "end": 2191.2, + "probability": 0.2954 + }, + { + "start": 2191.28, + "end": 2193.9, + "probability": 0.9482 + }, + { + "start": 2194.28, + "end": 2194.96, + "probability": 0.6123 + }, + { + "start": 2195.06, + "end": 2198.08, + "probability": 0.9684 + }, + { + "start": 2198.32, + "end": 2201.7, + "probability": 0.9342 + }, + { + "start": 2202.3, + "end": 2203.82, + "probability": 0.4935 + }, + { + "start": 2203.94, + "end": 2204.7, + "probability": 0.6345 + }, + { + "start": 2204.8, + "end": 2206.22, + "probability": 0.9237 + }, + { + "start": 2206.26, + "end": 2212.16, + "probability": 0.9523 + }, + { + "start": 2212.62, + "end": 2214.64, + "probability": 0.8306 + }, + { + "start": 2215.18, + "end": 2216.98, + "probability": 0.9446 + }, + { + "start": 2217.06, + "end": 2217.48, + "probability": 0.3823 + }, + { + "start": 2217.56, + "end": 2218.12, + "probability": 0.7979 + }, + { + "start": 2218.28, + "end": 2219.58, + "probability": 0.9899 + }, + { + "start": 2219.72, + "end": 2220.5, + "probability": 0.9781 + }, + { + "start": 2220.68, + "end": 2221.6, + "probability": 0.9899 + }, + { + "start": 2222.16, + "end": 2222.98, + "probability": 0.9924 + }, + { + "start": 2223.06, + "end": 2225.48, + "probability": 0.9375 + }, + { + "start": 2225.82, + "end": 2228.25, + "probability": 0.9957 + }, + { + "start": 2228.62, + "end": 2229.84, + "probability": 0.9721 + }, + { + "start": 2229.98, + "end": 2230.88, + "probability": 0.9661 + }, + { + "start": 2231.28, + "end": 2233.7, + "probability": 0.968 + }, + { + "start": 2233.9, + "end": 2236.34, + "probability": 0.7598 + }, + { + "start": 2236.38, + "end": 2238.24, + "probability": 0.6443 + }, + { + "start": 2238.42, + "end": 2241.12, + "probability": 0.8882 + }, + { + "start": 2243.12, + "end": 2248.4, + "probability": 0.9547 + }, + { + "start": 2249.34, + "end": 2251.66, + "probability": 0.853 + }, + { + "start": 2252.34, + "end": 2254.62, + "probability": 0.8666 + }, + { + "start": 2255.82, + "end": 2259.38, + "probability": 0.9462 + }, + { + "start": 2260.12, + "end": 2262.28, + "probability": 0.6853 + }, + { + "start": 2262.82, + "end": 2264.58, + "probability": 0.9824 + }, + { + "start": 2265.22, + "end": 2267.4, + "probability": 0.9963 + }, + { + "start": 2268.14, + "end": 2270.46, + "probability": 0.9874 + }, + { + "start": 2271.2, + "end": 2274.96, + "probability": 0.9819 + }, + { + "start": 2275.5, + "end": 2278.24, + "probability": 0.9585 + }, + { + "start": 2278.96, + "end": 2280.6, + "probability": 0.883 + }, + { + "start": 2280.7, + "end": 2281.42, + "probability": 0.9447 + }, + { + "start": 2282.0, + "end": 2284.48, + "probability": 0.9707 + }, + { + "start": 2285.2, + "end": 2286.9, + "probability": 0.8822 + }, + { + "start": 2287.58, + "end": 2288.46, + "probability": 0.9695 + }, + { + "start": 2289.24, + "end": 2291.0, + "probability": 0.938 + }, + { + "start": 2291.62, + "end": 2293.36, + "probability": 0.8982 + }, + { + "start": 2294.24, + "end": 2300.84, + "probability": 0.9902 + }, + { + "start": 2301.18, + "end": 2301.46, + "probability": 0.6333 + }, + { + "start": 2301.54, + "end": 2302.1, + "probability": 0.9246 + }, + { + "start": 2302.26, + "end": 2304.24, + "probability": 0.9691 + }, + { + "start": 2304.3, + "end": 2305.58, + "probability": 0.8886 + }, + { + "start": 2306.06, + "end": 2309.7, + "probability": 0.9976 + }, + { + "start": 2310.2, + "end": 2310.71, + "probability": 0.3028 + }, + { + "start": 2312.38, + "end": 2313.24, + "probability": 0.7881 + }, + { + "start": 2313.52, + "end": 2317.92, + "probability": 0.9907 + }, + { + "start": 2320.12, + "end": 2321.12, + "probability": 0.4803 + }, + { + "start": 2321.12, + "end": 2321.12, + "probability": 0.1001 + }, + { + "start": 2321.12, + "end": 2322.2, + "probability": 0.2715 + }, + { + "start": 2322.64, + "end": 2322.88, + "probability": 0.7277 + }, + { + "start": 2323.35, + "end": 2326.56, + "probability": 0.9736 + }, + { + "start": 2326.72, + "end": 2327.68, + "probability": 0.7587 + }, + { + "start": 2329.17, + "end": 2332.12, + "probability": 0.9017 + }, + { + "start": 2332.62, + "end": 2333.14, + "probability": 0.3874 + }, + { + "start": 2333.36, + "end": 2335.38, + "probability": 0.9241 + }, + { + "start": 2335.88, + "end": 2337.14, + "probability": 0.926 + }, + { + "start": 2337.48, + "end": 2339.68, + "probability": 0.9689 + }, + { + "start": 2340.0, + "end": 2340.68, + "probability": 0.5942 + }, + { + "start": 2340.86, + "end": 2341.5, + "probability": 0.4663 + }, + { + "start": 2341.9, + "end": 2346.22, + "probability": 0.9787 + }, + { + "start": 2347.38, + "end": 2348.68, + "probability": 0.6714 + }, + { + "start": 2348.74, + "end": 2352.86, + "probability": 0.8168 + }, + { + "start": 2353.36, + "end": 2356.79, + "probability": 0.7556 + }, + { + "start": 2358.28, + "end": 2361.8, + "probability": 0.6375 + }, + { + "start": 2361.88, + "end": 2364.9, + "probability": 0.9426 + }, + { + "start": 2365.0, + "end": 2366.3, + "probability": 0.9796 + }, + { + "start": 2366.98, + "end": 2368.15, + "probability": 0.973 + }, + { + "start": 2369.1, + "end": 2374.9, + "probability": 0.5017 + }, + { + "start": 2375.88, + "end": 2377.8, + "probability": 0.8638 + }, + { + "start": 2378.0, + "end": 2380.58, + "probability": 0.7033 + }, + { + "start": 2381.26, + "end": 2382.9, + "probability": 0.9865 + }, + { + "start": 2383.82, + "end": 2387.8, + "probability": 0.6063 + }, + { + "start": 2388.56, + "end": 2389.58, + "probability": 0.8747 + }, + { + "start": 2390.7, + "end": 2394.8, + "probability": 0.9909 + }, + { + "start": 2395.4, + "end": 2396.26, + "probability": 0.4365 + }, + { + "start": 2396.58, + "end": 2398.64, + "probability": 0.9084 + }, + { + "start": 2399.0, + "end": 2400.78, + "probability": 0.9084 + }, + { + "start": 2400.92, + "end": 2402.4, + "probability": 0.7742 + }, + { + "start": 2405.32, + "end": 2406.24, + "probability": 0.2468 + }, + { + "start": 2408.94, + "end": 2411.2, + "probability": 0.8127 + }, + { + "start": 2411.32, + "end": 2412.3, + "probability": 0.5366 + }, + { + "start": 2416.26, + "end": 2417.86, + "probability": 0.9819 + }, + { + "start": 2417.96, + "end": 2418.9, + "probability": 0.8246 + }, + { + "start": 2418.94, + "end": 2419.66, + "probability": 0.6106 + }, + { + "start": 2419.94, + "end": 2421.14, + "probability": 0.976 + }, + { + "start": 2422.66, + "end": 2424.1, + "probability": 0.8347 + }, + { + "start": 2424.72, + "end": 2426.72, + "probability": 0.9736 + }, + { + "start": 2427.32, + "end": 2429.84, + "probability": 0.9671 + }, + { + "start": 2430.58, + "end": 2433.28, + "probability": 0.9548 + }, + { + "start": 2433.96, + "end": 2435.66, + "probability": 0.7516 + }, + { + "start": 2436.16, + "end": 2439.74, + "probability": 0.9911 + }, + { + "start": 2441.06, + "end": 2446.34, + "probability": 0.9639 + }, + { + "start": 2446.34, + "end": 2452.5, + "probability": 0.9952 + }, + { + "start": 2453.58, + "end": 2458.14, + "probability": 0.9929 + }, + { + "start": 2458.72, + "end": 2462.5, + "probability": 0.998 + }, + { + "start": 2463.46, + "end": 2464.18, + "probability": 0.7842 + }, + { + "start": 2464.96, + "end": 2467.18, + "probability": 0.994 + }, + { + "start": 2468.24, + "end": 2471.5, + "probability": 0.9677 + }, + { + "start": 2471.98, + "end": 2475.92, + "probability": 0.9808 + }, + { + "start": 2476.5, + "end": 2481.08, + "probability": 0.9707 + }, + { + "start": 2482.36, + "end": 2486.36, + "probability": 0.9975 + }, + { + "start": 2486.36, + "end": 2490.88, + "probability": 0.9835 + }, + { + "start": 2491.46, + "end": 2497.54, + "probability": 0.9926 + }, + { + "start": 2498.18, + "end": 2500.22, + "probability": 0.9236 + }, + { + "start": 2501.64, + "end": 2503.76, + "probability": 0.8243 + }, + { + "start": 2504.34, + "end": 2510.2, + "probability": 0.9055 + }, + { + "start": 2510.2, + "end": 2516.4, + "probability": 0.979 + }, + { + "start": 2517.38, + "end": 2522.24, + "probability": 0.9493 + }, + { + "start": 2522.96, + "end": 2524.32, + "probability": 0.9724 + }, + { + "start": 2524.68, + "end": 2525.88, + "probability": 0.4737 + }, + { + "start": 2532.7, + "end": 2534.96, + "probability": 0.3741 + }, + { + "start": 2538.88, + "end": 2540.72, + "probability": 0.3404 + }, + { + "start": 2544.28, + "end": 2545.56, + "probability": 0.9068 + }, + { + "start": 2548.22, + "end": 2548.8, + "probability": 0.5078 + }, + { + "start": 2549.3, + "end": 2549.5, + "probability": 0.9355 + }, + { + "start": 2551.24, + "end": 2553.0, + "probability": 0.8533 + }, + { + "start": 2553.1, + "end": 2553.67, + "probability": 0.6639 + }, + { + "start": 2554.62, + "end": 2555.7, + "probability": 0.9675 + }, + { + "start": 2556.1, + "end": 2558.4, + "probability": 0.5133 + }, + { + "start": 2558.48, + "end": 2559.4, + "probability": 0.9082 + }, + { + "start": 2559.52, + "end": 2561.54, + "probability": 0.7944 + }, + { + "start": 2562.92, + "end": 2565.64, + "probability": 0.6369 + }, + { + "start": 2565.76, + "end": 2567.32, + "probability": 0.9897 + }, + { + "start": 2567.44, + "end": 2569.08, + "probability": 0.7921 + }, + { + "start": 2570.06, + "end": 2571.4, + "probability": 0.6777 + }, + { + "start": 2572.54, + "end": 2575.84, + "probability": 0.9403 + }, + { + "start": 2575.84, + "end": 2579.54, + "probability": 0.8172 + }, + { + "start": 2579.7, + "end": 2583.48, + "probability": 0.9369 + }, + { + "start": 2584.82, + "end": 2585.76, + "probability": 0.7827 + }, + { + "start": 2586.68, + "end": 2587.54, + "probability": 0.8533 + }, + { + "start": 2587.8, + "end": 2591.46, + "probability": 0.9829 + }, + { + "start": 2592.92, + "end": 2595.36, + "probability": 0.9403 + }, + { + "start": 2595.56, + "end": 2598.2, + "probability": 0.9958 + }, + { + "start": 2598.84, + "end": 2601.86, + "probability": 0.8529 + }, + { + "start": 2602.86, + "end": 2607.44, + "probability": 0.7718 + }, + { + "start": 2607.92, + "end": 2609.28, + "probability": 0.8823 + }, + { + "start": 2609.88, + "end": 2612.94, + "probability": 0.9949 + }, + { + "start": 2613.84, + "end": 2614.72, + "probability": 0.9932 + }, + { + "start": 2615.38, + "end": 2618.48, + "probability": 0.9502 + }, + { + "start": 2619.46, + "end": 2621.9, + "probability": 0.887 + }, + { + "start": 2621.99, + "end": 2625.2, + "probability": 0.9814 + }, + { + "start": 2625.96, + "end": 2630.32, + "probability": 0.9944 + }, + { + "start": 2631.22, + "end": 2632.8, + "probability": 0.789 + }, + { + "start": 2632.8, + "end": 2634.76, + "probability": 0.8645 + }, + { + "start": 2635.66, + "end": 2638.82, + "probability": 0.8356 + }, + { + "start": 2639.46, + "end": 2641.38, + "probability": 0.9774 + }, + { + "start": 2641.58, + "end": 2642.54, + "probability": 0.9025 + }, + { + "start": 2643.8, + "end": 2645.6, + "probability": 0.9969 + }, + { + "start": 2645.78, + "end": 2647.56, + "probability": 0.8894 + }, + { + "start": 2648.22, + "end": 2650.4, + "probability": 0.9888 + }, + { + "start": 2651.02, + "end": 2653.26, + "probability": 0.9714 + }, + { + "start": 2653.74, + "end": 2659.18, + "probability": 0.9932 + }, + { + "start": 2659.18, + "end": 2663.26, + "probability": 0.9974 + }, + { + "start": 2663.94, + "end": 2667.12, + "probability": 0.9193 + }, + { + "start": 2668.04, + "end": 2670.72, + "probability": 0.7699 + }, + { + "start": 2671.32, + "end": 2675.58, + "probability": 0.9689 + }, + { + "start": 2676.06, + "end": 2677.22, + "probability": 0.906 + }, + { + "start": 2677.92, + "end": 2680.34, + "probability": 0.9614 + }, + { + "start": 2680.36, + "end": 2681.12, + "probability": 0.6554 + }, + { + "start": 2681.58, + "end": 2682.74, + "probability": 0.7896 + }, + { + "start": 2682.88, + "end": 2684.18, + "probability": 0.9522 + }, + { + "start": 2684.76, + "end": 2686.62, + "probability": 0.9799 + }, + { + "start": 2687.34, + "end": 2687.88, + "probability": 0.5436 + }, + { + "start": 2688.46, + "end": 2690.28, + "probability": 0.9979 + }, + { + "start": 2690.92, + "end": 2691.42, + "probability": 0.9184 + }, + { + "start": 2691.96, + "end": 2694.08, + "probability": 0.9961 + }, + { + "start": 2695.26, + "end": 2697.62, + "probability": 0.9977 + }, + { + "start": 2698.24, + "end": 2700.86, + "probability": 0.9966 + }, + { + "start": 2701.56, + "end": 2703.94, + "probability": 0.9973 + }, + { + "start": 2704.62, + "end": 2707.92, + "probability": 0.8474 + }, + { + "start": 2707.92, + "end": 2711.56, + "probability": 0.988 + }, + { + "start": 2712.7, + "end": 2712.84, + "probability": 0.5171 + }, + { + "start": 2712.96, + "end": 2714.52, + "probability": 0.9932 + }, + { + "start": 2714.86, + "end": 2719.54, + "probability": 0.9736 + }, + { + "start": 2719.56, + "end": 2721.74, + "probability": 0.9752 + }, + { + "start": 2722.44, + "end": 2725.7, + "probability": 0.9937 + }, + { + "start": 2726.82, + "end": 2728.72, + "probability": 0.9655 + }, + { + "start": 2728.72, + "end": 2731.22, + "probability": 0.9262 + }, + { + "start": 2731.74, + "end": 2734.06, + "probability": 0.9387 + }, + { + "start": 2734.48, + "end": 2736.18, + "probability": 0.8456 + }, + { + "start": 2736.72, + "end": 2739.6, + "probability": 0.9502 + }, + { + "start": 2740.74, + "end": 2741.98, + "probability": 0.8457 + }, + { + "start": 2742.84, + "end": 2745.64, + "probability": 0.9746 + }, + { + "start": 2746.06, + "end": 2749.92, + "probability": 0.9054 + }, + { + "start": 2750.0, + "end": 2754.9, + "probability": 0.8772 + }, + { + "start": 2755.82, + "end": 2759.8, + "probability": 0.9866 + }, + { + "start": 2760.56, + "end": 2761.9, + "probability": 0.995 + }, + { + "start": 2762.74, + "end": 2766.78, + "probability": 0.9706 + }, + { + "start": 2767.52, + "end": 2769.02, + "probability": 0.8927 + }, + { + "start": 2769.64, + "end": 2771.76, + "probability": 0.9873 + }, + { + "start": 2771.9, + "end": 2775.32, + "probability": 0.9507 + }, + { + "start": 2776.02, + "end": 2776.76, + "probability": 0.5705 + }, + { + "start": 2777.38, + "end": 2779.06, + "probability": 0.8303 + }, + { + "start": 2779.76, + "end": 2780.42, + "probability": 0.9764 + }, + { + "start": 2781.2, + "end": 2783.54, + "probability": 0.964 + }, + { + "start": 2784.0, + "end": 2786.06, + "probability": 0.9175 + }, + { + "start": 2786.88, + "end": 2790.32, + "probability": 0.989 + }, + { + "start": 2791.0, + "end": 2796.4, + "probability": 0.9719 + }, + { + "start": 2797.36, + "end": 2797.82, + "probability": 0.69 + }, + { + "start": 2797.94, + "end": 2799.3, + "probability": 0.9927 + }, + { + "start": 2800.04, + "end": 2800.2, + "probability": 0.3665 + }, + { + "start": 2800.24, + "end": 2804.4, + "probability": 0.9968 + }, + { + "start": 2804.5, + "end": 2805.04, + "probability": 0.8984 + }, + { + "start": 2805.38, + "end": 2806.56, + "probability": 0.7801 + }, + { + "start": 2807.9, + "end": 2810.86, + "probability": 0.9033 + }, + { + "start": 2811.34, + "end": 2812.5, + "probability": 0.9156 + }, + { + "start": 2812.56, + "end": 2812.84, + "probability": 0.471 + }, + { + "start": 2812.92, + "end": 2813.52, + "probability": 0.6285 + }, + { + "start": 2813.98, + "end": 2816.82, + "probability": 0.8692 + }, + { + "start": 2817.82, + "end": 2820.86, + "probability": 0.9481 + }, + { + "start": 2821.02, + "end": 2822.82, + "probability": 0.4798 + }, + { + "start": 2823.0, + "end": 2825.44, + "probability": 0.9059 + }, + { + "start": 2826.2, + "end": 2827.48, + "probability": 0.9795 + }, + { + "start": 2827.5, + "end": 2827.98, + "probability": 0.4859 + }, + { + "start": 2828.06, + "end": 2828.52, + "probability": 0.9716 + }, + { + "start": 2828.98, + "end": 2832.2, + "probability": 0.9468 + }, + { + "start": 2832.92, + "end": 2835.74, + "probability": 0.8526 + }, + { + "start": 2836.22, + "end": 2837.0, + "probability": 0.9227 + }, + { + "start": 2837.12, + "end": 2837.56, + "probability": 0.8726 + }, + { + "start": 2837.66, + "end": 2837.98, + "probability": 0.9227 + }, + { + "start": 2838.08, + "end": 2838.5, + "probability": 0.9388 + }, + { + "start": 2838.54, + "end": 2839.14, + "probability": 0.9819 + }, + { + "start": 2839.5, + "end": 2839.84, + "probability": 0.9901 + }, + { + "start": 2839.96, + "end": 2840.4, + "probability": 0.8902 + }, + { + "start": 2840.54, + "end": 2840.94, + "probability": 0.8256 + }, + { + "start": 2841.0, + "end": 2841.4, + "probability": 0.8944 + }, + { + "start": 2841.56, + "end": 2842.0, + "probability": 0.7477 + }, + { + "start": 2842.16, + "end": 2842.58, + "probability": 0.9939 + }, + { + "start": 2842.64, + "end": 2843.02, + "probability": 0.9003 + }, + { + "start": 2843.2, + "end": 2843.3, + "probability": 0.8117 + }, + { + "start": 2843.64, + "end": 2844.5, + "probability": 0.8653 + }, + { + "start": 2845.16, + "end": 2847.26, + "probability": 0.9598 + }, + { + "start": 2847.94, + "end": 2848.54, + "probability": 0.6982 + }, + { + "start": 2848.94, + "end": 2849.24, + "probability": 0.7346 + }, + { + "start": 2850.38, + "end": 2852.24, + "probability": 0.7899 + }, + { + "start": 2852.58, + "end": 2854.3, + "probability": 0.8611 + }, + { + "start": 2854.88, + "end": 2857.46, + "probability": 0.5532 + }, + { + "start": 2857.88, + "end": 2863.52, + "probability": 0.8657 + }, + { + "start": 2863.98, + "end": 2866.31, + "probability": 0.963 + }, + { + "start": 2867.12, + "end": 2871.94, + "probability": 0.9917 + }, + { + "start": 2872.36, + "end": 2873.96, + "probability": 0.6651 + }, + { + "start": 2874.56, + "end": 2877.62, + "probability": 0.6978 + }, + { + "start": 2879.56, + "end": 2879.96, + "probability": 0.6063 + }, + { + "start": 2880.06, + "end": 2883.52, + "probability": 0.7522 + }, + { + "start": 2884.06, + "end": 2886.2, + "probability": 0.8285 + }, + { + "start": 2887.22, + "end": 2893.64, + "probability": 0.4184 + }, + { + "start": 2895.26, + "end": 2895.26, + "probability": 0.0268 + }, + { + "start": 2895.26, + "end": 2895.26, + "probability": 0.287 + }, + { + "start": 2895.26, + "end": 2895.26, + "probability": 0.1287 + }, + { + "start": 2895.26, + "end": 2895.26, + "probability": 0.0617 + }, + { + "start": 2895.26, + "end": 2897.32, + "probability": 0.409 + }, + { + "start": 2898.22, + "end": 2903.34, + "probability": 0.8859 + }, + { + "start": 2903.34, + "end": 2908.24, + "probability": 0.8965 + }, + { + "start": 2909.34, + "end": 2911.9, + "probability": 0.9331 + }, + { + "start": 2912.72, + "end": 2914.26, + "probability": 0.8875 + }, + { + "start": 2914.98, + "end": 2919.36, + "probability": 0.9334 + }, + { + "start": 2920.44, + "end": 2923.34, + "probability": 0.6618 + }, + { + "start": 2924.98, + "end": 2928.82, + "probability": 0.9591 + }, + { + "start": 2928.82, + "end": 2933.1, + "probability": 0.9948 + }, + { + "start": 2934.04, + "end": 2935.66, + "probability": 0.9093 + }, + { + "start": 2936.3, + "end": 2938.46, + "probability": 0.8807 + }, + { + "start": 2939.22, + "end": 2943.84, + "probability": 0.9842 + }, + { + "start": 2944.52, + "end": 2944.92, + "probability": 0.9279 + }, + { + "start": 2946.08, + "end": 2952.06, + "probability": 0.9639 + }, + { + "start": 2952.06, + "end": 2959.38, + "probability": 0.9935 + }, + { + "start": 2960.46, + "end": 2961.6, + "probability": 0.7339 + }, + { + "start": 2962.34, + "end": 2966.04, + "probability": 0.9465 + }, + { + "start": 2966.76, + "end": 2967.44, + "probability": 0.6586 + }, + { + "start": 2968.22, + "end": 2969.1, + "probability": 0.8884 + }, + { + "start": 2970.16, + "end": 2976.12, + "probability": 0.9133 + }, + { + "start": 2976.12, + "end": 2980.72, + "probability": 0.9355 + }, + { + "start": 2981.88, + "end": 2984.24, + "probability": 0.8304 + }, + { + "start": 2985.42, + "end": 2990.28, + "probability": 0.9036 + }, + { + "start": 2990.88, + "end": 2993.42, + "probability": 0.9386 + }, + { + "start": 2994.26, + "end": 2997.28, + "probability": 0.9745 + }, + { + "start": 2998.06, + "end": 3000.04, + "probability": 0.8472 + }, + { + "start": 3001.02, + "end": 3003.42, + "probability": 0.6925 + }, + { + "start": 3003.86, + "end": 3006.42, + "probability": 0.9787 + }, + { + "start": 3007.8, + "end": 3013.38, + "probability": 0.9611 + }, + { + "start": 3014.02, + "end": 3015.54, + "probability": 0.7526 + }, + { + "start": 3016.1, + "end": 3019.7, + "probability": 0.8322 + }, + { + "start": 3020.9, + "end": 3024.88, + "probability": 0.8682 + }, + { + "start": 3025.62, + "end": 3030.38, + "probability": 0.9573 + }, + { + "start": 3030.88, + "end": 3030.9, + "probability": 0.1085 + }, + { + "start": 3030.98, + "end": 3031.58, + "probability": 0.7466 + }, + { + "start": 3032.18, + "end": 3033.74, + "probability": 0.9771 + }, + { + "start": 3034.3, + "end": 3036.28, + "probability": 0.9831 + }, + { + "start": 3037.58, + "end": 3040.22, + "probability": 0.657 + }, + { + "start": 3040.76, + "end": 3045.74, + "probability": 0.9398 + }, + { + "start": 3046.12, + "end": 3050.1, + "probability": 0.923 + }, + { + "start": 3051.14, + "end": 3054.6, + "probability": 0.7649 + }, + { + "start": 3055.36, + "end": 3060.28, + "probability": 0.8509 + }, + { + "start": 3061.1, + "end": 3064.64, + "probability": 0.9828 + }, + { + "start": 3065.2, + "end": 3066.06, + "probability": 0.9205 + }, + { + "start": 3066.72, + "end": 3068.0, + "probability": 0.9687 + }, + { + "start": 3068.58, + "end": 3072.22, + "probability": 0.9917 + }, + { + "start": 3073.2, + "end": 3074.08, + "probability": 0.9603 + }, + { + "start": 3074.96, + "end": 3076.58, + "probability": 0.9795 + }, + { + "start": 3077.5, + "end": 3080.76, + "probability": 0.981 + }, + { + "start": 3081.38, + "end": 3084.86, + "probability": 0.9974 + }, + { + "start": 3085.12, + "end": 3086.84, + "probability": 0.9632 + }, + { + "start": 3087.74, + "end": 3090.72, + "probability": 0.9945 + }, + { + "start": 3091.6, + "end": 3092.6, + "probability": 0.5338 + }, + { + "start": 3094.32, + "end": 3095.2, + "probability": 0.8416 + }, + { + "start": 3095.98, + "end": 3100.24, + "probability": 0.9956 + }, + { + "start": 3100.8, + "end": 3103.96, + "probability": 0.948 + }, + { + "start": 3104.92, + "end": 3105.64, + "probability": 0.8515 + }, + { + "start": 3105.82, + "end": 3110.46, + "probability": 0.7869 + }, + { + "start": 3111.58, + "end": 3113.48, + "probability": 0.9717 + }, + { + "start": 3114.52, + "end": 3115.62, + "probability": 0.9543 + }, + { + "start": 3116.62, + "end": 3120.98, + "probability": 0.8159 + }, + { + "start": 3122.94, + "end": 3126.26, + "probability": 0.9131 + }, + { + "start": 3127.48, + "end": 3128.28, + "probability": 0.9543 + }, + { + "start": 3128.82, + "end": 3129.66, + "probability": 0.9911 + }, + { + "start": 3130.58, + "end": 3134.58, + "probability": 0.9261 + }, + { + "start": 3135.36, + "end": 3138.8, + "probability": 0.942 + }, + { + "start": 3139.5, + "end": 3141.3, + "probability": 0.8396 + }, + { + "start": 3142.34, + "end": 3145.3, + "probability": 0.9816 + }, + { + "start": 3145.9, + "end": 3149.26, + "probability": 0.9955 + }, + { + "start": 3150.12, + "end": 3151.94, + "probability": 0.9951 + }, + { + "start": 3152.48, + "end": 3155.8, + "probability": 0.9942 + }, + { + "start": 3156.96, + "end": 3158.16, + "probability": 0.5412 + }, + { + "start": 3159.52, + "end": 3164.9, + "probability": 0.9943 + }, + { + "start": 3165.94, + "end": 3169.98, + "probability": 0.9883 + }, + { + "start": 3170.84, + "end": 3173.6, + "probability": 0.9959 + }, + { + "start": 3174.2, + "end": 3176.3, + "probability": 0.9895 + }, + { + "start": 3176.96, + "end": 3177.74, + "probability": 0.707 + }, + { + "start": 3178.92, + "end": 3182.65, + "probability": 0.9902 + }, + { + "start": 3183.38, + "end": 3184.2, + "probability": 0.9619 + }, + { + "start": 3184.92, + "end": 3185.02, + "probability": 0.9783 + }, + { + "start": 3185.96, + "end": 3186.62, + "probability": 0.6814 + }, + { + "start": 3187.6, + "end": 3188.66, + "probability": 0.8774 + }, + { + "start": 3189.86, + "end": 3192.38, + "probability": 0.9451 + }, + { + "start": 3193.02, + "end": 3197.7, + "probability": 0.9956 + }, + { + "start": 3198.76, + "end": 3203.14, + "probability": 0.9936 + }, + { + "start": 3203.72, + "end": 3204.8, + "probability": 0.9474 + }, + { + "start": 3205.44, + "end": 3206.52, + "probability": 0.9919 + }, + { + "start": 3207.38, + "end": 3209.18, + "probability": 0.9967 + }, + { + "start": 3209.74, + "end": 3211.18, + "probability": 0.6611 + }, + { + "start": 3211.42, + "end": 3215.82, + "probability": 0.9738 + }, + { + "start": 3216.98, + "end": 3218.88, + "probability": 0.9556 + }, + { + "start": 3219.48, + "end": 3222.38, + "probability": 0.9901 + }, + { + "start": 3222.38, + "end": 3225.42, + "probability": 0.997 + }, + { + "start": 3226.66, + "end": 3227.64, + "probability": 0.9405 + }, + { + "start": 3228.38, + "end": 3230.26, + "probability": 0.9337 + }, + { + "start": 3231.08, + "end": 3236.0, + "probability": 0.9696 + }, + { + "start": 3236.82, + "end": 3241.28, + "probability": 0.9969 + }, + { + "start": 3241.84, + "end": 3243.68, + "probability": 0.9821 + }, + { + "start": 3244.22, + "end": 3244.86, + "probability": 0.7686 + }, + { + "start": 3245.66, + "end": 3247.94, + "probability": 0.8624 + }, + { + "start": 3248.22, + "end": 3251.14, + "probability": 0.9907 + }, + { + "start": 3251.9, + "end": 3253.1, + "probability": 0.9616 + }, + { + "start": 3254.82, + "end": 3259.38, + "probability": 0.9983 + }, + { + "start": 3260.36, + "end": 3264.14, + "probability": 0.9585 + }, + { + "start": 3265.56, + "end": 3267.7, + "probability": 0.8765 + }, + { + "start": 3268.56, + "end": 3271.2, + "probability": 0.9696 + }, + { + "start": 3271.88, + "end": 3274.08, + "probability": 0.968 + }, + { + "start": 3274.08, + "end": 3281.04, + "probability": 0.8866 + }, + { + "start": 3282.38, + "end": 3285.4, + "probability": 0.9979 + }, + { + "start": 3285.51, + "end": 3288.12, + "probability": 0.988 + }, + { + "start": 3289.48, + "end": 3290.44, + "probability": 0.7341 + }, + { + "start": 3291.1, + "end": 3295.48, + "probability": 0.9753 + }, + { + "start": 3296.12, + "end": 3296.34, + "probability": 0.8463 + }, + { + "start": 3297.64, + "end": 3303.48, + "probability": 0.9807 + }, + { + "start": 3304.16, + "end": 3306.24, + "probability": 0.9605 + }, + { + "start": 3307.74, + "end": 3313.34, + "probability": 0.9983 + }, + { + "start": 3314.22, + "end": 3314.68, + "probability": 0.9272 + }, + { + "start": 3315.7, + "end": 3316.96, + "probability": 0.6242 + }, + { + "start": 3317.5, + "end": 3318.9, + "probability": 0.8146 + }, + { + "start": 3319.72, + "end": 3322.54, + "probability": 0.9863 + }, + { + "start": 3323.22, + "end": 3325.58, + "probability": 0.9497 + }, + { + "start": 3326.12, + "end": 3327.38, + "probability": 0.9711 + }, + { + "start": 3327.88, + "end": 3331.58, + "probability": 0.8794 + }, + { + "start": 3331.72, + "end": 3335.1, + "probability": 0.9828 + }, + { + "start": 3335.2, + "end": 3336.88, + "probability": 0.976 + }, + { + "start": 3338.1, + "end": 3341.62, + "probability": 0.9905 + }, + { + "start": 3342.24, + "end": 3345.68, + "probability": 0.9971 + }, + { + "start": 3345.82, + "end": 3349.52, + "probability": 0.9628 + }, + { + "start": 3349.94, + "end": 3354.08, + "probability": 0.9951 + }, + { + "start": 3355.0, + "end": 3356.12, + "probability": 0.8362 + }, + { + "start": 3356.66, + "end": 3357.92, + "probability": 0.9937 + }, + { + "start": 3358.74, + "end": 3363.06, + "probability": 0.9943 + }, + { + "start": 3363.98, + "end": 3366.56, + "probability": 0.998 + }, + { + "start": 3366.56, + "end": 3371.1, + "probability": 0.9927 + }, + { + "start": 3372.1, + "end": 3375.86, + "probability": 0.9787 + }, + { + "start": 3376.2, + "end": 3377.7, + "probability": 0.9235 + }, + { + "start": 3378.38, + "end": 3379.5, + "probability": 0.9853 + }, + { + "start": 3380.58, + "end": 3384.1, + "probability": 0.8786 + }, + { + "start": 3384.14, + "end": 3385.38, + "probability": 0.9467 + }, + { + "start": 3385.48, + "end": 3386.78, + "probability": 0.9967 + }, + { + "start": 3387.98, + "end": 3390.66, + "probability": 0.9679 + }, + { + "start": 3391.68, + "end": 3393.72, + "probability": 0.9885 + }, + { + "start": 3394.7, + "end": 3397.42, + "probability": 0.9985 + }, + { + "start": 3398.6, + "end": 3402.62, + "probability": 0.9985 + }, + { + "start": 3403.66, + "end": 3408.8, + "probability": 0.9897 + }, + { + "start": 3410.54, + "end": 3412.64, + "probability": 0.9969 + }, + { + "start": 3413.22, + "end": 3414.8, + "probability": 0.9774 + }, + { + "start": 3415.4, + "end": 3421.7, + "probability": 0.9924 + }, + { + "start": 3422.54, + "end": 3427.58, + "probability": 0.9983 + }, + { + "start": 3428.5, + "end": 3429.5, + "probability": 0.8438 + }, + { + "start": 3430.36, + "end": 3431.82, + "probability": 0.9164 + }, + { + "start": 3432.74, + "end": 3433.78, + "probability": 0.6993 + }, + { + "start": 3434.86, + "end": 3436.52, + "probability": 0.9575 + }, + { + "start": 3437.44, + "end": 3439.54, + "probability": 0.9002 + }, + { + "start": 3440.3, + "end": 3441.89, + "probability": 0.9456 + }, + { + "start": 3442.6, + "end": 3445.06, + "probability": 0.9546 + }, + { + "start": 3445.9, + "end": 3447.64, + "probability": 0.9028 + }, + { + "start": 3448.42, + "end": 3450.32, + "probability": 0.8141 + }, + { + "start": 3450.86, + "end": 3453.14, + "probability": 0.7447 + }, + { + "start": 3453.52, + "end": 3454.7, + "probability": 0.9927 + }, + { + "start": 3458.1, + "end": 3460.12, + "probability": 0.5853 + }, + { + "start": 3460.32, + "end": 3462.98, + "probability": 0.8851 + }, + { + "start": 3463.1, + "end": 3465.12, + "probability": 0.9487 + }, + { + "start": 3467.64, + "end": 3469.16, + "probability": 0.782 + }, + { + "start": 3482.3, + "end": 3484.98, + "probability": 0.7351 + }, + { + "start": 3486.29, + "end": 3489.14, + "probability": 0.8983 + }, + { + "start": 3489.94, + "end": 3490.4, + "probability": 0.8035 + }, + { + "start": 3490.66, + "end": 3495.72, + "probability": 0.919 + }, + { + "start": 3495.72, + "end": 3498.9, + "probability": 0.994 + }, + { + "start": 3499.38, + "end": 3500.6, + "probability": 0.9443 + }, + { + "start": 3501.64, + "end": 3503.67, + "probability": 0.9961 + }, + { + "start": 3504.98, + "end": 3510.18, + "probability": 0.9578 + }, + { + "start": 3510.76, + "end": 3515.68, + "probability": 0.9932 + }, + { + "start": 3515.74, + "end": 3517.52, + "probability": 0.9141 + }, + { + "start": 3517.94, + "end": 3520.86, + "probability": 0.8137 + }, + { + "start": 3520.96, + "end": 3521.56, + "probability": 0.7295 + }, + { + "start": 3521.62, + "end": 3522.32, + "probability": 0.9337 + }, + { + "start": 3522.46, + "end": 3522.86, + "probability": 0.8787 + }, + { + "start": 3523.44, + "end": 3524.38, + "probability": 0.9286 + }, + { + "start": 3525.14, + "end": 3527.02, + "probability": 0.9951 + }, + { + "start": 3528.16, + "end": 3532.78, + "probability": 0.9941 + }, + { + "start": 3533.64, + "end": 3535.66, + "probability": 0.4827 + }, + { + "start": 3536.36, + "end": 3539.06, + "probability": 0.9188 + }, + { + "start": 3539.34, + "end": 3541.9, + "probability": 0.9715 + }, + { + "start": 3542.16, + "end": 3545.46, + "probability": 0.9315 + }, + { + "start": 3546.04, + "end": 3547.88, + "probability": 0.979 + }, + { + "start": 3548.4, + "end": 3550.32, + "probability": 0.9294 + }, + { + "start": 3551.22, + "end": 3553.52, + "probability": 0.9878 + }, + { + "start": 3556.64, + "end": 3559.25, + "probability": 0.9515 + }, + { + "start": 3560.66, + "end": 3562.0, + "probability": 0.9259 + }, + { + "start": 3563.14, + "end": 3564.54, + "probability": 0.8058 + }, + { + "start": 3564.94, + "end": 3567.68, + "probability": 0.7633 + }, + { + "start": 3568.46, + "end": 3571.14, + "probability": 0.9128 + }, + { + "start": 3571.34, + "end": 3572.3, + "probability": 0.7415 + }, + { + "start": 3573.48, + "end": 3575.16, + "probability": 0.8839 + }, + { + "start": 3575.58, + "end": 3576.16, + "probability": 0.7238 + }, + { + "start": 3576.63, + "end": 3577.52, + "probability": 0.8074 + }, + { + "start": 3578.16, + "end": 3578.92, + "probability": 0.9237 + }, + { + "start": 3579.38, + "end": 3580.08, + "probability": 0.7575 + }, + { + "start": 3580.24, + "end": 3581.56, + "probability": 0.9272 + }, + { + "start": 3581.66, + "end": 3584.08, + "probability": 0.9341 + }, + { + "start": 3584.66, + "end": 3588.6, + "probability": 0.8542 + }, + { + "start": 3589.34, + "end": 3591.36, + "probability": 0.9811 + }, + { + "start": 3591.9, + "end": 3592.53, + "probability": 0.7926 + }, + { + "start": 3593.28, + "end": 3594.86, + "probability": 0.8749 + }, + { + "start": 3595.26, + "end": 3599.68, + "probability": 0.9277 + }, + { + "start": 3599.86, + "end": 3602.34, + "probability": 0.9866 + }, + { + "start": 3603.06, + "end": 3603.94, + "probability": 0.9763 + }, + { + "start": 3604.08, + "end": 3609.0, + "probability": 0.9839 + }, + { + "start": 3609.76, + "end": 3612.72, + "probability": 0.986 + }, + { + "start": 3613.5, + "end": 3617.9, + "probability": 0.9453 + }, + { + "start": 3618.5, + "end": 3620.0, + "probability": 0.9741 + }, + { + "start": 3622.5, + "end": 3623.24, + "probability": 0.987 + }, + { + "start": 3624.54, + "end": 3625.5, + "probability": 0.9282 + }, + { + "start": 3625.76, + "end": 3628.0, + "probability": 0.9644 + }, + { + "start": 3628.08, + "end": 3632.5, + "probability": 0.8048 + }, + { + "start": 3632.74, + "end": 3633.8, + "probability": 0.8804 + }, + { + "start": 3633.94, + "end": 3635.3, + "probability": 0.8069 + }, + { + "start": 3635.34, + "end": 3636.22, + "probability": 0.6268 + }, + { + "start": 3636.72, + "end": 3641.26, + "probability": 0.944 + }, + { + "start": 3641.54, + "end": 3644.04, + "probability": 0.7952 + }, + { + "start": 3644.14, + "end": 3646.8, + "probability": 0.9409 + }, + { + "start": 3646.92, + "end": 3648.18, + "probability": 0.8613 + }, + { + "start": 3648.26, + "end": 3652.36, + "probability": 0.8242 + }, + { + "start": 3652.44, + "end": 3652.74, + "probability": 0.7853 + }, + { + "start": 3652.95, + "end": 3656.1, + "probability": 0.6953 + }, + { + "start": 3657.12, + "end": 3660.92, + "probability": 0.7006 + }, + { + "start": 3661.74, + "end": 3662.54, + "probability": 0.606 + }, + { + "start": 3662.62, + "end": 3663.26, + "probability": 0.6855 + }, + { + "start": 3663.58, + "end": 3664.42, + "probability": 0.9264 + }, + { + "start": 3664.6, + "end": 3665.0, + "probability": 0.8823 + }, + { + "start": 3665.94, + "end": 3666.48, + "probability": 0.0161 + }, + { + "start": 3668.2, + "end": 3671.3, + "probability": 0.3965 + }, + { + "start": 3672.6, + "end": 3675.7, + "probability": 0.893 + }, + { + "start": 3676.06, + "end": 3676.94, + "probability": 0.9371 + }, + { + "start": 3677.3, + "end": 3678.02, + "probability": 0.9219 + }, + { + "start": 3678.38, + "end": 3680.2, + "probability": 0.8032 + }, + { + "start": 3680.5, + "end": 3684.88, + "probability": 0.992 + }, + { + "start": 3685.44, + "end": 3687.26, + "probability": 0.8875 + }, + { + "start": 3688.08, + "end": 3690.56, + "probability": 0.9977 + }, + { + "start": 3691.28, + "end": 3694.18, + "probability": 0.9991 + }, + { + "start": 3695.08, + "end": 3696.22, + "probability": 0.8998 + }, + { + "start": 3697.34, + "end": 3698.02, + "probability": 0.9402 + }, + { + "start": 3698.14, + "end": 3701.52, + "probability": 0.9438 + }, + { + "start": 3702.0, + "end": 3707.78, + "probability": 0.9558 + }, + { + "start": 3708.44, + "end": 3712.52, + "probability": 0.989 + }, + { + "start": 3713.28, + "end": 3714.26, + "probability": 0.7238 + }, + { + "start": 3714.7, + "end": 3718.7, + "probability": 0.9665 + }, + { + "start": 3719.96, + "end": 3721.0, + "probability": 0.7639 + }, + { + "start": 3721.4, + "end": 3724.22, + "probability": 0.9888 + }, + { + "start": 3724.6, + "end": 3727.74, + "probability": 0.9051 + }, + { + "start": 3728.42, + "end": 3730.02, + "probability": 0.9846 + }, + { + "start": 3730.6, + "end": 3732.68, + "probability": 0.9834 + }, + { + "start": 3732.82, + "end": 3736.36, + "probability": 0.4575 + }, + { + "start": 3739.54, + "end": 3743.92, + "probability": 0.9824 + }, + { + "start": 3744.36, + "end": 3747.1, + "probability": 0.9318 + }, + { + "start": 3747.76, + "end": 3747.96, + "probability": 0.8083 + }, + { + "start": 3749.18, + "end": 3750.7, + "probability": 0.9686 + }, + { + "start": 3752.06, + "end": 3753.24, + "probability": 0.9717 + }, + { + "start": 3753.38, + "end": 3756.12, + "probability": 0.2169 + }, + { + "start": 3756.12, + "end": 3757.34, + "probability": 0.4456 + }, + { + "start": 3757.86, + "end": 3760.74, + "probability": 0.9044 + }, + { + "start": 3761.36, + "end": 3763.24, + "probability": 0.6662 + }, + { + "start": 3763.7, + "end": 3764.7, + "probability": 0.773 + }, + { + "start": 3765.96, + "end": 3767.78, + "probability": 0.8888 + }, + { + "start": 3767.78, + "end": 3769.26, + "probability": 0.8177 + }, + { + "start": 3769.5, + "end": 3773.72, + "probability": 0.957 + }, + { + "start": 3775.92, + "end": 3780.58, + "probability": 0.9813 + }, + { + "start": 3780.72, + "end": 3781.98, + "probability": 0.8061 + }, + { + "start": 3782.12, + "end": 3783.4, + "probability": 0.8994 + }, + { + "start": 3783.56, + "end": 3784.54, + "probability": 0.1644 + }, + { + "start": 3784.9, + "end": 3787.38, + "probability": 0.9517 + }, + { + "start": 3788.18, + "end": 3793.02, + "probability": 0.9759 + }, + { + "start": 3793.76, + "end": 3794.44, + "probability": 0.718 + }, + { + "start": 3795.0, + "end": 3798.44, + "probability": 0.8882 + }, + { + "start": 3798.72, + "end": 3799.86, + "probability": 0.7985 + }, + { + "start": 3800.26, + "end": 3801.02, + "probability": 0.9202 + }, + { + "start": 3801.26, + "end": 3805.14, + "probability": 0.8634 + }, + { + "start": 3805.7, + "end": 3807.86, + "probability": 0.9849 + }, + { + "start": 3808.84, + "end": 3809.36, + "probability": 0.6747 + }, + { + "start": 3809.88, + "end": 3812.94, + "probability": 0.9849 + }, + { + "start": 3813.56, + "end": 3815.0, + "probability": 0.8033 + }, + { + "start": 3815.06, + "end": 3817.05, + "probability": 0.7655 + }, + { + "start": 3817.98, + "end": 3819.06, + "probability": 0.6632 + }, + { + "start": 3819.98, + "end": 3820.92, + "probability": 0.7885 + }, + { + "start": 3821.6, + "end": 3825.24, + "probability": 0.9869 + }, + { + "start": 3825.86, + "end": 3827.44, + "probability": 0.9075 + }, + { + "start": 3828.46, + "end": 3829.26, + "probability": 0.9567 + }, + { + "start": 3831.2, + "end": 3833.08, + "probability": 0.7808 + }, + { + "start": 3833.96, + "end": 3835.59, + "probability": 0.7424 + }, + { + "start": 3836.72, + "end": 3838.54, + "probability": 0.9271 + }, + { + "start": 3839.48, + "end": 3839.98, + "probability": 0.5033 + }, + { + "start": 3840.02, + "end": 3842.12, + "probability": 0.988 + }, + { + "start": 3843.19, + "end": 3843.88, + "probability": 0.6013 + }, + { + "start": 3843.88, + "end": 3845.96, + "probability": 0.704 + }, + { + "start": 3846.38, + "end": 3848.0, + "probability": 0.7976 + }, + { + "start": 3848.44, + "end": 3851.86, + "probability": 0.9766 + }, + { + "start": 3852.24, + "end": 3853.18, + "probability": 0.8103 + }, + { + "start": 3853.56, + "end": 3854.55, + "probability": 0.9274 + }, + { + "start": 3855.12, + "end": 3856.94, + "probability": 0.9671 + }, + { + "start": 3858.42, + "end": 3861.48, + "probability": 0.8887 + }, + { + "start": 3861.48, + "end": 3863.86, + "probability": 0.9741 + }, + { + "start": 3864.16, + "end": 3866.26, + "probability": 0.8199 + }, + { + "start": 3866.72, + "end": 3867.32, + "probability": 0.6546 + }, + { + "start": 3868.19, + "end": 3871.18, + "probability": 0.9523 + }, + { + "start": 3872.4, + "end": 3872.7, + "probability": 0.6 + }, + { + "start": 3872.82, + "end": 3873.8, + "probability": 0.9006 + }, + { + "start": 3874.16, + "end": 3875.51, + "probability": 0.7368 + }, + { + "start": 3876.54, + "end": 3877.58, + "probability": 0.9441 + }, + { + "start": 3877.64, + "end": 3880.18, + "probability": 0.7983 + }, + { + "start": 3880.3, + "end": 3882.36, + "probability": 0.9317 + }, + { + "start": 3882.56, + "end": 3883.16, + "probability": 0.6327 + }, + { + "start": 3884.38, + "end": 3885.02, + "probability": 0.0157 + }, + { + "start": 3886.26, + "end": 3887.85, + "probability": 0.6209 + }, + { + "start": 3888.66, + "end": 3893.38, + "probability": 0.7468 + }, + { + "start": 3894.66, + "end": 3895.32, + "probability": 0.9608 + }, + { + "start": 3897.58, + "end": 3899.08, + "probability": 0.8565 + }, + { + "start": 3899.64, + "end": 3900.94, + "probability": 0.9506 + }, + { + "start": 3901.62, + "end": 3902.38, + "probability": 0.9564 + }, + { + "start": 3902.44, + "end": 3902.66, + "probability": 0.8036 + }, + { + "start": 3902.88, + "end": 3903.81, + "probability": 0.8139 + }, + { + "start": 3903.96, + "end": 3904.02, + "probability": 0.0158 + }, + { + "start": 3904.44, + "end": 3904.44, + "probability": 0.2182 + }, + { + "start": 3907.22, + "end": 3907.32, + "probability": 0.0548 + }, + { + "start": 3908.16, + "end": 3912.66, + "probability": 0.8191 + }, + { + "start": 3913.9, + "end": 3916.64, + "probability": 0.9951 + }, + { + "start": 3917.08, + "end": 3918.54, + "probability": 0.7376 + }, + { + "start": 3919.26, + "end": 3923.04, + "probability": 0.7629 + }, + { + "start": 3924.2, + "end": 3925.12, + "probability": 0.5038 + }, + { + "start": 3926.16, + "end": 3928.62, + "probability": 0.7107 + }, + { + "start": 3928.84, + "end": 3929.78, + "probability": 0.5085 + }, + { + "start": 3930.68, + "end": 3931.38, + "probability": 0.8759 + }, + { + "start": 3931.78, + "end": 3932.0, + "probability": 0.8339 + }, + { + "start": 3933.26, + "end": 3935.72, + "probability": 0.6294 + }, + { + "start": 3936.78, + "end": 3938.62, + "probability": 0.958 + }, + { + "start": 3940.66, + "end": 3942.16, + "probability": 0.6599 + }, + { + "start": 3959.76, + "end": 3964.24, + "probability": 0.7552 + }, + { + "start": 3964.88, + "end": 3965.52, + "probability": 0.8045 + }, + { + "start": 3966.82, + "end": 3970.16, + "probability": 0.9956 + }, + { + "start": 3971.72, + "end": 3976.94, + "probability": 0.9443 + }, + { + "start": 3977.58, + "end": 3980.2, + "probability": 0.9066 + }, + { + "start": 3981.8, + "end": 3983.7, + "probability": 0.9477 + }, + { + "start": 3986.06, + "end": 3986.52, + "probability": 0.5142 + }, + { + "start": 3986.58, + "end": 3988.4, + "probability": 0.8489 + }, + { + "start": 3988.58, + "end": 3992.3, + "probability": 0.9423 + }, + { + "start": 3992.48, + "end": 3993.74, + "probability": 0.839 + }, + { + "start": 3994.94, + "end": 3995.8, + "probability": 0.9538 + }, + { + "start": 3997.34, + "end": 4003.0, + "probability": 0.9823 + }, + { + "start": 4004.28, + "end": 4005.36, + "probability": 0.7456 + }, + { + "start": 4005.5, + "end": 4009.32, + "probability": 0.9201 + }, + { + "start": 4010.6, + "end": 4017.84, + "probability": 0.9941 + }, + { + "start": 4018.42, + "end": 4019.12, + "probability": 0.4088 + }, + { + "start": 4019.18, + "end": 4020.02, + "probability": 0.7933 + }, + { + "start": 4020.26, + "end": 4022.8, + "probability": 0.802 + }, + { + "start": 4022.92, + "end": 4027.4, + "probability": 0.9901 + }, + { + "start": 4027.94, + "end": 4031.78, + "probability": 0.9338 + }, + { + "start": 4033.08, + "end": 4037.06, + "probability": 0.7358 + }, + { + "start": 4037.18, + "end": 4038.06, + "probability": 0.7811 + }, + { + "start": 4038.24, + "end": 4040.74, + "probability": 0.9635 + }, + { + "start": 4041.24, + "end": 4045.3, + "probability": 0.9402 + }, + { + "start": 4045.7, + "end": 4046.9, + "probability": 0.976 + }, + { + "start": 4049.14, + "end": 4049.8, + "probability": 0.4265 + }, + { + "start": 4049.86, + "end": 4050.24, + "probability": 0.7511 + }, + { + "start": 4050.64, + "end": 4054.84, + "probability": 0.9171 + }, + { + "start": 4055.84, + "end": 4058.02, + "probability": 0.9715 + }, + { + "start": 4060.24, + "end": 4065.14, + "probability": 0.9618 + }, + { + "start": 4066.26, + "end": 4068.14, + "probability": 0.9545 + }, + { + "start": 4069.64, + "end": 4070.74, + "probability": 0.8084 + }, + { + "start": 4072.0, + "end": 4076.82, + "probability": 0.9503 + }, + { + "start": 4077.76, + "end": 4080.44, + "probability": 0.8786 + }, + { + "start": 4081.28, + "end": 4085.74, + "probability": 0.9884 + }, + { + "start": 4085.78, + "end": 4088.34, + "probability": 0.967 + }, + { + "start": 4090.64, + "end": 4091.32, + "probability": 0.8062 + }, + { + "start": 4092.4, + "end": 4094.46, + "probability": 0.9681 + }, + { + "start": 4095.2, + "end": 4098.76, + "probability": 0.9902 + }, + { + "start": 4101.16, + "end": 4106.04, + "probability": 0.9883 + }, + { + "start": 4107.4, + "end": 4111.52, + "probability": 0.9597 + }, + { + "start": 4112.08, + "end": 4112.48, + "probability": 0.657 + }, + { + "start": 4112.6, + "end": 4114.68, + "probability": 0.6407 + }, + { + "start": 4115.12, + "end": 4116.48, + "probability": 0.7415 + }, + { + "start": 4116.82, + "end": 4118.08, + "probability": 0.8701 + }, + { + "start": 4118.74, + "end": 4120.97, + "probability": 0.9259 + }, + { + "start": 4122.4, + "end": 4124.78, + "probability": 0.7913 + }, + { + "start": 4125.44, + "end": 4129.04, + "probability": 0.7963 + }, + { + "start": 4130.2, + "end": 4134.66, + "probability": 0.9544 + }, + { + "start": 4135.22, + "end": 4137.58, + "probability": 0.9207 + }, + { + "start": 4138.48, + "end": 4141.32, + "probability": 0.9301 + }, + { + "start": 4141.48, + "end": 4142.4, + "probability": 0.8053 + }, + { + "start": 4143.3, + "end": 4144.58, + "probability": 0.7306 + }, + { + "start": 4145.38, + "end": 4150.14, + "probability": 0.9161 + }, + { + "start": 4151.32, + "end": 4152.17, + "probability": 0.9445 + }, + { + "start": 4152.68, + "end": 4157.06, + "probability": 0.9199 + }, + { + "start": 4157.66, + "end": 4158.28, + "probability": 0.9484 + }, + { + "start": 4160.32, + "end": 4166.48, + "probability": 0.9878 + }, + { + "start": 4168.54, + "end": 4171.0, + "probability": 0.8188 + }, + { + "start": 4173.4, + "end": 4175.9, + "probability": 0.7355 + }, + { + "start": 4177.3, + "end": 4180.64, + "probability": 0.9773 + }, + { + "start": 4182.04, + "end": 4183.68, + "probability": 0.9742 + }, + { + "start": 4185.46, + "end": 4188.5, + "probability": 0.717 + }, + { + "start": 4189.76, + "end": 4191.3, + "probability": 0.6436 + }, + { + "start": 4192.0, + "end": 4197.1, + "probability": 0.9213 + }, + { + "start": 4198.58, + "end": 4199.62, + "probability": 0.8335 + }, + { + "start": 4200.34, + "end": 4206.48, + "probability": 0.9895 + }, + { + "start": 4207.5, + "end": 4212.12, + "probability": 0.896 + }, + { + "start": 4212.12, + "end": 4217.56, + "probability": 0.9173 + }, + { + "start": 4218.72, + "end": 4219.78, + "probability": 0.9051 + }, + { + "start": 4220.34, + "end": 4222.26, + "probability": 0.9561 + }, + { + "start": 4223.18, + "end": 4228.02, + "probability": 0.9277 + }, + { + "start": 4228.9, + "end": 4229.94, + "probability": 0.6906 + }, + { + "start": 4230.58, + "end": 4231.94, + "probability": 0.7815 + }, + { + "start": 4233.14, + "end": 4234.2, + "probability": 0.9421 + }, + { + "start": 4235.52, + "end": 4236.48, + "probability": 0.9315 + }, + { + "start": 4237.44, + "end": 4237.86, + "probability": 0.859 + }, + { + "start": 4238.68, + "end": 4240.36, + "probability": 0.7089 + }, + { + "start": 4240.44, + "end": 4242.2, + "probability": 0.7016 + }, + { + "start": 4243.72, + "end": 4246.94, + "probability": 0.7009 + }, + { + "start": 4249.62, + "end": 4250.14, + "probability": 0.7735 + }, + { + "start": 4264.9, + "end": 4269.68, + "probability": 0.6348 + }, + { + "start": 4270.36, + "end": 4276.38, + "probability": 0.8171 + }, + { + "start": 4276.7, + "end": 4277.04, + "probability": 0.9222 + }, + { + "start": 4277.36, + "end": 4277.76, + "probability": 0.8929 + }, + { + "start": 4278.98, + "end": 4282.56, + "probability": 0.9596 + }, + { + "start": 4282.56, + "end": 4286.72, + "probability": 0.9981 + }, + { + "start": 4288.2, + "end": 4290.76, + "probability": 0.6547 + }, + { + "start": 4292.56, + "end": 4296.42, + "probability": 0.9372 + }, + { + "start": 4297.24, + "end": 4297.94, + "probability": 0.9962 + }, + { + "start": 4299.4, + "end": 4304.5, + "probability": 0.8975 + }, + { + "start": 4305.7, + "end": 4307.48, + "probability": 0.9202 + }, + { + "start": 4308.7, + "end": 4312.1, + "probability": 0.9883 + }, + { + "start": 4314.4, + "end": 4316.28, + "probability": 0.7678 + }, + { + "start": 4316.54, + "end": 4320.62, + "probability": 0.9399 + }, + { + "start": 4321.42, + "end": 4324.8, + "probability": 0.9847 + }, + { + "start": 4325.68, + "end": 4327.34, + "probability": 0.7414 + }, + { + "start": 4328.08, + "end": 4329.64, + "probability": 0.98 + }, + { + "start": 4331.28, + "end": 4332.06, + "probability": 0.6932 + }, + { + "start": 4332.6, + "end": 4336.48, + "probability": 0.9655 + }, + { + "start": 4338.32, + "end": 4339.96, + "probability": 0.8606 + }, + { + "start": 4340.7, + "end": 4344.18, + "probability": 0.9967 + }, + { + "start": 4345.4, + "end": 4347.18, + "probability": 0.9313 + }, + { + "start": 4348.1, + "end": 4353.6, + "probability": 0.7544 + }, + { + "start": 4354.42, + "end": 4358.12, + "probability": 0.9894 + }, + { + "start": 4359.18, + "end": 4363.85, + "probability": 0.833 + }, + { + "start": 4364.3, + "end": 4367.7, + "probability": 0.9229 + }, + { + "start": 4368.48, + "end": 4368.82, + "probability": 0.5015 + }, + { + "start": 4369.8, + "end": 4372.82, + "probability": 0.9951 + }, + { + "start": 4373.98, + "end": 4376.62, + "probability": 0.9325 + }, + { + "start": 4377.84, + "end": 4380.28, + "probability": 0.8279 + }, + { + "start": 4381.02, + "end": 4384.88, + "probability": 0.6957 + }, + { + "start": 4386.32, + "end": 4389.56, + "probability": 0.846 + }, + { + "start": 4390.6, + "end": 4394.8, + "probability": 0.9943 + }, + { + "start": 4395.26, + "end": 4398.3, + "probability": 0.9813 + }, + { + "start": 4400.84, + "end": 4403.96, + "probability": 0.8457 + }, + { + "start": 4404.86, + "end": 4410.96, + "probability": 0.8697 + }, + { + "start": 4412.54, + "end": 4413.76, + "probability": 0.8784 + }, + { + "start": 4414.38, + "end": 4416.2, + "probability": 0.9498 + }, + { + "start": 4416.54, + "end": 4417.0, + "probability": 0.8338 + }, + { + "start": 4417.66, + "end": 4417.96, + "probability": 0.7466 + }, + { + "start": 4418.26, + "end": 4422.84, + "probability": 0.9536 + }, + { + "start": 4422.96, + "end": 4423.96, + "probability": 0.4922 + }, + { + "start": 4424.22, + "end": 4425.7, + "probability": 0.9768 + }, + { + "start": 4426.72, + "end": 4427.36, + "probability": 0.9691 + }, + { + "start": 4428.02, + "end": 4433.14, + "probability": 0.9932 + }, + { + "start": 4435.22, + "end": 4436.95, + "probability": 0.9067 + }, + { + "start": 4438.38, + "end": 4439.33, + "probability": 0.9844 + }, + { + "start": 4440.0, + "end": 4441.8, + "probability": 0.9006 + }, + { + "start": 4443.8, + "end": 4446.88, + "probability": 0.9742 + }, + { + "start": 4447.7, + "end": 4450.73, + "probability": 0.9931 + }, + { + "start": 4451.58, + "end": 4453.8, + "probability": 0.8484 + }, + { + "start": 4454.1, + "end": 4459.08, + "probability": 0.9281 + }, + { + "start": 4460.04, + "end": 4463.12, + "probability": 0.9834 + }, + { + "start": 4463.64, + "end": 4466.14, + "probability": 0.992 + }, + { + "start": 4467.04, + "end": 4473.72, + "probability": 0.9771 + }, + { + "start": 4475.98, + "end": 4482.24, + "probability": 0.9788 + }, + { + "start": 4482.34, + "end": 4483.28, + "probability": 0.7659 + }, + { + "start": 4484.72, + "end": 4486.6, + "probability": 0.9848 + }, + { + "start": 4487.96, + "end": 4488.78, + "probability": 0.8233 + }, + { + "start": 4489.32, + "end": 4490.22, + "probability": 0.8633 + }, + { + "start": 4491.58, + "end": 4496.3, + "probability": 0.9989 + }, + { + "start": 4497.76, + "end": 4500.92, + "probability": 0.7307 + }, + { + "start": 4502.66, + "end": 4505.62, + "probability": 0.9873 + }, + { + "start": 4507.16, + "end": 4512.9, + "probability": 0.9644 + }, + { + "start": 4514.92, + "end": 4515.94, + "probability": 0.9814 + }, + { + "start": 4516.58, + "end": 4516.96, + "probability": 0.4725 + }, + { + "start": 4518.46, + "end": 4520.14, + "probability": 0.9665 + }, + { + "start": 4520.68, + "end": 4521.34, + "probability": 0.8217 + }, + { + "start": 4521.94, + "end": 4522.64, + "probability": 0.9202 + }, + { + "start": 4523.66, + "end": 4525.18, + "probability": 0.9651 + }, + { + "start": 4526.02, + "end": 4527.22, + "probability": 0.936 + }, + { + "start": 4527.8, + "end": 4528.12, + "probability": 0.5752 + }, + { + "start": 4529.55, + "end": 4532.94, + "probability": 0.9897 + }, + { + "start": 4533.22, + "end": 4535.32, + "probability": 0.9966 + }, + { + "start": 4535.74, + "end": 4538.84, + "probability": 0.9736 + }, + { + "start": 4539.76, + "end": 4539.8, + "probability": 0.9082 + }, + { + "start": 4540.84, + "end": 4545.9, + "probability": 0.9819 + }, + { + "start": 4547.0, + "end": 4549.6, + "probability": 0.9565 + }, + { + "start": 4550.32, + "end": 4552.2, + "probability": 0.9019 + }, + { + "start": 4552.78, + "end": 4555.28, + "probability": 0.5949 + }, + { + "start": 4556.04, + "end": 4558.22, + "probability": 0.9849 + }, + { + "start": 4558.9, + "end": 4559.7, + "probability": 0.81 + }, + { + "start": 4559.76, + "end": 4565.28, + "probability": 0.9561 + }, + { + "start": 4565.96, + "end": 4567.52, + "probability": 0.9968 + }, + { + "start": 4570.08, + "end": 4571.9, + "probability": 0.8908 + }, + { + "start": 4572.64, + "end": 4576.58, + "probability": 0.9924 + }, + { + "start": 4577.68, + "end": 4581.48, + "probability": 0.9928 + }, + { + "start": 4583.1, + "end": 4584.26, + "probability": 0.954 + }, + { + "start": 4586.8, + "end": 4588.18, + "probability": 0.98 + }, + { + "start": 4589.18, + "end": 4592.02, + "probability": 0.9711 + }, + { + "start": 4592.66, + "end": 4593.7, + "probability": 0.8733 + }, + { + "start": 4594.28, + "end": 4594.78, + "probability": 0.8247 + }, + { + "start": 4595.46, + "end": 4597.66, + "probability": 0.9744 + }, + { + "start": 4599.22, + "end": 4602.07, + "probability": 0.7694 + }, + { + "start": 4602.92, + "end": 4608.28, + "probability": 0.9207 + }, + { + "start": 4608.52, + "end": 4609.0, + "probability": 0.9827 + }, + { + "start": 4609.82, + "end": 4611.82, + "probability": 0.7114 + }, + { + "start": 4611.84, + "end": 4615.9, + "probability": 0.8424 + }, + { + "start": 4615.94, + "end": 4616.84, + "probability": 0.8306 + }, + { + "start": 4617.02, + "end": 4617.92, + "probability": 0.7212 + }, + { + "start": 4618.24, + "end": 4622.06, + "probability": 0.894 + }, + { + "start": 4623.32, + "end": 4625.7, + "probability": 0.8898 + }, + { + "start": 4625.86, + "end": 4628.14, + "probability": 0.7014 + }, + { + "start": 4628.72, + "end": 4629.68, + "probability": 0.5676 + }, + { + "start": 4630.98, + "end": 4632.8, + "probability": 0.8382 + }, + { + "start": 4638.24, + "end": 4640.54, + "probability": 0.7715 + }, + { + "start": 4641.46, + "end": 4643.0, + "probability": 0.9461 + }, + { + "start": 4644.34, + "end": 4645.92, + "probability": 0.5323 + }, + { + "start": 4646.4, + "end": 4647.98, + "probability": 0.9713 + }, + { + "start": 4648.58, + "end": 4650.12, + "probability": 0.9855 + }, + { + "start": 4650.18, + "end": 4651.1, + "probability": 0.978 + }, + { + "start": 4651.3, + "end": 4652.0, + "probability": 0.9389 + }, + { + "start": 4654.34, + "end": 4656.48, + "probability": 0.8656 + }, + { + "start": 4657.38, + "end": 4661.92, + "probability": 0.9927 + }, + { + "start": 4662.14, + "end": 4663.0, + "probability": 0.943 + }, + { + "start": 4664.3, + "end": 4666.38, + "probability": 0.6796 + }, + { + "start": 4667.94, + "end": 4669.19, + "probability": 0.9917 + }, + { + "start": 4669.72, + "end": 4670.16, + "probability": 0.9749 + }, + { + "start": 4672.62, + "end": 4674.4, + "probability": 0.9619 + }, + { + "start": 4675.8, + "end": 4678.2, + "probability": 0.7498 + }, + { + "start": 4679.08, + "end": 4681.3, + "probability": 0.871 + }, + { + "start": 4682.54, + "end": 4684.34, + "probability": 0.9035 + }, + { + "start": 4685.0, + "end": 4687.22, + "probability": 0.7476 + }, + { + "start": 4689.24, + "end": 4690.9, + "probability": 0.8195 + }, + { + "start": 4692.14, + "end": 4694.42, + "probability": 0.9587 + }, + { + "start": 4695.52, + "end": 4696.34, + "probability": 0.9824 + }, + { + "start": 4697.58, + "end": 4699.1, + "probability": 0.8148 + }, + { + "start": 4701.62, + "end": 4703.66, + "probability": 0.9919 + }, + { + "start": 4704.94, + "end": 4711.24, + "probability": 0.9555 + }, + { + "start": 4712.86, + "end": 4713.54, + "probability": 0.6908 + }, + { + "start": 4715.72, + "end": 4715.72, + "probability": 0.9683 + }, + { + "start": 4718.72, + "end": 4719.64, + "probability": 0.3844 + }, + { + "start": 4721.22, + "end": 4722.06, + "probability": 0.5828 + }, + { + "start": 4723.3, + "end": 4728.86, + "probability": 0.982 + }, + { + "start": 4731.22, + "end": 4732.62, + "probability": 0.8356 + }, + { + "start": 4734.9, + "end": 4737.37, + "probability": 0.9759 + }, + { + "start": 4739.88, + "end": 4741.7, + "probability": 0.9198 + }, + { + "start": 4742.02, + "end": 4745.5, + "probability": 0.9492 + }, + { + "start": 4749.26, + "end": 4750.78, + "probability": 0.5534 + }, + { + "start": 4751.48, + "end": 4753.16, + "probability": 0.7456 + }, + { + "start": 4755.36, + "end": 4757.68, + "probability": 0.967 + }, + { + "start": 4759.0, + "end": 4759.8, + "probability": 0.7008 + }, + { + "start": 4761.42, + "end": 4766.48, + "probability": 0.986 + }, + { + "start": 4767.72, + "end": 4769.94, + "probability": 0.9614 + }, + { + "start": 4770.94, + "end": 4771.94, + "probability": 0.9746 + }, + { + "start": 4773.86, + "end": 4776.72, + "probability": 0.9667 + }, + { + "start": 4777.54, + "end": 4780.58, + "probability": 0.9194 + }, + { + "start": 4781.24, + "end": 4782.06, + "probability": 0.9344 + }, + { + "start": 4782.68, + "end": 4785.02, + "probability": 0.9253 + }, + { + "start": 4785.68, + "end": 4786.16, + "probability": 0.9834 + }, + { + "start": 4787.28, + "end": 4789.58, + "probability": 0.9722 + }, + { + "start": 4791.38, + "end": 4792.34, + "probability": 0.6112 + }, + { + "start": 4793.22, + "end": 4795.5, + "probability": 0.8752 + }, + { + "start": 4796.82, + "end": 4799.9, + "probability": 0.7155 + }, + { + "start": 4801.11, + "end": 4805.72, + "probability": 0.7789 + }, + { + "start": 4806.78, + "end": 4812.32, + "probability": 0.9922 + }, + { + "start": 4814.58, + "end": 4815.02, + "probability": 0.6197 + }, + { + "start": 4815.86, + "end": 4817.06, + "probability": 0.8677 + }, + { + "start": 4817.16, + "end": 4821.74, + "probability": 0.7509 + }, + { + "start": 4823.36, + "end": 4825.86, + "probability": 0.7288 + }, + { + "start": 4826.94, + "end": 4831.72, + "probability": 0.5308 + }, + { + "start": 4832.08, + "end": 4832.94, + "probability": 0.8688 + }, + { + "start": 4833.98, + "end": 4839.76, + "probability": 0.9978 + }, + { + "start": 4840.42, + "end": 4845.24, + "probability": 0.9535 + }, + { + "start": 4846.2, + "end": 4851.16, + "probability": 0.8898 + }, + { + "start": 4851.88, + "end": 4854.48, + "probability": 0.9398 + }, + { + "start": 4854.78, + "end": 4856.48, + "probability": 0.7265 + }, + { + "start": 4857.64, + "end": 4858.46, + "probability": 0.9376 + }, + { + "start": 4859.82, + "end": 4861.38, + "probability": 0.9595 + }, + { + "start": 4861.38, + "end": 4862.88, + "probability": 0.8644 + }, + { + "start": 4867.14, + "end": 4869.62, + "probability": 0.9267 + }, + { + "start": 4869.84, + "end": 4871.46, + "probability": 0.9841 + }, + { + "start": 4872.94, + "end": 4873.54, + "probability": 0.7808 + }, + { + "start": 4874.72, + "end": 4876.14, + "probability": 0.8251 + }, + { + "start": 4877.74, + "end": 4878.62, + "probability": 0.8671 + }, + { + "start": 4880.88, + "end": 4882.7, + "probability": 0.6351 + }, + { + "start": 4884.5, + "end": 4886.38, + "probability": 0.9083 + }, + { + "start": 4887.76, + "end": 4889.48, + "probability": 0.8254 + }, + { + "start": 4891.14, + "end": 4895.38, + "probability": 0.9409 + }, + { + "start": 4895.84, + "end": 4897.72, + "probability": 0.998 + }, + { + "start": 4897.76, + "end": 4898.94, + "probability": 0.968 + }, + { + "start": 4899.4, + "end": 4901.02, + "probability": 0.9961 + }, + { + "start": 4901.48, + "end": 4902.8, + "probability": 0.7234 + }, + { + "start": 4903.46, + "end": 4906.54, + "probability": 0.799 + }, + { + "start": 4907.24, + "end": 4910.92, + "probability": 0.7557 + }, + { + "start": 4911.38, + "end": 4913.56, + "probability": 0.7035 + }, + { + "start": 4913.7, + "end": 4915.56, + "probability": 0.7173 + }, + { + "start": 4916.34, + "end": 4918.25, + "probability": 0.7075 + }, + { + "start": 4919.04, + "end": 4919.57, + "probability": 0.5854 + }, + { + "start": 4919.99, + "end": 4923.42, + "probability": 0.763 + }, + { + "start": 4923.98, + "end": 4925.82, + "probability": 0.9679 + }, + { + "start": 4926.16, + "end": 4927.22, + "probability": 0.7533 + }, + { + "start": 4927.72, + "end": 4929.74, + "probability": 0.9937 + }, + { + "start": 4929.88, + "end": 4930.62, + "probability": 0.8109 + }, + { + "start": 4932.56, + "end": 4933.54, + "probability": 0.7748 + }, + { + "start": 4934.88, + "end": 4940.18, + "probability": 0.8283 + }, + { + "start": 4940.82, + "end": 4941.76, + "probability": 0.7374 + }, + { + "start": 4942.64, + "end": 4943.52, + "probability": 0.8034 + }, + { + "start": 4944.56, + "end": 4949.54, + "probability": 0.9278 + }, + { + "start": 4951.02, + "end": 4953.56, + "probability": 0.9828 + }, + { + "start": 4953.56, + "end": 4956.1, + "probability": 0.8445 + }, + { + "start": 4958.18, + "end": 4960.66, + "probability": 0.4875 + }, + { + "start": 4961.8, + "end": 4965.42, + "probability": 0.8179 + }, + { + "start": 4966.52, + "end": 4970.06, + "probability": 0.9099 + }, + { + "start": 4970.92, + "end": 4972.34, + "probability": 0.8021 + }, + { + "start": 4972.96, + "end": 4975.1, + "probability": 0.931 + }, + { + "start": 4976.3, + "end": 4979.08, + "probability": 0.9049 + }, + { + "start": 4980.72, + "end": 4982.78, + "probability": 0.9925 + }, + { + "start": 4984.38, + "end": 4985.96, + "probability": 0.7693 + }, + { + "start": 4987.34, + "end": 4991.22, + "probability": 0.9281 + }, + { + "start": 4992.5, + "end": 4994.98, + "probability": 0.9779 + }, + { + "start": 4996.12, + "end": 4997.44, + "probability": 0.5583 + }, + { + "start": 4998.82, + "end": 5003.32, + "probability": 0.8179 + }, + { + "start": 5004.44, + "end": 5005.88, + "probability": 0.9834 + }, + { + "start": 5006.42, + "end": 5007.76, + "probability": 0.4954 + }, + { + "start": 5010.26, + "end": 5013.56, + "probability": 0.6534 + }, + { + "start": 5015.2, + "end": 5018.68, + "probability": 0.7568 + }, + { + "start": 5020.8, + "end": 5022.74, + "probability": 0.9378 + }, + { + "start": 5023.76, + "end": 5028.3, + "probability": 0.959 + }, + { + "start": 5029.44, + "end": 5030.0, + "probability": 0.8536 + }, + { + "start": 5031.4, + "end": 5033.52, + "probability": 0.8896 + }, + { + "start": 5034.76, + "end": 5038.05, + "probability": 0.8623 + }, + { + "start": 5039.08, + "end": 5040.66, + "probability": 0.9244 + }, + { + "start": 5041.06, + "end": 5045.32, + "probability": 0.8035 + }, + { + "start": 5045.66, + "end": 5046.56, + "probability": 0.6481 + }, + { + "start": 5047.38, + "end": 5048.19, + "probability": 0.4095 + }, + { + "start": 5048.42, + "end": 5051.32, + "probability": 0.9094 + }, + { + "start": 5052.0, + "end": 5055.4, + "probability": 0.9624 + }, + { + "start": 5055.6, + "end": 5058.36, + "probability": 0.7698 + }, + { + "start": 5059.66, + "end": 5064.26, + "probability": 0.9892 + }, + { + "start": 5065.14, + "end": 5066.56, + "probability": 0.9202 + }, + { + "start": 5067.14, + "end": 5068.54, + "probability": 0.9985 + }, + { + "start": 5070.22, + "end": 5072.8, + "probability": 0.9972 + }, + { + "start": 5073.02, + "end": 5073.22, + "probability": 0.732 + }, + { + "start": 5073.78, + "end": 5076.68, + "probability": 0.6986 + }, + { + "start": 5076.68, + "end": 5077.36, + "probability": 0.7668 + }, + { + "start": 5078.96, + "end": 5080.14, + "probability": 0.2664 + }, + { + "start": 5081.54, + "end": 5085.52, + "probability": 0.7786 + }, + { + "start": 5086.04, + "end": 5086.88, + "probability": 0.62 + }, + { + "start": 5098.58, + "end": 5099.36, + "probability": 0.6443 + }, + { + "start": 5099.48, + "end": 5100.04, + "probability": 0.6447 + }, + { + "start": 5100.2, + "end": 5100.98, + "probability": 0.8477 + }, + { + "start": 5101.1, + "end": 5108.51, + "probability": 0.9058 + }, + { + "start": 5109.18, + "end": 5109.98, + "probability": 0.8227 + }, + { + "start": 5110.56, + "end": 5112.72, + "probability": 0.9474 + }, + { + "start": 5113.34, + "end": 5113.34, + "probability": 0.4299 + }, + { + "start": 5113.34, + "end": 5113.58, + "probability": 0.6206 + }, + { + "start": 5114.06, + "end": 5115.8, + "probability": 0.6106 + }, + { + "start": 5116.14, + "end": 5116.34, + "probability": 0.9061 + }, + { + "start": 5117.74, + "end": 5118.4, + "probability": 0.805 + }, + { + "start": 5119.54, + "end": 5121.88, + "probability": 0.8254 + }, + { + "start": 5122.68, + "end": 5125.37, + "probability": 0.9456 + }, + { + "start": 5126.3, + "end": 5127.12, + "probability": 0.7111 + }, + { + "start": 5128.16, + "end": 5129.62, + "probability": 0.9307 + }, + { + "start": 5130.54, + "end": 5134.06, + "probability": 0.9137 + }, + { + "start": 5135.66, + "end": 5141.28, + "probability": 0.8627 + }, + { + "start": 5142.86, + "end": 5146.16, + "probability": 0.9089 + }, + { + "start": 5146.7, + "end": 5149.26, + "probability": 0.9908 + }, + { + "start": 5150.56, + "end": 5153.94, + "probability": 0.9958 + }, + { + "start": 5156.52, + "end": 5158.7, + "probability": 0.8909 + }, + { + "start": 5159.42, + "end": 5161.5, + "probability": 0.9972 + }, + { + "start": 5162.08, + "end": 5164.74, + "probability": 0.9858 + }, + { + "start": 5165.58, + "end": 5169.22, + "probability": 0.8424 + }, + { + "start": 5169.32, + "end": 5169.82, + "probability": 0.8871 + }, + { + "start": 5170.34, + "end": 5171.18, + "probability": 0.9501 + }, + { + "start": 5172.8, + "end": 5173.36, + "probability": 0.9849 + }, + { + "start": 5173.78, + "end": 5174.68, + "probability": 0.9563 + }, + { + "start": 5174.68, + "end": 5175.86, + "probability": 0.9614 + }, + { + "start": 5175.9, + "end": 5176.37, + "probability": 0.938 + }, + { + "start": 5178.76, + "end": 5182.74, + "probability": 0.9873 + }, + { + "start": 5183.3, + "end": 5185.52, + "probability": 0.9941 + }, + { + "start": 5186.52, + "end": 5186.88, + "probability": 0.9028 + }, + { + "start": 5187.66, + "end": 5189.76, + "probability": 0.5272 + }, + { + "start": 5190.48, + "end": 5194.06, + "probability": 0.9833 + }, + { + "start": 5195.66, + "end": 5197.06, + "probability": 0.979 + }, + { + "start": 5197.8, + "end": 5200.6, + "probability": 0.9244 + }, + { + "start": 5201.7, + "end": 5205.51, + "probability": 0.8068 + }, + { + "start": 5206.56, + "end": 5208.52, + "probability": 0.9653 + }, + { + "start": 5210.28, + "end": 5211.14, + "probability": 0.9189 + }, + { + "start": 5212.44, + "end": 5213.22, + "probability": 0.9163 + }, + { + "start": 5214.52, + "end": 5217.96, + "probability": 0.9805 + }, + { + "start": 5219.1, + "end": 5220.22, + "probability": 0.7994 + }, + { + "start": 5220.86, + "end": 5223.46, + "probability": 0.9659 + }, + { + "start": 5224.98, + "end": 5226.72, + "probability": 0.7182 + }, + { + "start": 5226.76, + "end": 5229.44, + "probability": 0.9857 + }, + { + "start": 5229.96, + "end": 5233.78, + "probability": 0.9829 + }, + { + "start": 5235.08, + "end": 5239.4, + "probability": 0.995 + }, + { + "start": 5240.16, + "end": 5243.58, + "probability": 0.9069 + }, + { + "start": 5244.62, + "end": 5247.36, + "probability": 0.8238 + }, + { + "start": 5248.12, + "end": 5250.12, + "probability": 0.9969 + }, + { + "start": 5251.14, + "end": 5254.72, + "probability": 0.8848 + }, + { + "start": 5255.9, + "end": 5258.48, + "probability": 0.9546 + }, + { + "start": 5259.46, + "end": 5263.02, + "probability": 0.9465 + }, + { + "start": 5263.98, + "end": 5264.76, + "probability": 0.8929 + }, + { + "start": 5265.4, + "end": 5272.04, + "probability": 0.9874 + }, + { + "start": 5273.62, + "end": 5279.38, + "probability": 0.9913 + }, + { + "start": 5280.08, + "end": 5284.52, + "probability": 0.9476 + }, + { + "start": 5285.1, + "end": 5285.62, + "probability": 0.9501 + }, + { + "start": 5286.24, + "end": 5291.16, + "probability": 0.9933 + }, + { + "start": 5291.9, + "end": 5295.04, + "probability": 0.9998 + }, + { + "start": 5296.16, + "end": 5299.4, + "probability": 0.9945 + }, + { + "start": 5300.1, + "end": 5300.92, + "probability": 0.9421 + }, + { + "start": 5301.68, + "end": 5304.9, + "probability": 0.9607 + }, + { + "start": 5305.38, + "end": 5307.66, + "probability": 0.955 + }, + { + "start": 5308.4, + "end": 5311.88, + "probability": 0.8741 + }, + { + "start": 5312.5, + "end": 5313.82, + "probability": 0.9809 + }, + { + "start": 5315.4, + "end": 5318.62, + "probability": 0.9733 + }, + { + "start": 5319.22, + "end": 5324.34, + "probability": 0.9364 + }, + { + "start": 5325.72, + "end": 5331.26, + "probability": 0.8834 + }, + { + "start": 5331.88, + "end": 5332.7, + "probability": 0.9124 + }, + { + "start": 5333.04, + "end": 5333.86, + "probability": 0.983 + }, + { + "start": 5334.22, + "end": 5335.0, + "probability": 0.9657 + }, + { + "start": 5335.34, + "end": 5336.02, + "probability": 0.7838 + }, + { + "start": 5336.52, + "end": 5339.26, + "probability": 0.9969 + }, + { + "start": 5340.74, + "end": 5344.26, + "probability": 0.9945 + }, + { + "start": 5344.26, + "end": 5347.08, + "probability": 0.9728 + }, + { + "start": 5348.18, + "end": 5349.52, + "probability": 0.9744 + }, + { + "start": 5351.14, + "end": 5352.44, + "probability": 0.9983 + }, + { + "start": 5352.98, + "end": 5355.56, + "probability": 0.8638 + }, + { + "start": 5356.14, + "end": 5357.9, + "probability": 0.9717 + }, + { + "start": 5358.48, + "end": 5360.98, + "probability": 0.9257 + }, + { + "start": 5361.62, + "end": 5363.36, + "probability": 0.9949 + }, + { + "start": 5364.0, + "end": 5366.88, + "probability": 0.9883 + }, + { + "start": 5367.86, + "end": 5368.48, + "probability": 0.9498 + }, + { + "start": 5369.02, + "end": 5374.16, + "probability": 0.9897 + }, + { + "start": 5374.86, + "end": 5377.42, + "probability": 0.964 + }, + { + "start": 5379.38, + "end": 5385.54, + "probability": 0.9923 + }, + { + "start": 5386.42, + "end": 5388.64, + "probability": 0.8245 + }, + { + "start": 5389.64, + "end": 5393.02, + "probability": 0.8923 + }, + { + "start": 5394.0, + "end": 5395.14, + "probability": 0.9948 + }, + { + "start": 5395.88, + "end": 5398.18, + "probability": 0.8525 + }, + { + "start": 5399.24, + "end": 5402.16, + "probability": 0.939 + }, + { + "start": 5402.48, + "end": 5402.66, + "probability": 0.7208 + }, + { + "start": 5405.82, + "end": 5407.57, + "probability": 0.5488 + }, + { + "start": 5408.56, + "end": 5409.18, + "probability": 0.9601 + }, + { + "start": 5409.72, + "end": 5413.72, + "probability": 0.5305 + }, + { + "start": 5414.04, + "end": 5417.64, + "probability": 0.9612 + }, + { + "start": 5418.24, + "end": 5421.0, + "probability": 0.7581 + }, + { + "start": 5422.0, + "end": 5424.56, + "probability": 0.3846 + }, + { + "start": 5425.6, + "end": 5425.64, + "probability": 0.1151 + }, + { + "start": 5425.64, + "end": 5426.38, + "probability": 0.3855 + }, + { + "start": 5426.98, + "end": 5430.0, + "probability": 0.54 + }, + { + "start": 5431.02, + "end": 5431.66, + "probability": 0.0862 + }, + { + "start": 5442.54, + "end": 5442.82, + "probability": 0.3513 + }, + { + "start": 5452.24, + "end": 5452.7, + "probability": 0.4729 + }, + { + "start": 5454.88, + "end": 5455.72, + "probability": 0.8086 + }, + { + "start": 5456.3, + "end": 5460.16, + "probability": 0.8891 + }, + { + "start": 5461.12, + "end": 5462.7, + "probability": 0.8062 + }, + { + "start": 5463.34, + "end": 5465.94, + "probability": 0.9829 + }, + { + "start": 5467.78, + "end": 5469.38, + "probability": 0.989 + }, + { + "start": 5470.24, + "end": 5472.94, + "probability": 0.9098 + }, + { + "start": 5474.0, + "end": 5476.72, + "probability": 0.7974 + }, + { + "start": 5478.12, + "end": 5480.3, + "probability": 0.7883 + }, + { + "start": 5480.62, + "end": 5482.72, + "probability": 0.8217 + }, + { + "start": 5483.62, + "end": 5488.3, + "probability": 0.969 + }, + { + "start": 5488.34, + "end": 5493.02, + "probability": 0.9451 + }, + { + "start": 5493.62, + "end": 5494.5, + "probability": 0.7047 + }, + { + "start": 5495.4, + "end": 5498.28, + "probability": 0.8968 + }, + { + "start": 5498.66, + "end": 5499.82, + "probability": 0.6075 + }, + { + "start": 5501.74, + "end": 5502.5, + "probability": 0.7177 + }, + { + "start": 5502.64, + "end": 5508.34, + "probability": 0.9746 + }, + { + "start": 5509.86, + "end": 5512.92, + "probability": 0.9866 + }, + { + "start": 5513.72, + "end": 5518.5, + "probability": 0.8511 + }, + { + "start": 5518.72, + "end": 5521.04, + "probability": 0.8516 + }, + { + "start": 5523.42, + "end": 5525.6, + "probability": 0.6807 + }, + { + "start": 5526.22, + "end": 5531.32, + "probability": 0.842 + }, + { + "start": 5532.12, + "end": 5536.46, + "probability": 0.9603 + }, + { + "start": 5537.02, + "end": 5540.62, + "probability": 0.9644 + }, + { + "start": 5541.04, + "end": 5542.3, + "probability": 0.8591 + }, + { + "start": 5542.62, + "end": 5543.52, + "probability": 0.8611 + }, + { + "start": 5543.96, + "end": 5544.62, + "probability": 0.9805 + }, + { + "start": 5544.7, + "end": 5545.5, + "probability": 0.9504 + }, + { + "start": 5546.58, + "end": 5548.6, + "probability": 0.9326 + }, + { + "start": 5549.28, + "end": 5555.1, + "probability": 0.9897 + }, + { + "start": 5555.78, + "end": 5558.86, + "probability": 0.9708 + }, + { + "start": 5560.28, + "end": 5560.84, + "probability": 0.6387 + }, + { + "start": 5561.54, + "end": 5566.48, + "probability": 0.9928 + }, + { + "start": 5567.1, + "end": 5567.56, + "probability": 0.7111 + }, + { + "start": 5567.58, + "end": 5573.24, + "probability": 0.9917 + }, + { + "start": 5573.62, + "end": 5575.28, + "probability": 0.7766 + }, + { + "start": 5576.46, + "end": 5576.66, + "probability": 0.6589 + }, + { + "start": 5576.7, + "end": 5577.34, + "probability": 0.8657 + }, + { + "start": 5577.4, + "end": 5583.2, + "probability": 0.6199 + }, + { + "start": 5584.08, + "end": 5586.78, + "probability": 0.9754 + }, + { + "start": 5587.78, + "end": 5591.4, + "probability": 0.9668 + }, + { + "start": 5592.46, + "end": 5595.36, + "probability": 0.9685 + }, + { + "start": 5597.74, + "end": 5600.74, + "probability": 0.9219 + }, + { + "start": 5601.54, + "end": 5604.84, + "probability": 0.4882 + }, + { + "start": 5605.1, + "end": 5609.46, + "probability": 0.9763 + }, + { + "start": 5610.2, + "end": 5616.86, + "probability": 0.9801 + }, + { + "start": 5617.5, + "end": 5620.58, + "probability": 0.9858 + }, + { + "start": 5622.04, + "end": 5624.54, + "probability": 0.9983 + }, + { + "start": 5625.12, + "end": 5626.68, + "probability": 0.8012 + }, + { + "start": 5627.16, + "end": 5630.64, + "probability": 0.9954 + }, + { + "start": 5630.68, + "end": 5633.02, + "probability": 0.9102 + }, + { + "start": 5634.0, + "end": 5634.99, + "probability": 0.8615 + }, + { + "start": 5635.1, + "end": 5637.67, + "probability": 0.9456 + }, + { + "start": 5638.2, + "end": 5639.14, + "probability": 0.7314 + }, + { + "start": 5639.7, + "end": 5641.62, + "probability": 0.5478 + }, + { + "start": 5642.26, + "end": 5644.78, + "probability": 0.8328 + }, + { + "start": 5645.4, + "end": 5649.98, + "probability": 0.9953 + }, + { + "start": 5652.66, + "end": 5654.02, + "probability": 0.7996 + }, + { + "start": 5655.38, + "end": 5656.4, + "probability": 0.9537 + }, + { + "start": 5656.54, + "end": 5657.49, + "probability": 0.8472 + }, + { + "start": 5657.58, + "end": 5658.84, + "probability": 0.6608 + }, + { + "start": 5659.78, + "end": 5664.88, + "probability": 0.9834 + }, + { + "start": 5664.9, + "end": 5665.54, + "probability": 0.6128 + }, + { + "start": 5665.94, + "end": 5668.12, + "probability": 0.7549 + }, + { + "start": 5668.32, + "end": 5673.38, + "probability": 0.9833 + }, + { + "start": 5673.71, + "end": 5683.5, + "probability": 0.9722 + }, + { + "start": 5683.78, + "end": 5686.74, + "probability": 0.8438 + }, + { + "start": 5687.4, + "end": 5689.36, + "probability": 0.9962 + }, + { + "start": 5689.66, + "end": 5690.86, + "probability": 0.8894 + }, + { + "start": 5691.7, + "end": 5692.98, + "probability": 0.9422 + }, + { + "start": 5693.74, + "end": 5694.98, + "probability": 0.8105 + }, + { + "start": 5695.5, + "end": 5698.42, + "probability": 0.9922 + }, + { + "start": 5698.42, + "end": 5702.16, + "probability": 0.6201 + }, + { + "start": 5702.72, + "end": 5704.64, + "probability": 0.8642 + }, + { + "start": 5705.26, + "end": 5706.92, + "probability": 0.8467 + }, + { + "start": 5707.26, + "end": 5710.3, + "probability": 0.9891 + }, + { + "start": 5711.14, + "end": 5713.98, + "probability": 0.9902 + }, + { + "start": 5713.98, + "end": 5717.98, + "probability": 0.9954 + }, + { + "start": 5718.94, + "end": 5722.2, + "probability": 0.9964 + }, + { + "start": 5722.2, + "end": 5725.98, + "probability": 0.9933 + }, + { + "start": 5727.2, + "end": 5731.26, + "probability": 0.9934 + }, + { + "start": 5731.86, + "end": 5734.48, + "probability": 0.9834 + }, + { + "start": 5735.3, + "end": 5738.76, + "probability": 0.9694 + }, + { + "start": 5739.72, + "end": 5741.54, + "probability": 0.999 + }, + { + "start": 5743.0, + "end": 5748.94, + "probability": 0.9963 + }, + { + "start": 5749.72, + "end": 5756.0, + "probability": 0.9869 + }, + { + "start": 5756.42, + "end": 5757.2, + "probability": 0.766 + }, + { + "start": 5757.26, + "end": 5757.9, + "probability": 0.5832 + }, + { + "start": 5758.64, + "end": 5759.96, + "probability": 0.8699 + }, + { + "start": 5761.44, + "end": 5762.46, + "probability": 0.9025 + }, + { + "start": 5762.98, + "end": 5765.46, + "probability": 0.8636 + }, + { + "start": 5766.54, + "end": 5769.08, + "probability": 0.734 + }, + { + "start": 5769.08, + "end": 5769.94, + "probability": 0.5509 + }, + { + "start": 5770.02, + "end": 5771.7, + "probability": 0.9731 + }, + { + "start": 5771.72, + "end": 5772.54, + "probability": 0.3665 + }, + { + "start": 5772.62, + "end": 5772.88, + "probability": 0.3221 + }, + { + "start": 5772.88, + "end": 5773.32, + "probability": 0.3555 + }, + { + "start": 5773.54, + "end": 5774.96, + "probability": 0.4769 + }, + { + "start": 5775.4, + "end": 5777.36, + "probability": 0.5168 + }, + { + "start": 5779.2, + "end": 5779.74, + "probability": 0.4351 + }, + { + "start": 5779.82, + "end": 5781.82, + "probability": 0.6265 + }, + { + "start": 5781.96, + "end": 5783.1, + "probability": 0.9433 + }, + { + "start": 5783.16, + "end": 5784.22, + "probability": 0.8869 + }, + { + "start": 5784.46, + "end": 5786.96, + "probability": 0.9819 + }, + { + "start": 5787.62, + "end": 5790.18, + "probability": 0.7993 + }, + { + "start": 5791.28, + "end": 5792.42, + "probability": 0.3638 + }, + { + "start": 5793.46, + "end": 5793.74, + "probability": 0.2207 + }, + { + "start": 5793.74, + "end": 5798.06, + "probability": 0.9628 + }, + { + "start": 5798.7, + "end": 5801.84, + "probability": 0.9945 + }, + { + "start": 5802.06, + "end": 5806.12, + "probability": 0.9463 + }, + { + "start": 5806.42, + "end": 5807.14, + "probability": 0.8198 + }, + { + "start": 5807.84, + "end": 5811.74, + "probability": 0.7438 + }, + { + "start": 5811.8, + "end": 5812.52, + "probability": 0.4326 + }, + { + "start": 5812.8, + "end": 5812.92, + "probability": 0.0482 + }, + { + "start": 5812.92, + "end": 5812.92, + "probability": 0.2946 + }, + { + "start": 5812.94, + "end": 5814.9, + "probability": 0.1048 + }, + { + "start": 5815.04, + "end": 5816.0, + "probability": 0.7583 + }, + { + "start": 5816.14, + "end": 5819.96, + "probability": 0.9328 + }, + { + "start": 5820.88, + "end": 5822.52, + "probability": 0.8154 + }, + { + "start": 5823.04, + "end": 5830.02, + "probability": 0.9216 + }, + { + "start": 5832.42, + "end": 5835.5, + "probability": 0.926 + }, + { + "start": 5836.2, + "end": 5839.08, + "probability": 0.8164 + }, + { + "start": 5839.16, + "end": 5844.26, + "probability": 0.7647 + }, + { + "start": 5845.4, + "end": 5848.72, + "probability": 0.6922 + }, + { + "start": 5849.28, + "end": 5850.54, + "probability": 0.8174 + }, + { + "start": 5851.14, + "end": 5852.06, + "probability": 0.8796 + }, + { + "start": 5852.62, + "end": 5858.7, + "probability": 0.988 + }, + { + "start": 5859.02, + "end": 5860.4, + "probability": 0.9092 + }, + { + "start": 5861.04, + "end": 5864.38, + "probability": 0.9952 + }, + { + "start": 5864.44, + "end": 5864.88, + "probability": 0.7497 + }, + { + "start": 5867.02, + "end": 5867.66, + "probability": 0.8398 + }, + { + "start": 5869.1, + "end": 5872.02, + "probability": 0.8957 + }, + { + "start": 5878.64, + "end": 5881.34, + "probability": 0.4283 + }, + { + "start": 5882.1, + "end": 5884.72, + "probability": 0.8655 + }, + { + "start": 5896.08, + "end": 5897.42, + "probability": 0.7554 + }, + { + "start": 5898.18, + "end": 5902.82, + "probability": 0.5382 + }, + { + "start": 5903.08, + "end": 5903.08, + "probability": 0.1084 + }, + { + "start": 5903.1, + "end": 5903.18, + "probability": 0.2949 + }, + { + "start": 5903.18, + "end": 5903.94, + "probability": 0.9406 + }, + { + "start": 5904.58, + "end": 5906.22, + "probability": 0.9363 + }, + { + "start": 5906.74, + "end": 5907.9, + "probability": 0.8891 + }, + { + "start": 5908.26, + "end": 5909.56, + "probability": 0.7192 + }, + { + "start": 5909.64, + "end": 5910.1, + "probability": 0.7363 + }, + { + "start": 5910.18, + "end": 5910.69, + "probability": 0.955 + }, + { + "start": 5910.84, + "end": 5912.66, + "probability": 0.9764 + }, + { + "start": 5913.74, + "end": 5915.92, + "probability": 0.9085 + }, + { + "start": 5916.64, + "end": 5920.82, + "probability": 0.9882 + }, + { + "start": 5920.9, + "end": 5921.9, + "probability": 0.9902 + }, + { + "start": 5922.3, + "end": 5923.36, + "probability": 0.9653 + }, + { + "start": 5923.5, + "end": 5924.58, + "probability": 0.8884 + }, + { + "start": 5925.26, + "end": 5927.34, + "probability": 0.8794 + }, + { + "start": 5928.0, + "end": 5932.3, + "probability": 0.7114 + }, + { + "start": 5932.36, + "end": 5934.8, + "probability": 0.981 + }, + { + "start": 5935.78, + "end": 5940.28, + "probability": 0.9424 + }, + { + "start": 5941.0, + "end": 5941.84, + "probability": 0.8321 + }, + { + "start": 5941.96, + "end": 5944.54, + "probability": 0.8068 + }, + { + "start": 5945.3, + "end": 5948.66, + "probability": 0.9766 + }, + { + "start": 5949.42, + "end": 5950.66, + "probability": 0.1257 + }, + { + "start": 5950.8, + "end": 5951.3, + "probability": 0.8108 + }, + { + "start": 5951.4, + "end": 5957.08, + "probability": 0.9487 + }, + { + "start": 5957.66, + "end": 5959.82, + "probability": 0.9882 + }, + { + "start": 5959.9, + "end": 5962.72, + "probability": 0.9841 + }, + { + "start": 5962.74, + "end": 5964.58, + "probability": 0.9967 + }, + { + "start": 5966.14, + "end": 5972.62, + "probability": 0.5943 + }, + { + "start": 5973.22, + "end": 5976.9, + "probability": 0.9807 + }, + { + "start": 5977.32, + "end": 5978.94, + "probability": 0.7505 + }, + { + "start": 5980.2, + "end": 5981.66, + "probability": 0.9946 + }, + { + "start": 5982.16, + "end": 5982.58, + "probability": 0.6011 + }, + { + "start": 5982.64, + "end": 5982.74, + "probability": 0.6001 + }, + { + "start": 5982.92, + "end": 5985.68, + "probability": 0.9359 + }, + { + "start": 5985.78, + "end": 5986.82, + "probability": 0.865 + }, + { + "start": 5987.7, + "end": 5992.06, + "probability": 0.9712 + }, + { + "start": 5992.4, + "end": 5993.95, + "probability": 0.9875 + }, + { + "start": 5994.7, + "end": 5997.32, + "probability": 0.9768 + }, + { + "start": 5997.32, + "end": 6001.56, + "probability": 0.9924 + }, + { + "start": 6001.62, + "end": 6002.2, + "probability": 0.8481 + }, + { + "start": 6002.84, + "end": 6005.68, + "probability": 0.9943 + }, + { + "start": 6005.86, + "end": 6007.1, + "probability": 0.9672 + }, + { + "start": 6008.22, + "end": 6009.13, + "probability": 0.9839 + }, + { + "start": 6009.36, + "end": 6012.68, + "probability": 0.9893 + }, + { + "start": 6012.74, + "end": 6013.38, + "probability": 0.9053 + }, + { + "start": 6013.4, + "end": 6013.88, + "probability": 0.7819 + }, + { + "start": 6014.46, + "end": 6015.48, + "probability": 0.9968 + }, + { + "start": 6016.6, + "end": 6021.2, + "probability": 0.9675 + }, + { + "start": 6021.32, + "end": 6028.1, + "probability": 0.9538 + }, + { + "start": 6028.42, + "end": 6029.74, + "probability": 0.9092 + }, + { + "start": 6030.12, + "end": 6031.48, + "probability": 0.9912 + }, + { + "start": 6031.92, + "end": 6033.34, + "probability": 0.9842 + }, + { + "start": 6033.6, + "end": 6034.68, + "probability": 0.9822 + }, + { + "start": 6035.38, + "end": 6036.08, + "probability": 0.7631 + }, + { + "start": 6036.18, + "end": 6039.12, + "probability": 0.6218 + }, + { + "start": 6039.9, + "end": 6043.4, + "probability": 0.9907 + }, + { + "start": 6043.7, + "end": 6045.0, + "probability": 0.8958 + }, + { + "start": 6045.3, + "end": 6048.56, + "probability": 0.8856 + }, + { + "start": 6049.04, + "end": 6051.24, + "probability": 0.9858 + }, + { + "start": 6051.9, + "end": 6053.04, + "probability": 0.9758 + }, + { + "start": 6053.36, + "end": 6053.58, + "probability": 0.6189 + }, + { + "start": 6053.7, + "end": 6054.58, + "probability": 0.9466 + }, + { + "start": 6055.22, + "end": 6056.32, + "probability": 0.9779 + }, + { + "start": 6056.38, + "end": 6058.58, + "probability": 0.9771 + }, + { + "start": 6059.18, + "end": 6062.24, + "probability": 0.9624 + }, + { + "start": 6062.32, + "end": 6063.32, + "probability": 0.9703 + }, + { + "start": 6064.0, + "end": 6065.72, + "probability": 0.9698 + }, + { + "start": 6065.84, + "end": 6067.88, + "probability": 0.9904 + }, + { + "start": 6068.74, + "end": 6069.44, + "probability": 0.9696 + }, + { + "start": 6069.94, + "end": 6072.7, + "probability": 0.96 + }, + { + "start": 6073.24, + "end": 6077.44, + "probability": 0.9932 + }, + { + "start": 6077.92, + "end": 6082.32, + "probability": 0.9846 + }, + { + "start": 6082.7, + "end": 6082.92, + "probability": 0.3099 + }, + { + "start": 6083.04, + "end": 6084.28, + "probability": 0.7302 + }, + { + "start": 6084.7, + "end": 6085.6, + "probability": 0.7528 + }, + { + "start": 6085.64, + "end": 6086.42, + "probability": 0.6297 + }, + { + "start": 6086.58, + "end": 6088.46, + "probability": 0.8975 + }, + { + "start": 6088.62, + "end": 6089.42, + "probability": 0.8364 + }, + { + "start": 6090.56, + "end": 6091.72, + "probability": 0.7509 + }, + { + "start": 6091.8, + "end": 6092.08, + "probability": 0.2307 + }, + { + "start": 6092.08, + "end": 6093.02, + "probability": 0.527 + }, + { + "start": 6093.14, + "end": 6095.3, + "probability": 0.9715 + }, + { + "start": 6095.84, + "end": 6096.58, + "probability": 0.9277 + }, + { + "start": 6097.02, + "end": 6098.76, + "probability": 0.752 + }, + { + "start": 6098.86, + "end": 6099.51, + "probability": 0.8695 + }, + { + "start": 6100.0, + "end": 6100.69, + "probability": 0.9365 + }, + { + "start": 6101.26, + "end": 6101.96, + "probability": 0.7099 + }, + { + "start": 6102.36, + "end": 6103.45, + "probability": 0.9712 + }, + { + "start": 6104.12, + "end": 6108.32, + "probability": 0.93 + }, + { + "start": 6108.42, + "end": 6111.1, + "probability": 0.932 + }, + { + "start": 6111.34, + "end": 6113.38, + "probability": 0.9912 + }, + { + "start": 6114.78, + "end": 6117.42, + "probability": 0.9366 + }, + { + "start": 6118.04, + "end": 6118.24, + "probability": 0.3256 + }, + { + "start": 6118.32, + "end": 6121.33, + "probability": 0.9744 + }, + { + "start": 6122.42, + "end": 6125.02, + "probability": 0.8045 + }, + { + "start": 6125.34, + "end": 6126.54, + "probability": 0.7212 + }, + { + "start": 6126.64, + "end": 6128.3, + "probability": 0.9756 + }, + { + "start": 6129.46, + "end": 6130.67, + "probability": 0.9565 + }, + { + "start": 6131.52, + "end": 6133.47, + "probability": 0.9723 + }, + { + "start": 6133.92, + "end": 6135.8, + "probability": 0.9472 + }, + { + "start": 6136.16, + "end": 6138.66, + "probability": 0.812 + }, + { + "start": 6138.68, + "end": 6139.58, + "probability": 0.9494 + }, + { + "start": 6139.76, + "end": 6140.56, + "probability": 0.6847 + }, + { + "start": 6141.0, + "end": 6141.72, + "probability": 0.7318 + }, + { + "start": 6141.8, + "end": 6143.32, + "probability": 0.988 + }, + { + "start": 6143.76, + "end": 6145.58, + "probability": 0.8859 + }, + { + "start": 6145.72, + "end": 6151.28, + "probability": 0.9744 + }, + { + "start": 6151.64, + "end": 6152.58, + "probability": 0.8766 + }, + { + "start": 6152.68, + "end": 6153.78, + "probability": 0.5123 + }, + { + "start": 6153.84, + "end": 6155.4, + "probability": 0.6 + }, + { + "start": 6155.82, + "end": 6157.02, + "probability": 0.4979 + }, + { + "start": 6157.06, + "end": 6158.02, + "probability": 0.86 + }, + { + "start": 6158.46, + "end": 6159.5, + "probability": 0.9912 + }, + { + "start": 6159.5, + "end": 6161.98, + "probability": 0.9771 + }, + { + "start": 6163.02, + "end": 6165.82, + "probability": 0.6984 + }, + { + "start": 6165.84, + "end": 6167.0, + "probability": 0.8407 + }, + { + "start": 6167.54, + "end": 6168.5, + "probability": 0.8389 + }, + { + "start": 6168.9, + "end": 6169.88, + "probability": 0.8213 + }, + { + "start": 6170.18, + "end": 6175.42, + "probability": 0.9617 + }, + { + "start": 6175.82, + "end": 6177.77, + "probability": 0.9761 + }, + { + "start": 6177.88, + "end": 6179.26, + "probability": 0.4778 + }, + { + "start": 6179.38, + "end": 6180.26, + "probability": 0.697 + }, + { + "start": 6180.78, + "end": 6180.88, + "probability": 0.5023 + }, + { + "start": 6181.0, + "end": 6181.68, + "probability": 0.8375 + }, + { + "start": 6182.04, + "end": 6185.44, + "probability": 0.9218 + }, + { + "start": 6185.48, + "end": 6186.04, + "probability": 0.835 + }, + { + "start": 6186.2, + "end": 6186.86, + "probability": 0.8916 + }, + { + "start": 6187.48, + "end": 6189.98, + "probability": 0.9811 + }, + { + "start": 6190.28, + "end": 6192.44, + "probability": 0.9907 + }, + { + "start": 6192.92, + "end": 6195.22, + "probability": 0.9816 + }, + { + "start": 6195.68, + "end": 6198.22, + "probability": 0.9826 + }, + { + "start": 6198.5, + "end": 6200.88, + "probability": 0.9854 + }, + { + "start": 6201.36, + "end": 6204.3, + "probability": 0.9277 + }, + { + "start": 6205.16, + "end": 6205.84, + "probability": 0.7318 + }, + { + "start": 6206.22, + "end": 6206.88, + "probability": 0.6772 + }, + { + "start": 6206.9, + "end": 6208.86, + "probability": 0.8235 + }, + { + "start": 6209.5, + "end": 6210.54, + "probability": 0.7439 + }, + { + "start": 6210.6, + "end": 6212.08, + "probability": 0.9728 + }, + { + "start": 6212.38, + "end": 6213.98, + "probability": 0.6957 + }, + { + "start": 6214.4, + "end": 6214.52, + "probability": 0.6703 + }, + { + "start": 6214.52, + "end": 6214.82, + "probability": 0.8312 + }, + { + "start": 6214.86, + "end": 6215.68, + "probability": 0.6524 + }, + { + "start": 6216.0, + "end": 6217.76, + "probability": 0.8051 + }, + { + "start": 6217.84, + "end": 6220.06, + "probability": 0.5622 + }, + { + "start": 6220.36, + "end": 6222.05, + "probability": 0.9438 + }, + { + "start": 6222.72, + "end": 6225.82, + "probability": 0.9893 + }, + { + "start": 6225.92, + "end": 6228.38, + "probability": 0.98 + }, + { + "start": 6228.44, + "end": 6230.85, + "probability": 0.8411 + }, + { + "start": 6232.02, + "end": 6235.12, + "probability": 0.9841 + }, + { + "start": 6235.8, + "end": 6236.02, + "probability": 0.9183 + }, + { + "start": 6236.12, + "end": 6239.02, + "probability": 0.9739 + }, + { + "start": 6239.08, + "end": 6239.88, + "probability": 0.9505 + }, + { + "start": 6240.32, + "end": 6241.06, + "probability": 0.81 + }, + { + "start": 6241.14, + "end": 6242.07, + "probability": 0.9072 + }, + { + "start": 6242.58, + "end": 6243.33, + "probability": 0.9771 + }, + { + "start": 6244.02, + "end": 6245.43, + "probability": 0.981 + }, + { + "start": 6246.1, + "end": 6246.95, + "probability": 0.9872 + }, + { + "start": 6247.6, + "end": 6248.92, + "probability": 0.8235 + }, + { + "start": 6249.26, + "end": 6250.82, + "probability": 0.9648 + }, + { + "start": 6251.24, + "end": 6253.24, + "probability": 0.8748 + }, + { + "start": 6253.48, + "end": 6254.74, + "probability": 0.8755 + }, + { + "start": 6254.8, + "end": 6255.53, + "probability": 0.9952 + }, + { + "start": 6256.1, + "end": 6257.48, + "probability": 0.9966 + }, + { + "start": 6257.5, + "end": 6258.16, + "probability": 0.7891 + }, + { + "start": 6258.72, + "end": 6261.26, + "probability": 0.9953 + }, + { + "start": 6261.3, + "end": 6261.46, + "probability": 0.7528 + }, + { + "start": 6261.64, + "end": 6265.25, + "probability": 0.7587 + }, + { + "start": 6265.32, + "end": 6267.16, + "probability": 0.045 + }, + { + "start": 6267.2, + "end": 6267.3, + "probability": 0.4713 + }, + { + "start": 6267.3, + "end": 6268.14, + "probability": 0.5924 + }, + { + "start": 6268.68, + "end": 6273.94, + "probability": 0.9789 + }, + { + "start": 6276.58, + "end": 6276.68, + "probability": 0.3842 + }, + { + "start": 6283.34, + "end": 6284.02, + "probability": 0.2815 + }, + { + "start": 6284.18, + "end": 6285.96, + "probability": 0.9473 + }, + { + "start": 6289.18, + "end": 6289.76, + "probability": 0.7594 + }, + { + "start": 6297.48, + "end": 6298.8, + "probability": 0.5473 + }, + { + "start": 6298.94, + "end": 6301.2, + "probability": 0.7935 + }, + { + "start": 6301.4, + "end": 6302.08, + "probability": 0.6603 + }, + { + "start": 6302.92, + "end": 6307.24, + "probability": 0.8145 + }, + { + "start": 6307.92, + "end": 6308.44, + "probability": 0.9681 + }, + { + "start": 6309.02, + "end": 6310.6, + "probability": 0.6039 + }, + { + "start": 6311.88, + "end": 6313.9, + "probability": 0.9956 + }, + { + "start": 6316.22, + "end": 6317.02, + "probability": 0.1712 + }, + { + "start": 6318.4, + "end": 6319.44, + "probability": 0.6401 + }, + { + "start": 6319.58, + "end": 6321.48, + "probability": 0.9869 + }, + { + "start": 6321.84, + "end": 6321.94, + "probability": 0.6448 + }, + { + "start": 6324.12, + "end": 6330.24, + "probability": 0.9569 + }, + { + "start": 6331.0, + "end": 6333.62, + "probability": 0.882 + }, + { + "start": 6335.14, + "end": 6339.6, + "probability": 0.9216 + }, + { + "start": 6341.3, + "end": 6349.99, + "probability": 0.8788 + }, + { + "start": 6350.5, + "end": 6351.7, + "probability": 0.5314 + }, + { + "start": 6354.22, + "end": 6355.48, + "probability": 0.6162 + }, + { + "start": 6356.0, + "end": 6356.68, + "probability": 0.6646 + }, + { + "start": 6357.76, + "end": 6360.44, + "probability": 0.7745 + }, + { + "start": 6361.78, + "end": 6364.64, + "probability": 0.8514 + }, + { + "start": 6365.84, + "end": 6368.12, + "probability": 0.981 + }, + { + "start": 6369.04, + "end": 6370.4, + "probability": 0.5047 + }, + { + "start": 6371.38, + "end": 6372.32, + "probability": 0.5138 + }, + { + "start": 6373.56, + "end": 6375.98, + "probability": 0.9912 + }, + { + "start": 6377.98, + "end": 6380.36, + "probability": 0.9976 + }, + { + "start": 6381.12, + "end": 6383.14, + "probability": 0.7866 + }, + { + "start": 6384.1, + "end": 6384.8, + "probability": 0.1846 + }, + { + "start": 6384.8, + "end": 6384.8, + "probability": 0.0985 + }, + { + "start": 6384.8, + "end": 6385.59, + "probability": 0.8086 + }, + { + "start": 6386.18, + "end": 6388.92, + "probability": 0.684 + }, + { + "start": 6389.06, + "end": 6390.84, + "probability": 0.3028 + }, + { + "start": 6390.86, + "end": 6391.0, + "probability": 0.2557 + }, + { + "start": 6391.88, + "end": 6397.76, + "probability": 0.806 + }, + { + "start": 6398.54, + "end": 6401.5, + "probability": 0.8338 + }, + { + "start": 6402.04, + "end": 6403.12, + "probability": 0.6584 + }, + { + "start": 6403.96, + "end": 6404.84, + "probability": 0.9774 + }, + { + "start": 6404.94, + "end": 6406.14, + "probability": 0.5503 + }, + { + "start": 6408.8, + "end": 6410.44, + "probability": 0.9585 + }, + { + "start": 6412.48, + "end": 6414.74, + "probability": 0.5224 + }, + { + "start": 6415.96, + "end": 6419.84, + "probability": 0.9238 + }, + { + "start": 6420.52, + "end": 6425.56, + "probability": 0.9503 + }, + { + "start": 6426.64, + "end": 6427.02, + "probability": 0.0155 + }, + { + "start": 6427.23, + "end": 6431.0, + "probability": 0.8394 + }, + { + "start": 6433.84, + "end": 6434.38, + "probability": 0.302 + }, + { + "start": 6434.5, + "end": 6436.74, + "probability": 0.8443 + }, + { + "start": 6436.88, + "end": 6439.42, + "probability": 0.8972 + }, + { + "start": 6440.28, + "end": 6441.32, + "probability": 0.9202 + }, + { + "start": 6441.42, + "end": 6442.84, + "probability": 0.9034 + }, + { + "start": 6443.12, + "end": 6444.96, + "probability": 0.9061 + }, + { + "start": 6446.3, + "end": 6446.91, + "probability": 0.991 + }, + { + "start": 6447.58, + "end": 6448.52, + "probability": 0.0281 + }, + { + "start": 6449.36, + "end": 6449.92, + "probability": 0.286 + }, + { + "start": 6450.26, + "end": 6453.2, + "probability": 0.9414 + }, + { + "start": 6454.32, + "end": 6455.3, + "probability": 0.5232 + }, + { + "start": 6455.4, + "end": 6455.82, + "probability": 0.3337 + }, + { + "start": 6455.86, + "end": 6456.48, + "probability": 0.4703 + }, + { + "start": 6456.6, + "end": 6458.36, + "probability": 0.8397 + }, + { + "start": 6458.42, + "end": 6461.0, + "probability": 0.8735 + }, + { + "start": 6462.28, + "end": 6466.94, + "probability": 0.9223 + }, + { + "start": 6466.94, + "end": 6472.66, + "probability": 0.9747 + }, + { + "start": 6475.56, + "end": 6483.52, + "probability": 0.5915 + }, + { + "start": 6484.14, + "end": 6490.44, + "probability": 0.9039 + }, + { + "start": 6490.88, + "end": 6492.02, + "probability": 0.7756 + }, + { + "start": 6492.96, + "end": 6500.79, + "probability": 0.8541 + }, + { + "start": 6504.1, + "end": 6508.82, + "probability": 0.8288 + }, + { + "start": 6511.1, + "end": 6518.74, + "probability": 0.9101 + }, + { + "start": 6519.5, + "end": 6525.28, + "probability": 0.9721 + }, + { + "start": 6526.22, + "end": 6532.32, + "probability": 0.9255 + }, + { + "start": 6533.12, + "end": 6537.42, + "probability": 0.7271 + }, + { + "start": 6539.04, + "end": 6543.54, + "probability": 0.9077 + }, + { + "start": 6543.92, + "end": 6548.96, + "probability": 0.8216 + }, + { + "start": 6549.86, + "end": 6551.74, + "probability": 0.9843 + }, + { + "start": 6552.9, + "end": 6553.58, + "probability": 0.246 + }, + { + "start": 6554.14, + "end": 6558.88, + "probability": 0.6137 + }, + { + "start": 6559.56, + "end": 6565.7, + "probability": 0.7814 + }, + { + "start": 6567.3, + "end": 6568.16, + "probability": 0.9497 + }, + { + "start": 6568.24, + "end": 6568.9, + "probability": 0.5905 + }, + { + "start": 6569.02, + "end": 6569.44, + "probability": 0.8413 + }, + { + "start": 6569.48, + "end": 6570.86, + "probability": 0.867 + }, + { + "start": 6571.44, + "end": 6574.5, + "probability": 0.7946 + }, + { + "start": 6575.48, + "end": 6579.04, + "probability": 0.9785 + }, + { + "start": 6580.96, + "end": 6583.98, + "probability": 0.9478 + }, + { + "start": 6585.3, + "end": 6587.18, + "probability": 0.9608 + }, + { + "start": 6588.84, + "end": 6589.93, + "probability": 0.9812 + }, + { + "start": 6591.5, + "end": 6598.14, + "probability": 0.9848 + }, + { + "start": 6598.3, + "end": 6599.8, + "probability": 0.9555 + }, + { + "start": 6600.42, + "end": 6601.8, + "probability": 0.6896 + }, + { + "start": 6602.58, + "end": 6605.34, + "probability": 0.9237 + }, + { + "start": 6605.92, + "end": 6608.98, + "probability": 0.9971 + }, + { + "start": 6608.98, + "end": 6612.54, + "probability": 0.5616 + }, + { + "start": 6612.9, + "end": 6613.72, + "probability": 0.7717 + }, + { + "start": 6615.7, + "end": 6621.68, + "probability": 0.9953 + }, + { + "start": 6621.68, + "end": 6626.52, + "probability": 0.9521 + }, + { + "start": 6626.72, + "end": 6627.32, + "probability": 0.7581 + }, + { + "start": 6627.6, + "end": 6628.38, + "probability": 0.822 + }, + { + "start": 6629.24, + "end": 6634.5, + "probability": 0.8304 + }, + { + "start": 6634.64, + "end": 6635.86, + "probability": 0.812 + }, + { + "start": 6647.76, + "end": 6648.14, + "probability": 0.3407 + }, + { + "start": 6648.14, + "end": 6648.14, + "probability": 0.0472 + }, + { + "start": 6648.14, + "end": 6648.21, + "probability": 0.0095 + }, + { + "start": 6648.3, + "end": 6648.3, + "probability": 0.1298 + }, + { + "start": 6648.3, + "end": 6648.3, + "probability": 0.0601 + }, + { + "start": 6648.3, + "end": 6648.32, + "probability": 0.2355 + }, + { + "start": 6668.3, + "end": 6672.7, + "probability": 0.6805 + }, + { + "start": 6673.02, + "end": 6673.7, + "probability": 0.1543 + }, + { + "start": 6673.78, + "end": 6675.82, + "probability": 0.5985 + }, + { + "start": 6676.12, + "end": 6676.34, + "probability": 0.3683 + }, + { + "start": 6677.72, + "end": 6678.2, + "probability": 0.1827 + }, + { + "start": 6678.42, + "end": 6678.84, + "probability": 0.3172 + }, + { + "start": 6678.92, + "end": 6680.36, + "probability": 0.2557 + }, + { + "start": 6680.62, + "end": 6682.14, + "probability": 0.8947 + }, + { + "start": 6683.32, + "end": 6685.36, + "probability": 0.7446 + }, + { + "start": 6685.66, + "end": 6687.92, + "probability": 0.6609 + }, + { + "start": 6688.26, + "end": 6692.02, + "probability": 0.1296 + }, + { + "start": 6692.16, + "end": 6693.12, + "probability": 0.4302 + }, + { + "start": 6699.62, + "end": 6703.36, + "probability": 0.7111 + }, + { + "start": 6704.02, + "end": 6704.98, + "probability": 0.6713 + }, + { + "start": 6705.38, + "end": 6707.7, + "probability": 0.9917 + }, + { + "start": 6707.9, + "end": 6710.64, + "probability": 0.7541 + }, + { + "start": 6710.74, + "end": 6713.92, + "probability": 0.9606 + }, + { + "start": 6714.4, + "end": 6721.44, + "probability": 0.8817 + }, + { + "start": 6721.54, + "end": 6723.18, + "probability": 0.4119 + }, + { + "start": 6723.86, + "end": 6727.24, + "probability": 0.9903 + }, + { + "start": 6727.94, + "end": 6729.64, + "probability": 0.8862 + }, + { + "start": 6729.76, + "end": 6730.63, + "probability": 0.9811 + }, + { + "start": 6730.9, + "end": 6733.66, + "probability": 0.9702 + }, + { + "start": 6733.76, + "end": 6734.64, + "probability": 0.9159 + }, + { + "start": 6736.96, + "end": 6740.64, + "probability": 0.5931 + }, + { + "start": 6741.22, + "end": 6744.4, + "probability": 0.9899 + }, + { + "start": 6744.82, + "end": 6746.28, + "probability": 0.9971 + }, + { + "start": 6747.0, + "end": 6748.48, + "probability": 0.9459 + }, + { + "start": 6749.48, + "end": 6751.1, + "probability": 0.9668 + }, + { + "start": 6751.66, + "end": 6754.16, + "probability": 0.0361 + }, + { + "start": 6754.16, + "end": 6756.9, + "probability": 0.7489 + }, + { + "start": 6757.24, + "end": 6761.3, + "probability": 0.8468 + }, + { + "start": 6762.0, + "end": 6767.12, + "probability": 0.9461 + }, + { + "start": 6767.8, + "end": 6769.7, + "probability": 0.7734 + }, + { + "start": 6770.68, + "end": 6772.9, + "probability": 0.8015 + }, + { + "start": 6773.28, + "end": 6775.24, + "probability": 0.9133 + }, + { + "start": 6775.52, + "end": 6780.22, + "probability": 0.873 + }, + { + "start": 6780.28, + "end": 6784.54, + "probability": 0.8818 + }, + { + "start": 6786.3, + "end": 6792.08, + "probability": 0.6553 + }, + { + "start": 6792.38, + "end": 6796.02, + "probability": 0.9896 + }, + { + "start": 6796.02, + "end": 6799.3, + "probability": 0.9989 + }, + { + "start": 6802.06, + "end": 6804.48, + "probability": 0.9669 + }, + { + "start": 6805.7, + "end": 6807.5, + "probability": 0.9537 + }, + { + "start": 6808.46, + "end": 6812.8, + "probability": 0.9578 + }, + { + "start": 6812.96, + "end": 6813.48, + "probability": 0.4601 + }, + { + "start": 6813.76, + "end": 6815.12, + "probability": 0.9944 + }, + { + "start": 6815.96, + "end": 6816.68, + "probability": 0.8618 + }, + { + "start": 6817.64, + "end": 6823.22, + "probability": 0.96 + }, + { + "start": 6823.68, + "end": 6824.72, + "probability": 0.9961 + }, + { + "start": 6825.94, + "end": 6830.08, + "probability": 0.9233 + }, + { + "start": 6830.24, + "end": 6831.7, + "probability": 0.7502 + }, + { + "start": 6832.0, + "end": 6833.08, + "probability": 0.9795 + }, + { + "start": 6833.14, + "end": 6836.16, + "probability": 0.8003 + }, + { + "start": 6838.28, + "end": 6840.4, + "probability": 0.9712 + }, + { + "start": 6841.3, + "end": 6843.32, + "probability": 0.6867 + }, + { + "start": 6843.58, + "end": 6845.7, + "probability": 0.9519 + }, + { + "start": 6845.86, + "end": 6846.61, + "probability": 0.6055 + }, + { + "start": 6847.46, + "end": 6847.98, + "probability": 0.7075 + }, + { + "start": 6848.06, + "end": 6848.64, + "probability": 0.7665 + }, + { + "start": 6849.18, + "end": 6851.92, + "probability": 0.9797 + }, + { + "start": 6852.24, + "end": 6856.2, + "probability": 0.8321 + }, + { + "start": 6856.2, + "end": 6861.34, + "probability": 0.8385 + }, + { + "start": 6861.48, + "end": 6865.54, + "probability": 0.7329 + }, + { + "start": 6865.64, + "end": 6866.98, + "probability": 0.8789 + }, + { + "start": 6867.32, + "end": 6870.82, + "probability": 0.9091 + }, + { + "start": 6870.96, + "end": 6871.73, + "probability": 0.8267 + }, + { + "start": 6872.24, + "end": 6872.5, + "probability": 0.9123 + }, + { + "start": 6872.58, + "end": 6873.48, + "probability": 0.9812 + }, + { + "start": 6875.8, + "end": 6877.14, + "probability": 0.3149 + }, + { + "start": 6877.14, + "end": 6878.82, + "probability": 0.8025 + }, + { + "start": 6879.4, + "end": 6881.44, + "probability": 0.3705 + }, + { + "start": 6881.74, + "end": 6885.36, + "probability": 0.9229 + }, + { + "start": 6885.74, + "end": 6888.04, + "probability": 0.9686 + }, + { + "start": 6889.06, + "end": 6893.98, + "probability": 0.6804 + }, + { + "start": 6894.4, + "end": 6897.66, + "probability": 0.8472 + }, + { + "start": 6898.08, + "end": 6899.72, + "probability": 0.6984 + }, + { + "start": 6900.2, + "end": 6902.0, + "probability": 0.8994 + }, + { + "start": 6902.8, + "end": 6905.82, + "probability": 0.9337 + }, + { + "start": 6905.88, + "end": 6907.24, + "probability": 0.588 + }, + { + "start": 6908.22, + "end": 6911.06, + "probability": 0.9254 + }, + { + "start": 6911.22, + "end": 6916.0, + "probability": 0.9316 + }, + { + "start": 6916.0, + "end": 6918.42, + "probability": 0.7166 + }, + { + "start": 6918.8, + "end": 6919.44, + "probability": 0.6458 + }, + { + "start": 6919.46, + "end": 6920.9, + "probability": 0.5591 + }, + { + "start": 6921.32, + "end": 6926.92, + "probability": 0.9887 + }, + { + "start": 6926.92, + "end": 6931.6, + "probability": 0.9868 + }, + { + "start": 6932.24, + "end": 6934.28, + "probability": 0.9883 + }, + { + "start": 6934.6, + "end": 6936.62, + "probability": 0.8111 + }, + { + "start": 6936.82, + "end": 6941.5, + "probability": 0.9885 + }, + { + "start": 6941.94, + "end": 6945.0, + "probability": 0.8263 + }, + { + "start": 6945.48, + "end": 6946.92, + "probability": 0.9478 + }, + { + "start": 6947.0, + "end": 6948.74, + "probability": 0.9355 + }, + { + "start": 6948.82, + "end": 6952.0, + "probability": 0.8636 + }, + { + "start": 6952.06, + "end": 6953.5, + "probability": 0.5739 + }, + { + "start": 6953.84, + "end": 6954.33, + "probability": 0.9199 + }, + { + "start": 6954.88, + "end": 6957.24, + "probability": 0.9395 + }, + { + "start": 6957.58, + "end": 6958.86, + "probability": 0.976 + }, + { + "start": 6958.92, + "end": 6961.0, + "probability": 0.9905 + }, + { + "start": 6961.3, + "end": 6962.66, + "probability": 0.4632 + }, + { + "start": 6962.98, + "end": 6964.88, + "probability": 0.9803 + }, + { + "start": 6965.66, + "end": 6968.56, + "probability": 0.731 + }, + { + "start": 6969.69, + "end": 6971.66, + "probability": 0.7847 + }, + { + "start": 6972.56, + "end": 6973.28, + "probability": 0.4553 + }, + { + "start": 6973.56, + "end": 6974.62, + "probability": 0.9167 + }, + { + "start": 6974.64, + "end": 6976.89, + "probability": 0.8779 + }, + { + "start": 6977.36, + "end": 6978.9, + "probability": 0.9191 + }, + { + "start": 6979.38, + "end": 6981.62, + "probability": 0.9469 + }, + { + "start": 6983.28, + "end": 6987.1, + "probability": 0.9749 + }, + { + "start": 6987.4, + "end": 6989.08, + "probability": 0.8739 + }, + { + "start": 6990.08, + "end": 6994.92, + "probability": 0.8882 + }, + { + "start": 6994.96, + "end": 6996.48, + "probability": 0.743 + }, + { + "start": 6996.88, + "end": 6997.58, + "probability": 0.1158 + }, + { + "start": 6999.82, + "end": 6999.82, + "probability": 0.2974 + }, + { + "start": 6999.82, + "end": 6999.82, + "probability": 0.1497 + }, + { + "start": 6999.82, + "end": 7000.06, + "probability": 0.1941 + }, + { + "start": 7000.08, + "end": 7002.22, + "probability": 0.3351 + }, + { + "start": 7002.34, + "end": 7003.6, + "probability": 0.894 + }, + { + "start": 7003.86, + "end": 7007.0, + "probability": 0.5103 + }, + { + "start": 7007.22, + "end": 7012.72, + "probability": 0.9659 + }, + { + "start": 7013.58, + "end": 7015.06, + "probability": 0.4314 + }, + { + "start": 7015.12, + "end": 7015.74, + "probability": 0.3924 + }, + { + "start": 7015.74, + "end": 7019.34, + "probability": 0.6235 + }, + { + "start": 7019.44, + "end": 7020.94, + "probability": 0.2577 + }, + { + "start": 7021.23, + "end": 7022.0, + "probability": 0.1261 + }, + { + "start": 7022.0, + "end": 7024.5, + "probability": 0.2643 + }, + { + "start": 7025.6, + "end": 7027.74, + "probability": 0.4762 + }, + { + "start": 7027.78, + "end": 7029.6, + "probability": 0.6874 + }, + { + "start": 7029.66, + "end": 7030.8, + "probability": 0.6766 + }, + { + "start": 7031.02, + "end": 7033.4, + "probability": 0.6183 + }, + { + "start": 7033.44, + "end": 7039.82, + "probability": 0.8753 + }, + { + "start": 7040.1, + "end": 7042.7, + "probability": 0.6984 + }, + { + "start": 7042.76, + "end": 7045.8, + "probability": 0.234 + }, + { + "start": 7046.66, + "end": 7048.04, + "probability": 0.209 + }, + { + "start": 7048.7, + "end": 7050.06, + "probability": 0.6271 + }, + { + "start": 7050.18, + "end": 7051.6, + "probability": 0.6356 + }, + { + "start": 7051.7, + "end": 7056.26, + "probability": 0.2026 + }, + { + "start": 7056.44, + "end": 7057.28, + "probability": 0.7126 + }, + { + "start": 7057.34, + "end": 7060.1, + "probability": 0.214 + }, + { + "start": 7060.1, + "end": 7060.1, + "probability": 0.0411 + }, + { + "start": 7060.1, + "end": 7060.7, + "probability": 0.0092 + }, + { + "start": 7061.98, + "end": 7064.36, + "probability": 0.6247 + }, + { + "start": 7064.58, + "end": 7069.28, + "probability": 0.8201 + }, + { + "start": 7069.4, + "end": 7070.94, + "probability": 0.1378 + }, + { + "start": 7070.94, + "end": 7074.84, + "probability": 0.6296 + }, + { + "start": 7074.98, + "end": 7076.12, + "probability": 0.0792 + }, + { + "start": 7076.24, + "end": 7076.36, + "probability": 0.7533 + }, + { + "start": 7076.48, + "end": 7078.48, + "probability": 0.5065 + }, + { + "start": 7078.76, + "end": 7081.64, + "probability": 0.8637 + }, + { + "start": 7082.22, + "end": 7085.8, + "probability": 0.4187 + }, + { + "start": 7086.34, + "end": 7087.3, + "probability": 0.4233 + }, + { + "start": 7087.38, + "end": 7088.1, + "probability": 0.1177 + }, + { + "start": 7088.1, + "end": 7088.4, + "probability": 0.8591 + }, + { + "start": 7088.56, + "end": 7089.24, + "probability": 0.4917 + }, + { + "start": 7089.52, + "end": 7090.64, + "probability": 0.2665 + }, + { + "start": 7090.78, + "end": 7093.68, + "probability": 0.8071 + }, + { + "start": 7093.8, + "end": 7100.24, + "probability": 0.5737 + }, + { + "start": 7100.64, + "end": 7103.74, + "probability": 0.7848 + }, + { + "start": 7103.76, + "end": 7107.88, + "probability": 0.8291 + }, + { + "start": 7109.06, + "end": 7112.84, + "probability": 0.8215 + }, + { + "start": 7113.0, + "end": 7115.08, + "probability": 0.7289 + }, + { + "start": 7115.66, + "end": 7116.9, + "probability": 0.802 + }, + { + "start": 7117.3, + "end": 7117.74, + "probability": 0.8757 + }, + { + "start": 7118.0, + "end": 7120.36, + "probability": 0.7027 + }, + { + "start": 7120.38, + "end": 7125.34, + "probability": 0.9844 + }, + { + "start": 7125.38, + "end": 7127.46, + "probability": 0.981 + }, + { + "start": 7127.82, + "end": 7129.36, + "probability": 0.6988 + }, + { + "start": 7129.76, + "end": 7130.78, + "probability": 0.2586 + }, + { + "start": 7132.36, + "end": 7135.68, + "probability": 0.9899 + }, + { + "start": 7135.68, + "end": 7140.36, + "probability": 0.9424 + }, + { + "start": 7140.94, + "end": 7143.64, + "probability": 0.8784 + }, + { + "start": 7143.84, + "end": 7144.38, + "probability": 0.5486 + }, + { + "start": 7144.7, + "end": 7145.7, + "probability": 0.8198 + }, + { + "start": 7145.86, + "end": 7147.76, + "probability": 0.6841 + }, + { + "start": 7148.22, + "end": 7148.66, + "probability": 0.1654 + }, + { + "start": 7149.4, + "end": 7151.7, + "probability": 0.4955 + }, + { + "start": 7152.1, + "end": 7153.75, + "probability": 0.6717 + }, + { + "start": 7154.34, + "end": 7155.2, + "probability": 0.14 + }, + { + "start": 7155.54, + "end": 7156.08, + "probability": 0.0052 + }, + { + "start": 7156.08, + "end": 7156.92, + "probability": 0.2766 + }, + { + "start": 7157.34, + "end": 7157.42, + "probability": 0.1045 + }, + { + "start": 7158.03, + "end": 7162.48, + "probability": 0.1821 + }, + { + "start": 7163.12, + "end": 7164.32, + "probability": 0.3033 + }, + { + "start": 7164.48, + "end": 7166.16, + "probability": 0.6819 + }, + { + "start": 7167.14, + "end": 7168.52, + "probability": 0.1364 + }, + { + "start": 7169.16, + "end": 7175.58, + "probability": 0.4112 + }, + { + "start": 7175.74, + "end": 7177.66, + "probability": 0.5674 + }, + { + "start": 7178.44, + "end": 7179.42, + "probability": 0.0969 + }, + { + "start": 7180.06, + "end": 7180.5, + "probability": 0.6913 + }, + { + "start": 7181.24, + "end": 7182.31, + "probability": 0.1879 + }, + { + "start": 7182.58, + "end": 7184.4, + "probability": 0.2709 + }, + { + "start": 7190.84, + "end": 7192.18, + "probability": 0.8436 + }, + { + "start": 7192.98, + "end": 7193.8, + "probability": 0.5883 + }, + { + "start": 7194.14, + "end": 7194.74, + "probability": 0.6733 + }, + { + "start": 7194.78, + "end": 7196.72, + "probability": 0.8051 + }, + { + "start": 7196.96, + "end": 7199.88, + "probability": 0.8233 + }, + { + "start": 7200.22, + "end": 7201.7, + "probability": 0.9243 + }, + { + "start": 7201.76, + "end": 7202.19, + "probability": 0.761 + }, + { + "start": 7203.18, + "end": 7204.04, + "probability": 0.5367 + }, + { + "start": 7204.24, + "end": 7205.88, + "probability": 0.9528 + }, + { + "start": 7206.0, + "end": 7210.28, + "probability": 0.8883 + }, + { + "start": 7210.54, + "end": 7212.52, + "probability": 0.9915 + }, + { + "start": 7212.8, + "end": 7212.98, + "probability": 0.5439 + }, + { + "start": 7213.08, + "end": 7213.4, + "probability": 0.9889 + }, + { + "start": 7213.96, + "end": 7216.3, + "probability": 0.9593 + }, + { + "start": 7216.44, + "end": 7219.02, + "probability": 0.8136 + }, + { + "start": 7219.08, + "end": 7221.1, + "probability": 0.8353 + }, + { + "start": 7221.18, + "end": 7221.62, + "probability": 0.5638 + }, + { + "start": 7222.22, + "end": 7226.34, + "probability": 0.9785 + }, + { + "start": 7226.38, + "end": 7229.6, + "probability": 0.9405 + }, + { + "start": 7230.34, + "end": 7230.52, + "probability": 0.6738 + }, + { + "start": 7230.7, + "end": 7233.02, + "probability": 0.4217 + }, + { + "start": 7233.16, + "end": 7236.51, + "probability": 0.9404 + }, + { + "start": 7237.14, + "end": 7237.3, + "probability": 0.4058 + }, + { + "start": 7237.4, + "end": 7242.34, + "probability": 0.9785 + }, + { + "start": 7242.64, + "end": 7242.7, + "probability": 0.7266 + }, + { + "start": 7243.28, + "end": 7246.28, + "probability": 0.9953 + }, + { + "start": 7246.8, + "end": 7251.3, + "probability": 0.9987 + }, + { + "start": 7251.44, + "end": 7253.38, + "probability": 0.994 + }, + { + "start": 7255.28, + "end": 7260.36, + "probability": 0.9667 + }, + { + "start": 7260.8, + "end": 7262.48, + "probability": 0.985 + }, + { + "start": 7262.68, + "end": 7263.92, + "probability": 0.5498 + }, + { + "start": 7264.06, + "end": 7265.22, + "probability": 0.7346 + }, + { + "start": 7265.34, + "end": 7270.5, + "probability": 0.9355 + }, + { + "start": 7271.06, + "end": 7274.42, + "probability": 0.8817 + }, + { + "start": 7275.24, + "end": 7278.56, + "probability": 0.9855 + }, + { + "start": 7278.92, + "end": 7280.28, + "probability": 0.8404 + }, + { + "start": 7280.5, + "end": 7283.9, + "probability": 0.9844 + }, + { + "start": 7285.2, + "end": 7290.28, + "probability": 0.9823 + }, + { + "start": 7291.4, + "end": 7295.3, + "probability": 0.6897 + }, + { + "start": 7296.16, + "end": 7300.0, + "probability": 0.8948 + }, + { + "start": 7300.36, + "end": 7302.12, + "probability": 0.9326 + }, + { + "start": 7302.22, + "end": 7304.24, + "probability": 0.8553 + }, + { + "start": 7304.82, + "end": 7306.38, + "probability": 0.9412 + }, + { + "start": 7306.46, + "end": 7311.68, + "probability": 0.9888 + }, + { + "start": 7312.26, + "end": 7313.62, + "probability": 0.9983 + }, + { + "start": 7314.1, + "end": 7318.24, + "probability": 0.9887 + }, + { + "start": 7318.82, + "end": 7319.7, + "probability": 0.863 + }, + { + "start": 7321.06, + "end": 7322.64, + "probability": 0.5796 + }, + { + "start": 7322.66, + "end": 7325.88, + "probability": 0.4347 + }, + { + "start": 7326.08, + "end": 7328.42, + "probability": 0.6857 + }, + { + "start": 7328.6, + "end": 7332.32, + "probability": 0.9759 + }, + { + "start": 7332.32, + "end": 7339.58, + "probability": 0.9702 + }, + { + "start": 7340.12, + "end": 7344.2, + "probability": 0.6606 + }, + { + "start": 7344.54, + "end": 7351.84, + "probability": 0.9841 + }, + { + "start": 7352.34, + "end": 7356.26, + "probability": 0.998 + }, + { + "start": 7356.4, + "end": 7357.17, + "probability": 0.9387 + }, + { + "start": 7357.82, + "end": 7359.55, + "probability": 0.9883 + }, + { + "start": 7360.58, + "end": 7360.78, + "probability": 0.8987 + }, + { + "start": 7360.82, + "end": 7365.58, + "probability": 0.9521 + }, + { + "start": 7366.18, + "end": 7373.44, + "probability": 0.967 + }, + { + "start": 7374.48, + "end": 7377.7, + "probability": 0.6738 + }, + { + "start": 7378.22, + "end": 7382.06, + "probability": 0.8887 + }, + { + "start": 7382.16, + "end": 7383.68, + "probability": 0.8301 + }, + { + "start": 7383.68, + "end": 7386.66, + "probability": 0.9924 + }, + { + "start": 7386.66, + "end": 7388.82, + "probability": 0.9979 + }, + { + "start": 7388.9, + "end": 7389.96, + "probability": 0.8554 + }, + { + "start": 7390.46, + "end": 7392.5, + "probability": 0.8159 + }, + { + "start": 7392.5, + "end": 7396.82, + "probability": 0.8429 + }, + { + "start": 7398.62, + "end": 7401.08, + "probability": 0.6756 + }, + { + "start": 7402.21, + "end": 7404.88, + "probability": 0.9967 + }, + { + "start": 7406.08, + "end": 7409.96, + "probability": 0.9129 + }, + { + "start": 7410.58, + "end": 7412.1, + "probability": 0.7521 + }, + { + "start": 7412.24, + "end": 7417.22, + "probability": 0.9278 + }, + { + "start": 7417.54, + "end": 7418.74, + "probability": 0.9897 + }, + { + "start": 7418.84, + "end": 7419.32, + "probability": 0.6325 + }, + { + "start": 7419.38, + "end": 7422.04, + "probability": 0.9839 + }, + { + "start": 7422.06, + "end": 7422.62, + "probability": 0.8352 + }, + { + "start": 7422.74, + "end": 7424.5, + "probability": 0.7876 + }, + { + "start": 7424.86, + "end": 7425.64, + "probability": 0.7956 + }, + { + "start": 7426.28, + "end": 7427.38, + "probability": 0.5226 + }, + { + "start": 7427.38, + "end": 7429.92, + "probability": 0.8158 + }, + { + "start": 7430.08, + "end": 7434.54, + "probability": 0.3169 + }, + { + "start": 7434.8, + "end": 7438.42, + "probability": 0.9815 + }, + { + "start": 7438.8, + "end": 7443.92, + "probability": 0.8783 + }, + { + "start": 7444.06, + "end": 7445.84, + "probability": 0.9956 + }, + { + "start": 7445.96, + "end": 7446.7, + "probability": 0.5461 + }, + { + "start": 7447.06, + "end": 7448.68, + "probability": 0.8658 + }, + { + "start": 7448.9, + "end": 7454.52, + "probability": 0.9977 + }, + { + "start": 7454.52, + "end": 7459.7, + "probability": 0.9918 + }, + { + "start": 7459.7, + "end": 7464.38, + "probability": 0.993 + }, + { + "start": 7464.96, + "end": 7474.2, + "probability": 0.9527 + }, + { + "start": 7474.2, + "end": 7482.34, + "probability": 0.9642 + }, + { + "start": 7482.94, + "end": 7484.38, + "probability": 0.2351 + }, + { + "start": 7484.5, + "end": 7488.34, + "probability": 0.7975 + }, + { + "start": 7488.66, + "end": 7488.92, + "probability": 0.1067 + }, + { + "start": 7489.62, + "end": 7490.04, + "probability": 0.191 + }, + { + "start": 7490.5, + "end": 7491.28, + "probability": 0.385 + }, + { + "start": 7491.3, + "end": 7492.26, + "probability": 0.4189 + }, + { + "start": 7492.26, + "end": 7493.04, + "probability": 0.4007 + }, + { + "start": 7493.06, + "end": 7494.7, + "probability": 0.9004 + }, + { + "start": 7494.9, + "end": 7496.0, + "probability": 0.5341 + }, + { + "start": 7496.24, + "end": 7500.52, + "probability": 0.5291 + }, + { + "start": 7500.56, + "end": 7502.22, + "probability": 0.0423 + }, + { + "start": 7502.4, + "end": 7503.62, + "probability": 0.227 + }, + { + "start": 7503.72, + "end": 7505.78, + "probability": 0.8767 + }, + { + "start": 7506.58, + "end": 7508.84, + "probability": 0.6587 + }, + { + "start": 7509.0, + "end": 7510.78, + "probability": 0.385 + }, + { + "start": 7510.98, + "end": 7511.14, + "probability": 0.3099 + }, + { + "start": 7511.16, + "end": 7513.08, + "probability": 0.7755 + }, + { + "start": 7513.34, + "end": 7517.0, + "probability": 0.8022 + }, + { + "start": 7517.06, + "end": 7518.8, + "probability": 0.8669 + }, + { + "start": 7518.96, + "end": 7520.96, + "probability": 0.8556 + }, + { + "start": 7521.24, + "end": 7523.72, + "probability": 0.9464 + }, + { + "start": 7524.38, + "end": 7526.52, + "probability": 0.7095 + }, + { + "start": 7527.13, + "end": 7528.98, + "probability": 0.9902 + }, + { + "start": 7528.98, + "end": 7534.74, + "probability": 0.7517 + }, + { + "start": 7534.84, + "end": 7537.9, + "probability": 0.9935 + }, + { + "start": 7537.94, + "end": 7539.74, + "probability": 0.5186 + }, + { + "start": 7540.78, + "end": 7542.32, + "probability": 0.7088 + }, + { + "start": 7542.44, + "end": 7544.81, + "probability": 0.9324 + }, + { + "start": 7545.74, + "end": 7547.38, + "probability": 0.4627 + }, + { + "start": 7547.38, + "end": 7547.92, + "probability": 0.4208 + }, + { + "start": 7548.68, + "end": 7548.8, + "probability": 0.0124 + }, + { + "start": 7548.96, + "end": 7550.36, + "probability": 0.573 + }, + { + "start": 7550.8, + "end": 7553.34, + "probability": 0.7247 + }, + { + "start": 7553.44, + "end": 7554.18, + "probability": 0.5915 + }, + { + "start": 7554.24, + "end": 7556.08, + "probability": 0.985 + }, + { + "start": 7556.08, + "end": 7558.72, + "probability": 0.9537 + }, + { + "start": 7559.4, + "end": 7565.12, + "probability": 0.9703 + }, + { + "start": 7565.22, + "end": 7567.62, + "probability": 0.9532 + }, + { + "start": 7567.96, + "end": 7573.06, + "probability": 0.945 + }, + { + "start": 7573.16, + "end": 7575.12, + "probability": 0.9445 + }, + { + "start": 7576.16, + "end": 7580.04, + "probability": 0.7788 + }, + { + "start": 7580.18, + "end": 7581.9, + "probability": 0.8809 + }, + { + "start": 7582.48, + "end": 7583.84, + "probability": 0.8327 + }, + { + "start": 7583.98, + "end": 7586.34, + "probability": 0.7387 + }, + { + "start": 7586.4, + "end": 7591.1, + "probability": 0.9324 + }, + { + "start": 7591.24, + "end": 7594.16, + "probability": 0.9775 + }, + { + "start": 7595.9, + "end": 7596.42, + "probability": 0.331 + }, + { + "start": 7596.48, + "end": 7597.93, + "probability": 0.9082 + }, + { + "start": 7598.12, + "end": 7599.54, + "probability": 0.884 + }, + { + "start": 7599.7, + "end": 7600.64, + "probability": 0.5801 + }, + { + "start": 7600.84, + "end": 7602.58, + "probability": 0.6009 + }, + { + "start": 7603.38, + "end": 7604.2, + "probability": 0.733 + }, + { + "start": 7604.2, + "end": 7608.48, + "probability": 0.9778 + }, + { + "start": 7609.02, + "end": 7610.52, + "probability": 0.7487 + }, + { + "start": 7610.56, + "end": 7614.34, + "probability": 0.9593 + }, + { + "start": 7614.38, + "end": 7615.3, + "probability": 0.9153 + }, + { + "start": 7616.04, + "end": 7618.88, + "probability": 0.5915 + }, + { + "start": 7618.96, + "end": 7621.56, + "probability": 0.9235 + }, + { + "start": 7621.62, + "end": 7627.4, + "probability": 0.9766 + }, + { + "start": 7627.5, + "end": 7629.34, + "probability": 0.9302 + }, + { + "start": 7629.68, + "end": 7631.58, + "probability": 0.9985 + }, + { + "start": 7631.9, + "end": 7632.51, + "probability": 0.7695 + }, + { + "start": 7632.78, + "end": 7633.72, + "probability": 0.6795 + }, + { + "start": 7634.06, + "end": 7635.12, + "probability": 0.8666 + }, + { + "start": 7635.4, + "end": 7638.71, + "probability": 0.8047 + }, + { + "start": 7639.36, + "end": 7640.26, + "probability": 0.3075 + }, + { + "start": 7640.26, + "end": 7640.53, + "probability": 0.2473 + }, + { + "start": 7641.82, + "end": 7643.58, + "probability": 0.7053 + }, + { + "start": 7643.68, + "end": 7643.92, + "probability": 0.7527 + }, + { + "start": 7644.04, + "end": 7648.9, + "probability": 0.9714 + }, + { + "start": 7649.16, + "end": 7649.38, + "probability": 0.7129 + }, + { + "start": 7649.5, + "end": 7652.58, + "probability": 0.7851 + }, + { + "start": 7652.6, + "end": 7653.22, + "probability": 0.5747 + }, + { + "start": 7653.26, + "end": 7654.32, + "probability": 0.5238 + }, + { + "start": 7654.8, + "end": 7657.24, + "probability": 0.9146 + }, + { + "start": 7657.24, + "end": 7660.22, + "probability": 0.7345 + }, + { + "start": 7660.46, + "end": 7661.54, + "probability": 0.9817 + }, + { + "start": 7661.9, + "end": 7662.44, + "probability": 0.9751 + }, + { + "start": 7662.64, + "end": 7663.5, + "probability": 0.6846 + }, + { + "start": 7663.6, + "end": 7664.54, + "probability": 0.7581 + }, + { + "start": 7687.52, + "end": 7688.06, + "probability": 0.3208 + }, + { + "start": 7688.36, + "end": 7689.82, + "probability": 0.3593 + }, + { + "start": 7689.88, + "end": 7690.6, + "probability": 0.7178 + }, + { + "start": 7690.84, + "end": 7691.6, + "probability": 0.7477 + }, + { + "start": 7692.0, + "end": 7696.12, + "probability": 0.9837 + }, + { + "start": 7697.46, + "end": 7699.26, + "probability": 0.3725 + }, + { + "start": 7699.32, + "end": 7702.06, + "probability": 0.8917 + }, + { + "start": 7702.6, + "end": 7704.1, + "probability": 0.9731 + }, + { + "start": 7705.22, + "end": 7707.52, + "probability": 0.9327 + }, + { + "start": 7708.68, + "end": 7708.94, + "probability": 0.4943 + }, + { + "start": 7709.02, + "end": 7712.02, + "probability": 0.7055 + }, + { + "start": 7712.02, + "end": 7715.92, + "probability": 0.9986 + }, + { + "start": 7716.34, + "end": 7716.98, + "probability": 0.0405 + }, + { + "start": 7718.44, + "end": 7723.46, + "probability": 0.7042 + }, + { + "start": 7723.66, + "end": 7723.84, + "probability": 0.7309 + }, + { + "start": 7723.9, + "end": 7727.58, + "probability": 0.8513 + }, + { + "start": 7727.64, + "end": 7728.27, + "probability": 0.9416 + }, + { + "start": 7728.7, + "end": 7731.02, + "probability": 0.9692 + }, + { + "start": 7731.16, + "end": 7732.1, + "probability": 0.5955 + }, + { + "start": 7732.62, + "end": 7736.28, + "probability": 0.8976 + }, + { + "start": 7736.72, + "end": 7738.02, + "probability": 0.507 + }, + { + "start": 7738.34, + "end": 7740.26, + "probability": 0.9494 + }, + { + "start": 7740.94, + "end": 7741.35, + "probability": 0.9097 + }, + { + "start": 7742.38, + "end": 7743.82, + "probability": 0.5637 + }, + { + "start": 7743.84, + "end": 7747.52, + "probability": 0.993 + }, + { + "start": 7747.56, + "end": 7750.78, + "probability": 0.9967 + }, + { + "start": 7750.78, + "end": 7754.58, + "probability": 0.9942 + }, + { + "start": 7754.78, + "end": 7761.1, + "probability": 0.9744 + }, + { + "start": 7761.1, + "end": 7767.84, + "probability": 0.9751 + }, + { + "start": 7767.96, + "end": 7768.42, + "probability": 0.7271 + }, + { + "start": 7768.48, + "end": 7769.41, + "probability": 0.6187 + }, + { + "start": 7770.56, + "end": 7772.94, + "probability": 0.3239 + }, + { + "start": 7773.06, + "end": 7773.9, + "probability": 0.4416 + }, + { + "start": 7773.9, + "end": 7775.4, + "probability": 0.3385 + }, + { + "start": 7775.58, + "end": 7775.62, + "probability": 0.4319 + }, + { + "start": 7775.82, + "end": 7775.94, + "probability": 0.2064 + }, + { + "start": 7775.94, + "end": 7780.54, + "probability": 0.5015 + }, + { + "start": 7780.68, + "end": 7781.5, + "probability": 0.4142 + }, + { + "start": 7781.56, + "end": 7785.02, + "probability": 0.5503 + }, + { + "start": 7785.02, + "end": 7785.51, + "probability": 0.0174 + }, + { + "start": 7786.44, + "end": 7790.34, + "probability": 0.4799 + }, + { + "start": 7791.64, + "end": 7793.4, + "probability": 0.138 + }, + { + "start": 7793.4, + "end": 7793.74, + "probability": 0.0547 + }, + { + "start": 7793.74, + "end": 7793.74, + "probability": 0.077 + }, + { + "start": 7793.74, + "end": 7794.12, + "probability": 0.1894 + }, + { + "start": 7794.12, + "end": 7795.22, + "probability": 0.6639 + }, + { + "start": 7795.3, + "end": 7799.04, + "probability": 0.8436 + }, + { + "start": 7799.38, + "end": 7804.82, + "probability": 0.9733 + }, + { + "start": 7804.82, + "end": 7808.9, + "probability": 0.8472 + }, + { + "start": 7809.44, + "end": 7813.2, + "probability": 0.9887 + }, + { + "start": 7813.2, + "end": 7816.66, + "probability": 0.998 + }, + { + "start": 7818.56, + "end": 7822.78, + "probability": 0.9896 + }, + { + "start": 7822.78, + "end": 7827.7, + "probability": 0.9903 + }, + { + "start": 7828.74, + "end": 7833.04, + "probability": 0.626 + }, + { + "start": 7835.15, + "end": 7836.52, + "probability": 0.1269 + }, + { + "start": 7836.68, + "end": 7836.7, + "probability": 0.266 + }, + { + "start": 7836.7, + "end": 7836.7, + "probability": 0.2453 + }, + { + "start": 7836.7, + "end": 7837.0, + "probability": 0.3774 + }, + { + "start": 7837.0, + "end": 7837.21, + "probability": 0.2032 + }, + { + "start": 7840.68, + "end": 7843.72, + "probability": 0.9258 + }, + { + "start": 7843.72, + "end": 7848.36, + "probability": 0.9317 + }, + { + "start": 7851.82, + "end": 7854.26, + "probability": 0.6456 + }, + { + "start": 7855.78, + "end": 7857.72, + "probability": 0.9737 + }, + { + "start": 7858.2, + "end": 7859.82, + "probability": 0.9831 + }, + { + "start": 7860.6, + "end": 7863.62, + "probability": 0.9902 + }, + { + "start": 7864.28, + "end": 7868.78, + "probability": 0.9863 + }, + { + "start": 7870.66, + "end": 7874.14, + "probability": 0.8695 + }, + { + "start": 7874.8, + "end": 7876.4, + "probability": 0.7431 + }, + { + "start": 7877.16, + "end": 7881.38, + "probability": 0.9873 + }, + { + "start": 7882.14, + "end": 7884.5, + "probability": 0.9764 + }, + { + "start": 7885.44, + "end": 7886.96, + "probability": 0.6827 + }, + { + "start": 7887.04, + "end": 7892.72, + "probability": 0.9054 + }, + { + "start": 7894.5, + "end": 7894.5, + "probability": 0.031 + }, + { + "start": 7894.5, + "end": 7897.42, + "probability": 0.9839 + }, + { + "start": 7897.42, + "end": 7900.9, + "probability": 0.9933 + }, + { + "start": 7901.52, + "end": 7905.32, + "probability": 0.0695 + }, + { + "start": 7905.42, + "end": 7905.72, + "probability": 0.0244 + }, + { + "start": 7905.72, + "end": 7905.72, + "probability": 0.3813 + }, + { + "start": 7905.72, + "end": 7905.72, + "probability": 0.1835 + }, + { + "start": 7905.72, + "end": 7906.38, + "probability": 0.0611 + }, + { + "start": 7906.38, + "end": 7906.42, + "probability": 0.1571 + }, + { + "start": 7906.44, + "end": 7910.82, + "probability": 0.8307 + }, + { + "start": 7912.44, + "end": 7912.72, + "probability": 0.3847 + }, + { + "start": 7913.3, + "end": 7917.72, + "probability": 0.713 + }, + { + "start": 7918.36, + "end": 7918.36, + "probability": 0.2549 + }, + { + "start": 7918.36, + "end": 7918.36, + "probability": 0.0282 + }, + { + "start": 7918.36, + "end": 7919.58, + "probability": 0.7825 + }, + { + "start": 7919.76, + "end": 7921.32, + "probability": 0.7785 + }, + { + "start": 7921.48, + "end": 7924.24, + "probability": 0.9813 + }, + { + "start": 7924.32, + "end": 7924.4, + "probability": 0.0776 + }, + { + "start": 7924.4, + "end": 7925.02, + "probability": 0.6181 + }, + { + "start": 7925.02, + "end": 7925.62, + "probability": 0.7453 + }, + { + "start": 7925.66, + "end": 7926.4, + "probability": 0.769 + }, + { + "start": 7926.52, + "end": 7926.98, + "probability": 0.5471 + }, + { + "start": 7927.26, + "end": 7927.26, + "probability": 0.5861 + }, + { + "start": 7927.26, + "end": 7927.72, + "probability": 0.6704 + }, + { + "start": 7927.9, + "end": 7928.2, + "probability": 0.5283 + }, + { + "start": 7928.2, + "end": 7928.78, + "probability": 0.9351 + }, + { + "start": 7929.76, + "end": 7933.78, + "probability": 0.5408 + }, + { + "start": 7935.16, + "end": 7938.54, + "probability": 0.5162 + }, + { + "start": 7939.1, + "end": 7939.62, + "probability": 0.7474 + }, + { + "start": 7941.06, + "end": 7942.02, + "probability": 0.855 + }, + { + "start": 7943.86, + "end": 7944.2, + "probability": 0.3443 + }, + { + "start": 7946.88, + "end": 7948.5, + "probability": 0.7384 + }, + { + "start": 7948.7, + "end": 7951.38, + "probability": 0.4083 + }, + { + "start": 7951.66, + "end": 7953.74, + "probability": 0.9084 + }, + { + "start": 7954.7, + "end": 7957.28, + "probability": 0.7846 + }, + { + "start": 7957.48, + "end": 7959.96, + "probability": 0.8285 + }, + { + "start": 7960.06, + "end": 7961.52, + "probability": 0.6536 + }, + { + "start": 7962.04, + "end": 7964.4, + "probability": 0.8075 + }, + { + "start": 7964.92, + "end": 7966.06, + "probability": 0.385 + }, + { + "start": 7966.14, + "end": 7967.56, + "probability": 0.8112 + }, + { + "start": 7968.62, + "end": 7968.62, + "probability": 0.0054 + }, + { + "start": 7968.62, + "end": 7969.48, + "probability": 0.0178 + }, + { + "start": 7969.9, + "end": 7970.92, + "probability": 0.8355 + }, + { + "start": 7972.2, + "end": 7972.28, + "probability": 0.1424 + }, + { + "start": 7972.28, + "end": 7977.72, + "probability": 0.8364 + }, + { + "start": 7977.72, + "end": 7982.48, + "probability": 0.6776 + }, + { + "start": 7982.9, + "end": 7990.44, + "probability": 0.9948 + }, + { + "start": 7990.56, + "end": 7991.52, + "probability": 0.856 + }, + { + "start": 7991.64, + "end": 7992.96, + "probability": 0.6844 + }, + { + "start": 7993.84, + "end": 7996.32, + "probability": 0.922 + }, + { + "start": 7997.28, + "end": 7998.28, + "probability": 0.6178 + }, + { + "start": 7998.62, + "end": 7999.4, + "probability": 0.6901 + }, + { + "start": 8000.02, + "end": 8002.3, + "probability": 0.9677 + }, + { + "start": 8002.7, + "end": 8004.06, + "probability": 0.8464 + }, + { + "start": 8004.18, + "end": 8005.74, + "probability": 0.3422 + }, + { + "start": 8005.9, + "end": 8007.56, + "probability": 0.7558 + }, + { + "start": 8007.8, + "end": 8008.86, + "probability": 0.719 + }, + { + "start": 8009.06, + "end": 8009.66, + "probability": 0.9111 + }, + { + "start": 8010.6, + "end": 8011.68, + "probability": 0.8011 + }, + { + "start": 8011.76, + "end": 8017.8, + "probability": 0.9692 + }, + { + "start": 8018.42, + "end": 8020.3, + "probability": 0.8912 + }, + { + "start": 8020.6, + "end": 8021.48, + "probability": 0.515 + }, + { + "start": 8021.68, + "end": 8026.0, + "probability": 0.7116 + }, + { + "start": 8026.38, + "end": 8029.2, + "probability": 0.8379 + }, + { + "start": 8029.34, + "end": 8030.16, + "probability": 0.7301 + }, + { + "start": 8030.24, + "end": 8030.82, + "probability": 0.9185 + }, + { + "start": 8031.12, + "end": 8033.32, + "probability": 0.6277 + }, + { + "start": 8033.72, + "end": 8036.76, + "probability": 0.9337 + }, + { + "start": 8037.26, + "end": 8038.9, + "probability": 0.8351 + }, + { + "start": 8039.02, + "end": 8039.8, + "probability": 0.569 + }, + { + "start": 8040.3, + "end": 8040.3, + "probability": 0.3273 + }, + { + "start": 8040.38, + "end": 8042.78, + "probability": 0.6054 + }, + { + "start": 8044.72, + "end": 8044.82, + "probability": 0.1279 + }, + { + "start": 8045.68, + "end": 8047.4, + "probability": 0.0358 + }, + { + "start": 8047.74, + "end": 8050.8, + "probability": 0.6717 + }, + { + "start": 8052.06, + "end": 8054.46, + "probability": 0.1937 + }, + { + "start": 8055.1, + "end": 8061.14, + "probability": 0.1582 + }, + { + "start": 8061.4, + "end": 8061.4, + "probability": 0.0285 + }, + { + "start": 8061.4, + "end": 8061.4, + "probability": 0.4473 + }, + { + "start": 8061.4, + "end": 8062.99, + "probability": 0.3713 + }, + { + "start": 8063.86, + "end": 8064.64, + "probability": 0.5209 + }, + { + "start": 8064.78, + "end": 8065.35, + "probability": 0.9199 + }, + { + "start": 8066.18, + "end": 8066.63, + "probability": 0.3596 + }, + { + "start": 8066.75, + "end": 8067.47, + "probability": 0.7462 + }, + { + "start": 8067.61, + "end": 8071.67, + "probability": 0.7025 + }, + { + "start": 8071.95, + "end": 8073.81, + "probability": 0.6863 + }, + { + "start": 8074.19, + "end": 8075.35, + "probability": 0.201 + }, + { + "start": 8075.51, + "end": 8076.45, + "probability": 0.6381 + }, + { + "start": 8076.83, + "end": 8080.93, + "probability": 0.8318 + }, + { + "start": 8081.07, + "end": 8082.15, + "probability": 0.4531 + }, + { + "start": 8082.25, + "end": 8083.71, + "probability": 0.6482 + }, + { + "start": 8083.83, + "end": 8084.25, + "probability": 0.68 + }, + { + "start": 8084.33, + "end": 8085.11, + "probability": 0.9271 + }, + { + "start": 8085.15, + "end": 8085.73, + "probability": 0.909 + }, + { + "start": 8086.47, + "end": 8088.71, + "probability": 0.8252 + }, + { + "start": 8088.73, + "end": 8089.43, + "probability": 0.7314 + }, + { + "start": 8089.43, + "end": 8091.45, + "probability": 0.1686 + }, + { + "start": 8091.59, + "end": 8095.81, + "probability": 0.5325 + }, + { + "start": 8096.17, + "end": 8098.41, + "probability": 0.0799 + }, + { + "start": 8099.25, + "end": 8100.59, + "probability": 0.7481 + }, + { + "start": 8100.69, + "end": 8100.83, + "probability": 0.0917 + }, + { + "start": 8100.83, + "end": 8103.45, + "probability": 0.039 + }, + { + "start": 8104.95, + "end": 8104.95, + "probability": 0.0798 + }, + { + "start": 8105.17, + "end": 8105.35, + "probability": 0.2362 + }, + { + "start": 8105.85, + "end": 8107.01, + "probability": 0.3312 + }, + { + "start": 8107.35, + "end": 8108.13, + "probability": 0.5685 + }, + { + "start": 8108.43, + "end": 8110.95, + "probability": 0.6232 + }, + { + "start": 8111.63, + "end": 8113.14, + "probability": 0.3229 + }, + { + "start": 8113.47, + "end": 8114.87, + "probability": 0.1999 + }, + { + "start": 8115.85, + "end": 8118.93, + "probability": 0.3702 + }, + { + "start": 8119.69, + "end": 8120.53, + "probability": 0.4087 + }, + { + "start": 8121.25, + "end": 8122.63, + "probability": 0.2985 + }, + { + "start": 8122.97, + "end": 8123.77, + "probability": 0.6632 + }, + { + "start": 8125.37, + "end": 8129.99, + "probability": 0.8908 + }, + { + "start": 8130.17, + "end": 8131.19, + "probability": 0.5148 + }, + { + "start": 8131.19, + "end": 8131.77, + "probability": 0.2601 + }, + { + "start": 8132.39, + "end": 8132.39, + "probability": 0.1899 + }, + { + "start": 8132.39, + "end": 8133.29, + "probability": 0.0296 + }, + { + "start": 8134.61, + "end": 8135.69, + "probability": 0.245 + }, + { + "start": 8138.61, + "end": 8140.09, + "probability": 0.2192 + }, + { + "start": 8143.37, + "end": 8145.51, + "probability": 0.1577 + }, + { + "start": 8146.39, + "end": 8147.09, + "probability": 0.0476 + }, + { + "start": 8147.81, + "end": 8149.83, + "probability": 0.166 + }, + { + "start": 8150.47, + "end": 8151.37, + "probability": 0.0365 + }, + { + "start": 8151.37, + "end": 8151.37, + "probability": 0.0902 + }, + { + "start": 8152.51, + "end": 8152.77, + "probability": 0.0402 + }, + { + "start": 8153.01, + "end": 8154.91, + "probability": 0.1391 + }, + { + "start": 8155.89, + "end": 8155.89, + "probability": 0.1279 + }, + { + "start": 8156.77, + "end": 8158.56, + "probability": 0.1021 + }, + { + "start": 8160.17, + "end": 8160.99, + "probability": 0.0052 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8186.18, + "end": 8186.18, + "probability": 0.0006 + }, + { + "start": 8186.18, + "end": 8187.04, + "probability": 0.2055 + }, + { + "start": 8187.26, + "end": 8188.16, + "probability": 0.3436 + }, + { + "start": 8188.24, + "end": 8189.16, + "probability": 0.4303 + }, + { + "start": 8189.46, + "end": 8192.94, + "probability": 0.2301 + }, + { + "start": 8192.94, + "end": 8193.82, + "probability": 0.2808 + }, + { + "start": 8195.46, + "end": 8198.24, + "probability": 0.3646 + }, + { + "start": 8201.22, + "end": 8201.22, + "probability": 0.0661 + }, + { + "start": 8201.22, + "end": 8201.64, + "probability": 0.3396 + }, + { + "start": 8201.78, + "end": 8202.6, + "probability": 0.3129 + }, + { + "start": 8202.76, + "end": 8203.44, + "probability": 0.342 + }, + { + "start": 8203.44, + "end": 8204.28, + "probability": 0.4082 + }, + { + "start": 8207.08, + "end": 8209.92, + "probability": 0.3735 + }, + { + "start": 8210.12, + "end": 8210.74, + "probability": 0.498 + }, + { + "start": 8211.16, + "end": 8212.46, + "probability": 0.1009 + }, + { + "start": 8212.58, + "end": 8213.01, + "probability": 0.3814 + }, + { + "start": 8213.1, + "end": 8213.9, + "probability": 0.7416 + }, + { + "start": 8215.22, + "end": 8216.13, + "probability": 0.4502 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8313.0, + "end": 8313.0, + "probability": 0.0 + }, + { + "start": 8337.5, + "end": 8343.64, + "probability": 0.9722 + }, + { + "start": 8343.82, + "end": 8350.12, + "probability": 0.9426 + }, + { + "start": 8350.76, + "end": 8354.11, + "probability": 0.9946 + }, + { + "start": 8354.72, + "end": 8359.6, + "probability": 0.4781 + }, + { + "start": 8359.86, + "end": 8367.12, + "probability": 0.9102 + }, + { + "start": 8367.64, + "end": 8369.36, + "probability": 0.7438 + }, + { + "start": 8369.68, + "end": 8374.78, + "probability": 0.9601 + }, + { + "start": 8375.62, + "end": 8377.94, + "probability": 0.6084 + }, + { + "start": 8378.3, + "end": 8380.14, + "probability": 0.8435 + }, + { + "start": 8380.56, + "end": 8383.12, + "probability": 0.961 + }, + { + "start": 8383.68, + "end": 8387.9, + "probability": 0.959 + }, + { + "start": 8388.24, + "end": 8389.96, + "probability": 0.5019 + }, + { + "start": 8392.04, + "end": 8394.76, + "probability": 0.4902 + }, + { + "start": 8394.78, + "end": 8397.58, + "probability": 0.7613 + }, + { + "start": 8397.68, + "end": 8400.56, + "probability": 0.9847 + }, + { + "start": 8401.54, + "end": 8403.8, + "probability": 0.8215 + }, + { + "start": 8413.69, + "end": 8415.06, + "probability": 0.0187 + }, + { + "start": 8415.28, + "end": 8419.3, + "probability": 0.1003 + }, + { + "start": 8419.46, + "end": 8419.46, + "probability": 0.0796 + }, + { + "start": 8419.46, + "end": 8419.46, + "probability": 0.0416 + }, + { + "start": 8419.46, + "end": 8422.2, + "probability": 0.5587 + }, + { + "start": 8428.46, + "end": 8429.62, + "probability": 0.0315 + }, + { + "start": 8432.8, + "end": 8434.04, + "probability": 0.0681 + }, + { + "start": 8434.54, + "end": 8434.72, + "probability": 0.061 + }, + { + "start": 8439.5, + "end": 8440.36, + "probability": 0.2205 + }, + { + "start": 8440.42, + "end": 8441.82, + "probability": 0.9428 + }, + { + "start": 8441.92, + "end": 8442.62, + "probability": 0.8597 + }, + { + "start": 8442.68, + "end": 8444.34, + "probability": 0.532 + }, + { + "start": 8444.6, + "end": 8445.7, + "probability": 0.6863 + }, + { + "start": 8446.74, + "end": 8447.44, + "probability": 0.5248 + }, + { + "start": 8448.06, + "end": 8450.7, + "probability": 0.9819 + }, + { + "start": 8450.76, + "end": 8452.56, + "probability": 0.6851 + }, + { + "start": 8453.08, + "end": 8457.12, + "probability": 0.5271 + }, + { + "start": 8457.68, + "end": 8460.85, + "probability": 0.6061 + }, + { + "start": 8461.16, + "end": 8464.36, + "probability": 0.4614 + }, + { + "start": 8464.9, + "end": 8467.66, + "probability": 0.485 + }, + { + "start": 8469.34, + "end": 8470.86, + "probability": 0.0989 + }, + { + "start": 8470.86, + "end": 8470.9, + "probability": 0.0014 + } + ], + "segments_count": 2880, + "words_count": 13869, + "avg_words_per_segment": 4.8156, + "avg_segment_duration": 2.1212, + "avg_words_per_minute": 97.9003, + "plenum_id": "13683", + "duration": 8499.87, + "title": null, + "plenum_date": "2011-05-31" +} \ No newline at end of file