diff --git "a/75857/metadata.json" "b/75857/metadata.json" new file mode 100644--- /dev/null +++ "b/75857/metadata.json" @@ -0,0 +1,97297 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "75857", + "quality_score": 0.9014, + "per_segment_quality_scores": [ + { + "start": 28.9, + "end": 32.9, + "probability": 0.6524 + }, + { + "start": 33.56, + "end": 37.86, + "probability": 0.9331 + }, + { + "start": 38.3, + "end": 39.2, + "probability": 0.9753 + }, + { + "start": 39.98, + "end": 40.44, + "probability": 0.8258 + }, + { + "start": 40.72, + "end": 43.44, + "probability": 0.8375 + }, + { + "start": 45.54, + "end": 45.54, + "probability": 0.0463 + }, + { + "start": 45.54, + "end": 46.9, + "probability": 0.7535 + }, + { + "start": 47.48, + "end": 50.96, + "probability": 0.99 + }, + { + "start": 51.08, + "end": 52.24, + "probability": 0.4096 + }, + { + "start": 53.04, + "end": 53.42, + "probability": 0.9753 + }, + { + "start": 54.0, + "end": 57.6, + "probability": 0.5832 + }, + { + "start": 58.22, + "end": 62.6, + "probability": 0.7727 + }, + { + "start": 62.72, + "end": 63.7, + "probability": 0.8313 + }, + { + "start": 63.92, + "end": 65.36, + "probability": 0.9916 + }, + { + "start": 66.28, + "end": 68.28, + "probability": 0.9608 + }, + { + "start": 68.94, + "end": 71.74, + "probability": 0.3342 + }, + { + "start": 71.82, + "end": 72.98, + "probability": 0.3571 + }, + { + "start": 73.04, + "end": 75.72, + "probability": 0.7102 + }, + { + "start": 75.92, + "end": 76.98, + "probability": 0.8204 + }, + { + "start": 77.02, + "end": 78.2, + "probability": 0.6711 + }, + { + "start": 78.32, + "end": 79.06, + "probability": 0.6159 + }, + { + "start": 79.86, + "end": 83.98, + "probability": 0.6383 + }, + { + "start": 84.2, + "end": 85.3, + "probability": 0.4066 + }, + { + "start": 85.78, + "end": 87.7, + "probability": 0.9677 + }, + { + "start": 88.32, + "end": 89.94, + "probability": 0.6526 + }, + { + "start": 90.6, + "end": 94.31, + "probability": 0.6166 + }, + { + "start": 94.58, + "end": 95.62, + "probability": 0.3915 + }, + { + "start": 95.78, + "end": 99.56, + "probability": 0.9935 + }, + { + "start": 99.7, + "end": 100.76, + "probability": 0.4796 + }, + { + "start": 101.4, + "end": 105.46, + "probability": 0.6798 + }, + { + "start": 106.12, + "end": 107.4, + "probability": 0.8647 + }, + { + "start": 107.82, + "end": 110.17, + "probability": 0.9844 + }, + { + "start": 110.79, + "end": 113.36, + "probability": 0.9176 + }, + { + "start": 113.9, + "end": 115.76, + "probability": 0.993 + }, + { + "start": 118.92, + "end": 120.84, + "probability": 0.7156 + }, + { + "start": 120.84, + "end": 122.29, + "probability": 0.5188 + }, + { + "start": 123.08, + "end": 125.16, + "probability": 0.7706 + }, + { + "start": 125.16, + "end": 127.34, + "probability": 0.9153 + }, + { + "start": 128.0, + "end": 131.66, + "probability": 0.6615 + }, + { + "start": 132.48, + "end": 133.58, + "probability": 0.0038 + }, + { + "start": 161.64, + "end": 162.52, + "probability": 0.0396 + }, + { + "start": 163.5, + "end": 164.72, + "probability": 0.0292 + }, + { + "start": 166.48, + "end": 169.36, + "probability": 0.0302 + }, + { + "start": 178.98, + "end": 181.2, + "probability": 0.0143 + }, + { + "start": 181.92, + "end": 182.42, + "probability": 0.039 + }, + { + "start": 182.54, + "end": 182.86, + "probability": 0.0248 + }, + { + "start": 182.88, + "end": 184.72, + "probability": 0.0332 + }, + { + "start": 186.36, + "end": 189.62, + "probability": 0.0426 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.0, + "end": 228.0, + "probability": 0.0 + }, + { + "start": 228.84, + "end": 229.84, + "probability": 0.0519 + }, + { + "start": 236.64, + "end": 239.66, + "probability": 0.047 + }, + { + "start": 239.66, + "end": 239.66, + "probability": 0.1927 + }, + { + "start": 239.66, + "end": 239.78, + "probability": 0.0458 + }, + { + "start": 241.86, + "end": 242.14, + "probability": 0.062 + }, + { + "start": 242.14, + "end": 242.24, + "probability": 0.0421 + }, + { + "start": 242.24, + "end": 242.24, + "probability": 0.1444 + }, + { + "start": 242.24, + "end": 242.24, + "probability": 0.1777 + }, + { + "start": 242.24, + "end": 242.24, + "probability": 0.3818 + }, + { + "start": 242.24, + "end": 244.88, + "probability": 0.4114 + }, + { + "start": 246.58, + "end": 248.86, + "probability": 0.3683 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.0, + "end": 370.0, + "probability": 0.0 + }, + { + "start": 370.12, + "end": 371.24, + "probability": 0.8954 + }, + { + "start": 372.86, + "end": 373.34, + "probability": 0.2364 + }, + { + "start": 374.32, + "end": 376.62, + "probability": 0.9683 + }, + { + "start": 378.58, + "end": 380.04, + "probability": 0.9798 + }, + { + "start": 381.28, + "end": 384.52, + "probability": 0.9927 + }, + { + "start": 384.6, + "end": 387.0, + "probability": 0.9749 + }, + { + "start": 387.76, + "end": 392.28, + "probability": 0.777 + }, + { + "start": 392.86, + "end": 393.9, + "probability": 0.7623 + }, + { + "start": 394.06, + "end": 397.24, + "probability": 0.9888 + }, + { + "start": 397.62, + "end": 401.56, + "probability": 0.7646 + }, + { + "start": 401.62, + "end": 405.68, + "probability": 0.8775 + }, + { + "start": 405.98, + "end": 408.22, + "probability": 0.9018 + }, + { + "start": 408.34, + "end": 410.2, + "probability": 0.8897 + }, + { + "start": 410.3, + "end": 412.32, + "probability": 0.9406 + }, + { + "start": 413.0, + "end": 416.66, + "probability": 0.983 + }, + { + "start": 416.96, + "end": 422.74, + "probability": 0.9842 + }, + { + "start": 423.22, + "end": 424.66, + "probability": 0.9313 + }, + { + "start": 425.6, + "end": 427.7, + "probability": 0.8989 + }, + { + "start": 427.84, + "end": 429.4, + "probability": 0.8981 + }, + { + "start": 429.54, + "end": 430.68, + "probability": 0.9468 + }, + { + "start": 431.0, + "end": 432.62, + "probability": 0.9733 + }, + { + "start": 432.8, + "end": 434.04, + "probability": 0.9648 + }, + { + "start": 434.64, + "end": 436.1, + "probability": 0.9191 + }, + { + "start": 436.28, + "end": 437.22, + "probability": 0.7593 + }, + { + "start": 437.64, + "end": 438.24, + "probability": 0.8082 + }, + { + "start": 438.36, + "end": 439.14, + "probability": 0.896 + }, + { + "start": 439.24, + "end": 439.68, + "probability": 0.8677 + }, + { + "start": 439.74, + "end": 440.26, + "probability": 0.8608 + }, + { + "start": 440.44, + "end": 441.02, + "probability": 0.9515 + }, + { + "start": 441.12, + "end": 441.8, + "probability": 0.902 + }, + { + "start": 442.06, + "end": 442.64, + "probability": 0.9549 + }, + { + "start": 442.8, + "end": 443.58, + "probability": 0.7528 + }, + { + "start": 443.88, + "end": 444.74, + "probability": 0.9838 + }, + { + "start": 444.9, + "end": 445.68, + "probability": 0.804 + }, + { + "start": 446.26, + "end": 447.7, + "probability": 0.9919 + }, + { + "start": 448.32, + "end": 450.7, + "probability": 0.8227 + }, + { + "start": 451.34, + "end": 452.18, + "probability": 0.8282 + }, + { + "start": 453.12, + "end": 456.78, + "probability": 0.9905 + }, + { + "start": 456.78, + "end": 459.56, + "probability": 0.9954 + }, + { + "start": 460.8, + "end": 462.36, + "probability": 0.8883 + }, + { + "start": 462.98, + "end": 465.9, + "probability": 0.6962 + }, + { + "start": 466.2, + "end": 466.88, + "probability": 0.6211 + }, + { + "start": 467.24, + "end": 470.12, + "probability": 0.8238 + }, + { + "start": 470.38, + "end": 471.56, + "probability": 0.9397 + }, + { + "start": 471.62, + "end": 472.74, + "probability": 0.8258 + }, + { + "start": 473.26, + "end": 476.76, + "probability": 0.8224 + }, + { + "start": 477.12, + "end": 479.12, + "probability": 0.9846 + }, + { + "start": 479.66, + "end": 483.16, + "probability": 0.9224 + }, + { + "start": 483.16, + "end": 487.24, + "probability": 0.849 + }, + { + "start": 489.22, + "end": 490.18, + "probability": 0.9083 + }, + { + "start": 491.46, + "end": 499.65, + "probability": 0.9731 + }, + { + "start": 500.08, + "end": 501.14, + "probability": 0.8423 + }, + { + "start": 501.2, + "end": 504.08, + "probability": 0.8259 + }, + { + "start": 504.96, + "end": 505.28, + "probability": 0.5042 + }, + { + "start": 505.92, + "end": 512.48, + "probability": 0.9907 + }, + { + "start": 512.74, + "end": 519.8, + "probability": 0.9899 + }, + { + "start": 519.94, + "end": 521.46, + "probability": 0.7004 + }, + { + "start": 521.52, + "end": 522.76, + "probability": 0.6981 + }, + { + "start": 522.88, + "end": 524.52, + "probability": 0.6691 + }, + { + "start": 524.9, + "end": 526.12, + "probability": 0.7187 + }, + { + "start": 526.26, + "end": 529.52, + "probability": 0.9767 + }, + { + "start": 529.84, + "end": 533.0, + "probability": 0.964 + }, + { + "start": 533.66, + "end": 535.96, + "probability": 0.7926 + }, + { + "start": 536.28, + "end": 539.84, + "probability": 0.967 + }, + { + "start": 540.66, + "end": 543.68, + "probability": 0.981 + }, + { + "start": 543.9, + "end": 544.28, + "probability": 0.7625 + }, + { + "start": 544.44, + "end": 545.36, + "probability": 0.7429 + }, + { + "start": 545.64, + "end": 547.46, + "probability": 0.891 + }, + { + "start": 547.86, + "end": 552.16, + "probability": 0.9175 + }, + { + "start": 552.88, + "end": 555.54, + "probability": 0.9924 + }, + { + "start": 555.68, + "end": 557.82, + "probability": 0.9825 + }, + { + "start": 558.02, + "end": 561.5, + "probability": 0.9143 + }, + { + "start": 562.08, + "end": 565.44, + "probability": 0.9912 + }, + { + "start": 565.6, + "end": 567.24, + "probability": 0.8674 + }, + { + "start": 567.32, + "end": 568.92, + "probability": 0.9591 + }, + { + "start": 569.3, + "end": 569.94, + "probability": 0.9396 + }, + { + "start": 570.0, + "end": 570.7, + "probability": 0.814 + }, + { + "start": 570.98, + "end": 573.5, + "probability": 0.9951 + }, + { + "start": 574.02, + "end": 575.98, + "probability": 0.9741 + }, + { + "start": 576.18, + "end": 577.58, + "probability": 0.921 + }, + { + "start": 577.66, + "end": 581.12, + "probability": 0.9085 + }, + { + "start": 581.94, + "end": 584.4, + "probability": 0.9811 + }, + { + "start": 584.4, + "end": 587.38, + "probability": 0.9263 + }, + { + "start": 587.56, + "end": 589.0, + "probability": 0.9774 + }, + { + "start": 589.94, + "end": 593.18, + "probability": 0.998 + }, + { + "start": 593.18, + "end": 596.14, + "probability": 0.9991 + }, + { + "start": 596.44, + "end": 597.24, + "probability": 0.755 + }, + { + "start": 598.32, + "end": 599.92, + "probability": 0.9731 + }, + { + "start": 600.1, + "end": 603.4, + "probability": 0.974 + }, + { + "start": 604.08, + "end": 605.89, + "probability": 0.9909 + }, + { + "start": 606.34, + "end": 610.06, + "probability": 0.994 + }, + { + "start": 610.6, + "end": 616.0, + "probability": 0.9628 + }, + { + "start": 616.18, + "end": 617.0, + "probability": 0.9011 + }, + { + "start": 617.92, + "end": 619.4, + "probability": 0.9744 + }, + { + "start": 619.58, + "end": 619.9, + "probability": 0.4759 + }, + { + "start": 620.3, + "end": 623.38, + "probability": 0.9255 + }, + { + "start": 623.82, + "end": 626.18, + "probability": 0.9179 + }, + { + "start": 626.18, + "end": 627.16, + "probability": 0.9633 + }, + { + "start": 627.66, + "end": 629.08, + "probability": 0.9832 + }, + { + "start": 629.22, + "end": 630.06, + "probability": 0.9744 + }, + { + "start": 630.38, + "end": 631.48, + "probability": 0.9827 + }, + { + "start": 631.5, + "end": 632.5, + "probability": 0.9749 + }, + { + "start": 632.78, + "end": 636.38, + "probability": 0.9631 + }, + { + "start": 636.84, + "end": 639.02, + "probability": 0.9922 + }, + { + "start": 639.74, + "end": 642.3, + "probability": 0.9301 + }, + { + "start": 642.9, + "end": 645.7, + "probability": 0.833 + }, + { + "start": 646.02, + "end": 649.74, + "probability": 0.9415 + }, + { + "start": 650.16, + "end": 651.02, + "probability": 0.7009 + }, + { + "start": 651.54, + "end": 652.36, + "probability": 0.8741 + }, + { + "start": 652.72, + "end": 656.52, + "probability": 0.9068 + }, + { + "start": 656.62, + "end": 657.32, + "probability": 0.9158 + }, + { + "start": 657.7, + "end": 658.52, + "probability": 0.7784 + }, + { + "start": 658.72, + "end": 660.12, + "probability": 0.983 + }, + { + "start": 660.12, + "end": 660.94, + "probability": 0.9658 + }, + { + "start": 661.22, + "end": 661.9, + "probability": 0.9823 + }, + { + "start": 662.0, + "end": 662.7, + "probability": 0.861 + }, + { + "start": 663.08, + "end": 667.28, + "probability": 0.9922 + }, + { + "start": 667.34, + "end": 670.54, + "probability": 0.9976 + }, + { + "start": 670.76, + "end": 671.14, + "probability": 0.8051 + }, + { + "start": 671.36, + "end": 673.65, + "probability": 0.6989 + }, + { + "start": 674.58, + "end": 676.68, + "probability": 0.9932 + }, + { + "start": 677.18, + "end": 678.24, + "probability": 0.8205 + }, + { + "start": 679.04, + "end": 682.02, + "probability": 0.9483 + }, + { + "start": 682.98, + "end": 686.16, + "probability": 0.9958 + }, + { + "start": 686.58, + "end": 689.14, + "probability": 0.9981 + }, + { + "start": 690.36, + "end": 692.82, + "probability": 0.9965 + }, + { + "start": 693.16, + "end": 697.04, + "probability": 0.9761 + }, + { + "start": 697.2, + "end": 698.02, + "probability": 0.7672 + }, + { + "start": 698.16, + "end": 698.8, + "probability": 0.7318 + }, + { + "start": 699.16, + "end": 702.0, + "probability": 0.9782 + }, + { + "start": 702.24, + "end": 703.16, + "probability": 0.8198 + }, + { + "start": 703.82, + "end": 705.8, + "probability": 0.8792 + }, + { + "start": 705.9, + "end": 706.52, + "probability": 0.7173 + }, + { + "start": 706.6, + "end": 708.76, + "probability": 0.9116 + }, + { + "start": 709.08, + "end": 710.72, + "probability": 0.9357 + }, + { + "start": 711.26, + "end": 711.94, + "probability": 0.4376 + }, + { + "start": 712.58, + "end": 713.36, + "probability": 0.9143 + }, + { + "start": 713.94, + "end": 716.78, + "probability": 0.8847 + }, + { + "start": 717.32, + "end": 720.26, + "probability": 0.962 + }, + { + "start": 720.72, + "end": 723.36, + "probability": 0.9911 + }, + { + "start": 723.62, + "end": 726.36, + "probability": 0.9924 + }, + { + "start": 726.62, + "end": 732.82, + "probability": 0.9965 + }, + { + "start": 733.56, + "end": 734.18, + "probability": 0.4277 + }, + { + "start": 735.36, + "end": 741.08, + "probability": 0.9932 + }, + { + "start": 741.14, + "end": 741.76, + "probability": 0.8951 + }, + { + "start": 742.73, + "end": 744.66, + "probability": 0.8589 + }, + { + "start": 745.24, + "end": 747.12, + "probability": 0.6597 + }, + { + "start": 748.18, + "end": 750.54, + "probability": 0.7704 + }, + { + "start": 751.06, + "end": 752.28, + "probability": 0.9611 + }, + { + "start": 753.56, + "end": 755.3, + "probability": 0.9565 + }, + { + "start": 756.52, + "end": 759.88, + "probability": 0.9869 + }, + { + "start": 759.88, + "end": 763.49, + "probability": 0.9924 + }, + { + "start": 764.14, + "end": 766.52, + "probability": 0.8226 + }, + { + "start": 767.62, + "end": 768.82, + "probability": 0.8582 + }, + { + "start": 769.88, + "end": 770.7, + "probability": 0.8904 + }, + { + "start": 770.9, + "end": 773.64, + "probability": 0.979 + }, + { + "start": 774.1, + "end": 774.3, + "probability": 0.8516 + }, + { + "start": 777.22, + "end": 779.66, + "probability": 0.866 + }, + { + "start": 779.84, + "end": 782.26, + "probability": 0.8357 + }, + { + "start": 783.1, + "end": 786.3, + "probability": 0.9958 + }, + { + "start": 786.88, + "end": 790.62, + "probability": 0.9811 + }, + { + "start": 806.58, + "end": 809.18, + "probability": 0.6656 + }, + { + "start": 811.02, + "end": 813.7, + "probability": 0.9139 + }, + { + "start": 815.06, + "end": 815.14, + "probability": 0.6106 + }, + { + "start": 815.26, + "end": 815.58, + "probability": 0.9055 + }, + { + "start": 815.64, + "end": 815.82, + "probability": 0.8651 + }, + { + "start": 815.92, + "end": 816.72, + "probability": 0.6367 + }, + { + "start": 817.09, + "end": 821.94, + "probability": 0.9812 + }, + { + "start": 822.28, + "end": 824.14, + "probability": 0.9315 + }, + { + "start": 825.52, + "end": 827.16, + "probability": 0.9762 + }, + { + "start": 827.6, + "end": 829.66, + "probability": 0.994 + }, + { + "start": 831.12, + "end": 833.52, + "probability": 0.3075 + }, + { + "start": 833.62, + "end": 837.16, + "probability": 0.9784 + }, + { + "start": 837.22, + "end": 838.48, + "probability": 0.221 + }, + { + "start": 838.5, + "end": 843.32, + "probability": 0.8582 + }, + { + "start": 843.74, + "end": 845.56, + "probability": 0.6367 + }, + { + "start": 845.62, + "end": 847.74, + "probability": 0.9778 + }, + { + "start": 848.78, + "end": 850.96, + "probability": 0.9357 + }, + { + "start": 851.08, + "end": 852.02, + "probability": 0.6725 + }, + { + "start": 852.18, + "end": 854.42, + "probability": 0.9611 + }, + { + "start": 855.58, + "end": 858.02, + "probability": 0.9751 + }, + { + "start": 858.86, + "end": 862.44, + "probability": 0.9967 + }, + { + "start": 863.76, + "end": 867.46, + "probability": 0.8254 + }, + { + "start": 868.5, + "end": 871.12, + "probability": 0.9944 + }, + { + "start": 871.22, + "end": 875.84, + "probability": 0.938 + }, + { + "start": 876.66, + "end": 878.2, + "probability": 0.9601 + }, + { + "start": 879.24, + "end": 880.32, + "probability": 0.7822 + }, + { + "start": 881.65, + "end": 886.0, + "probability": 0.9968 + }, + { + "start": 886.0, + "end": 888.76, + "probability": 0.9883 + }, + { + "start": 888.88, + "end": 889.8, + "probability": 0.8152 + }, + { + "start": 889.94, + "end": 892.16, + "probability": 0.998 + }, + { + "start": 893.88, + "end": 894.84, + "probability": 0.991 + }, + { + "start": 897.08, + "end": 899.36, + "probability": 0.9988 + }, + { + "start": 900.64, + "end": 903.88, + "probability": 0.9892 + }, + { + "start": 905.26, + "end": 907.62, + "probability": 0.9157 + }, + { + "start": 908.06, + "end": 912.38, + "probability": 0.9985 + }, + { + "start": 913.48, + "end": 918.34, + "probability": 0.9951 + }, + { + "start": 918.44, + "end": 918.92, + "probability": 0.4942 + }, + { + "start": 918.98, + "end": 920.16, + "probability": 0.6269 + }, + { + "start": 920.32, + "end": 924.56, + "probability": 0.9417 + }, + { + "start": 925.3, + "end": 930.06, + "probability": 0.9923 + }, + { + "start": 930.34, + "end": 931.72, + "probability": 0.8428 + }, + { + "start": 931.8, + "end": 932.74, + "probability": 0.8625 + }, + { + "start": 932.96, + "end": 934.02, + "probability": 0.8094 + }, + { + "start": 934.04, + "end": 935.22, + "probability": 0.177 + }, + { + "start": 935.34, + "end": 936.64, + "probability": 0.8307 + }, + { + "start": 936.74, + "end": 937.54, + "probability": 0.9897 + }, + { + "start": 937.64, + "end": 938.2, + "probability": 0.9341 + }, + { + "start": 938.2, + "end": 939.22, + "probability": 0.8916 + }, + { + "start": 939.86, + "end": 941.94, + "probability": 0.998 + }, + { + "start": 942.78, + "end": 944.42, + "probability": 0.9894 + }, + { + "start": 944.82, + "end": 946.76, + "probability": 0.9937 + }, + { + "start": 946.92, + "end": 949.46, + "probability": 0.9959 + }, + { + "start": 949.56, + "end": 950.15, + "probability": 0.9849 + }, + { + "start": 951.22, + "end": 953.72, + "probability": 0.9988 + }, + { + "start": 953.78, + "end": 957.43, + "probability": 0.7353 + }, + { + "start": 958.34, + "end": 962.14, + "probability": 0.9961 + }, + { + "start": 962.8, + "end": 969.24, + "probability": 0.9453 + }, + { + "start": 969.24, + "end": 969.24, + "probability": 0.3642 + }, + { + "start": 969.24, + "end": 971.86, + "probability": 0.8449 + }, + { + "start": 972.18, + "end": 973.04, + "probability": 0.1982 + }, + { + "start": 973.78, + "end": 973.78, + "probability": 0.1957 + }, + { + "start": 973.78, + "end": 976.0, + "probability": 0.8466 + }, + { + "start": 976.54, + "end": 981.14, + "probability": 0.9816 + }, + { + "start": 981.28, + "end": 982.3, + "probability": 0.8846 + }, + { + "start": 982.66, + "end": 987.16, + "probability": 0.9282 + }, + { + "start": 987.62, + "end": 988.94, + "probability": 0.2136 + }, + { + "start": 988.94, + "end": 988.94, + "probability": 0.0429 + }, + { + "start": 988.94, + "end": 992.88, + "probability": 0.9575 + }, + { + "start": 992.88, + "end": 995.46, + "probability": 0.9943 + }, + { + "start": 995.74, + "end": 998.1, + "probability": 0.9258 + }, + { + "start": 998.62, + "end": 1000.98, + "probability": 0.9971 + }, + { + "start": 1001.6, + "end": 1001.9, + "probability": 0.6577 + }, + { + "start": 1001.94, + "end": 1002.9, + "probability": 0.7665 + }, + { + "start": 1002.9, + "end": 1008.84, + "probability": 0.9938 + }, + { + "start": 1009.56, + "end": 1010.92, + "probability": 0.9986 + }, + { + "start": 1011.14, + "end": 1014.44, + "probability": 0.96 + }, + { + "start": 1014.44, + "end": 1015.1, + "probability": 0.0422 + }, + { + "start": 1015.1, + "end": 1015.1, + "probability": 0.05 + }, + { + "start": 1015.1, + "end": 1015.1, + "probability": 0.0214 + }, + { + "start": 1015.1, + "end": 1016.6, + "probability": 0.5515 + }, + { + "start": 1016.6, + "end": 1020.52, + "probability": 0.9329 + }, + { + "start": 1020.86, + "end": 1021.66, + "probability": 0.906 + }, + { + "start": 1021.7, + "end": 1023.66, + "probability": 0.6728 + }, + { + "start": 1024.4, + "end": 1026.0, + "probability": 0.1323 + }, + { + "start": 1026.0, + "end": 1026.7, + "probability": 0.0539 + }, + { + "start": 1026.72, + "end": 1027.06, + "probability": 0.1365 + }, + { + "start": 1027.28, + "end": 1028.98, + "probability": 0.7863 + }, + { + "start": 1029.22, + "end": 1030.94, + "probability": 0.84 + }, + { + "start": 1031.36, + "end": 1033.6, + "probability": 0.9769 + }, + { + "start": 1036.66, + "end": 1036.78, + "probability": 0.0312 + }, + { + "start": 1036.78, + "end": 1036.78, + "probability": 0.5129 + }, + { + "start": 1036.78, + "end": 1038.28, + "probability": 0.7357 + }, + { + "start": 1039.06, + "end": 1039.06, + "probability": 0.1743 + }, + { + "start": 1039.06, + "end": 1041.0, + "probability": 0.8731 + }, + { + "start": 1041.28, + "end": 1042.12, + "probability": 0.4776 + }, + { + "start": 1043.02, + "end": 1043.02, + "probability": 0.0901 + }, + { + "start": 1043.02, + "end": 1045.36, + "probability": 0.6123 + }, + { + "start": 1045.74, + "end": 1046.78, + "probability": 0.2377 + }, + { + "start": 1046.8, + "end": 1047.78, + "probability": 0.916 + }, + { + "start": 1048.34, + "end": 1048.34, + "probability": 0.0439 + }, + { + "start": 1048.36, + "end": 1050.06, + "probability": 0.7502 + }, + { + "start": 1050.28, + "end": 1050.3, + "probability": 0.0064 + }, + { + "start": 1050.3, + "end": 1052.14, + "probability": 0.9504 + }, + { + "start": 1052.92, + "end": 1054.28, + "probability": 0.6154 + }, + { + "start": 1054.44, + "end": 1055.58, + "probability": 0.9524 + }, + { + "start": 1056.04, + "end": 1056.98, + "probability": 0.8844 + }, + { + "start": 1057.02, + "end": 1060.12, + "probability": 0.9449 + }, + { + "start": 1060.14, + "end": 1060.72, + "probability": 0.061 + }, + { + "start": 1060.72, + "end": 1060.86, + "probability": 0.1839 + }, + { + "start": 1060.86, + "end": 1060.88, + "probability": 0.2955 + }, + { + "start": 1060.88, + "end": 1063.52, + "probability": 0.9769 + }, + { + "start": 1063.76, + "end": 1068.76, + "probability": 0.7774 + }, + { + "start": 1068.82, + "end": 1069.2, + "probability": 0.5602 + }, + { + "start": 1069.34, + "end": 1069.74, + "probability": 0.8512 + }, + { + "start": 1069.98, + "end": 1071.19, + "probability": 0.9675 + }, + { + "start": 1071.88, + "end": 1073.06, + "probability": 0.7079 + }, + { + "start": 1073.34, + "end": 1073.66, + "probability": 0.2061 + }, + { + "start": 1074.72, + "end": 1074.84, + "probability": 0.1488 + }, + { + "start": 1075.38, + "end": 1078.26, + "probability": 0.7755 + }, + { + "start": 1079.22, + "end": 1079.22, + "probability": 0.0752 + }, + { + "start": 1079.22, + "end": 1079.22, + "probability": 0.2156 + }, + { + "start": 1079.22, + "end": 1079.22, + "probability": 0.3105 + }, + { + "start": 1079.22, + "end": 1080.14, + "probability": 0.3568 + }, + { + "start": 1080.2, + "end": 1084.62, + "probability": 0.9363 + }, + { + "start": 1085.1, + "end": 1086.86, + "probability": 0.8905 + }, + { + "start": 1086.96, + "end": 1087.56, + "probability": 0.7128 + }, + { + "start": 1088.22, + "end": 1088.34, + "probability": 0.3074 + }, + { + "start": 1088.96, + "end": 1089.66, + "probability": 0.2617 + }, + { + "start": 1089.66, + "end": 1089.66, + "probability": 0.0665 + }, + { + "start": 1089.66, + "end": 1090.8, + "probability": 0.7754 + }, + { + "start": 1091.04, + "end": 1092.86, + "probability": 0.8232 + }, + { + "start": 1093.16, + "end": 1094.68, + "probability": 0.8261 + }, + { + "start": 1095.02, + "end": 1098.34, + "probability": 0.9617 + }, + { + "start": 1099.23, + "end": 1100.56, + "probability": 0.9688 + }, + { + "start": 1100.7, + "end": 1101.82, + "probability": 0.7728 + }, + { + "start": 1102.16, + "end": 1102.62, + "probability": 0.2101 + }, + { + "start": 1102.74, + "end": 1102.94, + "probability": 0.3414 + }, + { + "start": 1102.94, + "end": 1103.6, + "probability": 0.4779 + }, + { + "start": 1103.6, + "end": 1103.9, + "probability": 0.323 + }, + { + "start": 1103.9, + "end": 1106.44, + "probability": 0.6291 + }, + { + "start": 1106.44, + "end": 1108.0, + "probability": 0.3261 + }, + { + "start": 1108.38, + "end": 1108.96, + "probability": 0.7673 + }, + { + "start": 1108.96, + "end": 1113.72, + "probability": 0.9957 + }, + { + "start": 1114.52, + "end": 1117.04, + "probability": 0.8288 + }, + { + "start": 1118.2, + "end": 1119.4, + "probability": 0.7031 + }, + { + "start": 1123.52, + "end": 1125.58, + "probability": 0.9727 + }, + { + "start": 1127.28, + "end": 1130.3, + "probability": 0.9927 + }, + { + "start": 1131.88, + "end": 1137.6, + "probability": 0.9988 + }, + { + "start": 1139.12, + "end": 1143.04, + "probability": 0.9952 + }, + { + "start": 1143.16, + "end": 1144.88, + "probability": 0.9419 + }, + { + "start": 1146.34, + "end": 1149.02, + "probability": 0.8472 + }, + { + "start": 1150.42, + "end": 1151.04, + "probability": 0.9449 + }, + { + "start": 1151.88, + "end": 1153.64, + "probability": 0.8542 + }, + { + "start": 1153.74, + "end": 1155.54, + "probability": 0.9913 + }, + { + "start": 1156.3, + "end": 1158.02, + "probability": 0.9805 + }, + { + "start": 1158.98, + "end": 1160.04, + "probability": 0.843 + }, + { + "start": 1161.56, + "end": 1164.62, + "probability": 0.9922 + }, + { + "start": 1164.84, + "end": 1167.6, + "probability": 0.9879 + }, + { + "start": 1168.18, + "end": 1169.6, + "probability": 0.792 + }, + { + "start": 1170.6, + "end": 1177.82, + "probability": 0.9723 + }, + { + "start": 1178.78, + "end": 1181.56, + "probability": 0.9153 + }, + { + "start": 1182.06, + "end": 1184.12, + "probability": 0.8385 + }, + { + "start": 1184.54, + "end": 1185.46, + "probability": 0.8488 + }, + { + "start": 1185.56, + "end": 1188.12, + "probability": 0.9977 + }, + { + "start": 1188.56, + "end": 1190.24, + "probability": 0.9883 + }, + { + "start": 1190.32, + "end": 1190.58, + "probability": 0.1874 + }, + { + "start": 1190.58, + "end": 1190.76, + "probability": 0.0685 + }, + { + "start": 1190.88, + "end": 1192.16, + "probability": 0.7961 + }, + { + "start": 1192.18, + "end": 1194.12, + "probability": 0.4677 + }, + { + "start": 1194.16, + "end": 1197.06, + "probability": 0.9629 + }, + { + "start": 1197.62, + "end": 1201.6, + "probability": 0.9878 + }, + { + "start": 1201.62, + "end": 1201.7, + "probability": 0.0315 + }, + { + "start": 1201.7, + "end": 1201.7, + "probability": 0.0328 + }, + { + "start": 1201.7, + "end": 1202.28, + "probability": 0.35 + }, + { + "start": 1202.84, + "end": 1205.52, + "probability": 0.7721 + }, + { + "start": 1206.12, + "end": 1206.12, + "probability": 0.5979 + }, + { + "start": 1206.4, + "end": 1212.44, + "probability": 0.8741 + }, + { + "start": 1212.98, + "end": 1216.16, + "probability": 0.989 + }, + { + "start": 1216.34, + "end": 1218.34, + "probability": 0.991 + }, + { + "start": 1218.4, + "end": 1220.32, + "probability": 0.9938 + }, + { + "start": 1220.5, + "end": 1222.5, + "probability": 0.9928 + }, + { + "start": 1222.86, + "end": 1226.06, + "probability": 0.8518 + }, + { + "start": 1226.82, + "end": 1227.26, + "probability": 0.091 + }, + { + "start": 1228.34, + "end": 1228.72, + "probability": 0.0383 + }, + { + "start": 1228.72, + "end": 1229.0, + "probability": 0.0965 + }, + { + "start": 1230.14, + "end": 1230.66, + "probability": 0.4191 + }, + { + "start": 1231.04, + "end": 1231.97, + "probability": 0.9615 + }, + { + "start": 1232.22, + "end": 1237.34, + "probability": 0.9902 + }, + { + "start": 1237.34, + "end": 1240.98, + "probability": 0.9992 + }, + { + "start": 1241.42, + "end": 1245.8, + "probability": 0.9948 + }, + { + "start": 1246.3, + "end": 1247.88, + "probability": 0.9754 + }, + { + "start": 1247.94, + "end": 1252.16, + "probability": 0.9814 + }, + { + "start": 1252.72, + "end": 1257.5, + "probability": 0.9861 + }, + { + "start": 1257.66, + "end": 1258.02, + "probability": 0.4149 + }, + { + "start": 1258.12, + "end": 1261.9, + "probability": 0.9956 + }, + { + "start": 1262.92, + "end": 1268.06, + "probability": 0.9957 + }, + { + "start": 1268.8, + "end": 1270.6, + "probability": 0.995 + }, + { + "start": 1270.82, + "end": 1271.86, + "probability": 0.869 + }, + { + "start": 1272.06, + "end": 1272.98, + "probability": 0.9345 + }, + { + "start": 1273.7, + "end": 1275.88, + "probability": 0.9639 + }, + { + "start": 1275.9, + "end": 1276.74, + "probability": 0.2566 + }, + { + "start": 1276.76, + "end": 1278.6, + "probability": 0.9035 + }, + { + "start": 1281.22, + "end": 1281.74, + "probability": 0.3261 + }, + { + "start": 1282.14, + "end": 1284.88, + "probability": 0.5628 + }, + { + "start": 1284.94, + "end": 1287.4, + "probability": 0.9663 + }, + { + "start": 1287.56, + "end": 1287.74, + "probability": 0.8514 + }, + { + "start": 1287.78, + "end": 1289.26, + "probability": 0.0453 + }, + { + "start": 1289.44, + "end": 1289.54, + "probability": 0.0288 + }, + { + "start": 1289.54, + "end": 1294.06, + "probability": 0.6871 + }, + { + "start": 1294.32, + "end": 1296.52, + "probability": 0.7501 + }, + { + "start": 1297.14, + "end": 1302.26, + "probability": 0.9563 + }, + { + "start": 1302.26, + "end": 1306.86, + "probability": 0.8911 + }, + { + "start": 1307.97, + "end": 1308.6, + "probability": 0.2511 + }, + { + "start": 1308.6, + "end": 1311.8, + "probability": 0.41 + }, + { + "start": 1312.52, + "end": 1312.7, + "probability": 0.0319 + }, + { + "start": 1312.7, + "end": 1312.7, + "probability": 0.1133 + }, + { + "start": 1312.7, + "end": 1312.7, + "probability": 0.0232 + }, + { + "start": 1312.7, + "end": 1314.24, + "probability": 0.3118 + }, + { + "start": 1314.58, + "end": 1316.2, + "probability": 0.8198 + }, + { + "start": 1316.24, + "end": 1320.42, + "probability": 0.7168 + }, + { + "start": 1320.42, + "end": 1321.12, + "probability": 0.1976 + }, + { + "start": 1321.14, + "end": 1321.14, + "probability": 0.3825 + }, + { + "start": 1321.18, + "end": 1321.72, + "probability": 0.4267 + }, + { + "start": 1321.82, + "end": 1326.22, + "probability": 0.7235 + }, + { + "start": 1326.28, + "end": 1326.48, + "probability": 0.8936 + }, + { + "start": 1326.62, + "end": 1328.44, + "probability": 0.9881 + }, + { + "start": 1328.58, + "end": 1329.33, + "probability": 0.7378 + }, + { + "start": 1330.2, + "end": 1331.9, + "probability": 0.4175 + }, + { + "start": 1332.02, + "end": 1335.68, + "probability": 0.9497 + }, + { + "start": 1335.68, + "end": 1338.48, + "probability": 0.9993 + }, + { + "start": 1338.86, + "end": 1341.12, + "probability": 0.7205 + }, + { + "start": 1341.92, + "end": 1343.4, + "probability": 0.9897 + }, + { + "start": 1343.5, + "end": 1345.4, + "probability": 0.9896 + }, + { + "start": 1347.94, + "end": 1353.5, + "probability": 0.9963 + }, + { + "start": 1354.02, + "end": 1356.24, + "probability": 0.9601 + }, + { + "start": 1357.02, + "end": 1360.18, + "probability": 0.992 + }, + { + "start": 1360.32, + "end": 1361.41, + "probability": 0.8853 + }, + { + "start": 1363.12, + "end": 1364.22, + "probability": 0.3874 + }, + { + "start": 1364.3, + "end": 1366.42, + "probability": 0.9855 + }, + { + "start": 1366.42, + "end": 1368.74, + "probability": 0.9987 + }, + { + "start": 1368.8, + "end": 1372.84, + "probability": 0.9473 + }, + { + "start": 1375.46, + "end": 1378.82, + "probability": 0.9868 + }, + { + "start": 1378.82, + "end": 1382.42, + "probability": 0.9989 + }, + { + "start": 1383.28, + "end": 1384.28, + "probability": 0.9266 + }, + { + "start": 1385.5, + "end": 1386.36, + "probability": 0.8982 + }, + { + "start": 1387.06, + "end": 1391.12, + "probability": 0.8781 + }, + { + "start": 1391.18, + "end": 1391.91, + "probability": 0.9927 + }, + { + "start": 1392.12, + "end": 1397.28, + "probability": 0.9797 + }, + { + "start": 1398.46, + "end": 1402.36, + "probability": 0.974 + }, + { + "start": 1402.46, + "end": 1403.32, + "probability": 0.8387 + }, + { + "start": 1403.38, + "end": 1407.34, + "probability": 0.9822 + }, + { + "start": 1407.44, + "end": 1408.76, + "probability": 0.9995 + }, + { + "start": 1408.96, + "end": 1410.82, + "probability": 0.9827 + }, + { + "start": 1411.0, + "end": 1412.9, + "probability": 0.9941 + }, + { + "start": 1414.28, + "end": 1418.18, + "probability": 0.9826 + }, + { + "start": 1418.36, + "end": 1420.74, + "probability": 0.9919 + }, + { + "start": 1422.4, + "end": 1425.94, + "probability": 0.9844 + }, + { + "start": 1425.94, + "end": 1428.54, + "probability": 0.9689 + }, + { + "start": 1428.64, + "end": 1431.54, + "probability": 0.9919 + }, + { + "start": 1433.66, + "end": 1437.88, + "probability": 0.9961 + }, + { + "start": 1438.02, + "end": 1439.94, + "probability": 0.9763 + }, + { + "start": 1442.42, + "end": 1446.96, + "probability": 0.7578 + }, + { + "start": 1448.34, + "end": 1452.68, + "probability": 0.9714 + }, + { + "start": 1452.68, + "end": 1455.24, + "probability": 0.8945 + }, + { + "start": 1455.36, + "end": 1457.52, + "probability": 0.9 + }, + { + "start": 1458.06, + "end": 1459.34, + "probability": 0.8118 + }, + { + "start": 1460.86, + "end": 1462.42, + "probability": 0.7911 + }, + { + "start": 1462.56, + "end": 1462.84, + "probability": 0.5169 + }, + { + "start": 1462.94, + "end": 1463.22, + "probability": 0.8438 + }, + { + "start": 1463.42, + "end": 1464.92, + "probability": 0.9298 + }, + { + "start": 1465.0, + "end": 1466.1, + "probability": 0.6761 + }, + { + "start": 1466.62, + "end": 1468.32, + "probability": 0.9902 + }, + { + "start": 1468.5, + "end": 1468.92, + "probability": 0.6323 + }, + { + "start": 1469.0, + "end": 1471.42, + "probability": 0.9302 + }, + { + "start": 1472.02, + "end": 1474.82, + "probability": 0.994 + }, + { + "start": 1475.52, + "end": 1482.82, + "probability": 0.9871 + }, + { + "start": 1483.56, + "end": 1486.04, + "probability": 0.9071 + }, + { + "start": 1486.18, + "end": 1486.74, + "probability": 0.6295 + }, + { + "start": 1486.88, + "end": 1488.7, + "probability": 0.9878 + }, + { + "start": 1489.3, + "end": 1492.84, + "probability": 0.979 + }, + { + "start": 1493.3, + "end": 1496.42, + "probability": 0.9707 + }, + { + "start": 1497.74, + "end": 1498.14, + "probability": 0.8857 + }, + { + "start": 1498.32, + "end": 1498.82, + "probability": 0.8481 + }, + { + "start": 1498.88, + "end": 1499.9, + "probability": 0.5716 + }, + { + "start": 1499.96, + "end": 1503.7, + "probability": 0.9962 + }, + { + "start": 1504.24, + "end": 1505.82, + "probability": 0.807 + }, + { + "start": 1505.86, + "end": 1508.72, + "probability": 0.9467 + }, + { + "start": 1509.54, + "end": 1515.38, + "probability": 0.9933 + }, + { + "start": 1515.48, + "end": 1518.16, + "probability": 0.8904 + }, + { + "start": 1518.72, + "end": 1521.96, + "probability": 0.978 + }, + { + "start": 1522.66, + "end": 1525.4, + "probability": 0.9713 + }, + { + "start": 1525.8, + "end": 1526.87, + "probability": 0.9868 + }, + { + "start": 1528.0, + "end": 1531.74, + "probability": 0.985 + }, + { + "start": 1531.86, + "end": 1536.16, + "probability": 0.9991 + }, + { + "start": 1536.78, + "end": 1538.82, + "probability": 0.9936 + }, + { + "start": 1539.48, + "end": 1541.6, + "probability": 0.9595 + }, + { + "start": 1541.72, + "end": 1543.22, + "probability": 0.9198 + }, + { + "start": 1543.3, + "end": 1545.18, + "probability": 0.9272 + }, + { + "start": 1545.96, + "end": 1547.14, + "probability": 0.9058 + }, + { + "start": 1547.14, + "end": 1548.54, + "probability": 0.9902 + }, + { + "start": 1548.84, + "end": 1552.84, + "probability": 0.9837 + }, + { + "start": 1553.26, + "end": 1554.84, + "probability": 0.7416 + }, + { + "start": 1554.98, + "end": 1559.22, + "probability": 0.9861 + }, + { + "start": 1559.22, + "end": 1561.7, + "probability": 0.9977 + }, + { + "start": 1561.82, + "end": 1562.7, + "probability": 0.9088 + }, + { + "start": 1563.16, + "end": 1563.86, + "probability": 0.874 + }, + { + "start": 1564.52, + "end": 1565.7, + "probability": 0.9331 + }, + { + "start": 1565.76, + "end": 1568.46, + "probability": 0.9902 + }, + { + "start": 1568.54, + "end": 1570.29, + "probability": 0.9686 + }, + { + "start": 1571.1, + "end": 1573.92, + "probability": 0.9861 + }, + { + "start": 1574.0, + "end": 1577.3, + "probability": 0.8765 + }, + { + "start": 1577.38, + "end": 1581.84, + "probability": 0.9531 + }, + { + "start": 1582.28, + "end": 1584.0, + "probability": 0.956 + }, + { + "start": 1584.4, + "end": 1586.88, + "probability": 0.9837 + }, + { + "start": 1586.92, + "end": 1588.22, + "probability": 0.9556 + }, + { + "start": 1590.28, + "end": 1594.26, + "probability": 0.9897 + }, + { + "start": 1594.46, + "end": 1594.9, + "probability": 0.8876 + }, + { + "start": 1594.96, + "end": 1596.76, + "probability": 0.959 + }, + { + "start": 1598.29, + "end": 1601.8, + "probability": 0.9294 + }, + { + "start": 1601.98, + "end": 1605.2, + "probability": 0.9922 + }, + { + "start": 1605.4, + "end": 1606.66, + "probability": 0.8625 + }, + { + "start": 1607.68, + "end": 1608.2, + "probability": 0.2288 + }, + { + "start": 1609.02, + "end": 1609.26, + "probability": 0.1208 + }, + { + "start": 1609.72, + "end": 1609.72, + "probability": 0.0009 + }, + { + "start": 1609.72, + "end": 1611.36, + "probability": 0.7537 + }, + { + "start": 1614.26, + "end": 1616.36, + "probability": 0.9213 + }, + { + "start": 1616.44, + "end": 1617.7, + "probability": 0.9958 + }, + { + "start": 1617.86, + "end": 1620.04, + "probability": 0.9976 + }, + { + "start": 1620.18, + "end": 1624.14, + "probability": 0.9958 + }, + { + "start": 1624.28, + "end": 1626.72, + "probability": 0.95 + }, + { + "start": 1626.94, + "end": 1627.84, + "probability": 0.9905 + }, + { + "start": 1628.38, + "end": 1630.06, + "probability": 0.9923 + }, + { + "start": 1630.78, + "end": 1633.34, + "probability": 0.978 + }, + { + "start": 1633.38, + "end": 1634.8, + "probability": 0.9719 + }, + { + "start": 1634.92, + "end": 1640.52, + "probability": 0.895 + }, + { + "start": 1642.24, + "end": 1648.04, + "probability": 0.9092 + }, + { + "start": 1649.3, + "end": 1655.22, + "probability": 0.9327 + }, + { + "start": 1656.1, + "end": 1659.81, + "probability": 0.7485 + }, + { + "start": 1659.98, + "end": 1664.32, + "probability": 0.9581 + }, + { + "start": 1667.1, + "end": 1669.94, + "probability": 0.9067 + }, + { + "start": 1670.04, + "end": 1671.28, + "probability": 0.8672 + }, + { + "start": 1671.38, + "end": 1672.14, + "probability": 0.8431 + }, + { + "start": 1672.2, + "end": 1674.78, + "probability": 0.98 + }, + { + "start": 1674.78, + "end": 1678.74, + "probability": 0.8691 + }, + { + "start": 1679.44, + "end": 1684.52, + "probability": 0.9924 + }, + { + "start": 1684.94, + "end": 1685.84, + "probability": 0.9338 + }, + { + "start": 1685.92, + "end": 1686.42, + "probability": 0.8966 + }, + { + "start": 1686.5, + "end": 1691.66, + "probability": 0.9589 + }, + { + "start": 1692.5, + "end": 1693.64, + "probability": 0.6631 + }, + { + "start": 1693.84, + "end": 1694.72, + "probability": 0.6743 + }, + { + "start": 1694.86, + "end": 1696.94, + "probability": 0.6323 + }, + { + "start": 1697.46, + "end": 1704.56, + "probability": 0.9786 + }, + { + "start": 1705.46, + "end": 1706.22, + "probability": 0.7581 + }, + { + "start": 1706.52, + "end": 1706.68, + "probability": 0.5002 + }, + { + "start": 1706.76, + "end": 1707.9, + "probability": 0.61 + }, + { + "start": 1708.14, + "end": 1708.62, + "probability": 0.6434 + }, + { + "start": 1708.84, + "end": 1709.4, + "probability": 0.7846 + }, + { + "start": 1709.84, + "end": 1710.81, + "probability": 0.9899 + }, + { + "start": 1711.02, + "end": 1711.65, + "probability": 0.9382 + }, + { + "start": 1712.42, + "end": 1715.98, + "probability": 0.9649 + }, + { + "start": 1716.3, + "end": 1718.58, + "probability": 0.7501 + }, + { + "start": 1719.1, + "end": 1721.68, + "probability": 0.9785 + }, + { + "start": 1722.32, + "end": 1722.96, + "probability": 0.1708 + }, + { + "start": 1722.96, + "end": 1724.29, + "probability": 0.5093 + }, + { + "start": 1724.92, + "end": 1726.84, + "probability": 0.7806 + }, + { + "start": 1727.62, + "end": 1730.82, + "probability": 0.6884 + }, + { + "start": 1731.62, + "end": 1732.66, + "probability": 0.5695 + }, + { + "start": 1733.6, + "end": 1736.88, + "probability": 0.9292 + }, + { + "start": 1736.88, + "end": 1739.4, + "probability": 0.9854 + }, + { + "start": 1739.98, + "end": 1744.38, + "probability": 0.998 + }, + { + "start": 1744.94, + "end": 1746.18, + "probability": 0.7948 + }, + { + "start": 1746.74, + "end": 1749.68, + "probability": 0.9366 + }, + { + "start": 1749.88, + "end": 1751.98, + "probability": 0.9515 + }, + { + "start": 1752.56, + "end": 1759.76, + "probability": 0.9924 + }, + { + "start": 1759.84, + "end": 1761.1, + "probability": 0.8191 + }, + { + "start": 1761.24, + "end": 1762.16, + "probability": 0.2592 + }, + { + "start": 1762.16, + "end": 1767.16, + "probability": 0.6892 + }, + { + "start": 1767.96, + "end": 1771.02, + "probability": 0.9945 + }, + { + "start": 1771.02, + "end": 1774.78, + "probability": 0.9354 + }, + { + "start": 1775.62, + "end": 1778.2, + "probability": 0.9873 + }, + { + "start": 1778.52, + "end": 1778.88, + "probability": 0.7596 + }, + { + "start": 1789.64, + "end": 1789.9, + "probability": 0.1327 + }, + { + "start": 1789.9, + "end": 1791.21, + "probability": 0.8136 + }, + { + "start": 1798.34, + "end": 1801.08, + "probability": 0.6153 + }, + { + "start": 1802.3, + "end": 1803.56, + "probability": 0.8805 + }, + { + "start": 1805.34, + "end": 1808.96, + "probability": 0.9602 + }, + { + "start": 1808.96, + "end": 1813.64, + "probability": 0.9979 + }, + { + "start": 1814.34, + "end": 1815.46, + "probability": 0.9609 + }, + { + "start": 1816.86, + "end": 1818.54, + "probability": 0.9133 + }, + { + "start": 1819.86, + "end": 1820.54, + "probability": 0.609 + }, + { + "start": 1821.82, + "end": 1822.64, + "probability": 0.8758 + }, + { + "start": 1823.7, + "end": 1825.84, + "probability": 0.7696 + }, + { + "start": 1827.32, + "end": 1828.16, + "probability": 0.6339 + }, + { + "start": 1828.2, + "end": 1835.06, + "probability": 0.9868 + }, + { + "start": 1837.16, + "end": 1841.18, + "probability": 0.6494 + }, + { + "start": 1842.0, + "end": 1842.54, + "probability": 0.8868 + }, + { + "start": 1844.76, + "end": 1848.58, + "probability": 0.9866 + }, + { + "start": 1848.58, + "end": 1852.64, + "probability": 0.9857 + }, + { + "start": 1853.14, + "end": 1855.72, + "probability": 0.9883 + }, + { + "start": 1857.78, + "end": 1861.78, + "probability": 0.9844 + }, + { + "start": 1862.46, + "end": 1866.08, + "probability": 0.99 + }, + { + "start": 1867.42, + "end": 1872.5, + "probability": 0.9924 + }, + { + "start": 1876.2, + "end": 1877.46, + "probability": 0.6781 + }, + { + "start": 1879.16, + "end": 1880.58, + "probability": 0.6159 + }, + { + "start": 1880.72, + "end": 1887.14, + "probability": 0.9829 + }, + { + "start": 1887.14, + "end": 1894.24, + "probability": 0.9895 + }, + { + "start": 1894.82, + "end": 1899.66, + "probability": 0.7295 + }, + { + "start": 1899.98, + "end": 1901.3, + "probability": 0.5669 + }, + { + "start": 1901.4, + "end": 1903.32, + "probability": 0.7985 + }, + { + "start": 1905.4, + "end": 1906.1, + "probability": 0.8129 + }, + { + "start": 1907.18, + "end": 1912.62, + "probability": 0.9857 + }, + { + "start": 1913.58, + "end": 1914.24, + "probability": 0.9725 + }, + { + "start": 1915.22, + "end": 1918.84, + "probability": 0.9629 + }, + { + "start": 1920.18, + "end": 1923.16, + "probability": 0.9961 + }, + { + "start": 1923.16, + "end": 1927.8, + "probability": 0.7556 + }, + { + "start": 1928.54, + "end": 1931.6, + "probability": 0.9662 + }, + { + "start": 1932.98, + "end": 1933.88, + "probability": 0.5132 + }, + { + "start": 1935.36, + "end": 1940.58, + "probability": 0.9941 + }, + { + "start": 1941.32, + "end": 1946.22, + "probability": 0.9823 + }, + { + "start": 1946.22, + "end": 1951.58, + "probability": 0.9938 + }, + { + "start": 1953.1, + "end": 1956.72, + "probability": 0.9954 + }, + { + "start": 1957.7, + "end": 1959.62, + "probability": 0.9284 + }, + { + "start": 1960.4, + "end": 1961.98, + "probability": 0.9787 + }, + { + "start": 1962.82, + "end": 1964.64, + "probability": 0.9911 + }, + { + "start": 1965.4, + "end": 1967.02, + "probability": 0.9702 + }, + { + "start": 1971.96, + "end": 1976.14, + "probability": 0.8879 + }, + { + "start": 1976.76, + "end": 1979.4, + "probability": 0.7143 + }, + { + "start": 1980.0, + "end": 1983.42, + "probability": 0.9425 + }, + { + "start": 1983.88, + "end": 1986.54, + "probability": 0.8518 + }, + { + "start": 1987.5, + "end": 1989.86, + "probability": 0.9953 + }, + { + "start": 1991.14, + "end": 1992.34, + "probability": 0.5635 + }, + { + "start": 1993.34, + "end": 1997.02, + "probability": 0.9332 + }, + { + "start": 1997.72, + "end": 2001.82, + "probability": 0.9786 + }, + { + "start": 2003.12, + "end": 2005.78, + "probability": 0.9967 + }, + { + "start": 2005.78, + "end": 2010.26, + "probability": 0.8654 + }, + { + "start": 2011.2, + "end": 2013.82, + "probability": 0.8861 + }, + { + "start": 2015.08, + "end": 2017.84, + "probability": 0.9524 + }, + { + "start": 2019.68, + "end": 2021.78, + "probability": 0.5718 + }, + { + "start": 2022.88, + "end": 2025.82, + "probability": 0.998 + }, + { + "start": 2025.82, + "end": 2028.76, + "probability": 0.996 + }, + { + "start": 2034.88, + "end": 2037.22, + "probability": 0.9258 + }, + { + "start": 2039.22, + "end": 2043.38, + "probability": 0.8346 + }, + { + "start": 2043.38, + "end": 2047.5, + "probability": 0.9903 + }, + { + "start": 2047.5, + "end": 2053.18, + "probability": 0.9951 + }, + { + "start": 2054.54, + "end": 2054.82, + "probability": 0.4241 + }, + { + "start": 2055.9, + "end": 2059.72, + "probability": 0.9117 + }, + { + "start": 2060.08, + "end": 2061.2, + "probability": 0.6308 + }, + { + "start": 2062.72, + "end": 2063.5, + "probability": 0.7386 + }, + { + "start": 2064.2, + "end": 2066.68, + "probability": 0.9927 + }, + { + "start": 2066.68, + "end": 2071.12, + "probability": 0.7432 + }, + { + "start": 2072.5, + "end": 2073.16, + "probability": 0.5081 + }, + { + "start": 2073.84, + "end": 2076.44, + "probability": 0.9952 + }, + { + "start": 2076.44, + "end": 2081.06, + "probability": 0.9574 + }, + { + "start": 2081.5, + "end": 2083.12, + "probability": 0.9491 + }, + { + "start": 2083.64, + "end": 2086.08, + "probability": 0.9744 + }, + { + "start": 2088.04, + "end": 2088.38, + "probability": 0.6281 + }, + { + "start": 2089.42, + "end": 2092.92, + "probability": 0.9588 + }, + { + "start": 2092.92, + "end": 2097.36, + "probability": 0.9597 + }, + { + "start": 2101.88, + "end": 2104.36, + "probability": 0.9448 + }, + { + "start": 2104.76, + "end": 2108.12, + "probability": 0.9857 + }, + { + "start": 2108.58, + "end": 2109.08, + "probability": 0.8209 + }, + { + "start": 2109.6, + "end": 2112.62, + "probability": 0.8556 + }, + { + "start": 2113.56, + "end": 2114.32, + "probability": 0.7838 + }, + { + "start": 2115.26, + "end": 2118.68, + "probability": 0.8608 + }, + { + "start": 2119.2, + "end": 2121.92, + "probability": 0.9974 + }, + { + "start": 2122.56, + "end": 2126.14, + "probability": 0.8524 + }, + { + "start": 2127.3, + "end": 2132.5, + "probability": 0.9627 + }, + { + "start": 2134.66, + "end": 2139.5, + "probability": 0.962 + }, + { + "start": 2139.9, + "end": 2143.12, + "probability": 0.9873 + }, + { + "start": 2143.62, + "end": 2145.52, + "probability": 0.4557 + }, + { + "start": 2146.62, + "end": 2147.32, + "probability": 0.5946 + }, + { + "start": 2147.64, + "end": 2148.94, + "probability": 0.9329 + }, + { + "start": 2149.04, + "end": 2150.84, + "probability": 0.8618 + }, + { + "start": 2151.08, + "end": 2155.76, + "probability": 0.9631 + }, + { + "start": 2156.98, + "end": 2161.16, + "probability": 0.9901 + }, + { + "start": 2161.38, + "end": 2161.88, + "probability": 0.7528 + }, + { + "start": 2161.96, + "end": 2164.08, + "probability": 0.5484 + }, + { + "start": 2164.38, + "end": 2165.08, + "probability": 0.9104 + }, + { + "start": 2171.74, + "end": 2172.82, + "probability": 0.6151 + }, + { + "start": 2173.46, + "end": 2177.34, + "probability": 0.957 + }, + { + "start": 2177.34, + "end": 2184.3, + "probability": 0.9888 + }, + { + "start": 2184.3, + "end": 2188.14, + "probability": 0.9974 + }, + { + "start": 2189.8, + "end": 2190.44, + "probability": 0.8121 + }, + { + "start": 2191.2, + "end": 2191.44, + "probability": 0.3001 + }, + { + "start": 2191.6, + "end": 2192.54, + "probability": 0.6546 + }, + { + "start": 2192.68, + "end": 2193.9, + "probability": 0.9193 + }, + { + "start": 2193.96, + "end": 2196.6, + "probability": 0.9117 + }, + { + "start": 2197.12, + "end": 2199.84, + "probability": 0.9636 + }, + { + "start": 2199.84, + "end": 2203.08, + "probability": 0.9945 + }, + { + "start": 2203.9, + "end": 2205.6, + "probability": 0.7695 + }, + { + "start": 2206.58, + "end": 2211.12, + "probability": 0.9945 + }, + { + "start": 2211.12, + "end": 2216.26, + "probability": 0.9878 + }, + { + "start": 2216.26, + "end": 2222.22, + "probability": 0.9861 + }, + { + "start": 2222.38, + "end": 2223.16, + "probability": 0.7443 + }, + { + "start": 2225.72, + "end": 2228.16, + "probability": 0.9563 + }, + { + "start": 2228.28, + "end": 2231.36, + "probability": 0.9281 + }, + { + "start": 2232.08, + "end": 2234.34, + "probability": 0.9661 + }, + { + "start": 2235.46, + "end": 2239.66, + "probability": 0.7101 + }, + { + "start": 2240.18, + "end": 2241.5, + "probability": 0.7859 + }, + { + "start": 2242.78, + "end": 2246.96, + "probability": 0.8822 + }, + { + "start": 2247.44, + "end": 2248.54, + "probability": 0.6333 + }, + { + "start": 2248.9, + "end": 2250.38, + "probability": 0.9746 + }, + { + "start": 2253.5, + "end": 2255.96, + "probability": 0.8404 + }, + { + "start": 2256.42, + "end": 2257.14, + "probability": 0.4714 + }, + { + "start": 2257.16, + "end": 2259.98, + "probability": 0.8845 + }, + { + "start": 2260.54, + "end": 2261.48, + "probability": 0.7917 + }, + { + "start": 2261.86, + "end": 2266.92, + "probability": 0.9877 + }, + { + "start": 2269.6, + "end": 2273.14, + "probability": 0.9738 + }, + { + "start": 2273.64, + "end": 2276.52, + "probability": 0.9456 + }, + { + "start": 2277.04, + "end": 2278.7, + "probability": 0.9872 + }, + { + "start": 2279.24, + "end": 2280.44, + "probability": 0.9867 + }, + { + "start": 2280.9, + "end": 2285.7, + "probability": 0.9025 + }, + { + "start": 2287.68, + "end": 2288.6, + "probability": 0.7918 + }, + { + "start": 2289.76, + "end": 2292.56, + "probability": 0.8744 + }, + { + "start": 2292.56, + "end": 2295.7, + "probability": 0.9444 + }, + { + "start": 2296.34, + "end": 2301.42, + "probability": 0.9053 + }, + { + "start": 2302.28, + "end": 2303.06, + "probability": 0.6223 + }, + { + "start": 2303.82, + "end": 2306.8, + "probability": 0.5308 + }, + { + "start": 2307.84, + "end": 2309.52, + "probability": 0.9578 + }, + { + "start": 2312.16, + "end": 2313.24, + "probability": 0.5738 + }, + { + "start": 2313.66, + "end": 2314.3, + "probability": 0.5195 + }, + { + "start": 2314.52, + "end": 2317.56, + "probability": 0.8468 + }, + { + "start": 2318.14, + "end": 2319.84, + "probability": 0.9919 + }, + { + "start": 2320.58, + "end": 2323.88, + "probability": 0.6638 + }, + { + "start": 2323.88, + "end": 2325.52, + "probability": 0.6437 + }, + { + "start": 2326.3, + "end": 2328.2, + "probability": 0.8192 + }, + { + "start": 2329.28, + "end": 2332.4, + "probability": 0.9595 + }, + { + "start": 2333.26, + "end": 2336.42, + "probability": 0.8347 + }, + { + "start": 2336.7, + "end": 2337.68, + "probability": 0.6632 + }, + { + "start": 2337.88, + "end": 2340.3, + "probability": 0.7254 + }, + { + "start": 2340.66, + "end": 2346.34, + "probability": 0.9712 + }, + { + "start": 2349.74, + "end": 2350.56, + "probability": 0.6448 + }, + { + "start": 2351.94, + "end": 2354.16, + "probability": 0.9375 + }, + { + "start": 2355.06, + "end": 2359.32, + "probability": 0.984 + }, + { + "start": 2360.44, + "end": 2362.02, + "probability": 0.6864 + }, + { + "start": 2362.14, + "end": 2363.8, + "probability": 0.9067 + }, + { + "start": 2364.26, + "end": 2365.22, + "probability": 0.786 + }, + { + "start": 2365.84, + "end": 2368.12, + "probability": 0.7552 + }, + { + "start": 2368.18, + "end": 2371.64, + "probability": 0.765 + }, + { + "start": 2371.7, + "end": 2375.18, + "probability": 0.9469 + }, + { + "start": 2375.98, + "end": 2376.56, + "probability": 0.9111 + }, + { + "start": 2376.7, + "end": 2377.7, + "probability": 0.6849 + }, + { + "start": 2378.52, + "end": 2380.88, + "probability": 0.744 + }, + { + "start": 2381.3, + "end": 2386.0, + "probability": 0.7401 + }, + { + "start": 2386.22, + "end": 2386.58, + "probability": 0.7784 + }, + { + "start": 2396.1, + "end": 2396.16, + "probability": 0.3061 + }, + { + "start": 2396.16, + "end": 2397.46, + "probability": 0.5907 + }, + { + "start": 2397.5, + "end": 2398.72, + "probability": 0.6113 + }, + { + "start": 2399.06, + "end": 2403.9, + "probability": 0.9719 + }, + { + "start": 2403.94, + "end": 2405.24, + "probability": 0.8146 + }, + { + "start": 2405.28, + "end": 2406.66, + "probability": 0.9832 + }, + { + "start": 2407.56, + "end": 2409.84, + "probability": 0.9953 + }, + { + "start": 2413.68, + "end": 2414.14, + "probability": 0.023 + }, + { + "start": 2415.98, + "end": 2419.96, + "probability": 0.6971 + }, + { + "start": 2420.04, + "end": 2420.48, + "probability": 0.225 + }, + { + "start": 2420.58, + "end": 2422.32, + "probability": 0.8949 + }, + { + "start": 2423.64, + "end": 2427.12, + "probability": 0.8208 + }, + { + "start": 2427.92, + "end": 2429.92, + "probability": 0.8904 + }, + { + "start": 2430.04, + "end": 2430.44, + "probability": 0.7845 + }, + { + "start": 2430.5, + "end": 2431.52, + "probability": 0.7926 + }, + { + "start": 2431.88, + "end": 2433.34, + "probability": 0.8801 + }, + { + "start": 2433.42, + "end": 2435.02, + "probability": 0.658 + }, + { + "start": 2435.16, + "end": 2436.82, + "probability": 0.8359 + }, + { + "start": 2436.9, + "end": 2438.62, + "probability": 0.9541 + }, + { + "start": 2439.14, + "end": 2440.94, + "probability": 0.6993 + }, + { + "start": 2442.02, + "end": 2443.6, + "probability": 0.9223 + }, + { + "start": 2444.42, + "end": 2445.3, + "probability": 0.8191 + }, + { + "start": 2445.36, + "end": 2446.04, + "probability": 0.6278 + }, + { + "start": 2446.12, + "end": 2449.68, + "probability": 0.9812 + }, + { + "start": 2450.48, + "end": 2451.46, + "probability": 0.6618 + }, + { + "start": 2451.82, + "end": 2452.94, + "probability": 0.8045 + }, + { + "start": 2453.08, + "end": 2456.84, + "probability": 0.9823 + }, + { + "start": 2457.34, + "end": 2460.44, + "probability": 0.9767 + }, + { + "start": 2460.58, + "end": 2463.09, + "probability": 0.8945 + }, + { + "start": 2463.44, + "end": 2465.8, + "probability": 0.9643 + }, + { + "start": 2465.86, + "end": 2467.8, + "probability": 0.9886 + }, + { + "start": 2468.04, + "end": 2468.6, + "probability": 0.8265 + }, + { + "start": 2469.14, + "end": 2474.5, + "probability": 0.9941 + }, + { + "start": 2474.5, + "end": 2477.98, + "probability": 0.9293 + }, + { + "start": 2478.06, + "end": 2479.02, + "probability": 0.7589 + }, + { + "start": 2479.08, + "end": 2479.46, + "probability": 0.8338 + }, + { + "start": 2479.54, + "end": 2480.46, + "probability": 0.8161 + }, + { + "start": 2481.1, + "end": 2483.54, + "probability": 0.6841 + }, + { + "start": 2483.6, + "end": 2484.16, + "probability": 0.9704 + }, + { + "start": 2484.34, + "end": 2484.92, + "probability": 0.6751 + }, + { + "start": 2485.0, + "end": 2485.38, + "probability": 0.4813 + }, + { + "start": 2485.5, + "end": 2485.74, + "probability": 0.3528 + }, + { + "start": 2485.94, + "end": 2486.52, + "probability": 0.5315 + }, + { + "start": 2486.64, + "end": 2491.28, + "probability": 0.9566 + }, + { + "start": 2491.88, + "end": 2496.28, + "probability": 0.9185 + }, + { + "start": 2496.82, + "end": 2499.92, + "probability": 0.9764 + }, + { + "start": 2500.0, + "end": 2504.58, + "probability": 0.979 + }, + { + "start": 2505.12, + "end": 2509.04, + "probability": 0.9851 + }, + { + "start": 2509.08, + "end": 2513.28, + "probability": 0.9173 + }, + { + "start": 2513.86, + "end": 2516.06, + "probability": 0.9638 + }, + { + "start": 2516.42, + "end": 2520.0, + "probability": 0.6998 + }, + { + "start": 2520.0, + "end": 2523.28, + "probability": 0.9747 + }, + { + "start": 2523.78, + "end": 2527.08, + "probability": 0.9945 + }, + { + "start": 2527.64, + "end": 2529.82, + "probability": 0.9966 + }, + { + "start": 2529.82, + "end": 2531.96, + "probability": 0.9609 + }, + { + "start": 2532.08, + "end": 2535.72, + "probability": 0.9925 + }, + { + "start": 2535.74, + "end": 2538.76, + "probability": 0.9943 + }, + { + "start": 2538.84, + "end": 2542.26, + "probability": 0.9794 + }, + { + "start": 2542.8, + "end": 2544.84, + "probability": 0.7336 + }, + { + "start": 2544.84, + "end": 2547.76, + "probability": 0.9827 + }, + { + "start": 2547.76, + "end": 2551.46, + "probability": 0.9859 + }, + { + "start": 2553.22, + "end": 2556.82, + "probability": 0.9749 + }, + { + "start": 2556.98, + "end": 2558.78, + "probability": 0.9481 + }, + { + "start": 2558.84, + "end": 2560.62, + "probability": 0.988 + }, + { + "start": 2560.62, + "end": 2563.64, + "probability": 0.9682 + }, + { + "start": 2563.76, + "end": 2566.6, + "probability": 0.8087 + }, + { + "start": 2568.9, + "end": 2569.28, + "probability": 0.1355 + }, + { + "start": 2569.28, + "end": 2569.28, + "probability": 0.2133 + }, + { + "start": 2569.28, + "end": 2569.56, + "probability": 0.2907 + }, + { + "start": 2569.6, + "end": 2571.04, + "probability": 0.6945 + }, + { + "start": 2571.48, + "end": 2573.26, + "probability": 0.9356 + }, + { + "start": 2573.7, + "end": 2575.4, + "probability": 0.923 + }, + { + "start": 2575.4, + "end": 2578.24, + "probability": 0.9492 + }, + { + "start": 2578.28, + "end": 2580.92, + "probability": 0.9443 + }, + { + "start": 2581.42, + "end": 2581.68, + "probability": 0.532 + }, + { + "start": 2581.82, + "end": 2584.22, + "probability": 0.9469 + }, + { + "start": 2584.22, + "end": 2587.54, + "probability": 0.9449 + }, + { + "start": 2588.38, + "end": 2590.66, + "probability": 0.8401 + }, + { + "start": 2590.78, + "end": 2592.5, + "probability": 0.8635 + }, + { + "start": 2592.92, + "end": 2596.18, + "probability": 0.8381 + }, + { + "start": 2596.26, + "end": 2599.52, + "probability": 0.9565 + }, + { + "start": 2600.12, + "end": 2601.3, + "probability": 0.845 + }, + { + "start": 2602.44, + "end": 2607.28, + "probability": 0.9919 + }, + { + "start": 2607.64, + "end": 2608.38, + "probability": 0.5596 + }, + { + "start": 2608.52, + "end": 2609.22, + "probability": 0.626 + }, + { + "start": 2609.28, + "end": 2612.06, + "probability": 0.9458 + }, + { + "start": 2613.24, + "end": 2616.44, + "probability": 0.6055 + }, + { + "start": 2616.54, + "end": 2618.64, + "probability": 0.5835 + }, + { + "start": 2619.32, + "end": 2625.9, + "probability": 0.9602 + }, + { + "start": 2627.34, + "end": 2628.56, + "probability": 0.6325 + }, + { + "start": 2628.62, + "end": 2629.6, + "probability": 0.8562 + }, + { + "start": 2629.74, + "end": 2631.68, + "probability": 0.8918 + }, + { + "start": 2631.8, + "end": 2634.06, + "probability": 0.6507 + }, + { + "start": 2634.06, + "end": 2637.76, + "probability": 0.9973 + }, + { + "start": 2637.86, + "end": 2639.8, + "probability": 0.9878 + }, + { + "start": 2640.7, + "end": 2643.76, + "probability": 0.9567 + }, + { + "start": 2644.02, + "end": 2644.28, + "probability": 0.7559 + }, + { + "start": 2644.84, + "end": 2647.98, + "probability": 0.8505 + }, + { + "start": 2648.64, + "end": 2651.72, + "probability": 0.9964 + }, + { + "start": 2652.32, + "end": 2655.3, + "probability": 0.9318 + }, + { + "start": 2655.94, + "end": 2658.26, + "probability": 0.998 + }, + { + "start": 2658.26, + "end": 2662.1, + "probability": 0.9948 + }, + { + "start": 2662.46, + "end": 2664.36, + "probability": 0.7717 + }, + { + "start": 2667.86, + "end": 2669.92, + "probability": 0.8474 + }, + { + "start": 2671.1, + "end": 2672.7, + "probability": 0.9541 + }, + { + "start": 2672.84, + "end": 2674.24, + "probability": 0.9885 + }, + { + "start": 2674.94, + "end": 2677.79, + "probability": 0.9831 + }, + { + "start": 2678.8, + "end": 2680.4, + "probability": 0.8476 + }, + { + "start": 2681.24, + "end": 2683.26, + "probability": 0.8985 + }, + { + "start": 2683.98, + "end": 2685.4, + "probability": 0.8704 + }, + { + "start": 2686.3, + "end": 2686.76, + "probability": 0.8011 + }, + { + "start": 2686.84, + "end": 2691.12, + "probability": 0.9834 + }, + { + "start": 2692.01, + "end": 2696.18, + "probability": 0.9964 + }, + { + "start": 2698.42, + "end": 2699.1, + "probability": 0.8084 + }, + { + "start": 2699.74, + "end": 2703.26, + "probability": 0.7744 + }, + { + "start": 2704.22, + "end": 2705.66, + "probability": 0.7793 + }, + { + "start": 2706.18, + "end": 2707.32, + "probability": 0.9399 + }, + { + "start": 2708.02, + "end": 2712.58, + "probability": 0.9921 + }, + { + "start": 2713.54, + "end": 2716.26, + "probability": 0.9983 + }, + { + "start": 2717.42, + "end": 2721.48, + "probability": 0.9204 + }, + { + "start": 2722.76, + "end": 2725.78, + "probability": 0.9315 + }, + { + "start": 2726.68, + "end": 2728.7, + "probability": 0.7788 + }, + { + "start": 2729.76, + "end": 2730.68, + "probability": 0.7206 + }, + { + "start": 2732.54, + "end": 2737.28, + "probability": 0.9978 + }, + { + "start": 2737.28, + "end": 2741.28, + "probability": 0.9959 + }, + { + "start": 2742.36, + "end": 2745.24, + "probability": 0.9081 + }, + { + "start": 2746.62, + "end": 2751.46, + "probability": 0.9957 + }, + { + "start": 2752.42, + "end": 2753.3, + "probability": 0.9862 + }, + { + "start": 2754.6, + "end": 2756.26, + "probability": 0.9994 + }, + { + "start": 2757.38, + "end": 2758.46, + "probability": 0.931 + }, + { + "start": 2759.26, + "end": 2760.74, + "probability": 0.6709 + }, + { + "start": 2762.12, + "end": 2763.88, + "probability": 0.9665 + }, + { + "start": 2763.98, + "end": 2767.4, + "probability": 0.9728 + }, + { + "start": 2767.62, + "end": 2769.92, + "probability": 0.832 + }, + { + "start": 2770.64, + "end": 2774.28, + "probability": 0.8674 + }, + { + "start": 2775.52, + "end": 2777.6, + "probability": 0.9606 + }, + { + "start": 2779.04, + "end": 2779.34, + "probability": 0.876 + }, + { + "start": 2779.34, + "end": 2780.6, + "probability": 0.9843 + }, + { + "start": 2780.64, + "end": 2781.32, + "probability": 0.9725 + }, + { + "start": 2781.5, + "end": 2782.53, + "probability": 0.9956 + }, + { + "start": 2783.02, + "end": 2784.72, + "probability": 0.9514 + }, + { + "start": 2785.24, + "end": 2789.62, + "probability": 0.993 + }, + { + "start": 2791.64, + "end": 2793.88, + "probability": 0.912 + }, + { + "start": 2794.48, + "end": 2797.4, + "probability": 0.9749 + }, + { + "start": 2798.78, + "end": 2799.78, + "probability": 0.8571 + }, + { + "start": 2800.22, + "end": 2801.68, + "probability": 0.9553 + }, + { + "start": 2802.4, + "end": 2804.18, + "probability": 0.9531 + }, + { + "start": 2805.06, + "end": 2810.84, + "probability": 0.9964 + }, + { + "start": 2810.88, + "end": 2815.1, + "probability": 0.9967 + }, + { + "start": 2815.9, + "end": 2817.16, + "probability": 0.9204 + }, + { + "start": 2819.02, + "end": 2820.1, + "probability": 0.9079 + }, + { + "start": 2821.56, + "end": 2823.36, + "probability": 0.9968 + }, + { + "start": 2824.74, + "end": 2826.0, + "probability": 0.9705 + }, + { + "start": 2826.74, + "end": 2829.34, + "probability": 0.998 + }, + { + "start": 2829.36, + "end": 2831.4, + "probability": 0.9927 + }, + { + "start": 2831.64, + "end": 2832.92, + "probability": 0.9064 + }, + { + "start": 2833.74, + "end": 2835.18, + "probability": 0.801 + }, + { + "start": 2835.62, + "end": 2837.94, + "probability": 0.9991 + }, + { + "start": 2837.94, + "end": 2840.54, + "probability": 0.999 + }, + { + "start": 2840.84, + "end": 2843.46, + "probability": 0.9981 + }, + { + "start": 2843.88, + "end": 2847.58, + "probability": 0.9918 + }, + { + "start": 2849.52, + "end": 2853.16, + "probability": 0.97 + }, + { + "start": 2854.42, + "end": 2858.64, + "probability": 0.9739 + }, + { + "start": 2859.28, + "end": 2860.9, + "probability": 0.7902 + }, + { + "start": 2861.6, + "end": 2862.54, + "probability": 0.6665 + }, + { + "start": 2864.52, + "end": 2868.54, + "probability": 0.9779 + }, + { + "start": 2868.76, + "end": 2870.34, + "probability": 0.8447 + }, + { + "start": 2872.12, + "end": 2872.7, + "probability": 0.966 + }, + { + "start": 2872.88, + "end": 2873.8, + "probability": 0.9902 + }, + { + "start": 2873.92, + "end": 2876.2, + "probability": 0.981 + }, + { + "start": 2876.5, + "end": 2877.24, + "probability": 0.7784 + }, + { + "start": 2878.02, + "end": 2880.64, + "probability": 0.9965 + }, + { + "start": 2880.64, + "end": 2883.22, + "probability": 0.9998 + }, + { + "start": 2884.34, + "end": 2886.02, + "probability": 0.7096 + }, + { + "start": 2886.12, + "end": 2887.18, + "probability": 0.9846 + }, + { + "start": 2887.42, + "end": 2889.4, + "probability": 0.9641 + }, + { + "start": 2890.64, + "end": 2892.66, + "probability": 0.9953 + }, + { + "start": 2894.36, + "end": 2895.3, + "probability": 0.3578 + }, + { + "start": 2896.42, + "end": 2898.46, + "probability": 0.6491 + }, + { + "start": 2898.7, + "end": 2899.26, + "probability": 0.8744 + }, + { + "start": 2899.34, + "end": 2901.58, + "probability": 0.9778 + }, + { + "start": 2903.62, + "end": 2905.16, + "probability": 0.9912 + }, + { + "start": 2906.36, + "end": 2910.86, + "probability": 0.9834 + }, + { + "start": 2910.96, + "end": 2912.44, + "probability": 0.7349 + }, + { + "start": 2912.54, + "end": 2913.18, + "probability": 0.5925 + }, + { + "start": 2914.6, + "end": 2918.18, + "probability": 0.8629 + }, + { + "start": 2920.76, + "end": 2923.06, + "probability": 0.9692 + }, + { + "start": 2924.1, + "end": 2925.12, + "probability": 0.9826 + }, + { + "start": 2926.42, + "end": 2927.28, + "probability": 0.9823 + }, + { + "start": 2927.32, + "end": 2928.26, + "probability": 0.8752 + }, + { + "start": 2928.74, + "end": 2929.22, + "probability": 0.7835 + }, + { + "start": 2929.68, + "end": 2930.4, + "probability": 0.972 + }, + { + "start": 2930.52, + "end": 2931.56, + "probability": 0.7472 + }, + { + "start": 2933.32, + "end": 2935.78, + "probability": 0.9825 + }, + { + "start": 2936.76, + "end": 2939.1, + "probability": 0.9688 + }, + { + "start": 2940.98, + "end": 2945.44, + "probability": 0.9238 + }, + { + "start": 2945.98, + "end": 2949.58, + "probability": 0.9498 + }, + { + "start": 2951.06, + "end": 2952.78, + "probability": 0.8835 + }, + { + "start": 2952.96, + "end": 2953.46, + "probability": 0.9124 + }, + { + "start": 2954.96, + "end": 2956.66, + "probability": 0.9968 + }, + { + "start": 2956.74, + "end": 2958.12, + "probability": 0.9956 + }, + { + "start": 2958.22, + "end": 2960.4, + "probability": 0.9985 + }, + { + "start": 2960.4, + "end": 2962.44, + "probability": 0.8776 + }, + { + "start": 2963.48, + "end": 2964.66, + "probability": 0.8777 + }, + { + "start": 2964.82, + "end": 2965.82, + "probability": 0.8081 + }, + { + "start": 2966.02, + "end": 2968.26, + "probability": 0.6854 + }, + { + "start": 2969.72, + "end": 2972.15, + "probability": 0.9978 + }, + { + "start": 2973.36, + "end": 2977.0, + "probability": 0.9922 + }, + { + "start": 2978.64, + "end": 2980.5, + "probability": 0.8767 + }, + { + "start": 2980.56, + "end": 2981.26, + "probability": 0.9314 + }, + { + "start": 2982.6, + "end": 2983.53, + "probability": 0.7793 + }, + { + "start": 2984.5, + "end": 2989.04, + "probability": 0.9977 + }, + { + "start": 2990.1, + "end": 2992.44, + "probability": 0.999 + }, + { + "start": 2993.12, + "end": 2996.74, + "probability": 0.8494 + }, + { + "start": 2996.88, + "end": 3000.28, + "probability": 0.9946 + }, + { + "start": 3000.9, + "end": 3001.94, + "probability": 0.9398 + }, + { + "start": 3002.8, + "end": 3005.82, + "probability": 0.9992 + }, + { + "start": 3008.1, + "end": 3010.42, + "probability": 0.867 + }, + { + "start": 3010.5, + "end": 3012.64, + "probability": 0.9908 + }, + { + "start": 3015.5, + "end": 3016.29, + "probability": 0.9441 + }, + { + "start": 3017.7, + "end": 3018.58, + "probability": 0.6239 + }, + { + "start": 3019.2, + "end": 3021.78, + "probability": 0.9763 + }, + { + "start": 3021.94, + "end": 3023.66, + "probability": 0.9956 + }, + { + "start": 3024.64, + "end": 3025.96, + "probability": 0.9983 + }, + { + "start": 3027.28, + "end": 3028.7, + "probability": 0.8475 + }, + { + "start": 3028.78, + "end": 3030.46, + "probability": 0.8248 + }, + { + "start": 3032.36, + "end": 3034.26, + "probability": 0.9834 + }, + { + "start": 3035.54, + "end": 3038.46, + "probability": 0.9965 + }, + { + "start": 3039.8, + "end": 3042.32, + "probability": 0.9884 + }, + { + "start": 3042.74, + "end": 3044.4, + "probability": 0.9065 + }, + { + "start": 3044.92, + "end": 3048.42, + "probability": 0.98 + }, + { + "start": 3048.74, + "end": 3050.88, + "probability": 0.9307 + }, + { + "start": 3052.4, + "end": 3055.02, + "probability": 0.982 + }, + { + "start": 3055.22, + "end": 3057.3, + "probability": 0.9479 + }, + { + "start": 3057.88, + "end": 3061.5, + "probability": 0.9631 + }, + { + "start": 3061.86, + "end": 3064.02, + "probability": 0.9165 + }, + { + "start": 3065.32, + "end": 3067.1, + "probability": 0.9066 + }, + { + "start": 3067.24, + "end": 3070.7, + "probability": 0.9824 + }, + { + "start": 3070.74, + "end": 3072.08, + "probability": 0.9892 + }, + { + "start": 3072.52, + "end": 3072.86, + "probability": 0.7587 + }, + { + "start": 3073.9, + "end": 3076.38, + "probability": 0.9563 + }, + { + "start": 3077.44, + "end": 3082.68, + "probability": 0.894 + }, + { + "start": 3082.86, + "end": 3084.16, + "probability": 0.9277 + }, + { + "start": 3085.06, + "end": 3089.16, + "probability": 0.9952 + }, + { + "start": 3089.2, + "end": 3093.86, + "probability": 0.991 + }, + { + "start": 3094.66, + "end": 3097.48, + "probability": 0.949 + }, + { + "start": 3106.4, + "end": 3106.5, + "probability": 0.1027 + }, + { + "start": 3106.5, + "end": 3111.06, + "probability": 0.7703 + }, + { + "start": 3111.8, + "end": 3115.84, + "probability": 0.9682 + }, + { + "start": 3115.84, + "end": 3118.8, + "probability": 0.9995 + }, + { + "start": 3120.2, + "end": 3124.66, + "probability": 0.8694 + }, + { + "start": 3125.48, + "end": 3129.2, + "probability": 0.9667 + }, + { + "start": 3129.84, + "end": 3133.56, + "probability": 0.9722 + }, + { + "start": 3134.48, + "end": 3136.24, + "probability": 0.9465 + }, + { + "start": 3136.46, + "end": 3138.36, + "probability": 0.9431 + }, + { + "start": 3139.2, + "end": 3145.36, + "probability": 0.9721 + }, + { + "start": 3147.7, + "end": 3153.58, + "probability": 0.8345 + }, + { + "start": 3154.38, + "end": 3157.74, + "probability": 0.9561 + }, + { + "start": 3158.2, + "end": 3160.6, + "probability": 0.9922 + }, + { + "start": 3160.88, + "end": 3161.22, + "probability": 0.5813 + }, + { + "start": 3162.0, + "end": 3165.14, + "probability": 0.979 + }, + { + "start": 3166.12, + "end": 3166.86, + "probability": 0.5266 + }, + { + "start": 3167.08, + "end": 3168.88, + "probability": 0.888 + }, + { + "start": 3169.28, + "end": 3171.68, + "probability": 0.9587 + }, + { + "start": 3172.44, + "end": 3178.06, + "probability": 0.6899 + }, + { + "start": 3178.14, + "end": 3179.8, + "probability": 0.9627 + }, + { + "start": 3180.36, + "end": 3183.78, + "probability": 0.7546 + }, + { + "start": 3184.42, + "end": 3184.52, + "probability": 0.0992 + }, + { + "start": 3184.52, + "end": 3185.79, + "probability": 0.8433 + }, + { + "start": 3186.84, + "end": 3192.4, + "probability": 0.9014 + }, + { + "start": 3192.68, + "end": 3193.18, + "probability": 0.7759 + }, + { + "start": 3193.4, + "end": 3193.68, + "probability": 0.6243 + }, + { + "start": 3193.76, + "end": 3194.82, + "probability": 0.9731 + }, + { + "start": 3194.86, + "end": 3196.22, + "probability": 0.9777 + }, + { + "start": 3197.34, + "end": 3199.02, + "probability": 0.983 + }, + { + "start": 3199.78, + "end": 3204.42, + "probability": 0.9189 + }, + { + "start": 3205.9, + "end": 3207.46, + "probability": 0.9571 + }, + { + "start": 3208.42, + "end": 3212.58, + "probability": 0.9932 + }, + { + "start": 3213.78, + "end": 3215.42, + "probability": 0.9958 + }, + { + "start": 3215.94, + "end": 3219.02, + "probability": 0.9582 + }, + { + "start": 3219.22, + "end": 3221.82, + "probability": 0.9214 + }, + { + "start": 3221.94, + "end": 3225.62, + "probability": 0.9348 + }, + { + "start": 3226.4, + "end": 3228.2, + "probability": 0.9954 + }, + { + "start": 3228.56, + "end": 3232.2, + "probability": 0.9961 + }, + { + "start": 3233.46, + "end": 3237.29, + "probability": 0.9961 + }, + { + "start": 3237.42, + "end": 3238.65, + "probability": 0.894 + }, + { + "start": 3239.32, + "end": 3241.46, + "probability": 0.912 + }, + { + "start": 3242.4, + "end": 3243.18, + "probability": 0.8586 + }, + { + "start": 3244.08, + "end": 3247.1, + "probability": 0.98 + }, + { + "start": 3248.34, + "end": 3249.02, + "probability": 0.4222 + }, + { + "start": 3249.14, + "end": 3252.8, + "probability": 0.992 + }, + { + "start": 3253.76, + "end": 3257.58, + "probability": 0.7725 + }, + { + "start": 3258.16, + "end": 3259.36, + "probability": 0.9652 + }, + { + "start": 3259.42, + "end": 3260.4, + "probability": 0.9635 + }, + { + "start": 3260.54, + "end": 3262.58, + "probability": 0.9691 + }, + { + "start": 3263.42, + "end": 3265.56, + "probability": 0.9242 + }, + { + "start": 3266.22, + "end": 3269.96, + "probability": 0.9891 + }, + { + "start": 3270.52, + "end": 3271.7, + "probability": 0.7771 + }, + { + "start": 3272.58, + "end": 3276.48, + "probability": 0.9944 + }, + { + "start": 3277.08, + "end": 3279.28, + "probability": 0.9943 + }, + { + "start": 3280.02, + "end": 3281.24, + "probability": 0.9951 + }, + { + "start": 3282.1, + "end": 3283.3, + "probability": 0.9827 + }, + { + "start": 3283.92, + "end": 3287.92, + "probability": 0.9939 + }, + { + "start": 3288.76, + "end": 3292.0, + "probability": 0.98 + }, + { + "start": 3292.0, + "end": 3295.54, + "probability": 0.9886 + }, + { + "start": 3296.58, + "end": 3299.84, + "probability": 0.9531 + }, + { + "start": 3300.5, + "end": 3303.56, + "probability": 0.9973 + }, + { + "start": 3304.76, + "end": 3306.76, + "probability": 0.9415 + }, + { + "start": 3306.82, + "end": 3308.96, + "probability": 0.9941 + }, + { + "start": 3309.02, + "end": 3311.78, + "probability": 0.9769 + }, + { + "start": 3312.3, + "end": 3315.2, + "probability": 0.9992 + }, + { + "start": 3316.88, + "end": 3322.94, + "probability": 0.9544 + }, + { + "start": 3323.46, + "end": 3324.56, + "probability": 0.9927 + }, + { + "start": 3326.08, + "end": 3326.98, + "probability": 0.7971 + }, + { + "start": 3328.02, + "end": 3330.02, + "probability": 0.8149 + }, + { + "start": 3330.24, + "end": 3331.82, + "probability": 0.9455 + }, + { + "start": 3331.86, + "end": 3333.92, + "probability": 0.9679 + }, + { + "start": 3334.02, + "end": 3334.42, + "probability": 0.4924 + }, + { + "start": 3335.14, + "end": 3339.8, + "probability": 0.9812 + }, + { + "start": 3340.96, + "end": 3344.16, + "probability": 0.9885 + }, + { + "start": 3344.16, + "end": 3348.38, + "probability": 0.9429 + }, + { + "start": 3349.2, + "end": 3352.82, + "probability": 0.9964 + }, + { + "start": 3353.32, + "end": 3355.2, + "probability": 0.9725 + }, + { + "start": 3355.9, + "end": 3360.6, + "probability": 0.9963 + }, + { + "start": 3361.38, + "end": 3365.46, + "probability": 0.9979 + }, + { + "start": 3367.06, + "end": 3367.88, + "probability": 0.8988 + }, + { + "start": 3368.6, + "end": 3371.88, + "probability": 0.8385 + }, + { + "start": 3372.52, + "end": 3375.04, + "probability": 0.9969 + }, + { + "start": 3375.36, + "end": 3377.72, + "probability": 0.9993 + }, + { + "start": 3377.9, + "end": 3379.52, + "probability": 0.9785 + }, + { + "start": 3380.26, + "end": 3381.28, + "probability": 0.9786 + }, + { + "start": 3382.9, + "end": 3386.02, + "probability": 0.6151 + }, + { + "start": 3386.7, + "end": 3387.84, + "probability": 0.9062 + }, + { + "start": 3388.0, + "end": 3389.82, + "probability": 0.9907 + }, + { + "start": 3390.28, + "end": 3392.38, + "probability": 0.8833 + }, + { + "start": 3393.0, + "end": 3394.22, + "probability": 0.5316 + }, + { + "start": 3395.4, + "end": 3397.14, + "probability": 0.9445 + }, + { + "start": 3397.36, + "end": 3397.72, + "probability": 0.8822 + }, + { + "start": 3397.8, + "end": 3398.48, + "probability": 0.8725 + }, + { + "start": 3398.54, + "end": 3402.4, + "probability": 0.9233 + }, + { + "start": 3404.04, + "end": 3406.78, + "probability": 0.832 + }, + { + "start": 3406.86, + "end": 3409.58, + "probability": 0.9472 + }, + { + "start": 3410.5, + "end": 3414.42, + "probability": 0.9458 + }, + { + "start": 3414.42, + "end": 3419.36, + "probability": 0.9893 + }, + { + "start": 3420.22, + "end": 3422.56, + "probability": 0.8326 + }, + { + "start": 3423.36, + "end": 3425.72, + "probability": 0.9655 + }, + { + "start": 3426.9, + "end": 3431.64, + "probability": 0.8612 + }, + { + "start": 3431.82, + "end": 3434.3, + "probability": 0.9626 + }, + { + "start": 3435.06, + "end": 3440.18, + "probability": 0.9771 + }, + { + "start": 3440.18, + "end": 3447.72, + "probability": 0.9929 + }, + { + "start": 3448.08, + "end": 3453.52, + "probability": 0.8784 + }, + { + "start": 3454.24, + "end": 3458.74, + "probability": 0.9985 + }, + { + "start": 3460.02, + "end": 3462.68, + "probability": 0.994 + }, + { + "start": 3462.68, + "end": 3466.5, + "probability": 0.9995 + }, + { + "start": 3467.38, + "end": 3470.96, + "probability": 0.998 + }, + { + "start": 3471.46, + "end": 3475.68, + "probability": 0.9944 + }, + { + "start": 3476.7, + "end": 3480.52, + "probability": 0.9917 + }, + { + "start": 3481.22, + "end": 3482.48, + "probability": 0.6469 + }, + { + "start": 3482.58, + "end": 3486.72, + "probability": 0.7343 + }, + { + "start": 3487.68, + "end": 3491.18, + "probability": 0.7388 + }, + { + "start": 3492.0, + "end": 3495.22, + "probability": 0.9941 + }, + { + "start": 3496.22, + "end": 3497.76, + "probability": 0.8707 + }, + { + "start": 3497.82, + "end": 3499.35, + "probability": 0.5129 + }, + { + "start": 3500.34, + "end": 3502.74, + "probability": 0.9475 + }, + { + "start": 3503.12, + "end": 3503.22, + "probability": 0.0072 + }, + { + "start": 3504.16, + "end": 3507.54, + "probability": 0.9958 + }, + { + "start": 3507.54, + "end": 3512.15, + "probability": 0.9937 + }, + { + "start": 3513.2, + "end": 3513.5, + "probability": 0.0002 + }, + { + "start": 3513.5, + "end": 3516.6, + "probability": 0.9926 + }, + { + "start": 3516.6, + "end": 3520.52, + "probability": 0.9261 + }, + { + "start": 3521.16, + "end": 3522.8, + "probability": 0.9869 + }, + { + "start": 3524.64, + "end": 3527.2, + "probability": 0.3221 + }, + { + "start": 3528.12, + "end": 3530.74, + "probability": 0.704 + }, + { + "start": 3531.74, + "end": 3534.26, + "probability": 0.9982 + }, + { + "start": 3534.26, + "end": 3536.78, + "probability": 0.9973 + }, + { + "start": 3537.96, + "end": 3537.96, + "probability": 0.2126 + }, + { + "start": 3538.04, + "end": 3541.76, + "probability": 0.9939 + }, + { + "start": 3542.74, + "end": 3543.0, + "probability": 0.0014 + }, + { + "start": 3543.8, + "end": 3548.1, + "probability": 0.9648 + }, + { + "start": 3548.1, + "end": 3551.84, + "probability": 0.9991 + }, + { + "start": 3552.94, + "end": 3553.14, + "probability": 0.0544 + }, + { + "start": 3553.4, + "end": 3557.2, + "probability": 0.9697 + }, + { + "start": 3557.36, + "end": 3559.12, + "probability": 0.996 + }, + { + "start": 3559.66, + "end": 3561.1, + "probability": 0.7782 + }, + { + "start": 3561.76, + "end": 3566.1, + "probability": 0.9928 + }, + { + "start": 3566.1, + "end": 3570.56, + "probability": 0.9313 + }, + { + "start": 3571.58, + "end": 3573.32, + "probability": 0.8929 + }, + { + "start": 3573.32, + "end": 3575.76, + "probability": 0.9891 + }, + { + "start": 3576.8, + "end": 3580.08, + "probability": 0.9873 + }, + { + "start": 3580.24, + "end": 3580.48, + "probability": 0.4831 + }, + { + "start": 3580.5, + "end": 3580.92, + "probability": 0.6928 + }, + { + "start": 3581.5, + "end": 3585.0, + "probability": 0.9031 + }, + { + "start": 3585.1, + "end": 3588.84, + "probability": 0.9961 + }, + { + "start": 3589.82, + "end": 3593.52, + "probability": 0.9984 + }, + { + "start": 3594.48, + "end": 3595.98, + "probability": 0.9403 + }, + { + "start": 3596.44, + "end": 3601.06, + "probability": 0.9984 + }, + { + "start": 3601.82, + "end": 3605.62, + "probability": 0.9837 + }, + { + "start": 3606.26, + "end": 3608.32, + "probability": 0.9761 + }, + { + "start": 3608.74, + "end": 3610.32, + "probability": 0.9949 + }, + { + "start": 3610.4, + "end": 3611.92, + "probability": 0.8743 + }, + { + "start": 3613.0, + "end": 3615.42, + "probability": 0.9956 + }, + { + "start": 3615.62, + "end": 3616.9, + "probability": 0.7716 + }, + { + "start": 3617.76, + "end": 3620.82, + "probability": 0.9854 + }, + { + "start": 3621.24, + "end": 3623.8, + "probability": 0.8202 + }, + { + "start": 3624.06, + "end": 3626.52, + "probability": 0.9886 + }, + { + "start": 3627.02, + "end": 3628.98, + "probability": 0.9679 + }, + { + "start": 3629.48, + "end": 3632.76, + "probability": 0.9355 + }, + { + "start": 3632.82, + "end": 3633.18, + "probability": 0.7932 + }, + { + "start": 3633.92, + "end": 3635.78, + "probability": 0.9326 + }, + { + "start": 3636.14, + "end": 3637.56, + "probability": 0.9893 + }, + { + "start": 3637.66, + "end": 3638.88, + "probability": 0.9976 + }, + { + "start": 3641.28, + "end": 3642.26, + "probability": 0.7151 + }, + { + "start": 3642.82, + "end": 3643.76, + "probability": 0.8794 + }, + { + "start": 3645.44, + "end": 3646.9, + "probability": 0.7821 + }, + { + "start": 3647.64, + "end": 3648.14, + "probability": 0.9181 + }, + { + "start": 3650.7, + "end": 3651.6, + "probability": 0.8182 + }, + { + "start": 3652.28, + "end": 3652.64, + "probability": 0.906 + }, + { + "start": 3661.08, + "end": 3661.08, + "probability": 0.2926 + }, + { + "start": 3661.08, + "end": 3661.82, + "probability": 0.4881 + }, + { + "start": 3661.82, + "end": 3662.8, + "probability": 0.7022 + }, + { + "start": 3663.12, + "end": 3664.88, + "probability": 0.7783 + }, + { + "start": 3664.96, + "end": 3666.6, + "probability": 0.8728 + }, + { + "start": 3668.52, + "end": 3669.48, + "probability": 0.7236 + }, + { + "start": 3672.76, + "end": 3681.18, + "probability": 0.9919 + }, + { + "start": 3681.28, + "end": 3686.12, + "probability": 0.989 + }, + { + "start": 3686.7, + "end": 3687.8, + "probability": 0.6286 + }, + { + "start": 3688.58, + "end": 3698.12, + "probability": 0.9914 + }, + { + "start": 3698.8, + "end": 3700.86, + "probability": 0.9578 + }, + { + "start": 3701.22, + "end": 3703.71, + "probability": 0.9909 + }, + { + "start": 3704.06, + "end": 3706.24, + "probability": 0.978 + }, + { + "start": 3706.32, + "end": 3709.48, + "probability": 0.8498 + }, + { + "start": 3709.48, + "end": 3711.08, + "probability": 0.5963 + }, + { + "start": 3711.7, + "end": 3711.96, + "probability": 0.0705 + }, + { + "start": 3711.96, + "end": 3711.96, + "probability": 0.0117 + }, + { + "start": 3711.96, + "end": 3711.96, + "probability": 0.2039 + }, + { + "start": 3711.96, + "end": 3716.42, + "probability": 0.4449 + }, + { + "start": 3716.42, + "end": 3716.42, + "probability": 0.1829 + }, + { + "start": 3716.42, + "end": 3717.75, + "probability": 0.3538 + }, + { + "start": 3719.3, + "end": 3719.96, + "probability": 0.5788 + }, + { + "start": 3720.48, + "end": 3722.5, + "probability": 0.8454 + }, + { + "start": 3723.12, + "end": 3723.98, + "probability": 0.8468 + }, + { + "start": 3725.84, + "end": 3727.29, + "probability": 0.9543 + }, + { + "start": 3727.6, + "end": 3730.08, + "probability": 0.9907 + }, + { + "start": 3731.64, + "end": 3737.32, + "probability": 0.9943 + }, + { + "start": 3738.86, + "end": 3739.76, + "probability": 0.7623 + }, + { + "start": 3740.86, + "end": 3742.26, + "probability": 0.9883 + }, + { + "start": 3743.16, + "end": 3744.74, + "probability": 0.9395 + }, + { + "start": 3745.18, + "end": 3746.1, + "probability": 0.7203 + }, + { + "start": 3746.76, + "end": 3748.48, + "probability": 0.9734 + }, + { + "start": 3748.8, + "end": 3749.66, + "probability": 0.6754 + }, + { + "start": 3750.44, + "end": 3755.36, + "probability": 0.9931 + }, + { + "start": 3755.42, + "end": 3757.26, + "probability": 0.9948 + }, + { + "start": 3758.0, + "end": 3761.86, + "probability": 0.998 + }, + { + "start": 3762.24, + "end": 3763.88, + "probability": 0.7966 + }, + { + "start": 3764.34, + "end": 3766.62, + "probability": 0.9956 + }, + { + "start": 3767.02, + "end": 3770.82, + "probability": 0.9183 + }, + { + "start": 3771.56, + "end": 3773.92, + "probability": 0.9985 + }, + { + "start": 3775.24, + "end": 3780.51, + "probability": 0.9297 + }, + { + "start": 3782.3, + "end": 3784.06, + "probability": 0.7519 + }, + { + "start": 3784.14, + "end": 3785.5, + "probability": 0.9863 + }, + { + "start": 3785.68, + "end": 3786.04, + "probability": 0.8417 + }, + { + "start": 3786.6, + "end": 3789.86, + "probability": 0.9956 + }, + { + "start": 3789.92, + "end": 3790.78, + "probability": 0.9309 + }, + { + "start": 3791.5, + "end": 3792.54, + "probability": 0.8618 + }, + { + "start": 3793.06, + "end": 3796.98, + "probability": 0.994 + }, + { + "start": 3797.72, + "end": 3798.6, + "probability": 0.796 + }, + { + "start": 3799.5, + "end": 3801.32, + "probability": 0.8464 + }, + { + "start": 3801.46, + "end": 3802.34, + "probability": 0.8505 + }, + { + "start": 3802.64, + "end": 3803.7, + "probability": 0.7188 + }, + { + "start": 3804.74, + "end": 3807.04, + "probability": 0.8801 + }, + { + "start": 3808.28, + "end": 3811.04, + "probability": 0.9258 + }, + { + "start": 3811.96, + "end": 3815.8, + "probability": 0.9863 + }, + { + "start": 3816.42, + "end": 3818.7, + "probability": 0.9949 + }, + { + "start": 3819.32, + "end": 3822.26, + "probability": 0.9072 + }, + { + "start": 3823.52, + "end": 3827.5, + "probability": 0.9907 + }, + { + "start": 3827.5, + "end": 3832.1, + "probability": 0.9983 + }, + { + "start": 3832.26, + "end": 3833.08, + "probability": 0.8136 + }, + { + "start": 3834.04, + "end": 3834.42, + "probability": 0.9131 + }, + { + "start": 3834.5, + "end": 3838.82, + "probability": 0.9957 + }, + { + "start": 3839.38, + "end": 3840.36, + "probability": 0.9958 + }, + { + "start": 3840.46, + "end": 3841.88, + "probability": 0.7257 + }, + { + "start": 3842.26, + "end": 3843.46, + "probability": 0.7108 + }, + { + "start": 3844.54, + "end": 3848.24, + "probability": 0.9874 + }, + { + "start": 3848.78, + "end": 3851.41, + "probability": 0.9448 + }, + { + "start": 3852.7, + "end": 3853.98, + "probability": 0.8162 + }, + { + "start": 3855.2, + "end": 3857.54, + "probability": 0.9971 + }, + { + "start": 3858.62, + "end": 3861.26, + "probability": 0.8825 + }, + { + "start": 3861.82, + "end": 3867.48, + "probability": 0.9976 + }, + { + "start": 3868.7, + "end": 3873.98, + "probability": 0.9884 + }, + { + "start": 3874.24, + "end": 3875.32, + "probability": 0.5953 + }, + { + "start": 3875.96, + "end": 3877.4, + "probability": 0.9204 + }, + { + "start": 3878.34, + "end": 3881.7, + "probability": 0.9882 + }, + { + "start": 3882.54, + "end": 3884.53, + "probability": 0.98 + }, + { + "start": 3885.32, + "end": 3888.22, + "probability": 0.9932 + }, + { + "start": 3889.1, + "end": 3890.1, + "probability": 0.9644 + }, + { + "start": 3890.92, + "end": 3892.02, + "probability": 0.9912 + }, + { + "start": 3892.64, + "end": 3895.78, + "probability": 0.9998 + }, + { + "start": 3895.84, + "end": 3896.5, + "probability": 0.8256 + }, + { + "start": 3896.6, + "end": 3897.68, + "probability": 0.8362 + }, + { + "start": 3897.74, + "end": 3898.56, + "probability": 0.7431 + }, + { + "start": 3899.66, + "end": 3900.98, + "probability": 0.9049 + }, + { + "start": 3902.22, + "end": 3903.13, + "probability": 0.9707 + }, + { + "start": 3904.32, + "end": 3906.58, + "probability": 0.9954 + }, + { + "start": 3907.6, + "end": 3908.74, + "probability": 0.9954 + }, + { + "start": 3910.34, + "end": 3915.14, + "probability": 0.9728 + }, + { + "start": 3917.54, + "end": 3921.13, + "probability": 0.9985 + }, + { + "start": 3921.24, + "end": 3922.66, + "probability": 0.7095 + }, + { + "start": 3923.3, + "end": 3925.3, + "probability": 0.9866 + }, + { + "start": 3926.54, + "end": 3929.01, + "probability": 0.979 + }, + { + "start": 3929.8, + "end": 3930.5, + "probability": 0.6017 + }, + { + "start": 3930.84, + "end": 3932.9, + "probability": 0.9921 + }, + { + "start": 3933.34, + "end": 3935.86, + "probability": 0.9969 + }, + { + "start": 3936.92, + "end": 3939.36, + "probability": 0.9586 + }, + { + "start": 3940.14, + "end": 3942.98, + "probability": 0.9709 + }, + { + "start": 3943.12, + "end": 3945.44, + "probability": 0.9922 + }, + { + "start": 3945.74, + "end": 3947.3, + "probability": 0.8701 + }, + { + "start": 3947.64, + "end": 3950.1, + "probability": 0.9949 + }, + { + "start": 3950.52, + "end": 3950.9, + "probability": 0.7495 + }, + { + "start": 3951.02, + "end": 3951.7, + "probability": 0.7904 + }, + { + "start": 3952.06, + "end": 3953.36, + "probability": 0.9482 + }, + { + "start": 3953.56, + "end": 3955.14, + "probability": 0.9857 + }, + { + "start": 3955.52, + "end": 3956.58, + "probability": 0.9854 + }, + { + "start": 3957.44, + "end": 3958.6, + "probability": 0.0577 + }, + { + "start": 3959.62, + "end": 3960.18, + "probability": 0.4228 + }, + { + "start": 3960.2, + "end": 3960.96, + "probability": 0.7678 + }, + { + "start": 3961.06, + "end": 3962.4, + "probability": 0.7497 + }, + { + "start": 3964.06, + "end": 3967.94, + "probability": 0.759 + }, + { + "start": 3969.4, + "end": 3970.66, + "probability": 0.9166 + }, + { + "start": 3970.8, + "end": 3972.06, + "probability": 0.9375 + }, + { + "start": 3972.22, + "end": 3972.85, + "probability": 0.8446 + }, + { + "start": 3973.1, + "end": 3975.22, + "probability": 0.86 + }, + { + "start": 3975.9, + "end": 3976.54, + "probability": 0.7618 + }, + { + "start": 3977.26, + "end": 3980.02, + "probability": 0.7959 + }, + { + "start": 3980.36, + "end": 3980.97, + "probability": 0.3687 + }, + { + "start": 3981.22, + "end": 3982.75, + "probability": 0.6941 + }, + { + "start": 3984.15, + "end": 3988.32, + "probability": 0.1532 + }, + { + "start": 3988.32, + "end": 3988.32, + "probability": 0.176 + }, + { + "start": 3988.32, + "end": 3988.32, + "probability": 0.5827 + }, + { + "start": 3988.32, + "end": 3990.73, + "probability": 0.3327 + }, + { + "start": 3991.4, + "end": 3993.78, + "probability": 0.9849 + }, + { + "start": 3994.9, + "end": 3995.88, + "probability": 0.2214 + }, + { + "start": 3996.1, + "end": 3996.88, + "probability": 0.748 + }, + { + "start": 4001.78, + "end": 4003.92, + "probability": 0.8539 + }, + { + "start": 4004.1, + "end": 4007.6, + "probability": 0.9812 + }, + { + "start": 4008.2, + "end": 4009.66, + "probability": 0.9945 + }, + { + "start": 4009.82, + "end": 4011.12, + "probability": 0.9724 + }, + { + "start": 4011.94, + "end": 4013.12, + "probability": 0.9833 + }, + { + "start": 4013.74, + "end": 4015.02, + "probability": 0.9953 + }, + { + "start": 4015.32, + "end": 4017.48, + "probability": 0.3766 + }, + { + "start": 4017.66, + "end": 4021.78, + "probability": 0.935 + }, + { + "start": 4023.29, + "end": 4025.62, + "probability": 0.9841 + }, + { + "start": 4025.62, + "end": 4027.52, + "probability": 0.9922 + }, + { + "start": 4028.14, + "end": 4030.02, + "probability": 0.8513 + }, + { + "start": 4030.08, + "end": 4033.64, + "probability": 0.981 + }, + { + "start": 4034.78, + "end": 4035.52, + "probability": 0.9751 + }, + { + "start": 4035.56, + "end": 4039.14, + "probability": 0.9513 + }, + { + "start": 4039.36, + "end": 4040.24, + "probability": 0.5117 + }, + { + "start": 4040.28, + "end": 4042.24, + "probability": 0.4761 + }, + { + "start": 4043.7, + "end": 4046.46, + "probability": 0.9868 + }, + { + "start": 4046.46, + "end": 4049.86, + "probability": 0.9966 + }, + { + "start": 4050.5, + "end": 4053.52, + "probability": 0.8258 + }, + { + "start": 4054.34, + "end": 4056.14, + "probability": 0.8793 + }, + { + "start": 4056.42, + "end": 4060.02, + "probability": 0.8253 + }, + { + "start": 4060.64, + "end": 4062.64, + "probability": 0.8638 + }, + { + "start": 4062.86, + "end": 4063.48, + "probability": 0.6302 + }, + { + "start": 4063.7, + "end": 4069.14, + "probability": 0.9841 + }, + { + "start": 4070.88, + "end": 4071.72, + "probability": 0.4182 + }, + { + "start": 4072.08, + "end": 4074.9, + "probability": 0.9108 + }, + { + "start": 4074.98, + "end": 4075.46, + "probability": 0.0093 + }, + { + "start": 4075.68, + "end": 4077.46, + "probability": 0.9062 + }, + { + "start": 4078.62, + "end": 4082.04, + "probability": 0.7351 + }, + { + "start": 4082.96, + "end": 4085.14, + "probability": 0.8008 + }, + { + "start": 4085.72, + "end": 4087.3, + "probability": 0.845 + }, + { + "start": 4087.32, + "end": 4088.06, + "probability": 0.7478 + }, + { + "start": 4088.56, + "end": 4090.02, + "probability": 0.9042 + }, + { + "start": 4090.08, + "end": 4091.02, + "probability": 0.8109 + }, + { + "start": 4091.08, + "end": 4093.82, + "probability": 0.883 + }, + { + "start": 4094.68, + "end": 4097.68, + "probability": 0.9704 + }, + { + "start": 4099.24, + "end": 4103.32, + "probability": 0.9751 + }, + { + "start": 4103.86, + "end": 4104.84, + "probability": 0.5966 + }, + { + "start": 4105.9, + "end": 4107.9, + "probability": 0.7135 + }, + { + "start": 4109.23, + "end": 4111.48, + "probability": 0.8262 + }, + { + "start": 4111.64, + "end": 4112.84, + "probability": 0.8731 + }, + { + "start": 4113.38, + "end": 4118.12, + "probability": 0.9342 + }, + { + "start": 4119.4, + "end": 4121.82, + "probability": 0.0499 + }, + { + "start": 4121.82, + "end": 4123.02, + "probability": 0.7321 + }, + { + "start": 4123.9, + "end": 4128.92, + "probability": 0.9361 + }, + { + "start": 4129.18, + "end": 4133.93, + "probability": 0.9908 + }, + { + "start": 4134.32, + "end": 4136.38, + "probability": 0.9971 + }, + { + "start": 4136.62, + "end": 4141.16, + "probability": 0.9919 + }, + { + "start": 4141.94, + "end": 4144.98, + "probability": 0.9912 + }, + { + "start": 4145.42, + "end": 4147.49, + "probability": 0.991 + }, + { + "start": 4147.68, + "end": 4152.68, + "probability": 0.9923 + }, + { + "start": 4152.68, + "end": 4155.06, + "probability": 0.6658 + }, + { + "start": 4156.12, + "end": 4161.42, + "probability": 0.9978 + }, + { + "start": 4162.1, + "end": 4167.38, + "probability": 0.9927 + }, + { + "start": 4167.8, + "end": 4169.5, + "probability": 0.8019 + }, + { + "start": 4169.78, + "end": 4171.14, + "probability": 0.9797 + }, + { + "start": 4171.32, + "end": 4171.98, + "probability": 0.6101 + }, + { + "start": 4172.5, + "end": 4178.36, + "probability": 0.7134 + }, + { + "start": 4179.12, + "end": 4180.7, + "probability": 0.9941 + }, + { + "start": 4180.92, + "end": 4182.78, + "probability": 0.9938 + }, + { + "start": 4183.48, + "end": 4189.16, + "probability": 0.9896 + }, + { + "start": 4189.72, + "end": 4195.6, + "probability": 0.9972 + }, + { + "start": 4195.96, + "end": 4196.26, + "probability": 0.7099 + }, + { + "start": 4196.94, + "end": 4197.72, + "probability": 0.4948 + }, + { + "start": 4197.82, + "end": 4200.26, + "probability": 0.8077 + }, + { + "start": 4201.25, + "end": 4204.48, + "probability": 0.9836 + }, + { + "start": 4205.66, + "end": 4209.68, + "probability": 0.9719 + }, + { + "start": 4210.02, + "end": 4212.24, + "probability": 0.9062 + }, + { + "start": 4214.96, + "end": 4219.44, + "probability": 0.8204 + }, + { + "start": 4231.78, + "end": 4234.42, + "probability": 0.6654 + }, + { + "start": 4235.96, + "end": 4239.54, + "probability": 0.8946 + }, + { + "start": 4240.92, + "end": 4244.82, + "probability": 0.9809 + }, + { + "start": 4245.7, + "end": 4248.9, + "probability": 0.9563 + }, + { + "start": 4249.94, + "end": 4256.04, + "probability": 0.9147 + }, + { + "start": 4256.8, + "end": 4257.3, + "probability": 0.791 + }, + { + "start": 4258.34, + "end": 4261.86, + "probability": 0.9941 + }, + { + "start": 4263.78, + "end": 4264.28, + "probability": 0.8391 + }, + { + "start": 4264.38, + "end": 4264.9, + "probability": 0.859 + }, + { + "start": 4264.98, + "end": 4267.76, + "probability": 0.9872 + }, + { + "start": 4268.34, + "end": 4273.72, + "probability": 0.998 + }, + { + "start": 4274.16, + "end": 4274.86, + "probability": 0.627 + }, + { + "start": 4276.0, + "end": 4278.76, + "probability": 0.9559 + }, + { + "start": 4278.84, + "end": 4281.86, + "probability": 0.9957 + }, + { + "start": 4282.6, + "end": 4284.34, + "probability": 0.829 + }, + { + "start": 4285.4, + "end": 4287.44, + "probability": 0.9622 + }, + { + "start": 4287.86, + "end": 4288.41, + "probability": 0.9392 + }, + { + "start": 4288.88, + "end": 4289.57, + "probability": 0.9985 + }, + { + "start": 4290.36, + "end": 4293.4, + "probability": 0.8656 + }, + { + "start": 4293.98, + "end": 4299.06, + "probability": 0.9878 + }, + { + "start": 4299.26, + "end": 4300.14, + "probability": 0.8977 + }, + { + "start": 4300.2, + "end": 4300.78, + "probability": 0.9079 + }, + { + "start": 4300.84, + "end": 4301.7, + "probability": 0.9766 + }, + { + "start": 4301.96, + "end": 4303.8, + "probability": 0.9383 + }, + { + "start": 4304.04, + "end": 4305.62, + "probability": 0.9855 + }, + { + "start": 4306.24, + "end": 4309.94, + "probability": 0.5668 + }, + { + "start": 4310.74, + "end": 4315.72, + "probability": 0.9637 + }, + { + "start": 4317.28, + "end": 4318.9, + "probability": 0.9799 + }, + { + "start": 4320.08, + "end": 4321.2, + "probability": 0.8433 + }, + { + "start": 4322.26, + "end": 4327.9, + "probability": 0.9336 + }, + { + "start": 4328.82, + "end": 4337.04, + "probability": 0.9871 + }, + { + "start": 4337.82, + "end": 4338.68, + "probability": 0.6829 + }, + { + "start": 4338.74, + "end": 4339.64, + "probability": 0.4918 + }, + { + "start": 4339.72, + "end": 4340.0, + "probability": 0.5419 + }, + { + "start": 4340.74, + "end": 4345.48, + "probability": 0.9546 + }, + { + "start": 4346.02, + "end": 4349.12, + "probability": 0.9291 + }, + { + "start": 4350.0, + "end": 4351.8, + "probability": 0.7567 + }, + { + "start": 4351.98, + "end": 4354.2, + "probability": 0.9429 + }, + { + "start": 4355.94, + "end": 4357.3, + "probability": 0.9146 + }, + { + "start": 4358.48, + "end": 4361.68, + "probability": 0.9845 + }, + { + "start": 4362.52, + "end": 4364.96, + "probability": 0.9579 + }, + { + "start": 4365.58, + "end": 4369.44, + "probability": 0.9942 + }, + { + "start": 4370.2, + "end": 4372.36, + "probability": 0.7821 + }, + { + "start": 4372.4, + "end": 4375.18, + "probability": 0.9452 + }, + { + "start": 4375.32, + "end": 4375.8, + "probability": 0.4846 + }, + { + "start": 4375.84, + "end": 4377.16, + "probability": 0.9153 + }, + { + "start": 4377.84, + "end": 4378.64, + "probability": 0.6731 + }, + { + "start": 4379.22, + "end": 4381.6, + "probability": 0.9483 + }, + { + "start": 4382.22, + "end": 4382.82, + "probability": 0.9285 + }, + { + "start": 4382.86, + "end": 4385.44, + "probability": 0.8154 + }, + { + "start": 4385.62, + "end": 4387.6, + "probability": 0.9281 + }, + { + "start": 4388.3, + "end": 4392.32, + "probability": 0.9988 + }, + { + "start": 4393.22, + "end": 4394.74, + "probability": 0.9097 + }, + { + "start": 4395.68, + "end": 4397.0, + "probability": 0.9871 + }, + { + "start": 4397.1, + "end": 4398.88, + "probability": 0.9733 + }, + { + "start": 4399.76, + "end": 4402.6, + "probability": 0.9211 + }, + { + "start": 4402.68, + "end": 4403.88, + "probability": 0.9604 + }, + { + "start": 4405.34, + "end": 4407.18, + "probability": 0.998 + }, + { + "start": 4408.08, + "end": 4409.74, + "probability": 0.9946 + }, + { + "start": 4409.76, + "end": 4410.78, + "probability": 0.999 + }, + { + "start": 4411.06, + "end": 4411.7, + "probability": 0.532 + }, + { + "start": 4411.84, + "end": 4413.58, + "probability": 0.7618 + }, + { + "start": 4420.68, + "end": 4423.5, + "probability": 0.7479 + }, + { + "start": 4423.56, + "end": 4425.26, + "probability": 0.695 + }, + { + "start": 4426.04, + "end": 4429.58, + "probability": 0.237 + }, + { + "start": 4430.4, + "end": 4431.82, + "probability": 0.8864 + }, + { + "start": 4434.16, + "end": 4437.42, + "probability": 0.7647 + }, + { + "start": 4439.04, + "end": 4443.46, + "probability": 0.9972 + }, + { + "start": 4445.44, + "end": 4448.56, + "probability": 0.9916 + }, + { + "start": 4450.04, + "end": 4454.02, + "probability": 0.9971 + }, + { + "start": 4455.12, + "end": 4456.04, + "probability": 0.5101 + }, + { + "start": 4457.28, + "end": 4458.56, + "probability": 0.7091 + }, + { + "start": 4459.58, + "end": 4461.6, + "probability": 0.712 + }, + { + "start": 4462.58, + "end": 4464.78, + "probability": 0.8566 + }, + { + "start": 4465.3, + "end": 4466.16, + "probability": 0.8169 + }, + { + "start": 4466.8, + "end": 4469.8, + "probability": 0.8745 + }, + { + "start": 4470.34, + "end": 4472.04, + "probability": 0.9473 + }, + { + "start": 4473.8, + "end": 4477.88, + "probability": 0.9326 + }, + { + "start": 4477.88, + "end": 4478.16, + "probability": 0.0115 + }, + { + "start": 4478.44, + "end": 4480.06, + "probability": 0.7779 + }, + { + "start": 4481.28, + "end": 4482.7, + "probability": 0.9899 + }, + { + "start": 4484.32, + "end": 4486.14, + "probability": 0.9347 + }, + { + "start": 4487.92, + "end": 4490.79, + "probability": 0.7783 + }, + { + "start": 4491.72, + "end": 4492.62, + "probability": 0.9625 + }, + { + "start": 4493.16, + "end": 4494.42, + "probability": 0.986 + }, + { + "start": 4495.84, + "end": 4500.04, + "probability": 0.9819 + }, + { + "start": 4501.12, + "end": 4503.68, + "probability": 0.8999 + }, + { + "start": 4504.4, + "end": 4510.82, + "probability": 0.9561 + }, + { + "start": 4512.26, + "end": 4514.12, + "probability": 0.9993 + }, + { + "start": 4515.4, + "end": 4517.08, + "probability": 0.9669 + }, + { + "start": 4518.84, + "end": 4519.92, + "probability": 0.7789 + }, + { + "start": 4520.88, + "end": 4523.56, + "probability": 0.9919 + }, + { + "start": 4526.1, + "end": 4528.82, + "probability": 0.8094 + }, + { + "start": 4530.32, + "end": 4535.04, + "probability": 0.9393 + }, + { + "start": 4535.74, + "end": 4542.56, + "probability": 0.9007 + }, + { + "start": 4542.64, + "end": 4543.52, + "probability": 0.8904 + }, + { + "start": 4543.78, + "end": 4545.1, + "probability": 0.7534 + }, + { + "start": 4545.98, + "end": 4547.2, + "probability": 0.9308 + }, + { + "start": 4547.5, + "end": 4551.53, + "probability": 0.9045 + }, + { + "start": 4552.56, + "end": 4553.58, + "probability": 0.8228 + }, + { + "start": 4554.56, + "end": 4558.18, + "probability": 0.9418 + }, + { + "start": 4559.1, + "end": 4559.92, + "probability": 0.8159 + }, + { + "start": 4560.58, + "end": 4563.42, + "probability": 0.8742 + }, + { + "start": 4564.3, + "end": 4567.78, + "probability": 0.9939 + }, + { + "start": 4568.66, + "end": 4570.17, + "probability": 0.9938 + }, + { + "start": 4570.41, + "end": 4573.32, + "probability": 0.8826 + }, + { + "start": 4574.61, + "end": 4578.97, + "probability": 0.9667 + }, + { + "start": 4579.53, + "end": 4582.25, + "probability": 0.6654 + }, + { + "start": 4583.81, + "end": 4586.97, + "probability": 0.7736 + }, + { + "start": 4587.11, + "end": 4587.39, + "probability": 0.5858 + }, + { + "start": 4587.43, + "end": 4591.91, + "probability": 0.9957 + }, + { + "start": 4592.37, + "end": 4592.91, + "probability": 0.7114 + }, + { + "start": 4592.99, + "end": 4595.67, + "probability": 0.9958 + }, + { + "start": 4596.53, + "end": 4599.75, + "probability": 0.9588 + }, + { + "start": 4600.59, + "end": 4608.55, + "probability": 0.925 + }, + { + "start": 4609.83, + "end": 4611.59, + "probability": 0.8402 + }, + { + "start": 4612.41, + "end": 4614.21, + "probability": 0.9479 + }, + { + "start": 4614.39, + "end": 4614.69, + "probability": 0.7337 + }, + { + "start": 4615.17, + "end": 4616.13, + "probability": 0.5125 + }, + { + "start": 4617.37, + "end": 4618.73, + "probability": 0.9397 + }, + { + "start": 4618.77, + "end": 4620.05, + "probability": 0.9587 + }, + { + "start": 4621.33, + "end": 4623.11, + "probability": 0.9935 + }, + { + "start": 4623.33, + "end": 4624.17, + "probability": 0.8643 + }, + { + "start": 4624.43, + "end": 4625.09, + "probability": 0.5002 + }, + { + "start": 4638.53, + "end": 4639.07, + "probability": 0.981 + }, + { + "start": 4642.17, + "end": 4644.81, + "probability": 0.0442 + }, + { + "start": 4645.89, + "end": 4645.89, + "probability": 0.0728 + }, + { + "start": 4645.89, + "end": 4646.23, + "probability": 0.2149 + }, + { + "start": 4648.37, + "end": 4648.91, + "probability": 0.0184 + }, + { + "start": 4648.91, + "end": 4649.59, + "probability": 0.2202 + }, + { + "start": 4649.93, + "end": 4650.43, + "probability": 0.0122 + }, + { + "start": 4650.97, + "end": 4655.27, + "probability": 0.0505 + }, + { + "start": 4655.75, + "end": 4659.09, + "probability": 0.1191 + }, + { + "start": 4660.95, + "end": 4663.31, + "probability": 0.1498 + }, + { + "start": 4664.79, + "end": 4665.81, + "probability": 0.0488 + }, + { + "start": 4672.05, + "end": 4674.93, + "probability": 0.0442 + }, + { + "start": 4675.01, + "end": 4676.21, + "probability": 0.2659 + }, + { + "start": 4676.91, + "end": 4685.03, + "probability": 0.0237 + }, + { + "start": 4685.65, + "end": 4687.45, + "probability": 0.0346 + }, + { + "start": 4689.7, + "end": 4691.21, + "probability": 0.4226 + }, + { + "start": 4691.21, + "end": 4691.49, + "probability": 0.0954 + }, + { + "start": 4692.71, + "end": 4693.65, + "probability": 0.1312 + }, + { + "start": 4693.65, + "end": 4694.71, + "probability": 0.241 + }, + { + "start": 4694.71, + "end": 4694.71, + "probability": 0.3192 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.0, + "end": 4695.0, + "probability": 0.0 + }, + { + "start": 4695.9, + "end": 4700.66, + "probability": 0.0321 + }, + { + "start": 4701.1, + "end": 4702.38, + "probability": 0.0371 + }, + { + "start": 4702.62, + "end": 4704.18, + "probability": 0.0492 + }, + { + "start": 4704.18, + "end": 4704.4, + "probability": 0.0338 + }, + { + "start": 4704.4, + "end": 4705.26, + "probability": 0.0098 + }, + { + "start": 4705.26, + "end": 4707.42, + "probability": 0.0884 + }, + { + "start": 4709.28, + "end": 4713.38, + "probability": 0.0407 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.0, + "end": 4815.0, + "probability": 0.0 + }, + { + "start": 4815.16, + "end": 4815.64, + "probability": 0.498 + }, + { + "start": 4816.3, + "end": 4818.36, + "probability": 0.9251 + }, + { + "start": 4818.42, + "end": 4821.76, + "probability": 0.9976 + }, + { + "start": 4821.86, + "end": 4822.18, + "probability": 0.7823 + }, + { + "start": 4822.2, + "end": 4825.78, + "probability": 0.9956 + }, + { + "start": 4826.86, + "end": 4832.62, + "probability": 0.9959 + }, + { + "start": 4832.72, + "end": 4832.96, + "probability": 0.5424 + }, + { + "start": 4833.1, + "end": 4836.42, + "probability": 0.9087 + }, + { + "start": 4836.9, + "end": 4839.0, + "probability": 0.9967 + }, + { + "start": 4839.8, + "end": 4842.26, + "probability": 0.9958 + }, + { + "start": 4842.7, + "end": 4842.84, + "probability": 0.3561 + }, + { + "start": 4842.94, + "end": 4843.33, + "probability": 0.7854 + }, + { + "start": 4843.8, + "end": 4844.46, + "probability": 0.9084 + }, + { + "start": 4845.16, + "end": 4850.02, + "probability": 0.9763 + }, + { + "start": 4850.42, + "end": 4851.74, + "probability": 0.9214 + }, + { + "start": 4852.28, + "end": 4854.3, + "probability": 0.9938 + }, + { + "start": 4854.76, + "end": 4856.84, + "probability": 0.8445 + }, + { + "start": 4857.44, + "end": 4859.22, + "probability": 0.8717 + }, + { + "start": 4859.38, + "end": 4860.88, + "probability": 0.9902 + }, + { + "start": 4862.02, + "end": 4863.15, + "probability": 0.9829 + }, + { + "start": 4863.8, + "end": 4867.48, + "probability": 0.9969 + }, + { + "start": 4867.56, + "end": 4872.32, + "probability": 0.9937 + }, + { + "start": 4873.4, + "end": 4876.36, + "probability": 0.9963 + }, + { + "start": 4876.96, + "end": 4879.09, + "probability": 0.9971 + }, + { + "start": 4879.62, + "end": 4884.12, + "probability": 0.9967 + }, + { + "start": 4884.26, + "end": 4886.24, + "probability": 0.9985 + }, + { + "start": 4886.84, + "end": 4890.1, + "probability": 0.9949 + }, + { + "start": 4890.1, + "end": 4893.11, + "probability": 0.998 + }, + { + "start": 4894.34, + "end": 4898.58, + "probability": 0.985 + }, + { + "start": 4898.74, + "end": 4899.84, + "probability": 0.7922 + }, + { + "start": 4899.84, + "end": 4900.74, + "probability": 0.446 + }, + { + "start": 4901.3, + "end": 4905.56, + "probability": 0.9941 + }, + { + "start": 4905.96, + "end": 4907.26, + "probability": 0.9834 + }, + { + "start": 4908.22, + "end": 4910.9, + "probability": 0.9586 + }, + { + "start": 4911.9, + "end": 4915.4, + "probability": 0.7582 + }, + { + "start": 4916.82, + "end": 4922.52, + "probability": 0.9949 + }, + { + "start": 4922.72, + "end": 4923.14, + "probability": 0.5834 + }, + { + "start": 4924.14, + "end": 4926.56, + "probability": 0.6658 + }, + { + "start": 4926.72, + "end": 4927.8, + "probability": 0.9444 + }, + { + "start": 4931.06, + "end": 4931.64, + "probability": 0.1488 + }, + { + "start": 4931.72, + "end": 4932.36, + "probability": 0.5049 + }, + { + "start": 4932.42, + "end": 4934.7, + "probability": 0.782 + }, + { + "start": 4934.88, + "end": 4935.72, + "probability": 0.9754 + }, + { + "start": 4936.08, + "end": 4936.64, + "probability": 0.6351 + }, + { + "start": 4936.72, + "end": 4938.78, + "probability": 0.9832 + }, + { + "start": 4939.06, + "end": 4939.98, + "probability": 0.8958 + }, + { + "start": 4940.36, + "end": 4943.74, + "probability": 0.9716 + }, + { + "start": 4943.82, + "end": 4943.89, + "probability": 0.1195 + }, + { + "start": 4944.24, + "end": 4945.08, + "probability": 0.5265 + }, + { + "start": 4945.3, + "end": 4946.06, + "probability": 0.4617 + }, + { + "start": 4946.08, + "end": 4949.0, + "probability": 0.8569 + }, + { + "start": 4952.36, + "end": 4953.08, + "probability": 0.563 + }, + { + "start": 4953.84, + "end": 4954.88, + "probability": 0.8406 + }, + { + "start": 4955.22, + "end": 4955.46, + "probability": 0.6949 + }, + { + "start": 4961.72, + "end": 4963.96, + "probability": 0.7417 + }, + { + "start": 4964.77, + "end": 4967.42, + "probability": 0.7368 + }, + { + "start": 4967.62, + "end": 4968.4, + "probability": 0.7894 + }, + { + "start": 4969.08, + "end": 4970.42, + "probability": 0.8667 + }, + { + "start": 4971.52, + "end": 4976.46, + "probability": 0.9471 + }, + { + "start": 4976.46, + "end": 4981.24, + "probability": 0.8464 + }, + { + "start": 4982.86, + "end": 4983.0, + "probability": 0.044 + }, + { + "start": 4983.0, + "end": 4986.0, + "probability": 0.5531 + }, + { + "start": 4987.5, + "end": 4988.92, + "probability": 0.816 + }, + { + "start": 4989.12, + "end": 4992.56, + "probability": 0.5145 + }, + { + "start": 4992.98, + "end": 4993.84, + "probability": 0.5179 + }, + { + "start": 4994.2, + "end": 4996.74, + "probability": 0.7891 + }, + { + "start": 4997.44, + "end": 5000.8, + "probability": 0.9038 + }, + { + "start": 5001.18, + "end": 5004.0, + "probability": 0.9238 + }, + { + "start": 5004.6, + "end": 5006.22, + "probability": 0.9902 + }, + { + "start": 5006.28, + "end": 5007.94, + "probability": 0.8995 + }, + { + "start": 5008.08, + "end": 5008.36, + "probability": 0.9229 + }, + { + "start": 5008.9, + "end": 5012.66, + "probability": 0.9389 + }, + { + "start": 5012.66, + "end": 5015.87, + "probability": 0.9419 + }, + { + "start": 5017.06, + "end": 5018.66, + "probability": 0.3317 + }, + { + "start": 5018.68, + "end": 5021.34, + "probability": 0.699 + }, + { + "start": 5021.52, + "end": 5026.54, + "probability": 0.7961 + }, + { + "start": 5027.04, + "end": 5032.04, + "probability": 0.9935 + }, + { + "start": 5032.48, + "end": 5032.56, + "probability": 0.0875 + }, + { + "start": 5032.56, + "end": 5032.56, + "probability": 0.0345 + }, + { + "start": 5032.56, + "end": 5037.74, + "probability": 0.9334 + }, + { + "start": 5038.36, + "end": 5040.23, + "probability": 0.8717 + }, + { + "start": 5040.84, + "end": 5041.86, + "probability": 0.6084 + }, + { + "start": 5042.26, + "end": 5043.43, + "probability": 0.9784 + }, + { + "start": 5044.04, + "end": 5044.06, + "probability": 0.0181 + }, + { + "start": 5044.06, + "end": 5045.8, + "probability": 0.8929 + }, + { + "start": 5045.88, + "end": 5045.88, + "probability": 0.0064 + }, + { + "start": 5045.88, + "end": 5047.14, + "probability": 0.9281 + }, + { + "start": 5047.34, + "end": 5047.94, + "probability": 0.4594 + }, + { + "start": 5048.08, + "end": 5049.4, + "probability": 0.8627 + }, + { + "start": 5049.44, + "end": 5051.58, + "probability": 0.0182 + }, + { + "start": 5051.78, + "end": 5052.04, + "probability": 0.9478 + }, + { + "start": 5052.04, + "end": 5052.32, + "probability": 0.1849 + }, + { + "start": 5052.72, + "end": 5053.7, + "probability": 0.4381 + }, + { + "start": 5053.94, + "end": 5055.43, + "probability": 0.9708 + }, + { + "start": 5055.68, + "end": 5056.82, + "probability": 0.9556 + }, + { + "start": 5057.16, + "end": 5059.84, + "probability": 0.8371 + }, + { + "start": 5059.84, + "end": 5063.16, + "probability": 0.7607 + }, + { + "start": 5063.36, + "end": 5064.22, + "probability": 0.9902 + }, + { + "start": 5064.44, + "end": 5064.6, + "probability": 0.3875 + }, + { + "start": 5064.78, + "end": 5066.68, + "probability": 0.4962 + }, + { + "start": 5067.04, + "end": 5068.52, + "probability": 0.8206 + }, + { + "start": 5068.98, + "end": 5070.94, + "probability": 0.189 + }, + { + "start": 5071.62, + "end": 5072.3, + "probability": 0.386 + }, + { + "start": 5072.86, + "end": 5073.48, + "probability": 0.158 + }, + { + "start": 5073.48, + "end": 5073.5, + "probability": 0.2795 + }, + { + "start": 5073.5, + "end": 5076.5, + "probability": 0.5829 + }, + { + "start": 5077.08, + "end": 5077.2, + "probability": 0.0141 + }, + { + "start": 5077.2, + "end": 5078.38, + "probability": 0.8511 + }, + { + "start": 5078.8, + "end": 5080.7, + "probability": 0.8128 + }, + { + "start": 5080.9, + "end": 5081.32, + "probability": 0.682 + }, + { + "start": 5081.9, + "end": 5083.58, + "probability": 0.5581 + }, + { + "start": 5083.62, + "end": 5086.08, + "probability": 0.8616 + }, + { + "start": 5086.7, + "end": 5090.54, + "probability": 0.9429 + }, + { + "start": 5090.76, + "end": 5092.18, + "probability": 0.8063 + }, + { + "start": 5092.24, + "end": 5092.78, + "probability": 0.6711 + }, + { + "start": 5092.9, + "end": 5093.48, + "probability": 0.9148 + }, + { + "start": 5093.58, + "end": 5095.14, + "probability": 0.9355 + }, + { + "start": 5095.22, + "end": 5095.6, + "probability": 0.4979 + }, + { + "start": 5095.62, + "end": 5098.38, + "probability": 0.9456 + }, + { + "start": 5098.82, + "end": 5100.27, + "probability": 0.9831 + }, + { + "start": 5100.94, + "end": 5101.5, + "probability": 0.4293 + }, + { + "start": 5101.66, + "end": 5106.12, + "probability": 0.9851 + }, + { + "start": 5106.28, + "end": 5106.98, + "probability": 0.9102 + }, + { + "start": 5108.18, + "end": 5111.38, + "probability": 0.5159 + }, + { + "start": 5111.48, + "end": 5111.6, + "probability": 0.1005 + }, + { + "start": 5112.74, + "end": 5113.34, + "probability": 0.7079 + }, + { + "start": 5114.1, + "end": 5114.64, + "probability": 0.2111 + }, + { + "start": 5114.64, + "end": 5114.64, + "probability": 0.3105 + }, + { + "start": 5114.64, + "end": 5114.64, + "probability": 0.3644 + }, + { + "start": 5114.64, + "end": 5114.64, + "probability": 0.3713 + }, + { + "start": 5114.64, + "end": 5118.92, + "probability": 0.5481 + }, + { + "start": 5119.52, + "end": 5119.86, + "probability": 0.0547 + }, + { + "start": 5120.88, + "end": 5121.52, + "probability": 0.0681 + }, + { + "start": 5121.78, + "end": 5122.68, + "probability": 0.3699 + }, + { + "start": 5122.82, + "end": 5124.46, + "probability": 0.2693 + }, + { + "start": 5124.5, + "end": 5124.56, + "probability": 0.2184 + }, + { + "start": 5124.72, + "end": 5125.28, + "probability": 0.014 + }, + { + "start": 5125.28, + "end": 5127.86, + "probability": 0.814 + }, + { + "start": 5129.74, + "end": 5132.38, + "probability": 0.5467 + }, + { + "start": 5132.62, + "end": 5133.75, + "probability": 0.4457 + }, + { + "start": 5134.52, + "end": 5138.9, + "probability": 0.6456 + }, + { + "start": 5138.9, + "end": 5141.22, + "probability": 0.668 + }, + { + "start": 5141.28, + "end": 5141.66, + "probability": 0.8618 + }, + { + "start": 5141.76, + "end": 5144.62, + "probability": 0.8064 + }, + { + "start": 5145.14, + "end": 5147.84, + "probability": 0.6968 + }, + { + "start": 5148.04, + "end": 5149.04, + "probability": 0.9125 + }, + { + "start": 5149.1, + "end": 5149.82, + "probability": 0.4997 + }, + { + "start": 5149.94, + "end": 5150.9, + "probability": 0.6267 + }, + { + "start": 5150.96, + "end": 5155.42, + "probability": 0.9321 + }, + { + "start": 5155.74, + "end": 5158.0, + "probability": 0.9912 + }, + { + "start": 5158.75, + "end": 5159.16, + "probability": 0.4828 + }, + { + "start": 5159.16, + "end": 5159.16, + "probability": 0.3731 + }, + { + "start": 5159.16, + "end": 5160.06, + "probability": 0.6964 + }, + { + "start": 5160.28, + "end": 5161.18, + "probability": 0.8983 + }, + { + "start": 5161.32, + "end": 5163.84, + "probability": 0.9507 + }, + { + "start": 5164.48, + "end": 5166.92, + "probability": 0.9792 + }, + { + "start": 5167.2, + "end": 5168.74, + "probability": 0.8602 + }, + { + "start": 5169.14, + "end": 5169.46, + "probability": 0.6499 + }, + { + "start": 5169.58, + "end": 5171.28, + "probability": 0.5056 + }, + { + "start": 5171.38, + "end": 5172.12, + "probability": 0.5389 + }, + { + "start": 5172.2, + "end": 5172.9, + "probability": 0.4563 + }, + { + "start": 5173.06, + "end": 5175.3, + "probability": 0.6865 + }, + { + "start": 5176.2, + "end": 5177.5, + "probability": 0.2597 + }, + { + "start": 5177.56, + "end": 5178.92, + "probability": 0.136 + }, + { + "start": 5180.42, + "end": 5182.04, + "probability": 0.0598 + }, + { + "start": 5184.44, + "end": 5185.96, + "probability": 0.1653 + }, + { + "start": 5186.0, + "end": 5186.48, + "probability": 0.1312 + }, + { + "start": 5191.66, + "end": 5192.36, + "probability": 0.303 + }, + { + "start": 5193.4, + "end": 5194.68, + "probability": 0.6521 + }, + { + "start": 5194.78, + "end": 5195.38, + "probability": 0.8797 + }, + { + "start": 5196.0, + "end": 5198.16, + "probability": 0.182 + }, + { + "start": 5199.94, + "end": 5200.7, + "probability": 0.3489 + }, + { + "start": 5202.28, + "end": 5204.06, + "probability": 0.6321 + }, + { + "start": 5206.04, + "end": 5207.98, + "probability": 0.5162 + }, + { + "start": 5208.06, + "end": 5208.06, + "probability": 0.0026 + }, + { + "start": 5209.68, + "end": 5210.34, + "probability": 0.0423 + }, + { + "start": 5210.34, + "end": 5210.92, + "probability": 0.1243 + }, + { + "start": 5211.14, + "end": 5211.16, + "probability": 0.1506 + }, + { + "start": 5211.16, + "end": 5211.16, + "probability": 0.4149 + }, + { + "start": 5211.16, + "end": 5211.16, + "probability": 0.1668 + }, + { + "start": 5211.16, + "end": 5211.16, + "probability": 0.126 + }, + { + "start": 5211.16, + "end": 5212.89, + "probability": 0.465 + }, + { + "start": 5213.38, + "end": 5216.4, + "probability": 0.9558 + }, + { + "start": 5217.0, + "end": 5221.54, + "probability": 0.9845 + }, + { + "start": 5222.34, + "end": 5223.98, + "probability": 0.8875 + }, + { + "start": 5224.8, + "end": 5230.56, + "probability": 0.8071 + }, + { + "start": 5230.72, + "end": 5234.6, + "probability": 0.731 + }, + { + "start": 5235.08, + "end": 5238.8, + "probability": 0.9155 + }, + { + "start": 5239.48, + "end": 5242.4, + "probability": 0.9114 + }, + { + "start": 5243.0, + "end": 5250.62, + "probability": 0.974 + }, + { + "start": 5251.0, + "end": 5252.24, + "probability": 0.6459 + }, + { + "start": 5252.86, + "end": 5255.64, + "probability": 0.9827 + }, + { + "start": 5256.7, + "end": 5257.34, + "probability": 0.7263 + }, + { + "start": 5257.9, + "end": 5260.58, + "probability": 0.9808 + }, + { + "start": 5260.9, + "end": 5266.48, + "probability": 0.9767 + }, + { + "start": 5266.48, + "end": 5269.94, + "probability": 0.9955 + }, + { + "start": 5270.48, + "end": 5271.94, + "probability": 0.9937 + }, + { + "start": 5273.8, + "end": 5278.1, + "probability": 0.9667 + }, + { + "start": 5278.6, + "end": 5280.68, + "probability": 0.9972 + }, + { + "start": 5281.1, + "end": 5284.64, + "probability": 0.9965 + }, + { + "start": 5285.02, + "end": 5290.1, + "probability": 0.9926 + }, + { + "start": 5290.6, + "end": 5294.88, + "probability": 0.9969 + }, + { + "start": 5295.28, + "end": 5295.98, + "probability": 0.6617 + }, + { + "start": 5296.16, + "end": 5300.06, + "probability": 0.9866 + }, + { + "start": 5300.06, + "end": 5302.74, + "probability": 0.9986 + }, + { + "start": 5303.06, + "end": 5304.42, + "probability": 0.9966 + }, + { + "start": 5305.04, + "end": 5311.68, + "probability": 0.9908 + }, + { + "start": 5312.14, + "end": 5315.9, + "probability": 0.9987 + }, + { + "start": 5316.44, + "end": 5319.76, + "probability": 0.9705 + }, + { + "start": 5320.44, + "end": 5324.48, + "probability": 0.9829 + }, + { + "start": 5324.9, + "end": 5327.3, + "probability": 0.8927 + }, + { + "start": 5327.94, + "end": 5331.82, + "probability": 0.9958 + }, + { + "start": 5332.4, + "end": 5336.44, + "probability": 0.9825 + }, + { + "start": 5336.78, + "end": 5341.32, + "probability": 0.8072 + }, + { + "start": 5341.74, + "end": 5345.04, + "probability": 0.9897 + }, + { + "start": 5345.58, + "end": 5348.36, + "probability": 0.7606 + }, + { + "start": 5348.98, + "end": 5354.56, + "probability": 0.8785 + }, + { + "start": 5355.12, + "end": 5358.06, + "probability": 0.9973 + }, + { + "start": 5358.46, + "end": 5362.65, + "probability": 0.9985 + }, + { + "start": 5363.07, + "end": 5363.95, + "probability": 0.2467 + }, + { + "start": 5364.03, + "end": 5364.41, + "probability": 0.6411 + }, + { + "start": 5364.47, + "end": 5368.37, + "probability": 0.8896 + }, + { + "start": 5368.43, + "end": 5369.33, + "probability": 0.798 + }, + { + "start": 5369.71, + "end": 5373.05, + "probability": 0.8789 + }, + { + "start": 5373.59, + "end": 5374.56, + "probability": 0.5959 + }, + { + "start": 5374.99, + "end": 5377.07, + "probability": 0.9808 + }, + { + "start": 5377.21, + "end": 5380.53, + "probability": 0.9847 + }, + { + "start": 5381.07, + "end": 5384.77, + "probability": 0.9859 + }, + { + "start": 5384.95, + "end": 5386.51, + "probability": 0.9854 + }, + { + "start": 5386.87, + "end": 5390.49, + "probability": 0.9937 + }, + { + "start": 5390.91, + "end": 5394.47, + "probability": 0.9347 + }, + { + "start": 5394.93, + "end": 5394.93, + "probability": 0.4068 + }, + { + "start": 5394.93, + "end": 5399.63, + "probability": 0.9128 + }, + { + "start": 5400.29, + "end": 5401.85, + "probability": 0.9976 + }, + { + "start": 5402.33, + "end": 5403.75, + "probability": 0.3178 + }, + { + "start": 5403.75, + "end": 5403.75, + "probability": 0.1445 + }, + { + "start": 5403.75, + "end": 5407.73, + "probability": 0.8253 + }, + { + "start": 5407.91, + "end": 5409.53, + "probability": 0.1592 + }, + { + "start": 5409.53, + "end": 5409.53, + "probability": 0.6065 + }, + { + "start": 5409.53, + "end": 5410.6, + "probability": 0.0356 + }, + { + "start": 5410.77, + "end": 5412.43, + "probability": 0.1871 + }, + { + "start": 5412.53, + "end": 5415.25, + "probability": 0.458 + }, + { + "start": 5415.67, + "end": 5415.67, + "probability": 0.2232 + }, + { + "start": 5415.67, + "end": 5418.73, + "probability": 0.4163 + }, + { + "start": 5420.97, + "end": 5421.59, + "probability": 0.0464 + }, + { + "start": 5422.83, + "end": 5423.31, + "probability": 0.0858 + }, + { + "start": 5423.31, + "end": 5423.99, + "probability": 0.1062 + }, + { + "start": 5423.99, + "end": 5430.79, + "probability": 0.4208 + }, + { + "start": 5431.89, + "end": 5432.37, + "probability": 0.0067 + }, + { + "start": 5432.65, + "end": 5434.97, + "probability": 0.1234 + }, + { + "start": 5435.09, + "end": 5435.09, + "probability": 0.1022 + }, + { + "start": 5436.29, + "end": 5436.55, + "probability": 0.0313 + }, + { + "start": 5436.55, + "end": 5437.09, + "probability": 0.0209 + }, + { + "start": 5437.19, + "end": 5439.01, + "probability": 0.1476 + }, + { + "start": 5439.01, + "end": 5439.25, + "probability": 0.1367 + }, + { + "start": 5439.25, + "end": 5439.35, + "probability": 0.2846 + }, + { + "start": 5449.29, + "end": 5449.93, + "probability": 0.147 + }, + { + "start": 5450.01, + "end": 5452.49, + "probability": 0.0267 + }, + { + "start": 5453.0, + "end": 5453.6, + "probability": 0.0678 + }, + { + "start": 5455.35, + "end": 5455.49, + "probability": 0.0941 + }, + { + "start": 5455.51, + "end": 5458.13, + "probability": 0.214 + }, + { + "start": 5458.45, + "end": 5461.6, + "probability": 0.1268 + }, + { + "start": 5463.15, + "end": 5465.87, + "probability": 0.0344 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.0, + "end": 5486.0, + "probability": 0.0 + }, + { + "start": 5486.76, + "end": 5486.76, + "probability": 0.0545 + }, + { + "start": 5486.76, + "end": 5486.76, + "probability": 0.028 + }, + { + "start": 5486.76, + "end": 5489.72, + "probability": 0.857 + }, + { + "start": 5490.52, + "end": 5491.66, + "probability": 0.9648 + }, + { + "start": 5492.7, + "end": 5495.96, + "probability": 0.9258 + }, + { + "start": 5496.88, + "end": 5498.22, + "probability": 0.5568 + }, + { + "start": 5498.94, + "end": 5500.28, + "probability": 0.8808 + }, + { + "start": 5501.56, + "end": 5502.84, + "probability": 0.998 + }, + { + "start": 5503.32, + "end": 5505.9, + "probability": 0.9954 + }, + { + "start": 5505.9, + "end": 5509.78, + "probability": 0.9988 + }, + { + "start": 5511.0, + "end": 5512.54, + "probability": 0.9918 + }, + { + "start": 5513.24, + "end": 5514.16, + "probability": 0.8345 + }, + { + "start": 5514.44, + "end": 5515.32, + "probability": 0.7511 + }, + { + "start": 5515.42, + "end": 5516.52, + "probability": 0.9846 + }, + { + "start": 5516.86, + "end": 5520.38, + "probability": 0.9554 + }, + { + "start": 5520.7, + "end": 5527.08, + "probability": 0.9789 + }, + { + "start": 5527.28, + "end": 5530.64, + "probability": 0.8781 + }, + { + "start": 5532.78, + "end": 5533.5, + "probability": 0.9958 + }, + { + "start": 5534.48, + "end": 5535.32, + "probability": 0.538 + }, + { + "start": 5535.38, + "end": 5537.92, + "probability": 0.9883 + }, + { + "start": 5538.24, + "end": 5539.02, + "probability": 0.9732 + }, + { + "start": 5539.12, + "end": 5539.86, + "probability": 0.7937 + }, + { + "start": 5540.34, + "end": 5541.8, + "probability": 0.9181 + }, + { + "start": 5543.18, + "end": 5545.58, + "probability": 0.9585 + }, + { + "start": 5546.38, + "end": 5551.74, + "probability": 0.8461 + }, + { + "start": 5552.1, + "end": 5555.26, + "probability": 0.9503 + }, + { + "start": 5556.12, + "end": 5557.62, + "probability": 0.8325 + }, + { + "start": 5558.62, + "end": 5560.9, + "probability": 0.9728 + }, + { + "start": 5561.82, + "end": 5563.87, + "probability": 0.9946 + }, + { + "start": 5563.9, + "end": 5565.5, + "probability": 0.9985 + }, + { + "start": 5566.22, + "end": 5568.48, + "probability": 0.9932 + }, + { + "start": 5569.64, + "end": 5570.3, + "probability": 0.6639 + }, + { + "start": 5571.56, + "end": 5575.96, + "probability": 0.9668 + }, + { + "start": 5575.96, + "end": 5580.24, + "probability": 0.9988 + }, + { + "start": 5580.96, + "end": 5582.16, + "probability": 0.9954 + }, + { + "start": 5583.62, + "end": 5587.64, + "probability": 0.9937 + }, + { + "start": 5588.32, + "end": 5589.96, + "probability": 0.283 + }, + { + "start": 5590.56, + "end": 5591.32, + "probability": 0.8311 + }, + { + "start": 5591.34, + "end": 5591.6, + "probability": 0.4993 + }, + { + "start": 5591.62, + "end": 5594.88, + "probability": 0.919 + }, + { + "start": 5594.92, + "end": 5598.08, + "probability": 0.9832 + }, + { + "start": 5598.18, + "end": 5598.98, + "probability": 0.5067 + }, + { + "start": 5599.04, + "end": 5600.1, + "probability": 0.2066 + }, + { + "start": 5600.34, + "end": 5601.7, + "probability": 0.1056 + }, + { + "start": 5601.78, + "end": 5601.86, + "probability": 0.0493 + }, + { + "start": 5601.86, + "end": 5602.68, + "probability": 0.0944 + }, + { + "start": 5603.08, + "end": 5603.14, + "probability": 0.2849 + }, + { + "start": 5603.14, + "end": 5603.14, + "probability": 0.3424 + }, + { + "start": 5603.14, + "end": 5603.88, + "probability": 0.7398 + }, + { + "start": 5604.3, + "end": 5607.06, + "probability": 0.3498 + }, + { + "start": 5607.36, + "end": 5607.94, + "probability": 0.6813 + }, + { + "start": 5608.12, + "end": 5609.88, + "probability": 0.9584 + }, + { + "start": 5610.24, + "end": 5610.76, + "probability": 0.0417 + }, + { + "start": 5610.76, + "end": 5611.0, + "probability": 0.1324 + }, + { + "start": 5611.12, + "end": 5613.26, + "probability": 0.6467 + }, + { + "start": 5613.5, + "end": 5614.64, + "probability": 0.1434 + }, + { + "start": 5615.26, + "end": 5616.8, + "probability": 0.7741 + }, + { + "start": 5617.24, + "end": 5619.12, + "probability": 0.0634 + }, + { + "start": 5619.68, + "end": 5620.04, + "probability": 0.2361 + }, + { + "start": 5620.06, + "end": 5620.06, + "probability": 0.1427 + }, + { + "start": 5620.06, + "end": 5620.06, + "probability": 0.114 + }, + { + "start": 5620.06, + "end": 5620.24, + "probability": 0.1907 + }, + { + "start": 5622.16, + "end": 5623.3, + "probability": 0.569 + }, + { + "start": 5623.38, + "end": 5624.54, + "probability": 0.0874 + }, + { + "start": 5624.8, + "end": 5625.0, + "probability": 0.8409 + }, + { + "start": 5625.14, + "end": 5627.62, + "probability": 0.9907 + }, + { + "start": 5628.32, + "end": 5629.62, + "probability": 0.9722 + }, + { + "start": 5630.28, + "end": 5630.82, + "probability": 0.8444 + }, + { + "start": 5631.44, + "end": 5634.38, + "probability": 0.6624 + }, + { + "start": 5635.54, + "end": 5636.78, + "probability": 0.9435 + }, + { + "start": 5637.08, + "end": 5642.5, + "probability": 0.9352 + }, + { + "start": 5642.88, + "end": 5644.06, + "probability": 0.7955 + }, + { + "start": 5644.46, + "end": 5646.54, + "probability": 0.7515 + }, + { + "start": 5646.8, + "end": 5652.68, + "probability": 0.9656 + }, + { + "start": 5652.68, + "end": 5652.68, + "probability": 0.6998 + }, + { + "start": 5652.7, + "end": 5653.98, + "probability": 0.6027 + }, + { + "start": 5654.82, + "end": 5655.18, + "probability": 0.117 + }, + { + "start": 5655.24, + "end": 5655.44, + "probability": 0.2959 + }, + { + "start": 5655.44, + "end": 5655.68, + "probability": 0.5924 + }, + { + "start": 5655.72, + "end": 5657.21, + "probability": 0.8209 + }, + { + "start": 5658.0, + "end": 5658.06, + "probability": 0.4037 + }, + { + "start": 5658.06, + "end": 5658.65, + "probability": 0.5455 + }, + { + "start": 5659.3, + "end": 5661.9, + "probability": 0.8611 + }, + { + "start": 5664.04, + "end": 5665.26, + "probability": 0.0617 + }, + { + "start": 5665.76, + "end": 5668.12, + "probability": 0.3948 + }, + { + "start": 5679.32, + "end": 5679.68, + "probability": 0.385 + }, + { + "start": 5679.72, + "end": 5680.24, + "probability": 0.5497 + }, + { + "start": 5680.52, + "end": 5685.42, + "probability": 0.6165 + }, + { + "start": 5685.86, + "end": 5686.84, + "probability": 0.8435 + }, + { + "start": 5687.06, + "end": 5689.48, + "probability": 0.7576 + }, + { + "start": 5689.64, + "end": 5690.74, + "probability": 0.6497 + }, + { + "start": 5691.64, + "end": 5693.32, + "probability": 0.5501 + }, + { + "start": 5693.86, + "end": 5694.82, + "probability": 0.7377 + }, + { + "start": 5695.92, + "end": 5697.04, + "probability": 0.8385 + }, + { + "start": 5697.42, + "end": 5701.7, + "probability": 0.9971 + }, + { + "start": 5702.24, + "end": 5704.7, + "probability": 0.5401 + }, + { + "start": 5704.82, + "end": 5708.84, + "probability": 0.7924 + }, + { + "start": 5709.52, + "end": 5712.32, + "probability": 0.672 + }, + { + "start": 5713.0, + "end": 5713.98, + "probability": 0.7015 + }, + { + "start": 5714.38, + "end": 5716.2, + "probability": 0.937 + }, + { + "start": 5717.33, + "end": 5718.54, + "probability": 0.7913 + }, + { + "start": 5718.54, + "end": 5720.92, + "probability": 0.981 + }, + { + "start": 5721.36, + "end": 5722.16, + "probability": 0.9176 + }, + { + "start": 5722.34, + "end": 5723.22, + "probability": 0.9894 + }, + { + "start": 5723.7, + "end": 5724.66, + "probability": 0.9548 + }, + { + "start": 5725.28, + "end": 5727.64, + "probability": 0.9831 + }, + { + "start": 5727.78, + "end": 5728.84, + "probability": 0.7832 + }, + { + "start": 5729.46, + "end": 5733.78, + "probability": 0.7712 + }, + { + "start": 5733.8, + "end": 5735.02, + "probability": 0.8175 + }, + { + "start": 5735.62, + "end": 5735.94, + "probability": 0.4959 + }, + { + "start": 5736.02, + "end": 5736.68, + "probability": 0.3182 + }, + { + "start": 5736.68, + "end": 5736.86, + "probability": 0.1081 + }, + { + "start": 5736.96, + "end": 5738.4, + "probability": 0.7358 + }, + { + "start": 5740.6, + "end": 5740.94, + "probability": 0.7167 + }, + { + "start": 5741.04, + "end": 5743.98, + "probability": 0.9492 + }, + { + "start": 5744.16, + "end": 5744.62, + "probability": 0.8328 + }, + { + "start": 5744.72, + "end": 5745.4, + "probability": 0.7841 + }, + { + "start": 5745.86, + "end": 5748.1, + "probability": 0.9526 + }, + { + "start": 5748.24, + "end": 5749.26, + "probability": 0.9861 + }, + { + "start": 5749.72, + "end": 5750.32, + "probability": 0.8849 + }, + { + "start": 5750.9, + "end": 5752.04, + "probability": 0.857 + }, + { + "start": 5752.52, + "end": 5757.46, + "probability": 0.9965 + }, + { + "start": 5757.54, + "end": 5758.58, + "probability": 0.9139 + }, + { + "start": 5759.1, + "end": 5763.1, + "probability": 0.8818 + }, + { + "start": 5763.58, + "end": 5764.44, + "probability": 0.7944 + }, + { + "start": 5764.88, + "end": 5766.04, + "probability": 0.9604 + }, + { + "start": 5766.5, + "end": 5768.78, + "probability": 0.9679 + }, + { + "start": 5768.94, + "end": 5771.64, + "probability": 0.9604 + }, + { + "start": 5771.76, + "end": 5773.84, + "probability": 0.8843 + }, + { + "start": 5773.84, + "end": 5777.8, + "probability": 0.9852 + }, + { + "start": 5778.16, + "end": 5781.04, + "probability": 0.7998 + }, + { + "start": 5782.02, + "end": 5783.6, + "probability": 0.6264 + }, + { + "start": 5783.76, + "end": 5785.34, + "probability": 0.9264 + }, + { + "start": 5785.96, + "end": 5788.46, + "probability": 0.9625 + }, + { + "start": 5789.06, + "end": 5793.04, + "probability": 0.9841 + }, + { + "start": 5795.18, + "end": 5796.62, + "probability": 0.6117 + }, + { + "start": 5797.04, + "end": 5800.12, + "probability": 0.916 + }, + { + "start": 5800.64, + "end": 5801.44, + "probability": 0.9657 + }, + { + "start": 5802.1, + "end": 5804.38, + "probability": 0.9868 + }, + { + "start": 5804.62, + "end": 5808.54, + "probability": 0.9418 + }, + { + "start": 5808.72, + "end": 5809.52, + "probability": 0.8997 + }, + { + "start": 5809.64, + "end": 5810.38, + "probability": 0.7877 + }, + { + "start": 5810.72, + "end": 5813.98, + "probability": 0.5632 + }, + { + "start": 5814.4, + "end": 5816.4, + "probability": 0.9894 + }, + { + "start": 5816.84, + "end": 5818.44, + "probability": 0.5095 + }, + { + "start": 5818.62, + "end": 5821.26, + "probability": 0.701 + }, + { + "start": 5821.42, + "end": 5822.34, + "probability": 0.9868 + }, + { + "start": 5822.96, + "end": 5824.19, + "probability": 0.723 + }, + { + "start": 5824.7, + "end": 5825.6, + "probability": 0.5387 + }, + { + "start": 5825.98, + "end": 5826.82, + "probability": 0.8066 + }, + { + "start": 5826.94, + "end": 5827.32, + "probability": 0.9525 + }, + { + "start": 5827.64, + "end": 5828.96, + "probability": 0.9676 + }, + { + "start": 5829.36, + "end": 5830.12, + "probability": 0.7732 + }, + { + "start": 5830.5, + "end": 5831.36, + "probability": 0.9932 + }, + { + "start": 5831.46, + "end": 5832.68, + "probability": 0.9287 + }, + { + "start": 5832.76, + "end": 5836.26, + "probability": 0.8369 + }, + { + "start": 5836.26, + "end": 5837.28, + "probability": 0.5583 + }, + { + "start": 5837.38, + "end": 5837.9, + "probability": 0.4758 + }, + { + "start": 5838.32, + "end": 5839.32, + "probability": 0.7529 + }, + { + "start": 5839.86, + "end": 5841.34, + "probability": 0.9595 + }, + { + "start": 5842.16, + "end": 5844.02, + "probability": 0.5522 + }, + { + "start": 5845.0, + "end": 5846.58, + "probability": 0.931 + }, + { + "start": 5846.66, + "end": 5847.97, + "probability": 0.4861 + }, + { + "start": 5848.7, + "end": 5851.86, + "probability": 0.8135 + }, + { + "start": 5852.66, + "end": 5854.86, + "probability": 0.7549 + }, + { + "start": 5854.86, + "end": 5856.34, + "probability": 0.918 + }, + { + "start": 5856.7, + "end": 5857.68, + "probability": 0.84 + }, + { + "start": 5857.98, + "end": 5859.74, + "probability": 0.8006 + }, + { + "start": 5860.58, + "end": 5863.36, + "probability": 0.5998 + }, + { + "start": 5863.82, + "end": 5865.44, + "probability": 0.7515 + }, + { + "start": 5865.76, + "end": 5869.38, + "probability": 0.9876 + }, + { + "start": 5871.5, + "end": 5873.78, + "probability": 0.7453 + }, + { + "start": 5874.16, + "end": 5876.94, + "probability": 0.9982 + }, + { + "start": 5877.44, + "end": 5878.36, + "probability": 0.8228 + }, + { + "start": 5878.74, + "end": 5880.48, + "probability": 0.746 + }, + { + "start": 5880.52, + "end": 5880.98, + "probability": 0.5832 + }, + { + "start": 5880.98, + "end": 5881.2, + "probability": 0.3864 + }, + { + "start": 5881.28, + "end": 5881.58, + "probability": 0.4364 + }, + { + "start": 5882.04, + "end": 5884.74, + "probability": 0.8115 + }, + { + "start": 5884.8, + "end": 5889.28, + "probability": 0.9129 + }, + { + "start": 5889.62, + "end": 5893.12, + "probability": 0.852 + }, + { + "start": 5893.12, + "end": 5894.12, + "probability": 0.9927 + }, + { + "start": 5894.96, + "end": 5897.42, + "probability": 0.7956 + }, + { + "start": 5897.72, + "end": 5899.32, + "probability": 0.9499 + }, + { + "start": 5899.4, + "end": 5900.58, + "probability": 0.6639 + }, + { + "start": 5900.98, + "end": 5903.46, + "probability": 0.9749 + }, + { + "start": 5904.0, + "end": 5904.0, + "probability": 0.4669 + }, + { + "start": 5904.0, + "end": 5904.38, + "probability": 0.1179 + }, + { + "start": 5904.46, + "end": 5905.26, + "probability": 0.3947 + }, + { + "start": 5905.28, + "end": 5907.18, + "probability": 0.6265 + }, + { + "start": 5907.34, + "end": 5908.16, + "probability": 0.6368 + }, + { + "start": 5908.38, + "end": 5909.44, + "probability": 0.9074 + }, + { + "start": 5909.56, + "end": 5910.08, + "probability": 0.739 + }, + { + "start": 5910.12, + "end": 5910.48, + "probability": 0.9214 + }, + { + "start": 5910.66, + "end": 5912.34, + "probability": 0.8213 + }, + { + "start": 5913.28, + "end": 5915.66, + "probability": 0.7609 + }, + { + "start": 5915.78, + "end": 5916.94, + "probability": 0.8054 + }, + { + "start": 5917.22, + "end": 5917.94, + "probability": 0.7768 + }, + { + "start": 5920.56, + "end": 5922.78, + "probability": 0.464 + }, + { + "start": 5923.46, + "end": 5925.18, + "probability": 0.8032 + }, + { + "start": 5929.0, + "end": 5931.58, + "probability": 0.8741 + }, + { + "start": 5932.18, + "end": 5933.88, + "probability": 0.6815 + }, + { + "start": 5934.0, + "end": 5934.6, + "probability": 0.6808 + }, + { + "start": 5934.98, + "end": 5937.08, + "probability": 0.7235 + }, + { + "start": 5937.3, + "end": 5937.8, + "probability": 0.8318 + }, + { + "start": 5938.48, + "end": 5938.9, + "probability": 0.8721 + }, + { + "start": 5940.9, + "end": 5942.38, + "probability": 0.5504 + }, + { + "start": 5943.64, + "end": 5944.48, + "probability": 0.3135 + }, + { + "start": 5944.78, + "end": 5948.6, + "probability": 0.9916 + }, + { + "start": 5949.62, + "end": 5950.68, + "probability": 0.8841 + }, + { + "start": 5950.72, + "end": 5953.54, + "probability": 0.9824 + }, + { + "start": 5955.82, + "end": 5957.82, + "probability": 0.9989 + }, + { + "start": 5960.18, + "end": 5962.26, + "probability": 0.8562 + }, + { + "start": 5962.42, + "end": 5964.06, + "probability": 0.6977 + }, + { + "start": 5964.18, + "end": 5965.3, + "probability": 0.9985 + }, + { + "start": 5966.18, + "end": 5968.22, + "probability": 0.9856 + }, + { + "start": 5969.58, + "end": 5971.44, + "probability": 0.9714 + }, + { + "start": 5972.4, + "end": 5973.96, + "probability": 0.9922 + }, + { + "start": 5975.14, + "end": 5976.82, + "probability": 0.6477 + }, + { + "start": 5978.02, + "end": 5978.46, + "probability": 0.7469 + }, + { + "start": 5978.46, + "end": 5979.28, + "probability": 0.8795 + }, + { + "start": 5979.58, + "end": 5980.46, + "probability": 0.5508 + }, + { + "start": 5980.76, + "end": 5981.24, + "probability": 0.6278 + }, + { + "start": 5982.52, + "end": 5983.78, + "probability": 0.8643 + }, + { + "start": 5984.0, + "end": 5988.52, + "probability": 0.9539 + }, + { + "start": 5989.38, + "end": 5991.54, + "probability": 0.9886 + }, + { + "start": 5991.72, + "end": 5994.02, + "probability": 0.9959 + }, + { + "start": 5994.82, + "end": 5996.46, + "probability": 0.9871 + }, + { + "start": 5997.96, + "end": 5999.34, + "probability": 0.9043 + }, + { + "start": 6000.26, + "end": 6002.32, + "probability": 0.9982 + }, + { + "start": 6003.46, + "end": 6004.98, + "probability": 0.9681 + }, + { + "start": 6005.76, + "end": 6008.8, + "probability": 0.9467 + }, + { + "start": 6009.66, + "end": 6010.58, + "probability": 0.9234 + }, + { + "start": 6011.26, + "end": 6013.52, + "probability": 0.9917 + }, + { + "start": 6014.32, + "end": 6016.88, + "probability": 0.864 + }, + { + "start": 6018.08, + "end": 6021.06, + "probability": 0.9487 + }, + { + "start": 6021.06, + "end": 6024.46, + "probability": 0.8577 + }, + { + "start": 6025.4, + "end": 6028.74, + "probability": 0.9745 + }, + { + "start": 6028.76, + "end": 6029.66, + "probability": 0.5436 + }, + { + "start": 6030.72, + "end": 6033.64, + "probability": 0.8974 + }, + { + "start": 6034.26, + "end": 6037.96, + "probability": 0.9803 + }, + { + "start": 6038.02, + "end": 6039.98, + "probability": 0.8997 + }, + { + "start": 6041.28, + "end": 6045.32, + "probability": 0.9199 + }, + { + "start": 6045.88, + "end": 6046.44, + "probability": 0.529 + }, + { + "start": 6047.22, + "end": 6049.22, + "probability": 0.918 + }, + { + "start": 6049.36, + "end": 6049.92, + "probability": 0.9542 + }, + { + "start": 6049.96, + "end": 6050.42, + "probability": 0.7528 + }, + { + "start": 6051.5, + "end": 6055.52, + "probability": 0.9783 + }, + { + "start": 6057.06, + "end": 6060.52, + "probability": 0.9781 + }, + { + "start": 6061.16, + "end": 6063.26, + "probability": 0.928 + }, + { + "start": 6063.94, + "end": 6063.94, + "probability": 0.1667 + }, + { + "start": 6063.94, + "end": 6064.4, + "probability": 0.4103 + }, + { + "start": 6064.52, + "end": 6066.3, + "probability": 0.9554 + }, + { + "start": 6066.34, + "end": 6068.82, + "probability": 0.9802 + }, + { + "start": 6069.42, + "end": 6070.68, + "probability": 0.9951 + }, + { + "start": 6071.76, + "end": 6072.74, + "probability": 0.8962 + }, + { + "start": 6073.86, + "end": 6075.96, + "probability": 0.8438 + }, + { + "start": 6076.62, + "end": 6077.02, + "probability": 0.8414 + }, + { + "start": 6077.88, + "end": 6080.12, + "probability": 0.9961 + }, + { + "start": 6081.44, + "end": 6082.42, + "probability": 0.7255 + }, + { + "start": 6082.56, + "end": 6087.1, + "probability": 0.9973 + }, + { + "start": 6087.3, + "end": 6089.58, + "probability": 0.8185 + }, + { + "start": 6090.9, + "end": 6092.22, + "probability": 0.588 + }, + { + "start": 6092.36, + "end": 6097.95, + "probability": 0.4922 + }, + { + "start": 6099.12, + "end": 6101.22, + "probability": 0.9823 + }, + { + "start": 6101.38, + "end": 6102.26, + "probability": 0.7479 + }, + { + "start": 6102.46, + "end": 6104.04, + "probability": 0.9623 + }, + { + "start": 6104.14, + "end": 6104.32, + "probability": 0.8302 + }, + { + "start": 6104.4, + "end": 6105.56, + "probability": 0.467 + }, + { + "start": 6106.8, + "end": 6108.9, + "probability": 0.9768 + }, + { + "start": 6108.94, + "end": 6113.58, + "probability": 0.9724 + }, + { + "start": 6114.44, + "end": 6115.76, + "probability": 0.9893 + }, + { + "start": 6115.84, + "end": 6116.94, + "probability": 0.9971 + }, + { + "start": 6117.98, + "end": 6119.04, + "probability": 0.9937 + }, + { + "start": 6119.8, + "end": 6122.44, + "probability": 0.9619 + }, + { + "start": 6122.8, + "end": 6123.84, + "probability": 0.9303 + }, + { + "start": 6124.94, + "end": 6126.72, + "probability": 0.7719 + }, + { + "start": 6126.94, + "end": 6129.05, + "probability": 0.957 + }, + { + "start": 6131.7, + "end": 6132.92, + "probability": 0.9301 + }, + { + "start": 6133.66, + "end": 6135.16, + "probability": 0.9819 + }, + { + "start": 6135.72, + "end": 6138.82, + "probability": 0.9185 + }, + { + "start": 6139.82, + "end": 6142.02, + "probability": 0.513 + }, + { + "start": 6142.49, + "end": 6145.8, + "probability": 0.8605 + }, + { + "start": 6146.24, + "end": 6148.82, + "probability": 0.9961 + }, + { + "start": 6149.16, + "end": 6149.94, + "probability": 0.7825 + }, + { + "start": 6150.62, + "end": 6151.46, + "probability": 0.9714 + }, + { + "start": 6151.88, + "end": 6152.72, + "probability": 0.5707 + }, + { + "start": 6153.32, + "end": 6153.98, + "probability": 0.8691 + }, + { + "start": 6154.7, + "end": 6158.44, + "probability": 0.7101 + }, + { + "start": 6158.58, + "end": 6158.88, + "probability": 0.4961 + }, + { + "start": 6175.6, + "end": 6175.76, + "probability": 0.7026 + }, + { + "start": 6181.38, + "end": 6182.82, + "probability": 0.6466 + }, + { + "start": 6182.96, + "end": 6183.7, + "probability": 0.9302 + }, + { + "start": 6184.52, + "end": 6185.6, + "probability": 0.7163 + }, + { + "start": 6186.36, + "end": 6186.98, + "probability": 0.9141 + }, + { + "start": 6187.1, + "end": 6190.05, + "probability": 0.9946 + }, + { + "start": 6191.12, + "end": 6191.86, + "probability": 0.9572 + }, + { + "start": 6191.92, + "end": 6194.96, + "probability": 0.9801 + }, + { + "start": 6195.76, + "end": 6198.32, + "probability": 0.7845 + }, + { + "start": 6198.84, + "end": 6200.08, + "probability": 0.9797 + }, + { + "start": 6200.22, + "end": 6201.82, + "probability": 0.6138 + }, + { + "start": 6201.94, + "end": 6203.92, + "probability": 0.8899 + }, + { + "start": 6204.76, + "end": 6207.34, + "probability": 0.9488 + }, + { + "start": 6207.9, + "end": 6210.45, + "probability": 0.9954 + }, + { + "start": 6211.2, + "end": 6213.9, + "probability": 0.8994 + }, + { + "start": 6214.52, + "end": 6218.06, + "probability": 0.9635 + }, + { + "start": 6218.22, + "end": 6221.74, + "probability": 0.9901 + }, + { + "start": 6222.34, + "end": 6226.88, + "probability": 0.9946 + }, + { + "start": 6227.2, + "end": 6229.38, + "probability": 0.8706 + }, + { + "start": 6230.04, + "end": 6232.4, + "probability": 0.9985 + }, + { + "start": 6233.14, + "end": 6236.94, + "probability": 0.925 + }, + { + "start": 6237.26, + "end": 6238.32, + "probability": 0.8506 + }, + { + "start": 6238.4, + "end": 6240.5, + "probability": 0.7383 + }, + { + "start": 6240.64, + "end": 6241.88, + "probability": 0.993 + }, + { + "start": 6242.18, + "end": 6243.52, + "probability": 0.9862 + }, + { + "start": 6243.82, + "end": 6244.56, + "probability": 0.5676 + }, + { + "start": 6244.68, + "end": 6246.88, + "probability": 0.7888 + }, + { + "start": 6246.96, + "end": 6253.18, + "probability": 0.8322 + }, + { + "start": 6253.62, + "end": 6254.16, + "probability": 0.838 + }, + { + "start": 6254.22, + "end": 6254.82, + "probability": 0.6884 + }, + { + "start": 6255.08, + "end": 6257.58, + "probability": 0.8571 + }, + { + "start": 6258.4, + "end": 6263.06, + "probability": 0.9772 + }, + { + "start": 6264.66, + "end": 6270.1, + "probability": 0.9921 + }, + { + "start": 6270.1, + "end": 6271.96, + "probability": 0.9933 + }, + { + "start": 6272.4, + "end": 6273.24, + "probability": 0.8434 + }, + { + "start": 6273.42, + "end": 6275.84, + "probability": 0.9943 + }, + { + "start": 6275.84, + "end": 6278.86, + "probability": 0.9995 + }, + { + "start": 6279.46, + "end": 6283.04, + "probability": 0.7922 + }, + { + "start": 6283.56, + "end": 6284.88, + "probability": 0.9456 + }, + { + "start": 6285.52, + "end": 6286.04, + "probability": 0.6823 + }, + { + "start": 6287.68, + "end": 6292.58, + "probability": 0.8435 + }, + { + "start": 6292.74, + "end": 6295.4, + "probability": 0.5976 + }, + { + "start": 6295.54, + "end": 6296.36, + "probability": 0.715 + }, + { + "start": 6296.72, + "end": 6298.08, + "probability": 0.9205 + }, + { + "start": 6298.48, + "end": 6301.82, + "probability": 0.8782 + }, + { + "start": 6302.64, + "end": 6305.26, + "probability": 0.8688 + }, + { + "start": 6306.26, + "end": 6306.88, + "probability": 0.9555 + }, + { + "start": 6306.98, + "end": 6310.12, + "probability": 0.9346 + }, + { + "start": 6310.3, + "end": 6312.24, + "probability": 0.7087 + }, + { + "start": 6312.28, + "end": 6315.24, + "probability": 0.9948 + }, + { + "start": 6315.28, + "end": 6316.2, + "probability": 0.8 + }, + { + "start": 6316.3, + "end": 6317.46, + "probability": 0.5677 + }, + { + "start": 6318.68, + "end": 6319.0, + "probability": 0.1201 + }, + { + "start": 6319.0, + "end": 6319.0, + "probability": 0.1137 + }, + { + "start": 6319.0, + "end": 6321.22, + "probability": 0.7766 + }, + { + "start": 6321.26, + "end": 6322.9, + "probability": 0.7554 + }, + { + "start": 6323.6, + "end": 6324.41, + "probability": 0.9213 + }, + { + "start": 6325.52, + "end": 6326.17, + "probability": 0.8512 + }, + { + "start": 6326.48, + "end": 6327.78, + "probability": 0.9253 + }, + { + "start": 6327.86, + "end": 6330.36, + "probability": 0.8775 + }, + { + "start": 6331.06, + "end": 6333.64, + "probability": 0.7444 + }, + { + "start": 6334.18, + "end": 6339.46, + "probability": 0.8979 + }, + { + "start": 6339.54, + "end": 6339.72, + "probability": 0.375 + }, + { + "start": 6339.94, + "end": 6341.28, + "probability": 0.4589 + }, + { + "start": 6341.36, + "end": 6342.74, + "probability": 0.8418 + }, + { + "start": 6343.12, + "end": 6345.02, + "probability": 0.9851 + }, + { + "start": 6345.08, + "end": 6347.86, + "probability": 0.9598 + }, + { + "start": 6348.02, + "end": 6351.1, + "probability": 0.7341 + }, + { + "start": 6351.7, + "end": 6353.1, + "probability": 0.5098 + }, + { + "start": 6353.44, + "end": 6355.32, + "probability": 0.7886 + }, + { + "start": 6355.34, + "end": 6356.62, + "probability": 0.9475 + }, + { + "start": 6356.98, + "end": 6359.52, + "probability": 0.9973 + }, + { + "start": 6360.3, + "end": 6363.12, + "probability": 0.9992 + }, + { + "start": 6363.57, + "end": 6366.94, + "probability": 0.9876 + }, + { + "start": 6367.08, + "end": 6367.9, + "probability": 0.7496 + }, + { + "start": 6367.98, + "end": 6368.36, + "probability": 0.8073 + }, + { + "start": 6369.2, + "end": 6370.02, + "probability": 0.5304 + }, + { + "start": 6370.84, + "end": 6371.18, + "probability": 0.7754 + }, + { + "start": 6372.18, + "end": 6372.72, + "probability": 0.4923 + }, + { + "start": 6372.84, + "end": 6375.04, + "probability": 0.952 + }, + { + "start": 6375.52, + "end": 6379.88, + "probability": 0.9949 + }, + { + "start": 6380.04, + "end": 6380.88, + "probability": 0.5571 + }, + { + "start": 6380.88, + "end": 6383.3, + "probability": 0.3372 + }, + { + "start": 6383.3, + "end": 6384.36, + "probability": 0.606 + }, + { + "start": 6384.56, + "end": 6389.44, + "probability": 0.978 + }, + { + "start": 6390.16, + "end": 6392.61, + "probability": 0.9683 + }, + { + "start": 6393.12, + "end": 6397.36, + "probability": 0.5757 + }, + { + "start": 6397.54, + "end": 6398.96, + "probability": 0.4597 + }, + { + "start": 6398.96, + "end": 6399.8, + "probability": 0.0319 + }, + { + "start": 6399.82, + "end": 6401.64, + "probability": 0.9426 + }, + { + "start": 6401.66, + "end": 6403.08, + "probability": 0.8294 + }, + { + "start": 6403.32, + "end": 6405.32, + "probability": 0.9696 + }, + { + "start": 6405.76, + "end": 6410.52, + "probability": 0.9781 + }, + { + "start": 6411.14, + "end": 6413.1, + "probability": 0.6746 + }, + { + "start": 6413.74, + "end": 6417.02, + "probability": 0.1548 + }, + { + "start": 6417.02, + "end": 6419.3, + "probability": 0.8779 + }, + { + "start": 6419.92, + "end": 6422.92, + "probability": 0.9795 + }, + { + "start": 6422.98, + "end": 6424.02, + "probability": 0.7281 + }, + { + "start": 6424.04, + "end": 6428.94, + "probability": 0.796 + }, + { + "start": 6429.0, + "end": 6430.0, + "probability": 0.8221 + }, + { + "start": 6430.62, + "end": 6432.06, + "probability": 0.9955 + }, + { + "start": 6432.16, + "end": 6433.96, + "probability": 0.7689 + }, + { + "start": 6434.62, + "end": 6435.64, + "probability": 0.8656 + }, + { + "start": 6436.3, + "end": 6437.06, + "probability": 0.7572 + }, + { + "start": 6437.1, + "end": 6441.64, + "probability": 0.9988 + }, + { + "start": 6442.28, + "end": 6443.38, + "probability": 0.8416 + }, + { + "start": 6444.04, + "end": 6446.38, + "probability": 0.9154 + }, + { + "start": 6447.26, + "end": 6449.8, + "probability": 0.7649 + }, + { + "start": 6451.34, + "end": 6454.26, + "probability": 0.9899 + }, + { + "start": 6454.4, + "end": 6456.5, + "probability": 0.9175 + }, + { + "start": 6457.36, + "end": 6458.0, + "probability": 0.6907 + }, + { + "start": 6458.94, + "end": 6462.46, + "probability": 0.9746 + }, + { + "start": 6463.34, + "end": 6464.26, + "probability": 0.6686 + }, + { + "start": 6467.06, + "end": 6470.28, + "probability": 0.6728 + }, + { + "start": 6470.74, + "end": 6472.28, + "probability": 0.9253 + }, + { + "start": 6472.36, + "end": 6473.06, + "probability": 0.7783 + }, + { + "start": 6473.26, + "end": 6474.05, + "probability": 0.9207 + }, + { + "start": 6474.18, + "end": 6475.3, + "probability": 0.999 + }, + { + "start": 6475.88, + "end": 6478.72, + "probability": 0.9806 + }, + { + "start": 6479.3, + "end": 6479.74, + "probability": 0.82 + }, + { + "start": 6480.92, + "end": 6482.46, + "probability": 0.9787 + }, + { + "start": 6483.64, + "end": 6484.52, + "probability": 0.9747 + }, + { + "start": 6485.58, + "end": 6488.98, + "probability": 0.9879 + }, + { + "start": 6489.84, + "end": 6491.76, + "probability": 0.9127 + }, + { + "start": 6492.42, + "end": 6494.3, + "probability": 0.9991 + }, + { + "start": 6494.87, + "end": 6497.66, + "probability": 0.9378 + }, + { + "start": 6498.56, + "end": 6502.66, + "probability": 0.9883 + }, + { + "start": 6503.22, + "end": 6504.18, + "probability": 0.9199 + }, + { + "start": 6504.76, + "end": 6508.04, + "probability": 0.9941 + }, + { + "start": 6509.12, + "end": 6509.84, + "probability": 0.5839 + }, + { + "start": 6510.0, + "end": 6510.52, + "probability": 0.816 + }, + { + "start": 6511.26, + "end": 6515.22, + "probability": 0.9843 + }, + { + "start": 6515.32, + "end": 6515.94, + "probability": 0.583 + }, + { + "start": 6516.66, + "end": 6517.96, + "probability": 0.9951 + }, + { + "start": 6518.38, + "end": 6519.94, + "probability": 0.9869 + }, + { + "start": 6520.62, + "end": 6522.12, + "probability": 0.9842 + }, + { + "start": 6522.7, + "end": 6523.56, + "probability": 0.519 + }, + { + "start": 6524.26, + "end": 6530.26, + "probability": 0.9922 + }, + { + "start": 6531.36, + "end": 6535.74, + "probability": 0.981 + }, + { + "start": 6535.88, + "end": 6536.66, + "probability": 0.6933 + }, + { + "start": 6537.06, + "end": 6537.64, + "probability": 0.7111 + }, + { + "start": 6537.7, + "end": 6539.0, + "probability": 0.9762 + }, + { + "start": 6540.42, + "end": 6542.0, + "probability": 0.5006 + }, + { + "start": 6542.34, + "end": 6543.3, + "probability": 0.9147 + }, + { + "start": 6543.4, + "end": 6543.96, + "probability": 0.8615 + }, + { + "start": 6544.06, + "end": 6544.22, + "probability": 0.7524 + }, + { + "start": 6544.28, + "end": 6545.66, + "probability": 0.9901 + }, + { + "start": 6546.04, + "end": 6548.14, + "probability": 0.9773 + }, + { + "start": 6548.2, + "end": 6548.62, + "probability": 0.8027 + }, + { + "start": 6548.8, + "end": 6549.22, + "probability": 0.8163 + }, + { + "start": 6549.68, + "end": 6550.28, + "probability": 0.8827 + }, + { + "start": 6550.96, + "end": 6551.52, + "probability": 0.8817 + }, + { + "start": 6551.56, + "end": 6552.34, + "probability": 0.809 + }, + { + "start": 6552.52, + "end": 6552.84, + "probability": 0.7858 + }, + { + "start": 6553.28, + "end": 6554.36, + "probability": 0.7544 + }, + { + "start": 6554.44, + "end": 6555.66, + "probability": 0.9459 + }, + { + "start": 6556.1, + "end": 6558.42, + "probability": 0.8895 + }, + { + "start": 6558.72, + "end": 6560.42, + "probability": 0.8903 + }, + { + "start": 6560.46, + "end": 6561.52, + "probability": 0.9868 + }, + { + "start": 6561.94, + "end": 6562.86, + "probability": 0.9609 + }, + { + "start": 6563.48, + "end": 6565.18, + "probability": 0.9214 + }, + { + "start": 6565.98, + "end": 6570.78, + "probability": 0.9963 + }, + { + "start": 6570.78, + "end": 6571.42, + "probability": 0.7151 + }, + { + "start": 6571.8, + "end": 6573.62, + "probability": 0.919 + }, + { + "start": 6573.66, + "end": 6575.88, + "probability": 0.9371 + }, + { + "start": 6576.34, + "end": 6577.94, + "probability": 0.9787 + }, + { + "start": 6578.42, + "end": 6579.4, + "probability": 0.959 + }, + { + "start": 6579.76, + "end": 6580.6, + "probability": 0.7694 + }, + { + "start": 6580.66, + "end": 6581.18, + "probability": 0.9779 + }, + { + "start": 6581.94, + "end": 6585.54, + "probability": 0.9629 + }, + { + "start": 6585.64, + "end": 6588.6, + "probability": 0.9845 + }, + { + "start": 6588.9, + "end": 6590.8, + "probability": 0.9424 + }, + { + "start": 6591.28, + "end": 6595.24, + "probability": 0.9912 + }, + { + "start": 6595.86, + "end": 6600.9, + "probability": 0.9478 + }, + { + "start": 6601.42, + "end": 6603.58, + "probability": 0.9962 + }, + { + "start": 6605.22, + "end": 6606.42, + "probability": 0.7553 + }, + { + "start": 6606.56, + "end": 6610.44, + "probability": 0.9508 + }, + { + "start": 6611.35, + "end": 6613.88, + "probability": 0.9304 + }, + { + "start": 6614.48, + "end": 6615.2, + "probability": 0.3138 + }, + { + "start": 6615.8, + "end": 6618.2, + "probability": 0.7386 + }, + { + "start": 6621.38, + "end": 6624.26, + "probability": 0.0102 + }, + { + "start": 6624.26, + "end": 6624.26, + "probability": 0.2236 + }, + { + "start": 6624.26, + "end": 6626.3, + "probability": 0.3822 + }, + { + "start": 6626.3, + "end": 6627.36, + "probability": 0.7313 + }, + { + "start": 6627.86, + "end": 6629.12, + "probability": 0.7629 + }, + { + "start": 6629.14, + "end": 6630.5, + "probability": 0.6769 + }, + { + "start": 6630.64, + "end": 6631.64, + "probability": 0.7148 + }, + { + "start": 6632.26, + "end": 6634.84, + "probability": 0.9055 + }, + { + "start": 6634.94, + "end": 6635.58, + "probability": 0.3841 + }, + { + "start": 6636.04, + "end": 6638.5, + "probability": 0.9946 + }, + { + "start": 6639.12, + "end": 6640.1, + "probability": 0.9208 + }, + { + "start": 6640.94, + "end": 6641.74, + "probability": 0.8088 + }, + { + "start": 6641.86, + "end": 6644.46, + "probability": 0.9681 + }, + { + "start": 6644.54, + "end": 6645.12, + "probability": 0.9631 + }, + { + "start": 6645.2, + "end": 6645.78, + "probability": 0.9733 + }, + { + "start": 6646.14, + "end": 6646.82, + "probability": 0.9069 + }, + { + "start": 6647.22, + "end": 6649.04, + "probability": 0.9712 + }, + { + "start": 6649.48, + "end": 6652.3, + "probability": 0.978 + }, + { + "start": 6652.7, + "end": 6654.76, + "probability": 0.9969 + }, + { + "start": 6656.44, + "end": 6657.84, + "probability": 0.0473 + }, + { + "start": 6658.04, + "end": 6658.04, + "probability": 0.0567 + }, + { + "start": 6658.1, + "end": 6660.82, + "probability": 0.8433 + }, + { + "start": 6661.16, + "end": 6664.63, + "probability": 0.9937 + }, + { + "start": 6664.92, + "end": 6665.82, + "probability": 0.6642 + }, + { + "start": 6665.92, + "end": 6666.34, + "probability": 0.3466 + }, + { + "start": 6667.4, + "end": 6668.6, + "probability": 0.5035 + }, + { + "start": 6668.78, + "end": 6669.82, + "probability": 0.3973 + }, + { + "start": 6670.2, + "end": 6675.72, + "probability": 0.9919 + }, + { + "start": 6675.76, + "end": 6677.28, + "probability": 0.9805 + }, + { + "start": 6677.34, + "end": 6678.42, + "probability": 0.9541 + }, + { + "start": 6678.94, + "end": 6680.48, + "probability": 0.7873 + }, + { + "start": 6684.36, + "end": 6684.5, + "probability": 0.3783 + }, + { + "start": 6684.5, + "end": 6684.5, + "probability": 0.1026 + }, + { + "start": 6684.5, + "end": 6684.86, + "probability": 0.089 + }, + { + "start": 6684.9, + "end": 6685.88, + "probability": 0.6064 + }, + { + "start": 6686.88, + "end": 6690.58, + "probability": 0.9866 + }, + { + "start": 6691.22, + "end": 6693.42, + "probability": 0.976 + }, + { + "start": 6693.84, + "end": 6694.86, + "probability": 0.9343 + }, + { + "start": 6695.02, + "end": 6695.66, + "probability": 0.8152 + }, + { + "start": 6695.78, + "end": 6696.64, + "probability": 0.8611 + }, + { + "start": 6697.4, + "end": 6698.26, + "probability": 0.7147 + }, + { + "start": 6698.56, + "end": 6699.6, + "probability": 0.9871 + }, + { + "start": 6699.64, + "end": 6699.85, + "probability": 0.7585 + }, + { + "start": 6700.14, + "end": 6701.02, + "probability": 0.8628 + }, + { + "start": 6701.1, + "end": 6706.14, + "probability": 0.9837 + }, + { + "start": 6707.66, + "end": 6709.18, + "probability": 0.9993 + }, + { + "start": 6709.5, + "end": 6710.36, + "probability": 0.5455 + }, + { + "start": 6710.64, + "end": 6710.84, + "probability": 0.4204 + }, + { + "start": 6710.9, + "end": 6711.4, + "probability": 0.96 + }, + { + "start": 6711.54, + "end": 6712.92, + "probability": 0.9512 + }, + { + "start": 6714.21, + "end": 6717.3, + "probability": 0.1257 + }, + { + "start": 6717.3, + "end": 6717.3, + "probability": 0.313 + }, + { + "start": 6717.3, + "end": 6717.3, + "probability": 0.3129 + }, + { + "start": 6717.56, + "end": 6717.7, + "probability": 0.2196 + }, + { + "start": 6717.7, + "end": 6718.28, + "probability": 0.0179 + }, + { + "start": 6718.3, + "end": 6718.3, + "probability": 0.0372 + }, + { + "start": 6718.78, + "end": 6723.16, + "probability": 0.7413 + }, + { + "start": 6724.0, + "end": 6726.08, + "probability": 0.6528 + }, + { + "start": 6727.02, + "end": 6727.78, + "probability": 0.2993 + }, + { + "start": 6727.78, + "end": 6728.26, + "probability": 0.4232 + }, + { + "start": 6728.3, + "end": 6728.94, + "probability": 0.7026 + }, + { + "start": 6729.08, + "end": 6732.36, + "probability": 0.8338 + }, + { + "start": 6732.7, + "end": 6736.36, + "probability": 0.9752 + }, + { + "start": 6736.64, + "end": 6739.38, + "probability": 0.894 + }, + { + "start": 6739.52, + "end": 6740.72, + "probability": 0.8018 + }, + { + "start": 6740.82, + "end": 6744.34, + "probability": 0.9962 + }, + { + "start": 6744.5, + "end": 6746.43, + "probability": 0.8008 + }, + { + "start": 6747.24, + "end": 6752.48, + "probability": 0.8707 + }, + { + "start": 6753.16, + "end": 6755.49, + "probability": 0.9939 + }, + { + "start": 6756.38, + "end": 6762.57, + "probability": 0.994 + }, + { + "start": 6763.36, + "end": 6764.4, + "probability": 0.6939 + }, + { + "start": 6764.46, + "end": 6765.72, + "probability": 0.9092 + }, + { + "start": 6766.5, + "end": 6768.02, + "probability": 0.8324 + }, + { + "start": 6768.08, + "end": 6771.26, + "probability": 0.8924 + }, + { + "start": 6771.38, + "end": 6772.73, + "probability": 0.9929 + }, + { + "start": 6773.26, + "end": 6774.92, + "probability": 0.9961 + }, + { + "start": 6775.46, + "end": 6776.28, + "probability": 0.6208 + }, + { + "start": 6776.5, + "end": 6777.26, + "probability": 0.8303 + }, + { + "start": 6777.32, + "end": 6777.84, + "probability": 0.8843 + }, + { + "start": 6778.06, + "end": 6780.36, + "probability": 0.903 + }, + { + "start": 6780.92, + "end": 6787.1, + "probability": 0.9609 + }, + { + "start": 6787.22, + "end": 6787.81, + "probability": 0.8674 + }, + { + "start": 6788.52, + "end": 6789.34, + "probability": 0.9155 + }, + { + "start": 6789.46, + "end": 6790.96, + "probability": 0.9961 + }, + { + "start": 6791.36, + "end": 6792.32, + "probability": 0.9131 + }, + { + "start": 6792.42, + "end": 6795.0, + "probability": 0.9621 + }, + { + "start": 6795.44, + "end": 6796.2, + "probability": 0.8076 + }, + { + "start": 6796.66, + "end": 6797.92, + "probability": 0.9459 + }, + { + "start": 6798.26, + "end": 6800.18, + "probability": 0.9795 + }, + { + "start": 6800.64, + "end": 6801.72, + "probability": 0.9493 + }, + { + "start": 6801.88, + "end": 6802.86, + "probability": 0.9084 + }, + { + "start": 6803.48, + "end": 6805.64, + "probability": 0.9041 + }, + { + "start": 6805.74, + "end": 6809.42, + "probability": 0.9913 + }, + { + "start": 6809.42, + "end": 6813.72, + "probability": 0.9583 + }, + { + "start": 6814.64, + "end": 6815.22, + "probability": 0.5302 + }, + { + "start": 6817.47, + "end": 6819.12, + "probability": 0.6525 + }, + { + "start": 6819.18, + "end": 6820.4, + "probability": 0.8667 + }, + { + "start": 6820.9, + "end": 6824.98, + "probability": 0.9971 + }, + { + "start": 6825.24, + "end": 6827.66, + "probability": 0.9738 + }, + { + "start": 6827.96, + "end": 6828.86, + "probability": 0.8816 + }, + { + "start": 6829.64, + "end": 6830.48, + "probability": 0.9894 + }, + { + "start": 6830.88, + "end": 6831.68, + "probability": 0.8055 + }, + { + "start": 6831.76, + "end": 6833.16, + "probability": 0.7883 + }, + { + "start": 6833.76, + "end": 6835.12, + "probability": 0.7127 + }, + { + "start": 6835.62, + "end": 6837.32, + "probability": 0.9956 + }, + { + "start": 6838.9, + "end": 6841.36, + "probability": 0.9705 + }, + { + "start": 6842.16, + "end": 6846.46, + "probability": 0.9878 + }, + { + "start": 6846.72, + "end": 6849.06, + "probability": 0.9803 + }, + { + "start": 6849.46, + "end": 6855.46, + "probability": 0.9766 + }, + { + "start": 6855.72, + "end": 6856.14, + "probability": 0.9071 + }, + { + "start": 6856.34, + "end": 6859.94, + "probability": 0.9761 + }, + { + "start": 6860.16, + "end": 6860.7, + "probability": 0.8203 + }, + { + "start": 6861.52, + "end": 6861.94, + "probability": 0.8169 + }, + { + "start": 6862.82, + "end": 6863.94, + "probability": 0.7442 + }, + { + "start": 6864.02, + "end": 6864.44, + "probability": 0.7311 + }, + { + "start": 6864.58, + "end": 6865.12, + "probability": 0.8403 + }, + { + "start": 6865.78, + "end": 6868.74, + "probability": 0.9834 + }, + { + "start": 6869.24, + "end": 6871.02, + "probability": 0.921 + }, + { + "start": 6871.32, + "end": 6871.88, + "probability": 0.7638 + }, + { + "start": 6871.96, + "end": 6872.76, + "probability": 0.8702 + }, + { + "start": 6873.3, + "end": 6875.62, + "probability": 0.8783 + }, + { + "start": 6875.94, + "end": 6877.94, + "probability": 0.8045 + }, + { + "start": 6878.48, + "end": 6882.46, + "probability": 0.9938 + }, + { + "start": 6882.74, + "end": 6885.14, + "probability": 0.9192 + }, + { + "start": 6885.18, + "end": 6885.94, + "probability": 0.5425 + }, + { + "start": 6886.08, + "end": 6889.36, + "probability": 0.8743 + }, + { + "start": 6890.78, + "end": 6892.1, + "probability": 0.8956 + }, + { + "start": 6892.82, + "end": 6893.32, + "probability": 0.5525 + }, + { + "start": 6893.96, + "end": 6895.14, + "probability": 0.2401 + }, + { + "start": 6895.14, + "end": 6897.76, + "probability": 0.8194 + }, + { + "start": 6898.36, + "end": 6901.03, + "probability": 0.9818 + }, + { + "start": 6902.14, + "end": 6903.42, + "probability": 0.5641 + }, + { + "start": 6903.44, + "end": 6907.02, + "probability": 0.9692 + }, + { + "start": 6907.44, + "end": 6908.3, + "probability": 0.826 + }, + { + "start": 6908.36, + "end": 6908.8, + "probability": 0.4363 + }, + { + "start": 6908.88, + "end": 6911.86, + "probability": 0.989 + }, + { + "start": 6911.98, + "end": 6914.78, + "probability": 0.978 + }, + { + "start": 6915.44, + "end": 6917.5, + "probability": 0.8613 + }, + { + "start": 6918.24, + "end": 6921.44, + "probability": 0.9374 + }, + { + "start": 6921.94, + "end": 6924.24, + "probability": 0.9679 + }, + { + "start": 6924.78, + "end": 6926.82, + "probability": 0.7766 + }, + { + "start": 6926.92, + "end": 6928.42, + "probability": 0.9279 + }, + { + "start": 6929.28, + "end": 6930.26, + "probability": 0.8315 + }, + { + "start": 6930.8, + "end": 6933.04, + "probability": 0.8938 + }, + { + "start": 6933.3, + "end": 6933.5, + "probability": 0.4396 + }, + { + "start": 6933.62, + "end": 6936.08, + "probability": 0.9853 + }, + { + "start": 6936.56, + "end": 6937.84, + "probability": 0.944 + }, + { + "start": 6938.88, + "end": 6942.34, + "probability": 0.9676 + }, + { + "start": 6942.34, + "end": 6946.52, + "probability": 0.948 + }, + { + "start": 6946.7, + "end": 6947.38, + "probability": 0.8691 + }, + { + "start": 6947.4, + "end": 6948.08, + "probability": 0.8029 + }, + { + "start": 6948.14, + "end": 6949.7, + "probability": 0.7867 + }, + { + "start": 6949.8, + "end": 6950.74, + "probability": 0.3369 + }, + { + "start": 6950.82, + "end": 6951.33, + "probability": 0.9426 + }, + { + "start": 6951.54, + "end": 6952.72, + "probability": 0.9403 + }, + { + "start": 6952.8, + "end": 6954.96, + "probability": 0.9497 + }, + { + "start": 6955.1, + "end": 6955.92, + "probability": 0.0867 + }, + { + "start": 6956.02, + "end": 6958.2, + "probability": 0.3146 + }, + { + "start": 6958.42, + "end": 6959.04, + "probability": 0.3883 + }, + { + "start": 6959.64, + "end": 6960.94, + "probability": 0.2604 + }, + { + "start": 6961.42, + "end": 6963.29, + "probability": 0.9626 + }, + { + "start": 6963.5, + "end": 6966.76, + "probability": 0.6963 + }, + { + "start": 6966.76, + "end": 6966.76, + "probability": 0.0358 + }, + { + "start": 6966.96, + "end": 6967.04, + "probability": 0.2046 + }, + { + "start": 6967.04, + "end": 6970.42, + "probability": 0.1084 + }, + { + "start": 6970.42, + "end": 6972.47, + "probability": 0.343 + }, + { + "start": 6972.64, + "end": 6974.4, + "probability": 0.5225 + }, + { + "start": 6974.4, + "end": 6975.0, + "probability": 0.4729 + }, + { + "start": 6975.02, + "end": 6976.94, + "probability": 0.6642 + }, + { + "start": 6977.44, + "end": 6979.24, + "probability": 0.7547 + }, + { + "start": 6979.5, + "end": 6980.58, + "probability": 0.6101 + }, + { + "start": 6980.7, + "end": 6981.68, + "probability": 0.8793 + }, + { + "start": 6982.06, + "end": 6982.26, + "probability": 0.0019 + }, + { + "start": 6982.26, + "end": 6983.32, + "probability": 0.7881 + }, + { + "start": 6983.4, + "end": 6983.54, + "probability": 0.3491 + }, + { + "start": 6983.54, + "end": 6984.26, + "probability": 0.7361 + }, + { + "start": 6984.38, + "end": 6985.6, + "probability": 0.9082 + }, + { + "start": 6986.94, + "end": 6987.18, + "probability": 0.023 + }, + { + "start": 6987.18, + "end": 6987.24, + "probability": 0.0402 + }, + { + "start": 6987.24, + "end": 6987.24, + "probability": 0.4372 + }, + { + "start": 6987.24, + "end": 6987.24, + "probability": 0.4995 + }, + { + "start": 6987.24, + "end": 6988.96, + "probability": 0.2742 + }, + { + "start": 6989.3, + "end": 6990.12, + "probability": 0.2813 + }, + { + "start": 6990.18, + "end": 6991.39, + "probability": 0.1218 + }, + { + "start": 6992.06, + "end": 6993.46, + "probability": 0.7446 + }, + { + "start": 6993.6, + "end": 6995.22, + "probability": 0.572 + }, + { + "start": 6995.28, + "end": 6995.94, + "probability": 0.7344 + }, + { + "start": 6996.64, + "end": 6999.28, + "probability": 0.2261 + }, + { + "start": 6999.28, + "end": 7001.92, + "probability": 0.589 + }, + { + "start": 7002.46, + "end": 7004.48, + "probability": 0.9155 + }, + { + "start": 7004.76, + "end": 7006.96, + "probability": 0.0708 + }, + { + "start": 7007.02, + "end": 7009.16, + "probability": 0.2807 + }, + { + "start": 7011.22, + "end": 7011.22, + "probability": 0.0018 + }, + { + "start": 7011.88, + "end": 7012.54, + "probability": 0.1681 + }, + { + "start": 7012.54, + "end": 7012.54, + "probability": 0.1753 + }, + { + "start": 7012.54, + "end": 7013.48, + "probability": 0.5816 + }, + { + "start": 7013.64, + "end": 7018.4, + "probability": 0.9816 + }, + { + "start": 7018.72, + "end": 7019.64, + "probability": 0.7378 + }, + { + "start": 7020.24, + "end": 7020.7, + "probability": 0.7334 + }, + { + "start": 7021.12, + "end": 7021.58, + "probability": 0.5175 + }, + { + "start": 7021.62, + "end": 7025.24, + "probability": 0.8398 + }, + { + "start": 7025.28, + "end": 7026.5, + "probability": 0.9373 + }, + { + "start": 7027.06, + "end": 7029.2, + "probability": 0.9812 + }, + { + "start": 7029.3, + "end": 7029.7, + "probability": 0.8768 + }, + { + "start": 7029.86, + "end": 7034.52, + "probability": 0.9841 + }, + { + "start": 7034.62, + "end": 7035.2, + "probability": 0.7074 + }, + { + "start": 7035.74, + "end": 7036.54, + "probability": 0.7832 + }, + { + "start": 7037.18, + "end": 7037.84, + "probability": 0.6026 + }, + { + "start": 7038.0, + "end": 7039.9, + "probability": 0.9291 + }, + { + "start": 7040.24, + "end": 7042.08, + "probability": 0.9307 + }, + { + "start": 7042.12, + "end": 7042.52, + "probability": 0.7403 + }, + { + "start": 7042.64, + "end": 7043.66, + "probability": 0.9718 + }, + { + "start": 7043.96, + "end": 7046.48, + "probability": 0.8383 + }, + { + "start": 7046.92, + "end": 7049.94, + "probability": 0.9552 + }, + { + "start": 7050.74, + "end": 7054.5, + "probability": 0.9978 + }, + { + "start": 7054.94, + "end": 7056.02, + "probability": 0.9854 + }, + { + "start": 7056.38, + "end": 7056.58, + "probability": 0.3091 + }, + { + "start": 7056.64, + "end": 7057.18, + "probability": 0.7716 + }, + { + "start": 7057.44, + "end": 7058.8, + "probability": 0.9414 + }, + { + "start": 7059.14, + "end": 7063.28, + "probability": 0.8455 + }, + { + "start": 7063.5, + "end": 7067.36, + "probability": 0.9819 + }, + { + "start": 7067.48, + "end": 7069.14, + "probability": 0.5562 + }, + { + "start": 7069.26, + "end": 7071.08, + "probability": 0.9734 + }, + { + "start": 7071.5, + "end": 7073.36, + "probability": 0.9495 + }, + { + "start": 7073.78, + "end": 7075.1, + "probability": 0.1375 + }, + { + "start": 7075.7, + "end": 7075.7, + "probability": 0.1976 + }, + { + "start": 7075.7, + "end": 7075.7, + "probability": 0.1049 + }, + { + "start": 7075.7, + "end": 7075.7, + "probability": 0.1279 + }, + { + "start": 7075.7, + "end": 7077.79, + "probability": 0.8294 + }, + { + "start": 7078.0, + "end": 7079.64, + "probability": 0.847 + }, + { + "start": 7079.86, + "end": 7081.49, + "probability": 0.9849 + }, + { + "start": 7081.97, + "end": 7085.27, + "probability": 0.7934 + }, + { + "start": 7086.33, + "end": 7087.37, + "probability": 0.5362 + }, + { + "start": 7087.43, + "end": 7088.75, + "probability": 0.9796 + }, + { + "start": 7089.15, + "end": 7090.09, + "probability": 0.989 + }, + { + "start": 7090.27, + "end": 7091.41, + "probability": 0.011 + }, + { + "start": 7092.47, + "end": 7093.55, + "probability": 0.2403 + }, + { + "start": 7093.63, + "end": 7095.25, + "probability": 0.9088 + }, + { + "start": 7095.31, + "end": 7098.45, + "probability": 0.968 + }, + { + "start": 7099.17, + "end": 7102.21, + "probability": 0.9961 + }, + { + "start": 7102.21, + "end": 7105.27, + "probability": 0.9928 + }, + { + "start": 7105.57, + "end": 7107.01, + "probability": 0.8545 + }, + { + "start": 7107.11, + "end": 7108.55, + "probability": 0.8402 + }, + { + "start": 7109.01, + "end": 7109.11, + "probability": 0.7625 + }, + { + "start": 7109.27, + "end": 7109.27, + "probability": 0.8523 + }, + { + "start": 7109.41, + "end": 7109.41, + "probability": 0.6442 + }, + { + "start": 7109.57, + "end": 7110.23, + "probability": 0.3681 + }, + { + "start": 7110.37, + "end": 7111.97, + "probability": 0.9863 + }, + { + "start": 7112.31, + "end": 7115.89, + "probability": 0.88 + }, + { + "start": 7116.05, + "end": 7116.55, + "probability": 0.7651 + }, + { + "start": 7116.77, + "end": 7120.45, + "probability": 0.9964 + }, + { + "start": 7120.55, + "end": 7124.97, + "probability": 0.9394 + }, + { + "start": 7125.15, + "end": 7127.15, + "probability": 0.9697 + }, + { + "start": 7128.01, + "end": 7128.71, + "probability": 0.4437 + }, + { + "start": 7129.09, + "end": 7130.43, + "probability": 0.949 + }, + { + "start": 7130.55, + "end": 7133.65, + "probability": 0.9944 + }, + { + "start": 7135.31, + "end": 7140.93, + "probability": 0.7524 + }, + { + "start": 7141.01, + "end": 7141.59, + "probability": 0.7723 + }, + { + "start": 7158.89, + "end": 7160.37, + "probability": 0.76 + }, + { + "start": 7163.83, + "end": 7163.97, + "probability": 0.7088 + }, + { + "start": 7163.97, + "end": 7164.11, + "probability": 0.0729 + }, + { + "start": 7169.27, + "end": 7170.35, + "probability": 0.1287 + }, + { + "start": 7170.67, + "end": 7173.13, + "probability": 0.0831 + }, + { + "start": 7184.39, + "end": 7184.41, + "probability": 0.0118 + }, + { + "start": 7184.41, + "end": 7184.41, + "probability": 0.0635 + }, + { + "start": 7184.41, + "end": 7184.41, + "probability": 0.0698 + }, + { + "start": 7184.41, + "end": 7184.41, + "probability": 0.026 + }, + { + "start": 7184.41, + "end": 7184.41, + "probability": 0.0581 + }, + { + "start": 7184.41, + "end": 7184.41, + "probability": 0.1591 + }, + { + "start": 7184.41, + "end": 7184.41, + "probability": 0.1501 + }, + { + "start": 7184.41, + "end": 7185.69, + "probability": 0.1264 + }, + { + "start": 7223.21, + "end": 7230.05, + "probability": 0.8825 + }, + { + "start": 7231.01, + "end": 7232.85, + "probability": 0.9768 + }, + { + "start": 7235.57, + "end": 7237.39, + "probability": 0.8353 + }, + { + "start": 7237.63, + "end": 7240.49, + "probability": 0.9966 + }, + { + "start": 7241.41, + "end": 7243.11, + "probability": 0.9578 + }, + { + "start": 7243.33, + "end": 7245.7, + "probability": 0.9974 + }, + { + "start": 7246.39, + "end": 7248.41, + "probability": 0.9072 + }, + { + "start": 7248.65, + "end": 7251.01, + "probability": 0.9335 + }, + { + "start": 7251.25, + "end": 7254.79, + "probability": 0.9889 + }, + { + "start": 7255.01, + "end": 7255.23, + "probability": 0.8043 + }, + { + "start": 7255.63, + "end": 7256.83, + "probability": 0.9805 + }, + { + "start": 7257.51, + "end": 7259.29, + "probability": 0.993 + }, + { + "start": 7259.55, + "end": 7260.25, + "probability": 0.8399 + }, + { + "start": 7260.61, + "end": 7265.77, + "probability": 0.9326 + }, + { + "start": 7266.91, + "end": 7268.27, + "probability": 0.9844 + }, + { + "start": 7269.09, + "end": 7270.61, + "probability": 0.9766 + }, + { + "start": 7271.49, + "end": 7272.38, + "probability": 0.9871 + }, + { + "start": 7272.93, + "end": 7275.75, + "probability": 0.9976 + }, + { + "start": 7276.23, + "end": 7277.41, + "probability": 0.9803 + }, + { + "start": 7277.47, + "end": 7278.31, + "probability": 0.8052 + }, + { + "start": 7278.43, + "end": 7279.69, + "probability": 0.9475 + }, + { + "start": 7280.63, + "end": 7281.72, + "probability": 0.9716 + }, + { + "start": 7282.57, + "end": 7284.47, + "probability": 0.9492 + }, + { + "start": 7286.01, + "end": 7288.55, + "probability": 0.9941 + }, + { + "start": 7288.71, + "end": 7292.81, + "probability": 0.9575 + }, + { + "start": 7292.93, + "end": 7294.33, + "probability": 0.6923 + }, + { + "start": 7295.97, + "end": 7297.01, + "probability": 0.8333 + }, + { + "start": 7297.53, + "end": 7299.93, + "probability": 0.927 + }, + { + "start": 7301.49, + "end": 7301.73, + "probability": 0.6268 + }, + { + "start": 7303.11, + "end": 7303.83, + "probability": 0.9677 + }, + { + "start": 7303.89, + "end": 7309.93, + "probability": 0.9223 + }, + { + "start": 7310.29, + "end": 7311.99, + "probability": 0.7956 + }, + { + "start": 7312.99, + "end": 7315.41, + "probability": 0.9478 + }, + { + "start": 7315.41, + "end": 7318.43, + "probability": 0.9772 + }, + { + "start": 7319.15, + "end": 7320.59, + "probability": 0.5959 + }, + { + "start": 7320.67, + "end": 7321.27, + "probability": 0.4234 + }, + { + "start": 7321.27, + "end": 7322.15, + "probability": 0.5637 + }, + { + "start": 7340.69, + "end": 7340.69, + "probability": 0.2366 + }, + { + "start": 7340.69, + "end": 7343.69, + "probability": 0.4768 + }, + { + "start": 7344.21, + "end": 7346.81, + "probability": 0.973 + }, + { + "start": 7348.01, + "end": 7349.99, + "probability": 0.9427 + }, + { + "start": 7350.13, + "end": 7351.51, + "probability": 0.8235 + }, + { + "start": 7351.59, + "end": 7352.47, + "probability": 0.5944 + }, + { + "start": 7352.51, + "end": 7353.19, + "probability": 0.6881 + }, + { + "start": 7353.33, + "end": 7354.01, + "probability": 0.6682 + }, + { + "start": 7355.55, + "end": 7355.83, + "probability": 0.0447 + }, + { + "start": 7371.25, + "end": 7371.45, + "probability": 0.058 + }, + { + "start": 7371.45, + "end": 7373.09, + "probability": 0.3406 + }, + { + "start": 7373.63, + "end": 7374.45, + "probability": 0.2813 + }, + { + "start": 7375.29, + "end": 7376.25, + "probability": 0.9635 + }, + { + "start": 7377.11, + "end": 7379.21, + "probability": 0.9429 + }, + { + "start": 7379.21, + "end": 7381.31, + "probability": 0.9469 + }, + { + "start": 7382.31, + "end": 7384.27, + "probability": 0.5385 + }, + { + "start": 7384.35, + "end": 7384.87, + "probability": 0.4726 + }, + { + "start": 7384.89, + "end": 7385.51, + "probability": 0.3993 + }, + { + "start": 7388.15, + "end": 7389.27, + "probability": 0.0218 + }, + { + "start": 7403.91, + "end": 7404.39, + "probability": 0.0125 + }, + { + "start": 7404.39, + "end": 7404.65, + "probability": 0.0362 + }, + { + "start": 7404.65, + "end": 7407.01, + "probability": 0.4888 + }, + { + "start": 7407.01, + "end": 7407.43, + "probability": 0.5106 + }, + { + "start": 7408.71, + "end": 7412.85, + "probability": 0.8337 + }, + { + "start": 7413.41, + "end": 7417.27, + "probability": 0.9967 + }, + { + "start": 7417.33, + "end": 7417.99, + "probability": 0.8029 + }, + { + "start": 7418.79, + "end": 7419.33, + "probability": 0.6023 + }, + { + "start": 7419.43, + "end": 7419.95, + "probability": 0.7191 + }, + { + "start": 7420.03, + "end": 7420.69, + "probability": 0.7323 + }, + { + "start": 7421.31, + "end": 7422.11, + "probability": 0.1733 + }, + { + "start": 7434.37, + "end": 7434.47, + "probability": 0.0244 + }, + { + "start": 7434.47, + "end": 7440.25, + "probability": 0.5092 + }, + { + "start": 7440.65, + "end": 7442.13, + "probability": 0.8586 + }, + { + "start": 7442.31, + "end": 7444.65, + "probability": 0.9716 + }, + { + "start": 7445.07, + "end": 7446.55, + "probability": 0.9279 + }, + { + "start": 7447.51, + "end": 7447.83, + "probability": 0.754 + }, + { + "start": 7448.57, + "end": 7449.59, + "probability": 0.7717 + }, + { + "start": 7449.71, + "end": 7451.59, + "probability": 0.4797 + }, + { + "start": 7451.63, + "end": 7453.15, + "probability": 0.8289 + }, + { + "start": 7453.33, + "end": 7453.89, + "probability": 0.6943 + }, + { + "start": 7454.03, + "end": 7454.87, + "probability": 0.6972 + }, + { + "start": 7455.47, + "end": 7458.17, + "probability": 0.8535 + }, + { + "start": 7459.13, + "end": 7461.67, + "probability": 0.4026 + }, + { + "start": 7463.27, + "end": 7464.47, + "probability": 0.0305 + }, + { + "start": 7466.27, + "end": 7467.41, + "probability": 0.0323 + }, + { + "start": 7467.41, + "end": 7467.41, + "probability": 0.054 + }, + { + "start": 7467.41, + "end": 7469.47, + "probability": 0.744 + }, + { + "start": 7470.63, + "end": 7471.53, + "probability": 0.7804 + }, + { + "start": 7471.99, + "end": 7474.99, + "probability": 0.545 + }, + { + "start": 7474.99, + "end": 7475.65, + "probability": 0.6082 + }, + { + "start": 7476.07, + "end": 7477.92, + "probability": 0.8716 + }, + { + "start": 7481.31, + "end": 7481.57, + "probability": 0.4418 + }, + { + "start": 7485.15, + "end": 7485.71, + "probability": 0.3868 + }, + { + "start": 7485.83, + "end": 7488.24, + "probability": 0.5958 + }, + { + "start": 7489.15, + "end": 7491.09, + "probability": 0.9805 + }, + { + "start": 7491.13, + "end": 7494.23, + "probability": 0.4862 + }, + { + "start": 7494.99, + "end": 7497.83, + "probability": 0.3904 + }, + { + "start": 7497.91, + "end": 7500.03, + "probability": 0.9608 + }, + { + "start": 7500.05, + "end": 7500.73, + "probability": 0.6391 + }, + { + "start": 7506.75, + "end": 7507.67, + "probability": 0.7586 + }, + { + "start": 7507.85, + "end": 7508.61, + "probability": 0.9589 + }, + { + "start": 7508.69, + "end": 7512.97, + "probability": 0.9083 + }, + { + "start": 7514.63, + "end": 7518.35, + "probability": 0.8272 + }, + { + "start": 7518.97, + "end": 7519.67, + "probability": 0.689 + }, + { + "start": 7519.79, + "end": 7519.79, + "probability": 0.0849 + }, + { + "start": 7519.79, + "end": 7523.83, + "probability": 0.8262 + }, + { + "start": 7524.37, + "end": 7527.67, + "probability": 0.8273 + }, + { + "start": 7527.75, + "end": 7528.29, + "probability": 0.7323 + }, + { + "start": 7528.65, + "end": 7530.33, + "probability": 0.8382 + }, + { + "start": 7530.43, + "end": 7534.21, + "probability": 0.9693 + }, + { + "start": 7534.21, + "end": 7537.91, + "probability": 0.9919 + }, + { + "start": 7538.47, + "end": 7538.97, + "probability": 0.2232 + }, + { + "start": 7538.97, + "end": 7539.23, + "probability": 0.8315 + }, + { + "start": 7539.81, + "end": 7540.81, + "probability": 0.7476 + }, + { + "start": 7540.97, + "end": 7541.97, + "probability": 0.7592 + }, + { + "start": 7542.23, + "end": 7543.29, + "probability": 0.7901 + }, + { + "start": 7543.33, + "end": 7547.91, + "probability": 0.9684 + }, + { + "start": 7548.03, + "end": 7548.87, + "probability": 0.9197 + }, + { + "start": 7548.89, + "end": 7550.29, + "probability": 0.9641 + }, + { + "start": 7551.17, + "end": 7551.35, + "probability": 0.6936 + }, + { + "start": 7551.89, + "end": 7556.59, + "probability": 0.9976 + }, + { + "start": 7556.59, + "end": 7561.93, + "probability": 0.9941 + }, + { + "start": 7564.09, + "end": 7570.73, + "probability": 0.9578 + }, + { + "start": 7571.33, + "end": 7574.63, + "probability": 0.9934 + }, + { + "start": 7575.55, + "end": 7576.43, + "probability": 0.8315 + }, + { + "start": 7576.69, + "end": 7581.37, + "probability": 0.8453 + }, + { + "start": 7582.97, + "end": 7587.68, + "probability": 0.8714 + }, + { + "start": 7588.78, + "end": 7591.25, + "probability": 0.9514 + }, + { + "start": 7591.25, + "end": 7594.31, + "probability": 0.9787 + }, + { + "start": 7594.41, + "end": 7598.45, + "probability": 0.6602 + }, + { + "start": 7600.23, + "end": 7606.55, + "probability": 0.9796 + }, + { + "start": 7606.55, + "end": 7611.21, + "probability": 0.9651 + }, + { + "start": 7611.21, + "end": 7615.13, + "probability": 0.8549 + }, + { + "start": 7615.83, + "end": 7617.91, + "probability": 0.9745 + }, + { + "start": 7618.75, + "end": 7620.77, + "probability": 0.6662 + }, + { + "start": 7620.89, + "end": 7623.75, + "probability": 0.9673 + }, + { + "start": 7623.75, + "end": 7627.39, + "probability": 0.8205 + }, + { + "start": 7627.45, + "end": 7628.13, + "probability": 0.6895 + }, + { + "start": 7628.25, + "end": 7631.09, + "probability": 0.9451 + }, + { + "start": 7631.09, + "end": 7635.41, + "probability": 0.9961 + }, + { + "start": 7636.07, + "end": 7640.19, + "probability": 0.9827 + }, + { + "start": 7640.21, + "end": 7644.11, + "probability": 0.5271 + }, + { + "start": 7644.33, + "end": 7644.87, + "probability": 0.8514 + }, + { + "start": 7644.87, + "end": 7648.91, + "probability": 0.9951 + }, + { + "start": 7649.05, + "end": 7649.65, + "probability": 0.5587 + }, + { + "start": 7650.07, + "end": 7654.75, + "probability": 0.9883 + }, + { + "start": 7654.83, + "end": 7657.05, + "probability": 0.8644 + }, + { + "start": 7657.47, + "end": 7659.31, + "probability": 0.9924 + }, + { + "start": 7659.95, + "end": 7661.13, + "probability": 0.8954 + }, + { + "start": 7661.25, + "end": 7667.83, + "probability": 0.911 + }, + { + "start": 7667.83, + "end": 7671.03, + "probability": 0.853 + }, + { + "start": 7671.49, + "end": 7672.1, + "probability": 0.787 + }, + { + "start": 7673.09, + "end": 7675.23, + "probability": 0.991 + }, + { + "start": 7675.35, + "end": 7681.69, + "probability": 0.9886 + }, + { + "start": 7681.83, + "end": 7683.15, + "probability": 0.9905 + }, + { + "start": 7684.02, + "end": 7686.24, + "probability": 0.9116 + }, + { + "start": 7686.33, + "end": 7689.89, + "probability": 0.9133 + }, + { + "start": 7689.89, + "end": 7692.13, + "probability": 0.9874 + }, + { + "start": 7693.09, + "end": 7699.03, + "probability": 0.7206 + }, + { + "start": 7699.73, + "end": 7701.53, + "probability": 0.7646 + }, + { + "start": 7703.11, + "end": 7706.21, + "probability": 0.9944 + }, + { + "start": 7706.57, + "end": 7711.57, + "probability": 0.9801 + }, + { + "start": 7712.57, + "end": 7713.77, + "probability": 0.974 + }, + { + "start": 7714.55, + "end": 7714.81, + "probability": 0.8716 + }, + { + "start": 7714.97, + "end": 7717.97, + "probability": 0.9313 + }, + { + "start": 7718.13, + "end": 7719.09, + "probability": 0.7271 + }, + { + "start": 7719.63, + "end": 7720.99, + "probability": 0.9834 + }, + { + "start": 7721.15, + "end": 7722.61, + "probability": 0.8323 + }, + { + "start": 7722.65, + "end": 7722.99, + "probability": 0.312 + }, + { + "start": 7723.55, + "end": 7724.61, + "probability": 0.3053 + }, + { + "start": 7724.75, + "end": 7727.93, + "probability": 0.9824 + }, + { + "start": 7728.13, + "end": 7728.99, + "probability": 0.7875 + }, + { + "start": 7729.11, + "end": 7729.93, + "probability": 0.7004 + }, + { + "start": 7730.23, + "end": 7733.33, + "probability": 0.8689 + }, + { + "start": 7733.59, + "end": 7737.67, + "probability": 0.9873 + }, + { + "start": 7737.71, + "end": 7740.83, + "probability": 0.9953 + }, + { + "start": 7740.88, + "end": 7746.33, + "probability": 0.9951 + }, + { + "start": 7746.43, + "end": 7749.39, + "probability": 0.7972 + }, + { + "start": 7749.39, + "end": 7752.23, + "probability": 0.9778 + }, + { + "start": 7753.19, + "end": 7757.35, + "probability": 0.9731 + }, + { + "start": 7757.41, + "end": 7757.79, + "probability": 0.7433 + }, + { + "start": 7758.33, + "end": 7759.68, + "probability": 0.6034 + }, + { + "start": 7760.13, + "end": 7765.61, + "probability": 0.7167 + }, + { + "start": 7766.07, + "end": 7767.03, + "probability": 0.921 + }, + { + "start": 7767.43, + "end": 7767.63, + "probability": 0.3037 + }, + { + "start": 7767.89, + "end": 7768.27, + "probability": 0.5217 + }, + { + "start": 7768.35, + "end": 7769.63, + "probability": 0.7657 + }, + { + "start": 7770.17, + "end": 7772.77, + "probability": 0.973 + }, + { + "start": 7772.77, + "end": 7773.85, + "probability": 0.9903 + }, + { + "start": 7774.53, + "end": 7777.37, + "probability": 0.7301 + }, + { + "start": 7778.55, + "end": 7781.33, + "probability": 0.9863 + }, + { + "start": 7782.65, + "end": 7786.03, + "probability": 0.759 + }, + { + "start": 7786.97, + "end": 7788.83, + "probability": 0.9545 + }, + { + "start": 7789.81, + "end": 7790.49, + "probability": 0.2673 + }, + { + "start": 7790.79, + "end": 7792.37, + "probability": 0.7075 + }, + { + "start": 7802.93, + "end": 7803.35, + "probability": 0.5528 + }, + { + "start": 7803.43, + "end": 7804.45, + "probability": 0.6387 + }, + { + "start": 7804.45, + "end": 7805.91, + "probability": 0.8323 + }, + { + "start": 7805.93, + "end": 7807.01, + "probability": 0.9491 + }, + { + "start": 7807.27, + "end": 7809.53, + "probability": 0.9543 + }, + { + "start": 7809.75, + "end": 7811.91, + "probability": 0.8497 + }, + { + "start": 7811.93, + "end": 7813.15, + "probability": 0.2594 + }, + { + "start": 7813.15, + "end": 7813.67, + "probability": 0.469 + }, + { + "start": 7813.67, + "end": 7816.99, + "probability": 0.6413 + }, + { + "start": 7817.11, + "end": 7817.91, + "probability": 0.9283 + }, + { + "start": 7818.01, + "end": 7819.61, + "probability": 0.8768 + }, + { + "start": 7820.53, + "end": 7824.45, + "probability": 0.999 + }, + { + "start": 7825.33, + "end": 7828.19, + "probability": 0.9688 + }, + { + "start": 7828.87, + "end": 7833.15, + "probability": 0.9985 + }, + { + "start": 7834.05, + "end": 7836.11, + "probability": 0.9741 + }, + { + "start": 7836.57, + "end": 7838.97, + "probability": 0.7203 + }, + { + "start": 7839.27, + "end": 7844.79, + "probability": 0.998 + }, + { + "start": 7845.01, + "end": 7846.39, + "probability": 0.8711 + }, + { + "start": 7846.55, + "end": 7848.55, + "probability": 0.7103 + }, + { + "start": 7849.43, + "end": 7854.61, + "probability": 0.9338 + }, + { + "start": 7855.35, + "end": 7860.31, + "probability": 0.9849 + }, + { + "start": 7860.83, + "end": 7864.87, + "probability": 0.9653 + }, + { + "start": 7865.43, + "end": 7868.95, + "probability": 0.8966 + }, + { + "start": 7869.29, + "end": 7872.47, + "probability": 0.9958 + }, + { + "start": 7872.77, + "end": 7874.45, + "probability": 0.9807 + }, + { + "start": 7874.85, + "end": 7877.91, + "probability": 0.9983 + }, + { + "start": 7878.45, + "end": 7884.53, + "probability": 0.959 + }, + { + "start": 7885.01, + "end": 7886.71, + "probability": 0.9968 + }, + { + "start": 7887.07, + "end": 7891.45, + "probability": 0.9973 + }, + { + "start": 7891.79, + "end": 7898.19, + "probability": 0.9653 + }, + { + "start": 7898.87, + "end": 7900.59, + "probability": 0.9946 + }, + { + "start": 7900.91, + "end": 7903.07, + "probability": 0.9902 + }, + { + "start": 7903.43, + "end": 7907.81, + "probability": 0.9266 + }, + { + "start": 7908.23, + "end": 7909.39, + "probability": 0.9784 + }, + { + "start": 7909.45, + "end": 7910.51, + "probability": 0.9733 + }, + { + "start": 7910.65, + "end": 7912.13, + "probability": 0.9888 + }, + { + "start": 7912.55, + "end": 7913.63, + "probability": 0.8078 + }, + { + "start": 7914.05, + "end": 7915.01, + "probability": 0.9385 + }, + { + "start": 7915.09, + "end": 7918.27, + "probability": 0.9926 + }, + { + "start": 7918.57, + "end": 7920.39, + "probability": 0.9579 + }, + { + "start": 7920.69, + "end": 7923.77, + "probability": 0.9834 + }, + { + "start": 7924.33, + "end": 7925.43, + "probability": 0.8775 + }, + { + "start": 7925.67, + "end": 7926.63, + "probability": 0.7652 + }, + { + "start": 7927.07, + "end": 7928.96, + "probability": 0.9217 + }, + { + "start": 7929.39, + "end": 7931.65, + "probability": 0.9825 + }, + { + "start": 7932.03, + "end": 7939.59, + "probability": 0.9705 + }, + { + "start": 7939.95, + "end": 7946.31, + "probability": 0.9905 + }, + { + "start": 7946.79, + "end": 7948.75, + "probability": 0.5937 + }, + { + "start": 7949.17, + "end": 7950.47, + "probability": 0.9753 + }, + { + "start": 7950.89, + "end": 7952.23, + "probability": 0.8764 + }, + { + "start": 7952.41, + "end": 7954.03, + "probability": 0.9502 + }, + { + "start": 7954.33, + "end": 7955.21, + "probability": 0.8842 + }, + { + "start": 7955.63, + "end": 7956.95, + "probability": 0.8297 + }, + { + "start": 7956.97, + "end": 7958.45, + "probability": 0.9644 + }, + { + "start": 7958.59, + "end": 7963.29, + "probability": 0.9989 + }, + { + "start": 7963.29, + "end": 7967.57, + "probability": 0.9992 + }, + { + "start": 7968.15, + "end": 7970.61, + "probability": 0.9142 + }, + { + "start": 7971.13, + "end": 7973.97, + "probability": 0.7658 + }, + { + "start": 7974.71, + "end": 7977.98, + "probability": 0.9806 + }, + { + "start": 7977.99, + "end": 7981.79, + "probability": 0.998 + }, + { + "start": 7982.33, + "end": 7987.51, + "probability": 0.7245 + }, + { + "start": 7987.89, + "end": 7989.35, + "probability": 0.9863 + }, + { + "start": 7989.49, + "end": 7990.05, + "probability": 0.9543 + }, + { + "start": 7990.43, + "end": 7994.07, + "probability": 0.9355 + }, + { + "start": 7994.11, + "end": 7994.63, + "probability": 0.6711 + }, + { + "start": 7994.65, + "end": 7995.17, + "probability": 0.5061 + }, + { + "start": 7995.21, + "end": 7997.71, + "probability": 0.9325 + }, + { + "start": 7998.17, + "end": 7999.57, + "probability": 0.9948 + }, + { + "start": 7999.61, + "end": 8000.41, + "probability": 0.8442 + }, + { + "start": 8000.81, + "end": 8001.87, + "probability": 0.8465 + }, + { + "start": 8002.43, + "end": 8004.31, + "probability": 0.9752 + }, + { + "start": 8004.67, + "end": 8006.89, + "probability": 0.9476 + }, + { + "start": 8007.31, + "end": 8011.27, + "probability": 0.9283 + }, + { + "start": 8011.47, + "end": 8012.69, + "probability": 0.8432 + }, + { + "start": 8012.71, + "end": 8013.69, + "probability": 0.9544 + }, + { + "start": 8013.71, + "end": 8014.11, + "probability": 0.7706 + }, + { + "start": 8014.11, + "end": 8014.54, + "probability": 0.5134 + }, + { + "start": 8015.91, + "end": 8018.33, + "probability": 0.5754 + }, + { + "start": 8019.45, + "end": 8020.39, + "probability": 0.1181 + }, + { + "start": 8020.53, + "end": 8024.37, + "probability": 0.4732 + }, + { + "start": 8030.41, + "end": 8030.83, + "probability": 0.0352 + }, + { + "start": 8035.69, + "end": 8036.97, + "probability": 0.5501 + }, + { + "start": 8036.97, + "end": 8037.91, + "probability": 0.6416 + }, + { + "start": 8039.35, + "end": 8042.79, + "probability": 0.828 + }, + { + "start": 8043.29, + "end": 8043.83, + "probability": 0.8393 + }, + { + "start": 8043.87, + "end": 8048.05, + "probability": 0.9052 + }, + { + "start": 8049.43, + "end": 8052.59, + "probability": 0.9808 + }, + { + "start": 8054.92, + "end": 8055.97, + "probability": 0.0388 + }, + { + "start": 8055.97, + "end": 8056.41, + "probability": 0.6405 + }, + { + "start": 8056.77, + "end": 8057.4, + "probability": 0.9641 + }, + { + "start": 8058.09, + "end": 8062.31, + "probability": 0.9744 + }, + { + "start": 8063.71, + "end": 8065.85, + "probability": 0.9946 + }, + { + "start": 8066.03, + "end": 8067.03, + "probability": 0.9214 + }, + { + "start": 8067.33, + "end": 8067.95, + "probability": 0.7663 + }, + { + "start": 8068.01, + "end": 8068.35, + "probability": 0.7419 + }, + { + "start": 8068.99, + "end": 8069.69, + "probability": 0.4602 + }, + { + "start": 8070.39, + "end": 8070.81, + "probability": 0.6533 + }, + { + "start": 8070.93, + "end": 8072.11, + "probability": 0.9902 + }, + { + "start": 8072.25, + "end": 8074.59, + "probability": 0.9962 + }, + { + "start": 8075.21, + "end": 8081.47, + "probability": 0.983 + }, + { + "start": 8082.27, + "end": 8084.63, + "probability": 0.8254 + }, + { + "start": 8084.73, + "end": 8086.23, + "probability": 0.9411 + }, + { + "start": 8086.81, + "end": 8088.43, + "probability": 0.9917 + }, + { + "start": 8088.95, + "end": 8094.25, + "probability": 0.9307 + }, + { + "start": 8095.13, + "end": 8098.55, + "probability": 0.9893 + }, + { + "start": 8098.65, + "end": 8102.38, + "probability": 0.9984 + }, + { + "start": 8102.55, + "end": 8103.67, + "probability": 0.9403 + }, + { + "start": 8103.69, + "end": 8105.91, + "probability": 0.9581 + }, + { + "start": 8106.69, + "end": 8108.97, + "probability": 0.9956 + }, + { + "start": 8109.89, + "end": 8111.83, + "probability": 0.9951 + }, + { + "start": 8112.51, + "end": 8116.01, + "probability": 0.9945 + }, + { + "start": 8116.57, + "end": 8117.32, + "probability": 0.5169 + }, + { + "start": 8118.19, + "end": 8118.65, + "probability": 0.4868 + }, + { + "start": 8118.77, + "end": 8121.01, + "probability": 0.9839 + }, + { + "start": 8121.95, + "end": 8124.71, + "probability": 0.936 + }, + { + "start": 8125.19, + "end": 8127.35, + "probability": 0.0353 + }, + { + "start": 8127.35, + "end": 8127.35, + "probability": 0.2386 + }, + { + "start": 8127.35, + "end": 8127.35, + "probability": 0.1458 + }, + { + "start": 8127.35, + "end": 8128.01, + "probability": 0.1343 + }, + { + "start": 8128.35, + "end": 8129.33, + "probability": 0.7335 + }, + { + "start": 8129.65, + "end": 8132.27, + "probability": 0.888 + }, + { + "start": 8132.43, + "end": 8135.05, + "probability": 0.9868 + }, + { + "start": 8135.23, + "end": 8136.61, + "probability": 0.9644 + }, + { + "start": 8136.69, + "end": 8137.19, + "probability": 0.8999 + }, + { + "start": 8137.55, + "end": 8138.69, + "probability": 0.7207 + }, + { + "start": 8139.01, + "end": 8140.49, + "probability": 0.9956 + }, + { + "start": 8140.61, + "end": 8143.63, + "probability": 0.892 + }, + { + "start": 8143.99, + "end": 8145.09, + "probability": 0.9534 + }, + { + "start": 8145.33, + "end": 8145.85, + "probability": 0.831 + }, + { + "start": 8146.93, + "end": 8148.19, + "probability": 0.7797 + }, + { + "start": 8148.85, + "end": 8150.55, + "probability": 0.9517 + }, + { + "start": 8150.81, + "end": 8151.97, + "probability": 0.9832 + }, + { + "start": 8152.03, + "end": 8154.97, + "probability": 0.998 + }, + { + "start": 8156.19, + "end": 8157.17, + "probability": 0.6918 + }, + { + "start": 8157.95, + "end": 8158.85, + "probability": 0.7659 + }, + { + "start": 8159.45, + "end": 8160.21, + "probability": 0.8635 + }, + { + "start": 8160.85, + "end": 8161.71, + "probability": 0.8149 + }, + { + "start": 8161.79, + "end": 8163.27, + "probability": 0.9951 + }, + { + "start": 8163.77, + "end": 8166.59, + "probability": 0.9014 + }, + { + "start": 8166.73, + "end": 8167.57, + "probability": 0.9026 + }, + { + "start": 8168.21, + "end": 8170.13, + "probability": 0.5026 + }, + { + "start": 8170.23, + "end": 8177.51, + "probability": 0.9944 + }, + { + "start": 8179.33, + "end": 8180.12, + "probability": 0.9878 + }, + { + "start": 8180.77, + "end": 8182.31, + "probability": 0.9982 + }, + { + "start": 8182.93, + "end": 8184.65, + "probability": 0.9903 + }, + { + "start": 8184.87, + "end": 8187.11, + "probability": 0.9919 + }, + { + "start": 8187.21, + "end": 8189.07, + "probability": 0.8856 + }, + { + "start": 8189.95, + "end": 8190.11, + "probability": 0.1978 + }, + { + "start": 8191.11, + "end": 8194.21, + "probability": 0.9473 + }, + { + "start": 8195.35, + "end": 8195.41, + "probability": 0.1829 + }, + { + "start": 8195.49, + "end": 8196.87, + "probability": 0.8787 + }, + { + "start": 8197.13, + "end": 8198.49, + "probability": 0.944 + }, + { + "start": 8199.05, + "end": 8200.73, + "probability": 0.9639 + }, + { + "start": 8201.33, + "end": 8205.19, + "probability": 0.9937 + }, + { + "start": 8205.55, + "end": 8208.07, + "probability": 0.9508 + }, + { + "start": 8208.65, + "end": 8210.43, + "probability": 0.8002 + }, + { + "start": 8210.95, + "end": 8212.61, + "probability": 0.9765 + }, + { + "start": 8212.65, + "end": 8215.05, + "probability": 0.9908 + }, + { + "start": 8215.53, + "end": 8217.75, + "probability": 0.925 + }, + { + "start": 8218.21, + "end": 8219.31, + "probability": 0.4446 + }, + { + "start": 8219.31, + "end": 8220.47, + "probability": 0.6915 + }, + { + "start": 8220.75, + "end": 8222.39, + "probability": 0.9812 + }, + { + "start": 8224.73, + "end": 8225.89, + "probability": 0.5614 + }, + { + "start": 8227.15, + "end": 8229.05, + "probability": 0.7179 + }, + { + "start": 8230.59, + "end": 8232.51, + "probability": 0.9679 + }, + { + "start": 8232.73, + "end": 8239.93, + "probability": 0.9843 + }, + { + "start": 8241.13, + "end": 8241.35, + "probability": 0.5162 + }, + { + "start": 8241.99, + "end": 8242.69, + "probability": 0.9413 + }, + { + "start": 8242.71, + "end": 8243.27, + "probability": 0.6174 + }, + { + "start": 8244.11, + "end": 8245.65, + "probability": 0.7542 + }, + { + "start": 8247.21, + "end": 8249.95, + "probability": 0.9629 + }, + { + "start": 8250.03, + "end": 8251.05, + "probability": 0.9817 + }, + { + "start": 8252.15, + "end": 8254.25, + "probability": 0.9968 + }, + { + "start": 8254.37, + "end": 8257.89, + "probability": 0.9834 + }, + { + "start": 8257.99, + "end": 8259.02, + "probability": 0.9829 + }, + { + "start": 8259.75, + "end": 8260.47, + "probability": 0.6196 + }, + { + "start": 8260.95, + "end": 8263.15, + "probability": 0.957 + }, + { + "start": 8263.77, + "end": 8264.27, + "probability": 0.8293 + }, + { + "start": 8265.09, + "end": 8269.15, + "probability": 0.9971 + }, + { + "start": 8270.29, + "end": 8272.95, + "probability": 0.9895 + }, + { + "start": 8274.09, + "end": 8278.03, + "probability": 0.8673 + }, + { + "start": 8278.65, + "end": 8283.05, + "probability": 0.9792 + }, + { + "start": 8283.67, + "end": 8287.77, + "probability": 0.9973 + }, + { + "start": 8287.83, + "end": 8289.13, + "probability": 0.4996 + }, + { + "start": 8290.49, + "end": 8294.01, + "probability": 0.9781 + }, + { + "start": 8294.95, + "end": 8296.69, + "probability": 0.9972 + }, + { + "start": 8297.49, + "end": 8301.39, + "probability": 0.9731 + }, + { + "start": 8301.83, + "end": 8305.35, + "probability": 0.9933 + }, + { + "start": 8305.79, + "end": 8306.75, + "probability": 0.9744 + }, + { + "start": 8307.27, + "end": 8310.47, + "probability": 0.8442 + }, + { + "start": 8310.79, + "end": 8313.67, + "probability": 0.9787 + }, + { + "start": 8314.39, + "end": 8318.11, + "probability": 0.9265 + }, + { + "start": 8318.55, + "end": 8323.03, + "probability": 0.9472 + }, + { + "start": 8323.59, + "end": 8326.69, + "probability": 0.995 + }, + { + "start": 8327.21, + "end": 8331.25, + "probability": 0.9696 + }, + { + "start": 8332.11, + "end": 8333.49, + "probability": 0.9976 + }, + { + "start": 8334.13, + "end": 8338.63, + "probability": 0.9897 + }, + { + "start": 8338.83, + "end": 8340.03, + "probability": 0.9225 + }, + { + "start": 8340.37, + "end": 8341.77, + "probability": 0.8163 + }, + { + "start": 8342.47, + "end": 8343.89, + "probability": 0.999 + }, + { + "start": 8343.97, + "end": 8345.55, + "probability": 0.8052 + }, + { + "start": 8345.83, + "end": 8347.37, + "probability": 0.9751 + }, + { + "start": 8347.89, + "end": 8350.11, + "probability": 0.934 + }, + { + "start": 8350.19, + "end": 8350.97, + "probability": 0.91 + }, + { + "start": 8351.45, + "end": 8352.84, + "probability": 0.793 + }, + { + "start": 8354.03, + "end": 8357.31, + "probability": 0.9009 + }, + { + "start": 8357.85, + "end": 8360.35, + "probability": 0.9541 + }, + { + "start": 8360.87, + "end": 8362.46, + "probability": 0.8938 + }, + { + "start": 8363.01, + "end": 8367.61, + "probability": 0.9867 + }, + { + "start": 8367.81, + "end": 8369.99, + "probability": 0.8262 + }, + { + "start": 8370.39, + "end": 8374.19, + "probability": 0.9248 + }, + { + "start": 8374.39, + "end": 8376.85, + "probability": 0.9934 + }, + { + "start": 8377.41, + "end": 8381.35, + "probability": 0.9871 + }, + { + "start": 8381.73, + "end": 8384.85, + "probability": 0.9785 + }, + { + "start": 8384.93, + "end": 8389.11, + "probability": 0.8596 + }, + { + "start": 8389.53, + "end": 8392.83, + "probability": 0.9857 + }, + { + "start": 8393.23, + "end": 8393.83, + "probability": 0.6254 + }, + { + "start": 8394.01, + "end": 8395.31, + "probability": 0.8389 + }, + { + "start": 8395.43, + "end": 8396.05, + "probability": 0.9131 + }, + { + "start": 8396.19, + "end": 8396.53, + "probability": 0.8906 + }, + { + "start": 8396.63, + "end": 8397.39, + "probability": 0.9547 + }, + { + "start": 8397.75, + "end": 8400.25, + "probability": 0.9812 + }, + { + "start": 8400.51, + "end": 8401.45, + "probability": 0.8516 + }, + { + "start": 8401.67, + "end": 8404.91, + "probability": 0.7526 + }, + { + "start": 8405.43, + "end": 8409.15, + "probability": 0.9861 + }, + { + "start": 8409.57, + "end": 8410.73, + "probability": 0.6562 + }, + { + "start": 8410.73, + "end": 8412.13, + "probability": 0.4856 + }, + { + "start": 8412.49, + "end": 8416.01, + "probability": 0.9962 + }, + { + "start": 8416.41, + "end": 8420.05, + "probability": 0.9876 + }, + { + "start": 8420.47, + "end": 8422.49, + "probability": 0.9897 + }, + { + "start": 8422.95, + "end": 8423.31, + "probability": 0.7939 + }, + { + "start": 8423.85, + "end": 8424.29, + "probability": 0.7918 + }, + { + "start": 8424.89, + "end": 8425.8, + "probability": 0.6681 + }, + { + "start": 8425.89, + "end": 8429.14, + "probability": 0.9729 + }, + { + "start": 8430.23, + "end": 8431.67, + "probability": 0.879 + }, + { + "start": 8433.77, + "end": 8435.69, + "probability": 0.5887 + }, + { + "start": 8436.77, + "end": 8438.27, + "probability": 0.8019 + }, + { + "start": 8441.37, + "end": 8441.91, + "probability": 0.3558 + }, + { + "start": 8442.79, + "end": 8444.29, + "probability": 0.7609 + }, + { + "start": 8461.03, + "end": 8464.63, + "probability": 0.6609 + }, + { + "start": 8465.37, + "end": 8468.03, + "probability": 0.9569 + }, + { + "start": 8468.99, + "end": 8471.72, + "probability": 0.9664 + }, + { + "start": 8472.59, + "end": 8475.47, + "probability": 0.9828 + }, + { + "start": 8475.67, + "end": 8477.69, + "probability": 0.9783 + }, + { + "start": 8479.43, + "end": 8487.05, + "probability": 0.999 + }, + { + "start": 8487.05, + "end": 8493.33, + "probability": 0.9993 + }, + { + "start": 8493.47, + "end": 8493.99, + "probability": 0.8403 + }, + { + "start": 8494.21, + "end": 8495.07, + "probability": 0.811 + }, + { + "start": 8495.93, + "end": 8497.13, + "probability": 0.9509 + }, + { + "start": 8497.43, + "end": 8501.03, + "probability": 0.7676 + }, + { + "start": 8501.03, + "end": 8506.05, + "probability": 0.9893 + }, + { + "start": 8506.45, + "end": 8507.51, + "probability": 0.8422 + }, + { + "start": 8507.57, + "end": 8510.37, + "probability": 0.8624 + }, + { + "start": 8510.79, + "end": 8513.01, + "probability": 0.9646 + }, + { + "start": 8513.57, + "end": 8514.57, + "probability": 0.7524 + }, + { + "start": 8514.85, + "end": 8517.39, + "probability": 0.9941 + }, + { + "start": 8517.41, + "end": 8521.15, + "probability": 0.946 + }, + { + "start": 8521.15, + "end": 8525.17, + "probability": 0.9995 + }, + { + "start": 8526.01, + "end": 8529.85, + "probability": 0.9941 + }, + { + "start": 8530.27, + "end": 8535.17, + "probability": 0.9694 + }, + { + "start": 8535.73, + "end": 8538.13, + "probability": 0.9904 + }, + { + "start": 8538.13, + "end": 8541.39, + "probability": 0.8663 + }, + { + "start": 8541.47, + "end": 8542.19, + "probability": 0.6008 + }, + { + "start": 8542.31, + "end": 8543.17, + "probability": 0.9597 + }, + { + "start": 8543.81, + "end": 8545.91, + "probability": 0.9251 + }, + { + "start": 8546.23, + "end": 8548.81, + "probability": 0.7386 + }, + { + "start": 8549.13, + "end": 8551.25, + "probability": 0.9049 + }, + { + "start": 8551.67, + "end": 8553.97, + "probability": 0.9307 + }, + { + "start": 8554.15, + "end": 8556.51, + "probability": 0.9976 + }, + { + "start": 8556.69, + "end": 8558.39, + "probability": 0.9946 + }, + { + "start": 8559.33, + "end": 8561.51, + "probability": 0.9968 + }, + { + "start": 8561.61, + "end": 8562.4, + "probability": 0.8979 + }, + { + "start": 8562.87, + "end": 8564.23, + "probability": 0.9873 + }, + { + "start": 8564.65, + "end": 8565.53, + "probability": 0.9971 + }, + { + "start": 8565.65, + "end": 8567.46, + "probability": 0.9944 + }, + { + "start": 8567.89, + "end": 8570.11, + "probability": 0.9868 + }, + { + "start": 8570.67, + "end": 8573.63, + "probability": 0.9823 + }, + { + "start": 8573.79, + "end": 8576.97, + "probability": 0.9936 + }, + { + "start": 8577.37, + "end": 8578.35, + "probability": 0.946 + }, + { + "start": 8578.85, + "end": 8581.51, + "probability": 0.9863 + }, + { + "start": 8582.03, + "end": 8584.95, + "probability": 0.8384 + }, + { + "start": 8585.79, + "end": 8587.57, + "probability": 0.9954 + }, + { + "start": 8587.77, + "end": 8592.19, + "probability": 0.9331 + }, + { + "start": 8592.71, + "end": 8596.75, + "probability": 0.9908 + }, + { + "start": 8597.09, + "end": 8599.65, + "probability": 0.9844 + }, + { + "start": 8600.03, + "end": 8602.09, + "probability": 0.9612 + }, + { + "start": 8602.49, + "end": 8604.03, + "probability": 0.998 + }, + { + "start": 8604.45, + "end": 8609.23, + "probability": 0.9514 + }, + { + "start": 8609.61, + "end": 8612.71, + "probability": 0.774 + }, + { + "start": 8612.85, + "end": 8613.91, + "probability": 0.9418 + }, + { + "start": 8614.23, + "end": 8614.59, + "probability": 0.9838 + }, + { + "start": 8614.69, + "end": 8615.84, + "probability": 0.8102 + }, + { + "start": 8616.51, + "end": 8616.79, + "probability": 0.6018 + }, + { + "start": 8616.85, + "end": 8617.73, + "probability": 0.8838 + }, + { + "start": 8617.83, + "end": 8622.83, + "probability": 0.9963 + }, + { + "start": 8623.53, + "end": 8629.63, + "probability": 0.9973 + }, + { + "start": 8629.79, + "end": 8631.61, + "probability": 0.9913 + }, + { + "start": 8632.03, + "end": 8634.03, + "probability": 0.9867 + }, + { + "start": 8634.09, + "end": 8637.06, + "probability": 0.9229 + }, + { + "start": 8637.41, + "end": 8638.21, + "probability": 0.7007 + }, + { + "start": 8638.47, + "end": 8639.37, + "probability": 0.6225 + }, + { + "start": 8639.89, + "end": 8641.29, + "probability": 0.9667 + }, + { + "start": 8642.61, + "end": 8643.13, + "probability": 0.7608 + }, + { + "start": 8644.01, + "end": 8645.05, + "probability": 0.8629 + }, + { + "start": 8663.57, + "end": 8664.51, + "probability": 0.9617 + }, + { + "start": 8666.37, + "end": 8666.55, + "probability": 0.0587 + }, + { + "start": 8666.55, + "end": 8668.15, + "probability": 0.1072 + }, + { + "start": 8668.25, + "end": 8668.85, + "probability": 0.7629 + }, + { + "start": 8669.19, + "end": 8669.81, + "probability": 0.4129 + }, + { + "start": 8672.27, + "end": 8674.75, + "probability": 0.944 + }, + { + "start": 8675.81, + "end": 8676.81, + "probability": 0.9759 + }, + { + "start": 8677.55, + "end": 8678.99, + "probability": 0.8905 + }, + { + "start": 8679.63, + "end": 8683.05, + "probability": 0.856 + }, + { + "start": 8683.61, + "end": 8685.47, + "probability": 0.8834 + }, + { + "start": 8686.05, + "end": 8687.33, + "probability": 0.8093 + }, + { + "start": 8688.63, + "end": 8692.65, + "probability": 0.9695 + }, + { + "start": 8692.65, + "end": 8696.03, + "probability": 0.995 + }, + { + "start": 8696.97, + "end": 8700.07, + "probability": 0.8536 + }, + { + "start": 8700.61, + "end": 8702.11, + "probability": 0.765 + }, + { + "start": 8702.73, + "end": 8705.97, + "probability": 0.9989 + }, + { + "start": 8706.67, + "end": 8707.49, + "probability": 0.9246 + }, + { + "start": 8708.17, + "end": 8708.79, + "probability": 0.6825 + }, + { + "start": 8709.75, + "end": 8713.49, + "probability": 0.9783 + }, + { + "start": 8714.31, + "end": 8716.13, + "probability": 0.7365 + }, + { + "start": 8716.67, + "end": 8719.19, + "probability": 0.9978 + }, + { + "start": 8720.03, + "end": 8721.11, + "probability": 0.9836 + }, + { + "start": 8721.95, + "end": 8728.65, + "probability": 0.9966 + }, + { + "start": 8731.31, + "end": 8735.03, + "probability": 0.96 + }, + { + "start": 8735.59, + "end": 8740.35, + "probability": 0.9759 + }, + { + "start": 8741.05, + "end": 8744.25, + "probability": 0.9991 + }, + { + "start": 8744.25, + "end": 8748.61, + "probability": 0.9751 + }, + { + "start": 8749.13, + "end": 8749.87, + "probability": 0.4646 + }, + { + "start": 8750.21, + "end": 8754.89, + "probability": 0.981 + }, + { + "start": 8755.13, + "end": 8757.45, + "probability": 0.8726 + }, + { + "start": 8757.91, + "end": 8760.55, + "probability": 0.9839 + }, + { + "start": 8760.63, + "end": 8761.73, + "probability": 0.8902 + }, + { + "start": 8762.11, + "end": 8763.13, + "probability": 0.9064 + }, + { + "start": 8764.49, + "end": 8766.17, + "probability": 0.6701 + }, + { + "start": 8766.49, + "end": 8767.09, + "probability": 0.3814 + }, + { + "start": 8767.09, + "end": 8767.17, + "probability": 0.1607 + }, + { + "start": 8767.17, + "end": 8767.97, + "probability": 0.8895 + }, + { + "start": 8768.53, + "end": 8769.09, + "probability": 0.8536 + }, + { + "start": 8770.09, + "end": 8773.93, + "probability": 0.9785 + }, + { + "start": 8774.35, + "end": 8776.25, + "probability": 0.9812 + }, + { + "start": 8776.65, + "end": 8781.29, + "probability": 0.9753 + }, + { + "start": 8781.85, + "end": 8786.77, + "probability": 0.9988 + }, + { + "start": 8787.37, + "end": 8788.65, + "probability": 0.9178 + }, + { + "start": 8789.13, + "end": 8790.85, + "probability": 0.9568 + }, + { + "start": 8791.27, + "end": 8796.11, + "probability": 0.9941 + }, + { + "start": 8796.31, + "end": 8797.01, + "probability": 0.9123 + }, + { + "start": 8797.37, + "end": 8797.87, + "probability": 0.6748 + }, + { + "start": 8798.31, + "end": 8799.71, + "probability": 0.7445 + }, + { + "start": 8800.13, + "end": 8803.19, + "probability": 0.9787 + }, + { + "start": 8803.45, + "end": 8803.83, + "probability": 0.8917 + }, + { + "start": 8804.31, + "end": 8805.27, + "probability": 0.7606 + }, + { + "start": 8805.79, + "end": 8807.15, + "probability": 0.9085 + }, + { + "start": 8808.79, + "end": 8811.79, + "probability": 0.8638 + }, + { + "start": 8811.93, + "end": 8812.89, + "probability": 0.7647 + }, + { + "start": 8820.11, + "end": 8820.75, + "probability": 0.7188 + }, + { + "start": 8821.03, + "end": 8822.73, + "probability": 0.6708 + }, + { + "start": 8822.89, + "end": 8823.95, + "probability": 0.6722 + }, + { + "start": 8824.79, + "end": 8825.81, + "probability": 0.7107 + }, + { + "start": 8826.07, + "end": 8832.55, + "probability": 0.8252 + }, + { + "start": 8832.77, + "end": 8838.63, + "probability": 0.9855 + }, + { + "start": 8839.73, + "end": 8842.15, + "probability": 0.9962 + }, + { + "start": 8842.53, + "end": 8844.39, + "probability": 0.6157 + }, + { + "start": 8844.93, + "end": 8845.97, + "probability": 0.9248 + }, + { + "start": 8846.13, + "end": 8846.91, + "probability": 0.9587 + }, + { + "start": 8846.95, + "end": 8848.55, + "probability": 0.9883 + }, + { + "start": 8849.39, + "end": 8856.73, + "probability": 0.9848 + }, + { + "start": 8856.73, + "end": 8862.77, + "probability": 0.9979 + }, + { + "start": 8863.45, + "end": 8868.41, + "probability": 0.9971 + }, + { + "start": 8869.33, + "end": 8874.75, + "probability": 0.9976 + }, + { + "start": 8875.45, + "end": 8878.85, + "probability": 0.9827 + }, + { + "start": 8879.33, + "end": 8881.89, + "probability": 0.9932 + }, + { + "start": 8883.71, + "end": 8886.13, + "probability": 0.9898 + }, + { + "start": 8886.73, + "end": 8887.99, + "probability": 0.938 + }, + { + "start": 8888.75, + "end": 8889.66, + "probability": 0.8884 + }, + { + "start": 8891.11, + "end": 8891.61, + "probability": 0.6304 + }, + { + "start": 8891.69, + "end": 8892.49, + "probability": 0.6219 + }, + { + "start": 8892.83, + "end": 8893.25, + "probability": 0.3694 + }, + { + "start": 8893.29, + "end": 8896.43, + "probability": 0.9927 + }, + { + "start": 8896.95, + "end": 8897.85, + "probability": 0.7748 + }, + { + "start": 8898.59, + "end": 8901.15, + "probability": 0.9652 + }, + { + "start": 8901.41, + "end": 8902.01, + "probability": 0.8972 + }, + { + "start": 8902.37, + "end": 8904.79, + "probability": 0.9626 + }, + { + "start": 8905.47, + "end": 8906.65, + "probability": 0.9619 + }, + { + "start": 8907.71, + "end": 8910.25, + "probability": 0.8284 + }, + { + "start": 8910.49, + "end": 8911.79, + "probability": 0.7879 + }, + { + "start": 8912.35, + "end": 8914.09, + "probability": 0.9922 + }, + { + "start": 8915.31, + "end": 8917.83, + "probability": 0.9248 + }, + { + "start": 8918.31, + "end": 8921.41, + "probability": 0.9929 + }, + { + "start": 8921.89, + "end": 8923.91, + "probability": 0.9778 + }, + { + "start": 8925.17, + "end": 8928.55, + "probability": 0.9971 + }, + { + "start": 8928.67, + "end": 8929.91, + "probability": 0.6627 + }, + { + "start": 8930.69, + "end": 8934.95, + "probability": 0.9554 + }, + { + "start": 8935.57, + "end": 8937.95, + "probability": 0.8382 + }, + { + "start": 8938.81, + "end": 8940.09, + "probability": 0.9949 + }, + { + "start": 8940.29, + "end": 8942.54, + "probability": 0.9327 + }, + { + "start": 8942.82, + "end": 8948.94, + "probability": 0.994 + }, + { + "start": 8949.96, + "end": 8954.32, + "probability": 0.9979 + }, + { + "start": 8954.52, + "end": 8958.36, + "probability": 0.993 + }, + { + "start": 8959.46, + "end": 8962.64, + "probability": 0.9946 + }, + { + "start": 8962.64, + "end": 8965.38, + "probability": 0.9984 + }, + { + "start": 8965.86, + "end": 8966.54, + "probability": 0.6979 + }, + { + "start": 8966.8, + "end": 8968.78, + "probability": 0.9189 + }, + { + "start": 8969.26, + "end": 8970.68, + "probability": 0.8335 + }, + { + "start": 8971.64, + "end": 8973.24, + "probability": 0.9966 + }, + { + "start": 8974.04, + "end": 8976.78, + "probability": 0.9832 + }, + { + "start": 8976.78, + "end": 8979.56, + "probability": 0.9811 + }, + { + "start": 8980.16, + "end": 8985.04, + "probability": 0.9964 + }, + { + "start": 8985.14, + "end": 8986.52, + "probability": 0.6661 + }, + { + "start": 8987.24, + "end": 8989.46, + "probability": 0.8189 + }, + { + "start": 8989.96, + "end": 8993.34, + "probability": 0.9905 + }, + { + "start": 8993.34, + "end": 8997.82, + "probability": 0.987 + }, + { + "start": 8998.34, + "end": 9000.48, + "probability": 0.8723 + }, + { + "start": 9001.12, + "end": 9005.04, + "probability": 0.9915 + }, + { + "start": 9005.7, + "end": 9005.7, + "probability": 0.0243 + }, + { + "start": 9005.7, + "end": 9005.7, + "probability": 0.0585 + }, + { + "start": 9005.7, + "end": 9005.7, + "probability": 0.2534 + }, + { + "start": 9005.7, + "end": 9010.66, + "probability": 0.9097 + }, + { + "start": 9011.0, + "end": 9011.18, + "probability": 0.7286 + }, + { + "start": 9011.3, + "end": 9014.94, + "probability": 0.9803 + }, + { + "start": 9014.96, + "end": 9015.34, + "probability": 0.5728 + }, + { + "start": 9015.34, + "end": 9015.38, + "probability": 0.2169 + }, + { + "start": 9015.48, + "end": 9019.46, + "probability": 0.9965 + }, + { + "start": 9020.02, + "end": 9022.56, + "probability": 0.2719 + }, + { + "start": 9023.0, + "end": 9023.77, + "probability": 0.0235 + }, + { + "start": 9024.22, + "end": 9024.22, + "probability": 0.0565 + }, + { + "start": 9025.54, + "end": 9025.54, + "probability": 0.0353 + }, + { + "start": 9025.54, + "end": 9026.82, + "probability": 0.0232 + }, + { + "start": 9027.46, + "end": 9029.32, + "probability": 0.0796 + }, + { + "start": 9029.32, + "end": 9033.12, + "probability": 0.3821 + }, + { + "start": 9033.42, + "end": 9034.66, + "probability": 0.3068 + }, + { + "start": 9037.88, + "end": 9039.82, + "probability": 0.0727 + }, + { + "start": 9040.59, + "end": 9040.66, + "probability": 0.2102 + }, + { + "start": 9041.8, + "end": 9043.38, + "probability": 0.2069 + }, + { + "start": 9044.24, + "end": 9050.13, + "probability": 0.1845 + }, + { + "start": 9056.14, + "end": 9056.72, + "probability": 0.419 + }, + { + "start": 9057.28, + "end": 9059.94, + "probability": 0.0426 + }, + { + "start": 9060.62, + "end": 9060.64, + "probability": 0.0569 + }, + { + "start": 9063.52, + "end": 9064.14, + "probability": 0.4459 + }, + { + "start": 9064.14, + "end": 9064.2, + "probability": 0.3994 + }, + { + "start": 9064.2, + "end": 9065.1, + "probability": 0.355 + }, + { + "start": 9065.66, + "end": 9067.3, + "probability": 0.2734 + }, + { + "start": 9068.78, + "end": 9072.4, + "probability": 0.0178 + }, + { + "start": 9072.4, + "end": 9072.86, + "probability": 0.1045 + }, + { + "start": 9074.08, + "end": 9075.08, + "probability": 0.1632 + }, + { + "start": 9075.9, + "end": 9077.66, + "probability": 0.0629 + }, + { + "start": 9077.66, + "end": 9077.87, + "probability": 0.1102 + }, + { + "start": 9078.04, + "end": 9081.64, + "probability": 0.0902 + }, + { + "start": 9082.48, + "end": 9084.52, + "probability": 0.2483 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9099.8, + "end": 9100.78, + "probability": 0.1579 + }, + { + "start": 9100.78, + "end": 9101.06, + "probability": 0.0421 + }, + { + "start": 9101.06, + "end": 9101.24, + "probability": 0.0207 + }, + { + "start": 9101.24, + "end": 9101.34, + "probability": 0.0625 + }, + { + "start": 9102.12, + "end": 9103.34, + "probability": 0.0248 + }, + { + "start": 9103.94, + "end": 9109.8, + "probability": 0.031 + }, + { + "start": 9112.14, + "end": 9113.94, + "probability": 0.1435 + }, + { + "start": 9114.69, + "end": 9117.54, + "probability": 0.0487 + }, + { + "start": 9117.54, + "end": 9122.54, + "probability": 0.1847 + }, + { + "start": 9122.54, + "end": 9122.76, + "probability": 0.1382 + }, + { + "start": 9122.76, + "end": 9126.3, + "probability": 0.0649 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9217.0, + "end": 9217.0, + "probability": 0.0 + }, + { + "start": 9227.86, + "end": 9230.26, + "probability": 0.0628 + }, + { + "start": 9230.26, + "end": 9232.66, + "probability": 0.047 + }, + { + "start": 9232.74, + "end": 9243.15, + "probability": 0.0931 + }, + { + "start": 9244.76, + "end": 9246.21, + "probability": 0.0707 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.0, + "end": 9341.0, + "probability": 0.0 + }, + { + "start": 9341.9, + "end": 9345.16, + "probability": 0.0294 + }, + { + "start": 9345.16, + "end": 9345.78, + "probability": 0.0491 + }, + { + "start": 9346.64, + "end": 9347.74, + "probability": 0.1984 + }, + { + "start": 9350.02, + "end": 9350.76, + "probability": 0.0046 + }, + { + "start": 9350.76, + "end": 9351.02, + "probability": 0.3424 + }, + { + "start": 9351.02, + "end": 9352.54, + "probability": 0.2146 + }, + { + "start": 9353.38, + "end": 9353.76, + "probability": 0.3251 + }, + { + "start": 9353.78, + "end": 9355.7, + "probability": 0.0921 + }, + { + "start": 9356.82, + "end": 9357.96, + "probability": 0.1947 + }, + { + "start": 9359.14, + "end": 9362.22, + "probability": 0.5301 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.0, + "end": 9477.0, + "probability": 0.0 + }, + { + "start": 9477.2, + "end": 9478.44, + "probability": 0.0831 + }, + { + "start": 9478.84, + "end": 9479.08, + "probability": 0.022 + }, + { + "start": 9479.28, + "end": 9481.58, + "probability": 0.2576 + }, + { + "start": 9481.58, + "end": 9481.92, + "probability": 0.4428 + }, + { + "start": 9481.92, + "end": 9481.92, + "probability": 0.0498 + }, + { + "start": 9482.9, + "end": 9485.9, + "probability": 0.006 + }, + { + "start": 9485.9, + "end": 9488.64, + "probability": 0.0196 + }, + { + "start": 9489.24, + "end": 9493.2, + "probability": 0.0453 + }, + { + "start": 9494.4, + "end": 9494.4, + "probability": 0.1704 + }, + { + "start": 9494.4, + "end": 9497.4, + "probability": 0.2002 + }, + { + "start": 9497.4, + "end": 9497.58, + "probability": 0.2833 + }, + { + "start": 9500.26, + "end": 9503.1, + "probability": 0.0724 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.0, + "end": 9605.0, + "probability": 0.0 + }, + { + "start": 9605.22, + "end": 9606.16, + "probability": 0.0387 + }, + { + "start": 9606.16, + "end": 9606.16, + "probability": 0.1019 + }, + { + "start": 9606.16, + "end": 9606.22, + "probability": 0.0618 + }, + { + "start": 9606.22, + "end": 9606.22, + "probability": 0.0211 + }, + { + "start": 9606.22, + "end": 9609.5, + "probability": 0.2686 + }, + { + "start": 9610.14, + "end": 9612.9, + "probability": 0.5576 + }, + { + "start": 9613.1, + "end": 9613.46, + "probability": 0.4853 + }, + { + "start": 9614.26, + "end": 9616.48, + "probability": 0.8506 + }, + { + "start": 9617.38, + "end": 9620.26, + "probability": 0.9552 + }, + { + "start": 9621.14, + "end": 9622.78, + "probability": 0.9176 + }, + { + "start": 9622.88, + "end": 9623.74, + "probability": 0.9381 + }, + { + "start": 9624.16, + "end": 9628.04, + "probability": 0.9772 + }, + { + "start": 9628.16, + "end": 9629.06, + "probability": 0.8899 + }, + { + "start": 9629.32, + "end": 9630.0, + "probability": 0.8196 + }, + { + "start": 9630.08, + "end": 9631.48, + "probability": 0.9634 + }, + { + "start": 9631.84, + "end": 9632.82, + "probability": 0.9093 + }, + { + "start": 9633.5, + "end": 9638.84, + "probability": 0.9119 + }, + { + "start": 9639.72, + "end": 9644.98, + "probability": 0.9877 + }, + { + "start": 9645.34, + "end": 9646.42, + "probability": 0.5796 + }, + { + "start": 9647.55, + "end": 9649.9, + "probability": 0.9267 + }, + { + "start": 9649.92, + "end": 9653.46, + "probability": 0.7969 + }, + { + "start": 9654.3, + "end": 9656.92, + "probability": 0.9292 + }, + { + "start": 9657.02, + "end": 9657.86, + "probability": 0.9642 + }, + { + "start": 9658.08, + "end": 9659.62, + "probability": 0.911 + }, + { + "start": 9659.98, + "end": 9660.44, + "probability": 0.64 + }, + { + "start": 9660.48, + "end": 9661.0, + "probability": 0.8372 + }, + { + "start": 9662.34, + "end": 9664.76, + "probability": 0.9769 + }, + { + "start": 9665.0, + "end": 9668.78, + "probability": 0.981 + }, + { + "start": 9668.78, + "end": 9674.82, + "probability": 0.8906 + }, + { + "start": 9674.98, + "end": 9678.42, + "probability": 0.984 + }, + { + "start": 9678.68, + "end": 9680.38, + "probability": 0.894 + }, + { + "start": 9680.86, + "end": 9682.5, + "probability": 0.9932 + }, + { + "start": 9682.86, + "end": 9686.66, + "probability": 0.9893 + }, + { + "start": 9686.66, + "end": 9690.74, + "probability": 0.9961 + }, + { + "start": 9691.3, + "end": 9694.08, + "probability": 0.9963 + }, + { + "start": 9694.24, + "end": 9695.32, + "probability": 0.8544 + }, + { + "start": 9695.46, + "end": 9696.48, + "probability": 0.7436 + }, + { + "start": 9697.14, + "end": 9699.0, + "probability": 0.6573 + }, + { + "start": 9699.3, + "end": 9702.4, + "probability": 0.9493 + }, + { + "start": 9702.76, + "end": 9703.8, + "probability": 0.897 + }, + { + "start": 9704.02, + "end": 9706.04, + "probability": 0.9473 + }, + { + "start": 9706.38, + "end": 9708.4, + "probability": 0.9959 + }, + { + "start": 9708.52, + "end": 9715.06, + "probability": 0.9961 + }, + { + "start": 9715.54, + "end": 9719.36, + "probability": 0.9974 + }, + { + "start": 9719.36, + "end": 9723.98, + "probability": 0.9775 + }, + { + "start": 9724.2, + "end": 9729.04, + "probability": 0.9897 + }, + { + "start": 9729.04, + "end": 9734.6, + "probability": 0.9736 + }, + { + "start": 9734.62, + "end": 9734.94, + "probability": 0.6657 + }, + { + "start": 9735.02, + "end": 9735.44, + "probability": 0.4626 + }, + { + "start": 9735.44, + "end": 9736.26, + "probability": 0.4013 + }, + { + "start": 9737.52, + "end": 9737.98, + "probability": 0.6876 + }, + { + "start": 9738.18, + "end": 9738.88, + "probability": 0.4869 + }, + { + "start": 9738.98, + "end": 9739.32, + "probability": 0.7826 + }, + { + "start": 9739.7, + "end": 9740.28, + "probability": 0.6737 + }, + { + "start": 9740.78, + "end": 9741.62, + "probability": 0.9519 + }, + { + "start": 9742.12, + "end": 9742.72, + "probability": 0.8625 + }, + { + "start": 9743.08, + "end": 9744.42, + "probability": 0.9812 + }, + { + "start": 9745.14, + "end": 9745.62, + "probability": 0.1963 + }, + { + "start": 9745.62, + "end": 9748.51, + "probability": 0.6907 + }, + { + "start": 9757.14, + "end": 9758.0, + "probability": 0.7397 + }, + { + "start": 9758.56, + "end": 9760.28, + "probability": 0.7365 + }, + { + "start": 9762.7, + "end": 9763.78, + "probability": 0.4435 + }, + { + "start": 9764.8, + "end": 9765.16, + "probability": 0.8239 + }, + { + "start": 9766.74, + "end": 9767.16, + "probability": 0.3686 + }, + { + "start": 9767.32, + "end": 9767.62, + "probability": 0.8686 + }, + { + "start": 9767.74, + "end": 9768.48, + "probability": 0.5991 + }, + { + "start": 9769.04, + "end": 9769.14, + "probability": 0.4656 + }, + { + "start": 9769.88, + "end": 9772.58, + "probability": 0.196 + }, + { + "start": 9773.48, + "end": 9773.98, + "probability": 0.2902 + }, + { + "start": 9774.16, + "end": 9774.16, + "probability": 0.5337 + }, + { + "start": 9774.52, + "end": 9776.76, + "probability": 0.031 + }, + { + "start": 9776.76, + "end": 9779.26, + "probability": 0.6245 + }, + { + "start": 9779.5, + "end": 9780.28, + "probability": 0.7088 + }, + { + "start": 9780.64, + "end": 9782.62, + "probability": 0.7756 + }, + { + "start": 9782.82, + "end": 9784.18, + "probability": 0.8232 + }, + { + "start": 9784.52, + "end": 9785.8, + "probability": 0.3317 + }, + { + "start": 9785.92, + "end": 9785.94, + "probability": 0.6206 + }, + { + "start": 9785.94, + "end": 9786.6, + "probability": 0.1616 + }, + { + "start": 9786.66, + "end": 9787.18, + "probability": 0.6053 + }, + { + "start": 9787.42, + "end": 9789.09, + "probability": 0.6662 + }, + { + "start": 9790.04, + "end": 9790.12, + "probability": 0.0708 + }, + { + "start": 9790.12, + "end": 9791.2, + "probability": 0.4634 + }, + { + "start": 9791.24, + "end": 9792.56, + "probability": 0.9628 + }, + { + "start": 9793.58, + "end": 9794.06, + "probability": 0.8843 + }, + { + "start": 9794.58, + "end": 9795.84, + "probability": 0.3313 + }, + { + "start": 9796.36, + "end": 9797.68, + "probability": 0.978 + }, + { + "start": 9798.44, + "end": 9800.1, + "probability": 0.9479 + }, + { + "start": 9800.24, + "end": 9800.88, + "probability": 0.4255 + }, + { + "start": 9800.88, + "end": 9801.09, + "probability": 0.5022 + }, + { + "start": 9801.3, + "end": 9802.52, + "probability": 0.5728 + }, + { + "start": 9803.32, + "end": 9804.1, + "probability": 0.01 + }, + { + "start": 9804.16, + "end": 9804.52, + "probability": 0.923 + }, + { + "start": 9806.0, + "end": 9806.78, + "probability": 0.7435 + }, + { + "start": 9807.8, + "end": 9813.12, + "probability": 0.8616 + }, + { + "start": 9813.52, + "end": 9813.7, + "probability": 0.4707 + }, + { + "start": 9813.74, + "end": 9815.86, + "probability": 0.9849 + }, + { + "start": 9815.86, + "end": 9819.54, + "probability": 0.8746 + }, + { + "start": 9820.46, + "end": 9821.04, + "probability": 0.9556 + }, + { + "start": 9821.86, + "end": 9822.79, + "probability": 0.9331 + }, + { + "start": 9823.98, + "end": 9829.16, + "probability": 0.7654 + }, + { + "start": 9829.34, + "end": 9830.42, + "probability": 0.8776 + }, + { + "start": 9830.48, + "end": 9832.56, + "probability": 0.9778 + }, + { + "start": 9833.24, + "end": 9834.06, + "probability": 0.9338 + }, + { + "start": 9834.42, + "end": 9838.26, + "probability": 0.9235 + }, + { + "start": 9838.44, + "end": 9838.86, + "probability": 0.7288 + }, + { + "start": 9840.16, + "end": 9842.04, + "probability": 0.7433 + }, + { + "start": 9843.16, + "end": 9845.78, + "probability": 0.9905 + }, + { + "start": 9846.56, + "end": 9848.52, + "probability": 0.2932 + }, + { + "start": 9849.12, + "end": 9851.12, + "probability": 0.5653 + }, + { + "start": 9851.24, + "end": 9851.74, + "probability": 0.7444 + }, + { + "start": 9851.86, + "end": 9852.48, + "probability": 0.8809 + }, + { + "start": 9852.58, + "end": 9853.64, + "probability": 0.4344 + }, + { + "start": 9853.64, + "end": 9855.04, + "probability": 0.1429 + }, + { + "start": 9855.04, + "end": 9856.68, + "probability": 0.3616 + }, + { + "start": 9857.04, + "end": 9858.02, + "probability": 0.8458 + }, + { + "start": 9858.02, + "end": 9859.02, + "probability": 0.3219 + }, + { + "start": 9859.08, + "end": 9859.48, + "probability": 0.7515 + }, + { + "start": 9859.64, + "end": 9862.08, + "probability": 0.7361 + }, + { + "start": 9862.66, + "end": 9864.94, + "probability": 0.4645 + }, + { + "start": 9866.62, + "end": 9868.62, + "probability": 0.0473 + }, + { + "start": 9869.44, + "end": 9874.34, + "probability": 0.5084 + }, + { + "start": 9874.34, + "end": 9874.38, + "probability": 0.2898 + }, + { + "start": 9874.44, + "end": 9878.73, + "probability": 0.7995 + }, + { + "start": 9879.18, + "end": 9879.76, + "probability": 0.7899 + }, + { + "start": 9880.5, + "end": 9883.3, + "probability": 0.8293 + }, + { + "start": 9883.42, + "end": 9884.36, + "probability": 0.5074 + }, + { + "start": 9884.44, + "end": 9885.41, + "probability": 0.0457 + }, + { + "start": 9886.24, + "end": 9886.62, + "probability": 0.422 + }, + { + "start": 9886.74, + "end": 9888.82, + "probability": 0.5231 + }, + { + "start": 9888.9, + "end": 9889.41, + "probability": 0.8149 + }, + { + "start": 9889.48, + "end": 9889.8, + "probability": 0.647 + }, + { + "start": 9889.86, + "end": 9892.8, + "probability": 0.7927 + }, + { + "start": 9892.8, + "end": 9897.3, + "probability": 0.5638 + }, + { + "start": 9897.38, + "end": 9897.7, + "probability": 0.6389 + }, + { + "start": 9897.86, + "end": 9901.62, + "probability": 0.5086 + }, + { + "start": 9901.62, + "end": 9905.4, + "probability": 0.8846 + }, + { + "start": 9905.9, + "end": 9907.79, + "probability": 0.0167 + }, + { + "start": 9908.8, + "end": 9909.66, + "probability": 0.2794 + }, + { + "start": 9909.86, + "end": 9912.96, + "probability": 0.3765 + }, + { + "start": 9913.94, + "end": 9913.98, + "probability": 0.0384 + }, + { + "start": 9913.98, + "end": 9917.62, + "probability": 0.1973 + }, + { + "start": 9918.3, + "end": 9922.72, + "probability": 0.3996 + }, + { + "start": 9922.72, + "end": 9925.75, + "probability": 0.4009 + }, + { + "start": 9926.02, + "end": 9927.42, + "probability": 0.7007 + }, + { + "start": 9927.6, + "end": 9928.56, + "probability": 0.5628 + }, + { + "start": 9928.9, + "end": 9934.6, + "probability": 0.825 + }, + { + "start": 9934.9, + "end": 9938.58, + "probability": 0.6186 + }, + { + "start": 9939.86, + "end": 9941.62, + "probability": 0.6283 + }, + { + "start": 9943.06, + "end": 9943.92, + "probability": 0.9753 + }, + { + "start": 9944.02, + "end": 9944.98, + "probability": 0.7986 + }, + { + "start": 9945.06, + "end": 9953.26, + "probability": 0.7548 + }, + { + "start": 9953.54, + "end": 9953.54, + "probability": 0.5825 + }, + { + "start": 9953.54, + "end": 9956.34, + "probability": 0.752 + }, + { + "start": 9956.46, + "end": 9957.32, + "probability": 0.0556 + }, + { + "start": 9957.38, + "end": 9958.98, + "probability": 0.1384 + }, + { + "start": 9959.18, + "end": 9965.76, + "probability": 0.8841 + }, + { + "start": 9966.36, + "end": 9968.56, + "probability": 0.9034 + }, + { + "start": 9968.96, + "end": 9970.2, + "probability": 0.7704 + }, + { + "start": 9970.2, + "end": 9970.64, + "probability": 0.5187 + }, + { + "start": 9970.7, + "end": 9970.72, + "probability": 0.632 + }, + { + "start": 9970.72, + "end": 9970.72, + "probability": 0.205 + }, + { + "start": 9970.72, + "end": 9976.04, + "probability": 0.9629 + }, + { + "start": 9976.08, + "end": 9976.96, + "probability": 0.5161 + }, + { + "start": 9977.04, + "end": 9980.21, + "probability": 0.8606 + }, + { + "start": 9996.08, + "end": 9996.28, + "probability": 0.3502 + }, + { + "start": 9997.2, + "end": 9998.26, + "probability": 0.7384 + }, + { + "start": 10000.74, + "end": 10004.14, + "probability": 0.9261 + }, + { + "start": 10004.82, + "end": 10006.16, + "probability": 0.9324 + }, + { + "start": 10007.12, + "end": 10008.61, + "probability": 0.9977 + }, + { + "start": 10010.32, + "end": 10013.5, + "probability": 0.8501 + }, + { + "start": 10014.82, + "end": 10020.1, + "probability": 0.969 + }, + { + "start": 10020.66, + "end": 10023.48, + "probability": 0.998 + }, + { + "start": 10024.66, + "end": 10030.54, + "probability": 0.9852 + }, + { + "start": 10031.98, + "end": 10033.02, + "probability": 0.937 + }, + { + "start": 10033.36, + "end": 10034.68, + "probability": 0.741 + }, + { + "start": 10034.74, + "end": 10039.38, + "probability": 0.9159 + }, + { + "start": 10039.84, + "end": 10040.38, + "probability": 0.3901 + }, + { + "start": 10041.16, + "end": 10044.26, + "probability": 0.9548 + }, + { + "start": 10044.84, + "end": 10048.92, + "probability": 0.9603 + }, + { + "start": 10050.16, + "end": 10050.4, + "probability": 0.7013 + }, + { + "start": 10051.8, + "end": 10055.68, + "probability": 0.9154 + }, + { + "start": 10057.06, + "end": 10058.5, + "probability": 0.8345 + }, + { + "start": 10059.18, + "end": 10060.84, + "probability": 0.9196 + }, + { + "start": 10062.0, + "end": 10063.47, + "probability": 0.791 + }, + { + "start": 10064.4, + "end": 10065.9, + "probability": 0.9525 + }, + { + "start": 10067.12, + "end": 10067.68, + "probability": 0.5924 + }, + { + "start": 10068.4, + "end": 10072.9, + "probability": 0.981 + }, + { + "start": 10073.74, + "end": 10078.9, + "probability": 0.9914 + }, + { + "start": 10079.74, + "end": 10086.58, + "probability": 0.9926 + }, + { + "start": 10087.12, + "end": 10088.12, + "probability": 0.9681 + }, + { + "start": 10088.94, + "end": 10089.94, + "probability": 0.9617 + }, + { + "start": 10090.44, + "end": 10091.54, + "probability": 0.897 + }, + { + "start": 10092.14, + "end": 10093.51, + "probability": 0.9844 + }, + { + "start": 10094.34, + "end": 10095.64, + "probability": 0.3691 + }, + { + "start": 10097.7, + "end": 10099.96, + "probability": 0.9064 + }, + { + "start": 10100.52, + "end": 10103.82, + "probability": 0.6777 + }, + { + "start": 10104.36, + "end": 10105.9, + "probability": 0.9814 + }, + { + "start": 10107.26, + "end": 10108.46, + "probability": 0.9389 + }, + { + "start": 10109.06, + "end": 10110.38, + "probability": 0.8179 + }, + { + "start": 10111.22, + "end": 10112.68, + "probability": 0.9048 + }, + { + "start": 10113.82, + "end": 10116.08, + "probability": 0.9895 + }, + { + "start": 10116.92, + "end": 10119.92, + "probability": 0.9961 + }, + { + "start": 10119.92, + "end": 10123.28, + "probability": 0.9975 + }, + { + "start": 10125.32, + "end": 10127.32, + "probability": 0.8637 + }, + { + "start": 10128.34, + "end": 10129.36, + "probability": 0.9634 + }, + { + "start": 10130.3, + "end": 10133.9, + "probability": 0.9971 + }, + { + "start": 10134.42, + "end": 10136.16, + "probability": 0.9968 + }, + { + "start": 10137.86, + "end": 10141.7, + "probability": 0.9946 + }, + { + "start": 10142.12, + "end": 10143.34, + "probability": 0.3905 + }, + { + "start": 10143.74, + "end": 10144.16, + "probability": 0.5099 + }, + { + "start": 10144.38, + "end": 10145.2, + "probability": 0.9785 + }, + { + "start": 10145.64, + "end": 10150.82, + "probability": 0.9846 + }, + { + "start": 10152.12, + "end": 10153.8, + "probability": 0.9948 + }, + { + "start": 10154.62, + "end": 10155.82, + "probability": 0.8285 + }, + { + "start": 10156.98, + "end": 10158.69, + "probability": 0.9956 + }, + { + "start": 10159.78, + "end": 10163.56, + "probability": 0.783 + }, + { + "start": 10164.24, + "end": 10166.1, + "probability": 0.9968 + }, + { + "start": 10166.56, + "end": 10168.1, + "probability": 0.9914 + }, + { + "start": 10168.94, + "end": 10171.16, + "probability": 0.7602 + }, + { + "start": 10171.66, + "end": 10175.1, + "probability": 0.9979 + }, + { + "start": 10175.1, + "end": 10178.9, + "probability": 0.999 + }, + { + "start": 10179.52, + "end": 10182.04, + "probability": 0.9812 + }, + { + "start": 10182.34, + "end": 10183.74, + "probability": 0.5407 + }, + { + "start": 10183.76, + "end": 10184.52, + "probability": 0.5765 + }, + { + "start": 10185.96, + "end": 10186.36, + "probability": 0.598 + }, + { + "start": 10187.68, + "end": 10189.04, + "probability": 0.6755 + }, + { + "start": 10205.44, + "end": 10207.44, + "probability": 0.6923 + }, + { + "start": 10208.92, + "end": 10213.16, + "probability": 0.9177 + }, + { + "start": 10213.2, + "end": 10217.32, + "probability": 0.8658 + }, + { + "start": 10218.42, + "end": 10222.74, + "probability": 0.9963 + }, + { + "start": 10223.92, + "end": 10224.46, + "probability": 0.5733 + }, + { + "start": 10225.2, + "end": 10230.74, + "probability": 0.9948 + }, + { + "start": 10231.28, + "end": 10233.22, + "probability": 0.8823 + }, + { + "start": 10234.0, + "end": 10236.4, + "probability": 0.8267 + }, + { + "start": 10237.54, + "end": 10240.94, + "probability": 0.9961 + }, + { + "start": 10242.28, + "end": 10245.08, + "probability": 0.9966 + }, + { + "start": 10245.22, + "end": 10246.8, + "probability": 0.8758 + }, + { + "start": 10247.54, + "end": 10249.08, + "probability": 0.8898 + }, + { + "start": 10249.74, + "end": 10254.52, + "probability": 0.9916 + }, + { + "start": 10255.44, + "end": 10261.94, + "probability": 0.9728 + }, + { + "start": 10262.46, + "end": 10266.06, + "probability": 0.9897 + }, + { + "start": 10266.7, + "end": 10268.86, + "probability": 0.9932 + }, + { + "start": 10269.68, + "end": 10273.58, + "probability": 0.9913 + }, + { + "start": 10274.86, + "end": 10279.42, + "probability": 0.9697 + }, + { + "start": 10280.22, + "end": 10282.32, + "probability": 0.9436 + }, + { + "start": 10282.94, + "end": 10284.22, + "probability": 0.7477 + }, + { + "start": 10285.04, + "end": 10287.86, + "probability": 0.8708 + }, + { + "start": 10287.86, + "end": 10293.36, + "probability": 0.9966 + }, + { + "start": 10294.18, + "end": 10296.72, + "probability": 0.9655 + }, + { + "start": 10297.74, + "end": 10300.92, + "probability": 0.9966 + }, + { + "start": 10301.86, + "end": 10304.29, + "probability": 0.9985 + }, + { + "start": 10305.42, + "end": 10308.97, + "probability": 0.9703 + }, + { + "start": 10309.44, + "end": 10310.2, + "probability": 0.653 + }, + { + "start": 10310.6, + "end": 10312.08, + "probability": 0.9 + }, + { + "start": 10312.62, + "end": 10316.3, + "probability": 0.9972 + }, + { + "start": 10316.9, + "end": 10318.62, + "probability": 0.9989 + }, + { + "start": 10319.5, + "end": 10320.36, + "probability": 0.9276 + }, + { + "start": 10321.0, + "end": 10322.91, + "probability": 0.9873 + }, + { + "start": 10324.06, + "end": 10328.06, + "probability": 0.9973 + }, + { + "start": 10328.06, + "end": 10332.42, + "probability": 0.9851 + }, + { + "start": 10333.2, + "end": 10333.86, + "probability": 0.9766 + }, + { + "start": 10335.06, + "end": 10339.38, + "probability": 0.9854 + }, + { + "start": 10340.5, + "end": 10346.04, + "probability": 0.9987 + }, + { + "start": 10346.98, + "end": 10349.86, + "probability": 0.9987 + }, + { + "start": 10350.52, + "end": 10352.62, + "probability": 0.9816 + }, + { + "start": 10353.16, + "end": 10354.84, + "probability": 0.8934 + }, + { + "start": 10355.8, + "end": 10358.44, + "probability": 0.9985 + }, + { + "start": 10358.96, + "end": 10362.2, + "probability": 0.9933 + }, + { + "start": 10362.6, + "end": 10364.12, + "probability": 0.8271 + }, + { + "start": 10364.84, + "end": 10364.98, + "probability": 0.8455 + }, + { + "start": 10365.64, + "end": 10367.76, + "probability": 0.9668 + }, + { + "start": 10368.28, + "end": 10369.24, + "probability": 0.9481 + }, + { + "start": 10370.98, + "end": 10373.88, + "probability": 0.9627 + }, + { + "start": 10374.7, + "end": 10375.54, + "probability": 0.9524 + }, + { + "start": 10376.46, + "end": 10377.48, + "probability": 0.6042 + }, + { + "start": 10378.28, + "end": 10382.72, + "probability": 0.995 + }, + { + "start": 10383.16, + "end": 10386.2, + "probability": 0.8205 + }, + { + "start": 10386.6, + "end": 10390.64, + "probability": 0.9757 + }, + { + "start": 10390.74, + "end": 10391.26, + "probability": 0.6518 + }, + { + "start": 10391.68, + "end": 10392.16, + "probability": 0.3038 + }, + { + "start": 10392.18, + "end": 10392.74, + "probability": 0.6581 + }, + { + "start": 10392.86, + "end": 10393.68, + "probability": 0.8403 + }, + { + "start": 10406.54, + "end": 10408.32, + "probability": 0.5361 + }, + { + "start": 10409.06, + "end": 10412.76, + "probability": 0.9927 + }, + { + "start": 10413.3, + "end": 10414.68, + "probability": 0.9278 + }, + { + "start": 10415.16, + "end": 10417.08, + "probability": 0.9974 + }, + { + "start": 10417.46, + "end": 10419.84, + "probability": 0.9926 + }, + { + "start": 10420.78, + "end": 10421.2, + "probability": 0.6923 + }, + { + "start": 10422.14, + "end": 10423.36, + "probability": 0.9731 + }, + { + "start": 10423.54, + "end": 10424.4, + "probability": 0.8587 + }, + { + "start": 10424.52, + "end": 10426.76, + "probability": 0.8684 + }, + { + "start": 10427.56, + "end": 10430.12, + "probability": 0.9814 + }, + { + "start": 10431.2, + "end": 10435.24, + "probability": 0.9578 + }, + { + "start": 10435.34, + "end": 10436.56, + "probability": 0.7941 + }, + { + "start": 10436.8, + "end": 10437.48, + "probability": 0.7749 + }, + { + "start": 10438.2, + "end": 10439.1, + "probability": 0.9932 + }, + { + "start": 10440.3, + "end": 10442.34, + "probability": 0.9768 + }, + { + "start": 10442.6, + "end": 10445.76, + "probability": 0.9239 + }, + { + "start": 10446.44, + "end": 10450.94, + "probability": 0.9871 + }, + { + "start": 10450.98, + "end": 10454.64, + "probability": 0.9908 + }, + { + "start": 10455.1, + "end": 10457.5, + "probability": 0.8751 + }, + { + "start": 10458.05, + "end": 10461.16, + "probability": 0.9853 + }, + { + "start": 10461.74, + "end": 10464.5, + "probability": 0.9104 + }, + { + "start": 10464.7, + "end": 10465.56, + "probability": 0.7738 + }, + { + "start": 10467.02, + "end": 10468.44, + "probability": 0.691 + }, + { + "start": 10468.98, + "end": 10469.64, + "probability": 0.8981 + }, + { + "start": 10469.8, + "end": 10471.9, + "probability": 0.978 + }, + { + "start": 10472.38, + "end": 10474.44, + "probability": 0.9645 + }, + { + "start": 10475.1, + "end": 10476.7, + "probability": 0.9813 + }, + { + "start": 10477.38, + "end": 10479.98, + "probability": 0.9681 + }, + { + "start": 10480.44, + "end": 10480.8, + "probability": 0.3331 + }, + { + "start": 10480.88, + "end": 10481.92, + "probability": 0.8206 + }, + { + "start": 10482.38, + "end": 10484.82, + "probability": 0.9624 + }, + { + "start": 10485.46, + "end": 10488.4, + "probability": 0.9592 + }, + { + "start": 10489.02, + "end": 10490.56, + "probability": 0.7877 + }, + { + "start": 10491.1, + "end": 10492.92, + "probability": 0.9515 + }, + { + "start": 10493.32, + "end": 10495.46, + "probability": 0.6446 + }, + { + "start": 10495.88, + "end": 10500.12, + "probability": 0.8713 + }, + { + "start": 10500.84, + "end": 10502.18, + "probability": 0.9446 + }, + { + "start": 10502.78, + "end": 10507.06, + "probability": 0.9875 + }, + { + "start": 10507.7, + "end": 10511.48, + "probability": 0.8881 + }, + { + "start": 10511.48, + "end": 10515.7, + "probability": 0.9528 + }, + { + "start": 10516.48, + "end": 10519.08, + "probability": 0.9972 + }, + { + "start": 10519.58, + "end": 10521.46, + "probability": 0.9137 + }, + { + "start": 10521.54, + "end": 10521.75, + "probability": 0.2547 + }, + { + "start": 10523.28, + "end": 10524.48, + "probability": 0.8289 + }, + { + "start": 10525.22, + "end": 10528.02, + "probability": 0.7776 + }, + { + "start": 10528.14, + "end": 10528.46, + "probability": 0.8262 + }, + { + "start": 10528.88, + "end": 10529.44, + "probability": 0.9572 + }, + { + "start": 10529.54, + "end": 10530.94, + "probability": 0.5169 + }, + { + "start": 10531.46, + "end": 10532.36, + "probability": 0.9305 + }, + { + "start": 10532.86, + "end": 10536.42, + "probability": 0.9946 + }, + { + "start": 10537.14, + "end": 10540.42, + "probability": 0.79 + }, + { + "start": 10541.02, + "end": 10546.66, + "probability": 0.9517 + }, + { + "start": 10547.16, + "end": 10549.74, + "probability": 0.9475 + }, + { + "start": 10549.86, + "end": 10551.78, + "probability": 0.8833 + }, + { + "start": 10552.26, + "end": 10553.76, + "probability": 0.9663 + }, + { + "start": 10554.24, + "end": 10556.16, + "probability": 0.9273 + }, + { + "start": 10556.18, + "end": 10557.32, + "probability": 0.6478 + }, + { + "start": 10557.84, + "end": 10560.4, + "probability": 0.9941 + }, + { + "start": 10561.36, + "end": 10562.06, + "probability": 0.6894 + }, + { + "start": 10563.26, + "end": 10564.88, + "probability": 0.7705 + }, + { + "start": 10566.16, + "end": 10567.76, + "probability": 0.8184 + }, + { + "start": 10567.94, + "end": 10569.62, + "probability": 0.9071 + }, + { + "start": 10570.58, + "end": 10573.82, + "probability": 0.9015 + }, + { + "start": 10574.1, + "end": 10577.56, + "probability": 0.9751 + }, + { + "start": 10577.98, + "end": 10580.62, + "probability": 0.9796 + }, + { + "start": 10580.98, + "end": 10581.96, + "probability": 0.9808 + }, + { + "start": 10582.52, + "end": 10585.58, + "probability": 0.6409 + }, + { + "start": 10586.2, + "end": 10588.34, + "probability": 0.9267 + }, + { + "start": 10588.9, + "end": 10590.58, + "probability": 0.9946 + }, + { + "start": 10590.66, + "end": 10594.38, + "probability": 0.9983 + }, + { + "start": 10594.38, + "end": 10598.76, + "probability": 0.8573 + }, + { + "start": 10599.14, + "end": 10600.46, + "probability": 0.9789 + }, + { + "start": 10600.8, + "end": 10601.46, + "probability": 0.3749 + }, + { + "start": 10601.5, + "end": 10602.86, + "probability": 0.9378 + }, + { + "start": 10604.28, + "end": 10604.8, + "probability": 0.5629 + }, + { + "start": 10604.88, + "end": 10608.54, + "probability": 0.7955 + }, + { + "start": 10631.94, + "end": 10632.14, + "probability": 0.6469 + }, + { + "start": 10638.44, + "end": 10639.16, + "probability": 0.1934 + }, + { + "start": 10639.34, + "end": 10640.2, + "probability": 0.5746 + }, + { + "start": 10640.9, + "end": 10644.36, + "probability": 0.8047 + }, + { + "start": 10645.52, + "end": 10651.12, + "probability": 0.8599 + }, + { + "start": 10652.72, + "end": 10653.46, + "probability": 0.9667 + }, + { + "start": 10654.12, + "end": 10655.18, + "probability": 0.9724 + }, + { + "start": 10655.72, + "end": 10659.2, + "probability": 0.9578 + }, + { + "start": 10660.09, + "end": 10662.7, + "probability": 0.9971 + }, + { + "start": 10663.42, + "end": 10667.0, + "probability": 0.9756 + }, + { + "start": 10667.8, + "end": 10669.64, + "probability": 0.9808 + }, + { + "start": 10670.7, + "end": 10672.86, + "probability": 0.9966 + }, + { + "start": 10674.04, + "end": 10676.1, + "probability": 0.7235 + }, + { + "start": 10677.72, + "end": 10679.68, + "probability": 0.7332 + }, + { + "start": 10681.12, + "end": 10682.18, + "probability": 0.9127 + }, + { + "start": 10683.74, + "end": 10685.48, + "probability": 0.6556 + }, + { + "start": 10685.56, + "end": 10694.3, + "probability": 0.569 + }, + { + "start": 10694.36, + "end": 10695.24, + "probability": 0.563 + }, + { + "start": 10696.0, + "end": 10700.88, + "probability": 0.812 + }, + { + "start": 10701.58, + "end": 10702.54, + "probability": 0.9534 + }, + { + "start": 10704.32, + "end": 10705.02, + "probability": 0.7234 + }, + { + "start": 10705.94, + "end": 10712.58, + "probability": 0.7768 + }, + { + "start": 10712.88, + "end": 10712.88, + "probability": 0.8774 + }, + { + "start": 10713.6, + "end": 10715.22, + "probability": 0.9822 + }, + { + "start": 10716.86, + "end": 10718.18, + "probability": 0.5879 + }, + { + "start": 10718.28, + "end": 10727.42, + "probability": 0.9619 + }, + { + "start": 10728.7, + "end": 10730.28, + "probability": 0.7126 + }, + { + "start": 10731.12, + "end": 10735.1, + "probability": 0.9863 + }, + { + "start": 10735.1, + "end": 10737.02, + "probability": 0.9851 + }, + { + "start": 10738.4, + "end": 10739.68, + "probability": 0.9419 + }, + { + "start": 10741.18, + "end": 10746.82, + "probability": 0.7266 + }, + { + "start": 10747.46, + "end": 10749.74, + "probability": 0.8343 + }, + { + "start": 10750.3, + "end": 10751.54, + "probability": 0.7324 + }, + { + "start": 10751.8, + "end": 10753.28, + "probability": 0.3014 + }, + { + "start": 10753.5, + "end": 10758.36, + "probability": 0.9834 + }, + { + "start": 10758.6, + "end": 10759.68, + "probability": 0.936 + }, + { + "start": 10760.44, + "end": 10762.8, + "probability": 0.6033 + }, + { + "start": 10763.78, + "end": 10766.08, + "probability": 0.8375 + }, + { + "start": 10767.5, + "end": 10770.46, + "probability": 0.7642 + }, + { + "start": 10771.22, + "end": 10772.52, + "probability": 0.9348 + }, + { + "start": 10772.6, + "end": 10773.24, + "probability": 0.9187 + }, + { + "start": 10773.34, + "end": 10773.82, + "probability": 0.9717 + }, + { + "start": 10773.84, + "end": 10774.38, + "probability": 0.7318 + }, + { + "start": 10774.6, + "end": 10777.11, + "probability": 0.9483 + }, + { + "start": 10778.96, + "end": 10781.34, + "probability": 0.9969 + }, + { + "start": 10782.02, + "end": 10786.4, + "probability": 0.9973 + }, + { + "start": 10786.86, + "end": 10788.52, + "probability": 0.9548 + }, + { + "start": 10788.7, + "end": 10791.6, + "probability": 0.9695 + }, + { + "start": 10793.39, + "end": 10798.78, + "probability": 0.8727 + }, + { + "start": 10798.86, + "end": 10800.64, + "probability": 0.9894 + }, + { + "start": 10801.3, + "end": 10803.06, + "probability": 0.9116 + }, + { + "start": 10803.64, + "end": 10806.24, + "probability": 0.984 + }, + { + "start": 10806.32, + "end": 10809.92, + "probability": 0.9745 + }, + { + "start": 10810.58, + "end": 10812.38, + "probability": 0.6137 + }, + { + "start": 10812.52, + "end": 10815.14, + "probability": 0.9917 + }, + { + "start": 10816.24, + "end": 10817.32, + "probability": 0.8043 + }, + { + "start": 10817.44, + "end": 10820.02, + "probability": 0.9546 + }, + { + "start": 10820.64, + "end": 10821.32, + "probability": 0.9019 + }, + { + "start": 10821.62, + "end": 10822.28, + "probability": 0.4217 + }, + { + "start": 10822.48, + "end": 10824.8, + "probability": 0.8879 + }, + { + "start": 10825.04, + "end": 10825.44, + "probability": 0.6751 + }, + { + "start": 10826.14, + "end": 10827.46, + "probability": 0.8828 + }, + { + "start": 10828.26, + "end": 10831.46, + "probability": 0.9746 + }, + { + "start": 10834.63, + "end": 10835.84, + "probability": 0.4961 + }, + { + "start": 10835.84, + "end": 10835.84, + "probability": 0.3448 + }, + { + "start": 10835.84, + "end": 10836.68, + "probability": 0.6349 + }, + { + "start": 10837.58, + "end": 10838.4, + "probability": 0.8933 + }, + { + "start": 10838.82, + "end": 10840.38, + "probability": 0.9184 + }, + { + "start": 10840.82, + "end": 10842.06, + "probability": 0.8932 + }, + { + "start": 10842.06, + "end": 10843.54, + "probability": 0.8961 + }, + { + "start": 10843.7, + "end": 10844.36, + "probability": 0.9351 + }, + { + "start": 10848.1, + "end": 10848.78, + "probability": 0.0406 + }, + { + "start": 10848.78, + "end": 10849.0, + "probability": 0.3519 + }, + { + "start": 10859.9, + "end": 10861.28, + "probability": 0.6136 + }, + { + "start": 10867.8, + "end": 10867.8, + "probability": 0.0246 + }, + { + "start": 10867.8, + "end": 10867.82, + "probability": 0.0885 + }, + { + "start": 10867.82, + "end": 10867.82, + "probability": 0.0278 + }, + { + "start": 10867.82, + "end": 10867.88, + "probability": 0.0705 + }, + { + "start": 10867.88, + "end": 10868.02, + "probability": 0.0588 + }, + { + "start": 10868.02, + "end": 10868.02, + "probability": 0.1582 + }, + { + "start": 10898.36, + "end": 10900.86, + "probability": 0.7904 + }, + { + "start": 10901.62, + "end": 10903.4, + "probability": 0.998 + }, + { + "start": 10904.18, + "end": 10905.3, + "probability": 0.9666 + }, + { + "start": 10905.68, + "end": 10907.41, + "probability": 0.6936 + }, + { + "start": 10909.34, + "end": 10911.34, + "probability": 0.7743 + }, + { + "start": 10912.14, + "end": 10915.48, + "probability": 0.7188 + }, + { + "start": 10916.36, + "end": 10917.22, + "probability": 0.9875 + }, + { + "start": 10918.26, + "end": 10919.6, + "probability": 0.982 + }, + { + "start": 10920.76, + "end": 10920.78, + "probability": 0.9761 + }, + { + "start": 10921.34, + "end": 10923.82, + "probability": 0.9162 + }, + { + "start": 10926.32, + "end": 10929.66, + "probability": 0.9553 + }, + { + "start": 10930.82, + "end": 10933.26, + "probability": 0.9451 + }, + { + "start": 10934.54, + "end": 10937.1, + "probability": 0.959 + }, + { + "start": 10937.72, + "end": 10943.48, + "probability": 0.9971 + }, + { + "start": 10944.34, + "end": 10947.38, + "probability": 0.9453 + }, + { + "start": 10948.16, + "end": 10949.14, + "probability": 0.9786 + }, + { + "start": 10949.78, + "end": 10953.12, + "probability": 0.6974 + }, + { + "start": 10954.28, + "end": 10955.78, + "probability": 0.9852 + }, + { + "start": 10956.88, + "end": 10961.18, + "probability": 0.8892 + }, + { + "start": 10961.48, + "end": 10962.46, + "probability": 0.9282 + }, + { + "start": 10963.8, + "end": 10966.14, + "probability": 0.9216 + }, + { + "start": 10969.36, + "end": 10971.94, + "probability": 0.9525 + }, + { + "start": 10973.56, + "end": 10975.46, + "probability": 0.9559 + }, + { + "start": 10976.46, + "end": 10977.38, + "probability": 0.9284 + }, + { + "start": 10977.46, + "end": 10978.1, + "probability": 0.9747 + }, + { + "start": 10979.2, + "end": 10982.42, + "probability": 0.9779 + }, + { + "start": 10983.34, + "end": 10983.8, + "probability": 0.8434 + }, + { + "start": 10984.48, + "end": 10988.42, + "probability": 0.9808 + }, + { + "start": 10989.66, + "end": 10991.0, + "probability": 0.9305 + }, + { + "start": 10992.14, + "end": 10994.24, + "probability": 0.8309 + }, + { + "start": 10995.6, + "end": 10998.74, + "probability": 0.9722 + }, + { + "start": 10999.7, + "end": 11003.06, + "probability": 0.963 + }, + { + "start": 11003.74, + "end": 11004.94, + "probability": 0.9855 + }, + { + "start": 11005.76, + "end": 11010.38, + "probability": 0.7608 + }, + { + "start": 11010.62, + "end": 11013.18, + "probability": 0.8795 + }, + { + "start": 11013.76, + "end": 11016.31, + "probability": 0.761 + }, + { + "start": 11016.76, + "end": 11018.56, + "probability": 0.8112 + }, + { + "start": 11019.72, + "end": 11020.28, + "probability": 0.5188 + }, + { + "start": 11022.18, + "end": 11023.44, + "probability": 0.9268 + }, + { + "start": 11024.9, + "end": 11027.4, + "probability": 0.9885 + }, + { + "start": 11028.34, + "end": 11029.34, + "probability": 0.8484 + }, + { + "start": 11029.88, + "end": 11031.0, + "probability": 0.8831 + }, + { + "start": 11031.14, + "end": 11034.68, + "probability": 0.7792 + }, + { + "start": 11035.22, + "end": 11036.84, + "probability": 0.9941 + }, + { + "start": 11037.4, + "end": 11038.12, + "probability": 0.8328 + }, + { + "start": 11038.88, + "end": 11040.5, + "probability": 0.9733 + }, + { + "start": 11041.72, + "end": 11043.88, + "probability": 0.9818 + }, + { + "start": 11044.48, + "end": 11048.8, + "probability": 0.9479 + }, + { + "start": 11050.24, + "end": 11050.88, + "probability": 0.0116 + }, + { + "start": 11050.88, + "end": 11050.88, + "probability": 0.3426 + }, + { + "start": 11050.96, + "end": 11051.98, + "probability": 0.5082 + }, + { + "start": 11051.98, + "end": 11053.24, + "probability": 0.8181 + }, + { + "start": 11056.76, + "end": 11057.32, + "probability": 0.1857 + }, + { + "start": 11057.32, + "end": 11057.32, + "probability": 0.0233 + }, + { + "start": 11057.32, + "end": 11057.32, + "probability": 0.2219 + }, + { + "start": 11057.32, + "end": 11058.84, + "probability": 0.6519 + }, + { + "start": 11058.84, + "end": 11059.42, + "probability": 0.8237 + }, + { + "start": 11059.92, + "end": 11060.72, + "probability": 0.8577 + }, + { + "start": 11060.76, + "end": 11061.44, + "probability": 0.8937 + }, + { + "start": 11061.7, + "end": 11061.9, + "probability": 0.739 + }, + { + "start": 11062.26, + "end": 11067.28, + "probability": 0.9912 + }, + { + "start": 11067.34, + "end": 11072.46, + "probability": 0.8785 + }, + { + "start": 11073.18, + "end": 11074.62, + "probability": 0.9178 + }, + { + "start": 11075.04, + "end": 11076.26, + "probability": 0.779 + }, + { + "start": 11076.3, + "end": 11079.26, + "probability": 0.9608 + }, + { + "start": 11079.48, + "end": 11082.7, + "probability": 0.9067 + }, + { + "start": 11082.8, + "end": 11083.22, + "probability": 0.8914 + }, + { + "start": 11083.32, + "end": 11083.7, + "probability": 0.6434 + }, + { + "start": 11084.02, + "end": 11086.58, + "probability": 0.8281 + }, + { + "start": 11087.34, + "end": 11088.78, + "probability": 0.8088 + }, + { + "start": 11089.68, + "end": 11091.28, + "probability": 0.9901 + }, + { + "start": 11092.3, + "end": 11094.32, + "probability": 0.9873 + }, + { + "start": 11095.32, + "end": 11096.24, + "probability": 0.8036 + }, + { + "start": 11096.76, + "end": 11097.9, + "probability": 0.9885 + }, + { + "start": 11098.3, + "end": 11099.72, + "probability": 0.4483 + }, + { + "start": 11100.9, + "end": 11101.54, + "probability": 0.3899 + }, + { + "start": 11102.38, + "end": 11103.71, + "probability": 0.3484 + }, + { + "start": 11108.24, + "end": 11108.92, + "probability": 0.7556 + }, + { + "start": 11109.08, + "end": 11109.78, + "probability": 0.7475 + }, + { + "start": 11112.04, + "end": 11114.36, + "probability": 0.7913 + }, + { + "start": 11114.56, + "end": 11116.36, + "probability": 0.9364 + }, + { + "start": 11117.48, + "end": 11121.16, + "probability": 0.9022 + }, + { + "start": 11121.92, + "end": 11124.44, + "probability": 0.8567 + }, + { + "start": 11124.98, + "end": 11128.04, + "probability": 0.9945 + }, + { + "start": 11128.8, + "end": 11130.42, + "probability": 0.8159 + }, + { + "start": 11131.04, + "end": 11132.21, + "probability": 0.9929 + }, + { + "start": 11132.84, + "end": 11139.6, + "probability": 0.9987 + }, + { + "start": 11140.48, + "end": 11141.42, + "probability": 0.9814 + }, + { + "start": 11142.12, + "end": 11147.06, + "probability": 0.996 + }, + { + "start": 11147.7, + "end": 11148.94, + "probability": 0.8472 + }, + { + "start": 11149.0, + "end": 11149.06, + "probability": 0.0025 + }, + { + "start": 11149.06, + "end": 11150.4, + "probability": 0.8023 + }, + { + "start": 11150.5, + "end": 11151.32, + "probability": 0.8958 + }, + { + "start": 11151.42, + "end": 11153.52, + "probability": 0.1438 + }, + { + "start": 11153.68, + "end": 11157.78, + "probability": 0.7372 + }, + { + "start": 11158.14, + "end": 11164.8, + "probability": 0.99 + }, + { + "start": 11165.74, + "end": 11167.58, + "probability": 0.9968 + }, + { + "start": 11168.5, + "end": 11171.16, + "probability": 0.9482 + }, + { + "start": 11171.76, + "end": 11173.36, + "probability": 0.9707 + }, + { + "start": 11173.68, + "end": 11174.88, + "probability": 0.9879 + }, + { + "start": 11175.4, + "end": 11177.9, + "probability": 0.974 + }, + { + "start": 11180.47, + "end": 11182.8, + "probability": 0.929 + }, + { + "start": 11183.45, + "end": 11185.26, + "probability": 0.0558 + }, + { + "start": 11185.26, + "end": 11185.36, + "probability": 0.7549 + }, + { + "start": 11186.06, + "end": 11190.74, + "probability": 0.7499 + }, + { + "start": 11191.28, + "end": 11192.08, + "probability": 0.6992 + }, + { + "start": 11192.12, + "end": 11194.94, + "probability": 0.7924 + }, + { + "start": 11195.2, + "end": 11196.62, + "probability": 0.9414 + }, + { + "start": 11196.72, + "end": 11197.43, + "probability": 0.907 + }, + { + "start": 11198.16, + "end": 11201.24, + "probability": 0.9673 + }, + { + "start": 11201.3, + "end": 11206.4, + "probability": 0.9131 + }, + { + "start": 11207.04, + "end": 11211.28, + "probability": 0.9905 + }, + { + "start": 11211.96, + "end": 11212.9, + "probability": 0.8039 + }, + { + "start": 11213.0, + "end": 11217.66, + "probability": 0.954 + }, + { + "start": 11217.66, + "end": 11224.98, + "probability": 0.96 + }, + { + "start": 11225.28, + "end": 11227.9, + "probability": 0.861 + }, + { + "start": 11228.02, + "end": 11228.08, + "probability": 0.2691 + }, + { + "start": 11228.08, + "end": 11229.1, + "probability": 0.7662 + }, + { + "start": 11229.3, + "end": 11232.58, + "probability": 0.9258 + }, + { + "start": 11232.98, + "end": 11232.98, + "probability": 0.2269 + }, + { + "start": 11232.98, + "end": 11235.46, + "probability": 0.9021 + }, + { + "start": 11235.62, + "end": 11237.24, + "probability": 0.9829 + }, + { + "start": 11237.6, + "end": 11241.32, + "probability": 0.9308 + }, + { + "start": 11241.62, + "end": 11244.48, + "probability": 0.9575 + }, + { + "start": 11244.48, + "end": 11247.54, + "probability": 0.9398 + }, + { + "start": 11248.14, + "end": 11251.0, + "probability": 0.9897 + }, + { + "start": 11251.54, + "end": 11252.32, + "probability": 0.7795 + }, + { + "start": 11252.5, + "end": 11254.6, + "probability": 0.9905 + }, + { + "start": 11254.6, + "end": 11258.68, + "probability": 0.9709 + }, + { + "start": 11259.04, + "end": 11260.24, + "probability": 0.6135 + }, + { + "start": 11260.6, + "end": 11262.94, + "probability": 0.7852 + }, + { + "start": 11263.26, + "end": 11269.12, + "probability": 0.9846 + }, + { + "start": 11269.6, + "end": 11270.74, + "probability": 0.8368 + }, + { + "start": 11271.22, + "end": 11271.82, + "probability": 0.7109 + }, + { + "start": 11272.8, + "end": 11274.88, + "probability": 0.9683 + }, + { + "start": 11275.04, + "end": 11277.82, + "probability": 0.7437 + }, + { + "start": 11278.22, + "end": 11280.98, + "probability": 0.976 + }, + { + "start": 11281.26, + "end": 11283.8, + "probability": 0.9795 + }, + { + "start": 11284.18, + "end": 11287.75, + "probability": 0.9888 + }, + { + "start": 11288.12, + "end": 11289.86, + "probability": 0.9228 + }, + { + "start": 11290.24, + "end": 11291.9, + "probability": 0.9956 + }, + { + "start": 11292.16, + "end": 11294.56, + "probability": 0.9977 + }, + { + "start": 11294.64, + "end": 11295.6, + "probability": 0.9713 + }, + { + "start": 11295.7, + "end": 11296.34, + "probability": 0.8583 + }, + { + "start": 11296.46, + "end": 11297.94, + "probability": 0.9757 + }, + { + "start": 11298.46, + "end": 11299.06, + "probability": 0.8845 + }, + { + "start": 11299.36, + "end": 11300.18, + "probability": 0.863 + }, + { + "start": 11300.5, + "end": 11302.24, + "probability": 0.6548 + }, + { + "start": 11302.58, + "end": 11303.6, + "probability": 0.445 + }, + { + "start": 11303.88, + "end": 11305.48, + "probability": 0.9786 + }, + { + "start": 11306.18, + "end": 11307.06, + "probability": 0.7249 + }, + { + "start": 11307.28, + "end": 11310.57, + "probability": 0.7002 + }, + { + "start": 11313.5, + "end": 11316.42, + "probability": 0.8789 + }, + { + "start": 11329.96, + "end": 11332.42, + "probability": 0.465 + }, + { + "start": 11332.96, + "end": 11333.98, + "probability": 0.6384 + }, + { + "start": 11334.76, + "end": 11338.56, + "probability": 0.9741 + }, + { + "start": 11339.18, + "end": 11344.2, + "probability": 0.9697 + }, + { + "start": 11344.28, + "end": 11347.14, + "probability": 0.9499 + }, + { + "start": 11347.5, + "end": 11348.54, + "probability": 0.7888 + }, + { + "start": 11349.0, + "end": 11350.48, + "probability": 0.7397 + }, + { + "start": 11351.34, + "end": 11357.38, + "probability": 0.9964 + }, + { + "start": 11357.38, + "end": 11363.38, + "probability": 0.9576 + }, + { + "start": 11364.16, + "end": 11364.76, + "probability": 0.708 + }, + { + "start": 11364.86, + "end": 11368.02, + "probability": 0.9805 + }, + { + "start": 11368.44, + "end": 11369.26, + "probability": 0.8583 + }, + { + "start": 11369.8, + "end": 11375.66, + "probability": 0.9986 + }, + { + "start": 11376.22, + "end": 11377.42, + "probability": 0.5157 + }, + { + "start": 11377.5, + "end": 11378.22, + "probability": 0.9562 + }, + { + "start": 11379.12, + "end": 11381.98, + "probability": 0.9106 + }, + { + "start": 11382.78, + "end": 11383.6, + "probability": 0.7223 + }, + { + "start": 11383.82, + "end": 11387.7, + "probability": 0.968 + }, + { + "start": 11388.16, + "end": 11394.5, + "probability": 0.9973 + }, + { + "start": 11394.78, + "end": 11397.09, + "probability": 0.9976 + }, + { + "start": 11397.74, + "end": 11403.42, + "probability": 0.9285 + }, + { + "start": 11403.92, + "end": 11404.42, + "probability": 0.8488 + }, + { + "start": 11404.54, + "end": 11405.6, + "probability": 0.6714 + }, + { + "start": 11405.7, + "end": 11407.44, + "probability": 0.7449 + }, + { + "start": 11407.58, + "end": 11408.62, + "probability": 0.8142 + }, + { + "start": 11408.76, + "end": 11410.46, + "probability": 0.5095 + }, + { + "start": 11410.78, + "end": 11412.34, + "probability": 0.9037 + }, + { + "start": 11412.38, + "end": 11417.96, + "probability": 0.9946 + }, + { + "start": 11418.48, + "end": 11420.68, + "probability": 0.9291 + }, + { + "start": 11421.16, + "end": 11424.5, + "probability": 0.8965 + }, + { + "start": 11424.5, + "end": 11427.16, + "probability": 0.8415 + }, + { + "start": 11427.7, + "end": 11429.84, + "probability": 0.6209 + }, + { + "start": 11429.92, + "end": 11431.0, + "probability": 0.9553 + }, + { + "start": 11431.6, + "end": 11432.31, + "probability": 0.8921 + }, + { + "start": 11432.84, + "end": 11435.22, + "probability": 0.9325 + }, + { + "start": 11435.6, + "end": 11440.78, + "probability": 0.9906 + }, + { + "start": 11441.22, + "end": 11442.84, + "probability": 0.9983 + }, + { + "start": 11442.96, + "end": 11444.96, + "probability": 0.8297 + }, + { + "start": 11445.26, + "end": 11447.58, + "probability": 0.9021 + }, + { + "start": 11448.04, + "end": 11450.36, + "probability": 0.9951 + }, + { + "start": 11450.36, + "end": 11454.42, + "probability": 0.6036 + }, + { + "start": 11454.62, + "end": 11456.18, + "probability": 0.7509 + }, + { + "start": 11456.26, + "end": 11458.4, + "probability": 0.8274 + }, + { + "start": 11459.12, + "end": 11460.5, + "probability": 0.6291 + }, + { + "start": 11460.64, + "end": 11461.1, + "probability": 0.9536 + }, + { + "start": 11461.68, + "end": 11463.42, + "probability": 0.8679 + }, + { + "start": 11464.44, + "end": 11467.6, + "probability": 0.9397 + }, + { + "start": 11468.42, + "end": 11471.88, + "probability": 0.9875 + }, + { + "start": 11472.42, + "end": 11473.14, + "probability": 0.6126 + }, + { + "start": 11473.56, + "end": 11475.74, + "probability": 0.9733 + }, + { + "start": 11475.78, + "end": 11476.96, + "probability": 0.7426 + }, + { + "start": 11477.48, + "end": 11482.62, + "probability": 0.9969 + }, + { + "start": 11483.12, + "end": 11484.88, + "probability": 0.933 + }, + { + "start": 11485.88, + "end": 11490.9, + "probability": 0.9731 + }, + { + "start": 11491.34, + "end": 11493.18, + "probability": 0.8823 + }, + { + "start": 11493.68, + "end": 11500.23, + "probability": 0.9977 + }, + { + "start": 11501.16, + "end": 11503.2, + "probability": 0.6587 + }, + { + "start": 11503.2, + "end": 11504.42, + "probability": 0.6776 + }, + { + "start": 11504.62, + "end": 11505.04, + "probability": 0.5889 + }, + { + "start": 11505.08, + "end": 11505.68, + "probability": 0.9082 + }, + { + "start": 11505.78, + "end": 11507.8, + "probability": 0.8024 + }, + { + "start": 11507.96, + "end": 11507.96, + "probability": 0.3823 + }, + { + "start": 11508.24, + "end": 11510.8, + "probability": 0.9834 + }, + { + "start": 11510.98, + "end": 11511.96, + "probability": 0.4266 + }, + { + "start": 11512.04, + "end": 11512.74, + "probability": 0.5562 + }, + { + "start": 11512.88, + "end": 11513.1, + "probability": 0.7731 + }, + { + "start": 11513.9, + "end": 11513.9, + "probability": 0.2475 + }, + { + "start": 11513.9, + "end": 11515.5, + "probability": 0.6975 + }, + { + "start": 11516.22, + "end": 11517.04, + "probability": 0.8266 + }, + { + "start": 11517.62, + "end": 11519.26, + "probability": 0.9634 + }, + { + "start": 11519.92, + "end": 11520.58, + "probability": 0.9644 + }, + { + "start": 11521.2, + "end": 11522.72, + "probability": 0.9865 + }, + { + "start": 11523.54, + "end": 11524.3, + "probability": 0.9893 + }, + { + "start": 11525.54, + "end": 11527.83, + "probability": 0.9881 + }, + { + "start": 11529.42, + "end": 11530.1, + "probability": 0.6914 + }, + { + "start": 11530.84, + "end": 11534.56, + "probability": 0.8619 + }, + { + "start": 11543.54, + "end": 11545.16, + "probability": 0.643 + }, + { + "start": 11546.72, + "end": 11548.24, + "probability": 0.9815 + }, + { + "start": 11548.8, + "end": 11551.84, + "probability": 0.986 + }, + { + "start": 11552.9, + "end": 11554.08, + "probability": 0.9865 + }, + { + "start": 11555.0, + "end": 11555.74, + "probability": 0.9458 + }, + { + "start": 11556.7, + "end": 11559.32, + "probability": 0.9963 + }, + { + "start": 11560.06, + "end": 11564.4, + "probability": 0.8025 + }, + { + "start": 11565.16, + "end": 11567.54, + "probability": 0.9152 + }, + { + "start": 11567.58, + "end": 11570.44, + "probability": 0.6776 + }, + { + "start": 11571.06, + "end": 11572.86, + "probability": 0.9873 + }, + { + "start": 11573.68, + "end": 11575.78, + "probability": 0.9729 + }, + { + "start": 11576.26, + "end": 11578.96, + "probability": 0.9772 + }, + { + "start": 11579.56, + "end": 11582.08, + "probability": 0.9907 + }, + { + "start": 11582.84, + "end": 11585.78, + "probability": 0.7947 + }, + { + "start": 11586.2, + "end": 11587.78, + "probability": 0.9264 + }, + { + "start": 11588.92, + "end": 11591.8, + "probability": 0.9914 + }, + { + "start": 11592.62, + "end": 11595.4, + "probability": 0.9725 + }, + { + "start": 11595.8, + "end": 11596.22, + "probability": 0.6341 + }, + { + "start": 11596.9, + "end": 11602.68, + "probability": 0.7947 + }, + { + "start": 11603.1, + "end": 11603.44, + "probability": 0.8403 + }, + { + "start": 11604.06, + "end": 11606.98, + "probability": 0.9471 + }, + { + "start": 11608.5, + "end": 11609.91, + "probability": 0.9982 + }, + { + "start": 11610.6, + "end": 11613.86, + "probability": 0.9884 + }, + { + "start": 11614.4, + "end": 11615.06, + "probability": 0.707 + }, + { + "start": 11615.88, + "end": 11617.48, + "probability": 0.8375 + }, + { + "start": 11618.36, + "end": 11619.72, + "probability": 0.9314 + }, + { + "start": 11620.16, + "end": 11620.54, + "probability": 0.7941 + }, + { + "start": 11621.44, + "end": 11625.6, + "probability": 0.9648 + }, + { + "start": 11626.64, + "end": 11630.5, + "probability": 0.9932 + }, + { + "start": 11630.5, + "end": 11634.48, + "probability": 0.9946 + }, + { + "start": 11635.02, + "end": 11639.06, + "probability": 0.8624 + }, + { + "start": 11639.54, + "end": 11640.46, + "probability": 0.6687 + }, + { + "start": 11640.78, + "end": 11641.98, + "probability": 0.9718 + }, + { + "start": 11642.92, + "end": 11646.28, + "probability": 0.9586 + }, + { + "start": 11646.28, + "end": 11647.08, + "probability": 0.7764 + }, + { + "start": 11647.38, + "end": 11649.64, + "probability": 0.991 + }, + { + "start": 11650.46, + "end": 11651.5, + "probability": 0.9356 + }, + { + "start": 11652.46, + "end": 11653.8, + "probability": 0.9224 + }, + { + "start": 11654.54, + "end": 11656.54, + "probability": 0.9926 + }, + { + "start": 11656.54, + "end": 11660.22, + "probability": 0.9146 + }, + { + "start": 11660.66, + "end": 11662.22, + "probability": 0.9895 + }, + { + "start": 11664.36, + "end": 11665.12, + "probability": 0.7774 + }, + { + "start": 11665.3, + "end": 11668.69, + "probability": 0.9066 + }, + { + "start": 11675.3, + "end": 11677.58, + "probability": 0.9507 + }, + { + "start": 11677.86, + "end": 11681.58, + "probability": 0.0063 + }, + { + "start": 11682.94, + "end": 11683.78, + "probability": 0.4841 + }, + { + "start": 11685.94, + "end": 11687.76, + "probability": 0.0169 + }, + { + "start": 11711.96, + "end": 11713.24, + "probability": 0.6678 + }, + { + "start": 11713.34, + "end": 11714.12, + "probability": 0.7532 + }, + { + "start": 11714.48, + "end": 11716.48, + "probability": 0.7662 + }, + { + "start": 11716.98, + "end": 11717.55, + "probability": 0.7919 + }, + { + "start": 11717.98, + "end": 11719.74, + "probability": 0.9402 + }, + { + "start": 11721.7, + "end": 11723.18, + "probability": 0.8789 + }, + { + "start": 11727.38, + "end": 11728.69, + "probability": 0.8405 + }, + { + "start": 11731.43, + "end": 11735.42, + "probability": 0.9812 + }, + { + "start": 11735.66, + "end": 11736.0, + "probability": 0.7111 + }, + { + "start": 11737.08, + "end": 11738.78, + "probability": 0.9551 + }, + { + "start": 11739.2, + "end": 11742.48, + "probability": 0.8862 + }, + { + "start": 11744.06, + "end": 11752.56, + "probability": 0.0726 + }, + { + "start": 11754.2, + "end": 11754.42, + "probability": 0.0013 + }, + { + "start": 11755.98, + "end": 11757.9, + "probability": 0.6764 + }, + { + "start": 11761.5, + "end": 11761.66, + "probability": 0.0086 + }, + { + "start": 11762.68, + "end": 11763.66, + "probability": 0.3369 + }, + { + "start": 11763.82, + "end": 11766.61, + "probability": 0.9856 + }, + { + "start": 11767.06, + "end": 11770.86, + "probability": 0.6007 + }, + { + "start": 11771.44, + "end": 11771.82, + "probability": 0.3672 + }, + { + "start": 11771.82, + "end": 11773.3, + "probability": 0.448 + }, + { + "start": 11773.54, + "end": 11775.14, + "probability": 0.7451 + }, + { + "start": 11776.72, + "end": 11779.68, + "probability": 0.9346 + }, + { + "start": 11779.98, + "end": 11781.62, + "probability": 0.7444 + }, + { + "start": 11781.72, + "end": 11784.02, + "probability": 0.968 + }, + { + "start": 11784.22, + "end": 11784.71, + "probability": 0.8717 + }, + { + "start": 11786.42, + "end": 11787.36, + "probability": 0.831 + }, + { + "start": 11787.54, + "end": 11788.2, + "probability": 0.3951 + }, + { + "start": 11788.56, + "end": 11789.22, + "probability": 0.1475 + }, + { + "start": 11791.08, + "end": 11796.56, + "probability": 0.9834 + }, + { + "start": 11797.68, + "end": 11802.42, + "probability": 0.8085 + }, + { + "start": 11803.08, + "end": 11807.6, + "probability": 0.9721 + }, + { + "start": 11808.7, + "end": 11812.95, + "probability": 0.9867 + }, + { + "start": 11813.66, + "end": 11816.1, + "probability": 0.9287 + }, + { + "start": 11816.22, + "end": 11819.68, + "probability": 0.9796 + }, + { + "start": 11820.6, + "end": 11824.66, + "probability": 0.8493 + }, + { + "start": 11824.76, + "end": 11825.08, + "probability": 0.4695 + }, + { + "start": 11825.6, + "end": 11827.06, + "probability": 0.999 + }, + { + "start": 11827.86, + "end": 11832.24, + "probability": 0.9967 + }, + { + "start": 11833.1, + "end": 11834.78, + "probability": 0.9814 + }, + { + "start": 11835.42, + "end": 11836.9, + "probability": 0.654 + }, + { + "start": 11839.21, + "end": 11843.44, + "probability": 0.8074 + }, + { + "start": 11843.98, + "end": 11847.66, + "probability": 0.9216 + }, + { + "start": 11848.5, + "end": 11850.86, + "probability": 0.8604 + }, + { + "start": 11851.04, + "end": 11852.32, + "probability": 0.9598 + }, + { + "start": 11852.42, + "end": 11853.08, + "probability": 0.4195 + }, + { + "start": 11853.16, + "end": 11854.64, + "probability": 0.618 + }, + { + "start": 11854.72, + "end": 11857.8, + "probability": 0.928 + }, + { + "start": 11858.44, + "end": 11860.62, + "probability": 0.7242 + }, + { + "start": 11861.4, + "end": 11864.04, + "probability": 0.9816 + }, + { + "start": 11865.0, + "end": 11867.06, + "probability": 0.9732 + }, + { + "start": 11867.24, + "end": 11867.24, + "probability": 0.0032 + }, + { + "start": 11867.9, + "end": 11869.3, + "probability": 0.9093 + }, + { + "start": 11870.34, + "end": 11871.92, + "probability": 0.9644 + }, + { + "start": 11873.16, + "end": 11875.46, + "probability": 0.9713 + }, + { + "start": 11875.54, + "end": 11876.04, + "probability": 0.707 + }, + { + "start": 11876.12, + "end": 11877.38, + "probability": 0.9561 + }, + { + "start": 11877.66, + "end": 11881.1, + "probability": 0.9628 + }, + { + "start": 11881.8, + "end": 11882.47, + "probability": 0.6249 + }, + { + "start": 11883.64, + "end": 11885.66, + "probability": 0.4987 + }, + { + "start": 11887.38, + "end": 11889.12, + "probability": 0.8996 + }, + { + "start": 11889.88, + "end": 11892.14, + "probability": 0.9385 + }, + { + "start": 11893.34, + "end": 11896.66, + "probability": 0.9885 + }, + { + "start": 11897.08, + "end": 11902.38, + "probability": 0.9611 + }, + { + "start": 11902.38, + "end": 11905.96, + "probability": 0.8277 + }, + { + "start": 11906.82, + "end": 11908.24, + "probability": 0.9613 + }, + { + "start": 11908.78, + "end": 11911.82, + "probability": 0.9791 + }, + { + "start": 11911.86, + "end": 11912.8, + "probability": 0.9183 + }, + { + "start": 11913.26, + "end": 11918.36, + "probability": 0.9941 + }, + { + "start": 11918.44, + "end": 11919.62, + "probability": 0.7137 + }, + { + "start": 11920.6, + "end": 11925.08, + "probability": 0.8966 + }, + { + "start": 11925.08, + "end": 11928.2, + "probability": 0.7876 + }, + { + "start": 11928.42, + "end": 11929.34, + "probability": 0.2269 + }, + { + "start": 11930.32, + "end": 11932.5, + "probability": 0.7475 + }, + { + "start": 11933.5, + "end": 11934.62, + "probability": 0.9427 + }, + { + "start": 11936.63, + "end": 11938.5, + "probability": 0.7771 + }, + { + "start": 11938.72, + "end": 11940.64, + "probability": 0.4075 + }, + { + "start": 11940.64, + "end": 11941.48, + "probability": 0.9344 + }, + { + "start": 11943.38, + "end": 11945.66, + "probability": 0.0134 + }, + { + "start": 11946.78, + "end": 11949.24, + "probability": 0.0445 + }, + { + "start": 11950.0, + "end": 11953.64, + "probability": 0.8984 + }, + { + "start": 11955.14, + "end": 11958.16, + "probability": 0.855 + }, + { + "start": 11959.06, + "end": 11961.26, + "probability": 0.6792 + }, + { + "start": 11961.78, + "end": 11965.32, + "probability": 0.9712 + }, + { + "start": 11965.44, + "end": 11967.06, + "probability": 0.7861 + }, + { + "start": 11967.92, + "end": 11971.96, + "probability": 0.961 + }, + { + "start": 11973.8, + "end": 11976.42, + "probability": 0.7787 + }, + { + "start": 11977.7, + "end": 11980.2, + "probability": 0.8465 + }, + { + "start": 11980.34, + "end": 11981.34, + "probability": 0.1235 + }, + { + "start": 11981.34, + "end": 11982.02, + "probability": 0.743 + }, + { + "start": 11983.02, + "end": 11983.44, + "probability": 0.7166 + }, + { + "start": 11983.6, + "end": 11983.8, + "probability": 0.4371 + }, + { + "start": 11983.82, + "end": 11984.06, + "probability": 0.9248 + }, + { + "start": 11984.24, + "end": 11987.62, + "probability": 0.9974 + }, + { + "start": 11990.1, + "end": 11991.1, + "probability": 0.5414 + }, + { + "start": 11991.58, + "end": 11994.98, + "probability": 0.9807 + }, + { + "start": 11995.12, + "end": 11996.49, + "probability": 0.7518 + }, + { + "start": 11997.58, + "end": 11999.56, + "probability": 0.9976 + }, + { + "start": 12000.14, + "end": 12002.42, + "probability": 0.927 + }, + { + "start": 12002.66, + "end": 12003.76, + "probability": 0.9319 + }, + { + "start": 12004.24, + "end": 12008.94, + "probability": 0.9883 + }, + { + "start": 12008.94, + "end": 12013.84, + "probability": 0.8358 + }, + { + "start": 12014.21, + "end": 12021.88, + "probability": 0.9531 + }, + { + "start": 12022.0, + "end": 12022.28, + "probability": 0.3594 + }, + { + "start": 12022.36, + "end": 12022.74, + "probability": 0.6323 + }, + { + "start": 12022.84, + "end": 12023.38, + "probability": 0.6613 + }, + { + "start": 12023.88, + "end": 12026.58, + "probability": 0.9756 + }, + { + "start": 12028.22, + "end": 12030.6, + "probability": 0.0735 + }, + { + "start": 12030.6, + "end": 12032.7, + "probability": 0.553 + }, + { + "start": 12032.8, + "end": 12033.42, + "probability": 0.5966 + }, + { + "start": 12033.56, + "end": 12033.8, + "probability": 0.3319 + }, + { + "start": 12033.9, + "end": 12036.1, + "probability": 0.9892 + }, + { + "start": 12036.36, + "end": 12038.2, + "probability": 0.5941 + }, + { + "start": 12039.26, + "end": 12040.86, + "probability": 0.9707 + }, + { + "start": 12041.58, + "end": 12044.72, + "probability": 0.9304 + }, + { + "start": 12044.98, + "end": 12046.14, + "probability": 0.72 + }, + { + "start": 12046.66, + "end": 12047.98, + "probability": 0.8543 + }, + { + "start": 12048.66, + "end": 12054.14, + "probability": 0.9488 + }, + { + "start": 12055.56, + "end": 12057.32, + "probability": 0.4722 + }, + { + "start": 12057.5, + "end": 12058.2, + "probability": 0.1892 + }, + { + "start": 12058.22, + "end": 12059.46, + "probability": 0.6485 + }, + { + "start": 12059.78, + "end": 12059.82, + "probability": 0.1071 + }, + { + "start": 12060.34, + "end": 12062.0, + "probability": 0.8112 + }, + { + "start": 12062.18, + "end": 12064.53, + "probability": 0.3225 + }, + { + "start": 12066.26, + "end": 12072.64, + "probability": 0.7606 + }, + { + "start": 12072.64, + "end": 12073.62, + "probability": 0.0656 + }, + { + "start": 12073.7, + "end": 12077.32, + "probability": 0.6476 + }, + { + "start": 12077.54, + "end": 12079.04, + "probability": 0.0328 + }, + { + "start": 12079.04, + "end": 12083.46, + "probability": 0.6636 + }, + { + "start": 12084.38, + "end": 12085.46, + "probability": 0.9628 + }, + { + "start": 12085.52, + "end": 12086.96, + "probability": 0.25 + }, + { + "start": 12087.38, + "end": 12091.26, + "probability": 0.8242 + }, + { + "start": 12091.44, + "end": 12092.26, + "probability": 0.3426 + }, + { + "start": 12093.98, + "end": 12094.38, + "probability": 0.832 + }, + { + "start": 12094.56, + "end": 12095.78, + "probability": 0.946 + }, + { + "start": 12096.3, + "end": 12098.43, + "probability": 0.9477 + }, + { + "start": 12098.52, + "end": 12099.8, + "probability": 0.6575 + }, + { + "start": 12100.3, + "end": 12102.22, + "probability": 0.0059 + }, + { + "start": 12102.22, + "end": 12104.85, + "probability": 0.9249 + }, + { + "start": 12105.3, + "end": 12109.1, + "probability": 0.9321 + }, + { + "start": 12109.2, + "end": 12112.44, + "probability": 0.9802 + }, + { + "start": 12112.54, + "end": 12112.8, + "probability": 0.6321 + }, + { + "start": 12112.82, + "end": 12115.64, + "probability": 0.8057 + }, + { + "start": 12115.98, + "end": 12116.84, + "probability": 0.4101 + }, + { + "start": 12117.2, + "end": 12120.58, + "probability": 0.7535 + }, + { + "start": 12120.96, + "end": 12124.32, + "probability": 0.6768 + }, + { + "start": 12124.56, + "end": 12125.75, + "probability": 0.895 + }, + { + "start": 12126.98, + "end": 12128.3, + "probability": 0.2206 + }, + { + "start": 12128.3, + "end": 12128.68, + "probability": 0.3057 + }, + { + "start": 12128.78, + "end": 12129.34, + "probability": 0.2358 + }, + { + "start": 12129.54, + "end": 12129.84, + "probability": 0.0282 + }, + { + "start": 12129.92, + "end": 12129.92, + "probability": 0.5358 + }, + { + "start": 12130.0, + "end": 12131.0, + "probability": 0.4423 + }, + { + "start": 12131.26, + "end": 12132.64, + "probability": 0.6397 + }, + { + "start": 12132.7, + "end": 12134.11, + "probability": 0.9883 + }, + { + "start": 12134.78, + "end": 12140.88, + "probability": 0.6461 + }, + { + "start": 12141.72, + "end": 12143.02, + "probability": 0.2679 + }, + { + "start": 12154.26, + "end": 12155.42, + "probability": 0.0112 + }, + { + "start": 12155.66, + "end": 12155.66, + "probability": 0.1501 + }, + { + "start": 12155.66, + "end": 12155.82, + "probability": 0.0576 + }, + { + "start": 12155.82, + "end": 12157.6, + "probability": 0.3587 + }, + { + "start": 12158.12, + "end": 12162.1, + "probability": 0.0905 + }, + { + "start": 12163.56, + "end": 12165.24, + "probability": 0.0793 + }, + { + "start": 12166.2, + "end": 12167.78, + "probability": 0.1557 + }, + { + "start": 12167.78, + "end": 12169.88, + "probability": 0.1718 + }, + { + "start": 12173.48, + "end": 12175.54, + "probability": 0.1455 + }, + { + "start": 12175.7, + "end": 12176.18, + "probability": 0.0236 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12251.94, + "end": 12256.64, + "probability": 0.235 + }, + { + "start": 12256.78, + "end": 12257.32, + "probability": 0.0628 + }, + { + "start": 12257.32, + "end": 12257.5, + "probability": 0.3885 + }, + { + "start": 12265.32, + "end": 12265.32, + "probability": 0.2154 + }, + { + "start": 12265.32, + "end": 12266.85, + "probability": 0.4607 + }, + { + "start": 12271.8, + "end": 12275.26, + "probability": 0.7922 + }, + { + "start": 12277.98, + "end": 12278.56, + "probability": 0.9303 + }, + { + "start": 12278.7, + "end": 12281.5, + "probability": 0.9971 + }, + { + "start": 12281.5, + "end": 12283.62, + "probability": 0.9753 + }, + { + "start": 12283.72, + "end": 12284.42, + "probability": 0.8138 + }, + { + "start": 12285.42, + "end": 12287.34, + "probability": 0.9964 + }, + { + "start": 12287.74, + "end": 12291.2, + "probability": 0.9867 + }, + { + "start": 12292.74, + "end": 12298.52, + "probability": 0.9891 + }, + { + "start": 12299.16, + "end": 12301.31, + "probability": 0.9618 + }, + { + "start": 12302.12, + "end": 12305.22, + "probability": 0.9957 + }, + { + "start": 12306.46, + "end": 12309.8, + "probability": 0.9932 + }, + { + "start": 12309.8, + "end": 12315.04, + "probability": 0.9943 + }, + { + "start": 12316.72, + "end": 12321.18, + "probability": 0.9956 + }, + { + "start": 12321.98, + "end": 12324.64, + "probability": 0.995 + }, + { + "start": 12325.76, + "end": 12329.76, + "probability": 0.7479 + }, + { + "start": 12329.94, + "end": 12333.32, + "probability": 0.8283 + }, + { + "start": 12335.0, + "end": 12337.5, + "probability": 0.9681 + }, + { + "start": 12337.5, + "end": 12341.68, + "probability": 0.9898 + }, + { + "start": 12342.54, + "end": 12345.6, + "probability": 0.9738 + }, + { + "start": 12348.68, + "end": 12349.28, + "probability": 0.8229 + }, + { + "start": 12349.42, + "end": 12352.44, + "probability": 0.9799 + }, + { + "start": 12352.44, + "end": 12355.18, + "probability": 0.9985 + }, + { + "start": 12356.5, + "end": 12359.72, + "probability": 0.9827 + }, + { + "start": 12360.48, + "end": 12362.8, + "probability": 0.9811 + }, + { + "start": 12364.24, + "end": 12366.74, + "probability": 0.9828 + }, + { + "start": 12366.74, + "end": 12369.66, + "probability": 0.9993 + }, + { + "start": 12370.5, + "end": 12372.46, + "probability": 0.9982 + }, + { + "start": 12373.92, + "end": 12375.84, + "probability": 0.8255 + }, + { + "start": 12376.64, + "end": 12379.08, + "probability": 0.9946 + }, + { + "start": 12379.08, + "end": 12382.42, + "probability": 0.9899 + }, + { + "start": 12382.52, + "end": 12383.52, + "probability": 0.4689 + }, + { + "start": 12383.64, + "end": 12385.18, + "probability": 0.9566 + }, + { + "start": 12386.6, + "end": 12395.14, + "probability": 0.9522 + }, + { + "start": 12395.96, + "end": 12401.86, + "probability": 0.988 + }, + { + "start": 12403.12, + "end": 12407.12, + "probability": 0.8334 + }, + { + "start": 12407.8, + "end": 12411.12, + "probability": 0.9986 + }, + { + "start": 12413.06, + "end": 12415.9, + "probability": 0.9973 + }, + { + "start": 12415.9, + "end": 12418.82, + "probability": 0.9989 + }, + { + "start": 12419.88, + "end": 12422.8, + "probability": 0.7057 + }, + { + "start": 12423.88, + "end": 12428.36, + "probability": 0.9744 + }, + { + "start": 12428.92, + "end": 12432.7, + "probability": 0.9974 + }, + { + "start": 12434.04, + "end": 12436.24, + "probability": 0.988 + }, + { + "start": 12436.28, + "end": 12439.54, + "probability": 0.9742 + }, + { + "start": 12440.34, + "end": 12440.74, + "probability": 0.6809 + }, + { + "start": 12440.76, + "end": 12443.02, + "probability": 0.993 + }, + { + "start": 12443.34, + "end": 12444.72, + "probability": 0.8662 + }, + { + "start": 12445.58, + "end": 12446.02, + "probability": 0.6388 + }, + { + "start": 12446.14, + "end": 12447.92, + "probability": 0.7523 + }, + { + "start": 12448.4, + "end": 12449.84, + "probability": 0.9444 + }, + { + "start": 12449.92, + "end": 12450.88, + "probability": 0.8552 + }, + { + "start": 12452.06, + "end": 12455.96, + "probability": 0.9727 + }, + { + "start": 12457.68, + "end": 12459.92, + "probability": 0.7247 + }, + { + "start": 12460.06, + "end": 12463.04, + "probability": 0.9828 + }, + { + "start": 12464.42, + "end": 12464.78, + "probability": 0.4564 + }, + { + "start": 12464.86, + "end": 12467.76, + "probability": 0.9599 + }, + { + "start": 12467.84, + "end": 12471.76, + "probability": 0.9974 + }, + { + "start": 12473.08, + "end": 12475.64, + "probability": 0.8712 + }, + { + "start": 12476.4, + "end": 12477.74, + "probability": 0.9978 + }, + { + "start": 12478.76, + "end": 12484.26, + "probability": 0.998 + }, + { + "start": 12484.9, + "end": 12489.16, + "probability": 0.9919 + }, + { + "start": 12490.68, + "end": 12492.66, + "probability": 0.978 + }, + { + "start": 12492.66, + "end": 12495.18, + "probability": 0.7747 + }, + { + "start": 12495.86, + "end": 12498.34, + "probability": 0.824 + }, + { + "start": 12498.9, + "end": 12499.46, + "probability": 0.7428 + }, + { + "start": 12499.5, + "end": 12503.54, + "probability": 0.962 + }, + { + "start": 12505.14, + "end": 12507.74, + "probability": 0.9965 + }, + { + "start": 12507.74, + "end": 12511.94, + "probability": 0.9915 + }, + { + "start": 12512.62, + "end": 12515.7, + "probability": 0.9958 + }, + { + "start": 12517.46, + "end": 12519.56, + "probability": 0.9517 + }, + { + "start": 12520.6, + "end": 12523.22, + "probability": 0.9137 + }, + { + "start": 12523.92, + "end": 12527.32, + "probability": 0.9115 + }, + { + "start": 12527.46, + "end": 12531.78, + "probability": 0.9969 + }, + { + "start": 12533.44, + "end": 12536.82, + "probability": 0.9945 + }, + { + "start": 12536.82, + "end": 12542.18, + "probability": 0.9964 + }, + { + "start": 12543.08, + "end": 12546.24, + "probability": 0.9971 + }, + { + "start": 12547.24, + "end": 12550.14, + "probability": 0.988 + }, + { + "start": 12550.76, + "end": 12552.32, + "probability": 0.9032 + }, + { + "start": 12554.0, + "end": 12559.8, + "probability": 0.9953 + }, + { + "start": 12560.7, + "end": 12565.72, + "probability": 0.9927 + }, + { + "start": 12565.72, + "end": 12570.84, + "probability": 0.9888 + }, + { + "start": 12572.06, + "end": 12576.98, + "probability": 0.9921 + }, + { + "start": 12577.74, + "end": 12580.22, + "probability": 0.9733 + }, + { + "start": 12581.88, + "end": 12583.32, + "probability": 0.8667 + }, + { + "start": 12587.58, + "end": 12590.3, + "probability": 0.9685 + }, + { + "start": 12590.82, + "end": 12592.08, + "probability": 0.8944 + }, + { + "start": 12592.76, + "end": 12594.84, + "probability": 0.7907 + }, + { + "start": 12595.42, + "end": 12598.2, + "probability": 0.9967 + }, + { + "start": 12598.84, + "end": 12599.06, + "probability": 0.8444 + }, + { + "start": 12599.14, + "end": 12599.66, + "probability": 0.9487 + }, + { + "start": 12599.68, + "end": 12600.2, + "probability": 0.6816 + }, + { + "start": 12600.32, + "end": 12602.82, + "probability": 0.7299 + }, + { + "start": 12603.76, + "end": 12604.66, + "probability": 0.7047 + }, + { + "start": 12609.41, + "end": 12613.54, + "probability": 0.9294 + }, + { + "start": 12614.12, + "end": 12616.26, + "probability": 0.9587 + }, + { + "start": 12617.0, + "end": 12619.02, + "probability": 0.998 + }, + { + "start": 12619.1, + "end": 12621.1, + "probability": 0.9893 + }, + { + "start": 12621.76, + "end": 12625.38, + "probability": 0.9956 + }, + { + "start": 12626.72, + "end": 12630.28, + "probability": 0.9397 + }, + { + "start": 12630.38, + "end": 12631.28, + "probability": 0.7205 + }, + { + "start": 12632.44, + "end": 12633.46, + "probability": 0.9309 + }, + { + "start": 12634.34, + "end": 12635.36, + "probability": 0.9849 + }, + { + "start": 12640.44, + "end": 12641.22, + "probability": 0.6872 + }, + { + "start": 12641.88, + "end": 12644.54, + "probability": 0.5746 + }, + { + "start": 12644.92, + "end": 12647.0, + "probability": 0.9655 + }, + { + "start": 12648.44, + "end": 12648.96, + "probability": 0.8763 + }, + { + "start": 12649.08, + "end": 12649.62, + "probability": 0.321 + }, + { + "start": 12649.68, + "end": 12652.52, + "probability": 0.9966 + }, + { + "start": 12652.52, + "end": 12656.7, + "probability": 0.9347 + }, + { + "start": 12657.3, + "end": 12661.78, + "probability": 0.9973 + }, + { + "start": 12663.08, + "end": 12663.34, + "probability": 0.7012 + }, + { + "start": 12663.44, + "end": 12665.54, + "probability": 0.9755 + }, + { + "start": 12665.54, + "end": 12668.88, + "probability": 0.9994 + }, + { + "start": 12669.58, + "end": 12671.86, + "probability": 0.8467 + }, + { + "start": 12673.14, + "end": 12679.46, + "probability": 0.9408 + }, + { + "start": 12679.72, + "end": 12683.66, + "probability": 0.9963 + }, + { + "start": 12684.26, + "end": 12686.4, + "probability": 0.9968 + }, + { + "start": 12687.02, + "end": 12688.76, + "probability": 0.9819 + }, + { + "start": 12689.34, + "end": 12690.54, + "probability": 0.9025 + }, + { + "start": 12690.88, + "end": 12691.4, + "probability": 0.7449 + }, + { + "start": 12692.1, + "end": 12692.9, + "probability": 0.8413 + }, + { + "start": 12693.44, + "end": 12695.5, + "probability": 0.9345 + }, + { + "start": 12696.28, + "end": 12697.94, + "probability": 0.8162 + }, + { + "start": 12698.62, + "end": 12701.29, + "probability": 0.5416 + }, + { + "start": 12703.02, + "end": 12704.08, + "probability": 0.9494 + }, + { + "start": 12704.62, + "end": 12705.36, + "probability": 0.8867 + }, + { + "start": 12705.88, + "end": 12707.76, + "probability": 0.7979 + }, + { + "start": 12728.38, + "end": 12728.54, + "probability": 0.3299 + }, + { + "start": 12728.54, + "end": 12729.64, + "probability": 0.7089 + }, + { + "start": 12731.34, + "end": 12732.14, + "probability": 0.7321 + }, + { + "start": 12732.14, + "end": 12734.02, + "probability": 0.8412 + }, + { + "start": 12734.12, + "end": 12739.52, + "probability": 0.9553 + }, + { + "start": 12739.56, + "end": 12744.84, + "probability": 0.9961 + }, + { + "start": 12745.46, + "end": 12749.36, + "probability": 0.9197 + }, + { + "start": 12752.24, + "end": 12754.06, + "probability": 0.9441 + }, + { + "start": 12754.96, + "end": 12755.6, + "probability": 0.5175 + }, + { + "start": 12756.28, + "end": 12761.14, + "probability": 0.9678 + }, + { + "start": 12761.82, + "end": 12763.82, + "probability": 0.9852 + }, + { + "start": 12763.92, + "end": 12766.34, + "probability": 0.7897 + }, + { + "start": 12766.46, + "end": 12767.3, + "probability": 0.8685 + }, + { + "start": 12767.82, + "end": 12771.24, + "probability": 0.9823 + }, + { + "start": 12771.82, + "end": 12774.14, + "probability": 0.7076 + }, + { + "start": 12774.66, + "end": 12777.24, + "probability": 0.4995 + }, + { + "start": 12777.3, + "end": 12784.55, + "probability": 0.9858 + }, + { + "start": 12784.8, + "end": 12786.02, + "probability": 0.9884 + }, + { + "start": 12786.76, + "end": 12791.52, + "probability": 0.9824 + }, + { + "start": 12791.68, + "end": 12794.1, + "probability": 0.9236 + }, + { + "start": 12794.24, + "end": 12797.14, + "probability": 0.9258 + }, + { + "start": 12797.86, + "end": 12800.16, + "probability": 0.8499 + }, + { + "start": 12800.32, + "end": 12805.34, + "probability": 0.9702 + }, + { + "start": 12805.88, + "end": 12809.42, + "probability": 0.9839 + }, + { + "start": 12809.82, + "end": 12811.82, + "probability": 0.8097 + }, + { + "start": 12811.96, + "end": 12814.84, + "probability": 0.9736 + }, + { + "start": 12814.84, + "end": 12818.36, + "probability": 0.9395 + }, + { + "start": 12818.46, + "end": 12823.8, + "probability": 0.9849 + }, + { + "start": 12824.06, + "end": 12824.32, + "probability": 0.5826 + }, + { + "start": 12824.72, + "end": 12825.0, + "probability": 0.7492 + }, + { + "start": 12825.06, + "end": 12826.66, + "probability": 0.8201 + }, + { + "start": 12826.74, + "end": 12830.94, + "probability": 0.9241 + }, + { + "start": 12831.92, + "end": 12832.84, + "probability": 0.8819 + }, + { + "start": 12833.48, + "end": 12840.42, + "probability": 0.9967 + }, + { + "start": 12841.04, + "end": 12844.06, + "probability": 0.7666 + }, + { + "start": 12844.6, + "end": 12846.44, + "probability": 0.9404 + }, + { + "start": 12847.32, + "end": 12854.32, + "probability": 0.993 + }, + { + "start": 12854.32, + "end": 12860.3, + "probability": 0.8518 + }, + { + "start": 12861.0, + "end": 12866.62, + "probability": 0.9972 + }, + { + "start": 12867.12, + "end": 12868.58, + "probability": 0.6992 + }, + { + "start": 12868.86, + "end": 12873.78, + "probability": 0.9936 + }, + { + "start": 12873.78, + "end": 12878.58, + "probability": 0.9903 + }, + { + "start": 12879.02, + "end": 12882.68, + "probability": 0.9949 + }, + { + "start": 12883.28, + "end": 12883.6, + "probability": 0.6469 + }, + { + "start": 12883.62, + "end": 12885.12, + "probability": 0.825 + }, + { + "start": 12885.24, + "end": 12887.18, + "probability": 0.8686 + }, + { + "start": 12888.08, + "end": 12889.68, + "probability": 0.9487 + }, + { + "start": 12890.64, + "end": 12892.6, + "probability": 0.9624 + }, + { + "start": 12892.8, + "end": 12894.36, + "probability": 0.6995 + }, + { + "start": 12894.58, + "end": 12894.88, + "probability": 0.4296 + }, + { + "start": 12895.06, + "end": 12897.64, + "probability": 0.7725 + }, + { + "start": 12897.76, + "end": 12898.26, + "probability": 0.6108 + }, + { + "start": 12899.1, + "end": 12902.12, + "probability": 0.9921 + }, + { + "start": 12902.82, + "end": 12906.78, + "probability": 0.752 + }, + { + "start": 12907.52, + "end": 12914.76, + "probability": 0.9223 + }, + { + "start": 12915.88, + "end": 12918.28, + "probability": 0.6028 + }, + { + "start": 12918.38, + "end": 12921.38, + "probability": 0.6638 + }, + { + "start": 12921.4, + "end": 12922.96, + "probability": 0.9177 + }, + { + "start": 12923.5, + "end": 12928.24, + "probability": 0.9873 + }, + { + "start": 12928.24, + "end": 12933.26, + "probability": 0.9878 + }, + { + "start": 12933.5, + "end": 12933.86, + "probability": 0.7477 + }, + { + "start": 12934.56, + "end": 12937.16, + "probability": 0.7812 + }, + { + "start": 12955.52, + "end": 12957.06, + "probability": 0.7391 + }, + { + "start": 12958.82, + "end": 12959.72, + "probability": 0.6573 + }, + { + "start": 12960.58, + "end": 12961.36, + "probability": 0.7487 + }, + { + "start": 12962.96, + "end": 12968.16, + "probability": 0.981 + }, + { + "start": 12968.34, + "end": 12969.3, + "probability": 0.9985 + }, + { + "start": 12970.3, + "end": 12971.44, + "probability": 0.9364 + }, + { + "start": 12972.66, + "end": 12976.46, + "probability": 0.9664 + }, + { + "start": 12977.74, + "end": 12982.02, + "probability": 0.973 + }, + { + "start": 12983.76, + "end": 12987.6, + "probability": 0.9927 + }, + { + "start": 12988.62, + "end": 12995.4, + "probability": 0.942 + }, + { + "start": 12996.64, + "end": 13000.36, + "probability": 0.9782 + }, + { + "start": 13000.64, + "end": 13003.56, + "probability": 0.9873 + }, + { + "start": 13004.64, + "end": 13006.28, + "probability": 0.9978 + }, + { + "start": 13007.7, + "end": 13010.38, + "probability": 0.9696 + }, + { + "start": 13011.24, + "end": 13011.52, + "probability": 0.2013 + }, + { + "start": 13012.4, + "end": 13013.42, + "probability": 0.7688 + }, + { + "start": 13013.74, + "end": 13017.94, + "probability": 0.977 + }, + { + "start": 13019.04, + "end": 13020.24, + "probability": 0.9973 + }, + { + "start": 13022.82, + "end": 13026.22, + "probability": 0.9431 + }, + { + "start": 13026.88, + "end": 13029.63, + "probability": 0.9972 + }, + { + "start": 13031.04, + "end": 13034.92, + "probability": 0.9537 + }, + { + "start": 13036.74, + "end": 13040.72, + "probability": 0.9285 + }, + { + "start": 13041.82, + "end": 13042.44, + "probability": 0.8232 + }, + { + "start": 13044.32, + "end": 13048.08, + "probability": 0.9854 + }, + { + "start": 13049.2, + "end": 13057.22, + "probability": 0.9554 + }, + { + "start": 13058.5, + "end": 13062.56, + "probability": 0.9771 + }, + { + "start": 13063.1, + "end": 13064.04, + "probability": 0.9971 + }, + { + "start": 13066.14, + "end": 13070.4, + "probability": 0.8478 + }, + { + "start": 13072.16, + "end": 13072.72, + "probability": 0.9866 + }, + { + "start": 13073.46, + "end": 13078.94, + "probability": 0.9985 + }, + { + "start": 13079.54, + "end": 13083.96, + "probability": 0.9349 + }, + { + "start": 13085.7, + "end": 13088.58, + "probability": 0.9982 + }, + { + "start": 13090.46, + "end": 13095.32, + "probability": 0.9455 + }, + { + "start": 13096.44, + "end": 13098.18, + "probability": 0.6285 + }, + { + "start": 13099.5, + "end": 13103.28, + "probability": 0.9699 + }, + { + "start": 13103.88, + "end": 13105.78, + "probability": 0.9794 + }, + { + "start": 13107.92, + "end": 13118.38, + "probability": 0.6533 + }, + { + "start": 13118.86, + "end": 13121.84, + "probability": 0.8054 + }, + { + "start": 13122.34, + "end": 13128.18, + "probability": 0.9658 + }, + { + "start": 13128.8, + "end": 13130.52, + "probability": 0.8428 + }, + { + "start": 13130.98, + "end": 13135.62, + "probability": 0.8404 + }, + { + "start": 13136.0, + "end": 13137.9, + "probability": 0.8834 + }, + { + "start": 13138.38, + "end": 13141.92, + "probability": 0.9963 + }, + { + "start": 13144.7, + "end": 13150.56, + "probability": 0.9598 + }, + { + "start": 13151.1, + "end": 13151.36, + "probability": 0.7216 + }, + { + "start": 13154.02, + "end": 13154.84, + "probability": 0.6988 + }, + { + "start": 13155.98, + "end": 13158.14, + "probability": 0.7585 + }, + { + "start": 13169.78, + "end": 13171.22, + "probability": 0.7522 + }, + { + "start": 13175.46, + "end": 13180.2, + "probability": 0.6588 + }, + { + "start": 13180.8, + "end": 13181.8, + "probability": 0.8369 + }, + { + "start": 13182.96, + "end": 13191.74, + "probability": 0.8784 + }, + { + "start": 13191.94, + "end": 13192.72, + "probability": 0.9437 + }, + { + "start": 13193.46, + "end": 13194.97, + "probability": 0.0809 + }, + { + "start": 13195.24, + "end": 13199.56, + "probability": 0.7835 + }, + { + "start": 13200.08, + "end": 13201.52, + "probability": 0.9852 + }, + { + "start": 13201.62, + "end": 13209.04, + "probability": 0.9788 + }, + { + "start": 13209.14, + "end": 13213.84, + "probability": 0.9867 + }, + { + "start": 13215.24, + "end": 13218.52, + "probability": 0.9609 + }, + { + "start": 13219.66, + "end": 13222.62, + "probability": 0.8894 + }, + { + "start": 13223.68, + "end": 13225.42, + "probability": 0.765 + }, + { + "start": 13225.48, + "end": 13226.48, + "probability": 0.8709 + }, + { + "start": 13226.54, + "end": 13227.48, + "probability": 0.9264 + }, + { + "start": 13228.32, + "end": 13231.9, + "probability": 0.9961 + }, + { + "start": 13232.56, + "end": 13234.88, + "probability": 0.9854 + }, + { + "start": 13235.68, + "end": 13236.62, + "probability": 0.985 + }, + { + "start": 13237.28, + "end": 13243.5, + "probability": 0.9824 + }, + { + "start": 13244.1, + "end": 13246.44, + "probability": 0.9323 + }, + { + "start": 13247.36, + "end": 13252.2, + "probability": 0.9964 + }, + { + "start": 13252.22, + "end": 13252.36, + "probability": 0.4594 + }, + { + "start": 13252.54, + "end": 13252.7, + "probability": 0.7712 + }, + { + "start": 13252.78, + "end": 13254.04, + "probability": 0.9895 + }, + { + "start": 13254.7, + "end": 13255.74, + "probability": 0.9505 + }, + { + "start": 13257.24, + "end": 13260.04, + "probability": 0.9946 + }, + { + "start": 13260.38, + "end": 13264.42, + "probability": 0.9988 + }, + { + "start": 13264.72, + "end": 13264.82, + "probability": 0.3727 + }, + { + "start": 13264.96, + "end": 13269.92, + "probability": 0.5566 + }, + { + "start": 13270.1, + "end": 13271.96, + "probability": 0.1828 + }, + { + "start": 13272.26, + "end": 13272.92, + "probability": 0.6785 + }, + { + "start": 13273.32, + "end": 13278.4, + "probability": 0.7276 + }, + { + "start": 13279.28, + "end": 13281.46, + "probability": 0.5203 + }, + { + "start": 13282.34, + "end": 13285.98, + "probability": 0.9412 + }, + { + "start": 13287.22, + "end": 13289.38, + "probability": 0.8389 + }, + { + "start": 13290.14, + "end": 13290.9, + "probability": 0.8553 + }, + { + "start": 13291.46, + "end": 13296.78, + "probability": 0.6516 + }, + { + "start": 13297.32, + "end": 13303.08, + "probability": 0.998 + }, + { + "start": 13303.52, + "end": 13304.74, + "probability": 0.771 + }, + { + "start": 13305.26, + "end": 13308.7, + "probability": 0.8246 + }, + { + "start": 13308.88, + "end": 13310.82, + "probability": 0.9592 + }, + { + "start": 13311.3, + "end": 13311.74, + "probability": 0.3508 + }, + { + "start": 13312.02, + "end": 13317.68, + "probability": 0.9921 + }, + { + "start": 13318.36, + "end": 13319.96, + "probability": 0.8401 + }, + { + "start": 13320.74, + "end": 13322.94, + "probability": 0.9703 + }, + { + "start": 13323.46, + "end": 13329.44, + "probability": 0.9983 + }, + { + "start": 13329.96, + "end": 13331.24, + "probability": 0.9932 + }, + { + "start": 13331.32, + "end": 13331.68, + "probability": 0.834 + }, + { + "start": 13332.86, + "end": 13333.7, + "probability": 0.7231 + }, + { + "start": 13334.18, + "end": 13335.68, + "probability": 0.7476 + }, + { + "start": 13346.04, + "end": 13347.6, + "probability": 0.5878 + }, + { + "start": 13349.72, + "end": 13352.22, + "probability": 0.3525 + }, + { + "start": 13352.48, + "end": 13353.52, + "probability": 0.7938 + }, + { + "start": 13354.76, + "end": 13360.9, + "probability": 0.9619 + }, + { + "start": 13361.0, + "end": 13362.96, + "probability": 0.7376 + }, + { + "start": 13364.6, + "end": 13369.76, + "probability": 0.9734 + }, + { + "start": 13371.33, + "end": 13375.0, + "probability": 0.9839 + }, + { + "start": 13375.24, + "end": 13376.92, + "probability": 0.9883 + }, + { + "start": 13378.34, + "end": 13379.74, + "probability": 0.3769 + }, + { + "start": 13379.92, + "end": 13381.14, + "probability": 0.771 + }, + { + "start": 13381.26, + "end": 13383.4, + "probability": 0.9443 + }, + { + "start": 13385.28, + "end": 13387.66, + "probability": 0.8021 + }, + { + "start": 13389.42, + "end": 13392.52, + "probability": 0.9964 + }, + { + "start": 13394.14, + "end": 13396.4, + "probability": 0.9978 + }, + { + "start": 13397.4, + "end": 13398.14, + "probability": 0.9402 + }, + { + "start": 13398.5, + "end": 13399.04, + "probability": 0.9895 + }, + { + "start": 13399.12, + "end": 13400.16, + "probability": 0.5922 + }, + { + "start": 13400.74, + "end": 13401.08, + "probability": 0.9289 + }, + { + "start": 13402.04, + "end": 13406.82, + "probability": 0.9473 + }, + { + "start": 13407.06, + "end": 13408.18, + "probability": 0.9973 + }, + { + "start": 13409.21, + "end": 13411.48, + "probability": 0.9097 + }, + { + "start": 13412.82, + "end": 13413.54, + "probability": 0.9365 + }, + { + "start": 13415.22, + "end": 13417.08, + "probability": 0.9561 + }, + { + "start": 13418.16, + "end": 13420.92, + "probability": 0.9915 + }, + { + "start": 13422.44, + "end": 13425.7, + "probability": 0.9663 + }, + { + "start": 13426.06, + "end": 13431.48, + "probability": 0.9867 + }, + { + "start": 13431.74, + "end": 13434.1, + "probability": 0.9976 + }, + { + "start": 13434.2, + "end": 13434.48, + "probability": 0.6602 + }, + { + "start": 13434.68, + "end": 13436.9, + "probability": 0.677 + }, + { + "start": 13437.54, + "end": 13438.8, + "probability": 0.9046 + }, + { + "start": 13438.9, + "end": 13440.84, + "probability": 0.9259 + }, + { + "start": 13441.8, + "end": 13442.54, + "probability": 0.4488 + }, + { + "start": 13443.34, + "end": 13446.86, + "probability": 0.947 + }, + { + "start": 13447.82, + "end": 13450.02, + "probability": 0.998 + }, + { + "start": 13450.1, + "end": 13453.52, + "probability": 0.9955 + }, + { + "start": 13454.34, + "end": 13459.92, + "probability": 0.9928 + }, + { + "start": 13459.98, + "end": 13462.36, + "probability": 0.9985 + }, + { + "start": 13462.36, + "end": 13465.9, + "probability": 0.9521 + }, + { + "start": 13465.98, + "end": 13466.8, + "probability": 0.9728 + }, + { + "start": 13466.86, + "end": 13467.48, + "probability": 0.7689 + }, + { + "start": 13467.98, + "end": 13470.62, + "probability": 0.7854 + }, + { + "start": 13471.14, + "end": 13473.56, + "probability": 0.9303 + }, + { + "start": 13473.98, + "end": 13474.66, + "probability": 0.349 + }, + { + "start": 13474.86, + "end": 13476.48, + "probability": 0.2095 + }, + { + "start": 13477.56, + "end": 13480.44, + "probability": 0.6062 + }, + { + "start": 13480.46, + "end": 13482.74, + "probability": 0.6616 + }, + { + "start": 13482.8, + "end": 13483.0, + "probability": 0.7431 + }, + { + "start": 13483.18, + "end": 13485.18, + "probability": 0.6101 + }, + { + "start": 13485.36, + "end": 13486.48, + "probability": 0.7742 + }, + { + "start": 13486.6, + "end": 13487.18, + "probability": 0.9163 + }, + { + "start": 13487.22, + "end": 13488.06, + "probability": 0.9227 + }, + { + "start": 13488.24, + "end": 13489.82, + "probability": 0.9368 + }, + { + "start": 13490.78, + "end": 13491.74, + "probability": 0.979 + }, + { + "start": 13492.38, + "end": 13495.6, + "probability": 0.9211 + }, + { + "start": 13495.62, + "end": 13496.28, + "probability": 0.9708 + }, + { + "start": 13497.36, + "end": 13500.6, + "probability": 0.9164 + }, + { + "start": 13500.92, + "end": 13502.48, + "probability": 0.7089 + }, + { + "start": 13502.94, + "end": 13505.2, + "probability": 0.7727 + }, + { + "start": 13505.22, + "end": 13507.86, + "probability": 0.9443 + }, + { + "start": 13509.1, + "end": 13510.0, + "probability": 0.9093 + }, + { + "start": 13510.58, + "end": 13513.62, + "probability": 0.7678 + }, + { + "start": 13513.62, + "end": 13514.4, + "probability": 0.2834 + }, + { + "start": 13514.8, + "end": 13514.8, + "probability": 0.0655 + }, + { + "start": 13515.42, + "end": 13516.42, + "probability": 0.56 + }, + { + "start": 13516.82, + "end": 13520.1, + "probability": 0.9047 + }, + { + "start": 13520.28, + "end": 13521.34, + "probability": 0.9873 + }, + { + "start": 13522.62, + "end": 13523.74, + "probability": 0.961 + }, + { + "start": 13525.46, + "end": 13527.38, + "probability": 0.3231 + }, + { + "start": 13528.1, + "end": 13530.18, + "probability": 0.9741 + }, + { + "start": 13530.7, + "end": 13531.68, + "probability": 0.9548 + }, + { + "start": 13532.12, + "end": 13535.46, + "probability": 0.9684 + }, + { + "start": 13535.62, + "end": 13535.78, + "probability": 0.6711 + }, + { + "start": 13536.42, + "end": 13537.26, + "probability": 0.683 + }, + { + "start": 13538.18, + "end": 13541.44, + "probability": 0.8383 + }, + { + "start": 13544.64, + "end": 13546.0, + "probability": 0.8633 + }, + { + "start": 13550.28, + "end": 13551.14, + "probability": 0.4529 + }, + { + "start": 13551.52, + "end": 13552.26, + "probability": 0.733 + }, + { + "start": 13552.54, + "end": 13556.92, + "probability": 0.9517 + }, + { + "start": 13557.06, + "end": 13562.04, + "probability": 0.9962 + }, + { + "start": 13562.86, + "end": 13564.28, + "probability": 0.9983 + }, + { + "start": 13565.2, + "end": 13568.72, + "probability": 0.9894 + }, + { + "start": 13569.76, + "end": 13570.08, + "probability": 0.7186 + }, + { + "start": 13570.26, + "end": 13570.48, + "probability": 0.9183 + }, + { + "start": 13570.6, + "end": 13571.36, + "probability": 0.4981 + }, + { + "start": 13571.42, + "end": 13573.38, + "probability": 0.991 + }, + { + "start": 13573.48, + "end": 13574.96, + "probability": 0.6989 + }, + { + "start": 13575.08, + "end": 13576.08, + "probability": 0.724 + }, + { + "start": 13576.94, + "end": 13579.0, + "probability": 0.9002 + }, + { + "start": 13579.66, + "end": 13580.32, + "probability": 0.9348 + }, + { + "start": 13580.36, + "end": 13583.26, + "probability": 0.9842 + }, + { + "start": 13583.82, + "end": 13588.9, + "probability": 0.9861 + }, + { + "start": 13588.9, + "end": 13591.48, + "probability": 0.9993 + }, + { + "start": 13591.94, + "end": 13595.72, + "probability": 0.9979 + }, + { + "start": 13596.3, + "end": 13598.86, + "probability": 0.8699 + }, + { + "start": 13599.0, + "end": 13599.6, + "probability": 0.341 + }, + { + "start": 13599.68, + "end": 13600.82, + "probability": 0.8015 + }, + { + "start": 13601.18, + "end": 13602.84, + "probability": 0.9978 + }, + { + "start": 13603.44, + "end": 13606.82, + "probability": 0.9982 + }, + { + "start": 13607.2, + "end": 13608.5, + "probability": 0.6888 + }, + { + "start": 13608.6, + "end": 13608.72, + "probability": 0.8666 + }, + { + "start": 13609.2, + "end": 13609.82, + "probability": 0.9577 + }, + { + "start": 13610.16, + "end": 13610.94, + "probability": 0.9674 + }, + { + "start": 13611.02, + "end": 13611.8, + "probability": 0.896 + }, + { + "start": 13612.14, + "end": 13616.28, + "probability": 0.998 + }, + { + "start": 13616.82, + "end": 13617.32, + "probability": 0.729 + }, + { + "start": 13618.1, + "end": 13619.14, + "probability": 0.6315 + }, + { + "start": 13620.18, + "end": 13622.05, + "probability": 0.761 + }, + { + "start": 13622.78, + "end": 13624.42, + "probability": 0.9639 + }, + { + "start": 13624.7, + "end": 13625.3, + "probability": 0.875 + }, + { + "start": 13626.3, + "end": 13627.98, + "probability": 0.796 + }, + { + "start": 13628.12, + "end": 13631.38, + "probability": 0.9307 + }, + { + "start": 13631.42, + "end": 13632.0, + "probability": 0.8926 + }, + { + "start": 13632.12, + "end": 13633.42, + "probability": 0.5105 + }, + { + "start": 13634.1, + "end": 13634.52, + "probability": 0.5435 + }, + { + "start": 13635.48, + "end": 13636.2, + "probability": 0.5859 + }, + { + "start": 13636.62, + "end": 13637.12, + "probability": 0.6537 + }, + { + "start": 13637.26, + "end": 13638.04, + "probability": 0.9355 + }, + { + "start": 13638.12, + "end": 13640.02, + "probability": 0.8866 + }, + { + "start": 13640.2, + "end": 13642.04, + "probability": 0.9907 + }, + { + "start": 13642.48, + "end": 13643.01, + "probability": 0.9523 + }, + { + "start": 13643.96, + "end": 13646.08, + "probability": 0.9395 + }, + { + "start": 13647.3, + "end": 13648.56, + "probability": 0.8432 + }, + { + "start": 13648.66, + "end": 13651.98, + "probability": 0.9607 + }, + { + "start": 13652.06, + "end": 13652.7, + "probability": 0.8186 + }, + { + "start": 13653.34, + "end": 13654.76, + "probability": 0.9902 + }, + { + "start": 13655.08, + "end": 13658.44, + "probability": 0.8571 + }, + { + "start": 13660.74, + "end": 13661.3, + "probability": 0.9604 + }, + { + "start": 13661.3, + "end": 13661.8, + "probability": 0.1094 + }, + { + "start": 13662.16, + "end": 13662.88, + "probability": 0.4744 + }, + { + "start": 13663.02, + "end": 13663.82, + "probability": 0.8121 + }, + { + "start": 13664.34, + "end": 13667.36, + "probability": 0.9673 + }, + { + "start": 13667.7, + "end": 13669.02, + "probability": 0.9218 + }, + { + "start": 13670.23, + "end": 13672.04, + "probability": 0.9858 + }, + { + "start": 13672.1, + "end": 13672.8, + "probability": 0.708 + }, + { + "start": 13672.84, + "end": 13673.68, + "probability": 0.8938 + }, + { + "start": 13674.16, + "end": 13675.06, + "probability": 0.8363 + }, + { + "start": 13675.18, + "end": 13676.22, + "probability": 0.9152 + }, + { + "start": 13676.54, + "end": 13678.04, + "probability": 0.9873 + }, + { + "start": 13678.34, + "end": 13679.42, + "probability": 0.9893 + }, + { + "start": 13679.8, + "end": 13681.22, + "probability": 0.9038 + }, + { + "start": 13681.74, + "end": 13683.72, + "probability": 0.9416 + }, + { + "start": 13683.86, + "end": 13684.14, + "probability": 0.8675 + }, + { + "start": 13684.42, + "end": 13686.18, + "probability": 0.9897 + }, + { + "start": 13686.82, + "end": 13687.88, + "probability": 0.9482 + }, + { + "start": 13687.98, + "end": 13690.5, + "probability": 0.8523 + }, + { + "start": 13690.98, + "end": 13691.64, + "probability": 0.7358 + }, + { + "start": 13692.16, + "end": 13695.48, + "probability": 0.9196 + }, + { + "start": 13696.1, + "end": 13698.58, + "probability": 0.9962 + }, + { + "start": 13698.72, + "end": 13699.0, + "probability": 0.5716 + }, + { + "start": 13699.06, + "end": 13702.84, + "probability": 0.9924 + }, + { + "start": 13703.3, + "end": 13704.44, + "probability": 0.8827 + }, + { + "start": 13704.52, + "end": 13709.56, + "probability": 0.9966 + }, + { + "start": 13709.86, + "end": 13710.64, + "probability": 0.9129 + }, + { + "start": 13710.94, + "end": 13711.73, + "probability": 0.9788 + }, + { + "start": 13711.78, + "end": 13712.92, + "probability": 0.8822 + }, + { + "start": 13713.26, + "end": 13714.22, + "probability": 0.875 + }, + { + "start": 13714.52, + "end": 13715.94, + "probability": 0.998 + }, + { + "start": 13716.24, + "end": 13716.42, + "probability": 0.7832 + }, + { + "start": 13716.68, + "end": 13717.08, + "probability": 0.9421 + }, + { + "start": 13717.82, + "end": 13718.46, + "probability": 0.8156 + }, + { + "start": 13718.58, + "end": 13721.56, + "probability": 0.9805 + }, + { + "start": 13726.94, + "end": 13727.34, + "probability": 0.1716 + }, + { + "start": 13727.34, + "end": 13727.34, + "probability": 0.4765 + }, + { + "start": 13727.34, + "end": 13728.23, + "probability": 0.6199 + }, + { + "start": 13728.82, + "end": 13729.5, + "probability": 0.7034 + }, + { + "start": 13730.1, + "end": 13731.54, + "probability": 0.8754 + }, + { + "start": 13732.28, + "end": 13734.98, + "probability": 0.971 + }, + { + "start": 13735.54, + "end": 13736.24, + "probability": 0.4998 + }, + { + "start": 13736.64, + "end": 13737.82, + "probability": 0.9601 + }, + { + "start": 13738.96, + "end": 13739.54, + "probability": 0.7063 + }, + { + "start": 13740.06, + "end": 13744.34, + "probability": 0.4086 + }, + { + "start": 13745.08, + "end": 13749.86, + "probability": 0.9058 + }, + { + "start": 13751.9, + "end": 13754.62, + "probability": 0.8831 + }, + { + "start": 13757.08, + "end": 13758.96, + "probability": 0.5804 + }, + { + "start": 13760.6, + "end": 13763.94, + "probability": 0.9097 + }, + { + "start": 13764.5, + "end": 13765.88, + "probability": 0.7772 + }, + { + "start": 13767.12, + "end": 13772.56, + "probability": 0.917 + }, + { + "start": 13773.66, + "end": 13774.58, + "probability": 0.9012 + }, + { + "start": 13775.8, + "end": 13777.26, + "probability": 0.6934 + }, + { + "start": 13778.52, + "end": 13778.84, + "probability": 0.42 + }, + { + "start": 13779.02, + "end": 13783.24, + "probability": 0.8113 + }, + { + "start": 13784.32, + "end": 13786.32, + "probability": 0.7185 + }, + { + "start": 13786.44, + "end": 13787.34, + "probability": 0.8074 + }, + { + "start": 13787.48, + "end": 13788.38, + "probability": 0.7732 + }, + { + "start": 13789.34, + "end": 13792.26, + "probability": 0.8221 + }, + { + "start": 13792.56, + "end": 13794.09, + "probability": 0.9966 + }, + { + "start": 13795.08, + "end": 13798.12, + "probability": 0.9594 + }, + { + "start": 13798.12, + "end": 13801.98, + "probability": 0.9967 + }, + { + "start": 13803.02, + "end": 13804.48, + "probability": 0.6021 + }, + { + "start": 13804.92, + "end": 13808.56, + "probability": 0.9162 + }, + { + "start": 13808.94, + "end": 13813.1, + "probability": 0.8988 + }, + { + "start": 13813.4, + "end": 13813.82, + "probability": 0.5219 + }, + { + "start": 13813.9, + "end": 13816.04, + "probability": 0.7568 + }, + { + "start": 13817.3, + "end": 13819.22, + "probability": 0.937 + }, + { + "start": 13819.3, + "end": 13819.92, + "probability": 0.6888 + }, + { + "start": 13820.2, + "end": 13821.06, + "probability": 0.87 + }, + { + "start": 13821.74, + "end": 13822.08, + "probability": 0.0289 + }, + { + "start": 13822.08, + "end": 13823.36, + "probability": 0.6908 + }, + { + "start": 13823.98, + "end": 13824.8, + "probability": 0.0431 + }, + { + "start": 13825.02, + "end": 13827.18, + "probability": 0.7457 + }, + { + "start": 13827.34, + "end": 13827.76, + "probability": 0.4111 + }, + { + "start": 13827.76, + "end": 13829.22, + "probability": 0.6377 + }, + { + "start": 13829.22, + "end": 13834.04, + "probability": 0.6412 + }, + { + "start": 13834.14, + "end": 13836.5, + "probability": 0.8854 + }, + { + "start": 13837.1, + "end": 13841.0, + "probability": 0.7135 + }, + { + "start": 13841.2, + "end": 13841.9, + "probability": 0.3518 + }, + { + "start": 13842.2, + "end": 13847.62, + "probability": 0.5019 + }, + { + "start": 13847.68, + "end": 13848.68, + "probability": 0.9547 + }, + { + "start": 13849.14, + "end": 13850.72, + "probability": 0.8451 + }, + { + "start": 13851.06, + "end": 13852.4, + "probability": 0.5885 + }, + { + "start": 13852.76, + "end": 13854.82, + "probability": 0.6602 + }, + { + "start": 13855.3, + "end": 13856.04, + "probability": 0.9786 + }, + { + "start": 13856.84, + "end": 13863.32, + "probability": 0.9783 + }, + { + "start": 13864.16, + "end": 13866.3, + "probability": 0.8058 + }, + { + "start": 13866.66, + "end": 13867.48, + "probability": 0.0408 + }, + { + "start": 13867.48, + "end": 13867.79, + "probability": 0.3315 + }, + { + "start": 13869.12, + "end": 13874.4, + "probability": 0.9883 + }, + { + "start": 13875.2, + "end": 13876.78, + "probability": 0.8394 + }, + { + "start": 13877.38, + "end": 13879.14, + "probability": 0.755 + }, + { + "start": 13880.14, + "end": 13882.82, + "probability": 0.9561 + }, + { + "start": 13883.34, + "end": 13884.26, + "probability": 0.7357 + }, + { + "start": 13884.78, + "end": 13886.44, + "probability": 0.7818 + }, + { + "start": 13886.92, + "end": 13888.06, + "probability": 0.887 + }, + { + "start": 13888.48, + "end": 13889.26, + "probability": 0.7323 + }, + { + "start": 13889.46, + "end": 13890.26, + "probability": 0.9534 + }, + { + "start": 13890.78, + "end": 13891.35, + "probability": 0.5023 + }, + { + "start": 13892.04, + "end": 13892.9, + "probability": 0.839 + }, + { + "start": 13893.36, + "end": 13895.06, + "probability": 0.9906 + }, + { + "start": 13895.48, + "end": 13897.16, + "probability": 0.9897 + }, + { + "start": 13897.62, + "end": 13898.06, + "probability": 0.8171 + }, + { + "start": 13898.72, + "end": 13900.04, + "probability": 0.9058 + }, + { + "start": 13900.6, + "end": 13903.18, + "probability": 0.7002 + }, + { + "start": 13903.58, + "end": 13905.2, + "probability": 0.9844 + }, + { + "start": 13905.24, + "end": 13906.82, + "probability": 0.79 + }, + { + "start": 13907.08, + "end": 13909.32, + "probability": 0.8799 + }, + { + "start": 13909.54, + "end": 13910.04, + "probability": 0.6718 + }, + { + "start": 13910.42, + "end": 13912.1, + "probability": 0.6844 + }, + { + "start": 13913.14, + "end": 13913.24, + "probability": 0.0025 + }, + { + "start": 13913.24, + "end": 13914.74, + "probability": 0.8403 + }, + { + "start": 13914.96, + "end": 13917.04, + "probability": 0.5271 + }, + { + "start": 13917.16, + "end": 13919.18, + "probability": 0.8347 + }, + { + "start": 13919.76, + "end": 13920.66, + "probability": 0.8473 + }, + { + "start": 13921.22, + "end": 13923.12, + "probability": 0.8915 + }, + { + "start": 13923.96, + "end": 13924.82, + "probability": 0.8716 + }, + { + "start": 13925.46, + "end": 13927.92, + "probability": 0.7253 + }, + { + "start": 13930.7, + "end": 13933.88, + "probability": 0.3084 + }, + { + "start": 13933.9, + "end": 13934.48, + "probability": 0.8071 + }, + { + "start": 13937.56, + "end": 13938.55, + "probability": 0.9917 + }, + { + "start": 13939.1, + "end": 13941.18, + "probability": 0.9525 + }, + { + "start": 13941.56, + "end": 13942.34, + "probability": 0.9608 + }, + { + "start": 13942.74, + "end": 13942.82, + "probability": 0.186 + }, + { + "start": 13942.82, + "end": 13942.94, + "probability": 0.3126 + }, + { + "start": 13943.4, + "end": 13945.16, + "probability": 0.6565 + }, + { + "start": 13945.52, + "end": 13949.8, + "probability": 0.939 + }, + { + "start": 13950.48, + "end": 13951.52, + "probability": 0.9372 + }, + { + "start": 13951.66, + "end": 13955.84, + "probability": 0.7924 + }, + { + "start": 13957.62, + "end": 13959.88, + "probability": 0.5164 + }, + { + "start": 13959.88, + "end": 13965.34, + "probability": 0.3823 + }, + { + "start": 13966.18, + "end": 13969.03, + "probability": 0.7654 + }, + { + "start": 13969.94, + "end": 13971.18, + "probability": 0.2835 + }, + { + "start": 13971.6, + "end": 13973.2, + "probability": 0.0114 + }, + { + "start": 13976.3, + "end": 13979.54, + "probability": 0.6277 + }, + { + "start": 13979.75, + "end": 13980.1, + "probability": 0.0251 + }, + { + "start": 13980.32, + "end": 13981.1, + "probability": 0.0815 + }, + { + "start": 13981.1, + "end": 13981.18, + "probability": 0.3795 + }, + { + "start": 13981.18, + "end": 13981.18, + "probability": 0.0558 + }, + { + "start": 13981.18, + "end": 13986.18, + "probability": 0.5499 + }, + { + "start": 13986.88, + "end": 13987.08, + "probability": 0.7834 + }, + { + "start": 13988.12, + "end": 13989.28, + "probability": 0.0993 + }, + { + "start": 13989.72, + "end": 13989.72, + "probability": 0.5068 + }, + { + "start": 13989.72, + "end": 13989.72, + "probability": 0.1425 + }, + { + "start": 13989.72, + "end": 13989.72, + "probability": 0.0949 + }, + { + "start": 13989.72, + "end": 13991.18, + "probability": 0.4468 + }, + { + "start": 13992.35, + "end": 13994.9, + "probability": 0.6017 + }, + { + "start": 13995.02, + "end": 13998.44, + "probability": 0.8083 + }, + { + "start": 14010.02, + "end": 14013.62, + "probability": 0.5451 + }, + { + "start": 14013.62, + "end": 14016.28, + "probability": 0.0252 + }, + { + "start": 14016.82, + "end": 14019.02, + "probability": 0.0787 + }, + { + "start": 14019.1, + "end": 14021.26, + "probability": 0.0461 + }, + { + "start": 14023.1, + "end": 14025.4, + "probability": 0.0504 + }, + { + "start": 14026.1, + "end": 14027.12, + "probability": 0.0216 + }, + { + "start": 14027.89, + "end": 14029.48, + "probability": 0.0806 + }, + { + "start": 14029.48, + "end": 14029.48, + "probability": 0.1139 + }, + { + "start": 14029.48, + "end": 14029.48, + "probability": 0.033 + }, + { + "start": 14029.48, + "end": 14029.52, + "probability": 0.4284 + }, + { + "start": 14029.52, + "end": 14029.76, + "probability": 0.5472 + }, + { + "start": 14030.0, + "end": 14030.0, + "probability": 0.0 + }, + { + "start": 14030.0, + "end": 14030.0, + "probability": 0.0 + }, + { + "start": 14030.0, + "end": 14030.0, + "probability": 0.0 + }, + { + "start": 14030.0, + "end": 14030.0, + "probability": 0.0 + }, + { + "start": 14030.0, + "end": 14030.0, + "probability": 0.0 + }, + { + "start": 14030.0, + "end": 14030.0, + "probability": 0.0 + }, + { + "start": 14030.04, + "end": 14030.14, + "probability": 0.0098 + }, + { + "start": 14030.14, + "end": 14032.28, + "probability": 0.4554 + }, + { + "start": 14032.68, + "end": 14033.38, + "probability": 0.6025 + }, + { + "start": 14034.18, + "end": 14034.98, + "probability": 0.9342 + }, + { + "start": 14035.06, + "end": 14039.08, + "probability": 0.8969 + }, + { + "start": 14039.14, + "end": 14042.54, + "probability": 0.999 + }, + { + "start": 14043.02, + "end": 14044.62, + "probability": 0.6651 + }, + { + "start": 14044.62, + "end": 14045.96, + "probability": 0.7393 + }, + { + "start": 14046.0, + "end": 14047.8, + "probability": 0.9961 + }, + { + "start": 14048.0, + "end": 14051.96, + "probability": 0.9985 + }, + { + "start": 14051.98, + "end": 14052.34, + "probability": 0.5181 + }, + { + "start": 14052.56, + "end": 14055.42, + "probability": 0.9801 + }, + { + "start": 14055.48, + "end": 14055.52, + "probability": 0.4651 + }, + { + "start": 14055.52, + "end": 14055.72, + "probability": 0.8053 + }, + { + "start": 14055.88, + "end": 14058.11, + "probability": 0.9456 + }, + { + "start": 14058.84, + "end": 14060.52, + "probability": 0.0246 + }, + { + "start": 14060.52, + "end": 14061.4, + "probability": 0.645 + }, + { + "start": 14062.88, + "end": 14064.52, + "probability": 0.8928 + }, + { + "start": 14065.16, + "end": 14067.24, + "probability": 0.2694 + }, + { + "start": 14067.28, + "end": 14067.86, + "probability": 0.6004 + }, + { + "start": 14068.22, + "end": 14073.84, + "probability": 0.8383 + }, + { + "start": 14076.68, + "end": 14078.66, + "probability": 0.1433 + }, + { + "start": 14078.66, + "end": 14079.64, + "probability": 0.0172 + }, + { + "start": 14079.7, + "end": 14080.95, + "probability": 0.1545 + }, + { + "start": 14081.38, + "end": 14082.9, + "probability": 0.3924 + }, + { + "start": 14083.44, + "end": 14086.06, + "probability": 0.3685 + }, + { + "start": 14086.18, + "end": 14088.42, + "probability": 0.4219 + }, + { + "start": 14088.54, + "end": 14092.0, + "probability": 0.4693 + }, + { + "start": 14092.0, + "end": 14092.8, + "probability": 0.6077 + }, + { + "start": 14093.06, + "end": 14094.84, + "probability": 0.2869 + }, + { + "start": 14094.86, + "end": 14095.72, + "probability": 0.8693 + }, + { + "start": 14096.08, + "end": 14098.2, + "probability": 0.5634 + }, + { + "start": 14098.36, + "end": 14100.72, + "probability": 0.7302 + }, + { + "start": 14101.1, + "end": 14101.28, + "probability": 0.0365 + }, + { + "start": 14101.28, + "end": 14101.28, + "probability": 0.0129 + }, + { + "start": 14101.28, + "end": 14102.26, + "probability": 0.4132 + }, + { + "start": 14102.26, + "end": 14102.26, + "probability": 0.2607 + }, + { + "start": 14102.26, + "end": 14104.18, + "probability": 0.8644 + }, + { + "start": 14104.72, + "end": 14105.84, + "probability": 0.035 + }, + { + "start": 14105.84, + "end": 14106.44, + "probability": 0.4421 + }, + { + "start": 14106.54, + "end": 14111.74, + "probability": 0.7953 + }, + { + "start": 14111.84, + "end": 14113.94, + "probability": 0.5566 + }, + { + "start": 14114.04, + "end": 14117.34, + "probability": 0.9035 + }, + { + "start": 14117.48, + "end": 14119.04, + "probability": 0.792 + }, + { + "start": 14119.32, + "end": 14124.0, + "probability": 0.8677 + }, + { + "start": 14140.9, + "end": 14142.58, + "probability": 0.0738 + }, + { + "start": 14143.12, + "end": 14144.12, + "probability": 0.0551 + }, + { + "start": 14144.12, + "end": 14145.42, + "probability": 0.1318 + }, + { + "start": 14145.42, + "end": 14147.46, + "probability": 0.1761 + }, + { + "start": 14147.78, + "end": 14149.0, + "probability": 0.2858 + }, + { + "start": 14151.86, + "end": 14153.17, + "probability": 0.0504 + }, + { + "start": 14153.61, + "end": 14155.02, + "probability": 0.163 + }, + { + "start": 14155.02, + "end": 14157.2, + "probability": 0.085 + }, + { + "start": 14157.26, + "end": 14158.82, + "probability": 0.0623 + }, + { + "start": 14158.86, + "end": 14159.66, + "probability": 0.0841 + }, + { + "start": 14159.66, + "end": 14161.04, + "probability": 0.0561 + }, + { + "start": 14161.04, + "end": 14164.76, + "probability": 0.0463 + }, + { + "start": 14164.76, + "end": 14165.64, + "probability": 0.0544 + }, + { + "start": 14165.92, + "end": 14165.92, + "probability": 0.1881 + }, + { + "start": 14165.92, + "end": 14165.98, + "probability": 0.221 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.59, + "end": 14167.3, + "probability": 0.2887 + }, + { + "start": 14167.4, + "end": 14168.04, + "probability": 0.1398 + }, + { + "start": 14168.04, + "end": 14168.36, + "probability": 0.2895 + }, + { + "start": 14168.92, + "end": 14169.6, + "probability": 0.1818 + }, + { + "start": 14169.62, + "end": 14171.74, + "probability": 0.9814 + }, + { + "start": 14171.74, + "end": 14171.88, + "probability": 0.1048 + }, + { + "start": 14171.88, + "end": 14171.88, + "probability": 0.0682 + }, + { + "start": 14171.88, + "end": 14173.03, + "probability": 0.1341 + }, + { + "start": 14174.26, + "end": 14176.16, + "probability": 0.1832 + }, + { + "start": 14176.16, + "end": 14179.29, + "probability": 0.0409 + }, + { + "start": 14179.6, + "end": 14183.46, + "probability": 0.8635 + }, + { + "start": 14183.58, + "end": 14183.58, + "probability": 0.161 + }, + { + "start": 14183.58, + "end": 14183.58, + "probability": 0.3256 + }, + { + "start": 14183.58, + "end": 14186.72, + "probability": 0.9768 + }, + { + "start": 14187.42, + "end": 14188.32, + "probability": 0.5773 + }, + { + "start": 14189.2, + "end": 14189.2, + "probability": 0.1861 + }, + { + "start": 14189.2, + "end": 14189.4, + "probability": 0.0133 + }, + { + "start": 14189.4, + "end": 14190.98, + "probability": 0.3571 + }, + { + "start": 14192.41, + "end": 14192.9, + "probability": 0.0917 + }, + { + "start": 14192.9, + "end": 14194.1, + "probability": 0.3898 + }, + { + "start": 14194.12, + "end": 14195.44, + "probability": 0.8066 + }, + { + "start": 14195.64, + "end": 14196.16, + "probability": 0.8223 + }, + { + "start": 14196.36, + "end": 14197.06, + "probability": 0.4838 + }, + { + "start": 14197.32, + "end": 14201.78, + "probability": 0.9876 + }, + { + "start": 14201.78, + "end": 14206.16, + "probability": 0.9974 + }, + { + "start": 14206.34, + "end": 14209.08, + "probability": 0.9696 + }, + { + "start": 14209.46, + "end": 14213.98, + "probability": 0.9922 + }, + { + "start": 14214.7, + "end": 14216.98, + "probability": 0.3811 + }, + { + "start": 14218.22, + "end": 14221.92, + "probability": 0.9976 + }, + { + "start": 14222.22, + "end": 14224.41, + "probability": 0.8955 + }, + { + "start": 14224.7, + "end": 14226.32, + "probability": 0.7684 + }, + { + "start": 14226.78, + "end": 14229.62, + "probability": 0.9949 + }, + { + "start": 14230.1, + "end": 14235.7, + "probability": 0.9355 + }, + { + "start": 14235.7, + "end": 14241.04, + "probability": 0.9986 + }, + { + "start": 14241.56, + "end": 14244.48, + "probability": 0.9423 + }, + { + "start": 14244.48, + "end": 14250.12, + "probability": 0.9221 + }, + { + "start": 14250.58, + "end": 14254.04, + "probability": 0.9969 + }, + { + "start": 14254.32, + "end": 14254.36, + "probability": 0.6715 + }, + { + "start": 14254.44, + "end": 14256.2, + "probability": 0.8906 + }, + { + "start": 14256.74, + "end": 14258.34, + "probability": 0.8606 + }, + { + "start": 14258.86, + "end": 14262.76, + "probability": 0.939 + }, + { + "start": 14262.86, + "end": 14267.14, + "probability": 0.6956 + }, + { + "start": 14267.26, + "end": 14267.28, + "probability": 0.56 + }, + { + "start": 14267.28, + "end": 14268.54, + "probability": 0.303 + }, + { + "start": 14268.68, + "end": 14269.54, + "probability": 0.7998 + }, + { + "start": 14269.72, + "end": 14269.72, + "probability": 0.532 + }, + { + "start": 14269.84, + "end": 14274.7, + "probability": 0.9537 + }, + { + "start": 14275.2, + "end": 14276.7, + "probability": 0.1895 + }, + { + "start": 14278.36, + "end": 14279.24, + "probability": 0.1166 + }, + { + "start": 14279.24, + "end": 14281.06, + "probability": 0.3768 + }, + { + "start": 14281.06, + "end": 14282.12, + "probability": 0.1036 + }, + { + "start": 14282.48, + "end": 14283.2, + "probability": 0.6109 + }, + { + "start": 14283.9, + "end": 14285.04, + "probability": 0.744 + }, + { + "start": 14285.22, + "end": 14286.16, + "probability": 0.936 + }, + { + "start": 14286.38, + "end": 14288.86, + "probability": 0.9828 + }, + { + "start": 14288.98, + "end": 14289.34, + "probability": 0.4277 + }, + { + "start": 14290.04, + "end": 14290.26, + "probability": 0.0626 + }, + { + "start": 14290.26, + "end": 14291.54, + "probability": 0.302 + }, + { + "start": 14291.76, + "end": 14293.04, + "probability": 0.5746 + }, + { + "start": 14293.1, + "end": 14294.44, + "probability": 0.5969 + }, + { + "start": 14294.62, + "end": 14296.36, + "probability": 0.9537 + }, + { + "start": 14296.86, + "end": 14301.16, + "probability": 0.77 + }, + { + "start": 14302.34, + "end": 14306.14, + "probability": 0.9302 + }, + { + "start": 14306.6, + "end": 14310.08, + "probability": 0.8385 + }, + { + "start": 14310.28, + "end": 14311.66, + "probability": 0.6076 + }, + { + "start": 14312.08, + "end": 14314.14, + "probability": 0.5118 + }, + { + "start": 14314.32, + "end": 14315.6, + "probability": 0.4174 + }, + { + "start": 14315.72, + "end": 14319.09, + "probability": 0.9453 + }, + { + "start": 14319.3, + "end": 14321.12, + "probability": 0.4273 + }, + { + "start": 14321.24, + "end": 14322.19, + "probability": 0.4226 + }, + { + "start": 14324.94, + "end": 14328.56, + "probability": 0.7135 + }, + { + "start": 14328.86, + "end": 14329.45, + "probability": 0.9815 + }, + { + "start": 14330.34, + "end": 14332.16, + "probability": 0.9023 + }, + { + "start": 14332.16, + "end": 14334.04, + "probability": 0.5135 + }, + { + "start": 14334.04, + "end": 14335.02, + "probability": 0.4948 + }, + { + "start": 14335.4, + "end": 14336.68, + "probability": 0.967 + }, + { + "start": 14337.02, + "end": 14337.67, + "probability": 0.9648 + }, + { + "start": 14338.26, + "end": 14338.66, + "probability": 0.612 + }, + { + "start": 14338.76, + "end": 14340.12, + "probability": 0.9388 + }, + { + "start": 14340.22, + "end": 14341.64, + "probability": 0.615 + }, + { + "start": 14342.28, + "end": 14344.06, + "probability": 0.9 + }, + { + "start": 14344.3, + "end": 14348.36, + "probability": 0.887 + }, + { + "start": 14348.38, + "end": 14348.88, + "probability": 0.9086 + }, + { + "start": 14349.8, + "end": 14352.54, + "probability": 0.7905 + }, + { + "start": 14353.2, + "end": 14355.06, + "probability": 0.9426 + }, + { + "start": 14355.06, + "end": 14356.12, + "probability": 0.907 + }, + { + "start": 14356.56, + "end": 14358.18, + "probability": 0.958 + }, + { + "start": 14358.72, + "end": 14362.18, + "probability": 0.9932 + }, + { + "start": 14362.18, + "end": 14368.0, + "probability": 0.9912 + }, + { + "start": 14368.12, + "end": 14368.65, + "probability": 0.755 + }, + { + "start": 14369.26, + "end": 14370.48, + "probability": 0.7548 + }, + { + "start": 14370.78, + "end": 14373.54, + "probability": 0.9933 + }, + { + "start": 14373.54, + "end": 14375.62, + "probability": 0.9255 + }, + { + "start": 14376.02, + "end": 14378.54, + "probability": 0.8597 + }, + { + "start": 14379.22, + "end": 14380.22, + "probability": 0.8916 + }, + { + "start": 14380.26, + "end": 14381.22, + "probability": 0.4926 + }, + { + "start": 14381.66, + "end": 14384.42, + "probability": 0.9617 + }, + { + "start": 14385.2, + "end": 14388.82, + "probability": 0.5821 + }, + { + "start": 14388.97, + "end": 14394.46, + "probability": 0.982 + }, + { + "start": 14394.96, + "end": 14399.48, + "probability": 0.9756 + }, + { + "start": 14399.82, + "end": 14400.0, + "probability": 0.7904 + }, + { + "start": 14400.1, + "end": 14403.98, + "probability": 0.9601 + }, + { + "start": 14405.84, + "end": 14407.07, + "probability": 0.9074 + }, + { + "start": 14407.5, + "end": 14409.38, + "probability": 0.9913 + }, + { + "start": 14409.8, + "end": 14412.68, + "probability": 0.8117 + }, + { + "start": 14412.98, + "end": 14416.86, + "probability": 0.9594 + }, + { + "start": 14417.44, + "end": 14419.44, + "probability": 0.6095 + }, + { + "start": 14420.0, + "end": 14420.82, + "probability": 0.8348 + }, + { + "start": 14421.02, + "end": 14422.9, + "probability": 0.9534 + }, + { + "start": 14423.28, + "end": 14423.98, + "probability": 0.7096 + }, + { + "start": 14424.44, + "end": 14425.0, + "probability": 0.8113 + }, + { + "start": 14425.04, + "end": 14425.95, + "probability": 0.9164 + }, + { + "start": 14426.12, + "end": 14428.64, + "probability": 0.9868 + }, + { + "start": 14429.0, + "end": 14431.08, + "probability": 0.8411 + }, + { + "start": 14431.9, + "end": 14432.24, + "probability": 0.5208 + }, + { + "start": 14432.68, + "end": 14435.48, + "probability": 0.9571 + }, + { + "start": 14435.56, + "end": 14436.14, + "probability": 0.9644 + }, + { + "start": 14436.16, + "end": 14437.14, + "probability": 0.2761 + }, + { + "start": 14437.28, + "end": 14438.42, + "probability": 0.5117 + }, + { + "start": 14438.76, + "end": 14439.56, + "probability": 0.9761 + }, + { + "start": 14439.62, + "end": 14445.32, + "probability": 0.9579 + }, + { + "start": 14445.48, + "end": 14445.76, + "probability": 0.8148 + }, + { + "start": 14446.44, + "end": 14447.3, + "probability": 0.6397 + }, + { + "start": 14448.2, + "end": 14450.72, + "probability": 0.8895 + }, + { + "start": 14451.06, + "end": 14452.28, + "probability": 0.3593 + }, + { + "start": 14452.56, + "end": 14453.2, + "probability": 0.7642 + }, + { + "start": 14453.28, + "end": 14454.48, + "probability": 0.814 + }, + { + "start": 14455.3, + "end": 14458.66, + "probability": 0.8774 + }, + { + "start": 14459.18, + "end": 14462.46, + "probability": 0.8936 + }, + { + "start": 14462.46, + "end": 14465.6, + "probability": 0.9949 + }, + { + "start": 14465.94, + "end": 14467.44, + "probability": 0.7433 + }, + { + "start": 14467.58, + "end": 14468.66, + "probability": 0.6935 + }, + { + "start": 14469.52, + "end": 14473.3, + "probability": 0.735 + }, + { + "start": 14474.34, + "end": 14475.68, + "probability": 0.7548 + }, + { + "start": 14476.88, + "end": 14480.42, + "probability": 0.9987 + }, + { + "start": 14481.0, + "end": 14486.92, + "probability": 0.9904 + }, + { + "start": 14487.72, + "end": 14489.6, + "probability": 0.9579 + }, + { + "start": 14489.68, + "end": 14489.96, + "probability": 0.8546 + }, + { + "start": 14490.06, + "end": 14491.12, + "probability": 0.8318 + }, + { + "start": 14491.38, + "end": 14491.66, + "probability": 0.3861 + }, + { + "start": 14491.76, + "end": 14492.72, + "probability": 0.6429 + }, + { + "start": 14492.72, + "end": 14494.9, + "probability": 0.9917 + }, + { + "start": 14495.28, + "end": 14495.54, + "probability": 0.4493 + }, + { + "start": 14495.54, + "end": 14496.86, + "probability": 0.6497 + }, + { + "start": 14496.9, + "end": 14498.28, + "probability": 0.7351 + }, + { + "start": 14498.58, + "end": 14499.86, + "probability": 0.9453 + }, + { + "start": 14500.56, + "end": 14502.66, + "probability": 0.8566 + }, + { + "start": 14502.72, + "end": 14504.56, + "probability": 0.9974 + }, + { + "start": 14504.92, + "end": 14507.48, + "probability": 0.9096 + }, + { + "start": 14507.92, + "end": 14509.9, + "probability": 0.9609 + }, + { + "start": 14510.44, + "end": 14511.9, + "probability": 0.8941 + }, + { + "start": 14512.32, + "end": 14519.3, + "probability": 0.598 + }, + { + "start": 14519.54, + "end": 14520.88, + "probability": 0.9834 + }, + { + "start": 14521.26, + "end": 14522.32, + "probability": 0.4319 + }, + { + "start": 14522.4, + "end": 14523.9, + "probability": 0.5806 + }, + { + "start": 14536.3, + "end": 14536.3, + "probability": 0.2042 + }, + { + "start": 14536.3, + "end": 14537.24, + "probability": 0.4015 + }, + { + "start": 14537.8, + "end": 14539.9, + "probability": 0.7803 + }, + { + "start": 14541.26, + "end": 14544.42, + "probability": 0.9971 + }, + { + "start": 14545.24, + "end": 14547.44, + "probability": 0.9838 + }, + { + "start": 14548.22, + "end": 14549.54, + "probability": 0.9756 + }, + { + "start": 14550.06, + "end": 14553.2, + "probability": 0.9959 + }, + { + "start": 14553.66, + "end": 14558.4, + "probability": 0.9954 + }, + { + "start": 14558.98, + "end": 14562.5, + "probability": 0.8403 + }, + { + "start": 14563.12, + "end": 14568.0, + "probability": 0.9219 + }, + { + "start": 14568.64, + "end": 14571.54, + "probability": 0.9978 + }, + { + "start": 14572.42, + "end": 14573.36, + "probability": 0.7921 + }, + { + "start": 14574.02, + "end": 14575.52, + "probability": 0.9819 + }, + { + "start": 14576.14, + "end": 14577.24, + "probability": 0.9784 + }, + { + "start": 14577.6, + "end": 14579.12, + "probability": 0.99 + }, + { + "start": 14580.3, + "end": 14582.06, + "probability": 0.9095 + }, + { + "start": 14582.72, + "end": 14588.18, + "probability": 0.9543 + }, + { + "start": 14588.6, + "end": 14591.38, + "probability": 0.7268 + }, + { + "start": 14591.38, + "end": 14592.1, + "probability": 0.8672 + }, + { + "start": 14592.38, + "end": 14593.42, + "probability": 0.9424 + }, + { + "start": 14593.48, + "end": 14596.52, + "probability": 0.9707 + }, + { + "start": 14597.38, + "end": 14598.06, + "probability": 0.8381 + }, + { + "start": 14598.66, + "end": 14600.16, + "probability": 0.9572 + }, + { + "start": 14600.22, + "end": 14602.94, + "probability": 0.9747 + }, + { + "start": 14603.66, + "end": 14604.16, + "probability": 0.9839 + }, + { + "start": 14604.8, + "end": 14607.38, + "probability": 0.8652 + }, + { + "start": 14608.44, + "end": 14614.0, + "probability": 0.9946 + }, + { + "start": 14614.76, + "end": 14617.92, + "probability": 0.9904 + }, + { + "start": 14618.36, + "end": 14619.76, + "probability": 0.9702 + }, + { + "start": 14620.14, + "end": 14621.97, + "probability": 0.8123 + }, + { + "start": 14622.06, + "end": 14623.09, + "probability": 0.8853 + }, + { + "start": 14624.4, + "end": 14625.74, + "probability": 0.9288 + }, + { + "start": 14625.88, + "end": 14628.66, + "probability": 0.9872 + }, + { + "start": 14629.64, + "end": 14630.66, + "probability": 0.9866 + }, + { + "start": 14631.56, + "end": 14633.72, + "probability": 0.991 + }, + { + "start": 14634.16, + "end": 14638.1, + "probability": 0.9942 + }, + { + "start": 14640.96, + "end": 14643.89, + "probability": 0.5744 + }, + { + "start": 14645.94, + "end": 14648.82, + "probability": 0.9067 + }, + { + "start": 14649.18, + "end": 14649.72, + "probability": 0.8203 + }, + { + "start": 14649.78, + "end": 14650.7, + "probability": 0.9019 + }, + { + "start": 14651.08, + "end": 14651.82, + "probability": 0.9578 + }, + { + "start": 14652.5, + "end": 14657.06, + "probability": 0.9827 + }, + { + "start": 14658.16, + "end": 14660.88, + "probability": 0.9964 + }, + { + "start": 14660.88, + "end": 14664.84, + "probability": 0.7957 + }, + { + "start": 14665.62, + "end": 14667.42, + "probability": 0.8533 + }, + { + "start": 14668.32, + "end": 14669.64, + "probability": 0.8422 + }, + { + "start": 14670.32, + "end": 14673.66, + "probability": 0.9775 + }, + { + "start": 14674.44, + "end": 14678.54, + "probability": 0.9751 + }, + { + "start": 14679.68, + "end": 14681.92, + "probability": 0.9956 + }, + { + "start": 14682.72, + "end": 14686.16, + "probability": 0.9951 + }, + { + "start": 14686.6, + "end": 14690.74, + "probability": 0.9946 + }, + { + "start": 14691.58, + "end": 14696.42, + "probability": 0.9976 + }, + { + "start": 14697.46, + "end": 14700.22, + "probability": 0.9714 + }, + { + "start": 14701.32, + "end": 14703.28, + "probability": 0.9619 + }, + { + "start": 14703.98, + "end": 14705.43, + "probability": 0.9811 + }, + { + "start": 14706.56, + "end": 14710.66, + "probability": 0.9792 + }, + { + "start": 14710.66, + "end": 14712.95, + "probability": 0.9731 + }, + { + "start": 14714.86, + "end": 14719.16, + "probability": 0.9969 + }, + { + "start": 14719.98, + "end": 14721.4, + "probability": 0.8549 + }, + { + "start": 14721.92, + "end": 14724.4, + "probability": 0.9672 + }, + { + "start": 14725.24, + "end": 14726.86, + "probability": 0.9685 + }, + { + "start": 14727.22, + "end": 14728.9, + "probability": 0.9812 + }, + { + "start": 14729.34, + "end": 14730.66, + "probability": 0.9653 + }, + { + "start": 14730.94, + "end": 14733.3, + "probability": 0.9812 + }, + { + "start": 14733.36, + "end": 14735.98, + "probability": 0.986 + }, + { + "start": 14736.54, + "end": 14740.02, + "probability": 0.9985 + }, + { + "start": 14740.44, + "end": 14742.62, + "probability": 0.9854 + }, + { + "start": 14742.98, + "end": 14743.52, + "probability": 0.8157 + }, + { + "start": 14743.62, + "end": 14743.94, + "probability": 0.7886 + }, + { + "start": 14744.2, + "end": 14745.73, + "probability": 0.9373 + }, + { + "start": 14761.24, + "end": 14762.84, + "probability": 0.8998 + }, + { + "start": 14763.92, + "end": 14766.88, + "probability": 0.7211 + }, + { + "start": 14768.38, + "end": 14771.16, + "probability": 0.9919 + }, + { + "start": 14772.2, + "end": 14773.18, + "probability": 0.868 + }, + { + "start": 14773.8, + "end": 14777.12, + "probability": 0.9933 + }, + { + "start": 14777.96, + "end": 14780.38, + "probability": 0.9829 + }, + { + "start": 14781.44, + "end": 14785.0, + "probability": 0.9995 + }, + { + "start": 14785.72, + "end": 14787.68, + "probability": 0.9561 + }, + { + "start": 14788.26, + "end": 14789.12, + "probability": 0.988 + }, + { + "start": 14790.52, + "end": 14792.12, + "probability": 0.8685 + }, + { + "start": 14793.06, + "end": 14794.5, + "probability": 0.9927 + }, + { + "start": 14795.7, + "end": 14799.2, + "probability": 0.9962 + }, + { + "start": 14801.02, + "end": 14801.9, + "probability": 0.8656 + }, + { + "start": 14802.8, + "end": 14805.06, + "probability": 0.963 + }, + { + "start": 14805.78, + "end": 14808.14, + "probability": 0.9874 + }, + { + "start": 14809.86, + "end": 14811.14, + "probability": 0.9701 + }, + { + "start": 14811.94, + "end": 14812.82, + "probability": 0.993 + }, + { + "start": 14813.5, + "end": 14814.84, + "probability": 0.9877 + }, + { + "start": 14815.44, + "end": 14815.76, + "probability": 0.8194 + }, + { + "start": 14816.76, + "end": 14817.52, + "probability": 0.934 + }, + { + "start": 14818.58, + "end": 14819.86, + "probability": 0.9727 + }, + { + "start": 14821.36, + "end": 14821.66, + "probability": 0.984 + }, + { + "start": 14822.38, + "end": 14823.22, + "probability": 0.9575 + }, + { + "start": 14824.8, + "end": 14826.36, + "probability": 0.9094 + }, + { + "start": 14826.88, + "end": 14827.94, + "probability": 0.8702 + }, + { + "start": 14828.92, + "end": 14833.13, + "probability": 0.9628 + }, + { + "start": 14833.68, + "end": 14835.28, + "probability": 0.88 + }, + { + "start": 14836.2, + "end": 14836.78, + "probability": 0.7367 + }, + { + "start": 14837.86, + "end": 14838.6, + "probability": 0.9328 + }, + { + "start": 14839.42, + "end": 14840.32, + "probability": 0.9357 + }, + { + "start": 14841.14, + "end": 14845.42, + "probability": 0.9842 + }, + { + "start": 14846.06, + "end": 14848.06, + "probability": 0.9235 + }, + { + "start": 14849.66, + "end": 14849.96, + "probability": 0.9021 + }, + { + "start": 14850.04, + "end": 14850.48, + "probability": 0.9067 + }, + { + "start": 14850.66, + "end": 14855.3, + "probability": 0.9772 + }, + { + "start": 14855.9, + "end": 14856.86, + "probability": 0.9883 + }, + { + "start": 14858.24, + "end": 14860.6, + "probability": 0.8529 + }, + { + "start": 14861.38, + "end": 14862.28, + "probability": 0.9294 + }, + { + "start": 14863.5, + "end": 14863.82, + "probability": 0.6718 + }, + { + "start": 14864.8, + "end": 14866.38, + "probability": 0.9736 + }, + { + "start": 14868.14, + "end": 14871.08, + "probability": 0.997 + }, + { + "start": 14871.08, + "end": 14875.1, + "probability": 0.9967 + }, + { + "start": 14875.8, + "end": 14876.82, + "probability": 0.9626 + }, + { + "start": 14878.42, + "end": 14879.38, + "probability": 0.9924 + }, + { + "start": 14880.16, + "end": 14881.02, + "probability": 0.6351 + }, + { + "start": 14881.8, + "end": 14883.62, + "probability": 0.8256 + }, + { + "start": 14884.54, + "end": 14885.3, + "probability": 0.8942 + }, + { + "start": 14885.82, + "end": 14886.52, + "probability": 0.8175 + }, + { + "start": 14886.78, + "end": 14888.04, + "probability": 0.9915 + }, + { + "start": 14889.02, + "end": 14890.3, + "probability": 0.9436 + }, + { + "start": 14890.92, + "end": 14893.82, + "probability": 0.9507 + }, + { + "start": 14894.92, + "end": 14899.89, + "probability": 0.9903 + }, + { + "start": 14901.26, + "end": 14901.88, + "probability": 0.5844 + }, + { + "start": 14904.22, + "end": 14905.2, + "probability": 0.7285 + }, + { + "start": 14906.06, + "end": 14910.44, + "probability": 0.9681 + }, + { + "start": 14911.06, + "end": 14912.16, + "probability": 0.9733 + }, + { + "start": 14913.16, + "end": 14915.78, + "probability": 0.9424 + }, + { + "start": 14916.5, + "end": 14918.9, + "probability": 0.9739 + }, + { + "start": 14919.6, + "end": 14921.64, + "probability": 0.8893 + }, + { + "start": 14922.54, + "end": 14923.94, + "probability": 0.7648 + }, + { + "start": 14924.94, + "end": 14925.3, + "probability": 0.9164 + }, + { + "start": 14926.62, + "end": 14927.46, + "probability": 0.8668 + }, + { + "start": 14927.94, + "end": 14929.46, + "probability": 0.7133 + }, + { + "start": 14938.96, + "end": 14939.76, + "probability": 0.8358 + }, + { + "start": 14943.02, + "end": 14944.72, + "probability": 0.5252 + }, + { + "start": 14946.34, + "end": 14951.56, + "probability": 0.7871 + }, + { + "start": 14953.0, + "end": 14954.1, + "probability": 0.8395 + }, + { + "start": 14955.46, + "end": 14957.43, + "probability": 0.999 + }, + { + "start": 14958.9, + "end": 14961.2, + "probability": 0.9954 + }, + { + "start": 14962.16, + "end": 14964.62, + "probability": 0.9483 + }, + { + "start": 14965.18, + "end": 14969.82, + "probability": 0.9804 + }, + { + "start": 14971.4, + "end": 14972.14, + "probability": 0.8325 + }, + { + "start": 14972.3, + "end": 14973.7, + "probability": 0.9883 + }, + { + "start": 14973.72, + "end": 14976.84, + "probability": 0.9973 + }, + { + "start": 14978.77, + "end": 14981.38, + "probability": 0.7621 + }, + { + "start": 14982.64, + "end": 14985.04, + "probability": 0.9766 + }, + { + "start": 14986.48, + "end": 14987.8, + "probability": 0.9686 + }, + { + "start": 14989.02, + "end": 14992.8, + "probability": 0.9965 + }, + { + "start": 14993.8, + "end": 14996.5, + "probability": 0.9812 + }, + { + "start": 14997.44, + "end": 14999.44, + "probability": 0.9973 + }, + { + "start": 15000.14, + "end": 15001.62, + "probability": 0.7256 + }, + { + "start": 15003.62, + "end": 15008.34, + "probability": 0.9781 + }, + { + "start": 15009.66, + "end": 15015.08, + "probability": 0.998 + }, + { + "start": 15015.88, + "end": 15018.38, + "probability": 0.9635 + }, + { + "start": 15019.42, + "end": 15025.28, + "probability": 0.9206 + }, + { + "start": 15026.2, + "end": 15031.48, + "probability": 0.9797 + }, + { + "start": 15031.94, + "end": 15032.66, + "probability": 0.8415 + }, + { + "start": 15033.04, + "end": 15033.74, + "probability": 0.8411 + }, + { + "start": 15034.1, + "end": 15035.46, + "probability": 0.7471 + }, + { + "start": 15036.68, + "end": 15039.6, + "probability": 0.9939 + }, + { + "start": 15039.96, + "end": 15044.22, + "probability": 0.9831 + }, + { + "start": 15045.28, + "end": 15047.22, + "probability": 0.9974 + }, + { + "start": 15049.08, + "end": 15051.08, + "probability": 0.9968 + }, + { + "start": 15051.58, + "end": 15056.0, + "probability": 0.9719 + }, + { + "start": 15056.42, + "end": 15058.64, + "probability": 0.9914 + }, + { + "start": 15059.78, + "end": 15063.06, + "probability": 0.9971 + }, + { + "start": 15064.24, + "end": 15071.52, + "probability": 0.9881 + }, + { + "start": 15072.34, + "end": 15073.1, + "probability": 0.7223 + }, + { + "start": 15073.66, + "end": 15074.78, + "probability": 0.9578 + }, + { + "start": 15075.88, + "end": 15078.96, + "probability": 0.9955 + }, + { + "start": 15078.96, + "end": 15083.44, + "probability": 0.9756 + }, + { + "start": 15085.14, + "end": 15088.06, + "probability": 0.5796 + }, + { + "start": 15088.88, + "end": 15090.28, + "probability": 0.887 + }, + { + "start": 15091.28, + "end": 15092.78, + "probability": 0.9927 + }, + { + "start": 15094.06, + "end": 15096.49, + "probability": 0.9809 + }, + { + "start": 15098.14, + "end": 15099.0, + "probability": 0.9887 + }, + { + "start": 15100.26, + "end": 15101.86, + "probability": 0.9951 + }, + { + "start": 15102.74, + "end": 15104.4, + "probability": 0.5229 + }, + { + "start": 15105.16, + "end": 15106.4, + "probability": 0.9637 + }, + { + "start": 15107.06, + "end": 15108.38, + "probability": 0.9911 + }, + { + "start": 15109.98, + "end": 15111.98, + "probability": 0.9852 + }, + { + "start": 15112.94, + "end": 15116.38, + "probability": 0.9666 + }, + { + "start": 15116.9, + "end": 15117.9, + "probability": 0.8295 + }, + { + "start": 15118.46, + "end": 15120.34, + "probability": 0.9988 + }, + { + "start": 15121.22, + "end": 15122.28, + "probability": 0.998 + }, + { + "start": 15123.14, + "end": 15124.12, + "probability": 0.9189 + }, + { + "start": 15125.18, + "end": 15127.16, + "probability": 0.9976 + }, + { + "start": 15127.98, + "end": 15131.26, + "probability": 0.9585 + }, + { + "start": 15131.92, + "end": 15132.9, + "probability": 0.7812 + }, + { + "start": 15133.36, + "end": 15135.46, + "probability": 0.7714 + }, + { + "start": 15135.9, + "end": 15138.08, + "probability": 0.9457 + }, + { + "start": 15138.52, + "end": 15140.86, + "probability": 0.9658 + }, + { + "start": 15142.02, + "end": 15143.44, + "probability": 0.9679 + }, + { + "start": 15144.16, + "end": 15149.18, + "probability": 0.9928 + }, + { + "start": 15149.84, + "end": 15152.02, + "probability": 0.9935 + }, + { + "start": 15152.56, + "end": 15156.68, + "probability": 0.9926 + }, + { + "start": 15157.06, + "end": 15157.32, + "probability": 0.9095 + }, + { + "start": 15158.02, + "end": 15158.7, + "probability": 0.8521 + }, + { + "start": 15159.16, + "end": 15160.68, + "probability": 0.8111 + }, + { + "start": 15162.26, + "end": 15163.58, + "probability": 0.7092 + }, + { + "start": 15164.06, + "end": 15165.48, + "probability": 0.9713 + }, + { + "start": 15166.74, + "end": 15167.34, + "probability": 0.6693 + }, + { + "start": 15168.82, + "end": 15170.14, + "probability": 0.979 + }, + { + "start": 15171.94, + "end": 15173.52, + "probability": 0.5119 + }, + { + "start": 15174.28, + "end": 15179.53, + "probability": 0.8957 + }, + { + "start": 15181.44, + "end": 15181.44, + "probability": 0.386 + }, + { + "start": 15181.44, + "end": 15184.4, + "probability": 0.9651 + }, + { + "start": 15185.22, + "end": 15186.61, + "probability": 0.8726 + }, + { + "start": 15187.84, + "end": 15188.34, + "probability": 0.6013 + }, + { + "start": 15188.62, + "end": 15192.58, + "probability": 0.729 + }, + { + "start": 15192.68, + "end": 15194.44, + "probability": 0.9924 + }, + { + "start": 15194.64, + "end": 15196.4, + "probability": 0.984 + }, + { + "start": 15197.32, + "end": 15201.02, + "probability": 0.8986 + }, + { + "start": 15201.56, + "end": 15202.66, + "probability": 0.6317 + }, + { + "start": 15203.26, + "end": 15205.68, + "probability": 0.9467 + }, + { + "start": 15206.26, + "end": 15207.02, + "probability": 0.9825 + }, + { + "start": 15207.64, + "end": 15213.38, + "probability": 0.9874 + }, + { + "start": 15213.96, + "end": 15215.44, + "probability": 0.7961 + }, + { + "start": 15216.02, + "end": 15218.1, + "probability": 0.9941 + }, + { + "start": 15218.74, + "end": 15220.22, + "probability": 0.8598 + }, + { + "start": 15220.76, + "end": 15221.74, + "probability": 0.9901 + }, + { + "start": 15222.24, + "end": 15224.74, + "probability": 0.9868 + }, + { + "start": 15225.56, + "end": 15226.9, + "probability": 0.9779 + }, + { + "start": 15227.36, + "end": 15229.74, + "probability": 0.999 + }, + { + "start": 15230.18, + "end": 15232.52, + "probability": 0.9968 + }, + { + "start": 15232.58, + "end": 15233.48, + "probability": 0.8125 + }, + { + "start": 15234.16, + "end": 15236.48, + "probability": 0.9688 + }, + { + "start": 15237.1, + "end": 15241.36, + "probability": 0.9673 + }, + { + "start": 15242.5, + "end": 15244.12, + "probability": 0.9866 + }, + { + "start": 15245.08, + "end": 15247.8, + "probability": 0.9883 + }, + { + "start": 15248.94, + "end": 15251.82, + "probability": 0.9844 + }, + { + "start": 15252.44, + "end": 15255.96, + "probability": 0.8842 + }, + { + "start": 15256.1, + "end": 15259.04, + "probability": 0.9936 + }, + { + "start": 15259.7, + "end": 15260.24, + "probability": 0.555 + }, + { + "start": 15260.32, + "end": 15263.3, + "probability": 0.9123 + }, + { + "start": 15263.3, + "end": 15265.88, + "probability": 0.9628 + }, + { + "start": 15266.02, + "end": 15267.31, + "probability": 0.9873 + }, + { + "start": 15268.06, + "end": 15270.57, + "probability": 0.9885 + }, + { + "start": 15271.1, + "end": 15272.38, + "probability": 0.6418 + }, + { + "start": 15273.26, + "end": 15277.6, + "probability": 0.9882 + }, + { + "start": 15278.16, + "end": 15279.86, + "probability": 0.9975 + }, + { + "start": 15280.58, + "end": 15282.32, + "probability": 0.4025 + }, + { + "start": 15282.88, + "end": 15286.42, + "probability": 0.7501 + }, + { + "start": 15286.86, + "end": 15291.16, + "probability": 0.8945 + }, + { + "start": 15291.38, + "end": 15293.0, + "probability": 0.8801 + }, + { + "start": 15293.62, + "end": 15295.29, + "probability": 0.5083 + }, + { + "start": 15295.42, + "end": 15296.74, + "probability": 0.944 + }, + { + "start": 15296.94, + "end": 15298.7, + "probability": 0.8077 + }, + { + "start": 15298.82, + "end": 15301.44, + "probability": 0.9203 + }, + { + "start": 15301.44, + "end": 15304.34, + "probability": 0.9261 + }, + { + "start": 15304.92, + "end": 15305.2, + "probability": 0.2832 + }, + { + "start": 15305.28, + "end": 15307.82, + "probability": 0.9553 + }, + { + "start": 15308.6, + "end": 15311.76, + "probability": 0.8995 + }, + { + "start": 15312.6, + "end": 15313.68, + "probability": 0.7534 + }, + { + "start": 15314.3, + "end": 15315.4, + "probability": 0.8031 + }, + { + "start": 15315.44, + "end": 15317.14, + "probability": 0.8241 + }, + { + "start": 15317.62, + "end": 15318.86, + "probability": 0.907 + }, + { + "start": 15319.02, + "end": 15320.5, + "probability": 0.9369 + }, + { + "start": 15320.96, + "end": 15322.4, + "probability": 0.5132 + }, + { + "start": 15323.4, + "end": 15325.98, + "probability": 0.6738 + }, + { + "start": 15326.68, + "end": 15329.56, + "probability": 0.9675 + }, + { + "start": 15330.0, + "end": 15331.4, + "probability": 0.5204 + }, + { + "start": 15331.58, + "end": 15332.26, + "probability": 0.846 + }, + { + "start": 15332.52, + "end": 15336.86, + "probability": 0.9531 + }, + { + "start": 15337.02, + "end": 15338.56, + "probability": 0.7607 + }, + { + "start": 15338.74, + "end": 15340.26, + "probability": 0.9533 + }, + { + "start": 15341.12, + "end": 15343.48, + "probability": 0.7414 + }, + { + "start": 15343.72, + "end": 15345.78, + "probability": 0.9779 + }, + { + "start": 15346.28, + "end": 15347.54, + "probability": 0.8715 + }, + { + "start": 15347.68, + "end": 15348.9, + "probability": 0.959 + }, + { + "start": 15349.38, + "end": 15350.02, + "probability": 0.5007 + }, + { + "start": 15351.16, + "end": 15353.76, + "probability": 0.9175 + }, + { + "start": 15354.12, + "end": 15358.28, + "probability": 0.9968 + }, + { + "start": 15358.36, + "end": 15358.36, + "probability": 0.341 + }, + { + "start": 15358.82, + "end": 15360.66, + "probability": 0.9758 + }, + { + "start": 15360.86, + "end": 15361.1, + "probability": 0.5834 + }, + { + "start": 15361.18, + "end": 15361.88, + "probability": 0.9111 + }, + { + "start": 15362.24, + "end": 15363.88, + "probability": 0.8971 + }, + { + "start": 15364.8, + "end": 15365.44, + "probability": 0.2951 + }, + { + "start": 15366.32, + "end": 15368.62, + "probability": 0.7178 + }, + { + "start": 15369.38, + "end": 15370.08, + "probability": 0.8622 + }, + { + "start": 15382.52, + "end": 15383.46, + "probability": 0.7323 + }, + { + "start": 15387.72, + "end": 15389.82, + "probability": 0.7145 + }, + { + "start": 15389.94, + "end": 15391.92, + "probability": 0.9812 + }, + { + "start": 15393.04, + "end": 15393.82, + "probability": 0.2675 + }, + { + "start": 15393.96, + "end": 15395.56, + "probability": 0.6238 + }, + { + "start": 15396.4, + "end": 15397.92, + "probability": 0.7869 + }, + { + "start": 15399.44, + "end": 15400.34, + "probability": 0.6689 + }, + { + "start": 15401.4, + "end": 15402.84, + "probability": 0.9712 + }, + { + "start": 15403.86, + "end": 15405.18, + "probability": 0.7651 + }, + { + "start": 15406.24, + "end": 15409.44, + "probability": 0.7413 + }, + { + "start": 15410.16, + "end": 15413.2, + "probability": 0.9767 + }, + { + "start": 15413.42, + "end": 15415.24, + "probability": 0.9732 + }, + { + "start": 15416.1, + "end": 15416.5, + "probability": 0.4445 + }, + { + "start": 15416.72, + "end": 15419.22, + "probability": 0.8233 + }, + { + "start": 15419.34, + "end": 15422.86, + "probability": 0.9209 + }, + { + "start": 15422.9, + "end": 15424.58, + "probability": 0.8849 + }, + { + "start": 15425.78, + "end": 15429.68, + "probability": 0.9722 + }, + { + "start": 15430.74, + "end": 15432.62, + "probability": 0.9286 + }, + { + "start": 15433.5, + "end": 15435.98, + "probability": 0.9028 + }, + { + "start": 15437.32, + "end": 15438.24, + "probability": 0.7134 + }, + { + "start": 15439.3, + "end": 15440.22, + "probability": 0.6307 + }, + { + "start": 15440.48, + "end": 15441.68, + "probability": 0.9692 + }, + { + "start": 15441.74, + "end": 15444.76, + "probability": 0.967 + }, + { + "start": 15445.44, + "end": 15448.6, + "probability": 0.5044 + }, + { + "start": 15449.32, + "end": 15449.46, + "probability": 0.8575 + }, + { + "start": 15451.12, + "end": 15452.98, + "probability": 0.9763 + }, + { + "start": 15453.46, + "end": 15457.86, + "probability": 0.7915 + }, + { + "start": 15458.02, + "end": 15459.98, + "probability": 0.5587 + }, + { + "start": 15460.88, + "end": 15461.72, + "probability": 0.7063 + }, + { + "start": 15461.84, + "end": 15462.38, + "probability": 0.9445 + }, + { + "start": 15462.4, + "end": 15462.96, + "probability": 0.9748 + }, + { + "start": 15462.96, + "end": 15465.34, + "probability": 0.9731 + }, + { + "start": 15465.44, + "end": 15466.32, + "probability": 0.5522 + }, + { + "start": 15467.04, + "end": 15469.72, + "probability": 0.997 + }, + { + "start": 15472.52, + "end": 15475.34, + "probability": 0.8314 + }, + { + "start": 15476.16, + "end": 15476.56, + "probability": 0.9131 + }, + { + "start": 15477.42, + "end": 15479.1, + "probability": 0.9753 + }, + { + "start": 15479.28, + "end": 15479.94, + "probability": 0.9299 + }, + { + "start": 15480.04, + "end": 15485.54, + "probability": 0.7797 + }, + { + "start": 15486.5, + "end": 15487.76, + "probability": 0.793 + }, + { + "start": 15488.2, + "end": 15489.98, + "probability": 0.9745 + }, + { + "start": 15490.4, + "end": 15491.34, + "probability": 0.7839 + }, + { + "start": 15492.52, + "end": 15495.0, + "probability": 0.8406 + }, + { + "start": 15496.26, + "end": 15499.58, + "probability": 0.9531 + }, + { + "start": 15500.54, + "end": 15505.2, + "probability": 0.9717 + }, + { + "start": 15505.2, + "end": 15509.36, + "probability": 0.7957 + }, + { + "start": 15509.88, + "end": 15510.52, + "probability": 0.6487 + }, + { + "start": 15511.18, + "end": 15513.92, + "probability": 0.8722 + }, + { + "start": 15514.42, + "end": 15515.64, + "probability": 0.7657 + }, + { + "start": 15516.16, + "end": 15517.17, + "probability": 0.9023 + }, + { + "start": 15519.42, + "end": 15519.42, + "probability": 0.0851 + }, + { + "start": 15521.26, + "end": 15524.6, + "probability": 0.8892 + }, + { + "start": 15524.8, + "end": 15526.1, + "probability": 0.9968 + }, + { + "start": 15526.62, + "end": 15526.96, + "probability": 0.5438 + }, + { + "start": 15527.72, + "end": 15529.04, + "probability": 0.9932 + }, + { + "start": 15529.76, + "end": 15532.0, + "probability": 0.9277 + }, + { + "start": 15532.48, + "end": 15534.0, + "probability": 0.9819 + }, + { + "start": 15535.72, + "end": 15538.22, + "probability": 0.9949 + }, + { + "start": 15538.42, + "end": 15541.74, + "probability": 0.985 + }, + { + "start": 15541.74, + "end": 15546.12, + "probability": 0.8678 + }, + { + "start": 15546.64, + "end": 15547.58, + "probability": 0.5586 + }, + { + "start": 15549.14, + "end": 15552.96, + "probability": 0.72 + }, + { + "start": 15553.4, + "end": 15556.38, + "probability": 0.8805 + }, + { + "start": 15556.76, + "end": 15557.98, + "probability": 0.9564 + }, + { + "start": 15558.34, + "end": 15561.98, + "probability": 0.9825 + }, + { + "start": 15562.08, + "end": 15565.68, + "probability": 0.991 + }, + { + "start": 15565.94, + "end": 15566.98, + "probability": 0.8076 + }, + { + "start": 15567.7, + "end": 15571.56, + "probability": 0.8463 + }, + { + "start": 15572.58, + "end": 15574.92, + "probability": 0.981 + }, + { + "start": 15575.68, + "end": 15577.42, + "probability": 0.5841 + }, + { + "start": 15577.58, + "end": 15580.2, + "probability": 0.9667 + }, + { + "start": 15580.46, + "end": 15584.48, + "probability": 0.5463 + }, + { + "start": 15584.74, + "end": 15585.14, + "probability": 0.6865 + }, + { + "start": 15585.44, + "end": 15586.88, + "probability": 0.8876 + }, + { + "start": 15588.12, + "end": 15588.94, + "probability": 0.5599 + }, + { + "start": 15589.52, + "end": 15590.96, + "probability": 0.8332 + }, + { + "start": 15592.3, + "end": 15592.88, + "probability": 0.7268 + }, + { + "start": 15593.46, + "end": 15594.42, + "probability": 0.9259 + }, + { + "start": 15605.56, + "end": 15606.78, + "probability": 0.6243 + }, + { + "start": 15611.9, + "end": 15614.34, + "probability": 0.9461 + }, + { + "start": 15617.0, + "end": 15620.26, + "probability": 0.9797 + }, + { + "start": 15621.64, + "end": 15623.82, + "probability": 0.9968 + }, + { + "start": 15624.36, + "end": 15625.36, + "probability": 0.9426 + }, + { + "start": 15626.44, + "end": 15626.78, + "probability": 0.668 + }, + { + "start": 15626.82, + "end": 15629.2, + "probability": 0.9969 + }, + { + "start": 15630.0, + "end": 15633.5, + "probability": 0.9649 + }, + { + "start": 15635.02, + "end": 15640.2, + "probability": 0.7712 + }, + { + "start": 15640.42, + "end": 15646.72, + "probability": 0.9093 + }, + { + "start": 15655.78, + "end": 15657.3, + "probability": 0.7885 + }, + { + "start": 15664.64, + "end": 15665.0, + "probability": 0.0922 + }, + { + "start": 15682.16, + "end": 15682.84, + "probability": 0.1654 + }, + { + "start": 15687.06, + "end": 15687.34, + "probability": 0.0722 + }, + { + "start": 15687.54, + "end": 15689.28, + "probability": 0.0793 + }, + { + "start": 15689.28, + "end": 15690.47, + "probability": 0.0883 + }, + { + "start": 15694.04, + "end": 15694.97, + "probability": 0.0875 + }, + { + "start": 15696.44, + "end": 15699.83, + "probability": 0.1113 + }, + { + "start": 15700.46, + "end": 15701.46, + "probability": 0.0074 + }, + { + "start": 15701.46, + "end": 15701.46, + "probability": 0.1404 + }, + { + "start": 15701.46, + "end": 15702.82, + "probability": 0.0487 + }, + { + "start": 15702.94, + "end": 15705.48, + "probability": 0.0324 + }, + { + "start": 15705.48, + "end": 15707.68, + "probability": 0.0562 + }, + { + "start": 15707.68, + "end": 15709.18, + "probability": 0.0711 + }, + { + "start": 15709.18, + "end": 15710.62, + "probability": 0.0338 + }, + { + "start": 15711.43, + "end": 15711.92, + "probability": 0.1431 + }, + { + "start": 15711.92, + "end": 15712.12, + "probability": 0.2252 + }, + { + "start": 15712.12, + "end": 15712.5, + "probability": 0.003 + }, + { + "start": 15712.5, + "end": 15712.84, + "probability": 0.0206 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15713.0, + "end": 15713.0, + "probability": 0.0 + }, + { + "start": 15717.64, + "end": 15721.0, + "probability": 0.4123 + }, + { + "start": 15721.26, + "end": 15724.5, + "probability": 0.8231 + }, + { + "start": 15724.54, + "end": 15725.5, + "probability": 0.4458 + }, + { + "start": 15725.82, + "end": 15729.6, + "probability": 0.8499 + }, + { + "start": 15729.8, + "end": 15730.78, + "probability": 0.5533 + }, + { + "start": 15730.82, + "end": 15732.74, + "probability": 0.5237 + }, + { + "start": 15732.74, + "end": 15733.2, + "probability": 0.1435 + }, + { + "start": 15733.91, + "end": 15736.92, + "probability": 0.988 + }, + { + "start": 15737.0, + "end": 15738.94, + "probability": 0.9863 + }, + { + "start": 15739.88, + "end": 15742.26, + "probability": 0.1802 + }, + { + "start": 15748.52, + "end": 15750.76, + "probability": 0.8279 + }, + { + "start": 15751.48, + "end": 15751.82, + "probability": 0.4238 + }, + { + "start": 15752.4, + "end": 15753.44, + "probability": 0.0072 + }, + { + "start": 15753.44, + "end": 15756.76, + "probability": 0.0559 + }, + { + "start": 15761.62, + "end": 15768.38, + "probability": 0.0788 + }, + { + "start": 15768.38, + "end": 15768.92, + "probability": 0.111 + }, + { + "start": 15771.76, + "end": 15775.74, + "probability": 0.0754 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.0, + "end": 15838.0, + "probability": 0.0 + }, + { + "start": 15838.12, + "end": 15841.12, + "probability": 0.8757 + }, + { + "start": 15841.3, + "end": 15842.2, + "probability": 0.0968 + }, + { + "start": 15842.2, + "end": 15845.1, + "probability": 0.7808 + }, + { + "start": 15846.06, + "end": 15846.6, + "probability": 0.3561 + }, + { + "start": 15847.0, + "end": 15849.78, + "probability": 0.9224 + }, + { + "start": 15851.06, + "end": 15851.08, + "probability": 0.0274 + }, + { + "start": 15851.08, + "end": 15851.08, + "probability": 0.0699 + }, + { + "start": 15851.08, + "end": 15853.17, + "probability": 0.8711 + }, + { + "start": 15854.12, + "end": 15854.18, + "probability": 0.0192 + }, + { + "start": 15854.18, + "end": 15856.77, + "probability": 0.6229 + }, + { + "start": 15857.54, + "end": 15858.04, + "probability": 0.437 + }, + { + "start": 15858.24, + "end": 15859.6, + "probability": 0.3448 + }, + { + "start": 15859.6, + "end": 15860.48, + "probability": 0.2481 + }, + { + "start": 15862.28, + "end": 15862.96, + "probability": 0.0443 + }, + { + "start": 15862.96, + "end": 15862.96, + "probability": 0.015 + }, + { + "start": 15862.96, + "end": 15865.24, + "probability": 0.5581 + }, + { + "start": 15865.88, + "end": 15865.88, + "probability": 0.1732 + }, + { + "start": 15865.88, + "end": 15865.88, + "probability": 0.1167 + }, + { + "start": 15865.88, + "end": 15866.02, + "probability": 0.4578 + }, + { + "start": 15866.18, + "end": 15868.96, + "probability": 0.2332 + }, + { + "start": 15870.34, + "end": 15870.88, + "probability": 0.1861 + }, + { + "start": 15870.9, + "end": 15871.62, + "probability": 0.1867 + }, + { + "start": 15872.0, + "end": 15872.02, + "probability": 0.0226 + }, + { + "start": 15872.02, + "end": 15872.02, + "probability": 0.4112 + }, + { + "start": 15872.02, + "end": 15872.02, + "probability": 0.1742 + }, + { + "start": 15872.02, + "end": 15873.04, + "probability": 0.2956 + }, + { + "start": 15873.18, + "end": 15875.91, + "probability": 0.5745 + }, + { + "start": 15876.7, + "end": 15877.06, + "probability": 0.0338 + }, + { + "start": 15878.16, + "end": 15878.34, + "probability": 0.1013 + }, + { + "start": 15878.34, + "end": 15879.62, + "probability": 0.3341 + }, + { + "start": 15879.9, + "end": 15879.97, + "probability": 0.0194 + }, + { + "start": 15881.64, + "end": 15882.74, + "probability": 0.3341 + }, + { + "start": 15882.94, + "end": 15883.43, + "probability": 0.0532 + }, + { + "start": 15884.38, + "end": 15889.6, + "probability": 0.8839 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.0, + "end": 15960.0, + "probability": 0.0 + }, + { + "start": 15960.28, + "end": 15965.26, + "probability": 0.6459 + }, + { + "start": 15965.36, + "end": 15967.24, + "probability": 0.998 + }, + { + "start": 15967.24, + "end": 15968.52, + "probability": 0.7948 + }, + { + "start": 15968.94, + "end": 15969.66, + "probability": 0.1155 + }, + { + "start": 15970.1, + "end": 15970.62, + "probability": 0.6832 + }, + { + "start": 15972.54, + "end": 15973.14, + "probability": 0.2184 + }, + { + "start": 15973.14, + "end": 15975.46, + "probability": 0.4652 + }, + { + "start": 15976.22, + "end": 15977.24, + "probability": 0.6386 + }, + { + "start": 15977.8, + "end": 15977.92, + "probability": 0.0062 + }, + { + "start": 15977.92, + "end": 15978.7, + "probability": 0.3454 + }, + { + "start": 15978.98, + "end": 15981.48, + "probability": 0.0263 + }, + { + "start": 15981.48, + "end": 15983.99, + "probability": 0.9245 + }, + { + "start": 15985.16, + "end": 15985.16, + "probability": 0.0423 + }, + { + "start": 15985.16, + "end": 15988.06, + "probability": 0.9792 + }, + { + "start": 15988.06, + "end": 15988.68, + "probability": 0.0924 + }, + { + "start": 15988.86, + "end": 15993.58, + "probability": 0.5312 + }, + { + "start": 15993.64, + "end": 15994.32, + "probability": 0.5872 + }, + { + "start": 15994.36, + "end": 15995.1, + "probability": 0.2708 + }, + { + "start": 15995.1, + "end": 15996.92, + "probability": 0.6244 + }, + { + "start": 15999.74, + "end": 15999.84, + "probability": 0.3489 + }, + { + "start": 15999.84, + "end": 16001.38, + "probability": 0.9739 + }, + { + "start": 16002.14, + "end": 16005.3, + "probability": 0.8486 + }, + { + "start": 16005.46, + "end": 16007.06, + "probability": 0.9671 + }, + { + "start": 16007.08, + "end": 16009.16, + "probability": 0.9885 + }, + { + "start": 16009.44, + "end": 16013.48, + "probability": 0.9945 + }, + { + "start": 16014.06, + "end": 16018.4, + "probability": 0.999 + }, + { + "start": 16018.4, + "end": 16024.17, + "probability": 0.9978 + }, + { + "start": 16025.18, + "end": 16026.22, + "probability": 0.9127 + }, + { + "start": 16027.24, + "end": 16027.42, + "probability": 0.4012 + }, + { + "start": 16027.56, + "end": 16028.08, + "probability": 0.3411 + }, + { + "start": 16028.18, + "end": 16028.54, + "probability": 0.5862 + }, + { + "start": 16028.64, + "end": 16030.0, + "probability": 0.8594 + }, + { + "start": 16030.08, + "end": 16034.38, + "probability": 0.986 + }, + { + "start": 16034.58, + "end": 16035.78, + "probability": 0.9473 + }, + { + "start": 16035.82, + "end": 16040.88, + "probability": 0.9928 + }, + { + "start": 16041.38, + "end": 16047.38, + "probability": 0.9777 + }, + { + "start": 16047.4, + "end": 16048.56, + "probability": 0.3838 + }, + { + "start": 16048.56, + "end": 16048.74, + "probability": 0.258 + }, + { + "start": 16048.74, + "end": 16049.38, + "probability": 0.7758 + }, + { + "start": 16049.6, + "end": 16050.64, + "probability": 0.9482 + }, + { + "start": 16050.88, + "end": 16051.88, + "probability": 0.726 + }, + { + "start": 16052.54, + "end": 16053.46, + "probability": 0.8745 + }, + { + "start": 16053.7, + "end": 16054.58, + "probability": 0.2333 + }, + { + "start": 16054.7, + "end": 16055.44, + "probability": 0.967 + }, + { + "start": 16056.28, + "end": 16062.4, + "probability": 0.974 + }, + { + "start": 16062.96, + "end": 16066.57, + "probability": 0.9985 + }, + { + "start": 16067.14, + "end": 16067.48, + "probability": 0.6679 + }, + { + "start": 16067.56, + "end": 16069.98, + "probability": 0.938 + }, + { + "start": 16070.58, + "end": 16073.8, + "probability": 0.7167 + }, + { + "start": 16073.96, + "end": 16075.54, + "probability": 0.6857 + }, + { + "start": 16076.86, + "end": 16080.97, + "probability": 0.9904 + }, + { + "start": 16083.44, + "end": 16086.1, + "probability": 0.9766 + }, + { + "start": 16086.1, + "end": 16088.78, + "probability": 0.9791 + }, + { + "start": 16088.88, + "end": 16089.74, + "probability": 0.1849 + }, + { + "start": 16090.02, + "end": 16091.54, + "probability": 0.5937 + }, + { + "start": 16091.56, + "end": 16094.02, + "probability": 0.8116 + }, + { + "start": 16094.54, + "end": 16095.83, + "probability": 0.8883 + }, + { + "start": 16096.18, + "end": 16102.08, + "probability": 0.9854 + }, + { + "start": 16103.1, + "end": 16105.6, + "probability": 0.6213 + }, + { + "start": 16105.66, + "end": 16106.8, + "probability": 0.9976 + }, + { + "start": 16106.9, + "end": 16108.27, + "probability": 0.9961 + }, + { + "start": 16108.54, + "end": 16109.42, + "probability": 0.6989 + }, + { + "start": 16109.5, + "end": 16110.74, + "probability": 0.1457 + }, + { + "start": 16111.08, + "end": 16116.04, + "probability": 0.9762 + }, + { + "start": 16116.12, + "end": 16116.12, + "probability": 0.5129 + }, + { + "start": 16116.12, + "end": 16116.88, + "probability": 0.5569 + }, + { + "start": 16117.08, + "end": 16119.64, + "probability": 0.994 + }, + { + "start": 16119.88, + "end": 16120.14, + "probability": 0.6754 + }, + { + "start": 16120.44, + "end": 16121.22, + "probability": 0.7222 + }, + { + "start": 16121.5, + "end": 16125.1, + "probability": 0.7876 + }, + { + "start": 16125.34, + "end": 16126.16, + "probability": 0.1511 + }, + { + "start": 16126.16, + "end": 16129.62, + "probability": 0.6283 + }, + { + "start": 16130.26, + "end": 16130.46, + "probability": 0.5527 + }, + { + "start": 16130.62, + "end": 16131.08, + "probability": 0.7708 + }, + { + "start": 16131.79, + "end": 16133.22, + "probability": 0.8433 + }, + { + "start": 16133.34, + "end": 16134.06, + "probability": 0.8274 + }, + { + "start": 16134.64, + "end": 16135.46, + "probability": 0.6051 + }, + { + "start": 16136.58, + "end": 16137.42, + "probability": 0.0313 + }, + { + "start": 16137.42, + "end": 16138.72, + "probability": 0.7055 + }, + { + "start": 16143.38, + "end": 16146.2, + "probability": 0.774 + }, + { + "start": 16147.12, + "end": 16147.84, + "probability": 0.9756 + }, + { + "start": 16148.92, + "end": 16150.4, + "probability": 0.9702 + }, + { + "start": 16152.08, + "end": 16152.9, + "probability": 0.9904 + }, + { + "start": 16153.44, + "end": 16154.92, + "probability": 0.6091 + }, + { + "start": 16156.6, + "end": 16159.44, + "probability": 0.9677 + }, + { + "start": 16160.52, + "end": 16161.22, + "probability": 0.9793 + }, + { + "start": 16161.76, + "end": 16163.12, + "probability": 0.9957 + }, + { + "start": 16164.14, + "end": 16165.02, + "probability": 0.9952 + }, + { + "start": 16165.56, + "end": 16167.28, + "probability": 0.9909 + }, + { + "start": 16168.6, + "end": 16169.34, + "probability": 0.7565 + }, + { + "start": 16169.76, + "end": 16170.6, + "probability": 0.3804 + }, + { + "start": 16171.92, + "end": 16174.42, + "probability": 0.9772 + }, + { + "start": 16174.68, + "end": 16176.76, + "probability": 0.4409 + }, + { + "start": 16177.98, + "end": 16179.84, + "probability": 0.7789 + }, + { + "start": 16181.54, + "end": 16184.1, + "probability": 0.3341 + }, + { + "start": 16184.52, + "end": 16186.74, + "probability": 0.9818 + }, + { + "start": 16188.64, + "end": 16190.28, + "probability": 0.7954 + }, + { + "start": 16190.66, + "end": 16191.38, + "probability": 0.6264 + }, + { + "start": 16191.62, + "end": 16192.52, + "probability": 0.0879 + }, + { + "start": 16192.94, + "end": 16193.98, + "probability": 0.6227 + }, + { + "start": 16197.1, + "end": 16199.2, + "probability": 0.5754 + }, + { + "start": 16201.06, + "end": 16201.86, + "probability": 0.6284 + }, + { + "start": 16207.34, + "end": 16208.52, + "probability": 0.6241 + }, + { + "start": 16208.72, + "end": 16210.09, + "probability": 0.7824 + }, + { + "start": 16210.52, + "end": 16212.76, + "probability": 0.9326 + }, + { + "start": 16212.84, + "end": 16215.24, + "probability": 0.3346 + }, + { + "start": 16215.24, + "end": 16215.94, + "probability": 0.0723 + }, + { + "start": 16216.5, + "end": 16218.64, + "probability": 0.9829 + }, + { + "start": 16221.42, + "end": 16223.56, + "probability": 0.9272 + }, + { + "start": 16224.68, + "end": 16229.02, + "probability": 0.9797 + }, + { + "start": 16229.26, + "end": 16230.76, + "probability": 0.8984 + }, + { + "start": 16231.5, + "end": 16231.7, + "probability": 0.2435 + }, + { + "start": 16231.88, + "end": 16231.88, + "probability": 0.0452 + }, + { + "start": 16231.88, + "end": 16235.52, + "probability": 0.8729 + }, + { + "start": 16237.48, + "end": 16240.72, + "probability": 0.8191 + }, + { + "start": 16241.4, + "end": 16244.38, + "probability": 0.655 + }, + { + "start": 16244.42, + "end": 16245.4, + "probability": 0.8438 + }, + { + "start": 16245.54, + "end": 16246.26, + "probability": 0.9326 + }, + { + "start": 16246.68, + "end": 16247.82, + "probability": 0.9383 + }, + { + "start": 16248.06, + "end": 16248.18, + "probability": 0.0676 + }, + { + "start": 16248.18, + "end": 16248.18, + "probability": 0.0358 + }, + { + "start": 16248.18, + "end": 16250.32, + "probability": 0.8689 + }, + { + "start": 16250.72, + "end": 16252.36, + "probability": 0.5972 + }, + { + "start": 16252.42, + "end": 16253.56, + "probability": 0.9127 + }, + { + "start": 16254.82, + "end": 16256.0, + "probability": 0.9109 + }, + { + "start": 16256.06, + "end": 16261.01, + "probability": 0.989 + }, + { + "start": 16261.94, + "end": 16265.28, + "probability": 0.9948 + }, + { + "start": 16265.5, + "end": 16266.36, + "probability": 0.7034 + }, + { + "start": 16266.52, + "end": 16267.58, + "probability": 0.7545 + }, + { + "start": 16269.0, + "end": 16278.24, + "probability": 0.9744 + }, + { + "start": 16278.46, + "end": 16281.7, + "probability": 0.9177 + }, + { + "start": 16282.22, + "end": 16286.2, + "probability": 0.9822 + }, + { + "start": 16288.58, + "end": 16289.28, + "probability": 0.6176 + }, + { + "start": 16290.32, + "end": 16291.1, + "probability": 0.2974 + }, + { + "start": 16291.66, + "end": 16292.18, + "probability": 0.7866 + }, + { + "start": 16293.48, + "end": 16293.76, + "probability": 0.0349 + }, + { + "start": 16295.6, + "end": 16300.66, + "probability": 0.9399 + }, + { + "start": 16302.06, + "end": 16303.52, + "probability": 0.981 + }, + { + "start": 16303.68, + "end": 16305.12, + "probability": 0.9775 + }, + { + "start": 16305.62, + "end": 16307.42, + "probability": 0.9771 + }, + { + "start": 16311.88, + "end": 16319.18, + "probability": 0.9781 + }, + { + "start": 16321.96, + "end": 16322.45, + "probability": 0.7661 + }, + { + "start": 16322.94, + "end": 16324.04, + "probability": 0.9456 + }, + { + "start": 16324.94, + "end": 16326.66, + "probability": 0.9932 + }, + { + "start": 16328.06, + "end": 16330.46, + "probability": 0.9963 + }, + { + "start": 16334.54, + "end": 16338.42, + "probability": 0.9959 + }, + { + "start": 16339.32, + "end": 16343.44, + "probability": 0.9938 + }, + { + "start": 16345.0, + "end": 16349.24, + "probability": 0.833 + }, + { + "start": 16350.2, + "end": 16353.18, + "probability": 0.9728 + }, + { + "start": 16353.34, + "end": 16356.1, + "probability": 0.9946 + }, + { + "start": 16357.72, + "end": 16364.94, + "probability": 0.9912 + }, + { + "start": 16365.66, + "end": 16368.42, + "probability": 0.9692 + }, + { + "start": 16370.78, + "end": 16375.86, + "probability": 0.9981 + }, + { + "start": 16376.68, + "end": 16379.78, + "probability": 0.7521 + }, + { + "start": 16383.24, + "end": 16385.48, + "probability": 0.9991 + }, + { + "start": 16386.86, + "end": 16388.66, + "probability": 0.5425 + }, + { + "start": 16388.72, + "end": 16391.0, + "probability": 0.9985 + }, + { + "start": 16391.56, + "end": 16391.6, + "probability": 0.6617 + }, + { + "start": 16391.66, + "end": 16392.14, + "probability": 0.728 + }, + { + "start": 16393.1, + "end": 16396.46, + "probability": 0.7084 + }, + { + "start": 16397.18, + "end": 16398.38, + "probability": 0.7778 + }, + { + "start": 16399.38, + "end": 16400.22, + "probability": 0.8752 + }, + { + "start": 16400.48, + "end": 16402.0, + "probability": 0.5001 + }, + { + "start": 16402.08, + "end": 16404.58, + "probability": 0.8972 + }, + { + "start": 16405.02, + "end": 16405.82, + "probability": 0.9411 + }, + { + "start": 16406.08, + "end": 16407.98, + "probability": 0.9546 + }, + { + "start": 16408.0, + "end": 16408.0, + "probability": 0.5851 + }, + { + "start": 16408.02, + "end": 16409.2, + "probability": 0.7903 + }, + { + "start": 16409.58, + "end": 16412.78, + "probability": 0.6115 + }, + { + "start": 16413.68, + "end": 16414.83, + "probability": 0.5697 + }, + { + "start": 16415.14, + "end": 16417.14, + "probability": 0.676 + }, + { + "start": 16417.24, + "end": 16417.38, + "probability": 0.3689 + }, + { + "start": 16418.66, + "end": 16419.32, + "probability": 0.0697 + }, + { + "start": 16419.52, + "end": 16419.84, + "probability": 0.0238 + }, + { + "start": 16419.84, + "end": 16423.56, + "probability": 0.9189 + }, + { + "start": 16423.62, + "end": 16425.19, + "probability": 0.8026 + }, + { + "start": 16425.46, + "end": 16426.24, + "probability": 0.5861 + }, + { + "start": 16426.3, + "end": 16426.66, + "probability": 0.8844 + }, + { + "start": 16426.8, + "end": 16429.78, + "probability": 0.8408 + }, + { + "start": 16431.18, + "end": 16432.48, + "probability": 0.315 + }, + { + "start": 16432.64, + "end": 16433.26, + "probability": 0.2399 + }, + { + "start": 16433.33, + "end": 16435.73, + "probability": 0.8409 + }, + { + "start": 16435.96, + "end": 16439.54, + "probability": 0.8096 + }, + { + "start": 16439.54, + "end": 16439.84, + "probability": 0.2146 + }, + { + "start": 16439.84, + "end": 16441.37, + "probability": 0.2485 + }, + { + "start": 16441.68, + "end": 16442.18, + "probability": 0.1973 + }, + { + "start": 16442.28, + "end": 16443.04, + "probability": 0.7653 + }, + { + "start": 16443.54, + "end": 16446.72, + "probability": 0.7625 + }, + { + "start": 16448.54, + "end": 16450.2, + "probability": 0.914 + }, + { + "start": 16451.04, + "end": 16451.76, + "probability": 0.2965 + }, + { + "start": 16452.26, + "end": 16455.52, + "probability": 0.9061 + }, + { + "start": 16469.3, + "end": 16471.74, + "probability": 0.8569 + }, + { + "start": 16476.6, + "end": 16477.82, + "probability": 0.3332 + }, + { + "start": 16479.4, + "end": 16480.22, + "probability": 0.7932 + }, + { + "start": 16481.78, + "end": 16482.74, + "probability": 0.8916 + }, + { + "start": 16482.86, + "end": 16483.92, + "probability": 0.9613 + }, + { + "start": 16484.06, + "end": 16485.86, + "probability": 0.9902 + }, + { + "start": 16487.04, + "end": 16487.16, + "probability": 0.8496 + }, + { + "start": 16488.42, + "end": 16488.58, + "probability": 0.0598 + }, + { + "start": 16488.62, + "end": 16489.34, + "probability": 0.2096 + }, + { + "start": 16490.5, + "end": 16498.78, + "probability": 0.9648 + }, + { + "start": 16499.78, + "end": 16503.88, + "probability": 0.8779 + }, + { + "start": 16505.36, + "end": 16506.74, + "probability": 0.4923 + }, + { + "start": 16509.18, + "end": 16509.74, + "probability": 0.9054 + }, + { + "start": 16511.34, + "end": 16513.74, + "probability": 0.9713 + }, + { + "start": 16513.74, + "end": 16515.9, + "probability": 0.9944 + }, + { + "start": 16516.7, + "end": 16518.46, + "probability": 0.9971 + }, + { + "start": 16520.3, + "end": 16521.34, + "probability": 0.7927 + }, + { + "start": 16522.9, + "end": 16526.2, + "probability": 0.7726 + }, + { + "start": 16529.22, + "end": 16537.74, + "probability": 0.9883 + }, + { + "start": 16538.96, + "end": 16540.54, + "probability": 0.9713 + }, + { + "start": 16542.08, + "end": 16545.81, + "probability": 0.9744 + }, + { + "start": 16547.92, + "end": 16549.66, + "probability": 0.9453 + }, + { + "start": 16550.94, + "end": 16556.1, + "probability": 0.9355 + }, + { + "start": 16557.56, + "end": 16563.12, + "probability": 0.9907 + }, + { + "start": 16564.94, + "end": 16570.48, + "probability": 0.9972 + }, + { + "start": 16573.29, + "end": 16575.64, + "probability": 0.8442 + }, + { + "start": 16575.88, + "end": 16578.93, + "probability": 0.9294 + }, + { + "start": 16580.7, + "end": 16581.54, + "probability": 0.81 + }, + { + "start": 16582.42, + "end": 16587.04, + "probability": 0.8187 + }, + { + "start": 16587.26, + "end": 16589.0, + "probability": 0.8467 + }, + { + "start": 16591.64, + "end": 16592.46, + "probability": 0.9744 + }, + { + "start": 16592.6, + "end": 16596.22, + "probability": 0.9958 + }, + { + "start": 16596.92, + "end": 16598.2, + "probability": 0.95 + }, + { + "start": 16598.32, + "end": 16601.34, + "probability": 0.8707 + }, + { + "start": 16602.64, + "end": 16607.38, + "probability": 0.848 + }, + { + "start": 16607.62, + "end": 16610.3, + "probability": 0.7479 + }, + { + "start": 16611.66, + "end": 16613.2, + "probability": 0.9483 + }, + { + "start": 16613.32, + "end": 16616.98, + "probability": 0.9378 + }, + { + "start": 16617.66, + "end": 16623.68, + "probability": 0.9912 + }, + { + "start": 16625.44, + "end": 16625.86, + "probability": 0.482 + }, + { + "start": 16626.06, + "end": 16631.02, + "probability": 0.9717 + }, + { + "start": 16631.9, + "end": 16632.4, + "probability": 0.7409 + }, + { + "start": 16635.36, + "end": 16642.44, + "probability": 0.9939 + }, + { + "start": 16644.8, + "end": 16645.54, + "probability": 0.7668 + }, + { + "start": 16645.56, + "end": 16647.5, + "probability": 0.7887 + }, + { + "start": 16647.7, + "end": 16648.86, + "probability": 0.9471 + }, + { + "start": 16649.68, + "end": 16651.0, + "probability": 0.9403 + }, + { + "start": 16652.0, + "end": 16653.48, + "probability": 0.4895 + }, + { + "start": 16654.72, + "end": 16659.16, + "probability": 0.7577 + }, + { + "start": 16659.98, + "end": 16663.98, + "probability": 0.9889 + }, + { + "start": 16664.12, + "end": 16666.7, + "probability": 0.6842 + }, + { + "start": 16667.96, + "end": 16674.72, + "probability": 0.9973 + }, + { + "start": 16675.98, + "end": 16677.0, + "probability": 0.8931 + }, + { + "start": 16677.56, + "end": 16679.96, + "probability": 0.9951 + }, + { + "start": 16681.24, + "end": 16684.36, + "probability": 0.9697 + }, + { + "start": 16686.76, + "end": 16688.8, + "probability": 0.9264 + }, + { + "start": 16690.36, + "end": 16692.29, + "probability": 0.9893 + }, + { + "start": 16694.14, + "end": 16696.94, + "probability": 0.9956 + }, + { + "start": 16697.08, + "end": 16701.26, + "probability": 0.8371 + }, + { + "start": 16701.68, + "end": 16702.65, + "probability": 0.6429 + }, + { + "start": 16703.98, + "end": 16708.26, + "probability": 0.9347 + }, + { + "start": 16708.38, + "end": 16713.72, + "probability": 0.9894 + }, + { + "start": 16715.12, + "end": 16718.76, + "probability": 0.9924 + }, + { + "start": 16720.66, + "end": 16721.94, + "probability": 0.9985 + }, + { + "start": 16724.08, + "end": 16727.38, + "probability": 0.9602 + }, + { + "start": 16728.66, + "end": 16731.42, + "probability": 0.9943 + }, + { + "start": 16732.6, + "end": 16733.92, + "probability": 0.8246 + }, + { + "start": 16735.22, + "end": 16738.58, + "probability": 0.7011 + }, + { + "start": 16739.54, + "end": 16740.58, + "probability": 0.9257 + }, + { + "start": 16740.74, + "end": 16744.04, + "probability": 0.9663 + }, + { + "start": 16744.16, + "end": 16745.42, + "probability": 0.5766 + }, + { + "start": 16746.5, + "end": 16754.56, + "probability": 0.9774 + }, + { + "start": 16755.78, + "end": 16760.78, + "probability": 0.9974 + }, + { + "start": 16761.7, + "end": 16766.78, + "probability": 0.9941 + }, + { + "start": 16767.86, + "end": 16768.9, + "probability": 0.7515 + }, + { + "start": 16769.42, + "end": 16772.92, + "probability": 0.958 + }, + { + "start": 16774.36, + "end": 16780.66, + "probability": 0.9982 + }, + { + "start": 16781.88, + "end": 16785.07, + "probability": 0.8326 + }, + { + "start": 16786.58, + "end": 16787.34, + "probability": 0.8964 + }, + { + "start": 16788.24, + "end": 16790.92, + "probability": 0.9876 + }, + { + "start": 16792.46, + "end": 16798.98, + "probability": 0.9871 + }, + { + "start": 16800.1, + "end": 16810.02, + "probability": 0.9893 + }, + { + "start": 16810.5, + "end": 16811.41, + "probability": 0.859 + }, + { + "start": 16812.74, + "end": 16812.98, + "probability": 0.6211 + }, + { + "start": 16814.74, + "end": 16821.02, + "probability": 0.9911 + }, + { + "start": 16821.02, + "end": 16824.12, + "probability": 0.999 + }, + { + "start": 16825.34, + "end": 16826.34, + "probability": 0.9669 + }, + { + "start": 16827.38, + "end": 16828.52, + "probability": 0.9815 + }, + { + "start": 16829.5, + "end": 16830.64, + "probability": 0.9404 + }, + { + "start": 16831.86, + "end": 16834.72, + "probability": 0.9062 + }, + { + "start": 16835.24, + "end": 16837.68, + "probability": 0.8649 + }, + { + "start": 16837.82, + "end": 16839.44, + "probability": 0.8844 + }, + { + "start": 16840.44, + "end": 16846.11, + "probability": 0.8964 + }, + { + "start": 16846.16, + "end": 16852.7, + "probability": 0.9897 + }, + { + "start": 16853.44, + "end": 16855.46, + "probability": 0.9558 + }, + { + "start": 16860.3, + "end": 16865.36, + "probability": 0.979 + }, + { + "start": 16866.7, + "end": 16867.84, + "probability": 0.9963 + }, + { + "start": 16868.48, + "end": 16869.52, + "probability": 0.9678 + }, + { + "start": 16870.26, + "end": 16872.22, + "probability": 0.8794 + }, + { + "start": 16872.92, + "end": 16875.56, + "probability": 0.9811 + }, + { + "start": 16876.26, + "end": 16879.7, + "probability": 0.9292 + }, + { + "start": 16880.22, + "end": 16888.6, + "probability": 0.9939 + }, + { + "start": 16888.9, + "end": 16889.44, + "probability": 0.7596 + }, + { + "start": 16890.66, + "end": 16891.36, + "probability": 0.8256 + }, + { + "start": 16893.16, + "end": 16894.52, + "probability": 0.8632 + }, + { + "start": 16895.5, + "end": 16895.76, + "probability": 0.943 + }, + { + "start": 16895.98, + "end": 16898.3, + "probability": 0.9952 + }, + { + "start": 16898.3, + "end": 16902.04, + "probability": 0.7806 + }, + { + "start": 16902.16, + "end": 16905.32, + "probability": 0.9964 + }, + { + "start": 16907.26, + "end": 16908.12, + "probability": 0.7272 + }, + { + "start": 16908.42, + "end": 16909.48, + "probability": 0.979 + }, + { + "start": 16918.2, + "end": 16920.8, + "probability": 0.2297 + }, + { + "start": 16922.28, + "end": 16923.9, + "probability": 0.2049 + }, + { + "start": 16924.38, + "end": 16926.1, + "probability": 0.0343 + }, + { + "start": 16926.74, + "end": 16928.5, + "probability": 0.375 + }, + { + "start": 16929.02, + "end": 16930.38, + "probability": 0.6488 + }, + { + "start": 16931.14, + "end": 16932.52, + "probability": 0.7841 + }, + { + "start": 16933.64, + "end": 16936.08, + "probability": 0.4783 + }, + { + "start": 16936.66, + "end": 16939.33, + "probability": 0.6135 + }, + { + "start": 16941.0, + "end": 16942.28, + "probability": 0.7824 + }, + { + "start": 16942.4, + "end": 16943.46, + "probability": 0.575 + }, + { + "start": 16943.54, + "end": 16945.06, + "probability": 0.7002 + }, + { + "start": 16945.22, + "end": 16949.44, + "probability": 0.5894 + }, + { + "start": 16949.54, + "end": 16950.18, + "probability": 0.4824 + }, + { + "start": 16951.16, + "end": 16952.32, + "probability": 0.174 + }, + { + "start": 16952.46, + "end": 16953.96, + "probability": 0.9757 + }, + { + "start": 16954.06, + "end": 16954.7, + "probability": 0.7357 + }, + { + "start": 16955.14, + "end": 16956.88, + "probability": 0.7162 + }, + { + "start": 16957.78, + "end": 16957.78, + "probability": 0.0002 + }, + { + "start": 16957.78, + "end": 16961.12, + "probability": 0.8739 + }, + { + "start": 16961.2, + "end": 16965.08, + "probability": 0.7781 + }, + { + "start": 16965.1, + "end": 16969.18, + "probability": 0.6987 + }, + { + "start": 16969.64, + "end": 16971.34, + "probability": 0.1035 + }, + { + "start": 16971.74, + "end": 16972.98, + "probability": 0.8275 + }, + { + "start": 16973.32, + "end": 16977.64, + "probability": 0.775 + }, + { + "start": 16977.64, + "end": 16982.9, + "probability": 0.7187 + }, + { + "start": 16983.1, + "end": 16989.04, + "probability": 0.6886 + }, + { + "start": 16989.04, + "end": 16994.48, + "probability": 0.794 + }, + { + "start": 16994.86, + "end": 16996.5, + "probability": 0.5052 + }, + { + "start": 16996.69, + "end": 17000.56, + "probability": 0.9742 + }, + { + "start": 17001.86, + "end": 17004.24, + "probability": 0.7755 + }, + { + "start": 17004.58, + "end": 17008.66, + "probability": 0.9811 + }, + { + "start": 17009.06, + "end": 17012.66, + "probability": 0.8427 + }, + { + "start": 17012.66, + "end": 17015.94, + "probability": 0.961 + }, + { + "start": 17016.52, + "end": 17016.78, + "probability": 0.4344 + }, + { + "start": 17017.84, + "end": 17018.64, + "probability": 0.7688 + }, + { + "start": 17018.94, + "end": 17021.86, + "probability": 0.9877 + }, + { + "start": 17021.98, + "end": 17023.66, + "probability": 0.7381 + }, + { + "start": 17025.1, + "end": 17025.1, + "probability": 0.5034 + }, + { + "start": 17025.1, + "end": 17025.1, + "probability": 0.0585 + }, + { + "start": 17025.1, + "end": 17027.78, + "probability": 0.8806 + }, + { + "start": 17028.9, + "end": 17031.56, + "probability": 0.8491 + }, + { + "start": 17039.32, + "end": 17040.84, + "probability": 0.2555 + }, + { + "start": 17041.54, + "end": 17042.8, + "probability": 0.6449 + }, + { + "start": 17044.66, + "end": 17046.42, + "probability": 0.9968 + }, + { + "start": 17047.34, + "end": 17048.18, + "probability": 0.974 + }, + { + "start": 17049.06, + "end": 17053.23, + "probability": 0.9799 + }, + { + "start": 17054.5, + "end": 17055.32, + "probability": 0.9431 + }, + { + "start": 17056.38, + "end": 17059.7, + "probability": 0.8927 + }, + { + "start": 17060.74, + "end": 17061.64, + "probability": 0.6919 + }, + { + "start": 17063.24, + "end": 17064.83, + "probability": 0.8747 + }, + { + "start": 17065.6, + "end": 17067.28, + "probability": 0.9717 + }, + { + "start": 17069.92, + "end": 17071.0, + "probability": 0.8331 + }, + { + "start": 17072.42, + "end": 17074.44, + "probability": 0.9834 + }, + { + "start": 17075.52, + "end": 17076.42, + "probability": 0.8151 + }, + { + "start": 17078.14, + "end": 17080.78, + "probability": 0.9949 + }, + { + "start": 17081.94, + "end": 17085.22, + "probability": 0.9844 + }, + { + "start": 17087.76, + "end": 17089.54, + "probability": 0.1823 + }, + { + "start": 17090.08, + "end": 17093.42, + "probability": 0.961 + }, + { + "start": 17094.18, + "end": 17094.18, + "probability": 0.1105 + }, + { + "start": 17094.18, + "end": 17095.58, + "probability": 0.8763 + }, + { + "start": 17096.34, + "end": 17096.34, + "probability": 0.0508 + }, + { + "start": 17096.34, + "end": 17097.86, + "probability": 0.8555 + }, + { + "start": 17098.84, + "end": 17100.0, + "probability": 0.1804 + }, + { + "start": 17100.48, + "end": 17101.2, + "probability": 0.2898 + }, + { + "start": 17101.46, + "end": 17102.9, + "probability": 0.8038 + }, + { + "start": 17103.48, + "end": 17105.74, + "probability": 0.5882 + }, + { + "start": 17105.94, + "end": 17107.22, + "probability": 0.4216 + }, + { + "start": 17107.22, + "end": 17107.33, + "probability": 0.1502 + }, + { + "start": 17107.74, + "end": 17109.82, + "probability": 0.2277 + }, + { + "start": 17109.92, + "end": 17111.26, + "probability": 0.5979 + }, + { + "start": 17111.7, + "end": 17111.7, + "probability": 0.1879 + }, + { + "start": 17111.7, + "end": 17117.54, + "probability": 0.8748 + }, + { + "start": 17118.06, + "end": 17120.02, + "probability": 0.8719 + }, + { + "start": 17120.24, + "end": 17120.3, + "probability": 0.1763 + }, + { + "start": 17120.34, + "end": 17121.71, + "probability": 0.3378 + }, + { + "start": 17123.06, + "end": 17123.06, + "probability": 0.123 + }, + { + "start": 17123.06, + "end": 17126.08, + "probability": 0.8589 + }, + { + "start": 17126.24, + "end": 17126.6, + "probability": 0.3809 + }, + { + "start": 17126.62, + "end": 17127.58, + "probability": 0.6696 + }, + { + "start": 17127.58, + "end": 17128.14, + "probability": 0.538 + }, + { + "start": 17130.26, + "end": 17130.78, + "probability": 0.2324 + }, + { + "start": 17130.94, + "end": 17131.58, + "probability": 0.0451 + }, + { + "start": 17131.64, + "end": 17131.9, + "probability": 0.2193 + }, + { + "start": 17131.9, + "end": 17133.0, + "probability": 0.2844 + }, + { + "start": 17133.0, + "end": 17133.1, + "probability": 0.0502 + }, + { + "start": 17133.1, + "end": 17135.44, + "probability": 0.5916 + }, + { + "start": 17135.8, + "end": 17136.4, + "probability": 0.4732 + }, + { + "start": 17136.4, + "end": 17140.68, + "probability": 0.8384 + }, + { + "start": 17141.34, + "end": 17141.58, + "probability": 0.398 + }, + { + "start": 17141.58, + "end": 17142.62, + "probability": 0.9692 + }, + { + "start": 17143.06, + "end": 17144.12, + "probability": 0.6851 + }, + { + "start": 17144.86, + "end": 17149.64, + "probability": 0.8587 + }, + { + "start": 17150.38, + "end": 17153.56, + "probability": 0.8066 + }, + { + "start": 17154.18, + "end": 17158.16, + "probability": 0.9943 + }, + { + "start": 17158.16, + "end": 17163.7, + "probability": 0.8936 + }, + { + "start": 17163.9, + "end": 17163.9, + "probability": 0.0731 + }, + { + "start": 17163.9, + "end": 17165.0, + "probability": 0.5009 + }, + { + "start": 17165.66, + "end": 17166.28, + "probability": 0.0034 + }, + { + "start": 17167.32, + "end": 17169.92, + "probability": 0.1059 + }, + { + "start": 17170.1, + "end": 17174.48, + "probability": 0.437 + }, + { + "start": 17181.4, + "end": 17184.18, + "probability": 0.3736 + }, + { + "start": 17189.2, + "end": 17190.48, + "probability": 0.1885 + }, + { + "start": 17190.8, + "end": 17191.66, + "probability": 0.1531 + }, + { + "start": 17191.66, + "end": 17192.02, + "probability": 0.0503 + }, + { + "start": 17192.02, + "end": 17192.92, + "probability": 0.0433 + }, + { + "start": 17193.56, + "end": 17195.65, + "probability": 0.0361 + }, + { + "start": 17196.44, + "end": 17199.22, + "probability": 0.0094 + }, + { + "start": 17199.22, + "end": 17201.12, + "probability": 0.0404 + }, + { + "start": 17202.44, + "end": 17206.94, + "probability": 0.0765 + }, + { + "start": 17207.72, + "end": 17208.14, + "probability": 0.0139 + }, + { + "start": 17209.14, + "end": 17209.9, + "probability": 0.1367 + }, + { + "start": 17209.92, + "end": 17209.92, + "probability": 0.0613 + }, + { + "start": 17210.24, + "end": 17211.16, + "probability": 0.0492 + }, + { + "start": 17212.6, + "end": 17215.6, + "probability": 0.0436 + }, + { + "start": 17217.0, + "end": 17219.7, + "probability": 0.2311 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.0, + "end": 17275.0, + "probability": 0.0 + }, + { + "start": 17275.22, + "end": 17277.26, + "probability": 0.1593 + }, + { + "start": 17277.26, + "end": 17277.26, + "probability": 0.224 + }, + { + "start": 17277.26, + "end": 17277.26, + "probability": 0.0378 + }, + { + "start": 17277.26, + "end": 17280.0, + "probability": 0.468 + }, + { + "start": 17280.14, + "end": 17282.92, + "probability": 0.1985 + }, + { + "start": 17292.4, + "end": 17295.22, + "probability": 0.6051 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17418.0, + "end": 17418.0, + "probability": 0.0 + }, + { + "start": 17442.06, + "end": 17443.08, + "probability": 0.1414 + }, + { + "start": 17444.46, + "end": 17447.05, + "probability": 0.6941 + }, + { + "start": 17448.34, + "end": 17449.96, + "probability": 0.6635 + }, + { + "start": 17452.07, + "end": 17456.2, + "probability": 0.0429 + }, + { + "start": 17457.52, + "end": 17458.4, + "probability": 0.0347 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.0, + "end": 17552.0, + "probability": 0.0 + }, + { + "start": 17552.14, + "end": 17552.2, + "probability": 0.064 + }, + { + "start": 17552.2, + "end": 17552.44, + "probability": 0.2384 + }, + { + "start": 17552.74, + "end": 17553.16, + "probability": 0.6167 + }, + { + "start": 17554.28, + "end": 17555.58, + "probability": 0.3698 + }, + { + "start": 17555.78, + "end": 17559.74, + "probability": 0.93 + }, + { + "start": 17560.5, + "end": 17562.39, + "probability": 0.9199 + }, + { + "start": 17563.34, + "end": 17564.1, + "probability": 0.7688 + }, + { + "start": 17564.2, + "end": 17566.76, + "probability": 0.9957 + }, + { + "start": 17567.4, + "end": 17571.38, + "probability": 0.8262 + }, + { + "start": 17572.38, + "end": 17573.18, + "probability": 0.559 + }, + { + "start": 17573.82, + "end": 17575.08, + "probability": 0.6442 + }, + { + "start": 17575.64, + "end": 17580.0, + "probability": 0.9622 + }, + { + "start": 17580.34, + "end": 17582.38, + "probability": 0.9749 + }, + { + "start": 17582.64, + "end": 17583.02, + "probability": 0.4921 + }, + { + "start": 17584.08, + "end": 17585.79, + "probability": 0.6497 + }, + { + "start": 17587.5, + "end": 17590.82, + "probability": 0.9048 + }, + { + "start": 17591.96, + "end": 17597.84, + "probability": 0.9025 + }, + { + "start": 17599.08, + "end": 17600.14, + "probability": 0.5645 + }, + { + "start": 17600.54, + "end": 17602.46, + "probability": 0.9588 + }, + { + "start": 17622.26, + "end": 17622.72, + "probability": 0.3732 + }, + { + "start": 17622.78, + "end": 17625.34, + "probability": 0.3883 + }, + { + "start": 17626.22, + "end": 17629.74, + "probability": 0.0243 + }, + { + "start": 17630.06, + "end": 17630.06, + "probability": 0.0362 + }, + { + "start": 17630.06, + "end": 17631.86, + "probability": 0.0928 + }, + { + "start": 17632.58, + "end": 17632.82, + "probability": 0.1073 + }, + { + "start": 17632.82, + "end": 17632.82, + "probability": 0.0429 + }, + { + "start": 17632.82, + "end": 17632.82, + "probability": 0.0475 + }, + { + "start": 17632.82, + "end": 17632.82, + "probability": 0.099 + }, + { + "start": 17632.82, + "end": 17633.42, + "probability": 0.0473 + }, + { + "start": 17633.98, + "end": 17640.9, + "probability": 0.8994 + }, + { + "start": 17641.36, + "end": 17644.56, + "probability": 0.9613 + }, + { + "start": 17644.72, + "end": 17646.62, + "probability": 0.8347 + }, + { + "start": 17647.1, + "end": 17652.74, + "probability": 0.993 + }, + { + "start": 17653.64, + "end": 17654.48, + "probability": 0.5422 + }, + { + "start": 17654.58, + "end": 17655.84, + "probability": 0.9509 + }, + { + "start": 17656.4, + "end": 17657.54, + "probability": 0.9312 + }, + { + "start": 17657.58, + "end": 17660.08, + "probability": 0.9285 + }, + { + "start": 17660.12, + "end": 17660.16, + "probability": 0.4395 + }, + { + "start": 17660.16, + "end": 17661.78, + "probability": 0.5068 + }, + { + "start": 17661.8, + "end": 17661.94, + "probability": 0.7725 + }, + { + "start": 17662.02, + "end": 17664.34, + "probability": 0.9811 + }, + { + "start": 17664.48, + "end": 17665.44, + "probability": 0.8505 + }, + { + "start": 17665.7, + "end": 17666.18, + "probability": 0.6724 + }, + { + "start": 17666.22, + "end": 17666.5, + "probability": 0.7046 + }, + { + "start": 17667.12, + "end": 17669.48, + "probability": 0.3857 + }, + { + "start": 17669.48, + "end": 17669.56, + "probability": 0.1591 + }, + { + "start": 17669.56, + "end": 17670.5, + "probability": 0.0949 + }, + { + "start": 17670.5, + "end": 17671.34, + "probability": 0.0337 + }, + { + "start": 17672.01, + "end": 17675.14, + "probability": 0.7067 + }, + { + "start": 17675.17, + "end": 17677.6, + "probability": 0.8071 + }, + { + "start": 17677.7, + "end": 17679.82, + "probability": 0.7167 + }, + { + "start": 17680.56, + "end": 17681.56, + "probability": 0.7035 + }, + { + "start": 17681.72, + "end": 17685.74, + "probability": 0.9808 + }, + { + "start": 17685.74, + "end": 17690.62, + "probability": 0.9989 + }, + { + "start": 17691.24, + "end": 17693.4, + "probability": 0.999 + }, + { + "start": 17693.86, + "end": 17695.94, + "probability": 0.9959 + }, + { + "start": 17696.42, + "end": 17697.71, + "probability": 0.9937 + }, + { + "start": 17698.0, + "end": 17699.66, + "probability": 0.7546 + }, + { + "start": 17699.8, + "end": 17701.16, + "probability": 0.6792 + }, + { + "start": 17701.68, + "end": 17704.76, + "probability": 0.9136 + }, + { + "start": 17704.84, + "end": 17706.56, + "probability": 0.9973 + }, + { + "start": 17706.94, + "end": 17709.25, + "probability": 0.95 + }, + { + "start": 17711.68, + "end": 17712.46, + "probability": 0.6598 + }, + { + "start": 17712.62, + "end": 17713.44, + "probability": 0.8507 + }, + { + "start": 17713.86, + "end": 17718.86, + "probability": 0.9935 + }, + { + "start": 17719.34, + "end": 17720.0, + "probability": 0.8677 + }, + { + "start": 17720.14, + "end": 17723.34, + "probability": 0.997 + }, + { + "start": 17723.72, + "end": 17724.76, + "probability": 0.8827 + }, + { + "start": 17724.88, + "end": 17726.56, + "probability": 0.9299 + }, + { + "start": 17726.68, + "end": 17727.16, + "probability": 0.6835 + }, + { + "start": 17727.36, + "end": 17731.94, + "probability": 0.9868 + }, + { + "start": 17731.94, + "end": 17735.68, + "probability": 0.8355 + }, + { + "start": 17736.14, + "end": 17737.15, + "probability": 0.979 + }, + { + "start": 17737.9, + "end": 17741.46, + "probability": 0.9785 + }, + { + "start": 17741.98, + "end": 17744.18, + "probability": 0.883 + }, + { + "start": 17744.84, + "end": 17746.9, + "probability": 0.9911 + }, + { + "start": 17747.46, + "end": 17750.96, + "probability": 0.9945 + }, + { + "start": 17751.54, + "end": 17756.18, + "probability": 0.9404 + }, + { + "start": 17756.74, + "end": 17757.26, + "probability": 0.6104 + }, + { + "start": 17757.84, + "end": 17761.04, + "probability": 0.8015 + }, + { + "start": 17761.2, + "end": 17765.76, + "probability": 0.9858 + }, + { + "start": 17766.24, + "end": 17766.72, + "probability": 0.4523 + }, + { + "start": 17766.82, + "end": 17767.92, + "probability": 0.4972 + }, + { + "start": 17768.34, + "end": 17770.08, + "probability": 0.9722 + }, + { + "start": 17770.54, + "end": 17772.4, + "probability": 0.9292 + }, + { + "start": 17772.96, + "end": 17776.82, + "probability": 0.9911 + }, + { + "start": 17777.24, + "end": 17779.22, + "probability": 0.9912 + }, + { + "start": 17779.38, + "end": 17783.12, + "probability": 0.988 + }, + { + "start": 17783.12, + "end": 17786.1, + "probability": 0.943 + }, + { + "start": 17786.26, + "end": 17786.52, + "probability": 0.7316 + }, + { + "start": 17788.2, + "end": 17788.86, + "probability": 0.7859 + }, + { + "start": 17790.26, + "end": 17792.06, + "probability": 0.9465 + }, + { + "start": 17793.16, + "end": 17794.48, + "probability": 0.0514 + }, + { + "start": 17802.6, + "end": 17802.96, + "probability": 0.5991 + }, + { + "start": 17804.58, + "end": 17806.02, + "probability": 0.4339 + }, + { + "start": 17806.02, + "end": 17812.12, + "probability": 0.9244 + }, + { + "start": 17813.48, + "end": 17813.86, + "probability": 0.7294 + }, + { + "start": 17813.94, + "end": 17816.46, + "probability": 0.9625 + }, + { + "start": 17816.7, + "end": 17818.14, + "probability": 0.9832 + }, + { + "start": 17819.4, + "end": 17821.48, + "probability": 0.9592 + }, + { + "start": 17822.0, + "end": 17822.72, + "probability": 0.7659 + }, + { + "start": 17823.32, + "end": 17825.02, + "probability": 0.9336 + }, + { + "start": 17825.3, + "end": 17830.16, + "probability": 0.9956 + }, + { + "start": 17830.24, + "end": 17830.66, + "probability": 0.2989 + }, + { + "start": 17830.72, + "end": 17831.48, + "probability": 0.8708 + }, + { + "start": 17831.92, + "end": 17835.64, + "probability": 0.9871 + }, + { + "start": 17836.02, + "end": 17836.84, + "probability": 0.8887 + }, + { + "start": 17837.0, + "end": 17840.34, + "probability": 0.981 + }, + { + "start": 17840.34, + "end": 17844.24, + "probability": 0.9827 + }, + { + "start": 17844.86, + "end": 17847.48, + "probability": 0.9717 + }, + { + "start": 17848.04, + "end": 17851.2, + "probability": 0.6178 + }, + { + "start": 17851.22, + "end": 17853.0, + "probability": 0.9912 + }, + { + "start": 17853.06, + "end": 17854.76, + "probability": 0.9701 + }, + { + "start": 17855.1, + "end": 17855.72, + "probability": 0.5844 + }, + { + "start": 17855.8, + "end": 17857.84, + "probability": 0.9657 + }, + { + "start": 17858.54, + "end": 17864.3, + "probability": 0.898 + }, + { + "start": 17864.4, + "end": 17865.78, + "probability": 0.9504 + }, + { + "start": 17865.84, + "end": 17870.26, + "probability": 0.9958 + }, + { + "start": 17870.74, + "end": 17872.76, + "probability": 0.8618 + }, + { + "start": 17872.86, + "end": 17875.6, + "probability": 0.9823 + }, + { + "start": 17875.6, + "end": 17879.08, + "probability": 0.9875 + }, + { + "start": 17879.6, + "end": 17882.16, + "probability": 0.9814 + }, + { + "start": 17882.54, + "end": 17885.3, + "probability": 0.9963 + }, + { + "start": 17885.68, + "end": 17891.06, + "probability": 0.995 + }, + { + "start": 17891.06, + "end": 17893.98, + "probability": 0.9701 + }, + { + "start": 17894.2, + "end": 17896.34, + "probability": 0.9719 + }, + { + "start": 17896.38, + "end": 17898.6, + "probability": 0.9948 + }, + { + "start": 17899.02, + "end": 17900.84, + "probability": 0.9032 + }, + { + "start": 17901.28, + "end": 17903.92, + "probability": 0.8887 + }, + { + "start": 17905.12, + "end": 17906.06, + "probability": 0.9742 + }, + { + "start": 17906.86, + "end": 17910.48, + "probability": 0.9419 + }, + { + "start": 17910.48, + "end": 17914.44, + "probability": 0.9769 + }, + { + "start": 17915.14, + "end": 17919.0, + "probability": 0.9982 + }, + { + "start": 17919.54, + "end": 17923.38, + "probability": 0.6668 + }, + { + "start": 17923.78, + "end": 17925.84, + "probability": 0.9895 + }, + { + "start": 17926.12, + "end": 17928.78, + "probability": 0.9958 + }, + { + "start": 17929.04, + "end": 17930.86, + "probability": 0.9409 + }, + { + "start": 17931.4, + "end": 17934.08, + "probability": 0.9805 + }, + { + "start": 17934.5, + "end": 17936.3, + "probability": 0.9904 + }, + { + "start": 17936.36, + "end": 17938.96, + "probability": 0.8525 + }, + { + "start": 17939.56, + "end": 17944.48, + "probability": 0.9957 + }, + { + "start": 17944.88, + "end": 17946.24, + "probability": 0.8882 + }, + { + "start": 17946.36, + "end": 17946.6, + "probability": 0.8315 + }, + { + "start": 17948.84, + "end": 17949.66, + "probability": 0.7812 + }, + { + "start": 17949.86, + "end": 17951.36, + "probability": 0.5658 + }, + { + "start": 17952.56, + "end": 17956.76, + "probability": 0.3596 + }, + { + "start": 17957.24, + "end": 17957.86, + "probability": 0.8989 + }, + { + "start": 17958.34, + "end": 17959.98, + "probability": 0.8608 + }, + { + "start": 17962.24, + "end": 17964.58, + "probability": 0.9502 + }, + { + "start": 17966.06, + "end": 17966.84, + "probability": 0.5415 + }, + { + "start": 17970.53, + "end": 17971.76, + "probability": 0.4486 + }, + { + "start": 17971.76, + "end": 17971.76, + "probability": 0.5707 + }, + { + "start": 17971.76, + "end": 17972.44, + "probability": 0.9038 + }, + { + "start": 17972.64, + "end": 17973.2, + "probability": 0.9353 + }, + { + "start": 17973.7, + "end": 17975.16, + "probability": 0.9292 + }, + { + "start": 17975.96, + "end": 17976.68, + "probability": 0.9634 + }, + { + "start": 17977.2, + "end": 17978.86, + "probability": 0.771 + }, + { + "start": 17979.76, + "end": 17981.92, + "probability": 0.9887 + }, + { + "start": 17999.1, + "end": 17999.38, + "probability": 0.5003 + }, + { + "start": 17999.38, + "end": 17999.38, + "probability": 0.0496 + }, + { + "start": 17999.38, + "end": 17999.38, + "probability": 0.0735 + }, + { + "start": 17999.38, + "end": 17999.38, + "probability": 0.0555 + }, + { + "start": 17999.38, + "end": 17999.38, + "probability": 0.262 + }, + { + "start": 17999.38, + "end": 17999.84, + "probability": 0.4113 + }, + { + "start": 18001.58, + "end": 18002.96, + "probability": 0.3917 + }, + { + "start": 18003.1, + "end": 18008.18, + "probability": 0.9362 + }, + { + "start": 18009.1, + "end": 18011.3, + "probability": 0.8092 + }, + { + "start": 18012.06, + "end": 18012.8, + "probability": 0.8572 + }, + { + "start": 18013.5, + "end": 18017.46, + "probability": 0.9881 + }, + { + "start": 18017.72, + "end": 18019.02, + "probability": 0.5523 + }, + { + "start": 18019.18, + "end": 18020.18, + "probability": 0.7869 + }, + { + "start": 18020.36, + "end": 18024.76, + "probability": 0.9916 + }, + { + "start": 18025.64, + "end": 18027.92, + "probability": 0.0887 + }, + { + "start": 18027.96, + "end": 18031.02, + "probability": 0.5074 + }, + { + "start": 18031.18, + "end": 18032.54, + "probability": 0.755 + }, + { + "start": 18034.0, + "end": 18037.94, + "probability": 0.9306 + }, + { + "start": 18038.46, + "end": 18042.94, + "probability": 0.7148 + }, + { + "start": 18043.7, + "end": 18045.74, + "probability": 0.9804 + }, + { + "start": 18045.9, + "end": 18048.3, + "probability": 0.9711 + }, + { + "start": 18048.36, + "end": 18049.38, + "probability": 0.899 + }, + { + "start": 18050.34, + "end": 18051.65, + "probability": 0.7726 + }, + { + "start": 18052.34, + "end": 18056.92, + "probability": 0.9736 + }, + { + "start": 18056.98, + "end": 18059.02, + "probability": 0.9873 + }, + { + "start": 18059.5, + "end": 18061.1, + "probability": 0.9986 + }, + { + "start": 18061.24, + "end": 18062.58, + "probability": 0.9329 + }, + { + "start": 18063.12, + "end": 18067.44, + "probability": 0.9721 + }, + { + "start": 18067.82, + "end": 18073.28, + "probability": 0.9901 + }, + { + "start": 18073.76, + "end": 18076.62, + "probability": 0.8177 + }, + { + "start": 18076.8, + "end": 18078.92, + "probability": 0.7793 + }, + { + "start": 18079.38, + "end": 18080.4, + "probability": 0.8332 + }, + { + "start": 18080.82, + "end": 18082.56, + "probability": 0.7672 + }, + { + "start": 18083.16, + "end": 18085.2, + "probability": 0.947 + }, + { + "start": 18086.18, + "end": 18090.8, + "probability": 0.8468 + }, + { + "start": 18091.52, + "end": 18091.96, + "probability": 0.6952 + }, + { + "start": 18092.1, + "end": 18094.1, + "probability": 0.7772 + }, + { + "start": 18094.1, + "end": 18098.63, + "probability": 0.9238 + }, + { + "start": 18100.0, + "end": 18100.91, + "probability": 0.936 + }, + { + "start": 18101.1, + "end": 18101.48, + "probability": 0.9658 + }, + { + "start": 18101.64, + "end": 18104.76, + "probability": 0.9501 + }, + { + "start": 18105.38, + "end": 18109.74, + "probability": 0.8681 + }, + { + "start": 18110.44, + "end": 18111.96, + "probability": 0.8805 + }, + { + "start": 18112.56, + "end": 18116.38, + "probability": 0.8514 + }, + { + "start": 18117.2, + "end": 18120.75, + "probability": 0.8396 + }, + { + "start": 18121.26, + "end": 18126.44, + "probability": 0.947 + }, + { + "start": 18126.62, + "end": 18130.22, + "probability": 0.9878 + }, + { + "start": 18130.64, + "end": 18133.06, + "probability": 0.9748 + }, + { + "start": 18133.6, + "end": 18134.2, + "probability": 0.3813 + }, + { + "start": 18134.9, + "end": 18136.32, + "probability": 0.9803 + }, + { + "start": 18136.7, + "end": 18139.98, + "probability": 0.9675 + }, + { + "start": 18140.56, + "end": 18140.96, + "probability": 0.8407 + }, + { + "start": 18141.16, + "end": 18143.44, + "probability": 0.8685 + }, + { + "start": 18143.44, + "end": 18147.0, + "probability": 0.943 + }, + { + "start": 18147.24, + "end": 18149.26, + "probability": 0.9666 + }, + { + "start": 18149.64, + "end": 18153.74, + "probability": 0.9795 + }, + { + "start": 18154.18, + "end": 18156.0, + "probability": 0.9951 + }, + { + "start": 18156.58, + "end": 18160.16, + "probability": 0.9883 + }, + { + "start": 18160.16, + "end": 18163.32, + "probability": 0.9974 + }, + { + "start": 18163.7, + "end": 18164.44, + "probability": 0.6582 + }, + { + "start": 18164.98, + "end": 18166.66, + "probability": 0.9009 + }, + { + "start": 18166.76, + "end": 18169.02, + "probability": 0.9202 + }, + { + "start": 18169.46, + "end": 18171.22, + "probability": 0.9976 + }, + { + "start": 18171.74, + "end": 18174.74, + "probability": 0.901 + }, + { + "start": 18175.28, + "end": 18175.62, + "probability": 0.2898 + }, + { + "start": 18175.68, + "end": 18179.6, + "probability": 0.9056 + }, + { + "start": 18179.6, + "end": 18182.18, + "probability": 0.9276 + }, + { + "start": 18182.76, + "end": 18184.74, + "probability": 0.9764 + }, + { + "start": 18185.36, + "end": 18187.6, + "probability": 0.9743 + }, + { + "start": 18188.18, + "end": 18188.5, + "probability": 0.6551 + }, + { + "start": 18188.62, + "end": 18188.96, + "probability": 0.7501 + }, + { + "start": 18189.04, + "end": 18192.85, + "probability": 0.9103 + }, + { + "start": 18192.94, + "end": 18195.64, + "probability": 0.4999 + }, + { + "start": 18196.02, + "end": 18199.1, + "probability": 0.9944 + }, + { + "start": 18199.58, + "end": 18201.08, + "probability": 0.9585 + }, + { + "start": 18201.92, + "end": 18206.6, + "probability": 0.9895 + }, + { + "start": 18207.12, + "end": 18208.59, + "probability": 0.8147 + }, + { + "start": 18209.12, + "end": 18210.1, + "probability": 0.9531 + }, + { + "start": 18210.42, + "end": 18213.54, + "probability": 0.7651 + }, + { + "start": 18213.98, + "end": 18217.12, + "probability": 0.8081 + }, + { + "start": 18217.2, + "end": 18217.62, + "probability": 0.9328 + }, + { + "start": 18217.86, + "end": 18218.58, + "probability": 0.8382 + }, + { + "start": 18218.98, + "end": 18222.8, + "probability": 0.9873 + }, + { + "start": 18222.8, + "end": 18222.8, + "probability": 0.5393 + }, + { + "start": 18222.82, + "end": 18223.02, + "probability": 0.4632 + }, + { + "start": 18223.08, + "end": 18224.36, + "probability": 0.9338 + }, + { + "start": 18224.48, + "end": 18229.7, + "probability": 0.9971 + }, + { + "start": 18229.8, + "end": 18230.5, + "probability": 0.7367 + }, + { + "start": 18230.72, + "end": 18232.72, + "probability": 0.939 + }, + { + "start": 18232.76, + "end": 18233.86, + "probability": 0.9508 + }, + { + "start": 18235.8, + "end": 18238.6, + "probability": 0.6876 + }, + { + "start": 18241.26, + "end": 18243.18, + "probability": 0.9443 + }, + { + "start": 18243.74, + "end": 18244.76, + "probability": 0.5689 + }, + { + "start": 18245.36, + "end": 18247.68, + "probability": 0.9881 + }, + { + "start": 18248.04, + "end": 18251.02, + "probability": 0.9938 + }, + { + "start": 18251.74, + "end": 18255.78, + "probability": 0.7664 + }, + { + "start": 18256.08, + "end": 18258.8, + "probability": 0.6735 + }, + { + "start": 18258.82, + "end": 18260.56, + "probability": 0.9951 + }, + { + "start": 18260.8, + "end": 18261.56, + "probability": 0.7373 + }, + { + "start": 18262.16, + "end": 18263.44, + "probability": 0.9843 + }, + { + "start": 18263.52, + "end": 18264.86, + "probability": 0.9846 + }, + { + "start": 18265.09, + "end": 18267.16, + "probability": 0.8961 + }, + { + "start": 18267.2, + "end": 18268.26, + "probability": 0.9877 + }, + { + "start": 18268.78, + "end": 18269.98, + "probability": 0.4297 + }, + { + "start": 18269.98, + "end": 18271.88, + "probability": 0.4543 + }, + { + "start": 18272.2, + "end": 18273.8, + "probability": 0.9539 + }, + { + "start": 18274.58, + "end": 18275.2, + "probability": 0.9369 + }, + { + "start": 18275.42, + "end": 18275.66, + "probability": 0.8768 + }, + { + "start": 18275.74, + "end": 18277.76, + "probability": 0.9746 + }, + { + "start": 18278.2, + "end": 18279.08, + "probability": 0.9491 + }, + { + "start": 18279.52, + "end": 18280.58, + "probability": 0.9255 + }, + { + "start": 18280.66, + "end": 18282.88, + "probability": 0.7741 + }, + { + "start": 18283.3, + "end": 18287.16, + "probability": 0.9015 + }, + { + "start": 18287.7, + "end": 18287.7, + "probability": 0.0514 + }, + { + "start": 18287.7, + "end": 18288.32, + "probability": 0.8858 + }, + { + "start": 18288.46, + "end": 18290.52, + "probability": 0.955 + }, + { + "start": 18290.84, + "end": 18292.1, + "probability": 0.9666 + }, + { + "start": 18292.36, + "end": 18293.28, + "probability": 0.5052 + }, + { + "start": 18293.78, + "end": 18294.22, + "probability": 0.5844 + }, + { + "start": 18294.66, + "end": 18295.22, + "probability": 0.5775 + }, + { + "start": 18296.16, + "end": 18297.22, + "probability": 0.6075 + }, + { + "start": 18297.36, + "end": 18300.08, + "probability": 0.8685 + }, + { + "start": 18300.52, + "end": 18300.72, + "probability": 0.3297 + }, + { + "start": 18300.72, + "end": 18301.5, + "probability": 0.6223 + }, + { + "start": 18301.76, + "end": 18304.02, + "probability": 0.9292 + }, + { + "start": 18304.76, + "end": 18305.37, + "probability": 0.6137 + }, + { + "start": 18306.0, + "end": 18307.4, + "probability": 0.9797 + }, + { + "start": 18307.98, + "end": 18310.96, + "probability": 0.9299 + }, + { + "start": 18311.04, + "end": 18311.68, + "probability": 0.9028 + }, + { + "start": 18312.1, + "end": 18315.86, + "probability": 0.9927 + }, + { + "start": 18316.4, + "end": 18324.18, + "probability": 0.9972 + }, + { + "start": 18324.64, + "end": 18326.44, + "probability": 0.7973 + }, + { + "start": 18326.98, + "end": 18328.08, + "probability": 0.8778 + }, + { + "start": 18328.14, + "end": 18329.46, + "probability": 0.9163 + }, + { + "start": 18329.54, + "end": 18332.28, + "probability": 0.9766 + }, + { + "start": 18332.3, + "end": 18333.0, + "probability": 0.8936 + }, + { + "start": 18334.12, + "end": 18336.38, + "probability": 0.9912 + }, + { + "start": 18336.44, + "end": 18337.34, + "probability": 0.8349 + }, + { + "start": 18337.7, + "end": 18338.5, + "probability": 0.821 + }, + { + "start": 18338.54, + "end": 18339.56, + "probability": 0.93 + }, + { + "start": 18339.66, + "end": 18340.06, + "probability": 0.5695 + }, + { + "start": 18340.88, + "end": 18343.11, + "probability": 0.9888 + }, + { + "start": 18343.8, + "end": 18345.18, + "probability": 0.9863 + }, + { + "start": 18345.76, + "end": 18347.9, + "probability": 0.9897 + }, + { + "start": 18348.36, + "end": 18348.8, + "probability": 0.683 + }, + { + "start": 18348.88, + "end": 18349.64, + "probability": 0.9343 + }, + { + "start": 18349.98, + "end": 18352.86, + "probability": 0.762 + }, + { + "start": 18352.94, + "end": 18354.2, + "probability": 0.8893 + }, + { + "start": 18354.58, + "end": 18355.96, + "probability": 0.9136 + }, + { + "start": 18356.32, + "end": 18356.92, + "probability": 0.0132 + }, + { + "start": 18356.92, + "end": 18361.38, + "probability": 0.5204 + }, + { + "start": 18362.16, + "end": 18365.42, + "probability": 0.9529 + }, + { + "start": 18365.52, + "end": 18368.18, + "probability": 0.0958 + }, + { + "start": 18370.04, + "end": 18370.28, + "probability": 0.0336 + }, + { + "start": 18370.28, + "end": 18370.28, + "probability": 0.4994 + }, + { + "start": 18370.28, + "end": 18370.28, + "probability": 0.0532 + }, + { + "start": 18370.28, + "end": 18370.4, + "probability": 0.2224 + }, + { + "start": 18371.02, + "end": 18372.38, + "probability": 0.7132 + }, + { + "start": 18372.48, + "end": 18374.22, + "probability": 0.526 + }, + { + "start": 18374.88, + "end": 18375.12, + "probability": 0.2322 + }, + { + "start": 18375.12, + "end": 18379.3, + "probability": 0.5372 + }, + { + "start": 18379.36, + "end": 18379.38, + "probability": 0.1253 + }, + { + "start": 18379.38, + "end": 18379.38, + "probability": 0.2445 + }, + { + "start": 18379.38, + "end": 18379.88, + "probability": 0.914 + }, + { + "start": 18380.22, + "end": 18381.5, + "probability": 0.8681 + }, + { + "start": 18381.62, + "end": 18384.72, + "probability": 0.9753 + }, + { + "start": 18385.14, + "end": 18387.38, + "probability": 0.9971 + }, + { + "start": 18387.76, + "end": 18392.04, + "probability": 0.9766 + }, + { + "start": 18392.28, + "end": 18394.06, + "probability": 0.7313 + }, + { + "start": 18394.6, + "end": 18396.82, + "probability": 0.964 + }, + { + "start": 18397.34, + "end": 18398.6, + "probability": 0.7244 + }, + { + "start": 18398.82, + "end": 18402.52, + "probability": 0.8558 + }, + { + "start": 18402.52, + "end": 18403.3, + "probability": 0.6252 + }, + { + "start": 18403.4, + "end": 18405.12, + "probability": 0.9359 + }, + { + "start": 18405.6, + "end": 18406.2, + "probability": 0.7402 + }, + { + "start": 18406.32, + "end": 18407.28, + "probability": 0.6014 + }, + { + "start": 18407.28, + "end": 18408.34, + "probability": 0.6959 + }, + { + "start": 18408.46, + "end": 18410.06, + "probability": 0.7841 + }, + { + "start": 18410.42, + "end": 18413.32, + "probability": 0.9904 + }, + { + "start": 18413.36, + "end": 18416.65, + "probability": 0.9902 + }, + { + "start": 18417.16, + "end": 18420.58, + "probability": 0.9943 + }, + { + "start": 18421.18, + "end": 18424.42, + "probability": 0.9907 + }, + { + "start": 18424.72, + "end": 18427.5, + "probability": 0.9979 + }, + { + "start": 18427.5, + "end": 18430.0, + "probability": 0.9905 + }, + { + "start": 18430.38, + "end": 18431.26, + "probability": 0.7273 + }, + { + "start": 18431.4, + "end": 18433.44, + "probability": 0.9954 + }, + { + "start": 18434.66, + "end": 18434.66, + "probability": 0.3254 + }, + { + "start": 18434.66, + "end": 18437.8, + "probability": 0.9927 + }, + { + "start": 18437.84, + "end": 18438.2, + "probability": 0.7447 + }, + { + "start": 18438.78, + "end": 18442.26, + "probability": 0.7062 + }, + { + "start": 18442.4, + "end": 18445.1, + "probability": 0.5445 + }, + { + "start": 18446.82, + "end": 18450.78, + "probability": 0.7568 + }, + { + "start": 18451.88, + "end": 18453.94, + "probability": 0.8906 + }, + { + "start": 18454.46, + "end": 18455.7, + "probability": 0.5351 + }, + { + "start": 18455.9, + "end": 18456.06, + "probability": 0.0007 + }, + { + "start": 18458.63, + "end": 18461.4, + "probability": 0.124 + }, + { + "start": 18462.46, + "end": 18463.38, + "probability": 0.419 + }, + { + "start": 18463.38, + "end": 18465.34, + "probability": 0.9014 + }, + { + "start": 18467.74, + "end": 18469.92, + "probability": 0.7148 + }, + { + "start": 18480.82, + "end": 18483.02, + "probability": 0.9236 + }, + { + "start": 18484.62, + "end": 18485.68, + "probability": 0.7648 + }, + { + "start": 18485.9, + "end": 18486.78, + "probability": 0.6632 + }, + { + "start": 18486.88, + "end": 18491.24, + "probability": 0.9707 + }, + { + "start": 18491.94, + "end": 18493.8, + "probability": 0.9974 + }, + { + "start": 18494.02, + "end": 18498.94, + "probability": 0.9495 + }, + { + "start": 18500.38, + "end": 18503.82, + "probability": 0.9884 + }, + { + "start": 18503.82, + "end": 18508.32, + "probability": 0.9854 + }, + { + "start": 18509.76, + "end": 18510.04, + "probability": 0.6962 + }, + { + "start": 18510.16, + "end": 18516.04, + "probability": 0.9932 + }, + { + "start": 18516.88, + "end": 18520.12, + "probability": 0.9706 + }, + { + "start": 18520.14, + "end": 18521.34, + "probability": 0.8066 + }, + { + "start": 18521.44, + "end": 18522.64, + "probability": 0.7836 + }, + { + "start": 18523.22, + "end": 18526.04, + "probability": 0.958 + }, + { + "start": 18526.26, + "end": 18528.7, + "probability": 0.993 + }, + { + "start": 18529.2, + "end": 18529.68, + "probability": 0.6618 + }, + { + "start": 18529.8, + "end": 18534.02, + "probability": 0.9675 + }, + { + "start": 18535.5, + "end": 18537.1, + "probability": 0.7864 + }, + { + "start": 18537.44, + "end": 18542.26, + "probability": 0.9532 + }, + { + "start": 18542.26, + "end": 18546.48, + "probability": 0.9733 + }, + { + "start": 18546.82, + "end": 18550.3, + "probability": 0.9938 + }, + { + "start": 18550.9, + "end": 18553.56, + "probability": 0.5746 + }, + { + "start": 18554.26, + "end": 18555.14, + "probability": 0.6099 + }, + { + "start": 18555.14, + "end": 18555.66, + "probability": 0.6487 + }, + { + "start": 18555.78, + "end": 18555.84, + "probability": 0.4761 + }, + { + "start": 18555.84, + "end": 18556.98, + "probability": 0.2547 + }, + { + "start": 18556.98, + "end": 18560.38, + "probability": 0.9009 + }, + { + "start": 18560.62, + "end": 18562.3, + "probability": 0.0196 + }, + { + "start": 18562.66, + "end": 18563.43, + "probability": 0.6575 + }, + { + "start": 18564.4, + "end": 18564.68, + "probability": 0.3377 + }, + { + "start": 18564.68, + "end": 18564.68, + "probability": 0.0166 + }, + { + "start": 18564.68, + "end": 18564.75, + "probability": 0.5239 + }, + { + "start": 18564.76, + "end": 18564.78, + "probability": 0.4838 + }, + { + "start": 18564.78, + "end": 18565.36, + "probability": 0.0967 + }, + { + "start": 18565.36, + "end": 18566.56, + "probability": 0.5018 + }, + { + "start": 18566.98, + "end": 18568.16, + "probability": 0.5837 + }, + { + "start": 18568.6, + "end": 18574.9, + "probability": 0.9721 + }, + { + "start": 18575.62, + "end": 18579.46, + "probability": 0.9731 + }, + { + "start": 18579.76, + "end": 18582.28, + "probability": 0.9842 + }, + { + "start": 18582.66, + "end": 18584.44, + "probability": 0.9907 + }, + { + "start": 18584.68, + "end": 18587.58, + "probability": 0.9897 + }, + { + "start": 18588.24, + "end": 18591.08, + "probability": 0.7066 + }, + { + "start": 18591.24, + "end": 18591.24, + "probability": 0.615 + }, + { + "start": 18591.44, + "end": 18594.65, + "probability": 0.9934 + }, + { + "start": 18595.48, + "end": 18596.22, + "probability": 0.8614 + }, + { + "start": 18596.28, + "end": 18602.66, + "probability": 0.9071 + }, + { + "start": 18603.04, + "end": 18605.2, + "probability": 0.9565 + }, + { + "start": 18605.8, + "end": 18608.84, + "probability": 0.8747 + }, + { + "start": 18608.84, + "end": 18611.82, + "probability": 0.9721 + }, + { + "start": 18612.54, + "end": 18615.62, + "probability": 0.9924 + }, + { + "start": 18615.62, + "end": 18620.74, + "probability": 0.9053 + }, + { + "start": 18621.28, + "end": 18625.06, + "probability": 0.9841 + }, + { + "start": 18625.48, + "end": 18625.92, + "probability": 0.4421 + }, + { + "start": 18626.22, + "end": 18627.68, + "probability": 0.9661 + }, + { + "start": 18628.04, + "end": 18629.44, + "probability": 0.9023 + }, + { + "start": 18630.24, + "end": 18632.74, + "probability": 0.7944 + }, + { + "start": 18632.78, + "end": 18632.78, + "probability": 0.0323 + }, + { + "start": 18632.78, + "end": 18634.26, + "probability": 0.7678 + }, + { + "start": 18634.3, + "end": 18635.28, + "probability": 0.7464 + }, + { + "start": 18635.66, + "end": 18635.98, + "probability": 0.3161 + }, + { + "start": 18636.02, + "end": 18637.68, + "probability": 0.6911 + }, + { + "start": 18637.68, + "end": 18638.9, + "probability": 0.8261 + }, + { + "start": 18639.02, + "end": 18640.36, + "probability": 0.6024 + }, + { + "start": 18640.64, + "end": 18641.98, + "probability": 0.7156 + }, + { + "start": 18641.98, + "end": 18642.84, + "probability": 0.4592 + }, + { + "start": 18643.2, + "end": 18644.34, + "probability": 0.9399 + }, + { + "start": 18644.34, + "end": 18646.6, + "probability": 0.6109 + }, + { + "start": 18646.92, + "end": 18649.94, + "probability": 0.0098 + }, + { + "start": 18650.08, + "end": 18651.0, + "probability": 0.7834 + }, + { + "start": 18651.0, + "end": 18655.6, + "probability": 0.9617 + }, + { + "start": 18655.98, + "end": 18655.98, + "probability": 0.2034 + }, + { + "start": 18655.98, + "end": 18659.22, + "probability": 0.5094 + }, + { + "start": 18659.24, + "end": 18660.56, + "probability": 0.8735 + }, + { + "start": 18660.92, + "end": 18662.4, + "probability": 0.8554 + }, + { + "start": 18662.54, + "end": 18663.72, + "probability": 0.1653 + }, + { + "start": 18663.91, + "end": 18665.04, + "probability": 0.3464 + }, + { + "start": 18665.04, + "end": 18666.76, + "probability": 0.6916 + }, + { + "start": 18666.84, + "end": 18668.0, + "probability": 0.8392 + }, + { + "start": 18668.18, + "end": 18668.84, + "probability": 0.5309 + }, + { + "start": 18670.1, + "end": 18671.69, + "probability": 0.2764 + }, + { + "start": 18673.36, + "end": 18673.92, + "probability": 0.0178 + }, + { + "start": 18674.42, + "end": 18674.42, + "probability": 0.0945 + }, + { + "start": 18674.42, + "end": 18674.42, + "probability": 0.0992 + }, + { + "start": 18674.42, + "end": 18677.74, + "probability": 0.7177 + }, + { + "start": 18678.16, + "end": 18678.16, + "probability": 0.1364 + }, + { + "start": 18678.16, + "end": 18680.08, + "probability": 0.7874 + }, + { + "start": 18680.62, + "end": 18683.02, + "probability": 0.7532 + }, + { + "start": 18683.3, + "end": 18684.1, + "probability": 0.653 + }, + { + "start": 18684.38, + "end": 18685.5, + "probability": 0.7867 + }, + { + "start": 18685.68, + "end": 18686.26, + "probability": 0.2153 + }, + { + "start": 18686.3, + "end": 18687.4, + "probability": 0.1777 + }, + { + "start": 18687.44, + "end": 18687.58, + "probability": 0.3341 + }, + { + "start": 18687.58, + "end": 18691.82, + "probability": 0.9499 + }, + { + "start": 18692.36, + "end": 18692.92, + "probability": 0.4732 + }, + { + "start": 18693.06, + "end": 18694.46, + "probability": 0.1791 + }, + { + "start": 18694.46, + "end": 18697.98, + "probability": 0.7213 + }, + { + "start": 18698.44, + "end": 18698.52, + "probability": 0.2041 + }, + { + "start": 18698.52, + "end": 18698.52, + "probability": 0.1341 + }, + { + "start": 18698.52, + "end": 18699.56, + "probability": 0.4794 + }, + { + "start": 18700.06, + "end": 18703.98, + "probability": 0.9631 + }, + { + "start": 18703.98, + "end": 18704.18, + "probability": 0.3253 + }, + { + "start": 18704.36, + "end": 18706.93, + "probability": 0.9428 + }, + { + "start": 18707.12, + "end": 18707.26, + "probability": 0.0326 + }, + { + "start": 18707.26, + "end": 18707.74, + "probability": 0.5937 + }, + { + "start": 18707.98, + "end": 18708.59, + "probability": 0.5646 + }, + { + "start": 18708.98, + "end": 18710.54, + "probability": 0.7381 + }, + { + "start": 18711.08, + "end": 18711.85, + "probability": 0.0294 + }, + { + "start": 18714.86, + "end": 18715.84, + "probability": 0.0623 + }, + { + "start": 18715.98, + "end": 18718.14, + "probability": 0.0327 + }, + { + "start": 18719.44, + "end": 18721.68, + "probability": 0.0763 + }, + { + "start": 18721.86, + "end": 18723.12, + "probability": 0.2161 + }, + { + "start": 18725.22, + "end": 18726.16, + "probability": 0.1154 + }, + { + "start": 18728.08, + "end": 18729.99, + "probability": 0.0746 + }, + { + "start": 18734.4, + "end": 18734.72, + "probability": 0.0517 + }, + { + "start": 18735.1, + "end": 18735.22, + "probability": 0.3577 + }, + { + "start": 18735.22, + "end": 18735.74, + "probability": 0.435 + }, + { + "start": 18736.06, + "end": 18737.82, + "probability": 0.0101 + }, + { + "start": 18739.24, + "end": 18740.52, + "probability": 0.0132 + }, + { + "start": 18741.28, + "end": 18742.94, + "probability": 0.0336 + }, + { + "start": 18745.59, + "end": 18746.8, + "probability": 0.063 + }, + { + "start": 18747.32, + "end": 18747.32, + "probability": 0.297 + }, + { + "start": 18747.32, + "end": 18747.32, + "probability": 0.009 + }, + { + "start": 18747.32, + "end": 18748.96, + "probability": 0.2274 + }, + { + "start": 18749.2, + "end": 18750.88, + "probability": 0.4182 + }, + { + "start": 18753.04, + "end": 18754.16, + "probability": 0.5654 + }, + { + "start": 18754.28, + "end": 18755.52, + "probability": 0.6852 + }, + { + "start": 18755.88, + "end": 18757.08, + "probability": 0.6939 + }, + { + "start": 18757.24, + "end": 18758.0, + "probability": 0.25 + }, + { + "start": 18758.0, + "end": 18760.76, + "probability": 0.9033 + }, + { + "start": 18761.22, + "end": 18763.78, + "probability": 0.9201 + }, + { + "start": 18764.02, + "end": 18765.42, + "probability": 0.7098 + }, + { + "start": 18765.42, + "end": 18768.46, + "probability": 0.7848 + }, + { + "start": 18768.52, + "end": 18769.27, + "probability": 0.8407 + }, + { + "start": 18769.94, + "end": 18771.18, + "probability": 0.8267 + }, + { + "start": 18771.6, + "end": 18772.6, + "probability": 0.8519 + }, + { + "start": 18773.04, + "end": 18774.82, + "probability": 0.5601 + }, + { + "start": 18775.0, + "end": 18777.58, + "probability": 0.6547 + }, + { + "start": 18777.58, + "end": 18779.56, + "probability": 0.8974 + }, + { + "start": 18779.8, + "end": 18782.94, + "probability": 0.9277 + }, + { + "start": 18783.08, + "end": 18784.98, + "probability": 0.7205 + }, + { + "start": 18785.42, + "end": 18785.62, + "probability": 0.2115 + }, + { + "start": 18785.64, + "end": 18785.64, + "probability": 0.0631 + }, + { + "start": 18785.64, + "end": 18785.64, + "probability": 0.0528 + }, + { + "start": 18785.64, + "end": 18785.64, + "probability": 0.2944 + }, + { + "start": 18785.64, + "end": 18789.28, + "probability": 0.9164 + }, + { + "start": 18789.72, + "end": 18790.54, + "probability": 0.731 + }, + { + "start": 18790.6, + "end": 18791.86, + "probability": 0.0618 + }, + { + "start": 18791.88, + "end": 18792.78, + "probability": 0.8877 + }, + { + "start": 18792.82, + "end": 18793.94, + "probability": 0.9878 + }, + { + "start": 18794.02, + "end": 18797.48, + "probability": 0.7749 + }, + { + "start": 18797.7, + "end": 18798.58, + "probability": 0.5228 + }, + { + "start": 18798.68, + "end": 18799.76, + "probability": 0.9792 + }, + { + "start": 18800.3, + "end": 18801.18, + "probability": 0.8572 + }, + { + "start": 18801.28, + "end": 18802.41, + "probability": 0.8984 + }, + { + "start": 18802.9, + "end": 18804.92, + "probability": 0.0112 + }, + { + "start": 18805.44, + "end": 18806.88, + "probability": 0.4791 + }, + { + "start": 18806.9, + "end": 18807.72, + "probability": 0.4526 + }, + { + "start": 18807.84, + "end": 18809.2, + "probability": 0.5152 + }, + { + "start": 18809.24, + "end": 18810.36, + "probability": 0.9252 + }, + { + "start": 18810.38, + "end": 18812.78, + "probability": 0.9673 + }, + { + "start": 18812.86, + "end": 18814.52, + "probability": 0.9966 + }, + { + "start": 18814.82, + "end": 18815.12, + "probability": 0.1632 + }, + { + "start": 18815.28, + "end": 18816.59, + "probability": 0.1204 + }, + { + "start": 18816.74, + "end": 18817.26, + "probability": 0.0136 + }, + { + "start": 18817.26, + "end": 18818.0, + "probability": 0.6361 + }, + { + "start": 18818.44, + "end": 18819.12, + "probability": 0.5189 + }, + { + "start": 18820.16, + "end": 18822.04, + "probability": 0.7369 + }, + { + "start": 18822.08, + "end": 18823.2, + "probability": 0.8926 + }, + { + "start": 18823.26, + "end": 18824.98, + "probability": 0.8464 + }, + { + "start": 18825.06, + "end": 18825.56, + "probability": 0.8792 + }, + { + "start": 18826.34, + "end": 18828.06, + "probability": 0.8244 + }, + { + "start": 18829.08, + "end": 18829.8, + "probability": 0.8142 + }, + { + "start": 18830.36, + "end": 18832.6, + "probability": 0.9971 + }, + { + "start": 18833.26, + "end": 18834.42, + "probability": 0.7963 + }, + { + "start": 18835.06, + "end": 18837.28, + "probability": 0.981 + }, + { + "start": 18837.9, + "end": 18838.6, + "probability": 0.5343 + }, + { + "start": 18839.9, + "end": 18840.08, + "probability": 0.4332 + }, + { + "start": 18840.22, + "end": 18841.34, + "probability": 0.9926 + }, + { + "start": 18841.56, + "end": 18842.2, + "probability": 0.7758 + }, + { + "start": 18842.52, + "end": 18843.64, + "probability": 0.9831 + }, + { + "start": 18843.66, + "end": 18844.5, + "probability": 0.6923 + }, + { + "start": 18844.58, + "end": 18847.55, + "probability": 0.9857 + }, + { + "start": 18847.92, + "end": 18848.5, + "probability": 0.5158 + }, + { + "start": 18848.76, + "end": 18850.6, + "probability": 0.856 + }, + { + "start": 18851.08, + "end": 18852.34, + "probability": 0.7571 + }, + { + "start": 18852.84, + "end": 18856.8, + "probability": 0.7401 + }, + { + "start": 18857.32, + "end": 18859.78, + "probability": 0.9424 + }, + { + "start": 18860.36, + "end": 18862.68, + "probability": 0.6194 + }, + { + "start": 18862.7, + "end": 18863.06, + "probability": 0.8126 + }, + { + "start": 18863.16, + "end": 18863.24, + "probability": 0.5161 + }, + { + "start": 18863.26, + "end": 18863.64, + "probability": 0.8604 + }, + { + "start": 18863.74, + "end": 18869.6, + "probability": 0.9707 + }, + { + "start": 18870.28, + "end": 18871.14, + "probability": 0.916 + }, + { + "start": 18872.1, + "end": 18873.78, + "probability": 0.9192 + }, + { + "start": 18874.06, + "end": 18877.18, + "probability": 0.9944 + }, + { + "start": 18878.08, + "end": 18879.36, + "probability": 0.9558 + }, + { + "start": 18880.1, + "end": 18880.86, + "probability": 0.8428 + }, + { + "start": 18881.34, + "end": 18883.28, + "probability": 0.866 + }, + { + "start": 18883.7, + "end": 18885.82, + "probability": 0.9112 + }, + { + "start": 18886.22, + "end": 18887.18, + "probability": 0.9741 + }, + { + "start": 18887.3, + "end": 18888.72, + "probability": 0.9519 + }, + { + "start": 18889.12, + "end": 18892.24, + "probability": 0.8329 + }, + { + "start": 18892.64, + "end": 18896.58, + "probability": 0.9908 + }, + { + "start": 18897.02, + "end": 18900.36, + "probability": 0.9599 + }, + { + "start": 18900.94, + "end": 18903.12, + "probability": 0.8345 + }, + { + "start": 18903.44, + "end": 18906.52, + "probability": 0.9801 + }, + { + "start": 18906.68, + "end": 18909.62, + "probability": 0.9989 + }, + { + "start": 18910.04, + "end": 18912.68, + "probability": 0.9191 + }, + { + "start": 18913.04, + "end": 18916.06, + "probability": 0.9971 + }, + { + "start": 18916.06, + "end": 18919.4, + "probability": 0.9398 + }, + { + "start": 18919.94, + "end": 18921.4, + "probability": 0.5012 + }, + { + "start": 18921.76, + "end": 18922.84, + "probability": 0.8656 + }, + { + "start": 18923.38, + "end": 18923.64, + "probability": 0.6448 + }, + { + "start": 18923.94, + "end": 18926.66, + "probability": 0.817 + }, + { + "start": 18927.38, + "end": 18929.36, + "probability": 0.8706 + }, + { + "start": 18929.9, + "end": 18931.44, + "probability": 0.941 + }, + { + "start": 18932.02, + "end": 18932.68, + "probability": 0.9259 + }, + { + "start": 18933.24, + "end": 18937.74, + "probability": 0.6615 + }, + { + "start": 18938.48, + "end": 18940.88, + "probability": 0.9084 + }, + { + "start": 18941.54, + "end": 18941.94, + "probability": 0.9629 + }, + { + "start": 18942.32, + "end": 18943.3, + "probability": 0.7108 + }, + { + "start": 18943.46, + "end": 18943.94, + "probability": 0.9521 + }, + { + "start": 18944.36, + "end": 18945.78, + "probability": 0.948 + }, + { + "start": 18946.02, + "end": 18946.62, + "probability": 0.988 + }, + { + "start": 18947.32, + "end": 18949.1, + "probability": 0.9878 + }, + { + "start": 18949.4, + "end": 18949.8, + "probability": 0.4708 + }, + { + "start": 18950.1, + "end": 18951.38, + "probability": 0.7786 + }, + { + "start": 18951.54, + "end": 18951.86, + "probability": 0.8511 + }, + { + "start": 18952.2, + "end": 18955.06, + "probability": 0.8084 + }, + { + "start": 18955.34, + "end": 18956.96, + "probability": 0.6071 + }, + { + "start": 18957.08, + "end": 18957.6, + "probability": 0.9634 + }, + { + "start": 18957.88, + "end": 18959.26, + "probability": 0.8116 + }, + { + "start": 18960.1, + "end": 18963.0, + "probability": 0.9046 + }, + { + "start": 18963.1, + "end": 18964.58, + "probability": 0.7921 + }, + { + "start": 18966.02, + "end": 18967.66, + "probability": 0.8284 + }, + { + "start": 18968.48, + "end": 18970.86, + "probability": 0.1581 + }, + { + "start": 18971.36, + "end": 18971.68, + "probability": 0.9426 + }, + { + "start": 18972.42, + "end": 18973.96, + "probability": 0.3673 + }, + { + "start": 18974.74, + "end": 18974.96, + "probability": 0.5034 + }, + { + "start": 18978.62, + "end": 18980.08, + "probability": 0.9928 + }, + { + "start": 18982.94, + "end": 18984.4, + "probability": 0.939 + }, + { + "start": 18986.04, + "end": 18988.1, + "probability": 0.9414 + }, + { + "start": 18988.16, + "end": 18988.78, + "probability": 0.9137 + }, + { + "start": 18993.28, + "end": 18993.48, + "probability": 0.1492 + }, + { + "start": 18993.48, + "end": 18994.9, + "probability": 0.4927 + }, + { + "start": 18996.34, + "end": 18998.28, + "probability": 0.8184 + }, + { + "start": 19001.88, + "end": 19008.14, + "probability": 0.9908 + }, + { + "start": 19008.7, + "end": 19015.32, + "probability": 0.9915 + }, + { + "start": 19015.32, + "end": 19019.52, + "probability": 0.9988 + }, + { + "start": 19020.56, + "end": 19026.14, + "probability": 0.9985 + }, + { + "start": 19026.8, + "end": 19030.94, + "probability": 0.9665 + }, + { + "start": 19031.18, + "end": 19032.02, + "probability": 0.1453 + }, + { + "start": 19032.48, + "end": 19033.94, + "probability": 0.8275 + }, + { + "start": 19034.02, + "end": 19037.76, + "probability": 0.7531 + }, + { + "start": 19037.92, + "end": 19039.2, + "probability": 0.9712 + }, + { + "start": 19039.74, + "end": 19042.36, + "probability": 0.9766 + }, + { + "start": 19042.36, + "end": 19047.52, + "probability": 0.8164 + }, + { + "start": 19048.62, + "end": 19049.86, + "probability": 0.9138 + }, + { + "start": 19049.96, + "end": 19051.44, + "probability": 0.8644 + }, + { + "start": 19052.7, + "end": 19056.06, + "probability": 0.7475 + }, + { + "start": 19056.4, + "end": 19056.4, + "probability": 0.0372 + }, + { + "start": 19056.4, + "end": 19058.9, + "probability": 0.551 + }, + { + "start": 19058.92, + "end": 19061.54, + "probability": 0.531 + }, + { + "start": 19061.58, + "end": 19065.54, + "probability": 0.5062 + }, + { + "start": 19065.7, + "end": 19065.78, + "probability": 0.0933 + }, + { + "start": 19065.78, + "end": 19068.88, + "probability": 0.5512 + }, + { + "start": 19069.16, + "end": 19069.16, + "probability": 0.0428 + }, + { + "start": 19069.16, + "end": 19069.16, + "probability": 0.393 + }, + { + "start": 19069.16, + "end": 19069.16, + "probability": 0.4196 + }, + { + "start": 19069.16, + "end": 19072.52, + "probability": 0.3627 + }, + { + "start": 19074.16, + "end": 19076.18, + "probability": 0.0222 + }, + { + "start": 19076.18, + "end": 19077.84, + "probability": 0.2495 + }, + { + "start": 19078.64, + "end": 19080.39, + "probability": 0.7111 + }, + { + "start": 19081.6, + "end": 19081.6, + "probability": 0.0648 + }, + { + "start": 19081.6, + "end": 19083.68, + "probability": 0.5851 + }, + { + "start": 19083.96, + "end": 19084.66, + "probability": 0.126 + }, + { + "start": 19084.68, + "end": 19085.24, + "probability": 0.0071 + }, + { + "start": 19085.6, + "end": 19087.88, + "probability": 0.9081 + }, + { + "start": 19088.26, + "end": 19090.81, + "probability": 0.9415 + }, + { + "start": 19091.08, + "end": 19091.14, + "probability": 0.155 + }, + { + "start": 19091.14, + "end": 19091.14, + "probability": 0.0214 + }, + { + "start": 19091.14, + "end": 19092.52, + "probability": 0.4179 + }, + { + "start": 19092.6, + "end": 19094.22, + "probability": 0.4755 + }, + { + "start": 19094.32, + "end": 19095.46, + "probability": 0.2903 + }, + { + "start": 19095.72, + "end": 19095.72, + "probability": 0.0823 + }, + { + "start": 19095.72, + "end": 19097.41, + "probability": 0.648 + }, + { + "start": 19097.64, + "end": 19099.06, + "probability": 0.9468 + }, + { + "start": 19099.08, + "end": 19099.62, + "probability": 0.2488 + }, + { + "start": 19099.66, + "end": 19101.24, + "probability": 0.9365 + }, + { + "start": 19101.34, + "end": 19105.94, + "probability": 0.9102 + }, + { + "start": 19106.1, + "end": 19107.74, + "probability": 0.9476 + }, + { + "start": 19107.84, + "end": 19108.22, + "probability": 0.586 + }, + { + "start": 19108.7, + "end": 19109.54, + "probability": 0.5042 + }, + { + "start": 19109.68, + "end": 19110.34, + "probability": 0.5706 + }, + { + "start": 19110.4, + "end": 19112.16, + "probability": 0.4633 + }, + { + "start": 19112.26, + "end": 19112.83, + "probability": 0.0209 + }, + { + "start": 19113.14, + "end": 19113.14, + "probability": 0.4425 + }, + { + "start": 19113.32, + "end": 19114.22, + "probability": 0.1613 + }, + { + "start": 19114.26, + "end": 19116.86, + "probability": 0.9888 + }, + { + "start": 19116.93, + "end": 19121.8, + "probability": 0.8561 + }, + { + "start": 19122.2, + "end": 19124.44, + "probability": 0.9937 + }, + { + "start": 19124.44, + "end": 19127.96, + "probability": 0.9993 + }, + { + "start": 19130.38, + "end": 19131.64, + "probability": 0.9695 + }, + { + "start": 19132.56, + "end": 19135.26, + "probability": 0.9983 + }, + { + "start": 19135.26, + "end": 19138.44, + "probability": 0.9994 + }, + { + "start": 19138.6, + "end": 19139.2, + "probability": 0.905 + }, + { + "start": 19139.51, + "end": 19142.24, + "probability": 0.936 + }, + { + "start": 19143.3, + "end": 19145.9, + "probability": 0.9957 + }, + { + "start": 19146.54, + "end": 19151.84, + "probability": 0.9925 + }, + { + "start": 19151.84, + "end": 19156.38, + "probability": 0.9174 + }, + { + "start": 19157.44, + "end": 19158.14, + "probability": 0.8135 + }, + { + "start": 19159.51, + "end": 19163.26, + "probability": 0.6665 + }, + { + "start": 19164.72, + "end": 19167.68, + "probability": 0.8378 + }, + { + "start": 19168.26, + "end": 19169.05, + "probability": 0.6344 + }, + { + "start": 19169.94, + "end": 19175.0, + "probability": 0.0092 + }, + { + "start": 19175.0, + "end": 19175.0, + "probability": 0.1836 + }, + { + "start": 19175.0, + "end": 19175.1, + "probability": 0.2003 + }, + { + "start": 19175.1, + "end": 19176.94, + "probability": 0.3659 + }, + { + "start": 19177.5, + "end": 19177.6, + "probability": 0.0038 + }, + { + "start": 19177.6, + "end": 19178.6, + "probability": 0.0256 + }, + { + "start": 19178.7, + "end": 19178.84, + "probability": 0.053 + }, + { + "start": 19178.84, + "end": 19178.84, + "probability": 0.1162 + }, + { + "start": 19178.84, + "end": 19178.84, + "probability": 0.1 + }, + { + "start": 19178.84, + "end": 19181.14, + "probability": 0.9313 + }, + { + "start": 19182.24, + "end": 19183.94, + "probability": 0.1672 + }, + { + "start": 19184.72, + "end": 19185.18, + "probability": 0.0089 + }, + { + "start": 19185.18, + "end": 19185.48, + "probability": 0.0106 + }, + { + "start": 19185.58, + "end": 19186.1, + "probability": 0.0091 + }, + { + "start": 19186.1, + "end": 19186.1, + "probability": 0.0075 + }, + { + "start": 19186.1, + "end": 19186.1, + "probability": 0.0313 + }, + { + "start": 19186.1, + "end": 19187.5, + "probability": 0.5267 + }, + { + "start": 19188.0, + "end": 19190.7, + "probability": 0.5442 + }, + { + "start": 19190.8, + "end": 19191.9, + "probability": 0.9343 + }, + { + "start": 19191.98, + "end": 19198.0, + "probability": 0.8559 + }, + { + "start": 19198.08, + "end": 19199.02, + "probability": 0.5766 + }, + { + "start": 19199.42, + "end": 19199.98, + "probability": 0.734 + }, + { + "start": 19200.1, + "end": 19201.98, + "probability": 0.6273 + }, + { + "start": 19202.76, + "end": 19204.62, + "probability": 0.892 + }, + { + "start": 19205.2, + "end": 19205.56, + "probability": 0.6141 + }, + { + "start": 19205.88, + "end": 19207.46, + "probability": 0.9642 + }, + { + "start": 19208.72, + "end": 19212.06, + "probability": 0.899 + }, + { + "start": 19229.16, + "end": 19230.78, + "probability": 0.817 + }, + { + "start": 19237.08, + "end": 19237.71, + "probability": 0.6316 + }, + { + "start": 19238.3, + "end": 19239.46, + "probability": 0.5501 + }, + { + "start": 19241.26, + "end": 19245.72, + "probability": 0.9266 + }, + { + "start": 19246.8, + "end": 19247.7, + "probability": 0.9954 + }, + { + "start": 19249.7, + "end": 19251.74, + "probability": 0.9973 + }, + { + "start": 19253.22, + "end": 19256.08, + "probability": 0.9087 + }, + { + "start": 19257.1, + "end": 19259.08, + "probability": 0.9968 + }, + { + "start": 19261.56, + "end": 19262.74, + "probability": 0.7183 + }, + { + "start": 19265.08, + "end": 19269.24, + "probability": 0.9758 + }, + { + "start": 19270.94, + "end": 19274.26, + "probability": 0.8434 + }, + { + "start": 19275.84, + "end": 19280.2, + "probability": 0.9893 + }, + { + "start": 19282.6, + "end": 19283.61, + "probability": 0.9944 + }, + { + "start": 19285.2, + "end": 19285.84, + "probability": 0.9196 + }, + { + "start": 19288.04, + "end": 19289.14, + "probability": 0.3102 + }, + { + "start": 19289.22, + "end": 19290.6, + "probability": 0.9858 + }, + { + "start": 19292.34, + "end": 19293.1, + "probability": 0.9462 + }, + { + "start": 19295.59, + "end": 19297.8, + "probability": 0.6543 + }, + { + "start": 19298.74, + "end": 19303.06, + "probability": 0.9603 + }, + { + "start": 19304.68, + "end": 19305.88, + "probability": 0.9611 + }, + { + "start": 19307.18, + "end": 19314.58, + "probability": 0.9946 + }, + { + "start": 19316.0, + "end": 19318.72, + "probability": 0.7068 + }, + { + "start": 19319.76, + "end": 19320.8, + "probability": 0.9523 + }, + { + "start": 19321.84, + "end": 19322.64, + "probability": 0.9517 + }, + { + "start": 19324.36, + "end": 19326.68, + "probability": 0.999 + }, + { + "start": 19327.56, + "end": 19329.18, + "probability": 0.9688 + }, + { + "start": 19329.8, + "end": 19331.16, + "probability": 0.9956 + }, + { + "start": 19332.64, + "end": 19339.5, + "probability": 0.9803 + }, + { + "start": 19340.56, + "end": 19342.42, + "probability": 0.9966 + }, + { + "start": 19344.56, + "end": 19345.52, + "probability": 0.751 + }, + { + "start": 19345.64, + "end": 19347.52, + "probability": 0.95 + }, + { + "start": 19348.76, + "end": 19350.94, + "probability": 0.8448 + }, + { + "start": 19352.18, + "end": 19354.84, + "probability": 0.9852 + }, + { + "start": 19355.66, + "end": 19356.22, + "probability": 0.6709 + }, + { + "start": 19358.18, + "end": 19359.66, + "probability": 0.9529 + }, + { + "start": 19360.44, + "end": 19365.74, + "probability": 0.9384 + }, + { + "start": 19366.46, + "end": 19367.12, + "probability": 0.7732 + }, + { + "start": 19367.26, + "end": 19370.86, + "probability": 0.97 + }, + { + "start": 19373.1, + "end": 19374.12, + "probability": 0.9924 + }, + { + "start": 19374.18, + "end": 19378.2, + "probability": 0.9659 + }, + { + "start": 19379.4, + "end": 19380.06, + "probability": 0.96 + }, + { + "start": 19381.02, + "end": 19383.12, + "probability": 0.9639 + }, + { + "start": 19383.26, + "end": 19384.6, + "probability": 0.9617 + }, + { + "start": 19385.3, + "end": 19386.04, + "probability": 0.9727 + }, + { + "start": 19386.8, + "end": 19387.82, + "probability": 0.7481 + }, + { + "start": 19387.84, + "end": 19389.66, + "probability": 0.7082 + }, + { + "start": 19389.72, + "end": 19390.04, + "probability": 0.7298 + }, + { + "start": 19390.12, + "end": 19391.3, + "probability": 0.9782 + }, + { + "start": 19392.22, + "end": 19394.72, + "probability": 0.9906 + }, + { + "start": 19396.46, + "end": 19399.68, + "probability": 0.953 + }, + { + "start": 19400.38, + "end": 19403.5, + "probability": 0.956 + }, + { + "start": 19405.52, + "end": 19406.4, + "probability": 0.3579 + }, + { + "start": 19407.62, + "end": 19408.16, + "probability": 0.5411 + }, + { + "start": 19409.24, + "end": 19410.94, + "probability": 0.9937 + }, + { + "start": 19411.52, + "end": 19412.32, + "probability": 0.971 + }, + { + "start": 19413.38, + "end": 19415.92, + "probability": 0.9873 + }, + { + "start": 19417.44, + "end": 19418.14, + "probability": 0.5672 + }, + { + "start": 19418.14, + "end": 19419.64, + "probability": 0.9937 + }, + { + "start": 19420.68, + "end": 19422.62, + "probability": 0.9841 + }, + { + "start": 19423.36, + "end": 19424.5, + "probability": 0.654 + }, + { + "start": 19425.26, + "end": 19429.36, + "probability": 0.9208 + }, + { + "start": 19430.04, + "end": 19433.18, + "probability": 0.9843 + }, + { + "start": 19433.22, + "end": 19437.86, + "probability": 0.9896 + }, + { + "start": 19438.44, + "end": 19441.96, + "probability": 0.9832 + }, + { + "start": 19442.34, + "end": 19444.56, + "probability": 0.9238 + }, + { + "start": 19445.18, + "end": 19447.96, + "probability": 0.929 + }, + { + "start": 19450.8, + "end": 19453.94, + "probability": 0.8613 + }, + { + "start": 19455.1, + "end": 19457.01, + "probability": 0.9804 + }, + { + "start": 19457.16, + "end": 19458.5, + "probability": 0.9562 + }, + { + "start": 19459.28, + "end": 19461.06, + "probability": 0.7188 + }, + { + "start": 19461.46, + "end": 19463.81, + "probability": 0.9788 + }, + { + "start": 19464.7, + "end": 19466.2, + "probability": 0.6083 + }, + { + "start": 19467.08, + "end": 19470.87, + "probability": 0.9839 + }, + { + "start": 19472.28, + "end": 19475.5, + "probability": 0.9968 + }, + { + "start": 19475.98, + "end": 19477.74, + "probability": 0.9841 + }, + { + "start": 19477.74, + "end": 19480.22, + "probability": 0.9985 + }, + { + "start": 19480.68, + "end": 19483.16, + "probability": 0.7294 + }, + { + "start": 19483.22, + "end": 19484.5, + "probability": 0.6829 + }, + { + "start": 19485.18, + "end": 19487.32, + "probability": 0.9886 + }, + { + "start": 19487.4, + "end": 19489.5, + "probability": 0.9766 + }, + { + "start": 19489.92, + "end": 19491.06, + "probability": 0.9875 + }, + { + "start": 19491.54, + "end": 19493.1, + "probability": 0.9913 + }, + { + "start": 19493.38, + "end": 19497.5, + "probability": 0.9832 + }, + { + "start": 19498.14, + "end": 19501.86, + "probability": 0.9988 + }, + { + "start": 19501.86, + "end": 19505.2, + "probability": 0.9786 + }, + { + "start": 19505.34, + "end": 19505.92, + "probability": 0.5195 + }, + { + "start": 19506.24, + "end": 19509.56, + "probability": 0.9969 + }, + { + "start": 19509.64, + "end": 19510.06, + "probability": 0.5415 + }, + { + "start": 19511.04, + "end": 19512.78, + "probability": 0.9946 + }, + { + "start": 19512.84, + "end": 19517.48, + "probability": 0.9937 + }, + { + "start": 19517.88, + "end": 19519.74, + "probability": 0.995 + }, + { + "start": 19520.16, + "end": 19522.16, + "probability": 0.9858 + }, + { + "start": 19522.7, + "end": 19525.54, + "probability": 0.8824 + }, + { + "start": 19526.42, + "end": 19526.54, + "probability": 0.0569 + }, + { + "start": 19526.54, + "end": 19530.86, + "probability": 0.9846 + }, + { + "start": 19532.1, + "end": 19534.5, + "probability": 0.5867 + }, + { + "start": 19534.56, + "end": 19535.84, + "probability": 0.741 + }, + { + "start": 19535.9, + "end": 19538.72, + "probability": 0.7497 + }, + { + "start": 19550.76, + "end": 19552.72, + "probability": 0.7179 + }, + { + "start": 19553.92, + "end": 19555.48, + "probability": 0.8381 + }, + { + "start": 19555.76, + "end": 19560.9, + "probability": 0.979 + }, + { + "start": 19561.06, + "end": 19562.06, + "probability": 0.8014 + }, + { + "start": 19563.08, + "end": 19567.54, + "probability": 0.9476 + }, + { + "start": 19567.62, + "end": 19568.76, + "probability": 0.8304 + }, + { + "start": 19568.92, + "end": 19569.02, + "probability": 0.8942 + }, + { + "start": 19569.1, + "end": 19571.86, + "probability": 0.9502 + }, + { + "start": 19572.04, + "end": 19573.86, + "probability": 0.9132 + }, + { + "start": 19573.92, + "end": 19575.35, + "probability": 0.9194 + }, + { + "start": 19575.92, + "end": 19576.45, + "probability": 0.962 + }, + { + "start": 19577.6, + "end": 19578.7, + "probability": 0.9762 + }, + { + "start": 19578.86, + "end": 19580.54, + "probability": 0.9963 + }, + { + "start": 19580.98, + "end": 19581.74, + "probability": 0.9747 + }, + { + "start": 19581.9, + "end": 19582.24, + "probability": 0.8565 + }, + { + "start": 19582.72, + "end": 19583.18, + "probability": 0.3291 + }, + { + "start": 19583.5, + "end": 19586.32, + "probability": 0.8527 + }, + { + "start": 19586.8, + "end": 19588.2, + "probability": 0.8896 + }, + { + "start": 19588.68, + "end": 19591.44, + "probability": 0.9352 + }, + { + "start": 19591.9, + "end": 19594.96, + "probability": 0.9859 + }, + { + "start": 19595.6, + "end": 19600.36, + "probability": 0.9777 + }, + { + "start": 19600.88, + "end": 19602.16, + "probability": 0.9547 + }, + { + "start": 19602.28, + "end": 19602.96, + "probability": 0.7785 + }, + { + "start": 19603.0, + "end": 19606.0, + "probability": 0.992 + }, + { + "start": 19607.7, + "end": 19611.4, + "probability": 0.9976 + }, + { + "start": 19612.1, + "end": 19617.94, + "probability": 0.998 + }, + { + "start": 19618.84, + "end": 19624.54, + "probability": 0.8783 + }, + { + "start": 19625.6, + "end": 19627.56, + "probability": 0.9071 + }, + { + "start": 19628.3, + "end": 19633.28, + "probability": 0.9938 + }, + { + "start": 19633.84, + "end": 19635.52, + "probability": 0.9766 + }, + { + "start": 19636.34, + "end": 19642.28, + "probability": 0.9834 + }, + { + "start": 19642.7, + "end": 19644.4, + "probability": 0.7761 + }, + { + "start": 19644.94, + "end": 19647.14, + "probability": 0.9946 + }, + { + "start": 19648.62, + "end": 19653.84, + "probability": 0.2189 + }, + { + "start": 19654.0, + "end": 19655.22, + "probability": 0.0114 + }, + { + "start": 19655.22, + "end": 19656.4, + "probability": 0.0218 + }, + { + "start": 19656.4, + "end": 19661.1, + "probability": 0.8072 + }, + { + "start": 19661.46, + "end": 19666.02, + "probability": 0.9779 + }, + { + "start": 19666.46, + "end": 19669.76, + "probability": 0.9916 + }, + { + "start": 19670.74, + "end": 19670.92, + "probability": 0.048 + }, + { + "start": 19670.92, + "end": 19673.16, + "probability": 0.99 + }, + { + "start": 19673.16, + "end": 19674.83, + "probability": 0.9346 + }, + { + "start": 19675.26, + "end": 19676.38, + "probability": 0.9028 + }, + { + "start": 19676.5, + "end": 19682.08, + "probability": 0.9863 + }, + { + "start": 19683.04, + "end": 19684.5, + "probability": 0.9498 + }, + { + "start": 19684.9, + "end": 19685.62, + "probability": 0.5854 + }, + { + "start": 19686.16, + "end": 19687.78, + "probability": 0.7703 + }, + { + "start": 19687.94, + "end": 19688.56, + "probability": 0.7498 + }, + { + "start": 19688.96, + "end": 19693.26, + "probability": 0.9919 + }, + { + "start": 19693.66, + "end": 19696.0, + "probability": 0.992 + }, + { + "start": 19696.32, + "end": 19699.12, + "probability": 0.9886 + }, + { + "start": 19699.58, + "end": 19700.92, + "probability": 0.6468 + }, + { + "start": 19701.22, + "end": 19702.16, + "probability": 0.9584 + }, + { + "start": 19702.28, + "end": 19704.7, + "probability": 0.953 + }, + { + "start": 19705.54, + "end": 19707.76, + "probability": 0.8203 + }, + { + "start": 19707.88, + "end": 19710.4, + "probability": 0.9717 + }, + { + "start": 19711.08, + "end": 19715.4, + "probability": 0.9959 + }, + { + "start": 19715.58, + "end": 19715.94, + "probability": 0.9537 + }, + { + "start": 19716.18, + "end": 19718.22, + "probability": 0.9929 + }, + { + "start": 19718.28, + "end": 19718.88, + "probability": 0.7994 + }, + { + "start": 19719.28, + "end": 19721.22, + "probability": 0.9893 + }, + { + "start": 19721.4, + "end": 19722.54, + "probability": 0.9674 + }, + { + "start": 19722.98, + "end": 19727.24, + "probability": 0.9671 + }, + { + "start": 19727.64, + "end": 19729.76, + "probability": 0.9771 + }, + { + "start": 19730.06, + "end": 19733.44, + "probability": 0.9909 + }, + { + "start": 19733.76, + "end": 19736.22, + "probability": 0.8548 + }, + { + "start": 19736.54, + "end": 19740.28, + "probability": 0.9934 + }, + { + "start": 19740.38, + "end": 19741.26, + "probability": 0.8071 + }, + { + "start": 19741.56, + "end": 19744.56, + "probability": 0.9824 + }, + { + "start": 19744.6, + "end": 19746.22, + "probability": 0.4787 + }, + { + "start": 19746.38, + "end": 19749.02, + "probability": 0.9447 + }, + { + "start": 19749.36, + "end": 19754.06, + "probability": 0.9827 + }, + { + "start": 19754.36, + "end": 19756.12, + "probability": 0.5332 + }, + { + "start": 19756.24, + "end": 19760.46, + "probability": 0.9496 + }, + { + "start": 19773.54, + "end": 19775.16, + "probability": 0.7195 + }, + { + "start": 19776.3, + "end": 19777.34, + "probability": 0.9689 + }, + { + "start": 19777.56, + "end": 19779.85, + "probability": 0.9333 + }, + { + "start": 19780.66, + "end": 19781.97, + "probability": 0.9718 + }, + { + "start": 19782.62, + "end": 19783.53, + "probability": 0.9597 + }, + { + "start": 19784.68, + "end": 19784.68, + "probability": 0.0002 + }, + { + "start": 19785.54, + "end": 19785.54, + "probability": 0.1148 + }, + { + "start": 19785.54, + "end": 19785.54, + "probability": 0.3617 + }, + { + "start": 19785.54, + "end": 19785.64, + "probability": 0.1456 + }, + { + "start": 19786.54, + "end": 19790.7, + "probability": 0.9805 + }, + { + "start": 19790.9, + "end": 19793.8, + "probability": 0.986 + }, + { + "start": 19793.94, + "end": 19794.42, + "probability": 0.6757 + }, + { + "start": 19796.88, + "end": 19797.02, + "probability": 0.0856 + }, + { + "start": 19798.58, + "end": 19802.3, + "probability": 0.8876 + }, + { + "start": 19806.64, + "end": 19811.04, + "probability": 0.9956 + }, + { + "start": 19811.04, + "end": 19813.8, + "probability": 0.9992 + }, + { + "start": 19813.8, + "end": 19814.56, + "probability": 0.5567 + }, + { + "start": 19815.4, + "end": 19815.94, + "probability": 0.3144 + }, + { + "start": 19816.02, + "end": 19818.46, + "probability": 0.1802 + }, + { + "start": 19818.54, + "end": 19819.32, + "probability": 0.1342 + }, + { + "start": 19819.46, + "end": 19820.7, + "probability": 0.4406 + }, + { + "start": 19821.16, + "end": 19822.46, + "probability": 0.4873 + }, + { + "start": 19822.5, + "end": 19822.72, + "probability": 0.0351 + }, + { + "start": 19822.72, + "end": 19822.86, + "probability": 0.2814 + }, + { + "start": 19822.86, + "end": 19822.86, + "probability": 0.0461 + }, + { + "start": 19822.86, + "end": 19825.52, + "probability": 0.9541 + }, + { + "start": 19825.58, + "end": 19829.86, + "probability": 0.2686 + }, + { + "start": 19829.86, + "end": 19830.76, + "probability": 0.1478 + }, + { + "start": 19831.06, + "end": 19831.92, + "probability": 0.802 + }, + { + "start": 19832.58, + "end": 19833.02, + "probability": 0.5848 + }, + { + "start": 19833.32, + "end": 19834.76, + "probability": 0.9465 + }, + { + "start": 19834.84, + "end": 19835.28, + "probability": 0.4266 + }, + { + "start": 19835.28, + "end": 19835.52, + "probability": 0.1308 + }, + { + "start": 19835.94, + "end": 19836.6, + "probability": 0.6984 + }, + { + "start": 19836.6, + "end": 19837.46, + "probability": 0.769 + }, + { + "start": 19839.48, + "end": 19840.72, + "probability": 0.8604 + }, + { + "start": 19841.76, + "end": 19842.86, + "probability": 0.8926 + }, + { + "start": 19844.8, + "end": 19846.24, + "probability": 0.9269 + }, + { + "start": 19847.34, + "end": 19848.28, + "probability": 0.9692 + }, + { + "start": 19849.02, + "end": 19851.42, + "probability": 0.774 + }, + { + "start": 19852.28, + "end": 19852.8, + "probability": 0.8574 + }, + { + "start": 19852.82, + "end": 19856.65, + "probability": 0.9955 + }, + { + "start": 19859.56, + "end": 19860.26, + "probability": 0.8458 + }, + { + "start": 19860.44, + "end": 19864.24, + "probability": 0.9939 + }, + { + "start": 19865.54, + "end": 19868.02, + "probability": 0.9937 + }, + { + "start": 19869.08, + "end": 19871.11, + "probability": 0.96 + }, + { + "start": 19872.24, + "end": 19874.16, + "probability": 0.9847 + }, + { + "start": 19875.36, + "end": 19880.06, + "probability": 0.9902 + }, + { + "start": 19880.08, + "end": 19881.4, + "probability": 0.9647 + }, + { + "start": 19882.24, + "end": 19883.14, + "probability": 0.6361 + }, + { + "start": 19883.48, + "end": 19883.74, + "probability": 0.7247 + }, + { + "start": 19883.96, + "end": 19884.92, + "probability": 0.9811 + }, + { + "start": 19885.04, + "end": 19885.6, + "probability": 0.5156 + }, + { + "start": 19886.98, + "end": 19887.97, + "probability": 0.9409 + }, + { + "start": 19888.64, + "end": 19891.94, + "probability": 0.9785 + }, + { + "start": 19893.12, + "end": 19895.14, + "probability": 0.8603 + }, + { + "start": 19895.18, + "end": 19897.8, + "probability": 0.9915 + }, + { + "start": 19897.8, + "end": 19901.06, + "probability": 0.9902 + }, + { + "start": 19901.94, + "end": 19905.8, + "probability": 0.9972 + }, + { + "start": 19905.9, + "end": 19906.9, + "probability": 0.8779 + }, + { + "start": 19908.3, + "end": 19911.08, + "probability": 0.3416 + }, + { + "start": 19911.56, + "end": 19911.74, + "probability": 0.8247 + }, + { + "start": 19913.1, + "end": 19914.9, + "probability": 0.3117 + }, + { + "start": 19915.42, + "end": 19915.8, + "probability": 0.7915 + }, + { + "start": 19915.88, + "end": 19916.5, + "probability": 0.5563 + }, + { + "start": 19917.0, + "end": 19920.28, + "probability": 0.9148 + }, + { + "start": 19921.18, + "end": 19924.6, + "probability": 0.9712 + }, + { + "start": 19925.52, + "end": 19926.22, + "probability": 0.7197 + }, + { + "start": 19927.72, + "end": 19928.94, + "probability": 0.5031 + }, + { + "start": 19929.92, + "end": 19930.5, + "probability": 0.2334 + }, + { + "start": 19930.7, + "end": 19930.8, + "probability": 0.4826 + }, + { + "start": 19930.94, + "end": 19935.7, + "probability": 0.7116 + }, + { + "start": 19936.62, + "end": 19939.76, + "probability": 0.9367 + }, + { + "start": 19940.76, + "end": 19944.32, + "probability": 0.9521 + }, + { + "start": 19945.6, + "end": 19950.7, + "probability": 0.9403 + }, + { + "start": 19950.7, + "end": 19954.94, + "probability": 0.9924 + }, + { + "start": 19956.42, + "end": 19956.42, + "probability": 0.26 + }, + { + "start": 19956.44, + "end": 19956.44, + "probability": 0.075 + }, + { + "start": 19956.44, + "end": 19957.64, + "probability": 0.9198 + }, + { + "start": 19958.54, + "end": 19965.32, + "probability": 0.9971 + }, + { + "start": 19966.1, + "end": 19972.9, + "probability": 0.9972 + }, + { + "start": 19973.04, + "end": 19974.12, + "probability": 0.7643 + }, + { + "start": 19975.24, + "end": 19978.08, + "probability": 0.9956 + }, + { + "start": 19978.92, + "end": 19980.7, + "probability": 0.996 + }, + { + "start": 19981.02, + "end": 19984.66, + "probability": 0.9154 + }, + { + "start": 19984.94, + "end": 19987.96, + "probability": 0.9839 + }, + { + "start": 19989.18, + "end": 19992.3, + "probability": 0.7973 + }, + { + "start": 19993.86, + "end": 19994.83, + "probability": 0.9673 + }, + { + "start": 19995.56, + "end": 19996.48, + "probability": 0.9707 + }, + { + "start": 19996.54, + "end": 20000.86, + "probability": 0.9772 + }, + { + "start": 20001.14, + "end": 20003.56, + "probability": 0.9938 + }, + { + "start": 20004.82, + "end": 20007.3, + "probability": 0.6888 + }, + { + "start": 20007.88, + "end": 20012.16, + "probability": 0.9959 + }, + { + "start": 20012.7, + "end": 20015.46, + "probability": 0.9427 + }, + { + "start": 20015.5, + "end": 20017.44, + "probability": 0.2386 + }, + { + "start": 20020.42, + "end": 20022.4, + "probability": 0.9093 + }, + { + "start": 20022.4, + "end": 20022.4, + "probability": 0.0031 + }, + { + "start": 20022.4, + "end": 20023.02, + "probability": 0.3567 + }, + { + "start": 20023.12, + "end": 20024.65, + "probability": 0.8852 + }, + { + "start": 20024.74, + "end": 20025.11, + "probability": 0.0084 + }, + { + "start": 20025.18, + "end": 20025.4, + "probability": 0.0943 + }, + { + "start": 20025.4, + "end": 20025.82, + "probability": 0.2778 + }, + { + "start": 20025.82, + "end": 20030.22, + "probability": 0.772 + }, + { + "start": 20030.24, + "end": 20034.42, + "probability": 0.7919 + }, + { + "start": 20034.56, + "end": 20036.12, + "probability": 0.2345 + }, + { + "start": 20036.28, + "end": 20037.94, + "probability": 0.4017 + }, + { + "start": 20038.14, + "end": 20038.34, + "probability": 0.3901 + }, + { + "start": 20038.34, + "end": 20039.08, + "probability": 0.1533 + }, + { + "start": 20039.16, + "end": 20039.34, + "probability": 0.2809 + }, + { + "start": 20039.4, + "end": 20039.4, + "probability": 0.2827 + }, + { + "start": 20039.5, + "end": 20040.11, + "probability": 0.8203 + }, + { + "start": 20040.3, + "end": 20044.14, + "probability": 0.9376 + }, + { + "start": 20044.44, + "end": 20045.5, + "probability": 0.549 + }, + { + "start": 20045.66, + "end": 20045.66, + "probability": 0.1865 + }, + { + "start": 20045.66, + "end": 20046.32, + "probability": 0.1284 + }, + { + "start": 20046.64, + "end": 20050.86, + "probability": 0.9107 + }, + { + "start": 20050.86, + "end": 20051.13, + "probability": 0.3586 + }, + { + "start": 20052.02, + "end": 20052.16, + "probability": 0.4793 + }, + { + "start": 20052.16, + "end": 20052.2, + "probability": 0.0074 + }, + { + "start": 20052.2, + "end": 20054.62, + "probability": 0.3261 + }, + { + "start": 20054.62, + "end": 20054.62, + "probability": 0.1455 + }, + { + "start": 20054.62, + "end": 20054.62, + "probability": 0.5016 + }, + { + "start": 20054.62, + "end": 20054.7, + "probability": 0.4187 + }, + { + "start": 20054.92, + "end": 20056.04, + "probability": 0.6011 + }, + { + "start": 20056.18, + "end": 20057.92, + "probability": 0.9736 + }, + { + "start": 20057.96, + "end": 20060.94, + "probability": 0.9554 + }, + { + "start": 20060.94, + "end": 20062.8, + "probability": 0.8508 + }, + { + "start": 20062.84, + "end": 20063.84, + "probability": 0.9026 + }, + { + "start": 20064.2, + "end": 20064.4, + "probability": 0.1929 + }, + { + "start": 20064.48, + "end": 20067.94, + "probability": 0.9956 + }, + { + "start": 20068.78, + "end": 20069.44, + "probability": 0.2316 + }, + { + "start": 20069.44, + "end": 20071.7, + "probability": 0.3994 + }, + { + "start": 20071.84, + "end": 20071.84, + "probability": 0.0036 + }, + { + "start": 20071.84, + "end": 20073.42, + "probability": 0.7979 + }, + { + "start": 20074.84, + "end": 20081.22, + "probability": 0.915 + }, + { + "start": 20081.24, + "end": 20082.4, + "probability": 0.4077 + }, + { + "start": 20082.42, + "end": 20082.98, + "probability": 0.6623 + }, + { + "start": 20083.1, + "end": 20083.66, + "probability": 0.5092 + }, + { + "start": 20083.86, + "end": 20084.06, + "probability": 0.3197 + }, + { + "start": 20085.08, + "end": 20085.36, + "probability": 0.0436 + }, + { + "start": 20085.36, + "end": 20085.44, + "probability": 0.0992 + }, + { + "start": 20085.44, + "end": 20089.72, + "probability": 0.6299 + }, + { + "start": 20091.56, + "end": 20092.56, + "probability": 0.5459 + }, + { + "start": 20093.42, + "end": 20095.0, + "probability": 0.9728 + }, + { + "start": 20096.04, + "end": 20097.92, + "probability": 0.994 + }, + { + "start": 20098.8, + "end": 20099.8, + "probability": 0.9281 + }, + { + "start": 20102.18, + "end": 20105.22, + "probability": 0.9959 + }, + { + "start": 20107.16, + "end": 20108.0, + "probability": 0.0934 + }, + { + "start": 20108.0, + "end": 20108.18, + "probability": 0.6993 + }, + { + "start": 20108.92, + "end": 20110.74, + "probability": 0.7841 + }, + { + "start": 20110.84, + "end": 20111.72, + "probability": 0.7363 + }, + { + "start": 20112.52, + "end": 20114.6, + "probability": 0.9466 + }, + { + "start": 20114.66, + "end": 20115.85, + "probability": 0.5587 + }, + { + "start": 20116.88, + "end": 20118.06, + "probability": 0.45 + }, + { + "start": 20118.2, + "end": 20124.74, + "probability": 0.9254 + }, + { + "start": 20125.26, + "end": 20129.7, + "probability": 0.9507 + }, + { + "start": 20131.24, + "end": 20131.46, + "probability": 0.0788 + }, + { + "start": 20131.46, + "end": 20131.46, + "probability": 0.0696 + }, + { + "start": 20131.46, + "end": 20132.04, + "probability": 0.0314 + }, + { + "start": 20132.04, + "end": 20137.16, + "probability": 0.8217 + }, + { + "start": 20137.16, + "end": 20140.62, + "probability": 0.9403 + }, + { + "start": 20140.68, + "end": 20141.22, + "probability": 0.4814 + }, + { + "start": 20141.26, + "end": 20144.64, + "probability": 0.8038 + }, + { + "start": 20161.7, + "end": 20162.06, + "probability": 0.0631 + }, + { + "start": 20162.06, + "end": 20164.2, + "probability": 0.5467 + }, + { + "start": 20164.48, + "end": 20166.58, + "probability": 0.88 + }, + { + "start": 20167.24, + "end": 20169.12, + "probability": 0.8482 + }, + { + "start": 20169.4, + "end": 20173.74, + "probability": 0.8514 + }, + { + "start": 20174.22, + "end": 20174.76, + "probability": 0.8961 + }, + { + "start": 20174.88, + "end": 20175.96, + "probability": 0.88 + }, + { + "start": 20176.46, + "end": 20181.98, + "probability": 0.7976 + }, + { + "start": 20182.06, + "end": 20182.76, + "probability": 0.9815 + }, + { + "start": 20183.72, + "end": 20187.1, + "probability": 0.9694 + }, + { + "start": 20193.18, + "end": 20194.08, + "probability": 0.4476 + }, + { + "start": 20195.14, + "end": 20197.42, + "probability": 0.9156 + }, + { + "start": 20198.22, + "end": 20199.98, + "probability": 0.957 + }, + { + "start": 20200.12, + "end": 20200.94, + "probability": 0.8068 + }, + { + "start": 20201.4, + "end": 20204.32, + "probability": 0.9694 + }, + { + "start": 20204.82, + "end": 20205.64, + "probability": 0.7681 + }, + { + "start": 20206.04, + "end": 20206.68, + "probability": 0.8957 + }, + { + "start": 20208.0, + "end": 20213.88, + "probability": 0.9963 + }, + { + "start": 20214.44, + "end": 20215.78, + "probability": 0.8922 + }, + { + "start": 20215.96, + "end": 20219.72, + "probability": 0.7533 + }, + { + "start": 20221.76, + "end": 20224.56, + "probability": 0.9836 + }, + { + "start": 20224.8, + "end": 20227.6, + "probability": 0.9492 + }, + { + "start": 20228.32, + "end": 20230.34, + "probability": 0.7779 + }, + { + "start": 20231.06, + "end": 20236.21, + "probability": 0.9919 + }, + { + "start": 20236.5, + "end": 20241.66, + "probability": 0.9927 + }, + { + "start": 20243.26, + "end": 20247.18, + "probability": 0.6645 + }, + { + "start": 20247.26, + "end": 20248.74, + "probability": 0.9766 + }, + { + "start": 20249.34, + "end": 20252.12, + "probability": 0.972 + }, + { + "start": 20252.2, + "end": 20252.68, + "probability": 0.876 + }, + { + "start": 20253.02, + "end": 20255.64, + "probability": 0.8171 + }, + { + "start": 20255.94, + "end": 20257.56, + "probability": 0.7763 + }, + { + "start": 20257.62, + "end": 20258.48, + "probability": 0.9594 + }, + { + "start": 20258.74, + "end": 20260.54, + "probability": 0.2059 + }, + { + "start": 20260.82, + "end": 20261.24, + "probability": 0.4525 + }, + { + "start": 20261.3, + "end": 20262.52, + "probability": 0.8875 + }, + { + "start": 20263.48, + "end": 20265.32, + "probability": 0.8738 + }, + { + "start": 20267.16, + "end": 20271.74, + "probability": 0.5254 + }, + { + "start": 20272.82, + "end": 20273.24, + "probability": 0.8144 + }, + { + "start": 20273.28, + "end": 20277.8, + "probability": 0.9934 + }, + { + "start": 20278.5, + "end": 20281.66, + "probability": 0.8426 + }, + { + "start": 20282.28, + "end": 20284.65, + "probability": 0.9855 + }, + { + "start": 20285.22, + "end": 20287.54, + "probability": 0.9902 + }, + { + "start": 20288.34, + "end": 20292.9, + "probability": 0.9832 + }, + { + "start": 20293.08, + "end": 20297.62, + "probability": 0.9951 + }, + { + "start": 20299.28, + "end": 20301.04, + "probability": 0.8849 + }, + { + "start": 20301.2, + "end": 20306.42, + "probability": 0.9688 + }, + { + "start": 20306.5, + "end": 20307.12, + "probability": 0.9721 + }, + { + "start": 20307.64, + "end": 20309.42, + "probability": 0.9989 + }, + { + "start": 20309.72, + "end": 20318.28, + "probability": 0.9665 + }, + { + "start": 20319.1, + "end": 20319.94, + "probability": 0.7697 + }, + { + "start": 20320.34, + "end": 20322.16, + "probability": 0.7563 + }, + { + "start": 20322.46, + "end": 20324.68, + "probability": 0.8687 + }, + { + "start": 20325.2, + "end": 20326.94, + "probability": 0.9859 + }, + { + "start": 20327.5, + "end": 20328.38, + "probability": 0.7139 + }, + { + "start": 20328.84, + "end": 20330.84, + "probability": 0.7493 + }, + { + "start": 20331.7, + "end": 20332.7, + "probability": 0.8867 + }, + { + "start": 20333.35, + "end": 20336.84, + "probability": 0.736 + }, + { + "start": 20337.36, + "end": 20338.9, + "probability": 0.9293 + }, + { + "start": 20339.32, + "end": 20340.98, + "probability": 0.8999 + }, + { + "start": 20341.7, + "end": 20342.78, + "probability": 0.6738 + }, + { + "start": 20342.82, + "end": 20343.74, + "probability": 0.7347 + }, + { + "start": 20344.24, + "end": 20346.28, + "probability": 0.945 + }, + { + "start": 20347.08, + "end": 20350.06, + "probability": 0.9964 + }, + { + "start": 20350.5, + "end": 20353.88, + "probability": 0.9868 + }, + { + "start": 20354.28, + "end": 20355.94, + "probability": 0.9741 + }, + { + "start": 20356.86, + "end": 20357.28, + "probability": 0.3786 + }, + { + "start": 20357.34, + "end": 20357.72, + "probability": 0.9135 + }, + { + "start": 20357.8, + "end": 20358.38, + "probability": 0.728 + }, + { + "start": 20358.62, + "end": 20362.88, + "probability": 0.9917 + }, + { + "start": 20363.56, + "end": 20366.58, + "probability": 0.907 + }, + { + "start": 20367.2, + "end": 20368.26, + "probability": 0.7622 + }, + { + "start": 20368.74, + "end": 20372.54, + "probability": 0.9829 + }, + { + "start": 20372.94, + "end": 20376.16, + "probability": 0.9938 + }, + { + "start": 20376.58, + "end": 20377.24, + "probability": 0.8521 + }, + { + "start": 20377.34, + "end": 20379.04, + "probability": 0.9912 + }, + { + "start": 20379.34, + "end": 20379.92, + "probability": 0.9956 + }, + { + "start": 20380.44, + "end": 20381.88, + "probability": 0.9985 + }, + { + "start": 20382.7, + "end": 20386.22, + "probability": 0.9963 + }, + { + "start": 20386.78, + "end": 20391.68, + "probability": 0.9954 + }, + { + "start": 20391.9, + "end": 20395.0, + "probability": 0.9813 + }, + { + "start": 20395.54, + "end": 20401.62, + "probability": 0.981 + }, + { + "start": 20402.0, + "end": 20405.4, + "probability": 0.8678 + }, + { + "start": 20405.86, + "end": 20406.58, + "probability": 0.7769 + }, + { + "start": 20406.9, + "end": 20410.96, + "probability": 0.9616 + }, + { + "start": 20411.34, + "end": 20411.76, + "probability": 0.4979 + }, + { + "start": 20411.96, + "end": 20412.66, + "probability": 0.7625 + }, + { + "start": 20412.72, + "end": 20413.96, + "probability": 0.8297 + }, + { + "start": 20414.38, + "end": 20415.47, + "probability": 0.9695 + }, + { + "start": 20415.66, + "end": 20419.16, + "probability": 0.9794 + }, + { + "start": 20419.52, + "end": 20421.12, + "probability": 0.9487 + }, + { + "start": 20421.54, + "end": 20423.87, + "probability": 0.9314 + }, + { + "start": 20423.98, + "end": 20425.14, + "probability": 0.7493 + }, + { + "start": 20425.44, + "end": 20426.58, + "probability": 0.8638 + }, + { + "start": 20426.92, + "end": 20427.9, + "probability": 0.9458 + }, + { + "start": 20428.4, + "end": 20430.9, + "probability": 0.9975 + }, + { + "start": 20431.24, + "end": 20432.82, + "probability": 0.9326 + }, + { + "start": 20432.92, + "end": 20435.42, + "probability": 0.995 + }, + { + "start": 20436.06, + "end": 20438.78, + "probability": 0.7667 + }, + { + "start": 20439.1, + "end": 20441.06, + "probability": 0.6685 + }, + { + "start": 20441.42, + "end": 20441.94, + "probability": 0.5172 + }, + { + "start": 20442.26, + "end": 20444.85, + "probability": 0.9688 + }, + { + "start": 20447.24, + "end": 20449.06, + "probability": 0.7477 + }, + { + "start": 20449.06, + "end": 20453.32, + "probability": 0.8091 + }, + { + "start": 20453.42, + "end": 20453.92, + "probability": 0.5072 + }, + { + "start": 20453.96, + "end": 20454.66, + "probability": 0.5997 + }, + { + "start": 20461.94, + "end": 20467.54, + "probability": 0.1029 + }, + { + "start": 20467.54, + "end": 20467.56, + "probability": 0.0245 + }, + { + "start": 20473.76, + "end": 20473.9, + "probability": 0.0599 + }, + { + "start": 20473.9, + "end": 20473.9, + "probability": 0.0605 + }, + { + "start": 20473.9, + "end": 20473.9, + "probability": 0.0411 + }, + { + "start": 20473.9, + "end": 20474.3, + "probability": 0.1389 + }, + { + "start": 20474.3, + "end": 20474.3, + "probability": 0.2164 + }, + { + "start": 20474.3, + "end": 20475.08, + "probability": 0.2939 + }, + { + "start": 20475.78, + "end": 20477.1, + "probability": 0.4559 + }, + { + "start": 20477.1, + "end": 20478.99, + "probability": 0.8952 + }, + { + "start": 20479.64, + "end": 20483.48, + "probability": 0.5031 + }, + { + "start": 20483.58, + "end": 20484.82, + "probability": 0.3891 + }, + { + "start": 20485.02, + "end": 20487.44, + "probability": 0.9511 + }, + { + "start": 20487.78, + "end": 20490.24, + "probability": 0.9094 + }, + { + "start": 20490.34, + "end": 20493.3, + "probability": 0.8094 + }, + { + "start": 20494.32, + "end": 20497.54, + "probability": 0.8687 + }, + { + "start": 20498.28, + "end": 20502.28, + "probability": 0.967 + }, + { + "start": 20503.89, + "end": 20512.2, + "probability": 0.8579 + }, + { + "start": 20512.2, + "end": 20519.76, + "probability": 0.9224 + }, + { + "start": 20519.82, + "end": 20523.04, + "probability": 0.9463 + }, + { + "start": 20523.34, + "end": 20528.58, + "probability": 0.9813 + }, + { + "start": 20529.42, + "end": 20531.04, + "probability": 0.981 + }, + { + "start": 20531.68, + "end": 20534.18, + "probability": 0.8451 + }, + { + "start": 20534.88, + "end": 20536.58, + "probability": 0.8755 + }, + { + "start": 20537.32, + "end": 20538.98, + "probability": 0.8187 + }, + { + "start": 20539.52, + "end": 20542.16, + "probability": 0.7204 + }, + { + "start": 20542.28, + "end": 20545.74, + "probability": 0.9146 + }, + { + "start": 20546.12, + "end": 20548.32, + "probability": 0.9536 + }, + { + "start": 20548.82, + "end": 20549.98, + "probability": 0.9405 + }, + { + "start": 20550.42, + "end": 20551.94, + "probability": 0.9873 + }, + { + "start": 20552.1, + "end": 20552.76, + "probability": 0.6173 + }, + { + "start": 20552.86, + "end": 20553.58, + "probability": 0.4497 + }, + { + "start": 20553.58, + "end": 20554.08, + "probability": 0.7271 + }, + { + "start": 20554.26, + "end": 20557.24, + "probability": 0.7552 + }, + { + "start": 20557.78, + "end": 20560.31, + "probability": 0.9006 + }, + { + "start": 20563.1, + "end": 20566.56, + "probability": 0.9358 + }, + { + "start": 20566.68, + "end": 20568.12, + "probability": 0.4857 + }, + { + "start": 20568.22, + "end": 20570.76, + "probability": 0.9807 + }, + { + "start": 20571.24, + "end": 20573.32, + "probability": 0.6276 + }, + { + "start": 20573.5, + "end": 20576.4, + "probability": 0.9618 + }, + { + "start": 20576.66, + "end": 20578.46, + "probability": 0.9336 + }, + { + "start": 20578.48, + "end": 20578.94, + "probability": 0.7465 + }, + { + "start": 20579.3, + "end": 20582.58, + "probability": 0.741 + }, + { + "start": 20582.62, + "end": 20583.32, + "probability": 0.7283 + }, + { + "start": 20583.92, + "end": 20586.5, + "probability": 0.8123 + }, + { + "start": 20587.1, + "end": 20592.9, + "probability": 0.8671 + }, + { + "start": 20593.98, + "end": 20596.78, + "probability": 0.4586 + }, + { + "start": 20597.2, + "end": 20598.04, + "probability": 0.8564 + }, + { + "start": 20600.86, + "end": 20602.04, + "probability": 0.6998 + }, + { + "start": 20617.36, + "end": 20618.22, + "probability": 0.0059 + }, + { + "start": 20618.22, + "end": 20620.32, + "probability": 0.1503 + }, + { + "start": 20620.38, + "end": 20622.42, + "probability": 0.7992 + }, + { + "start": 20622.86, + "end": 20625.8, + "probability": 0.9954 + }, + { + "start": 20626.68, + "end": 20628.54, + "probability": 0.8501 + }, + { + "start": 20631.18, + "end": 20633.12, + "probability": 0.9336 + }, + { + "start": 20633.16, + "end": 20633.66, + "probability": 0.333 + }, + { + "start": 20633.68, + "end": 20634.3, + "probability": 0.5228 + }, + { + "start": 20636.92, + "end": 20638.32, + "probability": 0.0048 + }, + { + "start": 20654.2, + "end": 20655.1, + "probability": 0.0982 + }, + { + "start": 20657.6, + "end": 20659.19, + "probability": 0.6082 + }, + { + "start": 20659.96, + "end": 20662.1, + "probability": 0.4613 + }, + { + "start": 20662.28, + "end": 20663.06, + "probability": 0.7253 + }, + { + "start": 20663.08, + "end": 20665.6, + "probability": 0.8135 + }, + { + "start": 20665.74, + "end": 20667.14, + "probability": 0.6888 + }, + { + "start": 20667.22, + "end": 20668.1, + "probability": 0.7216 + }, + { + "start": 20668.38, + "end": 20668.6, + "probability": 0.7264 + }, + { + "start": 20668.64, + "end": 20674.12, + "probability": 0.9961 + }, + { + "start": 20674.76, + "end": 20675.26, + "probability": 0.5283 + }, + { + "start": 20675.38, + "end": 20675.92, + "probability": 0.9373 + }, + { + "start": 20676.28, + "end": 20677.52, + "probability": 0.8584 + }, + { + "start": 20677.56, + "end": 20678.62, + "probability": 0.9786 + }, + { + "start": 20678.96, + "end": 20680.54, + "probability": 0.713 + }, + { + "start": 20681.08, + "end": 20683.16, + "probability": 0.8001 + }, + { + "start": 20685.52, + "end": 20688.1, + "probability": 0.9966 + }, + { + "start": 20689.76, + "end": 20690.48, + "probability": 0.1804 + }, + { + "start": 20691.2, + "end": 20694.02, + "probability": 0.7295 + }, + { + "start": 20694.68, + "end": 20699.38, + "probability": 0.9734 + }, + { + "start": 20709.44, + "end": 20712.96, + "probability": 0.8944 + }, + { + "start": 20713.04, + "end": 20715.96, + "probability": 0.8259 + }, + { + "start": 20717.54, + "end": 20718.3, + "probability": 0.8008 + }, + { + "start": 20718.42, + "end": 20719.68, + "probability": 0.8946 + }, + { + "start": 20719.88, + "end": 20722.98, + "probability": 0.9987 + }, + { + "start": 20722.98, + "end": 20726.84, + "probability": 0.9227 + }, + { + "start": 20727.24, + "end": 20732.98, + "probability": 0.9373 + }, + { + "start": 20732.98, + "end": 20737.84, + "probability": 0.9936 + }, + { + "start": 20738.78, + "end": 20740.94, + "probability": 0.9411 + }, + { + "start": 20741.52, + "end": 20747.74, + "probability": 0.9976 + }, + { + "start": 20748.72, + "end": 20751.86, + "probability": 0.9967 + }, + { + "start": 20751.86, + "end": 20757.88, + "probability": 0.9976 + }, + { + "start": 20758.82, + "end": 20762.38, + "probability": 0.9906 + }, + { + "start": 20762.96, + "end": 20768.41, + "probability": 0.9966 + }, + { + "start": 20769.56, + "end": 20771.6, + "probability": 0.8356 + }, + { + "start": 20772.14, + "end": 20775.84, + "probability": 0.9717 + }, + { + "start": 20776.88, + "end": 20780.86, + "probability": 0.9967 + }, + { + "start": 20780.86, + "end": 20786.42, + "probability": 0.9843 + }, + { + "start": 20787.5, + "end": 20790.4, + "probability": 0.9762 + }, + { + "start": 20791.2, + "end": 20792.14, + "probability": 0.9412 + }, + { + "start": 20792.84, + "end": 20794.0, + "probability": 0.9815 + }, + { + "start": 20794.24, + "end": 20798.26, + "probability": 0.9954 + }, + { + "start": 20798.26, + "end": 20801.8, + "probability": 0.9897 + }, + { + "start": 20802.66, + "end": 20805.62, + "probability": 0.9143 + }, + { + "start": 20805.62, + "end": 20810.34, + "probability": 0.8573 + }, + { + "start": 20810.68, + "end": 20814.04, + "probability": 0.9893 + }, + { + "start": 20814.76, + "end": 20819.78, + "probability": 0.9572 + }, + { + "start": 20821.08, + "end": 20825.96, + "probability": 0.9957 + }, + { + "start": 20825.96, + "end": 20829.18, + "probability": 0.9642 + }, + { + "start": 20829.72, + "end": 20835.04, + "probability": 0.9857 + }, + { + "start": 20835.56, + "end": 20838.64, + "probability": 0.9094 + }, + { + "start": 20839.9, + "end": 20844.0, + "probability": 0.9945 + }, + { + "start": 20844.42, + "end": 20847.6, + "probability": 0.9837 + }, + { + "start": 20847.6, + "end": 20851.34, + "probability": 0.9971 + }, + { + "start": 20852.62, + "end": 20857.12, + "probability": 0.986 + }, + { + "start": 20857.72, + "end": 20861.0, + "probability": 0.9849 + }, + { + "start": 20862.22, + "end": 20862.78, + "probability": 0.6301 + }, + { + "start": 20863.38, + "end": 20867.62, + "probability": 0.9754 + }, + { + "start": 20867.62, + "end": 20873.5, + "probability": 0.995 + }, + { + "start": 20874.22, + "end": 20877.96, + "probability": 0.9808 + }, + { + "start": 20878.8, + "end": 20880.96, + "probability": 0.9218 + }, + { + "start": 20881.56, + "end": 20887.7, + "probability": 0.9976 + }, + { + "start": 20887.7, + "end": 20893.92, + "probability": 0.9991 + }, + { + "start": 20895.0, + "end": 20895.63, + "probability": 0.9733 + }, + { + "start": 20896.34, + "end": 20896.64, + "probability": 0.7554 + }, + { + "start": 20896.94, + "end": 20904.46, + "probability": 0.9974 + }, + { + "start": 20905.34, + "end": 20909.16, + "probability": 0.9951 + }, + { + "start": 20909.88, + "end": 20912.28, + "probability": 0.9348 + }, + { + "start": 20912.78, + "end": 20918.56, + "probability": 0.9928 + }, + { + "start": 20918.56, + "end": 20923.78, + "probability": 0.9592 + }, + { + "start": 20924.8, + "end": 20929.54, + "probability": 0.9944 + }, + { + "start": 20929.54, + "end": 20937.3, + "probability": 0.9894 + }, + { + "start": 20938.24, + "end": 20942.7, + "probability": 0.9929 + }, + { + "start": 20942.7, + "end": 20946.92, + "probability": 0.9877 + }, + { + "start": 20947.78, + "end": 20951.42, + "probability": 0.9976 + }, + { + "start": 20951.74, + "end": 20955.7, + "probability": 0.8773 + }, + { + "start": 20956.6, + "end": 20961.3, + "probability": 0.9805 + }, + { + "start": 20961.44, + "end": 20963.22, + "probability": 0.7499 + }, + { + "start": 20963.74, + "end": 20969.52, + "probability": 0.9941 + }, + { + "start": 20969.52, + "end": 20976.06, + "probability": 0.9928 + }, + { + "start": 20976.92, + "end": 20977.44, + "probability": 0.9117 + }, + { + "start": 20977.76, + "end": 20982.12, + "probability": 0.999 + }, + { + "start": 20982.4, + "end": 20986.68, + "probability": 0.9939 + }, + { + "start": 20987.14, + "end": 20993.48, + "probability": 0.9971 + }, + { + "start": 20993.48, + "end": 21000.28, + "probability": 0.9971 + }, + { + "start": 21000.28, + "end": 21006.98, + "probability": 0.998 + }, + { + "start": 21008.64, + "end": 21013.92, + "probability": 0.9958 + }, + { + "start": 21013.92, + "end": 21017.98, + "probability": 0.9309 + }, + { + "start": 21017.98, + "end": 21019.62, + "probability": 0.716 + }, + { + "start": 21020.36, + "end": 21023.0, + "probability": 0.359 + }, + { + "start": 21023.0, + "end": 21023.62, + "probability": 0.4502 + }, + { + "start": 21023.74, + "end": 21024.09, + "probability": 0.7778 + }, + { + "start": 21024.56, + "end": 21024.98, + "probability": 0.4674 + }, + { + "start": 21025.06, + "end": 21025.06, + "probability": 0.6741 + }, + { + "start": 21025.06, + "end": 21027.44, + "probability": 0.5652 + }, + { + "start": 21029.93, + "end": 21032.62, + "probability": 0.8191 + }, + { + "start": 21032.76, + "end": 21035.62, + "probability": 0.9935 + }, + { + "start": 21036.04, + "end": 21038.88, + "probability": 0.9834 + }, + { + "start": 21040.28, + "end": 21042.04, + "probability": 0.9139 + }, + { + "start": 21042.76, + "end": 21042.8, + "probability": 0.0005 + }, + { + "start": 21043.93, + "end": 21044.28, + "probability": 0.0755 + }, + { + "start": 21044.96, + "end": 21044.96, + "probability": 0.6317 + }, + { + "start": 21045.44, + "end": 21048.12, + "probability": 0.9929 + }, + { + "start": 21048.16, + "end": 21052.74, + "probability": 0.8133 + }, + { + "start": 21052.9, + "end": 21052.9, + "probability": 0.5872 + }, + { + "start": 21052.9, + "end": 21052.9, + "probability": 0.1055 + }, + { + "start": 21052.9, + "end": 21053.64, + "probability": 0.6937 + }, + { + "start": 21053.76, + "end": 21054.54, + "probability": 0.9606 + }, + { + "start": 21055.2, + "end": 21059.06, + "probability": 0.9427 + }, + { + "start": 21059.66, + "end": 21060.06, + "probability": 0.7474 + }, + { + "start": 21060.18, + "end": 21060.5, + "probability": 0.8066 + }, + { + "start": 21060.6, + "end": 21064.2, + "probability": 0.8811 + }, + { + "start": 21064.2, + "end": 21068.16, + "probability": 0.9813 + }, + { + "start": 21068.62, + "end": 21069.04, + "probability": 0.8402 + }, + { + "start": 21069.08, + "end": 21073.22, + "probability": 0.9769 + }, + { + "start": 21074.66, + "end": 21080.04, + "probability": 0.8846 + }, + { + "start": 21080.46, + "end": 21084.08, + "probability": 0.9991 + }, + { + "start": 21084.62, + "end": 21086.9, + "probability": 0.9318 + }, + { + "start": 21087.26, + "end": 21087.98, + "probability": 0.7307 + }, + { + "start": 21088.06, + "end": 21088.4, + "probability": 0.8329 + }, + { + "start": 21088.7, + "end": 21089.46, + "probability": 0.9246 + }, + { + "start": 21089.88, + "end": 21090.76, + "probability": 0.9366 + }, + { + "start": 21090.92, + "end": 21091.12, + "probability": 0.8782 + }, + { + "start": 21091.74, + "end": 21096.38, + "probability": 0.7307 + }, + { + "start": 21097.38, + "end": 21098.22, + "probability": 0.9181 + }, + { + "start": 21098.72, + "end": 21103.1, + "probability": 0.9706 + }, + { + "start": 21103.68, + "end": 21109.14, + "probability": 0.9914 + }, + { + "start": 21109.26, + "end": 21110.84, + "probability": 0.4079 + }, + { + "start": 21111.74, + "end": 21112.36, + "probability": 0.7957 + }, + { + "start": 21112.86, + "end": 21113.82, + "probability": 0.862 + }, + { + "start": 21114.1, + "end": 21121.06, + "probability": 0.0019 + }, + { + "start": 21121.7, + "end": 21122.8, + "probability": 0.0 + }, + { + "start": 21132.22, + "end": 21134.0, + "probability": 0.5343 + }, + { + "start": 21134.0, + "end": 21136.76, + "probability": 0.9287 + }, + { + "start": 21137.0, + "end": 21137.72, + "probability": 0.9042 + }, + { + "start": 21138.8, + "end": 21139.36, + "probability": 0.7204 + }, + { + "start": 21140.24, + "end": 21142.9, + "probability": 0.0116 + }, + { + "start": 21144.38, + "end": 21145.14, + "probability": 0.0308 + }, + { + "start": 21151.28, + "end": 21154.24, + "probability": 0.95 + }, + { + "start": 21154.66, + "end": 21155.48, + "probability": 0.8493 + }, + { + "start": 21155.6, + "end": 21157.64, + "probability": 0.7816 + }, + { + "start": 21160.0, + "end": 21162.58, + "probability": 0.7866 + }, + { + "start": 21162.7, + "end": 21162.96, + "probability": 0.7524 + }, + { + "start": 21163.12, + "end": 21165.04, + "probability": 0.7759 + }, + { + "start": 21165.48, + "end": 21168.16, + "probability": 0.999 + }, + { + "start": 21168.24, + "end": 21171.12, + "probability": 0.7567 + }, + { + "start": 21171.12, + "end": 21173.74, + "probability": 0.8025 + }, + { + "start": 21174.54, + "end": 21176.12, + "probability": 0.7308 + }, + { + "start": 21177.58, + "end": 21180.62, + "probability": 0.8309 + }, + { + "start": 21181.78, + "end": 21182.52, + "probability": 0.4548 + }, + { + "start": 21182.52, + "end": 21183.96, + "probability": 0.9544 + }, + { + "start": 21184.74, + "end": 21186.84, + "probability": 0.9651 + }, + { + "start": 21186.88, + "end": 21187.41, + "probability": 0.9674 + }, + { + "start": 21187.8, + "end": 21188.7, + "probability": 0.9491 + }, + { + "start": 21189.1, + "end": 21192.86, + "probability": 0.7595 + }, + { + "start": 21193.34, + "end": 21195.88, + "probability": 0.6543 + }, + { + "start": 21196.42, + "end": 21199.62, + "probability": 0.9982 + }, + { + "start": 21200.3, + "end": 21202.4, + "probability": 0.9769 + }, + { + "start": 21202.9, + "end": 21205.9, + "probability": 0.9366 + }, + { + "start": 21206.44, + "end": 21208.5, + "probability": 0.9868 + }, + { + "start": 21208.88, + "end": 21214.48, + "probability": 0.9881 + }, + { + "start": 21215.6, + "end": 21217.7, + "probability": 0.7924 + }, + { + "start": 21218.82, + "end": 21223.6, + "probability": 0.9914 + }, + { + "start": 21224.16, + "end": 21230.18, + "probability": 0.9656 + }, + { + "start": 21230.22, + "end": 21231.58, + "probability": 0.9325 + }, + { + "start": 21232.48, + "end": 21234.54, + "probability": 0.9399 + }, + { + "start": 21234.6, + "end": 21236.7, + "probability": 0.9987 + }, + { + "start": 21237.1, + "end": 21242.04, + "probability": 0.9586 + }, + { + "start": 21242.38, + "end": 21247.16, + "probability": 0.9861 + }, + { + "start": 21247.46, + "end": 21253.5, + "probability": 0.9731 + }, + { + "start": 21254.44, + "end": 21258.0, + "probability": 0.9772 + }, + { + "start": 21258.38, + "end": 21263.68, + "probability": 0.9546 + }, + { + "start": 21264.94, + "end": 21266.24, + "probability": 0.854 + }, + { + "start": 21266.76, + "end": 21270.74, + "probability": 0.9976 + }, + { + "start": 21271.32, + "end": 21272.48, + "probability": 0.9833 + }, + { + "start": 21272.6, + "end": 21274.02, + "probability": 0.6395 + }, + { + "start": 21274.1, + "end": 21274.66, + "probability": 0.8701 + }, + { + "start": 21275.02, + "end": 21277.56, + "probability": 0.7351 + }, + { + "start": 21277.94, + "end": 21279.61, + "probability": 0.9971 + }, + { + "start": 21279.96, + "end": 21282.86, + "probability": 0.9455 + }, + { + "start": 21283.04, + "end": 21287.7, + "probability": 0.9967 + }, + { + "start": 21288.18, + "end": 21289.7, + "probability": 0.7952 + }, + { + "start": 21289.88, + "end": 21294.32, + "probability": 0.9979 + }, + { + "start": 21294.68, + "end": 21294.94, + "probability": 0.4982 + }, + { + "start": 21295.14, + "end": 21297.16, + "probability": 0.9428 + }, + { + "start": 21297.56, + "end": 21301.88, + "probability": 0.9907 + }, + { + "start": 21302.62, + "end": 21306.2, + "probability": 0.9157 + }, + { + "start": 21306.76, + "end": 21309.3, + "probability": 0.9941 + }, + { + "start": 21309.8, + "end": 21313.34, + "probability": 0.9777 + }, + { + "start": 21314.12, + "end": 21318.92, + "probability": 0.9761 + }, + { + "start": 21319.64, + "end": 21321.9, + "probability": 0.9951 + }, + { + "start": 21322.1, + "end": 21323.38, + "probability": 0.6824 + }, + { + "start": 21323.44, + "end": 21328.42, + "probability": 0.8604 + }, + { + "start": 21329.16, + "end": 21331.24, + "probability": 0.8467 + }, + { + "start": 21331.4, + "end": 21334.22, + "probability": 0.9326 + }, + { + "start": 21334.8, + "end": 21336.4, + "probability": 0.6857 + }, + { + "start": 21338.14, + "end": 21339.04, + "probability": 0.3074 + }, + { + "start": 21339.24, + "end": 21340.04, + "probability": 0.6177 + }, + { + "start": 21341.02, + "end": 21344.54, + "probability": 0.8025 + }, + { + "start": 21344.66, + "end": 21346.12, + "probability": 0.9608 + }, + { + "start": 21347.02, + "end": 21350.16, + "probability": 0.9902 + }, + { + "start": 21351.18, + "end": 21354.52, + "probability": 0.7579 + }, + { + "start": 21355.2, + "end": 21357.34, + "probability": 0.9685 + }, + { + "start": 21357.8, + "end": 21358.92, + "probability": 0.9404 + }, + { + "start": 21358.98, + "end": 21359.64, + "probability": 0.1819 + }, + { + "start": 21359.64, + "end": 21362.4, + "probability": 0.6657 + }, + { + "start": 21362.78, + "end": 21364.52, + "probability": 0.8415 + }, + { + "start": 21364.9, + "end": 21367.54, + "probability": 0.8918 + }, + { + "start": 21367.68, + "end": 21368.96, + "probability": 0.9796 + }, + { + "start": 21369.26, + "end": 21369.94, + "probability": 0.936 + }, + { + "start": 21370.36, + "end": 21371.9, + "probability": 0.864 + }, + { + "start": 21371.9, + "end": 21373.64, + "probability": 0.9959 + }, + { + "start": 21373.88, + "end": 21375.22, + "probability": 0.6744 + }, + { + "start": 21375.24, + "end": 21377.7, + "probability": 0.863 + }, + { + "start": 21378.42, + "end": 21379.12, + "probability": 0.9105 + }, + { + "start": 21379.3, + "end": 21383.06, + "probability": 0.8934 + }, + { + "start": 21383.72, + "end": 21388.0, + "probability": 0.9554 + }, + { + "start": 21388.0, + "end": 21392.6, + "probability": 0.6622 + }, + { + "start": 21398.9, + "end": 21402.38, + "probability": 0.8812 + }, + { + "start": 21403.38, + "end": 21403.74, + "probability": 0.5753 + }, + { + "start": 21403.82, + "end": 21407.94, + "probability": 0.8632 + }, + { + "start": 21407.94, + "end": 21409.8, + "probability": 0.9736 + }, + { + "start": 21412.76, + "end": 21413.82, + "probability": 0.8556 + }, + { + "start": 21415.76, + "end": 21418.52, + "probability": 0.8144 + }, + { + "start": 21419.56, + "end": 21421.36, + "probability": 0.8348 + }, + { + "start": 21421.98, + "end": 21423.16, + "probability": 0.8335 + }, + { + "start": 21424.14, + "end": 21425.98, + "probability": 0.9954 + }, + { + "start": 21428.29, + "end": 21431.46, + "probability": 0.9767 + }, + { + "start": 21432.32, + "end": 21434.14, + "probability": 0.518 + }, + { + "start": 21434.86, + "end": 21437.15, + "probability": 0.772 + }, + { + "start": 21438.06, + "end": 21440.58, + "probability": 0.4374 + }, + { + "start": 21441.32, + "end": 21443.62, + "probability": 0.9813 + }, + { + "start": 21444.18, + "end": 21445.44, + "probability": 0.9915 + }, + { + "start": 21447.86, + "end": 21450.78, + "probability": 0.7447 + }, + { + "start": 21451.32, + "end": 21452.48, + "probability": 0.505 + }, + { + "start": 21453.44, + "end": 21455.42, + "probability": 0.6724 + }, + { + "start": 21458.18, + "end": 21461.68, + "probability": 0.9401 + }, + { + "start": 21461.84, + "end": 21464.5, + "probability": 0.7799 + }, + { + "start": 21465.12, + "end": 21466.3, + "probability": 0.9502 + }, + { + "start": 21468.24, + "end": 21470.02, + "probability": 0.6761 + }, + { + "start": 21470.58, + "end": 21472.28, + "probability": 0.8493 + }, + { + "start": 21475.46, + "end": 21477.92, + "probability": 0.9888 + }, + { + "start": 21478.7, + "end": 21479.66, + "probability": 0.9992 + }, + { + "start": 21480.32, + "end": 21481.34, + "probability": 0.998 + }, + { + "start": 21482.04, + "end": 21485.28, + "probability": 0.9767 + }, + { + "start": 21485.76, + "end": 21487.12, + "probability": 0.9727 + }, + { + "start": 21487.6, + "end": 21488.42, + "probability": 0.6835 + }, + { + "start": 21489.08, + "end": 21490.3, + "probability": 0.9131 + }, + { + "start": 21491.36, + "end": 21492.36, + "probability": 0.983 + }, + { + "start": 21493.52, + "end": 21495.66, + "probability": 0.9935 + }, + { + "start": 21496.3, + "end": 21498.68, + "probability": 0.9973 + }, + { + "start": 21499.26, + "end": 21501.5, + "probability": 0.9247 + }, + { + "start": 21501.58, + "end": 21502.44, + "probability": 0.5462 + }, + { + "start": 21502.58, + "end": 21505.34, + "probability": 0.8337 + }, + { + "start": 21505.64, + "end": 21506.54, + "probability": 0.8026 + }, + { + "start": 21506.64, + "end": 21510.96, + "probability": 0.863 + }, + { + "start": 21510.96, + "end": 21511.5, + "probability": 0.9534 + }, + { + "start": 21512.16, + "end": 21515.34, + "probability": 0.8551 + }, + { + "start": 21515.38, + "end": 21515.68, + "probability": 0.6635 + }, + { + "start": 21515.72, + "end": 21516.34, + "probability": 0.6831 + }, + { + "start": 21516.5, + "end": 21519.64, + "probability": 0.9165 + }, + { + "start": 21519.74, + "end": 21521.76, + "probability": 0.9495 + }, + { + "start": 21522.48, + "end": 21525.5, + "probability": 0.2269 + }, + { + "start": 21525.56, + "end": 21526.16, + "probability": 0.7307 + }, + { + "start": 21545.68, + "end": 21546.04, + "probability": 0.0033 + }, + { + "start": 21546.04, + "end": 21548.08, + "probability": 0.3692 + }, + { + "start": 21548.58, + "end": 21550.42, + "probability": 0.9002 + }, + { + "start": 21550.92, + "end": 21552.82, + "probability": 0.99 + }, + { + "start": 21553.08, + "end": 21553.72, + "probability": 0.5001 + }, + { + "start": 21553.74, + "end": 21554.46, + "probability": 0.7251 + }, + { + "start": 21557.06, + "end": 21559.36, + "probability": 0.0201 + }, + { + "start": 21576.58, + "end": 21577.2, + "probability": 0.1299 + }, + { + "start": 21577.2, + "end": 21577.76, + "probability": 0.3898 + }, + { + "start": 21578.52, + "end": 21579.92, + "probability": 0.5997 + }, + { + "start": 21580.04, + "end": 21582.86, + "probability": 0.6039 + }, + { + "start": 21583.04, + "end": 21584.12, + "probability": 0.5024 + }, + { + "start": 21584.66, + "end": 21586.06, + "probability": 0.9764 + }, + { + "start": 21586.16, + "end": 21589.54, + "probability": 0.9955 + }, + { + "start": 21589.74, + "end": 21595.54, + "probability": 0.9568 + }, + { + "start": 21596.76, + "end": 21597.08, + "probability": 0.3681 + }, + { + "start": 21597.22, + "end": 21598.52, + "probability": 0.6205 + }, + { + "start": 21598.52, + "end": 21598.8, + "probability": 0.7227 + }, + { + "start": 21599.02, + "end": 21600.12, + "probability": 0.85 + }, + { + "start": 21602.74, + "end": 21605.24, + "probability": 0.369 + }, + { + "start": 21606.7, + "end": 21607.84, + "probability": 0.5475 + }, + { + "start": 21608.8, + "end": 21611.68, + "probability": 0.9417 + }, + { + "start": 21612.24, + "end": 21618.02, + "probability": 0.9819 + }, + { + "start": 21618.2, + "end": 21619.62, + "probability": 0.997 + }, + { + "start": 21619.82, + "end": 21620.76, + "probability": 0.9851 + }, + { + "start": 21620.9, + "end": 21623.46, + "probability": 0.8403 + }, + { + "start": 21623.96, + "end": 21626.6, + "probability": 0.9964 + }, + { + "start": 21628.68, + "end": 21631.6, + "probability": 0.9891 + }, + { + "start": 21631.82, + "end": 21633.04, + "probability": 0.7905 + }, + { + "start": 21633.16, + "end": 21634.04, + "probability": 0.7603 + }, + { + "start": 21634.76, + "end": 21637.52, + "probability": 0.9754 + }, + { + "start": 21637.64, + "end": 21640.52, + "probability": 0.9904 + }, + { + "start": 21641.36, + "end": 21644.2, + "probability": 0.9047 + }, + { + "start": 21644.88, + "end": 21648.98, + "probability": 0.9752 + }, + { + "start": 21649.08, + "end": 21650.54, + "probability": 0.8902 + }, + { + "start": 21651.28, + "end": 21652.54, + "probability": 0.8613 + }, + { + "start": 21653.24, + "end": 21656.16, + "probability": 0.9007 + }, + { + "start": 21656.78, + "end": 21658.72, + "probability": 0.7632 + }, + { + "start": 21659.24, + "end": 21660.01, + "probability": 0.9148 + }, + { + "start": 21660.78, + "end": 21661.28, + "probability": 0.9267 + }, + { + "start": 21661.36, + "end": 21663.18, + "probability": 0.9778 + }, + { + "start": 21663.28, + "end": 21668.28, + "probability": 0.9965 + }, + { + "start": 21668.98, + "end": 21673.88, + "probability": 0.9965 + }, + { + "start": 21674.6, + "end": 21677.84, + "probability": 0.8579 + }, + { + "start": 21678.58, + "end": 21679.12, + "probability": 0.7136 + }, + { + "start": 21679.34, + "end": 21679.84, + "probability": 0.8284 + }, + { + "start": 21680.58, + "end": 21682.86, + "probability": 0.724 + }, + { + "start": 21683.28, + "end": 21684.0, + "probability": 0.8524 + }, + { + "start": 21684.12, + "end": 21688.32, + "probability": 0.9907 + }, + { + "start": 21688.32, + "end": 21692.16, + "probability": 0.8032 + }, + { + "start": 21695.4, + "end": 21696.76, + "probability": 0.4962 + }, + { + "start": 21696.84, + "end": 21698.34, + "probability": 0.7824 + }, + { + "start": 21698.66, + "end": 21699.82, + "probability": 0.8631 + }, + { + "start": 21704.24, + "end": 21705.84, + "probability": 0.6861 + }, + { + "start": 21707.0, + "end": 21709.42, + "probability": 0.9968 + }, + { + "start": 21709.82, + "end": 21713.34, + "probability": 0.9496 + }, + { + "start": 21714.02, + "end": 21718.76, + "probability": 0.9932 + }, + { + "start": 21718.84, + "end": 21719.72, + "probability": 0.9434 + }, + { + "start": 21720.0, + "end": 21723.17, + "probability": 0.9824 + }, + { + "start": 21724.32, + "end": 21725.04, + "probability": 0.5396 + }, + { + "start": 21725.72, + "end": 21732.32, + "probability": 0.9841 + }, + { + "start": 21733.24, + "end": 21737.7, + "probability": 0.8687 + }, + { + "start": 21737.94, + "end": 21741.7, + "probability": 0.9781 + }, + { + "start": 21742.28, + "end": 21746.62, + "probability": 0.9878 + }, + { + "start": 21747.12, + "end": 21750.14, + "probability": 0.9913 + }, + { + "start": 21750.18, + "end": 21750.88, + "probability": 0.7243 + }, + { + "start": 21752.12, + "end": 21754.32, + "probability": 0.9513 + }, + { + "start": 21755.7, + "end": 21755.82, + "probability": 0.2664 + }, + { + "start": 21755.98, + "end": 21760.38, + "probability": 0.9919 + }, + { + "start": 21760.38, + "end": 21765.5, + "probability": 0.9944 + }, + { + "start": 21765.94, + "end": 21769.48, + "probability": 0.976 + }, + { + "start": 21769.48, + "end": 21773.87, + "probability": 0.9861 + }, + { + "start": 21774.6, + "end": 21778.52, + "probability": 0.9385 + }, + { + "start": 21779.32, + "end": 21785.76, + "probability": 0.9839 + }, + { + "start": 21785.98, + "end": 21788.48, + "probability": 0.9844 + }, + { + "start": 21789.9, + "end": 21793.26, + "probability": 0.9932 + }, + { + "start": 21793.28, + "end": 21796.38, + "probability": 0.9961 + }, + { + "start": 21796.94, + "end": 21799.7, + "probability": 0.6419 + }, + { + "start": 21800.16, + "end": 21803.48, + "probability": 0.9924 + }, + { + "start": 21803.48, + "end": 21808.62, + "probability": 0.9982 + }, + { + "start": 21809.26, + "end": 21813.1, + "probability": 0.9653 + }, + { + "start": 21813.1, + "end": 21817.86, + "probability": 0.9867 + }, + { + "start": 21818.42, + "end": 21824.0, + "probability": 0.9286 + }, + { + "start": 21824.0, + "end": 21829.48, + "probability": 0.9988 + }, + { + "start": 21830.34, + "end": 21833.32, + "probability": 0.6552 + }, + { + "start": 21833.38, + "end": 21837.22, + "probability": 0.8399 + }, + { + "start": 21837.32, + "end": 21841.07, + "probability": 0.9971 + }, + { + "start": 21841.08, + "end": 21845.1, + "probability": 0.9904 + }, + { + "start": 21845.3, + "end": 21845.98, + "probability": 0.5743 + }, + { + "start": 21847.22, + "end": 21849.7, + "probability": 0.6464 + }, + { + "start": 21849.78, + "end": 21850.94, + "probability": 0.6937 + }, + { + "start": 21851.66, + "end": 21854.06, + "probability": 0.7617 + }, + { + "start": 21855.12, + "end": 21856.32, + "probability": 0.4737 + }, + { + "start": 21856.52, + "end": 21858.24, + "probability": 0.8423 + }, + { + "start": 21858.36, + "end": 21859.4, + "probability": 0.644 + }, + { + "start": 21859.7, + "end": 21860.6, + "probability": 0.7872 + }, + { + "start": 21878.9, + "end": 21879.38, + "probability": 0.0027 + }, + { + "start": 21879.38, + "end": 21880.94, + "probability": 0.2996 + }, + { + "start": 21881.08, + "end": 21882.98, + "probability": 0.7849 + }, + { + "start": 21883.52, + "end": 21885.74, + "probability": 0.9119 + }, + { + "start": 21885.78, + "end": 21887.54, + "probability": 0.9465 + }, + { + "start": 21887.66, + "end": 21888.12, + "probability": 0.2467 + }, + { + "start": 21888.12, + "end": 21888.72, + "probability": 0.4713 + }, + { + "start": 21910.74, + "end": 21914.16, + "probability": 0.3021 + }, + { + "start": 21914.3, + "end": 21915.08, + "probability": 0.0669 + }, + { + "start": 21915.26, + "end": 21916.9, + "probability": 0.1346 + }, + { + "start": 21916.9, + "end": 21919.96, + "probability": 0.3575 + }, + { + "start": 21920.46, + "end": 21920.48, + "probability": 0.3472 + }, + { + "start": 21920.48, + "end": 21922.81, + "probability": 0.6592 + }, + { + "start": 21922.94, + "end": 21927.24, + "probability": 0.354 + }, + { + "start": 21927.74, + "end": 21928.26, + "probability": 0.1505 + }, + { + "start": 21928.26, + "end": 21928.26, + "probability": 0.0115 + }, + { + "start": 21928.26, + "end": 21928.26, + "probability": 0.0307 + }, + { + "start": 21928.26, + "end": 21928.26, + "probability": 0.0874 + }, + { + "start": 21928.26, + "end": 21931.26, + "probability": 0.5486 + }, + { + "start": 21937.44, + "end": 21940.84, + "probability": 0.8298 + }, + { + "start": 21942.94, + "end": 21944.74, + "probability": 0.9966 + }, + { + "start": 21947.18, + "end": 21947.74, + "probability": 0.522 + }, + { + "start": 21950.32, + "end": 21952.26, + "probability": 0.8913 + }, + { + "start": 21952.82, + "end": 21956.28, + "probability": 0.8308 + }, + { + "start": 21957.56, + "end": 21961.16, + "probability": 0.996 + }, + { + "start": 21961.82, + "end": 21963.0, + "probability": 0.1155 + }, + { + "start": 21963.58, + "end": 21966.5, + "probability": 0.9367 + }, + { + "start": 21968.64, + "end": 21970.54, + "probability": 0.999 + }, + { + "start": 21970.66, + "end": 21973.44, + "probability": 0.9217 + }, + { + "start": 21974.14, + "end": 21978.48, + "probability": 0.8593 + }, + { + "start": 21978.48, + "end": 21983.08, + "probability": 0.9892 + }, + { + "start": 21983.64, + "end": 21984.44, + "probability": 0.9802 + }, + { + "start": 21985.12, + "end": 21985.66, + "probability": 0.5536 + }, + { + "start": 21986.16, + "end": 21987.66, + "probability": 0.8453 + }, + { + "start": 21987.74, + "end": 21988.52, + "probability": 0.697 + }, + { + "start": 21988.6, + "end": 21990.18, + "probability": 0.9565 + }, + { + "start": 21990.72, + "end": 21997.12, + "probability": 0.9977 + }, + { + "start": 21997.88, + "end": 22001.2, + "probability": 0.9531 + }, + { + "start": 22001.84, + "end": 22003.3, + "probability": 0.9973 + }, + { + "start": 22003.98, + "end": 22007.84, + "probability": 0.9886 + }, + { + "start": 22008.68, + "end": 22010.0, + "probability": 0.8544 + }, + { + "start": 22010.66, + "end": 22013.74, + "probability": 0.9964 + }, + { + "start": 22014.22, + "end": 22016.98, + "probability": 0.9669 + }, + { + "start": 22017.42, + "end": 22020.0, + "probability": 0.9839 + }, + { + "start": 22020.88, + "end": 22024.98, + "probability": 0.9948 + }, + { + "start": 22025.42, + "end": 22026.5, + "probability": 0.9327 + }, + { + "start": 22026.84, + "end": 22027.58, + "probability": 0.7795 + }, + { + "start": 22027.76, + "end": 22029.32, + "probability": 0.9893 + }, + { + "start": 22029.76, + "end": 22032.24, + "probability": 0.9914 + }, + { + "start": 22033.1, + "end": 22033.52, + "probability": 0.5779 + }, + { + "start": 22033.88, + "end": 22034.44, + "probability": 0.4911 + }, + { + "start": 22034.92, + "end": 22036.54, + "probability": 0.9829 + }, + { + "start": 22036.96, + "end": 22041.44, + "probability": 0.9863 + }, + { + "start": 22041.9, + "end": 22044.0, + "probability": 0.9957 + }, + { + "start": 22044.58, + "end": 22047.86, + "probability": 0.9787 + }, + { + "start": 22048.36, + "end": 22048.94, + "probability": 0.5763 + }, + { + "start": 22049.64, + "end": 22052.8, + "probability": 0.9946 + }, + { + "start": 22052.8, + "end": 22055.68, + "probability": 0.6372 + }, + { + "start": 22056.38, + "end": 22056.96, + "probability": 0.6855 + }, + { + "start": 22057.48, + "end": 22061.64, + "probability": 0.9926 + }, + { + "start": 22061.64, + "end": 22067.26, + "probability": 0.991 + }, + { + "start": 22067.26, + "end": 22072.68, + "probability": 0.999 + }, + { + "start": 22073.36, + "end": 22076.18, + "probability": 0.9237 + }, + { + "start": 22076.72, + "end": 22079.0, + "probability": 0.9177 + }, + { + "start": 22080.24, + "end": 22084.08, + "probability": 0.8922 + }, + { + "start": 22084.84, + "end": 22088.04, + "probability": 0.7348 + }, + { + "start": 22088.44, + "end": 22089.42, + "probability": 0.8536 + }, + { + "start": 22089.72, + "end": 22090.72, + "probability": 0.9632 + }, + { + "start": 22091.18, + "end": 22094.28, + "probability": 0.9607 + }, + { + "start": 22095.0, + "end": 22096.16, + "probability": 0.7805 + }, + { + "start": 22096.7, + "end": 22099.46, + "probability": 0.9697 + }, + { + "start": 22099.46, + "end": 22102.44, + "probability": 0.7438 + }, + { + "start": 22102.6, + "end": 22104.78, + "probability": 0.7409 + }, + { + "start": 22105.22, + "end": 22110.18, + "probability": 0.9178 + }, + { + "start": 22110.2, + "end": 22114.5, + "probability": 0.992 + }, + { + "start": 22114.94, + "end": 22116.06, + "probability": 0.9209 + }, + { + "start": 22116.66, + "end": 22117.38, + "probability": 0.8731 + }, + { + "start": 22117.9, + "end": 22120.86, + "probability": 0.9951 + }, + { + "start": 22120.86, + "end": 22124.28, + "probability": 0.9971 + }, + { + "start": 22124.68, + "end": 22125.78, + "probability": 0.9852 + }, + { + "start": 22126.2, + "end": 22129.58, + "probability": 0.9367 + }, + { + "start": 22129.94, + "end": 22131.32, + "probability": 0.7016 + }, + { + "start": 22131.98, + "end": 22134.54, + "probability": 0.9766 + }, + { + "start": 22135.2, + "end": 22139.72, + "probability": 0.9939 + }, + { + "start": 22139.72, + "end": 22143.74, + "probability": 0.9886 + }, + { + "start": 22144.32, + "end": 22144.74, + "probability": 0.6669 + }, + { + "start": 22145.14, + "end": 22148.24, + "probability": 0.9698 + }, + { + "start": 22148.24, + "end": 22151.5, + "probability": 0.981 + }, + { + "start": 22151.92, + "end": 22154.9, + "probability": 0.9547 + }, + { + "start": 22154.9, + "end": 22158.7, + "probability": 0.9934 + }, + { + "start": 22158.82, + "end": 22159.26, + "probability": 0.3992 + }, + { + "start": 22159.74, + "end": 22162.76, + "probability": 0.9889 + }, + { + "start": 22163.18, + "end": 22164.44, + "probability": 0.9536 + }, + { + "start": 22164.86, + "end": 22168.14, + "probability": 0.9854 + }, + { + "start": 22168.8, + "end": 22171.7, + "probability": 0.9407 + }, + { + "start": 22172.16, + "end": 22174.2, + "probability": 0.8867 + }, + { + "start": 22174.62, + "end": 22176.42, + "probability": 0.9819 + }, + { + "start": 22176.74, + "end": 22178.82, + "probability": 0.9913 + }, + { + "start": 22178.82, + "end": 22181.76, + "probability": 0.9969 + }, + { + "start": 22182.52, + "end": 22185.68, + "probability": 0.9828 + }, + { + "start": 22185.68, + "end": 22189.84, + "probability": 0.9959 + }, + { + "start": 22190.54, + "end": 22193.88, + "probability": 0.8289 + }, + { + "start": 22194.28, + "end": 22197.36, + "probability": 0.9679 + }, + { + "start": 22198.12, + "end": 22201.26, + "probability": 0.7971 + }, + { + "start": 22201.26, + "end": 22204.02, + "probability": 0.8294 + }, + { + "start": 22205.34, + "end": 22209.1, + "probability": 0.8296 + }, + { + "start": 22209.1, + "end": 22213.32, + "probability": 0.9839 + }, + { + "start": 22213.84, + "end": 22214.8, + "probability": 0.651 + }, + { + "start": 22215.26, + "end": 22215.6, + "probability": 0.6004 + }, + { + "start": 22215.72, + "end": 22216.1, + "probability": 0.8374 + }, + { + "start": 22216.18, + "end": 22217.32, + "probability": 0.7725 + }, + { + "start": 22218.88, + "end": 22221.94, + "probability": 0.9035 + }, + { + "start": 22222.16, + "end": 22223.46, + "probability": 0.8644 + }, + { + "start": 22223.9, + "end": 22226.92, + "probability": 0.9244 + }, + { + "start": 22227.44, + "end": 22231.54, + "probability": 0.8916 + }, + { + "start": 22231.76, + "end": 22233.06, + "probability": 0.9495 + }, + { + "start": 22234.72, + "end": 22236.86, + "probability": 0.9964 + }, + { + "start": 22236.9, + "end": 22238.28, + "probability": 0.6606 + }, + { + "start": 22238.42, + "end": 22241.82, + "probability": 0.8295 + }, + { + "start": 22241.9, + "end": 22243.22, + "probability": 0.7683 + }, + { + "start": 22243.56, + "end": 22244.58, + "probability": 0.9603 + }, + { + "start": 22245.2, + "end": 22247.66, + "probability": 0.9509 + }, + { + "start": 22248.02, + "end": 22252.26, + "probability": 0.9839 + }, + { + "start": 22252.26, + "end": 22256.98, + "probability": 0.9934 + }, + { + "start": 22257.74, + "end": 22261.98, + "probability": 0.9995 + }, + { + "start": 22262.52, + "end": 22263.84, + "probability": 0.8317 + }, + { + "start": 22265.28, + "end": 22266.42, + "probability": 0.6835 + }, + { + "start": 22267.16, + "end": 22270.22, + "probability": 0.9763 + }, + { + "start": 22270.9, + "end": 22275.52, + "probability": 0.9952 + }, + { + "start": 22276.08, + "end": 22278.34, + "probability": 0.968 + }, + { + "start": 22278.72, + "end": 22280.36, + "probability": 0.7437 + }, + { + "start": 22280.88, + "end": 22282.78, + "probability": 0.9548 + }, + { + "start": 22283.12, + "end": 22285.48, + "probability": 0.9009 + }, + { + "start": 22285.74, + "end": 22286.36, + "probability": 0.7296 + }, + { + "start": 22287.38, + "end": 22293.0, + "probability": 0.9974 + }, + { + "start": 22293.26, + "end": 22294.54, + "probability": 0.6803 + }, + { + "start": 22295.04, + "end": 22296.64, + "probability": 0.96 + }, + { + "start": 22297.22, + "end": 22297.66, + "probability": 0.9464 + }, + { + "start": 22298.42, + "end": 22299.26, + "probability": 0.9966 + }, + { + "start": 22299.62, + "end": 22300.32, + "probability": 0.7368 + }, + { + "start": 22300.44, + "end": 22301.36, + "probability": 0.9395 + }, + { + "start": 22302.2, + "end": 22306.9, + "probability": 0.9924 + }, + { + "start": 22308.04, + "end": 22313.42, + "probability": 0.8002 + }, + { + "start": 22314.02, + "end": 22314.92, + "probability": 0.7905 + }, + { + "start": 22315.32, + "end": 22320.3, + "probability": 0.9785 + }, + { + "start": 22321.04, + "end": 22321.38, + "probability": 0.2677 + }, + { + "start": 22321.5, + "end": 22321.94, + "probability": 0.8696 + }, + { + "start": 22322.02, + "end": 22329.1, + "probability": 0.9893 + }, + { + "start": 22329.24, + "end": 22329.56, + "probability": 0.6752 + }, + { + "start": 22329.66, + "end": 22331.34, + "probability": 0.9948 + }, + { + "start": 22331.74, + "end": 22333.6, + "probability": 0.5408 + }, + { + "start": 22335.36, + "end": 22339.4, + "probability": 0.8357 + }, + { + "start": 22339.5, + "end": 22340.9, + "probability": 0.5604 + }, + { + "start": 22341.04, + "end": 22341.48, + "probability": 0.5348 + }, + { + "start": 22341.5, + "end": 22341.82, + "probability": 0.795 + }, + { + "start": 22342.22, + "end": 22346.92, + "probability": 0.8733 + }, + { + "start": 22347.5, + "end": 22354.68, + "probability": 0.7744 + }, + { + "start": 22355.12, + "end": 22356.3, + "probability": 0.8683 + }, + { + "start": 22357.52, + "end": 22360.88, + "probability": 0.9946 + }, + { + "start": 22360.88, + "end": 22363.48, + "probability": 0.9976 + }, + { + "start": 22363.88, + "end": 22365.6, + "probability": 0.9631 + }, + { + "start": 22366.18, + "end": 22369.94, + "probability": 0.2514 + }, + { + "start": 22370.62, + "end": 22372.0, + "probability": 0.6825 + }, + { + "start": 22372.36, + "end": 22373.52, + "probability": 0.9756 + }, + { + "start": 22373.96, + "end": 22376.16, + "probability": 0.9556 + }, + { + "start": 22378.09, + "end": 22380.7, + "probability": 0.8506 + }, + { + "start": 22381.46, + "end": 22384.16, + "probability": 0.531 + }, + { + "start": 22384.62, + "end": 22386.58, + "probability": 0.9849 + }, + { + "start": 22387.0, + "end": 22388.24, + "probability": 0.2122 + }, + { + "start": 22389.24, + "end": 22391.06, + "probability": 0.5932 + }, + { + "start": 22391.44, + "end": 22393.68, + "probability": 0.9775 + }, + { + "start": 22394.12, + "end": 22396.98, + "probability": 0.7876 + }, + { + "start": 22397.46, + "end": 22397.88, + "probability": 0.4598 + }, + { + "start": 22397.96, + "end": 22398.8, + "probability": 0.9526 + }, + { + "start": 22399.1, + "end": 22402.42, + "probability": 0.825 + }, + { + "start": 22402.48, + "end": 22403.78, + "probability": 0.7844 + }, + { + "start": 22404.26, + "end": 22405.64, + "probability": 0.7035 + }, + { + "start": 22405.66, + "end": 22406.44, + "probability": 0.8831 + }, + { + "start": 22406.98, + "end": 22408.96, + "probability": 0.9973 + }, + { + "start": 22409.0, + "end": 22409.76, + "probability": 0.9443 + }, + { + "start": 22410.64, + "end": 22414.02, + "probability": 0.7012 + }, + { + "start": 22414.2, + "end": 22414.88, + "probability": 0.9167 + }, + { + "start": 22414.96, + "end": 22419.24, + "probability": 0.969 + }, + { + "start": 22419.42, + "end": 22424.66, + "probability": 0.7109 + }, + { + "start": 22425.2, + "end": 22427.58, + "probability": 0.4501 + }, + { + "start": 22427.58, + "end": 22427.92, + "probability": 0.315 + }, + { + "start": 22428.02, + "end": 22428.52, + "probability": 0.3703 + }, + { + "start": 22442.56, + "end": 22442.56, + "probability": 0.003 + }, + { + "start": 22442.56, + "end": 22442.56, + "probability": 0.0424 + }, + { + "start": 22442.56, + "end": 22443.52, + "probability": 0.4835 + }, + { + "start": 22443.68, + "end": 22444.62, + "probability": 0.5278 + }, + { + "start": 22447.9, + "end": 22450.0, + "probability": 0.498 + }, + { + "start": 22450.14, + "end": 22451.87, + "probability": 0.5518 + }, + { + "start": 22452.68, + "end": 22454.66, + "probability": 0.9056 + }, + { + "start": 22454.8, + "end": 22455.2, + "probability": 0.5472 + }, + { + "start": 22455.26, + "end": 22455.72, + "probability": 0.7273 + }, + { + "start": 22475.07, + "end": 22477.94, + "probability": 0.3947 + }, + { + "start": 22478.72, + "end": 22478.96, + "probability": 0.0566 + }, + { + "start": 22480.58, + "end": 22482.76, + "probability": 0.0329 + }, + { + "start": 22482.76, + "end": 22488.34, + "probability": 0.316 + }, + { + "start": 22488.92, + "end": 22493.16, + "probability": 0.587 + }, + { + "start": 22496.7, + "end": 22499.28, + "probability": 0.3801 + }, + { + "start": 22500.08, + "end": 22505.44, + "probability": 0.1178 + }, + { + "start": 22505.92, + "end": 22505.92, + "probability": 0.0008 + }, + { + "start": 22524.33, + "end": 22527.27, + "probability": 0.0895 + }, + { + "start": 22527.27, + "end": 22527.37, + "probability": 0.0081 + }, + { + "start": 22527.37, + "end": 22528.79, + "probability": 0.026 + }, + { + "start": 22528.79, + "end": 22528.81, + "probability": 0.1048 + }, + { + "start": 22529.0, + "end": 22529.0, + "probability": 0.0 + }, + { + "start": 22529.0, + "end": 22529.0, + "probability": 0.0 + }, + { + "start": 22529.12, + "end": 22532.0, + "probability": 0.8669 + }, + { + "start": 22532.92, + "end": 22534.8, + "probability": 0.8116 + }, + { + "start": 22535.56, + "end": 22538.2, + "probability": 0.984 + }, + { + "start": 22538.74, + "end": 22540.48, + "probability": 0.783 + }, + { + "start": 22541.06, + "end": 22541.3, + "probability": 0.3173 + }, + { + "start": 22542.24, + "end": 22544.4, + "probability": 0.1649 + }, + { + "start": 22545.2, + "end": 22545.7, + "probability": 0.9578 + }, + { + "start": 22546.3, + "end": 22548.46, + "probability": 0.96 + }, + { + "start": 22549.5, + "end": 22552.66, + "probability": 0.9672 + }, + { + "start": 22554.2, + "end": 22557.8, + "probability": 0.9672 + }, + { + "start": 22558.84, + "end": 22561.37, + "probability": 0.9604 + }, + { + "start": 22562.16, + "end": 22564.04, + "probability": 0.8005 + }, + { + "start": 22564.1, + "end": 22569.26, + "probability": 0.9738 + }, + { + "start": 22569.26, + "end": 22574.98, + "probability": 0.999 + }, + { + "start": 22575.16, + "end": 22576.28, + "probability": 0.4107 + }, + { + "start": 22576.62, + "end": 22578.54, + "probability": 0.8057 + }, + { + "start": 22579.3, + "end": 22580.44, + "probability": 0.9131 + }, + { + "start": 22580.58, + "end": 22582.86, + "probability": 0.9868 + }, + { + "start": 22583.72, + "end": 22585.48, + "probability": 0.6415 + }, + { + "start": 22585.6, + "end": 22587.24, + "probability": 0.987 + }, + { + "start": 22587.5, + "end": 22588.1, + "probability": 0.8169 + }, + { + "start": 22588.78, + "end": 22591.34, + "probability": 0.9675 + }, + { + "start": 22591.84, + "end": 22593.2, + "probability": 0.9666 + }, + { + "start": 22593.28, + "end": 22596.36, + "probability": 0.9966 + }, + { + "start": 22596.54, + "end": 22597.04, + "probability": 0.8121 + }, + { + "start": 22597.5, + "end": 22598.62, + "probability": 0.8786 + }, + { + "start": 22598.78, + "end": 22604.62, + "probability": 0.9868 + }, + { + "start": 22605.34, + "end": 22608.6, + "probability": 0.9989 + }, + { + "start": 22608.8, + "end": 22609.34, + "probability": 0.3344 + }, + { + "start": 22609.86, + "end": 22612.2, + "probability": 0.9504 + }, + { + "start": 22612.74, + "end": 22614.44, + "probability": 0.9979 + }, + { + "start": 22615.16, + "end": 22616.64, + "probability": 0.9329 + }, + { + "start": 22617.2, + "end": 22618.36, + "probability": 0.5086 + }, + { + "start": 22618.66, + "end": 22621.4, + "probability": 0.9729 + }, + { + "start": 22621.7, + "end": 22625.5, + "probability": 0.9873 + }, + { + "start": 22625.54, + "end": 22626.62, + "probability": 0.8853 + }, + { + "start": 22626.72, + "end": 22628.84, + "probability": 0.7498 + }, + { + "start": 22628.92, + "end": 22630.56, + "probability": 0.9854 + }, + { + "start": 22630.64, + "end": 22630.9, + "probability": 0.9507 + }, + { + "start": 22630.94, + "end": 22636.42, + "probability": 0.9584 + }, + { + "start": 22637.22, + "end": 22640.58, + "probability": 0.9866 + }, + { + "start": 22641.36, + "end": 22645.5, + "probability": 0.9788 + }, + { + "start": 22646.12, + "end": 22647.39, + "probability": 0.9525 + }, + { + "start": 22647.54, + "end": 22649.13, + "probability": 0.9927 + }, + { + "start": 22649.92, + "end": 22651.32, + "probability": 0.9705 + }, + { + "start": 22651.8, + "end": 22652.78, + "probability": 0.918 + }, + { + "start": 22653.26, + "end": 22654.92, + "probability": 0.7073 + }, + { + "start": 22656.5, + "end": 22657.3, + "probability": 0.7716 + }, + { + "start": 22658.64, + "end": 22659.02, + "probability": 0.9004 + }, + { + "start": 22659.48, + "end": 22660.1, + "probability": 0.1005 + }, + { + "start": 22660.44, + "end": 22660.92, + "probability": 0.8509 + }, + { + "start": 22661.46, + "end": 22662.18, + "probability": 0.9692 + }, + { + "start": 22664.85, + "end": 22665.2, + "probability": 0.2066 + }, + { + "start": 22665.44, + "end": 22666.87, + "probability": 0.7834 + }, + { + "start": 22667.66, + "end": 22670.42, + "probability": 0.9941 + }, + { + "start": 22671.14, + "end": 22671.92, + "probability": 0.4978 + }, + { + "start": 22672.36, + "end": 22673.04, + "probability": 0.7309 + }, + { + "start": 22674.04, + "end": 22676.98, + "probability": 0.8618 + }, + { + "start": 22677.16, + "end": 22680.02, + "probability": 0.7012 + }, + { + "start": 22680.18, + "end": 22683.88, + "probability": 0.3814 + }, + { + "start": 22683.88, + "end": 22687.1, + "probability": 0.4052 + }, + { + "start": 22687.24, + "end": 22689.84, + "probability": 0.4605 + }, + { + "start": 22689.84, + "end": 22690.32, + "probability": 0.6639 + }, + { + "start": 22690.36, + "end": 22690.96, + "probability": 0.7008 + }, + { + "start": 22695.03, + "end": 22695.86, + "probability": 0.0002 + }, + { + "start": 22708.96, + "end": 22709.68, + "probability": 0.0563 + }, + { + "start": 22709.68, + "end": 22710.5, + "probability": 0.3646 + }, + { + "start": 22711.02, + "end": 22712.46, + "probability": 0.4217 + }, + { + "start": 22712.54, + "end": 22714.04, + "probability": 0.6929 + }, + { + "start": 22714.7, + "end": 22716.46, + "probability": 0.877 + }, + { + "start": 22716.58, + "end": 22717.02, + "probability": 0.255 + }, + { + "start": 22717.04, + "end": 22717.52, + "probability": 0.6446 + }, + { + "start": 22738.04, + "end": 22743.32, + "probability": 0.3975 + }, + { + "start": 22743.32, + "end": 22745.52, + "probability": 0.452 + }, + { + "start": 22746.22, + "end": 22749.4, + "probability": 0.1809 + }, + { + "start": 22750.38, + "end": 22750.82, + "probability": 0.4722 + }, + { + "start": 22752.08, + "end": 22754.22, + "probability": 0.6992 + }, + { + "start": 22755.1, + "end": 22757.08, + "probability": 0.0751 + }, + { + "start": 22757.08, + "end": 22758.72, + "probability": 0.0264 + }, + { + "start": 22759.22, + "end": 22760.3, + "probability": 0.2477 + }, + { + "start": 22760.56, + "end": 22761.07, + "probability": 0.2978 + }, + { + "start": 22762.36, + "end": 22768.1, + "probability": 0.222 + }, + { + "start": 22790.0, + "end": 22790.0, + "probability": 0.0 + }, + { + "start": 22790.0, + "end": 22790.0, + "probability": 0.0 + }, + { + "start": 22790.0, + "end": 22790.0, + "probability": 0.0 + }, + { + "start": 22790.0, + "end": 22790.0, + "probability": 0.0 + }, + { + "start": 22790.0, + "end": 22790.0, + "probability": 0.0 + }, + { + "start": 22790.74, + "end": 22791.0, + "probability": 0.1477 + }, + { + "start": 22791.0, + "end": 22791.0, + "probability": 0.1077 + }, + { + "start": 22791.0, + "end": 22791.0, + "probability": 0.0883 + }, + { + "start": 22791.0, + "end": 22791.0, + "probability": 0.0525 + }, + { + "start": 22791.0, + "end": 22791.0, + "probability": 0.1107 + }, + { + "start": 22791.0, + "end": 22794.52, + "probability": 0.3941 + }, + { + "start": 22795.28, + "end": 22798.62, + "probability": 0.9692 + }, + { + "start": 22799.36, + "end": 22800.98, + "probability": 0.9668 + }, + { + "start": 22801.7, + "end": 22805.52, + "probability": 0.9916 + }, + { + "start": 22806.0, + "end": 22810.22, + "probability": 0.9088 + }, + { + "start": 22811.65, + "end": 22818.24, + "probability": 0.9883 + }, + { + "start": 22818.64, + "end": 22822.14, + "probability": 0.7947 + }, + { + "start": 22822.28, + "end": 22823.98, + "probability": 0.4041 + }, + { + "start": 22823.98, + "end": 22824.4, + "probability": 0.8957 + }, + { + "start": 22825.2, + "end": 22827.78, + "probability": 0.8711 + }, + { + "start": 22828.66, + "end": 22831.26, + "probability": 0.9929 + }, + { + "start": 22832.82, + "end": 22835.74, + "probability": 0.6354 + }, + { + "start": 22835.98, + "end": 22837.32, + "probability": 0.9129 + }, + { + "start": 22837.5, + "end": 22838.98, + "probability": 0.7148 + }, + { + "start": 22839.8, + "end": 22841.6, + "probability": 0.816 + }, + { + "start": 22841.74, + "end": 22844.02, + "probability": 0.7946 + }, + { + "start": 22844.6, + "end": 22845.88, + "probability": 0.8724 + }, + { + "start": 22845.96, + "end": 22849.44, + "probability": 0.9889 + }, + { + "start": 22849.52, + "end": 22850.42, + "probability": 0.9302 + }, + { + "start": 22851.12, + "end": 22854.74, + "probability": 0.9589 + }, + { + "start": 22854.76, + "end": 22855.34, + "probability": 0.6558 + }, + { + "start": 22855.98, + "end": 22856.86, + "probability": 0.6338 + }, + { + "start": 22857.22, + "end": 22859.98, + "probability": 0.9839 + }, + { + "start": 22860.1, + "end": 22861.58, + "probability": 0.8491 + }, + { + "start": 22862.4, + "end": 22867.88, + "probability": 0.9854 + }, + { + "start": 22868.0, + "end": 22872.32, + "probability": 0.8464 + }, + { + "start": 22872.54, + "end": 22872.94, + "probability": 0.8708 + }, + { + "start": 22873.58, + "end": 22878.98, + "probability": 0.9728 + }, + { + "start": 22879.1, + "end": 22879.8, + "probability": 0.9382 + }, + { + "start": 22880.12, + "end": 22880.78, + "probability": 0.965 + }, + { + "start": 22881.2, + "end": 22883.68, + "probability": 0.965 + }, + { + "start": 22884.16, + "end": 22889.72, + "probability": 0.974 + }, + { + "start": 22890.64, + "end": 22890.64, + "probability": 0.1602 + }, + { + "start": 22890.64, + "end": 22890.98, + "probability": 0.526 + }, + { + "start": 22891.08, + "end": 22891.92, + "probability": 0.7622 + }, + { + "start": 22892.1, + "end": 22895.06, + "probability": 0.9121 + }, + { + "start": 22895.14, + "end": 22896.04, + "probability": 0.8036 + }, + { + "start": 22898.84, + "end": 22901.98, + "probability": 0.7446 + }, + { + "start": 22902.5, + "end": 22906.9, + "probability": 0.9869 + }, + { + "start": 22907.3, + "end": 22908.32, + "probability": 0.8031 + }, + { + "start": 22909.12, + "end": 22915.14, + "probability": 0.9497 + }, + { + "start": 22915.58, + "end": 22917.14, + "probability": 0.9962 + }, + { + "start": 22917.28, + "end": 22919.7, + "probability": 0.9395 + }, + { + "start": 22920.52, + "end": 22921.28, + "probability": 0.9905 + }, + { + "start": 22921.34, + "end": 22921.78, + "probability": 0.7197 + }, + { + "start": 22922.74, + "end": 22925.58, + "probability": 0.668 + }, + { + "start": 22925.66, + "end": 22927.9, + "probability": 0.7169 + }, + { + "start": 22928.36, + "end": 22931.22, + "probability": 0.6829 + }, + { + "start": 22931.22, + "end": 22933.76, + "probability": 0.2989 + }, + { + "start": 22933.78, + "end": 22937.32, + "probability": 0.7635 + }, + { + "start": 22938.46, + "end": 22941.73, + "probability": 0.742 + }, + { + "start": 22942.3, + "end": 22943.96, + "probability": 0.4743 + }, + { + "start": 22944.26, + "end": 22944.9, + "probability": 0.5854 + }, + { + "start": 22945.04, + "end": 22945.46, + "probability": 0.3254 + }, + { + "start": 22945.48, + "end": 22945.98, + "probability": 0.5701 + }, + { + "start": 22964.88, + "end": 22965.54, + "probability": 0.0055 + }, + { + "start": 22965.54, + "end": 22967.08, + "probability": 0.2586 + }, + { + "start": 22967.18, + "end": 22968.64, + "probability": 0.5431 + }, + { + "start": 22968.72, + "end": 22970.26, + "probability": 0.7646 + }, + { + "start": 22970.64, + "end": 22971.12, + "probability": 0.7352 + }, + { + "start": 22971.14, + "end": 22971.62, + "probability": 0.6098 + }, + { + "start": 22973.44, + "end": 22975.7, + "probability": 0.0916 + }, + { + "start": 22996.74, + "end": 22999.02, + "probability": 0.2698 + }, + { + "start": 23000.0, + "end": 23000.78, + "probability": 0.1904 + }, + { + "start": 23002.16, + "end": 23003.88, + "probability": 0.0587 + }, + { + "start": 23004.52, + "end": 23005.58, + "probability": 0.0954 + }, + { + "start": 23005.6, + "end": 23006.12, + "probability": 0.0361 + }, + { + "start": 23006.14, + "end": 23007.16, + "probability": 0.1258 + }, + { + "start": 23008.22, + "end": 23012.92, + "probability": 0.0245 + }, + { + "start": 23013.38, + "end": 23015.88, + "probability": 0.1964 + }, + { + "start": 23016.64, + "end": 23020.0, + "probability": 0.6841 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.0, + "probability": 0.0 + }, + { + "start": 23048.0, + "end": 23048.02, + "probability": 0.0468 + }, + { + "start": 23048.02, + "end": 23048.78, + "probability": 0.3582 + }, + { + "start": 23049.62, + "end": 23054.38, + "probability": 0.9569 + }, + { + "start": 23054.38, + "end": 23058.08, + "probability": 0.9971 + }, + { + "start": 23058.68, + "end": 23063.26, + "probability": 0.9938 + }, + { + "start": 23063.38, + "end": 23065.06, + "probability": 0.9627 + }, + { + "start": 23066.15, + "end": 23068.48, + "probability": 0.9844 + }, + { + "start": 23069.62, + "end": 23073.4, + "probability": 0.991 + }, + { + "start": 23073.56, + "end": 23077.9, + "probability": 0.9792 + }, + { + "start": 23078.64, + "end": 23082.12, + "probability": 0.9973 + }, + { + "start": 23082.62, + "end": 23087.36, + "probability": 0.9973 + }, + { + "start": 23088.28, + "end": 23092.64, + "probability": 0.9731 + }, + { + "start": 23092.64, + "end": 23096.22, + "probability": 0.9995 + }, + { + "start": 23096.7, + "end": 23098.34, + "probability": 0.9163 + }, + { + "start": 23099.24, + "end": 23105.16, + "probability": 0.8276 + }, + { + "start": 23105.16, + "end": 23110.9, + "probability": 0.9802 + }, + { + "start": 23111.44, + "end": 23113.36, + "probability": 0.9697 + }, + { + "start": 23114.52, + "end": 23118.16, + "probability": 0.9748 + }, + { + "start": 23118.16, + "end": 23122.08, + "probability": 0.8077 + }, + { + "start": 23122.08, + "end": 23125.02, + "probability": 0.9814 + }, + { + "start": 23125.72, + "end": 23125.98, + "probability": 0.3741 + }, + { + "start": 23126.02, + "end": 23128.34, + "probability": 0.9931 + }, + { + "start": 23129.02, + "end": 23131.82, + "probability": 0.9932 + }, + { + "start": 23133.0, + "end": 23137.04, + "probability": 0.9888 + }, + { + "start": 23137.04, + "end": 23140.02, + "probability": 0.9814 + }, + { + "start": 23140.72, + "end": 23141.72, + "probability": 0.9988 + }, + { + "start": 23142.26, + "end": 23143.8, + "probability": 0.9723 + }, + { + "start": 23144.08, + "end": 23144.62, + "probability": 0.7387 + }, + { + "start": 23145.1, + "end": 23145.36, + "probability": 0.8688 + }, + { + "start": 23145.7, + "end": 23147.46, + "probability": 0.9335 + }, + { + "start": 23147.94, + "end": 23148.8, + "probability": 0.9092 + }, + { + "start": 23149.62, + "end": 23151.08, + "probability": 0.8661 + }, + { + "start": 23151.64, + "end": 23153.28, + "probability": 0.5157 + }, + { + "start": 23153.48, + "end": 23155.7, + "probability": 0.9967 + }, + { + "start": 23155.86, + "end": 23156.26, + "probability": 0.7532 + }, + { + "start": 23157.04, + "end": 23159.86, + "probability": 0.9768 + }, + { + "start": 23159.86, + "end": 23164.7, + "probability": 0.8731 + }, + { + "start": 23167.94, + "end": 23169.48, + "probability": 0.8107 + }, + { + "start": 23170.2, + "end": 23172.45, + "probability": 0.9491 + }, + { + "start": 23184.2, + "end": 23184.88, + "probability": 0.2104 + }, + { + "start": 23185.0, + "end": 23185.68, + "probability": 0.568 + }, + { + "start": 23186.18, + "end": 23186.68, + "probability": 0.8882 + }, + { + "start": 23186.88, + "end": 23187.84, + "probability": 0.7311 + }, + { + "start": 23188.56, + "end": 23193.14, + "probability": 0.9431 + }, + { + "start": 23193.14, + "end": 23196.34, + "probability": 0.9956 + }, + { + "start": 23197.28, + "end": 23197.98, + "probability": 0.4409 + }, + { + "start": 23198.16, + "end": 23201.97, + "probability": 0.9909 + }, + { + "start": 23203.8, + "end": 23205.44, + "probability": 0.9056 + }, + { + "start": 23206.74, + "end": 23209.04, + "probability": 0.7551 + }, + { + "start": 23209.28, + "end": 23210.94, + "probability": 0.9548 + }, + { + "start": 23211.04, + "end": 23211.8, + "probability": 0.6444 + }, + { + "start": 23212.24, + "end": 23213.04, + "probability": 0.9882 + }, + { + "start": 23214.16, + "end": 23216.48, + "probability": 0.7619 + }, + { + "start": 23216.56, + "end": 23220.62, + "probability": 0.8992 + }, + { + "start": 23220.62, + "end": 23223.34, + "probability": 0.998 + }, + { + "start": 23224.0, + "end": 23227.08, + "probability": 0.9978 + }, + { + "start": 23227.74, + "end": 23228.54, + "probability": 0.4224 + }, + { + "start": 23228.76, + "end": 23232.16, + "probability": 0.9901 + }, + { + "start": 23233.06, + "end": 23236.66, + "probability": 0.998 + }, + { + "start": 23237.76, + "end": 23241.62, + "probability": 0.9791 + }, + { + "start": 23243.0, + "end": 23248.6, + "probability": 0.9607 + }, + { + "start": 23249.9, + "end": 23250.72, + "probability": 0.2504 + }, + { + "start": 23251.92, + "end": 23253.7, + "probability": 0.4429 + }, + { + "start": 23254.6, + "end": 23258.22, + "probability": 0.9766 + }, + { + "start": 23258.98, + "end": 23261.28, + "probability": 0.9677 + }, + { + "start": 23262.62, + "end": 23263.16, + "probability": 0.875 + }, + { + "start": 23263.9, + "end": 23266.96, + "probability": 0.9175 + }, + { + "start": 23267.06, + "end": 23268.76, + "probability": 0.5958 + }, + { + "start": 23269.62, + "end": 23271.3, + "probability": 0.9766 + }, + { + "start": 23271.54, + "end": 23271.76, + "probability": 0.5472 + }, + { + "start": 23271.86, + "end": 23273.18, + "probability": 0.9698 + }, + { + "start": 23273.38, + "end": 23273.82, + "probability": 0.9435 + }, + { + "start": 23274.36, + "end": 23278.4, + "probability": 0.679 + }, + { + "start": 23278.58, + "end": 23280.7, + "probability": 0.9663 + }, + { + "start": 23281.08, + "end": 23284.42, + "probability": 0.9941 + }, + { + "start": 23284.54, + "end": 23286.0, + "probability": 0.7092 + }, + { + "start": 23286.38, + "end": 23288.58, + "probability": 0.9607 + }, + { + "start": 23288.7, + "end": 23290.76, + "probability": 0.9442 + }, + { + "start": 23290.86, + "end": 23291.46, + "probability": 0.7589 + }, + { + "start": 23291.84, + "end": 23292.24, + "probability": 0.8745 + }, + { + "start": 23292.8, + "end": 23293.76, + "probability": 0.9803 + }, + { + "start": 23294.28, + "end": 23295.86, + "probability": 0.9862 + }, + { + "start": 23297.12, + "end": 23297.96, + "probability": 0.7626 + }, + { + "start": 23298.3, + "end": 23299.02, + "probability": 0.5753 + }, + { + "start": 23299.1, + "end": 23301.28, + "probability": 0.9319 + }, + { + "start": 23302.92, + "end": 23304.86, + "probability": 0.7349 + }, + { + "start": 23305.76, + "end": 23308.52, + "probability": 0.859 + }, + { + "start": 23309.56, + "end": 23309.82, + "probability": 0.6906 + }, + { + "start": 23309.92, + "end": 23310.36, + "probability": 0.913 + }, + { + "start": 23310.56, + "end": 23312.16, + "probability": 0.9683 + }, + { + "start": 23312.24, + "end": 23314.98, + "probability": 0.9902 + }, + { + "start": 23314.98, + "end": 23317.82, + "probability": 0.7813 + }, + { + "start": 23318.34, + "end": 23320.98, + "probability": 0.906 + }, + { + "start": 23321.6, + "end": 23322.57, + "probability": 0.8125 + }, + { + "start": 23323.36, + "end": 23323.89, + "probability": 0.9062 + }, + { + "start": 23324.42, + "end": 23325.42, + "probability": 0.9259 + }, + { + "start": 23325.42, + "end": 23326.54, + "probability": 0.9961 + }, + { + "start": 23327.14, + "end": 23327.8, + "probability": 0.7111 + }, + { + "start": 23328.46, + "end": 23334.34, + "probability": 0.9608 + }, + { + "start": 23334.52, + "end": 23337.7, + "probability": 0.9972 + }, + { + "start": 23338.36, + "end": 23341.94, + "probability": 0.951 + }, + { + "start": 23342.06, + "end": 23342.7, + "probability": 0.8529 + }, + { + "start": 23343.28, + "end": 23348.14, + "probability": 0.9924 + }, + { + "start": 23348.72, + "end": 23351.32, + "probability": 0.6172 + }, + { + "start": 23351.86, + "end": 23353.52, + "probability": 0.9312 + }, + { + "start": 23354.28, + "end": 23356.9, + "probability": 0.9707 + }, + { + "start": 23356.9, + "end": 23360.12, + "probability": 0.9928 + }, + { + "start": 23360.68, + "end": 23361.75, + "probability": 0.9658 + }, + { + "start": 23362.64, + "end": 23362.94, + "probability": 0.3612 + }, + { + "start": 23363.14, + "end": 23365.5, + "probability": 0.8765 + }, + { + "start": 23365.64, + "end": 23369.04, + "probability": 0.9922 + }, + { + "start": 23369.14, + "end": 23374.24, + "probability": 0.9256 + }, + { + "start": 23375.12, + "end": 23376.2, + "probability": 0.8506 + }, + { + "start": 23376.32, + "end": 23379.24, + "probability": 0.9887 + }, + { + "start": 23379.9, + "end": 23381.42, + "probability": 0.7308 + }, + { + "start": 23381.78, + "end": 23382.0, + "probability": 0.8131 + }, + { + "start": 23382.52, + "end": 23386.48, + "probability": 0.7181 + }, + { + "start": 23386.8, + "end": 23387.6, + "probability": 0.8429 + }, + { + "start": 23388.16, + "end": 23392.14, + "probability": 0.9951 + }, + { + "start": 23396.32, + "end": 23397.18, + "probability": 0.6885 + }, + { + "start": 23402.84, + "end": 23403.72, + "probability": 0.577 + }, + { + "start": 23403.8, + "end": 23406.92, + "probability": 0.5625 + }, + { + "start": 23408.2, + "end": 23409.4, + "probability": 0.5527 + }, + { + "start": 23410.32, + "end": 23414.36, + "probability": 0.8399 + }, + { + "start": 23414.68, + "end": 23416.0, + "probability": 0.926 + }, + { + "start": 23416.38, + "end": 23418.62, + "probability": 0.91 + }, + { + "start": 23419.04, + "end": 23420.6, + "probability": 0.5704 + }, + { + "start": 23421.28, + "end": 23421.64, + "probability": 0.7737 + }, + { + "start": 23422.26, + "end": 23422.6, + "probability": 0.2924 + }, + { + "start": 23427.86, + "end": 23429.13, + "probability": 0.1741 + }, + { + "start": 23439.62, + "end": 23441.14, + "probability": 0.0109 + }, + { + "start": 23441.74, + "end": 23442.36, + "probability": 0.0193 + }, + { + "start": 23442.36, + "end": 23444.5, + "probability": 0.3111 + }, + { + "start": 23445.3, + "end": 23446.68, + "probability": 0.6998 + }, + { + "start": 23446.78, + "end": 23449.2, + "probability": 0.5584 + }, + { + "start": 23450.38, + "end": 23451.06, + "probability": 0.331 + }, + { + "start": 23451.68, + "end": 23457.62, + "probability": 0.9449 + }, + { + "start": 23459.44, + "end": 23460.12, + "probability": 0.526 + }, + { + "start": 23460.58, + "end": 23465.64, + "probability": 0.9954 + }, + { + "start": 23465.84, + "end": 23466.98, + "probability": 0.9966 + }, + { + "start": 23467.52, + "end": 23472.06, + "probability": 0.7133 + }, + { + "start": 23472.16, + "end": 23474.98, + "probability": 0.3742 + }, + { + "start": 23475.52, + "end": 23476.26, + "probability": 0.8846 + }, + { + "start": 23476.62, + "end": 23477.98, + "probability": 0.4904 + }, + { + "start": 23478.34, + "end": 23481.0, + "probability": 0.4915 + }, + { + "start": 23481.26, + "end": 23482.56, + "probability": 0.8808 + }, + { + "start": 23482.74, + "end": 23483.24, + "probability": 0.2155 + }, + { + "start": 23484.08, + "end": 23485.69, + "probability": 0.8356 + }, + { + "start": 23486.1, + "end": 23486.78, + "probability": 0.7249 + }, + { + "start": 23487.1, + "end": 23488.5, + "probability": 0.4228 + }, + { + "start": 23490.28, + "end": 23491.42, + "probability": 0.4541 + }, + { + "start": 23504.98, + "end": 23505.52, + "probability": 0.0574 + }, + { + "start": 23505.52, + "end": 23507.14, + "probability": 0.6454 + }, + { + "start": 23507.94, + "end": 23511.5, + "probability": 0.7295 + }, + { + "start": 23511.56, + "end": 23512.54, + "probability": 0.6814 + }, + { + "start": 23513.1, + "end": 23516.68, + "probability": 0.937 + }, + { + "start": 23516.96, + "end": 23517.18, + "probability": 0.0126 + }, + { + "start": 23517.18, + "end": 23519.2, + "probability": 0.5136 + }, + { + "start": 23519.3, + "end": 23521.66, + "probability": 0.6809 + }, + { + "start": 23522.06, + "end": 23524.12, + "probability": 0.8669 + }, + { + "start": 23524.54, + "end": 23524.7, + "probability": 0.8699 + }, + { + "start": 23524.7, + "end": 23525.48, + "probability": 0.7014 + }, + { + "start": 23525.64, + "end": 23526.68, + "probability": 0.7014 + }, + { + "start": 23526.72, + "end": 23527.1, + "probability": 0.4028 + }, + { + "start": 23527.12, + "end": 23527.54, + "probability": 0.5378 + }, + { + "start": 23546.84, + "end": 23547.2, + "probability": 0.4082 + }, + { + "start": 23547.2, + "end": 23547.64, + "probability": 0.2307 + }, + { + "start": 23547.74, + "end": 23548.9, + "probability": 0.5161 + }, + { + "start": 23548.9, + "end": 23552.68, + "probability": 0.7859 + }, + { + "start": 23553.14, + "end": 23554.82, + "probability": 0.7844 + }, + { + "start": 23555.32, + "end": 23557.24, + "probability": 0.8699 + }, + { + "start": 23557.34, + "end": 23559.12, + "probability": 0.8504 + }, + { + "start": 23559.44, + "end": 23560.08, + "probability": 0.6107 + }, + { + "start": 23560.4, + "end": 23561.04, + "probability": 0.3657 + }, + { + "start": 23561.04, + "end": 23562.18, + "probability": 0.669 + }, + { + "start": 23584.02, + "end": 23587.9, + "probability": 0.4897 + }, + { + "start": 23587.92, + "end": 23589.92, + "probability": 0.1995 + }, + { + "start": 23590.16, + "end": 23590.84, + "probability": 0.1497 + }, + { + "start": 23590.88, + "end": 23597.02, + "probability": 0.5139 + }, + { + "start": 23600.94, + "end": 23603.24, + "probability": 0.0501 + }, + { + "start": 23604.45, + "end": 23607.94, + "probability": 0.0571 + }, + { + "start": 23608.56, + "end": 23610.24, + "probability": 0.1107 + }, + { + "start": 23611.06, + "end": 23611.78, + "probability": 0.0831 + }, + { + "start": 23611.78, + "end": 23612.1, + "probability": 0.1267 + }, + { + "start": 23613.3, + "end": 23615.28, + "probability": 0.6655 + }, + { + "start": 23620.56, + "end": 23623.5, + "probability": 0.0605 + }, + { + "start": 23623.5, + "end": 23625.74, + "probability": 0.1569 + }, + { + "start": 23625.9, + "end": 23627.12, + "probability": 0.1412 + }, + { + "start": 23627.22, + "end": 23629.68, + "probability": 0.6177 + }, + { + "start": 23630.48, + "end": 23633.06, + "probability": 0.0637 + }, + { + "start": 23637.82, + "end": 23637.98, + "probability": 0.0378 + }, + { + "start": 23638.0, + "end": 23638.0, + "probability": 0.0 + }, + { + "start": 23638.0, + "end": 23638.0, + "probability": 0.0 + }, + { + "start": 23638.0, + "end": 23638.0, + "probability": 0.0 + }, + { + "start": 23638.0, + "end": 23638.0, + "probability": 0.0 + }, + { + "start": 23655.34, + "end": 23655.42, + "probability": 0.0005 + }, + { + "start": 23658.22, + "end": 23663.44, + "probability": 0.8162 + }, + { + "start": 23664.0, + "end": 23666.08, + "probability": 0.4906 + }, + { + "start": 23667.74, + "end": 23672.98, + "probability": 0.4383 + }, + { + "start": 23673.5, + "end": 23676.22, + "probability": 0.0449 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.0, + "end": 23762.0, + "probability": 0.0 + }, + { + "start": 23762.46, + "end": 23762.46, + "probability": 0.0152 + }, + { + "start": 23762.46, + "end": 23767.32, + "probability": 0.774 + }, + { + "start": 23767.72, + "end": 23769.14, + "probability": 0.9682 + }, + { + "start": 23769.74, + "end": 23772.64, + "probability": 0.986 + }, + { + "start": 23773.1, + "end": 23777.42, + "probability": 0.9961 + }, + { + "start": 23777.42, + "end": 23781.58, + "probability": 0.9946 + }, + { + "start": 23782.6, + "end": 23783.2, + "probability": 0.575 + }, + { + "start": 23783.28, + "end": 23789.4, + "probability": 0.9971 + }, + { + "start": 23789.76, + "end": 23794.54, + "probability": 0.9987 + }, + { + "start": 23794.54, + "end": 23800.92, + "probability": 0.9972 + }, + { + "start": 23801.36, + "end": 23803.68, + "probability": 0.9945 + }, + { + "start": 23804.14, + "end": 23805.72, + "probability": 0.853 + }, + { + "start": 23806.6, + "end": 23810.28, + "probability": 0.9983 + }, + { + "start": 23810.78, + "end": 23814.8, + "probability": 0.9722 + }, + { + "start": 23815.28, + "end": 23819.12, + "probability": 0.9785 + }, + { + "start": 23819.12, + "end": 23822.72, + "probability": 0.9963 + }, + { + "start": 23823.56, + "end": 23824.16, + "probability": 0.8408 + }, + { + "start": 23824.68, + "end": 23826.62, + "probability": 0.9773 + }, + { + "start": 23826.78, + "end": 23829.62, + "probability": 0.9984 + }, + { + "start": 23829.62, + "end": 23833.36, + "probability": 0.9578 + }, + { + "start": 23833.88, + "end": 23834.78, + "probability": 0.5656 + }, + { + "start": 23834.9, + "end": 23835.44, + "probability": 0.878 + }, + { + "start": 23835.68, + "end": 23838.12, + "probability": 0.8307 + }, + { + "start": 23839.82, + "end": 23840.8, + "probability": 0.9525 + }, + { + "start": 23840.86, + "end": 23841.9, + "probability": 0.5767 + }, + { + "start": 23842.0, + "end": 23843.92, + "probability": 0.8615 + }, + { + "start": 23844.52, + "end": 23845.76, + "probability": 0.8875 + }, + { + "start": 23845.84, + "end": 23847.0, + "probability": 0.991 + }, + { + "start": 23847.5, + "end": 23848.62, + "probability": 0.7607 + }, + { + "start": 23848.76, + "end": 23849.66, + "probability": 0.67 + }, + { + "start": 23850.38, + "end": 23851.8, + "probability": 0.8169 + }, + { + "start": 23852.24, + "end": 23854.56, + "probability": 0.902 + }, + { + "start": 23854.76, + "end": 23856.04, + "probability": 0.7432 + }, + { + "start": 23856.52, + "end": 23860.18, + "probability": 0.7732 + }, + { + "start": 23860.58, + "end": 23862.48, + "probability": 0.9894 + }, + { + "start": 23862.6, + "end": 23862.98, + "probability": 0.7109 + }, + { + "start": 23863.2, + "end": 23865.6, + "probability": 0.8737 + }, + { + "start": 23865.9, + "end": 23867.84, + "probability": 0.8288 + }, + { + "start": 23867.94, + "end": 23870.24, + "probability": 0.9691 + }, + { + "start": 23870.78, + "end": 23871.52, + "probability": 0.1385 + }, + { + "start": 23871.6, + "end": 23874.72, + "probability": 0.5991 + }, + { + "start": 23887.04, + "end": 23888.76, + "probability": 0.0803 + }, + { + "start": 23888.76, + "end": 23889.62, + "probability": 0.1356 + }, + { + "start": 23908.52, + "end": 23909.08, + "probability": 0.0502 + }, + { + "start": 23909.08, + "end": 23911.42, + "probability": 0.048 + }, + { + "start": 23911.47, + "end": 23912.38, + "probability": 0.1269 + }, + { + "start": 23912.38, + "end": 23912.38, + "probability": 0.0525 + }, + { + "start": 23912.38, + "end": 23913.62, + "probability": 0.4331 + }, + { + "start": 23914.08, + "end": 23915.78, + "probability": 0.1762 + }, + { + "start": 23915.78, + "end": 23915.9, + "probability": 0.2981 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.0, + "end": 23988.0, + "probability": 0.0 + }, + { + "start": 23988.1, + "end": 23988.88, + "probability": 0.1797 + }, + { + "start": 23991.98, + "end": 23993.04, + "probability": 0.2359 + }, + { + "start": 23993.21, + "end": 23994.75, + "probability": 0.1411 + }, + { + "start": 23995.22, + "end": 23997.22, + "probability": 0.1887 + }, + { + "start": 23998.28, + "end": 23999.0, + "probability": 0.2501 + }, + { + "start": 23999.0, + "end": 24001.56, + "probability": 0.4996 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.0, + "end": 24115.0, + "probability": 0.0 + }, + { + "start": 24115.14, + "end": 24115.36, + "probability": 0.0822 + }, + { + "start": 24115.36, + "end": 24115.36, + "probability": 0.0698 + }, + { + "start": 24115.36, + "end": 24115.98, + "probability": 0.1352 + }, + { + "start": 24116.0, + "end": 24118.0, + "probability": 0.7561 + }, + { + "start": 24118.0, + "end": 24118.78, + "probability": 0.7619 + }, + { + "start": 24119.38, + "end": 24122.66, + "probability": 0.8264 + }, + { + "start": 24123.16, + "end": 24126.24, + "probability": 0.9843 + }, + { + "start": 24126.38, + "end": 24131.16, + "probability": 0.9695 + }, + { + "start": 24131.64, + "end": 24134.3, + "probability": 0.9802 + }, + { + "start": 24134.36, + "end": 24136.52, + "probability": 0.6515 + }, + { + "start": 24137.04, + "end": 24139.04, + "probability": 0.6257 + }, + { + "start": 24139.72, + "end": 24141.94, + "probability": 0.9738 + }, + { + "start": 24142.48, + "end": 24143.94, + "probability": 0.9771 + }, + { + "start": 24144.08, + "end": 24144.92, + "probability": 0.583 + }, + { + "start": 24145.12, + "end": 24146.48, + "probability": 0.9404 + }, + { + "start": 24147.02, + "end": 24149.64, + "probability": 0.9966 + }, + { + "start": 24149.74, + "end": 24150.56, + "probability": 0.822 + }, + { + "start": 24150.92, + "end": 24153.04, + "probability": 0.8409 + }, + { + "start": 24153.62, + "end": 24155.56, + "probability": 0.8851 + }, + { + "start": 24155.64, + "end": 24158.28, + "probability": 0.9803 + }, + { + "start": 24158.74, + "end": 24162.0, + "probability": 0.7007 + }, + { + "start": 24162.44, + "end": 24163.34, + "probability": 0.7896 + }, + { + "start": 24163.7, + "end": 24165.02, + "probability": 0.9212 + }, + { + "start": 24165.36, + "end": 24171.5, + "probability": 0.9928 + }, + { + "start": 24172.28, + "end": 24174.12, + "probability": 0.6843 + }, + { + "start": 24175.24, + "end": 24180.26, + "probability": 0.9861 + }, + { + "start": 24181.84, + "end": 24182.24, + "probability": 0.0043 + }, + { + "start": 24183.42, + "end": 24184.46, + "probability": 0.7881 + }, + { + "start": 24184.9, + "end": 24185.64, + "probability": 0.6412 + }, + { + "start": 24185.7, + "end": 24188.74, + "probability": 0.9849 + }, + { + "start": 24198.98, + "end": 24200.12, + "probability": 0.5924 + }, + { + "start": 24209.68, + "end": 24209.68, + "probability": 0.0002 + }, + { + "start": 24210.5, + "end": 24215.24, + "probability": 0.1911 + }, + { + "start": 24215.82, + "end": 24218.92, + "probability": 0.5376 + }, + { + "start": 24219.32, + "end": 24219.44, + "probability": 0.039 + }, + { + "start": 24219.5, + "end": 24219.52, + "probability": 0.0459 + }, + { + "start": 24219.56, + "end": 24220.54, + "probability": 0.6925 + }, + { + "start": 24222.54, + "end": 24225.96, + "probability": 0.1202 + }, + { + "start": 24239.09, + "end": 24240.3, + "probability": 0.0548 + }, + { + "start": 24240.35, + "end": 24241.38, + "probability": 0.0236 + }, + { + "start": 24261.9, + "end": 24263.72, + "probability": 0.1306 + }, + { + "start": 24263.72, + "end": 24266.32, + "probability": 0.1441 + }, + { + "start": 24266.32, + "end": 24266.58, + "probability": 0.0685 + }, + { + "start": 24266.66, + "end": 24268.5, + "probability": 0.0281 + }, + { + "start": 24268.5, + "end": 24268.5, + "probability": 0.0214 + }, + { + "start": 24269.22, + "end": 24270.86, + "probability": 0.1518 + }, + { + "start": 24271.72, + "end": 24274.26, + "probability": 0.1781 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.0, + "end": 24276.0, + "probability": 0.0 + }, + { + "start": 24276.86, + "end": 24276.86, + "probability": 0.0198 + }, + { + "start": 24276.86, + "end": 24279.76, + "probability": 0.6773 + }, + { + "start": 24281.18, + "end": 24283.9, + "probability": 0.9843 + }, + { + "start": 24284.44, + "end": 24287.9, + "probability": 0.9977 + }, + { + "start": 24290.8, + "end": 24294.68, + "probability": 0.879 + }, + { + "start": 24295.38, + "end": 24295.76, + "probability": 0.3856 + }, + { + "start": 24296.34, + "end": 24298.32, + "probability": 0.6214 + }, + { + "start": 24298.32, + "end": 24301.46, + "probability": 0.9595 + }, + { + "start": 24301.52, + "end": 24302.08, + "probability": 0.6903 + }, + { + "start": 24302.14, + "end": 24304.16, + "probability": 0.9836 + }, + { + "start": 24304.38, + "end": 24308.54, + "probability": 0.9924 + }, + { + "start": 24308.54, + "end": 24312.48, + "probability": 0.9972 + }, + { + "start": 24313.14, + "end": 24316.04, + "probability": 0.9966 + }, + { + "start": 24316.04, + "end": 24320.84, + "probability": 0.9965 + }, + { + "start": 24321.66, + "end": 24326.74, + "probability": 0.9993 + }, + { + "start": 24328.28, + "end": 24330.14, + "probability": 0.9303 + }, + { + "start": 24330.46, + "end": 24333.3, + "probability": 0.9867 + }, + { + "start": 24333.3, + "end": 24336.78, + "probability": 0.9951 + }, + { + "start": 24337.22, + "end": 24341.44, + "probability": 0.9963 + }, + { + "start": 24341.58, + "end": 24343.72, + "probability": 0.9962 + }, + { + "start": 24343.82, + "end": 24345.02, + "probability": 0.9832 + }, + { + "start": 24345.42, + "end": 24345.96, + "probability": 0.9483 + }, + { + "start": 24346.0, + "end": 24347.21, + "probability": 0.8276 + }, + { + "start": 24347.72, + "end": 24351.56, + "probability": 0.9957 + }, + { + "start": 24353.38, + "end": 24354.58, + "probability": 0.9757 + }, + { + "start": 24354.64, + "end": 24355.22, + "probability": 0.6188 + }, + { + "start": 24355.6, + "end": 24358.2, + "probability": 0.9595 + }, + { + "start": 24358.76, + "end": 24361.86, + "probability": 0.82 + }, + { + "start": 24361.98, + "end": 24363.9, + "probability": 0.837 + }, + { + "start": 24364.3, + "end": 24371.54, + "probability": 0.9415 + }, + { + "start": 24372.24, + "end": 24373.58, + "probability": 0.7471 + }, + { + "start": 24374.64, + "end": 24377.1, + "probability": 0.9878 + }, + { + "start": 24377.33, + "end": 24381.24, + "probability": 0.9934 + }, + { + "start": 24381.24, + "end": 24384.32, + "probability": 0.9919 + }, + { + "start": 24384.7, + "end": 24385.74, + "probability": 0.989 + }, + { + "start": 24385.92, + "end": 24387.8, + "probability": 0.9911 + }, + { + "start": 24388.22, + "end": 24390.26, + "probability": 0.9671 + }, + { + "start": 24390.9, + "end": 24390.9, + "probability": 0.6094 + }, + { + "start": 24394.36, + "end": 24395.46, + "probability": 0.9927 + }, + { + "start": 24395.54, + "end": 24398.06, + "probability": 0.9983 + }, + { + "start": 24398.52, + "end": 24399.58, + "probability": 0.7577 + }, + { + "start": 24400.02, + "end": 24403.08, + "probability": 0.963 + }, + { + "start": 24403.08, + "end": 24406.3, + "probability": 0.8384 + }, + { + "start": 24406.74, + "end": 24410.76, + "probability": 0.9968 + }, + { + "start": 24410.76, + "end": 24413.76, + "probability": 0.9999 + }, + { + "start": 24414.56, + "end": 24417.8, + "probability": 0.9984 + }, + { + "start": 24418.02, + "end": 24421.24, + "probability": 0.9963 + }, + { + "start": 24421.52, + "end": 24422.5, + "probability": 0.9584 + }, + { + "start": 24422.84, + "end": 24424.72, + "probability": 0.974 + }, + { + "start": 24425.6, + "end": 24426.02, + "probability": 0.5216 + }, + { + "start": 24426.66, + "end": 24429.04, + "probability": 0.9564 + }, + { + "start": 24429.82, + "end": 24430.92, + "probability": 0.6954 + }, + { + "start": 24431.06, + "end": 24434.12, + "probability": 0.9832 + }, + { + "start": 24434.16, + "end": 24435.2, + "probability": 0.8722 + }, + { + "start": 24435.9, + "end": 24439.38, + "probability": 0.9884 + }, + { + "start": 24439.82, + "end": 24441.96, + "probability": 0.9056 + }, + { + "start": 24442.0, + "end": 24443.1, + "probability": 0.9843 + }, + { + "start": 24443.16, + "end": 24443.7, + "probability": 0.5045 + }, + { + "start": 24444.32, + "end": 24447.42, + "probability": 0.9831 + }, + { + "start": 24447.48, + "end": 24449.44, + "probability": 0.9967 + }, + { + "start": 24449.74, + "end": 24450.62, + "probability": 0.6364 + }, + { + "start": 24451.02, + "end": 24455.35, + "probability": 0.9951 + }, + { + "start": 24455.74, + "end": 24458.3, + "probability": 0.8627 + }, + { + "start": 24458.78, + "end": 24459.7, + "probability": 0.6 + }, + { + "start": 24460.06, + "end": 24464.72, + "probability": 0.9654 + }, + { + "start": 24465.12, + "end": 24467.2, + "probability": 0.9946 + }, + { + "start": 24467.32, + "end": 24470.34, + "probability": 0.9874 + }, + { + "start": 24470.34, + "end": 24473.18, + "probability": 0.9951 + }, + { + "start": 24473.26, + "end": 24473.96, + "probability": 0.8604 + }, + { + "start": 24474.44, + "end": 24476.7, + "probability": 0.9711 + }, + { + "start": 24477.02, + "end": 24478.66, + "probability": 0.9258 + }, + { + "start": 24478.74, + "end": 24479.8, + "probability": 0.9671 + }, + { + "start": 24479.96, + "end": 24483.74, + "probability": 0.8129 + }, + { + "start": 24483.86, + "end": 24486.58, + "probability": 0.3132 + }, + { + "start": 24486.9, + "end": 24487.56, + "probability": 0.1026 + }, + { + "start": 24487.64, + "end": 24490.54, + "probability": 0.7013 + }, + { + "start": 24491.14, + "end": 24494.94, + "probability": 0.9812 + }, + { + "start": 24496.08, + "end": 24496.92, + "probability": 0.6624 + }, + { + "start": 24497.42, + "end": 24501.58, + "probability": 0.9842 + }, + { + "start": 24502.4, + "end": 24506.36, + "probability": 0.5242 + }, + { + "start": 24515.12, + "end": 24515.92, + "probability": 0.7426 + }, + { + "start": 24516.88, + "end": 24517.64, + "probability": 0.7688 + }, + { + "start": 24518.6, + "end": 24521.78, + "probability": 0.6569 + }, + { + "start": 24522.44, + "end": 24525.18, + "probability": 0.7653 + }, + { + "start": 24526.51, + "end": 24529.98, + "probability": 0.9464 + }, + { + "start": 24531.41, + "end": 24534.12, + "probability": 0.9561 + }, + { + "start": 24534.9, + "end": 24539.54, + "probability": 0.8994 + }, + { + "start": 24541.78, + "end": 24543.2, + "probability": 0.998 + }, + { + "start": 24543.46, + "end": 24543.96, + "probability": 0.4869 + }, + { + "start": 24544.2, + "end": 24548.2, + "probability": 0.9726 + }, + { + "start": 24548.2, + "end": 24550.96, + "probability": 0.6882 + }, + { + "start": 24551.0, + "end": 24551.74, + "probability": 0.3621 + }, + { + "start": 24552.22, + "end": 24555.64, + "probability": 0.4484 + }, + { + "start": 24555.66, + "end": 24556.32, + "probability": 0.6706 + }, + { + "start": 24556.38, + "end": 24557.68, + "probability": 0.7661 + }, + { + "start": 24558.4, + "end": 24558.5, + "probability": 0.0388 + }, + { + "start": 24559.42, + "end": 24559.56, + "probability": 0.0 + }, + { + "start": 24572.3, + "end": 24573.18, + "probability": 0.0656 + }, + { + "start": 24575.32, + "end": 24578.32, + "probability": 0.6049 + }, + { + "start": 24578.92, + "end": 24579.6, + "probability": 0.6607 + }, + { + "start": 24579.76, + "end": 24581.24, + "probability": 0.7221 + }, + { + "start": 24581.38, + "end": 24582.52, + "probability": 0.7988 + }, + { + "start": 24582.54, + "end": 24583.0, + "probability": 0.2665 + }, + { + "start": 24583.04, + "end": 24583.64, + "probability": 0.5738 + }, + { + "start": 24607.12, + "end": 24612.22, + "probability": 0.6929 + }, + { + "start": 24612.76, + "end": 24613.77, + "probability": 0.1764 + }, + { + "start": 24614.38, + "end": 24618.68, + "probability": 0.0593 + }, + { + "start": 24620.2, + "end": 24620.65, + "probability": 0.0424 + }, + { + "start": 24621.94, + "end": 24622.48, + "probability": 0.0908 + }, + { + "start": 24622.48, + "end": 24625.82, + "probability": 0.0165 + }, + { + "start": 24625.82, + "end": 24627.12, + "probability": 0.0121 + }, + { + "start": 24634.54, + "end": 24637.2, + "probability": 0.0331 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24674.0, + "end": 24674.0, + "probability": 0.0 + }, + { + "start": 24686.82, + "end": 24687.66, + "probability": 0.2695 + }, + { + "start": 24688.66, + "end": 24689.82, + "probability": 0.2641 + }, + { + "start": 24690.12, + "end": 24691.62, + "probability": 0.0764 + }, + { + "start": 24692.16, + "end": 24695.1, + "probability": 0.1017 + }, + { + "start": 24695.65, + "end": 24697.94, + "probability": 0.1457 + }, + { + "start": 24698.52, + "end": 24698.92, + "probability": 0.2188 + }, + { + "start": 24699.44, + "end": 24700.28, + "probability": 0.006 + }, + { + "start": 24700.28, + "end": 24701.24, + "probability": 0.1106 + }, + { + "start": 24701.49, + "end": 24701.56, + "probability": 0.0207 + }, + { + "start": 24701.56, + "end": 24701.56, + "probability": 0.0985 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24796.0, + "end": 24796.0, + "probability": 0.0 + }, + { + "start": 24797.55, + "end": 24797.9, + "probability": 0.0167 + }, + { + "start": 24797.9, + "end": 24798.48, + "probability": 0.0787 + }, + { + "start": 24798.5, + "end": 24799.9, + "probability": 0.0266 + }, + { + "start": 24800.03, + "end": 24807.7, + "probability": 0.0547 + }, + { + "start": 24807.7, + "end": 24808.64, + "probability": 0.2573 + }, + { + "start": 24808.66, + "end": 24809.36, + "probability": 0.0096 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.0, + "end": 24921.0, + "probability": 0.0 + }, + { + "start": 24921.08, + "end": 24923.58, + "probability": 0.0379 + }, + { + "start": 24923.78, + "end": 24924.46, + "probability": 0.0905 + }, + { + "start": 24924.6, + "end": 24925.4, + "probability": 0.2331 + }, + { + "start": 24925.92, + "end": 24926.36, + "probability": 0.6492 + }, + { + "start": 24928.68, + "end": 24928.98, + "probability": 0.2709 + }, + { + "start": 24928.98, + "end": 24928.98, + "probability": 0.0709 + }, + { + "start": 24928.98, + "end": 24928.98, + "probability": 0.1444 + }, + { + "start": 24928.98, + "end": 24930.22, + "probability": 0.8298 + }, + { + "start": 24931.1, + "end": 24935.36, + "probability": 0.9825 + }, + { + "start": 24935.8, + "end": 24936.57, + "probability": 0.9012 + }, + { + "start": 24936.76, + "end": 24937.78, + "probability": 0.7156 + }, + { + "start": 24937.94, + "end": 24938.7, + "probability": 0.9381 + }, + { + "start": 24938.84, + "end": 24940.08, + "probability": 0.9619 + }, + { + "start": 24940.7, + "end": 24944.5, + "probability": 0.9021 + }, + { + "start": 24944.7, + "end": 24948.72, + "probability": 0.9874 + }, + { + "start": 24948.88, + "end": 24953.18, + "probability": 0.9112 + }, + { + "start": 24953.8, + "end": 24956.88, + "probability": 0.9924 + }, + { + "start": 24957.0, + "end": 24957.22, + "probability": 0.4162 + }, + { + "start": 24957.26, + "end": 24961.62, + "probability": 0.9883 + }, + { + "start": 24961.96, + "end": 24963.22, + "probability": 0.9712 + }, + { + "start": 24963.3, + "end": 24964.5, + "probability": 0.9698 + }, + { + "start": 24964.84, + "end": 24965.86, + "probability": 0.9619 + }, + { + "start": 24966.32, + "end": 24968.08, + "probability": 0.9895 + }, + { + "start": 24968.18, + "end": 24973.34, + "probability": 0.9971 + }, + { + "start": 24973.84, + "end": 24976.06, + "probability": 0.9946 + }, + { + "start": 24976.6, + "end": 24978.06, + "probability": 0.8636 + }, + { + "start": 24978.66, + "end": 24981.22, + "probability": 0.992 + }, + { + "start": 24981.58, + "end": 24984.56, + "probability": 0.9961 + }, + { + "start": 24985.18, + "end": 24987.8, + "probability": 0.9526 + }, + { + "start": 24988.3, + "end": 24993.06, + "probability": 0.9966 + }, + { + "start": 24993.46, + "end": 24995.14, + "probability": 0.9917 + }, + { + "start": 24995.26, + "end": 24996.3, + "probability": 0.8796 + }, + { + "start": 24996.36, + "end": 24996.52, + "probability": 0.6777 + }, + { + "start": 24997.38, + "end": 24999.66, + "probability": 0.9976 + }, + { + "start": 25000.18, + "end": 25002.66, + "probability": 0.9996 + }, + { + "start": 25003.08, + "end": 25004.62, + "probability": 0.9927 + }, + { + "start": 25004.74, + "end": 25005.46, + "probability": 0.853 + }, + { + "start": 25006.82, + "end": 25007.04, + "probability": 0.0673 + }, + { + "start": 25007.04, + "end": 25007.04, + "probability": 0.1328 + }, + { + "start": 25007.04, + "end": 25010.84, + "probability": 0.8472 + }, + { + "start": 25011.22, + "end": 25012.68, + "probability": 0.6649 + }, + { + "start": 25015.04, + "end": 25022.42, + "probability": 0.9312 + }, + { + "start": 25022.9, + "end": 25025.34, + "probability": 0.458 + }, + { + "start": 25025.44, + "end": 25026.64, + "probability": 0.7988 + }, + { + "start": 25026.76, + "end": 25028.04, + "probability": 0.961 + }, + { + "start": 25029.62, + "end": 25034.32, + "probability": 0.8984 + }, + { + "start": 25036.71, + "end": 25039.84, + "probability": 0.6474 + }, + { + "start": 25039.86, + "end": 25040.76, + "probability": 0.7565 + }, + { + "start": 25041.54, + "end": 25042.68, + "probability": 0.7159 + }, + { + "start": 25042.8, + "end": 25044.64, + "probability": 0.9893 + }, + { + "start": 25045.1, + "end": 25046.98, + "probability": 0.9863 + }, + { + "start": 25047.04, + "end": 25049.48, + "probability": 0.6959 + }, + { + "start": 25049.62, + "end": 25050.51, + "probability": 0.7858 + }, + { + "start": 25051.18, + "end": 25054.26, + "probability": 0.9617 + }, + { + "start": 25054.68, + "end": 25056.96, + "probability": 0.9961 + }, + { + "start": 25057.12, + "end": 25057.6, + "probability": 0.5454 + }, + { + "start": 25057.7, + "end": 25058.28, + "probability": 0.9653 + }, + { + "start": 25058.64, + "end": 25059.6, + "probability": 0.8649 + }, + { + "start": 25059.68, + "end": 25062.32, + "probability": 0.9814 + }, + { + "start": 25062.72, + "end": 25065.62, + "probability": 0.9784 + }, + { + "start": 25065.88, + "end": 25068.9, + "probability": 0.9302 + }, + { + "start": 25068.96, + "end": 25070.62, + "probability": 0.9798 + }, + { + "start": 25070.86, + "end": 25074.13, + "probability": 0.9666 + }, + { + "start": 25074.62, + "end": 25075.6, + "probability": 0.9456 + }, + { + "start": 25075.8, + "end": 25078.11, + "probability": 0.9799 + }, + { + "start": 25078.36, + "end": 25079.1, + "probability": 0.968 + }, + { + "start": 25079.16, + "end": 25079.6, + "probability": 0.7454 + }, + { + "start": 25079.74, + "end": 25081.38, + "probability": 0.0587 + }, + { + "start": 25081.7, + "end": 25082.52, + "probability": 0.7625 + }, + { + "start": 25082.68, + "end": 25087.38, + "probability": 0.9689 + }, + { + "start": 25087.6, + "end": 25088.2, + "probability": 0.6057 + }, + { + "start": 25088.84, + "end": 25089.82, + "probability": 0.8073 + }, + { + "start": 25090.46, + "end": 25093.36, + "probability": 0.9495 + }, + { + "start": 25093.36, + "end": 25096.9, + "probability": 0.9478 + }, + { + "start": 25098.62, + "end": 25102.22, + "probability": 0.9814 + }, + { + "start": 25102.76, + "end": 25103.54, + "probability": 0.5287 + }, + { + "start": 25104.2, + "end": 25109.12, + "probability": 0.9595 + }, + { + "start": 25109.32, + "end": 25110.56, + "probability": 0.89 + }, + { + "start": 25111.26, + "end": 25113.44, + "probability": 0.9264 + }, + { + "start": 25114.02, + "end": 25116.02, + "probability": 0.9768 + }, + { + "start": 25117.22, + "end": 25120.18, + "probability": 0.8073 + }, + { + "start": 25120.38, + "end": 25121.08, + "probability": 0.8901 + }, + { + "start": 25121.48, + "end": 25122.68, + "probability": 0.5845 + }, + { + "start": 25122.74, + "end": 25123.32, + "probability": 0.6379 + }, + { + "start": 25123.38, + "end": 25124.33, + "probability": 0.8876 + }, + { + "start": 25125.04, + "end": 25126.46, + "probability": 0.5526 + }, + { + "start": 25126.72, + "end": 25127.74, + "probability": 0.4169 + }, + { + "start": 25127.94, + "end": 25129.24, + "probability": 0.8982 + }, + { + "start": 25129.28, + "end": 25133.08, + "probability": 0.9061 + }, + { + "start": 25133.14, + "end": 25133.8, + "probability": 0.8838 + }, + { + "start": 25134.02, + "end": 25135.68, + "probability": 0.9812 + }, + { + "start": 25136.22, + "end": 25137.26, + "probability": 0.1773 + }, + { + "start": 25140.46, + "end": 25148.45, + "probability": 0.2544 + }, + { + "start": 25149.12, + "end": 25152.79, + "probability": 0.3082 + }, + { + "start": 25153.94, + "end": 25154.24, + "probability": 0.1958 + }, + { + "start": 25154.48, + "end": 25156.24, + "probability": 0.9961 + }, + { + "start": 25156.38, + "end": 25158.3, + "probability": 0.8418 + }, + { + "start": 25158.42, + "end": 25162.7, + "probability": 0.682 + }, + { + "start": 25162.7, + "end": 25166.56, + "probability": 0.8741 + }, + { + "start": 25167.1, + "end": 25169.46, + "probability": 0.3468 + }, + { + "start": 25169.66, + "end": 25171.64, + "probability": 0.7266 + }, + { + "start": 25172.02, + "end": 25172.92, + "probability": 0.7522 + }, + { + "start": 25173.0, + "end": 25173.2, + "probability": 0.0027 + }, + { + "start": 25173.2, + "end": 25175.82, + "probability": 0.9573 + }, + { + "start": 25176.75, + "end": 25179.37, + "probability": 0.8492 + }, + { + "start": 25179.72, + "end": 25182.72, + "probability": 0.9888 + }, + { + "start": 25184.06, + "end": 25184.06, + "probability": 0.154 + }, + { + "start": 25184.06, + "end": 25188.84, + "probability": 0.9855 + }, + { + "start": 25188.88, + "end": 25189.36, + "probability": 0.4665 + }, + { + "start": 25191.26, + "end": 25193.32, + "probability": 0.4459 + }, + { + "start": 25194.26, + "end": 25194.98, + "probability": 0.5322 + }, + { + "start": 25195.7, + "end": 25197.12, + "probability": 0.9731 + }, + { + "start": 25197.64, + "end": 25198.6, + "probability": 0.9458 + }, + { + "start": 25199.16, + "end": 25201.5, + "probability": 0.9801 + }, + { + "start": 25201.58, + "end": 25202.4, + "probability": 0.5323 + }, + { + "start": 25202.6, + "end": 25204.32, + "probability": 0.8931 + }, + { + "start": 25204.8, + "end": 25206.48, + "probability": 0.6593 + }, + { + "start": 25206.6, + "end": 25208.02, + "probability": 0.9243 + }, + { + "start": 25208.46, + "end": 25209.45, + "probability": 0.9459 + }, + { + "start": 25210.22, + "end": 25211.72, + "probability": 0.9379 + }, + { + "start": 25212.04, + "end": 25215.82, + "probability": 0.6506 + }, + { + "start": 25216.14, + "end": 25218.42, + "probability": 0.75 + }, + { + "start": 25218.76, + "end": 25220.56, + "probability": 0.9474 + }, + { + "start": 25221.1, + "end": 25222.42, + "probability": 0.9466 + }, + { + "start": 25222.84, + "end": 25223.1, + "probability": 0.7698 + }, + { + "start": 25223.18, + "end": 25224.86, + "probability": 0.8325 + }, + { + "start": 25225.2, + "end": 25228.19, + "probability": 0.9844 + }, + { + "start": 25228.64, + "end": 25231.28, + "probability": 0.9907 + }, + { + "start": 25231.28, + "end": 25233.78, + "probability": 0.9954 + }, + { + "start": 25234.24, + "end": 25237.8, + "probability": 0.7578 + }, + { + "start": 25237.92, + "end": 25240.54, + "probability": 0.9874 + }, + { + "start": 25241.02, + "end": 25243.9, + "probability": 0.9907 + }, + { + "start": 25244.4, + "end": 25247.1, + "probability": 0.9983 + }, + { + "start": 25247.1, + "end": 25250.78, + "probability": 0.934 + }, + { + "start": 25250.84, + "end": 25251.16, + "probability": 0.4213 + }, + { + "start": 25251.8, + "end": 25253.08, + "probability": 0.6917 + }, + { + "start": 25253.26, + "end": 25255.83, + "probability": 0.9971 + }, + { + "start": 25256.64, + "end": 25259.08, + "probability": 0.6191 + }, + { + "start": 25259.5, + "end": 25260.78, + "probability": 0.921 + }, + { + "start": 25260.94, + "end": 25261.16, + "probability": 0.6664 + }, + { + "start": 25261.26, + "end": 25261.54, + "probability": 0.8777 + }, + { + "start": 25262.2, + "end": 25264.08, + "probability": 0.8764 + }, + { + "start": 25264.18, + "end": 25264.72, + "probability": 0.7479 + }, + { + "start": 25264.82, + "end": 25266.38, + "probability": 0.9316 + }, + { + "start": 25266.46, + "end": 25268.58, + "probability": 0.9874 + }, + { + "start": 25268.78, + "end": 25269.12, + "probability": 0.704 + }, + { + "start": 25269.54, + "end": 25271.62, + "probability": 0.9951 + }, + { + "start": 25271.74, + "end": 25273.58, + "probability": 0.9775 + }, + { + "start": 25274.48, + "end": 25276.74, + "probability": 0.9565 + }, + { + "start": 25277.3, + "end": 25279.02, + "probability": 0.8642 + }, + { + "start": 25282.62, + "end": 25284.08, + "probability": 0.6853 + }, + { + "start": 25284.2, + "end": 25286.43, + "probability": 0.8191 + }, + { + "start": 25286.74, + "end": 25288.16, + "probability": 0.8206 + }, + { + "start": 25290.07, + "end": 25292.94, + "probability": 0.9533 + }, + { + "start": 25293.54, + "end": 25296.04, + "probability": 0.9833 + }, + { + "start": 25296.92, + "end": 25298.94, + "probability": 0.9876 + }, + { + "start": 25299.78, + "end": 25300.64, + "probability": 0.621 + }, + { + "start": 25301.24, + "end": 25304.38, + "probability": 0.9981 + }, + { + "start": 25304.38, + "end": 25307.0, + "probability": 0.9949 + }, + { + "start": 25307.44, + "end": 25309.1, + "probability": 0.5833 + }, + { + "start": 25309.58, + "end": 25310.78, + "probability": 0.7658 + }, + { + "start": 25310.9, + "end": 25312.74, + "probability": 0.9396 + }, + { + "start": 25328.31, + "end": 25329.16, + "probability": 0.0016 + }, + { + "start": 25329.16, + "end": 25331.41, + "probability": 0.6935 + }, + { + "start": 25331.92, + "end": 25332.58, + "probability": 0.2443 + }, + { + "start": 25333.98, + "end": 25336.44, + "probability": 0.849 + }, + { + "start": 25336.48, + "end": 25337.63, + "probability": 0.623 + }, + { + "start": 25338.08, + "end": 25341.04, + "probability": 0.7562 + }, + { + "start": 25341.36, + "end": 25343.3, + "probability": 0.8907 + }, + { + "start": 25343.36, + "end": 25344.56, + "probability": 0.9439 + }, + { + "start": 25345.56, + "end": 25347.78, + "probability": 0.9932 + }, + { + "start": 25348.46, + "end": 25350.48, + "probability": 0.8719 + }, + { + "start": 25368.64, + "end": 25369.8, + "probability": 0.3928 + }, + { + "start": 25373.2, + "end": 25376.72, + "probability": 0.7691 + }, + { + "start": 25376.8, + "end": 25378.34, + "probability": 0.3254 + }, + { + "start": 25388.7, + "end": 25389.66, + "probability": 0.1747 + }, + { + "start": 25391.48, + "end": 25393.52, + "probability": 0.0433 + }, + { + "start": 25393.52, + "end": 25396.1, + "probability": 0.0897 + }, + { + "start": 25396.52, + "end": 25398.24, + "probability": 0.1428 + }, + { + "start": 25409.1, + "end": 25412.56, + "probability": 0.5477 + }, + { + "start": 25412.7, + "end": 25415.08, + "probability": 0.1784 + }, + { + "start": 25415.08, + "end": 25417.2, + "probability": 0.191 + }, + { + "start": 25423.94, + "end": 25425.22, + "probability": 0.0887 + }, + { + "start": 25426.44, + "end": 25427.93, + "probability": 0.2332 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.0, + "end": 25445.0, + "probability": 0.0 + }, + { + "start": 25445.27, + "end": 25449.12, + "probability": 0.0242 + }, + { + "start": 25449.12, + "end": 25449.12, + "probability": 0.0864 + }, + { + "start": 25449.12, + "end": 25449.51, + "probability": 0.2185 + }, + { + "start": 25451.77, + "end": 25454.81, + "probability": 0.309 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25573.0, + "end": 25573.0, + "probability": 0.0 + }, + { + "start": 25585.78, + "end": 25588.84, + "probability": 0.1285 + }, + { + "start": 25588.88, + "end": 25590.9, + "probability": 0.1125 + }, + { + "start": 25590.99, + "end": 25591.2, + "probability": 0.0258 + }, + { + "start": 25591.47, + "end": 25592.1, + "probability": 0.0252 + }, + { + "start": 25592.58, + "end": 25593.72, + "probability": 0.0356 + }, + { + "start": 25594.22, + "end": 25594.46, + "probability": 0.0108 + }, + { + "start": 25615.2, + "end": 25615.58, + "probability": 0.0595 + }, + { + "start": 25616.24, + "end": 25618.78, + "probability": 0.0535 + }, + { + "start": 25618.78, + "end": 25619.2, + "probability": 0.0736 + }, + { + "start": 25619.7, + "end": 25623.1, + "probability": 0.0578 + }, + { + "start": 25624.83, + "end": 25627.44, + "probability": 0.0442 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25710.0, + "end": 25710.0, + "probability": 0.0 + }, + { + "start": 25711.12, + "end": 25711.78, + "probability": 0.3768 + }, + { + "start": 25712.34, + "end": 25713.72, + "probability": 0.0178 + }, + { + "start": 25716.06, + "end": 25717.16, + "probability": 0.2134 + }, + { + "start": 25720.04, + "end": 25720.18, + "probability": 0.0649 + }, + { + "start": 25720.18, + "end": 25721.52, + "probability": 0.1063 + }, + { + "start": 25722.08, + "end": 25722.38, + "probability": 0.674 + }, + { + "start": 25727.96, + "end": 25728.52, + "probability": 0.0132 + }, + { + "start": 25728.52, + "end": 25729.84, + "probability": 0.0461 + }, + { + "start": 25729.84, + "end": 25730.7, + "probability": 0.3468 + }, + { + "start": 25730.99, + "end": 25734.22, + "probability": 0.033 + }, + { + "start": 25734.22, + "end": 25738.74, + "probability": 0.435 + }, + { + "start": 25739.02, + "end": 25739.12, + "probability": 0.8962 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25832.0, + "end": 25832.0, + "probability": 0.0 + }, + { + "start": 25837.72, + "end": 25839.69, + "probability": 0.5842 + }, + { + "start": 25840.68, + "end": 25843.18, + "probability": 0.9682 + }, + { + "start": 25843.28, + "end": 25845.14, + "probability": 0.9979 + }, + { + "start": 25845.66, + "end": 25847.66, + "probability": 0.9498 + }, + { + "start": 25847.8, + "end": 25849.08, + "probability": 0.967 + }, + { + "start": 25849.54, + "end": 25852.12, + "probability": 0.8499 + }, + { + "start": 25852.4, + "end": 25855.22, + "probability": 0.994 + }, + { + "start": 25856.0, + "end": 25861.22, + "probability": 0.9517 + }, + { + "start": 25861.76, + "end": 25865.24, + "probability": 0.7445 + }, + { + "start": 25865.66, + "end": 25868.24, + "probability": 0.9824 + }, + { + "start": 25868.64, + "end": 25874.02, + "probability": 0.997 + }, + { + "start": 25874.46, + "end": 25876.94, + "probability": 0.9872 + }, + { + "start": 25877.48, + "end": 25881.3, + "probability": 0.9614 + }, + { + "start": 25881.7, + "end": 25882.92, + "probability": 0.8558 + }, + { + "start": 25883.32, + "end": 25884.12, + "probability": 0.9047 + }, + { + "start": 25884.62, + "end": 25887.72, + "probability": 0.9483 + }, + { + "start": 25887.92, + "end": 25889.34, + "probability": 0.9498 + }, + { + "start": 25889.7, + "end": 25893.38, + "probability": 0.9416 + }, + { + "start": 25894.48, + "end": 25898.6, + "probability": 0.8156 + }, + { + "start": 25898.96, + "end": 25899.84, + "probability": 0.8229 + }, + { + "start": 25900.18, + "end": 25900.62, + "probability": 0.9233 + }, + { + "start": 25900.7, + "end": 25901.4, + "probability": 0.7848 + }, + { + "start": 25902.3, + "end": 25907.04, + "probability": 0.7514 + }, + { + "start": 25907.62, + "end": 25911.74, + "probability": 0.9072 + }, + { + "start": 25913.14, + "end": 25916.56, + "probability": 0.9269 + }, + { + "start": 25917.16, + "end": 25918.22, + "probability": 0.9507 + }, + { + "start": 25919.54, + "end": 25922.9, + "probability": 0.979 + }, + { + "start": 25922.9, + "end": 25926.83, + "probability": 0.9971 + }, + { + "start": 25928.3, + "end": 25929.88, + "probability": 0.9972 + }, + { + "start": 25930.02, + "end": 25931.78, + "probability": 0.9477 + }, + { + "start": 25932.48, + "end": 25933.98, + "probability": 0.9644 + }, + { + "start": 25934.5, + "end": 25938.2, + "probability": 0.979 + }, + { + "start": 25938.2, + "end": 25942.1, + "probability": 0.9966 + }, + { + "start": 25943.0, + "end": 25946.82, + "probability": 0.9937 + }, + { + "start": 25947.42, + "end": 25948.6, + "probability": 0.5751 + }, + { + "start": 25949.2, + "end": 25950.26, + "probability": 0.9535 + }, + { + "start": 25950.9, + "end": 25952.42, + "probability": 0.9525 + }, + { + "start": 25953.94, + "end": 25955.24, + "probability": 0.9036 + }, + { + "start": 25955.76, + "end": 25959.42, + "probability": 0.9605 + }, + { + "start": 25960.74, + "end": 25961.02, + "probability": 0.6687 + }, + { + "start": 25961.48, + "end": 25962.28, + "probability": 0.9093 + }, + { + "start": 25962.38, + "end": 25963.1, + "probability": 0.6979 + }, + { + "start": 25963.54, + "end": 25967.78, + "probability": 0.9814 + }, + { + "start": 25968.58, + "end": 25974.6, + "probability": 0.9429 + }, + { + "start": 25975.32, + "end": 25976.78, + "probability": 0.741 + }, + { + "start": 25977.42, + "end": 25978.44, + "probability": 0.761 + }, + { + "start": 25978.54, + "end": 25979.78, + "probability": 0.8462 + }, + { + "start": 25979.88, + "end": 25980.86, + "probability": 0.8258 + }, + { + "start": 25981.02, + "end": 25981.76, + "probability": 0.7299 + }, + { + "start": 25981.88, + "end": 25982.58, + "probability": 0.945 + }, + { + "start": 25982.96, + "end": 25984.94, + "probability": 0.6805 + }, + { + "start": 25985.5, + "end": 25991.88, + "probability": 0.9897 + }, + { + "start": 25992.58, + "end": 25993.54, + "probability": 0.7401 + }, + { + "start": 25993.68, + "end": 25995.84, + "probability": 0.9744 + }, + { + "start": 25996.02, + "end": 25997.02, + "probability": 0.8914 + }, + { + "start": 25997.42, + "end": 26000.0, + "probability": 0.9431 + }, + { + "start": 26000.06, + "end": 26001.4, + "probability": 0.6678 + }, + { + "start": 26001.48, + "end": 26004.22, + "probability": 0.9283 + }, + { + "start": 26004.6, + "end": 26006.26, + "probability": 0.8424 + }, + { + "start": 26006.28, + "end": 26008.6, + "probability": 0.9489 + }, + { + "start": 26009.12, + "end": 26012.2, + "probability": 0.8501 + }, + { + "start": 26012.76, + "end": 26016.6, + "probability": 0.9748 + }, + { + "start": 26017.2, + "end": 26020.06, + "probability": 0.989 + }, + { + "start": 26020.12, + "end": 26022.64, + "probability": 0.7367 + }, + { + "start": 26023.08, + "end": 26025.74, + "probability": 0.6636 + }, + { + "start": 26026.54, + "end": 26029.72, + "probability": 0.9932 + }, + { + "start": 26031.2, + "end": 26033.58, + "probability": 0.7961 + }, + { + "start": 26034.64, + "end": 26036.9, + "probability": 0.9709 + }, + { + "start": 26038.02, + "end": 26038.74, + "probability": 0.7892 + }, + { + "start": 26039.36, + "end": 26042.5, + "probability": 0.7977 + }, + { + "start": 26044.38, + "end": 26045.98, + "probability": 0.9339 + }, + { + "start": 26046.66, + "end": 26047.9, + "probability": 0.6026 + }, + { + "start": 26048.42, + "end": 26052.4, + "probability": 0.9732 + }, + { + "start": 26053.16, + "end": 26056.32, + "probability": 0.98 + }, + { + "start": 26056.72, + "end": 26057.42, + "probability": 0.6989 + }, + { + "start": 26057.52, + "end": 26057.88, + "probability": 0.8817 + }, + { + "start": 26058.04, + "end": 26060.3, + "probability": 0.9626 + }, + { + "start": 26060.86, + "end": 26062.02, + "probability": 0.6563 + }, + { + "start": 26062.62, + "end": 26067.26, + "probability": 0.9917 + }, + { + "start": 26067.26, + "end": 26070.7, + "probability": 0.9091 + }, + { + "start": 26071.86, + "end": 26073.88, + "probability": 0.7603 + }, + { + "start": 26076.62, + "end": 26078.02, + "probability": 0.6986 + }, + { + "start": 26078.24, + "end": 26080.22, + "probability": 0.9865 + }, + { + "start": 26080.22, + "end": 26083.32, + "probability": 0.5181 + }, + { + "start": 26083.32, + "end": 26084.62, + "probability": 0.4616 + }, + { + "start": 26085.1, + "end": 26086.68, + "probability": 0.8175 + }, + { + "start": 26087.24, + "end": 26089.0, + "probability": 0.9802 + }, + { + "start": 26089.0, + "end": 26091.44, + "probability": 0.8751 + }, + { + "start": 26100.1, + "end": 26101.6, + "probability": 0.3696 + }, + { + "start": 26101.94, + "end": 26102.42, + "probability": 0.6645 + }, + { + "start": 26103.6, + "end": 26107.15, + "probability": 0.98 + }, + { + "start": 26107.62, + "end": 26110.66, + "probability": 0.6208 + }, + { + "start": 26111.68, + "end": 26113.12, + "probability": 0.9539 + }, + { + "start": 26113.64, + "end": 26114.54, + "probability": 0.9039 + }, + { + "start": 26115.36, + "end": 26118.1, + "probability": 0.5913 + }, + { + "start": 26120.0, + "end": 26124.2, + "probability": 0.9832 + }, + { + "start": 26124.51, + "end": 26129.98, + "probability": 0.9917 + }, + { + "start": 26130.78, + "end": 26134.94, + "probability": 0.9744 + }, + { + "start": 26134.94, + "end": 26138.24, + "probability": 0.9894 + }, + { + "start": 26138.48, + "end": 26140.62, + "probability": 0.7828 + }, + { + "start": 26141.66, + "end": 26145.04, + "probability": 0.9545 + }, + { + "start": 26146.84, + "end": 26150.82, + "probability": 0.9984 + }, + { + "start": 26150.82, + "end": 26152.9, + "probability": 0.9779 + }, + { + "start": 26152.96, + "end": 26156.42, + "probability": 0.9971 + }, + { + "start": 26156.48, + "end": 26157.46, + "probability": 0.9855 + }, + { + "start": 26158.34, + "end": 26160.74, + "probability": 0.9952 + }, + { + "start": 26160.74, + "end": 26163.66, + "probability": 0.9943 + }, + { + "start": 26165.13, + "end": 26171.3, + "probability": 0.972 + }, + { + "start": 26171.38, + "end": 26172.6, + "probability": 0.9288 + }, + { + "start": 26173.42, + "end": 26175.76, + "probability": 0.9887 + }, + { + "start": 26175.76, + "end": 26179.04, + "probability": 0.9805 + }, + { + "start": 26179.12, + "end": 26184.14, + "probability": 0.9846 + }, + { + "start": 26184.74, + "end": 26186.04, + "probability": 0.752 + }, + { + "start": 26186.1, + "end": 26188.78, + "probability": 0.9803 + }, + { + "start": 26189.32, + "end": 26192.62, + "probability": 0.9685 + }, + { + "start": 26193.22, + "end": 26196.54, + "probability": 0.8326 + }, + { + "start": 26197.26, + "end": 26199.9, + "probability": 0.942 + }, + { + "start": 26200.24, + "end": 26201.4, + "probability": 0.8413 + }, + { + "start": 26201.76, + "end": 26203.08, + "probability": 0.9349 + }, + { + "start": 26203.32, + "end": 26203.54, + "probability": 0.8805 + }, + { + "start": 26208.3, + "end": 26210.15, + "probability": 0.8028 + }, + { + "start": 26212.02, + "end": 26213.06, + "probability": 0.856 + }, + { + "start": 26213.94, + "end": 26215.58, + "probability": 0.9185 + }, + { + "start": 26216.16, + "end": 26218.06, + "probability": 0.9849 + }, + { + "start": 26218.64, + "end": 26221.43, + "probability": 0.9714 + }, + { + "start": 26221.98, + "end": 26222.1, + "probability": 0.6543 + }, + { + "start": 26222.46, + "end": 26223.72, + "probability": 0.2768 + }, + { + "start": 26224.62, + "end": 26226.14, + "probability": 0.9882 + }, + { + "start": 26228.39, + "end": 26229.32, + "probability": 0.6321 + }, + { + "start": 26229.32, + "end": 26229.32, + "probability": 0.7422 + }, + { + "start": 26229.32, + "end": 26230.64, + "probability": 0.9067 + }, + { + "start": 26231.48, + "end": 26232.82, + "probability": 0.8114 + }, + { + "start": 26233.3, + "end": 26233.98, + "probability": 0.7119 + }, + { + "start": 26234.34, + "end": 26235.68, + "probability": 0.9394 + }, + { + "start": 26236.48, + "end": 26239.56, + "probability": 0.981 + }, + { + "start": 26243.14, + "end": 26246.14, + "probability": 0.9301 + }, + { + "start": 26246.3, + "end": 26248.42, + "probability": 0.6861 + }, + { + "start": 26248.54, + "end": 26250.42, + "probability": 0.9839 + }, + { + "start": 26251.02, + "end": 26254.66, + "probability": 0.6339 + }, + { + "start": 26254.66, + "end": 26257.7, + "probability": 0.4994 + }, + { + "start": 26257.82, + "end": 26259.88, + "probability": 0.8711 + }, + { + "start": 26266.88, + "end": 26266.88, + "probability": 0.0292 + }, + { + "start": 26266.88, + "end": 26266.9, + "probability": 0.0417 + }, + { + "start": 26266.9, + "end": 26266.94, + "probability": 0.2088 + }, + { + "start": 26283.3, + "end": 26284.48, + "probability": 0.4259 + }, + { + "start": 26284.64, + "end": 26287.32, + "probability": 0.9718 + }, + { + "start": 26288.0, + "end": 26289.76, + "probability": 0.8123 + }, + { + "start": 26291.44, + "end": 26295.12, + "probability": 0.1001 + }, + { + "start": 26295.12, + "end": 26295.38, + "probability": 0.0275 + }, + { + "start": 26295.38, + "end": 26295.44, + "probability": 0.0888 + }, + { + "start": 26307.0, + "end": 26311.5, + "probability": 0.881 + }, + { + "start": 26311.92, + "end": 26314.08, + "probability": 0.9964 + }, + { + "start": 26314.78, + "end": 26320.08, + "probability": 0.6525 + }, + { + "start": 26320.16, + "end": 26321.64, + "probability": 0.4633 + }, + { + "start": 26321.94, + "end": 26323.66, + "probability": 0.8323 + }, + { + "start": 26323.76, + "end": 26326.24, + "probability": 0.9908 + }, + { + "start": 26327.46, + "end": 26331.74, + "probability": 0.5994 + }, + { + "start": 26331.98, + "end": 26332.56, + "probability": 0.2572 + }, + { + "start": 26334.1, + "end": 26335.9, + "probability": 0.7867 + }, + { + "start": 26336.36, + "end": 26341.02, + "probability": 0.9383 + }, + { + "start": 26350.32, + "end": 26351.24, + "probability": 0.5663 + }, + { + "start": 26352.32, + "end": 26354.56, + "probability": 0.7755 + }, + { + "start": 26355.98, + "end": 26359.92, + "probability": 0.995 + }, + { + "start": 26359.92, + "end": 26365.44, + "probability": 0.9602 + }, + { + "start": 26366.62, + "end": 26368.36, + "probability": 0.833 + }, + { + "start": 26369.1, + "end": 26371.43, + "probability": 0.9215 + }, + { + "start": 26372.18, + "end": 26376.08, + "probability": 0.978 + }, + { + "start": 26377.12, + "end": 26377.76, + "probability": 0.5099 + }, + { + "start": 26379.42, + "end": 26383.48, + "probability": 0.993 + }, + { + "start": 26384.06, + "end": 26385.54, + "probability": 0.9027 + }, + { + "start": 26386.54, + "end": 26388.28, + "probability": 0.6431 + }, + { + "start": 26389.32, + "end": 26390.44, + "probability": 0.8597 + }, + { + "start": 26390.64, + "end": 26393.6, + "probability": 0.9439 + }, + { + "start": 26393.72, + "end": 26394.02, + "probability": 0.8218 + }, + { + "start": 26394.58, + "end": 26396.9, + "probability": 0.9581 + }, + { + "start": 26398.18, + "end": 26402.25, + "probability": 0.9629 + }, + { + "start": 26404.7, + "end": 26407.76, + "probability": 0.9959 + }, + { + "start": 26408.38, + "end": 26408.92, + "probability": 0.5844 + }, + { + "start": 26409.68, + "end": 26413.56, + "probability": 0.8719 + }, + { + "start": 26414.42, + "end": 26418.0, + "probability": 0.9972 + }, + { + "start": 26418.68, + "end": 26419.0, + "probability": 0.9065 + }, + { + "start": 26419.06, + "end": 26421.06, + "probability": 0.8597 + }, + { + "start": 26421.52, + "end": 26422.58, + "probability": 0.8762 + }, + { + "start": 26422.72, + "end": 26424.57, + "probability": 0.8569 + }, + { + "start": 26425.26, + "end": 26426.7, + "probability": 0.9849 + }, + { + "start": 26427.22, + "end": 26428.7, + "probability": 0.8546 + }, + { + "start": 26429.26, + "end": 26432.38, + "probability": 0.9514 + }, + { + "start": 26433.48, + "end": 26436.22, + "probability": 0.9863 + }, + { + "start": 26436.98, + "end": 26438.86, + "probability": 0.9661 + }, + { + "start": 26439.94, + "end": 26443.04, + "probability": 0.9962 + }, + { + "start": 26443.04, + "end": 26447.02, + "probability": 0.9733 + }, + { + "start": 26447.08, + "end": 26448.98, + "probability": 0.7309 + }, + { + "start": 26449.54, + "end": 26455.26, + "probability": 0.9941 + }, + { + "start": 26456.36, + "end": 26458.35, + "probability": 0.983 + }, + { + "start": 26459.52, + "end": 26460.54, + "probability": 0.6003 + }, + { + "start": 26460.58, + "end": 26461.48, + "probability": 0.8324 + }, + { + "start": 26461.62, + "end": 26463.14, + "probability": 0.8325 + }, + { + "start": 26463.92, + "end": 26465.5, + "probability": 0.9702 + }, + { + "start": 26466.14, + "end": 26470.44, + "probability": 0.9938 + }, + { + "start": 26470.44, + "end": 26474.8, + "probability": 0.9967 + }, + { + "start": 26475.78, + "end": 26476.5, + "probability": 0.7607 + }, + { + "start": 26477.08, + "end": 26478.06, + "probability": 0.8871 + }, + { + "start": 26478.14, + "end": 26479.36, + "probability": 0.8005 + }, + { + "start": 26479.78, + "end": 26480.78, + "probability": 0.9851 + }, + { + "start": 26482.14, + "end": 26488.82, + "probability": 0.999 + }, + { + "start": 26489.7, + "end": 26492.5, + "probability": 0.999 + }, + { + "start": 26493.3, + "end": 26494.84, + "probability": 0.8948 + }, + { + "start": 26495.28, + "end": 26498.76, + "probability": 0.9885 + }, + { + "start": 26499.4, + "end": 26500.86, + "probability": 0.985 + }, + { + "start": 26501.58, + "end": 26502.94, + "probability": 0.9471 + }, + { + "start": 26503.18, + "end": 26504.58, + "probability": 0.9971 + }, + { + "start": 26504.96, + "end": 26506.56, + "probability": 0.919 + }, + { + "start": 26506.92, + "end": 26509.82, + "probability": 0.6133 + }, + { + "start": 26512.36, + "end": 26514.7, + "probability": 0.7185 + }, + { + "start": 26515.66, + "end": 26515.96, + "probability": 0.2216 + }, + { + "start": 26516.04, + "end": 26520.66, + "probability": 0.9375 + }, + { + "start": 26522.64, + "end": 26524.28, + "probability": 0.8712 + }, + { + "start": 26524.34, + "end": 26526.3, + "probability": 0.428 + }, + { + "start": 26526.62, + "end": 26529.4, + "probability": 0.8304 + }, + { + "start": 26530.52, + "end": 26532.92, + "probability": 0.9367 + }, + { + "start": 26533.02, + "end": 26533.4, + "probability": 0.4023 + }, + { + "start": 26533.44, + "end": 26534.84, + "probability": 0.5997 + }, + { + "start": 26534.86, + "end": 26537.32, + "probability": 0.7425 + }, + { + "start": 26538.04, + "end": 26538.7, + "probability": 0.8817 + }, + { + "start": 26539.3, + "end": 26541.82, + "probability": 0.8162 + }, + { + "start": 26541.94, + "end": 26545.74, + "probability": 0.9663 + }, + { + "start": 26545.94, + "end": 26546.56, + "probability": 0.7564 + }, + { + "start": 26546.72, + "end": 26547.22, + "probability": 0.7683 + }, + { + "start": 26547.78, + "end": 26551.18, + "probability": 0.8309 + }, + { + "start": 26551.68, + "end": 26553.39, + "probability": 0.9744 + }, + { + "start": 26553.92, + "end": 26555.3, + "probability": 0.9036 + }, + { + "start": 26556.1, + "end": 26558.4, + "probability": 0.7552 + }, + { + "start": 26558.76, + "end": 26559.32, + "probability": 0.6083 + }, + { + "start": 26559.4, + "end": 26560.34, + "probability": 0.9065 + }, + { + "start": 26560.62, + "end": 26561.4, + "probability": 0.953 + }, + { + "start": 26561.4, + "end": 26562.22, + "probability": 0.9492 + }, + { + "start": 26562.42, + "end": 26563.22, + "probability": 0.9137 + }, + { + "start": 26563.64, + "end": 26564.48, + "probability": 0.7813 + }, + { + "start": 26564.92, + "end": 26565.98, + "probability": 0.5854 + }, + { + "start": 26570.48, + "end": 26571.92, + "probability": 0.5559 + }, + { + "start": 26571.98, + "end": 26573.7, + "probability": 0.922 + }, + { + "start": 26574.08, + "end": 26576.38, + "probability": 0.9871 + }, + { + "start": 26577.68, + "end": 26578.8, + "probability": 0.9384 + }, + { + "start": 26579.38, + "end": 26579.9, + "probability": 0.6478 + }, + { + "start": 26580.62, + "end": 26585.01, + "probability": 0.9899 + }, + { + "start": 26586.86, + "end": 26588.54, + "probability": 0.4333 + }, + { + "start": 26588.98, + "end": 26589.7, + "probability": 0.6721 + }, + { + "start": 26589.74, + "end": 26590.64, + "probability": 0.8177 + }, + { + "start": 26592.36, + "end": 26593.68, + "probability": 0.0025 + }, + { + "start": 26607.46, + "end": 26607.78, + "probability": 0.0218 + }, + { + "start": 26607.78, + "end": 26610.86, + "probability": 0.668 + }, + { + "start": 26611.54, + "end": 26612.86, + "probability": 0.9028 + }, + { + "start": 26613.06, + "end": 26614.55, + "probability": 0.9941 + }, + { + "start": 26615.34, + "end": 26617.47, + "probability": 0.9954 + }, + { + "start": 26617.54, + "end": 26619.12, + "probability": 0.9036 + }, + { + "start": 26620.44, + "end": 26621.86, + "probability": 0.0637 + }, + { + "start": 26636.36, + "end": 26636.82, + "probability": 0.2123 + }, + { + "start": 26636.82, + "end": 26639.36, + "probability": 0.8567 + }, + { + "start": 26639.76, + "end": 26642.21, + "probability": 0.7772 + }, + { + "start": 26642.84, + "end": 26644.24, + "probability": 0.8036 + }, + { + "start": 26644.44, + "end": 26646.66, + "probability": 0.9769 + }, + { + "start": 26647.02, + "end": 26649.4, + "probability": 0.9995 + }, + { + "start": 26649.88, + "end": 26651.14, + "probability": 0.9682 + }, + { + "start": 26651.26, + "end": 26651.96, + "probability": 0.9524 + }, + { + "start": 26652.08, + "end": 26653.0, + "probability": 0.9399 + }, + { + "start": 26663.24, + "end": 26663.24, + "probability": 0.9355 + }, + { + "start": 26663.24, + "end": 26663.64, + "probability": 0.5732 + }, + { + "start": 26664.58, + "end": 26666.08, + "probability": 0.9478 + }, + { + "start": 26667.12, + "end": 26669.44, + "probability": 0.0947 + }, + { + "start": 26669.44, + "end": 26670.28, + "probability": 0.369 + }, + { + "start": 26678.42, + "end": 26679.14, + "probability": 0.0042 + }, + { + "start": 26690.34, + "end": 26694.52, + "probability": 0.763 + }, + { + "start": 26696.0, + "end": 26697.66, + "probability": 0.7188 + }, + { + "start": 26697.76, + "end": 26703.4, + "probability": 0.8674 + }, + { + "start": 26704.2, + "end": 26706.06, + "probability": 0.9978 + }, + { + "start": 26707.04, + "end": 26709.56, + "probability": 0.7559 + }, + { + "start": 26709.64, + "end": 26711.54, + "probability": 0.9653 + }, + { + "start": 26711.63, + "end": 26716.04, + "probability": 0.6896 + }, + { + "start": 26718.98, + "end": 26719.52, + "probability": 0.9049 + }, + { + "start": 26719.98, + "end": 26723.62, + "probability": 0.4673 + }, + { + "start": 26724.74, + "end": 26727.88, + "probability": 0.9879 + }, + { + "start": 26728.66, + "end": 26729.6, + "probability": 0.8632 + }, + { + "start": 26730.6, + "end": 26732.22, + "probability": 0.6756 + }, + { + "start": 26732.36, + "end": 26734.46, + "probability": 0.7427 + }, + { + "start": 26736.16, + "end": 26739.76, + "probability": 0.8817 + }, + { + "start": 26740.46, + "end": 26741.36, + "probability": 0.6217 + }, + { + "start": 26741.66, + "end": 26742.64, + "probability": 0.753 + }, + { + "start": 26742.66, + "end": 26744.98, + "probability": 0.8161 + }, + { + "start": 26745.3, + "end": 26745.46, + "probability": 0.7324 + }, + { + "start": 26746.22, + "end": 26747.38, + "probability": 0.752 + }, + { + "start": 26747.44, + "end": 26751.02, + "probability": 0.99 + }, + { + "start": 26751.08, + "end": 26752.04, + "probability": 0.9738 + }, + { + "start": 26752.78, + "end": 26755.12, + "probability": 0.0311 + }, + { + "start": 26755.88, + "end": 26760.38, + "probability": 0.9233 + }, + { + "start": 26760.6, + "end": 26762.52, + "probability": 0.6448 + }, + { + "start": 26762.78, + "end": 26763.89, + "probability": 0.8082 + }, + { + "start": 26764.42, + "end": 26767.7, + "probability": 0.9937 + }, + { + "start": 26767.7, + "end": 26770.7, + "probability": 0.9794 + }, + { + "start": 26770.84, + "end": 26774.52, + "probability": 0.9867 + }, + { + "start": 26776.04, + "end": 26777.52, + "probability": 0.7403 + }, + { + "start": 26778.04, + "end": 26779.4, + "probability": 0.7579 + }, + { + "start": 26780.02, + "end": 26783.3, + "probability": 0.9932 + }, + { + "start": 26783.94, + "end": 26784.86, + "probability": 0.6736 + }, + { + "start": 26785.5, + "end": 26786.72, + "probability": 0.9819 + }, + { + "start": 26787.12, + "end": 26788.42, + "probability": 0.9951 + }, + { + "start": 26788.8, + "end": 26789.68, + "probability": 0.9486 + }, + { + "start": 26790.34, + "end": 26793.08, + "probability": 0.9889 + }, + { + "start": 26793.7, + "end": 26796.58, + "probability": 0.9863 + }, + { + "start": 26796.68, + "end": 26798.92, + "probability": 0.2649 + }, + { + "start": 26799.02, + "end": 26800.34, + "probability": 0.5431 + }, + { + "start": 26800.52, + "end": 26802.56, + "probability": 0.8315 + }, + { + "start": 26802.66, + "end": 26805.14, + "probability": 0.9749 + }, + { + "start": 26805.24, + "end": 26807.24, + "probability": 0.7013 + }, + { + "start": 26807.62, + "end": 26808.06, + "probability": 0.8438 + }, + { + "start": 26810.36, + "end": 26811.44, + "probability": 0.6388 + }, + { + "start": 26811.8, + "end": 26812.52, + "probability": 0.9114 + }, + { + "start": 26813.02, + "end": 26814.36, + "probability": 0.8613 + }, + { + "start": 26815.14, + "end": 26819.26, + "probability": 0.9429 + }, + { + "start": 26819.82, + "end": 26822.48, + "probability": 0.842 + }, + { + "start": 26822.58, + "end": 26826.7, + "probability": 0.968 + }, + { + "start": 26827.38, + "end": 26828.76, + "probability": 0.9628 + }, + { + "start": 26828.9, + "end": 26832.56, + "probability": 0.9744 + }, + { + "start": 26832.66, + "end": 26835.32, + "probability": 0.8657 + }, + { + "start": 26836.28, + "end": 26840.16, + "probability": 0.9573 + }, + { + "start": 26840.92, + "end": 26841.92, + "probability": 0.3949 + }, + { + "start": 26842.48, + "end": 26844.72, + "probability": 0.7844 + }, + { + "start": 26845.24, + "end": 26846.58, + "probability": 0.8215 + }, + { + "start": 26847.12, + "end": 26850.62, + "probability": 0.9932 + }, + { + "start": 26851.0, + "end": 26851.74, + "probability": 0.9834 + }, + { + "start": 26852.5, + "end": 26855.74, + "probability": 0.5496 + }, + { + "start": 26855.9, + "end": 26856.52, + "probability": 0.4325 + }, + { + "start": 26857.18, + "end": 26857.78, + "probability": 0.4584 + }, + { + "start": 26858.56, + "end": 26865.02, + "probability": 0.7136 + }, + { + "start": 26865.02, + "end": 26869.02, + "probability": 0.9924 + }, + { + "start": 26869.08, + "end": 26874.44, + "probability": 0.9129 + }, + { + "start": 26875.78, + "end": 26878.72, + "probability": 0.6662 + }, + { + "start": 26879.58, + "end": 26881.4, + "probability": 0.9792 + }, + { + "start": 26882.14, + "end": 26883.78, + "probability": 0.9849 + }, + { + "start": 26884.36, + "end": 26885.24, + "probability": 0.7246 + }, + { + "start": 26886.04, + "end": 26887.5, + "probability": 0.9988 + }, + { + "start": 26888.56, + "end": 26892.62, + "probability": 0.9803 + }, + { + "start": 26894.86, + "end": 26898.3, + "probability": 0.998 + }, + { + "start": 26898.5, + "end": 26898.72, + "probability": 0.5081 + }, + { + "start": 26899.54, + "end": 26903.6, + "probability": 0.9089 + }, + { + "start": 26905.34, + "end": 26909.56, + "probability": 0.981 + }, + { + "start": 26909.66, + "end": 26912.48, + "probability": 0.9741 + }, + { + "start": 26912.96, + "end": 26915.66, + "probability": 0.9617 + }, + { + "start": 26917.2, + "end": 26919.12, + "probability": 0.305 + }, + { + "start": 26919.54, + "end": 26923.02, + "probability": 0.0349 + }, + { + "start": 26923.54, + "end": 26926.18, + "probability": 0.6143 + }, + { + "start": 26927.12, + "end": 26930.54, + "probability": 0.8105 + }, + { + "start": 26931.18, + "end": 26933.52, + "probability": 0.7696 + }, + { + "start": 26935.22, + "end": 26938.08, + "probability": 0.8764 + }, + { + "start": 26938.28, + "end": 26939.81, + "probability": 0.6546 + }, + { + "start": 26940.46, + "end": 26940.88, + "probability": 0.8099 + }, + { + "start": 26941.44, + "end": 26943.24, + "probability": 0.9919 + }, + { + "start": 26944.38, + "end": 26944.96, + "probability": 0.7247 + }, + { + "start": 26945.44, + "end": 26948.31, + "probability": 0.9006 + }, + { + "start": 26948.58, + "end": 26952.5, + "probability": 0.985 + }, + { + "start": 26953.16, + "end": 26954.69, + "probability": 0.9937 + }, + { + "start": 26954.8, + "end": 26959.64, + "probability": 0.9983 + }, + { + "start": 26959.64, + "end": 26963.88, + "probability": 0.9779 + }, + { + "start": 26963.9, + "end": 26964.98, + "probability": 0.4278 + }, + { + "start": 26966.53, + "end": 26970.1, + "probability": 0.9597 + }, + { + "start": 26970.62, + "end": 26972.2, + "probability": 0.9922 + }, + { + "start": 26973.8, + "end": 26977.12, + "probability": 0.9852 + }, + { + "start": 26978.54, + "end": 26980.6, + "probability": 0.5405 + }, + { + "start": 26983.06, + "end": 26984.56, + "probability": 0.642 + }, + { + "start": 26987.36, + "end": 26988.7, + "probability": 0.9535 + }, + { + "start": 26989.74, + "end": 26990.6, + "probability": 0.9907 + }, + { + "start": 26990.74, + "end": 26992.56, + "probability": 0.9384 + }, + { + "start": 26992.94, + "end": 26994.12, + "probability": 0.969 + }, + { + "start": 26996.12, + "end": 26997.88, + "probability": 0.6669 + }, + { + "start": 26997.9, + "end": 26998.44, + "probability": 0.7664 + }, + { + "start": 26999.76, + "end": 27000.4, + "probability": 0.6716 + }, + { + "start": 27001.52, + "end": 27004.34, + "probability": 0.5968 + }, + { + "start": 27005.24, + "end": 27005.24, + "probability": 0.3455 + }, + { + "start": 27005.24, + "end": 27005.62, + "probability": 0.1692 + }, + { + "start": 27005.62, + "end": 27005.62, + "probability": 0.3616 + }, + { + "start": 27005.62, + "end": 27005.62, + "probability": 0.0244 + }, + { + "start": 27005.62, + "end": 27006.16, + "probability": 0.7435 + }, + { + "start": 27008.06, + "end": 27008.36, + "probability": 0.9111 + }, + { + "start": 27008.78, + "end": 27009.44, + "probability": 0.8896 + }, + { + "start": 27010.0, + "end": 27011.5, + "probability": 0.9608 + }, + { + "start": 27012.52, + "end": 27018.24, + "probability": 0.9968 + }, + { + "start": 27018.32, + "end": 27018.9, + "probability": 0.7517 + }, + { + "start": 27019.54, + "end": 27023.18, + "probability": 0.9383 + }, + { + "start": 27024.56, + "end": 27028.36, + "probability": 0.7757 + }, + { + "start": 27029.02, + "end": 27033.4, + "probability": 0.9438 + }, + { + "start": 27033.74, + "end": 27037.88, + "probability": 0.9927 + }, + { + "start": 27037.92, + "end": 27040.18, + "probability": 0.988 + }, + { + "start": 27040.56, + "end": 27042.94, + "probability": 0.6378 + }, + { + "start": 27043.14, + "end": 27044.79, + "probability": 0.9837 + }, + { + "start": 27045.46, + "end": 27048.5, + "probability": 0.9508 + }, + { + "start": 27049.08, + "end": 27049.32, + "probability": 0.2885 + }, + { + "start": 27049.85, + "end": 27055.35, + "probability": 0.9966 + }, + { + "start": 27056.34, + "end": 27056.84, + "probability": 0.0079 + }, + { + "start": 27057.0, + "end": 27059.3, + "probability": 0.9973 + }, + { + "start": 27060.08, + "end": 27066.8, + "probability": 0.9031 + }, + { + "start": 27067.36, + "end": 27070.12, + "probability": 0.9841 + }, + { + "start": 27071.87, + "end": 27076.8, + "probability": 0.9957 + }, + { + "start": 27076.94, + "end": 27080.75, + "probability": 0.7983 + }, + { + "start": 27081.86, + "end": 27085.28, + "probability": 0.7485 + }, + { + "start": 27086.3, + "end": 27087.46, + "probability": 0.9502 + }, + { + "start": 27087.56, + "end": 27090.44, + "probability": 0.9448 + }, + { + "start": 27090.52, + "end": 27093.13, + "probability": 0.9536 + }, + { + "start": 27093.16, + "end": 27093.9, + "probability": 0.9148 + }, + { + "start": 27095.58, + "end": 27098.28, + "probability": 0.4923 + }, + { + "start": 27098.98, + "end": 27099.48, + "probability": 0.43 + }, + { + "start": 27099.58, + "end": 27100.24, + "probability": 0.7399 + }, + { + "start": 27100.26, + "end": 27101.95, + "probability": 0.6916 + }, + { + "start": 27103.02, + "end": 27105.42, + "probability": 0.9829 + }, + { + "start": 27105.5, + "end": 27105.74, + "probability": 0.8762 + }, + { + "start": 27106.22, + "end": 27109.82, + "probability": 0.856 + }, + { + "start": 27110.22, + "end": 27110.66, + "probability": 0.2525 + }, + { + "start": 27110.92, + "end": 27112.58, + "probability": 0.8877 + }, + { + "start": 27112.66, + "end": 27116.8, + "probability": 0.4897 + }, + { + "start": 27116.84, + "end": 27117.76, + "probability": 0.8224 + }, + { + "start": 27117.82, + "end": 27118.06, + "probability": 0.7743 + }, + { + "start": 27118.12, + "end": 27119.74, + "probability": 0.9574 + }, + { + "start": 27119.82, + "end": 27119.94, + "probability": 0.5117 + }, + { + "start": 27121.78, + "end": 27125.1, + "probability": 0.8981 + }, + { + "start": 27125.3, + "end": 27125.68, + "probability": 0.7786 + }, + { + "start": 27126.54, + "end": 27128.66, + "probability": 0.8917 + }, + { + "start": 27129.02, + "end": 27130.28, + "probability": 0.893 + }, + { + "start": 27130.72, + "end": 27132.68, + "probability": 0.9738 + }, + { + "start": 27132.82, + "end": 27136.3, + "probability": 0.8612 + }, + { + "start": 27136.66, + "end": 27140.52, + "probability": 0.978 + }, + { + "start": 27140.66, + "end": 27142.74, + "probability": 0.1562 + }, + { + "start": 27143.1, + "end": 27144.92, + "probability": 0.4394 + }, + { + "start": 27145.32, + "end": 27146.46, + "probability": 0.7506 + }, + { + "start": 27146.58, + "end": 27148.28, + "probability": 0.9712 + }, + { + "start": 27148.52, + "end": 27151.32, + "probability": 0.0567 + }, + { + "start": 27163.84, + "end": 27164.22, + "probability": 0.0467 + }, + { + "start": 27164.22, + "end": 27167.72, + "probability": 0.8304 + }, + { + "start": 27167.9, + "end": 27169.78, + "probability": 0.9969 + }, + { + "start": 27170.24, + "end": 27172.74, + "probability": 0.9743 + }, + { + "start": 27173.16, + "end": 27174.76, + "probability": 0.9445 + }, + { + "start": 27195.36, + "end": 27197.86, + "probability": 0.4805 + }, + { + "start": 27197.98, + "end": 27200.08, + "probability": 0.4188 + }, + { + "start": 27200.2, + "end": 27201.82, + "probability": 0.4789 + }, + { + "start": 27202.22, + "end": 27203.04, + "probability": 0.0846 + }, + { + "start": 27204.5, + "end": 27207.0, + "probability": 0.5656 + }, + { + "start": 27207.63, + "end": 27211.48, + "probability": 0.9661 + }, + { + "start": 27211.48, + "end": 27211.48, + "probability": 0.0119 + }, + { + "start": 27211.48, + "end": 27212.84, + "probability": 0.419 + }, + { + "start": 27213.38, + "end": 27214.88, + "probability": 0.0606 + }, + { + "start": 27217.14, + "end": 27219.1, + "probability": 0.1091 + }, + { + "start": 27237.6, + "end": 27238.94, + "probability": 0.0976 + }, + { + "start": 27239.72, + "end": 27241.86, + "probability": 0.26 + }, + { + "start": 27244.94, + "end": 27248.2, + "probability": 0.1312 + }, + { + "start": 27249.48, + "end": 27252.16, + "probability": 0.0991 + }, + { + "start": 27264.0, + "end": 27264.0, + "probability": 0.0 + }, + { + "start": 27264.0, + "end": 27264.0, + "probability": 0.0 + }, + { + "start": 27264.0, + "end": 27264.0, + "probability": 0.0 + }, + { + "start": 27264.0, + "end": 27264.0, + "probability": 0.0 + }, + { + "start": 27264.0, + "end": 27264.0, + "probability": 0.0 + }, + { + "start": 27269.9, + "end": 27274.06, + "probability": 0.692 + }, + { + "start": 27275.62, + "end": 27277.06, + "probability": 0.369 + }, + { + "start": 27278.84, + "end": 27279.78, + "probability": 0.269 + }, + { + "start": 27280.88, + "end": 27281.58, + "probability": 0.0563 + }, + { + "start": 27281.58, + "end": 27282.44, + "probability": 0.3063 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.0, + "end": 27411.0, + "probability": 0.0 + }, + { + "start": 27411.66, + "end": 27415.06, + "probability": 0.9031 + }, + { + "start": 27416.1, + "end": 27419.84, + "probability": 0.9513 + }, + { + "start": 27420.54, + "end": 27423.08, + "probability": 0.933 + }, + { + "start": 27429.52, + "end": 27434.06, + "probability": 0.7995 + }, + { + "start": 27434.6, + "end": 27435.28, + "probability": 0.8075 + }, + { + "start": 27436.02, + "end": 27439.84, + "probability": 0.9991 + }, + { + "start": 27439.92, + "end": 27441.72, + "probability": 0.9529 + }, + { + "start": 27442.94, + "end": 27445.34, + "probability": 0.0855 + }, + { + "start": 27449.54, + "end": 27452.1, + "probability": 0.7386 + }, + { + "start": 27452.26, + "end": 27457.94, + "probability": 0.9694 + }, + { + "start": 27459.04, + "end": 27462.1, + "probability": 0.9949 + }, + { + "start": 27462.56, + "end": 27463.12, + "probability": 0.8894 + }, + { + "start": 27464.14, + "end": 27467.82, + "probability": 0.9972 + }, + { + "start": 27468.66, + "end": 27470.68, + "probability": 0.8733 + }, + { + "start": 27473.88, + "end": 27475.62, + "probability": 0.7712 + }, + { + "start": 27476.82, + "end": 27479.36, + "probability": 0.9869 + }, + { + "start": 27485.76, + "end": 27488.74, + "probability": 0.9928 + }, + { + "start": 27489.44, + "end": 27493.32, + "probability": 0.9967 + }, + { + "start": 27494.2, + "end": 27497.52, + "probability": 0.9987 + }, + { + "start": 27497.52, + "end": 27501.6, + "probability": 0.7849 + }, + { + "start": 27501.62, + "end": 27505.5, + "probability": 0.9558 + }, + { + "start": 27506.98, + "end": 27507.38, + "probability": 0.8232 + }, + { + "start": 27507.48, + "end": 27510.74, + "probability": 0.9799 + }, + { + "start": 27510.74, + "end": 27515.48, + "probability": 0.9889 + }, + { + "start": 27516.2, + "end": 27518.04, + "probability": 0.981 + }, + { + "start": 27519.36, + "end": 27522.32, + "probability": 0.9881 + }, + { + "start": 27522.88, + "end": 27524.24, + "probability": 0.9993 + }, + { + "start": 27525.18, + "end": 27527.0, + "probability": 0.8983 + }, + { + "start": 27528.22, + "end": 27531.3, + "probability": 0.9012 + }, + { + "start": 27531.9, + "end": 27536.22, + "probability": 0.9841 + }, + { + "start": 27536.86, + "end": 27537.96, + "probability": 0.8123 + }, + { + "start": 27538.58, + "end": 27540.66, + "probability": 0.9069 + }, + { + "start": 27542.2, + "end": 27545.0, + "probability": 0.9581 + }, + { + "start": 27545.98, + "end": 27551.58, + "probability": 0.9974 + }, + { + "start": 27552.92, + "end": 27555.98, + "probability": 0.991 + }, + { + "start": 27557.16, + "end": 27558.1, + "probability": 0.6602 + }, + { + "start": 27558.1, + "end": 27559.76, + "probability": 0.9412 + }, + { + "start": 27559.82, + "end": 27560.46, + "probability": 0.5266 + }, + { + "start": 27560.94, + "end": 27563.76, + "probability": 0.8625 + }, + { + "start": 27566.5, + "end": 27568.02, + "probability": 0.9778 + }, + { + "start": 27568.62, + "end": 27570.08, + "probability": 0.7287 + }, + { + "start": 27570.58, + "end": 27571.66, + "probability": 0.9482 + }, + { + "start": 27572.36, + "end": 27575.58, + "probability": 0.9985 + }, + { + "start": 27576.56, + "end": 27578.86, + "probability": 0.9995 + }, + { + "start": 27578.86, + "end": 27582.56, + "probability": 0.9983 + }, + { + "start": 27583.82, + "end": 27587.4, + "probability": 0.9736 + }, + { + "start": 27588.32, + "end": 27591.06, + "probability": 0.9913 + }, + { + "start": 27591.42, + "end": 27592.96, + "probability": 0.9935 + }, + { + "start": 27593.62, + "end": 27597.54, + "probability": 0.8705 + }, + { + "start": 27600.04, + "end": 27602.22, + "probability": 0.9875 + }, + { + "start": 27602.22, + "end": 27604.96, + "probability": 0.9884 + }, + { + "start": 27606.42, + "end": 27609.56, + "probability": 0.9684 + }, + { + "start": 27609.56, + "end": 27613.24, + "probability": 0.9843 + }, + { + "start": 27614.68, + "end": 27619.14, + "probability": 0.9924 + }, + { + "start": 27619.32, + "end": 27621.5, + "probability": 0.9716 + }, + { + "start": 27622.22, + "end": 27624.76, + "probability": 0.9773 + }, + { + "start": 27625.62, + "end": 27630.74, + "probability": 0.9951 + }, + { + "start": 27632.42, + "end": 27634.46, + "probability": 0.9902 + }, + { + "start": 27635.12, + "end": 27635.86, + "probability": 0.531 + }, + { + "start": 27636.74, + "end": 27638.46, + "probability": 0.8962 + }, + { + "start": 27639.78, + "end": 27642.6, + "probability": 0.9923 + }, + { + "start": 27642.6, + "end": 27646.32, + "probability": 0.9985 + }, + { + "start": 27647.66, + "end": 27649.56, + "probability": 0.9931 + }, + { + "start": 27650.4, + "end": 27652.2, + "probability": 0.9118 + }, + { + "start": 27653.58, + "end": 27656.96, + "probability": 0.9895 + }, + { + "start": 27657.06, + "end": 27657.76, + "probability": 0.5058 + }, + { + "start": 27658.96, + "end": 27659.46, + "probability": 0.4992 + }, + { + "start": 27659.54, + "end": 27666.6, + "probability": 0.9855 + }, + { + "start": 27667.3, + "end": 27670.3, + "probability": 0.9833 + }, + { + "start": 27671.94, + "end": 27672.64, + "probability": 0.3543 + }, + { + "start": 27672.88, + "end": 27674.84, + "probability": 0.9214 + }, + { + "start": 27675.74, + "end": 27677.36, + "probability": 0.981 + }, + { + "start": 27678.48, + "end": 27681.6, + "probability": 0.9846 + }, + { + "start": 27682.18, + "end": 27684.96, + "probability": 0.987 + }, + { + "start": 27685.32, + "end": 27685.78, + "probability": 0.8799 + }, + { + "start": 27686.24, + "end": 27688.38, + "probability": 0.9885 + }, + { + "start": 27689.01, + "end": 27690.97, + "probability": 0.8262 + }, + { + "start": 27691.78, + "end": 27694.34, + "probability": 0.9232 + }, + { + "start": 27696.8, + "end": 27698.6, + "probability": 0.9513 + }, + { + "start": 27702.06, + "end": 27703.92, + "probability": 0.6306 + }, + { + "start": 27705.08, + "end": 27705.18, + "probability": 0.3445 + }, + { + "start": 27705.18, + "end": 27705.7, + "probability": 0.4743 + }, + { + "start": 27710.08, + "end": 27711.78, + "probability": 0.9575 + }, + { + "start": 27717.8, + "end": 27717.8, + "probability": 0.3352 + }, + { + "start": 27717.8, + "end": 27718.55, + "probability": 0.8106 + }, + { + "start": 27719.44, + "end": 27720.82, + "probability": 0.9342 + }, + { + "start": 27721.7, + "end": 27724.42, + "probability": 0.7415 + }, + { + "start": 27724.64, + "end": 27726.76, + "probability": 0.9683 + }, + { + "start": 27726.9, + "end": 27728.54, + "probability": 0.999 + }, + { + "start": 27728.68, + "end": 27733.26, + "probability": 0.9766 + }, + { + "start": 27733.32, + "end": 27739.54, + "probability": 0.9985 + }, + { + "start": 27739.92, + "end": 27742.38, + "probability": 0.9943 + }, + { + "start": 27742.56, + "end": 27744.74, + "probability": 0.9245 + }, + { + "start": 27745.1, + "end": 27746.32, + "probability": 0.7602 + }, + { + "start": 27746.96, + "end": 27746.96, + "probability": 0.0389 + }, + { + "start": 27746.96, + "end": 27747.64, + "probability": 0.7026 + }, + { + "start": 27748.34, + "end": 27751.76, + "probability": 0.9072 + }, + { + "start": 27751.86, + "end": 27752.42, + "probability": 0.6206 + }, + { + "start": 27752.62, + "end": 27754.94, + "probability": 0.8145 + }, + { + "start": 27755.28, + "end": 27757.46, + "probability": 0.9883 + }, + { + "start": 27757.92, + "end": 27758.66, + "probability": 0.8929 + }, + { + "start": 27758.72, + "end": 27761.76, + "probability": 0.6457 + }, + { + "start": 27761.97, + "end": 27766.28, + "probability": 0.7926 + }, + { + "start": 27766.5, + "end": 27768.64, + "probability": 0.9617 + }, + { + "start": 27768.94, + "end": 27771.58, + "probability": 0.7053 + }, + { + "start": 27772.04, + "end": 27773.32, + "probability": 0.9655 + }, + { + "start": 27773.76, + "end": 27774.52, + "probability": 0.5919 + }, + { + "start": 27774.52, + "end": 27774.78, + "probability": 0.508 + }, + { + "start": 27776.4, + "end": 27778.4, + "probability": 0.9561 + }, + { + "start": 27778.52, + "end": 27780.16, + "probability": 0.7991 + }, + { + "start": 27780.66, + "end": 27781.34, + "probability": 0.4957 + }, + { + "start": 27781.76, + "end": 27784.28, + "probability": 0.9397 + }, + { + "start": 27785.48, + "end": 27787.56, + "probability": 0.9743 + }, + { + "start": 27787.9, + "end": 27789.26, + "probability": 0.8602 + }, + { + "start": 27789.86, + "end": 27790.38, + "probability": 0.3622 + }, + { + "start": 27790.42, + "end": 27791.78, + "probability": 0.8028 + }, + { + "start": 27792.96, + "end": 27794.4, + "probability": 0.9723 + }, + { + "start": 27814.0, + "end": 27816.08, + "probability": 0.9838 + }, + { + "start": 27816.2, + "end": 27817.32, + "probability": 0.5237 + }, + { + "start": 27817.66, + "end": 27818.1, + "probability": 0.7405 + }, + { + "start": 27822.04, + "end": 27824.46, + "probability": 0.9778 + }, + { + "start": 27824.56, + "end": 27825.24, + "probability": 0.7873 + }, + { + "start": 27825.32, + "end": 27830.7, + "probability": 0.9726 + }, + { + "start": 27831.78, + "end": 27837.94, + "probability": 0.9955 + }, + { + "start": 27838.08, + "end": 27838.78, + "probability": 0.7239 + }, + { + "start": 27838.96, + "end": 27839.32, + "probability": 0.6068 + }, + { + "start": 27839.96, + "end": 27841.24, + "probability": 0.951 + }, + { + "start": 27841.38, + "end": 27844.68, + "probability": 0.9794 + }, + { + "start": 27844.9, + "end": 27845.68, + "probability": 0.9032 + }, + { + "start": 27846.14, + "end": 27847.64, + "probability": 0.9927 + }, + { + "start": 27848.42, + "end": 27850.93, + "probability": 0.9299 + }, + { + "start": 27851.18, + "end": 27851.98, + "probability": 0.8522 + }, + { + "start": 27852.32, + "end": 27857.28, + "probability": 0.9415 + }, + { + "start": 27857.34, + "end": 27858.46, + "probability": 0.9846 + }, + { + "start": 27858.5, + "end": 27859.6, + "probability": 0.7362 + }, + { + "start": 27860.06, + "end": 27860.7, + "probability": 0.8541 + }, + { + "start": 27860.78, + "end": 27861.22, + "probability": 0.9275 + }, + { + "start": 27862.4, + "end": 27866.42, + "probability": 0.934 + }, + { + "start": 27866.42, + "end": 27869.82, + "probability": 0.9839 + }, + { + "start": 27870.32, + "end": 27872.48, + "probability": 0.9933 + }, + { + "start": 27873.14, + "end": 27873.64, + "probability": 0.3136 + }, + { + "start": 27873.8, + "end": 27878.8, + "probability": 0.99 + }, + { + "start": 27879.24, + "end": 27881.18, + "probability": 0.9028 + }, + { + "start": 27882.12, + "end": 27883.92, + "probability": 0.989 + }, + { + "start": 27884.04, + "end": 27887.82, + "probability": 0.9968 + }, + { + "start": 27888.52, + "end": 27894.2, + "probability": 0.9897 + }, + { + "start": 27894.76, + "end": 27896.66, + "probability": 0.785 + }, + { + "start": 27896.78, + "end": 27899.22, + "probability": 0.9887 + }, + { + "start": 27900.02, + "end": 27903.12, + "probability": 0.9747 + }, + { + "start": 27903.18, + "end": 27903.92, + "probability": 0.7544 + }, + { + "start": 27903.98, + "end": 27905.64, + "probability": 0.9615 + }, + { + "start": 27906.24, + "end": 27911.0, + "probability": 0.9716 + }, + { + "start": 27912.16, + "end": 27917.76, + "probability": 0.9451 + }, + { + "start": 27917.82, + "end": 27919.16, + "probability": 0.6699 + }, + { + "start": 27919.38, + "end": 27920.28, + "probability": 0.8456 + }, + { + "start": 27920.36, + "end": 27921.82, + "probability": 0.9746 + }, + { + "start": 27921.92, + "end": 27922.86, + "probability": 0.9371 + }, + { + "start": 27923.24, + "end": 27924.74, + "probability": 0.8171 + }, + { + "start": 27925.28, + "end": 27927.0, + "probability": 0.9972 + }, + { + "start": 27927.46, + "end": 27932.22, + "probability": 0.8487 + }, + { + "start": 27932.66, + "end": 27935.7, + "probability": 0.9891 + }, + { + "start": 27936.28, + "end": 27942.5, + "probability": 0.9176 + }, + { + "start": 27943.58, + "end": 27948.36, + "probability": 0.9903 + }, + { + "start": 27948.9, + "end": 27951.4, + "probability": 0.999 + }, + { + "start": 27952.44, + "end": 27957.06, + "probability": 0.9942 + }, + { + "start": 27957.94, + "end": 27961.5, + "probability": 0.9835 + }, + { + "start": 27961.58, + "end": 27962.7, + "probability": 0.7286 + }, + { + "start": 27963.26, + "end": 27966.4, + "probability": 0.9928 + }, + { + "start": 27966.4, + "end": 27969.6, + "probability": 0.9835 + }, + { + "start": 27970.08, + "end": 27973.18, + "probability": 0.9445 + }, + { + "start": 27974.14, + "end": 27977.42, + "probability": 0.9968 + }, + { + "start": 27977.42, + "end": 27981.2, + "probability": 0.9946 + }, + { + "start": 27981.58, + "end": 27983.04, + "probability": 0.5742 + }, + { + "start": 27983.16, + "end": 27986.5, + "probability": 0.9931 + }, + { + "start": 27986.5, + "end": 27990.32, + "probability": 0.9785 + }, + { + "start": 27990.46, + "end": 27991.78, + "probability": 0.9069 + }, + { + "start": 27992.48, + "end": 27997.02, + "probability": 0.9355 + }, + { + "start": 27997.46, + "end": 28000.04, + "probability": 0.9185 + }, + { + "start": 28000.2, + "end": 28000.98, + "probability": 0.7351 + }, + { + "start": 28001.42, + "end": 28002.44, + "probability": 0.7345 + }, + { + "start": 28002.52, + "end": 28003.76, + "probability": 0.9141 + }, + { + "start": 28003.82, + "end": 28004.22, + "probability": 0.6906 + }, + { + "start": 28004.3, + "end": 28009.14, + "probability": 0.9916 + }, + { + "start": 28009.64, + "end": 28010.86, + "probability": 0.7825 + }, + { + "start": 28010.96, + "end": 28013.06, + "probability": 0.979 + }, + { + "start": 28014.14, + "end": 28019.42, + "probability": 0.9973 + }, + { + "start": 28019.42, + "end": 28020.54, + "probability": 0.9203 + }, + { + "start": 28020.58, + "end": 28023.5, + "probability": 0.9724 + }, + { + "start": 28023.5, + "end": 28027.18, + "probability": 0.9993 + }, + { + "start": 28028.44, + "end": 28031.6, + "probability": 0.9692 + }, + { + "start": 28032.32, + "end": 28035.42, + "probability": 0.9186 + }, + { + "start": 28036.18, + "end": 28040.9, + "probability": 0.9944 + }, + { + "start": 28040.9, + "end": 28044.74, + "probability": 0.9976 + }, + { + "start": 28045.2, + "end": 28050.86, + "probability": 0.9904 + }, + { + "start": 28050.86, + "end": 28055.22, + "probability": 0.9989 + }, + { + "start": 28055.72, + "end": 28058.02, + "probability": 0.9972 + }, + { + "start": 28058.66, + "end": 28059.58, + "probability": 0.5963 + }, + { + "start": 28059.62, + "end": 28060.1, + "probability": 0.8923 + }, + { + "start": 28060.16, + "end": 28062.04, + "probability": 0.8302 + }, + { + "start": 28062.4, + "end": 28063.86, + "probability": 0.9459 + }, + { + "start": 28064.22, + "end": 28065.12, + "probability": 0.8057 + }, + { + "start": 28065.3, + "end": 28066.16, + "probability": 0.9663 + }, + { + "start": 28066.18, + "end": 28067.22, + "probability": 0.9631 + }, + { + "start": 28067.64, + "end": 28070.92, + "probability": 0.967 + }, + { + "start": 28071.48, + "end": 28074.32, + "probability": 0.8351 + }, + { + "start": 28074.86, + "end": 28077.18, + "probability": 0.9182 + }, + { + "start": 28077.7, + "end": 28080.22, + "probability": 0.8693 + }, + { + "start": 28080.36, + "end": 28081.46, + "probability": 0.9832 + }, + { + "start": 28081.54, + "end": 28084.86, + "probability": 0.8799 + }, + { + "start": 28085.56, + "end": 28087.74, + "probability": 0.9968 + }, + { + "start": 28087.74, + "end": 28090.3, + "probability": 0.981 + }, + { + "start": 28090.9, + "end": 28091.44, + "probability": 0.6313 + }, + { + "start": 28091.64, + "end": 28092.76, + "probability": 0.6753 + }, + { + "start": 28092.86, + "end": 28093.96, + "probability": 0.9038 + }, + { + "start": 28094.32, + "end": 28098.88, + "probability": 0.9951 + }, + { + "start": 28098.88, + "end": 28103.88, + "probability": 0.9887 + }, + { + "start": 28104.16, + "end": 28104.82, + "probability": 0.4244 + }, + { + "start": 28105.2, + "end": 28109.52, + "probability": 0.9971 + }, + { + "start": 28110.14, + "end": 28112.48, + "probability": 0.6924 + }, + { + "start": 28112.48, + "end": 28112.62, + "probability": 0.4711 + }, + { + "start": 28112.62, + "end": 28112.62, + "probability": 0.5896 + }, + { + "start": 28112.62, + "end": 28114.18, + "probability": 0.7843 + }, + { + "start": 28115.92, + "end": 28118.14, + "probability": 0.8975 + }, + { + "start": 28118.2, + "end": 28121.26, + "probability": 0.9932 + }, + { + "start": 28121.44, + "end": 28123.06, + "probability": 0.8163 + }, + { + "start": 28123.12, + "end": 28126.72, + "probability": 0.9109 + }, + { + "start": 28127.18, + "end": 28130.48, + "probability": 0.9454 + }, + { + "start": 28130.94, + "end": 28134.42, + "probability": 0.7971 + }, + { + "start": 28134.84, + "end": 28138.02, + "probability": 0.878 + }, + { + "start": 28138.78, + "end": 28141.74, + "probability": 0.6988 + }, + { + "start": 28142.18, + "end": 28143.14, + "probability": 0.7423 + }, + { + "start": 28143.24, + "end": 28151.36, + "probability": 0.7633 + }, + { + "start": 28151.92, + "end": 28152.92, + "probability": 0.6428 + }, + { + "start": 28152.98, + "end": 28154.24, + "probability": 0.9543 + }, + { + "start": 28154.64, + "end": 28157.08, + "probability": 0.7955 + }, + { + "start": 28157.14, + "end": 28160.16, + "probability": 0.9739 + }, + { + "start": 28160.64, + "end": 28164.82, + "probability": 0.9799 + }, + { + "start": 28164.9, + "end": 28166.28, + "probability": 0.6728 + }, + { + "start": 28166.92, + "end": 28169.98, + "probability": 0.8513 + }, + { + "start": 28170.16, + "end": 28171.14, + "probability": 0.9863 + }, + { + "start": 28171.98, + "end": 28173.28, + "probability": 0.7143 + }, + { + "start": 28173.32, + "end": 28173.98, + "probability": 0.7976 + }, + { + "start": 28174.06, + "end": 28178.98, + "probability": 0.995 + }, + { + "start": 28178.98, + "end": 28182.32, + "probability": 0.9717 + }, + { + "start": 28182.52, + "end": 28185.44, + "probability": 0.9004 + }, + { + "start": 28185.52, + "end": 28189.44, + "probability": 0.8634 + }, + { + "start": 28190.1, + "end": 28195.62, + "probability": 0.9349 + }, + { + "start": 28195.78, + "end": 28196.97, + "probability": 0.9397 + }, + { + "start": 28197.52, + "end": 28198.34, + "probability": 0.9154 + }, + { + "start": 28198.46, + "end": 28199.28, + "probability": 0.804 + }, + { + "start": 28199.6, + "end": 28200.06, + "probability": 0.4778 + }, + { + "start": 28200.16, + "end": 28201.56, + "probability": 0.739 + }, + { + "start": 28202.42, + "end": 28203.28, + "probability": 0.7946 + }, + { + "start": 28203.48, + "end": 28205.6, + "probability": 0.6465 + }, + { + "start": 28205.62, + "end": 28207.98, + "probability": 0.651 + }, + { + "start": 28208.26, + "end": 28210.54, + "probability": 0.97 + }, + { + "start": 28210.92, + "end": 28211.42, + "probability": 0.774 + }, + { + "start": 28211.98, + "end": 28214.52, + "probability": 0.9484 + }, + { + "start": 28214.6, + "end": 28215.62, + "probability": 0.9408 + }, + { + "start": 28215.68, + "end": 28220.22, + "probability": 0.9613 + }, + { + "start": 28220.72, + "end": 28224.4, + "probability": 0.9019 + }, + { + "start": 28240.16, + "end": 28240.54, + "probability": 0.0031 + }, + { + "start": 28240.54, + "end": 28240.58, + "probability": 0.0824 + }, + { + "start": 28240.58, + "end": 28243.26, + "probability": 0.7203 + }, + { + "start": 28243.46, + "end": 28245.66, + "probability": 0.6413 + }, + { + "start": 28245.9, + "end": 28247.78, + "probability": 0.9548 + }, + { + "start": 28249.06, + "end": 28250.72, + "probability": 0.9413 + }, + { + "start": 28256.3, + "end": 28261.9, + "probability": 0.0354 + }, + { + "start": 28262.96, + "end": 28263.84, + "probability": 0.3128 + }, + { + "start": 28265.46, + "end": 28268.08, + "probability": 0.9005 + }, + { + "start": 28268.16, + "end": 28272.98, + "probability": 0.9635 + }, + { + "start": 28273.42, + "end": 28276.48, + "probability": 0.7564 + }, + { + "start": 28276.6, + "end": 28277.88, + "probability": 0.4149 + }, + { + "start": 28278.46, + "end": 28280.46, + "probability": 0.966 + }, + { + "start": 28280.8, + "end": 28283.42, + "probability": 0.9919 + }, + { + "start": 28284.16, + "end": 28287.38, + "probability": 0.5205 + }, + { + "start": 28287.74, + "end": 28289.16, + "probability": 0.6268 + }, + { + "start": 28289.26, + "end": 28290.5, + "probability": 0.5118 + }, + { + "start": 28290.6, + "end": 28292.26, + "probability": 0.8743 + }, + { + "start": 28292.8, + "end": 28294.24, + "probability": 0.9571 + }, + { + "start": 28294.5, + "end": 28298.1, + "probability": 0.7115 + }, + { + "start": 28298.42, + "end": 28299.12, + "probability": 0.7799 + }, + { + "start": 28299.32, + "end": 28299.84, + "probability": 0.3885 + }, + { + "start": 28300.72, + "end": 28303.2, + "probability": 0.6977 + }, + { + "start": 28303.2, + "end": 28303.34, + "probability": 0.8118 + }, + { + "start": 28305.42, + "end": 28309.02, + "probability": 0.7666 + }, + { + "start": 28309.04, + "end": 28310.72, + "probability": 0.8233 + }, + { + "start": 28310.84, + "end": 28313.0, + "probability": 0.9555 + }, + { + "start": 28313.36, + "end": 28316.14, + "probability": 0.9841 + }, + { + "start": 28316.68, + "end": 28319.44, + "probability": 0.8531 + }, + { + "start": 28340.2, + "end": 28341.72, + "probability": 0.6536 + }, + { + "start": 28343.42, + "end": 28345.58, + "probability": 0.8327 + }, + { + "start": 28347.06, + "end": 28349.94, + "probability": 0.9935 + }, + { + "start": 28349.94, + "end": 28354.18, + "probability": 0.9699 + }, + { + "start": 28355.78, + "end": 28356.78, + "probability": 0.3533 + }, + { + "start": 28358.08, + "end": 28359.66, + "probability": 0.9899 + }, + { + "start": 28360.86, + "end": 28363.74, + "probability": 0.9547 + }, + { + "start": 28365.02, + "end": 28365.7, + "probability": 0.8417 + }, + { + "start": 28365.82, + "end": 28366.6, + "probability": 0.9442 + }, + { + "start": 28366.84, + "end": 28368.32, + "probability": 0.9045 + }, + { + "start": 28369.46, + "end": 28370.3, + "probability": 0.7377 + }, + { + "start": 28370.5, + "end": 28376.66, + "probability": 0.9919 + }, + { + "start": 28377.56, + "end": 28377.74, + "probability": 0.3713 + }, + { + "start": 28377.84, + "end": 28379.76, + "probability": 0.9437 + }, + { + "start": 28380.14, + "end": 28380.86, + "probability": 0.8199 + }, + { + "start": 28381.0, + "end": 28381.88, + "probability": 0.7307 + }, + { + "start": 28383.62, + "end": 28385.22, + "probability": 0.9648 + }, + { + "start": 28385.71, + "end": 28387.54, + "probability": 0.9336 + }, + { + "start": 28387.58, + "end": 28388.36, + "probability": 0.9395 + }, + { + "start": 28390.68, + "end": 28391.34, + "probability": 0.9493 + }, + { + "start": 28391.5, + "end": 28393.06, + "probability": 0.7047 + }, + { + "start": 28393.29, + "end": 28396.68, + "probability": 0.9775 + }, + { + "start": 28397.44, + "end": 28401.64, + "probability": 0.9956 + }, + { + "start": 28401.64, + "end": 28406.62, + "probability": 0.9624 + }, + { + "start": 28406.74, + "end": 28408.16, + "probability": 0.9843 + }, + { + "start": 28408.86, + "end": 28411.74, + "probability": 0.946 + }, + { + "start": 28412.96, + "end": 28414.78, + "probability": 0.8496 + }, + { + "start": 28415.68, + "end": 28416.78, + "probability": 0.8726 + }, + { + "start": 28418.68, + "end": 28420.26, + "probability": 0.5137 + }, + { + "start": 28423.7, + "end": 28424.44, + "probability": 0.9912 + }, + { + "start": 28424.82, + "end": 28425.1, + "probability": 0.6221 + }, + { + "start": 28426.4, + "end": 28427.18, + "probability": 0.1177 + }, + { + "start": 28428.8, + "end": 28431.54, + "probability": 0.9594 + }, + { + "start": 28431.54, + "end": 28434.62, + "probability": 0.7846 + }, + { + "start": 28435.16, + "end": 28436.34, + "probability": 0.8621 + }, + { + "start": 28436.48, + "end": 28440.5, + "probability": 0.9593 + }, + { + "start": 28441.24, + "end": 28445.62, + "probability": 0.9896 + }, + { + "start": 28445.62, + "end": 28449.5, + "probability": 0.9915 + }, + { + "start": 28450.12, + "end": 28454.94, + "probability": 0.9823 + }, + { + "start": 28455.3, + "end": 28457.74, + "probability": 0.6543 + }, + { + "start": 28457.74, + "end": 28462.32, + "probability": 0.9332 + }, + { + "start": 28463.26, + "end": 28466.42, + "probability": 0.9123 + }, + { + "start": 28467.56, + "end": 28469.5, + "probability": 0.6892 + }, + { + "start": 28469.5, + "end": 28472.74, + "probability": 0.7083 + }, + { + "start": 28473.2, + "end": 28477.1, + "probability": 0.9588 + }, + { + "start": 28477.74, + "end": 28482.36, + "probability": 0.9224 + }, + { + "start": 28482.9, + "end": 28488.7, + "probability": 0.9722 + }, + { + "start": 28490.1, + "end": 28491.82, + "probability": 0.8784 + }, + { + "start": 28491.9, + "end": 28495.47, + "probability": 0.97 + }, + { + "start": 28496.84, + "end": 28497.28, + "probability": 0.1634 + }, + { + "start": 28497.28, + "end": 28497.76, + "probability": 0.7811 + }, + { + "start": 28499.22, + "end": 28501.9, + "probability": 0.9631 + }, + { + "start": 28501.98, + "end": 28502.72, + "probability": 0.7789 + }, + { + "start": 28503.22, + "end": 28503.76, + "probability": 0.6206 + }, + { + "start": 28503.86, + "end": 28505.04, + "probability": 0.972 + }, + { + "start": 28505.42, + "end": 28506.1, + "probability": 0.4338 + }, + { + "start": 28506.22, + "end": 28507.28, + "probability": 0.7385 + }, + { + "start": 28507.84, + "end": 28509.66, + "probability": 0.8805 + }, + { + "start": 28509.7, + "end": 28511.72, + "probability": 0.9779 + }, + { + "start": 28512.58, + "end": 28514.36, + "probability": 0.9099 + }, + { + "start": 28514.64, + "end": 28515.48, + "probability": 0.9456 + }, + { + "start": 28516.18, + "end": 28518.32, + "probability": 0.9982 + }, + { + "start": 28518.5, + "end": 28521.26, + "probability": 0.7968 + }, + { + "start": 28521.76, + "end": 28523.36, + "probability": 0.9658 + }, + { + "start": 28523.78, + "end": 28525.26, + "probability": 0.8258 + }, + { + "start": 28532.28, + "end": 28533.65, + "probability": 0.9071 + }, + { + "start": 28539.72, + "end": 28541.62, + "probability": 0.5938 + }, + { + "start": 28542.78, + "end": 28544.2, + "probability": 0.7005 + }, + { + "start": 28544.7, + "end": 28548.3, + "probability": 0.9583 + }, + { + "start": 28548.36, + "end": 28550.81, + "probability": 0.9819 + }, + { + "start": 28552.48, + "end": 28553.92, + "probability": 0.855 + }, + { + "start": 28554.26, + "end": 28554.94, + "probability": 0.9222 + }, + { + "start": 28555.16, + "end": 28556.0, + "probability": 0.9719 + }, + { + "start": 28556.62, + "end": 28557.72, + "probability": 0.7681 + }, + { + "start": 28557.86, + "end": 28559.0, + "probability": 0.8483 + }, + { + "start": 28559.56, + "end": 28563.68, + "probability": 0.8055 + }, + { + "start": 28564.72, + "end": 28566.44, + "probability": 0.8921 + }, + { + "start": 28567.28, + "end": 28571.04, + "probability": 0.9934 + }, + { + "start": 28571.04, + "end": 28573.6, + "probability": 0.9996 + }, + { + "start": 28574.4, + "end": 28576.32, + "probability": 0.9662 + }, + { + "start": 28576.84, + "end": 28577.58, + "probability": 0.9202 + }, + { + "start": 28578.38, + "end": 28582.64, + "probability": 0.9672 + }, + { + "start": 28582.72, + "end": 28583.6, + "probability": 0.9431 + }, + { + "start": 28583.68, + "end": 28585.82, + "probability": 0.8508 + }, + { + "start": 28586.48, + "end": 28587.68, + "probability": 0.9724 + }, + { + "start": 28587.8, + "end": 28588.26, + "probability": 0.76 + }, + { + "start": 28588.44, + "end": 28590.4, + "probability": 0.5408 + }, + { + "start": 28591.34, + "end": 28592.12, + "probability": 0.2593 + }, + { + "start": 28592.34, + "end": 28593.06, + "probability": 0.9508 + }, + { + "start": 28593.14, + "end": 28593.84, + "probability": 0.9593 + }, + { + "start": 28593.92, + "end": 28594.62, + "probability": 0.7193 + }, + { + "start": 28594.72, + "end": 28595.84, + "probability": 0.8075 + }, + { + "start": 28595.9, + "end": 28596.7, + "probability": 0.7806 + }, + { + "start": 28596.76, + "end": 28597.62, + "probability": 0.9452 + }, + { + "start": 28597.8, + "end": 28598.24, + "probability": 0.5935 + }, + { + "start": 28599.04, + "end": 28599.9, + "probability": 0.8453 + }, + { + "start": 28599.96, + "end": 28600.54, + "probability": 0.7625 + }, + { + "start": 28600.64, + "end": 28601.0, + "probability": 0.6243 + }, + { + "start": 28601.5, + "end": 28602.2, + "probability": 0.7222 + }, + { + "start": 28602.28, + "end": 28603.2, + "probability": 0.826 + }, + { + "start": 28603.28, + "end": 28604.16, + "probability": 0.9799 + }, + { + "start": 28604.76, + "end": 28605.82, + "probability": 0.8608 + }, + { + "start": 28606.4, + "end": 28607.76, + "probability": 0.9369 + }, + { + "start": 28608.6, + "end": 28609.48, + "probability": 0.7582 + }, + { + "start": 28609.52, + "end": 28610.36, + "probability": 0.7924 + }, + { + "start": 28610.46, + "end": 28611.04, + "probability": 0.8846 + }, + { + "start": 28611.16, + "end": 28612.42, + "probability": 0.7917 + }, + { + "start": 28612.76, + "end": 28615.74, + "probability": 0.547 + }, + { + "start": 28616.12, + "end": 28616.84, + "probability": 0.8674 + }, + { + "start": 28617.3, + "end": 28619.28, + "probability": 0.7806 + }, + { + "start": 28619.76, + "end": 28622.42, + "probability": 0.9266 + }, + { + "start": 28622.82, + "end": 28626.16, + "probability": 0.9964 + }, + { + "start": 28627.0, + "end": 28631.42, + "probability": 0.9881 + }, + { + "start": 28632.0, + "end": 28632.82, + "probability": 0.764 + }, + { + "start": 28633.46, + "end": 28637.66, + "probability": 0.96 + }, + { + "start": 28637.72, + "end": 28639.62, + "probability": 0.9967 + }, + { + "start": 28640.64, + "end": 28645.34, + "probability": 0.9468 + }, + { + "start": 28645.92, + "end": 28647.78, + "probability": 0.796 + }, + { + "start": 28648.4, + "end": 28652.62, + "probability": 0.9874 + }, + { + "start": 28653.2, + "end": 28655.98, + "probability": 0.9718 + }, + { + "start": 28656.72, + "end": 28658.14, + "probability": 0.7337 + }, + { + "start": 28658.62, + "end": 28662.6, + "probability": 0.9946 + }, + { + "start": 28663.24, + "end": 28666.68, + "probability": 0.937 + }, + { + "start": 28667.06, + "end": 28669.24, + "probability": 0.913 + }, + { + "start": 28669.46, + "end": 28670.8, + "probability": 0.9863 + }, + { + "start": 28671.26, + "end": 28672.54, + "probability": 0.9959 + }, + { + "start": 28672.86, + "end": 28676.06, + "probability": 0.9799 + }, + { + "start": 28676.56, + "end": 28679.74, + "probability": 0.7832 + }, + { + "start": 28680.14, + "end": 28683.68, + "probability": 0.9864 + }, + { + "start": 28684.02, + "end": 28685.06, + "probability": 0.8261 + }, + { + "start": 28685.52, + "end": 28688.56, + "probability": 0.9924 + }, + { + "start": 28689.84, + "end": 28691.98, + "probability": 0.994 + }, + { + "start": 28692.08, + "end": 28693.8, + "probability": 0.989 + }, + { + "start": 28694.6, + "end": 28696.74, + "probability": 0.624 + }, + { + "start": 28699.9, + "end": 28702.84, + "probability": 0.6921 + }, + { + "start": 28703.38, + "end": 28704.76, + "probability": 0.764 + }, + { + "start": 28705.1, + "end": 28705.72, + "probability": 0.8715 + }, + { + "start": 28706.06, + "end": 28707.46, + "probability": 0.9586 + }, + { + "start": 28707.66, + "end": 28708.36, + "probability": 0.7034 + }, + { + "start": 28708.8, + "end": 28710.06, + "probability": 0.9812 + }, + { + "start": 28710.44, + "end": 28711.1, + "probability": 0.8727 + }, + { + "start": 28711.2, + "end": 28712.82, + "probability": 0.7343 + }, + { + "start": 28713.16, + "end": 28713.78, + "probability": 0.9778 + }, + { + "start": 28713.92, + "end": 28715.44, + "probability": 0.7032 + }, + { + "start": 28715.82, + "end": 28716.4, + "probability": 0.6514 + }, + { + "start": 28716.58, + "end": 28718.34, + "probability": 0.9289 + }, + { + "start": 28718.98, + "end": 28722.48, + "probability": 0.9297 + }, + { + "start": 28724.1, + "end": 28724.1, + "probability": 0.4627 + }, + { + "start": 28724.1, + "end": 28725.7, + "probability": 0.96 + }, + { + "start": 28726.26, + "end": 28727.16, + "probability": 0.9132 + }, + { + "start": 28727.68, + "end": 28728.92, + "probability": 0.8078 + }, + { + "start": 28729.24, + "end": 28730.04, + "probability": 0.807 + }, + { + "start": 28730.52, + "end": 28732.06, + "probability": 0.9247 + }, + { + "start": 28733.08, + "end": 28733.82, + "probability": 0.9273 + }, + { + "start": 28733.9, + "end": 28735.34, + "probability": 0.9784 + }, + { + "start": 28735.62, + "end": 28736.36, + "probability": 0.9838 + }, + { + "start": 28736.78, + "end": 28738.16, + "probability": 0.9131 + }, + { + "start": 28738.34, + "end": 28739.34, + "probability": 0.7999 + }, + { + "start": 28740.0, + "end": 28745.2, + "probability": 0.98 + }, + { + "start": 28745.64, + "end": 28747.06, + "probability": 0.3788 + }, + { + "start": 28747.1, + "end": 28748.06, + "probability": 0.7572 + }, + { + "start": 28748.44, + "end": 28750.1, + "probability": 0.9557 + }, + { + "start": 28765.44, + "end": 28765.82, + "probability": 0.0068 + }, + { + "start": 28765.82, + "end": 28768.38, + "probability": 0.7032 + }, + { + "start": 28768.78, + "end": 28770.66, + "probability": 0.9937 + }, + { + "start": 28771.16, + "end": 28773.26, + "probability": 0.9958 + }, + { + "start": 28773.74, + "end": 28775.68, + "probability": 0.9352 + }, + { + "start": 28777.62, + "end": 28780.12, + "probability": 0.1129 + }, + { + "start": 28794.5, + "end": 28795.06, + "probability": 0.096 + }, + { + "start": 28795.06, + "end": 28797.8, + "probability": 0.8476 + }, + { + "start": 28798.2, + "end": 28800.98, + "probability": 0.887 + }, + { + "start": 28801.92, + "end": 28802.0, + "probability": 0.4361 + }, + { + "start": 28802.54, + "end": 28804.18, + "probability": 0.9471 + }, + { + "start": 28804.58, + "end": 28808.28, + "probability": 0.9938 + }, + { + "start": 28808.84, + "end": 28811.3, + "probability": 0.9623 + }, + { + "start": 28812.6, + "end": 28812.7, + "probability": 0.3564 + }, + { + "start": 28812.8, + "end": 28815.58, + "probability": 0.9677 + }, + { + "start": 28816.12, + "end": 28816.42, + "probability": 0.034 + }, + { + "start": 28816.98, + "end": 28820.68, + "probability": 0.7451 + }, + { + "start": 28820.98, + "end": 28823.94, + "probability": 0.9961 + }, + { + "start": 28823.94, + "end": 28827.58, + "probability": 0.8843 + }, + { + "start": 28827.68, + "end": 28828.1, + "probability": 0.7189 + }, + { + "start": 28846.66, + "end": 28849.2, + "probability": 0.6037 + }, + { + "start": 28850.32, + "end": 28856.74, + "probability": 0.9944 + }, + { + "start": 28857.34, + "end": 28860.56, + "probability": 0.7072 + }, + { + "start": 28861.3, + "end": 28869.36, + "probability": 0.9109 + }, + { + "start": 28869.92, + "end": 28874.14, + "probability": 0.981 + }, + { + "start": 28875.32, + "end": 28878.52, + "probability": 0.9995 + }, + { + "start": 28878.76, + "end": 28883.0, + "probability": 0.994 + }, + { + "start": 28883.0, + "end": 28886.02, + "probability": 0.993 + }, + { + "start": 28887.08, + "end": 28888.64, + "probability": 0.3533 + }, + { + "start": 28890.9, + "end": 28894.38, + "probability": 0.986 + }, + { + "start": 28895.72, + "end": 28898.34, + "probability": 0.9811 + }, + { + "start": 28901.28, + "end": 28902.82, + "probability": 0.41 + }, + { + "start": 28903.02, + "end": 28905.98, + "probability": 0.9896 + }, + { + "start": 28906.14, + "end": 28908.94, + "probability": 0.9982 + }, + { + "start": 28909.64, + "end": 28910.76, + "probability": 0.8859 + }, + { + "start": 28911.64, + "end": 28915.08, + "probability": 0.9977 + }, + { + "start": 28915.08, + "end": 28920.76, + "probability": 0.9956 + }, + { + "start": 28921.52, + "end": 28925.42, + "probability": 0.9745 + }, + { + "start": 28925.46, + "end": 28928.24, + "probability": 0.8529 + }, + { + "start": 28928.4, + "end": 28928.62, + "probability": 0.9291 + }, + { + "start": 28928.76, + "end": 28929.42, + "probability": 0.9804 + }, + { + "start": 28929.52, + "end": 28930.12, + "probability": 0.9598 + }, + { + "start": 28930.26, + "end": 28931.02, + "probability": 0.986 + }, + { + "start": 28931.12, + "end": 28932.58, + "probability": 0.9395 + }, + { + "start": 28933.62, + "end": 28935.88, + "probability": 0.9775 + }, + { + "start": 28936.86, + "end": 28940.6, + "probability": 0.9907 + }, + { + "start": 28940.6, + "end": 28946.16, + "probability": 0.9995 + }, + { + "start": 28946.98, + "end": 28953.36, + "probability": 0.975 + }, + { + "start": 28954.22, + "end": 28957.59, + "probability": 0.9849 + }, + { + "start": 28959.4, + "end": 28962.82, + "probability": 0.9761 + }, + { + "start": 28963.82, + "end": 28969.62, + "probability": 0.9189 + }, + { + "start": 28969.62, + "end": 28974.7, + "probability": 0.9857 + }, + { + "start": 28975.44, + "end": 28983.58, + "probability": 0.9779 + }, + { + "start": 28983.58, + "end": 28991.18, + "probability": 0.9968 + }, + { + "start": 28992.18, + "end": 28994.68, + "probability": 0.7961 + }, + { + "start": 28994.72, + "end": 28998.64, + "probability": 0.9897 + }, + { + "start": 28999.18, + "end": 29002.58, + "probability": 0.9971 + }, + { + "start": 29003.1, + "end": 29009.06, + "probability": 0.9915 + }, + { + "start": 29009.88, + "end": 29010.56, + "probability": 0.8481 + }, + { + "start": 29010.8, + "end": 29015.0, + "probability": 0.7327 + }, + { + "start": 29015.68, + "end": 29017.1, + "probability": 0.9512 + }, + { + "start": 29017.54, + "end": 29020.94, + "probability": 0.9517 + }, + { + "start": 29020.94, + "end": 29026.08, + "probability": 0.9462 + }, + { + "start": 29026.42, + "end": 29030.52, + "probability": 0.9937 + }, + { + "start": 29031.22, + "end": 29037.5, + "probability": 0.9871 + }, + { + "start": 29037.92, + "end": 29040.5, + "probability": 0.8398 + }, + { + "start": 29040.98, + "end": 29044.4, + "probability": 0.8457 + }, + { + "start": 29044.5, + "end": 29049.14, + "probability": 0.9958 + }, + { + "start": 29049.2, + "end": 29051.56, + "probability": 0.9917 + }, + { + "start": 29051.72, + "end": 29051.98, + "probability": 0.7632 + }, + { + "start": 29052.76, + "end": 29055.12, + "probability": 0.7162 + }, + { + "start": 29055.22, + "end": 29059.56, + "probability": 0.8691 + }, + { + "start": 29061.88, + "end": 29063.92, + "probability": 0.7738 + }, + { + "start": 29064.82, + "end": 29065.44, + "probability": 0.8573 + }, + { + "start": 29065.52, + "end": 29066.76, + "probability": 0.8608 + }, + { + "start": 29067.02, + "end": 29067.9, + "probability": 0.9483 + }, + { + "start": 29067.94, + "end": 29069.31, + "probability": 0.9803 + }, + { + "start": 29069.9, + "end": 29070.44, + "probability": 0.3705 + }, + { + "start": 29070.54, + "end": 29071.66, + "probability": 0.7924 + }, + { + "start": 29072.14, + "end": 29072.72, + "probability": 0.941 + }, + { + "start": 29072.86, + "end": 29074.63, + "probability": 0.6589 + }, + { + "start": 29075.06, + "end": 29076.66, + "probability": 0.5519 + }, + { + "start": 29077.06, + "end": 29077.64, + "probability": 0.9233 + }, + { + "start": 29077.7, + "end": 29078.88, + "probability": 0.8585 + }, + { + "start": 29079.02, + "end": 29079.66, + "probability": 0.4596 + }, + { + "start": 29080.1, + "end": 29081.03, + "probability": 0.7705 + }, + { + "start": 29081.82, + "end": 29082.4, + "probability": 0.9653 + }, + { + "start": 29083.14, + "end": 29084.7, + "probability": 0.9733 + }, + { + "start": 29085.06, + "end": 29085.76, + "probability": 0.7549 + }, + { + "start": 29085.92, + "end": 29087.26, + "probability": 0.9843 + }, + { + "start": 29087.46, + "end": 29090.76, + "probability": 0.6888 + }, + { + "start": 29093.76, + "end": 29093.82, + "probability": 0.3323 + }, + { + "start": 29094.02, + "end": 29094.6, + "probability": 0.8711 + }, + { + "start": 29094.72, + "end": 29096.23, + "probability": 0.955 + }, + { + "start": 29106.18, + "end": 29107.34, + "probability": 0.9883 + }, + { + "start": 29108.08, + "end": 29110.66, + "probability": 0.9976 + }, + { + "start": 29111.96, + "end": 29111.96, + "probability": 0.0007 + }, + { + "start": 29112.72, + "end": 29114.7, + "probability": 0.1749 + }, + { + "start": 29114.94, + "end": 29115.9, + "probability": 0.9484 + }, + { + "start": 29116.12, + "end": 29116.36, + "probability": 0.9032 + }, + { + "start": 29116.42, + "end": 29120.76, + "probability": 0.9946 + }, + { + "start": 29121.9, + "end": 29122.76, + "probability": 0.5808 + }, + { + "start": 29123.92, + "end": 29124.64, + "probability": 0.7951 + }, + { + "start": 29125.46, + "end": 29125.66, + "probability": 0.5704 + }, + { + "start": 29128.82, + "end": 29130.96, + "probability": 0.9824 + }, + { + "start": 29131.08, + "end": 29138.22, + "probability": 0.9951 + }, + { + "start": 29142.58, + "end": 29148.58, + "probability": 0.8242 + }, + { + "start": 29149.24, + "end": 29157.24, + "probability": 0.5351 + }, + { + "start": 29157.36, + "end": 29160.68, + "probability": 0.9875 + }, + { + "start": 29161.38, + "end": 29167.76, + "probability": 0.9972 + }, + { + "start": 29168.46, + "end": 29175.36, + "probability": 0.9931 + }, + { + "start": 29176.24, + "end": 29177.74, + "probability": 0.8882 + }, + { + "start": 29178.76, + "end": 29182.28, + "probability": 0.9946 + }, + { + "start": 29182.46, + "end": 29186.1, + "probability": 0.9707 + }, + { + "start": 29186.86, + "end": 29188.42, + "probability": 0.9879 + }, + { + "start": 29189.0, + "end": 29192.74, + "probability": 0.8901 + }, + { + "start": 29192.9, + "end": 29197.4, + "probability": 0.9882 + }, + { + "start": 29198.06, + "end": 29200.82, + "probability": 0.9988 + }, + { + "start": 29201.94, + "end": 29203.14, + "probability": 0.5282 + }, + { + "start": 29203.86, + "end": 29206.78, + "probability": 0.8754 + }, + { + "start": 29207.34, + "end": 29207.34, + "probability": 0.2018 + }, + { + "start": 29207.8, + "end": 29209.74, + "probability": 0.9583 + }, + { + "start": 29209.88, + "end": 29212.3, + "probability": 0.8399 + }, + { + "start": 29212.92, + "end": 29214.38, + "probability": 0.9485 + }, + { + "start": 29214.78, + "end": 29215.46, + "probability": 0.8179 + }, + { + "start": 29217.23, + "end": 29218.66, + "probability": 0.6293 + }, + { + "start": 29218.66, + "end": 29218.66, + "probability": 0.527 + }, + { + "start": 29218.66, + "end": 29219.2, + "probability": 0.9144 + }, + { + "start": 29219.76, + "end": 29221.62, + "probability": 0.7916 + }, + { + "start": 29222.86, + "end": 29223.72, + "probability": 0.9315 + }, + { + "start": 29224.16, + "end": 29225.54, + "probability": 0.9451 + }, + { + "start": 29226.02, + "end": 29226.8, + "probability": 0.8417 + }, + { + "start": 29226.84, + "end": 29228.34, + "probability": 0.9094 + }, + { + "start": 29228.99, + "end": 29232.29, + "probability": 0.6462 + }, + { + "start": 29232.76, + "end": 29237.36, + "probability": 0.9808 + }, + { + "start": 29237.44, + "end": 29239.18, + "probability": 0.5714 + }, + { + "start": 29239.6, + "end": 29240.72, + "probability": 0.7442 + }, + { + "start": 29240.72, + "end": 29242.08, + "probability": 0.9183 + }, + { + "start": 29257.9, + "end": 29258.52, + "probability": 0.0094 + }, + { + "start": 29258.52, + "end": 29260.98, + "probability": 0.7418 + }, + { + "start": 29261.52, + "end": 29264.02, + "probability": 0.9651 + }, + { + "start": 29264.46, + "end": 29265.8, + "probability": 0.8823 + }, + { + "start": 29266.46, + "end": 29273.28, + "probability": 0.3994 + }, + { + "start": 29273.34, + "end": 29273.76, + "probability": 0.3668 + }, + { + "start": 29273.76, + "end": 29274.4, + "probability": 0.0782 + }, + { + "start": 29280.32, + "end": 29283.14, + "probability": 0.8683 + }, + { + "start": 29284.12, + "end": 29286.72, + "probability": 0.8361 + }, + { + "start": 29286.74, + "end": 29289.6, + "probability": 0.4138 + }, + { + "start": 29289.6, + "end": 29290.09, + "probability": 0.2305 + }, + { + "start": 29290.48, + "end": 29292.86, + "probability": 0.9106 + }, + { + "start": 29293.5, + "end": 29296.44, + "probability": 0.9203 + }, + { + "start": 29297.06, + "end": 29297.94, + "probability": 0.9235 + }, + { + "start": 29304.06, + "end": 29305.58, + "probability": 0.963 + }, + { + "start": 29306.12, + "end": 29306.36, + "probability": 0.4558 + }, + { + "start": 29308.46, + "end": 29314.88, + "probability": 0.994 + }, + { + "start": 29316.02, + "end": 29318.82, + "probability": 0.972 + }, + { + "start": 29318.88, + "end": 29324.0, + "probability": 0.9719 + }, + { + "start": 29324.0, + "end": 29328.04, + "probability": 0.9929 + }, + { + "start": 29328.74, + "end": 29330.4, + "probability": 0.629 + }, + { + "start": 29330.76, + "end": 29331.44, + "probability": 0.554 + }, + { + "start": 29331.9, + "end": 29336.04, + "probability": 0.932 + }, + { + "start": 29336.08, + "end": 29341.72, + "probability": 0.9976 + }, + { + "start": 29342.6, + "end": 29342.8, + "probability": 0.0392 + }, + { + "start": 29342.8, + "end": 29347.8, + "probability": 0.7347 + }, + { + "start": 29348.26, + "end": 29354.0, + "probability": 0.9944 + }, + { + "start": 29354.82, + "end": 29359.8, + "probability": 0.9663 + }, + { + "start": 29360.22, + "end": 29363.28, + "probability": 0.7167 + }, + { + "start": 29364.16, + "end": 29368.74, + "probability": 0.9742 + }, + { + "start": 29368.86, + "end": 29372.8, + "probability": 0.8901 + }, + { + "start": 29372.8, + "end": 29373.42, + "probability": 0.7485 + }, + { + "start": 29373.58, + "end": 29376.68, + "probability": 0.8577 + }, + { + "start": 29376.68, + "end": 29383.02, + "probability": 0.9199 + }, + { + "start": 29383.08, + "end": 29388.2, + "probability": 0.9889 + }, + { + "start": 29388.86, + "end": 29394.72, + "probability": 0.9619 + }, + { + "start": 29394.82, + "end": 29395.08, + "probability": 0.7326 + }, + { + "start": 29395.52, + "end": 29397.44, + "probability": 0.9741 + }, + { + "start": 29397.64, + "end": 29401.32, + "probability": 0.9742 + }, + { + "start": 29401.42, + "end": 29403.18, + "probability": 0.4817 + }, + { + "start": 29403.78, + "end": 29405.76, + "probability": 0.8318 + }, + { + "start": 29406.16, + "end": 29408.0, + "probability": 0.925 + }, + { + "start": 29408.14, + "end": 29410.72, + "probability": 0.9671 + }, + { + "start": 29426.98, + "end": 29427.44, + "probability": 0.3567 + }, + { + "start": 29429.12, + "end": 29434.38, + "probability": 0.8848 + }, + { + "start": 29439.88, + "end": 29441.36, + "probability": 0.4853 + }, + { + "start": 29442.18, + "end": 29445.42, + "probability": 0.4288 + }, + { + "start": 29445.52, + "end": 29447.08, + "probability": 0.9729 + }, + { + "start": 29447.08, + "end": 29447.64, + "probability": 0.4672 + }, + { + "start": 29447.64, + "end": 29448.39, + "probability": 0.746 + }, + { + "start": 29449.84, + "end": 29451.2, + "probability": 0.8719 + }, + { + "start": 29451.98, + "end": 29452.98, + "probability": 0.816 + }, + { + "start": 29453.1, + "end": 29455.7, + "probability": 0.9686 + }, + { + "start": 29457.56, + "end": 29462.7, + "probability": 0.9764 + }, + { + "start": 29472.86, + "end": 29475.04, + "probability": 0.4541 + }, + { + "start": 29476.72, + "end": 29477.62, + "probability": 0.7187 + }, + { + "start": 29478.84, + "end": 29482.38, + "probability": 0.9832 + }, + { + "start": 29483.22, + "end": 29485.96, + "probability": 0.6937 + }, + { + "start": 29486.84, + "end": 29489.44, + "probability": 0.1473 + }, + { + "start": 29489.44, + "end": 29489.68, + "probability": 0.0459 + }, + { + "start": 29491.26, + "end": 29495.06, + "probability": 0.9087 + }, + { + "start": 29495.92, + "end": 29498.36, + "probability": 0.993 + }, + { + "start": 29498.52, + "end": 29499.2, + "probability": 0.8644 + }, + { + "start": 29501.69, + "end": 29505.88, + "probability": 0.9605 + }, + { + "start": 29507.3, + "end": 29509.74, + "probability": 0.984 + }, + { + "start": 29509.74, + "end": 29514.4, + "probability": 0.9591 + }, + { + "start": 29515.12, + "end": 29519.82, + "probability": 0.7549 + }, + { + "start": 29520.42, + "end": 29522.84, + "probability": 0.777 + }, + { + "start": 29523.96, + "end": 29526.7, + "probability": 0.9912 + }, + { + "start": 29526.7, + "end": 29531.1, + "probability": 0.9765 + }, + { + "start": 29531.76, + "end": 29535.5, + "probability": 0.961 + }, + { + "start": 29536.3, + "end": 29539.14, + "probability": 0.718 + }, + { + "start": 29539.92, + "end": 29541.24, + "probability": 0.9939 + }, + { + "start": 29542.94, + "end": 29543.84, + "probability": 0.7043 + }, + { + "start": 29544.5, + "end": 29545.78, + "probability": 0.693 + }, + { + "start": 29547.92, + "end": 29550.54, + "probability": 0.1323 + }, + { + "start": 29551.84, + "end": 29554.36, + "probability": 0.6711 + }, + { + "start": 29555.62, + "end": 29557.17, + "probability": 0.4104 + }, + { + "start": 29558.38, + "end": 29562.6, + "probability": 0.9964 + }, + { + "start": 29563.24, + "end": 29565.4, + "probability": 0.9993 + }, + { + "start": 29565.92, + "end": 29570.3, + "probability": 0.7786 + }, + { + "start": 29571.16, + "end": 29573.12, + "probability": 0.7633 + }, + { + "start": 29575.72, + "end": 29579.0, + "probability": 0.9868 + }, + { + "start": 29580.82, + "end": 29582.02, + "probability": 0.176 + }, + { + "start": 29585.98, + "end": 29589.02, + "probability": 0.6686 + }, + { + "start": 29589.7, + "end": 29592.6, + "probability": 0.8981 + }, + { + "start": 29592.6, + "end": 29596.26, + "probability": 0.9971 + }, + { + "start": 29596.26, + "end": 29601.54, + "probability": 0.9985 + }, + { + "start": 29601.94, + "end": 29605.08, + "probability": 0.9973 + }, + { + "start": 29605.08, + "end": 29609.04, + "probability": 0.9806 + }, + { + "start": 29609.04, + "end": 29614.14, + "probability": 0.9946 + }, + { + "start": 29614.8, + "end": 29616.82, + "probability": 0.865 + }, + { + "start": 29617.26, + "end": 29619.6, + "probability": 0.9877 + }, + { + "start": 29619.94, + "end": 29623.4, + "probability": 0.9655 + }, + { + "start": 29624.6, + "end": 29624.84, + "probability": 0.2288 + }, + { + "start": 29630.3, + "end": 29631.3, + "probability": 0.398 + }, + { + "start": 29632.28, + "end": 29638.34, + "probability": 0.678 + }, + { + "start": 29642.02, + "end": 29645.2, + "probability": 0.8984 + }, + { + "start": 29645.76, + "end": 29650.42, + "probability": 0.9883 + }, + { + "start": 29650.42, + "end": 29653.9, + "probability": 0.7909 + }, + { + "start": 29654.86, + "end": 29656.96, + "probability": 0.5407 + }, + { + "start": 29657.02, + "end": 29658.4, + "probability": 0.9622 + }, + { + "start": 29658.48, + "end": 29659.34, + "probability": 0.695 + }, + { + "start": 29660.28, + "end": 29661.02, + "probability": 0.519 + }, + { + "start": 29661.24, + "end": 29663.34, + "probability": 0.9363 + }, + { + "start": 29663.44, + "end": 29665.62, + "probability": 0.7656 + }, + { + "start": 29665.74, + "end": 29666.22, + "probability": 0.8087 + }, + { + "start": 29667.1, + "end": 29669.02, + "probability": 0.9966 + }, + { + "start": 29669.44, + "end": 29671.08, + "probability": 0.9147 + }, + { + "start": 29671.6, + "end": 29673.12, + "probability": 0.8148 + }, + { + "start": 29674.22, + "end": 29675.72, + "probability": 0.9785 + }, + { + "start": 29675.84, + "end": 29676.62, + "probability": 0.7401 + }, + { + "start": 29676.68, + "end": 29677.28, + "probability": 0.8335 + }, + { + "start": 29677.6, + "end": 29677.88, + "probability": 0.8749 + }, + { + "start": 29677.96, + "end": 29678.98, + "probability": 0.9049 + }, + { + "start": 29679.28, + "end": 29680.88, + "probability": 0.9973 + }, + { + "start": 29681.4, + "end": 29682.8, + "probability": 0.9666 + }, + { + "start": 29683.12, + "end": 29685.68, + "probability": 0.9909 + }, + { + "start": 29687.98, + "end": 29690.06, + "probability": 0.8738 + }, + { + "start": 29690.34, + "end": 29691.32, + "probability": 0.865 + }, + { + "start": 29691.38, + "end": 29691.88, + "probability": 0.5169 + }, + { + "start": 29692.88, + "end": 29695.3, + "probability": 0.8336 + }, + { + "start": 29707.76, + "end": 29708.7, + "probability": 0.7049 + }, + { + "start": 29709.52, + "end": 29710.38, + "probability": 0.6046 + }, + { + "start": 29710.6, + "end": 29711.4, + "probability": 0.6822 + }, + { + "start": 29711.66, + "end": 29713.98, + "probability": 0.7919 + }, + { + "start": 29714.34, + "end": 29716.34, + "probability": 0.9824 + }, + { + "start": 29716.48, + "end": 29718.26, + "probability": 0.785 + }, + { + "start": 29719.06, + "end": 29724.64, + "probability": 0.918 + }, + { + "start": 29725.22, + "end": 29729.78, + "probability": 0.9984 + }, + { + "start": 29730.54, + "end": 29731.18, + "probability": 0.8245 + }, + { + "start": 29731.6, + "end": 29732.62, + "probability": 0.729 + }, + { + "start": 29733.1, + "end": 29739.52, + "probability": 0.9733 + }, + { + "start": 29740.3, + "end": 29740.9, + "probability": 0.9885 + }, + { + "start": 29741.86, + "end": 29743.16, + "probability": 0.9494 + }, + { + "start": 29743.74, + "end": 29747.94, + "probability": 0.9433 + }, + { + "start": 29748.2, + "end": 29748.98, + "probability": 0.8595 + }, + { + "start": 29749.32, + "end": 29751.5, + "probability": 0.5966 + }, + { + "start": 29751.66, + "end": 29752.42, + "probability": 0.9845 + }, + { + "start": 29752.42, + "end": 29755.15, + "probability": 0.9552 + }, + { + "start": 29756.2, + "end": 29757.24, + "probability": 0.9954 + }, + { + "start": 29758.2, + "end": 29759.3, + "probability": 0.9912 + }, + { + "start": 29759.5, + "end": 29763.52, + "probability": 0.9838 + }, + { + "start": 29764.0, + "end": 29764.7, + "probability": 0.7207 + }, + { + "start": 29764.8, + "end": 29765.32, + "probability": 0.5183 + }, + { + "start": 29765.38, + "end": 29766.24, + "probability": 0.7991 + }, + { + "start": 29766.68, + "end": 29769.16, + "probability": 0.8982 + }, + { + "start": 29769.78, + "end": 29771.02, + "probability": 0.8879 + }, + { + "start": 29771.5, + "end": 29776.86, + "probability": 0.9916 + }, + { + "start": 29777.62, + "end": 29779.44, + "probability": 0.8727 + }, + { + "start": 29780.08, + "end": 29787.78, + "probability": 0.998 + }, + { + "start": 29787.86, + "end": 29793.68, + "probability": 0.9707 + }, + { + "start": 29794.18, + "end": 29795.56, + "probability": 0.7489 + }, + { + "start": 29796.28, + "end": 29797.24, + "probability": 0.5339 + }, + { + "start": 29797.62, + "end": 29801.88, + "probability": 0.9717 + }, + { + "start": 29802.7, + "end": 29804.98, + "probability": 0.7039 + }, + { + "start": 29805.54, + "end": 29810.43, + "probability": 0.9879 + }, + { + "start": 29811.34, + "end": 29815.64, + "probability": 0.9891 + }, + { + "start": 29815.98, + "end": 29817.18, + "probability": 0.9575 + }, + { + "start": 29817.28, + "end": 29817.82, + "probability": 0.9725 + }, + { + "start": 29818.38, + "end": 29822.38, + "probability": 0.9963 + }, + { + "start": 29822.66, + "end": 29823.82, + "probability": 0.6753 + }, + { + "start": 29824.38, + "end": 29826.68, + "probability": 0.9052 + }, + { + "start": 29827.44, + "end": 29829.3, + "probability": 0.9089 + }, + { + "start": 29829.32, + "end": 29832.36, + "probability": 0.9966 + }, + { + "start": 29832.6, + "end": 29834.04, + "probability": 0.8407 + }, + { + "start": 29834.08, + "end": 29834.92, + "probability": 0.8875 + }, + { + "start": 29835.96, + "end": 29840.1, + "probability": 0.8992 + }, + { + "start": 29840.24, + "end": 29841.58, + "probability": 0.9862 + }, + { + "start": 29842.08, + "end": 29847.9, + "probability": 0.9782 + }, + { + "start": 29848.9, + "end": 29849.4, + "probability": 0.4917 + }, + { + "start": 29850.1, + "end": 29850.14, + "probability": 0.3562 + }, + { + "start": 29850.14, + "end": 29851.3, + "probability": 0.9851 + }, + { + "start": 29851.94, + "end": 29856.84, + "probability": 0.9976 + }, + { + "start": 29857.6, + "end": 29858.68, + "probability": 0.943 + }, + { + "start": 29858.84, + "end": 29861.06, + "probability": 0.9722 + }, + { + "start": 29861.52, + "end": 29866.4, + "probability": 0.9932 + }, + { + "start": 29867.34, + "end": 29869.88, + "probability": 0.8554 + }, + { + "start": 29869.98, + "end": 29870.88, + "probability": 0.984 + }, + { + "start": 29871.18, + "end": 29873.5, + "probability": 0.994 + }, + { + "start": 29874.22, + "end": 29878.48, + "probability": 0.9786 + }, + { + "start": 29878.66, + "end": 29882.84, + "probability": 0.983 + }, + { + "start": 29883.24, + "end": 29884.72, + "probability": 0.978 + }, + { + "start": 29884.78, + "end": 29885.66, + "probability": 0.9526 + }, + { + "start": 29885.78, + "end": 29886.76, + "probability": 0.5007 + }, + { + "start": 29886.88, + "end": 29889.5, + "probability": 0.8829 + }, + { + "start": 29890.12, + "end": 29894.38, + "probability": 0.9512 + }, + { + "start": 29895.26, + "end": 29897.15, + "probability": 0.9829 + }, + { + "start": 29898.02, + "end": 29901.66, + "probability": 0.9967 + }, + { + "start": 29901.74, + "end": 29902.4, + "probability": 0.8662 + }, + { + "start": 29902.52, + "end": 29902.94, + "probability": 0.8848 + }, + { + "start": 29903.26, + "end": 29905.94, + "probability": 0.9775 + }, + { + "start": 29906.4, + "end": 29910.6, + "probability": 0.9423 + }, + { + "start": 29911.78, + "end": 29915.08, + "probability": 0.9973 + }, + { + "start": 29915.08, + "end": 29920.54, + "probability": 0.9874 + }, + { + "start": 29921.24, + "end": 29922.4, + "probability": 0.9502 + }, + { + "start": 29922.98, + "end": 29925.38, + "probability": 0.9941 + }, + { + "start": 29925.86, + "end": 29927.52, + "probability": 0.5344 + }, + { + "start": 29927.98, + "end": 29928.66, + "probability": 0.6098 + }, + { + "start": 29928.94, + "end": 29932.48, + "probability": 0.9989 + }, + { + "start": 29932.92, + "end": 29937.94, + "probability": 0.9962 + }, + { + "start": 29937.94, + "end": 29941.82, + "probability": 0.9985 + }, + { + "start": 29942.12, + "end": 29948.1, + "probability": 0.9974 + }, + { + "start": 29948.48, + "end": 29955.64, + "probability": 0.9989 + }, + { + "start": 29956.44, + "end": 29958.0, + "probability": 0.9877 + }, + { + "start": 29958.16, + "end": 29958.78, + "probability": 0.7917 + }, + { + "start": 29959.22, + "end": 29961.32, + "probability": 0.8805 + }, + { + "start": 29961.4, + "end": 29963.16, + "probability": 0.8779 + }, + { + "start": 29972.88, + "end": 29973.44, + "probability": 0.3078 + }, + { + "start": 29974.18, + "end": 29975.5, + "probability": 0.6278 + }, + { + "start": 29976.76, + "end": 29978.08, + "probability": 0.7712 + }, + { + "start": 29978.2, + "end": 29982.64, + "probability": 0.9867 + }, + { + "start": 29983.62, + "end": 29987.28, + "probability": 0.9879 + }, + { + "start": 29987.68, + "end": 29990.96, + "probability": 0.8397 + }, + { + "start": 29990.96, + "end": 29994.52, + "probability": 0.8441 + }, + { + "start": 29997.04, + "end": 29998.42, + "probability": 0.9692 + }, + { + "start": 29999.7, + "end": 30001.42, + "probability": 0.9851 + }, + { + "start": 30001.98, + "end": 30002.84, + "probability": 0.7873 + }, + { + "start": 30003.52, + "end": 30003.92, + "probability": 0.6655 + }, + { + "start": 30004.0, + "end": 30005.58, + "probability": 0.8389 + }, + { + "start": 30006.84, + "end": 30007.76, + "probability": 0.1684 + }, + { + "start": 30008.0, + "end": 30008.1, + "probability": 0.9492 + }, + { + "start": 30009.84, + "end": 30011.2, + "probability": 0.7416 + }, + { + "start": 30011.54, + "end": 30011.66, + "probability": 0.6586 + }, + { + "start": 30013.37, + "end": 30016.16, + "probability": 0.9419 + }, + { + "start": 30016.64, + "end": 30020.28, + "probability": 0.9973 + }, + { + "start": 30020.38, + "end": 30021.1, + "probability": 0.391 + }, + { + "start": 30021.16, + "end": 30025.24, + "probability": 0.6771 + }, + { + "start": 30025.7, + "end": 30027.6, + "probability": 0.9775 + }, + { + "start": 30028.54, + "end": 30031.28, + "probability": 0.9974 + }, + { + "start": 30031.8, + "end": 30032.78, + "probability": 0.8704 + }, + { + "start": 30032.86, + "end": 30038.08, + "probability": 0.998 + }, + { + "start": 30038.12, + "end": 30042.16, + "probability": 0.9935 + }, + { + "start": 30042.8, + "end": 30044.06, + "probability": 0.9979 + }, + { + "start": 30044.62, + "end": 30047.94, + "probability": 0.965 + }, + { + "start": 30047.98, + "end": 30050.82, + "probability": 0.9843 + }, + { + "start": 30051.28, + "end": 30052.16, + "probability": 0.5446 + }, + { + "start": 30052.54, + "end": 30054.38, + "probability": 0.6378 + }, + { + "start": 30055.38, + "end": 30056.72, + "probability": 0.9657 + }, + { + "start": 30057.5, + "end": 30058.62, + "probability": 0.6435 + }, + { + "start": 30058.98, + "end": 30060.0, + "probability": 0.9934 + }, + { + "start": 30060.14, + "end": 30062.18, + "probability": 0.8958 + }, + { + "start": 30063.04, + "end": 30063.34, + "probability": 0.1454 + }, + { + "start": 30063.34, + "end": 30064.18, + "probability": 0.4174 + }, + { + "start": 30064.4, + "end": 30066.14, + "probability": 0.6434 + }, + { + "start": 30066.5, + "end": 30066.98, + "probability": 0.7497 + }, + { + "start": 30068.38, + "end": 30071.28, + "probability": 0.9983 + }, + { + "start": 30072.06, + "end": 30073.7, + "probability": 0.9023 + }, + { + "start": 30074.04, + "end": 30077.58, + "probability": 0.9958 + }, + { + "start": 30077.58, + "end": 30079.98, + "probability": 0.9993 + }, + { + "start": 30080.12, + "end": 30080.82, + "probability": 0.7768 + }, + { + "start": 30081.48, + "end": 30084.36, + "probability": 0.9686 + }, + { + "start": 30085.42, + "end": 30087.16, + "probability": 0.941 + }, + { + "start": 30087.24, + "end": 30089.62, + "probability": 0.9968 + }, + { + "start": 30089.62, + "end": 30092.16, + "probability": 0.998 + }, + { + "start": 30093.04, + "end": 30096.7, + "probability": 0.9289 + }, + { + "start": 30097.28, + "end": 30103.28, + "probability": 0.9982 + }, + { + "start": 30104.0, + "end": 30105.42, + "probability": 0.7681 + }, + { + "start": 30105.58, + "end": 30107.04, + "probability": 0.9947 + }, + { + "start": 30108.08, + "end": 30109.78, + "probability": 0.9714 + }, + { + "start": 30109.92, + "end": 30111.78, + "probability": 0.9738 + }, + { + "start": 30111.96, + "end": 30114.8, + "probability": 0.9937 + }, + { + "start": 30115.36, + "end": 30120.58, + "probability": 0.9982 + }, + { + "start": 30120.9, + "end": 30124.46, + "probability": 0.9988 + }, + { + "start": 30124.98, + "end": 30130.0, + "probability": 0.9946 + }, + { + "start": 30130.1, + "end": 30135.12, + "probability": 0.953 + }, + { + "start": 30135.34, + "end": 30136.72, + "probability": 0.9966 + }, + { + "start": 30137.82, + "end": 30140.32, + "probability": 0.9726 + }, + { + "start": 30140.48, + "end": 30141.8, + "probability": 0.7041 + }, + { + "start": 30142.04, + "end": 30142.7, + "probability": 0.9534 + }, + { + "start": 30142.76, + "end": 30147.54, + "probability": 0.8293 + }, + { + "start": 30147.78, + "end": 30148.0, + "probability": 0.5037 + }, + { + "start": 30148.0, + "end": 30149.04, + "probability": 0.7854 + }, + { + "start": 30149.12, + "end": 30151.04, + "probability": 0.9875 + }, + { + "start": 30151.54, + "end": 30155.14, + "probability": 0.6614 + }, + { + "start": 30155.48, + "end": 30155.6, + "probability": 0.4952 + }, + { + "start": 30155.84, + "end": 30155.84, + "probability": 0.5586 + }, + { + "start": 30155.96, + "end": 30157.6, + "probability": 0.9622 + }, + { + "start": 30158.96, + "end": 30161.28, + "probability": 0.9018 + }, + { + "start": 30161.32, + "end": 30161.96, + "probability": 0.8186 + }, + { + "start": 30162.54, + "end": 30164.1, + "probability": 0.7398 + }, + { + "start": 30164.6, + "end": 30168.46, + "probability": 0.9969 + }, + { + "start": 30169.16, + "end": 30170.66, + "probability": 0.9971 + }, + { + "start": 30171.4, + "end": 30172.12, + "probability": 0.9126 + }, + { + "start": 30172.26, + "end": 30172.78, + "probability": 0.9629 + }, + { + "start": 30172.92, + "end": 30173.64, + "probability": 0.5545 + }, + { + "start": 30173.72, + "end": 30174.76, + "probability": 0.5637 + }, + { + "start": 30174.88, + "end": 30175.3, + "probability": 0.9794 + }, + { + "start": 30176.54, + "end": 30177.62, + "probability": 0.8252 + }, + { + "start": 30177.7, + "end": 30179.56, + "probability": 0.6241 + }, + { + "start": 30179.66, + "end": 30183.64, + "probability": 0.8127 + }, + { + "start": 30184.12, + "end": 30185.34, + "probability": 0.8544 + }, + { + "start": 30185.62, + "end": 30188.94, + "probability": 0.8137 + }, + { + "start": 30188.96, + "end": 30189.95, + "probability": 0.5809 + }, + { + "start": 30191.82, + "end": 30192.94, + "probability": 0.7905 + }, + { + "start": 30192.94, + "end": 30193.58, + "probability": 0.3168 + }, + { + "start": 30193.7, + "end": 30199.54, + "probability": 0.979 + }, + { + "start": 30200.2, + "end": 30202.0, + "probability": 0.7874 + }, + { + "start": 30202.76, + "end": 30204.08, + "probability": 0.9723 + }, + { + "start": 30204.84, + "end": 30206.76, + "probability": 0.472 + }, + { + "start": 30207.0, + "end": 30209.39, + "probability": 0.6005 + }, + { + "start": 30209.88, + "end": 30211.02, + "probability": 0.5995 + }, + { + "start": 30211.36, + "end": 30211.86, + "probability": 0.2454 + }, + { + "start": 30211.86, + "end": 30213.92, + "probability": 0.465 + }, + { + "start": 30213.92, + "end": 30215.06, + "probability": 0.9574 + }, + { + "start": 30215.7, + "end": 30218.7, + "probability": 0.6221 + }, + { + "start": 30218.7, + "end": 30221.56, + "probability": 0.1055 + }, + { + "start": 30221.92, + "end": 30221.92, + "probability": 0.3253 + }, + { + "start": 30221.92, + "end": 30222.6, + "probability": 0.6646 + }, + { + "start": 30223.04, + "end": 30223.9, + "probability": 0.8751 + }, + { + "start": 30224.3, + "end": 30226.94, + "probability": 0.8194 + }, + { + "start": 30226.94, + "end": 30229.38, + "probability": 0.7222 + }, + { + "start": 30232.64, + "end": 30233.42, + "probability": 0.2042 + }, + { + "start": 30234.3, + "end": 30235.6, + "probability": 0.2372 + }, + { + "start": 30236.28, + "end": 30237.7, + "probability": 0.2922 + }, + { + "start": 30238.7, + "end": 30239.14, + "probability": 0.0537 + }, + { + "start": 30239.66, + "end": 30240.36, + "probability": 0.162 + }, + { + "start": 30240.42, + "end": 30240.42, + "probability": 0.3205 + }, + { + "start": 30240.42, + "end": 30242.88, + "probability": 0.5144 + }, + { + "start": 30242.88, + "end": 30246.06, + "probability": 0.8362 + }, + { + "start": 30249.1, + "end": 30251.78, + "probability": 0.1221 + }, + { + "start": 30251.78, + "end": 30252.42, + "probability": 0.2029 + }, + { + "start": 30252.42, + "end": 30253.24, + "probability": 0.7592 + }, + { + "start": 30253.36, + "end": 30254.94, + "probability": 0.975 + }, + { + "start": 30255.08, + "end": 30256.3, + "probability": 0.8046 + }, + { + "start": 30256.52, + "end": 30257.44, + "probability": 0.0653 + }, + { + "start": 30258.96, + "end": 30262.14, + "probability": 0.1179 + }, + { + "start": 30262.52, + "end": 30265.1, + "probability": 0.0903 + }, + { + "start": 30265.84, + "end": 30267.74, + "probability": 0.2948 + }, + { + "start": 30267.86, + "end": 30269.62, + "probability": 0.7094 + }, + { + "start": 30270.52, + "end": 30273.0, + "probability": 0.9185 + }, + { + "start": 30273.64, + "end": 30275.75, + "probability": 0.995 + }, + { + "start": 30276.44, + "end": 30278.06, + "probability": 0.5266 + }, + { + "start": 30278.58, + "end": 30281.52, + "probability": 0.9902 + }, + { + "start": 30281.68, + "end": 30282.46, + "probability": 0.9435 + }, + { + "start": 30282.7, + "end": 30285.32, + "probability": 0.998 + }, + { + "start": 30285.88, + "end": 30290.52, + "probability": 0.99 + }, + { + "start": 30290.8, + "end": 30292.48, + "probability": 0.8456 + }, + { + "start": 30292.78, + "end": 30293.59, + "probability": 0.94 + }, + { + "start": 30294.0, + "end": 30298.8, + "probability": 0.9398 + }, + { + "start": 30305.0, + "end": 30307.0, + "probability": 0.8423 + }, + { + "start": 30307.08, + "end": 30308.16, + "probability": 0.8821 + }, + { + "start": 30308.24, + "end": 30312.0, + "probability": 0.9579 + }, + { + "start": 30312.2, + "end": 30313.32, + "probability": 0.2358 + }, + { + "start": 30314.24, + "end": 30317.14, + "probability": 0.1403 + }, + { + "start": 30321.1, + "end": 30323.02, + "probability": 0.8511 + }, + { + "start": 30323.22, + "end": 30324.64, + "probability": 0.2986 + }, + { + "start": 30325.12, + "end": 30326.1, + "probability": 0.4544 + }, + { + "start": 30327.04, + "end": 30330.0, + "probability": 0.8109 + }, + { + "start": 30330.2, + "end": 30333.42, + "probability": 0.9223 + }, + { + "start": 30334.36, + "end": 30335.0, + "probability": 0.8223 + }, + { + "start": 30335.14, + "end": 30335.94, + "probability": 0.7551 + }, + { + "start": 30335.94, + "end": 30341.82, + "probability": 0.9896 + }, + { + "start": 30341.84, + "end": 30342.24, + "probability": 0.4363 + }, + { + "start": 30342.24, + "end": 30346.06, + "probability": 0.7114 + }, + { + "start": 30346.22, + "end": 30346.22, + "probability": 0.4145 + }, + { + "start": 30346.22, + "end": 30347.08, + "probability": 0.8092 + }, + { + "start": 30347.64, + "end": 30349.7, + "probability": 0.9902 + }, + { + "start": 30349.74, + "end": 30352.66, + "probability": 0.9688 + }, + { + "start": 30353.82, + "end": 30356.04, + "probability": 0.7592 + }, + { + "start": 30356.08, + "end": 30361.24, + "probability": 0.9856 + }, + { + "start": 30361.36, + "end": 30362.27, + "probability": 0.7236 + }, + { + "start": 30362.9, + "end": 30363.67, + "probability": 0.8224 + }, + { + "start": 30364.02, + "end": 30365.32, + "probability": 0.9932 + }, + { + "start": 30366.1, + "end": 30368.19, + "probability": 0.9683 + }, + { + "start": 30368.32, + "end": 30369.42, + "probability": 0.9883 + }, + { + "start": 30369.98, + "end": 30372.04, + "probability": 0.6647 + }, + { + "start": 30372.78, + "end": 30374.82, + "probability": 0.9958 + }, + { + "start": 30375.02, + "end": 30375.7, + "probability": 0.7109 + }, + { + "start": 30376.02, + "end": 30376.95, + "probability": 0.9839 + }, + { + "start": 30377.22, + "end": 30382.22, + "probability": 0.9545 + }, + { + "start": 30382.4, + "end": 30382.58, + "probability": 0.8549 + }, + { + "start": 30382.62, + "end": 30383.02, + "probability": 0.6498 + }, + { + "start": 30383.04, + "end": 30383.75, + "probability": 0.6197 + }, + { + "start": 30383.88, + "end": 30384.4, + "probability": 0.9618 + }, + { + "start": 30384.82, + "end": 30385.82, + "probability": 0.7993 + }, + { + "start": 30386.34, + "end": 30386.94, + "probability": 0.6089 + }, + { + "start": 30387.08, + "end": 30387.63, + "probability": 0.8359 + }, + { + "start": 30388.88, + "end": 30389.46, + "probability": 0.9441 + }, + { + "start": 30389.58, + "end": 30390.5, + "probability": 0.822 + }, + { + "start": 30390.66, + "end": 30391.62, + "probability": 0.824 + }, + { + "start": 30391.74, + "end": 30393.92, + "probability": 0.9866 + }, + { + "start": 30395.12, + "end": 30395.78, + "probability": 0.8877 + }, + { + "start": 30396.5, + "end": 30397.1, + "probability": 0.9408 + }, + { + "start": 30397.82, + "end": 30399.6, + "probability": 0.98 + }, + { + "start": 30399.9, + "end": 30400.64, + "probability": 0.98 + }, + { + "start": 30401.36, + "end": 30402.26, + "probability": 0.9463 + }, + { + "start": 30403.14, + "end": 30404.64, + "probability": 0.9956 + }, + { + "start": 30405.4, + "end": 30406.76, + "probability": 0.9014 + }, + { + "start": 30406.9, + "end": 30410.86, + "probability": 0.9666 + }, + { + "start": 30411.58, + "end": 30412.54, + "probability": 0.9595 + }, + { + "start": 30413.04, + "end": 30415.22, + "probability": 0.9009 + }, + { + "start": 30415.74, + "end": 30416.02, + "probability": 0.4484 + }, + { + "start": 30416.32, + "end": 30418.18, + "probability": 0.7598 + }, + { + "start": 30418.3, + "end": 30419.94, + "probability": 0.9165 + }, + { + "start": 30420.34, + "end": 30422.1, + "probability": 0.9446 + }, + { + "start": 30422.22, + "end": 30424.44, + "probability": 0.9847 + }, + { + "start": 30425.16, + "end": 30426.46, + "probability": 0.9899 + }, + { + "start": 30426.82, + "end": 30429.84, + "probability": 0.9963 + }, + { + "start": 30430.26, + "end": 30432.06, + "probability": 0.943 + }, + { + "start": 30432.16, + "end": 30433.03, + "probability": 0.8648 + }, + { + "start": 30433.2, + "end": 30433.3, + "probability": 0.3518 + }, + { + "start": 30433.9, + "end": 30436.84, + "probability": 0.9179 + }, + { + "start": 30437.14, + "end": 30437.84, + "probability": 0.9599 + }, + { + "start": 30438.64, + "end": 30442.14, + "probability": 0.9927 + }, + { + "start": 30442.14, + "end": 30444.5, + "probability": 0.939 + }, + { + "start": 30444.68, + "end": 30446.34, + "probability": 0.8725 + }, + { + "start": 30446.94, + "end": 30450.3, + "probability": 0.9957 + }, + { + "start": 30450.6, + "end": 30451.34, + "probability": 0.9501 + }, + { + "start": 30451.4, + "end": 30452.38, + "probability": 0.9978 + }, + { + "start": 30452.56, + "end": 30455.24, + "probability": 0.9985 + }, + { + "start": 30455.28, + "end": 30457.28, + "probability": 0.9782 + }, + { + "start": 30458.26, + "end": 30460.92, + "probability": 0.9979 + }, + { + "start": 30462.0, + "end": 30463.24, + "probability": 0.8955 + }, + { + "start": 30463.62, + "end": 30464.58, + "probability": 0.9421 + }, + { + "start": 30465.18, + "end": 30467.2, + "probability": 0.9425 + }, + { + "start": 30467.24, + "end": 30468.04, + "probability": 0.3956 + }, + { + "start": 30468.04, + "end": 30469.36, + "probability": 0.7116 + }, + { + "start": 30469.48, + "end": 30470.7, + "probability": 0.5706 + }, + { + "start": 30470.96, + "end": 30471.94, + "probability": 0.808 + }, + { + "start": 30472.22, + "end": 30473.88, + "probability": 0.8345 + }, + { + "start": 30474.0, + "end": 30476.26, + "probability": 0.8841 + }, + { + "start": 30476.42, + "end": 30478.78, + "probability": 0.8313 + }, + { + "start": 30478.78, + "end": 30480.22, + "probability": 0.8755 + }, + { + "start": 30480.28, + "end": 30480.28, + "probability": 0.3559 + }, + { + "start": 30480.28, + "end": 30481.31, + "probability": 0.7207 + }, + { + "start": 30482.26, + "end": 30483.24, + "probability": 0.9296 + }, + { + "start": 30484.12, + "end": 30488.7, + "probability": 0.9546 + }, + { + "start": 30489.38, + "end": 30490.52, + "probability": 0.858 + }, + { + "start": 30491.12, + "end": 30493.24, + "probability": 0.9257 + }, + { + "start": 30493.38, + "end": 30494.32, + "probability": 0.9305 + }, + { + "start": 30494.72, + "end": 30495.46, + "probability": 0.9545 + }, + { + "start": 30495.56, + "end": 30496.46, + "probability": 0.9493 + }, + { + "start": 30497.28, + "end": 30499.14, + "probability": 0.9974 + }, + { + "start": 30499.56, + "end": 30500.87, + "probability": 0.9941 + }, + { + "start": 30501.82, + "end": 30502.24, + "probability": 0.5961 + }, + { + "start": 30503.18, + "end": 30505.2, + "probability": 0.9961 + }, + { + "start": 30505.46, + "end": 30509.32, + "probability": 0.7799 + }, + { + "start": 30509.9, + "end": 30512.94, + "probability": 0.8601 + }, + { + "start": 30513.42, + "end": 30514.22, + "probability": 0.957 + }, + { + "start": 30515.12, + "end": 30517.08, + "probability": 0.9534 + }, + { + "start": 30517.6, + "end": 30518.9, + "probability": 0.543 + }, + { + "start": 30519.0, + "end": 30521.76, + "probability": 0.9905 + }, + { + "start": 30521.92, + "end": 30525.2, + "probability": 0.8134 + }, + { + "start": 30525.54, + "end": 30526.2, + "probability": 0.9388 + }, + { + "start": 30526.28, + "end": 30527.08, + "probability": 0.9551 + }, + { + "start": 30527.72, + "end": 30529.66, + "probability": 0.9946 + }, + { + "start": 30529.8, + "end": 30532.4, + "probability": 0.9967 + }, + { + "start": 30533.0, + "end": 30534.74, + "probability": 0.9684 + }, + { + "start": 30535.12, + "end": 30536.68, + "probability": 0.744 + }, + { + "start": 30537.18, + "end": 30539.5, + "probability": 0.9819 + }, + { + "start": 30539.98, + "end": 30541.04, + "probability": 0.9687 + }, + { + "start": 30541.36, + "end": 30542.5, + "probability": 0.9901 + }, + { + "start": 30542.9, + "end": 30543.62, + "probability": 0.9963 + }, + { + "start": 30543.98, + "end": 30544.6, + "probability": 0.9894 + }, + { + "start": 30544.82, + "end": 30545.22, + "probability": 0.4857 + }, + { + "start": 30545.86, + "end": 30548.1, + "probability": 0.8419 + }, + { + "start": 30548.2, + "end": 30548.32, + "probability": 0.0616 + }, + { + "start": 30548.38, + "end": 30549.94, + "probability": 0.9827 + }, + { + "start": 30550.0, + "end": 30552.64, + "probability": 0.9932 + }, + { + "start": 30553.34, + "end": 30554.68, + "probability": 0.9893 + }, + { + "start": 30555.52, + "end": 30557.28, + "probability": 0.8611 + }, + { + "start": 30557.74, + "end": 30559.66, + "probability": 0.916 + }, + { + "start": 30560.48, + "end": 30561.34, + "probability": 0.8687 + }, + { + "start": 30561.96, + "end": 30563.18, + "probability": 0.725 + }, + { + "start": 30563.48, + "end": 30564.58, + "probability": 0.8159 + }, + { + "start": 30564.94, + "end": 30566.6, + "probability": 0.9565 + }, + { + "start": 30567.06, + "end": 30567.9, + "probability": 0.958 + }, + { + "start": 30567.98, + "end": 30568.94, + "probability": 0.854 + }, + { + "start": 30569.54, + "end": 30570.48, + "probability": 0.9614 + }, + { + "start": 30571.1, + "end": 30572.96, + "probability": 0.9966 + }, + { + "start": 30573.26, + "end": 30574.58, + "probability": 0.9933 + }, + { + "start": 30574.62, + "end": 30575.41, + "probability": 0.938 + }, + { + "start": 30575.84, + "end": 30576.6, + "probability": 0.6982 + }, + { + "start": 30576.72, + "end": 30579.44, + "probability": 0.9366 + }, + { + "start": 30579.62, + "end": 30583.82, + "probability": 0.856 + }, + { + "start": 30584.36, + "end": 30586.2, + "probability": 0.9961 + }, + { + "start": 30586.6, + "end": 30587.96, + "probability": 0.9951 + }, + { + "start": 30588.18, + "end": 30589.38, + "probability": 0.998 + }, + { + "start": 30589.44, + "end": 30589.8, + "probability": 0.7443 + }, + { + "start": 30589.82, + "end": 30590.06, + "probability": 0.909 + }, + { + "start": 30590.12, + "end": 30592.4, + "probability": 0.9527 + }, + { + "start": 30592.54, + "end": 30593.14, + "probability": 0.6014 + }, + { + "start": 30593.5, + "end": 30594.52, + "probability": 0.9818 + }, + { + "start": 30594.58, + "end": 30595.08, + "probability": 0.861 + }, + { + "start": 30595.48, + "end": 30597.16, + "probability": 0.984 + }, + { + "start": 30598.27, + "end": 30601.08, + "probability": 0.7875 + }, + { + "start": 30601.28, + "end": 30603.76, + "probability": 0.7079 + }, + { + "start": 30603.76, + "end": 30604.68, + "probability": 0.7852 + }, + { + "start": 30605.06, + "end": 30606.36, + "probability": 0.9625 + }, + { + "start": 30610.44, + "end": 30614.7, + "probability": 0.2921 + }, + { + "start": 30616.78, + "end": 30616.9, + "probability": 0.1847 + }, + { + "start": 30616.98, + "end": 30617.44, + "probability": 0.6277 + }, + { + "start": 30627.54, + "end": 30628.74, + "probability": 0.9806 + }, + { + "start": 30628.86, + "end": 30632.15, + "probability": 0.8545 + }, + { + "start": 30635.1, + "end": 30635.36, + "probability": 0.8297 + }, + { + "start": 30636.38, + "end": 30638.01, + "probability": 0.6129 + }, + { + "start": 30639.96, + "end": 30641.0, + "probability": 0.9612 + }, + { + "start": 30641.4, + "end": 30642.68, + "probability": 0.971 + }, + { + "start": 30642.82, + "end": 30646.28, + "probability": 0.9689 + }, + { + "start": 30647.36, + "end": 30653.48, + "probability": 0.9875 + }, + { + "start": 30654.66, + "end": 30658.94, + "probability": 0.9979 + }, + { + "start": 30659.92, + "end": 30665.52, + "probability": 0.9995 + }, + { + "start": 30666.08, + "end": 30669.74, + "probability": 0.9996 + }, + { + "start": 30669.74, + "end": 30673.82, + "probability": 1.0 + }, + { + "start": 30674.74, + "end": 30682.26, + "probability": 0.9956 + }, + { + "start": 30682.9, + "end": 30685.58, + "probability": 0.9575 + }, + { + "start": 30686.88, + "end": 30689.16, + "probability": 0.9378 + }, + { + "start": 30690.14, + "end": 30695.24, + "probability": 0.9618 + }, + { + "start": 30695.64, + "end": 30696.77, + "probability": 0.9441 + }, + { + "start": 30696.98, + "end": 30698.5, + "probability": 0.3828 + }, + { + "start": 30698.86, + "end": 30700.08, + "probability": 0.9302 + }, + { + "start": 30701.84, + "end": 30701.86, + "probability": 0.317 + }, + { + "start": 30702.06, + "end": 30703.16, + "probability": 0.9266 + }, + { + "start": 30703.44, + "end": 30707.84, + "probability": 0.9551 + }, + { + "start": 30708.6, + "end": 30711.14, + "probability": 0.9812 + }, + { + "start": 30712.18, + "end": 30715.54, + "probability": 0.9924 + }, + { + "start": 30716.62, + "end": 30722.08, + "probability": 0.9897 + }, + { + "start": 30723.46, + "end": 30729.52, + "probability": 0.9901 + }, + { + "start": 30729.52, + "end": 30736.02, + "probability": 0.999 + }, + { + "start": 30737.08, + "end": 30741.18, + "probability": 0.9769 + }, + { + "start": 30743.1, + "end": 30743.75, + "probability": 0.8706 + }, + { + "start": 30745.24, + "end": 30745.94, + "probability": 0.6719 + }, + { + "start": 30746.54, + "end": 30750.5, + "probability": 0.9392 + }, + { + "start": 30751.56, + "end": 30754.46, + "probability": 0.9347 + }, + { + "start": 30755.06, + "end": 30757.72, + "probability": 0.9272 + }, + { + "start": 30758.44, + "end": 30763.2, + "probability": 0.9578 + }, + { + "start": 30765.04, + "end": 30770.7, + "probability": 0.9928 + }, + { + "start": 30771.84, + "end": 30777.26, + "probability": 0.9901 + }, + { + "start": 30777.64, + "end": 30781.0, + "probability": 0.9922 + }, + { + "start": 30782.08, + "end": 30783.68, + "probability": 0.9751 + }, + { + "start": 30784.28, + "end": 30787.72, + "probability": 0.9905 + }, + { + "start": 30788.08, + "end": 30789.4, + "probability": 0.5164 + }, + { + "start": 30789.6, + "end": 30790.32, + "probability": 0.6141 + }, + { + "start": 30790.96, + "end": 30791.78, + "probability": 0.7613 + }, + { + "start": 30792.42, + "end": 30795.66, + "probability": 0.9694 + }, + { + "start": 30796.86, + "end": 30799.7, + "probability": 0.7703 + }, + { + "start": 30800.4, + "end": 30806.44, + "probability": 0.9944 + }, + { + "start": 30807.78, + "end": 30809.8, + "probability": 0.786 + }, + { + "start": 30810.82, + "end": 30817.22, + "probability": 0.9976 + }, + { + "start": 30817.94, + "end": 30819.08, + "probability": 0.9612 + }, + { + "start": 30821.18, + "end": 30827.24, + "probability": 0.9704 + }, + { + "start": 30827.76, + "end": 30830.66, + "probability": 0.8947 + }, + { + "start": 30831.82, + "end": 30833.24, + "probability": 0.993 + }, + { + "start": 30834.14, + "end": 30836.04, + "probability": 0.9973 + }, + { + "start": 30836.26, + "end": 30836.86, + "probability": 0.5411 + }, + { + "start": 30837.52, + "end": 30839.54, + "probability": 0.9246 + }, + { + "start": 30839.76, + "end": 30841.7, + "probability": 0.9871 + }, + { + "start": 30842.32, + "end": 30844.12, + "probability": 0.9958 + }, + { + "start": 30845.38, + "end": 30851.08, + "probability": 0.9972 + }, + { + "start": 30852.16, + "end": 30852.32, + "probability": 0.4358 + }, + { + "start": 30852.42, + "end": 30853.66, + "probability": 0.7969 + }, + { + "start": 30853.78, + "end": 30860.88, + "probability": 0.9974 + }, + { + "start": 30861.7, + "end": 30862.16, + "probability": 0.7247 + }, + { + "start": 30862.28, + "end": 30863.4, + "probability": 0.993 + }, + { + "start": 30863.48, + "end": 30871.24, + "probability": 0.9948 + }, + { + "start": 30871.8, + "end": 30873.86, + "probability": 0.9796 + }, + { + "start": 30874.6, + "end": 30876.78, + "probability": 0.9976 + }, + { + "start": 30877.7, + "end": 30881.48, + "probability": 0.9952 + }, + { + "start": 30881.64, + "end": 30882.72, + "probability": 0.9847 + }, + { + "start": 30883.58, + "end": 30885.06, + "probability": 0.9872 + }, + { + "start": 30885.66, + "end": 30892.52, + "probability": 0.9902 + }, + { + "start": 30892.98, + "end": 30893.62, + "probability": 0.8171 + }, + { + "start": 30894.2, + "end": 30894.9, + "probability": 0.7342 + }, + { + "start": 30895.92, + "end": 30900.54, + "probability": 0.9985 + }, + { + "start": 30901.82, + "end": 30903.38, + "probability": 0.7241 + }, + { + "start": 30904.2, + "end": 30906.5, + "probability": 0.9934 + }, + { + "start": 30907.1, + "end": 30907.38, + "probability": 0.8215 + }, + { + "start": 30907.5, + "end": 30908.83, + "probability": 0.8737 + }, + { + "start": 30908.94, + "end": 30912.26, + "probability": 0.9503 + }, + { + "start": 30913.04, + "end": 30913.24, + "probability": 0.8606 + }, + { + "start": 30913.32, + "end": 30914.6, + "probability": 0.9819 + }, + { + "start": 30914.72, + "end": 30918.8, + "probability": 0.9936 + }, + { + "start": 30919.72, + "end": 30925.6, + "probability": 0.9943 + }, + { + "start": 30926.08, + "end": 30929.06, + "probability": 0.998 + }, + { + "start": 30929.52, + "end": 30934.0, + "probability": 0.994 + }, + { + "start": 30934.38, + "end": 30936.2, + "probability": 0.9595 + }, + { + "start": 30936.54, + "end": 30938.24, + "probability": 0.9962 + }, + { + "start": 30939.12, + "end": 30942.84, + "probability": 0.9046 + }, + { + "start": 30946.4, + "end": 30946.5, + "probability": 0.2504 + }, + { + "start": 30946.5, + "end": 30946.5, + "probability": 0.0159 + }, + { + "start": 30946.5, + "end": 30947.38, + "probability": 0.5141 + }, + { + "start": 30947.68, + "end": 30949.9, + "probability": 0.8328 + }, + { + "start": 30951.2, + "end": 30958.9, + "probability": 0.7886 + }, + { + "start": 30962.96, + "end": 30962.96, + "probability": 0.5433 + }, + { + "start": 30962.96, + "end": 30962.96, + "probability": 0.0356 + }, + { + "start": 30962.96, + "end": 30963.5, + "probability": 0.1679 + }, + { + "start": 30964.76, + "end": 30966.16, + "probability": 0.8958 + }, + { + "start": 30966.58, + "end": 30967.9, + "probability": 0.9588 + }, + { + "start": 30967.96, + "end": 30970.58, + "probability": 0.9049 + }, + { + "start": 30971.04, + "end": 30973.44, + "probability": 0.9893 + }, + { + "start": 30973.64, + "end": 30975.8, + "probability": 0.9294 + }, + { + "start": 30975.86, + "end": 30978.84, + "probability": 0.7415 + }, + { + "start": 30978.94, + "end": 30979.8, + "probability": 0.8737 + }, + { + "start": 30980.46, + "end": 30982.14, + "probability": 0.9873 + }, + { + "start": 30982.2, + "end": 30983.84, + "probability": 0.7041 + }, + { + "start": 30984.32, + "end": 30986.42, + "probability": 0.9907 + }, + { + "start": 30986.96, + "end": 30989.54, + "probability": 0.9929 + }, + { + "start": 30989.94, + "end": 30994.1, + "probability": 0.9912 + }, + { + "start": 30994.66, + "end": 30998.26, + "probability": 0.994 + }, + { + "start": 30998.82, + "end": 31000.82, + "probability": 0.9548 + }, + { + "start": 31000.96, + "end": 31005.5, + "probability": 0.9963 + }, + { + "start": 31006.2, + "end": 31008.56, + "probability": 0.9295 + }, + { + "start": 31008.56, + "end": 31012.02, + "probability": 0.9742 + }, + { + "start": 31012.52, + "end": 31013.51, + "probability": 0.987 + }, + { + "start": 31013.63, + "end": 31014.25, + "probability": 0.8395 + }, + { + "start": 31014.33, + "end": 31015.89, + "probability": 0.7243 + }, + { + "start": 31016.19, + "end": 31018.21, + "probability": 0.9451 + }, + { + "start": 31019.31, + "end": 31019.87, + "probability": 0.9548 + }, + { + "start": 31020.61, + "end": 31022.21, + "probability": 0.9938 + }, + { + "start": 31022.95, + "end": 31025.39, + "probability": 0.9968 + }, + { + "start": 31025.39, + "end": 31028.23, + "probability": 0.9917 + }, + { + "start": 31028.41, + "end": 31029.15, + "probability": 0.9821 + }, + { + "start": 31029.91, + "end": 31031.97, + "probability": 0.9984 + }, + { + "start": 31032.55, + "end": 31034.27, + "probability": 0.9976 + }, + { + "start": 31034.39, + "end": 31036.13, + "probability": 0.9881 + }, + { + "start": 31036.49, + "end": 31038.39, + "probability": 0.9517 + }, + { + "start": 31038.49, + "end": 31040.35, + "probability": 0.8196 + }, + { + "start": 31040.65, + "end": 31041.01, + "probability": 0.6034 + }, + { + "start": 31041.67, + "end": 31043.77, + "probability": 0.9127 + }, + { + "start": 31043.87, + "end": 31046.21, + "probability": 0.8169 + }, + { + "start": 31046.67, + "end": 31049.07, + "probability": 0.9985 + }, + { + "start": 31049.61, + "end": 31050.07, + "probability": 0.273 + }, + { + "start": 31050.07, + "end": 31050.23, + "probability": 0.9679 + }, + { + "start": 31050.35, + "end": 31051.65, + "probability": 0.9818 + }, + { + "start": 31051.65, + "end": 31054.11, + "probability": 0.9951 + }, + { + "start": 31054.11, + "end": 31056.25, + "probability": 0.9991 + }, + { + "start": 31057.19, + "end": 31059.93, + "probability": 0.999 + }, + { + "start": 31059.99, + "end": 31061.31, + "probability": 0.8167 + }, + { + "start": 31061.41, + "end": 31061.93, + "probability": 0.505 + }, + { + "start": 31062.37, + "end": 31062.81, + "probability": 0.6181 + }, + { + "start": 31062.89, + "end": 31065.99, + "probability": 0.9983 + }, + { + "start": 31065.99, + "end": 31068.93, + "probability": 0.9849 + }, + { + "start": 31069.41, + "end": 31071.11, + "probability": 0.8325 + }, + { + "start": 31071.75, + "end": 31073.18, + "probability": 0.9968 + }, + { + "start": 31073.29, + "end": 31073.59, + "probability": 0.8788 + }, + { + "start": 31073.71, + "end": 31076.69, + "probability": 0.9894 + }, + { + "start": 31076.89, + "end": 31079.67, + "probability": 0.9117 + }, + { + "start": 31080.39, + "end": 31082.83, + "probability": 0.7333 + }, + { + "start": 31082.83, + "end": 31083.95, + "probability": 0.9374 + }, + { + "start": 31084.79, + "end": 31085.73, + "probability": 0.9053 + }, + { + "start": 31085.83, + "end": 31086.17, + "probability": 0.4083 + }, + { + "start": 31086.23, + "end": 31087.11, + "probability": 0.8716 + }, + { + "start": 31087.93, + "end": 31091.67, + "probability": 0.9215 + }, + { + "start": 31092.21, + "end": 31093.79, + "probability": 0.4918 + }, + { + "start": 31094.49, + "end": 31097.61, + "probability": 0.8924 + }, + { + "start": 31097.73, + "end": 31098.97, + "probability": 0.9081 + }, + { + "start": 31099.47, + "end": 31100.59, + "probability": 0.9906 + }, + { + "start": 31101.17, + "end": 31104.03, + "probability": 0.9882 + }, + { + "start": 31104.99, + "end": 31106.43, + "probability": 0.9572 + }, + { + "start": 31106.69, + "end": 31107.39, + "probability": 0.9029 + }, + { + "start": 31107.51, + "end": 31108.55, + "probability": 0.8298 + }, + { + "start": 31108.91, + "end": 31111.09, + "probability": 0.9888 + }, + { + "start": 31111.63, + "end": 31112.41, + "probability": 0.7859 + }, + { + "start": 31112.47, + "end": 31113.21, + "probability": 0.7836 + }, + { + "start": 31113.25, + "end": 31116.54, + "probability": 0.8676 + }, + { + "start": 31116.75, + "end": 31117.43, + "probability": 0.5316 + }, + { + "start": 31117.73, + "end": 31117.95, + "probability": 0.8692 + }, + { + "start": 31117.95, + "end": 31120.85, + "probability": 0.9803 + }, + { + "start": 31120.93, + "end": 31122.69, + "probability": 0.9932 + }, + { + "start": 31122.83, + "end": 31123.65, + "probability": 0.9667 + }, + { + "start": 31124.45, + "end": 31125.89, + "probability": 0.9977 + }, + { + "start": 31126.49, + "end": 31130.87, + "probability": 0.993 + }, + { + "start": 31131.71, + "end": 31134.33, + "probability": 0.6099 + }, + { + "start": 31134.41, + "end": 31136.77, + "probability": 0.7579 + }, + { + "start": 31137.39, + "end": 31141.83, + "probability": 0.9019 + }, + { + "start": 31141.89, + "end": 31146.57, + "probability": 0.8994 + }, + { + "start": 31147.13, + "end": 31150.49, + "probability": 0.9888 + }, + { + "start": 31150.53, + "end": 31152.61, + "probability": 0.9565 + }, + { + "start": 31153.33, + "end": 31155.17, + "probability": 0.998 + }, + { + "start": 31155.31, + "end": 31156.01, + "probability": 0.5916 + }, + { + "start": 31156.87, + "end": 31164.09, + "probability": 0.9747 + }, + { + "start": 31164.69, + "end": 31166.29, + "probability": 0.9957 + }, + { + "start": 31166.39, + "end": 31168.03, + "probability": 0.9907 + }, + { + "start": 31168.43, + "end": 31171.61, + "probability": 0.9235 + }, + { + "start": 31172.29, + "end": 31173.65, + "probability": 0.5012 + }, + { + "start": 31174.23, + "end": 31175.69, + "probability": 0.9712 + }, + { + "start": 31176.01, + "end": 31178.39, + "probability": 0.8163 + }, + { + "start": 31178.55, + "end": 31179.27, + "probability": 0.6514 + }, + { + "start": 31179.35, + "end": 31180.33, + "probability": 0.984 + }, + { + "start": 31181.01, + "end": 31183.39, + "probability": 0.9669 + }, + { + "start": 31184.01, + "end": 31186.45, + "probability": 0.98 + }, + { + "start": 31187.13, + "end": 31188.99, + "probability": 0.9927 + }, + { + "start": 31189.11, + "end": 31189.83, + "probability": 0.7555 + }, + { + "start": 31189.91, + "end": 31190.59, + "probability": 0.9235 + }, + { + "start": 31190.95, + "end": 31192.29, + "probability": 0.991 + }, + { + "start": 31192.83, + "end": 31193.37, + "probability": 0.739 + }, + { + "start": 31193.57, + "end": 31196.21, + "probability": 0.99 + }, + { + "start": 31196.51, + "end": 31198.49, + "probability": 0.9949 + }, + { + "start": 31199.13, + "end": 31200.94, + "probability": 0.811 + }, + { + "start": 31201.31, + "end": 31201.75, + "probability": 0.4219 + }, + { + "start": 31201.79, + "end": 31201.81, + "probability": 0.4069 + }, + { + "start": 31201.89, + "end": 31204.97, + "probability": 0.992 + }, + { + "start": 31204.99, + "end": 31205.21, + "probability": 0.977 + }, + { + "start": 31205.37, + "end": 31206.59, + "probability": 0.97 + }, + { + "start": 31207.15, + "end": 31207.83, + "probability": 0.9517 + }, + { + "start": 31208.61, + "end": 31212.97, + "probability": 0.9795 + }, + { + "start": 31213.27, + "end": 31213.73, + "probability": 0.7177 + }, + { + "start": 31213.83, + "end": 31214.35, + "probability": 0.8357 + }, + { + "start": 31214.55, + "end": 31214.75, + "probability": 0.5303 + }, + { + "start": 31214.87, + "end": 31217.55, + "probability": 0.9822 + }, + { + "start": 31218.63, + "end": 31220.99, + "probability": 0.9932 + }, + { + "start": 31221.57, + "end": 31221.87, + "probability": 0.4753 + }, + { + "start": 31222.73, + "end": 31223.89, + "probability": 0.9517 + }, + { + "start": 31224.29, + "end": 31225.43, + "probability": 0.8037 + }, + { + "start": 31225.55, + "end": 31226.45, + "probability": 0.9083 + }, + { + "start": 31226.57, + "end": 31229.09, + "probability": 0.9214 + }, + { + "start": 31229.51, + "end": 31233.53, + "probability": 0.9938 + }, + { + "start": 31233.83, + "end": 31234.65, + "probability": 0.5856 + }, + { + "start": 31234.91, + "end": 31239.01, + "probability": 0.9935 + }, + { + "start": 31239.55, + "end": 31241.67, + "probability": 0.9045 + }, + { + "start": 31242.11, + "end": 31243.27, + "probability": 0.8873 + }, + { + "start": 31243.51, + "end": 31243.99, + "probability": 0.9232 + }, + { + "start": 31247.83, + "end": 31248.43, + "probability": 0.8113 + }, + { + "start": 31248.47, + "end": 31251.46, + "probability": 0.9824 + }, + { + "start": 31252.09, + "end": 31255.03, + "probability": 0.9121 + }, + { + "start": 31257.15, + "end": 31258.59, + "probability": 0.9468 + }, + { + "start": 31259.99, + "end": 31261.83, + "probability": 0.6218 + }, + { + "start": 31261.85, + "end": 31262.73, + "probability": 0.7905 + }, + { + "start": 31262.95, + "end": 31263.43, + "probability": 0.6612 + }, + { + "start": 31263.83, + "end": 31264.87, + "probability": 0.6918 + }, + { + "start": 31265.91, + "end": 31267.71, + "probability": 0.916 + }, + { + "start": 31267.87, + "end": 31271.57, + "probability": 0.7918 + }, + { + "start": 31271.57, + "end": 31274.47, + "probability": 0.9718 + }, + { + "start": 31274.99, + "end": 31278.97, + "probability": 0.9988 + }, + { + "start": 31281.61, + "end": 31285.79, + "probability": 0.9989 + }, + { + "start": 31286.25, + "end": 31289.11, + "probability": 0.9962 + }, + { + "start": 31289.63, + "end": 31290.59, + "probability": 0.7297 + }, + { + "start": 31290.67, + "end": 31294.03, + "probability": 0.9921 + }, + { + "start": 31294.25, + "end": 31294.81, + "probability": 0.743 + }, + { + "start": 31295.23, + "end": 31296.15, + "probability": 0.7414 + }, + { + "start": 31296.67, + "end": 31304.21, + "probability": 0.9612 + }, + { + "start": 31304.27, + "end": 31305.66, + "probability": 0.952 + }, + { + "start": 31307.39, + "end": 31313.13, + "probability": 0.9867 + }, + { + "start": 31313.63, + "end": 31318.83, + "probability": 0.8982 + }, + { + "start": 31319.55, + "end": 31321.99, + "probability": 0.9822 + }, + { + "start": 31322.51, + "end": 31326.35, + "probability": 0.991 + }, + { + "start": 31326.76, + "end": 31327.39, + "probability": 0.7793 + }, + { + "start": 31327.71, + "end": 31332.71, + "probability": 0.9988 + }, + { + "start": 31332.87, + "end": 31333.99, + "probability": 0.8781 + }, + { + "start": 31334.11, + "end": 31336.63, + "probability": 0.9782 + }, + { + "start": 31336.71, + "end": 31338.13, + "probability": 0.9651 + }, + { + "start": 31338.63, + "end": 31340.15, + "probability": 0.9548 + }, + { + "start": 31341.45, + "end": 31344.21, + "probability": 0.7735 + }, + { + "start": 31346.79, + "end": 31351.27, + "probability": 0.9684 + }, + { + "start": 31352.71, + "end": 31357.01, + "probability": 0.9985 + }, + { + "start": 31357.55, + "end": 31358.39, + "probability": 0.2612 + }, + { + "start": 31359.07, + "end": 31362.69, + "probability": 0.9502 + }, + { + "start": 31363.33, + "end": 31364.17, + "probability": 0.7681 + }, + { + "start": 31364.47, + "end": 31368.74, + "probability": 0.9658 + }, + { + "start": 31369.61, + "end": 31371.61, + "probability": 0.9956 + }, + { + "start": 31372.45, + "end": 31375.41, + "probability": 0.9902 + }, + { + "start": 31376.15, + "end": 31378.25, + "probability": 0.8663 + }, + { + "start": 31378.75, + "end": 31381.05, + "probability": 0.0781 + }, + { + "start": 31381.79, + "end": 31381.99, + "probability": 0.0279 + }, + { + "start": 31383.45, + "end": 31384.45, + "probability": 0.2492 + }, + { + "start": 31385.13, + "end": 31385.15, + "probability": 0.041 + }, + { + "start": 31385.73, + "end": 31386.61, + "probability": 0.1096 + }, + { + "start": 31386.65, + "end": 31390.35, + "probability": 0.0249 + }, + { + "start": 31390.35, + "end": 31390.63, + "probability": 0.1324 + }, + { + "start": 31391.35, + "end": 31396.43, + "probability": 0.0763 + }, + { + "start": 31397.59, + "end": 31401.01, + "probability": 0.0083 + }, + { + "start": 31401.92, + "end": 31403.7, + "probability": 0.0266 + }, + { + "start": 31403.75, + "end": 31410.13, + "probability": 0.0686 + }, + { + "start": 31410.31, + "end": 31411.17, + "probability": 0.0675 + }, + { + "start": 31411.97, + "end": 31413.43, + "probability": 0.1898 + }, + { + "start": 31416.74, + "end": 31418.74, + "probability": 0.2509 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31452.0, + "end": 31452.0, + "probability": 0.0 + }, + { + "start": 31455.26, + "end": 31457.58, + "probability": 0.4082 + }, + { + "start": 31460.44, + "end": 31461.26, + "probability": 0.5589 + }, + { + "start": 31461.28, + "end": 31463.0, + "probability": 0.6473 + }, + { + "start": 31463.36, + "end": 31465.46, + "probability": 0.4905 + }, + { + "start": 31466.0, + "end": 31467.46, + "probability": 0.9863 + }, + { + "start": 31468.24, + "end": 31471.36, + "probability": 0.9653 + }, + { + "start": 31471.94, + "end": 31473.84, + "probability": 0.9953 + }, + { + "start": 31474.48, + "end": 31475.24, + "probability": 0.9397 + }, + { + "start": 31476.24, + "end": 31478.26, + "probability": 0.915 + }, + { + "start": 31479.12, + "end": 31480.88, + "probability": 0.5272 + }, + { + "start": 31481.02, + "end": 31482.28, + "probability": 0.8499 + }, + { + "start": 31482.74, + "end": 31483.82, + "probability": 0.9619 + }, + { + "start": 31484.74, + "end": 31486.88, + "probability": 0.9795 + }, + { + "start": 31488.06, + "end": 31489.1, + "probability": 0.9411 + }, + { + "start": 31490.73, + "end": 31491.64, + "probability": 0.0136 + }, + { + "start": 31491.64, + "end": 31491.99, + "probability": 0.7632 + }, + { + "start": 31492.62, + "end": 31494.81, + "probability": 0.9897 + }, + { + "start": 31495.16, + "end": 31496.42, + "probability": 0.9132 + }, + { + "start": 31496.8, + "end": 31497.8, + "probability": 0.9446 + }, + { + "start": 31498.24, + "end": 31500.14, + "probability": 0.9759 + }, + { + "start": 31500.54, + "end": 31502.9, + "probability": 0.5359 + }, + { + "start": 31503.18, + "end": 31503.74, + "probability": 0.6089 + }, + { + "start": 31504.26, + "end": 31507.68, + "probability": 0.9489 + }, + { + "start": 31508.18, + "end": 31508.5, + "probability": 0.8203 + }, + { + "start": 31508.92, + "end": 31510.92, + "probability": 0.5643 + }, + { + "start": 31511.6, + "end": 31512.22, + "probability": 0.8643 + }, + { + "start": 31512.88, + "end": 31513.94, + "probability": 0.9542 + }, + { + "start": 31514.62, + "end": 31517.46, + "probability": 0.9867 + }, + { + "start": 31518.24, + "end": 31520.66, + "probability": 0.9395 + }, + { + "start": 31520.8, + "end": 31521.26, + "probability": 0.7695 + }, + { + "start": 31521.32, + "end": 31524.3, + "probability": 0.9053 + }, + { + "start": 31524.74, + "end": 31526.78, + "probability": 0.6312 + }, + { + "start": 31527.02, + "end": 31527.38, + "probability": 0.5916 + }, + { + "start": 31527.42, + "end": 31528.36, + "probability": 0.8662 + }, + { + "start": 31528.74, + "end": 31531.08, + "probability": 0.9161 + }, + { + "start": 31531.34, + "end": 31533.54, + "probability": 0.9756 + }, + { + "start": 31533.92, + "end": 31537.82, + "probability": 0.9849 + }, + { + "start": 31539.2, + "end": 31541.3, + "probability": 0.9904 + }, + { + "start": 31541.86, + "end": 31542.81, + "probability": 0.969 + }, + { + "start": 31543.48, + "end": 31545.33, + "probability": 0.9928 + }, + { + "start": 31546.0, + "end": 31547.14, + "probability": 0.9839 + }, + { + "start": 31547.64, + "end": 31548.74, + "probability": 0.9008 + }, + { + "start": 31549.12, + "end": 31552.14, + "probability": 0.9766 + }, + { + "start": 31552.38, + "end": 31553.42, + "probability": 0.9851 + }, + { + "start": 31553.54, + "end": 31555.24, + "probability": 0.9741 + }, + { + "start": 31555.9, + "end": 31556.3, + "probability": 0.7171 + }, + { + "start": 31556.44, + "end": 31563.04, + "probability": 0.9936 + }, + { + "start": 31563.66, + "end": 31564.78, + "probability": 0.5864 + }, + { + "start": 31565.22, + "end": 31568.86, + "probability": 0.9937 + }, + { + "start": 31569.58, + "end": 31572.35, + "probability": 0.9975 + }, + { + "start": 31573.0, + "end": 31573.92, + "probability": 0.7025 + }, + { + "start": 31574.22, + "end": 31577.84, + "probability": 0.9889 + }, + { + "start": 31578.28, + "end": 31580.94, + "probability": 0.988 + }, + { + "start": 31581.52, + "end": 31586.5, + "probability": 0.8593 + }, + { + "start": 31586.84, + "end": 31588.27, + "probability": 0.8939 + }, + { + "start": 31589.04, + "end": 31591.98, + "probability": 0.9916 + }, + { + "start": 31592.46, + "end": 31593.98, + "probability": 0.9943 + }, + { + "start": 31594.26, + "end": 31595.08, + "probability": 0.9238 + }, + { + "start": 31595.38, + "end": 31597.92, + "probability": 0.9812 + }, + { + "start": 31598.46, + "end": 31600.16, + "probability": 0.8231 + }, + { + "start": 31600.54, + "end": 31602.16, + "probability": 0.9951 + }, + { + "start": 31602.46, + "end": 31602.74, + "probability": 0.7308 + }, + { + "start": 31603.56, + "end": 31605.9, + "probability": 0.8922 + }, + { + "start": 31606.02, + "end": 31607.86, + "probability": 0.7914 + }, + { + "start": 31628.38, + "end": 31628.84, + "probability": 0.5074 + }, + { + "start": 31629.36, + "end": 31631.44, + "probability": 0.6777 + }, + { + "start": 31632.98, + "end": 31636.84, + "probability": 0.9512 + }, + { + "start": 31637.4, + "end": 31642.94, + "probability": 0.9337 + }, + { + "start": 31643.72, + "end": 31645.92, + "probability": 0.9495 + }, + { + "start": 31646.42, + "end": 31651.64, + "probability": 0.9701 + }, + { + "start": 31651.76, + "end": 31654.56, + "probability": 0.6039 + }, + { + "start": 31655.54, + "end": 31657.7, + "probability": 0.8576 + }, + { + "start": 31658.46, + "end": 31658.64, + "probability": 0.9333 + }, + { + "start": 31659.52, + "end": 31668.16, + "probability": 0.991 + }, + { + "start": 31668.3, + "end": 31669.08, + "probability": 0.754 + }, + { + "start": 31669.36, + "end": 31671.44, + "probability": 0.9953 + }, + { + "start": 31671.52, + "end": 31673.26, + "probability": 0.8396 + }, + { + "start": 31674.06, + "end": 31675.56, + "probability": 0.9976 + }, + { + "start": 31676.2, + "end": 31678.92, + "probability": 0.9806 + }, + { + "start": 31679.84, + "end": 31684.1, + "probability": 0.8373 + }, + { + "start": 31685.16, + "end": 31690.04, + "probability": 0.9902 + }, + { + "start": 31690.66, + "end": 31694.18, + "probability": 0.6711 + }, + { + "start": 31694.66, + "end": 31698.8, + "probability": 0.5003 + }, + { + "start": 31698.8, + "end": 31698.8, + "probability": 0.0213 + }, + { + "start": 31698.8, + "end": 31698.8, + "probability": 0.0661 + }, + { + "start": 31698.8, + "end": 31704.42, + "probability": 0.8096 + }, + { + "start": 31705.1, + "end": 31705.86, + "probability": 0.8852 + }, + { + "start": 31707.16, + "end": 31710.94, + "probability": 0.9948 + }, + { + "start": 31711.62, + "end": 31713.9, + "probability": 0.7975 + }, + { + "start": 31714.84, + "end": 31723.26, + "probability": 0.9958 + }, + { + "start": 31724.16, + "end": 31724.94, + "probability": 0.9927 + }, + { + "start": 31725.76, + "end": 31726.54, + "probability": 0.7076 + }, + { + "start": 31727.28, + "end": 31732.22, + "probability": 0.9956 + }, + { + "start": 31733.1, + "end": 31735.66, + "probability": 0.9267 + }, + { + "start": 31736.24, + "end": 31739.74, + "probability": 0.9225 + }, + { + "start": 31740.46, + "end": 31745.96, + "probability": 0.9578 + }, + { + "start": 31746.88, + "end": 31748.1, + "probability": 0.9944 + }, + { + "start": 31748.9, + "end": 31749.72, + "probability": 0.8686 + }, + { + "start": 31751.16, + "end": 31752.54, + "probability": 0.8496 + }, + { + "start": 31753.04, + "end": 31757.54, + "probability": 0.998 + }, + { + "start": 31757.54, + "end": 31764.28, + "probability": 0.9869 + }, + { + "start": 31765.78, + "end": 31768.66, + "probability": 0.8663 + }, + { + "start": 31769.18, + "end": 31777.02, + "probability": 0.9799 + }, + { + "start": 31777.28, + "end": 31783.28, + "probability": 0.9938 + }, + { + "start": 31783.94, + "end": 31786.56, + "probability": 0.682 + }, + { + "start": 31787.08, + "end": 31789.76, + "probability": 0.991 + }, + { + "start": 31790.34, + "end": 31790.7, + "probability": 0.5765 + }, + { + "start": 31790.8, + "end": 31792.86, + "probability": 0.9854 + }, + { + "start": 31793.14, + "end": 31795.06, + "probability": 0.9149 + }, + { + "start": 31795.4, + "end": 31797.76, + "probability": 0.8056 + }, + { + "start": 31799.44, + "end": 31801.24, + "probability": 0.9921 + }, + { + "start": 31802.38, + "end": 31803.82, + "probability": 0.6337 + }, + { + "start": 31804.64, + "end": 31805.41, + "probability": 0.7084 + }, + { + "start": 31806.2, + "end": 31810.0, + "probability": 0.9218 + }, + { + "start": 31810.72, + "end": 31816.42, + "probability": 0.9879 + }, + { + "start": 31817.28, + "end": 31820.06, + "probability": 0.4997 + }, + { + "start": 31820.7, + "end": 31823.46, + "probability": 0.5205 + }, + { + "start": 31824.04, + "end": 31826.18, + "probability": 0.5001 + }, + { + "start": 31826.58, + "end": 31832.36, + "probability": 0.9902 + }, + { + "start": 31833.04, + "end": 31834.32, + "probability": 0.7732 + }, + { + "start": 31835.26, + "end": 31837.28, + "probability": 0.6639 + }, + { + "start": 31837.28, + "end": 31838.26, + "probability": 0.941 + }, + { + "start": 31838.86, + "end": 31840.48, + "probability": 0.9503 + }, + { + "start": 31840.86, + "end": 31844.86, + "probability": 0.9508 + }, + { + "start": 31845.08, + "end": 31845.36, + "probability": 0.6652 + }, + { + "start": 31845.36, + "end": 31847.18, + "probability": 0.6488 + }, + { + "start": 31847.22, + "end": 31848.34, + "probability": 0.6422 + }, + { + "start": 31869.08, + "end": 31870.08, + "probability": 0.6657 + }, + { + "start": 31871.08, + "end": 31871.7, + "probability": 0.6326 + }, + { + "start": 31872.92, + "end": 31873.12, + "probability": 0.3134 + }, + { + "start": 31873.74, + "end": 31875.12, + "probability": 0.8628 + }, + { + "start": 31875.8, + "end": 31881.1, + "probability": 0.8876 + }, + { + "start": 31883.28, + "end": 31887.66, + "probability": 0.9316 + }, + { + "start": 31888.06, + "end": 31892.02, + "probability": 0.9894 + }, + { + "start": 31893.04, + "end": 31896.84, + "probability": 0.9561 + }, + { + "start": 31898.96, + "end": 31903.28, + "probability": 0.864 + }, + { + "start": 31904.18, + "end": 31906.46, + "probability": 0.8638 + }, + { + "start": 31907.32, + "end": 31912.72, + "probability": 0.9327 + }, + { + "start": 31913.5, + "end": 31914.0, + "probability": 0.9829 + }, + { + "start": 31914.58, + "end": 31916.28, + "probability": 0.9409 + }, + { + "start": 31916.92, + "end": 31918.76, + "probability": 0.9644 + }, + { + "start": 31919.08, + "end": 31921.08, + "probability": 0.9254 + }, + { + "start": 31921.6, + "end": 31925.14, + "probability": 0.9785 + }, + { + "start": 31926.02, + "end": 31928.78, + "probability": 0.9941 + }, + { + "start": 31929.58, + "end": 31932.76, + "probability": 0.6971 + }, + { + "start": 31933.26, + "end": 31936.42, + "probability": 0.8135 + }, + { + "start": 31936.96, + "end": 31940.64, + "probability": 0.7233 + }, + { + "start": 31941.2, + "end": 31941.94, + "probability": 0.9128 + }, + { + "start": 31942.28, + "end": 31946.02, + "probability": 0.9805 + }, + { + "start": 31946.54, + "end": 31950.84, + "probability": 0.9918 + }, + { + "start": 31951.34, + "end": 31954.38, + "probability": 0.8832 + }, + { + "start": 31954.78, + "end": 31958.3, + "probability": 0.748 + }, + { + "start": 31959.02, + "end": 31961.24, + "probability": 0.9134 + }, + { + "start": 31961.66, + "end": 31964.44, + "probability": 0.9724 + }, + { + "start": 31964.94, + "end": 31966.98, + "probability": 0.9155 + }, + { + "start": 31967.42, + "end": 31971.16, + "probability": 0.7094 + }, + { + "start": 31971.68, + "end": 31972.42, + "probability": 0.5642 + }, + { + "start": 31973.26, + "end": 31974.46, + "probability": 0.9549 + }, + { + "start": 31974.72, + "end": 31978.98, + "probability": 0.8393 + }, + { + "start": 31979.8, + "end": 31986.46, + "probability": 0.9494 + }, + { + "start": 31987.24, + "end": 31987.42, + "probability": 0.5457 + }, + { + "start": 31987.94, + "end": 31988.62, + "probability": 0.9939 + }, + { + "start": 31989.22, + "end": 31993.74, + "probability": 0.9879 + }, + { + "start": 31995.4, + "end": 32002.66, + "probability": 0.9974 + }, + { + "start": 32004.16, + "end": 32006.48, + "probability": 0.8542 + }, + { + "start": 32007.18, + "end": 32009.28, + "probability": 0.9941 + }, + { + "start": 32009.72, + "end": 32011.98, + "probability": 0.8206 + }, + { + "start": 32012.78, + "end": 32014.62, + "probability": 0.9704 + }, + { + "start": 32015.16, + "end": 32021.68, + "probability": 0.9756 + }, + { + "start": 32022.28, + "end": 32024.8, + "probability": 0.9836 + }, + { + "start": 32025.64, + "end": 32027.04, + "probability": 0.9833 + }, + { + "start": 32027.64, + "end": 32030.16, + "probability": 0.9097 + }, + { + "start": 32032.56, + "end": 32035.94, + "probability": 0.795 + }, + { + "start": 32036.36, + "end": 32039.86, + "probability": 0.9551 + }, + { + "start": 32040.26, + "end": 32043.14, + "probability": 0.991 + }, + { + "start": 32043.56, + "end": 32046.82, + "probability": 0.9979 + }, + { + "start": 32047.12, + "end": 32050.7, + "probability": 0.9777 + }, + { + "start": 32051.08, + "end": 32056.76, + "probability": 0.9796 + }, + { + "start": 32057.12, + "end": 32059.42, + "probability": 0.985 + }, + { + "start": 32059.48, + "end": 32059.6, + "probability": 0.5354 + }, + { + "start": 32059.8, + "end": 32062.19, + "probability": 0.9038 + }, + { + "start": 32062.6, + "end": 32062.76, + "probability": 0.1585 + }, + { + "start": 32063.1, + "end": 32066.84, + "probability": 0.9989 + }, + { + "start": 32066.98, + "end": 32067.34, + "probability": 0.2098 + }, + { + "start": 32067.54, + "end": 32071.08, + "probability": 0.9769 + }, + { + "start": 32071.72, + "end": 32072.68, + "probability": 0.673 + }, + { + "start": 32072.82, + "end": 32074.36, + "probability": 0.5435 + }, + { + "start": 32074.82, + "end": 32077.6, + "probability": 0.9888 + }, + { + "start": 32078.02, + "end": 32084.12, + "probability": 0.9565 + }, + { + "start": 32084.16, + "end": 32086.08, + "probability": 0.9813 + }, + { + "start": 32086.18, + "end": 32088.42, + "probability": 0.9175 + }, + { + "start": 32088.8, + "end": 32090.16, + "probability": 0.9714 + }, + { + "start": 32091.8, + "end": 32092.96, + "probability": 0.871 + }, + { + "start": 32093.34, + "end": 32093.42, + "probability": 0.2327 + }, + { + "start": 32093.42, + "end": 32094.0, + "probability": 0.8605 + }, + { + "start": 32098.24, + "end": 32101.36, + "probability": 0.95 + }, + { + "start": 32105.0, + "end": 32105.98, + "probability": 0.9411 + }, + { + "start": 32109.42, + "end": 32112.06, + "probability": 0.6702 + }, + { + "start": 32113.8, + "end": 32117.27, + "probability": 0.9644 + }, + { + "start": 32120.88, + "end": 32121.58, + "probability": 0.7418 + }, + { + "start": 32123.66, + "end": 32127.24, + "probability": 0.9732 + }, + { + "start": 32128.76, + "end": 32129.72, + "probability": 0.9496 + }, + { + "start": 32130.7, + "end": 32137.84, + "probability": 0.9987 + }, + { + "start": 32139.8, + "end": 32141.74, + "probability": 0.8198 + }, + { + "start": 32144.44, + "end": 32145.4, + "probability": 0.9725 + }, + { + "start": 32146.86, + "end": 32152.04, + "probability": 0.9165 + }, + { + "start": 32153.6, + "end": 32158.48, + "probability": 0.9285 + }, + { + "start": 32160.22, + "end": 32170.88, + "probability": 0.9961 + }, + { + "start": 32172.86, + "end": 32176.78, + "probability": 0.8267 + }, + { + "start": 32176.92, + "end": 32177.52, + "probability": 0.531 + }, + { + "start": 32177.6, + "end": 32178.72, + "probability": 0.9941 + }, + { + "start": 32181.48, + "end": 32183.24, + "probability": 0.9959 + }, + { + "start": 32186.7, + "end": 32191.82, + "probability": 0.9944 + }, + { + "start": 32192.46, + "end": 32195.06, + "probability": 0.9545 + }, + { + "start": 32198.14, + "end": 32200.22, + "probability": 0.9957 + }, + { + "start": 32201.44, + "end": 32205.34, + "probability": 0.9972 + }, + { + "start": 32206.22, + "end": 32207.72, + "probability": 0.9917 + }, + { + "start": 32210.06, + "end": 32212.72, + "probability": 0.9936 + }, + { + "start": 32213.92, + "end": 32217.04, + "probability": 0.9928 + }, + { + "start": 32219.46, + "end": 32222.16, + "probability": 0.9857 + }, + { + "start": 32223.02, + "end": 32224.44, + "probability": 0.9328 + }, + { + "start": 32225.92, + "end": 32229.68, + "probability": 0.9973 + }, + { + "start": 32230.66, + "end": 32231.8, + "probability": 0.998 + }, + { + "start": 32235.46, + "end": 32236.34, + "probability": 0.8529 + }, + { + "start": 32237.4, + "end": 32246.52, + "probability": 0.9939 + }, + { + "start": 32248.24, + "end": 32248.88, + "probability": 0.9756 + }, + { + "start": 32253.94, + "end": 32258.16, + "probability": 0.9937 + }, + { + "start": 32259.34, + "end": 32263.04, + "probability": 0.9717 + }, + { + "start": 32263.16, + "end": 32264.12, + "probability": 0.6511 + }, + { + "start": 32267.0, + "end": 32267.86, + "probability": 0.8271 + }, + { + "start": 32269.4, + "end": 32271.91, + "probability": 0.9927 + }, + { + "start": 32274.0, + "end": 32278.88, + "probability": 0.8562 + }, + { + "start": 32280.22, + "end": 32281.7, + "probability": 0.7544 + }, + { + "start": 32282.5, + "end": 32285.1, + "probability": 0.9992 + }, + { + "start": 32285.3, + "end": 32287.14, + "probability": 0.823 + }, + { + "start": 32288.36, + "end": 32292.4, + "probability": 0.9643 + }, + { + "start": 32293.24, + "end": 32294.0, + "probability": 0.8859 + }, + { + "start": 32294.52, + "end": 32294.54, + "probability": 0.1168 + }, + { + "start": 32294.54, + "end": 32296.72, + "probability": 0.9578 + }, + { + "start": 32298.86, + "end": 32299.42, + "probability": 0.4978 + }, + { + "start": 32301.45, + "end": 32302.08, + "probability": 0.2011 + }, + { + "start": 32302.08, + "end": 32302.08, + "probability": 0.1243 + }, + { + "start": 32302.08, + "end": 32302.57, + "probability": 0.1386 + }, + { + "start": 32304.04, + "end": 32306.94, + "probability": 0.9868 + }, + { + "start": 32306.94, + "end": 32310.54, + "probability": 0.9835 + }, + { + "start": 32311.34, + "end": 32315.78, + "probability": 0.521 + }, + { + "start": 32318.48, + "end": 32318.48, + "probability": 0.1734 + }, + { + "start": 32318.48, + "end": 32322.56, + "probability": 0.9436 + }, + { + "start": 32323.1, + "end": 32328.24, + "probability": 0.9866 + }, + { + "start": 32328.9, + "end": 32329.18, + "probability": 0.5639 + }, + { + "start": 32329.18, + "end": 32330.68, + "probability": 0.5583 + }, + { + "start": 32330.82, + "end": 32332.22, + "probability": 0.6733 + }, + { + "start": 32332.24, + "end": 32333.7, + "probability": 0.7466 + }, + { + "start": 32334.38, + "end": 32334.96, + "probability": 0.7928 + }, + { + "start": 32335.4, + "end": 32338.56, + "probability": 0.5762 + }, + { + "start": 32339.66, + "end": 32340.82, + "probability": 0.2791 + }, + { + "start": 32340.82, + "end": 32342.53, + "probability": 0.6919 + }, + { + "start": 32343.24, + "end": 32344.14, + "probability": 0.7764 + }, + { + "start": 32344.7, + "end": 32345.32, + "probability": 0.0929 + }, + { + "start": 32345.82, + "end": 32347.06, + "probability": 0.6828 + }, + { + "start": 32348.2, + "end": 32349.14, + "probability": 0.3311 + }, + { + "start": 32349.14, + "end": 32349.87, + "probability": 0.397 + }, + { + "start": 32350.38, + "end": 32352.42, + "probability": 0.5597 + }, + { + "start": 32352.48, + "end": 32352.54, + "probability": 0.7578 + }, + { + "start": 32352.54, + "end": 32353.04, + "probability": 0.5852 + }, + { + "start": 32353.06, + "end": 32353.58, + "probability": 0.8056 + }, + { + "start": 32353.58, + "end": 32354.34, + "probability": 0.9169 + }, + { + "start": 32354.46, + "end": 32355.46, + "probability": 0.9246 + }, + { + "start": 32356.2, + "end": 32360.36, + "probability": 0.9934 + }, + { + "start": 32360.36, + "end": 32364.56, + "probability": 0.9951 + }, + { + "start": 32365.32, + "end": 32366.46, + "probability": 0.992 + }, + { + "start": 32366.98, + "end": 32369.0, + "probability": 0.996 + }, + { + "start": 32369.32, + "end": 32370.56, + "probability": 0.7333 + }, + { + "start": 32370.82, + "end": 32370.84, + "probability": 0.47 + }, + { + "start": 32371.02, + "end": 32375.64, + "probability": 0.9977 + }, + { + "start": 32376.06, + "end": 32376.94, + "probability": 0.9541 + }, + { + "start": 32378.34, + "end": 32379.94, + "probability": 0.9717 + }, + { + "start": 32379.98, + "end": 32380.9, + "probability": 0.9502 + }, + { + "start": 32381.34, + "end": 32382.74, + "probability": 0.984 + }, + { + "start": 32383.08, + "end": 32383.9, + "probability": 0.6605 + }, + { + "start": 32384.66, + "end": 32385.1, + "probability": 0.4278 + }, + { + "start": 32386.06, + "end": 32388.77, + "probability": 0.9961 + }, + { + "start": 32389.3, + "end": 32390.52, + "probability": 0.9307 + }, + { + "start": 32390.76, + "end": 32392.68, + "probability": 0.8207 + }, + { + "start": 32393.2, + "end": 32393.74, + "probability": 0.9832 + }, + { + "start": 32393.84, + "end": 32394.66, + "probability": 0.9646 + }, + { + "start": 32394.68, + "end": 32395.66, + "probability": 0.9853 + }, + { + "start": 32395.76, + "end": 32396.38, + "probability": 0.8938 + }, + { + "start": 32396.8, + "end": 32398.02, + "probability": 0.9897 + }, + { + "start": 32413.52, + "end": 32413.68, + "probability": 0.0917 + }, + { + "start": 32413.68, + "end": 32414.06, + "probability": 0.125 + }, + { + "start": 32414.06, + "end": 32414.06, + "probability": 0.2126 + }, + { + "start": 32414.06, + "end": 32414.06, + "probability": 0.5736 + }, + { + "start": 32414.12, + "end": 32414.96, + "probability": 0.5224 + }, + { + "start": 32415.1, + "end": 32417.64, + "probability": 0.7099 + }, + { + "start": 32418.06, + "end": 32420.3, + "probability": 0.9264 + }, + { + "start": 32422.02, + "end": 32423.0, + "probability": 0.0901 + }, + { + "start": 32423.0, + "end": 32424.1, + "probability": 0.9937 + }, + { + "start": 32424.22, + "end": 32429.65, + "probability": 0.9781 + }, + { + "start": 32431.72, + "end": 32435.74, + "probability": 0.9429 + }, + { + "start": 32435.74, + "end": 32437.94, + "probability": 0.9865 + }, + { + "start": 32438.58, + "end": 32439.22, + "probability": 0.6331 + }, + { + "start": 32439.8, + "end": 32442.24, + "probability": 0.9495 + }, + { + "start": 32442.78, + "end": 32443.88, + "probability": 0.8428 + }, + { + "start": 32445.04, + "end": 32446.16, + "probability": 0.7601 + }, + { + "start": 32446.88, + "end": 32450.26, + "probability": 0.9092 + }, + { + "start": 32450.96, + "end": 32455.18, + "probability": 0.9956 + }, + { + "start": 32455.32, + "end": 32459.08, + "probability": 0.9945 + }, + { + "start": 32459.08, + "end": 32462.22, + "probability": 0.976 + }, + { + "start": 32463.02, + "end": 32465.66, + "probability": 0.952 + }, + { + "start": 32466.16, + "end": 32467.28, + "probability": 0.9192 + }, + { + "start": 32468.28, + "end": 32472.08, + "probability": 0.9908 + }, + { + "start": 32472.86, + "end": 32474.38, + "probability": 0.8722 + }, + { + "start": 32476.06, + "end": 32477.02, + "probability": 0.8421 + }, + { + "start": 32477.74, + "end": 32478.62, + "probability": 0.7897 + }, + { + "start": 32479.8, + "end": 32481.28, + "probability": 0.745 + }, + { + "start": 32481.82, + "end": 32483.58, + "probability": 0.9455 + }, + { + "start": 32484.6, + "end": 32485.96, + "probability": 0.991 + }, + { + "start": 32486.68, + "end": 32488.16, + "probability": 0.994 + }, + { + "start": 32488.78, + "end": 32493.12, + "probability": 0.9701 + }, + { + "start": 32493.44, + "end": 32494.46, + "probability": 0.9453 + }, + { + "start": 32495.98, + "end": 32497.62, + "probability": 0.9795 + }, + { + "start": 32498.62, + "end": 32501.66, + "probability": 0.9965 + }, + { + "start": 32502.34, + "end": 32502.72, + "probability": 0.9356 + }, + { + "start": 32503.92, + "end": 32506.16, + "probability": 0.9382 + }, + { + "start": 32506.4, + "end": 32507.08, + "probability": 0.9584 + }, + { + "start": 32507.7, + "end": 32513.4, + "probability": 0.9965 + }, + { + "start": 32513.4, + "end": 32517.26, + "probability": 0.9975 + }, + { + "start": 32518.42, + "end": 32519.26, + "probability": 0.7727 + }, + { + "start": 32519.42, + "end": 32520.04, + "probability": 0.7317 + }, + { + "start": 32520.1, + "end": 32522.38, + "probability": 0.994 + }, + { + "start": 32523.1, + "end": 32525.04, + "probability": 0.9584 + }, + { + "start": 32525.08, + "end": 32526.88, + "probability": 0.9951 + }, + { + "start": 32527.88, + "end": 32532.86, + "probability": 0.9836 + }, + { + "start": 32533.34, + "end": 32533.5, + "probability": 0.488 + }, + { + "start": 32533.72, + "end": 32535.6, + "probability": 0.9341 + }, + { + "start": 32535.7, + "end": 32538.76, + "probability": 0.9888 + }, + { + "start": 32539.2, + "end": 32545.48, + "probability": 0.9973 + }, + { + "start": 32546.06, + "end": 32548.74, + "probability": 0.9886 + }, + { + "start": 32549.7, + "end": 32553.84, + "probability": 0.9971 + }, + { + "start": 32554.26, + "end": 32555.34, + "probability": 0.9868 + }, + { + "start": 32555.42, + "end": 32556.36, + "probability": 0.9924 + }, + { + "start": 32556.74, + "end": 32558.5, + "probability": 0.9951 + }, + { + "start": 32559.16, + "end": 32563.06, + "probability": 0.9453 + }, + { + "start": 32563.06, + "end": 32566.94, + "probability": 0.9985 + }, + { + "start": 32567.98, + "end": 32572.92, + "probability": 0.9943 + }, + { + "start": 32573.44, + "end": 32575.6, + "probability": 0.8069 + }, + { + "start": 32577.1, + "end": 32579.18, + "probability": 0.9973 + }, + { + "start": 32580.06, + "end": 32580.8, + "probability": 0.3887 + }, + { + "start": 32581.5, + "end": 32584.9, + "probability": 0.7275 + }, + { + "start": 32585.86, + "end": 32589.16, + "probability": 0.7926 + }, + { + "start": 32590.22, + "end": 32595.18, + "probability": 0.9313 + }, + { + "start": 32596.64, + "end": 32597.56, + "probability": 0.6947 + }, + { + "start": 32597.62, + "end": 32598.0, + "probability": 0.5333 + }, + { + "start": 32598.06, + "end": 32598.36, + "probability": 0.7108 + }, + { + "start": 32598.48, + "end": 32600.16, + "probability": 0.9613 + }, + { + "start": 32601.3, + "end": 32606.28, + "probability": 0.9879 + }, + { + "start": 32606.32, + "end": 32608.52, + "probability": 0.9966 + }, + { + "start": 32608.8, + "end": 32610.08, + "probability": 0.9279 + }, + { + "start": 32612.72, + "end": 32616.22, + "probability": 0.9839 + }, + { + "start": 32616.54, + "end": 32618.16, + "probability": 0.9683 + }, + { + "start": 32618.58, + "end": 32620.84, + "probability": 0.988 + }, + { + "start": 32620.98, + "end": 32622.4, + "probability": 0.8615 + }, + { + "start": 32622.84, + "end": 32625.6, + "probability": 0.9625 + }, + { + "start": 32626.16, + "end": 32627.56, + "probability": 0.8723 + }, + { + "start": 32628.32, + "end": 32628.8, + "probability": 0.9766 + }, + { + "start": 32629.84, + "end": 32631.42, + "probability": 0.9939 + }, + { + "start": 32631.82, + "end": 32634.5, + "probability": 0.9992 + }, + { + "start": 32634.9, + "end": 32638.22, + "probability": 0.9972 + }, + { + "start": 32638.88, + "end": 32640.54, + "probability": 0.9985 + }, + { + "start": 32641.36, + "end": 32644.57, + "probability": 0.8777 + }, + { + "start": 32646.1, + "end": 32650.28, + "probability": 0.7543 + }, + { + "start": 32651.04, + "end": 32651.62, + "probability": 0.5964 + }, + { + "start": 32651.72, + "end": 32655.47, + "probability": 0.9967 + }, + { + "start": 32656.5, + "end": 32661.36, + "probability": 0.99 + }, + { + "start": 32661.82, + "end": 32662.42, + "probability": 0.9426 + }, + { + "start": 32662.56, + "end": 32663.64, + "probability": 0.9486 + }, + { + "start": 32664.08, + "end": 32664.88, + "probability": 0.8339 + }, + { + "start": 32665.38, + "end": 32669.02, + "probability": 0.9269 + }, + { + "start": 32669.02, + "end": 32669.08, + "probability": 0.6384 + }, + { + "start": 32669.2, + "end": 32671.54, + "probability": 0.6565 + }, + { + "start": 32671.56, + "end": 32673.28, + "probability": 0.9557 + }, + { + "start": 32687.38, + "end": 32688.7, + "probability": 0.9978 + }, + { + "start": 32689.92, + "end": 32691.42, + "probability": 0.9627 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.0267 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.1056 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.0952 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.0122 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.013 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.163 + }, + { + "start": 32698.4, + "end": 32698.4, + "probability": 0.0923 + }, + { + "start": 32698.4, + "end": 32698.42, + "probability": 0.0823 + }, + { + "start": 32709.08, + "end": 32709.82, + "probability": 0.098 + }, + { + "start": 32710.08, + "end": 32712.9, + "probability": 0.0251 + }, + { + "start": 32715.38, + "end": 32716.18, + "probability": 0.0479 + }, + { + "start": 32717.12, + "end": 32719.22, + "probability": 0.0833 + }, + { + "start": 32729.45, + "end": 32729.78, + "probability": 0.0531 + }, + { + "start": 32729.86, + "end": 32732.6, + "probability": 0.1406 + }, + { + "start": 32732.62, + "end": 32733.04, + "probability": 0.1672 + }, + { + "start": 32758.32, + "end": 32760.22, + "probability": 0.711 + }, + { + "start": 32762.24, + "end": 32768.76, + "probability": 0.9654 + }, + { + "start": 32770.34, + "end": 32772.66, + "probability": 0.6947 + }, + { + "start": 32772.66, + "end": 32773.64, + "probability": 0.627 + }, + { + "start": 32775.24, + "end": 32775.96, + "probability": 0.8551 + }, + { + "start": 32776.78, + "end": 32781.5, + "probability": 0.9437 + }, + { + "start": 32783.08, + "end": 32784.65, + "probability": 0.8136 + }, + { + "start": 32786.12, + "end": 32789.62, + "probability": 0.9461 + }, + { + "start": 32791.55, + "end": 32796.27, + "probability": 0.9956 + }, + { + "start": 32797.4, + "end": 32802.66, + "probability": 0.9935 + }, + { + "start": 32803.2, + "end": 32803.38, + "probability": 0.4173 + }, + { + "start": 32803.52, + "end": 32803.7, + "probability": 0.5235 + }, + { + "start": 32803.8, + "end": 32805.02, + "probability": 0.8798 + }, + { + "start": 32805.34, + "end": 32806.9, + "probability": 0.8925 + }, + { + "start": 32807.58, + "end": 32809.12, + "probability": 0.9897 + }, + { + "start": 32809.3, + "end": 32812.8, + "probability": 0.9941 + }, + { + "start": 32813.08, + "end": 32813.94, + "probability": 0.4874 + }, + { + "start": 32815.02, + "end": 32817.46, + "probability": 0.9772 + }, + { + "start": 32818.24, + "end": 32819.42, + "probability": 0.9373 + }, + { + "start": 32820.44, + "end": 32825.62, + "probability": 0.9744 + }, + { + "start": 32826.76, + "end": 32828.57, + "probability": 0.9282 + }, + { + "start": 32829.28, + "end": 32834.98, + "probability": 0.9967 + }, + { + "start": 32835.02, + "end": 32835.7, + "probability": 0.8193 + }, + { + "start": 32835.74, + "end": 32836.42, + "probability": 0.8247 + }, + { + "start": 32837.38, + "end": 32839.84, + "probability": 0.9702 + }, + { + "start": 32840.82, + "end": 32840.84, + "probability": 0.1157 + }, + { + "start": 32841.54, + "end": 32845.22, + "probability": 0.9956 + }, + { + "start": 32845.22, + "end": 32847.8, + "probability": 0.9897 + }, + { + "start": 32848.86, + "end": 32850.0, + "probability": 0.9119 + }, + { + "start": 32851.26, + "end": 32851.8, + "probability": 0.7323 + }, + { + "start": 32852.6, + "end": 32853.94, + "probability": 0.938 + }, + { + "start": 32854.9, + "end": 32858.06, + "probability": 0.4639 + }, + { + "start": 32858.1, + "end": 32858.76, + "probability": 0.7806 + }, + { + "start": 32858.98, + "end": 32860.4, + "probability": 0.6408 + }, + { + "start": 32862.1, + "end": 32863.58, + "probability": 0.8524 + }, + { + "start": 32864.34, + "end": 32865.02, + "probability": 0.9473 + }, + { + "start": 32865.38, + "end": 32867.8, + "probability": 0.9492 + }, + { + "start": 32868.18, + "end": 32868.92, + "probability": 0.8867 + }, + { + "start": 32869.74, + "end": 32872.5, + "probability": 0.9277 + }, + { + "start": 32872.88, + "end": 32875.02, + "probability": 0.9933 + }, + { + "start": 32875.58, + "end": 32877.22, + "probability": 0.9942 + }, + { + "start": 32878.34, + "end": 32880.64, + "probability": 0.9891 + }, + { + "start": 32881.76, + "end": 32886.04, + "probability": 0.9958 + }, + { + "start": 32886.24, + "end": 32887.34, + "probability": 0.9874 + }, + { + "start": 32887.88, + "end": 32890.6, + "probability": 0.9938 + }, + { + "start": 32891.58, + "end": 32893.12, + "probability": 0.9901 + }, + { + "start": 32894.06, + "end": 32895.56, + "probability": 0.6909 + }, + { + "start": 32896.22, + "end": 32899.18, + "probability": 0.9712 + }, + { + "start": 32899.18, + "end": 32901.46, + "probability": 0.9758 + }, + { + "start": 32902.08, + "end": 32904.22, + "probability": 0.9895 + }, + { + "start": 32904.74, + "end": 32906.58, + "probability": 0.9803 + }, + { + "start": 32907.28, + "end": 32907.62, + "probability": 0.7698 + }, + { + "start": 32907.8, + "end": 32909.16, + "probability": 0.8266 + }, + { + "start": 32909.58, + "end": 32912.36, + "probability": 0.9576 + }, + { + "start": 32912.74, + "end": 32914.08, + "probability": 0.9045 + }, + { + "start": 32914.22, + "end": 32915.56, + "probability": 0.9662 + }, + { + "start": 32916.02, + "end": 32917.24, + "probability": 0.7533 + }, + { + "start": 32917.92, + "end": 32920.6, + "probability": 0.9292 + }, + { + "start": 32921.16, + "end": 32922.08, + "probability": 0.8333 + }, + { + "start": 32922.74, + "end": 32923.66, + "probability": 0.7634 + }, + { + "start": 32923.86, + "end": 32925.36, + "probability": 0.652 + }, + { + "start": 32925.82, + "end": 32926.14, + "probability": 0.4963 + }, + { + "start": 32926.22, + "end": 32927.3, + "probability": 0.7204 + }, + { + "start": 32927.8, + "end": 32929.46, + "probability": 0.8727 + }, + { + "start": 32930.22, + "end": 32931.44, + "probability": 0.6717 + }, + { + "start": 32931.52, + "end": 32932.98, + "probability": 0.9941 + }, + { + "start": 32933.92, + "end": 32938.66, + "probability": 0.9967 + }, + { + "start": 32940.06, + "end": 32941.64, + "probability": 0.9666 + }, + { + "start": 32942.64, + "end": 32944.92, + "probability": 0.9593 + }, + { + "start": 32945.66, + "end": 32946.54, + "probability": 0.6842 + }, + { + "start": 32947.32, + "end": 32948.2, + "probability": 0.8088 + }, + { + "start": 32949.14, + "end": 32950.32, + "probability": 0.8538 + }, + { + "start": 32950.5, + "end": 32954.59, + "probability": 0.9731 + }, + { + "start": 32956.12, + "end": 32957.08, + "probability": 0.8223 + }, + { + "start": 32957.98, + "end": 32959.12, + "probability": 0.9765 + }, + { + "start": 32959.58, + "end": 32961.0, + "probability": 0.9951 + }, + { + "start": 32961.36, + "end": 32962.0, + "probability": 0.9998 + }, + { + "start": 32962.76, + "end": 32966.32, + "probability": 0.9919 + }, + { + "start": 32966.94, + "end": 32968.3, + "probability": 0.9501 + }, + { + "start": 32968.96, + "end": 32969.36, + "probability": 0.6819 + }, + { + "start": 32969.5, + "end": 32973.88, + "probability": 0.9521 + }, + { + "start": 32973.94, + "end": 32977.42, + "probability": 0.8976 + }, + { + "start": 32978.0, + "end": 32981.36, + "probability": 0.9624 + }, + { + "start": 32981.82, + "end": 32982.88, + "probability": 0.5268 + }, + { + "start": 32983.51, + "end": 32985.46, + "probability": 0.979 + }, + { + "start": 32985.82, + "end": 32988.15, + "probability": 0.8903 + }, + { + "start": 32989.06, + "end": 32989.98, + "probability": 0.9544 + }, + { + "start": 32991.1, + "end": 32992.26, + "probability": 0.974 + }, + { + "start": 32993.4, + "end": 32995.16, + "probability": 0.9824 + }, + { + "start": 32995.84, + "end": 32996.2, + "probability": 0.7365 + }, + { + "start": 32996.36, + "end": 33001.32, + "probability": 0.8658 + }, + { + "start": 33001.82, + "end": 33002.52, + "probability": 0.8836 + }, + { + "start": 33003.6, + "end": 33006.16, + "probability": 0.7756 + }, + { + "start": 33006.32, + "end": 33009.96, + "probability": 0.9855 + }, + { + "start": 33010.28, + "end": 33011.54, + "probability": 0.9894 + }, + { + "start": 33011.94, + "end": 33015.28, + "probability": 0.9846 + }, + { + "start": 33016.14, + "end": 33017.36, + "probability": 0.8449 + }, + { + "start": 33017.42, + "end": 33018.8, + "probability": 0.986 + }, + { + "start": 33019.08, + "end": 33020.88, + "probability": 0.9585 + }, + { + "start": 33020.94, + "end": 33022.48, + "probability": 0.9269 + }, + { + "start": 33022.84, + "end": 33023.92, + "probability": 0.8413 + }, + { + "start": 33024.36, + "end": 33027.3, + "probability": 0.9744 + }, + { + "start": 33027.3, + "end": 33031.28, + "probability": 0.9727 + }, + { + "start": 33031.88, + "end": 33032.8, + "probability": 0.6538 + }, + { + "start": 33033.46, + "end": 33034.76, + "probability": 0.9539 + }, + { + "start": 33035.38, + "end": 33040.86, + "probability": 0.8083 + }, + { + "start": 33041.0, + "end": 33041.42, + "probability": 0.7231 + }, + { + "start": 33041.66, + "end": 33043.32, + "probability": 0.9379 + }, + { + "start": 33043.4, + "end": 33044.64, + "probability": 0.7603 + }, + { + "start": 33047.04, + "end": 33049.2, + "probability": 0.0286 + }, + { + "start": 33058.56, + "end": 33058.56, + "probability": 0.3995 + }, + { + "start": 33058.56, + "end": 33058.56, + "probability": 0.0184 + }, + { + "start": 33058.56, + "end": 33058.56, + "probability": 0.0294 + }, + { + "start": 33058.56, + "end": 33058.56, + "probability": 0.2699 + }, + { + "start": 33058.56, + "end": 33058.56, + "probability": 0.0547 + }, + { + "start": 33058.56, + "end": 33058.66, + "probability": 0.0268 + }, + { + "start": 33083.78, + "end": 33087.88, + "probability": 0.9878 + }, + { + "start": 33088.7, + "end": 33089.54, + "probability": 0.2516 + }, + { + "start": 33091.24, + "end": 33093.94, + "probability": 0.047 + }, + { + "start": 33107.48, + "end": 33108.8, + "probability": 0.3369 + }, + { + "start": 33109.4, + "end": 33110.52, + "probability": 0.4752 + }, + { + "start": 33111.44, + "end": 33112.72, + "probability": 0.7569 + }, + { + "start": 33113.28, + "end": 33121.94, + "probability": 0.9873 + }, + { + "start": 33122.92, + "end": 33123.38, + "probability": 0.7651 + }, + { + "start": 33124.56, + "end": 33128.18, + "probability": 0.9305 + }, + { + "start": 33129.14, + "end": 33137.32, + "probability": 0.9862 + }, + { + "start": 33138.08, + "end": 33139.56, + "probability": 0.8901 + }, + { + "start": 33141.08, + "end": 33142.76, + "probability": 0.915 + }, + { + "start": 33142.9, + "end": 33144.2, + "probability": 0.9863 + }, + { + "start": 33145.32, + "end": 33146.5, + "probability": 0.7705 + }, + { + "start": 33147.02, + "end": 33153.1, + "probability": 0.9885 + }, + { + "start": 33154.42, + "end": 33156.22, + "probability": 0.6552 + }, + { + "start": 33158.28, + "end": 33161.5, + "probability": 0.9899 + }, + { + "start": 33163.28, + "end": 33167.32, + "probability": 0.991 + }, + { + "start": 33169.02, + "end": 33176.8, + "probability": 0.9814 + }, + { + "start": 33176.8, + "end": 33181.8, + "probability": 0.9146 + }, + { + "start": 33183.02, + "end": 33184.75, + "probability": 0.9936 + }, + { + "start": 33185.76, + "end": 33188.34, + "probability": 0.8677 + }, + { + "start": 33188.96, + "end": 33190.72, + "probability": 0.979 + }, + { + "start": 33191.34, + "end": 33193.74, + "probability": 0.9148 + }, + { + "start": 33194.64, + "end": 33198.2, + "probability": 0.988 + }, + { + "start": 33198.94, + "end": 33201.74, + "probability": 0.9899 + }, + { + "start": 33202.3, + "end": 33203.36, + "probability": 0.8125 + }, + { + "start": 33204.04, + "end": 33204.78, + "probability": 0.6406 + }, + { + "start": 33205.44, + "end": 33207.94, + "probability": 0.9333 + }, + { + "start": 33208.68, + "end": 33209.88, + "probability": 0.9096 + }, + { + "start": 33210.6, + "end": 33211.32, + "probability": 0.9968 + }, + { + "start": 33212.34, + "end": 33212.7, + "probability": 0.9731 + }, + { + "start": 33212.76, + "end": 33214.04, + "probability": 0.9901 + }, + { + "start": 33215.04, + "end": 33216.32, + "probability": 0.9587 + }, + { + "start": 33217.66, + "end": 33219.06, + "probability": 0.8512 + }, + { + "start": 33219.12, + "end": 33221.51, + "probability": 0.7914 + }, + { + "start": 33222.12, + "end": 33225.04, + "probability": 0.7391 + }, + { + "start": 33225.26, + "end": 33234.36, + "probability": 0.8877 + }, + { + "start": 33235.44, + "end": 33236.22, + "probability": 0.9733 + }, + { + "start": 33237.02, + "end": 33243.9, + "probability": 0.9068 + }, + { + "start": 33244.18, + "end": 33244.99, + "probability": 0.8799 + }, + { + "start": 33245.08, + "end": 33248.04, + "probability": 0.9736 + }, + { + "start": 33248.7, + "end": 33249.58, + "probability": 0.8856 + }, + { + "start": 33250.18, + "end": 33253.52, + "probability": 0.9973 + }, + { + "start": 33253.96, + "end": 33254.69, + "probability": 0.9763 + }, + { + "start": 33256.0, + "end": 33256.3, + "probability": 0.9134 + }, + { + "start": 33256.34, + "end": 33257.6, + "probability": 0.9753 + }, + { + "start": 33258.52, + "end": 33259.94, + "probability": 0.9946 + }, + { + "start": 33261.24, + "end": 33264.68, + "probability": 0.9951 + }, + { + "start": 33266.06, + "end": 33267.2, + "probability": 0.8005 + }, + { + "start": 33268.84, + "end": 33270.62, + "probability": 0.8797 + }, + { + "start": 33271.38, + "end": 33272.88, + "probability": 0.9155 + }, + { + "start": 33273.64, + "end": 33278.2, + "probability": 0.8114 + }, + { + "start": 33278.96, + "end": 33281.54, + "probability": 0.9188 + }, + { + "start": 33282.36, + "end": 33290.44, + "probability": 0.9727 + }, + { + "start": 33291.38, + "end": 33292.0, + "probability": 0.6726 + }, + { + "start": 33292.16, + "end": 33293.18, + "probability": 0.9329 + }, + { + "start": 33293.52, + "end": 33295.94, + "probability": 0.8502 + }, + { + "start": 33296.4, + "end": 33298.4, + "probability": 0.4344 + }, + { + "start": 33299.46, + "end": 33300.08, + "probability": 0.4915 + }, + { + "start": 33300.1, + "end": 33301.0, + "probability": 0.9547 + }, + { + "start": 33301.06, + "end": 33303.34, + "probability": 0.9554 + }, + { + "start": 33303.46, + "end": 33307.22, + "probability": 0.9751 + }, + { + "start": 33308.06, + "end": 33308.41, + "probability": 0.6622 + }, + { + "start": 33310.0, + "end": 33312.0, + "probability": 0.7771 + }, + { + "start": 33312.6, + "end": 33316.72, + "probability": 0.962 + }, + { + "start": 33317.94, + "end": 33320.76, + "probability": 0.9524 + }, + { + "start": 33321.98, + "end": 33326.62, + "probability": 0.9768 + }, + { + "start": 33327.3, + "end": 33330.58, + "probability": 0.9541 + }, + { + "start": 33331.16, + "end": 33332.58, + "probability": 0.9614 + }, + { + "start": 33333.34, + "end": 33334.88, + "probability": 0.9504 + }, + { + "start": 33336.2, + "end": 33341.66, + "probability": 0.9934 + }, + { + "start": 33343.64, + "end": 33347.9, + "probability": 0.9299 + }, + { + "start": 33348.76, + "end": 33352.86, + "probability": 0.7693 + }, + { + "start": 33353.78, + "end": 33358.26, + "probability": 0.96 + }, + { + "start": 33359.0, + "end": 33361.22, + "probability": 0.9821 + }, + { + "start": 33361.78, + "end": 33362.4, + "probability": 0.6348 + }, + { + "start": 33363.78, + "end": 33365.8, + "probability": 0.5568 + }, + { + "start": 33366.74, + "end": 33371.26, + "probability": 0.9584 + }, + { + "start": 33371.26, + "end": 33379.18, + "probability": 0.9937 + }, + { + "start": 33379.74, + "end": 33381.02, + "probability": 0.831 + }, + { + "start": 33381.62, + "end": 33382.08, + "probability": 0.9502 + }, + { + "start": 33383.38, + "end": 33383.7, + "probability": 0.147 + }, + { + "start": 33383.7, + "end": 33385.26, + "probability": 0.7111 + }, + { + "start": 33385.34, + "end": 33386.76, + "probability": 0.9499 + }, + { + "start": 33406.66, + "end": 33408.22, + "probability": 0.6757 + }, + { + "start": 33408.42, + "end": 33409.14, + "probability": 0.6621 + }, + { + "start": 33410.1, + "end": 33410.88, + "probability": 0.9904 + }, + { + "start": 33411.52, + "end": 33412.2, + "probability": 0.2028 + }, + { + "start": 33412.32, + "end": 33413.22, + "probability": 0.7673 + }, + { + "start": 33414.5, + "end": 33415.38, + "probability": 0.9625 + }, + { + "start": 33415.72, + "end": 33416.28, + "probability": 0.394 + }, + { + "start": 33416.32, + "end": 33416.8, + "probability": 0.9736 + }, + { + "start": 33421.44, + "end": 33424.16, + "probability": 0.0512 + }, + { + "start": 33426.78, + "end": 33427.04, + "probability": 0.1554 + }, + { + "start": 33427.9, + "end": 33429.88, + "probability": 0.9449 + }, + { + "start": 33432.74, + "end": 33438.76, + "probability": 0.8662 + }, + { + "start": 33443.24, + "end": 33444.0, + "probability": 0.5053 + }, + { + "start": 33444.04, + "end": 33446.48, + "probability": 0.7868 + }, + { + "start": 33454.92, + "end": 33455.58, + "probability": 0.6606 + }, + { + "start": 33455.78, + "end": 33456.89, + "probability": 0.9817 + }, + { + "start": 33457.36, + "end": 33463.44, + "probability": 0.9071 + }, + { + "start": 33464.24, + "end": 33466.54, + "probability": 0.8195 + }, + { + "start": 33467.28, + "end": 33471.54, + "probability": 0.9424 + }, + { + "start": 33472.16, + "end": 33475.96, + "probability": 0.981 + }, + { + "start": 33476.78, + "end": 33481.86, + "probability": 0.9991 + }, + { + "start": 33481.93, + "end": 33488.98, + "probability": 0.9857 + }, + { + "start": 33489.58, + "end": 33491.38, + "probability": 0.8177 + }, + { + "start": 33491.94, + "end": 33495.24, + "probability": 0.9982 + }, + { + "start": 33495.24, + "end": 33498.96, + "probability": 0.9995 + }, + { + "start": 33499.76, + "end": 33502.96, + "probability": 0.785 + }, + { + "start": 33503.5, + "end": 33509.28, + "probability": 0.9914 + }, + { + "start": 33509.76, + "end": 33512.1, + "probability": 0.8667 + }, + { + "start": 33512.32, + "end": 33512.92, + "probability": 0.9966 + }, + { + "start": 33514.48, + "end": 33516.06, + "probability": 0.8678 + }, + { + "start": 33517.04, + "end": 33518.12, + "probability": 0.721 + }, + { + "start": 33518.24, + "end": 33519.1, + "probability": 0.9385 + }, + { + "start": 33519.28, + "end": 33522.78, + "probability": 0.9912 + }, + { + "start": 33522.78, + "end": 33526.96, + "probability": 0.9927 + }, + { + "start": 33527.0, + "end": 33527.52, + "probability": 0.9497 + }, + { + "start": 33527.96, + "end": 33529.14, + "probability": 0.9973 + }, + { + "start": 33529.54, + "end": 33530.32, + "probability": 0.6482 + }, + { + "start": 33530.54, + "end": 33534.6, + "probability": 0.9855 + }, + { + "start": 33534.78, + "end": 33536.18, + "probability": 0.8779 + }, + { + "start": 33536.4, + "end": 33537.53, + "probability": 0.9902 + }, + { + "start": 33538.06, + "end": 33539.72, + "probability": 0.9507 + }, + { + "start": 33539.84, + "end": 33541.06, + "probability": 0.9817 + }, + { + "start": 33542.36, + "end": 33544.72, + "probability": 0.9952 + }, + { + "start": 33545.22, + "end": 33546.51, + "probability": 0.9932 + }, + { + "start": 33547.0, + "end": 33549.96, + "probability": 0.9956 + }, + { + "start": 33550.3, + "end": 33551.2, + "probability": 0.8579 + }, + { + "start": 33551.58, + "end": 33552.52, + "probability": 0.9745 + }, + { + "start": 33552.84, + "end": 33557.06, + "probability": 0.9985 + }, + { + "start": 33557.06, + "end": 33560.14, + "probability": 0.9764 + }, + { + "start": 33560.72, + "end": 33565.08, + "probability": 0.989 + }, + { + "start": 33565.08, + "end": 33568.9, + "probability": 0.999 + }, + { + "start": 33568.96, + "end": 33569.44, + "probability": 0.927 + }, + { + "start": 33570.52, + "end": 33572.11, + "probability": 0.8617 + }, + { + "start": 33572.9, + "end": 33575.4, + "probability": 0.963 + }, + { + "start": 33575.48, + "end": 33577.66, + "probability": 0.9893 + }, + { + "start": 33578.22, + "end": 33581.28, + "probability": 0.9984 + }, + { + "start": 33581.74, + "end": 33584.94, + "probability": 0.9979 + }, + { + "start": 33585.32, + "end": 33587.54, + "probability": 0.9944 + }, + { + "start": 33588.74, + "end": 33589.9, + "probability": 0.9979 + }, + { + "start": 33590.04, + "end": 33591.28, + "probability": 0.9849 + }, + { + "start": 33591.62, + "end": 33593.96, + "probability": 0.8809 + }, + { + "start": 33594.52, + "end": 33596.22, + "probability": 0.983 + }, + { + "start": 33596.42, + "end": 33599.14, + "probability": 0.9924 + }, + { + "start": 33599.92, + "end": 33602.7, + "probability": 0.8768 + }, + { + "start": 33602.7, + "end": 33606.2, + "probability": 0.9918 + }, + { + "start": 33607.92, + "end": 33610.28, + "probability": 0.9288 + }, + { + "start": 33611.18, + "end": 33616.9, + "probability": 0.9901 + }, + { + "start": 33617.2, + "end": 33618.33, + "probability": 0.9922 + }, + { + "start": 33619.02, + "end": 33620.34, + "probability": 0.9889 + }, + { + "start": 33621.32, + "end": 33623.02, + "probability": 0.9844 + }, + { + "start": 33623.28, + "end": 33625.32, + "probability": 0.9641 + }, + { + "start": 33625.78, + "end": 33630.78, + "probability": 0.9912 + }, + { + "start": 33631.22, + "end": 33633.4, + "probability": 0.9971 + }, + { + "start": 33633.72, + "end": 33634.3, + "probability": 0.8027 + }, + { + "start": 33634.66, + "end": 33635.2, + "probability": 0.9793 + }, + { + "start": 33635.6, + "end": 33636.08, + "probability": 0.5388 + }, + { + "start": 33636.64, + "end": 33637.56, + "probability": 0.7373 + }, + { + "start": 33637.96, + "end": 33640.76, + "probability": 0.9897 + }, + { + "start": 33640.76, + "end": 33643.16, + "probability": 0.9914 + }, + { + "start": 33643.78, + "end": 33645.03, + "probability": 0.9821 + }, + { + "start": 33646.08, + "end": 33647.64, + "probability": 0.9922 + }, + { + "start": 33647.76, + "end": 33650.4, + "probability": 0.9907 + }, + { + "start": 33650.86, + "end": 33652.02, + "probability": 0.9839 + }, + { + "start": 33652.08, + "end": 33656.3, + "probability": 0.8317 + }, + { + "start": 33656.66, + "end": 33658.8, + "probability": 0.9941 + }, + { + "start": 33659.12, + "end": 33661.34, + "probability": 0.9952 + }, + { + "start": 33662.0, + "end": 33663.08, + "probability": 0.8735 + }, + { + "start": 33663.6, + "end": 33664.37, + "probability": 0.8884 + }, + { + "start": 33664.96, + "end": 33672.22, + "probability": 0.965 + }, + { + "start": 33672.6, + "end": 33677.14, + "probability": 0.995 + }, + { + "start": 33677.44, + "end": 33678.93, + "probability": 0.9497 + }, + { + "start": 33679.5, + "end": 33684.04, + "probability": 0.9968 + }, + { + "start": 33684.04, + "end": 33688.96, + "probability": 0.9974 + }, + { + "start": 33689.64, + "end": 33691.22, + "probability": 0.6638 + }, + { + "start": 33692.26, + "end": 33694.99, + "probability": 0.9856 + }, + { + "start": 33695.32, + "end": 33696.84, + "probability": 0.8618 + }, + { + "start": 33697.22, + "end": 33699.84, + "probability": 0.9665 + }, + { + "start": 33700.9, + "end": 33701.52, + "probability": 0.7302 + }, + { + "start": 33701.72, + "end": 33706.6, + "probability": 0.9844 + }, + { + "start": 33707.24, + "end": 33710.32, + "probability": 0.9986 + }, + { + "start": 33711.36, + "end": 33715.46, + "probability": 0.9697 + }, + { + "start": 33716.58, + "end": 33718.4, + "probability": 0.9302 + }, + { + "start": 33719.1, + "end": 33721.24, + "probability": 0.9896 + }, + { + "start": 33721.66, + "end": 33722.7, + "probability": 0.9828 + }, + { + "start": 33723.1, + "end": 33727.1, + "probability": 0.9872 + }, + { + "start": 33727.54, + "end": 33728.7, + "probability": 0.873 + }, + { + "start": 33729.6, + "end": 33734.08, + "probability": 0.9816 + }, + { + "start": 33734.68, + "end": 33738.72, + "probability": 0.9557 + }, + { + "start": 33739.04, + "end": 33743.02, + "probability": 0.9919 + }, + { + "start": 33743.66, + "end": 33745.78, + "probability": 0.9937 + }, + { + "start": 33745.78, + "end": 33748.9, + "probability": 0.9966 + }, + { + "start": 33749.84, + "end": 33751.14, + "probability": 0.5673 + }, + { + "start": 33752.04, + "end": 33754.06, + "probability": 0.622 + }, + { + "start": 33754.38, + "end": 33755.61, + "probability": 0.8716 + }, + { + "start": 33755.96, + "end": 33757.32, + "probability": 0.9161 + }, + { + "start": 33757.64, + "end": 33758.82, + "probability": 0.9836 + }, + { + "start": 33759.22, + "end": 33760.9, + "probability": 0.9956 + }, + { + "start": 33761.22, + "end": 33763.98, + "probability": 0.9327 + }, + { + "start": 33764.1, + "end": 33765.52, + "probability": 0.8113 + }, + { + "start": 33765.86, + "end": 33768.12, + "probability": 0.9492 + }, + { + "start": 33768.52, + "end": 33769.4, + "probability": 0.8037 + }, + { + "start": 33769.64, + "end": 33771.68, + "probability": 0.9855 + }, + { + "start": 33771.72, + "end": 33772.7, + "probability": 0.6617 + }, + { + "start": 33773.12, + "end": 33774.36, + "probability": 0.617 + }, + { + "start": 33774.52, + "end": 33775.7, + "probability": 0.5813 + }, + { + "start": 33776.22, + "end": 33777.48, + "probability": 0.7968 + }, + { + "start": 33778.02, + "end": 33780.02, + "probability": 0.99 + }, + { + "start": 33780.38, + "end": 33782.42, + "probability": 0.8338 + }, + { + "start": 33782.72, + "end": 33783.7, + "probability": 0.9718 + }, + { + "start": 33783.94, + "end": 33785.24, + "probability": 0.9709 + }, + { + "start": 33785.3, + "end": 33788.64, + "probability": 0.9907 + }, + { + "start": 33789.2, + "end": 33790.46, + "probability": 0.5261 + }, + { + "start": 33791.08, + "end": 33793.28, + "probability": 0.9985 + }, + { + "start": 33794.22, + "end": 33794.84, + "probability": 0.9124 + }, + { + "start": 33795.36, + "end": 33796.14, + "probability": 0.5243 + }, + { + "start": 33796.84, + "end": 33797.62, + "probability": 0.7535 + }, + { + "start": 33797.7, + "end": 33800.94, + "probability": 0.9846 + }, + { + "start": 33801.4, + "end": 33802.04, + "probability": 0.9514 + }, + { + "start": 33802.28, + "end": 33805.3, + "probability": 0.993 + }, + { + "start": 33805.68, + "end": 33806.5, + "probability": 0.8626 + }, + { + "start": 33806.62, + "end": 33808.56, + "probability": 0.9883 + }, + { + "start": 33809.7, + "end": 33810.84, + "probability": 0.702 + }, + { + "start": 33811.36, + "end": 33813.04, + "probability": 0.9814 + }, + { + "start": 33814.22, + "end": 33815.2, + "probability": 0.7624 + }, + { + "start": 33815.4, + "end": 33817.28, + "probability": 0.9668 + }, + { + "start": 33817.36, + "end": 33819.18, + "probability": 0.991 + }, + { + "start": 33819.28, + "end": 33820.17, + "probability": 0.9697 + }, + { + "start": 33821.36, + "end": 33825.84, + "probability": 0.987 + }, + { + "start": 33826.6, + "end": 33829.36, + "probability": 0.9926 + }, + { + "start": 33829.92, + "end": 33834.12, + "probability": 0.998 + }, + { + "start": 33834.64, + "end": 33838.05, + "probability": 0.9985 + }, + { + "start": 33839.22, + "end": 33842.06, + "probability": 0.9982 + }, + { + "start": 33842.06, + "end": 33845.32, + "probability": 0.9966 + }, + { + "start": 33845.84, + "end": 33847.08, + "probability": 0.4782 + }, + { + "start": 33849.18, + "end": 33850.94, + "probability": 0.9917 + }, + { + "start": 33851.08, + "end": 33852.6, + "probability": 0.9895 + }, + { + "start": 33852.66, + "end": 33854.46, + "probability": 0.8645 + }, + { + "start": 33854.86, + "end": 33858.56, + "probability": 0.7844 + }, + { + "start": 33858.92, + "end": 33860.17, + "probability": 0.8988 + }, + { + "start": 33860.68, + "end": 33864.26, + "probability": 0.7473 + }, + { + "start": 33864.6, + "end": 33865.5, + "probability": 0.7936 + }, + { + "start": 33866.74, + "end": 33867.08, + "probability": 0.981 + }, + { + "start": 33867.98, + "end": 33868.41, + "probability": 0.9906 + }, + { + "start": 33869.14, + "end": 33869.66, + "probability": 0.9917 + }, + { + "start": 33870.5, + "end": 33871.6, + "probability": 0.9541 + }, + { + "start": 33873.58, + "end": 33874.09, + "probability": 0.6621 + }, + { + "start": 33874.52, + "end": 33876.64, + "probability": 0.6743 + }, + { + "start": 33877.16, + "end": 33878.3, + "probability": 0.8076 + }, + { + "start": 33878.8, + "end": 33879.74, + "probability": 0.8148 + }, + { + "start": 33879.98, + "end": 33881.37, + "probability": 0.9245 + }, + { + "start": 33881.96, + "end": 33884.1, + "probability": 0.9503 + }, + { + "start": 33884.22, + "end": 33885.26, + "probability": 0.6704 + }, + { + "start": 33885.56, + "end": 33890.08, + "probability": 0.9659 + }, + { + "start": 33890.4, + "end": 33890.68, + "probability": 0.4476 + }, + { + "start": 33890.74, + "end": 33891.26, + "probability": 0.6061 + }, + { + "start": 33891.36, + "end": 33892.45, + "probability": 0.7079 + }, + { + "start": 33892.58, + "end": 33893.89, + "probability": 0.7168 + }, + { + "start": 33894.5, + "end": 33895.48, + "probability": 0.5374 + }, + { + "start": 33895.52, + "end": 33897.42, + "probability": 0.879 + }, + { + "start": 33897.68, + "end": 33898.54, + "probability": 0.9307 + }, + { + "start": 33898.96, + "end": 33902.94, + "probability": 0.9406 + }, + { + "start": 33903.1, + "end": 33903.44, + "probability": 0.6991 + }, + { + "start": 33903.6, + "end": 33905.0, + "probability": 0.8204 + }, + { + "start": 33905.34, + "end": 33906.32, + "probability": 0.7002 + }, + { + "start": 33906.36, + "end": 33906.9, + "probability": 0.6537 + }, + { + "start": 33907.12, + "end": 33907.68, + "probability": 0.6365 + }, + { + "start": 33907.68, + "end": 33909.06, + "probability": 0.5856 + }, + { + "start": 33912.38, + "end": 33915.66, + "probability": 0.9609 + }, + { + "start": 33915.7, + "end": 33918.24, + "probability": 0.9401 + }, + { + "start": 33920.14, + "end": 33923.8, + "probability": 0.9279 + }, + { + "start": 33924.26, + "end": 33926.16, + "probability": 0.994 + }, + { + "start": 33926.5, + "end": 33927.96, + "probability": 0.9678 + }, + { + "start": 33928.26, + "end": 33930.62, + "probability": 0.9784 + }, + { + "start": 33930.72, + "end": 33933.46, + "probability": 0.8602 + }, + { + "start": 33934.0, + "end": 33935.24, + "probability": 0.8874 + }, + { + "start": 33935.62, + "end": 33936.88, + "probability": 0.7332 + }, + { + "start": 33937.02, + "end": 33940.12, + "probability": 0.9356 + }, + { + "start": 33940.36, + "end": 33942.98, + "probability": 0.9911 + }, + { + "start": 33944.0, + "end": 33944.66, + "probability": 0.9316 + }, + { + "start": 33944.68, + "end": 33945.0, + "probability": 0.567 + }, + { + "start": 33945.08, + "end": 33950.64, + "probability": 0.715 + }, + { + "start": 33951.02, + "end": 33953.28, + "probability": 0.9927 + }, + { + "start": 33953.42, + "end": 33954.3, + "probability": 0.5838 + }, + { + "start": 33954.54, + "end": 33955.4, + "probability": 0.7574 + }, + { + "start": 33955.62, + "end": 33956.4, + "probability": 0.9396 + }, + { + "start": 33956.7, + "end": 33957.52, + "probability": 0.9934 + }, + { + "start": 33957.82, + "end": 33958.48, + "probability": 0.9631 + }, + { + "start": 33958.56, + "end": 33959.44, + "probability": 0.9675 + }, + { + "start": 33960.4, + "end": 33961.86, + "probability": 0.8857 + }, + { + "start": 33962.62, + "end": 33965.16, + "probability": 0.9846 + }, + { + "start": 33965.54, + "end": 33966.32, + "probability": 0.9257 + }, + { + "start": 33967.12, + "end": 33970.44, + "probability": 0.9863 + }, + { + "start": 33970.52, + "end": 33971.34, + "probability": 0.7513 + }, + { + "start": 33971.7, + "end": 33974.76, + "probability": 0.991 + }, + { + "start": 33975.24, + "end": 33977.34, + "probability": 0.9967 + }, + { + "start": 33977.94, + "end": 33978.92, + "probability": 0.8654 + }, + { + "start": 33979.0, + "end": 33980.48, + "probability": 0.9556 + }, + { + "start": 33980.72, + "end": 33982.86, + "probability": 0.9915 + }, + { + "start": 33983.24, + "end": 33985.7, + "probability": 0.3277 + }, + { + "start": 33985.92, + "end": 33989.58, + "probability": 0.988 + }, + { + "start": 33989.58, + "end": 33990.14, + "probability": 0.568 + }, + { + "start": 33991.08, + "end": 33993.32, + "probability": 0.9861 + }, + { + "start": 33994.1, + "end": 33999.94, + "probability": 0.9754 + }, + { + "start": 34001.3, + "end": 34002.4, + "probability": 0.4846 + }, + { + "start": 34002.44, + "end": 34003.64, + "probability": 0.7579 + }, + { + "start": 34005.72, + "end": 34006.7, + "probability": 0.9774 + }, + { + "start": 34006.96, + "end": 34012.04, + "probability": 0.988 + }, + { + "start": 34012.1, + "end": 34013.16, + "probability": 0.9757 + }, + { + "start": 34013.22, + "end": 34017.04, + "probability": 0.9042 + }, + { + "start": 34017.66, + "end": 34019.76, + "probability": 0.9138 + }, + { + "start": 34020.2, + "end": 34021.52, + "probability": 0.9569 + }, + { + "start": 34021.76, + "end": 34023.76, + "probability": 0.9928 + }, + { + "start": 34024.04, + "end": 34025.1, + "probability": 0.9613 + }, + { + "start": 34025.34, + "end": 34027.56, + "probability": 0.6893 + }, + { + "start": 34028.0, + "end": 34030.54, + "probability": 0.9883 + }, + { + "start": 34031.1, + "end": 34032.32, + "probability": 0.9409 + }, + { + "start": 34032.5, + "end": 34033.96, + "probability": 0.7619 + }, + { + "start": 34034.14, + "end": 34034.68, + "probability": 0.9881 + }, + { + "start": 34034.94, + "end": 34035.56, + "probability": 0.8909 + }, + { + "start": 34035.94, + "end": 34036.7, + "probability": 0.8085 + }, + { + "start": 34036.78, + "end": 34037.76, + "probability": 0.9272 + }, + { + "start": 34037.8, + "end": 34038.74, + "probability": 0.9788 + }, + { + "start": 34039.18, + "end": 34041.44, + "probability": 0.9749 + }, + { + "start": 34041.76, + "end": 34043.96, + "probability": 0.9547 + }, + { + "start": 34044.08, + "end": 34044.57, + "probability": 0.6292 + }, + { + "start": 34046.32, + "end": 34048.3, + "probability": 0.7845 + }, + { + "start": 34048.78, + "end": 34051.2, + "probability": 0.9963 + }, + { + "start": 34051.6, + "end": 34053.88, + "probability": 0.9744 + }, + { + "start": 34054.18, + "end": 34056.42, + "probability": 0.9395 + }, + { + "start": 34057.3, + "end": 34061.04, + "probability": 0.9787 + }, + { + "start": 34061.1, + "end": 34062.02, + "probability": 0.7345 + }, + { + "start": 34062.36, + "end": 34063.72, + "probability": 0.8094 + }, + { + "start": 34063.8, + "end": 34065.1, + "probability": 0.6164 + }, + { + "start": 34065.94, + "end": 34065.94, + "probability": 0.2492 + }, + { + "start": 34066.06, + "end": 34067.46, + "probability": 0.9673 + }, + { + "start": 34067.5, + "end": 34069.04, + "probability": 0.9779 + }, + { + "start": 34070.06, + "end": 34070.5, + "probability": 0.7002 + }, + { + "start": 34070.5, + "end": 34072.11, + "probability": 0.9565 + }, + { + "start": 34072.52, + "end": 34074.42, + "probability": 0.9664 + }, + { + "start": 34074.64, + "end": 34077.36, + "probability": 0.9883 + }, + { + "start": 34077.36, + "end": 34081.56, + "probability": 0.9412 + }, + { + "start": 34081.6, + "end": 34082.54, + "probability": 0.7501 + }, + { + "start": 34082.88, + "end": 34083.74, + "probability": 0.8893 + }, + { + "start": 34085.02, + "end": 34085.36, + "probability": 0.6874 + }, + { + "start": 34085.94, + "end": 34087.96, + "probability": 0.842 + }, + { + "start": 34088.02, + "end": 34089.7, + "probability": 0.8853 + }, + { + "start": 34091.4, + "end": 34092.46, + "probability": 0.4472 + }, + { + "start": 34105.28, + "end": 34109.24, + "probability": 0.6903 + }, + { + "start": 34109.7, + "end": 34111.82, + "probability": 0.2921 + }, + { + "start": 34112.04, + "end": 34114.34, + "probability": 0.908 + }, + { + "start": 34116.44, + "end": 34118.66, + "probability": 0.7976 + }, + { + "start": 34119.08, + "end": 34122.22, + "probability": 0.9495 + }, + { + "start": 34122.62, + "end": 34124.02, + "probability": 0.501 + }, + { + "start": 34124.86, + "end": 34125.2, + "probability": 0.484 + }, + { + "start": 34125.28, + "end": 34125.84, + "probability": 0.7208 + }, + { + "start": 34126.02, + "end": 34127.38, + "probability": 0.8552 + }, + { + "start": 34127.82, + "end": 34132.42, + "probability": 0.8511 + }, + { + "start": 34132.86, + "end": 34134.44, + "probability": 0.9572 + }, + { + "start": 34134.92, + "end": 34140.72, + "probability": 0.9514 + }, + { + "start": 34142.16, + "end": 34143.16, + "probability": 0.9867 + }, + { + "start": 34145.14, + "end": 34148.48, + "probability": 0.9972 + }, + { + "start": 34150.44, + "end": 34150.84, + "probability": 0.6805 + }, + { + "start": 34151.38, + "end": 34151.98, + "probability": 0.9102 + }, + { + "start": 34152.82, + "end": 34155.3, + "probability": 0.9822 + }, + { + "start": 34156.86, + "end": 34159.7, + "probability": 0.9397 + }, + { + "start": 34159.96, + "end": 34160.76, + "probability": 0.9871 + }, + { + "start": 34161.48, + "end": 34164.24, + "probability": 0.9966 + }, + { + "start": 34165.24, + "end": 34166.29, + "probability": 0.7408 + }, + { + "start": 34166.76, + "end": 34168.1, + "probability": 0.9734 + }, + { + "start": 34170.14, + "end": 34173.28, + "probability": 0.8735 + }, + { + "start": 34173.4, + "end": 34174.32, + "probability": 0.9604 + }, + { + "start": 34174.56, + "end": 34175.81, + "probability": 0.9927 + }, + { + "start": 34176.28, + "end": 34177.54, + "probability": 0.7948 + }, + { + "start": 34178.54, + "end": 34178.54, + "probability": 0.7132 + }, + { + "start": 34178.74, + "end": 34178.94, + "probability": 0.6736 + }, + { + "start": 34179.0, + "end": 34181.16, + "probability": 0.9172 + }, + { + "start": 34181.3, + "end": 34183.14, + "probability": 0.9771 + }, + { + "start": 34184.82, + "end": 34186.7, + "probability": 0.836 + }, + { + "start": 34188.42, + "end": 34188.52, + "probability": 0.0283 + }, + { + "start": 34188.52, + "end": 34189.94, + "probability": 0.8956 + }, + { + "start": 34190.92, + "end": 34190.96, + "probability": 0.2057 + }, + { + "start": 34190.96, + "end": 34195.24, + "probability": 0.9341 + }, + { + "start": 34195.86, + "end": 34196.74, + "probability": 0.9917 + }, + { + "start": 34197.96, + "end": 34199.24, + "probability": 0.9598 + }, + { + "start": 34200.68, + "end": 34204.36, + "probability": 0.9977 + }, + { + "start": 34205.1, + "end": 34206.86, + "probability": 0.9493 + }, + { + "start": 34207.96, + "end": 34212.44, + "probability": 0.7371 + }, + { + "start": 34213.06, + "end": 34215.62, + "probability": 0.9973 + }, + { + "start": 34216.18, + "end": 34217.72, + "probability": 0.9979 + }, + { + "start": 34218.96, + "end": 34222.26, + "probability": 0.9698 + }, + { + "start": 34222.88, + "end": 34224.82, + "probability": 0.9493 + }, + { + "start": 34224.84, + "end": 34226.98, + "probability": 0.7202 + }, + { + "start": 34227.02, + "end": 34227.78, + "probability": 0.7277 + }, + { + "start": 34228.46, + "end": 34229.82, + "probability": 0.9432 + }, + { + "start": 34231.0, + "end": 34233.52, + "probability": 0.9127 + }, + { + "start": 34234.32, + "end": 34235.64, + "probability": 0.9961 + }, + { + "start": 34235.7, + "end": 34237.58, + "probability": 0.9289 + }, + { + "start": 34238.24, + "end": 34242.9, + "probability": 0.998 + }, + { + "start": 34242.9, + "end": 34245.76, + "probability": 0.9977 + }, + { + "start": 34247.04, + "end": 34250.5, + "probability": 0.9977 + }, + { + "start": 34251.32, + "end": 34254.12, + "probability": 0.9397 + }, + { + "start": 34254.82, + "end": 34257.52, + "probability": 0.972 + }, + { + "start": 34257.94, + "end": 34259.12, + "probability": 0.8571 + }, + { + "start": 34259.9, + "end": 34264.58, + "probability": 0.9795 + }, + { + "start": 34266.1, + "end": 34269.88, + "probability": 0.9995 + }, + { + "start": 34270.84, + "end": 34273.46, + "probability": 0.9925 + }, + { + "start": 34274.1, + "end": 34276.08, + "probability": 0.9976 + }, + { + "start": 34276.86, + "end": 34278.0, + "probability": 0.6965 + }, + { + "start": 34278.7, + "end": 34280.3, + "probability": 0.7853 + }, + { + "start": 34281.02, + "end": 34281.92, + "probability": 0.7865 + }, + { + "start": 34282.4, + "end": 34284.4, + "probability": 0.9973 + }, + { + "start": 34284.72, + "end": 34285.36, + "probability": 0.8955 + }, + { + "start": 34285.44, + "end": 34285.68, + "probability": 0.4978 + }, + { + "start": 34285.78, + "end": 34286.64, + "probability": 0.9694 + }, + { + "start": 34287.12, + "end": 34288.02, + "probability": 0.5031 + }, + { + "start": 34288.14, + "end": 34288.64, + "probability": 0.5059 + }, + { + "start": 34289.14, + "end": 34291.54, + "probability": 0.99 + }, + { + "start": 34291.84, + "end": 34295.54, + "probability": 0.9943 + }, + { + "start": 34296.74, + "end": 34297.9, + "probability": 0.7104 + }, + { + "start": 34298.56, + "end": 34298.96, + "probability": 0.707 + }, + { + "start": 34299.68, + "end": 34302.16, + "probability": 0.9966 + }, + { + "start": 34302.58, + "end": 34305.16, + "probability": 0.9954 + }, + { + "start": 34306.04, + "end": 34307.58, + "probability": 0.9561 + }, + { + "start": 34308.46, + "end": 34309.62, + "probability": 0.8881 + }, + { + "start": 34310.2, + "end": 34310.62, + "probability": 0.4673 + }, + { + "start": 34311.96, + "end": 34314.12, + "probability": 0.7135 + }, + { + "start": 34314.86, + "end": 34316.56, + "probability": 0.6897 + }, + { + "start": 34316.68, + "end": 34319.76, + "probability": 0.9873 + }, + { + "start": 34321.12, + "end": 34324.17, + "probability": 0.932 + }, + { + "start": 34325.22, + "end": 34327.88, + "probability": 0.7973 + }, + { + "start": 34328.06, + "end": 34328.66, + "probability": 0.5418 + }, + { + "start": 34329.24, + "end": 34331.24, + "probability": 0.7001 + }, + { + "start": 34332.02, + "end": 34333.08, + "probability": 0.8855 + }, + { + "start": 34333.22, + "end": 34334.58, + "probability": 0.9778 + }, + { + "start": 34335.6, + "end": 34338.56, + "probability": 0.9941 + }, + { + "start": 34338.72, + "end": 34339.7, + "probability": 0.9909 + }, + { + "start": 34340.76, + "end": 34344.2, + "probability": 0.9315 + }, + { + "start": 34344.96, + "end": 34351.46, + "probability": 0.9972 + }, + { + "start": 34351.98, + "end": 34352.9, + "probability": 0.9059 + }, + { + "start": 34353.72, + "end": 34354.82, + "probability": 0.9893 + }, + { + "start": 34355.36, + "end": 34358.12, + "probability": 0.9977 + }, + { + "start": 34358.8, + "end": 34360.76, + "probability": 0.9708 + }, + { + "start": 34361.3, + "end": 34363.22, + "probability": 0.999 + }, + { + "start": 34364.08, + "end": 34365.16, + "probability": 0.995 + }, + { + "start": 34365.68, + "end": 34369.1, + "probability": 0.962 + }, + { + "start": 34369.68, + "end": 34370.18, + "probability": 0.4367 + }, + { + "start": 34370.36, + "end": 34372.18, + "probability": 0.996 + }, + { + "start": 34372.24, + "end": 34374.43, + "probability": 0.9963 + }, + { + "start": 34374.9, + "end": 34375.99, + "probability": 0.9099 + }, + { + "start": 34376.92, + "end": 34378.94, + "probability": 0.9622 + }, + { + "start": 34379.58, + "end": 34384.56, + "probability": 0.9666 + }, + { + "start": 34385.64, + "end": 34387.56, + "probability": 0.9873 + }, + { + "start": 34388.6, + "end": 34391.96, + "probability": 0.9948 + }, + { + "start": 34393.12, + "end": 34394.38, + "probability": 0.9462 + }, + { + "start": 34395.26, + "end": 34397.72, + "probability": 0.9971 + }, + { + "start": 34398.06, + "end": 34398.56, + "probability": 0.7147 + }, + { + "start": 34398.72, + "end": 34402.8, + "probability": 0.9711 + }, + { + "start": 34404.06, + "end": 34405.82, + "probability": 0.9635 + }, + { + "start": 34405.92, + "end": 34407.34, + "probability": 0.9985 + }, + { + "start": 34407.82, + "end": 34410.0, + "probability": 0.9751 + }, + { + "start": 34410.4, + "end": 34413.14, + "probability": 0.7851 + }, + { + "start": 34413.7, + "end": 34416.38, + "probability": 0.9558 + }, + { + "start": 34416.68, + "end": 34418.2, + "probability": 0.6523 + }, + { + "start": 34418.52, + "end": 34420.78, + "probability": 0.9841 + }, + { + "start": 34421.6, + "end": 34423.36, + "probability": 0.9551 + }, + { + "start": 34423.52, + "end": 34424.9, + "probability": 0.8856 + }, + { + "start": 34426.52, + "end": 34429.04, + "probability": 0.8044 + }, + { + "start": 34430.3, + "end": 34431.02, + "probability": 0.5847 + }, + { + "start": 34431.68, + "end": 34433.62, + "probability": 0.968 + }, + { + "start": 34438.3, + "end": 34440.12, + "probability": 0.5798 + }, + { + "start": 34440.28, + "end": 34441.86, + "probability": 0.6737 + }, + { + "start": 34443.0, + "end": 34445.06, + "probability": 0.9053 + }, + { + "start": 34446.18, + "end": 34448.42, + "probability": 0.7965 + }, + { + "start": 34450.04, + "end": 34450.56, + "probability": 0.7884 + }, + { + "start": 34450.66, + "end": 34451.98, + "probability": 0.9654 + }, + { + "start": 34452.36, + "end": 34453.68, + "probability": 0.7984 + }, + { + "start": 34453.72, + "end": 34455.79, + "probability": 0.8171 + }, + { + "start": 34456.14, + "end": 34457.28, + "probability": 0.9816 + }, + { + "start": 34457.76, + "end": 34458.76, + "probability": 0.5446 + }, + { + "start": 34459.24, + "end": 34461.46, + "probability": 0.981 + }, + { + "start": 34462.32, + "end": 34464.44, + "probability": 0.7067 + }, + { + "start": 34477.02, + "end": 34477.12, + "probability": 0.265 + }, + { + "start": 34481.76, + "end": 34484.24, + "probability": 0.5039 + }, + { + "start": 34484.92, + "end": 34489.14, + "probability": 0.8843 + }, + { + "start": 34490.72, + "end": 34494.48, + "probability": 0.993 + }, + { + "start": 34494.86, + "end": 34500.48, + "probability": 0.9927 + }, + { + "start": 34500.96, + "end": 34503.5, + "probability": 0.9803 + }, + { + "start": 34504.1, + "end": 34506.32, + "probability": 0.9982 + }, + { + "start": 34506.98, + "end": 34510.64, + "probability": 0.9243 + }, + { + "start": 34511.3, + "end": 34519.32, + "probability": 0.9635 + }, + { + "start": 34522.88, + "end": 34522.9, + "probability": 0.0419 + }, + { + "start": 34522.9, + "end": 34522.9, + "probability": 0.115 + }, + { + "start": 34522.9, + "end": 34522.9, + "probability": 0.0763 + }, + { + "start": 34522.9, + "end": 34523.81, + "probability": 0.9685 + }, + { + "start": 34524.36, + "end": 34526.94, + "probability": 0.9956 + }, + { + "start": 34527.44, + "end": 34532.64, + "probability": 0.9316 + }, + { + "start": 34533.62, + "end": 34533.86, + "probability": 0.6992 + }, + { + "start": 34534.42, + "end": 34536.78, + "probability": 0.9857 + }, + { + "start": 34537.34, + "end": 34538.0, + "probability": 0.649 + }, + { + "start": 34538.32, + "end": 34540.82, + "probability": 0.9859 + }, + { + "start": 34541.18, + "end": 34546.78, + "probability": 0.9464 + }, + { + "start": 34547.16, + "end": 34548.08, + "probability": 0.9515 + }, + { + "start": 34548.52, + "end": 34549.71, + "probability": 0.9379 + }, + { + "start": 34550.34, + "end": 34553.86, + "probability": 0.9264 + }, + { + "start": 34554.38, + "end": 34558.78, + "probability": 0.9951 + }, + { + "start": 34558.98, + "end": 34563.46, + "probability": 0.9915 + }, + { + "start": 34564.1, + "end": 34569.86, + "probability": 0.9974 + }, + { + "start": 34570.28, + "end": 34571.54, + "probability": 0.8599 + }, + { + "start": 34571.94, + "end": 34572.8, + "probability": 0.354 + }, + { + "start": 34573.02, + "end": 34573.74, + "probability": 0.3722 + }, + { + "start": 34573.96, + "end": 34574.92, + "probability": 0.8684 + }, + { + "start": 34575.24, + "end": 34577.76, + "probability": 0.9906 + }, + { + "start": 34578.34, + "end": 34580.38, + "probability": 0.8076 + }, + { + "start": 34580.88, + "end": 34583.34, + "probability": 0.9106 + }, + { + "start": 34583.8, + "end": 34585.96, + "probability": 0.8957 + }, + { + "start": 34586.48, + "end": 34588.96, + "probability": 0.781 + }, + { + "start": 34589.6, + "end": 34592.3, + "probability": 0.9758 + }, + { + "start": 34592.7, + "end": 34593.3, + "probability": 0.0456 + }, + { + "start": 34593.3, + "end": 34596.12, + "probability": 0.7151 + }, + { + "start": 34596.72, + "end": 34598.52, + "probability": 0.9917 + }, + { + "start": 34598.94, + "end": 34601.24, + "probability": 0.921 + }, + { + "start": 34601.66, + "end": 34603.8, + "probability": 0.9948 + }, + { + "start": 34604.2, + "end": 34604.96, + "probability": 0.8107 + }, + { + "start": 34605.1, + "end": 34608.02, + "probability": 0.9626 + }, + { + "start": 34608.44, + "end": 34611.26, + "probability": 0.9927 + }, + { + "start": 34611.64, + "end": 34616.66, + "probability": 0.9942 + }, + { + "start": 34617.3, + "end": 34621.78, + "probability": 0.943 + }, + { + "start": 34622.38, + "end": 34623.88, + "probability": 0.6832 + }, + { + "start": 34624.96, + "end": 34632.04, + "probability": 0.9971 + }, + { + "start": 34632.08, + "end": 34633.42, + "probability": 0.9203 + }, + { + "start": 34633.84, + "end": 34635.12, + "probability": 0.983 + }, + { + "start": 34636.26, + "end": 34637.42, + "probability": 0.9465 + }, + { + "start": 34637.5, + "end": 34639.12, + "probability": 0.9465 + }, + { + "start": 34639.5, + "end": 34642.2, + "probability": 0.9915 + }, + { + "start": 34642.68, + "end": 34643.46, + "probability": 0.4161 + }, + { + "start": 34643.86, + "end": 34648.35, + "probability": 0.9901 + }, + { + "start": 34648.88, + "end": 34651.44, + "probability": 0.906 + }, + { + "start": 34652.06, + "end": 34655.34, + "probability": 0.9873 + }, + { + "start": 34655.78, + "end": 34659.96, + "probability": 0.9331 + }, + { + "start": 34660.42, + "end": 34662.0, + "probability": 0.694 + }, + { + "start": 34662.58, + "end": 34665.66, + "probability": 0.9528 + }, + { + "start": 34666.06, + "end": 34670.28, + "probability": 0.9949 + }, + { + "start": 34671.12, + "end": 34672.44, + "probability": 0.8344 + }, + { + "start": 34672.6, + "end": 34675.52, + "probability": 0.9901 + }, + { + "start": 34676.06, + "end": 34677.0, + "probability": 0.9673 + }, + { + "start": 34677.66, + "end": 34681.28, + "probability": 0.9931 + }, + { + "start": 34681.8, + "end": 34682.84, + "probability": 0.9482 + }, + { + "start": 34683.28, + "end": 34684.57, + "probability": 0.9917 + }, + { + "start": 34685.1, + "end": 34687.88, + "probability": 0.9983 + }, + { + "start": 34687.92, + "end": 34690.7, + "probability": 0.9937 + }, + { + "start": 34691.1, + "end": 34695.52, + "probability": 0.9266 + }, + { + "start": 34696.18, + "end": 34700.18, + "probability": 0.9976 + }, + { + "start": 34700.18, + "end": 34704.46, + "probability": 0.9704 + }, + { + "start": 34704.94, + "end": 34708.2, + "probability": 0.8191 + }, + { + "start": 34709.18, + "end": 34711.3, + "probability": 0.8553 + }, + { + "start": 34711.76, + "end": 34715.42, + "probability": 0.9966 + }, + { + "start": 34716.22, + "end": 34718.0, + "probability": 0.9966 + }, + { + "start": 34718.36, + "end": 34719.88, + "probability": 0.965 + }, + { + "start": 34720.32, + "end": 34721.02, + "probability": 0.8814 + }, + { + "start": 34721.62, + "end": 34724.64, + "probability": 0.8754 + }, + { + "start": 34725.12, + "end": 34726.92, + "probability": 0.9975 + }, + { + "start": 34727.46, + "end": 34732.34, + "probability": 0.8544 + }, + { + "start": 34732.82, + "end": 34734.12, + "probability": 0.9301 + }, + { + "start": 34734.26, + "end": 34736.92, + "probability": 0.9849 + }, + { + "start": 34737.32, + "end": 34738.52, + "probability": 0.9989 + }, + { + "start": 34739.26, + "end": 34744.6, + "probability": 0.9986 + }, + { + "start": 34745.02, + "end": 34745.92, + "probability": 0.807 + }, + { + "start": 34746.04, + "end": 34746.7, + "probability": 0.5766 + }, + { + "start": 34747.12, + "end": 34750.22, + "probability": 0.9944 + }, + { + "start": 34750.7, + "end": 34751.28, + "probability": 0.7451 + }, + { + "start": 34751.78, + "end": 34754.98, + "probability": 0.9971 + }, + { + "start": 34755.5, + "end": 34759.38, + "probability": 0.998 + }, + { + "start": 34759.54, + "end": 34762.06, + "probability": 0.9194 + }, + { + "start": 34762.44, + "end": 34766.9, + "probability": 0.9966 + }, + { + "start": 34767.3, + "end": 34769.96, + "probability": 0.9969 + }, + { + "start": 34770.26, + "end": 34773.24, + "probability": 0.9807 + }, + { + "start": 34773.66, + "end": 34776.8, + "probability": 0.9561 + }, + { + "start": 34778.12, + "end": 34782.62, + "probability": 0.9312 + }, + { + "start": 34782.62, + "end": 34782.62, + "probability": 0.0568 + }, + { + "start": 34782.62, + "end": 34782.62, + "probability": 0.0334 + }, + { + "start": 34782.62, + "end": 34785.53, + "probability": 0.6827 + }, + { + "start": 34785.96, + "end": 34786.08, + "probability": 0.1168 + }, + { + "start": 34786.08, + "end": 34790.4, + "probability": 0.9827 + }, + { + "start": 34791.04, + "end": 34791.66, + "probability": 0.4403 + }, + { + "start": 34791.66, + "end": 34793.04, + "probability": 0.0293 + }, + { + "start": 34794.04, + "end": 34797.0, + "probability": 0.9331 + }, + { + "start": 34797.12, + "end": 34798.11, + "probability": 0.9974 + }, + { + "start": 34798.9, + "end": 34800.46, + "probability": 0.711 + }, + { + "start": 34801.84, + "end": 34803.02, + "probability": 0.23 + }, + { + "start": 34803.7, + "end": 34804.66, + "probability": 0.0227 + }, + { + "start": 34804.94, + "end": 34805.14, + "probability": 0.0358 + }, + { + "start": 34805.14, + "end": 34805.26, + "probability": 0.3357 + }, + { + "start": 34805.26, + "end": 34805.48, + "probability": 0.4141 + }, + { + "start": 34805.48, + "end": 34808.28, + "probability": 0.0374 + }, + { + "start": 34810.68, + "end": 34812.24, + "probability": 0.7009 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.0, + "end": 34924.0, + "probability": 0.0 + }, + { + "start": 34924.24, + "end": 34924.82, + "probability": 0.3643 + }, + { + "start": 34924.98, + "end": 34927.08, + "probability": 0.4214 + }, + { + "start": 34927.54, + "end": 34929.84, + "probability": 0.3178 + }, + { + "start": 34931.4, + "end": 34936.48, + "probability": 0.7537 + }, + { + "start": 34938.42, + "end": 34940.02, + "probability": 0.2642 + }, + { + "start": 34941.38, + "end": 34943.64, + "probability": 0.0513 + }, + { + "start": 34956.12, + "end": 34959.26, + "probability": 0.6569 + }, + { + "start": 34959.36, + "end": 34960.34, + "probability": 0.9616 + }, + { + "start": 34960.86, + "end": 34963.38, + "probability": 0.9666 + }, + { + "start": 34963.62, + "end": 34966.52, + "probability": 0.9243 + }, + { + "start": 34967.14, + "end": 34970.8, + "probability": 0.3908 + }, + { + "start": 34973.18, + "end": 34973.46, + "probability": 0.3368 + }, + { + "start": 34974.48, + "end": 34974.48, + "probability": 0.0004 + }, + { + "start": 34984.32, + "end": 34984.72, + "probability": 0.0508 + }, + { + "start": 34984.72, + "end": 34984.82, + "probability": 0.0357 + }, + { + "start": 34984.82, + "end": 34984.82, + "probability": 0.2784 + }, + { + "start": 34984.82, + "end": 34988.34, + "probability": 0.6579 + }, + { + "start": 34988.52, + "end": 34991.12, + "probability": 0.925 + }, + { + "start": 34993.36, + "end": 34994.72, + "probability": 0.0906 + }, + { + "start": 35010.78, + "end": 35011.2, + "probability": 0.0452 + }, + { + "start": 35011.2, + "end": 35013.48, + "probability": 0.5439 + }, + { + "start": 35014.18, + "end": 35014.86, + "probability": 0.6018 + }, + { + "start": 35015.02, + "end": 35015.94, + "probability": 0.8513 + }, + { + "start": 35016.08, + "end": 35019.48, + "probability": 0.9839 + }, + { + "start": 35020.06, + "end": 35021.02, + "probability": 0.5863 + }, + { + "start": 35021.24, + "end": 35022.82, + "probability": 0.8624 + }, + { + "start": 35042.22, + "end": 35046.54, + "probability": 0.4522 + }, + { + "start": 35047.42, + "end": 35049.78, + "probability": 0.1489 + }, + { + "start": 35068.84, + "end": 35069.28, + "probability": 0.0798 + }, + { + "start": 35069.28, + "end": 35072.0, + "probability": 0.5157 + }, + { + "start": 35072.12, + "end": 35073.08, + "probability": 0.86 + }, + { + "start": 35073.66, + "end": 35075.58, + "probability": 0.3306 + }, + { + "start": 35075.68, + "end": 35077.42, + "probability": 0.9365 + }, + { + "start": 35098.16, + "end": 35098.16, + "probability": 0.0645 + }, + { + "start": 35098.16, + "end": 35098.24, + "probability": 0.077 + }, + { + "start": 35098.24, + "end": 35101.54, + "probability": 0.5674 + }, + { + "start": 35101.62, + "end": 35102.86, + "probability": 0.966 + }, + { + "start": 35103.44, + "end": 35104.8, + "probability": 0.5261 + }, + { + "start": 35109.72, + "end": 35111.18, + "probability": 0.7812 + }, + { + "start": 35111.6, + "end": 35114.38, + "probability": 0.5093 + }, + { + "start": 35128.44, + "end": 35128.88, + "probability": 0.0394 + }, + { + "start": 35128.88, + "end": 35131.42, + "probability": 0.6524 + }, + { + "start": 35131.56, + "end": 35132.54, + "probability": 0.9449 + }, + { + "start": 35132.92, + "end": 35134.58, + "probability": 0.3057 + }, + { + "start": 35134.58, + "end": 35135.4, + "probability": 0.6525 + }, + { + "start": 35135.86, + "end": 35137.11, + "probability": 0.1007 + }, + { + "start": 35140.87, + "end": 35148.4, + "probability": 0.0841 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.0, + "end": 35261.0, + "probability": 0.0 + }, + { + "start": 35261.2, + "end": 35262.7, + "probability": 0.1417 + }, + { + "start": 35263.98, + "end": 35264.3, + "probability": 0.0539 + }, + { + "start": 35264.3, + "end": 35265.22, + "probability": 0.5002 + }, + { + "start": 35265.92, + "end": 35268.4, + "probability": 0.7663 + }, + { + "start": 35268.92, + "end": 35270.78, + "probability": 0.8548 + }, + { + "start": 35271.32, + "end": 35274.08, + "probability": 0.8923 + }, + { + "start": 35275.48, + "end": 35280.88, + "probability": 0.7196 + }, + { + "start": 35281.2, + "end": 35282.12, + "probability": 0.301 + }, + { + "start": 35282.92, + "end": 35285.78, + "probability": 0.9482 + }, + { + "start": 35286.8, + "end": 35287.36, + "probability": 0.4145 + }, + { + "start": 35288.46, + "end": 35293.6, + "probability": 0.1035 + }, + { + "start": 35295.58, + "end": 35296.56, + "probability": 0.1675 + }, + { + "start": 35296.56, + "end": 35297.55, + "probability": 0.4254 + }, + { + "start": 35298.84, + "end": 35300.52, + "probability": 0.6862 + }, + { + "start": 35300.7, + "end": 35305.48, + "probability": 0.6785 + }, + { + "start": 35306.06, + "end": 35309.92, + "probability": 0.8096 + }, + { + "start": 35310.34, + "end": 35311.94, + "probability": 0.8386 + }, + { + "start": 35329.42, + "end": 35330.08, + "probability": 0.0315 + }, + { + "start": 35330.08, + "end": 35332.82, + "probability": 0.6929 + }, + { + "start": 35333.12, + "end": 35334.0, + "probability": 0.9171 + }, + { + "start": 35334.52, + "end": 35335.8, + "probability": 0.9984 + }, + { + "start": 35336.66, + "end": 35339.24, + "probability": 0.978 + }, + { + "start": 35339.44, + "end": 35341.02, + "probability": 0.8265 + }, + { + "start": 35342.16, + "end": 35344.24, + "probability": 0.74 + }, + { + "start": 35358.52, + "end": 35358.86, + "probability": 0.1362 + }, + { + "start": 35358.86, + "end": 35358.86, + "probability": 0.4113 + }, + { + "start": 35358.86, + "end": 35358.88, + "probability": 0.094 + }, + { + "start": 35358.88, + "end": 35362.0, + "probability": 0.8319 + }, + { + "start": 35362.22, + "end": 35364.6, + "probability": 0.9458 + }, + { + "start": 35365.14, + "end": 35366.51, + "probability": 0.6146 + }, + { + "start": 35367.22, + "end": 35369.52, + "probability": 0.9802 + }, + { + "start": 35369.94, + "end": 35372.62, + "probability": 0.9961 + }, + { + "start": 35372.94, + "end": 35375.18, + "probability": 0.9219 + }, + { + "start": 35379.98, + "end": 35381.64, + "probability": 0.602 + }, + { + "start": 35382.7, + "end": 35389.74, + "probability": 0.9927 + }, + { + "start": 35390.48, + "end": 35393.48, + "probability": 0.9849 + }, + { + "start": 35394.88, + "end": 35399.26, + "probability": 0.8687 + }, + { + "start": 35399.72, + "end": 35402.9, + "probability": 0.9312 + }, + { + "start": 35403.62, + "end": 35407.9, + "probability": 0.9614 + }, + { + "start": 35407.98, + "end": 35411.24, + "probability": 0.9809 + }, + { + "start": 35411.28, + "end": 35412.52, + "probability": 0.7833 + }, + { + "start": 35412.78, + "end": 35413.56, + "probability": 0.9526 + }, + { + "start": 35413.98, + "end": 35416.28, + "probability": 0.7084 + }, + { + "start": 35416.34, + "end": 35419.54, + "probability": 0.9663 + }, + { + "start": 35419.62, + "end": 35420.16, + "probability": 0.8303 + }, + { + "start": 35420.94, + "end": 35423.34, + "probability": 0.991 + }, + { + "start": 35423.74, + "end": 35426.16, + "probability": 0.9845 + }, + { + "start": 35427.44, + "end": 35428.62, + "probability": 0.693 + }, + { + "start": 35428.98, + "end": 35430.32, + "probability": 0.8197 + }, + { + "start": 35430.68, + "end": 35432.04, + "probability": 0.0135 + }, + { + "start": 35451.6, + "end": 35452.04, + "probability": 0.0912 + }, + { + "start": 35452.04, + "end": 35453.96, + "probability": 0.8636 + }, + { + "start": 35454.0, + "end": 35457.05, + "probability": 0.9588 + }, + { + "start": 35457.76, + "end": 35460.6, + "probability": 0.8161 + }, + { + "start": 35460.66, + "end": 35461.88, + "probability": 0.6443 + }, + { + "start": 35462.74, + "end": 35463.34, + "probability": 0.5069 + }, + { + "start": 35463.9, + "end": 35465.2, + "probability": 0.714 + }, + { + "start": 35465.36, + "end": 35471.12, + "probability": 0.7824 + }, + { + "start": 35471.94, + "end": 35472.26, + "probability": 0.624 + }, + { + "start": 35472.86, + "end": 35476.52, + "probability": 0.9741 + }, + { + "start": 35477.82, + "end": 35481.4, + "probability": 0.3641 + }, + { + "start": 35482.2, + "end": 35486.72, + "probability": 0.493 + }, + { + "start": 35486.84, + "end": 35490.0, + "probability": 0.7376 + }, + { + "start": 35490.48, + "end": 35492.06, + "probability": 0.5562 + }, + { + "start": 35492.16, + "end": 35492.56, + "probability": 0.6989 + }, + { + "start": 35494.36, + "end": 35496.68, + "probability": 0.9834 + }, + { + "start": 35496.72, + "end": 35498.4, + "probability": 0.9912 + }, + { + "start": 35498.62, + "end": 35502.22, + "probability": 0.7468 + }, + { + "start": 35502.74, + "end": 35503.18, + "probability": 0.3315 + }, + { + "start": 35503.46, + "end": 35506.72, + "probability": 0.9917 + }, + { + "start": 35507.26, + "end": 35508.46, + "probability": 0.3958 + }, + { + "start": 35508.66, + "end": 35512.38, + "probability": 0.8626 + }, + { + "start": 35513.26, + "end": 35514.36, + "probability": 0.8515 + }, + { + "start": 35519.98, + "end": 35523.22, + "probability": 0.8336 + }, + { + "start": 35524.5, + "end": 35526.04, + "probability": 0.4632 + }, + { + "start": 35527.4, + "end": 35530.84, + "probability": 0.8426 + }, + { + "start": 35531.76, + "end": 35536.1, + "probability": 0.9784 + }, + { + "start": 35537.0, + "end": 35540.56, + "probability": 0.9956 + }, + { + "start": 35546.32, + "end": 35547.14, + "probability": 0.3592 + }, + { + "start": 35548.08, + "end": 35550.54, + "probability": 0.9985 + }, + { + "start": 35551.24, + "end": 35553.62, + "probability": 0.9198 + }, + { + "start": 35554.32, + "end": 35556.26, + "probability": 0.9097 + }, + { + "start": 35557.24, + "end": 35559.5, + "probability": 0.8452 + }, + { + "start": 35560.86, + "end": 35564.12, + "probability": 0.9928 + }, + { + "start": 35564.76, + "end": 35566.96, + "probability": 0.996 + }, + { + "start": 35567.44, + "end": 35570.28, + "probability": 0.7499 + }, + { + "start": 35570.82, + "end": 35575.68, + "probability": 0.9575 + }, + { + "start": 35576.42, + "end": 35579.55, + "probability": 0.8315 + }, + { + "start": 35579.92, + "end": 35583.34, + "probability": 0.9627 + }, + { + "start": 35584.65, + "end": 35586.08, + "probability": 0.9853 + }, + { + "start": 35587.3, + "end": 35591.88, + "probability": 0.998 + }, + { + "start": 35592.5, + "end": 35594.84, + "probability": 0.7101 + }, + { + "start": 35595.2, + "end": 35599.28, + "probability": 0.7532 + }, + { + "start": 35599.84, + "end": 35601.22, + "probability": 0.8806 + }, + { + "start": 35602.12, + "end": 35605.66, + "probability": 0.9843 + }, + { + "start": 35606.34, + "end": 35607.06, + "probability": 0.4324 + }, + { + "start": 35607.96, + "end": 35609.86, + "probability": 0.8899 + }, + { + "start": 35610.62, + "end": 35614.1, + "probability": 0.9323 + }, + { + "start": 35614.92, + "end": 35616.44, + "probability": 0.7476 + }, + { + "start": 35617.56, + "end": 35619.22, + "probability": 0.5 + }, + { + "start": 35619.4, + "end": 35620.57, + "probability": 0.9071 + }, + { + "start": 35620.96, + "end": 35621.7, + "probability": 0.9849 + }, + { + "start": 35621.92, + "end": 35623.63, + "probability": 0.6475 + }, + { + "start": 35624.38, + "end": 35626.9, + "probability": 0.9983 + }, + { + "start": 35627.04, + "end": 35629.21, + "probability": 0.9533 + }, + { + "start": 35630.14, + "end": 35633.08, + "probability": 0.9387 + }, + { + "start": 35633.62, + "end": 35634.9, + "probability": 0.9106 + }, + { + "start": 35635.5, + "end": 35636.28, + "probability": 0.7852 + }, + { + "start": 35636.44, + "end": 35637.12, + "probability": 0.8083 + }, + { + "start": 35637.28, + "end": 35639.1, + "probability": 0.485 + }, + { + "start": 35639.24, + "end": 35639.64, + "probability": 0.7569 + }, + { + "start": 35640.14, + "end": 35640.9, + "probability": 0.8088 + }, + { + "start": 35640.98, + "end": 35641.72, + "probability": 0.6728 + }, + { + "start": 35642.2, + "end": 35643.28, + "probability": 0.779 + }, + { + "start": 35643.84, + "end": 35648.48, + "probability": 0.8687 + }, + { + "start": 35648.92, + "end": 35649.9, + "probability": 0.9209 + }, + { + "start": 35650.58, + "end": 35652.31, + "probability": 0.7879 + }, + { + "start": 35653.0, + "end": 35655.38, + "probability": 0.6407 + }, + { + "start": 35655.6, + "end": 35656.28, + "probability": 0.7415 + }, + { + "start": 35656.36, + "end": 35656.66, + "probability": 0.8542 + }, + { + "start": 35657.08, + "end": 35663.1, + "probability": 0.9353 + }, + { + "start": 35663.2, + "end": 35663.7, + "probability": 0.9805 + }, + { + "start": 35664.0, + "end": 35665.82, + "probability": 0.9694 + }, + { + "start": 35666.04, + "end": 35666.9, + "probability": 0.6885 + }, + { + "start": 35667.12, + "end": 35668.52, + "probability": 0.6323 + }, + { + "start": 35668.58, + "end": 35669.74, + "probability": 0.816 + }, + { + "start": 35677.06, + "end": 35677.54, + "probability": 0.6526 + }, + { + "start": 35677.98, + "end": 35679.2, + "probability": 0.7144 + }, + { + "start": 35685.46, + "end": 35688.8, + "probability": 0.6653 + }, + { + "start": 35688.8, + "end": 35691.18, + "probability": 0.9217 + }, + { + "start": 35691.36, + "end": 35694.0, + "probability": 0.533 + }, + { + "start": 35694.24, + "end": 35695.24, + "probability": 0.7492 + }, + { + "start": 35697.54, + "end": 35699.22, + "probability": 0.0058 + }, + { + "start": 35700.18, + "end": 35700.18, + "probability": 0.012 + }, + { + "start": 35705.26, + "end": 35707.14, + "probability": 0.7472 + }, + { + "start": 35708.98, + "end": 35709.8, + "probability": 0.9805 + }, + { + "start": 35710.3, + "end": 35710.85, + "probability": 0.8857 + }, + { + "start": 35713.12, + "end": 35716.92, + "probability": 0.4783 + }, + { + "start": 35717.46, + "end": 35719.52, + "probability": 0.5021 + }, + { + "start": 35719.82, + "end": 35724.2, + "probability": 0.7849 + }, + { + "start": 35724.8, + "end": 35724.8, + "probability": 0.1268 + }, + { + "start": 35724.8, + "end": 35727.74, + "probability": 0.98 + }, + { + "start": 35727.76, + "end": 35732.12, + "probability": 0.414 + }, + { + "start": 35732.16, + "end": 35733.06, + "probability": 0.7568 + }, + { + "start": 35751.09, + "end": 35757.12, + "probability": 0.1308 + }, + { + "start": 35757.12, + "end": 35757.12, + "probability": 0.0463 + }, + { + "start": 35757.12, + "end": 35757.12, + "probability": 0.1543 + }, + { + "start": 35757.12, + "end": 35758.02, + "probability": 0.7956 + }, + { + "start": 35759.38, + "end": 35759.86, + "probability": 0.0567 + }, + { + "start": 35760.06, + "end": 35760.18, + "probability": 0.082 + }, + { + "start": 35760.18, + "end": 35760.36, + "probability": 0.1106 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.0, + "end": 35813.0, + "probability": 0.0 + }, + { + "start": 35813.26, + "end": 35814.24, + "probability": 0.1043 + }, + { + "start": 35814.62, + "end": 35815.1, + "probability": 0.2572 + }, + { + "start": 35815.14, + "end": 35815.44, + "probability": 0.435 + }, + { + "start": 35815.44, + "end": 35816.12, + "probability": 0.2989 + }, + { + "start": 35816.24, + "end": 35816.56, + "probability": 0.3822 + }, + { + "start": 35816.74, + "end": 35818.06, + "probability": 0.205 + }, + { + "start": 35818.74, + "end": 35820.09, + "probability": 0.2597 + }, + { + "start": 35820.94, + "end": 35821.6, + "probability": 0.0645 + }, + { + "start": 35822.58, + "end": 35823.26, + "probability": 0.1424 + }, + { + "start": 35826.48, + "end": 35826.66, + "probability": 0.3154 + }, + { + "start": 35826.66, + "end": 35827.74, + "probability": 0.1492 + }, + { + "start": 35827.74, + "end": 35829.96, + "probability": 0.0892 + }, + { + "start": 35831.16, + "end": 35832.16, + "probability": 0.2556 + }, + { + "start": 35835.04, + "end": 35836.8, + "probability": 0.0827 + }, + { + "start": 35836.96, + "end": 35841.44, + "probability": 0.0424 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.0, + "end": 35940.0, + "probability": 0.0 + }, + { + "start": 35940.16, + "end": 35940.24, + "probability": 0.0438 + }, + { + "start": 35940.24, + "end": 35940.24, + "probability": 0.0807 + }, + { + "start": 35940.24, + "end": 35940.24, + "probability": 0.0858 + }, + { + "start": 35940.24, + "end": 35940.59, + "probability": 0.3438 + }, + { + "start": 35941.36, + "end": 35946.41, + "probability": 0.8721 + }, + { + "start": 35946.46, + "end": 35947.68, + "probability": 0.6813 + }, + { + "start": 35948.2, + "end": 35949.02, + "probability": 0.7359 + }, + { + "start": 35949.24, + "end": 35949.58, + "probability": 0.5626 + }, + { + "start": 35949.86, + "end": 35949.98, + "probability": 0.8696 + }, + { + "start": 35950.12, + "end": 35950.74, + "probability": 0.9342 + }, + { + "start": 35950.9, + "end": 35951.32, + "probability": 0.7444 + }, + { + "start": 35951.38, + "end": 35951.44, + "probability": 0.5574 + }, + { + "start": 35951.54, + "end": 35953.92, + "probability": 0.9042 + }, + { + "start": 35954.22, + "end": 35954.32, + "probability": 0.9341 + }, + { + "start": 35955.02, + "end": 35958.04, + "probability": 0.2671 + }, + { + "start": 35958.66, + "end": 35958.66, + "probability": 0.0749 + }, + { + "start": 35958.66, + "end": 35958.66, + "probability": 0.0442 + }, + { + "start": 35958.66, + "end": 35959.84, + "probability": 0.412 + }, + { + "start": 35960.34, + "end": 35963.82, + "probability": 0.9585 + }, + { + "start": 35964.24, + "end": 35965.7, + "probability": 0.9858 + }, + { + "start": 35966.32, + "end": 35968.66, + "probability": 0.9023 + }, + { + "start": 35969.22, + "end": 35972.12, + "probability": 0.9713 + }, + { + "start": 35972.64, + "end": 35976.16, + "probability": 0.9973 + }, + { + "start": 35976.54, + "end": 35977.24, + "probability": 0.8147 + }, + { + "start": 35977.34, + "end": 35980.14, + "probability": 0.9112 + }, + { + "start": 35980.98, + "end": 35981.44, + "probability": 0.2772 + }, + { + "start": 35982.06, + "end": 35985.72, + "probability": 0.9893 + }, + { + "start": 35985.72, + "end": 35986.04, + "probability": 0.5221 + }, + { + "start": 35986.28, + "end": 35986.54, + "probability": 0.9648 + }, + { + "start": 35987.32, + "end": 35987.82, + "probability": 0.9932 + }, + { + "start": 35988.72, + "end": 35989.36, + "probability": 0.7863 + }, + { + "start": 35989.8, + "end": 35990.24, + "probability": 0.0508 + }, + { + "start": 35990.94, + "end": 35993.38, + "probability": 0.4774 + }, + { + "start": 35993.5, + "end": 35993.74, + "probability": 0.8184 + }, + { + "start": 35993.92, + "end": 35994.45, + "probability": 0.8418 + }, + { + "start": 35994.74, + "end": 35998.7, + "probability": 0.852 + }, + { + "start": 35999.24, + "end": 36001.5, + "probability": 0.9234 + }, + { + "start": 36002.2, + "end": 36003.42, + "probability": 0.9012 + }, + { + "start": 36004.68, + "end": 36007.18, + "probability": 0.9862 + }, + { + "start": 36007.58, + "end": 36007.94, + "probability": 0.9254 + }, + { + "start": 36009.06, + "end": 36010.68, + "probability": 0.7083 + }, + { + "start": 36010.98, + "end": 36012.0, + "probability": 0.6496 + }, + { + "start": 36012.4, + "end": 36013.26, + "probability": 0.7507 + }, + { + "start": 36013.32, + "end": 36014.9, + "probability": 0.5173 + }, + { + "start": 36015.76, + "end": 36016.2, + "probability": 0.0372 + }, + { + "start": 36016.2, + "end": 36017.4, + "probability": 0.6414 + }, + { + "start": 36017.68, + "end": 36018.88, + "probability": 0.9485 + }, + { + "start": 36018.96, + "end": 36019.99, + "probability": 0.9279 + }, + { + "start": 36020.16, + "end": 36020.78, + "probability": 0.0976 + }, + { + "start": 36021.14, + "end": 36023.62, + "probability": 0.7443 + }, + { + "start": 36027.77, + "end": 36028.62, + "probability": 0.0374 + }, + { + "start": 36028.62, + "end": 36028.7, + "probability": 0.028 + }, + { + "start": 36028.7, + "end": 36028.84, + "probability": 0.1049 + }, + { + "start": 36029.32, + "end": 36031.7, + "probability": 0.6914 + }, + { + "start": 36032.78, + "end": 36037.34, + "probability": 0.9357 + }, + { + "start": 36038.04, + "end": 36038.98, + "probability": 0.7657 + }, + { + "start": 36039.66, + "end": 36040.06, + "probability": 0.0098 + }, + { + "start": 36040.06, + "end": 36040.54, + "probability": 0.6511 + }, + { + "start": 36040.62, + "end": 36041.84, + "probability": 0.6993 + }, + { + "start": 36041.92, + "end": 36043.0, + "probability": 0.9414 + }, + { + "start": 36043.0, + "end": 36043.92, + "probability": 0.3357 + }, + { + "start": 36043.96, + "end": 36043.96, + "probability": 0.0118 + }, + { + "start": 36043.96, + "end": 36044.8, + "probability": 0.7583 + }, + { + "start": 36044.86, + "end": 36045.74, + "probability": 0.7703 + }, + { + "start": 36045.76, + "end": 36046.39, + "probability": 0.5904 + }, + { + "start": 36046.68, + "end": 36048.92, + "probability": 0.8254 + }, + { + "start": 36049.22, + "end": 36052.37, + "probability": 0.8252 + }, + { + "start": 36052.72, + "end": 36053.54, + "probability": 0.9599 + }, + { + "start": 36054.4, + "end": 36056.96, + "probability": 0.9941 + }, + { + "start": 36057.16, + "end": 36058.14, + "probability": 0.9059 + }, + { + "start": 36058.68, + "end": 36058.78, + "probability": 0.0159 + }, + { + "start": 36058.78, + "end": 36058.78, + "probability": 0.0371 + }, + { + "start": 36058.78, + "end": 36063.72, + "probability": 0.9541 + }, + { + "start": 36064.16, + "end": 36064.16, + "probability": 0.0629 + }, + { + "start": 36064.16, + "end": 36065.34, + "probability": 0.8478 + }, + { + "start": 36065.48, + "end": 36065.94, + "probability": 0.9231 + }, + { + "start": 36065.94, + "end": 36069.28, + "probability": 0.8862 + }, + { + "start": 36070.02, + "end": 36070.64, + "probability": 0.0705 + }, + { + "start": 36070.77, + "end": 36070.92, + "probability": 0.1921 + }, + { + "start": 36070.92, + "end": 36072.2, + "probability": 0.8125 + }, + { + "start": 36072.66, + "end": 36075.66, + "probability": 0.9384 + }, + { + "start": 36075.66, + "end": 36077.78, + "probability": 0.0632 + }, + { + "start": 36078.06, + "end": 36078.24, + "probability": 0.1093 + }, + { + "start": 36078.24, + "end": 36081.36, + "probability": 0.988 + }, + { + "start": 36083.64, + "end": 36083.88, + "probability": 0.1476 + }, + { + "start": 36084.12, + "end": 36084.12, + "probability": 0.0496 + }, + { + "start": 36084.12, + "end": 36084.12, + "probability": 0.1956 + }, + { + "start": 36084.12, + "end": 36086.08, + "probability": 0.0814 + }, + { + "start": 36086.08, + "end": 36086.08, + "probability": 0.0375 + }, + { + "start": 36086.08, + "end": 36086.08, + "probability": 0.0663 + }, + { + "start": 36086.08, + "end": 36086.08, + "probability": 0.2581 + }, + { + "start": 36086.08, + "end": 36087.9, + "probability": 0.4922 + }, + { + "start": 36088.04, + "end": 36088.44, + "probability": 0.0456 + }, + { + "start": 36088.44, + "end": 36088.54, + "probability": 0.0919 + }, + { + "start": 36088.54, + "end": 36088.54, + "probability": 0.5454 + }, + { + "start": 36088.54, + "end": 36088.54, + "probability": 0.5255 + }, + { + "start": 36088.54, + "end": 36088.54, + "probability": 0.4796 + }, + { + "start": 36088.54, + "end": 36090.8, + "probability": 0.5977 + }, + { + "start": 36100.0, + "end": 36100.0, + "probability": 0.0 + }, + { + "start": 36100.0, + "end": 36100.0, + "probability": 0.0 + }, + { + "start": 36101.74, + "end": 36102.44, + "probability": 0.0002 + }, + { + "start": 36102.44, + "end": 36102.82, + "probability": 0.0397 + }, + { + "start": 36102.82, + "end": 36102.82, + "probability": 0.0807 + }, + { + "start": 36102.82, + "end": 36106.44, + "probability": 0.0982 + }, + { + "start": 36106.72, + "end": 36108.06, + "probability": 0.0097 + }, + { + "start": 36108.06, + "end": 36112.14, + "probability": 0.0224 + }, + { + "start": 36112.14, + "end": 36122.82, + "probability": 0.1463 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.0, + "probability": 0.0 + }, + { + "start": 36220.0, + "end": 36220.1, + "probability": 0.0201 + }, + { + "start": 36220.44, + "end": 36220.44, + "probability": 0.3315 + }, + { + "start": 36220.44, + "end": 36220.82, + "probability": 0.5701 + }, + { + "start": 36221.22, + "end": 36221.42, + "probability": 0.2259 + }, + { + "start": 36222.19, + "end": 36224.48, + "probability": 0.5926 + }, + { + "start": 36224.48, + "end": 36225.58, + "probability": 0.5269 + }, + { + "start": 36225.68, + "end": 36226.66, + "probability": 0.744 + }, + { + "start": 36226.7, + "end": 36226.7, + "probability": 0.475 + }, + { + "start": 36226.7, + "end": 36227.4, + "probability": 0.9958 + }, + { + "start": 36229.1, + "end": 36229.76, + "probability": 0.2083 + }, + { + "start": 36229.76, + "end": 36231.3, + "probability": 0.2605 + }, + { + "start": 36232.18, + "end": 36232.18, + "probability": 0.4322 + }, + { + "start": 36232.18, + "end": 36233.77, + "probability": 0.7825 + }, + { + "start": 36234.0, + "end": 36235.06, + "probability": 0.8984 + }, + { + "start": 36235.88, + "end": 36237.08, + "probability": 0.0386 + }, + { + "start": 36237.24, + "end": 36238.54, + "probability": 0.2993 + }, + { + "start": 36238.78, + "end": 36240.7, + "probability": 0.457 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.0, + "end": 36346.0, + "probability": 0.0 + }, + { + "start": 36346.36, + "end": 36346.36, + "probability": 0.1892 + }, + { + "start": 36346.36, + "end": 36346.36, + "probability": 0.2398 + }, + { + "start": 36346.36, + "end": 36348.0, + "probability": 0.1821 + }, + { + "start": 36348.94, + "end": 36352.82, + "probability": 0.1137 + }, + { + "start": 36355.84, + "end": 36356.52, + "probability": 0.1331 + }, + { + "start": 36356.52, + "end": 36356.52, + "probability": 0.0564 + }, + { + "start": 36356.52, + "end": 36356.52, + "probability": 0.0047 + }, + { + "start": 36356.52, + "end": 36356.52, + "probability": 0.2221 + }, + { + "start": 36356.52, + "end": 36356.52, + "probability": 0.1531 + }, + { + "start": 36356.52, + "end": 36358.18, + "probability": 0.8599 + }, + { + "start": 36358.78, + "end": 36359.99, + "probability": 0.5007 + }, + { + "start": 36360.04, + "end": 36362.06, + "probability": 0.6472 + }, + { + "start": 36362.22, + "end": 36363.08, + "probability": 0.8904 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.0, + "end": 36471.0, + "probability": 0.0 + }, + { + "start": 36471.5, + "end": 36475.7, + "probability": 0.1943 + }, + { + "start": 36476.26, + "end": 36477.28, + "probability": 0.6913 + }, + { + "start": 36478.26, + "end": 36480.88, + "probability": 0.8605 + }, + { + "start": 36482.02, + "end": 36482.86, + "probability": 0.9973 + }, + { + "start": 36483.4, + "end": 36486.36, + "probability": 0.9835 + }, + { + "start": 36486.57, + "end": 36493.44, + "probability": 0.6157 + }, + { + "start": 36493.74, + "end": 36497.16, + "probability": 0.9607 + }, + { + "start": 36498.08, + "end": 36500.0, + "probability": 0.6755 + }, + { + "start": 36501.46, + "end": 36504.46, + "probability": 0.7859 + }, + { + "start": 36505.34, + "end": 36509.0, + "probability": 0.9714 + }, + { + "start": 36509.7, + "end": 36515.84, + "probability": 0.993 + }, + { + "start": 36517.2, + "end": 36517.4, + "probability": 0.5826 + }, + { + "start": 36517.48, + "end": 36517.92, + "probability": 0.5122 + }, + { + "start": 36518.4, + "end": 36522.08, + "probability": 0.7939 + }, + { + "start": 36522.76, + "end": 36527.22, + "probability": 0.9941 + }, + { + "start": 36527.8, + "end": 36530.32, + "probability": 0.6832 + }, + { + "start": 36530.34, + "end": 36534.4, + "probability": 0.8736 + }, + { + "start": 36535.02, + "end": 36537.74, + "probability": 0.8402 + }, + { + "start": 36538.52, + "end": 36542.28, + "probability": 0.992 + }, + { + "start": 36542.28, + "end": 36546.84, + "probability": 0.9824 + }, + { + "start": 36549.6, + "end": 36555.66, + "probability": 0.984 + }, + { + "start": 36556.14, + "end": 36558.4, + "probability": 0.9693 + }, + { + "start": 36559.1, + "end": 36562.88, + "probability": 0.9642 + }, + { + "start": 36563.46, + "end": 36565.12, + "probability": 0.7863 + }, + { + "start": 36566.0, + "end": 36570.2, + "probability": 0.6625 + }, + { + "start": 36570.72, + "end": 36572.12, + "probability": 0.9243 + }, + { + "start": 36572.7, + "end": 36576.08, + "probability": 0.9904 + }, + { + "start": 36576.08, + "end": 36583.22, + "probability": 0.9141 + }, + { + "start": 36584.54, + "end": 36587.44, + "probability": 0.936 + }, + { + "start": 36587.88, + "end": 36591.18, + "probability": 0.9924 + }, + { + "start": 36591.58, + "end": 36594.24, + "probability": 0.9985 + }, + { + "start": 36594.84, + "end": 36595.94, + "probability": 0.961 + }, + { + "start": 36596.16, + "end": 36598.32, + "probability": 0.9869 + }, + { + "start": 36598.96, + "end": 36602.68, + "probability": 0.9801 + }, + { + "start": 36603.62, + "end": 36609.54, + "probability": 0.9495 + }, + { + "start": 36609.9, + "end": 36612.0, + "probability": 0.9767 + }, + { + "start": 36612.22, + "end": 36614.52, + "probability": 0.7016 + }, + { + "start": 36615.94, + "end": 36619.52, + "probability": 0.9255 + }, + { + "start": 36619.58, + "end": 36623.08, + "probability": 0.9756 + }, + { + "start": 36624.59, + "end": 36628.12, + "probability": 0.9886 + }, + { + "start": 36628.88, + "end": 36631.6, + "probability": 0.9932 + }, + { + "start": 36632.66, + "end": 36633.26, + "probability": 0.8286 + }, + { + "start": 36634.58, + "end": 36637.9, + "probability": 0.9544 + }, + { + "start": 36638.56, + "end": 36638.92, + "probability": 0.8129 + }, + { + "start": 36639.76, + "end": 36640.42, + "probability": 0.7725 + }, + { + "start": 36640.62, + "end": 36641.52, + "probability": 0.6069 + }, + { + "start": 36642.16, + "end": 36644.52, + "probability": 0.7778 + }, + { + "start": 36645.32, + "end": 36647.96, + "probability": 0.673 + }, + { + "start": 36648.28, + "end": 36649.58, + "probability": 0.8444 + }, + { + "start": 36650.2, + "end": 36651.14, + "probability": 0.9447 + }, + { + "start": 36666.24, + "end": 36668.46, + "probability": 0.5633 + }, + { + "start": 36669.82, + "end": 36672.02, + "probability": 0.7394 + }, + { + "start": 36672.56, + "end": 36673.04, + "probability": 0.8424 + }, + { + "start": 36675.64, + "end": 36677.11, + "probability": 0.776 + }, + { + "start": 36678.04, + "end": 36678.26, + "probability": 0.0363 + }, + { + "start": 36678.26, + "end": 36679.36, + "probability": 0.6548 + }, + { + "start": 36680.02, + "end": 36682.4, + "probability": 0.9735 + }, + { + "start": 36682.88, + "end": 36683.74, + "probability": 0.7078 + }, + { + "start": 36683.78, + "end": 36684.34, + "probability": 0.7967 + }, + { + "start": 36684.44, + "end": 36687.52, + "probability": 0.9665 + }, + { + "start": 36687.6, + "end": 36690.86, + "probability": 0.8547 + }, + { + "start": 36690.92, + "end": 36693.5, + "probability": 0.9949 + }, + { + "start": 36694.24, + "end": 36695.26, + "probability": 0.8552 + }, + { + "start": 36695.54, + "end": 36697.8, + "probability": 0.749 + }, + { + "start": 36698.88, + "end": 36700.68, + "probability": 0.9959 + }, + { + "start": 36701.34, + "end": 36703.48, + "probability": 0.8776 + }, + { + "start": 36704.04, + "end": 36705.55, + "probability": 0.9625 + }, + { + "start": 36706.32, + "end": 36708.68, + "probability": 0.9604 + }, + { + "start": 36708.91, + "end": 36709.34, + "probability": 0.5109 + }, + { + "start": 36709.46, + "end": 36711.34, + "probability": 0.7438 + }, + { + "start": 36711.92, + "end": 36712.72, + "probability": 0.7503 + }, + { + "start": 36713.74, + "end": 36716.42, + "probability": 0.9082 + }, + { + "start": 36717.02, + "end": 36722.58, + "probability": 0.9912 + }, + { + "start": 36723.3, + "end": 36725.76, + "probability": 0.9897 + }, + { + "start": 36726.36, + "end": 36729.24, + "probability": 0.9993 + }, + { + "start": 36729.58, + "end": 36730.5, + "probability": 0.3397 + }, + { + "start": 36731.48, + "end": 36731.62, + "probability": 0.3388 + }, + { + "start": 36731.76, + "end": 36732.18, + "probability": 0.5089 + }, + { + "start": 36732.26, + "end": 36733.34, + "probability": 0.4178 + }, + { + "start": 36733.74, + "end": 36736.28, + "probability": 0.4677 + }, + { + "start": 36736.96, + "end": 36738.6, + "probability": 0.8066 + }, + { + "start": 36739.72, + "end": 36740.64, + "probability": 0.132 + }, + { + "start": 36740.64, + "end": 36740.64, + "probability": 0.2539 + }, + { + "start": 36740.64, + "end": 36743.06, + "probability": 0.6333 + }, + { + "start": 36743.14, + "end": 36744.28, + "probability": 0.964 + }, + { + "start": 36745.58, + "end": 36745.62, + "probability": 0.2225 + }, + { + "start": 36745.62, + "end": 36747.7, + "probability": 0.979 + }, + { + "start": 36748.36, + "end": 36749.44, + "probability": 0.865 + }, + { + "start": 36749.6, + "end": 36749.94, + "probability": 0.4219 + }, + { + "start": 36749.96, + "end": 36752.22, + "probability": 0.5669 + }, + { + "start": 36752.22, + "end": 36752.22, + "probability": 0.019 + }, + { + "start": 36752.22, + "end": 36753.98, + "probability": 0.6009 + }, + { + "start": 36754.66, + "end": 36756.92, + "probability": 0.9813 + }, + { + "start": 36757.02, + "end": 36757.12, + "probability": 0.2351 + }, + { + "start": 36757.64, + "end": 36758.26, + "probability": 0.0184 + }, + { + "start": 36758.32, + "end": 36758.32, + "probability": 0.4069 + }, + { + "start": 36758.32, + "end": 36758.42, + "probability": 0.3553 + }, + { + "start": 36759.31, + "end": 36760.48, + "probability": 0.3588 + }, + { + "start": 36761.16, + "end": 36762.68, + "probability": 0.8468 + }, + { + "start": 36763.6, + "end": 36763.6, + "probability": 0.1049 + }, + { + "start": 36763.6, + "end": 36763.6, + "probability": 0.4531 + }, + { + "start": 36763.6, + "end": 36765.76, + "probability": 0.5261 + }, + { + "start": 36767.24, + "end": 36767.28, + "probability": 0.1729 + }, + { + "start": 36767.28, + "end": 36767.28, + "probability": 0.1221 + }, + { + "start": 36767.28, + "end": 36768.24, + "probability": 0.4955 + }, + { + "start": 36768.4, + "end": 36769.46, + "probability": 0.2825 + }, + { + "start": 36769.54, + "end": 36770.96, + "probability": 0.7545 + }, + { + "start": 36771.44, + "end": 36773.94, + "probability": 0.9834 + }, + { + "start": 36774.86, + "end": 36775.92, + "probability": 0.7787 + }, + { + "start": 36776.0, + "end": 36777.36, + "probability": 0.9849 + }, + { + "start": 36777.92, + "end": 36778.14, + "probability": 0.5065 + }, + { + "start": 36778.24, + "end": 36780.36, + "probability": 0.9951 + }, + { + "start": 36780.58, + "end": 36784.7, + "probability": 0.9619 + }, + { + "start": 36785.36, + "end": 36787.06, + "probability": 0.9604 + }, + { + "start": 36787.84, + "end": 36788.08, + "probability": 0.8794 + }, + { + "start": 36788.88, + "end": 36790.64, + "probability": 0.9053 + }, + { + "start": 36791.8, + "end": 36794.76, + "probability": 0.9718 + }, + { + "start": 36794.78, + "end": 36795.38, + "probability": 0.5341 + }, + { + "start": 36795.76, + "end": 36802.66, + "probability": 0.9852 + }, + { + "start": 36802.7, + "end": 36803.41, + "probability": 0.9855 + }, + { + "start": 36803.98, + "end": 36806.8, + "probability": 0.9932 + }, + { + "start": 36806.8, + "end": 36810.36, + "probability": 0.9445 + }, + { + "start": 36810.84, + "end": 36811.16, + "probability": 0.7184 + }, + { + "start": 36811.48, + "end": 36813.36, + "probability": 0.9447 + }, + { + "start": 36813.84, + "end": 36815.38, + "probability": 0.6882 + }, + { + "start": 36815.92, + "end": 36816.12, + "probability": 0.0443 + }, + { + "start": 36816.12, + "end": 36816.12, + "probability": 0.2525 + }, + { + "start": 36816.12, + "end": 36819.3, + "probability": 0.7639 + }, + { + "start": 36819.66, + "end": 36819.88, + "probability": 0.3901 + }, + { + "start": 36820.02, + "end": 36821.0, + "probability": 0.9802 + }, + { + "start": 36821.46, + "end": 36823.78, + "probability": 0.968 + }, + { + "start": 36823.9, + "end": 36826.4, + "probability": 0.9909 + }, + { + "start": 36826.7, + "end": 36828.3, + "probability": 0.4633 + }, + { + "start": 36828.82, + "end": 36829.32, + "probability": 0.7304 + }, + { + "start": 36829.8, + "end": 36834.66, + "probability": 0.9565 + }, + { + "start": 36834.92, + "end": 36840.05, + "probability": 0.9891 + }, + { + "start": 36841.4, + "end": 36842.3, + "probability": 0.6926 + }, + { + "start": 36842.64, + "end": 36847.6, + "probability": 0.9796 + }, + { + "start": 36847.98, + "end": 36851.88, + "probability": 0.989 + }, + { + "start": 36852.04, + "end": 36857.06, + "probability": 0.9418 + }, + { + "start": 36857.3, + "end": 36857.3, + "probability": 0.5562 + }, + { + "start": 36857.32, + "end": 36857.72, + "probability": 0.788 + }, + { + "start": 36857.74, + "end": 36860.24, + "probability": 0.9429 + }, + { + "start": 36860.58, + "end": 36863.56, + "probability": 0.9939 + }, + { + "start": 36865.56, + "end": 36866.24, + "probability": 0.6877 + }, + { + "start": 36866.26, + "end": 36866.4, + "probability": 0.3256 + }, + { + "start": 36867.02, + "end": 36871.58, + "probability": 0.9812 + }, + { + "start": 36871.66, + "end": 36872.24, + "probability": 0.4234 + }, + { + "start": 36872.26, + "end": 36875.86, + "probability": 0.8052 + }, + { + "start": 36876.42, + "end": 36877.6, + "probability": 0.9229 + }, + { + "start": 36878.7, + "end": 36879.04, + "probability": 0.2565 + }, + { + "start": 36879.04, + "end": 36880.22, + "probability": 0.3382 + }, + { + "start": 36880.34, + "end": 36880.44, + "probability": 0.6734 + }, + { + "start": 36880.62, + "end": 36880.78, + "probability": 0.2624 + }, + { + "start": 36880.78, + "end": 36882.02, + "probability": 0.525 + }, + { + "start": 36882.08, + "end": 36884.41, + "probability": 0.8357 + }, + { + "start": 36884.58, + "end": 36885.42, + "probability": 0.1483 + }, + { + "start": 36886.12, + "end": 36886.24, + "probability": 0.4591 + }, + { + "start": 36886.24, + "end": 36886.87, + "probability": 0.5219 + }, + { + "start": 36887.68, + "end": 36888.44, + "probability": 0.9411 + }, + { + "start": 36888.54, + "end": 36892.52, + "probability": 0.9675 + }, + { + "start": 36892.64, + "end": 36893.53, + "probability": 0.9167 + }, + { + "start": 36893.96, + "end": 36894.44, + "probability": 0.8764 + }, + { + "start": 36894.48, + "end": 36894.52, + "probability": 0.0514 + }, + { + "start": 36894.52, + "end": 36898.44, + "probability": 0.9224 + }, + { + "start": 36898.62, + "end": 36901.24, + "probability": 0.7007 + }, + { + "start": 36901.58, + "end": 36902.22, + "probability": 0.1032 + }, + { + "start": 36902.22, + "end": 36902.22, + "probability": 0.1332 + }, + { + "start": 36902.22, + "end": 36902.71, + "probability": 0.6207 + }, + { + "start": 36903.32, + "end": 36905.34, + "probability": 0.9576 + }, + { + "start": 36905.38, + "end": 36906.3, + "probability": 0.6358 + }, + { + "start": 36906.98, + "end": 36907.68, + "probability": 0.8257 + }, + { + "start": 36907.9, + "end": 36909.38, + "probability": 0.5719 + }, + { + "start": 36909.39, + "end": 36910.8, + "probability": 0.2685 + }, + { + "start": 36910.9, + "end": 36911.64, + "probability": 0.5781 + }, + { + "start": 36912.18, + "end": 36913.37, + "probability": 0.5937 + }, + { + "start": 36913.92, + "end": 36916.56, + "probability": 0.8376 + }, + { + "start": 36917.12, + "end": 36917.22, + "probability": 0.1061 + }, + { + "start": 36917.22, + "end": 36918.16, + "probability": 0.8743 + }, + { + "start": 36918.26, + "end": 36919.04, + "probability": 0.4561 + }, + { + "start": 36919.7, + "end": 36920.9, + "probability": 0.8622 + }, + { + "start": 36920.92, + "end": 36922.33, + "probability": 0.9766 + }, + { + "start": 36922.76, + "end": 36924.22, + "probability": 0.7653 + }, + { + "start": 36924.3, + "end": 36924.5, + "probability": 0.3144 + }, + { + "start": 36924.58, + "end": 36925.74, + "probability": 0.6792 + }, + { + "start": 36925.82, + "end": 36926.52, + "probability": 0.5288 + }, + { + "start": 36927.1, + "end": 36929.76, + "probability": 0.7693 + }, + { + "start": 36929.92, + "end": 36931.31, + "probability": 0.8428 + }, + { + "start": 36931.46, + "end": 36933.68, + "probability": 0.0214 + }, + { + "start": 36934.94, + "end": 36935.2, + "probability": 0.0017 + }, + { + "start": 36935.2, + "end": 36935.2, + "probability": 0.0461 + }, + { + "start": 36935.2, + "end": 36937.62, + "probability": 0.9068 + }, + { + "start": 36938.44, + "end": 36941.4, + "probability": 0.9417 + }, + { + "start": 36942.26, + "end": 36945.48, + "probability": 0.996 + }, + { + "start": 36946.38, + "end": 36951.3, + "probability": 0.9917 + }, + { + "start": 36953.08, + "end": 36957.24, + "probability": 0.7935 + }, + { + "start": 36957.24, + "end": 36958.62, + "probability": 0.6807 + }, + { + "start": 36960.83, + "end": 36963.76, + "probability": 0.9897 + }, + { + "start": 36963.76, + "end": 36965.78, + "probability": 0.8914 + }, + { + "start": 36965.94, + "end": 36969.06, + "probability": 0.9929 + }, + { + "start": 36969.78, + "end": 36975.68, + "probability": 0.9702 + }, + { + "start": 36976.44, + "end": 36976.96, + "probability": 0.9935 + }, + { + "start": 36978.16, + "end": 36978.98, + "probability": 0.9996 + }, + { + "start": 36979.64, + "end": 36981.16, + "probability": 1.0 + }, + { + "start": 36982.34, + "end": 36985.96, + "probability": 0.9778 + }, + { + "start": 36987.08, + "end": 36988.43, + "probability": 0.9961 + }, + { + "start": 36989.6, + "end": 36992.52, + "probability": 0.981 + }, + { + "start": 36993.08, + "end": 36994.44, + "probability": 0.9821 + }, + { + "start": 36995.32, + "end": 36995.58, + "probability": 0.4717 + }, + { + "start": 36995.76, + "end": 37001.16, + "probability": 0.9423 + }, + { + "start": 37002.08, + "end": 37002.2, + "probability": 0.6211 + }, + { + "start": 37002.42, + "end": 37005.48, + "probability": 0.976 + }, + { + "start": 37005.98, + "end": 37007.2, + "probability": 0.9204 + }, + { + "start": 37007.28, + "end": 37007.8, + "probability": 0.9496 + }, + { + "start": 37008.46, + "end": 37012.2, + "probability": 0.9592 + }, + { + "start": 37012.72, + "end": 37017.32, + "probability": 0.9663 + }, + { + "start": 37017.92, + "end": 37023.16, + "probability": 0.9638 + }, + { + "start": 37023.7, + "end": 37026.08, + "probability": 0.8888 + }, + { + "start": 37027.12, + "end": 37027.82, + "probability": 0.9902 + }, + { + "start": 37029.3, + "end": 37032.94, + "probability": 0.9034 + }, + { + "start": 37034.42, + "end": 37034.84, + "probability": 0.9915 + }, + { + "start": 37035.38, + "end": 37038.96, + "probability": 0.998 + }, + { + "start": 37038.96, + "end": 37043.84, + "probability": 0.9786 + }, + { + "start": 37045.26, + "end": 37046.58, + "probability": 0.8791 + }, + { + "start": 37047.96, + "end": 37050.62, + "probability": 0.9913 + }, + { + "start": 37051.76, + "end": 37052.36, + "probability": 0.7164 + }, + { + "start": 37052.9, + "end": 37053.82, + "probability": 0.7492 + }, + { + "start": 37054.0, + "end": 37054.98, + "probability": 0.9023 + }, + { + "start": 37055.12, + "end": 37057.64, + "probability": 0.8312 + }, + { + "start": 37057.92, + "end": 37059.08, + "probability": 0.6909 + }, + { + "start": 37060.62, + "end": 37061.78, + "probability": 0.9701 + }, + { + "start": 37062.82, + "end": 37067.17, + "probability": 0.9552 + }, + { + "start": 37067.9, + "end": 37069.52, + "probability": 0.9989 + }, + { + "start": 37069.68, + "end": 37071.18, + "probability": 0.8045 + }, + { + "start": 37072.44, + "end": 37074.66, + "probability": 0.9765 + }, + { + "start": 37074.66, + "end": 37078.1, + "probability": 0.9885 + }, + { + "start": 37078.58, + "end": 37082.3, + "probability": 0.1935 + }, + { + "start": 37083.28, + "end": 37087.54, + "probability": 0.5864 + }, + { + "start": 37087.9, + "end": 37091.04, + "probability": 0.2141 + }, + { + "start": 37093.2, + "end": 37093.64, + "probability": 0.0168 + }, + { + "start": 37093.98, + "end": 37094.34, + "probability": 0.0515 + }, + { + "start": 37094.34, + "end": 37096.15, + "probability": 0.3546 + }, + { + "start": 37097.72, + "end": 37098.14, + "probability": 0.4216 + }, + { + "start": 37101.46, + "end": 37102.28, + "probability": 0.8115 + }, + { + "start": 37102.34, + "end": 37103.26, + "probability": 0.6825 + }, + { + "start": 37104.12, + "end": 37104.64, + "probability": 0.8473 + }, + { + "start": 37106.28, + "end": 37107.56, + "probability": 0.6789 + }, + { + "start": 37108.86, + "end": 37113.48, + "probability": 0.99 + }, + { + "start": 37113.48, + "end": 37115.7, + "probability": 0.9958 + }, + { + "start": 37116.4, + "end": 37117.86, + "probability": 0.9228 + }, + { + "start": 37118.74, + "end": 37120.32, + "probability": 0.9719 + }, + { + "start": 37120.92, + "end": 37122.26, + "probability": 0.89 + }, + { + "start": 37123.8, + "end": 37126.56, + "probability": 0.9177 + }, + { + "start": 37127.48, + "end": 37131.2, + "probability": 0.9995 + }, + { + "start": 37131.8, + "end": 37134.96, + "probability": 0.9541 + }, + { + "start": 37135.72, + "end": 37136.16, + "probability": 0.6135 + }, + { + "start": 37136.38, + "end": 37137.14, + "probability": 0.8738 + }, + { + "start": 37137.3, + "end": 37139.62, + "probability": 0.9775 + }, + { + "start": 37140.18, + "end": 37141.34, + "probability": 0.998 + }, + { + "start": 37142.5, + "end": 37144.3, + "probability": 0.9907 + }, + { + "start": 37144.56, + "end": 37145.8, + "probability": 0.6201 + }, + { + "start": 37146.78, + "end": 37147.9, + "probability": 0.9938 + }, + { + "start": 37148.6, + "end": 37152.66, + "probability": 0.9902 + }, + { + "start": 37153.44, + "end": 37153.72, + "probability": 0.4576 + }, + { + "start": 37153.88, + "end": 37154.24, + "probability": 0.9447 + }, + { + "start": 37154.3, + "end": 37160.32, + "probability": 0.9834 + }, + { + "start": 37161.16, + "end": 37164.82, + "probability": 0.7637 + }, + { + "start": 37165.38, + "end": 37165.92, + "probability": 0.7678 + }, + { + "start": 37167.06, + "end": 37169.56, + "probability": 0.9893 + }, + { + "start": 37169.82, + "end": 37170.28, + "probability": 0.994 + }, + { + "start": 37170.84, + "end": 37173.4, + "probability": 0.9808 + }, + { + "start": 37174.16, + "end": 37178.92, + "probability": 0.9981 + }, + { + "start": 37179.18, + "end": 37184.8, + "probability": 0.9921 + }, + { + "start": 37185.48, + "end": 37186.1, + "probability": 0.9557 + }, + { + "start": 37187.88, + "end": 37189.18, + "probability": 0.9881 + }, + { + "start": 37189.84, + "end": 37191.48, + "probability": 0.9886 + }, + { + "start": 37192.06, + "end": 37195.1, + "probability": 0.9952 + }, + { + "start": 37195.1, + "end": 37200.64, + "probability": 0.995 + }, + { + "start": 37201.28, + "end": 37204.5, + "probability": 0.9982 + }, + { + "start": 37205.24, + "end": 37207.5, + "probability": 0.9284 + }, + { + "start": 37208.16, + "end": 37208.7, + "probability": 0.9246 + }, + { + "start": 37209.28, + "end": 37210.24, + "probability": 0.8999 + }, + { + "start": 37210.36, + "end": 37212.32, + "probability": 0.8174 + }, + { + "start": 37212.94, + "end": 37213.38, + "probability": 0.8928 + }, + { + "start": 37213.78, + "end": 37214.34, + "probability": 0.8951 + }, + { + "start": 37215.06, + "end": 37216.34, + "probability": 0.7235 + }, + { + "start": 37216.56, + "end": 37217.92, + "probability": 0.9977 + }, + { + "start": 37217.98, + "end": 37220.92, + "probability": 0.9955 + }, + { + "start": 37221.64, + "end": 37225.34, + "probability": 0.9886 + }, + { + "start": 37225.68, + "end": 37225.96, + "probability": 0.6455 + }, + { + "start": 37226.12, + "end": 37227.88, + "probability": 0.9556 + }, + { + "start": 37229.06, + "end": 37231.96, + "probability": 0.8599 + }, + { + "start": 37232.94, + "end": 37234.12, + "probability": 0.8082 + }, + { + "start": 37234.28, + "end": 37239.76, + "probability": 0.9746 + }, + { + "start": 37240.04, + "end": 37242.06, + "probability": 0.9989 + }, + { + "start": 37244.88, + "end": 37246.96, + "probability": 0.858 + }, + { + "start": 37247.04, + "end": 37249.33, + "probability": 0.9873 + }, + { + "start": 37250.54, + "end": 37253.08, + "probability": 0.9352 + }, + { + "start": 37253.68, + "end": 37254.74, + "probability": 0.6882 + }, + { + "start": 37255.56, + "end": 37256.48, + "probability": 0.9838 + }, + { + "start": 37257.18, + "end": 37259.0, + "probability": 0.9969 + }, + { + "start": 37259.68, + "end": 37262.66, + "probability": 0.7907 + }, + { + "start": 37263.28, + "end": 37267.46, + "probability": 0.9297 + }, + { + "start": 37268.16, + "end": 37268.66, + "probability": 0.9966 + }, + { + "start": 37269.5, + "end": 37270.72, + "probability": 0.9028 + }, + { + "start": 37271.54, + "end": 37271.74, + "probability": 0.8015 + }, + { + "start": 37272.5, + "end": 37272.86, + "probability": 0.8821 + }, + { + "start": 37273.4, + "end": 37275.32, + "probability": 0.9755 + }, + { + "start": 37275.94, + "end": 37278.32, + "probability": 0.994 + }, + { + "start": 37278.92, + "end": 37279.78, + "probability": 0.7782 + }, + { + "start": 37280.78, + "end": 37281.42, + "probability": 0.6929 + }, + { + "start": 37282.36, + "end": 37283.76, + "probability": 0.9409 + }, + { + "start": 37285.32, + "end": 37286.5, + "probability": 0.7661 + }, + { + "start": 37287.36, + "end": 37287.99, + "probability": 0.024 + }, + { + "start": 37289.12, + "end": 37290.28, + "probability": 0.9866 + }, + { + "start": 37291.16, + "end": 37293.42, + "probability": 0.9368 + }, + { + "start": 37293.44, + "end": 37294.6, + "probability": 0.9346 + }, + { + "start": 37297.12, + "end": 37299.22, + "probability": 0.465 + }, + { + "start": 37299.52, + "end": 37299.52, + "probability": 0.0409 + }, + { + "start": 37299.52, + "end": 37300.86, + "probability": 0.7549 + }, + { + "start": 37301.58, + "end": 37302.86, + "probability": 0.9466 + }, + { + "start": 37306.86, + "end": 37308.74, + "probability": 0.7033 + }, + { + "start": 37310.46, + "end": 37311.7, + "probability": 0.7218 + }, + { + "start": 37314.2, + "end": 37315.31, + "probability": 0.8396 + }, + { + "start": 37316.92, + "end": 37317.62, + "probability": 0.9609 + }, + { + "start": 37317.78, + "end": 37320.94, + "probability": 0.9905 + }, + { + "start": 37321.42, + "end": 37322.27, + "probability": 0.9608 + }, + { + "start": 37323.08, + "end": 37324.4, + "probability": 0.6377 + }, + { + "start": 37324.4, + "end": 37324.88, + "probability": 0.1831 + }, + { + "start": 37325.16, + "end": 37325.74, + "probability": 0.8921 + }, + { + "start": 37327.46, + "end": 37328.88, + "probability": 0.9216 + }, + { + "start": 37330.28, + "end": 37335.04, + "probability": 0.9958 + }, + { + "start": 37336.78, + "end": 37337.56, + "probability": 0.9574 + }, + { + "start": 37338.2, + "end": 37340.38, + "probability": 0.9826 + }, + { + "start": 37341.56, + "end": 37343.16, + "probability": 0.7352 + }, + { + "start": 37344.22, + "end": 37347.4, + "probability": 0.9958 + }, + { + "start": 37348.06, + "end": 37349.42, + "probability": 0.8774 + }, + { + "start": 37350.06, + "end": 37350.86, + "probability": 0.5976 + }, + { + "start": 37352.0, + "end": 37355.4, + "probability": 0.9825 + }, + { + "start": 37356.2, + "end": 37358.5, + "probability": 0.8208 + }, + { + "start": 37361.58, + "end": 37365.73, + "probability": 0.9713 + }, + { + "start": 37367.66, + "end": 37370.2, + "probability": 0.9461 + }, + { + "start": 37371.72, + "end": 37373.84, + "probability": 0.7098 + }, + { + "start": 37375.16, + "end": 37377.56, + "probability": 0.945 + }, + { + "start": 37377.72, + "end": 37380.22, + "probability": 0.9541 + }, + { + "start": 37380.36, + "end": 37382.0, + "probability": 0.9659 + }, + { + "start": 37382.56, + "end": 37385.2, + "probability": 0.984 + }, + { + "start": 37386.82, + "end": 37390.5, + "probability": 0.9948 + }, + { + "start": 37393.82, + "end": 37395.32, + "probability": 0.9541 + }, + { + "start": 37396.1, + "end": 37399.1, + "probability": 0.9917 + }, + { + "start": 37400.46, + "end": 37401.1, + "probability": 0.787 + }, + { + "start": 37401.74, + "end": 37405.26, + "probability": 0.9965 + }, + { + "start": 37406.5, + "end": 37406.8, + "probability": 0.9374 + }, + { + "start": 37407.88, + "end": 37408.34, + "probability": 0.88 + }, + { + "start": 37410.8, + "end": 37412.74, + "probability": 0.9231 + }, + { + "start": 37413.38, + "end": 37415.22, + "probability": 0.9177 + }, + { + "start": 37417.5, + "end": 37419.32, + "probability": 0.7382 + }, + { + "start": 37419.52, + "end": 37423.12, + "probability": 0.9923 + }, + { + "start": 37423.88, + "end": 37423.88, + "probability": 0.0854 + }, + { + "start": 37423.88, + "end": 37428.32, + "probability": 0.9282 + }, + { + "start": 37429.16, + "end": 37430.54, + "probability": 0.9634 + }, + { + "start": 37431.32, + "end": 37434.1, + "probability": 0.9709 + }, + { + "start": 37435.24, + "end": 37436.68, + "probability": 0.8872 + }, + { + "start": 37438.46, + "end": 37438.68, + "probability": 0.49 + }, + { + "start": 37440.2, + "end": 37442.18, + "probability": 0.827 + }, + { + "start": 37443.8, + "end": 37445.68, + "probability": 0.9338 + }, + { + "start": 37446.66, + "end": 37447.08, + "probability": 0.7831 + }, + { + "start": 37448.26, + "end": 37448.97, + "probability": 0.9561 + }, + { + "start": 37449.64, + "end": 37451.08, + "probability": 0.9321 + }, + { + "start": 37451.46, + "end": 37454.32, + "probability": 0.98 + }, + { + "start": 37456.18, + "end": 37456.38, + "probability": 0.4665 + }, + { + "start": 37457.44, + "end": 37457.92, + "probability": 0.9834 + }, + { + "start": 37460.24, + "end": 37462.4, + "probability": 0.5088 + }, + { + "start": 37463.84, + "end": 37465.98, + "probability": 0.9062 + }, + { + "start": 37467.16, + "end": 37468.72, + "probability": 0.9974 + }, + { + "start": 37470.34, + "end": 37472.72, + "probability": 0.8506 + }, + { + "start": 37473.84, + "end": 37476.16, + "probability": 0.8601 + }, + { + "start": 37476.86, + "end": 37478.1, + "probability": 0.8576 + }, + { + "start": 37479.2, + "end": 37481.28, + "probability": 0.988 + }, + { + "start": 37482.1, + "end": 37483.28, + "probability": 0.9485 + }, + { + "start": 37483.78, + "end": 37486.18, + "probability": 0.973 + }, + { + "start": 37486.5, + "end": 37486.92, + "probability": 0.9161 + }, + { + "start": 37486.94, + "end": 37490.86, + "probability": 0.9356 + }, + { + "start": 37491.16, + "end": 37493.48, + "probability": 0.8155 + }, + { + "start": 37494.34, + "end": 37494.6, + "probability": 0.1324 + }, + { + "start": 37495.3, + "end": 37496.02, + "probability": 0.8227 + }, + { + "start": 37497.52, + "end": 37500.26, + "probability": 0.9976 + }, + { + "start": 37500.88, + "end": 37502.12, + "probability": 0.9972 + }, + { + "start": 37503.3, + "end": 37506.54, + "probability": 0.9316 + }, + { + "start": 37507.46, + "end": 37509.09, + "probability": 0.9961 + }, + { + "start": 37510.14, + "end": 37513.12, + "probability": 0.9966 + }, + { + "start": 37514.6, + "end": 37520.78, + "probability": 0.9678 + }, + { + "start": 37521.46, + "end": 37522.4, + "probability": 0.9612 + }, + { + "start": 37523.0, + "end": 37526.09, + "probability": 0.9852 + }, + { + "start": 37527.1, + "end": 37527.52, + "probability": 0.9078 + }, + { + "start": 37528.14, + "end": 37529.72, + "probability": 0.9912 + }, + { + "start": 37531.38, + "end": 37532.11, + "probability": 0.8516 + }, + { + "start": 37533.28, + "end": 37534.0, + "probability": 0.7983 + }, + { + "start": 37534.3, + "end": 37536.24, + "probability": 0.9727 + }, + { + "start": 37536.76, + "end": 37537.65, + "probability": 0.9769 + }, + { + "start": 37537.98, + "end": 37539.22, + "probability": 0.9758 + }, + { + "start": 37539.64, + "end": 37540.48, + "probability": 0.7791 + }, + { + "start": 37540.6, + "end": 37541.8, + "probability": 0.9159 + }, + { + "start": 37542.84, + "end": 37543.66, + "probability": 0.8227 + }, + { + "start": 37544.7, + "end": 37547.26, + "probability": 0.991 + }, + { + "start": 37547.98, + "end": 37551.06, + "probability": 0.9664 + }, + { + "start": 37552.08, + "end": 37552.74, + "probability": 0.7436 + }, + { + "start": 37552.88, + "end": 37555.26, + "probability": 0.9878 + }, + { + "start": 37557.62, + "end": 37558.76, + "probability": 0.7321 + }, + { + "start": 37559.32, + "end": 37560.48, + "probability": 0.8332 + }, + { + "start": 37561.46, + "end": 37565.48, + "probability": 0.9722 + }, + { + "start": 37566.84, + "end": 37567.14, + "probability": 0.9379 + }, + { + "start": 37568.55, + "end": 37569.1, + "probability": 0.6373 + }, + { + "start": 37570.08, + "end": 37573.54, + "probability": 0.8179 + }, + { + "start": 37575.7, + "end": 37576.4, + "probability": 0.7339 + }, + { + "start": 37577.5, + "end": 37579.48, + "probability": 0.9963 + }, + { + "start": 37580.28, + "end": 37588.64, + "probability": 0.9968 + }, + { + "start": 37589.52, + "end": 37592.04, + "probability": 0.6402 + }, + { + "start": 37592.88, + "end": 37593.08, + "probability": 0.0343 + }, + { + "start": 37593.7, + "end": 37594.0, + "probability": 0.7968 + }, + { + "start": 37595.1, + "end": 37597.48, + "probability": 0.8353 + }, + { + "start": 37598.12, + "end": 37598.3, + "probability": 0.8773 + }, + { + "start": 37600.36, + "end": 37601.88, + "probability": 0.7279 + }, + { + "start": 37602.82, + "end": 37603.16, + "probability": 0.4482 + }, + { + "start": 37604.52, + "end": 37604.99, + "probability": 0.9402 + }, + { + "start": 37605.96, + "end": 37606.92, + "probability": 0.9846 + }, + { + "start": 37607.6, + "end": 37608.24, + "probability": 0.2086 + }, + { + "start": 37609.38, + "end": 37611.48, + "probability": 0.9775 + }, + { + "start": 37612.38, + "end": 37614.14, + "probability": 0.9331 + }, + { + "start": 37614.76, + "end": 37617.58, + "probability": 0.8725 + }, + { + "start": 37617.92, + "end": 37618.82, + "probability": 0.9716 + }, + { + "start": 37620.24, + "end": 37621.4, + "probability": 0.9865 + }, + { + "start": 37621.98, + "end": 37622.46, + "probability": 0.8125 + }, + { + "start": 37623.32, + "end": 37625.1, + "probability": 0.8322 + }, + { + "start": 37626.86, + "end": 37628.14, + "probability": 0.8862 + }, + { + "start": 37634.64, + "end": 37635.68, + "probability": 0.7354 + }, + { + "start": 37637.02, + "end": 37640.46, + "probability": 0.9929 + }, + { + "start": 37640.56, + "end": 37643.28, + "probability": 0.9392 + }, + { + "start": 37644.34, + "end": 37648.46, + "probability": 0.9154 + }, + { + "start": 37648.46, + "end": 37651.22, + "probability": 0.9636 + }, + { + "start": 37651.4, + "end": 37654.63, + "probability": 0.8102 + }, + { + "start": 37655.2, + "end": 37656.02, + "probability": 0.9171 + }, + { + "start": 37656.9, + "end": 37659.44, + "probability": 0.9949 + }, + { + "start": 37659.52, + "end": 37660.99, + "probability": 0.9972 + }, + { + "start": 37661.7, + "end": 37662.48, + "probability": 0.793 + }, + { + "start": 37663.28, + "end": 37663.5, + "probability": 0.0343 + }, + { + "start": 37663.6, + "end": 37664.18, + "probability": 0.3357 + }, + { + "start": 37664.78, + "end": 37664.82, + "probability": 0.5142 + }, + { + "start": 37664.82, + "end": 37666.2, + "probability": 0.6824 + }, + { + "start": 37666.46, + "end": 37667.36, + "probability": 0.2565 + }, + { + "start": 37667.5, + "end": 37668.56, + "probability": 0.9515 + }, + { + "start": 37669.22, + "end": 37671.18, + "probability": 0.7661 + }, + { + "start": 37671.28, + "end": 37671.8, + "probability": 0.9667 + }, + { + "start": 37672.88, + "end": 37675.46, + "probability": 0.8911 + }, + { + "start": 37676.28, + "end": 37677.76, + "probability": 0.9722 + }, + { + "start": 37678.28, + "end": 37679.62, + "probability": 0.9457 + }, + { + "start": 37680.04, + "end": 37682.8, + "probability": 0.9948 + }, + { + "start": 37683.32, + "end": 37684.28, + "probability": 0.8276 + }, + { + "start": 37684.44, + "end": 37687.16, + "probability": 0.9995 + }, + { + "start": 37687.56, + "end": 37689.04, + "probability": 0.9957 + }, + { + "start": 37689.12, + "end": 37692.26, + "probability": 0.9928 + }, + { + "start": 37692.84, + "end": 37695.16, + "probability": 0.9835 + }, + { + "start": 37695.68, + "end": 37696.7, + "probability": 0.9857 + }, + { + "start": 37697.42, + "end": 37698.68, + "probability": 0.6686 + }, + { + "start": 37699.56, + "end": 37703.28, + "probability": 0.8986 + }, + { + "start": 37704.24, + "end": 37705.5, + "probability": 0.9315 + }, + { + "start": 37706.04, + "end": 37707.14, + "probability": 0.9731 + }, + { + "start": 37707.32, + "end": 37708.76, + "probability": 0.9456 + }, + { + "start": 37710.06, + "end": 37712.18, + "probability": 0.9353 + }, + { + "start": 37712.42, + "end": 37713.68, + "probability": 0.7974 + }, + { + "start": 37713.7, + "end": 37715.5, + "probability": 0.9743 + }, + { + "start": 37715.64, + "end": 37716.04, + "probability": 0.9066 + }, + { + "start": 37716.6, + "end": 37718.2, + "probability": 0.8731 + }, + { + "start": 37718.7, + "end": 37719.09, + "probability": 0.8592 + }, + { + "start": 37719.52, + "end": 37720.64, + "probability": 0.9921 + }, + { + "start": 37721.2, + "end": 37722.14, + "probability": 0.878 + }, + { + "start": 37722.34, + "end": 37724.08, + "probability": 0.981 + }, + { + "start": 37724.58, + "end": 37726.86, + "probability": 0.9944 + }, + { + "start": 37726.96, + "end": 37727.08, + "probability": 0.7808 + }, + { + "start": 37727.28, + "end": 37730.56, + "probability": 0.9428 + }, + { + "start": 37730.68, + "end": 37732.8, + "probability": 0.9717 + }, + { + "start": 37733.36, + "end": 37735.86, + "probability": 0.1165 + }, + { + "start": 37735.86, + "end": 37737.96, + "probability": 0.9728 + }, + { + "start": 37738.16, + "end": 37738.68, + "probability": 0.7466 + }, + { + "start": 37738.94, + "end": 37740.02, + "probability": 0.838 + }, + { + "start": 37741.18, + "end": 37743.52, + "probability": 0.925 + }, + { + "start": 37744.06, + "end": 37747.64, + "probability": 0.987 + }, + { + "start": 37748.04, + "end": 37749.46, + "probability": 0.9967 + }, + { + "start": 37750.32, + "end": 37751.44, + "probability": 0.9788 + }, + { + "start": 37751.9, + "end": 37752.66, + "probability": 0.98 + }, + { + "start": 37752.92, + "end": 37755.38, + "probability": 0.9759 + }, + { + "start": 37756.42, + "end": 37757.92, + "probability": 0.9493 + }, + { + "start": 37758.38, + "end": 37758.72, + "probability": 0.8711 + }, + { + "start": 37759.5, + "end": 37759.84, + "probability": 0.8173 + }, + { + "start": 37760.82, + "end": 37761.58, + "probability": 0.6319 + }, + { + "start": 37761.66, + "end": 37763.66, + "probability": 0.8627 + }, + { + "start": 37764.24, + "end": 37765.25, + "probability": 0.9196 + }, + { + "start": 37766.66, + "end": 37769.72, + "probability": 0.9091 + }, + { + "start": 37770.1, + "end": 37773.74, + "probability": 0.9905 + }, + { + "start": 37773.8, + "end": 37777.74, + "probability": 0.7728 + }, + { + "start": 37778.62, + "end": 37779.82, + "probability": 0.8184 + }, + { + "start": 37779.94, + "end": 37780.42, + "probability": 0.7237 + }, + { + "start": 37780.48, + "end": 37781.54, + "probability": 0.9445 + }, + { + "start": 37782.08, + "end": 37783.96, + "probability": 0.9825 + }, + { + "start": 37784.04, + "end": 37786.08, + "probability": 0.9526 + }, + { + "start": 37786.8, + "end": 37789.56, + "probability": 0.9869 + }, + { + "start": 37789.64, + "end": 37792.66, + "probability": 0.998 + }, + { + "start": 37792.96, + "end": 37794.24, + "probability": 0.8567 + }, + { + "start": 37794.32, + "end": 37795.79, + "probability": 0.9658 + }, + { + "start": 37796.12, + "end": 37797.48, + "probability": 0.9562 + }, + { + "start": 37797.56, + "end": 37798.06, + "probability": 0.8323 + }, + { + "start": 37798.12, + "end": 37798.58, + "probability": 0.7013 + }, + { + "start": 37798.9, + "end": 37799.66, + "probability": 0.792 + }, + { + "start": 37799.72, + "end": 37801.54, + "probability": 0.9933 + }, + { + "start": 37801.62, + "end": 37802.98, + "probability": 0.8978 + }, + { + "start": 37803.5, + "end": 37808.2, + "probability": 0.9761 + }, + { + "start": 37808.5, + "end": 37810.2, + "probability": 0.8566 + }, + { + "start": 37810.34, + "end": 37811.3, + "probability": 0.5514 + }, + { + "start": 37811.42, + "end": 37812.8, + "probability": 0.755 + }, + { + "start": 37812.97, + "end": 37815.12, + "probability": 0.9767 + }, + { + "start": 37815.54, + "end": 37816.06, + "probability": 0.8853 + }, + { + "start": 37816.14, + "end": 37817.51, + "probability": 0.9365 + }, + { + "start": 37817.98, + "end": 37819.6, + "probability": 0.9927 + }, + { + "start": 37819.7, + "end": 37824.56, + "probability": 0.9384 + }, + { + "start": 37824.6, + "end": 37826.1, + "probability": 0.7312 + }, + { + "start": 37826.26, + "end": 37828.82, + "probability": 0.8485 + }, + { + "start": 37829.2, + "end": 37830.46, + "probability": 0.938 + }, + { + "start": 37830.88, + "end": 37830.88, + "probability": 0.1417 + }, + { + "start": 37830.9, + "end": 37831.96, + "probability": 0.8486 + }, + { + "start": 37832.06, + "end": 37836.76, + "probability": 0.9211 + }, + { + "start": 37837.34, + "end": 37840.76, + "probability": 0.9936 + }, + { + "start": 37841.24, + "end": 37843.02, + "probability": 0.9973 + }, + { + "start": 37843.12, + "end": 37844.22, + "probability": 0.9517 + }, + { + "start": 37844.62, + "end": 37848.3, + "probability": 0.9807 + }, + { + "start": 37848.74, + "end": 37850.57, + "probability": 0.6979 + }, + { + "start": 37851.3, + "end": 37851.58, + "probability": 0.4042 + }, + { + "start": 37851.74, + "end": 37855.86, + "probability": 0.9962 + }, + { + "start": 37856.26, + "end": 37857.2, + "probability": 0.8264 + }, + { + "start": 37857.24, + "end": 37858.86, + "probability": 0.9976 + }, + { + "start": 37859.24, + "end": 37860.76, + "probability": 0.9945 + }, + { + "start": 37860.78, + "end": 37862.16, + "probability": 0.9976 + }, + { + "start": 37862.58, + "end": 37863.9, + "probability": 0.5351 + }, + { + "start": 37864.38, + "end": 37865.08, + "probability": 0.5787 + }, + { + "start": 37865.46, + "end": 37868.79, + "probability": 0.9101 + }, + { + "start": 37870.34, + "end": 37871.4, + "probability": 0.8419 + }, + { + "start": 37871.9, + "end": 37872.0, + "probability": 0.6613 + }, + { + "start": 37872.0, + "end": 37873.18, + "probability": 0.8445 + }, + { + "start": 37873.44, + "end": 37873.72, + "probability": 0.3394 + }, + { + "start": 37873.74, + "end": 37874.52, + "probability": 0.7473 + }, + { + "start": 37874.6, + "end": 37875.6, + "probability": 0.9897 + }, + { + "start": 37875.78, + "end": 37877.36, + "probability": 0.9924 + }, + { + "start": 37877.6, + "end": 37879.37, + "probability": 0.9351 + }, + { + "start": 37879.62, + "end": 37881.02, + "probability": 0.9978 + }, + { + "start": 37881.44, + "end": 37882.24, + "probability": 0.9384 + }, + { + "start": 37882.34, + "end": 37884.14, + "probability": 0.9962 + }, + { + "start": 37885.0, + "end": 37886.72, + "probability": 0.792 + }, + { + "start": 37887.58, + "end": 37887.58, + "probability": 0.188 + }, + { + "start": 37887.58, + "end": 37887.96, + "probability": 0.9715 + }, + { + "start": 37889.0, + "end": 37890.53, + "probability": 0.8804 + }, + { + "start": 37891.76, + "end": 37896.58, + "probability": 0.9932 + }, + { + "start": 37897.32, + "end": 37898.86, + "probability": 0.9963 + }, + { + "start": 37898.94, + "end": 37900.74, + "probability": 0.777 + }, + { + "start": 37901.3, + "end": 37904.82, + "probability": 0.9512 + }, + { + "start": 37905.4, + "end": 37908.4, + "probability": 0.4005 + }, + { + "start": 37909.2, + "end": 37912.93, + "probability": 0.9928 + }, + { + "start": 37913.3, + "end": 37916.78, + "probability": 0.9978 + }, + { + "start": 37917.4, + "end": 37918.66, + "probability": 0.9435 + }, + { + "start": 37918.72, + "end": 37920.3, + "probability": 0.9893 + }, + { + "start": 37920.74, + "end": 37923.52, + "probability": 0.9926 + }, + { + "start": 37924.3, + "end": 37925.78, + "probability": 0.92 + }, + { + "start": 37926.04, + "end": 37926.22, + "probability": 0.2943 + }, + { + "start": 37926.32, + "end": 37929.4, + "probability": 0.9558 + }, + { + "start": 37929.82, + "end": 37931.32, + "probability": 0.989 + }, + { + "start": 37931.84, + "end": 37932.04, + "probability": 0.8668 + }, + { + "start": 37932.12, + "end": 37935.14, + "probability": 0.9703 + }, + { + "start": 37935.22, + "end": 37935.48, + "probability": 0.8592 + }, + { + "start": 37935.84, + "end": 37937.24, + "probability": 0.9911 + }, + { + "start": 37937.92, + "end": 37940.24, + "probability": 0.9021 + }, + { + "start": 37941.06, + "end": 37944.68, + "probability": 0.975 + }, + { + "start": 37945.4, + "end": 37947.18, + "probability": 0.9939 + }, + { + "start": 37947.78, + "end": 37950.04, + "probability": 0.9985 + }, + { + "start": 37950.1, + "end": 37953.12, + "probability": 0.9904 + }, + { + "start": 37954.04, + "end": 37958.16, + "probability": 0.9548 + }, + { + "start": 37958.18, + "end": 37960.62, + "probability": 0.4763 + }, + { + "start": 37961.08, + "end": 37963.9, + "probability": 0.9773 + }, + { + "start": 37964.9, + "end": 37965.94, + "probability": 0.9956 + }, + { + "start": 37966.28, + "end": 37966.96, + "probability": 0.9966 + }, + { + "start": 37967.14, + "end": 37967.72, + "probability": 0.9455 + }, + { + "start": 37968.12, + "end": 37971.44, + "probability": 0.9942 + }, + { + "start": 37971.44, + "end": 37974.6, + "probability": 0.9706 + }, + { + "start": 37975.22, + "end": 37976.58, + "probability": 0.8997 + }, + { + "start": 37977.86, + "end": 37978.84, + "probability": 0.8687 + }, + { + "start": 37979.04, + "end": 37982.42, + "probability": 0.9428 + }, + { + "start": 37984.82, + "end": 37985.12, + "probability": 0.7964 + }, + { + "start": 37985.8, + "end": 37985.98, + "probability": 0.8088 + }, + { + "start": 37986.12, + "end": 37987.1, + "probability": 0.8552 + }, + { + "start": 37988.06, + "end": 37988.8, + "probability": 0.9667 + }, + { + "start": 37989.3, + "end": 37990.88, + "probability": 0.6528 + }, + { + "start": 37990.92, + "end": 37991.89, + "probability": 0.9796 + }, + { + "start": 37992.36, + "end": 37993.14, + "probability": 0.8047 + }, + { + "start": 37993.58, + "end": 37994.06, + "probability": 0.8947 + }, + { + "start": 37994.28, + "end": 37994.54, + "probability": 0.9221 + }, + { + "start": 37995.46, + "end": 37998.04, + "probability": 0.822 + }, + { + "start": 37998.2, + "end": 37998.68, + "probability": 0.8848 + }, + { + "start": 37998.76, + "end": 38000.34, + "probability": 0.9432 + }, + { + "start": 38000.78, + "end": 38003.84, + "probability": 0.9787 + }, + { + "start": 38004.22, + "end": 38004.88, + "probability": 0.7832 + }, + { + "start": 38005.4, + "end": 38006.38, + "probability": 0.9395 + }, + { + "start": 38007.88, + "end": 38010.4, + "probability": 0.9081 + }, + { + "start": 38011.1, + "end": 38013.82, + "probability": 0.9797 + }, + { + "start": 38014.6, + "end": 38017.62, + "probability": 0.9121 + }, + { + "start": 38018.2, + "end": 38023.42, + "probability": 0.9678 + }, + { + "start": 38023.88, + "end": 38024.88, + "probability": 0.3457 + }, + { + "start": 38024.92, + "end": 38026.2, + "probability": 0.6961 + }, + { + "start": 38026.28, + "end": 38027.38, + "probability": 0.7365 + }, + { + "start": 38028.34, + "end": 38030.84, + "probability": 0.8553 + }, + { + "start": 38031.68, + "end": 38034.52, + "probability": 0.7527 + }, + { + "start": 38035.28, + "end": 38039.68, + "probability": 0.9902 + }, + { + "start": 38039.68, + "end": 38042.16, + "probability": 0.8466 + }, + { + "start": 38043.06, + "end": 38043.3, + "probability": 0.5941 + }, + { + "start": 38043.38, + "end": 38045.68, + "probability": 0.9906 + }, + { + "start": 38046.18, + "end": 38049.8, + "probability": 0.8634 + }, + { + "start": 38050.36, + "end": 38050.86, + "probability": 0.7429 + }, + { + "start": 38051.4, + "end": 38051.96, + "probability": 0.8015 + }, + { + "start": 38052.46, + "end": 38052.58, + "probability": 0.8166 + }, + { + "start": 38053.9, + "end": 38054.62, + "probability": 0.6638 + }, + { + "start": 38054.8, + "end": 38055.92, + "probability": 0.9813 + }, + { + "start": 38056.22, + "end": 38057.32, + "probability": 0.9386 + }, + { + "start": 38057.52, + "end": 38058.72, + "probability": 0.8711 + }, + { + "start": 38059.42, + "end": 38062.22, + "probability": 0.9671 + }, + { + "start": 38062.22, + "end": 38065.42, + "probability": 0.9961 + }, + { + "start": 38065.56, + "end": 38071.56, + "probability": 0.9771 + }, + { + "start": 38072.22, + "end": 38072.66, + "probability": 0.9924 + }, + { + "start": 38074.02, + "end": 38075.7, + "probability": 0.9949 + }, + { + "start": 38075.96, + "end": 38076.5, + "probability": 0.9457 + }, + { + "start": 38076.8, + "end": 38077.62, + "probability": 0.9818 + }, + { + "start": 38077.64, + "end": 38078.34, + "probability": 0.8518 + }, + { + "start": 38078.84, + "end": 38079.52, + "probability": 0.7378 + }, + { + "start": 38079.84, + "end": 38080.46, + "probability": 0.9314 + }, + { + "start": 38080.52, + "end": 38081.08, + "probability": 0.9726 + }, + { + "start": 38082.0, + "end": 38083.57, + "probability": 0.9263 + }, + { + "start": 38083.88, + "end": 38085.14, + "probability": 0.9379 + }, + { + "start": 38085.42, + "end": 38087.96, + "probability": 0.9849 + }, + { + "start": 38088.16, + "end": 38088.73, + "probability": 0.9961 + }, + { + "start": 38089.9, + "end": 38090.78, + "probability": 0.9941 + }, + { + "start": 38091.02, + "end": 38093.42, + "probability": 0.9071 + }, + { + "start": 38093.5, + "end": 38097.58, + "probability": 0.9898 + }, + { + "start": 38097.98, + "end": 38099.08, + "probability": 0.5601 + }, + { + "start": 38100.16, + "end": 38104.36, + "probability": 0.9821 + }, + { + "start": 38105.8, + "end": 38106.9, + "probability": 0.9896 + }, + { + "start": 38107.28, + "end": 38109.72, + "probability": 0.948 + }, + { + "start": 38110.32, + "end": 38112.3, + "probability": 0.969 + }, + { + "start": 38112.96, + "end": 38114.43, + "probability": 0.9883 + }, + { + "start": 38114.94, + "end": 38120.16, + "probability": 0.9864 + }, + { + "start": 38121.02, + "end": 38121.28, + "probability": 0.606 + }, + { + "start": 38121.8, + "end": 38122.28, + "probability": 0.8518 + }, + { + "start": 38122.76, + "end": 38124.87, + "probability": 0.7778 + }, + { + "start": 38125.7, + "end": 38127.78, + "probability": 0.9963 + }, + { + "start": 38128.56, + "end": 38129.7, + "probability": 0.9648 + }, + { + "start": 38130.08, + "end": 38131.47, + "probability": 0.8706 + }, + { + "start": 38131.62, + "end": 38133.46, + "probability": 0.9414 + }, + { + "start": 38134.56, + "end": 38135.84, + "probability": 0.9811 + }, + { + "start": 38135.92, + "end": 38137.06, + "probability": 0.837 + }, + { + "start": 38137.86, + "end": 38138.38, + "probability": 0.7888 + }, + { + "start": 38139.58, + "end": 38142.1, + "probability": 0.9964 + }, + { + "start": 38142.7, + "end": 38145.7, + "probability": 0.9971 + }, + { + "start": 38145.76, + "end": 38148.7, + "probability": 0.9995 + }, + { + "start": 38149.36, + "end": 38151.96, + "probability": 0.9409 + }, + { + "start": 38151.96, + "end": 38153.92, + "probability": 0.9922 + }, + { + "start": 38154.4, + "end": 38157.14, + "probability": 0.9672 + }, + { + "start": 38157.26, + "end": 38157.48, + "probability": 0.616 + }, + { + "start": 38157.8, + "end": 38158.9, + "probability": 0.9482 + }, + { + "start": 38158.98, + "end": 38159.46, + "probability": 0.9293 + }, + { + "start": 38159.76, + "end": 38160.57, + "probability": 0.897 + }, + { + "start": 38161.22, + "end": 38161.4, + "probability": 0.556 + }, + { + "start": 38161.6, + "end": 38163.06, + "probability": 0.5543 + }, + { + "start": 38163.36, + "end": 38164.59, + "probability": 0.9907 + }, + { + "start": 38165.28, + "end": 38166.8, + "probability": 0.8108 + }, + { + "start": 38167.7, + "end": 38168.22, + "probability": 0.5483 + }, + { + "start": 38168.44, + "end": 38171.28, + "probability": 0.9792 + }, + { + "start": 38171.5, + "end": 38171.82, + "probability": 0.8989 + }, + { + "start": 38171.96, + "end": 38175.72, + "probability": 0.9414 + }, + { + "start": 38175.78, + "end": 38176.32, + "probability": 0.9275 + }, + { + "start": 38177.02, + "end": 38180.08, + "probability": 0.9191 + }, + { + "start": 38181.62, + "end": 38184.08, + "probability": 0.7725 + }, + { + "start": 38184.7, + "end": 38186.82, + "probability": 0.9989 + }, + { + "start": 38187.07, + "end": 38187.54, + "probability": 0.9889 + }, + { + "start": 38188.24, + "end": 38190.39, + "probability": 0.9639 + }, + { + "start": 38190.88, + "end": 38193.68, + "probability": 0.9878 + }, + { + "start": 38194.14, + "end": 38195.06, + "probability": 0.7634 + }, + { + "start": 38195.16, + "end": 38196.96, + "probability": 0.9663 + }, + { + "start": 38197.68, + "end": 38200.92, + "probability": 0.8115 + }, + { + "start": 38201.14, + "end": 38201.9, + "probability": 0.505 + }, + { + "start": 38202.42, + "end": 38204.28, + "probability": 0.9705 + }, + { + "start": 38205.26, + "end": 38207.4, + "probability": 0.977 + }, + { + "start": 38208.42, + "end": 38211.3, + "probability": 0.9467 + }, + { + "start": 38212.3, + "end": 38215.36, + "probability": 0.9808 + }, + { + "start": 38215.88, + "end": 38219.94, + "probability": 0.9942 + }, + { + "start": 38219.94, + "end": 38222.02, + "probability": 0.9807 + }, + { + "start": 38222.14, + "end": 38224.66, + "probability": 0.8561 + }, + { + "start": 38225.64, + "end": 38228.68, + "probability": 0.9958 + }, + { + "start": 38229.66, + "end": 38230.62, + "probability": 0.7291 + }, + { + "start": 38230.62, + "end": 38231.12, + "probability": 0.4346 + }, + { + "start": 38231.18, + "end": 38233.98, + "probability": 0.9897 + }, + { + "start": 38234.22, + "end": 38236.2, + "probability": 0.9411 + }, + { + "start": 38236.36, + "end": 38240.02, + "probability": 0.9893 + }, + { + "start": 38240.78, + "end": 38242.36, + "probability": 0.8818 + }, + { + "start": 38243.0, + "end": 38244.34, + "probability": 0.9993 + }, + { + "start": 38244.86, + "end": 38247.62, + "probability": 0.9769 + }, + { + "start": 38247.86, + "end": 38248.56, + "probability": 0.5189 + }, + { + "start": 38248.56, + "end": 38248.82, + "probability": 0.5681 + }, + { + "start": 38249.8, + "end": 38250.94, + "probability": 0.6947 + }, + { + "start": 38268.46, + "end": 38268.46, + "probability": 0.3102 + }, + { + "start": 38268.46, + "end": 38269.96, + "probability": 0.6578 + }, + { + "start": 38270.84, + "end": 38272.65, + "probability": 0.849 + }, + { + "start": 38273.44, + "end": 38274.16, + "probability": 0.5852 + }, + { + "start": 38274.3, + "end": 38275.46, + "probability": 0.9403 + }, + { + "start": 38275.9, + "end": 38277.36, + "probability": 0.981 + }, + { + "start": 38277.54, + "end": 38277.78, + "probability": 0.9273 + }, + { + "start": 38278.26, + "end": 38278.82, + "probability": 0.6513 + }, + { + "start": 38278.82, + "end": 38279.38, + "probability": 0.5133 + }, + { + "start": 38279.44, + "end": 38279.76, + "probability": 0.1839 + }, + { + "start": 38295.0, + "end": 38295.54, + "probability": 0.5522 + }, + { + "start": 38295.54, + "end": 38295.54, + "probability": 0.0622 + }, + { + "start": 38295.54, + "end": 38295.54, + "probability": 0.0682 + }, + { + "start": 38295.54, + "end": 38295.54, + "probability": 0.0916 + }, + { + "start": 38295.54, + "end": 38295.54, + "probability": 0.0615 + }, + { + "start": 38295.54, + "end": 38295.54, + "probability": 0.076 + }, + { + "start": 38295.54, + "end": 38298.22, + "probability": 0.7839 + }, + { + "start": 38298.96, + "end": 38300.34, + "probability": 0.719 + }, + { + "start": 38300.6, + "end": 38300.82, + "probability": 0.4771 + }, + { + "start": 38300.9, + "end": 38306.78, + "probability": 0.921 + }, + { + "start": 38307.08, + "end": 38312.18, + "probability": 0.923 + }, + { + "start": 38313.74, + "end": 38314.34, + "probability": 0.8929 + }, + { + "start": 38315.48, + "end": 38322.64, + "probability": 0.9972 + }, + { + "start": 38323.24, + "end": 38329.88, + "probability": 0.9893 + }, + { + "start": 38330.14, + "end": 38330.84, + "probability": 0.7939 + }, + { + "start": 38332.78, + "end": 38335.38, + "probability": 0.7616 + }, + { + "start": 38336.34, + "end": 38336.96, + "probability": 0.763 + }, + { + "start": 38337.86, + "end": 38340.92, + "probability": 0.9791 + }, + { + "start": 38341.12, + "end": 38342.18, + "probability": 0.8108 + }, + { + "start": 38342.26, + "end": 38348.84, + "probability": 0.8948 + }, + { + "start": 38348.96, + "end": 38357.1, + "probability": 0.9833 + }, + { + "start": 38357.9, + "end": 38359.08, + "probability": 0.9707 + }, + { + "start": 38359.22, + "end": 38368.1, + "probability": 0.9868 + }, + { + "start": 38368.5, + "end": 38375.68, + "probability": 0.9888 + }, + { + "start": 38376.4, + "end": 38377.79, + "probability": 0.9922 + }, + { + "start": 38378.36, + "end": 38379.92, + "probability": 0.9437 + }, + { + "start": 38380.0, + "end": 38380.7, + "probability": 0.374 + }, + { + "start": 38381.24, + "end": 38384.46, + "probability": 0.894 + }, + { + "start": 38385.4, + "end": 38390.66, + "probability": 0.978 + }, + { + "start": 38390.82, + "end": 38391.44, + "probability": 0.8511 + }, + { + "start": 38392.2, + "end": 38395.6, + "probability": 0.9543 + }, + { + "start": 38396.12, + "end": 38400.06, + "probability": 0.9517 + }, + { + "start": 38400.7, + "end": 38401.34, + "probability": 0.5486 + }, + { + "start": 38401.98, + "end": 38405.1, + "probability": 0.9697 + }, + { + "start": 38405.36, + "end": 38411.6, + "probability": 0.9984 + }, + { + "start": 38412.34, + "end": 38412.6, + "probability": 0.5857 + }, + { + "start": 38413.32, + "end": 38413.42, + "probability": 0.6994 + }, + { + "start": 38413.52, + "end": 38415.82, + "probability": 0.9034 + }, + { + "start": 38416.46, + "end": 38423.2, + "probability": 0.9857 + }, + { + "start": 38423.3, + "end": 38423.82, + "probability": 0.5405 + }, + { + "start": 38424.16, + "end": 38426.12, + "probability": 0.7904 + }, + { + "start": 38426.8, + "end": 38430.84, + "probability": 0.9919 + }, + { + "start": 38431.76, + "end": 38433.72, + "probability": 0.9922 + }, + { + "start": 38434.38, + "end": 38434.76, + "probability": 0.503 + }, + { + "start": 38435.22, + "end": 38435.36, + "probability": 0.623 + }, + { + "start": 38435.4, + "end": 38435.4, + "probability": 0.4561 + }, + { + "start": 38435.56, + "end": 38436.62, + "probability": 0.9861 + }, + { + "start": 38437.32, + "end": 38441.16, + "probability": 0.9941 + }, + { + "start": 38441.4, + "end": 38442.3, + "probability": 0.965 + }, + { + "start": 38442.5, + "end": 38445.12, + "probability": 0.6643 + }, + { + "start": 38445.82, + "end": 38447.22, + "probability": 0.7155 + }, + { + "start": 38448.0, + "end": 38452.86, + "probability": 0.9639 + }, + { + "start": 38452.86, + "end": 38456.26, + "probability": 0.993 + }, + { + "start": 38456.64, + "end": 38457.42, + "probability": 0.6102 + }, + { + "start": 38458.78, + "end": 38460.66, + "probability": 0.4863 + }, + { + "start": 38461.48, + "end": 38464.66, + "probability": 0.9965 + }, + { + "start": 38464.66, + "end": 38470.28, + "probability": 0.9699 + }, + { + "start": 38470.42, + "end": 38473.34, + "probability": 0.9948 + }, + { + "start": 38473.7, + "end": 38475.64, + "probability": 0.8249 + }, + { + "start": 38475.82, + "end": 38476.94, + "probability": 0.9739 + }, + { + "start": 38477.46, + "end": 38479.96, + "probability": 0.5879 + }, + { + "start": 38479.96, + "end": 38483.06, + "probability": 0.524 + }, + { + "start": 38483.5, + "end": 38489.56, + "probability": 0.9165 + }, + { + "start": 38489.66, + "end": 38492.7, + "probability": 0.9392 + }, + { + "start": 38492.78, + "end": 38496.6, + "probability": 0.9924 + }, + { + "start": 38496.7, + "end": 38497.3, + "probability": 0.8812 + }, + { + "start": 38497.58, + "end": 38500.6, + "probability": 0.0354 + }, + { + "start": 38500.6, + "end": 38501.28, + "probability": 0.0651 + }, + { + "start": 38501.52, + "end": 38502.04, + "probability": 0.4814 + }, + { + "start": 38502.58, + "end": 38503.52, + "probability": 0.6748 + }, + { + "start": 38504.92, + "end": 38507.04, + "probability": 0.9869 + }, + { + "start": 38507.18, + "end": 38511.52, + "probability": 0.8586 + }, + { + "start": 38512.04, + "end": 38517.78, + "probability": 0.9944 + }, + { + "start": 38518.4, + "end": 38520.44, + "probability": 0.6529 + }, + { + "start": 38520.84, + "end": 38522.2, + "probability": 0.7131 + }, + { + "start": 38522.6, + "end": 38524.38, + "probability": 0.991 + }, + { + "start": 38524.5, + "end": 38525.32, + "probability": 0.9594 + }, + { + "start": 38525.68, + "end": 38526.56, + "probability": 0.8999 + }, + { + "start": 38526.76, + "end": 38531.29, + "probability": 0.9781 + }, + { + "start": 38531.72, + "end": 38535.04, + "probability": 0.8577 + }, + { + "start": 38535.18, + "end": 38536.98, + "probability": 0.975 + }, + { + "start": 38537.9, + "end": 38543.0, + "probability": 0.9423 + }, + { + "start": 38543.64, + "end": 38544.14, + "probability": 0.979 + }, + { + "start": 38544.38, + "end": 38545.8, + "probability": 0.985 + }, + { + "start": 38546.1, + "end": 38546.72, + "probability": 0.9502 + }, + { + "start": 38547.08, + "end": 38547.9, + "probability": 0.8893 + }, + { + "start": 38548.24, + "end": 38554.54, + "probability": 0.8885 + }, + { + "start": 38555.3, + "end": 38560.14, + "probability": 0.6667 + }, + { + "start": 38561.84, + "end": 38562.9, + "probability": 0.4207 + }, + { + "start": 38563.16, + "end": 38566.6, + "probability": 0.9857 + }, + { + "start": 38566.6, + "end": 38569.9, + "probability": 0.9551 + }, + { + "start": 38570.78, + "end": 38575.34, + "probability": 0.938 + }, + { + "start": 38575.44, + "end": 38577.52, + "probability": 0.8894 + }, + { + "start": 38578.24, + "end": 38584.14, + "probability": 0.9859 + }, + { + "start": 38584.76, + "end": 38590.4, + "probability": 0.9839 + }, + { + "start": 38590.76, + "end": 38595.62, + "probability": 0.8688 + }, + { + "start": 38595.74, + "end": 38599.08, + "probability": 0.8867 + }, + { + "start": 38599.14, + "end": 38601.2, + "probability": 0.9869 + }, + { + "start": 38601.46, + "end": 38604.96, + "probability": 0.9948 + }, + { + "start": 38605.78, + "end": 38607.98, + "probability": 0.9926 + }, + { + "start": 38608.36, + "end": 38609.56, + "probability": 0.8309 + }, + { + "start": 38609.8, + "end": 38610.2, + "probability": 0.8176 + }, + { + "start": 38610.56, + "end": 38616.94, + "probability": 0.9782 + }, + { + "start": 38617.28, + "end": 38619.52, + "probability": 0.9429 + }, + { + "start": 38620.2, + "end": 38620.63, + "probability": 0.9735 + }, + { + "start": 38621.12, + "end": 38622.74, + "probability": 0.7406 + }, + { + "start": 38623.2, + "end": 38626.44, + "probability": 0.9941 + }, + { + "start": 38626.48, + "end": 38631.84, + "probability": 0.9838 + }, + { + "start": 38631.96, + "end": 38633.02, + "probability": 0.9355 + }, + { + "start": 38633.1, + "end": 38634.61, + "probability": 0.722 + }, + { + "start": 38636.22, + "end": 38641.14, + "probability": 0.9673 + }, + { + "start": 38641.7, + "end": 38645.0, + "probability": 0.8542 + }, + { + "start": 38645.54, + "end": 38646.04, + "probability": 0.6128 + }, + { + "start": 38646.1, + "end": 38647.58, + "probability": 0.9907 + }, + { + "start": 38647.7, + "end": 38648.34, + "probability": 0.8469 + }, + { + "start": 38649.1, + "end": 38654.1, + "probability": 0.9951 + }, + { + "start": 38654.92, + "end": 38657.58, + "probability": 0.9646 + }, + { + "start": 38657.68, + "end": 38660.31, + "probability": 0.9736 + }, + { + "start": 38660.42, + "end": 38662.16, + "probability": 0.9319 + }, + { + "start": 38662.5, + "end": 38663.4, + "probability": 0.9542 + }, + { + "start": 38663.56, + "end": 38664.54, + "probability": 0.7814 + }, + { + "start": 38665.06, + "end": 38666.54, + "probability": 0.8762 + }, + { + "start": 38666.66, + "end": 38669.08, + "probability": 0.8318 + }, + { + "start": 38669.64, + "end": 38673.4, + "probability": 0.8768 + }, + { + "start": 38673.96, + "end": 38677.58, + "probability": 0.8451 + }, + { + "start": 38677.76, + "end": 38681.14, + "probability": 0.8704 + }, + { + "start": 38681.64, + "end": 38683.32, + "probability": 0.9851 + }, + { + "start": 38683.42, + "end": 38684.7, + "probability": 0.7197 + }, + { + "start": 38686.36, + "end": 38690.42, + "probability": 0.9275 + }, + { + "start": 38690.6, + "end": 38690.95, + "probability": 0.9533 + }, + { + "start": 38691.42, + "end": 38692.08, + "probability": 0.9811 + }, + { + "start": 38692.82, + "end": 38694.84, + "probability": 0.9929 + }, + { + "start": 38695.66, + "end": 38696.94, + "probability": 0.8457 + }, + { + "start": 38697.42, + "end": 38699.14, + "probability": 0.8828 + }, + { + "start": 38699.42, + "end": 38700.16, + "probability": 0.5607 + }, + { + "start": 38700.52, + "end": 38703.46, + "probability": 0.8821 + }, + { + "start": 38704.38, + "end": 38708.72, + "probability": 0.9039 + }, + { + "start": 38709.44, + "end": 38711.3, + "probability": 0.9033 + }, + { + "start": 38711.64, + "end": 38719.38, + "probability": 0.9214 + }, + { + "start": 38719.44, + "end": 38721.67, + "probability": 0.8582 + }, + { + "start": 38722.12, + "end": 38724.4, + "probability": 0.9932 + }, + { + "start": 38724.4, + "end": 38727.7, + "probability": 0.9564 + }, + { + "start": 38728.24, + "end": 38734.74, + "probability": 0.9937 + }, + { + "start": 38735.52, + "end": 38739.18, + "probability": 0.7376 + }, + { + "start": 38739.66, + "end": 38740.08, + "probability": 0.603 + }, + { + "start": 38740.7, + "end": 38741.24, + "probability": 0.3401 + }, + { + "start": 38741.5, + "end": 38743.2, + "probability": 0.9112 + }, + { + "start": 38743.32, + "end": 38745.56, + "probability": 0.8536 + }, + { + "start": 38746.04, + "end": 38748.4, + "probability": 0.9675 + }, + { + "start": 38748.5, + "end": 38751.14, + "probability": 0.9802 + }, + { + "start": 38751.74, + "end": 38754.66, + "probability": 0.9916 + }, + { + "start": 38755.02, + "end": 38758.64, + "probability": 0.9028 + }, + { + "start": 38760.5, + "end": 38766.98, + "probability": 0.7404 + }, + { + "start": 38767.62, + "end": 38773.26, + "probability": 0.8798 + }, + { + "start": 38774.22, + "end": 38776.24, + "probability": 0.9949 + }, + { + "start": 38776.78, + "end": 38781.24, + "probability": 0.9939 + }, + { + "start": 38782.64, + "end": 38785.25, + "probability": 0.9618 + }, + { + "start": 38786.36, + "end": 38788.04, + "probability": 0.4513 + }, + { + "start": 38788.4, + "end": 38789.92, + "probability": 0.6555 + }, + { + "start": 38789.96, + "end": 38790.98, + "probability": 0.4329 + }, + { + "start": 38791.58, + "end": 38794.18, + "probability": 0.8694 + }, + { + "start": 38794.98, + "end": 38800.5, + "probability": 0.9426 + }, + { + "start": 38800.7, + "end": 38807.16, + "probability": 0.9956 + }, + { + "start": 38807.16, + "end": 38812.32, + "probability": 0.9974 + }, + { + "start": 38812.92, + "end": 38820.06, + "probability": 0.9808 + }, + { + "start": 38822.9, + "end": 38823.96, + "probability": 0.2121 + }, + { + "start": 38824.36, + "end": 38829.52, + "probability": 0.9952 + }, + { + "start": 38829.88, + "end": 38833.88, + "probability": 0.9686 + }, + { + "start": 38834.26, + "end": 38836.34, + "probability": 0.928 + }, + { + "start": 38836.44, + "end": 38839.1, + "probability": 0.6123 + }, + { + "start": 38839.56, + "end": 38841.84, + "probability": 0.9291 + }, + { + "start": 38841.88, + "end": 38846.77, + "probability": 0.8777 + }, + { + "start": 38848.04, + "end": 38850.98, + "probability": 0.8903 + }, + { + "start": 38852.02, + "end": 38857.56, + "probability": 0.9932 + }, + { + "start": 38858.28, + "end": 38860.32, + "probability": 0.9235 + }, + { + "start": 38860.42, + "end": 38862.42, + "probability": 0.999 + }, + { + "start": 38864.32, + "end": 38865.9, + "probability": 0.9692 + }, + { + "start": 38866.0, + "end": 38867.71, + "probability": 0.984 + }, + { + "start": 38868.2, + "end": 38873.18, + "probability": 0.9819 + }, + { + "start": 38874.1, + "end": 38876.4, + "probability": 0.9976 + }, + { + "start": 38877.58, + "end": 38881.26, + "probability": 0.9046 + }, + { + "start": 38881.82, + "end": 38882.76, + "probability": 0.9805 + }, + { + "start": 38884.34, + "end": 38886.6, + "probability": 0.837 + }, + { + "start": 38886.8, + "end": 38891.18, + "probability": 0.9767 + }, + { + "start": 38891.76, + "end": 38892.88, + "probability": 0.5632 + }, + { + "start": 38893.52, + "end": 38894.34, + "probability": 0.9117 + }, + { + "start": 38894.86, + "end": 38898.34, + "probability": 0.9971 + }, + { + "start": 38898.82, + "end": 38901.12, + "probability": 0.9197 + }, + { + "start": 38901.7, + "end": 38905.58, + "probability": 0.9778 + }, + { + "start": 38906.14, + "end": 38906.66, + "probability": 0.8395 + }, + { + "start": 38906.8, + "end": 38908.66, + "probability": 0.6716 + }, + { + "start": 38908.72, + "end": 38914.14, + "probability": 0.9598 + }, + { + "start": 38914.14, + "end": 38917.98, + "probability": 0.9932 + }, + { + "start": 38918.22, + "end": 38921.86, + "probability": 0.9724 + }, + { + "start": 38921.9, + "end": 38926.86, + "probability": 0.991 + }, + { + "start": 38927.18, + "end": 38933.4, + "probability": 0.9764 + }, + { + "start": 38933.52, + "end": 38938.62, + "probability": 0.9313 + }, + { + "start": 38938.84, + "end": 38939.42, + "probability": 0.7056 + }, + { + "start": 38940.14, + "end": 38941.6, + "probability": 0.9199 + }, + { + "start": 38942.04, + "end": 38943.94, + "probability": 0.908 + }, + { + "start": 38944.28, + "end": 38946.12, + "probability": 0.7493 + }, + { + "start": 38946.56, + "end": 38947.52, + "probability": 0.5925 + }, + { + "start": 38948.06, + "end": 38955.38, + "probability": 0.9937 + }, + { + "start": 38955.62, + "end": 38960.64, + "probability": 0.96 + }, + { + "start": 38961.58, + "end": 38964.36, + "probability": 0.7437 + }, + { + "start": 38964.44, + "end": 38966.58, + "probability": 0.9855 + }, + { + "start": 38967.48, + "end": 38971.98, + "probability": 0.9955 + }, + { + "start": 38971.98, + "end": 38977.64, + "probability": 0.9987 + }, + { + "start": 38978.32, + "end": 38978.84, + "probability": 0.7142 + }, + { + "start": 38979.1, + "end": 38981.86, + "probability": 0.6947 + }, + { + "start": 38982.84, + "end": 38984.32, + "probability": 0.9833 + }, + { + "start": 38984.74, + "end": 38988.94, + "probability": 0.9891 + }, + { + "start": 38989.14, + "end": 38990.12, + "probability": 0.4524 + }, + { + "start": 38990.28, + "end": 38991.06, + "probability": 0.7734 + }, + { + "start": 38991.28, + "end": 38993.56, + "probability": 0.8763 + }, + { + "start": 38994.0, + "end": 38998.88, + "probability": 0.9848 + }, + { + "start": 38999.66, + "end": 39001.74, + "probability": 0.8289 + }, + { + "start": 39002.4, + "end": 39008.22, + "probability": 0.9858 + }, + { + "start": 39008.96, + "end": 39013.64, + "probability": 0.8161 + }, + { + "start": 39014.42, + "end": 39018.26, + "probability": 0.671 + }, + { + "start": 39018.86, + "end": 39020.22, + "probability": 0.9157 + }, + { + "start": 39020.28, + "end": 39022.84, + "probability": 0.9062 + }, + { + "start": 39023.56, + "end": 39024.4, + "probability": 0.579 + }, + { + "start": 39025.1, + "end": 39028.08, + "probability": 0.9707 + }, + { + "start": 39028.86, + "end": 39032.96, + "probability": 0.9724 + }, + { + "start": 39033.14, + "end": 39036.54, + "probability": 0.9489 + }, + { + "start": 39037.04, + "end": 39037.32, + "probability": 0.7592 + }, + { + "start": 39037.88, + "end": 39044.54, + "probability": 0.9875 + }, + { + "start": 39044.92, + "end": 39047.48, + "probability": 0.9746 + }, + { + "start": 39047.66, + "end": 39053.2, + "probability": 0.9856 + }, + { + "start": 39053.28, + "end": 39056.66, + "probability": 0.9884 + }, + { + "start": 39057.56, + "end": 39059.8, + "probability": 0.8314 + }, + { + "start": 39060.08, + "end": 39067.74, + "probability": 0.9667 + }, + { + "start": 39068.32, + "end": 39080.48, + "probability": 0.95 + }, + { + "start": 39080.62, + "end": 39087.42, + "probability": 0.9686 + }, + { + "start": 39087.84, + "end": 39094.58, + "probability": 0.7805 + }, + { + "start": 39095.68, + "end": 39100.42, + "probability": 0.938 + }, + { + "start": 39100.86, + "end": 39100.96, + "probability": 0.5024 + }, + { + "start": 39103.48, + "end": 39108.0, + "probability": 0.9258 + }, + { + "start": 39108.5, + "end": 39112.08, + "probability": 0.9984 + }, + { + "start": 39112.24, + "end": 39118.12, + "probability": 0.9502 + }, + { + "start": 39118.14, + "end": 39124.52, + "probability": 0.9896 + }, + { + "start": 39125.04, + "end": 39130.42, + "probability": 0.9183 + }, + { + "start": 39130.54, + "end": 39132.68, + "probability": 0.6998 + }, + { + "start": 39133.1, + "end": 39139.76, + "probability": 0.9967 + }, + { + "start": 39140.04, + "end": 39141.36, + "probability": 0.8749 + }, + { + "start": 39141.62, + "end": 39143.16, + "probability": 0.8748 + }, + { + "start": 39143.32, + "end": 39144.34, + "probability": 0.8878 + }, + { + "start": 39145.04, + "end": 39148.84, + "probability": 0.8009 + }, + { + "start": 39149.7, + "end": 39150.36, + "probability": 0.3919 + }, + { + "start": 39151.12, + "end": 39151.94, + "probability": 0.4049 + }, + { + "start": 39152.32, + "end": 39152.4, + "probability": 0.7196 + }, + { + "start": 39152.46, + "end": 39153.28, + "probability": 0.9036 + }, + { + "start": 39153.36, + "end": 39154.24, + "probability": 0.7795 + }, + { + "start": 39154.28, + "end": 39154.6, + "probability": 0.9529 + }, + { + "start": 39155.34, + "end": 39156.96, + "probability": 0.9664 + }, + { + "start": 39157.9, + "end": 39160.24, + "probability": 0.5309 + }, + { + "start": 39160.24, + "end": 39161.51, + "probability": 0.601 + }, + { + "start": 39162.6, + "end": 39164.48, + "probability": 0.9167 + }, + { + "start": 39165.7, + "end": 39166.16, + "probability": 0.7403 + }, + { + "start": 39166.26, + "end": 39168.08, + "probability": 0.9125 + }, + { + "start": 39168.14, + "end": 39170.12, + "probability": 0.934 + }, + { + "start": 39170.68, + "end": 39171.74, + "probability": 0.8977 + }, + { + "start": 39172.48, + "end": 39174.68, + "probability": 0.8506 + }, + { + "start": 39174.84, + "end": 39176.26, + "probability": 0.9937 + }, + { + "start": 39176.34, + "end": 39178.18, + "probability": 0.9557 + }, + { + "start": 39178.78, + "end": 39181.27, + "probability": 0.9658 + }, + { + "start": 39181.68, + "end": 39183.04, + "probability": 0.9475 + }, + { + "start": 39183.34, + "end": 39183.4, + "probability": 0.0324 + }, + { + "start": 39183.46, + "end": 39185.94, + "probability": 0.9651 + }, + { + "start": 39186.62, + "end": 39190.8, + "probability": 0.6974 + }, + { + "start": 39190.96, + "end": 39193.82, + "probability": 0.988 + }, + { + "start": 39194.32, + "end": 39195.88, + "probability": 0.619 + }, + { + "start": 39196.38, + "end": 39199.46, + "probability": 0.7114 + }, + { + "start": 39200.0, + "end": 39202.84, + "probability": 0.972 + }, + { + "start": 39203.72, + "end": 39204.16, + "probability": 0.4061 + }, + { + "start": 39204.64, + "end": 39206.58, + "probability": 0.9954 + }, + { + "start": 39207.34, + "end": 39213.14, + "probability": 0.9829 + }, + { + "start": 39213.14, + "end": 39218.6, + "probability": 0.9844 + }, + { + "start": 39219.04, + "end": 39219.74, + "probability": 0.9883 + }, + { + "start": 39220.42, + "end": 39223.24, + "probability": 0.9429 + }, + { + "start": 39224.38, + "end": 39228.34, + "probability": 0.8895 + }, + { + "start": 39228.9, + "end": 39230.31, + "probability": 0.9888 + }, + { + "start": 39230.92, + "end": 39231.68, + "probability": 0.8848 + }, + { + "start": 39232.18, + "end": 39237.4, + "probability": 0.9794 + }, + { + "start": 39238.7, + "end": 39244.42, + "probability": 0.9904 + }, + { + "start": 39245.08, + "end": 39249.22, + "probability": 0.9452 + }, + { + "start": 39249.94, + "end": 39251.1, + "probability": 0.7551 + }, + { + "start": 39251.14, + "end": 39258.52, + "probability": 0.9572 + }, + { + "start": 39258.96, + "end": 39261.98, + "probability": 0.9691 + }, + { + "start": 39262.22, + "end": 39266.73, + "probability": 0.8555 + }, + { + "start": 39268.1, + "end": 39271.28, + "probability": 0.7578 + }, + { + "start": 39271.96, + "end": 39277.96, + "probability": 0.9902 + }, + { + "start": 39278.26, + "end": 39280.12, + "probability": 0.9717 + }, + { + "start": 39280.86, + "end": 39285.72, + "probability": 0.9577 + }, + { + "start": 39286.68, + "end": 39290.26, + "probability": 0.9012 + }, + { + "start": 39291.28, + "end": 39299.5, + "probability": 0.9692 + }, + { + "start": 39299.92, + "end": 39303.3, + "probability": 0.9801 + }, + { + "start": 39303.84, + "end": 39308.0, + "probability": 0.9895 + }, + { + "start": 39308.66, + "end": 39310.56, + "probability": 0.6066 + }, + { + "start": 39310.56, + "end": 39312.24, + "probability": 0.9404 + }, + { + "start": 39312.66, + "end": 39317.58, + "probability": 0.9495 + }, + { + "start": 39318.1, + "end": 39321.66, + "probability": 0.926 + }, + { + "start": 39322.84, + "end": 39324.8, + "probability": 0.8857 + }, + { + "start": 39326.36, + "end": 39327.66, + "probability": 0.5421 + }, + { + "start": 39328.02, + "end": 39331.92, + "probability": 0.9507 + }, + { + "start": 39334.56, + "end": 39338.86, + "probability": 0.9448 + }, + { + "start": 39339.42, + "end": 39341.14, + "probability": 0.9912 + }, + { + "start": 39341.36, + "end": 39349.3, + "probability": 0.9553 + }, + { + "start": 39349.66, + "end": 39351.3, + "probability": 0.9363 + }, + { + "start": 39352.02, + "end": 39353.8, + "probability": 0.9901 + }, + { + "start": 39354.04, + "end": 39355.25, + "probability": 0.9796 + }, + { + "start": 39356.46, + "end": 39365.12, + "probability": 0.9337 + }, + { + "start": 39365.9, + "end": 39367.34, + "probability": 0.9869 + }, + { + "start": 39367.92, + "end": 39371.2, + "probability": 0.9756 + }, + { + "start": 39371.74, + "end": 39377.2, + "probability": 0.8708 + }, + { + "start": 39377.9, + "end": 39380.16, + "probability": 0.9868 + }, + { + "start": 39380.26, + "end": 39388.68, + "probability": 0.974 + }, + { + "start": 39389.26, + "end": 39391.08, + "probability": 0.9385 + }, + { + "start": 39391.7, + "end": 39393.38, + "probability": 0.918 + }, + { + "start": 39393.96, + "end": 39398.02, + "probability": 0.9729 + }, + { + "start": 39398.58, + "end": 39400.5, + "probability": 0.733 + }, + { + "start": 39401.54, + "end": 39402.54, + "probability": 0.2853 + }, + { + "start": 39402.56, + "end": 39405.4, + "probability": 0.5399 + }, + { + "start": 39406.24, + "end": 39407.5, + "probability": 0.411 + }, + { + "start": 39408.56, + "end": 39411.78, + "probability": 0.7184 + }, + { + "start": 39412.86, + "end": 39413.32, + "probability": 0.8208 + }, + { + "start": 39414.28, + "end": 39418.98, + "probability": 0.9895 + }, + { + "start": 39419.76, + "end": 39424.84, + "probability": 0.8446 + }, + { + "start": 39426.36, + "end": 39428.74, + "probability": 0.8869 + }, + { + "start": 39429.7, + "end": 39430.29, + "probability": 0.9941 + }, + { + "start": 39431.38, + "end": 39433.9, + "probability": 0.8258 + }, + { + "start": 39435.2, + "end": 39438.9, + "probability": 0.9743 + }, + { + "start": 39439.34, + "end": 39445.14, + "probability": 0.9453 + }, + { + "start": 39446.16, + "end": 39452.36, + "probability": 0.8254 + }, + { + "start": 39453.04, + "end": 39455.0, + "probability": 0.766 + }, + { + "start": 39456.24, + "end": 39459.08, + "probability": 0.8127 + }, + { + "start": 39460.14, + "end": 39462.32, + "probability": 0.8034 + }, + { + "start": 39463.26, + "end": 39464.06, + "probability": 0.9937 + }, + { + "start": 39464.9, + "end": 39468.0, + "probability": 0.8418 + }, + { + "start": 39468.06, + "end": 39473.56, + "probability": 0.9476 + }, + { + "start": 39474.58, + "end": 39475.3, + "probability": 0.9218 + }, + { + "start": 39476.3, + "end": 39478.82, + "probability": 0.8799 + }, + { + "start": 39478.96, + "end": 39482.73, + "probability": 0.9688 + }, + { + "start": 39483.88, + "end": 39489.24, + "probability": 0.9087 + }, + { + "start": 39489.7, + "end": 39491.52, + "probability": 0.9695 + }, + { + "start": 39492.56, + "end": 39494.62, + "probability": 0.9232 + }, + { + "start": 39495.02, + "end": 39497.26, + "probability": 0.9619 + }, + { + "start": 39497.5, + "end": 39499.76, + "probability": 0.8799 + }, + { + "start": 39500.3, + "end": 39500.64, + "probability": 0.4999 + }, + { + "start": 39501.36, + "end": 39502.44, + "probability": 0.419 + }, + { + "start": 39502.92, + "end": 39511.1, + "probability": 0.7891 + }, + { + "start": 39511.74, + "end": 39515.12, + "probability": 0.9905 + }, + { + "start": 39515.92, + "end": 39519.26, + "probability": 0.9839 + }, + { + "start": 39520.6, + "end": 39521.7, + "probability": 0.9108 + }, + { + "start": 39522.18, + "end": 39523.6, + "probability": 0.987 + }, + { + "start": 39523.74, + "end": 39525.5, + "probability": 0.7838 + }, + { + "start": 39525.84, + "end": 39530.29, + "probability": 0.9815 + }, + { + "start": 39531.68, + "end": 39532.38, + "probability": 0.3426 + }, + { + "start": 39532.46, + "end": 39534.76, + "probability": 0.8249 + }, + { + "start": 39535.02, + "end": 39537.65, + "probability": 0.9396 + }, + { + "start": 39538.6, + "end": 39538.62, + "probability": 0.9375 + }, + { + "start": 39539.14, + "end": 39548.7, + "probability": 0.968 + }, + { + "start": 39549.08, + "end": 39552.42, + "probability": 0.9836 + }, + { + "start": 39554.02, + "end": 39561.3, + "probability": 0.8624 + }, + { + "start": 39562.1, + "end": 39571.16, + "probability": 0.7831 + }, + { + "start": 39571.34, + "end": 39572.2, + "probability": 0.775 + }, + { + "start": 39572.84, + "end": 39578.12, + "probability": 0.9694 + }, + { + "start": 39578.32, + "end": 39578.8, + "probability": 0.7472 + }, + { + "start": 39581.42, + "end": 39587.96, + "probability": 0.9431 + }, + { + "start": 39588.18, + "end": 39590.7, + "probability": 0.7031 + }, + { + "start": 39591.22, + "end": 39596.2, + "probability": 0.9752 + }, + { + "start": 39596.94, + "end": 39601.94, + "probability": 0.7539 + }, + { + "start": 39601.94, + "end": 39606.88, + "probability": 0.5614 + }, + { + "start": 39608.0, + "end": 39608.46, + "probability": 0.7242 + }, + { + "start": 39608.88, + "end": 39615.64, + "probability": 0.9761 + }, + { + "start": 39615.9, + "end": 39619.27, + "probability": 0.9749 + }, + { + "start": 39619.32, + "end": 39623.72, + "probability": 0.9585 + }, + { + "start": 39623.88, + "end": 39624.14, + "probability": 0.5662 + }, + { + "start": 39624.96, + "end": 39626.88, + "probability": 0.9861 + }, + { + "start": 39627.66, + "end": 39631.04, + "probability": 0.9966 + }, + { + "start": 39631.08, + "end": 39634.54, + "probability": 0.979 + }, + { + "start": 39634.68, + "end": 39636.82, + "probability": 0.8428 + }, + { + "start": 39638.68, + "end": 39643.46, + "probability": 0.9507 + }, + { + "start": 39644.36, + "end": 39646.27, + "probability": 0.8094 + }, + { + "start": 39647.58, + "end": 39649.94, + "probability": 0.9666 + }, + { + "start": 39650.06, + "end": 39656.14, + "probability": 0.6952 + }, + { + "start": 39656.92, + "end": 39657.24, + "probability": 0.4218 + }, + { + "start": 39658.4, + "end": 39658.88, + "probability": 0.6352 + }, + { + "start": 39659.4, + "end": 39659.88, + "probability": 0.896 + }, + { + "start": 39660.62, + "end": 39662.14, + "probability": 0.7719 + }, + { + "start": 39662.24, + "end": 39662.8, + "probability": 0.8335 + }, + { + "start": 39662.98, + "end": 39665.78, + "probability": 0.5101 + }, + { + "start": 39666.62, + "end": 39670.15, + "probability": 0.9429 + }, + { + "start": 39670.36, + "end": 39672.1, + "probability": 0.8942 + }, + { + "start": 39672.64, + "end": 39673.24, + "probability": 0.9307 + }, + { + "start": 39673.64, + "end": 39676.18, + "probability": 0.9479 + }, + { + "start": 39676.72, + "end": 39680.84, + "probability": 0.9011 + }, + { + "start": 39681.5, + "end": 39684.22, + "probability": 0.9521 + }, + { + "start": 39684.52, + "end": 39685.2, + "probability": 0.7155 + }, + { + "start": 39685.7, + "end": 39688.98, + "probability": 0.7533 + }, + { + "start": 39690.6, + "end": 39692.26, + "probability": 0.7295 + }, + { + "start": 39692.7, + "end": 39694.06, + "probability": 0.6164 + }, + { + "start": 39694.8, + "end": 39695.4, + "probability": 0.8206 + }, + { + "start": 39697.0, + "end": 39700.84, + "probability": 0.787 + }, + { + "start": 39701.16, + "end": 39701.94, + "probability": 0.8857 + }, + { + "start": 39702.04, + "end": 39703.68, + "probability": 0.7627 + }, + { + "start": 39704.22, + "end": 39708.42, + "probability": 0.9402 + }, + { + "start": 39709.14, + "end": 39710.34, + "probability": 0.9021 + }, + { + "start": 39710.4, + "end": 39711.95, + "probability": 0.8666 + }, + { + "start": 39712.44, + "end": 39714.66, + "probability": 0.6647 + }, + { + "start": 39715.28, + "end": 39716.66, + "probability": 0.6863 + }, + { + "start": 39717.2, + "end": 39723.48, + "probability": 0.9624 + }, + { + "start": 39725.74, + "end": 39731.78, + "probability": 0.9561 + }, + { + "start": 39732.32, + "end": 39733.62, + "probability": 0.7683 + }, + { + "start": 39733.72, + "end": 39735.98, + "probability": 0.9829 + }, + { + "start": 39736.28, + "end": 39740.6, + "probability": 0.8208 + }, + { + "start": 39741.32, + "end": 39744.2, + "probability": 0.7624 + }, + { + "start": 39744.62, + "end": 39749.54, + "probability": 0.9763 + }, + { + "start": 39750.06, + "end": 39754.42, + "probability": 0.9108 + }, + { + "start": 39755.46, + "end": 39759.08, + "probability": 0.9709 + }, + { + "start": 39759.84, + "end": 39762.16, + "probability": 0.7303 + }, + { + "start": 39762.64, + "end": 39764.02, + "probability": 0.963 + }, + { + "start": 39764.34, + "end": 39765.84, + "probability": 0.8948 + }, + { + "start": 39766.0, + "end": 39767.54, + "probability": 0.9861 + }, + { + "start": 39768.22, + "end": 39771.96, + "probability": 0.8766 + }, + { + "start": 39772.32, + "end": 39781.02, + "probability": 0.9678 + }, + { + "start": 39782.2, + "end": 39787.76, + "probability": 0.9758 + }, + { + "start": 39788.8, + "end": 39789.2, + "probability": 0.6283 + }, + { + "start": 39790.08, + "end": 39793.44, + "probability": 0.951 + }, + { + "start": 39794.18, + "end": 39795.56, + "probability": 0.8292 + }, + { + "start": 39796.46, + "end": 39803.56, + "probability": 0.9731 + }, + { + "start": 39805.32, + "end": 39806.2, + "probability": 0.9956 + }, + { + "start": 39808.2, + "end": 39809.48, + "probability": 0.6179 + }, + { + "start": 39810.47, + "end": 39814.34, + "probability": 0.9487 + }, + { + "start": 39814.34, + "end": 39817.82, + "probability": 0.997 + }, + { + "start": 39818.86, + "end": 39823.44, + "probability": 0.8625 + }, + { + "start": 39823.5, + "end": 39825.28, + "probability": 0.9879 + }, + { + "start": 39825.42, + "end": 39828.8, + "probability": 0.9844 + }, + { + "start": 39828.88, + "end": 39829.16, + "probability": 0.3355 + }, + { + "start": 39829.5, + "end": 39831.06, + "probability": 0.9627 + }, + { + "start": 39831.5, + "end": 39832.28, + "probability": 0.9164 + }, + { + "start": 39832.42, + "end": 39835.2, + "probability": 0.9718 + }, + { + "start": 39835.7, + "end": 39839.48, + "probability": 0.9756 + }, + { + "start": 39839.56, + "end": 39840.72, + "probability": 0.9751 + }, + { + "start": 39840.8, + "end": 39843.54, + "probability": 0.7137 + }, + { + "start": 39843.9, + "end": 39845.42, + "probability": 0.4722 + }, + { + "start": 39845.84, + "end": 39850.5, + "probability": 0.8669 + }, + { + "start": 39850.5, + "end": 39856.28, + "probability": 0.9137 + }, + { + "start": 39856.64, + "end": 39861.28, + "probability": 0.6634 + }, + { + "start": 39861.48, + "end": 39864.06, + "probability": 0.8549 + }, + { + "start": 39864.14, + "end": 39866.4, + "probability": 0.98 + }, + { + "start": 39867.14, + "end": 39869.34, + "probability": 0.6859 + }, + { + "start": 39869.64, + "end": 39872.8, + "probability": 0.8613 + }, + { + "start": 39872.94, + "end": 39873.39, + "probability": 0.9241 + }, + { + "start": 39874.2, + "end": 39875.2, + "probability": 0.9415 + }, + { + "start": 39875.46, + "end": 39878.58, + "probability": 0.8009 + }, + { + "start": 39878.68, + "end": 39879.32, + "probability": 0.8243 + }, + { + "start": 39879.4, + "end": 39884.22, + "probability": 0.9301 + }, + { + "start": 39884.4, + "end": 39885.56, + "probability": 0.8685 + }, + { + "start": 39886.04, + "end": 39886.34, + "probability": 0.9515 + }, + { + "start": 39886.4, + "end": 39887.58, + "probability": 0.9891 + }, + { + "start": 39887.96, + "end": 39889.26, + "probability": 0.8618 + }, + { + "start": 39889.98, + "end": 39891.74, + "probability": 0.9966 + }, + { + "start": 39891.74, + "end": 39895.42, + "probability": 0.9569 + }, + { + "start": 39895.68, + "end": 39896.16, + "probability": 0.7787 + }, + { + "start": 39896.22, + "end": 39896.8, + "probability": 0.874 + }, + { + "start": 39897.24, + "end": 39897.72, + "probability": 0.6649 + }, + { + "start": 39898.32, + "end": 39898.5, + "probability": 0.4865 + }, + { + "start": 39898.72, + "end": 39904.7, + "probability": 0.9534 + }, + { + "start": 39905.38, + "end": 39906.52, + "probability": 0.8491 + }, + { + "start": 39906.76, + "end": 39907.42, + "probability": 0.9929 + }, + { + "start": 39907.72, + "end": 39907.96, + "probability": 0.761 + }, + { + "start": 39908.9, + "end": 39910.9, + "probability": 0.9648 + }, + { + "start": 39910.94, + "end": 39911.36, + "probability": 0.7112 + }, + { + "start": 39911.92, + "end": 39915.14, + "probability": 0.8986 + }, + { + "start": 39915.48, + "end": 39920.14, + "probability": 0.9825 + }, + { + "start": 39920.14, + "end": 39923.78, + "probability": 0.7221 + }, + { + "start": 39924.18, + "end": 39929.52, + "probability": 0.8899 + }, + { + "start": 39930.1, + "end": 39933.24, + "probability": 0.9699 + }, + { + "start": 39933.78, + "end": 39937.88, + "probability": 0.9993 + }, + { + "start": 39937.88, + "end": 39943.0, + "probability": 0.9942 + }, + { + "start": 39943.44, + "end": 39945.86, + "probability": 0.7882 + }, + { + "start": 39946.42, + "end": 39955.76, + "probability": 0.9886 + }, + { + "start": 39956.32, + "end": 39960.38, + "probability": 0.8422 + }, + { + "start": 39960.5, + "end": 39962.78, + "probability": 0.9961 + }, + { + "start": 39963.0, + "end": 39963.76, + "probability": 0.8271 + }, + { + "start": 39964.14, + "end": 39965.3, + "probability": 0.8687 + }, + { + "start": 39965.6, + "end": 39967.96, + "probability": 0.9007 + }, + { + "start": 39968.82, + "end": 39971.3, + "probability": 0.951 + }, + { + "start": 39971.58, + "end": 39972.58, + "probability": 0.9973 + }, + { + "start": 39973.22, + "end": 39976.2, + "probability": 0.9777 + }, + { + "start": 39976.3, + "end": 39982.54, + "probability": 0.9006 + }, + { + "start": 39982.76, + "end": 39985.28, + "probability": 0.9766 + }, + { + "start": 39985.94, + "end": 39989.06, + "probability": 0.999 + }, + { + "start": 39989.06, + "end": 39993.02, + "probability": 0.9941 + }, + { + "start": 39993.44, + "end": 39995.22, + "probability": 0.9281 + }, + { + "start": 39995.5, + "end": 39996.32, + "probability": 0.7343 + }, + { + "start": 39996.44, + "end": 39997.68, + "probability": 0.8468 + }, + { + "start": 39998.2, + "end": 40001.56, + "probability": 0.9773 + }, + { + "start": 40001.88, + "end": 40003.22, + "probability": 0.8506 + }, + { + "start": 40003.72, + "end": 40004.84, + "probability": 0.7005 + }, + { + "start": 40005.06, + "end": 40005.58, + "probability": 0.8269 + }, + { + "start": 40006.36, + "end": 40007.15, + "probability": 0.9516 + }, + { + "start": 40007.34, + "end": 40012.98, + "probability": 0.986 + }, + { + "start": 40013.12, + "end": 40017.41, + "probability": 0.9513 + }, + { + "start": 40017.82, + "end": 40024.4, + "probability": 0.993 + }, + { + "start": 40025.3, + "end": 40033.7, + "probability": 0.9622 + }, + { + "start": 40033.8, + "end": 40039.38, + "probability": 0.8667 + }, + { + "start": 40040.36, + "end": 40043.98, + "probability": 0.8708 + }, + { + "start": 40044.5, + "end": 40046.86, + "probability": 0.9919 + }, + { + "start": 40047.32, + "end": 40055.74, + "probability": 0.978 + }, + { + "start": 40056.14, + "end": 40057.44, + "probability": 0.9367 + }, + { + "start": 40057.52, + "end": 40058.64, + "probability": 0.9259 + }, + { + "start": 40058.96, + "end": 40061.58, + "probability": 0.7763 + }, + { + "start": 40063.69, + "end": 40071.4, + "probability": 0.7948 + }, + { + "start": 40072.02, + "end": 40077.68, + "probability": 0.8438 + }, + { + "start": 40078.64, + "end": 40089.08, + "probability": 0.9873 + }, + { + "start": 40089.56, + "end": 40092.66, + "probability": 0.9777 + }, + { + "start": 40092.78, + "end": 40094.04, + "probability": 0.9671 + }, + { + "start": 40094.64, + "end": 40096.14, + "probability": 0.7054 + }, + { + "start": 40096.3, + "end": 40096.75, + "probability": 0.9585 + }, + { + "start": 40097.4, + "end": 40098.06, + "probability": 0.9495 + }, + { + "start": 40098.62, + "end": 40101.08, + "probability": 0.9282 + }, + { + "start": 40101.18, + "end": 40103.02, + "probability": 0.9484 + }, + { + "start": 40103.42, + "end": 40105.54, + "probability": 0.9922 + }, + { + "start": 40106.0, + "end": 40109.94, + "probability": 0.9879 + }, + { + "start": 40110.38, + "end": 40115.2, + "probability": 0.9569 + }, + { + "start": 40115.28, + "end": 40119.58, + "probability": 0.991 + }, + { + "start": 40120.26, + "end": 40120.82, + "probability": 0.9663 + }, + { + "start": 40121.72, + "end": 40124.9, + "probability": 0.8872 + }, + { + "start": 40124.98, + "end": 40125.38, + "probability": 0.6278 + }, + { + "start": 40125.42, + "end": 40132.28, + "probability": 0.9932 + }, + { + "start": 40132.46, + "end": 40135.0, + "probability": 0.9565 + }, + { + "start": 40135.56, + "end": 40137.06, + "probability": 0.9783 + }, + { + "start": 40137.38, + "end": 40140.52, + "probability": 0.9972 + }, + { + "start": 40140.72, + "end": 40144.42, + "probability": 0.9903 + }, + { + "start": 40144.96, + "end": 40150.5, + "probability": 0.9763 + }, + { + "start": 40150.56, + "end": 40154.08, + "probability": 0.9772 + }, + { + "start": 40154.2, + "end": 40154.66, + "probability": 0.8837 + }, + { + "start": 40155.04, + "end": 40155.66, + "probability": 0.8648 + }, + { + "start": 40156.16, + "end": 40157.51, + "probability": 0.9968 + }, + { + "start": 40157.92, + "end": 40158.14, + "probability": 0.9373 + }, + { + "start": 40158.36, + "end": 40158.96, + "probability": 0.6085 + }, + { + "start": 40159.04, + "end": 40160.06, + "probability": 0.9739 + }, + { + "start": 40160.4, + "end": 40162.86, + "probability": 0.9893 + }, + { + "start": 40163.12, + "end": 40163.8, + "probability": 0.908 + }, + { + "start": 40164.38, + "end": 40165.66, + "probability": 0.983 + }, + { + "start": 40166.3, + "end": 40168.7, + "probability": 0.9872 + }, + { + "start": 40168.74, + "end": 40173.24, + "probability": 0.8784 + }, + { + "start": 40174.02, + "end": 40175.92, + "probability": 0.9662 + }, + { + "start": 40176.42, + "end": 40177.9, + "probability": 0.999 + }, + { + "start": 40178.32, + "end": 40179.24, + "probability": 0.9734 + }, + { + "start": 40179.7, + "end": 40181.03, + "probability": 0.9987 + }, + { + "start": 40182.44, + "end": 40184.2, + "probability": 0.8144 + }, + { + "start": 40184.56, + "end": 40188.28, + "probability": 0.9941 + }, + { + "start": 40188.76, + "end": 40193.52, + "probability": 0.9373 + }, + { + "start": 40193.64, + "end": 40198.46, + "probability": 0.9979 + }, + { + "start": 40198.98, + "end": 40199.4, + "probability": 0.4605 + }, + { + "start": 40200.47, + "end": 40202.68, + "probability": 0.9954 + }, + { + "start": 40203.78, + "end": 40204.36, + "probability": 0.9778 + }, + { + "start": 40205.14, + "end": 40206.34, + "probability": 0.9605 + }, + { + "start": 40207.64, + "end": 40210.3, + "probability": 0.9693 + }, + { + "start": 40210.84, + "end": 40217.0, + "probability": 0.8995 + }, + { + "start": 40217.62, + "end": 40220.18, + "probability": 0.9928 + }, + { + "start": 40222.46, + "end": 40225.24, + "probability": 0.9696 + }, + { + "start": 40228.42, + "end": 40230.06, + "probability": 0.502 + }, + { + "start": 40230.66, + "end": 40232.78, + "probability": 0.8061 + }, + { + "start": 40233.28, + "end": 40241.94, + "probability": 0.9818 + }, + { + "start": 40242.02, + "end": 40243.88, + "probability": 0.9957 + }, + { + "start": 40244.64, + "end": 40246.24, + "probability": 0.986 + }, + { + "start": 40246.76, + "end": 40247.56, + "probability": 0.8086 + }, + { + "start": 40247.86, + "end": 40252.94, + "probability": 0.9913 + }, + { + "start": 40253.38, + "end": 40257.68, + "probability": 0.6526 + }, + { + "start": 40258.4, + "end": 40261.44, + "probability": 0.9871 + }, + { + "start": 40261.82, + "end": 40265.36, + "probability": 0.9701 + }, + { + "start": 40265.62, + "end": 40266.7, + "probability": 0.8556 + }, + { + "start": 40267.5, + "end": 40269.06, + "probability": 0.8987 + }, + { + "start": 40269.58, + "end": 40272.5, + "probability": 0.9863 + }, + { + "start": 40273.26, + "end": 40276.84, + "probability": 0.988 + }, + { + "start": 40277.76, + "end": 40282.6, + "probability": 0.9785 + }, + { + "start": 40283.12, + "end": 40283.54, + "probability": 0.5094 + }, + { + "start": 40284.42, + "end": 40285.8, + "probability": 0.6686 + }, + { + "start": 40286.08, + "end": 40287.5, + "probability": 0.954 + }, + { + "start": 40289.24, + "end": 40290.5, + "probability": 0.9258 + }, + { + "start": 40290.5, + "end": 40292.18, + "probability": 0.6022 + }, + { + "start": 40292.78, + "end": 40293.88, + "probability": 0.8995 + }, + { + "start": 40294.6, + "end": 40297.94, + "probability": 0.9691 + }, + { + "start": 40299.78, + "end": 40301.56, + "probability": 0.96 + }, + { + "start": 40301.92, + "end": 40303.02, + "probability": 0.4898 + }, + { + "start": 40303.02, + "end": 40304.34, + "probability": 0.9889 + }, + { + "start": 40304.68, + "end": 40308.78, + "probability": 0.0208 + }, + { + "start": 40309.4, + "end": 40314.54, + "probability": 0.7937 + }, + { + "start": 40315.6, + "end": 40316.28, + "probability": 0.6614 + }, + { + "start": 40316.34, + "end": 40317.38, + "probability": 0.4605 + }, + { + "start": 40318.14, + "end": 40318.54, + "probability": 0.1528 + }, + { + "start": 40321.1, + "end": 40322.0, + "probability": 0.4792 + }, + { + "start": 40322.12, + "end": 40323.27, + "probability": 0.9274 + }, + { + "start": 40324.72, + "end": 40325.82, + "probability": 0.096 + }, + { + "start": 40326.36, + "end": 40326.36, + "probability": 0.0681 + }, + { + "start": 40326.36, + "end": 40326.64, + "probability": 0.8405 + }, + { + "start": 40327.34, + "end": 40332.0, + "probability": 0.9727 + }, + { + "start": 40332.24, + "end": 40336.0, + "probability": 0.9926 + }, + { + "start": 40336.64, + "end": 40337.28, + "probability": 0.8288 + }, + { + "start": 40337.82, + "end": 40343.62, + "probability": 0.9834 + }, + { + "start": 40343.92, + "end": 40345.78, + "probability": 0.443 + }, + { + "start": 40346.36, + "end": 40346.71, + "probability": 0.8518 + }, + { + "start": 40347.8, + "end": 40350.72, + "probability": 0.8992 + }, + { + "start": 40350.8, + "end": 40353.26, + "probability": 0.9074 + }, + { + "start": 40353.96, + "end": 40354.04, + "probability": 0.2943 + }, + { + "start": 40354.04, + "end": 40354.32, + "probability": 0.5522 + }, + { + "start": 40354.64, + "end": 40356.26, + "probability": 0.8972 + }, + { + "start": 40356.78, + "end": 40358.36, + "probability": 0.5984 + }, + { + "start": 40358.44, + "end": 40360.94, + "probability": 0.6644 + }, + { + "start": 40361.04, + "end": 40362.26, + "probability": 0.8981 + }, + { + "start": 40362.72, + "end": 40364.48, + "probability": 0.9598 + }, + { + "start": 40365.08, + "end": 40367.5, + "probability": 0.9983 + }, + { + "start": 40368.08, + "end": 40373.2, + "probability": 0.7391 + }, + { + "start": 40373.5, + "end": 40376.58, + "probability": 0.8727 + }, + { + "start": 40377.64, + "end": 40378.1, + "probability": 0.7341 + }, + { + "start": 40379.2, + "end": 40382.34, + "probability": 0.9201 + }, + { + "start": 40382.42, + "end": 40383.66, + "probability": 0.9752 + }, + { + "start": 40384.24, + "end": 40386.1, + "probability": 0.7562 + }, + { + "start": 40386.92, + "end": 40389.24, + "probability": 0.0097 + }, + { + "start": 40391.52, + "end": 40392.84, + "probability": 0.4769 + }, + { + "start": 40397.38, + "end": 40397.95, + "probability": 0.7424 + }, + { + "start": 40398.06, + "end": 40399.02, + "probability": 0.6957 + }, + { + "start": 40399.1, + "end": 40399.58, + "probability": 0.9303 + }, + { + "start": 40399.74, + "end": 40401.6, + "probability": 0.7767 + }, + { + "start": 40402.16, + "end": 40403.82, + "probability": 0.926 + }, + { + "start": 40405.0, + "end": 40405.62, + "probability": 0.7537 + }, + { + "start": 40405.76, + "end": 40409.19, + "probability": 0.9017 + }, + { + "start": 40410.24, + "end": 40412.0, + "probability": 0.7548 + }, + { + "start": 40412.08, + "end": 40418.4, + "probability": 0.9332 + }, + { + "start": 40418.86, + "end": 40422.85, + "probability": 0.9895 + }, + { + "start": 40424.68, + "end": 40428.78, + "probability": 0.9756 + }, + { + "start": 40429.22, + "end": 40434.12, + "probability": 0.9339 + }, + { + "start": 40434.92, + "end": 40438.02, + "probability": 0.9932 + }, + { + "start": 40438.02, + "end": 40441.94, + "probability": 0.9681 + }, + { + "start": 40442.48, + "end": 40447.88, + "probability": 0.9927 + }, + { + "start": 40448.58, + "end": 40448.96, + "probability": 0.7342 + }, + { + "start": 40450.3, + "end": 40455.6, + "probability": 0.7795 + }, + { + "start": 40456.12, + "end": 40461.98, + "probability": 0.9846 + }, + { + "start": 40462.56, + "end": 40466.66, + "probability": 0.9406 + }, + { + "start": 40467.22, + "end": 40471.86, + "probability": 0.9946 + }, + { + "start": 40472.84, + "end": 40478.92, + "probability": 0.8042 + }, + { + "start": 40479.06, + "end": 40483.62, + "probability": 0.994 + }, + { + "start": 40483.8, + "end": 40486.1, + "probability": 0.8947 + }, + { + "start": 40486.22, + "end": 40492.34, + "probability": 0.8911 + }, + { + "start": 40492.76, + "end": 40502.48, + "probability": 0.9893 + }, + { + "start": 40502.6, + "end": 40505.68, + "probability": 0.7571 + }, + { + "start": 40506.26, + "end": 40509.44, + "probability": 0.9757 + }, + { + "start": 40509.7, + "end": 40510.52, + "probability": 0.9535 + }, + { + "start": 40510.58, + "end": 40519.62, + "probability": 0.9688 + }, + { + "start": 40519.82, + "end": 40521.22, + "probability": 0.993 + }, + { + "start": 40521.8, + "end": 40526.93, + "probability": 0.8328 + }, + { + "start": 40527.6, + "end": 40534.42, + "probability": 0.9828 + }, + { + "start": 40535.22, + "end": 40535.88, + "probability": 0.972 + }, + { + "start": 40537.18, + "end": 40538.38, + "probability": 0.6167 + }, + { + "start": 40538.52, + "end": 40539.62, + "probability": 0.9616 + }, + { + "start": 40539.7, + "end": 40542.32, + "probability": 0.9307 + }, + { + "start": 40542.7, + "end": 40549.9, + "probability": 0.9895 + }, + { + "start": 40549.9, + "end": 40555.4, + "probability": 0.9991 + }, + { + "start": 40556.58, + "end": 40558.56, + "probability": 0.9814 + }, + { + "start": 40559.4, + "end": 40565.06, + "probability": 0.9961 + }, + { + "start": 40565.76, + "end": 40569.9, + "probability": 0.9449 + }, + { + "start": 40570.48, + "end": 40571.78, + "probability": 0.7358 + }, + { + "start": 40572.38, + "end": 40579.6, + "probability": 0.9932 + }, + { + "start": 40580.08, + "end": 40584.64, + "probability": 0.9936 + }, + { + "start": 40585.2, + "end": 40589.22, + "probability": 0.5659 + }, + { + "start": 40589.65, + "end": 40599.48, + "probability": 0.8656 + }, + { + "start": 40600.0, + "end": 40602.0, + "probability": 0.4537 + }, + { + "start": 40602.54, + "end": 40607.1, + "probability": 0.6668 + }, + { + "start": 40607.1, + "end": 40611.34, + "probability": 0.9894 + }, + { + "start": 40612.1, + "end": 40615.28, + "probability": 0.9767 + }, + { + "start": 40615.92, + "end": 40619.84, + "probability": 0.9295 + }, + { + "start": 40620.28, + "end": 40625.32, + "probability": 0.9894 + }, + { + "start": 40626.14, + "end": 40629.74, + "probability": 0.9954 + }, + { + "start": 40630.26, + "end": 40631.86, + "probability": 0.431 + }, + { + "start": 40632.32, + "end": 40635.5, + "probability": 0.9786 + }, + { + "start": 40635.92, + "end": 40640.1, + "probability": 0.9856 + }, + { + "start": 40640.1, + "end": 40643.6, + "probability": 0.8426 + }, + { + "start": 40644.18, + "end": 40645.24, + "probability": 0.8728 + }, + { + "start": 40645.84, + "end": 40646.42, + "probability": 0.9593 + }, + { + "start": 40647.08, + "end": 40648.73, + "probability": 0.9774 + }, + { + "start": 40649.18, + "end": 40652.26, + "probability": 0.9907 + }, + { + "start": 40653.08, + "end": 40658.64, + "probability": 0.9905 + }, + { + "start": 40658.96, + "end": 40662.9, + "probability": 0.9661 + }, + { + "start": 40663.26, + "end": 40667.36, + "probability": 0.929 + }, + { + "start": 40667.84, + "end": 40672.84, + "probability": 0.9961 + }, + { + "start": 40673.24, + "end": 40677.1, + "probability": 0.998 + }, + { + "start": 40677.1, + "end": 40683.18, + "probability": 0.8693 + }, + { + "start": 40684.08, + "end": 40689.9, + "probability": 0.9697 + }, + { + "start": 40689.94, + "end": 40691.44, + "probability": 0.8862 + }, + { + "start": 40692.12, + "end": 40695.48, + "probability": 0.5325 + }, + { + "start": 40695.54, + "end": 40697.28, + "probability": 0.9574 + }, + { + "start": 40697.34, + "end": 40697.79, + "probability": 0.7734 + }, + { + "start": 40698.1, + "end": 40699.12, + "probability": 0.856 + }, + { + "start": 40699.52, + "end": 40703.98, + "probability": 0.9473 + }, + { + "start": 40704.06, + "end": 40705.9, + "probability": 0.9456 + }, + { + "start": 40706.38, + "end": 40706.98, + "probability": 0.9626 + }, + { + "start": 40707.4, + "end": 40708.8, + "probability": 0.9885 + }, + { + "start": 40709.4, + "end": 40711.24, + "probability": 0.8469 + }, + { + "start": 40711.48, + "end": 40714.7, + "probability": 0.7171 + }, + { + "start": 40715.14, + "end": 40718.42, + "probability": 0.9937 + }, + { + "start": 40718.88, + "end": 40720.48, + "probability": 0.9844 + }, + { + "start": 40720.92, + "end": 40725.06, + "probability": 0.9725 + }, + { + "start": 40725.56, + "end": 40727.6, + "probability": 0.7558 + }, + { + "start": 40728.2, + "end": 40731.04, + "probability": 0.9803 + }, + { + "start": 40731.52, + "end": 40738.04, + "probability": 0.9937 + }, + { + "start": 40738.54, + "end": 40739.54, + "probability": 0.8823 + }, + { + "start": 40740.22, + "end": 40742.8, + "probability": 0.9992 + }, + { + "start": 40743.44, + "end": 40746.82, + "probability": 0.9904 + }, + { + "start": 40746.9, + "end": 40749.46, + "probability": 0.9672 + }, + { + "start": 40749.82, + "end": 40752.42, + "probability": 0.9951 + }, + { + "start": 40752.78, + "end": 40754.07, + "probability": 0.7752 + }, + { + "start": 40754.58, + "end": 40755.1, + "probability": 0.7339 + }, + { + "start": 40755.56, + "end": 40756.48, + "probability": 0.7649 + }, + { + "start": 40756.96, + "end": 40757.46, + "probability": 0.4386 + }, + { + "start": 40758.12, + "end": 40760.54, + "probability": 0.6695 + }, + { + "start": 40760.9, + "end": 40762.84, + "probability": 0.989 + }, + { + "start": 40763.44, + "end": 40764.7, + "probability": 0.9631 + }, + { + "start": 40765.26, + "end": 40766.76, + "probability": 0.8576 + }, + { + "start": 40767.16, + "end": 40767.42, + "probability": 0.4403 + }, + { + "start": 40767.74, + "end": 40772.1, + "probability": 0.8821 + }, + { + "start": 40772.9, + "end": 40773.56, + "probability": 0.9368 + }, + { + "start": 40773.94, + "end": 40775.2, + "probability": 0.9933 + }, + { + "start": 40775.74, + "end": 40780.46, + "probability": 0.8896 + }, + { + "start": 40780.54, + "end": 40782.66, + "probability": 0.9827 + }, + { + "start": 40783.22, + "end": 40784.52, + "probability": 0.6386 + }, + { + "start": 40784.96, + "end": 40786.44, + "probability": 0.9858 + }, + { + "start": 40787.64, + "end": 40788.24, + "probability": 0.8838 + }, + { + "start": 40788.88, + "end": 40789.48, + "probability": 0.9724 + }, + { + "start": 40790.26, + "end": 40790.77, + "probability": 0.9473 + }, + { + "start": 40791.68, + "end": 40794.3, + "probability": 0.9932 + }, + { + "start": 40794.7, + "end": 40796.73, + "probability": 0.9565 + }, + { + "start": 40797.3, + "end": 40801.26, + "probability": 0.8915 + }, + { + "start": 40801.74, + "end": 40803.2, + "probability": 0.9033 + }, + { + "start": 40803.76, + "end": 40806.52, + "probability": 0.9793 + }, + { + "start": 40806.9, + "end": 40808.48, + "probability": 0.9939 + }, + { + "start": 40808.78, + "end": 40812.02, + "probability": 0.9968 + }, + { + "start": 40812.78, + "end": 40814.1, + "probability": 0.999 + }, + { + "start": 40814.94, + "end": 40820.24, + "probability": 0.9972 + }, + { + "start": 40820.9, + "end": 40823.68, + "probability": 0.9307 + }, + { + "start": 40823.96, + "end": 40824.88, + "probability": 0.7143 + }, + { + "start": 40825.42, + "end": 40825.82, + "probability": 0.6098 + }, + { + "start": 40826.12, + "end": 40830.24, + "probability": 0.9833 + }, + { + "start": 40830.4, + "end": 40832.12, + "probability": 0.9883 + }, + { + "start": 40833.14, + "end": 40833.91, + "probability": 0.9714 + }, + { + "start": 40834.54, + "end": 40835.42, + "probability": 0.9929 + }, + { + "start": 40836.14, + "end": 40837.72, + "probability": 0.9907 + }, + { + "start": 40838.14, + "end": 40842.02, + "probability": 0.8608 + }, + { + "start": 40842.5, + "end": 40843.56, + "probability": 0.659 + }, + { + "start": 40844.22, + "end": 40847.6, + "probability": 0.9292 + }, + { + "start": 40848.18, + "end": 40851.64, + "probability": 0.995 + }, + { + "start": 40851.98, + "end": 40852.42, + "probability": 0.9688 + }, + { + "start": 40852.74, + "end": 40853.26, + "probability": 0.9773 + }, + { + "start": 40853.9, + "end": 40856.94, + "probability": 0.9983 + }, + { + "start": 40857.36, + "end": 40858.5, + "probability": 0.9897 + }, + { + "start": 40858.92, + "end": 40859.82, + "probability": 0.7336 + }, + { + "start": 40860.88, + "end": 40862.52, + "probability": 0.7184 + }, + { + "start": 40863.22, + "end": 40864.86, + "probability": 0.9174 + }, + { + "start": 40866.12, + "end": 40866.76, + "probability": 0.8184 + }, + { + "start": 40867.36, + "end": 40872.58, + "probability": 0.9626 + }, + { + "start": 40872.82, + "end": 40873.48, + "probability": 0.9414 + }, + { + "start": 40874.24, + "end": 40874.98, + "probability": 0.9741 + }, + { + "start": 40875.12, + "end": 40879.24, + "probability": 0.9962 + }, + { + "start": 40880.0, + "end": 40883.36, + "probability": 0.9951 + }, + { + "start": 40883.76, + "end": 40884.88, + "probability": 0.7463 + }, + { + "start": 40885.0, + "end": 40887.5, + "probability": 0.8708 + }, + { + "start": 40887.9, + "end": 40891.22, + "probability": 0.8997 + }, + { + "start": 40891.3, + "end": 40892.18, + "probability": 0.8527 + }, + { + "start": 40892.58, + "end": 40895.94, + "probability": 0.9779 + }, + { + "start": 40896.3, + "end": 40897.86, + "probability": 0.8446 + }, + { + "start": 40898.16, + "end": 40899.48, + "probability": 0.8735 + }, + { + "start": 40899.54, + "end": 40899.84, + "probability": 0.6858 + }, + { + "start": 40900.58, + "end": 40900.9, + "probability": 0.9713 + }, + { + "start": 40901.4, + "end": 40902.16, + "probability": 0.8361 + }, + { + "start": 40902.34, + "end": 40904.9, + "probability": 0.9915 + }, + { + "start": 40905.26, + "end": 40909.32, + "probability": 0.972 + }, + { + "start": 40909.66, + "end": 40910.18, + "probability": 0.3426 + }, + { + "start": 40910.92, + "end": 40912.0, + "probability": 0.6571 + }, + { + "start": 40913.76, + "end": 40915.58, + "probability": 0.8984 + }, + { + "start": 40916.08, + "end": 40923.3, + "probability": 0.9672 + }, + { + "start": 40924.0, + "end": 40928.14, + "probability": 0.926 + }, + { + "start": 40928.28, + "end": 40930.36, + "probability": 0.9469 + }, + { + "start": 40930.92, + "end": 40932.5, + "probability": 0.9569 + }, + { + "start": 40932.88, + "end": 40933.42, + "probability": 0.9185 + }, + { + "start": 40933.9, + "end": 40936.86, + "probability": 0.9915 + }, + { + "start": 40936.86, + "end": 40939.48, + "probability": 0.9978 + }, + { + "start": 40940.52, + "end": 40944.44, + "probability": 0.9703 + }, + { + "start": 40945.22, + "end": 40947.3, + "probability": 0.8153 + }, + { + "start": 40947.74, + "end": 40953.96, + "probability": 0.9716 + }, + { + "start": 40954.54, + "end": 40957.52, + "probability": 0.9835 + }, + { + "start": 40958.02, + "end": 40959.88, + "probability": 0.8669 + }, + { + "start": 40960.44, + "end": 40963.96, + "probability": 0.8303 + }, + { + "start": 40964.04, + "end": 40965.69, + "probability": 0.9747 + }, + { + "start": 40966.22, + "end": 40967.14, + "probability": 0.623 + }, + { + "start": 40967.88, + "end": 40969.36, + "probability": 0.8081 + }, + { + "start": 40969.94, + "end": 40972.44, + "probability": 0.5461 + }, + { + "start": 40972.5, + "end": 40973.6, + "probability": 0.6507 + }, + { + "start": 40974.4, + "end": 40974.82, + "probability": 0.5748 + }, + { + "start": 40974.96, + "end": 40975.5, + "probability": 0.7898 + }, + { + "start": 40975.86, + "end": 40979.08, + "probability": 0.8223 + }, + { + "start": 40979.18, + "end": 40982.42, + "probability": 0.8961 + }, + { + "start": 40983.16, + "end": 40984.46, + "probability": 0.9314 + }, + { + "start": 40984.56, + "end": 40985.36, + "probability": 0.9763 + }, + { + "start": 40985.76, + "end": 40988.4, + "probability": 0.9892 + }, + { + "start": 40988.4, + "end": 40992.18, + "probability": 0.993 + }, + { + "start": 40992.7, + "end": 40996.04, + "probability": 0.9709 + }, + { + "start": 40996.1, + "end": 40996.62, + "probability": 0.8014 + }, + { + "start": 40996.68, + "end": 40997.2, + "probability": 0.9487 + }, + { + "start": 40997.4, + "end": 41001.38, + "probability": 0.8999 + }, + { + "start": 41001.8, + "end": 41002.72, + "probability": 0.6764 + }, + { + "start": 41002.88, + "end": 41004.52, + "probability": 0.9898 + }, + { + "start": 41005.02, + "end": 41005.58, + "probability": 0.9019 + }, + { + "start": 41006.1, + "end": 41008.42, + "probability": 0.9893 + }, + { + "start": 41008.54, + "end": 41009.16, + "probability": 0.6287 + }, + { + "start": 41009.2, + "end": 41010.46, + "probability": 0.8185 + }, + { + "start": 41010.88, + "end": 41015.62, + "probability": 0.9233 + }, + { + "start": 41016.42, + "end": 41018.13, + "probability": 0.9702 + }, + { + "start": 41019.42, + "end": 41020.09, + "probability": 0.9327 + }, + { + "start": 41021.6, + "end": 41023.54, + "probability": 0.9434 + }, + { + "start": 41024.26, + "end": 41025.12, + "probability": 0.6896 + }, + { + "start": 41026.14, + "end": 41029.1, + "probability": 0.7971 + }, + { + "start": 41029.46, + "end": 41031.8, + "probability": 0.9753 + }, + { + "start": 41032.04, + "end": 41033.7, + "probability": 0.7193 + }, + { + "start": 41034.24, + "end": 41038.58, + "probability": 0.9741 + }, + { + "start": 41039.44, + "end": 41040.12, + "probability": 0.8867 + }, + { + "start": 41040.58, + "end": 41045.96, + "probability": 0.9614 + }, + { + "start": 41047.12, + "end": 41048.42, + "probability": 0.9526 + }, + { + "start": 41049.0, + "end": 41050.34, + "probability": 0.7581 + }, + { + "start": 41050.5, + "end": 41052.46, + "probability": 0.7994 + }, + { + "start": 41053.12, + "end": 41054.58, + "probability": 0.9465 + }, + { + "start": 41055.84, + "end": 41056.24, + "probability": 0.6581 + }, + { + "start": 41056.38, + "end": 41057.84, + "probability": 0.9971 + }, + { + "start": 41058.02, + "end": 41062.3, + "probability": 0.8042 + }, + { + "start": 41063.5, + "end": 41066.5, + "probability": 0.9515 + }, + { + "start": 41066.76, + "end": 41069.22, + "probability": 0.9287 + }, + { + "start": 41070.88, + "end": 41074.54, + "probability": 0.6509 + }, + { + "start": 41076.46, + "end": 41077.24, + "probability": 0.5467 + }, + { + "start": 41077.3, + "end": 41082.06, + "probability": 0.9686 + }, + { + "start": 41082.5, + "end": 41084.8, + "probability": 0.687 + }, + { + "start": 41085.56, + "end": 41090.14, + "probability": 0.9551 + }, + { + "start": 41090.92, + "end": 41093.76, + "probability": 0.9985 + }, + { + "start": 41094.48, + "end": 41096.0, + "probability": 0.868 + }, + { + "start": 41096.14, + "end": 41096.92, + "probability": 0.9584 + }, + { + "start": 41097.18, + "end": 41097.8, + "probability": 0.7554 + }, + { + "start": 41098.75, + "end": 41101.04, + "probability": 0.9819 + }, + { + "start": 41101.04, + "end": 41103.74, + "probability": 0.3542 + }, + { + "start": 41104.16, + "end": 41106.28, + "probability": 0.9567 + }, + { + "start": 41106.74, + "end": 41108.06, + "probability": 0.8012 + }, + { + "start": 41108.86, + "end": 41110.14, + "probability": 0.8698 + }, + { + "start": 41110.8, + "end": 41115.78, + "probability": 0.9083 + }, + { + "start": 41117.19, + "end": 41119.3, + "probability": 0.9659 + }, + { + "start": 41120.14, + "end": 41123.26, + "probability": 0.851 + }, + { + "start": 41123.68, + "end": 41126.0, + "probability": 0.9971 + }, + { + "start": 41126.16, + "end": 41128.46, + "probability": 0.8722 + }, + { + "start": 41128.5, + "end": 41129.46, + "probability": 0.9486 + }, + { + "start": 41130.0, + "end": 41131.42, + "probability": 0.9346 + }, + { + "start": 41131.78, + "end": 41132.84, + "probability": 0.9856 + }, + { + "start": 41133.24, + "end": 41135.57, + "probability": 0.9978 + }, + { + "start": 41136.24, + "end": 41138.52, + "probability": 0.8423 + }, + { + "start": 41139.16, + "end": 41143.3, + "probability": 0.9944 + }, + { + "start": 41143.42, + "end": 41145.56, + "probability": 0.9303 + }, + { + "start": 41145.74, + "end": 41146.28, + "probability": 0.7476 + }, + { + "start": 41146.98, + "end": 41148.34, + "probability": 0.9932 + }, + { + "start": 41148.68, + "end": 41149.84, + "probability": 0.9287 + }, + { + "start": 41150.34, + "end": 41156.02, + "probability": 0.9892 + }, + { + "start": 41156.26, + "end": 41157.68, + "probability": 0.7313 + }, + { + "start": 41157.92, + "end": 41158.42, + "probability": 0.712 + }, + { + "start": 41159.06, + "end": 41160.0, + "probability": 0.91 + }, + { + "start": 41160.78, + "end": 41166.46, + "probability": 0.9471 + }, + { + "start": 41166.66, + "end": 41169.42, + "probability": 0.9389 + }, + { + "start": 41169.5, + "end": 41176.14, + "probability": 0.9959 + }, + { + "start": 41176.36, + "end": 41176.46, + "probability": 0.3458 + }, + { + "start": 41177.24, + "end": 41181.2, + "probability": 0.9282 + }, + { + "start": 41181.84, + "end": 41183.2, + "probability": 0.94 + }, + { + "start": 41184.0, + "end": 41184.76, + "probability": 0.9819 + }, + { + "start": 41185.28, + "end": 41186.98, + "probability": 0.8714 + }, + { + "start": 41188.18, + "end": 41189.48, + "probability": 0.9914 + }, + { + "start": 41189.84, + "end": 41197.36, + "probability": 0.8915 + }, + { + "start": 41198.74, + "end": 41200.84, + "probability": 0.9737 + }, + { + "start": 41201.68, + "end": 41203.92, + "probability": 0.876 + }, + { + "start": 41205.38, + "end": 41207.68, + "probability": 0.7508 + }, + { + "start": 41208.36, + "end": 41208.38, + "probability": 0.9229 + }, + { + "start": 41211.42, + "end": 41212.0, + "probability": 0.6785 + }, + { + "start": 41212.66, + "end": 41213.74, + "probability": 0.8246 + }, + { + "start": 41214.28, + "end": 41216.32, + "probability": 0.9728 + }, + { + "start": 41216.4, + "end": 41219.76, + "probability": 0.9828 + }, + { + "start": 41219.8, + "end": 41220.98, + "probability": 0.9854 + }, + { + "start": 41221.02, + "end": 41222.02, + "probability": 0.9684 + }, + { + "start": 41222.16, + "end": 41226.7, + "probability": 0.9873 + }, + { + "start": 41227.22, + "end": 41230.69, + "probability": 0.979 + }, + { + "start": 41232.06, + "end": 41234.56, + "probability": 0.8722 + }, + { + "start": 41235.02, + "end": 41236.6, + "probability": 0.9348 + }, + { + "start": 41238.57, + "end": 41240.04, + "probability": 0.5603 + }, + { + "start": 41240.12, + "end": 41242.24, + "probability": 0.6463 + }, + { + "start": 41242.84, + "end": 41246.52, + "probability": 0.9678 + }, + { + "start": 41246.6, + "end": 41250.96, + "probability": 0.9735 + }, + { + "start": 41252.68, + "end": 41252.96, + "probability": 0.6943 + }, + { + "start": 41254.12, + "end": 41256.48, + "probability": 0.8082 + }, + { + "start": 41257.3, + "end": 41258.84, + "probability": 0.7925 + }, + { + "start": 41259.14, + "end": 41260.61, + "probability": 0.9782 + }, + { + "start": 41262.06, + "end": 41263.44, + "probability": 0.7898 + }, + { + "start": 41263.82, + "end": 41268.24, + "probability": 0.8081 + }, + { + "start": 41268.62, + "end": 41269.62, + "probability": 0.9421 + }, + { + "start": 41269.86, + "end": 41270.78, + "probability": 0.9482 + }, + { + "start": 41271.16, + "end": 41272.46, + "probability": 0.9727 + }, + { + "start": 41272.78, + "end": 41273.06, + "probability": 0.4901 + }, + { + "start": 41273.34, + "end": 41278.0, + "probability": 0.9582 + }, + { + "start": 41280.22, + "end": 41281.84, + "probability": 0.7544 + }, + { + "start": 41282.58, + "end": 41288.82, + "probability": 0.912 + }, + { + "start": 41288.9, + "end": 41289.78, + "probability": 0.8745 + }, + { + "start": 41289.82, + "end": 41290.74, + "probability": 0.7492 + }, + { + "start": 41291.24, + "end": 41293.3, + "probability": 0.7591 + }, + { + "start": 41293.38, + "end": 41300.94, + "probability": 0.9973 + }, + { + "start": 41301.14, + "end": 41303.96, + "probability": 0.7626 + }, + { + "start": 41304.64, + "end": 41307.58, + "probability": 0.877 + }, + { + "start": 41308.16, + "end": 41312.18, + "probability": 0.87 + }, + { + "start": 41313.08, + "end": 41314.36, + "probability": 0.9158 + }, + { + "start": 41315.28, + "end": 41316.56, + "probability": 0.7416 + }, + { + "start": 41317.26, + "end": 41317.5, + "probability": 0.6398 + }, + { + "start": 41318.36, + "end": 41321.0, + "probability": 0.6977 + }, + { + "start": 41321.42, + "end": 41326.44, + "probability": 0.9823 + }, + { + "start": 41326.52, + "end": 41327.66, + "probability": 0.5037 + }, + { + "start": 41327.76, + "end": 41328.5, + "probability": 0.8541 + }, + { + "start": 41328.78, + "end": 41329.23, + "probability": 0.8784 + }, + { + "start": 41329.64, + "end": 41330.72, + "probability": 0.8638 + }, + { + "start": 41331.0, + "end": 41331.6, + "probability": 0.4825 + }, + { + "start": 41332.18, + "end": 41332.63, + "probability": 0.704 + }, + { + "start": 41333.92, + "end": 41334.4, + "probability": 0.7742 + }, + { + "start": 41334.46, + "end": 41335.58, + "probability": 0.8794 + }, + { + "start": 41335.68, + "end": 41337.58, + "probability": 0.8984 + }, + { + "start": 41337.82, + "end": 41338.52, + "probability": 0.6545 + }, + { + "start": 41338.56, + "end": 41339.1, + "probability": 0.9569 + }, + { + "start": 41339.88, + "end": 41340.18, + "probability": 0.9779 + }, + { + "start": 41341.02, + "end": 41343.16, + "probability": 0.8789 + }, + { + "start": 41344.66, + "end": 41347.98, + "probability": 0.6676 + }, + { + "start": 41348.02, + "end": 41352.74, + "probability": 0.969 + }, + { + "start": 41353.12, + "end": 41358.36, + "probability": 0.9836 + }, + { + "start": 41358.98, + "end": 41360.38, + "probability": 0.9003 + }, + { + "start": 41361.2, + "end": 41362.28, + "probability": 0.9312 + }, + { + "start": 41363.28, + "end": 41366.72, + "probability": 0.9687 + }, + { + "start": 41367.48, + "end": 41368.98, + "probability": 0.315 + }, + { + "start": 41370.52, + "end": 41371.14, + "probability": 0.6268 + }, + { + "start": 41380.88, + "end": 41384.06, + "probability": 0.647 + }, + { + "start": 41384.96, + "end": 41385.36, + "probability": 0.5834 + }, + { + "start": 41385.62, + "end": 41388.12, + "probability": 0.8422 + }, + { + "start": 41388.28, + "end": 41389.16, + "probability": 0.9039 + }, + { + "start": 41389.3, + "end": 41389.84, + "probability": 0.208 + }, + { + "start": 41390.48, + "end": 41393.23, + "probability": 0.8628 + }, + { + "start": 41394.2, + "end": 41397.62, + "probability": 0.8472 + }, + { + "start": 41398.0, + "end": 41399.92, + "probability": 0.9861 + }, + { + "start": 41400.02, + "end": 41404.58, + "probability": 0.9761 + }, + { + "start": 41404.64, + "end": 41405.28, + "probability": 0.8945 + }, + { + "start": 41405.78, + "end": 41410.06, + "probability": 0.9189 + }, + { + "start": 41410.14, + "end": 41413.88, + "probability": 0.6981 + }, + { + "start": 41414.0, + "end": 41418.92, + "probability": 0.9893 + }, + { + "start": 41419.78, + "end": 41424.78, + "probability": 0.9504 + }, + { + "start": 41427.34, + "end": 41429.58, + "probability": 0.4935 + }, + { + "start": 41433.66, + "end": 41434.34, + "probability": 0.6699 + }, + { + "start": 41435.84, + "end": 41440.16, + "probability": 0.9956 + }, + { + "start": 41441.48, + "end": 41443.52, + "probability": 0.3531 + }, + { + "start": 41443.86, + "end": 41444.28, + "probability": 0.9192 + }, + { + "start": 41445.44, + "end": 41447.4, + "probability": 0.8347 + }, + { + "start": 41447.5, + "end": 41448.36, + "probability": 0.969 + }, + { + "start": 41448.76, + "end": 41450.62, + "probability": 0.7929 + }, + { + "start": 41450.7, + "end": 41452.26, + "probability": 0.7872 + }, + { + "start": 41452.64, + "end": 41455.62, + "probability": 0.9598 + }, + { + "start": 41456.14, + "end": 41460.04, + "probability": 0.9359 + }, + { + "start": 41460.04, + "end": 41468.26, + "probability": 0.9538 + }, + { + "start": 41468.72, + "end": 41469.44, + "probability": 0.9434 + }, + { + "start": 41470.22, + "end": 41473.08, + "probability": 0.6491 + }, + { + "start": 41473.88, + "end": 41474.46, + "probability": 0.9021 + }, + { + "start": 41475.22, + "end": 41479.0, + "probability": 0.9547 + }, + { + "start": 41480.14, + "end": 41487.9, + "probability": 0.9522 + }, + { + "start": 41491.05, + "end": 41497.1, + "probability": 0.8803 + }, + { + "start": 41497.58, + "end": 41498.9, + "probability": 0.7065 + }, + { + "start": 41499.12, + "end": 41505.38, + "probability": 0.8747 + }, + { + "start": 41509.08, + "end": 41513.08, + "probability": 0.9942 + }, + { + "start": 41513.72, + "end": 41516.02, + "probability": 0.9515 + }, + { + "start": 41517.1, + "end": 41520.04, + "probability": 0.984 + }, + { + "start": 41522.78, + "end": 41524.88, + "probability": 0.9895 + }, + { + "start": 41526.44, + "end": 41528.88, + "probability": 0.624 + }, + { + "start": 41529.6, + "end": 41530.96, + "probability": 0.8491 + }, + { + "start": 41531.2, + "end": 41535.64, + "probability": 0.899 + }, + { + "start": 41535.7, + "end": 41541.44, + "probability": 0.9399 + }, + { + "start": 41541.8, + "end": 41544.18, + "probability": 0.8294 + }, + { + "start": 41544.98, + "end": 41545.1, + "probability": 0.0156 + }, + { + "start": 41548.18, + "end": 41548.54, + "probability": 0.7279 + }, + { + "start": 41549.62, + "end": 41552.4, + "probability": 0.9547 + }, + { + "start": 41552.62, + "end": 41553.46, + "probability": 0.6711 + }, + { + "start": 41553.56, + "end": 41556.28, + "probability": 0.9886 + }, + { + "start": 41557.64, + "end": 41557.82, + "probability": 0.77 + }, + { + "start": 41558.46, + "end": 41562.32, + "probability": 0.979 + }, + { + "start": 41563.04, + "end": 41565.32, + "probability": 0.988 + }, + { + "start": 41565.58, + "end": 41567.92, + "probability": 0.8185 + }, + { + "start": 41568.48, + "end": 41570.8, + "probability": 0.9555 + }, + { + "start": 41571.0, + "end": 41573.75, + "probability": 0.7026 + }, + { + "start": 41573.86, + "end": 41574.4, + "probability": 0.3915 + }, + { + "start": 41574.44, + "end": 41575.52, + "probability": 0.9082 + }, + { + "start": 41575.58, + "end": 41576.86, + "probability": 0.9987 + }, + { + "start": 41577.38, + "end": 41578.72, + "probability": 0.998 + }, + { + "start": 41579.76, + "end": 41580.8, + "probability": 0.9852 + }, + { + "start": 41580.86, + "end": 41581.42, + "probability": 0.9875 + }, + { + "start": 41581.64, + "end": 41583.74, + "probability": 0.647 + }, + { + "start": 41584.56, + "end": 41586.26, + "probability": 0.8951 + }, + { + "start": 41586.82, + "end": 41589.22, + "probability": 0.8721 + }, + { + "start": 41589.68, + "end": 41595.84, + "probability": 0.7072 + }, + { + "start": 41596.96, + "end": 41598.52, + "probability": 0.9468 + }, + { + "start": 41598.62, + "end": 41602.58, + "probability": 0.9402 + }, + { + "start": 41602.66, + "end": 41606.1, + "probability": 0.9727 + }, + { + "start": 41607.08, + "end": 41607.62, + "probability": 0.5496 + }, + { + "start": 41608.76, + "end": 41610.12, + "probability": 0.9202 + }, + { + "start": 41610.48, + "end": 41612.06, + "probability": 0.9462 + }, + { + "start": 41612.28, + "end": 41617.12, + "probability": 0.9956 + }, + { + "start": 41617.68, + "end": 41618.71, + "probability": 0.9082 + }, + { + "start": 41619.16, + "end": 41620.44, + "probability": 0.9368 + }, + { + "start": 41620.8, + "end": 41622.28, + "probability": 0.9824 + }, + { + "start": 41622.46, + "end": 41623.5, + "probability": 0.8358 + }, + { + "start": 41623.56, + "end": 41624.64, + "probability": 0.8419 + }, + { + "start": 41625.36, + "end": 41627.46, + "probability": 0.9919 + }, + { + "start": 41628.22, + "end": 41629.04, + "probability": 0.9849 + }, + { + "start": 41629.78, + "end": 41636.22, + "probability": 0.9292 + }, + { + "start": 41636.62, + "end": 41642.42, + "probability": 0.9498 + }, + { + "start": 41643.24, + "end": 41646.12, + "probability": 0.9657 + }, + { + "start": 41646.44, + "end": 41647.9, + "probability": 0.4559 + }, + { + "start": 41648.56, + "end": 41650.54, + "probability": 0.7166 + }, + { + "start": 41651.0, + "end": 41652.7, + "probability": 0.7866 + }, + { + "start": 41653.1, + "end": 41654.96, + "probability": 0.8843 + }, + { + "start": 41655.72, + "end": 41659.18, + "probability": 0.7051 + }, + { + "start": 41659.3, + "end": 41660.98, + "probability": 0.974 + }, + { + "start": 41661.58, + "end": 41664.18, + "probability": 0.9933 + }, + { + "start": 41665.08, + "end": 41667.26, + "probability": 0.7466 + }, + { + "start": 41668.36, + "end": 41668.58, + "probability": 0.4644 + }, + { + "start": 41668.72, + "end": 41669.2, + "probability": 0.3588 + }, + { + "start": 41669.24, + "end": 41671.02, + "probability": 0.9036 + }, + { + "start": 41671.12, + "end": 41675.2, + "probability": 0.9009 + }, + { + "start": 41675.64, + "end": 41680.04, + "probability": 0.9684 + }, + { + "start": 41680.12, + "end": 41683.78, + "probability": 0.7534 + }, + { + "start": 41684.02, + "end": 41684.82, + "probability": 0.8027 + }, + { + "start": 41685.34, + "end": 41690.0, + "probability": 0.9072 + }, + { + "start": 41690.18, + "end": 41690.88, + "probability": 0.8248 + }, + { + "start": 41691.28, + "end": 41692.48, + "probability": 0.8647 + }, + { + "start": 41693.2, + "end": 41695.44, + "probability": 0.9246 + }, + { + "start": 41697.16, + "end": 41701.56, + "probability": 0.9917 + }, + { + "start": 41702.44, + "end": 41703.52, + "probability": 0.976 + }, + { + "start": 41704.42, + "end": 41706.78, + "probability": 0.9867 + }, + { + "start": 41707.51, + "end": 41709.74, + "probability": 0.9301 + }, + { + "start": 41709.82, + "end": 41710.7, + "probability": 0.9629 + }, + { + "start": 41711.16, + "end": 41711.74, + "probability": 0.8069 + }, + { + "start": 41712.14, + "end": 41713.88, + "probability": 0.9967 + }, + { + "start": 41714.32, + "end": 41715.36, + "probability": 0.6188 + }, + { + "start": 41715.88, + "end": 41716.56, + "probability": 0.9011 + }, + { + "start": 41716.84, + "end": 41718.82, + "probability": 0.9784 + }, + { + "start": 41719.34, + "end": 41720.5, + "probability": 0.6193 + }, + { + "start": 41720.62, + "end": 41722.27, + "probability": 0.8806 + }, + { + "start": 41722.78, + "end": 41725.58, + "probability": 0.9264 + }, + { + "start": 41725.76, + "end": 41726.8, + "probability": 0.99 + }, + { + "start": 41727.26, + "end": 41729.52, + "probability": 0.9843 + }, + { + "start": 41729.64, + "end": 41730.82, + "probability": 0.9774 + }, + { + "start": 41731.14, + "end": 41732.4, + "probability": 0.9744 + }, + { + "start": 41734.36, + "end": 41738.22, + "probability": 0.937 + }, + { + "start": 41738.9, + "end": 41741.18, + "probability": 0.812 + }, + { + "start": 41741.62, + "end": 41745.9, + "probability": 0.9255 + }, + { + "start": 41746.3, + "end": 41747.64, + "probability": 0.929 + }, + { + "start": 41747.96, + "end": 41749.14, + "probability": 0.9775 + }, + { + "start": 41749.5, + "end": 41751.4, + "probability": 0.998 + }, + { + "start": 41751.78, + "end": 41754.84, + "probability": 0.939 + }, + { + "start": 41754.92, + "end": 41755.7, + "probability": 0.9485 + }, + { + "start": 41755.86, + "end": 41759.48, + "probability": 0.8193 + }, + { + "start": 41760.46, + "end": 41762.62, + "probability": 0.3477 + }, + { + "start": 41762.86, + "end": 41766.84, + "probability": 0.6662 + }, + { + "start": 41766.84, + "end": 41769.86, + "probability": 0.9857 + }, + { + "start": 41770.54, + "end": 41773.22, + "probability": 0.894 + }, + { + "start": 41774.04, + "end": 41775.78, + "probability": 0.9719 + }, + { + "start": 41776.36, + "end": 41776.46, + "probability": 0.564 + }, + { + "start": 41776.76, + "end": 41777.98, + "probability": 0.6212 + }, + { + "start": 41778.9, + "end": 41783.06, + "probability": 0.6953 + }, + { + "start": 41783.4, + "end": 41784.4, + "probability": 0.8463 + }, + { + "start": 41785.08, + "end": 41787.32, + "probability": 0.8921 + }, + { + "start": 41788.04, + "end": 41792.5, + "probability": 0.9023 + }, + { + "start": 41793.22, + "end": 41794.92, + "probability": 0.7357 + }, + { + "start": 41795.56, + "end": 41796.74, + "probability": 0.8842 + }, + { + "start": 41797.58, + "end": 41798.16, + "probability": 0.425 + }, + { + "start": 41798.82, + "end": 41801.82, + "probability": 0.9526 + }, + { + "start": 41802.6, + "end": 41803.62, + "probability": 0.7079 + }, + { + "start": 41804.14, + "end": 41804.78, + "probability": 0.6511 + }, + { + "start": 41805.58, + "end": 41806.9, + "probability": 0.96 + }, + { + "start": 41807.44, + "end": 41810.68, + "probability": 0.9917 + }, + { + "start": 41811.71, + "end": 41815.36, + "probability": 0.9922 + }, + { + "start": 41815.84, + "end": 41819.52, + "probability": 0.8925 + }, + { + "start": 41820.66, + "end": 41823.06, + "probability": 0.9766 + }, + { + "start": 41823.14, + "end": 41825.0, + "probability": 0.8848 + }, + { + "start": 41825.42, + "end": 41828.3, + "probability": 0.979 + }, + { + "start": 41828.92, + "end": 41830.42, + "probability": 0.3751 + }, + { + "start": 41830.48, + "end": 41830.96, + "probability": 0.755 + }, + { + "start": 41831.42, + "end": 41832.54, + "probability": 0.9071 + }, + { + "start": 41833.14, + "end": 41835.38, + "probability": 0.9065 + }, + { + "start": 41835.6, + "end": 41836.8, + "probability": 0.6027 + }, + { + "start": 41837.92, + "end": 41838.66, + "probability": 0.9275 + }, + { + "start": 41838.74, + "end": 41842.96, + "probability": 0.9333 + }, + { + "start": 41843.92, + "end": 41844.34, + "probability": 0.0865 + }, + { + "start": 41844.78, + "end": 41845.24, + "probability": 0.5126 + }, + { + "start": 41845.68, + "end": 41847.66, + "probability": 0.9007 + }, + { + "start": 41848.04, + "end": 41848.56, + "probability": 0.3846 + }, + { + "start": 41848.7, + "end": 41849.12, + "probability": 0.6201 + }, + { + "start": 41849.64, + "end": 41852.9, + "probability": 0.9937 + }, + { + "start": 41853.94, + "end": 41855.92, + "probability": 0.9966 + }, + { + "start": 41856.18, + "end": 41858.98, + "probability": 0.9938 + }, + { + "start": 41859.54, + "end": 41862.5, + "probability": 0.8832 + }, + { + "start": 41862.92, + "end": 41864.5, + "probability": 0.8924 + }, + { + "start": 41864.84, + "end": 41868.56, + "probability": 0.9507 + }, + { + "start": 41868.6, + "end": 41873.32, + "probability": 0.9815 + }, + { + "start": 41873.62, + "end": 41876.16, + "probability": 0.7957 + }, + { + "start": 41876.2, + "end": 41877.82, + "probability": 0.7651 + }, + { + "start": 41878.32, + "end": 41879.72, + "probability": 0.9291 + }, + { + "start": 41879.94, + "end": 41880.52, + "probability": 0.826 + }, + { + "start": 41880.94, + "end": 41882.86, + "probability": 0.9404 + }, + { + "start": 41883.38, + "end": 41883.99, + "probability": 0.9841 + }, + { + "start": 41884.9, + "end": 41887.44, + "probability": 0.9611 + }, + { + "start": 41888.1, + "end": 41889.26, + "probability": 0.7083 + }, + { + "start": 41889.6, + "end": 41890.38, + "probability": 0.625 + }, + { + "start": 41893.28, + "end": 41894.34, + "probability": 0.9174 + }, + { + "start": 41914.06, + "end": 41914.18, + "probability": 0.3412 + }, + { + "start": 41915.1, + "end": 41916.32, + "probability": 0.6512 + }, + { + "start": 41916.5, + "end": 41918.5, + "probability": 0.9028 + }, + { + "start": 41920.46, + "end": 41922.62, + "probability": 0.946 + }, + { + "start": 41922.8, + "end": 41923.82, + "probability": 0.916 + }, + { + "start": 41923.96, + "end": 41927.3, + "probability": 0.9872 + }, + { + "start": 41928.18, + "end": 41928.74, + "probability": 0.945 + }, + { + "start": 41930.24, + "end": 41931.7, + "probability": 0.373 + }, + { + "start": 41931.7, + "end": 41932.72, + "probability": 0.7468 + }, + { + "start": 41932.96, + "end": 41934.32, + "probability": 0.9398 + }, + { + "start": 41935.34, + "end": 41940.18, + "probability": 0.8869 + }, + { + "start": 41940.22, + "end": 41942.26, + "probability": 0.5528 + }, + { + "start": 41942.62, + "end": 41946.46, + "probability": 0.9866 + }, + { + "start": 41947.02, + "end": 41952.12, + "probability": 0.9873 + }, + { + "start": 41952.34, + "end": 41953.42, + "probability": 0.6061 + }, + { + "start": 41953.54, + "end": 41954.78, + "probability": 0.882 + }, + { + "start": 41956.06, + "end": 41964.76, + "probability": 0.9154 + }, + { + "start": 41966.16, + "end": 41968.86, + "probability": 0.8515 + }, + { + "start": 41968.86, + "end": 41970.02, + "probability": 0.7549 + }, + { + "start": 41970.22, + "end": 41971.34, + "probability": 0.8115 + }, + { + "start": 41971.68, + "end": 41972.27, + "probability": 0.6621 + }, + { + "start": 41972.48, + "end": 41973.0, + "probability": 0.9453 + }, + { + "start": 41973.86, + "end": 41977.84, + "probability": 0.9994 + }, + { + "start": 41977.84, + "end": 41982.94, + "probability": 0.9998 + }, + { + "start": 41983.8, + "end": 41985.84, + "probability": 0.9171 + }, + { + "start": 41987.82, + "end": 41990.34, + "probability": 0.882 + }, + { + "start": 41990.52, + "end": 41997.1, + "probability": 0.98 + }, + { + "start": 41997.8, + "end": 42001.1, + "probability": 0.8778 + }, + { + "start": 42001.92, + "end": 42006.98, + "probability": 0.9606 + }, + { + "start": 42007.6, + "end": 42008.56, + "probability": 0.8611 + }, + { + "start": 42010.18, + "end": 42013.86, + "probability": 0.971 + }, + { + "start": 42014.46, + "end": 42020.96, + "probability": 0.971 + }, + { + "start": 42021.12, + "end": 42022.34, + "probability": 0.8388 + }, + { + "start": 42022.78, + "end": 42024.32, + "probability": 0.9751 + }, + { + "start": 42025.84, + "end": 42027.58, + "probability": 0.9989 + }, + { + "start": 42028.8, + "end": 42032.27, + "probability": 0.9255 + }, + { + "start": 42033.7, + "end": 42039.12, + "probability": 0.8514 + }, + { + "start": 42039.42, + "end": 42041.86, + "probability": 0.9552 + }, + { + "start": 42042.12, + "end": 42043.26, + "probability": 0.5829 + }, + { + "start": 42043.68, + "end": 42047.24, + "probability": 0.9833 + }, + { + "start": 42047.32, + "end": 42049.48, + "probability": 0.9956 + }, + { + "start": 42050.14, + "end": 42054.58, + "probability": 0.9917 + }, + { + "start": 42054.58, + "end": 42058.52, + "probability": 0.999 + }, + { + "start": 42059.86, + "end": 42063.12, + "probability": 0.9864 + }, + { + "start": 42063.88, + "end": 42069.12, + "probability": 0.9655 + }, + { + "start": 42069.4, + "end": 42070.2, + "probability": 0.8968 + }, + { + "start": 42071.64, + "end": 42073.29, + "probability": 0.9137 + }, + { + "start": 42074.18, + "end": 42075.26, + "probability": 0.9938 + }, + { + "start": 42075.66, + "end": 42078.86, + "probability": 0.985 + }, + { + "start": 42079.82, + "end": 42081.22, + "probability": 0.6548 + }, + { + "start": 42082.18, + "end": 42084.64, + "probability": 0.8492 + }, + { + "start": 42084.84, + "end": 42085.4, + "probability": 0.7925 + }, + { + "start": 42085.86, + "end": 42086.56, + "probability": 0.6635 + }, + { + "start": 42086.74, + "end": 42089.26, + "probability": 0.9022 + }, + { + "start": 42090.2, + "end": 42093.0, + "probability": 0.7423 + }, + { + "start": 42093.34, + "end": 42096.16, + "probability": 0.8399 + }, + { + "start": 42097.04, + "end": 42100.04, + "probability": 0.8706 + }, + { + "start": 42100.9, + "end": 42101.86, + "probability": 0.6733 + }, + { + "start": 42102.42, + "end": 42108.6, + "probability": 0.9906 + }, + { + "start": 42109.44, + "end": 42112.28, + "probability": 0.9987 + }, + { + "start": 42112.52, + "end": 42114.42, + "probability": 0.9548 + }, + { + "start": 42115.1, + "end": 42117.8, + "probability": 0.9983 + }, + { + "start": 42118.5, + "end": 42121.7, + "probability": 0.9379 + }, + { + "start": 42121.94, + "end": 42123.06, + "probability": 0.868 + }, + { + "start": 42123.72, + "end": 42126.12, + "probability": 0.9661 + }, + { + "start": 42127.12, + "end": 42128.76, + "probability": 0.9502 + }, + { + "start": 42129.6, + "end": 42132.03, + "probability": 0.991 + }, + { + "start": 42132.78, + "end": 42139.79, + "probability": 0.9878 + }, + { + "start": 42140.7, + "end": 42143.94, + "probability": 0.8488 + }, + { + "start": 42144.42, + "end": 42146.12, + "probability": 0.9988 + }, + { + "start": 42146.96, + "end": 42147.34, + "probability": 0.5902 + }, + { + "start": 42147.4, + "end": 42152.35, + "probability": 0.998 + }, + { + "start": 42153.68, + "end": 42155.42, + "probability": 0.9892 + }, + { + "start": 42156.68, + "end": 42159.58, + "probability": 0.999 + }, + { + "start": 42159.62, + "end": 42160.76, + "probability": 0.9175 + }, + { + "start": 42160.86, + "end": 42161.25, + "probability": 0.939 + }, + { + "start": 42161.86, + "end": 42163.66, + "probability": 0.979 + }, + { + "start": 42164.66, + "end": 42170.58, + "probability": 0.9096 + }, + { + "start": 42171.42, + "end": 42178.64, + "probability": 0.9949 + }, + { + "start": 42178.82, + "end": 42180.28, + "probability": 0.9983 + }, + { + "start": 42180.6, + "end": 42181.26, + "probability": 0.7755 + }, + { + "start": 42182.09, + "end": 42184.3, + "probability": 0.9151 + }, + { + "start": 42184.42, + "end": 42185.44, + "probability": 0.9805 + }, + { + "start": 42186.4, + "end": 42187.56, + "probability": 0.8703 + }, + { + "start": 42187.86, + "end": 42188.3, + "probability": 0.757 + }, + { + "start": 42188.42, + "end": 42189.26, + "probability": 0.8551 + }, + { + "start": 42189.4, + "end": 42190.04, + "probability": 0.4888 + }, + { + "start": 42190.76, + "end": 42191.38, + "probability": 0.9901 + }, + { + "start": 42192.48, + "end": 42195.9, + "probability": 0.9704 + }, + { + "start": 42196.76, + "end": 42199.76, + "probability": 0.9977 + }, + { + "start": 42199.76, + "end": 42205.68, + "probability": 0.9878 + }, + { + "start": 42206.46, + "end": 42208.06, + "probability": 0.8969 + }, + { + "start": 42208.3, + "end": 42210.18, + "probability": 0.9749 + }, + { + "start": 42210.26, + "end": 42211.7, + "probability": 0.8708 + }, + { + "start": 42212.58, + "end": 42214.64, + "probability": 0.8771 + }, + { + "start": 42214.64, + "end": 42219.7, + "probability": 0.9897 + }, + { + "start": 42220.42, + "end": 42222.44, + "probability": 0.7519 + }, + { + "start": 42223.58, + "end": 42224.73, + "probability": 0.981 + }, + { + "start": 42225.44, + "end": 42227.04, + "probability": 0.9956 + }, + { + "start": 42227.82, + "end": 42229.84, + "probability": 0.9829 + }, + { + "start": 42231.02, + "end": 42234.1, + "probability": 0.9706 + }, + { + "start": 42234.9, + "end": 42237.1, + "probability": 0.8987 + }, + { + "start": 42238.28, + "end": 42241.98, + "probability": 0.9956 + }, + { + "start": 42242.74, + "end": 42243.52, + "probability": 0.6258 + }, + { + "start": 42244.32, + "end": 42246.34, + "probability": 0.9025 + }, + { + "start": 42246.94, + "end": 42249.38, + "probability": 0.9976 + }, + { + "start": 42249.9, + "end": 42254.56, + "probability": 0.8807 + }, + { + "start": 42255.24, + "end": 42255.82, + "probability": 0.6827 + }, + { + "start": 42255.86, + "end": 42259.98, + "probability": 0.9707 + }, + { + "start": 42260.16, + "end": 42264.26, + "probability": 0.9934 + }, + { + "start": 42264.66, + "end": 42268.28, + "probability": 0.9788 + }, + { + "start": 42268.6, + "end": 42269.18, + "probability": 0.7749 + }, + { + "start": 42269.38, + "end": 42269.76, + "probability": 0.966 + }, + { + "start": 42270.58, + "end": 42271.48, + "probability": 0.7614 + }, + { + "start": 42272.18, + "end": 42272.18, + "probability": 0.1172 + }, + { + "start": 42272.98, + "end": 42279.02, + "probability": 0.924 + }, + { + "start": 42279.58, + "end": 42282.26, + "probability": 0.9823 + }, + { + "start": 42282.78, + "end": 42286.08, + "probability": 0.9983 + }, + { + "start": 42286.3, + "end": 42287.34, + "probability": 0.8465 + }, + { + "start": 42290.44, + "end": 42291.72, + "probability": 0.5977 + }, + { + "start": 42292.28, + "end": 42294.26, + "probability": 0.4525 + }, + { + "start": 42294.82, + "end": 42297.4, + "probability": 0.9939 + }, + { + "start": 42297.48, + "end": 42298.15, + "probability": 0.9692 + }, + { + "start": 42298.88, + "end": 42301.58, + "probability": 0.7504 + }, + { + "start": 42302.04, + "end": 42303.46, + "probability": 0.9952 + }, + { + "start": 42304.58, + "end": 42306.04, + "probability": 0.6141 + }, + { + "start": 42306.38, + "end": 42308.64, + "probability": 0.9798 + }, + { + "start": 42309.18, + "end": 42311.58, + "probability": 0.9661 + }, + { + "start": 42312.28, + "end": 42315.5, + "probability": 0.993 + }, + { + "start": 42315.58, + "end": 42316.98, + "probability": 0.9457 + }, + { + "start": 42317.54, + "end": 42322.84, + "probability": 0.9645 + }, + { + "start": 42323.34, + "end": 42326.52, + "probability": 0.9941 + }, + { + "start": 42327.22, + "end": 42331.08, + "probability": 0.9965 + }, + { + "start": 42331.6, + "end": 42332.94, + "probability": 0.9989 + }, + { + "start": 42333.58, + "end": 42338.2, + "probability": 0.9974 + }, + { + "start": 42339.16, + "end": 42344.2, + "probability": 0.9968 + }, + { + "start": 42344.84, + "end": 42349.12, + "probability": 0.9961 + }, + { + "start": 42349.28, + "end": 42351.9, + "probability": 0.8429 + }, + { + "start": 42352.22, + "end": 42352.82, + "probability": 0.4466 + }, + { + "start": 42353.56, + "end": 42356.92, + "probability": 0.9976 + }, + { + "start": 42358.14, + "end": 42358.92, + "probability": 0.5858 + }, + { + "start": 42358.98, + "end": 42360.42, + "probability": 0.9479 + }, + { + "start": 42360.6, + "end": 42363.0, + "probability": 0.9919 + }, + { + "start": 42363.84, + "end": 42367.32, + "probability": 0.9985 + }, + { + "start": 42367.86, + "end": 42370.56, + "probability": 0.9867 + }, + { + "start": 42371.46, + "end": 42373.3, + "probability": 0.8645 + }, + { + "start": 42373.78, + "end": 42375.16, + "probability": 0.9612 + }, + { + "start": 42375.78, + "end": 42378.52, + "probability": 0.9924 + }, + { + "start": 42379.28, + "end": 42381.12, + "probability": 0.8885 + }, + { + "start": 42381.62, + "end": 42383.3, + "probability": 0.9771 + }, + { + "start": 42383.7, + "end": 42388.72, + "probability": 0.9728 + }, + { + "start": 42389.04, + "end": 42389.06, + "probability": 0.7783 + }, + { + "start": 42389.7, + "end": 42390.98, + "probability": 0.9961 + }, + { + "start": 42391.6, + "end": 42393.66, + "probability": 0.9501 + }, + { + "start": 42394.38, + "end": 42396.56, + "probability": 0.9146 + }, + { + "start": 42397.52, + "end": 42399.58, + "probability": 0.7425 + }, + { + "start": 42399.74, + "end": 42402.06, + "probability": 0.9949 + }, + { + "start": 42402.62, + "end": 42405.12, + "probability": 0.9956 + }, + { + "start": 42405.8, + "end": 42411.74, + "probability": 0.9907 + }, + { + "start": 42411.74, + "end": 42416.12, + "probability": 0.9974 + }, + { + "start": 42416.62, + "end": 42420.28, + "probability": 0.9895 + }, + { + "start": 42420.48, + "end": 42423.6, + "probability": 0.9336 + }, + { + "start": 42424.2, + "end": 42426.52, + "probability": 0.7125 + }, + { + "start": 42426.6, + "end": 42430.8, + "probability": 0.9875 + }, + { + "start": 42431.04, + "end": 42434.79, + "probability": 0.9842 + }, + { + "start": 42434.96, + "end": 42436.58, + "probability": 0.8419 + }, + { + "start": 42436.74, + "end": 42437.34, + "probability": 0.727 + }, + { + "start": 42437.88, + "end": 42440.1, + "probability": 0.9756 + }, + { + "start": 42440.14, + "end": 42440.78, + "probability": 0.6352 + }, + { + "start": 42440.86, + "end": 42442.17, + "probability": 0.6984 + }, + { + "start": 42442.94, + "end": 42444.48, + "probability": 0.9945 + }, + { + "start": 42444.94, + "end": 42448.44, + "probability": 0.9914 + }, + { + "start": 42449.52, + "end": 42450.44, + "probability": 0.9979 + }, + { + "start": 42451.1, + "end": 42454.72, + "probability": 0.8574 + }, + { + "start": 42454.8, + "end": 42459.19, + "probability": 0.8903 + }, + { + "start": 42460.92, + "end": 42461.02, + "probability": 0.0659 + }, + { + "start": 42461.02, + "end": 42463.02, + "probability": 0.9211 + }, + { + "start": 42463.12, + "end": 42464.38, + "probability": 0.9763 + }, + { + "start": 42464.46, + "end": 42465.54, + "probability": 0.9879 + }, + { + "start": 42465.7, + "end": 42466.92, + "probability": 0.9958 + }, + { + "start": 42467.58, + "end": 42469.8, + "probability": 0.9769 + }, + { + "start": 42469.88, + "end": 42471.8, + "probability": 0.9544 + }, + { + "start": 42472.36, + "end": 42474.52, + "probability": 0.8455 + }, + { + "start": 42474.68, + "end": 42475.48, + "probability": 0.553 + }, + { + "start": 42476.42, + "end": 42482.58, + "probability": 0.9833 + }, + { + "start": 42482.82, + "end": 42487.86, + "probability": 0.9754 + }, + { + "start": 42487.98, + "end": 42491.82, + "probability": 0.9853 + }, + { + "start": 42491.94, + "end": 42492.46, + "probability": 0.3181 + }, + { + "start": 42492.46, + "end": 42493.54, + "probability": 0.9409 + }, + { + "start": 42494.26, + "end": 42495.32, + "probability": 0.7202 + }, + { + "start": 42495.88, + "end": 42497.24, + "probability": 0.9707 + }, + { + "start": 42497.3, + "end": 42498.08, + "probability": 0.8701 + }, + { + "start": 42498.2, + "end": 42500.14, + "probability": 0.9316 + }, + { + "start": 42500.86, + "end": 42501.8, + "probability": 0.939 + }, + { + "start": 42502.32, + "end": 42503.68, + "probability": 0.9677 + }, + { + "start": 42504.28, + "end": 42506.88, + "probability": 0.981 + }, + { + "start": 42507.38, + "end": 42507.52, + "probability": 0.0573 + }, + { + "start": 42507.54, + "end": 42507.9, + "probability": 0.9085 + }, + { + "start": 42507.98, + "end": 42514.0, + "probability": 0.9609 + }, + { + "start": 42514.4, + "end": 42516.7, + "probability": 0.9756 + }, + { + "start": 42516.74, + "end": 42520.84, + "probability": 0.9974 + }, + { + "start": 42521.36, + "end": 42522.78, + "probability": 0.9734 + }, + { + "start": 42524.2, + "end": 42525.12, + "probability": 0.7156 + }, + { + "start": 42525.78, + "end": 42526.52, + "probability": 0.2111 + }, + { + "start": 42526.6, + "end": 42528.2, + "probability": 0.9531 + }, + { + "start": 42528.32, + "end": 42530.12, + "probability": 0.8607 + }, + { + "start": 42530.26, + "end": 42532.1, + "probability": 0.7915 + }, + { + "start": 42532.76, + "end": 42536.76, + "probability": 0.9646 + }, + { + "start": 42537.66, + "end": 42540.14, + "probability": 0.9719 + }, + { + "start": 42540.66, + "end": 42545.6, + "probability": 0.9707 + }, + { + "start": 42545.82, + "end": 42548.32, + "probability": 0.9947 + }, + { + "start": 42549.34, + "end": 42554.2, + "probability": 0.9961 + }, + { + "start": 42554.4, + "end": 42560.68, + "probability": 0.9761 + }, + { + "start": 42560.94, + "end": 42562.98, + "probability": 0.8657 + }, + { + "start": 42563.72, + "end": 42565.18, + "probability": 0.9324 + }, + { + "start": 42565.48, + "end": 42568.74, + "probability": 0.9934 + }, + { + "start": 42568.9, + "end": 42569.22, + "probability": 0.6823 + }, + { + "start": 42569.84, + "end": 42573.02, + "probability": 0.6821 + }, + { + "start": 42573.56, + "end": 42576.04, + "probability": 0.9668 + }, + { + "start": 42576.14, + "end": 42580.74, + "probability": 0.8875 + }, + { + "start": 42580.9, + "end": 42582.62, + "probability": 0.9941 + }, + { + "start": 42583.06, + "end": 42584.41, + "probability": 0.9845 + }, + { + "start": 42585.18, + "end": 42588.5, + "probability": 0.9984 + }, + { + "start": 42588.66, + "end": 42590.59, + "probability": 0.9991 + }, + { + "start": 42591.04, + "end": 42591.53, + "probability": 0.739 + }, + { + "start": 42592.84, + "end": 42595.12, + "probability": 0.8912 + }, + { + "start": 42595.36, + "end": 42597.72, + "probability": 0.9963 + }, + { + "start": 42598.04, + "end": 42600.74, + "probability": 0.9928 + }, + { + "start": 42601.52, + "end": 42602.28, + "probability": 0.9985 + }, + { + "start": 42602.8, + "end": 42605.16, + "probability": 0.9787 + }, + { + "start": 42605.28, + "end": 42605.9, + "probability": 0.9765 + }, + { + "start": 42606.04, + "end": 42611.92, + "probability": 0.9673 + }, + { + "start": 42611.92, + "end": 42616.36, + "probability": 0.9604 + }, + { + "start": 42617.3, + "end": 42619.86, + "probability": 0.9333 + }, + { + "start": 42619.92, + "end": 42621.12, + "probability": 0.9589 + }, + { + "start": 42621.2, + "end": 42622.34, + "probability": 0.9857 + }, + { + "start": 42622.52, + "end": 42623.74, + "probability": 0.9722 + }, + { + "start": 42624.76, + "end": 42629.16, + "probability": 0.9639 + }, + { + "start": 42629.58, + "end": 42634.64, + "probability": 0.9864 + }, + { + "start": 42635.66, + "end": 42640.42, + "probability": 0.9982 + }, + { + "start": 42640.54, + "end": 42642.28, + "probability": 0.9976 + }, + { + "start": 42642.86, + "end": 42644.5, + "probability": 0.9686 + }, + { + "start": 42645.26, + "end": 42645.78, + "probability": 0.8756 + }, + { + "start": 42647.04, + "end": 42649.84, + "probability": 0.998 + }, + { + "start": 42650.52, + "end": 42655.56, + "probability": 0.9901 + }, + { + "start": 42656.16, + "end": 42658.62, + "probability": 0.7953 + }, + { + "start": 42659.3, + "end": 42662.1, + "probability": 0.9971 + }, + { + "start": 42663.36, + "end": 42664.04, + "probability": 0.6124 + }, + { + "start": 42664.2, + "end": 42667.66, + "probability": 0.9815 + }, + { + "start": 42667.92, + "end": 42670.2, + "probability": 0.9982 + }, + { + "start": 42670.44, + "end": 42671.1, + "probability": 0.6726 + }, + { + "start": 42671.62, + "end": 42672.94, + "probability": 0.9978 + }, + { + "start": 42673.6, + "end": 42675.52, + "probability": 0.8251 + }, + { + "start": 42676.16, + "end": 42677.9, + "probability": 0.9983 + }, + { + "start": 42678.6, + "end": 42681.76, + "probability": 0.8386 + }, + { + "start": 42681.88, + "end": 42685.57, + "probability": 0.9873 + }, + { + "start": 42686.78, + "end": 42692.14, + "probability": 0.9888 + }, + { + "start": 42692.6, + "end": 42693.44, + "probability": 0.925 + }, + { + "start": 42694.02, + "end": 42698.58, + "probability": 0.9932 + }, + { + "start": 42699.09, + "end": 42700.36, + "probability": 0.4983 + }, + { + "start": 42700.68, + "end": 42701.6, + "probability": 0.8171 + }, + { + "start": 42702.02, + "end": 42702.38, + "probability": 0.8262 + }, + { + "start": 42702.4, + "end": 42702.94, + "probability": 0.9542 + }, + { + "start": 42703.02, + "end": 42706.48, + "probability": 0.8338 + }, + { + "start": 42707.92, + "end": 42712.93, + "probability": 0.995 + }, + { + "start": 42714.26, + "end": 42715.88, + "probability": 0.7857 + }, + { + "start": 42716.74, + "end": 42717.54, + "probability": 0.672 + }, + { + "start": 42718.46, + "end": 42721.32, + "probability": 0.9929 + }, + { + "start": 42721.32, + "end": 42724.6, + "probability": 0.9963 + }, + { + "start": 42725.34, + "end": 42727.86, + "probability": 0.985 + }, + { + "start": 42727.88, + "end": 42728.34, + "probability": 0.4186 + }, + { + "start": 42728.48, + "end": 42731.82, + "probability": 0.9587 + }, + { + "start": 42733.12, + "end": 42735.7, + "probability": 0.9484 + }, + { + "start": 42736.18, + "end": 42737.26, + "probability": 0.8923 + }, + { + "start": 42737.34, + "end": 42739.72, + "probability": 0.9956 + }, + { + "start": 42740.38, + "end": 42744.06, + "probability": 0.9893 + }, + { + "start": 42744.06, + "end": 42749.54, + "probability": 0.9643 + }, + { + "start": 42749.68, + "end": 42753.38, + "probability": 0.8769 + }, + { + "start": 42753.66, + "end": 42755.64, + "probability": 0.9765 + }, + { + "start": 42755.76, + "end": 42761.66, + "probability": 0.9948 + }, + { + "start": 42761.86, + "end": 42765.0, + "probability": 0.9854 + }, + { + "start": 42765.9, + "end": 42768.34, + "probability": 0.9727 + }, + { + "start": 42769.2, + "end": 42773.86, + "probability": 0.7466 + }, + { + "start": 42774.12, + "end": 42776.36, + "probability": 0.7927 + }, + { + "start": 42776.92, + "end": 42778.78, + "probability": 0.9368 + }, + { + "start": 42779.48, + "end": 42780.86, + "probability": 0.8757 + }, + { + "start": 42780.98, + "end": 42781.66, + "probability": 0.8979 + }, + { + "start": 42781.76, + "end": 42784.2, + "probability": 0.9664 + }, + { + "start": 42784.26, + "end": 42785.64, + "probability": 0.9869 + }, + { + "start": 42785.68, + "end": 42787.08, + "probability": 0.9888 + }, + { + "start": 42787.48, + "end": 42788.53, + "probability": 0.9895 + }, + { + "start": 42789.88, + "end": 42794.78, + "probability": 0.9675 + }, + { + "start": 42795.34, + "end": 42796.8, + "probability": 0.7383 + }, + { + "start": 42796.96, + "end": 42801.22, + "probability": 0.9924 + }, + { + "start": 42802.06, + "end": 42803.0, + "probability": 0.8126 + }, + { + "start": 42803.26, + "end": 42805.12, + "probability": 0.9949 + }, + { + "start": 42805.22, + "end": 42807.38, + "probability": 0.9838 + }, + { + "start": 42808.14, + "end": 42808.24, + "probability": 0.8618 + }, + { + "start": 42809.24, + "end": 42813.2, + "probability": 0.9653 + }, + { + "start": 42813.9, + "end": 42815.28, + "probability": 0.9978 + }, + { + "start": 42816.48, + "end": 42818.84, + "probability": 0.9799 + }, + { + "start": 42819.74, + "end": 42825.33, + "probability": 0.903 + }, + { + "start": 42825.82, + "end": 42826.84, + "probability": 0.8786 + }, + { + "start": 42826.96, + "end": 42827.28, + "probability": 0.9011 + }, + { + "start": 42827.44, + "end": 42827.68, + "probability": 0.7517 + }, + { + "start": 42827.92, + "end": 42828.02, + "probability": 0.3586 + }, + { + "start": 42828.48, + "end": 42829.26, + "probability": 0.7827 + }, + { + "start": 42830.36, + "end": 42831.72, + "probability": 0.8577 + }, + { + "start": 42832.92, + "end": 42837.22, + "probability": 0.9946 + }, + { + "start": 42837.68, + "end": 42839.04, + "probability": 0.9993 + }, + { + "start": 42839.58, + "end": 42843.32, + "probability": 0.9875 + }, + { + "start": 42843.64, + "end": 42845.88, + "probability": 0.9294 + }, + { + "start": 42846.96, + "end": 42849.76, + "probability": 0.9843 + }, + { + "start": 42850.34, + "end": 42854.56, + "probability": 0.9604 + }, + { + "start": 42854.78, + "end": 42855.3, + "probability": 0.8487 + }, + { + "start": 42855.82, + "end": 42858.04, + "probability": 0.9256 + }, + { + "start": 42859.22, + "end": 42861.72, + "probability": 0.9773 + }, + { + "start": 42862.38, + "end": 42866.1, + "probability": 0.936 + }, + { + "start": 42866.42, + "end": 42867.6, + "probability": 0.9503 + }, + { + "start": 42867.76, + "end": 42868.28, + "probability": 0.5457 + }, + { + "start": 42869.04, + "end": 42874.8, + "probability": 0.9006 + }, + { + "start": 42875.66, + "end": 42877.94, + "probability": 0.9865 + }, + { + "start": 42878.64, + "end": 42883.1, + "probability": 0.9948 + }, + { + "start": 42883.1, + "end": 42887.0, + "probability": 0.9987 + }, + { + "start": 42887.24, + "end": 42888.6, + "probability": 0.8647 + }, + { + "start": 42888.78, + "end": 42891.66, + "probability": 0.9493 + }, + { + "start": 42891.72, + "end": 42892.07, + "probability": 0.9314 + }, + { + "start": 42892.98, + "end": 42896.4, + "probability": 0.9429 + }, + { + "start": 42897.18, + "end": 42900.92, + "probability": 0.9558 + }, + { + "start": 42901.62, + "end": 42907.12, + "probability": 0.949 + }, + { + "start": 42907.2, + "end": 42910.42, + "probability": 0.9743 + }, + { + "start": 42910.64, + "end": 42912.8, + "probability": 0.9534 + }, + { + "start": 42913.4, + "end": 42913.7, + "probability": 0.8737 + }, + { + "start": 42914.64, + "end": 42915.28, + "probability": 0.9373 + }, + { + "start": 42916.0, + "end": 42919.27, + "probability": 0.9836 + }, + { + "start": 42920.16, + "end": 42921.76, + "probability": 0.8491 + }, + { + "start": 42922.64, + "end": 42924.5, + "probability": 0.9474 + }, + { + "start": 42925.39, + "end": 42928.78, + "probability": 0.9466 + }, + { + "start": 42928.9, + "end": 42931.02, + "probability": 0.8267 + }, + { + "start": 42931.66, + "end": 42937.48, + "probability": 0.9944 + }, + { + "start": 42937.7, + "end": 42938.36, + "probability": 0.863 + }, + { + "start": 42938.88, + "end": 42939.64, + "probability": 0.9979 + }, + { + "start": 42941.4, + "end": 42942.96, + "probability": 0.9953 + }, + { + "start": 42943.5, + "end": 42945.98, + "probability": 0.9339 + }, + { + "start": 42946.62, + "end": 42948.04, + "probability": 0.0124 + }, + { + "start": 42948.82, + "end": 42952.1, + "probability": 0.98 + }, + { + "start": 42953.22, + "end": 42953.58, + "probability": 0.5214 + }, + { + "start": 42953.74, + "end": 42954.46, + "probability": 0.5604 + }, + { + "start": 42954.48, + "end": 42957.0, + "probability": 0.9357 + }, + { + "start": 42957.14, + "end": 42960.38, + "probability": 0.718 + }, + { + "start": 42961.04, + "end": 42965.3, + "probability": 0.9596 + }, + { + "start": 42966.22, + "end": 42968.58, + "probability": 0.9888 + }, + { + "start": 42968.64, + "end": 42969.56, + "probability": 0.9951 + }, + { + "start": 42970.0, + "end": 42972.28, + "probability": 0.9572 + }, + { + "start": 42972.42, + "end": 42974.65, + "probability": 0.991 + }, + { + "start": 42975.2, + "end": 42977.48, + "probability": 0.9606 + }, + { + "start": 42977.64, + "end": 42980.0, + "probability": 0.9856 + }, + { + "start": 42981.2, + "end": 42981.94, + "probability": 0.9763 + }, + { + "start": 42981.98, + "end": 42983.24, + "probability": 0.8245 + }, + { + "start": 42983.44, + "end": 42985.64, + "probability": 0.9987 + }, + { + "start": 42986.14, + "end": 42986.82, + "probability": 0.4116 + }, + { + "start": 42987.2, + "end": 42988.38, + "probability": 0.9597 + }, + { + "start": 42989.14, + "end": 42992.14, + "probability": 0.9244 + }, + { + "start": 42992.8, + "end": 42996.3, + "probability": 0.981 + }, + { + "start": 42996.92, + "end": 43000.73, + "probability": 0.8823 + }, + { + "start": 43000.94, + "end": 43003.92, + "probability": 0.9884 + }, + { + "start": 43004.1, + "end": 43004.92, + "probability": 0.9003 + }, + { + "start": 43005.5, + "end": 43006.64, + "probability": 0.9524 + }, + { + "start": 43007.04, + "end": 43009.64, + "probability": 0.9496 + }, + { + "start": 43009.9, + "end": 43012.5, + "probability": 0.9216 + }, + { + "start": 43012.62, + "end": 43013.76, + "probability": 0.9973 + }, + { + "start": 43014.48, + "end": 43014.98, + "probability": 0.8286 + }, + { + "start": 43015.72, + "end": 43018.47, + "probability": 0.994 + }, + { + "start": 43019.26, + "end": 43023.56, + "probability": 0.9421 + }, + { + "start": 43025.16, + "end": 43025.92, + "probability": 0.6299 + }, + { + "start": 43026.0, + "end": 43028.02, + "probability": 0.9484 + }, + { + "start": 43028.2, + "end": 43031.08, + "probability": 0.7671 + }, + { + "start": 43031.4, + "end": 43033.48, + "probability": 0.9941 + }, + { + "start": 43034.0, + "end": 43037.96, + "probability": 0.8865 + }, + { + "start": 43039.36, + "end": 43042.53, + "probability": 0.8806 + }, + { + "start": 43042.98, + "end": 43048.34, + "probability": 0.9771 + }, + { + "start": 43049.32, + "end": 43050.42, + "probability": 0.7618 + }, + { + "start": 43050.86, + "end": 43052.46, + "probability": 0.9753 + }, + { + "start": 43052.98, + "end": 43056.28, + "probability": 0.9878 + }, + { + "start": 43056.56, + "end": 43059.92, + "probability": 0.9198 + }, + { + "start": 43061.14, + "end": 43064.88, + "probability": 0.9991 + }, + { + "start": 43066.08, + "end": 43067.54, + "probability": 0.5322 + }, + { + "start": 43068.84, + "end": 43072.66, + "probability": 0.9364 + }, + { + "start": 43073.5, + "end": 43077.16, + "probability": 0.9372 + }, + { + "start": 43077.7, + "end": 43080.92, + "probability": 0.9756 + }, + { + "start": 43080.92, + "end": 43082.18, + "probability": 0.7442 + }, + { + "start": 43082.36, + "end": 43088.78, + "probability": 0.8115 + }, + { + "start": 43088.96, + "end": 43093.3, + "probability": 0.9971 + }, + { + "start": 43093.84, + "end": 43097.72, + "probability": 0.9894 + }, + { + "start": 43098.38, + "end": 43100.26, + "probability": 0.7469 + }, + { + "start": 43100.96, + "end": 43101.9, + "probability": 0.74 + }, + { + "start": 43102.08, + "end": 43104.02, + "probability": 0.9623 + }, + { + "start": 43104.08, + "end": 43105.48, + "probability": 0.9543 + }, + { + "start": 43106.84, + "end": 43109.44, + "probability": 0.9995 + }, + { + "start": 43109.96, + "end": 43111.42, + "probability": 0.9768 + }, + { + "start": 43111.48, + "end": 43113.3, + "probability": 0.803 + }, + { + "start": 43114.3, + "end": 43115.62, + "probability": 0.9988 + }, + { + "start": 43116.14, + "end": 43118.68, + "probability": 0.9875 + }, + { + "start": 43118.78, + "end": 43120.06, + "probability": 0.963 + }, + { + "start": 43120.6, + "end": 43123.48, + "probability": 0.9941 + }, + { + "start": 43123.6, + "end": 43124.26, + "probability": 0.9106 + }, + { + "start": 43124.48, + "end": 43125.62, + "probability": 0.9131 + }, + { + "start": 43126.42, + "end": 43127.38, + "probability": 0.9517 + }, + { + "start": 43127.5, + "end": 43129.18, + "probability": 0.962 + }, + { + "start": 43129.48, + "end": 43130.3, + "probability": 0.8599 + }, + { + "start": 43131.84, + "end": 43132.82, + "probability": 0.9639 + }, + { + "start": 43133.4, + "end": 43136.26, + "probability": 0.9274 + }, + { + "start": 43136.44, + "end": 43140.5, + "probability": 0.9702 + }, + { + "start": 43140.98, + "end": 43142.64, + "probability": 0.993 + }, + { + "start": 43143.1, + "end": 43144.55, + "probability": 0.9313 + }, + { + "start": 43146.24, + "end": 43147.82, + "probability": 0.9951 + }, + { + "start": 43148.46, + "end": 43152.38, + "probability": 0.958 + }, + { + "start": 43153.32, + "end": 43155.36, + "probability": 0.6971 + }, + { + "start": 43155.84, + "end": 43162.32, + "probability": 0.9407 + }, + { + "start": 43162.84, + "end": 43165.44, + "probability": 0.9838 + }, + { + "start": 43166.08, + "end": 43168.08, + "probability": 0.9739 + }, + { + "start": 43168.1, + "end": 43170.58, + "probability": 0.9927 + }, + { + "start": 43171.1, + "end": 43173.04, + "probability": 0.8596 + }, + { + "start": 43174.28, + "end": 43177.52, + "probability": 0.9648 + }, + { + "start": 43178.12, + "end": 43178.6, + "probability": 0.7772 + }, + { + "start": 43178.84, + "end": 43179.48, + "probability": 0.6112 + }, + { + "start": 43179.68, + "end": 43180.94, + "probability": 0.9956 + }, + { + "start": 43181.14, + "end": 43183.0, + "probability": 0.9878 + }, + { + "start": 43183.62, + "end": 43187.16, + "probability": 0.9778 + }, + { + "start": 43187.92, + "end": 43189.36, + "probability": 0.9937 + }, + { + "start": 43191.9, + "end": 43199.62, + "probability": 0.8711 + }, + { + "start": 43199.98, + "end": 43201.72, + "probability": 0.5264 + }, + { + "start": 43201.82, + "end": 43205.7, + "probability": 0.8445 + }, + { + "start": 43205.82, + "end": 43207.62, + "probability": 0.996 + }, + { + "start": 43208.56, + "end": 43210.76, + "probability": 0.9598 + }, + { + "start": 43212.58, + "end": 43214.38, + "probability": 0.8352 + }, + { + "start": 43215.32, + "end": 43216.22, + "probability": 0.7991 + }, + { + "start": 43216.98, + "end": 43222.26, + "probability": 0.9971 + }, + { + "start": 43223.18, + "end": 43223.76, + "probability": 0.7788 + }, + { + "start": 43223.84, + "end": 43226.34, + "probability": 0.898 + }, + { + "start": 43226.4, + "end": 43227.98, + "probability": 0.9558 + }, + { + "start": 43228.42, + "end": 43230.5, + "probability": 0.7332 + }, + { + "start": 43230.76, + "end": 43235.46, + "probability": 0.9946 + }, + { + "start": 43237.27, + "end": 43238.8, + "probability": 0.978 + }, + { + "start": 43238.9, + "end": 43239.58, + "probability": 0.7414 + }, + { + "start": 43240.52, + "end": 43242.21, + "probability": 0.9463 + }, + { + "start": 43242.4, + "end": 43245.69, + "probability": 0.9809 + }, + { + "start": 43246.66, + "end": 43249.54, + "probability": 0.9683 + }, + { + "start": 43250.3, + "end": 43250.92, + "probability": 0.9818 + }, + { + "start": 43251.06, + "end": 43254.58, + "probability": 0.9491 + }, + { + "start": 43255.2, + "end": 43257.36, + "probability": 0.9823 + }, + { + "start": 43257.86, + "end": 43259.62, + "probability": 0.7708 + }, + { + "start": 43259.96, + "end": 43261.12, + "probability": 0.9909 + }, + { + "start": 43263.28, + "end": 43264.28, + "probability": 0.8256 + }, + { + "start": 43265.1, + "end": 43266.9, + "probability": 0.9254 + }, + { + "start": 43267.54, + "end": 43268.62, + "probability": 0.8281 + }, + { + "start": 43269.08, + "end": 43276.04, + "probability": 0.9966 + }, + { + "start": 43276.86, + "end": 43280.08, + "probability": 0.7115 + }, + { + "start": 43280.66, + "end": 43281.74, + "probability": 0.9587 + }, + { + "start": 43282.46, + "end": 43283.54, + "probability": 0.9978 + }, + { + "start": 43284.42, + "end": 43285.58, + "probability": 0.9995 + }, + { + "start": 43287.42, + "end": 43289.46, + "probability": 0.9876 + }, + { + "start": 43290.1, + "end": 43290.92, + "probability": 0.7703 + }, + { + "start": 43291.9, + "end": 43295.18, + "probability": 0.8711 + }, + { + "start": 43296.18, + "end": 43301.46, + "probability": 0.9198 + }, + { + "start": 43302.14, + "end": 43304.28, + "probability": 0.9004 + }, + { + "start": 43304.88, + "end": 43309.24, + "probability": 0.992 + }, + { + "start": 43310.52, + "end": 43313.79, + "probability": 0.979 + }, + { + "start": 43314.5, + "end": 43319.32, + "probability": 0.9239 + }, + { + "start": 43319.98, + "end": 43322.38, + "probability": 0.7003 + }, + { + "start": 43323.02, + "end": 43325.42, + "probability": 0.9872 + }, + { + "start": 43325.84, + "end": 43326.28, + "probability": 0.9985 + }, + { + "start": 43327.3, + "end": 43331.28, + "probability": 0.8911 + }, + { + "start": 43332.64, + "end": 43334.56, + "probability": 0.9972 + }, + { + "start": 43335.2, + "end": 43335.96, + "probability": 0.7109 + }, + { + "start": 43336.68, + "end": 43337.78, + "probability": 0.8025 + }, + { + "start": 43338.98, + "end": 43340.56, + "probability": 0.9935 + }, + { + "start": 43341.42, + "end": 43343.68, + "probability": 0.9792 + }, + { + "start": 43344.38, + "end": 43347.44, + "probability": 0.9504 + }, + { + "start": 43348.3, + "end": 43349.45, + "probability": 0.9324 + }, + { + "start": 43350.2, + "end": 43352.74, + "probability": 0.9981 + }, + { + "start": 43353.12, + "end": 43355.74, + "probability": 0.9123 + }, + { + "start": 43355.74, + "end": 43359.12, + "probability": 0.9824 + }, + { + "start": 43360.63, + "end": 43362.2, + "probability": 0.9794 + }, + { + "start": 43362.82, + "end": 43365.12, + "probability": 0.8799 + }, + { + "start": 43365.3, + "end": 43369.68, + "probability": 0.981 + }, + { + "start": 43369.8, + "end": 43371.12, + "probability": 0.763 + }, + { + "start": 43371.42, + "end": 43371.74, + "probability": 0.6506 + }, + { + "start": 43371.82, + "end": 43372.54, + "probability": 0.855 + }, + { + "start": 43372.98, + "end": 43375.24, + "probability": 0.9612 + }, + { + "start": 43376.02, + "end": 43380.48, + "probability": 0.8796 + }, + { + "start": 43382.1, + "end": 43388.38, + "probability": 0.8603 + }, + { + "start": 43390.5, + "end": 43394.0, + "probability": 0.9801 + }, + { + "start": 43394.18, + "end": 43394.68, + "probability": 0.4949 + }, + { + "start": 43394.84, + "end": 43396.22, + "probability": 0.9194 + }, + { + "start": 43396.42, + "end": 43397.24, + "probability": 0.8292 + }, + { + "start": 43398.04, + "end": 43399.16, + "probability": 0.8812 + }, + { + "start": 43400.26, + "end": 43404.26, + "probability": 0.9308 + }, + { + "start": 43405.12, + "end": 43406.62, + "probability": 0.9006 + }, + { + "start": 43406.8, + "end": 43412.08, + "probability": 0.9951 + }, + { + "start": 43413.54, + "end": 43416.8, + "probability": 0.9972 + }, + { + "start": 43416.92, + "end": 43421.82, + "probability": 0.7829 + }, + { + "start": 43422.94, + "end": 43424.88, + "probability": 0.956 + }, + { + "start": 43425.78, + "end": 43429.1, + "probability": 0.9782 + }, + { + "start": 43429.52, + "end": 43431.26, + "probability": 0.9853 + }, + { + "start": 43432.5, + "end": 43433.26, + "probability": 0.5337 + }, + { + "start": 43433.56, + "end": 43434.38, + "probability": 0.8033 + }, + { + "start": 43434.86, + "end": 43436.16, + "probability": 0.9941 + }, + { + "start": 43436.6, + "end": 43437.14, + "probability": 0.8681 + }, + { + "start": 43437.78, + "end": 43438.62, + "probability": 0.9811 + }, + { + "start": 43438.96, + "end": 43445.02, + "probability": 0.9358 + }, + { + "start": 43445.06, + "end": 43447.26, + "probability": 0.8832 + }, + { + "start": 43448.0, + "end": 43452.68, + "probability": 0.9812 + }, + { + "start": 43453.02, + "end": 43455.92, + "probability": 0.9448 + }, + { + "start": 43456.64, + "end": 43460.4, + "probability": 0.9833 + }, + { + "start": 43461.22, + "end": 43467.64, + "probability": 0.9718 + }, + { + "start": 43467.86, + "end": 43469.38, + "probability": 0.96 + }, + { + "start": 43470.18, + "end": 43470.68, + "probability": 0.9099 + }, + { + "start": 43471.44, + "end": 43473.42, + "probability": 0.9355 + }, + { + "start": 43474.66, + "end": 43478.24, + "probability": 0.9954 + }, + { + "start": 43479.06, + "end": 43482.4, + "probability": 0.9602 + }, + { + "start": 43484.36, + "end": 43489.82, + "probability": 0.985 + }, + { + "start": 43491.04, + "end": 43493.14, + "probability": 0.9958 + }, + { + "start": 43493.74, + "end": 43495.02, + "probability": 0.9456 + }, + { + "start": 43495.92, + "end": 43497.1, + "probability": 0.8838 + }, + { + "start": 43497.26, + "end": 43501.86, + "probability": 0.9396 + }, + { + "start": 43502.26, + "end": 43502.36, + "probability": 0.5901 + }, + { + "start": 43503.62, + "end": 43505.78, + "probability": 0.9724 + }, + { + "start": 43506.42, + "end": 43507.12, + "probability": 0.9804 + }, + { + "start": 43507.7, + "end": 43513.24, + "probability": 0.9888 + }, + { + "start": 43513.82, + "end": 43514.78, + "probability": 0.6712 + }, + { + "start": 43515.3, + "end": 43519.74, + "probability": 0.906 + }, + { + "start": 43520.24, + "end": 43524.76, + "probability": 0.9589 + }, + { + "start": 43524.9, + "end": 43526.2, + "probability": 0.9978 + }, + { + "start": 43526.32, + "end": 43527.9, + "probability": 0.9958 + }, + { + "start": 43528.16, + "end": 43531.76, + "probability": 0.9956 + }, + { + "start": 43532.22, + "end": 43532.46, + "probability": 0.9334 + }, + { + "start": 43532.52, + "end": 43534.84, + "probability": 0.9883 + }, + { + "start": 43535.1, + "end": 43537.52, + "probability": 0.949 + }, + { + "start": 43538.02, + "end": 43539.06, + "probability": 0.9876 + }, + { + "start": 43539.62, + "end": 43540.2, + "probability": 0.7313 + }, + { + "start": 43540.36, + "end": 43540.46, + "probability": 0.2906 + }, + { + "start": 43540.72, + "end": 43542.7, + "probability": 0.877 + }, + { + "start": 43542.78, + "end": 43547.04, + "probability": 0.9884 + }, + { + "start": 43547.12, + "end": 43549.98, + "probability": 0.8771 + }, + { + "start": 43549.98, + "end": 43550.84, + "probability": 0.5883 + }, + { + "start": 43550.96, + "end": 43556.1, + "probability": 0.867 + }, + { + "start": 43556.2, + "end": 43556.7, + "probability": 0.7498 + }, + { + "start": 43557.36, + "end": 43558.76, + "probability": 0.734 + }, + { + "start": 43558.86, + "end": 43561.54, + "probability": 0.9829 + }, + { + "start": 43562.24, + "end": 43563.52, + "probability": 0.6823 + }, + { + "start": 43563.68, + "end": 43564.6, + "probability": 0.8898 + }, + { + "start": 43565.02, + "end": 43566.94, + "probability": 0.9554 + }, + { + "start": 43567.22, + "end": 43570.2, + "probability": 0.9917 + }, + { + "start": 43570.84, + "end": 43573.74, + "probability": 0.8826 + }, + { + "start": 43574.38, + "end": 43575.12, + "probability": 0.521 + }, + { + "start": 43575.92, + "end": 43578.2, + "probability": 0.887 + }, + { + "start": 43579.02, + "end": 43580.32, + "probability": 0.9747 + }, + { + "start": 43580.5, + "end": 43581.0, + "probability": 0.755 + }, + { + "start": 43582.0, + "end": 43582.58, + "probability": 0.7036 + }, + { + "start": 43583.38, + "end": 43584.52, + "probability": 0.9313 + }, + { + "start": 43600.9, + "end": 43601.1, + "probability": 0.5719 + }, + { + "start": 43601.82, + "end": 43604.02, + "probability": 0.753 + }, + { + "start": 43605.46, + "end": 43606.97, + "probability": 0.7632 + }, + { + "start": 43607.82, + "end": 43608.76, + "probability": 0.8005 + }, + { + "start": 43609.64, + "end": 43610.52, + "probability": 0.9323 + }, + { + "start": 43611.18, + "end": 43611.28, + "probability": 0.5867 + }, + { + "start": 43612.46, + "end": 43612.78, + "probability": 0.4443 + }, + { + "start": 43614.48, + "end": 43615.32, + "probability": 0.9138 + }, + { + "start": 43616.14, + "end": 43617.94, + "probability": 0.8555 + }, + { + "start": 43619.6, + "end": 43620.54, + "probability": 0.6876 + }, + { + "start": 43620.86, + "end": 43621.44, + "probability": 0.3702 + }, + { + "start": 43621.52, + "end": 43627.74, + "probability": 0.8372 + }, + { + "start": 43628.72, + "end": 43631.84, + "probability": 0.4677 + }, + { + "start": 43633.08, + "end": 43634.92, + "probability": 0.4934 + }, + { + "start": 43636.04, + "end": 43637.06, + "probability": 0.526 + }, + { + "start": 43637.12, + "end": 43638.74, + "probability": 0.8001 + }, + { + "start": 43640.86, + "end": 43641.76, + "probability": 0.6416 + }, + { + "start": 43641.76, + "end": 43644.92, + "probability": 0.9101 + }, + { + "start": 43645.94, + "end": 43648.78, + "probability": 0.847 + }, + { + "start": 43649.02, + "end": 43649.68, + "probability": 0.7625 + }, + { + "start": 43649.92, + "end": 43650.74, + "probability": 0.9537 + }, + { + "start": 43650.9, + "end": 43653.22, + "probability": 0.7738 + }, + { + "start": 43654.12, + "end": 43654.92, + "probability": 0.6328 + }, + { + "start": 43655.58, + "end": 43657.92, + "probability": 0.5251 + }, + { + "start": 43658.38, + "end": 43658.84, + "probability": 0.7744 + }, + { + "start": 43659.18, + "end": 43662.02, + "probability": 0.8282 + }, + { + "start": 43663.0, + "end": 43663.98, + "probability": 0.9496 + }, + { + "start": 43665.22, + "end": 43667.42, + "probability": 0.9199 + }, + { + "start": 43667.56, + "end": 43674.3, + "probability": 0.9872 + }, + { + "start": 43674.98, + "end": 43679.02, + "probability": 0.9633 + }, + { + "start": 43680.04, + "end": 43684.58, + "probability": 0.9485 + }, + { + "start": 43686.58, + "end": 43688.58, + "probability": 0.7087 + }, + { + "start": 43688.9, + "end": 43690.58, + "probability": 0.8652 + }, + { + "start": 43690.82, + "end": 43695.36, + "probability": 0.9713 + }, + { + "start": 43695.56, + "end": 43697.62, + "probability": 0.9969 + }, + { + "start": 43698.5, + "end": 43699.36, + "probability": 0.8845 + }, + { + "start": 43700.14, + "end": 43701.68, + "probability": 0.5837 + }, + { + "start": 43701.96, + "end": 43702.38, + "probability": 0.7269 + }, + { + "start": 43702.54, + "end": 43703.84, + "probability": 0.9751 + }, + { + "start": 43704.76, + "end": 43707.36, + "probability": 0.9811 + }, + { + "start": 43707.7, + "end": 43710.6, + "probability": 0.9182 + }, + { + "start": 43711.4, + "end": 43713.04, + "probability": 0.9542 + }, + { + "start": 43713.9, + "end": 43720.44, + "probability": 0.9371 + }, + { + "start": 43720.54, + "end": 43721.8, + "probability": 0.7318 + }, + { + "start": 43721.8, + "end": 43723.24, + "probability": 0.8548 + }, + { + "start": 43723.34, + "end": 43724.98, + "probability": 0.9976 + }, + { + "start": 43725.62, + "end": 43726.54, + "probability": 0.9839 + }, + { + "start": 43727.96, + "end": 43728.46, + "probability": 0.8448 + }, + { + "start": 43729.46, + "end": 43733.16, + "probability": 0.8484 + }, + { + "start": 43733.62, + "end": 43734.78, + "probability": 0.992 + }, + { + "start": 43736.6, + "end": 43738.02, + "probability": 0.6691 + }, + { + "start": 43738.34, + "end": 43739.02, + "probability": 0.8579 + }, + { + "start": 43739.08, + "end": 43742.94, + "probability": 0.8715 + }, + { + "start": 43743.44, + "end": 43745.12, + "probability": 0.983 + }, + { + "start": 43745.22, + "end": 43745.96, + "probability": 0.5046 + }, + { + "start": 43747.16, + "end": 43750.22, + "probability": 0.9941 + }, + { + "start": 43750.34, + "end": 43755.28, + "probability": 0.9907 + }, + { + "start": 43756.88, + "end": 43759.28, + "probability": 0.934 + }, + { + "start": 43760.4, + "end": 43762.58, + "probability": 0.9971 + }, + { + "start": 43763.0, + "end": 43763.52, + "probability": 0.7616 + }, + { + "start": 43763.6, + "end": 43766.34, + "probability": 0.997 + }, + { + "start": 43766.34, + "end": 43769.52, + "probability": 0.9528 + }, + { + "start": 43770.16, + "end": 43773.8, + "probability": 0.8292 + }, + { + "start": 43774.56, + "end": 43776.76, + "probability": 0.9926 + }, + { + "start": 43777.66, + "end": 43779.6, + "probability": 0.7125 + }, + { + "start": 43780.74, + "end": 43784.94, + "probability": 0.9136 + }, + { + "start": 43785.14, + "end": 43786.66, + "probability": 0.1576 + }, + { + "start": 43786.74, + "end": 43786.88, + "probability": 0.3984 + }, + { + "start": 43787.12, + "end": 43792.52, + "probability": 0.9824 + }, + { + "start": 43793.22, + "end": 43795.38, + "probability": 0.9622 + }, + { + "start": 43796.24, + "end": 43797.44, + "probability": 0.9744 + }, + { + "start": 43799.12, + "end": 43799.6, + "probability": 0.7263 + }, + { + "start": 43800.94, + "end": 43801.88, + "probability": 0.7126 + }, + { + "start": 43802.0, + "end": 43802.8, + "probability": 0.9128 + }, + { + "start": 43803.0, + "end": 43804.46, + "probability": 0.975 + }, + { + "start": 43804.78, + "end": 43810.92, + "probability": 0.8777 + }, + { + "start": 43811.12, + "end": 43811.64, + "probability": 0.7439 + }, + { + "start": 43812.7, + "end": 43817.1, + "probability": 0.8579 + }, + { + "start": 43817.72, + "end": 43820.66, + "probability": 0.8906 + }, + { + "start": 43821.54, + "end": 43823.1, + "probability": 0.9725 + }, + { + "start": 43823.3, + "end": 43826.92, + "probability": 0.9799 + }, + { + "start": 43827.64, + "end": 43829.34, + "probability": 0.9404 + }, + { + "start": 43829.42, + "end": 43830.36, + "probability": 0.7306 + }, + { + "start": 43830.64, + "end": 43831.86, + "probability": 0.8563 + }, + { + "start": 43831.98, + "end": 43834.36, + "probability": 0.8918 + }, + { + "start": 43834.78, + "end": 43835.28, + "probability": 0.4954 + }, + { + "start": 43835.42, + "end": 43839.42, + "probability": 0.9333 + }, + { + "start": 43839.56, + "end": 43841.48, + "probability": 0.9082 + }, + { + "start": 43841.82, + "end": 43845.0, + "probability": 0.8226 + }, + { + "start": 43845.36, + "end": 43850.42, + "probability": 0.8302 + }, + { + "start": 43850.62, + "end": 43851.9, + "probability": 0.9673 + }, + { + "start": 43852.7, + "end": 43853.8, + "probability": 0.6898 + }, + { + "start": 43854.24, + "end": 43854.52, + "probability": 0.1298 + }, + { + "start": 43854.52, + "end": 43858.08, + "probability": 0.9726 + }, + { + "start": 43859.04, + "end": 43860.0, + "probability": 0.471 + }, + { + "start": 43860.2, + "end": 43862.55, + "probability": 0.9233 + }, + { + "start": 43863.16, + "end": 43866.36, + "probability": 0.9448 + }, + { + "start": 43866.98, + "end": 43868.92, + "probability": 0.994 + }, + { + "start": 43869.36, + "end": 43870.44, + "probability": 0.8849 + }, + { + "start": 43870.78, + "end": 43871.48, + "probability": 0.9822 + }, + { + "start": 43871.6, + "end": 43871.94, + "probability": 0.5208 + }, + { + "start": 43872.74, + "end": 43873.84, + "probability": 0.8879 + }, + { + "start": 43874.08, + "end": 43877.76, + "probability": 0.9756 + }, + { + "start": 43877.98, + "end": 43883.1, + "probability": 0.932 + }, + { + "start": 43883.72, + "end": 43887.64, + "probability": 0.5906 + }, + { + "start": 43888.2, + "end": 43889.1, + "probability": 0.8576 + }, + { + "start": 43889.24, + "end": 43889.32, + "probability": 0.3249 + }, + { + "start": 43889.4, + "end": 43892.02, + "probability": 0.8229 + }, + { + "start": 43892.62, + "end": 43892.74, + "probability": 0.6129 + }, + { + "start": 43892.76, + "end": 43893.56, + "probability": 0.9639 + }, + { + "start": 43893.64, + "end": 43898.12, + "probability": 0.9816 + }, + { + "start": 43900.34, + "end": 43900.9, + "probability": 0.2812 + }, + { + "start": 43900.9, + "end": 43901.3, + "probability": 0.3516 + }, + { + "start": 43901.56, + "end": 43903.34, + "probability": 0.7101 + }, + { + "start": 43903.98, + "end": 43908.28, + "probability": 0.911 + }, + { + "start": 43908.36, + "end": 43909.23, + "probability": 0.9852 + }, + { + "start": 43909.32, + "end": 43910.04, + "probability": 0.7613 + }, + { + "start": 43910.16, + "end": 43913.2, + "probability": 0.9153 + }, + { + "start": 43913.32, + "end": 43914.36, + "probability": 0.8547 + }, + { + "start": 43914.82, + "end": 43915.54, + "probability": 0.7262 + }, + { + "start": 43915.64, + "end": 43916.3, + "probability": 0.8583 + }, + { + "start": 43916.42, + "end": 43919.02, + "probability": 0.9438 + }, + { + "start": 43919.24, + "end": 43924.75, + "probability": 0.7715 + }, + { + "start": 43925.54, + "end": 43927.24, + "probability": 0.9613 + }, + { + "start": 43930.84, + "end": 43932.07, + "probability": 0.8949 + }, + { + "start": 43932.3, + "end": 43935.34, + "probability": 0.98 + }, + { + "start": 43935.68, + "end": 43938.76, + "probability": 0.7873 + }, + { + "start": 43939.34, + "end": 43942.46, + "probability": 0.9451 + }, + { + "start": 43943.08, + "end": 43943.57, + "probability": 0.6039 + }, + { + "start": 43943.74, + "end": 43944.48, + "probability": 0.9879 + }, + { + "start": 43944.86, + "end": 43945.44, + "probability": 0.3589 + }, + { + "start": 43946.06, + "end": 43952.98, + "probability": 0.8369 + }, + { + "start": 43953.16, + "end": 43954.02, + "probability": 0.512 + }, + { + "start": 43954.52, + "end": 43956.42, + "probability": 0.8768 + }, + { + "start": 43957.14, + "end": 43957.44, + "probability": 0.0037 + }, + { + "start": 43958.28, + "end": 43960.4, + "probability": 0.6751 + }, + { + "start": 43960.52, + "end": 43964.74, + "probability": 0.9902 + }, + { + "start": 43964.94, + "end": 43965.36, + "probability": 0.77 + }, + { + "start": 43965.94, + "end": 43967.08, + "probability": 0.8254 + }, + { + "start": 43967.36, + "end": 43968.16, + "probability": 0.7583 + }, + { + "start": 43968.34, + "end": 43969.24, + "probability": 0.9635 + }, + { + "start": 43969.7, + "end": 43971.68, + "probability": 0.9761 + }, + { + "start": 43972.28, + "end": 43974.86, + "probability": 0.9529 + }, + { + "start": 43975.56, + "end": 43977.14, + "probability": 0.9294 + }, + { + "start": 43977.82, + "end": 43981.44, + "probability": 0.9876 + }, + { + "start": 43983.12, + "end": 43985.58, + "probability": 0.7487 + }, + { + "start": 43985.58, + "end": 43989.32, + "probability": 0.9984 + }, + { + "start": 43989.96, + "end": 43990.64, + "probability": 0.6952 + }, + { + "start": 43991.16, + "end": 43992.78, + "probability": 0.7171 + }, + { + "start": 43993.58, + "end": 43996.8, + "probability": 0.8523 + }, + { + "start": 43997.66, + "end": 43999.18, + "probability": 0.9658 + }, + { + "start": 44000.3, + "end": 44004.0, + "probability": 0.9597 + }, + { + "start": 44004.4, + "end": 44004.68, + "probability": 0.4913 + }, + { + "start": 44004.76, + "end": 44005.68, + "probability": 0.5716 + }, + { + "start": 44006.62, + "end": 44007.59, + "probability": 0.7898 + }, + { + "start": 44008.9, + "end": 44010.26, + "probability": 0.645 + }, + { + "start": 44011.04, + "end": 44013.88, + "probability": 0.8193 + }, + { + "start": 44014.88, + "end": 44018.12, + "probability": 0.9193 + }, + { + "start": 44018.4, + "end": 44019.24, + "probability": 0.8737 + }, + { + "start": 44019.9, + "end": 44020.92, + "probability": 0.7486 + }, + { + "start": 44021.42, + "end": 44022.68, + "probability": 0.8004 + }, + { + "start": 44023.66, + "end": 44026.62, + "probability": 0.9869 + }, + { + "start": 44026.66, + "end": 44028.56, + "probability": 0.9869 + }, + { + "start": 44030.28, + "end": 44033.82, + "probability": 0.9312 + }, + { + "start": 44034.54, + "end": 44035.18, + "probability": 0.9465 + }, + { + "start": 44036.04, + "end": 44037.34, + "probability": 0.5613 + }, + { + "start": 44039.02, + "end": 44041.32, + "probability": 0.87 + }, + { + "start": 44042.58, + "end": 44044.4, + "probability": 0.958 + }, + { + "start": 44044.96, + "end": 44049.8, + "probability": 0.9892 + }, + { + "start": 44050.78, + "end": 44055.26, + "probability": 0.8517 + }, + { + "start": 44056.0, + "end": 44057.52, + "probability": 0.6997 + }, + { + "start": 44057.88, + "end": 44058.12, + "probability": 0.7494 + }, + { + "start": 44058.2, + "end": 44060.26, + "probability": 0.7568 + }, + { + "start": 44060.6, + "end": 44061.38, + "probability": 0.7032 + }, + { + "start": 44062.24, + "end": 44064.74, + "probability": 0.6786 + }, + { + "start": 44065.48, + "end": 44067.7, + "probability": 0.9841 + }, + { + "start": 44068.68, + "end": 44069.22, + "probability": 0.3072 + }, + { + "start": 44069.22, + "end": 44070.7, + "probability": 0.5079 + }, + { + "start": 44071.12, + "end": 44075.98, + "probability": 0.9695 + }, + { + "start": 44076.0, + "end": 44076.72, + "probability": 0.293 + }, + { + "start": 44077.5, + "end": 44078.84, + "probability": 0.903 + }, + { + "start": 44079.68, + "end": 44079.82, + "probability": 0.3994 + }, + { + "start": 44080.46, + "end": 44083.77, + "probability": 0.9382 + }, + { + "start": 44084.06, + "end": 44085.2, + "probability": 0.2295 + }, + { + "start": 44085.2, + "end": 44085.48, + "probability": 0.0372 + }, + { + "start": 44086.04, + "end": 44086.52, + "probability": 0.8277 + }, + { + "start": 44086.58, + "end": 44087.0, + "probability": 0.7795 + }, + { + "start": 44087.08, + "end": 44087.44, + "probability": 0.7993 + }, + { + "start": 44087.64, + "end": 44088.26, + "probability": 0.4343 + }, + { + "start": 44088.36, + "end": 44090.1, + "probability": 0.9899 + }, + { + "start": 44090.3, + "end": 44091.58, + "probability": 0.8943 + }, + { + "start": 44092.02, + "end": 44092.82, + "probability": 0.9178 + }, + { + "start": 44092.96, + "end": 44093.24, + "probability": 0.9573 + }, + { + "start": 44093.44, + "end": 44093.88, + "probability": 0.6227 + }, + { + "start": 44094.34, + "end": 44095.26, + "probability": 0.4686 + }, + { + "start": 44095.42, + "end": 44098.2, + "probability": 0.7653 + }, + { + "start": 44098.3, + "end": 44099.0, + "probability": 0.52 + }, + { + "start": 44099.68, + "end": 44102.96, + "probability": 0.832 + }, + { + "start": 44104.86, + "end": 44109.12, + "probability": 0.9949 + }, + { + "start": 44109.9, + "end": 44113.76, + "probability": 0.9797 + }, + { + "start": 44114.48, + "end": 44115.84, + "probability": 0.8592 + }, + { + "start": 44116.42, + "end": 44119.96, + "probability": 0.5835 + }, + { + "start": 44120.74, + "end": 44120.98, + "probability": 0.8086 + }, + { + "start": 44121.9, + "end": 44125.64, + "probability": 0.9382 + }, + { + "start": 44126.3, + "end": 44126.81, + "probability": 0.9695 + }, + { + "start": 44127.26, + "end": 44130.74, + "probability": 0.9722 + }, + { + "start": 44130.82, + "end": 44135.01, + "probability": 0.7656 + }, + { + "start": 44135.6, + "end": 44137.3, + "probability": 0.4096 + }, + { + "start": 44138.72, + "end": 44141.02, + "probability": 0.9599 + }, + { + "start": 44141.52, + "end": 44142.48, + "probability": 0.5148 + }, + { + "start": 44142.7, + "end": 44143.3, + "probability": 0.7413 + }, + { + "start": 44143.44, + "end": 44147.62, + "probability": 0.679 + }, + { + "start": 44148.52, + "end": 44151.62, + "probability": 0.9012 + }, + { + "start": 44151.84, + "end": 44152.64, + "probability": 0.5909 + }, + { + "start": 44152.92, + "end": 44154.83, + "probability": 0.9468 + }, + { + "start": 44156.34, + "end": 44158.0, + "probability": 0.516 + }, + { + "start": 44158.12, + "end": 44158.22, + "probability": 0.3697 + }, + { + "start": 44158.84, + "end": 44159.94, + "probability": 0.9576 + }, + { + "start": 44160.68, + "end": 44167.76, + "probability": 0.8898 + }, + { + "start": 44168.42, + "end": 44170.42, + "probability": 0.9934 + }, + { + "start": 44171.34, + "end": 44173.88, + "probability": 0.9986 + }, + { + "start": 44174.7, + "end": 44175.4, + "probability": 0.5218 + }, + { + "start": 44176.38, + "end": 44179.04, + "probability": 0.9708 + }, + { + "start": 44179.48, + "end": 44183.76, + "probability": 0.9977 + }, + { + "start": 44184.28, + "end": 44184.8, + "probability": 0.5248 + }, + { + "start": 44184.86, + "end": 44185.62, + "probability": 0.8004 + }, + { + "start": 44185.64, + "end": 44186.72, + "probability": 0.9731 + }, + { + "start": 44187.2, + "end": 44188.12, + "probability": 0.9226 + }, + { + "start": 44189.72, + "end": 44192.94, + "probability": 0.9507 + }, + { + "start": 44194.44, + "end": 44198.84, + "probability": 0.989 + }, + { + "start": 44199.42, + "end": 44203.12, + "probability": 0.5467 + }, + { + "start": 44203.92, + "end": 44205.1, + "probability": 0.998 + }, + { + "start": 44205.68, + "end": 44207.98, + "probability": 0.9071 + }, + { + "start": 44208.5, + "end": 44209.32, + "probability": 0.7146 + }, + { + "start": 44209.48, + "end": 44210.36, + "probability": 0.7138 + }, + { + "start": 44210.82, + "end": 44211.3, + "probability": 0.8781 + }, + { + "start": 44211.52, + "end": 44212.52, + "probability": 0.7011 + }, + { + "start": 44216.39, + "end": 44219.32, + "probability": 0.7429 + }, + { + "start": 44219.4, + "end": 44220.32, + "probability": 0.949 + }, + { + "start": 44220.92, + "end": 44222.72, + "probability": 0.4327 + }, + { + "start": 44222.92, + "end": 44223.56, + "probability": 0.3896 + }, + { + "start": 44224.8, + "end": 44225.5, + "probability": 0.9669 + }, + { + "start": 44226.14, + "end": 44227.02, + "probability": 0.9711 + }, + { + "start": 44227.44, + "end": 44229.16, + "probability": 0.6716 + }, + { + "start": 44229.22, + "end": 44229.4, + "probability": 0.7018 + }, + { + "start": 44229.6, + "end": 44229.76, + "probability": 0.6995 + }, + { + "start": 44229.8, + "end": 44234.32, + "probability": 0.9474 + }, + { + "start": 44234.66, + "end": 44235.92, + "probability": 0.6854 + }, + { + "start": 44236.2, + "end": 44238.26, + "probability": 0.4769 + }, + { + "start": 44238.84, + "end": 44239.62, + "probability": 0.9359 + }, + { + "start": 44240.4, + "end": 44241.36, + "probability": 0.9414 + }, + { + "start": 44241.52, + "end": 44243.94, + "probability": 0.8996 + }, + { + "start": 44244.56, + "end": 44247.1, + "probability": 0.9958 + }, + { + "start": 44247.54, + "end": 44250.64, + "probability": 0.978 + }, + { + "start": 44251.38, + "end": 44254.3, + "probability": 0.9553 + }, + { + "start": 44254.78, + "end": 44257.3, + "probability": 0.9736 + }, + { + "start": 44257.38, + "end": 44259.52, + "probability": 0.8516 + }, + { + "start": 44260.5, + "end": 44267.5, + "probability": 0.5403 + }, + { + "start": 44267.86, + "end": 44268.98, + "probability": 0.4699 + }, + { + "start": 44270.16, + "end": 44270.3, + "probability": 0.557 + }, + { + "start": 44270.86, + "end": 44271.28, + "probability": 0.1816 + }, + { + "start": 44271.46, + "end": 44273.66, + "probability": 0.7699 + }, + { + "start": 44273.94, + "end": 44274.14, + "probability": 0.5597 + }, + { + "start": 44274.2, + "end": 44275.1, + "probability": 0.7291 + }, + { + "start": 44275.46, + "end": 44277.02, + "probability": 0.4783 + }, + { + "start": 44277.92, + "end": 44279.32, + "probability": 0.9058 + }, + { + "start": 44279.84, + "end": 44282.22, + "probability": 0.2391 + }, + { + "start": 44282.36, + "end": 44282.64, + "probability": 0.1835 + }, + { + "start": 44283.16, + "end": 44289.06, + "probability": 0.9756 + }, + { + "start": 44289.08, + "end": 44293.48, + "probability": 0.501 + }, + { + "start": 44293.66, + "end": 44293.9, + "probability": 0.371 + }, + { + "start": 44293.92, + "end": 44296.16, + "probability": 0.9971 + }, + { + "start": 44296.22, + "end": 44297.36, + "probability": 0.4013 + }, + { + "start": 44297.4, + "end": 44298.56, + "probability": 0.4792 + }, + { + "start": 44298.9, + "end": 44299.22, + "probability": 0.5739 + }, + { + "start": 44299.3, + "end": 44300.7, + "probability": 0.4846 + }, + { + "start": 44301.78, + "end": 44303.78, + "probability": 0.4973 + }, + { + "start": 44304.22, + "end": 44305.14, + "probability": 0.947 + }, + { + "start": 44305.18, + "end": 44305.7, + "probability": 0.7605 + }, + { + "start": 44305.76, + "end": 44306.54, + "probability": 0.466 + }, + { + "start": 44308.04, + "end": 44308.98, + "probability": 0.2314 + }, + { + "start": 44308.98, + "end": 44311.17, + "probability": 0.9244 + }, + { + "start": 44311.7, + "end": 44312.26, + "probability": 0.5011 + }, + { + "start": 44312.44, + "end": 44313.14, + "probability": 0.6599 + }, + { + "start": 44313.2, + "end": 44314.66, + "probability": 0.7822 + }, + { + "start": 44315.7, + "end": 44317.86, + "probability": 0.9665 + }, + { + "start": 44318.02, + "end": 44319.06, + "probability": 0.988 + }, + { + "start": 44319.18, + "end": 44321.62, + "probability": 0.9465 + }, + { + "start": 44321.66, + "end": 44322.28, + "probability": 0.4559 + }, + { + "start": 44322.42, + "end": 44327.7, + "probability": 0.945 + }, + { + "start": 44329.54, + "end": 44331.42, + "probability": 0.9008 + }, + { + "start": 44331.48, + "end": 44332.28, + "probability": 0.8084 + }, + { + "start": 44332.44, + "end": 44334.62, + "probability": 0.899 + }, + { + "start": 44336.26, + "end": 44337.17, + "probability": 0.9778 + }, + { + "start": 44337.92, + "end": 44342.02, + "probability": 0.9865 + }, + { + "start": 44344.14, + "end": 44345.68, + "probability": 0.7028 + }, + { + "start": 44346.18, + "end": 44347.0, + "probability": 0.1937 + }, + { + "start": 44347.0, + "end": 44349.82, + "probability": 0.741 + }, + { + "start": 44350.14, + "end": 44351.28, + "probability": 0.5122 + }, + { + "start": 44351.4, + "end": 44353.08, + "probability": 0.6554 + }, + { + "start": 44353.7, + "end": 44355.06, + "probability": 0.7335 + }, + { + "start": 44355.76, + "end": 44356.34, + "probability": 0.5142 + }, + { + "start": 44356.68, + "end": 44356.98, + "probability": 0.375 + }, + { + "start": 44356.98, + "end": 44357.74, + "probability": 0.2146 + }, + { + "start": 44358.38, + "end": 44362.04, + "probability": 0.8408 + }, + { + "start": 44362.56, + "end": 44363.06, + "probability": 0.8606 + }, + { + "start": 44363.92, + "end": 44365.66, + "probability": 0.9929 + }, + { + "start": 44366.02, + "end": 44366.93, + "probability": 0.9748 + }, + { + "start": 44367.44, + "end": 44368.32, + "probability": 0.5187 + }, + { + "start": 44368.64, + "end": 44369.64, + "probability": 0.647 + }, + { + "start": 44369.72, + "end": 44370.3, + "probability": 0.6164 + }, + { + "start": 44370.68, + "end": 44371.2, + "probability": 0.8472 + }, + { + "start": 44371.26, + "end": 44371.46, + "probability": 0.7252 + }, + { + "start": 44372.34, + "end": 44374.96, + "probability": 0.7706 + }, + { + "start": 44375.08, + "end": 44377.02, + "probability": 0.9144 + }, + { + "start": 44377.62, + "end": 44377.74, + "probability": 0.5117 + }, + { + "start": 44378.76, + "end": 44379.9, + "probability": 0.8229 + }, + { + "start": 44380.7, + "end": 44383.04, + "probability": 0.8598 + }, + { + "start": 44383.16, + "end": 44383.67, + "probability": 0.9825 + }, + { + "start": 44383.96, + "end": 44384.38, + "probability": 0.7224 + }, + { + "start": 44384.38, + "end": 44386.96, + "probability": 0.7026 + }, + { + "start": 44387.8, + "end": 44388.34, + "probability": 0.9062 + }, + { + "start": 44390.6, + "end": 44392.77, + "probability": 0.8795 + }, + { + "start": 44393.4, + "end": 44395.06, + "probability": 0.9634 + }, + { + "start": 44396.16, + "end": 44397.04, + "probability": 0.5153 + }, + { + "start": 44397.26, + "end": 44399.9, + "probability": 0.9305 + }, + { + "start": 44401.06, + "end": 44401.5, + "probability": 0.7196 + }, + { + "start": 44402.72, + "end": 44404.0, + "probability": 0.9989 + }, + { + "start": 44405.06, + "end": 44405.84, + "probability": 0.9577 + }, + { + "start": 44407.96, + "end": 44409.54, + "probability": 0.7747 + }, + { + "start": 44410.86, + "end": 44412.56, + "probability": 0.8749 + }, + { + "start": 44412.68, + "end": 44413.98, + "probability": 0.5455 + }, + { + "start": 44414.02, + "end": 44414.76, + "probability": 0.9749 + }, + { + "start": 44414.82, + "end": 44415.58, + "probability": 0.5479 + }, + { + "start": 44416.12, + "end": 44421.46, + "probability": 0.7469 + }, + { + "start": 44421.64, + "end": 44422.42, + "probability": 0.73 + }, + { + "start": 44422.58, + "end": 44423.14, + "probability": 0.8096 + }, + { + "start": 44423.18, + "end": 44428.58, + "probability": 0.9728 + }, + { + "start": 44428.64, + "end": 44429.44, + "probability": 0.861 + }, + { + "start": 44429.44, + "end": 44429.62, + "probability": 0.0094 + }, + { + "start": 44430.02, + "end": 44430.26, + "probability": 0.1409 + }, + { + "start": 44430.26, + "end": 44432.79, + "probability": 0.8402 + }, + { + "start": 44433.04, + "end": 44434.58, + "probability": 0.9294 + }, + { + "start": 44435.22, + "end": 44437.11, + "probability": 0.3432 + }, + { + "start": 44438.02, + "end": 44439.46, + "probability": 0.933 + }, + { + "start": 44439.97, + "end": 44441.85, + "probability": 0.9111 + }, + { + "start": 44443.36, + "end": 44444.52, + "probability": 0.9894 + }, + { + "start": 44444.66, + "end": 44446.22, + "probability": 0.9807 + }, + { + "start": 44446.32, + "end": 44448.62, + "probability": 0.9621 + }, + { + "start": 44449.18, + "end": 44450.04, + "probability": 0.9475 + }, + { + "start": 44450.1, + "end": 44451.0, + "probability": 0.7689 + }, + { + "start": 44451.4, + "end": 44452.16, + "probability": 0.9377 + }, + { + "start": 44453.02, + "end": 44453.02, + "probability": 0.1606 + }, + { + "start": 44453.02, + "end": 44453.44, + "probability": 0.6128 + }, + { + "start": 44453.96, + "end": 44459.04, + "probability": 0.9819 + }, + { + "start": 44459.68, + "end": 44462.48, + "probability": 0.9672 + }, + { + "start": 44462.58, + "end": 44462.82, + "probability": 0.3884 + }, + { + "start": 44462.94, + "end": 44467.18, + "probability": 0.9767 + }, + { + "start": 44467.18, + "end": 44470.7, + "probability": 0.9467 + }, + { + "start": 44473.52, + "end": 44473.86, + "probability": 0.4473 + }, + { + "start": 44474.54, + "end": 44474.72, + "probability": 0.5206 + }, + { + "start": 44474.88, + "end": 44477.68, + "probability": 0.9819 + }, + { + "start": 44477.68, + "end": 44477.76, + "probability": 0.0683 + }, + { + "start": 44477.76, + "end": 44478.3, + "probability": 0.4083 + }, + { + "start": 44478.62, + "end": 44479.42, + "probability": 0.1522 + }, + { + "start": 44480.12, + "end": 44480.72, + "probability": 0.5699 + }, + { + "start": 44481.24, + "end": 44481.48, + "probability": 0.7031 + }, + { + "start": 44482.34, + "end": 44483.96, + "probability": 0.9778 + }, + { + "start": 44484.5, + "end": 44486.26, + "probability": 0.9067 + }, + { + "start": 44486.92, + "end": 44487.74, + "probability": 0.8489 + }, + { + "start": 44488.44, + "end": 44489.06, + "probability": 0.7511 + }, + { + "start": 44489.94, + "end": 44493.54, + "probability": 0.8169 + }, + { + "start": 44493.54, + "end": 44494.06, + "probability": 0.6562 + }, + { + "start": 44494.56, + "end": 44495.36, + "probability": 0.8047 + }, + { + "start": 44495.62, + "end": 44496.88, + "probability": 0.8611 + }, + { + "start": 44497.2, + "end": 44497.94, + "probability": 0.9399 + }, + { + "start": 44498.1, + "end": 44499.38, + "probability": 0.8372 + }, + { + "start": 44500.06, + "end": 44500.38, + "probability": 0.7812 + }, + { + "start": 44500.94, + "end": 44502.64, + "probability": 0.8144 + }, + { + "start": 44502.88, + "end": 44504.92, + "probability": 0.76 + }, + { + "start": 44505.1, + "end": 44506.24, + "probability": 0.9707 + }, + { + "start": 44506.7, + "end": 44509.96, + "probability": 0.9725 + }, + { + "start": 44509.96, + "end": 44511.78, + "probability": 0.9977 + }, + { + "start": 44512.38, + "end": 44515.38, + "probability": 0.8042 + }, + { + "start": 44515.84, + "end": 44518.66, + "probability": 0.6667 + }, + { + "start": 44519.4, + "end": 44524.38, + "probability": 0.9349 + }, + { + "start": 44525.08, + "end": 44529.7, + "probability": 0.9907 + }, + { + "start": 44530.04, + "end": 44535.56, + "probability": 0.9919 + }, + { + "start": 44535.76, + "end": 44536.18, + "probability": 0.5248 + }, + { + "start": 44536.34, + "end": 44537.18, + "probability": 0.6759 + }, + { + "start": 44537.26, + "end": 44538.0, + "probability": 0.8948 + }, + { + "start": 44539.74, + "end": 44542.86, + "probability": 0.1178 + }, + { + "start": 44542.86, + "end": 44542.86, + "probability": 0.0167 + }, + { + "start": 44542.86, + "end": 44546.12, + "probability": 0.8223 + }, + { + "start": 44546.94, + "end": 44548.61, + "probability": 0.864 + }, + { + "start": 44549.16, + "end": 44553.63, + "probability": 0.9719 + }, + { + "start": 44554.54, + "end": 44556.72, + "probability": 0.6051 + }, + { + "start": 44557.16, + "end": 44557.88, + "probability": 0.4696 + }, + { + "start": 44558.0, + "end": 44558.92, + "probability": 0.7169 + }, + { + "start": 44559.2, + "end": 44560.32, + "probability": 0.8589 + }, + { + "start": 44561.8, + "end": 44562.68, + "probability": 0.9504 + }, + { + "start": 44562.96, + "end": 44570.04, + "probability": 0.9083 + }, + { + "start": 44570.46, + "end": 44573.36, + "probability": 0.7366 + }, + { + "start": 44573.52, + "end": 44576.54, + "probability": 0.7874 + }, + { + "start": 44577.54, + "end": 44578.4, + "probability": 0.7332 + }, + { + "start": 44578.56, + "end": 44583.2, + "probability": 0.903 + }, + { + "start": 44584.22, + "end": 44586.24, + "probability": 0.9145 + }, + { + "start": 44587.06, + "end": 44588.06, + "probability": 0.8135 + }, + { + "start": 44588.48, + "end": 44590.48, + "probability": 0.9055 + }, + { + "start": 44590.56, + "end": 44593.25, + "probability": 0.6836 + }, + { + "start": 44594.04, + "end": 44594.46, + "probability": 0.5652 + }, + { + "start": 44594.5, + "end": 44596.14, + "probability": 0.6332 + }, + { + "start": 44596.28, + "end": 44597.78, + "probability": 0.9242 + }, + { + "start": 44597.86, + "end": 44599.9, + "probability": 0.9058 + }, + { + "start": 44599.98, + "end": 44600.9, + "probability": 0.8088 + }, + { + "start": 44601.54, + "end": 44605.12, + "probability": 0.8434 + }, + { + "start": 44605.72, + "end": 44607.82, + "probability": 0.7745 + }, + { + "start": 44608.06, + "end": 44609.38, + "probability": 0.791 + }, + { + "start": 44609.5, + "end": 44610.3, + "probability": 0.8414 + }, + { + "start": 44610.3, + "end": 44612.1, + "probability": 0.924 + }, + { + "start": 44612.24, + "end": 44614.82, + "probability": 0.9779 + }, + { + "start": 44615.58, + "end": 44618.18, + "probability": 0.6655 + }, + { + "start": 44619.98, + "end": 44624.32, + "probability": 0.7594 + }, + { + "start": 44627.12, + "end": 44628.3, + "probability": 0.7959 + }, + { + "start": 44629.02, + "end": 44630.4, + "probability": 0.8042 + }, + { + "start": 44630.86, + "end": 44632.54, + "probability": 0.7368 + }, + { + "start": 44632.9, + "end": 44635.46, + "probability": 0.8904 + }, + { + "start": 44638.34, + "end": 44642.18, + "probability": 0.7076 + }, + { + "start": 44642.44, + "end": 44644.4, + "probability": 0.9917 + }, + { + "start": 44644.5, + "end": 44645.32, + "probability": 0.9074 + }, + { + "start": 44648.24, + "end": 44650.12, + "probability": 0.845 + }, + { + "start": 44650.82, + "end": 44651.94, + "probability": 0.9849 + }, + { + "start": 44653.12, + "end": 44655.02, + "probability": 0.938 + }, + { + "start": 44655.72, + "end": 44657.98, + "probability": 0.9778 + }, + { + "start": 44658.8, + "end": 44661.54, + "probability": 0.9215 + }, + { + "start": 44661.96, + "end": 44663.53, + "probability": 0.6053 + }, + { + "start": 44664.92, + "end": 44665.5, + "probability": 0.0203 + }, + { + "start": 44667.26, + "end": 44667.58, + "probability": 0.147 + }, + { + "start": 44669.64, + "end": 44674.24, + "probability": 0.8179 + }, + { + "start": 44674.42, + "end": 44676.47, + "probability": 0.5673 + }, + { + "start": 44677.36, + "end": 44677.86, + "probability": 0.7422 + }, + { + "start": 44679.16, + "end": 44680.5, + "probability": 0.4407 + }, + { + "start": 44680.58, + "end": 44680.96, + "probability": 0.5842 + }, + { + "start": 44681.04, + "end": 44681.65, + "probability": 0.735 + }, + { + "start": 44681.86, + "end": 44683.08, + "probability": 0.672 + }, + { + "start": 44683.48, + "end": 44684.22, + "probability": 0.7808 + }, + { + "start": 44684.96, + "end": 44687.32, + "probability": 0.9629 + }, + { + "start": 44687.32, + "end": 44691.32, + "probability": 0.9979 + }, + { + "start": 44691.56, + "end": 44693.2, + "probability": 0.9667 + }, + { + "start": 44693.92, + "end": 44694.44, + "probability": 0.5616 + }, + { + "start": 44694.84, + "end": 44695.9, + "probability": 0.6515 + }, + { + "start": 44696.66, + "end": 44697.72, + "probability": 0.9761 + }, + { + "start": 44697.86, + "end": 44703.48, + "probability": 0.953 + }, + { + "start": 44704.56, + "end": 44706.24, + "probability": 0.959 + }, + { + "start": 44707.34, + "end": 44708.08, + "probability": 0.9868 + }, + { + "start": 44708.18, + "end": 44711.9, + "probability": 0.9551 + }, + { + "start": 44712.1, + "end": 44716.1, + "probability": 0.5302 + }, + { + "start": 44717.1, + "end": 44720.38, + "probability": 0.7506 + }, + { + "start": 44720.96, + "end": 44721.76, + "probability": 0.7641 + }, + { + "start": 44722.34, + "end": 44722.88, + "probability": 0.2759 + }, + { + "start": 44723.08, + "end": 44728.9, + "probability": 0.8435 + }, + { + "start": 44729.06, + "end": 44730.42, + "probability": 0.6812 + }, + { + "start": 44731.04, + "end": 44731.8, + "probability": 0.758 + }, + { + "start": 44732.9, + "end": 44735.58, + "probability": 0.9946 + }, + { + "start": 44735.58, + "end": 44739.2, + "probability": 0.8994 + }, + { + "start": 44739.36, + "end": 44739.8, + "probability": 0.7945 + }, + { + "start": 44739.8, + "end": 44740.32, + "probability": 0.8161 + }, + { + "start": 44740.44, + "end": 44741.02, + "probability": 0.8797 + }, + { + "start": 44741.48, + "end": 44743.16, + "probability": 0.9579 + }, + { + "start": 44743.24, + "end": 44746.8, + "probability": 0.9783 + }, + { + "start": 44747.46, + "end": 44748.22, + "probability": 0.8954 + }, + { + "start": 44748.58, + "end": 44750.61, + "probability": 0.9097 + }, + { + "start": 44752.22, + "end": 44752.86, + "probability": 0.578 + }, + { + "start": 44753.2, + "end": 44753.66, + "probability": 0.6674 + }, + { + "start": 44753.76, + "end": 44755.02, + "probability": 0.9033 + }, + { + "start": 44755.16, + "end": 44757.58, + "probability": 0.8166 + }, + { + "start": 44758.88, + "end": 44760.36, + "probability": 0.9364 + }, + { + "start": 44763.48, + "end": 44765.96, + "probability": 0.9321 + }, + { + "start": 44766.24, + "end": 44767.84, + "probability": 0.809 + }, + { + "start": 44767.98, + "end": 44773.0, + "probability": 0.971 + }, + { + "start": 44773.46, + "end": 44775.18, + "probability": 0.6795 + }, + { + "start": 44775.76, + "end": 44776.1, + "probability": 0.6173 + }, + { + "start": 44776.38, + "end": 44776.54, + "probability": 0.788 + }, + { + "start": 44777.82, + "end": 44779.84, + "probability": 0.9633 + }, + { + "start": 44780.89, + "end": 44785.34, + "probability": 0.9869 + }, + { + "start": 44785.74, + "end": 44789.52, + "probability": 0.9822 + }, + { + "start": 44790.2, + "end": 44793.8, + "probability": 0.8452 + }, + { + "start": 44794.24, + "end": 44794.44, + "probability": 0.5866 + }, + { + "start": 44794.64, + "end": 44795.9, + "probability": 0.9647 + }, + { + "start": 44796.96, + "end": 44797.32, + "probability": 0.7758 + }, + { + "start": 44797.4, + "end": 44801.48, + "probability": 0.9696 + }, + { + "start": 44801.68, + "end": 44803.98, + "probability": 0.8943 + }, + { + "start": 44804.5, + "end": 44807.96, + "probability": 0.9849 + }, + { + "start": 44807.96, + "end": 44810.12, + "probability": 0.9888 + }, + { + "start": 44811.24, + "end": 44815.34, + "probability": 0.9651 + }, + { + "start": 44816.16, + "end": 44816.42, + "probability": 0.5507 + }, + { + "start": 44817.44, + "end": 44819.42, + "probability": 0.6733 + }, + { + "start": 44819.74, + "end": 44821.18, + "probability": 0.8521 + }, + { + "start": 44821.84, + "end": 44822.4, + "probability": 0.7034 + }, + { + "start": 44824.08, + "end": 44824.82, + "probability": 0.7442 + }, + { + "start": 44825.6, + "end": 44828.7, + "probability": 0.9967 + }, + { + "start": 44829.02, + "end": 44829.72, + "probability": 0.7489 + }, + { + "start": 44830.3, + "end": 44831.24, + "probability": 0.7534 + }, + { + "start": 44832.02, + "end": 44834.93, + "probability": 0.8815 + }, + { + "start": 44835.2, + "end": 44835.62, + "probability": 0.9243 + }, + { + "start": 44835.7, + "end": 44836.24, + "probability": 0.6655 + }, + { + "start": 44836.52, + "end": 44838.1, + "probability": 0.9843 + }, + { + "start": 44838.68, + "end": 44842.42, + "probability": 0.8458 + }, + { + "start": 44842.72, + "end": 44844.0, + "probability": 0.8397 + }, + { + "start": 44845.54, + "end": 44846.48, + "probability": 0.9424 + }, + { + "start": 44847.18, + "end": 44848.12, + "probability": 0.9746 + }, + { + "start": 44848.6, + "end": 44849.66, + "probability": 0.9717 + }, + { + "start": 44849.92, + "end": 44851.6, + "probability": 0.9551 + }, + { + "start": 44852.68, + "end": 44856.26, + "probability": 0.8736 + }, + { + "start": 44857.12, + "end": 44857.88, + "probability": 0.9746 + }, + { + "start": 44859.22, + "end": 44861.28, + "probability": 0.9556 + }, + { + "start": 44861.84, + "end": 44863.22, + "probability": 0.9457 + }, + { + "start": 44863.58, + "end": 44867.76, + "probability": 0.8984 + }, + { + "start": 44867.96, + "end": 44872.55, + "probability": 0.9893 + }, + { + "start": 44873.72, + "end": 44874.1, + "probability": 0.6845 + }, + { + "start": 44875.78, + "end": 44877.7, + "probability": 0.7217 + }, + { + "start": 44877.7, + "end": 44880.42, + "probability": 0.8476 + }, + { + "start": 44881.24, + "end": 44884.57, + "probability": 0.8516 + }, + { + "start": 44884.96, + "end": 44885.6, + "probability": 0.8187 + }, + { + "start": 44887.22, + "end": 44888.52, + "probability": 0.9152 + }, + { + "start": 44890.82, + "end": 44893.4, + "probability": 0.9907 + }, + { + "start": 44894.42, + "end": 44895.16, + "probability": 0.7993 + }, + { + "start": 44897.22, + "end": 44897.42, + "probability": 0.3945 + }, + { + "start": 44897.44, + "end": 44897.92, + "probability": 0.7769 + }, + { + "start": 44897.96, + "end": 44902.26, + "probability": 0.7311 + }, + { + "start": 44902.56, + "end": 44903.21, + "probability": 0.4986 + }, + { + "start": 44904.36, + "end": 44904.5, + "probability": 0.4991 + }, + { + "start": 44906.66, + "end": 44908.0, + "probability": 0.9951 + }, + { + "start": 44908.82, + "end": 44909.2, + "probability": 0.744 + }, + { + "start": 44909.96, + "end": 44910.32, + "probability": 0.9059 + }, + { + "start": 44911.7, + "end": 44916.82, + "probability": 0.9442 + }, + { + "start": 44917.5, + "end": 44920.08, + "probability": 0.7655 + }, + { + "start": 44920.94, + "end": 44922.32, + "probability": 0.9839 + }, + { + "start": 44923.52, + "end": 44926.2, + "probability": 0.787 + }, + { + "start": 44926.32, + "end": 44926.74, + "probability": 0.8791 + }, + { + "start": 44926.82, + "end": 44931.18, + "probability": 0.5941 + }, + { + "start": 44931.18, + "end": 44933.04, + "probability": 0.7366 + }, + { + "start": 44933.22, + "end": 44934.16, + "probability": 0.41 + }, + { + "start": 44934.98, + "end": 44935.44, + "probability": 0.5354 + }, + { + "start": 44935.81, + "end": 44939.03, + "probability": 0.9873 + }, + { + "start": 44940.0, + "end": 44941.84, + "probability": 0.9722 + }, + { + "start": 44941.9, + "end": 44942.46, + "probability": 0.8728 + }, + { + "start": 44942.54, + "end": 44943.08, + "probability": 0.5379 + }, + { + "start": 44943.2, + "end": 44944.12, + "probability": 0.7363 + }, + { + "start": 44944.94, + "end": 44946.46, + "probability": 0.7557 + }, + { + "start": 44950.6, + "end": 44952.94, + "probability": 0.8797 + }, + { + "start": 44954.12, + "end": 44956.76, + "probability": 0.6328 + }, + { + "start": 44957.44, + "end": 44959.02, + "probability": 0.7408 + }, + { + "start": 44959.8, + "end": 44960.4, + "probability": 0.6092 + }, + { + "start": 44961.26, + "end": 44962.02, + "probability": 0.7196 + }, + { + "start": 44962.28, + "end": 44963.17, + "probability": 0.998 + }, + { + "start": 44963.46, + "end": 44963.64, + "probability": 0.1875 + }, + { + "start": 44963.68, + "end": 44964.17, + "probability": 0.8442 + }, + { + "start": 44964.36, + "end": 44967.14, + "probability": 0.8699 + }, + { + "start": 44967.76, + "end": 44968.16, + "probability": 0.0409 + }, + { + "start": 44968.54, + "end": 44969.28, + "probability": 0.4055 + }, + { + "start": 44969.66, + "end": 44969.76, + "probability": 0.7397 + }, + { + "start": 44969.9, + "end": 44970.72, + "probability": 0.85 + }, + { + "start": 44971.12, + "end": 44973.0, + "probability": 0.7529 + }, + { + "start": 44973.44, + "end": 44975.72, + "probability": 0.7373 + }, + { + "start": 44975.72, + "end": 44976.6, + "probability": 0.8179 + }, + { + "start": 44977.1, + "end": 44977.7, + "probability": 0.979 + }, + { + "start": 44978.58, + "end": 44979.4, + "probability": 0.5138 + }, + { + "start": 44980.02, + "end": 44981.62, + "probability": 0.7805 + }, + { + "start": 44982.46, + "end": 44983.52, + "probability": 0.8828 + }, + { + "start": 44983.92, + "end": 44985.06, + "probability": 0.7909 + }, + { + "start": 44985.64, + "end": 44986.2, + "probability": 0.8586 + }, + { + "start": 44986.66, + "end": 44987.9, + "probability": 0.6681 + }, + { + "start": 44988.92, + "end": 44991.28, + "probability": 0.9902 + }, + { + "start": 44992.72, + "end": 44992.88, + "probability": 0.5345 + }, + { + "start": 44994.24, + "end": 44994.72, + "probability": 0.4674 + }, + { + "start": 44995.34, + "end": 44998.56, + "probability": 0.9095 + }, + { + "start": 44999.2, + "end": 44999.88, + "probability": 0.7135 + }, + { + "start": 45000.64, + "end": 45001.28, + "probability": 0.4536 + }, + { + "start": 45001.88, + "end": 45002.3, + "probability": 0.521 + }, + { + "start": 45002.76, + "end": 45004.62, + "probability": 0.9163 + }, + { + "start": 45006.2, + "end": 45006.6, + "probability": 0.8595 + }, + { + "start": 45007.88, + "end": 45008.26, + "probability": 0.9525 + }, + { + "start": 45009.06, + "end": 45009.56, + "probability": 0.4506 + }, + { + "start": 45009.58, + "end": 45012.85, + "probability": 0.8865 + }, + { + "start": 45014.06, + "end": 45014.44, + "probability": 0.3857 + }, + { + "start": 45015.84, + "end": 45017.9, + "probability": 0.7812 + }, + { + "start": 45018.5, + "end": 45019.12, + "probability": 0.7259 + }, + { + "start": 45019.18, + "end": 45020.32, + "probability": 0.8104 + }, + { + "start": 45020.32, + "end": 45021.18, + "probability": 0.973 + }, + { + "start": 45021.24, + "end": 45022.18, + "probability": 0.9603 + }, + { + "start": 45022.22, + "end": 45022.32, + "probability": 0.416 + }, + { + "start": 45022.8, + "end": 45023.6, + "probability": 0.9785 + }, + { + "start": 45026.14, + "end": 45027.4, + "probability": 0.9353 + }, + { + "start": 45029.74, + "end": 45030.88, + "probability": 0.8352 + }, + { + "start": 45031.82, + "end": 45032.42, + "probability": 0.6312 + }, + { + "start": 45032.88, + "end": 45033.72, + "probability": 0.6653 + }, + { + "start": 45033.86, + "end": 45035.94, + "probability": 0.7845 + }, + { + "start": 45035.98, + "end": 45038.8, + "probability": 0.5222 + }, + { + "start": 45039.22, + "end": 45041.12, + "probability": 0.9238 + }, + { + "start": 45041.38, + "end": 45042.28, + "probability": 0.8443 + }, + { + "start": 45042.88, + "end": 45043.54, + "probability": 0.9604 + }, + { + "start": 45044.36, + "end": 45045.08, + "probability": 0.7307 + }, + { + "start": 45047.5, + "end": 45048.34, + "probability": 0.6259 + }, + { + "start": 45049.84, + "end": 45051.04, + "probability": 0.5192 + }, + { + "start": 45052.72, + "end": 45053.36, + "probability": 0.9484 + }, + { + "start": 45054.22, + "end": 45054.92, + "probability": 0.6856 + }, + { + "start": 45055.04, + "end": 45056.24, + "probability": 0.6949 + }, + { + "start": 45056.42, + "end": 45060.38, + "probability": 0.9889 + }, + { + "start": 45060.38, + "end": 45064.64, + "probability": 0.9658 + }, + { + "start": 45066.58, + "end": 45067.6, + "probability": 0.333 + }, + { + "start": 45068.08, + "end": 45070.24, + "probability": 0.9404 + }, + { + "start": 45070.6, + "end": 45071.86, + "probability": 0.5324 + }, + { + "start": 45072.88, + "end": 45074.1, + "probability": 0.69 + }, + { + "start": 45074.76, + "end": 45077.88, + "probability": 0.9104 + }, + { + "start": 45078.2, + "end": 45081.68, + "probability": 0.9562 + }, + { + "start": 45084.06, + "end": 45085.1, + "probability": 0.4997 + }, + { + "start": 45086.52, + "end": 45087.96, + "probability": 0.9131 + }, + { + "start": 45089.66, + "end": 45093.46, + "probability": 0.8869 + }, + { + "start": 45094.08, + "end": 45096.2, + "probability": 0.5532 + }, + { + "start": 45098.86, + "end": 45100.64, + "probability": 0.7363 + }, + { + "start": 45100.8, + "end": 45102.42, + "probability": 0.7283 + }, + { + "start": 45104.0, + "end": 45105.46, + "probability": 0.6992 + }, + { + "start": 45106.0, + "end": 45106.51, + "probability": 0.7845 + }, + { + "start": 45107.52, + "end": 45108.78, + "probability": 0.9602 + }, + { + "start": 45109.68, + "end": 45110.34, + "probability": 0.7787 + }, + { + "start": 45110.6, + "end": 45110.94, + "probability": 0.6 + }, + { + "start": 45111.0, + "end": 45111.2, + "probability": 0.6356 + }, + { + "start": 45114.1, + "end": 45114.78, + "probability": 0.607 + }, + { + "start": 45115.48, + "end": 45118.1, + "probability": 0.2247 + }, + { + "start": 45118.2, + "end": 45119.18, + "probability": 0.6317 + }, + { + "start": 45119.38, + "end": 45120.74, + "probability": 0.5094 + }, + { + "start": 45120.9, + "end": 45121.02, + "probability": 0.2787 + }, + { + "start": 45122.52, + "end": 45125.4, + "probability": 0.3514 + }, + { + "start": 45125.68, + "end": 45126.38, + "probability": 0.9658 + }, + { + "start": 45127.34, + "end": 45130.14, + "probability": 0.4155 + }, + { + "start": 45130.76, + "end": 45131.2, + "probability": 0.153 + }, + { + "start": 45131.2, + "end": 45131.2, + "probability": 0.1986 + }, + { + "start": 45131.2, + "end": 45131.2, + "probability": 0.3484 + }, + { + "start": 45131.2, + "end": 45131.42, + "probability": 0.5235 + }, + { + "start": 45131.6, + "end": 45133.92, + "probability": 0.5557 + }, + { + "start": 45134.02, + "end": 45134.38, + "probability": 0.0545 + }, + { + "start": 45134.38, + "end": 45134.74, + "probability": 0.3904 + }, + { + "start": 45134.88, + "end": 45137.2, + "probability": 0.7781 + }, + { + "start": 45137.38, + "end": 45138.92, + "probability": 0.7458 + }, + { + "start": 45139.1, + "end": 45139.46, + "probability": 0.9372 + }, + { + "start": 45139.66, + "end": 45140.1, + "probability": 0.8776 + }, + { + "start": 45140.7, + "end": 45143.5, + "probability": 0.9252 + }, + { + "start": 45144.16, + "end": 45144.44, + "probability": 0.3943 + }, + { + "start": 45144.44, + "end": 45147.0, + "probability": 0.6487 + }, + { + "start": 45147.3, + "end": 45147.84, + "probability": 0.7783 + }, + { + "start": 45147.86, + "end": 45148.72, + "probability": 0.9097 + }, + { + "start": 45149.14, + "end": 45149.48, + "probability": 0.5894 + }, + { + "start": 45149.64, + "end": 45150.24, + "probability": 0.4895 + }, + { + "start": 45150.26, + "end": 45151.78, + "probability": 0.8872 + }, + { + "start": 45152.04, + "end": 45153.28, + "probability": 0.3881 + }, + { + "start": 45153.4, + "end": 45156.18, + "probability": 0.7252 + }, + { + "start": 45156.88, + "end": 45159.32, + "probability": 0.9927 + }, + { + "start": 45160.1, + "end": 45162.74, + "probability": 0.6199 + }, + { + "start": 45162.74, + "end": 45163.08, + "probability": 0.0608 + }, + { + "start": 45163.1, + "end": 45163.82, + "probability": 0.781 + }, + { + "start": 45164.22, + "end": 45165.56, + "probability": 0.873 + }, + { + "start": 45165.62, + "end": 45167.36, + "probability": 0.7628 + }, + { + "start": 45167.64, + "end": 45168.62, + "probability": 0.6815 + }, + { + "start": 45168.88, + "end": 45169.42, + "probability": 0.7571 + }, + { + "start": 45169.8, + "end": 45170.7, + "probability": 0.8447 + }, + { + "start": 45170.82, + "end": 45171.64, + "probability": 0.8921 + }, + { + "start": 45172.98, + "end": 45176.6, + "probability": 0.855 + }, + { + "start": 45176.6, + "end": 45179.44, + "probability": 0.9461 + }, + { + "start": 45180.54, + "end": 45181.38, + "probability": 0.9357 + }, + { + "start": 45182.02, + "end": 45182.96, + "probability": 0.791 + }, + { + "start": 45183.32, + "end": 45184.1, + "probability": 0.6089 + }, + { + "start": 45184.66, + "end": 45184.98, + "probability": 0.7295 + }, + { + "start": 45184.98, + "end": 45187.86, + "probability": 0.8285 + }, + { + "start": 45188.18, + "end": 45189.12, + "probability": 0.9307 + }, + { + "start": 45189.86, + "end": 45191.98, + "probability": 0.8426 + }, + { + "start": 45192.32, + "end": 45193.06, + "probability": 0.9242 + }, + { + "start": 45193.2, + "end": 45194.2, + "probability": 0.7784 + }, + { + "start": 45194.3, + "end": 45194.9, + "probability": 0.5468 + }, + { + "start": 45194.94, + "end": 45195.02, + "probability": 0.6947 + }, + { + "start": 45195.1, + "end": 45195.78, + "probability": 0.9937 + }, + { + "start": 45196.53, + "end": 45200.62, + "probability": 0.9801 + }, + { + "start": 45200.74, + "end": 45203.16, + "probability": 0.8716 + }, + { + "start": 45203.28, + "end": 45204.96, + "probability": 0.8782 + }, + { + "start": 45205.46, + "end": 45207.78, + "probability": 0.8397 + }, + { + "start": 45207.98, + "end": 45210.44, + "probability": 0.8923 + }, + { + "start": 45211.56, + "end": 45212.24, + "probability": 0.9023 + }, + { + "start": 45212.64, + "end": 45213.66, + "probability": 0.7411 + }, + { + "start": 45213.78, + "end": 45213.8, + "probability": 0.3058 + }, + { + "start": 45214.02, + "end": 45217.16, + "probability": 0.7179 + }, + { + "start": 45217.36, + "end": 45220.84, + "probability": 0.9984 + }, + { + "start": 45221.02, + "end": 45222.02, + "probability": 0.7298 + }, + { + "start": 45222.02, + "end": 45222.38, + "probability": 0.1593 + }, + { + "start": 45222.56, + "end": 45222.98, + "probability": 0.5243 + }, + { + "start": 45223.06, + "end": 45225.92, + "probability": 0.9639 + }, + { + "start": 45225.98, + "end": 45227.98, + "probability": 0.8164 + }, + { + "start": 45228.96, + "end": 45230.26, + "probability": 0.974 + }, + { + "start": 45232.07, + "end": 45234.44, + "probability": 0.954 + }, + { + "start": 45235.76, + "end": 45240.22, + "probability": 0.5116 + }, + { + "start": 45240.32, + "end": 45243.55, + "probability": 0.9037 + }, + { + "start": 45244.22, + "end": 45247.54, + "probability": 0.9355 + }, + { + "start": 45247.64, + "end": 45248.24, + "probability": 0.7543 + }, + { + "start": 45249.14, + "end": 45249.76, + "probability": 0.6405 + }, + { + "start": 45250.0, + "end": 45252.12, + "probability": 0.997 + }, + { + "start": 45253.6, + "end": 45253.62, + "probability": 0.229 + }, + { + "start": 45253.62, + "end": 45254.18, + "probability": 0.9604 + }, + { + "start": 45254.72, + "end": 45258.12, + "probability": 0.9173 + }, + { + "start": 45258.78, + "end": 45259.3, + "probability": 0.8518 + }, + { + "start": 45260.02, + "end": 45261.02, + "probability": 0.9556 + }, + { + "start": 45262.06, + "end": 45263.26, + "probability": 0.697 + }, + { + "start": 45264.14, + "end": 45268.02, + "probability": 0.9328 + }, + { + "start": 45268.48, + "end": 45270.38, + "probability": 0.875 + }, + { + "start": 45270.58, + "end": 45271.42, + "probability": 0.7023 + }, + { + "start": 45271.56, + "end": 45272.1, + "probability": 0.6371 + }, + { + "start": 45272.98, + "end": 45278.08, + "probability": 0.9644 + }, + { + "start": 45278.1, + "end": 45279.5, + "probability": 0.8909 + }, + { + "start": 45280.44, + "end": 45281.04, + "probability": 0.9336 + }, + { + "start": 45281.76, + "end": 45283.32, + "probability": 0.7776 + }, + { + "start": 45283.86, + "end": 45285.6, + "probability": 0.7411 + }, + { + "start": 45286.24, + "end": 45287.22, + "probability": 0.3802 + }, + { + "start": 45287.72, + "end": 45290.5, + "probability": 0.9915 + }, + { + "start": 45291.02, + "end": 45292.72, + "probability": 0.9864 + }, + { + "start": 45293.38, + "end": 45297.68, + "probability": 0.979 + }, + { + "start": 45299.34, + "end": 45301.6, + "probability": 0.9936 + }, + { + "start": 45302.06, + "end": 45304.23, + "probability": 0.9013 + }, + { + "start": 45304.96, + "end": 45307.02, + "probability": 0.873 + }, + { + "start": 45307.16, + "end": 45307.46, + "probability": 0.4041 + }, + { + "start": 45307.58, + "end": 45311.4, + "probability": 0.979 + }, + { + "start": 45312.5, + "end": 45316.78, + "probability": 0.9954 + }, + { + "start": 45317.36, + "end": 45319.17, + "probability": 0.8655 + }, + { + "start": 45320.04, + "end": 45322.84, + "probability": 0.9 + }, + { + "start": 45323.28, + "end": 45325.02, + "probability": 0.7797 + }, + { + "start": 45325.54, + "end": 45326.08, + "probability": 0.9461 + }, + { + "start": 45326.84, + "end": 45327.48, + "probability": 0.7666 + }, + { + "start": 45328.22, + "end": 45333.22, + "probability": 0.9825 + }, + { + "start": 45333.22, + "end": 45335.68, + "probability": 0.9948 + }, + { + "start": 45336.4, + "end": 45336.44, + "probability": 0.1714 + }, + { + "start": 45336.56, + "end": 45341.76, + "probability": 0.9149 + }, + { + "start": 45342.02, + "end": 45343.08, + "probability": 0.932 + }, + { + "start": 45343.7, + "end": 45345.06, + "probability": 0.5216 + }, + { + "start": 45345.06, + "end": 45346.18, + "probability": 0.8787 + }, + { + "start": 45346.26, + "end": 45347.22, + "probability": 0.4122 + }, + { + "start": 45347.4, + "end": 45347.76, + "probability": 0.5507 + }, + { + "start": 45348.48, + "end": 45348.64, + "probability": 0.742 + }, + { + "start": 45348.68, + "end": 45349.99, + "probability": 0.2686 + }, + { + "start": 45350.14, + "end": 45350.74, + "probability": 0.513 + }, + { + "start": 45351.04, + "end": 45351.42, + "probability": 0.7597 + }, + { + "start": 45351.74, + "end": 45351.9, + "probability": 0.5134 + }, + { + "start": 45352.08, + "end": 45352.62, + "probability": 0.7699 + }, + { + "start": 45352.84, + "end": 45354.02, + "probability": 0.8936 + }, + { + "start": 45354.26, + "end": 45354.7, + "probability": 0.8859 + }, + { + "start": 45355.46, + "end": 45358.2, + "probability": 0.969 + }, + { + "start": 45359.74, + "end": 45361.08, + "probability": 0.5607 + }, + { + "start": 45361.88, + "end": 45365.62, + "probability": 0.9443 + }, + { + "start": 45367.74, + "end": 45368.52, + "probability": 0.5422 + }, + { + "start": 45369.04, + "end": 45371.16, + "probability": 0.6301 + }, + { + "start": 45371.82, + "end": 45373.98, + "probability": 0.9103 + }, + { + "start": 45374.84, + "end": 45377.98, + "probability": 0.8834 + }, + { + "start": 45378.14, + "end": 45379.38, + "probability": 0.6085 + }, + { + "start": 45379.82, + "end": 45381.88, + "probability": 0.9937 + }, + { + "start": 45382.38, + "end": 45382.7, + "probability": 0.5637 + }, + { + "start": 45384.06, + "end": 45386.68, + "probability": 0.7733 + }, + { + "start": 45387.32, + "end": 45387.86, + "probability": 0.5021 + }, + { + "start": 45388.22, + "end": 45389.28, + "probability": 0.9257 + }, + { + "start": 45389.38, + "end": 45390.76, + "probability": 0.9412 + }, + { + "start": 45390.82, + "end": 45391.26, + "probability": 0.7468 + }, + { + "start": 45391.32, + "end": 45393.92, + "probability": 0.9575 + }, + { + "start": 45394.14, + "end": 45395.46, + "probability": 0.6731 + }, + { + "start": 45396.1, + "end": 45396.56, + "probability": 0.7593 + }, + { + "start": 45396.7, + "end": 45399.94, + "probability": 0.9914 + }, + { + "start": 45400.16, + "end": 45400.57, + "probability": 0.6185 + }, + { + "start": 45402.08, + "end": 45402.7, + "probability": 0.7378 + }, + { + "start": 45402.78, + "end": 45403.37, + "probability": 0.1184 + }, + { + "start": 45405.54, + "end": 45406.26, + "probability": 0.3547 + }, + { + "start": 45406.36, + "end": 45406.8, + "probability": 0.9482 + }, + { + "start": 45407.22, + "end": 45408.52, + "probability": 0.4924 + }, + { + "start": 45410.42, + "end": 45410.7, + "probability": 0.6925 + }, + { + "start": 45411.76, + "end": 45413.64, + "probability": 0.4401 + }, + { + "start": 45414.6, + "end": 45415.88, + "probability": 0.6138 + }, + { + "start": 45417.02, + "end": 45417.84, + "probability": 0.9908 + }, + { + "start": 45418.84, + "end": 45419.88, + "probability": 0.828 + }, + { + "start": 45420.88, + "end": 45422.68, + "probability": 0.8536 + }, + { + "start": 45423.38, + "end": 45427.36, + "probability": 0.3077 + }, + { + "start": 45427.92, + "end": 45429.3, + "probability": 0.2237 + }, + { + "start": 45429.3, + "end": 45429.3, + "probability": 0.1112 + }, + { + "start": 45429.3, + "end": 45429.6, + "probability": 0.2715 + }, + { + "start": 45429.62, + "end": 45430.08, + "probability": 0.2643 + }, + { + "start": 45430.16, + "end": 45430.74, + "probability": 0.6269 + }, + { + "start": 45431.54, + "end": 45432.16, + "probability": 0.7125 + }, + { + "start": 45432.56, + "end": 45433.08, + "probability": 0.3255 + }, + { + "start": 45433.94, + "end": 45434.02, + "probability": 0.3657 + }, + { + "start": 45434.18, + "end": 45434.46, + "probability": 0.8053 + }, + { + "start": 45434.66, + "end": 45436.34, + "probability": 0.1053 + }, + { + "start": 45437.08, + "end": 45440.56, + "probability": 0.6675 + }, + { + "start": 45441.04, + "end": 45441.28, + "probability": 0.6599 + }, + { + "start": 45441.46, + "end": 45441.56, + "probability": 0.7061 + }, + { + "start": 45441.64, + "end": 45442.1, + "probability": 0.9225 + }, + { + "start": 45442.5, + "end": 45443.82, + "probability": 0.8855 + }, + { + "start": 45444.06, + "end": 45444.8, + "probability": 0.1265 + }, + { + "start": 45444.88, + "end": 45445.5, + "probability": 0.9372 + }, + { + "start": 45445.5, + "end": 45447.42, + "probability": 0.9058 + }, + { + "start": 45448.34, + "end": 45450.02, + "probability": 0.9506 + }, + { + "start": 45450.74, + "end": 45451.72, + "probability": 0.6511 + }, + { + "start": 45452.24, + "end": 45453.94, + "probability": 0.79 + }, + { + "start": 45454.7, + "end": 45456.58, + "probability": 0.6741 + }, + { + "start": 45458.52, + "end": 45459.1, + "probability": 0.713 + }, + { + "start": 45459.34, + "end": 45460.54, + "probability": 0.9634 + }, + { + "start": 45460.62, + "end": 45461.72, + "probability": 0.9639 + }, + { + "start": 45461.92, + "end": 45462.82, + "probability": 0.8636 + }, + { + "start": 45462.92, + "end": 45463.06, + "probability": 0.3015 + }, + { + "start": 45463.52, + "end": 45464.08, + "probability": 0.4166 + }, + { + "start": 45464.88, + "end": 45467.44, + "probability": 0.8334 + }, + { + "start": 45467.92, + "end": 45470.68, + "probability": 0.942 + }, + { + "start": 45471.04, + "end": 45471.54, + "probability": 0.4388 + }, + { + "start": 45472.78, + "end": 45475.72, + "probability": 0.9563 + }, + { + "start": 45476.32, + "end": 45479.34, + "probability": 0.917 + }, + { + "start": 45479.34, + "end": 45481.32, + "probability": 0.9902 + }, + { + "start": 45481.74, + "end": 45487.41, + "probability": 0.9502 + }, + { + "start": 45487.46, + "end": 45490.38, + "probability": 0.7574 + }, + { + "start": 45490.54, + "end": 45491.17, + "probability": 0.8718 + }, + { + "start": 45491.24, + "end": 45491.42, + "probability": 0.6873 + }, + { + "start": 45491.5, + "end": 45494.33, + "probability": 0.9105 + }, + { + "start": 45496.26, + "end": 45496.36, + "probability": 0.6167 + }, + { + "start": 45497.16, + "end": 45498.12, + "probability": 0.0985 + }, + { + "start": 45498.2, + "end": 45499.16, + "probability": 0.756 + }, + { + "start": 45499.82, + "end": 45500.8, + "probability": 0.9365 + }, + { + "start": 45500.82, + "end": 45501.6, + "probability": 0.6829 + }, + { + "start": 45501.9, + "end": 45505.02, + "probability": 0.9535 + }, + { + "start": 45505.18, + "end": 45506.78, + "probability": 0.6729 + }, + { + "start": 45507.04, + "end": 45508.3, + "probability": 0.4648 + }, + { + "start": 45509.14, + "end": 45509.42, + "probability": 0.678 + }, + { + "start": 45509.5, + "end": 45511.82, + "probability": 0.739 + }, + { + "start": 45511.88, + "end": 45516.28, + "probability": 0.9392 + }, + { + "start": 45516.7, + "end": 45519.88, + "probability": 0.9314 + }, + { + "start": 45520.9, + "end": 45521.12, + "probability": 0.3661 + }, + { + "start": 45521.12, + "end": 45523.92, + "probability": 0.9351 + }, + { + "start": 45525.2, + "end": 45527.46, + "probability": 0.3664 + }, + { + "start": 45528.12, + "end": 45531.54, + "probability": 0.9224 + }, + { + "start": 45532.58, + "end": 45533.5, + "probability": 0.9604 + }, + { + "start": 45536.62, + "end": 45540.36, + "probability": 0.8909 + }, + { + "start": 45541.14, + "end": 45542.18, + "probability": 0.6951 + }, + { + "start": 45542.46, + "end": 45542.98, + "probability": 0.5419 + }, + { + "start": 45543.22, + "end": 45544.54, + "probability": 0.7759 + }, + { + "start": 45546.76, + "end": 45551.74, + "probability": 0.9797 + }, + { + "start": 45551.74, + "end": 45554.02, + "probability": 0.9971 + }, + { + "start": 45554.76, + "end": 45555.34, + "probability": 0.3821 + }, + { + "start": 45556.94, + "end": 45559.44, + "probability": 0.6755 + }, + { + "start": 45562.7, + "end": 45564.34, + "probability": 0.449 + }, + { + "start": 45564.52, + "end": 45565.14, + "probability": 0.3402 + }, + { + "start": 45565.28, + "end": 45567.28, + "probability": 0.8466 + }, + { + "start": 45567.42, + "end": 45568.58, + "probability": 0.6982 + }, + { + "start": 45569.36, + "end": 45570.15, + "probability": 0.9321 + }, + { + "start": 45571.04, + "end": 45572.5, + "probability": 0.8891 + }, + { + "start": 45573.58, + "end": 45577.14, + "probability": 0.9747 + }, + { + "start": 45578.54, + "end": 45581.44, + "probability": 0.8351 + }, + { + "start": 45582.84, + "end": 45583.32, + "probability": 0.7294 + }, + { + "start": 45584.7, + "end": 45585.14, + "probability": 0.9077 + }, + { + "start": 45585.86, + "end": 45586.18, + "probability": 0.9489 + }, + { + "start": 45586.84, + "end": 45587.82, + "probability": 0.7041 + }, + { + "start": 45587.94, + "end": 45590.14, + "probability": 0.55 + }, + { + "start": 45591.28, + "end": 45593.46, + "probability": 0.9855 + }, + { + "start": 45594.22, + "end": 45597.1, + "probability": 0.9731 + }, + { + "start": 45597.56, + "end": 45600.63, + "probability": 0.9858 + }, + { + "start": 45600.78, + "end": 45601.12, + "probability": 0.7479 + }, + { + "start": 45604.12, + "end": 45606.3, + "probability": 0.999 + }, + { + "start": 45608.6, + "end": 45609.62, + "probability": 0.5552 + }, + { + "start": 45610.6, + "end": 45611.66, + "probability": 0.6859 + }, + { + "start": 45612.96, + "end": 45615.34, + "probability": 0.9692 + }, + { + "start": 45616.46, + "end": 45617.14, + "probability": 0.7946 + }, + { + "start": 45617.84, + "end": 45624.48, + "probability": 0.9902 + }, + { + "start": 45625.22, + "end": 45626.78, + "probability": 0.7446 + }, + { + "start": 45628.04, + "end": 45629.81, + "probability": 0.5511 + }, + { + "start": 45630.76, + "end": 45634.86, + "probability": 0.9825 + }, + { + "start": 45635.96, + "end": 45636.92, + "probability": 0.9757 + }, + { + "start": 45638.18, + "end": 45640.76, + "probability": 0.6382 + }, + { + "start": 45641.76, + "end": 45642.8, + "probability": 0.5051 + }, + { + "start": 45643.92, + "end": 45644.44, + "probability": 0.5757 + }, + { + "start": 45644.84, + "end": 45645.89, + "probability": 0.9062 + }, + { + "start": 45646.4, + "end": 45648.16, + "probability": 0.994 + }, + { + "start": 45648.36, + "end": 45649.34, + "probability": 0.5798 + }, + { + "start": 45650.78, + "end": 45656.44, + "probability": 0.957 + }, + { + "start": 45657.1, + "end": 45658.08, + "probability": 0.9576 + }, + { + "start": 45658.96, + "end": 45660.18, + "probability": 0.774 + }, + { + "start": 45661.22, + "end": 45662.01, + "probability": 0.959 + }, + { + "start": 45663.38, + "end": 45664.58, + "probability": 0.9941 + }, + { + "start": 45665.84, + "end": 45666.54, + "probability": 0.9178 + }, + { + "start": 45668.62, + "end": 45670.24, + "probability": 0.9819 + }, + { + "start": 45671.34, + "end": 45677.12, + "probability": 0.9024 + }, + { + "start": 45678.58, + "end": 45678.92, + "probability": 0.8201 + }, + { + "start": 45679.66, + "end": 45682.91, + "probability": 0.9971 + }, + { + "start": 45684.6, + "end": 45685.46, + "probability": 0.7346 + }, + { + "start": 45686.54, + "end": 45689.32, + "probability": 0.985 + }, + { + "start": 45690.3, + "end": 45692.42, + "probability": 0.9649 + }, + { + "start": 45693.82, + "end": 45696.62, + "probability": 0.794 + }, + { + "start": 45697.46, + "end": 45700.04, + "probability": 0.907 + }, + { + "start": 45701.08, + "end": 45702.8, + "probability": 0.9857 + }, + { + "start": 45703.6, + "end": 45705.32, + "probability": 0.7252 + }, + { + "start": 45707.24, + "end": 45708.08, + "probability": 0.8074 + }, + { + "start": 45709.68, + "end": 45711.38, + "probability": 0.9957 + }, + { + "start": 45711.76, + "end": 45714.48, + "probability": 0.9314 + }, + { + "start": 45714.82, + "end": 45719.5, + "probability": 0.7927 + }, + { + "start": 45719.64, + "end": 45720.26, + "probability": 0.576 + }, + { + "start": 45720.68, + "end": 45721.6, + "probability": 0.7202 + }, + { + "start": 45722.08, + "end": 45722.48, + "probability": 0.1819 + }, + { + "start": 45722.5, + "end": 45722.7, + "probability": 0.4041 + }, + { + "start": 45722.84, + "end": 45727.46, + "probability": 0.8865 + }, + { + "start": 45727.58, + "end": 45730.02, + "probability": 0.9979 + }, + { + "start": 45730.16, + "end": 45731.7, + "probability": 0.994 + }, + { + "start": 45732.9, + "end": 45734.58, + "probability": 0.9541 + }, + { + "start": 45739.54, + "end": 45741.26, + "probability": 0.8313 + }, + { + "start": 45742.12, + "end": 45743.22, + "probability": 0.7873 + }, + { + "start": 45743.82, + "end": 45747.62, + "probability": 0.6547 + }, + { + "start": 45749.56, + "end": 45751.7, + "probability": 0.8696 + }, + { + "start": 45752.28, + "end": 45756.1, + "probability": 0.9077 + }, + { + "start": 45756.2, + "end": 45757.12, + "probability": 0.7205 + }, + { + "start": 45757.36, + "end": 45757.98, + "probability": 0.6806 + }, + { + "start": 45759.48, + "end": 45764.9, + "probability": 0.916 + }, + { + "start": 45764.9, + "end": 45768.34, + "probability": 0.9983 + }, + { + "start": 45769.1, + "end": 45769.94, + "probability": 0.6584 + }, + { + "start": 45771.0, + "end": 45772.02, + "probability": 0.7759 + }, + { + "start": 45772.38, + "end": 45778.16, + "probability": 0.9801 + }, + { + "start": 45778.24, + "end": 45778.78, + "probability": 0.8134 + }, + { + "start": 45779.32, + "end": 45781.52, + "probability": 0.9976 + }, + { + "start": 45781.78, + "end": 45784.38, + "probability": 0.99 + }, + { + "start": 45785.38, + "end": 45786.54, + "probability": 0.9819 + }, + { + "start": 45786.68, + "end": 45789.78, + "probability": 0.8584 + }, + { + "start": 45789.9, + "end": 45793.86, + "probability": 0.958 + }, + { + "start": 45794.38, + "end": 45795.14, + "probability": 0.7446 + }, + { + "start": 45795.38, + "end": 45796.46, + "probability": 0.6447 + }, + { + "start": 45797.54, + "end": 45798.08, + "probability": 0.6283 + }, + { + "start": 45798.18, + "end": 45799.74, + "probability": 0.6516 + }, + { + "start": 45799.74, + "end": 45801.26, + "probability": 0.8314 + }, + { + "start": 45801.48, + "end": 45803.14, + "probability": 0.71 + }, + { + "start": 45803.14, + "end": 45804.38, + "probability": 0.9701 + }, + { + "start": 45804.6, + "end": 45806.38, + "probability": 0.5663 + }, + { + "start": 45807.34, + "end": 45808.62, + "probability": 0.3352 + }, + { + "start": 45808.62, + "end": 45808.62, + "probability": 0.136 + }, + { + "start": 45808.62, + "end": 45809.8, + "probability": 0.6441 + }, + { + "start": 45810.5, + "end": 45813.32, + "probability": 0.9761 + }, + { + "start": 45813.82, + "end": 45814.78, + "probability": 0.6697 + }, + { + "start": 45815.5, + "end": 45817.4, + "probability": 0.8765 + }, + { + "start": 45818.12, + "end": 45818.5, + "probability": 0.8562 + }, + { + "start": 45818.6, + "end": 45822.7, + "probability": 0.9819 + }, + { + "start": 45822.86, + "end": 45824.19, + "probability": 0.974 + }, + { + "start": 45825.48, + "end": 45827.54, + "probability": 0.9798 + }, + { + "start": 45827.86, + "end": 45828.86, + "probability": 0.6983 + }, + { + "start": 45829.32, + "end": 45831.48, + "probability": 0.8667 + }, + { + "start": 45831.64, + "end": 45832.22, + "probability": 0.8809 + }, + { + "start": 45832.48, + "end": 45833.52, + "probability": 0.4985 + }, + { + "start": 45833.74, + "end": 45835.0, + "probability": 0.6595 + }, + { + "start": 45835.0, + "end": 45835.46, + "probability": 0.8052 + }, + { + "start": 45835.76, + "end": 45837.4, + "probability": 0.6814 + }, + { + "start": 45837.48, + "end": 45837.74, + "probability": 0.377 + }, + { + "start": 45839.09, + "end": 45842.04, + "probability": 0.9939 + }, + { + "start": 45843.1, + "end": 45847.8, + "probability": 0.9518 + }, + { + "start": 45849.02, + "end": 45850.94, + "probability": 0.2412 + }, + { + "start": 45851.86, + "end": 45852.24, + "probability": 0.3839 + }, + { + "start": 45852.96, + "end": 45853.98, + "probability": 0.9941 + }, + { + "start": 45854.46, + "end": 45856.48, + "probability": 0.6529 + }, + { + "start": 45857.62, + "end": 45859.4, + "probability": 0.7296 + }, + { + "start": 45860.52, + "end": 45863.11, + "probability": 0.5467 + }, + { + "start": 45863.8, + "end": 45865.98, + "probability": 0.9731 + }, + { + "start": 45866.42, + "end": 45869.32, + "probability": 0.9741 + }, + { + "start": 45870.08, + "end": 45870.58, + "probability": 0.9724 + }, + { + "start": 45871.34, + "end": 45873.08, + "probability": 0.9995 + }, + { + "start": 45873.88, + "end": 45876.18, + "probability": 0.9832 + }, + { + "start": 45877.26, + "end": 45878.96, + "probability": 0.2884 + }, + { + "start": 45879.04, + "end": 45880.22, + "probability": 0.7212 + }, + { + "start": 45880.3, + "end": 45882.9, + "probability": 0.9985 + }, + { + "start": 45883.5, + "end": 45886.12, + "probability": 0.9082 + }, + { + "start": 45887.16, + "end": 45888.9, + "probability": 0.9985 + }, + { + "start": 45889.7, + "end": 45893.48, + "probability": 0.9971 + }, + { + "start": 45894.32, + "end": 45895.96, + "probability": 0.9988 + }, + { + "start": 45896.54, + "end": 45899.84, + "probability": 0.929 + }, + { + "start": 45900.2, + "end": 45901.12, + "probability": 0.7885 + }, + { + "start": 45902.38, + "end": 45904.18, + "probability": 0.8117 + }, + { + "start": 45904.72, + "end": 45906.04, + "probability": 0.812 + }, + { + "start": 45906.56, + "end": 45908.44, + "probability": 0.9955 + }, + { + "start": 45908.52, + "end": 45909.12, + "probability": 0.5995 + }, + { + "start": 45909.48, + "end": 45909.52, + "probability": 0.9084 + }, + { + "start": 45909.56, + "end": 45913.34, + "probability": 0.79 + }, + { + "start": 45913.54, + "end": 45914.2, + "probability": 0.7098 + }, + { + "start": 45914.7, + "end": 45918.28, + "probability": 0.5909 + }, + { + "start": 45919.62, + "end": 45920.62, + "probability": 0.4075 + }, + { + "start": 45922.24, + "end": 45925.74, + "probability": 0.5814 + }, + { + "start": 45926.24, + "end": 45928.46, + "probability": 0.9863 + }, + { + "start": 45928.46, + "end": 45929.92, + "probability": 0.9307 + }, + { + "start": 45930.34, + "end": 45934.08, + "probability": 0.897 + }, + { + "start": 45934.54, + "end": 45938.58, + "probability": 0.93 + }, + { + "start": 45939.36, + "end": 45941.98, + "probability": 0.9692 + }, + { + "start": 45942.68, + "end": 45947.0, + "probability": 0.9978 + }, + { + "start": 45947.34, + "end": 45949.43, + "probability": 0.8032 + }, + { + "start": 45950.1, + "end": 45950.86, + "probability": 0.7519 + }, + { + "start": 45951.44, + "end": 45954.24, + "probability": 0.8723 + }, + { + "start": 45954.24, + "end": 45954.36, + "probability": 0.2219 + }, + { + "start": 45954.36, + "end": 45956.1, + "probability": 0.6842 + }, + { + "start": 45956.7, + "end": 45962.64, + "probability": 0.9508 + }, + { + "start": 45963.1, + "end": 45964.48, + "probability": 0.7747 + }, + { + "start": 45964.66, + "end": 45966.52, + "probability": 0.6387 + }, + { + "start": 45966.7, + "end": 45967.96, + "probability": 0.9795 + }, + { + "start": 45968.72, + "end": 45969.46, + "probability": 0.901 + }, + { + "start": 45970.26, + "end": 45973.84, + "probability": 0.9074 + }, + { + "start": 45974.02, + "end": 45977.76, + "probability": 0.8453 + }, + { + "start": 45977.76, + "end": 45981.76, + "probability": 0.9918 + }, + { + "start": 45981.76, + "end": 45983.46, + "probability": 0.7251 + }, + { + "start": 45983.54, + "end": 45983.92, + "probability": 0.7846 + }, + { + "start": 45984.76, + "end": 45987.54, + "probability": 0.9834 + }, + { + "start": 45987.54, + "end": 45990.72, + "probability": 0.9749 + }, + { + "start": 45991.32, + "end": 45992.26, + "probability": 0.9802 + }, + { + "start": 45992.48, + "end": 45994.14, + "probability": 0.5548 + }, + { + "start": 45994.5, + "end": 45994.76, + "probability": 0.9556 + }, + { + "start": 45995.16, + "end": 45998.78, + "probability": 0.9458 + }, + { + "start": 46000.06, + "end": 46002.62, + "probability": 0.7431 + }, + { + "start": 46002.74, + "end": 46003.16, + "probability": 0.8403 + }, + { + "start": 46003.54, + "end": 46005.5, + "probability": 0.8602 + }, + { + "start": 46006.02, + "end": 46010.18, + "probability": 0.9801 + }, + { + "start": 46010.36, + "end": 46010.72, + "probability": 0.9458 + }, + { + "start": 46011.98, + "end": 46013.96, + "probability": 0.9128 + }, + { + "start": 46014.36, + "end": 46015.6, + "probability": 0.9893 + }, + { + "start": 46015.74, + "end": 46018.72, + "probability": 0.87 + }, + { + "start": 46018.84, + "end": 46021.3, + "probability": 0.9044 + }, + { + "start": 46021.72, + "end": 46024.82, + "probability": 0.9123 + }, + { + "start": 46025.54, + "end": 46026.4, + "probability": 0.6425 + }, + { + "start": 46026.92, + "end": 46029.72, + "probability": 0.978 + }, + { + "start": 46031.62, + "end": 46033.2, + "probability": 0.9893 + }, + { + "start": 46033.28, + "end": 46035.2, + "probability": 0.7269 + }, + { + "start": 46035.9, + "end": 46037.31, + "probability": 0.4886 + }, + { + "start": 46037.34, + "end": 46040.02, + "probability": 0.9707 + }, + { + "start": 46040.24, + "end": 46042.22, + "probability": 0.9217 + }, + { + "start": 46042.22, + "end": 46042.3, + "probability": 0.853 + }, + { + "start": 46043.04, + "end": 46043.14, + "probability": 0.494 + }, + { + "start": 46043.7, + "end": 46044.16, + "probability": 0.1857 + }, + { + "start": 46044.4, + "end": 46044.4, + "probability": 0.1916 + }, + { + "start": 46044.4, + "end": 46044.8, + "probability": 0.2659 + }, + { + "start": 46045.0, + "end": 46045.9, + "probability": 0.9644 + }, + { + "start": 46046.64, + "end": 46047.7, + "probability": 0.7864 + }, + { + "start": 46048.6, + "end": 46050.44, + "probability": 0.9238 + }, + { + "start": 46050.52, + "end": 46051.98, + "probability": 0.8687 + }, + { + "start": 46052.74, + "end": 46054.96, + "probability": 0.2384 + }, + { + "start": 46055.74, + "end": 46056.06, + "probability": 0.0766 + }, + { + "start": 46056.12, + "end": 46060.38, + "probability": 0.9729 + }, + { + "start": 46060.96, + "end": 46061.34, + "probability": 0.5437 + }, + { + "start": 46061.46, + "end": 46062.7, + "probability": 0.6263 + }, + { + "start": 46062.84, + "end": 46063.36, + "probability": 0.8237 + }, + { + "start": 46063.56, + "end": 46063.78, + "probability": 0.7296 + }, + { + "start": 46063.8, + "end": 46065.42, + "probability": 0.6774 + }, + { + "start": 46066.04, + "end": 46067.21, + "probability": 0.8376 + }, + { + "start": 46067.46, + "end": 46068.36, + "probability": 0.8603 + }, + { + "start": 46069.1, + "end": 46071.18, + "probability": 0.6233 + }, + { + "start": 46071.28, + "end": 46071.98, + "probability": 0.4882 + }, + { + "start": 46073.0, + "end": 46075.3, + "probability": 0.798 + }, + { + "start": 46075.52, + "end": 46077.22, + "probability": 0.6381 + }, + { + "start": 46077.62, + "end": 46078.6, + "probability": 0.8453 + }, + { + "start": 46078.96, + "end": 46080.12, + "probability": 0.4162 + }, + { + "start": 46080.2, + "end": 46080.46, + "probability": 0.74 + }, + { + "start": 46081.1, + "end": 46081.62, + "probability": 0.1114 + }, + { + "start": 46082.18, + "end": 46085.92, + "probability": 0.9935 + }, + { + "start": 46086.0, + "end": 46088.08, + "probability": 0.7811 + }, + { + "start": 46088.88, + "end": 46091.1, + "probability": 0.6675 + }, + { + "start": 46091.26, + "end": 46093.26, + "probability": 0.734 + }, + { + "start": 46093.3, + "end": 46094.76, + "probability": 0.2089 + }, + { + "start": 46096.2, + "end": 46099.62, + "probability": 0.7671 + }, + { + "start": 46100.0, + "end": 46101.58, + "probability": 0.7318 + }, + { + "start": 46101.74, + "end": 46102.2, + "probability": 0.6996 + }, + { + "start": 46102.46, + "end": 46102.92, + "probability": 0.4873 + }, + { + "start": 46103.68, + "end": 46103.98, + "probability": 0.4902 + }, + { + "start": 46104.04, + "end": 46106.0, + "probability": 0.4983 + }, + { + "start": 46106.0, + "end": 46107.52, + "probability": 0.8433 + }, + { + "start": 46108.44, + "end": 46109.24, + "probability": 0.469 + }, + { + "start": 46109.54, + "end": 46110.56, + "probability": 0.6715 + }, + { + "start": 46110.78, + "end": 46113.0, + "probability": 0.8125 + }, + { + "start": 46113.2, + "end": 46115.68, + "probability": 0.998 + }, + { + "start": 46116.0, + "end": 46117.26, + "probability": 0.9582 + }, + { + "start": 46117.88, + "end": 46118.26, + "probability": 0.1833 + }, + { + "start": 46118.36, + "end": 46122.38, + "probability": 0.6658 + }, + { + "start": 46122.38, + "end": 46123.12, + "probability": 0.9139 + }, + { + "start": 46123.58, + "end": 46125.67, + "probability": 0.5617 + }, + { + "start": 46126.04, + "end": 46128.2, + "probability": 0.7902 + }, + { + "start": 46128.72, + "end": 46129.86, + "probability": 0.7484 + }, + { + "start": 46130.62, + "end": 46133.26, + "probability": 0.7816 + }, + { + "start": 46134.36, + "end": 46134.98, + "probability": 0.533 + }, + { + "start": 46135.38, + "end": 46139.18, + "probability": 0.8884 + }, + { + "start": 46139.8, + "end": 46141.94, + "probability": 0.8258 + }, + { + "start": 46142.98, + "end": 46149.18, + "probability": 0.9523 + }, + { + "start": 46149.64, + "end": 46149.98, + "probability": 0.0261 + }, + { + "start": 46150.54, + "end": 46151.16, + "probability": 0.9592 + }, + { + "start": 46151.24, + "end": 46154.12, + "probability": 0.9065 + }, + { + "start": 46154.12, + "end": 46159.1, + "probability": 0.9269 + }, + { + "start": 46159.46, + "end": 46161.18, + "probability": 0.9684 + }, + { + "start": 46161.78, + "end": 46162.82, + "probability": 0.5941 + }, + { + "start": 46163.42, + "end": 46163.86, + "probability": 0.6016 + }, + { + "start": 46164.72, + "end": 46169.18, + "probability": 0.7762 + }, + { + "start": 46169.78, + "end": 46170.56, + "probability": 0.7622 + }, + { + "start": 46171.26, + "end": 46171.64, + "probability": 0.339 + }, + { + "start": 46172.68, + "end": 46172.92, + "probability": 0.1447 + }, + { + "start": 46173.26, + "end": 46173.66, + "probability": 0.531 + }, + { + "start": 46173.7, + "end": 46174.16, + "probability": 0.191 + }, + { + "start": 46174.38, + "end": 46176.6, + "probability": 0.863 + }, + { + "start": 46177.5, + "end": 46183.8, + "probability": 0.9122 + }, + { + "start": 46184.22, + "end": 46185.86, + "probability": 0.9419 + }, + { + "start": 46185.86, + "end": 46188.28, + "probability": 0.6654 + }, + { + "start": 46188.34, + "end": 46191.72, + "probability": 0.8658 + }, + { + "start": 46192.0, + "end": 46195.32, + "probability": 0.9531 + }, + { + "start": 46195.84, + "end": 46197.08, + "probability": 0.929 + }, + { + "start": 46197.72, + "end": 46199.02, + "probability": 0.9117 + }, + { + "start": 46200.3, + "end": 46202.24, + "probability": 0.7107 + }, + { + "start": 46203.08, + "end": 46206.12, + "probability": 0.7103 + }, + { + "start": 46206.3, + "end": 46212.5, + "probability": 0.9974 + }, + { + "start": 46212.78, + "end": 46213.42, + "probability": 0.7805 + }, + { + "start": 46213.8, + "end": 46215.94, + "probability": 0.9947 + }, + { + "start": 46216.16, + "end": 46223.38, + "probability": 0.984 + }, + { + "start": 46223.66, + "end": 46224.04, + "probability": 0.8037 + }, + { + "start": 46224.78, + "end": 46226.7, + "probability": 0.967 + }, + { + "start": 46226.7, + "end": 46227.22, + "probability": 0.5414 + }, + { + "start": 46227.68, + "end": 46229.26, + "probability": 0.9629 + }, + { + "start": 46229.46, + "end": 46230.6, + "probability": 0.972 + }, + { + "start": 46231.0, + "end": 46232.27, + "probability": 0.9688 + }, + { + "start": 46233.22, + "end": 46234.9, + "probability": 0.9902 + }, + { + "start": 46235.08, + "end": 46241.0, + "probability": 0.9244 + }, + { + "start": 46241.52, + "end": 46246.26, + "probability": 0.9151 + }, + { + "start": 46246.8, + "end": 46249.36, + "probability": 0.9893 + }, + { + "start": 46249.36, + "end": 46252.18, + "probability": 0.9971 + }, + { + "start": 46252.78, + "end": 46253.96, + "probability": 0.9226 + }, + { + "start": 46254.18, + "end": 46254.68, + "probability": 0.8444 + }, + { + "start": 46255.02, + "end": 46259.41, + "probability": 0.686 + }, + { + "start": 46260.18, + "end": 46262.62, + "probability": 0.8718 + }, + { + "start": 46262.98, + "end": 46265.02, + "probability": 0.909 + }, + { + "start": 46266.0, + "end": 46266.92, + "probability": 0.8844 + }, + { + "start": 46267.1, + "end": 46268.82, + "probability": 0.6528 + }, + { + "start": 46269.24, + "end": 46271.48, + "probability": 0.7295 + }, + { + "start": 46271.54, + "end": 46274.1, + "probability": 0.9199 + }, + { + "start": 46274.2, + "end": 46274.8, + "probability": 0.7556 + }, + { + "start": 46276.2, + "end": 46277.0, + "probability": 0.6559 + }, + { + "start": 46277.6, + "end": 46279.74, + "probability": 0.8853 + }, + { + "start": 46280.16, + "end": 46282.24, + "probability": 0.869 + }, + { + "start": 46282.42, + "end": 46283.98, + "probability": 0.4543 + }, + { + "start": 46284.02, + "end": 46285.3, + "probability": 0.7947 + }, + { + "start": 46285.8, + "end": 46290.58, + "probability": 0.8201 + }, + { + "start": 46293.46, + "end": 46295.96, + "probability": 0.7455 + }, + { + "start": 46296.96, + "end": 46301.65, + "probability": 0.7779 + }, + { + "start": 46304.06, + "end": 46307.64, + "probability": 0.9515 + }, + { + "start": 46308.46, + "end": 46308.9, + "probability": 0.7378 + }, + { + "start": 46308.92, + "end": 46309.98, + "probability": 0.7707 + }, + { + "start": 46310.6, + "end": 46312.78, + "probability": 0.8882 + }, + { + "start": 46313.32, + "end": 46313.74, + "probability": 0.7866 + }, + { + "start": 46314.3, + "end": 46316.58, + "probability": 0.9502 + }, + { + "start": 46317.16, + "end": 46318.24, + "probability": 0.7479 + }, + { + "start": 46318.74, + "end": 46319.9, + "probability": 0.6824 + }, + { + "start": 46320.04, + "end": 46320.66, + "probability": 0.9563 + }, + { + "start": 46321.14, + "end": 46321.53, + "probability": 0.9428 + }, + { + "start": 46323.98, + "end": 46325.3, + "probability": 0.9951 + }, + { + "start": 46326.42, + "end": 46327.2, + "probability": 0.6699 + }, + { + "start": 46327.72, + "end": 46329.34, + "probability": 0.999 + }, + { + "start": 46330.36, + "end": 46331.68, + "probability": 0.975 + }, + { + "start": 46333.1, + "end": 46336.46, + "probability": 0.7249 + }, + { + "start": 46337.06, + "end": 46337.52, + "probability": 0.2274 + }, + { + "start": 46337.56, + "end": 46337.78, + "probability": 0.5038 + }, + { + "start": 46337.86, + "end": 46338.4, + "probability": 0.6854 + }, + { + "start": 46338.44, + "end": 46339.8, + "probability": 0.9744 + }, + { + "start": 46339.94, + "end": 46341.74, + "probability": 0.9971 + }, + { + "start": 46342.46, + "end": 46344.38, + "probability": 0.9875 + }, + { + "start": 46344.96, + "end": 46347.22, + "probability": 0.991 + }, + { + "start": 46347.84, + "end": 46349.34, + "probability": 0.7137 + }, + { + "start": 46349.88, + "end": 46350.28, + "probability": 0.5178 + }, + { + "start": 46350.88, + "end": 46351.8, + "probability": 0.5064 + }, + { + "start": 46354.68, + "end": 46356.4, + "probability": 0.8365 + }, + { + "start": 46357.88, + "end": 46359.55, + "probability": 0.9245 + }, + { + "start": 46360.82, + "end": 46361.1, + "probability": 0.5156 + }, + { + "start": 46361.68, + "end": 46362.48, + "probability": 0.7169 + }, + { + "start": 46363.44, + "end": 46364.6, + "probability": 0.6869 + }, + { + "start": 46369.82, + "end": 46370.48, + "probability": 0.7891 + }, + { + "start": 46372.32, + "end": 46374.03, + "probability": 0.6564 + }, + { + "start": 46374.52, + "end": 46375.64, + "probability": 0.8093 + }, + { + "start": 46376.9, + "end": 46378.66, + "probability": 0.9209 + }, + { + "start": 46380.45, + "end": 46384.62, + "probability": 0.866 + }, + { + "start": 46386.64, + "end": 46389.24, + "probability": 0.959 + }, + { + "start": 46389.48, + "end": 46392.98, + "probability": 0.9626 + }, + { + "start": 46393.92, + "end": 46397.42, + "probability": 0.7481 + }, + { + "start": 46399.52, + "end": 46402.3, + "probability": 0.803 + }, + { + "start": 46403.6, + "end": 46405.42, + "probability": 0.979 + }, + { + "start": 46406.46, + "end": 46410.32, + "probability": 0.8579 + }, + { + "start": 46411.44, + "end": 46412.66, + "probability": 0.9775 + }, + { + "start": 46412.82, + "end": 46415.2, + "probability": 0.81 + }, + { + "start": 46415.34, + "end": 46417.26, + "probability": 0.5625 + }, + { + "start": 46418.02, + "end": 46419.02, + "probability": 0.861 + }, + { + "start": 46419.88, + "end": 46420.94, + "probability": 0.5426 + }, + { + "start": 46421.4, + "end": 46425.31, + "probability": 0.9943 + }, + { + "start": 46426.38, + "end": 46427.94, + "probability": 0.8646 + }, + { + "start": 46428.08, + "end": 46428.42, + "probability": 0.1843 + }, + { + "start": 46428.74, + "end": 46430.22, + "probability": 0.8711 + }, + { + "start": 46431.1, + "end": 46432.54, + "probability": 0.9673 + }, + { + "start": 46433.74, + "end": 46437.02, + "probability": 0.9769 + }, + { + "start": 46437.56, + "end": 46438.15, + "probability": 0.8435 + }, + { + "start": 46439.14, + "end": 46443.42, + "probability": 0.9899 + }, + { + "start": 46444.22, + "end": 46445.04, + "probability": 0.5952 + }, + { + "start": 46446.12, + "end": 46448.24, + "probability": 0.9103 + }, + { + "start": 46449.68, + "end": 46451.88, + "probability": 0.8431 + }, + { + "start": 46453.18, + "end": 46455.7, + "probability": 0.9946 + }, + { + "start": 46456.68, + "end": 46459.72, + "probability": 0.9771 + }, + { + "start": 46460.9, + "end": 46464.16, + "probability": 0.9856 + }, + { + "start": 46464.28, + "end": 46467.22, + "probability": 0.9838 + }, + { + "start": 46468.14, + "end": 46469.78, + "probability": 0.8174 + }, + { + "start": 46470.46, + "end": 46472.08, + "probability": 0.9778 + }, + { + "start": 46472.92, + "end": 46475.5, + "probability": 0.9948 + }, + { + "start": 46476.1, + "end": 46479.12, + "probability": 0.9989 + }, + { + "start": 46480.22, + "end": 46485.86, + "probability": 0.9938 + }, + { + "start": 46486.42, + "end": 46486.74, + "probability": 0.8991 + }, + { + "start": 46487.62, + "end": 46489.84, + "probability": 0.9857 + }, + { + "start": 46489.84, + "end": 46493.96, + "probability": 0.7558 + }, + { + "start": 46494.28, + "end": 46495.26, + "probability": 0.5643 + }, + { + "start": 46495.92, + "end": 46499.46, + "probability": 0.9507 + }, + { + "start": 46499.58, + "end": 46500.44, + "probability": 0.7609 + }, + { + "start": 46500.88, + "end": 46502.08, + "probability": 0.9351 + }, + { + "start": 46502.16, + "end": 46503.88, + "probability": 0.9751 + }, + { + "start": 46504.78, + "end": 46506.1, + "probability": 0.9531 + }, + { + "start": 46506.8, + "end": 46508.92, + "probability": 0.8943 + }, + { + "start": 46509.16, + "end": 46510.26, + "probability": 0.6366 + }, + { + "start": 46511.18, + "end": 46512.9, + "probability": 0.801 + }, + { + "start": 46513.6, + "end": 46516.34, + "probability": 0.9741 + }, + { + "start": 46516.8, + "end": 46519.08, + "probability": 0.9484 + }, + { + "start": 46520.08, + "end": 46525.3, + "probability": 0.991 + }, + { + "start": 46526.04, + "end": 46528.02, + "probability": 0.9535 + }, + { + "start": 46528.72, + "end": 46530.3, + "probability": 0.9893 + }, + { + "start": 46531.12, + "end": 46534.52, + "probability": 0.9236 + }, + { + "start": 46535.2, + "end": 46538.64, + "probability": 0.9911 + }, + { + "start": 46539.38, + "end": 46540.21, + "probability": 0.9326 + }, + { + "start": 46541.96, + "end": 46546.34, + "probability": 0.9836 + }, + { + "start": 46546.96, + "end": 46549.02, + "probability": 0.9609 + }, + { + "start": 46549.84, + "end": 46550.42, + "probability": 0.9946 + }, + { + "start": 46551.1, + "end": 46553.74, + "probability": 0.9806 + }, + { + "start": 46554.44, + "end": 46555.5, + "probability": 0.5387 + }, + { + "start": 46555.58, + "end": 46562.36, + "probability": 0.9886 + }, + { + "start": 46562.78, + "end": 46563.34, + "probability": 0.771 + }, + { + "start": 46563.96, + "end": 46565.46, + "probability": 0.8887 + }, + { + "start": 46566.16, + "end": 46570.08, + "probability": 0.9618 + }, + { + "start": 46570.74, + "end": 46571.66, + "probability": 0.9811 + }, + { + "start": 46572.54, + "end": 46575.22, + "probability": 0.8601 + }, + { + "start": 46576.16, + "end": 46576.26, + "probability": 0.0663 + }, + { + "start": 46576.32, + "end": 46576.32, + "probability": 0.1735 + }, + { + "start": 46576.32, + "end": 46580.56, + "probability": 0.89 + }, + { + "start": 46581.58, + "end": 46583.18, + "probability": 0.9653 + }, + { + "start": 46584.12, + "end": 46586.6, + "probability": 0.8803 + }, + { + "start": 46587.3, + "end": 46588.32, + "probability": 0.9025 + }, + { + "start": 46588.92, + "end": 46591.44, + "probability": 0.9953 + }, + { + "start": 46592.46, + "end": 46595.68, + "probability": 0.9878 + }, + { + "start": 46597.18, + "end": 46599.47, + "probability": 0.9641 + }, + { + "start": 46600.52, + "end": 46601.4, + "probability": 0.9073 + }, + { + "start": 46601.9, + "end": 46603.52, + "probability": 0.9967 + }, + { + "start": 46604.56, + "end": 46605.64, + "probability": 0.9992 + }, + { + "start": 46607.36, + "end": 46610.04, + "probability": 0.9988 + }, + { + "start": 46611.16, + "end": 46612.8, + "probability": 0.9597 + }, + { + "start": 46612.92, + "end": 46614.28, + "probability": 0.96 + }, + { + "start": 46615.16, + "end": 46618.1, + "probability": 0.994 + }, + { + "start": 46619.42, + "end": 46625.98, + "probability": 0.9759 + }, + { + "start": 46626.02, + "end": 46627.4, + "probability": 0.9076 + }, + { + "start": 46628.18, + "end": 46631.02, + "probability": 0.9067 + }, + { + "start": 46632.3, + "end": 46634.22, + "probability": 0.9916 + }, + { + "start": 46634.82, + "end": 46639.28, + "probability": 0.9805 + }, + { + "start": 46640.54, + "end": 46641.86, + "probability": 0.5769 + }, + { + "start": 46642.12, + "end": 46644.12, + "probability": 0.5136 + }, + { + "start": 46645.1, + "end": 46648.38, + "probability": 0.986 + }, + { + "start": 46648.68, + "end": 46652.26, + "probability": 0.6291 + }, + { + "start": 46652.9, + "end": 46657.96, + "probability": 0.9869 + }, + { + "start": 46658.94, + "end": 46662.78, + "probability": 0.9929 + }, + { + "start": 46663.8, + "end": 46666.58, + "probability": 0.9727 + }, + { + "start": 46667.32, + "end": 46669.04, + "probability": 0.9596 + }, + { + "start": 46670.34, + "end": 46671.08, + "probability": 0.9946 + }, + { + "start": 46672.74, + "end": 46676.56, + "probability": 0.9622 + }, + { + "start": 46677.4, + "end": 46680.78, + "probability": 0.9601 + }, + { + "start": 46681.64, + "end": 46683.78, + "probability": 0.9971 + }, + { + "start": 46684.54, + "end": 46685.88, + "probability": 0.5126 + }, + { + "start": 46686.8, + "end": 46687.6, + "probability": 0.9829 + }, + { + "start": 46688.2, + "end": 46690.42, + "probability": 0.8651 + }, + { + "start": 46690.54, + "end": 46690.82, + "probability": 0.8662 + }, + { + "start": 46691.22, + "end": 46693.4, + "probability": 0.7979 + }, + { + "start": 46693.48, + "end": 46694.0, + "probability": 0.9062 + }, + { + "start": 46694.14, + "end": 46697.1, + "probability": 0.9751 + }, + { + "start": 46698.36, + "end": 46698.78, + "probability": 0.6686 + }, + { + "start": 46699.66, + "end": 46701.02, + "probability": 0.9761 + }, + { + "start": 46701.78, + "end": 46702.68, + "probability": 0.9554 + }, + { + "start": 46703.86, + "end": 46707.04, + "probability": 0.6366 + }, + { + "start": 46707.16, + "end": 46708.02, + "probability": 0.9114 + }, + { + "start": 46708.76, + "end": 46711.08, + "probability": 0.9839 + }, + { + "start": 46711.68, + "end": 46712.14, + "probability": 0.7996 + }, + { + "start": 46713.16, + "end": 46715.92, + "probability": 0.8757 + }, + { + "start": 46716.44, + "end": 46718.04, + "probability": 0.9832 + }, + { + "start": 46718.72, + "end": 46719.94, + "probability": 0.9779 + }, + { + "start": 46720.1, + "end": 46720.84, + "probability": 0.7438 + }, + { + "start": 46721.56, + "end": 46722.3, + "probability": 0.9961 + }, + { + "start": 46723.1, + "end": 46727.66, + "probability": 0.9906 + }, + { + "start": 46728.64, + "end": 46731.2, + "probability": 0.8799 + }, + { + "start": 46732.9, + "end": 46734.34, + "probability": 0.9539 + }, + { + "start": 46735.76, + "end": 46738.66, + "probability": 0.998 + }, + { + "start": 46739.44, + "end": 46741.08, + "probability": 0.8072 + }, + { + "start": 46741.78, + "end": 46745.86, + "probability": 0.9908 + }, + { + "start": 46746.56, + "end": 46748.96, + "probability": 0.9443 + }, + { + "start": 46749.5, + "end": 46750.76, + "probability": 0.9928 + }, + { + "start": 46751.4, + "end": 46753.42, + "probability": 0.9734 + }, + { + "start": 46754.3, + "end": 46756.94, + "probability": 0.9824 + }, + { + "start": 46757.62, + "end": 46758.28, + "probability": 0.8326 + }, + { + "start": 46759.1, + "end": 46761.41, + "probability": 0.9763 + }, + { + "start": 46762.12, + "end": 46766.2, + "probability": 0.9951 + }, + { + "start": 46766.8, + "end": 46767.52, + "probability": 0.9702 + }, + { + "start": 46768.12, + "end": 46769.48, + "probability": 0.9673 + }, + { + "start": 46769.6, + "end": 46770.06, + "probability": 0.8112 + }, + { + "start": 46770.97, + "end": 46772.53, + "probability": 0.7739 + }, + { + "start": 46773.34, + "end": 46775.6, + "probability": 0.9695 + }, + { + "start": 46777.22, + "end": 46780.2, + "probability": 0.7602 + }, + { + "start": 46781.22, + "end": 46784.92, + "probability": 0.986 + }, + { + "start": 46785.76, + "end": 46788.14, + "probability": 0.9757 + }, + { + "start": 46789.08, + "end": 46790.96, + "probability": 0.96 + }, + { + "start": 46791.9, + "end": 46792.4, + "probability": 0.5939 + }, + { + "start": 46792.6, + "end": 46794.02, + "probability": 0.9945 + }, + { + "start": 46794.92, + "end": 46796.08, + "probability": 0.9399 + }, + { + "start": 46797.08, + "end": 46799.38, + "probability": 0.8508 + }, + { + "start": 46800.44, + "end": 46803.3, + "probability": 0.9559 + }, + { + "start": 46803.98, + "end": 46806.62, + "probability": 0.8121 + }, + { + "start": 46807.44, + "end": 46811.12, + "probability": 0.9492 + }, + { + "start": 46812.72, + "end": 46817.14, + "probability": 0.9361 + }, + { + "start": 46818.1, + "end": 46820.37, + "probability": 0.9892 + }, + { + "start": 46821.42, + "end": 46823.5, + "probability": 0.8348 + }, + { + "start": 46824.38, + "end": 46825.68, + "probability": 0.977 + }, + { + "start": 46825.78, + "end": 46827.14, + "probability": 0.8647 + }, + { + "start": 46827.26, + "end": 46827.78, + "probability": 0.6897 + }, + { + "start": 46828.92, + "end": 46829.84, + "probability": 0.8502 + }, + { + "start": 46830.5, + "end": 46834.1, + "probability": 0.9575 + }, + { + "start": 46834.78, + "end": 46838.58, + "probability": 0.979 + }, + { + "start": 46839.5, + "end": 46841.22, + "probability": 0.9678 + }, + { + "start": 46842.14, + "end": 46843.38, + "probability": 0.8794 + }, + { + "start": 46843.46, + "end": 46844.5, + "probability": 0.6552 + }, + { + "start": 46844.94, + "end": 46846.42, + "probability": 0.76 + }, + { + "start": 46846.94, + "end": 46848.82, + "probability": 0.9946 + }, + { + "start": 46849.32, + "end": 46850.74, + "probability": 0.9752 + }, + { + "start": 46851.5, + "end": 46853.1, + "probability": 0.9932 + }, + { + "start": 46853.78, + "end": 46855.46, + "probability": 0.9541 + }, + { + "start": 46857.2, + "end": 46860.82, + "probability": 0.9307 + }, + { + "start": 46861.9, + "end": 46865.42, + "probability": 0.8208 + }, + { + "start": 46866.62, + "end": 46868.92, + "probability": 0.8528 + }, + { + "start": 46869.74, + "end": 46872.88, + "probability": 0.9194 + }, + { + "start": 46874.16, + "end": 46875.58, + "probability": 0.9827 + }, + { + "start": 46876.2, + "end": 46878.44, + "probability": 0.8643 + }, + { + "start": 46879.16, + "end": 46880.42, + "probability": 0.7144 + }, + { + "start": 46881.04, + "end": 46882.9, + "probability": 0.9712 + }, + { + "start": 46883.5, + "end": 46885.94, + "probability": 0.998 + }, + { + "start": 46886.82, + "end": 46889.56, + "probability": 0.9321 + }, + { + "start": 46890.42, + "end": 46892.36, + "probability": 0.8964 + }, + { + "start": 46893.32, + "end": 46894.78, + "probability": 0.592 + }, + { + "start": 46895.06, + "end": 46896.26, + "probability": 0.8775 + }, + { + "start": 46896.64, + "end": 46898.64, + "probability": 0.98 + }, + { + "start": 46898.72, + "end": 46899.29, + "probability": 0.9839 + }, + { + "start": 46900.0, + "end": 46902.38, + "probability": 0.8021 + }, + { + "start": 46903.74, + "end": 46908.22, + "probability": 0.9182 + }, + { + "start": 46908.98, + "end": 46910.34, + "probability": 0.7644 + }, + { + "start": 46910.68, + "end": 46912.64, + "probability": 0.8922 + }, + { + "start": 46913.9, + "end": 46915.6, + "probability": 0.8584 + }, + { + "start": 46916.18, + "end": 46917.92, + "probability": 0.8351 + }, + { + "start": 46918.18, + "end": 46918.9, + "probability": 0.6891 + }, + { + "start": 46918.94, + "end": 46919.64, + "probability": 0.8027 + }, + { + "start": 46921.08, + "end": 46922.56, + "probability": 0.7476 + }, + { + "start": 46923.56, + "end": 46927.72, + "probability": 0.9851 + }, + { + "start": 46928.9, + "end": 46931.96, + "probability": 0.9399 + }, + { + "start": 46932.4, + "end": 46933.96, + "probability": 0.9932 + }, + { + "start": 46934.46, + "end": 46936.62, + "probability": 0.9723 + }, + { + "start": 46937.56, + "end": 46942.08, + "probability": 0.9811 + }, + { + "start": 46943.12, + "end": 46944.28, + "probability": 0.7795 + }, + { + "start": 46945.0, + "end": 46946.94, + "probability": 0.9829 + }, + { + "start": 46947.28, + "end": 46948.36, + "probability": 0.9512 + }, + { + "start": 46949.22, + "end": 46951.06, + "probability": 0.9945 + }, + { + "start": 46951.9, + "end": 46952.64, + "probability": 0.9518 + }, + { + "start": 46953.44, + "end": 46956.88, + "probability": 0.9699 + }, + { + "start": 46958.16, + "end": 46960.34, + "probability": 0.9867 + }, + { + "start": 46961.8, + "end": 46965.04, + "probability": 0.8586 + }, + { + "start": 46965.82, + "end": 46966.82, + "probability": 0.9539 + }, + { + "start": 46967.92, + "end": 46968.7, + "probability": 0.9961 + }, + { + "start": 46970.02, + "end": 46972.58, + "probability": 0.9954 + }, + { + "start": 46972.7, + "end": 46975.46, + "probability": 0.9408 + }, + { + "start": 46976.22, + "end": 46978.16, + "probability": 0.9941 + }, + { + "start": 46978.22, + "end": 46978.74, + "probability": 0.5494 + }, + { + "start": 46979.52, + "end": 46983.1, + "probability": 0.998 + }, + { + "start": 46984.6, + "end": 46985.7, + "probability": 0.825 + }, + { + "start": 46986.88, + "end": 46991.38, + "probability": 0.9004 + }, + { + "start": 46991.98, + "end": 46995.06, + "probability": 0.9817 + }, + { + "start": 46996.54, + "end": 46999.04, + "probability": 0.9835 + }, + { + "start": 46999.18, + "end": 47000.0, + "probability": 0.7634 + }, + { + "start": 47001.36, + "end": 47002.5, + "probability": 0.9956 + }, + { + "start": 47003.12, + "end": 47004.94, + "probability": 0.9982 + }, + { + "start": 47006.26, + "end": 47007.88, + "probability": 0.9928 + }, + { + "start": 47009.4, + "end": 47010.2, + "probability": 0.9264 + }, + { + "start": 47010.9, + "end": 47012.78, + "probability": 0.9655 + }, + { + "start": 47014.16, + "end": 47016.74, + "probability": 0.9161 + }, + { + "start": 47017.28, + "end": 47018.34, + "probability": 0.9683 + }, + { + "start": 47019.78, + "end": 47022.26, + "probability": 0.9527 + }, + { + "start": 47022.4, + "end": 47022.76, + "probability": 0.5366 + }, + { + "start": 47023.96, + "end": 47025.0, + "probability": 0.5691 + }, + { + "start": 47025.64, + "end": 47026.38, + "probability": 0.9888 + }, + { + "start": 47026.44, + "end": 47027.61, + "probability": 0.998 + }, + { + "start": 47028.52, + "end": 47031.22, + "probability": 0.9011 + }, + { + "start": 47031.7, + "end": 47033.18, + "probability": 0.8164 + }, + { + "start": 47034.08, + "end": 47037.08, + "probability": 0.994 + }, + { + "start": 47037.52, + "end": 47038.78, + "probability": 0.6467 + }, + { + "start": 47039.94, + "end": 47041.41, + "probability": 0.8804 + }, + { + "start": 47042.12, + "end": 47045.16, + "probability": 0.9553 + }, + { + "start": 47045.72, + "end": 47046.56, + "probability": 0.7715 + }, + { + "start": 47047.08, + "end": 47048.46, + "probability": 0.7212 + }, + { + "start": 47048.98, + "end": 47049.98, + "probability": 0.9838 + }, + { + "start": 47052.54, + "end": 47053.31, + "probability": 0.1725 + }, + { + "start": 47054.86, + "end": 47057.58, + "probability": 0.8718 + }, + { + "start": 47058.32, + "end": 47060.82, + "probability": 0.9715 + }, + { + "start": 47061.72, + "end": 47062.77, + "probability": 0.9137 + }, + { + "start": 47063.36, + "end": 47063.98, + "probability": 0.9868 + }, + { + "start": 47064.42, + "end": 47065.15, + "probability": 0.9688 + }, + { + "start": 47065.8, + "end": 47068.74, + "probability": 0.9878 + }, + { + "start": 47069.84, + "end": 47071.42, + "probability": 0.9689 + }, + { + "start": 47072.4, + "end": 47073.84, + "probability": 0.9149 + }, + { + "start": 47074.56, + "end": 47078.28, + "probability": 0.9875 + }, + { + "start": 47079.22, + "end": 47081.16, + "probability": 0.6996 + }, + { + "start": 47082.08, + "end": 47084.68, + "probability": 0.6093 + }, + { + "start": 47085.34, + "end": 47088.46, + "probability": 0.998 + }, + { + "start": 47089.44, + "end": 47090.54, + "probability": 0.9723 + }, + { + "start": 47091.06, + "end": 47092.94, + "probability": 0.9828 + }, + { + "start": 47093.64, + "end": 47095.92, + "probability": 0.9692 + }, + { + "start": 47096.54, + "end": 47097.3, + "probability": 0.7749 + }, + { + "start": 47098.06, + "end": 47103.54, + "probability": 0.9915 + }, + { + "start": 47103.66, + "end": 47105.68, + "probability": 0.4976 + }, + { + "start": 47106.6, + "end": 47109.14, + "probability": 0.9629 + }, + { + "start": 47110.44, + "end": 47113.2, + "probability": 0.9707 + }, + { + "start": 47114.14, + "end": 47115.19, + "probability": 0.9844 + }, + { + "start": 47115.76, + "end": 47117.84, + "probability": 0.9863 + }, + { + "start": 47118.7, + "end": 47119.72, + "probability": 0.9999 + }, + { + "start": 47120.38, + "end": 47121.9, + "probability": 0.9976 + }, + { + "start": 47122.56, + "end": 47124.2, + "probability": 0.9989 + }, + { + "start": 47125.04, + "end": 47126.1, + "probability": 0.84 + }, + { + "start": 47126.9, + "end": 47128.9, + "probability": 0.9248 + }, + { + "start": 47130.28, + "end": 47131.32, + "probability": 0.9485 + }, + { + "start": 47131.62, + "end": 47132.5, + "probability": 0.9688 + }, + { + "start": 47133.3, + "end": 47135.74, + "probability": 0.9078 + }, + { + "start": 47136.98, + "end": 47137.98, + "probability": 0.8672 + }, + { + "start": 47139.42, + "end": 47141.36, + "probability": 0.6494 + }, + { + "start": 47142.0, + "end": 47143.26, + "probability": 0.9003 + }, + { + "start": 47144.36, + "end": 47145.1, + "probability": 0.7997 + }, + { + "start": 47145.24, + "end": 47146.1, + "probability": 0.9761 + }, + { + "start": 47146.34, + "end": 47146.74, + "probability": 0.8271 + }, + { + "start": 47147.24, + "end": 47148.31, + "probability": 0.6137 + }, + { + "start": 47149.1, + "end": 47150.42, + "probability": 0.9814 + }, + { + "start": 47151.5, + "end": 47151.86, + "probability": 0.9624 + }, + { + "start": 47153.28, + "end": 47155.3, + "probability": 0.9907 + }, + { + "start": 47157.18, + "end": 47157.92, + "probability": 0.9662 + }, + { + "start": 47158.76, + "end": 47160.08, + "probability": 0.9537 + }, + { + "start": 47160.2, + "end": 47161.82, + "probability": 0.703 + }, + { + "start": 47163.0, + "end": 47163.82, + "probability": 0.9478 + }, + { + "start": 47164.36, + "end": 47165.8, + "probability": 0.967 + }, + { + "start": 47166.66, + "end": 47170.04, + "probability": 0.9169 + }, + { + "start": 47170.78, + "end": 47172.4, + "probability": 0.5694 + }, + { + "start": 47173.08, + "end": 47176.26, + "probability": 0.6768 + }, + { + "start": 47176.36, + "end": 47177.12, + "probability": 0.8818 + }, + { + "start": 47177.94, + "end": 47178.6, + "probability": 0.9825 + }, + { + "start": 47179.3, + "end": 47182.64, + "probability": 0.9926 + }, + { + "start": 47183.36, + "end": 47184.96, + "probability": 0.896 + }, + { + "start": 47186.44, + "end": 47188.36, + "probability": 0.8228 + }, + { + "start": 47188.66, + "end": 47188.94, + "probability": 0.4578 + }, + { + "start": 47188.98, + "end": 47189.52, + "probability": 0.8778 + }, + { + "start": 47192.06, + "end": 47195.82, + "probability": 0.997 + }, + { + "start": 47196.34, + "end": 47198.46, + "probability": 0.9761 + }, + { + "start": 47199.6, + "end": 47203.39, + "probability": 0.8853 + }, + { + "start": 47203.98, + "end": 47206.92, + "probability": 0.8014 + }, + { + "start": 47207.76, + "end": 47210.06, + "probability": 0.9473 + }, + { + "start": 47210.78, + "end": 47212.74, + "probability": 0.9604 + }, + { + "start": 47213.68, + "end": 47215.34, + "probability": 0.8722 + }, + { + "start": 47216.6, + "end": 47218.56, + "probability": 0.9761 + }, + { + "start": 47219.32, + "end": 47220.66, + "probability": 0.9746 + }, + { + "start": 47222.06, + "end": 47223.52, + "probability": 0.9946 + }, + { + "start": 47224.0, + "end": 47224.5, + "probability": 0.8442 + }, + { + "start": 47224.62, + "end": 47225.1, + "probability": 0.8796 + }, + { + "start": 47225.94, + "end": 47227.84, + "probability": 0.9963 + }, + { + "start": 47228.44, + "end": 47229.34, + "probability": 0.8964 + }, + { + "start": 47230.44, + "end": 47231.42, + "probability": 0.9785 + }, + { + "start": 47232.26, + "end": 47235.98, + "probability": 0.9441 + }, + { + "start": 47237.08, + "end": 47241.54, + "probability": 0.9715 + }, + { + "start": 47242.34, + "end": 47244.58, + "probability": 0.9467 + }, + { + "start": 47245.52, + "end": 47248.38, + "probability": 0.876 + }, + { + "start": 47249.52, + "end": 47250.36, + "probability": 0.9821 + }, + { + "start": 47251.12, + "end": 47252.22, + "probability": 0.9389 + }, + { + "start": 47253.5, + "end": 47254.74, + "probability": 0.762 + }, + { + "start": 47255.44, + "end": 47257.86, + "probability": 0.6796 + }, + { + "start": 47258.38, + "end": 47259.52, + "probability": 0.958 + }, + { + "start": 47260.26, + "end": 47262.76, + "probability": 0.7961 + }, + { + "start": 47263.42, + "end": 47266.16, + "probability": 0.9915 + }, + { + "start": 47267.28, + "end": 47270.66, + "probability": 0.9399 + }, + { + "start": 47271.6, + "end": 47272.54, + "probability": 0.6656 + }, + { + "start": 47273.26, + "end": 47274.38, + "probability": 0.5878 + }, + { + "start": 47275.18, + "end": 47275.76, + "probability": 0.9196 + }, + { + "start": 47276.46, + "end": 47280.42, + "probability": 0.9731 + }, + { + "start": 47281.28, + "end": 47283.76, + "probability": 0.9827 + }, + { + "start": 47284.5, + "end": 47285.44, + "probability": 0.9853 + }, + { + "start": 47286.22, + "end": 47289.92, + "probability": 0.9886 + }, + { + "start": 47291.0, + "end": 47292.08, + "probability": 0.816 + }, + { + "start": 47293.36, + "end": 47295.76, + "probability": 0.833 + }, + { + "start": 47297.24, + "end": 47297.86, + "probability": 0.494 + }, + { + "start": 47300.9, + "end": 47304.04, + "probability": 0.9915 + }, + { + "start": 47304.34, + "end": 47305.44, + "probability": 0.9528 + }, + { + "start": 47305.92, + "end": 47307.12, + "probability": 0.7469 + }, + { + "start": 47308.0, + "end": 47308.85, + "probability": 0.9697 + }, + { + "start": 47310.02, + "end": 47313.44, + "probability": 0.998 + }, + { + "start": 47313.58, + "end": 47314.24, + "probability": 0.9351 + }, + { + "start": 47315.1, + "end": 47316.3, + "probability": 0.79 + }, + { + "start": 47317.4, + "end": 47319.72, + "probability": 0.88 + }, + { + "start": 47320.32, + "end": 47322.32, + "probability": 0.8413 + }, + { + "start": 47322.96, + "end": 47324.96, + "probability": 0.9657 + }, + { + "start": 47325.06, + "end": 47326.3, + "probability": 0.7482 + }, + { + "start": 47327.0, + "end": 47327.98, + "probability": 0.4436 + }, + { + "start": 47328.94, + "end": 47329.16, + "probability": 0.9558 + }, + { + "start": 47329.92, + "end": 47332.14, + "probability": 0.9479 + }, + { + "start": 47332.96, + "end": 47333.38, + "probability": 0.5615 + }, + { + "start": 47333.52, + "end": 47334.66, + "probability": 0.9833 + }, + { + "start": 47334.74, + "end": 47335.08, + "probability": 0.8736 + }, + { + "start": 47335.58, + "end": 47337.44, + "probability": 0.9839 + }, + { + "start": 47337.52, + "end": 47338.76, + "probability": 0.9987 + }, + { + "start": 47339.34, + "end": 47341.12, + "probability": 0.7714 + }, + { + "start": 47341.56, + "end": 47342.67, + "probability": 0.9541 + }, + { + "start": 47344.08, + "end": 47347.62, + "probability": 0.8938 + }, + { + "start": 47348.4, + "end": 47352.84, + "probability": 0.877 + }, + { + "start": 47353.8, + "end": 47356.7, + "probability": 0.843 + }, + { + "start": 47358.72, + "end": 47359.92, + "probability": 0.9976 + }, + { + "start": 47362.88, + "end": 47365.9, + "probability": 0.7593 + }, + { + "start": 47366.44, + "end": 47368.8, + "probability": 0.8844 + }, + { + "start": 47369.22, + "end": 47371.4, + "probability": 0.9906 + }, + { + "start": 47373.2, + "end": 47373.52, + "probability": 0.7197 + }, + { + "start": 47373.86, + "end": 47375.8, + "probability": 0.9973 + }, + { + "start": 47376.0, + "end": 47376.12, + "probability": 0.2589 + }, + { + "start": 47376.18, + "end": 47376.64, + "probability": 0.554 + }, + { + "start": 47376.66, + "end": 47377.4, + "probability": 0.8314 + }, + { + "start": 47378.22, + "end": 47379.92, + "probability": 0.9135 + }, + { + "start": 47381.08, + "end": 47383.52, + "probability": 0.9989 + }, + { + "start": 47384.76, + "end": 47387.42, + "probability": 0.6703 + }, + { + "start": 47389.14, + "end": 47393.88, + "probability": 0.9302 + }, + { + "start": 47394.96, + "end": 47396.74, + "probability": 0.9697 + }, + { + "start": 47397.42, + "end": 47398.2, + "probability": 0.5653 + }, + { + "start": 47399.0, + "end": 47401.44, + "probability": 0.9647 + }, + { + "start": 47402.26, + "end": 47405.52, + "probability": 0.9661 + }, + { + "start": 47406.06, + "end": 47406.86, + "probability": 0.8667 + }, + { + "start": 47407.46, + "end": 47408.82, + "probability": 0.9996 + }, + { + "start": 47409.66, + "end": 47410.82, + "probability": 0.9912 + }, + { + "start": 47411.82, + "end": 47414.88, + "probability": 0.9952 + }, + { + "start": 47415.44, + "end": 47417.28, + "probability": 0.9194 + }, + { + "start": 47418.08, + "end": 47421.22, + "probability": 0.9307 + }, + { + "start": 47423.1, + "end": 47423.38, + "probability": 0.7387 + }, + { + "start": 47423.96, + "end": 47427.5, + "probability": 0.9924 + }, + { + "start": 47428.84, + "end": 47429.3, + "probability": 0.9775 + }, + { + "start": 47430.7, + "end": 47433.54, + "probability": 0.9579 + }, + { + "start": 47434.28, + "end": 47435.46, + "probability": 0.9827 + }, + { + "start": 47436.44, + "end": 47437.1, + "probability": 0.9965 + }, + { + "start": 47438.1, + "end": 47440.14, + "probability": 0.9846 + }, + { + "start": 47440.96, + "end": 47444.26, + "probability": 0.9775 + }, + { + "start": 47444.8, + "end": 47446.36, + "probability": 0.9564 + }, + { + "start": 47446.98, + "end": 47450.48, + "probability": 0.9691 + }, + { + "start": 47450.96, + "end": 47452.02, + "probability": 0.9762 + }, + { + "start": 47452.08, + "end": 47453.14, + "probability": 0.9742 + }, + { + "start": 47453.86, + "end": 47455.1, + "probability": 0.959 + }, + { + "start": 47455.7, + "end": 47458.37, + "probability": 0.7805 + }, + { + "start": 47459.24, + "end": 47461.96, + "probability": 0.5697 + }, + { + "start": 47462.94, + "end": 47463.5, + "probability": 0.6541 + }, + { + "start": 47464.18, + "end": 47467.44, + "probability": 0.9712 + }, + { + "start": 47467.46, + "end": 47467.74, + "probability": 0.8601 + }, + { + "start": 47467.86, + "end": 47468.22, + "probability": 0.5354 + }, + { + "start": 47469.4, + "end": 47471.12, + "probability": 0.9978 + }, + { + "start": 47471.98, + "end": 47474.33, + "probability": 0.9061 + }, + { + "start": 47474.62, + "end": 47476.6, + "probability": 0.9678 + }, + { + "start": 47477.06, + "end": 47478.02, + "probability": 0.9568 + }, + { + "start": 47479.16, + "end": 47481.6, + "probability": 0.907 + }, + { + "start": 47482.92, + "end": 47483.14, + "probability": 0.5564 + }, + { + "start": 47483.26, + "end": 47484.68, + "probability": 0.6537 + }, + { + "start": 47484.86, + "end": 47486.7, + "probability": 0.783 + }, + { + "start": 47487.32, + "end": 47487.7, + "probability": 0.6154 + }, + { + "start": 47487.8, + "end": 47490.66, + "probability": 0.9619 + }, + { + "start": 47490.67, + "end": 47493.3, + "probability": 0.9951 + }, + { + "start": 47494.78, + "end": 47494.78, + "probability": 0.9189 + }, + { + "start": 47496.34, + "end": 47499.28, + "probability": 0.8726 + }, + { + "start": 47499.5, + "end": 47501.86, + "probability": 0.9325 + }, + { + "start": 47503.3, + "end": 47504.62, + "probability": 0.9883 + }, + { + "start": 47505.9, + "end": 47507.16, + "probability": 0.9374 + }, + { + "start": 47507.98, + "end": 47511.12, + "probability": 0.9591 + }, + { + "start": 47512.28, + "end": 47514.57, + "probability": 0.9967 + }, + { + "start": 47515.18, + "end": 47520.08, + "probability": 0.9642 + }, + { + "start": 47520.42, + "end": 47521.92, + "probability": 0.6082 + }, + { + "start": 47523.88, + "end": 47525.54, + "probability": 0.9745 + }, + { + "start": 47526.26, + "end": 47528.82, + "probability": 0.8512 + }, + { + "start": 47530.24, + "end": 47533.04, + "probability": 0.9956 + }, + { + "start": 47533.9, + "end": 47536.1, + "probability": 0.6868 + }, + { + "start": 47536.76, + "end": 47537.7, + "probability": 0.6681 + }, + { + "start": 47538.36, + "end": 47539.56, + "probability": 0.8979 + }, + { + "start": 47540.36, + "end": 47541.02, + "probability": 0.9404 + }, + { + "start": 47541.62, + "end": 47542.78, + "probability": 0.5828 + }, + { + "start": 47543.58, + "end": 47546.96, + "probability": 0.9471 + }, + { + "start": 47547.5, + "end": 47549.24, + "probability": 0.8716 + }, + { + "start": 47550.26, + "end": 47550.44, + "probability": 0.6326 + }, + { + "start": 47550.64, + "end": 47551.7, + "probability": 0.7761 + }, + { + "start": 47551.82, + "end": 47553.84, + "probability": 0.9748 + }, + { + "start": 47554.08, + "end": 47556.52, + "probability": 0.8086 + }, + { + "start": 47556.74, + "end": 47557.08, + "probability": 0.955 + }, + { + "start": 47557.26, + "end": 47557.84, + "probability": 0.7027 + }, + { + "start": 47558.54, + "end": 47560.46, + "probability": 0.9667 + }, + { + "start": 47561.1, + "end": 47564.34, + "probability": 0.9715 + }, + { + "start": 47565.76, + "end": 47566.42, + "probability": 0.7417 + }, + { + "start": 47566.64, + "end": 47569.4, + "probability": 0.9907 + }, + { + "start": 47570.0, + "end": 47572.3, + "probability": 0.9016 + }, + { + "start": 47573.2, + "end": 47575.14, + "probability": 0.9859 + }, + { + "start": 47576.24, + "end": 47581.57, + "probability": 0.8888 + }, + { + "start": 47582.62, + "end": 47585.24, + "probability": 0.7033 + }, + { + "start": 47586.06, + "end": 47589.5, + "probability": 0.9704 + }, + { + "start": 47590.28, + "end": 47590.94, + "probability": 0.9937 + }, + { + "start": 47591.88, + "end": 47593.6, + "probability": 0.9935 + }, + { + "start": 47594.24, + "end": 47597.58, + "probability": 0.9985 + }, + { + "start": 47598.56, + "end": 47599.32, + "probability": 0.923 + }, + { + "start": 47599.9, + "end": 47601.8, + "probability": 0.8751 + }, + { + "start": 47602.66, + "end": 47605.24, + "probability": 0.9467 + }, + { + "start": 47606.1, + "end": 47609.41, + "probability": 0.9082 + }, + { + "start": 47610.86, + "end": 47612.54, + "probability": 0.999 + }, + { + "start": 47613.6, + "end": 47614.52, + "probability": 0.9699 + }, + { + "start": 47615.5, + "end": 47619.96, + "probability": 0.9902 + }, + { + "start": 47620.6, + "end": 47622.11, + "probability": 0.9977 + }, + { + "start": 47622.88, + "end": 47624.2, + "probability": 0.9835 + }, + { + "start": 47625.08, + "end": 47627.8, + "probability": 0.9862 + }, + { + "start": 47629.16, + "end": 47631.94, + "probability": 0.995 + }, + { + "start": 47632.54, + "end": 47635.7, + "probability": 0.9916 + }, + { + "start": 47636.36, + "end": 47637.9, + "probability": 0.8225 + }, + { + "start": 47638.32, + "end": 47639.58, + "probability": 0.828 + }, + { + "start": 47640.26, + "end": 47643.14, + "probability": 0.9696 + }, + { + "start": 47643.66, + "end": 47644.6, + "probability": 0.6578 + }, + { + "start": 47645.74, + "end": 47646.8, + "probability": 0.8669 + }, + { + "start": 47647.48, + "end": 47648.24, + "probability": 0.7472 + }, + { + "start": 47649.08, + "end": 47650.48, + "probability": 0.9863 + }, + { + "start": 47651.04, + "end": 47654.62, + "probability": 0.9249 + }, + { + "start": 47654.68, + "end": 47655.0, + "probability": 0.8717 + }, + { + "start": 47656.12, + "end": 47659.16, + "probability": 0.7809 + }, + { + "start": 47659.84, + "end": 47660.56, + "probability": 0.8467 + }, + { + "start": 47661.62, + "end": 47665.86, + "probability": 0.985 + }, + { + "start": 47666.42, + "end": 47668.62, + "probability": 0.9975 + }, + { + "start": 47669.18, + "end": 47670.72, + "probability": 0.746 + }, + { + "start": 47671.38, + "end": 47673.76, + "probability": 0.9788 + }, + { + "start": 47675.0, + "end": 47677.34, + "probability": 0.9974 + }, + { + "start": 47678.68, + "end": 47681.08, + "probability": 0.7751 + }, + { + "start": 47682.1, + "end": 47682.54, + "probability": 0.7958 + }, + { + "start": 47683.46, + "end": 47684.66, + "probability": 0.9724 + }, + { + "start": 47686.04, + "end": 47686.86, + "probability": 0.4884 + }, + { + "start": 47688.04, + "end": 47689.5, + "probability": 0.9141 + }, + { + "start": 47690.46, + "end": 47691.24, + "probability": 0.8384 + }, + { + "start": 47692.0, + "end": 47693.98, + "probability": 0.9121 + }, + { + "start": 47694.46, + "end": 47696.32, + "probability": 0.7647 + }, + { + "start": 47696.64, + "end": 47697.94, + "probability": 0.6444 + }, + { + "start": 47698.72, + "end": 47702.58, + "probability": 0.8874 + }, + { + "start": 47704.0, + "end": 47707.4, + "probability": 0.9569 + }, + { + "start": 47707.98, + "end": 47710.04, + "probability": 0.8083 + }, + { + "start": 47710.56, + "end": 47713.7, + "probability": 0.6911 + }, + { + "start": 47715.66, + "end": 47715.7, + "probability": 0.2991 + }, + { + "start": 47717.32, + "end": 47718.34, + "probability": 0.9397 + }, + { + "start": 47718.96, + "end": 47719.92, + "probability": 0.8735 + }, + { + "start": 47720.16, + "end": 47726.16, + "probability": 0.9834 + }, + { + "start": 47726.5, + "end": 47727.38, + "probability": 0.7532 + }, + { + "start": 47728.94, + "end": 47732.86, + "probability": 0.995 + }, + { + "start": 47732.92, + "end": 47734.64, + "probability": 0.9531 + }, + { + "start": 47735.34, + "end": 47735.76, + "probability": 0.8924 + }, + { + "start": 47736.32, + "end": 47738.2, + "probability": 0.7303 + }, + { + "start": 47738.62, + "end": 47739.86, + "probability": 0.9419 + }, + { + "start": 47741.7, + "end": 47745.58, + "probability": 0.9907 + }, + { + "start": 47745.64, + "end": 47746.6, + "probability": 0.8216 + }, + { + "start": 47747.28, + "end": 47748.38, + "probability": 0.8939 + }, + { + "start": 47749.1, + "end": 47751.48, + "probability": 0.9907 + }, + { + "start": 47752.24, + "end": 47755.44, + "probability": 0.9788 + }, + { + "start": 47755.52, + "end": 47756.54, + "probability": 0.9207 + }, + { + "start": 47756.74, + "end": 47758.48, + "probability": 0.9254 + }, + { + "start": 47759.04, + "end": 47760.22, + "probability": 0.929 + }, + { + "start": 47760.96, + "end": 47764.0, + "probability": 0.9957 + }, + { + "start": 47765.94, + "end": 47767.66, + "probability": 0.9901 + }, + { + "start": 47768.82, + "end": 47770.24, + "probability": 0.9801 + }, + { + "start": 47770.68, + "end": 47771.42, + "probability": 0.8261 + }, + { + "start": 47772.3, + "end": 47775.42, + "probability": 0.9368 + }, + { + "start": 47776.22, + "end": 47778.74, + "probability": 0.9372 + }, + { + "start": 47780.12, + "end": 47780.94, + "probability": 0.7592 + }, + { + "start": 47781.7, + "end": 47782.78, + "probability": 0.8809 + }, + { + "start": 47783.36, + "end": 47784.28, + "probability": 0.9128 + }, + { + "start": 47785.0, + "end": 47787.3, + "probability": 0.9243 + }, + { + "start": 47787.38, + "end": 47788.38, + "probability": 0.7484 + }, + { + "start": 47788.96, + "end": 47790.68, + "probability": 0.9902 + }, + { + "start": 47791.36, + "end": 47793.56, + "probability": 0.9932 + }, + { + "start": 47795.0, + "end": 47796.98, + "probability": 0.7935 + }, + { + "start": 47797.36, + "end": 47800.96, + "probability": 0.9838 + }, + { + "start": 47802.22, + "end": 47802.74, + "probability": 0.8486 + }, + { + "start": 47803.42, + "end": 47806.34, + "probability": 0.9744 + }, + { + "start": 47807.06, + "end": 47810.5, + "probability": 0.8804 + }, + { + "start": 47810.5, + "end": 47814.26, + "probability": 0.8623 + }, + { + "start": 47814.32, + "end": 47814.72, + "probability": 0.8386 + }, + { + "start": 47815.78, + "end": 47817.9, + "probability": 0.9971 + }, + { + "start": 47818.08, + "end": 47822.4, + "probability": 0.9427 + }, + { + "start": 47823.22, + "end": 47823.86, + "probability": 0.8726 + }, + { + "start": 47824.52, + "end": 47825.32, + "probability": 0.9049 + }, + { + "start": 47826.18, + "end": 47826.56, + "probability": 0.0673 + }, + { + "start": 47827.4, + "end": 47828.76, + "probability": 0.9126 + }, + { + "start": 47829.98, + "end": 47830.6, + "probability": 0.5542 + }, + { + "start": 47830.7, + "end": 47832.44, + "probability": 0.9656 + }, + { + "start": 47832.84, + "end": 47834.36, + "probability": 0.9608 + }, + { + "start": 47835.82, + "end": 47836.14, + "probability": 0.1285 + }, + { + "start": 47836.14, + "end": 47839.92, + "probability": 0.8102 + }, + { + "start": 47840.68, + "end": 47842.24, + "probability": 0.94 + }, + { + "start": 47843.08, + "end": 47843.68, + "probability": 0.9432 + }, + { + "start": 47844.2, + "end": 47845.92, + "probability": 0.8776 + }, + { + "start": 47846.6, + "end": 47849.12, + "probability": 0.7526 + }, + { + "start": 47849.78, + "end": 47852.04, + "probability": 0.8187 + }, + { + "start": 47852.86, + "end": 47855.28, + "probability": 0.793 + }, + { + "start": 47855.38, + "end": 47857.1, + "probability": 0.9966 + }, + { + "start": 47858.14, + "end": 47860.6, + "probability": 0.9074 + }, + { + "start": 47861.3, + "end": 47862.9, + "probability": 0.9953 + }, + { + "start": 47863.98, + "end": 47864.96, + "probability": 0.7673 + }, + { + "start": 47865.76, + "end": 47867.6, + "probability": 0.9634 + }, + { + "start": 47867.72, + "end": 47868.78, + "probability": 0.9495 + }, + { + "start": 47869.4, + "end": 47873.26, + "probability": 0.9876 + }, + { + "start": 47873.32, + "end": 47874.44, + "probability": 0.9801 + }, + { + "start": 47875.34, + "end": 47878.3, + "probability": 0.9839 + }, + { + "start": 47878.76, + "end": 47881.22, + "probability": 0.9688 + }, + { + "start": 47883.44, + "end": 47884.22, + "probability": 0.8985 + }, + { + "start": 47885.3, + "end": 47889.12, + "probability": 0.9531 + }, + { + "start": 47889.3, + "end": 47890.44, + "probability": 0.7518 + }, + { + "start": 47891.02, + "end": 47893.58, + "probability": 0.8982 + }, + { + "start": 47894.34, + "end": 47896.66, + "probability": 0.9948 + }, + { + "start": 47897.5, + "end": 47901.9, + "probability": 0.9897 + }, + { + "start": 47902.64, + "end": 47903.46, + "probability": 0.9081 + }, + { + "start": 47904.4, + "end": 47905.62, + "probability": 0.9885 + }, + { + "start": 47906.32, + "end": 47911.54, + "probability": 0.9302 + }, + { + "start": 47912.52, + "end": 47913.34, + "probability": 0.9757 + }, + { + "start": 47914.16, + "end": 47915.08, + "probability": 0.6281 + }, + { + "start": 47916.24, + "end": 47918.8, + "probability": 0.8403 + }, + { + "start": 47919.58, + "end": 47920.84, + "probability": 0.9967 + }, + { + "start": 47921.93, + "end": 47923.91, + "probability": 0.766 + }, + { + "start": 47925.0, + "end": 47926.32, + "probability": 0.9659 + }, + { + "start": 47927.24, + "end": 47929.26, + "probability": 0.9707 + }, + { + "start": 47930.48, + "end": 47934.38, + "probability": 0.9844 + }, + { + "start": 47935.3, + "end": 47936.92, + "probability": 0.7722 + }, + { + "start": 47938.04, + "end": 47939.0, + "probability": 0.8771 + }, + { + "start": 47939.78, + "end": 47941.34, + "probability": 0.803 + }, + { + "start": 47942.06, + "end": 47943.4, + "probability": 0.9517 + }, + { + "start": 47944.26, + "end": 47946.88, + "probability": 0.9959 + }, + { + "start": 47948.16, + "end": 47949.42, + "probability": 0.966 + }, + { + "start": 47949.64, + "end": 47950.5, + "probability": 0.8887 + }, + { + "start": 47950.6, + "end": 47953.9, + "probability": 0.9991 + }, + { + "start": 47954.74, + "end": 47955.22, + "probability": 0.7389 + }, + { + "start": 47956.06, + "end": 47957.0, + "probability": 0.8644 + }, + { + "start": 47958.0, + "end": 47959.48, + "probability": 0.9854 + }, + { + "start": 47960.62, + "end": 47960.98, + "probability": 0.808 + }, + { + "start": 47961.4, + "end": 47965.06, + "probability": 0.9593 + }, + { + "start": 47965.58, + "end": 47966.9, + "probability": 0.8726 + }, + { + "start": 47968.02, + "end": 47969.82, + "probability": 0.5731 + }, + { + "start": 47970.44, + "end": 47972.26, + "probability": 0.9637 + }, + { + "start": 47972.94, + "end": 47974.92, + "probability": 0.9756 + }, + { + "start": 47976.14, + "end": 47978.64, + "probability": 0.9124 + }, + { + "start": 47979.88, + "end": 47981.2, + "probability": 0.7914 + }, + { + "start": 47982.1, + "end": 47983.74, + "probability": 0.9784 + }, + { + "start": 47983.84, + "end": 47988.98, + "probability": 0.9758 + }, + { + "start": 47990.62, + "end": 47993.3, + "probability": 0.9769 + }, + { + "start": 47994.48, + "end": 47994.78, + "probability": 0.9032 + }, + { + "start": 47995.96, + "end": 48000.16, + "probability": 0.8896 + }, + { + "start": 48001.12, + "end": 48003.44, + "probability": 0.9166 + }, + { + "start": 48003.44, + "end": 48006.32, + "probability": 0.9981 + }, + { + "start": 48007.24, + "end": 48010.22, + "probability": 0.913 + }, + { + "start": 48011.04, + "end": 48013.54, + "probability": 0.991 + }, + { + "start": 48014.88, + "end": 48019.76, + "probability": 0.9977 + }, + { + "start": 48021.24, + "end": 48023.72, + "probability": 0.667 + }, + { + "start": 48023.84, + "end": 48025.26, + "probability": 0.4271 + }, + { + "start": 48025.3, + "end": 48025.76, + "probability": 0.7607 + }, + { + "start": 48026.18, + "end": 48026.52, + "probability": 0.9113 + }, + { + "start": 48027.02, + "end": 48027.96, + "probability": 0.9807 + }, + { + "start": 48028.52, + "end": 48029.46, + "probability": 0.9862 + }, + { + "start": 48030.68, + "end": 48036.18, + "probability": 0.9896 + }, + { + "start": 48037.24, + "end": 48039.24, + "probability": 0.8133 + }, + { + "start": 48040.08, + "end": 48041.56, + "probability": 0.8721 + }, + { + "start": 48042.24, + "end": 48043.36, + "probability": 0.8866 + }, + { + "start": 48044.72, + "end": 48047.64, + "probability": 0.9377 + }, + { + "start": 48048.2, + "end": 48049.28, + "probability": 0.8701 + }, + { + "start": 48049.44, + "end": 48050.24, + "probability": 0.9547 + }, + { + "start": 48052.08, + "end": 48057.54, + "probability": 0.9805 + }, + { + "start": 48057.72, + "end": 48059.28, + "probability": 0.9031 + }, + { + "start": 48061.14, + "end": 48062.7, + "probability": 0.699 + }, + { + "start": 48063.52, + "end": 48065.42, + "probability": 0.8466 + }, + { + "start": 48066.56, + "end": 48068.0, + "probability": 0.853 + }, + { + "start": 48069.92, + "end": 48071.2, + "probability": 0.9526 + }, + { + "start": 48072.32, + "end": 48075.42, + "probability": 0.8922 + }, + { + "start": 48076.1, + "end": 48078.1, + "probability": 0.8059 + }, + { + "start": 48078.14, + "end": 48079.58, + "probability": 0.9476 + }, + { + "start": 48079.68, + "end": 48079.96, + "probability": 0.7444 + }, + { + "start": 48080.7, + "end": 48083.18, + "probability": 0.8175 + }, + { + "start": 48084.1, + "end": 48086.2, + "probability": 0.9554 + }, + { + "start": 48086.98, + "end": 48088.9, + "probability": 0.908 + }, + { + "start": 48089.56, + "end": 48091.02, + "probability": 0.9222 + }, + { + "start": 48091.36, + "end": 48092.36, + "probability": 0.8491 + }, + { + "start": 48092.96, + "end": 48094.42, + "probability": 0.7076 + }, + { + "start": 48094.98, + "end": 48096.74, + "probability": 0.9521 + }, + { + "start": 48098.0, + "end": 48099.36, + "probability": 0.8725 + }, + { + "start": 48100.54, + "end": 48102.78, + "probability": 0.8859 + }, + { + "start": 48103.5, + "end": 48105.12, + "probability": 0.8811 + }, + { + "start": 48105.92, + "end": 48107.5, + "probability": 0.6958 + }, + { + "start": 48107.7, + "end": 48108.18, + "probability": 0.6847 + }, + { + "start": 48108.24, + "end": 48108.82, + "probability": 0.6952 + }, + { + "start": 48109.66, + "end": 48111.42, + "probability": 0.9485 + }, + { + "start": 48112.02, + "end": 48113.5, + "probability": 0.9877 + }, + { + "start": 48114.08, + "end": 48114.58, + "probability": 0.6022 + }, + { + "start": 48115.52, + "end": 48119.08, + "probability": 0.6549 + }, + { + "start": 48120.94, + "end": 48125.76, + "probability": 0.8682 + }, + { + "start": 48127.04, + "end": 48127.88, + "probability": 0.8881 + }, + { + "start": 48128.34, + "end": 48129.38, + "probability": 0.8656 + }, + { + "start": 48130.38, + "end": 48132.54, + "probability": 0.9355 + }, + { + "start": 48133.88, + "end": 48135.22, + "probability": 0.9967 + }, + { + "start": 48135.48, + "end": 48136.07, + "probability": 0.5205 + }, + { + "start": 48137.26, + "end": 48138.72, + "probability": 0.9424 + }, + { + "start": 48139.06, + "end": 48139.84, + "probability": 0.8066 + }, + { + "start": 48140.92, + "end": 48141.76, + "probability": 0.874 + }, + { + "start": 48142.24, + "end": 48143.62, + "probability": 0.9849 + }, + { + "start": 48143.68, + "end": 48145.32, + "probability": 0.957 + }, + { + "start": 48146.06, + "end": 48147.92, + "probability": 0.825 + }, + { + "start": 48148.74, + "end": 48149.96, + "probability": 0.9762 + }, + { + "start": 48150.04, + "end": 48151.98, + "probability": 0.6575 + }, + { + "start": 48153.76, + "end": 48154.92, + "probability": 0.9207 + }, + { + "start": 48156.22, + "end": 48158.18, + "probability": 0.9918 + }, + { + "start": 48158.96, + "end": 48161.34, + "probability": 0.6808 + }, + { + "start": 48162.7, + "end": 48164.2, + "probability": 0.9985 + }, + { + "start": 48165.82, + "end": 48167.38, + "probability": 0.9862 + }, + { + "start": 48168.1, + "end": 48169.56, + "probability": 0.9865 + }, + { + "start": 48170.2, + "end": 48174.0, + "probability": 0.8104 + }, + { + "start": 48175.2, + "end": 48176.82, + "probability": 0.9442 + }, + { + "start": 48177.84, + "end": 48179.52, + "probability": 0.9956 + }, + { + "start": 48180.16, + "end": 48182.92, + "probability": 0.9813 + }, + { + "start": 48184.26, + "end": 48186.0, + "probability": 0.759 + }, + { + "start": 48187.0, + "end": 48189.78, + "probability": 0.9639 + }, + { + "start": 48190.38, + "end": 48190.38, + "probability": 0.0831 + }, + { + "start": 48190.38, + "end": 48191.66, + "probability": 0.9303 + }, + { + "start": 48191.76, + "end": 48194.28, + "probability": 0.9834 + }, + { + "start": 48194.36, + "end": 48196.84, + "probability": 0.9675 + }, + { + "start": 48197.54, + "end": 48198.66, + "probability": 0.8155 + }, + { + "start": 48198.78, + "end": 48203.24, + "probability": 0.943 + }, + { + "start": 48204.0, + "end": 48206.74, + "probability": 0.907 + }, + { + "start": 48207.22, + "end": 48209.26, + "probability": 0.7034 + }, + { + "start": 48209.84, + "end": 48211.35, + "probability": 0.8646 + }, + { + "start": 48212.9, + "end": 48214.72, + "probability": 0.8423 + }, + { + "start": 48215.08, + "end": 48216.02, + "probability": 0.8456 + }, + { + "start": 48216.16, + "end": 48217.58, + "probability": 0.8659 + }, + { + "start": 48218.1, + "end": 48218.42, + "probability": 0.7234 + }, + { + "start": 48218.58, + "end": 48219.34, + "probability": 0.887 + }, + { + "start": 48219.66, + "end": 48221.3, + "probability": 0.9856 + }, + { + "start": 48221.74, + "end": 48222.58, + "probability": 0.9781 + }, + { + "start": 48223.36, + "end": 48224.31, + "probability": 0.8326 + }, + { + "start": 48225.44, + "end": 48227.5, + "probability": 0.9447 + }, + { + "start": 48227.54, + "end": 48232.52, + "probability": 0.9259 + }, + { + "start": 48233.22, + "end": 48233.76, + "probability": 0.8057 + }, + { + "start": 48234.56, + "end": 48237.1, + "probability": 0.9918 + }, + { + "start": 48238.38, + "end": 48239.98, + "probability": 0.9607 + }, + { + "start": 48241.58, + "end": 48243.28, + "probability": 0.5791 + }, + { + "start": 48244.76, + "end": 48247.54, + "probability": 0.9218 + }, + { + "start": 48248.92, + "end": 48253.4, + "probability": 0.8346 + }, + { + "start": 48254.08, + "end": 48254.18, + "probability": 0.0171 + }, + { + "start": 48254.18, + "end": 48257.08, + "probability": 0.939 + }, + { + "start": 48257.98, + "end": 48260.42, + "probability": 0.843 + }, + { + "start": 48261.1, + "end": 48263.2, + "probability": 0.978 + }, + { + "start": 48263.86, + "end": 48265.82, + "probability": 0.8506 + }, + { + "start": 48265.96, + "end": 48267.24, + "probability": 0.9603 + }, + { + "start": 48269.14, + "end": 48270.6, + "probability": 0.7425 + }, + { + "start": 48270.7, + "end": 48271.84, + "probability": 0.8829 + }, + { + "start": 48273.2, + "end": 48274.6, + "probability": 0.9855 + }, + { + "start": 48276.1, + "end": 48280.46, + "probability": 0.6835 + }, + { + "start": 48280.7, + "end": 48282.48, + "probability": 0.9444 + }, + { + "start": 48283.16, + "end": 48286.08, + "probability": 0.9501 + }, + { + "start": 48287.76, + "end": 48288.89, + "probability": 0.9795 + }, + { + "start": 48289.9, + "end": 48290.64, + "probability": 0.8434 + }, + { + "start": 48290.68, + "end": 48292.36, + "probability": 0.4495 + }, + { + "start": 48292.52, + "end": 48297.04, + "probability": 0.5798 + }, + { + "start": 48297.8, + "end": 48300.38, + "probability": 0.9148 + }, + { + "start": 48301.62, + "end": 48302.16, + "probability": 0.6809 + }, + { + "start": 48303.36, + "end": 48304.62, + "probability": 0.9028 + }, + { + "start": 48304.9, + "end": 48307.02, + "probability": 0.9937 + }, + { + "start": 48307.58, + "end": 48308.8, + "probability": 0.9711 + }, + { + "start": 48309.74, + "end": 48315.9, + "probability": 0.9536 + }, + { + "start": 48316.06, + "end": 48317.4, + "probability": 0.8809 + }, + { + "start": 48319.14, + "end": 48320.48, + "probability": 0.8523 + }, + { + "start": 48321.4, + "end": 48323.3, + "probability": 0.8765 + }, + { + "start": 48324.22, + "end": 48326.28, + "probability": 0.9976 + }, + { + "start": 48327.36, + "end": 48329.98, + "probability": 0.9967 + }, + { + "start": 48330.82, + "end": 48331.98, + "probability": 0.9282 + }, + { + "start": 48332.86, + "end": 48333.36, + "probability": 0.664 + }, + { + "start": 48333.96, + "end": 48335.48, + "probability": 0.9286 + }, + { + "start": 48335.98, + "end": 48338.28, + "probability": 0.9687 + }, + { + "start": 48338.74, + "end": 48341.2, + "probability": 0.9973 + }, + { + "start": 48342.2, + "end": 48342.74, + "probability": 0.8042 + }, + { + "start": 48343.8, + "end": 48345.52, + "probability": 0.9871 + }, + { + "start": 48346.06, + "end": 48348.22, + "probability": 0.6483 + }, + { + "start": 48349.22, + "end": 48352.62, + "probability": 0.9719 + }, + { + "start": 48353.78, + "end": 48354.76, + "probability": 0.9965 + }, + { + "start": 48355.56, + "end": 48356.08, + "probability": 0.4994 + }, + { + "start": 48356.66, + "end": 48359.2, + "probability": 0.9142 + }, + { + "start": 48360.66, + "end": 48361.02, + "probability": 0.6035 + }, + { + "start": 48361.32, + "end": 48363.26, + "probability": 0.9629 + }, + { + "start": 48364.34, + "end": 48365.62, + "probability": 0.7651 + }, + { + "start": 48366.9, + "end": 48368.16, + "probability": 0.9496 + }, + { + "start": 48368.28, + "end": 48370.02, + "probability": 0.9391 + }, + { + "start": 48370.52, + "end": 48372.64, + "probability": 0.9774 + }, + { + "start": 48373.72, + "end": 48376.15, + "probability": 0.9951 + }, + { + "start": 48377.18, + "end": 48377.8, + "probability": 0.8524 + }, + { + "start": 48378.0, + "end": 48378.58, + "probability": 0.9369 + }, + { + "start": 48378.76, + "end": 48379.8, + "probability": 0.9142 + }, + { + "start": 48379.82, + "end": 48381.24, + "probability": 0.9487 + }, + { + "start": 48381.82, + "end": 48383.72, + "probability": 0.9966 + }, + { + "start": 48384.54, + "end": 48386.58, + "probability": 0.795 + }, + { + "start": 48387.14, + "end": 48387.8, + "probability": 0.7422 + }, + { + "start": 48388.16, + "end": 48391.44, + "probability": 0.9226 + }, + { + "start": 48391.58, + "end": 48393.0, + "probability": 0.9651 + }, + { + "start": 48394.04, + "end": 48395.14, + "probability": 0.8892 + }, + { + "start": 48396.5, + "end": 48399.64, + "probability": 0.9641 + }, + { + "start": 48400.4, + "end": 48401.88, + "probability": 0.7248 + }, + { + "start": 48402.86, + "end": 48405.3, + "probability": 0.9524 + }, + { + "start": 48405.96, + "end": 48407.8, + "probability": 0.9909 + }, + { + "start": 48410.26, + "end": 48411.82, + "probability": 0.9785 + }, + { + "start": 48412.86, + "end": 48415.38, + "probability": 0.9697 + }, + { + "start": 48415.74, + "end": 48417.12, + "probability": 0.9659 + }, + { + "start": 48418.36, + "end": 48419.44, + "probability": 0.9619 + }, + { + "start": 48419.5, + "end": 48421.62, + "probability": 0.5057 + }, + { + "start": 48421.7, + "end": 48422.8, + "probability": 0.884 + }, + { + "start": 48423.66, + "end": 48424.54, + "probability": 0.9902 + }, + { + "start": 48425.46, + "end": 48426.88, + "probability": 0.949 + }, + { + "start": 48427.54, + "end": 48430.3, + "probability": 0.9956 + }, + { + "start": 48430.98, + "end": 48435.2, + "probability": 0.9182 + }, + { + "start": 48435.92, + "end": 48437.58, + "probability": 0.9639 + }, + { + "start": 48438.2, + "end": 48441.2, + "probability": 0.9941 + }, + { + "start": 48441.2, + "end": 48444.68, + "probability": 0.9956 + }, + { + "start": 48445.46, + "end": 48449.86, + "probability": 0.9899 + }, + { + "start": 48451.02, + "end": 48452.74, + "probability": 0.9961 + }, + { + "start": 48453.5, + "end": 48454.5, + "probability": 0.9368 + }, + { + "start": 48455.54, + "end": 48457.28, + "probability": 0.9072 + }, + { + "start": 48458.56, + "end": 48459.48, + "probability": 0.983 + }, + { + "start": 48460.22, + "end": 48461.92, + "probability": 0.9201 + }, + { + "start": 48462.12, + "end": 48464.02, + "probability": 0.9846 + }, + { + "start": 48465.74, + "end": 48467.72, + "probability": 0.9057 + }, + { + "start": 48468.54, + "end": 48469.56, + "probability": 0.5079 + }, + { + "start": 48470.56, + "end": 48474.02, + "probability": 0.9779 + }, + { + "start": 48475.0, + "end": 48477.28, + "probability": 0.9971 + }, + { + "start": 48478.22, + "end": 48479.12, + "probability": 0.5226 + }, + { + "start": 48479.12, + "end": 48479.6, + "probability": 0.608 + }, + { + "start": 48479.7, + "end": 48480.3, + "probability": 0.1328 + }, + { + "start": 48480.3, + "end": 48480.7, + "probability": 0.0234 + }, + { + "start": 48480.8, + "end": 48482.08, + "probability": 0.8052 + }, + { + "start": 48483.8, + "end": 48483.86, + "probability": 0.2581 + }, + { + "start": 48484.72, + "end": 48485.66, + "probability": 0.7505 + }, + { + "start": 48486.28, + "end": 48488.5, + "probability": 0.9932 + }, + { + "start": 48489.38, + "end": 48490.24, + "probability": 0.9536 + }, + { + "start": 48490.88, + "end": 48493.08, + "probability": 0.9731 + }, + { + "start": 48493.62, + "end": 48495.34, + "probability": 0.9779 + }, + { + "start": 48495.76, + "end": 48499.12, + "probability": 0.7465 + }, + { + "start": 48500.42, + "end": 48502.36, + "probability": 0.9951 + }, + { + "start": 48502.9, + "end": 48505.72, + "probability": 0.9904 + }, + { + "start": 48506.3, + "end": 48508.64, + "probability": 0.9768 + }, + { + "start": 48510.12, + "end": 48510.7, + "probability": 0.8945 + }, + { + "start": 48511.62, + "end": 48513.1, + "probability": 0.6869 + }, + { + "start": 48513.96, + "end": 48514.94, + "probability": 0.9746 + }, + { + "start": 48515.72, + "end": 48521.46, + "probability": 0.9961 + }, + { + "start": 48522.14, + "end": 48522.92, + "probability": 0.6413 + }, + { + "start": 48524.72, + "end": 48527.16, + "probability": 0.8799 + }, + { + "start": 48527.98, + "end": 48529.52, + "probability": 0.9262 + }, + { + "start": 48529.98, + "end": 48530.84, + "probability": 0.8957 + }, + { + "start": 48531.18, + "end": 48532.12, + "probability": 0.4967 + }, + { + "start": 48532.36, + "end": 48533.2, + "probability": 0.4909 + }, + { + "start": 48534.3, + "end": 48536.26, + "probability": 0.9948 + }, + { + "start": 48537.34, + "end": 48539.86, + "probability": 0.948 + }, + { + "start": 48541.24, + "end": 48546.86, + "probability": 0.9667 + }, + { + "start": 48547.14, + "end": 48548.68, + "probability": 0.9971 + }, + { + "start": 48549.36, + "end": 48551.68, + "probability": 0.9182 + }, + { + "start": 48553.14, + "end": 48554.31, + "probability": 0.995 + }, + { + "start": 48554.7, + "end": 48557.64, + "probability": 0.9886 + }, + { + "start": 48558.38, + "end": 48558.98, + "probability": 0.9084 + }, + { + "start": 48559.8, + "end": 48561.58, + "probability": 0.9744 + }, + { + "start": 48562.26, + "end": 48565.04, + "probability": 0.9958 + }, + { + "start": 48565.36, + "end": 48566.12, + "probability": 0.9447 + }, + { + "start": 48566.2, + "end": 48567.06, + "probability": 0.8924 + }, + { + "start": 48568.64, + "end": 48570.22, + "probability": 0.8559 + }, + { + "start": 48570.54, + "end": 48571.28, + "probability": 0.6947 + }, + { + "start": 48571.36, + "end": 48572.08, + "probability": 0.9358 + }, + { + "start": 48572.26, + "end": 48573.04, + "probability": 0.768 + }, + { + "start": 48574.1, + "end": 48575.74, + "probability": 0.9275 + }, + { + "start": 48576.4, + "end": 48580.86, + "probability": 0.9848 + }, + { + "start": 48580.94, + "end": 48582.64, + "probability": 0.9807 + }, + { + "start": 48582.74, + "end": 48584.74, + "probability": 0.8326 + }, + { + "start": 48585.46, + "end": 48586.44, + "probability": 0.8489 + }, + { + "start": 48587.18, + "end": 48587.94, + "probability": 0.6717 + }, + { + "start": 48589.44, + "end": 48593.04, + "probability": 0.905 + }, + { + "start": 48594.1, + "end": 48597.28, + "probability": 0.9866 + }, + { + "start": 48597.76, + "end": 48601.56, + "probability": 0.5955 + }, + { + "start": 48602.28, + "end": 48603.26, + "probability": 0.8685 + }, + { + "start": 48603.8, + "end": 48605.1, + "probability": 0.9178 + }, + { + "start": 48605.64, + "end": 48607.48, + "probability": 0.9987 + }, + { + "start": 48607.94, + "end": 48610.64, + "probability": 0.7473 + }, + { + "start": 48611.38, + "end": 48612.83, + "probability": 0.9206 + }, + { + "start": 48613.66, + "end": 48615.08, + "probability": 0.9915 + }, + { + "start": 48615.68, + "end": 48618.0, + "probability": 0.9928 + }, + { + "start": 48619.78, + "end": 48622.84, + "probability": 0.9925 + }, + { + "start": 48624.16, + "end": 48625.82, + "probability": 0.9586 + }, + { + "start": 48626.44, + "end": 48628.56, + "probability": 0.997 + }, + { + "start": 48629.42, + "end": 48630.52, + "probability": 0.8423 + }, + { + "start": 48631.22, + "end": 48633.32, + "probability": 0.8294 + }, + { + "start": 48634.34, + "end": 48638.04, + "probability": 0.9985 + }, + { + "start": 48638.3, + "end": 48641.26, + "probability": 0.9354 + }, + { + "start": 48642.18, + "end": 48642.82, + "probability": 0.9932 + }, + { + "start": 48643.88, + "end": 48645.74, + "probability": 0.9708 + }, + { + "start": 48646.0, + "end": 48649.5, + "probability": 0.4763 + }, + { + "start": 48650.0, + "end": 48651.44, + "probability": 0.9072 + }, + { + "start": 48652.94, + "end": 48654.36, + "probability": 0.9769 + }, + { + "start": 48655.26, + "end": 48656.58, + "probability": 0.8562 + }, + { + "start": 48657.28, + "end": 48658.94, + "probability": 0.9961 + }, + { + "start": 48660.52, + "end": 48662.28, + "probability": 0.9357 + }, + { + "start": 48663.06, + "end": 48664.66, + "probability": 0.9384 + }, + { + "start": 48665.5, + "end": 48666.72, + "probability": 0.9776 + }, + { + "start": 48668.0, + "end": 48670.04, + "probability": 0.8782 + }, + { + "start": 48670.12, + "end": 48672.54, + "probability": 0.8497 + }, + { + "start": 48674.22, + "end": 48675.52, + "probability": 0.6713 + }, + { + "start": 48677.34, + "end": 48678.44, + "probability": 0.9592 + }, + { + "start": 48679.1, + "end": 48683.36, + "probability": 0.9956 + }, + { + "start": 48683.98, + "end": 48687.76, + "probability": 0.9874 + }, + { + "start": 48687.98, + "end": 48689.14, + "probability": 0.7407 + }, + { + "start": 48689.92, + "end": 48695.9, + "probability": 0.9959 + }, + { + "start": 48697.58, + "end": 48700.08, + "probability": 0.8728 + }, + { + "start": 48700.78, + "end": 48702.79, + "probability": 0.9858 + }, + { + "start": 48702.8, + "end": 48703.34, + "probability": 0.6951 + }, + { + "start": 48703.46, + "end": 48706.6, + "probability": 0.9939 + }, + { + "start": 48707.2, + "end": 48708.92, + "probability": 0.8505 + }, + { + "start": 48709.54, + "end": 48711.82, + "probability": 0.9985 + }, + { + "start": 48713.77, + "end": 48716.32, + "probability": 0.979 + }, + { + "start": 48717.94, + "end": 48719.74, + "probability": 0.9962 + }, + { + "start": 48720.48, + "end": 48723.44, + "probability": 0.9941 + }, + { + "start": 48723.44, + "end": 48726.56, + "probability": 0.963 + }, + { + "start": 48727.34, + "end": 48729.8, + "probability": 0.8808 + }, + { + "start": 48731.18, + "end": 48732.58, + "probability": 0.8403 + }, + { + "start": 48734.3, + "end": 48739.24, + "probability": 0.9783 + }, + { + "start": 48740.0, + "end": 48741.66, + "probability": 0.9945 + }, + { + "start": 48742.66, + "end": 48744.92, + "probability": 0.7141 + }, + { + "start": 48745.16, + "end": 48746.14, + "probability": 0.5449 + }, + { + "start": 48746.4, + "end": 48747.58, + "probability": 0.7469 + }, + { + "start": 48748.6, + "end": 48752.1, + "probability": 0.9719 + }, + { + "start": 48752.4, + "end": 48752.68, + "probability": 0.6805 + }, + { + "start": 48753.78, + "end": 48755.1, + "probability": 0.5488 + }, + { + "start": 48756.12, + "end": 48757.32, + "probability": 0.6623 + }, + { + "start": 48757.4, + "end": 48758.88, + "probability": 0.9612 + }, + { + "start": 48759.1, + "end": 48759.98, + "probability": 0.9106 + }, + { + "start": 48761.24, + "end": 48761.86, + "probability": 0.9058 + }, + { + "start": 48763.0, + "end": 48764.26, + "probability": 0.9117 + }, + { + "start": 48765.1, + "end": 48766.63, + "probability": 0.9943 + }, + { + "start": 48767.38, + "end": 48768.92, + "probability": 0.9191 + }, + { + "start": 48768.98, + "end": 48769.62, + "probability": 0.9291 + }, + { + "start": 48769.72, + "end": 48770.38, + "probability": 0.9143 + }, + { + "start": 48770.96, + "end": 48772.06, + "probability": 0.8695 + }, + { + "start": 48773.0, + "end": 48774.97, + "probability": 0.7237 + }, + { + "start": 48775.14, + "end": 48776.18, + "probability": 0.8727 + }, + { + "start": 48778.28, + "end": 48779.72, + "probability": 0.9661 + }, + { + "start": 48780.44, + "end": 48780.82, + "probability": 0.9919 + }, + { + "start": 48781.94, + "end": 48784.82, + "probability": 0.9261 + }, + { + "start": 48786.0, + "end": 48787.35, + "probability": 0.9988 + }, + { + "start": 48787.5, + "end": 48788.38, + "probability": 0.8795 + }, + { + "start": 48789.62, + "end": 48790.62, + "probability": 0.9688 + }, + { + "start": 48791.7, + "end": 48794.58, + "probability": 0.989 + }, + { + "start": 48796.38, + "end": 48800.26, + "probability": 0.9976 + }, + { + "start": 48800.94, + "end": 48804.74, + "probability": 0.9862 + }, + { + "start": 48805.62, + "end": 48805.88, + "probability": 0.3707 + }, + { + "start": 48805.94, + "end": 48807.83, + "probability": 0.5781 + }, + { + "start": 48808.78, + "end": 48811.32, + "probability": 0.9824 + }, + { + "start": 48811.94, + "end": 48813.8, + "probability": 0.9634 + }, + { + "start": 48814.08, + "end": 48814.54, + "probability": 0.5027 + }, + { + "start": 48815.74, + "end": 48817.78, + "probability": 0.988 + }, + { + "start": 48818.96, + "end": 48820.3, + "probability": 0.9773 + }, + { + "start": 48821.12, + "end": 48821.92, + "probability": 0.824 + }, + { + "start": 48823.04, + "end": 48824.64, + "probability": 0.9461 + }, + { + "start": 48825.42, + "end": 48827.2, + "probability": 0.9829 + }, + { + "start": 48827.78, + "end": 48828.8, + "probability": 0.7378 + }, + { + "start": 48830.08, + "end": 48832.12, + "probability": 0.9552 + }, + { + "start": 48832.74, + "end": 48833.98, + "probability": 0.7779 + }, + { + "start": 48834.86, + "end": 48839.12, + "probability": 0.9731 + }, + { + "start": 48839.48, + "end": 48843.89, + "probability": 0.9113 + }, + { + "start": 48845.3, + "end": 48848.44, + "probability": 0.9983 + }, + { + "start": 48849.06, + "end": 48850.46, + "probability": 0.8016 + }, + { + "start": 48851.14, + "end": 48854.4, + "probability": 0.9222 + }, + { + "start": 48855.64, + "end": 48858.1, + "probability": 0.8331 + }, + { + "start": 48859.3, + "end": 48860.18, + "probability": 0.6561 + }, + { + "start": 48861.22, + "end": 48861.58, + "probability": 0.9735 + }, + { + "start": 48862.46, + "end": 48863.92, + "probability": 0.7751 + }, + { + "start": 48864.56, + "end": 48866.24, + "probability": 0.9435 + }, + { + "start": 48866.82, + "end": 48867.5, + "probability": 0.999 + }, + { + "start": 48868.38, + "end": 48871.28, + "probability": 0.9939 + }, + { + "start": 48872.62, + "end": 48874.76, + "probability": 0.8367 + }, + { + "start": 48874.78, + "end": 48878.1, + "probability": 0.9919 + }, + { + "start": 48879.18, + "end": 48883.14, + "probability": 0.9595 + }, + { + "start": 48883.82, + "end": 48886.12, + "probability": 0.7908 + }, + { + "start": 48886.86, + "end": 48889.92, + "probability": 0.6935 + }, + { + "start": 48890.64, + "end": 48891.9, + "probability": 0.8936 + }, + { + "start": 48892.48, + "end": 48893.38, + "probability": 0.9529 + }, + { + "start": 48893.6, + "end": 48894.82, + "probability": 0.9971 + }, + { + "start": 48895.58, + "end": 48897.44, + "probability": 0.8277 + }, + { + "start": 48897.62, + "end": 48899.72, + "probability": 0.7129 + }, + { + "start": 48900.98, + "end": 48902.9, + "probability": 0.9626 + }, + { + "start": 48903.66, + "end": 48909.74, + "probability": 0.9416 + }, + { + "start": 48911.2, + "end": 48912.33, + "probability": 0.9766 + }, + { + "start": 48913.36, + "end": 48914.42, + "probability": 0.9985 + }, + { + "start": 48915.44, + "end": 48918.14, + "probability": 0.9709 + }, + { + "start": 48918.36, + "end": 48919.04, + "probability": 0.9641 + }, + { + "start": 48920.76, + "end": 48925.2, + "probability": 0.8171 + }, + { + "start": 48925.92, + "end": 48930.96, + "probability": 0.9559 + }, + { + "start": 48931.84, + "end": 48933.5, + "probability": 0.8291 + }, + { + "start": 48934.66, + "end": 48936.42, + "probability": 0.9379 + }, + { + "start": 48937.1, + "end": 48940.04, + "probability": 0.9943 + }, + { + "start": 48940.72, + "end": 48942.28, + "probability": 0.987 + }, + { + "start": 48942.28, + "end": 48943.32, + "probability": 0.6653 + }, + { + "start": 48943.86, + "end": 48946.24, + "probability": 0.9933 + }, + { + "start": 48947.2, + "end": 48952.66, + "probability": 0.9651 + }, + { + "start": 48953.7, + "end": 48954.32, + "probability": 0.8542 + }, + { + "start": 48955.9, + "end": 48956.26, + "probability": 0.8348 + }, + { + "start": 48956.46, + "end": 48957.89, + "probability": 0.8776 + }, + { + "start": 48958.42, + "end": 48959.96, + "probability": 0.917 + }, + { + "start": 48960.32, + "end": 48960.5, + "probability": 0.5886 + }, + { + "start": 48961.04, + "end": 48961.82, + "probability": 0.9629 + }, + { + "start": 48962.84, + "end": 48963.56, + "probability": 0.7727 + }, + { + "start": 48964.4, + "end": 48965.62, + "probability": 0.9693 + }, + { + "start": 48966.34, + "end": 48968.36, + "probability": 0.9494 + }, + { + "start": 48969.06, + "end": 48972.24, + "probability": 0.9229 + }, + { + "start": 48973.18, + "end": 48973.81, + "probability": 0.8169 + }, + { + "start": 48973.96, + "end": 48974.58, + "probability": 0.8926 + }, + { + "start": 48974.8, + "end": 48975.24, + "probability": 0.8467 + }, + { + "start": 48976.22, + "end": 48977.06, + "probability": 0.7503 + }, + { + "start": 48977.98, + "end": 48980.46, + "probability": 0.9857 + }, + { + "start": 48981.16, + "end": 48983.54, + "probability": 0.9941 + }, + { + "start": 48983.54, + "end": 48988.2, + "probability": 0.914 + }, + { + "start": 48989.72, + "end": 48990.72, + "probability": 0.8258 + }, + { + "start": 48991.3, + "end": 48992.46, + "probability": 0.9363 + }, + { + "start": 48993.02, + "end": 48994.34, + "probability": 0.9399 + }, + { + "start": 48995.04, + "end": 48996.4, + "probability": 0.9272 + }, + { + "start": 48997.48, + "end": 49000.96, + "probability": 0.97 + }, + { + "start": 49001.58, + "end": 49005.2, + "probability": 0.9708 + }, + { + "start": 49005.78, + "end": 49006.86, + "probability": 0.9441 + }, + { + "start": 49007.5, + "end": 49008.74, + "probability": 0.7765 + }, + { + "start": 49009.28, + "end": 49011.56, + "probability": 0.7779 + }, + { + "start": 49012.56, + "end": 49013.98, + "probability": 0.7322 + }, + { + "start": 49014.58, + "end": 49016.18, + "probability": 0.9641 + }, + { + "start": 49016.84, + "end": 49019.34, + "probability": 0.998 + }, + { + "start": 49019.62, + "end": 49022.84, + "probability": 0.959 + }, + { + "start": 49023.5, + "end": 49024.9, + "probability": 0.7331 + }, + { + "start": 49026.08, + "end": 49028.7, + "probability": 0.8975 + }, + { + "start": 49029.6, + "end": 49030.54, + "probability": 0.9951 + }, + { + "start": 49031.28, + "end": 49034.38, + "probability": 0.7434 + }, + { + "start": 49034.98, + "end": 49035.66, + "probability": 0.9884 + }, + { + "start": 49036.24, + "end": 49037.86, + "probability": 0.9403 + }, + { + "start": 49038.58, + "end": 49041.3, + "probability": 0.7996 + }, + { + "start": 49041.86, + "end": 49043.7, + "probability": 0.9922 + }, + { + "start": 49044.44, + "end": 49045.6, + "probability": 0.9758 + }, + { + "start": 49046.46, + "end": 49047.92, + "probability": 0.8174 + }, + { + "start": 49048.8, + "end": 49051.16, + "probability": 0.9973 + }, + { + "start": 49052.26, + "end": 49054.81, + "probability": 0.9834 + }, + { + "start": 49055.58, + "end": 49057.28, + "probability": 0.9971 + }, + { + "start": 49058.56, + "end": 49061.36, + "probability": 0.9025 + }, + { + "start": 49061.96, + "end": 49063.76, + "probability": 0.5812 + }, + { + "start": 49064.78, + "end": 49066.68, + "probability": 0.7614 + }, + { + "start": 49067.24, + "end": 49068.48, + "probability": 0.9837 + }, + { + "start": 49069.38, + "end": 49069.92, + "probability": 0.9268 + }, + { + "start": 49071.08, + "end": 49072.18, + "probability": 0.9333 + }, + { + "start": 49072.2, + "end": 49072.5, + "probability": 0.8501 + }, + { + "start": 49073.24, + "end": 49074.94, + "probability": 0.8611 + }, + { + "start": 49075.74, + "end": 49077.52, + "probability": 0.8596 + }, + { + "start": 49078.42, + "end": 49079.82, + "probability": 0.9509 + }, + { + "start": 49080.0, + "end": 49081.38, + "probability": 0.9065 + }, + { + "start": 49082.02, + "end": 49082.92, + "probability": 0.9575 + }, + { + "start": 49083.54, + "end": 49084.38, + "probability": 0.9117 + }, + { + "start": 49085.58, + "end": 49086.46, + "probability": 0.7752 + }, + { + "start": 49087.24, + "end": 49088.95, + "probability": 0.9906 + }, + { + "start": 49090.06, + "end": 49092.54, + "probability": 0.9902 + }, + { + "start": 49094.02, + "end": 49096.1, + "probability": 0.5753 + }, + { + "start": 49096.68, + "end": 49098.52, + "probability": 0.7864 + }, + { + "start": 49099.0, + "end": 49100.48, + "probability": 0.9841 + }, + { + "start": 49101.38, + "end": 49103.06, + "probability": 0.9712 + }, + { + "start": 49104.28, + "end": 49106.48, + "probability": 0.8256 + }, + { + "start": 49107.06, + "end": 49108.18, + "probability": 0.7845 + }, + { + "start": 49109.56, + "end": 49110.08, + "probability": 0.9165 + }, + { + "start": 49111.54, + "end": 49114.7, + "probability": 0.969 + }, + { + "start": 49115.96, + "end": 49117.46, + "probability": 0.7234 + }, + { + "start": 49119.22, + "end": 49119.98, + "probability": 0.9068 + }, + { + "start": 49120.76, + "end": 49122.04, + "probability": 0.9973 + }, + { + "start": 49122.78, + "end": 49123.62, + "probability": 0.911 + }, + { + "start": 49124.8, + "end": 49126.88, + "probability": 0.9912 + }, + { + "start": 49127.8, + "end": 49130.32, + "probability": 0.9834 + }, + { + "start": 49131.56, + "end": 49132.34, + "probability": 0.989 + }, + { + "start": 49132.94, + "end": 49136.58, + "probability": 0.9139 + }, + { + "start": 49137.26, + "end": 49139.52, + "probability": 0.9844 + }, + { + "start": 49140.4, + "end": 49141.74, + "probability": 0.9147 + }, + { + "start": 49142.96, + "end": 49145.26, + "probability": 0.6076 + }, + { + "start": 49146.94, + "end": 49148.22, + "probability": 0.7145 + }, + { + "start": 49148.64, + "end": 49150.47, + "probability": 0.9844 + }, + { + "start": 49151.82, + "end": 49152.96, + "probability": 0.8213 + }, + { + "start": 49155.2, + "end": 49156.94, + "probability": 0.9949 + }, + { + "start": 49157.82, + "end": 49159.68, + "probability": 0.7411 + }, + { + "start": 49160.54, + "end": 49160.88, + "probability": 0.6859 + }, + { + "start": 49161.84, + "end": 49162.66, + "probability": 0.8492 + }, + { + "start": 49163.34, + "end": 49164.52, + "probability": 0.951 + }, + { + "start": 49165.44, + "end": 49165.94, + "probability": 0.7272 + }, + { + "start": 49166.6, + "end": 49167.36, + "probability": 0.9604 + }, + { + "start": 49169.24, + "end": 49170.56, + "probability": 0.8561 + }, + { + "start": 49172.16, + "end": 49173.56, + "probability": 0.9575 + }, + { + "start": 49174.74, + "end": 49176.88, + "probability": 0.8954 + }, + { + "start": 49177.0, + "end": 49177.5, + "probability": 0.9629 + }, + { + "start": 49178.64, + "end": 49180.3, + "probability": 0.9547 + }, + { + "start": 49181.0, + "end": 49182.86, + "probability": 0.6086 + }, + { + "start": 49183.76, + "end": 49184.36, + "probability": 0.6407 + }, + { + "start": 49185.8, + "end": 49186.2, + "probability": 0.4598 + }, + { + "start": 49186.88, + "end": 49188.32, + "probability": 0.8672 + }, + { + "start": 49189.42, + "end": 49190.66, + "probability": 0.9818 + }, + { + "start": 49191.52, + "end": 49192.91, + "probability": 0.7043 + }, + { + "start": 49194.64, + "end": 49195.16, + "probability": 0.8203 + }, + { + "start": 49195.2, + "end": 49195.98, + "probability": 0.7148 + }, + { + "start": 49196.04, + "end": 49198.16, + "probability": 0.7676 + }, + { + "start": 49199.76, + "end": 49200.78, + "probability": 0.9491 + }, + { + "start": 49202.26, + "end": 49203.9, + "probability": 0.9548 + }, + { + "start": 49205.6, + "end": 49208.24, + "probability": 0.9571 + }, + { + "start": 49208.96, + "end": 49209.86, + "probability": 0.9866 + }, + { + "start": 49210.8, + "end": 49211.22, + "probability": 0.7664 + }, + { + "start": 49211.38, + "end": 49212.34, + "probability": 0.9421 + }, + { + "start": 49213.34, + "end": 49214.44, + "probability": 0.5435 + }, + { + "start": 49215.56, + "end": 49221.46, + "probability": 0.9969 + }, + { + "start": 49222.72, + "end": 49223.62, + "probability": 0.9886 + }, + { + "start": 49224.62, + "end": 49227.1, + "probability": 0.9965 + }, + { + "start": 49228.04, + "end": 49228.52, + "probability": 0.8611 + }, + { + "start": 49229.62, + "end": 49230.24, + "probability": 0.859 + }, + { + "start": 49230.9, + "end": 49232.66, + "probability": 0.9839 + }, + { + "start": 49233.36, + "end": 49235.46, + "probability": 0.9665 + }, + { + "start": 49235.98, + "end": 49239.08, + "probability": 0.8197 + }, + { + "start": 49239.64, + "end": 49242.62, + "probability": 0.8995 + }, + { + "start": 49243.28, + "end": 49244.68, + "probability": 0.7959 + }, + { + "start": 49244.74, + "end": 49246.39, + "probability": 0.9768 + }, + { + "start": 49248.8, + "end": 49251.18, + "probability": 0.8669 + }, + { + "start": 49252.24, + "end": 49254.26, + "probability": 0.9159 + }, + { + "start": 49255.02, + "end": 49256.46, + "probability": 0.9621 + }, + { + "start": 49257.26, + "end": 49259.44, + "probability": 0.8901 + }, + { + "start": 49261.24, + "end": 49263.0, + "probability": 0.8958 + }, + { + "start": 49264.16, + "end": 49264.98, + "probability": 0.7283 + }, + { + "start": 49266.74, + "end": 49268.66, + "probability": 0.8247 + }, + { + "start": 49269.68, + "end": 49273.16, + "probability": 0.8771 + }, + { + "start": 49273.88, + "end": 49276.36, + "probability": 0.9507 + }, + { + "start": 49277.06, + "end": 49278.72, + "probability": 0.9782 + }, + { + "start": 49280.4, + "end": 49282.08, + "probability": 0.991 + }, + { + "start": 49284.7, + "end": 49286.96, + "probability": 0.8171 + }, + { + "start": 49287.98, + "end": 49289.94, + "probability": 0.873 + }, + { + "start": 49290.6, + "end": 49292.42, + "probability": 0.9923 + }, + { + "start": 49292.54, + "end": 49294.1, + "probability": 0.9946 + }, + { + "start": 49294.52, + "end": 49297.22, + "probability": 0.9807 + }, + { + "start": 49297.94, + "end": 49299.06, + "probability": 0.9409 + }, + { + "start": 49300.34, + "end": 49302.08, + "probability": 0.9954 + }, + { + "start": 49303.96, + "end": 49306.16, + "probability": 0.9984 + }, + { + "start": 49307.24, + "end": 49308.14, + "probability": 0.747 + }, + { + "start": 49308.88, + "end": 49310.16, + "probability": 0.744 + }, + { + "start": 49311.06, + "end": 49312.32, + "probability": 0.9135 + }, + { + "start": 49312.92, + "end": 49315.82, + "probability": 0.9526 + }, + { + "start": 49317.02, + "end": 49318.92, + "probability": 0.9281 + }, + { + "start": 49319.48, + "end": 49320.18, + "probability": 0.8019 + }, + { + "start": 49321.56, + "end": 49323.14, + "probability": 0.933 + }, + { + "start": 49324.16, + "end": 49329.24, + "probability": 0.9456 + }, + { + "start": 49329.78, + "end": 49332.94, + "probability": 0.9749 + }, + { + "start": 49332.98, + "end": 49334.16, + "probability": 0.9587 + }, + { + "start": 49334.24, + "end": 49335.87, + "probability": 0.567 + }, + { + "start": 49336.78, + "end": 49337.96, + "probability": 0.9722 + }, + { + "start": 49338.92, + "end": 49341.0, + "probability": 0.971 + }, + { + "start": 49341.92, + "end": 49344.46, + "probability": 0.7713 + }, + { + "start": 49345.4, + "end": 49346.42, + "probability": 0.9676 + }, + { + "start": 49347.12, + "end": 49348.52, + "probability": 0.9698 + }, + { + "start": 49350.72, + "end": 49352.36, + "probability": 0.3772 + }, + { + "start": 49352.36, + "end": 49352.76, + "probability": 0.2117 + }, + { + "start": 49352.78, + "end": 49354.12, + "probability": 0.8931 + }, + { + "start": 49355.62, + "end": 49359.26, + "probability": 0.9861 + }, + { + "start": 49359.92, + "end": 49362.44, + "probability": 0.9814 + }, + { + "start": 49363.0, + "end": 49365.78, + "probability": 0.8401 + }, + { + "start": 49366.56, + "end": 49367.42, + "probability": 0.6836 + }, + { + "start": 49368.02, + "end": 49372.5, + "probability": 0.9759 + }, + { + "start": 49373.32, + "end": 49374.44, + "probability": 0.998 + }, + { + "start": 49375.48, + "end": 49377.26, + "probability": 0.9792 + }, + { + "start": 49377.48, + "end": 49380.0, + "probability": 0.8753 + }, + { + "start": 49381.24, + "end": 49382.56, + "probability": 0.9984 + }, + { + "start": 49383.48, + "end": 49385.34, + "probability": 0.9983 + }, + { + "start": 49386.08, + "end": 49388.02, + "probability": 0.9442 + }, + { + "start": 49388.76, + "end": 49389.1, + "probability": 0.777 + }, + { + "start": 49389.16, + "end": 49392.66, + "probability": 0.9492 + }, + { + "start": 49393.42, + "end": 49397.59, + "probability": 0.8566 + }, + { + "start": 49398.28, + "end": 49398.9, + "probability": 0.7892 + }, + { + "start": 49400.1, + "end": 49400.66, + "probability": 0.671 + }, + { + "start": 49401.58, + "end": 49403.66, + "probability": 0.9712 + }, + { + "start": 49405.02, + "end": 49406.88, + "probability": 0.8407 + }, + { + "start": 49407.96, + "end": 49411.06, + "probability": 0.8748 + }, + { + "start": 49412.66, + "end": 49415.1, + "probability": 0.9793 + }, + { + "start": 49416.04, + "end": 49418.14, + "probability": 0.9241 + }, + { + "start": 49418.78, + "end": 49422.88, + "probability": 0.9119 + }, + { + "start": 49422.88, + "end": 49423.96, + "probability": 0.4368 + }, + { + "start": 49425.44, + "end": 49427.46, + "probability": 0.7777 + }, + { + "start": 49428.48, + "end": 49428.92, + "probability": 0.7822 + }, + { + "start": 49429.62, + "end": 49432.74, + "probability": 0.9956 + }, + { + "start": 49433.7, + "end": 49435.24, + "probability": 0.9193 + }, + { + "start": 49436.8, + "end": 49437.94, + "probability": 0.5005 + }, + { + "start": 49438.6, + "end": 49440.84, + "probability": 0.99 + }, + { + "start": 49441.72, + "end": 49443.54, + "probability": 0.995 + }, + { + "start": 49444.36, + "end": 49444.84, + "probability": 0.7169 + }, + { + "start": 49445.46, + "end": 49448.0, + "probability": 0.9728 + }, + { + "start": 49449.0, + "end": 49452.04, + "probability": 0.9277 + }, + { + "start": 49452.04, + "end": 49455.9, + "probability": 0.9407 + }, + { + "start": 49456.46, + "end": 49458.12, + "probability": 0.8756 + }, + { + "start": 49458.9, + "end": 49461.55, + "probability": 0.9897 + }, + { + "start": 49462.64, + "end": 49463.3, + "probability": 0.9368 + }, + { + "start": 49464.22, + "end": 49465.54, + "probability": 0.9183 + }, + { + "start": 49466.04, + "end": 49470.1, + "probability": 0.9896 + }, + { + "start": 49470.18, + "end": 49473.8, + "probability": 0.9868 + }, + { + "start": 49474.46, + "end": 49476.02, + "probability": 0.5766 + }, + { + "start": 49476.16, + "end": 49479.24, + "probability": 0.7119 + }, + { + "start": 49480.09, + "end": 49481.38, + "probability": 0.9918 + }, + { + "start": 49482.14, + "end": 49482.68, + "probability": 0.6921 + }, + { + "start": 49482.76, + "end": 49483.2, + "probability": 0.7579 + }, + { + "start": 49483.28, + "end": 49485.52, + "probability": 0.9469 + }, + { + "start": 49486.1, + "end": 49487.68, + "probability": 0.9668 + }, + { + "start": 49488.42, + "end": 49491.38, + "probability": 0.9899 + }, + { + "start": 49492.04, + "end": 49495.1, + "probability": 0.9932 + }, + { + "start": 49496.04, + "end": 49498.13, + "probability": 0.9497 + }, + { + "start": 49499.36, + "end": 49500.82, + "probability": 0.8868 + }, + { + "start": 49501.68, + "end": 49505.96, + "probability": 0.9879 + }, + { + "start": 49506.62, + "end": 49508.44, + "probability": 0.9481 + }, + { + "start": 49509.64, + "end": 49510.5, + "probability": 0.9444 + }, + { + "start": 49511.1, + "end": 49514.88, + "probability": 0.8988 + }, + { + "start": 49515.66, + "end": 49518.64, + "probability": 0.9867 + }, + { + "start": 49519.12, + "end": 49521.78, + "probability": 0.9914 + }, + { + "start": 49522.64, + "end": 49527.76, + "probability": 0.8859 + }, + { + "start": 49528.52, + "end": 49530.9, + "probability": 0.9619 + }, + { + "start": 49531.66, + "end": 49533.44, + "probability": 0.8305 + }, + { + "start": 49533.84, + "end": 49535.82, + "probability": 0.9349 + }, + { + "start": 49535.92, + "end": 49537.04, + "probability": 0.9927 + }, + { + "start": 49537.84, + "end": 49539.46, + "probability": 0.7588 + }, + { + "start": 49540.08, + "end": 49540.73, + "probability": 0.6372 + }, + { + "start": 49541.64, + "end": 49543.4, + "probability": 0.9908 + }, + { + "start": 49544.34, + "end": 49546.14, + "probability": 0.9923 + }, + { + "start": 49547.42, + "end": 49548.94, + "probability": 0.8845 + }, + { + "start": 49549.86, + "end": 49551.34, + "probability": 0.9211 + }, + { + "start": 49552.12, + "end": 49553.74, + "probability": 0.8639 + }, + { + "start": 49554.4, + "end": 49555.24, + "probability": 0.9156 + }, + { + "start": 49556.22, + "end": 49557.26, + "probability": 0.9541 + }, + { + "start": 49557.85, + "end": 49558.76, + "probability": 0.5469 + }, + { + "start": 49561.38, + "end": 49564.2, + "probability": 0.7042 + }, + { + "start": 49565.34, + "end": 49567.3, + "probability": 0.4187 + }, + { + "start": 49568.5, + "end": 49571.44, + "probability": 0.8601 + }, + { + "start": 49572.92, + "end": 49574.48, + "probability": 0.9832 + }, + { + "start": 49575.32, + "end": 49577.06, + "probability": 0.9707 + }, + { + "start": 49577.18, + "end": 49578.69, + "probability": 0.7216 + }, + { + "start": 49578.7, + "end": 49582.0, + "probability": 0.98 + }, + { + "start": 49583.48, + "end": 49584.44, + "probability": 0.6209 + }, + { + "start": 49587.58, + "end": 49590.04, + "probability": 0.9956 + }, + { + "start": 49591.04, + "end": 49592.2, + "probability": 0.9724 + }, + { + "start": 49593.74, + "end": 49598.66, + "probability": 0.995 + }, + { + "start": 49599.3, + "end": 49601.76, + "probability": 0.8902 + }, + { + "start": 49602.7, + "end": 49603.84, + "probability": 0.318 + }, + { + "start": 49604.68, + "end": 49605.4, + "probability": 0.5336 + }, + { + "start": 49606.38, + "end": 49608.84, + "probability": 0.753 + }, + { + "start": 49609.4, + "end": 49609.96, + "probability": 0.5599 + }, + { + "start": 49610.96, + "end": 49611.22, + "probability": 0.2924 + }, + { + "start": 49611.22, + "end": 49611.85, + "probability": 0.5096 + }, + { + "start": 49612.99, + "end": 49618.28, + "probability": 0.9722 + }, + { + "start": 49619.04, + "end": 49620.98, + "probability": 0.9868 + }, + { + "start": 49621.92, + "end": 49624.74, + "probability": 0.9385 + }, + { + "start": 49625.5, + "end": 49628.36, + "probability": 0.861 + }, + { + "start": 49628.98, + "end": 49629.26, + "probability": 0.8328 + }, + { + "start": 49629.66, + "end": 49632.68, + "probability": 0.9861 + }, + { + "start": 49633.28, + "end": 49637.96, + "probability": 0.9882 + }, + { + "start": 49638.84, + "end": 49640.28, + "probability": 0.9971 + }, + { + "start": 49641.1, + "end": 49643.02, + "probability": 0.6989 + }, + { + "start": 49643.92, + "end": 49644.7, + "probability": 0.8561 + }, + { + "start": 49645.7, + "end": 49647.14, + "probability": 0.9985 + }, + { + "start": 49647.94, + "end": 49648.8, + "probability": 0.6907 + }, + { + "start": 49649.58, + "end": 49650.5, + "probability": 0.9727 + }, + { + "start": 49651.24, + "end": 49652.56, + "probability": 0.8988 + }, + { + "start": 49653.12, + "end": 49654.38, + "probability": 0.9711 + }, + { + "start": 49654.44, + "end": 49656.8, + "probability": 0.6601 + }, + { + "start": 49657.08, + "end": 49658.92, + "probability": 0.8929 + }, + { + "start": 49660.56, + "end": 49661.7, + "probability": 0.9866 + }, + { + "start": 49662.54, + "end": 49664.5, + "probability": 0.8958 + }, + { + "start": 49665.62, + "end": 49668.32, + "probability": 0.7693 + }, + { + "start": 49669.94, + "end": 49670.7, + "probability": 0.6689 + }, + { + "start": 49671.08, + "end": 49671.86, + "probability": 0.9551 + }, + { + "start": 49672.02, + "end": 49673.1, + "probability": 0.5081 + }, + { + "start": 49674.16, + "end": 49677.46, + "probability": 0.9739 + }, + { + "start": 49678.14, + "end": 49679.26, + "probability": 0.9591 + }, + { + "start": 49680.18, + "end": 49680.5, + "probability": 0.4042 + }, + { + "start": 49682.04, + "end": 49682.32, + "probability": 0.4239 + }, + { + "start": 49682.7, + "end": 49683.74, + "probability": 0.9855 + }, + { + "start": 49684.0, + "end": 49686.02, + "probability": 0.8407 + }, + { + "start": 49686.96, + "end": 49688.7, + "probability": 0.8947 + }, + { + "start": 49690.16, + "end": 49692.58, + "probability": 0.9407 + }, + { + "start": 49693.3, + "end": 49694.36, + "probability": 0.833 + }, + { + "start": 49695.46, + "end": 49696.9, + "probability": 0.9909 + }, + { + "start": 49698.38, + "end": 49700.4, + "probability": 0.8117 + }, + { + "start": 49700.62, + "end": 49700.86, + "probability": 0.7561 + }, + { + "start": 49701.76, + "end": 49704.26, + "probability": 0.9738 + }, + { + "start": 49704.32, + "end": 49705.1, + "probability": 0.7856 + }, + { + "start": 49706.84, + "end": 49708.22, + "probability": 0.8958 + }, + { + "start": 49708.52, + "end": 49708.79, + "probability": 0.4861 + }, + { + "start": 49709.24, + "end": 49710.24, + "probability": 0.7996 + }, + { + "start": 49710.4, + "end": 49712.88, + "probability": 0.6887 + }, + { + "start": 49713.38, + "end": 49715.2, + "probability": 0.8793 + }, + { + "start": 49715.74, + "end": 49718.52, + "probability": 0.7756 + }, + { + "start": 49719.6, + "end": 49720.52, + "probability": 0.908 + }, + { + "start": 49721.93, + "end": 49724.18, + "probability": 0.9971 + }, + { + "start": 49724.86, + "end": 49726.6, + "probability": 0.999 + }, + { + "start": 49727.4, + "end": 49729.54, + "probability": 0.9842 + }, + { + "start": 49729.78, + "end": 49730.08, + "probability": 0.5355 + }, + { + "start": 49730.68, + "end": 49731.82, + "probability": 0.7937 + }, + { + "start": 49732.52, + "end": 49734.8, + "probability": 0.694 + }, + { + "start": 49734.92, + "end": 49735.18, + "probability": 0.4542 + }, + { + "start": 49735.5, + "end": 49735.84, + "probability": 0.9221 + }, + { + "start": 49736.52, + "end": 49738.78, + "probability": 0.9827 + }, + { + "start": 49739.64, + "end": 49740.99, + "probability": 0.9526 + }, + { + "start": 49741.62, + "end": 49743.26, + "probability": 0.7653 + }, + { + "start": 49744.82, + "end": 49745.66, + "probability": 0.8676 + }, + { + "start": 49746.56, + "end": 49748.14, + "probability": 0.9921 + }, + { + "start": 49748.34, + "end": 49749.16, + "probability": 0.4602 + }, + { + "start": 49749.28, + "end": 49749.72, + "probability": 0.8479 + }, + { + "start": 49750.54, + "end": 49752.34, + "probability": 0.9754 + }, + { + "start": 49752.82, + "end": 49755.48, + "probability": 0.7492 + }, + { + "start": 49756.1, + "end": 49758.36, + "probability": 0.8016 + }, + { + "start": 49759.0, + "end": 49763.06, + "probability": 0.8888 + }, + { + "start": 49763.84, + "end": 49765.56, + "probability": 0.9396 + }, + { + "start": 49766.54, + "end": 49769.74, + "probability": 0.9429 + }, + { + "start": 49770.72, + "end": 49773.66, + "probability": 0.9507 + }, + { + "start": 49775.34, + "end": 49777.22, + "probability": 0.873 + }, + { + "start": 49778.38, + "end": 49781.16, + "probability": 0.9628 + }, + { + "start": 49782.68, + "end": 49783.9, + "probability": 0.9795 + }, + { + "start": 49784.1, + "end": 49785.28, + "probability": 0.9268 + }, + { + "start": 49785.5, + "end": 49787.42, + "probability": 0.9762 + }, + { + "start": 49788.52, + "end": 49789.3, + "probability": 0.8841 + }, + { + "start": 49789.94, + "end": 49790.84, + "probability": 0.8045 + }, + { + "start": 49791.3, + "end": 49792.12, + "probability": 0.8977 + }, + { + "start": 49792.24, + "end": 49793.58, + "probability": 0.9463 + }, + { + "start": 49794.62, + "end": 49796.9, + "probability": 0.9407 + }, + { + "start": 49797.78, + "end": 49798.78, + "probability": 0.9121 + }, + { + "start": 49799.88, + "end": 49800.65, + "probability": 0.9951 + }, + { + "start": 49801.98, + "end": 49803.54, + "probability": 0.9763 + }, + { + "start": 49804.0, + "end": 49807.9, + "probability": 0.9896 + }, + { + "start": 49808.5, + "end": 49810.68, + "probability": 0.8045 + }, + { + "start": 49811.3, + "end": 49813.16, + "probability": 0.9738 + }, + { + "start": 49813.4, + "end": 49813.82, + "probability": 0.9475 + }, + { + "start": 49815.56, + "end": 49821.58, + "probability": 0.7315 + }, + { + "start": 49821.7, + "end": 49823.0, + "probability": 0.7717 + }, + { + "start": 49823.08, + "end": 49823.86, + "probability": 0.5337 + }, + { + "start": 49824.62, + "end": 49825.74, + "probability": 0.8605 + }, + { + "start": 49826.74, + "end": 49828.28, + "probability": 0.9908 + }, + { + "start": 49829.16, + "end": 49829.5, + "probability": 0.9849 + }, + { + "start": 49830.18, + "end": 49831.92, + "probability": 0.8634 + }, + { + "start": 49832.1, + "end": 49834.74, + "probability": 0.9878 + }, + { + "start": 49834.86, + "end": 49838.14, + "probability": 0.849 + }, + { + "start": 49838.82, + "end": 49840.12, + "probability": 0.9958 + }, + { + "start": 49840.42, + "end": 49841.72, + "probability": 0.9784 + }, + { + "start": 49843.28, + "end": 49845.56, + "probability": 0.9402 + }, + { + "start": 49846.7, + "end": 49851.42, + "probability": 0.9892 + }, + { + "start": 49852.08, + "end": 49856.12, + "probability": 0.8455 + }, + { + "start": 49856.72, + "end": 49858.96, + "probability": 0.8916 + }, + { + "start": 49859.96, + "end": 49861.58, + "probability": 0.8365 + }, + { + "start": 49862.1, + "end": 49864.46, + "probability": 0.9678 + }, + { + "start": 49866.0, + "end": 49868.68, + "probability": 0.9904 + }, + { + "start": 49868.78, + "end": 49869.66, + "probability": 0.8107 + }, + { + "start": 49870.34, + "end": 49870.66, + "probability": 0.9445 + }, + { + "start": 49872.46, + "end": 49873.02, + "probability": 0.9096 + }, + { + "start": 49873.68, + "end": 49876.4, + "probability": 0.9527 + }, + { + "start": 49877.94, + "end": 49879.08, + "probability": 0.9077 + }, + { + "start": 49879.98, + "end": 49882.12, + "probability": 0.6421 + }, + { + "start": 49882.28, + "end": 49882.28, + "probability": 0.0071 + }, + { + "start": 49882.28, + "end": 49882.6, + "probability": 0.5652 + }, + { + "start": 49882.68, + "end": 49883.5, + "probability": 0.595 + }, + { + "start": 49884.36, + "end": 49885.86, + "probability": 0.9521 + }, + { + "start": 49886.56, + "end": 49889.1, + "probability": 0.9809 + }, + { + "start": 49890.1, + "end": 49894.86, + "probability": 0.9417 + }, + { + "start": 49895.86, + "end": 49896.1, + "probability": 0.7891 + }, + { + "start": 49897.56, + "end": 49901.22, + "probability": 0.9487 + }, + { + "start": 49902.3, + "end": 49903.92, + "probability": 0.7198 + }, + { + "start": 49904.62, + "end": 49907.68, + "probability": 0.8997 + }, + { + "start": 49908.38, + "end": 49909.26, + "probability": 0.8188 + }, + { + "start": 49909.86, + "end": 49914.48, + "probability": 0.8688 + }, + { + "start": 49915.26, + "end": 49916.08, + "probability": 0.9893 + }, + { + "start": 49917.5, + "end": 49917.93, + "probability": 0.4884 + }, + { + "start": 49919.02, + "end": 49924.08, + "probability": 0.9736 + }, + { + "start": 49924.96, + "end": 49929.34, + "probability": 0.9924 + }, + { + "start": 49930.36, + "end": 49932.2, + "probability": 0.8727 + }, + { + "start": 49933.62, + "end": 49934.24, + "probability": 0.9677 + }, + { + "start": 49935.36, + "end": 49937.56, + "probability": 0.9775 + }, + { + "start": 49938.8, + "end": 49941.78, + "probability": 0.7536 + }, + { + "start": 49942.48, + "end": 49944.28, + "probability": 0.9017 + }, + { + "start": 49944.3, + "end": 49947.22, + "probability": 0.9848 + }, + { + "start": 49947.82, + "end": 49948.86, + "probability": 0.989 + }, + { + "start": 49949.88, + "end": 49952.5, + "probability": 0.9437 + }, + { + "start": 49953.04, + "end": 49956.28, + "probability": 0.8221 + }, + { + "start": 49956.98, + "end": 49957.98, + "probability": 0.7764 + }, + { + "start": 49958.22, + "end": 49959.02, + "probability": 0.9551 + }, + { + "start": 49959.62, + "end": 49960.52, + "probability": 0.9814 + }, + { + "start": 49961.12, + "end": 49963.08, + "probability": 0.7842 + }, + { + "start": 49963.62, + "end": 49968.7, + "probability": 0.9956 + }, + { + "start": 49969.18, + "end": 49970.74, + "probability": 0.9927 + }, + { + "start": 49971.28, + "end": 49972.8, + "probability": 0.9193 + }, + { + "start": 49974.52, + "end": 49979.7, + "probability": 0.9761 + }, + { + "start": 49980.3, + "end": 49982.0, + "probability": 0.8494 + }, + { + "start": 49983.26, + "end": 49984.3, + "probability": 0.8864 + }, + { + "start": 49985.2, + "end": 49985.76, + "probability": 0.9435 + }, + { + "start": 49987.2, + "end": 49988.0, + "probability": 0.8779 + }, + { + "start": 49989.04, + "end": 49994.06, + "probability": 0.9412 + }, + { + "start": 49995.02, + "end": 49995.34, + "probability": 0.6194 + }, + { + "start": 49995.84, + "end": 49997.76, + "probability": 0.9732 + }, + { + "start": 49998.62, + "end": 50000.04, + "probability": 0.8257 + }, + { + "start": 50001.42, + "end": 50005.56, + "probability": 0.9758 + }, + { + "start": 50006.24, + "end": 50008.48, + "probability": 0.9635 + }, + { + "start": 50009.44, + "end": 50011.12, + "probability": 0.9117 + }, + { + "start": 50012.42, + "end": 50015.84, + "probability": 0.9882 + }, + { + "start": 50016.06, + "end": 50017.36, + "probability": 0.8999 + }, + { + "start": 50017.5, + "end": 50017.86, + "probability": 0.4237 + }, + { + "start": 50017.92, + "end": 50018.19, + "probability": 0.0626 + }, + { + "start": 50018.96, + "end": 50019.88, + "probability": 0.919 + }, + { + "start": 50021.48, + "end": 50022.06, + "probability": 0.8823 + }, + { + "start": 50023.12, + "end": 50024.8, + "probability": 0.9984 + }, + { + "start": 50025.48, + "end": 50027.32, + "probability": 0.9727 + }, + { + "start": 50028.44, + "end": 50029.56, + "probability": 0.9567 + }, + { + "start": 50030.28, + "end": 50032.66, + "probability": 0.896 + }, + { + "start": 50033.32, + "end": 50034.62, + "probability": 0.9275 + }, + { + "start": 50035.36, + "end": 50038.78, + "probability": 0.9822 + }, + { + "start": 50039.54, + "end": 50041.78, + "probability": 0.9772 + }, + { + "start": 50042.98, + "end": 50044.58, + "probability": 0.9968 + }, + { + "start": 50045.42, + "end": 50047.6, + "probability": 0.9921 + }, + { + "start": 50048.44, + "end": 50052.34, + "probability": 0.8114 + }, + { + "start": 50053.6, + "end": 50054.8, + "probability": 0.9692 + }, + { + "start": 50055.76, + "end": 50057.56, + "probability": 0.8757 + }, + { + "start": 50058.22, + "end": 50059.86, + "probability": 0.9543 + }, + { + "start": 50060.56, + "end": 50064.46, + "probability": 0.9888 + }, + { + "start": 50065.36, + "end": 50067.5, + "probability": 0.6625 + }, + { + "start": 50068.18, + "end": 50070.14, + "probability": 0.98 + }, + { + "start": 50070.92, + "end": 50075.64, + "probability": 0.9326 + }, + { + "start": 50075.76, + "end": 50076.6, + "probability": 0.9598 + }, + { + "start": 50078.18, + "end": 50081.06, + "probability": 0.9618 + }, + { + "start": 50082.46, + "end": 50083.28, + "probability": 0.9385 + }, + { + "start": 50084.16, + "end": 50089.14, + "probability": 0.9899 + }, + { + "start": 50089.94, + "end": 50092.6, + "probability": 0.9974 + }, + { + "start": 50092.6, + "end": 50094.24, + "probability": 0.9933 + }, + { + "start": 50095.62, + "end": 50099.36, + "probability": 0.9359 + }, + { + "start": 50100.06, + "end": 50100.76, + "probability": 0.8418 + }, + { + "start": 50101.52, + "end": 50102.02, + "probability": 0.7147 + }, + { + "start": 50103.24, + "end": 50105.34, + "probability": 0.9904 + }, + { + "start": 50106.02, + "end": 50107.84, + "probability": 0.946 + }, + { + "start": 50108.62, + "end": 50113.92, + "probability": 0.9973 + }, + { + "start": 50114.24, + "end": 50117.08, + "probability": 0.7362 + }, + { + "start": 50117.64, + "end": 50121.68, + "probability": 0.9202 + }, + { + "start": 50122.38, + "end": 50124.14, + "probability": 0.8063 + }, + { + "start": 50124.86, + "end": 50126.54, + "probability": 0.9209 + }, + { + "start": 50127.68, + "end": 50129.08, + "probability": 0.9702 + }, + { + "start": 50129.88, + "end": 50133.06, + "probability": 0.9954 + }, + { + "start": 50133.32, + "end": 50134.44, + "probability": 0.9057 + }, + { + "start": 50135.44, + "end": 50136.38, + "probability": 0.8902 + }, + { + "start": 50137.3, + "end": 50138.52, + "probability": 0.9136 + }, + { + "start": 50140.44, + "end": 50144.26, + "probability": 0.9737 + }, + { + "start": 50144.9, + "end": 50149.24, + "probability": 0.9752 + }, + { + "start": 50150.28, + "end": 50151.18, + "probability": 0.7866 + }, + { + "start": 50152.56, + "end": 50153.89, + "probability": 0.6862 + }, + { + "start": 50154.84, + "end": 50156.34, + "probability": 0.9142 + }, + { + "start": 50157.9, + "end": 50160.78, + "probability": 0.9873 + }, + { + "start": 50161.54, + "end": 50163.44, + "probability": 0.9882 + }, + { + "start": 50164.2, + "end": 50165.72, + "probability": 0.7291 + }, + { + "start": 50166.54, + "end": 50167.44, + "probability": 0.2885 + }, + { + "start": 50167.7, + "end": 50168.68, + "probability": 0.6358 + }, + { + "start": 50168.94, + "end": 50170.46, + "probability": 0.5356 + }, + { + "start": 50171.18, + "end": 50173.98, + "probability": 0.9858 + }, + { + "start": 50175.18, + "end": 50176.46, + "probability": 0.9885 + }, + { + "start": 50178.24, + "end": 50181.04, + "probability": 0.9629 + }, + { + "start": 50182.18, + "end": 50184.92, + "probability": 0.9863 + }, + { + "start": 50185.6, + "end": 50186.42, + "probability": 0.9941 + }, + { + "start": 50187.0, + "end": 50192.92, + "probability": 0.9941 + }, + { + "start": 50192.92, + "end": 50196.0, + "probability": 0.9983 + }, + { + "start": 50198.56, + "end": 50200.58, + "probability": 0.7897 + }, + { + "start": 50201.24, + "end": 50203.48, + "probability": 0.5229 + }, + { + "start": 50204.68, + "end": 50206.09, + "probability": 0.947 + }, + { + "start": 50207.02, + "end": 50208.52, + "probability": 0.8203 + }, + { + "start": 50209.78, + "end": 50212.09, + "probability": 0.9805 + }, + { + "start": 50213.34, + "end": 50216.28, + "probability": 0.6978 + }, + { + "start": 50216.8, + "end": 50218.0, + "probability": 0.9495 + }, + { + "start": 50219.5, + "end": 50221.1, + "probability": 0.8851 + }, + { + "start": 50221.68, + "end": 50223.14, + "probability": 0.9856 + }, + { + "start": 50224.04, + "end": 50225.9, + "probability": 0.9414 + }, + { + "start": 50226.72, + "end": 50228.06, + "probability": 0.9966 + }, + { + "start": 50229.2, + "end": 50232.66, + "probability": 0.9928 + }, + { + "start": 50233.18, + "end": 50236.04, + "probability": 0.9896 + }, + { + "start": 50236.94, + "end": 50238.6, + "probability": 0.9756 + }, + { + "start": 50238.9, + "end": 50240.18, + "probability": 0.7595 + }, + { + "start": 50240.56, + "end": 50240.84, + "probability": 0.3567 + }, + { + "start": 50240.86, + "end": 50242.06, + "probability": 0.9504 + }, + { + "start": 50242.7, + "end": 50244.34, + "probability": 0.9939 + }, + { + "start": 50245.34, + "end": 50246.02, + "probability": 0.7509 + }, + { + "start": 50247.34, + "end": 50250.18, + "probability": 0.7939 + }, + { + "start": 50251.08, + "end": 50257.12, + "probability": 0.9993 + }, + { + "start": 50257.24, + "end": 50260.18, + "probability": 0.9985 + }, + { + "start": 50261.16, + "end": 50265.56, + "probability": 0.858 + }, + { + "start": 50266.12, + "end": 50269.02, + "probability": 0.7888 + }, + { + "start": 50269.68, + "end": 50270.64, + "probability": 0.5403 + }, + { + "start": 50271.32, + "end": 50273.22, + "probability": 0.8527 + }, + { + "start": 50274.4, + "end": 50278.78, + "probability": 0.9922 + }, + { + "start": 50278.92, + "end": 50279.94, + "probability": 0.4208 + }, + { + "start": 50280.8, + "end": 50282.4, + "probability": 0.6257 + }, + { + "start": 50283.28, + "end": 50283.86, + "probability": 0.4356 + }, + { + "start": 50284.42, + "end": 50288.68, + "probability": 0.7853 + }, + { + "start": 50289.28, + "end": 50290.88, + "probability": 0.9967 + }, + { + "start": 50291.86, + "end": 50292.7, + "probability": 0.9934 + }, + { + "start": 50292.92, + "end": 50293.37, + "probability": 0.6223 + }, + { + "start": 50294.5, + "end": 50296.82, + "probability": 0.9929 + }, + { + "start": 50297.06, + "end": 50298.22, + "probability": 0.7733 + }, + { + "start": 50298.96, + "end": 50299.86, + "probability": 0.9937 + }, + { + "start": 50299.9, + "end": 50302.8, + "probability": 0.7042 + }, + { + "start": 50303.94, + "end": 50305.56, + "probability": 0.8889 + }, + { + "start": 50306.22, + "end": 50308.01, + "probability": 0.976 + }, + { + "start": 50308.7, + "end": 50310.84, + "probability": 0.9742 + }, + { + "start": 50311.74, + "end": 50313.06, + "probability": 0.9949 + }, + { + "start": 50313.58, + "end": 50316.14, + "probability": 0.7539 + }, + { + "start": 50316.7, + "end": 50317.86, + "probability": 0.9795 + }, + { + "start": 50318.46, + "end": 50319.5, + "probability": 0.9881 + }, + { + "start": 50319.74, + "end": 50321.24, + "probability": 0.9451 + }, + { + "start": 50321.44, + "end": 50321.84, + "probability": 0.3487 + }, + { + "start": 50322.8, + "end": 50324.64, + "probability": 0.9897 + }, + { + "start": 50325.44, + "end": 50326.48, + "probability": 0.9937 + }, + { + "start": 50327.26, + "end": 50329.38, + "probability": 0.9526 + }, + { + "start": 50330.78, + "end": 50333.98, + "probability": 0.9541 + }, + { + "start": 50335.02, + "end": 50337.54, + "probability": 0.8684 + }, + { + "start": 50338.44, + "end": 50340.6, + "probability": 0.979 + }, + { + "start": 50341.32, + "end": 50342.54, + "probability": 0.9788 + }, + { + "start": 50343.08, + "end": 50343.76, + "probability": 0.8083 + }, + { + "start": 50343.94, + "end": 50344.76, + "probability": 0.4253 + }, + { + "start": 50344.82, + "end": 50345.3, + "probability": 0.6711 + }, + { + "start": 50345.74, + "end": 50347.12, + "probability": 0.9788 + }, + { + "start": 50347.7, + "end": 50350.46, + "probability": 0.9766 + }, + { + "start": 50351.26, + "end": 50351.68, + "probability": 0.9846 + }, + { + "start": 50352.62, + "end": 50354.28, + "probability": 0.9932 + }, + { + "start": 50356.26, + "end": 50357.34, + "probability": 0.9899 + }, + { + "start": 50358.22, + "end": 50359.14, + "probability": 0.7453 + }, + { + "start": 50360.12, + "end": 50360.36, + "probability": 0.7965 + }, + { + "start": 50360.46, + "end": 50362.18, + "probability": 0.9831 + }, + { + "start": 50362.64, + "end": 50364.22, + "probability": 0.9837 + }, + { + "start": 50364.78, + "end": 50365.8, + "probability": 0.9166 + }, + { + "start": 50366.74, + "end": 50369.02, + "probability": 0.9082 + }, + { + "start": 50369.86, + "end": 50373.22, + "probability": 0.9874 + }, + { + "start": 50373.88, + "end": 50375.1, + "probability": 0.994 + }, + { + "start": 50375.26, + "end": 50377.06, + "probability": 0.9929 + }, + { + "start": 50377.72, + "end": 50378.07, + "probability": 0.8818 + }, + { + "start": 50380.04, + "end": 50380.52, + "probability": 0.8882 + }, + { + "start": 50380.84, + "end": 50381.7, + "probability": 0.9623 + }, + { + "start": 50381.78, + "end": 50382.94, + "probability": 0.8903 + }, + { + "start": 50383.36, + "end": 50383.72, + "probability": 0.7414 + }, + { + "start": 50383.86, + "end": 50384.66, + "probability": 0.8577 + }, + { + "start": 50385.28, + "end": 50385.84, + "probability": 0.7966 + }, + { + "start": 50387.12, + "end": 50389.08, + "probability": 0.9806 + }, + { + "start": 50390.1, + "end": 50394.5, + "probability": 0.9929 + }, + { + "start": 50394.52, + "end": 50396.92, + "probability": 0.9989 + }, + { + "start": 50397.72, + "end": 50401.86, + "probability": 0.9607 + }, + { + "start": 50402.42, + "end": 50403.58, + "probability": 0.9451 + }, + { + "start": 50404.38, + "end": 50405.48, + "probability": 0.9702 + }, + { + "start": 50405.66, + "end": 50406.46, + "probability": 0.6679 + }, + { + "start": 50407.4, + "end": 50408.5, + "probability": 0.6904 + }, + { + "start": 50409.44, + "end": 50410.47, + "probability": 0.8302 + }, + { + "start": 50410.76, + "end": 50411.46, + "probability": 0.9258 + }, + { + "start": 50411.86, + "end": 50413.14, + "probability": 0.9772 + }, + { + "start": 50413.8, + "end": 50417.34, + "probability": 0.9491 + }, + { + "start": 50417.86, + "end": 50419.52, + "probability": 0.9495 + }, + { + "start": 50420.3, + "end": 50421.52, + "probability": 0.5961 + }, + { + "start": 50422.2, + "end": 50423.18, + "probability": 0.9329 + }, + { + "start": 50423.54, + "end": 50424.62, + "probability": 0.9856 + }, + { + "start": 50425.3, + "end": 50426.24, + "probability": 0.7199 + }, + { + "start": 50426.86, + "end": 50428.74, + "probability": 0.9839 + }, + { + "start": 50430.1, + "end": 50431.7, + "probability": 0.8422 + }, + { + "start": 50432.66, + "end": 50433.82, + "probability": 0.9819 + }, + { + "start": 50434.52, + "end": 50435.86, + "probability": 0.5344 + }, + { + "start": 50437.2, + "end": 50437.94, + "probability": 0.7539 + }, + { + "start": 50439.5, + "end": 50440.84, + "probability": 0.8844 + }, + { + "start": 50442.32, + "end": 50444.94, + "probability": 0.9241 + }, + { + "start": 50446.6, + "end": 50447.92, + "probability": 0.9954 + }, + { + "start": 50448.9, + "end": 50449.98, + "probability": 0.6682 + }, + { + "start": 50450.3, + "end": 50453.28, + "probability": 0.9268 + }, + { + "start": 50453.28, + "end": 50458.24, + "probability": 0.9858 + }, + { + "start": 50459.04, + "end": 50461.3, + "probability": 0.9944 + }, + { + "start": 50462.28, + "end": 50464.1, + "probability": 0.9072 + }, + { + "start": 50464.8, + "end": 50466.6, + "probability": 0.998 + }, + { + "start": 50468.74, + "end": 50470.3, + "probability": 0.7423 + }, + { + "start": 50470.54, + "end": 50472.76, + "probability": 0.9759 + }, + { + "start": 50473.58, + "end": 50476.32, + "probability": 0.9819 + }, + { + "start": 50477.7, + "end": 50478.88, + "probability": 0.9336 + }, + { + "start": 50479.8, + "end": 50481.04, + "probability": 0.905 + }, + { + "start": 50481.88, + "end": 50487.32, + "probability": 0.9479 + }, + { + "start": 50487.66, + "end": 50488.28, + "probability": 0.9545 + }, + { + "start": 50488.54, + "end": 50489.18, + "probability": 0.9688 + }, + { + "start": 50490.28, + "end": 50491.64, + "probability": 0.8166 + }, + { + "start": 50493.2, + "end": 50496.22, + "probability": 0.9904 + }, + { + "start": 50497.1, + "end": 50501.72, + "probability": 0.9827 + }, + { + "start": 50502.0, + "end": 50504.84, + "probability": 0.9945 + }, + { + "start": 50505.82, + "end": 50508.9, + "probability": 0.7557 + }, + { + "start": 50511.4, + "end": 50511.5, + "probability": 0.0016 + }, + { + "start": 50511.5, + "end": 50511.5, + "probability": 0.1993 + }, + { + "start": 50511.5, + "end": 50512.52, + "probability": 0.9727 + }, + { + "start": 50514.88, + "end": 50516.5, + "probability": 0.9565 + }, + { + "start": 50517.38, + "end": 50518.46, + "probability": 0.9229 + }, + { + "start": 50519.04, + "end": 50519.56, + "probability": 0.811 + }, + { + "start": 50520.58, + "end": 50527.54, + "probability": 0.9921 + }, + { + "start": 50527.86, + "end": 50530.34, + "probability": 0.9895 + }, + { + "start": 50531.02, + "end": 50532.7, + "probability": 0.7637 + }, + { + "start": 50533.26, + "end": 50535.04, + "probability": 0.8828 + }, + { + "start": 50535.9, + "end": 50538.14, + "probability": 0.9891 + }, + { + "start": 50539.16, + "end": 50540.2, + "probability": 0.9237 + }, + { + "start": 50541.16, + "end": 50542.54, + "probability": 0.9951 + }, + { + "start": 50543.22, + "end": 50545.78, + "probability": 0.9959 + }, + { + "start": 50546.84, + "end": 50548.2, + "probability": 0.9816 + }, + { + "start": 50549.0, + "end": 50556.82, + "probability": 0.9957 + }, + { + "start": 50557.66, + "end": 50558.52, + "probability": 0.9856 + }, + { + "start": 50559.22, + "end": 50560.28, + "probability": 0.8186 + }, + { + "start": 50561.32, + "end": 50562.4, + "probability": 0.9782 + }, + { + "start": 50563.52, + "end": 50565.06, + "probability": 0.9927 + }, + { + "start": 50565.84, + "end": 50567.82, + "probability": 0.8558 + }, + { + "start": 50568.76, + "end": 50571.84, + "probability": 0.9981 + }, + { + "start": 50572.54, + "end": 50573.07, + "probability": 0.9785 + }, + { + "start": 50574.02, + "end": 50577.04, + "probability": 0.9933 + }, + { + "start": 50578.18, + "end": 50579.02, + "probability": 0.9854 + }, + { + "start": 50579.86, + "end": 50582.64, + "probability": 0.7211 + }, + { + "start": 50583.64, + "end": 50584.35, + "probability": 0.998 + }, + { + "start": 50585.2, + "end": 50586.76, + "probability": 0.9985 + }, + { + "start": 50587.46, + "end": 50589.61, + "probability": 0.7344 + }, + { + "start": 50590.82, + "end": 50593.1, + "probability": 0.8934 + }, + { + "start": 50593.2, + "end": 50593.92, + "probability": 0.5141 + }, + { + "start": 50594.94, + "end": 50596.62, + "probability": 0.9763 + }, + { + "start": 50596.74, + "end": 50597.6, + "probability": 0.8809 + }, + { + "start": 50598.52, + "end": 50599.46, + "probability": 0.4284 + }, + { + "start": 50600.08, + "end": 50602.26, + "probability": 0.5021 + }, + { + "start": 50603.16, + "end": 50604.84, + "probability": 0.9976 + }, + { + "start": 50606.1, + "end": 50607.54, + "probability": 0.9298 + }, + { + "start": 50608.22, + "end": 50609.66, + "probability": 0.9993 + }, + { + "start": 50610.4, + "end": 50613.32, + "probability": 0.9708 + }, + { + "start": 50614.26, + "end": 50614.62, + "probability": 0.8774 + }, + { + "start": 50615.22, + "end": 50617.26, + "probability": 0.98 + }, + { + "start": 50617.86, + "end": 50622.32, + "probability": 0.9961 + }, + { + "start": 50623.52, + "end": 50625.72, + "probability": 0.9472 + }, + { + "start": 50627.0, + "end": 50629.52, + "probability": 0.9147 + }, + { + "start": 50630.48, + "end": 50631.84, + "probability": 0.9524 + }, + { + "start": 50632.36, + "end": 50634.08, + "probability": 0.8416 + }, + { + "start": 50634.76, + "end": 50636.88, + "probability": 0.8305 + }, + { + "start": 50638.0, + "end": 50639.42, + "probability": 0.901 + }, + { + "start": 50640.18, + "end": 50641.76, + "probability": 0.5073 + }, + { + "start": 50642.3, + "end": 50644.68, + "probability": 0.8394 + }, + { + "start": 50645.46, + "end": 50646.17, + "probability": 0.9512 + }, + { + "start": 50647.38, + "end": 50649.47, + "probability": 0.9627 + }, + { + "start": 50649.82, + "end": 50650.46, + "probability": 0.4975 + }, + { + "start": 50650.54, + "end": 50652.26, + "probability": 0.9692 + }, + { + "start": 50653.04, + "end": 50654.88, + "probability": 0.951 + }, + { + "start": 50655.16, + "end": 50657.76, + "probability": 0.8517 + }, + { + "start": 50658.62, + "end": 50660.78, + "probability": 0.8066 + }, + { + "start": 50661.68, + "end": 50663.34, + "probability": 0.9575 + }, + { + "start": 50664.08, + "end": 50666.14, + "probability": 0.9377 + }, + { + "start": 50666.88, + "end": 50668.34, + "probability": 0.6725 + }, + { + "start": 50668.5, + "end": 50669.9, + "probability": 0.7432 + }, + { + "start": 50670.62, + "end": 50671.36, + "probability": 0.7737 + }, + { + "start": 50671.98, + "end": 50677.2, + "probability": 0.9736 + }, + { + "start": 50678.34, + "end": 50680.54, + "probability": 0.9919 + }, + { + "start": 50680.98, + "end": 50682.44, + "probability": 0.7125 + }, + { + "start": 50683.24, + "end": 50683.96, + "probability": 0.8602 + }, + { + "start": 50684.82, + "end": 50685.9, + "probability": 0.8576 + }, + { + "start": 50686.94, + "end": 50688.22, + "probability": 0.9084 + }, + { + "start": 50689.56, + "end": 50691.16, + "probability": 0.8936 + }, + { + "start": 50692.42, + "end": 50692.44, + "probability": 0.6715 + }, + { + "start": 50692.62, + "end": 50693.04, + "probability": 0.7747 + }, + { + "start": 50693.1, + "end": 50693.88, + "probability": 0.9292 + }, + { + "start": 50694.2, + "end": 50695.32, + "probability": 0.896 + }, + { + "start": 50696.52, + "end": 50698.4, + "probability": 0.9767 + }, + { + "start": 50698.56, + "end": 50701.64, + "probability": 0.9946 + }, + { + "start": 50702.74, + "end": 50703.46, + "probability": 0.9581 + }, + { + "start": 50704.12, + "end": 50705.34, + "probability": 0.9487 + }, + { + "start": 50706.08, + "end": 50706.44, + "probability": 0.9422 + }, + { + "start": 50707.62, + "end": 50709.26, + "probability": 0.9235 + }, + { + "start": 50709.8, + "end": 50710.61, + "probability": 0.9058 + }, + { + "start": 50711.34, + "end": 50713.1, + "probability": 0.5807 + }, + { + "start": 50713.46, + "end": 50715.62, + "probability": 0.8459 + }, + { + "start": 50716.3, + "end": 50720.44, + "probability": 0.9378 + }, + { + "start": 50720.44, + "end": 50723.4, + "probability": 0.8171 + }, + { + "start": 50723.4, + "end": 50724.64, + "probability": 0.5743 + }, + { + "start": 50725.44, + "end": 50726.3, + "probability": 0.7698 + }, + { + "start": 50726.94, + "end": 50731.54, + "probability": 0.9478 + }, + { + "start": 50731.96, + "end": 50733.4, + "probability": 0.9794 + }, + { + "start": 50733.92, + "end": 50734.7, + "probability": 0.9951 + }, + { + "start": 50735.3, + "end": 50737.92, + "probability": 0.9753 + }, + { + "start": 50738.5, + "end": 50741.34, + "probability": 0.9975 + }, + { + "start": 50741.68, + "end": 50742.6, + "probability": 0.9573 + }, + { + "start": 50742.96, + "end": 50744.26, + "probability": 0.9159 + }, + { + "start": 50745.16, + "end": 50746.78, + "probability": 0.8353 + }, + { + "start": 50747.26, + "end": 50747.66, + "probability": 0.8235 + }, + { + "start": 50747.84, + "end": 50749.36, + "probability": 0.9315 + }, + { + "start": 50749.88, + "end": 50752.1, + "probability": 0.9827 + }, + { + "start": 50753.1, + "end": 50754.42, + "probability": 0.9929 + }, + { + "start": 50755.06, + "end": 50757.03, + "probability": 0.9881 + }, + { + "start": 50757.78, + "end": 50758.66, + "probability": 0.9491 + }, + { + "start": 50759.72, + "end": 50760.6, + "probability": 0.9762 + }, + { + "start": 50761.12, + "end": 50762.0, + "probability": 0.8326 + }, + { + "start": 50763.12, + "end": 50766.3, + "probability": 0.9419 + }, + { + "start": 50767.2, + "end": 50768.23, + "probability": 0.9714 + }, + { + "start": 50768.86, + "end": 50769.99, + "probability": 0.9736 + }, + { + "start": 50771.06, + "end": 50771.66, + "probability": 0.9368 + }, + { + "start": 50772.34, + "end": 50775.26, + "probability": 0.9813 + }, + { + "start": 50776.18, + "end": 50777.56, + "probability": 0.9938 + }, + { + "start": 50778.46, + "end": 50780.72, + "probability": 0.9471 + }, + { + "start": 50781.26, + "end": 50783.1, + "probability": 0.9983 + }, + { + "start": 50784.36, + "end": 50785.86, + "probability": 0.9932 + }, + { + "start": 50786.7, + "end": 50789.22, + "probability": 0.9428 + }, + { + "start": 50790.18, + "end": 50791.98, + "probability": 0.8203 + }, + { + "start": 50792.58, + "end": 50794.66, + "probability": 0.9993 + }, + { + "start": 50794.76, + "end": 50796.3, + "probability": 0.9929 + }, + { + "start": 50797.38, + "end": 50798.3, + "probability": 0.9931 + }, + { + "start": 50798.82, + "end": 50801.08, + "probability": 0.9238 + }, + { + "start": 50801.66, + "end": 50804.86, + "probability": 0.9954 + }, + { + "start": 50805.82, + "end": 50807.22, + "probability": 0.9708 + }, + { + "start": 50808.02, + "end": 50809.92, + "probability": 0.9834 + }, + { + "start": 50810.66, + "end": 50812.5, + "probability": 0.9031 + }, + { + "start": 50813.82, + "end": 50816.58, + "probability": 0.9302 + }, + { + "start": 50816.98, + "end": 50818.8, + "probability": 0.7802 + }, + { + "start": 50820.06, + "end": 50824.96, + "probability": 0.9977 + }, + { + "start": 50825.92, + "end": 50826.28, + "probability": 0.9985 + }, + { + "start": 50827.32, + "end": 50831.0, + "probability": 0.999 + }, + { + "start": 50831.6, + "end": 50834.0, + "probability": 0.9983 + }, + { + "start": 50834.94, + "end": 50840.58, + "probability": 0.9584 + }, + { + "start": 50840.64, + "end": 50841.72, + "probability": 0.9114 + }, + { + "start": 50842.28, + "end": 50844.46, + "probability": 0.5819 + }, + { + "start": 50844.58, + "end": 50848.76, + "probability": 0.9972 + }, + { + "start": 50848.82, + "end": 50850.02, + "probability": 0.8123 + }, + { + "start": 50850.72, + "end": 50851.88, + "probability": 0.9832 + }, + { + "start": 50852.06, + "end": 50852.5, + "probability": 0.9352 + }, + { + "start": 50853.3, + "end": 50854.36, + "probability": 0.9207 + }, + { + "start": 50854.72, + "end": 50859.96, + "probability": 0.9819 + }, + { + "start": 50860.9, + "end": 50863.66, + "probability": 0.9974 + }, + { + "start": 50863.66, + "end": 50867.48, + "probability": 0.9916 + }, + { + "start": 50867.5, + "end": 50868.28, + "probability": 0.9023 + }, + { + "start": 50869.52, + "end": 50870.26, + "probability": 0.8761 + }, + { + "start": 50871.12, + "end": 50871.92, + "probability": 0.8722 + }, + { + "start": 50871.94, + "end": 50872.3, + "probability": 0.981 + }, + { + "start": 50873.72, + "end": 50874.22, + "probability": 0.9344 + }, + { + "start": 50875.1, + "end": 50877.2, + "probability": 0.9186 + }, + { + "start": 50878.0, + "end": 50881.02, + "probability": 0.9953 + }, + { + "start": 50881.06, + "end": 50882.18, + "probability": 0.7869 + }, + { + "start": 50883.2, + "end": 50885.54, + "probability": 0.9371 + }, + { + "start": 50885.6, + "end": 50888.4, + "probability": 0.8906 + }, + { + "start": 50888.94, + "end": 50890.02, + "probability": 0.8518 + }, + { + "start": 50890.12, + "end": 50891.96, + "probability": 0.2084 + }, + { + "start": 50892.26, + "end": 50892.46, + "probability": 0.7763 + }, + { + "start": 50892.46, + "end": 50894.26, + "probability": 0.6532 + }, + { + "start": 50895.4, + "end": 50897.12, + "probability": 0.7205 + }, + { + "start": 50897.8, + "end": 50899.98, + "probability": 0.9455 + }, + { + "start": 50901.04, + "end": 50904.3, + "probability": 0.9892 + }, + { + "start": 50904.5, + "end": 50905.5, + "probability": 0.9129 + }, + { + "start": 50906.58, + "end": 50910.72, + "probability": 0.9973 + }, + { + "start": 50911.42, + "end": 50914.74, + "probability": 0.7486 + }, + { + "start": 50914.9, + "end": 50915.42, + "probability": 0.8656 + }, + { + "start": 50915.56, + "end": 50918.64, + "probability": 0.9783 + }, + { + "start": 50918.86, + "end": 50921.18, + "probability": 0.7753 + }, + { + "start": 50921.52, + "end": 50921.84, + "probability": 0.362 + }, + { + "start": 50922.54, + "end": 50926.1, + "probability": 0.943 + }, + { + "start": 50926.26, + "end": 50926.76, + "probability": 0.7545 + }, + { + "start": 50927.66, + "end": 50932.24, + "probability": 0.9976 + }, + { + "start": 50932.24, + "end": 50936.58, + "probability": 0.9921 + }, + { + "start": 50936.72, + "end": 50939.06, + "probability": 0.9011 + }, + { + "start": 50939.52, + "end": 50943.18, + "probability": 0.8858 + }, + { + "start": 50943.32, + "end": 50943.95, + "probability": 0.9551 + }, + { + "start": 50944.12, + "end": 50944.8, + "probability": 0.9526 + }, + { + "start": 50945.48, + "end": 50945.76, + "probability": 0.9129 + }, + { + "start": 50945.92, + "end": 50948.14, + "probability": 0.9941 + }, + { + "start": 50948.26, + "end": 50951.24, + "probability": 0.9917 + }, + { + "start": 50951.5, + "end": 50951.6, + "probability": 0.6615 + }, + { + "start": 50951.96, + "end": 50953.54, + "probability": 0.973 + }, + { + "start": 50953.66, + "end": 50953.76, + "probability": 0.4293 + }, + { + "start": 50954.28, + "end": 50955.08, + "probability": 0.7515 + }, + { + "start": 50956.04, + "end": 50957.16, + "probability": 0.7865 + }, + { + "start": 50957.7, + "end": 50960.34, + "probability": 0.937 + }, + { + "start": 50961.1, + "end": 50964.44, + "probability": 0.6997 + }, + { + "start": 50964.48, + "end": 50966.88, + "probability": 0.9952 + }, + { + "start": 50967.76, + "end": 50967.96, + "probability": 0.457 + }, + { + "start": 50968.14, + "end": 50969.82, + "probability": 0.9923 + }, + { + "start": 50969.96, + "end": 50971.66, + "probability": 0.8998 + }, + { + "start": 50971.74, + "end": 50972.04, + "probability": 0.4208 + }, + { + "start": 50972.14, + "end": 50972.64, + "probability": 0.9236 + }, + { + "start": 50973.02, + "end": 50975.04, + "probability": 0.9566 + }, + { + "start": 50975.12, + "end": 50978.33, + "probability": 0.9348 + }, + { + "start": 50980.24, + "end": 50981.12, + "probability": 0.855 + }, + { + "start": 50982.06, + "end": 50984.08, + "probability": 0.9866 + }, + { + "start": 50984.62, + "end": 50987.52, + "probability": 0.9971 + }, + { + "start": 50988.46, + "end": 50991.44, + "probability": 0.9903 + }, + { + "start": 50991.68, + "end": 50992.18, + "probability": 0.954 + }, + { + "start": 50992.4, + "end": 50992.82, + "probability": 0.7271 + }, + { + "start": 50993.02, + "end": 50993.84, + "probability": 0.9229 + }, + { + "start": 50994.54, + "end": 50997.6, + "probability": 0.999 + }, + { + "start": 50998.1, + "end": 51002.18, + "probability": 0.9909 + }, + { + "start": 51002.66, + "end": 51007.16, + "probability": 0.9884 + }, + { + "start": 51007.86, + "end": 51010.98, + "probability": 0.9984 + }, + { + "start": 51011.06, + "end": 51011.56, + "probability": 0.9738 + }, + { + "start": 51012.52, + "end": 51016.34, + "probability": 0.9951 + }, + { + "start": 51017.32, + "end": 51019.76, + "probability": 0.9839 + }, + { + "start": 51020.0, + "end": 51022.64, + "probability": 0.9965 + }, + { + "start": 51023.76, + "end": 51029.08, + "probability": 0.998 + }, + { + "start": 51029.94, + "end": 51033.24, + "probability": 0.9976 + }, + { + "start": 51033.64, + "end": 51034.72, + "probability": 0.8464 + }, + { + "start": 51034.82, + "end": 51037.0, + "probability": 0.947 + }, + { + "start": 51037.14, + "end": 51039.6, + "probability": 0.8783 + }, + { + "start": 51039.6, + "end": 51043.64, + "probability": 0.9938 + }, + { + "start": 51044.2, + "end": 51046.2, + "probability": 0.6919 + }, + { + "start": 51047.14, + "end": 51047.87, + "probability": 0.8062 + }, + { + "start": 51048.4, + "end": 51050.18, + "probability": 0.9966 + }, + { + "start": 51050.3, + "end": 51051.66, + "probability": 0.978 + }, + { + "start": 51052.3, + "end": 51053.7, + "probability": 0.8223 + }, + { + "start": 51054.3, + "end": 51055.92, + "probability": 0.9971 + }, + { + "start": 51055.96, + "end": 51057.96, + "probability": 0.9585 + }, + { + "start": 51058.42, + "end": 51059.28, + "probability": 0.9677 + }, + { + "start": 51060.82, + "end": 51061.48, + "probability": 0.6496 + }, + { + "start": 51062.08, + "end": 51064.22, + "probability": 0.967 + }, + { + "start": 51064.76, + "end": 51070.32, + "probability": 0.9976 + }, + { + "start": 51071.14, + "end": 51073.24, + "probability": 0.9165 + }, + { + "start": 51073.6, + "end": 51076.44, + "probability": 0.9814 + }, + { + "start": 51076.44, + "end": 51079.26, + "probability": 0.9985 + }, + { + "start": 51080.38, + "end": 51082.22, + "probability": 0.9313 + }, + { + "start": 51083.16, + "end": 51086.06, + "probability": 0.6535 + }, + { + "start": 51086.8, + "end": 51087.26, + "probability": 0.718 + }, + { + "start": 51087.5, + "end": 51089.4, + "probability": 0.9537 + }, + { + "start": 51089.62, + "end": 51090.38, + "probability": 0.6198 + }, + { + "start": 51090.5, + "end": 51091.26, + "probability": 0.5852 + }, + { + "start": 51091.32, + "end": 51093.22, + "probability": 0.5754 + }, + { + "start": 51093.36, + "end": 51096.78, + "probability": 0.9957 + }, + { + "start": 51096.88, + "end": 51097.22, + "probability": 0.638 + }, + { + "start": 51097.54, + "end": 51098.2, + "probability": 0.7018 + }, + { + "start": 51098.36, + "end": 51100.32, + "probability": 0.9497 + }, + { + "start": 51100.88, + "end": 51104.5, + "probability": 0.9382 + }, + { + "start": 51104.68, + "end": 51105.66, + "probability": 0.6886 + }, + { + "start": 51106.02, + "end": 51107.9, + "probability": 0.9948 + }, + { + "start": 51108.3, + "end": 51111.44, + "probability": 0.9958 + }, + { + "start": 51111.86, + "end": 51113.14, + "probability": 0.9977 + }, + { + "start": 51113.16, + "end": 51115.8, + "probability": 0.9954 + }, + { + "start": 51116.98, + "end": 51117.66, + "probability": 0.7408 + }, + { + "start": 51118.6, + "end": 51122.26, + "probability": 0.9928 + }, + { + "start": 51122.84, + "end": 51127.16, + "probability": 0.9938 + }, + { + "start": 51127.72, + "end": 51129.22, + "probability": 0.8035 + }, + { + "start": 51129.72, + "end": 51131.52, + "probability": 0.8558 + }, + { + "start": 51131.86, + "end": 51135.48, + "probability": 0.9404 + }, + { + "start": 51136.1, + "end": 51138.0, + "probability": 0.9197 + }, + { + "start": 51138.32, + "end": 51139.52, + "probability": 0.986 + }, + { + "start": 51140.58, + "end": 51145.36, + "probability": 0.9583 + }, + { + "start": 51146.32, + "end": 51148.7, + "probability": 0.9958 + }, + { + "start": 51148.84, + "end": 51150.62, + "probability": 0.9977 + }, + { + "start": 51151.12, + "end": 51151.82, + "probability": 0.8843 + }, + { + "start": 51151.88, + "end": 51153.06, + "probability": 0.4554 + }, + { + "start": 51153.06, + "end": 51154.82, + "probability": 0.9783 + }, + { + "start": 51155.66, + "end": 51156.94, + "probability": 0.9753 + }, + { + "start": 51157.5, + "end": 51159.78, + "probability": 0.9886 + }, + { + "start": 51160.56, + "end": 51165.84, + "probability": 0.9993 + }, + { + "start": 51166.32, + "end": 51167.32, + "probability": 0.573 + }, + { + "start": 51167.74, + "end": 51170.68, + "probability": 0.9926 + }, + { + "start": 51171.32, + "end": 51174.5, + "probability": 0.9985 + }, + { + "start": 51175.18, + "end": 51175.26, + "probability": 0.502 + }, + { + "start": 51175.32, + "end": 51176.1, + "probability": 0.826 + }, + { + "start": 51176.22, + "end": 51177.14, + "probability": 0.9127 + }, + { + "start": 51177.56, + "end": 51178.16, + "probability": 0.7453 + }, + { + "start": 51178.18, + "end": 51178.58, + "probability": 0.76 + }, + { + "start": 51178.76, + "end": 51181.98, + "probability": 0.9624 + }, + { + "start": 51182.64, + "end": 51187.1, + "probability": 0.9863 + }, + { + "start": 51187.16, + "end": 51189.8, + "probability": 0.9807 + }, + { + "start": 51190.62, + "end": 51196.26, + "probability": 0.9976 + }, + { + "start": 51196.72, + "end": 51199.3, + "probability": 0.9817 + }, + { + "start": 51199.3, + "end": 51202.36, + "probability": 0.9971 + }, + { + "start": 51203.64, + "end": 51206.5, + "probability": 0.9199 + }, + { + "start": 51207.08, + "end": 51210.32, + "probability": 0.9891 + }, + { + "start": 51210.66, + "end": 51214.24, + "probability": 0.9897 + }, + { + "start": 51214.24, + "end": 51216.84, + "probability": 0.9992 + }, + { + "start": 51216.9, + "end": 51218.06, + "probability": 0.9878 + }, + { + "start": 51218.64, + "end": 51221.06, + "probability": 0.9841 + }, + { + "start": 51221.18, + "end": 51222.86, + "probability": 0.7961 + }, + { + "start": 51222.94, + "end": 51225.12, + "probability": 0.9629 + }, + { + "start": 51225.12, + "end": 51229.18, + "probability": 0.9854 + }, + { + "start": 51229.26, + "end": 51230.32, + "probability": 0.6814 + }, + { + "start": 51231.84, + "end": 51232.86, + "probability": 0.9392 + }, + { + "start": 51233.0, + "end": 51238.06, + "probability": 0.9941 + }, + { + "start": 51238.3, + "end": 51239.24, + "probability": 0.8859 + }, + { + "start": 51240.14, + "end": 51241.24, + "probability": 0.7311 + }, + { + "start": 51241.78, + "end": 51243.58, + "probability": 0.9221 + }, + { + "start": 51244.18, + "end": 51252.02, + "probability": 0.9512 + }, + { + "start": 51252.78, + "end": 51253.0, + "probability": 0.4573 + }, + { + "start": 51253.14, + "end": 51253.46, + "probability": 0.9122 + }, + { + "start": 51253.66, + "end": 51254.68, + "probability": 0.9724 + }, + { + "start": 51255.14, + "end": 51256.91, + "probability": 0.9717 + }, + { + "start": 51256.98, + "end": 51258.18, + "probability": 0.9746 + }, + { + "start": 51258.38, + "end": 51260.16, + "probability": 0.8954 + }, + { + "start": 51260.8, + "end": 51261.78, + "probability": 0.8645 + }, + { + "start": 51262.5, + "end": 51263.42, + "probability": 0.7524 + }, + { + "start": 51263.54, + "end": 51265.94, + "probability": 0.9118 + }, + { + "start": 51266.4, + "end": 51270.2, + "probability": 0.9946 + }, + { + "start": 51270.72, + "end": 51276.89, + "probability": 0.9984 + }, + { + "start": 51277.02, + "end": 51278.82, + "probability": 0.9974 + }, + { + "start": 51279.26, + "end": 51284.76, + "probability": 0.9944 + }, + { + "start": 51284.92, + "end": 51285.36, + "probability": 0.7284 + }, + { + "start": 51285.46, + "end": 51287.7, + "probability": 0.9894 + }, + { + "start": 51287.88, + "end": 51288.2, + "probability": 0.6713 + }, + { + "start": 51288.2, + "end": 51288.3, + "probability": 0.3384 + }, + { + "start": 51288.52, + "end": 51292.52, + "probability": 0.9851 + }, + { + "start": 51292.52, + "end": 51297.68, + "probability": 0.9899 + }, + { + "start": 51297.92, + "end": 51299.56, + "probability": 0.9967 + }, + { + "start": 51299.72, + "end": 51301.38, + "probability": 0.9916 + }, + { + "start": 51302.78, + "end": 51304.34, + "probability": 0.5653 + }, + { + "start": 51304.58, + "end": 51306.16, + "probability": 0.8464 + }, + { + "start": 51306.48, + "end": 51309.98, + "probability": 0.9951 + }, + { + "start": 51310.5, + "end": 51313.74, + "probability": 0.8958 + }, + { + "start": 51314.06, + "end": 51315.44, + "probability": 0.7766 + }, + { + "start": 51315.74, + "end": 51319.56, + "probability": 0.9734 + }, + { + "start": 51320.06, + "end": 51325.08, + "probability": 0.9834 + }, + { + "start": 51325.98, + "end": 51326.22, + "probability": 0.7391 + }, + { + "start": 51327.36, + "end": 51331.42, + "probability": 0.9731 + }, + { + "start": 51332.04, + "end": 51333.5, + "probability": 0.9841 + }, + { + "start": 51334.06, + "end": 51335.6, + "probability": 0.9956 + }, + { + "start": 51336.96, + "end": 51337.9, + "probability": 0.8693 + }, + { + "start": 51338.76, + "end": 51339.6, + "probability": 0.8447 + }, + { + "start": 51340.56, + "end": 51343.06, + "probability": 0.9888 + }, + { + "start": 51343.9, + "end": 51349.0, + "probability": 0.988 + }, + { + "start": 51349.46, + "end": 51352.7, + "probability": 0.9877 + }, + { + "start": 51354.02, + "end": 51355.14, + "probability": 0.9869 + }, + { + "start": 51355.66, + "end": 51358.66, + "probability": 0.9886 + }, + { + "start": 51358.76, + "end": 51359.36, + "probability": 0.894 + }, + { + "start": 51359.86, + "end": 51363.24, + "probability": 0.9261 + }, + { + "start": 51363.98, + "end": 51364.58, + "probability": 0.4514 + }, + { + "start": 51364.68, + "end": 51365.1, + "probability": 0.5372 + }, + { + "start": 51365.36, + "end": 51365.78, + "probability": 0.8994 + }, + { + "start": 51365.82, + "end": 51370.24, + "probability": 0.9879 + }, + { + "start": 51370.36, + "end": 51372.28, + "probability": 0.9751 + }, + { + "start": 51372.38, + "end": 51374.9, + "probability": 0.9904 + }, + { + "start": 51375.04, + "end": 51378.98, + "probability": 0.9845 + }, + { + "start": 51379.84, + "end": 51381.24, + "probability": 0.6067 + }, + { + "start": 51381.5, + "end": 51381.92, + "probability": 0.7672 + }, + { + "start": 51382.24, + "end": 51385.77, + "probability": 0.9539 + }, + { + "start": 51386.22, + "end": 51387.44, + "probability": 0.9658 + }, + { + "start": 51388.56, + "end": 51389.66, + "probability": 0.9888 + }, + { + "start": 51389.68, + "end": 51390.74, + "probability": 0.5542 + }, + { + "start": 51390.74, + "end": 51394.5, + "probability": 0.8683 + }, + { + "start": 51394.86, + "end": 51398.1, + "probability": 0.9849 + }, + { + "start": 51398.88, + "end": 51400.1, + "probability": 0.8717 + }, + { + "start": 51400.24, + "end": 51401.84, + "probability": 0.933 + }, + { + "start": 51402.2, + "end": 51402.8, + "probability": 0.9102 + }, + { + "start": 51403.0, + "end": 51403.76, + "probability": 0.9193 + }, + { + "start": 51404.28, + "end": 51406.38, + "probability": 0.9985 + }, + { + "start": 51406.88, + "end": 51408.7, + "probability": 0.9954 + }, + { + "start": 51409.44, + "end": 51412.7, + "probability": 0.9961 + }, + { + "start": 51412.84, + "end": 51417.66, + "probability": 0.9927 + }, + { + "start": 51418.06, + "end": 51418.8, + "probability": 0.6454 + }, + { + "start": 51419.36, + "end": 51420.44, + "probability": 0.9181 + }, + { + "start": 51420.86, + "end": 51421.42, + "probability": 0.8765 + }, + { + "start": 51421.92, + "end": 51422.38, + "probability": 0.8616 + }, + { + "start": 51422.64, + "end": 51425.48, + "probability": 0.8896 + }, + { + "start": 51425.6, + "end": 51426.14, + "probability": 0.7231 + }, + { + "start": 51426.44, + "end": 51427.82, + "probability": 0.9601 + }, + { + "start": 51428.42, + "end": 51429.96, + "probability": 0.8423 + }, + { + "start": 51430.08, + "end": 51431.16, + "probability": 0.8503 + }, + { + "start": 51431.24, + "end": 51433.54, + "probability": 0.9509 + }, + { + "start": 51434.36, + "end": 51441.22, + "probability": 0.963 + }, + { + "start": 51442.2, + "end": 51447.22, + "probability": 0.9968 + }, + { + "start": 51447.46, + "end": 51453.26, + "probability": 0.9989 + }, + { + "start": 51454.26, + "end": 51456.28, + "probability": 0.9912 + }, + { + "start": 51456.4, + "end": 51458.52, + "probability": 0.9963 + }, + { + "start": 51458.62, + "end": 51459.14, + "probability": 0.7917 + }, + { + "start": 51459.64, + "end": 51460.24, + "probability": 0.4229 + }, + { + "start": 51460.78, + "end": 51462.88, + "probability": 0.8025 + }, + { + "start": 51463.46, + "end": 51464.16, + "probability": 0.0012 + }, + { + "start": 51464.48, + "end": 51467.86, + "probability": 0.985 + }, + { + "start": 51468.1, + "end": 51468.76, + "probability": 0.7493 + }, + { + "start": 51469.48, + "end": 51471.32, + "probability": 0.8626 + }, + { + "start": 51471.86, + "end": 51473.78, + "probability": 0.8171 + }, + { + "start": 51474.22, + "end": 51477.04, + "probability": 0.9938 + }, + { + "start": 51477.66, + "end": 51479.66, + "probability": 0.9788 + }, + { + "start": 51480.34, + "end": 51482.64, + "probability": 0.9209 + }, + { + "start": 51483.2, + "end": 51486.86, + "probability": 0.9937 + }, + { + "start": 51486.98, + "end": 51490.9, + "probability": 0.9967 + }, + { + "start": 51491.54, + "end": 51494.16, + "probability": 0.7115 + }, + { + "start": 51494.38, + "end": 51495.12, + "probability": 0.8363 + }, + { + "start": 51495.26, + "end": 51496.36, + "probability": 0.8807 + }, + { + "start": 51496.84, + "end": 51499.7, + "probability": 0.9808 + }, + { + "start": 51499.84, + "end": 51502.64, + "probability": 0.8004 + }, + { + "start": 51503.02, + "end": 51504.92, + "probability": 0.9971 + }, + { + "start": 51505.06, + "end": 51505.56, + "probability": 0.8845 + }, + { + "start": 51505.64, + "end": 51506.58, + "probability": 0.916 + }, + { + "start": 51506.78, + "end": 51508.66, + "probability": 0.9803 + }, + { + "start": 51508.82, + "end": 51509.38, + "probability": 0.8857 + }, + { + "start": 51510.04, + "end": 51516.62, + "probability": 0.9968 + }, + { + "start": 51517.56, + "end": 51522.2, + "probability": 0.8963 + }, + { + "start": 51522.98, + "end": 51528.6, + "probability": 0.985 + }, + { + "start": 51529.4, + "end": 51530.04, + "probability": 0.9882 + }, + { + "start": 51532.04, + "end": 51534.16, + "probability": 0.8676 + }, + { + "start": 51534.84, + "end": 51536.2, + "probability": 0.8858 + }, + { + "start": 51541.06, + "end": 51542.98, + "probability": 0.8901 + }, + { + "start": 51544.62, + "end": 51546.88, + "probability": 0.7473 + }, + { + "start": 51547.48, + "end": 51548.1, + "probability": 0.9627 + }, + { + "start": 51548.5, + "end": 51548.84, + "probability": 0.7892 + }, + { + "start": 51549.78, + "end": 51551.82, + "probability": 0.9875 + }, + { + "start": 51552.62, + "end": 51553.08, + "probability": 0.5367 + }, + { + "start": 51554.2, + "end": 51555.02, + "probability": 0.9622 + }, + { + "start": 51557.44, + "end": 51559.13, + "probability": 0.7654 + }, + { + "start": 51559.46, + "end": 51561.8, + "probability": 0.9263 + }, + { + "start": 51562.9, + "end": 51563.6, + "probability": 0.6517 + }, + { + "start": 51564.56, + "end": 51567.58, + "probability": 0.7362 + }, + { + "start": 51569.61, + "end": 51573.42, + "probability": 0.9863 + }, + { + "start": 51575.42, + "end": 51577.54, + "probability": 0.9958 + }, + { + "start": 51579.16, + "end": 51582.44, + "probability": 0.9827 + }, + { + "start": 51585.68, + "end": 51589.34, + "probability": 0.9704 + }, + { + "start": 51591.68, + "end": 51592.68, + "probability": 0.7141 + }, + { + "start": 51593.7, + "end": 51594.46, + "probability": 0.8989 + }, + { + "start": 51595.52, + "end": 51597.04, + "probability": 0.8651 + }, + { + "start": 51599.3, + "end": 51606.74, + "probability": 0.9863 + }, + { + "start": 51606.98, + "end": 51607.74, + "probability": 0.9517 + }, + { + "start": 51607.96, + "end": 51608.5, + "probability": 0.4794 + }, + { + "start": 51609.82, + "end": 51611.73, + "probability": 0.9395 + }, + { + "start": 51613.82, + "end": 51616.6, + "probability": 0.9524 + }, + { + "start": 51617.78, + "end": 51619.12, + "probability": 0.8372 + }, + { + "start": 51620.68, + "end": 51621.44, + "probability": 0.9617 + }, + { + "start": 51622.3, + "end": 51623.2, + "probability": 0.8561 + }, + { + "start": 51623.96, + "end": 51624.96, + "probability": 0.866 + }, + { + "start": 51626.54, + "end": 51633.9, + "probability": 0.9591 + }, + { + "start": 51636.16, + "end": 51640.04, + "probability": 0.9951 + }, + { + "start": 51643.46, + "end": 51645.22, + "probability": 0.8568 + }, + { + "start": 51646.5, + "end": 51649.78, + "probability": 0.7455 + }, + { + "start": 51650.7, + "end": 51651.34, + "probability": 0.7745 + }, + { + "start": 51654.2, + "end": 51657.54, + "probability": 0.9899 + }, + { + "start": 51660.8, + "end": 51663.38, + "probability": 0.9587 + }, + { + "start": 51664.74, + "end": 51667.95, + "probability": 0.7958 + }, + { + "start": 51670.08, + "end": 51670.78, + "probability": 0.9128 + }, + { + "start": 51672.0, + "end": 51672.9, + "probability": 0.9659 + }, + { + "start": 51674.22, + "end": 51677.46, + "probability": 0.9738 + }, + { + "start": 51678.5, + "end": 51679.9, + "probability": 0.9766 + }, + { + "start": 51682.94, + "end": 51685.6, + "probability": 0.9945 + }, + { + "start": 51689.88, + "end": 51689.88, + "probability": 0.012 + }, + { + "start": 51691.92, + "end": 51693.56, + "probability": 0.8422 + }, + { + "start": 51695.24, + "end": 51696.08, + "probability": 0.9966 + }, + { + "start": 51697.12, + "end": 51698.3, + "probability": 0.9985 + }, + { + "start": 51700.96, + "end": 51701.44, + "probability": 0.9352 + }, + { + "start": 51702.32, + "end": 51704.26, + "probability": 0.9922 + }, + { + "start": 51705.22, + "end": 51706.08, + "probability": 0.9175 + }, + { + "start": 51707.18, + "end": 51708.88, + "probability": 0.938 + }, + { + "start": 51710.72, + "end": 51711.34, + "probability": 0.7109 + }, + { + "start": 51711.82, + "end": 51714.76, + "probability": 0.9152 + }, + { + "start": 51716.98, + "end": 51720.7, + "probability": 0.9916 + }, + { + "start": 51724.26, + "end": 51726.24, + "probability": 0.9995 + }, + { + "start": 51727.48, + "end": 51728.08, + "probability": 0.5398 + }, + { + "start": 51730.36, + "end": 51731.5, + "probability": 0.8443 + }, + { + "start": 51733.4, + "end": 51735.28, + "probability": 0.9786 + }, + { + "start": 51736.24, + "end": 51737.38, + "probability": 0.9681 + }, + { + "start": 51742.52, + "end": 51744.5, + "probability": 0.88 + }, + { + "start": 51745.38, + "end": 51748.42, + "probability": 0.5281 + }, + { + "start": 51749.26, + "end": 51754.08, + "probability": 0.9909 + }, + { + "start": 51755.84, + "end": 51759.96, + "probability": 0.9868 + }, + { + "start": 51760.44, + "end": 51760.76, + "probability": 0.1504 + }, + { + "start": 51761.76, + "end": 51762.44, + "probability": 0.8837 + }, + { + "start": 51763.26, + "end": 51764.16, + "probability": 0.8872 + }, + { + "start": 51765.62, + "end": 51766.26, + "probability": 0.9818 + }, + { + "start": 51767.52, + "end": 51767.98, + "probability": 0.9674 + }, + { + "start": 51768.9, + "end": 51770.22, + "probability": 0.8682 + }, + { + "start": 51770.98, + "end": 51771.56, + "probability": 0.6998 + }, + { + "start": 51772.14, + "end": 51773.16, + "probability": 0.9042 + }, + { + "start": 51773.26, + "end": 51775.52, + "probability": 0.9976 + }, + { + "start": 51778.22, + "end": 51779.24, + "probability": 0.9324 + }, + { + "start": 51780.16, + "end": 51782.68, + "probability": 0.9695 + }, + { + "start": 51784.98, + "end": 51787.64, + "probability": 0.9844 + }, + { + "start": 51788.38, + "end": 51788.89, + "probability": 0.9366 + }, + { + "start": 51789.78, + "end": 51790.3, + "probability": 0.9393 + }, + { + "start": 51791.2, + "end": 51793.42, + "probability": 0.9946 + }, + { + "start": 51794.3, + "end": 51795.42, + "probability": 0.9274 + }, + { + "start": 51796.4, + "end": 51800.56, + "probability": 0.9946 + }, + { + "start": 51802.46, + "end": 51805.14, + "probability": 0.9715 + }, + { + "start": 51805.46, + "end": 51807.08, + "probability": 0.9521 + }, + { + "start": 51809.98, + "end": 51811.08, + "probability": 0.9152 + }, + { + "start": 51813.2, + "end": 51814.12, + "probability": 0.9312 + }, + { + "start": 51815.34, + "end": 51816.8, + "probability": 0.9973 + }, + { + "start": 51818.1, + "end": 51819.52, + "probability": 0.9698 + }, + { + "start": 51820.56, + "end": 51822.12, + "probability": 0.9927 + }, + { + "start": 51822.9, + "end": 51824.46, + "probability": 0.8328 + }, + { + "start": 51827.34, + "end": 51828.38, + "probability": 0.6205 + }, + { + "start": 51829.98, + "end": 51831.24, + "probability": 0.7804 + }, + { + "start": 51831.88, + "end": 51834.2, + "probability": 0.9131 + }, + { + "start": 51835.72, + "end": 51836.17, + "probability": 0.6812 + }, + { + "start": 51837.72, + "end": 51839.13, + "probability": 0.979 + }, + { + "start": 51840.7, + "end": 51841.92, + "probability": 0.9719 + }, + { + "start": 51843.82, + "end": 51844.44, + "probability": 0.7992 + }, + { + "start": 51846.28, + "end": 51848.72, + "probability": 0.9852 + }, + { + "start": 51849.98, + "end": 51851.64, + "probability": 0.897 + }, + { + "start": 51852.54, + "end": 51854.93, + "probability": 0.999 + }, + { + "start": 51855.9, + "end": 51858.3, + "probability": 0.991 + }, + { + "start": 51859.72, + "end": 51862.82, + "probability": 0.9985 + }, + { + "start": 51863.82, + "end": 51867.44, + "probability": 0.9774 + }, + { + "start": 51867.7, + "end": 51869.44, + "probability": 0.8382 + }, + { + "start": 51870.22, + "end": 51872.1, + "probability": 0.8081 + }, + { + "start": 51872.62, + "end": 51874.72, + "probability": 0.795 + }, + { + "start": 51874.76, + "end": 51875.72, + "probability": 0.9583 + }, + { + "start": 51875.76, + "end": 51876.84, + "probability": 0.9741 + }, + { + "start": 51876.84, + "end": 51878.32, + "probability": 0.895 + }, + { + "start": 51879.08, + "end": 51881.68, + "probability": 0.917 + }, + { + "start": 51883.9, + "end": 51884.52, + "probability": 0.5676 + }, + { + "start": 51885.72, + "end": 51886.44, + "probability": 0.8091 + }, + { + "start": 51888.16, + "end": 51889.64, + "probability": 0.9958 + }, + { + "start": 51890.04, + "end": 51891.78, + "probability": 0.7295 + }, + { + "start": 51892.02, + "end": 51892.18, + "probability": 0.6398 + }, + { + "start": 51892.4, + "end": 51892.5, + "probability": 0.4803 + }, + { + "start": 51892.7, + "end": 51893.0, + "probability": 0.7088 + }, + { + "start": 51893.84, + "end": 51894.92, + "probability": 0.9223 + }, + { + "start": 51896.66, + "end": 51897.8, + "probability": 0.7559 + }, + { + "start": 51898.44, + "end": 51901.66, + "probability": 0.9866 + }, + { + "start": 51903.03, + "end": 51906.14, + "probability": 0.9435 + }, + { + "start": 51907.64, + "end": 51910.38, + "probability": 0.9971 + }, + { + "start": 51911.4, + "end": 51915.68, + "probability": 0.9232 + }, + { + "start": 51916.4, + "end": 51917.32, + "probability": 0.8399 + }, + { + "start": 51918.9, + "end": 51923.14, + "probability": 0.9512 + }, + { + "start": 51924.1, + "end": 51926.9, + "probability": 0.8707 + }, + { + "start": 51927.78, + "end": 51929.24, + "probability": 0.925 + }, + { + "start": 51931.2, + "end": 51935.24, + "probability": 0.9756 + }, + { + "start": 51937.2, + "end": 51938.34, + "probability": 0.9347 + }, + { + "start": 51938.44, + "end": 51939.74, + "probability": 0.9668 + }, + { + "start": 51940.16, + "end": 51941.24, + "probability": 0.862 + }, + { + "start": 51941.94, + "end": 51944.8, + "probability": 0.987 + }, + { + "start": 51945.98, + "end": 51948.04, + "probability": 0.9932 + }, + { + "start": 51948.22, + "end": 51949.6, + "probability": 0.8927 + }, + { + "start": 51949.7, + "end": 51950.74, + "probability": 0.5065 + }, + { + "start": 51952.16, + "end": 51952.94, + "probability": 0.8232 + }, + { + "start": 51953.52, + "end": 51955.84, + "probability": 0.9969 + }, + { + "start": 51957.84, + "end": 51959.04, + "probability": 0.7589 + }, + { + "start": 51959.54, + "end": 51961.42, + "probability": 0.9661 + }, + { + "start": 51963.12, + "end": 51966.54, + "probability": 0.9873 + }, + { + "start": 51966.98, + "end": 51969.42, + "probability": 0.958 + }, + { + "start": 51970.48, + "end": 51973.28, + "probability": 0.9692 + }, + { + "start": 51973.86, + "end": 51976.04, + "probability": 0.9526 + }, + { + "start": 51977.2, + "end": 51981.34, + "probability": 0.9875 + }, + { + "start": 51982.54, + "end": 51983.92, + "probability": 0.7355 + }, + { + "start": 51984.88, + "end": 51989.14, + "probability": 0.8796 + }, + { + "start": 51989.32, + "end": 51991.12, + "probability": 0.4998 + }, + { + "start": 51991.42, + "end": 51991.58, + "probability": 0.8763 + }, + { + "start": 51993.52, + "end": 51994.96, + "probability": 0.5513 + }, + { + "start": 51995.54, + "end": 51997.96, + "probability": 0.9912 + }, + { + "start": 51999.6, + "end": 52000.24, + "probability": 0.739 + }, + { + "start": 52000.38, + "end": 52000.64, + "probability": 0.9353 + }, + { + "start": 52000.7, + "end": 52003.96, + "probability": 0.9753 + }, + { + "start": 52004.94, + "end": 52005.8, + "probability": 0.9902 + }, + { + "start": 52006.68, + "end": 52011.36, + "probability": 0.9758 + }, + { + "start": 52011.72, + "end": 52013.36, + "probability": 0.9552 + }, + { + "start": 52013.9, + "end": 52016.74, + "probability": 0.9987 + }, + { + "start": 52018.72, + "end": 52020.44, + "probability": 0.9929 + }, + { + "start": 52023.22, + "end": 52024.02, + "probability": 0.7538 + }, + { + "start": 52026.02, + "end": 52026.44, + "probability": 0.9871 + }, + { + "start": 52027.7, + "end": 52032.32, + "probability": 0.979 + }, + { + "start": 52032.72, + "end": 52033.0, + "probability": 0.5396 + }, + { + "start": 52034.4, + "end": 52036.18, + "probability": 0.9874 + }, + { + "start": 52037.14, + "end": 52037.92, + "probability": 0.7209 + }, + { + "start": 52038.52, + "end": 52040.52, + "probability": 0.9836 + }, + { + "start": 52040.62, + "end": 52043.34, + "probability": 0.9786 + }, + { + "start": 52045.74, + "end": 52050.5, + "probability": 0.9839 + }, + { + "start": 52051.02, + "end": 52053.82, + "probability": 0.6643 + }, + { + "start": 52054.72, + "end": 52058.32, + "probability": 0.9967 + }, + { + "start": 52060.02, + "end": 52067.5, + "probability": 0.8506 + }, + { + "start": 52068.34, + "end": 52072.62, + "probability": 0.9958 + }, + { + "start": 52073.78, + "end": 52075.98, + "probability": 0.9077 + }, + { + "start": 52077.32, + "end": 52080.22, + "probability": 0.5934 + }, + { + "start": 52080.56, + "end": 52081.22, + "probability": 0.8872 + }, + { + "start": 52081.56, + "end": 52083.32, + "probability": 0.757 + }, + { + "start": 52085.2, + "end": 52086.82, + "probability": 0.892 + }, + { + "start": 52088.74, + "end": 52089.4, + "probability": 0.7961 + }, + { + "start": 52090.78, + "end": 52093.22, + "probability": 0.6546 + }, + { + "start": 52093.32, + "end": 52096.72, + "probability": 0.9756 + }, + { + "start": 52098.24, + "end": 52100.1, + "probability": 0.9902 + }, + { + "start": 52100.1, + "end": 52106.76, + "probability": 0.8384 + }, + { + "start": 52107.08, + "end": 52108.76, + "probability": 0.8491 + }, + { + "start": 52108.9, + "end": 52109.56, + "probability": 0.7479 + }, + { + "start": 52109.74, + "end": 52112.1, + "probability": 0.9392 + }, + { + "start": 52112.84, + "end": 52114.06, + "probability": 0.8595 + }, + { + "start": 52114.26, + "end": 52117.0, + "probability": 0.9542 + }, + { + "start": 52117.14, + "end": 52118.14, + "probability": 0.9891 + }, + { + "start": 52118.26, + "end": 52119.18, + "probability": 0.9736 + }, + { + "start": 52119.82, + "end": 52122.38, + "probability": 0.7861 + }, + { + "start": 52123.14, + "end": 52125.26, + "probability": 0.9814 + }, + { + "start": 52126.04, + "end": 52128.02, + "probability": 0.9663 + }, + { + "start": 52128.76, + "end": 52133.64, + "probability": 0.7617 + }, + { + "start": 52134.24, + "end": 52135.18, + "probability": 0.855 + }, + { + "start": 52135.58, + "end": 52136.28, + "probability": 0.9559 + }, + { + "start": 52138.3, + "end": 52141.43, + "probability": 0.9891 + }, + { + "start": 52143.44, + "end": 52145.64, + "probability": 0.9426 + }, + { + "start": 52146.44, + "end": 52148.02, + "probability": 0.9953 + }, + { + "start": 52148.94, + "end": 52150.78, + "probability": 0.9588 + }, + { + "start": 52151.34, + "end": 52152.42, + "probability": 0.95 + }, + { + "start": 52152.84, + "end": 52158.92, + "probability": 0.9534 + }, + { + "start": 52159.62, + "end": 52160.86, + "probability": 0.9511 + }, + { + "start": 52161.74, + "end": 52162.55, + "probability": 0.949 + }, + { + "start": 52163.46, + "end": 52165.92, + "probability": 0.9617 + }, + { + "start": 52166.56, + "end": 52168.24, + "probability": 0.9938 + }, + { + "start": 52170.52, + "end": 52172.74, + "probability": 0.954 + }, + { + "start": 52172.88, + "end": 52173.7, + "probability": 0.7435 + }, + { + "start": 52173.8, + "end": 52174.94, + "probability": 0.6772 + }, + { + "start": 52175.4, + "end": 52177.52, + "probability": 0.9922 + }, + { + "start": 52179.28, + "end": 52181.62, + "probability": 0.9933 + }, + { + "start": 52181.62, + "end": 52183.48, + "probability": 0.9639 + }, + { + "start": 52185.56, + "end": 52187.68, + "probability": 0.7628 + }, + { + "start": 52188.06, + "end": 52188.6, + "probability": 0.936 + }, + { + "start": 52189.0, + "end": 52191.48, + "probability": 0.9794 + }, + { + "start": 52191.58, + "end": 52195.18, + "probability": 0.936 + }, + { + "start": 52195.26, + "end": 52198.82, + "probability": 0.9714 + }, + { + "start": 52198.98, + "end": 52200.24, + "probability": 0.7728 + }, + { + "start": 52201.08, + "end": 52202.96, + "probability": 0.8531 + }, + { + "start": 52203.26, + "end": 52205.94, + "probability": 0.9658 + }, + { + "start": 52208.01, + "end": 52210.58, + "probability": 0.9879 + }, + { + "start": 52210.96, + "end": 52212.8, + "probability": 0.9344 + }, + { + "start": 52212.82, + "end": 52214.96, + "probability": 0.8523 + }, + { + "start": 52215.5, + "end": 52217.0, + "probability": 0.6462 + }, + { + "start": 52217.52, + "end": 52218.14, + "probability": 0.849 + }, + { + "start": 52218.96, + "end": 52220.48, + "probability": 0.7437 + }, + { + "start": 52220.54, + "end": 52227.48, + "probability": 0.922 + }, + { + "start": 52228.68, + "end": 52229.72, + "probability": 0.8279 + }, + { + "start": 52229.76, + "end": 52231.62, + "probability": 0.7706 + }, + { + "start": 52231.98, + "end": 52232.4, + "probability": 0.6285 + }, + { + "start": 52232.56, + "end": 52233.5, + "probability": 0.8823 + }, + { + "start": 52233.8, + "end": 52234.4, + "probability": 0.8899 + }, + { + "start": 52237.22, + "end": 52239.7, + "probability": 0.9128 + }, + { + "start": 52241.42, + "end": 52244.62, + "probability": 0.9799 + }, + { + "start": 52245.88, + "end": 52248.28, + "probability": 0.9447 + }, + { + "start": 52248.5, + "end": 52249.7, + "probability": 0.9928 + }, + { + "start": 52250.12, + "end": 52251.83, + "probability": 0.9985 + }, + { + "start": 52252.34, + "end": 52252.88, + "probability": 0.6145 + }, + { + "start": 52254.04, + "end": 52257.22, + "probability": 0.8699 + }, + { + "start": 52257.28, + "end": 52257.56, + "probability": 0.8481 + }, + { + "start": 52258.4, + "end": 52259.7, + "probability": 0.9849 + }, + { + "start": 52260.34, + "end": 52260.5, + "probability": 0.5711 + }, + { + "start": 52260.5, + "end": 52260.84, + "probability": 0.7023 + }, + { + "start": 52262.06, + "end": 52265.42, + "probability": 0.9964 + }, + { + "start": 52265.42, + "end": 52268.67, + "probability": 0.9202 + }, + { + "start": 52269.72, + "end": 52270.86, + "probability": 0.9878 + }, + { + "start": 52271.9, + "end": 52275.24, + "probability": 0.9078 + }, + { + "start": 52275.46, + "end": 52277.1, + "probability": 0.9773 + }, + { + "start": 52277.28, + "end": 52278.56, + "probability": 0.8428 + }, + { + "start": 52279.66, + "end": 52282.6, + "probability": 0.9787 + }, + { + "start": 52282.9, + "end": 52284.16, + "probability": 0.8191 + }, + { + "start": 52284.76, + "end": 52285.48, + "probability": 0.7076 + }, + { + "start": 52285.62, + "end": 52289.88, + "probability": 0.8866 + }, + { + "start": 52290.52, + "end": 52292.38, + "probability": 0.9888 + }, + { + "start": 52292.52, + "end": 52293.92, + "probability": 0.861 + }, + { + "start": 52294.46, + "end": 52298.26, + "probability": 0.9897 + }, + { + "start": 52298.72, + "end": 52300.84, + "probability": 0.9585 + }, + { + "start": 52301.1, + "end": 52302.08, + "probability": 0.873 + }, + { + "start": 52303.14, + "end": 52309.4, + "probability": 0.8911 + }, + { + "start": 52309.96, + "end": 52311.54, + "probability": 0.978 + }, + { + "start": 52312.62, + "end": 52315.4, + "probability": 0.9616 + }, + { + "start": 52316.5, + "end": 52318.64, + "probability": 0.968 + }, + { + "start": 52318.82, + "end": 52322.04, + "probability": 0.9484 + }, + { + "start": 52322.28, + "end": 52323.12, + "probability": 0.8083 + }, + { + "start": 52324.06, + "end": 52326.46, + "probability": 0.7441 + }, + { + "start": 52326.5, + "end": 52327.02, + "probability": 0.9402 + }, + { + "start": 52327.42, + "end": 52327.88, + "probability": 0.8489 + }, + { + "start": 52327.96, + "end": 52328.32, + "probability": 0.8623 + }, + { + "start": 52328.34, + "end": 52328.96, + "probability": 0.4445 + }, + { + "start": 52329.08, + "end": 52329.64, + "probability": 0.5896 + }, + { + "start": 52329.68, + "end": 52331.82, + "probability": 0.8529 + }, + { + "start": 52333.5, + "end": 52338.04, + "probability": 0.986 + }, + { + "start": 52339.36, + "end": 52340.86, + "probability": 0.7603 + }, + { + "start": 52341.5, + "end": 52345.38, + "probability": 0.9396 + }, + { + "start": 52346.46, + "end": 52349.94, + "probability": 0.9078 + }, + { + "start": 52350.66, + "end": 52352.1, + "probability": 0.9446 + }, + { + "start": 52352.66, + "end": 52353.84, + "probability": 0.5369 + }, + { + "start": 52354.74, + "end": 52356.88, + "probability": 0.9805 + }, + { + "start": 52357.1, + "end": 52360.26, + "probability": 0.8286 + }, + { + "start": 52361.08, + "end": 52364.1, + "probability": 0.9622 + }, + { + "start": 52366.02, + "end": 52366.82, + "probability": 0.7849 + }, + { + "start": 52367.26, + "end": 52369.68, + "probability": 0.7057 + }, + { + "start": 52371.7, + "end": 52375.58, + "probability": 0.939 + }, + { + "start": 52376.44, + "end": 52378.1, + "probability": 0.9928 + }, + { + "start": 52381.24, + "end": 52382.45, + "probability": 0.9906 + }, + { + "start": 52384.3, + "end": 52384.77, + "probability": 0.5933 + }, + { + "start": 52385.04, + "end": 52387.26, + "probability": 0.9549 + }, + { + "start": 52387.32, + "end": 52387.92, + "probability": 0.7761 + }, + { + "start": 52387.98, + "end": 52389.7, + "probability": 0.9909 + }, + { + "start": 52389.95, + "end": 52391.31, + "probability": 0.937 + }, + { + "start": 52392.58, + "end": 52393.62, + "probability": 0.8489 + }, + { + "start": 52393.76, + "end": 52395.32, + "probability": 0.6675 + }, + { + "start": 52396.34, + "end": 52398.5, + "probability": 0.8906 + }, + { + "start": 52398.82, + "end": 52400.08, + "probability": 0.7799 + }, + { + "start": 52401.08, + "end": 52402.72, + "probability": 0.9702 + }, + { + "start": 52403.88, + "end": 52404.82, + "probability": 0.5628 + }, + { + "start": 52406.34, + "end": 52406.76, + "probability": 0.851 + }, + { + "start": 52407.8, + "end": 52409.1, + "probability": 0.9968 + }, + { + "start": 52409.76, + "end": 52410.74, + "probability": 0.9885 + }, + { + "start": 52412.98, + "end": 52414.48, + "probability": 0.9994 + }, + { + "start": 52417.4, + "end": 52419.8, + "probability": 0.5998 + }, + { + "start": 52420.66, + "end": 52421.8, + "probability": 0.9041 + }, + { + "start": 52422.38, + "end": 52422.82, + "probability": 0.7562 + }, + { + "start": 52423.7, + "end": 52426.02, + "probability": 0.9189 + }, + { + "start": 52426.18, + "end": 52428.04, + "probability": 0.9868 + }, + { + "start": 52431.2, + "end": 52433.58, + "probability": 0.9771 + }, + { + "start": 52434.58, + "end": 52436.34, + "probability": 0.9849 + }, + { + "start": 52436.5, + "end": 52438.14, + "probability": 0.7747 + }, + { + "start": 52438.4, + "end": 52439.38, + "probability": 0.982 + }, + { + "start": 52440.2, + "end": 52446.38, + "probability": 0.9912 + }, + { + "start": 52447.44, + "end": 52448.5, + "probability": 0.9896 + }, + { + "start": 52449.2, + "end": 52453.68, + "probability": 0.9262 + }, + { + "start": 52454.3, + "end": 52455.1, + "probability": 0.9209 + }, + { + "start": 52455.98, + "end": 52458.44, + "probability": 0.9487 + }, + { + "start": 52460.22, + "end": 52460.92, + "probability": 0.7608 + }, + { + "start": 52461.44, + "end": 52461.7, + "probability": 0.9159 + }, + { + "start": 52462.92, + "end": 52464.24, + "probability": 0.9811 + }, + { + "start": 52465.54, + "end": 52468.0, + "probability": 0.9905 + }, + { + "start": 52470.6, + "end": 52471.76, + "probability": 0.7825 + }, + { + "start": 52474.05, + "end": 52475.32, + "probability": 0.5158 + }, + { + "start": 52476.06, + "end": 52478.44, + "probability": 0.9168 + }, + { + "start": 52479.02, + "end": 52481.36, + "probability": 0.9974 + }, + { + "start": 52482.98, + "end": 52484.54, + "probability": 0.8859 + }, + { + "start": 52485.52, + "end": 52487.8, + "probability": 0.978 + }, + { + "start": 52488.94, + "end": 52491.25, + "probability": 0.9634 + }, + { + "start": 52493.14, + "end": 52493.36, + "probability": 0.7388 + }, + { + "start": 52495.1, + "end": 52496.18, + "probability": 0.8248 + }, + { + "start": 52496.76, + "end": 52500.6, + "probability": 0.9194 + }, + { + "start": 52501.82, + "end": 52504.94, + "probability": 0.9077 + }, + { + "start": 52507.6, + "end": 52509.5, + "probability": 0.8486 + }, + { + "start": 52510.98, + "end": 52511.92, + "probability": 0.6624 + }, + { + "start": 52512.24, + "end": 52513.42, + "probability": 0.8699 + }, + { + "start": 52515.34, + "end": 52517.32, + "probability": 0.5148 + }, + { + "start": 52517.32, + "end": 52520.32, + "probability": 0.9711 + }, + { + "start": 52520.6, + "end": 52521.48, + "probability": 0.9795 + }, + { + "start": 52521.62, + "end": 52522.54, + "probability": 0.8037 + }, + { + "start": 52522.76, + "end": 52524.12, + "probability": 0.9987 + }, + { + "start": 52525.18, + "end": 52527.54, + "probability": 0.9736 + }, + { + "start": 52528.46, + "end": 52528.68, + "probability": 0.7886 + }, + { + "start": 52529.16, + "end": 52534.3, + "probability": 0.9836 + }, + { + "start": 52535.06, + "end": 52535.82, + "probability": 0.9977 + }, + { + "start": 52536.2, + "end": 52537.14, + "probability": 0.9097 + }, + { + "start": 52538.16, + "end": 52541.88, + "probability": 0.8213 + }, + { + "start": 52542.24, + "end": 52544.1, + "probability": 0.912 + }, + { + "start": 52544.34, + "end": 52545.72, + "probability": 0.8717 + }, + { + "start": 52546.66, + "end": 52548.84, + "probability": 0.9829 + }, + { + "start": 52550.42, + "end": 52551.4, + "probability": 0.9604 + }, + { + "start": 52551.48, + "end": 52551.78, + "probability": 0.8863 + }, + { + "start": 52551.82, + "end": 52552.37, + "probability": 0.4597 + }, + { + "start": 52552.9, + "end": 52555.24, + "probability": 0.9681 + }, + { + "start": 52555.42, + "end": 52555.46, + "probability": 0.0368 + }, + { + "start": 52556.04, + "end": 52558.3, + "probability": 0.9989 + }, + { + "start": 52559.1, + "end": 52560.1, + "probability": 0.9978 + }, + { + "start": 52563.66, + "end": 52566.52, + "probability": 0.9775 + }, + { + "start": 52568.12, + "end": 52568.71, + "probability": 0.9504 + }, + { + "start": 52568.86, + "end": 52571.22, + "probability": 0.9979 + }, + { + "start": 52572.56, + "end": 52573.3, + "probability": 0.991 + }, + { + "start": 52574.08, + "end": 52575.04, + "probability": 0.9951 + }, + { + "start": 52576.08, + "end": 52577.84, + "probability": 0.9873 + }, + { + "start": 52578.76, + "end": 52581.1, + "probability": 0.9074 + }, + { + "start": 52582.16, + "end": 52583.96, + "probability": 0.9906 + }, + { + "start": 52585.16, + "end": 52586.4, + "probability": 0.9873 + }, + { + "start": 52586.54, + "end": 52587.38, + "probability": 0.9633 + }, + { + "start": 52587.64, + "end": 52588.42, + "probability": 0.9819 + }, + { + "start": 52588.52, + "end": 52589.44, + "probability": 0.9847 + }, + { + "start": 52589.52, + "end": 52590.4, + "probability": 0.991 + }, + { + "start": 52590.72, + "end": 52592.5, + "probability": 0.9889 + }, + { + "start": 52593.46, + "end": 52597.24, + "probability": 0.9792 + }, + { + "start": 52597.34, + "end": 52599.24, + "probability": 0.7732 + }, + { + "start": 52601.12, + "end": 52601.88, + "probability": 0.6704 + }, + { + "start": 52603.43, + "end": 52606.06, + "probability": 0.9941 + }, + { + "start": 52606.9, + "end": 52608.46, + "probability": 0.9146 + }, + { + "start": 52608.58, + "end": 52609.0, + "probability": 0.4176 + }, + { + "start": 52609.1, + "end": 52610.16, + "probability": 0.9491 + }, + { + "start": 52611.6, + "end": 52612.32, + "probability": 0.8899 + }, + { + "start": 52613.64, + "end": 52614.76, + "probability": 0.5498 + }, + { + "start": 52614.86, + "end": 52615.54, + "probability": 0.9761 + }, + { + "start": 52616.06, + "end": 52618.96, + "probability": 0.9761 + }, + { + "start": 52621.0, + "end": 52621.58, + "probability": 0.7444 + }, + { + "start": 52621.7, + "end": 52624.62, + "probability": 0.952 + }, + { + "start": 52625.5, + "end": 52628.82, + "probability": 0.9202 + }, + { + "start": 52629.84, + "end": 52631.8, + "probability": 0.6245 + }, + { + "start": 52631.86, + "end": 52632.56, + "probability": 0.8607 + }, + { + "start": 52632.68, + "end": 52633.64, + "probability": 0.9659 + }, + { + "start": 52633.72, + "end": 52634.58, + "probability": 0.7386 + }, + { + "start": 52634.62, + "end": 52635.32, + "probability": 0.906 + }, + { + "start": 52635.46, + "end": 52636.1, + "probability": 0.7244 + }, + { + "start": 52638.26, + "end": 52642.6, + "probability": 0.9601 + }, + { + "start": 52645.4, + "end": 52645.84, + "probability": 0.5286 + }, + { + "start": 52647.06, + "end": 52647.86, + "probability": 0.8716 + }, + { + "start": 52648.0, + "end": 52648.56, + "probability": 0.96 + }, + { + "start": 52648.6, + "end": 52651.58, + "probability": 0.9814 + }, + { + "start": 52651.64, + "end": 52653.1, + "probability": 0.8242 + }, + { + "start": 52653.44, + "end": 52654.42, + "probability": 0.9186 + }, + { + "start": 52656.1, + "end": 52657.94, + "probability": 0.9707 + }, + { + "start": 52659.2, + "end": 52659.82, + "probability": 0.6452 + }, + { + "start": 52660.46, + "end": 52661.64, + "probability": 0.989 + }, + { + "start": 52662.26, + "end": 52664.66, + "probability": 0.8434 + }, + { + "start": 52664.98, + "end": 52666.8, + "probability": 0.9867 + }, + { + "start": 52667.58, + "end": 52669.06, + "probability": 0.9919 + }, + { + "start": 52669.14, + "end": 52670.48, + "probability": 0.9963 + }, + { + "start": 52671.12, + "end": 52673.8, + "probability": 0.8271 + }, + { + "start": 52673.92, + "end": 52674.54, + "probability": 0.9608 + }, + { + "start": 52675.14, + "end": 52677.18, + "probability": 0.9935 + }, + { + "start": 52678.38, + "end": 52680.02, + "probability": 0.9927 + }, + { + "start": 52681.16, + "end": 52683.86, + "probability": 0.9833 + }, + { + "start": 52684.7, + "end": 52687.56, + "probability": 0.9945 + }, + { + "start": 52688.68, + "end": 52689.88, + "probability": 0.996 + }, + { + "start": 52692.08, + "end": 52693.86, + "probability": 0.9521 + }, + { + "start": 52693.94, + "end": 52695.82, + "probability": 0.9106 + }, + { + "start": 52698.0, + "end": 52698.7, + "probability": 0.955 + }, + { + "start": 52700.14, + "end": 52701.92, + "probability": 0.9828 + }, + { + "start": 52704.02, + "end": 52706.94, + "probability": 0.8339 + }, + { + "start": 52707.44, + "end": 52709.78, + "probability": 0.9468 + }, + { + "start": 52709.92, + "end": 52711.42, + "probability": 0.8259 + }, + { + "start": 52712.0, + "end": 52713.35, + "probability": 0.7793 + }, + { + "start": 52713.54, + "end": 52715.76, + "probability": 0.9653 + }, + { + "start": 52716.48, + "end": 52720.24, + "probability": 0.9421 + }, + { + "start": 52721.16, + "end": 52722.98, + "probability": 0.9917 + }, + { + "start": 52723.1, + "end": 52725.58, + "probability": 0.9702 + }, + { + "start": 52727.02, + "end": 52727.66, + "probability": 0.838 + }, + { + "start": 52727.98, + "end": 52730.58, + "probability": 0.9716 + }, + { + "start": 52731.0, + "end": 52731.71, + "probability": 0.6509 + }, + { + "start": 52731.94, + "end": 52732.82, + "probability": 0.7733 + }, + { + "start": 52734.32, + "end": 52738.24, + "probability": 0.9003 + }, + { + "start": 52739.54, + "end": 52741.4, + "probability": 0.933 + }, + { + "start": 52741.52, + "end": 52743.2, + "probability": 0.9897 + }, + { + "start": 52744.66, + "end": 52746.3, + "probability": 0.745 + }, + { + "start": 52749.02, + "end": 52749.8, + "probability": 0.7884 + }, + { + "start": 52749.94, + "end": 52751.12, + "probability": 0.9257 + }, + { + "start": 52751.22, + "end": 52752.5, + "probability": 0.8612 + }, + { + "start": 52752.56, + "end": 52753.08, + "probability": 0.4133 + }, + { + "start": 52755.14, + "end": 52757.66, + "probability": 0.9709 + }, + { + "start": 52758.26, + "end": 52759.9, + "probability": 0.9913 + }, + { + "start": 52760.28, + "end": 52761.8, + "probability": 0.828 + }, + { + "start": 52762.9, + "end": 52766.7, + "probability": 0.7475 + }, + { + "start": 52768.16, + "end": 52769.96, + "probability": 0.8947 + }, + { + "start": 52771.7, + "end": 52772.46, + "probability": 0.4946 + }, + { + "start": 52772.58, + "end": 52773.38, + "probability": 0.9042 + }, + { + "start": 52773.48, + "end": 52774.38, + "probability": 0.876 + }, + { + "start": 52774.38, + "end": 52775.02, + "probability": 0.873 + }, + { + "start": 52775.08, + "end": 52775.68, + "probability": 0.4237 + }, + { + "start": 52775.8, + "end": 52776.74, + "probability": 0.6342 + }, + { + "start": 52776.78, + "end": 52778.5, + "probability": 0.8712 + }, + { + "start": 52778.82, + "end": 52780.74, + "probability": 0.6875 + }, + { + "start": 52782.74, + "end": 52783.56, + "probability": 0.7912 + }, + { + "start": 52785.46, + "end": 52786.94, + "probability": 0.9881 + }, + { + "start": 52787.54, + "end": 52788.18, + "probability": 0.5604 + }, + { + "start": 52790.18, + "end": 52792.82, + "probability": 0.7847 + }, + { + "start": 52794.5, + "end": 52795.72, + "probability": 0.9918 + }, + { + "start": 52796.26, + "end": 52800.46, + "probability": 0.8046 + }, + { + "start": 52802.38, + "end": 52803.62, + "probability": 0.9897 + }, + { + "start": 52805.78, + "end": 52807.22, + "probability": 0.8312 + }, + { + "start": 52808.94, + "end": 52811.02, + "probability": 0.9868 + }, + { + "start": 52811.54, + "end": 52815.76, + "probability": 0.3592 + }, + { + "start": 52816.36, + "end": 52816.9, + "probability": 0.2682 + }, + { + "start": 52818.66, + "end": 52819.5, + "probability": 0.9893 + }, + { + "start": 52821.38, + "end": 52822.32, + "probability": 0.9841 + }, + { + "start": 52824.02, + "end": 52824.7, + "probability": 0.8986 + }, + { + "start": 52826.0, + "end": 52826.72, + "probability": 0.9893 + }, + { + "start": 52829.04, + "end": 52831.52, + "probability": 0.793 + }, + { + "start": 52831.86, + "end": 52833.2, + "probability": 0.9871 + }, + { + "start": 52834.84, + "end": 52836.22, + "probability": 0.9995 + }, + { + "start": 52837.86, + "end": 52838.16, + "probability": 0.8823 + }, + { + "start": 52838.44, + "end": 52840.22, + "probability": 0.9338 + }, + { + "start": 52842.38, + "end": 52844.9, + "probability": 0.9507 + }, + { + "start": 52845.52, + "end": 52846.32, + "probability": 0.2187 + }, + { + "start": 52846.98, + "end": 52848.86, + "probability": 0.8818 + }, + { + "start": 52850.7, + "end": 52851.5, + "probability": 0.9508 + }, + { + "start": 52852.74, + "end": 52853.58, + "probability": 0.9447 + }, + { + "start": 52855.48, + "end": 52858.32, + "probability": 0.9729 + }, + { + "start": 52859.12, + "end": 52859.98, + "probability": 0.9579 + }, + { + "start": 52861.58, + "end": 52862.92, + "probability": 0.2256 + }, + { + "start": 52863.92, + "end": 52866.76, + "probability": 0.9873 + }, + { + "start": 52868.18, + "end": 52870.66, + "probability": 0.748 + }, + { + "start": 52870.88, + "end": 52871.56, + "probability": 0.6946 + }, + { + "start": 52871.58, + "end": 52873.09, + "probability": 0.967 + }, + { + "start": 52875.08, + "end": 52877.04, + "probability": 0.9342 + }, + { + "start": 52878.46, + "end": 52880.94, + "probability": 0.9705 + }, + { + "start": 52882.66, + "end": 52883.22, + "probability": 0.8454 + }, + { + "start": 52884.16, + "end": 52886.5, + "probability": 0.9678 + }, + { + "start": 52888.9, + "end": 52889.51, + "probability": 0.9718 + }, + { + "start": 52891.06, + "end": 52891.56, + "probability": 0.9548 + }, + { + "start": 52893.22, + "end": 52894.91, + "probability": 0.9971 + }, + { + "start": 52896.94, + "end": 52897.72, + "probability": 0.7713 + }, + { + "start": 52899.14, + "end": 52905.06, + "probability": 0.9944 + }, + { + "start": 52905.88, + "end": 52908.42, + "probability": 0.9916 + }, + { + "start": 52908.54, + "end": 52909.38, + "probability": 0.6439 + }, + { + "start": 52909.5, + "end": 52910.92, + "probability": 0.8151 + }, + { + "start": 52911.94, + "end": 52912.24, + "probability": 0.742 + }, + { + "start": 52914.08, + "end": 52916.22, + "probability": 0.9858 + }, + { + "start": 52916.98, + "end": 52917.64, + "probability": 0.9746 + }, + { + "start": 52918.52, + "end": 52919.43, + "probability": 0.9779 + }, + { + "start": 52921.34, + "end": 52922.86, + "probability": 0.9746 + }, + { + "start": 52923.58, + "end": 52924.72, + "probability": 0.7333 + }, + { + "start": 52928.52, + "end": 52930.08, + "probability": 0.994 + }, + { + "start": 52930.14, + "end": 52930.78, + "probability": 0.8829 + }, + { + "start": 52930.92, + "end": 52933.29, + "probability": 0.9266 + }, + { + "start": 52934.66, + "end": 52936.36, + "probability": 0.9796 + }, + { + "start": 52938.12, + "end": 52939.28, + "probability": 0.9697 + }, + { + "start": 52940.6, + "end": 52941.3, + "probability": 0.9186 + }, + { + "start": 52941.46, + "end": 52941.9, + "probability": 0.9725 + }, + { + "start": 52942.06, + "end": 52944.7, + "probability": 0.9987 + }, + { + "start": 52944.76, + "end": 52945.04, + "probability": 0.7837 + }, + { + "start": 52945.14, + "end": 52946.94, + "probability": 0.6674 + }, + { + "start": 52947.04, + "end": 52948.46, + "probability": 0.6265 + }, + { + "start": 52949.18, + "end": 52954.06, + "probability": 0.8877 + }, + { + "start": 52955.88, + "end": 52957.5, + "probability": 0.9409 + }, + { + "start": 52958.6, + "end": 52963.88, + "probability": 0.9889 + }, + { + "start": 52964.26, + "end": 52964.98, + "probability": 0.7871 + }, + { + "start": 52965.75, + "end": 52967.02, + "probability": 0.828 + }, + { + "start": 52968.04, + "end": 52969.08, + "probability": 0.9538 + }, + { + "start": 52969.22, + "end": 52970.4, + "probability": 0.9728 + }, + { + "start": 52970.48, + "end": 52973.54, + "probability": 0.1674 + }, + { + "start": 52976.1, + "end": 52979.96, + "probability": 0.9971 + }, + { + "start": 52980.18, + "end": 52983.16, + "probability": 0.9462 + }, + { + "start": 52984.98, + "end": 52985.44, + "probability": 0.6411 + }, + { + "start": 52986.14, + "end": 52991.74, + "probability": 0.9697 + }, + { + "start": 52993.28, + "end": 52996.1, + "probability": 0.9884 + }, + { + "start": 52997.04, + "end": 52998.8, + "probability": 0.9956 + }, + { + "start": 52998.88, + "end": 53000.36, + "probability": 0.8032 + }, + { + "start": 53000.44, + "end": 53001.5, + "probability": 0.6974 + }, + { + "start": 53002.46, + "end": 53003.22, + "probability": 0.6405 + }, + { + "start": 53005.58, + "end": 53011.9, + "probability": 0.995 + }, + { + "start": 53013.34, + "end": 53013.92, + "probability": 0.9818 + }, + { + "start": 53014.74, + "end": 53015.78, + "probability": 0.8919 + }, + { + "start": 53016.74, + "end": 53019.53, + "probability": 0.9855 + }, + { + "start": 53021.02, + "end": 53022.1, + "probability": 0.9546 + }, + { + "start": 53024.9, + "end": 53025.93, + "probability": 0.7096 + }, + { + "start": 53029.2, + "end": 53029.84, + "probability": 0.8815 + }, + { + "start": 53031.74, + "end": 53033.32, + "probability": 0.9536 + }, + { + "start": 53033.74, + "end": 53036.74, + "probability": 0.9216 + }, + { + "start": 53037.16, + "end": 53038.76, + "probability": 0.9462 + }, + { + "start": 53039.04, + "end": 53039.52, + "probability": 0.6738 + }, + { + "start": 53042.14, + "end": 53042.88, + "probability": 0.9966 + }, + { + "start": 53043.84, + "end": 53045.72, + "probability": 0.8173 + }, + { + "start": 53046.14, + "end": 53047.84, + "probability": 0.8568 + }, + { + "start": 53049.48, + "end": 53052.12, + "probability": 0.9328 + }, + { + "start": 53053.48, + "end": 53055.12, + "probability": 0.4612 + }, + { + "start": 53055.2, + "end": 53056.28, + "probability": 0.7392 + }, + { + "start": 53056.62, + "end": 53057.57, + "probability": 0.8953 + }, + { + "start": 53057.7, + "end": 53058.22, + "probability": 0.6337 + }, + { + "start": 53058.24, + "end": 53058.76, + "probability": 0.9744 + }, + { + "start": 53058.78, + "end": 53059.18, + "probability": 0.8793 + }, + { + "start": 53059.22, + "end": 53060.32, + "probability": 0.8072 + }, + { + "start": 53060.94, + "end": 53063.38, + "probability": 0.8073 + }, + { + "start": 53064.74, + "end": 53065.72, + "probability": 0.9982 + }, + { + "start": 53065.94, + "end": 53066.66, + "probability": 0.9546 + }, + { + "start": 53066.88, + "end": 53068.26, + "probability": 0.803 + }, + { + "start": 53068.32, + "end": 53069.3, + "probability": 0.9797 + }, + { + "start": 53069.62, + "end": 53070.32, + "probability": 0.8044 + }, + { + "start": 53071.18, + "end": 53072.32, + "probability": 0.9985 + }, + { + "start": 53072.36, + "end": 53073.26, + "probability": 0.9709 + }, + { + "start": 53073.68, + "end": 53074.56, + "probability": 0.9749 + }, + { + "start": 53076.68, + "end": 53080.12, + "probability": 0.9311 + }, + { + "start": 53080.74, + "end": 53082.24, + "probability": 0.9523 + }, + { + "start": 53082.78, + "end": 53083.72, + "probability": 0.8354 + }, + { + "start": 53084.68, + "end": 53085.98, + "probability": 0.9976 + }, + { + "start": 53086.82, + "end": 53088.44, + "probability": 0.95 + }, + { + "start": 53090.22, + "end": 53094.86, + "probability": 0.9993 + }, + { + "start": 53097.32, + "end": 53097.88, + "probability": 0.6373 + }, + { + "start": 53099.78, + "end": 53100.46, + "probability": 0.8656 + }, + { + "start": 53101.66, + "end": 53105.98, + "probability": 0.9959 + }, + { + "start": 53106.4, + "end": 53107.82, + "probability": 0.8896 + }, + { + "start": 53107.86, + "end": 53108.74, + "probability": 0.5927 + }, + { + "start": 53108.82, + "end": 53109.22, + "probability": 0.6709 + }, + { + "start": 53110.4, + "end": 53112.81, + "probability": 0.9741 + }, + { + "start": 53113.02, + "end": 53114.41, + "probability": 0.9583 + }, + { + "start": 53116.23, + "end": 53118.57, + "probability": 0.9919 + }, + { + "start": 53119.04, + "end": 53120.38, + "probability": 0.747 + }, + { + "start": 53121.24, + "end": 53124.08, + "probability": 0.9943 + }, + { + "start": 53124.32, + "end": 53125.09, + "probability": 0.965 + }, + { + "start": 53125.4, + "end": 53125.95, + "probability": 0.9467 + }, + { + "start": 53127.38, + "end": 53129.12, + "probability": 0.8033 + }, + { + "start": 53129.84, + "end": 53130.58, + "probability": 0.974 + }, + { + "start": 53130.7, + "end": 53132.46, + "probability": 0.9824 + }, + { + "start": 53132.7, + "end": 53133.08, + "probability": 0.9409 + }, + { + "start": 53135.6, + "end": 53137.06, + "probability": 0.9548 + }, + { + "start": 53139.08, + "end": 53140.24, + "probability": 0.8653 + }, + { + "start": 53141.08, + "end": 53142.2, + "probability": 0.9568 + }, + { + "start": 53142.48, + "end": 53145.68, + "probability": 0.9963 + }, + { + "start": 53146.8, + "end": 53147.32, + "probability": 0.9289 + }, + { + "start": 53148.36, + "end": 53150.42, + "probability": 0.9915 + }, + { + "start": 53152.42, + "end": 53153.5, + "probability": 0.993 + }, + { + "start": 53154.74, + "end": 53158.64, + "probability": 0.7736 + }, + { + "start": 53158.74, + "end": 53159.78, + "probability": 0.998 + }, + { + "start": 53160.1, + "end": 53160.38, + "probability": 0.97 + }, + { + "start": 53160.6, + "end": 53160.72, + "probability": 0.7021 + }, + { + "start": 53161.74, + "end": 53166.04, + "probability": 0.9952 + }, + { + "start": 53166.18, + "end": 53166.72, + "probability": 0.8795 + }, + { + "start": 53167.84, + "end": 53168.42, + "probability": 0.9267 + }, + { + "start": 53169.52, + "end": 53172.94, + "probability": 0.943 + }, + { + "start": 53174.36, + "end": 53176.72, + "probability": 0.8044 + }, + { + "start": 53178.12, + "end": 53180.14, + "probability": 0.983 + }, + { + "start": 53182.1, + "end": 53184.96, + "probability": 0.99 + }, + { + "start": 53186.24, + "end": 53187.51, + "probability": 0.998 + }, + { + "start": 53188.84, + "end": 53192.68, + "probability": 0.8165 + }, + { + "start": 53193.38, + "end": 53193.97, + "probability": 0.9499 + }, + { + "start": 53195.9, + "end": 53197.12, + "probability": 0.969 + }, + { + "start": 53202.22, + "end": 53202.34, + "probability": 0.5106 + }, + { + "start": 53202.64, + "end": 53205.74, + "probability": 0.9371 + }, + { + "start": 53206.02, + "end": 53206.62, + "probability": 0.9728 + }, + { + "start": 53207.0, + "end": 53207.6, + "probability": 0.9818 + }, + { + "start": 53207.66, + "end": 53208.3, + "probability": 0.8529 + }, + { + "start": 53209.96, + "end": 53212.6, + "probability": 0.9593 + }, + { + "start": 53213.38, + "end": 53214.96, + "probability": 0.6277 + }, + { + "start": 53216.12, + "end": 53217.72, + "probability": 0.823 + }, + { + "start": 53219.32, + "end": 53223.06, + "probability": 0.9238 + }, + { + "start": 53223.62, + "end": 53226.02, + "probability": 0.8841 + }, + { + "start": 53228.46, + "end": 53228.6, + "probability": 0.2532 + }, + { + "start": 53231.7, + "end": 53234.64, + "probability": 0.9647 + }, + { + "start": 53237.24, + "end": 53238.22, + "probability": 0.9225 + }, + { + "start": 53241.44, + "end": 53243.15, + "probability": 0.4995 + }, + { + "start": 53246.48, + "end": 53248.36, + "probability": 0.5269 + }, + { + "start": 53249.62, + "end": 53250.46, + "probability": 0.6288 + }, + { + "start": 53250.82, + "end": 53251.5, + "probability": 0.6867 + }, + { + "start": 53251.56, + "end": 53252.32, + "probability": 0.9395 + }, + { + "start": 53252.36, + "end": 53253.56, + "probability": 0.9209 + }, + { + "start": 53253.62, + "end": 53254.79, + "probability": 0.7708 + }, + { + "start": 53255.06, + "end": 53257.4, + "probability": 0.6651 + }, + { + "start": 53257.6, + "end": 53259.14, + "probability": 0.9308 + }, + { + "start": 53260.22, + "end": 53263.06, + "probability": 0.9977 + }, + { + "start": 53263.78, + "end": 53265.54, + "probability": 0.8981 + }, + { + "start": 53266.92, + "end": 53268.44, + "probability": 0.8086 + }, + { + "start": 53268.88, + "end": 53269.18, + "probability": 0.8164 + }, + { + "start": 53269.3, + "end": 53270.01, + "probability": 0.771 + }, + { + "start": 53270.44, + "end": 53270.94, + "probability": 0.7025 + }, + { + "start": 53271.18, + "end": 53272.06, + "probability": 0.9703 + }, + { + "start": 53272.76, + "end": 53274.9, + "probability": 0.9395 + }, + { + "start": 53275.46, + "end": 53279.82, + "probability": 0.7428 + }, + { + "start": 53280.96, + "end": 53281.91, + "probability": 0.7952 + }, + { + "start": 53284.22, + "end": 53286.48, + "probability": 0.9904 + }, + { + "start": 53287.7, + "end": 53288.76, + "probability": 0.9978 + }, + { + "start": 53290.4, + "end": 53292.14, + "probability": 0.8131 + }, + { + "start": 53293.86, + "end": 53295.52, + "probability": 0.9655 + }, + { + "start": 53297.02, + "end": 53298.36, + "probability": 0.8869 + }, + { + "start": 53299.06, + "end": 53299.58, + "probability": 0.8258 + }, + { + "start": 53300.94, + "end": 53302.64, + "probability": 0.9096 + }, + { + "start": 53303.66, + "end": 53305.06, + "probability": 0.842 + }, + { + "start": 53306.38, + "end": 53310.52, + "probability": 0.9985 + }, + { + "start": 53310.52, + "end": 53312.64, + "probability": 0.8922 + }, + { + "start": 53312.7, + "end": 53313.78, + "probability": 0.8068 + }, + { + "start": 53314.28, + "end": 53314.78, + "probability": 0.7352 + }, + { + "start": 53315.92, + "end": 53320.04, + "probability": 0.9956 + }, + { + "start": 53321.36, + "end": 53322.42, + "probability": 0.9128 + }, + { + "start": 53322.88, + "end": 53322.98, + "probability": 0.8468 + }, + { + "start": 53324.28, + "end": 53324.4, + "probability": 0.4779 + }, + { + "start": 53325.1, + "end": 53326.3, + "probability": 0.9961 + }, + { + "start": 53328.9, + "end": 53330.22, + "probability": 0.7286 + }, + { + "start": 53331.12, + "end": 53332.6, + "probability": 0.9817 + }, + { + "start": 53333.5, + "end": 53335.3, + "probability": 0.8494 + }, + { + "start": 53335.44, + "end": 53337.68, + "probability": 0.71 + }, + { + "start": 53338.72, + "end": 53340.84, + "probability": 0.9712 + }, + { + "start": 53341.0, + "end": 53343.36, + "probability": 0.9768 + }, + { + "start": 53344.0, + "end": 53345.32, + "probability": 0.7894 + }, + { + "start": 53345.58, + "end": 53346.61, + "probability": 0.9766 + }, + { + "start": 53348.7, + "end": 53352.78, + "probability": 0.9912 + }, + { + "start": 53354.08, + "end": 53355.06, + "probability": 0.8262 + }, + { + "start": 53355.58, + "end": 53357.39, + "probability": 0.9419 + }, + { + "start": 53357.88, + "end": 53361.5, + "probability": 0.9559 + }, + { + "start": 53363.3, + "end": 53364.72, + "probability": 0.9339 + }, + { + "start": 53366.6, + "end": 53367.32, + "probability": 0.771 + }, + { + "start": 53367.9, + "end": 53370.34, + "probability": 0.9681 + }, + { + "start": 53372.32, + "end": 53374.2, + "probability": 0.9819 + }, + { + "start": 53376.4, + "end": 53378.1, + "probability": 0.9752 + }, + { + "start": 53378.86, + "end": 53380.3, + "probability": 0.9347 + }, + { + "start": 53382.18, + "end": 53384.64, + "probability": 0.9554 + }, + { + "start": 53385.66, + "end": 53386.16, + "probability": 0.8195 + }, + { + "start": 53386.7, + "end": 53387.38, + "probability": 0.9677 + }, + { + "start": 53388.1, + "end": 53389.7, + "probability": 0.9974 + }, + { + "start": 53389.98, + "end": 53390.26, + "probability": 0.5944 + }, + { + "start": 53391.44, + "end": 53392.12, + "probability": 0.9639 + }, + { + "start": 53392.24, + "end": 53392.58, + "probability": 0.9207 + }, + { + "start": 53392.68, + "end": 53396.22, + "probability": 0.9712 + }, + { + "start": 53397.52, + "end": 53398.02, + "probability": 0.7728 + }, + { + "start": 53398.66, + "end": 53399.9, + "probability": 0.9037 + }, + { + "start": 53401.26, + "end": 53403.57, + "probability": 0.9946 + }, + { + "start": 53404.02, + "end": 53406.16, + "probability": 0.9978 + }, + { + "start": 53407.74, + "end": 53409.84, + "probability": 0.9965 + }, + { + "start": 53410.8, + "end": 53416.72, + "probability": 0.9777 + }, + { + "start": 53416.92, + "end": 53418.48, + "probability": 0.9627 + }, + { + "start": 53419.88, + "end": 53420.42, + "probability": 0.9386 + }, + { + "start": 53421.38, + "end": 53423.08, + "probability": 0.9961 + }, + { + "start": 53424.1, + "end": 53425.48, + "probability": 0.9066 + }, + { + "start": 53426.12, + "end": 53426.8, + "probability": 0.8662 + }, + { + "start": 53427.72, + "end": 53428.6, + "probability": 0.9105 + }, + { + "start": 53429.28, + "end": 53431.12, + "probability": 0.9911 + }, + { + "start": 53432.44, + "end": 53433.12, + "probability": 0.9721 + }, + { + "start": 53436.02, + "end": 53438.22, + "probability": 0.9951 + }, + { + "start": 53439.06, + "end": 53439.72, + "probability": 0.8807 + }, + { + "start": 53440.66, + "end": 53441.14, + "probability": 0.9549 + }, + { + "start": 53442.74, + "end": 53445.66, + "probability": 0.9946 + }, + { + "start": 53447.26, + "end": 53449.88, + "probability": 0.9895 + }, + { + "start": 53450.88, + "end": 53451.12, + "probability": 0.829 + }, + { + "start": 53453.98, + "end": 53455.86, + "probability": 0.9149 + }, + { + "start": 53457.7, + "end": 53459.18, + "probability": 0.9702 + }, + { + "start": 53460.18, + "end": 53463.5, + "probability": 0.9143 + }, + { + "start": 53492.08, + "end": 53493.48, + "probability": 0.8228 + }, + { + "start": 53629.6, + "end": 53629.6, + "probability": 0.0 + } + ], + "segments_count": 19456, + "words_count": 95619, + "avg_words_per_segment": 4.9146, + "avg_segment_duration": 1.9078, + "avg_words_per_minute": 106.9771, + "plenum_id": "75857", + "duration": 53629.6, + "title": null, + "plenum_date": "2018-07-16" +} \ No newline at end of file