diff --git "a/19279/metadata.json" "b/19279/metadata.json" new file mode 100644--- /dev/null +++ "b/19279/metadata.json" @@ -0,0 +1,16932 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "19279", + "quality_score": 0.9497, + "per_segment_quality_scores": [ + { + "start": 18.0, + "end": 20.14, + "probability": 0.8537 + }, + { + "start": 20.78, + "end": 24.36, + "probability": 0.6505 + }, + { + "start": 25.34, + "end": 29.12, + "probability": 0.6755 + }, + { + "start": 29.66, + "end": 32.18, + "probability": 0.9414 + }, + { + "start": 32.46, + "end": 33.9, + "probability": 0.6635 + }, + { + "start": 35.52, + "end": 35.64, + "probability": 0.1456 + }, + { + "start": 35.64, + "end": 36.66, + "probability": 0.7368 + }, + { + "start": 36.82, + "end": 38.08, + "probability": 0.7645 + }, + { + "start": 38.3, + "end": 39.86, + "probability": 0.9492 + }, + { + "start": 40.12, + "end": 40.32, + "probability": 0.7427 + }, + { + "start": 40.9, + "end": 41.74, + "probability": 0.918 + }, + { + "start": 42.4, + "end": 43.14, + "probability": 0.9007 + }, + { + "start": 43.66, + "end": 44.38, + "probability": 0.8328 + }, + { + "start": 45.02, + "end": 45.46, + "probability": 0.0503 + }, + { + "start": 46.16, + "end": 46.36, + "probability": 0.0884 + }, + { + "start": 47.06, + "end": 51.38, + "probability": 0.4058 + }, + { + "start": 51.82, + "end": 52.3, + "probability": 0.5841 + }, + { + "start": 52.54, + "end": 57.5, + "probability": 0.7856 + }, + { + "start": 57.8, + "end": 60.96, + "probability": 0.7494 + }, + { + "start": 61.3, + "end": 61.72, + "probability": 0.5667 + }, + { + "start": 62.12, + "end": 63.64, + "probability": 0.6376 + }, + { + "start": 68.68, + "end": 69.68, + "probability": 0.4883 + }, + { + "start": 70.58, + "end": 72.32, + "probability": 0.9978 + }, + { + "start": 73.36, + "end": 76.14, + "probability": 0.9983 + }, + { + "start": 77.06, + "end": 81.12, + "probability": 0.9983 + }, + { + "start": 81.12, + "end": 84.84, + "probability": 0.941 + }, + { + "start": 85.32, + "end": 88.46, + "probability": 0.9943 + }, + { + "start": 88.88, + "end": 91.2, + "probability": 0.9785 + }, + { + "start": 91.54, + "end": 94.94, + "probability": 0.9957 + }, + { + "start": 95.46, + "end": 99.84, + "probability": 0.9932 + }, + { + "start": 100.12, + "end": 101.02, + "probability": 0.7689 + }, + { + "start": 101.44, + "end": 102.58, + "probability": 0.6059 + }, + { + "start": 102.6, + "end": 106.48, + "probability": 0.7214 + }, + { + "start": 106.52, + "end": 109.0, + "probability": 0.9951 + }, + { + "start": 109.1, + "end": 111.28, + "probability": 0.98 + }, + { + "start": 111.64, + "end": 113.88, + "probability": 0.963 + }, + { + "start": 114.32, + "end": 118.5, + "probability": 0.9988 + }, + { + "start": 118.92, + "end": 119.54, + "probability": 0.8216 + }, + { + "start": 120.98, + "end": 121.6, + "probability": 0.6987 + }, + { + "start": 128.36, + "end": 128.46, + "probability": 0.1294 + }, + { + "start": 128.46, + "end": 129.48, + "probability": 0.5048 + }, + { + "start": 129.66, + "end": 137.18, + "probability": 0.927 + }, + { + "start": 139.82, + "end": 146.2, + "probability": 0.5619 + }, + { + "start": 147.4, + "end": 149.64, + "probability": 0.9419 + }, + { + "start": 149.96, + "end": 150.38, + "probability": 0.7951 + }, + { + "start": 151.5, + "end": 156.22, + "probability": 0.9896 + }, + { + "start": 157.46, + "end": 158.68, + "probability": 0.9366 + }, + { + "start": 158.78, + "end": 161.74, + "probability": 0.6293 + }, + { + "start": 161.82, + "end": 163.08, + "probability": 0.9437 + }, + { + "start": 163.3, + "end": 164.96, + "probability": 0.8846 + }, + { + "start": 165.78, + "end": 167.64, + "probability": 0.7839 + }, + { + "start": 168.74, + "end": 171.52, + "probability": 0.7945 + }, + { + "start": 171.92, + "end": 172.68, + "probability": 0.7832 + }, + { + "start": 172.96, + "end": 176.48, + "probability": 0.9312 + }, + { + "start": 176.82, + "end": 180.3, + "probability": 0.9226 + }, + { + "start": 180.36, + "end": 180.56, + "probability": 0.7502 + }, + { + "start": 181.02, + "end": 181.52, + "probability": 0.6647 + }, + { + "start": 182.1, + "end": 186.38, + "probability": 0.604 + }, + { + "start": 187.54, + "end": 189.04, + "probability": 0.3614 + }, + { + "start": 189.38, + "end": 191.28, + "probability": 0.8932 + }, + { + "start": 191.68, + "end": 191.98, + "probability": 0.3654 + }, + { + "start": 193.38, + "end": 194.92, + "probability": 0.7012 + }, + { + "start": 195.24, + "end": 196.96, + "probability": 0.9548 + }, + { + "start": 197.02, + "end": 198.22, + "probability": 0.5306 + }, + { + "start": 198.3, + "end": 200.04, + "probability": 0.8889 + }, + { + "start": 201.28, + "end": 203.78, + "probability": 0.5247 + }, + { + "start": 204.62, + "end": 206.12, + "probability": 0.8867 + }, + { + "start": 206.74, + "end": 208.22, + "probability": 0.927 + }, + { + "start": 209.02, + "end": 212.96, + "probability": 0.9663 + }, + { + "start": 213.08, + "end": 213.76, + "probability": 0.8276 + }, + { + "start": 214.36, + "end": 215.96, + "probability": 0.9274 + }, + { + "start": 216.96, + "end": 218.86, + "probability": 0.6072 + }, + { + "start": 218.98, + "end": 220.02, + "probability": 0.7408 + }, + { + "start": 220.46, + "end": 221.62, + "probability": 0.9477 + }, + { + "start": 222.32, + "end": 224.2, + "probability": 0.9499 + }, + { + "start": 224.42, + "end": 225.02, + "probability": 0.9018 + }, + { + "start": 225.2, + "end": 226.72, + "probability": 0.9927 + }, + { + "start": 226.76, + "end": 227.35, + "probability": 0.7446 + }, + { + "start": 228.06, + "end": 232.06, + "probability": 0.9977 + }, + { + "start": 232.92, + "end": 233.12, + "probability": 0.4026 + }, + { + "start": 233.22, + "end": 233.8, + "probability": 0.7333 + }, + { + "start": 233.94, + "end": 236.76, + "probability": 0.9134 + }, + { + "start": 236.92, + "end": 239.36, + "probability": 0.9869 + }, + { + "start": 240.34, + "end": 241.94, + "probability": 0.8544 + }, + { + "start": 242.54, + "end": 246.56, + "probability": 0.9956 + }, + { + "start": 246.56, + "end": 246.78, + "probability": 0.332 + }, + { + "start": 248.02, + "end": 248.24, + "probability": 0.2928 + }, + { + "start": 248.62, + "end": 249.96, + "probability": 0.8043 + }, + { + "start": 251.04, + "end": 254.06, + "probability": 0.9972 + }, + { + "start": 254.34, + "end": 255.78, + "probability": 0.9907 + }, + { + "start": 256.1, + "end": 258.32, + "probability": 0.809 + }, + { + "start": 258.8, + "end": 261.54, + "probability": 0.9891 + }, + { + "start": 262.36, + "end": 264.46, + "probability": 0.9958 + }, + { + "start": 264.66, + "end": 268.42, + "probability": 0.9893 + }, + { + "start": 269.3, + "end": 271.06, + "probability": 0.6929 + }, + { + "start": 271.14, + "end": 277.44, + "probability": 0.9848 + }, + { + "start": 278.4, + "end": 282.98, + "probability": 0.9448 + }, + { + "start": 283.38, + "end": 283.84, + "probability": 0.7341 + }, + { + "start": 283.86, + "end": 284.38, + "probability": 0.6155 + }, + { + "start": 284.66, + "end": 286.38, + "probability": 0.758 + }, + { + "start": 287.94, + "end": 289.04, + "probability": 0.5542 + }, + { + "start": 289.68, + "end": 291.42, + "probability": 0.6866 + }, + { + "start": 297.02, + "end": 300.06, + "probability": 0.6846 + }, + { + "start": 301.14, + "end": 305.58, + "probability": 0.9426 + }, + { + "start": 306.4, + "end": 309.58, + "probability": 0.9683 + }, + { + "start": 310.28, + "end": 315.62, + "probability": 0.9707 + }, + { + "start": 318.24, + "end": 321.28, + "probability": 0.9924 + }, + { + "start": 321.96, + "end": 322.02, + "probability": 0.5389 + }, + { + "start": 322.02, + "end": 329.48, + "probability": 0.5354 + }, + { + "start": 330.1, + "end": 330.8, + "probability": 0.4157 + }, + { + "start": 331.4, + "end": 336.92, + "probability": 0.9904 + }, + { + "start": 337.02, + "end": 342.48, + "probability": 0.9927 + }, + { + "start": 343.24, + "end": 345.12, + "probability": 0.7465 + }, + { + "start": 345.34, + "end": 347.46, + "probability": 0.8589 + }, + { + "start": 347.64, + "end": 348.64, + "probability": 0.379 + }, + { + "start": 349.56, + "end": 350.96, + "probability": 0.5539 + }, + { + "start": 351.6, + "end": 352.86, + "probability": 0.9746 + }, + { + "start": 353.52, + "end": 356.76, + "probability": 0.9723 + }, + { + "start": 357.48, + "end": 360.92, + "probability": 0.9871 + }, + { + "start": 361.28, + "end": 362.77, + "probability": 0.9397 + }, + { + "start": 363.18, + "end": 364.0, + "probability": 0.833 + }, + { + "start": 364.38, + "end": 365.22, + "probability": 0.9676 + }, + { + "start": 365.58, + "end": 366.5, + "probability": 0.8454 + }, + { + "start": 366.86, + "end": 368.78, + "probability": 0.8422 + }, + { + "start": 369.4, + "end": 370.1, + "probability": 0.5657 + }, + { + "start": 370.5, + "end": 373.3, + "probability": 0.382 + }, + { + "start": 373.56, + "end": 374.04, + "probability": 0.5706 + }, + { + "start": 374.66, + "end": 376.24, + "probability": 0.8789 + }, + { + "start": 377.3, + "end": 378.58, + "probability": 0.4418 + }, + { + "start": 379.12, + "end": 380.46, + "probability": 0.593 + }, + { + "start": 380.6, + "end": 381.16, + "probability": 0.7029 + }, + { + "start": 381.24, + "end": 384.94, + "probability": 0.9781 + }, + { + "start": 386.44, + "end": 389.48, + "probability": 0.9494 + }, + { + "start": 389.62, + "end": 390.94, + "probability": 0.9016 + }, + { + "start": 391.12, + "end": 394.08, + "probability": 0.7761 + }, + { + "start": 394.28, + "end": 395.68, + "probability": 0.7579 + }, + { + "start": 396.2, + "end": 398.72, + "probability": 0.7499 + }, + { + "start": 400.52, + "end": 402.12, + "probability": 0.8029 + }, + { + "start": 402.98, + "end": 406.94, + "probability": 0.9142 + }, + { + "start": 407.84, + "end": 408.3, + "probability": 0.946 + }, + { + "start": 408.38, + "end": 412.02, + "probability": 0.9776 + }, + { + "start": 413.2, + "end": 415.94, + "probability": 0.9395 + }, + { + "start": 416.86, + "end": 420.1, + "probability": 0.9866 + }, + { + "start": 420.72, + "end": 423.28, + "probability": 0.9798 + }, + { + "start": 423.36, + "end": 424.42, + "probability": 0.7246 + }, + { + "start": 424.6, + "end": 426.46, + "probability": 0.9155 + }, + { + "start": 427.18, + "end": 428.6, + "probability": 0.9927 + }, + { + "start": 429.06, + "end": 434.62, + "probability": 0.9437 + }, + { + "start": 434.72, + "end": 435.08, + "probability": 0.9476 + }, + { + "start": 435.22, + "end": 435.58, + "probability": 0.3908 + }, + { + "start": 435.76, + "end": 436.76, + "probability": 0.6589 + }, + { + "start": 437.32, + "end": 440.44, + "probability": 0.9943 + }, + { + "start": 442.5, + "end": 445.86, + "probability": 0.8844 + }, + { + "start": 446.6, + "end": 448.88, + "probability": 0.8298 + }, + { + "start": 449.02, + "end": 451.78, + "probability": 0.8607 + }, + { + "start": 452.4, + "end": 456.24, + "probability": 0.9873 + }, + { + "start": 456.9, + "end": 461.4, + "probability": 0.7129 + }, + { + "start": 461.94, + "end": 465.48, + "probability": 0.9757 + }, + { + "start": 465.66, + "end": 465.86, + "probability": 0.7036 + }, + { + "start": 466.34, + "end": 466.76, + "probability": 0.8403 + }, + { + "start": 467.18, + "end": 468.74, + "probability": 0.9127 + }, + { + "start": 469.38, + "end": 470.46, + "probability": 0.4809 + }, + { + "start": 471.1, + "end": 472.04, + "probability": 0.6477 + }, + { + "start": 474.38, + "end": 475.56, + "probability": 0.594 + }, + { + "start": 476.74, + "end": 480.44, + "probability": 0.9768 + }, + { + "start": 480.44, + "end": 484.82, + "probability": 0.997 + }, + { + "start": 486.58, + "end": 487.88, + "probability": 0.999 + }, + { + "start": 488.6, + "end": 490.66, + "probability": 0.9983 + }, + { + "start": 492.4, + "end": 495.48, + "probability": 0.9248 + }, + { + "start": 496.1, + "end": 499.36, + "probability": 0.9776 + }, + { + "start": 500.02, + "end": 502.38, + "probability": 0.9217 + }, + { + "start": 502.92, + "end": 509.28, + "probability": 0.8927 + }, + { + "start": 509.96, + "end": 510.76, + "probability": 0.9429 + }, + { + "start": 510.92, + "end": 511.02, + "probability": 0.4572 + }, + { + "start": 511.52, + "end": 515.18, + "probability": 0.8029 + }, + { + "start": 515.72, + "end": 516.64, + "probability": 0.5345 + }, + { + "start": 516.88, + "end": 516.94, + "probability": 0.3051 + }, + { + "start": 517.1, + "end": 521.26, + "probability": 0.8277 + }, + { + "start": 522.0, + "end": 523.1, + "probability": 0.7886 + }, + { + "start": 524.22, + "end": 525.26, + "probability": 0.7582 + }, + { + "start": 525.6, + "end": 526.78, + "probability": 0.819 + }, + { + "start": 527.02, + "end": 530.88, + "probability": 0.9514 + }, + { + "start": 531.46, + "end": 532.88, + "probability": 0.6754 + }, + { + "start": 533.5, + "end": 540.12, + "probability": 0.9717 + }, + { + "start": 540.34, + "end": 545.44, + "probability": 0.9896 + }, + { + "start": 546.0, + "end": 550.3, + "probability": 0.9881 + }, + { + "start": 550.62, + "end": 554.34, + "probability": 0.998 + }, + { + "start": 554.68, + "end": 557.8, + "probability": 0.989 + }, + { + "start": 558.38, + "end": 563.48, + "probability": 0.99 + }, + { + "start": 563.98, + "end": 568.86, + "probability": 0.9429 + }, + { + "start": 569.58, + "end": 572.82, + "probability": 0.7134 + }, + { + "start": 573.48, + "end": 575.24, + "probability": 0.0677 + }, + { + "start": 575.64, + "end": 577.12, + "probability": 0.4322 + }, + { + "start": 578.36, + "end": 582.02, + "probability": 0.517 + }, + { + "start": 582.64, + "end": 583.82, + "probability": 0.6426 + }, + { + "start": 585.62, + "end": 587.62, + "probability": 0.2791 + }, + { + "start": 588.04, + "end": 589.22, + "probability": 0.7909 + }, + { + "start": 589.32, + "end": 589.82, + "probability": 0.8004 + }, + { + "start": 589.98, + "end": 590.52, + "probability": 0.9022 + }, + { + "start": 590.92, + "end": 591.38, + "probability": 0.9404 + }, + { + "start": 591.5, + "end": 592.18, + "probability": 0.8021 + }, + { + "start": 592.3, + "end": 593.62, + "probability": 0.4912 + }, + { + "start": 593.66, + "end": 596.02, + "probability": 0.9455 + }, + { + "start": 596.72, + "end": 598.36, + "probability": 0.9248 + }, + { + "start": 598.44, + "end": 600.08, + "probability": 0.7713 + }, + { + "start": 600.24, + "end": 602.62, + "probability": 0.6928 + }, + { + "start": 602.78, + "end": 605.28, + "probability": 0.968 + }, + { + "start": 606.08, + "end": 607.22, + "probability": 0.7974 + }, + { + "start": 607.92, + "end": 608.82, + "probability": 0.8652 + }, + { + "start": 609.32, + "end": 611.26, + "probability": 0.9521 + }, + { + "start": 612.06, + "end": 613.76, + "probability": 0.9777 + }, + { + "start": 627.04, + "end": 628.5, + "probability": 0.0385 + }, + { + "start": 628.5, + "end": 628.56, + "probability": 0.0468 + }, + { + "start": 628.56, + "end": 628.56, + "probability": 0.1673 + }, + { + "start": 628.56, + "end": 628.56, + "probability": 0.0315 + }, + { + "start": 628.56, + "end": 628.56, + "probability": 0.0655 + }, + { + "start": 628.56, + "end": 631.7, + "probability": 0.2423 + }, + { + "start": 632.52, + "end": 632.62, + "probability": 0.0117 + }, + { + "start": 632.64, + "end": 633.82, + "probability": 0.9764 + }, + { + "start": 634.94, + "end": 635.84, + "probability": 0.7434 + }, + { + "start": 636.62, + "end": 638.28, + "probability": 0.9892 + }, + { + "start": 639.38, + "end": 641.7, + "probability": 0.9372 + }, + { + "start": 643.22, + "end": 646.7, + "probability": 0.9517 + }, + { + "start": 646.76, + "end": 647.64, + "probability": 0.8432 + }, + { + "start": 648.34, + "end": 649.54, + "probability": 0.8082 + }, + { + "start": 649.98, + "end": 658.8, + "probability": 0.9889 + }, + { + "start": 659.84, + "end": 661.76, + "probability": 0.9924 + }, + { + "start": 662.3, + "end": 667.64, + "probability": 0.9955 + }, + { + "start": 667.72, + "end": 668.0, + "probability": 0.3915 + }, + { + "start": 668.2, + "end": 669.5, + "probability": 0.5533 + }, + { + "start": 673.28, + "end": 673.8, + "probability": 0.0099 + }, + { + "start": 675.54, + "end": 678.22, + "probability": 0.4579 + }, + { + "start": 682.52, + "end": 686.12, + "probability": 0.4704 + }, + { + "start": 686.78, + "end": 688.04, + "probability": 0.688 + }, + { + "start": 688.48, + "end": 690.02, + "probability": 0.7323 + }, + { + "start": 690.12, + "end": 693.7, + "probability": 0.9736 + }, + { + "start": 694.32, + "end": 695.09, + "probability": 0.9308 + }, + { + "start": 695.8, + "end": 697.66, + "probability": 0.9812 + }, + { + "start": 698.98, + "end": 700.52, + "probability": 0.6776 + }, + { + "start": 700.84, + "end": 703.78, + "probability": 0.9215 + }, + { + "start": 704.22, + "end": 706.86, + "probability": 0.9954 + }, + { + "start": 706.88, + "end": 709.82, + "probability": 0.975 + }, + { + "start": 710.4, + "end": 712.46, + "probability": 0.6695 + }, + { + "start": 714.74, + "end": 714.9, + "probability": 0.1379 + }, + { + "start": 714.9, + "end": 715.95, + "probability": 0.8798 + }, + { + "start": 716.08, + "end": 717.2, + "probability": 0.8984 + }, + { + "start": 717.6, + "end": 719.86, + "probability": 0.7559 + }, + { + "start": 720.3, + "end": 721.1, + "probability": 0.8615 + }, + { + "start": 721.18, + "end": 722.32, + "probability": 0.9872 + }, + { + "start": 722.64, + "end": 723.26, + "probability": 0.9657 + }, + { + "start": 723.68, + "end": 724.98, + "probability": 0.8686 + }, + { + "start": 725.2, + "end": 725.74, + "probability": 0.8575 + }, + { + "start": 726.1, + "end": 726.64, + "probability": 0.9224 + }, + { + "start": 726.86, + "end": 727.42, + "probability": 0.732 + }, + { + "start": 727.8, + "end": 731.14, + "probability": 0.9932 + }, + { + "start": 731.32, + "end": 734.28, + "probability": 0.9497 + }, + { + "start": 734.92, + "end": 737.0, + "probability": 0.9548 + }, + { + "start": 737.16, + "end": 739.92, + "probability": 0.4344 + }, + { + "start": 740.52, + "end": 745.14, + "probability": 0.8559 + }, + { + "start": 745.68, + "end": 747.48, + "probability": 0.8687 + }, + { + "start": 748.12, + "end": 748.46, + "probability": 0.6351 + }, + { + "start": 748.56, + "end": 749.52, + "probability": 0.8104 + }, + { + "start": 749.64, + "end": 750.98, + "probability": 0.7725 + }, + { + "start": 751.82, + "end": 753.56, + "probability": 0.7905 + }, + { + "start": 753.82, + "end": 756.36, + "probability": 0.9575 + }, + { + "start": 756.84, + "end": 760.14, + "probability": 0.8433 + }, + { + "start": 760.48, + "end": 762.8, + "probability": 0.9566 + }, + { + "start": 763.32, + "end": 765.41, + "probability": 0.6215 + }, + { + "start": 766.23, + "end": 768.68, + "probability": 0.8226 + }, + { + "start": 769.38, + "end": 769.5, + "probability": 0.6632 + }, + { + "start": 769.6, + "end": 771.94, + "probability": 0.9572 + }, + { + "start": 773.3, + "end": 775.0, + "probability": 0.4776 + }, + { + "start": 775.64, + "end": 775.96, + "probability": 0.8997 + }, + { + "start": 776.18, + "end": 779.1, + "probability": 0.9186 + }, + { + "start": 779.18, + "end": 780.0, + "probability": 0.7968 + }, + { + "start": 780.6, + "end": 781.0, + "probability": 0.7563 + }, + { + "start": 781.16, + "end": 781.96, + "probability": 0.8803 + }, + { + "start": 782.54, + "end": 784.32, + "probability": 0.9031 + }, + { + "start": 784.38, + "end": 785.9, + "probability": 0.9656 + }, + { + "start": 787.24, + "end": 788.36, + "probability": 0.0958 + }, + { + "start": 788.36, + "end": 788.36, + "probability": 0.3347 + }, + { + "start": 788.36, + "end": 793.04, + "probability": 0.831 + }, + { + "start": 794.28, + "end": 795.64, + "probability": 0.8254 + }, + { + "start": 795.98, + "end": 797.06, + "probability": 0.925 + }, + { + "start": 797.46, + "end": 798.24, + "probability": 0.7624 + }, + { + "start": 798.72, + "end": 800.48, + "probability": 0.9784 + }, + { + "start": 800.82, + "end": 802.96, + "probability": 0.9542 + }, + { + "start": 803.58, + "end": 804.56, + "probability": 0.9234 + }, + { + "start": 805.16, + "end": 806.34, + "probability": 0.7129 + }, + { + "start": 808.2, + "end": 811.38, + "probability": 0.9176 + }, + { + "start": 811.7, + "end": 811.8, + "probability": 0.6963 + }, + { + "start": 812.72, + "end": 814.96, + "probability": 0.9666 + }, + { + "start": 815.92, + "end": 819.44, + "probability": 0.9839 + }, + { + "start": 819.64, + "end": 820.62, + "probability": 0.8331 + }, + { + "start": 821.2, + "end": 821.88, + "probability": 0.6111 + }, + { + "start": 822.1, + "end": 826.66, + "probability": 0.9824 + }, + { + "start": 827.7, + "end": 828.3, + "probability": 0.9134 + }, + { + "start": 828.96, + "end": 831.88, + "probability": 0.9873 + }, + { + "start": 832.56, + "end": 833.46, + "probability": 0.9315 + }, + { + "start": 833.58, + "end": 834.6, + "probability": 0.7905 + }, + { + "start": 834.84, + "end": 839.56, + "probability": 0.9924 + }, + { + "start": 839.6, + "end": 842.6, + "probability": 0.9877 + }, + { + "start": 843.12, + "end": 845.96, + "probability": 0.8203 + }, + { + "start": 846.4, + "end": 848.76, + "probability": 0.9785 + }, + { + "start": 849.22, + "end": 852.18, + "probability": 0.9773 + }, + { + "start": 852.94, + "end": 855.48, + "probability": 0.9973 + }, + { + "start": 856.42, + "end": 858.12, + "probability": 0.9845 + }, + { + "start": 858.34, + "end": 859.24, + "probability": 0.5316 + }, + { + "start": 859.28, + "end": 860.1, + "probability": 0.6329 + }, + { + "start": 860.3, + "end": 862.92, + "probability": 0.8443 + }, + { + "start": 863.02, + "end": 865.02, + "probability": 0.9302 + }, + { + "start": 865.06, + "end": 866.58, + "probability": 0.7692 + }, + { + "start": 866.58, + "end": 868.18, + "probability": 0.7784 + }, + { + "start": 868.22, + "end": 869.14, + "probability": 0.815 + }, + { + "start": 869.96, + "end": 871.1, + "probability": 0.8923 + }, + { + "start": 871.48, + "end": 871.62, + "probability": 0.3983 + }, + { + "start": 871.62, + "end": 875.02, + "probability": 0.9929 + }, + { + "start": 875.42, + "end": 876.74, + "probability": 0.9436 + }, + { + "start": 877.4, + "end": 877.4, + "probability": 0.6771 + }, + { + "start": 877.6, + "end": 878.22, + "probability": 0.6659 + }, + { + "start": 878.36, + "end": 880.96, + "probability": 0.8838 + }, + { + "start": 881.14, + "end": 882.18, + "probability": 0.9305 + }, + { + "start": 882.6, + "end": 884.92, + "probability": 0.9672 + }, + { + "start": 885.34, + "end": 886.74, + "probability": 0.9241 + }, + { + "start": 886.9, + "end": 890.12, + "probability": 0.9821 + }, + { + "start": 890.12, + "end": 892.8, + "probability": 0.918 + }, + { + "start": 893.14, + "end": 895.86, + "probability": 0.5901 + }, + { + "start": 896.26, + "end": 899.42, + "probability": 0.9803 + }, + { + "start": 899.98, + "end": 899.98, + "probability": 0.2684 + }, + { + "start": 899.98, + "end": 900.84, + "probability": 0.2454 + }, + { + "start": 900.9, + "end": 905.54, + "probability": 0.959 + }, + { + "start": 905.66, + "end": 907.88, + "probability": 0.955 + }, + { + "start": 908.28, + "end": 908.46, + "probability": 0.8882 + }, + { + "start": 908.5, + "end": 911.74, + "probability": 0.9521 + }, + { + "start": 912.02, + "end": 914.44, + "probability": 0.9823 + }, + { + "start": 914.68, + "end": 918.16, + "probability": 0.9827 + }, + { + "start": 918.5, + "end": 920.88, + "probability": 0.965 + }, + { + "start": 921.2, + "end": 923.18, + "probability": 0.8342 + }, + { + "start": 923.58, + "end": 924.28, + "probability": 0.559 + }, + { + "start": 924.5, + "end": 927.56, + "probability": 0.9888 + }, + { + "start": 927.88, + "end": 929.58, + "probability": 0.9904 + }, + { + "start": 929.98, + "end": 933.86, + "probability": 0.9897 + }, + { + "start": 934.0, + "end": 937.0, + "probability": 0.8891 + }, + { + "start": 938.24, + "end": 939.74, + "probability": 0.9797 + }, + { + "start": 939.76, + "end": 939.96, + "probability": 0.5153 + }, + { + "start": 940.8, + "end": 941.96, + "probability": 0.804 + }, + { + "start": 942.48, + "end": 943.25, + "probability": 0.9413 + }, + { + "start": 943.4, + "end": 947.18, + "probability": 0.99 + }, + { + "start": 947.76, + "end": 948.93, + "probability": 0.999 + }, + { + "start": 949.14, + "end": 950.02, + "probability": 0.7559 + }, + { + "start": 950.22, + "end": 950.91, + "probability": 0.994 + }, + { + "start": 950.98, + "end": 953.52, + "probability": 0.7634 + }, + { + "start": 955.9, + "end": 958.58, + "probability": 0.7683 + }, + { + "start": 958.88, + "end": 959.18, + "probability": 0.4099 + }, + { + "start": 959.46, + "end": 960.06, + "probability": 0.4324 + }, + { + "start": 960.14, + "end": 960.54, + "probability": 0.4931 + }, + { + "start": 960.54, + "end": 960.54, + "probability": 0.6828 + }, + { + "start": 960.8, + "end": 961.6, + "probability": 0.6388 + }, + { + "start": 973.54, + "end": 977.3, + "probability": 0.477 + }, + { + "start": 977.8, + "end": 978.32, + "probability": 0.8425 + }, + { + "start": 978.64, + "end": 979.5, + "probability": 0.8353 + }, + { + "start": 979.72, + "end": 980.43, + "probability": 0.962 + }, + { + "start": 981.18, + "end": 984.08, + "probability": 0.8991 + }, + { + "start": 984.66, + "end": 987.92, + "probability": 0.9336 + }, + { + "start": 988.76, + "end": 989.66, + "probability": 0.5554 + }, + { + "start": 989.86, + "end": 991.1, + "probability": 0.9901 + }, + { + "start": 991.32, + "end": 992.46, + "probability": 0.9785 + }, + { + "start": 992.64, + "end": 993.48, + "probability": 0.9762 + }, + { + "start": 993.6, + "end": 994.12, + "probability": 0.9885 + }, + { + "start": 994.3, + "end": 994.72, + "probability": 0.8745 + }, + { + "start": 995.16, + "end": 997.84, + "probability": 0.8696 + }, + { + "start": 998.44, + "end": 1000.58, + "probability": 0.9932 + }, + { + "start": 1000.98, + "end": 1002.32, + "probability": 0.9789 + }, + { + "start": 1002.44, + "end": 1004.36, + "probability": 0.9722 + }, + { + "start": 1005.0, + "end": 1007.84, + "probability": 0.7461 + }, + { + "start": 1008.32, + "end": 1013.16, + "probability": 0.996 + }, + { + "start": 1013.16, + "end": 1014.7, + "probability": 0.5323 + }, + { + "start": 1015.12, + "end": 1016.26, + "probability": 0.4785 + }, + { + "start": 1016.8, + "end": 1018.62, + "probability": 0.952 + }, + { + "start": 1018.72, + "end": 1020.92, + "probability": 0.95 + }, + { + "start": 1021.06, + "end": 1024.06, + "probability": 0.9854 + }, + { + "start": 1024.44, + "end": 1027.02, + "probability": 0.7704 + }, + { + "start": 1027.08, + "end": 1030.8, + "probability": 0.949 + }, + { + "start": 1031.04, + "end": 1034.06, + "probability": 0.8911 + }, + { + "start": 1034.14, + "end": 1038.0, + "probability": 0.98 + }, + { + "start": 1038.18, + "end": 1039.26, + "probability": 0.8702 + }, + { + "start": 1039.42, + "end": 1039.94, + "probability": 0.9775 + }, + { + "start": 1040.62, + "end": 1043.02, + "probability": 0.9871 + }, + { + "start": 1043.44, + "end": 1043.88, + "probability": 0.9206 + }, + { + "start": 1043.9, + "end": 1045.12, + "probability": 0.7851 + }, + { + "start": 1045.7, + "end": 1046.9, + "probability": 0.9001 + }, + { + "start": 1047.2, + "end": 1049.26, + "probability": 0.9837 + }, + { + "start": 1049.54, + "end": 1053.32, + "probability": 0.96 + }, + { + "start": 1053.32, + "end": 1056.08, + "probability": 0.9839 + }, + { + "start": 1056.5, + "end": 1061.24, + "probability": 0.9937 + }, + { + "start": 1061.72, + "end": 1063.92, + "probability": 0.9585 + }, + { + "start": 1064.52, + "end": 1065.88, + "probability": 0.9709 + }, + { + "start": 1066.16, + "end": 1067.04, + "probability": 0.9074 + }, + { + "start": 1067.44, + "end": 1071.8, + "probability": 0.9308 + }, + { + "start": 1072.1, + "end": 1074.74, + "probability": 0.8655 + }, + { + "start": 1074.86, + "end": 1076.6, + "probability": 0.6404 + }, + { + "start": 1077.32, + "end": 1077.74, + "probability": 0.5788 + }, + { + "start": 1077.82, + "end": 1078.9, + "probability": 0.9689 + }, + { + "start": 1078.96, + "end": 1079.86, + "probability": 0.4436 + }, + { + "start": 1080.3, + "end": 1083.96, + "probability": 0.8931 + }, + { + "start": 1084.66, + "end": 1086.08, + "probability": 0.7867 + }, + { + "start": 1087.5, + "end": 1088.86, + "probability": 0.8036 + }, + { + "start": 1089.66, + "end": 1090.88, + "probability": 0.8988 + }, + { + "start": 1091.4, + "end": 1092.36, + "probability": 0.7634 + }, + { + "start": 1093.1, + "end": 1095.6, + "probability": 0.8217 + }, + { + "start": 1095.8, + "end": 1096.16, + "probability": 0.9421 + }, + { + "start": 1096.6, + "end": 1097.28, + "probability": 0.7884 + }, + { + "start": 1097.94, + "end": 1099.18, + "probability": 0.7355 + }, + { + "start": 1100.32, + "end": 1100.52, + "probability": 0.3888 + }, + { + "start": 1100.52, + "end": 1101.78, + "probability": 0.95 + }, + { + "start": 1102.2, + "end": 1103.04, + "probability": 0.9479 + }, + { + "start": 1103.28, + "end": 1103.5, + "probability": 0.3916 + }, + { + "start": 1103.54, + "end": 1104.6, + "probability": 0.6895 + }, + { + "start": 1105.84, + "end": 1108.46, + "probability": 0.7095 + }, + { + "start": 1109.02, + "end": 1113.28, + "probability": 0.9245 + }, + { + "start": 1114.0, + "end": 1116.04, + "probability": 0.6609 + }, + { + "start": 1117.14, + "end": 1119.44, + "probability": 0.8603 + }, + { + "start": 1120.06, + "end": 1123.72, + "probability": 0.9127 + }, + { + "start": 1124.9, + "end": 1129.1, + "probability": 0.6581 + }, + { + "start": 1131.06, + "end": 1131.68, + "probability": 0.7356 + }, + { + "start": 1132.82, + "end": 1136.34, + "probability": 0.838 + }, + { + "start": 1137.48, + "end": 1139.82, + "probability": 0.9854 + }, + { + "start": 1140.62, + "end": 1141.92, + "probability": 0.7433 + }, + { + "start": 1142.78, + "end": 1149.82, + "probability": 0.9254 + }, + { + "start": 1150.22, + "end": 1151.5, + "probability": 0.934 + }, + { + "start": 1152.26, + "end": 1154.58, + "probability": 0.917 + }, + { + "start": 1155.0, + "end": 1158.79, + "probability": 0.9982 + }, + { + "start": 1160.67, + "end": 1163.7, + "probability": 0.9908 + }, + { + "start": 1164.74, + "end": 1165.38, + "probability": 0.7502 + }, + { + "start": 1165.68, + "end": 1169.32, + "probability": 0.9902 + }, + { + "start": 1169.5, + "end": 1169.78, + "probability": 0.9318 + }, + { + "start": 1170.76, + "end": 1174.76, + "probability": 0.6743 + }, + { + "start": 1175.76, + "end": 1176.66, + "probability": 0.9937 + }, + { + "start": 1178.92, + "end": 1184.6, + "probability": 0.6639 + }, + { + "start": 1186.06, + "end": 1187.56, + "probability": 0.9934 + }, + { + "start": 1188.78, + "end": 1191.1, + "probability": 0.9279 + }, + { + "start": 1191.24, + "end": 1193.6, + "probability": 0.752 + }, + { + "start": 1194.8, + "end": 1196.38, + "probability": 0.9492 + }, + { + "start": 1196.44, + "end": 1200.36, + "probability": 0.9443 + }, + { + "start": 1202.4, + "end": 1202.68, + "probability": 0.421 + }, + { + "start": 1203.24, + "end": 1204.84, + "probability": 0.8384 + }, + { + "start": 1205.48, + "end": 1209.04, + "probability": 0.978 + }, + { + "start": 1209.98, + "end": 1211.54, + "probability": 0.9881 + }, + { + "start": 1212.12, + "end": 1213.38, + "probability": 0.9852 + }, + { + "start": 1213.92, + "end": 1216.76, + "probability": 0.9604 + }, + { + "start": 1216.92, + "end": 1217.58, + "probability": 0.7437 + }, + { + "start": 1217.72, + "end": 1218.28, + "probability": 0.6231 + }, + { + "start": 1219.15, + "end": 1222.52, + "probability": 0.9317 + }, + { + "start": 1222.86, + "end": 1224.12, + "probability": 0.5403 + }, + { + "start": 1225.7, + "end": 1228.32, + "probability": 0.7468 + }, + { + "start": 1229.72, + "end": 1230.94, + "probability": 0.657 + }, + { + "start": 1232.18, + "end": 1233.56, + "probability": 0.5065 + }, + { + "start": 1234.72, + "end": 1237.21, + "probability": 0.6895 + }, + { + "start": 1237.8, + "end": 1239.37, + "probability": 0.4426 + }, + { + "start": 1239.7, + "end": 1242.92, + "probability": 0.4372 + }, + { + "start": 1243.9, + "end": 1245.26, + "probability": 0.6819 + }, + { + "start": 1245.84, + "end": 1250.02, + "probability": 0.613 + }, + { + "start": 1250.82, + "end": 1253.1, + "probability": 0.5852 + }, + { + "start": 1253.26, + "end": 1257.58, + "probability": 0.8507 + }, + { + "start": 1257.74, + "end": 1261.58, + "probability": 0.8254 + }, + { + "start": 1261.82, + "end": 1263.12, + "probability": 0.9873 + }, + { + "start": 1263.3, + "end": 1266.36, + "probability": 0.9714 + }, + { + "start": 1267.04, + "end": 1270.62, + "probability": 0.9944 + }, + { + "start": 1271.3, + "end": 1276.3, + "probability": 0.9966 + }, + { + "start": 1276.3, + "end": 1279.24, + "probability": 0.9943 + }, + { + "start": 1280.14, + "end": 1283.04, + "probability": 0.8457 + }, + { + "start": 1284.02, + "end": 1291.64, + "probability": 0.9583 + }, + { + "start": 1292.04, + "end": 1294.92, + "probability": 0.91 + }, + { + "start": 1295.64, + "end": 1297.26, + "probability": 0.9803 + }, + { + "start": 1298.04, + "end": 1299.26, + "probability": 0.3326 + }, + { + "start": 1299.68, + "end": 1300.64, + "probability": 0.8998 + }, + { + "start": 1301.3, + "end": 1304.52, + "probability": 0.916 + }, + { + "start": 1305.06, + "end": 1307.68, + "probability": 0.9285 + }, + { + "start": 1307.76, + "end": 1312.22, + "probability": 0.9198 + }, + { + "start": 1312.82, + "end": 1316.88, + "probability": 0.9816 + }, + { + "start": 1316.88, + "end": 1320.12, + "probability": 0.9956 + }, + { + "start": 1320.42, + "end": 1320.8, + "probability": 0.4754 + }, + { + "start": 1320.92, + "end": 1323.9, + "probability": 0.9409 + }, + { + "start": 1324.0, + "end": 1326.19, + "probability": 0.9043 + }, + { + "start": 1326.74, + "end": 1328.1, + "probability": 0.967 + }, + { + "start": 1328.34, + "end": 1330.84, + "probability": 0.7967 + }, + { + "start": 1331.36, + "end": 1332.08, + "probability": 0.8578 + }, + { + "start": 1332.34, + "end": 1332.86, + "probability": 0.8843 + }, + { + "start": 1333.2, + "end": 1334.14, + "probability": 0.9199 + }, + { + "start": 1334.74, + "end": 1336.42, + "probability": 0.9518 + }, + { + "start": 1337.16, + "end": 1342.32, + "probability": 0.9859 + }, + { + "start": 1342.86, + "end": 1343.42, + "probability": 0.7114 + }, + { + "start": 1343.74, + "end": 1345.86, + "probability": 0.9537 + }, + { + "start": 1346.84, + "end": 1348.34, + "probability": 0.9277 + }, + { + "start": 1348.66, + "end": 1351.36, + "probability": 0.703 + }, + { + "start": 1351.9, + "end": 1353.28, + "probability": 0.9513 + }, + { + "start": 1354.06, + "end": 1355.58, + "probability": 0.2578 + }, + { + "start": 1356.38, + "end": 1358.42, + "probability": 0.9927 + }, + { + "start": 1359.58, + "end": 1364.58, + "probability": 0.9886 + }, + { + "start": 1364.98, + "end": 1366.36, + "probability": 0.9888 + }, + { + "start": 1367.12, + "end": 1367.34, + "probability": 0.8434 + }, + { + "start": 1368.12, + "end": 1368.66, + "probability": 0.5842 + }, + { + "start": 1369.26, + "end": 1370.73, + "probability": 0.5773 + }, + { + "start": 1371.32, + "end": 1373.84, + "probability": 0.9144 + }, + { + "start": 1376.76, + "end": 1377.7, + "probability": 0.8753 + }, + { + "start": 1379.08, + "end": 1382.64, + "probability": 0.9951 + }, + { + "start": 1383.24, + "end": 1386.14, + "probability": 0.9428 + }, + { + "start": 1386.42, + "end": 1387.8, + "probability": 0.8023 + }, + { + "start": 1388.58, + "end": 1390.1, + "probability": 0.8567 + }, + { + "start": 1390.72, + "end": 1393.03, + "probability": 0.8851 + }, + { + "start": 1393.68, + "end": 1394.34, + "probability": 0.684 + }, + { + "start": 1394.46, + "end": 1396.56, + "probability": 0.9557 + }, + { + "start": 1397.78, + "end": 1400.34, + "probability": 0.9683 + }, + { + "start": 1400.54, + "end": 1403.64, + "probability": 0.9885 + }, + { + "start": 1404.32, + "end": 1407.44, + "probability": 0.9959 + }, + { + "start": 1407.76, + "end": 1410.14, + "probability": 0.9394 + }, + { + "start": 1410.86, + "end": 1414.92, + "probability": 0.5391 + }, + { + "start": 1415.0, + "end": 1421.06, + "probability": 0.8446 + }, + { + "start": 1421.22, + "end": 1426.26, + "probability": 0.9941 + }, + { + "start": 1426.72, + "end": 1430.1, + "probability": 0.996 + }, + { + "start": 1430.5, + "end": 1433.44, + "probability": 0.8682 + }, + { + "start": 1433.98, + "end": 1437.68, + "probability": 0.9889 + }, + { + "start": 1437.8, + "end": 1438.88, + "probability": 0.8354 + }, + { + "start": 1439.32, + "end": 1440.46, + "probability": 0.9188 + }, + { + "start": 1440.86, + "end": 1441.58, + "probability": 0.922 + }, + { + "start": 1442.2, + "end": 1442.86, + "probability": 0.9739 + }, + { + "start": 1443.76, + "end": 1445.98, + "probability": 0.9902 + }, + { + "start": 1446.48, + "end": 1449.74, + "probability": 0.9185 + }, + { + "start": 1450.46, + "end": 1456.38, + "probability": 0.9849 + }, + { + "start": 1456.38, + "end": 1459.86, + "probability": 0.6294 + }, + { + "start": 1460.24, + "end": 1462.56, + "probability": 0.9972 + }, + { + "start": 1463.22, + "end": 1463.84, + "probability": 0.4937 + }, + { + "start": 1463.86, + "end": 1467.06, + "probability": 0.7814 + }, + { + "start": 1469.9, + "end": 1471.82, + "probability": 0.7552 + }, + { + "start": 1472.06, + "end": 1472.08, + "probability": 0.7988 + }, + { + "start": 1473.68, + "end": 1475.16, + "probability": 0.9056 + }, + { + "start": 1475.24, + "end": 1477.51, + "probability": 0.9889 + }, + { + "start": 1478.32, + "end": 1479.04, + "probability": 0.5379 + }, + { + "start": 1480.5, + "end": 1481.58, + "probability": 0.8108 + }, + { + "start": 1482.22, + "end": 1483.38, + "probability": 0.5262 + }, + { + "start": 1484.82, + "end": 1487.22, + "probability": 0.9465 + }, + { + "start": 1488.52, + "end": 1490.44, + "probability": 0.9852 + }, + { + "start": 1491.52, + "end": 1491.92, + "probability": 0.9478 + }, + { + "start": 1492.52, + "end": 1493.7, + "probability": 0.8894 + }, + { + "start": 1495.4, + "end": 1496.12, + "probability": 0.9205 + }, + { + "start": 1497.08, + "end": 1498.34, + "probability": 0.9885 + }, + { + "start": 1499.38, + "end": 1501.04, + "probability": 0.8911 + }, + { + "start": 1502.32, + "end": 1502.98, + "probability": 0.4068 + }, + { + "start": 1503.18, + "end": 1505.3, + "probability": 0.7228 + }, + { + "start": 1505.76, + "end": 1508.02, + "probability": 0.967 + }, + { + "start": 1508.76, + "end": 1509.04, + "probability": 0.7704 + }, + { + "start": 1509.88, + "end": 1510.4, + "probability": 0.5603 + }, + { + "start": 1510.9, + "end": 1510.9, + "probability": 0.5253 + }, + { + "start": 1511.44, + "end": 1512.2, + "probability": 0.7811 + }, + { + "start": 1512.86, + "end": 1513.42, + "probability": 0.6793 + }, + { + "start": 1514.64, + "end": 1515.52, + "probability": 0.9562 + }, + { + "start": 1517.2, + "end": 1518.02, + "probability": 0.9216 + }, + { + "start": 1518.96, + "end": 1520.3, + "probability": 0.925 + }, + { + "start": 1521.36, + "end": 1522.9, + "probability": 0.9648 + }, + { + "start": 1524.0, + "end": 1524.72, + "probability": 0.9291 + }, + { + "start": 1525.78, + "end": 1528.02, + "probability": 0.9893 + }, + { + "start": 1528.54, + "end": 1529.88, + "probability": 0.645 + }, + { + "start": 1529.94, + "end": 1530.46, + "probability": 0.4837 + }, + { + "start": 1531.56, + "end": 1534.46, + "probability": 0.8472 + }, + { + "start": 1535.28, + "end": 1537.86, + "probability": 0.9844 + }, + { + "start": 1538.8, + "end": 1539.12, + "probability": 0.8084 + }, + { + "start": 1540.22, + "end": 1541.3, + "probability": 0.9356 + }, + { + "start": 1541.78, + "end": 1542.68, + "probability": 0.9724 + }, + { + "start": 1542.92, + "end": 1546.18, + "probability": 0.9899 + }, + { + "start": 1547.06, + "end": 1548.46, + "probability": 0.5531 + }, + { + "start": 1549.48, + "end": 1551.45, + "probability": 0.9409 + }, + { + "start": 1552.66, + "end": 1554.72, + "probability": 0.8883 + }, + { + "start": 1555.08, + "end": 1556.04, + "probability": 0.808 + }, + { + "start": 1556.64, + "end": 1557.52, + "probability": 0.9733 + }, + { + "start": 1558.38, + "end": 1559.94, + "probability": 0.9803 + }, + { + "start": 1559.98, + "end": 1561.02, + "probability": 0.9246 + }, + { + "start": 1561.52, + "end": 1561.68, + "probability": 0.7067 + }, + { + "start": 1561.76, + "end": 1563.16, + "probability": 0.7558 + }, + { + "start": 1563.26, + "end": 1565.06, + "probability": 0.7619 + }, + { + "start": 1565.12, + "end": 1566.56, + "probability": 0.9055 + }, + { + "start": 1566.82, + "end": 1568.34, + "probability": 0.9816 + }, + { + "start": 1569.2, + "end": 1570.27, + "probability": 0.9961 + }, + { + "start": 1571.4, + "end": 1571.98, + "probability": 0.4501 + }, + { + "start": 1572.56, + "end": 1572.76, + "probability": 0.7034 + }, + { + "start": 1572.8, + "end": 1578.48, + "probability": 0.9934 + }, + { + "start": 1578.98, + "end": 1579.84, + "probability": 0.8779 + }, + { + "start": 1579.84, + "end": 1581.6, + "probability": 0.9632 + }, + { + "start": 1582.12, + "end": 1584.1, + "probability": 0.8538 + }, + { + "start": 1584.36, + "end": 1584.56, + "probability": 0.8298 + }, + { + "start": 1585.06, + "end": 1585.26, + "probability": 0.654 + }, + { + "start": 1585.59, + "end": 1587.56, + "probability": 0.7969 + }, + { + "start": 1588.32, + "end": 1591.12, + "probability": 0.8773 + }, + { + "start": 1591.64, + "end": 1592.1, + "probability": 0.6229 + }, + { + "start": 1593.46, + "end": 1594.14, + "probability": 0.7138 + }, + { + "start": 1594.42, + "end": 1598.86, + "probability": 0.9415 + }, + { + "start": 1598.86, + "end": 1601.5, + "probability": 0.9623 + }, + { + "start": 1602.32, + "end": 1605.88, + "probability": 0.9945 + }, + { + "start": 1606.04, + "end": 1606.24, + "probability": 0.8997 + }, + { + "start": 1606.96, + "end": 1608.08, + "probability": 0.7943 + }, + { + "start": 1608.98, + "end": 1610.42, + "probability": 0.6967 + }, + { + "start": 1610.78, + "end": 1613.99, + "probability": 0.8602 + }, + { + "start": 1614.5, + "end": 1617.06, + "probability": 0.994 + }, + { + "start": 1617.6, + "end": 1619.46, + "probability": 0.9941 + }, + { + "start": 1620.32, + "end": 1623.97, + "probability": 0.7471 + }, + { + "start": 1624.54, + "end": 1625.12, + "probability": 0.5494 + }, + { + "start": 1625.6, + "end": 1626.56, + "probability": 0.7132 + }, + { + "start": 1626.6, + "end": 1626.84, + "probability": 0.7845 + }, + { + "start": 1627.64, + "end": 1630.08, + "probability": 0.8115 + }, + { + "start": 1630.24, + "end": 1631.08, + "probability": 0.502 + }, + { + "start": 1631.26, + "end": 1632.08, + "probability": 0.4816 + }, + { + "start": 1633.14, + "end": 1637.22, + "probability": 0.8911 + }, + { + "start": 1637.98, + "end": 1638.26, + "probability": 0.8988 + }, + { + "start": 1638.86, + "end": 1641.0, + "probability": 0.9876 + }, + { + "start": 1641.42, + "end": 1641.62, + "probability": 0.6874 + }, + { + "start": 1641.74, + "end": 1643.14, + "probability": 0.49 + }, + { + "start": 1643.54, + "end": 1645.28, + "probability": 0.917 + }, + { + "start": 1645.84, + "end": 1649.49, + "probability": 0.9753 + }, + { + "start": 1650.4, + "end": 1652.82, + "probability": 0.7606 + }, + { + "start": 1653.64, + "end": 1657.92, + "probability": 0.9708 + }, + { + "start": 1658.38, + "end": 1658.48, + "probability": 0.7779 + }, + { + "start": 1660.22, + "end": 1661.3, + "probability": 0.4987 + }, + { + "start": 1661.4, + "end": 1663.78, + "probability": 0.938 + }, + { + "start": 1672.96, + "end": 1673.24, + "probability": 0.4932 + }, + { + "start": 1673.3, + "end": 1675.48, + "probability": 0.7449 + }, + { + "start": 1675.66, + "end": 1680.14, + "probability": 0.9147 + }, + { + "start": 1680.7, + "end": 1682.2, + "probability": 0.9863 + }, + { + "start": 1683.46, + "end": 1686.1, + "probability": 0.9148 + }, + { + "start": 1686.4, + "end": 1690.92, + "probability": 0.9811 + }, + { + "start": 1691.8, + "end": 1693.14, + "probability": 0.9885 + }, + { + "start": 1693.66, + "end": 1694.6, + "probability": 0.8352 + }, + { + "start": 1695.22, + "end": 1697.38, + "probability": 0.9787 + }, + { + "start": 1698.02, + "end": 1698.86, + "probability": 0.6945 + }, + { + "start": 1699.5, + "end": 1700.38, + "probability": 0.8257 + }, + { + "start": 1700.42, + "end": 1702.22, + "probability": 0.9073 + }, + { + "start": 1702.94, + "end": 1706.3, + "probability": 0.7924 + }, + { + "start": 1706.44, + "end": 1708.4, + "probability": 0.9612 + }, + { + "start": 1709.0, + "end": 1713.48, + "probability": 0.9969 + }, + { + "start": 1713.92, + "end": 1714.92, + "probability": 0.9681 + }, + { + "start": 1715.3, + "end": 1716.96, + "probability": 0.9142 + }, + { + "start": 1717.12, + "end": 1718.88, + "probability": 0.9631 + }, + { + "start": 1718.96, + "end": 1720.84, + "probability": 0.9842 + }, + { + "start": 1721.76, + "end": 1723.78, + "probability": 0.9639 + }, + { + "start": 1723.88, + "end": 1726.24, + "probability": 0.9961 + }, + { + "start": 1726.68, + "end": 1730.86, + "probability": 0.9619 + }, + { + "start": 1731.02, + "end": 1731.86, + "probability": 0.9118 + }, + { + "start": 1732.64, + "end": 1735.36, + "probability": 0.9948 + }, + { + "start": 1735.9, + "end": 1736.72, + "probability": 0.5992 + }, + { + "start": 1736.8, + "end": 1738.86, + "probability": 0.9707 + }, + { + "start": 1739.46, + "end": 1740.54, + "probability": 0.8964 + }, + { + "start": 1740.7, + "end": 1741.12, + "probability": 0.8318 + }, + { + "start": 1741.2, + "end": 1741.6, + "probability": 0.7158 + }, + { + "start": 1741.96, + "end": 1743.03, + "probability": 0.868 + }, + { + "start": 1743.54, + "end": 1745.26, + "probability": 0.9216 + }, + { + "start": 1745.38, + "end": 1746.26, + "probability": 0.9469 + }, + { + "start": 1746.8, + "end": 1751.68, + "probability": 0.9546 + }, + { + "start": 1751.76, + "end": 1754.02, + "probability": 0.7683 + }, + { + "start": 1754.54, + "end": 1754.8, + "probability": 0.8136 + }, + { + "start": 1754.88, + "end": 1755.24, + "probability": 0.7128 + }, + { + "start": 1755.38, + "end": 1758.98, + "probability": 0.9863 + }, + { + "start": 1759.04, + "end": 1760.72, + "probability": 0.9763 + }, + { + "start": 1761.18, + "end": 1762.82, + "probability": 0.9253 + }, + { + "start": 1763.54, + "end": 1766.92, + "probability": 0.4879 + }, + { + "start": 1767.36, + "end": 1767.94, + "probability": 0.9753 + }, + { + "start": 1768.7, + "end": 1771.82, + "probability": 0.9419 + }, + { + "start": 1771.98, + "end": 1776.48, + "probability": 0.9944 + }, + { + "start": 1776.76, + "end": 1781.28, + "probability": 0.9994 + }, + { + "start": 1781.44, + "end": 1782.74, + "probability": 0.9939 + }, + { + "start": 1782.84, + "end": 1783.04, + "probability": 0.7951 + }, + { + "start": 1783.44, + "end": 1783.98, + "probability": 0.8141 + }, + { + "start": 1784.58, + "end": 1787.28, + "probability": 0.8041 + }, + { + "start": 1788.16, + "end": 1790.68, + "probability": 0.8337 + }, + { + "start": 1791.08, + "end": 1793.39, + "probability": 0.9175 + }, + { + "start": 1794.0, + "end": 1796.66, + "probability": 0.9792 + }, + { + "start": 1797.82, + "end": 1798.46, + "probability": 0.6555 + }, + { + "start": 1799.64, + "end": 1800.34, + "probability": 0.8423 + }, + { + "start": 1800.86, + "end": 1801.68, + "probability": 0.9204 + }, + { + "start": 1802.58, + "end": 1803.96, + "probability": 0.6316 + }, + { + "start": 1804.74, + "end": 1806.44, + "probability": 0.7638 + }, + { + "start": 1806.82, + "end": 1808.14, + "probability": 0.8774 + }, + { + "start": 1818.12, + "end": 1821.34, + "probability": 0.7194 + }, + { + "start": 1821.44, + "end": 1821.82, + "probability": 0.7848 + }, + { + "start": 1821.92, + "end": 1822.44, + "probability": 0.6076 + }, + { + "start": 1824.98, + "end": 1825.72, + "probability": 0.5679 + }, + { + "start": 1825.96, + "end": 1828.38, + "probability": 0.7732 + }, + { + "start": 1829.52, + "end": 1833.1, + "probability": 0.9755 + }, + { + "start": 1833.3, + "end": 1837.05, + "probability": 0.9893 + }, + { + "start": 1838.12, + "end": 1842.45, + "probability": 0.9795 + }, + { + "start": 1843.94, + "end": 1849.28, + "probability": 0.9225 + }, + { + "start": 1849.44, + "end": 1853.74, + "probability": 0.9881 + }, + { + "start": 1854.18, + "end": 1860.1, + "probability": 0.9766 + }, + { + "start": 1861.24, + "end": 1865.16, + "probability": 0.8549 + }, + { + "start": 1865.26, + "end": 1868.78, + "probability": 0.9978 + }, + { + "start": 1869.64, + "end": 1870.44, + "probability": 0.7141 + }, + { + "start": 1871.78, + "end": 1876.62, + "probability": 0.9917 + }, + { + "start": 1876.76, + "end": 1879.94, + "probability": 0.9892 + }, + { + "start": 1880.46, + "end": 1883.64, + "probability": 0.8731 + }, + { + "start": 1884.42, + "end": 1886.66, + "probability": 0.96 + }, + { + "start": 1886.68, + "end": 1889.86, + "probability": 0.7282 + }, + { + "start": 1890.42, + "end": 1892.26, + "probability": 0.9977 + }, + { + "start": 1893.12, + "end": 1894.44, + "probability": 0.854 + }, + { + "start": 1894.54, + "end": 1894.9, + "probability": 0.3825 + }, + { + "start": 1894.94, + "end": 1899.18, + "probability": 0.9469 + }, + { + "start": 1900.7, + "end": 1902.96, + "probability": 0.9443 + }, + { + "start": 1903.12, + "end": 1905.92, + "probability": 0.9899 + }, + { + "start": 1906.0, + "end": 1908.46, + "probability": 0.8237 + }, + { + "start": 1909.1, + "end": 1909.68, + "probability": 0.9111 + }, + { + "start": 1910.68, + "end": 1912.62, + "probability": 0.6687 + }, + { + "start": 1912.82, + "end": 1913.82, + "probability": 0.7795 + }, + { + "start": 1913.92, + "end": 1916.01, + "probability": 0.7586 + }, + { + "start": 1917.06, + "end": 1918.04, + "probability": 0.7803 + }, + { + "start": 1918.2, + "end": 1920.46, + "probability": 0.9631 + }, + { + "start": 1920.64, + "end": 1923.66, + "probability": 0.766 + }, + { + "start": 1924.46, + "end": 1926.38, + "probability": 0.7393 + }, + { + "start": 1926.52, + "end": 1928.0, + "probability": 0.9534 + }, + { + "start": 1928.1, + "end": 1931.32, + "probability": 0.9829 + }, + { + "start": 1932.76, + "end": 1935.56, + "probability": 0.8502 + }, + { + "start": 1935.56, + "end": 1936.08, + "probability": 0.384 + }, + { + "start": 1936.18, + "end": 1936.64, + "probability": 0.9061 + }, + { + "start": 1937.18, + "end": 1940.38, + "probability": 0.9954 + }, + { + "start": 1940.54, + "end": 1943.14, + "probability": 0.9665 + }, + { + "start": 1943.3, + "end": 1943.92, + "probability": 0.4943 + }, + { + "start": 1944.04, + "end": 1945.04, + "probability": 0.8902 + }, + { + "start": 1946.1, + "end": 1953.18, + "probability": 0.8702 + }, + { + "start": 1953.74, + "end": 1957.18, + "probability": 0.9928 + }, + { + "start": 1957.18, + "end": 1961.86, + "probability": 0.9985 + }, + { + "start": 1961.9, + "end": 1965.62, + "probability": 0.8896 + }, + { + "start": 1966.34, + "end": 1969.42, + "probability": 0.9813 + }, + { + "start": 1969.72, + "end": 1972.98, + "probability": 0.9519 + }, + { + "start": 1973.52, + "end": 1973.82, + "probability": 0.7278 + }, + { + "start": 1974.04, + "end": 1974.4, + "probability": 0.5918 + }, + { + "start": 1974.5, + "end": 1977.18, + "probability": 0.9488 + }, + { + "start": 1977.36, + "end": 1981.24, + "probability": 0.6646 + }, + { + "start": 1981.26, + "end": 1981.44, + "probability": 0.6785 + }, + { + "start": 1981.44, + "end": 1981.78, + "probability": 0.3611 + }, + { + "start": 1983.68, + "end": 1989.16, + "probability": 0.8363 + }, + { + "start": 1989.68, + "end": 1990.62, + "probability": 0.943 + }, + { + "start": 1991.16, + "end": 1993.92, + "probability": 0.8791 + }, + { + "start": 1995.12, + "end": 1996.58, + "probability": 0.8308 + }, + { + "start": 1996.64, + "end": 1997.5, + "probability": 0.7318 + }, + { + "start": 1997.8, + "end": 1999.58, + "probability": 0.8951 + }, + { + "start": 2000.16, + "end": 2004.26, + "probability": 0.8475 + }, + { + "start": 2004.82, + "end": 2009.04, + "probability": 0.8904 + }, + { + "start": 2009.62, + "end": 2010.74, + "probability": 0.2959 + }, + { + "start": 2010.9, + "end": 2015.28, + "probability": 0.7232 + }, + { + "start": 2015.8, + "end": 2016.32, + "probability": 0.2963 + }, + { + "start": 2016.34, + "end": 2016.9, + "probability": 0.6481 + }, + { + "start": 2016.98, + "end": 2017.22, + "probability": 0.7648 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.1182 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.4325 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.3946 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.386 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.423 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.4075 + }, + { + "start": 2023.62, + "end": 2023.62, + "probability": 0.1114 + }, + { + "start": 2023.62, + "end": 2024.42, + "probability": 0.6293 + }, + { + "start": 2025.48, + "end": 2027.98, + "probability": 0.4377 + }, + { + "start": 2028.56, + "end": 2030.14, + "probability": 0.4631 + }, + { + "start": 2030.16, + "end": 2033.86, + "probability": 0.9833 + }, + { + "start": 2033.86, + "end": 2038.6, + "probability": 0.9647 + }, + { + "start": 2038.98, + "end": 2041.42, + "probability": 0.9443 + }, + { + "start": 2041.5, + "end": 2042.0, + "probability": 0.7792 + }, + { + "start": 2042.44, + "end": 2043.58, + "probability": 0.7771 + }, + { + "start": 2044.36, + "end": 2044.64, + "probability": 0.2882 + }, + { + "start": 2044.7, + "end": 2045.34, + "probability": 0.6147 + }, + { + "start": 2045.46, + "end": 2045.66, + "probability": 0.5596 + }, + { + "start": 2045.9, + "end": 2046.88, + "probability": 0.783 + }, + { + "start": 2047.02, + "end": 2052.8, + "probability": 0.9083 + }, + { + "start": 2052.8, + "end": 2056.86, + "probability": 0.9836 + }, + { + "start": 2057.22, + "end": 2058.84, + "probability": 0.154 + }, + { + "start": 2059.38, + "end": 2062.55, + "probability": 0.7065 + }, + { + "start": 2064.18, + "end": 2064.6, + "probability": 0.9225 + }, + { + "start": 2064.92, + "end": 2065.44, + "probability": 0.7115 + }, + { + "start": 2065.5, + "end": 2067.02, + "probability": 0.8149 + }, + { + "start": 2067.76, + "end": 2068.02, + "probability": 0.6755 + }, + { + "start": 2068.14, + "end": 2072.72, + "probability": 0.3411 + }, + { + "start": 2073.4, + "end": 2073.68, + "probability": 0.0003 + }, + { + "start": 2077.12, + "end": 2077.5, + "probability": 0.1673 + }, + { + "start": 2079.44, + "end": 2080.36, + "probability": 0.0528 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.4536 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.4084 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.3341 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.4446 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.1534 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.1086 + }, + { + "start": 2080.36, + "end": 2080.36, + "probability": 0.004 + }, + { + "start": 2080.36, + "end": 2082.78, + "probability": 0.3459 + }, + { + "start": 2083.62, + "end": 2085.4, + "probability": 0.8765 + }, + { + "start": 2085.92, + "end": 2088.36, + "probability": 0.8508 + }, + { + "start": 2088.92, + "end": 2090.62, + "probability": 0.9417 + }, + { + "start": 2091.2, + "end": 2092.32, + "probability": 0.9817 + }, + { + "start": 2097.08, + "end": 2098.24, + "probability": 0.9054 + }, + { + "start": 2100.24, + "end": 2100.42, + "probability": 0.6755 + }, + { + "start": 2101.12, + "end": 2102.02, + "probability": 0.9612 + }, + { + "start": 2102.42, + "end": 2103.12, + "probability": 0.693 + }, + { + "start": 2103.76, + "end": 2105.22, + "probability": 0.8912 + }, + { + "start": 2105.78, + "end": 2108.94, + "probability": 0.9825 + }, + { + "start": 2109.74, + "end": 2112.04, + "probability": 0.9751 + }, + { + "start": 2112.04, + "end": 2114.9, + "probability": 0.9409 + }, + { + "start": 2114.96, + "end": 2120.88, + "probability": 0.9961 + }, + { + "start": 2121.98, + "end": 2124.93, + "probability": 0.8504 + }, + { + "start": 2126.28, + "end": 2127.36, + "probability": 0.6872 + }, + { + "start": 2128.32, + "end": 2131.04, + "probability": 0.9784 + }, + { + "start": 2131.74, + "end": 2132.2, + "probability": 0.8663 + }, + { + "start": 2133.58, + "end": 2133.98, + "probability": 0.737 + }, + { + "start": 2134.82, + "end": 2135.6, + "probability": 0.9534 + }, + { + "start": 2136.74, + "end": 2139.06, + "probability": 0.9746 + }, + { + "start": 2139.84, + "end": 2141.82, + "probability": 0.8981 + }, + { + "start": 2142.92, + "end": 2144.76, + "probability": 0.9948 + }, + { + "start": 2145.72, + "end": 2147.32, + "probability": 0.9883 + }, + { + "start": 2149.32, + "end": 2151.43, + "probability": 0.9368 + }, + { + "start": 2152.46, + "end": 2154.08, + "probability": 0.7506 + }, + { + "start": 2154.82, + "end": 2161.84, + "probability": 0.9931 + }, + { + "start": 2162.88, + "end": 2167.46, + "probability": 0.9983 + }, + { + "start": 2168.22, + "end": 2172.32, + "probability": 0.9715 + }, + { + "start": 2173.44, + "end": 2174.54, + "probability": 0.9207 + }, + { + "start": 2175.5, + "end": 2180.04, + "probability": 0.9905 + }, + { + "start": 2181.2, + "end": 2184.94, + "probability": 0.9175 + }, + { + "start": 2186.34, + "end": 2188.56, + "probability": 0.8193 + }, + { + "start": 2189.56, + "end": 2191.14, + "probability": 0.976 + }, + { + "start": 2191.78, + "end": 2196.46, + "probability": 0.9873 + }, + { + "start": 2197.42, + "end": 2199.56, + "probability": 0.9839 + }, + { + "start": 2200.76, + "end": 2206.42, + "probability": 0.9863 + }, + { + "start": 2207.34, + "end": 2214.04, + "probability": 0.9696 + }, + { + "start": 2214.62, + "end": 2215.5, + "probability": 0.743 + }, + { + "start": 2216.98, + "end": 2217.52, + "probability": 0.7035 + }, + { + "start": 2218.48, + "end": 2220.28, + "probability": 0.962 + }, + { + "start": 2221.08, + "end": 2225.1, + "probability": 0.9917 + }, + { + "start": 2225.28, + "end": 2228.42, + "probability": 0.8005 + }, + { + "start": 2230.08, + "end": 2230.68, + "probability": 0.9761 + }, + { + "start": 2231.6, + "end": 2232.92, + "probability": 0.9159 + }, + { + "start": 2234.76, + "end": 2239.04, + "probability": 0.88 + }, + { + "start": 2240.0, + "end": 2244.14, + "probability": 0.9858 + }, + { + "start": 2245.5, + "end": 2245.9, + "probability": 0.8278 + }, + { + "start": 2246.94, + "end": 2250.24, + "probability": 0.9825 + }, + { + "start": 2251.52, + "end": 2252.26, + "probability": 0.6675 + }, + { + "start": 2252.26, + "end": 2256.94, + "probability": 0.6947 + }, + { + "start": 2256.98, + "end": 2257.82, + "probability": 0.9377 + }, + { + "start": 2258.52, + "end": 2260.48, + "probability": 0.8869 + }, + { + "start": 2262.02, + "end": 2265.16, + "probability": 0.9919 + }, + { + "start": 2265.72, + "end": 2270.38, + "probability": 0.9164 + }, + { + "start": 2270.9, + "end": 2272.14, + "probability": 0.9705 + }, + { + "start": 2273.34, + "end": 2274.28, + "probability": 0.8214 + }, + { + "start": 2274.9, + "end": 2275.66, + "probability": 0.8153 + }, + { + "start": 2276.36, + "end": 2277.46, + "probability": 0.9703 + }, + { + "start": 2278.34, + "end": 2281.42, + "probability": 0.9917 + }, + { + "start": 2282.36, + "end": 2284.96, + "probability": 0.9327 + }, + { + "start": 2285.54, + "end": 2287.44, + "probability": 0.8919 + }, + { + "start": 2288.0, + "end": 2291.4, + "probability": 0.9906 + }, + { + "start": 2292.58, + "end": 2293.92, + "probability": 0.9565 + }, + { + "start": 2294.62, + "end": 2299.22, + "probability": 0.9653 + }, + { + "start": 2299.22, + "end": 2304.96, + "probability": 0.9985 + }, + { + "start": 2305.54, + "end": 2305.76, + "probability": 0.9909 + }, + { + "start": 2307.2, + "end": 2311.16, + "probability": 0.9995 + }, + { + "start": 2311.34, + "end": 2314.32, + "probability": 0.9452 + }, + { + "start": 2314.32, + "end": 2318.82, + "probability": 0.9976 + }, + { + "start": 2320.08, + "end": 2324.52, + "probability": 0.9932 + }, + { + "start": 2325.2, + "end": 2328.7, + "probability": 0.9371 + }, + { + "start": 2330.2, + "end": 2332.18, + "probability": 0.7427 + }, + { + "start": 2333.48, + "end": 2335.68, + "probability": 0.9526 + }, + { + "start": 2336.1, + "end": 2338.42, + "probability": 0.9671 + }, + { + "start": 2339.0, + "end": 2340.02, + "probability": 0.7467 + }, + { + "start": 2340.72, + "end": 2342.24, + "probability": 0.9985 + }, + { + "start": 2343.72, + "end": 2346.06, + "probability": 0.991 + }, + { + "start": 2348.52, + "end": 2350.8, + "probability": 0.5883 + }, + { + "start": 2352.12, + "end": 2356.6, + "probability": 0.9246 + }, + { + "start": 2357.44, + "end": 2358.72, + "probability": 0.8813 + }, + { + "start": 2359.76, + "end": 2360.82, + "probability": 0.9587 + }, + { + "start": 2361.72, + "end": 2362.96, + "probability": 0.9906 + }, + { + "start": 2363.98, + "end": 2365.12, + "probability": 0.7389 + }, + { + "start": 2366.36, + "end": 2370.0, + "probability": 0.9814 + }, + { + "start": 2371.0, + "end": 2371.72, + "probability": 0.7664 + }, + { + "start": 2372.5, + "end": 2373.78, + "probability": 0.9766 + }, + { + "start": 2374.4, + "end": 2374.98, + "probability": 0.6517 + }, + { + "start": 2375.58, + "end": 2376.32, + "probability": 0.9967 + }, + { + "start": 2377.28, + "end": 2381.38, + "probability": 0.9962 + }, + { + "start": 2382.08, + "end": 2384.26, + "probability": 0.9818 + }, + { + "start": 2385.65, + "end": 2387.46, + "probability": 0.9901 + }, + { + "start": 2388.16, + "end": 2388.74, + "probability": 0.9917 + }, + { + "start": 2390.12, + "end": 2390.92, + "probability": 0.8221 + }, + { + "start": 2391.62, + "end": 2397.42, + "probability": 0.7269 + }, + { + "start": 2401.36, + "end": 2404.82, + "probability": 0.864 + }, + { + "start": 2405.4, + "end": 2406.86, + "probability": 0.9766 + }, + { + "start": 2407.0, + "end": 2408.5, + "probability": 0.8807 + }, + { + "start": 2410.46, + "end": 2411.86, + "probability": 0.6621 + }, + { + "start": 2413.48, + "end": 2415.34, + "probability": 0.8856 + }, + { + "start": 2417.54, + "end": 2419.86, + "probability": 0.9678 + }, + { + "start": 2420.72, + "end": 2421.8, + "probability": 0.9423 + }, + { + "start": 2423.0, + "end": 2425.34, + "probability": 0.6015 + }, + { + "start": 2426.14, + "end": 2427.48, + "probability": 0.9519 + }, + { + "start": 2432.32, + "end": 2434.04, + "probability": 0.7195 + }, + { + "start": 2434.14, + "end": 2436.64, + "probability": 0.9572 + }, + { + "start": 2437.42, + "end": 2438.5, + "probability": 0.8532 + }, + { + "start": 2438.74, + "end": 2445.74, + "probability": 0.9472 + }, + { + "start": 2446.64, + "end": 2449.02, + "probability": 0.7922 + }, + { + "start": 2449.96, + "end": 2450.94, + "probability": 0.5365 + }, + { + "start": 2451.12, + "end": 2453.25, + "probability": 0.9976 + }, + { + "start": 2455.99, + "end": 2459.22, + "probability": 0.9958 + }, + { + "start": 2460.16, + "end": 2463.54, + "probability": 0.9376 + }, + { + "start": 2463.84, + "end": 2466.1, + "probability": 0.7532 + }, + { + "start": 2467.16, + "end": 2470.06, + "probability": 0.665 + }, + { + "start": 2470.32, + "end": 2475.74, + "probability": 0.9297 + }, + { + "start": 2476.84, + "end": 2478.68, + "probability": 0.8442 + }, + { + "start": 2478.82, + "end": 2480.04, + "probability": 0.9119 + }, + { + "start": 2480.32, + "end": 2480.98, + "probability": 0.8499 + }, + { + "start": 2481.62, + "end": 2483.7, + "probability": 0.9909 + }, + { + "start": 2484.44, + "end": 2488.48, + "probability": 0.9957 + }, + { + "start": 2489.74, + "end": 2491.32, + "probability": 0.7578 + }, + { + "start": 2491.54, + "end": 2495.46, + "probability": 0.9862 + }, + { + "start": 2495.56, + "end": 2495.78, + "probability": 0.2783 + }, + { + "start": 2496.46, + "end": 2498.24, + "probability": 0.8366 + }, + { + "start": 2499.02, + "end": 2500.54, + "probability": 0.7994 + }, + { + "start": 2501.34, + "end": 2502.6, + "probability": 0.7425 + }, + { + "start": 2502.76, + "end": 2503.44, + "probability": 0.9606 + }, + { + "start": 2504.16, + "end": 2506.4, + "probability": 0.9893 + }, + { + "start": 2509.22, + "end": 2512.94, + "probability": 0.9967 + }, + { + "start": 2513.72, + "end": 2518.08, + "probability": 0.9811 + }, + { + "start": 2518.14, + "end": 2518.4, + "probability": 0.3794 + }, + { + "start": 2518.62, + "end": 2519.53, + "probability": 0.823 + }, + { + "start": 2520.6, + "end": 2521.8, + "probability": 0.9998 + }, + { + "start": 2523.08, + "end": 2525.82, + "probability": 0.9321 + }, + { + "start": 2526.68, + "end": 2529.42, + "probability": 0.9988 + }, + { + "start": 2530.12, + "end": 2532.78, + "probability": 0.924 + }, + { + "start": 2533.42, + "end": 2535.3, + "probability": 0.991 + }, + { + "start": 2536.14, + "end": 2538.02, + "probability": 0.9917 + }, + { + "start": 2538.1, + "end": 2538.82, + "probability": 0.8922 + }, + { + "start": 2538.86, + "end": 2542.24, + "probability": 0.991 + }, + { + "start": 2542.96, + "end": 2543.28, + "probability": 0.9795 + }, + { + "start": 2544.14, + "end": 2546.76, + "probability": 0.8265 + }, + { + "start": 2547.34, + "end": 2549.67, + "probability": 0.9187 + }, + { + "start": 2550.29, + "end": 2552.03, + "probability": 0.774 + }, + { + "start": 2552.43, + "end": 2555.39, + "probability": 0.7864 + }, + { + "start": 2557.15, + "end": 2561.93, + "probability": 0.9197 + }, + { + "start": 2562.63, + "end": 2564.43, + "probability": 0.9286 + }, + { + "start": 2564.53, + "end": 2567.63, + "probability": 0.9925 + }, + { + "start": 2568.47, + "end": 2571.55, + "probability": 0.963 + }, + { + "start": 2572.23, + "end": 2573.57, + "probability": 0.9985 + }, + { + "start": 2574.11, + "end": 2579.51, + "probability": 0.9982 + }, + { + "start": 2580.43, + "end": 2582.9, + "probability": 0.9967 + }, + { + "start": 2583.09, + "end": 2587.93, + "probability": 0.9948 + }, + { + "start": 2588.21, + "end": 2590.97, + "probability": 0.9164 + }, + { + "start": 2592.07, + "end": 2593.77, + "probability": 0.9254 + }, + { + "start": 2593.91, + "end": 2596.83, + "probability": 0.7515 + }, + { + "start": 2596.89, + "end": 2598.35, + "probability": 0.8125 + }, + { + "start": 2598.77, + "end": 2599.75, + "probability": 0.7191 + }, + { + "start": 2600.77, + "end": 2602.45, + "probability": 0.9895 + }, + { + "start": 2603.73, + "end": 2607.39, + "probability": 0.1204 + }, + { + "start": 2607.39, + "end": 2608.85, + "probability": 0.6809 + }, + { + "start": 2609.27, + "end": 2610.01, + "probability": 0.1966 + }, + { + "start": 2610.01, + "end": 2612.23, + "probability": 0.1425 + }, + { + "start": 2612.47, + "end": 2612.63, + "probability": 0.7781 + }, + { + "start": 2612.67, + "end": 2612.97, + "probability": 0.4846 + }, + { + "start": 2612.97, + "end": 2614.11, + "probability": 0.3619 + }, + { + "start": 2614.31, + "end": 2615.51, + "probability": 0.9988 + }, + { + "start": 2615.55, + "end": 2616.99, + "probability": 0.5902 + }, + { + "start": 2617.73, + "end": 2618.93, + "probability": 0.9302 + }, + { + "start": 2619.27, + "end": 2619.31, + "probability": 0.4792 + }, + { + "start": 2619.31, + "end": 2619.31, + "probability": 0.8498 + }, + { + "start": 2619.31, + "end": 2619.77, + "probability": 0.628 + }, + { + "start": 2619.89, + "end": 2620.85, + "probability": 0.7253 + }, + { + "start": 2621.71, + "end": 2621.79, + "probability": 0.8235 + }, + { + "start": 2621.83, + "end": 2621.89, + "probability": 0.4214 + }, + { + "start": 2621.89, + "end": 2625.83, + "probability": 0.9945 + }, + { + "start": 2626.51, + "end": 2627.77, + "probability": 0.9764 + }, + { + "start": 2628.43, + "end": 2629.69, + "probability": 0.9936 + }, + { + "start": 2629.79, + "end": 2629.93, + "probability": 0.3159 + }, + { + "start": 2629.93, + "end": 2629.95, + "probability": 0.221 + }, + { + "start": 2629.95, + "end": 2630.41, + "probability": 0.8394 + }, + { + "start": 2630.89, + "end": 2631.41, + "probability": 0.8297 + }, + { + "start": 2631.91, + "end": 2632.69, + "probability": 0.8462 + }, + { + "start": 2633.07, + "end": 2634.61, + "probability": 0.4727 + }, + { + "start": 2634.67, + "end": 2636.13, + "probability": 0.9343 + }, + { + "start": 2637.03, + "end": 2638.57, + "probability": 0.2991 + }, + { + "start": 2638.99, + "end": 2638.99, + "probability": 0.445 + }, + { + "start": 2639.21, + "end": 2642.65, + "probability": 0.8138 + }, + { + "start": 2642.65, + "end": 2645.03, + "probability": 0.9844 + }, + { + "start": 2645.25, + "end": 2645.93, + "probability": 0.9518 + }, + { + "start": 2646.61, + "end": 2647.11, + "probability": 0.9482 + }, + { + "start": 2647.37, + "end": 2649.57, + "probability": 0.9658 + }, + { + "start": 2649.83, + "end": 2650.85, + "probability": 0.8792 + }, + { + "start": 2651.09, + "end": 2651.96, + "probability": 0.9282 + }, + { + "start": 2652.35, + "end": 2653.01, + "probability": 0.7599 + }, + { + "start": 2653.25, + "end": 2653.49, + "probability": 0.2062 + }, + { + "start": 2654.39, + "end": 2657.91, + "probability": 0.4933 + }, + { + "start": 2659.19, + "end": 2662.61, + "probability": 0.9651 + }, + { + "start": 2662.77, + "end": 2665.25, + "probability": 0.9976 + }, + { + "start": 2665.97, + "end": 2667.01, + "probability": 0.9471 + }, + { + "start": 2667.55, + "end": 2669.25, + "probability": 0.9969 + }, + { + "start": 2669.95, + "end": 2672.15, + "probability": 0.9048 + }, + { + "start": 2672.35, + "end": 2673.57, + "probability": 0.9834 + }, + { + "start": 2673.81, + "end": 2675.05, + "probability": 0.9656 + }, + { + "start": 2675.45, + "end": 2677.95, + "probability": 0.9796 + }, + { + "start": 2678.61, + "end": 2681.94, + "probability": 0.9845 + }, + { + "start": 2682.61, + "end": 2683.13, + "probability": 0.8016 + }, + { + "start": 2683.81, + "end": 2685.25, + "probability": 0.9438 + }, + { + "start": 2685.41, + "end": 2687.15, + "probability": 0.6449 + }, + { + "start": 2687.95, + "end": 2690.03, + "probability": 0.9896 + }, + { + "start": 2690.85, + "end": 2691.79, + "probability": 0.8049 + }, + { + "start": 2691.87, + "end": 2692.65, + "probability": 0.6363 + }, + { + "start": 2693.31, + "end": 2695.43, + "probability": 0.9973 + }, + { + "start": 2697.03, + "end": 2699.95, + "probability": 0.9963 + }, + { + "start": 2700.79, + "end": 2703.45, + "probability": 0.8409 + }, + { + "start": 2703.55, + "end": 2704.05, + "probability": 0.6932 + }, + { + "start": 2704.13, + "end": 2704.27, + "probability": 0.2672 + }, + { + "start": 2704.69, + "end": 2709.49, + "probability": 0.9714 + }, + { + "start": 2709.65, + "end": 2709.79, + "probability": 0.3388 + }, + { + "start": 2710.07, + "end": 2713.15, + "probability": 0.8952 + }, + { + "start": 2713.47, + "end": 2713.91, + "probability": 0.9312 + }, + { + "start": 2714.37, + "end": 2717.11, + "probability": 0.9885 + }, + { + "start": 2717.53, + "end": 2718.51, + "probability": 0.9277 + }, + { + "start": 2718.59, + "end": 2719.55, + "probability": 0.7768 + }, + { + "start": 2719.81, + "end": 2720.45, + "probability": 0.9832 + }, + { + "start": 2721.11, + "end": 2721.99, + "probability": 0.7531 + }, + { + "start": 2722.67, + "end": 2726.51, + "probability": 0.9092 + }, + { + "start": 2727.11, + "end": 2728.61, + "probability": 0.8842 + }, + { + "start": 2728.63, + "end": 2729.43, + "probability": 0.6137 + }, + { + "start": 2729.77, + "end": 2730.7, + "probability": 0.9744 + }, + { + "start": 2731.05, + "end": 2732.19, + "probability": 0.8989 + }, + { + "start": 2732.25, + "end": 2732.69, + "probability": 0.9123 + }, + { + "start": 2733.37, + "end": 2735.31, + "probability": 0.9858 + }, + { + "start": 2735.35, + "end": 2736.91, + "probability": 0.9043 + }, + { + "start": 2737.17, + "end": 2738.37, + "probability": 0.6229 + }, + { + "start": 2738.37, + "end": 2739.25, + "probability": 0.5566 + }, + { + "start": 2739.85, + "end": 2742.39, + "probability": 0.9357 + }, + { + "start": 2742.69, + "end": 2746.31, + "probability": 0.9827 + }, + { + "start": 2746.53, + "end": 2747.13, + "probability": 0.9985 + }, + { + "start": 2747.67, + "end": 2750.19, + "probability": 0.9812 + }, + { + "start": 2751.01, + "end": 2751.21, + "probability": 0.934 + }, + { + "start": 2752.39, + "end": 2756.97, + "probability": 0.9938 + }, + { + "start": 2757.07, + "end": 2759.15, + "probability": 0.9924 + }, + { + "start": 2759.77, + "end": 2761.47, + "probability": 0.9489 + }, + { + "start": 2763.11, + "end": 2763.96, + "probability": 0.7755 + }, + { + "start": 2764.29, + "end": 2767.01, + "probability": 0.8118 + }, + { + "start": 2767.19, + "end": 2769.17, + "probability": 0.7644 + }, + { + "start": 2769.71, + "end": 2770.37, + "probability": 0.9474 + }, + { + "start": 2771.59, + "end": 2772.51, + "probability": 0.979 + }, + { + "start": 2772.59, + "end": 2774.43, + "probability": 0.9059 + }, + { + "start": 2777.25, + "end": 2779.17, + "probability": 0.7494 + }, + { + "start": 2779.27, + "end": 2783.27, + "probability": 0.2487 + }, + { + "start": 2783.67, + "end": 2784.75, + "probability": 0.8328 + }, + { + "start": 2784.89, + "end": 2788.77, + "probability": 0.9767 + }, + { + "start": 2789.65, + "end": 2792.95, + "probability": 0.8204 + }, + { + "start": 2793.57, + "end": 2796.21, + "probability": 0.9355 + }, + { + "start": 2796.41, + "end": 2798.29, + "probability": 0.9646 + }, + { + "start": 2801.03, + "end": 2801.71, + "probability": 0.8222 + }, + { + "start": 2801.93, + "end": 2804.83, + "probability": 0.9977 + }, + { + "start": 2805.51, + "end": 2807.33, + "probability": 0.8461 + }, + { + "start": 2807.85, + "end": 2809.49, + "probability": 0.9932 + }, + { + "start": 2809.85, + "end": 2812.71, + "probability": 0.9604 + }, + { + "start": 2813.37, + "end": 2814.23, + "probability": 0.9675 + }, + { + "start": 2814.81, + "end": 2815.68, + "probability": 0.8445 + }, + { + "start": 2815.97, + "end": 2817.09, + "probability": 0.8596 + }, + { + "start": 2817.41, + "end": 2819.75, + "probability": 0.9441 + }, + { + "start": 2820.43, + "end": 2820.88, + "probability": 0.8914 + }, + { + "start": 2821.33, + "end": 2824.45, + "probability": 0.9978 + }, + { + "start": 2824.91, + "end": 2826.97, + "probability": 0.9831 + }, + { + "start": 2827.71, + "end": 2831.31, + "probability": 0.9673 + }, + { + "start": 2831.77, + "end": 2832.81, + "probability": 0.7828 + }, + { + "start": 2833.39, + "end": 2834.31, + "probability": 0.9961 + }, + { + "start": 2835.47, + "end": 2837.85, + "probability": 0.989 + }, + { + "start": 2838.43, + "end": 2839.53, + "probability": 0.662 + }, + { + "start": 2840.25, + "end": 2840.87, + "probability": 0.9884 + }, + { + "start": 2841.65, + "end": 2843.73, + "probability": 0.9617 + }, + { + "start": 2844.15, + "end": 2844.53, + "probability": 0.5391 + }, + { + "start": 2844.85, + "end": 2845.77, + "probability": 0.875 + }, + { + "start": 2846.13, + "end": 2846.53, + "probability": 0.6372 + }, + { + "start": 2846.97, + "end": 2847.51, + "probability": 0.8517 + }, + { + "start": 2847.87, + "end": 2848.38, + "probability": 0.8447 + }, + { + "start": 2849.19, + "end": 2851.71, + "probability": 0.9884 + }, + { + "start": 2851.77, + "end": 2852.83, + "probability": 0.6703 + }, + { + "start": 2852.87, + "end": 2854.49, + "probability": 0.9466 + }, + { + "start": 2855.03, + "end": 2856.37, + "probability": 0.599 + }, + { + "start": 2857.59, + "end": 2858.79, + "probability": 0.9432 + }, + { + "start": 2860.19, + "end": 2863.35, + "probability": 0.9956 + }, + { + "start": 2870.91, + "end": 2871.87, + "probability": 0.6453 + }, + { + "start": 2872.41, + "end": 2874.39, + "probability": 0.7237 + }, + { + "start": 2875.67, + "end": 2879.13, + "probability": 0.9912 + }, + { + "start": 2880.09, + "end": 2884.47, + "probability": 0.897 + }, + { + "start": 2885.21, + "end": 2888.05, + "probability": 0.993 + }, + { + "start": 2889.15, + "end": 2893.13, + "probability": 0.917 + }, + { + "start": 2893.77, + "end": 2897.41, + "probability": 0.9868 + }, + { + "start": 2898.21, + "end": 2900.41, + "probability": 0.9998 + }, + { + "start": 2900.67, + "end": 2904.41, + "probability": 0.9805 + }, + { + "start": 2907.07, + "end": 2907.33, + "probability": 0.7312 + }, + { + "start": 2907.81, + "end": 2908.23, + "probability": 0.7023 + }, + { + "start": 2908.29, + "end": 2908.99, + "probability": 0.7693 + }, + { + "start": 2909.29, + "end": 2913.15, + "probability": 0.9983 + }, + { + "start": 2913.99, + "end": 2916.69, + "probability": 0.9985 + }, + { + "start": 2918.15, + "end": 2923.35, + "probability": 0.9874 + }, + { + "start": 2924.31, + "end": 2929.05, + "probability": 0.9976 + }, + { + "start": 2929.71, + "end": 2932.51, + "probability": 0.9922 + }, + { + "start": 2933.87, + "end": 2935.65, + "probability": 0.9717 + }, + { + "start": 2936.35, + "end": 2937.57, + "probability": 0.9989 + }, + { + "start": 2939.43, + "end": 2941.21, + "probability": 0.9523 + }, + { + "start": 2941.87, + "end": 2946.01, + "probability": 0.9795 + }, + { + "start": 2947.09, + "end": 2950.17, + "probability": 0.994 + }, + { + "start": 2950.27, + "end": 2954.19, + "probability": 0.9937 + }, + { + "start": 2954.27, + "end": 2955.15, + "probability": 0.8802 + }, + { + "start": 2955.97, + "end": 2958.15, + "probability": 0.9678 + }, + { + "start": 2958.71, + "end": 2960.07, + "probability": 0.6257 + }, + { + "start": 2960.63, + "end": 2965.09, + "probability": 0.9805 + }, + { + "start": 2967.23, + "end": 2968.05, + "probability": 0.6195 + }, + { + "start": 2968.65, + "end": 2970.97, + "probability": 0.8582 + }, + { + "start": 2971.63, + "end": 2976.19, + "probability": 0.9053 + }, + { + "start": 2976.27, + "end": 2976.85, + "probability": 0.5519 + }, + { + "start": 2977.35, + "end": 2980.21, + "probability": 0.9922 + }, + { + "start": 2980.47, + "end": 2983.57, + "probability": 0.9634 + }, + { + "start": 2983.69, + "end": 2986.03, + "probability": 0.9961 + }, + { + "start": 2986.15, + "end": 2990.99, + "probability": 0.7892 + }, + { + "start": 2991.09, + "end": 2997.09, + "probability": 0.9952 + }, + { + "start": 2997.99, + "end": 3002.71, + "probability": 0.9062 + }, + { + "start": 3003.57, + "end": 3006.79, + "probability": 0.8926 + }, + { + "start": 3007.39, + "end": 3014.15, + "probability": 0.9974 + }, + { + "start": 3014.73, + "end": 3020.19, + "probability": 0.9947 + }, + { + "start": 3020.69, + "end": 3022.39, + "probability": 0.7181 + }, + { + "start": 3022.69, + "end": 3027.53, + "probability": 0.911 + }, + { + "start": 3027.61, + "end": 3032.13, + "probability": 0.9724 + }, + { + "start": 3032.33, + "end": 3033.38, + "probability": 0.9369 + }, + { + "start": 3034.09, + "end": 3035.19, + "probability": 0.9035 + }, + { + "start": 3035.23, + "end": 3040.67, + "probability": 0.9949 + }, + { + "start": 3040.67, + "end": 3045.59, + "probability": 0.9712 + }, + { + "start": 3046.17, + "end": 3046.75, + "probability": 0.47 + }, + { + "start": 3046.91, + "end": 3047.69, + "probability": 0.6006 + }, + { + "start": 3047.73, + "end": 3051.73, + "probability": 0.9481 + }, + { + "start": 3051.91, + "end": 3053.61, + "probability": 0.9375 + }, + { + "start": 3054.01, + "end": 3055.59, + "probability": 0.9907 + }, + { + "start": 3055.59, + "end": 3057.89, + "probability": 0.9783 + }, + { + "start": 3058.01, + "end": 3060.33, + "probability": 0.9502 + }, + { + "start": 3060.91, + "end": 3065.57, + "probability": 0.9717 + }, + { + "start": 3066.23, + "end": 3066.69, + "probability": 0.8228 + }, + { + "start": 3067.31, + "end": 3070.09, + "probability": 0.9785 + }, + { + "start": 3071.31, + "end": 3073.23, + "probability": 0.9368 + }, + { + "start": 3073.45, + "end": 3074.8, + "probability": 0.9812 + }, + { + "start": 3075.11, + "end": 3079.39, + "probability": 0.9702 + }, + { + "start": 3081.39, + "end": 3082.81, + "probability": 0.7476 + }, + { + "start": 3083.19, + "end": 3084.93, + "probability": 0.9978 + }, + { + "start": 3085.25, + "end": 3086.23, + "probability": 0.9631 + }, + { + "start": 3086.47, + "end": 3086.67, + "probability": 0.5427 + }, + { + "start": 3086.81, + "end": 3087.67, + "probability": 0.9343 + }, + { + "start": 3088.15, + "end": 3091.39, + "probability": 0.7594 + }, + { + "start": 3091.39, + "end": 3095.43, + "probability": 0.9855 + }, + { + "start": 3096.83, + "end": 3098.35, + "probability": 0.917 + }, + { + "start": 3098.79, + "end": 3103.95, + "probability": 0.9317 + }, + { + "start": 3104.63, + "end": 3105.59, + "probability": 0.8129 + }, + { + "start": 3105.81, + "end": 3111.23, + "probability": 0.7843 + }, + { + "start": 3112.65, + "end": 3115.93, + "probability": 0.9472 + }, + { + "start": 3116.71, + "end": 3119.57, + "probability": 0.9836 + }, + { + "start": 3120.57, + "end": 3123.71, + "probability": 0.7906 + }, + { + "start": 3124.23, + "end": 3133.01, + "probability": 0.9822 + }, + { + "start": 3133.21, + "end": 3138.83, + "probability": 0.7808 + }, + { + "start": 3138.97, + "end": 3140.29, + "probability": 0.959 + }, + { + "start": 3141.01, + "end": 3145.57, + "probability": 0.9889 + }, + { + "start": 3145.57, + "end": 3152.35, + "probability": 0.9917 + }, + { + "start": 3153.61, + "end": 3155.23, + "probability": 0.9291 + }, + { + "start": 3155.37, + "end": 3158.19, + "probability": 0.9507 + }, + { + "start": 3158.63, + "end": 3159.83, + "probability": 0.8136 + }, + { + "start": 3159.97, + "end": 3166.01, + "probability": 0.9354 + }, + { + "start": 3166.21, + "end": 3168.43, + "probability": 0.9614 + }, + { + "start": 3168.57, + "end": 3174.69, + "probability": 0.9323 + }, + { + "start": 3175.47, + "end": 3177.45, + "probability": 0.8939 + }, + { + "start": 3177.63, + "end": 3186.19, + "probability": 0.9944 + }, + { + "start": 3186.19, + "end": 3191.71, + "probability": 0.9988 + }, + { + "start": 3192.29, + "end": 3192.55, + "probability": 0.7474 + }, + { + "start": 3193.29, + "end": 3194.93, + "probability": 0.7491 + }, + { + "start": 3195.73, + "end": 3197.69, + "probability": 0.8592 + }, + { + "start": 3198.19, + "end": 3199.57, + "probability": 0.9216 + }, + { + "start": 3200.11, + "end": 3203.07, + "probability": 0.9458 + }, + { + "start": 3204.13, + "end": 3207.17, + "probability": 0.925 + }, + { + "start": 3207.89, + "end": 3211.19, + "probability": 0.9766 + }, + { + "start": 3214.23, + "end": 3214.97, + "probability": 0.8494 + }, + { + "start": 3215.11, + "end": 3222.83, + "probability": 0.9276 + }, + { + "start": 3222.97, + "end": 3223.85, + "probability": 0.5679 + }, + { + "start": 3224.03, + "end": 3227.45, + "probability": 0.9481 + }, + { + "start": 3228.52, + "end": 3231.29, + "probability": 0.8585 + }, + { + "start": 3232.25, + "end": 3233.97, + "probability": 0.9609 + }, + { + "start": 3234.61, + "end": 3238.63, + "probability": 0.734 + }, + { + "start": 3239.25, + "end": 3243.01, + "probability": 0.9919 + }, + { + "start": 3243.53, + "end": 3246.15, + "probability": 0.9844 + }, + { + "start": 3247.13, + "end": 3249.19, + "probability": 0.8546 + }, + { + "start": 3250.15, + "end": 3253.07, + "probability": 0.7857 + }, + { + "start": 3254.05, + "end": 3254.95, + "probability": 0.925 + }, + { + "start": 3255.65, + "end": 3256.47, + "probability": 0.8285 + }, + { + "start": 3257.19, + "end": 3258.61, + "probability": 0.9914 + }, + { + "start": 3259.37, + "end": 3261.01, + "probability": 0.6694 + }, + { + "start": 3262.33, + "end": 3266.51, + "probability": 0.9787 + }, + { + "start": 3267.39, + "end": 3268.57, + "probability": 0.8506 + }, + { + "start": 3270.3, + "end": 3273.11, + "probability": 0.8952 + }, + { + "start": 3275.22, + "end": 3276.05, + "probability": 0.598 + }, + { + "start": 3278.09, + "end": 3282.31, + "probability": 0.6634 + }, + { + "start": 3282.31, + "end": 3282.79, + "probability": 0.0187 + }, + { + "start": 3283.37, + "end": 3284.13, + "probability": 0.388 + }, + { + "start": 3284.89, + "end": 3288.35, + "probability": 0.7546 + }, + { + "start": 3289.57, + "end": 3291.05, + "probability": 0.9539 + }, + { + "start": 3291.23, + "end": 3293.11, + "probability": 0.9939 + }, + { + "start": 3294.43, + "end": 3298.01, + "probability": 0.9717 + }, + { + "start": 3298.79, + "end": 3299.33, + "probability": 0.4399 + }, + { + "start": 3300.37, + "end": 3300.79, + "probability": 0.8784 + }, + { + "start": 3301.99, + "end": 3302.54, + "probability": 0.9421 + }, + { + "start": 3303.79, + "end": 3306.17, + "probability": 0.951 + }, + { + "start": 3306.99, + "end": 3308.25, + "probability": 0.8958 + }, + { + "start": 3309.83, + "end": 3312.17, + "probability": 0.8517 + }, + { + "start": 3312.89, + "end": 3314.17, + "probability": 0.9489 + }, + { + "start": 3315.19, + "end": 3317.53, + "probability": 0.6325 + }, + { + "start": 3317.71, + "end": 3319.07, + "probability": 0.9978 + }, + { + "start": 3319.85, + "end": 3321.07, + "probability": 0.4963 + }, + { + "start": 3321.65, + "end": 3324.41, + "probability": 0.7331 + }, + { + "start": 3325.35, + "end": 3328.39, + "probability": 0.7433 + }, + { + "start": 3329.07, + "end": 3330.85, + "probability": 0.8519 + }, + { + "start": 3331.49, + "end": 3332.31, + "probability": 0.8971 + }, + { + "start": 3333.51, + "end": 3334.57, + "probability": 0.7865 + }, + { + "start": 3335.51, + "end": 3337.03, + "probability": 0.7505 + }, + { + "start": 3338.31, + "end": 3338.79, + "probability": 0.9104 + }, + { + "start": 3339.39, + "end": 3344.35, + "probability": 0.9126 + }, + { + "start": 3345.51, + "end": 3350.01, + "probability": 0.9612 + }, + { + "start": 3351.13, + "end": 3353.7, + "probability": 0.9452 + }, + { + "start": 3354.57, + "end": 3357.39, + "probability": 0.4876 + }, + { + "start": 3358.41, + "end": 3358.99, + "probability": 0.7756 + }, + { + "start": 3359.55, + "end": 3364.29, + "probability": 0.869 + }, + { + "start": 3365.09, + "end": 3368.33, + "probability": 0.9773 + }, + { + "start": 3369.53, + "end": 3370.19, + "probability": 0.964 + }, + { + "start": 3370.67, + "end": 3375.59, + "probability": 0.9956 + }, + { + "start": 3376.17, + "end": 3378.03, + "probability": 0.9028 + }, + { + "start": 3378.57, + "end": 3379.31, + "probability": 0.9896 + }, + { + "start": 3380.01, + "end": 3382.29, + "probability": 0.8225 + }, + { + "start": 3383.05, + "end": 3385.01, + "probability": 0.9872 + }, + { + "start": 3386.05, + "end": 3387.35, + "probability": 0.9385 + }, + { + "start": 3387.85, + "end": 3390.45, + "probability": 0.9899 + }, + { + "start": 3391.27, + "end": 3393.49, + "probability": 0.861 + }, + { + "start": 3393.93, + "end": 3397.21, + "probability": 0.9813 + }, + { + "start": 3397.73, + "end": 3400.37, + "probability": 0.9757 + }, + { + "start": 3400.37, + "end": 3402.91, + "probability": 0.9983 + }, + { + "start": 3404.27, + "end": 3404.93, + "probability": 0.9339 + }, + { + "start": 3405.67, + "end": 3407.75, + "probability": 0.9203 + }, + { + "start": 3408.57, + "end": 3410.37, + "probability": 0.9814 + }, + { + "start": 3411.01, + "end": 3413.05, + "probability": 0.9688 + }, + { + "start": 3413.57, + "end": 3415.33, + "probability": 0.8354 + }, + { + "start": 3416.01, + "end": 3416.87, + "probability": 0.6841 + }, + { + "start": 3417.69, + "end": 3420.77, + "probability": 0.9651 + }, + { + "start": 3421.43, + "end": 3423.31, + "probability": 0.7487 + }, + { + "start": 3423.39, + "end": 3423.89, + "probability": 0.8336 + }, + { + "start": 3423.95, + "end": 3428.45, + "probability": 0.5771 + }, + { + "start": 3429.69, + "end": 3432.93, + "probability": 0.8516 + }, + { + "start": 3433.53, + "end": 3436.85, + "probability": 0.9876 + }, + { + "start": 3437.39, + "end": 3439.73, + "probability": 0.9888 + }, + { + "start": 3440.37, + "end": 3447.11, + "probability": 0.9838 + }, + { + "start": 3447.69, + "end": 3448.51, + "probability": 0.8157 + }, + { + "start": 3449.13, + "end": 3450.33, + "probability": 0.995 + }, + { + "start": 3450.83, + "end": 3452.75, + "probability": 0.6545 + }, + { + "start": 3453.25, + "end": 3456.55, + "probability": 0.9624 + }, + { + "start": 3456.99, + "end": 3458.91, + "probability": 0.79 + }, + { + "start": 3460.29, + "end": 3460.83, + "probability": 0.8137 + }, + { + "start": 3461.49, + "end": 3462.39, + "probability": 0.7734 + }, + { + "start": 3463.21, + "end": 3464.59, + "probability": 0.8918 + }, + { + "start": 3464.77, + "end": 3465.21, + "probability": 0.7998 + }, + { + "start": 3465.29, + "end": 3466.21, + "probability": 0.9897 + }, + { + "start": 3466.81, + "end": 3467.31, + "probability": 0.7429 + }, + { + "start": 3467.87, + "end": 3470.47, + "probability": 0.9648 + }, + { + "start": 3471.45, + "end": 3472.27, + "probability": 0.9823 + }, + { + "start": 3472.37, + "end": 3474.15, + "probability": 0.9944 + }, + { + "start": 3474.65, + "end": 3475.37, + "probability": 0.6803 + }, + { + "start": 3476.69, + "end": 3479.29, + "probability": 0.9477 + }, + { + "start": 3480.43, + "end": 3481.35, + "probability": 0.719 + }, + { + "start": 3481.87, + "end": 3482.77, + "probability": 0.7999 + }, + { + "start": 3483.37, + "end": 3484.43, + "probability": 0.8437 + }, + { + "start": 3484.97, + "end": 3486.01, + "probability": 0.8948 + }, + { + "start": 3486.55, + "end": 3491.05, + "probability": 0.7949 + }, + { + "start": 3491.55, + "end": 3493.27, + "probability": 0.6323 + }, + { + "start": 3493.97, + "end": 3497.37, + "probability": 0.8403 + }, + { + "start": 3497.99, + "end": 3500.78, + "probability": 0.9932 + }, + { + "start": 3501.87, + "end": 3503.01, + "probability": 0.8994 + }, + { + "start": 3503.59, + "end": 3504.77, + "probability": 0.5298 + }, + { + "start": 3505.61, + "end": 3507.17, + "probability": 0.9189 + }, + { + "start": 3507.79, + "end": 3511.49, + "probability": 0.9164 + }, + { + "start": 3512.01, + "end": 3512.43, + "probability": 0.2488 + }, + { + "start": 3512.83, + "end": 3513.81, + "probability": 0.5607 + }, + { + "start": 3514.01, + "end": 3516.27, + "probability": 0.6439 + }, + { + "start": 3516.47, + "end": 3517.03, + "probability": 0.656 + }, + { + "start": 3517.51, + "end": 3518.31, + "probability": 0.9318 + }, + { + "start": 3519.21, + "end": 3522.13, + "probability": 0.8639 + }, + { + "start": 3522.13, + "end": 3527.55, + "probability": 0.7744 + }, + { + "start": 3527.95, + "end": 3528.93, + "probability": 0.7622 + }, + { + "start": 3529.45, + "end": 3535.17, + "probability": 0.9949 + }, + { + "start": 3535.43, + "end": 3536.21, + "probability": 0.4854 + }, + { + "start": 3536.77, + "end": 3538.33, + "probability": 0.9741 + }, + { + "start": 3538.95, + "end": 3541.91, + "probability": 0.9969 + }, + { + "start": 3542.79, + "end": 3543.33, + "probability": 0.4315 + }, + { + "start": 3544.83, + "end": 3546.11, + "probability": 0.8206 + }, + { + "start": 3559.03, + "end": 3559.65, + "probability": 0.9408 + }, + { + "start": 3559.71, + "end": 3563.23, + "probability": 0.9967 + }, + { + "start": 3564.25, + "end": 3566.43, + "probability": 0.9443 + }, + { + "start": 3566.45, + "end": 3567.49, + "probability": 0.8503 + }, + { + "start": 3568.93, + "end": 3572.37, + "probability": 0.9841 + }, + { + "start": 3573.03, + "end": 3576.77, + "probability": 0.9648 + }, + { + "start": 3577.71, + "end": 3580.71, + "probability": 0.511 + }, + { + "start": 3581.79, + "end": 3585.17, + "probability": 0.9871 + }, + { + "start": 3585.97, + "end": 3590.33, + "probability": 0.8828 + }, + { + "start": 3591.25, + "end": 3592.19, + "probability": 0.9646 + }, + { + "start": 3593.57, + "end": 3593.89, + "probability": 0.8613 + }, + { + "start": 3595.19, + "end": 3597.69, + "probability": 0.8298 + }, + { + "start": 3597.77, + "end": 3601.41, + "probability": 0.7369 + }, + { + "start": 3603.37, + "end": 3603.67, + "probability": 0.8833 + }, + { + "start": 3605.01, + "end": 3605.81, + "probability": 0.7155 + }, + { + "start": 3605.87, + "end": 3606.65, + "probability": 0.8938 + }, + { + "start": 3606.71, + "end": 3607.73, + "probability": 0.8808 + }, + { + "start": 3607.87, + "end": 3610.4, + "probability": 0.9821 + }, + { + "start": 3612.03, + "end": 3612.25, + "probability": 0.8147 + }, + { + "start": 3612.25, + "end": 3614.89, + "probability": 0.8894 + }, + { + "start": 3615.03, + "end": 3615.61, + "probability": 0.7477 + }, + { + "start": 3615.87, + "end": 3616.35, + "probability": 0.7708 + }, + { + "start": 3616.43, + "end": 3616.79, + "probability": 0.8561 + }, + { + "start": 3616.87, + "end": 3617.37, + "probability": 0.432 + }, + { + "start": 3621.23, + "end": 3628.65, + "probability": 0.9617 + }, + { + "start": 3629.75, + "end": 3635.81, + "probability": 0.9561 + }, + { + "start": 3636.35, + "end": 3638.23, + "probability": 0.7349 + }, + { + "start": 3638.59, + "end": 3639.57, + "probability": 0.8143 + }, + { + "start": 3640.27, + "end": 3641.53, + "probability": 0.6455 + }, + { + "start": 3642.29, + "end": 3642.99, + "probability": 0.6881 + }, + { + "start": 3643.11, + "end": 3643.69, + "probability": 0.5405 + }, + { + "start": 3644.19, + "end": 3644.85, + "probability": 0.9014 + }, + { + "start": 3645.17, + "end": 3645.79, + "probability": 0.8396 + }, + { + "start": 3646.09, + "end": 3647.21, + "probability": 0.9782 + }, + { + "start": 3647.61, + "end": 3648.25, + "probability": 0.81 + }, + { + "start": 3649.19, + "end": 3654.33, + "probability": 0.5008 + }, + { + "start": 3654.41, + "end": 3655.13, + "probability": 0.3839 + }, + { + "start": 3655.77, + "end": 3657.05, + "probability": 0.9553 + }, + { + "start": 3657.13, + "end": 3658.69, + "probability": 0.523 + }, + { + "start": 3659.19, + "end": 3661.13, + "probability": 0.9653 + }, + { + "start": 3661.25, + "end": 3666.54, + "probability": 0.9673 + }, + { + "start": 3667.25, + "end": 3668.77, + "probability": 0.9824 + }, + { + "start": 3669.77, + "end": 3672.03, + "probability": 0.9635 + }, + { + "start": 3672.91, + "end": 3673.67, + "probability": 0.8332 + }, + { + "start": 3675.57, + "end": 3678.43, + "probability": 0.6837 + }, + { + "start": 3679.33, + "end": 3685.01, + "probability": 0.8423 + }, + { + "start": 3685.61, + "end": 3686.45, + "probability": 0.9387 + }, + { + "start": 3686.85, + "end": 3691.29, + "probability": 0.8866 + }, + { + "start": 3691.89, + "end": 3695.49, + "probability": 0.9618 + }, + { + "start": 3695.55, + "end": 3696.19, + "probability": 0.9883 + }, + { + "start": 3696.71, + "end": 3697.71, + "probability": 0.9426 + }, + { + "start": 3697.93, + "end": 3704.05, + "probability": 0.4954 + }, + { + "start": 3704.31, + "end": 3705.19, + "probability": 0.5541 + }, + { + "start": 3705.77, + "end": 3710.17, + "probability": 0.9944 + }, + { + "start": 3710.67, + "end": 3710.91, + "probability": 0.4263 + }, + { + "start": 3711.67, + "end": 3713.73, + "probability": 0.5704 + }, + { + "start": 3714.29, + "end": 3717.29, + "probability": 0.6639 + }, + { + "start": 3717.67, + "end": 3718.79, + "probability": 0.6222 + }, + { + "start": 3719.08, + "end": 3724.35, + "probability": 0.9645 + }, + { + "start": 3724.47, + "end": 3727.71, + "probability": 0.6436 + }, + { + "start": 3727.83, + "end": 3729.07, + "probability": 0.8149 + }, + { + "start": 3729.51, + "end": 3730.95, + "probability": 0.9832 + }, + { + "start": 3731.19, + "end": 3734.41, + "probability": 0.3845 + }, + { + "start": 3734.41, + "end": 3736.33, + "probability": 0.892 + }, + { + "start": 3736.66, + "end": 3740.03, + "probability": 0.7383 + }, + { + "start": 3740.03, + "end": 3743.07, + "probability": 0.9315 + }, + { + "start": 3743.15, + "end": 3744.05, + "probability": 0.9388 + }, + { + "start": 3744.37, + "end": 3745.11, + "probability": 0.6584 + }, + { + "start": 3745.15, + "end": 3747.81, + "probability": 0.9252 + }, + { + "start": 3748.11, + "end": 3750.69, + "probability": 0.993 + }, + { + "start": 3751.22, + "end": 3754.71, + "probability": 0.4795 + }, + { + "start": 3755.49, + "end": 3755.69, + "probability": 0.376 + }, + { + "start": 3755.97, + "end": 3758.8, + "probability": 0.7941 + }, + { + "start": 3759.59, + "end": 3760.65, + "probability": 0.8826 + }, + { + "start": 3760.97, + "end": 3761.89, + "probability": 0.8907 + }, + { + "start": 3762.33, + "end": 3764.25, + "probability": 0.9427 + }, + { + "start": 3765.07, + "end": 3767.01, + "probability": 0.9546 + }, + { + "start": 3767.99, + "end": 3768.59, + "probability": 0.7543 + }, + { + "start": 3769.43, + "end": 3769.99, + "probability": 0.4169 + }, + { + "start": 3770.71, + "end": 3772.21, + "probability": 0.9025 + }, + { + "start": 3772.89, + "end": 3774.43, + "probability": 0.7906 + }, + { + "start": 3775.67, + "end": 3779.17, + "probability": 0.6865 + }, + { + "start": 3780.42, + "end": 3783.37, + "probability": 0.8498 + }, + { + "start": 3783.81, + "end": 3784.67, + "probability": 0.8454 + }, + { + "start": 3785.49, + "end": 3786.19, + "probability": 0.7043 + }, + { + "start": 3786.75, + "end": 3788.83, + "probability": 0.7534 + }, + { + "start": 3788.87, + "end": 3794.29, + "probability": 0.9941 + }, + { + "start": 3795.19, + "end": 3797.07, + "probability": 0.981 + }, + { + "start": 3797.51, + "end": 3799.93, + "probability": 0.9548 + }, + { + "start": 3800.25, + "end": 3801.59, + "probability": 0.5785 + }, + { + "start": 3802.05, + "end": 3803.15, + "probability": 0.9648 + }, + { + "start": 3803.69, + "end": 3808.5, + "probability": 0.9268 + }, + { + "start": 3810.69, + "end": 3812.83, + "probability": 0.7552 + }, + { + "start": 3812.91, + "end": 3814.07, + "probability": 0.9946 + }, + { + "start": 3814.45, + "end": 3816.81, + "probability": 0.9783 + }, + { + "start": 3817.73, + "end": 3821.65, + "probability": 0.8568 + }, + { + "start": 3822.19, + "end": 3823.27, + "probability": 0.7858 + }, + { + "start": 3823.39, + "end": 3824.25, + "probability": 0.9489 + }, + { + "start": 3824.61, + "end": 3826.65, + "probability": 0.8151 + }, + { + "start": 3826.81, + "end": 3828.27, + "probability": 0.3738 + }, + { + "start": 3828.27, + "end": 3829.4, + "probability": 0.6398 + }, + { + "start": 3830.87, + "end": 3832.07, + "probability": 0.4602 + }, + { + "start": 3832.73, + "end": 3833.61, + "probability": 0.7981 + }, + { + "start": 3833.97, + "end": 3835.29, + "probability": 0.8334 + }, + { + "start": 3837.11, + "end": 3840.45, + "probability": 0.9183 + }, + { + "start": 3863.29, + "end": 3863.69, + "probability": 0.0376 + }, + { + "start": 3863.69, + "end": 3865.77, + "probability": 0.6504 + }, + { + "start": 3870.11, + "end": 3878.93, + "probability": 0.9916 + }, + { + "start": 3881.05, + "end": 3881.87, + "probability": 0.8144 + }, + { + "start": 3884.35, + "end": 3884.63, + "probability": 0.54 + }, + { + "start": 3885.53, + "end": 3887.12, + "probability": 0.9128 + }, + { + "start": 3889.65, + "end": 3891.01, + "probability": 0.8228 + }, + { + "start": 3892.39, + "end": 3894.85, + "probability": 0.9626 + }, + { + "start": 3900.41, + "end": 3901.39, + "probability": 0.9468 + }, + { + "start": 3903.49, + "end": 3906.27, + "probability": 0.7657 + }, + { + "start": 3908.17, + "end": 3911.21, + "probability": 0.9852 + }, + { + "start": 3911.35, + "end": 3913.71, + "probability": 0.9806 + }, + { + "start": 3915.47, + "end": 3916.35, + "probability": 0.092 + }, + { + "start": 3916.87, + "end": 3917.31, + "probability": 0.317 + }, + { + "start": 3922.03, + "end": 3924.15, + "probability": 0.937 + }, + { + "start": 3925.87, + "end": 3926.77, + "probability": 0.8162 + }, + { + "start": 3929.21, + "end": 3930.29, + "probability": 0.8013 + }, + { + "start": 3930.53, + "end": 3932.95, + "probability": 0.8632 + }, + { + "start": 3933.03, + "end": 3934.95, + "probability": 0.9754 + }, + { + "start": 3936.31, + "end": 3937.39, + "probability": 0.8301 + }, + { + "start": 3939.21, + "end": 3941.47, + "probability": 0.9209 + }, + { + "start": 3943.13, + "end": 3945.69, + "probability": 0.9029 + }, + { + "start": 3948.01, + "end": 3949.07, + "probability": 0.381 + }, + { + "start": 3949.39, + "end": 3952.15, + "probability": 0.991 + }, + { + "start": 3953.25, + "end": 3954.81, + "probability": 0.8624 + }, + { + "start": 3955.17, + "end": 3955.83, + "probability": 0.7129 + }, + { + "start": 3956.09, + "end": 3956.87, + "probability": 0.9403 + }, + { + "start": 3956.93, + "end": 3957.47, + "probability": 0.8547 + }, + { + "start": 3958.15, + "end": 3959.57, + "probability": 0.8505 + }, + { + "start": 3960.85, + "end": 3963.07, + "probability": 0.9878 + }, + { + "start": 3964.55, + "end": 3967.35, + "probability": 0.976 + }, + { + "start": 3968.63, + "end": 3972.21, + "probability": 0.9272 + }, + { + "start": 3973.07, + "end": 3979.75, + "probability": 0.8602 + }, + { + "start": 3980.23, + "end": 3980.81, + "probability": 0.8508 + }, + { + "start": 3980.91, + "end": 3981.53, + "probability": 0.5704 + }, + { + "start": 3981.79, + "end": 3984.89, + "probability": 0.9792 + }, + { + "start": 3987.51, + "end": 3990.15, + "probability": 0.9904 + }, + { + "start": 3992.35, + "end": 3993.23, + "probability": 0.7256 + }, + { + "start": 3993.41, + "end": 3993.93, + "probability": 0.9115 + }, + { + "start": 3993.99, + "end": 3994.51, + "probability": 0.6501 + }, + { + "start": 3994.69, + "end": 3995.05, + "probability": 0.7037 + }, + { + "start": 3995.21, + "end": 3997.11, + "probability": 0.9769 + }, + { + "start": 3997.41, + "end": 4000.69, + "probability": 0.7027 + }, + { + "start": 4004.35, + "end": 4004.97, + "probability": 0.9797 + }, + { + "start": 4008.57, + "end": 4008.99, + "probability": 0.613 + }, + { + "start": 4010.31, + "end": 4013.51, + "probability": 0.9876 + }, + { + "start": 4015.83, + "end": 4018.17, + "probability": 0.968 + }, + { + "start": 4019.97, + "end": 4020.99, + "probability": 0.9028 + }, + { + "start": 4022.77, + "end": 4023.27, + "probability": 0.9758 + }, + { + "start": 4023.97, + "end": 4024.45, + "probability": 0.8586 + }, + { + "start": 4025.95, + "end": 4027.73, + "probability": 0.6613 + }, + { + "start": 4029.71, + "end": 4032.45, + "probability": 0.8153 + }, + { + "start": 4034.75, + "end": 4035.57, + "probability": 0.7547 + }, + { + "start": 4036.83, + "end": 4037.27, + "probability": 0.3643 + }, + { + "start": 4038.61, + "end": 4041.43, + "probability": 0.8869 + }, + { + "start": 4042.89, + "end": 4044.69, + "probability": 0.7707 + }, + { + "start": 4044.73, + "end": 4046.67, + "probability": 0.99 + }, + { + "start": 4048.55, + "end": 4050.37, + "probability": 0.9929 + }, + { + "start": 4052.25, + "end": 4053.99, + "probability": 0.5635 + }, + { + "start": 4054.87, + "end": 4056.71, + "probability": 0.7966 + }, + { + "start": 4057.15, + "end": 4060.43, + "probability": 0.9849 + }, + { + "start": 4063.09, + "end": 4064.63, + "probability": 0.924 + }, + { + "start": 4067.37, + "end": 4068.69, + "probability": 0.9523 + }, + { + "start": 4069.59, + "end": 4071.09, + "probability": 0.9423 + }, + { + "start": 4072.57, + "end": 4073.93, + "probability": 0.5991 + }, + { + "start": 4077.83, + "end": 4081.57, + "probability": 0.9736 + }, + { + "start": 4084.61, + "end": 4089.75, + "probability": 0.725 + }, + { + "start": 4093.39, + "end": 4096.35, + "probability": 0.8369 + }, + { + "start": 4097.73, + "end": 4098.05, + "probability": 0.9265 + }, + { + "start": 4098.31, + "end": 4101.85, + "probability": 0.9897 + }, + { + "start": 4103.17, + "end": 4105.67, + "probability": 0.9374 + }, + { + "start": 4105.75, + "end": 4111.33, + "probability": 0.8813 + }, + { + "start": 4114.93, + "end": 4115.21, + "probability": 0.8063 + }, + { + "start": 4115.23, + "end": 4118.99, + "probability": 0.9832 + }, + { + "start": 4120.89, + "end": 4120.89, + "probability": 0.9111 + }, + { + "start": 4124.03, + "end": 4126.29, + "probability": 0.5784 + }, + { + "start": 4127.15, + "end": 4128.83, + "probability": 0.891 + }, + { + "start": 4129.41, + "end": 4130.41, + "probability": 0.8552 + }, + { + "start": 4133.27, + "end": 4134.19, + "probability": 0.7216 + }, + { + "start": 4134.97, + "end": 4137.65, + "probability": 0.9186 + }, + { + "start": 4139.83, + "end": 4140.27, + "probability": 0.584 + }, + { + "start": 4140.83, + "end": 4141.97, + "probability": 0.9894 + }, + { + "start": 4142.25, + "end": 4142.98, + "probability": 0.9901 + }, + { + "start": 4143.81, + "end": 4145.75, + "probability": 0.9908 + }, + { + "start": 4145.87, + "end": 4146.93, + "probability": 0.9727 + }, + { + "start": 4147.11, + "end": 4148.29, + "probability": 0.8978 + }, + { + "start": 4148.65, + "end": 4149.41, + "probability": 0.9763 + }, + { + "start": 4149.53, + "end": 4150.33, + "probability": 0.8077 + }, + { + "start": 4152.49, + "end": 4158.37, + "probability": 0.7656 + }, + { + "start": 4159.93, + "end": 4162.83, + "probability": 0.9736 + }, + { + "start": 4163.47, + "end": 4166.09, + "probability": 0.9175 + }, + { + "start": 4167.11, + "end": 4170.77, + "probability": 0.9881 + }, + { + "start": 4172.81, + "end": 4176.23, + "probability": 0.7673 + }, + { + "start": 4177.05, + "end": 4178.13, + "probability": 0.6196 + }, + { + "start": 4181.53, + "end": 4185.61, + "probability": 0.9903 + }, + { + "start": 4186.75, + "end": 4188.25, + "probability": 0.9749 + }, + { + "start": 4189.39, + "end": 4193.15, + "probability": 0.9783 + }, + { + "start": 4195.65, + "end": 4198.01, + "probability": 0.9558 + }, + { + "start": 4201.13, + "end": 4201.45, + "probability": 0.6985 + }, + { + "start": 4203.23, + "end": 4208.57, + "probability": 0.9955 + }, + { + "start": 4209.41, + "end": 4211.53, + "probability": 0.8785 + }, + { + "start": 4213.35, + "end": 4215.43, + "probability": 0.931 + }, + { + "start": 4217.87, + "end": 4220.09, + "probability": 0.9961 + }, + { + "start": 4222.43, + "end": 4225.89, + "probability": 0.8539 + }, + { + "start": 4227.13, + "end": 4232.21, + "probability": 0.9927 + }, + { + "start": 4233.55, + "end": 4236.23, + "probability": 0.6243 + }, + { + "start": 4236.37, + "end": 4237.25, + "probability": 0.6634 + }, + { + "start": 4237.35, + "end": 4240.19, + "probability": 0.9196 + }, + { + "start": 4240.55, + "end": 4240.83, + "probability": 0.9007 + }, + { + "start": 4242.11, + "end": 4243.19, + "probability": 0.7323 + }, + { + "start": 4244.39, + "end": 4246.53, + "probability": 0.7405 + }, + { + "start": 4251.77, + "end": 4253.93, + "probability": 0.9182 + }, + { + "start": 4271.93, + "end": 4272.93, + "probability": 0.6403 + }, + { + "start": 4273.49, + "end": 4274.35, + "probability": 0.5712 + }, + { + "start": 4275.03, + "end": 4278.69, + "probability": 0.9263 + }, + { + "start": 4280.29, + "end": 4286.09, + "probability": 0.8849 + }, + { + "start": 4287.07, + "end": 4290.65, + "probability": 0.7475 + }, + { + "start": 4291.21, + "end": 4292.23, + "probability": 0.477 + }, + { + "start": 4294.11, + "end": 4296.35, + "probability": 0.1356 + }, + { + "start": 4296.87, + "end": 4297.83, + "probability": 0.8385 + }, + { + "start": 4298.97, + "end": 4304.57, + "probability": 0.9628 + }, + { + "start": 4305.17, + "end": 4310.59, + "probability": 0.9898 + }, + { + "start": 4310.59, + "end": 4316.99, + "probability": 0.9141 + }, + { + "start": 4317.47, + "end": 4318.11, + "probability": 0.8753 + }, + { + "start": 4318.57, + "end": 4319.49, + "probability": 0.7101 + }, + { + "start": 4320.09, + "end": 4325.09, + "probability": 0.9036 + }, + { + "start": 4325.45, + "end": 4325.91, + "probability": 0.8732 + }, + { + "start": 4326.09, + "end": 4330.09, + "probability": 0.7986 + }, + { + "start": 4330.51, + "end": 4332.53, + "probability": 0.925 + }, + { + "start": 4332.93, + "end": 4334.45, + "probability": 0.9148 + }, + { + "start": 4335.45, + "end": 4342.01, + "probability": 0.9623 + }, + { + "start": 4342.51, + "end": 4344.93, + "probability": 0.7777 + }, + { + "start": 4345.83, + "end": 4347.79, + "probability": 0.8866 + }, + { + "start": 4347.83, + "end": 4348.43, + "probability": 0.9368 + }, + { + "start": 4348.51, + "end": 4351.71, + "probability": 0.6219 + }, + { + "start": 4352.91, + "end": 4354.84, + "probability": 0.7123 + }, + { + "start": 4356.55, + "end": 4358.79, + "probability": 0.777 + }, + { + "start": 4359.93, + "end": 4371.19, + "probability": 0.6965 + }, + { + "start": 4371.63, + "end": 4371.83, + "probability": 0.6935 + }, + { + "start": 4372.05, + "end": 4376.23, + "probability": 0.954 + }, + { + "start": 4377.35, + "end": 4380.29, + "probability": 0.9598 + }, + { + "start": 4381.53, + "end": 4388.29, + "probability": 0.7852 + }, + { + "start": 4392.15, + "end": 4397.71, + "probability": 0.5118 + }, + { + "start": 4398.77, + "end": 4400.87, + "probability": 0.78 + }, + { + "start": 4401.65, + "end": 4402.79, + "probability": 0.9334 + }, + { + "start": 4403.47, + "end": 4407.45, + "probability": 0.9736 + }, + { + "start": 4408.51, + "end": 4414.47, + "probability": 0.813 + }, + { + "start": 4414.67, + "end": 4414.85, + "probability": 0.9128 + }, + { + "start": 4414.91, + "end": 4418.15, + "probability": 0.9937 + }, + { + "start": 4419.91, + "end": 4421.09, + "probability": 0.2733 + }, + { + "start": 4422.01, + "end": 4422.95, + "probability": 0.6709 + }, + { + "start": 4423.81, + "end": 4429.83, + "probability": 0.9397 + }, + { + "start": 4431.92, + "end": 4435.69, + "probability": 0.8258 + }, + { + "start": 4437.05, + "end": 4440.41, + "probability": 0.9421 + }, + { + "start": 4440.93, + "end": 4446.01, + "probability": 0.9587 + }, + { + "start": 4446.77, + "end": 4453.53, + "probability": 0.86 + }, + { + "start": 4458.79, + "end": 4462.84, + "probability": 0.9805 + }, + { + "start": 4463.35, + "end": 4466.89, + "probability": 0.9204 + }, + { + "start": 4467.85, + "end": 4472.47, + "probability": 0.8792 + }, + { + "start": 4473.57, + "end": 4483.27, + "probability": 0.9419 + }, + { + "start": 4483.85, + "end": 4486.73, + "probability": 0.9358 + }, + { + "start": 4487.39, + "end": 4490.47, + "probability": 0.757 + }, + { + "start": 4490.89, + "end": 4491.79, + "probability": 0.9692 + }, + { + "start": 4492.09, + "end": 4494.43, + "probability": 0.7054 + }, + { + "start": 4494.69, + "end": 4496.13, + "probability": 0.8139 + }, + { + "start": 4496.59, + "end": 4500.09, + "probability": 0.7339 + }, + { + "start": 4500.15, + "end": 4503.75, + "probability": 0.7983 + }, + { + "start": 4503.89, + "end": 4507.53, + "probability": 0.9915 + }, + { + "start": 4507.59, + "end": 4508.79, + "probability": 0.6705 + }, + { + "start": 4508.89, + "end": 4515.21, + "probability": 0.9315 + }, + { + "start": 4515.55, + "end": 4519.13, + "probability": 0.9787 + }, + { + "start": 4520.92, + "end": 4525.97, + "probability": 0.7529 + }, + { + "start": 4527.21, + "end": 4528.69, + "probability": 0.8353 + }, + { + "start": 4529.21, + "end": 4529.75, + "probability": 0.5106 + }, + { + "start": 4530.45, + "end": 4531.35, + "probability": 0.4549 + }, + { + "start": 4531.49, + "end": 4534.23, + "probability": 0.6969 + }, + { + "start": 4534.25, + "end": 4534.45, + "probability": 0.4676 + }, + { + "start": 4534.45, + "end": 4536.37, + "probability": 0.9815 + }, + { + "start": 4537.05, + "end": 4540.31, + "probability": 0.9095 + }, + { + "start": 4540.39, + "end": 4540.75, + "probability": 0.9113 + }, + { + "start": 4541.41, + "end": 4544.19, + "probability": 0.7497 + }, + { + "start": 4544.99, + "end": 4548.63, + "probability": 0.7437 + }, + { + "start": 4550.15, + "end": 4551.61, + "probability": 0.7949 + }, + { + "start": 4551.93, + "end": 4555.99, + "probability": 0.9137 + }, + { + "start": 4556.27, + "end": 4559.03, + "probability": 0.9616 + }, + { + "start": 4559.65, + "end": 4562.01, + "probability": 0.9155 + }, + { + "start": 4562.15, + "end": 4563.83, + "probability": 0.9001 + }, + { + "start": 4564.25, + "end": 4566.77, + "probability": 0.7476 + }, + { + "start": 4566.93, + "end": 4567.47, + "probability": 0.8424 + }, + { + "start": 4567.69, + "end": 4569.69, + "probability": 0.9419 + }, + { + "start": 4570.25, + "end": 4570.75, + "probability": 0.4835 + }, + { + "start": 4570.91, + "end": 4572.77, + "probability": 0.9021 + }, + { + "start": 4573.29, + "end": 4574.35, + "probability": 0.9939 + }, + { + "start": 4574.75, + "end": 4578.79, + "probability": 0.9428 + }, + { + "start": 4579.93, + "end": 4580.67, + "probability": 0.8957 + }, + { + "start": 4580.91, + "end": 4581.37, + "probability": 0.6896 + }, + { + "start": 4582.85, + "end": 4583.31, + "probability": 0.9489 + }, + { + "start": 4585.49, + "end": 4587.13, + "probability": 0.9156 + }, + { + "start": 4596.99, + "end": 4601.07, + "probability": 0.8897 + }, + { + "start": 4601.29, + "end": 4603.47, + "probability": 0.959 + }, + { + "start": 4604.19, + "end": 4604.55, + "probability": 0.9712 + }, + { + "start": 4605.03, + "end": 4607.08, + "probability": 0.1451 + }, + { + "start": 4608.37, + "end": 4609.45, + "probability": 0.6444 + }, + { + "start": 4609.57, + "end": 4610.31, + "probability": 0.9951 + }, + { + "start": 4611.73, + "end": 4612.69, + "probability": 0.5017 + }, + { + "start": 4612.69, + "end": 4613.49, + "probability": 0.7295 + }, + { + "start": 4613.57, + "end": 4614.59, + "probability": 0.9714 + }, + { + "start": 4614.69, + "end": 4615.19, + "probability": 0.7039 + }, + { + "start": 4617.07, + "end": 4617.43, + "probability": 0.7888 + }, + { + "start": 4618.81, + "end": 4622.71, + "probability": 0.6864 + }, + { + "start": 4624.37, + "end": 4627.83, + "probability": 0.7737 + }, + { + "start": 4629.61, + "end": 4629.97, + "probability": 0.7538 + }, + { + "start": 4630.11, + "end": 4636.25, + "probability": 0.972 + }, + { + "start": 4636.41, + "end": 4638.84, + "probability": 0.5455 + }, + { + "start": 4640.63, + "end": 4642.83, + "probability": 0.536 + }, + { + "start": 4643.93, + "end": 4647.45, + "probability": 0.5508 + }, + { + "start": 4648.99, + "end": 4649.81, + "probability": 0.6838 + }, + { + "start": 4650.37, + "end": 4650.73, + "probability": 0.8501 + }, + { + "start": 4650.83, + "end": 4655.01, + "probability": 0.519 + }, + { + "start": 4655.89, + "end": 4656.85, + "probability": 0.6137 + }, + { + "start": 4657.97, + "end": 4661.07, + "probability": 0.6151 + }, + { + "start": 4662.27, + "end": 4664.61, + "probability": 0.8825 + }, + { + "start": 4665.71, + "end": 4668.13, + "probability": 0.6393 + }, + { + "start": 4668.79, + "end": 4670.87, + "probability": 0.6224 + }, + { + "start": 4672.01, + "end": 4673.27, + "probability": 0.8555 + }, + { + "start": 4674.37, + "end": 4678.11, + "probability": 0.9722 + }, + { + "start": 4678.75, + "end": 4679.65, + "probability": 0.6138 + }, + { + "start": 4680.97, + "end": 4689.23, + "probability": 0.7816 + }, + { + "start": 4689.75, + "end": 4691.81, + "probability": 0.8868 + }, + { + "start": 4692.51, + "end": 4694.8, + "probability": 0.8652 + }, + { + "start": 4696.11, + "end": 4697.43, + "probability": 0.7146 + }, + { + "start": 4698.03, + "end": 4700.17, + "probability": 0.7604 + }, + { + "start": 4701.25, + "end": 4703.05, + "probability": 0.8938 + }, + { + "start": 4703.93, + "end": 4710.59, + "probability": 0.8796 + }, + { + "start": 4711.77, + "end": 4716.63, + "probability": 0.8945 + }, + { + "start": 4717.89, + "end": 4721.45, + "probability": 0.987 + }, + { + "start": 4721.81, + "end": 4722.36, + "probability": 0.9915 + }, + { + "start": 4724.07, + "end": 4727.65, + "probability": 0.9434 + }, + { + "start": 4728.37, + "end": 4731.43, + "probability": 0.9968 + }, + { + "start": 4732.57, + "end": 4735.37, + "probability": 0.9528 + }, + { + "start": 4736.59, + "end": 4738.53, + "probability": 0.8486 + }, + { + "start": 4739.25, + "end": 4740.27, + "probability": 0.9988 + }, + { + "start": 4740.93, + "end": 4742.81, + "probability": 0.953 + }, + { + "start": 4743.93, + "end": 4745.09, + "probability": 0.9595 + }, + { + "start": 4745.73, + "end": 4750.09, + "probability": 0.9844 + }, + { + "start": 4750.69, + "end": 4750.99, + "probability": 0.7113 + }, + { + "start": 4752.79, + "end": 4753.83, + "probability": 0.5676 + }, + { + "start": 4755.33, + "end": 4758.45, + "probability": 0.9485 + }, + { + "start": 4759.35, + "end": 4764.25, + "probability": 0.9812 + }, + { + "start": 4765.59, + "end": 4769.39, + "probability": 0.9747 + }, + { + "start": 4770.03, + "end": 4774.39, + "probability": 0.9889 + }, + { + "start": 4775.03, + "end": 4775.57, + "probability": 0.7412 + }, + { + "start": 4777.35, + "end": 4780.65, + "probability": 0.8961 + }, + { + "start": 4781.75, + "end": 4784.95, + "probability": 0.9838 + }, + { + "start": 4785.67, + "end": 4788.49, + "probability": 0.6973 + }, + { + "start": 4792.13, + "end": 4798.77, + "probability": 0.9294 + }, + { + "start": 4799.45, + "end": 4802.23, + "probability": 0.7378 + }, + { + "start": 4802.87, + "end": 4805.4, + "probability": 0.4669 + }, + { + "start": 4806.55, + "end": 4807.19, + "probability": 0.6361 + }, + { + "start": 4809.39, + "end": 4810.31, + "probability": 0.6646 + }, + { + "start": 4810.91, + "end": 4813.51, + "probability": 0.9911 + }, + { + "start": 4813.75, + "end": 4816.71, + "probability": 0.9436 + }, + { + "start": 4816.73, + "end": 4817.39, + "probability": 0.6809 + }, + { + "start": 4818.55, + "end": 4818.91, + "probability": 0.9756 + }, + { + "start": 4819.43, + "end": 4820.15, + "probability": 0.7148 + }, + { + "start": 4820.67, + "end": 4822.45, + "probability": 0.6866 + }, + { + "start": 4823.67, + "end": 4825.13, + "probability": 0.9963 + }, + { + "start": 4825.95, + "end": 4831.49, + "probability": 0.9739 + }, + { + "start": 4832.19, + "end": 4834.33, + "probability": 0.8574 + }, + { + "start": 4835.31, + "end": 4837.71, + "probability": 0.9958 + }, + { + "start": 4838.37, + "end": 4839.07, + "probability": 0.4121 + }, + { + "start": 4839.11, + "end": 4839.63, + "probability": 0.6042 + }, + { + "start": 4840.15, + "end": 4843.29, + "probability": 0.6825 + }, + { + "start": 4843.29, + "end": 4846.69, + "probability": 0.9985 + }, + { + "start": 4847.73, + "end": 4849.93, + "probability": 0.8231 + }, + { + "start": 4852.0, + "end": 4852.43, + "probability": 0.3404 + }, + { + "start": 4853.33, + "end": 4855.47, + "probability": 0.4439 + }, + { + "start": 4856.71, + "end": 4857.47, + "probability": 0.9377 + }, + { + "start": 4858.43, + "end": 4859.85, + "probability": 0.9862 + }, + { + "start": 4861.13, + "end": 4863.29, + "probability": 0.8882 + }, + { + "start": 4865.39, + "end": 4868.23, + "probability": 0.9739 + }, + { + "start": 4869.25, + "end": 4869.93, + "probability": 0.6723 + }, + { + "start": 4871.49, + "end": 4873.07, + "probability": 0.986 + }, + { + "start": 4874.09, + "end": 4875.16, + "probability": 0.9115 + }, + { + "start": 4876.15, + "end": 4877.73, + "probability": 0.9878 + }, + { + "start": 4879.31, + "end": 4879.65, + "probability": 0.9954 + }, + { + "start": 4880.41, + "end": 4883.13, + "probability": 0.9983 + }, + { + "start": 4883.95, + "end": 4885.55, + "probability": 0.7997 + }, + { + "start": 4886.47, + "end": 4887.4, + "probability": 0.4914 + }, + { + "start": 4888.49, + "end": 4888.87, + "probability": 0.5594 + }, + { + "start": 4890.07, + "end": 4892.59, + "probability": 0.971 + }, + { + "start": 4893.77, + "end": 4895.53, + "probability": 0.7989 + }, + { + "start": 4895.79, + "end": 4896.33, + "probability": 0.4251 + }, + { + "start": 4896.97, + "end": 4898.69, + "probability": 0.9069 + }, + { + "start": 4899.25, + "end": 4900.53, + "probability": 0.7247 + }, + { + "start": 4901.23, + "end": 4901.83, + "probability": 0.8746 + }, + { + "start": 4902.29, + "end": 4904.35, + "probability": 0.9915 + }, + { + "start": 4904.73, + "end": 4906.5, + "probability": 0.9313 + }, + { + "start": 4907.09, + "end": 4912.73, + "probability": 0.519 + }, + { + "start": 4913.51, + "end": 4915.73, + "probability": 0.9062 + }, + { + "start": 4916.27, + "end": 4916.63, + "probability": 0.9635 + }, + { + "start": 4919.13, + "end": 4920.85, + "probability": 0.8239 + }, + { + "start": 4921.75, + "end": 4923.16, + "probability": 0.9839 + }, + { + "start": 4924.63, + "end": 4926.47, + "probability": 0.9197 + }, + { + "start": 4927.33, + "end": 4928.05, + "probability": 0.9067 + }, + { + "start": 4928.71, + "end": 4929.75, + "probability": 0.7137 + }, + { + "start": 4932.69, + "end": 4932.71, + "probability": 0.0445 + }, + { + "start": 4932.71, + "end": 4934.31, + "probability": 0.875 + }, + { + "start": 4935.95, + "end": 4937.63, + "probability": 0.6902 + }, + { + "start": 4938.39, + "end": 4940.07, + "probability": 0.95 + }, + { + "start": 4940.79, + "end": 4946.21, + "probability": 0.9136 + }, + { + "start": 4946.91, + "end": 4948.67, + "probability": 0.9764 + }, + { + "start": 4949.23, + "end": 4951.27, + "probability": 0.9713 + }, + { + "start": 4952.11, + "end": 4953.89, + "probability": 0.832 + }, + { + "start": 4954.57, + "end": 4955.39, + "probability": 0.751 + }, + { + "start": 4955.91, + "end": 4956.37, + "probability": 0.9017 + }, + { + "start": 4956.97, + "end": 4960.55, + "probability": 0.9935 + }, + { + "start": 4960.93, + "end": 4961.33, + "probability": 0.5544 + }, + { + "start": 4961.67, + "end": 4965.99, + "probability": 0.6081 + }, + { + "start": 4967.07, + "end": 4971.27, + "probability": 0.9925 + }, + { + "start": 4972.25, + "end": 4972.97, + "probability": 0.2758 + }, + { + "start": 4973.89, + "end": 4975.39, + "probability": 0.4185 + }, + { + "start": 4975.63, + "end": 4976.17, + "probability": 0.6024 + }, + { + "start": 4976.47, + "end": 4977.33, + "probability": 0.4227 + }, + { + "start": 4977.61, + "end": 4978.61, + "probability": 0.875 + }, + { + "start": 4979.23, + "end": 4983.15, + "probability": 0.9572 + }, + { + "start": 4983.77, + "end": 4985.69, + "probability": 0.7664 + }, + { + "start": 4986.27, + "end": 4986.87, + "probability": 0.6677 + }, + { + "start": 4987.49, + "end": 4989.63, + "probability": 0.8249 + }, + { + "start": 4990.45, + "end": 4995.85, + "probability": 0.9961 + }, + { + "start": 4996.83, + "end": 4998.55, + "probability": 0.9104 + }, + { + "start": 4999.03, + "end": 4999.73, + "probability": 0.7233 + }, + { + "start": 5004.69, + "end": 5006.89, + "probability": 0.7863 + }, + { + "start": 5013.15, + "end": 5015.74, + "probability": 0.9427 + }, + { + "start": 5016.39, + "end": 5020.73, + "probability": 0.8004 + }, + { + "start": 5021.77, + "end": 5022.47, + "probability": 0.0443 + }, + { + "start": 5024.77, + "end": 5026.39, + "probability": 0.431 + }, + { + "start": 5026.55, + "end": 5030.55, + "probability": 0.7111 + }, + { + "start": 5031.01, + "end": 5031.73, + "probability": 0.7599 + }, + { + "start": 5032.05, + "end": 5032.67, + "probability": 0.8087 + }, + { + "start": 5032.77, + "end": 5034.33, + "probability": 0.7544 + }, + { + "start": 5035.21, + "end": 5036.97, + "probability": 0.4083 + }, + { + "start": 5038.51, + "end": 5040.99, + "probability": 0.7295 + }, + { + "start": 5042.29, + "end": 5043.01, + "probability": 0.8538 + }, + { + "start": 5043.17, + "end": 5045.15, + "probability": 0.7611 + }, + { + "start": 5046.11, + "end": 5046.87, + "probability": 0.9405 + }, + { + "start": 5048.23, + "end": 5050.7, + "probability": 0.892 + }, + { + "start": 5051.45, + "end": 5053.61, + "probability": 0.9778 + }, + { + "start": 5054.61, + "end": 5057.08, + "probability": 0.9924 + }, + { + "start": 5057.11, + "end": 5062.05, + "probability": 0.9888 + }, + { + "start": 5062.21, + "end": 5064.95, + "probability": 0.999 + }, + { + "start": 5065.15, + "end": 5065.61, + "probability": 0.3941 + }, + { + "start": 5066.65, + "end": 5068.87, + "probability": 0.9795 + }, + { + "start": 5068.95, + "end": 5069.63, + "probability": 0.9487 + }, + { + "start": 5071.11, + "end": 5073.83, + "probability": 0.9928 + }, + { + "start": 5074.05, + "end": 5076.59, + "probability": 0.7639 + }, + { + "start": 5077.85, + "end": 5080.79, + "probability": 0.713 + }, + { + "start": 5080.79, + "end": 5082.53, + "probability": 0.6916 + }, + { + "start": 5082.77, + "end": 5085.17, + "probability": 0.9321 + }, + { + "start": 5086.31, + "end": 5087.99, + "probability": 0.7134 + }, + { + "start": 5088.75, + "end": 5090.83, + "probability": 0.9849 + }, + { + "start": 5091.55, + "end": 5092.51, + "probability": 0.9878 + }, + { + "start": 5093.05, + "end": 5094.13, + "probability": 0.9542 + }, + { + "start": 5095.87, + "end": 5098.09, + "probability": 0.8137 + }, + { + "start": 5098.83, + "end": 5100.01, + "probability": 0.8934 + }, + { + "start": 5101.11, + "end": 5106.41, + "probability": 0.9673 + }, + { + "start": 5106.57, + "end": 5107.55, + "probability": 0.8066 + }, + { + "start": 5108.13, + "end": 5108.23, + "probability": 0.4919 + }, + { + "start": 5109.13, + "end": 5109.73, + "probability": 0.7877 + }, + { + "start": 5110.67, + "end": 5113.92, + "probability": 0.9956 + }, + { + "start": 5114.49, + "end": 5118.63, + "probability": 0.9043 + }, + { + "start": 5118.69, + "end": 5120.11, + "probability": 0.9027 + }, + { + "start": 5120.53, + "end": 5121.31, + "probability": 0.495 + }, + { + "start": 5122.71, + "end": 5125.31, + "probability": 0.9348 + }, + { + "start": 5125.41, + "end": 5126.67, + "probability": 0.9834 + }, + { + "start": 5127.71, + "end": 5130.39, + "probability": 0.8823 + }, + { + "start": 5131.57, + "end": 5132.61, + "probability": 0.2044 + }, + { + "start": 5134.31, + "end": 5135.99, + "probability": 0.938 + }, + { + "start": 5136.81, + "end": 5139.01, + "probability": 0.9238 + }, + { + "start": 5140.19, + "end": 5141.53, + "probability": 0.7564 + }, + { + "start": 5142.55, + "end": 5145.99, + "probability": 0.9673 + }, + { + "start": 5147.17, + "end": 5150.77, + "probability": 0.9844 + }, + { + "start": 5151.83, + "end": 5155.21, + "probability": 0.981 + }, + { + "start": 5156.17, + "end": 5158.71, + "probability": 0.9965 + }, + { + "start": 5159.99, + "end": 5161.11, + "probability": 0.8995 + }, + { + "start": 5161.83, + "end": 5165.31, + "probability": 0.829 + }, + { + "start": 5165.87, + "end": 5168.61, + "probability": 0.8931 + }, + { + "start": 5169.55, + "end": 5173.35, + "probability": 0.9361 + }, + { + "start": 5174.03, + "end": 5176.13, + "probability": 0.9032 + }, + { + "start": 5176.19, + "end": 5176.39, + "probability": 0.5637 + }, + { + "start": 5177.33, + "end": 5181.63, + "probability": 0.9733 + }, + { + "start": 5182.51, + "end": 5182.53, + "probability": 0.4525 + }, + { + "start": 5182.65, + "end": 5184.07, + "probability": 0.5953 + }, + { + "start": 5184.19, + "end": 5185.49, + "probability": 0.9927 + }, + { + "start": 5186.37, + "end": 5189.69, + "probability": 0.8232 + }, + { + "start": 5191.05, + "end": 5191.89, + "probability": 0.9268 + }, + { + "start": 5192.03, + "end": 5192.23, + "probability": 0.8128 + }, + { + "start": 5192.31, + "end": 5193.87, + "probability": 0.9933 + }, + { + "start": 5194.55, + "end": 5199.63, + "probability": 0.9633 + }, + { + "start": 5201.45, + "end": 5202.41, + "probability": 0.9966 + }, + { + "start": 5204.35, + "end": 5204.55, + "probability": 0.8221 + }, + { + "start": 5205.15, + "end": 5207.47, + "probability": 0.7889 + }, + { + "start": 5209.17, + "end": 5210.43, + "probability": 0.8632 + }, + { + "start": 5211.47, + "end": 5214.69, + "probability": 0.7529 + }, + { + "start": 5215.68, + "end": 5219.47, + "probability": 0.9394 + }, + { + "start": 5220.25, + "end": 5222.53, + "probability": 0.9303 + }, + { + "start": 5223.65, + "end": 5225.77, + "probability": 0.9965 + }, + { + "start": 5225.77, + "end": 5229.19, + "probability": 0.9838 + }, + { + "start": 5230.07, + "end": 5231.41, + "probability": 0.6696 + }, + { + "start": 5231.55, + "end": 5232.16, + "probability": 0.9544 + }, + { + "start": 5233.11, + "end": 5234.67, + "probability": 0.6817 + }, + { + "start": 5235.89, + "end": 5238.29, + "probability": 0.8217 + }, + { + "start": 5239.39, + "end": 5241.65, + "probability": 0.9787 + }, + { + "start": 5242.59, + "end": 5243.51, + "probability": 0.7536 + }, + { + "start": 5244.39, + "end": 5245.29, + "probability": 0.967 + }, + { + "start": 5246.49, + "end": 5251.75, + "probability": 0.9941 + }, + { + "start": 5252.29, + "end": 5253.63, + "probability": 0.8431 + }, + { + "start": 5255.47, + "end": 5257.53, + "probability": 0.9963 + }, + { + "start": 5257.67, + "end": 5258.95, + "probability": 0.9656 + }, + { + "start": 5259.05, + "end": 5259.73, + "probability": 0.9172 + }, + { + "start": 5260.77, + "end": 5263.27, + "probability": 0.9964 + }, + { + "start": 5263.67, + "end": 5266.11, + "probability": 0.8416 + }, + { + "start": 5266.23, + "end": 5267.06, + "probability": 0.9413 + }, + { + "start": 5267.23, + "end": 5267.49, + "probability": 0.5728 + }, + { + "start": 5268.23, + "end": 5269.13, + "probability": 0.9937 + }, + { + "start": 5269.31, + "end": 5272.83, + "probability": 0.8918 + }, + { + "start": 5273.23, + "end": 5275.53, + "probability": 0.7568 + }, + { + "start": 5276.11, + "end": 5277.39, + "probability": 0.8195 + }, + { + "start": 5278.23, + "end": 5279.93, + "probability": 0.8052 + }, + { + "start": 5280.71, + "end": 5281.89, + "probability": 0.9814 + }, + { + "start": 5283.09, + "end": 5283.59, + "probability": 0.8673 + }, + { + "start": 5283.67, + "end": 5283.91, + "probability": 0.846 + }, + { + "start": 5284.17, + "end": 5286.67, + "probability": 0.9567 + }, + { + "start": 5288.07, + "end": 5288.85, + "probability": 0.9125 + }, + { + "start": 5289.07, + "end": 5290.48, + "probability": 0.6825 + }, + { + "start": 5291.35, + "end": 5293.97, + "probability": 0.9856 + }, + { + "start": 5294.07, + "end": 5296.55, + "probability": 0.9264 + }, + { + "start": 5297.55, + "end": 5298.89, + "probability": 0.9542 + }, + { + "start": 5298.97, + "end": 5301.23, + "probability": 0.9922 + }, + { + "start": 5301.29, + "end": 5304.01, + "probability": 0.991 + }, + { + "start": 5304.31, + "end": 5305.51, + "probability": 0.9906 + }, + { + "start": 5306.01, + "end": 5307.11, + "probability": 0.8711 + }, + { + "start": 5307.19, + "end": 5308.45, + "probability": 0.9856 + }, + { + "start": 5309.13, + "end": 5311.19, + "probability": 0.5774 + }, + { + "start": 5311.95, + "end": 5314.03, + "probability": 0.8863 + }, + { + "start": 5314.45, + "end": 5315.93, + "probability": 0.9131 + }, + { + "start": 5315.97, + "end": 5318.99, + "probability": 0.7384 + }, + { + "start": 5319.75, + "end": 5321.23, + "probability": 0.98 + }, + { + "start": 5322.15, + "end": 5323.17, + "probability": 0.7324 + }, + { + "start": 5323.19, + "end": 5324.51, + "probability": 0.9866 + }, + { + "start": 5324.83, + "end": 5325.55, + "probability": 0.8147 + }, + { + "start": 5326.77, + "end": 5330.09, + "probability": 0.9876 + }, + { + "start": 5330.25, + "end": 5331.25, + "probability": 0.8408 + }, + { + "start": 5331.85, + "end": 5333.91, + "probability": 0.6873 + }, + { + "start": 5335.19, + "end": 5337.47, + "probability": 0.731 + }, + { + "start": 5337.47, + "end": 5338.11, + "probability": 0.9049 + }, + { + "start": 5339.55, + "end": 5341.93, + "probability": 0.9766 + }, + { + "start": 5342.07, + "end": 5342.99, + "probability": 0.1283 + }, + { + "start": 5342.99, + "end": 5343.57, + "probability": 0.6392 + }, + { + "start": 5344.23, + "end": 5346.85, + "probability": 0.9282 + }, + { + "start": 5347.49, + "end": 5348.71, + "probability": 0.8957 + }, + { + "start": 5349.99, + "end": 5351.05, + "probability": 0.7271 + }, + { + "start": 5351.17, + "end": 5353.49, + "probability": 0.875 + }, + { + "start": 5354.33, + "end": 5356.17, + "probability": 0.9935 + }, + { + "start": 5356.29, + "end": 5357.07, + "probability": 0.5274 + }, + { + "start": 5357.29, + "end": 5358.45, + "probability": 0.62 + }, + { + "start": 5360.31, + "end": 5363.91, + "probability": 0.9842 + }, + { + "start": 5364.79, + "end": 5366.93, + "probability": 0.895 + }, + { + "start": 5368.01, + "end": 5369.57, + "probability": 0.7707 + }, + { + "start": 5370.47, + "end": 5371.13, + "probability": 0.9893 + }, + { + "start": 5371.27, + "end": 5373.89, + "probability": 0.6365 + }, + { + "start": 5374.93, + "end": 5376.73, + "probability": 0.97 + }, + { + "start": 5377.95, + "end": 5379.75, + "probability": 0.7688 + }, + { + "start": 5380.03, + "end": 5383.39, + "probability": 0.9629 + }, + { + "start": 5384.53, + "end": 5387.95, + "probability": 0.7675 + }, + { + "start": 5387.95, + "end": 5391.03, + "probability": 0.9901 + }, + { + "start": 5391.53, + "end": 5392.37, + "probability": 0.9403 + }, + { + "start": 5392.83, + "end": 5393.79, + "probability": 0.6392 + }, + { + "start": 5394.01, + "end": 5394.21, + "probability": 0.6509 + }, + { + "start": 5394.81, + "end": 5396.67, + "probability": 0.9163 + }, + { + "start": 5404.41, + "end": 5404.41, + "probability": 0.7595 + }, + { + "start": 5404.41, + "end": 5405.11, + "probability": 0.4826 + }, + { + "start": 5405.33, + "end": 5406.23, + "probability": 0.8494 + }, + { + "start": 5407.55, + "end": 5409.75, + "probability": 0.8163 + }, + { + "start": 5410.63, + "end": 5410.85, + "probability": 0.8971 + }, + { + "start": 5411.29, + "end": 5414.15, + "probability": 0.9795 + }, + { + "start": 5414.19, + "end": 5415.13, + "probability": 0.5032 + }, + { + "start": 5415.85, + "end": 5418.15, + "probability": 0.9135 + }, + { + "start": 5419.31, + "end": 5422.97, + "probability": 0.9829 + }, + { + "start": 5423.67, + "end": 5428.99, + "probability": 0.999 + }, + { + "start": 5429.37, + "end": 5431.85, + "probability": 0.8756 + }, + { + "start": 5432.31, + "end": 5433.61, + "probability": 0.8979 + }, + { + "start": 5434.37, + "end": 5439.61, + "probability": 0.9592 + }, + { + "start": 5439.67, + "end": 5442.83, + "probability": 0.7607 + }, + { + "start": 5442.83, + "end": 5448.85, + "probability": 0.8667 + }, + { + "start": 5449.01, + "end": 5451.35, + "probability": 0.8241 + }, + { + "start": 5451.91, + "end": 5452.73, + "probability": 0.8391 + }, + { + "start": 5452.85, + "end": 5455.33, + "probability": 0.7886 + }, + { + "start": 5455.53, + "end": 5456.27, + "probability": 0.6345 + }, + { + "start": 5457.08, + "end": 5460.19, + "probability": 0.6414 + }, + { + "start": 5460.73, + "end": 5462.23, + "probability": 0.6531 + }, + { + "start": 5464.85, + "end": 5465.21, + "probability": 0.2487 + }, + { + "start": 5465.89, + "end": 5467.85, + "probability": 0.6816 + }, + { + "start": 5468.63, + "end": 5472.68, + "probability": 0.8011 + }, + { + "start": 5473.47, + "end": 5477.71, + "probability": 0.9914 + }, + { + "start": 5478.15, + "end": 5478.41, + "probability": 0.6877 + }, + { + "start": 5478.91, + "end": 5479.87, + "probability": 0.9871 + }, + { + "start": 5480.39, + "end": 5483.34, + "probability": 0.87 + }, + { + "start": 5483.91, + "end": 5486.49, + "probability": 0.9819 + }, + { + "start": 5486.75, + "end": 5488.34, + "probability": 0.9656 + }, + { + "start": 5488.63, + "end": 5491.37, + "probability": 0.8177 + }, + { + "start": 5491.59, + "end": 5492.81, + "probability": 0.812 + }, + { + "start": 5492.91, + "end": 5494.53, + "probability": 0.946 + }, + { + "start": 5495.57, + "end": 5496.43, + "probability": 0.8452 + }, + { + "start": 5497.03, + "end": 5499.01, + "probability": 0.9496 + }, + { + "start": 5499.07, + "end": 5501.87, + "probability": 0.5501 + }, + { + "start": 5502.29, + "end": 5503.89, + "probability": 0.7236 + }, + { + "start": 5504.25, + "end": 5505.99, + "probability": 0.52 + }, + { + "start": 5506.25, + "end": 5507.13, + "probability": 0.8316 + }, + { + "start": 5507.27, + "end": 5509.17, + "probability": 0.3996 + }, + { + "start": 5509.69, + "end": 5511.39, + "probability": 0.9653 + }, + { + "start": 5511.67, + "end": 5514.85, + "probability": 0.9919 + }, + { + "start": 5515.07, + "end": 5517.99, + "probability": 0.9383 + }, + { + "start": 5518.89, + "end": 5519.59, + "probability": 0.9692 + }, + { + "start": 5520.19, + "end": 5527.47, + "probability": 0.9599 + }, + { + "start": 5528.35, + "end": 5529.09, + "probability": 0.7851 + }, + { + "start": 5529.65, + "end": 5530.43, + "probability": 0.9238 + }, + { + "start": 5530.85, + "end": 5532.26, + "probability": 0.8189 + }, + { + "start": 5532.97, + "end": 5534.11, + "probability": 0.968 + }, + { + "start": 5534.75, + "end": 5536.87, + "probability": 0.9971 + }, + { + "start": 5537.43, + "end": 5538.07, + "probability": 0.7467 + }, + { + "start": 5538.19, + "end": 5538.83, + "probability": 0.7153 + }, + { + "start": 5538.95, + "end": 5541.61, + "probability": 0.9464 + }, + { + "start": 5541.97, + "end": 5543.35, + "probability": 0.9893 + }, + { + "start": 5544.21, + "end": 5545.31, + "probability": 0.7517 + }, + { + "start": 5545.33, + "end": 5547.93, + "probability": 0.9932 + }, + { + "start": 5548.47, + "end": 5549.05, + "probability": 0.6989 + }, + { + "start": 5549.25, + "end": 5550.29, + "probability": 0.8265 + }, + { + "start": 5550.99, + "end": 5554.39, + "probability": 0.9581 + }, + { + "start": 5554.67, + "end": 5556.05, + "probability": 0.8683 + }, + { + "start": 5556.17, + "end": 5557.55, + "probability": 0.9304 + }, + { + "start": 5557.91, + "end": 5559.97, + "probability": 0.9344 + }, + { + "start": 5560.09, + "end": 5561.23, + "probability": 0.8267 + }, + { + "start": 5561.39, + "end": 5561.73, + "probability": 0.3369 + }, + { + "start": 5562.33, + "end": 5563.61, + "probability": 0.9091 + }, + { + "start": 5563.97, + "end": 5564.45, + "probability": 0.876 + }, + { + "start": 5564.87, + "end": 5567.23, + "probability": 0.9317 + }, + { + "start": 5567.33, + "end": 5568.79, + "probability": 0.9958 + }, + { + "start": 5569.23, + "end": 5570.07, + "probability": 0.9932 + }, + { + "start": 5570.39, + "end": 5571.37, + "probability": 0.8846 + }, + { + "start": 5571.71, + "end": 5572.71, + "probability": 0.9294 + }, + { + "start": 5572.97, + "end": 5575.22, + "probability": 0.9964 + }, + { + "start": 5575.69, + "end": 5577.17, + "probability": 0.7968 + }, + { + "start": 5578.47, + "end": 5581.19, + "probability": 0.9575 + }, + { + "start": 5581.59, + "end": 5583.31, + "probability": 0.9531 + }, + { + "start": 5583.71, + "end": 5588.83, + "probability": 0.9976 + }, + { + "start": 5589.17, + "end": 5593.37, + "probability": 0.9867 + }, + { + "start": 5593.99, + "end": 5594.9, + "probability": 0.915 + }, + { + "start": 5595.57, + "end": 5598.37, + "probability": 0.9883 + }, + { + "start": 5600.45, + "end": 5601.23, + "probability": 0.3821 + }, + { + "start": 5601.55, + "end": 5601.83, + "probability": 0.9163 + }, + { + "start": 5602.05, + "end": 5602.57, + "probability": 0.5388 + }, + { + "start": 5603.03, + "end": 5604.09, + "probability": 0.9395 + }, + { + "start": 5604.19, + "end": 5604.81, + "probability": 0.98 + }, + { + "start": 5604.97, + "end": 5605.67, + "probability": 0.9067 + }, + { + "start": 5605.85, + "end": 5606.33, + "probability": 0.8328 + }, + { + "start": 5606.69, + "end": 5611.07, + "probability": 0.9883 + }, + { + "start": 5612.17, + "end": 5613.63, + "probability": 0.5228 + }, + { + "start": 5615.09, + "end": 5617.31, + "probability": 0.9933 + }, + { + "start": 5617.59, + "end": 5618.15, + "probability": 0.8076 + }, + { + "start": 5618.37, + "end": 5619.01, + "probability": 0.8115 + }, + { + "start": 5619.59, + "end": 5621.93, + "probability": 0.9216 + }, + { + "start": 5622.49, + "end": 5623.95, + "probability": 0.9963 + }, + { + "start": 5624.09, + "end": 5627.17, + "probability": 0.998 + }, + { + "start": 5627.17, + "end": 5630.19, + "probability": 0.9981 + }, + { + "start": 5630.95, + "end": 5633.45, + "probability": 0.8429 + }, + { + "start": 5633.61, + "end": 5634.97, + "probability": 0.9895 + }, + { + "start": 5635.31, + "end": 5637.19, + "probability": 0.9868 + }, + { + "start": 5637.29, + "end": 5641.59, + "probability": 0.983 + }, + { + "start": 5641.73, + "end": 5643.12, + "probability": 0.8903 + }, + { + "start": 5643.51, + "end": 5644.79, + "probability": 0.7355 + }, + { + "start": 5645.47, + "end": 5647.9, + "probability": 0.9296 + }, + { + "start": 5648.85, + "end": 5649.35, + "probability": 0.9464 + }, + { + "start": 5650.03, + "end": 5652.11, + "probability": 0.9561 + }, + { + "start": 5652.17, + "end": 5653.23, + "probability": 0.8607 + }, + { + "start": 5653.59, + "end": 5655.71, + "probability": 0.9088 + }, + { + "start": 5656.11, + "end": 5657.03, + "probability": 0.9585 + }, + { + "start": 5657.65, + "end": 5660.07, + "probability": 0.9357 + }, + { + "start": 5660.67, + "end": 5664.95, + "probability": 0.9926 + }, + { + "start": 5665.81, + "end": 5668.11, + "probability": 0.9897 + }, + { + "start": 5668.37, + "end": 5668.79, + "probability": 0.6922 + }, + { + "start": 5668.95, + "end": 5670.37, + "probability": 0.9146 + }, + { + "start": 5671.19, + "end": 5671.51, + "probability": 0.8765 + }, + { + "start": 5672.25, + "end": 5672.57, + "probability": 0.4869 + }, + { + "start": 5673.19, + "end": 5676.11, + "probability": 0.9581 + }, + { + "start": 5676.51, + "end": 5677.33, + "probability": 0.7551 + }, + { + "start": 5677.65, + "end": 5678.55, + "probability": 0.9975 + }, + { + "start": 5679.11, + "end": 5680.21, + "probability": 0.8013 + }, + { + "start": 5681.43, + "end": 5681.43, + "probability": 0.3732 + }, + { + "start": 5681.43, + "end": 5685.25, + "probability": 0.7939 + }, + { + "start": 5699.97, + "end": 5700.29, + "probability": 0.4513 + }, + { + "start": 5700.49, + "end": 5701.99, + "probability": 0.919 + }, + { + "start": 5702.13, + "end": 5702.51, + "probability": 0.6851 + }, + { + "start": 5702.61, + "end": 5704.49, + "probability": 0.6636 + }, + { + "start": 5705.41, + "end": 5705.65, + "probability": 0.4704 + }, + { + "start": 5705.87, + "end": 5713.25, + "probability": 0.9941 + }, + { + "start": 5714.27, + "end": 5719.65, + "probability": 0.991 + }, + { + "start": 5720.75, + "end": 5723.47, + "probability": 0.9773 + }, + { + "start": 5724.83, + "end": 5727.69, + "probability": 0.9861 + }, + { + "start": 5728.87, + "end": 5730.63, + "probability": 0.9614 + }, + { + "start": 5731.37, + "end": 5734.15, + "probability": 0.935 + }, + { + "start": 5735.23, + "end": 5738.11, + "probability": 0.8225 + }, + { + "start": 5738.29, + "end": 5741.31, + "probability": 0.9955 + }, + { + "start": 5741.91, + "end": 5744.37, + "probability": 0.9981 + }, + { + "start": 5744.95, + "end": 5750.03, + "probability": 0.9966 + }, + { + "start": 5750.15, + "end": 5753.87, + "probability": 0.961 + }, + { + "start": 5753.87, + "end": 5758.43, + "probability": 0.9753 + }, + { + "start": 5759.03, + "end": 5759.77, + "probability": 0.6732 + }, + { + "start": 5760.31, + "end": 5761.41, + "probability": 0.9895 + }, + { + "start": 5762.03, + "end": 5764.85, + "probability": 0.9995 + }, + { + "start": 5765.45, + "end": 5767.37, + "probability": 0.9888 + }, + { + "start": 5767.95, + "end": 5775.19, + "probability": 0.9924 + }, + { + "start": 5775.59, + "end": 5775.83, + "probability": 0.4992 + }, + { + "start": 5775.95, + "end": 5780.23, + "probability": 0.9914 + }, + { + "start": 5781.61, + "end": 5783.41, + "probability": 0.938 + }, + { + "start": 5783.53, + "end": 5786.15, + "probability": 0.9812 + }, + { + "start": 5786.89, + "end": 5791.11, + "probability": 0.9702 + }, + { + "start": 5791.69, + "end": 5795.23, + "probability": 0.9728 + }, + { + "start": 5797.61, + "end": 5800.35, + "probability": 0.9755 + }, + { + "start": 5800.49, + "end": 5801.69, + "probability": 0.5796 + }, + { + "start": 5802.69, + "end": 5803.21, + "probability": 0.8798 + }, + { + "start": 5803.29, + "end": 5805.89, + "probability": 0.9493 + }, + { + "start": 5806.55, + "end": 5808.15, + "probability": 0.9635 + }, + { + "start": 5808.45, + "end": 5810.57, + "probability": 0.9766 + }, + { + "start": 5810.63, + "end": 5816.33, + "probability": 0.9841 + }, + { + "start": 5817.29, + "end": 5818.01, + "probability": 0.7332 + }, + { + "start": 5818.17, + "end": 5822.19, + "probability": 0.994 + }, + { + "start": 5822.99, + "end": 5824.87, + "probability": 0.984 + }, + { + "start": 5825.77, + "end": 5826.69, + "probability": 0.7803 + }, + { + "start": 5827.47, + "end": 5829.01, + "probability": 0.6449 + }, + { + "start": 5830.26, + "end": 5835.89, + "probability": 0.984 + }, + { + "start": 5835.89, + "end": 5841.85, + "probability": 0.9712 + }, + { + "start": 5842.37, + "end": 5844.19, + "probability": 0.9019 + }, + { + "start": 5844.21, + "end": 5845.83, + "probability": 0.9912 + }, + { + "start": 5846.61, + "end": 5848.85, + "probability": 0.9948 + }, + { + "start": 5849.93, + "end": 5851.67, + "probability": 0.8828 + }, + { + "start": 5852.61, + "end": 5855.13, + "probability": 0.8002 + }, + { + "start": 5855.27, + "end": 5855.37, + "probability": 0.9187 + }, + { + "start": 5855.49, + "end": 5856.33, + "probability": 0.7651 + }, + { + "start": 5856.43, + "end": 5861.35, + "probability": 0.9677 + }, + { + "start": 5861.49, + "end": 5861.71, + "probability": 0.9053 + }, + { + "start": 5861.75, + "end": 5863.77, + "probability": 0.9942 + }, + { + "start": 5864.39, + "end": 5866.39, + "probability": 0.9349 + }, + { + "start": 5866.41, + "end": 5868.81, + "probability": 0.4998 + }, + { + "start": 5870.51, + "end": 5872.27, + "probability": 0.8765 + }, + { + "start": 5872.69, + "end": 5874.39, + "probability": 0.991 + }, + { + "start": 5874.39, + "end": 5876.09, + "probability": 0.9885 + }, + { + "start": 5876.37, + "end": 5877.29, + "probability": 0.9373 + }, + { + "start": 5877.89, + "end": 5879.95, + "probability": 0.9961 + }, + { + "start": 5880.49, + "end": 5881.69, + "probability": 0.649 + }, + { + "start": 5881.85, + "end": 5884.69, + "probability": 0.8649 + }, + { + "start": 5885.47, + "end": 5886.15, + "probability": 0.6781 + }, + { + "start": 5886.41, + "end": 5890.71, + "probability": 0.9657 + }, + { + "start": 5891.4, + "end": 5892.55, + "probability": 0.1754 + }, + { + "start": 5892.61, + "end": 5895.13, + "probability": 0.5265 + }, + { + "start": 5895.13, + "end": 5897.9, + "probability": 0.7823 + }, + { + "start": 5898.99, + "end": 5903.13, + "probability": 0.9925 + }, + { + "start": 5903.69, + "end": 5905.79, + "probability": 0.9961 + }, + { + "start": 5908.54, + "end": 5910.75, + "probability": 0.9324 + }, + { + "start": 5910.89, + "end": 5914.75, + "probability": 0.9922 + }, + { + "start": 5914.75, + "end": 5916.79, + "probability": 0.69 + }, + { + "start": 5917.25, + "end": 5917.75, + "probability": 0.2645 + }, + { + "start": 5918.35, + "end": 5919.38, + "probability": 0.9883 + }, + { + "start": 5920.09, + "end": 5922.84, + "probability": 0.9958 + }, + { + "start": 5923.75, + "end": 5925.05, + "probability": 0.9882 + }, + { + "start": 5925.53, + "end": 5928.69, + "probability": 0.9751 + }, + { + "start": 5928.75, + "end": 5929.93, + "probability": 0.9457 + }, + { + "start": 5930.39, + "end": 5933.87, + "probability": 0.9825 + }, + { + "start": 5934.09, + "end": 5935.98, + "probability": 0.861 + }, + { + "start": 5936.31, + "end": 5938.21, + "probability": 0.8354 + }, + { + "start": 5938.81, + "end": 5939.03, + "probability": 0.9651 + }, + { + "start": 5940.39, + "end": 5942.61, + "probability": 0.9949 + }, + { + "start": 5943.17, + "end": 5945.59, + "probability": 0.9976 + }, + { + "start": 5946.13, + "end": 5947.05, + "probability": 0.9747 + }, + { + "start": 5948.23, + "end": 5949.29, + "probability": 0.9764 + }, + { + "start": 5949.37, + "end": 5949.85, + "probability": 0.9556 + }, + { + "start": 5950.01, + "end": 5952.57, + "probability": 0.7551 + }, + { + "start": 5952.95, + "end": 5954.19, + "probability": 0.9958 + }, + { + "start": 5954.29, + "end": 5955.25, + "probability": 0.9894 + }, + { + "start": 5956.43, + "end": 5957.61, + "probability": 0.9263 + }, + { + "start": 5958.35, + "end": 5959.71, + "probability": 0.957 + }, + { + "start": 5960.23, + "end": 5964.17, + "probability": 0.9182 + }, + { + "start": 5964.89, + "end": 5968.63, + "probability": 0.8473 + }, + { + "start": 5969.17, + "end": 5971.01, + "probability": 0.867 + }, + { + "start": 5971.29, + "end": 5972.39, + "probability": 0.9715 + }, + { + "start": 5972.69, + "end": 5973.13, + "probability": 0.8502 + }, + { + "start": 5973.27, + "end": 5976.03, + "probability": 0.9966 + }, + { + "start": 5976.69, + "end": 5977.73, + "probability": 0.992 + }, + { + "start": 5978.27, + "end": 5980.17, + "probability": 0.9875 + }, + { + "start": 5981.17, + "end": 5984.83, + "probability": 0.9404 + }, + { + "start": 5984.97, + "end": 5988.67, + "probability": 0.9963 + }, + { + "start": 5989.25, + "end": 5990.73, + "probability": 0.8074 + }, + { + "start": 5991.99, + "end": 5993.25, + "probability": 0.9355 + }, + { + "start": 5994.15, + "end": 5997.79, + "probability": 0.8853 + }, + { + "start": 5998.43, + "end": 5999.37, + "probability": 0.9686 + }, + { + "start": 6000.51, + "end": 6002.03, + "probability": 0.9636 + }, + { + "start": 6002.19, + "end": 6004.09, + "probability": 0.6793 + }, + { + "start": 6004.23, + "end": 6006.69, + "probability": 0.9223 + }, + { + "start": 6007.39, + "end": 6011.89, + "probability": 0.9857 + }, + { + "start": 6012.65, + "end": 6015.22, + "probability": 0.9316 + }, + { + "start": 6015.61, + "end": 6019.31, + "probability": 0.9893 + }, + { + "start": 6020.71, + "end": 6021.81, + "probability": 0.9078 + }, + { + "start": 6022.25, + "end": 6022.91, + "probability": 0.7664 + }, + { + "start": 6023.01, + "end": 6023.45, + "probability": 0.6945 + }, + { + "start": 6023.81, + "end": 6027.27, + "probability": 0.9858 + }, + { + "start": 6027.81, + "end": 6030.37, + "probability": 0.9704 + }, + { + "start": 6031.09, + "end": 6033.67, + "probability": 0.9913 + }, + { + "start": 6034.17, + "end": 6036.07, + "probability": 0.9588 + }, + { + "start": 6036.69, + "end": 6038.37, + "probability": 0.8665 + }, + { + "start": 6038.89, + "end": 6041.03, + "probability": 0.7883 + }, + { + "start": 6041.63, + "end": 6044.21, + "probability": 0.978 + }, + { + "start": 6044.31, + "end": 6046.19, + "probability": 0.6904 + }, + { + "start": 6047.03, + "end": 6051.11, + "probability": 0.9035 + }, + { + "start": 6052.09, + "end": 6053.69, + "probability": 0.7259 + }, + { + "start": 6054.07, + "end": 6055.82, + "probability": 0.9488 + }, + { + "start": 6055.91, + "end": 6056.33, + "probability": 0.6175 + }, + { + "start": 6056.53, + "end": 6056.83, + "probability": 0.4584 + }, + { + "start": 6057.29, + "end": 6060.93, + "probability": 0.9784 + }, + { + "start": 6060.93, + "end": 6065.27, + "probability": 0.9953 + }, + { + "start": 6065.47, + "end": 6065.61, + "probability": 0.7074 + }, + { + "start": 6066.23, + "end": 6066.97, + "probability": 0.7729 + }, + { + "start": 6068.97, + "end": 6069.41, + "probability": 0.634 + }, + { + "start": 6070.63, + "end": 6073.39, + "probability": 0.9139 + }, + { + "start": 6073.71, + "end": 6074.71, + "probability": 0.8401 + }, + { + "start": 6074.91, + "end": 6077.27, + "probability": 0.6862 + }, + { + "start": 6078.55, + "end": 6081.01, + "probability": 0.9938 + }, + { + "start": 6081.83, + "end": 6082.77, + "probability": 0.9521 + }, + { + "start": 6084.11, + "end": 6084.67, + "probability": 0.6319 + }, + { + "start": 6084.97, + "end": 6085.07, + "probability": 0.4043 + }, + { + "start": 6085.07, + "end": 6091.31, + "probability": 0.9275 + }, + { + "start": 6091.41, + "end": 6093.43, + "probability": 0.9919 + }, + { + "start": 6094.45, + "end": 6095.51, + "probability": 0.9816 + }, + { + "start": 6096.97, + "end": 6103.55, + "probability": 0.9434 + }, + { + "start": 6104.95, + "end": 6108.45, + "probability": 0.7847 + }, + { + "start": 6109.21, + "end": 6112.91, + "probability": 0.9756 + }, + { + "start": 6113.27, + "end": 6119.23, + "probability": 0.9491 + }, + { + "start": 6119.23, + "end": 6123.45, + "probability": 0.9956 + }, + { + "start": 6123.63, + "end": 6124.91, + "probability": 0.6681 + }, + { + "start": 6126.43, + "end": 6126.77, + "probability": 0.7246 + }, + { + "start": 6126.95, + "end": 6131.31, + "probability": 0.9796 + }, + { + "start": 6132.59, + "end": 6136.75, + "probability": 0.9509 + }, + { + "start": 6137.47, + "end": 6140.57, + "probability": 0.9692 + }, + { + "start": 6140.71, + "end": 6143.39, + "probability": 0.9397 + }, + { + "start": 6143.39, + "end": 6147.43, + "probability": 0.9883 + }, + { + "start": 6148.27, + "end": 6150.91, + "probability": 0.9946 + }, + { + "start": 6151.23, + "end": 6154.78, + "probability": 0.9971 + }, + { + "start": 6155.95, + "end": 6158.99, + "probability": 0.8691 + }, + { + "start": 6159.85, + "end": 6163.41, + "probability": 0.9771 + }, + { + "start": 6163.53, + "end": 6163.91, + "probability": 0.9801 + }, + { + "start": 6165.07, + "end": 6168.39, + "probability": 0.9302 + }, + { + "start": 6169.21, + "end": 6174.77, + "probability": 0.9972 + }, + { + "start": 6175.75, + "end": 6176.37, + "probability": 0.1359 + }, + { + "start": 6176.67, + "end": 6178.27, + "probability": 0.9674 + }, + { + "start": 6178.35, + "end": 6180.15, + "probability": 0.916 + }, + { + "start": 6180.97, + "end": 6185.01, + "probability": 0.9081 + }, + { + "start": 6185.09, + "end": 6190.97, + "probability": 0.9941 + }, + { + "start": 6191.19, + "end": 6193.77, + "probability": 0.92 + }, + { + "start": 6194.63, + "end": 6198.03, + "probability": 0.7285 + }, + { + "start": 6198.39, + "end": 6201.35, + "probability": 0.9233 + }, + { + "start": 6201.51, + "end": 6203.21, + "probability": 0.6834 + }, + { + "start": 6205.35, + "end": 6205.35, + "probability": 0.1893 + }, + { + "start": 6205.39, + "end": 6205.39, + "probability": 0.0865 + }, + { + "start": 6205.39, + "end": 6205.39, + "probability": 0.0346 + }, + { + "start": 6205.39, + "end": 6205.47, + "probability": 0.2765 + }, + { + "start": 6205.77, + "end": 6208.19, + "probability": 0.5012 + }, + { + "start": 6208.93, + "end": 6211.15, + "probability": 0.7935 + }, + { + "start": 6212.75, + "end": 6217.19, + "probability": 0.9946 + }, + { + "start": 6217.19, + "end": 6221.17, + "probability": 0.9991 + }, + { + "start": 6221.23, + "end": 6223.25, + "probability": 0.8673 + }, + { + "start": 6224.03, + "end": 6228.21, + "probability": 0.9878 + }, + { + "start": 6228.31, + "end": 6231.54, + "probability": 0.9703 + }, + { + "start": 6233.05, + "end": 6236.73, + "probability": 0.8578 + }, + { + "start": 6236.95, + "end": 6240.93, + "probability": 0.8902 + }, + { + "start": 6241.11, + "end": 6246.53, + "probability": 0.9607 + }, + { + "start": 6247.09, + "end": 6251.35, + "probability": 0.9948 + }, + { + "start": 6252.85, + "end": 6259.16, + "probability": 0.9912 + }, + { + "start": 6259.75, + "end": 6262.83, + "probability": 0.9449 + }, + { + "start": 6263.53, + "end": 6265.27, + "probability": 0.9919 + }, + { + "start": 6265.89, + "end": 6268.11, + "probability": 0.8399 + }, + { + "start": 6268.29, + "end": 6272.78, + "probability": 0.9954 + }, + { + "start": 6273.33, + "end": 6280.21, + "probability": 0.9971 + }, + { + "start": 6280.67, + "end": 6281.25, + "probability": 0.7456 + }, + { + "start": 6281.93, + "end": 6288.21, + "probability": 0.9409 + }, + { + "start": 6288.31, + "end": 6292.45, + "probability": 0.9949 + }, + { + "start": 6293.35, + "end": 6298.38, + "probability": 0.9973 + }, + { + "start": 6299.37, + "end": 6300.13, + "probability": 0.7426 + }, + { + "start": 6300.25, + "end": 6301.25, + "probability": 0.9048 + }, + { + "start": 6301.97, + "end": 6305.11, + "probability": 0.9134 + }, + { + "start": 6306.07, + "end": 6307.19, + "probability": 0.8505 + }, + { + "start": 6307.37, + "end": 6308.67, + "probability": 0.9911 + }, + { + "start": 6308.79, + "end": 6313.43, + "probability": 0.9792 + }, + { + "start": 6314.39, + "end": 6316.15, + "probability": 0.9887 + }, + { + "start": 6316.87, + "end": 6320.01, + "probability": 0.9924 + }, + { + "start": 6320.69, + "end": 6324.17, + "probability": 0.9558 + }, + { + "start": 6324.17, + "end": 6327.07, + "probability": 0.9989 + }, + { + "start": 6327.65, + "end": 6329.29, + "probability": 0.7407 + }, + { + "start": 6329.35, + "end": 6332.19, + "probability": 0.9927 + }, + { + "start": 6332.95, + "end": 6333.75, + "probability": 0.932 + }, + { + "start": 6333.85, + "end": 6335.84, + "probability": 0.9982 + }, + { + "start": 6336.03, + "end": 6338.41, + "probability": 0.9988 + }, + { + "start": 6339.29, + "end": 6345.23, + "probability": 0.9862 + }, + { + "start": 6347.21, + "end": 6351.39, + "probability": 0.9955 + }, + { + "start": 6351.99, + "end": 6355.59, + "probability": 0.9944 + }, + { + "start": 6356.15, + "end": 6357.33, + "probability": 0.9385 + }, + { + "start": 6357.95, + "end": 6360.57, + "probability": 0.9546 + }, + { + "start": 6360.65, + "end": 6362.66, + "probability": 0.9897 + }, + { + "start": 6364.73, + "end": 6368.49, + "probability": 0.919 + }, + { + "start": 6368.49, + "end": 6375.53, + "probability": 0.9947 + }, + { + "start": 6376.49, + "end": 6377.55, + "probability": 0.9282 + }, + { + "start": 6377.75, + "end": 6381.45, + "probability": 0.9415 + }, + { + "start": 6382.11, + "end": 6383.73, + "probability": 0.9788 + }, + { + "start": 6383.79, + "end": 6384.99, + "probability": 0.985 + }, + { + "start": 6385.09, + "end": 6387.93, + "probability": 0.9942 + }, + { + "start": 6388.17, + "end": 6389.05, + "probability": 0.9228 + }, + { + "start": 6389.59, + "end": 6396.06, + "probability": 0.9978 + }, + { + "start": 6397.25, + "end": 6401.57, + "probability": 0.9941 + }, + { + "start": 6401.65, + "end": 6404.49, + "probability": 0.9691 + }, + { + "start": 6405.29, + "end": 6410.67, + "probability": 0.9924 + }, + { + "start": 6411.11, + "end": 6412.37, + "probability": 0.9913 + }, + { + "start": 6413.89, + "end": 6419.97, + "probability": 0.9907 + }, + { + "start": 6420.89, + "end": 6421.67, + "probability": 0.8812 + }, + { + "start": 6421.93, + "end": 6422.71, + "probability": 0.4037 + }, + { + "start": 6423.27, + "end": 6424.55, + "probability": 0.8259 + }, + { + "start": 6425.13, + "end": 6428.99, + "probability": 0.9253 + }, + { + "start": 6429.19, + "end": 6432.93, + "probability": 0.8579 + }, + { + "start": 6433.09, + "end": 6436.65, + "probability": 0.9832 + }, + { + "start": 6437.29, + "end": 6438.49, + "probability": 0.8242 + }, + { + "start": 6439.73, + "end": 6443.73, + "probability": 0.9958 + }, + { + "start": 6443.75, + "end": 6448.29, + "probability": 0.9948 + }, + { + "start": 6449.61, + "end": 6452.85, + "probability": 0.9073 + }, + { + "start": 6453.45, + "end": 6455.41, + "probability": 0.9903 + }, + { + "start": 6456.07, + "end": 6457.45, + "probability": 0.5967 + }, + { + "start": 6458.45, + "end": 6461.57, + "probability": 0.9318 + }, + { + "start": 6462.29, + "end": 6464.91, + "probability": 0.9961 + }, + { + "start": 6465.49, + "end": 6466.73, + "probability": 0.8714 + }, + { + "start": 6466.95, + "end": 6468.27, + "probability": 0.9702 + }, + { + "start": 6468.37, + "end": 6472.6, + "probability": 0.9157 + }, + { + "start": 6473.29, + "end": 6476.73, + "probability": 0.9838 + }, + { + "start": 6477.37, + "end": 6479.65, + "probability": 0.9695 + }, + { + "start": 6480.97, + "end": 6482.97, + "probability": 0.9058 + }, + { + "start": 6483.65, + "end": 6484.85, + "probability": 0.7968 + }, + { + "start": 6484.95, + "end": 6487.15, + "probability": 0.9338 + }, + { + "start": 6487.45, + "end": 6488.31, + "probability": 0.7162 + }, + { + "start": 6488.47, + "end": 6490.75, + "probability": 0.9106 + }, + { + "start": 6491.75, + "end": 6493.13, + "probability": 0.9806 + }, + { + "start": 6493.25, + "end": 6498.69, + "probability": 0.9963 + }, + { + "start": 6498.87, + "end": 6502.53, + "probability": 0.9933 + }, + { + "start": 6502.69, + "end": 6505.27, + "probability": 0.8861 + }, + { + "start": 6506.13, + "end": 6512.45, + "probability": 0.9965 + }, + { + "start": 6512.63, + "end": 6515.61, + "probability": 0.916 + }, + { + "start": 6516.89, + "end": 6520.67, + "probability": 0.9697 + }, + { + "start": 6521.47, + "end": 6524.89, + "probability": 0.9789 + }, + { + "start": 6525.83, + "end": 6526.25, + "probability": 0.3351 + }, + { + "start": 6526.43, + "end": 6534.27, + "probability": 0.9822 + }, + { + "start": 6534.87, + "end": 6537.81, + "probability": 0.8563 + }, + { + "start": 6537.81, + "end": 6540.69, + "probability": 0.9374 + }, + { + "start": 6540.81, + "end": 6541.95, + "probability": 0.7847 + }, + { + "start": 6541.97, + "end": 6545.77, + "probability": 0.9854 + }, + { + "start": 6546.25, + "end": 6550.17, + "probability": 0.9789 + }, + { + "start": 6550.71, + "end": 6555.93, + "probability": 0.9996 + }, + { + "start": 6556.47, + "end": 6556.63, + "probability": 0.1776 + }, + { + "start": 6557.15, + "end": 6557.91, + "probability": 0.8895 + }, + { + "start": 6558.89, + "end": 6562.03, + "probability": 0.9787 + }, + { + "start": 6562.23, + "end": 6564.75, + "probability": 0.9941 + }, + { + "start": 6565.85, + "end": 6570.93, + "probability": 0.9114 + }, + { + "start": 6571.67, + "end": 6574.13, + "probability": 0.9991 + }, + { + "start": 6574.71, + "end": 6575.87, + "probability": 0.9771 + }, + { + "start": 6576.83, + "end": 6578.57, + "probability": 0.9976 + }, + { + "start": 6579.43, + "end": 6582.49, + "probability": 0.9949 + }, + { + "start": 6582.81, + "end": 6585.47, + "probability": 0.9827 + }, + { + "start": 6585.57, + "end": 6590.09, + "probability": 0.9888 + }, + { + "start": 6590.25, + "end": 6590.85, + "probability": 0.7731 + }, + { + "start": 6591.43, + "end": 6592.69, + "probability": 0.8448 + }, + { + "start": 6592.81, + "end": 6596.19, + "probability": 0.9459 + }, + { + "start": 6597.07, + "end": 6599.63, + "probability": 0.9261 + }, + { + "start": 6602.65, + "end": 6606.33, + "probability": 0.8336 + }, + { + "start": 6606.99, + "end": 6610.39, + "probability": 0.9881 + }, + { + "start": 6610.39, + "end": 6613.79, + "probability": 0.9933 + }, + { + "start": 6614.59, + "end": 6618.39, + "probability": 0.9917 + }, + { + "start": 6620.47, + "end": 6623.39, + "probability": 0.9922 + }, + { + "start": 6623.39, + "end": 6627.87, + "probability": 0.9987 + }, + { + "start": 6627.87, + "end": 6632.35, + "probability": 0.9985 + }, + { + "start": 6632.35, + "end": 6636.59, + "probability": 0.9979 + }, + { + "start": 6637.13, + "end": 6640.55, + "probability": 0.9993 + }, + { + "start": 6641.57, + "end": 6641.97, + "probability": 0.5835 + }, + { + "start": 6642.13, + "end": 6644.61, + "probability": 0.9971 + }, + { + "start": 6644.61, + "end": 6647.83, + "probability": 0.9837 + }, + { + "start": 6648.47, + "end": 6653.49, + "probability": 0.9849 + }, + { + "start": 6654.57, + "end": 6658.95, + "probability": 0.9924 + }, + { + "start": 6659.07, + "end": 6659.41, + "probability": 0.8008 + }, + { + "start": 6659.57, + "end": 6660.37, + "probability": 0.9232 + }, + { + "start": 6660.47, + "end": 6666.21, + "probability": 0.9625 + }, + { + "start": 6666.95, + "end": 6667.73, + "probability": 0.9065 + }, + { + "start": 6668.85, + "end": 6669.45, + "probability": 0.8294 + }, + { + "start": 6670.47, + "end": 6677.23, + "probability": 0.9845 + }, + { + "start": 6677.77, + "end": 6681.21, + "probability": 0.9965 + }, + { + "start": 6681.53, + "end": 6683.59, + "probability": 0.9945 + }, + { + "start": 6683.85, + "end": 6687.21, + "probability": 0.9989 + }, + { + "start": 6687.21, + "end": 6691.71, + "probability": 0.9993 + }, + { + "start": 6692.31, + "end": 6694.35, + "probability": 0.9946 + }, + { + "start": 6695.57, + "end": 6700.25, + "probability": 0.9967 + }, + { + "start": 6700.27, + "end": 6704.97, + "probability": 0.9904 + }, + { + "start": 6705.91, + "end": 6708.81, + "probability": 0.9854 + }, + { + "start": 6709.23, + "end": 6712.23, + "probability": 0.9981 + }, + { + "start": 6712.65, + "end": 6713.75, + "probability": 0.9081 + }, + { + "start": 6714.51, + "end": 6717.15, + "probability": 0.9532 + }, + { + "start": 6717.15, + "end": 6721.15, + "probability": 0.9984 + }, + { + "start": 6721.33, + "end": 6722.23, + "probability": 0.6602 + }, + { + "start": 6722.85, + "end": 6724.83, + "probability": 0.7318 + }, + { + "start": 6725.69, + "end": 6726.27, + "probability": 0.5222 + }, + { + "start": 6726.83, + "end": 6729.55, + "probability": 0.7646 + }, + { + "start": 6729.75, + "end": 6730.55, + "probability": 0.8925 + }, + { + "start": 6730.89, + "end": 6735.43, + "probability": 0.9831 + }, + { + "start": 6736.05, + "end": 6739.75, + "probability": 0.9971 + }, + { + "start": 6739.89, + "end": 6741.82, + "probability": 0.8582 + }, + { + "start": 6742.69, + "end": 6746.77, + "probability": 0.9856 + }, + { + "start": 6746.77, + "end": 6749.59, + "probability": 0.994 + }, + { + "start": 6751.97, + "end": 6754.05, + "probability": 0.6878 + }, + { + "start": 6755.71, + "end": 6757.07, + "probability": 0.9376 + }, + { + "start": 6758.25, + "end": 6759.65, + "probability": 0.7087 + }, + { + "start": 6759.79, + "end": 6760.37, + "probability": 0.7644 + }, + { + "start": 6760.57, + "end": 6762.25, + "probability": 0.796 + }, + { + "start": 6762.29, + "end": 6762.57, + "probability": 0.3095 + }, + { + "start": 6765.93, + "end": 6766.41, + "probability": 0.0474 + }, + { + "start": 6766.41, + "end": 6766.41, + "probability": 0.2141 + }, + { + "start": 6766.47, + "end": 6767.19, + "probability": 0.6501 + }, + { + "start": 6768.05, + "end": 6768.59, + "probability": 0.8323 + }, + { + "start": 6768.85, + "end": 6769.71, + "probability": 0.1947 + }, + { + "start": 6769.85, + "end": 6771.53, + "probability": 0.5488 + }, + { + "start": 6772.17, + "end": 6773.15, + "probability": 0.5711 + }, + { + "start": 6773.15, + "end": 6773.41, + "probability": 0.4954 + }, + { + "start": 6773.67, + "end": 6774.33, + "probability": 0.8299 + }, + { + "start": 6775.79, + "end": 6776.09, + "probability": 0.3434 + }, + { + "start": 6777.11, + "end": 6777.57, + "probability": 0.1521 + }, + { + "start": 6777.57, + "end": 6778.35, + "probability": 0.3768 + }, + { + "start": 6778.95, + "end": 6779.27, + "probability": 0.4276 + }, + { + "start": 6779.27, + "end": 6779.27, + "probability": 0.5601 + }, + { + "start": 6779.27, + "end": 6780.34, + "probability": 0.4096 + }, + { + "start": 6780.91, + "end": 6782.55, + "probability": 0.2981 + }, + { + "start": 6782.89, + "end": 6783.01, + "probability": 0.3992 + }, + { + "start": 6783.01, + "end": 6783.71, + "probability": 0.6446 + }, + { + "start": 6783.91, + "end": 6784.45, + "probability": 0.4214 + }, + { + "start": 6784.79, + "end": 6784.79, + "probability": 0.5283 + }, + { + "start": 6785.15, + "end": 6788.59, + "probability": 0.5234 + }, + { + "start": 6789.67, + "end": 6790.05, + "probability": 0.0495 + }, + { + "start": 6790.85, + "end": 6791.45, + "probability": 0.6154 + }, + { + "start": 6791.97, + "end": 6792.13, + "probability": 0.056 + }, + { + "start": 6792.27, + "end": 6792.79, + "probability": 0.7575 + }, + { + "start": 6792.83, + "end": 6793.67, + "probability": 0.6661 + }, + { + "start": 6793.87, + "end": 6794.35, + "probability": 0.094 + }, + { + "start": 6794.35, + "end": 6795.11, + "probability": 0.2202 + }, + { + "start": 6795.29, + "end": 6795.89, + "probability": 0.6381 + }, + { + "start": 6796.01, + "end": 6799.71, + "probability": 0.9427 + }, + { + "start": 6799.75, + "end": 6801.47, + "probability": 0.7857 + }, + { + "start": 6801.63, + "end": 6803.07, + "probability": 0.2677 + }, + { + "start": 6803.07, + "end": 6803.87, + "probability": 0.4205 + }, + { + "start": 6803.87, + "end": 6804.93, + "probability": 0.7194 + }, + { + "start": 6805.13, + "end": 6807.51, + "probability": 0.7611 + }, + { + "start": 6808.81, + "end": 6812.22, + "probability": 0.9941 + }, + { + "start": 6812.99, + "end": 6819.93, + "probability": 0.9346 + }, + { + "start": 6820.11, + "end": 6823.91, + "probability": 0.9941 + }, + { + "start": 6824.15, + "end": 6827.53, + "probability": 0.989 + }, + { + "start": 6827.53, + "end": 6831.29, + "probability": 0.9979 + }, + { + "start": 6831.91, + "end": 6833.55, + "probability": 0.9977 + }, + { + "start": 6833.91, + "end": 6836.66, + "probability": 0.6951 + }, + { + "start": 6837.65, + "end": 6839.51, + "probability": 0.908 + }, + { + "start": 6839.55, + "end": 6841.51, + "probability": 0.8955 + }, + { + "start": 6841.61, + "end": 6843.17, + "probability": 0.9818 + }, + { + "start": 6843.57, + "end": 6844.13, + "probability": 0.8733 + }, + { + "start": 6845.25, + "end": 6845.97, + "probability": 0.5372 + }, + { + "start": 6846.01, + "end": 6849.07, + "probability": 0.9346 + }, + { + "start": 6849.57, + "end": 6851.9, + "probability": 0.9367 + }, + { + "start": 6852.81, + "end": 6854.59, + "probability": 0.9841 + }, + { + "start": 6854.85, + "end": 6857.11, + "probability": 0.9737 + }, + { + "start": 6858.0, + "end": 6859.69, + "probability": 0.6435 + }, + { + "start": 6859.73, + "end": 6861.01, + "probability": 0.9607 + }, + { + "start": 6861.47, + "end": 6863.11, + "probability": 0.9934 + }, + { + "start": 6864.73, + "end": 6865.53, + "probability": 0.6531 + }, + { + "start": 6866.29, + "end": 6869.57, + "probability": 0.7834 + }, + { + "start": 6874.03, + "end": 6875.17, + "probability": 0.6452 + }, + { + "start": 6875.71, + "end": 6876.25, + "probability": 0.8472 + }, + { + "start": 6876.43, + "end": 6877.11, + "probability": 0.8578 + }, + { + "start": 6877.29, + "end": 6880.29, + "probability": 0.9668 + }, + { + "start": 6881.03, + "end": 6885.07, + "probability": 0.9484 + }, + { + "start": 6885.29, + "end": 6887.01, + "probability": 0.4447 + }, + { + "start": 6887.41, + "end": 6891.71, + "probability": 0.9831 + }, + { + "start": 6892.99, + "end": 6898.63, + "probability": 0.9945 + }, + { + "start": 6898.71, + "end": 6901.29, + "probability": 0.9938 + }, + { + "start": 6901.43, + "end": 6904.05, + "probability": 0.998 + }, + { + "start": 6904.79, + "end": 6906.93, + "probability": 0.9727 + }, + { + "start": 6907.25, + "end": 6908.85, + "probability": 0.9927 + }, + { + "start": 6908.91, + "end": 6909.83, + "probability": 0.7672 + }, + { + "start": 6909.91, + "end": 6911.53, + "probability": 0.9521 + }, + { + "start": 6912.85, + "end": 6916.97, + "probability": 0.958 + }, + { + "start": 6917.59, + "end": 6920.77, + "probability": 0.9111 + }, + { + "start": 6920.97, + "end": 6921.91, + "probability": 0.8802 + }, + { + "start": 6921.99, + "end": 6923.59, + "probability": 0.5355 + }, + { + "start": 6924.01, + "end": 6925.29, + "probability": 0.8284 + }, + { + "start": 6926.39, + "end": 6930.21, + "probability": 0.9904 + }, + { + "start": 6930.63, + "end": 6933.28, + "probability": 0.9945 + }, + { + "start": 6933.89, + "end": 6938.61, + "probability": 0.908 + }, + { + "start": 6939.37, + "end": 6944.01, + "probability": 0.9524 + }, + { + "start": 6944.11, + "end": 6945.53, + "probability": 0.9932 + }, + { + "start": 6946.81, + "end": 6949.03, + "probability": 0.9963 + }, + { + "start": 6949.71, + "end": 6952.59, + "probability": 0.9462 + }, + { + "start": 6953.07, + "end": 6955.19, + "probability": 0.9954 + }, + { + "start": 6955.31, + "end": 6960.19, + "probability": 0.9456 + }, + { + "start": 6960.37, + "end": 6964.17, + "probability": 0.9952 + }, + { + "start": 6964.71, + "end": 6967.69, + "probability": 0.9723 + }, + { + "start": 6967.69, + "end": 6972.19, + "probability": 0.955 + }, + { + "start": 6973.47, + "end": 6974.95, + "probability": 0.8961 + }, + { + "start": 6975.03, + "end": 6979.41, + "probability": 0.7964 + }, + { + "start": 6979.51, + "end": 6984.09, + "probability": 0.9946 + }, + { + "start": 6984.37, + "end": 6987.23, + "probability": 0.8429 + }, + { + "start": 6987.59, + "end": 6987.89, + "probability": 0.3797 + }, + { + "start": 6987.89, + "end": 6989.45, + "probability": 0.9992 + }, + { + "start": 6989.45, + "end": 6992.61, + "probability": 0.9995 + }, + { + "start": 6992.69, + "end": 6995.09, + "probability": 0.9201 + }, + { + "start": 6995.59, + "end": 6999.57, + "probability": 0.9838 + }, + { + "start": 6999.57, + "end": 7002.25, + "probability": 0.997 + }, + { + "start": 7002.87, + "end": 7006.09, + "probability": 0.9346 + }, + { + "start": 7006.89, + "end": 7010.13, + "probability": 0.8797 + }, + { + "start": 7010.21, + "end": 7012.77, + "probability": 0.9803 + }, + { + "start": 7013.19, + "end": 7014.05, + "probability": 0.9248 + }, + { + "start": 7015.19, + "end": 7017.53, + "probability": 0.7894 + }, + { + "start": 7017.53, + "end": 7018.75, + "probability": 0.7493 + }, + { + "start": 7018.75, + "end": 7021.29, + "probability": 0.9117 + }, + { + "start": 7021.37, + "end": 7022.99, + "probability": 0.9875 + }, + { + "start": 7023.31, + "end": 7023.71, + "probability": 0.4938 + }, + { + "start": 7024.23, + "end": 7024.85, + "probability": 0.8578 + }, + { + "start": 7026.15, + "end": 7030.69, + "probability": 0.9348 + }, + { + "start": 7031.81, + "end": 7032.65, + "probability": 0.7651 + }, + { + "start": 7033.53, + "end": 7034.81, + "probability": 0.9129 + }, + { + "start": 7055.51, + "end": 7055.51, + "probability": 0.2236 + }, + { + "start": 7055.51, + "end": 7055.51, + "probability": 0.5236 + }, + { + "start": 7055.51, + "end": 7057.51, + "probability": 0.5066 + }, + { + "start": 7058.51, + "end": 7061.05, + "probability": 0.9598 + }, + { + "start": 7061.79, + "end": 7065.39, + "probability": 0.7566 + }, + { + "start": 7066.25, + "end": 7066.59, + "probability": 0.7559 + }, + { + "start": 7068.67, + "end": 7070.19, + "probability": 0.6797 + }, + { + "start": 7070.99, + "end": 7073.95, + "probability": 0.7134 + }, + { + "start": 7074.39, + "end": 7076.11, + "probability": 0.3465 + }, + { + "start": 7081.99, + "end": 7081.99, + "probability": 0.4503 + }, + { + "start": 7081.99, + "end": 7085.61, + "probability": 0.8623 + }, + { + "start": 7085.81, + "end": 7087.25, + "probability": 0.8427 + }, + { + "start": 7087.29, + "end": 7087.99, + "probability": 0.8485 + }, + { + "start": 7090.07, + "end": 7091.75, + "probability": 0.7788 + }, + { + "start": 7098.11, + "end": 7098.95, + "probability": 0.2814 + }, + { + "start": 7098.97, + "end": 7099.69, + "probability": 0.616 + }, + { + "start": 7099.79, + "end": 7102.69, + "probability": 0.937 + }, + { + "start": 7103.05, + "end": 7103.41, + "probability": 0.9283 + }, + { + "start": 7103.51, + "end": 7103.99, + "probability": 0.9341 + }, + { + "start": 7107.93, + "end": 7111.01, + "probability": 0.7462 + }, + { + "start": 7111.91, + "end": 7115.23, + "probability": 0.9049 + }, + { + "start": 7115.23, + "end": 7119.45, + "probability": 0.8802 + }, + { + "start": 7120.21, + "end": 7122.11, + "probability": 0.9785 + }, + { + "start": 7123.37, + "end": 7126.25, + "probability": 0.929 + }, + { + "start": 7126.91, + "end": 7128.93, + "probability": 0.9062 + }, + { + "start": 7129.57, + "end": 7134.99, + "probability": 0.9473 + }, + { + "start": 7135.75, + "end": 7138.23, + "probability": 0.9878 + }, + { + "start": 7138.87, + "end": 7140.37, + "probability": 0.9953 + }, + { + "start": 7140.85, + "end": 7144.69, + "probability": 0.9905 + }, + { + "start": 7145.49, + "end": 7148.79, + "probability": 0.7711 + }, + { + "start": 7148.79, + "end": 7153.33, + "probability": 0.9368 + }, + { + "start": 7154.29, + "end": 7155.59, + "probability": 0.9734 + }, + { + "start": 7155.69, + "end": 7157.99, + "probability": 0.9518 + }, + { + "start": 7158.63, + "end": 7160.79, + "probability": 0.9684 + }, + { + "start": 7161.31, + "end": 7166.77, + "probability": 0.9922 + }, + { + "start": 7167.67, + "end": 7171.23, + "probability": 0.9783 + }, + { + "start": 7171.65, + "end": 7175.05, + "probability": 0.8798 + }, + { + "start": 7175.89, + "end": 7178.71, + "probability": 0.8854 + }, + { + "start": 7179.11, + "end": 7181.35, + "probability": 0.9895 + }, + { + "start": 7183.65, + "end": 7184.39, + "probability": 0.595 + }, + { + "start": 7186.21, + "end": 7189.95, + "probability": 0.9919 + }, + { + "start": 7190.59, + "end": 7192.77, + "probability": 0.863 + }, + { + "start": 7193.41, + "end": 7197.21, + "probability": 0.9879 + }, + { + "start": 7197.81, + "end": 7199.47, + "probability": 0.9827 + }, + { + "start": 7200.23, + "end": 7203.27, + "probability": 0.8683 + }, + { + "start": 7203.35, + "end": 7206.43, + "probability": 0.9671 + }, + { + "start": 7206.73, + "end": 7208.83, + "probability": 0.9547 + }, + { + "start": 7209.29, + "end": 7210.89, + "probability": 0.9891 + }, + { + "start": 7211.43, + "end": 7212.91, + "probability": 0.9951 + }, + { + "start": 7213.53, + "end": 7214.95, + "probability": 0.6938 + }, + { + "start": 7215.89, + "end": 7220.17, + "probability": 0.93 + }, + { + "start": 7221.37, + "end": 7222.77, + "probability": 0.9843 + }, + { + "start": 7223.27, + "end": 7227.33, + "probability": 0.9741 + }, + { + "start": 7228.03, + "end": 7231.65, + "probability": 0.9977 + }, + { + "start": 7232.91, + "end": 7233.43, + "probability": 0.6714 + }, + { + "start": 7235.49, + "end": 7238.37, + "probability": 0.9984 + }, + { + "start": 7238.37, + "end": 7242.69, + "probability": 0.9824 + }, + { + "start": 7243.39, + "end": 7246.23, + "probability": 0.9961 + }, + { + "start": 7246.85, + "end": 7250.79, + "probability": 0.9447 + }, + { + "start": 7251.67, + "end": 7253.25, + "probability": 0.9799 + }, + { + "start": 7253.85, + "end": 7258.47, + "probability": 0.9978 + }, + { + "start": 7259.21, + "end": 7262.25, + "probability": 0.9651 + }, + { + "start": 7262.85, + "end": 7264.55, + "probability": 0.9995 + }, + { + "start": 7265.19, + "end": 7270.17, + "probability": 0.9701 + }, + { + "start": 7270.53, + "end": 7270.83, + "probability": 0.7482 + }, + { + "start": 7271.95, + "end": 7272.55, + "probability": 0.7144 + }, + { + "start": 7272.73, + "end": 7273.89, + "probability": 0.6473 + }, + { + "start": 7274.17, + "end": 7274.49, + "probability": 0.5873 + }, + { + "start": 7274.55, + "end": 7275.19, + "probability": 0.7385 + }, + { + "start": 7275.29, + "end": 7277.29, + "probability": 0.817 + }, + { + "start": 7277.77, + "end": 7282.05, + "probability": 0.9933 + }, + { + "start": 7282.91, + "end": 7286.87, + "probability": 0.9768 + }, + { + "start": 7288.07, + "end": 7290.71, + "probability": 0.9979 + }, + { + "start": 7290.71, + "end": 7293.07, + "probability": 0.9778 + }, + { + "start": 7293.69, + "end": 7296.63, + "probability": 0.9772 + }, + { + "start": 7296.71, + "end": 7299.33, + "probability": 0.9872 + }, + { + "start": 7299.73, + "end": 7300.55, + "probability": 0.7333 + }, + { + "start": 7301.37, + "end": 7304.55, + "probability": 0.9611 + }, + { + "start": 7305.47, + "end": 7311.81, + "probability": 0.9749 + }, + { + "start": 7311.95, + "end": 7313.61, + "probability": 0.9412 + }, + { + "start": 7314.57, + "end": 7319.19, + "probability": 0.9839 + }, + { + "start": 7319.19, + "end": 7323.43, + "probability": 0.89 + }, + { + "start": 7324.29, + "end": 7327.05, + "probability": 0.9686 + }, + { + "start": 7327.23, + "end": 7329.85, + "probability": 0.9956 + }, + { + "start": 7330.67, + "end": 7334.05, + "probability": 0.8656 + }, + { + "start": 7334.59, + "end": 7336.15, + "probability": 0.9626 + }, + { + "start": 7336.27, + "end": 7339.01, + "probability": 0.9857 + }, + { + "start": 7339.13, + "end": 7340.03, + "probability": 0.6888 + }, + { + "start": 7340.15, + "end": 7341.37, + "probability": 0.9163 + }, + { + "start": 7341.45, + "end": 7343.15, + "probability": 0.9837 + }, + { + "start": 7343.93, + "end": 7346.81, + "probability": 0.9829 + }, + { + "start": 7346.81, + "end": 7350.93, + "probability": 0.9862 + }, + { + "start": 7351.91, + "end": 7352.27, + "probability": 0.4712 + }, + { + "start": 7353.27, + "end": 7359.03, + "probability": 0.9814 + }, + { + "start": 7359.31, + "end": 7362.53, + "probability": 0.893 + }, + { + "start": 7362.75, + "end": 7364.65, + "probability": 0.9706 + }, + { + "start": 7365.63, + "end": 7369.83, + "probability": 0.9688 + }, + { + "start": 7370.47, + "end": 7374.99, + "probability": 0.944 + }, + { + "start": 7375.63, + "end": 7378.79, + "probability": 0.9967 + }, + { + "start": 7378.83, + "end": 7383.17, + "probability": 0.9588 + }, + { + "start": 7384.21, + "end": 7384.57, + "probability": 0.7416 + }, + { + "start": 7384.73, + "end": 7386.29, + "probability": 0.7633 + }, + { + "start": 7386.39, + "end": 7390.57, + "probability": 0.96 + }, + { + "start": 7391.37, + "end": 7394.55, + "probability": 0.8563 + }, + { + "start": 7395.41, + "end": 7398.83, + "probability": 0.9983 + }, + { + "start": 7399.23, + "end": 7403.05, + "probability": 0.9991 + }, + { + "start": 7403.83, + "end": 7407.01, + "probability": 0.9856 + }, + { + "start": 7408.41, + "end": 7409.09, + "probability": 0.7864 + }, + { + "start": 7409.77, + "end": 7411.17, + "probability": 0.9588 + }, + { + "start": 7411.93, + "end": 7414.89, + "probability": 0.9917 + }, + { + "start": 7416.05, + "end": 7420.83, + "probability": 0.9941 + }, + { + "start": 7421.63, + "end": 7426.91, + "probability": 0.9949 + }, + { + "start": 7427.13, + "end": 7429.85, + "probability": 0.9336 + }, + { + "start": 7430.91, + "end": 7432.55, + "probability": 0.9692 + }, + { + "start": 7433.27, + "end": 7436.29, + "probability": 0.9726 + }, + { + "start": 7436.33, + "end": 7437.63, + "probability": 0.9655 + }, + { + "start": 7438.63, + "end": 7438.95, + "probability": 0.8549 + }, + { + "start": 7439.55, + "end": 7441.53, + "probability": 0.8755 + }, + { + "start": 7441.85, + "end": 7445.73, + "probability": 0.9899 + }, + { + "start": 7445.81, + "end": 7449.41, + "probability": 0.9969 + }, + { + "start": 7449.41, + "end": 7451.53, + "probability": 0.9989 + }, + { + "start": 7452.33, + "end": 7454.81, + "probability": 0.828 + }, + { + "start": 7454.81, + "end": 7457.43, + "probability": 0.9945 + }, + { + "start": 7458.29, + "end": 7459.91, + "probability": 0.9487 + }, + { + "start": 7460.55, + "end": 7464.01, + "probability": 0.9932 + }, + { + "start": 7464.73, + "end": 7467.77, + "probability": 0.9972 + }, + { + "start": 7467.77, + "end": 7471.75, + "probability": 0.9884 + }, + { + "start": 7472.69, + "end": 7475.29, + "probability": 0.987 + }, + { + "start": 7475.63, + "end": 7478.85, + "probability": 0.9276 + }, + { + "start": 7478.99, + "end": 7479.93, + "probability": 0.8125 + }, + { + "start": 7480.99, + "end": 7481.79, + "probability": 0.4747 + }, + { + "start": 7481.87, + "end": 7483.75, + "probability": 0.6155 + }, + { + "start": 7483.95, + "end": 7484.3, + "probability": 0.9692 + }, + { + "start": 7484.91, + "end": 7487.03, + "probability": 0.9791 + }, + { + "start": 7487.27, + "end": 7489.87, + "probability": 0.9645 + }, + { + "start": 7490.43, + "end": 7492.69, + "probability": 0.9382 + }, + { + "start": 7494.01, + "end": 7496.93, + "probability": 0.8789 + }, + { + "start": 7497.53, + "end": 7500.69, + "probability": 0.9736 + }, + { + "start": 7501.35, + "end": 7504.45, + "probability": 0.8388 + }, + { + "start": 7505.95, + "end": 7509.43, + "probability": 0.9954 + }, + { + "start": 7510.05, + "end": 7512.78, + "probability": 0.9529 + }, + { + "start": 7514.25, + "end": 7518.28, + "probability": 0.9729 + }, + { + "start": 7520.37, + "end": 7524.41, + "probability": 0.9983 + }, + { + "start": 7526.29, + "end": 7530.15, + "probability": 0.9163 + }, + { + "start": 7530.17, + "end": 7531.63, + "probability": 0.9757 + }, + { + "start": 7531.85, + "end": 7534.35, + "probability": 0.9396 + }, + { + "start": 7534.75, + "end": 7537.09, + "probability": 0.8884 + }, + { + "start": 7537.49, + "end": 7540.03, + "probability": 0.7128 + }, + { + "start": 7540.57, + "end": 7541.31, + "probability": 0.7449 + }, + { + "start": 7541.93, + "end": 7547.63, + "probability": 0.8044 + }, + { + "start": 7548.21, + "end": 7548.49, + "probability": 0.6723 + }, + { + "start": 7548.55, + "end": 7553.22, + "probability": 0.8475 + }, + { + "start": 7553.83, + "end": 7554.61, + "probability": 0.8889 + }, + { + "start": 7554.93, + "end": 7558.27, + "probability": 0.8349 + }, + { + "start": 7560.15, + "end": 7563.91, + "probability": 0.9565 + }, + { + "start": 7563.91, + "end": 7567.67, + "probability": 0.9951 + }, + { + "start": 7568.19, + "end": 7572.35, + "probability": 0.9958 + }, + { + "start": 7573.59, + "end": 7574.82, + "probability": 0.6842 + }, + { + "start": 7575.41, + "end": 7577.41, + "probability": 0.9934 + }, + { + "start": 7578.19, + "end": 7581.89, + "probability": 0.9975 + }, + { + "start": 7581.95, + "end": 7583.05, + "probability": 0.9939 + }, + { + "start": 7584.09, + "end": 7586.63, + "probability": 0.7732 + }, + { + "start": 7586.63, + "end": 7589.09, + "probability": 0.9778 + }, + { + "start": 7589.17, + "end": 7590.03, + "probability": 0.8449 + }, + { + "start": 7590.57, + "end": 7592.09, + "probability": 0.9915 + }, + { + "start": 7592.35, + "end": 7596.07, + "probability": 0.9695 + }, + { + "start": 7597.11, + "end": 7598.59, + "probability": 0.9902 + }, + { + "start": 7598.71, + "end": 7599.01, + "probability": 0.5695 + }, + { + "start": 7599.05, + "end": 7602.89, + "probability": 0.9338 + }, + { + "start": 7604.87, + "end": 7605.25, + "probability": 0.0188 + }, + { + "start": 7606.45, + "end": 7609.05, + "probability": 0.9752 + }, + { + "start": 7609.05, + "end": 7612.29, + "probability": 0.9714 + }, + { + "start": 7612.39, + "end": 7616.53, + "probability": 0.921 + }, + { + "start": 7617.47, + "end": 7620.03, + "probability": 0.9927 + }, + { + "start": 7621.61, + "end": 7621.91, + "probability": 0.6472 + }, + { + "start": 7622.29, + "end": 7623.63, + "probability": 0.9703 + }, + { + "start": 7623.77, + "end": 7626.99, + "probability": 0.9827 + }, + { + "start": 7627.27, + "end": 7633.29, + "probability": 0.8745 + }, + { + "start": 7634.17, + "end": 7634.81, + "probability": 0.6138 + }, + { + "start": 7635.01, + "end": 7636.49, + "probability": 0.6564 + }, + { + "start": 7636.51, + "end": 7641.09, + "probability": 0.9976 + }, + { + "start": 7641.79, + "end": 7643.73, + "probability": 0.7014 + }, + { + "start": 7643.89, + "end": 7647.63, + "probability": 0.999 + }, + { + "start": 7648.31, + "end": 7652.49, + "probability": 0.9949 + }, + { + "start": 7652.87, + "end": 7653.31, + "probability": 0.4672 + }, + { + "start": 7653.51, + "end": 7661.51, + "probability": 0.9885 + }, + { + "start": 7661.51, + "end": 7669.17, + "probability": 0.9956 + }, + { + "start": 7672.29, + "end": 7673.29, + "probability": 0.0879 + }, + { + "start": 7673.29, + "end": 7677.03, + "probability": 0.5986 + }, + { + "start": 7677.05, + "end": 7678.05, + "probability": 0.5731 + }, + { + "start": 7678.55, + "end": 7681.13, + "probability": 0.8471 + }, + { + "start": 7681.33, + "end": 7684.29, + "probability": 0.7338 + }, + { + "start": 7684.35, + "end": 7689.15, + "probability": 0.75 + }, + { + "start": 7689.83, + "end": 7693.67, + "probability": 0.9976 + }, + { + "start": 7693.81, + "end": 7699.59, + "probability": 0.9897 + }, + { + "start": 7700.87, + "end": 7704.29, + "probability": 0.9871 + }, + { + "start": 7705.47, + "end": 7709.47, + "probability": 0.99 + }, + { + "start": 7709.55, + "end": 7711.57, + "probability": 0.9929 + }, + { + "start": 7712.21, + "end": 7716.11, + "probability": 0.9565 + }, + { + "start": 7716.99, + "end": 7717.69, + "probability": 0.936 + }, + { + "start": 7718.21, + "end": 7720.13, + "probability": 0.9927 + }, + { + "start": 7720.63, + "end": 7722.39, + "probability": 0.9217 + }, + { + "start": 7723.41, + "end": 7725.89, + "probability": 0.7937 + }, + { + "start": 7726.67, + "end": 7728.11, + "probability": 0.7954 + }, + { + "start": 7728.99, + "end": 7731.65, + "probability": 0.9692 + }, + { + "start": 7731.73, + "end": 7732.17, + "probability": 0.6062 + }, + { + "start": 7732.19, + "end": 7734.61, + "probability": 0.9788 + }, + { + "start": 7734.81, + "end": 7736.45, + "probability": 0.8081 + }, + { + "start": 7736.53, + "end": 7739.73, + "probability": 0.9935 + }, + { + "start": 7741.13, + "end": 7744.15, + "probability": 0.9857 + }, + { + "start": 7744.29, + "end": 7745.63, + "probability": 0.9819 + }, + { + "start": 7745.79, + "end": 7747.11, + "probability": 0.8359 + }, + { + "start": 7747.65, + "end": 7750.99, + "probability": 0.9951 + }, + { + "start": 7752.55, + "end": 7756.79, + "probability": 0.8377 + }, + { + "start": 7758.15, + "end": 7763.25, + "probability": 0.9546 + }, + { + "start": 7763.25, + "end": 7766.56, + "probability": 0.991 + }, + { + "start": 7767.49, + "end": 7770.79, + "probability": 0.9948 + }, + { + "start": 7771.49, + "end": 7776.07, + "probability": 0.8331 + }, + { + "start": 7777.55, + "end": 7779.35, + "probability": 0.701 + }, + { + "start": 7780.29, + "end": 7781.77, + "probability": 0.8232 + }, + { + "start": 7781.91, + "end": 7783.03, + "probability": 0.9346 + }, + { + "start": 7783.13, + "end": 7784.49, + "probability": 0.9713 + }, + { + "start": 7784.57, + "end": 7788.75, + "probability": 0.9897 + }, + { + "start": 7788.99, + "end": 7792.79, + "probability": 0.9869 + }, + { + "start": 7794.15, + "end": 7799.18, + "probability": 0.9754 + }, + { + "start": 7800.83, + "end": 7806.01, + "probability": 0.9899 + }, + { + "start": 7807.55, + "end": 7810.99, + "probability": 0.9827 + }, + { + "start": 7811.15, + "end": 7814.13, + "probability": 0.999 + }, + { + "start": 7816.43, + "end": 7817.35, + "probability": 0.46 + }, + { + "start": 7818.29, + "end": 7822.19, + "probability": 0.9962 + }, + { + "start": 7822.19, + "end": 7825.11, + "probability": 0.9927 + }, + { + "start": 7825.19, + "end": 7825.57, + "probability": 0.8845 + }, + { + "start": 7826.05, + "end": 7831.45, + "probability": 0.9977 + }, + { + "start": 7831.69, + "end": 7835.83, + "probability": 0.9948 + }, + { + "start": 7836.47, + "end": 7842.63, + "probability": 0.9989 + }, + { + "start": 7842.89, + "end": 7846.33, + "probability": 0.9753 + }, + { + "start": 7846.89, + "end": 7850.69, + "probability": 0.9966 + }, + { + "start": 7850.87, + "end": 7857.37, + "probability": 0.9541 + }, + { + "start": 7857.59, + "end": 7860.07, + "probability": 0.9332 + }, + { + "start": 7860.93, + "end": 7864.93, + "probability": 0.9971 + }, + { + "start": 7865.51, + "end": 7867.93, + "probability": 0.9919 + }, + { + "start": 7868.05, + "end": 7870.43, + "probability": 0.994 + }, + { + "start": 7871.77, + "end": 7875.61, + "probability": 0.9196 + }, + { + "start": 7875.97, + "end": 7879.63, + "probability": 0.7001 + }, + { + "start": 7881.07, + "end": 7885.81, + "probability": 0.9523 + }, + { + "start": 7886.67, + "end": 7887.17, + "probability": 0.6416 + }, + { + "start": 7887.45, + "end": 7888.87, + "probability": 0.9277 + }, + { + "start": 7889.97, + "end": 7890.43, + "probability": 0.9059 + }, + { + "start": 7891.13, + "end": 7892.73, + "probability": 0.932 + }, + { + "start": 7893.15, + "end": 7894.99, + "probability": 0.7251 + }, + { + "start": 7895.15, + "end": 7896.15, + "probability": 0.8516 + }, + { + "start": 7896.37, + "end": 7900.35, + "probability": 0.9915 + }, + { + "start": 7900.47, + "end": 7900.87, + "probability": 0.9061 + }, + { + "start": 7901.89, + "end": 7905.19, + "probability": 0.8936 + }, + { + "start": 7905.27, + "end": 7906.39, + "probability": 0.9345 + }, + { + "start": 7906.51, + "end": 7907.37, + "probability": 0.7602 + }, + { + "start": 7908.05, + "end": 7912.39, + "probability": 0.9898 + }, + { + "start": 7913.43, + "end": 7914.67, + "probability": 0.9626 + }, + { + "start": 7914.79, + "end": 7915.89, + "probability": 0.6625 + }, + { + "start": 7916.23, + "end": 7917.21, + "probability": 0.8125 + }, + { + "start": 7917.35, + "end": 7923.01, + "probability": 0.9976 + }, + { + "start": 7923.01, + "end": 7926.79, + "probability": 0.9946 + }, + { + "start": 7927.45, + "end": 7929.13, + "probability": 0.8641 + }, + { + "start": 7929.29, + "end": 7932.49, + "probability": 0.9996 + }, + { + "start": 7933.01, + "end": 7937.71, + "probability": 0.9987 + }, + { + "start": 7937.81, + "end": 7941.01, + "probability": 0.7368 + }, + { + "start": 7941.33, + "end": 7943.75, + "probability": 0.9871 + }, + { + "start": 7944.47, + "end": 7948.73, + "probability": 0.997 + }, + { + "start": 7948.95, + "end": 7951.71, + "probability": 0.9937 + }, + { + "start": 7952.43, + "end": 7954.39, + "probability": 0.9858 + }, + { + "start": 7954.53, + "end": 7957.43, + "probability": 0.9791 + }, + { + "start": 7958.31, + "end": 7962.97, + "probability": 0.875 + }, + { + "start": 7964.51, + "end": 7964.77, + "probability": 0.6525 + }, + { + "start": 7964.87, + "end": 7968.53, + "probability": 0.9979 + }, + { + "start": 7968.91, + "end": 7972.25, + "probability": 0.9365 + }, + { + "start": 7973.05, + "end": 7973.95, + "probability": 0.8815 + }, + { + "start": 7974.17, + "end": 7976.21, + "probability": 0.913 + }, + { + "start": 7976.49, + "end": 7979.21, + "probability": 0.995 + }, + { + "start": 7979.21, + "end": 7983.35, + "probability": 0.96 + }, + { + "start": 7984.25, + "end": 7987.53, + "probability": 0.994 + }, + { + "start": 7987.59, + "end": 7990.41, + "probability": 0.9936 + }, + { + "start": 7990.45, + "end": 7994.21, + "probability": 0.9683 + }, + { + "start": 7994.39, + "end": 7998.35, + "probability": 0.9946 + }, + { + "start": 7999.67, + "end": 8000.51, + "probability": 0.9268 + }, + { + "start": 8001.53, + "end": 8007.67, + "probability": 0.8609 + }, + { + "start": 8007.75, + "end": 8010.55, + "probability": 0.8582 + }, + { + "start": 8011.71, + "end": 8014.99, + "probability": 0.9829 + }, + { + "start": 8015.63, + "end": 8018.29, + "probability": 0.983 + }, + { + "start": 8019.23, + "end": 8024.75, + "probability": 0.968 + }, + { + "start": 8024.89, + "end": 8026.37, + "probability": 0.9837 + }, + { + "start": 8026.83, + "end": 8029.55, + "probability": 0.8494 + }, + { + "start": 8029.77, + "end": 8032.23, + "probability": 0.995 + }, + { + "start": 8032.33, + "end": 8033.81, + "probability": 0.9839 + }, + { + "start": 8033.87, + "end": 8038.83, + "probability": 0.9349 + }, + { + "start": 8038.87, + "end": 8041.47, + "probability": 0.9979 + }, + { + "start": 8041.47, + "end": 8046.11, + "probability": 0.9535 + }, + { + "start": 8046.29, + "end": 8047.03, + "probability": 0.7498 + }, + { + "start": 8047.19, + "end": 8047.89, + "probability": 0.5472 + }, + { + "start": 8049.95, + "end": 8051.13, + "probability": 0.8311 + }, + { + "start": 8052.05, + "end": 8052.55, + "probability": 0.7869 + }, + { + "start": 8052.73, + "end": 8058.59, + "probability": 0.958 + }, + { + "start": 8059.25, + "end": 8063.95, + "probability": 0.9392 + }, + { + "start": 8064.01, + "end": 8068.59, + "probability": 0.9623 + }, + { + "start": 8069.25, + "end": 8069.53, + "probability": 0.4141 + }, + { + "start": 8070.17, + "end": 8070.75, + "probability": 0.8216 + }, + { + "start": 8070.87, + "end": 8071.75, + "probability": 0.7308 + }, + { + "start": 8071.81, + "end": 8074.53, + "probability": 0.9531 + }, + { + "start": 8075.23, + "end": 8075.87, + "probability": 0.1638 + }, + { + "start": 8076.51, + "end": 8077.23, + "probability": 0.6543 + }, + { + "start": 8077.37, + "end": 8079.87, + "probability": 0.8842 + }, + { + "start": 8080.37, + "end": 8082.27, + "probability": 0.9805 + }, + { + "start": 8082.33, + "end": 8084.63, + "probability": 0.8782 + }, + { + "start": 8085.29, + "end": 8089.11, + "probability": 0.9913 + }, + { + "start": 8089.11, + "end": 8094.47, + "probability": 0.9973 + }, + { + "start": 8094.71, + "end": 8101.77, + "probability": 0.9905 + }, + { + "start": 8103.09, + "end": 8106.01, + "probability": 0.9769 + }, + { + "start": 8106.01, + "end": 8109.25, + "probability": 0.784 + }, + { + "start": 8109.31, + "end": 8111.09, + "probability": 0.9032 + }, + { + "start": 8111.21, + "end": 8112.59, + "probability": 0.9234 + }, + { + "start": 8113.31, + "end": 8117.55, + "probability": 0.9914 + }, + { + "start": 8117.55, + "end": 8122.01, + "probability": 0.9972 + }, + { + "start": 8122.07, + "end": 8125.57, + "probability": 0.9719 + }, + { + "start": 8127.59, + "end": 8128.87, + "probability": 0.8159 + }, + { + "start": 8129.17, + "end": 8130.19, + "probability": 0.985 + }, + { + "start": 8130.25, + "end": 8134.27, + "probability": 0.9975 + }, + { + "start": 8134.67, + "end": 8135.88, + "probability": 0.8468 + }, + { + "start": 8136.99, + "end": 8138.69, + "probability": 0.9906 + }, + { + "start": 8140.47, + "end": 8145.77, + "probability": 0.9756 + }, + { + "start": 8145.77, + "end": 8149.03, + "probability": 0.998 + }, + { + "start": 8149.13, + "end": 8149.58, + "probability": 0.8965 + }, + { + "start": 8150.23, + "end": 8152.13, + "probability": 0.8965 + }, + { + "start": 8152.71, + "end": 8155.53, + "probability": 0.9355 + }, + { + "start": 8155.67, + "end": 8158.37, + "probability": 0.954 + }, + { + "start": 8158.73, + "end": 8164.35, + "probability": 0.9518 + }, + { + "start": 8164.45, + "end": 8172.33, + "probability": 0.9597 + }, + { + "start": 8172.87, + "end": 8176.45, + "probability": 0.9973 + }, + { + "start": 8176.45, + "end": 8179.89, + "probability": 0.9961 + }, + { + "start": 8180.67, + "end": 8184.55, + "probability": 0.9975 + }, + { + "start": 8184.55, + "end": 8188.73, + "probability": 0.9972 + }, + { + "start": 8188.85, + "end": 8191.27, + "probability": 0.8732 + }, + { + "start": 8191.27, + "end": 8194.11, + "probability": 0.9946 + }, + { + "start": 8194.69, + "end": 8198.73, + "probability": 0.9951 + }, + { + "start": 8202.99, + "end": 8204.65, + "probability": 0.7426 + }, + { + "start": 8204.75, + "end": 8205.37, + "probability": 0.5447 + }, + { + "start": 8205.51, + "end": 8206.39, + "probability": 0.6094 + }, + { + "start": 8206.41, + "end": 8210.99, + "probability": 0.9568 + }, + { + "start": 8210.99, + "end": 8213.79, + "probability": 0.9979 + }, + { + "start": 8214.79, + "end": 8216.75, + "probability": 0.8187 + }, + { + "start": 8216.85, + "end": 8218.51, + "probability": 0.9994 + }, + { + "start": 8219.39, + "end": 8224.35, + "probability": 0.8614 + }, + { + "start": 8224.35, + "end": 8224.35, + "probability": 0.0565 + }, + { + "start": 8224.35, + "end": 8225.27, + "probability": 0.4052 + }, + { + "start": 8225.43, + "end": 8229.07, + "probability": 0.9893 + }, + { + "start": 8229.07, + "end": 8234.44, + "probability": 0.8701 + }, + { + "start": 8235.11, + "end": 8240.97, + "probability": 0.9897 + }, + { + "start": 8242.17, + "end": 8242.87, + "probability": 0.607 + }, + { + "start": 8243.51, + "end": 8245.35, + "probability": 0.835 + }, + { + "start": 8245.43, + "end": 8249.39, + "probability": 0.9651 + }, + { + "start": 8250.19, + "end": 8253.27, + "probability": 0.9836 + }, + { + "start": 8253.77, + "end": 8254.61, + "probability": 0.8296 + }, + { + "start": 8254.73, + "end": 8258.35, + "probability": 0.9933 + }, + { + "start": 8259.21, + "end": 8260.11, + "probability": 0.9796 + }, + { + "start": 8260.85, + "end": 8262.99, + "probability": 0.9966 + }, + { + "start": 8264.51, + "end": 8265.73, + "probability": 0.9718 + }, + { + "start": 8265.85, + "end": 8266.51, + "probability": 0.9368 + }, + { + "start": 8266.55, + "end": 8267.33, + "probability": 0.8288 + }, + { + "start": 8267.35, + "end": 8267.53, + "probability": 0.7307 + }, + { + "start": 8267.75, + "end": 8271.35, + "probability": 0.9932 + }, + { + "start": 8272.07, + "end": 8273.3, + "probability": 0.9628 + }, + { + "start": 8273.53, + "end": 8273.97, + "probability": 0.7548 + }, + { + "start": 8273.97, + "end": 8278.35, + "probability": 0.9817 + }, + { + "start": 8278.57, + "end": 8279.15, + "probability": 0.7803 + }, + { + "start": 8279.21, + "end": 8280.39, + "probability": 0.6557 + }, + { + "start": 8280.85, + "end": 8280.85, + "probability": 0.0982 + }, + { + "start": 8280.85, + "end": 8281.35, + "probability": 0.6216 + }, + { + "start": 8281.49, + "end": 8284.35, + "probability": 0.987 + }, + { + "start": 8284.35, + "end": 8288.31, + "probability": 0.9897 + }, + { + "start": 8288.95, + "end": 8291.69, + "probability": 0.9873 + }, + { + "start": 8292.45, + "end": 8293.11, + "probability": 0.9062 + }, + { + "start": 8293.75, + "end": 8298.87, + "probability": 0.9894 + }, + { + "start": 8300.03, + "end": 8303.23, + "probability": 0.9859 + }, + { + "start": 8304.27, + "end": 8307.57, + "probability": 0.9998 + }, + { + "start": 8308.45, + "end": 8313.87, + "probability": 0.9899 + }, + { + "start": 8314.05, + "end": 8315.59, + "probability": 0.9263 + }, + { + "start": 8316.95, + "end": 8319.53, + "probability": 0.8674 + }, + { + "start": 8320.55, + "end": 8321.37, + "probability": 0.9178 + }, + { + "start": 8322.25, + "end": 8327.37, + "probability": 0.9616 + }, + { + "start": 8328.27, + "end": 8331.73, + "probability": 0.8008 + }, + { + "start": 8331.85, + "end": 8332.45, + "probability": 0.9348 + }, + { + "start": 8332.97, + "end": 8332.99, + "probability": 0.7417 + }, + { + "start": 8333.57, + "end": 8337.95, + "probability": 0.9731 + }, + { + "start": 8337.99, + "end": 8338.97, + "probability": 0.7413 + }, + { + "start": 8339.33, + "end": 8340.19, + "probability": 0.9827 + }, + { + "start": 8341.09, + "end": 8347.67, + "probability": 0.9848 + }, + { + "start": 8348.13, + "end": 8349.79, + "probability": 0.9313 + }, + { + "start": 8350.39, + "end": 8351.03, + "probability": 0.8019 + }, + { + "start": 8351.73, + "end": 8352.63, + "probability": 0.7502 + }, + { + "start": 8353.67, + "end": 8355.01, + "probability": 0.8977 + }, + { + "start": 8355.87, + "end": 8361.89, + "probability": 0.9738 + }, + { + "start": 8362.27, + "end": 8366.89, + "probability": 0.9935 + }, + { + "start": 8368.11, + "end": 8372.55, + "probability": 0.9182 + }, + { + "start": 8372.55, + "end": 8376.37, + "probability": 0.9976 + }, + { + "start": 8377.37, + "end": 8380.65, + "probability": 0.9554 + }, + { + "start": 8380.75, + "end": 8383.35, + "probability": 0.9994 + }, + { + "start": 8383.35, + "end": 8387.25, + "probability": 0.9966 + }, + { + "start": 8387.47, + "end": 8387.93, + "probability": 0.7225 + }, + { + "start": 8388.51, + "end": 8389.15, + "probability": 0.5205 + }, + { + "start": 8389.19, + "end": 8390.13, + "probability": 0.8575 + }, + { + "start": 8392.07, + "end": 8393.15, + "probability": 0.9905 + }, + { + "start": 8395.09, + "end": 8397.47, + "probability": 0.9081 + }, + { + "start": 8400.55, + "end": 8401.29, + "probability": 0.4787 + }, + { + "start": 8401.29, + "end": 8404.69, + "probability": 0.9544 + }, + { + "start": 8406.82, + "end": 8409.49, + "probability": 0.9751 + }, + { + "start": 8410.37, + "end": 8415.87, + "probability": 0.9932 + }, + { + "start": 8415.97, + "end": 8417.83, + "probability": 0.5667 + }, + { + "start": 8419.09, + "end": 8422.47, + "probability": 0.9958 + }, + { + "start": 8422.47, + "end": 8426.73, + "probability": 0.998 + }, + { + "start": 8427.83, + "end": 8428.29, + "probability": 0.739 + }, + { + "start": 8428.31, + "end": 8435.61, + "probability": 0.9919 + }, + { + "start": 8435.71, + "end": 8437.55, + "probability": 0.999 + }, + { + "start": 8438.21, + "end": 8439.19, + "probability": 0.9921 + }, + { + "start": 8439.53, + "end": 8441.67, + "probability": 0.9993 + }, + { + "start": 8442.65, + "end": 8444.3, + "probability": 0.8377 + }, + { + "start": 8444.71, + "end": 8446.15, + "probability": 0.9374 + }, + { + "start": 8446.37, + "end": 8451.19, + "probability": 0.8762 + }, + { + "start": 8451.57, + "end": 8457.97, + "probability": 0.9917 + }, + { + "start": 8458.11, + "end": 8463.65, + "probability": 0.9935 + }, + { + "start": 8466.23, + "end": 8469.16, + "probability": 0.9731 + }, + { + "start": 8469.37, + "end": 8469.67, + "probability": 0.9008 + }, + { + "start": 8469.79, + "end": 8471.04, + "probability": 0.801 + }, + { + "start": 8472.17, + "end": 8475.39, + "probability": 0.8734 + }, + { + "start": 8476.31, + "end": 8480.61, + "probability": 0.7908 + }, + { + "start": 8480.81, + "end": 8483.92, + "probability": 0.9862 + }, + { + "start": 8484.53, + "end": 8486.35, + "probability": 0.8964 + }, + { + "start": 8488.09, + "end": 8488.51, + "probability": 0.72 + }, + { + "start": 8488.97, + "end": 8491.56, + "probability": 0.9971 + }, + { + "start": 8491.79, + "end": 8494.01, + "probability": 0.9935 + }, + { + "start": 8494.51, + "end": 8498.67, + "probability": 0.966 + }, + { + "start": 8499.55, + "end": 8503.56, + "probability": 0.9935 + }, + { + "start": 8504.03, + "end": 8507.21, + "probability": 0.9814 + }, + { + "start": 8510.39, + "end": 8514.43, + "probability": 0.9882 + }, + { + "start": 8514.51, + "end": 8515.21, + "probability": 0.4902 + }, + { + "start": 8515.43, + "end": 8518.31, + "probability": 0.9867 + }, + { + "start": 8518.31, + "end": 8521.05, + "probability": 0.9926 + }, + { + "start": 8522.27, + "end": 8524.09, + "probability": 0.9996 + }, + { + "start": 8525.09, + "end": 8526.31, + "probability": 0.6107 + }, + { + "start": 8526.51, + "end": 8527.17, + "probability": 0.5935 + }, + { + "start": 8527.53, + "end": 8533.87, + "probability": 0.9141 + }, + { + "start": 8534.11, + "end": 8536.51, + "probability": 0.8266 + }, + { + "start": 8536.63, + "end": 8540.75, + "probability": 0.8813 + }, + { + "start": 8542.23, + "end": 8543.93, + "probability": 0.8672 + }, + { + "start": 8544.05, + "end": 8546.49, + "probability": 0.991 + }, + { + "start": 8546.59, + "end": 8548.37, + "probability": 0.9325 + }, + { + "start": 8549.45, + "end": 8555.37, + "probability": 0.9805 + }, + { + "start": 8556.07, + "end": 8559.07, + "probability": 0.9856 + }, + { + "start": 8559.49, + "end": 8561.45, + "probability": 0.9771 + }, + { + "start": 8561.99, + "end": 8563.97, + "probability": 0.9961 + }, + { + "start": 8564.03, + "end": 8565.87, + "probability": 0.9724 + }, + { + "start": 8566.43, + "end": 8569.79, + "probability": 0.8922 + }, + { + "start": 8570.49, + "end": 8574.73, + "probability": 0.7759 + }, + { + "start": 8574.89, + "end": 8578.42, + "probability": 0.7825 + }, + { + "start": 8580.29, + "end": 8583.97, + "probability": 0.8922 + }, + { + "start": 8584.67, + "end": 8586.17, + "probability": 0.4487 + }, + { + "start": 8586.47, + "end": 8587.29, + "probability": 0.9807 + }, + { + "start": 8587.41, + "end": 8588.01, + "probability": 0.949 + }, + { + "start": 8588.13, + "end": 8591.21, + "probability": 0.9888 + }, + { + "start": 8591.21, + "end": 8597.93, + "probability": 0.9201 + }, + { + "start": 8598.09, + "end": 8601.21, + "probability": 0.9886 + }, + { + "start": 8601.33, + "end": 8602.33, + "probability": 0.9251 + }, + { + "start": 8603.23, + "end": 8606.03, + "probability": 0.9966 + }, + { + "start": 8606.03, + "end": 8608.35, + "probability": 0.9892 + }, + { + "start": 8608.49, + "end": 8609.81, + "probability": 0.9847 + }, + { + "start": 8610.89, + "end": 8614.19, + "probability": 0.9647 + }, + { + "start": 8615.15, + "end": 8620.43, + "probability": 0.9919 + }, + { + "start": 8620.47, + "end": 8622.23, + "probability": 0.8682 + }, + { + "start": 8622.75, + "end": 8623.79, + "probability": 0.9762 + }, + { + "start": 8624.49, + "end": 8626.83, + "probability": 0.9591 + }, + { + "start": 8627.29, + "end": 8627.77, + "probability": 0.3402 + }, + { + "start": 8627.91, + "end": 8629.49, + "probability": 0.921 + }, + { + "start": 8630.65, + "end": 8634.35, + "probability": 0.7292 + }, + { + "start": 8634.51, + "end": 8637.11, + "probability": 0.9964 + }, + { + "start": 8637.71, + "end": 8640.17, + "probability": 0.968 + }, + { + "start": 8641.43, + "end": 8641.73, + "probability": 0.5372 + }, + { + "start": 8641.85, + "end": 8646.81, + "probability": 0.9944 + }, + { + "start": 8648.11, + "end": 8655.03, + "probability": 0.9887 + }, + { + "start": 8655.25, + "end": 8655.99, + "probability": 0.5725 + }, + { + "start": 8656.09, + "end": 8656.85, + "probability": 0.949 + }, + { + "start": 8656.93, + "end": 8661.65, + "probability": 0.9259 + }, + { + "start": 8663.21, + "end": 8671.69, + "probability": 0.9758 + }, + { + "start": 8671.91, + "end": 8673.95, + "probability": 0.7738 + }, + { + "start": 8674.27, + "end": 8679.31, + "probability": 0.9814 + }, + { + "start": 8679.43, + "end": 8682.69, + "probability": 0.9893 + }, + { + "start": 8683.23, + "end": 8686.95, + "probability": 0.9971 + }, + { + "start": 8687.55, + "end": 8689.03, + "probability": 0.8418 + }, + { + "start": 8689.35, + "end": 8692.19, + "probability": 0.9688 + }, + { + "start": 8692.19, + "end": 8695.83, + "probability": 0.9972 + }, + { + "start": 8696.61, + "end": 8700.68, + "probability": 0.9116 + }, + { + "start": 8700.93, + "end": 8701.61, + "probability": 0.9492 + }, + { + "start": 8701.65, + "end": 8705.71, + "probability": 0.9923 + }, + { + "start": 8705.93, + "end": 8706.85, + "probability": 0.6774 + }, + { + "start": 8707.57, + "end": 8708.55, + "probability": 0.536 + }, + { + "start": 8709.79, + "end": 8716.41, + "probability": 0.9871 + }, + { + "start": 8717.67, + "end": 8719.61, + "probability": 0.8025 + }, + { + "start": 8719.83, + "end": 8724.04, + "probability": 0.9744 + }, + { + "start": 8724.73, + "end": 8725.62, + "probability": 0.6013 + }, + { + "start": 8727.03, + "end": 8729.35, + "probability": 0.9915 + }, + { + "start": 8730.71, + "end": 8737.39, + "probability": 0.9883 + }, + { + "start": 8738.03, + "end": 8739.47, + "probability": 0.8339 + }, + { + "start": 8740.03, + "end": 8741.01, + "probability": 0.6581 + }, + { + "start": 8741.91, + "end": 8746.34, + "probability": 0.9946 + }, + { + "start": 8748.05, + "end": 8750.97, + "probability": 0.7171 + }, + { + "start": 8751.73, + "end": 8754.67, + "probability": 0.8862 + }, + { + "start": 8755.43, + "end": 8757.63, + "probability": 0.9239 + }, + { + "start": 8758.35, + "end": 8763.66, + "probability": 0.9914 + }, + { + "start": 8764.65, + "end": 8768.91, + "probability": 0.9966 + }, + { + "start": 8769.05, + "end": 8774.23, + "probability": 0.9886 + }, + { + "start": 8774.67, + "end": 8775.17, + "probability": 0.4856 + }, + { + "start": 8775.31, + "end": 8775.59, + "probability": 0.9509 + }, + { + "start": 8775.71, + "end": 8776.93, + "probability": 0.957 + }, + { + "start": 8776.97, + "end": 8778.53, + "probability": 0.9914 + }, + { + "start": 8779.63, + "end": 8780.53, + "probability": 0.9922 + }, + { + "start": 8781.49, + "end": 8782.35, + "probability": 0.6613 + }, + { + "start": 8783.23, + "end": 8787.73, + "probability": 0.9972 + }, + { + "start": 8789.39, + "end": 8792.73, + "probability": 0.9932 + }, + { + "start": 8793.43, + "end": 8795.64, + "probability": 0.9962 + }, + { + "start": 8796.83, + "end": 8797.41, + "probability": 0.7453 + }, + { + "start": 8798.33, + "end": 8801.13, + "probability": 0.9305 + }, + { + "start": 8801.13, + "end": 8804.29, + "probability": 0.999 + }, + { + "start": 8804.95, + "end": 8807.51, + "probability": 0.904 + }, + { + "start": 8807.57, + "end": 8812.51, + "probability": 0.9966 + }, + { + "start": 8812.71, + "end": 8817.61, + "probability": 0.9808 + }, + { + "start": 8817.67, + "end": 8818.57, + "probability": 0.8266 + }, + { + "start": 8820.19, + "end": 8823.57, + "probability": 0.9726 + }, + { + "start": 8823.67, + "end": 8824.17, + "probability": 0.3465 + }, + { + "start": 8824.23, + "end": 8824.51, + "probability": 0.9218 + }, + { + "start": 8824.59, + "end": 8825.19, + "probability": 0.931 + }, + { + "start": 8826.02, + "end": 8831.49, + "probability": 0.9879 + }, + { + "start": 8832.25, + "end": 8835.17, + "probability": 0.9984 + }, + { + "start": 8836.67, + "end": 8841.63, + "probability": 0.9912 + }, + { + "start": 8841.63, + "end": 8846.96, + "probability": 0.984 + }, + { + "start": 8847.43, + "end": 8847.85, + "probability": 0.9542 + }, + { + "start": 8848.01, + "end": 8848.91, + "probability": 0.8402 + }, + { + "start": 8849.77, + "end": 8852.25, + "probability": 0.9966 + }, + { + "start": 8852.25, + "end": 8855.03, + "probability": 0.9584 + }, + { + "start": 8856.15, + "end": 8858.61, + "probability": 0.9263 + }, + { + "start": 8858.73, + "end": 8861.21, + "probability": 0.9779 + }, + { + "start": 8861.51, + "end": 8862.53, + "probability": 0.9575 + }, + { + "start": 8863.69, + "end": 8866.07, + "probability": 0.9893 + }, + { + "start": 8866.29, + "end": 8869.29, + "probability": 0.8163 + }, + { + "start": 8869.37, + "end": 8871.79, + "probability": 0.8893 + }, + { + "start": 8874.47, + "end": 8875.51, + "probability": 0.7501 + }, + { + "start": 8876.33, + "end": 8878.65, + "probability": 0.9975 + }, + { + "start": 8878.77, + "end": 8882.05, + "probability": 0.9872 + }, + { + "start": 8882.25, + "end": 8883.81, + "probability": 0.8823 + }, + { + "start": 8884.71, + "end": 8888.21, + "probability": 0.9868 + }, + { + "start": 8889.03, + "end": 8889.37, + "probability": 0.8393 + }, + { + "start": 8889.67, + "end": 8890.97, + "probability": 0.924 + }, + { + "start": 8891.13, + "end": 8891.45, + "probability": 0.9581 + }, + { + "start": 8891.71, + "end": 8892.97, + "probability": 0.838 + }, + { + "start": 8893.31, + "end": 8894.63, + "probability": 0.8572 + }, + { + "start": 8895.31, + "end": 8897.43, + "probability": 0.8675 + }, + { + "start": 8898.54, + "end": 8899.51, + "probability": 0.9797 + }, + { + "start": 8900.11, + "end": 8903.61, + "probability": 0.9836 + }, + { + "start": 8904.83, + "end": 8905.29, + "probability": 0.5965 + }, + { + "start": 8905.39, + "end": 8910.07, + "probability": 0.9755 + }, + { + "start": 8910.81, + "end": 8915.82, + "probability": 0.782 + }, + { + "start": 8916.21, + "end": 8919.97, + "probability": 0.9927 + }, + { + "start": 8920.09, + "end": 8923.49, + "probability": 0.8441 + }, + { + "start": 8925.31, + "end": 8933.01, + "probability": 0.9813 + }, + { + "start": 8933.59, + "end": 8939.32, + "probability": 0.9977 + }, + { + "start": 8941.55, + "end": 8942.13, + "probability": 0.726 + }, + { + "start": 8943.61, + "end": 8948.31, + "probability": 0.9974 + }, + { + "start": 8948.93, + "end": 8952.41, + "probability": 0.9883 + }, + { + "start": 8952.57, + "end": 8958.09, + "probability": 0.98 + }, + { + "start": 8958.15, + "end": 8958.9, + "probability": 0.6266 + }, + { + "start": 8959.99, + "end": 8963.27, + "probability": 0.9973 + }, + { + "start": 8963.73, + "end": 8968.91, + "probability": 0.996 + }, + { + "start": 8968.91, + "end": 8975.41, + "probability": 0.9883 + }, + { + "start": 8975.49, + "end": 8977.89, + "probability": 0.9255 + }, + { + "start": 8979.25, + "end": 8980.73, + "probability": 0.6909 + }, + { + "start": 8980.79, + "end": 8986.15, + "probability": 0.9914 + }, + { + "start": 8986.29, + "end": 8987.79, + "probability": 0.9393 + }, + { + "start": 8988.59, + "end": 8994.62, + "probability": 0.9906 + }, + { + "start": 8996.57, + "end": 8999.14, + "probability": 0.9988 + }, + { + "start": 9000.07, + "end": 9001.09, + "probability": 0.6056 + }, + { + "start": 9001.19, + "end": 9001.59, + "probability": 0.9404 + }, + { + "start": 9001.95, + "end": 9002.47, + "probability": 0.2871 + }, + { + "start": 9002.55, + "end": 9002.97, + "probability": 0.9415 + }, + { + "start": 9011.11, + "end": 9012.01, + "probability": 0.6549 + }, + { + "start": 9012.53, + "end": 9015.13, + "probability": 0.9204 + }, + { + "start": 9015.13, + "end": 9017.67, + "probability": 0.993 + }, + { + "start": 9018.13, + "end": 9019.25, + "probability": 0.6409 + }, + { + "start": 9019.39, + "end": 9022.57, + "probability": 0.9963 + }, + { + "start": 9023.37, + "end": 9025.37, + "probability": 0.9951 + }, + { + "start": 9025.37, + "end": 9028.11, + "probability": 0.9994 + }, + { + "start": 9029.07, + "end": 9029.71, + "probability": 0.7604 + }, + { + "start": 9030.35, + "end": 9031.75, + "probability": 0.8041 + }, + { + "start": 9032.27, + "end": 9033.71, + "probability": 0.9185 + }, + { + "start": 9033.81, + "end": 9038.83, + "probability": 0.9784 + }, + { + "start": 9039.51, + "end": 9043.39, + "probability": 0.8717 + }, + { + "start": 9044.39, + "end": 9049.97, + "probability": 0.9868 + }, + { + "start": 9051.23, + "end": 9053.27, + "probability": 0.8172 + }, + { + "start": 9054.19, + "end": 9055.01, + "probability": 0.9956 + }, + { + "start": 9055.55, + "end": 9056.79, + "probability": 0.8132 + }, + { + "start": 9057.15, + "end": 9058.43, + "probability": 0.4487 + }, + { + "start": 9058.67, + "end": 9060.09, + "probability": 0.9727 + }, + { + "start": 9060.29, + "end": 9062.23, + "probability": 0.9565 + }, + { + "start": 9062.69, + "end": 9064.61, + "probability": 0.9871 + }, + { + "start": 9065.17, + "end": 9067.05, + "probability": 0.9569 + }, + { + "start": 9067.27, + "end": 9070.63, + "probability": 0.9373 + }, + { + "start": 9070.71, + "end": 9071.81, + "probability": 0.7607 + }, + { + "start": 9072.39, + "end": 9073.63, + "probability": 0.6696 + }, + { + "start": 9073.87, + "end": 9077.33, + "probability": 0.9984 + }, + { + "start": 9077.37, + "end": 9079.95, + "probability": 0.9677 + }, + { + "start": 9081.25, + "end": 9083.03, + "probability": 0.8749 + }, + { + "start": 9083.51, + "end": 9087.37, + "probability": 0.8379 + }, + { + "start": 9088.69, + "end": 9096.2, + "probability": 0.9963 + }, + { + "start": 9096.77, + "end": 9097.84, + "probability": 0.9578 + }, + { + "start": 9098.23, + "end": 9101.13, + "probability": 0.9976 + }, + { + "start": 9102.67, + "end": 9105.07, + "probability": 0.8554 + }, + { + "start": 9105.95, + "end": 9112.83, + "probability": 0.9886 + }, + { + "start": 9114.19, + "end": 9119.75, + "probability": 0.9978 + }, + { + "start": 9121.71, + "end": 9129.15, + "probability": 0.9973 + }, + { + "start": 9132.1, + "end": 9137.35, + "probability": 0.8339 + }, + { + "start": 9138.19, + "end": 9144.89, + "probability": 0.9987 + }, + { + "start": 9144.89, + "end": 9150.97, + "probability": 0.8335 + }, + { + "start": 9151.31, + "end": 9155.05, + "probability": 0.8047 + }, + { + "start": 9155.31, + "end": 9162.33, + "probability": 0.9925 + }, + { + "start": 9162.45, + "end": 9165.93, + "probability": 0.9227 + }, + { + "start": 9166.73, + "end": 9172.23, + "probability": 0.9906 + }, + { + "start": 9172.29, + "end": 9174.97, + "probability": 0.9242 + }, + { + "start": 9175.65, + "end": 9178.93, + "probability": 0.7831 + }, + { + "start": 9179.63, + "end": 9181.81, + "probability": 0.998 + }, + { + "start": 9181.97, + "end": 9182.49, + "probability": 0.925 + }, + { + "start": 9182.73, + "end": 9183.35, + "probability": 0.9746 + }, + { + "start": 9183.61, + "end": 9185.07, + "probability": 0.9788 + }, + { + "start": 9185.59, + "end": 9187.99, + "probability": 0.9657 + }, + { + "start": 9188.59, + "end": 9189.37, + "probability": 0.8267 + }, + { + "start": 9190.01, + "end": 9192.33, + "probability": 0.9424 + }, + { + "start": 9192.41, + "end": 9193.21, + "probability": 0.974 + }, + { + "start": 9193.67, + "end": 9195.04, + "probability": 0.9858 + }, + { + "start": 9196.03, + "end": 9198.61, + "probability": 0.9658 + }, + { + "start": 9199.51, + "end": 9202.15, + "probability": 0.8028 + }, + { + "start": 9202.73, + "end": 9208.87, + "probability": 0.988 + }, + { + "start": 9210.19, + "end": 9213.71, + "probability": 0.675 + }, + { + "start": 9215.63, + "end": 9221.17, + "probability": 0.964 + }, + { + "start": 9222.09, + "end": 9225.93, + "probability": 0.9739 + }, + { + "start": 9226.63, + "end": 9232.67, + "probability": 0.9723 + }, + { + "start": 9233.54, + "end": 9234.05, + "probability": 0.7994 + }, + { + "start": 9235.19, + "end": 9235.71, + "probability": 0.7069 + }, + { + "start": 9235.85, + "end": 9237.13, + "probability": 0.8335 + }, + { + "start": 9237.27, + "end": 9238.51, + "probability": 0.7354 + }, + { + "start": 9239.41, + "end": 9244.05, + "probability": 0.8998 + }, + { + "start": 9244.25, + "end": 9245.29, + "probability": 0.663 + }, + { + "start": 9245.35, + "end": 9248.67, + "probability": 0.9701 + }, + { + "start": 9248.67, + "end": 9251.69, + "probability": 0.9927 + }, + { + "start": 9253.41, + "end": 9259.99, + "probability": 0.9941 + }, + { + "start": 9261.23, + "end": 9266.97, + "probability": 0.9495 + }, + { + "start": 9267.67, + "end": 9271.37, + "probability": 0.9892 + }, + { + "start": 9272.45, + "end": 9276.15, + "probability": 0.967 + }, + { + "start": 9276.85, + "end": 9277.95, + "probability": 0.723 + }, + { + "start": 9279.31, + "end": 9283.21, + "probability": 0.9332 + }, + { + "start": 9285.97, + "end": 9290.73, + "probability": 0.9619 + }, + { + "start": 9290.73, + "end": 9293.45, + "probability": 0.9951 + }, + { + "start": 9294.63, + "end": 9298.5, + "probability": 0.9957 + }, + { + "start": 9301.07, + "end": 9302.47, + "probability": 0.8605 + }, + { + "start": 9302.51, + "end": 9305.31, + "probability": 0.9701 + }, + { + "start": 9306.21, + "end": 9310.83, + "probability": 0.9979 + }, + { + "start": 9310.93, + "end": 9319.59, + "probability": 0.9856 + }, + { + "start": 9320.21, + "end": 9325.03, + "probability": 0.9958 + }, + { + "start": 9325.61, + "end": 9327.01, + "probability": 0.5674 + }, + { + "start": 9327.23, + "end": 9328.09, + "probability": 0.927 + }, + { + "start": 9329.21, + "end": 9333.53, + "probability": 0.9486 + }, + { + "start": 9333.63, + "end": 9339.59, + "probability": 0.9545 + }, + { + "start": 9340.23, + "end": 9346.51, + "probability": 0.9812 + }, + { + "start": 9347.33, + "end": 9355.51, + "probability": 0.9676 + }, + { + "start": 9355.59, + "end": 9361.01, + "probability": 0.9961 + }, + { + "start": 9361.81, + "end": 9365.49, + "probability": 0.7796 + }, + { + "start": 9366.09, + "end": 9367.23, + "probability": 0.8134 + }, + { + "start": 9368.51, + "end": 9371.63, + "probability": 0.9876 + }, + { + "start": 9372.19, + "end": 9375.99, + "probability": 0.9529 + }, + { + "start": 9376.55, + "end": 9377.55, + "probability": 0.9225 + }, + { + "start": 9378.11, + "end": 9382.71, + "probability": 0.9611 + }, + { + "start": 9383.01, + "end": 9385.69, + "probability": 0.995 + }, + { + "start": 9386.41, + "end": 9388.83, + "probability": 0.9948 + }, + { + "start": 9388.89, + "end": 9393.09, + "probability": 0.988 + }, + { + "start": 9393.17, + "end": 9396.55, + "probability": 0.9944 + }, + { + "start": 9397.75, + "end": 9401.73, + "probability": 0.9861 + }, + { + "start": 9402.21, + "end": 9403.11, + "probability": 0.9751 + }, + { + "start": 9403.81, + "end": 9404.63, + "probability": 0.9114 + }, + { + "start": 9405.53, + "end": 9407.55, + "probability": 0.9338 + }, + { + "start": 9407.81, + "end": 9410.51, + "probability": 0.9677 + }, + { + "start": 9411.35, + "end": 9413.74, + "probability": 0.9932 + }, + { + "start": 9414.41, + "end": 9416.05, + "probability": 0.9426 + }, + { + "start": 9416.15, + "end": 9418.87, + "probability": 0.9968 + }, + { + "start": 9419.07, + "end": 9422.57, + "probability": 0.9495 + }, + { + "start": 9422.69, + "end": 9426.23, + "probability": 0.9652 + }, + { + "start": 9426.47, + "end": 9430.89, + "probability": 0.9936 + }, + { + "start": 9431.57, + "end": 9434.91, + "probability": 0.9976 + }, + { + "start": 9434.91, + "end": 9438.81, + "probability": 0.9989 + }, + { + "start": 9439.51, + "end": 9442.39, + "probability": 0.9109 + }, + { + "start": 9442.55, + "end": 9445.29, + "probability": 0.8636 + }, + { + "start": 9446.17, + "end": 9447.67, + "probability": 0.8475 + }, + { + "start": 9448.25, + "end": 9451.83, + "probability": 0.9476 + }, + { + "start": 9452.39, + "end": 9453.79, + "probability": 0.9705 + }, + { + "start": 9454.17, + "end": 9460.01, + "probability": 0.9762 + }, + { + "start": 9460.99, + "end": 9462.05, + "probability": 0.7139 + }, + { + "start": 9462.57, + "end": 9465.97, + "probability": 0.9574 + }, + { + "start": 9467.15, + "end": 9471.61, + "probability": 0.9957 + }, + { + "start": 9471.61, + "end": 9478.57, + "probability": 0.9677 + }, + { + "start": 9480.93, + "end": 9486.21, + "probability": 0.9318 + }, + { + "start": 9487.09, + "end": 9492.57, + "probability": 0.9731 + }, + { + "start": 9492.61, + "end": 9497.59, + "probability": 0.996 + }, + { + "start": 9498.37, + "end": 9505.29, + "probability": 0.8213 + }, + { + "start": 9505.51, + "end": 9512.21, + "probability": 0.9669 + }, + { + "start": 9513.01, + "end": 9514.91, + "probability": 0.9799 + }, + { + "start": 9515.09, + "end": 9516.31, + "probability": 0.9756 + }, + { + "start": 9516.49, + "end": 9521.31, + "probability": 0.9587 + }, + { + "start": 9521.87, + "end": 9525.71, + "probability": 0.9015 + }, + { + "start": 9525.89, + "end": 9527.21, + "probability": 0.9795 + }, + { + "start": 9527.21, + "end": 9529.73, + "probability": 0.8953 + }, + { + "start": 9530.69, + "end": 9535.39, + "probability": 0.9987 + }, + { + "start": 9535.43, + "end": 9535.91, + "probability": 0.8071 + }, + { + "start": 9536.93, + "end": 9540.39, + "probability": 0.9895 + }, + { + "start": 9541.55, + "end": 9542.39, + "probability": 0.2504 + }, + { + "start": 9542.59, + "end": 9548.19, + "probability": 0.9793 + }, + { + "start": 9549.01, + "end": 9554.71, + "probability": 0.9837 + }, + { + "start": 9554.97, + "end": 9561.87, + "probability": 0.9976 + }, + { + "start": 9562.13, + "end": 9567.25, + "probability": 0.9794 + }, + { + "start": 9569.47, + "end": 9570.19, + "probability": 0.693 + }, + { + "start": 9570.97, + "end": 9572.95, + "probability": 0.8841 + }, + { + "start": 9573.67, + "end": 9575.18, + "probability": 0.7461 + }, + { + "start": 9575.77, + "end": 9576.45, + "probability": 0.9352 + }, + { + "start": 9576.57, + "end": 9578.94, + "probability": 0.909 + }, + { + "start": 9579.77, + "end": 9584.83, + "probability": 0.9926 + }, + { + "start": 9584.97, + "end": 9586.89, + "probability": 0.991 + }, + { + "start": 9588.37, + "end": 9590.91, + "probability": 0.9934 + }, + { + "start": 9591.01, + "end": 9591.45, + "probability": 0.6663 + }, + { + "start": 9591.53, + "end": 9598.83, + "probability": 0.9953 + }, + { + "start": 9599.05, + "end": 9603.59, + "probability": 0.9971 + }, + { + "start": 9604.03, + "end": 9605.33, + "probability": 0.8898 + }, + { + "start": 9605.91, + "end": 9607.29, + "probability": 0.9667 + }, + { + "start": 9607.71, + "end": 9610.47, + "probability": 0.9563 + }, + { + "start": 9611.19, + "end": 9617.09, + "probability": 0.9937 + }, + { + "start": 9617.61, + "end": 9622.35, + "probability": 0.9886 + }, + { + "start": 9623.21, + "end": 9623.85, + "probability": 0.7845 + }, + { + "start": 9623.99, + "end": 9624.65, + "probability": 0.8788 + }, + { + "start": 9624.73, + "end": 9628.53, + "probability": 0.9951 + }, + { + "start": 9628.63, + "end": 9629.23, + "probability": 0.5693 + }, + { + "start": 9629.47, + "end": 9630.47, + "probability": 0.9111 + }, + { + "start": 9631.01, + "end": 9634.87, + "probability": 0.9973 + }, + { + "start": 9634.87, + "end": 9639.41, + "probability": 0.98 + }, + { + "start": 9641.07, + "end": 9645.17, + "probability": 0.9951 + }, + { + "start": 9646.31, + "end": 9651.99, + "probability": 0.9965 + }, + { + "start": 9653.29, + "end": 9654.63, + "probability": 0.742 + }, + { + "start": 9654.69, + "end": 9655.33, + "probability": 0.8955 + }, + { + "start": 9655.65, + "end": 9657.53, + "probability": 0.9835 + }, + { + "start": 9658.39, + "end": 9662.89, + "probability": 0.9905 + }, + { + "start": 9663.45, + "end": 9666.35, + "probability": 0.8927 + }, + { + "start": 9666.93, + "end": 9668.95, + "probability": 0.96 + }, + { + "start": 9669.83, + "end": 9670.65, + "probability": 0.8647 + }, + { + "start": 9670.73, + "end": 9674.27, + "probability": 0.9863 + }, + { + "start": 9675.37, + "end": 9676.11, + "probability": 0.9256 + }, + { + "start": 9676.17, + "end": 9679.81, + "probability": 0.9897 + }, + { + "start": 9679.95, + "end": 9685.05, + "probability": 0.998 + }, + { + "start": 9685.59, + "end": 9688.29, + "probability": 0.914 + }, + { + "start": 9689.01, + "end": 9690.31, + "probability": 0.9897 + }, + { + "start": 9691.17, + "end": 9695.47, + "probability": 0.9506 + }, + { + "start": 9695.55, + "end": 9697.63, + "probability": 0.9757 + }, + { + "start": 9698.29, + "end": 9701.75, + "probability": 0.9431 + }, + { + "start": 9701.99, + "end": 9703.33, + "probability": 0.678 + }, + { + "start": 9703.39, + "end": 9704.63, + "probability": 0.9168 + }, + { + "start": 9704.71, + "end": 9705.07, + "probability": 0.891 + }, + { + "start": 9705.97, + "end": 9707.87, + "probability": 0.932 + }, + { + "start": 9708.09, + "end": 9708.39, + "probability": 0.8095 + }, + { + "start": 9708.91, + "end": 9709.81, + "probability": 0.985 + }, + { + "start": 9709.87, + "end": 9713.49, + "probability": 0.9932 + }, + { + "start": 9713.67, + "end": 9719.47, + "probability": 0.9194 + }, + { + "start": 9721.13, + "end": 9727.25, + "probability": 0.9954 + }, + { + "start": 9728.05, + "end": 9730.39, + "probability": 0.7829 + }, + { + "start": 9730.51, + "end": 9733.29, + "probability": 0.9754 + }, + { + "start": 9734.03, + "end": 9736.01, + "probability": 0.9463 + }, + { + "start": 9736.55, + "end": 9740.5, + "probability": 0.9832 + }, + { + "start": 9740.85, + "end": 9741.9, + "probability": 0.9128 + }, + { + "start": 9742.87, + "end": 9743.91, + "probability": 0.0046 + }, + { + "start": 9744.11, + "end": 9745.15, + "probability": 0.6599 + }, + { + "start": 9745.25, + "end": 9747.89, + "probability": 0.8944 + }, + { + "start": 9748.33, + "end": 9750.14, + "probability": 0.9969 + }, + { + "start": 9750.39, + "end": 9752.41, + "probability": 0.9945 + }, + { + "start": 9753.27, + "end": 9754.01, + "probability": 0.9256 + }, + { + "start": 9754.07, + "end": 9754.71, + "probability": 0.7171 + }, + { + "start": 9754.81, + "end": 9755.15, + "probability": 0.9467 + }, + { + "start": 9755.61, + "end": 9757.01, + "probability": 0.933 + }, + { + "start": 9757.09, + "end": 9758.37, + "probability": 0.7255 + }, + { + "start": 9759.05, + "end": 9764.17, + "probability": 0.9745 + }, + { + "start": 9764.87, + "end": 9768.25, + "probability": 0.9954 + }, + { + "start": 9768.25, + "end": 9771.13, + "probability": 0.9993 + }, + { + "start": 9771.81, + "end": 9772.61, + "probability": 0.9569 + }, + { + "start": 9773.51, + "end": 9774.15, + "probability": 0.7755 + }, + { + "start": 9774.23, + "end": 9776.35, + "probability": 0.9889 + }, + { + "start": 9776.69, + "end": 9778.83, + "probability": 0.9685 + }, + { + "start": 9778.93, + "end": 9780.59, + "probability": 0.8523 + }, + { + "start": 9781.11, + "end": 9783.01, + "probability": 0.8243 + }, + { + "start": 9783.07, + "end": 9787.51, + "probability": 0.8416 + }, + { + "start": 9788.09, + "end": 9788.97, + "probability": 0.7369 + }, + { + "start": 9789.11, + "end": 9792.17, + "probability": 0.9972 + }, + { + "start": 9792.27, + "end": 9793.63, + "probability": 0.857 + }, + { + "start": 9794.49, + "end": 9800.51, + "probability": 0.9935 + }, + { + "start": 9801.29, + "end": 9804.11, + "probability": 0.9902 + }, + { + "start": 9804.11, + "end": 9807.23, + "probability": 0.9882 + }, + { + "start": 9807.69, + "end": 9809.99, + "probability": 0.9849 + }, + { + "start": 9810.45, + "end": 9813.85, + "probability": 0.9967 + }, + { + "start": 9814.61, + "end": 9818.39, + "probability": 0.9205 + }, + { + "start": 9818.57, + "end": 9820.17, + "probability": 0.9138 + }, + { + "start": 9820.85, + "end": 9823.85, + "probability": 0.9678 + }, + { + "start": 9824.91, + "end": 9826.77, + "probability": 0.9839 + }, + { + "start": 9826.81, + "end": 9828.49, + "probability": 0.999 + }, + { + "start": 9829.21, + "end": 9831.01, + "probability": 0.932 + }, + { + "start": 9831.99, + "end": 9833.37, + "probability": 0.4057 + }, + { + "start": 9833.47, + "end": 9833.99, + "probability": 0.3895 + }, + { + "start": 9834.07, + "end": 9836.75, + "probability": 0.9677 + }, + { + "start": 9837.03, + "end": 9837.31, + "probability": 0.8389 + }, + { + "start": 9839.15, + "end": 9842.67, + "probability": 0.8987 + }, + { + "start": 9842.91, + "end": 9847.41, + "probability": 0.9882 + }, + { + "start": 9847.87, + "end": 9852.83, + "probability": 0.9742 + }, + { + "start": 9853.63, + "end": 9856.87, + "probability": 0.9668 + }, + { + "start": 9857.25, + "end": 9858.91, + "probability": 0.9368 + }, + { + "start": 9859.47, + "end": 9861.81, + "probability": 0.9563 + }, + { + "start": 9863.03, + "end": 9868.19, + "probability": 0.996 + }, + { + "start": 9869.01, + "end": 9870.47, + "probability": 0.7046 + }, + { + "start": 9870.49, + "end": 9871.39, + "probability": 0.678 + }, + { + "start": 9872.35, + "end": 9873.14, + "probability": 0.4656 + }, + { + "start": 9874.49, + "end": 9875.13, + "probability": 0.8391 + }, + { + "start": 9876.21, + "end": 9877.83, + "probability": 0.6127 + }, + { + "start": 9878.25, + "end": 9880.47, + "probability": 0.4214 + }, + { + "start": 9880.47, + "end": 9885.47, + "probability": 0.5612 + }, + { + "start": 9885.47, + "end": 9885.89, + "probability": 0.3447 + }, + { + "start": 9885.89, + "end": 9885.89, + "probability": 0.3551 + }, + { + "start": 9885.93, + "end": 9886.61, + "probability": 0.7051 + }, + { + "start": 9886.93, + "end": 9889.05, + "probability": 0.9814 + }, + { + "start": 9889.11, + "end": 9893.33, + "probability": 0.9595 + }, + { + "start": 9893.83, + "end": 9898.31, + "probability": 0.9878 + }, + { + "start": 9898.53, + "end": 9898.75, + "probability": 0.5457 + }, + { + "start": 9898.85, + "end": 9900.64, + "probability": 0.966 + }, + { + "start": 9901.03, + "end": 9901.63, + "probability": 0.7879 + }, + { + "start": 9902.31, + "end": 9903.13, + "probability": 0.9248 + }, + { + "start": 9903.91, + "end": 9907.69, + "probability": 0.975 + }, + { + "start": 9908.33, + "end": 9913.39, + "probability": 0.9286 + }, + { + "start": 9914.45, + "end": 9916.63, + "probability": 0.9621 + }, + { + "start": 9918.07, + "end": 9919.31, + "probability": 0.9735 + }, + { + "start": 9919.37, + "end": 9921.45, + "probability": 0.9829 + }, + { + "start": 9921.63, + "end": 9922.73, + "probability": 0.9369 + }, + { + "start": 9922.81, + "end": 9925.67, + "probability": 0.9474 + }, + { + "start": 9925.87, + "end": 9929.47, + "probability": 0.991 + }, + { + "start": 9929.47, + "end": 9932.79, + "probability": 0.9954 + }, + { + "start": 9933.51, + "end": 9936.47, + "probability": 0.82 + }, + { + "start": 9937.19, + "end": 9939.59, + "probability": 0.9973 + }, + { + "start": 9940.33, + "end": 9943.99, + "probability": 0.9954 + }, + { + "start": 9944.31, + "end": 9946.83, + "probability": 0.8506 + }, + { + "start": 9946.95, + "end": 9948.09, + "probability": 0.8479 + }, + { + "start": 9948.37, + "end": 9951.53, + "probability": 0.9308 + }, + { + "start": 9951.85, + "end": 9952.51, + "probability": 0.5206 + }, + { + "start": 9952.77, + "end": 9956.01, + "probability": 0.8761 + }, + { + "start": 9956.09, + "end": 9958.99, + "probability": 0.9927 + }, + { + "start": 9959.41, + "end": 9959.99, + "probability": 0.5871 + }, + { + "start": 9960.81, + "end": 9967.17, + "probability": 0.979 + }, + { + "start": 9967.85, + "end": 9973.73, + "probability": 0.947 + }, + { + "start": 9974.89, + "end": 9975.87, + "probability": 0.9508 + }, + { + "start": 9976.03, + "end": 9977.39, + "probability": 0.9914 + }, + { + "start": 9977.39, + "end": 9979.57, + "probability": 0.9972 + }, + { + "start": 9980.27, + "end": 9984.23, + "probability": 0.9995 + }, + { + "start": 9985.31, + "end": 9988.39, + "probability": 0.8708 + }, + { + "start": 9989.07, + "end": 9991.39, + "probability": 0.9893 + }, + { + "start": 9991.93, + "end": 9994.29, + "probability": 0.789 + }, + { + "start": 9994.49, + "end": 9994.85, + "probability": 0.6187 + }, + { + "start": 9995.04, + "end": 9999.79, + "probability": 0.9948 + }, + { + "start": 10000.71, + "end": 10003.51, + "probability": 0.9626 + }, + { + "start": 10004.19, + "end": 10010.71, + "probability": 0.998 + }, + { + "start": 10011.57, + "end": 10014.91, + "probability": 0.7924 + }, + { + "start": 10015.07, + "end": 10018.07, + "probability": 0.9709 + }, + { + "start": 10018.55, + "end": 10018.73, + "probability": 0.5726 + }, + { + "start": 10020.07, + "end": 10024.13, + "probability": 0.9871 + }, + { + "start": 10024.29, + "end": 10026.63, + "probability": 0.972 + }, + { + "start": 10028.87, + "end": 10031.83, + "probability": 0.9504 + }, + { + "start": 10031.89, + "end": 10036.21, + "probability": 0.9443 + }, + { + "start": 10037.19, + "end": 10038.47, + "probability": 0.8077 + }, + { + "start": 10038.99, + "end": 10043.25, + "probability": 0.9949 + }, + { + "start": 10043.93, + "end": 10045.91, + "probability": 0.996 + }, + { + "start": 10046.07, + "end": 10047.39, + "probability": 0.8542 + }, + { + "start": 10048.47, + "end": 10050.35, + "probability": 0.6299 + }, + { + "start": 10050.41, + "end": 10055.33, + "probability": 0.995 + }, + { + "start": 10055.33, + "end": 10059.79, + "probability": 0.994 + }, + { + "start": 10060.63, + "end": 10064.07, + "probability": 0.6905 + }, + { + "start": 10064.27, + "end": 10065.53, + "probability": 0.6416 + }, + { + "start": 10067.19, + "end": 10071.0, + "probability": 0.9403 + }, + { + "start": 10074.21, + "end": 10075.25, + "probability": 0.7825 + }, + { + "start": 10075.41, + "end": 10075.93, + "probability": 0.7356 + }, + { + "start": 10077.17, + "end": 10077.57, + "probability": 0.825 + }, + { + "start": 10077.69, + "end": 10078.21, + "probability": 0.944 + }, + { + "start": 10078.39, + "end": 10078.89, + "probability": 0.7812 + }, + { + "start": 10078.97, + "end": 10084.99, + "probability": 0.9269 + }, + { + "start": 10085.89, + "end": 10087.55, + "probability": 0.9439 + }, + { + "start": 10088.11, + "end": 10089.99, + "probability": 0.9969 + }, + { + "start": 10090.67, + "end": 10091.63, + "probability": 0.9391 + }, + { + "start": 10092.95, + "end": 10097.79, + "probability": 0.9966 + }, + { + "start": 10098.39, + "end": 10102.53, + "probability": 0.9185 + }, + { + "start": 10102.69, + "end": 10108.87, + "probability": 0.9928 + }, + { + "start": 10109.58, + "end": 10111.63, + "probability": 0.9868 + }, + { + "start": 10112.51, + "end": 10113.75, + "probability": 0.8385 + }, + { + "start": 10115.17, + "end": 10115.75, + "probability": 0.9037 + }, + { + "start": 10115.83, + "end": 10116.59, + "probability": 0.7687 + }, + { + "start": 10116.71, + "end": 10119.19, + "probability": 0.7534 + }, + { + "start": 10120.83, + "end": 10125.45, + "probability": 0.9139 + }, + { + "start": 10131.65, + "end": 10132.3, + "probability": 0.7488 + }, + { + "start": 10133.41, + "end": 10134.63, + "probability": 0.7216 + }, + { + "start": 10136.39, + "end": 10137.91, + "probability": 0.9193 + }, + { + "start": 10138.69, + "end": 10140.93, + "probability": 0.6487 + }, + { + "start": 10141.27, + "end": 10141.89, + "probability": 0.4602 + }, + { + "start": 10141.95, + "end": 10142.19, + "probability": 0.7041 + }, + { + "start": 10143.45, + "end": 10144.67, + "probability": 0.9053 + }, + { + "start": 10146.73, + "end": 10150.63, + "probability": 0.8604 + }, + { + "start": 10150.83, + "end": 10152.93, + "probability": 0.7534 + }, + { + "start": 10153.11, + "end": 10154.01, + "probability": 0.4513 + }, + { + "start": 10156.35, + "end": 10157.39, + "probability": 0.4723 + }, + { + "start": 10157.61, + "end": 10159.81, + "probability": 0.6465 + }, + { + "start": 10160.37, + "end": 10163.81, + "probability": 0.9214 + }, + { + "start": 10164.67, + "end": 10166.17, + "probability": 0.871 + }, + { + "start": 10166.83, + "end": 10171.75, + "probability": 0.9899 + }, + { + "start": 10171.75, + "end": 10177.53, + "probability": 0.9987 + }, + { + "start": 10178.35, + "end": 10184.67, + "probability": 0.9356 + }, + { + "start": 10185.21, + "end": 10190.05, + "probability": 0.7225 + }, + { + "start": 10190.51, + "end": 10191.07, + "probability": 0.668 + }, + { + "start": 10191.27, + "end": 10193.33, + "probability": 0.7275 + }, + { + "start": 10193.33, + "end": 10194.11, + "probability": 0.7568 + }, + { + "start": 10196.23, + "end": 10200.45, + "probability": 0.8415 + }, + { + "start": 10201.63, + "end": 10202.37, + "probability": 0.7696 + }, + { + "start": 10202.77, + "end": 10203.61, + "probability": 0.6575 + }, + { + "start": 10203.75, + "end": 10206.71, + "probability": 0.8875 + }, + { + "start": 10206.93, + "end": 10211.19, + "probability": 0.9133 + }, + { + "start": 10211.77, + "end": 10213.03, + "probability": 0.8361 + }, + { + "start": 10213.29, + "end": 10215.24, + "probability": 0.9439 + }, + { + "start": 10216.15, + "end": 10217.89, + "probability": 0.6477 + }, + { + "start": 10217.89, + "end": 10218.81, + "probability": 0.7567 + }, + { + "start": 10221.11, + "end": 10222.07, + "probability": 0.4231 + }, + { + "start": 10222.33, + "end": 10224.45, + "probability": 0.9739 + }, + { + "start": 10224.81, + "end": 10225.53, + "probability": 0.8228 + }, + { + "start": 10225.81, + "end": 10230.19, + "probability": 0.4279 + }, + { + "start": 10231.03, + "end": 10236.67, + "probability": 0.9091 + }, + { + "start": 10237.57, + "end": 10237.67, + "probability": 0.0023 + } + ], + "segments_count": 3383, + "words_count": 17109, + "avg_words_per_segment": 5.0573, + "avg_segment_duration": 2.3185, + "avg_words_per_minute": 99.8113, + "plenum_id": "19279", + "duration": 10284.81, + "title": null, + "plenum_date": "2012-02-14" +} \ No newline at end of file