diff --git "a/78887/metadata.json" "b/78887/metadata.json" new file mode 100644--- /dev/null +++ "b/78887/metadata.json" @@ -0,0 +1,38577 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "78887", + "quality_score": 0.8395, + "per_segment_quality_scores": [ + { + "start": 54.48, + "end": 57.86, + "probability": 0.8913 + }, + { + "start": 58.08, + "end": 62.04, + "probability": 0.9856 + }, + { + "start": 62.72, + "end": 67.69, + "probability": 0.7036 + }, + { + "start": 68.56, + "end": 71.14, + "probability": 0.9057 + }, + { + "start": 72.58, + "end": 74.14, + "probability": 0.7692 + }, + { + "start": 75.64, + "end": 76.02, + "probability": 0.7974 + }, + { + "start": 76.1, + "end": 80.68, + "probability": 0.9785 + }, + { + "start": 82.68, + "end": 85.45, + "probability": 0.952 + }, + { + "start": 86.46, + "end": 91.16, + "probability": 0.9761 + }, + { + "start": 91.16, + "end": 95.46, + "probability": 0.9221 + }, + { + "start": 96.08, + "end": 99.2, + "probability": 0.9203 + }, + { + "start": 99.34, + "end": 99.5, + "probability": 0.6207 + }, + { + "start": 100.3, + "end": 101.58, + "probability": 0.4014 + }, + { + "start": 103.48, + "end": 105.39, + "probability": 0.8097 + }, + { + "start": 106.34, + "end": 106.86, + "probability": 0.5955 + }, + { + "start": 107.26, + "end": 107.26, + "probability": 0.8774 + }, + { + "start": 109.76, + "end": 112.53, + "probability": 0.9639 + }, + { + "start": 114.12, + "end": 115.24, + "probability": 0.8261 + }, + { + "start": 115.84, + "end": 119.06, + "probability": 0.9573 + }, + { + "start": 119.6, + "end": 121.54, + "probability": 0.979 + }, + { + "start": 122.66, + "end": 124.1, + "probability": 0.4679 + }, + { + "start": 125.02, + "end": 126.34, + "probability": 0.9697 + }, + { + "start": 126.4, + "end": 130.54, + "probability": 0.7106 + }, + { + "start": 130.7, + "end": 130.9, + "probability": 0.7239 + }, + { + "start": 132.2, + "end": 134.28, + "probability": 0.9271 + }, + { + "start": 134.88, + "end": 136.04, + "probability": 0.9416 + }, + { + "start": 137.06, + "end": 139.54, + "probability": 0.7931 + }, + { + "start": 140.0, + "end": 141.24, + "probability": 0.9814 + }, + { + "start": 141.68, + "end": 142.86, + "probability": 0.8755 + }, + { + "start": 143.0, + "end": 144.12, + "probability": 0.7748 + }, + { + "start": 144.4, + "end": 145.55, + "probability": 0.998 + }, + { + "start": 147.14, + "end": 148.04, + "probability": 0.7381 + }, + { + "start": 148.34, + "end": 149.28, + "probability": 0.721 + }, + { + "start": 149.36, + "end": 150.74, + "probability": 0.841 + }, + { + "start": 151.2, + "end": 152.66, + "probability": 0.8778 + }, + { + "start": 153.66, + "end": 154.34, + "probability": 0.7484 + }, + { + "start": 154.44, + "end": 156.17, + "probability": 0.9402 + }, + { + "start": 157.51, + "end": 158.68, + "probability": 0.8555 + }, + { + "start": 159.3, + "end": 159.3, + "probability": 0.7173 + }, + { + "start": 159.3, + "end": 162.44, + "probability": 0.8549 + }, + { + "start": 163.0, + "end": 166.7, + "probability": 0.956 + }, + { + "start": 166.78, + "end": 167.94, + "probability": 0.8457 + }, + { + "start": 168.1, + "end": 169.26, + "probability": 0.9036 + }, + { + "start": 169.68, + "end": 171.5, + "probability": 0.9927 + }, + { + "start": 171.96, + "end": 172.46, + "probability": 0.4718 + }, + { + "start": 173.2, + "end": 173.92, + "probability": 0.9271 + }, + { + "start": 175.64, + "end": 178.34, + "probability": 0.5828 + }, + { + "start": 179.66, + "end": 181.86, + "probability": 0.4019 + }, + { + "start": 181.86, + "end": 183.85, + "probability": 0.8371 + }, + { + "start": 184.88, + "end": 191.92, + "probability": 0.722 + }, + { + "start": 192.38, + "end": 193.8, + "probability": 0.5925 + }, + { + "start": 193.98, + "end": 194.74, + "probability": 0.7825 + }, + { + "start": 195.42, + "end": 197.14, + "probability": 0.4534 + }, + { + "start": 197.38, + "end": 198.69, + "probability": 0.6354 + }, + { + "start": 199.58, + "end": 200.96, + "probability": 0.6807 + }, + { + "start": 201.08, + "end": 207.14, + "probability": 0.6541 + }, + { + "start": 208.32, + "end": 212.62, + "probability": 0.7133 + }, + { + "start": 212.84, + "end": 219.66, + "probability": 0.7791 + }, + { + "start": 220.7, + "end": 228.66, + "probability": 0.8091 + }, + { + "start": 229.16, + "end": 231.12, + "probability": 0.9682 + }, + { + "start": 231.48, + "end": 234.62, + "probability": 0.8096 + }, + { + "start": 235.24, + "end": 237.02, + "probability": 0.9289 + }, + { + "start": 237.04, + "end": 238.3, + "probability": 0.9917 + }, + { + "start": 240.06, + "end": 242.7, + "probability": 0.772 + }, + { + "start": 243.03, + "end": 246.48, + "probability": 0.9876 + }, + { + "start": 247.02, + "end": 250.84, + "probability": 0.9449 + }, + { + "start": 251.56, + "end": 251.58, + "probability": 0.5461 + }, + { + "start": 251.58, + "end": 252.32, + "probability": 0.3505 + }, + { + "start": 252.4, + "end": 255.24, + "probability": 0.8532 + }, + { + "start": 255.24, + "end": 255.82, + "probability": 0.7202 + }, + { + "start": 257.91, + "end": 259.44, + "probability": 0.8495 + }, + { + "start": 259.64, + "end": 259.82, + "probability": 0.7553 + }, + { + "start": 259.88, + "end": 263.75, + "probability": 0.8737 + }, + { + "start": 263.78, + "end": 266.58, + "probability": 0.7886 + }, + { + "start": 266.78, + "end": 268.76, + "probability": 0.9393 + }, + { + "start": 268.88, + "end": 270.62, + "probability": 0.7173 + }, + { + "start": 270.72, + "end": 270.92, + "probability": 0.3868 + }, + { + "start": 270.96, + "end": 271.24, + "probability": 0.8632 + }, + { + "start": 271.28, + "end": 271.76, + "probability": 0.9127 + }, + { + "start": 271.88, + "end": 274.57, + "probability": 0.7255 + }, + { + "start": 275.26, + "end": 275.68, + "probability": 0.9863 + }, + { + "start": 275.78, + "end": 277.28, + "probability": 0.7512 + }, + { + "start": 277.6, + "end": 278.66, + "probability": 0.7542 + }, + { + "start": 278.9, + "end": 280.26, + "probability": 0.6163 + }, + { + "start": 280.44, + "end": 281.22, + "probability": 0.7827 + }, + { + "start": 281.78, + "end": 282.74, + "probability": 0.9751 + }, + { + "start": 283.38, + "end": 283.64, + "probability": 0.4025 + }, + { + "start": 284.11, + "end": 289.17, + "probability": 0.9941 + }, + { + "start": 290.06, + "end": 290.48, + "probability": 0.5685 + }, + { + "start": 290.52, + "end": 291.88, + "probability": 0.8779 + }, + { + "start": 291.92, + "end": 295.5, + "probability": 0.7276 + }, + { + "start": 295.58, + "end": 298.08, + "probability": 0.8758 + }, + { + "start": 298.44, + "end": 298.54, + "probability": 0.8125 + }, + { + "start": 298.72, + "end": 299.4, + "probability": 0.7845 + }, + { + "start": 300.22, + "end": 302.0, + "probability": 0.9473 + }, + { + "start": 303.38, + "end": 306.24, + "probability": 0.9738 + }, + { + "start": 307.0, + "end": 308.96, + "probability": 0.8765 + }, + { + "start": 309.3, + "end": 312.08, + "probability": 0.9909 + }, + { + "start": 312.32, + "end": 314.08, + "probability": 0.9943 + }, + { + "start": 315.04, + "end": 315.14, + "probability": 0.6964 + }, + { + "start": 315.82, + "end": 317.66, + "probability": 0.6689 + }, + { + "start": 317.8, + "end": 318.5, + "probability": 0.7324 + }, + { + "start": 318.52, + "end": 318.68, + "probability": 0.4788 + }, + { + "start": 319.08, + "end": 320.29, + "probability": 0.7661 + }, + { + "start": 322.12, + "end": 325.76, + "probability": 0.8769 + }, + { + "start": 326.18, + "end": 326.34, + "probability": 0.4876 + }, + { + "start": 326.48, + "end": 326.68, + "probability": 0.6985 + }, + { + "start": 326.8, + "end": 327.64, + "probability": 0.6779 + }, + { + "start": 327.88, + "end": 329.14, + "probability": 0.5918 + }, + { + "start": 329.24, + "end": 332.76, + "probability": 0.9371 + }, + { + "start": 333.5, + "end": 338.74, + "probability": 0.9961 + }, + { + "start": 340.96, + "end": 343.96, + "probability": 0.991 + }, + { + "start": 346.94, + "end": 347.74, + "probability": 0.6606 + }, + { + "start": 347.87, + "end": 352.24, + "probability": 0.6694 + }, + { + "start": 352.68, + "end": 355.72, + "probability": 0.9683 + }, + { + "start": 356.26, + "end": 360.26, + "probability": 0.9079 + }, + { + "start": 361.44, + "end": 362.32, + "probability": 0.9434 + }, + { + "start": 362.44, + "end": 365.32, + "probability": 0.9788 + }, + { + "start": 367.12, + "end": 367.78, + "probability": 0.7086 + }, + { + "start": 367.86, + "end": 368.66, + "probability": 0.9146 + }, + { + "start": 368.89, + "end": 370.68, + "probability": 0.6581 + }, + { + "start": 370.7, + "end": 372.04, + "probability": 0.7418 + }, + { + "start": 374.08, + "end": 379.96, + "probability": 0.9967 + }, + { + "start": 381.14, + "end": 385.32, + "probability": 0.8531 + }, + { + "start": 385.88, + "end": 387.56, + "probability": 0.9036 + }, + { + "start": 387.86, + "end": 391.44, + "probability": 0.9794 + }, + { + "start": 392.3, + "end": 396.34, + "probability": 0.9677 + }, + { + "start": 396.34, + "end": 401.46, + "probability": 0.9989 + }, + { + "start": 402.78, + "end": 403.3, + "probability": 0.4966 + }, + { + "start": 403.38, + "end": 404.36, + "probability": 0.6802 + }, + { + "start": 404.84, + "end": 406.4, + "probability": 0.4504 + }, + { + "start": 407.08, + "end": 408.9, + "probability": 0.9945 + }, + { + "start": 409.42, + "end": 411.1, + "probability": 0.7819 + }, + { + "start": 411.16, + "end": 415.22, + "probability": 0.9155 + }, + { + "start": 415.78, + "end": 417.72, + "probability": 0.8939 + }, + { + "start": 417.72, + "end": 420.64, + "probability": 0.772 + }, + { + "start": 421.2, + "end": 426.64, + "probability": 0.9946 + }, + { + "start": 427.28, + "end": 430.58, + "probability": 0.8857 + }, + { + "start": 431.34, + "end": 436.38, + "probability": 0.9985 + }, + { + "start": 436.38, + "end": 440.5, + "probability": 0.9783 + }, + { + "start": 441.32, + "end": 444.78, + "probability": 0.9907 + }, + { + "start": 445.24, + "end": 447.58, + "probability": 0.9128 + }, + { + "start": 448.44, + "end": 450.28, + "probability": 0.8923 + }, + { + "start": 450.62, + "end": 453.48, + "probability": 0.9704 + }, + { + "start": 453.54, + "end": 456.16, + "probability": 0.9495 + }, + { + "start": 456.24, + "end": 458.52, + "probability": 0.9844 + }, + { + "start": 458.64, + "end": 460.42, + "probability": 0.7962 + }, + { + "start": 461.36, + "end": 463.0, + "probability": 0.9937 + }, + { + "start": 463.68, + "end": 465.24, + "probability": 0.6361 + }, + { + "start": 465.98, + "end": 468.1, + "probability": 0.9304 + }, + { + "start": 468.66, + "end": 471.86, + "probability": 0.9779 + }, + { + "start": 474.0, + "end": 475.86, + "probability": 0.7175 + }, + { + "start": 476.22, + "end": 478.76, + "probability": 0.9499 + }, + { + "start": 482.32, + "end": 484.76, + "probability": 0.7384 + }, + { + "start": 485.56, + "end": 492.32, + "probability": 0.9885 + }, + { + "start": 493.02, + "end": 496.0, + "probability": 0.9967 + }, + { + "start": 496.94, + "end": 497.46, + "probability": 0.8669 + }, + { + "start": 497.52, + "end": 498.56, + "probability": 0.9204 + }, + { + "start": 498.8, + "end": 501.78, + "probability": 0.7457 + }, + { + "start": 501.86, + "end": 505.78, + "probability": 0.9338 + }, + { + "start": 505.88, + "end": 507.62, + "probability": 0.6596 + }, + { + "start": 508.22, + "end": 509.8, + "probability": 0.9938 + }, + { + "start": 510.54, + "end": 510.68, + "probability": 0.7644 + }, + { + "start": 510.76, + "end": 511.4, + "probability": 0.9604 + }, + { + "start": 511.48, + "end": 515.42, + "probability": 0.8846 + }, + { + "start": 515.42, + "end": 517.15, + "probability": 0.5149 + }, + { + "start": 517.58, + "end": 520.78, + "probability": 0.8884 + }, + { + "start": 520.86, + "end": 521.76, + "probability": 0.6701 + }, + { + "start": 522.4, + "end": 524.04, + "probability": 0.7926 + }, + { + "start": 524.54, + "end": 526.18, + "probability": 0.7018 + }, + { + "start": 526.32, + "end": 527.02, + "probability": 0.7779 + }, + { + "start": 527.12, + "end": 530.34, + "probability": 0.7871 + }, + { + "start": 530.76, + "end": 533.04, + "probability": 0.7555 + }, + { + "start": 533.44, + "end": 535.05, + "probability": 0.9764 + }, + { + "start": 535.74, + "end": 537.22, + "probability": 0.7694 + }, + { + "start": 537.36, + "end": 540.24, + "probability": 0.8623 + }, + { + "start": 540.32, + "end": 542.66, + "probability": 0.9902 + }, + { + "start": 543.14, + "end": 545.78, + "probability": 0.9777 + }, + { + "start": 546.1, + "end": 549.56, + "probability": 0.9604 + }, + { + "start": 550.14, + "end": 553.8, + "probability": 0.9557 + }, + { + "start": 554.4, + "end": 555.4, + "probability": 0.6809 + }, + { + "start": 555.74, + "end": 557.66, + "probability": 0.9968 + }, + { + "start": 557.84, + "end": 559.78, + "probability": 0.9948 + }, + { + "start": 560.16, + "end": 563.76, + "probability": 0.9527 + }, + { + "start": 564.12, + "end": 567.34, + "probability": 0.9688 + }, + { + "start": 568.02, + "end": 569.98, + "probability": 0.776 + }, + { + "start": 569.98, + "end": 570.16, + "probability": 0.3505 + }, + { + "start": 570.7, + "end": 571.46, + "probability": 0.9421 + }, + { + "start": 571.52, + "end": 571.98, + "probability": 0.4956 + }, + { + "start": 572.32, + "end": 575.5, + "probability": 0.9539 + }, + { + "start": 575.58, + "end": 579.24, + "probability": 0.9803 + }, + { + "start": 579.24, + "end": 582.82, + "probability": 0.6735 + }, + { + "start": 582.92, + "end": 583.26, + "probability": 0.6596 + }, + { + "start": 583.5, + "end": 583.92, + "probability": 0.4444 + }, + { + "start": 584.1, + "end": 585.18, + "probability": 0.4992 + }, + { + "start": 585.3, + "end": 585.98, + "probability": 0.5689 + }, + { + "start": 586.94, + "end": 588.24, + "probability": 0.7863 + }, + { + "start": 588.3, + "end": 593.1, + "probability": 0.9577 + }, + { + "start": 593.56, + "end": 596.56, + "probability": 0.7845 + }, + { + "start": 596.68, + "end": 598.66, + "probability": 0.5869 + }, + { + "start": 598.68, + "end": 598.88, + "probability": 0.1066 + }, + { + "start": 599.56, + "end": 601.6, + "probability": 0.758 + }, + { + "start": 601.68, + "end": 602.26, + "probability": 0.8049 + }, + { + "start": 602.72, + "end": 603.62, + "probability": 0.917 + }, + { + "start": 603.64, + "end": 609.2, + "probability": 0.9725 + }, + { + "start": 610.06, + "end": 612.92, + "probability": 0.9794 + }, + { + "start": 613.02, + "end": 614.52, + "probability": 0.808 + }, + { + "start": 614.9, + "end": 616.14, + "probability": 0.9763 + }, + { + "start": 616.46, + "end": 619.36, + "probability": 0.954 + }, + { + "start": 619.6, + "end": 626.75, + "probability": 0.9577 + }, + { + "start": 627.56, + "end": 630.76, + "probability": 0.9935 + }, + { + "start": 630.76, + "end": 635.62, + "probability": 0.9897 + }, + { + "start": 636.12, + "end": 638.04, + "probability": 0.8948 + }, + { + "start": 638.58, + "end": 644.64, + "probability": 0.9918 + }, + { + "start": 645.42, + "end": 646.92, + "probability": 0.872 + }, + { + "start": 647.02, + "end": 650.14, + "probability": 0.9982 + }, + { + "start": 651.02, + "end": 653.26, + "probability": 0.5632 + }, + { + "start": 654.47, + "end": 658.6, + "probability": 0.7036 + }, + { + "start": 659.26, + "end": 663.34, + "probability": 0.802 + }, + { + "start": 663.42, + "end": 665.2, + "probability": 0.9863 + }, + { + "start": 665.26, + "end": 665.6, + "probability": 0.834 + }, + { + "start": 666.86, + "end": 669.76, + "probability": 0.5071 + }, + { + "start": 670.56, + "end": 671.34, + "probability": 0.8309 + }, + { + "start": 671.5, + "end": 675.08, + "probability": 0.9935 + }, + { + "start": 675.08, + "end": 681.44, + "probability": 0.9814 + }, + { + "start": 681.84, + "end": 684.68, + "probability": 0.7027 + }, + { + "start": 684.76, + "end": 686.06, + "probability": 0.7822 + }, + { + "start": 686.34, + "end": 686.94, + "probability": 0.6982 + }, + { + "start": 687.48, + "end": 689.18, + "probability": 0.5428 + }, + { + "start": 689.68, + "end": 690.4, + "probability": 0.6708 + }, + { + "start": 690.44, + "end": 691.84, + "probability": 0.8953 + }, + { + "start": 691.94, + "end": 693.18, + "probability": 0.9515 + }, + { + "start": 694.14, + "end": 698.36, + "probability": 0.856 + }, + { + "start": 698.78, + "end": 701.28, + "probability": 0.6422 + }, + { + "start": 701.7, + "end": 702.76, + "probability": 0.4484 + }, + { + "start": 702.76, + "end": 704.12, + "probability": 0.8145 + }, + { + "start": 704.8, + "end": 706.42, + "probability": 0.579 + }, + { + "start": 706.98, + "end": 710.4, + "probability": 0.9911 + }, + { + "start": 710.4, + "end": 714.76, + "probability": 0.9629 + }, + { + "start": 715.58, + "end": 716.86, + "probability": 0.8393 + }, + { + "start": 717.38, + "end": 720.16, + "probability": 0.9858 + }, + { + "start": 720.76, + "end": 723.26, + "probability": 0.8287 + }, + { + "start": 724.04, + "end": 728.68, + "probability": 0.9684 + }, + { + "start": 729.16, + "end": 730.24, + "probability": 0.6696 + }, + { + "start": 730.76, + "end": 733.82, + "probability": 0.9094 + }, + { + "start": 734.6, + "end": 737.7, + "probability": 0.8572 + }, + { + "start": 737.7, + "end": 742.12, + "probability": 0.8518 + }, + { + "start": 742.94, + "end": 744.02, + "probability": 0.9219 + }, + { + "start": 744.6, + "end": 752.12, + "probability": 0.8315 + }, + { + "start": 752.12, + "end": 757.64, + "probability": 0.9863 + }, + { + "start": 758.3, + "end": 759.02, + "probability": 0.5632 + }, + { + "start": 759.46, + "end": 762.96, + "probability": 0.9782 + }, + { + "start": 763.92, + "end": 767.9, + "probability": 0.875 + }, + { + "start": 768.52, + "end": 770.14, + "probability": 0.9371 + }, + { + "start": 770.56, + "end": 775.98, + "probability": 0.9533 + }, + { + "start": 776.68, + "end": 781.98, + "probability": 0.9408 + }, + { + "start": 782.52, + "end": 783.94, + "probability": 0.9898 + }, + { + "start": 784.82, + "end": 791.04, + "probability": 0.9744 + }, + { + "start": 792.34, + "end": 796.28, + "probability": 0.9965 + }, + { + "start": 796.28, + "end": 799.8, + "probability": 0.7491 + }, + { + "start": 800.24, + "end": 801.3, + "probability": 0.6541 + }, + { + "start": 801.94, + "end": 802.82, + "probability": 0.4814 + }, + { + "start": 802.92, + "end": 803.48, + "probability": 0.7642 + }, + { + "start": 803.58, + "end": 807.74, + "probability": 0.9156 + }, + { + "start": 808.62, + "end": 809.64, + "probability": 0.9221 + }, + { + "start": 810.28, + "end": 813.46, + "probability": 0.8928 + }, + { + "start": 813.96, + "end": 818.72, + "probability": 0.9646 + }, + { + "start": 820.5, + "end": 822.24, + "probability": 0.8917 + }, + { + "start": 822.3, + "end": 825.2, + "probability": 0.9984 + }, + { + "start": 825.28, + "end": 829.36, + "probability": 0.959 + }, + { + "start": 831.4, + "end": 833.01, + "probability": 0.915 + }, + { + "start": 833.42, + "end": 833.66, + "probability": 0.7304 + }, + { + "start": 835.98, + "end": 841.9, + "probability": 0.9577 + }, + { + "start": 842.12, + "end": 842.82, + "probability": 0.9697 + }, + { + "start": 843.14, + "end": 843.14, + "probability": 0.814 + }, + { + "start": 843.18, + "end": 843.82, + "probability": 0.6534 + }, + { + "start": 844.0, + "end": 844.74, + "probability": 0.8672 + }, + { + "start": 844.78, + "end": 852.0, + "probability": 0.9268 + }, + { + "start": 852.0, + "end": 858.14, + "probability": 0.9985 + }, + { + "start": 858.28, + "end": 860.04, + "probability": 0.4928 + }, + { + "start": 860.82, + "end": 862.84, + "probability": 0.9338 + }, + { + "start": 863.25, + "end": 867.74, + "probability": 0.9899 + }, + { + "start": 867.88, + "end": 872.74, + "probability": 0.9941 + }, + { + "start": 872.74, + "end": 879.08, + "probability": 0.9292 + }, + { + "start": 879.46, + "end": 880.64, + "probability": 0.7897 + }, + { + "start": 880.7, + "end": 883.78, + "probability": 0.9971 + }, + { + "start": 884.28, + "end": 888.44, + "probability": 0.9916 + }, + { + "start": 888.6, + "end": 891.24, + "probability": 0.6526 + }, + { + "start": 891.54, + "end": 894.62, + "probability": 0.9561 + }, + { + "start": 894.62, + "end": 898.76, + "probability": 0.9679 + }, + { + "start": 899.14, + "end": 899.78, + "probability": 0.4369 + }, + { + "start": 900.02, + "end": 901.72, + "probability": 0.6281 + }, + { + "start": 909.96, + "end": 911.78, + "probability": 0.8766 + }, + { + "start": 913.26, + "end": 916.78, + "probability": 0.7954 + }, + { + "start": 916.78, + "end": 919.7, + "probability": 0.953 + }, + { + "start": 920.1, + "end": 923.36, + "probability": 0.7328 + }, + { + "start": 923.44, + "end": 926.88, + "probability": 0.9785 + }, + { + "start": 927.72, + "end": 928.32, + "probability": 0.649 + }, + { + "start": 928.68, + "end": 929.96, + "probability": 0.8049 + }, + { + "start": 930.06, + "end": 935.72, + "probability": 0.9278 + }, + { + "start": 936.72, + "end": 938.78, + "probability": 0.9744 + }, + { + "start": 939.02, + "end": 943.3, + "probability": 0.9473 + }, + { + "start": 943.6, + "end": 946.04, + "probability": 0.9712 + }, + { + "start": 946.16, + "end": 946.7, + "probability": 0.5302 + }, + { + "start": 946.88, + "end": 947.12, + "probability": 0.5837 + }, + { + "start": 947.58, + "end": 949.5, + "probability": 0.6782 + }, + { + "start": 949.64, + "end": 951.16, + "probability": 0.8835 + }, + { + "start": 953.32, + "end": 955.62, + "probability": 0.8242 + }, + { + "start": 955.84, + "end": 958.22, + "probability": 0.6431 + }, + { + "start": 958.22, + "end": 962.46, + "probability": 0.9836 + }, + { + "start": 962.72, + "end": 962.92, + "probability": 0.6839 + }, + { + "start": 963.3, + "end": 963.88, + "probability": 0.4878 + }, + { + "start": 964.0, + "end": 965.88, + "probability": 0.7728 + }, + { + "start": 968.92, + "end": 970.74, + "probability": 0.8618 + }, + { + "start": 971.45, + "end": 974.94, + "probability": 0.9675 + }, + { + "start": 975.66, + "end": 978.18, + "probability": 0.65 + }, + { + "start": 978.24, + "end": 981.0, + "probability": 0.8632 + }, + { + "start": 981.82, + "end": 989.28, + "probability": 0.92 + }, + { + "start": 989.72, + "end": 994.4, + "probability": 0.8423 + }, + { + "start": 994.98, + "end": 1000.54, + "probability": 0.9562 + }, + { + "start": 1000.96, + "end": 1001.44, + "probability": 0.5799 + }, + { + "start": 1001.5, + "end": 1004.28, + "probability": 0.891 + }, + { + "start": 1004.58, + "end": 1005.78, + "probability": 0.9237 + }, + { + "start": 1006.2, + "end": 1006.98, + "probability": 0.7636 + }, + { + "start": 1007.08, + "end": 1008.14, + "probability": 0.9795 + }, + { + "start": 1008.58, + "end": 1009.48, + "probability": 0.9145 + }, + { + "start": 1010.08, + "end": 1012.4, + "probability": 0.9963 + }, + { + "start": 1012.92, + "end": 1015.62, + "probability": 0.6388 + }, + { + "start": 1015.68, + "end": 1017.0, + "probability": 0.9771 + }, + { + "start": 1017.34, + "end": 1019.14, + "probability": 0.9874 + }, + { + "start": 1019.66, + "end": 1021.66, + "probability": 0.9541 + }, + { + "start": 1022.02, + "end": 1023.5, + "probability": 0.8264 + }, + { + "start": 1023.92, + "end": 1028.0, + "probability": 0.9925 + }, + { + "start": 1029.26, + "end": 1032.56, + "probability": 0.8317 + }, + { + "start": 1033.06, + "end": 1033.64, + "probability": 0.6761 + }, + { + "start": 1033.8, + "end": 1035.14, + "probability": 0.5664 + }, + { + "start": 1035.36, + "end": 1037.34, + "probability": 0.9663 + }, + { + "start": 1038.4, + "end": 1038.9, + "probability": 0.1161 + }, + { + "start": 1039.2, + "end": 1039.7, + "probability": 0.7827 + }, + { + "start": 1040.0, + "end": 1043.32, + "probability": 0.9722 + }, + { + "start": 1044.7, + "end": 1046.32, + "probability": 0.8918 + }, + { + "start": 1047.32, + "end": 1050.84, + "probability": 0.8586 + }, + { + "start": 1051.64, + "end": 1052.79, + "probability": 0.8044 + }, + { + "start": 1053.28, + "end": 1055.16, + "probability": 0.9569 + }, + { + "start": 1055.66, + "end": 1057.36, + "probability": 0.8867 + }, + { + "start": 1059.48, + "end": 1063.08, + "probability": 0.9731 + }, + { + "start": 1064.36, + "end": 1068.36, + "probability": 0.8921 + }, + { + "start": 1068.36, + "end": 1072.62, + "probability": 0.9832 + }, + { + "start": 1072.84, + "end": 1073.24, + "probability": 0.474 + }, + { + "start": 1074.86, + "end": 1077.36, + "probability": 0.7783 + }, + { + "start": 1077.88, + "end": 1078.9, + "probability": 0.2714 + }, + { + "start": 1079.86, + "end": 1081.54, + "probability": 0.993 + }, + { + "start": 1082.98, + "end": 1086.86, + "probability": 0.9666 + }, + { + "start": 1087.9, + "end": 1093.18, + "probability": 0.7241 + }, + { + "start": 1093.28, + "end": 1094.96, + "probability": 0.3471 + }, + { + "start": 1095.88, + "end": 1099.54, + "probability": 0.8283 + }, + { + "start": 1101.06, + "end": 1104.84, + "probability": 0.6694 + }, + { + "start": 1104.94, + "end": 1105.57, + "probability": 0.6202 + }, + { + "start": 1105.78, + "end": 1105.96, + "probability": 0.7566 + }, + { + "start": 1106.0, + "end": 1106.2, + "probability": 0.2347 + }, + { + "start": 1112.08, + "end": 1113.76, + "probability": 0.7038 + }, + { + "start": 1114.62, + "end": 1115.5, + "probability": 0.8445 + }, + { + "start": 1116.3, + "end": 1117.68, + "probability": 0.8493 + }, + { + "start": 1118.86, + "end": 1120.8, + "probability": 0.8641 + }, + { + "start": 1122.24, + "end": 1125.2, + "probability": 0.6448 + }, + { + "start": 1127.44, + "end": 1135.38, + "probability": 0.9871 + }, + { + "start": 1136.52, + "end": 1137.46, + "probability": 0.9877 + }, + { + "start": 1138.4, + "end": 1140.32, + "probability": 0.8096 + }, + { + "start": 1141.1, + "end": 1144.26, + "probability": 0.5759 + }, + { + "start": 1145.76, + "end": 1150.3, + "probability": 0.9854 + }, + { + "start": 1151.26, + "end": 1152.44, + "probability": 0.7985 + }, + { + "start": 1153.22, + "end": 1155.12, + "probability": 0.8944 + }, + { + "start": 1156.22, + "end": 1164.4, + "probability": 0.9816 + }, + { + "start": 1164.96, + "end": 1169.28, + "probability": 0.7364 + }, + { + "start": 1170.78, + "end": 1171.66, + "probability": 0.0358 + }, + { + "start": 1171.7, + "end": 1172.24, + "probability": 0.1424 + }, + { + "start": 1172.32, + "end": 1173.08, + "probability": 0.7886 + }, + { + "start": 1173.24, + "end": 1176.7, + "probability": 0.9884 + }, + { + "start": 1176.74, + "end": 1177.18, + "probability": 0.8929 + }, + { + "start": 1177.24, + "end": 1177.86, + "probability": 0.8523 + }, + { + "start": 1179.2, + "end": 1181.12, + "probability": 0.6002 + }, + { + "start": 1181.78, + "end": 1182.98, + "probability": 0.9656 + }, + { + "start": 1183.08, + "end": 1184.06, + "probability": 0.8577 + }, + { + "start": 1184.28, + "end": 1185.96, + "probability": 0.686 + }, + { + "start": 1186.16, + "end": 1187.12, + "probability": 0.6131 + }, + { + "start": 1187.4, + "end": 1188.38, + "probability": 0.7426 + }, + { + "start": 1188.44, + "end": 1191.0, + "probability": 0.8489 + }, + { + "start": 1191.82, + "end": 1195.96, + "probability": 0.9415 + }, + { + "start": 1196.66, + "end": 1199.94, + "probability": 0.5958 + }, + { + "start": 1201.64, + "end": 1203.04, + "probability": 0.2108 + }, + { + "start": 1204.08, + "end": 1207.6, + "probability": 0.5808 + }, + { + "start": 1210.4, + "end": 1211.08, + "probability": 0.8625 + }, + { + "start": 1211.9, + "end": 1215.86, + "probability": 0.4761 + }, + { + "start": 1217.32, + "end": 1227.68, + "probability": 0.9594 + }, + { + "start": 1228.96, + "end": 1231.5, + "probability": 0.6648 + }, + { + "start": 1232.34, + "end": 1233.16, + "probability": 0.273 + }, + { + "start": 1233.92, + "end": 1241.02, + "probability": 0.9694 + }, + { + "start": 1241.56, + "end": 1245.12, + "probability": 0.736 + }, + { + "start": 1246.1, + "end": 1247.5, + "probability": 0.8665 + }, + { + "start": 1248.36, + "end": 1248.66, + "probability": 0.9303 + }, + { + "start": 1249.12, + "end": 1250.2, + "probability": 0.6276 + }, + { + "start": 1250.72, + "end": 1251.44, + "probability": 0.7717 + }, + { + "start": 1252.34, + "end": 1253.22, + "probability": 0.9004 + }, + { + "start": 1254.38, + "end": 1254.66, + "probability": 0.4326 + }, + { + "start": 1254.72, + "end": 1258.96, + "probability": 0.7625 + }, + { + "start": 1259.94, + "end": 1261.32, + "probability": 0.9839 + }, + { + "start": 1261.48, + "end": 1264.82, + "probability": 0.9724 + }, + { + "start": 1265.06, + "end": 1265.68, + "probability": 0.8391 + }, + { + "start": 1266.48, + "end": 1269.2, + "probability": 0.8067 + }, + { + "start": 1270.44, + "end": 1271.02, + "probability": 0.8021 + }, + { + "start": 1271.54, + "end": 1276.82, + "probability": 0.99 + }, + { + "start": 1277.44, + "end": 1278.16, + "probability": 0.9619 + }, + { + "start": 1278.48, + "end": 1282.96, + "probability": 0.9951 + }, + { + "start": 1282.96, + "end": 1286.7, + "probability": 0.9956 + }, + { + "start": 1287.62, + "end": 1292.28, + "probability": 0.8886 + }, + { + "start": 1292.92, + "end": 1294.84, + "probability": 0.9503 + }, + { + "start": 1295.64, + "end": 1301.94, + "probability": 0.9945 + }, + { + "start": 1302.8, + "end": 1303.5, + "probability": 0.0224 + }, + { + "start": 1303.56, + "end": 1305.94, + "probability": 0.4344 + }, + { + "start": 1307.74, + "end": 1312.32, + "probability": 0.9985 + }, + { + "start": 1312.32, + "end": 1316.38, + "probability": 0.9868 + }, + { + "start": 1316.64, + "end": 1317.0, + "probability": 0.353 + }, + { + "start": 1317.46, + "end": 1318.74, + "probability": 0.8166 + }, + { + "start": 1318.8, + "end": 1322.08, + "probability": 0.8738 + }, + { + "start": 1322.08, + "end": 1324.22, + "probability": 0.9402 + }, + { + "start": 1325.14, + "end": 1328.68, + "probability": 0.7125 + }, + { + "start": 1328.72, + "end": 1332.94, + "probability": 0.9937 + }, + { + "start": 1333.66, + "end": 1337.64, + "probability": 0.9635 + }, + { + "start": 1337.82, + "end": 1346.28, + "probability": 0.9957 + }, + { + "start": 1346.28, + "end": 1353.4, + "probability": 0.8944 + }, + { + "start": 1354.34, + "end": 1358.66, + "probability": 0.9796 + }, + { + "start": 1358.74, + "end": 1363.22, + "probability": 0.9908 + }, + { + "start": 1363.4, + "end": 1367.2, + "probability": 0.9966 + }, + { + "start": 1367.98, + "end": 1374.26, + "probability": 0.9889 + }, + { + "start": 1374.42, + "end": 1375.74, + "probability": 0.6451 + }, + { + "start": 1376.5, + "end": 1378.08, + "probability": 0.9087 + }, + { + "start": 1378.16, + "end": 1382.49, + "probability": 0.9979 + }, + { + "start": 1383.21, + "end": 1387.57, + "probability": 0.9689 + }, + { + "start": 1388.06, + "end": 1391.91, + "probability": 0.6278 + }, + { + "start": 1391.97, + "end": 1394.35, + "probability": 0.9994 + }, + { + "start": 1394.91, + "end": 1399.85, + "probability": 0.9985 + }, + { + "start": 1400.03, + "end": 1402.07, + "probability": 0.9979 + }, + { + "start": 1402.55, + "end": 1403.93, + "probability": 0.9705 + }, + { + "start": 1404.67, + "end": 1405.57, + "probability": 0.7578 + }, + { + "start": 1405.95, + "end": 1407.33, + "probability": 0.7526 + }, + { + "start": 1407.43, + "end": 1409.47, + "probability": 0.8613 + }, + { + "start": 1410.77, + "end": 1416.95, + "probability": 0.992 + }, + { + "start": 1417.15, + "end": 1421.03, + "probability": 0.8625 + }, + { + "start": 1421.09, + "end": 1423.57, + "probability": 0.9968 + }, + { + "start": 1424.21, + "end": 1428.01, + "probability": 0.9775 + }, + { + "start": 1428.05, + "end": 1431.04, + "probability": 0.8093 + }, + { + "start": 1431.35, + "end": 1434.91, + "probability": 0.9351 + }, + { + "start": 1436.39, + "end": 1440.53, + "probability": 0.1213 + }, + { + "start": 1440.55, + "end": 1445.49, + "probability": 0.0119 + }, + { + "start": 1445.49, + "end": 1445.73, + "probability": 0.1358 + }, + { + "start": 1446.05, + "end": 1446.87, + "probability": 0.3095 + }, + { + "start": 1446.93, + "end": 1447.83, + "probability": 0.2005 + }, + { + "start": 1448.21, + "end": 1450.39, + "probability": 0.1813 + }, + { + "start": 1450.75, + "end": 1452.51, + "probability": 0.0293 + }, + { + "start": 1452.51, + "end": 1454.21, + "probability": 0.0021 + }, + { + "start": 1455.29, + "end": 1455.41, + "probability": 0.008 + }, + { + "start": 1455.41, + "end": 1457.27, + "probability": 0.0569 + }, + { + "start": 1457.27, + "end": 1458.49, + "probability": 0.0516 + }, + { + "start": 1458.49, + "end": 1459.88, + "probability": 0.0339 + }, + { + "start": 1460.69, + "end": 1461.13, + "probability": 0.0545 + }, + { + "start": 1461.13, + "end": 1461.13, + "probability": 0.1622 + }, + { + "start": 1461.13, + "end": 1462.91, + "probability": 0.0641 + }, + { + "start": 1463.31, + "end": 1463.33, + "probability": 0.2491 + }, + { + "start": 1463.33, + "end": 1465.49, + "probability": 0.1573 + }, + { + "start": 1467.25, + "end": 1468.13, + "probability": 0.1143 + }, + { + "start": 1468.63, + "end": 1470.03, + "probability": 0.0909 + }, + { + "start": 1470.45, + "end": 1472.53, + "probability": 0.1737 + }, + { + "start": 1472.53, + "end": 1472.89, + "probability": 0.2937 + }, + { + "start": 1472.89, + "end": 1474.45, + "probability": 0.0201 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1514.0, + "end": 1514.0, + "probability": 0.0 + }, + { + "start": 1563.0, + "end": 1568.08, + "probability": 0.1125 + }, + { + "start": 1568.08, + "end": 1572.82, + "probability": 0.0601 + }, + { + "start": 1572.92, + "end": 1575.18, + "probability": 0.1359 + }, + { + "start": 1575.28, + "end": 1578.68, + "probability": 0.0244 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.0, + "end": 1642.0, + "probability": 0.0 + }, + { + "start": 1642.1, + "end": 1642.86, + "probability": 0.4427 + }, + { + "start": 1643.7, + "end": 1645.16, + "probability": 0.9216 + }, + { + "start": 1645.36, + "end": 1653.02, + "probability": 0.9548 + }, + { + "start": 1653.02, + "end": 1659.42, + "probability": 0.9414 + }, + { + "start": 1659.96, + "end": 1664.24, + "probability": 0.9989 + }, + { + "start": 1664.38, + "end": 1665.88, + "probability": 0.9884 + }, + { + "start": 1666.72, + "end": 1669.0, + "probability": 0.9751 + }, + { + "start": 1669.02, + "end": 1671.72, + "probability": 0.9585 + }, + { + "start": 1671.72, + "end": 1675.1, + "probability": 0.9993 + }, + { + "start": 1675.32, + "end": 1677.8, + "probability": 0.7055 + }, + { + "start": 1679.02, + "end": 1681.56, + "probability": 0.9966 + }, + { + "start": 1681.6, + "end": 1684.62, + "probability": 0.988 + }, + { + "start": 1684.74, + "end": 1685.39, + "probability": 0.9569 + }, + { + "start": 1686.22, + "end": 1689.04, + "probability": 0.9881 + }, + { + "start": 1689.06, + "end": 1690.2, + "probability": 0.5279 + }, + { + "start": 1690.62, + "end": 1693.54, + "probability": 0.9221 + }, + { + "start": 1694.28, + "end": 1697.6, + "probability": 0.9723 + }, + { + "start": 1698.08, + "end": 1698.66, + "probability": 0.8052 + }, + { + "start": 1698.98, + "end": 1701.54, + "probability": 0.9034 + }, + { + "start": 1702.12, + "end": 1707.22, + "probability": 0.9941 + }, + { + "start": 1708.36, + "end": 1710.24, + "probability": 0.9561 + }, + { + "start": 1710.36, + "end": 1710.99, + "probability": 0.9026 + }, + { + "start": 1711.72, + "end": 1713.84, + "probability": 0.9509 + }, + { + "start": 1713.94, + "end": 1714.62, + "probability": 0.6369 + }, + { + "start": 1714.76, + "end": 1715.14, + "probability": 0.6414 + }, + { + "start": 1715.98, + "end": 1716.45, + "probability": 0.9605 + }, + { + "start": 1716.78, + "end": 1719.2, + "probability": 0.9736 + }, + { + "start": 1719.68, + "end": 1725.04, + "probability": 0.9905 + }, + { + "start": 1725.52, + "end": 1727.94, + "probability": 0.9795 + }, + { + "start": 1728.46, + "end": 1731.74, + "probability": 0.9925 + }, + { + "start": 1732.26, + "end": 1733.98, + "probability": 0.9378 + }, + { + "start": 1734.48, + "end": 1738.58, + "probability": 0.9802 + }, + { + "start": 1739.0, + "end": 1740.7, + "probability": 0.9936 + }, + { + "start": 1740.74, + "end": 1742.84, + "probability": 0.9733 + }, + { + "start": 1743.46, + "end": 1750.28, + "probability": 0.9976 + }, + { + "start": 1751.12, + "end": 1756.26, + "probability": 0.9861 + }, + { + "start": 1757.28, + "end": 1761.62, + "probability": 0.9862 + }, + { + "start": 1761.74, + "end": 1763.56, + "probability": 0.9893 + }, + { + "start": 1765.52, + "end": 1766.88, + "probability": 0.8051 + }, + { + "start": 1767.02, + "end": 1768.63, + "probability": 0.9663 + }, + { + "start": 1769.54, + "end": 1770.49, + "probability": 0.9318 + }, + { + "start": 1771.78, + "end": 1772.86, + "probability": 0.3514 + }, + { + "start": 1773.0, + "end": 1773.32, + "probability": 0.7133 + }, + { + "start": 1773.32, + "end": 1773.78, + "probability": 0.9032 + }, + { + "start": 1773.86, + "end": 1777.18, + "probability": 0.9751 + }, + { + "start": 1777.74, + "end": 1783.84, + "probability": 0.8875 + }, + { + "start": 1783.9, + "end": 1787.06, + "probability": 0.9865 + }, + { + "start": 1787.2, + "end": 1793.78, + "probability": 0.9939 + }, + { + "start": 1793.92, + "end": 1795.42, + "probability": 0.8214 + }, + { + "start": 1796.16, + "end": 1799.7, + "probability": 0.9745 + }, + { + "start": 1800.34, + "end": 1801.06, + "probability": 0.7462 + }, + { + "start": 1801.5, + "end": 1802.58, + "probability": 0.8822 + }, + { + "start": 1802.6, + "end": 1808.0, + "probability": 0.9369 + }, + { + "start": 1808.66, + "end": 1813.24, + "probability": 0.9971 + }, + { + "start": 1814.58, + "end": 1818.36, + "probability": 0.9674 + }, + { + "start": 1818.46, + "end": 1818.88, + "probability": 0.4563 + }, + { + "start": 1818.94, + "end": 1821.7, + "probability": 0.7679 + }, + { + "start": 1822.24, + "end": 1826.38, + "probability": 0.607 + }, + { + "start": 1827.26, + "end": 1828.5, + "probability": 0.9042 + }, + { + "start": 1829.0, + "end": 1829.18, + "probability": 0.2793 + }, + { + "start": 1829.18, + "end": 1830.06, + "probability": 0.5485 + }, + { + "start": 1830.06, + "end": 1832.48, + "probability": 0.9711 + }, + { + "start": 1832.56, + "end": 1835.78, + "probability": 0.7397 + }, + { + "start": 1835.92, + "end": 1836.5, + "probability": 0.7293 + }, + { + "start": 1837.88, + "end": 1839.14, + "probability": 0.4346 + }, + { + "start": 1839.42, + "end": 1839.78, + "probability": 0.8936 + }, + { + "start": 1840.0, + "end": 1840.66, + "probability": 0.7258 + }, + { + "start": 1841.0, + "end": 1845.08, + "probability": 0.8069 + }, + { + "start": 1845.78, + "end": 1848.38, + "probability": 0.9845 + }, + { + "start": 1850.02, + "end": 1856.8, + "probability": 0.9785 + }, + { + "start": 1857.56, + "end": 1858.24, + "probability": 0.4435 + }, + { + "start": 1858.68, + "end": 1859.46, + "probability": 0.7639 + }, + { + "start": 1860.04, + "end": 1860.84, + "probability": 0.454 + }, + { + "start": 1861.06, + "end": 1862.58, + "probability": 0.7041 + }, + { + "start": 1867.64, + "end": 1872.36, + "probability": 0.8879 + }, + { + "start": 1873.06, + "end": 1873.55, + "probability": 0.9119 + }, + { + "start": 1873.92, + "end": 1874.84, + "probability": 0.9753 + }, + { + "start": 1875.36, + "end": 1878.34, + "probability": 0.9027 + }, + { + "start": 1878.34, + "end": 1881.46, + "probability": 0.9028 + }, + { + "start": 1881.62, + "end": 1884.74, + "probability": 0.7867 + }, + { + "start": 1885.6, + "end": 1888.08, + "probability": 0.918 + }, + { + "start": 1888.28, + "end": 1893.8, + "probability": 0.9859 + }, + { + "start": 1894.14, + "end": 1895.36, + "probability": 0.9888 + }, + { + "start": 1896.12, + "end": 1896.82, + "probability": 0.4026 + }, + { + "start": 1897.16, + "end": 1897.96, + "probability": 0.4883 + }, + { + "start": 1898.12, + "end": 1899.02, + "probability": 0.7539 + }, + { + "start": 1899.22, + "end": 1899.84, + "probability": 0.8422 + }, + { + "start": 1900.12, + "end": 1901.73, + "probability": 0.994 + }, + { + "start": 1901.96, + "end": 1903.76, + "probability": 0.9727 + }, + { + "start": 1903.86, + "end": 1906.4, + "probability": 0.7916 + }, + { + "start": 1906.82, + "end": 1907.33, + "probability": 0.8164 + }, + { + "start": 1907.68, + "end": 1909.34, + "probability": 0.981 + }, + { + "start": 1909.46, + "end": 1910.36, + "probability": 0.8041 + }, + { + "start": 1910.74, + "end": 1912.54, + "probability": 0.846 + }, + { + "start": 1912.88, + "end": 1914.52, + "probability": 0.9697 + }, + { + "start": 1914.6, + "end": 1915.6, + "probability": 0.9484 + }, + { + "start": 1915.98, + "end": 1917.68, + "probability": 0.9893 + }, + { + "start": 1918.32, + "end": 1922.38, + "probability": 0.7015 + }, + { + "start": 1922.68, + "end": 1923.8, + "probability": 0.7761 + }, + { + "start": 1924.36, + "end": 1926.98, + "probability": 0.7898 + }, + { + "start": 1927.3, + "end": 1929.13, + "probability": 0.7761 + }, + { + "start": 1929.52, + "end": 1930.58, + "probability": 0.9547 + }, + { + "start": 1930.78, + "end": 1933.32, + "probability": 0.7347 + }, + { + "start": 1934.22, + "end": 1936.89, + "probability": 0.985 + }, + { + "start": 1938.36, + "end": 1939.46, + "probability": 0.9976 + }, + { + "start": 1939.64, + "end": 1941.98, + "probability": 0.9977 + }, + { + "start": 1942.38, + "end": 1943.76, + "probability": 0.9929 + }, + { + "start": 1943.86, + "end": 1945.8, + "probability": 0.9844 + }, + { + "start": 1945.88, + "end": 1947.66, + "probability": 0.9972 + }, + { + "start": 1948.52, + "end": 1948.72, + "probability": 0.59 + }, + { + "start": 1948.72, + "end": 1949.34, + "probability": 0.7931 + }, + { + "start": 1949.4, + "end": 1950.16, + "probability": 0.7412 + }, + { + "start": 1950.38, + "end": 1951.92, + "probability": 0.851 + }, + { + "start": 1952.34, + "end": 1954.66, + "probability": 0.8457 + }, + { + "start": 1955.32, + "end": 1955.98, + "probability": 0.5642 + }, + { + "start": 1956.32, + "end": 1958.48, + "probability": 0.9157 + }, + { + "start": 1959.14, + "end": 1959.14, + "probability": 0.0001 + }, + { + "start": 1960.72, + "end": 1961.98, + "probability": 0.1282 + }, + { + "start": 1963.64, + "end": 1966.02, + "probability": 0.7453 + }, + { + "start": 1966.82, + "end": 1970.68, + "probability": 0.7847 + }, + { + "start": 1971.92, + "end": 1973.2, + "probability": 0.9448 + }, + { + "start": 1973.34, + "end": 1973.8, + "probability": 0.9138 + }, + { + "start": 1973.96, + "end": 1975.95, + "probability": 0.9922 + }, + { + "start": 1976.74, + "end": 1978.1, + "probability": 0.9966 + }, + { + "start": 1978.38, + "end": 1984.26, + "probability": 0.7712 + }, + { + "start": 1984.6, + "end": 1986.36, + "probability": 0.6145 + }, + { + "start": 1986.74, + "end": 1987.28, + "probability": 0.6001 + }, + { + "start": 1987.36, + "end": 1988.02, + "probability": 0.9172 + }, + { + "start": 1988.68, + "end": 1991.14, + "probability": 0.9938 + }, + { + "start": 1992.3, + "end": 1994.8, + "probability": 0.9976 + }, + { + "start": 1994.94, + "end": 1995.44, + "probability": 0.8372 + }, + { + "start": 1995.56, + "end": 1996.0, + "probability": 0.8451 + }, + { + "start": 1996.08, + "end": 1998.86, + "probability": 0.928 + }, + { + "start": 1998.96, + "end": 1999.82, + "probability": 0.7469 + }, + { + "start": 2000.26, + "end": 2000.7, + "probability": 0.5702 + }, + { + "start": 2001.76, + "end": 2003.22, + "probability": 0.801 + }, + { + "start": 2003.4, + "end": 2006.34, + "probability": 0.954 + }, + { + "start": 2006.34, + "end": 2009.92, + "probability": 0.9912 + }, + { + "start": 2010.34, + "end": 2011.48, + "probability": 0.8262 + }, + { + "start": 2011.62, + "end": 2013.84, + "probability": 0.9851 + }, + { + "start": 2014.44, + "end": 2020.24, + "probability": 0.9918 + }, + { + "start": 2020.24, + "end": 2025.16, + "probability": 0.9907 + }, + { + "start": 2025.5, + "end": 2029.22, + "probability": 0.989 + }, + { + "start": 2029.56, + "end": 2032.3, + "probability": 0.9951 + }, + { + "start": 2033.14, + "end": 2034.62, + "probability": 0.5796 + }, + { + "start": 2035.08, + "end": 2037.12, + "probability": 0.9736 + }, + { + "start": 2037.82, + "end": 2041.82, + "probability": 0.9952 + }, + { + "start": 2041.82, + "end": 2045.7, + "probability": 0.9995 + }, + { + "start": 2046.18, + "end": 2048.84, + "probability": 0.9945 + }, + { + "start": 2048.84, + "end": 2052.14, + "probability": 0.9959 + }, + { + "start": 2052.42, + "end": 2053.7, + "probability": 0.8412 + }, + { + "start": 2054.04, + "end": 2055.24, + "probability": 0.8692 + }, + { + "start": 2055.78, + "end": 2060.2, + "probability": 0.9535 + }, + { + "start": 2060.74, + "end": 2063.38, + "probability": 0.9701 + }, + { + "start": 2063.96, + "end": 2070.66, + "probability": 0.9844 + }, + { + "start": 2071.14, + "end": 2075.08, + "probability": 0.9884 + }, + { + "start": 2075.4, + "end": 2076.18, + "probability": 0.8671 + }, + { + "start": 2076.26, + "end": 2077.02, + "probability": 0.8287 + }, + { + "start": 2077.56, + "end": 2077.98, + "probability": 0.4865 + }, + { + "start": 2078.06, + "end": 2078.92, + "probability": 0.6957 + }, + { + "start": 2079.38, + "end": 2082.1, + "probability": 0.8828 + }, + { + "start": 2083.24, + "end": 2085.1, + "probability": 0.9754 + }, + { + "start": 2085.42, + "end": 2096.08, + "probability": 0.9744 + }, + { + "start": 2096.28, + "end": 2096.98, + "probability": 0.881 + }, + { + "start": 2097.12, + "end": 2098.38, + "probability": 0.8893 + }, + { + "start": 2099.16, + "end": 2103.1, + "probability": 0.9078 + }, + { + "start": 2103.7, + "end": 2108.42, + "probability": 0.9832 + }, + { + "start": 2108.86, + "end": 2115.62, + "probability": 0.9618 + }, + { + "start": 2116.3, + "end": 2119.58, + "probability": 0.9738 + }, + { + "start": 2120.22, + "end": 2121.32, + "probability": 0.8502 + }, + { + "start": 2121.7, + "end": 2127.0, + "probability": 0.9976 + }, + { + "start": 2127.42, + "end": 2128.46, + "probability": 0.9615 + }, + { + "start": 2128.6, + "end": 2128.82, + "probability": 0.4974 + }, + { + "start": 2128.88, + "end": 2132.04, + "probability": 0.9847 + }, + { + "start": 2132.72, + "end": 2136.08, + "probability": 0.899 + }, + { + "start": 2136.62, + "end": 2137.72, + "probability": 0.8429 + }, + { + "start": 2138.28, + "end": 2140.66, + "probability": 0.9868 + }, + { + "start": 2140.8, + "end": 2144.22, + "probability": 0.9089 + }, + { + "start": 2144.72, + "end": 2148.26, + "probability": 0.9904 + }, + { + "start": 2148.26, + "end": 2151.82, + "probability": 0.9928 + }, + { + "start": 2152.28, + "end": 2153.98, + "probability": 0.9967 + }, + { + "start": 2154.34, + "end": 2155.22, + "probability": 0.7367 + }, + { + "start": 2155.76, + "end": 2156.16, + "probability": 0.7418 + }, + { + "start": 2156.32, + "end": 2160.16, + "probability": 0.9917 + }, + { + "start": 2160.22, + "end": 2160.72, + "probability": 0.7427 + }, + { + "start": 2160.74, + "end": 2166.5, + "probability": 0.9095 + }, + { + "start": 2166.5, + "end": 2170.36, + "probability": 0.9888 + }, + { + "start": 2170.94, + "end": 2172.56, + "probability": 0.9858 + }, + { + "start": 2173.04, + "end": 2176.51, + "probability": 0.9111 + }, + { + "start": 2177.58, + "end": 2178.06, + "probability": 0.0245 + }, + { + "start": 2178.06, + "end": 2180.2, + "probability": 0.8191 + }, + { + "start": 2180.56, + "end": 2183.16, + "probability": 0.9976 + }, + { + "start": 2183.26, + "end": 2184.38, + "probability": 0.2103 + }, + { + "start": 2184.42, + "end": 2185.5, + "probability": 0.2098 + }, + { + "start": 2185.5, + "end": 2186.04, + "probability": 0.6548 + }, + { + "start": 2186.2, + "end": 2188.68, + "probability": 0.955 + }, + { + "start": 2188.94, + "end": 2193.68, + "probability": 0.8042 + }, + { + "start": 2194.2, + "end": 2194.46, + "probability": 0.4674 + }, + { + "start": 2194.52, + "end": 2195.48, + "probability": 0.8674 + }, + { + "start": 2195.54, + "end": 2200.32, + "probability": 0.887 + }, + { + "start": 2200.4, + "end": 2201.54, + "probability": 0.7299 + }, + { + "start": 2201.54, + "end": 2203.34, + "probability": 0.0126 + }, + { + "start": 2203.5, + "end": 2203.5, + "probability": 0.1845 + }, + { + "start": 2203.68, + "end": 2205.48, + "probability": 0.0735 + }, + { + "start": 2206.32, + "end": 2206.52, + "probability": 0.0102 + }, + { + "start": 2206.52, + "end": 2206.66, + "probability": 0.0059 + }, + { + "start": 2206.66, + "end": 2207.72, + "probability": 0.269 + }, + { + "start": 2207.72, + "end": 2213.0, + "probability": 0.9609 + }, + { + "start": 2213.02, + "end": 2216.77, + "probability": 0.9942 + }, + { + "start": 2217.12, + "end": 2223.18, + "probability": 0.9973 + }, + { + "start": 2224.16, + "end": 2224.9, + "probability": 0.8508 + }, + { + "start": 2225.06, + "end": 2227.68, + "probability": 0.981 + }, + { + "start": 2228.4, + "end": 2232.46, + "probability": 0.955 + }, + { + "start": 2232.78, + "end": 2233.32, + "probability": 0.8481 + }, + { + "start": 2233.32, + "end": 2236.26, + "probability": 0.9438 + }, + { + "start": 2236.92, + "end": 2239.76, + "probability": 0.995 + }, + { + "start": 2239.92, + "end": 2241.32, + "probability": 0.9834 + }, + { + "start": 2241.66, + "end": 2247.03, + "probability": 0.9876 + }, + { + "start": 2247.75, + "end": 2250.23, + "probability": 0.9785 + }, + { + "start": 2250.31, + "end": 2253.11, + "probability": 0.9937 + }, + { + "start": 2253.26, + "end": 2255.52, + "probability": 0.9731 + }, + { + "start": 2256.08, + "end": 2258.72, + "probability": 0.9565 + }, + { + "start": 2258.72, + "end": 2263.78, + "probability": 0.9993 + }, + { + "start": 2263.98, + "end": 2266.58, + "probability": 0.9989 + }, + { + "start": 2266.58, + "end": 2269.04, + "probability": 0.9998 + }, + { + "start": 2269.3, + "end": 2273.66, + "probability": 0.9824 + }, + { + "start": 2274.04, + "end": 2276.52, + "probability": 0.9502 + }, + { + "start": 2277.98, + "end": 2279.16, + "probability": 0.8049 + }, + { + "start": 2279.3, + "end": 2283.58, + "probability": 0.9985 + }, + { + "start": 2283.58, + "end": 2287.08, + "probability": 0.9181 + }, + { + "start": 2287.14, + "end": 2289.2, + "probability": 0.8584 + }, + { + "start": 2289.28, + "end": 2290.9, + "probability": 0.9984 + }, + { + "start": 2290.98, + "end": 2292.76, + "probability": 0.9987 + }, + { + "start": 2294.24, + "end": 2295.34, + "probability": 0.7646 + }, + { + "start": 2295.42, + "end": 2296.56, + "probability": 0.9891 + }, + { + "start": 2297.24, + "end": 2300.96, + "probability": 0.9696 + }, + { + "start": 2301.52, + "end": 2303.14, + "probability": 0.8932 + }, + { + "start": 2303.24, + "end": 2303.85, + "probability": 0.387 + }, + { + "start": 2304.36, + "end": 2305.96, + "probability": 0.7532 + }, + { + "start": 2306.34, + "end": 2306.74, + "probability": 0.7221 + }, + { + "start": 2306.86, + "end": 2310.76, + "probability": 0.9963 + }, + { + "start": 2311.22, + "end": 2315.22, + "probability": 0.0089 + }, + { + "start": 2315.22, + "end": 2315.22, + "probability": 0.0799 + }, + { + "start": 2315.22, + "end": 2315.22, + "probability": 0.0876 + }, + { + "start": 2315.22, + "end": 2315.22, + "probability": 0.2469 + }, + { + "start": 2315.22, + "end": 2316.0, + "probability": 0.4813 + }, + { + "start": 2316.04, + "end": 2317.36, + "probability": 0.7971 + }, + { + "start": 2317.72, + "end": 2317.86, + "probability": 0.0959 + }, + { + "start": 2317.86, + "end": 2317.86, + "probability": 0.0993 + }, + { + "start": 2317.86, + "end": 2317.86, + "probability": 0.2282 + }, + { + "start": 2317.86, + "end": 2319.89, + "probability": 0.9858 + }, + { + "start": 2319.96, + "end": 2321.06, + "probability": 0.6382 + }, + { + "start": 2321.06, + "end": 2321.82, + "probability": 0.2513 + }, + { + "start": 2321.9, + "end": 2322.18, + "probability": 0.162 + }, + { + "start": 2322.18, + "end": 2322.2, + "probability": 0.2363 + }, + { + "start": 2322.2, + "end": 2323.92, + "probability": 0.5993 + }, + { + "start": 2327.04, + "end": 2328.78, + "probability": 0.0332 + }, + { + "start": 2328.98, + "end": 2330.1, + "probability": 0.3567 + }, + { + "start": 2330.6, + "end": 2333.92, + "probability": 0.0289 + }, + { + "start": 2335.08, + "end": 2336.26, + "probability": 0.1637 + }, + { + "start": 2336.6, + "end": 2337.22, + "probability": 0.1383 + }, + { + "start": 2337.8, + "end": 2337.8, + "probability": 0.2251 + }, + { + "start": 2337.8, + "end": 2338.46, + "probability": 0.1718 + }, + { + "start": 2339.94, + "end": 2343.1, + "probability": 0.6934 + }, + { + "start": 2343.38, + "end": 2346.4, + "probability": 0.2954 + }, + { + "start": 2347.02, + "end": 2347.4, + "probability": 0.3172 + }, + { + "start": 2347.4, + "end": 2347.86, + "probability": 0.1145 + }, + { + "start": 2347.86, + "end": 2348.36, + "probability": 0.1587 + }, + { + "start": 2348.36, + "end": 2348.36, + "probability": 0.1672 + }, + { + "start": 2348.36, + "end": 2349.24, + "probability": 0.1012 + }, + { + "start": 2349.64, + "end": 2353.24, + "probability": 0.3336 + }, + { + "start": 2355.13, + "end": 2361.42, + "probability": 0.1604 + }, + { + "start": 2361.42, + "end": 2366.78, + "probability": 0.201 + }, + { + "start": 2366.82, + "end": 2369.92, + "probability": 0.0981 + }, + { + "start": 2370.66, + "end": 2370.66, + "probability": 0.2514 + }, + { + "start": 2370.66, + "end": 2371.6, + "probability": 0.0804 + }, + { + "start": 2371.6, + "end": 2376.88, + "probability": 0.0501 + }, + { + "start": 2376.88, + "end": 2376.88, + "probability": 0.0559 + }, + { + "start": 2376.9, + "end": 2376.96, + "probability": 0.0883 + }, + { + "start": 2377.0, + "end": 2377.0, + "probability": 0.0 + }, + { + "start": 2377.0, + "end": 2377.0, + "probability": 0.0 + }, + { + "start": 2378.24, + "end": 2381.26, + "probability": 0.0485 + }, + { + "start": 2381.26, + "end": 2383.72, + "probability": 0.0993 + }, + { + "start": 2386.28, + "end": 2388.62, + "probability": 0.1941 + }, + { + "start": 2389.1, + "end": 2389.1, + "probability": 0.2035 + }, + { + "start": 2389.64, + "end": 2390.66, + "probability": 0.1172 + }, + { + "start": 2390.66, + "end": 2393.02, + "probability": 0.0113 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2524.0, + "end": 2524.0, + "probability": 0.0 + }, + { + "start": 2546.48, + "end": 2547.54, + "probability": 0.0126 + }, + { + "start": 2551.71, + "end": 2554.72, + "probability": 0.0306 + }, + { + "start": 2556.28, + "end": 2557.06, + "probability": 0.0311 + }, + { + "start": 2558.18, + "end": 2565.04, + "probability": 0.0418 + }, + { + "start": 2565.04, + "end": 2565.34, + "probability": 0.0933 + }, + { + "start": 2565.86, + "end": 2568.76, + "probability": 0.0046 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.0, + "end": 2644.0, + "probability": 0.0 + }, + { + "start": 2644.4, + "end": 2644.56, + "probability": 0.092 + }, + { + "start": 2644.56, + "end": 2645.56, + "probability": 0.9203 + }, + { + "start": 2645.76, + "end": 2649.9, + "probability": 0.8046 + }, + { + "start": 2650.22, + "end": 2650.6, + "probability": 0.8892 + }, + { + "start": 2650.86, + "end": 2651.32, + "probability": 0.9829 + }, + { + "start": 2651.46, + "end": 2652.42, + "probability": 0.628 + }, + { + "start": 2652.54, + "end": 2653.28, + "probability": 0.8442 + }, + { + "start": 2653.62, + "end": 2657.64, + "probability": 0.9954 + }, + { + "start": 2658.28, + "end": 2659.94, + "probability": 0.991 + }, + { + "start": 2660.04, + "end": 2660.78, + "probability": 0.8182 + }, + { + "start": 2660.86, + "end": 2661.96, + "probability": 0.9442 + }, + { + "start": 2662.0, + "end": 2665.84, + "probability": 0.9882 + }, + { + "start": 2666.48, + "end": 2667.52, + "probability": 0.4004 + }, + { + "start": 2667.72, + "end": 2669.85, + "probability": 0.4732 + }, + { + "start": 2670.42, + "end": 2675.18, + "probability": 0.9764 + }, + { + "start": 2675.48, + "end": 2675.98, + "probability": 0.5065 + }, + { + "start": 2676.1, + "end": 2676.38, + "probability": 0.2551 + }, + { + "start": 2676.42, + "end": 2677.63, + "probability": 0.5808 + }, + { + "start": 2678.38, + "end": 2680.82, + "probability": 0.9198 + }, + { + "start": 2681.0, + "end": 2683.22, + "probability": 0.9727 + }, + { + "start": 2689.82, + "end": 2692.68, + "probability": 0.934 + }, + { + "start": 2693.28, + "end": 2695.1, + "probability": 0.9971 + }, + { + "start": 2696.12, + "end": 2700.56, + "probability": 0.8996 + }, + { + "start": 2700.6, + "end": 2703.66, + "probability": 0.9894 + }, + { + "start": 2704.34, + "end": 2706.88, + "probability": 0.9959 + }, + { + "start": 2707.1, + "end": 2707.88, + "probability": 0.8169 + }, + { + "start": 2708.68, + "end": 2710.56, + "probability": 0.9855 + }, + { + "start": 2711.56, + "end": 2714.04, + "probability": 0.9685 + }, + { + "start": 2714.36, + "end": 2718.16, + "probability": 0.9955 + }, + { + "start": 2718.96, + "end": 2721.22, + "probability": 0.697 + }, + { + "start": 2721.48, + "end": 2722.9, + "probability": 0.6524 + }, + { + "start": 2723.28, + "end": 2725.18, + "probability": 0.9558 + }, + { + "start": 2725.62, + "end": 2727.24, + "probability": 0.9751 + }, + { + "start": 2728.02, + "end": 2729.62, + "probability": 0.9163 + }, + { + "start": 2730.04, + "end": 2734.66, + "probability": 0.9701 + }, + { + "start": 2735.08, + "end": 2735.64, + "probability": 0.6898 + }, + { + "start": 2735.74, + "end": 2737.68, + "probability": 0.9213 + }, + { + "start": 2737.86, + "end": 2738.26, + "probability": 0.5955 + }, + { + "start": 2738.3, + "end": 2738.4, + "probability": 0.5167 + }, + { + "start": 2738.46, + "end": 2740.1, + "probability": 0.6595 + }, + { + "start": 2740.1, + "end": 2742.84, + "probability": 0.593 + }, + { + "start": 2742.84, + "end": 2742.84, + "probability": 0.5737 + }, + { + "start": 2742.84, + "end": 2742.92, + "probability": 0.6473 + }, + { + "start": 2743.0, + "end": 2743.62, + "probability": 0.9188 + }, + { + "start": 2743.74, + "end": 2744.88, + "probability": 0.9634 + }, + { + "start": 2745.16, + "end": 2745.72, + "probability": 0.7618 + }, + { + "start": 2745.76, + "end": 2747.86, + "probability": 0.9934 + }, + { + "start": 2748.08, + "end": 2751.32, + "probability": 0.9463 + }, + { + "start": 2751.42, + "end": 2751.88, + "probability": 0.8796 + }, + { + "start": 2751.88, + "end": 2754.04, + "probability": 0.9938 + }, + { + "start": 2754.04, + "end": 2757.02, + "probability": 0.7047 + }, + { + "start": 2757.02, + "end": 2757.1, + "probability": 0.2661 + }, + { + "start": 2757.1, + "end": 2757.22, + "probability": 0.7201 + }, + { + "start": 2757.36, + "end": 2760.66, + "probability": 0.9534 + }, + { + "start": 2760.74, + "end": 2764.36, + "probability": 0.9905 + }, + { + "start": 2764.88, + "end": 2768.3, + "probability": 0.9832 + }, + { + "start": 2768.42, + "end": 2769.1, + "probability": 0.8993 + }, + { + "start": 2769.22, + "end": 2771.82, + "probability": 0.9855 + }, + { + "start": 2772.16, + "end": 2773.98, + "probability": 0.8229 + }, + { + "start": 2774.9, + "end": 2775.36, + "probability": 0.5163 + }, + { + "start": 2775.4, + "end": 2778.48, + "probability": 0.9003 + }, + { + "start": 2778.58, + "end": 2781.3, + "probability": 0.8901 + }, + { + "start": 2781.88, + "end": 2784.12, + "probability": 0.9949 + }, + { + "start": 2784.6, + "end": 2787.1, + "probability": 0.8894 + }, + { + "start": 2787.44, + "end": 2787.86, + "probability": 0.5461 + }, + { + "start": 2788.02, + "end": 2789.6, + "probability": 0.6953 + }, + { + "start": 2789.64, + "end": 2790.02, + "probability": 0.7882 + }, + { + "start": 2790.06, + "end": 2791.82, + "probability": 0.9851 + }, + { + "start": 2792.5, + "end": 2792.6, + "probability": 0.372 + }, + { + "start": 2792.76, + "end": 2793.46, + "probability": 0.624 + }, + { + "start": 2793.72, + "end": 2796.66, + "probability": 0.82 + }, + { + "start": 2797.12, + "end": 2797.12, + "probability": 0.5455 + }, + { + "start": 2797.22, + "end": 2798.7, + "probability": 0.8358 + }, + { + "start": 2799.5, + "end": 2802.84, + "probability": 0.9953 + }, + { + "start": 2803.74, + "end": 2805.48, + "probability": 0.9761 + }, + { + "start": 2806.06, + "end": 2808.02, + "probability": 0.3818 + }, + { + "start": 2808.6, + "end": 2810.78, + "probability": 0.9873 + }, + { + "start": 2811.18, + "end": 2813.3, + "probability": 0.9336 + }, + { + "start": 2813.38, + "end": 2815.15, + "probability": 0.9341 + }, + { + "start": 2815.42, + "end": 2815.62, + "probability": 0.6061 + }, + { + "start": 2815.7, + "end": 2817.62, + "probability": 0.7749 + }, + { + "start": 2817.76, + "end": 2820.52, + "probability": 0.7344 + }, + { + "start": 2828.82, + "end": 2830.04, + "probability": 0.5944 + }, + { + "start": 2831.44, + "end": 2833.26, + "probability": 0.9288 + }, + { + "start": 2835.36, + "end": 2837.62, + "probability": 0.9861 + }, + { + "start": 2838.44, + "end": 2839.4, + "probability": 0.863 + }, + { + "start": 2840.66, + "end": 2843.82, + "probability": 0.8863 + }, + { + "start": 2845.12, + "end": 2846.14, + "probability": 0.6902 + }, + { + "start": 2848.12, + "end": 2849.4, + "probability": 0.5702 + }, + { + "start": 2850.3, + "end": 2854.9, + "probability": 0.4596 + }, + { + "start": 2855.66, + "end": 2857.3, + "probability": 0.718 + }, + { + "start": 2858.16, + "end": 2864.16, + "probability": 0.7214 + }, + { + "start": 2864.28, + "end": 2865.16, + "probability": 0.8069 + }, + { + "start": 2866.0, + "end": 2866.48, + "probability": 0.975 + }, + { + "start": 2867.08, + "end": 2868.24, + "probability": 0.7543 + }, + { + "start": 2869.02, + "end": 2871.5, + "probability": 0.7956 + }, + { + "start": 2872.1, + "end": 2873.7, + "probability": 0.988 + }, + { + "start": 2874.4, + "end": 2875.65, + "probability": 0.9631 + }, + { + "start": 2876.3, + "end": 2881.16, + "probability": 0.8682 + }, + { + "start": 2882.22, + "end": 2883.32, + "probability": 0.6242 + }, + { + "start": 2884.7, + "end": 2887.56, + "probability": 0.9751 + }, + { + "start": 2888.28, + "end": 2891.72, + "probability": 0.9772 + }, + { + "start": 2892.4, + "end": 2894.3, + "probability": 0.9175 + }, + { + "start": 2894.92, + "end": 2898.68, + "probability": 0.7528 + }, + { + "start": 2899.74, + "end": 2901.16, + "probability": 0.9819 + }, + { + "start": 2901.34, + "end": 2903.72, + "probability": 0.8624 + }, + { + "start": 2904.44, + "end": 2910.08, + "probability": 0.9305 + }, + { + "start": 2911.04, + "end": 2914.96, + "probability": 0.9573 + }, + { + "start": 2915.04, + "end": 2915.82, + "probability": 0.985 + }, + { + "start": 2916.04, + "end": 2916.38, + "probability": 0.5296 + }, + { + "start": 2917.44, + "end": 2918.34, + "probability": 0.7702 + }, + { + "start": 2918.98, + "end": 2921.62, + "probability": 0.8268 + }, + { + "start": 2922.22, + "end": 2924.5, + "probability": 0.6987 + }, + { + "start": 2926.42, + "end": 2927.3, + "probability": 0.9297 + }, + { + "start": 2927.48, + "end": 2933.84, + "probability": 0.9771 + }, + { + "start": 2933.9, + "end": 2935.74, + "probability": 0.9727 + }, + { + "start": 2936.12, + "end": 2936.48, + "probability": 0.6946 + }, + { + "start": 2937.02, + "end": 2938.0, + "probability": 0.7394 + }, + { + "start": 2938.02, + "end": 2938.18, + "probability": 0.3656 + }, + { + "start": 2938.18, + "end": 2940.12, + "probability": 0.947 + }, + { + "start": 2940.44, + "end": 2940.9, + "probability": 0.6025 + }, + { + "start": 2941.22, + "end": 2941.34, + "probability": 0.5369 + }, + { + "start": 2941.38, + "end": 2942.8, + "probability": 0.8071 + }, + { + "start": 2942.88, + "end": 2943.62, + "probability": 0.752 + }, + { + "start": 2944.12, + "end": 2947.7, + "probability": 0.9802 + }, + { + "start": 2948.24, + "end": 2948.96, + "probability": 0.8763 + }, + { + "start": 2949.64, + "end": 2950.92, + "probability": 0.5427 + }, + { + "start": 2950.96, + "end": 2951.9, + "probability": 0.8014 + }, + { + "start": 2952.68, + "end": 2957.2, + "probability": 0.9652 + }, + { + "start": 2957.3, + "end": 2961.26, + "probability": 0.884 + }, + { + "start": 2961.52, + "end": 2962.72, + "probability": 0.5588 + }, + { + "start": 2964.38, + "end": 2964.81, + "probability": 0.6816 + }, + { + "start": 2965.82, + "end": 2967.04, + "probability": 0.9518 + }, + { + "start": 2967.22, + "end": 2971.68, + "probability": 0.9935 + }, + { + "start": 2971.96, + "end": 2973.86, + "probability": 0.6642 + }, + { + "start": 2974.58, + "end": 2978.22, + "probability": 0.9986 + }, + { + "start": 2978.78, + "end": 2979.24, + "probability": 0.9094 + }, + { + "start": 2979.38, + "end": 2980.2, + "probability": 0.9559 + }, + { + "start": 2980.44, + "end": 2981.22, + "probability": 0.9947 + }, + { + "start": 2981.34, + "end": 2983.1, + "probability": 0.9632 + }, + { + "start": 2983.44, + "end": 2985.92, + "probability": 0.9916 + }, + { + "start": 2986.9, + "end": 2988.52, + "probability": 0.9235 + }, + { + "start": 2989.02, + "end": 2992.88, + "probability": 0.9924 + }, + { + "start": 2993.52, + "end": 2997.44, + "probability": 0.9986 + }, + { + "start": 2997.44, + "end": 3000.38, + "probability": 0.9928 + }, + { + "start": 3002.24, + "end": 3005.36, + "probability": 0.9709 + }, + { + "start": 3006.46, + "end": 3008.4, + "probability": 0.8561 + }, + { + "start": 3008.62, + "end": 3014.04, + "probability": 0.9785 + }, + { + "start": 3015.22, + "end": 3015.64, + "probability": 0.7436 + }, + { + "start": 3015.98, + "end": 3016.58, + "probability": 0.853 + }, + { + "start": 3017.02, + "end": 3017.86, + "probability": 0.8159 + }, + { + "start": 3018.2, + "end": 3023.84, + "probability": 0.9884 + }, + { + "start": 3024.06, + "end": 3028.6, + "probability": 0.9746 + }, + { + "start": 3029.12, + "end": 3036.4, + "probability": 0.9991 + }, + { + "start": 3037.12, + "end": 3038.98, + "probability": 0.7793 + }, + { + "start": 3039.46, + "end": 3045.72, + "probability": 0.999 + }, + { + "start": 3046.22, + "end": 3051.14, + "probability": 0.9946 + }, + { + "start": 3051.64, + "end": 3054.52, + "probability": 0.9947 + }, + { + "start": 3055.14, + "end": 3056.3, + "probability": 0.9631 + }, + { + "start": 3057.5, + "end": 3059.96, + "probability": 0.9587 + }, + { + "start": 3060.08, + "end": 3062.96, + "probability": 0.9944 + }, + { + "start": 3063.08, + "end": 3064.12, + "probability": 0.0244 + }, + { + "start": 3064.12, + "end": 3065.62, + "probability": 0.633 + }, + { + "start": 3067.0, + "end": 3069.88, + "probability": 0.8937 + }, + { + "start": 3070.68, + "end": 3072.42, + "probability": 0.8196 + }, + { + "start": 3072.58, + "end": 3074.64, + "probability": 0.9871 + }, + { + "start": 3075.82, + "end": 3081.32, + "probability": 0.9573 + }, + { + "start": 3082.04, + "end": 3089.02, + "probability": 0.8436 + }, + { + "start": 3089.1, + "end": 3091.76, + "probability": 0.9048 + }, + { + "start": 3091.88, + "end": 3094.16, + "probability": 0.9857 + }, + { + "start": 3094.16, + "end": 3098.54, + "probability": 0.9555 + }, + { + "start": 3098.6, + "end": 3101.36, + "probability": 0.9614 + }, + { + "start": 3103.34, + "end": 3105.2, + "probability": 0.7904 + }, + { + "start": 3105.42, + "end": 3107.51, + "probability": 0.9223 + }, + { + "start": 3108.44, + "end": 3109.64, + "probability": 0.9042 + }, + { + "start": 3110.14, + "end": 3114.32, + "probability": 0.954 + }, + { + "start": 3114.56, + "end": 3116.14, + "probability": 0.9868 + }, + { + "start": 3116.48, + "end": 3117.78, + "probability": 0.879 + }, + { + "start": 3117.98, + "end": 3120.6, + "probability": 0.95 + }, + { + "start": 3121.14, + "end": 3124.26, + "probability": 0.9941 + }, + { + "start": 3124.72, + "end": 3129.28, + "probability": 0.9673 + }, + { + "start": 3129.36, + "end": 3138.8, + "probability": 0.9872 + }, + { + "start": 3139.0, + "end": 3143.5, + "probability": 0.9844 + }, + { + "start": 3143.54, + "end": 3143.92, + "probability": 0.6932 + }, + { + "start": 3143.94, + "end": 3147.9, + "probability": 0.9956 + }, + { + "start": 3148.48, + "end": 3149.98, + "probability": 0.9947 + }, + { + "start": 3151.1, + "end": 3151.92, + "probability": 0.8552 + }, + { + "start": 3152.56, + "end": 3158.4, + "probability": 0.9862 + }, + { + "start": 3158.56, + "end": 3158.78, + "probability": 0.043 + }, + { + "start": 3160.69, + "end": 3161.44, + "probability": 0.1994 + }, + { + "start": 3161.64, + "end": 3162.9, + "probability": 0.6971 + }, + { + "start": 3163.08, + "end": 3163.68, + "probability": 0.5172 + }, + { + "start": 3163.9, + "end": 3165.16, + "probability": 0.4881 + }, + { + "start": 3165.56, + "end": 3167.22, + "probability": 0.9865 + }, + { + "start": 3167.4, + "end": 3169.92, + "probability": 0.9168 + }, + { + "start": 3170.72, + "end": 3177.22, + "probability": 0.9877 + }, + { + "start": 3177.5, + "end": 3178.6, + "probability": 0.7336 + }, + { + "start": 3178.82, + "end": 3183.62, + "probability": 0.9743 + }, + { + "start": 3184.52, + "end": 3189.66, + "probability": 0.9845 + }, + { + "start": 3189.66, + "end": 3194.02, + "probability": 0.9995 + }, + { + "start": 3194.67, + "end": 3198.68, + "probability": 0.9972 + }, + { + "start": 3199.44, + "end": 3201.8, + "probability": 0.7455 + }, + { + "start": 3202.08, + "end": 3207.98, + "probability": 0.9977 + }, + { + "start": 3207.98, + "end": 3211.12, + "probability": 0.9993 + }, + { + "start": 3211.26, + "end": 3213.42, + "probability": 0.815 + }, + { + "start": 3213.94, + "end": 3218.06, + "probability": 0.9916 + }, + { + "start": 3218.78, + "end": 3220.23, + "probability": 0.987 + }, + { + "start": 3220.58, + "end": 3224.1, + "probability": 0.999 + }, + { + "start": 3224.5, + "end": 3228.98, + "probability": 0.9693 + }, + { + "start": 3229.64, + "end": 3231.16, + "probability": 0.98 + }, + { + "start": 3231.22, + "end": 3232.64, + "probability": 0.9533 + }, + { + "start": 3233.28, + "end": 3238.8, + "probability": 0.9697 + }, + { + "start": 3238.96, + "end": 3242.64, + "probability": 0.9949 + }, + { + "start": 3242.76, + "end": 3245.84, + "probability": 0.9845 + }, + { + "start": 3245.96, + "end": 3247.12, + "probability": 0.3153 + }, + { + "start": 3247.5, + "end": 3248.88, + "probability": 0.9482 + }, + { + "start": 3249.04, + "end": 3250.1, + "probability": 0.9558 + }, + { + "start": 3250.4, + "end": 3252.72, + "probability": 0.9853 + }, + { + "start": 3253.32, + "end": 3256.3, + "probability": 0.9559 + }, + { + "start": 3256.88, + "end": 3259.84, + "probability": 0.9921 + }, + { + "start": 3259.84, + "end": 3264.36, + "probability": 0.9933 + }, + { + "start": 3264.94, + "end": 3266.64, + "probability": 0.9053 + }, + { + "start": 3266.84, + "end": 3267.34, + "probability": 0.7866 + }, + { + "start": 3267.76, + "end": 3268.76, + "probability": 0.6664 + }, + { + "start": 3268.92, + "end": 3273.14, + "probability": 0.8046 + }, + { + "start": 3274.46, + "end": 3282.42, + "probability": 0.6442 + }, + { + "start": 3282.84, + "end": 3284.94, + "probability": 0.9712 + }, + { + "start": 3284.98, + "end": 3285.94, + "probability": 0.7669 + }, + { + "start": 3287.38, + "end": 3289.16, + "probability": 0.6736 + }, + { + "start": 3289.16, + "end": 3290.44, + "probability": 0.531 + }, + { + "start": 3290.88, + "end": 3292.22, + "probability": 0.8297 + }, + { + "start": 3293.66, + "end": 3294.18, + "probability": 0.7418 + }, + { + "start": 3294.58, + "end": 3296.16, + "probability": 0.6005 + }, + { + "start": 3296.6, + "end": 3297.52, + "probability": 0.3821 + }, + { + "start": 3297.58, + "end": 3301.22, + "probability": 0.8922 + }, + { + "start": 3302.4, + "end": 3303.72, + "probability": 0.8188 + }, + { + "start": 3303.78, + "end": 3304.62, + "probability": 0.6461 + }, + { + "start": 3304.72, + "end": 3310.22, + "probability": 0.9861 + }, + { + "start": 3311.08, + "end": 3312.8, + "probability": 0.9995 + }, + { + "start": 3312.96, + "end": 3315.3, + "probability": 0.9321 + }, + { + "start": 3316.2, + "end": 3319.48, + "probability": 0.9454 + }, + { + "start": 3319.48, + "end": 3321.76, + "probability": 0.9417 + }, + { + "start": 3322.38, + "end": 3325.38, + "probability": 0.8097 + }, + { + "start": 3325.86, + "end": 3329.76, + "probability": 0.8807 + }, + { + "start": 3329.96, + "end": 3334.04, + "probability": 0.973 + }, + { + "start": 3334.2, + "end": 3335.54, + "probability": 0.7668 + }, + { + "start": 3337.14, + "end": 3339.1, + "probability": 0.9922 + }, + { + "start": 3339.38, + "end": 3343.34, + "probability": 0.9981 + }, + { + "start": 3344.6, + "end": 3349.04, + "probability": 0.8514 + }, + { + "start": 3350.3, + "end": 3350.92, + "probability": 0.537 + }, + { + "start": 3351.82, + "end": 3355.64, + "probability": 0.924 + }, + { + "start": 3356.8, + "end": 3358.84, + "probability": 0.9859 + }, + { + "start": 3359.48, + "end": 3363.98, + "probability": 0.8623 + }, + { + "start": 3364.66, + "end": 3369.0, + "probability": 0.9729 + }, + { + "start": 3370.16, + "end": 3376.16, + "probability": 0.9714 + }, + { + "start": 3377.12, + "end": 3381.4, + "probability": 0.9099 + }, + { + "start": 3381.88, + "end": 3387.4, + "probability": 0.9961 + }, + { + "start": 3387.84, + "end": 3388.26, + "probability": 0.7378 + }, + { + "start": 3388.46, + "end": 3389.14, + "probability": 0.8099 + }, + { + "start": 3389.26, + "end": 3390.14, + "probability": 0.9785 + }, + { + "start": 3390.74, + "end": 3392.7, + "probability": 0.808 + }, + { + "start": 3393.22, + "end": 3396.54, + "probability": 0.9983 + }, + { + "start": 3396.96, + "end": 3399.62, + "probability": 0.9773 + }, + { + "start": 3399.64, + "end": 3403.8, + "probability": 0.9528 + }, + { + "start": 3404.78, + "end": 3405.28, + "probability": 0.4856 + }, + { + "start": 3405.4, + "end": 3408.32, + "probability": 0.896 + }, + { + "start": 3408.42, + "end": 3410.06, + "probability": 0.5895 + }, + { + "start": 3410.36, + "end": 3414.68, + "probability": 0.7659 + }, + { + "start": 3414.7, + "end": 3415.34, + "probability": 0.3716 + }, + { + "start": 3415.34, + "end": 3416.54, + "probability": 0.7802 + }, + { + "start": 3417.76, + "end": 3418.12, + "probability": 0.3177 + }, + { + "start": 3418.18, + "end": 3421.48, + "probability": 0.9919 + }, + { + "start": 3421.58, + "end": 3423.27, + "probability": 0.959 + }, + { + "start": 3424.0, + "end": 3428.52, + "probability": 0.6992 + }, + { + "start": 3428.82, + "end": 3431.04, + "probability": 0.981 + }, + { + "start": 3431.64, + "end": 3434.14, + "probability": 0.9967 + }, + { + "start": 3434.64, + "end": 3434.74, + "probability": 0.4319 + }, + { + "start": 3434.86, + "end": 3437.4, + "probability": 0.5225 + }, + { + "start": 3437.5, + "end": 3440.24, + "probability": 0.9094 + }, + { + "start": 3440.24, + "end": 3442.02, + "probability": 0.4006 + }, + { + "start": 3443.41, + "end": 3447.54, + "probability": 0.9132 + }, + { + "start": 3448.22, + "end": 3448.88, + "probability": 0.6018 + }, + { + "start": 3448.96, + "end": 3450.88, + "probability": 0.5025 + }, + { + "start": 3450.9, + "end": 3451.82, + "probability": 0.8934 + }, + { + "start": 3459.2, + "end": 3459.58, + "probability": 0.4813 + }, + { + "start": 3459.62, + "end": 3460.1, + "probability": 0.7403 + }, + { + "start": 3460.18, + "end": 3462.0, + "probability": 0.9783 + }, + { + "start": 3462.16, + "end": 3466.14, + "probability": 0.9067 + }, + { + "start": 3466.14, + "end": 3470.02, + "probability": 0.9782 + }, + { + "start": 3470.18, + "end": 3472.22, + "probability": 0.6562 + }, + { + "start": 3472.54, + "end": 3473.08, + "probability": 0.6546 + }, + { + "start": 3474.08, + "end": 3475.52, + "probability": 0.4616 + }, + { + "start": 3476.12, + "end": 3481.74, + "probability": 0.8541 + }, + { + "start": 3482.06, + "end": 3486.94, + "probability": 0.8955 + }, + { + "start": 3488.16, + "end": 3489.84, + "probability": 0.4505 + }, + { + "start": 3490.46, + "end": 3491.0, + "probability": 0.8498 + }, + { + "start": 3491.1, + "end": 3493.38, + "probability": 0.959 + }, + { + "start": 3493.38, + "end": 3497.58, + "probability": 0.9795 + }, + { + "start": 3497.66, + "end": 3499.82, + "probability": 0.8464 + }, + { + "start": 3499.98, + "end": 3503.28, + "probability": 0.7487 + }, + { + "start": 3503.96, + "end": 3508.06, + "probability": 0.9852 + }, + { + "start": 3508.06, + "end": 3510.82, + "probability": 0.9635 + }, + { + "start": 3510.98, + "end": 3513.52, + "probability": 0.5392 + }, + { + "start": 3514.64, + "end": 3518.06, + "probability": 0.8483 + }, + { + "start": 3518.64, + "end": 3522.79, + "probability": 0.6478 + }, + { + "start": 3523.82, + "end": 3531.08, + "probability": 0.9901 + }, + { + "start": 3531.46, + "end": 3536.6, + "probability": 0.9833 + }, + { + "start": 3537.1, + "end": 3538.52, + "probability": 0.7852 + }, + { + "start": 3538.62, + "end": 3540.22, + "probability": 0.896 + }, + { + "start": 3540.26, + "end": 3542.28, + "probability": 0.9419 + }, + { + "start": 3542.28, + "end": 3550.5, + "probability": 0.9193 + }, + { + "start": 3550.86, + "end": 3551.3, + "probability": 0.4192 + }, + { + "start": 3551.3, + "end": 3552.16, + "probability": 0.6808 + }, + { + "start": 3552.24, + "end": 3552.52, + "probability": 0.7967 + }, + { + "start": 3552.66, + "end": 3554.16, + "probability": 0.5554 + }, + { + "start": 3554.39, + "end": 3559.56, + "probability": 0.8608 + }, + { + "start": 3559.96, + "end": 3564.26, + "probability": 0.9668 + }, + { + "start": 3564.58, + "end": 3565.12, + "probability": 0.7375 + }, + { + "start": 3565.22, + "end": 3566.96, + "probability": 0.56 + }, + { + "start": 3567.0, + "end": 3567.74, + "probability": 0.8336 + }, + { + "start": 3569.98, + "end": 3572.12, + "probability": 0.7148 + }, + { + "start": 3572.24, + "end": 3572.76, + "probability": 0.7899 + }, + { + "start": 3572.9, + "end": 3579.26, + "probability": 0.9706 + }, + { + "start": 3579.84, + "end": 3581.48, + "probability": 0.7464 + }, + { + "start": 3583.08, + "end": 3586.44, + "probability": 0.8652 + }, + { + "start": 3587.06, + "end": 3590.38, + "probability": 0.8937 + }, + { + "start": 3590.72, + "end": 3591.2, + "probability": 0.8739 + }, + { + "start": 3591.36, + "end": 3597.48, + "probability": 0.9424 + }, + { + "start": 3598.1, + "end": 3601.22, + "probability": 0.9827 + }, + { + "start": 3601.66, + "end": 3606.12, + "probability": 0.8429 + }, + { + "start": 3606.34, + "end": 3610.0, + "probability": 0.986 + }, + { + "start": 3611.0, + "end": 3614.94, + "probability": 0.8634 + }, + { + "start": 3615.4, + "end": 3616.96, + "probability": 0.639 + }, + { + "start": 3617.42, + "end": 3620.1, + "probability": 0.9776 + }, + { + "start": 3620.86, + "end": 3622.32, + "probability": 0.9324 + }, + { + "start": 3622.4, + "end": 3624.3, + "probability": 0.9736 + }, + { + "start": 3625.16, + "end": 3626.28, + "probability": 0.7933 + }, + { + "start": 3626.46, + "end": 3627.6, + "probability": 0.6132 + }, + { + "start": 3627.64, + "end": 3628.52, + "probability": 0.6131 + }, + { + "start": 3628.54, + "end": 3629.2, + "probability": 0.7354 + }, + { + "start": 3629.74, + "end": 3630.48, + "probability": 0.7233 + }, + { + "start": 3630.6, + "end": 3632.62, + "probability": 0.9607 + }, + { + "start": 3632.74, + "end": 3633.48, + "probability": 0.9212 + }, + { + "start": 3633.6, + "end": 3635.44, + "probability": 0.989 + }, + { + "start": 3636.12, + "end": 3641.6, + "probability": 0.895 + }, + { + "start": 3641.82, + "end": 3643.74, + "probability": 0.7711 + }, + { + "start": 3644.12, + "end": 3647.72, + "probability": 0.9407 + }, + { + "start": 3647.82, + "end": 3648.84, + "probability": 0.8487 + }, + { + "start": 3649.34, + "end": 3650.84, + "probability": 0.8363 + }, + { + "start": 3651.28, + "end": 3652.86, + "probability": 0.9717 + }, + { + "start": 3652.96, + "end": 3657.7, + "probability": 0.7451 + }, + { + "start": 3658.12, + "end": 3659.74, + "probability": 0.7637 + }, + { + "start": 3660.34, + "end": 3663.4, + "probability": 0.8802 + }, + { + "start": 3663.54, + "end": 3665.62, + "probability": 0.7794 + }, + { + "start": 3665.7, + "end": 3666.04, + "probability": 0.7786 + }, + { + "start": 3666.14, + "end": 3666.5, + "probability": 0.4883 + }, + { + "start": 3666.56, + "end": 3667.1, + "probability": 0.7 + }, + { + "start": 3667.56, + "end": 3670.46, + "probability": 0.7157 + }, + { + "start": 3670.71, + "end": 3673.12, + "probability": 0.9688 + }, + { + "start": 3675.42, + "end": 3675.46, + "probability": 0.0378 + }, + { + "start": 3675.46, + "end": 3675.86, + "probability": 0.0032 + }, + { + "start": 3675.88, + "end": 3677.16, + "probability": 0.8356 + }, + { + "start": 3677.24, + "end": 3680.6, + "probability": 0.7924 + }, + { + "start": 3681.3, + "end": 3684.36, + "probability": 0.9198 + }, + { + "start": 3684.54, + "end": 3687.22, + "probability": 0.9008 + }, + { + "start": 3687.22, + "end": 3687.62, + "probability": 0.5503 + }, + { + "start": 3688.26, + "end": 3690.56, + "probability": 0.8567 + }, + { + "start": 3690.64, + "end": 3692.86, + "probability": 0.9689 + }, + { + "start": 3692.88, + "end": 3695.62, + "probability": 0.7365 + }, + { + "start": 3695.72, + "end": 3698.8, + "probability": 0.9645 + }, + { + "start": 3699.63, + "end": 3702.34, + "probability": 0.0497 + }, + { + "start": 3702.34, + "end": 3703.5, + "probability": 0.4044 + }, + { + "start": 3703.64, + "end": 3704.41, + "probability": 0.6445 + }, + { + "start": 3705.5, + "end": 3710.06, + "probability": 0.7977 + }, + { + "start": 3712.96, + "end": 3714.98, + "probability": 0.5218 + }, + { + "start": 3715.18, + "end": 3718.2, + "probability": 0.9828 + }, + { + "start": 3718.28, + "end": 3722.88, + "probability": 0.861 + }, + { + "start": 3723.28, + "end": 3725.42, + "probability": 0.8125 + }, + { + "start": 3726.36, + "end": 3730.0, + "probability": 0.9966 + }, + { + "start": 3730.84, + "end": 3732.62, + "probability": 0.989 + }, + { + "start": 3732.84, + "end": 3737.82, + "probability": 0.9972 + }, + { + "start": 3738.52, + "end": 3743.62, + "probability": 0.9946 + }, + { + "start": 3744.22, + "end": 3752.38, + "probability": 0.9709 + }, + { + "start": 3753.3, + "end": 3756.3, + "probability": 0.4113 + }, + { + "start": 3758.0, + "end": 3762.62, + "probability": 0.9912 + }, + { + "start": 3763.06, + "end": 3765.44, + "probability": 0.9642 + }, + { + "start": 3765.68, + "end": 3769.16, + "probability": 0.9881 + }, + { + "start": 3769.96, + "end": 3772.96, + "probability": 0.9757 + }, + { + "start": 3773.72, + "end": 3774.93, + "probability": 0.7363 + }, + { + "start": 3775.96, + "end": 3779.24, + "probability": 0.998 + }, + { + "start": 3779.24, + "end": 3783.02, + "probability": 0.9958 + }, + { + "start": 3783.24, + "end": 3786.1, + "probability": 0.989 + }, + { + "start": 3787.06, + "end": 3789.92, + "probability": 0.9605 + }, + { + "start": 3789.98, + "end": 3793.72, + "probability": 0.9515 + }, + { + "start": 3794.6, + "end": 3796.52, + "probability": 0.8674 + }, + { + "start": 3796.7, + "end": 3797.5, + "probability": 0.752 + }, + { + "start": 3797.56, + "end": 3799.5, + "probability": 0.9541 + }, + { + "start": 3800.16, + "end": 3803.94, + "probability": 0.9329 + }, + { + "start": 3804.56, + "end": 3808.2, + "probability": 0.9854 + }, + { + "start": 3808.36, + "end": 3813.82, + "probability": 0.9708 + }, + { + "start": 3814.0, + "end": 3818.64, + "probability": 0.9656 + }, + { + "start": 3818.8, + "end": 3819.6, + "probability": 0.8156 + }, + { + "start": 3819.72, + "end": 3821.84, + "probability": 0.6417 + }, + { + "start": 3822.24, + "end": 3823.12, + "probability": 0.8339 + }, + { + "start": 3823.16, + "end": 3825.18, + "probability": 0.7727 + }, + { + "start": 3825.28, + "end": 3825.28, + "probability": 0.4839 + }, + { + "start": 3826.06, + "end": 3827.28, + "probability": 0.7285 + }, + { + "start": 3828.16, + "end": 3828.79, + "probability": 0.7522 + }, + { + "start": 3829.06, + "end": 3831.77, + "probability": 0.9932 + }, + { + "start": 3832.4, + "end": 3833.1, + "probability": 0.7012 + }, + { + "start": 3833.2, + "end": 3834.24, + "probability": 0.9709 + }, + { + "start": 3834.4, + "end": 3836.94, + "probability": 0.9854 + }, + { + "start": 3837.1, + "end": 3840.6, + "probability": 0.975 + }, + { + "start": 3840.6, + "end": 3843.88, + "probability": 0.9207 + }, + { + "start": 3845.9, + "end": 3847.44, + "probability": 0.4961 + }, + { + "start": 3847.8, + "end": 3849.14, + "probability": 0.5911 + }, + { + "start": 3849.24, + "end": 3849.86, + "probability": 0.8502 + }, + { + "start": 3850.26, + "end": 3850.48, + "probability": 0.5343 + }, + { + "start": 3850.48, + "end": 3851.8, + "probability": 0.7939 + }, + { + "start": 3852.84, + "end": 3854.84, + "probability": 0.5932 + }, + { + "start": 3854.9, + "end": 3856.08, + "probability": 0.8818 + }, + { + "start": 3856.52, + "end": 3859.24, + "probability": 0.7519 + }, + { + "start": 3859.56, + "end": 3861.62, + "probability": 0.756 + }, + { + "start": 3862.3, + "end": 3865.44, + "probability": 0.3719 + }, + { + "start": 3866.12, + "end": 3867.38, + "probability": 0.2333 + }, + { + "start": 3868.34, + "end": 3871.04, + "probability": 0.409 + }, + { + "start": 3871.18, + "end": 3871.54, + "probability": 0.4046 + }, + { + "start": 3871.68, + "end": 3872.2, + "probability": 0.5957 + }, + { + "start": 3873.0, + "end": 3874.72, + "probability": 0.7422 + }, + { + "start": 3874.94, + "end": 3876.74, + "probability": 0.1964 + }, + { + "start": 3876.74, + "end": 3883.6, + "probability": 0.8954 + }, + { + "start": 3884.0, + "end": 3885.28, + "probability": 0.3318 + }, + { + "start": 3885.44, + "end": 3888.32, + "probability": 0.8099 + }, + { + "start": 3888.54, + "end": 3890.08, + "probability": 0.4189 + }, + { + "start": 3890.08, + "end": 3890.66, + "probability": 0.3753 + }, + { + "start": 3890.78, + "end": 3891.35, + "probability": 0.482 + }, + { + "start": 3891.78, + "end": 3895.37, + "probability": 0.9355 + }, + { + "start": 3896.08, + "end": 3898.32, + "probability": 0.8784 + }, + { + "start": 3899.26, + "end": 3906.72, + "probability": 0.6014 + }, + { + "start": 3906.78, + "end": 3907.86, + "probability": 0.5243 + }, + { + "start": 3908.46, + "end": 3912.42, + "probability": 0.9953 + }, + { + "start": 3912.48, + "end": 3913.08, + "probability": 0.8657 + }, + { + "start": 3917.12, + "end": 3922.54, + "probability": 0.928 + }, + { + "start": 3924.34, + "end": 3926.88, + "probability": 0.7852 + }, + { + "start": 3927.0, + "end": 3928.32, + "probability": 0.6254 + }, + { + "start": 3928.44, + "end": 3928.54, + "probability": 0.6782 + }, + { + "start": 3928.7, + "end": 3929.38, + "probability": 0.7535 + }, + { + "start": 3929.74, + "end": 3931.48, + "probability": 0.5247 + }, + { + "start": 3931.92, + "end": 3932.68, + "probability": 0.507 + }, + { + "start": 3935.36, + "end": 3938.24, + "probability": 0.7589 + }, + { + "start": 3938.88, + "end": 3941.12, + "probability": 0.5253 + }, + { + "start": 3941.22, + "end": 3941.68, + "probability": 0.3763 + }, + { + "start": 3941.8, + "end": 3942.62, + "probability": 0.5459 + }, + { + "start": 3943.16, + "end": 3944.98, + "probability": 0.7652 + }, + { + "start": 3945.72, + "end": 3948.92, + "probability": 0.5068 + }, + { + "start": 3949.68, + "end": 3951.68, + "probability": 0.7957 + }, + { + "start": 3952.54, + "end": 3955.74, + "probability": 0.9899 + }, + { + "start": 3956.32, + "end": 3959.94, + "probability": 0.7531 + }, + { + "start": 3961.4, + "end": 3961.7, + "probability": 0.1424 + }, + { + "start": 3961.7, + "end": 3962.34, + "probability": 0.5143 + }, + { + "start": 3962.64, + "end": 3962.68, + "probability": 0.6528 + }, + { + "start": 3962.86, + "end": 3965.96, + "probability": 0.7638 + }, + { + "start": 3967.28, + "end": 3970.92, + "probability": 0.7883 + }, + { + "start": 3970.92, + "end": 3973.32, + "probability": 0.6501 + }, + { + "start": 3974.84, + "end": 3979.54, + "probability": 0.6658 + }, + { + "start": 3980.0, + "end": 3982.42, + "probability": 0.8208 + }, + { + "start": 3982.64, + "end": 3983.94, + "probability": 0.5283 + }, + { + "start": 3984.5, + "end": 3985.8, + "probability": 0.7003 + }, + { + "start": 3985.96, + "end": 3986.9, + "probability": 0.7622 + }, + { + "start": 3987.08, + "end": 3994.34, + "probability": 0.7913 + }, + { + "start": 3995.52, + "end": 3999.42, + "probability": 0.9233 + }, + { + "start": 4000.5, + "end": 4003.42, + "probability": 0.9456 + }, + { + "start": 4003.42, + "end": 4006.1, + "probability": 0.917 + }, + { + "start": 4007.0, + "end": 4009.88, + "probability": 0.7263 + }, + { + "start": 4010.8, + "end": 4011.18, + "probability": 0.822 + }, + { + "start": 4013.8, + "end": 4016.52, + "probability": 0.5952 + }, + { + "start": 4020.02, + "end": 4023.5, + "probability": 0.9939 + }, + { + "start": 4024.46, + "end": 4028.14, + "probability": 0.8951 + }, + { + "start": 4029.38, + "end": 4034.65, + "probability": 0.9709 + }, + { + "start": 4035.84, + "end": 4038.42, + "probability": 0.9932 + }, + { + "start": 4038.42, + "end": 4041.36, + "probability": 0.9934 + }, + { + "start": 4042.36, + "end": 4047.1, + "probability": 0.7205 + }, + { + "start": 4047.24, + "end": 4047.72, + "probability": 0.4867 + }, + { + "start": 4048.98, + "end": 4053.88, + "probability": 0.8611 + }, + { + "start": 4053.88, + "end": 4057.94, + "probability": 0.9864 + }, + { + "start": 4059.04, + "end": 4062.28, + "probability": 0.9837 + }, + { + "start": 4063.5, + "end": 4065.44, + "probability": 0.6748 + }, + { + "start": 4065.64, + "end": 4071.66, + "probability": 0.9733 + }, + { + "start": 4072.56, + "end": 4076.12, + "probability": 0.9689 + }, + { + "start": 4077.12, + "end": 4078.56, + "probability": 0.6372 + }, + { + "start": 4078.66, + "end": 4082.84, + "probability": 0.8819 + }, + { + "start": 4084.0, + "end": 4086.36, + "probability": 0.9285 + }, + { + "start": 4087.18, + "end": 4088.22, + "probability": 0.7299 + }, + { + "start": 4088.58, + "end": 4094.46, + "probability": 0.9749 + }, + { + "start": 4095.5, + "end": 4098.94, + "probability": 0.5835 + }, + { + "start": 4100.7, + "end": 4105.0, + "probability": 0.8458 + }, + { + "start": 4107.84, + "end": 4108.34, + "probability": 0.4457 + }, + { + "start": 4108.44, + "end": 4109.82, + "probability": 0.954 + }, + { + "start": 4110.06, + "end": 4114.88, + "probability": 0.995 + }, + { + "start": 4116.22, + "end": 4117.36, + "probability": 0.9065 + }, + { + "start": 4117.46, + "end": 4120.74, + "probability": 0.9936 + }, + { + "start": 4120.74, + "end": 4123.4, + "probability": 0.9917 + }, + { + "start": 4123.92, + "end": 4125.9, + "probability": 0.8053 + }, + { + "start": 4126.66, + "end": 4128.94, + "probability": 0.9155 + }, + { + "start": 4129.88, + "end": 4134.56, + "probability": 0.7683 + }, + { + "start": 4135.76, + "end": 4140.8, + "probability": 0.9823 + }, + { + "start": 4140.8, + "end": 4146.44, + "probability": 0.9795 + }, + { + "start": 4148.2, + "end": 4152.62, + "probability": 0.6397 + }, + { + "start": 4153.6, + "end": 4156.44, + "probability": 0.9621 + }, + { + "start": 4156.64, + "end": 4157.88, + "probability": 0.8297 + }, + { + "start": 4159.1, + "end": 4163.16, + "probability": 0.9914 + }, + { + "start": 4163.16, + "end": 4167.8, + "probability": 0.8371 + }, + { + "start": 4168.34, + "end": 4171.18, + "probability": 0.7317 + }, + { + "start": 4172.48, + "end": 4172.48, + "probability": 0.0648 + }, + { + "start": 4172.52, + "end": 4176.34, + "probability": 0.9966 + }, + { + "start": 4177.26, + "end": 4182.72, + "probability": 0.8586 + }, + { + "start": 4182.98, + "end": 4185.14, + "probability": 0.8989 + }, + { + "start": 4185.26, + "end": 4187.44, + "probability": 0.8978 + }, + { + "start": 4190.96, + "end": 4192.6, + "probability": 0.6477 + }, + { + "start": 4192.76, + "end": 4194.52, + "probability": 0.7503 + }, + { + "start": 4194.68, + "end": 4196.0, + "probability": 0.819 + }, + { + "start": 4196.34, + "end": 4196.5, + "probability": 0.8958 + }, + { + "start": 4197.02, + "end": 4198.4, + "probability": 0.8982 + }, + { + "start": 4198.82, + "end": 4202.36, + "probability": 0.5267 + }, + { + "start": 4202.38, + "end": 4203.44, + "probability": 0.9075 + }, + { + "start": 4203.58, + "end": 4203.98, + "probability": 0.9949 + }, + { + "start": 4204.04, + "end": 4206.42, + "probability": 0.9117 + }, + { + "start": 4206.48, + "end": 4207.68, + "probability": 0.6541 + }, + { + "start": 4207.7, + "end": 4208.74, + "probability": 0.7322 + }, + { + "start": 4211.14, + "end": 4213.38, + "probability": 0.8488 + }, + { + "start": 4214.42, + "end": 4217.62, + "probability": 0.8785 + }, + { + "start": 4217.9, + "end": 4220.04, + "probability": 0.9774 + }, + { + "start": 4224.22, + "end": 4227.04, + "probability": 0.7204 + }, + { + "start": 4228.24, + "end": 4228.88, + "probability": 0.9595 + }, + { + "start": 4229.18, + "end": 4232.74, + "probability": 0.7602 + }, + { + "start": 4232.8, + "end": 4233.66, + "probability": 0.9885 + }, + { + "start": 4235.14, + "end": 4235.14, + "probability": 0.173 + }, + { + "start": 4235.14, + "end": 4235.14, + "probability": 0.3289 + }, + { + "start": 4235.14, + "end": 4235.14, + "probability": 0.1304 + }, + { + "start": 4235.14, + "end": 4236.86, + "probability": 0.4124 + }, + { + "start": 4236.86, + "end": 4238.84, + "probability": 0.3728 + }, + { + "start": 4239.0, + "end": 4240.7, + "probability": 0.223 + }, + { + "start": 4241.1, + "end": 4242.84, + "probability": 0.9827 + }, + { + "start": 4243.35, + "end": 4246.52, + "probability": 0.9177 + }, + { + "start": 4247.3, + "end": 4250.4, + "probability": 0.1435 + }, + { + "start": 4250.86, + "end": 4253.84, + "probability": 0.9867 + }, + { + "start": 4254.52, + "end": 4256.4, + "probability": 0.9548 + }, + { + "start": 4265.56, + "end": 4267.48, + "probability": 0.5108 + }, + { + "start": 4268.8, + "end": 4269.5, + "probability": 0.8244 + }, + { + "start": 4269.6, + "end": 4270.4, + "probability": 0.6508 + }, + { + "start": 4270.64, + "end": 4273.38, + "probability": 0.7768 + }, + { + "start": 4273.62, + "end": 4275.26, + "probability": 0.8085 + }, + { + "start": 4276.04, + "end": 4279.68, + "probability": 0.9683 + }, + { + "start": 4279.76, + "end": 4286.06, + "probability": 0.992 + }, + { + "start": 4286.06, + "end": 4290.52, + "probability": 0.8859 + }, + { + "start": 4290.76, + "end": 4291.72, + "probability": 0.9951 + }, + { + "start": 4291.8, + "end": 4292.67, + "probability": 0.9299 + }, + { + "start": 4293.26, + "end": 4293.94, + "probability": 0.2548 + }, + { + "start": 4294.54, + "end": 4296.26, + "probability": 0.0789 + }, + { + "start": 4297.22, + "end": 4300.92, + "probability": 0.9561 + }, + { + "start": 4302.64, + "end": 4307.88, + "probability": 0.9952 + }, + { + "start": 4308.72, + "end": 4310.72, + "probability": 0.8687 + }, + { + "start": 4311.4, + "end": 4312.62, + "probability": 0.8575 + }, + { + "start": 4313.3, + "end": 4314.3, + "probability": 0.6915 + }, + { + "start": 4314.84, + "end": 4316.5, + "probability": 0.9619 + }, + { + "start": 4317.4, + "end": 4318.4, + "probability": 0.9452 + }, + { + "start": 4319.68, + "end": 4320.54, + "probability": 0.9372 + }, + { + "start": 4320.58, + "end": 4322.34, + "probability": 0.9344 + }, + { + "start": 4322.84, + "end": 4324.78, + "probability": 0.9369 + }, + { + "start": 4325.58, + "end": 4329.08, + "probability": 0.7816 + }, + { + "start": 4330.68, + "end": 4333.02, + "probability": 0.9819 + }, + { + "start": 4333.88, + "end": 4335.7, + "probability": 0.9137 + }, + { + "start": 4336.42, + "end": 4338.1, + "probability": 0.9819 + }, + { + "start": 4338.62, + "end": 4340.98, + "probability": 0.9868 + }, + { + "start": 4342.18, + "end": 4342.58, + "probability": 0.8544 + }, + { + "start": 4343.24, + "end": 4343.34, + "probability": 0.9385 + }, + { + "start": 4344.54, + "end": 4345.88, + "probability": 0.6888 + }, + { + "start": 4346.42, + "end": 4348.2, + "probability": 0.5609 + }, + { + "start": 4349.66, + "end": 4351.26, + "probability": 0.9421 + }, + { + "start": 4351.64, + "end": 4353.07, + "probability": 0.9482 + }, + { + "start": 4353.98, + "end": 4355.56, + "probability": 0.9932 + }, + { + "start": 4355.76, + "end": 4358.2, + "probability": 0.7098 + }, + { + "start": 4358.86, + "end": 4361.8, + "probability": 0.7748 + }, + { + "start": 4362.38, + "end": 4363.48, + "probability": 0.78 + }, + { + "start": 4364.44, + "end": 4368.56, + "probability": 0.98 + }, + { + "start": 4370.24, + "end": 4370.94, + "probability": 0.8557 + }, + { + "start": 4371.04, + "end": 4372.0, + "probability": 0.9377 + }, + { + "start": 4372.5, + "end": 4372.82, + "probability": 0.929 + }, + { + "start": 4372.92, + "end": 4373.54, + "probability": 0.8525 + }, + { + "start": 4373.62, + "end": 4374.34, + "probability": 0.6297 + }, + { + "start": 4374.54, + "end": 4374.86, + "probability": 0.5912 + }, + { + "start": 4374.92, + "end": 4380.9, + "probability": 0.9949 + }, + { + "start": 4380.9, + "end": 4384.36, + "probability": 0.9937 + }, + { + "start": 4384.8, + "end": 4387.26, + "probability": 0.9651 + }, + { + "start": 4387.8, + "end": 4388.5, + "probability": 0.9777 + }, + { + "start": 4389.52, + "end": 4395.28, + "probability": 0.989 + }, + { + "start": 4395.44, + "end": 4399.04, + "probability": 0.9976 + }, + { + "start": 4399.04, + "end": 4403.4, + "probability": 0.9982 + }, + { + "start": 4404.3, + "end": 4409.86, + "probability": 0.8857 + }, + { + "start": 4411.16, + "end": 4411.16, + "probability": 0.2861 + }, + { + "start": 4411.16, + "end": 4411.58, + "probability": 0.6493 + }, + { + "start": 4412.72, + "end": 4414.04, + "probability": 0.5869 + }, + { + "start": 4415.88, + "end": 4417.46, + "probability": 0.9197 + }, + { + "start": 4418.84, + "end": 4421.68, + "probability": 0.9915 + }, + { + "start": 4421.9, + "end": 4422.16, + "probability": 0.1028 + }, + { + "start": 4422.16, + "end": 4422.34, + "probability": 0.547 + }, + { + "start": 4422.44, + "end": 4422.94, + "probability": 0.6189 + }, + { + "start": 4423.92, + "end": 4424.48, + "probability": 0.6597 + }, + { + "start": 4426.04, + "end": 4428.88, + "probability": 0.9971 + }, + { + "start": 4430.22, + "end": 4433.12, + "probability": 0.8797 + }, + { + "start": 4433.84, + "end": 4438.77, + "probability": 0.9878 + }, + { + "start": 4439.44, + "end": 4440.74, + "probability": 0.825 + }, + { + "start": 4440.98, + "end": 4442.5, + "probability": 0.8596 + }, + { + "start": 4442.6, + "end": 4443.36, + "probability": 0.2688 + }, + { + "start": 4443.48, + "end": 4445.44, + "probability": 0.8636 + }, + { + "start": 4446.1, + "end": 4447.76, + "probability": 0.979 + }, + { + "start": 4448.48, + "end": 4453.2, + "probability": 0.9993 + }, + { + "start": 4454.04, + "end": 4456.04, + "probability": 0.8787 + }, + { + "start": 4456.82, + "end": 4458.88, + "probability": 0.7292 + }, + { + "start": 4459.52, + "end": 4460.62, + "probability": 0.8901 + }, + { + "start": 4462.22, + "end": 4463.24, + "probability": 0.77 + }, + { + "start": 4463.24, + "end": 4464.26, + "probability": 0.6205 + }, + { + "start": 4464.46, + "end": 4465.46, + "probability": 0.6052 + }, + { + "start": 4465.94, + "end": 4467.98, + "probability": 0.9067 + }, + { + "start": 4469.62, + "end": 4470.96, + "probability": 0.6707 + }, + { + "start": 4471.14, + "end": 4471.9, + "probability": 0.8906 + }, + { + "start": 4472.06, + "end": 4473.82, + "probability": 0.6314 + }, + { + "start": 4474.06, + "end": 4474.82, + "probability": 0.5665 + }, + { + "start": 4474.96, + "end": 4475.64, + "probability": 0.4406 + }, + { + "start": 4475.8, + "end": 4476.22, + "probability": 0.9091 + }, + { + "start": 4476.5, + "end": 4477.98, + "probability": 0.2519 + }, + { + "start": 4477.98, + "end": 4482.26, + "probability": 0.5743 + }, + { + "start": 4482.26, + "end": 4486.0, + "probability": 0.9317 + }, + { + "start": 4486.24, + "end": 4487.88, + "probability": 0.9392 + }, + { + "start": 4488.88, + "end": 4491.88, + "probability": 0.9419 + }, + { + "start": 4492.52, + "end": 4494.66, + "probability": 0.797 + }, + { + "start": 4495.04, + "end": 4498.04, + "probability": 0.9392 + }, + { + "start": 4499.26, + "end": 4500.26, + "probability": 0.8008 + }, + { + "start": 4500.9, + "end": 4501.96, + "probability": 0.9768 + }, + { + "start": 4502.1, + "end": 4505.9, + "probability": 0.9449 + }, + { + "start": 4505.98, + "end": 4507.48, + "probability": 0.9468 + }, + { + "start": 4508.4, + "end": 4509.1, + "probability": 0.8566 + }, + { + "start": 4509.62, + "end": 4512.28, + "probability": 0.9447 + }, + { + "start": 4513.16, + "end": 4514.52, + "probability": 0.8945 + }, + { + "start": 4514.96, + "end": 4516.14, + "probability": 0.6733 + }, + { + "start": 4516.34, + "end": 4517.66, + "probability": 0.8805 + }, + { + "start": 4518.2, + "end": 4519.48, + "probability": 0.7891 + }, + { + "start": 4519.54, + "end": 4520.8, + "probability": 0.9646 + }, + { + "start": 4521.08, + "end": 4521.96, + "probability": 0.5921 + }, + { + "start": 4523.2, + "end": 4526.6, + "probability": 0.6374 + }, + { + "start": 4527.52, + "end": 4529.36, + "probability": 0.9868 + }, + { + "start": 4529.64, + "end": 4530.58, + "probability": 0.8362 + }, + { + "start": 4530.76, + "end": 4531.76, + "probability": 0.8581 + }, + { + "start": 4533.81, + "end": 4536.78, + "probability": 0.8416 + }, + { + "start": 4538.82, + "end": 4540.66, + "probability": 0.9855 + }, + { + "start": 4541.3, + "end": 4545.06, + "probability": 0.9248 + }, + { + "start": 4545.58, + "end": 4547.16, + "probability": 0.9622 + }, + { + "start": 4547.8, + "end": 4549.16, + "probability": 0.965 + }, + { + "start": 4549.96, + "end": 4550.96, + "probability": 0.7476 + }, + { + "start": 4551.12, + "end": 4556.38, + "probability": 0.9854 + }, + { + "start": 4556.96, + "end": 4558.4, + "probability": 0.5286 + }, + { + "start": 4559.82, + "end": 4562.7, + "probability": 0.9691 + }, + { + "start": 4563.24, + "end": 4567.72, + "probability": 0.9377 + }, + { + "start": 4568.36, + "end": 4572.54, + "probability": 0.9972 + }, + { + "start": 4573.02, + "end": 4574.08, + "probability": 0.7574 + }, + { + "start": 4575.18, + "end": 4577.06, + "probability": 0.9822 + }, + { + "start": 4577.38, + "end": 4577.88, + "probability": 0.9096 + }, + { + "start": 4578.66, + "end": 4580.84, + "probability": 0.991 + }, + { + "start": 4581.26, + "end": 4586.66, + "probability": 0.8388 + }, + { + "start": 4586.74, + "end": 4587.76, + "probability": 0.6845 + }, + { + "start": 4602.52, + "end": 4603.76, + "probability": 0.3182 + }, + { + "start": 4604.08, + "end": 4605.9, + "probability": 0.7122 + }, + { + "start": 4606.2, + "end": 4606.88, + "probability": 0.8809 + }, + { + "start": 4606.94, + "end": 4607.52, + "probability": 0.3673 + }, + { + "start": 4608.06, + "end": 4608.96, + "probability": 0.7106 + }, + { + "start": 4609.44, + "end": 4611.1, + "probability": 0.0119 + }, + { + "start": 4611.24, + "end": 4613.64, + "probability": 0.7879 + }, + { + "start": 4613.82, + "end": 4614.9, + "probability": 0.8837 + }, + { + "start": 4615.16, + "end": 4616.26, + "probability": 0.264 + }, + { + "start": 4616.38, + "end": 4621.69, + "probability": 0.9805 + }, + { + "start": 4623.82, + "end": 4623.82, + "probability": 0.0108 + }, + { + "start": 4623.9, + "end": 4624.76, + "probability": 0.2608 + }, + { + "start": 4624.88, + "end": 4626.58, + "probability": 0.6005 + }, + { + "start": 4628.68, + "end": 4633.88, + "probability": 0.4477 + }, + { + "start": 4635.5, + "end": 4636.52, + "probability": 0.3539 + }, + { + "start": 4636.52, + "end": 4637.56, + "probability": 0.6888 + }, + { + "start": 4637.82, + "end": 4639.1, + "probability": 0.4857 + }, + { + "start": 4639.16, + "end": 4642.52, + "probability": 0.8992 + }, + { + "start": 4642.88, + "end": 4643.26, + "probability": 0.7863 + }, + { + "start": 4643.42, + "end": 4646.78, + "probability": 0.7556 + }, + { + "start": 4647.2, + "end": 4649.7, + "probability": 0.604 + }, + { + "start": 4649.7, + "end": 4656.46, + "probability": 0.0224 + }, + { + "start": 4657.2, + "end": 4659.64, + "probability": 0.9309 + }, + { + "start": 4660.04, + "end": 4666.12, + "probability": 0.5243 + }, + { + "start": 4671.0, + "end": 4674.06, + "probability": 0.665 + }, + { + "start": 4675.12, + "end": 4676.94, + "probability": 0.7363 + }, + { + "start": 4678.62, + "end": 4679.68, + "probability": 0.7667 + }, + { + "start": 4684.69, + "end": 4687.88, + "probability": 0.9926 + }, + { + "start": 4688.46, + "end": 4691.22, + "probability": 0.7821 + }, + { + "start": 4691.22, + "end": 4697.68, + "probability": 0.7693 + }, + { + "start": 4697.82, + "end": 4698.2, + "probability": 0.8822 + }, + { + "start": 4698.45, + "end": 4701.14, + "probability": 0.8435 + }, + { + "start": 4701.24, + "end": 4703.76, + "probability": 0.8452 + }, + { + "start": 4703.94, + "end": 4706.44, + "probability": 0.8629 + }, + { + "start": 4706.86, + "end": 4709.7, + "probability": 0.9885 + }, + { + "start": 4709.86, + "end": 4710.16, + "probability": 0.1739 + }, + { + "start": 4710.16, + "end": 4710.54, + "probability": 0.6355 + }, + { + "start": 4710.7, + "end": 4712.36, + "probability": 0.9608 + }, + { + "start": 4712.54, + "end": 4712.84, + "probability": 0.3619 + }, + { + "start": 4713.18, + "end": 4714.74, + "probability": 0.9197 + }, + { + "start": 4714.74, + "end": 4715.6, + "probability": 0.8952 + }, + { + "start": 4715.72, + "end": 4718.98, + "probability": 0.6768 + }, + { + "start": 4719.1, + "end": 4722.96, + "probability": 0.944 + }, + { + "start": 4722.96, + "end": 4725.12, + "probability": 0.8085 + }, + { + "start": 4725.54, + "end": 4727.12, + "probability": 0.381 + }, + { + "start": 4727.26, + "end": 4728.44, + "probability": 0.7677 + }, + { + "start": 4728.72, + "end": 4729.32, + "probability": 0.7058 + }, + { + "start": 4729.42, + "end": 4730.06, + "probability": 0.301 + }, + { + "start": 4730.28, + "end": 4731.32, + "probability": 0.4893 + }, + { + "start": 4747.12, + "end": 4753.56, + "probability": 0.2079 + }, + { + "start": 4753.66, + "end": 4755.24, + "probability": 0.6115 + }, + { + "start": 4755.32, + "end": 4756.56, + "probability": 0.39 + }, + { + "start": 4756.82, + "end": 4759.74, + "probability": 0.7404 + }, + { + "start": 4759.9, + "end": 4760.7, + "probability": 0.7242 + }, + { + "start": 4761.94, + "end": 4761.94, + "probability": 0.0376 + }, + { + "start": 4762.56, + "end": 4766.44, + "probability": 0.1195 + }, + { + "start": 4767.3, + "end": 4774.18, + "probability": 0.0498 + }, + { + "start": 4774.18, + "end": 4775.7, + "probability": 0.0466 + }, + { + "start": 4775.7, + "end": 4777.2, + "probability": 0.0594 + }, + { + "start": 4777.66, + "end": 4779.06, + "probability": 0.0487 + }, + { + "start": 4779.38, + "end": 4780.52, + "probability": 0.0655 + }, + { + "start": 4781.66, + "end": 4782.18, + "probability": 0.1391 + }, + { + "start": 4782.18, + "end": 4782.52, + "probability": 0.1807 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.0, + "end": 4829.0, + "probability": 0.0 + }, + { + "start": 4829.14, + "end": 4833.42, + "probability": 0.7102 + }, + { + "start": 4835.66, + "end": 4839.72, + "probability": 0.8818 + }, + { + "start": 4840.58, + "end": 4842.5, + "probability": 0.7125 + }, + { + "start": 4843.82, + "end": 4846.7, + "probability": 0.9849 + }, + { + "start": 4846.8, + "end": 4847.62, + "probability": 0.9182 + }, + { + "start": 4848.4, + "end": 4849.92, + "probability": 0.9173 + }, + { + "start": 4850.24, + "end": 4851.22, + "probability": 0.4 + }, + { + "start": 4851.34, + "end": 4853.9, + "probability": 0.8994 + }, + { + "start": 4857.26, + "end": 4858.7, + "probability": 0.8634 + }, + { + "start": 4859.42, + "end": 4862.06, + "probability": 0.9813 + }, + { + "start": 4862.66, + "end": 4865.04, + "probability": 0.8773 + }, + { + "start": 4865.96, + "end": 4868.58, + "probability": 0.9779 + }, + { + "start": 4871.98, + "end": 4875.22, + "probability": 0.9717 + }, + { + "start": 4875.22, + "end": 4878.06, + "probability": 0.9424 + }, + { + "start": 4880.16, + "end": 4881.54, + "probability": 0.4109 + }, + { + "start": 4881.6, + "end": 4884.98, + "probability": 0.9912 + }, + { + "start": 4885.1, + "end": 4888.74, + "probability": 0.9705 + }, + { + "start": 4890.04, + "end": 4895.44, + "probability": 0.8485 + }, + { + "start": 4897.8, + "end": 4898.64, + "probability": 0.4962 + }, + { + "start": 4898.74, + "end": 4899.14, + "probability": 0.5045 + }, + { + "start": 4899.24, + "end": 4900.38, + "probability": 0.6721 + }, + { + "start": 4900.52, + "end": 4900.74, + "probability": 0.2827 + }, + { + "start": 4904.3, + "end": 4905.42, + "probability": 0.2145 + }, + { + "start": 4905.44, + "end": 4906.64, + "probability": 0.8457 + }, + { + "start": 4910.3, + "end": 4912.7, + "probability": 0.9941 + }, + { + "start": 4913.06, + "end": 4919.86, + "probability": 0.9438 + }, + { + "start": 4920.66, + "end": 4923.56, + "probability": 0.9759 + }, + { + "start": 4924.82, + "end": 4929.24, + "probability": 0.823 + }, + { + "start": 4929.8, + "end": 4931.44, + "probability": 0.9553 + }, + { + "start": 4932.24, + "end": 4932.94, + "probability": 0.8596 + }, + { + "start": 4933.98, + "end": 4935.96, + "probability": 0.9897 + }, + { + "start": 4936.64, + "end": 4938.52, + "probability": 0.9973 + }, + { + "start": 4939.52, + "end": 4943.58, + "probability": 0.9966 + }, + { + "start": 4943.64, + "end": 4947.78, + "probability": 0.9869 + }, + { + "start": 4948.62, + "end": 4956.96, + "probability": 0.9966 + }, + { + "start": 4956.96, + "end": 4963.9, + "probability": 0.9073 + }, + { + "start": 4964.36, + "end": 4968.68, + "probability": 0.9025 + }, + { + "start": 4969.16, + "end": 4972.06, + "probability": 0.9588 + }, + { + "start": 4972.14, + "end": 4973.28, + "probability": 0.8271 + }, + { + "start": 4973.7, + "end": 4974.52, + "probability": 0.3062 + }, + { + "start": 4975.02, + "end": 4977.84, + "probability": 0.7946 + }, + { + "start": 4978.46, + "end": 4982.76, + "probability": 0.9722 + }, + { + "start": 4984.66, + "end": 4986.16, + "probability": 0.6876 + }, + { + "start": 4986.84, + "end": 4987.82, + "probability": 0.9419 + }, + { + "start": 4988.42, + "end": 4991.32, + "probability": 0.967 + }, + { + "start": 4992.28, + "end": 4993.68, + "probability": 0.9969 + }, + { + "start": 4996.04, + "end": 4996.92, + "probability": 0.2848 + }, + { + "start": 5000.36, + "end": 5004.3, + "probability": 0.9477 + }, + { + "start": 5005.2, + "end": 5006.28, + "probability": 0.8917 + }, + { + "start": 5010.56, + "end": 5011.88, + "probability": 0.7424 + }, + { + "start": 5012.14, + "end": 5014.1, + "probability": 0.6824 + }, + { + "start": 5014.22, + "end": 5015.2, + "probability": 0.8697 + }, + { + "start": 5015.4, + "end": 5020.76, + "probability": 0.9946 + }, + { + "start": 5020.86, + "end": 5025.32, + "probability": 0.8001 + }, + { + "start": 5026.34, + "end": 5028.7, + "probability": 0.9893 + }, + { + "start": 5029.22, + "end": 5029.94, + "probability": 0.885 + }, + { + "start": 5030.78, + "end": 5033.8, + "probability": 0.8965 + }, + { + "start": 5034.1, + "end": 5036.44, + "probability": 0.9804 + }, + { + "start": 5037.26, + "end": 5041.88, + "probability": 0.8679 + }, + { + "start": 5044.14, + "end": 5048.12, + "probability": 0.7521 + }, + { + "start": 5049.2, + "end": 5049.2, + "probability": 0.6154 + }, + { + "start": 5049.2, + "end": 5049.3, + "probability": 0.3564 + }, + { + "start": 5049.82, + "end": 5052.16, + "probability": 0.8427 + }, + { + "start": 5053.62, + "end": 5053.94, + "probability": 0.9426 + }, + { + "start": 5054.22, + "end": 5055.92, + "probability": 0.8352 + }, + { + "start": 5059.22, + "end": 5061.58, + "probability": 0.9902 + }, + { + "start": 5062.82, + "end": 5064.16, + "probability": 0.9722 + }, + { + "start": 5065.02, + "end": 5066.08, + "probability": 0.9978 + }, + { + "start": 5067.8, + "end": 5071.16, + "probability": 0.9969 + }, + { + "start": 5071.16, + "end": 5075.28, + "probability": 0.9956 + }, + { + "start": 5076.26, + "end": 5077.4, + "probability": 0.8597 + }, + { + "start": 5078.84, + "end": 5086.12, + "probability": 0.9824 + }, + { + "start": 5086.78, + "end": 5089.38, + "probability": 0.7591 + }, + { + "start": 5089.92, + "end": 5093.3, + "probability": 0.8898 + }, + { + "start": 5093.72, + "end": 5096.79, + "probability": 0.9743 + }, + { + "start": 5097.18, + "end": 5097.72, + "probability": 0.7813 + }, + { + "start": 5098.02, + "end": 5099.96, + "probability": 0.9781 + }, + { + "start": 5100.3, + "end": 5100.44, + "probability": 0.3406 + }, + { + "start": 5100.44, + "end": 5106.7, + "probability": 0.9377 + }, + { + "start": 5106.9, + "end": 5107.16, + "probability": 0.689 + }, + { + "start": 5107.54, + "end": 5109.72, + "probability": 0.9714 + }, + { + "start": 5110.08, + "end": 5114.3, + "probability": 0.7505 + }, + { + "start": 5114.32, + "end": 5115.28, + "probability": 0.8539 + }, + { + "start": 5120.72, + "end": 5124.3, + "probability": 0.8248 + }, + { + "start": 5125.16, + "end": 5125.76, + "probability": 0.8112 + }, + { + "start": 5127.16, + "end": 5128.5, + "probability": 0.7273 + }, + { + "start": 5128.64, + "end": 5129.8, + "probability": 0.6279 + }, + { + "start": 5130.42, + "end": 5131.42, + "probability": 0.9719 + }, + { + "start": 5134.26, + "end": 5136.12, + "probability": 0.8907 + }, + { + "start": 5136.46, + "end": 5136.56, + "probability": 0.4999 + }, + { + "start": 5137.18, + "end": 5137.84, + "probability": 0.9701 + }, + { + "start": 5138.56, + "end": 5139.36, + "probability": 0.5159 + }, + { + "start": 5139.44, + "end": 5140.78, + "probability": 0.9066 + }, + { + "start": 5152.78, + "end": 5153.5, + "probability": 0.3896 + }, + { + "start": 5153.64, + "end": 5155.08, + "probability": 0.9148 + }, + { + "start": 5155.2, + "end": 5159.0, + "probability": 0.9582 + }, + { + "start": 5159.78, + "end": 5162.02, + "probability": 0.9322 + }, + { + "start": 5162.04, + "end": 5167.16, + "probability": 0.8184 + }, + { + "start": 5167.7, + "end": 5168.22, + "probability": 0.7009 + }, + { + "start": 5168.62, + "end": 5169.02, + "probability": 0.8385 + }, + { + "start": 5169.62, + "end": 5170.32, + "probability": 0.9457 + }, + { + "start": 5173.72, + "end": 5175.54, + "probability": 0.647 + }, + { + "start": 5175.64, + "end": 5177.52, + "probability": 0.9183 + }, + { + "start": 5177.52, + "end": 5180.06, + "probability": 0.9409 + }, + { + "start": 5181.72, + "end": 5183.18, + "probability": 0.5708 + }, + { + "start": 5183.44, + "end": 5187.78, + "probability": 0.7039 + }, + { + "start": 5188.34, + "end": 5188.82, + "probability": 0.7905 + }, + { + "start": 5189.5, + "end": 5190.48, + "probability": 0.5966 + }, + { + "start": 5191.7, + "end": 5193.4, + "probability": 0.8135 + }, + { + "start": 5193.4, + "end": 5193.96, + "probability": 0.4409 + }, + { + "start": 5194.32, + "end": 5196.22, + "probability": 0.6523 + }, + { + "start": 5196.5, + "end": 5198.12, + "probability": 0.9019 + }, + { + "start": 5198.82, + "end": 5200.18, + "probability": 0.8933 + }, + { + "start": 5200.68, + "end": 5202.18, + "probability": 0.8658 + }, + { + "start": 5202.84, + "end": 5203.18, + "probability": 0.589 + }, + { + "start": 5203.22, + "end": 5203.86, + "probability": 0.9062 + }, + { + "start": 5204.52, + "end": 5207.96, + "probability": 0.8352 + }, + { + "start": 5208.42, + "end": 5210.02, + "probability": 0.9174 + }, + { + "start": 5210.62, + "end": 5213.1, + "probability": 0.9608 + }, + { + "start": 5226.46, + "end": 5229.96, + "probability": 0.6069 + }, + { + "start": 5231.02, + "end": 5232.06, + "probability": 0.9192 + }, + { + "start": 5233.08, + "end": 5237.82, + "probability": 0.544 + }, + { + "start": 5238.4, + "end": 5238.52, + "probability": 0.0776 + }, + { + "start": 5238.52, + "end": 5239.3, + "probability": 0.7697 + }, + { + "start": 5239.38, + "end": 5241.8, + "probability": 0.8825 + }, + { + "start": 5242.62, + "end": 5248.08, + "probability": 0.6679 + }, + { + "start": 5248.68, + "end": 5249.32, + "probability": 0.7526 + }, + { + "start": 5249.64, + "end": 5254.52, + "probability": 0.9941 + }, + { + "start": 5255.4, + "end": 5255.62, + "probability": 0.5172 + }, + { + "start": 5255.64, + "end": 5256.82, + "probability": 0.8816 + }, + { + "start": 5257.32, + "end": 5257.94, + "probability": 0.8667 + }, + { + "start": 5258.3, + "end": 5259.06, + "probability": 0.939 + }, + { + "start": 5259.14, + "end": 5260.22, + "probability": 0.6175 + }, + { + "start": 5261.28, + "end": 5262.76, + "probability": 0.5142 + }, + { + "start": 5262.94, + "end": 5264.06, + "probability": 0.6221 + }, + { + "start": 5264.3, + "end": 5265.82, + "probability": 0.7823 + }, + { + "start": 5266.28, + "end": 5268.78, + "probability": 0.9692 + }, + { + "start": 5268.88, + "end": 5270.0, + "probability": 0.9087 + }, + { + "start": 5270.78, + "end": 5273.38, + "probability": 0.2885 + }, + { + "start": 5273.54, + "end": 5276.86, + "probability": 0.8553 + }, + { + "start": 5277.24, + "end": 5281.48, + "probability": 0.9871 + }, + { + "start": 5282.82, + "end": 5285.3, + "probability": 0.6925 + }, + { + "start": 5286.24, + "end": 5292.5, + "probability": 0.835 + }, + { + "start": 5293.34, + "end": 5296.12, + "probability": 0.735 + }, + { + "start": 5296.48, + "end": 5299.2, + "probability": 0.8931 + }, + { + "start": 5299.96, + "end": 5302.1, + "probability": 0.4866 + }, + { + "start": 5302.72, + "end": 5304.76, + "probability": 0.8659 + }, + { + "start": 5305.2, + "end": 5306.6, + "probability": 0.9888 + }, + { + "start": 5307.0, + "end": 5308.3, + "probability": 0.7969 + }, + { + "start": 5308.62, + "end": 5311.1, + "probability": 0.998 + }, + { + "start": 5312.36, + "end": 5314.6, + "probability": 0.4604 + }, + { + "start": 5315.18, + "end": 5318.82, + "probability": 0.9689 + }, + { + "start": 5319.0, + "end": 5319.78, + "probability": 0.9589 + }, + { + "start": 5319.86, + "end": 5322.02, + "probability": 0.8901 + }, + { + "start": 5322.48, + "end": 5325.28, + "probability": 0.9346 + }, + { + "start": 5325.78, + "end": 5330.56, + "probability": 0.9705 + }, + { + "start": 5331.04, + "end": 5331.46, + "probability": 0.2878 + }, + { + "start": 5331.48, + "end": 5332.16, + "probability": 0.7981 + }, + { + "start": 5332.58, + "end": 5334.62, + "probability": 0.9752 + }, + { + "start": 5335.18, + "end": 5336.16, + "probability": 0.8739 + }, + { + "start": 5336.24, + "end": 5338.36, + "probability": 0.6714 + }, + { + "start": 5338.8, + "end": 5342.6, + "probability": 0.9796 + }, + { + "start": 5343.12, + "end": 5347.7, + "probability": 0.9075 + }, + { + "start": 5348.0, + "end": 5351.4, + "probability": 0.9925 + }, + { + "start": 5351.98, + "end": 5353.14, + "probability": 0.878 + }, + { + "start": 5353.6, + "end": 5357.14, + "probability": 0.9797 + }, + { + "start": 5357.24, + "end": 5357.88, + "probability": 0.9352 + }, + { + "start": 5358.22, + "end": 5358.88, + "probability": 0.5662 + }, + { + "start": 5359.26, + "end": 5360.72, + "probability": 0.8431 + }, + { + "start": 5360.82, + "end": 5365.88, + "probability": 0.4179 + }, + { + "start": 5366.64, + "end": 5367.85, + "probability": 0.6774 + }, + { + "start": 5368.42, + "end": 5369.74, + "probability": 0.7327 + }, + { + "start": 5370.38, + "end": 5374.92, + "probability": 0.9836 + }, + { + "start": 5375.44, + "end": 5375.94, + "probability": 0.2925 + }, + { + "start": 5376.06, + "end": 5377.32, + "probability": 0.842 + }, + { + "start": 5377.78, + "end": 5379.0, + "probability": 0.8324 + }, + { + "start": 5379.28, + "end": 5380.06, + "probability": 0.6788 + }, + { + "start": 5380.46, + "end": 5382.9, + "probability": 0.7267 + }, + { + "start": 5383.24, + "end": 5383.98, + "probability": 0.6656 + }, + { + "start": 5384.32, + "end": 5386.28, + "probability": 0.9775 + }, + { + "start": 5386.46, + "end": 5393.94, + "probability": 0.8649 + }, + { + "start": 5394.36, + "end": 5396.0, + "probability": 0.8555 + }, + { + "start": 5396.32, + "end": 5397.7, + "probability": 0.58 + }, + { + "start": 5398.06, + "end": 5400.38, + "probability": 0.5896 + }, + { + "start": 5400.6, + "end": 5401.34, + "probability": 0.7003 + }, + { + "start": 5402.14, + "end": 5403.66, + "probability": 0.6017 + }, + { + "start": 5403.76, + "end": 5405.3, + "probability": 0.945 + }, + { + "start": 5406.2, + "end": 5406.9, + "probability": 0.707 + }, + { + "start": 5407.96, + "end": 5411.78, + "probability": 0.9631 + }, + { + "start": 5411.92, + "end": 5413.22, + "probability": 0.6742 + }, + { + "start": 5413.84, + "end": 5415.8, + "probability": 0.6596 + }, + { + "start": 5416.74, + "end": 5417.44, + "probability": 0.7197 + }, + { + "start": 5417.48, + "end": 5418.0, + "probability": 0.7579 + }, + { + "start": 5418.48, + "end": 5419.74, + "probability": 0.7902 + }, + { + "start": 5429.68, + "end": 5429.68, + "probability": 0.1477 + }, + { + "start": 5437.38, + "end": 5439.36, + "probability": 0.0522 + }, + { + "start": 5441.8, + "end": 5445.14, + "probability": 0.7253 + }, + { + "start": 5445.28, + "end": 5446.48, + "probability": 0.6841 + }, + { + "start": 5446.5, + "end": 5447.62, + "probability": 0.3813 + }, + { + "start": 5448.46, + "end": 5451.12, + "probability": 0.8656 + }, + { + "start": 5452.56, + "end": 5453.06, + "probability": 0.0369 + }, + { + "start": 5454.54, + "end": 5455.44, + "probability": 0.0428 + }, + { + "start": 5455.44, + "end": 5456.8, + "probability": 0.0657 + }, + { + "start": 5456.8, + "end": 5458.46, + "probability": 0.2112 + }, + { + "start": 5460.46, + "end": 5462.04, + "probability": 0.1234 + }, + { + "start": 5464.44, + "end": 5464.72, + "probability": 0.0106 + }, + { + "start": 5469.24, + "end": 5470.78, + "probability": 0.0811 + }, + { + "start": 5471.2, + "end": 5472.68, + "probability": 0.0662 + }, + { + "start": 5474.4, + "end": 5478.86, + "probability": 0.0116 + }, + { + "start": 5478.86, + "end": 5481.8, + "probability": 0.0752 + }, + { + "start": 5483.76, + "end": 5485.4, + "probability": 0.0104 + }, + { + "start": 5487.34, + "end": 5488.14, + "probability": 0.1238 + }, + { + "start": 5490.9, + "end": 5495.16, + "probability": 0.4761 + }, + { + "start": 5496.14, + "end": 5496.34, + "probability": 0.0263 + }, + { + "start": 5496.34, + "end": 5497.24, + "probability": 0.0381 + }, + { + "start": 5497.38, + "end": 5497.8, + "probability": 0.0449 + }, + { + "start": 5497.8, + "end": 5497.96, + "probability": 0.239 + }, + { + "start": 5502.0, + "end": 5502.0, + "probability": 0.0 + }, + { + "start": 5502.0, + "end": 5502.0, + "probability": 0.0 + }, + { + "start": 5502.0, + "end": 5502.0, + "probability": 0.0 + }, + { + "start": 5502.0, + "end": 5502.0, + "probability": 0.0 + }, + { + "start": 5503.06, + "end": 5507.78, + "probability": 0.8515 + }, + { + "start": 5507.78, + "end": 5511.28, + "probability": 0.8198 + }, + { + "start": 5513.84, + "end": 5515.79, + "probability": 0.6521 + }, + { + "start": 5516.52, + "end": 5519.14, + "probability": 0.8965 + }, + { + "start": 5520.28, + "end": 5523.47, + "probability": 0.7328 + }, + { + "start": 5525.5, + "end": 5529.3, + "probability": 0.7628 + }, + { + "start": 5530.0, + "end": 5531.5, + "probability": 0.2476 + }, + { + "start": 5532.52, + "end": 5540.8, + "probability": 0.9961 + }, + { + "start": 5540.8, + "end": 5551.34, + "probability": 0.9779 + }, + { + "start": 5552.9, + "end": 5556.6, + "probability": 0.7453 + }, + { + "start": 5557.62, + "end": 5561.2, + "probability": 0.7831 + }, + { + "start": 5561.2, + "end": 5566.18, + "probability": 0.9224 + }, + { + "start": 5566.92, + "end": 5569.76, + "probability": 0.9118 + }, + { + "start": 5571.12, + "end": 5575.98, + "probability": 0.9707 + }, + { + "start": 5575.98, + "end": 5583.58, + "probability": 0.937 + }, + { + "start": 5584.64, + "end": 5589.44, + "probability": 0.935 + }, + { + "start": 5590.88, + "end": 5593.86, + "probability": 0.999 + }, + { + "start": 5594.08, + "end": 5595.62, + "probability": 0.7538 + }, + { + "start": 5596.32, + "end": 5602.04, + "probability": 0.9701 + }, + { + "start": 5603.28, + "end": 5608.4, + "probability": 0.9204 + }, + { + "start": 5609.1, + "end": 5615.54, + "probability": 0.9413 + }, + { + "start": 5624.18, + "end": 5627.34, + "probability": 0.9371 + }, + { + "start": 5627.34, + "end": 5630.98, + "probability": 0.9908 + }, + { + "start": 5631.66, + "end": 5633.52, + "probability": 0.7929 + }, + { + "start": 5633.56, + "end": 5637.04, + "probability": 0.8438 + }, + { + "start": 5637.2, + "end": 5638.72, + "probability": 0.9921 + }, + { + "start": 5640.5, + "end": 5646.58, + "probability": 0.8986 + }, + { + "start": 5647.92, + "end": 5650.18, + "probability": 0.7302 + }, + { + "start": 5651.06, + "end": 5651.98, + "probability": 0.8225 + }, + { + "start": 5652.18, + "end": 5657.66, + "probability": 0.9601 + }, + { + "start": 5658.36, + "end": 5659.28, + "probability": 0.5065 + }, + { + "start": 5659.98, + "end": 5664.7, + "probability": 0.9407 + }, + { + "start": 5665.56, + "end": 5666.78, + "probability": 0.5485 + }, + { + "start": 5668.06, + "end": 5671.06, + "probability": 0.6808 + }, + { + "start": 5671.8, + "end": 5673.4, + "probability": 0.8869 + }, + { + "start": 5675.36, + "end": 5680.93, + "probability": 0.5614 + }, + { + "start": 5683.66, + "end": 5688.78, + "probability": 0.9276 + }, + { + "start": 5691.22, + "end": 5692.82, + "probability": 0.258 + }, + { + "start": 5692.82, + "end": 5693.96, + "probability": 0.4056 + }, + { + "start": 5694.38, + "end": 5699.48, + "probability": 0.8976 + }, + { + "start": 5701.5, + "end": 5702.54, + "probability": 0.1203 + }, + { + "start": 5705.18, + "end": 5709.42, + "probability": 0.9302 + }, + { + "start": 5710.16, + "end": 5713.24, + "probability": 0.9292 + }, + { + "start": 5713.24, + "end": 5719.18, + "probability": 0.8476 + }, + { + "start": 5720.84, + "end": 5722.98, + "probability": 0.7769 + }, + { + "start": 5723.1, + "end": 5723.86, + "probability": 0.5462 + }, + { + "start": 5723.96, + "end": 5725.56, + "probability": 0.0436 + }, + { + "start": 5725.56, + "end": 5725.98, + "probability": 0.1801 + }, + { + "start": 5726.38, + "end": 5727.9, + "probability": 0.8917 + }, + { + "start": 5728.98, + "end": 5730.46, + "probability": 0.594 + }, + { + "start": 5733.5, + "end": 5736.42, + "probability": 0.798 + }, + { + "start": 5736.76, + "end": 5741.54, + "probability": 0.7006 + }, + { + "start": 5741.54, + "end": 5742.6, + "probability": 0.5928 + }, + { + "start": 5752.04, + "end": 5753.76, + "probability": 0.8226 + }, + { + "start": 5761.94, + "end": 5763.38, + "probability": 0.3814 + }, + { + "start": 5765.68, + "end": 5767.28, + "probability": 0.9487 + }, + { + "start": 5769.28, + "end": 5771.82, + "probability": 0.9389 + }, + { + "start": 5773.58, + "end": 5775.44, + "probability": 0.9402 + }, + { + "start": 5777.06, + "end": 5778.92, + "probability": 0.8619 + }, + { + "start": 5780.98, + "end": 5783.54, + "probability": 0.9165 + }, + { + "start": 5785.54, + "end": 5793.2, + "probability": 0.7698 + }, + { + "start": 5794.7, + "end": 5797.54, + "probability": 0.9478 + }, + { + "start": 5799.32, + "end": 5805.54, + "probability": 0.9976 + }, + { + "start": 5807.06, + "end": 5809.1, + "probability": 0.993 + }, + { + "start": 5811.4, + "end": 5814.48, + "probability": 0.9879 + }, + { + "start": 5816.24, + "end": 5816.62, + "probability": 0.7801 + }, + { + "start": 5817.64, + "end": 5823.54, + "probability": 0.8338 + }, + { + "start": 5824.84, + "end": 5827.86, + "probability": 0.9981 + }, + { + "start": 5829.4, + "end": 5831.36, + "probability": 0.9872 + }, + { + "start": 5831.48, + "end": 5832.92, + "probability": 0.9416 + }, + { + "start": 5834.8, + "end": 5836.1, + "probability": 0.1254 + }, + { + "start": 5836.1, + "end": 5837.36, + "probability": 0.9119 + }, + { + "start": 5837.54, + "end": 5839.7, + "probability": 0.5263 + }, + { + "start": 5841.52, + "end": 5841.98, + "probability": 0.6494 + }, + { + "start": 5843.92, + "end": 5844.04, + "probability": 0.2997 + }, + { + "start": 5844.04, + "end": 5845.71, + "probability": 0.7414 + }, + { + "start": 5847.26, + "end": 5848.06, + "probability": 0.1064 + }, + { + "start": 5849.62, + "end": 5854.86, + "probability": 0.127 + }, + { + "start": 5855.6, + "end": 5858.28, + "probability": 0.7751 + }, + { + "start": 5859.34, + "end": 5863.88, + "probability": 0.9941 + }, + { + "start": 5864.08, + "end": 5866.28, + "probability": 0.9196 + }, + { + "start": 5867.0, + "end": 5868.45, + "probability": 0.991 + }, + { + "start": 5869.3, + "end": 5871.54, + "probability": 0.9983 + }, + { + "start": 5871.6, + "end": 5872.37, + "probability": 0.9878 + }, + { + "start": 5872.64, + "end": 5872.99, + "probability": 0.9797 + }, + { + "start": 5874.42, + "end": 5877.86, + "probability": 0.9958 + }, + { + "start": 5878.26, + "end": 5879.92, + "probability": 0.9032 + }, + { + "start": 5880.6, + "end": 5881.38, + "probability": 0.9336 + }, + { + "start": 5881.96, + "end": 5882.96, + "probability": 0.9918 + }, + { + "start": 5884.6, + "end": 5885.24, + "probability": 0.7697 + }, + { + "start": 5886.56, + "end": 5890.89, + "probability": 0.9743 + }, + { + "start": 5892.16, + "end": 5895.52, + "probability": 0.7006 + }, + { + "start": 5896.44, + "end": 5897.44, + "probability": 0.9636 + }, + { + "start": 5898.62, + "end": 5901.32, + "probability": 0.9959 + }, + { + "start": 5902.22, + "end": 5904.64, + "probability": 0.7353 + }, + { + "start": 5906.06, + "end": 5908.92, + "probability": 0.9736 + }, + { + "start": 5909.56, + "end": 5915.68, + "probability": 0.9466 + }, + { + "start": 5917.52, + "end": 5918.08, + "probability": 0.4439 + }, + { + "start": 5919.12, + "end": 5923.84, + "probability": 0.5705 + }, + { + "start": 5924.98, + "end": 5925.91, + "probability": 0.3653 + }, + { + "start": 5926.68, + "end": 5928.12, + "probability": 0.4215 + }, + { + "start": 5928.42, + "end": 5934.92, + "probability": 0.9814 + }, + { + "start": 5935.26, + "end": 5935.36, + "probability": 0.0191 + }, + { + "start": 5937.18, + "end": 5940.6, + "probability": 0.9946 + }, + { + "start": 5941.84, + "end": 5945.98, + "probability": 0.8425 + }, + { + "start": 5948.34, + "end": 5953.12, + "probability": 0.8157 + }, + { + "start": 5953.3, + "end": 5958.98, + "probability": 0.9939 + }, + { + "start": 5959.8, + "end": 5965.5, + "probability": 0.8464 + }, + { + "start": 5966.78, + "end": 5968.28, + "probability": 0.959 + }, + { + "start": 5969.64, + "end": 5970.92, + "probability": 0.8291 + }, + { + "start": 5971.4, + "end": 5974.94, + "probability": 0.9817 + }, + { + "start": 5976.52, + "end": 5979.94, + "probability": 0.943 + }, + { + "start": 5979.94, + "end": 5982.88, + "probability": 0.9915 + }, + { + "start": 5984.08, + "end": 5986.82, + "probability": 0.99 + }, + { + "start": 5988.52, + "end": 5991.68, + "probability": 0.9978 + }, + { + "start": 5992.24, + "end": 5996.12, + "probability": 0.9801 + }, + { + "start": 5996.12, + "end": 6001.1, + "probability": 0.9952 + }, + { + "start": 6002.24, + "end": 6003.68, + "probability": 0.6655 + }, + { + "start": 6004.2, + "end": 6011.82, + "probability": 0.9868 + }, + { + "start": 6014.74, + "end": 6018.72, + "probability": 0.9589 + }, + { + "start": 6018.72, + "end": 6022.44, + "probability": 0.9971 + }, + { + "start": 6023.72, + "end": 6024.84, + "probability": 0.6444 + }, + { + "start": 6025.02, + "end": 6026.18, + "probability": 0.7907 + }, + { + "start": 6026.36, + "end": 6031.66, + "probability": 0.9966 + }, + { + "start": 6032.5, + "end": 6037.24, + "probability": 0.9967 + }, + { + "start": 6037.92, + "end": 6038.18, + "probability": 0.8698 + }, + { + "start": 6038.3, + "end": 6041.28, + "probability": 0.9966 + }, + { + "start": 6041.28, + "end": 6045.02, + "probability": 0.9968 + }, + { + "start": 6046.04, + "end": 6050.14, + "probability": 0.998 + }, + { + "start": 6050.26, + "end": 6054.04, + "probability": 0.9864 + }, + { + "start": 6054.64, + "end": 6056.48, + "probability": 0.8534 + }, + { + "start": 6058.82, + "end": 6060.32, + "probability": 0.5332 + }, + { + "start": 6060.42, + "end": 6063.91, + "probability": 0.9926 + }, + { + "start": 6065.61, + "end": 6071.62, + "probability": 0.9118 + }, + { + "start": 6072.12, + "end": 6073.9, + "probability": 0.9704 + }, + { + "start": 6076.86, + "end": 6080.62, + "probability": 0.9978 + }, + { + "start": 6082.78, + "end": 6082.88, + "probability": 0.1635 + }, + { + "start": 6082.88, + "end": 6084.06, + "probability": 0.4936 + }, + { + "start": 6084.56, + "end": 6085.18, + "probability": 0.429 + }, + { + "start": 6085.54, + "end": 6086.14, + "probability": 0.6666 + }, + { + "start": 6086.52, + "end": 6087.24, + "probability": 0.1111 + }, + { + "start": 6089.14, + "end": 6094.46, + "probability": 0.7834 + }, + { + "start": 6094.58, + "end": 6100.68, + "probability": 0.876 + }, + { + "start": 6102.38, + "end": 6103.12, + "probability": 0.5159 + }, + { + "start": 6103.14, + "end": 6108.1, + "probability": 0.6015 + }, + { + "start": 6135.57, + "end": 6137.98, + "probability": 0.0235 + }, + { + "start": 6137.98, + "end": 6142.32, + "probability": 0.0322 + }, + { + "start": 6142.32, + "end": 6144.76, + "probability": 0.0848 + }, + { + "start": 6145.38, + "end": 6148.78, + "probability": 0.1135 + }, + { + "start": 6149.32, + "end": 6150.88, + "probability": 0.03 + }, + { + "start": 6150.9, + "end": 6151.94, + "probability": 0.2012 + }, + { + "start": 6157.13, + "end": 6158.98, + "probability": 0.0721 + }, + { + "start": 6158.98, + "end": 6160.58, + "probability": 0.0503 + }, + { + "start": 6171.84, + "end": 6173.0, + "probability": 0.0378 + }, + { + "start": 6178.22, + "end": 6183.46, + "probability": 0.0654 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6192.0, + "end": 6192.0, + "probability": 0.0 + }, + { + "start": 6225.43, + "end": 6225.5, + "probability": 0.0267 + }, + { + "start": 6228.18, + "end": 6229.26, + "probability": 0.0763 + }, + { + "start": 6230.3, + "end": 6231.7, + "probability": 0.0063 + }, + { + "start": 6232.28, + "end": 6233.64, + "probability": 0.1598 + }, + { + "start": 6233.64, + "end": 6234.58, + "probability": 0.2817 + }, + { + "start": 6234.58, + "end": 6234.9, + "probability": 0.0366 + }, + { + "start": 6234.9, + "end": 6235.22, + "probability": 0.0273 + }, + { + "start": 6236.23, + "end": 6236.77, + "probability": 0.019 + }, + { + "start": 6243.84, + "end": 6246.5, + "probability": 0.069 + }, + { + "start": 6248.48, + "end": 6250.45, + "probability": 0.0767 + }, + { + "start": 6252.66, + "end": 6252.9, + "probability": 0.0401 + }, + { + "start": 6253.0, + "end": 6254.0, + "probability": 0.0441 + }, + { + "start": 6255.68, + "end": 6256.72, + "probability": 0.4097 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6318.0, + "end": 6318.0, + "probability": 0.0 + }, + { + "start": 6344.44, + "end": 6345.2, + "probability": 0.0283 + }, + { + "start": 6347.62, + "end": 6348.32, + "probability": 0.045 + }, + { + "start": 6349.04, + "end": 6349.84, + "probability": 0.0558 + }, + { + "start": 6349.84, + "end": 6350.56, + "probability": 0.0245 + }, + { + "start": 6353.2, + "end": 6354.72, + "probability": 0.1882 + }, + { + "start": 6355.46, + "end": 6356.88, + "probability": 0.0235 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.0, + "end": 6447.0, + "probability": 0.0 + }, + { + "start": 6447.18, + "end": 6452.04, + "probability": 0.011 + }, + { + "start": 6456.77, + "end": 6457.4, + "probability": 0.033 + }, + { + "start": 6459.94, + "end": 6462.34, + "probability": 0.0436 + }, + { + "start": 6463.06, + "end": 6464.44, + "probability": 0.0326 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.0, + "end": 6573.0, + "probability": 0.0 + }, + { + "start": 6573.46, + "end": 6573.46, + "probability": 0.0654 + }, + { + "start": 6574.3, + "end": 6574.3, + "probability": 0.2074 + }, + { + "start": 6574.64, + "end": 6574.64, + "probability": 0.0356 + }, + { + "start": 6574.64, + "end": 6574.64, + "probability": 0.0803 + }, + { + "start": 6574.64, + "end": 6578.2, + "probability": 0.6781 + }, + { + "start": 6578.2, + "end": 6582.4, + "probability": 0.9723 + }, + { + "start": 6582.6, + "end": 6588.42, + "probability": 0.7304 + }, + { + "start": 6589.08, + "end": 6591.7, + "probability": 0.9456 + }, + { + "start": 6592.48, + "end": 6594.16, + "probability": 0.9266 + }, + { + "start": 6594.28, + "end": 6596.92, + "probability": 0.8955 + }, + { + "start": 6597.12, + "end": 6598.84, + "probability": 0.964 + }, + { + "start": 6599.6, + "end": 6603.24, + "probability": 0.8066 + }, + { + "start": 6604.0, + "end": 6609.48, + "probability": 0.8903 + }, + { + "start": 6609.48, + "end": 6615.6, + "probability": 0.96 + }, + { + "start": 6616.98, + "end": 6621.36, + "probability": 0.9182 + }, + { + "start": 6622.02, + "end": 6626.38, + "probability": 0.9301 + }, + { + "start": 6626.52, + "end": 6626.8, + "probability": 0.7896 + }, + { + "start": 6627.42, + "end": 6628.56, + "probability": 0.603 + }, + { + "start": 6628.68, + "end": 6632.16, + "probability": 0.9909 + }, + { + "start": 6633.68, + "end": 6635.88, + "probability": 0.873 + }, + { + "start": 6636.06, + "end": 6637.36, + "probability": 0.9427 + }, + { + "start": 6637.74, + "end": 6638.66, + "probability": 0.867 + }, + { + "start": 6638.66, + "end": 6640.4, + "probability": 0.8914 + }, + { + "start": 6640.86, + "end": 6642.06, + "probability": 0.9205 + }, + { + "start": 6642.5, + "end": 6646.16, + "probability": 0.9896 + }, + { + "start": 6646.26, + "end": 6648.77, + "probability": 0.9914 + }, + { + "start": 6649.42, + "end": 6650.02, + "probability": 0.8867 + }, + { + "start": 6651.08, + "end": 6653.02, + "probability": 0.9183 + }, + { + "start": 6653.24, + "end": 6657.24, + "probability": 0.8733 + }, + { + "start": 6657.28, + "end": 6658.16, + "probability": 0.7784 + }, + { + "start": 6675.11, + "end": 6675.46, + "probability": 0.7482 + }, + { + "start": 6679.94, + "end": 6679.94, + "probability": 0.6973 + }, + { + "start": 6679.94, + "end": 6680.58, + "probability": 0.0746 + }, + { + "start": 6682.0, + "end": 6682.24, + "probability": 0.0993 + }, + { + "start": 6682.24, + "end": 6683.9, + "probability": 0.1631 + }, + { + "start": 6684.36, + "end": 6685.02, + "probability": 0.07 + }, + { + "start": 6706.3, + "end": 6709.16, + "probability": 0.8983 + }, + { + "start": 6709.48, + "end": 6711.1, + "probability": 0.7392 + }, + { + "start": 6711.16, + "end": 6711.58, + "probability": 0.898 + }, + { + "start": 6712.62, + "end": 6713.84, + "probability": 0.6455 + }, + { + "start": 6714.92, + "end": 6715.6, + "probability": 0.8759 + }, + { + "start": 6716.54, + "end": 6717.04, + "probability": 0.7298 + }, + { + "start": 6719.5, + "end": 6720.86, + "probability": 0.8167 + }, + { + "start": 6721.82, + "end": 6722.64, + "probability": 0.8971 + }, + { + "start": 6727.02, + "end": 6730.04, + "probability": 0.6553 + }, + { + "start": 6730.18, + "end": 6732.16, + "probability": 0.5011 + }, + { + "start": 6732.24, + "end": 6733.52, + "probability": 0.8094 + }, + { + "start": 6734.28, + "end": 6734.98, + "probability": 0.5752 + }, + { + "start": 6736.6, + "end": 6737.32, + "probability": 0.5037 + }, + { + "start": 6737.64, + "end": 6739.04, + "probability": 0.4289 + }, + { + "start": 6739.04, + "end": 6741.28, + "probability": 0.8228 + }, + { + "start": 6742.26, + "end": 6743.24, + "probability": 0.2758 + }, + { + "start": 6743.3, + "end": 6744.92, + "probability": 0.483 + }, + { + "start": 6745.2, + "end": 6747.36, + "probability": 0.4422 + }, + { + "start": 6748.4, + "end": 6748.58, + "probability": 0.0161 + }, + { + "start": 6748.58, + "end": 6750.16, + "probability": 0.4946 + }, + { + "start": 6751.42, + "end": 6753.6, + "probability": 0.8499 + }, + { + "start": 6754.16, + "end": 6754.86, + "probability": 0.4672 + }, + { + "start": 6755.18, + "end": 6756.12, + "probability": 0.3797 + }, + { + "start": 6756.2, + "end": 6760.58, + "probability": 0.9502 + }, + { + "start": 6762.1, + "end": 6762.78, + "probability": 0.8556 + }, + { + "start": 6763.02, + "end": 6764.4, + "probability": 0.385 + }, + { + "start": 6764.62, + "end": 6765.68, + "probability": 0.5142 + }, + { + "start": 6765.68, + "end": 6766.22, + "probability": 0.5583 + }, + { + "start": 6767.44, + "end": 6767.6, + "probability": 0.0049 + }, + { + "start": 6767.6, + "end": 6770.96, + "probability": 0.7392 + }, + { + "start": 6771.06, + "end": 6773.1, + "probability": 0.9596 + }, + { + "start": 6773.18, + "end": 6773.76, + "probability": 0.9385 + }, + { + "start": 6775.12, + "end": 6776.3, + "probability": 0.9082 + }, + { + "start": 6776.4, + "end": 6776.74, + "probability": 0.5337 + }, + { + "start": 6776.84, + "end": 6777.62, + "probability": 0.6995 + }, + { + "start": 6777.7, + "end": 6779.14, + "probability": 0.7063 + }, + { + "start": 6779.38, + "end": 6779.76, + "probability": 0.5279 + }, + { + "start": 6779.86, + "end": 6784.6, + "probability": 0.6756 + }, + { + "start": 6786.7, + "end": 6790.78, + "probability": 0.1835 + }, + { + "start": 6791.1, + "end": 6792.52, + "probability": 0.3289 + }, + { + "start": 6792.66, + "end": 6796.76, + "probability": 0.1666 + }, + { + "start": 6799.8, + "end": 6800.22, + "probability": 0.3641 + }, + { + "start": 6800.36, + "end": 6800.78, + "probability": 0.3974 + }, + { + "start": 6800.92, + "end": 6801.62, + "probability": 0.664 + }, + { + "start": 6801.7, + "end": 6802.3, + "probability": 0.8295 + }, + { + "start": 6803.02, + "end": 6803.78, + "probability": 0.433 + }, + { + "start": 6805.61, + "end": 6808.78, + "probability": 0.667 + }, + { + "start": 6808.98, + "end": 6809.94, + "probability": 0.1279 + }, + { + "start": 6810.87, + "end": 6816.22, + "probability": 0.3398 + }, + { + "start": 6817.02, + "end": 6817.78, + "probability": 0.0409 + }, + { + "start": 6817.78, + "end": 6820.62, + "probability": 0.4316 + }, + { + "start": 6823.64, + "end": 6829.26, + "probability": 0.4642 + }, + { + "start": 6829.4, + "end": 6831.36, + "probability": 0.1609 + }, + { + "start": 6832.56, + "end": 6833.72, + "probability": 0.4904 + }, + { + "start": 6833.74, + "end": 6836.89, + "probability": 0.3751 + }, + { + "start": 6837.32, + "end": 6838.16, + "probability": 0.5782 + }, + { + "start": 6838.58, + "end": 6841.48, + "probability": 0.4217 + }, + { + "start": 6842.18, + "end": 6844.38, + "probability": 0.6935 + }, + { + "start": 6845.57, + "end": 6846.54, + "probability": 0.3035 + }, + { + "start": 6846.54, + "end": 6848.92, + "probability": 0.9642 + }, + { + "start": 6849.7, + "end": 6851.13, + "probability": 0.4708 + }, + { + "start": 6851.2, + "end": 6853.28, + "probability": 0.1754 + }, + { + "start": 6853.58, + "end": 6854.29, + "probability": 0.8628 + }, + { + "start": 6854.82, + "end": 6855.4, + "probability": 0.7674 + }, + { + "start": 6855.62, + "end": 6856.08, + "probability": 0.1717 + }, + { + "start": 6856.08, + "end": 6856.08, + "probability": 0.3317 + }, + { + "start": 6856.08, + "end": 6856.08, + "probability": 0.6453 + }, + { + "start": 6856.08, + "end": 6856.64, + "probability": 0.4851 + }, + { + "start": 6856.78, + "end": 6860.86, + "probability": 0.9121 + }, + { + "start": 6861.14, + "end": 6861.72, + "probability": 0.6482 + }, + { + "start": 6861.8, + "end": 6863.2, + "probability": 0.9222 + }, + { + "start": 6864.1, + "end": 6865.57, + "probability": 0.2764 + }, + { + "start": 6865.64, + "end": 6868.02, + "probability": 0.7823 + }, + { + "start": 6868.6, + "end": 6870.62, + "probability": 0.6043 + }, + { + "start": 6874.22, + "end": 6875.45, + "probability": 0.9363 + }, + { + "start": 6876.28, + "end": 6876.74, + "probability": 0.8512 + }, + { + "start": 6877.28, + "end": 6877.77, + "probability": 0.6635 + }, + { + "start": 6880.84, + "end": 6882.06, + "probability": 0.5289 + }, + { + "start": 6883.62, + "end": 6886.24, + "probability": 0.789 + }, + { + "start": 6886.24, + "end": 6890.18, + "probability": 0.9803 + }, + { + "start": 6892.26, + "end": 6894.14, + "probability": 0.9354 + }, + { + "start": 6894.14, + "end": 6896.06, + "probability": 0.5497 + }, + { + "start": 6896.18, + "end": 6898.96, + "probability": 0.0896 + }, + { + "start": 6899.76, + "end": 6903.26, + "probability": 0.911 + }, + { + "start": 6903.68, + "end": 6904.66, + "probability": 0.7903 + }, + { + "start": 6905.46, + "end": 6907.14, + "probability": 0.9731 + }, + { + "start": 6908.48, + "end": 6908.98, + "probability": 0.6912 + }, + { + "start": 6910.22, + "end": 6913.44, + "probability": 0.8536 + }, + { + "start": 6913.58, + "end": 6916.7, + "probability": 0.686 + }, + { + "start": 6916.86, + "end": 6919.5, + "probability": 0.9161 + }, + { + "start": 6920.56, + "end": 6922.94, + "probability": 0.9181 + }, + { + "start": 6922.94, + "end": 6925.6, + "probability": 0.7706 + }, + { + "start": 6927.48, + "end": 6930.32, + "probability": 0.8252 + }, + { + "start": 6930.36, + "end": 6933.22, + "probability": 0.6906 + }, + { + "start": 6933.4, + "end": 6936.96, + "probability": 0.8036 + }, + { + "start": 6936.96, + "end": 6941.7, + "probability": 0.7397 + }, + { + "start": 6942.72, + "end": 6943.9, + "probability": 0.3285 + }, + { + "start": 6944.8, + "end": 6947.08, + "probability": 0.9875 + }, + { + "start": 6947.24, + "end": 6950.78, + "probability": 0.96 + }, + { + "start": 6962.74, + "end": 6965.62, + "probability": 0.5532 + }, + { + "start": 6965.8, + "end": 6968.77, + "probability": 0.4358 + }, + { + "start": 6970.1, + "end": 6973.62, + "probability": 0.9704 + }, + { + "start": 6973.62, + "end": 6980.02, + "probability": 0.8041 + }, + { + "start": 6981.18, + "end": 6985.4, + "probability": 0.952 + }, + { + "start": 6985.4, + "end": 6988.68, + "probability": 0.7509 + }, + { + "start": 6989.32, + "end": 6989.94, + "probability": 0.487 + }, + { + "start": 6990.06, + "end": 6993.12, + "probability": 0.9912 + }, + { + "start": 6994.04, + "end": 6996.28, + "probability": 0.9378 + }, + { + "start": 6996.34, + "end": 6999.44, + "probability": 0.9358 + }, + { + "start": 6999.44, + "end": 7002.7, + "probability": 0.8713 + }, + { + "start": 7010.2, + "end": 7010.92, + "probability": 0.6604 + }, + { + "start": 7011.04, + "end": 7015.06, + "probability": 0.6486 + }, + { + "start": 7015.12, + "end": 7019.34, + "probability": 0.854 + }, + { + "start": 7019.34, + "end": 7021.42, + "probability": 0.6806 + }, + { + "start": 7022.58, + "end": 7024.58, + "probability": 0.7991 + }, + { + "start": 7025.74, + "end": 7027.42, + "probability": 0.9697 + }, + { + "start": 7027.42, + "end": 7029.88, + "probability": 0.9233 + }, + { + "start": 7030.32, + "end": 7033.04, + "probability": 0.984 + }, + { + "start": 7033.72, + "end": 7033.88, + "probability": 0.2769 + }, + { + "start": 7033.92, + "end": 7034.18, + "probability": 0.4848 + }, + { + "start": 7034.26, + "end": 7036.1, + "probability": 0.6958 + }, + { + "start": 7036.2, + "end": 7039.44, + "probability": 0.7632 + }, + { + "start": 7039.44, + "end": 7041.74, + "probability": 0.7051 + }, + { + "start": 7041.78, + "end": 7042.84, + "probability": 0.8258 + }, + { + "start": 7044.08, + "end": 7046.04, + "probability": 0.5598 + }, + { + "start": 7046.04, + "end": 7048.12, + "probability": 0.5811 + }, + { + "start": 7048.2, + "end": 7049.68, + "probability": 0.8867 + }, + { + "start": 7051.36, + "end": 7051.62, + "probability": 0.055 + }, + { + "start": 7051.74, + "end": 7054.48, + "probability": 0.6467 + }, + { + "start": 7054.62, + "end": 7055.5, + "probability": 0.803 + }, + { + "start": 7055.86, + "end": 7056.9, + "probability": 0.9092 + }, + { + "start": 7057.28, + "end": 7058.9, + "probability": 0.6321 + }, + { + "start": 7059.36, + "end": 7060.76, + "probability": 0.994 + }, + { + "start": 7060.76, + "end": 7061.58, + "probability": 0.3124 + }, + { + "start": 7062.84, + "end": 7066.74, + "probability": 0.9844 + }, + { + "start": 7067.18, + "end": 7073.96, + "probability": 0.4297 + }, + { + "start": 7074.28, + "end": 7074.74, + "probability": 0.7453 + }, + { + "start": 7075.02, + "end": 7076.76, + "probability": 0.5225 + }, + { + "start": 7077.3, + "end": 7079.08, + "probability": 0.6175 + }, + { + "start": 7079.24, + "end": 7081.72, + "probability": 0.8401 + }, + { + "start": 7082.34, + "end": 7083.3, + "probability": 0.3979 + }, + { + "start": 7084.16, + "end": 7086.4, + "probability": 0.9427 + }, + { + "start": 7087.12, + "end": 7089.08, + "probability": 0.6817 + }, + { + "start": 7089.14, + "end": 7092.34, + "probability": 0.8667 + }, + { + "start": 7095.12, + "end": 7097.89, + "probability": 0.9299 + }, + { + "start": 7098.16, + "end": 7102.3, + "probability": 0.9902 + }, + { + "start": 7102.62, + "end": 7108.26, + "probability": 0.9836 + }, + { + "start": 7108.26, + "end": 7109.38, + "probability": 0.6493 + }, + { + "start": 7109.82, + "end": 7111.24, + "probability": 0.5842 + }, + { + "start": 7111.48, + "end": 7115.54, + "probability": 0.9484 + }, + { + "start": 7115.8, + "end": 7115.96, + "probability": 0.4269 + }, + { + "start": 7116.1, + "end": 7116.34, + "probability": 0.8298 + }, + { + "start": 7116.36, + "end": 7117.8, + "probability": 0.9058 + }, + { + "start": 7118.44, + "end": 7119.64, + "probability": 0.9093 + }, + { + "start": 7119.76, + "end": 7120.64, + "probability": 0.964 + }, + { + "start": 7120.78, + "end": 7123.42, + "probability": 0.9939 + }, + { + "start": 7124.12, + "end": 7126.76, + "probability": 0.9937 + }, + { + "start": 7127.08, + "end": 7131.08, + "probability": 0.9634 + }, + { + "start": 7131.24, + "end": 7134.7, + "probability": 0.8886 + }, + { + "start": 7134.7, + "end": 7138.92, + "probability": 0.9928 + }, + { + "start": 7139.6, + "end": 7142.2, + "probability": 0.4485 + }, + { + "start": 7142.56, + "end": 7145.86, + "probability": 0.9745 + }, + { + "start": 7146.36, + "end": 7147.24, + "probability": 0.2189 + }, + { + "start": 7147.4, + "end": 7148.12, + "probability": 0.5193 + }, + { + "start": 7148.26, + "end": 7150.06, + "probability": 0.9897 + }, + { + "start": 7150.24, + "end": 7154.82, + "probability": 0.9958 + }, + { + "start": 7155.54, + "end": 7160.11, + "probability": 0.9952 + }, + { + "start": 7160.5, + "end": 7163.86, + "probability": 0.9902 + }, + { + "start": 7163.96, + "end": 7166.18, + "probability": 0.9494 + }, + { + "start": 7166.6, + "end": 7167.44, + "probability": 0.7477 + }, + { + "start": 7167.84, + "end": 7170.68, + "probability": 0.9486 + }, + { + "start": 7170.9, + "end": 7172.56, + "probability": 0.6948 + }, + { + "start": 7172.72, + "end": 7173.12, + "probability": 0.8636 + }, + { + "start": 7173.24, + "end": 7177.4, + "probability": 0.9895 + }, + { + "start": 7177.8, + "end": 7180.32, + "probability": 0.8702 + }, + { + "start": 7181.22, + "end": 7183.6, + "probability": 0.9698 + }, + { + "start": 7183.72, + "end": 7187.44, + "probability": 0.9569 + }, + { + "start": 7187.68, + "end": 7188.08, + "probability": 0.9427 + }, + { + "start": 7188.12, + "end": 7189.8, + "probability": 0.9026 + }, + { + "start": 7190.18, + "end": 7191.92, + "probability": 0.9739 + }, + { + "start": 7193.02, + "end": 7195.9, + "probability": 0.6548 + }, + { + "start": 7196.08, + "end": 7198.82, + "probability": 0.9518 + }, + { + "start": 7201.14, + "end": 7205.54, + "probability": 0.9946 + }, + { + "start": 7205.54, + "end": 7208.8, + "probability": 0.7393 + }, + { + "start": 7208.8, + "end": 7211.28, + "probability": 0.7999 + }, + { + "start": 7211.7, + "end": 7214.92, + "probability": 0.7032 + }, + { + "start": 7215.04, + "end": 7215.78, + "probability": 0.8614 + }, + { + "start": 7215.86, + "end": 7216.98, + "probability": 0.7051 + }, + { + "start": 7217.84, + "end": 7218.18, + "probability": 0.1006 + }, + { + "start": 7221.26, + "end": 7221.82, + "probability": 0.1223 + }, + { + "start": 7233.28, + "end": 7234.4, + "probability": 0.0702 + }, + { + "start": 7239.32, + "end": 7242.62, + "probability": 0.668 + }, + { + "start": 7242.7, + "end": 7244.64, + "probability": 0.8632 + }, + { + "start": 7245.1, + "end": 7246.82, + "probability": 0.3872 + }, + { + "start": 7247.12, + "end": 7248.06, + "probability": 0.7025 + }, + { + "start": 7255.37, + "end": 7258.04, + "probability": 0.0136 + }, + { + "start": 7270.56, + "end": 7271.8, + "probability": 0.0502 + }, + { + "start": 7271.8, + "end": 7272.54, + "probability": 0.0149 + }, + { + "start": 7276.6, + "end": 7277.4, + "probability": 0.0062 + }, + { + "start": 7278.94, + "end": 7280.88, + "probability": 0.0316 + }, + { + "start": 7281.24, + "end": 7283.4, + "probability": 0.0859 + }, + { + "start": 7283.4, + "end": 7283.84, + "probability": 0.0129 + }, + { + "start": 7284.17, + "end": 7286.52, + "probability": 0.0174 + }, + { + "start": 7287.72, + "end": 7288.44, + "probability": 0.0677 + }, + { + "start": 7305.04, + "end": 7308.66, + "probability": 0.0721 + }, + { + "start": 7311.58, + "end": 7311.68, + "probability": 0.0311 + }, + { + "start": 7311.68, + "end": 7312.64, + "probability": 0.1898 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7332.3, + "end": 7337.78, + "probability": 0.0811 + }, + { + "start": 7339.24, + "end": 7344.02, + "probability": 0.9094 + }, + { + "start": 7344.02, + "end": 7346.96, + "probability": 0.1557 + }, + { + "start": 7346.96, + "end": 7347.42, + "probability": 0.0038 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.0, + "end": 7451.0, + "probability": 0.0 + }, + { + "start": 7451.2, + "end": 7451.2, + "probability": 0.0244 + }, + { + "start": 7451.2, + "end": 7451.2, + "probability": 0.0988 + }, + { + "start": 7451.2, + "end": 7452.76, + "probability": 0.749 + }, + { + "start": 7453.04, + "end": 7455.94, + "probability": 0.9815 + }, + { + "start": 7457.1, + "end": 7458.6, + "probability": 0.8717 + }, + { + "start": 7458.72, + "end": 7459.82, + "probability": 0.475 + }, + { + "start": 7459.92, + "end": 7461.24, + "probability": 0.8275 + }, + { + "start": 7461.44, + "end": 7461.9, + "probability": 0.4673 + }, + { + "start": 7462.52, + "end": 7463.72, + "probability": 0.8127 + }, + { + "start": 7463.8, + "end": 7468.9, + "probability": 0.9358 + }, + { + "start": 7469.34, + "end": 7476.64, + "probability": 0.9729 + }, + { + "start": 7477.86, + "end": 7480.38, + "probability": 0.9153 + }, + { + "start": 7481.76, + "end": 7485.18, + "probability": 0.9773 + }, + { + "start": 7486.02, + "end": 7487.58, + "probability": 0.9943 + }, + { + "start": 7487.66, + "end": 7490.54, + "probability": 0.9935 + }, + { + "start": 7490.9, + "end": 7497.68, + "probability": 0.9651 + }, + { + "start": 7498.5, + "end": 7503.36, + "probability": 0.9844 + }, + { + "start": 7503.87, + "end": 7510.0, + "probability": 0.9965 + }, + { + "start": 7510.04, + "end": 7514.42, + "probability": 0.9855 + }, + { + "start": 7515.1, + "end": 7518.56, + "probability": 0.9764 + }, + { + "start": 7518.56, + "end": 7524.02, + "probability": 0.9957 + }, + { + "start": 7525.1, + "end": 7525.34, + "probability": 0.5778 + }, + { + "start": 7525.44, + "end": 7525.8, + "probability": 0.5032 + }, + { + "start": 7525.86, + "end": 7529.06, + "probability": 0.9948 + }, + { + "start": 7530.24, + "end": 7536.34, + "probability": 0.9718 + }, + { + "start": 7536.9, + "end": 7537.72, + "probability": 0.9803 + }, + { + "start": 7538.0, + "end": 7538.94, + "probability": 0.9263 + }, + { + "start": 7539.7, + "end": 7541.58, + "probability": 0.871 + }, + { + "start": 7542.56, + "end": 7544.72, + "probability": 0.9872 + }, + { + "start": 7545.2, + "end": 7548.72, + "probability": 0.9948 + }, + { + "start": 7549.28, + "end": 7552.06, + "probability": 0.9496 + }, + { + "start": 7552.7, + "end": 7554.24, + "probability": 0.8979 + }, + { + "start": 7554.32, + "end": 7556.22, + "probability": 0.9824 + }, + { + "start": 7557.56, + "end": 7560.44, + "probability": 0.9863 + }, + { + "start": 7561.24, + "end": 7564.56, + "probability": 0.9882 + }, + { + "start": 7565.36, + "end": 7567.38, + "probability": 0.9902 + }, + { + "start": 7568.16, + "end": 7569.64, + "probability": 0.9785 + }, + { + "start": 7570.54, + "end": 7571.02, + "probability": 0.8836 + }, + { + "start": 7571.12, + "end": 7575.84, + "probability": 0.9925 + }, + { + "start": 7576.36, + "end": 7578.18, + "probability": 0.9399 + }, + { + "start": 7578.86, + "end": 7582.24, + "probability": 0.9961 + }, + { + "start": 7583.28, + "end": 7586.86, + "probability": 0.9953 + }, + { + "start": 7586.96, + "end": 7590.68, + "probability": 0.9807 + }, + { + "start": 7591.56, + "end": 7593.42, + "probability": 0.747 + }, + { + "start": 7593.42, + "end": 7593.86, + "probability": 0.7961 + }, + { + "start": 7593.88, + "end": 7597.46, + "probability": 0.8206 + }, + { + "start": 7598.46, + "end": 7602.84, + "probability": 0.9675 + }, + { + "start": 7603.28, + "end": 7605.54, + "probability": 0.9341 + }, + { + "start": 7606.44, + "end": 7606.98, + "probability": 0.6405 + }, + { + "start": 7607.66, + "end": 7610.52, + "probability": 0.8549 + }, + { + "start": 7610.94, + "end": 7611.18, + "probability": 0.7686 + }, + { + "start": 7612.06, + "end": 7614.82, + "probability": 0.9765 + }, + { + "start": 7616.56, + "end": 7618.22, + "probability": 0.991 + }, + { + "start": 7618.3, + "end": 7619.34, + "probability": 0.6797 + }, + { + "start": 7619.46, + "end": 7620.65, + "probability": 0.8984 + }, + { + "start": 7621.56, + "end": 7626.08, + "probability": 0.9858 + }, + { + "start": 7626.08, + "end": 7629.98, + "probability": 0.9976 + }, + { + "start": 7631.02, + "end": 7635.48, + "probability": 0.9979 + }, + { + "start": 7635.94, + "end": 7639.34, + "probability": 0.9946 + }, + { + "start": 7639.8, + "end": 7646.38, + "probability": 0.9614 + }, + { + "start": 7646.84, + "end": 7647.98, + "probability": 0.9858 + }, + { + "start": 7649.08, + "end": 7653.69, + "probability": 0.9927 + }, + { + "start": 7654.38, + "end": 7657.8, + "probability": 0.9421 + }, + { + "start": 7658.8, + "end": 7660.19, + "probability": 0.6851 + }, + { + "start": 7661.06, + "end": 7662.78, + "probability": 0.6219 + }, + { + "start": 7663.62, + "end": 7665.74, + "probability": 0.8106 + }, + { + "start": 7666.18, + "end": 7669.5, + "probability": 0.9703 + }, + { + "start": 7669.94, + "end": 7671.68, + "probability": 0.975 + }, + { + "start": 7672.08, + "end": 7675.6, + "probability": 0.9943 + }, + { + "start": 7677.48, + "end": 7678.5, + "probability": 0.7737 + }, + { + "start": 7678.7, + "end": 7684.34, + "probability": 0.9809 + }, + { + "start": 7684.34, + "end": 7690.6, + "probability": 0.98 + }, + { + "start": 7691.84, + "end": 7693.54, + "probability": 0.9365 + }, + { + "start": 7693.62, + "end": 7695.88, + "probability": 0.992 + }, + { + "start": 7696.7, + "end": 7698.36, + "probability": 0.7607 + }, + { + "start": 7698.42, + "end": 7699.08, + "probability": 0.7593 + }, + { + "start": 7699.32, + "end": 7704.52, + "probability": 0.9714 + }, + { + "start": 7704.82, + "end": 7705.38, + "probability": 0.8114 + }, + { + "start": 7706.28, + "end": 7708.18, + "probability": 0.8456 + }, + { + "start": 7708.24, + "end": 7708.62, + "probability": 0.8815 + }, + { + "start": 7708.74, + "end": 7710.32, + "probability": 0.984 + }, + { + "start": 7710.46, + "end": 7712.26, + "probability": 0.9346 + }, + { + "start": 7712.76, + "end": 7717.86, + "probability": 0.6997 + }, + { + "start": 7721.0, + "end": 7721.32, + "probability": 0.102 + }, + { + "start": 7721.52, + "end": 7722.84, + "probability": 0.4954 + }, + { + "start": 7722.98, + "end": 7725.58, + "probability": 0.7001 + }, + { + "start": 7725.6, + "end": 7725.92, + "probability": 0.6281 + }, + { + "start": 7726.0, + "end": 7727.6, + "probability": 0.8297 + }, + { + "start": 7733.22, + "end": 7735.22, + "probability": 0.0682 + }, + { + "start": 7736.8, + "end": 7738.26, + "probability": 0.6897 + }, + { + "start": 7738.84, + "end": 7742.02, + "probability": 0.9568 + }, + { + "start": 7742.72, + "end": 7745.54, + "probability": 0.9824 + }, + { + "start": 7745.54, + "end": 7749.58, + "probability": 0.9998 + }, + { + "start": 7749.72, + "end": 7751.72, + "probability": 0.612 + }, + { + "start": 7752.48, + "end": 7754.06, + "probability": 0.7904 + }, + { + "start": 7756.8, + "end": 7758.12, + "probability": 0.2689 + }, + { + "start": 7758.34, + "end": 7766.26, + "probability": 0.9243 + }, + { + "start": 7768.08, + "end": 7769.0, + "probability": 0.5961 + }, + { + "start": 7769.0, + "end": 7770.96, + "probability": 0.8963 + }, + { + "start": 7771.0, + "end": 7771.8, + "probability": 0.8505 + }, + { + "start": 7771.84, + "end": 7772.56, + "probability": 0.7887 + }, + { + "start": 7772.94, + "end": 7776.9, + "probability": 0.9497 + }, + { + "start": 7777.02, + "end": 7781.12, + "probability": 0.9734 + }, + { + "start": 7781.22, + "end": 7787.04, + "probability": 0.9973 + }, + { + "start": 7787.68, + "end": 7789.0, + "probability": 0.9234 + }, + { + "start": 7789.34, + "end": 7791.64, + "probability": 0.9648 + }, + { + "start": 7791.64, + "end": 7795.58, + "probability": 0.8373 + }, + { + "start": 7796.08, + "end": 7800.52, + "probability": 0.9946 + }, + { + "start": 7800.52, + "end": 7804.64, + "probability": 0.9503 + }, + { + "start": 7805.12, + "end": 7806.14, + "probability": 0.4213 + }, + { + "start": 7806.44, + "end": 7807.24, + "probability": 0.8454 + }, + { + "start": 7807.48, + "end": 7809.3, + "probability": 0.9345 + }, + { + "start": 7809.64, + "end": 7810.34, + "probability": 0.816 + }, + { + "start": 7810.5, + "end": 7811.22, + "probability": 0.97 + }, + { + "start": 7811.3, + "end": 7812.18, + "probability": 0.8742 + }, + { + "start": 7812.66, + "end": 7816.52, + "probability": 0.7184 + }, + { + "start": 7816.56, + "end": 7817.36, + "probability": 0.8097 + }, + { + "start": 7817.74, + "end": 7818.7, + "probability": 0.5028 + }, + { + "start": 7819.16, + "end": 7819.64, + "probability": 0.8685 + }, + { + "start": 7820.14, + "end": 7824.18, + "probability": 0.9963 + }, + { + "start": 7824.34, + "end": 7825.88, + "probability": 0.9696 + }, + { + "start": 7826.04, + "end": 7829.3, + "probability": 0.9485 + }, + { + "start": 7829.7, + "end": 7836.32, + "probability": 0.7397 + }, + { + "start": 7836.34, + "end": 7840.11, + "probability": 0.9741 + }, + { + "start": 7840.54, + "end": 7843.62, + "probability": 0.9633 + }, + { + "start": 7843.74, + "end": 7845.72, + "probability": 0.946 + }, + { + "start": 7845.78, + "end": 7846.32, + "probability": 0.4615 + }, + { + "start": 7846.4, + "end": 7848.76, + "probability": 0.8081 + }, + { + "start": 7849.06, + "end": 7852.02, + "probability": 0.7881 + }, + { + "start": 7852.46, + "end": 7860.42, + "probability": 0.9834 + }, + { + "start": 7860.42, + "end": 7867.74, + "probability": 0.9762 + }, + { + "start": 7868.14, + "end": 7873.26, + "probability": 0.9852 + }, + { + "start": 7873.58, + "end": 7876.18, + "probability": 0.1506 + }, + { + "start": 7876.18, + "end": 7878.26, + "probability": 0.0064 + }, + { + "start": 7879.04, + "end": 7879.32, + "probability": 0.2815 + }, + { + "start": 7879.32, + "end": 7879.32, + "probability": 0.231 + }, + { + "start": 7879.32, + "end": 7879.32, + "probability": 0.6448 + }, + { + "start": 7879.32, + "end": 7879.32, + "probability": 0.0384 + }, + { + "start": 7879.32, + "end": 7879.32, + "probability": 0.1141 + }, + { + "start": 7879.32, + "end": 7879.32, + "probability": 0.5776 + }, + { + "start": 7879.32, + "end": 7880.74, + "probability": 0.435 + }, + { + "start": 7881.26, + "end": 7881.88, + "probability": 0.7931 + }, + { + "start": 7882.24, + "end": 7883.13, + "probability": 0.79 + }, + { + "start": 7886.8, + "end": 7887.7, + "probability": 0.0252 + }, + { + "start": 7887.7, + "end": 7893.44, + "probability": 0.8686 + }, + { + "start": 7893.72, + "end": 7894.54, + "probability": 0.4315 + }, + { + "start": 7899.33, + "end": 7902.68, + "probability": 0.9966 + }, + { + "start": 7903.02, + "end": 7904.48, + "probability": 0.9772 + }, + { + "start": 7904.6, + "end": 7905.06, + "probability": 0.6823 + }, + { + "start": 7905.14, + "end": 7906.52, + "probability": 0.9334 + }, + { + "start": 7907.04, + "end": 7911.3, + "probability": 0.9338 + }, + { + "start": 7911.6, + "end": 7915.56, + "probability": 0.9635 + }, + { + "start": 7916.04, + "end": 7917.5, + "probability": 0.7438 + }, + { + "start": 7917.62, + "end": 7918.12, + "probability": 0.9586 + }, + { + "start": 7918.4, + "end": 7918.9, + "probability": 0.7697 + }, + { + "start": 7919.26, + "end": 7920.0, + "probability": 0.6104 + }, + { + "start": 7920.32, + "end": 7923.0, + "probability": 0.9328 + }, + { + "start": 7923.24, + "end": 7923.88, + "probability": 0.6431 + }, + { + "start": 7923.92, + "end": 7926.14, + "probability": 0.9784 + }, + { + "start": 7926.28, + "end": 7929.04, + "probability": 0.9066 + }, + { + "start": 7929.26, + "end": 7929.94, + "probability": 0.6222 + }, + { + "start": 7929.96, + "end": 7930.88, + "probability": 0.7599 + }, + { + "start": 7930.92, + "end": 7933.68, + "probability": 0.9359 + }, + { + "start": 7933.9, + "end": 7936.56, + "probability": 0.9953 + }, + { + "start": 7936.74, + "end": 7936.96, + "probability": 0.8 + }, + { + "start": 7937.18, + "end": 7939.14, + "probability": 0.9211 + }, + { + "start": 7939.38, + "end": 7944.52, + "probability": 0.7911 + }, + { + "start": 7944.54, + "end": 7945.04, + "probability": 0.5717 + }, + { + "start": 7949.12, + "end": 7950.38, + "probability": 0.8013 + }, + { + "start": 7954.26, + "end": 7957.34, + "probability": 0.6522 + }, + { + "start": 7958.2, + "end": 7961.2, + "probability": 0.9937 + }, + { + "start": 7961.2, + "end": 7964.88, + "probability": 0.9968 + }, + { + "start": 7965.48, + "end": 7967.44, + "probability": 0.9971 + }, + { + "start": 7968.12, + "end": 7969.66, + "probability": 0.9237 + }, + { + "start": 7969.76, + "end": 7972.1, + "probability": 0.9883 + }, + { + "start": 7972.1, + "end": 7975.44, + "probability": 0.9534 + }, + { + "start": 7975.92, + "end": 7980.22, + "probability": 0.9717 + }, + { + "start": 7981.46, + "end": 7984.4, + "probability": 0.7465 + }, + { + "start": 7985.8, + "end": 7987.12, + "probability": 0.9045 + }, + { + "start": 7987.2, + "end": 7992.08, + "probability": 0.894 + }, + { + "start": 7992.84, + "end": 7997.74, + "probability": 0.9954 + }, + { + "start": 7997.74, + "end": 8002.44, + "probability": 0.9938 + }, + { + "start": 8003.02, + "end": 8004.78, + "probability": 0.9567 + }, + { + "start": 8006.44, + "end": 8011.44, + "probability": 0.9974 + }, + { + "start": 8011.44, + "end": 8016.06, + "probability": 0.9859 + }, + { + "start": 8016.06, + "end": 8021.58, + "probability": 0.9315 + }, + { + "start": 8022.44, + "end": 8025.2, + "probability": 0.9839 + }, + { + "start": 8025.86, + "end": 8027.8, + "probability": 0.9381 + }, + { + "start": 8028.6, + "end": 8029.04, + "probability": 0.7118 + }, + { + "start": 8029.28, + "end": 8032.56, + "probability": 0.9956 + }, + { + "start": 8032.56, + "end": 8035.4, + "probability": 0.9972 + }, + { + "start": 8036.1, + "end": 8037.88, + "probability": 0.9517 + }, + { + "start": 8039.16, + "end": 8044.66, + "probability": 0.9975 + }, + { + "start": 8045.4, + "end": 8047.58, + "probability": 0.9873 + }, + { + "start": 8047.64, + "end": 8048.56, + "probability": 0.729 + }, + { + "start": 8048.62, + "end": 8051.18, + "probability": 0.985 + }, + { + "start": 8051.94, + "end": 8054.82, + "probability": 0.9797 + }, + { + "start": 8055.42, + "end": 8056.02, + "probability": 0.8666 + }, + { + "start": 8056.12, + "end": 8057.45, + "probability": 0.8031 + }, + { + "start": 8057.96, + "end": 8059.02, + "probability": 0.8958 + }, + { + "start": 8059.16, + "end": 8060.64, + "probability": 0.958 + }, + { + "start": 8061.72, + "end": 8064.26, + "probability": 0.9688 + }, + { + "start": 8064.42, + "end": 8068.28, + "probability": 0.9065 + }, + { + "start": 8069.06, + "end": 8071.1, + "probability": 0.9652 + }, + { + "start": 8071.2, + "end": 8071.6, + "probability": 0.8232 + }, + { + "start": 8071.78, + "end": 8074.38, + "probability": 0.9657 + }, + { + "start": 8075.4, + "end": 8083.92, + "probability": 0.9818 + }, + { + "start": 8084.04, + "end": 8093.54, + "probability": 0.9797 + }, + { + "start": 8093.68, + "end": 8094.08, + "probability": 0.1804 + }, + { + "start": 8094.7, + "end": 8095.12, + "probability": 0.4061 + }, + { + "start": 8095.36, + "end": 8096.26, + "probability": 0.0227 + }, + { + "start": 8096.4, + "end": 8100.5, + "probability": 0.8494 + }, + { + "start": 8100.56, + "end": 8104.1, + "probability": 0.9941 + }, + { + "start": 8104.5, + "end": 8108.86, + "probability": 0.8219 + }, + { + "start": 8109.34, + "end": 8110.44, + "probability": 0.7654 + }, + { + "start": 8110.5, + "end": 8112.44, + "probability": 0.4889 + }, + { + "start": 8112.44, + "end": 8116.12, + "probability": 0.8081 + }, + { + "start": 8116.12, + "end": 8121.88, + "probability": 0.7429 + }, + { + "start": 8122.02, + "end": 8124.94, + "probability": 0.7823 + }, + { + "start": 8125.08, + "end": 8127.78, + "probability": 0.9966 + }, + { + "start": 8128.2, + "end": 8128.82, + "probability": 0.4972 + }, + { + "start": 8128.88, + "end": 8130.38, + "probability": 0.2899 + }, + { + "start": 8130.58, + "end": 8131.85, + "probability": 0.5928 + }, + { + "start": 8133.07, + "end": 8136.52, + "probability": 0.9484 + }, + { + "start": 8136.6, + "end": 8137.14, + "probability": 0.5646 + }, + { + "start": 8137.2, + "end": 8138.92, + "probability": 0.446 + }, + { + "start": 8138.92, + "end": 8139.27, + "probability": 0.2677 + }, + { + "start": 8139.8, + "end": 8144.94, + "probability": 0.2776 + }, + { + "start": 8147.86, + "end": 8148.78, + "probability": 0.8225 + }, + { + "start": 8152.48, + "end": 8153.44, + "probability": 0.6971 + }, + { + "start": 8153.52, + "end": 8154.2, + "probability": 0.6673 + }, + { + "start": 8154.92, + "end": 8159.82, + "probability": 0.9946 + }, + { + "start": 8160.6, + "end": 8163.54, + "probability": 0.9128 + }, + { + "start": 8163.54, + "end": 8168.32, + "probability": 0.9806 + }, + { + "start": 8169.58, + "end": 8170.24, + "probability": 0.4945 + }, + { + "start": 8170.24, + "end": 8170.55, + "probability": 0.6449 + }, + { + "start": 8171.28, + "end": 8172.49, + "probability": 0.4651 + }, + { + "start": 8174.76, + "end": 8175.86, + "probability": 0.434 + }, + { + "start": 8176.54, + "end": 8179.5, + "probability": 0.6156 + }, + { + "start": 8180.2, + "end": 8182.8, + "probability": 0.6736 + }, + { + "start": 8183.0, + "end": 8184.24, + "probability": 0.8053 + }, + { + "start": 8184.78, + "end": 8186.84, + "probability": 0.0114 + }, + { + "start": 8187.66, + "end": 8192.46, + "probability": 0.9631 + }, + { + "start": 8193.04, + "end": 8197.48, + "probability": 0.9979 + }, + { + "start": 8198.3, + "end": 8199.8, + "probability": 0.8466 + }, + { + "start": 8200.86, + "end": 8202.52, + "probability": 0.8414 + }, + { + "start": 8203.86, + "end": 8203.94, + "probability": 0.0627 + }, + { + "start": 8203.94, + "end": 8206.72, + "probability": 0.8701 + }, + { + "start": 8207.92, + "end": 8211.36, + "probability": 0.9913 + }, + { + "start": 8211.46, + "end": 8214.38, + "probability": 0.9878 + }, + { + "start": 8215.14, + "end": 8221.4, + "probability": 0.9961 + }, + { + "start": 8222.84, + "end": 8229.08, + "probability": 0.9963 + }, + { + "start": 8229.74, + "end": 8233.5, + "probability": 0.9792 + }, + { + "start": 8234.14, + "end": 8234.56, + "probability": 0.5478 + }, + { + "start": 8234.64, + "end": 8242.68, + "probability": 0.9235 + }, + { + "start": 8244.16, + "end": 8247.58, + "probability": 0.9237 + }, + { + "start": 8248.26, + "end": 8254.82, + "probability": 0.9927 + }, + { + "start": 8255.64, + "end": 8258.62, + "probability": 0.9975 + }, + { + "start": 8260.26, + "end": 8263.0, + "probability": 0.9788 + }, + { + "start": 8263.0, + "end": 8267.24, + "probability": 0.8902 + }, + { + "start": 8267.42, + "end": 8272.74, + "probability": 0.9647 + }, + { + "start": 8282.22, + "end": 8285.48, + "probability": 0.9797 + }, + { + "start": 8287.61, + "end": 8293.36, + "probability": 0.916 + }, + { + "start": 8294.2, + "end": 8299.48, + "probability": 0.9917 + }, + { + "start": 8299.56, + "end": 8300.96, + "probability": 0.8548 + }, + { + "start": 8301.38, + "end": 8303.24, + "probability": 0.9697 + }, + { + "start": 8304.0, + "end": 8308.96, + "probability": 0.9827 + }, + { + "start": 8313.82, + "end": 8314.74, + "probability": 0.6855 + }, + { + "start": 8318.98, + "end": 8320.96, + "probability": 0.9365 + }, + { + "start": 8321.8, + "end": 8323.24, + "probability": 0.8018 + }, + { + "start": 8325.62, + "end": 8327.22, + "probability": 0.7956 + }, + { + "start": 8328.46, + "end": 8330.68, + "probability": 0.8072 + }, + { + "start": 8331.6, + "end": 8332.96, + "probability": 0.9598 + }, + { + "start": 8334.3, + "end": 8335.72, + "probability": 0.976 + }, + { + "start": 8336.52, + "end": 8337.84, + "probability": 0.9722 + }, + { + "start": 8338.72, + "end": 8340.68, + "probability": 0.9909 + }, + { + "start": 8341.3, + "end": 8341.8, + "probability": 0.4866 + }, + { + "start": 8341.8, + "end": 8341.92, + "probability": 0.3998 + }, + { + "start": 8342.04, + "end": 8342.86, + "probability": 0.3868 + }, + { + "start": 8344.72, + "end": 8344.72, + "probability": 0.2844 + }, + { + "start": 8344.72, + "end": 8347.22, + "probability": 0.7352 + }, + { + "start": 8348.56, + "end": 8350.98, + "probability": 0.8328 + }, + { + "start": 8351.28, + "end": 8352.16, + "probability": 0.0194 + }, + { + "start": 8353.06, + "end": 8353.26, + "probability": 0.1234 + }, + { + "start": 8353.28, + "end": 8354.2, + "probability": 0.7749 + }, + { + "start": 8356.24, + "end": 8356.8, + "probability": 0.004 + }, + { + "start": 8356.96, + "end": 8356.96, + "probability": 0.5818 + }, + { + "start": 8356.96, + "end": 8356.98, + "probability": 0.0747 + }, + { + "start": 8357.0, + "end": 8358.52, + "probability": 0.4236 + }, + { + "start": 8359.08, + "end": 8359.1, + "probability": 0.4473 + }, + { + "start": 8359.12, + "end": 8359.52, + "probability": 0.4977 + }, + { + "start": 8360.08, + "end": 8362.2, + "probability": 0.7726 + }, + { + "start": 8363.36, + "end": 8366.44, + "probability": 0.9087 + }, + { + "start": 8367.58, + "end": 8369.52, + "probability": 0.7424 + }, + { + "start": 8369.52, + "end": 8370.88, + "probability": 0.8379 + }, + { + "start": 8371.42, + "end": 8372.26, + "probability": 0.8942 + }, + { + "start": 8372.3, + "end": 8372.92, + "probability": 0.8797 + }, + { + "start": 8373.04, + "end": 8376.26, + "probability": 0.992 + }, + { + "start": 8377.32, + "end": 8383.42, + "probability": 0.9188 + }, + { + "start": 8384.24, + "end": 8387.86, + "probability": 0.9117 + }, + { + "start": 8388.96, + "end": 8395.16, + "probability": 0.9924 + }, + { + "start": 8395.16, + "end": 8400.64, + "probability": 0.9546 + }, + { + "start": 8402.32, + "end": 8406.46, + "probability": 0.1524 + }, + { + "start": 8407.06, + "end": 8412.78, + "probability": 0.765 + }, + { + "start": 8413.38, + "end": 8415.5, + "probability": 0.9539 + }, + { + "start": 8416.9, + "end": 8424.74, + "probability": 0.9235 + }, + { + "start": 8425.6, + "end": 8428.9, + "probability": 0.9878 + }, + { + "start": 8429.08, + "end": 8435.2, + "probability": 0.9278 + }, + { + "start": 8435.36, + "end": 8436.04, + "probability": 0.726 + }, + { + "start": 8436.84, + "end": 8439.18, + "probability": 0.8458 + }, + { + "start": 8439.3, + "end": 8440.96, + "probability": 0.7844 + }, + { + "start": 8441.1, + "end": 8442.82, + "probability": 0.8363 + }, + { + "start": 8443.62, + "end": 8445.54, + "probability": 0.6537 + }, + { + "start": 8445.58, + "end": 8447.04, + "probability": 0.5569 + }, + { + "start": 8447.04, + "end": 8448.0, + "probability": 0.833 + }, + { + "start": 8448.06, + "end": 8449.14, + "probability": 0.5088 + }, + { + "start": 8449.72, + "end": 8452.91, + "probability": 0.9213 + }, + { + "start": 8454.68, + "end": 8458.38, + "probability": 0.9167 + }, + { + "start": 8459.7, + "end": 8460.86, + "probability": 0.7134 + }, + { + "start": 8461.4, + "end": 8464.0, + "probability": 0.7794 + }, + { + "start": 8464.2, + "end": 8466.1, + "probability": 0.917 + }, + { + "start": 8466.16, + "end": 8467.7, + "probability": 0.0382 + }, + { + "start": 8468.96, + "end": 8469.54, + "probability": 0.009 + }, + { + "start": 8480.24, + "end": 8481.86, + "probability": 0.5737 + }, + { + "start": 8482.06, + "end": 8487.22, + "probability": 0.943 + }, + { + "start": 8488.12, + "end": 8491.06, + "probability": 0.6663 + }, + { + "start": 8491.82, + "end": 8494.7, + "probability": 0.9613 + }, + { + "start": 8495.0, + "end": 8496.62, + "probability": 0.9976 + }, + { + "start": 8497.96, + "end": 8497.98, + "probability": 0.8384 + }, + { + "start": 8499.62, + "end": 8505.92, + "probability": 0.9957 + }, + { + "start": 8505.96, + "end": 8506.06, + "probability": 0.1756 + }, + { + "start": 8506.1, + "end": 8508.6, + "probability": 0.9568 + }, + { + "start": 8508.94, + "end": 8509.7, + "probability": 0.7303 + }, + { + "start": 8509.84, + "end": 8511.66, + "probability": 0.9532 + }, + { + "start": 8512.02, + "end": 8515.46, + "probability": 0.9696 + }, + { + "start": 8515.88, + "end": 8516.95, + "probability": 0.2504 + }, + { + "start": 8517.44, + "end": 8519.24, + "probability": 0.6597 + }, + { + "start": 8519.42, + "end": 8520.76, + "probability": 0.6735 + }, + { + "start": 8521.6, + "end": 8522.46, + "probability": 0.5764 + }, + { + "start": 8522.68, + "end": 8523.58, + "probability": 0.5319 + }, + { + "start": 8523.62, + "end": 8526.42, + "probability": 0.7706 + }, + { + "start": 8526.72, + "end": 8527.86, + "probability": 0.9741 + }, + { + "start": 8528.94, + "end": 8533.44, + "probability": 0.9939 + }, + { + "start": 8533.5, + "end": 8535.74, + "probability": 0.9146 + }, + { + "start": 8535.82, + "end": 8538.88, + "probability": 0.7545 + }, + { + "start": 8539.14, + "end": 8540.54, + "probability": 0.8684 + }, + { + "start": 8541.88, + "end": 8542.58, + "probability": 0.9431 + }, + { + "start": 8542.8, + "end": 8545.03, + "probability": 0.9775 + }, + { + "start": 8545.22, + "end": 8545.76, + "probability": 0.4392 + }, + { + "start": 8545.82, + "end": 8546.9, + "probability": 0.9297 + }, + { + "start": 8547.6, + "end": 8549.24, + "probability": 0.6301 + }, + { + "start": 8549.32, + "end": 8550.94, + "probability": 0.9828 + }, + { + "start": 8551.04, + "end": 8553.26, + "probability": 0.9414 + }, + { + "start": 8553.58, + "end": 8556.16, + "probability": 0.9512 + }, + { + "start": 8556.16, + "end": 8559.28, + "probability": 0.9574 + }, + { + "start": 8559.56, + "end": 8561.65, + "probability": 0.9745 + }, + { + "start": 8561.82, + "end": 8564.62, + "probability": 0.9968 + }, + { + "start": 8565.4, + "end": 8568.06, + "probability": 0.8547 + }, + { + "start": 8568.52, + "end": 8571.2, + "probability": 0.8228 + }, + { + "start": 8571.68, + "end": 8575.2, + "probability": 0.8708 + }, + { + "start": 8575.58, + "end": 8576.48, + "probability": 0.638 + }, + { + "start": 8576.66, + "end": 8578.3, + "probability": 0.9062 + }, + { + "start": 8578.72, + "end": 8579.7, + "probability": 0.9047 + }, + { + "start": 8579.8, + "end": 8580.98, + "probability": 0.9114 + }, + { + "start": 8581.16, + "end": 8583.12, + "probability": 0.8337 + }, + { + "start": 8583.5, + "end": 8587.42, + "probability": 0.9826 + }, + { + "start": 8587.76, + "end": 8590.4, + "probability": 0.9022 + }, + { + "start": 8590.74, + "end": 8596.58, + "probability": 0.9699 + }, + { + "start": 8597.16, + "end": 8599.88, + "probability": 0.9135 + }, + { + "start": 8600.06, + "end": 8601.88, + "probability": 0.8872 + }, + { + "start": 8601.92, + "end": 8603.69, + "probability": 0.9456 + }, + { + "start": 8604.34, + "end": 8606.36, + "probability": 0.8534 + }, + { + "start": 8607.06, + "end": 8611.46, + "probability": 0.9805 + }, + { + "start": 8611.46, + "end": 8614.88, + "probability": 0.9995 + }, + { + "start": 8615.36, + "end": 8617.76, + "probability": 0.999 + }, + { + "start": 8617.76, + "end": 8621.24, + "probability": 0.7501 + }, + { + "start": 8621.24, + "end": 8622.5, + "probability": 0.8244 + }, + { + "start": 8622.88, + "end": 8624.48, + "probability": 0.8507 + }, + { + "start": 8624.8, + "end": 8627.3, + "probability": 0.982 + }, + { + "start": 8627.68, + "end": 8631.66, + "probability": 0.9921 + }, + { + "start": 8631.66, + "end": 8635.24, + "probability": 0.9349 + }, + { + "start": 8635.64, + "end": 8640.62, + "probability": 0.9976 + }, + { + "start": 8641.72, + "end": 8643.14, + "probability": 0.9982 + }, + { + "start": 8643.28, + "end": 8644.66, + "probability": 0.6974 + }, + { + "start": 8644.72, + "end": 8648.32, + "probability": 0.9932 + }, + { + "start": 8649.38, + "end": 8650.26, + "probability": 0.5839 + }, + { + "start": 8650.3, + "end": 8650.92, + "probability": 0.4529 + }, + { + "start": 8650.94, + "end": 8654.1, + "probability": 0.8297 + }, + { + "start": 8654.18, + "end": 8658.38, + "probability": 0.9845 + }, + { + "start": 8658.38, + "end": 8658.74, + "probability": 0.3779 + }, + { + "start": 8658.78, + "end": 8658.98, + "probability": 0.3776 + }, + { + "start": 8659.1, + "end": 8660.18, + "probability": 0.8129 + }, + { + "start": 8660.18, + "end": 8660.18, + "probability": 0.399 + }, + { + "start": 8660.24, + "end": 8663.26, + "probability": 0.8905 + }, + { + "start": 8669.28, + "end": 8670.34, + "probability": 0.5753 + }, + { + "start": 8673.28, + "end": 8674.86, + "probability": 0.8845 + }, + { + "start": 8676.54, + "end": 8679.12, + "probability": 0.9514 + }, + { + "start": 8686.02, + "end": 8686.3, + "probability": 0.6999 + }, + { + "start": 8693.38, + "end": 8695.14, + "probability": 0.7442 + }, + { + "start": 8695.28, + "end": 8697.9, + "probability": 0.874 + }, + { + "start": 8698.08, + "end": 8699.36, + "probability": 0.8872 + }, + { + "start": 8700.04, + "end": 8701.3, + "probability": 0.9131 + }, + { + "start": 8702.38, + "end": 8703.08, + "probability": 0.108 + }, + { + "start": 8703.08, + "end": 8703.08, + "probability": 0.3547 + }, + { + "start": 8703.08, + "end": 8704.94, + "probability": 0.6609 + }, + { + "start": 8705.76, + "end": 8706.18, + "probability": 0.0803 + }, + { + "start": 8706.18, + "end": 8708.76, + "probability": 0.9692 + }, + { + "start": 8708.8, + "end": 8711.84, + "probability": 0.9794 + }, + { + "start": 8712.12, + "end": 8714.6, + "probability": 0.9115 + }, + { + "start": 8715.46, + "end": 8715.64, + "probability": 0.5035 + }, + { + "start": 8715.64, + "end": 8716.36, + "probability": 0.6779 + }, + { + "start": 8716.8, + "end": 8721.7, + "probability": 0.9317 + }, + { + "start": 8722.12, + "end": 8723.28, + "probability": 0.9951 + }, + { + "start": 8724.1, + "end": 8726.24, + "probability": 0.9937 + }, + { + "start": 8726.7, + "end": 8732.4, + "probability": 0.9983 + }, + { + "start": 8732.52, + "end": 8733.24, + "probability": 0.5195 + }, + { + "start": 8733.38, + "end": 8734.54, + "probability": 0.5724 + }, + { + "start": 8734.62, + "end": 8736.02, + "probability": 0.8162 + }, + { + "start": 8736.26, + "end": 8740.36, + "probability": 0.945 + }, + { + "start": 8740.8, + "end": 8743.4, + "probability": 0.9829 + }, + { + "start": 8743.52, + "end": 8743.86, + "probability": 0.7969 + }, + { + "start": 8744.0, + "end": 8747.46, + "probability": 0.9879 + }, + { + "start": 8747.9, + "end": 8749.78, + "probability": 0.8281 + }, + { + "start": 8750.12, + "end": 8751.12, + "probability": 0.9593 + }, + { + "start": 8751.2, + "end": 8751.98, + "probability": 0.9258 + }, + { + "start": 8752.42, + "end": 8753.58, + "probability": 0.5509 + }, + { + "start": 8753.64, + "end": 8754.62, + "probability": 0.6109 + }, + { + "start": 8755.36, + "end": 8760.58, + "probability": 0.9814 + }, + { + "start": 8761.18, + "end": 8761.36, + "probability": 0.3099 + }, + { + "start": 8761.36, + "end": 8762.38, + "probability": 0.7744 + }, + { + "start": 8762.4, + "end": 8763.7, + "probability": 0.8818 + }, + { + "start": 8764.02, + "end": 8765.08, + "probability": 0.8262 + }, + { + "start": 8765.22, + "end": 8766.66, + "probability": 0.9049 + }, + { + "start": 8766.92, + "end": 8771.02, + "probability": 0.9858 + }, + { + "start": 8771.02, + "end": 8775.82, + "probability": 0.9967 + }, + { + "start": 8775.96, + "end": 8777.76, + "probability": 0.9971 + }, + { + "start": 8777.86, + "end": 8778.84, + "probability": 0.9012 + }, + { + "start": 8779.12, + "end": 8781.7, + "probability": 0.7923 + }, + { + "start": 8782.12, + "end": 8783.32, + "probability": 0.8669 + }, + { + "start": 8783.46, + "end": 8786.48, + "probability": 0.8173 + }, + { + "start": 8786.8, + "end": 8788.52, + "probability": 0.9944 + }, + { + "start": 8788.86, + "end": 8790.92, + "probability": 0.9922 + }, + { + "start": 8791.1, + "end": 8796.48, + "probability": 0.7769 + }, + { + "start": 8796.78, + "end": 8798.68, + "probability": 0.8032 + }, + { + "start": 8798.96, + "end": 8801.1, + "probability": 0.8519 + }, + { + "start": 8801.5, + "end": 8805.14, + "probability": 0.9756 + }, + { + "start": 8806.08, + "end": 8810.3, + "probability": 0.9917 + }, + { + "start": 8810.9, + "end": 8813.84, + "probability": 0.9819 + }, + { + "start": 8814.24, + "end": 8816.34, + "probability": 0.9968 + }, + { + "start": 8816.7, + "end": 8818.61, + "probability": 0.9404 + }, + { + "start": 8819.08, + "end": 8823.48, + "probability": 0.9932 + }, + { + "start": 8823.8, + "end": 8826.68, + "probability": 0.9864 + }, + { + "start": 8826.92, + "end": 8831.9, + "probability": 0.9556 + }, + { + "start": 8832.2, + "end": 8832.5, + "probability": 0.3048 + }, + { + "start": 8832.56, + "end": 8838.4, + "probability": 0.9824 + }, + { + "start": 8838.54, + "end": 8840.62, + "probability": 0.7882 + }, + { + "start": 8840.96, + "end": 8842.48, + "probability": 0.9568 + }, + { + "start": 8842.56, + "end": 8842.88, + "probability": 0.4327 + }, + { + "start": 8843.66, + "end": 8845.58, + "probability": 0.8604 + }, + { + "start": 8845.6, + "end": 8846.06, + "probability": 0.8076 + }, + { + "start": 8846.06, + "end": 8846.68, + "probability": 0.9579 + }, + { + "start": 8846.8, + "end": 8849.4, + "probability": 0.9945 + }, + { + "start": 8850.28, + "end": 8851.54, + "probability": 0.8135 + }, + { + "start": 8851.54, + "end": 8854.9, + "probability": 0.7663 + }, + { + "start": 8855.34, + "end": 8857.14, + "probability": 0.5762 + }, + { + "start": 8857.52, + "end": 8860.32, + "probability": 0.9725 + }, + { + "start": 8860.74, + "end": 8861.42, + "probability": 0.7205 + }, + { + "start": 8861.5, + "end": 8862.12, + "probability": 0.9592 + }, + { + "start": 8862.24, + "end": 8863.28, + "probability": 0.7968 + }, + { + "start": 8864.42, + "end": 8870.74, + "probability": 0.0244 + }, + { + "start": 8872.9, + "end": 8876.39, + "probability": 0.3297 + }, + { + "start": 8877.88, + "end": 8878.96, + "probability": 0.2488 + }, + { + "start": 8879.62, + "end": 8879.9, + "probability": 0.4345 + }, + { + "start": 8881.64, + "end": 8883.28, + "probability": 0.6162 + }, + { + "start": 8883.44, + "end": 8884.9, + "probability": 0.7749 + }, + { + "start": 8885.04, + "end": 8885.82, + "probability": 0.8383 + }, + { + "start": 8886.26, + "end": 8889.32, + "probability": 0.8272 + }, + { + "start": 8889.42, + "end": 8890.18, + "probability": 0.3007 + }, + { + "start": 8891.1, + "end": 8891.76, + "probability": 0.6513 + }, + { + "start": 8892.26, + "end": 8895.64, + "probability": 0.9339 + }, + { + "start": 8895.64, + "end": 8898.7, + "probability": 0.6337 + }, + { + "start": 8898.72, + "end": 8899.94, + "probability": 0.6089 + }, + { + "start": 8900.38, + "end": 8901.46, + "probability": 0.6919 + }, + { + "start": 8901.72, + "end": 8904.82, + "probability": 0.96 + }, + { + "start": 8905.22, + "end": 8905.78, + "probability": 0.5629 + }, + { + "start": 8905.84, + "end": 8906.38, + "probability": 0.7332 + }, + { + "start": 8906.74, + "end": 8907.96, + "probability": 0.7234 + }, + { + "start": 8909.88, + "end": 8912.32, + "probability": 0.2079 + }, + { + "start": 8928.92, + "end": 8931.08, + "probability": 0.2992 + }, + { + "start": 8931.08, + "end": 8933.14, + "probability": 0.7698 + }, + { + "start": 8933.3, + "end": 8934.52, + "probability": 0.5456 + }, + { + "start": 8934.98, + "end": 8936.14, + "probability": 0.3449 + }, + { + "start": 8936.86, + "end": 8936.86, + "probability": 0.3638 + }, + { + "start": 8942.16, + "end": 8944.42, + "probability": 0.0569 + }, + { + "start": 8945.4, + "end": 8950.8, + "probability": 0.0492 + }, + { + "start": 8951.42, + "end": 8952.14, + "probability": 0.0635 + }, + { + "start": 8953.63, + "end": 8954.72, + "probability": 0.0107 + }, + { + "start": 8954.72, + "end": 8955.1, + "probability": 0.1491 + }, + { + "start": 8959.92, + "end": 8960.46, + "probability": 0.0118 + }, + { + "start": 8960.48, + "end": 8962.54, + "probability": 0.0633 + }, + { + "start": 8963.72, + "end": 8963.94, + "probability": 0.0295 + }, + { + "start": 8963.94, + "end": 8964.02, + "probability": 0.0112 + }, + { + "start": 8964.02, + "end": 8965.4, + "probability": 0.046 + }, + { + "start": 8965.4, + "end": 8965.5, + "probability": 0.0342 + }, + { + "start": 8965.5, + "end": 8965.5, + "probability": 0.2707 + }, + { + "start": 8965.5, + "end": 8965.98, + "probability": 0.0267 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8966.0, + "end": 8966.0, + "probability": 0.0 + }, + { + "start": 8969.18, + "end": 8970.22, + "probability": 0.9372 + }, + { + "start": 8972.6, + "end": 8974.46, + "probability": 0.558 + }, + { + "start": 8976.84, + "end": 8978.78, + "probability": 0.8313 + }, + { + "start": 8980.86, + "end": 8981.58, + "probability": 0.9062 + }, + { + "start": 8982.44, + "end": 8983.48, + "probability": 0.9126 + }, + { + "start": 8985.02, + "end": 8987.09, + "probability": 0.9757 + }, + { + "start": 8988.5, + "end": 8989.13, + "probability": 0.5287 + }, + { + "start": 8991.14, + "end": 8992.42, + "probability": 0.9901 + }, + { + "start": 8993.66, + "end": 8994.92, + "probability": 0.9503 + }, + { + "start": 8996.88, + "end": 9000.92, + "probability": 0.9954 + }, + { + "start": 9002.76, + "end": 9003.64, + "probability": 0.9051 + }, + { + "start": 9005.42, + "end": 9008.34, + "probability": 0.9855 + }, + { + "start": 9010.1, + "end": 9012.6, + "probability": 0.8651 + }, + { + "start": 9012.7, + "end": 9013.48, + "probability": 0.8706 + }, + { + "start": 9013.56, + "end": 9014.36, + "probability": 0.7271 + }, + { + "start": 9015.74, + "end": 9016.9, + "probability": 0.1157 + }, + { + "start": 9016.9, + "end": 9019.24, + "probability": 0.8477 + }, + { + "start": 9019.28, + "end": 9020.3, + "probability": 0.7494 + }, + { + "start": 9020.3, + "end": 9020.88, + "probability": 0.0593 + }, + { + "start": 9020.88, + "end": 9021.64, + "probability": 0.5673 + }, + { + "start": 9022.96, + "end": 9023.94, + "probability": 0.2154 + }, + { + "start": 9023.94, + "end": 9023.94, + "probability": 0.1513 + }, + { + "start": 9023.94, + "end": 9023.94, + "probability": 0.3222 + }, + { + "start": 9023.94, + "end": 9023.94, + "probability": 0.0589 + }, + { + "start": 9023.94, + "end": 9025.7, + "probability": 0.681 + }, + { + "start": 9026.7, + "end": 9027.62, + "probability": 0.7231 + }, + { + "start": 9027.84, + "end": 9029.72, + "probability": 0.798 + }, + { + "start": 9029.86, + "end": 9031.92, + "probability": 0.9941 + }, + { + "start": 9032.4, + "end": 9033.26, + "probability": 0.8164 + }, + { + "start": 9033.34, + "end": 9034.26, + "probability": 0.7183 + }, + { + "start": 9034.56, + "end": 9036.56, + "probability": 0.9967 + }, + { + "start": 9036.8, + "end": 9037.57, + "probability": 0.0291 + }, + { + "start": 9037.86, + "end": 9039.82, + "probability": 0.9966 + }, + { + "start": 9039.86, + "end": 9042.84, + "probability": 0.9867 + }, + { + "start": 9043.22, + "end": 9044.72, + "probability": 0.9164 + }, + { + "start": 9044.98, + "end": 9046.78, + "probability": 0.9888 + }, + { + "start": 9048.38, + "end": 9050.04, + "probability": 0.9952 + }, + { + "start": 9052.24, + "end": 9056.94, + "probability": 0.9871 + }, + { + "start": 9057.08, + "end": 9058.9, + "probability": 0.9985 + }, + { + "start": 9061.38, + "end": 9063.04, + "probability": 0.9922 + }, + { + "start": 9064.56, + "end": 9065.51, + "probability": 0.8996 + }, + { + "start": 9066.56, + "end": 9068.18, + "probability": 0.9919 + }, + { + "start": 9068.26, + "end": 9070.1, + "probability": 0.9824 + }, + { + "start": 9071.28, + "end": 9075.91, + "probability": 0.9951 + }, + { + "start": 9077.68, + "end": 9078.22, + "probability": 0.4918 + }, + { + "start": 9078.28, + "end": 9080.3, + "probability": 0.7076 + }, + { + "start": 9080.44, + "end": 9082.44, + "probability": 0.962 + }, + { + "start": 9082.46, + "end": 9083.36, + "probability": 0.2329 + }, + { + "start": 9083.52, + "end": 9085.96, + "probability": 0.9019 + }, + { + "start": 9086.14, + "end": 9090.76, + "probability": 0.5374 + }, + { + "start": 9090.76, + "end": 9090.76, + "probability": 0.1955 + }, + { + "start": 9090.76, + "end": 9094.38, + "probability": 0.8408 + }, + { + "start": 9094.62, + "end": 9098.06, + "probability": 0.9886 + }, + { + "start": 9098.54, + "end": 9100.42, + "probability": 0.9892 + }, + { + "start": 9102.66, + "end": 9107.84, + "probability": 0.839 + }, + { + "start": 9110.06, + "end": 9112.42, + "probability": 0.8473 + }, + { + "start": 9112.62, + "end": 9114.94, + "probability": 0.8 + }, + { + "start": 9115.0, + "end": 9115.86, + "probability": 0.7654 + }, + { + "start": 9115.86, + "end": 9119.06, + "probability": 0.9673 + }, + { + "start": 9119.52, + "end": 9121.56, + "probability": 0.9961 + }, + { + "start": 9121.96, + "end": 9122.74, + "probability": 0.5601 + }, + { + "start": 9122.98, + "end": 9123.6, + "probability": 0.9232 + }, + { + "start": 9123.92, + "end": 9124.6, + "probability": 0.4534 + }, + { + "start": 9124.86, + "end": 9126.7, + "probability": 0.6724 + }, + { + "start": 9127.8, + "end": 9128.72, + "probability": 0.7934 + }, + { + "start": 9128.82, + "end": 9132.12, + "probability": 0.9456 + }, + { + "start": 9132.48, + "end": 9134.2, + "probability": 0.7584 + }, + { + "start": 9135.46, + "end": 9138.56, + "probability": 0.9927 + }, + { + "start": 9139.88, + "end": 9141.8, + "probability": 0.9906 + }, + { + "start": 9141.88, + "end": 9144.14, + "probability": 0.9941 + }, + { + "start": 9144.9, + "end": 9146.32, + "probability": 0.9208 + }, + { + "start": 9147.16, + "end": 9149.66, + "probability": 0.8896 + }, + { + "start": 9150.52, + "end": 9155.68, + "probability": 0.9977 + }, + { + "start": 9155.98, + "end": 9158.16, + "probability": 0.9931 + }, + { + "start": 9160.9, + "end": 9162.4, + "probability": 0.946 + }, + { + "start": 9162.5, + "end": 9163.62, + "probability": 0.9053 + }, + { + "start": 9163.78, + "end": 9166.02, + "probability": 0.9912 + }, + { + "start": 9166.52, + "end": 9167.24, + "probability": 0.6924 + }, + { + "start": 9169.08, + "end": 9171.14, + "probability": 0.9788 + }, + { + "start": 9171.2, + "end": 9173.88, + "probability": 0.9853 + }, + { + "start": 9174.16, + "end": 9175.5, + "probability": 0.9872 + }, + { + "start": 9175.78, + "end": 9177.5, + "probability": 0.9976 + }, + { + "start": 9179.38, + "end": 9182.7, + "probability": 0.9941 + }, + { + "start": 9183.74, + "end": 9185.08, + "probability": 0.7456 + }, + { + "start": 9187.28, + "end": 9192.4, + "probability": 0.9946 + }, + { + "start": 9192.6, + "end": 9193.18, + "probability": 0.9176 + }, + { + "start": 9193.22, + "end": 9196.12, + "probability": 0.8389 + }, + { + "start": 9197.34, + "end": 9199.42, + "probability": 0.9956 + }, + { + "start": 9199.86, + "end": 9200.38, + "probability": 0.954 + }, + { + "start": 9201.1, + "end": 9202.62, + "probability": 0.9053 + }, + { + "start": 9203.24, + "end": 9203.6, + "probability": 0.5204 + }, + { + "start": 9204.5, + "end": 9205.98, + "probability": 0.9956 + }, + { + "start": 9207.2, + "end": 9208.82, + "probability": 0.5343 + }, + { + "start": 9210.2, + "end": 9211.18, + "probability": 0.9783 + }, + { + "start": 9213.2, + "end": 9215.5, + "probability": 0.9623 + }, + { + "start": 9216.68, + "end": 9217.14, + "probability": 0.6852 + }, + { + "start": 9217.9, + "end": 9219.48, + "probability": 0.9968 + }, + { + "start": 9220.3, + "end": 9223.04, + "probability": 0.9909 + }, + { + "start": 9223.18, + "end": 9224.62, + "probability": 0.5336 + }, + { + "start": 9226.02, + "end": 9228.8, + "probability": 0.991 + }, + { + "start": 9228.8, + "end": 9232.28, + "probability": 0.9878 + }, + { + "start": 9233.76, + "end": 9234.1, + "probability": 0.7408 + }, + { + "start": 9234.64, + "end": 9235.36, + "probability": 0.889 + }, + { + "start": 9236.4, + "end": 9237.1, + "probability": 0.7509 + }, + { + "start": 9237.68, + "end": 9242.3, + "probability": 0.9442 + }, + { + "start": 9242.3, + "end": 9246.56, + "probability": 0.9956 + }, + { + "start": 9248.56, + "end": 9249.46, + "probability": 0.9059 + }, + { + "start": 9250.44, + "end": 9255.32, + "probability": 0.9878 + }, + { + "start": 9255.42, + "end": 9259.72, + "probability": 0.9925 + }, + { + "start": 9261.46, + "end": 9262.76, + "probability": 0.9119 + }, + { + "start": 9262.9, + "end": 9263.51, + "probability": 0.9543 + }, + { + "start": 9263.92, + "end": 9266.22, + "probability": 0.9705 + }, + { + "start": 9266.32, + "end": 9267.74, + "probability": 0.9991 + }, + { + "start": 9268.32, + "end": 9270.94, + "probability": 0.8245 + }, + { + "start": 9271.3, + "end": 9273.08, + "probability": 0.981 + }, + { + "start": 9273.48, + "end": 9276.86, + "probability": 0.9971 + }, + { + "start": 9276.86, + "end": 9281.22, + "probability": 0.9771 + }, + { + "start": 9283.7, + "end": 9285.36, + "probability": 0.8167 + }, + { + "start": 9286.86, + "end": 9287.96, + "probability": 0.9961 + }, + { + "start": 9288.18, + "end": 9291.34, + "probability": 0.9985 + }, + { + "start": 9291.34, + "end": 9295.06, + "probability": 0.9819 + }, + { + "start": 9296.68, + "end": 9296.84, + "probability": 0.5731 + }, + { + "start": 9296.9, + "end": 9301.42, + "probability": 0.9946 + }, + { + "start": 9301.52, + "end": 9302.52, + "probability": 0.8285 + }, + { + "start": 9302.54, + "end": 9303.18, + "probability": 0.6671 + }, + { + "start": 9303.44, + "end": 9304.56, + "probability": 0.684 + }, + { + "start": 9304.72, + "end": 9305.26, + "probability": 0.8131 + }, + { + "start": 9306.66, + "end": 9308.72, + "probability": 0.9723 + }, + { + "start": 9310.38, + "end": 9312.82, + "probability": 0.9428 + }, + { + "start": 9314.18, + "end": 9315.88, + "probability": 0.7237 + }, + { + "start": 9316.32, + "end": 9319.38, + "probability": 0.9825 + }, + { + "start": 9319.38, + "end": 9323.48, + "probability": 0.998 + }, + { + "start": 9325.6, + "end": 9327.8, + "probability": 0.995 + }, + { + "start": 9328.22, + "end": 9330.14, + "probability": 0.9946 + }, + { + "start": 9331.0, + "end": 9332.8, + "probability": 0.9512 + }, + { + "start": 9333.66, + "end": 9337.76, + "probability": 0.9962 + }, + { + "start": 9338.16, + "end": 9339.54, + "probability": 0.9934 + }, + { + "start": 9339.64, + "end": 9340.74, + "probability": 0.9445 + }, + { + "start": 9342.06, + "end": 9343.72, + "probability": 0.9275 + }, + { + "start": 9344.92, + "end": 9348.5, + "probability": 0.9639 + }, + { + "start": 9349.22, + "end": 9351.86, + "probability": 0.9121 + }, + { + "start": 9351.86, + "end": 9355.44, + "probability": 0.9721 + }, + { + "start": 9356.8, + "end": 9358.24, + "probability": 0.9976 + }, + { + "start": 9359.6, + "end": 9363.88, + "probability": 0.9966 + }, + { + "start": 9363.96, + "end": 9365.48, + "probability": 0.9507 + }, + { + "start": 9365.56, + "end": 9368.06, + "probability": 0.9862 + }, + { + "start": 9369.24, + "end": 9372.66, + "probability": 0.9591 + }, + { + "start": 9374.08, + "end": 9376.92, + "probability": 0.638 + }, + { + "start": 9378.0, + "end": 9381.76, + "probability": 0.995 + }, + { + "start": 9382.32, + "end": 9384.98, + "probability": 0.9897 + }, + { + "start": 9386.78, + "end": 9387.58, + "probability": 0.9751 + }, + { + "start": 9388.5, + "end": 9389.56, + "probability": 0.8309 + }, + { + "start": 9390.16, + "end": 9393.36, + "probability": 0.9934 + }, + { + "start": 9394.1, + "end": 9394.42, + "probability": 0.8773 + }, + { + "start": 9395.6, + "end": 9399.36, + "probability": 0.9737 + }, + { + "start": 9400.04, + "end": 9402.72, + "probability": 0.8119 + }, + { + "start": 9402.96, + "end": 9406.9, + "probability": 0.955 + }, + { + "start": 9406.9, + "end": 9410.22, + "probability": 0.7717 + }, + { + "start": 9410.82, + "end": 9414.48, + "probability": 0.946 + }, + { + "start": 9414.66, + "end": 9417.02, + "probability": 0.5322 + }, + { + "start": 9417.6, + "end": 9421.02, + "probability": 0.9479 + }, + { + "start": 9421.52, + "end": 9423.54, + "probability": 0.7961 + }, + { + "start": 9425.28, + "end": 9425.78, + "probability": 0.8389 + }, + { + "start": 9425.78, + "end": 9427.3, + "probability": 0.6248 + }, + { + "start": 9428.7, + "end": 9435.34, + "probability": 0.9437 + }, + { + "start": 9436.56, + "end": 9438.16, + "probability": 0.6456 + }, + { + "start": 9438.32, + "end": 9443.6, + "probability": 0.9919 + }, + { + "start": 9443.92, + "end": 9446.94, + "probability": 0.9956 + }, + { + "start": 9447.48, + "end": 9454.44, + "probability": 0.9976 + }, + { + "start": 9454.88, + "end": 9456.36, + "probability": 0.9984 + }, + { + "start": 9457.24, + "end": 9457.64, + "probability": 0.8533 + }, + { + "start": 9457.8, + "end": 9459.46, + "probability": 0.8842 + }, + { + "start": 9459.66, + "end": 9460.56, + "probability": 0.8387 + }, + { + "start": 9460.58, + "end": 9463.62, + "probability": 0.9944 + }, + { + "start": 9464.26, + "end": 9468.52, + "probability": 0.9631 + }, + { + "start": 9468.92, + "end": 9471.44, + "probability": 0.9656 + }, + { + "start": 9471.8, + "end": 9474.74, + "probability": 0.9484 + }, + { + "start": 9475.46, + "end": 9477.82, + "probability": 0.9445 + }, + { + "start": 9478.14, + "end": 9481.68, + "probability": 0.9979 + }, + { + "start": 9482.3, + "end": 9484.7, + "probability": 0.9282 + }, + { + "start": 9485.24, + "end": 9487.14, + "probability": 0.9974 + }, + { + "start": 9487.66, + "end": 9489.08, + "probability": 0.9729 + }, + { + "start": 9489.68, + "end": 9491.68, + "probability": 0.9954 + }, + { + "start": 9492.14, + "end": 9494.42, + "probability": 0.9647 + }, + { + "start": 9495.12, + "end": 9499.0, + "probability": 0.9985 + }, + { + "start": 9499.26, + "end": 9502.0, + "probability": 0.6703 + }, + { + "start": 9502.6, + "end": 9504.74, + "probability": 0.8501 + }, + { + "start": 9505.5, + "end": 9506.62, + "probability": 0.9227 + }, + { + "start": 9506.7, + "end": 9507.2, + "probability": 0.8575 + }, + { + "start": 9507.4, + "end": 9509.54, + "probability": 0.9834 + }, + { + "start": 9510.32, + "end": 9513.5, + "probability": 0.9506 + }, + { + "start": 9513.56, + "end": 9516.38, + "probability": 0.9089 + }, + { + "start": 9516.82, + "end": 9517.87, + "probability": 0.9824 + }, + { + "start": 9518.04, + "end": 9518.92, + "probability": 0.8908 + }, + { + "start": 9519.14, + "end": 9519.72, + "probability": 0.7637 + }, + { + "start": 9519.78, + "end": 9520.56, + "probability": 0.9907 + }, + { + "start": 9520.64, + "end": 9521.42, + "probability": 0.7521 + }, + { + "start": 9521.9, + "end": 9522.74, + "probability": 0.9827 + }, + { + "start": 9522.86, + "end": 9523.66, + "probability": 0.7234 + }, + { + "start": 9523.74, + "end": 9524.7, + "probability": 0.9871 + }, + { + "start": 9525.22, + "end": 9526.0, + "probability": 0.9941 + }, + { + "start": 9526.42, + "end": 9528.12, + "probability": 0.779 + }, + { + "start": 9528.82, + "end": 9532.86, + "probability": 0.9945 + }, + { + "start": 9534.0, + "end": 9536.7, + "probability": 0.8981 + }, + { + "start": 9537.46, + "end": 9539.08, + "probability": 0.8885 + }, + { + "start": 9539.48, + "end": 9541.08, + "probability": 0.7734 + }, + { + "start": 9541.64, + "end": 9542.16, + "probability": 0.7439 + }, + { + "start": 9542.2, + "end": 9545.2, + "probability": 0.9839 + }, + { + "start": 9545.66, + "end": 9548.22, + "probability": 0.9168 + }, + { + "start": 9548.68, + "end": 9551.18, + "probability": 0.9747 + }, + { + "start": 9551.76, + "end": 9553.54, + "probability": 0.9978 + }, + { + "start": 9553.82, + "end": 9557.24, + "probability": 0.9844 + }, + { + "start": 9557.32, + "end": 9558.22, + "probability": 0.781 + }, + { + "start": 9558.84, + "end": 9562.96, + "probability": 0.7995 + }, + { + "start": 9563.04, + "end": 9565.18, + "probability": 0.7356 + }, + { + "start": 9565.7, + "end": 9566.74, + "probability": 0.9883 + }, + { + "start": 9566.92, + "end": 9567.49, + "probability": 0.9966 + }, + { + "start": 9567.86, + "end": 9568.59, + "probability": 0.9795 + }, + { + "start": 9568.62, + "end": 9569.59, + "probability": 0.7056 + }, + { + "start": 9570.06, + "end": 9572.56, + "probability": 0.9578 + }, + { + "start": 9573.22, + "end": 9573.36, + "probability": 0.7427 + }, + { + "start": 9573.48, + "end": 9574.06, + "probability": 0.7682 + }, + { + "start": 9574.12, + "end": 9578.48, + "probability": 0.9918 + }, + { + "start": 9579.04, + "end": 9580.44, + "probability": 0.9663 + }, + { + "start": 9580.86, + "end": 9580.98, + "probability": 0.2739 + }, + { + "start": 9581.06, + "end": 9583.84, + "probability": 0.9734 + }, + { + "start": 9583.9, + "end": 9584.98, + "probability": 0.9882 + }, + { + "start": 9585.04, + "end": 9587.72, + "probability": 0.9981 + }, + { + "start": 9588.18, + "end": 9590.34, + "probability": 0.9336 + }, + { + "start": 9590.76, + "end": 9592.7, + "probability": 0.9877 + }, + { + "start": 9593.28, + "end": 9593.92, + "probability": 0.7908 + }, + { + "start": 9594.18, + "end": 9594.64, + "probability": 0.6067 + }, + { + "start": 9594.68, + "end": 9597.42, + "probability": 0.8504 + }, + { + "start": 9597.8, + "end": 9599.08, + "probability": 0.9193 + }, + { + "start": 9599.78, + "end": 9601.56, + "probability": 0.9618 + }, + { + "start": 9601.74, + "end": 9602.72, + "probability": 0.6662 + }, + { + "start": 9603.0, + "end": 9606.28, + "probability": 0.8544 + }, + { + "start": 9606.28, + "end": 9610.76, + "probability": 0.9417 + }, + { + "start": 9610.92, + "end": 9612.38, + "probability": 0.497 + }, + { + "start": 9612.96, + "end": 9615.4, + "probability": 0.8239 + }, + { + "start": 9616.14, + "end": 9618.08, + "probability": 0.7264 + }, + { + "start": 9618.64, + "end": 9619.74, + "probability": 0.6712 + }, + { + "start": 9620.58, + "end": 9622.18, + "probability": 0.9421 + }, + { + "start": 9623.44, + "end": 9625.16, + "probability": 0.8231 + }, + { + "start": 9626.44, + "end": 9627.42, + "probability": 0.7145 + }, + { + "start": 9628.02, + "end": 9631.32, + "probability": 0.9673 + }, + { + "start": 9632.04, + "end": 9635.36, + "probability": 0.9617 + }, + { + "start": 9636.22, + "end": 9638.26, + "probability": 0.9978 + }, + { + "start": 9638.72, + "end": 9639.02, + "probability": 0.3742 + }, + { + "start": 9639.9, + "end": 9642.5, + "probability": 0.9872 + }, + { + "start": 9643.62, + "end": 9645.68, + "probability": 0.9956 + }, + { + "start": 9645.92, + "end": 9646.66, + "probability": 0.6697 + }, + { + "start": 9647.92, + "end": 9649.3, + "probability": 0.8713 + }, + { + "start": 9650.22, + "end": 9654.68, + "probability": 0.9762 + }, + { + "start": 9655.7, + "end": 9658.56, + "probability": 0.9772 + }, + { + "start": 9659.06, + "end": 9660.68, + "probability": 0.9769 + }, + { + "start": 9661.68, + "end": 9664.12, + "probability": 0.9971 + }, + { + "start": 9664.92, + "end": 9667.06, + "probability": 0.463 + }, + { + "start": 9669.39, + "end": 9670.77, + "probability": 0.7271 + }, + { + "start": 9671.84, + "end": 9675.1, + "probability": 0.7517 + }, + { + "start": 9675.74, + "end": 9678.92, + "probability": 0.9214 + }, + { + "start": 9679.96, + "end": 9683.8, + "probability": 0.8378 + }, + { + "start": 9684.46, + "end": 9686.76, + "probability": 0.9961 + }, + { + "start": 9687.4, + "end": 9690.56, + "probability": 0.9658 + }, + { + "start": 9691.64, + "end": 9693.4, + "probability": 0.9973 + }, + { + "start": 9694.0, + "end": 9696.18, + "probability": 0.991 + }, + { + "start": 9697.04, + "end": 9698.94, + "probability": 0.9554 + }, + { + "start": 9699.6, + "end": 9702.14, + "probability": 0.8933 + }, + { + "start": 9703.34, + "end": 9705.78, + "probability": 0.9552 + }, + { + "start": 9706.5, + "end": 9710.16, + "probability": 0.9813 + }, + { + "start": 9710.68, + "end": 9712.0, + "probability": 0.8745 + }, + { + "start": 9712.5, + "end": 9714.04, + "probability": 0.9943 + }, + { + "start": 9714.48, + "end": 9714.94, + "probability": 0.6903 + }, + { + "start": 9715.96, + "end": 9716.92, + "probability": 0.722 + }, + { + "start": 9717.68, + "end": 9720.96, + "probability": 0.9458 + }, + { + "start": 9721.54, + "end": 9722.7, + "probability": 0.8293 + }, + { + "start": 9722.9, + "end": 9723.9, + "probability": 0.981 + }, + { + "start": 9724.52, + "end": 9728.98, + "probability": 0.912 + }, + { + "start": 9729.48, + "end": 9730.86, + "probability": 0.9725 + }, + { + "start": 9731.48, + "end": 9733.5, + "probability": 0.783 + }, + { + "start": 9734.18, + "end": 9736.74, + "probability": 0.9741 + }, + { + "start": 9737.36, + "end": 9738.4, + "probability": 0.8277 + }, + { + "start": 9739.12, + "end": 9740.66, + "probability": 0.961 + }, + { + "start": 9741.12, + "end": 9743.52, + "probability": 0.8885 + }, + { + "start": 9744.14, + "end": 9748.04, + "probability": 0.9806 + }, + { + "start": 9748.94, + "end": 9751.68, + "probability": 0.9956 + }, + { + "start": 9752.28, + "end": 9754.6, + "probability": 0.8393 + }, + { + "start": 9755.42, + "end": 9760.64, + "probability": 0.6572 + }, + { + "start": 9760.74, + "end": 9762.06, + "probability": 0.486 + }, + { + "start": 9762.56, + "end": 9762.56, + "probability": 0.3504 + }, + { + "start": 9762.56, + "end": 9763.44, + "probability": 0.1785 + }, + { + "start": 9763.96, + "end": 9767.46, + "probability": 0.965 + }, + { + "start": 9768.52, + "end": 9770.52, + "probability": 0.9321 + }, + { + "start": 9771.52, + "end": 9771.62, + "probability": 0.4353 + }, + { + "start": 9771.72, + "end": 9773.06, + "probability": 0.9685 + }, + { + "start": 9773.48, + "end": 9775.3, + "probability": 0.9705 + }, + { + "start": 9775.82, + "end": 9778.92, + "probability": 0.9958 + }, + { + "start": 9779.52, + "end": 9781.42, + "probability": 0.9836 + }, + { + "start": 9782.0, + "end": 9784.46, + "probability": 0.9761 + }, + { + "start": 9784.9, + "end": 9787.2, + "probability": 0.959 + }, + { + "start": 9787.96, + "end": 9788.6, + "probability": 0.7177 + }, + { + "start": 9789.52, + "end": 9794.26, + "probability": 0.8132 + }, + { + "start": 9794.9, + "end": 9796.54, + "probability": 0.7155 + }, + { + "start": 9797.08, + "end": 9799.18, + "probability": 0.942 + }, + { + "start": 9799.8, + "end": 9802.76, + "probability": 0.9237 + }, + { + "start": 9803.32, + "end": 9804.84, + "probability": 0.6635 + }, + { + "start": 9805.46, + "end": 9809.86, + "probability": 0.9877 + }, + { + "start": 9810.02, + "end": 9810.5, + "probability": 0.5616 + }, + { + "start": 9810.64, + "end": 9810.74, + "probability": 0.2506 + }, + { + "start": 9811.88, + "end": 9813.24, + "probability": 0.7576 + }, + { + "start": 9813.96, + "end": 9815.66, + "probability": 0.8246 + }, + { + "start": 9816.22, + "end": 9817.7, + "probability": 0.969 + }, + { + "start": 9817.92, + "end": 9818.22, + "probability": 0.7762 + }, + { + "start": 9818.4, + "end": 9820.46, + "probability": 0.8737 + }, + { + "start": 9821.0, + "end": 9823.98, + "probability": 0.7423 + }, + { + "start": 9824.02, + "end": 9824.96, + "probability": 0.7147 + }, + { + "start": 9838.6, + "end": 9839.98, + "probability": 0.956 + }, + { + "start": 9854.54, + "end": 9856.96, + "probability": 0.6724 + }, + { + "start": 9858.5, + "end": 9859.74, + "probability": 0.7219 + }, + { + "start": 9862.38, + "end": 9870.4, + "probability": 0.9883 + }, + { + "start": 9871.36, + "end": 9875.48, + "probability": 0.8051 + }, + { + "start": 9876.42, + "end": 9881.68, + "probability": 0.6722 + }, + { + "start": 9882.72, + "end": 9887.0, + "probability": 0.9977 + }, + { + "start": 9887.0, + "end": 9891.32, + "probability": 0.9941 + }, + { + "start": 9892.08, + "end": 9896.54, + "probability": 0.9993 + }, + { + "start": 9898.02, + "end": 9903.22, + "probability": 0.9922 + }, + { + "start": 9903.22, + "end": 9909.22, + "probability": 0.9982 + }, + { + "start": 9909.22, + "end": 9913.36, + "probability": 0.9966 + }, + { + "start": 9915.06, + "end": 9916.18, + "probability": 0.9954 + }, + { + "start": 9916.88, + "end": 9917.86, + "probability": 0.926 + }, + { + "start": 9919.58, + "end": 9922.18, + "probability": 0.9982 + }, + { + "start": 9923.24, + "end": 9926.8, + "probability": 0.9346 + }, + { + "start": 9929.26, + "end": 9930.46, + "probability": 0.7038 + }, + { + "start": 9931.32, + "end": 9932.18, + "probability": 0.8663 + }, + { + "start": 9933.0, + "end": 9933.66, + "probability": 0.9297 + }, + { + "start": 9935.18, + "end": 9936.22, + "probability": 0.7072 + }, + { + "start": 9937.38, + "end": 9940.73, + "probability": 0.9921 + }, + { + "start": 9941.46, + "end": 9942.14, + "probability": 0.9912 + }, + { + "start": 9943.74, + "end": 9948.28, + "probability": 0.9907 + }, + { + "start": 9948.3, + "end": 9952.4, + "probability": 0.9958 + }, + { + "start": 9954.02, + "end": 9958.54, + "probability": 0.88 + }, + { + "start": 9959.06, + "end": 9961.36, + "probability": 0.9553 + }, + { + "start": 9962.66, + "end": 9963.43, + "probability": 0.9893 + }, + { + "start": 9964.68, + "end": 9967.3, + "probability": 0.9988 + }, + { + "start": 9967.82, + "end": 9971.2, + "probability": 0.9764 + }, + { + "start": 9971.76, + "end": 9973.46, + "probability": 0.9975 + }, + { + "start": 9974.0, + "end": 9976.52, + "probability": 0.9409 + }, + { + "start": 9977.96, + "end": 9979.8, + "probability": 0.7829 + }, + { + "start": 9980.4, + "end": 9984.88, + "probability": 0.9978 + }, + { + "start": 9985.62, + "end": 9988.84, + "probability": 0.9994 + }, + { + "start": 9990.52, + "end": 9994.68, + "probability": 0.7643 + }, + { + "start": 9994.68, + "end": 9998.72, + "probability": 0.9989 + }, + { + "start": 9999.6, + "end": 10001.24, + "probability": 0.8561 + }, + { + "start": 10001.86, + "end": 10005.12, + "probability": 0.9829 + }, + { + "start": 10009.28, + "end": 10010.5, + "probability": 0.8718 + }, + { + "start": 10011.08, + "end": 10014.3, + "probability": 0.9993 + }, + { + "start": 10015.0, + "end": 10016.36, + "probability": 0.866 + }, + { + "start": 10017.14, + "end": 10021.8, + "probability": 0.9847 + }, + { + "start": 10026.26, + "end": 10028.9, + "probability": 0.86 + }, + { + "start": 10032.0, + "end": 10033.12, + "probability": 0.7786 + }, + { + "start": 10033.8, + "end": 10037.24, + "probability": 0.9913 + }, + { + "start": 10037.24, + "end": 10041.68, + "probability": 0.9987 + }, + { + "start": 10043.34, + "end": 10046.66, + "probability": 0.9747 + }, + { + "start": 10047.62, + "end": 10048.32, + "probability": 0.3474 + }, + { + "start": 10048.68, + "end": 10053.46, + "probability": 0.8276 + }, + { + "start": 10054.2, + "end": 10055.26, + "probability": 0.8046 + }, + { + "start": 10055.96, + "end": 10063.3, + "probability": 0.9614 + }, + { + "start": 10063.86, + "end": 10065.68, + "probability": 0.7568 + }, + { + "start": 10066.22, + "end": 10071.74, + "probability": 0.9597 + }, + { + "start": 10073.38, + "end": 10074.48, + "probability": 0.7046 + }, + { + "start": 10075.68, + "end": 10077.02, + "probability": 0.6408 + }, + { + "start": 10078.44, + "end": 10079.42, + "probability": 0.9961 + }, + { + "start": 10081.44, + "end": 10084.56, + "probability": 0.7182 + }, + { + "start": 10085.26, + "end": 10089.78, + "probability": 0.9537 + }, + { + "start": 10090.28, + "end": 10091.66, + "probability": 0.9392 + }, + { + "start": 10091.98, + "end": 10092.32, + "probability": 0.6938 + }, + { + "start": 10093.58, + "end": 10096.52, + "probability": 0.9928 + }, + { + "start": 10097.72, + "end": 10102.46, + "probability": 0.9663 + }, + { + "start": 10103.1, + "end": 10104.52, + "probability": 0.861 + }, + { + "start": 10107.28, + "end": 10108.42, + "probability": 0.634 + }, + { + "start": 10110.48, + "end": 10113.74, + "probability": 0.9622 + }, + { + "start": 10114.84, + "end": 10118.6, + "probability": 0.9878 + }, + { + "start": 10119.46, + "end": 10120.7, + "probability": 0.5698 + }, + { + "start": 10121.54, + "end": 10123.68, + "probability": 0.9753 + }, + { + "start": 10124.34, + "end": 10130.06, + "probability": 0.9854 + }, + { + "start": 10131.08, + "end": 10132.06, + "probability": 0.9641 + }, + { + "start": 10132.96, + "end": 10135.49, + "probability": 0.747 + }, + { + "start": 10136.38, + "end": 10137.62, + "probability": 0.8978 + }, + { + "start": 10138.5, + "end": 10140.0, + "probability": 0.9565 + }, + { + "start": 10141.22, + "end": 10143.58, + "probability": 0.8931 + }, + { + "start": 10144.42, + "end": 10147.18, + "probability": 0.9541 + }, + { + "start": 10147.28, + "end": 10148.3, + "probability": 0.6116 + }, + { + "start": 10148.6, + "end": 10150.02, + "probability": 0.4155 + }, + { + "start": 10151.34, + "end": 10153.5, + "probability": 0.9958 + }, + { + "start": 10153.68, + "end": 10155.76, + "probability": 0.8684 + }, + { + "start": 10156.76, + "end": 10161.78, + "probability": 0.7357 + }, + { + "start": 10163.7, + "end": 10167.3, + "probability": 0.7859 + }, + { + "start": 10168.58, + "end": 10169.5, + "probability": 0.8994 + }, + { + "start": 10171.24, + "end": 10176.0, + "probability": 0.8958 + }, + { + "start": 10176.9, + "end": 10177.32, + "probability": 0.3001 + }, + { + "start": 10177.84, + "end": 10181.2, + "probability": 0.9092 + }, + { + "start": 10181.94, + "end": 10187.2, + "probability": 0.9625 + }, + { + "start": 10188.12, + "end": 10189.22, + "probability": 0.9463 + }, + { + "start": 10190.18, + "end": 10194.0, + "probability": 0.9974 + }, + { + "start": 10194.56, + "end": 10199.14, + "probability": 0.9834 + }, + { + "start": 10199.8, + "end": 10206.5, + "probability": 0.9849 + }, + { + "start": 10207.96, + "end": 10208.52, + "probability": 0.5024 + }, + { + "start": 10211.14, + "end": 10213.94, + "probability": 0.9855 + }, + { + "start": 10214.42, + "end": 10216.94, + "probability": 0.9784 + }, + { + "start": 10218.28, + "end": 10219.0, + "probability": 0.7101 + }, + { + "start": 10219.7, + "end": 10223.68, + "probability": 0.9871 + }, + { + "start": 10223.86, + "end": 10229.22, + "probability": 0.9917 + }, + { + "start": 10232.12, + "end": 10232.76, + "probability": 0.7407 + }, + { + "start": 10233.36, + "end": 10235.96, + "probability": 0.9433 + }, + { + "start": 10237.34, + "end": 10242.44, + "probability": 0.9699 + }, + { + "start": 10243.1, + "end": 10245.08, + "probability": 0.8709 + }, + { + "start": 10246.3, + "end": 10247.44, + "probability": 0.9816 + }, + { + "start": 10248.0, + "end": 10250.66, + "probability": 0.9725 + }, + { + "start": 10251.6, + "end": 10256.9, + "probability": 0.9973 + }, + { + "start": 10257.8, + "end": 10260.81, + "probability": 0.9963 + }, + { + "start": 10261.72, + "end": 10267.66, + "probability": 0.9919 + }, + { + "start": 10269.36, + "end": 10270.38, + "probability": 0.4661 + }, + { + "start": 10271.88, + "end": 10272.74, + "probability": 0.7434 + }, + { + "start": 10272.86, + "end": 10277.24, + "probability": 0.9095 + }, + { + "start": 10277.84, + "end": 10280.94, + "probability": 0.7683 + }, + { + "start": 10282.8, + "end": 10284.56, + "probability": 0.7926 + }, + { + "start": 10285.66, + "end": 10287.2, + "probability": 0.9126 + }, + { + "start": 10288.12, + "end": 10290.76, + "probability": 0.9856 + }, + { + "start": 10291.62, + "end": 10296.13, + "probability": 0.9956 + }, + { + "start": 10297.5, + "end": 10301.06, + "probability": 0.9121 + }, + { + "start": 10301.7, + "end": 10303.44, + "probability": 0.9917 + }, + { + "start": 10306.2, + "end": 10307.4, + "probability": 0.9847 + }, + { + "start": 10308.26, + "end": 10309.27, + "probability": 0.9639 + }, + { + "start": 10310.12, + "end": 10311.2, + "probability": 0.9888 + }, + { + "start": 10311.88, + "end": 10312.89, + "probability": 0.9941 + }, + { + "start": 10313.62, + "end": 10314.6, + "probability": 0.841 + }, + { + "start": 10315.5, + "end": 10316.58, + "probability": 0.9933 + }, + { + "start": 10317.34, + "end": 10318.86, + "probability": 0.9587 + }, + { + "start": 10319.34, + "end": 10325.52, + "probability": 0.9374 + }, + { + "start": 10326.14, + "end": 10330.82, + "probability": 0.9595 + }, + { + "start": 10334.64, + "end": 10337.84, + "probability": 0.948 + }, + { + "start": 10338.48, + "end": 10339.44, + "probability": 0.9653 + }, + { + "start": 10340.42, + "end": 10341.13, + "probability": 0.9915 + }, + { + "start": 10341.56, + "end": 10342.87, + "probability": 0.9934 + }, + { + "start": 10343.44, + "end": 10344.91, + "probability": 0.9946 + }, + { + "start": 10345.8, + "end": 10349.72, + "probability": 0.9949 + }, + { + "start": 10350.22, + "end": 10352.06, + "probability": 0.9534 + }, + { + "start": 10352.58, + "end": 10356.86, + "probability": 0.998 + }, + { + "start": 10357.3, + "end": 10358.58, + "probability": 0.9595 + }, + { + "start": 10359.22, + "end": 10361.8, + "probability": 0.8023 + }, + { + "start": 10362.68, + "end": 10365.06, + "probability": 0.8323 + }, + { + "start": 10365.84, + "end": 10369.18, + "probability": 0.9613 + }, + { + "start": 10369.98, + "end": 10375.68, + "probability": 0.9758 + }, + { + "start": 10375.86, + "end": 10376.65, + "probability": 0.8046 + }, + { + "start": 10377.48, + "end": 10379.76, + "probability": 0.9894 + }, + { + "start": 10380.26, + "end": 10383.68, + "probability": 0.9831 + }, + { + "start": 10384.2, + "end": 10385.74, + "probability": 0.9465 + }, + { + "start": 10386.14, + "end": 10388.18, + "probability": 0.9973 + }, + { + "start": 10388.54, + "end": 10390.08, + "probability": 0.9527 + }, + { + "start": 10390.68, + "end": 10394.36, + "probability": 0.9873 + }, + { + "start": 10394.84, + "end": 10396.34, + "probability": 0.9835 + }, + { + "start": 10396.66, + "end": 10398.86, + "probability": 0.995 + }, + { + "start": 10399.14, + "end": 10401.48, + "probability": 0.9805 + }, + { + "start": 10401.6, + "end": 10402.52, + "probability": 0.9407 + }, + { + "start": 10403.66, + "end": 10407.66, + "probability": 0.9719 + }, + { + "start": 10408.26, + "end": 10408.48, + "probability": 0.7826 + }, + { + "start": 10408.78, + "end": 10411.62, + "probability": 0.939 + }, + { + "start": 10412.42, + "end": 10412.94, + "probability": 0.706 + }, + { + "start": 10413.02, + "end": 10413.54, + "probability": 0.8774 + }, + { + "start": 10413.6, + "end": 10414.82, + "probability": 0.9815 + }, + { + "start": 10415.0, + "end": 10416.55, + "probability": 0.9719 + }, + { + "start": 10420.84, + "end": 10421.4, + "probability": 0.8348 + }, + { + "start": 10422.52, + "end": 10423.72, + "probability": 0.7592 + }, + { + "start": 10423.84, + "end": 10425.64, + "probability": 0.9963 + }, + { + "start": 10426.56, + "end": 10429.4, + "probability": 0.9744 + }, + { + "start": 10430.58, + "end": 10432.46, + "probability": 0.9888 + }, + { + "start": 10433.04, + "end": 10433.34, + "probability": 0.4464 + }, + { + "start": 10433.42, + "end": 10434.68, + "probability": 0.9966 + }, + { + "start": 10435.44, + "end": 10437.46, + "probability": 0.9832 + }, + { + "start": 10437.94, + "end": 10438.1, + "probability": 0.2704 + }, + { + "start": 10438.18, + "end": 10439.52, + "probability": 0.9895 + }, + { + "start": 10440.1, + "end": 10444.56, + "probability": 0.936 + }, + { + "start": 10444.68, + "end": 10444.88, + "probability": 0.8227 + }, + { + "start": 10444.94, + "end": 10449.18, + "probability": 0.9736 + }, + { + "start": 10449.3, + "end": 10453.64, + "probability": 0.8319 + }, + { + "start": 10453.82, + "end": 10456.92, + "probability": 0.3995 + }, + { + "start": 10457.02, + "end": 10459.02, + "probability": 0.6699 + }, + { + "start": 10459.28, + "end": 10460.04, + "probability": 0.9863 + }, + { + "start": 10460.74, + "end": 10462.2, + "probability": 0.9756 + }, + { + "start": 10462.82, + "end": 10463.76, + "probability": 0.9723 + }, + { + "start": 10463.9, + "end": 10466.2, + "probability": 0.9845 + }, + { + "start": 10467.32, + "end": 10468.03, + "probability": 0.3337 + }, + { + "start": 10468.92, + "end": 10469.44, + "probability": 0.267 + }, + { + "start": 10469.76, + "end": 10470.7, + "probability": 0.3303 + }, + { + "start": 10470.82, + "end": 10471.6, + "probability": 0.5428 + }, + { + "start": 10471.72, + "end": 10473.8, + "probability": 0.9788 + }, + { + "start": 10474.2, + "end": 10476.08, + "probability": 0.6328 + }, + { + "start": 10476.34, + "end": 10477.2, + "probability": 0.7835 + }, + { + "start": 10477.38, + "end": 10479.1, + "probability": 0.5966 + }, + { + "start": 10480.18, + "end": 10481.58, + "probability": 0.7732 + }, + { + "start": 10481.72, + "end": 10482.36, + "probability": 0.9814 + }, + { + "start": 10482.8, + "end": 10486.18, + "probability": 0.9976 + }, + { + "start": 10486.18, + "end": 10489.04, + "probability": 0.999 + }, + { + "start": 10490.24, + "end": 10491.66, + "probability": 0.9982 + }, + { + "start": 10491.8, + "end": 10492.74, + "probability": 0.535 + }, + { + "start": 10493.5, + "end": 10494.78, + "probability": 0.7031 + }, + { + "start": 10494.84, + "end": 10495.4, + "probability": 0.6037 + }, + { + "start": 10495.44, + "end": 10496.28, + "probability": 0.9236 + }, + { + "start": 10496.38, + "end": 10498.78, + "probability": 0.9768 + }, + { + "start": 10500.42, + "end": 10501.26, + "probability": 0.6325 + }, + { + "start": 10501.82, + "end": 10502.52, + "probability": 0.9263 + }, + { + "start": 10504.02, + "end": 10505.6, + "probability": 0.9639 + }, + { + "start": 10505.7, + "end": 10507.21, + "probability": 0.9623 + }, + { + "start": 10507.44, + "end": 10508.44, + "probability": 0.6965 + }, + { + "start": 10508.74, + "end": 10511.06, + "probability": 0.9972 + }, + { + "start": 10511.06, + "end": 10514.2, + "probability": 0.9867 + }, + { + "start": 10514.6, + "end": 10518.64, + "probability": 0.996 + }, + { + "start": 10518.68, + "end": 10521.12, + "probability": 0.9636 + }, + { + "start": 10521.26, + "end": 10523.14, + "probability": 0.9116 + }, + { + "start": 10524.04, + "end": 10527.0, + "probability": 0.9958 + }, + { + "start": 10527.56, + "end": 10529.78, + "probability": 0.9951 + }, + { + "start": 10530.64, + "end": 10531.34, + "probability": 0.7758 + }, + { + "start": 10531.5, + "end": 10532.16, + "probability": 0.96 + }, + { + "start": 10532.62, + "end": 10534.7, + "probability": 0.9932 + }, + { + "start": 10535.82, + "end": 10537.74, + "probability": 0.9924 + }, + { + "start": 10538.16, + "end": 10540.54, + "probability": 0.9977 + }, + { + "start": 10540.54, + "end": 10543.34, + "probability": 0.9943 + }, + { + "start": 10543.34, + "end": 10547.84, + "probability": 0.9924 + }, + { + "start": 10548.24, + "end": 10551.06, + "probability": 0.9956 + }, + { + "start": 10551.06, + "end": 10554.08, + "probability": 0.9849 + }, + { + "start": 10554.52, + "end": 10554.9, + "probability": 0.7826 + }, + { + "start": 10555.82, + "end": 10557.67, + "probability": 0.9821 + }, + { + "start": 10558.7, + "end": 10560.72, + "probability": 0.4652 + }, + { + "start": 10560.78, + "end": 10562.78, + "probability": 0.8228 + }, + { + "start": 10563.06, + "end": 10564.04, + "probability": 0.5524 + }, + { + "start": 10564.1, + "end": 10564.64, + "probability": 0.7894 + }, + { + "start": 10564.68, + "end": 10564.96, + "probability": 0.8864 + }, + { + "start": 10565.04, + "end": 10566.32, + "probability": 0.9558 + }, + { + "start": 10566.5, + "end": 10567.06, + "probability": 0.3718 + }, + { + "start": 10567.14, + "end": 10567.62, + "probability": 0.7543 + }, + { + "start": 10567.68, + "end": 10568.06, + "probability": 0.3523 + }, + { + "start": 10568.72, + "end": 10570.66, + "probability": 0.832 + }, + { + "start": 10578.46, + "end": 10580.96, + "probability": 0.7566 + }, + { + "start": 10581.08, + "end": 10584.22, + "probability": 0.965 + }, + { + "start": 10584.72, + "end": 10585.88, + "probability": 0.8895 + }, + { + "start": 10586.74, + "end": 10588.06, + "probability": 0.9606 + }, + { + "start": 10588.14, + "end": 10589.13, + "probability": 0.9839 + }, + { + "start": 10589.32, + "end": 10590.92, + "probability": 0.9638 + }, + { + "start": 10591.9, + "end": 10594.26, + "probability": 0.8707 + }, + { + "start": 10595.9, + "end": 10596.92, + "probability": 0.698 + }, + { + "start": 10597.0, + "end": 10597.82, + "probability": 0.9895 + }, + { + "start": 10597.88, + "end": 10600.32, + "probability": 0.9862 + }, + { + "start": 10601.72, + "end": 10607.32, + "probability": 0.9984 + }, + { + "start": 10607.78, + "end": 10611.52, + "probability": 0.7833 + }, + { + "start": 10612.16, + "end": 10613.82, + "probability": 0.9759 + }, + { + "start": 10615.9, + "end": 10620.66, + "probability": 0.9976 + }, + { + "start": 10621.34, + "end": 10623.88, + "probability": 0.998 + }, + { + "start": 10624.56, + "end": 10626.14, + "probability": 0.8873 + }, + { + "start": 10626.58, + "end": 10629.72, + "probability": 0.9941 + }, + { + "start": 10629.84, + "end": 10634.88, + "probability": 0.9836 + }, + { + "start": 10635.26, + "end": 10636.78, + "probability": 0.9873 + }, + { + "start": 10637.12, + "end": 10638.96, + "probability": 0.9928 + }, + { + "start": 10639.04, + "end": 10640.82, + "probability": 0.8674 + }, + { + "start": 10641.28, + "end": 10642.74, + "probability": 0.9688 + }, + { + "start": 10643.12, + "end": 10646.22, + "probability": 0.965 + }, + { + "start": 10646.8, + "end": 10649.0, + "probability": 0.981 + }, + { + "start": 10649.36, + "end": 10650.64, + "probability": 0.7511 + }, + { + "start": 10651.02, + "end": 10651.24, + "probability": 0.3506 + }, + { + "start": 10651.3, + "end": 10652.02, + "probability": 0.737 + }, + { + "start": 10652.14, + "end": 10653.5, + "probability": 0.7987 + }, + { + "start": 10653.9, + "end": 10658.32, + "probability": 0.9782 + }, + { + "start": 10658.8, + "end": 10660.68, + "probability": 0.9085 + }, + { + "start": 10661.06, + "end": 10665.98, + "probability": 0.9902 + }, + { + "start": 10666.24, + "end": 10667.18, + "probability": 0.6284 + }, + { + "start": 10667.64, + "end": 10672.96, + "probability": 0.8805 + }, + { + "start": 10673.6, + "end": 10673.68, + "probability": 0.5066 + }, + { + "start": 10673.8, + "end": 10674.76, + "probability": 0.6067 + }, + { + "start": 10674.78, + "end": 10675.12, + "probability": 0.8424 + }, + { + "start": 10675.22, + "end": 10675.62, + "probability": 0.7804 + }, + { + "start": 10675.7, + "end": 10677.74, + "probability": 0.601 + }, + { + "start": 10677.84, + "end": 10678.5, + "probability": 0.9133 + }, + { + "start": 10678.86, + "end": 10678.88, + "probability": 0.0031 + }, + { + "start": 10678.88, + "end": 10679.06, + "probability": 0.3316 + }, + { + "start": 10679.06, + "end": 10679.72, + "probability": 0.599 + }, + { + "start": 10680.14, + "end": 10680.76, + "probability": 0.5342 + }, + { + "start": 10680.84, + "end": 10681.78, + "probability": 0.8692 + }, + { + "start": 10681.82, + "end": 10684.86, + "probability": 0.3605 + }, + { + "start": 10685.24, + "end": 10687.42, + "probability": 0.3082 + }, + { + "start": 10687.66, + "end": 10690.9, + "probability": 0.4892 + }, + { + "start": 10691.0, + "end": 10692.2, + "probability": 0.9149 + }, + { + "start": 10692.34, + "end": 10695.18, + "probability": 0.9978 + }, + { + "start": 10695.34, + "end": 10700.1, + "probability": 0.9819 + }, + { + "start": 10700.42, + "end": 10701.03, + "probability": 0.6877 + }, + { + "start": 10701.76, + "end": 10703.76, + "probability": 0.9419 + }, + { + "start": 10703.9, + "end": 10705.92, + "probability": 0.9845 + }, + { + "start": 10706.24, + "end": 10707.64, + "probability": 0.8586 + }, + { + "start": 10707.68, + "end": 10708.86, + "probability": 0.5631 + }, + { + "start": 10709.32, + "end": 10711.6, + "probability": 0.9873 + }, + { + "start": 10711.68, + "end": 10714.58, + "probability": 0.4873 + }, + { + "start": 10714.66, + "end": 10718.12, + "probability": 0.903 + }, + { + "start": 10718.52, + "end": 10720.02, + "probability": 0.8447 + }, + { + "start": 10720.1, + "end": 10721.6, + "probability": 0.9348 + }, + { + "start": 10721.68, + "end": 10722.78, + "probability": 0.993 + }, + { + "start": 10723.9, + "end": 10725.56, + "probability": 0.9752 + }, + { + "start": 10725.74, + "end": 10728.06, + "probability": 0.9131 + }, + { + "start": 10728.42, + "end": 10728.58, + "probability": 0.8606 + }, + { + "start": 10729.36, + "end": 10729.82, + "probability": 0.7551 + }, + { + "start": 10729.82, + "end": 10730.14, + "probability": 0.4618 + }, + { + "start": 10730.28, + "end": 10731.82, + "probability": 0.8799 + }, + { + "start": 10731.98, + "end": 10733.06, + "probability": 0.9031 + }, + { + "start": 10733.64, + "end": 10737.52, + "probability": 0.9373 + }, + { + "start": 10737.52, + "end": 10742.54, + "probability": 0.988 + }, + { + "start": 10742.64, + "end": 10743.0, + "probability": 0.1683 + }, + { + "start": 10745.04, + "end": 10746.48, + "probability": 0.373 + }, + { + "start": 10746.58, + "end": 10749.76, + "probability": 0.9678 + }, + { + "start": 10750.34, + "end": 10751.46, + "probability": 0.7855 + }, + { + "start": 10751.86, + "end": 10755.3, + "probability": 0.9368 + }, + { + "start": 10755.54, + "end": 10757.34, + "probability": 0.4512 + }, + { + "start": 10757.34, + "end": 10757.9, + "probability": 0.3247 + }, + { + "start": 10758.06, + "end": 10759.51, + "probability": 0.9265 + }, + { + "start": 10760.6, + "end": 10764.78, + "probability": 0.8905 + }, + { + "start": 10765.1, + "end": 10768.8, + "probability": 0.9577 + }, + { + "start": 10769.96, + "end": 10770.98, + "probability": 0.4313 + }, + { + "start": 10772.0, + "end": 10774.5, + "probability": 0.613 + }, + { + "start": 10777.52, + "end": 10780.78, + "probability": 0.8232 + }, + { + "start": 10781.68, + "end": 10783.9, + "probability": 0.981 + }, + { + "start": 10784.58, + "end": 10784.98, + "probability": 0.9953 + }, + { + "start": 10785.66, + "end": 10786.58, + "probability": 0.7888 + }, + { + "start": 10787.32, + "end": 10787.8, + "probability": 0.783 + }, + { + "start": 10788.48, + "end": 10789.5, + "probability": 0.4968 + }, + { + "start": 10790.64, + "end": 10792.54, + "probability": 0.8763 + }, + { + "start": 10794.04, + "end": 10796.16, + "probability": 0.9588 + }, + { + "start": 10799.18, + "end": 10800.28, + "probability": 0.9606 + }, + { + "start": 10801.46, + "end": 10802.44, + "probability": 0.9002 + }, + { + "start": 10803.22, + "end": 10803.68, + "probability": 0.9229 + }, + { + "start": 10804.76, + "end": 10805.54, + "probability": 0.6833 + }, + { + "start": 10806.26, + "end": 10806.76, + "probability": 0.9863 + }, + { + "start": 10807.48, + "end": 10808.38, + "probability": 0.6763 + }, + { + "start": 10809.2, + "end": 10811.56, + "probability": 0.9578 + }, + { + "start": 10812.52, + "end": 10813.3, + "probability": 0.9825 + }, + { + "start": 10814.0, + "end": 10815.02, + "probability": 0.8049 + }, + { + "start": 10815.86, + "end": 10816.36, + "probability": 0.7642 + }, + { + "start": 10817.2, + "end": 10818.18, + "probability": 0.7352 + }, + { + "start": 10819.0, + "end": 10819.46, + "probability": 0.978 + }, + { + "start": 10820.74, + "end": 10821.54, + "probability": 0.9429 + }, + { + "start": 10822.48, + "end": 10823.12, + "probability": 0.978 + }, + { + "start": 10823.76, + "end": 10824.72, + "probability": 0.8809 + }, + { + "start": 10827.14, + "end": 10829.42, + "probability": 0.9811 + }, + { + "start": 10830.18, + "end": 10832.16, + "probability": 0.974 + }, + { + "start": 10832.88, + "end": 10835.6, + "probability": 0.9578 + }, + { + "start": 10836.28, + "end": 10838.72, + "probability": 0.9361 + }, + { + "start": 10840.3, + "end": 10843.9, + "probability": 0.9282 + }, + { + "start": 10846.0, + "end": 10846.9, + "probability": 0.4047 + }, + { + "start": 10848.36, + "end": 10853.52, + "probability": 0.7724 + }, + { + "start": 10854.52, + "end": 10856.92, + "probability": 0.8844 + }, + { + "start": 10859.76, + "end": 10863.46, + "probability": 0.8835 + }, + { + "start": 10864.16, + "end": 10864.58, + "probability": 0.9497 + }, + { + "start": 10865.52, + "end": 10866.46, + "probability": 0.8967 + }, + { + "start": 10867.36, + "end": 10867.82, + "probability": 0.9533 + }, + { + "start": 10868.4, + "end": 10869.8, + "probability": 0.9644 + }, + { + "start": 10872.32, + "end": 10873.96, + "probability": 0.0432 + }, + { + "start": 10884.06, + "end": 10885.22, + "probability": 0.7964 + }, + { + "start": 10885.8, + "end": 10886.18, + "probability": 0.6921 + }, + { + "start": 10888.9, + "end": 10892.2, + "probability": 0.6055 + }, + { + "start": 10892.84, + "end": 10895.1, + "probability": 0.9707 + }, + { + "start": 10896.88, + "end": 10897.44, + "probability": 0.9159 + }, + { + "start": 10898.68, + "end": 10899.78, + "probability": 0.9301 + }, + { + "start": 10900.62, + "end": 10902.84, + "probability": 0.9551 + }, + { + "start": 10904.59, + "end": 10906.98, + "probability": 0.9686 + }, + { + "start": 10907.84, + "end": 10908.3, + "probability": 0.9575 + }, + { + "start": 10909.12, + "end": 10909.84, + "probability": 0.9567 + }, + { + "start": 10910.9, + "end": 10911.36, + "probability": 0.9788 + }, + { + "start": 10911.88, + "end": 10912.66, + "probability": 0.9282 + }, + { + "start": 10915.34, + "end": 10915.8, + "probability": 0.957 + }, + { + "start": 10916.88, + "end": 10917.66, + "probability": 0.5008 + }, + { + "start": 10918.96, + "end": 10920.92, + "probability": 0.8075 + }, + { + "start": 10921.78, + "end": 10922.26, + "probability": 0.992 + }, + { + "start": 10922.98, + "end": 10923.94, + "probability": 0.8389 + }, + { + "start": 10924.92, + "end": 10927.46, + "probability": 0.9795 + }, + { + "start": 10928.12, + "end": 10933.54, + "probability": 0.9558 + }, + { + "start": 10935.18, + "end": 10938.96, + "probability": 0.857 + }, + { + "start": 10939.78, + "end": 10941.76, + "probability": 0.9074 + }, + { + "start": 10943.11, + "end": 10945.36, + "probability": 0.9822 + }, + { + "start": 10947.06, + "end": 10948.82, + "probability": 0.0286 + }, + { + "start": 10952.9, + "end": 10959.52, + "probability": 0.6562 + }, + { + "start": 10960.46, + "end": 10963.3, + "probability": 0.9396 + }, + { + "start": 10964.64, + "end": 10967.0, + "probability": 0.7945 + }, + { + "start": 10968.42, + "end": 10971.28, + "probability": 0.8941 + }, + { + "start": 10971.94, + "end": 10972.42, + "probability": 0.9922 + }, + { + "start": 10976.18, + "end": 10977.4, + "probability": 0.6748 + }, + { + "start": 10977.94, + "end": 10979.16, + "probability": 0.9491 + }, + { + "start": 10980.32, + "end": 10981.18, + "probability": 0.7889 + }, + { + "start": 10982.34, + "end": 10983.0, + "probability": 0.813 + }, + { + "start": 10983.72, + "end": 10984.72, + "probability": 0.8425 + }, + { + "start": 10985.61, + "end": 10988.24, + "probability": 0.9616 + }, + { + "start": 10989.48, + "end": 10990.2, + "probability": 0.9758 + }, + { + "start": 10990.86, + "end": 10991.86, + "probability": 0.9606 + }, + { + "start": 10992.66, + "end": 10994.84, + "probability": 0.8665 + }, + { + "start": 10995.62, + "end": 10999.14, + "probability": 0.9687 + }, + { + "start": 11000.52, + "end": 11001.32, + "probability": 0.9593 + }, + { + "start": 11002.84, + "end": 11005.92, + "probability": 0.417 + }, + { + "start": 11007.82, + "end": 11008.28, + "probability": 0.9473 + }, + { + "start": 11008.96, + "end": 11010.38, + "probability": 0.894 + }, + { + "start": 11011.04, + "end": 11013.16, + "probability": 0.9181 + }, + { + "start": 11014.2, + "end": 11016.24, + "probability": 0.9819 + }, + { + "start": 11017.04, + "end": 11017.36, + "probability": 0.9504 + }, + { + "start": 11018.5, + "end": 11019.44, + "probability": 0.8249 + }, + { + "start": 11020.64, + "end": 11023.46, + "probability": 0.8318 + }, + { + "start": 11024.2, + "end": 11026.66, + "probability": 0.9939 + }, + { + "start": 11027.52, + "end": 11027.94, + "probability": 0.9917 + }, + { + "start": 11028.92, + "end": 11029.6, + "probability": 0.9848 + }, + { + "start": 11030.54, + "end": 11032.28, + "probability": 0.6017 + }, + { + "start": 11034.24, + "end": 11035.16, + "probability": 0.7124 + }, + { + "start": 11038.62, + "end": 11041.58, + "probability": 0.8077 + }, + { + "start": 11044.42, + "end": 11045.78, + "probability": 0.4999 + }, + { + "start": 11047.3, + "end": 11048.44, + "probability": 0.6095 + }, + { + "start": 11049.88, + "end": 11052.78, + "probability": 0.8631 + }, + { + "start": 11053.96, + "end": 11056.44, + "probability": 0.9882 + }, + { + "start": 11057.58, + "end": 11058.28, + "probability": 0.8833 + }, + { + "start": 11058.9, + "end": 11059.92, + "probability": 0.9881 + }, + { + "start": 11060.66, + "end": 11062.88, + "probability": 0.864 + }, + { + "start": 11063.86, + "end": 11064.76, + "probability": 0.9683 + }, + { + "start": 11065.72, + "end": 11066.52, + "probability": 0.9922 + }, + { + "start": 11067.5, + "end": 11069.58, + "probability": 0.8849 + }, + { + "start": 11070.82, + "end": 11074.96, + "probability": 0.9578 + }, + { + "start": 11075.7, + "end": 11076.92, + "probability": 0.712 + }, + { + "start": 11077.92, + "end": 11081.7, + "probability": 0.9648 + }, + { + "start": 11082.5, + "end": 11083.58, + "probability": 0.9255 + }, + { + "start": 11084.46, + "end": 11086.94, + "probability": 0.9497 + }, + { + "start": 11088.24, + "end": 11088.58, + "probability": 0.9243 + }, + { + "start": 11089.3, + "end": 11090.62, + "probability": 0.9685 + }, + { + "start": 11092.04, + "end": 11092.52, + "probability": 0.9888 + }, + { + "start": 11093.88, + "end": 11094.7, + "probability": 0.8397 + }, + { + "start": 11095.68, + "end": 11098.14, + "probability": 0.9907 + }, + { + "start": 11098.78, + "end": 11099.22, + "probability": 0.9938 + }, + { + "start": 11099.92, + "end": 11100.94, + "probability": 0.8823 + }, + { + "start": 11101.4, + "end": 11104.42, + "probability": 0.8044 + }, + { + "start": 11104.84, + "end": 11108.16, + "probability": 0.9515 + }, + { + "start": 11108.46, + "end": 11111.3, + "probability": 0.9352 + }, + { + "start": 11112.24, + "end": 11114.9, + "probability": 0.9002 + }, + { + "start": 11116.46, + "end": 11119.88, + "probability": 0.8266 + }, + { + "start": 11120.74, + "end": 11122.6, + "probability": 0.9922 + }, + { + "start": 11123.16, + "end": 11124.22, + "probability": 0.889 + }, + { + "start": 11124.9, + "end": 11125.36, + "probability": 0.9984 + }, + { + "start": 11127.9, + "end": 11129.14, + "probability": 0.8236 + }, + { + "start": 11129.84, + "end": 11130.32, + "probability": 0.7654 + }, + { + "start": 11130.96, + "end": 11131.98, + "probability": 0.5464 + }, + { + "start": 11132.76, + "end": 11133.22, + "probability": 0.9541 + }, + { + "start": 11133.98, + "end": 11134.84, + "probability": 0.7057 + }, + { + "start": 11138.0, + "end": 11140.14, + "probability": 0.9341 + }, + { + "start": 11141.26, + "end": 11143.78, + "probability": 0.6453 + }, + { + "start": 11146.1, + "end": 11149.36, + "probability": 0.9097 + }, + { + "start": 11149.88, + "end": 11152.76, + "probability": 0.8148 + }, + { + "start": 11153.56, + "end": 11155.46, + "probability": 0.978 + }, + { + "start": 11155.98, + "end": 11156.86, + "probability": 0.9943 + }, + { + "start": 11157.9, + "end": 11158.42, + "probability": 0.8947 + }, + { + "start": 11159.64, + "end": 11160.7, + "probability": 0.7112 + }, + { + "start": 11161.92, + "end": 11162.82, + "probability": 0.748 + }, + { + "start": 11164.82, + "end": 11169.82, + "probability": 0.7811 + }, + { + "start": 11170.42, + "end": 11173.78, + "probability": 0.9339 + }, + { + "start": 11175.32, + "end": 11177.42, + "probability": 0.8267 + }, + { + "start": 11178.1, + "end": 11180.68, + "probability": 0.9554 + }, + { + "start": 11182.96, + "end": 11184.66, + "probability": 0.6034 + }, + { + "start": 11189.2, + "end": 11190.6, + "probability": 0.6041 + }, + { + "start": 11192.08, + "end": 11192.4, + "probability": 0.7154 + }, + { + "start": 11193.2, + "end": 11194.22, + "probability": 0.8191 + }, + { + "start": 11197.62, + "end": 11201.26, + "probability": 0.854 + }, + { + "start": 11203.25, + "end": 11205.58, + "probability": 0.9697 + }, + { + "start": 11206.24, + "end": 11208.58, + "probability": 0.9509 + }, + { + "start": 11209.26, + "end": 11211.88, + "probability": 0.8393 + }, + { + "start": 11212.78, + "end": 11213.3, + "probability": 0.9863 + }, + { + "start": 11214.4, + "end": 11215.22, + "probability": 0.6951 + }, + { + "start": 11216.32, + "end": 11216.66, + "probability": 0.7039 + }, + { + "start": 11217.4, + "end": 11218.44, + "probability": 0.8594 + }, + { + "start": 11219.2, + "end": 11219.66, + "probability": 0.7803 + }, + { + "start": 11220.38, + "end": 11224.7, + "probability": 0.9802 + }, + { + "start": 11225.26, + "end": 11227.52, + "probability": 0.9948 + }, + { + "start": 11228.32, + "end": 11233.28, + "probability": 0.9877 + }, + { + "start": 11234.32, + "end": 11237.14, + "probability": 0.8501 + }, + { + "start": 11238.1, + "end": 11238.58, + "probability": 0.9829 + }, + { + "start": 11239.56, + "end": 11241.72, + "probability": 0.7118 + }, + { + "start": 11245.55, + "end": 11248.52, + "probability": 0.653 + }, + { + "start": 11248.52, + "end": 11249.24, + "probability": 0.5283 + }, + { + "start": 11249.26, + "end": 11249.88, + "probability": 0.8818 + }, + { + "start": 11250.64, + "end": 11252.42, + "probability": 0.424 + }, + { + "start": 11253.18, + "end": 11255.34, + "probability": 0.8292 + }, + { + "start": 11256.1, + "end": 11258.42, + "probability": 0.9466 + }, + { + "start": 11259.74, + "end": 11260.4, + "probability": 0.6725 + }, + { + "start": 11261.44, + "end": 11262.68, + "probability": 0.7043 + }, + { + "start": 11263.82, + "end": 11264.54, + "probability": 0.9801 + }, + { + "start": 11265.64, + "end": 11266.5, + "probability": 0.9785 + }, + { + "start": 11267.78, + "end": 11270.24, + "probability": 0.9414 + }, + { + "start": 11271.12, + "end": 11271.86, + "probability": 0.9936 + }, + { + "start": 11273.5, + "end": 11274.68, + "probability": 0.8494 + }, + { + "start": 11275.36, + "end": 11276.16, + "probability": 0.9862 + }, + { + "start": 11276.8, + "end": 11278.14, + "probability": 0.7251 + }, + { + "start": 11280.4, + "end": 11285.5, + "probability": 0.3406 + }, + { + "start": 11286.82, + "end": 11287.8, + "probability": 0.5471 + }, + { + "start": 11291.9, + "end": 11297.96, + "probability": 0.6396 + }, + { + "start": 11299.36, + "end": 11301.54, + "probability": 0.5134 + }, + { + "start": 11302.12, + "end": 11303.64, + "probability": 0.7101 + }, + { + "start": 11305.7, + "end": 11308.82, + "probability": 0.7572 + }, + { + "start": 11309.96, + "end": 11311.18, + "probability": 0.9289 + }, + { + "start": 11312.0, + "end": 11318.1, + "probability": 0.7152 + }, + { + "start": 11320.18, + "end": 11323.34, + "probability": 0.885 + }, + { + "start": 11325.28, + "end": 11325.82, + "probability": 0.3904 + }, + { + "start": 11329.74, + "end": 11333.86, + "probability": 0.9746 + }, + { + "start": 11334.38, + "end": 11337.02, + "probability": 0.4128 + }, + { + "start": 11337.02, + "end": 11338.14, + "probability": 0.9175 + }, + { + "start": 11342.92, + "end": 11345.02, + "probability": 0.1162 + }, + { + "start": 11372.52, + "end": 11372.88, + "probability": 0.1389 + }, + { + "start": 11373.68, + "end": 11377.2, + "probability": 0.1438 + }, + { + "start": 11382.8, + "end": 11382.92, + "probability": 0.0015 + }, + { + "start": 11449.14, + "end": 11452.28, + "probability": 0.614 + }, + { + "start": 11452.74, + "end": 11455.74, + "probability": 0.9971 + }, + { + "start": 11456.29, + "end": 11459.12, + "probability": 0.8574 + }, + { + "start": 11459.36, + "end": 11461.72, + "probability": 0.5191 + }, + { + "start": 11467.94, + "end": 11468.58, + "probability": 0.7219 + }, + { + "start": 11471.72, + "end": 11474.12, + "probability": 0.9831 + }, + { + "start": 11474.22, + "end": 11474.76, + "probability": 0.865 + }, + { + "start": 11474.92, + "end": 11481.1, + "probability": 0.9307 + }, + { + "start": 11482.72, + "end": 11483.08, + "probability": 0.5263 + }, + { + "start": 11483.2, + "end": 11484.28, + "probability": 0.5116 + }, + { + "start": 11484.32, + "end": 11484.84, + "probability": 0.4017 + }, + { + "start": 11484.9, + "end": 11486.0, + "probability": 0.4869 + }, + { + "start": 11486.58, + "end": 11489.58, + "probability": 0.2379 + }, + { + "start": 11494.44, + "end": 11495.32, + "probability": 0.0165 + }, + { + "start": 11510.24, + "end": 11512.96, + "probability": 0.1007 + }, + { + "start": 11513.06, + "end": 11516.56, + "probability": 0.1526 + }, + { + "start": 11518.36, + "end": 11519.24, + "probability": 0.2297 + }, + { + "start": 11520.91, + "end": 11523.48, + "probability": 0.0773 + }, + { + "start": 11523.48, + "end": 11526.18, + "probability": 0.0359 + }, + { + "start": 11526.98, + "end": 11527.68, + "probability": 0.0209 + }, + { + "start": 11527.86, + "end": 11527.86, + "probability": 0.0339 + }, + { + "start": 11538.28, + "end": 11538.8, + "probability": 0.2401 + }, + { + "start": 11539.24, + "end": 11541.62, + "probability": 0.1884 + }, + { + "start": 11543.82, + "end": 11547.12, + "probability": 0.1476 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.0, + "end": 11595.0, + "probability": 0.0 + }, + { + "start": 11595.22, + "end": 11598.4, + "probability": 0.7655 + }, + { + "start": 11605.16, + "end": 11605.18, + "probability": 0.0038 + }, + { + "start": 11607.08, + "end": 11612.64, + "probability": 0.991 + }, + { + "start": 11613.1, + "end": 11616.36, + "probability": 0.854 + }, + { + "start": 11616.68, + "end": 11617.5, + "probability": 0.7643 + }, + { + "start": 11617.66, + "end": 11618.8, + "probability": 0.7891 + }, + { + "start": 11618.84, + "end": 11619.54, + "probability": 0.9618 + }, + { + "start": 11619.64, + "end": 11623.76, + "probability": 0.7573 + }, + { + "start": 11624.04, + "end": 11628.3, + "probability": 0.944 + }, + { + "start": 11629.14, + "end": 11629.86, + "probability": 0.6113 + }, + { + "start": 11629.9, + "end": 11630.94, + "probability": 0.8895 + }, + { + "start": 11630.98, + "end": 11633.6, + "probability": 0.8866 + }, + { + "start": 11634.0, + "end": 11636.32, + "probability": 0.9792 + }, + { + "start": 11636.78, + "end": 11640.82, + "probability": 0.8745 + }, + { + "start": 11640.82, + "end": 11645.8, + "probability": 0.8399 + }, + { + "start": 11646.4, + "end": 11648.02, + "probability": 0.385 + }, + { + "start": 11648.22, + "end": 11649.64, + "probability": 0.8854 + }, + { + "start": 11649.78, + "end": 11652.04, + "probability": 0.4866 + }, + { + "start": 11652.54, + "end": 11654.72, + "probability": 0.5355 + }, + { + "start": 11654.72, + "end": 11657.48, + "probability": 0.9067 + }, + { + "start": 11658.04, + "end": 11664.84, + "probability": 0.917 + }, + { + "start": 11665.24, + "end": 11666.72, + "probability": 0.991 + }, + { + "start": 11667.26, + "end": 11669.2, + "probability": 0.6555 + }, + { + "start": 11669.62, + "end": 11671.8, + "probability": 0.696 + }, + { + "start": 11672.34, + "end": 11672.94, + "probability": 0.6748 + }, + { + "start": 11673.1, + "end": 11673.82, + "probability": 0.5826 + }, + { + "start": 11673.82, + "end": 11675.44, + "probability": 0.5617 + }, + { + "start": 11675.8, + "end": 11679.8, + "probability": 0.6267 + }, + { + "start": 11679.92, + "end": 11680.14, + "probability": 0.7858 + }, + { + "start": 11680.52, + "end": 11682.32, + "probability": 0.9319 + }, + { + "start": 11682.4, + "end": 11682.6, + "probability": 0.5922 + }, + { + "start": 11682.68, + "end": 11684.72, + "probability": 0.7233 + }, + { + "start": 11684.88, + "end": 11686.42, + "probability": 0.8813 + }, + { + "start": 11686.54, + "end": 11691.06, + "probability": 0.9399 + }, + { + "start": 11691.12, + "end": 11692.98, + "probability": 0.9046 + }, + { + "start": 11693.96, + "end": 11697.08, + "probability": 0.8784 + }, + { + "start": 11698.26, + "end": 11700.3, + "probability": 0.9413 + }, + { + "start": 11700.38, + "end": 11704.12, + "probability": 0.236 + }, + { + "start": 11704.96, + "end": 11705.64, + "probability": 0.0324 + }, + { + "start": 11705.64, + "end": 11706.04, + "probability": 0.1098 + }, + { + "start": 11706.04, + "end": 11706.04, + "probability": 0.1529 + }, + { + "start": 11706.04, + "end": 11707.14, + "probability": 0.1839 + }, + { + "start": 11707.28, + "end": 11710.26, + "probability": 0.2472 + }, + { + "start": 11712.12, + "end": 11714.62, + "probability": 0.2993 + }, + { + "start": 11714.82, + "end": 11716.24, + "probability": 0.1695 + }, + { + "start": 11717.06, + "end": 11718.3, + "probability": 0.1414 + }, + { + "start": 11720.32, + "end": 11725.9, + "probability": 0.6533 + }, + { + "start": 11726.48, + "end": 11731.78, + "probability": 0.9133 + }, + { + "start": 11731.78, + "end": 11736.56, + "probability": 0.9881 + }, + { + "start": 11736.66, + "end": 11737.96, + "probability": 0.9976 + }, + { + "start": 11739.08, + "end": 11745.3, + "probability": 0.9991 + }, + { + "start": 11745.94, + "end": 11748.0, + "probability": 0.9454 + }, + { + "start": 11748.26, + "end": 11748.94, + "probability": 0.8129 + }, + { + "start": 11753.66, + "end": 11757.78, + "probability": 0.9479 + }, + { + "start": 11758.22, + "end": 11759.62, + "probability": 0.3894 + }, + { + "start": 11759.76, + "end": 11761.26, + "probability": 0.7222 + }, + { + "start": 11761.32, + "end": 11762.72, + "probability": 0.8022 + }, + { + "start": 11773.1, + "end": 11773.18, + "probability": 0.0111 + }, + { + "start": 11773.7, + "end": 11776.76, + "probability": 0.2465 + }, + { + "start": 11780.1, + "end": 11782.16, + "probability": 0.0781 + }, + { + "start": 11782.16, + "end": 11782.86, + "probability": 0.6354 + }, + { + "start": 11783.92, + "end": 11785.51, + "probability": 0.7374 + }, + { + "start": 11785.7, + "end": 11786.74, + "probability": 0.9538 + }, + { + "start": 11787.08, + "end": 11787.84, + "probability": 0.9228 + }, + { + "start": 11787.88, + "end": 11789.0, + "probability": 0.5709 + }, + { + "start": 11789.62, + "end": 11794.56, + "probability": 0.8993 + }, + { + "start": 11795.42, + "end": 11796.58, + "probability": 0.607 + }, + { + "start": 11796.8, + "end": 11799.34, + "probability": 0.9949 + }, + { + "start": 11799.9, + "end": 11801.36, + "probability": 0.8239 + }, + { + "start": 11801.86, + "end": 11803.28, + "probability": 0.9583 + }, + { + "start": 11803.3, + "end": 11804.92, + "probability": 0.9782 + }, + { + "start": 11805.32, + "end": 11808.86, + "probability": 0.948 + }, + { + "start": 11809.46, + "end": 11813.36, + "probability": 0.9884 + }, + { + "start": 11813.92, + "end": 11815.66, + "probability": 0.6893 + }, + { + "start": 11816.42, + "end": 11817.1, + "probability": 0.3413 + }, + { + "start": 11817.14, + "end": 11818.92, + "probability": 0.0467 + }, + { + "start": 11819.06, + "end": 11820.44, + "probability": 0.8477 + }, + { + "start": 11820.5, + "end": 11821.84, + "probability": 0.8047 + }, + { + "start": 11822.14, + "end": 11824.96, + "probability": 0.9956 + }, + { + "start": 11825.14, + "end": 11830.1, + "probability": 0.995 + }, + { + "start": 11830.44, + "end": 11831.88, + "probability": 0.9797 + }, + { + "start": 11832.1, + "end": 11833.46, + "probability": 0.6199 + }, + { + "start": 11833.76, + "end": 11834.98, + "probability": 0.8184 + }, + { + "start": 11835.18, + "end": 11837.4, + "probability": 0.988 + }, + { + "start": 11837.72, + "end": 11840.28, + "probability": 0.9954 + }, + { + "start": 11840.7, + "end": 11844.39, + "probability": 0.6004 + }, + { + "start": 11844.98, + "end": 11847.62, + "probability": 0.9983 + }, + { + "start": 11847.7, + "end": 11849.72, + "probability": 0.9971 + }, + { + "start": 11850.26, + "end": 11852.8, + "probability": 0.9931 + }, + { + "start": 11853.22, + "end": 11855.96, + "probability": 0.96 + }, + { + "start": 11856.58, + "end": 11857.46, + "probability": 0.9038 + }, + { + "start": 11857.58, + "end": 11864.3, + "probability": 0.9246 + }, + { + "start": 11864.7, + "end": 11869.0, + "probability": 0.7485 + }, + { + "start": 11869.38, + "end": 11873.0, + "probability": 0.9953 + }, + { + "start": 11873.54, + "end": 11874.9, + "probability": 0.6934 + }, + { + "start": 11875.42, + "end": 11876.26, + "probability": 0.943 + }, + { + "start": 11876.6, + "end": 11881.08, + "probability": 0.9934 + }, + { + "start": 11881.2, + "end": 11882.66, + "probability": 0.9995 + }, + { + "start": 11883.18, + "end": 11885.58, + "probability": 0.9963 + }, + { + "start": 11886.54, + "end": 11888.52, + "probability": 0.688 + }, + { + "start": 11888.58, + "end": 11893.08, + "probability": 0.957 + }, + { + "start": 11895.24, + "end": 11898.02, + "probability": 0.6114 + }, + { + "start": 11898.12, + "end": 11898.82, + "probability": 0.6871 + }, + { + "start": 11898.86, + "end": 11899.46, + "probability": 0.9185 + }, + { + "start": 11905.98, + "end": 11909.72, + "probability": 0.1131 + }, + { + "start": 11912.02, + "end": 11916.0, + "probability": 0.0283 + }, + { + "start": 11916.5, + "end": 11916.52, + "probability": 0.0342 + }, + { + "start": 11917.34, + "end": 11917.72, + "probability": 0.0358 + }, + { + "start": 11917.72, + "end": 11919.6, + "probability": 0.601 + }, + { + "start": 11919.6, + "end": 11921.12, + "probability": 0.6239 + }, + { + "start": 11921.18, + "end": 11923.24, + "probability": 0.9209 + }, + { + "start": 11924.08, + "end": 11927.84, + "probability": 0.8983 + }, + { + "start": 11928.24, + "end": 11929.78, + "probability": 0.9249 + }, + { + "start": 11931.28, + "end": 11934.16, + "probability": 0.9417 + }, + { + "start": 11934.68, + "end": 11940.9, + "probability": 0.971 + }, + { + "start": 11940.96, + "end": 11941.58, + "probability": 0.678 + }, + { + "start": 11941.68, + "end": 11943.64, + "probability": 0.9067 + }, + { + "start": 11944.22, + "end": 11946.02, + "probability": 0.8278 + }, + { + "start": 11946.62, + "end": 11947.66, + "probability": 0.8592 + }, + { + "start": 11949.95, + "end": 11952.48, + "probability": 0.8358 + }, + { + "start": 11965.8, + "end": 11967.4, + "probability": 0.9209 + }, + { + "start": 11967.68, + "end": 11968.64, + "probability": 0.8574 + }, + { + "start": 11968.68, + "end": 11969.82, + "probability": 0.7908 + }, + { + "start": 11970.64, + "end": 11973.58, + "probability": 0.898 + }, + { + "start": 11974.14, + "end": 11979.02, + "probability": 0.9951 + }, + { + "start": 11979.8, + "end": 11982.56, + "probability": 0.9461 + }, + { + "start": 11983.22, + "end": 11989.0, + "probability": 0.9866 + }, + { + "start": 11989.7, + "end": 11993.9, + "probability": 0.9894 + }, + { + "start": 11994.44, + "end": 11998.4, + "probability": 0.9164 + }, + { + "start": 11999.18, + "end": 12000.02, + "probability": 0.5735 + }, + { + "start": 12000.72, + "end": 12001.65, + "probability": 0.5822 + }, + { + "start": 12002.36, + "end": 12005.14, + "probability": 0.8811 + }, + { + "start": 12005.6, + "end": 12009.56, + "probability": 0.9754 + }, + { + "start": 12010.0, + "end": 12011.72, + "probability": 0.972 + }, + { + "start": 12012.38, + "end": 12013.32, + "probability": 0.9647 + }, + { + "start": 12013.44, + "end": 12016.84, + "probability": 0.9961 + }, + { + "start": 12017.56, + "end": 12018.12, + "probability": 0.822 + }, + { + "start": 12018.44, + "end": 12019.34, + "probability": 0.9365 + }, + { + "start": 12019.5, + "end": 12021.32, + "probability": 0.9104 + }, + { + "start": 12022.4, + "end": 12026.58, + "probability": 0.8998 + }, + { + "start": 12027.04, + "end": 12028.96, + "probability": 0.9263 + }, + { + "start": 12029.18, + "end": 12032.84, + "probability": 0.9921 + }, + { + "start": 12032.84, + "end": 12039.04, + "probability": 0.9976 + }, + { + "start": 12039.46, + "end": 12040.46, + "probability": 0.6221 + }, + { + "start": 12040.48, + "end": 12045.14, + "probability": 0.9953 + }, + { + "start": 12045.82, + "end": 12048.72, + "probability": 0.6932 + }, + { + "start": 12049.48, + "end": 12050.04, + "probability": 0.9216 + }, + { + "start": 12050.4, + "end": 12054.5, + "probability": 0.9961 + }, + { + "start": 12055.18, + "end": 12057.46, + "probability": 0.9963 + }, + { + "start": 12057.9, + "end": 12062.92, + "probability": 0.991 + }, + { + "start": 12062.92, + "end": 12066.96, + "probability": 0.9848 + }, + { + "start": 12067.54, + "end": 12071.92, + "probability": 0.9685 + }, + { + "start": 12072.34, + "end": 12075.56, + "probability": 0.9901 + }, + { + "start": 12076.16, + "end": 12080.1, + "probability": 0.9924 + }, + { + "start": 12080.66, + "end": 12084.94, + "probability": 0.9844 + }, + { + "start": 12085.1, + "end": 12086.26, + "probability": 0.7341 + }, + { + "start": 12086.64, + "end": 12088.02, + "probability": 0.9639 + }, + { + "start": 12088.48, + "end": 12093.2, + "probability": 0.9988 + }, + { + "start": 12093.2, + "end": 12097.6, + "probability": 0.9996 + }, + { + "start": 12098.06, + "end": 12098.22, + "probability": 0.3446 + }, + { + "start": 12098.28, + "end": 12099.44, + "probability": 0.9312 + }, + { + "start": 12099.86, + "end": 12102.18, + "probability": 0.8238 + }, + { + "start": 12103.88, + "end": 12105.96, + "probability": 0.7385 + }, + { + "start": 12107.06, + "end": 12109.28, + "probability": 0.6706 + }, + { + "start": 12109.44, + "end": 12111.52, + "probability": 0.6565 + }, + { + "start": 12112.04, + "end": 12112.83, + "probability": 0.9447 + }, + { + "start": 12122.3, + "end": 12124.26, + "probability": 0.6757 + }, + { + "start": 12124.78, + "end": 12126.54, + "probability": 0.9695 + }, + { + "start": 12127.76, + "end": 12129.87, + "probability": 0.9919 + }, + { + "start": 12130.58, + "end": 12132.58, + "probability": 0.0913 + }, + { + "start": 12134.96, + "end": 12135.9, + "probability": 0.0138 + }, + { + "start": 12135.9, + "end": 12138.28, + "probability": 0.177 + }, + { + "start": 12138.44, + "end": 12138.86, + "probability": 0.1766 + }, + { + "start": 12138.9, + "end": 12139.98, + "probability": 0.5582 + }, + { + "start": 12140.18, + "end": 12142.02, + "probability": 0.8862 + }, + { + "start": 12142.1, + "end": 12143.36, + "probability": 0.5688 + }, + { + "start": 12143.58, + "end": 12144.94, + "probability": 0.7201 + }, + { + "start": 12147.12, + "end": 12153.0, + "probability": 0.9921 + }, + { + "start": 12154.02, + "end": 12155.02, + "probability": 0.9385 + }, + { + "start": 12155.64, + "end": 12158.18, + "probability": 0.8741 + }, + { + "start": 12158.72, + "end": 12160.71, + "probability": 0.5322 + }, + { + "start": 12161.74, + "end": 12163.38, + "probability": 0.0405 + }, + { + "start": 12163.66, + "end": 12165.94, + "probability": 0.0055 + }, + { + "start": 12165.94, + "end": 12166.7, + "probability": 0.0326 + }, + { + "start": 12167.04, + "end": 12172.4, + "probability": 0.9772 + }, + { + "start": 12172.74, + "end": 12178.92, + "probability": 0.8455 + }, + { + "start": 12179.1, + "end": 12181.58, + "probability": 0.9601 + }, + { + "start": 12181.91, + "end": 12185.96, + "probability": 0.8035 + }, + { + "start": 12186.38, + "end": 12188.28, + "probability": 0.8813 + }, + { + "start": 12189.24, + "end": 12190.84, + "probability": 0.8339 + }, + { + "start": 12190.94, + "end": 12191.9, + "probability": 0.9928 + }, + { + "start": 12192.08, + "end": 12193.34, + "probability": 0.8677 + }, + { + "start": 12193.64, + "end": 12194.18, + "probability": 0.6795 + }, + { + "start": 12194.28, + "end": 12195.68, + "probability": 0.9436 + }, + { + "start": 12195.72, + "end": 12200.42, + "probability": 0.7918 + }, + { + "start": 12200.5, + "end": 12201.57, + "probability": 0.9522 + }, + { + "start": 12202.08, + "end": 12203.04, + "probability": 0.7431 + }, + { + "start": 12204.32, + "end": 12207.24, + "probability": 0.114 + }, + { + "start": 12207.89, + "end": 12208.01, + "probability": 0.4178 + }, + { + "start": 12209.0, + "end": 12210.06, + "probability": 0.0181 + }, + { + "start": 12210.5, + "end": 12211.7, + "probability": 0.3296 + }, + { + "start": 12211.76, + "end": 12213.36, + "probability": 0.0806 + }, + { + "start": 12213.46, + "end": 12214.6, + "probability": 0.6744 + }, + { + "start": 12214.88, + "end": 12216.48, + "probability": 0.6755 + }, + { + "start": 12216.96, + "end": 12218.84, + "probability": 0.4209 + }, + { + "start": 12218.92, + "end": 12219.82, + "probability": 0.3384 + }, + { + "start": 12225.28, + "end": 12225.72, + "probability": 0.1169 + }, + { + "start": 12228.74, + "end": 12230.6, + "probability": 0.584 + }, + { + "start": 12241.4, + "end": 12243.54, + "probability": 0.0348 + }, + { + "start": 12244.18, + "end": 12245.6, + "probability": 0.0486 + }, + { + "start": 12246.06, + "end": 12246.06, + "probability": 0.0577 + }, + { + "start": 12246.06, + "end": 12246.06, + "probability": 0.0439 + }, + { + "start": 12246.82, + "end": 12248.94, + "probability": 0.2555 + }, + { + "start": 12249.22, + "end": 12249.54, + "probability": 0.0924 + }, + { + "start": 12250.06, + "end": 12250.06, + "probability": 0.1739 + }, + { + "start": 12250.06, + "end": 12250.06, + "probability": 0.3011 + }, + { + "start": 12250.06, + "end": 12250.96, + "probability": 0.3267 + }, + { + "start": 12250.96, + "end": 12251.52, + "probability": 0.2471 + }, + { + "start": 12251.6, + "end": 12252.0, + "probability": 0.1585 + }, + { + "start": 12253.92, + "end": 12254.54, + "probability": 0.1659 + }, + { + "start": 12254.84, + "end": 12256.6, + "probability": 0.7039 + }, + { + "start": 12256.6, + "end": 12256.92, + "probability": 0.0543 + }, + { + "start": 12256.92, + "end": 12257.3, + "probability": 0.0938 + }, + { + "start": 12257.36, + "end": 12258.04, + "probability": 0.3694 + }, + { + "start": 12259.72, + "end": 12264.1, + "probability": 0.6578 + }, + { + "start": 12264.2, + "end": 12266.6, + "probability": 0.9917 + }, + { + "start": 12269.51, + "end": 12270.74, + "probability": 0.1931 + }, + { + "start": 12270.74, + "end": 12271.84, + "probability": 0.2417 + }, + { + "start": 12273.42, + "end": 12274.9, + "probability": 0.0105 + }, + { + "start": 12285.82, + "end": 12285.92, + "probability": 0.007 + }, + { + "start": 12286.52, + "end": 12287.7, + "probability": 0.1052 + }, + { + "start": 12287.7, + "end": 12288.46, + "probability": 0.0812 + }, + { + "start": 12289.11, + "end": 12292.86, + "probability": 0.0281 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.0, + "end": 12302.0, + "probability": 0.0 + }, + { + "start": 12302.21, + "end": 12305.0, + "probability": 0.9663 + }, + { + "start": 12305.12, + "end": 12306.42, + "probability": 0.763 + }, + { + "start": 12306.74, + "end": 12307.8, + "probability": 0.6857 + }, + { + "start": 12307.9, + "end": 12308.78, + "probability": 0.7953 + }, + { + "start": 12308.78, + "end": 12309.82, + "probability": 0.7887 + }, + { + "start": 12310.08, + "end": 12311.66, + "probability": 0.7904 + }, + { + "start": 12312.06, + "end": 12313.84, + "probability": 0.744 + }, + { + "start": 12313.84, + "end": 12313.92, + "probability": 0.0392 + }, + { + "start": 12313.92, + "end": 12314.04, + "probability": 0.1051 + }, + { + "start": 12314.04, + "end": 12316.82, + "probability": 0.5438 + }, + { + "start": 12317.2, + "end": 12319.86, + "probability": 0.9777 + }, + { + "start": 12319.96, + "end": 12321.8, + "probability": 0.9838 + }, + { + "start": 12321.9, + "end": 12322.58, + "probability": 0.4726 + }, + { + "start": 12322.76, + "end": 12323.36, + "probability": 0.8081 + }, + { + "start": 12323.44, + "end": 12324.3, + "probability": 0.7683 + }, + { + "start": 12325.1, + "end": 12326.1, + "probability": 0.8867 + }, + { + "start": 12326.2, + "end": 12327.86, + "probability": 0.9653 + }, + { + "start": 12328.38, + "end": 12330.87, + "probability": 0.9842 + }, + { + "start": 12331.02, + "end": 12332.82, + "probability": 0.864 + }, + { + "start": 12333.4, + "end": 12336.36, + "probability": 0.997 + }, + { + "start": 12337.28, + "end": 12337.38, + "probability": 0.0741 + }, + { + "start": 12337.38, + "end": 12337.38, + "probability": 0.4612 + }, + { + "start": 12337.38, + "end": 12338.32, + "probability": 0.5369 + }, + { + "start": 12338.42, + "end": 12339.35, + "probability": 0.9373 + }, + { + "start": 12340.07, + "end": 12343.29, + "probability": 0.9985 + }, + { + "start": 12344.27, + "end": 12345.35, + "probability": 0.91 + }, + { + "start": 12346.11, + "end": 12348.53, + "probability": 0.9968 + }, + { + "start": 12348.71, + "end": 12350.89, + "probability": 0.9863 + }, + { + "start": 12351.43, + "end": 12353.27, + "probability": 0.6714 + }, + { + "start": 12353.65, + "end": 12356.71, + "probability": 0.7037 + }, + { + "start": 12356.81, + "end": 12356.93, + "probability": 0.1776 + }, + { + "start": 12356.97, + "end": 12357.03, + "probability": 0.0277 + }, + { + "start": 12357.37, + "end": 12357.37, + "probability": 0.4093 + }, + { + "start": 12357.37, + "end": 12357.37, + "probability": 0.3655 + }, + { + "start": 12357.37, + "end": 12357.37, + "probability": 0.1856 + }, + { + "start": 12357.37, + "end": 12361.25, + "probability": 0.8542 + }, + { + "start": 12361.31, + "end": 12362.45, + "probability": 0.8129 + }, + { + "start": 12362.89, + "end": 12364.23, + "probability": 0.9048 + }, + { + "start": 12364.67, + "end": 12366.77, + "probability": 0.9484 + }, + { + "start": 12367.29, + "end": 12368.57, + "probability": 0.619 + }, + { + "start": 12369.03, + "end": 12375.09, + "probability": 0.9938 + }, + { + "start": 12375.39, + "end": 12376.35, + "probability": 0.7782 + }, + { + "start": 12376.91, + "end": 12377.93, + "probability": 0.2557 + }, + { + "start": 12378.23, + "end": 12378.33, + "probability": 0.262 + }, + { + "start": 12378.33, + "end": 12380.34, + "probability": 0.6353 + }, + { + "start": 12380.65, + "end": 12382.83, + "probability": 0.876 + }, + { + "start": 12383.37, + "end": 12384.88, + "probability": 0.9951 + }, + { + "start": 12386.31, + "end": 12386.67, + "probability": 0.4166 + }, + { + "start": 12386.71, + "end": 12387.57, + "probability": 0.7432 + }, + { + "start": 12387.81, + "end": 12389.43, + "probability": 0.9927 + }, + { + "start": 12389.55, + "end": 12391.01, + "probability": 0.9575 + }, + { + "start": 12391.51, + "end": 12392.71, + "probability": 0.9539 + }, + { + "start": 12393.53, + "end": 12396.93, + "probability": 0.9875 + }, + { + "start": 12396.93, + "end": 12400.65, + "probability": 0.9374 + }, + { + "start": 12400.85, + "end": 12404.29, + "probability": 0.2379 + }, + { + "start": 12404.59, + "end": 12405.61, + "probability": 0.025 + }, + { + "start": 12406.15, + "end": 12408.33, + "probability": 0.1255 + }, + { + "start": 12412.01, + "end": 12412.03, + "probability": 0.0163 + }, + { + "start": 12412.03, + "end": 12413.77, + "probability": 0.1341 + }, + { + "start": 12413.77, + "end": 12414.51, + "probability": 0.2941 + }, + { + "start": 12426.16, + "end": 12427.14, + "probability": 0.2296 + }, + { + "start": 12427.14, + "end": 12428.47, + "probability": 0.2184 + }, + { + "start": 12429.88, + "end": 12431.3, + "probability": 0.1337 + }, + { + "start": 12435.62, + "end": 12436.94, + "probability": 0.1478 + }, + { + "start": 12436.94, + "end": 12437.18, + "probability": 0.1428 + }, + { + "start": 12437.18, + "end": 12437.18, + "probability": 0.1607 + }, + { + "start": 12437.18, + "end": 12437.94, + "probability": 0.0261 + }, + { + "start": 12438.42, + "end": 12438.76, + "probability": 0.3573 + }, + { + "start": 12439.24, + "end": 12440.28, + "probability": 0.5488 + }, + { + "start": 12440.47, + "end": 12440.54, + "probability": 0.6434 + }, + { + "start": 12440.54, + "end": 12441.38, + "probability": 0.1126 + }, + { + "start": 12442.38, + "end": 12446.7, + "probability": 0.2036 + }, + { + "start": 12449.4, + "end": 12450.3, + "probability": 0.0193 + }, + { + "start": 12451.06, + "end": 12451.2, + "probability": 0.0394 + }, + { + "start": 12451.2, + "end": 12453.34, + "probability": 0.1151 + }, + { + "start": 12453.4, + "end": 12454.38, + "probability": 0.04 + }, + { + "start": 12454.7, + "end": 12456.0, + "probability": 0.0209 + }, + { + "start": 12456.0, + "end": 12456.42, + "probability": 0.0523 + }, + { + "start": 12460.32, + "end": 12460.98, + "probability": 0.1195 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12461.0, + "end": 12461.0, + "probability": 0.0 + }, + { + "start": 12472.26, + "end": 12473.52, + "probability": 0.5129 + }, + { + "start": 12473.64, + "end": 12474.08, + "probability": 0.3696 + }, + { + "start": 12482.9, + "end": 12484.38, + "probability": 0.0314 + }, + { + "start": 12484.38, + "end": 12484.48, + "probability": 0.1054 + }, + { + "start": 12485.66, + "end": 12490.26, + "probability": 0.041 + }, + { + "start": 12491.2, + "end": 12492.8, + "probability": 0.1871 + }, + { + "start": 12493.18, + "end": 12494.46, + "probability": 0.0507 + }, + { + "start": 12496.55, + "end": 12498.04, + "probability": 0.0401 + }, + { + "start": 12499.66, + "end": 12500.52, + "probability": 0.3955 + }, + { + "start": 12502.87, + "end": 12503.7, + "probability": 0.0445 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12594.0, + "end": 12594.0, + "probability": 0.0 + }, + { + "start": 12602.68, + "end": 12605.78, + "probability": 0.7226 + }, + { + "start": 12606.58, + "end": 12608.48, + "probability": 0.8857 + }, + { + "start": 12608.58, + "end": 12609.76, + "probability": 0.9912 + }, + { + "start": 12610.76, + "end": 12612.14, + "probability": 0.7612 + }, + { + "start": 12612.32, + "end": 12613.9, + "probability": 0.9531 + }, + { + "start": 12614.04, + "end": 12614.78, + "probability": 0.9398 + }, + { + "start": 12615.86, + "end": 12619.04, + "probability": 0.9907 + }, + { + "start": 12619.14, + "end": 12620.92, + "probability": 0.8916 + }, + { + "start": 12621.02, + "end": 12622.08, + "probability": 0.7853 + }, + { + "start": 12622.94, + "end": 12627.1, + "probability": 0.8057 + }, + { + "start": 12627.1, + "end": 12631.84, + "probability": 0.9156 + }, + { + "start": 12633.38, + "end": 12638.34, + "probability": 0.9688 + }, + { + "start": 12638.34, + "end": 12644.82, + "probability": 0.8871 + }, + { + "start": 12644.92, + "end": 12645.9, + "probability": 0.5529 + }, + { + "start": 12647.82, + "end": 12649.92, + "probability": 0.808 + }, + { + "start": 12650.8, + "end": 12652.14, + "probability": 0.6805 + }, + { + "start": 12652.52, + "end": 12654.48, + "probability": 0.6681 + }, + { + "start": 12654.62, + "end": 12655.22, + "probability": 0.5931 + }, + { + "start": 12655.36, + "end": 12656.18, + "probability": 0.9883 + }, + { + "start": 12659.07, + "end": 12661.6, + "probability": 0.9688 + }, + { + "start": 12661.96, + "end": 12666.38, + "probability": 0.9007 + }, + { + "start": 12666.48, + "end": 12669.22, + "probability": 0.885 + }, + { + "start": 12669.28, + "end": 12669.88, + "probability": 0.8937 + }, + { + "start": 12671.64, + "end": 12673.48, + "probability": 0.939 + }, + { + "start": 12673.6, + "end": 12675.8, + "probability": 0.824 + }, + { + "start": 12677.28, + "end": 12679.5, + "probability": 0.9394 + }, + { + "start": 12680.06, + "end": 12681.16, + "probability": 0.8081 + }, + { + "start": 12681.5, + "end": 12686.7, + "probability": 0.9963 + }, + { + "start": 12687.32, + "end": 12689.42, + "probability": 0.9248 + }, + { + "start": 12689.98, + "end": 12694.38, + "probability": 0.8107 + }, + { + "start": 12695.18, + "end": 12697.41, + "probability": 0.9915 + }, + { + "start": 12698.24, + "end": 12699.28, + "probability": 0.4879 + }, + { + "start": 12699.86, + "end": 12700.76, + "probability": 0.6903 + }, + { + "start": 12701.4, + "end": 12704.98, + "probability": 0.9227 + }, + { + "start": 12705.58, + "end": 12708.18, + "probability": 0.9731 + }, + { + "start": 12711.64, + "end": 12713.4, + "probability": 0.7801 + }, + { + "start": 12713.4, + "end": 12718.48, + "probability": 0.9939 + }, + { + "start": 12718.86, + "end": 12723.44, + "probability": 0.994 + }, + { + "start": 12724.16, + "end": 12724.79, + "probability": 0.5208 + }, + { + "start": 12726.0, + "end": 12726.26, + "probability": 0.674 + }, + { + "start": 12726.82, + "end": 12728.16, + "probability": 0.9652 + }, + { + "start": 12728.42, + "end": 12730.58, + "probability": 0.9866 + }, + { + "start": 12731.16, + "end": 12733.12, + "probability": 0.9943 + }, + { + "start": 12733.28, + "end": 12736.68, + "probability": 0.9937 + }, + { + "start": 12737.26, + "end": 12737.7, + "probability": 0.8188 + }, + { + "start": 12740.92, + "end": 12746.28, + "probability": 0.9761 + }, + { + "start": 12746.52, + "end": 12749.72, + "probability": 0.9709 + }, + { + "start": 12749.78, + "end": 12751.22, + "probability": 0.578 + }, + { + "start": 12751.42, + "end": 12752.38, + "probability": 0.9066 + }, + { + "start": 12753.98, + "end": 12758.64, + "probability": 0.9575 + }, + { + "start": 12759.04, + "end": 12763.48, + "probability": 0.9491 + }, + { + "start": 12763.48, + "end": 12767.34, + "probability": 0.9483 + }, + { + "start": 12769.52, + "end": 12770.58, + "probability": 0.6177 + }, + { + "start": 12772.48, + "end": 12776.86, + "probability": 0.957 + }, + { + "start": 12777.48, + "end": 12777.48, + "probability": 0.9478 + }, + { + "start": 12780.02, + "end": 12782.22, + "probability": 0.996 + }, + { + "start": 12782.46, + "end": 12785.62, + "probability": 0.9785 + }, + { + "start": 12786.22, + "end": 12787.46, + "probability": 0.8721 + }, + { + "start": 12788.04, + "end": 12791.16, + "probability": 0.9458 + }, + { + "start": 12791.72, + "end": 12793.84, + "probability": 0.8706 + }, + { + "start": 12795.36, + "end": 12800.32, + "probability": 0.9982 + }, + { + "start": 12801.22, + "end": 12802.38, + "probability": 0.8117 + }, + { + "start": 12802.52, + "end": 12803.14, + "probability": 0.9479 + }, + { + "start": 12803.24, + "end": 12804.06, + "probability": 0.95 + }, + { + "start": 12804.14, + "end": 12806.96, + "probability": 0.9658 + }, + { + "start": 12807.78, + "end": 12810.4, + "probability": 0.9509 + }, + { + "start": 12810.74, + "end": 12811.96, + "probability": 0.9457 + }, + { + "start": 12812.9, + "end": 12817.78, + "probability": 0.9267 + }, + { + "start": 12819.56, + "end": 12822.38, + "probability": 0.8445 + }, + { + "start": 12822.98, + "end": 12825.94, + "probability": 0.9985 + }, + { + "start": 12826.38, + "end": 12827.8, + "probability": 0.8941 + }, + { + "start": 12829.16, + "end": 12831.62, + "probability": 0.9884 + }, + { + "start": 12832.26, + "end": 12833.96, + "probability": 0.8872 + }, + { + "start": 12834.56, + "end": 12835.5, + "probability": 0.8435 + }, + { + "start": 12837.26, + "end": 12839.72, + "probability": 0.9473 + }, + { + "start": 12839.72, + "end": 12844.12, + "probability": 0.9266 + }, + { + "start": 12845.18, + "end": 12848.62, + "probability": 0.8871 + }, + { + "start": 12851.7, + "end": 12852.48, + "probability": 0.7924 + }, + { + "start": 12855.24, + "end": 12856.28, + "probability": 0.4983 + }, + { + "start": 12856.52, + "end": 12857.34, + "probability": 0.8714 + }, + { + "start": 12857.34, + "end": 12857.74, + "probability": 0.6362 + }, + { + "start": 12859.16, + "end": 12862.5, + "probability": 0.9552 + }, + { + "start": 12862.82, + "end": 12866.38, + "probability": 0.9814 + }, + { + "start": 12866.54, + "end": 12867.0, + "probability": 0.958 + }, + { + "start": 12867.86, + "end": 12868.98, + "probability": 0.907 + }, + { + "start": 12869.4, + "end": 12871.08, + "probability": 0.9769 + }, + { + "start": 12871.2, + "end": 12872.26, + "probability": 0.9256 + }, + { + "start": 12872.3, + "end": 12873.68, + "probability": 0.9609 + }, + { + "start": 12874.16, + "end": 12877.54, + "probability": 0.9911 + }, + { + "start": 12877.7, + "end": 12879.58, + "probability": 0.8315 + }, + { + "start": 12879.84, + "end": 12882.14, + "probability": 0.988 + }, + { + "start": 12882.2, + "end": 12886.02, + "probability": 0.9873 + }, + { + "start": 12887.04, + "end": 12887.14, + "probability": 0.2802 + }, + { + "start": 12887.3, + "end": 12890.32, + "probability": 0.9541 + }, + { + "start": 12890.42, + "end": 12891.36, + "probability": 0.8018 + }, + { + "start": 12891.42, + "end": 12894.16, + "probability": 0.8936 + }, + { + "start": 12894.68, + "end": 12895.72, + "probability": 0.9421 + }, + { + "start": 12895.9, + "end": 12897.98, + "probability": 0.8436 + }, + { + "start": 12898.56, + "end": 12901.76, + "probability": 0.9833 + }, + { + "start": 12902.56, + "end": 12906.66, + "probability": 0.9943 + }, + { + "start": 12906.84, + "end": 12910.0, + "probability": 0.8394 + }, + { + "start": 12910.08, + "end": 12912.02, + "probability": 0.9966 + }, + { + "start": 12912.12, + "end": 12917.64, + "probability": 0.9922 + }, + { + "start": 12918.22, + "end": 12919.84, + "probability": 0.6873 + }, + { + "start": 12920.16, + "end": 12928.24, + "probability": 0.9741 + }, + { + "start": 12928.54, + "end": 12929.96, + "probability": 0.9892 + }, + { + "start": 12930.12, + "end": 12931.52, + "probability": 0.9758 + }, + { + "start": 12931.68, + "end": 12937.14, + "probability": 0.9932 + }, + { + "start": 12937.18, + "end": 12938.76, + "probability": 0.993 + }, + { + "start": 12938.86, + "end": 12941.96, + "probability": 0.9615 + }, + { + "start": 12942.06, + "end": 12943.54, + "probability": 0.9922 + }, + { + "start": 12944.36, + "end": 12945.08, + "probability": 0.9239 + }, + { + "start": 12945.14, + "end": 12945.44, + "probability": 0.6467 + }, + { + "start": 12946.88, + "end": 12948.96, + "probability": 0.8092 + }, + { + "start": 12949.92, + "end": 12953.44, + "probability": 0.8838 + }, + { + "start": 12958.18, + "end": 12958.58, + "probability": 0.8174 + }, + { + "start": 12959.2, + "end": 12961.42, + "probability": 0.7902 + }, + { + "start": 12962.44, + "end": 12964.24, + "probability": 0.897 + }, + { + "start": 12964.24, + "end": 12966.36, + "probability": 0.8135 + }, + { + "start": 12966.94, + "end": 12969.0, + "probability": 0.9925 + }, + { + "start": 12969.68, + "end": 12972.7, + "probability": 0.9879 + }, + { + "start": 12973.62, + "end": 12975.06, + "probability": 0.7781 + }, + { + "start": 12975.14, + "end": 12978.86, + "probability": 0.9875 + }, + { + "start": 12979.48, + "end": 12981.3, + "probability": 0.9911 + }, + { + "start": 12981.74, + "end": 12982.84, + "probability": 0.6564 + }, + { + "start": 12983.3, + "end": 12984.84, + "probability": 0.9259 + }, + { + "start": 12985.26, + "end": 12987.46, + "probability": 0.9715 + }, + { + "start": 12988.28, + "end": 12992.5, + "probability": 0.9839 + }, + { + "start": 12994.02, + "end": 12997.52, + "probability": 0.831 + }, + { + "start": 12997.74, + "end": 13000.0, + "probability": 0.9737 + }, + { + "start": 13000.86, + "end": 13003.26, + "probability": 0.9673 + }, + { + "start": 13004.18, + "end": 13006.68, + "probability": 0.9861 + }, + { + "start": 13007.48, + "end": 13010.82, + "probability": 0.9166 + }, + { + "start": 13010.86, + "end": 13011.35, + "probability": 0.9598 + }, + { + "start": 13012.12, + "end": 13013.5, + "probability": 0.9824 + }, + { + "start": 13014.8, + "end": 13018.62, + "probability": 0.994 + }, + { + "start": 13019.2, + "end": 13020.58, + "probability": 0.806 + }, + { + "start": 13021.28, + "end": 13025.52, + "probability": 0.9622 + }, + { + "start": 13026.18, + "end": 13029.9, + "probability": 0.9956 + }, + { + "start": 13031.56, + "end": 13033.46, + "probability": 0.7385 + }, + { + "start": 13033.76, + "end": 13034.2, + "probability": 0.6819 + }, + { + "start": 13034.32, + "end": 13039.32, + "probability": 0.9878 + }, + { + "start": 13039.32, + "end": 13044.88, + "probability": 0.991 + }, + { + "start": 13045.46, + "end": 13048.44, + "probability": 0.9679 + }, + { + "start": 13049.5, + "end": 13054.6, + "probability": 0.9947 + }, + { + "start": 13054.6, + "end": 13060.96, + "probability": 0.9951 + }, + { + "start": 13061.92, + "end": 13065.02, + "probability": 0.8622 + }, + { + "start": 13065.64, + "end": 13066.32, + "probability": 0.4659 + }, + { + "start": 13066.98, + "end": 13072.0, + "probability": 0.9928 + }, + { + "start": 13073.22, + "end": 13076.5, + "probability": 0.8683 + }, + { + "start": 13078.54, + "end": 13085.36, + "probability": 0.9985 + }, + { + "start": 13086.28, + "end": 13087.98, + "probability": 0.8564 + }, + { + "start": 13088.18, + "end": 13089.62, + "probability": 0.9552 + }, + { + "start": 13090.1, + "end": 13091.88, + "probability": 0.8634 + }, + { + "start": 13092.54, + "end": 13095.34, + "probability": 0.9715 + }, + { + "start": 13095.98, + "end": 13098.08, + "probability": 0.892 + }, + { + "start": 13100.08, + "end": 13104.96, + "probability": 0.9927 + }, + { + "start": 13105.82, + "end": 13110.46, + "probability": 0.945 + }, + { + "start": 13110.46, + "end": 13115.56, + "probability": 0.9728 + }, + { + "start": 13116.58, + "end": 13120.46, + "probability": 0.9879 + }, + { + "start": 13120.46, + "end": 13123.9, + "probability": 0.9967 + }, + { + "start": 13124.94, + "end": 13125.38, + "probability": 0.5722 + }, + { + "start": 13125.98, + "end": 13128.2, + "probability": 0.9614 + }, + { + "start": 13128.7, + "end": 13131.08, + "probability": 0.9977 + }, + { + "start": 13131.08, + "end": 13134.6, + "probability": 0.9189 + }, + { + "start": 13135.38, + "end": 13137.8, + "probability": 0.9978 + }, + { + "start": 13137.8, + "end": 13141.8, + "probability": 0.992 + }, + { + "start": 13142.76, + "end": 13149.32, + "probability": 0.9805 + }, + { + "start": 13150.0, + "end": 13151.1, + "probability": 0.7081 + }, + { + "start": 13151.86, + "end": 13154.02, + "probability": 0.8389 + }, + { + "start": 13156.24, + "end": 13156.78, + "probability": 0.6164 + }, + { + "start": 13157.02, + "end": 13160.66, + "probability": 0.8331 + }, + { + "start": 13160.66, + "end": 13164.66, + "probability": 0.9868 + }, + { + "start": 13165.66, + "end": 13171.66, + "probability": 0.994 + }, + { + "start": 13172.42, + "end": 13176.28, + "probability": 0.9732 + }, + { + "start": 13176.96, + "end": 13179.52, + "probability": 0.9995 + }, + { + "start": 13180.14, + "end": 13181.42, + "probability": 0.7454 + }, + { + "start": 13182.54, + "end": 13184.56, + "probability": 0.5831 + }, + { + "start": 13185.18, + "end": 13188.54, + "probability": 0.9231 + }, + { + "start": 13189.12, + "end": 13191.94, + "probability": 0.98 + }, + { + "start": 13192.66, + "end": 13194.48, + "probability": 0.9814 + }, + { + "start": 13198.52, + "end": 13203.08, + "probability": 0.9123 + }, + { + "start": 13203.74, + "end": 13205.62, + "probability": 0.9217 + }, + { + "start": 13206.3, + "end": 13209.22, + "probability": 0.942 + }, + { + "start": 13209.94, + "end": 13214.26, + "probability": 0.9879 + }, + { + "start": 13214.34, + "end": 13214.96, + "probability": 0.5315 + }, + { + "start": 13215.72, + "end": 13218.2, + "probability": 0.9951 + }, + { + "start": 13219.0, + "end": 13220.56, + "probability": 0.8311 + }, + { + "start": 13221.2, + "end": 13226.22, + "probability": 0.9218 + }, + { + "start": 13227.4, + "end": 13228.12, + "probability": 0.6534 + }, + { + "start": 13228.2, + "end": 13231.8, + "probability": 0.9885 + }, + { + "start": 13231.8, + "end": 13236.4, + "probability": 0.9951 + }, + { + "start": 13237.32, + "end": 13239.46, + "probability": 0.973 + }, + { + "start": 13240.18, + "end": 13242.82, + "probability": 0.7927 + }, + { + "start": 13243.46, + "end": 13245.28, + "probability": 0.9075 + }, + { + "start": 13246.28, + "end": 13250.06, + "probability": 0.9406 + }, + { + "start": 13254.56, + "end": 13256.88, + "probability": 0.9992 + }, + { + "start": 13257.48, + "end": 13260.42, + "probability": 0.998 + }, + { + "start": 13261.3, + "end": 13262.98, + "probability": 0.9221 + }, + { + "start": 13263.94, + "end": 13268.74, + "probability": 0.9956 + }, + { + "start": 13269.68, + "end": 13272.86, + "probability": 0.9892 + }, + { + "start": 13273.98, + "end": 13276.2, + "probability": 0.8573 + }, + { + "start": 13276.86, + "end": 13281.06, + "probability": 0.9894 + }, + { + "start": 13287.06, + "end": 13289.54, + "probability": 0.9917 + }, + { + "start": 13290.02, + "end": 13293.54, + "probability": 0.9839 + }, + { + "start": 13294.36, + "end": 13299.32, + "probability": 0.9932 + }, + { + "start": 13299.88, + "end": 13301.48, + "probability": 0.9613 + }, + { + "start": 13302.24, + "end": 13304.24, + "probability": 0.9401 + }, + { + "start": 13304.76, + "end": 13309.14, + "probability": 0.9778 + }, + { + "start": 13310.06, + "end": 13311.24, + "probability": 0.9222 + }, + { + "start": 13311.78, + "end": 13313.4, + "probability": 0.9819 + }, + { + "start": 13313.94, + "end": 13314.86, + "probability": 0.9322 + }, + { + "start": 13315.56, + "end": 13317.24, + "probability": 0.7587 + }, + { + "start": 13318.2, + "end": 13323.0, + "probability": 0.7104 + }, + { + "start": 13323.16, + "end": 13325.0, + "probability": 0.9723 + }, + { + "start": 13325.46, + "end": 13327.2, + "probability": 0.8659 + }, + { + "start": 13327.3, + "end": 13328.46, + "probability": 0.9375 + }, + { + "start": 13328.6, + "end": 13332.42, + "probability": 0.933 + }, + { + "start": 13333.28, + "end": 13334.48, + "probability": 0.7764 + }, + { + "start": 13334.74, + "end": 13337.68, + "probability": 0.8506 + }, + { + "start": 13343.21, + "end": 13346.3, + "probability": 0.8799 + }, + { + "start": 13346.42, + "end": 13347.02, + "probability": 0.8198 + }, + { + "start": 13348.63, + "end": 13353.08, + "probability": 0.9965 + }, + { + "start": 13353.76, + "end": 13357.35, + "probability": 0.9842 + }, + { + "start": 13362.38, + "end": 13362.76, + "probability": 0.6775 + }, + { + "start": 13363.26, + "end": 13364.26, + "probability": 0.2686 + }, + { + "start": 13365.42, + "end": 13366.04, + "probability": 0.5432 + }, + { + "start": 13366.04, + "end": 13366.52, + "probability": 0.2707 + }, + { + "start": 13372.28, + "end": 13372.5, + "probability": 0.7818 + }, + { + "start": 13372.62, + "end": 13374.28, + "probability": 0.9004 + }, + { + "start": 13374.3, + "end": 13375.58, + "probability": 0.9248 + }, + { + "start": 13375.6, + "end": 13376.96, + "probability": 0.6752 + }, + { + "start": 13378.42, + "end": 13381.98, + "probability": 0.6975 + }, + { + "start": 13384.26, + "end": 13387.98, + "probability": 0.7534 + }, + { + "start": 13389.82, + "end": 13394.26, + "probability": 0.6108 + }, + { + "start": 13394.46, + "end": 13396.62, + "probability": 0.9909 + }, + { + "start": 13397.3, + "end": 13400.9, + "probability": 0.5368 + }, + { + "start": 13403.28, + "end": 13406.28, + "probability": 0.9954 + }, + { + "start": 13406.44, + "end": 13407.14, + "probability": 0.9632 + }, + { + "start": 13407.26, + "end": 13409.52, + "probability": 0.3056 + }, + { + "start": 13409.52, + "end": 13410.63, + "probability": 0.4811 + }, + { + "start": 13411.56, + "end": 13412.18, + "probability": 0.4823 + }, + { + "start": 13412.87, + "end": 13414.96, + "probability": 0.0164 + }, + { + "start": 13416.04, + "end": 13417.42, + "probability": 0.8178 + }, + { + "start": 13419.08, + "end": 13421.96, + "probability": 0.0097 + }, + { + "start": 13427.12, + "end": 13427.89, + "probability": 0.4925 + }, + { + "start": 13427.96, + "end": 13431.94, + "probability": 0.9906 + }, + { + "start": 13432.26, + "end": 13435.04, + "probability": 0.6476 + }, + { + "start": 13435.34, + "end": 13435.8, + "probability": 0.7887 + }, + { + "start": 13435.92, + "end": 13437.06, + "probability": 0.8689 + }, + { + "start": 13437.12, + "end": 13437.48, + "probability": 0.9068 + }, + { + "start": 13437.52, + "end": 13438.99, + "probability": 0.8894 + }, + { + "start": 13439.36, + "end": 13439.94, + "probability": 0.954 + }, + { + "start": 13440.04, + "end": 13442.22, + "probability": 0.7533 + }, + { + "start": 13442.8, + "end": 13445.48, + "probability": 0.9232 + }, + { + "start": 13446.14, + "end": 13449.34, + "probability": 0.9771 + }, + { + "start": 13450.14, + "end": 13451.04, + "probability": 0.8152 + }, + { + "start": 13451.24, + "end": 13452.3, + "probability": 0.6933 + }, + { + "start": 13453.2, + "end": 13456.78, + "probability": 0.7407 + }, + { + "start": 13456.94, + "end": 13460.48, + "probability": 0.9551 + }, + { + "start": 13461.3, + "end": 13464.44, + "probability": 0.9089 + }, + { + "start": 13465.1, + "end": 13466.6, + "probability": 0.9731 + }, + { + "start": 13466.7, + "end": 13468.1, + "probability": 0.9919 + }, + { + "start": 13468.88, + "end": 13470.26, + "probability": 0.815 + }, + { + "start": 13470.98, + "end": 13473.02, + "probability": 0.9342 + }, + { + "start": 13473.82, + "end": 13475.66, + "probability": 0.9959 + }, + { + "start": 13476.38, + "end": 13477.12, + "probability": 0.6924 + }, + { + "start": 13477.28, + "end": 13480.08, + "probability": 0.8889 + }, + { + "start": 13480.82, + "end": 13483.08, + "probability": 0.9133 + }, + { + "start": 13494.36, + "end": 13496.96, + "probability": 0.7196 + }, + { + "start": 13497.1, + "end": 13499.7, + "probability": 0.9907 + }, + { + "start": 13499.86, + "end": 13501.08, + "probability": 0.9303 + }, + { + "start": 13501.21, + "end": 13503.0, + "probability": 0.9552 + }, + { + "start": 13503.1, + "end": 13504.48, + "probability": 0.8601 + }, + { + "start": 13513.18, + "end": 13514.86, + "probability": 0.7101 + }, + { + "start": 13514.9, + "end": 13515.44, + "probability": 0.9286 + }, + { + "start": 13521.06, + "end": 13523.2, + "probability": 0.8096 + }, + { + "start": 13524.54, + "end": 13527.0, + "probability": 0.9364 + }, + { + "start": 13527.1, + "end": 13531.91, + "probability": 0.9805 + }, + { + "start": 13534.5, + "end": 13536.02, + "probability": 0.9224 + }, + { + "start": 13536.24, + "end": 13538.24, + "probability": 0.8598 + }, + { + "start": 13540.28, + "end": 13544.18, + "probability": 0.985 + }, + { + "start": 13545.9, + "end": 13548.92, + "probability": 0.9072 + }, + { + "start": 13550.1, + "end": 13551.84, + "probability": 0.9857 + }, + { + "start": 13553.57, + "end": 13557.76, + "probability": 0.9481 + }, + { + "start": 13560.48, + "end": 13563.52, + "probability": 0.975 + }, + { + "start": 13563.76, + "end": 13570.02, + "probability": 0.9211 + }, + { + "start": 13570.9, + "end": 13573.04, + "probability": 0.8128 + }, + { + "start": 13573.92, + "end": 13576.16, + "probability": 0.9858 + }, + { + "start": 13578.04, + "end": 13588.16, + "probability": 0.9843 + }, + { + "start": 13589.5, + "end": 13594.84, + "probability": 0.8151 + }, + { + "start": 13595.86, + "end": 13599.88, + "probability": 0.9977 + }, + { + "start": 13599.94, + "end": 13603.46, + "probability": 0.9695 + }, + { + "start": 13604.48, + "end": 13605.22, + "probability": 0.7947 + }, + { + "start": 13605.28, + "end": 13608.42, + "probability": 0.7935 + }, + { + "start": 13608.6, + "end": 13612.66, + "probability": 0.936 + }, + { + "start": 13612.72, + "end": 13615.07, + "probability": 0.9148 + }, + { + "start": 13615.9, + "end": 13619.37, + "probability": 0.999 + }, + { + "start": 13620.02, + "end": 13625.56, + "probability": 0.9826 + }, + { + "start": 13625.8, + "end": 13628.32, + "probability": 0.9697 + }, + { + "start": 13628.84, + "end": 13630.73, + "probability": 0.9985 + }, + { + "start": 13631.42, + "end": 13636.56, + "probability": 0.6533 + }, + { + "start": 13637.3, + "end": 13638.22, + "probability": 0.6662 + }, + { + "start": 13638.58, + "end": 13642.54, + "probability": 0.9232 + }, + { + "start": 13642.54, + "end": 13645.62, + "probability": 0.9945 + }, + { + "start": 13645.92, + "end": 13649.32, + "probability": 0.8317 + }, + { + "start": 13649.42, + "end": 13651.42, + "probability": 0.4415 + }, + { + "start": 13651.48, + "end": 13656.44, + "probability": 0.9661 + }, + { + "start": 13656.92, + "end": 13658.8, + "probability": 0.9534 + }, + { + "start": 13659.0, + "end": 13660.2, + "probability": 0.716 + }, + { + "start": 13661.06, + "end": 13664.26, + "probability": 0.9663 + }, + { + "start": 13664.48, + "end": 13665.08, + "probability": 0.3667 + }, + { + "start": 13666.08, + "end": 13667.86, + "probability": 0.6573 + }, + { + "start": 13668.28, + "end": 13669.66, + "probability": 0.8792 + }, + { + "start": 13669.74, + "end": 13671.92, + "probability": 0.7465 + }, + { + "start": 13672.44, + "end": 13674.76, + "probability": 0.9251 + }, + { + "start": 13674.76, + "end": 13677.56, + "probability": 0.9928 + }, + { + "start": 13677.92, + "end": 13679.88, + "probability": 0.9988 + }, + { + "start": 13680.4, + "end": 13683.84, + "probability": 0.9938 + }, + { + "start": 13684.28, + "end": 13690.3, + "probability": 0.9907 + }, + { + "start": 13690.42, + "end": 13692.87, + "probability": 0.9963 + }, + { + "start": 13693.16, + "end": 13695.38, + "probability": 0.8686 + }, + { + "start": 13695.38, + "end": 13695.84, + "probability": 0.7105 + }, + { + "start": 13696.16, + "end": 13698.08, + "probability": 0.9883 + }, + { + "start": 13698.2, + "end": 13698.28, + "probability": 0.2443 + }, + { + "start": 13698.28, + "end": 13700.8, + "probability": 0.8801 + }, + { + "start": 13700.8, + "end": 13702.1, + "probability": 0.8647 + }, + { + "start": 13702.28, + "end": 13704.36, + "probability": 0.3024 + }, + { + "start": 13704.38, + "end": 13705.32, + "probability": 0.6395 + }, + { + "start": 13707.0, + "end": 13710.2, + "probability": 0.2146 + }, + { + "start": 13713.6, + "end": 13716.42, + "probability": 0.0584 + }, + { + "start": 13716.42, + "end": 13716.42, + "probability": 0.027 + }, + { + "start": 13720.16, + "end": 13720.16, + "probability": 0.0376 + }, + { + "start": 13722.56, + "end": 13724.06, + "probability": 0.188 + }, + { + "start": 13724.4, + "end": 13727.1, + "probability": 0.6861 + }, + { + "start": 13727.22, + "end": 13728.29, + "probability": 0.9866 + }, + { + "start": 13728.88, + "end": 13730.5, + "probability": 0.8284 + }, + { + "start": 13730.58, + "end": 13733.07, + "probability": 0.9432 + }, + { + "start": 13733.9, + "end": 13736.8, + "probability": 0.7535 + }, + { + "start": 13736.82, + "end": 13739.46, + "probability": 0.7428 + }, + { + "start": 13739.62, + "end": 13743.8, + "probability": 0.9774 + }, + { + "start": 13744.44, + "end": 13746.28, + "probability": 0.544 + }, + { + "start": 13747.04, + "end": 13748.3, + "probability": 0.8346 + }, + { + "start": 13749.12, + "end": 13749.82, + "probability": 0.9603 + }, + { + "start": 13751.59, + "end": 13752.66, + "probability": 0.6204 + }, + { + "start": 13752.7, + "end": 13754.2, + "probability": 0.5952 + }, + { + "start": 13755.98, + "end": 13759.36, + "probability": 0.7408 + }, + { + "start": 13759.38, + "end": 13763.42, + "probability": 0.9595 + }, + { + "start": 13764.0, + "end": 13767.82, + "probability": 0.9634 + }, + { + "start": 13768.52, + "end": 13772.14, + "probability": 0.8748 + }, + { + "start": 13772.18, + "end": 13778.52, + "probability": 0.968 + }, + { + "start": 13778.52, + "end": 13785.24, + "probability": 0.7055 + }, + { + "start": 13785.78, + "end": 13788.48, + "probability": 0.7991 + }, + { + "start": 13788.96, + "end": 13791.08, + "probability": 0.9977 + }, + { + "start": 13791.5, + "end": 13798.94, + "probability": 0.865 + }, + { + "start": 13799.36, + "end": 13799.36, + "probability": 0.0487 + }, + { + "start": 13799.36, + "end": 13800.7, + "probability": 0.7864 + }, + { + "start": 13801.54, + "end": 13807.28, + "probability": 0.9861 + }, + { + "start": 13807.36, + "end": 13809.44, + "probability": 0.4813 + }, + { + "start": 13809.5, + "end": 13810.32, + "probability": 0.2864 + }, + { + "start": 13810.32, + "end": 13811.0, + "probability": 0.6038 + }, + { + "start": 13811.14, + "end": 13812.05, + "probability": 0.6647 + }, + { + "start": 13812.36, + "end": 13814.0, + "probability": 0.5334 + }, + { + "start": 13814.74, + "end": 13816.66, + "probability": 0.0822 + }, + { + "start": 13818.14, + "end": 13819.16, + "probability": 0.1273 + }, + { + "start": 13820.22, + "end": 13820.8, + "probability": 0.2253 + }, + { + "start": 13821.78, + "end": 13822.06, + "probability": 0.0348 + }, + { + "start": 13822.16, + "end": 13822.36, + "probability": 0.0022 + }, + { + "start": 13823.66, + "end": 13827.18, + "probability": 0.3921 + }, + { + "start": 13827.42, + "end": 13829.74, + "probability": 0.3194 + }, + { + "start": 13829.74, + "end": 13829.74, + "probability": 0.377 + }, + { + "start": 13829.74, + "end": 13829.74, + "probability": 0.0669 + }, + { + "start": 13829.74, + "end": 13830.2, + "probability": 0.3666 + }, + { + "start": 13830.86, + "end": 13833.2, + "probability": 0.7906 + }, + { + "start": 13833.56, + "end": 13833.56, + "probability": 0.017 + }, + { + "start": 13833.56, + "end": 13833.56, + "probability": 0.3929 + }, + { + "start": 13833.56, + "end": 13834.76, + "probability": 0.5674 + }, + { + "start": 13835.2, + "end": 13835.3, + "probability": 0.4462 + }, + { + "start": 13835.36, + "end": 13836.38, + "probability": 0.571 + }, + { + "start": 13836.82, + "end": 13840.74, + "probability": 0.9115 + }, + { + "start": 13840.74, + "end": 13841.24, + "probability": 0.8201 + }, + { + "start": 13841.26, + "end": 13841.26, + "probability": 0.7548 + }, + { + "start": 13841.38, + "end": 13842.34, + "probability": 0.683 + }, + { + "start": 13844.16, + "end": 13844.36, + "probability": 0.1821 + }, + { + "start": 13844.36, + "end": 13845.28, + "probability": 0.4601 + }, + { + "start": 13845.28, + "end": 13845.88, + "probability": 0.7302 + }, + { + "start": 13846.2, + "end": 13846.62, + "probability": 0.2544 + }, + { + "start": 13849.28, + "end": 13850.06, + "probability": 0.3134 + }, + { + "start": 13850.06, + "end": 13850.68, + "probability": 0.0235 + }, + { + "start": 13850.84, + "end": 13851.18, + "probability": 0.0578 + }, + { + "start": 13851.18, + "end": 13851.18, + "probability": 0.1038 + }, + { + "start": 13851.18, + "end": 13853.1, + "probability": 0.7866 + }, + { + "start": 13853.2, + "end": 13853.38, + "probability": 0.4209 + }, + { + "start": 13853.38, + "end": 13854.34, + "probability": 0.7662 + }, + { + "start": 13854.58, + "end": 13854.82, + "probability": 0.7205 + }, + { + "start": 13855.6, + "end": 13856.38, + "probability": 0.5122 + }, + { + "start": 13856.38, + "end": 13856.68, + "probability": 0.3849 + }, + { + "start": 13856.97, + "end": 13860.36, + "probability": 0.8358 + }, + { + "start": 13860.42, + "end": 13861.7, + "probability": 0.5094 + }, + { + "start": 13861.74, + "end": 13870.64, + "probability": 0.9627 + }, + { + "start": 13872.0, + "end": 13876.56, + "probability": 0.5002 + }, + { + "start": 13876.58, + "end": 13881.08, + "probability": 0.7809 + }, + { + "start": 13881.08, + "end": 13886.92, + "probability": 0.9665 + }, + { + "start": 13886.92, + "end": 13891.78, + "probability": 0.3042 + }, + { + "start": 13891.78, + "end": 13893.24, + "probability": 0.5339 + }, + { + "start": 13893.32, + "end": 13894.94, + "probability": 0.8149 + }, + { + "start": 13895.14, + "end": 13897.7, + "probability": 0.9845 + }, + { + "start": 13898.02, + "end": 13899.72, + "probability": 0.9473 + }, + { + "start": 13900.18, + "end": 13900.64, + "probability": 0.5533 + }, + { + "start": 13900.98, + "end": 13901.4, + "probability": 0.0088 + }, + { + "start": 13903.08, + "end": 13904.0, + "probability": 0.1714 + }, + { + "start": 13905.72, + "end": 13905.98, + "probability": 0.2625 + }, + { + "start": 13905.98, + "end": 13905.98, + "probability": 0.0583 + }, + { + "start": 13905.98, + "end": 13905.98, + "probability": 0.1648 + }, + { + "start": 13905.98, + "end": 13906.92, + "probability": 0.2995 + }, + { + "start": 13907.84, + "end": 13910.46, + "probability": 0.6609 + }, + { + "start": 13911.7, + "end": 13916.82, + "probability": 0.7885 + }, + { + "start": 13916.94, + "end": 13918.8, + "probability": 0.7181 + }, + { + "start": 13919.24, + "end": 13921.74, + "probability": 0.6893 + }, + { + "start": 13921.86, + "end": 13923.84, + "probability": 0.9701 + }, + { + "start": 13924.3, + "end": 13928.0, + "probability": 0.8361 + }, + { + "start": 13928.14, + "end": 13932.78, + "probability": 0.985 + }, + { + "start": 13933.26, + "end": 13935.32, + "probability": 0.981 + }, + { + "start": 13935.7, + "end": 13937.52, + "probability": 0.9489 + }, + { + "start": 13937.62, + "end": 13940.38, + "probability": 0.988 + }, + { + "start": 13940.68, + "end": 13945.1, + "probability": 0.9849 + }, + { + "start": 13945.3, + "end": 13947.94, + "probability": 0.9934 + }, + { + "start": 13947.94, + "end": 13951.19, + "probability": 0.9891 + }, + { + "start": 13951.52, + "end": 13953.48, + "probability": 0.5629 + }, + { + "start": 13953.96, + "end": 13955.96, + "probability": 0.781 + }, + { + "start": 13956.06, + "end": 13959.9, + "probability": 0.9238 + }, + { + "start": 13960.36, + "end": 13962.9, + "probability": 0.927 + }, + { + "start": 13963.24, + "end": 13968.34, + "probability": 0.9043 + }, + { + "start": 13968.7, + "end": 13971.98, + "probability": 0.9763 + }, + { + "start": 13971.98, + "end": 13974.9, + "probability": 0.9285 + }, + { + "start": 13974.98, + "end": 13977.16, + "probability": 0.9352 + }, + { + "start": 13977.6, + "end": 13980.44, + "probability": 0.9955 + }, + { + "start": 13980.76, + "end": 13983.14, + "probability": 0.7964 + }, + { + "start": 13983.32, + "end": 13985.46, + "probability": 0.8727 + }, + { + "start": 13985.88, + "end": 13985.88, + "probability": 0.0388 + }, + { + "start": 13985.88, + "end": 13985.88, + "probability": 0.3501 + }, + { + "start": 13985.88, + "end": 13988.1, + "probability": 0.9678 + }, + { + "start": 13988.28, + "end": 13988.99, + "probability": 0.9135 + }, + { + "start": 13989.5, + "end": 13992.74, + "probability": 0.8814 + }, + { + "start": 13992.74, + "end": 13996.22, + "probability": 0.9901 + }, + { + "start": 13996.74, + "end": 13998.9, + "probability": 0.8037 + }, + { + "start": 13999.46, + "end": 14002.68, + "probability": 0.9766 + }, + { + "start": 14003.12, + "end": 14005.1, + "probability": 0.7598 + }, + { + "start": 14005.58, + "end": 14005.58, + "probability": 0.0217 + }, + { + "start": 14005.58, + "end": 14006.0, + "probability": 0.3725 + }, + { + "start": 14006.06, + "end": 14006.74, + "probability": 0.8573 + }, + { + "start": 14006.82, + "end": 14008.7, + "probability": 0.9539 + }, + { + "start": 14008.96, + "end": 14011.12, + "probability": 0.8827 + }, + { + "start": 14011.74, + "end": 14017.24, + "probability": 0.961 + }, + { + "start": 14017.42, + "end": 14019.18, + "probability": 0.7146 + }, + { + "start": 14019.98, + "end": 14022.16, + "probability": 0.8745 + }, + { + "start": 14022.26, + "end": 14024.1, + "probability": 0.984 + }, + { + "start": 14024.56, + "end": 14025.86, + "probability": 0.9762 + }, + { + "start": 14026.04, + "end": 14026.04, + "probability": 0.0812 + }, + { + "start": 14026.04, + "end": 14026.78, + "probability": 0.6181 + }, + { + "start": 14028.16, + "end": 14030.98, + "probability": 0.9886 + }, + { + "start": 14031.3, + "end": 14034.68, + "probability": 0.9331 + }, + { + "start": 14034.86, + "end": 14037.04, + "probability": 0.9507 + }, + { + "start": 14037.44, + "end": 14039.5, + "probability": 0.8804 + }, + { + "start": 14040.08, + "end": 14043.74, + "probability": 0.9609 + }, + { + "start": 14043.74, + "end": 14046.6, + "probability": 0.9485 + }, + { + "start": 14047.46, + "end": 14048.62, + "probability": 0.8804 + }, + { + "start": 14049.02, + "end": 14050.42, + "probability": 0.9125 + }, + { + "start": 14050.66, + "end": 14051.52, + "probability": 0.796 + }, + { + "start": 14051.8, + "end": 14051.8, + "probability": 0.4226 + }, + { + "start": 14052.0, + "end": 14054.96, + "probability": 0.9268 + }, + { + "start": 14055.22, + "end": 14055.22, + "probability": 0.5772 + }, + { + "start": 14055.22, + "end": 14058.88, + "probability": 0.7819 + }, + { + "start": 14059.16, + "end": 14060.04, + "probability": 0.8255 + }, + { + "start": 14060.14, + "end": 14060.44, + "probability": 0.64 + }, + { + "start": 14060.52, + "end": 14062.36, + "probability": 0.6196 + }, + { + "start": 14062.44, + "end": 14063.86, + "probability": 0.8894 + }, + { + "start": 14063.96, + "end": 14065.3, + "probability": 0.9598 + }, + { + "start": 14065.48, + "end": 14068.36, + "probability": 0.7974 + }, + { + "start": 14068.46, + "end": 14068.68, + "probability": 0.8 + }, + { + "start": 14068.7, + "end": 14069.02, + "probability": 0.3852 + }, + { + "start": 14069.04, + "end": 14069.54, + "probability": 0.8445 + }, + { + "start": 14069.76, + "end": 14071.28, + "probability": 0.9966 + }, + { + "start": 14071.56, + "end": 14072.32, + "probability": 0.9649 + }, + { + "start": 14073.08, + "end": 14074.1, + "probability": 0.6729 + }, + { + "start": 14074.96, + "end": 14078.91, + "probability": 0.67 + }, + { + "start": 14079.76, + "end": 14080.04, + "probability": 0.6108 + }, + { + "start": 14080.7, + "end": 14082.18, + "probability": 0.6509 + }, + { + "start": 14082.18, + "end": 14082.26, + "probability": 0.2848 + }, + { + "start": 14082.68, + "end": 14084.56, + "probability": 0.1947 + }, + { + "start": 14084.56, + "end": 14084.56, + "probability": 0.1482 + }, + { + "start": 14084.56, + "end": 14085.34, + "probability": 0.2312 + }, + { + "start": 14085.5, + "end": 14086.3, + "probability": 0.4669 + }, + { + "start": 14086.54, + "end": 14094.5, + "probability": 0.2189 + }, + { + "start": 14095.24, + "end": 14097.16, + "probability": 0.1857 + }, + { + "start": 14098.42, + "end": 14098.6, + "probability": 0.0423 + }, + { + "start": 14099.38, + "end": 14103.0, + "probability": 0.0438 + }, + { + "start": 14103.98, + "end": 14108.58, + "probability": 0.5454 + }, + { + "start": 14109.2, + "end": 14111.84, + "probability": 0.6003 + }, + { + "start": 14112.0, + "end": 14114.58, + "probability": 0.6493 + }, + { + "start": 14114.64, + "end": 14115.26, + "probability": 0.6943 + }, + { + "start": 14116.14, + "end": 14119.34, + "probability": 0.938 + }, + { + "start": 14119.94, + "end": 14121.0, + "probability": 0.6618 + }, + { + "start": 14121.22, + "end": 14122.14, + "probability": 0.4656 + }, + { + "start": 14122.3, + "end": 14123.5, + "probability": 0.8536 + }, + { + "start": 14123.74, + "end": 14125.1, + "probability": 0.4464 + }, + { + "start": 14125.27, + "end": 14125.88, + "probability": 0.0825 + }, + { + "start": 14125.88, + "end": 14127.14, + "probability": 0.7876 + }, + { + "start": 14127.98, + "end": 14130.68, + "probability": 0.9226 + }, + { + "start": 14130.76, + "end": 14135.24, + "probability": 0.8424 + }, + { + "start": 14135.7, + "end": 14137.24, + "probability": 0.538 + }, + { + "start": 14137.6, + "end": 14140.7, + "probability": 0.9863 + }, + { + "start": 14140.84, + "end": 14146.32, + "probability": 0.7681 + }, + { + "start": 14149.02, + "end": 14151.96, + "probability": 0.5055 + }, + { + "start": 14152.1, + "end": 14153.26, + "probability": 0.4982 + }, + { + "start": 14153.86, + "end": 14158.68, + "probability": 0.8628 + }, + { + "start": 14158.86, + "end": 14165.98, + "probability": 0.7585 + }, + { + "start": 14166.48, + "end": 14168.28, + "probability": 0.358 + }, + { + "start": 14169.22, + "end": 14170.08, + "probability": 0.0356 + }, + { + "start": 14172.04, + "end": 14173.06, + "probability": 0.2843 + }, + { + "start": 14173.06, + "end": 14175.7, + "probability": 0.4279 + }, + { + "start": 14176.08, + "end": 14178.88, + "probability": 0.085 + }, + { + "start": 14178.88, + "end": 14179.45, + "probability": 0.5497 + }, + { + "start": 14179.48, + "end": 14182.34, + "probability": 0.2861 + }, + { + "start": 14183.3, + "end": 14186.1, + "probability": 0.0898 + }, + { + "start": 14187.92, + "end": 14188.3, + "probability": 0.2878 + }, + { + "start": 14193.48, + "end": 14195.82, + "probability": 0.47 + }, + { + "start": 14195.82, + "end": 14196.06, + "probability": 0.0145 + }, + { + "start": 14196.06, + "end": 14199.56, + "probability": 0.9146 + }, + { + "start": 14199.56, + "end": 14201.8, + "probability": 0.952 + }, + { + "start": 14201.98, + "end": 14203.32, + "probability": 0.6423 + }, + { + "start": 14203.76, + "end": 14204.7, + "probability": 0.8213 + }, + { + "start": 14204.78, + "end": 14205.78, + "probability": 0.6058 + }, + { + "start": 14205.9, + "end": 14207.54, + "probability": 0.3584 + }, + { + "start": 14207.54, + "end": 14207.54, + "probability": 0.161 + }, + { + "start": 14207.54, + "end": 14212.52, + "probability": 0.8079 + }, + { + "start": 14212.74, + "end": 14217.6, + "probability": 0.4132 + }, + { + "start": 14217.6, + "end": 14220.94, + "probability": 0.7173 + }, + { + "start": 14221.52, + "end": 14223.84, + "probability": 0.9858 + }, + { + "start": 14223.84, + "end": 14224.7, + "probability": 0.4216 + }, + { + "start": 14224.78, + "end": 14228.1, + "probability": 0.9718 + }, + { + "start": 14228.16, + "end": 14228.93, + "probability": 0.6568 + }, + { + "start": 14229.0, + "end": 14229.42, + "probability": 0.9686 + }, + { + "start": 14230.82, + "end": 14231.78, + "probability": 0.2028 + }, + { + "start": 14239.58, + "end": 14240.26, + "probability": 0.7121 + }, + { + "start": 14240.34, + "end": 14242.4, + "probability": 0.7117 + }, + { + "start": 14242.54, + "end": 14246.18, + "probability": 0.8052 + }, + { + "start": 14247.0, + "end": 14250.48, + "probability": 0.7332 + }, + { + "start": 14250.86, + "end": 14253.52, + "probability": 0.9727 + }, + { + "start": 14253.66, + "end": 14254.08, + "probability": 0.9071 + }, + { + "start": 14254.88, + "end": 14255.4, + "probability": 0.5316 + }, + { + "start": 14255.44, + "end": 14257.86, + "probability": 0.907 + }, + { + "start": 14257.98, + "end": 14259.22, + "probability": 0.9555 + }, + { + "start": 14259.96, + "end": 14262.42, + "probability": 0.9737 + }, + { + "start": 14262.44, + "end": 14264.48, + "probability": 0.9471 + }, + { + "start": 14264.98, + "end": 14267.56, + "probability": 0.9953 + }, + { + "start": 14268.14, + "end": 14270.26, + "probability": 0.9424 + }, + { + "start": 14270.34, + "end": 14272.02, + "probability": 0.9879 + }, + { + "start": 14272.72, + "end": 14275.68, + "probability": 0.9748 + }, + { + "start": 14276.12, + "end": 14276.5, + "probability": 0.3868 + }, + { + "start": 14277.26, + "end": 14280.24, + "probability": 0.9771 + }, + { + "start": 14280.24, + "end": 14284.24, + "probability": 0.9666 + }, + { + "start": 14284.9, + "end": 14285.7, + "probability": 0.6752 + }, + { + "start": 14285.76, + "end": 14289.36, + "probability": 0.9829 + }, + { + "start": 14289.86, + "end": 14292.76, + "probability": 0.9948 + }, + { + "start": 14295.11, + "end": 14298.4, + "probability": 0.8264 + }, + { + "start": 14298.46, + "end": 14299.82, + "probability": 0.6476 + }, + { + "start": 14300.28, + "end": 14301.94, + "probability": 0.9745 + }, + { + "start": 14302.06, + "end": 14304.42, + "probability": 0.9388 + }, + { + "start": 14305.52, + "end": 14309.36, + "probability": 0.8405 + }, + { + "start": 14310.16, + "end": 14312.56, + "probability": 0.9425 + }, + { + "start": 14312.56, + "end": 14315.3, + "probability": 0.7999 + }, + { + "start": 14315.74, + "end": 14316.02, + "probability": 0.3575 + }, + { + "start": 14316.04, + "end": 14316.24, + "probability": 0.877 + }, + { + "start": 14316.34, + "end": 14316.52, + "probability": 0.4494 + }, + { + "start": 14316.56, + "end": 14317.16, + "probability": 0.8972 + }, + { + "start": 14317.52, + "end": 14319.04, + "probability": 0.7785 + }, + { + "start": 14319.1, + "end": 14319.78, + "probability": 0.5576 + }, + { + "start": 14319.88, + "end": 14320.74, + "probability": 0.6129 + }, + { + "start": 14321.0, + "end": 14322.76, + "probability": 0.7164 + }, + { + "start": 14323.38, + "end": 14325.35, + "probability": 0.8775 + }, + { + "start": 14326.84, + "end": 14327.76, + "probability": 0.8743 + }, + { + "start": 14331.84, + "end": 14332.38, + "probability": 0.7686 + }, + { + "start": 14335.74, + "end": 14337.04, + "probability": 0.7222 + }, + { + "start": 14337.48, + "end": 14338.36, + "probability": 0.9219 + }, + { + "start": 14339.06, + "end": 14339.9, + "probability": 0.8607 + }, + { + "start": 14341.78, + "end": 14342.48, + "probability": 0.8159 + }, + { + "start": 14342.58, + "end": 14343.38, + "probability": 0.4326 + }, + { + "start": 14344.2, + "end": 14347.08, + "probability": 0.7193 + }, + { + "start": 14347.24, + "end": 14348.26, + "probability": 0.9602 + }, + { + "start": 14349.24, + "end": 14350.11, + "probability": 0.4095 + }, + { + "start": 14357.2, + "end": 14357.58, + "probability": 0.1598 + }, + { + "start": 14360.02, + "end": 14361.0, + "probability": 0.7912 + }, + { + "start": 14368.7, + "end": 14369.36, + "probability": 0.2678 + }, + { + "start": 14370.28, + "end": 14372.82, + "probability": 0.4806 + }, + { + "start": 14372.82, + "end": 14373.44, + "probability": 0.1236 + }, + { + "start": 14373.96, + "end": 14374.0, + "probability": 0.0302 + }, + { + "start": 14374.0, + "end": 14374.62, + "probability": 0.042 + }, + { + "start": 14375.26, + "end": 14378.44, + "probability": 0.1724 + }, + { + "start": 14379.04, + "end": 14379.78, + "probability": 0.1756 + }, + { + "start": 14380.06, + "end": 14380.45, + "probability": 0.6719 + }, + { + "start": 14381.02, + "end": 14382.8, + "probability": 0.0312 + }, + { + "start": 14385.64, + "end": 14390.16, + "probability": 0.0996 + }, + { + "start": 14390.7, + "end": 14391.12, + "probability": 0.0112 + }, + { + "start": 14392.5, + "end": 14393.12, + "probability": 0.238 + }, + { + "start": 14393.12, + "end": 14394.87, + "probability": 0.4053 + }, + { + "start": 14395.76, + "end": 14397.36, + "probability": 0.7298 + }, + { + "start": 14397.96, + "end": 14399.59, + "probability": 0.4243 + }, + { + "start": 14400.36, + "end": 14401.1, + "probability": 0.1584 + }, + { + "start": 14402.5, + "end": 14403.12, + "probability": 0.0645 + }, + { + "start": 14403.42, + "end": 14404.86, + "probability": 0.6761 + }, + { + "start": 14405.3, + "end": 14406.28, + "probability": 0.8961 + }, + { + "start": 14406.52, + "end": 14408.76, + "probability": 0.1105 + }, + { + "start": 14408.84, + "end": 14409.55, + "probability": 0.0477 + }, + { + "start": 14411.06, + "end": 14412.36, + "probability": 0.0231 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.0, + "end": 14441.0, + "probability": 0.0 + }, + { + "start": 14441.34, + "end": 14443.12, + "probability": 0.0369 + }, + { + "start": 14445.28, + "end": 14446.24, + "probability": 0.0598 + }, + { + "start": 14447.03, + "end": 14448.7, + "probability": 0.6368 + }, + { + "start": 14449.32, + "end": 14451.44, + "probability": 0.5776 + }, + { + "start": 14451.68, + "end": 14453.04, + "probability": 0.4052 + }, + { + "start": 14454.36, + "end": 14455.16, + "probability": 0.3827 + }, + { + "start": 14455.16, + "end": 14458.48, + "probability": 0.1713 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.0, + "end": 14622.0, + "probability": 0.0 + }, + { + "start": 14622.16, + "end": 14623.22, + "probability": 0.0936 + }, + { + "start": 14623.74, + "end": 14624.28, + "probability": 0.1618 + }, + { + "start": 14624.28, + "end": 14626.48, + "probability": 0.1858 + }, + { + "start": 14627.18, + "end": 14627.66, + "probability": 0.1017 + }, + { + "start": 14634.78, + "end": 14635.14, + "probability": 0.0197 + }, + { + "start": 14644.0, + "end": 14644.08, + "probability": 0.0054 + }, + { + "start": 14655.84, + "end": 14656.14, + "probability": 0.0871 + }, + { + "start": 14660.06, + "end": 14660.28, + "probability": 0.0238 + }, + { + "start": 14662.48, + "end": 14669.4, + "probability": 0.1215 + }, + { + "start": 14671.62, + "end": 14672.34, + "probability": 0.2249 + }, + { + "start": 14673.34, + "end": 14679.14, + "probability": 0.3424 + }, + { + "start": 14684.68, + "end": 14687.08, + "probability": 0.1898 + }, + { + "start": 14687.7, + "end": 14688.08, + "probability": 0.5369 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14793.0, + "end": 14793.0, + "probability": 0.0 + }, + { + "start": 14805.9, + "end": 14806.6, + "probability": 0.5351 + }, + { + "start": 14826.68, + "end": 14827.7, + "probability": 0.5875 + }, + { + "start": 14828.84, + "end": 14829.42, + "probability": 0.6604 + }, + { + "start": 14830.8, + "end": 14834.84, + "probability": 0.5105 + }, + { + "start": 14835.88, + "end": 14836.4, + "probability": 0.0471 + }, + { + "start": 14859.76, + "end": 14861.66, + "probability": 0.3067 + }, + { + "start": 14862.9, + "end": 14864.72, + "probability": 0.0402 + }, + { + "start": 14864.72, + "end": 14868.08, + "probability": 0.1035 + }, + { + "start": 14868.08, + "end": 14868.8, + "probability": 0.5641 + }, + { + "start": 14985.0, + "end": 14985.0, + "probability": 0.0 + }, + { + "start": 14985.0, + "end": 14985.0, + "probability": 0.0 + }, + { + "start": 14985.0, + "end": 14985.0, + "probability": 0.0 + }, + { + "start": 14985.0, + "end": 14985.0, + "probability": 0.0 + }, + { + "start": 14985.0, + "end": 14985.0, + "probability": 0.0 + }, + { + "start": 14985.0, + "end": 14985.0, + "probability": 0.0 + }, + { + "start": 15006.46, + "end": 15006.98, + "probability": 0.5427 + }, + { + "start": 15010.02, + "end": 15013.4, + "probability": 0.8391 + }, + { + "start": 15018.04, + "end": 15019.12, + "probability": 0.5764 + }, + { + "start": 15021.42, + "end": 15023.12, + "probability": 0.2892 + }, + { + "start": 15023.12, + "end": 15024.3, + "probability": 0.1207 + }, + { + "start": 15044.02, + "end": 15044.8, + "probability": 0.4861 + }, + { + "start": 15045.32, + "end": 15047.52, + "probability": 0.6384 + }, + { + "start": 15063.64, + "end": 15065.16, + "probability": 0.2893 + }, + { + "start": 15067.92, + "end": 15068.76, + "probability": 0.9011 + }, + { + "start": 15070.06, + "end": 15071.12, + "probability": 0.8867 + }, + { + "start": 15073.04, + "end": 15074.04, + "probability": 0.9934 + }, + { + "start": 15075.28, + "end": 15076.14, + "probability": 0.8279 + }, + { + "start": 15077.88, + "end": 15081.0, + "probability": 0.9504 + }, + { + "start": 15081.52, + "end": 15082.68, + "probability": 0.4781 + }, + { + "start": 15088.6, + "end": 15089.98, + "probability": 0.0545 + }, + { + "start": 15092.6, + "end": 15094.24, + "probability": 0.0743 + }, + { + "start": 15094.46, + "end": 15095.22, + "probability": 0.0505 + }, + { + "start": 15095.22, + "end": 15097.7, + "probability": 0.2907 + }, + { + "start": 15099.3, + "end": 15102.08, + "probability": 0.0839 + }, + { + "start": 15103.29, + "end": 15107.04, + "probability": 0.0343 + }, + { + "start": 15285.0, + "end": 15285.0, + "probability": 0.0 + }, + { + "start": 15285.0, + "end": 15285.0, + "probability": 0.0 + }, + { + "start": 15285.0, + "end": 15285.0, + "probability": 0.0 + }, + { + "start": 15285.0, + "end": 15285.0, + "probability": 0.0 + }, + { + "start": 15285.0, + "end": 15285.0, + "probability": 0.0 + }, + { + "start": 15285.0, + "end": 15285.0, + "probability": 0.0 + }, + { + "start": 15285.1, + "end": 15285.68, + "probability": 0.2851 + }, + { + "start": 15286.62, + "end": 15287.58, + "probability": 0.9502 + }, + { + "start": 15288.32, + "end": 15289.48, + "probability": 0.3914 + }, + { + "start": 15291.18, + "end": 15292.6, + "probability": 0.9371 + }, + { + "start": 15293.22, + "end": 15294.18, + "probability": 0.8153 + }, + { + "start": 15295.36, + "end": 15296.2, + "probability": 0.9645 + }, + { + "start": 15296.82, + "end": 15298.16, + "probability": 0.7246 + }, + { + "start": 15308.88, + "end": 15311.6, + "probability": 0.9528 + }, + { + "start": 15315.1, + "end": 15318.68, + "probability": 0.6309 + }, + { + "start": 15323.4, + "end": 15324.5, + "probability": 0.6953 + }, + { + "start": 15325.68, + "end": 15328.04, + "probability": 0.6739 + }, + { + "start": 15330.68, + "end": 15331.78, + "probability": 0.0846 + }, + { + "start": 15332.54, + "end": 15335.7, + "probability": 0.35 + }, + { + "start": 15342.84, + "end": 15342.84, + "probability": 0.1181 + }, + { + "start": 15342.84, + "end": 15342.84, + "probability": 0.0427 + }, + { + "start": 15342.84, + "end": 15342.84, + "probability": 0.1484 + }, + { + "start": 15342.84, + "end": 15342.84, + "probability": 0.1035 + }, + { + "start": 15342.84, + "end": 15342.88, + "probability": 0.1498 + }, + { + "start": 15342.88, + "end": 15343.11, + "probability": 0.0882 + }, + { + "start": 15343.5, + "end": 15344.26, + "probability": 0.0793 + }, + { + "start": 15362.5, + "end": 15362.8, + "probability": 0.1178 + }, + { + "start": 15362.8, + "end": 15367.04, + "probability": 0.0538 + }, + { + "start": 15367.04, + "end": 15367.16, + "probability": 0.0647 + }, + { + "start": 15367.29, + "end": 15367.64, + "probability": 0.0799 + }, + { + "start": 15367.64, + "end": 15367.64, + "probability": 0.1217 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.0, + "end": 15584.0, + "probability": 0.0 + }, + { + "start": 15584.26, + "end": 15584.7, + "probability": 0.66 + }, + { + "start": 15587.5, + "end": 15588.42, + "probability": 0.9565 + }, + { + "start": 15589.22, + "end": 15590.24, + "probability": 0.7035 + }, + { + "start": 15591.64, + "end": 15592.68, + "probability": 0.987 + }, + { + "start": 15594.28, + "end": 15595.74, + "probability": 0.7953 + }, + { + "start": 15603.74, + "end": 15608.04, + "probability": 0.3976 + }, + { + "start": 15608.86, + "end": 15612.76, + "probability": 0.3647 + }, + { + "start": 15615.72, + "end": 15616.22, + "probability": 0.0416 + }, + { + "start": 15617.16, + "end": 15622.58, + "probability": 0.0114 + }, + { + "start": 15632.42, + "end": 15633.48, + "probability": 0.595 + }, + { + "start": 15643.24, + "end": 15644.44, + "probability": 0.5518 + }, + { + "start": 15645.78, + "end": 15646.78, + "probability": 0.9757 + }, + { + "start": 15647.36, + "end": 15648.28, + "probability": 0.8115 + }, + { + "start": 15650.02, + "end": 15651.46, + "probability": 0.9812 + }, + { + "start": 15654.36, + "end": 15655.26, + "probability": 0.546 + }, + { + "start": 15656.2, + "end": 15657.04, + "probability": 0.859 + }, + { + "start": 15658.4, + "end": 15659.18, + "probability": 0.8982 + }, + { + "start": 15659.78, + "end": 15660.68, + "probability": 0.9834 + }, + { + "start": 15661.32, + "end": 15662.5, + "probability": 0.6617 + }, + { + "start": 15670.55, + "end": 15675.55, + "probability": 0.0636 + }, + { + "start": 15677.14, + "end": 15678.62, + "probability": 0.0245 + }, + { + "start": 15680.02, + "end": 15680.2, + "probability": 0.0041 + }, + { + "start": 15725.26, + "end": 15726.44, + "probability": 0.0764 + }, + { + "start": 15728.06, + "end": 15729.0, + "probability": 0.9071 + }, + { + "start": 15732.0, + "end": 15733.24, + "probability": 0.6137 + }, + { + "start": 15734.1, + "end": 15735.16, + "probability": 0.8781 + }, + { + "start": 15736.18, + "end": 15737.14, + "probability": 0.8 + }, + { + "start": 15738.2, + "end": 15739.2, + "probability": 0.9828 + }, + { + "start": 15739.74, + "end": 15740.96, + "probability": 0.7206 + }, + { + "start": 15742.8, + "end": 15746.28, + "probability": 0.0131 + }, + { + "start": 15748.66, + "end": 15750.22, + "probability": 0.037 + }, + { + "start": 15752.22, + "end": 15753.32, + "probability": 0.0336 + }, + { + "start": 15756.84, + "end": 15757.27, + "probability": 0.0177 + }, + { + "start": 15760.5, + "end": 15762.7, + "probability": 0.0496 + }, + { + "start": 15764.2, + "end": 15764.5, + "probability": 0.0305 + }, + { + "start": 15765.78, + "end": 15767.96, + "probability": 0.0473 + }, + { + "start": 15770.5, + "end": 15770.5, + "probability": 0.1137 + }, + { + "start": 15836.0, + "end": 15836.0, + "probability": 0.0 + }, + { + "start": 15838.5, + "end": 15840.1, + "probability": 0.0914 + }, + { + "start": 15841.08, + "end": 15841.66, + "probability": 0.0145 + }, + { + "start": 15842.62, + "end": 15843.66, + "probability": 0.6998 + }, + { + "start": 15844.6, + "end": 15845.52, + "probability": 0.961 + }, + { + "start": 15846.04, + "end": 15847.28, + "probability": 0.6464 + }, + { + "start": 15848.88, + "end": 15851.28, + "probability": 0.8432 + }, + { + "start": 15852.34, + "end": 15855.44, + "probability": 0.5629 + }, + { + "start": 15856.0, + "end": 15857.24, + "probability": 0.1041 + }, + { + "start": 15857.24, + "end": 15857.66, + "probability": 0.3932 + }, + { + "start": 15857.68, + "end": 15857.78, + "probability": 0.407 + }, + { + "start": 15857.96, + "end": 15859.72, + "probability": 0.8561 + }, + { + "start": 15867.64, + "end": 15868.38, + "probability": 0.5939 + }, + { + "start": 15870.86, + "end": 15871.32, + "probability": 0.014 + }, + { + "start": 15873.04, + "end": 15880.5, + "probability": 0.9546 + }, + { + "start": 15882.62, + "end": 15882.92, + "probability": 0.0096 + }, + { + "start": 15883.74, + "end": 15885.34, + "probability": 0.4883 + }, + { + "start": 15886.12, + "end": 15887.08, + "probability": 0.9363 + }, + { + "start": 15887.88, + "end": 15888.72, + "probability": 0.721 + }, + { + "start": 15899.42, + "end": 15901.9, + "probability": 0.5878 + }, + { + "start": 15902.58, + "end": 15903.42, + "probability": 0.743 + }, + { + "start": 15904.42, + "end": 15905.2, + "probability": 0.9772 + }, + { + "start": 15906.36, + "end": 15907.76, + "probability": 0.9017 + }, + { + "start": 15909.12, + "end": 15910.0, + "probability": 0.9899 + }, + { + "start": 15913.06, + "end": 15914.16, + "probability": 0.5949 + }, + { + "start": 15914.88, + "end": 15915.68, + "probability": 0.8846 + }, + { + "start": 15916.3, + "end": 15918.5, + "probability": 0.9179 + }, + { + "start": 15919.18, + "end": 15920.02, + "probability": 0.9842 + }, + { + "start": 15920.68, + "end": 15921.48, + "probability": 0.9895 + }, + { + "start": 15923.12, + "end": 15923.86, + "probability": 0.9948 + }, + { + "start": 15925.38, + "end": 15926.22, + "probability": 0.995 + }, + { + "start": 15926.98, + "end": 15927.88, + "probability": 0.9793 + }, + { + "start": 15928.72, + "end": 15931.04, + "probability": 0.9827 + }, + { + "start": 15931.86, + "end": 15935.36, + "probability": 0.963 + }, + { + "start": 15936.02, + "end": 15937.94, + "probability": 0.5893 + }, + { + "start": 15938.94, + "end": 15939.96, + "probability": 0.9573 + }, + { + "start": 15940.88, + "end": 15941.82, + "probability": 0.9603 + }, + { + "start": 15942.36, + "end": 15944.5, + "probability": 0.9491 + }, + { + "start": 15945.2, + "end": 15945.96, + "probability": 0.9826 + }, + { + "start": 15946.7, + "end": 15947.5, + "probability": 0.9854 + }, + { + "start": 15948.02, + "end": 15949.7, + "probability": 0.9094 + }, + { + "start": 15950.28, + "end": 15951.04, + "probability": 0.9901 + }, + { + "start": 15951.56, + "end": 15952.72, + "probability": 0.9757 + }, + { + "start": 15953.44, + "end": 15954.34, + "probability": 0.9934 + }, + { + "start": 15955.24, + "end": 15956.2, + "probability": 0.7185 + }, + { + "start": 15956.78, + "end": 15959.06, + "probability": 0.8004 + }, + { + "start": 15959.9, + "end": 15961.04, + "probability": 0.9555 + }, + { + "start": 15963.82, + "end": 15964.48, + "probability": 0.5605 + }, + { + "start": 15970.16, + "end": 15973.62, + "probability": 0.7831 + }, + { + "start": 15974.18, + "end": 15976.1, + "probability": 0.8746 + }, + { + "start": 15977.1, + "end": 15978.12, + "probability": 0.9311 + }, + { + "start": 15981.72, + "end": 15982.78, + "probability": 0.8679 + }, + { + "start": 15984.2, + "end": 15988.08, + "probability": 0.7571 + }, + { + "start": 15998.0, + "end": 16001.76, + "probability": 0.601 + }, + { + "start": 16003.0, + "end": 16005.14, + "probability": 0.8304 + }, + { + "start": 16006.46, + "end": 16007.24, + "probability": 0.9891 + }, + { + "start": 16008.74, + "end": 16009.48, + "probability": 0.8059 + }, + { + "start": 16011.2, + "end": 16017.84, + "probability": 0.9668 + }, + { + "start": 16018.38, + "end": 16019.16, + "probability": 0.9665 + }, + { + "start": 16019.94, + "end": 16023.14, + "probability": 0.9585 + }, + { + "start": 16032.76, + "end": 16037.5, + "probability": 0.7395 + }, + { + "start": 16038.02, + "end": 16038.86, + "probability": 0.9005 + }, + { + "start": 16039.74, + "end": 16041.32, + "probability": 0.7155 + }, + { + "start": 16042.24, + "end": 16043.24, + "probability": 0.9594 + }, + { + "start": 16046.42, + "end": 16048.52, + "probability": 0.6915 + }, + { + "start": 16049.34, + "end": 16053.74, + "probability": 0.9613 + }, + { + "start": 16054.26, + "end": 16057.5, + "probability": 0.974 + }, + { + "start": 16058.16, + "end": 16061.24, + "probability": 0.9492 + }, + { + "start": 16063.02, + "end": 16063.84, + "probability": 0.1105 + }, + { + "start": 16071.6, + "end": 16075.64, + "probability": 0.7808 + }, + { + "start": 16076.86, + "end": 16078.2, + "probability": 0.9814 + }, + { + "start": 16081.24, + "end": 16082.72, + "probability": 0.587 + }, + { + "start": 16083.66, + "end": 16084.76, + "probability": 0.8949 + }, + { + "start": 16085.32, + "end": 16087.24, + "probability": 0.9188 + }, + { + "start": 16087.8, + "end": 16089.06, + "probability": 0.8901 + }, + { + "start": 16090.86, + "end": 16093.92, + "probability": 0.7865 + }, + { + "start": 16094.76, + "end": 16095.3, + "probability": 0.0996 + }, + { + "start": 16105.5, + "end": 16107.76, + "probability": 0.036 + }, + { + "start": 16108.13, + "end": 16108.58, + "probability": 0.0148 + }, + { + "start": 16111.98, + "end": 16113.18, + "probability": 0.5093 + }, + { + "start": 16113.7, + "end": 16115.96, + "probability": 0.8357 + }, + { + "start": 16116.48, + "end": 16117.38, + "probability": 0.9634 + }, + { + "start": 16118.14, + "end": 16119.1, + "probability": 0.7654 + }, + { + "start": 16122.52, + "end": 16123.34, + "probability": 0.9264 + }, + { + "start": 16123.94, + "end": 16124.9, + "probability": 0.864 + }, + { + "start": 16126.58, + "end": 16127.46, + "probability": 0.9618 + }, + { + "start": 16129.64, + "end": 16131.5, + "probability": 0.8366 + }, + { + "start": 16132.2, + "end": 16132.82, + "probability": 0.6504 + }, + { + "start": 16134.16, + "end": 16134.36, + "probability": 0.1824 + }, + { + "start": 16151.94, + "end": 16154.44, + "probability": 0.7863 + }, + { + "start": 16155.48, + "end": 16156.28, + "probability": 0.8332 + }, + { + "start": 16157.16, + "end": 16157.88, + "probability": 0.8004 + }, + { + "start": 16158.64, + "end": 16159.46, + "probability": 0.5458 + }, + { + "start": 16160.06, + "end": 16160.92, + "probability": 0.9435 + }, + { + "start": 16161.7, + "end": 16162.16, + "probability": 0.7975 + }, + { + "start": 16163.76, + "end": 16164.72, + "probability": 0.9904 + }, + { + "start": 16165.34, + "end": 16166.02, + "probability": 0.9694 + }, + { + "start": 16166.86, + "end": 16167.66, + "probability": 0.9139 + }, + { + "start": 16169.12, + "end": 16170.0, + "probability": 0.8671 + }, + { + "start": 16170.54, + "end": 16173.48, + "probability": 0.9683 + }, + { + "start": 16174.24, + "end": 16175.18, + "probability": 0.987 + }, + { + "start": 16175.74, + "end": 16177.8, + "probability": 0.9421 + }, + { + "start": 16178.34, + "end": 16180.42, + "probability": 0.9606 + }, + { + "start": 16182.5, + "end": 16183.34, + "probability": 0.8346 + }, + { + "start": 16185.78, + "end": 16186.76, + "probability": 0.833 + }, + { + "start": 16188.02, + "end": 16189.3, + "probability": 0.9877 + }, + { + "start": 16190.78, + "end": 16191.62, + "probability": 0.9516 + }, + { + "start": 16192.86, + "end": 16193.88, + "probability": 0.9901 + }, + { + "start": 16194.64, + "end": 16195.82, + "probability": 0.7034 + }, + { + "start": 16196.48, + "end": 16198.94, + "probability": 0.6974 + }, + { + "start": 16199.6, + "end": 16204.5, + "probability": 0.0911 + }, + { + "start": 16215.84, + "end": 16218.8, + "probability": 0.8578 + }, + { + "start": 16219.8, + "end": 16219.88, + "probability": 0.0279 + }, + { + "start": 16219.88, + "end": 16219.88, + "probability": 0.0076 + }, + { + "start": 16219.88, + "end": 16222.13, + "probability": 0.7534 + }, + { + "start": 16222.52, + "end": 16224.32, + "probability": 0.4481 + }, + { + "start": 16226.44, + "end": 16228.58, + "probability": 0.0555 + }, + { + "start": 16296.24, + "end": 16297.2, + "probability": 0.2851 + }, + { + "start": 16297.26, + "end": 16297.9, + "probability": 0.4438 + }, + { + "start": 16298.02, + "end": 16302.74, + "probability": 0.8677 + }, + { + "start": 16307.36, + "end": 16308.86, + "probability": 0.0209 + }, + { + "start": 16313.76, + "end": 16316.04, + "probability": 0.6026 + }, + { + "start": 16316.42, + "end": 16316.8, + "probability": 0.3177 + }, + { + "start": 16316.92, + "end": 16317.88, + "probability": 0.4303 + }, + { + "start": 16320.0, + "end": 16323.74, + "probability": 0.6503 + }, + { + "start": 16325.08, + "end": 16326.32, + "probability": 0.3877 + }, + { + "start": 16326.48, + "end": 16326.48, + "probability": 0.4067 + }, + { + "start": 16327.24, + "end": 16327.96, + "probability": 0.883 + }, + { + "start": 16329.72, + "end": 16331.0, + "probability": 0.7517 + }, + { + "start": 16331.24, + "end": 16333.42, + "probability": 0.8163 + }, + { + "start": 16333.7, + "end": 16337.8, + "probability": 0.9704 + }, + { + "start": 16339.28, + "end": 16340.68, + "probability": 0.9663 + }, + { + "start": 16341.3, + "end": 16342.4, + "probability": 0.1297 + }, + { + "start": 16342.74, + "end": 16347.68, + "probability": 0.9443 + }, + { + "start": 16348.08, + "end": 16350.12, + "probability": 0.8219 + }, + { + "start": 16350.78, + "end": 16351.08, + "probability": 0.4808 + }, + { + "start": 16351.36, + "end": 16353.68, + "probability": 0.912 + }, + { + "start": 16353.7, + "end": 16356.84, + "probability": 0.9287 + }, + { + "start": 16357.0, + "end": 16359.14, + "probability": 0.7403 + }, + { + "start": 16359.2, + "end": 16359.42, + "probability": 0.4637 + }, + { + "start": 16359.76, + "end": 16363.22, + "probability": 0.7468 + }, + { + "start": 16363.22, + "end": 16366.7, + "probability": 0.8836 + }, + { + "start": 16367.16, + "end": 16370.88, + "probability": 0.6972 + }, + { + "start": 16370.88, + "end": 16374.12, + "probability": 0.9389 + }, + { + "start": 16374.32, + "end": 16379.54, + "probability": 0.8831 + }, + { + "start": 16380.34, + "end": 16380.5, + "probability": 0.0009 + }, + { + "start": 16421.14, + "end": 16421.3, + "probability": 0.0313 + }, + { + "start": 16421.3, + "end": 16421.3, + "probability": 0.5861 + }, + { + "start": 16421.3, + "end": 16421.3, + "probability": 0.0955 + }, + { + "start": 16421.3, + "end": 16422.68, + "probability": 0.1766 + }, + { + "start": 16422.68, + "end": 16425.4, + "probability": 0.3994 + }, + { + "start": 16425.4, + "end": 16428.84, + "probability": 0.9545 + }, + { + "start": 16429.72, + "end": 16430.42, + "probability": 0.0938 + }, + { + "start": 16430.42, + "end": 16430.66, + "probability": 0.1626 + }, + { + "start": 16444.68, + "end": 16446.14, + "probability": 0.4505 + }, + { + "start": 16448.9, + "end": 16449.4, + "probability": 0.4525 + }, + { + "start": 16449.84, + "end": 16451.52, + "probability": 0.3801 + }, + { + "start": 16451.54, + "end": 16452.3, + "probability": 0.7768 + }, + { + "start": 16454.15, + "end": 16456.32, + "probability": 0.7086 + }, + { + "start": 16458.41, + "end": 16463.88, + "probability": 0.944 + }, + { + "start": 16463.88, + "end": 16468.82, + "probability": 0.9029 + }, + { + "start": 16469.76, + "end": 16472.44, + "probability": 0.9296 + }, + { + "start": 16472.44, + "end": 16474.94, + "probability": 0.9967 + }, + { + "start": 16475.68, + "end": 16477.48, + "probability": 0.8988 + }, + { + "start": 16477.68, + "end": 16478.32, + "probability": 0.6505 + }, + { + "start": 16478.42, + "end": 16482.32, + "probability": 0.9969 + }, + { + "start": 16483.22, + "end": 16487.04, + "probability": 0.9838 + }, + { + "start": 16487.3, + "end": 16490.18, + "probability": 0.9937 + }, + { + "start": 16491.14, + "end": 16498.56, + "probability": 0.8974 + }, + { + "start": 16499.06, + "end": 16504.54, + "probability": 0.9972 + }, + { + "start": 16505.28, + "end": 16512.1, + "probability": 0.9902 + }, + { + "start": 16512.56, + "end": 16515.06, + "probability": 0.9862 + }, + { + "start": 16515.52, + "end": 16516.46, + "probability": 0.5234 + }, + { + "start": 16517.06, + "end": 16521.92, + "probability": 0.9341 + }, + { + "start": 16522.72, + "end": 16527.94, + "probability": 0.8465 + }, + { + "start": 16527.94, + "end": 16532.48, + "probability": 0.634 + }, + { + "start": 16533.04, + "end": 16534.22, + "probability": 0.7509 + }, + { + "start": 16535.4, + "end": 16539.02, + "probability": 0.9308 + }, + { + "start": 16539.02, + "end": 16542.96, + "probability": 0.8311 + }, + { + "start": 16543.66, + "end": 16544.86, + "probability": 0.8548 + }, + { + "start": 16545.0, + "end": 16550.22, + "probability": 0.9482 + }, + { + "start": 16550.82, + "end": 16551.72, + "probability": 0.7376 + }, + { + "start": 16551.82, + "end": 16556.24, + "probability": 0.8415 + }, + { + "start": 16557.06, + "end": 16562.2, + "probability": 0.9478 + }, + { + "start": 16562.76, + "end": 16566.24, + "probability": 0.9834 + }, + { + "start": 16567.0, + "end": 16571.66, + "probability": 0.8855 + }, + { + "start": 16571.66, + "end": 16575.3, + "probability": 0.9947 + }, + { + "start": 16576.1, + "end": 16579.04, + "probability": 0.8664 + }, + { + "start": 16579.64, + "end": 16584.8, + "probability": 0.8814 + }, + { + "start": 16585.22, + "end": 16588.98, + "probability": 0.6633 + }, + { + "start": 16589.46, + "end": 16595.28, + "probability": 0.9551 + }, + { + "start": 16595.44, + "end": 16599.86, + "probability": 0.7846 + }, + { + "start": 16599.86, + "end": 16601.9, + "probability": 0.9461 + }, + { + "start": 16606.16, + "end": 16607.64, + "probability": 0.9915 + }, + { + "start": 16608.38, + "end": 16612.96, + "probability": 0.9844 + }, + { + "start": 16613.16, + "end": 16614.92, + "probability": 0.7454 + }, + { + "start": 16615.1, + "end": 16618.36, + "probability": 0.8787 + }, + { + "start": 16619.02, + "end": 16622.12, + "probability": 0.988 + }, + { + "start": 16622.12, + "end": 16626.54, + "probability": 0.9955 + }, + { + "start": 16627.12, + "end": 16629.82, + "probability": 0.9518 + }, + { + "start": 16630.9, + "end": 16634.88, + "probability": 0.8577 + }, + { + "start": 16634.88, + "end": 16638.04, + "probability": 0.9988 + }, + { + "start": 16638.8, + "end": 16645.18, + "probability": 0.8686 + }, + { + "start": 16645.22, + "end": 16649.16, + "probability": 0.9976 + }, + { + "start": 16650.04, + "end": 16650.5, + "probability": 0.189 + }, + { + "start": 16650.7, + "end": 16652.79, + "probability": 0.9819 + }, + { + "start": 16653.34, + "end": 16654.54, + "probability": 0.8129 + }, + { + "start": 16654.68, + "end": 16656.06, + "probability": 0.834 + }, + { + "start": 16657.64, + "end": 16658.52, + "probability": 0.7707 + }, + { + "start": 16658.99, + "end": 16660.78, + "probability": 0.9306 + }, + { + "start": 16660.82, + "end": 16665.76, + "probability": 0.9253 + }, + { + "start": 16666.38, + "end": 16667.42, + "probability": 0.6158 + }, + { + "start": 16667.46, + "end": 16668.44, + "probability": 0.8962 + }, + { + "start": 16668.52, + "end": 16669.76, + "probability": 0.946 + }, + { + "start": 16671.02, + "end": 16672.44, + "probability": 0.2007 + }, + { + "start": 16672.82, + "end": 16672.86, + "probability": 0.4196 + }, + { + "start": 16672.86, + "end": 16673.14, + "probability": 0.5499 + }, + { + "start": 16673.56, + "end": 16674.24, + "probability": 0.9891 + }, + { + "start": 16675.28, + "end": 16678.46, + "probability": 0.892 + }, + { + "start": 16678.54, + "end": 16679.8, + "probability": 0.9194 + }, + { + "start": 16680.34, + "end": 16681.06, + "probability": 0.7534 + }, + { + "start": 16695.94, + "end": 16697.32, + "probability": 0.6344 + }, + { + "start": 16697.32, + "end": 16697.82, + "probability": 0.8741 + }, + { + "start": 16698.16, + "end": 16698.66, + "probability": 0.5118 + }, + { + "start": 16699.24, + "end": 16701.94, + "probability": 0.8106 + }, + { + "start": 16702.74, + "end": 16706.42, + "probability": 0.9863 + }, + { + "start": 16707.68, + "end": 16713.06, + "probability": 0.7405 + }, + { + "start": 16713.14, + "end": 16715.54, + "probability": 0.923 + }, + { + "start": 16716.26, + "end": 16721.93, + "probability": 0.985 + }, + { + "start": 16722.92, + "end": 16726.38, + "probability": 0.9941 + }, + { + "start": 16727.56, + "end": 16729.94, + "probability": 0.8043 + }, + { + "start": 16730.0, + "end": 16731.98, + "probability": 0.9937 + }, + { + "start": 16732.16, + "end": 16733.06, + "probability": 0.8685 + }, + { + "start": 16733.32, + "end": 16733.48, + "probability": 0.2201 + }, + { + "start": 16733.64, + "end": 16738.3, + "probability": 0.8626 + }, + { + "start": 16739.24, + "end": 16743.12, + "probability": 0.8388 + }, + { + "start": 16744.02, + "end": 16746.2, + "probability": 0.9951 + }, + { + "start": 16746.2, + "end": 16750.62, + "probability": 0.9026 + }, + { + "start": 16751.16, + "end": 16752.9, + "probability": 0.9419 + }, + { + "start": 16753.0, + "end": 16760.24, + "probability": 0.9893 + }, + { + "start": 16761.2, + "end": 16762.04, + "probability": 0.5765 + }, + { + "start": 16762.72, + "end": 16763.28, + "probability": 0.8793 + }, + { + "start": 16763.58, + "end": 16764.66, + "probability": 0.8022 + }, + { + "start": 16764.74, + "end": 16767.28, + "probability": 0.8414 + }, + { + "start": 16767.62, + "end": 16769.44, + "probability": 0.9531 + }, + { + "start": 16770.2, + "end": 16772.0, + "probability": 0.9756 + }, + { + "start": 16772.7, + "end": 16774.84, + "probability": 0.9783 + }, + { + "start": 16775.46, + "end": 16776.88, + "probability": 0.9845 + }, + { + "start": 16777.08, + "end": 16782.92, + "probability": 0.9887 + }, + { + "start": 16783.12, + "end": 16784.58, + "probability": 0.9971 + }, + { + "start": 16785.44, + "end": 16788.66, + "probability": 0.9859 + }, + { + "start": 16789.0, + "end": 16790.86, + "probability": 0.6848 + }, + { + "start": 16790.96, + "end": 16791.64, + "probability": 0.9742 + }, + { + "start": 16791.9, + "end": 16796.26, + "probability": 0.7937 + }, + { + "start": 16796.46, + "end": 16797.96, + "probability": 0.9797 + }, + { + "start": 16798.12, + "end": 16799.32, + "probability": 0.9958 + }, + { + "start": 16799.84, + "end": 16801.31, + "probability": 0.999 + }, + { + "start": 16802.02, + "end": 16803.64, + "probability": 0.7935 + }, + { + "start": 16803.86, + "end": 16804.8, + "probability": 0.8159 + }, + { + "start": 16805.64, + "end": 16807.48, + "probability": 0.968 + }, + { + "start": 16807.58, + "end": 16809.04, + "probability": 0.9375 + }, + { + "start": 16809.12, + "end": 16815.74, + "probability": 0.9867 + }, + { + "start": 16816.0, + "end": 16816.76, + "probability": 0.6701 + }, + { + "start": 16817.64, + "end": 16818.92, + "probability": 0.9314 + }, + { + "start": 16819.6, + "end": 16819.86, + "probability": 0.5551 + }, + { + "start": 16821.22, + "end": 16823.88, + "probability": 0.9661 + }, + { + "start": 16824.68, + "end": 16826.08, + "probability": 0.8208 + }, + { + "start": 16826.38, + "end": 16829.84, + "probability": 0.9613 + }, + { + "start": 16830.02, + "end": 16830.48, + "probability": 0.8688 + }, + { + "start": 16830.54, + "end": 16832.24, + "probability": 0.8081 + }, + { + "start": 16832.26, + "end": 16834.22, + "probability": 0.7835 + }, + { + "start": 16834.46, + "end": 16838.72, + "probability": 0.9403 + }, + { + "start": 16839.22, + "end": 16841.44, + "probability": 0.9966 + }, + { + "start": 16841.54, + "end": 16843.58, + "probability": 0.7857 + }, + { + "start": 16846.48, + "end": 16846.48, + "probability": 0.3069 + }, + { + "start": 16846.48, + "end": 16848.56, + "probability": 0.776 + }, + { + "start": 16850.96, + "end": 16853.1, + "probability": 0.6748 + }, + { + "start": 16853.7, + "end": 16855.18, + "probability": 0.8015 + }, + { + "start": 16855.72, + "end": 16856.72, + "probability": 0.7964 + }, + { + "start": 16856.86, + "end": 16858.88, + "probability": 0.9877 + }, + { + "start": 16859.28, + "end": 16862.56, + "probability": 0.9174 + }, + { + "start": 16863.1, + "end": 16863.9, + "probability": 0.493 + }, + { + "start": 16863.98, + "end": 16865.42, + "probability": 0.8387 + }, + { + "start": 16868.68, + "end": 16869.24, + "probability": 0.616 + }, + { + "start": 16869.62, + "end": 16870.34, + "probability": 0.746 + }, + { + "start": 16888.86, + "end": 16893.42, + "probability": 0.2457 + }, + { + "start": 16893.72, + "end": 16894.72, + "probability": 0.7337 + }, + { + "start": 16894.81, + "end": 16900.52, + "probability": 0.6167 + }, + { + "start": 16901.14, + "end": 16905.81, + "probability": 0.8521 + }, + { + "start": 16913.4, + "end": 16914.16, + "probability": 0.2455 + }, + { + "start": 16922.76, + "end": 16925.22, + "probability": 0.0046 + }, + { + "start": 16926.0, + "end": 16927.52, + "probability": 0.0207 + }, + { + "start": 16934.6, + "end": 16935.38, + "probability": 0.474 + }, + { + "start": 16958.22, + "end": 16963.64, + "probability": 0.3942 + }, + { + "start": 16964.5, + "end": 16965.34, + "probability": 0.0461 + }, + { + "start": 16968.3, + "end": 16970.84, + "probability": 0.1587 + }, + { + "start": 16970.84, + "end": 16971.5, + "probability": 0.0999 + }, + { + "start": 16972.7, + "end": 16972.86, + "probability": 0.0457 + }, + { + "start": 16973.94, + "end": 16974.72, + "probability": 0.0745 + }, + { + "start": 16974.72, + "end": 16976.94, + "probability": 0.2894 + }, + { + "start": 16977.58, + "end": 16978.13, + "probability": 0.096 + }, + { + "start": 16979.9, + "end": 16980.56, + "probability": 0.3327 + }, + { + "start": 16984.32, + "end": 16984.9, + "probability": 0.0572 + }, + { + "start": 16985.08, + "end": 16988.8, + "probability": 0.1606 + }, + { + "start": 16988.8, + "end": 16989.52, + "probability": 0.03 + }, + { + "start": 16989.52, + "end": 16989.92, + "probability": 0.0583 + }, + { + "start": 16989.92, + "end": 16989.92, + "probability": 0.0472 + }, + { + "start": 16990.16, + "end": 16990.72, + "probability": 0.0223 + }, + { + "start": 16990.72, + "end": 16990.72, + "probability": 0.1514 + }, + { + "start": 16990.88, + "end": 16990.98, + "probability": 0.0096 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.0, + "end": 16991.0, + "probability": 0.0 + }, + { + "start": 16991.38, + "end": 16991.48, + "probability": 0.0278 + }, + { + "start": 16991.48, + "end": 16991.48, + "probability": 0.32 + }, + { + "start": 16991.48, + "end": 16991.48, + "probability": 0.0452 + }, + { + "start": 16991.48, + "end": 16991.48, + "probability": 0.1295 + }, + { + "start": 16991.48, + "end": 16994.86, + "probability": 0.3146 + }, + { + "start": 16995.72, + "end": 16998.92, + "probability": 0.686 + }, + { + "start": 16999.74, + "end": 17001.25, + "probability": 0.5582 + }, + { + "start": 17001.78, + "end": 17007.04, + "probability": 0.7802 + }, + { + "start": 17007.94, + "end": 17008.46, + "probability": 0.8105 + }, + { + "start": 17008.74, + "end": 17008.92, + "probability": 0.9012 + }, + { + "start": 17009.08, + "end": 17010.02, + "probability": 0.8328 + }, + { + "start": 17010.18, + "end": 17011.02, + "probability": 0.9448 + }, + { + "start": 17011.42, + "end": 17015.22, + "probability": 0.9723 + }, + { + "start": 17016.02, + "end": 17022.26, + "probability": 0.9922 + }, + { + "start": 17022.38, + "end": 17022.48, + "probability": 0.4265 + }, + { + "start": 17022.66, + "end": 17022.82, + "probability": 0.3373 + }, + { + "start": 17022.94, + "end": 17023.9, + "probability": 0.8076 + }, + { + "start": 17024.56, + "end": 17025.9, + "probability": 0.8914 + }, + { + "start": 17026.0, + "end": 17026.28, + "probability": 0.5864 + }, + { + "start": 17027.76, + "end": 17030.24, + "probability": 0.7311 + }, + { + "start": 17030.24, + "end": 17035.8, + "probability": 0.9996 + }, + { + "start": 17036.3, + "end": 17037.26, + "probability": 0.7498 + }, + { + "start": 17037.3, + "end": 17039.8, + "probability": 0.9766 + }, + { + "start": 17040.56, + "end": 17041.78, + "probability": 0.9092 + }, + { + "start": 17041.88, + "end": 17043.73, + "probability": 0.9522 + }, + { + "start": 17044.74, + "end": 17046.66, + "probability": 0.9971 + }, + { + "start": 17046.92, + "end": 17049.18, + "probability": 0.9858 + }, + { + "start": 17049.62, + "end": 17052.24, + "probability": 0.9985 + }, + { + "start": 17052.36, + "end": 17053.9, + "probability": 0.9863 + }, + { + "start": 17054.18, + "end": 17057.36, + "probability": 0.8344 + }, + { + "start": 17057.5, + "end": 17059.68, + "probability": 0.6643 + }, + { + "start": 17059.78, + "end": 17064.28, + "probability": 0.994 + }, + { + "start": 17064.74, + "end": 17066.32, + "probability": 0.7535 + }, + { + "start": 17066.84, + "end": 17070.62, + "probability": 0.7645 + }, + { + "start": 17070.68, + "end": 17071.78, + "probability": 0.9023 + }, + { + "start": 17072.2, + "end": 17073.02, + "probability": 0.7766 + }, + { + "start": 17073.12, + "end": 17073.5, + "probability": 0.4374 + }, + { + "start": 17073.54, + "end": 17075.52, + "probability": 0.9717 + }, + { + "start": 17076.2, + "end": 17078.74, + "probability": 0.9214 + }, + { + "start": 17079.42, + "end": 17081.58, + "probability": 0.9761 + }, + { + "start": 17081.7, + "end": 17085.8, + "probability": 0.9956 + }, + { + "start": 17086.08, + "end": 17091.14, + "probability": 0.9502 + }, + { + "start": 17091.14, + "end": 17093.48, + "probability": 0.9976 + }, + { + "start": 17094.12, + "end": 17097.92, + "probability": 0.9634 + }, + { + "start": 17098.06, + "end": 17099.48, + "probability": 0.9325 + }, + { + "start": 17100.08, + "end": 17102.16, + "probability": 0.9054 + }, + { + "start": 17102.76, + "end": 17107.08, + "probability": 0.9951 + }, + { + "start": 17107.62, + "end": 17108.39, + "probability": 0.832 + }, + { + "start": 17109.22, + "end": 17113.86, + "probability": 0.9738 + }, + { + "start": 17114.08, + "end": 17116.24, + "probability": 0.8079 + }, + { + "start": 17116.98, + "end": 17120.08, + "probability": 0.9987 + }, + { + "start": 17120.24, + "end": 17120.87, + "probability": 0.9932 + }, + { + "start": 17121.54, + "end": 17123.74, + "probability": 0.9988 + }, + { + "start": 17124.34, + "end": 17127.7, + "probability": 0.9838 + }, + { + "start": 17128.28, + "end": 17129.9, + "probability": 0.5548 + }, + { + "start": 17130.5, + "end": 17134.78, + "probability": 0.9881 + }, + { + "start": 17135.24, + "end": 17136.28, + "probability": 0.9111 + }, + { + "start": 17136.42, + "end": 17138.0, + "probability": 0.8965 + }, + { + "start": 17138.64, + "end": 17143.02, + "probability": 0.9858 + }, + { + "start": 17143.2, + "end": 17144.48, + "probability": 0.9958 + }, + { + "start": 17145.78, + "end": 17149.18, + "probability": 0.9986 + }, + { + "start": 17149.6, + "end": 17150.58, + "probability": 0.8087 + }, + { + "start": 17150.72, + "end": 17151.62, + "probability": 0.8429 + }, + { + "start": 17152.08, + "end": 17156.52, + "probability": 0.9769 + }, + { + "start": 17156.76, + "end": 17158.56, + "probability": 0.9118 + }, + { + "start": 17159.06, + "end": 17162.78, + "probability": 0.7764 + }, + { + "start": 17162.96, + "end": 17167.24, + "probability": 0.9862 + }, + { + "start": 17167.84, + "end": 17171.56, + "probability": 0.9966 + }, + { + "start": 17171.56, + "end": 17176.1, + "probability": 0.9879 + }, + { + "start": 17176.18, + "end": 17177.08, + "probability": 0.4491 + }, + { + "start": 17177.6, + "end": 17178.76, + "probability": 0.6932 + }, + { + "start": 17178.88, + "end": 17181.42, + "probability": 0.96 + }, + { + "start": 17181.64, + "end": 17182.06, + "probability": 0.8717 + }, + { + "start": 17182.16, + "end": 17184.88, + "probability": 0.9802 + }, + { + "start": 17184.94, + "end": 17185.52, + "probability": 0.8224 + }, + { + "start": 17185.62, + "end": 17186.12, + "probability": 0.7522 + }, + { + "start": 17186.18, + "end": 17187.22, + "probability": 0.8483 + }, + { + "start": 17188.06, + "end": 17189.6, + "probability": 0.3326 + }, + { + "start": 17189.68, + "end": 17194.24, + "probability": 0.9963 + }, + { + "start": 17194.4, + "end": 17197.06, + "probability": 0.9619 + }, + { + "start": 17197.22, + "end": 17198.32, + "probability": 0.5741 + }, + { + "start": 17198.48, + "end": 17199.22, + "probability": 0.7205 + }, + { + "start": 17199.6, + "end": 17201.62, + "probability": 0.935 + }, + { + "start": 17201.98, + "end": 17202.42, + "probability": 0.7888 + }, + { + "start": 17203.1, + "end": 17205.38, + "probability": 0.8752 + }, + { + "start": 17206.26, + "end": 17211.0, + "probability": 0.9941 + }, + { + "start": 17212.44, + "end": 17214.72, + "probability": 0.8751 + }, + { + "start": 17215.66, + "end": 17217.46, + "probability": 0.9656 + }, + { + "start": 17218.92, + "end": 17222.52, + "probability": 0.9917 + }, + { + "start": 17222.52, + "end": 17226.06, + "probability": 0.9149 + }, + { + "start": 17226.76, + "end": 17227.74, + "probability": 0.6871 + }, + { + "start": 17227.9, + "end": 17228.88, + "probability": 0.7153 + }, + { + "start": 17229.04, + "end": 17229.97, + "probability": 0.9622 + }, + { + "start": 17230.7, + "end": 17231.3, + "probability": 0.7465 + }, + { + "start": 17231.82, + "end": 17233.64, + "probability": 0.9229 + }, + { + "start": 17238.0, + "end": 17239.98, + "probability": 0.585 + }, + { + "start": 17240.62, + "end": 17242.76, + "probability": 0.7797 + }, + { + "start": 17242.88, + "end": 17243.34, + "probability": 0.5243 + }, + { + "start": 17243.72, + "end": 17246.34, + "probability": 0.8424 + }, + { + "start": 17246.34, + "end": 17249.62, + "probability": 0.9624 + }, + { + "start": 17249.8, + "end": 17254.3, + "probability": 0.9893 + }, + { + "start": 17254.36, + "end": 17254.6, + "probability": 0.7472 + }, + { + "start": 17254.82, + "end": 17259.3, + "probability": 0.72 + }, + { + "start": 17259.3, + "end": 17261.86, + "probability": 0.4919 + }, + { + "start": 17263.56, + "end": 17263.8, + "probability": 0.0353 + }, + { + "start": 17263.8, + "end": 17264.1, + "probability": 0.353 + }, + { + "start": 17266.96, + "end": 17267.06, + "probability": 0.2234 + }, + { + "start": 17285.34, + "end": 17287.88, + "probability": 0.5511 + }, + { + "start": 17289.98, + "end": 17294.24, + "probability": 0.8172 + }, + { + "start": 17294.32, + "end": 17296.22, + "probability": 0.0205 + }, + { + "start": 17296.84, + "end": 17298.18, + "probability": 0.0338 + }, + { + "start": 17298.2, + "end": 17298.3, + "probability": 0.2149 + }, + { + "start": 17307.98, + "end": 17309.58, + "probability": 0.0351 + }, + { + "start": 17310.32, + "end": 17313.2, + "probability": 0.4379 + }, + { + "start": 17314.12, + "end": 17316.76, + "probability": 0.9095 + }, + { + "start": 17317.52, + "end": 17319.5, + "probability": 0.899 + }, + { + "start": 17320.96, + "end": 17323.38, + "probability": 0.8148 + }, + { + "start": 17324.24, + "end": 17325.88, + "probability": 0.6426 + }, + { + "start": 17326.76, + "end": 17329.16, + "probability": 0.855 + }, + { + "start": 17329.72, + "end": 17331.08, + "probability": 0.8577 + }, + { + "start": 17331.54, + "end": 17331.54, + "probability": 0.0065 + }, + { + "start": 17339.52, + "end": 17340.76, + "probability": 0.0057 + }, + { + "start": 17341.6, + "end": 17343.4, + "probability": 0.7495 + }, + { + "start": 17345.2, + "end": 17353.32, + "probability": 0.7931 + }, + { + "start": 17354.6, + "end": 17356.68, + "probability": 0.8726 + }, + { + "start": 17357.64, + "end": 17358.48, + "probability": 0.5287 + }, + { + "start": 17359.72, + "end": 17362.92, + "probability": 0.665 + }, + { + "start": 17364.52, + "end": 17376.86, + "probability": 0.9429 + }, + { + "start": 17378.94, + "end": 17382.3, + "probability": 0.8686 + }, + { + "start": 17383.86, + "end": 17384.58, + "probability": 0.6917 + }, + { + "start": 17385.26, + "end": 17390.5, + "probability": 0.9561 + }, + { + "start": 17391.18, + "end": 17391.8, + "probability": 0.7671 + }, + { + "start": 17391.92, + "end": 17397.28, + "probability": 0.8497 + }, + { + "start": 17399.1, + "end": 17406.2, + "probability": 0.9608 + }, + { + "start": 17407.16, + "end": 17407.9, + "probability": 0.4865 + }, + { + "start": 17408.46, + "end": 17409.26, + "probability": 0.9905 + }, + { + "start": 17410.54, + "end": 17414.7, + "probability": 0.8833 + }, + { + "start": 17416.36, + "end": 17424.18, + "probability": 0.8687 + }, + { + "start": 17425.58, + "end": 17430.18, + "probability": 0.7754 + }, + { + "start": 17430.9, + "end": 17436.3, + "probability": 0.9787 + }, + { + "start": 17437.42, + "end": 17439.48, + "probability": 0.9105 + }, + { + "start": 17440.56, + "end": 17445.22, + "probability": 0.9985 + }, + { + "start": 17446.28, + "end": 17448.2, + "probability": 0.6774 + }, + { + "start": 17449.5, + "end": 17452.34, + "probability": 0.786 + }, + { + "start": 17453.76, + "end": 17456.4, + "probability": 0.981 + }, + { + "start": 17457.11, + "end": 17460.32, + "probability": 0.95 + }, + { + "start": 17461.64, + "end": 17465.88, + "probability": 0.9187 + }, + { + "start": 17466.98, + "end": 17468.14, + "probability": 0.6924 + }, + { + "start": 17469.08, + "end": 17475.16, + "probability": 0.9162 + }, + { + "start": 17475.84, + "end": 17479.62, + "probability": 0.8879 + }, + { + "start": 17479.66, + "end": 17480.06, + "probability": 0.8845 + }, + { + "start": 17481.02, + "end": 17484.08, + "probability": 0.6614 + }, + { + "start": 17484.16, + "end": 17485.52, + "probability": 0.9912 + }, + { + "start": 17485.66, + "end": 17486.02, + "probability": 0.4911 + }, + { + "start": 17486.3, + "end": 17487.9, + "probability": 0.7731 + }, + { + "start": 17487.9, + "end": 17488.54, + "probability": 0.551 + }, + { + "start": 17489.02, + "end": 17490.84, + "probability": 0.8867 + }, + { + "start": 17492.44, + "end": 17495.86, + "probability": 0.8932 + }, + { + "start": 17510.72, + "end": 17512.4, + "probability": 0.8309 + }, + { + "start": 17512.8, + "end": 17513.6, + "probability": 0.8318 + }, + { + "start": 17514.56, + "end": 17515.2, + "probability": 0.9387 + }, + { + "start": 17515.38, + "end": 17519.32, + "probability": 0.9046 + }, + { + "start": 17520.1, + "end": 17522.62, + "probability": 0.9727 + }, + { + "start": 17523.72, + "end": 17524.22, + "probability": 0.7936 + }, + { + "start": 17525.34, + "end": 17526.64, + "probability": 0.4611 + }, + { + "start": 17527.38, + "end": 17532.42, + "probability": 0.9702 + }, + { + "start": 17533.9, + "end": 17536.9, + "probability": 0.8166 + }, + { + "start": 17537.56, + "end": 17543.54, + "probability": 0.787 + }, + { + "start": 17543.96, + "end": 17544.92, + "probability": 0.142 + }, + { + "start": 17546.42, + "end": 17547.1, + "probability": 0.4713 + }, + { + "start": 17547.1, + "end": 17547.7, + "probability": 0.6394 + }, + { + "start": 17547.8, + "end": 17548.64, + "probability": 0.6808 + }, + { + "start": 17549.82, + "end": 17551.62, + "probability": 0.8717 + }, + { + "start": 17552.34, + "end": 17553.88, + "probability": 0.66 + }, + { + "start": 17554.28, + "end": 17558.02, + "probability": 0.9805 + }, + { + "start": 17558.02, + "end": 17560.66, + "probability": 0.9938 + }, + { + "start": 17561.38, + "end": 17563.18, + "probability": 0.8656 + }, + { + "start": 17563.86, + "end": 17564.42, + "probability": 0.4515 + }, + { + "start": 17566.12, + "end": 17573.76, + "probability": 0.8136 + }, + { + "start": 17573.76, + "end": 17579.24, + "probability": 0.9048 + }, + { + "start": 17580.54, + "end": 17583.48, + "probability": 0.9704 + }, + { + "start": 17584.18, + "end": 17588.11, + "probability": 0.8792 + }, + { + "start": 17588.72, + "end": 17592.06, + "probability": 0.97 + }, + { + "start": 17592.1, + "end": 17593.26, + "probability": 0.9839 + }, + { + "start": 17593.34, + "end": 17594.76, + "probability": 0.9709 + }, + { + "start": 17595.18, + "end": 17598.8, + "probability": 0.2888 + }, + { + "start": 17599.16, + "end": 17600.82, + "probability": 0.7316 + }, + { + "start": 17600.84, + "end": 17604.5, + "probability": 0.7012 + }, + { + "start": 17604.92, + "end": 17608.82, + "probability": 0.5871 + }, + { + "start": 17609.12, + "end": 17613.3, + "probability": 0.9884 + }, + { + "start": 17614.32, + "end": 17617.34, + "probability": 0.9199 + }, + { + "start": 17617.96, + "end": 17619.44, + "probability": 0.984 + }, + { + "start": 17619.54, + "end": 17620.2, + "probability": 0.2344 + }, + { + "start": 17620.26, + "end": 17621.86, + "probability": 0.8604 + }, + { + "start": 17621.94, + "end": 17622.24, + "probability": 0.5757 + }, + { + "start": 17622.32, + "end": 17622.71, + "probability": 0.8228 + }, + { + "start": 17623.06, + "end": 17624.3, + "probability": 0.897 + }, + { + "start": 17624.74, + "end": 17625.64, + "probability": 0.7443 + }, + { + "start": 17626.36, + "end": 17627.84, + "probability": 0.9004 + }, + { + "start": 17628.1, + "end": 17629.23, + "probability": 0.9084 + }, + { + "start": 17629.3, + "end": 17630.14, + "probability": 0.8579 + }, + { + "start": 17630.34, + "end": 17632.16, + "probability": 0.939 + }, + { + "start": 17632.52, + "end": 17633.6, + "probability": 0.894 + }, + { + "start": 17634.12, + "end": 17638.72, + "probability": 0.853 + }, + { + "start": 17638.84, + "end": 17642.74, + "probability": 0.9962 + }, + { + "start": 17643.3, + "end": 17646.96, + "probability": 0.9952 + }, + { + "start": 17646.96, + "end": 17649.3, + "probability": 0.9963 + }, + { + "start": 17649.42, + "end": 17653.84, + "probability": 0.9634 + }, + { + "start": 17654.42, + "end": 17656.38, + "probability": 0.9636 + }, + { + "start": 17656.6, + "end": 17657.72, + "probability": 0.8203 + }, + { + "start": 17658.04, + "end": 17662.24, + "probability": 0.9552 + }, + { + "start": 17662.74, + "end": 17662.96, + "probability": 0.6938 + }, + { + "start": 17663.54, + "end": 17666.26, + "probability": 0.9575 + }, + { + "start": 17666.76, + "end": 17667.68, + "probability": 0.6162 + }, + { + "start": 17667.76, + "end": 17673.3, + "probability": 0.9955 + }, + { + "start": 17673.36, + "end": 17674.04, + "probability": 0.9772 + }, + { + "start": 17674.9, + "end": 17676.66, + "probability": 0.9701 + }, + { + "start": 17676.8, + "end": 17678.8, + "probability": 0.7986 + }, + { + "start": 17679.46, + "end": 17681.4, + "probability": 0.9045 + }, + { + "start": 17703.88, + "end": 17705.22, + "probability": 0.5147 + }, + { + "start": 17705.82, + "end": 17707.06, + "probability": 0.5245 + }, + { + "start": 17708.04, + "end": 17709.0, + "probability": 0.8809 + }, + { + "start": 17710.3, + "end": 17714.52, + "probability": 0.8179 + }, + { + "start": 17718.06, + "end": 17722.68, + "probability": 0.9264 + }, + { + "start": 17723.94, + "end": 17727.22, + "probability": 0.6794 + }, + { + "start": 17728.28, + "end": 17732.92, + "probability": 0.7952 + }, + { + "start": 17733.12, + "end": 17734.98, + "probability": 0.7016 + }, + { + "start": 17736.66, + "end": 17739.16, + "probability": 0.7825 + }, + { + "start": 17739.3, + "end": 17742.4, + "probability": 0.7087 + }, + { + "start": 17742.76, + "end": 17743.74, + "probability": 0.0384 + }, + { + "start": 17744.2, + "end": 17746.06, + "probability": 0.5246 + }, + { + "start": 17746.7, + "end": 17747.62, + "probability": 0.8182 + }, + { + "start": 17748.14, + "end": 17749.96, + "probability": 0.9792 + }, + { + "start": 17750.08, + "end": 17750.94, + "probability": 0.5042 + }, + { + "start": 17752.6, + "end": 17755.1, + "probability": 0.8579 + }, + { + "start": 17755.2, + "end": 17756.84, + "probability": 0.7039 + }, + { + "start": 17757.02, + "end": 17757.62, + "probability": 0.6152 + }, + { + "start": 17757.66, + "end": 17759.84, + "probability": 0.927 + }, + { + "start": 17759.94, + "end": 17760.92, + "probability": 0.9035 + }, + { + "start": 17760.96, + "end": 17764.02, + "probability": 0.2113 + }, + { + "start": 17764.04, + "end": 17764.82, + "probability": 0.3685 + }, + { + "start": 17766.36, + "end": 17768.32, + "probability": 0.0193 + }, + { + "start": 17770.5, + "end": 17770.78, + "probability": 0.5244 + }, + { + "start": 17772.36, + "end": 17774.58, + "probability": 0.9333 + }, + { + "start": 17774.78, + "end": 17778.84, + "probability": 0.7825 + }, + { + "start": 17780.28, + "end": 17783.98, + "probability": 0.91 + }, + { + "start": 17784.4, + "end": 17788.64, + "probability": 0.8757 + }, + { + "start": 17789.24, + "end": 17792.36, + "probability": 0.9834 + }, + { + "start": 17793.08, + "end": 17796.04, + "probability": 0.9735 + }, + { + "start": 17796.08, + "end": 17800.4, + "probability": 0.8865 + }, + { + "start": 17800.6, + "end": 17802.68, + "probability": 0.9814 + }, + { + "start": 17803.2, + "end": 17806.36, + "probability": 0.8392 + }, + { + "start": 17807.04, + "end": 17811.26, + "probability": 0.9812 + }, + { + "start": 17811.98, + "end": 17813.28, + "probability": 0.6707 + }, + { + "start": 17813.4, + "end": 17817.52, + "probability": 0.9706 + }, + { + "start": 17819.68, + "end": 17820.48, + "probability": 0.9395 + }, + { + "start": 17821.48, + "end": 17824.5, + "probability": 0.7576 + }, + { + "start": 17825.14, + "end": 17826.66, + "probability": 0.8135 + }, + { + "start": 17826.86, + "end": 17829.98, + "probability": 0.7246 + }, + { + "start": 17830.46, + "end": 17835.68, + "probability": 0.9492 + }, + { + "start": 17836.74, + "end": 17837.42, + "probability": 0.7712 + }, + { + "start": 17837.66, + "end": 17843.04, + "probability": 0.9504 + }, + { + "start": 17843.16, + "end": 17847.64, + "probability": 0.9902 + }, + { + "start": 17848.36, + "end": 17850.0, + "probability": 0.7995 + }, + { + "start": 17850.28, + "end": 17851.56, + "probability": 0.9355 + }, + { + "start": 17851.76, + "end": 17855.82, + "probability": 0.9646 + }, + { + "start": 17856.44, + "end": 17859.8, + "probability": 0.6681 + }, + { + "start": 17861.32, + "end": 17862.14, + "probability": 0.9797 + }, + { + "start": 17862.36, + "end": 17864.32, + "probability": 0.9122 + }, + { + "start": 17864.52, + "end": 17865.34, + "probability": 0.7203 + }, + { + "start": 17865.44, + "end": 17869.86, + "probability": 0.9971 + }, + { + "start": 17869.86, + "end": 17873.56, + "probability": 0.9993 + }, + { + "start": 17875.12, + "end": 17877.26, + "probability": 0.6884 + }, + { + "start": 17877.54, + "end": 17879.44, + "probability": 0.8954 + }, + { + "start": 17879.94, + "end": 17882.52, + "probability": 0.9554 + }, + { + "start": 17882.52, + "end": 17885.38, + "probability": 0.8233 + }, + { + "start": 17885.44, + "end": 17885.72, + "probability": 0.732 + }, + { + "start": 17886.2, + "end": 17887.42, + "probability": 0.7789 + }, + { + "start": 17888.12, + "end": 17893.62, + "probability": 0.9107 + }, + { + "start": 17893.62, + "end": 17898.32, + "probability": 0.9417 + }, + { + "start": 17898.8, + "end": 17900.02, + "probability": 0.9937 + }, + { + "start": 17900.76, + "end": 17906.06, + "probability": 0.7074 + }, + { + "start": 17907.02, + "end": 17910.66, + "probability": 0.6857 + }, + { + "start": 17911.7, + "end": 17913.82, + "probability": 0.5594 + }, + { + "start": 17914.4, + "end": 17915.76, + "probability": 0.4234 + }, + { + "start": 17916.06, + "end": 17916.76, + "probability": 0.5258 + }, + { + "start": 17916.84, + "end": 17917.76, + "probability": 0.8689 + }, + { + "start": 17918.08, + "end": 17920.14, + "probability": 0.7379 + }, + { + "start": 17921.32, + "end": 17925.82, + "probability": 0.7571 + }, + { + "start": 17927.12, + "end": 17930.08, + "probability": 0.5636 + }, + { + "start": 17930.08, + "end": 17934.76, + "probability": 0.6635 + }, + { + "start": 17934.88, + "end": 17936.4, + "probability": 0.8846 + }, + { + "start": 17936.54, + "end": 17937.82, + "probability": 0.5838 + }, + { + "start": 17937.9, + "end": 17938.0, + "probability": 0.9659 + }, + { + "start": 17938.36, + "end": 17939.22, + "probability": 0.7307 + }, + { + "start": 17939.7, + "end": 17940.7, + "probability": 0.9481 + }, + { + "start": 17940.84, + "end": 17942.72, + "probability": 0.8491 + }, + { + "start": 17942.84, + "end": 17944.3, + "probability": 0.8535 + }, + { + "start": 17944.78, + "end": 17948.0, + "probability": 0.9834 + }, + { + "start": 17948.0, + "end": 17952.91, + "probability": 0.8796 + }, + { + "start": 17954.2, + "end": 17954.48, + "probability": 0.6351 + }, + { + "start": 17954.88, + "end": 17959.96, + "probability": 0.6891 + }, + { + "start": 17961.08, + "end": 17963.56, + "probability": 0.7718 + }, + { + "start": 17964.0, + "end": 17966.78, + "probability": 0.7121 + }, + { + "start": 17966.78, + "end": 17970.08, + "probability": 0.7983 + }, + { + "start": 17972.02, + "end": 17973.06, + "probability": 0.3732 + }, + { + "start": 17973.7, + "end": 17974.26, + "probability": 0.4256 + }, + { + "start": 17974.98, + "end": 17978.52, + "probability": 0.9643 + }, + { + "start": 17980.2, + "end": 17981.64, + "probability": 0.7664 + }, + { + "start": 17981.72, + "end": 17982.89, + "probability": 0.3104 + }, + { + "start": 17983.64, + "end": 17984.86, + "probability": 0.0342 + }, + { + "start": 17984.86, + "end": 17986.78, + "probability": 0.6672 + }, + { + "start": 17987.38, + "end": 17988.36, + "probability": 0.6256 + }, + { + "start": 17989.04, + "end": 17990.24, + "probability": 0.2473 + }, + { + "start": 17990.34, + "end": 17992.32, + "probability": 0.6155 + }, + { + "start": 17992.5, + "end": 17993.26, + "probability": 0.3287 + }, + { + "start": 17993.26, + "end": 17993.76, + "probability": 0.0258 + }, + { + "start": 17993.9, + "end": 17996.76, + "probability": 0.894 + }, + { + "start": 17996.8, + "end": 17998.1, + "probability": 0.5286 + }, + { + "start": 17998.1, + "end": 17998.7, + "probability": 0.2309 + }, + { + "start": 17998.76, + "end": 17999.06, + "probability": 0.2351 + }, + { + "start": 17999.12, + "end": 17999.88, + "probability": 0.6984 + }, + { + "start": 17999.88, + "end": 18000.1, + "probability": 0.4518 + }, + { + "start": 18000.16, + "end": 18004.46, + "probability": 0.9716 + }, + { + "start": 18005.61, + "end": 18007.5, + "probability": 0.5752 + }, + { + "start": 18007.6, + "end": 18009.58, + "probability": 0.8592 + }, + { + "start": 18010.06, + "end": 18011.38, + "probability": 0.8457 + }, + { + "start": 18012.28, + "end": 18012.5, + "probability": 0.1081 + }, + { + "start": 18012.5, + "end": 18014.38, + "probability": 0.6541 + }, + { + "start": 18014.46, + "end": 18016.88, + "probability": 0.7658 + }, + { + "start": 18018.64, + "end": 18020.22, + "probability": 0.8082 + }, + { + "start": 18020.38, + "end": 18021.7, + "probability": 0.9565 + }, + { + "start": 18022.56, + "end": 18024.26, + "probability": 0.769 + }, + { + "start": 18025.4, + "end": 18026.4, + "probability": 0.8253 + }, + { + "start": 18027.72, + "end": 18030.44, + "probability": 0.9956 + }, + { + "start": 18031.62, + "end": 18034.94, + "probability": 0.9577 + }, + { + "start": 18035.66, + "end": 18036.96, + "probability": 0.9197 + }, + { + "start": 18038.02, + "end": 18045.36, + "probability": 0.9692 + }, + { + "start": 18046.14, + "end": 18050.32, + "probability": 0.9668 + }, + { + "start": 18051.14, + "end": 18053.42, + "probability": 0.9973 + }, + { + "start": 18054.74, + "end": 18057.08, + "probability": 0.9987 + }, + { + "start": 18057.88, + "end": 18059.64, + "probability": 0.9942 + }, + { + "start": 18060.32, + "end": 18062.24, + "probability": 0.9828 + }, + { + "start": 18062.84, + "end": 18064.96, + "probability": 0.9938 + }, + { + "start": 18065.66, + "end": 18067.12, + "probability": 0.7898 + }, + { + "start": 18067.9, + "end": 18069.42, + "probability": 0.9956 + }, + { + "start": 18069.9, + "end": 18072.58, + "probability": 0.9699 + }, + { + "start": 18073.36, + "end": 18074.16, + "probability": 0.7789 + }, + { + "start": 18074.82, + "end": 18076.38, + "probability": 0.9624 + }, + { + "start": 18076.52, + "end": 18079.62, + "probability": 0.9962 + }, + { + "start": 18080.36, + "end": 18081.5, + "probability": 0.5913 + }, + { + "start": 18082.5, + "end": 18083.9, + "probability": 0.6289 + }, + { + "start": 18084.02, + "end": 18088.28, + "probability": 0.7314 + }, + { + "start": 18088.3, + "end": 18089.44, + "probability": 0.9178 + }, + { + "start": 18092.76, + "end": 18094.02, + "probability": 0.9232 + }, + { + "start": 18094.18, + "end": 18098.52, + "probability": 0.9697 + }, + { + "start": 18098.52, + "end": 18103.92, + "probability": 0.9952 + }, + { + "start": 18104.36, + "end": 18107.04, + "probability": 0.9535 + }, + { + "start": 18107.4, + "end": 18109.2, + "probability": 0.8883 + }, + { + "start": 18109.8, + "end": 18112.6, + "probability": 0.9646 + }, + { + "start": 18113.38, + "end": 18114.08, + "probability": 0.7423 + }, + { + "start": 18114.12, + "end": 18114.52, + "probability": 0.8377 + }, + { + "start": 18114.72, + "end": 18118.28, + "probability": 0.9771 + }, + { + "start": 18118.3, + "end": 18121.4, + "probability": 0.993 + }, + { + "start": 18121.82, + "end": 18125.9, + "probability": 0.981 + }, + { + "start": 18126.32, + "end": 18127.24, + "probability": 0.3713 + }, + { + "start": 18129.93, + "end": 18130.28, + "probability": 0.1795 + }, + { + "start": 18130.66, + "end": 18132.56, + "probability": 0.0879 + }, + { + "start": 18132.72, + "end": 18134.24, + "probability": 0.7173 + }, + { + "start": 18134.36, + "end": 18139.56, + "probability": 0.8654 + }, + { + "start": 18139.56, + "end": 18141.68, + "probability": 0.9976 + }, + { + "start": 18142.14, + "end": 18143.14, + "probability": 0.9517 + }, + { + "start": 18143.26, + "end": 18145.44, + "probability": 0.9495 + }, + { + "start": 18145.6, + "end": 18146.24, + "probability": 0.7247 + }, + { + "start": 18146.3, + "end": 18148.98, + "probability": 0.9755 + }, + { + "start": 18149.26, + "end": 18151.84, + "probability": 0.976 + }, + { + "start": 18151.92, + "end": 18153.08, + "probability": 0.9434 + }, + { + "start": 18154.38, + "end": 18157.1, + "probability": 0.9854 + }, + { + "start": 18157.16, + "end": 18158.47, + "probability": 0.9956 + }, + { + "start": 18158.98, + "end": 18160.96, + "probability": 0.1383 + }, + { + "start": 18161.86, + "end": 18163.34, + "probability": 0.9473 + }, + { + "start": 18163.42, + "end": 18164.86, + "probability": 0.9006 + }, + { + "start": 18164.94, + "end": 18165.68, + "probability": 0.7081 + }, + { + "start": 18165.84, + "end": 18166.72, + "probability": 0.5882 + }, + { + "start": 18166.72, + "end": 18166.94, + "probability": 0.3725 + }, + { + "start": 18167.08, + "end": 18169.26, + "probability": 0.9913 + }, + { + "start": 18169.88, + "end": 18170.52, + "probability": 0.7715 + }, + { + "start": 18170.64, + "end": 18172.68, + "probability": 0.9779 + }, + { + "start": 18172.68, + "end": 18174.68, + "probability": 0.9812 + }, + { + "start": 18174.88, + "end": 18175.52, + "probability": 0.4979 + }, + { + "start": 18175.84, + "end": 18176.12, + "probability": 0.3484 + }, + { + "start": 18176.26, + "end": 18176.7, + "probability": 0.6162 + }, + { + "start": 18182.38, + "end": 18182.38, + "probability": 0.1528 + }, + { + "start": 18182.38, + "end": 18182.38, + "probability": 0.1065 + }, + { + "start": 18182.38, + "end": 18182.38, + "probability": 0.1617 + }, + { + "start": 18182.38, + "end": 18182.4, + "probability": 0.3509 + }, + { + "start": 18198.18, + "end": 18198.78, + "probability": 0.1925 + }, + { + "start": 18198.96, + "end": 18199.3, + "probability": 0.8239 + }, + { + "start": 18199.38, + "end": 18201.1, + "probability": 0.6994 + }, + { + "start": 18201.16, + "end": 18201.84, + "probability": 0.4963 + }, + { + "start": 18201.84, + "end": 18202.66, + "probability": 0.7723 + }, + { + "start": 18203.36, + "end": 18205.16, + "probability": 0.9106 + }, + { + "start": 18205.94, + "end": 18207.16, + "probability": 0.6664 + }, + { + "start": 18208.5, + "end": 18209.72, + "probability": 0.9734 + }, + { + "start": 18211.36, + "end": 18212.32, + "probability": 0.705 + }, + { + "start": 18212.94, + "end": 18213.74, + "probability": 0.9803 + }, + { + "start": 18213.8, + "end": 18214.36, + "probability": 0.8143 + }, + { + "start": 18214.42, + "end": 18216.54, + "probability": 0.8193 + }, + { + "start": 18216.7, + "end": 18218.4, + "probability": 0.6589 + }, + { + "start": 18220.04, + "end": 18221.84, + "probability": 0.6741 + }, + { + "start": 18221.94, + "end": 18223.86, + "probability": 0.9755 + }, + { + "start": 18224.18, + "end": 18225.1, + "probability": 0.9414 + }, + { + "start": 18226.02, + "end": 18232.64, + "probability": 0.9469 + }, + { + "start": 18233.62, + "end": 18235.34, + "probability": 0.7803 + }, + { + "start": 18236.38, + "end": 18239.76, + "probability": 0.9925 + }, + { + "start": 18240.44, + "end": 18240.88, + "probability": 0.9967 + }, + { + "start": 18241.84, + "end": 18246.72, + "probability": 0.8833 + }, + { + "start": 18246.94, + "end": 18247.54, + "probability": 0.4438 + }, + { + "start": 18248.42, + "end": 18250.7, + "probability": 0.9644 + }, + { + "start": 18252.06, + "end": 18255.84, + "probability": 0.8672 + }, + { + "start": 18256.1, + "end": 18261.52, + "probability": 0.9897 + }, + { + "start": 18263.02, + "end": 18264.88, + "probability": 0.8275 + }, + { + "start": 18266.02, + "end": 18267.18, + "probability": 0.8391 + }, + { + "start": 18268.46, + "end": 18270.04, + "probability": 0.9224 + }, + { + "start": 18271.34, + "end": 18274.06, + "probability": 0.9958 + }, + { + "start": 18274.86, + "end": 18276.96, + "probability": 0.9943 + }, + { + "start": 18277.84, + "end": 18282.32, + "probability": 0.9941 + }, + { + "start": 18282.7, + "end": 18283.38, + "probability": 0.9554 + }, + { + "start": 18284.1, + "end": 18286.44, + "probability": 0.9478 + }, + { + "start": 18286.96, + "end": 18287.72, + "probability": 0.9596 + }, + { + "start": 18289.9, + "end": 18291.78, + "probability": 0.8129 + }, + { + "start": 18292.0, + "end": 18295.34, + "probability": 0.9475 + }, + { + "start": 18296.5, + "end": 18300.48, + "probability": 0.9912 + }, + { + "start": 18301.24, + "end": 18302.32, + "probability": 0.8652 + }, + { + "start": 18303.3, + "end": 18304.92, + "probability": 0.7754 + }, + { + "start": 18304.92, + "end": 18306.44, + "probability": 0.5004 + }, + { + "start": 18306.68, + "end": 18310.14, + "probability": 0.9287 + }, + { + "start": 18310.42, + "end": 18317.78, + "probability": 0.9482 + }, + { + "start": 18318.98, + "end": 18322.38, + "probability": 0.9985 + }, + { + "start": 18323.34, + "end": 18324.58, + "probability": 0.8792 + }, + { + "start": 18325.1, + "end": 18326.45, + "probability": 0.9857 + }, + { + "start": 18327.72, + "end": 18330.82, + "probability": 0.9253 + }, + { + "start": 18331.86, + "end": 18336.76, + "probability": 0.9683 + }, + { + "start": 18337.5, + "end": 18340.22, + "probability": 0.9771 + }, + { + "start": 18340.84, + "end": 18341.58, + "probability": 0.8447 + }, + { + "start": 18341.96, + "end": 18343.28, + "probability": 0.9897 + }, + { + "start": 18343.76, + "end": 18347.26, + "probability": 0.8905 + }, + { + "start": 18348.48, + "end": 18348.98, + "probability": 0.7685 + }, + { + "start": 18349.92, + "end": 18353.96, + "probability": 0.9697 + }, + { + "start": 18354.56, + "end": 18356.45, + "probability": 0.957 + }, + { + "start": 18357.34, + "end": 18360.67, + "probability": 0.5732 + }, + { + "start": 18361.76, + "end": 18369.18, + "probability": 0.4895 + }, + { + "start": 18369.2, + "end": 18369.6, + "probability": 0.4765 + }, + { + "start": 18369.84, + "end": 18370.94, + "probability": 0.4396 + }, + { + "start": 18371.28, + "end": 18376.38, + "probability": 0.0649 + }, + { + "start": 18376.7, + "end": 18380.2, + "probability": 0.8807 + }, + { + "start": 18381.08, + "end": 18383.74, + "probability": 0.957 + }, + { + "start": 18386.34, + "end": 18386.58, + "probability": 0.5136 + }, + { + "start": 18386.84, + "end": 18387.76, + "probability": 0.86 + }, + { + "start": 18388.24, + "end": 18390.06, + "probability": 0.6876 + }, + { + "start": 18390.32, + "end": 18391.18, + "probability": 0.2334 + }, + { + "start": 18391.22, + "end": 18393.0, + "probability": 0.4666 + }, + { + "start": 18393.38, + "end": 18395.8, + "probability": 0.1887 + }, + { + "start": 18395.9, + "end": 18399.56, + "probability": 0.5054 + }, + { + "start": 18400.3, + "end": 18404.22, + "probability": 0.6782 + }, + { + "start": 18404.76, + "end": 18409.6, + "probability": 0.9205 + }, + { + "start": 18410.68, + "end": 18411.58, + "probability": 0.9373 + }, + { + "start": 18411.96, + "end": 18412.72, + "probability": 0.8308 + }, + { + "start": 18413.76, + "end": 18415.24, + "probability": 0.6995 + }, + { + "start": 18415.42, + "end": 18415.7, + "probability": 0.2725 + }, + { + "start": 18415.76, + "end": 18416.14, + "probability": 0.8261 + }, + { + "start": 18416.22, + "end": 18417.44, + "probability": 0.8225 + }, + { + "start": 18417.58, + "end": 18420.8, + "probability": 0.9441 + }, + { + "start": 18421.42, + "end": 18424.76, + "probability": 0.6753 + }, + { + "start": 18424.76, + "end": 18425.88, + "probability": 0.9949 + }, + { + "start": 18426.42, + "end": 18427.18, + "probability": 0.9658 + }, + { + "start": 18427.78, + "end": 18430.3, + "probability": 0.6047 + }, + { + "start": 18443.17, + "end": 18446.71, + "probability": 0.7845 + }, + { + "start": 18450.84, + "end": 18451.92, + "probability": 0.4595 + }, + { + "start": 18452.88, + "end": 18454.88, + "probability": 0.7721 + }, + { + "start": 18456.18, + "end": 18458.4, + "probability": 0.9921 + }, + { + "start": 18458.58, + "end": 18461.43, + "probability": 0.9873 + }, + { + "start": 18462.42, + "end": 18467.32, + "probability": 0.9511 + }, + { + "start": 18467.64, + "end": 18468.84, + "probability": 0.9367 + }, + { + "start": 18469.6, + "end": 18473.18, + "probability": 0.832 + }, + { + "start": 18473.88, + "end": 18478.24, + "probability": 0.9261 + }, + { + "start": 18479.42, + "end": 18483.1, + "probability": 0.875 + }, + { + "start": 18483.72, + "end": 18485.08, + "probability": 0.9121 + }, + { + "start": 18486.26, + "end": 18488.12, + "probability": 0.7295 + }, + { + "start": 18489.16, + "end": 18492.1, + "probability": 0.8963 + }, + { + "start": 18492.22, + "end": 18493.8, + "probability": 0.7866 + }, + { + "start": 18494.54, + "end": 18496.74, + "probability": 0.8822 + }, + { + "start": 18496.96, + "end": 18498.58, + "probability": 0.5992 + }, + { + "start": 18498.84, + "end": 18503.22, + "probability": 0.9568 + }, + { + "start": 18503.32, + "end": 18504.68, + "probability": 0.8337 + }, + { + "start": 18505.6, + "end": 18506.35, + "probability": 0.8654 + }, + { + "start": 18507.54, + "end": 18508.62, + "probability": 0.9441 + }, + { + "start": 18510.66, + "end": 18516.96, + "probability": 0.9839 + }, + { + "start": 18517.96, + "end": 18520.7, + "probability": 0.9867 + }, + { + "start": 18521.66, + "end": 18524.8, + "probability": 0.9802 + }, + { + "start": 18525.44, + "end": 18525.48, + "probability": 0.4015 + }, + { + "start": 18525.64, + "end": 18526.4, + "probability": 0.7137 + }, + { + "start": 18526.54, + "end": 18530.74, + "probability": 0.9111 + }, + { + "start": 18531.56, + "end": 18534.18, + "probability": 0.9835 + }, + { + "start": 18534.26, + "end": 18534.68, + "probability": 0.8039 + }, + { + "start": 18534.74, + "end": 18535.34, + "probability": 0.8468 + }, + { + "start": 18535.4, + "end": 18536.5, + "probability": 0.932 + }, + { + "start": 18537.56, + "end": 18542.94, + "probability": 0.9767 + }, + { + "start": 18544.34, + "end": 18546.42, + "probability": 0.9917 + }, + { + "start": 18547.22, + "end": 18549.1, + "probability": 0.8389 + }, + { + "start": 18549.92, + "end": 18553.06, + "probability": 0.795 + }, + { + "start": 18554.02, + "end": 18556.44, + "probability": 0.8129 + }, + { + "start": 18557.06, + "end": 18558.77, + "probability": 0.8838 + }, + { + "start": 18559.84, + "end": 18561.4, + "probability": 0.9829 + }, + { + "start": 18561.86, + "end": 18561.96, + "probability": 0.7635 + }, + { + "start": 18563.22, + "end": 18564.74, + "probability": 0.8503 + }, + { + "start": 18565.22, + "end": 18567.06, + "probability": 0.7666 + }, + { + "start": 18567.26, + "end": 18568.6, + "probability": 0.8247 + }, + { + "start": 18569.86, + "end": 18571.48, + "probability": 0.9181 + }, + { + "start": 18572.14, + "end": 18573.58, + "probability": 0.9175 + }, + { + "start": 18574.46, + "end": 18578.72, + "probability": 0.995 + }, + { + "start": 18578.75, + "end": 18581.2, + "probability": 0.8636 + }, + { + "start": 18581.66, + "end": 18583.42, + "probability": 0.1578 + }, + { + "start": 18583.9, + "end": 18585.3, + "probability": 0.9055 + }, + { + "start": 18586.04, + "end": 18587.76, + "probability": 0.7808 + }, + { + "start": 18588.96, + "end": 18592.02, + "probability": 0.7662 + }, + { + "start": 18592.16, + "end": 18593.82, + "probability": 0.3425 + }, + { + "start": 18594.66, + "end": 18597.1, + "probability": 0.8458 + }, + { + "start": 18598.04, + "end": 18599.76, + "probability": 0.9303 + }, + { + "start": 18600.48, + "end": 18603.26, + "probability": 0.661 + }, + { + "start": 18603.32, + "end": 18603.9, + "probability": 0.6483 + }, + { + "start": 18604.0, + "end": 18606.2, + "probability": 0.7549 + }, + { + "start": 18606.56, + "end": 18608.28, + "probability": 0.949 + }, + { + "start": 18608.94, + "end": 18614.59, + "probability": 0.9875 + }, + { + "start": 18615.1, + "end": 18617.86, + "probability": 0.9895 + }, + { + "start": 18618.34, + "end": 18622.04, + "probability": 0.9896 + }, + { + "start": 18622.58, + "end": 18625.36, + "probability": 0.9968 + }, + { + "start": 18625.44, + "end": 18627.22, + "probability": 0.9331 + }, + { + "start": 18628.06, + "end": 18630.02, + "probability": 0.9203 + }, + { + "start": 18630.66, + "end": 18630.78, + "probability": 0.8528 + }, + { + "start": 18631.78, + "end": 18632.14, + "probability": 0.6353 + }, + { + "start": 18632.26, + "end": 18633.56, + "probability": 0.9171 + }, + { + "start": 18633.62, + "end": 18636.5, + "probability": 0.587 + }, + { + "start": 18638.02, + "end": 18639.78, + "probability": 0.8782 + }, + { + "start": 18662.44, + "end": 18663.65, + "probability": 0.7849 + }, + { + "start": 18669.62, + "end": 18670.38, + "probability": 0.6868 + }, + { + "start": 18674.04, + "end": 18675.22, + "probability": 0.6712 + }, + { + "start": 18677.24, + "end": 18678.54, + "probability": 0.8426 + }, + { + "start": 18682.92, + "end": 18685.56, + "probability": 0.8843 + }, + { + "start": 18686.5, + "end": 18690.94, + "probability": 0.9548 + }, + { + "start": 18692.04, + "end": 18696.0, + "probability": 0.8794 + }, + { + "start": 18696.54, + "end": 18701.14, + "probability": 0.9669 + }, + { + "start": 18701.96, + "end": 18705.76, + "probability": 0.9744 + }, + { + "start": 18706.2, + "end": 18708.26, + "probability": 0.9061 + }, + { + "start": 18708.4, + "end": 18709.1, + "probability": 0.5479 + }, + { + "start": 18709.7, + "end": 18710.12, + "probability": 0.7442 + }, + { + "start": 18710.58, + "end": 18713.06, + "probability": 0.9887 + }, + { + "start": 18713.6, + "end": 18717.52, + "probability": 0.7192 + }, + { + "start": 18721.46, + "end": 18726.16, + "probability": 0.9696 + }, + { + "start": 18727.34, + "end": 18732.1, + "probability": 0.9966 + }, + { + "start": 18732.32, + "end": 18733.14, + "probability": 0.8622 + }, + { + "start": 18734.02, + "end": 18735.76, + "probability": 0.8951 + }, + { + "start": 18736.04, + "end": 18739.16, + "probability": 0.7892 + }, + { + "start": 18739.98, + "end": 18741.22, + "probability": 0.969 + }, + { + "start": 18741.76, + "end": 18743.44, + "probability": 0.9328 + }, + { + "start": 18743.66, + "end": 18744.66, + "probability": 0.7461 + }, + { + "start": 18745.16, + "end": 18746.4, + "probability": 0.9785 + }, + { + "start": 18746.76, + "end": 18747.72, + "probability": 0.9777 + }, + { + "start": 18748.42, + "end": 18749.4, + "probability": 0.7889 + }, + { + "start": 18750.58, + "end": 18753.8, + "probability": 0.9966 + }, + { + "start": 18754.8, + "end": 18757.48, + "probability": 0.9319 + }, + { + "start": 18757.6, + "end": 18759.6, + "probability": 0.9763 + }, + { + "start": 18760.12, + "end": 18762.82, + "probability": 0.8878 + }, + { + "start": 18763.36, + "end": 18764.28, + "probability": 0.9561 + }, + { + "start": 18764.28, + "end": 18770.6, + "probability": 0.667 + }, + { + "start": 18771.02, + "end": 18771.94, + "probability": 0.795 + }, + { + "start": 18772.26, + "end": 18774.22, + "probability": 0.707 + }, + { + "start": 18774.4, + "end": 18776.08, + "probability": 0.9701 + }, + { + "start": 18776.2, + "end": 18783.06, + "probability": 0.9875 + }, + { + "start": 18783.94, + "end": 18786.64, + "probability": 0.6558 + }, + { + "start": 18788.62, + "end": 18791.68, + "probability": 0.812 + }, + { + "start": 18793.16, + "end": 18798.76, + "probability": 0.943 + }, + { + "start": 18800.54, + "end": 18805.78, + "probability": 0.9962 + }, + { + "start": 18805.78, + "end": 18810.9, + "probability": 0.9912 + }, + { + "start": 18811.06, + "end": 18811.3, + "probability": 0.5837 + }, + { + "start": 18811.3, + "end": 18812.26, + "probability": 0.6392 + }, + { + "start": 18812.58, + "end": 18815.22, + "probability": 0.9656 + }, + { + "start": 18815.74, + "end": 18819.68, + "probability": 0.9862 + }, + { + "start": 18820.88, + "end": 18824.55, + "probability": 0.5288 + }, + { + "start": 18825.24, + "end": 18827.66, + "probability": 0.5435 + }, + { + "start": 18828.06, + "end": 18832.18, + "probability": 0.9162 + }, + { + "start": 18832.82, + "end": 18833.8, + "probability": 0.9739 + }, + { + "start": 18834.32, + "end": 18836.96, + "probability": 0.8595 + }, + { + "start": 18837.56, + "end": 18841.94, + "probability": 0.8677 + }, + { + "start": 18842.58, + "end": 18847.06, + "probability": 0.4986 + }, + { + "start": 18847.44, + "end": 18848.6, + "probability": 0.8408 + }, + { + "start": 18848.6, + "end": 18848.76, + "probability": 0.5988 + }, + { + "start": 18848.86, + "end": 18850.42, + "probability": 0.8036 + }, + { + "start": 18850.78, + "end": 18851.1, + "probability": 0.3345 + }, + { + "start": 18851.22, + "end": 18851.34, + "probability": 0.4181 + }, + { + "start": 18851.38, + "end": 18851.56, + "probability": 0.5248 + }, + { + "start": 18851.56, + "end": 18852.26, + "probability": 0.4959 + }, + { + "start": 18853.66, + "end": 18854.32, + "probability": 0.8369 + }, + { + "start": 18854.48, + "end": 18856.72, + "probability": 0.866 + }, + { + "start": 18856.8, + "end": 18860.98, + "probability": 0.8965 + }, + { + "start": 18861.4, + "end": 18862.54, + "probability": 0.9622 + }, + { + "start": 18862.62, + "end": 18863.62, + "probability": 0.778 + }, + { + "start": 18863.96, + "end": 18868.74, + "probability": 0.9834 + }, + { + "start": 18868.86, + "end": 18869.5, + "probability": 0.8734 + }, + { + "start": 18869.56, + "end": 18870.34, + "probability": 0.8723 + }, + { + "start": 18871.06, + "end": 18872.8, + "probability": 0.842 + }, + { + "start": 18872.9, + "end": 18875.46, + "probability": 0.9619 + }, + { + "start": 18875.94, + "end": 18876.18, + "probability": 0.6726 + }, + { + "start": 18876.2, + "end": 18878.14, + "probability": 0.3517 + }, + { + "start": 18878.3, + "end": 18880.49, + "probability": 0.7812 + }, + { + "start": 18881.22, + "end": 18881.22, + "probability": 0.1012 + }, + { + "start": 18881.22, + "end": 18882.26, + "probability": 0.4598 + }, + { + "start": 18882.78, + "end": 18883.1, + "probability": 0.6979 + }, + { + "start": 18884.43, + "end": 18887.56, + "probability": 0.7619 + }, + { + "start": 18888.3, + "end": 18888.76, + "probability": 0.5197 + }, + { + "start": 18888.88, + "end": 18890.06, + "probability": 0.8176 + }, + { + "start": 18890.1, + "end": 18890.66, + "probability": 0.9137 + }, + { + "start": 18890.76, + "end": 18893.82, + "probability": 0.9513 + }, + { + "start": 18894.38, + "end": 18898.84, + "probability": 0.9501 + }, + { + "start": 18899.44, + "end": 18905.32, + "probability": 0.9926 + }, + { + "start": 18905.54, + "end": 18907.32, + "probability": 0.6667 + }, + { + "start": 18907.46, + "end": 18907.46, + "probability": 0.4862 + }, + { + "start": 18907.46, + "end": 18909.74, + "probability": 0.6764 + }, + { + "start": 18911.54, + "end": 18912.7, + "probability": 0.8923 + }, + { + "start": 18918.0, + "end": 18919.26, + "probability": 0.5168 + }, + { + "start": 18919.84, + "end": 18920.9, + "probability": 0.8168 + }, + { + "start": 18921.46, + "end": 18922.8, + "probability": 0.9016 + }, + { + "start": 18922.94, + "end": 18924.74, + "probability": 0.7884 + }, + { + "start": 18925.28, + "end": 18929.0, + "probability": 0.9729 + }, + { + "start": 18929.06, + "end": 18930.34, + "probability": 0.9642 + }, + { + "start": 18930.88, + "end": 18931.86, + "probability": 0.7424 + }, + { + "start": 18932.6, + "end": 18934.06, + "probability": 0.896 + }, + { + "start": 18934.8, + "end": 18937.56, + "probability": 0.9982 + }, + { + "start": 18937.56, + "end": 18940.2, + "probability": 0.9919 + }, + { + "start": 18941.04, + "end": 18941.5, + "probability": 0.9077 + }, + { + "start": 18941.54, + "end": 18941.96, + "probability": 0.8381 + }, + { + "start": 18942.0, + "end": 18943.56, + "probability": 0.9879 + }, + { + "start": 18943.8, + "end": 18944.86, + "probability": 0.9565 + }, + { + "start": 18946.2, + "end": 18949.44, + "probability": 0.9586 + }, + { + "start": 18950.06, + "end": 18951.16, + "probability": 0.8271 + }, + { + "start": 18951.94, + "end": 18954.82, + "probability": 0.9961 + }, + { + "start": 18955.24, + "end": 18959.76, + "probability": 0.9889 + }, + { + "start": 18960.0, + "end": 18960.88, + "probability": 0.8896 + }, + { + "start": 18961.22, + "end": 18963.5, + "probability": 0.7609 + }, + { + "start": 18964.58, + "end": 18965.88, + "probability": 0.6153 + }, + { + "start": 18965.96, + "end": 18966.48, + "probability": 0.7788 + }, + { + "start": 18967.02, + "end": 18968.54, + "probability": 0.9199 + }, + { + "start": 18968.64, + "end": 18971.35, + "probability": 0.9851 + }, + { + "start": 18972.36, + "end": 18973.58, + "probability": 0.7494 + }, + { + "start": 18974.22, + "end": 18977.28, + "probability": 0.9234 + }, + { + "start": 18977.32, + "end": 18977.62, + "probability": 0.6176 + }, + { + "start": 18977.7, + "end": 18978.02, + "probability": 0.7346 + }, + { + "start": 18978.4, + "end": 18984.46, + "probability": 0.9761 + }, + { + "start": 18984.58, + "end": 18986.9, + "probability": 0.9974 + }, + { + "start": 18987.46, + "end": 18989.3, + "probability": 0.7267 + }, + { + "start": 18989.88, + "end": 18990.38, + "probability": 0.7537 + }, + { + "start": 18990.92, + "end": 18992.44, + "probability": 0.9771 + }, + { + "start": 18993.12, + "end": 18994.2, + "probability": 0.6961 + }, + { + "start": 18994.88, + "end": 18996.7, + "probability": 0.9927 + }, + { + "start": 18999.0, + "end": 18999.16, + "probability": 0.2856 + }, + { + "start": 18999.16, + "end": 19001.41, + "probability": 0.3548 + }, + { + "start": 19002.2, + "end": 19002.78, + "probability": 0.2692 + }, + { + "start": 19002.84, + "end": 19003.04, + "probability": 0.3305 + }, + { + "start": 19003.2, + "end": 19006.1, + "probability": 0.245 + }, + { + "start": 19007.06, + "end": 19008.14, + "probability": 0.5792 + }, + { + "start": 19009.3, + "end": 19009.76, + "probability": 0.8271 + }, + { + "start": 19010.78, + "end": 19012.0, + "probability": 0.8279 + }, + { + "start": 19012.16, + "end": 19015.26, + "probability": 0.99 + }, + { + "start": 19015.52, + "end": 19016.2, + "probability": 0.7766 + }, + { + "start": 19016.58, + "end": 19017.62, + "probability": 0.7769 + }, + { + "start": 19017.76, + "end": 19019.28, + "probability": 0.8205 + }, + { + "start": 19019.5, + "end": 19022.46, + "probability": 0.7053 + }, + { + "start": 19024.04, + "end": 19026.76, + "probability": 0.9973 + }, + { + "start": 19027.7, + "end": 19030.84, + "probability": 0.8394 + }, + { + "start": 19032.34, + "end": 19033.4, + "probability": 0.6144 + }, + { + "start": 19033.7, + "end": 19036.02, + "probability": 0.7501 + }, + { + "start": 19036.58, + "end": 19038.74, + "probability": 0.9704 + }, + { + "start": 19039.42, + "end": 19042.76, + "probability": 0.9914 + }, + { + "start": 19043.52, + "end": 19045.72, + "probability": 0.9863 + }, + { + "start": 19046.08, + "end": 19046.57, + "probability": 0.7333 + }, + { + "start": 19047.4, + "end": 19048.74, + "probability": 0.755 + }, + { + "start": 19048.82, + "end": 19051.12, + "probability": 0.8227 + }, + { + "start": 19051.64, + "end": 19052.92, + "probability": 0.9839 + }, + { + "start": 19054.16, + "end": 19056.32, + "probability": 0.9755 + }, + { + "start": 19056.32, + "end": 19059.64, + "probability": 0.7672 + }, + { + "start": 19059.7, + "end": 19062.68, + "probability": 0.8064 + }, + { + "start": 19063.02, + "end": 19065.66, + "probability": 0.79 + }, + { + "start": 19066.34, + "end": 19067.58, + "probability": 0.9961 + }, + { + "start": 19068.4, + "end": 19073.66, + "probability": 0.9474 + }, + { + "start": 19074.42, + "end": 19077.08, + "probability": 0.9622 + }, + { + "start": 19077.7, + "end": 19078.38, + "probability": 0.6443 + }, + { + "start": 19078.38, + "end": 19079.46, + "probability": 0.9598 + }, + { + "start": 19080.16, + "end": 19080.94, + "probability": 0.9465 + }, + { + "start": 19082.8, + "end": 19084.78, + "probability": 0.9431 + }, + { + "start": 19084.8, + "end": 19086.2, + "probability": 0.9596 + }, + { + "start": 19086.32, + "end": 19088.94, + "probability": 0.8195 + }, + { + "start": 19089.08, + "end": 19089.36, + "probability": 0.3604 + }, + { + "start": 19089.62, + "end": 19090.72, + "probability": 0.8481 + }, + { + "start": 19091.26, + "end": 19092.2, + "probability": 0.7948 + }, + { + "start": 19092.26, + "end": 19093.56, + "probability": 0.9954 + }, + { + "start": 19093.64, + "end": 19095.68, + "probability": 0.6677 + }, + { + "start": 19096.82, + "end": 19098.24, + "probability": 0.9118 + }, + { + "start": 19098.92, + "end": 19100.98, + "probability": 0.7335 + }, + { + "start": 19101.24, + "end": 19101.98, + "probability": 0.3838 + }, + { + "start": 19102.04, + "end": 19104.64, + "probability": 0.896 + }, + { + "start": 19106.44, + "end": 19107.2, + "probability": 0.9517 + }, + { + "start": 19107.66, + "end": 19108.48, + "probability": 0.9893 + }, + { + "start": 19109.64, + "end": 19110.64, + "probability": 0.6616 + }, + { + "start": 19110.76, + "end": 19113.36, + "probability": 0.8735 + }, + { + "start": 19113.42, + "end": 19114.24, + "probability": 0.8828 + }, + { + "start": 19114.92, + "end": 19117.58, + "probability": 0.9182 + }, + { + "start": 19117.66, + "end": 19118.27, + "probability": 0.9632 + }, + { + "start": 19119.22, + "end": 19119.4, + "probability": 0.8009 + }, + { + "start": 19119.48, + "end": 19120.04, + "probability": 0.9465 + }, + { + "start": 19120.5, + "end": 19121.96, + "probability": 0.4334 + }, + { + "start": 19121.96, + "end": 19122.96, + "probability": 0.4959 + }, + { + "start": 19123.0, + "end": 19124.26, + "probability": 0.688 + }, + { + "start": 19125.14, + "end": 19125.38, + "probability": 0.9095 + }, + { + "start": 19126.22, + "end": 19127.24, + "probability": 0.6893 + }, + { + "start": 19129.74, + "end": 19130.8, + "probability": 0.6276 + }, + { + "start": 19130.96, + "end": 19133.62, + "probability": 0.9301 + }, + { + "start": 19134.82, + "end": 19135.8, + "probability": 0.3641 + }, + { + "start": 19135.96, + "end": 19136.22, + "probability": 0.3331 + }, + { + "start": 19136.44, + "end": 19140.24, + "probability": 0.9651 + }, + { + "start": 19140.8, + "end": 19142.48, + "probability": 0.7556 + }, + { + "start": 19142.48, + "end": 19142.96, + "probability": 0.698 + }, + { + "start": 19143.46, + "end": 19145.0, + "probability": 0.9678 + }, + { + "start": 19145.38, + "end": 19148.72, + "probability": 0.9976 + }, + { + "start": 19149.02, + "end": 19149.92, + "probability": 0.3132 + }, + { + "start": 19149.92, + "end": 19151.18, + "probability": 0.7466 + }, + { + "start": 19151.18, + "end": 19152.26, + "probability": 0.4425 + }, + { + "start": 19152.26, + "end": 19152.64, + "probability": 0.654 + }, + { + "start": 19152.76, + "end": 19153.32, + "probability": 0.8381 + }, + { + "start": 19153.82, + "end": 19156.06, + "probability": 0.5124 + }, + { + "start": 19156.14, + "end": 19157.42, + "probability": 0.9397 + }, + { + "start": 19171.26, + "end": 19176.36, + "probability": 0.7425 + }, + { + "start": 19176.78, + "end": 19178.76, + "probability": 0.5067 + }, + { + "start": 19178.86, + "end": 19183.42, + "probability": 0.7583 + }, + { + "start": 19185.35, + "end": 19188.02, + "probability": 0.8709 + }, + { + "start": 19188.06, + "end": 19192.56, + "probability": 0.9714 + }, + { + "start": 19192.66, + "end": 19197.06, + "probability": 0.8309 + }, + { + "start": 19198.0, + "end": 19199.72, + "probability": 0.8613 + }, + { + "start": 19199.9, + "end": 19201.7, + "probability": 0.9774 + }, + { + "start": 19202.42, + "end": 19202.9, + "probability": 0.9653 + }, + { + "start": 19203.7, + "end": 19208.6, + "probability": 0.9803 + }, + { + "start": 19210.22, + "end": 19210.84, + "probability": 0.936 + }, + { + "start": 19211.04, + "end": 19211.5, + "probability": 0.6696 + }, + { + "start": 19212.5, + "end": 19213.56, + "probability": 0.351 + }, + { + "start": 19214.3, + "end": 19214.68, + "probability": 0.7014 + }, + { + "start": 19214.92, + "end": 19216.46, + "probability": 0.4298 + }, + { + "start": 19216.52, + "end": 19216.96, + "probability": 0.3101 + }, + { + "start": 19217.18, + "end": 19217.98, + "probability": 0.9142 + }, + { + "start": 19219.36, + "end": 19221.86, + "probability": 0.9821 + }, + { + "start": 19221.94, + "end": 19225.26, + "probability": 0.9925 + }, + { + "start": 19225.34, + "end": 19228.06, + "probability": 0.6506 + }, + { + "start": 19228.38, + "end": 19230.42, + "probability": 0.9604 + }, + { + "start": 19231.14, + "end": 19232.24, + "probability": 0.998 + }, + { + "start": 19233.8, + "end": 19235.72, + "probability": 0.9214 + }, + { + "start": 19236.86, + "end": 19240.94, + "probability": 0.9734 + }, + { + "start": 19242.04, + "end": 19243.16, + "probability": 0.8132 + }, + { + "start": 19243.22, + "end": 19244.96, + "probability": 0.9958 + }, + { + "start": 19245.1, + "end": 19247.78, + "probability": 0.9956 + }, + { + "start": 19249.72, + "end": 19251.66, + "probability": 0.922 + }, + { + "start": 19252.5, + "end": 19256.46, + "probability": 0.0537 + }, + { + "start": 19256.46, + "end": 19257.58, + "probability": 0.4094 + }, + { + "start": 19257.66, + "end": 19258.38, + "probability": 0.9064 + }, + { + "start": 19258.46, + "end": 19260.38, + "probability": 0.9053 + }, + { + "start": 19260.96, + "end": 19261.7, + "probability": 0.9961 + }, + { + "start": 19262.3, + "end": 19264.02, + "probability": 0.9751 + }, + { + "start": 19264.34, + "end": 19265.4, + "probability": 0.9497 + }, + { + "start": 19266.08, + "end": 19266.52, + "probability": 0.9546 + }, + { + "start": 19267.06, + "end": 19268.76, + "probability": 0.735 + }, + { + "start": 19269.98, + "end": 19270.46, + "probability": 0.4011 + }, + { + "start": 19270.5, + "end": 19273.06, + "probability": 0.9524 + }, + { + "start": 19273.16, + "end": 19273.96, + "probability": 0.9684 + }, + { + "start": 19274.46, + "end": 19275.06, + "probability": 0.9626 + }, + { + "start": 19275.16, + "end": 19275.87, + "probability": 0.9699 + }, + { + "start": 19275.92, + "end": 19279.24, + "probability": 0.9666 + }, + { + "start": 19280.8, + "end": 19284.36, + "probability": 0.7782 + }, + { + "start": 19285.1, + "end": 19286.0, + "probability": 0.9596 + }, + { + "start": 19286.68, + "end": 19288.62, + "probability": 0.9696 + }, + { + "start": 19289.34, + "end": 19290.18, + "probability": 0.7032 + }, + { + "start": 19290.62, + "end": 19291.38, + "probability": 0.7983 + }, + { + "start": 19291.5, + "end": 19293.32, + "probability": 0.9274 + }, + { + "start": 19293.4, + "end": 19294.32, + "probability": 0.848 + }, + { + "start": 19294.52, + "end": 19296.1, + "probability": 0.1235 + }, + { + "start": 19296.72, + "end": 19298.42, + "probability": 0.8274 + }, + { + "start": 19299.56, + "end": 19304.04, + "probability": 0.8367 + }, + { + "start": 19304.64, + "end": 19306.44, + "probability": 0.8369 + }, + { + "start": 19306.68, + "end": 19307.38, + "probability": 0.9751 + }, + { + "start": 19307.46, + "end": 19308.36, + "probability": 0.4864 + }, + { + "start": 19308.89, + "end": 19311.36, + "probability": 0.9697 + }, + { + "start": 19311.44, + "end": 19312.8, + "probability": 0.7568 + }, + { + "start": 19312.9, + "end": 19313.48, + "probability": 0.8728 + }, + { + "start": 19313.68, + "end": 19318.54, + "probability": 0.9969 + }, + { + "start": 19318.9, + "end": 19319.98, + "probability": 0.9844 + }, + { + "start": 19320.24, + "end": 19321.48, + "probability": 0.9924 + }, + { + "start": 19323.2, + "end": 19326.1, + "probability": 0.7397 + }, + { + "start": 19326.24, + "end": 19327.28, + "probability": 0.9554 + }, + { + "start": 19328.5, + "end": 19329.6, + "probability": 0.8637 + }, + { + "start": 19330.38, + "end": 19332.62, + "probability": 0.822 + }, + { + "start": 19333.6, + "end": 19335.02, + "probability": 0.9943 + }, + { + "start": 19335.96, + "end": 19336.7, + "probability": 0.958 + }, + { + "start": 19336.74, + "end": 19337.34, + "probability": 0.8557 + }, + { + "start": 19337.42, + "end": 19339.24, + "probability": 0.9929 + }, + { + "start": 19340.1, + "end": 19340.88, + "probability": 0.3969 + }, + { + "start": 19340.94, + "end": 19341.31, + "probability": 0.7759 + }, + { + "start": 19341.48, + "end": 19342.38, + "probability": 0.9061 + }, + { + "start": 19342.46, + "end": 19344.08, + "probability": 0.8722 + }, + { + "start": 19344.22, + "end": 19344.74, + "probability": 0.8602 + }, + { + "start": 19344.84, + "end": 19345.76, + "probability": 0.7949 + }, + { + "start": 19346.12, + "end": 19346.98, + "probability": 0.9922 + }, + { + "start": 19347.02, + "end": 19347.84, + "probability": 0.9899 + }, + { + "start": 19348.06, + "end": 19349.2, + "probability": 0.9802 + }, + { + "start": 19349.28, + "end": 19349.8, + "probability": 0.5743 + }, + { + "start": 19349.9, + "end": 19351.58, + "probability": 0.9575 + }, + { + "start": 19351.68, + "end": 19352.64, + "probability": 0.8895 + }, + { + "start": 19353.5, + "end": 19356.96, + "probability": 0.96 + }, + { + "start": 19357.1, + "end": 19358.38, + "probability": 0.5376 + }, + { + "start": 19359.04, + "end": 19361.28, + "probability": 0.9738 + }, + { + "start": 19361.72, + "end": 19361.96, + "probability": 0.4942 + }, + { + "start": 19362.5, + "end": 19362.86, + "probability": 0.4594 + }, + { + "start": 19363.62, + "end": 19364.86, + "probability": 0.7773 + }, + { + "start": 19365.02, + "end": 19366.8, + "probability": 0.7176 + }, + { + "start": 19370.6, + "end": 19370.8, + "probability": 0.6441 + }, + { + "start": 19371.46, + "end": 19371.66, + "probability": 0.4862 + }, + { + "start": 19383.14, + "end": 19384.18, + "probability": 0.5759 + }, + { + "start": 19386.2, + "end": 19391.16, + "probability": 0.7355 + }, + { + "start": 19392.32, + "end": 19396.44, + "probability": 0.9913 + }, + { + "start": 19397.08, + "end": 19397.68, + "probability": 0.6349 + }, + { + "start": 19399.28, + "end": 19402.44, + "probability": 0.7953 + }, + { + "start": 19403.16, + "end": 19404.68, + "probability": 0.6885 + }, + { + "start": 19405.68, + "end": 19408.8, + "probability": 0.9004 + }, + { + "start": 19410.56, + "end": 19418.1, + "probability": 0.9852 + }, + { + "start": 19418.1, + "end": 19423.4, + "probability": 0.7615 + }, + { + "start": 19425.44, + "end": 19432.18, + "probability": 0.9765 + }, + { + "start": 19433.76, + "end": 19434.8, + "probability": 0.6277 + }, + { + "start": 19435.54, + "end": 19441.02, + "probability": 0.9791 + }, + { + "start": 19442.22, + "end": 19443.52, + "probability": 0.8672 + }, + { + "start": 19444.72, + "end": 19447.6, + "probability": 0.7187 + }, + { + "start": 19449.26, + "end": 19450.84, + "probability": 0.5766 + }, + { + "start": 19451.76, + "end": 19452.14, + "probability": 0.7201 + }, + { + "start": 19452.78, + "end": 19453.3, + "probability": 0.6206 + }, + { + "start": 19455.06, + "end": 19455.42, + "probability": 0.5329 + }, + { + "start": 19460.86, + "end": 19463.4, + "probability": 0.6414 + }, + { + "start": 19464.42, + "end": 19470.16, + "probability": 0.9897 + }, + { + "start": 19470.16, + "end": 19472.82, + "probability": 0.8943 + }, + { + "start": 19474.58, + "end": 19479.26, + "probability": 0.9674 + }, + { + "start": 19480.72, + "end": 19486.02, + "probability": 0.9022 + }, + { + "start": 19487.4, + "end": 19490.32, + "probability": 0.8607 + }, + { + "start": 19491.46, + "end": 19492.98, + "probability": 0.7846 + }, + { + "start": 19494.38, + "end": 19500.66, + "probability": 0.9935 + }, + { + "start": 19501.32, + "end": 19503.36, + "probability": 0.9141 + }, + { + "start": 19503.54, + "end": 19504.08, + "probability": 0.6568 + }, + { + "start": 19505.28, + "end": 19507.18, + "probability": 0.7853 + }, + { + "start": 19507.76, + "end": 19507.88, + "probability": 0.6362 + }, + { + "start": 19509.06, + "end": 19511.94, + "probability": 0.998 + }, + { + "start": 19513.04, + "end": 19515.26, + "probability": 0.9963 + }, + { + "start": 19516.3, + "end": 19516.88, + "probability": 0.5048 + }, + { + "start": 19517.78, + "end": 19519.4, + "probability": 0.9847 + }, + { + "start": 19520.12, + "end": 19522.04, + "probability": 0.8993 + }, + { + "start": 19522.78, + "end": 19523.92, + "probability": 0.9739 + }, + { + "start": 19525.36, + "end": 19526.04, + "probability": 0.5877 + }, + { + "start": 19527.02, + "end": 19528.58, + "probability": 0.9102 + }, + { + "start": 19529.66, + "end": 19532.37, + "probability": 0.796 + }, + { + "start": 19534.1, + "end": 19536.58, + "probability": 0.6094 + }, + { + "start": 19538.02, + "end": 19539.4, + "probability": 0.5777 + }, + { + "start": 19540.24, + "end": 19543.56, + "probability": 0.8583 + }, + { + "start": 19544.18, + "end": 19546.34, + "probability": 0.836 + }, + { + "start": 19547.78, + "end": 19549.88, + "probability": 0.9028 + }, + { + "start": 19551.04, + "end": 19554.06, + "probability": 0.9635 + }, + { + "start": 19554.92, + "end": 19556.1, + "probability": 0.9961 + }, + { + "start": 19557.16, + "end": 19560.98, + "probability": 0.98 + }, + { + "start": 19561.76, + "end": 19562.38, + "probability": 0.9023 + }, + { + "start": 19563.04, + "end": 19563.18, + "probability": 0.3188 + }, + { + "start": 19563.18, + "end": 19565.82, + "probability": 0.9702 + }, + { + "start": 19565.94, + "end": 19566.56, + "probability": 0.6119 + }, + { + "start": 19566.64, + "end": 19567.63, + "probability": 0.5316 + }, + { + "start": 19568.36, + "end": 19570.0, + "probability": 0.9684 + }, + { + "start": 19571.3, + "end": 19571.62, + "probability": 0.7659 + }, + { + "start": 19572.92, + "end": 19575.0, + "probability": 0.696 + }, + { + "start": 19575.12, + "end": 19576.92, + "probability": 0.6082 + }, + { + "start": 19577.0, + "end": 19578.54, + "probability": 0.8438 + }, + { + "start": 19598.61, + "end": 19602.92, + "probability": 0.6356 + }, + { + "start": 19603.76, + "end": 19605.38, + "probability": 0.7239 + }, + { + "start": 19606.28, + "end": 19610.18, + "probability": 0.9809 + }, + { + "start": 19610.34, + "end": 19611.5, + "probability": 0.757 + }, + { + "start": 19611.76, + "end": 19612.7, + "probability": 0.967 + }, + { + "start": 19613.78, + "end": 19618.61, + "probability": 0.6071 + }, + { + "start": 19618.98, + "end": 19619.7, + "probability": 0.8458 + }, + { + "start": 19620.96, + "end": 19626.0, + "probability": 0.6074 + }, + { + "start": 19626.56, + "end": 19627.74, + "probability": 0.9664 + }, + { + "start": 19628.54, + "end": 19631.72, + "probability": 0.7735 + }, + { + "start": 19631.84, + "end": 19636.62, + "probability": 0.8898 + }, + { + "start": 19636.74, + "end": 19637.3, + "probability": 0.8878 + }, + { + "start": 19638.12, + "end": 19639.5, + "probability": 0.9594 + }, + { + "start": 19639.58, + "end": 19639.84, + "probability": 0.3112 + }, + { + "start": 19639.96, + "end": 19642.14, + "probability": 0.6846 + }, + { + "start": 19642.74, + "end": 19643.6, + "probability": 0.9584 + }, + { + "start": 19644.02, + "end": 19644.84, + "probability": 0.8646 + }, + { + "start": 19645.1, + "end": 19647.22, + "probability": 0.9609 + }, + { + "start": 19647.72, + "end": 19651.12, + "probability": 0.8253 + }, + { + "start": 19651.28, + "end": 19652.38, + "probability": 0.9872 + }, + { + "start": 19652.92, + "end": 19654.4, + "probability": 0.9599 + }, + { + "start": 19654.56, + "end": 19656.04, + "probability": 0.9829 + }, + { + "start": 19656.6, + "end": 19658.98, + "probability": 0.9658 + }, + { + "start": 19659.02, + "end": 19659.96, + "probability": 0.9585 + }, + { + "start": 19660.18, + "end": 19661.12, + "probability": 0.9868 + }, + { + "start": 19661.9, + "end": 19662.74, + "probability": 0.8997 + }, + { + "start": 19663.28, + "end": 19668.76, + "probability": 0.9915 + }, + { + "start": 19669.0, + "end": 19671.94, + "probability": 0.9966 + }, + { + "start": 19672.54, + "end": 19673.4, + "probability": 0.9847 + }, + { + "start": 19674.34, + "end": 19678.58, + "probability": 0.9431 + }, + { + "start": 19679.26, + "end": 19682.92, + "probability": 0.7727 + }, + { + "start": 19683.12, + "end": 19683.42, + "probability": 0.3493 + }, + { + "start": 19683.54, + "end": 19686.52, + "probability": 0.9243 + }, + { + "start": 19686.54, + "end": 19689.72, + "probability": 0.9404 + }, + { + "start": 19690.34, + "end": 19692.78, + "probability": 0.8155 + }, + { + "start": 19693.2, + "end": 19695.36, + "probability": 0.9878 + }, + { + "start": 19695.44, + "end": 19696.58, + "probability": 0.8145 + }, + { + "start": 19696.88, + "end": 19697.66, + "probability": 0.8726 + }, + { + "start": 19698.08, + "end": 19698.42, + "probability": 0.6334 + }, + { + "start": 19699.05, + "end": 19701.2, + "probability": 0.9871 + }, + { + "start": 19701.86, + "end": 19703.58, + "probability": 0.9153 + }, + { + "start": 19704.2, + "end": 19705.94, + "probability": 0.862 + }, + { + "start": 19705.98, + "end": 19706.98, + "probability": 0.7237 + }, + { + "start": 19707.52, + "end": 19709.64, + "probability": 0.7597 + }, + { + "start": 19709.78, + "end": 19713.4, + "probability": 0.9523 + }, + { + "start": 19713.64, + "end": 19715.34, + "probability": 0.9648 + }, + { + "start": 19715.9, + "end": 19718.04, + "probability": 0.9937 + }, + { + "start": 19718.56, + "end": 19719.78, + "probability": 0.5725 + }, + { + "start": 19720.24, + "end": 19723.72, + "probability": 0.8975 + }, + { + "start": 19724.16, + "end": 19725.97, + "probability": 0.9771 + }, + { + "start": 19726.76, + "end": 19727.06, + "probability": 0.7948 + }, + { + "start": 19727.2, + "end": 19727.52, + "probability": 0.9598 + }, + { + "start": 19727.68, + "end": 19728.0, + "probability": 0.5322 + }, + { + "start": 19728.14, + "end": 19728.68, + "probability": 0.6038 + }, + { + "start": 19728.88, + "end": 19731.22, + "probability": 0.9292 + }, + { + "start": 19731.66, + "end": 19733.49, + "probability": 0.9902 + }, + { + "start": 19735.74, + "end": 19736.02, + "probability": 0.6793 + }, + { + "start": 19736.1, + "end": 19736.66, + "probability": 0.7903 + }, + { + "start": 19736.78, + "end": 19737.43, + "probability": 0.9279 + }, + { + "start": 19738.42, + "end": 19738.74, + "probability": 0.8497 + }, + { + "start": 19738.82, + "end": 19740.26, + "probability": 0.8868 + }, + { + "start": 19740.34, + "end": 19740.94, + "probability": 0.8833 + }, + { + "start": 19740.98, + "end": 19741.88, + "probability": 0.9161 + }, + { + "start": 19742.42, + "end": 19743.84, + "probability": 0.9949 + }, + { + "start": 19744.4, + "end": 19745.22, + "probability": 0.7552 + }, + { + "start": 19746.42, + "end": 19750.22, + "probability": 0.9834 + }, + { + "start": 19750.34, + "end": 19752.86, + "probability": 0.957 + }, + { + "start": 19753.58, + "end": 19754.04, + "probability": 0.6052 + }, + { + "start": 19754.12, + "end": 19756.24, + "probability": 0.9773 + }, + { + "start": 19756.32, + "end": 19758.68, + "probability": 0.9148 + }, + { + "start": 19758.74, + "end": 19759.2, + "probability": 0.6575 + }, + { + "start": 19759.36, + "end": 19760.78, + "probability": 0.9402 + }, + { + "start": 19761.18, + "end": 19761.83, + "probability": 0.9191 + }, + { + "start": 19762.28, + "end": 19763.66, + "probability": 0.5733 + }, + { + "start": 19763.78, + "end": 19765.36, + "probability": 0.9937 + }, + { + "start": 19765.98, + "end": 19766.52, + "probability": 0.879 + }, + { + "start": 19766.52, + "end": 19768.0, + "probability": 0.9604 + }, + { + "start": 19768.22, + "end": 19771.5, + "probability": 0.6678 + }, + { + "start": 19771.9, + "end": 19772.74, + "probability": 0.8174 + }, + { + "start": 19773.08, + "end": 19773.28, + "probability": 0.5599 + }, + { + "start": 19773.4, + "end": 19777.4, + "probability": 0.7152 + }, + { + "start": 19777.58, + "end": 19780.38, + "probability": 0.8598 + }, + { + "start": 19780.82, + "end": 19783.06, + "probability": 0.9518 + }, + { + "start": 19783.2, + "end": 19784.22, + "probability": 0.9329 + }, + { + "start": 19784.46, + "end": 19786.44, + "probability": 0.9728 + }, + { + "start": 19786.52, + "end": 19786.86, + "probability": 0.5933 + }, + { + "start": 19787.78, + "end": 19789.43, + "probability": 0.8896 + }, + { + "start": 19790.0, + "end": 19790.28, + "probability": 0.5435 + }, + { + "start": 19790.86, + "end": 19792.58, + "probability": 0.9691 + }, + { + "start": 19814.72, + "end": 19814.72, + "probability": 0.0668 + }, + { + "start": 19814.72, + "end": 19817.16, + "probability": 0.6445 + }, + { + "start": 19818.4, + "end": 19822.88, + "probability": 0.9648 + }, + { + "start": 19824.48, + "end": 19827.64, + "probability": 0.8981 + }, + { + "start": 19828.02, + "end": 19828.86, + "probability": 0.8286 + }, + { + "start": 19829.36, + "end": 19829.86, + "probability": 0.5392 + }, + { + "start": 19831.5, + "end": 19834.28, + "probability": 0.8719 + }, + { + "start": 19834.4, + "end": 19837.62, + "probability": 0.7869 + }, + { + "start": 19837.88, + "end": 19839.36, + "probability": 0.7993 + }, + { + "start": 19839.46, + "end": 19840.46, + "probability": 0.8687 + }, + { + "start": 19841.74, + "end": 19845.78, + "probability": 0.9204 + }, + { + "start": 19845.78, + "end": 19849.9, + "probability": 0.955 + }, + { + "start": 19850.86, + "end": 19852.92, + "probability": 0.4982 + }, + { + "start": 19853.68, + "end": 19855.28, + "probability": 0.806 + }, + { + "start": 19855.42, + "end": 19858.48, + "probability": 0.4527 + }, + { + "start": 19858.82, + "end": 19860.26, + "probability": 0.9203 + }, + { + "start": 19860.38, + "end": 19862.66, + "probability": 0.8172 + }, + { + "start": 19863.5, + "end": 19863.96, + "probability": 0.898 + }, + { + "start": 19864.48, + "end": 19865.2, + "probability": 0.8665 + }, + { + "start": 19865.82, + "end": 19874.24, + "probability": 0.9355 + }, + { + "start": 19874.9, + "end": 19878.22, + "probability": 0.7442 + }, + { + "start": 19878.66, + "end": 19880.18, + "probability": 0.6755 + }, + { + "start": 19880.6, + "end": 19883.49, + "probability": 0.4758 + }, + { + "start": 19884.14, + "end": 19888.94, + "probability": 0.8418 + }, + { + "start": 19889.56, + "end": 19891.06, + "probability": 0.8368 + }, + { + "start": 19891.6, + "end": 19893.78, + "probability": 0.9526 + }, + { + "start": 19894.74, + "end": 19895.62, + "probability": 0.7909 + }, + { + "start": 19897.07, + "end": 19900.92, + "probability": 0.6914 + }, + { + "start": 19902.7, + "end": 19905.7, + "probability": 0.9629 + }, + { + "start": 19907.12, + "end": 19907.44, + "probability": 0.244 + }, + { + "start": 19908.96, + "end": 19911.82, + "probability": 0.8146 + }, + { + "start": 19911.94, + "end": 19913.78, + "probability": 0.9588 + }, + { + "start": 19915.38, + "end": 19916.66, + "probability": 0.526 + }, + { + "start": 19917.58, + "end": 19918.16, + "probability": 0.6527 + }, + { + "start": 19919.3, + "end": 19922.74, + "probability": 0.8071 + }, + { + "start": 19922.9, + "end": 19923.74, + "probability": 0.7658 + }, + { + "start": 19923.9, + "end": 19924.84, + "probability": 0.868 + }, + { + "start": 19926.34, + "end": 19930.22, + "probability": 0.9755 + }, + { + "start": 19930.32, + "end": 19930.73, + "probability": 0.9713 + }, + { + "start": 19933.36, + "end": 19935.0, + "probability": 0.578 + }, + { + "start": 19935.96, + "end": 19936.44, + "probability": 0.9067 + }, + { + "start": 19937.56, + "end": 19938.82, + "probability": 0.4877 + }, + { + "start": 19939.82, + "end": 19941.72, + "probability": 0.3107 + }, + { + "start": 19942.3, + "end": 19943.76, + "probability": 0.7238 + }, + { + "start": 19943.86, + "end": 19946.64, + "probability": 0.8203 + }, + { + "start": 19946.82, + "end": 19947.28, + "probability": 0.8875 + }, + { + "start": 19947.76, + "end": 19948.8, + "probability": 0.9224 + }, + { + "start": 19949.76, + "end": 19950.3, + "probability": 0.9207 + }, + { + "start": 19951.14, + "end": 19952.66, + "probability": 0.7336 + }, + { + "start": 19952.88, + "end": 19956.44, + "probability": 0.6968 + }, + { + "start": 19956.72, + "end": 19959.16, + "probability": 0.7651 + }, + { + "start": 19962.36, + "end": 19962.68, + "probability": 0.4544 + }, + { + "start": 19963.64, + "end": 19965.56, + "probability": 0.832 + }, + { + "start": 19965.6, + "end": 19969.96, + "probability": 0.9831 + }, + { + "start": 19970.58, + "end": 19974.54, + "probability": 0.8717 + }, + { + "start": 19977.45, + "end": 19978.96, + "probability": 0.5444 + }, + { + "start": 19978.96, + "end": 19980.74, + "probability": 0.3184 + }, + { + "start": 19981.12, + "end": 19982.01, + "probability": 0.5931 + }, + { + "start": 19982.96, + "end": 19984.66, + "probability": 0.9502 + }, + { + "start": 19984.96, + "end": 19986.06, + "probability": 0.6772 + }, + { + "start": 19986.36, + "end": 19988.36, + "probability": 0.7215 + }, + { + "start": 19988.82, + "end": 19989.94, + "probability": 0.9436 + }, + { + "start": 19990.4, + "end": 19990.94, + "probability": 0.1257 + }, + { + "start": 19990.94, + "end": 19992.22, + "probability": 0.3652 + }, + { + "start": 19992.32, + "end": 19993.04, + "probability": 0.8426 + }, + { + "start": 19993.5, + "end": 19995.56, + "probability": 0.7585 + }, + { + "start": 19996.1, + "end": 19996.78, + "probability": 0.3313 + }, + { + "start": 19997.72, + "end": 19999.18, + "probability": 0.595 + }, + { + "start": 20000.58, + "end": 20002.52, + "probability": 0.8447 + }, + { + "start": 20002.84, + "end": 20003.84, + "probability": 0.7361 + }, + { + "start": 20004.42, + "end": 20007.56, + "probability": 0.8385 + }, + { + "start": 20008.16, + "end": 20009.94, + "probability": 0.9699 + }, + { + "start": 20011.0, + "end": 20013.0, + "probability": 0.7405 + }, + { + "start": 20013.7, + "end": 20014.06, + "probability": 0.6937 + }, + { + "start": 20015.72, + "end": 20017.0, + "probability": 0.5425 + }, + { + "start": 20018.36, + "end": 20021.68, + "probability": 0.7272 + }, + { + "start": 20021.88, + "end": 20023.32, + "probability": 0.7532 + }, + { + "start": 20024.46, + "end": 20025.46, + "probability": 0.9499 + }, + { + "start": 20026.56, + "end": 20028.42, + "probability": 0.8318 + }, + { + "start": 20029.06, + "end": 20030.34, + "probability": 0.4405 + }, + { + "start": 20030.66, + "end": 20030.66, + "probability": 0.4459 + }, + { + "start": 20030.66, + "end": 20031.0, + "probability": 0.5131 + }, + { + "start": 20032.86, + "end": 20033.86, + "probability": 0.9731 + }, + { + "start": 20035.46, + "end": 20037.56, + "probability": 0.5056 + }, + { + "start": 20038.74, + "end": 20039.36, + "probability": 0.835 + }, + { + "start": 20040.02, + "end": 20040.46, + "probability": 0.3001 + }, + { + "start": 20041.34, + "end": 20041.66, + "probability": 0.8982 + }, + { + "start": 20042.46, + "end": 20042.56, + "probability": 0.4764 + }, + { + "start": 20042.56, + "end": 20044.96, + "probability": 0.8906 + }, + { + "start": 20045.52, + "end": 20045.52, + "probability": 0.4367 + }, + { + "start": 20047.1, + "end": 20047.92, + "probability": 0.0306 + }, + { + "start": 20047.92, + "end": 20047.92, + "probability": 0.2025 + }, + { + "start": 20047.92, + "end": 20049.66, + "probability": 0.8027 + }, + { + "start": 20050.94, + "end": 20051.44, + "probability": 0.902 + }, + { + "start": 20051.6, + "end": 20052.88, + "probability": 0.8494 + }, + { + "start": 20053.12, + "end": 20054.46, + "probability": 0.5451 + }, + { + "start": 20054.58, + "end": 20054.86, + "probability": 0.5836 + }, + { + "start": 20054.96, + "end": 20055.34, + "probability": 0.8295 + }, + { + "start": 20056.4, + "end": 20057.88, + "probability": 0.5858 + }, + { + "start": 20058.12, + "end": 20059.78, + "probability": 0.4269 + }, + { + "start": 20059.98, + "end": 20063.56, + "probability": 0.9307 + }, + { + "start": 20065.78, + "end": 20069.76, + "probability": 0.8641 + }, + { + "start": 20070.74, + "end": 20073.96, + "probability": 0.9227 + }, + { + "start": 20074.76, + "end": 20076.02, + "probability": 0.9056 + }, + { + "start": 20077.14, + "end": 20077.84, + "probability": 0.9062 + }, + { + "start": 20079.24, + "end": 20079.92, + "probability": 0.6382 + }, + { + "start": 20079.98, + "end": 20080.77, + "probability": 0.7811 + }, + { + "start": 20081.54, + "end": 20085.12, + "probability": 0.7762 + }, + { + "start": 20085.76, + "end": 20087.2, + "probability": 0.9159 + }, + { + "start": 20089.32, + "end": 20089.81, + "probability": 0.7812 + }, + { + "start": 20090.02, + "end": 20093.13, + "probability": 0.8702 + }, + { + "start": 20093.3, + "end": 20094.74, + "probability": 0.9415 + }, + { + "start": 20094.8, + "end": 20095.56, + "probability": 0.9714 + }, + { + "start": 20096.26, + "end": 20098.38, + "probability": 0.4766 + }, + { + "start": 20100.7, + "end": 20101.29, + "probability": 0.4411 + }, + { + "start": 20103.32, + "end": 20103.94, + "probability": 0.0211 + }, + { + "start": 20104.12, + "end": 20105.74, + "probability": 0.6299 + }, + { + "start": 20107.26, + "end": 20108.64, + "probability": 0.5507 + }, + { + "start": 20109.1, + "end": 20111.42, + "probability": 0.9514 + }, + { + "start": 20111.72, + "end": 20113.24, + "probability": 0.1648 + }, + { + "start": 20113.58, + "end": 20114.48, + "probability": 0.9214 + }, + { + "start": 20115.48, + "end": 20115.62, + "probability": 0.0542 + }, + { + "start": 20115.62, + "end": 20116.2, + "probability": 0.3086 + }, + { + "start": 20116.32, + "end": 20121.82, + "probability": 0.4227 + }, + { + "start": 20121.82, + "end": 20127.1, + "probability": 0.6359 + }, + { + "start": 20127.2, + "end": 20127.7, + "probability": 0.2274 + }, + { + "start": 20128.24, + "end": 20129.66, + "probability": 0.5081 + }, + { + "start": 20130.34, + "end": 20130.96, + "probability": 0.0055 + }, + { + "start": 20132.26, + "end": 20133.48, + "probability": 0.2675 + }, + { + "start": 20134.42, + "end": 20135.85, + "probability": 0.0676 + }, + { + "start": 20136.16, + "end": 20136.6, + "probability": 0.0555 + }, + { + "start": 20137.78, + "end": 20138.54, + "probability": 0.1158 + }, + { + "start": 20138.66, + "end": 20141.16, + "probability": 0.0129 + }, + { + "start": 20144.82, + "end": 20145.88, + "probability": 0.0658 + }, + { + "start": 20146.29, + "end": 20147.39, + "probability": 0.0684 + }, + { + "start": 20147.72, + "end": 20149.28, + "probability": 0.5968 + }, + { + "start": 20149.46, + "end": 20151.24, + "probability": 0.7284 + }, + { + "start": 20152.14, + "end": 20153.15, + "probability": 0.2388 + }, + { + "start": 20153.72, + "end": 20156.96, + "probability": 0.8662 + }, + { + "start": 20157.26, + "end": 20158.16, + "probability": 0.4987 + }, + { + "start": 20158.28, + "end": 20159.52, + "probability": 0.6906 + }, + { + "start": 20159.66, + "end": 20160.56, + "probability": 0.7179 + }, + { + "start": 20162.12, + "end": 20164.62, + "probability": 0.8911 + }, + { + "start": 20164.66, + "end": 20166.0, + "probability": 0.8958 + }, + { + "start": 20166.04, + "end": 20167.86, + "probability": 0.6502 + }, + { + "start": 20168.38, + "end": 20170.1, + "probability": 0.6915 + }, + { + "start": 20171.42, + "end": 20172.07, + "probability": 0.5477 + }, + { + "start": 20173.04, + "end": 20173.8, + "probability": 0.6577 + }, + { + "start": 20177.82, + "end": 20180.8, + "probability": 0.4184 + }, + { + "start": 20181.58, + "end": 20182.08, + "probability": 0.4537 + }, + { + "start": 20182.54, + "end": 20183.12, + "probability": 0.5667 + }, + { + "start": 20183.32, + "end": 20183.96, + "probability": 0.8594 + }, + { + "start": 20183.98, + "end": 20185.18, + "probability": 0.496 + }, + { + "start": 20186.6, + "end": 20189.72, + "probability": 0.6689 + }, + { + "start": 20190.94, + "end": 20192.68, + "probability": 0.9717 + }, + { + "start": 20194.24, + "end": 20196.84, + "probability": 0.6474 + }, + { + "start": 20197.38, + "end": 20198.54, + "probability": 0.3575 + }, + { + "start": 20198.76, + "end": 20200.52, + "probability": 0.6342 + }, + { + "start": 20200.9, + "end": 20202.84, + "probability": 0.8616 + }, + { + "start": 20203.36, + "end": 20205.59, + "probability": 0.7959 + }, + { + "start": 20206.26, + "end": 20207.54, + "probability": 0.8298 + }, + { + "start": 20208.64, + "end": 20211.26, + "probability": 0.4905 + }, + { + "start": 20212.0, + "end": 20214.68, + "probability": 0.7064 + }, + { + "start": 20218.98, + "end": 20219.5, + "probability": 0.941 + }, + { + "start": 20222.3, + "end": 20226.1, + "probability": 0.8784 + }, + { + "start": 20226.78, + "end": 20227.34, + "probability": 0.8018 + }, + { + "start": 20227.52, + "end": 20227.9, + "probability": 0.7234 + }, + { + "start": 20228.12, + "end": 20229.94, + "probability": 0.918 + }, + { + "start": 20230.1, + "end": 20231.34, + "probability": 0.932 + }, + { + "start": 20233.22, + "end": 20235.03, + "probability": 0.9825 + }, + { + "start": 20235.26, + "end": 20235.77, + "probability": 0.7868 + }, + { + "start": 20237.05, + "end": 20238.35, + "probability": 0.8432 + }, + { + "start": 20241.25, + "end": 20241.69, + "probability": 0.9072 + }, + { + "start": 20241.99, + "end": 20246.07, + "probability": 0.9676 + }, + { + "start": 20247.49, + "end": 20249.81, + "probability": 0.6561 + }, + { + "start": 20249.86, + "end": 20251.39, + "probability": 0.9443 + }, + { + "start": 20252.37, + "end": 20258.33, + "probability": 0.8081 + }, + { + "start": 20259.27, + "end": 20262.63, + "probability": 0.8127 + }, + { + "start": 20262.87, + "end": 20263.43, + "probability": 0.0995 + }, + { + "start": 20263.43, + "end": 20263.79, + "probability": 0.6692 + }, + { + "start": 20263.95, + "end": 20265.33, + "probability": 0.5527 + }, + { + "start": 20265.91, + "end": 20267.19, + "probability": 0.0615 + }, + { + "start": 20267.69, + "end": 20268.67, + "probability": 0.2077 + }, + { + "start": 20268.74, + "end": 20268.81, + "probability": 0.2283 + }, + { + "start": 20268.81, + "end": 20270.31, + "probability": 0.7455 + }, + { + "start": 20270.43, + "end": 20272.59, + "probability": 0.3157 + }, + { + "start": 20272.59, + "end": 20273.77, + "probability": 0.3818 + }, + { + "start": 20274.55, + "end": 20276.03, + "probability": 0.2692 + }, + { + "start": 20276.03, + "end": 20277.81, + "probability": 0.5467 + }, + { + "start": 20278.07, + "end": 20278.35, + "probability": 0.4306 + }, + { + "start": 20278.75, + "end": 20278.81, + "probability": 0.089 + }, + { + "start": 20278.81, + "end": 20281.22, + "probability": 0.6618 + }, + { + "start": 20281.71, + "end": 20286.73, + "probability": 0.509 + }, + { + "start": 20286.85, + "end": 20290.23, + "probability": 0.03 + }, + { + "start": 20290.67, + "end": 20290.69, + "probability": 0.1027 + }, + { + "start": 20290.69, + "end": 20290.69, + "probability": 0.1027 + }, + { + "start": 20290.69, + "end": 20290.69, + "probability": 0.0324 + }, + { + "start": 20290.69, + "end": 20290.69, + "probability": 0.1578 + }, + { + "start": 20290.69, + "end": 20290.69, + "probability": 0.1769 + }, + { + "start": 20290.69, + "end": 20292.45, + "probability": 0.3723 + }, + { + "start": 20293.01, + "end": 20293.07, + "probability": 0.0301 + }, + { + "start": 20293.07, + "end": 20294.57, + "probability": 0.5112 + }, + { + "start": 20294.63, + "end": 20295.91, + "probability": 0.7592 + }, + { + "start": 20296.47, + "end": 20299.09, + "probability": 0.7537 + }, + { + "start": 20299.09, + "end": 20299.11, + "probability": 0.6792 + }, + { + "start": 20299.33, + "end": 20301.53, + "probability": 0.5768 + }, + { + "start": 20302.27, + "end": 20302.49, + "probability": 0.2255 + }, + { + "start": 20302.55, + "end": 20302.77, + "probability": 0.0517 + }, + { + "start": 20302.77, + "end": 20302.77, + "probability": 0.5017 + }, + { + "start": 20302.77, + "end": 20303.17, + "probability": 0.2735 + }, + { + "start": 20303.27, + "end": 20303.87, + "probability": 0.3041 + }, + { + "start": 20303.93, + "end": 20305.09, + "probability": 0.6182 + }, + { + "start": 20305.19, + "end": 20306.45, + "probability": 0.5322 + }, + { + "start": 20306.71, + "end": 20307.87, + "probability": 0.7743 + }, + { + "start": 20309.77, + "end": 20312.29, + "probability": 0.19 + }, + { + "start": 20312.29, + "end": 20312.29, + "probability": 0.0403 + }, + { + "start": 20312.29, + "end": 20312.29, + "probability": 0.0524 + }, + { + "start": 20312.29, + "end": 20312.91, + "probability": 0.2601 + }, + { + "start": 20313.17, + "end": 20315.23, + "probability": 0.6114 + }, + { + "start": 20315.65, + "end": 20316.99, + "probability": 0.3388 + }, + { + "start": 20317.05, + "end": 20317.15, + "probability": 0.4854 + }, + { + "start": 20317.39, + "end": 20318.48, + "probability": 0.5353 + }, + { + "start": 20321.43, + "end": 20329.03, + "probability": 0.2096 + }, + { + "start": 20329.91, + "end": 20330.55, + "probability": 0.2675 + }, + { + "start": 20330.55, + "end": 20330.67, + "probability": 0.1372 + }, + { + "start": 20332.39, + "end": 20332.49, + "probability": 0.0915 + }, + { + "start": 20332.49, + "end": 20334.21, + "probability": 0.0384 + }, + { + "start": 20335.09, + "end": 20338.17, + "probability": 0.1292 + }, + { + "start": 20339.01, + "end": 20340.83, + "probability": 0.0672 + }, + { + "start": 20340.83, + "end": 20342.53, + "probability": 0.0471 + }, + { + "start": 20343.97, + "end": 20344.95, + "probability": 0.3988 + }, + { + "start": 20346.31, + "end": 20347.41, + "probability": 0.0334 + }, + { + "start": 20347.41, + "end": 20347.51, + "probability": 0.0704 + }, + { + "start": 20347.51, + "end": 20349.95, + "probability": 0.1414 + }, + { + "start": 20351.81, + "end": 20353.48, + "probability": 0.1914 + }, + { + "start": 20355.09, + "end": 20355.29, + "probability": 0.3528 + }, + { + "start": 20355.29, + "end": 20355.45, + "probability": 0.0282 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20356.0, + "end": 20356.0, + "probability": 0.0 + }, + { + "start": 20362.64, + "end": 20363.12, + "probability": 0.3791 + }, + { + "start": 20363.12, + "end": 20363.99, + "probability": 0.2833 + }, + { + "start": 20364.36, + "end": 20368.44, + "probability": 0.9092 + }, + { + "start": 20370.06, + "end": 20370.9, + "probability": 0.2243 + }, + { + "start": 20372.38, + "end": 20372.38, + "probability": 0.1185 + }, + { + "start": 20372.38, + "end": 20372.38, + "probability": 0.0491 + }, + { + "start": 20372.38, + "end": 20372.86, + "probability": 0.3086 + }, + { + "start": 20373.86, + "end": 20374.46, + "probability": 0.3915 + }, + { + "start": 20374.62, + "end": 20374.82, + "probability": 0.2909 + }, + { + "start": 20377.1, + "end": 20380.02, + "probability": 0.745 + }, + { + "start": 20382.5, + "end": 20384.44, + "probability": 0.9688 + }, + { + "start": 20385.62, + "end": 20388.74, + "probability": 0.9954 + }, + { + "start": 20393.62, + "end": 20397.32, + "probability": 0.7116 + }, + { + "start": 20398.06, + "end": 20400.58, + "probability": 0.9041 + }, + { + "start": 20401.84, + "end": 20402.3, + "probability": 0.6801 + }, + { + "start": 20402.82, + "end": 20403.42, + "probability": 0.7864 + }, + { + "start": 20405.7, + "end": 20406.98, + "probability": 0.6233 + }, + { + "start": 20407.28, + "end": 20407.68, + "probability": 0.7252 + }, + { + "start": 20407.98, + "end": 20409.25, + "probability": 0.9433 + }, + { + "start": 20409.88, + "end": 20411.74, + "probability": 0.6611 + }, + { + "start": 20414.48, + "end": 20417.42, + "probability": 0.7682 + }, + { + "start": 20418.84, + "end": 20419.43, + "probability": 0.7104 + }, + { + "start": 20419.84, + "end": 20421.46, + "probability": 0.4049 + }, + { + "start": 20421.72, + "end": 20421.94, + "probability": 0.0421 + }, + { + "start": 20421.94, + "end": 20423.62, + "probability": 0.8327 + }, + { + "start": 20423.72, + "end": 20425.03, + "probability": 0.9375 + }, + { + "start": 20425.08, + "end": 20425.94, + "probability": 0.9551 + }, + { + "start": 20426.86, + "end": 20427.12, + "probability": 0.295 + }, + { + "start": 20428.34, + "end": 20428.34, + "probability": 0.3823 + }, + { + "start": 20429.48, + "end": 20430.32, + "probability": 0.9688 + }, + { + "start": 20430.76, + "end": 20431.52, + "probability": 0.9686 + }, + { + "start": 20434.54, + "end": 20437.48, + "probability": 0.7644 + }, + { + "start": 20437.98, + "end": 20438.84, + "probability": 0.9194 + }, + { + "start": 20438.92, + "end": 20439.14, + "probability": 0.7083 + }, + { + "start": 20440.58, + "end": 20441.82, + "probability": 0.916 + }, + { + "start": 20442.88, + "end": 20446.42, + "probability": 0.5662 + }, + { + "start": 20446.62, + "end": 20447.12, + "probability": 0.3639 + }, + { + "start": 20447.24, + "end": 20449.08, + "probability": 0.6978 + }, + { + "start": 20449.14, + "end": 20450.34, + "probability": 0.6787 + }, + { + "start": 20450.76, + "end": 20451.92, + "probability": 0.53 + }, + { + "start": 20452.52, + "end": 20454.48, + "probability": 0.9879 + }, + { + "start": 20455.06, + "end": 20456.96, + "probability": 0.8455 + }, + { + "start": 20460.04, + "end": 20463.82, + "probability": 0.5223 + }, + { + "start": 20463.94, + "end": 20464.96, + "probability": 0.5926 + }, + { + "start": 20467.48, + "end": 20469.58, + "probability": 0.9104 + }, + { + "start": 20472.1, + "end": 20473.66, + "probability": 0.8339 + }, + { + "start": 20474.58, + "end": 20474.98, + "probability": 0.3253 + }, + { + "start": 20475.84, + "end": 20476.32, + "probability": 0.3208 + }, + { + "start": 20476.32, + "end": 20477.86, + "probability": 0.5985 + }, + { + "start": 20478.74, + "end": 20479.2, + "probability": 0.9521 + }, + { + "start": 20480.5, + "end": 20482.82, + "probability": 0.6758 + }, + { + "start": 20483.9, + "end": 20485.46, + "probability": 0.7637 + }, + { + "start": 20486.5, + "end": 20488.26, + "probability": 0.8362 + }, + { + "start": 20489.3, + "end": 20490.4, + "probability": 0.8186 + }, + { + "start": 20491.86, + "end": 20494.06, + "probability": 0.8022 + }, + { + "start": 20494.58, + "end": 20496.26, + "probability": 0.8074 + }, + { + "start": 20496.94, + "end": 20497.4, + "probability": 0.778 + }, + { + "start": 20497.8, + "end": 20499.48, + "probability": 0.8557 + }, + { + "start": 20500.72, + "end": 20502.74, + "probability": 0.4958 + }, + { + "start": 20512.28, + "end": 20512.38, + "probability": 0.5639 + }, + { + "start": 20515.15, + "end": 20516.2, + "probability": 0.2002 + }, + { + "start": 20516.24, + "end": 20518.38, + "probability": 0.288 + }, + { + "start": 20518.66, + "end": 20519.78, + "probability": 0.0352 + }, + { + "start": 20519.78, + "end": 20519.78, + "probability": 0.1893 + }, + { + "start": 20520.22, + "end": 20521.8, + "probability": 0.1688 + }, + { + "start": 20521.8, + "end": 20522.5, + "probability": 0.0491 + }, + { + "start": 20527.22, + "end": 20529.6, + "probability": 0.1187 + }, + { + "start": 20530.3, + "end": 20531.62, + "probability": 0.0777 + }, + { + "start": 20531.62, + "end": 20531.78, + "probability": 0.0863 + }, + { + "start": 20531.78, + "end": 20531.78, + "probability": 0.0161 + }, + { + "start": 20531.78, + "end": 20535.78, + "probability": 0.2998 + }, + { + "start": 20535.8, + "end": 20536.28, + "probability": 0.4829 + }, + { + "start": 20536.6, + "end": 20539.18, + "probability": 0.9106 + }, + { + "start": 20539.28, + "end": 20542.76, + "probability": 0.8126 + }, + { + "start": 20544.8, + "end": 20546.76, + "probability": 0.8179 + }, + { + "start": 20547.04, + "end": 20549.78, + "probability": 0.9207 + }, + { + "start": 20549.9, + "end": 20550.78, + "probability": 0.9116 + }, + { + "start": 20550.84, + "end": 20552.66, + "probability": 0.5216 + }, + { + "start": 20552.72, + "end": 20554.32, + "probability": 0.7503 + }, + { + "start": 20554.4, + "end": 20556.44, + "probability": 0.9824 + }, + { + "start": 20557.44, + "end": 20560.3, + "probability": 0.6774 + }, + { + "start": 20562.46, + "end": 20563.32, + "probability": 0.9795 + }, + { + "start": 20564.08, + "end": 20564.56, + "probability": 0.7808 + }, + { + "start": 20566.88, + "end": 20567.86, + "probability": 0.7973 + }, + { + "start": 20569.42, + "end": 20571.32, + "probability": 0.6979 + }, + { + "start": 20572.04, + "end": 20575.04, + "probability": 0.7251 + }, + { + "start": 20578.28, + "end": 20579.06, + "probability": 0.092 + }, + { + "start": 20580.06, + "end": 20581.28, + "probability": 0.5625 + }, + { + "start": 20582.14, + "end": 20582.8, + "probability": 0.1871 + }, + { + "start": 20582.86, + "end": 20584.38, + "probability": 0.3712 + }, + { + "start": 20584.7, + "end": 20584.86, + "probability": 0.2922 + }, + { + "start": 20585.12, + "end": 20585.22, + "probability": 0.1126 + }, + { + "start": 20585.7, + "end": 20586.87, + "probability": 0.7698 + }, + { + "start": 20587.04, + "end": 20587.68, + "probability": 0.6433 + }, + { + "start": 20587.68, + "end": 20589.28, + "probability": 0.4844 + }, + { + "start": 20589.72, + "end": 20589.72, + "probability": 0.0009 + }, + { + "start": 20589.74, + "end": 20589.84, + "probability": 0.3926 + }, + { + "start": 20589.98, + "end": 20590.84, + "probability": 0.841 + }, + { + "start": 20590.9, + "end": 20592.2, + "probability": 0.8042 + }, + { + "start": 20592.36, + "end": 20593.44, + "probability": 0.8528 + }, + { + "start": 20594.18, + "end": 20596.36, + "probability": 0.4856 + }, + { + "start": 20596.8, + "end": 20599.54, + "probability": 0.4006 + }, + { + "start": 20599.82, + "end": 20601.4, + "probability": 0.6495 + }, + { + "start": 20602.68, + "end": 20603.44, + "probability": 0.9196 + }, + { + "start": 20604.08, + "end": 20605.64, + "probability": 0.9661 + }, + { + "start": 20608.56, + "end": 20613.64, + "probability": 0.5778 + }, + { + "start": 20614.4, + "end": 20618.8, + "probability": 0.8594 + }, + { + "start": 20618.88, + "end": 20620.16, + "probability": 0.7664 + }, + { + "start": 20620.68, + "end": 20620.9, + "probability": 0.4503 + }, + { + "start": 20620.9, + "end": 20621.26, + "probability": 0.0277 + }, + { + "start": 20621.6, + "end": 20624.34, + "probability": 0.8159 + }, + { + "start": 20624.84, + "end": 20625.34, + "probability": 0.5138 + }, + { + "start": 20625.42, + "end": 20629.24, + "probability": 0.6348 + }, + { + "start": 20629.52, + "end": 20631.08, + "probability": 0.7704 + }, + { + "start": 20631.24, + "end": 20631.54, + "probability": 0.5718 + }, + { + "start": 20632.0, + "end": 20633.92, + "probability": 0.6076 + }, + { + "start": 20634.32, + "end": 20635.8, + "probability": 0.7343 + }, + { + "start": 20636.92, + "end": 20637.56, + "probability": 0.8877 + }, + { + "start": 20637.56, + "end": 20639.74, + "probability": 0.5058 + }, + { + "start": 20642.04, + "end": 20642.66, + "probability": 0.1127 + }, + { + "start": 20642.66, + "end": 20644.54, + "probability": 0.6119 + }, + { + "start": 20645.44, + "end": 20646.82, + "probability": 0.6919 + }, + { + "start": 20647.06, + "end": 20650.2, + "probability": 0.8303 + }, + { + "start": 20650.26, + "end": 20651.86, + "probability": 0.7153 + }, + { + "start": 20671.32, + "end": 20672.08, + "probability": 0.1098 + }, + { + "start": 20672.08, + "end": 20672.08, + "probability": 0.0501 + }, + { + "start": 20672.08, + "end": 20674.04, + "probability": 0.5674 + }, + { + "start": 20674.12, + "end": 20674.88, + "probability": 0.4083 + }, + { + "start": 20676.12, + "end": 20678.58, + "probability": 0.6979 + }, + { + "start": 20678.58, + "end": 20680.68, + "probability": 0.8001 + }, + { + "start": 20681.74, + "end": 20683.92, + "probability": 0.4073 + }, + { + "start": 20684.7, + "end": 20687.54, + "probability": 0.9854 + }, + { + "start": 20687.98, + "end": 20688.7, + "probability": 0.0564 + }, + { + "start": 20688.84, + "end": 20689.38, + "probability": 0.3608 + }, + { + "start": 20696.52, + "end": 20696.52, + "probability": 0.1096 + }, + { + "start": 20696.52, + "end": 20696.52, + "probability": 0.0469 + }, + { + "start": 20696.52, + "end": 20697.22, + "probability": 0.5858 + }, + { + "start": 20699.2, + "end": 20700.38, + "probability": 0.9356 + }, + { + "start": 20700.54, + "end": 20702.32, + "probability": 0.649 + }, + { + "start": 20702.44, + "end": 20703.0, + "probability": 0.8973 + }, + { + "start": 20712.72, + "end": 20713.24, + "probability": 0.7128 + }, + { + "start": 20715.66, + "end": 20718.56, + "probability": 0.8293 + }, + { + "start": 20719.74, + "end": 20723.6, + "probability": 0.8641 + }, + { + "start": 20724.12, + "end": 20725.1, + "probability": 0.9475 + }, + { + "start": 20725.4, + "end": 20730.34, + "probability": 0.9683 + }, + { + "start": 20731.72, + "end": 20734.12, + "probability": 0.9867 + }, + { + "start": 20735.48, + "end": 20739.06, + "probability": 0.9924 + }, + { + "start": 20739.84, + "end": 20741.1, + "probability": 0.977 + }, + { + "start": 20741.64, + "end": 20746.2, + "probability": 0.9947 + }, + { + "start": 20746.94, + "end": 20748.66, + "probability": 0.9717 + }, + { + "start": 20749.9, + "end": 20754.22, + "probability": 0.9863 + }, + { + "start": 20754.94, + "end": 20757.32, + "probability": 0.9299 + }, + { + "start": 20757.88, + "end": 20760.4, + "probability": 0.9391 + }, + { + "start": 20760.48, + "end": 20762.36, + "probability": 0.8495 + }, + { + "start": 20762.48, + "end": 20763.58, + "probability": 0.9287 + }, + { + "start": 20764.7, + "end": 20766.12, + "probability": 0.9925 + }, + { + "start": 20768.56, + "end": 20773.4, + "probability": 0.9751 + }, + { + "start": 20774.28, + "end": 20777.24, + "probability": 0.9956 + }, + { + "start": 20778.02, + "end": 20781.7, + "probability": 0.9987 + }, + { + "start": 20782.22, + "end": 20785.42, + "probability": 0.958 + }, + { + "start": 20786.58, + "end": 20787.7, + "probability": 0.6693 + }, + { + "start": 20787.86, + "end": 20791.92, + "probability": 0.9979 + }, + { + "start": 20792.52, + "end": 20794.58, + "probability": 0.9906 + }, + { + "start": 20795.4, + "end": 20797.38, + "probability": 0.9928 + }, + { + "start": 20798.08, + "end": 20802.52, + "probability": 0.9785 + }, + { + "start": 20802.68, + "end": 20803.26, + "probability": 0.7428 + }, + { + "start": 20804.48, + "end": 20807.12, + "probability": 0.9832 + }, + { + "start": 20807.68, + "end": 20809.54, + "probability": 0.9025 + }, + { + "start": 20810.6, + "end": 20813.48, + "probability": 0.9641 + }, + { + "start": 20814.1, + "end": 20815.5, + "probability": 0.8414 + }, + { + "start": 20817.36, + "end": 20818.42, + "probability": 0.9881 + }, + { + "start": 20822.32, + "end": 20823.52, + "probability": 0.9075 + }, + { + "start": 20823.68, + "end": 20825.7, + "probability": 0.9426 + }, + { + "start": 20826.14, + "end": 20827.54, + "probability": 0.9954 + }, + { + "start": 20828.18, + "end": 20830.42, + "probability": 0.9772 + }, + { + "start": 20831.02, + "end": 20834.36, + "probability": 0.9965 + }, + { + "start": 20834.88, + "end": 20837.06, + "probability": 0.96 + }, + { + "start": 20837.86, + "end": 20839.46, + "probability": 0.9976 + }, + { + "start": 20840.08, + "end": 20841.02, + "probability": 0.7841 + }, + { + "start": 20841.78, + "end": 20843.74, + "probability": 0.9569 + }, + { + "start": 20844.56, + "end": 20845.08, + "probability": 0.8278 + }, + { + "start": 20846.54, + "end": 20850.02, + "probability": 0.9605 + }, + { + "start": 20850.42, + "end": 20852.04, + "probability": 0.9937 + }, + { + "start": 20853.44, + "end": 20853.64, + "probability": 0.8936 + }, + { + "start": 20853.88, + "end": 20854.34, + "probability": 0.8857 + }, + { + "start": 20854.5, + "end": 20857.8, + "probability": 0.9414 + }, + { + "start": 20858.42, + "end": 20859.5, + "probability": 0.7553 + }, + { + "start": 20860.42, + "end": 20860.62, + "probability": 0.4001 + }, + { + "start": 20860.62, + "end": 20861.22, + "probability": 0.7316 + }, + { + "start": 20862.26, + "end": 20865.6, + "probability": 0.9711 + }, + { + "start": 20866.16, + "end": 20871.22, + "probability": 0.9895 + }, + { + "start": 20872.12, + "end": 20873.14, + "probability": 0.8974 + }, + { + "start": 20873.2, + "end": 20876.36, + "probability": 0.9933 + }, + { + "start": 20876.98, + "end": 20880.5, + "probability": 0.9723 + }, + { + "start": 20881.08, + "end": 20882.19, + "probability": 0.9448 + }, + { + "start": 20882.8, + "end": 20885.58, + "probability": 0.953 + }, + { + "start": 20885.92, + "end": 20886.9, + "probability": 0.9287 + }, + { + "start": 20887.22, + "end": 20887.96, + "probability": 0.8786 + }, + { + "start": 20888.18, + "end": 20890.72, + "probability": 0.9985 + }, + { + "start": 20890.77, + "end": 20894.92, + "probability": 0.9858 + }, + { + "start": 20895.54, + "end": 20896.92, + "probability": 0.9916 + }, + { + "start": 20896.98, + "end": 20901.46, + "probability": 0.9659 + }, + { + "start": 20901.96, + "end": 20905.78, + "probability": 0.9922 + }, + { + "start": 20906.44, + "end": 20909.66, + "probability": 0.9738 + }, + { + "start": 20910.1, + "end": 20911.48, + "probability": 0.6809 + }, + { + "start": 20913.52, + "end": 20913.52, + "probability": 0.4039 + }, + { + "start": 20913.56, + "end": 20915.28, + "probability": 0.6104 + }, + { + "start": 20916.36, + "end": 20916.9, + "probability": 0.4587 + }, + { + "start": 20917.06, + "end": 20917.94, + "probability": 0.6051 + }, + { + "start": 20918.0, + "end": 20918.46, + "probability": 0.8457 + }, + { + "start": 20919.86, + "end": 20923.56, + "probability": 0.9362 + }, + { + "start": 20923.72, + "end": 20923.82, + "probability": 0.3754 + }, + { + "start": 20924.16, + "end": 20925.26, + "probability": 0.9375 + }, + { + "start": 20925.5, + "end": 20925.7, + "probability": 0.8567 + }, + { + "start": 20925.74, + "end": 20927.28, + "probability": 0.0683 + }, + { + "start": 20928.48, + "end": 20929.2, + "probability": 0.5668 + }, + { + "start": 20930.02, + "end": 20931.62, + "probability": 0.7983 + }, + { + "start": 20931.98, + "end": 20933.44, + "probability": 0.5247 + }, + { + "start": 20945.26, + "end": 20946.21, + "probability": 0.8805 + }, + { + "start": 20952.32, + "end": 20955.1, + "probability": 0.648 + }, + { + "start": 20955.84, + "end": 20959.82, + "probability": 0.9363 + }, + { + "start": 20960.4, + "end": 20962.28, + "probability": 0.5542 + }, + { + "start": 20963.44, + "end": 20964.94, + "probability": 0.6125 + }, + { + "start": 20965.07, + "end": 20970.12, + "probability": 0.9329 + }, + { + "start": 20970.18, + "end": 20973.72, + "probability": 0.9993 + }, + { + "start": 20974.56, + "end": 20982.42, + "probability": 0.9941 + }, + { + "start": 20982.42, + "end": 20986.5, + "probability": 0.9912 + }, + { + "start": 20986.9, + "end": 20988.15, + "probability": 0.7576 + }, + { + "start": 20988.44, + "end": 20991.6, + "probability": 0.9912 + }, + { + "start": 20991.64, + "end": 20993.44, + "probability": 0.8385 + }, + { + "start": 20993.56, + "end": 20996.5, + "probability": 0.958 + }, + { + "start": 20996.58, + "end": 20997.38, + "probability": 0.9386 + }, + { + "start": 20997.42, + "end": 20998.32, + "probability": 0.9684 + }, + { + "start": 20998.36, + "end": 21000.72, + "probability": 0.9947 + }, + { + "start": 21001.16, + "end": 21002.7, + "probability": 0.6799 + }, + { + "start": 21002.9, + "end": 21004.4, + "probability": 0.9514 + }, + { + "start": 21004.88, + "end": 21009.86, + "probability": 0.9703 + }, + { + "start": 21010.46, + "end": 21012.66, + "probability": 0.6749 + }, + { + "start": 21013.04, + "end": 21015.9, + "probability": 0.9956 + }, + { + "start": 21016.34, + "end": 21016.74, + "probability": 0.3438 + }, + { + "start": 21016.78, + "end": 21017.14, + "probability": 0.6235 + }, + { + "start": 21017.52, + "end": 21020.96, + "probability": 0.9725 + }, + { + "start": 21021.0, + "end": 21024.42, + "probability": 0.9985 + }, + { + "start": 21024.82, + "end": 21027.72, + "probability": 0.9894 + }, + { + "start": 21028.06, + "end": 21028.7, + "probability": 0.9229 + }, + { + "start": 21028.82, + "end": 21029.5, + "probability": 0.5848 + }, + { + "start": 21030.2, + "end": 21033.48, + "probability": 0.9982 + }, + { + "start": 21033.48, + "end": 21039.12, + "probability": 0.9981 + }, + { + "start": 21039.16, + "end": 21040.67, + "probability": 0.9995 + }, + { + "start": 21040.94, + "end": 21043.32, + "probability": 0.9155 + }, + { + "start": 21043.82, + "end": 21051.12, + "probability": 0.993 + }, + { + "start": 21051.4, + "end": 21056.08, + "probability": 0.9971 + }, + { + "start": 21056.74, + "end": 21058.59, + "probability": 0.9713 + }, + { + "start": 21058.82, + "end": 21061.58, + "probability": 0.9813 + }, + { + "start": 21061.72, + "end": 21062.32, + "probability": 0.8877 + }, + { + "start": 21062.6, + "end": 21062.92, + "probability": 0.502 + }, + { + "start": 21063.28, + "end": 21064.28, + "probability": 0.9363 + }, + { + "start": 21064.54, + "end": 21065.32, + "probability": 0.9663 + }, + { + "start": 21066.1, + "end": 21069.56, + "probability": 0.9802 + }, + { + "start": 21069.62, + "end": 21076.34, + "probability": 0.9961 + }, + { + "start": 21076.64, + "end": 21077.36, + "probability": 0.726 + }, + { + "start": 21077.82, + "end": 21078.38, + "probability": 0.6948 + }, + { + "start": 21078.5, + "end": 21081.5, + "probability": 0.9857 + }, + { + "start": 21081.66, + "end": 21085.62, + "probability": 0.9818 + }, + { + "start": 21086.2, + "end": 21086.58, + "probability": 0.5233 + }, + { + "start": 21086.66, + "end": 21088.72, + "probability": 0.9922 + }, + { + "start": 21088.8, + "end": 21091.84, + "probability": 0.8804 + }, + { + "start": 21092.12, + "end": 21095.62, + "probability": 0.9781 + }, + { + "start": 21095.62, + "end": 21098.64, + "probability": 0.9804 + }, + { + "start": 21098.84, + "end": 21099.98, + "probability": 0.8314 + }, + { + "start": 21100.36, + "end": 21102.66, + "probability": 0.9953 + }, + { + "start": 21103.36, + "end": 21107.76, + "probability": 0.9597 + }, + { + "start": 21107.86, + "end": 21112.38, + "probability": 0.9924 + }, + { + "start": 21112.68, + "end": 21117.08, + "probability": 0.9954 + }, + { + "start": 21117.08, + "end": 21120.5, + "probability": 0.988 + }, + { + "start": 21121.04, + "end": 21126.36, + "probability": 0.9875 + }, + { + "start": 21126.5, + "end": 21127.18, + "probability": 0.3646 + }, + { + "start": 21127.7, + "end": 21129.72, + "probability": 0.6757 + }, + { + "start": 21130.04, + "end": 21134.2, + "probability": 0.9877 + }, + { + "start": 21134.3, + "end": 21134.96, + "probability": 0.8585 + }, + { + "start": 21135.32, + "end": 21139.34, + "probability": 0.9948 + }, + { + "start": 21139.34, + "end": 21144.72, + "probability": 0.999 + }, + { + "start": 21144.74, + "end": 21144.96, + "probability": 0.3174 + }, + { + "start": 21145.04, + "end": 21147.24, + "probability": 0.7099 + }, + { + "start": 21147.28, + "end": 21151.06, + "probability": 0.8875 + }, + { + "start": 21168.7, + "end": 21169.54, + "probability": 0.6235 + }, + { + "start": 21170.12, + "end": 21170.86, + "probability": 0.5809 + }, + { + "start": 21172.76, + "end": 21177.22, + "probability": 0.9377 + }, + { + "start": 21178.04, + "end": 21181.91, + "probability": 0.8478 + }, + { + "start": 21182.08, + "end": 21185.06, + "probability": 0.9639 + }, + { + "start": 21185.22, + "end": 21185.38, + "probability": 0.5619 + }, + { + "start": 21185.44, + "end": 21185.9, + "probability": 0.7083 + }, + { + "start": 21186.3, + "end": 21188.18, + "probability": 0.72 + }, + { + "start": 21188.18, + "end": 21192.16, + "probability": 0.9304 + }, + { + "start": 21192.32, + "end": 21193.08, + "probability": 0.8298 + }, + { + "start": 21193.52, + "end": 21196.96, + "probability": 0.9067 + }, + { + "start": 21197.42, + "end": 21199.28, + "probability": 0.7429 + }, + { + "start": 21199.66, + "end": 21202.08, + "probability": 0.9835 + }, + { + "start": 21202.08, + "end": 21205.2, + "probability": 0.8852 + }, + { + "start": 21206.94, + "end": 21211.92, + "probability": 0.7462 + }, + { + "start": 21212.32, + "end": 21214.88, + "probability": 0.7244 + }, + { + "start": 21214.96, + "end": 21216.06, + "probability": 0.9491 + }, + { + "start": 21216.76, + "end": 21217.7, + "probability": 0.7189 + }, + { + "start": 21217.74, + "end": 21220.1, + "probability": 0.9823 + }, + { + "start": 21220.54, + "end": 21224.32, + "probability": 0.6632 + }, + { + "start": 21224.4, + "end": 21226.7, + "probability": 0.936 + }, + { + "start": 21226.7, + "end": 21230.42, + "probability": 0.9727 + }, + { + "start": 21231.04, + "end": 21235.21, + "probability": 0.9945 + }, + { + "start": 21236.3, + "end": 21239.64, + "probability": 0.9742 + }, + { + "start": 21239.64, + "end": 21243.04, + "probability": 0.9547 + }, + { + "start": 21243.28, + "end": 21244.4, + "probability": 0.5945 + }, + { + "start": 21244.44, + "end": 21248.72, + "probability": 0.9489 + }, + { + "start": 21248.72, + "end": 21250.86, + "probability": 0.8045 + }, + { + "start": 21251.36, + "end": 21251.62, + "probability": 0.8812 + }, + { + "start": 21251.76, + "end": 21252.08, + "probability": 0.9255 + }, + { + "start": 21252.22, + "end": 21253.0, + "probability": 0.6766 + }, + { + "start": 21253.5, + "end": 21254.32, + "probability": 0.8322 + }, + { + "start": 21254.44, + "end": 21256.34, + "probability": 0.8475 + }, + { + "start": 21256.84, + "end": 21260.76, + "probability": 0.9575 + }, + { + "start": 21261.38, + "end": 21262.14, + "probability": 0.9199 + }, + { + "start": 21262.98, + "end": 21263.48, + "probability": 0.6986 + }, + { + "start": 21263.72, + "end": 21266.36, + "probability": 0.9624 + }, + { + "start": 21266.36, + "end": 21269.84, + "probability": 0.79 + }, + { + "start": 21270.28, + "end": 21273.6, + "probability": 0.9385 + }, + { + "start": 21274.0, + "end": 21280.02, + "probability": 0.9748 + }, + { + "start": 21280.64, + "end": 21282.71, + "probability": 0.6973 + }, + { + "start": 21285.92, + "end": 21287.56, + "probability": 0.7197 + }, + { + "start": 21287.88, + "end": 21288.66, + "probability": 0.9524 + }, + { + "start": 21288.9, + "end": 21289.38, + "probability": 0.668 + }, + { + "start": 21289.42, + "end": 21291.9, + "probability": 0.6779 + }, + { + "start": 21292.82, + "end": 21293.86, + "probability": 0.8877 + }, + { + "start": 21294.24, + "end": 21297.56, + "probability": 0.8535 + }, + { + "start": 21298.38, + "end": 21301.06, + "probability": 0.9597 + }, + { + "start": 21301.94, + "end": 21306.38, + "probability": 0.9464 + }, + { + "start": 21306.52, + "end": 21307.5, + "probability": 0.6893 + }, + { + "start": 21308.64, + "end": 21309.66, + "probability": 0.6541 + }, + { + "start": 21309.8, + "end": 21310.28, + "probability": 0.6781 + }, + { + "start": 21310.5, + "end": 21311.06, + "probability": 0.8484 + }, + { + "start": 21328.94, + "end": 21328.94, + "probability": 0.3261 + }, + { + "start": 21328.94, + "end": 21328.94, + "probability": 0.7415 + }, + { + "start": 21328.94, + "end": 21329.66, + "probability": 0.5977 + }, + { + "start": 21330.22, + "end": 21331.44, + "probability": 0.7286 + }, + { + "start": 21331.84, + "end": 21332.44, + "probability": 0.6463 + }, + { + "start": 21332.52, + "end": 21333.04, + "probability": 0.3553 + }, + { + "start": 21333.1, + "end": 21333.98, + "probability": 0.5654 + }, + { + "start": 21333.98, + "end": 21335.22, + "probability": 0.78 + }, + { + "start": 21335.98, + "end": 21340.7, + "probability": 0.6127 + }, + { + "start": 21341.16, + "end": 21344.84, + "probability": 0.8114 + }, + { + "start": 21346.14, + "end": 21346.16, + "probability": 0.0478 + }, + { + "start": 21346.16, + "end": 21346.16, + "probability": 0.0898 + }, + { + "start": 21346.16, + "end": 21349.8, + "probability": 0.7067 + }, + { + "start": 21374.78, + "end": 21376.04, + "probability": 0.5317 + }, + { + "start": 21376.3, + "end": 21376.66, + "probability": 0.3733 + }, + { + "start": 21377.76, + "end": 21379.08, + "probability": 0.7296 + }, + { + "start": 21379.14, + "end": 21380.78, + "probability": 0.9549 + }, + { + "start": 21381.22, + "end": 21384.82, + "probability": 0.9931 + }, + { + "start": 21384.82, + "end": 21388.56, + "probability": 0.9978 + }, + { + "start": 21388.88, + "end": 21392.37, + "probability": 0.4296 + }, + { + "start": 21392.56, + "end": 21395.14, + "probability": 0.71 + }, + { + "start": 21395.18, + "end": 21395.68, + "probability": 0.5738 + }, + { + "start": 21396.78, + "end": 21400.9, + "probability": 0.4344 + }, + { + "start": 21401.62, + "end": 21406.72, + "probability": 0.6337 + }, + { + "start": 21406.98, + "end": 21409.34, + "probability": 0.7133 + }, + { + "start": 21409.7, + "end": 21413.86, + "probability": 0.9728 + }, + { + "start": 21413.86, + "end": 21418.56, + "probability": 0.8534 + }, + { + "start": 21419.5, + "end": 21422.8, + "probability": 0.7531 + }, + { + "start": 21425.08, + "end": 21427.56, + "probability": 0.9351 + }, + { + "start": 21428.16, + "end": 21429.8, + "probability": 0.9951 + }, + { + "start": 21430.46, + "end": 21432.72, + "probability": 0.9717 + }, + { + "start": 21433.8, + "end": 21438.08, + "probability": 0.9498 + }, + { + "start": 21438.08, + "end": 21442.14, + "probability": 0.9833 + }, + { + "start": 21443.46, + "end": 21446.52, + "probability": 0.7007 + }, + { + "start": 21447.7, + "end": 21455.36, + "probability": 0.9989 + }, + { + "start": 21456.68, + "end": 21457.2, + "probability": 0.3523 + }, + { + "start": 21459.24, + "end": 21459.48, + "probability": 0.0 + }, + { + "start": 21461.75, + "end": 21467.12, + "probability": 0.8363 + }, + { + "start": 21467.8, + "end": 21470.56, + "probability": 0.4749 + }, + { + "start": 21471.28, + "end": 21473.32, + "probability": 0.933 + }, + { + "start": 21473.74, + "end": 21474.88, + "probability": 0.8137 + }, + { + "start": 21475.14, + "end": 21479.74, + "probability": 0.9702 + }, + { + "start": 21479.88, + "end": 21480.82, + "probability": 0.7783 + }, + { + "start": 21481.82, + "end": 21481.98, + "probability": 0.2842 + }, + { + "start": 21482.28, + "end": 21483.72, + "probability": 0.9055 + }, + { + "start": 21483.8, + "end": 21485.0, + "probability": 0.5209 + }, + { + "start": 21485.94, + "end": 21486.88, + "probability": 0.5193 + }, + { + "start": 21487.42, + "end": 21490.93, + "probability": 0.9834 + }, + { + "start": 21491.78, + "end": 21493.48, + "probability": 0.0136 + }, + { + "start": 21493.92, + "end": 21494.76, + "probability": 0.7997 + }, + { + "start": 21494.78, + "end": 21496.52, + "probability": 0.3892 + }, + { + "start": 21496.72, + "end": 21496.79, + "probability": 0.0251 + }, + { + "start": 21497.38, + "end": 21497.54, + "probability": 0.2297 + }, + { + "start": 21497.54, + "end": 21497.54, + "probability": 0.2355 + }, + { + "start": 21497.54, + "end": 21504.68, + "probability": 0.9802 + }, + { + "start": 21505.22, + "end": 21507.24, + "probability": 0.9442 + }, + { + "start": 21507.32, + "end": 21510.92, + "probability": 0.9915 + }, + { + "start": 21512.08, + "end": 21513.88, + "probability": 0.6943 + }, + { + "start": 21514.78, + "end": 21520.1, + "probability": 0.9733 + }, + { + "start": 21520.98, + "end": 21525.0, + "probability": 0.7288 + }, + { + "start": 21525.02, + "end": 21531.16, + "probability": 0.9802 + }, + { + "start": 21532.3, + "end": 21540.62, + "probability": 0.9911 + }, + { + "start": 21541.18, + "end": 21543.16, + "probability": 0.8264 + }, + { + "start": 21543.62, + "end": 21546.8, + "probability": 0.9966 + }, + { + "start": 21547.28, + "end": 21547.42, + "probability": 0.7368 + }, + { + "start": 21547.58, + "end": 21550.28, + "probability": 0.9026 + }, + { + "start": 21550.74, + "end": 21551.5, + "probability": 0.8162 + }, + { + "start": 21552.02, + "end": 21554.82, + "probability": 0.6841 + }, + { + "start": 21554.9, + "end": 21555.6, + "probability": 0.61 + }, + { + "start": 21555.76, + "end": 21560.05, + "probability": 0.9774 + }, + { + "start": 21560.78, + "end": 21563.04, + "probability": 0.9487 + }, + { + "start": 21563.58, + "end": 21569.8, + "probability": 0.9596 + }, + { + "start": 21572.46, + "end": 21574.14, + "probability": 0.8806 + }, + { + "start": 21574.58, + "end": 21574.8, + "probability": 0.1077 + }, + { + "start": 21574.8, + "end": 21574.86, + "probability": 0.2381 + }, + { + "start": 21574.86, + "end": 21577.18, + "probability": 0.8606 + }, + { + "start": 21578.1, + "end": 21584.07, + "probability": 0.9609 + }, + { + "start": 21584.72, + "end": 21586.38, + "probability": 0.9932 + }, + { + "start": 21586.98, + "end": 21594.76, + "probability": 0.9821 + }, + { + "start": 21595.24, + "end": 21599.7, + "probability": 0.9818 + }, + { + "start": 21599.96, + "end": 21601.76, + "probability": 0.7826 + }, + { + "start": 21601.76, + "end": 21603.88, + "probability": 0.8667 + }, + { + "start": 21606.06, + "end": 21607.06, + "probability": 0.5288 + }, + { + "start": 21607.52, + "end": 21609.66, + "probability": 0.8085 + }, + { + "start": 21610.24, + "end": 21611.4, + "probability": 0.8618 + }, + { + "start": 21612.6, + "end": 21615.32, + "probability": 0.8443 + }, + { + "start": 21628.38, + "end": 21629.58, + "probability": 0.5727 + }, + { + "start": 21629.82, + "end": 21633.0, + "probability": 0.6869 + }, + { + "start": 21634.0, + "end": 21638.1, + "probability": 0.8872 + }, + { + "start": 21638.7, + "end": 21642.98, + "probability": 0.9852 + }, + { + "start": 21643.42, + "end": 21645.48, + "probability": 0.9714 + }, + { + "start": 21645.86, + "end": 21648.4, + "probability": 0.7392 + }, + { + "start": 21648.54, + "end": 21648.68, + "probability": 0.3721 + }, + { + "start": 21650.66, + "end": 21652.74, + "probability": 0.9875 + }, + { + "start": 21653.62, + "end": 21655.1, + "probability": 0.9724 + }, + { + "start": 21655.82, + "end": 21656.64, + "probability": 0.6771 + }, + { + "start": 21657.44, + "end": 21657.86, + "probability": 0.819 + }, + { + "start": 21659.76, + "end": 21664.54, + "probability": 0.9749 + }, + { + "start": 21665.1, + "end": 21670.84, + "probability": 0.9648 + }, + { + "start": 21672.82, + "end": 21676.12, + "probability": 0.9882 + }, + { + "start": 21678.14, + "end": 21681.76, + "probability": 0.9893 + }, + { + "start": 21682.56, + "end": 21683.26, + "probability": 0.6844 + }, + { + "start": 21684.3, + "end": 21690.22, + "probability": 0.9905 + }, + { + "start": 21691.38, + "end": 21692.26, + "probability": 0.9141 + }, + { + "start": 21692.84, + "end": 21693.48, + "probability": 0.5371 + }, + { + "start": 21694.6, + "end": 21695.24, + "probability": 0.291 + }, + { + "start": 21696.2, + "end": 21696.96, + "probability": 0.932 + }, + { + "start": 21697.56, + "end": 21697.56, + "probability": 0.0001 + }, + { + "start": 21698.08, + "end": 21698.38, + "probability": 0.0267 + }, + { + "start": 21698.38, + "end": 21698.58, + "probability": 0.2751 + }, + { + "start": 21699.38, + "end": 21699.64, + "probability": 0.3022 + }, + { + "start": 21699.64, + "end": 21700.4, + "probability": 0.4497 + }, + { + "start": 21702.94, + "end": 21703.72, + "probability": 0.051 + }, + { + "start": 21704.36, + "end": 21706.16, + "probability": 0.4573 + }, + { + "start": 21706.16, + "end": 21706.52, + "probability": 0.257 + }, + { + "start": 21706.72, + "end": 21706.82, + "probability": 0.2064 + }, + { + "start": 21706.88, + "end": 21706.88, + "probability": 0.2176 + }, + { + "start": 21707.04, + "end": 21707.12, + "probability": 0.4344 + }, + { + "start": 21707.12, + "end": 21708.6, + "probability": 0.9647 + }, + { + "start": 21709.26, + "end": 21711.28, + "probability": 0.8936 + }, + { + "start": 21712.68, + "end": 21713.84, + "probability": 0.7849 + }, + { + "start": 21714.62, + "end": 21715.52, + "probability": 0.7852 + }, + { + "start": 21716.84, + "end": 21718.19, + "probability": 0.9806 + }, + { + "start": 21719.38, + "end": 21723.96, + "probability": 0.9561 + }, + { + "start": 21724.9, + "end": 21726.42, + "probability": 0.9727 + }, + { + "start": 21727.36, + "end": 21733.86, + "probability": 0.9914 + }, + { + "start": 21734.64, + "end": 21735.92, + "probability": 0.9261 + }, + { + "start": 21736.82, + "end": 21739.24, + "probability": 0.9622 + }, + { + "start": 21740.4, + "end": 21745.4, + "probability": 0.9986 + }, + { + "start": 21746.52, + "end": 21747.5, + "probability": 0.5292 + }, + { + "start": 21748.24, + "end": 21750.06, + "probability": 0.9733 + }, + { + "start": 21750.74, + "end": 21751.64, + "probability": 0.9777 + }, + { + "start": 21752.18, + "end": 21753.36, + "probability": 0.7599 + }, + { + "start": 21754.16, + "end": 21758.16, + "probability": 0.9551 + }, + { + "start": 21759.92, + "end": 21762.28, + "probability": 0.8369 + }, + { + "start": 21763.36, + "end": 21765.44, + "probability": 0.9274 + }, + { + "start": 21766.3, + "end": 21769.14, + "probability": 0.8297 + }, + { + "start": 21769.56, + "end": 21770.04, + "probability": 0.644 + }, + { + "start": 21770.24, + "end": 21770.74, + "probability": 0.4792 + }, + { + "start": 21771.08, + "end": 21774.14, + "probability": 0.9912 + }, + { + "start": 21774.22, + "end": 21774.72, + "probability": 0.838 + }, + { + "start": 21774.94, + "end": 21775.46, + "probability": 0.7962 + }, + { + "start": 21775.54, + "end": 21776.14, + "probability": 0.3924 + }, + { + "start": 21776.2, + "end": 21777.42, + "probability": 0.55 + }, + { + "start": 21777.58, + "end": 21777.98, + "probability": 0.2989 + }, + { + "start": 21778.1, + "end": 21781.24, + "probability": 0.491 + }, + { + "start": 21781.78, + "end": 21782.68, + "probability": 0.9016 + }, + { + "start": 21783.1, + "end": 21785.6, + "probability": 0.7213 + }, + { + "start": 21786.56, + "end": 21788.88, + "probability": 0.9545 + }, + { + "start": 21789.12, + "end": 21790.08, + "probability": 0.051 + }, + { + "start": 21790.1, + "end": 21792.48, + "probability": 0.6832 + }, + { + "start": 21792.62, + "end": 21793.04, + "probability": 0.4672 + }, + { + "start": 21793.18, + "end": 21794.67, + "probability": 0.9352 + }, + { + "start": 21795.48, + "end": 21797.86, + "probability": 0.267 + }, + { + "start": 21797.86, + "end": 21797.86, + "probability": 0.0851 + }, + { + "start": 21797.86, + "end": 21798.04, + "probability": 0.2934 + }, + { + "start": 21799.3, + "end": 21802.44, + "probability": 0.9762 + }, + { + "start": 21802.46, + "end": 21804.84, + "probability": 0.7767 + }, + { + "start": 21805.36, + "end": 21806.72, + "probability": 0.9607 + }, + { + "start": 21808.06, + "end": 21809.34, + "probability": 0.7539 + }, + { + "start": 21810.2, + "end": 21811.54, + "probability": 0.6289 + }, + { + "start": 21812.2, + "end": 21813.12, + "probability": 0.3754 + }, + { + "start": 21813.88, + "end": 21818.04, + "probability": 0.5943 + }, + { + "start": 21818.06, + "end": 21818.06, + "probability": 0.2975 + }, + { + "start": 21818.06, + "end": 21818.54, + "probability": 0.7278 + }, + { + "start": 21818.54, + "end": 21819.12, + "probability": 0.1253 + }, + { + "start": 21819.26, + "end": 21819.26, + "probability": 0.4771 + }, + { + "start": 21819.26, + "end": 21819.98, + "probability": 0.5237 + }, + { + "start": 21820.02, + "end": 21823.2, + "probability": 0.3847 + }, + { + "start": 21823.34, + "end": 21828.28, + "probability": 0.385 + }, + { + "start": 21828.5, + "end": 21828.56, + "probability": 0.0517 + }, + { + "start": 21828.56, + "end": 21828.86, + "probability": 0.0253 + }, + { + "start": 21829.32, + "end": 21831.04, + "probability": 0.7096 + }, + { + "start": 21831.7, + "end": 21835.8, + "probability": 0.9737 + }, + { + "start": 21836.64, + "end": 21838.6, + "probability": 0.7225 + }, + { + "start": 21839.14, + "end": 21841.82, + "probability": 0.8721 + }, + { + "start": 21842.42, + "end": 21849.52, + "probability": 0.9756 + }, + { + "start": 21849.66, + "end": 21850.14, + "probability": 0.7521 + }, + { + "start": 21850.62, + "end": 21853.04, + "probability": 0.9632 + }, + { + "start": 21853.8, + "end": 21855.26, + "probability": 0.606 + }, + { + "start": 21855.34, + "end": 21856.22, + "probability": 0.5347 + }, + { + "start": 21856.46, + "end": 21858.38, + "probability": 0.9515 + }, + { + "start": 21858.58, + "end": 21859.18, + "probability": 0.7481 + }, + { + "start": 21859.18, + "end": 21863.38, + "probability": 0.9938 + }, + { + "start": 21863.38, + "end": 21867.4, + "probability": 0.9942 + }, + { + "start": 21867.6, + "end": 21869.64, + "probability": 0.937 + }, + { + "start": 21869.64, + "end": 21872.9, + "probability": 0.922 + }, + { + "start": 21873.32, + "end": 21875.76, + "probability": 0.6657 + }, + { + "start": 21876.12, + "end": 21877.32, + "probability": 0.6956 + }, + { + "start": 21878.12, + "end": 21878.38, + "probability": 0.7151 + }, + { + "start": 21878.44, + "end": 21879.68, + "probability": 0.6109 + }, + { + "start": 21880.53, + "end": 21883.34, + "probability": 0.8176 + }, + { + "start": 21883.34, + "end": 21883.46, + "probability": 0.0685 + }, + { + "start": 21883.6, + "end": 21887.02, + "probability": 0.8512 + }, + { + "start": 21888.44, + "end": 21889.24, + "probability": 0.2254 + }, + { + "start": 21889.24, + "end": 21889.38, + "probability": 0.5972 + }, + { + "start": 21890.0, + "end": 21891.0, + "probability": 0.8313 + }, + { + "start": 21891.1, + "end": 21891.88, + "probability": 0.689 + }, + { + "start": 21891.98, + "end": 21893.86, + "probability": 0.913 + }, + { + "start": 21894.36, + "end": 21894.94, + "probability": 0.9046 + }, + { + "start": 21895.74, + "end": 21899.62, + "probability": 0.989 + }, + { + "start": 21900.12, + "end": 21902.3, + "probability": 0.9971 + }, + { + "start": 21902.44, + "end": 21902.97, + "probability": 0.0498 + }, + { + "start": 21903.22, + "end": 21903.72, + "probability": 0.3546 + }, + { + "start": 21903.72, + "end": 21908.86, + "probability": 0.6933 + }, + { + "start": 21908.86, + "end": 21911.86, + "probability": 0.8419 + }, + { + "start": 21912.56, + "end": 21914.88, + "probability": 0.915 + }, + { + "start": 21915.08, + "end": 21916.34, + "probability": 0.7535 + }, + { + "start": 21916.58, + "end": 21917.5, + "probability": 0.9514 + }, + { + "start": 21917.68, + "end": 21921.46, + "probability": 0.9954 + }, + { + "start": 21921.52, + "end": 21924.28, + "probability": 0.8921 + }, + { + "start": 21924.86, + "end": 21926.98, + "probability": 0.3605 + }, + { + "start": 21927.0, + "end": 21927.0, + "probability": 0.0 + }, + { + "start": 21927.0, + "end": 21927.0, + "probability": 0.0 + }, + { + "start": 21927.02, + "end": 21927.92, + "probability": 0.1616 + }, + { + "start": 21928.96, + "end": 21930.9, + "probability": 0.0212 + }, + { + "start": 21930.9, + "end": 21932.18, + "probability": 0.5265 + }, + { + "start": 21932.4, + "end": 21933.28, + "probability": 0.5192 + }, + { + "start": 21933.28, + "end": 21933.92, + "probability": 0.6451 + }, + { + "start": 21934.0, + "end": 21936.98, + "probability": 0.9907 + }, + { + "start": 21937.48, + "end": 21942.72, + "probability": 0.9935 + }, + { + "start": 21942.82, + "end": 21946.61, + "probability": 0.877 + }, + { + "start": 21946.99, + "end": 21946.99, + "probability": 0.0305 + }, + { + "start": 21946.99, + "end": 21946.99, + "probability": 0.1015 + }, + { + "start": 21946.99, + "end": 21948.23, + "probability": 0.5157 + }, + { + "start": 21948.33, + "end": 21949.39, + "probability": 0.7661 + }, + { + "start": 21949.43, + "end": 21951.42, + "probability": 0.9844 + }, + { + "start": 21951.49, + "end": 21954.43, + "probability": 0.9905 + }, + { + "start": 21954.77, + "end": 21958.95, + "probability": 0.9644 + }, + { + "start": 21959.19, + "end": 21962.71, + "probability": 0.9875 + }, + { + "start": 21962.77, + "end": 21964.51, + "probability": 0.9575 + }, + { + "start": 21964.61, + "end": 21965.6, + "probability": 0.57 + }, + { + "start": 21966.43, + "end": 21968.23, + "probability": 0.9474 + }, + { + "start": 21968.37, + "end": 21970.83, + "probability": 0.9512 + }, + { + "start": 21971.07, + "end": 21972.25, + "probability": 0.9775 + }, + { + "start": 21972.53, + "end": 21975.47, + "probability": 0.9085 + }, + { + "start": 21975.83, + "end": 21975.87, + "probability": 0.047 + }, + { + "start": 21975.87, + "end": 21976.96, + "probability": 0.9595 + }, + { + "start": 21977.67, + "end": 21977.69, + "probability": 0.042 + }, + { + "start": 21977.69, + "end": 21979.61, + "probability": 0.7962 + }, + { + "start": 21979.67, + "end": 21979.93, + "probability": 0.1997 + }, + { + "start": 21979.93, + "end": 21981.13, + "probability": 0.406 + }, + { + "start": 21981.79, + "end": 21984.07, + "probability": 0.0943 + }, + { + "start": 21984.07, + "end": 21985.83, + "probability": 0.4664 + }, + { + "start": 21986.85, + "end": 21992.95, + "probability": 0.0753 + }, + { + "start": 21993.17, + "end": 21999.75, + "probability": 0.497 + }, + { + "start": 21999.79, + "end": 22000.93, + "probability": 0.8173 + }, + { + "start": 22001.25, + "end": 22003.59, + "probability": 0.1508 + }, + { + "start": 22004.41, + "end": 22005.47, + "probability": 0.0475 + }, + { + "start": 22006.57, + "end": 22008.35, + "probability": 0.4948 + }, + { + "start": 22008.53, + "end": 22011.07, + "probability": 0.2349 + }, + { + "start": 22011.71, + "end": 22020.79, + "probability": 0.1468 + }, + { + "start": 22022.03, + "end": 22022.41, + "probability": 0.0398 + }, + { + "start": 22024.44, + "end": 22027.83, + "probability": 0.0491 + }, + { + "start": 22027.83, + "end": 22027.83, + "probability": 0.0073 + }, + { + "start": 22027.83, + "end": 22028.31, + "probability": 0.037 + }, + { + "start": 22028.31, + "end": 22028.49, + "probability": 0.0655 + }, + { + "start": 22028.49, + "end": 22028.71, + "probability": 0.0153 + }, + { + "start": 22030.25, + "end": 22031.51, + "probability": 0.1112 + }, + { + "start": 22031.59, + "end": 22031.85, + "probability": 0.0889 + }, + { + "start": 22031.85, + "end": 22032.33, + "probability": 0.1547 + }, + { + "start": 22035.45, + "end": 22037.95, + "probability": 0.0332 + }, + { + "start": 22038.99, + "end": 22039.75, + "probability": 0.0085 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.0, + "end": 22069.0, + "probability": 0.0 + }, + { + "start": 22069.12, + "end": 22070.72, + "probability": 0.042 + }, + { + "start": 22070.72, + "end": 22072.14, + "probability": 0.0886 + }, + { + "start": 22072.14, + "end": 22074.66, + "probability": 0.3313 + }, + { + "start": 22075.22, + "end": 22076.74, + "probability": 0.1732 + }, + { + "start": 22077.2, + "end": 22078.1, + "probability": 0.1689 + }, + { + "start": 22090.74, + "end": 22093.22, + "probability": 0.2367 + }, + { + "start": 22093.82, + "end": 22094.54, + "probability": 0.1287 + }, + { + "start": 22094.54, + "end": 22095.36, + "probability": 0.2866 + }, + { + "start": 22095.6, + "end": 22096.56, + "probability": 0.1749 + }, + { + "start": 22096.72, + "end": 22097.68, + "probability": 0.1583 + }, + { + "start": 22097.98, + "end": 22098.18, + "probability": 0.0014 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.0, + "end": 22218.0, + "probability": 0.0 + }, + { + "start": 22218.8, + "end": 22222.4, + "probability": 0.0966 + }, + { + "start": 22222.86, + "end": 22223.12, + "probability": 0.0585 + }, + { + "start": 22223.12, + "end": 22223.55, + "probability": 0.1473 + }, + { + "start": 22223.7, + "end": 22224.64, + "probability": 0.086 + }, + { + "start": 22226.78, + "end": 22228.28, + "probability": 0.0188 + }, + { + "start": 22230.74, + "end": 22235.28, + "probability": 0.092 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.0, + "end": 22343.0, + "probability": 0.0 + }, + { + "start": 22343.22, + "end": 22343.24, + "probability": 0.0288 + }, + { + "start": 22343.24, + "end": 22343.24, + "probability": 0.0694 + }, + { + "start": 22343.24, + "end": 22343.24, + "probability": 0.303 + }, + { + "start": 22343.24, + "end": 22344.3, + "probability": 0.5706 + }, + { + "start": 22345.12, + "end": 22345.92, + "probability": 0.8824 + }, + { + "start": 22346.36, + "end": 22347.32, + "probability": 0.9677 + }, + { + "start": 22347.78, + "end": 22350.74, + "probability": 0.9887 + }, + { + "start": 22350.74, + "end": 22354.16, + "probability": 0.978 + }, + { + "start": 22354.66, + "end": 22354.84, + "probability": 0.8029 + }, + { + "start": 22356.22, + "end": 22356.86, + "probability": 0.9712 + }, + { + "start": 22357.38, + "end": 22358.6, + "probability": 0.4057 + }, + { + "start": 22359.72, + "end": 22361.02, + "probability": 0.9653 + }, + { + "start": 22361.48, + "end": 22362.28, + "probability": 0.5237 + }, + { + "start": 22362.36, + "end": 22365.99, + "probability": 0.9825 + }, + { + "start": 22368.02, + "end": 22369.42, + "probability": 0.9229 + }, + { + "start": 22370.18, + "end": 22371.14, + "probability": 0.9305 + }, + { + "start": 22372.48, + "end": 22372.7, + "probability": 0.7219 + }, + { + "start": 22374.38, + "end": 22375.02, + "probability": 0.8387 + }, + { + "start": 22376.18, + "end": 22377.33, + "probability": 0.9768 + }, + { + "start": 22378.68, + "end": 22381.06, + "probability": 0.7314 + }, + { + "start": 22381.8, + "end": 22383.66, + "probability": 0.9879 + }, + { + "start": 22384.2, + "end": 22386.2, + "probability": 0.9559 + }, + { + "start": 22386.92, + "end": 22390.06, + "probability": 0.8468 + }, + { + "start": 22390.76, + "end": 22395.38, + "probability": 0.8706 + }, + { + "start": 22395.7, + "end": 22396.58, + "probability": 0.6977 + }, + { + "start": 22397.26, + "end": 22399.28, + "probability": 0.9765 + }, + { + "start": 22399.8, + "end": 22402.04, + "probability": 0.9785 + }, + { + "start": 22402.04, + "end": 22406.1, + "probability": 0.8853 + }, + { + "start": 22406.46, + "end": 22408.22, + "probability": 0.9979 + }, + { + "start": 22408.84, + "end": 22412.94, + "probability": 0.8883 + }, + { + "start": 22413.66, + "end": 22417.38, + "probability": 0.9877 + }, + { + "start": 22417.9, + "end": 22421.86, + "probability": 0.6713 + }, + { + "start": 22421.9, + "end": 22423.3, + "probability": 0.9953 + }, + { + "start": 22426.14, + "end": 22427.24, + "probability": 0.943 + }, + { + "start": 22427.88, + "end": 22429.88, + "probability": 0.9893 + }, + { + "start": 22430.48, + "end": 22432.74, + "probability": 0.5583 + }, + { + "start": 22432.74, + "end": 22433.3, + "probability": 0.7683 + }, + { + "start": 22433.32, + "end": 22435.38, + "probability": 0.751 + }, + { + "start": 22435.48, + "end": 22439.94, + "probability": 0.8874 + }, + { + "start": 22439.94, + "end": 22443.06, + "probability": 0.7692 + }, + { + "start": 22444.4, + "end": 22446.24, + "probability": 0.9907 + }, + { + "start": 22446.34, + "end": 22449.66, + "probability": 0.8458 + }, + { + "start": 22450.08, + "end": 22455.3, + "probability": 0.8842 + }, + { + "start": 22455.94, + "end": 22458.54, + "probability": 0.6528 + }, + { + "start": 22459.22, + "end": 22461.44, + "probability": 0.8401 + }, + { + "start": 22462.2, + "end": 22463.54, + "probability": 0.9546 + }, + { + "start": 22463.62, + "end": 22468.2, + "probability": 0.8799 + }, + { + "start": 22468.92, + "end": 22473.34, + "probability": 0.987 + }, + { + "start": 22473.9, + "end": 22474.98, + "probability": 0.8729 + }, + { + "start": 22475.98, + "end": 22477.64, + "probability": 0.906 + }, + { + "start": 22478.64, + "end": 22481.46, + "probability": 0.7922 + }, + { + "start": 22482.86, + "end": 22483.91, + "probability": 0.428 + }, + { + "start": 22484.36, + "end": 22485.87, + "probability": 0.6303 + }, + { + "start": 22487.06, + "end": 22492.64, + "probability": 0.7344 + }, + { + "start": 22493.44, + "end": 22494.66, + "probability": 0.9018 + }, + { + "start": 22495.52, + "end": 22497.9, + "probability": 0.9955 + }, + { + "start": 22499.16, + "end": 22499.46, + "probability": 0.5223 + }, + { + "start": 22500.32, + "end": 22501.58, + "probability": 0.6524 + }, + { + "start": 22501.68, + "end": 22508.6, + "probability": 0.961 + }, + { + "start": 22511.04, + "end": 22512.02, + "probability": 0.499 + }, + { + "start": 22512.22, + "end": 22513.2, + "probability": 0.1641 + }, + { + "start": 22513.26, + "end": 22514.72, + "probability": 0.8918 + }, + { + "start": 22515.38, + "end": 22517.5, + "probability": 0.9053 + }, + { + "start": 22518.6, + "end": 22519.06, + "probability": 0.958 + }, + { + "start": 22521.44, + "end": 22521.88, + "probability": 0.5095 + }, + { + "start": 22522.04, + "end": 22522.26, + "probability": 0.358 + }, + { + "start": 22522.26, + "end": 22522.79, + "probability": 0.938 + }, + { + "start": 22523.32, + "end": 22523.92, + "probability": 0.8149 + }, + { + "start": 22524.1, + "end": 22524.48, + "probability": 0.5001 + }, + { + "start": 22524.64, + "end": 22525.2, + "probability": 0.9615 + }, + { + "start": 22525.28, + "end": 22526.1, + "probability": 0.9338 + }, + { + "start": 22526.18, + "end": 22526.64, + "probability": 0.7473 + }, + { + "start": 22529.01, + "end": 22530.68, + "probability": 0.7466 + }, + { + "start": 22531.98, + "end": 22534.2, + "probability": 0.5947 + }, + { + "start": 22537.16, + "end": 22538.06, + "probability": 0.6213 + }, + { + "start": 22539.02, + "end": 22541.58, + "probability": 0.9646 + }, + { + "start": 22542.16, + "end": 22544.94, + "probability": 0.8496 + }, + { + "start": 22547.0, + "end": 22547.88, + "probability": 0.9051 + }, + { + "start": 22548.68, + "end": 22550.72, + "probability": 0.5227 + }, + { + "start": 22551.5, + "end": 22552.72, + "probability": 0.8157 + }, + { + "start": 22557.78, + "end": 22558.52, + "probability": 0.3505 + }, + { + "start": 22558.62, + "end": 22559.76, + "probability": 0.2127 + }, + { + "start": 22560.32, + "end": 22561.58, + "probability": 0.8324 + }, + { + "start": 22562.44, + "end": 22564.06, + "probability": 0.6263 + }, + { + "start": 22564.12, + "end": 22568.36, + "probability": 0.8721 + }, + { + "start": 22568.8, + "end": 22571.42, + "probability": 0.994 + }, + { + "start": 22571.56, + "end": 22573.01, + "probability": 0.8712 + }, + { + "start": 22573.92, + "end": 22575.2, + "probability": 0.8245 + }, + { + "start": 22575.64, + "end": 22578.68, + "probability": 0.97 + }, + { + "start": 22579.72, + "end": 22580.1, + "probability": 0.4099 + }, + { + "start": 22581.5, + "end": 22582.94, + "probability": 0.5989 + }, + { + "start": 22582.94, + "end": 22583.54, + "probability": 0.9062 + }, + { + "start": 22583.72, + "end": 22589.72, + "probability": 0.9894 + }, + { + "start": 22590.1, + "end": 22591.72, + "probability": 0.3928 + }, + { + "start": 22593.05, + "end": 22593.78, + "probability": 0.0304 + }, + { + "start": 22593.78, + "end": 22595.18, + "probability": 0.5766 + }, + { + "start": 22595.28, + "end": 22597.78, + "probability": 0.7195 + }, + { + "start": 22598.48, + "end": 22602.06, + "probability": 0.9957 + }, + { + "start": 22602.06, + "end": 22606.04, + "probability": 1.0 + }, + { + "start": 22606.6, + "end": 22607.16, + "probability": 0.5869 + }, + { + "start": 22607.26, + "end": 22607.76, + "probability": 0.9205 + }, + { + "start": 22607.88, + "end": 22608.38, + "probability": 0.9697 + }, + { + "start": 22608.74, + "end": 22609.36, + "probability": 0.9765 + }, + { + "start": 22609.44, + "end": 22610.14, + "probability": 0.9623 + }, + { + "start": 22610.26, + "end": 22610.86, + "probability": 0.9564 + }, + { + "start": 22611.22, + "end": 22611.66, + "probability": 0.8025 + }, + { + "start": 22612.1, + "end": 22613.04, + "probability": 0.9863 + }, + { + "start": 22613.8, + "end": 22614.02, + "probability": 0.6852 + }, + { + "start": 22614.56, + "end": 22615.12, + "probability": 0.5903 + }, + { + "start": 22615.3, + "end": 22615.86, + "probability": 0.6844 + }, + { + "start": 22616.18, + "end": 22616.78, + "probability": 0.9669 + }, + { + "start": 22616.78, + "end": 22617.25, + "probability": 0.809 + }, + { + "start": 22617.88, + "end": 22618.41, + "probability": 0.9805 + }, + { + "start": 22618.66, + "end": 22620.38, + "probability": 0.5689 + }, + { + "start": 22620.56, + "end": 22622.32, + "probability": 0.6666 + }, + { + "start": 22622.52, + "end": 22624.3, + "probability": 0.8474 + }, + { + "start": 22624.42, + "end": 22626.0, + "probability": 0.97 + }, + { + "start": 22626.82, + "end": 22629.08, + "probability": 0.6766 + }, + { + "start": 22629.84, + "end": 22634.04, + "probability": 0.9634 + }, + { + "start": 22634.5, + "end": 22636.68, + "probability": 0.8833 + }, + { + "start": 22637.2, + "end": 22637.22, + "probability": 0.004 + }, + { + "start": 22639.26, + "end": 22639.36, + "probability": 0.0373 + }, + { + "start": 22639.36, + "end": 22641.66, + "probability": 0.7927 + }, + { + "start": 22657.48, + "end": 22658.4, + "probability": 0.7054 + }, + { + "start": 22659.44, + "end": 22660.98, + "probability": 0.8626 + }, + { + "start": 22662.02, + "end": 22662.56, + "probability": 0.6964 + }, + { + "start": 22663.8, + "end": 22668.02, + "probability": 0.9739 + }, + { + "start": 22668.98, + "end": 22673.12, + "probability": 0.957 + }, + { + "start": 22674.12, + "end": 22677.26, + "probability": 0.991 + }, + { + "start": 22677.66, + "end": 22679.5, + "probability": 0.9821 + }, + { + "start": 22680.72, + "end": 22681.97, + "probability": 0.9238 + }, + { + "start": 22683.1, + "end": 22685.74, + "probability": 0.9436 + }, + { + "start": 22686.36, + "end": 22689.36, + "probability": 0.6204 + }, + { + "start": 22689.82, + "end": 22692.32, + "probability": 0.9721 + }, + { + "start": 22692.78, + "end": 22694.82, + "probability": 0.9642 + }, + { + "start": 22696.02, + "end": 22700.34, + "probability": 0.9526 + }, + { + "start": 22700.46, + "end": 22701.58, + "probability": 0.5576 + }, + { + "start": 22701.68, + "end": 22702.18, + "probability": 0.6299 + }, + { + "start": 22702.28, + "end": 22705.12, + "probability": 0.8824 + }, + { + "start": 22705.74, + "end": 22708.02, + "probability": 0.9354 + }, + { + "start": 22708.11, + "end": 22711.08, + "probability": 0.9733 + }, + { + "start": 22711.22, + "end": 22714.44, + "probability": 0.9331 + }, + { + "start": 22715.16, + "end": 22717.66, + "probability": 0.9781 + }, + { + "start": 22719.04, + "end": 22722.64, + "probability": 0.9771 + }, + { + "start": 22722.7, + "end": 22727.3, + "probability": 0.9951 + }, + { + "start": 22727.46, + "end": 22729.5, + "probability": 0.8767 + }, + { + "start": 22730.22, + "end": 22734.14, + "probability": 0.9927 + }, + { + "start": 22734.14, + "end": 22738.76, + "probability": 0.984 + }, + { + "start": 22739.6, + "end": 22742.8, + "probability": 0.949 + }, + { + "start": 22742.8, + "end": 22747.18, + "probability": 0.9419 + }, + { + "start": 22747.64, + "end": 22749.36, + "probability": 0.8672 + }, + { + "start": 22751.56, + "end": 22755.12, + "probability": 0.8771 + }, + { + "start": 22756.48, + "end": 22760.78, + "probability": 0.9252 + }, + { + "start": 22761.38, + "end": 22763.98, + "probability": 0.9781 + }, + { + "start": 22764.48, + "end": 22767.55, + "probability": 0.8807 + }, + { + "start": 22768.76, + "end": 22769.58, + "probability": 0.9574 + }, + { + "start": 22771.04, + "end": 22771.42, + "probability": 0.8578 + }, + { + "start": 22771.52, + "end": 22772.36, + "probability": 0.978 + }, + { + "start": 22772.44, + "end": 22774.34, + "probability": 0.9581 + }, + { + "start": 22775.56, + "end": 22778.18, + "probability": 0.8744 + }, + { + "start": 22778.24, + "end": 22780.54, + "probability": 0.7813 + }, + { + "start": 22781.26, + "end": 22786.22, + "probability": 0.7678 + }, + { + "start": 22787.74, + "end": 22791.62, + "probability": 0.9885 + }, + { + "start": 22792.22, + "end": 22792.79, + "probability": 0.4995 + }, + { + "start": 22792.96, + "end": 22794.64, + "probability": 0.6607 + }, + { + "start": 22795.2, + "end": 22798.2, + "probability": 0.9095 + }, + { + "start": 22798.8, + "end": 22801.86, + "probability": 0.9657 + }, + { + "start": 22802.94, + "end": 22804.02, + "probability": 0.8933 + }, + { + "start": 22804.1, + "end": 22806.32, + "probability": 0.0895 + }, + { + "start": 22806.32, + "end": 22808.02, + "probability": 0.947 + }, + { + "start": 22808.8, + "end": 22812.04, + "probability": 0.6619 + }, + { + "start": 22812.7, + "end": 22815.56, + "probability": 0.9691 + }, + { + "start": 22815.98, + "end": 22816.44, + "probability": 0.4867 + }, + { + "start": 22817.62, + "end": 22821.14, + "probability": 0.9638 + }, + { + "start": 22821.78, + "end": 22825.54, + "probability": 0.9876 + }, + { + "start": 22825.96, + "end": 22827.41, + "probability": 0.988 + }, + { + "start": 22828.04, + "end": 22830.58, + "probability": 0.7706 + }, + { + "start": 22831.16, + "end": 22832.28, + "probability": 0.9734 + }, + { + "start": 22833.8, + "end": 22834.14, + "probability": 0.9937 + }, + { + "start": 22835.14, + "end": 22836.9, + "probability": 0.9671 + }, + { + "start": 22837.26, + "end": 22841.84, + "probability": 0.9604 + }, + { + "start": 22842.36, + "end": 22843.2, + "probability": 0.596 + }, + { + "start": 22843.64, + "end": 22849.1, + "probability": 0.9086 + }, + { + "start": 22849.52, + "end": 22850.08, + "probability": 0.5699 + }, + { + "start": 22850.46, + "end": 22851.18, + "probability": 0.9754 + }, + { + "start": 22851.98, + "end": 22854.5, + "probability": 0.9456 + }, + { + "start": 22854.5, + "end": 22858.08, + "probability": 0.9979 + }, + { + "start": 22858.56, + "end": 22863.34, + "probability": 0.9639 + }, + { + "start": 22864.3, + "end": 22867.98, + "probability": 0.9843 + }, + { + "start": 22868.78, + "end": 22869.22, + "probability": 0.8875 + }, + { + "start": 22869.94, + "end": 22871.18, + "probability": 0.9497 + }, + { + "start": 22871.3, + "end": 22874.44, + "probability": 0.8456 + }, + { + "start": 22874.98, + "end": 22876.5, + "probability": 0.973 + }, + { + "start": 22876.94, + "end": 22881.16, + "probability": 0.9757 + }, + { + "start": 22881.9, + "end": 22883.94, + "probability": 0.955 + }, + { + "start": 22883.94, + "end": 22885.8, + "probability": 0.9636 + }, + { + "start": 22886.34, + "end": 22890.42, + "probability": 0.9658 + }, + { + "start": 22890.42, + "end": 22893.62, + "probability": 0.9624 + }, + { + "start": 22894.12, + "end": 22896.32, + "probability": 0.9832 + }, + { + "start": 22896.74, + "end": 22897.24, + "probability": 0.8951 + }, + { + "start": 22898.16, + "end": 22901.76, + "probability": 0.9652 + }, + { + "start": 22901.98, + "end": 22903.44, + "probability": 0.8511 + }, + { + "start": 22904.06, + "end": 22906.08, + "probability": 0.9546 + }, + { + "start": 22907.18, + "end": 22910.16, + "probability": 0.9758 + }, + { + "start": 22910.16, + "end": 22913.8, + "probability": 0.9972 + }, + { + "start": 22914.28, + "end": 22917.9, + "probability": 0.9639 + }, + { + "start": 22918.34, + "end": 22922.56, + "probability": 0.9366 + }, + { + "start": 22922.56, + "end": 22925.74, + "probability": 0.9964 + }, + { + "start": 22926.94, + "end": 22931.4, + "probability": 0.9872 + }, + { + "start": 22932.96, + "end": 22936.62, + "probability": 0.7359 + }, + { + "start": 22937.08, + "end": 22938.26, + "probability": 0.8921 + }, + { + "start": 22938.34, + "end": 22940.6, + "probability": 0.9018 + }, + { + "start": 22940.8, + "end": 22942.3, + "probability": 0.735 + }, + { + "start": 22942.9, + "end": 22945.7, + "probability": 0.9952 + }, + { + "start": 22947.02, + "end": 22950.46, + "probability": 0.998 + }, + { + "start": 22950.46, + "end": 22954.36, + "probability": 0.8487 + }, + { + "start": 22954.94, + "end": 22956.8, + "probability": 0.9824 + }, + { + "start": 22956.94, + "end": 22958.86, + "probability": 0.9951 + }, + { + "start": 22959.56, + "end": 22962.66, + "probability": 0.9778 + }, + { + "start": 22963.62, + "end": 22966.8, + "probability": 0.9902 + }, + { + "start": 22966.86, + "end": 22968.09, + "probability": 0.9702 + }, + { + "start": 22968.86, + "end": 22971.72, + "probability": 0.9916 + }, + { + "start": 22972.64, + "end": 22975.14, + "probability": 0.9897 + }, + { + "start": 22975.32, + "end": 22976.46, + "probability": 0.9357 + }, + { + "start": 22977.8, + "end": 22980.8, + "probability": 0.9763 + }, + { + "start": 22980.96, + "end": 22982.72, + "probability": 0.9585 + }, + { + "start": 22982.86, + "end": 22987.26, + "probability": 0.9666 + }, + { + "start": 22987.9, + "end": 22990.04, + "probability": 0.971 + }, + { + "start": 22991.24, + "end": 22992.98, + "probability": 0.8442 + }, + { + "start": 22993.82, + "end": 22994.3, + "probability": 0.4505 + }, + { + "start": 22994.38, + "end": 22996.48, + "probability": 0.9968 + }, + { + "start": 22997.36, + "end": 22997.58, + "probability": 0.7779 + }, + { + "start": 22999.3, + "end": 23000.0, + "probability": 0.7814 + }, + { + "start": 23000.46, + "end": 23001.8, + "probability": 0.7972 + }, + { + "start": 23002.06, + "end": 23004.66, + "probability": 0.9712 + }, + { + "start": 23004.7, + "end": 23004.82, + "probability": 0.8899 + }, + { + "start": 23006.0, + "end": 23006.74, + "probability": 0.2246 + }, + { + "start": 23006.74, + "end": 23006.84, + "probability": 0.3584 + }, + { + "start": 23008.48, + "end": 23009.02, + "probability": 0.9344 + }, + { + "start": 23009.74, + "end": 23012.64, + "probability": 0.8872 + }, + { + "start": 23012.98, + "end": 23017.2, + "probability": 0.9897 + }, + { + "start": 23017.22, + "end": 23017.76, + "probability": 0.5005 + }, + { + "start": 23017.82, + "end": 23018.28, + "probability": 0.6612 + }, + { + "start": 23018.3, + "end": 23018.46, + "probability": 0.8805 + }, + { + "start": 23025.32, + "end": 23028.7, + "probability": 0.1948 + }, + { + "start": 23029.28, + "end": 23030.02, + "probability": 0.3743 + }, + { + "start": 23030.66, + "end": 23031.84, + "probability": 0.6101 + }, + { + "start": 23032.34, + "end": 23032.94, + "probability": 0.0379 + }, + { + "start": 23035.26, + "end": 23037.94, + "probability": 0.6509 + }, + { + "start": 23038.32, + "end": 23043.92, + "probability": 0.8115 + }, + { + "start": 23044.64, + "end": 23045.54, + "probability": 0.3079 + }, + { + "start": 23045.98, + "end": 23048.02, + "probability": 0.9598 + }, + { + "start": 23048.38, + "end": 23050.23, + "probability": 0.2101 + }, + { + "start": 23050.66, + "end": 23052.88, + "probability": 0.1854 + }, + { + "start": 23053.76, + "end": 23057.58, + "probability": 0.6783 + }, + { + "start": 23058.1, + "end": 23058.84, + "probability": 0.1628 + } + ], + "segments_count": 7712, + "words_count": 36861, + "avg_words_per_segment": 4.7797, + "avg_segment_duration": 1.9235, + "avg_words_per_minute": 94.4095, + "plenum_id": "78887", + "duration": 23426.24, + "title": null, + "plenum_date": "2018-11-28" +} \ No newline at end of file