diff --git "a/19754/metadata.json" "b/19754/metadata.json" new file mode 100644--- /dev/null +++ "b/19754/metadata.json" @@ -0,0 +1,43687 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "19754", + "quality_score": 0.8978, + "per_segment_quality_scores": [ + { + "start": 39.72, + "end": 41.9, + "probability": 0.6715 + }, + { + "start": 42.74, + "end": 45.22, + "probability": 0.9439 + }, + { + "start": 46.34, + "end": 47.32, + "probability": 0.2549 + }, + { + "start": 48.12, + "end": 48.3, + "probability": 0.0905 + }, + { + "start": 48.48, + "end": 49.54, + "probability": 0.6666 + }, + { + "start": 50.32, + "end": 51.84, + "probability": 0.8083 + }, + { + "start": 51.92, + "end": 53.3, + "probability": 0.9635 + }, + { + "start": 54.58, + "end": 56.34, + "probability": 0.9289 + }, + { + "start": 58.02, + "end": 60.9, + "probability": 0.1582 + }, + { + "start": 61.7, + "end": 62.24, + "probability": 0.5233 + }, + { + "start": 63.76, + "end": 65.2, + "probability": 0.8233 + }, + { + "start": 66.0, + "end": 66.98, + "probability": 0.7891 + }, + { + "start": 67.22, + "end": 68.66, + "probability": 0.8425 + }, + { + "start": 68.72, + "end": 70.06, + "probability": 0.8348 + }, + { + "start": 70.4, + "end": 71.92, + "probability": 0.8507 + }, + { + "start": 72.52, + "end": 75.68, + "probability": 0.6708 + }, + { + "start": 76.44, + "end": 80.78, + "probability": 0.9839 + }, + { + "start": 81.06, + "end": 83.98, + "probability": 0.9755 + }, + { + "start": 84.6, + "end": 87.44, + "probability": 0.9573 + }, + { + "start": 87.44, + "end": 91.5, + "probability": 0.938 + }, + { + "start": 91.9, + "end": 93.92, + "probability": 0.8385 + }, + { + "start": 94.56, + "end": 94.84, + "probability": 0.6696 + }, + { + "start": 95.02, + "end": 95.52, + "probability": 0.5992 + }, + { + "start": 95.62, + "end": 97.53, + "probability": 0.9929 + }, + { + "start": 97.84, + "end": 99.46, + "probability": 0.6678 + }, + { + "start": 99.88, + "end": 100.78, + "probability": 0.9238 + }, + { + "start": 100.9, + "end": 104.22, + "probability": 0.884 + }, + { + "start": 104.3, + "end": 105.36, + "probability": 0.9922 + }, + { + "start": 105.88, + "end": 108.72, + "probability": 0.6589 + }, + { + "start": 109.34, + "end": 111.54, + "probability": 0.7345 + }, + { + "start": 113.48, + "end": 115.78, + "probability": 0.6818 + }, + { + "start": 116.62, + "end": 121.94, + "probability": 0.7385 + }, + { + "start": 122.48, + "end": 122.78, + "probability": 0.6911 + }, + { + "start": 122.78, + "end": 126.3, + "probability": 0.804 + }, + { + "start": 127.52, + "end": 127.74, + "probability": 0.1305 + }, + { + "start": 128.74, + "end": 131.36, + "probability": 0.9785 + }, + { + "start": 131.46, + "end": 132.54, + "probability": 0.8538 + }, + { + "start": 133.3, + "end": 138.82, + "probability": 0.9393 + }, + { + "start": 139.36, + "end": 141.84, + "probability": 0.9583 + }, + { + "start": 142.46, + "end": 144.78, + "probability": 0.8723 + }, + { + "start": 145.78, + "end": 146.76, + "probability": 0.3374 + }, + { + "start": 146.76, + "end": 147.58, + "probability": 0.7413 + }, + { + "start": 148.0, + "end": 149.92, + "probability": 0.8788 + }, + { + "start": 150.08, + "end": 151.62, + "probability": 0.9411 + }, + { + "start": 153.28, + "end": 155.36, + "probability": 0.9066 + }, + { + "start": 156.04, + "end": 159.66, + "probability": 0.9907 + }, + { + "start": 161.0, + "end": 162.68, + "probability": 0.8486 + }, + { + "start": 162.98, + "end": 164.58, + "probability": 0.9821 + }, + { + "start": 165.98, + "end": 166.78, + "probability": 0.7558 + }, + { + "start": 167.72, + "end": 168.8, + "probability": 0.9397 + }, + { + "start": 169.66, + "end": 172.48, + "probability": 0.9649 + }, + { + "start": 172.6, + "end": 176.06, + "probability": 0.9813 + }, + { + "start": 176.26, + "end": 177.22, + "probability": 0.5245 + }, + { + "start": 177.72, + "end": 178.64, + "probability": 0.3245 + }, + { + "start": 178.7, + "end": 179.5, + "probability": 0.6515 + }, + { + "start": 179.54, + "end": 181.32, + "probability": 0.7677 + }, + { + "start": 182.38, + "end": 186.62, + "probability": 0.9631 + }, + { + "start": 187.44, + "end": 190.5, + "probability": 0.7373 + }, + { + "start": 191.62, + "end": 193.34, + "probability": 0.7479 + }, + { + "start": 195.28, + "end": 195.5, + "probability": 0.1729 + }, + { + "start": 196.0, + "end": 199.74, + "probability": 0.6853 + }, + { + "start": 200.58, + "end": 200.72, + "probability": 0.626 + }, + { + "start": 201.02, + "end": 203.2, + "probability": 0.8968 + }, + { + "start": 204.18, + "end": 206.33, + "probability": 0.5189 + }, + { + "start": 206.94, + "end": 208.34, + "probability": 0.7348 + }, + { + "start": 208.58, + "end": 208.9, + "probability": 0.796 + }, + { + "start": 209.3, + "end": 212.8, + "probability": 0.9702 + }, + { + "start": 214.82, + "end": 217.64, + "probability": 0.7504 + }, + { + "start": 217.74, + "end": 222.46, + "probability": 0.8654 + }, + { + "start": 223.02, + "end": 225.08, + "probability": 0.9609 + }, + { + "start": 225.74, + "end": 229.78, + "probability": 0.6787 + }, + { + "start": 229.88, + "end": 232.3, + "probability": 0.8507 + }, + { + "start": 233.26, + "end": 233.8, + "probability": 0.3822 + }, + { + "start": 234.08, + "end": 238.2, + "probability": 0.96 + }, + { + "start": 238.86, + "end": 244.94, + "probability": 0.9959 + }, + { + "start": 245.68, + "end": 247.7, + "probability": 0.9928 + }, + { + "start": 247.98, + "end": 251.62, + "probability": 0.9558 + }, + { + "start": 252.16, + "end": 257.26, + "probability": 0.9937 + }, + { + "start": 257.62, + "end": 260.38, + "probability": 0.9401 + }, + { + "start": 260.64, + "end": 261.28, + "probability": 0.7758 + }, + { + "start": 261.94, + "end": 264.64, + "probability": 0.7449 + }, + { + "start": 264.64, + "end": 267.98, + "probability": 0.9149 + }, + { + "start": 269.2, + "end": 270.7, + "probability": 0.457 + }, + { + "start": 272.2, + "end": 274.06, + "probability": 0.8102 + }, + { + "start": 274.7, + "end": 277.22, + "probability": 0.7221 + }, + { + "start": 277.84, + "end": 278.42, + "probability": 0.8216 + }, + { + "start": 278.96, + "end": 280.62, + "probability": 0.9456 + }, + { + "start": 281.72, + "end": 282.72, + "probability": 0.9337 + }, + { + "start": 283.12, + "end": 284.56, + "probability": 0.2484 + }, + { + "start": 284.82, + "end": 286.78, + "probability": 0.477 + }, + { + "start": 287.16, + "end": 288.3, + "probability": 0.8649 + }, + { + "start": 289.64, + "end": 291.94, + "probability": 0.9773 + }, + { + "start": 292.32, + "end": 294.34, + "probability": 0.9501 + }, + { + "start": 295.7, + "end": 298.68, + "probability": 0.755 + }, + { + "start": 298.8, + "end": 301.26, + "probability": 0.737 + }, + { + "start": 301.26, + "end": 302.48, + "probability": 0.7356 + }, + { + "start": 303.1, + "end": 304.62, + "probability": 0.3153 + }, + { + "start": 305.26, + "end": 310.12, + "probability": 0.8252 + }, + { + "start": 310.28, + "end": 311.44, + "probability": 0.7076 + }, + { + "start": 314.1, + "end": 318.26, + "probability": 0.8831 + }, + { + "start": 318.58, + "end": 321.52, + "probability": 0.9895 + }, + { + "start": 321.52, + "end": 321.68, + "probability": 0.235 + }, + { + "start": 321.7, + "end": 324.48, + "probability": 0.7612 + }, + { + "start": 324.64, + "end": 327.12, + "probability": 0.8848 + }, + { + "start": 327.5, + "end": 330.24, + "probability": 0.9658 + }, + { + "start": 331.81, + "end": 334.22, + "probability": 0.6831 + }, + { + "start": 334.82, + "end": 338.64, + "probability": 0.9626 + }, + { + "start": 340.54, + "end": 340.8, + "probability": 0.6304 + }, + { + "start": 341.04, + "end": 346.04, + "probability": 0.9356 + }, + { + "start": 346.5, + "end": 348.08, + "probability": 0.8674 + }, + { + "start": 354.36, + "end": 354.92, + "probability": 0.6778 + }, + { + "start": 356.4, + "end": 360.54, + "probability": 0.9284 + }, + { + "start": 361.84, + "end": 364.8, + "probability": 0.9764 + }, + { + "start": 365.22, + "end": 367.44, + "probability": 0.9114 + }, + { + "start": 367.6, + "end": 369.8, + "probability": 0.9628 + }, + { + "start": 370.86, + "end": 371.9, + "probability": 0.9233 + }, + { + "start": 373.6, + "end": 373.94, + "probability": 0.7726 + }, + { + "start": 374.02, + "end": 376.8, + "probability": 0.9917 + }, + { + "start": 376.92, + "end": 377.6, + "probability": 0.9849 + }, + { + "start": 378.14, + "end": 380.8, + "probability": 0.9832 + }, + { + "start": 380.8, + "end": 383.76, + "probability": 0.9677 + }, + { + "start": 385.12, + "end": 385.96, + "probability": 0.4071 + }, + { + "start": 387.08, + "end": 390.06, + "probability": 0.7371 + }, + { + "start": 390.14, + "end": 393.18, + "probability": 0.8453 + }, + { + "start": 393.76, + "end": 395.74, + "probability": 0.8667 + }, + { + "start": 396.74, + "end": 397.16, + "probability": 0.6439 + }, + { + "start": 397.78, + "end": 398.02, + "probability": 0.0368 + }, + { + "start": 398.02, + "end": 400.62, + "probability": 0.1612 + }, + { + "start": 401.28, + "end": 404.68, + "probability": 0.9302 + }, + { + "start": 404.72, + "end": 405.64, + "probability": 0.8422 + }, + { + "start": 405.76, + "end": 406.27, + "probability": 0.9167 + }, + { + "start": 406.84, + "end": 409.86, + "probability": 0.9843 + }, + { + "start": 409.98, + "end": 412.8, + "probability": 0.9914 + }, + { + "start": 413.16, + "end": 417.72, + "probability": 0.8372 + }, + { + "start": 417.92, + "end": 421.48, + "probability": 0.9789 + }, + { + "start": 422.02, + "end": 425.6, + "probability": 0.9498 + }, + { + "start": 425.64, + "end": 426.18, + "probability": 0.8359 + }, + { + "start": 426.22, + "end": 426.89, + "probability": 0.9258 + }, + { + "start": 427.24, + "end": 428.08, + "probability": 0.9432 + }, + { + "start": 428.14, + "end": 428.78, + "probability": 0.6914 + }, + { + "start": 429.9, + "end": 430.72, + "probability": 0.4852 + }, + { + "start": 430.84, + "end": 433.2, + "probability": 0.8682 + }, + { + "start": 433.86, + "end": 434.79, + "probability": 0.6316 + }, + { + "start": 435.5, + "end": 437.3, + "probability": 0.9077 + }, + { + "start": 438.26, + "end": 439.08, + "probability": 0.9502 + }, + { + "start": 439.28, + "end": 440.46, + "probability": 0.7955 + }, + { + "start": 442.32, + "end": 443.18, + "probability": 0.604 + }, + { + "start": 444.42, + "end": 446.78, + "probability": 0.6494 + }, + { + "start": 447.62, + "end": 452.16, + "probability": 0.9266 + }, + { + "start": 453.1, + "end": 455.96, + "probability": 0.9885 + }, + { + "start": 456.12, + "end": 458.54, + "probability": 0.9788 + }, + { + "start": 459.98, + "end": 465.32, + "probability": 0.879 + }, + { + "start": 466.28, + "end": 470.44, + "probability": 0.9414 + }, + { + "start": 470.68, + "end": 471.38, + "probability": 0.7175 + }, + { + "start": 471.68, + "end": 472.7, + "probability": 0.7327 + }, + { + "start": 473.74, + "end": 475.52, + "probability": 0.97 + }, + { + "start": 475.88, + "end": 476.54, + "probability": 0.978 + }, + { + "start": 477.06, + "end": 478.24, + "probability": 0.7523 + }, + { + "start": 478.88, + "end": 480.0, + "probability": 0.9705 + }, + { + "start": 480.5, + "end": 482.68, + "probability": 0.9879 + }, + { + "start": 484.28, + "end": 485.34, + "probability": 0.5903 + }, + { + "start": 485.54, + "end": 487.08, + "probability": 0.51 + }, + { + "start": 487.48, + "end": 488.32, + "probability": 0.7315 + }, + { + "start": 488.86, + "end": 493.06, + "probability": 0.8765 + }, + { + "start": 494.34, + "end": 502.04, + "probability": 0.8388 + }, + { + "start": 502.74, + "end": 503.14, + "probability": 0.7529 + }, + { + "start": 503.38, + "end": 503.68, + "probability": 0.5367 + }, + { + "start": 503.82, + "end": 507.74, + "probability": 0.6302 + }, + { + "start": 508.42, + "end": 513.8, + "probability": 0.9506 + }, + { + "start": 514.54, + "end": 516.36, + "probability": 0.7606 + }, + { + "start": 516.82, + "end": 518.62, + "probability": 0.9403 + }, + { + "start": 518.78, + "end": 520.98, + "probability": 0.981 + }, + { + "start": 522.18, + "end": 525.38, + "probability": 0.9606 + }, + { + "start": 525.9, + "end": 526.1, + "probability": 0.6151 + }, + { + "start": 526.9, + "end": 527.62, + "probability": 0.3755 + }, + { + "start": 528.2, + "end": 528.56, + "probability": 0.3235 + }, + { + "start": 528.6, + "end": 529.44, + "probability": 0.6782 + }, + { + "start": 529.6, + "end": 532.8, + "probability": 0.7646 + }, + { + "start": 532.92, + "end": 537.34, + "probability": 0.9755 + }, + { + "start": 538.04, + "end": 541.12, + "probability": 0.7932 + }, + { + "start": 541.96, + "end": 547.18, + "probability": 0.9612 + }, + { + "start": 548.84, + "end": 551.46, + "probability": 0.863 + }, + { + "start": 551.72, + "end": 556.04, + "probability": 0.9312 + }, + { + "start": 556.18, + "end": 558.0, + "probability": 0.5735 + }, + { + "start": 558.7, + "end": 560.14, + "probability": 0.6201 + }, + { + "start": 561.94, + "end": 565.68, + "probability": 0.8096 + }, + { + "start": 565.78, + "end": 567.32, + "probability": 0.6708 + }, + { + "start": 567.6, + "end": 568.8, + "probability": 0.7146 + }, + { + "start": 569.4, + "end": 572.52, + "probability": 0.9668 + }, + { + "start": 573.22, + "end": 575.84, + "probability": 0.6517 + }, + { + "start": 576.98, + "end": 578.08, + "probability": 0.7962 + }, + { + "start": 578.22, + "end": 581.5, + "probability": 0.958 + }, + { + "start": 582.06, + "end": 584.6, + "probability": 0.8605 + }, + { + "start": 585.94, + "end": 592.14, + "probability": 0.7235 + }, + { + "start": 592.58, + "end": 595.94, + "probability": 0.9509 + }, + { + "start": 596.96, + "end": 597.84, + "probability": 0.3675 + }, + { + "start": 598.86, + "end": 602.48, + "probability": 0.8476 + }, + { + "start": 603.46, + "end": 605.68, + "probability": 0.5748 + }, + { + "start": 606.08, + "end": 606.44, + "probability": 0.3555 + }, + { + "start": 607.58, + "end": 612.84, + "probability": 0.5586 + }, + { + "start": 613.36, + "end": 614.85, + "probability": 0.5433 + }, + { + "start": 615.6, + "end": 616.76, + "probability": 0.6206 + }, + { + "start": 616.76, + "end": 617.38, + "probability": 0.8281 + }, + { + "start": 617.78, + "end": 622.64, + "probability": 0.9508 + }, + { + "start": 623.18, + "end": 626.66, + "probability": 0.9929 + }, + { + "start": 627.02, + "end": 627.22, + "probability": 0.6541 + }, + { + "start": 628.36, + "end": 635.26, + "probability": 0.7826 + }, + { + "start": 635.44, + "end": 638.9, + "probability": 0.9337 + }, + { + "start": 639.58, + "end": 643.56, + "probability": 0.9856 + }, + { + "start": 644.36, + "end": 648.86, + "probability": 0.9893 + }, + { + "start": 648.86, + "end": 653.84, + "probability": 0.9941 + }, + { + "start": 654.44, + "end": 655.1, + "probability": 0.2933 + }, + { + "start": 655.56, + "end": 656.72, + "probability": 0.9258 + }, + { + "start": 657.3, + "end": 661.58, + "probability": 0.9307 + }, + { + "start": 662.1, + "end": 665.38, + "probability": 0.9908 + }, + { + "start": 666.44, + "end": 668.86, + "probability": 0.9651 + }, + { + "start": 669.74, + "end": 672.82, + "probability": 0.9753 + }, + { + "start": 673.6, + "end": 674.46, + "probability": 0.8697 + }, + { + "start": 674.62, + "end": 677.96, + "probability": 0.9425 + }, + { + "start": 678.86, + "end": 684.44, + "probability": 0.9121 + }, + { + "start": 685.33, + "end": 687.86, + "probability": 0.98 + }, + { + "start": 688.9, + "end": 689.94, + "probability": 0.9259 + }, + { + "start": 690.1, + "end": 691.82, + "probability": 0.9116 + }, + { + "start": 692.17, + "end": 694.18, + "probability": 0.9882 + }, + { + "start": 694.74, + "end": 696.12, + "probability": 0.9154 + }, + { + "start": 696.16, + "end": 701.12, + "probability": 0.9681 + }, + { + "start": 701.56, + "end": 703.68, + "probability": 0.9736 + }, + { + "start": 704.02, + "end": 704.5, + "probability": 0.6468 + }, + { + "start": 704.6, + "end": 705.16, + "probability": 0.9621 + }, + { + "start": 705.58, + "end": 709.18, + "probability": 0.9868 + }, + { + "start": 709.54, + "end": 709.8, + "probability": 0.7196 + }, + { + "start": 710.58, + "end": 710.68, + "probability": 0.6958 + }, + { + "start": 710.72, + "end": 711.36, + "probability": 0.3797 + }, + { + "start": 711.88, + "end": 714.18, + "probability": 0.721 + }, + { + "start": 719.86, + "end": 720.96, + "probability": 0.7551 + }, + { + "start": 721.04, + "end": 721.84, + "probability": 0.489 + }, + { + "start": 722.48, + "end": 725.67, + "probability": 0.8975 + }, + { + "start": 726.34, + "end": 727.02, + "probability": 0.7001 + }, + { + "start": 727.33, + "end": 730.46, + "probability": 0.8198 + }, + { + "start": 730.96, + "end": 733.15, + "probability": 0.9456 + }, + { + "start": 735.32, + "end": 736.96, + "probability": 0.7748 + }, + { + "start": 737.04, + "end": 738.52, + "probability": 0.869 + }, + { + "start": 738.7, + "end": 739.76, + "probability": 0.8774 + }, + { + "start": 739.86, + "end": 740.38, + "probability": 0.561 + }, + { + "start": 740.62, + "end": 744.0, + "probability": 0.835 + }, + { + "start": 744.52, + "end": 745.86, + "probability": 0.9496 + }, + { + "start": 746.72, + "end": 748.52, + "probability": 0.8774 + }, + { + "start": 749.06, + "end": 751.0, + "probability": 0.9388 + }, + { + "start": 751.96, + "end": 753.38, + "probability": 0.2859 + }, + { + "start": 753.74, + "end": 758.26, + "probability": 0.7806 + }, + { + "start": 758.98, + "end": 760.44, + "probability": 0.8902 + }, + { + "start": 761.04, + "end": 763.58, + "probability": 0.9203 + }, + { + "start": 763.72, + "end": 765.44, + "probability": 0.6725 + }, + { + "start": 766.0, + "end": 766.71, + "probability": 0.6396 + }, + { + "start": 767.34, + "end": 770.04, + "probability": 0.7557 + }, + { + "start": 771.94, + "end": 773.22, + "probability": 0.7634 + }, + { + "start": 773.84, + "end": 774.12, + "probability": 0.4975 + }, + { + "start": 774.12, + "end": 776.7, + "probability": 0.7072 + }, + { + "start": 777.28, + "end": 778.64, + "probability": 0.9526 + }, + { + "start": 778.66, + "end": 781.18, + "probability": 0.946 + }, + { + "start": 781.78, + "end": 783.5, + "probability": 0.6404 + }, + { + "start": 785.92, + "end": 789.24, + "probability": 0.9912 + }, + { + "start": 789.86, + "end": 790.94, + "probability": 0.8626 + }, + { + "start": 791.38, + "end": 797.68, + "probability": 0.9868 + }, + { + "start": 798.1, + "end": 799.06, + "probability": 0.9863 + }, + { + "start": 799.66, + "end": 801.86, + "probability": 0.9139 + }, + { + "start": 802.48, + "end": 803.72, + "probability": 0.7522 + }, + { + "start": 804.66, + "end": 805.76, + "probability": 0.8726 + }, + { + "start": 806.28, + "end": 806.8, + "probability": 0.9935 + }, + { + "start": 808.1, + "end": 812.8, + "probability": 0.9944 + }, + { + "start": 814.24, + "end": 817.47, + "probability": 0.9777 + }, + { + "start": 818.08, + "end": 819.48, + "probability": 0.8757 + }, + { + "start": 820.08, + "end": 820.68, + "probability": 0.5063 + }, + { + "start": 820.74, + "end": 822.51, + "probability": 0.9937 + }, + { + "start": 823.1, + "end": 825.64, + "probability": 0.7094 + }, + { + "start": 826.26, + "end": 830.12, + "probability": 0.9595 + }, + { + "start": 830.42, + "end": 831.04, + "probability": 0.9111 + }, + { + "start": 831.18, + "end": 832.4, + "probability": 0.9071 + }, + { + "start": 832.78, + "end": 833.34, + "probability": 0.969 + }, + { + "start": 834.42, + "end": 836.06, + "probability": 0.6815 + }, + { + "start": 837.35, + "end": 840.48, + "probability": 0.8576 + }, + { + "start": 840.7, + "end": 841.36, + "probability": 0.8367 + }, + { + "start": 841.42, + "end": 844.0, + "probability": 0.9832 + }, + { + "start": 844.36, + "end": 845.55, + "probability": 0.717 + }, + { + "start": 846.56, + "end": 847.88, + "probability": 0.6086 + }, + { + "start": 848.1, + "end": 853.62, + "probability": 0.9761 + }, + { + "start": 854.52, + "end": 856.56, + "probability": 0.9057 + }, + { + "start": 857.16, + "end": 857.18, + "probability": 0.0451 + }, + { + "start": 857.74, + "end": 860.96, + "probability": 0.9429 + }, + { + "start": 861.5, + "end": 863.02, + "probability": 0.97 + }, + { + "start": 863.74, + "end": 864.08, + "probability": 0.5585 + }, + { + "start": 864.68, + "end": 865.3, + "probability": 0.9307 + }, + { + "start": 866.26, + "end": 868.3, + "probability": 0.5061 + }, + { + "start": 868.9, + "end": 870.64, + "probability": 0.7204 + }, + { + "start": 871.14, + "end": 875.62, + "probability": 0.9253 + }, + { + "start": 876.22, + "end": 877.08, + "probability": 0.4072 + }, + { + "start": 877.2, + "end": 877.92, + "probability": 0.7073 + }, + { + "start": 878.88, + "end": 879.78, + "probability": 0.6929 + }, + { + "start": 880.94, + "end": 881.92, + "probability": 0.6655 + }, + { + "start": 883.66, + "end": 888.6, + "probability": 0.8764 + }, + { + "start": 889.28, + "end": 892.88, + "probability": 0.9976 + }, + { + "start": 892.88, + "end": 899.26, + "probability": 0.9989 + }, + { + "start": 901.0, + "end": 903.44, + "probability": 0.9984 + }, + { + "start": 903.95, + "end": 909.38, + "probability": 0.8808 + }, + { + "start": 909.52, + "end": 909.8, + "probability": 0.6281 + }, + { + "start": 910.68, + "end": 913.52, + "probability": 0.653 + }, + { + "start": 914.66, + "end": 919.48, + "probability": 0.986 + }, + { + "start": 920.16, + "end": 925.12, + "probability": 0.9764 + }, + { + "start": 926.46, + "end": 929.7, + "probability": 0.9907 + }, + { + "start": 930.72, + "end": 933.8, + "probability": 0.9965 + }, + { + "start": 934.8, + "end": 936.48, + "probability": 0.9906 + }, + { + "start": 937.48, + "end": 939.46, + "probability": 0.8743 + }, + { + "start": 940.14, + "end": 941.48, + "probability": 0.9248 + }, + { + "start": 942.26, + "end": 948.0, + "probability": 0.9882 + }, + { + "start": 949.0, + "end": 950.2, + "probability": 0.9951 + }, + { + "start": 950.96, + "end": 954.44, + "probability": 0.975 + }, + { + "start": 955.48, + "end": 959.04, + "probability": 0.9821 + }, + { + "start": 959.7, + "end": 962.36, + "probability": 0.9861 + }, + { + "start": 963.48, + "end": 964.3, + "probability": 0.7601 + }, + { + "start": 966.06, + "end": 969.97, + "probability": 0.958 + }, + { + "start": 971.46, + "end": 976.8, + "probability": 0.9909 + }, + { + "start": 977.66, + "end": 980.64, + "probability": 0.9097 + }, + { + "start": 981.36, + "end": 983.02, + "probability": 0.8709 + }, + { + "start": 983.82, + "end": 986.44, + "probability": 0.9461 + }, + { + "start": 986.64, + "end": 986.86, + "probability": 0.8583 + }, + { + "start": 987.0, + "end": 987.68, + "probability": 0.7615 + }, + { + "start": 987.8, + "end": 988.52, + "probability": 0.499 + }, + { + "start": 988.96, + "end": 990.06, + "probability": 0.9893 + }, + { + "start": 991.62, + "end": 992.26, + "probability": 0.4469 + }, + { + "start": 992.84, + "end": 993.32, + "probability": 0.8259 + }, + { + "start": 994.18, + "end": 996.14, + "probability": 0.9375 + }, + { + "start": 996.88, + "end": 997.94, + "probability": 0.9453 + }, + { + "start": 998.78, + "end": 1002.66, + "probability": 0.9293 + }, + { + "start": 1003.7, + "end": 1006.24, + "probability": 0.9941 + }, + { + "start": 1007.0, + "end": 1007.74, + "probability": 0.9698 + }, + { + "start": 1010.0, + "end": 1011.3, + "probability": 0.9969 + }, + { + "start": 1012.06, + "end": 1015.6, + "probability": 0.9985 + }, + { + "start": 1016.56, + "end": 1018.52, + "probability": 0.9287 + }, + { + "start": 1019.56, + "end": 1019.96, + "probability": 0.9093 + }, + { + "start": 1020.84, + "end": 1025.68, + "probability": 0.9993 + }, + { + "start": 1026.6, + "end": 1028.66, + "probability": 0.794 + }, + { + "start": 1029.68, + "end": 1030.2, + "probability": 0.9677 + }, + { + "start": 1031.52, + "end": 1033.2, + "probability": 0.995 + }, + { + "start": 1034.64, + "end": 1035.58, + "probability": 0.6747 + }, + { + "start": 1036.42, + "end": 1037.08, + "probability": 0.8291 + }, + { + "start": 1037.22, + "end": 1041.7, + "probability": 0.906 + }, + { + "start": 1042.74, + "end": 1048.34, + "probability": 0.9877 + }, + { + "start": 1050.86, + "end": 1052.64, + "probability": 0.971 + }, + { + "start": 1053.06, + "end": 1055.44, + "probability": 0.6997 + }, + { + "start": 1055.44, + "end": 1059.3, + "probability": 0.9891 + }, + { + "start": 1059.86, + "end": 1061.7, + "probability": 0.9937 + }, + { + "start": 1062.2, + "end": 1064.81, + "probability": 0.9727 + }, + { + "start": 1065.72, + "end": 1068.18, + "probability": 0.9778 + }, + { + "start": 1069.3, + "end": 1069.74, + "probability": 0.5554 + }, + { + "start": 1069.88, + "end": 1071.28, + "probability": 0.7263 + }, + { + "start": 1071.42, + "end": 1075.46, + "probability": 0.9937 + }, + { + "start": 1075.94, + "end": 1076.64, + "probability": 0.3985 + }, + { + "start": 1077.26, + "end": 1080.28, + "probability": 0.4905 + }, + { + "start": 1080.8, + "end": 1083.54, + "probability": 0.6708 + }, + { + "start": 1083.56, + "end": 1084.2, + "probability": 0.8819 + }, + { + "start": 1084.28, + "end": 1087.26, + "probability": 0.9044 + }, + { + "start": 1089.3, + "end": 1090.82, + "probability": 0.6768 + }, + { + "start": 1091.32, + "end": 1094.06, + "probability": 0.5575 + }, + { + "start": 1094.68, + "end": 1098.2, + "probability": 0.9884 + }, + { + "start": 1099.08, + "end": 1104.7, + "probability": 0.9928 + }, + { + "start": 1104.7, + "end": 1109.18, + "probability": 0.7193 + }, + { + "start": 1110.96, + "end": 1117.84, + "probability": 0.9928 + }, + { + "start": 1117.84, + "end": 1123.78, + "probability": 0.9842 + }, + { + "start": 1124.94, + "end": 1127.68, + "probability": 0.8641 + }, + { + "start": 1128.32, + "end": 1129.5, + "probability": 0.6429 + }, + { + "start": 1130.04, + "end": 1132.7, + "probability": 0.9592 + }, + { + "start": 1133.2, + "end": 1138.8, + "probability": 0.9846 + }, + { + "start": 1139.94, + "end": 1145.44, + "probability": 0.8945 + }, + { + "start": 1146.04, + "end": 1150.98, + "probability": 0.9858 + }, + { + "start": 1150.98, + "end": 1155.58, + "probability": 0.9689 + }, + { + "start": 1156.32, + "end": 1163.24, + "probability": 0.9634 + }, + { + "start": 1163.24, + "end": 1168.42, + "probability": 0.994 + }, + { + "start": 1169.14, + "end": 1173.72, + "probability": 0.9912 + }, + { + "start": 1174.28, + "end": 1177.94, + "probability": 0.9025 + }, + { + "start": 1178.48, + "end": 1182.32, + "probability": 0.9832 + }, + { + "start": 1182.48, + "end": 1184.76, + "probability": 0.983 + }, + { + "start": 1184.82, + "end": 1185.98, + "probability": 0.7451 + }, + { + "start": 1186.2, + "end": 1187.26, + "probability": 0.7041 + }, + { + "start": 1188.04, + "end": 1189.36, + "probability": 0.8169 + }, + { + "start": 1189.72, + "end": 1190.22, + "probability": 0.4844 + }, + { + "start": 1190.32, + "end": 1191.82, + "probability": 0.9819 + }, + { + "start": 1192.5, + "end": 1195.2, + "probability": 0.8746 + }, + { + "start": 1196.56, + "end": 1199.26, + "probability": 0.9746 + }, + { + "start": 1200.98, + "end": 1205.4, + "probability": 0.997 + }, + { + "start": 1205.4, + "end": 1208.46, + "probability": 0.8767 + }, + { + "start": 1208.5, + "end": 1214.82, + "probability": 0.9966 + }, + { + "start": 1214.92, + "end": 1215.28, + "probability": 0.4651 + }, + { + "start": 1215.62, + "end": 1216.38, + "probability": 0.776 + }, + { + "start": 1217.68, + "end": 1219.8, + "probability": 0.9976 + }, + { + "start": 1220.98, + "end": 1224.02, + "probability": 0.9971 + }, + { + "start": 1224.02, + "end": 1227.52, + "probability": 0.9985 + }, + { + "start": 1228.36, + "end": 1233.58, + "probability": 0.9458 + }, + { + "start": 1234.0, + "end": 1239.6, + "probability": 0.9622 + }, + { + "start": 1240.24, + "end": 1241.72, + "probability": 0.8737 + }, + { + "start": 1243.36, + "end": 1249.76, + "probability": 0.9867 + }, + { + "start": 1249.76, + "end": 1254.36, + "probability": 0.9519 + }, + { + "start": 1255.5, + "end": 1257.94, + "probability": 0.9941 + }, + { + "start": 1258.68, + "end": 1264.7, + "probability": 0.9012 + }, + { + "start": 1265.26, + "end": 1267.93, + "probability": 0.9307 + }, + { + "start": 1269.74, + "end": 1272.66, + "probability": 0.8694 + }, + { + "start": 1273.54, + "end": 1275.54, + "probability": 0.9978 + }, + { + "start": 1276.18, + "end": 1281.6, + "probability": 0.9563 + }, + { + "start": 1282.44, + "end": 1284.46, + "probability": 0.9793 + }, + { + "start": 1285.56, + "end": 1291.26, + "probability": 0.9956 + }, + { + "start": 1292.14, + "end": 1293.2, + "probability": 0.9919 + }, + { + "start": 1295.0, + "end": 1295.74, + "probability": 0.8305 + }, + { + "start": 1296.46, + "end": 1298.16, + "probability": 0.5678 + }, + { + "start": 1298.2, + "end": 1299.74, + "probability": 0.679 + }, + { + "start": 1300.32, + "end": 1304.2, + "probability": 0.9915 + }, + { + "start": 1304.2, + "end": 1307.86, + "probability": 0.9784 + }, + { + "start": 1308.48, + "end": 1310.64, + "probability": 0.9412 + }, + { + "start": 1311.78, + "end": 1313.1, + "probability": 0.8696 + }, + { + "start": 1314.68, + "end": 1318.54, + "probability": 0.8845 + }, + { + "start": 1318.96, + "end": 1321.14, + "probability": 0.9812 + }, + { + "start": 1322.22, + "end": 1325.04, + "probability": 0.9934 + }, + { + "start": 1325.2, + "end": 1326.1, + "probability": 0.9697 + }, + { + "start": 1326.98, + "end": 1330.92, + "probability": 0.9855 + }, + { + "start": 1331.66, + "end": 1336.07, + "probability": 0.991 + }, + { + "start": 1336.7, + "end": 1337.08, + "probability": 0.7859 + }, + { + "start": 1337.76, + "end": 1338.53, + "probability": 0.9958 + }, + { + "start": 1339.5, + "end": 1341.22, + "probability": 0.816 + }, + { + "start": 1341.44, + "end": 1341.9, + "probability": 0.731 + }, + { + "start": 1342.88, + "end": 1343.7, + "probability": 0.8386 + }, + { + "start": 1344.22, + "end": 1348.84, + "probability": 0.9685 + }, + { + "start": 1349.28, + "end": 1350.12, + "probability": 0.8038 + }, + { + "start": 1350.88, + "end": 1351.44, + "probability": 0.9282 + }, + { + "start": 1352.36, + "end": 1357.34, + "probability": 0.998 + }, + { + "start": 1359.98, + "end": 1362.42, + "probability": 0.9956 + }, + { + "start": 1363.06, + "end": 1366.74, + "probability": 0.9855 + }, + { + "start": 1369.04, + "end": 1372.42, + "probability": 0.9528 + }, + { + "start": 1372.94, + "end": 1378.79, + "probability": 0.8393 + }, + { + "start": 1379.9, + "end": 1384.66, + "probability": 0.9861 + }, + { + "start": 1384.72, + "end": 1385.95, + "probability": 0.9014 + }, + { + "start": 1388.22, + "end": 1389.58, + "probability": 0.7898 + }, + { + "start": 1389.72, + "end": 1391.32, + "probability": 0.475 + }, + { + "start": 1391.64, + "end": 1393.08, + "probability": 0.8311 + }, + { + "start": 1393.56, + "end": 1395.08, + "probability": 0.8001 + }, + { + "start": 1395.28, + "end": 1395.76, + "probability": 0.6269 + }, + { + "start": 1395.94, + "end": 1399.3, + "probability": 0.9807 + }, + { + "start": 1399.62, + "end": 1401.06, + "probability": 0.9004 + }, + { + "start": 1401.24, + "end": 1403.5, + "probability": 0.6239 + }, + { + "start": 1404.18, + "end": 1404.66, + "probability": 0.4023 + }, + { + "start": 1405.2, + "end": 1406.56, + "probability": 0.7747 + }, + { + "start": 1406.72, + "end": 1409.3, + "probability": 0.9395 + }, + { + "start": 1409.52, + "end": 1414.44, + "probability": 0.9839 + }, + { + "start": 1414.54, + "end": 1417.22, + "probability": 0.6994 + }, + { + "start": 1417.8, + "end": 1419.78, + "probability": 0.7596 + }, + { + "start": 1421.32, + "end": 1423.54, + "probability": 0.8334 + }, + { + "start": 1423.68, + "end": 1424.26, + "probability": 0.7859 + }, + { + "start": 1424.32, + "end": 1428.86, + "probability": 0.9743 + }, + { + "start": 1429.22, + "end": 1429.84, + "probability": 0.8239 + }, + { + "start": 1429.94, + "end": 1430.36, + "probability": 0.9578 + }, + { + "start": 1430.76, + "end": 1431.48, + "probability": 0.7551 + }, + { + "start": 1431.84, + "end": 1432.82, + "probability": 0.9985 + }, + { + "start": 1433.84, + "end": 1436.71, + "probability": 0.7921 + }, + { + "start": 1438.14, + "end": 1439.86, + "probability": 0.9415 + }, + { + "start": 1440.92, + "end": 1441.68, + "probability": 0.9258 + }, + { + "start": 1441.74, + "end": 1442.46, + "probability": 0.956 + }, + { + "start": 1442.56, + "end": 1443.26, + "probability": 0.9502 + }, + { + "start": 1443.36, + "end": 1445.66, + "probability": 0.7423 + }, + { + "start": 1445.76, + "end": 1446.8, + "probability": 0.9701 + }, + { + "start": 1448.68, + "end": 1452.56, + "probability": 0.8704 + }, + { + "start": 1453.02, + "end": 1457.48, + "probability": 0.9724 + }, + { + "start": 1458.18, + "end": 1460.2, + "probability": 0.8551 + }, + { + "start": 1460.64, + "end": 1464.0, + "probability": 0.9883 + }, + { + "start": 1464.6, + "end": 1465.94, + "probability": 0.9746 + }, + { + "start": 1466.18, + "end": 1466.48, + "probability": 0.7415 + }, + { + "start": 1466.8, + "end": 1467.18, + "probability": 0.5947 + }, + { + "start": 1467.66, + "end": 1470.16, + "probability": 0.9986 + }, + { + "start": 1470.66, + "end": 1471.76, + "probability": 0.8179 + }, + { + "start": 1472.06, + "end": 1473.92, + "probability": 0.9691 + }, + { + "start": 1474.0, + "end": 1479.14, + "probability": 0.9663 + }, + { + "start": 1479.94, + "end": 1481.62, + "probability": 0.9186 + }, + { + "start": 1481.72, + "end": 1482.19, + "probability": 0.4775 + }, + { + "start": 1483.72, + "end": 1484.96, + "probability": 0.9535 + }, + { + "start": 1485.02, + "end": 1487.28, + "probability": 0.9174 + }, + { + "start": 1487.44, + "end": 1488.38, + "probability": 0.9388 + }, + { + "start": 1489.02, + "end": 1491.78, + "probability": 0.5138 + }, + { + "start": 1491.94, + "end": 1493.74, + "probability": 0.7523 + }, + { + "start": 1494.0, + "end": 1496.64, + "probability": 0.4355 + }, + { + "start": 1497.6, + "end": 1498.18, + "probability": 0.5192 + }, + { + "start": 1498.34, + "end": 1499.02, + "probability": 0.731 + }, + { + "start": 1499.12, + "end": 1499.64, + "probability": 0.9149 + }, + { + "start": 1499.72, + "end": 1500.98, + "probability": 0.7109 + }, + { + "start": 1501.04, + "end": 1501.54, + "probability": 0.8629 + }, + { + "start": 1501.98, + "end": 1507.24, + "probability": 0.973 + }, + { + "start": 1508.34, + "end": 1510.18, + "probability": 0.9653 + }, + { + "start": 1510.7, + "end": 1510.8, + "probability": 0.0016 + }, + { + "start": 1510.82, + "end": 1512.56, + "probability": 0.6222 + }, + { + "start": 1512.62, + "end": 1513.26, + "probability": 0.3626 + }, + { + "start": 1513.4, + "end": 1513.66, + "probability": 0.5809 + }, + { + "start": 1513.76, + "end": 1513.9, + "probability": 0.1658 + }, + { + "start": 1514.1, + "end": 1517.08, + "probability": 0.8647 + }, + { + "start": 1517.14, + "end": 1520.02, + "probability": 0.914 + }, + { + "start": 1520.62, + "end": 1523.66, + "probability": 0.6108 + }, + { + "start": 1523.66, + "end": 1524.12, + "probability": 0.5528 + }, + { + "start": 1524.52, + "end": 1527.14, + "probability": 0.9834 + }, + { + "start": 1527.86, + "end": 1527.96, + "probability": 0.5713 + }, + { + "start": 1528.02, + "end": 1528.44, + "probability": 0.9197 + }, + { + "start": 1528.54, + "end": 1531.08, + "probability": 0.9387 + }, + { + "start": 1531.2, + "end": 1532.74, + "probability": 0.8349 + }, + { + "start": 1533.72, + "end": 1533.92, + "probability": 0.8149 + }, + { + "start": 1534.6, + "end": 1534.98, + "probability": 0.7632 + }, + { + "start": 1535.18, + "end": 1535.6, + "probability": 0.098 + }, + { + "start": 1535.6, + "end": 1537.5, + "probability": 0.7082 + }, + { + "start": 1537.62, + "end": 1538.06, + "probability": 0.6679 + }, + { + "start": 1538.5, + "end": 1540.84, + "probability": 0.989 + }, + { + "start": 1541.62, + "end": 1541.78, + "probability": 0.3095 + }, + { + "start": 1541.78, + "end": 1541.88, + "probability": 0.5537 + }, + { + "start": 1542.24, + "end": 1542.3, + "probability": 0.5878 + }, + { + "start": 1542.4, + "end": 1544.66, + "probability": 0.988 + }, + { + "start": 1545.34, + "end": 1546.68, + "probability": 0.848 + }, + { + "start": 1546.78, + "end": 1548.04, + "probability": 0.9149 + }, + { + "start": 1548.26, + "end": 1550.02, + "probability": 0.9446 + }, + { + "start": 1550.54, + "end": 1552.62, + "probability": 0.991 + }, + { + "start": 1552.7, + "end": 1555.76, + "probability": 0.9984 + }, + { + "start": 1556.72, + "end": 1558.45, + "probability": 0.9807 + }, + { + "start": 1558.52, + "end": 1558.94, + "probability": 0.8632 + }, + { + "start": 1559.08, + "end": 1561.34, + "probability": 0.9341 + }, + { + "start": 1561.54, + "end": 1563.34, + "probability": 0.9343 + }, + { + "start": 1564.18, + "end": 1567.34, + "probability": 0.9944 + }, + { + "start": 1568.22, + "end": 1574.28, + "probability": 0.8384 + }, + { + "start": 1575.48, + "end": 1575.94, + "probability": 0.6755 + }, + { + "start": 1576.54, + "end": 1579.1, + "probability": 0.9821 + }, + { + "start": 1579.28, + "end": 1579.96, + "probability": 0.9034 + }, + { + "start": 1580.08, + "end": 1583.74, + "probability": 0.9968 + }, + { + "start": 1583.74, + "end": 1587.2, + "probability": 0.9988 + }, + { + "start": 1587.76, + "end": 1588.46, + "probability": 0.8918 + }, + { + "start": 1588.54, + "end": 1589.38, + "probability": 0.8636 + }, + { + "start": 1589.78, + "end": 1595.86, + "probability": 0.9571 + }, + { + "start": 1596.18, + "end": 1596.6, + "probability": 0.4954 + }, + { + "start": 1596.6, + "end": 1597.44, + "probability": 0.5619 + }, + { + "start": 1597.56, + "end": 1598.28, + "probability": 0.7472 + }, + { + "start": 1598.94, + "end": 1604.54, + "probability": 0.9743 + }, + { + "start": 1604.7, + "end": 1605.18, + "probability": 0.7649 + }, + { + "start": 1605.62, + "end": 1606.56, + "probability": 0.9814 + }, + { + "start": 1606.58, + "end": 1606.68, + "probability": 0.5648 + }, + { + "start": 1608.88, + "end": 1611.5, + "probability": 0.5531 + }, + { + "start": 1611.56, + "end": 1611.94, + "probability": 0.1411 + }, + { + "start": 1611.94, + "end": 1616.44, + "probability": 0.8833 + }, + { + "start": 1617.38, + "end": 1622.9, + "probability": 0.9723 + }, + { + "start": 1623.26, + "end": 1626.0, + "probability": 0.9135 + }, + { + "start": 1626.72, + "end": 1629.7, + "probability": 0.9846 + }, + { + "start": 1631.22, + "end": 1632.7, + "probability": 0.8598 + }, + { + "start": 1634.5, + "end": 1637.12, + "probability": 0.9316 + }, + { + "start": 1637.98, + "end": 1640.28, + "probability": 0.9936 + }, + { + "start": 1640.28, + "end": 1642.8, + "probability": 0.9936 + }, + { + "start": 1643.5, + "end": 1646.76, + "probability": 0.9809 + }, + { + "start": 1646.76, + "end": 1650.82, + "probability": 0.981 + }, + { + "start": 1652.46, + "end": 1652.76, + "probability": 0.5621 + }, + { + "start": 1652.86, + "end": 1660.52, + "probability": 0.9976 + }, + { + "start": 1661.32, + "end": 1664.1, + "probability": 0.9956 + }, + { + "start": 1664.7, + "end": 1668.86, + "probability": 0.9272 + }, + { + "start": 1669.58, + "end": 1671.16, + "probability": 0.6961 + }, + { + "start": 1672.08, + "end": 1676.22, + "probability": 0.9479 + }, + { + "start": 1676.22, + "end": 1679.26, + "probability": 0.9949 + }, + { + "start": 1680.16, + "end": 1681.16, + "probability": 0.9708 + }, + { + "start": 1682.08, + "end": 1682.7, + "probability": 0.4184 + }, + { + "start": 1682.9, + "end": 1683.08, + "probability": 0.765 + }, + { + "start": 1683.12, + "end": 1688.04, + "probability": 0.8511 + }, + { + "start": 1688.22, + "end": 1689.02, + "probability": 0.7575 + }, + { + "start": 1689.88, + "end": 1693.16, + "probability": 0.9812 + }, + { + "start": 1693.3, + "end": 1694.82, + "probability": 0.8844 + }, + { + "start": 1695.5, + "end": 1698.36, + "probability": 0.9961 + }, + { + "start": 1698.36, + "end": 1701.84, + "probability": 0.951 + }, + { + "start": 1702.12, + "end": 1702.78, + "probability": 0.6365 + }, + { + "start": 1703.34, + "end": 1705.96, + "probability": 0.8616 + }, + { + "start": 1706.48, + "end": 1710.62, + "probability": 0.9279 + }, + { + "start": 1712.98, + "end": 1716.34, + "probability": 0.9959 + }, + { + "start": 1717.48, + "end": 1717.8, + "probability": 0.634 + }, + { + "start": 1718.5, + "end": 1718.8, + "probability": 0.4559 + }, + { + "start": 1718.92, + "end": 1723.56, + "probability": 0.9578 + }, + { + "start": 1723.8, + "end": 1726.49, + "probability": 0.9902 + }, + { + "start": 1726.9, + "end": 1727.66, + "probability": 0.4616 + }, + { + "start": 1727.78, + "end": 1729.1, + "probability": 0.9556 + }, + { + "start": 1729.2, + "end": 1733.02, + "probability": 0.9917 + }, + { + "start": 1733.32, + "end": 1734.54, + "probability": 0.8455 + }, + { + "start": 1734.66, + "end": 1735.26, + "probability": 0.8442 + }, + { + "start": 1735.36, + "end": 1736.12, + "probability": 0.7143 + }, + { + "start": 1736.4, + "end": 1740.24, + "probability": 0.9705 + }, + { + "start": 1740.44, + "end": 1743.64, + "probability": 0.9871 + }, + { + "start": 1743.72, + "end": 1747.7, + "probability": 0.6133 + }, + { + "start": 1747.9, + "end": 1750.56, + "probability": 0.9096 + }, + { + "start": 1752.41, + "end": 1755.45, + "probability": 0.5176 + }, + { + "start": 1757.68, + "end": 1758.3, + "probability": 0.9448 + }, + { + "start": 1758.32, + "end": 1763.22, + "probability": 0.9978 + }, + { + "start": 1763.22, + "end": 1767.74, + "probability": 0.9993 + }, + { + "start": 1767.78, + "end": 1767.88, + "probability": 0.0093 + }, + { + "start": 1767.9, + "end": 1771.68, + "probability": 0.9023 + }, + { + "start": 1772.06, + "end": 1773.94, + "probability": 0.5124 + }, + { + "start": 1774.16, + "end": 1774.48, + "probability": 0.5356 + }, + { + "start": 1774.52, + "end": 1776.35, + "probability": 0.9546 + }, + { + "start": 1777.5, + "end": 1780.54, + "probability": 0.8428 + }, + { + "start": 1780.54, + "end": 1784.53, + "probability": 0.995 + }, + { + "start": 1785.9, + "end": 1788.72, + "probability": 0.573 + }, + { + "start": 1788.92, + "end": 1791.08, + "probability": 0.8065 + }, + { + "start": 1791.78, + "end": 1793.46, + "probability": 0.5431 + }, + { + "start": 1793.72, + "end": 1796.26, + "probability": 0.808 + }, + { + "start": 1797.24, + "end": 1802.34, + "probability": 0.9966 + }, + { + "start": 1802.42, + "end": 1806.04, + "probability": 0.9893 + }, + { + "start": 1806.56, + "end": 1809.02, + "probability": 0.9845 + }, + { + "start": 1809.62, + "end": 1814.22, + "probability": 0.993 + }, + { + "start": 1814.8, + "end": 1816.55, + "probability": 0.9893 + }, + { + "start": 1816.64, + "end": 1817.36, + "probability": 0.4772 + }, + { + "start": 1817.6, + "end": 1820.88, + "probability": 0.9971 + }, + { + "start": 1820.88, + "end": 1824.04, + "probability": 0.9927 + }, + { + "start": 1824.1, + "end": 1827.37, + "probability": 0.9948 + }, + { + "start": 1828.28, + "end": 1832.84, + "probability": 0.9973 + }, + { + "start": 1832.9, + "end": 1834.08, + "probability": 0.9844 + }, + { + "start": 1834.72, + "end": 1837.06, + "probability": 0.9051 + }, + { + "start": 1837.2, + "end": 1841.19, + "probability": 0.9968 + }, + { + "start": 1841.68, + "end": 1845.04, + "probability": 0.9355 + }, + { + "start": 1845.6, + "end": 1846.48, + "probability": 0.9377 + }, + { + "start": 1848.38, + "end": 1855.75, + "probability": 0.9678 + }, + { + "start": 1856.46, + "end": 1857.04, + "probability": 0.3111 + }, + { + "start": 1857.04, + "end": 1858.61, + "probability": 0.9438 + }, + { + "start": 1858.76, + "end": 1862.1, + "probability": 0.998 + }, + { + "start": 1862.16, + "end": 1863.56, + "probability": 0.9945 + }, + { + "start": 1864.02, + "end": 1867.08, + "probability": 0.9839 + }, + { + "start": 1867.12, + "end": 1869.56, + "probability": 0.8816 + }, + { + "start": 1869.98, + "end": 1870.84, + "probability": 0.8176 + }, + { + "start": 1871.48, + "end": 1872.74, + "probability": 0.9211 + }, + { + "start": 1872.8, + "end": 1875.0, + "probability": 0.9954 + }, + { + "start": 1875.14, + "end": 1877.18, + "probability": 0.7727 + }, + { + "start": 1877.32, + "end": 1880.82, + "probability": 0.825 + }, + { + "start": 1881.22, + "end": 1881.92, + "probability": 0.7504 + }, + { + "start": 1881.98, + "end": 1882.58, + "probability": 0.3535 + }, + { + "start": 1882.66, + "end": 1882.76, + "probability": 0.39 + }, + { + "start": 1883.18, + "end": 1885.54, + "probability": 0.9614 + }, + { + "start": 1886.52, + "end": 1888.42, + "probability": 0.9917 + }, + { + "start": 1889.18, + "end": 1891.38, + "probability": 0.9537 + }, + { + "start": 1892.14, + "end": 1896.28, + "probability": 0.9787 + }, + { + "start": 1897.84, + "end": 1898.56, + "probability": 0.4429 + }, + { + "start": 1898.68, + "end": 1901.33, + "probability": 0.9888 + }, + { + "start": 1903.84, + "end": 1906.14, + "probability": 0.6399 + }, + { + "start": 1906.2, + "end": 1906.94, + "probability": 0.6558 + }, + { + "start": 1907.62, + "end": 1909.8, + "probability": 0.98 + }, + { + "start": 1909.86, + "end": 1913.5, + "probability": 0.9835 + }, + { + "start": 1913.68, + "end": 1916.0, + "probability": 0.9546 + }, + { + "start": 1916.74, + "end": 1923.35, + "probability": 0.9604 + }, + { + "start": 1924.66, + "end": 1926.06, + "probability": 0.9997 + }, + { + "start": 1926.14, + "end": 1931.3, + "probability": 0.9937 + }, + { + "start": 1932.32, + "end": 1934.84, + "probability": 0.6715 + }, + { + "start": 1936.28, + "end": 1937.78, + "probability": 0.011 + }, + { + "start": 1937.78, + "end": 1937.82, + "probability": 0.2991 + }, + { + "start": 1937.82, + "end": 1938.45, + "probability": 0.6689 + }, + { + "start": 1938.96, + "end": 1939.48, + "probability": 0.7915 + }, + { + "start": 1939.64, + "end": 1940.18, + "probability": 0.8644 + }, + { + "start": 1940.64, + "end": 1941.6, + "probability": 0.2712 + }, + { + "start": 1941.68, + "end": 1945.02, + "probability": 0.8455 + }, + { + "start": 1945.48, + "end": 1947.08, + "probability": 0.9175 + }, + { + "start": 1947.52, + "end": 1948.58, + "probability": 0.8832 + }, + { + "start": 1948.64, + "end": 1954.72, + "probability": 0.9663 + }, + { + "start": 1955.16, + "end": 1957.24, + "probability": 0.5985 + }, + { + "start": 1957.9, + "end": 1961.76, + "probability": 0.9774 + }, + { + "start": 1962.08, + "end": 1964.5, + "probability": 0.9752 + }, + { + "start": 1964.98, + "end": 1966.76, + "probability": 0.3575 + }, + { + "start": 1966.86, + "end": 1967.38, + "probability": 0.619 + }, + { + "start": 1967.46, + "end": 1967.94, + "probability": 0.4471 + }, + { + "start": 1968.08, + "end": 1968.74, + "probability": 0.5652 + }, + { + "start": 1976.5, + "end": 1977.43, + "probability": 0.6226 + }, + { + "start": 1978.3, + "end": 1980.1, + "probability": 0.8484 + }, + { + "start": 1981.86, + "end": 1983.46, + "probability": 0.0511 + }, + { + "start": 1983.52, + "end": 1984.68, + "probability": 0.9318 + }, + { + "start": 1984.7, + "end": 1987.28, + "probability": 0.9447 + }, + { + "start": 1987.62, + "end": 1989.12, + "probability": 0.1033 + }, + { + "start": 1989.38, + "end": 1989.72, + "probability": 0.6154 + }, + { + "start": 1990.92, + "end": 1991.55, + "probability": 0.5455 + }, + { + "start": 1992.56, + "end": 1994.56, + "probability": 0.6171 + }, + { + "start": 1995.02, + "end": 1996.92, + "probability": 0.3239 + }, + { + "start": 1997.36, + "end": 1997.68, + "probability": 0.8414 + }, + { + "start": 1998.6, + "end": 1998.9, + "probability": 0.8558 + }, + { + "start": 1999.24, + "end": 1999.34, + "probability": 0.8628 + }, + { + "start": 1999.36, + "end": 1999.82, + "probability": 0.7503 + }, + { + "start": 2000.02, + "end": 2005.32, + "probability": 0.9433 + }, + { + "start": 2005.78, + "end": 2007.66, + "probability": 0.8109 + }, + { + "start": 2008.98, + "end": 2010.96, + "probability": 0.2151 + }, + { + "start": 2019.92, + "end": 2022.12, + "probability": 0.1997 + }, + { + "start": 2028.02, + "end": 2028.4, + "probability": 0.157 + }, + { + "start": 2029.98, + "end": 2031.62, + "probability": 0.0843 + }, + { + "start": 2045.4, + "end": 2045.98, + "probability": 0.0361 + }, + { + "start": 2045.98, + "end": 2052.14, + "probability": 0.0772 + }, + { + "start": 2052.34, + "end": 2055.16, + "probability": 0.0658 + }, + { + "start": 2055.91, + "end": 2056.72, + "probability": 0.0949 + }, + { + "start": 2057.1, + "end": 2059.37, + "probability": 0.0515 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.0, + "end": 2100.0, + "probability": 0.0 + }, + { + "start": 2100.18, + "end": 2100.96, + "probability": 0.0296 + }, + { + "start": 2100.96, + "end": 2100.96, + "probability": 0.0529 + }, + { + "start": 2100.96, + "end": 2106.12, + "probability": 0.5347 + }, + { + "start": 2107.1, + "end": 2108.24, + "probability": 0.8594 + }, + { + "start": 2108.42, + "end": 2110.72, + "probability": 0.9906 + }, + { + "start": 2111.24, + "end": 2113.68, + "probability": 0.8576 + }, + { + "start": 2114.32, + "end": 2117.26, + "probability": 0.8472 + }, + { + "start": 2118.06, + "end": 2119.33, + "probability": 0.8677 + }, + { + "start": 2120.24, + "end": 2122.22, + "probability": 0.9768 + }, + { + "start": 2123.02, + "end": 2126.96, + "probability": 0.8368 + }, + { + "start": 2127.18, + "end": 2129.72, + "probability": 0.75 + }, + { + "start": 2130.2, + "end": 2131.79, + "probability": 0.9886 + }, + { + "start": 2132.5, + "end": 2134.3, + "probability": 0.9507 + }, + { + "start": 2134.76, + "end": 2137.58, + "probability": 0.9799 + }, + { + "start": 2138.2, + "end": 2139.4, + "probability": 0.9563 + }, + { + "start": 2140.66, + "end": 2142.6, + "probability": 0.611 + }, + { + "start": 2142.68, + "end": 2143.28, + "probability": 0.6642 + }, + { + "start": 2144.14, + "end": 2149.08, + "probability": 0.969 + }, + { + "start": 2149.32, + "end": 2149.86, + "probability": 0.6667 + }, + { + "start": 2150.64, + "end": 2151.3, + "probability": 0.9501 + }, + { + "start": 2152.38, + "end": 2152.86, + "probability": 0.5861 + }, + { + "start": 2152.92, + "end": 2153.4, + "probability": 0.5355 + }, + { + "start": 2153.6, + "end": 2156.48, + "probability": 0.8638 + }, + { + "start": 2158.04, + "end": 2158.78, + "probability": 0.1962 + }, + { + "start": 2159.04, + "end": 2164.58, + "probability": 0.1386 + }, + { + "start": 2164.8, + "end": 2166.92, + "probability": 0.4239 + }, + { + "start": 2168.04, + "end": 2172.86, + "probability": 0.4837 + }, + { + "start": 2172.86, + "end": 2178.62, + "probability": 0.3956 + }, + { + "start": 2178.78, + "end": 2179.8, + "probability": 0.3631 + }, + { + "start": 2179.96, + "end": 2180.55, + "probability": 0.871 + }, + { + "start": 2181.1, + "end": 2183.86, + "probability": 0.9084 + }, + { + "start": 2184.1, + "end": 2184.52, + "probability": 0.4084 + }, + { + "start": 2184.54, + "end": 2186.12, + "probability": 0.7854 + }, + { + "start": 2186.54, + "end": 2187.4, + "probability": 0.981 + }, + { + "start": 2187.6, + "end": 2189.44, + "probability": 0.8074 + }, + { + "start": 2189.78, + "end": 2190.44, + "probability": 0.8841 + }, + { + "start": 2191.0, + "end": 2192.36, + "probability": 0.0459 + }, + { + "start": 2192.5, + "end": 2193.4, + "probability": 0.5082 + }, + { + "start": 2193.8, + "end": 2198.28, + "probability": 0.1969 + }, + { + "start": 2198.28, + "end": 2198.62, + "probability": 0.2933 + }, + { + "start": 2198.78, + "end": 2199.58, + "probability": 0.6274 + }, + { + "start": 2200.22, + "end": 2204.06, + "probability": 0.6581 + }, + { + "start": 2204.46, + "end": 2206.48, + "probability": 0.8444 + }, + { + "start": 2206.58, + "end": 2207.06, + "probability": 0.7825 + }, + { + "start": 2207.52, + "end": 2209.04, + "probability": 0.9897 + }, + { + "start": 2209.82, + "end": 2211.66, + "probability": 0.6026 + }, + { + "start": 2213.6, + "end": 2215.12, + "probability": 0.3179 + }, + { + "start": 2215.26, + "end": 2215.7, + "probability": 0.5994 + }, + { + "start": 2216.1, + "end": 2218.36, + "probability": 0.4919 + }, + { + "start": 2218.36, + "end": 2221.38, + "probability": 0.5458 + }, + { + "start": 2221.38, + "end": 2224.78, + "probability": 0.7419 + }, + { + "start": 2224.94, + "end": 2225.74, + "probability": 0.9028 + }, + { + "start": 2225.74, + "end": 2227.34, + "probability": 0.7175 + }, + { + "start": 2228.16, + "end": 2228.92, + "probability": 0.8038 + }, + { + "start": 2229.26, + "end": 2230.12, + "probability": 0.7774 + }, + { + "start": 2230.2, + "end": 2230.78, + "probability": 0.8699 + }, + { + "start": 2231.08, + "end": 2232.18, + "probability": 0.7508 + }, + { + "start": 2232.84, + "end": 2238.02, + "probability": 0.9792 + }, + { + "start": 2238.02, + "end": 2244.98, + "probability": 0.9916 + }, + { + "start": 2245.1, + "end": 2246.18, + "probability": 0.6906 + }, + { + "start": 2246.76, + "end": 2251.6, + "probability": 0.9937 + }, + { + "start": 2253.04, + "end": 2257.7, + "probability": 0.9937 + }, + { + "start": 2257.84, + "end": 2259.38, + "probability": 0.9681 + }, + { + "start": 2259.5, + "end": 2262.68, + "probability": 0.52 + }, + { + "start": 2263.6, + "end": 2264.1, + "probability": 0.8069 + }, + { + "start": 2264.22, + "end": 2266.76, + "probability": 0.8771 + }, + { + "start": 2266.86, + "end": 2267.6, + "probability": 0.8586 + }, + { + "start": 2268.1, + "end": 2269.68, + "probability": 0.9835 + }, + { + "start": 2269.76, + "end": 2271.74, + "probability": 0.8569 + }, + { + "start": 2272.36, + "end": 2275.26, + "probability": 0.9961 + }, + { + "start": 2275.86, + "end": 2278.16, + "probability": 0.9404 + }, + { + "start": 2279.22, + "end": 2280.6, + "probability": 0.8168 + }, + { + "start": 2280.76, + "end": 2281.46, + "probability": 0.2726 + }, + { + "start": 2281.56, + "end": 2285.14, + "probability": 0.9937 + }, + { + "start": 2285.6, + "end": 2286.92, + "probability": 0.9513 + }, + { + "start": 2287.58, + "end": 2291.86, + "probability": 0.8284 + }, + { + "start": 2292.24, + "end": 2293.0, + "probability": 0.7839 + }, + { + "start": 2293.06, + "end": 2296.12, + "probability": 0.838 + }, + { + "start": 2296.2, + "end": 2298.3, + "probability": 0.98 + }, + { + "start": 2298.44, + "end": 2300.54, + "probability": 0.9301 + }, + { + "start": 2300.76, + "end": 2302.36, + "probability": 0.9875 + }, + { + "start": 2303.0, + "end": 2304.84, + "probability": 0.8406 + }, + { + "start": 2305.26, + "end": 2305.76, + "probability": 0.5555 + }, + { + "start": 2305.94, + "end": 2307.14, + "probability": 0.6406 + }, + { + "start": 2307.42, + "end": 2308.22, + "probability": 0.4733 + }, + { + "start": 2308.44, + "end": 2309.92, + "probability": 0.9501 + }, + { + "start": 2310.46, + "end": 2311.04, + "probability": 0.9051 + }, + { + "start": 2311.08, + "end": 2313.42, + "probability": 0.9917 + }, + { + "start": 2313.8, + "end": 2314.8, + "probability": 0.7016 + }, + { + "start": 2315.44, + "end": 2317.94, + "probability": 0.8054 + }, + { + "start": 2319.04, + "end": 2319.96, + "probability": 0.9729 + }, + { + "start": 2320.3, + "end": 2321.54, + "probability": 0.9476 + }, + { + "start": 2321.96, + "end": 2325.96, + "probability": 0.9819 + }, + { + "start": 2325.96, + "end": 2331.04, + "probability": 0.9858 + }, + { + "start": 2331.58, + "end": 2331.8, + "probability": 0.5234 + }, + { + "start": 2331.92, + "end": 2338.08, + "probability": 0.9973 + }, + { + "start": 2338.66, + "end": 2343.3, + "probability": 0.9985 + }, + { + "start": 2344.14, + "end": 2345.86, + "probability": 0.9946 + }, + { + "start": 2346.66, + "end": 2347.5, + "probability": 0.8861 + }, + { + "start": 2347.58, + "end": 2349.16, + "probability": 0.9943 + }, + { + "start": 2349.62, + "end": 2353.48, + "probability": 0.8157 + }, + { + "start": 2354.14, + "end": 2357.34, + "probability": 0.998 + }, + { + "start": 2357.34, + "end": 2359.76, + "probability": 0.7553 + }, + { + "start": 2360.38, + "end": 2363.58, + "probability": 0.9783 + }, + { + "start": 2363.68, + "end": 2365.06, + "probability": 0.9863 + }, + { + "start": 2366.12, + "end": 2367.04, + "probability": 0.2114 + }, + { + "start": 2367.84, + "end": 2368.04, + "probability": 0.3279 + }, + { + "start": 2368.1, + "end": 2371.02, + "probability": 0.9536 + }, + { + "start": 2371.12, + "end": 2377.36, + "probability": 0.9805 + }, + { + "start": 2377.76, + "end": 2378.69, + "probability": 0.8885 + }, + { + "start": 2379.02, + "end": 2379.64, + "probability": 0.5706 + }, + { + "start": 2379.92, + "end": 2381.44, + "probability": 0.512 + }, + { + "start": 2381.54, + "end": 2382.06, + "probability": 0.2854 + }, + { + "start": 2382.26, + "end": 2382.56, + "probability": 0.8341 + }, + { + "start": 2382.68, + "end": 2384.2, + "probability": 0.9976 + }, + { + "start": 2384.54, + "end": 2388.48, + "probability": 0.8782 + }, + { + "start": 2388.58, + "end": 2389.48, + "probability": 0.8303 + }, + { + "start": 2389.8, + "end": 2390.6, + "probability": 0.9549 + }, + { + "start": 2391.06, + "end": 2393.68, + "probability": 0.8921 + }, + { + "start": 2394.67, + "end": 2398.17, + "probability": 0.8738 + }, + { + "start": 2398.24, + "end": 2399.48, + "probability": 0.5234 + }, + { + "start": 2399.68, + "end": 2400.96, + "probability": 0.7444 + }, + { + "start": 2401.1, + "end": 2403.62, + "probability": 0.8398 + }, + { + "start": 2404.02, + "end": 2406.52, + "probability": 0.9974 + }, + { + "start": 2406.66, + "end": 2407.28, + "probability": 0.9329 + }, + { + "start": 2407.86, + "end": 2409.02, + "probability": 0.9761 + }, + { + "start": 2409.42, + "end": 2409.66, + "probability": 0.8068 + }, + { + "start": 2409.8, + "end": 2410.18, + "probability": 0.6232 + }, + { + "start": 2410.28, + "end": 2411.8, + "probability": 0.5253 + }, + { + "start": 2412.42, + "end": 2412.95, + "probability": 0.8845 + }, + { + "start": 2414.26, + "end": 2417.62, + "probability": 0.5345 + }, + { + "start": 2418.02, + "end": 2418.86, + "probability": 0.7578 + }, + { + "start": 2418.92, + "end": 2419.42, + "probability": 0.9751 + }, + { + "start": 2419.72, + "end": 2420.46, + "probability": 0.4442 + }, + { + "start": 2420.57, + "end": 2422.48, + "probability": 0.9895 + }, + { + "start": 2422.92, + "end": 2424.52, + "probability": 0.9574 + }, + { + "start": 2425.18, + "end": 2426.88, + "probability": 0.9343 + }, + { + "start": 2427.38, + "end": 2430.48, + "probability": 0.5429 + }, + { + "start": 2431.62, + "end": 2434.68, + "probability": 0.9855 + }, + { + "start": 2434.82, + "end": 2435.88, + "probability": 0.6382 + }, + { + "start": 2436.34, + "end": 2438.22, + "probability": 0.9851 + }, + { + "start": 2438.32, + "end": 2438.82, + "probability": 0.7971 + }, + { + "start": 2439.32, + "end": 2439.82, + "probability": 0.5445 + }, + { + "start": 2439.92, + "end": 2440.92, + "probability": 0.7202 + }, + { + "start": 2441.5, + "end": 2445.76, + "probability": 0.8953 + }, + { + "start": 2446.42, + "end": 2449.9, + "probability": 0.9801 + }, + { + "start": 2450.26, + "end": 2452.5, + "probability": 0.9418 + }, + { + "start": 2453.14, + "end": 2455.38, + "probability": 0.9956 + }, + { + "start": 2456.02, + "end": 2457.66, + "probability": 0.9893 + }, + { + "start": 2457.94, + "end": 2458.48, + "probability": 0.6653 + }, + { + "start": 2458.58, + "end": 2460.85, + "probability": 0.7577 + }, + { + "start": 2461.2, + "end": 2462.7, + "probability": 0.8829 + }, + { + "start": 2463.1, + "end": 2464.49, + "probability": 0.9604 + }, + { + "start": 2464.58, + "end": 2464.94, + "probability": 0.4671 + }, + { + "start": 2465.0, + "end": 2467.78, + "probability": 0.9415 + }, + { + "start": 2467.98, + "end": 2470.22, + "probability": 0.8877 + }, + { + "start": 2470.46, + "end": 2474.58, + "probability": 0.9619 + }, + { + "start": 2474.64, + "end": 2477.6, + "probability": 0.9585 + }, + { + "start": 2477.7, + "end": 2478.76, + "probability": 0.6785 + }, + { + "start": 2478.96, + "end": 2480.52, + "probability": 0.6395 + }, + { + "start": 2480.62, + "end": 2481.92, + "probability": 0.9117 + }, + { + "start": 2482.26, + "end": 2487.6, + "probability": 0.9436 + }, + { + "start": 2487.92, + "end": 2488.68, + "probability": 0.852 + }, + { + "start": 2488.88, + "end": 2490.68, + "probability": 0.9056 + }, + { + "start": 2491.0, + "end": 2494.82, + "probability": 0.9756 + }, + { + "start": 2495.02, + "end": 2498.5, + "probability": 0.9894 + }, + { + "start": 2498.52, + "end": 2498.94, + "probability": 0.4351 + }, + { + "start": 2499.24, + "end": 2502.72, + "probability": 0.766 + }, + { + "start": 2502.78, + "end": 2504.18, + "probability": 0.6018 + }, + { + "start": 2504.36, + "end": 2507.14, + "probability": 0.9334 + }, + { + "start": 2508.32, + "end": 2511.28, + "probability": 0.6142 + }, + { + "start": 2511.96, + "end": 2512.34, + "probability": 0.338 + }, + { + "start": 2512.84, + "end": 2517.22, + "probability": 0.9729 + }, + { + "start": 2517.98, + "end": 2520.36, + "probability": 0.9082 + }, + { + "start": 2520.9, + "end": 2524.64, + "probability": 0.9906 + }, + { + "start": 2524.92, + "end": 2525.18, + "probability": 0.2598 + }, + { + "start": 2525.28, + "end": 2526.38, + "probability": 0.9294 + }, + { + "start": 2526.5, + "end": 2527.02, + "probability": 0.5487 + }, + { + "start": 2527.14, + "end": 2528.44, + "probability": 0.5465 + }, + { + "start": 2528.62, + "end": 2529.22, + "probability": 0.8428 + }, + { + "start": 2529.8, + "end": 2532.16, + "probability": 0.9491 + }, + { + "start": 2532.6, + "end": 2532.9, + "probability": 0.7391 + }, + { + "start": 2533.44, + "end": 2537.48, + "probability": 0.9622 + }, + { + "start": 2537.52, + "end": 2541.8, + "probability": 0.9899 + }, + { + "start": 2542.24, + "end": 2544.28, + "probability": 0.9989 + }, + { + "start": 2544.46, + "end": 2549.4, + "probability": 0.9804 + }, + { + "start": 2549.5, + "end": 2553.06, + "probability": 0.9901 + }, + { + "start": 2553.12, + "end": 2553.18, + "probability": 0.4829 + }, + { + "start": 2553.26, + "end": 2553.64, + "probability": 0.5846 + }, + { + "start": 2553.68, + "end": 2559.74, + "probability": 0.7436 + }, + { + "start": 2560.0, + "end": 2560.12, + "probability": 0.105 + }, + { + "start": 2560.32, + "end": 2561.8, + "probability": 0.8238 + }, + { + "start": 2561.88, + "end": 2563.58, + "probability": 0.987 + }, + { + "start": 2563.86, + "end": 2565.14, + "probability": 0.8854 + }, + { + "start": 2566.12, + "end": 2568.3, + "probability": 0.9127 + }, + { + "start": 2568.44, + "end": 2572.22, + "probability": 0.9693 + }, + { + "start": 2572.66, + "end": 2573.0, + "probability": 0.7475 + }, + { + "start": 2573.83, + "end": 2577.14, + "probability": 0.9807 + }, + { + "start": 2577.14, + "end": 2581.38, + "probability": 0.9893 + }, + { + "start": 2581.76, + "end": 2585.54, + "probability": 0.9937 + }, + { + "start": 2585.54, + "end": 2588.96, + "probability": 0.9914 + }, + { + "start": 2589.42, + "end": 2594.82, + "probability": 0.9539 + }, + { + "start": 2595.34, + "end": 2596.68, + "probability": 0.8973 + }, + { + "start": 2611.64, + "end": 2612.9, + "probability": 0.6288 + }, + { + "start": 2613.98, + "end": 2618.84, + "probability": 0.9341 + }, + { + "start": 2619.78, + "end": 2626.92, + "probability": 0.9476 + }, + { + "start": 2627.5, + "end": 2630.56, + "probability": 0.9521 + }, + { + "start": 2631.38, + "end": 2636.14, + "probability": 0.8021 + }, + { + "start": 2636.82, + "end": 2639.86, + "probability": 0.7689 + }, + { + "start": 2640.88, + "end": 2641.64, + "probability": 0.8892 + }, + { + "start": 2643.16, + "end": 2645.36, + "probability": 0.9576 + }, + { + "start": 2646.34, + "end": 2650.72, + "probability": 0.8245 + }, + { + "start": 2651.22, + "end": 2655.58, + "probability": 0.7715 + }, + { + "start": 2655.62, + "end": 2656.88, + "probability": 0.9595 + }, + { + "start": 2657.48, + "end": 2663.2, + "probability": 0.9348 + }, + { + "start": 2663.82, + "end": 2664.52, + "probability": 0.8808 + }, + { + "start": 2665.04, + "end": 2665.38, + "probability": 0.9309 + }, + { + "start": 2668.08, + "end": 2669.28, + "probability": 0.9893 + }, + { + "start": 2669.94, + "end": 2674.24, + "probability": 0.7212 + }, + { + "start": 2674.9, + "end": 2677.64, + "probability": 0.9211 + }, + { + "start": 2678.24, + "end": 2686.04, + "probability": 0.9928 + }, + { + "start": 2687.06, + "end": 2690.06, + "probability": 0.9979 + }, + { + "start": 2690.62, + "end": 2692.68, + "probability": 0.9946 + }, + { + "start": 2693.26, + "end": 2696.44, + "probability": 0.9277 + }, + { + "start": 2696.82, + "end": 2697.3, + "probability": 0.7498 + }, + { + "start": 2697.88, + "end": 2701.22, + "probability": 0.9722 + }, + { + "start": 2701.9, + "end": 2706.44, + "probability": 0.9874 + }, + { + "start": 2707.02, + "end": 2710.04, + "probability": 0.979 + }, + { + "start": 2710.58, + "end": 2722.9, + "probability": 0.9846 + }, + { + "start": 2724.2, + "end": 2724.93, + "probability": 0.5139 + }, + { + "start": 2726.0, + "end": 2731.34, + "probability": 0.8767 + }, + { + "start": 2732.0, + "end": 2740.14, + "probability": 0.9639 + }, + { + "start": 2740.8, + "end": 2741.34, + "probability": 0.5014 + }, + { + "start": 2741.98, + "end": 2742.7, + "probability": 0.8347 + }, + { + "start": 2742.7, + "end": 2743.68, + "probability": 0.9872 + }, + { + "start": 2743.68, + "end": 2746.64, + "probability": 0.9946 + }, + { + "start": 2747.58, + "end": 2747.86, + "probability": 0.9479 + }, + { + "start": 2750.0, + "end": 2754.62, + "probability": 0.8647 + }, + { + "start": 2755.42, + "end": 2760.58, + "probability": 0.9441 + }, + { + "start": 2761.56, + "end": 2770.75, + "probability": 0.9443 + }, + { + "start": 2771.8, + "end": 2779.12, + "probability": 0.9921 + }, + { + "start": 2780.2, + "end": 2783.48, + "probability": 0.7713 + }, + { + "start": 2784.28, + "end": 2787.68, + "probability": 0.9827 + }, + { + "start": 2787.76, + "end": 2788.82, + "probability": 0.8941 + }, + { + "start": 2789.8, + "end": 2791.3, + "probability": 0.7793 + }, + { + "start": 2792.18, + "end": 2794.02, + "probability": 0.9336 + }, + { + "start": 2794.76, + "end": 2796.3, + "probability": 0.929 + }, + { + "start": 2796.44, + "end": 2798.33, + "probability": 0.8238 + }, + { + "start": 2799.0, + "end": 2800.52, + "probability": 0.8202 + }, + { + "start": 2801.38, + "end": 2802.86, + "probability": 0.9966 + }, + { + "start": 2803.52, + "end": 2807.3, + "probability": 0.9756 + }, + { + "start": 2807.9, + "end": 2808.88, + "probability": 0.5162 + }, + { + "start": 2810.16, + "end": 2811.12, + "probability": 0.8248 + }, + { + "start": 2812.04, + "end": 2813.62, + "probability": 0.7935 + }, + { + "start": 2814.76, + "end": 2818.34, + "probability": 0.9548 + }, + { + "start": 2818.86, + "end": 2820.88, + "probability": 0.9286 + }, + { + "start": 2821.34, + "end": 2822.5, + "probability": 0.8435 + }, + { + "start": 2822.68, + "end": 2823.62, + "probability": 0.9727 + }, + { + "start": 2823.88, + "end": 2824.78, + "probability": 0.8823 + }, + { + "start": 2825.66, + "end": 2829.64, + "probability": 0.9271 + }, + { + "start": 2829.86, + "end": 2831.22, + "probability": 0.497 + }, + { + "start": 2832.38, + "end": 2833.54, + "probability": 0.4538 + }, + { + "start": 2833.58, + "end": 2837.72, + "probability": 0.8643 + }, + { + "start": 2838.46, + "end": 2840.96, + "probability": 0.9681 + }, + { + "start": 2841.44, + "end": 2843.28, + "probability": 0.7044 + }, + { + "start": 2843.84, + "end": 2845.32, + "probability": 0.9972 + }, + { + "start": 2845.84, + "end": 2850.06, + "probability": 0.9898 + }, + { + "start": 2850.44, + "end": 2850.64, + "probability": 0.7519 + }, + { + "start": 2851.06, + "end": 2852.94, + "probability": 0.8608 + }, + { + "start": 2853.7, + "end": 2857.18, + "probability": 0.8257 + }, + { + "start": 2857.56, + "end": 2858.5, + "probability": 0.7852 + }, + { + "start": 2858.68, + "end": 2860.86, + "probability": 0.6336 + }, + { + "start": 2861.34, + "end": 2863.14, + "probability": 0.9131 + }, + { + "start": 2863.7, + "end": 2871.04, + "probability": 0.8898 + }, + { + "start": 2871.24, + "end": 2874.48, + "probability": 0.8921 + }, + { + "start": 2875.92, + "end": 2876.2, + "probability": 0.7882 + }, + { + "start": 2876.3, + "end": 2879.1, + "probability": 0.9713 + }, + { + "start": 2879.76, + "end": 2880.08, + "probability": 0.4477 + }, + { + "start": 2880.1, + "end": 2880.74, + "probability": 0.7489 + }, + { + "start": 2881.14, + "end": 2884.4, + "probability": 0.9445 + }, + { + "start": 2884.54, + "end": 2887.0, + "probability": 0.8677 + }, + { + "start": 2887.58, + "end": 2889.12, + "probability": 0.5279 + }, + { + "start": 2889.42, + "end": 2891.19, + "probability": 0.9761 + }, + { + "start": 2891.4, + "end": 2892.94, + "probability": 0.5459 + }, + { + "start": 2893.34, + "end": 2894.9, + "probability": 0.994 + }, + { + "start": 2895.32, + "end": 2896.0, + "probability": 0.5054 + }, + { + "start": 2896.0, + "end": 2896.54, + "probability": 0.3029 + }, + { + "start": 2896.58, + "end": 2897.04, + "probability": 0.6576 + }, + { + "start": 2897.04, + "end": 2897.52, + "probability": 0.7705 + }, + { + "start": 2897.62, + "end": 2898.38, + "probability": 0.6051 + }, + { + "start": 2916.42, + "end": 2919.96, + "probability": 0.0251 + }, + { + "start": 2921.06, + "end": 2923.66, + "probability": 0.2235 + }, + { + "start": 2926.5, + "end": 2928.82, + "probability": 0.0392 + }, + { + "start": 2929.18, + "end": 2935.24, + "probability": 0.2098 + }, + { + "start": 2935.9, + "end": 2937.88, + "probability": 0.0788 + }, + { + "start": 2939.64, + "end": 2943.5, + "probability": 0.1037 + }, + { + "start": 2943.8, + "end": 2946.34, + "probability": 0.0787 + }, + { + "start": 2946.34, + "end": 2949.35, + "probability": 0.0708 + }, + { + "start": 2951.98, + "end": 2952.44, + "probability": 0.1806 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.0, + "end": 2999.0, + "probability": 0.0 + }, + { + "start": 2999.5, + "end": 2999.96, + "probability": 0.0485 + }, + { + "start": 2999.96, + "end": 3001.96, + "probability": 0.1286 + }, + { + "start": 3002.0, + "end": 3003.44, + "probability": 0.9435 + }, + { + "start": 3004.36, + "end": 3005.06, + "probability": 0.8896 + }, + { + "start": 3005.28, + "end": 3007.68, + "probability": 0.9165 + }, + { + "start": 3008.38, + "end": 3012.54, + "probability": 0.9681 + }, + { + "start": 3012.62, + "end": 3015.64, + "probability": 0.9606 + }, + { + "start": 3016.4, + "end": 3018.34, + "probability": 0.9814 + }, + { + "start": 3018.74, + "end": 3020.32, + "probability": 0.5336 + }, + { + "start": 3020.36, + "end": 3020.92, + "probability": 0.7147 + }, + { + "start": 3020.94, + "end": 3021.4, + "probability": 0.743 + }, + { + "start": 3021.94, + "end": 3022.56, + "probability": 0.6818 + }, + { + "start": 3033.44, + "end": 3035.22, + "probability": 0.392 + }, + { + "start": 3049.02, + "end": 3051.92, + "probability": 0.1917 + }, + { + "start": 3051.92, + "end": 3054.08, + "probability": 0.1736 + }, + { + "start": 3054.5, + "end": 3058.44, + "probability": 0.0438 + }, + { + "start": 3059.02, + "end": 3060.12, + "probability": 0.495 + }, + { + "start": 3062.96, + "end": 3066.41, + "probability": 0.6664 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.0, + "end": 3121.0, + "probability": 0.0 + }, + { + "start": 3121.34, + "end": 3121.34, + "probability": 0.1199 + }, + { + "start": 3121.34, + "end": 3121.8, + "probability": 0.5938 + }, + { + "start": 3121.8, + "end": 3124.86, + "probability": 0.9921 + }, + { + "start": 3124.98, + "end": 3126.68, + "probability": 0.9691 + }, + { + "start": 3127.34, + "end": 3128.72, + "probability": 0.518 + }, + { + "start": 3129.06, + "end": 3131.82, + "probability": 0.7484 + }, + { + "start": 3132.0, + "end": 3132.3, + "probability": 0.5199 + }, + { + "start": 3132.3, + "end": 3135.96, + "probability": 0.8931 + }, + { + "start": 3135.96, + "end": 3139.17, + "probability": 0.9826 + }, + { + "start": 3139.96, + "end": 3143.06, + "probability": 0.9844 + }, + { + "start": 3143.94, + "end": 3144.86, + "probability": 0.7355 + }, + { + "start": 3145.26, + "end": 3149.98, + "probability": 0.972 + }, + { + "start": 3150.38, + "end": 3150.94, + "probability": 0.9358 + }, + { + "start": 3151.44, + "end": 3152.8, + "probability": 0.8769 + }, + { + "start": 3153.62, + "end": 3154.4, + "probability": 0.9712 + }, + { + "start": 3154.5, + "end": 3155.92, + "probability": 0.9717 + }, + { + "start": 3156.28, + "end": 3158.28, + "probability": 0.5256 + }, + { + "start": 3158.34, + "end": 3159.0, + "probability": 0.963 + }, + { + "start": 3159.8, + "end": 3164.22, + "probability": 0.9474 + }, + { + "start": 3165.42, + "end": 3172.3, + "probability": 0.8006 + }, + { + "start": 3172.3, + "end": 3177.96, + "probability": 0.9991 + }, + { + "start": 3179.6, + "end": 3183.88, + "probability": 0.9981 + }, + { + "start": 3183.88, + "end": 3186.56, + "probability": 0.9993 + }, + { + "start": 3188.48, + "end": 3192.48, + "probability": 0.8914 + }, + { + "start": 3193.52, + "end": 3197.46, + "probability": 0.9971 + }, + { + "start": 3197.48, + "end": 3203.7, + "probability": 0.9967 + }, + { + "start": 3206.36, + "end": 3212.18, + "probability": 0.9984 + }, + { + "start": 3213.14, + "end": 3217.78, + "probability": 0.9975 + }, + { + "start": 3217.92, + "end": 3219.14, + "probability": 0.9737 + }, + { + "start": 3220.46, + "end": 3224.28, + "probability": 0.9872 + }, + { + "start": 3224.28, + "end": 3228.5, + "probability": 0.9863 + }, + { + "start": 3228.66, + "end": 3234.68, + "probability": 0.9722 + }, + { + "start": 3234.68, + "end": 3240.62, + "probability": 0.9979 + }, + { + "start": 3242.52, + "end": 3243.02, + "probability": 0.7284 + }, + { + "start": 3244.0, + "end": 3246.18, + "probability": 0.7733 + }, + { + "start": 3246.44, + "end": 3247.5, + "probability": 0.9574 + }, + { + "start": 3248.36, + "end": 3251.88, + "probability": 0.9684 + }, + { + "start": 3252.78, + "end": 3254.42, + "probability": 0.6406 + }, + { + "start": 3256.45, + "end": 3262.66, + "probability": 0.9862 + }, + { + "start": 3263.58, + "end": 3264.3, + "probability": 0.9619 + }, + { + "start": 3264.42, + "end": 3267.84, + "probability": 0.9934 + }, + { + "start": 3267.84, + "end": 3271.22, + "probability": 0.868 + }, + { + "start": 3272.16, + "end": 3275.22, + "probability": 0.9899 + }, + { + "start": 3276.14, + "end": 3281.18, + "probability": 0.9934 + }, + { + "start": 3281.5, + "end": 3283.56, + "probability": 0.9987 + }, + { + "start": 3284.26, + "end": 3290.06, + "probability": 0.989 + }, + { + "start": 3290.32, + "end": 3291.56, + "probability": 0.3787 + }, + { + "start": 3292.48, + "end": 3297.88, + "probability": 0.9432 + }, + { + "start": 3298.06, + "end": 3299.1, + "probability": 0.9116 + }, + { + "start": 3300.94, + "end": 3301.56, + "probability": 0.8513 + }, + { + "start": 3301.62, + "end": 3302.26, + "probability": 0.7815 + }, + { + "start": 3302.4, + "end": 3306.02, + "probability": 0.8792 + }, + { + "start": 3306.1, + "end": 3306.58, + "probability": 0.5413 + }, + { + "start": 3308.14, + "end": 3309.6, + "probability": 0.6634 + }, + { + "start": 3309.94, + "end": 3311.66, + "probability": 0.8831 + }, + { + "start": 3311.84, + "end": 3318.56, + "probability": 0.9868 + }, + { + "start": 3320.1, + "end": 3320.58, + "probability": 0.8659 + }, + { + "start": 3320.62, + "end": 3321.23, + "probability": 0.5864 + }, + { + "start": 3321.5, + "end": 3326.18, + "probability": 0.9872 + }, + { + "start": 3327.16, + "end": 3328.2, + "probability": 0.597 + }, + { + "start": 3328.36, + "end": 3334.4, + "probability": 0.9033 + }, + { + "start": 3334.58, + "end": 3338.14, + "probability": 0.9971 + }, + { + "start": 3338.22, + "end": 3339.59, + "probability": 0.7877 + }, + { + "start": 3340.7, + "end": 3342.2, + "probability": 0.5875 + }, + { + "start": 3342.76, + "end": 3346.84, + "probability": 0.9875 + }, + { + "start": 3347.08, + "end": 3348.0, + "probability": 0.8917 + }, + { + "start": 3348.52, + "end": 3349.2, + "probability": 0.6875 + }, + { + "start": 3350.9, + "end": 3352.6, + "probability": 0.4066 + }, + { + "start": 3352.66, + "end": 3354.55, + "probability": 0.723 + }, + { + "start": 3356.41, + "end": 3358.05, + "probability": 0.5748 + }, + { + "start": 3358.68, + "end": 3360.58, + "probability": 0.5729 + }, + { + "start": 3360.98, + "end": 3365.07, + "probability": 0.9453 + }, + { + "start": 3366.86, + "end": 3368.58, + "probability": 0.8062 + }, + { + "start": 3368.72, + "end": 3368.82, + "probability": 0.0421 + }, + { + "start": 3368.82, + "end": 3372.34, + "probability": 0.4771 + }, + { + "start": 3379.74, + "end": 3379.74, + "probability": 0.2534 + }, + { + "start": 3379.74, + "end": 3379.74, + "probability": 0.0457 + }, + { + "start": 3379.74, + "end": 3379.74, + "probability": 0.0315 + }, + { + "start": 3379.74, + "end": 3380.04, + "probability": 0.8256 + }, + { + "start": 3380.96, + "end": 3383.42, + "probability": 0.5872 + }, + { + "start": 3384.92, + "end": 3385.18, + "probability": 0.3325 + }, + { + "start": 3385.34, + "end": 3386.26, + "probability": 0.6412 + }, + { + "start": 3386.6, + "end": 3390.26, + "probability": 0.6453 + }, + { + "start": 3390.46, + "end": 3393.68, + "probability": 0.9521 + }, + { + "start": 3393.76, + "end": 3399.12, + "probability": 0.9819 + }, + { + "start": 3399.86, + "end": 3402.08, + "probability": 0.9528 + }, + { + "start": 3402.88, + "end": 3406.7, + "probability": 0.7778 + }, + { + "start": 3406.78, + "end": 3408.64, + "probability": 0.9521 + }, + { + "start": 3408.74, + "end": 3409.94, + "probability": 0.9264 + }, + { + "start": 3410.56, + "end": 3415.32, + "probability": 0.8022 + }, + { + "start": 3416.44, + "end": 3421.66, + "probability": 0.9922 + }, + { + "start": 3422.24, + "end": 3424.94, + "probability": 0.9829 + }, + { + "start": 3425.1, + "end": 3426.88, + "probability": 0.9615 + }, + { + "start": 3427.54, + "end": 3429.44, + "probability": 0.9875 + }, + { + "start": 3429.94, + "end": 3434.82, + "probability": 0.993 + }, + { + "start": 3435.16, + "end": 3439.62, + "probability": 0.998 + }, + { + "start": 3439.86, + "end": 3440.04, + "probability": 0.687 + }, + { + "start": 3441.28, + "end": 3443.26, + "probability": 0.8286 + }, + { + "start": 3444.0, + "end": 3445.22, + "probability": 0.9736 + }, + { + "start": 3445.32, + "end": 3450.12, + "probability": 0.891 + }, + { + "start": 3450.24, + "end": 3450.76, + "probability": 0.5555 + }, + { + "start": 3450.96, + "end": 3454.6, + "probability": 0.5682 + }, + { + "start": 3457.78, + "end": 3460.84, + "probability": 0.8809 + }, + { + "start": 3460.98, + "end": 3461.66, + "probability": 0.8543 + }, + { + "start": 3462.5, + "end": 3464.02, + "probability": 0.4979 + }, + { + "start": 3464.58, + "end": 3467.04, + "probability": 0.8742 + }, + { + "start": 3467.04, + "end": 3469.68, + "probability": 0.9954 + }, + { + "start": 3470.68, + "end": 3476.14, + "probability": 0.9971 + }, + { + "start": 3477.32, + "end": 3478.22, + "probability": 0.8981 + }, + { + "start": 3478.34, + "end": 3479.58, + "probability": 0.8054 + }, + { + "start": 3479.82, + "end": 3484.82, + "probability": 0.922 + }, + { + "start": 3484.92, + "end": 3486.28, + "probability": 0.9269 + }, + { + "start": 3487.16, + "end": 3491.2, + "probability": 0.7979 + }, + { + "start": 3492.7, + "end": 3496.16, + "probability": 0.9918 + }, + { + "start": 3496.4, + "end": 3499.26, + "probability": 0.851 + }, + { + "start": 3499.98, + "end": 3501.9, + "probability": 0.9262 + }, + { + "start": 3501.96, + "end": 3504.78, + "probability": 0.9817 + }, + { + "start": 3504.9, + "end": 3507.92, + "probability": 0.9365 + }, + { + "start": 3508.56, + "end": 3510.56, + "probability": 0.986 + }, + { + "start": 3511.12, + "end": 3516.94, + "probability": 0.9813 + }, + { + "start": 3517.98, + "end": 3519.24, + "probability": 0.9077 + }, + { + "start": 3519.5, + "end": 3520.84, + "probability": 0.9674 + }, + { + "start": 3521.26, + "end": 3522.16, + "probability": 0.7911 + }, + { + "start": 3522.38, + "end": 3522.79, + "probability": 0.534 + }, + { + "start": 3523.48, + "end": 3525.12, + "probability": 0.9069 + }, + { + "start": 3526.1, + "end": 3529.56, + "probability": 0.9875 + }, + { + "start": 3529.56, + "end": 3532.6, + "probability": 0.9634 + }, + { + "start": 3533.16, + "end": 3536.18, + "probability": 0.944 + }, + { + "start": 3536.18, + "end": 3539.2, + "probability": 0.9826 + }, + { + "start": 3539.34, + "end": 3541.7, + "probability": 0.9961 + }, + { + "start": 3542.7, + "end": 3543.1, + "probability": 0.2985 + }, + { + "start": 3543.14, + "end": 3546.44, + "probability": 0.9036 + }, + { + "start": 3546.58, + "end": 3547.66, + "probability": 0.5146 + }, + { + "start": 3547.98, + "end": 3550.02, + "probability": 0.9835 + }, + { + "start": 3550.22, + "end": 3553.1, + "probability": 0.9514 + }, + { + "start": 3553.1, + "end": 3557.96, + "probability": 0.9984 + }, + { + "start": 3558.46, + "end": 3563.4, + "probability": 0.9977 + }, + { + "start": 3563.9, + "end": 3571.78, + "probability": 0.9913 + }, + { + "start": 3571.86, + "end": 3577.38, + "probability": 0.9982 + }, + { + "start": 3577.54, + "end": 3581.04, + "probability": 0.9965 + }, + { + "start": 3581.2, + "end": 3584.94, + "probability": 0.9982 + }, + { + "start": 3585.56, + "end": 3585.7, + "probability": 0.9448 + }, + { + "start": 3586.26, + "end": 3586.84, + "probability": 0.5488 + }, + { + "start": 3587.24, + "end": 3589.32, + "probability": 0.9847 + }, + { + "start": 3589.56, + "end": 3590.04, + "probability": 0.5834 + }, + { + "start": 3590.06, + "end": 3590.78, + "probability": 0.7313 + }, + { + "start": 3591.5, + "end": 3594.43, + "probability": 0.5955 + }, + { + "start": 3595.6, + "end": 3600.82, + "probability": 0.8728 + }, + { + "start": 3600.82, + "end": 3602.76, + "probability": 0.6591 + }, + { + "start": 3604.46, + "end": 3608.72, + "probability": 0.8658 + }, + { + "start": 3610.1, + "end": 3612.16, + "probability": 0.9961 + }, + { + "start": 3617.44, + "end": 3619.6, + "probability": 0.6452 + }, + { + "start": 3620.98, + "end": 3621.7, + "probability": 0.8372 + }, + { + "start": 3622.62, + "end": 3624.66, + "probability": 0.9818 + }, + { + "start": 3624.78, + "end": 3631.35, + "probability": 0.9418 + }, + { + "start": 3632.1, + "end": 3635.2, + "probability": 0.9846 + }, + { + "start": 3635.82, + "end": 3638.62, + "probability": 0.9945 + }, + { + "start": 3639.58, + "end": 3642.42, + "probability": 0.7452 + }, + { + "start": 3642.44, + "end": 3646.22, + "probability": 0.9956 + }, + { + "start": 3647.5, + "end": 3652.08, + "probability": 0.9463 + }, + { + "start": 3652.88, + "end": 3657.4, + "probability": 0.9915 + }, + { + "start": 3658.22, + "end": 3665.54, + "probability": 0.9915 + }, + { + "start": 3666.58, + "end": 3666.78, + "probability": 0.2006 + }, + { + "start": 3667.92, + "end": 3670.76, + "probability": 0.9653 + }, + { + "start": 3671.66, + "end": 3672.84, + "probability": 0.7229 + }, + { + "start": 3673.0, + "end": 3677.44, + "probability": 0.8986 + }, + { + "start": 3677.44, + "end": 3682.64, + "probability": 0.9971 + }, + { + "start": 3683.56, + "end": 3687.0, + "probability": 0.936 + }, + { + "start": 3687.0, + "end": 3691.28, + "probability": 0.9898 + }, + { + "start": 3692.18, + "end": 3692.32, + "probability": 0.0576 + }, + { + "start": 3693.22, + "end": 3696.76, + "probability": 0.9969 + }, + { + "start": 3697.38, + "end": 3700.78, + "probability": 0.9928 + }, + { + "start": 3700.78, + "end": 3704.43, + "probability": 0.9995 + }, + { + "start": 3705.16, + "end": 3705.32, + "probability": 0.4318 + }, + { + "start": 3706.06, + "end": 3709.66, + "probability": 0.9851 + }, + { + "start": 3710.4, + "end": 3712.86, + "probability": 0.7364 + }, + { + "start": 3713.42, + "end": 3716.66, + "probability": 0.9566 + }, + { + "start": 3717.48, + "end": 3717.66, + "probability": 0.4164 + }, + { + "start": 3717.9, + "end": 3720.52, + "probability": 0.9849 + }, + { + "start": 3720.52, + "end": 3724.12, + "probability": 0.969 + }, + { + "start": 3724.7, + "end": 3725.44, + "probability": 0.9902 + }, + { + "start": 3727.24, + "end": 3728.5, + "probability": 0.4532 + }, + { + "start": 3728.62, + "end": 3731.66, + "probability": 0.9717 + }, + { + "start": 3732.38, + "end": 3733.52, + "probability": 0.6129 + }, + { + "start": 3733.8, + "end": 3735.6, + "probability": 0.7156 + }, + { + "start": 3737.51, + "end": 3739.52, + "probability": 0.9854 + }, + { + "start": 3740.14, + "end": 3742.6, + "probability": 0.757 + }, + { + "start": 3749.58, + "end": 3750.12, + "probability": 0.3505 + }, + { + "start": 3750.16, + "end": 3750.86, + "probability": 0.8394 + }, + { + "start": 3751.02, + "end": 3753.64, + "probability": 0.7094 + }, + { + "start": 3753.98, + "end": 3755.02, + "probability": 0.9127 + }, + { + "start": 3755.08, + "end": 3756.22, + "probability": 0.9647 + }, + { + "start": 3757.34, + "end": 3758.96, + "probability": 0.9244 + }, + { + "start": 3760.02, + "end": 3762.04, + "probability": 0.9822 + }, + { + "start": 3762.04, + "end": 3764.47, + "probability": 0.8659 + }, + { + "start": 3765.08, + "end": 3765.34, + "probability": 0.8673 + }, + { + "start": 3765.4, + "end": 3766.1, + "probability": 0.7386 + }, + { + "start": 3766.16, + "end": 3766.73, + "probability": 0.5944 + }, + { + "start": 3766.84, + "end": 3769.4, + "probability": 0.9421 + }, + { + "start": 3769.8, + "end": 3771.83, + "probability": 0.7362 + }, + { + "start": 3772.42, + "end": 3773.58, + "probability": 0.6817 + }, + { + "start": 3773.7, + "end": 3778.08, + "probability": 0.987 + }, + { + "start": 3779.06, + "end": 3779.79, + "probability": 0.7676 + }, + { + "start": 3780.66, + "end": 3781.92, + "probability": 0.9909 + }, + { + "start": 3782.18, + "end": 3783.04, + "probability": 0.9133 + }, + { + "start": 3783.62, + "end": 3784.35, + "probability": 0.4634 + }, + { + "start": 3784.88, + "end": 3788.44, + "probability": 0.9116 + }, + { + "start": 3789.24, + "end": 3790.06, + "probability": 0.8035 + }, + { + "start": 3790.18, + "end": 3790.44, + "probability": 0.9387 + }, + { + "start": 3790.54, + "end": 3791.36, + "probability": 0.9537 + }, + { + "start": 3791.38, + "end": 3791.88, + "probability": 0.4741 + }, + { + "start": 3791.94, + "end": 3793.8, + "probability": 0.9475 + }, + { + "start": 3795.34, + "end": 3796.26, + "probability": 0.6336 + }, + { + "start": 3796.28, + "end": 3797.56, + "probability": 0.4688 + }, + { + "start": 3797.72, + "end": 3798.62, + "probability": 0.8951 + }, + { + "start": 3798.92, + "end": 3801.4, + "probability": 0.9522 + }, + { + "start": 3802.16, + "end": 3807.6, + "probability": 0.949 + }, + { + "start": 3808.58, + "end": 3812.22, + "probability": 0.9806 + }, + { + "start": 3812.22, + "end": 3816.34, + "probability": 0.9968 + }, + { + "start": 3817.02, + "end": 3818.18, + "probability": 0.7948 + }, + { + "start": 3818.8, + "end": 3820.18, + "probability": 0.4422 + }, + { + "start": 3820.62, + "end": 3822.78, + "probability": 0.8912 + }, + { + "start": 3823.36, + "end": 3824.04, + "probability": 0.7492 + }, + { + "start": 3824.54, + "end": 3825.22, + "probability": 0.6677 + }, + { + "start": 3825.68, + "end": 3828.22, + "probability": 0.9639 + }, + { + "start": 3828.84, + "end": 3831.98, + "probability": 0.9531 + }, + { + "start": 3832.4, + "end": 3834.64, + "probability": 0.8183 + }, + { + "start": 3835.08, + "end": 3835.7, + "probability": 0.8546 + }, + { + "start": 3836.24, + "end": 3838.2, + "probability": 0.9951 + }, + { + "start": 3839.2, + "end": 3841.62, + "probability": 0.9399 + }, + { + "start": 3841.74, + "end": 3842.72, + "probability": 0.7989 + }, + { + "start": 3843.16, + "end": 3844.96, + "probability": 0.9813 + }, + { + "start": 3844.96, + "end": 3848.08, + "probability": 0.9805 + }, + { + "start": 3848.92, + "end": 3850.62, + "probability": 0.7772 + }, + { + "start": 3851.38, + "end": 3854.46, + "probability": 0.762 + }, + { + "start": 3855.24, + "end": 3856.62, + "probability": 0.7102 + }, + { + "start": 3856.66, + "end": 3859.2, + "probability": 0.9134 + }, + { + "start": 3859.86, + "end": 3862.14, + "probability": 0.6184 + }, + { + "start": 3862.78, + "end": 3865.12, + "probability": 0.9006 + }, + { + "start": 3865.34, + "end": 3866.31, + "probability": 0.7094 + }, + { + "start": 3866.98, + "end": 3871.08, + "probability": 0.8646 + }, + { + "start": 3871.54, + "end": 3873.02, + "probability": 0.8789 + }, + { + "start": 3873.68, + "end": 3875.62, + "probability": 0.8496 + }, + { + "start": 3875.76, + "end": 3876.8, + "probability": 0.986 + }, + { + "start": 3877.44, + "end": 3878.22, + "probability": 0.8734 + }, + { + "start": 3878.78, + "end": 3879.26, + "probability": 0.6524 + }, + { + "start": 3879.8, + "end": 3881.26, + "probability": 0.9879 + }, + { + "start": 3881.86, + "end": 3882.68, + "probability": 0.9878 + }, + { + "start": 3883.4, + "end": 3884.29, + "probability": 0.9327 + }, + { + "start": 3884.68, + "end": 3886.98, + "probability": 0.9656 + }, + { + "start": 3887.16, + "end": 3889.92, + "probability": 0.998 + }, + { + "start": 3890.26, + "end": 3891.1, + "probability": 0.9299 + }, + { + "start": 3891.68, + "end": 3894.74, + "probability": 0.8105 + }, + { + "start": 3897.2, + "end": 3897.9, + "probability": 0.6823 + }, + { + "start": 3898.24, + "end": 3902.08, + "probability": 0.9855 + }, + { + "start": 3906.64, + "end": 3907.86, + "probability": 0.7969 + }, + { + "start": 3908.3, + "end": 3909.52, + "probability": 0.7449 + }, + { + "start": 3911.18, + "end": 3914.14, + "probability": 0.7384 + }, + { + "start": 3914.99, + "end": 3917.48, + "probability": 0.6849 + }, + { + "start": 3919.24, + "end": 3920.78, + "probability": 0.2964 + }, + { + "start": 3922.68, + "end": 3924.0, + "probability": 0.4604 + }, + { + "start": 3924.3, + "end": 3925.18, + "probability": 0.9274 + }, + { + "start": 3925.26, + "end": 3925.44, + "probability": 0.5576 + }, + { + "start": 3925.54, + "end": 3926.42, + "probability": 0.8986 + }, + { + "start": 3926.9, + "end": 3930.18, + "probability": 0.9811 + }, + { + "start": 3930.7, + "end": 3934.82, + "probability": 0.9316 + }, + { + "start": 3934.98, + "end": 3935.08, + "probability": 0.0423 + }, + { + "start": 3938.72, + "end": 3938.84, + "probability": 0.4326 + }, + { + "start": 3938.94, + "end": 3939.54, + "probability": 0.3647 + }, + { + "start": 3939.66, + "end": 3941.86, + "probability": 0.9636 + }, + { + "start": 3941.94, + "end": 3944.62, + "probability": 0.9545 + }, + { + "start": 3944.74, + "end": 3945.86, + "probability": 0.8042 + }, + { + "start": 3946.0, + "end": 3946.46, + "probability": 0.8577 + }, + { + "start": 3946.8, + "end": 3951.98, + "probability": 0.9849 + }, + { + "start": 3952.24, + "end": 3955.3, + "probability": 0.9992 + }, + { + "start": 3955.6, + "end": 3958.4, + "probability": 0.9618 + }, + { + "start": 3959.1, + "end": 3962.14, + "probability": 0.998 + }, + { + "start": 3962.68, + "end": 3963.52, + "probability": 0.4498 + }, + { + "start": 3963.84, + "end": 3966.6, + "probability": 0.9937 + }, + { + "start": 3966.76, + "end": 3969.62, + "probability": 0.9985 + }, + { + "start": 3969.64, + "end": 3970.4, + "probability": 0.6349 + }, + { + "start": 3970.48, + "end": 3974.15, + "probability": 0.998 + }, + { + "start": 3974.42, + "end": 3975.0, + "probability": 0.9232 + }, + { + "start": 3975.14, + "end": 3976.04, + "probability": 0.9316 + }, + { + "start": 3976.04, + "end": 3976.2, + "probability": 0.7391 + }, + { + "start": 3976.38, + "end": 3976.38, + "probability": 0.5565 + }, + { + "start": 3976.92, + "end": 3977.54, + "probability": 0.6314 + }, + { + "start": 3980.64, + "end": 3980.64, + "probability": 0.1308 + }, + { + "start": 3980.64, + "end": 3985.06, + "probability": 0.9846 + }, + { + "start": 3985.2, + "end": 3987.42, + "probability": 0.9755 + }, + { + "start": 3988.68, + "end": 3990.06, + "probability": 0.7773 + }, + { + "start": 3990.74, + "end": 3993.12, + "probability": 0.9702 + }, + { + "start": 3993.68, + "end": 3995.88, + "probability": 0.9516 + }, + { + "start": 3996.96, + "end": 3998.62, + "probability": 0.7999 + }, + { + "start": 3999.3, + "end": 3999.98, + "probability": 0.7939 + }, + { + "start": 4000.46, + "end": 4003.9, + "probability": 0.9749 + }, + { + "start": 4004.0, + "end": 4004.62, + "probability": 0.9004 + }, + { + "start": 4004.8, + "end": 4008.22, + "probability": 0.8403 + }, + { + "start": 4008.3, + "end": 4008.32, + "probability": 0.0151 + }, + { + "start": 4008.42, + "end": 4008.6, + "probability": 0.806 + }, + { + "start": 4008.66, + "end": 4010.9, + "probability": 0.9634 + }, + { + "start": 4011.04, + "end": 4014.28, + "probability": 0.9891 + }, + { + "start": 4014.54, + "end": 4015.72, + "probability": 0.9214 + }, + { + "start": 4015.78, + "end": 4017.76, + "probability": 0.9771 + }, + { + "start": 4018.0, + "end": 4018.34, + "probability": 0.7707 + }, + { + "start": 4018.91, + "end": 4022.14, + "probability": 0.4016 + }, + { + "start": 4022.14, + "end": 4022.14, + "probability": 0.0302 + }, + { + "start": 4022.14, + "end": 4024.22, + "probability": 0.9911 + }, + { + "start": 4025.06, + "end": 4028.74, + "probability": 0.8907 + }, + { + "start": 4029.3, + "end": 4030.64, + "probability": 0.8262 + }, + { + "start": 4030.74, + "end": 4032.54, + "probability": 0.8905 + }, + { + "start": 4032.82, + "end": 4037.1, + "probability": 0.9576 + }, + { + "start": 4037.34, + "end": 4038.24, + "probability": 0.2729 + }, + { + "start": 4038.84, + "end": 4041.64, + "probability": 0.9345 + }, + { + "start": 4042.12, + "end": 4044.0, + "probability": 0.6771 + }, + { + "start": 4045.74, + "end": 4047.98, + "probability": 0.7053 + }, + { + "start": 4047.98, + "end": 4051.02, + "probability": 0.7257 + }, + { + "start": 4051.26, + "end": 4051.34, + "probability": 0.0449 + }, + { + "start": 4051.34, + "end": 4053.1, + "probability": 0.8747 + }, + { + "start": 4053.34, + "end": 4054.06, + "probability": 0.55 + }, + { + "start": 4054.06, + "end": 4054.56, + "probability": 0.3878 + }, + { + "start": 4054.6, + "end": 4055.04, + "probability": 0.6255 + }, + { + "start": 4055.06, + "end": 4055.92, + "probability": 0.7793 + }, + { + "start": 4073.76, + "end": 4076.24, + "probability": 0.031 + }, + { + "start": 4076.24, + "end": 4078.86, + "probability": 0.0825 + }, + { + "start": 4080.88, + "end": 4081.48, + "probability": 0.0888 + }, + { + "start": 4082.88, + "end": 4085.4, + "probability": 0.1225 + }, + { + "start": 4087.6, + "end": 4087.86, + "probability": 0.0213 + }, + { + "start": 4088.74, + "end": 4090.66, + "probability": 0.019 + }, + { + "start": 4090.72, + "end": 4095.98, + "probability": 0.0591 + }, + { + "start": 4096.24, + "end": 4098.2, + "probability": 0.0813 + }, + { + "start": 4099.22, + "end": 4101.2, + "probability": 0.2621 + }, + { + "start": 4102.2, + "end": 4104.88, + "probability": 0.0954 + }, + { + "start": 4104.88, + "end": 4104.88, + "probability": 0.1176 + }, + { + "start": 4104.88, + "end": 4105.74, + "probability": 0.217 + }, + { + "start": 4106.08, + "end": 4107.48, + "probability": 0.0883 + }, + { + "start": 4108.42, + "end": 4108.78, + "probability": 0.3708 + }, + { + "start": 4108.84, + "end": 4109.36, + "probability": 0.316 + }, + { + "start": 4110.4, + "end": 4110.68, + "probability": 0.0857 + }, + { + "start": 4110.68, + "end": 4110.68, + "probability": 0.0853 + }, + { + "start": 4110.68, + "end": 4114.1, + "probability": 0.863 + }, + { + "start": 4114.44, + "end": 4117.88, + "probability": 0.9532 + }, + { + "start": 4118.6, + "end": 4119.86, + "probability": 0.9194 + }, + { + "start": 4120.22, + "end": 4125.34, + "probability": 0.9843 + }, + { + "start": 4125.62, + "end": 4126.42, + "probability": 0.5706 + }, + { + "start": 4126.58, + "end": 4126.88, + "probability": 0.7827 + }, + { + "start": 4139.48, + "end": 4144.48, + "probability": 0.4285 + }, + { + "start": 4145.08, + "end": 4148.66, + "probability": 0.9736 + }, + { + "start": 4149.36, + "end": 4150.12, + "probability": 0.5327 + }, + { + "start": 4150.36, + "end": 4154.32, + "probability": 0.717 + }, + { + "start": 4155.42, + "end": 4158.79, + "probability": 0.9954 + }, + { + "start": 4160.42, + "end": 4161.92, + "probability": 0.9035 + }, + { + "start": 4162.26, + "end": 4163.48, + "probability": 0.4184 + }, + { + "start": 4163.58, + "end": 4164.06, + "probability": 0.6801 + }, + { + "start": 4164.38, + "end": 4165.06, + "probability": 0.6479 + }, + { + "start": 4165.1, + "end": 4169.9, + "probability": 0.8148 + }, + { + "start": 4170.36, + "end": 4173.22, + "probability": 0.6252 + }, + { + "start": 4183.02, + "end": 4183.44, + "probability": 0.0201 + }, + { + "start": 4184.14, + "end": 4188.42, + "probability": 0.7968 + }, + { + "start": 4188.44, + "end": 4192.52, + "probability": 0.7944 + }, + { + "start": 4195.66, + "end": 4196.36, + "probability": 0.7917 + }, + { + "start": 4204.26, + "end": 4208.76, + "probability": 0.7359 + }, + { + "start": 4209.3, + "end": 4211.1, + "probability": 0.8223 + }, + { + "start": 4212.22, + "end": 4213.3, + "probability": 0.779 + }, + { + "start": 4214.02, + "end": 4214.92, + "probability": 0.9371 + }, + { + "start": 4215.66, + "end": 4216.66, + "probability": 0.9616 + }, + { + "start": 4217.36, + "end": 4217.94, + "probability": 0.8016 + }, + { + "start": 4219.92, + "end": 4220.9, + "probability": 0.8696 + }, + { + "start": 4222.44, + "end": 4223.4, + "probability": 0.7411 + }, + { + "start": 4224.04, + "end": 4226.4, + "probability": 0.7976 + }, + { + "start": 4227.08, + "end": 4228.66, + "probability": 0.9444 + }, + { + "start": 4230.08, + "end": 4232.72, + "probability": 0.8958 + }, + { + "start": 4233.94, + "end": 4236.12, + "probability": 0.9858 + }, + { + "start": 4237.74, + "end": 4239.56, + "probability": 0.8198 + }, + { + "start": 4240.56, + "end": 4243.2, + "probability": 0.9866 + }, + { + "start": 4243.32, + "end": 4243.76, + "probability": 0.4655 + }, + { + "start": 4243.82, + "end": 4244.42, + "probability": 0.9269 + }, + { + "start": 4244.58, + "end": 4245.32, + "probability": 0.6645 + }, + { + "start": 4245.92, + "end": 4246.74, + "probability": 0.9577 + }, + { + "start": 4248.42, + "end": 4250.86, + "probability": 0.9001 + }, + { + "start": 4252.58, + "end": 4255.2, + "probability": 0.9897 + }, + { + "start": 4256.38, + "end": 4257.3, + "probability": 0.9892 + }, + { + "start": 4258.8, + "end": 4264.12, + "probability": 0.9465 + }, + { + "start": 4265.1, + "end": 4266.56, + "probability": 0.9985 + }, + { + "start": 4268.94, + "end": 4269.48, + "probability": 0.319 + }, + { + "start": 4270.78, + "end": 4271.94, + "probability": 0.5017 + }, + { + "start": 4273.78, + "end": 4275.3, + "probability": 0.6093 + }, + { + "start": 4277.66, + "end": 4278.44, + "probability": 0.9958 + }, + { + "start": 4279.54, + "end": 4286.48, + "probability": 0.8991 + }, + { + "start": 4287.82, + "end": 4288.48, + "probability": 0.7161 + }, + { + "start": 4289.88, + "end": 4290.44, + "probability": 0.7499 + }, + { + "start": 4290.64, + "end": 4294.46, + "probability": 0.9841 + }, + { + "start": 4295.26, + "end": 4297.24, + "probability": 0.6633 + }, + { + "start": 4298.48, + "end": 4300.66, + "probability": 0.953 + }, + { + "start": 4301.86, + "end": 4308.07, + "probability": 0.9801 + }, + { + "start": 4310.44, + "end": 4312.94, + "probability": 0.9797 + }, + { + "start": 4316.38, + "end": 4320.86, + "probability": 0.9179 + }, + { + "start": 4321.92, + "end": 4323.5, + "probability": 0.9995 + }, + { + "start": 4324.76, + "end": 4326.32, + "probability": 0.9094 + }, + { + "start": 4328.02, + "end": 4328.62, + "probability": 0.8754 + }, + { + "start": 4328.86, + "end": 4333.12, + "probability": 0.862 + }, + { + "start": 4333.38, + "end": 4333.9, + "probability": 0.8143 + }, + { + "start": 4333.96, + "end": 4334.78, + "probability": 0.9417 + }, + { + "start": 4334.86, + "end": 4335.3, + "probability": 0.7794 + }, + { + "start": 4335.36, + "end": 4336.48, + "probability": 0.9673 + }, + { + "start": 4338.56, + "end": 4342.26, + "probability": 0.9836 + }, + { + "start": 4344.44, + "end": 4345.5, + "probability": 0.7391 + }, + { + "start": 4345.92, + "end": 4347.26, + "probability": 0.9189 + }, + { + "start": 4347.58, + "end": 4349.74, + "probability": 0.3555 + }, + { + "start": 4350.0, + "end": 4356.66, + "probability": 0.9888 + }, + { + "start": 4357.62, + "end": 4363.83, + "probability": 0.986 + }, + { + "start": 4364.84, + "end": 4367.78, + "probability": 0.735 + }, + { + "start": 4369.44, + "end": 4374.14, + "probability": 0.9837 + }, + { + "start": 4377.08, + "end": 4377.76, + "probability": 0.7959 + }, + { + "start": 4378.28, + "end": 4379.34, + "probability": 0.9874 + }, + { + "start": 4379.36, + "end": 4382.7, + "probability": 0.996 + }, + { + "start": 4385.24, + "end": 4385.74, + "probability": 0.3167 + }, + { + "start": 4387.22, + "end": 4389.96, + "probability": 0.9868 + }, + { + "start": 4391.34, + "end": 4394.92, + "probability": 0.9961 + }, + { + "start": 4396.6, + "end": 4399.12, + "probability": 0.7887 + }, + { + "start": 4400.36, + "end": 4405.26, + "probability": 0.9724 + }, + { + "start": 4406.82, + "end": 4408.72, + "probability": 0.9131 + }, + { + "start": 4409.86, + "end": 4410.64, + "probability": 0.7844 + }, + { + "start": 4411.66, + "end": 4413.44, + "probability": 0.9602 + }, + { + "start": 4414.32, + "end": 4416.78, + "probability": 0.9943 + }, + { + "start": 4416.78, + "end": 4419.64, + "probability": 0.9718 + }, + { + "start": 4421.1, + "end": 4422.58, + "probability": 0.9948 + }, + { + "start": 4422.7, + "end": 4423.36, + "probability": 0.9883 + }, + { + "start": 4423.44, + "end": 4424.28, + "probability": 0.9559 + }, + { + "start": 4424.38, + "end": 4425.0, + "probability": 0.9545 + }, + { + "start": 4425.06, + "end": 4425.7, + "probability": 0.9099 + }, + { + "start": 4426.68, + "end": 4427.48, + "probability": 0.9816 + }, + { + "start": 4431.34, + "end": 4432.12, + "probability": 0.6748 + }, + { + "start": 4433.3, + "end": 4434.74, + "probability": 0.9507 + }, + { + "start": 4436.6, + "end": 4437.68, + "probability": 0.9834 + }, + { + "start": 4439.04, + "end": 4440.16, + "probability": 0.9629 + }, + { + "start": 4440.34, + "end": 4441.06, + "probability": 0.7382 + }, + { + "start": 4441.12, + "end": 4441.58, + "probability": 0.5106 + }, + { + "start": 4441.74, + "end": 4442.4, + "probability": 0.9595 + }, + { + "start": 4443.48, + "end": 4446.68, + "probability": 0.9688 + }, + { + "start": 4447.42, + "end": 4449.26, + "probability": 0.9988 + }, + { + "start": 4449.8, + "end": 4452.34, + "probability": 0.9959 + }, + { + "start": 4453.08, + "end": 4454.98, + "probability": 0.9695 + }, + { + "start": 4456.52, + "end": 4459.28, + "probability": 0.9913 + }, + { + "start": 4460.68, + "end": 4461.46, + "probability": 0.8279 + }, + { + "start": 4462.08, + "end": 4464.96, + "probability": 0.9667 + }, + { + "start": 4467.32, + "end": 4471.28, + "probability": 0.9788 + }, + { + "start": 4472.9, + "end": 4475.68, + "probability": 0.9971 + }, + { + "start": 4476.14, + "end": 4480.84, + "probability": 0.9984 + }, + { + "start": 4482.9, + "end": 4483.98, + "probability": 0.9456 + }, + { + "start": 4485.34, + "end": 4488.8, + "probability": 0.9197 + }, + { + "start": 4490.08, + "end": 4490.92, + "probability": 0.7557 + }, + { + "start": 4492.24, + "end": 4494.98, + "probability": 0.9816 + }, + { + "start": 4495.9, + "end": 4496.88, + "probability": 0.9648 + }, + { + "start": 4497.42, + "end": 4502.4, + "probability": 0.9878 + }, + { + "start": 4502.86, + "end": 4506.56, + "probability": 0.9932 + }, + { + "start": 4506.74, + "end": 4508.62, + "probability": 0.8024 + }, + { + "start": 4508.72, + "end": 4509.26, + "probability": 0.7885 + }, + { + "start": 4509.52, + "end": 4509.98, + "probability": 0.7581 + }, + { + "start": 4512.98, + "end": 4515.08, + "probability": 0.8425 + }, + { + "start": 4516.1, + "end": 4516.58, + "probability": 0.8383 + }, + { + "start": 4517.32, + "end": 4518.14, + "probability": 0.7898 + }, + { + "start": 4518.26, + "end": 4519.2, + "probability": 0.791 + }, + { + "start": 4519.68, + "end": 4521.06, + "probability": 0.9836 + }, + { + "start": 4522.48, + "end": 4522.76, + "probability": 0.213 + }, + { + "start": 4522.8, + "end": 4525.32, + "probability": 0.9796 + }, + { + "start": 4527.26, + "end": 4532.96, + "probability": 0.9359 + }, + { + "start": 4533.06, + "end": 4533.92, + "probability": 0.7796 + }, + { + "start": 4534.72, + "end": 4535.2, + "probability": 0.843 + }, + { + "start": 4536.3, + "end": 4538.08, + "probability": 0.8756 + }, + { + "start": 4540.0, + "end": 4540.4, + "probability": 0.936 + }, + { + "start": 4541.28, + "end": 4541.8, + "probability": 0.9547 + }, + { + "start": 4542.74, + "end": 4543.92, + "probability": 0.8881 + }, + { + "start": 4544.56, + "end": 4546.6, + "probability": 0.998 + }, + { + "start": 4548.26, + "end": 4549.56, + "probability": 0.9792 + }, + { + "start": 4549.64, + "end": 4549.8, + "probability": 0.3484 + }, + { + "start": 4549.84, + "end": 4550.86, + "probability": 0.9714 + }, + { + "start": 4551.34, + "end": 4552.24, + "probability": 0.8681 + }, + { + "start": 4552.42, + "end": 4553.05, + "probability": 0.6859 + }, + { + "start": 4555.04, + "end": 4556.7, + "probability": 0.9954 + }, + { + "start": 4557.44, + "end": 4558.14, + "probability": 0.7304 + }, + { + "start": 4558.26, + "end": 4559.13, + "probability": 0.57 + }, + { + "start": 4559.74, + "end": 4565.26, + "probability": 0.9707 + }, + { + "start": 4565.9, + "end": 4567.38, + "probability": 0.9922 + }, + { + "start": 4568.54, + "end": 4569.28, + "probability": 0.5731 + }, + { + "start": 4569.78, + "end": 4573.8, + "probability": 0.9932 + }, + { + "start": 4574.4, + "end": 4576.7, + "probability": 0.8448 + }, + { + "start": 4576.88, + "end": 4580.98, + "probability": 0.9473 + }, + { + "start": 4581.06, + "end": 4582.58, + "probability": 0.9941 + }, + { + "start": 4582.64, + "end": 4582.88, + "probability": 0.5771 + }, + { + "start": 4582.96, + "end": 4583.52, + "probability": 0.9109 + }, + { + "start": 4584.66, + "end": 4585.28, + "probability": 0.8424 + }, + { + "start": 4586.44, + "end": 4587.46, + "probability": 0.9572 + }, + { + "start": 4587.74, + "end": 4590.3, + "probability": 0.9963 + }, + { + "start": 4590.94, + "end": 4594.98, + "probability": 0.9808 + }, + { + "start": 4595.46, + "end": 4598.28, + "probability": 0.993 + }, + { + "start": 4598.34, + "end": 4601.6, + "probability": 0.9872 + }, + { + "start": 4601.96, + "end": 4602.06, + "probability": 0.5326 + }, + { + "start": 4602.72, + "end": 4603.42, + "probability": 0.7161 + }, + { + "start": 4603.42, + "end": 4604.95, + "probability": 0.949 + }, + { + "start": 4605.62, + "end": 4611.94, + "probability": 0.9183 + }, + { + "start": 4612.04, + "end": 4612.96, + "probability": 0.8756 + }, + { + "start": 4614.04, + "end": 4614.7, + "probability": 0.7907 + }, + { + "start": 4641.08, + "end": 4641.98, + "probability": 0.5417 + }, + { + "start": 4642.28, + "end": 4642.9, + "probability": 0.8195 + }, + { + "start": 4643.32, + "end": 4645.62, + "probability": 0.9595 + }, + { + "start": 4646.56, + "end": 4648.16, + "probability": 0.9362 + }, + { + "start": 4649.34, + "end": 4650.96, + "probability": 0.7377 + }, + { + "start": 4651.88, + "end": 4658.44, + "probability": 0.9779 + }, + { + "start": 4658.6, + "end": 4659.94, + "probability": 0.7497 + }, + { + "start": 4660.06, + "end": 4661.84, + "probability": 0.8835 + }, + { + "start": 4662.62, + "end": 4665.14, + "probability": 0.9979 + }, + { + "start": 4665.92, + "end": 4669.16, + "probability": 0.9371 + }, + { + "start": 4669.74, + "end": 4672.74, + "probability": 0.9948 + }, + { + "start": 4673.28, + "end": 4675.12, + "probability": 0.9836 + }, + { + "start": 4675.84, + "end": 4681.2, + "probability": 0.9961 + }, + { + "start": 4682.0, + "end": 4686.3, + "probability": 0.9765 + }, + { + "start": 4687.1, + "end": 4688.62, + "probability": 0.9982 + }, + { + "start": 4689.42, + "end": 4691.76, + "probability": 0.7458 + }, + { + "start": 4691.9, + "end": 4694.32, + "probability": 0.7504 + }, + { + "start": 4694.8, + "end": 4697.14, + "probability": 0.9391 + }, + { + "start": 4697.96, + "end": 4702.58, + "probability": 0.9497 + }, + { + "start": 4702.58, + "end": 4706.4, + "probability": 0.9968 + }, + { + "start": 4707.16, + "end": 4709.02, + "probability": 0.5078 + }, + { + "start": 4709.36, + "end": 4711.22, + "probability": 0.9716 + }, + { + "start": 4712.09, + "end": 4713.94, + "probability": 0.6243 + }, + { + "start": 4715.36, + "end": 4717.9, + "probability": 0.9251 + }, + { + "start": 4720.08, + "end": 4724.42, + "probability": 0.9895 + }, + { + "start": 4725.2, + "end": 4728.98, + "probability": 0.9928 + }, + { + "start": 4728.98, + "end": 4731.52, + "probability": 0.9927 + }, + { + "start": 4731.8, + "end": 4734.36, + "probability": 0.967 + }, + { + "start": 4735.42, + "end": 4738.42, + "probability": 0.9976 + }, + { + "start": 4738.54, + "end": 4741.48, + "probability": 0.9854 + }, + { + "start": 4742.12, + "end": 4746.18, + "probability": 0.9782 + }, + { + "start": 4747.62, + "end": 4748.04, + "probability": 0.2381 + }, + { + "start": 4748.12, + "end": 4748.5, + "probability": 0.8079 + }, + { + "start": 4748.52, + "end": 4751.23, + "probability": 0.9497 + }, + { + "start": 4751.7, + "end": 4753.74, + "probability": 0.8455 + }, + { + "start": 4754.16, + "end": 4759.64, + "probability": 0.9811 + }, + { + "start": 4760.24, + "end": 4760.48, + "probability": 0.8071 + }, + { + "start": 4760.68, + "end": 4762.24, + "probability": 0.8795 + }, + { + "start": 4762.58, + "end": 4763.7, + "probability": 0.56 + }, + { + "start": 4763.76, + "end": 4764.58, + "probability": 0.265 + }, + { + "start": 4765.2, + "end": 4767.1, + "probability": 0.8546 + }, + { + "start": 4767.18, + "end": 4767.7, + "probability": 0.7441 + }, + { + "start": 4767.88, + "end": 4768.89, + "probability": 0.9564 + }, + { + "start": 4769.44, + "end": 4774.4, + "probability": 0.995 + }, + { + "start": 4775.78, + "end": 4777.0, + "probability": 0.7124 + }, + { + "start": 4777.72, + "end": 4779.14, + "probability": 0.917 + }, + { + "start": 4779.28, + "end": 4780.38, + "probability": 0.6908 + }, + { + "start": 4780.84, + "end": 4784.56, + "probability": 0.9554 + }, + { + "start": 4784.62, + "end": 4786.94, + "probability": 0.9126 + }, + { + "start": 4787.6, + "end": 4790.76, + "probability": 0.9492 + }, + { + "start": 4791.84, + "end": 4792.7, + "probability": 0.4157 + }, + { + "start": 4792.7, + "end": 4793.38, + "probability": 0.2522 + }, + { + "start": 4793.38, + "end": 4794.2, + "probability": 0.4422 + }, + { + "start": 4795.14, + "end": 4798.32, + "probability": 0.5106 + }, + { + "start": 4801.12, + "end": 4801.9, + "probability": 0.1912 + }, + { + "start": 4810.42, + "end": 4813.76, + "probability": 0.3422 + }, + { + "start": 4815.0, + "end": 4818.18, + "probability": 0.1909 + }, + { + "start": 4819.22, + "end": 4821.32, + "probability": 0.5713 + }, + { + "start": 4821.86, + "end": 4822.8, + "probability": 0.2643 + }, + { + "start": 4822.8, + "end": 4829.44, + "probability": 0.2758 + }, + { + "start": 4830.4, + "end": 4836.0, + "probability": 0.0521 + }, + { + "start": 4836.0, + "end": 4836.0, + "probability": 0.0066 + }, + { + "start": 4847.88, + "end": 4851.58, + "probability": 0.0313 + }, + { + "start": 4851.63, + "end": 4851.7, + "probability": 0.1666 + }, + { + "start": 4857.62, + "end": 4858.78, + "probability": 0.3509 + }, + { + "start": 4858.78, + "end": 4859.28, + "probability": 0.0862 + }, + { + "start": 4859.28, + "end": 4859.48, + "probability": 0.0879 + }, + { + "start": 4859.56, + "end": 4859.98, + "probability": 0.0864 + }, + { + "start": 4861.02, + "end": 4864.66, + "probability": 0.1059 + }, + { + "start": 4864.66, + "end": 4866.7, + "probability": 0.2003 + }, + { + "start": 4867.26, + "end": 4868.26, + "probability": 0.1139 + }, + { + "start": 4868.42, + "end": 4868.84, + "probability": 0.1765 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.0, + "end": 4869.0, + "probability": 0.0 + }, + { + "start": 4869.28, + "end": 4869.28, + "probability": 0.197 + }, + { + "start": 4869.28, + "end": 4869.28, + "probability": 0.4094 + }, + { + "start": 4869.4, + "end": 4870.26, + "probability": 0.7027 + }, + { + "start": 4870.48, + "end": 4872.87, + "probability": 0.7878 + }, + { + "start": 4873.04, + "end": 4875.34, + "probability": 0.1347 + }, + { + "start": 4875.94, + "end": 4878.92, + "probability": 0.9664 + }, + { + "start": 4879.04, + "end": 4880.94, + "probability": 0.8022 + }, + { + "start": 4881.42, + "end": 4882.92, + "probability": 0.706 + }, + { + "start": 4883.42, + "end": 4885.04, + "probability": 0.7569 + }, + { + "start": 4885.24, + "end": 4886.9, + "probability": 0.8161 + }, + { + "start": 4887.12, + "end": 4888.44, + "probability": 0.0098 + }, + { + "start": 4889.02, + "end": 4889.82, + "probability": 0.2516 + }, + { + "start": 4889.82, + "end": 4891.36, + "probability": 0.8753 + }, + { + "start": 4891.46, + "end": 4897.06, + "probability": 0.9922 + }, + { + "start": 4897.22, + "end": 4897.24, + "probability": 0.012 + }, + { + "start": 4897.24, + "end": 4902.74, + "probability": 0.9109 + }, + { + "start": 4902.96, + "end": 4905.06, + "probability": 0.9824 + }, + { + "start": 4905.1, + "end": 4906.76, + "probability": 0.8651 + }, + { + "start": 4906.96, + "end": 4907.92, + "probability": 0.8406 + }, + { + "start": 4908.14, + "end": 4910.22, + "probability": 0.8724 + }, + { + "start": 4910.68, + "end": 4912.46, + "probability": 0.8535 + }, + { + "start": 4913.02, + "end": 4913.84, + "probability": 0.8095 + }, + { + "start": 4913.9, + "end": 4918.22, + "probability": 0.8171 + }, + { + "start": 4918.6, + "end": 4922.06, + "probability": 0.9753 + }, + { + "start": 4922.18, + "end": 4927.16, + "probability": 0.1303 + }, + { + "start": 4927.28, + "end": 4929.44, + "probability": 0.3187 + }, + { + "start": 4930.08, + "end": 4930.22, + "probability": 0.1599 + }, + { + "start": 4930.22, + "end": 4930.22, + "probability": 0.3865 + }, + { + "start": 4930.22, + "end": 4930.22, + "probability": 0.015 + }, + { + "start": 4930.36, + "end": 4931.46, + "probability": 0.2111 + }, + { + "start": 4931.92, + "end": 4932.84, + "probability": 0.5162 + }, + { + "start": 4933.4, + "end": 4939.68, + "probability": 0.9628 + }, + { + "start": 4940.0, + "end": 4943.3, + "probability": 0.998 + }, + { + "start": 4943.84, + "end": 4949.48, + "probability": 0.9844 + }, + { + "start": 4949.74, + "end": 4952.14, + "probability": 0.9747 + }, + { + "start": 4952.32, + "end": 4954.12, + "probability": 0.4324 + }, + { + "start": 4955.12, + "end": 4955.72, + "probability": 0.3256 + }, + { + "start": 4955.74, + "end": 4956.24, + "probability": 0.2531 + }, + { + "start": 4956.52, + "end": 4957.64, + "probability": 0.1573 + }, + { + "start": 4957.64, + "end": 4957.64, + "probability": 0.0931 + }, + { + "start": 4957.64, + "end": 4957.64, + "probability": 0.2059 + }, + { + "start": 4957.64, + "end": 4957.64, + "probability": 0.0593 + }, + { + "start": 4957.64, + "end": 4957.64, + "probability": 0.0133 + }, + { + "start": 4957.64, + "end": 4957.86, + "probability": 0.1199 + }, + { + "start": 4957.86, + "end": 4958.1, + "probability": 0.0481 + }, + { + "start": 4958.16, + "end": 4958.16, + "probability": 0.0359 + }, + { + "start": 4958.16, + "end": 4958.48, + "probability": 0.0487 + }, + { + "start": 4958.84, + "end": 4959.56, + "probability": 0.4185 + }, + { + "start": 4959.88, + "end": 4961.38, + "probability": 0.679 + }, + { + "start": 4963.12, + "end": 4965.92, + "probability": 0.0472 + }, + { + "start": 4965.92, + "end": 4965.92, + "probability": 0.1463 + }, + { + "start": 4965.92, + "end": 4965.92, + "probability": 0.0885 + }, + { + "start": 4965.92, + "end": 4966.02, + "probability": 0.2099 + }, + { + "start": 4966.22, + "end": 4967.2, + "probability": 0.3482 + }, + { + "start": 4967.62, + "end": 4970.02, + "probability": 0.0504 + }, + { + "start": 4970.18, + "end": 4971.38, + "probability": 0.103 + }, + { + "start": 4971.82, + "end": 4973.15, + "probability": 0.7972 + }, + { + "start": 4973.76, + "end": 4976.56, + "probability": 0.5343 + }, + { + "start": 4976.56, + "end": 4979.4, + "probability": 0.3442 + }, + { + "start": 4979.5, + "end": 4981.47, + "probability": 0.5403 + }, + { + "start": 4981.5, + "end": 4982.24, + "probability": 0.7988 + }, + { + "start": 4982.36, + "end": 4982.9, + "probability": 0.4007 + }, + { + "start": 4982.98, + "end": 4983.28, + "probability": 0.7778 + }, + { + "start": 4983.6, + "end": 4985.4, + "probability": 0.9624 + }, + { + "start": 4985.84, + "end": 4986.22, + "probability": 0.6151 + }, + { + "start": 4986.44, + "end": 4986.7, + "probability": 0.6122 + }, + { + "start": 4986.78, + "end": 4987.36, + "probability": 0.5525 + }, + { + "start": 4987.97, + "end": 4993.94, + "probability": 0.9754 + }, + { + "start": 4994.38, + "end": 4996.44, + "probability": 0.9661 + }, + { + "start": 4996.58, + "end": 4997.45, + "probability": 0.9985 + }, + { + "start": 4998.68, + "end": 5001.7, + "probability": 0.9448 + }, + { + "start": 5001.7, + "end": 5005.2, + "probability": 0.9961 + }, + { + "start": 5005.68, + "end": 5008.64, + "probability": 0.9385 + }, + { + "start": 5008.9, + "end": 5014.48, + "probability": 0.4886 + }, + { + "start": 5014.78, + "end": 5017.72, + "probability": 0.611 + }, + { + "start": 5017.72, + "end": 5021.98, + "probability": 0.5876 + }, + { + "start": 5023.14, + "end": 5023.68, + "probability": 0.472 + }, + { + "start": 5025.88, + "end": 5028.7, + "probability": 0.8941 + }, + { + "start": 5028.84, + "end": 5030.36, + "probability": 0.6157 + }, + { + "start": 5030.52, + "end": 5032.91, + "probability": 0.3095 + }, + { + "start": 5033.64, + "end": 5036.54, + "probability": 0.6388 + }, + { + "start": 5036.62, + "end": 5038.14, + "probability": 0.756 + }, + { + "start": 5039.4, + "end": 5044.02, + "probability": 0.9972 + }, + { + "start": 5044.48, + "end": 5046.9, + "probability": 0.8766 + }, + { + "start": 5048.1, + "end": 5050.96, + "probability": 0.9757 + }, + { + "start": 5055.16, + "end": 5057.38, + "probability": 0.9402 + }, + { + "start": 5058.86, + "end": 5061.72, + "probability": 0.8147 + }, + { + "start": 5062.3, + "end": 5063.98, + "probability": 0.957 + }, + { + "start": 5064.02, + "end": 5065.36, + "probability": 0.9284 + }, + { + "start": 5065.84, + "end": 5069.02, + "probability": 0.9642 + }, + { + "start": 5069.04, + "end": 5073.84, + "probability": 0.9869 + }, + { + "start": 5074.3, + "end": 5076.64, + "probability": 0.9099 + }, + { + "start": 5077.08, + "end": 5080.44, + "probability": 0.9978 + }, + { + "start": 5080.62, + "end": 5083.22, + "probability": 0.9945 + }, + { + "start": 5086.42, + "end": 5086.74, + "probability": 0.2528 + }, + { + "start": 5086.74, + "end": 5086.74, + "probability": 0.2172 + }, + { + "start": 5086.74, + "end": 5089.34, + "probability": 0.8997 + }, + { + "start": 5089.42, + "end": 5093.98, + "probability": 0.9798 + }, + { + "start": 5094.36, + "end": 5095.82, + "probability": 0.4004 + }, + { + "start": 5095.82, + "end": 5098.62, + "probability": 0.877 + }, + { + "start": 5098.62, + "end": 5103.26, + "probability": 0.986 + }, + { + "start": 5103.5, + "end": 5107.5, + "probability": 0.9696 + }, + { + "start": 5108.44, + "end": 5109.4, + "probability": 0.3169 + }, + { + "start": 5109.96, + "end": 5111.56, + "probability": 0.927 + }, + { + "start": 5113.34, + "end": 5115.7, + "probability": 0.6608 + }, + { + "start": 5117.08, + "end": 5125.38, + "probability": 0.8274 + }, + { + "start": 5125.58, + "end": 5128.48, + "probability": 0.8291 + }, + { + "start": 5129.62, + "end": 5134.15, + "probability": 0.9761 + }, + { + "start": 5134.4, + "end": 5135.08, + "probability": 0.8745 + }, + { + "start": 5135.34, + "end": 5137.99, + "probability": 0.884 + }, + { + "start": 5138.66, + "end": 5139.88, + "probability": 0.8612 + }, + { + "start": 5139.96, + "end": 5143.4, + "probability": 0.9143 + }, + { + "start": 5144.06, + "end": 5147.06, + "probability": 0.7744 + }, + { + "start": 5147.18, + "end": 5152.2, + "probability": 0.993 + }, + { + "start": 5152.7, + "end": 5154.28, + "probability": 0.8533 + }, + { + "start": 5154.9, + "end": 5159.28, + "probability": 0.9858 + }, + { + "start": 5160.9, + "end": 5166.9, + "probability": 0.9835 + }, + { + "start": 5167.76, + "end": 5170.02, + "probability": 0.9984 + }, + { + "start": 5170.7, + "end": 5171.62, + "probability": 0.7788 + }, + { + "start": 5171.74, + "end": 5172.58, + "probability": 0.7551 + }, + { + "start": 5172.68, + "end": 5173.36, + "probability": 0.5842 + }, + { + "start": 5173.5, + "end": 5174.22, + "probability": 0.9818 + }, + { + "start": 5175.06, + "end": 5175.62, + "probability": 0.9667 + }, + { + "start": 5175.72, + "end": 5179.32, + "probability": 0.9784 + }, + { + "start": 5179.32, + "end": 5183.28, + "probability": 0.9846 + }, + { + "start": 5184.5, + "end": 5188.66, + "probability": 0.991 + }, + { + "start": 5188.66, + "end": 5191.48, + "probability": 0.9882 + }, + { + "start": 5192.24, + "end": 5195.36, + "probability": 0.5892 + }, + { + "start": 5195.36, + "end": 5196.98, + "probability": 0.9285 + }, + { + "start": 5197.42, + "end": 5200.78, + "probability": 0.9214 + }, + { + "start": 5200.92, + "end": 5203.1, + "probability": 0.9385 + }, + { + "start": 5204.66, + "end": 5206.35, + "probability": 0.6063 + }, + { + "start": 5207.36, + "end": 5212.22, + "probability": 0.705 + }, + { + "start": 5213.14, + "end": 5215.52, + "probability": 0.9359 + }, + { + "start": 5215.68, + "end": 5216.88, + "probability": 0.0614 + }, + { + "start": 5218.14, + "end": 5221.61, + "probability": 0.3859 + }, + { + "start": 5224.43, + "end": 5226.74, + "probability": 0.9946 + }, + { + "start": 5227.26, + "end": 5227.94, + "probability": 0.6147 + }, + { + "start": 5228.06, + "end": 5229.4, + "probability": 0.9671 + }, + { + "start": 5229.84, + "end": 5230.68, + "probability": 0.9423 + }, + { + "start": 5230.8, + "end": 5233.36, + "probability": 0.9791 + }, + { + "start": 5234.12, + "end": 5235.76, + "probability": 0.8901 + }, + { + "start": 5236.28, + "end": 5238.92, + "probability": 0.9753 + }, + { + "start": 5239.42, + "end": 5242.0, + "probability": 0.9939 + }, + { + "start": 5242.62, + "end": 5246.44, + "probability": 0.9867 + }, + { + "start": 5247.44, + "end": 5248.24, + "probability": 0.4704 + }, + { + "start": 5248.9, + "end": 5253.32, + "probability": 0.9637 + }, + { + "start": 5253.72, + "end": 5256.9, + "probability": 0.9854 + }, + { + "start": 5257.4, + "end": 5262.46, + "probability": 0.9913 + }, + { + "start": 5262.96, + "end": 5266.9, + "probability": 0.8866 + }, + { + "start": 5268.02, + "end": 5270.14, + "probability": 0.8835 + }, + { + "start": 5270.84, + "end": 5272.4, + "probability": 0.9872 + }, + { + "start": 5272.86, + "end": 5274.56, + "probability": 0.9081 + }, + { + "start": 5275.18, + "end": 5276.52, + "probability": 0.974 + }, + { + "start": 5276.9, + "end": 5278.06, + "probability": 0.9819 + }, + { + "start": 5278.48, + "end": 5280.08, + "probability": 0.9432 + }, + { + "start": 5280.4, + "end": 5283.0, + "probability": 0.9946 + }, + { + "start": 5283.46, + "end": 5284.2, + "probability": 0.7855 + }, + { + "start": 5284.56, + "end": 5284.86, + "probability": 0.922 + }, + { + "start": 5284.94, + "end": 5286.18, + "probability": 0.9883 + }, + { + "start": 5287.47, + "end": 5291.81, + "probability": 0.9185 + }, + { + "start": 5292.78, + "end": 5295.76, + "probability": 0.9893 + }, + { + "start": 5295.86, + "end": 5296.84, + "probability": 0.9669 + }, + { + "start": 5297.58, + "end": 5299.28, + "probability": 0.9489 + }, + { + "start": 5299.7, + "end": 5299.9, + "probability": 0.3124 + }, + { + "start": 5299.92, + "end": 5302.24, + "probability": 0.8472 + }, + { + "start": 5302.62, + "end": 5303.84, + "probability": 0.9509 + }, + { + "start": 5303.9, + "end": 5308.72, + "probability": 0.9882 + }, + { + "start": 5308.78, + "end": 5311.0, + "probability": 0.9443 + }, + { + "start": 5311.14, + "end": 5312.9, + "probability": 0.9548 + }, + { + "start": 5313.68, + "end": 5313.96, + "probability": 0.8038 + }, + { + "start": 5314.46, + "end": 5316.96, + "probability": 0.9796 + }, + { + "start": 5317.02, + "end": 5319.46, + "probability": 0.9746 + }, + { + "start": 5319.72, + "end": 5320.44, + "probability": 0.8553 + }, + { + "start": 5321.28, + "end": 5321.58, + "probability": 0.8461 + }, + { + "start": 5322.6, + "end": 5323.62, + "probability": 0.7798 + }, + { + "start": 5323.68, + "end": 5324.26, + "probability": 0.7837 + }, + { + "start": 5324.3, + "end": 5326.12, + "probability": 0.9504 + }, + { + "start": 5326.7, + "end": 5328.0, + "probability": 0.7751 + }, + { + "start": 5328.12, + "end": 5331.36, + "probability": 0.9958 + }, + { + "start": 5332.0, + "end": 5332.66, + "probability": 0.8209 + }, + { + "start": 5332.76, + "end": 5337.14, + "probability": 0.9956 + }, + { + "start": 5337.14, + "end": 5343.07, + "probability": 0.9995 + }, + { + "start": 5344.22, + "end": 5345.8, + "probability": 0.9954 + }, + { + "start": 5346.5, + "end": 5348.0, + "probability": 0.9985 + }, + { + "start": 5349.28, + "end": 5352.08, + "probability": 0.8956 + }, + { + "start": 5352.88, + "end": 5356.26, + "probability": 0.9894 + }, + { + "start": 5356.26, + "end": 5360.26, + "probability": 0.9962 + }, + { + "start": 5360.7, + "end": 5363.58, + "probability": 0.9976 + }, + { + "start": 5364.85, + "end": 5368.32, + "probability": 0.9413 + }, + { + "start": 5368.38, + "end": 5369.3, + "probability": 0.8915 + }, + { + "start": 5369.82, + "end": 5369.96, + "probability": 0.2833 + }, + { + "start": 5370.16, + "end": 5370.38, + "probability": 0.7762 + }, + { + "start": 5370.5, + "end": 5370.86, + "probability": 0.3969 + }, + { + "start": 5370.86, + "end": 5372.88, + "probability": 0.8384 + }, + { + "start": 5373.94, + "end": 5374.04, + "probability": 0.2611 + }, + { + "start": 5374.04, + "end": 5375.46, + "probability": 0.8752 + }, + { + "start": 5375.5, + "end": 5377.08, + "probability": 0.9083 + }, + { + "start": 5381.34, + "end": 5382.34, + "probability": 0.8111 + }, + { + "start": 5383.16, + "end": 5384.92, + "probability": 0.4044 + }, + { + "start": 5393.28, + "end": 5395.88, + "probability": 0.5216 + }, + { + "start": 5396.42, + "end": 5397.8, + "probability": 0.7403 + }, + { + "start": 5399.12, + "end": 5402.04, + "probability": 0.9324 + }, + { + "start": 5406.66, + "end": 5407.46, + "probability": 0.0094 + }, + { + "start": 5407.52, + "end": 5410.88, + "probability": 0.6827 + }, + { + "start": 5412.54, + "end": 5412.54, + "probability": 0.2569 + }, + { + "start": 5412.54, + "end": 5415.6, + "probability": 0.7855 + }, + { + "start": 5415.82, + "end": 5417.24, + "probability": 0.8125 + }, + { + "start": 5419.08, + "end": 5419.96, + "probability": 0.7198 + }, + { + "start": 5420.74, + "end": 5421.72, + "probability": 0.9715 + }, + { + "start": 5422.38, + "end": 5424.26, + "probability": 0.9466 + }, + { + "start": 5424.9, + "end": 5425.48, + "probability": 0.6473 + }, + { + "start": 5427.8, + "end": 5430.02, + "probability": 0.4677 + }, + { + "start": 5430.4, + "end": 5433.0, + "probability": 0.7034 + }, + { + "start": 5433.08, + "end": 5436.76, + "probability": 0.6782 + }, + { + "start": 5438.78, + "end": 5445.88, + "probability": 0.8721 + }, + { + "start": 5447.54, + "end": 5449.98, + "probability": 0.6843 + }, + { + "start": 5451.58, + "end": 5455.38, + "probability": 0.9484 + }, + { + "start": 5456.16, + "end": 5457.08, + "probability": 0.7801 + }, + { + "start": 5458.18, + "end": 5459.39, + "probability": 0.9541 + }, + { + "start": 5460.12, + "end": 5461.62, + "probability": 0.6389 + }, + { + "start": 5461.72, + "end": 5468.52, + "probability": 0.9277 + }, + { + "start": 5469.52, + "end": 5471.32, + "probability": 0.9774 + }, + { + "start": 5472.56, + "end": 5475.12, + "probability": 0.9813 + }, + { + "start": 5475.28, + "end": 5478.58, + "probability": 0.9788 + }, + { + "start": 5478.84, + "end": 5483.16, + "probability": 0.828 + }, + { + "start": 5483.58, + "end": 5486.7, + "probability": 0.9891 + }, + { + "start": 5487.98, + "end": 5488.8, + "probability": 0.642 + }, + { + "start": 5489.0, + "end": 5493.52, + "probability": 0.8457 + }, + { + "start": 5496.16, + "end": 5499.24, + "probability": 0.9133 + }, + { + "start": 5499.4, + "end": 5502.6, + "probability": 0.9922 + }, + { + "start": 5502.8, + "end": 5503.34, + "probability": 0.8766 + }, + { + "start": 5504.66, + "end": 5505.98, + "probability": 0.7168 + }, + { + "start": 5506.22, + "end": 5507.44, + "probability": 0.9692 + }, + { + "start": 5510.58, + "end": 5511.8, + "probability": 0.6173 + }, + { + "start": 5512.88, + "end": 5513.86, + "probability": 0.8007 + }, + { + "start": 5514.08, + "end": 5514.63, + "probability": 0.9877 + }, + { + "start": 5515.32, + "end": 5515.91, + "probability": 0.8506 + }, + { + "start": 5516.04, + "end": 5516.9, + "probability": 0.48 + }, + { + "start": 5517.52, + "end": 5521.62, + "probability": 0.9341 + }, + { + "start": 5523.52, + "end": 5525.62, + "probability": 0.9272 + }, + { + "start": 5527.62, + "end": 5531.24, + "probability": 0.8454 + }, + { + "start": 5531.78, + "end": 5535.32, + "probability": 0.9563 + }, + { + "start": 5538.26, + "end": 5539.2, + "probability": 0.737 + }, + { + "start": 5540.26, + "end": 5541.08, + "probability": 0.9473 + }, + { + "start": 5542.34, + "end": 5548.06, + "probability": 0.9868 + }, + { + "start": 5549.46, + "end": 5551.16, + "probability": 0.945 + }, + { + "start": 5553.48, + "end": 5554.08, + "probability": 0.7493 + }, + { + "start": 5554.78, + "end": 5556.74, + "probability": 0.8949 + }, + { + "start": 5557.64, + "end": 5561.68, + "probability": 0.6706 + }, + { + "start": 5562.59, + "end": 5564.45, + "probability": 0.9707 + }, + { + "start": 5565.24, + "end": 5565.82, + "probability": 0.455 + }, + { + "start": 5567.66, + "end": 5571.16, + "probability": 0.943 + }, + { + "start": 5572.88, + "end": 5574.42, + "probability": 0.9504 + }, + { + "start": 5578.4, + "end": 5579.78, + "probability": 0.2914 + }, + { + "start": 5580.62, + "end": 5582.3, + "probability": 0.9355 + }, + { + "start": 5583.36, + "end": 5586.44, + "probability": 0.2888 + }, + { + "start": 5586.96, + "end": 5588.54, + "probability": 0.6832 + }, + { + "start": 5590.16, + "end": 5591.24, + "probability": 0.9372 + }, + { + "start": 5592.56, + "end": 5593.54, + "probability": 0.8713 + }, + { + "start": 5594.1, + "end": 5594.82, + "probability": 0.8785 + }, + { + "start": 5595.42, + "end": 5596.24, + "probability": 0.8608 + }, + { + "start": 5597.14, + "end": 5597.22, + "probability": 0.6322 + }, + { + "start": 5597.22, + "end": 5597.48, + "probability": 0.5582 + }, + { + "start": 5599.07, + "end": 5600.96, + "probability": 0.7657 + }, + { + "start": 5602.18, + "end": 5603.14, + "probability": 0.625 + }, + { + "start": 5604.72, + "end": 5606.34, + "probability": 0.8853 + }, + { + "start": 5607.52, + "end": 5610.14, + "probability": 0.7359 + }, + { + "start": 5610.3, + "end": 5610.88, + "probability": 0.761 + }, + { + "start": 5611.02, + "end": 5612.02, + "probability": 0.709 + }, + { + "start": 5612.58, + "end": 5613.26, + "probability": 0.8384 + }, + { + "start": 5614.9, + "end": 5616.04, + "probability": 0.9818 + }, + { + "start": 5620.44, + "end": 5622.54, + "probability": 0.9966 + }, + { + "start": 5623.34, + "end": 5625.46, + "probability": 0.9565 + }, + { + "start": 5629.2, + "end": 5633.02, + "probability": 0.697 + }, + { + "start": 5634.58, + "end": 5635.74, + "probability": 0.5091 + }, + { + "start": 5638.22, + "end": 5641.56, + "probability": 0.8154 + }, + { + "start": 5642.34, + "end": 5643.78, + "probability": 0.7114 + }, + { + "start": 5644.94, + "end": 5645.62, + "probability": 0.8826 + }, + { + "start": 5646.88, + "end": 5650.2, + "probability": 0.4817 + }, + { + "start": 5650.3, + "end": 5651.94, + "probability": 0.7668 + }, + { + "start": 5653.24, + "end": 5654.9, + "probability": 0.48 + }, + { + "start": 5655.42, + "end": 5656.76, + "probability": 0.4038 + }, + { + "start": 5657.62, + "end": 5658.69, + "probability": 0.8438 + }, + { + "start": 5661.5, + "end": 5667.82, + "probability": 0.856 + }, + { + "start": 5668.12, + "end": 5669.08, + "probability": 0.1265 + }, + { + "start": 5671.34, + "end": 5672.8, + "probability": 0.8795 + }, + { + "start": 5674.21, + "end": 5678.44, + "probability": 0.9388 + }, + { + "start": 5680.12, + "end": 5682.06, + "probability": 0.7611 + }, + { + "start": 5682.28, + "end": 5683.81, + "probability": 0.9961 + }, + { + "start": 5684.72, + "end": 5686.12, + "probability": 0.9629 + }, + { + "start": 5686.92, + "end": 5689.4, + "probability": 0.7221 + }, + { + "start": 5690.36, + "end": 5692.14, + "probability": 0.9929 + }, + { + "start": 5693.48, + "end": 5694.1, + "probability": 0.6802 + }, + { + "start": 5694.22, + "end": 5695.0, + "probability": 0.9462 + }, + { + "start": 5695.08, + "end": 5695.58, + "probability": 0.7767 + }, + { + "start": 5696.24, + "end": 5699.44, + "probability": 0.8805 + }, + { + "start": 5701.14, + "end": 5703.44, + "probability": 0.9131 + }, + { + "start": 5704.74, + "end": 5705.7, + "probability": 0.9187 + }, + { + "start": 5706.76, + "end": 5709.74, + "probability": 0.4312 + }, + { + "start": 5710.26, + "end": 5711.2, + "probability": 0.1659 + }, + { + "start": 5711.8, + "end": 5712.82, + "probability": 0.858 + }, + { + "start": 5712.96, + "end": 5713.06, + "probability": 0.6166 + }, + { + "start": 5713.06, + "end": 5714.24, + "probability": 0.9617 + }, + { + "start": 5714.26, + "end": 5714.54, + "probability": 0.3202 + }, + { + "start": 5715.38, + "end": 5716.42, + "probability": 0.3843 + }, + { + "start": 5716.88, + "end": 5717.58, + "probability": 0.4743 + }, + { + "start": 5717.68, + "end": 5720.42, + "probability": 0.8102 + }, + { + "start": 5720.46, + "end": 5720.7, + "probability": 0.1836 + }, + { + "start": 5722.18, + "end": 5726.9, + "probability": 0.3505 + }, + { + "start": 5726.9, + "end": 5731.64, + "probability": 0.0383 + }, + { + "start": 5731.9, + "end": 5732.74, + "probability": 0.0049 + }, + { + "start": 5733.26, + "end": 5735.24, + "probability": 0.305 + }, + { + "start": 5735.54, + "end": 5739.28, + "probability": 0.6309 + }, + { + "start": 5739.64, + "end": 5742.52, + "probability": 0.6285 + }, + { + "start": 5742.86, + "end": 5743.63, + "probability": 0.9214 + }, + { + "start": 5744.14, + "end": 5744.9, + "probability": 0.6479 + }, + { + "start": 5745.06, + "end": 5746.82, + "probability": 0.2695 + }, + { + "start": 5746.92, + "end": 5748.52, + "probability": 0.4911 + }, + { + "start": 5749.1, + "end": 5751.64, + "probability": 0.8477 + }, + { + "start": 5752.38, + "end": 5756.0, + "probability": 0.7322 + }, + { + "start": 5756.22, + "end": 5760.38, + "probability": 0.8057 + }, + { + "start": 5761.06, + "end": 5763.4, + "probability": 0.45 + }, + { + "start": 5763.4, + "end": 5764.24, + "probability": 0.5921 + }, + { + "start": 5764.48, + "end": 5765.68, + "probability": 0.8827 + }, + { + "start": 5766.18, + "end": 5769.18, + "probability": 0.9705 + }, + { + "start": 5769.26, + "end": 5772.9, + "probability": 0.8545 + }, + { + "start": 5772.96, + "end": 5773.91, + "probability": 0.8494 + }, + { + "start": 5775.26, + "end": 5779.08, + "probability": 0.9738 + }, + { + "start": 5779.64, + "end": 5780.72, + "probability": 0.6908 + }, + { + "start": 5781.24, + "end": 5782.94, + "probability": 0.5936 + }, + { + "start": 5783.12, + "end": 5786.76, + "probability": 0.8953 + }, + { + "start": 5787.34, + "end": 5789.88, + "probability": 0.9807 + }, + { + "start": 5790.06, + "end": 5792.72, + "probability": 0.8945 + }, + { + "start": 5793.06, + "end": 5794.1, + "probability": 0.915 + }, + { + "start": 5794.48, + "end": 5797.25, + "probability": 0.8066 + }, + { + "start": 5798.08, + "end": 5800.38, + "probability": 0.9213 + }, + { + "start": 5800.4, + "end": 5805.3, + "probability": 0.9888 + }, + { + "start": 5806.1, + "end": 5808.08, + "probability": 0.6936 + }, + { + "start": 5808.7, + "end": 5812.14, + "probability": 0.6955 + }, + { + "start": 5812.14, + "end": 5813.46, + "probability": 0.4189 + }, + { + "start": 5814.02, + "end": 5814.96, + "probability": 0.7632 + }, + { + "start": 5815.46, + "end": 5817.54, + "probability": 0.5706 + }, + { + "start": 5818.0, + "end": 5819.28, + "probability": 0.9456 + }, + { + "start": 5819.94, + "end": 5823.4, + "probability": 0.9133 + }, + { + "start": 5823.48, + "end": 5823.78, + "probability": 0.9736 + }, + { + "start": 5824.6, + "end": 5827.36, + "probability": 0.928 + }, + { + "start": 5827.96, + "end": 5831.36, + "probability": 0.6328 + }, + { + "start": 5832.06, + "end": 5834.74, + "probability": 0.8423 + }, + { + "start": 5836.02, + "end": 5837.58, + "probability": 0.8926 + }, + { + "start": 5838.18, + "end": 5839.64, + "probability": 0.9756 + }, + { + "start": 5840.34, + "end": 5841.82, + "probability": 0.9059 + }, + { + "start": 5843.56, + "end": 5844.98, + "probability": 0.9385 + }, + { + "start": 5845.54, + "end": 5846.54, + "probability": 0.9492 + }, + { + "start": 5847.45, + "end": 5850.4, + "probability": 0.8698 + }, + { + "start": 5853.0, + "end": 5856.58, + "probability": 0.7137 + }, + { + "start": 5857.4, + "end": 5860.34, + "probability": 0.9341 + }, + { + "start": 5861.3, + "end": 5862.56, + "probability": 0.9553 + }, + { + "start": 5862.88, + "end": 5863.04, + "probability": 0.4794 + }, + { + "start": 5863.06, + "end": 5869.7, + "probability": 0.6937 + }, + { + "start": 5870.14, + "end": 5871.46, + "probability": 0.8446 + }, + { + "start": 5871.68, + "end": 5873.52, + "probability": 0.9108 + }, + { + "start": 5874.52, + "end": 5878.36, + "probability": 0.9798 + }, + { + "start": 5878.36, + "end": 5878.71, + "probability": 0.5698 + }, + { + "start": 5879.54, + "end": 5883.94, + "probability": 0.8306 + }, + { + "start": 5884.36, + "end": 5885.62, + "probability": 0.6798 + }, + { + "start": 5886.32, + "end": 5887.28, + "probability": 0.8944 + }, + { + "start": 5887.48, + "end": 5888.46, + "probability": 0.4707 + }, + { + "start": 5888.64, + "end": 5889.78, + "probability": 0.7609 + }, + { + "start": 5890.3, + "end": 5893.36, + "probability": 0.8091 + }, + { + "start": 5893.46, + "end": 5895.5, + "probability": 0.9779 + }, + { + "start": 5895.68, + "end": 5898.12, + "probability": 0.345 + }, + { + "start": 5899.18, + "end": 5900.76, + "probability": 0.6706 + }, + { + "start": 5902.08, + "end": 5903.28, + "probability": 0.8542 + }, + { + "start": 5903.94, + "end": 5906.96, + "probability": 0.8931 + }, + { + "start": 5907.08, + "end": 5909.14, + "probability": 0.9619 + }, + { + "start": 5910.22, + "end": 5917.04, + "probability": 0.6626 + }, + { + "start": 5917.16, + "end": 5919.8, + "probability": 0.9197 + }, + { + "start": 5920.3, + "end": 5921.86, + "probability": 0.9933 + }, + { + "start": 5922.18, + "end": 5923.67, + "probability": 0.4418 + }, + { + "start": 5925.28, + "end": 5928.22, + "probability": 0.8186 + }, + { + "start": 5929.12, + "end": 5930.88, + "probability": 0.733 + }, + { + "start": 5931.02, + "end": 5933.54, + "probability": 0.9058 + }, + { + "start": 5933.92, + "end": 5936.52, + "probability": 0.0883 + }, + { + "start": 5936.52, + "end": 5936.96, + "probability": 0.3759 + }, + { + "start": 5937.06, + "end": 5937.92, + "probability": 0.4128 + }, + { + "start": 5938.43, + "end": 5941.0, + "probability": 0.487 + }, + { + "start": 5941.5, + "end": 5944.64, + "probability": 0.5316 + }, + { + "start": 5945.26, + "end": 5946.22, + "probability": 0.8449 + }, + { + "start": 5946.36, + "end": 5947.41, + "probability": 0.7436 + }, + { + "start": 5948.02, + "end": 5948.52, + "probability": 0.0792 + }, + { + "start": 5949.2, + "end": 5950.02, + "probability": 0.6724 + }, + { + "start": 5950.68, + "end": 5952.76, + "probability": 0.5681 + }, + { + "start": 5953.12, + "end": 5954.24, + "probability": 0.7847 + }, + { + "start": 5954.72, + "end": 5956.83, + "probability": 0.7911 + }, + { + "start": 5957.22, + "end": 5958.98, + "probability": 0.9753 + }, + { + "start": 5959.12, + "end": 5960.06, + "probability": 0.9337 + }, + { + "start": 5960.16, + "end": 5960.7, + "probability": 0.9459 + }, + { + "start": 5961.38, + "end": 5964.17, + "probability": 0.9668 + }, + { + "start": 5964.88, + "end": 5965.76, + "probability": 0.5158 + }, + { + "start": 5966.44, + "end": 5968.76, + "probability": 0.9037 + }, + { + "start": 5970.28, + "end": 5972.16, + "probability": 0.7776 + }, + { + "start": 5972.26, + "end": 5980.3, + "probability": 0.9714 + }, + { + "start": 5980.98, + "end": 5984.78, + "probability": 0.9911 + }, + { + "start": 5985.52, + "end": 5990.3, + "probability": 0.7498 + }, + { + "start": 5991.16, + "end": 5995.46, + "probability": 0.8512 + }, + { + "start": 5995.98, + "end": 6000.37, + "probability": 0.9104 + }, + { + "start": 6001.72, + "end": 6006.9, + "probability": 0.8049 + }, + { + "start": 6007.26, + "end": 6012.02, + "probability": 0.8618 + }, + { + "start": 6012.86, + "end": 6014.62, + "probability": 0.9675 + }, + { + "start": 6015.3, + "end": 6015.4, + "probability": 0.483 + }, + { + "start": 6016.22, + "end": 6020.84, + "probability": 0.9885 + }, + { + "start": 6021.06, + "end": 6022.98, + "probability": 0.9629 + }, + { + "start": 6023.68, + "end": 6026.38, + "probability": 0.9885 + }, + { + "start": 6027.86, + "end": 6028.93, + "probability": 0.8934 + }, + { + "start": 6029.44, + "end": 6034.82, + "probability": 0.9867 + }, + { + "start": 6035.54, + "end": 6037.38, + "probability": 0.7438 + }, + { + "start": 6038.04, + "end": 6039.84, + "probability": 0.5366 + }, + { + "start": 6040.0, + "end": 6042.68, + "probability": 0.6535 + }, + { + "start": 6043.6, + "end": 6046.8, + "probability": 0.9193 + }, + { + "start": 6046.9, + "end": 6047.1, + "probability": 0.5043 + }, + { + "start": 6047.16, + "end": 6047.36, + "probability": 0.4047 + }, + { + "start": 6047.62, + "end": 6050.44, + "probability": 0.8721 + }, + { + "start": 6058.06, + "end": 6060.84, + "probability": 0.7736 + }, + { + "start": 6061.54, + "end": 6062.04, + "probability": 0.7279 + }, + { + "start": 6069.28, + "end": 6069.28, + "probability": 0.0568 + }, + { + "start": 6069.28, + "end": 6071.08, + "probability": 0.6702 + }, + { + "start": 6072.0, + "end": 6076.42, + "probability": 0.9671 + }, + { + "start": 6076.48, + "end": 6082.04, + "probability": 0.9909 + }, + { + "start": 6082.66, + "end": 6084.96, + "probability": 0.6696 + }, + { + "start": 6085.82, + "end": 6086.87, + "probability": 0.9197 + }, + { + "start": 6087.8, + "end": 6089.84, + "probability": 0.7633 + }, + { + "start": 6090.4, + "end": 6094.52, + "probability": 0.9921 + }, + { + "start": 6095.3, + "end": 6097.6, + "probability": 0.9927 + }, + { + "start": 6097.8, + "end": 6102.8, + "probability": 0.9268 + }, + { + "start": 6105.18, + "end": 6107.16, + "probability": 0.7775 + }, + { + "start": 6107.72, + "end": 6111.5, + "probability": 0.8494 + }, + { + "start": 6112.24, + "end": 6118.12, + "probability": 0.968 + }, + { + "start": 6118.54, + "end": 6118.98, + "probability": 0.5978 + }, + { + "start": 6120.22, + "end": 6122.62, + "probability": 0.9973 + }, + { + "start": 6123.32, + "end": 6127.44, + "probability": 0.925 + }, + { + "start": 6127.56, + "end": 6132.48, + "probability": 0.8749 + }, + { + "start": 6133.24, + "end": 6137.52, + "probability": 0.9351 + }, + { + "start": 6138.0, + "end": 6140.64, + "probability": 0.9722 + }, + { + "start": 6140.68, + "end": 6142.72, + "probability": 0.8832 + }, + { + "start": 6144.5, + "end": 6147.74, + "probability": 0.9433 + }, + { + "start": 6147.84, + "end": 6150.34, + "probability": 0.1831 + }, + { + "start": 6150.5, + "end": 6151.66, + "probability": 0.8904 + }, + { + "start": 6151.8, + "end": 6152.52, + "probability": 0.7337 + }, + { + "start": 6152.84, + "end": 6156.08, + "probability": 0.9419 + }, + { + "start": 6156.62, + "end": 6157.98, + "probability": 0.8272 + }, + { + "start": 6158.14, + "end": 6158.48, + "probability": 0.8212 + }, + { + "start": 6158.58, + "end": 6161.88, + "probability": 0.9937 + }, + { + "start": 6162.34, + "end": 6165.98, + "probability": 0.9937 + }, + { + "start": 6166.5, + "end": 6169.98, + "probability": 0.5874 + }, + { + "start": 6170.06, + "end": 6170.36, + "probability": 0.7378 + }, + { + "start": 6170.5, + "end": 6171.08, + "probability": 0.8603 + }, + { + "start": 6171.2, + "end": 6172.87, + "probability": 0.9739 + }, + { + "start": 6173.58, + "end": 6175.68, + "probability": 0.9058 + }, + { + "start": 6178.03, + "end": 6184.26, + "probability": 0.9088 + }, + { + "start": 6184.42, + "end": 6188.28, + "probability": 0.8221 + }, + { + "start": 6188.7, + "end": 6190.52, + "probability": 0.916 + }, + { + "start": 6190.58, + "end": 6193.74, + "probability": 0.8973 + }, + { + "start": 6194.74, + "end": 6197.22, + "probability": 0.9854 + }, + { + "start": 6197.7, + "end": 6199.74, + "probability": 0.8226 + }, + { + "start": 6200.06, + "end": 6204.44, + "probability": 0.8257 + }, + { + "start": 6204.68, + "end": 6208.36, + "probability": 0.555 + }, + { + "start": 6208.76, + "end": 6211.74, + "probability": 0.9326 + }, + { + "start": 6212.34, + "end": 6216.14, + "probability": 0.8419 + }, + { + "start": 6216.36, + "end": 6217.22, + "probability": 0.6974 + }, + { + "start": 6217.65, + "end": 6222.39, + "probability": 0.9771 + }, + { + "start": 6223.18, + "end": 6224.44, + "probability": 0.951 + }, + { + "start": 6224.68, + "end": 6227.2, + "probability": 0.953 + }, + { + "start": 6227.7, + "end": 6228.8, + "probability": 0.7741 + }, + { + "start": 6229.2, + "end": 6234.84, + "probability": 0.9681 + }, + { + "start": 6235.28, + "end": 6239.24, + "probability": 0.718 + }, + { + "start": 6240.0, + "end": 6241.28, + "probability": 0.7706 + }, + { + "start": 6242.32, + "end": 6244.46, + "probability": 0.9487 + }, + { + "start": 6244.86, + "end": 6247.5, + "probability": 0.9915 + }, + { + "start": 6247.52, + "end": 6249.88, + "probability": 0.9719 + }, + { + "start": 6250.24, + "end": 6253.02, + "probability": 0.9893 + }, + { + "start": 6253.16, + "end": 6256.08, + "probability": 0.9883 + }, + { + "start": 6256.56, + "end": 6256.78, + "probability": 0.6726 + }, + { + "start": 6257.3, + "end": 6258.0, + "probability": 0.6857 + }, + { + "start": 6258.7, + "end": 6260.24, + "probability": 0.749 + }, + { + "start": 6260.96, + "end": 6261.3, + "probability": 0.6039 + }, + { + "start": 6262.24, + "end": 6265.68, + "probability": 0.794 + }, + { + "start": 6266.78, + "end": 6271.36, + "probability": 0.1869 + }, + { + "start": 6272.04, + "end": 6273.88, + "probability": 0.9301 + }, + { + "start": 6274.44, + "end": 6277.7, + "probability": 0.7496 + }, + { + "start": 6277.92, + "end": 6281.12, + "probability": 0.6465 + }, + { + "start": 6281.18, + "end": 6281.74, + "probability": 0.5109 + }, + { + "start": 6281.84, + "end": 6282.44, + "probability": 0.6929 + }, + { + "start": 6282.52, + "end": 6283.22, + "probability": 0.6904 + }, + { + "start": 6283.54, + "end": 6284.94, + "probability": 0.7339 + }, + { + "start": 6309.48, + "end": 6311.08, + "probability": 0.1983 + }, + { + "start": 6313.22, + "end": 6319.1, + "probability": 0.0978 + }, + { + "start": 6319.26, + "end": 6321.2, + "probability": 0.1003 + }, + { + "start": 6321.58, + "end": 6322.28, + "probability": 0.0508 + }, + { + "start": 6331.98, + "end": 6332.72, + "probability": 0.0451 + }, + { + "start": 6332.86, + "end": 6333.1, + "probability": 0.0074 + }, + { + "start": 6333.88, + "end": 6334.66, + "probability": 0.3331 + }, + { + "start": 6336.2, + "end": 6338.38, + "probability": 0.085 + }, + { + "start": 6338.38, + "end": 6342.21, + "probability": 0.1991 + }, + { + "start": 6342.98, + "end": 6345.36, + "probability": 0.2318 + }, + { + "start": 6349.46, + "end": 6350.24, + "probability": 0.009 + }, + { + "start": 6350.24, + "end": 6354.02, + "probability": 0.044 + }, + { + "start": 6354.02, + "end": 6354.24, + "probability": 0.0322 + }, + { + "start": 6354.46, + "end": 6354.98, + "probability": 0.0826 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6355.0, + "end": 6355.0, + "probability": 0.0 + }, + { + "start": 6359.56, + "end": 6362.3, + "probability": 0.2582 + }, + { + "start": 6363.94, + "end": 6366.42, + "probability": 0.9242 + }, + { + "start": 6366.9, + "end": 6370.24, + "probability": 0.9178 + }, + { + "start": 6370.68, + "end": 6372.21, + "probability": 0.9946 + }, + { + "start": 6372.7, + "end": 6373.5, + "probability": 0.9515 + }, + { + "start": 6376.12, + "end": 6376.7, + "probability": 0.4813 + }, + { + "start": 6376.76, + "end": 6377.58, + "probability": 0.9207 + }, + { + "start": 6377.74, + "end": 6378.76, + "probability": 0.9289 + }, + { + "start": 6379.18, + "end": 6380.64, + "probability": 0.972 + }, + { + "start": 6380.7, + "end": 6381.72, + "probability": 0.9677 + }, + { + "start": 6382.66, + "end": 6385.42, + "probability": 0.7212 + }, + { + "start": 6386.04, + "end": 6386.34, + "probability": 0.2476 + }, + { + "start": 6386.42, + "end": 6389.08, + "probability": 0.6236 + }, + { + "start": 6389.22, + "end": 6390.02, + "probability": 0.7689 + }, + { + "start": 6390.48, + "end": 6393.28, + "probability": 0.9854 + }, + { + "start": 6393.7, + "end": 6399.24, + "probability": 0.9043 + }, + { + "start": 6399.24, + "end": 6402.8, + "probability": 0.9535 + }, + { + "start": 6403.44, + "end": 6404.34, + "probability": 0.8917 + }, + { + "start": 6404.9, + "end": 6408.92, + "probability": 0.8899 + }, + { + "start": 6409.48, + "end": 6411.16, + "probability": 0.9875 + }, + { + "start": 6411.9, + "end": 6416.34, + "probability": 0.9375 + }, + { + "start": 6416.5, + "end": 6421.1, + "probability": 0.9875 + }, + { + "start": 6421.68, + "end": 6424.3, + "probability": 0.9968 + }, + { + "start": 6427.5, + "end": 6433.42, + "probability": 0.8431 + }, + { + "start": 6434.0, + "end": 6435.66, + "probability": 0.8884 + }, + { + "start": 6435.88, + "end": 6436.82, + "probability": 0.7817 + }, + { + "start": 6437.39, + "end": 6441.4, + "probability": 0.9697 + }, + { + "start": 6441.42, + "end": 6442.72, + "probability": 0.9189 + }, + { + "start": 6443.26, + "end": 6444.58, + "probability": 0.9163 + }, + { + "start": 6445.38, + "end": 6448.72, + "probability": 0.5989 + }, + { + "start": 6448.9, + "end": 6449.92, + "probability": 0.9371 + }, + { + "start": 6450.8, + "end": 6452.43, + "probability": 0.6709 + }, + { + "start": 6452.8, + "end": 6454.86, + "probability": 0.6181 + }, + { + "start": 6455.5, + "end": 6455.9, + "probability": 0.8513 + }, + { + "start": 6456.64, + "end": 6460.0, + "probability": 0.7422 + }, + { + "start": 6460.54, + "end": 6464.02, + "probability": 0.8408 + }, + { + "start": 6464.7, + "end": 6467.54, + "probability": 0.9937 + }, + { + "start": 6468.88, + "end": 6470.5, + "probability": 0.6088 + }, + { + "start": 6471.22, + "end": 6471.98, + "probability": 0.7049 + }, + { + "start": 6472.56, + "end": 6475.42, + "probability": 0.6865 + }, + { + "start": 6476.24, + "end": 6482.54, + "probability": 0.9939 + }, + { + "start": 6483.56, + "end": 6484.86, + "probability": 0.7964 + }, + { + "start": 6485.75, + "end": 6488.84, + "probability": 0.8672 + }, + { + "start": 6489.12, + "end": 6490.04, + "probability": 0.7842 + }, + { + "start": 6491.82, + "end": 6497.86, + "probability": 0.989 + }, + { + "start": 6497.86, + "end": 6505.74, + "probability": 0.983 + }, + { + "start": 6507.9, + "end": 6510.26, + "probability": 0.9777 + }, + { + "start": 6511.04, + "end": 6512.26, + "probability": 0.9299 + }, + { + "start": 6513.26, + "end": 6516.34, + "probability": 0.9863 + }, + { + "start": 6517.0, + "end": 6517.14, + "probability": 0.3928 + }, + { + "start": 6517.22, + "end": 6518.5, + "probability": 0.7483 + }, + { + "start": 6518.84, + "end": 6519.3, + "probability": 0.94 + }, + { + "start": 6519.64, + "end": 6519.96, + "probability": 0.8239 + }, + { + "start": 6520.44, + "end": 6520.86, + "probability": 0.5693 + }, + { + "start": 6521.26, + "end": 6523.74, + "probability": 0.7815 + }, + { + "start": 6524.44, + "end": 6530.5, + "probability": 0.9959 + }, + { + "start": 6530.94, + "end": 6532.46, + "probability": 0.9917 + }, + { + "start": 6532.56, + "end": 6533.88, + "probability": 0.9902 + }, + { + "start": 6534.78, + "end": 6535.8, + "probability": 0.915 + }, + { + "start": 6537.1, + "end": 6538.04, + "probability": 0.9869 + }, + { + "start": 6538.28, + "end": 6538.9, + "probability": 0.7932 + }, + { + "start": 6539.78, + "end": 6541.48, + "probability": 0.9004 + }, + { + "start": 6542.18, + "end": 6544.04, + "probability": 0.9312 + }, + { + "start": 6544.16, + "end": 6545.17, + "probability": 0.981 + }, + { + "start": 6545.62, + "end": 6546.95, + "probability": 0.9731 + }, + { + "start": 6547.88, + "end": 6550.46, + "probability": 0.9774 + }, + { + "start": 6551.22, + "end": 6553.26, + "probability": 0.9934 + }, + { + "start": 6553.86, + "end": 6555.66, + "probability": 0.9484 + }, + { + "start": 6556.94, + "end": 6560.82, + "probability": 0.9935 + }, + { + "start": 6561.4, + "end": 6562.52, + "probability": 0.9339 + }, + { + "start": 6562.66, + "end": 6563.72, + "probability": 0.9914 + }, + { + "start": 6563.76, + "end": 6564.87, + "probability": 0.9939 + }, + { + "start": 6565.48, + "end": 6566.86, + "probability": 0.9967 + }, + { + "start": 6567.3, + "end": 6570.0, + "probability": 0.9985 + }, + { + "start": 6572.44, + "end": 6575.52, + "probability": 0.9846 + }, + { + "start": 6575.52, + "end": 6576.9, + "probability": 0.2139 + }, + { + "start": 6576.9, + "end": 6582.45, + "probability": 0.9946 + }, + { + "start": 6583.8, + "end": 6584.04, + "probability": 0.7173 + }, + { + "start": 6585.18, + "end": 6589.8, + "probability": 0.9718 + }, + { + "start": 6589.96, + "end": 6590.66, + "probability": 0.9535 + }, + { + "start": 6590.84, + "end": 6592.92, + "probability": 0.7966 + }, + { + "start": 6593.8, + "end": 6599.52, + "probability": 0.9888 + }, + { + "start": 6600.34, + "end": 6603.16, + "probability": 0.9964 + }, + { + "start": 6604.5, + "end": 6605.77, + "probability": 0.9976 + }, + { + "start": 6610.08, + "end": 6611.1, + "probability": 0.9911 + }, + { + "start": 6612.06, + "end": 6618.4, + "probability": 0.9991 + }, + { + "start": 6620.66, + "end": 6622.82, + "probability": 0.8113 + }, + { + "start": 6623.78, + "end": 6627.16, + "probability": 0.9457 + }, + { + "start": 6627.54, + "end": 6629.92, + "probability": 0.9957 + }, + { + "start": 6629.98, + "end": 6631.12, + "probability": 0.9625 + }, + { + "start": 6632.1, + "end": 6633.9, + "probability": 0.8735 + }, + { + "start": 6635.16, + "end": 6637.0, + "probability": 0.9159 + }, + { + "start": 6638.02, + "end": 6639.14, + "probability": 0.8856 + }, + { + "start": 6639.8, + "end": 6642.84, + "probability": 0.9912 + }, + { + "start": 6642.84, + "end": 6646.2, + "probability": 0.9822 + }, + { + "start": 6647.02, + "end": 6649.68, + "probability": 0.9734 + }, + { + "start": 6650.32, + "end": 6652.98, + "probability": 0.9507 + }, + { + "start": 6654.04, + "end": 6660.26, + "probability": 0.9578 + }, + { + "start": 6660.92, + "end": 6666.22, + "probability": 0.9812 + }, + { + "start": 6666.76, + "end": 6667.5, + "probability": 0.7479 + }, + { + "start": 6668.18, + "end": 6671.78, + "probability": 0.9954 + }, + { + "start": 6672.3, + "end": 6673.66, + "probability": 0.916 + }, + { + "start": 6674.04, + "end": 6674.92, + "probability": 0.7804 + }, + { + "start": 6675.32, + "end": 6678.88, + "probability": 0.9948 + }, + { + "start": 6679.22, + "end": 6680.7, + "probability": 0.9702 + }, + { + "start": 6680.78, + "end": 6685.82, + "probability": 0.9974 + }, + { + "start": 6686.8, + "end": 6690.46, + "probability": 0.9972 + }, + { + "start": 6691.2, + "end": 6692.82, + "probability": 0.9402 + }, + { + "start": 6692.9, + "end": 6693.16, + "probability": 0.7351 + }, + { + "start": 6693.42, + "end": 6695.24, + "probability": 0.9902 + }, + { + "start": 6696.38, + "end": 6698.58, + "probability": 0.9993 + }, + { + "start": 6699.8, + "end": 6701.44, + "probability": 0.8526 + }, + { + "start": 6701.92, + "end": 6704.46, + "probability": 0.9722 + }, + { + "start": 6704.72, + "end": 6705.34, + "probability": 0.8515 + }, + { + "start": 6705.42, + "end": 6706.04, + "probability": 0.4732 + }, + { + "start": 6706.04, + "end": 6706.94, + "probability": 0.9191 + }, + { + "start": 6707.98, + "end": 6712.22, + "probability": 0.7473 + }, + { + "start": 6712.32, + "end": 6712.58, + "probability": 0.7561 + }, + { + "start": 6713.34, + "end": 6713.58, + "probability": 0.3946 + }, + { + "start": 6713.6, + "end": 6715.4, + "probability": 0.85 + }, + { + "start": 6715.66, + "end": 6716.26, + "probability": 0.71 + }, + { + "start": 6716.42, + "end": 6718.38, + "probability": 0.9619 + }, + { + "start": 6719.58, + "end": 6720.54, + "probability": 0.8965 + }, + { + "start": 6721.58, + "end": 6722.44, + "probability": 0.7504 + }, + { + "start": 6723.34, + "end": 6725.04, + "probability": 0.8159 + }, + { + "start": 6725.12, + "end": 6726.48, + "probability": 0.9879 + }, + { + "start": 6726.8, + "end": 6728.38, + "probability": 0.793 + }, + { + "start": 6728.84, + "end": 6730.32, + "probability": 0.8845 + }, + { + "start": 6730.4, + "end": 6731.62, + "probability": 0.9732 + }, + { + "start": 6731.72, + "end": 6733.14, + "probability": 0.9045 + }, + { + "start": 6733.78, + "end": 6736.88, + "probability": 0.9984 + }, + { + "start": 6737.48, + "end": 6739.93, + "probability": 0.9897 + }, + { + "start": 6740.54, + "end": 6742.64, + "probability": 0.9972 + }, + { + "start": 6742.7, + "end": 6745.44, + "probability": 0.5629 + }, + { + "start": 6746.78, + "end": 6749.6, + "probability": 0.9927 + }, + { + "start": 6749.78, + "end": 6750.84, + "probability": 0.9061 + }, + { + "start": 6751.64, + "end": 6754.3, + "probability": 0.9936 + }, + { + "start": 6755.6, + "end": 6757.12, + "probability": 0.996 + }, + { + "start": 6759.22, + "end": 6760.84, + "probability": 0.7956 + }, + { + "start": 6761.4, + "end": 6764.52, + "probability": 0.9491 + }, + { + "start": 6765.06, + "end": 6766.18, + "probability": 0.9358 + }, + { + "start": 6766.68, + "end": 6769.0, + "probability": 0.9665 + }, + { + "start": 6769.76, + "end": 6774.56, + "probability": 0.9742 + }, + { + "start": 6776.3, + "end": 6776.42, + "probability": 0.2651 + }, + { + "start": 6776.42, + "end": 6776.48, + "probability": 0.0713 + }, + { + "start": 6776.48, + "end": 6777.4, + "probability": 0.8765 + }, + { + "start": 6777.6, + "end": 6778.44, + "probability": 0.6295 + }, + { + "start": 6778.54, + "end": 6779.0, + "probability": 0.649 + }, + { + "start": 6779.66, + "end": 6782.54, + "probability": 0.9609 + }, + { + "start": 6783.14, + "end": 6784.44, + "probability": 0.7042 + }, + { + "start": 6785.1, + "end": 6786.74, + "probability": 0.863 + }, + { + "start": 6786.84, + "end": 6787.84, + "probability": 0.804 + }, + { + "start": 6787.84, + "end": 6790.56, + "probability": 0.7334 + }, + { + "start": 6790.56, + "end": 6792.66, + "probability": 0.9142 + }, + { + "start": 6794.92, + "end": 6796.44, + "probability": 0.9607 + }, + { + "start": 6797.08, + "end": 6797.9, + "probability": 0.5135 + }, + { + "start": 6798.86, + "end": 6799.58, + "probability": 0.572 + }, + { + "start": 6802.12, + "end": 6804.34, + "probability": 0.9904 + }, + { + "start": 6804.5, + "end": 6805.9, + "probability": 0.896 + }, + { + "start": 6806.88, + "end": 6809.54, + "probability": 0.9166 + }, + { + "start": 6809.66, + "end": 6809.92, + "probability": 0.7858 + }, + { + "start": 6810.24, + "end": 6811.5, + "probability": 0.7759 + }, + { + "start": 6812.12, + "end": 6813.44, + "probability": 0.9692 + }, + { + "start": 6813.6, + "end": 6814.86, + "probability": 0.971 + }, + { + "start": 6815.18, + "end": 6815.92, + "probability": 0.927 + }, + { + "start": 6816.08, + "end": 6817.14, + "probability": 0.9855 + }, + { + "start": 6817.32, + "end": 6817.78, + "probability": 0.9709 + }, + { + "start": 6818.16, + "end": 6818.66, + "probability": 0.418 + }, + { + "start": 6818.76, + "end": 6821.62, + "probability": 0.8364 + }, + { + "start": 6822.08, + "end": 6822.88, + "probability": 0.9766 + }, + { + "start": 6822.98, + "end": 6823.88, + "probability": 0.7731 + }, + { + "start": 6824.2, + "end": 6827.56, + "probability": 0.9147 + }, + { + "start": 6828.04, + "end": 6830.2, + "probability": 0.7029 + }, + { + "start": 6830.38, + "end": 6831.6, + "probability": 0.684 + }, + { + "start": 6832.62, + "end": 6834.72, + "probability": 0.9083 + }, + { + "start": 6835.32, + "end": 6838.68, + "probability": 0.7994 + }, + { + "start": 6839.22, + "end": 6840.1, + "probability": 0.9816 + }, + { + "start": 6840.22, + "end": 6840.94, + "probability": 0.9456 + }, + { + "start": 6841.18, + "end": 6842.02, + "probability": 0.9865 + }, + { + "start": 6842.1, + "end": 6843.0, + "probability": 0.9921 + }, + { + "start": 6843.56, + "end": 6844.37, + "probability": 0.9779 + }, + { + "start": 6845.28, + "end": 6846.68, + "probability": 0.4782 + }, + { + "start": 6847.68, + "end": 6850.96, + "probability": 0.8975 + }, + { + "start": 6852.2, + "end": 6854.08, + "probability": 0.9992 + }, + { + "start": 6854.24, + "end": 6855.2, + "probability": 0.9719 + }, + { + "start": 6855.3, + "end": 6855.92, + "probability": 0.8672 + }, + { + "start": 6856.0, + "end": 6856.98, + "probability": 0.9358 + }, + { + "start": 6857.48, + "end": 6859.96, + "probability": 0.996 + }, + { + "start": 6860.56, + "end": 6865.68, + "probability": 0.9912 + }, + { + "start": 6865.68, + "end": 6870.4, + "probability": 0.9988 + }, + { + "start": 6871.9, + "end": 6873.36, + "probability": 0.714 + }, + { + "start": 6873.42, + "end": 6873.66, + "probability": 0.7849 + }, + { + "start": 6873.76, + "end": 6874.84, + "probability": 0.9207 + }, + { + "start": 6875.12, + "end": 6876.52, + "probability": 0.5911 + }, + { + "start": 6876.64, + "end": 6878.08, + "probability": 0.9531 + }, + { + "start": 6878.22, + "end": 6878.81, + "probability": 0.6732 + }, + { + "start": 6879.48, + "end": 6880.84, + "probability": 0.9526 + }, + { + "start": 6880.86, + "end": 6882.8, + "probability": 0.823 + }, + { + "start": 6884.78, + "end": 6885.12, + "probability": 0.4733 + }, + { + "start": 6885.34, + "end": 6885.68, + "probability": 0.7469 + }, + { + "start": 6885.82, + "end": 6892.02, + "probability": 0.9813 + }, + { + "start": 6893.26, + "end": 6896.52, + "probability": 0.9881 + }, + { + "start": 6897.06, + "end": 6897.52, + "probability": 0.9062 + }, + { + "start": 6898.94, + "end": 6899.96, + "probability": 0.9821 + }, + { + "start": 6900.12, + "end": 6901.14, + "probability": 0.9575 + }, + { + "start": 6901.28, + "end": 6901.98, + "probability": 0.9133 + }, + { + "start": 6902.22, + "end": 6903.02, + "probability": 0.5214 + }, + { + "start": 6903.12, + "end": 6905.1, + "probability": 0.8194 + }, + { + "start": 6905.32, + "end": 6905.88, + "probability": 0.7512 + }, + { + "start": 6906.48, + "end": 6910.56, + "probability": 0.929 + }, + { + "start": 6912.02, + "end": 6912.9, + "probability": 0.9525 + }, + { + "start": 6914.08, + "end": 6915.6, + "probability": 0.9813 + }, + { + "start": 6916.24, + "end": 6919.58, + "probability": 0.839 + }, + { + "start": 6920.58, + "end": 6920.96, + "probability": 0.8228 + }, + { + "start": 6921.76, + "end": 6922.94, + "probability": 0.6522 + }, + { + "start": 6924.76, + "end": 6927.6, + "probability": 0.9 + }, + { + "start": 6928.44, + "end": 6931.76, + "probability": 0.9603 + }, + { + "start": 6932.48, + "end": 6933.3, + "probability": 0.7238 + }, + { + "start": 6933.96, + "end": 6937.32, + "probability": 0.9797 + }, + { + "start": 6938.66, + "end": 6939.94, + "probability": 0.9915 + }, + { + "start": 6940.12, + "end": 6940.48, + "probability": 0.8077 + }, + { + "start": 6940.94, + "end": 6944.56, + "probability": 0.9917 + }, + { + "start": 6945.54, + "end": 6945.78, + "probability": 0.8367 + }, + { + "start": 6945.88, + "end": 6947.84, + "probability": 0.9263 + }, + { + "start": 6947.88, + "end": 6948.32, + "probability": 0.8884 + }, + { + "start": 6948.38, + "end": 6948.64, + "probability": 0.7929 + }, + { + "start": 6948.66, + "end": 6951.82, + "probability": 0.9961 + }, + { + "start": 6951.82, + "end": 6955.04, + "probability": 0.999 + }, + { + "start": 6956.2, + "end": 6958.38, + "probability": 0.9156 + }, + { + "start": 6959.56, + "end": 6961.36, + "probability": 0.999 + }, + { + "start": 6961.86, + "end": 6962.92, + "probability": 0.9785 + }, + { + "start": 6964.44, + "end": 6965.4, + "probability": 0.6635 + }, + { + "start": 6966.04, + "end": 6967.38, + "probability": 0.9111 + }, + { + "start": 6967.98, + "end": 6971.4, + "probability": 0.9458 + }, + { + "start": 6971.5, + "end": 6971.9, + "probability": 0.6302 + }, + { + "start": 6972.18, + "end": 6974.86, + "probability": 0.8497 + }, + { + "start": 6975.38, + "end": 6975.86, + "probability": 0.7454 + }, + { + "start": 6975.88, + "end": 6976.74, + "probability": 0.5022 + }, + { + "start": 6977.8, + "end": 6979.0, + "probability": 0.8835 + }, + { + "start": 6979.38, + "end": 6979.77, + "probability": 0.7979 + }, + { + "start": 6980.44, + "end": 6984.76, + "probability": 0.8575 + }, + { + "start": 6985.22, + "end": 6987.78, + "probability": 0.921 + }, + { + "start": 6988.5, + "end": 6991.14, + "probability": 0.9575 + }, + { + "start": 6992.06, + "end": 6996.2, + "probability": 0.9884 + }, + { + "start": 6996.26, + "end": 7000.7, + "probability": 0.9865 + }, + { + "start": 7000.96, + "end": 7004.52, + "probability": 0.9757 + }, + { + "start": 7005.08, + "end": 7008.2, + "probability": 0.8061 + }, + { + "start": 7008.62, + "end": 7013.96, + "probability": 0.9516 + }, + { + "start": 7014.72, + "end": 7016.3, + "probability": 0.9541 + }, + { + "start": 7016.98, + "end": 7019.06, + "probability": 0.9496 + }, + { + "start": 7019.88, + "end": 7020.64, + "probability": 0.7455 + }, + { + "start": 7021.4, + "end": 7023.98, + "probability": 0.9427 + }, + { + "start": 7024.12, + "end": 7026.5, + "probability": 0.9299 + }, + { + "start": 7028.02, + "end": 7031.8, + "probability": 0.9548 + }, + { + "start": 7032.42, + "end": 7037.18, + "probability": 0.9892 + }, + { + "start": 7037.98, + "end": 7041.8, + "probability": 0.9149 + }, + { + "start": 7042.42, + "end": 7043.78, + "probability": 0.6011 + }, + { + "start": 7045.32, + "end": 7046.12, + "probability": 0.8566 + }, + { + "start": 7046.8, + "end": 7049.92, + "probability": 0.9671 + }, + { + "start": 7051.08, + "end": 7052.26, + "probability": 0.7651 + }, + { + "start": 7053.34, + "end": 7054.16, + "probability": 0.947 + }, + { + "start": 7054.92, + "end": 7056.08, + "probability": 0.9346 + }, + { + "start": 7056.74, + "end": 7060.64, + "probability": 0.8992 + }, + { + "start": 7061.3, + "end": 7064.88, + "probability": 0.9853 + }, + { + "start": 7065.48, + "end": 7066.48, + "probability": 0.9443 + }, + { + "start": 7067.34, + "end": 7068.96, + "probability": 0.9253 + }, + { + "start": 7070.0, + "end": 7071.82, + "probability": 0.9679 + }, + { + "start": 7072.4, + "end": 7075.82, + "probability": 0.9867 + }, + { + "start": 7076.66, + "end": 7081.61, + "probability": 0.9816 + }, + { + "start": 7082.74, + "end": 7083.8, + "probability": 0.9407 + }, + { + "start": 7084.26, + "end": 7088.18, + "probability": 0.9708 + }, + { + "start": 7088.54, + "end": 7089.72, + "probability": 0.5331 + }, + { + "start": 7090.6, + "end": 7093.36, + "probability": 0.9978 + }, + { + "start": 7093.74, + "end": 7094.04, + "probability": 0.2698 + }, + { + "start": 7094.04, + "end": 7094.24, + "probability": 0.4496 + }, + { + "start": 7094.26, + "end": 7096.24, + "probability": 0.7198 + }, + { + "start": 7096.58, + "end": 7098.92, + "probability": 0.908 + }, + { + "start": 7102.34, + "end": 7105.24, + "probability": 0.9408 + }, + { + "start": 7106.06, + "end": 7106.34, + "probability": 0.3203 + }, + { + "start": 7106.56, + "end": 7107.38, + "probability": 0.4883 + }, + { + "start": 7108.28, + "end": 7109.84, + "probability": 0.8074 + }, + { + "start": 7110.88, + "end": 7112.56, + "probability": 0.1096 + }, + { + "start": 7112.66, + "end": 7113.14, + "probability": 0.5004 + }, + { + "start": 7113.4, + "end": 7114.16, + "probability": 0.2701 + }, + { + "start": 7115.36, + "end": 7117.74, + "probability": 0.7182 + }, + { + "start": 7118.3, + "end": 7121.26, + "probability": 0.8715 + }, + { + "start": 7122.36, + "end": 7127.48, + "probability": 0.8889 + }, + { + "start": 7128.14, + "end": 7129.6, + "probability": 0.7144 + }, + { + "start": 7129.82, + "end": 7130.86, + "probability": 0.6504 + }, + { + "start": 7130.92, + "end": 7131.76, + "probability": 0.625 + }, + { + "start": 7132.12, + "end": 7132.42, + "probability": 0.825 + }, + { + "start": 7132.68, + "end": 7132.92, + "probability": 0.1036 + }, + { + "start": 7132.94, + "end": 7136.24, + "probability": 0.98 + }, + { + "start": 7136.24, + "end": 7138.98, + "probability": 0.9248 + }, + { + "start": 7140.68, + "end": 7141.44, + "probability": 0.7539 + }, + { + "start": 7142.06, + "end": 7143.74, + "probability": 0.929 + }, + { + "start": 7143.86, + "end": 7144.88, + "probability": 0.9728 + }, + { + "start": 7145.12, + "end": 7147.34, + "probability": 0.8466 + }, + { + "start": 7147.46, + "end": 7149.72, + "probability": 0.8326 + }, + { + "start": 7150.12, + "end": 7153.82, + "probability": 0.9661 + }, + { + "start": 7154.74, + "end": 7157.34, + "probability": 0.9751 + }, + { + "start": 7157.92, + "end": 7160.38, + "probability": 0.8579 + }, + { + "start": 7160.98, + "end": 7161.88, + "probability": 0.6815 + }, + { + "start": 7162.34, + "end": 7165.62, + "probability": 0.9607 + }, + { + "start": 7167.14, + "end": 7168.44, + "probability": 0.9397 + }, + { + "start": 7169.06, + "end": 7170.98, + "probability": 0.0498 + }, + { + "start": 7173.68, + "end": 7174.74, + "probability": 0.1937 + }, + { + "start": 7175.26, + "end": 7179.04, + "probability": 0.2463 + }, + { + "start": 7179.04, + "end": 7179.16, + "probability": 0.085 + }, + { + "start": 7179.16, + "end": 7181.16, + "probability": 0.9211 + }, + { + "start": 7182.38, + "end": 7182.7, + "probability": 0.7365 + }, + { + "start": 7182.8, + "end": 7183.86, + "probability": 0.6331 + }, + { + "start": 7184.04, + "end": 7187.46, + "probability": 0.9241 + }, + { + "start": 7187.5, + "end": 7189.62, + "probability": 0.9666 + }, + { + "start": 7191.24, + "end": 7194.42, + "probability": 0.9371 + }, + { + "start": 7194.42, + "end": 7196.84, + "probability": 0.9283 + }, + { + "start": 7197.38, + "end": 7199.14, + "probability": 0.7814 + }, + { + "start": 7199.3, + "end": 7202.24, + "probability": 0.9243 + }, + { + "start": 7202.8, + "end": 7205.12, + "probability": 0.9199 + }, + { + "start": 7205.38, + "end": 7208.08, + "probability": 0.9751 + }, + { + "start": 7208.58, + "end": 7213.86, + "probability": 0.9884 + }, + { + "start": 7213.88, + "end": 7219.86, + "probability": 0.8596 + }, + { + "start": 7220.42, + "end": 7222.68, + "probability": 0.8173 + }, + { + "start": 7223.12, + "end": 7226.0, + "probability": 0.7471 + }, + { + "start": 7226.04, + "end": 7228.88, + "probability": 0.9811 + }, + { + "start": 7229.38, + "end": 7233.46, + "probability": 0.8991 + }, + { + "start": 7234.56, + "end": 7235.2, + "probability": 0.1618 + }, + { + "start": 7235.32, + "end": 7238.62, + "probability": 0.9799 + }, + { + "start": 7238.62, + "end": 7244.48, + "probability": 0.7378 + }, + { + "start": 7244.48, + "end": 7248.66, + "probability": 0.9044 + }, + { + "start": 7249.32, + "end": 7252.7, + "probability": 0.9609 + }, + { + "start": 7253.2, + "end": 7254.5, + "probability": 0.9569 + }, + { + "start": 7255.18, + "end": 7257.08, + "probability": 0.9075 + }, + { + "start": 7257.72, + "end": 7258.98, + "probability": 0.6036 + }, + { + "start": 7260.06, + "end": 7261.57, + "probability": 0.7708 + }, + { + "start": 7263.32, + "end": 7268.48, + "probability": 0.9849 + }, + { + "start": 7269.92, + "end": 7270.8, + "probability": 0.9328 + }, + { + "start": 7271.52, + "end": 7272.61, + "probability": 0.9159 + }, + { + "start": 7273.82, + "end": 7274.42, + "probability": 0.438 + }, + { + "start": 7275.68, + "end": 7276.78, + "probability": 0.7456 + }, + { + "start": 7278.18, + "end": 7279.06, + "probability": 0.9024 + }, + { + "start": 7279.68, + "end": 7280.48, + "probability": 0.7397 + }, + { + "start": 7284.36, + "end": 7285.12, + "probability": 0.9492 + }, + { + "start": 7286.4, + "end": 7289.08, + "probability": 0.9228 + }, + { + "start": 7289.86, + "end": 7290.78, + "probability": 0.0994 + }, + { + "start": 7291.18, + "end": 7292.26, + "probability": 0.1228 + }, + { + "start": 7292.58, + "end": 7295.32, + "probability": 0.7922 + }, + { + "start": 7295.84, + "end": 7297.58, + "probability": 0.2318 + }, + { + "start": 7297.58, + "end": 7298.56, + "probability": 0.5799 + }, + { + "start": 7299.02, + "end": 7299.04, + "probability": 0.0117 + }, + { + "start": 7299.04, + "end": 7299.04, + "probability": 0.2799 + }, + { + "start": 7299.14, + "end": 7303.8, + "probability": 0.7754 + }, + { + "start": 7303.8, + "end": 7303.8, + "probability": 0.5782 + }, + { + "start": 7303.8, + "end": 7304.08, + "probability": 0.7087 + }, + { + "start": 7304.2, + "end": 7305.04, + "probability": 0.8181 + }, + { + "start": 7305.12, + "end": 7307.18, + "probability": 0.9023 + }, + { + "start": 7307.52, + "end": 7308.4, + "probability": 0.3336 + }, + { + "start": 7308.53, + "end": 7310.92, + "probability": 0.736 + }, + { + "start": 7311.22, + "end": 7311.88, + "probability": 0.4969 + }, + { + "start": 7311.88, + "end": 7313.36, + "probability": 0.7374 + }, + { + "start": 7314.54, + "end": 7315.94, + "probability": 0.2521 + }, + { + "start": 7316.4, + "end": 7319.16, + "probability": 0.9004 + }, + { + "start": 7320.66, + "end": 7320.68, + "probability": 0.0811 + }, + { + "start": 7320.68, + "end": 7321.6, + "probability": 0.8123 + }, + { + "start": 7321.68, + "end": 7322.14, + "probability": 0.9244 + }, + { + "start": 7322.24, + "end": 7325.12, + "probability": 0.946 + }, + { + "start": 7325.18, + "end": 7326.84, + "probability": 0.7049 + }, + { + "start": 7327.28, + "end": 7331.48, + "probability": 0.9785 + }, + { + "start": 7331.48, + "end": 7335.82, + "probability": 0.91 + }, + { + "start": 7336.66, + "end": 7338.0, + "probability": 0.7874 + }, + { + "start": 7338.9, + "end": 7342.92, + "probability": 0.9919 + }, + { + "start": 7343.78, + "end": 7346.12, + "probability": 0.231 + }, + { + "start": 7346.42, + "end": 7348.0, + "probability": 0.6139 + }, + { + "start": 7348.72, + "end": 7349.9, + "probability": 0.9178 + }, + { + "start": 7350.1, + "end": 7350.92, + "probability": 0.2769 + }, + { + "start": 7351.8, + "end": 7353.56, + "probability": 0.8291 + }, + { + "start": 7354.98, + "end": 7356.68, + "probability": 0.5619 + }, + { + "start": 7356.74, + "end": 7360.1, + "probability": 0.6847 + }, + { + "start": 7360.6, + "end": 7362.24, + "probability": 0.477 + }, + { + "start": 7363.7, + "end": 7367.34, + "probability": 0.833 + }, + { + "start": 7370.12, + "end": 7372.94, + "probability": 0.7039 + }, + { + "start": 7374.5, + "end": 7378.02, + "probability": 0.9473 + }, + { + "start": 7379.54, + "end": 7380.76, + "probability": 0.9547 + }, + { + "start": 7382.0, + "end": 7382.66, + "probability": 0.9484 + }, + { + "start": 7383.32, + "end": 7384.54, + "probability": 0.6501 + }, + { + "start": 7385.42, + "end": 7386.68, + "probability": 0.991 + }, + { + "start": 7388.16, + "end": 7390.62, + "probability": 0.7431 + }, + { + "start": 7392.16, + "end": 7394.96, + "probability": 0.7842 + }, + { + "start": 7396.04, + "end": 7398.48, + "probability": 0.6809 + }, + { + "start": 7399.2, + "end": 7400.05, + "probability": 0.9321 + }, + { + "start": 7402.1, + "end": 7407.26, + "probability": 0.8497 + }, + { + "start": 7408.02, + "end": 7410.3, + "probability": 0.5792 + }, + { + "start": 7410.74, + "end": 7411.4, + "probability": 0.9229 + }, + { + "start": 7412.24, + "end": 7413.2, + "probability": 0.9485 + }, + { + "start": 7413.96, + "end": 7415.9, + "probability": 0.6719 + }, + { + "start": 7416.64, + "end": 7418.4, + "probability": 0.7924 + }, + { + "start": 7419.6, + "end": 7420.26, + "probability": 0.7032 + }, + { + "start": 7420.36, + "end": 7420.81, + "probability": 0.9818 + }, + { + "start": 7421.32, + "end": 7421.76, + "probability": 0.797 + }, + { + "start": 7423.06, + "end": 7424.54, + "probability": 0.817 + }, + { + "start": 7425.9, + "end": 7427.68, + "probability": 0.7581 + }, + { + "start": 7427.72, + "end": 7428.94, + "probability": 0.8726 + }, + { + "start": 7429.58, + "end": 7431.08, + "probability": 0.9855 + }, + { + "start": 7431.42, + "end": 7431.68, + "probability": 0.798 + }, + { + "start": 7432.5, + "end": 7435.3, + "probability": 0.8285 + }, + { + "start": 7437.02, + "end": 7438.04, + "probability": 0.8685 + }, + { + "start": 7439.54, + "end": 7444.28, + "probability": 0.7474 + }, + { + "start": 7445.96, + "end": 7446.92, + "probability": 0.77 + }, + { + "start": 7448.38, + "end": 7450.66, + "probability": 0.7736 + }, + { + "start": 7452.92, + "end": 7454.24, + "probability": 0.9539 + }, + { + "start": 7454.66, + "end": 7455.82, + "probability": 0.709 + }, + { + "start": 7456.28, + "end": 7457.68, + "probability": 0.7134 + }, + { + "start": 7457.74, + "end": 7459.32, + "probability": 0.9702 + }, + { + "start": 7459.38, + "end": 7459.9, + "probability": 0.8395 + }, + { + "start": 7461.08, + "end": 7462.3, + "probability": 0.9518 + }, + { + "start": 7462.36, + "end": 7462.8, + "probability": 0.8685 + }, + { + "start": 7463.96, + "end": 7463.96, + "probability": 0.2162 + }, + { + "start": 7463.96, + "end": 7467.16, + "probability": 0.8182 + }, + { + "start": 7468.98, + "end": 7472.68, + "probability": 0.3071 + }, + { + "start": 7472.76, + "end": 7475.2, + "probability": 0.9513 + }, + { + "start": 7475.26, + "end": 7477.26, + "probability": 0.8387 + }, + { + "start": 7477.64, + "end": 7479.42, + "probability": 0.7387 + }, + { + "start": 7479.5, + "end": 7481.7, + "probability": 0.3184 + }, + { + "start": 7481.88, + "end": 7482.38, + "probability": 0.4995 + }, + { + "start": 7482.4, + "end": 7487.3, + "probability": 0.7411 + }, + { + "start": 7487.96, + "end": 7491.48, + "probability": 0.9868 + }, + { + "start": 7492.34, + "end": 7493.14, + "probability": 0.8204 + }, + { + "start": 7493.2, + "end": 7493.48, + "probability": 0.8537 + }, + { + "start": 7493.56, + "end": 7493.78, + "probability": 0.6635 + }, + { + "start": 7493.86, + "end": 7495.19, + "probability": 0.9868 + }, + { + "start": 7496.38, + "end": 7498.92, + "probability": 0.4783 + }, + { + "start": 7499.2, + "end": 7499.2, + "probability": 0.1618 + }, + { + "start": 7499.2, + "end": 7499.94, + "probability": 0.2006 + }, + { + "start": 7499.94, + "end": 7500.12, + "probability": 0.4014 + }, + { + "start": 7500.14, + "end": 7501.54, + "probability": 0.6078 + }, + { + "start": 7502.88, + "end": 7504.1, + "probability": 0.0549 + }, + { + "start": 7504.14, + "end": 7505.24, + "probability": 0.3445 + }, + { + "start": 7505.96, + "end": 7506.92, + "probability": 0.3199 + }, + { + "start": 7507.26, + "end": 7510.28, + "probability": 0.8447 + }, + { + "start": 7512.42, + "end": 7516.24, + "probability": 0.8724 + }, + { + "start": 7517.08, + "end": 7520.34, + "probability": 0.9825 + }, + { + "start": 7521.1, + "end": 7523.24, + "probability": 0.9279 + }, + { + "start": 7523.34, + "end": 7528.04, + "probability": 0.9703 + }, + { + "start": 7528.66, + "end": 7529.96, + "probability": 0.6292 + }, + { + "start": 7530.52, + "end": 7531.18, + "probability": 0.9919 + }, + { + "start": 7531.28, + "end": 7532.66, + "probability": 0.7135 + }, + { + "start": 7532.66, + "end": 7533.06, + "probability": 0.2715 + }, + { + "start": 7533.54, + "end": 7534.46, + "probability": 0.5687 + }, + { + "start": 7534.62, + "end": 7535.44, + "probability": 0.9775 + }, + { + "start": 7535.68, + "end": 7536.4, + "probability": 0.929 + }, + { + "start": 7536.6, + "end": 7538.6, + "probability": 0.9446 + }, + { + "start": 7539.16, + "end": 7539.76, + "probability": 0.7214 + }, + { + "start": 7539.9, + "end": 7540.12, + "probability": 0.8715 + }, + { + "start": 7540.22, + "end": 7541.4, + "probability": 0.9414 + }, + { + "start": 7541.64, + "end": 7542.17, + "probability": 0.5986 + }, + { + "start": 7542.3, + "end": 7543.04, + "probability": 0.8778 + }, + { + "start": 7543.74, + "end": 7544.86, + "probability": 0.6505 + }, + { + "start": 7545.76, + "end": 7547.7, + "probability": 0.9648 + }, + { + "start": 7548.28, + "end": 7550.5, + "probability": 0.8506 + }, + { + "start": 7550.6, + "end": 7553.08, + "probability": 0.9581 + }, + { + "start": 7553.62, + "end": 7555.2, + "probability": 0.9587 + }, + { + "start": 7555.34, + "end": 7556.76, + "probability": 0.9663 + }, + { + "start": 7557.5, + "end": 7559.0, + "probability": 0.999 + }, + { + "start": 7559.72, + "end": 7560.94, + "probability": 0.872 + }, + { + "start": 7561.24, + "end": 7563.44, + "probability": 0.939 + }, + { + "start": 7563.68, + "end": 7566.82, + "probability": 0.9817 + }, + { + "start": 7566.92, + "end": 7567.8, + "probability": 0.9587 + }, + { + "start": 7568.98, + "end": 7570.36, + "probability": 0.9988 + }, + { + "start": 7571.06, + "end": 7573.42, + "probability": 0.7632 + }, + { + "start": 7573.5, + "end": 7575.16, + "probability": 0.9413 + }, + { + "start": 7575.2, + "end": 7577.04, + "probability": 0.9793 + }, + { + "start": 7577.44, + "end": 7578.66, + "probability": 0.9719 + }, + { + "start": 7580.26, + "end": 7580.66, + "probability": 0.5878 + }, + { + "start": 7581.2, + "end": 7582.3, + "probability": 0.9429 + }, + { + "start": 7582.68, + "end": 7584.1, + "probability": 0.9768 + }, + { + "start": 7584.34, + "end": 7585.46, + "probability": 0.8523 + }, + { + "start": 7586.12, + "end": 7588.34, + "probability": 0.9922 + }, + { + "start": 7588.62, + "end": 7589.2, + "probability": 0.9744 + }, + { + "start": 7589.44, + "end": 7590.0, + "probability": 0.8343 + }, + { + "start": 7591.5, + "end": 7592.7, + "probability": 0.9928 + }, + { + "start": 7594.12, + "end": 7595.0, + "probability": 0.9399 + }, + { + "start": 7595.92, + "end": 7597.06, + "probability": 0.9138 + }, + { + "start": 7597.86, + "end": 7601.12, + "probability": 0.979 + }, + { + "start": 7602.02, + "end": 7602.82, + "probability": 0.8888 + }, + { + "start": 7602.9, + "end": 7603.6, + "probability": 0.771 + }, + { + "start": 7603.74, + "end": 7604.4, + "probability": 0.9303 + }, + { + "start": 7604.8, + "end": 7605.96, + "probability": 0.974 + }, + { + "start": 7606.0, + "end": 7606.86, + "probability": 0.8329 + }, + { + "start": 7606.92, + "end": 7607.6, + "probability": 0.8438 + }, + { + "start": 7608.0, + "end": 7609.64, + "probability": 0.9963 + }, + { + "start": 7611.26, + "end": 7613.42, + "probability": 0.8616 + }, + { + "start": 7614.0, + "end": 7616.86, + "probability": 0.9465 + }, + { + "start": 7617.92, + "end": 7618.84, + "probability": 0.9331 + }, + { + "start": 7620.0, + "end": 7620.84, + "probability": 0.8609 + }, + { + "start": 7622.52, + "end": 7623.74, + "probability": 0.9549 + }, + { + "start": 7625.34, + "end": 7626.22, + "probability": 0.2984 + }, + { + "start": 7626.76, + "end": 7628.2, + "probability": 0.8109 + }, + { + "start": 7631.04, + "end": 7633.9, + "probability": 0.9561 + }, + { + "start": 7635.0, + "end": 7638.2, + "probability": 0.995 + }, + { + "start": 7638.94, + "end": 7640.72, + "probability": 0.98 + }, + { + "start": 7641.42, + "end": 7644.42, + "probability": 0.9197 + }, + { + "start": 7645.44, + "end": 7649.5, + "probability": 0.9979 + }, + { + "start": 7650.16, + "end": 7651.6, + "probability": 0.9951 + }, + { + "start": 7653.7, + "end": 7655.24, + "probability": 0.7531 + }, + { + "start": 7655.76, + "end": 7660.04, + "probability": 0.9736 + }, + { + "start": 7660.78, + "end": 7664.0, + "probability": 0.971 + }, + { + "start": 7664.54, + "end": 7667.32, + "probability": 0.8002 + }, + { + "start": 7667.32, + "end": 7669.1, + "probability": 0.9922 + }, + { + "start": 7669.32, + "end": 7670.36, + "probability": 0.8713 + }, + { + "start": 7670.52, + "end": 7673.1, + "probability": 0.9976 + }, + { + "start": 7673.12, + "end": 7674.2, + "probability": 0.6002 + }, + { + "start": 7676.41, + "end": 7676.9, + "probability": 0.0597 + }, + { + "start": 7676.9, + "end": 7677.78, + "probability": 0.8276 + }, + { + "start": 7678.82, + "end": 7682.84, + "probability": 0.4504 + }, + { + "start": 7683.4, + "end": 7684.54, + "probability": 0.8015 + }, + { + "start": 7685.44, + "end": 7687.12, + "probability": 0.825 + }, + { + "start": 7688.22, + "end": 7689.38, + "probability": 0.9687 + }, + { + "start": 7690.48, + "end": 7692.18, + "probability": 0.9931 + }, + { + "start": 7692.96, + "end": 7694.42, + "probability": 0.9675 + }, + { + "start": 7694.94, + "end": 7697.46, + "probability": 0.996 + }, + { + "start": 7698.06, + "end": 7700.62, + "probability": 0.9893 + }, + { + "start": 7701.78, + "end": 7701.78, + "probability": 0.0136 + }, + { + "start": 7701.78, + "end": 7701.78, + "probability": 0.4736 + }, + { + "start": 7701.78, + "end": 7703.52, + "probability": 0.5518 + }, + { + "start": 7704.58, + "end": 7704.58, + "probability": 0.5234 + }, + { + "start": 7706.58, + "end": 7709.18, + "probability": 0.8071 + }, + { + "start": 7710.54, + "end": 7712.44, + "probability": 0.8911 + }, + { + "start": 7714.0, + "end": 7718.48, + "probability": 0.9993 + }, + { + "start": 7718.8, + "end": 7723.4, + "probability": 0.9277 + }, + { + "start": 7724.02, + "end": 7726.04, + "probability": 0.9141 + }, + { + "start": 7726.88, + "end": 7728.44, + "probability": 0.9968 + }, + { + "start": 7729.04, + "end": 7730.54, + "probability": 0.996 + }, + { + "start": 7731.14, + "end": 7735.96, + "probability": 0.9978 + }, + { + "start": 7736.64, + "end": 7738.56, + "probability": 0.9052 + }, + { + "start": 7738.62, + "end": 7739.88, + "probability": 0.8822 + }, + { + "start": 7740.16, + "end": 7742.22, + "probability": 0.8346 + }, + { + "start": 7742.24, + "end": 7743.64, + "probability": 0.9609 + }, + { + "start": 7743.92, + "end": 7744.12, + "probability": 0.7499 + }, + { + "start": 7744.54, + "end": 7745.28, + "probability": 0.6314 + }, + { + "start": 7745.52, + "end": 7749.26, + "probability": 0.7414 + }, + { + "start": 7751.82, + "end": 7755.07, + "probability": 0.9443 + }, + { + "start": 7756.0, + "end": 7759.68, + "probability": 0.9902 + }, + { + "start": 7761.02, + "end": 7763.8, + "probability": 0.9507 + }, + { + "start": 7764.66, + "end": 7768.74, + "probability": 0.5497 + }, + { + "start": 7768.74, + "end": 7769.48, + "probability": 0.5916 + }, + { + "start": 7769.58, + "end": 7770.38, + "probability": 0.7009 + }, + { + "start": 7770.58, + "end": 7771.42, + "probability": 0.9596 + }, + { + "start": 7782.62, + "end": 7784.04, + "probability": 0.0334 + }, + { + "start": 7784.04, + "end": 7786.6, + "probability": 0.0354 + }, + { + "start": 7786.6, + "end": 7786.62, + "probability": 0.0526 + }, + { + "start": 7786.62, + "end": 7786.62, + "probability": 0.0434 + }, + { + "start": 7788.0, + "end": 7791.12, + "probability": 0.3699 + }, + { + "start": 7791.72, + "end": 7792.72, + "probability": 0.6162 + }, + { + "start": 7793.78, + "end": 7796.66, + "probability": 0.9229 + }, + { + "start": 7797.76, + "end": 7801.01, + "probability": 0.8932 + }, + { + "start": 7801.66, + "end": 7803.71, + "probability": 0.8289 + }, + { + "start": 7807.54, + "end": 7809.06, + "probability": 0.5867 + }, + { + "start": 7809.34, + "end": 7809.94, + "probability": 0.2337 + }, + { + "start": 7810.12, + "end": 7811.5, + "probability": 0.6139 + }, + { + "start": 7811.6, + "end": 7813.78, + "probability": 0.3507 + }, + { + "start": 7814.02, + "end": 7814.22, + "probability": 0.5087 + }, + { + "start": 7814.42, + "end": 7816.42, + "probability": 0.7565 + }, + { + "start": 7816.5, + "end": 7817.38, + "probability": 0.4703 + }, + { + "start": 7820.36, + "end": 7820.36, + "probability": 0.1394 + }, + { + "start": 7820.4, + "end": 7823.52, + "probability": 0.7715 + }, + { + "start": 7823.64, + "end": 7824.38, + "probability": 0.6392 + }, + { + "start": 7824.86, + "end": 7826.96, + "probability": 0.9264 + }, + { + "start": 7829.58, + "end": 7831.2, + "probability": 0.2944 + }, + { + "start": 7832.08, + "end": 7832.72, + "probability": 0.5616 + }, + { + "start": 7833.54, + "end": 7836.54, + "probability": 0.9297 + }, + { + "start": 7836.64, + "end": 7837.61, + "probability": 0.5238 + }, + { + "start": 7838.12, + "end": 7839.06, + "probability": 0.8219 + }, + { + "start": 7839.3, + "end": 7840.66, + "probability": 0.7199 + }, + { + "start": 7841.06, + "end": 7844.16, + "probability": 0.8922 + }, + { + "start": 7844.32, + "end": 7845.04, + "probability": 0.9956 + }, + { + "start": 7846.42, + "end": 7846.56, + "probability": 0.0024 + }, + { + "start": 7846.56, + "end": 7846.92, + "probability": 0.4419 + }, + { + "start": 7846.92, + "end": 7849.22, + "probability": 0.5209 + }, + { + "start": 7849.32, + "end": 7849.86, + "probability": 0.738 + }, + { + "start": 7852.32, + "end": 7855.36, + "probability": 0.4421 + }, + { + "start": 7855.68, + "end": 7858.46, + "probability": 0.9595 + }, + { + "start": 7858.58, + "end": 7859.8, + "probability": 0.9466 + }, + { + "start": 7863.1, + "end": 7863.42, + "probability": 0.3517 + }, + { + "start": 7863.94, + "end": 7864.8, + "probability": 0.6548 + }, + { + "start": 7864.92, + "end": 7865.2, + "probability": 0.8713 + }, + { + "start": 7865.64, + "end": 7865.78, + "probability": 0.003 + }, + { + "start": 7867.34, + "end": 7870.14, + "probability": 0.8189 + }, + { + "start": 7870.3, + "end": 7872.56, + "probability": 0.8177 + }, + { + "start": 7872.6, + "end": 7872.92, + "probability": 0.9459 + }, + { + "start": 7874.42, + "end": 7876.76, + "probability": 0.7286 + }, + { + "start": 7877.32, + "end": 7877.32, + "probability": 0.3292 + }, + { + "start": 7877.34, + "end": 7878.14, + "probability": 0.9662 + }, + { + "start": 7878.6, + "end": 7878.84, + "probability": 0.6731 + }, + { + "start": 7878.9, + "end": 7880.0, + "probability": 0.9209 + }, + { + "start": 7881.28, + "end": 7886.92, + "probability": 0.9067 + }, + { + "start": 7888.34, + "end": 7892.8, + "probability": 0.9037 + }, + { + "start": 7895.18, + "end": 7898.42, + "probability": 0.8038 + }, + { + "start": 7898.5, + "end": 7902.42, + "probability": 0.9935 + }, + { + "start": 7902.54, + "end": 7907.32, + "probability": 0.9989 + }, + { + "start": 7907.4, + "end": 7910.84, + "probability": 0.9086 + }, + { + "start": 7911.68, + "end": 7912.9, + "probability": 0.758 + }, + { + "start": 7913.06, + "end": 7918.48, + "probability": 0.9973 + }, + { + "start": 7919.0, + "end": 7920.18, + "probability": 0.9713 + }, + { + "start": 7921.06, + "end": 7928.08, + "probability": 0.9976 + }, + { + "start": 7928.52, + "end": 7931.36, + "probability": 0.9959 + }, + { + "start": 7932.02, + "end": 7932.34, + "probability": 0.5265 + }, + { + "start": 7932.66, + "end": 7938.62, + "probability": 0.9954 + }, + { + "start": 7939.42, + "end": 7942.72, + "probability": 0.7996 + }, + { + "start": 7943.4, + "end": 7951.06, + "probability": 0.9933 + }, + { + "start": 7951.22, + "end": 7952.3, + "probability": 0.6439 + }, + { + "start": 7952.36, + "end": 7954.26, + "probability": 0.9989 + }, + { + "start": 7954.38, + "end": 7954.94, + "probability": 0.6649 + }, + { + "start": 7955.68, + "end": 7956.0, + "probability": 0.9753 + }, + { + "start": 7956.6, + "end": 7959.86, + "probability": 0.9985 + }, + { + "start": 7960.4, + "end": 7961.74, + "probability": 0.8848 + }, + { + "start": 7962.4, + "end": 7966.22, + "probability": 0.9763 + }, + { + "start": 7966.8, + "end": 7969.18, + "probability": 0.9712 + }, + { + "start": 7969.84, + "end": 7973.0, + "probability": 0.8933 + }, + { + "start": 7973.76, + "end": 7977.56, + "probability": 0.9968 + }, + { + "start": 7977.56, + "end": 7980.36, + "probability": 0.9803 + }, + { + "start": 7981.76, + "end": 7982.95, + "probability": 0.5098 + }, + { + "start": 7984.02, + "end": 7985.6, + "probability": 0.9954 + }, + { + "start": 7986.4, + "end": 7993.18, + "probability": 0.9985 + }, + { + "start": 7993.74, + "end": 7997.48, + "probability": 0.9597 + }, + { + "start": 7998.48, + "end": 8001.22, + "probability": 0.9824 + }, + { + "start": 8002.52, + "end": 8005.68, + "probability": 0.5888 + }, + { + "start": 8006.38, + "end": 8010.66, + "probability": 0.9717 + }, + { + "start": 8012.12, + "end": 8014.78, + "probability": 0.5663 + }, + { + "start": 8015.42, + "end": 8019.2, + "probability": 0.9502 + }, + { + "start": 8020.16, + "end": 8023.64, + "probability": 0.9324 + }, + { + "start": 8024.48, + "end": 8027.06, + "probability": 0.9726 + }, + { + "start": 8027.9, + "end": 8029.24, + "probability": 0.8987 + }, + { + "start": 8029.8, + "end": 8033.24, + "probability": 0.9951 + }, + { + "start": 8033.64, + "end": 8036.54, + "probability": 0.9979 + }, + { + "start": 8037.48, + "end": 8043.26, + "probability": 0.9925 + }, + { + "start": 8044.08, + "end": 8044.92, + "probability": 0.9634 + }, + { + "start": 8045.76, + "end": 8049.12, + "probability": 0.9918 + }, + { + "start": 8050.3, + "end": 8050.66, + "probability": 0.7233 + }, + { + "start": 8051.16, + "end": 8057.06, + "probability": 0.9978 + }, + { + "start": 8058.04, + "end": 8063.4, + "probability": 0.9949 + }, + { + "start": 8063.74, + "end": 8067.86, + "probability": 0.9781 + }, + { + "start": 8067.94, + "end": 8073.16, + "probability": 0.9931 + }, + { + "start": 8074.42, + "end": 8078.24, + "probability": 0.9565 + }, + { + "start": 8078.96, + "end": 8081.08, + "probability": 0.9535 + }, + { + "start": 8081.7, + "end": 8085.72, + "probability": 0.99 + }, + { + "start": 8085.72, + "end": 8090.88, + "probability": 0.9984 + }, + { + "start": 8091.24, + "end": 8092.31, + "probability": 0.9926 + }, + { + "start": 8092.68, + "end": 8093.82, + "probability": 0.9953 + }, + { + "start": 8094.02, + "end": 8095.21, + "probability": 0.8557 + }, + { + "start": 8095.58, + "end": 8101.4, + "probability": 0.9899 + }, + { + "start": 8102.96, + "end": 8106.84, + "probability": 0.9927 + }, + { + "start": 8107.64, + "end": 8109.06, + "probability": 0.7935 + }, + { + "start": 8110.36, + "end": 8114.5, + "probability": 0.9933 + }, + { + "start": 8115.16, + "end": 8117.34, + "probability": 0.6835 + }, + { + "start": 8118.0, + "end": 8118.98, + "probability": 0.9869 + }, + { + "start": 8120.35, + "end": 8126.3, + "probability": 0.9927 + }, + { + "start": 8127.44, + "end": 8132.26, + "probability": 0.9884 + }, + { + "start": 8133.06, + "end": 8133.38, + "probability": 0.6237 + }, + { + "start": 8133.44, + "end": 8135.67, + "probability": 0.9116 + }, + { + "start": 8135.76, + "end": 8137.36, + "probability": 0.785 + }, + { + "start": 8137.54, + "end": 8142.36, + "probability": 0.8781 + }, + { + "start": 8142.96, + "end": 8143.82, + "probability": 0.9826 + }, + { + "start": 8144.38, + "end": 8149.52, + "probability": 0.9863 + }, + { + "start": 8150.2, + "end": 8155.04, + "probability": 0.9956 + }, + { + "start": 8155.08, + "end": 8157.88, + "probability": 0.9964 + }, + { + "start": 8157.96, + "end": 8161.92, + "probability": 0.9839 + }, + { + "start": 8162.16, + "end": 8164.84, + "probability": 0.9825 + }, + { + "start": 8165.38, + "end": 8168.58, + "probability": 0.9692 + }, + { + "start": 8169.26, + "end": 8171.7, + "probability": 0.9904 + }, + { + "start": 8172.24, + "end": 8172.87, + "probability": 0.8923 + }, + { + "start": 8172.94, + "end": 8173.74, + "probability": 0.7018 + }, + { + "start": 8173.76, + "end": 8174.92, + "probability": 0.9274 + }, + { + "start": 8175.04, + "end": 8182.0, + "probability": 0.9925 + }, + { + "start": 8183.18, + "end": 8186.6, + "probability": 0.9833 + }, + { + "start": 8187.24, + "end": 8188.02, + "probability": 0.7302 + }, + { + "start": 8188.88, + "end": 8190.12, + "probability": 0.6589 + }, + { + "start": 8190.8, + "end": 8192.7, + "probability": 0.9434 + }, + { + "start": 8193.26, + "end": 8196.64, + "probability": 0.7569 + }, + { + "start": 8197.3, + "end": 8198.4, + "probability": 0.9153 + }, + { + "start": 8199.16, + "end": 8201.58, + "probability": 0.9937 + }, + { + "start": 8202.22, + "end": 8204.72, + "probability": 0.9917 + }, + { + "start": 8205.34, + "end": 8209.32, + "probability": 0.9466 + }, + { + "start": 8210.14, + "end": 8211.48, + "probability": 0.5441 + }, + { + "start": 8212.36, + "end": 8214.42, + "probability": 0.9863 + }, + { + "start": 8215.0, + "end": 8216.48, + "probability": 0.9935 + }, + { + "start": 8217.16, + "end": 8222.16, + "probability": 0.98 + }, + { + "start": 8222.64, + "end": 8223.74, + "probability": 0.8845 + }, + { + "start": 8224.36, + "end": 8225.52, + "probability": 0.8583 + }, + { + "start": 8226.08, + "end": 8228.36, + "probability": 0.9761 + }, + { + "start": 8228.52, + "end": 8229.96, + "probability": 0.978 + }, + { + "start": 8230.54, + "end": 8236.98, + "probability": 0.9957 + }, + { + "start": 8237.12, + "end": 8237.44, + "probability": 0.7552 + }, + { + "start": 8238.2, + "end": 8239.88, + "probability": 0.8411 + }, + { + "start": 8240.56, + "end": 8242.44, + "probability": 0.7212 + }, + { + "start": 8243.72, + "end": 8245.78, + "probability": 0.5895 + }, + { + "start": 8245.96, + "end": 8247.73, + "probability": 0.8776 + }, + { + "start": 8248.78, + "end": 8252.61, + "probability": 0.9656 + }, + { + "start": 8256.84, + "end": 8257.26, + "probability": 0.2681 + }, + { + "start": 8258.82, + "end": 8259.94, + "probability": 0.9414 + }, + { + "start": 8260.34, + "end": 8260.96, + "probability": 0.8023 + }, + { + "start": 8261.44, + "end": 8263.72, + "probability": 0.9099 + }, + { + "start": 8266.94, + "end": 8267.68, + "probability": 0.5163 + }, + { + "start": 8268.12, + "end": 8268.68, + "probability": 0.6701 + }, + { + "start": 8268.86, + "end": 8270.3, + "probability": 0.7583 + }, + { + "start": 8270.58, + "end": 8271.18, + "probability": 0.6023 + }, + { + "start": 8271.54, + "end": 8276.82, + "probability": 0.996 + }, + { + "start": 8276.82, + "end": 8281.28, + "probability": 0.9812 + }, + { + "start": 8281.9, + "end": 8283.96, + "probability": 0.9934 + }, + { + "start": 8284.52, + "end": 8286.76, + "probability": 0.9919 + }, + { + "start": 8287.44, + "end": 8288.48, + "probability": 0.9188 + }, + { + "start": 8288.6, + "end": 8289.84, + "probability": 0.9425 + }, + { + "start": 8289.94, + "end": 8291.79, + "probability": 0.9697 + }, + { + "start": 8292.72, + "end": 8296.9, + "probability": 0.999 + }, + { + "start": 8297.86, + "end": 8299.12, + "probability": 0.8722 + }, + { + "start": 8299.38, + "end": 8301.74, + "probability": 0.9856 + }, + { + "start": 8303.1, + "end": 8308.7, + "probability": 0.9987 + }, + { + "start": 8309.32, + "end": 8310.74, + "probability": 0.9837 + }, + { + "start": 8311.36, + "end": 8312.82, + "probability": 0.9761 + }, + { + "start": 8313.16, + "end": 8314.56, + "probability": 0.9818 + }, + { + "start": 8314.9, + "end": 8315.96, + "probability": 0.9846 + }, + { + "start": 8316.68, + "end": 8317.52, + "probability": 0.8222 + }, + { + "start": 8317.96, + "end": 8321.3, + "probability": 0.9871 + }, + { + "start": 8322.32, + "end": 8324.0, + "probability": 0.9854 + }, + { + "start": 8324.82, + "end": 8327.9, + "probability": 0.9923 + }, + { + "start": 8328.6, + "end": 8332.78, + "probability": 0.9965 + }, + { + "start": 8332.78, + "end": 8337.1, + "probability": 0.994 + }, + { + "start": 8338.42, + "end": 8338.72, + "probability": 0.7601 + }, + { + "start": 8338.94, + "end": 8340.34, + "probability": 0.9128 + }, + { + "start": 8340.5, + "end": 8342.48, + "probability": 0.8766 + }, + { + "start": 8342.9, + "end": 8345.28, + "probability": 0.9967 + }, + { + "start": 8346.08, + "end": 8346.36, + "probability": 0.0383 + }, + { + "start": 8346.58, + "end": 8347.94, + "probability": 0.9244 + }, + { + "start": 8348.34, + "end": 8350.3, + "probability": 0.9565 + }, + { + "start": 8350.76, + "end": 8351.92, + "probability": 0.9216 + }, + { + "start": 8352.72, + "end": 8357.3, + "probability": 0.9895 + }, + { + "start": 8358.12, + "end": 8360.46, + "probability": 0.9832 + }, + { + "start": 8360.98, + "end": 8367.5, + "probability": 0.9993 + }, + { + "start": 8367.92, + "end": 8368.66, + "probability": 0.889 + }, + { + "start": 8369.04, + "end": 8370.02, + "probability": 0.9812 + }, + { + "start": 8371.38, + "end": 8376.06, + "probability": 0.9498 + }, + { + "start": 8376.3, + "end": 8377.56, + "probability": 0.9714 + }, + { + "start": 8379.12, + "end": 8380.5, + "probability": 0.9963 + }, + { + "start": 8380.6, + "end": 8383.2, + "probability": 0.9618 + }, + { + "start": 8384.1, + "end": 8384.12, + "probability": 0.3564 + }, + { + "start": 8384.38, + "end": 8385.74, + "probability": 0.2817 + }, + { + "start": 8385.82, + "end": 8387.26, + "probability": 0.9393 + }, + { + "start": 8388.1, + "end": 8393.7, + "probability": 0.9795 + }, + { + "start": 8393.7, + "end": 8396.66, + "probability": 0.9973 + }, + { + "start": 8397.14, + "end": 8399.02, + "probability": 0.9956 + }, + { + "start": 8399.64, + "end": 8402.44, + "probability": 0.9984 + }, + { + "start": 8403.92, + "end": 8406.44, + "probability": 0.9709 + }, + { + "start": 8407.08, + "end": 8409.22, + "probability": 0.9961 + }, + { + "start": 8410.74, + "end": 8414.76, + "probability": 0.9434 + }, + { + "start": 8414.92, + "end": 8416.56, + "probability": 0.9456 + }, + { + "start": 8417.04, + "end": 8418.64, + "probability": 0.6747 + }, + { + "start": 8419.1, + "end": 8422.46, + "probability": 0.9922 + }, + { + "start": 8422.52, + "end": 8426.36, + "probability": 0.9735 + }, + { + "start": 8426.9, + "end": 8427.58, + "probability": 0.9244 + }, + { + "start": 8428.32, + "end": 8429.26, + "probability": 0.9771 + }, + { + "start": 8429.32, + "end": 8432.42, + "probability": 0.7672 + }, + { + "start": 8433.0, + "end": 8439.06, + "probability": 0.9683 + }, + { + "start": 8439.06, + "end": 8439.34, + "probability": 0.687 + }, + { + "start": 8439.78, + "end": 8443.5, + "probability": 0.997 + }, + { + "start": 8443.92, + "end": 8449.1, + "probability": 0.9977 + }, + { + "start": 8449.68, + "end": 8450.46, + "probability": 0.6089 + }, + { + "start": 8450.54, + "end": 8451.26, + "probability": 0.8058 + }, + { + "start": 8451.6, + "end": 8454.12, + "probability": 0.9984 + }, + { + "start": 8455.44, + "end": 8460.54, + "probability": 0.9949 + }, + { + "start": 8460.94, + "end": 8461.9, + "probability": 0.9722 + }, + { + "start": 8462.42, + "end": 8463.1, + "probability": 0.5215 + }, + { + "start": 8463.72, + "end": 8465.02, + "probability": 0.6118 + }, + { + "start": 8465.18, + "end": 8467.34, + "probability": 0.9615 + }, + { + "start": 8467.8, + "end": 8470.14, + "probability": 0.9886 + }, + { + "start": 8470.5, + "end": 8472.2, + "probability": 0.9768 + }, + { + "start": 8472.68, + "end": 8474.28, + "probability": 0.9717 + }, + { + "start": 8474.7, + "end": 8477.48, + "probability": 0.9902 + }, + { + "start": 8477.48, + "end": 8479.88, + "probability": 0.9979 + }, + { + "start": 8480.66, + "end": 8482.18, + "probability": 0.7046 + }, + { + "start": 8482.7, + "end": 8486.52, + "probability": 0.9925 + }, + { + "start": 8486.98, + "end": 8489.72, + "probability": 0.998 + }, + { + "start": 8490.2, + "end": 8490.3, + "probability": 0.6383 + }, + { + "start": 8490.36, + "end": 8491.78, + "probability": 0.9158 + }, + { + "start": 8492.3, + "end": 8495.62, + "probability": 0.9863 + }, + { + "start": 8495.82, + "end": 8498.4, + "probability": 0.9414 + }, + { + "start": 8499.18, + "end": 8500.24, + "probability": 0.838 + }, + { + "start": 8500.7, + "end": 8505.0, + "probability": 0.9893 + }, + { + "start": 8505.92, + "end": 8506.34, + "probability": 0.9175 + }, + { + "start": 8506.54, + "end": 8508.16, + "probability": 0.7927 + }, + { + "start": 8508.4, + "end": 8511.64, + "probability": 0.851 + }, + { + "start": 8512.48, + "end": 8513.74, + "probability": 0.6254 + }, + { + "start": 8513.8, + "end": 8514.3, + "probability": 0.9259 + }, + { + "start": 8514.38, + "end": 8516.32, + "probability": 0.9805 + }, + { + "start": 8516.98, + "end": 8517.3, + "probability": 0.4868 + }, + { + "start": 8517.56, + "end": 8522.54, + "probability": 0.929 + }, + { + "start": 8522.54, + "end": 8525.42, + "probability": 0.8739 + }, + { + "start": 8528.5, + "end": 8531.86, + "probability": 0.7124 + }, + { + "start": 8532.3, + "end": 8538.22, + "probability": 0.9713 + }, + { + "start": 8538.82, + "end": 8540.06, + "probability": 0.8416 + }, + { + "start": 8540.26, + "end": 8541.62, + "probability": 0.7782 + }, + { + "start": 8542.1, + "end": 8545.98, + "probability": 0.981 + }, + { + "start": 8546.42, + "end": 8546.44, + "probability": 0.6894 + }, + { + "start": 8546.74, + "end": 8550.74, + "probability": 0.9952 + }, + { + "start": 8551.3, + "end": 8556.98, + "probability": 0.9973 + }, + { + "start": 8556.98, + "end": 8561.2, + "probability": 0.9835 + }, + { + "start": 8561.74, + "end": 8563.22, + "probability": 0.9268 + }, + { + "start": 8563.22, + "end": 8564.74, + "probability": 0.6247 + }, + { + "start": 8564.86, + "end": 8566.5, + "probability": 0.9888 + }, + { + "start": 8566.84, + "end": 8568.86, + "probability": 0.9683 + }, + { + "start": 8569.76, + "end": 8573.3, + "probability": 0.9396 + }, + { + "start": 8574.18, + "end": 8579.38, + "probability": 0.9867 + }, + { + "start": 8579.6, + "end": 8580.44, + "probability": 0.448 + }, + { + "start": 8581.1, + "end": 8584.7, + "probability": 0.9773 + }, + { + "start": 8585.26, + "end": 8589.54, + "probability": 0.9966 + }, + { + "start": 8589.98, + "end": 8592.54, + "probability": 0.9237 + }, + { + "start": 8593.46, + "end": 8595.6, + "probability": 0.902 + }, + { + "start": 8595.68, + "end": 8596.14, + "probability": 0.747 + }, + { + "start": 8596.66, + "end": 8598.08, + "probability": 0.6172 + }, + { + "start": 8598.22, + "end": 8601.1, + "probability": 0.9263 + }, + { + "start": 8601.54, + "end": 8602.78, + "probability": 0.6891 + }, + { + "start": 8615.38, + "end": 8615.44, + "probability": 0.3664 + }, + { + "start": 8615.44, + "end": 8617.18, + "probability": 0.6283 + }, + { + "start": 8617.48, + "end": 8618.38, + "probability": 0.9637 + }, + { + "start": 8618.44, + "end": 8618.6, + "probability": 0.848 + }, + { + "start": 8618.82, + "end": 8619.76, + "probability": 0.6872 + }, + { + "start": 8620.18, + "end": 8621.2, + "probability": 0.9635 + }, + { + "start": 8621.4, + "end": 8621.96, + "probability": 0.8862 + }, + { + "start": 8622.08, + "end": 8622.64, + "probability": 0.9532 + }, + { + "start": 8623.4, + "end": 8625.88, + "probability": 0.9761 + }, + { + "start": 8626.02, + "end": 8627.37, + "probability": 0.9954 + }, + { + "start": 8629.58, + "end": 8630.68, + "probability": 0.7234 + }, + { + "start": 8631.08, + "end": 8632.54, + "probability": 0.7646 + }, + { + "start": 8633.54, + "end": 8634.34, + "probability": 0.7227 + }, + { + "start": 8635.26, + "end": 8639.24, + "probability": 0.995 + }, + { + "start": 8639.96, + "end": 8642.68, + "probability": 0.848 + }, + { + "start": 8643.16, + "end": 8644.0, + "probability": 0.7131 + }, + { + "start": 8644.04, + "end": 8645.72, + "probability": 0.9941 + }, + { + "start": 8646.4, + "end": 8647.18, + "probability": 0.799 + }, + { + "start": 8648.14, + "end": 8649.16, + "probability": 0.9058 + }, + { + "start": 8649.32, + "end": 8650.12, + "probability": 0.1383 + }, + { + "start": 8650.22, + "end": 8651.0, + "probability": 0.5315 + }, + { + "start": 8651.22, + "end": 8652.78, + "probability": 0.9526 + }, + { + "start": 8653.62, + "end": 8657.46, + "probability": 0.9753 + }, + { + "start": 8658.26, + "end": 8662.98, + "probability": 0.9922 + }, + { + "start": 8663.82, + "end": 8664.72, + "probability": 0.8994 + }, + { + "start": 8665.04, + "end": 8669.38, + "probability": 0.9805 + }, + { + "start": 8669.6, + "end": 8674.76, + "probability": 0.9778 + }, + { + "start": 8675.38, + "end": 8676.02, + "probability": 0.6267 + }, + { + "start": 8676.14, + "end": 8677.98, + "probability": 0.9612 + }, + { + "start": 8678.04, + "end": 8679.52, + "probability": 0.9741 + }, + { + "start": 8680.18, + "end": 8681.16, + "probability": 0.9966 + }, + { + "start": 8683.14, + "end": 8684.9, + "probability": 0.9947 + }, + { + "start": 8685.62, + "end": 8686.42, + "probability": 0.8816 + }, + { + "start": 8686.52, + "end": 8688.36, + "probability": 0.5886 + }, + { + "start": 8688.48, + "end": 8690.22, + "probability": 0.8488 + }, + { + "start": 8690.72, + "end": 8692.1, + "probability": 0.975 + }, + { + "start": 8692.78, + "end": 8695.16, + "probability": 0.9966 + }, + { + "start": 8695.92, + "end": 8696.42, + "probability": 0.9115 + }, + { + "start": 8696.44, + "end": 8697.02, + "probability": 0.919 + }, + { + "start": 8697.2, + "end": 8697.78, + "probability": 0.9268 + }, + { + "start": 8697.92, + "end": 8699.58, + "probability": 0.9569 + }, + { + "start": 8699.98, + "end": 8704.06, + "probability": 0.9964 + }, + { + "start": 8704.06, + "end": 8707.52, + "probability": 0.9991 + }, + { + "start": 8708.16, + "end": 8709.58, + "probability": 0.9868 + }, + { + "start": 8710.14, + "end": 8711.36, + "probability": 0.9245 + }, + { + "start": 8711.72, + "end": 8712.99, + "probability": 0.766 + }, + { + "start": 8713.37, + "end": 8714.39, + "probability": 0.6817 + }, + { + "start": 8714.93, + "end": 8715.15, + "probability": 0.2769 + }, + { + "start": 8715.27, + "end": 8716.15, + "probability": 0.9487 + }, + { + "start": 8716.31, + "end": 8718.09, + "probability": 0.9912 + }, + { + "start": 8718.59, + "end": 8721.67, + "probability": 0.7554 + }, + { + "start": 8722.09, + "end": 8723.75, + "probability": 0.986 + }, + { + "start": 8724.61, + "end": 8726.59, + "probability": 0.9667 + }, + { + "start": 8727.07, + "end": 8728.73, + "probability": 0.954 + }, + { + "start": 8729.21, + "end": 8731.85, + "probability": 0.9736 + }, + { + "start": 8732.51, + "end": 8734.23, + "probability": 0.981 + }, + { + "start": 8734.95, + "end": 8737.21, + "probability": 0.9106 + }, + { + "start": 8737.73, + "end": 8740.53, + "probability": 0.9321 + }, + { + "start": 8740.99, + "end": 8742.01, + "probability": 0.9307 + }, + { + "start": 8742.41, + "end": 8744.29, + "probability": 0.9753 + }, + { + "start": 8744.67, + "end": 8747.23, + "probability": 0.971 + }, + { + "start": 8747.31, + "end": 8747.55, + "probability": 0.497 + }, + { + "start": 8749.41, + "end": 8751.31, + "probability": 0.77 + }, + { + "start": 8751.81, + "end": 8752.23, + "probability": 0.0348 + }, + { + "start": 8752.35, + "end": 8752.87, + "probability": 0.551 + }, + { + "start": 8753.19, + "end": 8757.79, + "probability": 0.6548 + }, + { + "start": 8757.89, + "end": 8758.91, + "probability": 0.6607 + }, + { + "start": 8759.29, + "end": 8761.63, + "probability": 0.3999 + }, + { + "start": 8761.69, + "end": 8762.41, + "probability": 0.4026 + }, + { + "start": 8762.41, + "end": 8762.79, + "probability": 0.4 + }, + { + "start": 8769.37, + "end": 8769.57, + "probability": 0.2409 + }, + { + "start": 8778.65, + "end": 8779.19, + "probability": 0.0157 + }, + { + "start": 8780.29, + "end": 8780.37, + "probability": 0.0028 + }, + { + "start": 8781.93, + "end": 8785.91, + "probability": 0.505 + }, + { + "start": 8786.22, + "end": 8786.29, + "probability": 0.0432 + }, + { + "start": 8786.45, + "end": 8787.11, + "probability": 0.0195 + }, + { + "start": 8787.11, + "end": 8788.19, + "probability": 0.1822 + }, + { + "start": 8791.17, + "end": 8793.79, + "probability": 0.433 + }, + { + "start": 8793.83, + "end": 8796.37, + "probability": 0.0904 + }, + { + "start": 8801.31, + "end": 8806.83, + "probability": 0.106 + }, + { + "start": 8807.33, + "end": 8808.49, + "probability": 0.002 + }, + { + "start": 8811.33, + "end": 8812.09, + "probability": 0.0537 + }, + { + "start": 8812.09, + "end": 8816.25, + "probability": 0.0478 + }, + { + "start": 8818.97, + "end": 8820.47, + "probability": 0.099 + }, + { + "start": 8822.37, + "end": 8827.89, + "probability": 0.1217 + }, + { + "start": 8828.11, + "end": 8832.91, + "probability": 0.3685 + }, + { + "start": 8833.46, + "end": 8836.41, + "probability": 0.2405 + }, + { + "start": 8836.41, + "end": 8837.15, + "probability": 0.2948 + }, + { + "start": 8837.65, + "end": 8837.85, + "probability": 0.0108 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.0, + "end": 8838.0, + "probability": 0.0 + }, + { + "start": 8838.08, + "end": 8838.08, + "probability": 0.0646 + }, + { + "start": 8838.08, + "end": 8838.08, + "probability": 0.0641 + }, + { + "start": 8838.08, + "end": 8838.08, + "probability": 0.0541 + }, + { + "start": 8838.08, + "end": 8841.86, + "probability": 0.9242 + }, + { + "start": 8842.06, + "end": 8842.4, + "probability": 0.6408 + }, + { + "start": 8843.48, + "end": 8844.6, + "probability": 0.6779 + }, + { + "start": 8844.68, + "end": 8846.26, + "probability": 0.7838 + }, + { + "start": 8846.32, + "end": 8848.0, + "probability": 0.9702 + }, + { + "start": 8848.48, + "end": 8850.98, + "probability": 0.9284 + }, + { + "start": 8851.16, + "end": 8851.74, + "probability": 0.6114 + }, + { + "start": 8852.04, + "end": 8854.96, + "probability": 0.7725 + }, + { + "start": 8855.28, + "end": 8855.78, + "probability": 0.6085 + }, + { + "start": 8857.06, + "end": 8857.56, + "probability": 0.8674 + }, + { + "start": 8863.34, + "end": 8864.26, + "probability": 0.7594 + }, + { + "start": 8865.72, + "end": 8868.02, + "probability": 0.829 + }, + { + "start": 8869.76, + "end": 8873.1, + "probability": 0.9975 + }, + { + "start": 8874.44, + "end": 8875.8, + "probability": 0.9645 + }, + { + "start": 8876.48, + "end": 8878.5, + "probability": 0.988 + }, + { + "start": 8879.54, + "end": 8884.1, + "probability": 0.9959 + }, + { + "start": 8884.98, + "end": 8886.54, + "probability": 0.0424 + }, + { + "start": 8886.9, + "end": 8888.52, + "probability": 0.7571 + }, + { + "start": 8889.22, + "end": 8890.2, + "probability": 0.8616 + }, + { + "start": 8890.38, + "end": 8891.58, + "probability": 0.0156 + }, + { + "start": 8891.74, + "end": 8891.74, + "probability": 0.1509 + }, + { + "start": 8891.82, + "end": 8893.12, + "probability": 0.9419 + }, + { + "start": 8893.72, + "end": 8895.68, + "probability": 0.9972 + }, + { + "start": 8896.18, + "end": 8898.28, + "probability": 0.8256 + }, + { + "start": 8898.34, + "end": 8899.18, + "probability": 0.3493 + }, + { + "start": 8899.6, + "end": 8900.18, + "probability": 0.8968 + }, + { + "start": 8900.26, + "end": 8901.17, + "probability": 0.7346 + }, + { + "start": 8902.14, + "end": 8904.34, + "probability": 0.8573 + }, + { + "start": 8905.3, + "end": 8908.06, + "probability": 0.9678 + }, + { + "start": 8908.48, + "end": 8910.1, + "probability": 0.9939 + }, + { + "start": 8910.16, + "end": 8910.93, + "probability": 0.8783 + }, + { + "start": 8911.54, + "end": 8913.3, + "probability": 0.9966 + }, + { + "start": 8914.34, + "end": 8916.54, + "probability": 0.949 + }, + { + "start": 8917.5, + "end": 8918.91, + "probability": 0.98 + }, + { + "start": 8919.52, + "end": 8920.44, + "probability": 0.7723 + }, + { + "start": 8921.2, + "end": 8925.54, + "probability": 0.9954 + }, + { + "start": 8926.32, + "end": 8931.38, + "probability": 0.9951 + }, + { + "start": 8931.96, + "end": 8936.78, + "probability": 0.9803 + }, + { + "start": 8937.58, + "end": 8937.7, + "probability": 0.6086 + }, + { + "start": 8938.86, + "end": 8941.2, + "probability": 0.9531 + }, + { + "start": 8942.32, + "end": 8942.9, + "probability": 0.8862 + }, + { + "start": 8943.84, + "end": 8945.62, + "probability": 0.9499 + }, + { + "start": 8946.36, + "end": 8947.48, + "probability": 0.9822 + }, + { + "start": 8948.12, + "end": 8950.32, + "probability": 0.994 + }, + { + "start": 8951.56, + "end": 8953.0, + "probability": 0.9939 + }, + { + "start": 8953.68, + "end": 8955.04, + "probability": 0.9349 + }, + { + "start": 8955.72, + "end": 8958.08, + "probability": 0.9927 + }, + { + "start": 8959.1, + "end": 8959.24, + "probability": 0.9045 + }, + { + "start": 8959.24, + "end": 8959.98, + "probability": 0.8721 + }, + { + "start": 8960.12, + "end": 8963.74, + "probability": 0.9673 + }, + { + "start": 8964.32, + "end": 8964.88, + "probability": 0.8205 + }, + { + "start": 8964.94, + "end": 8966.14, + "probability": 0.9832 + }, + { + "start": 8966.56, + "end": 8967.56, + "probability": 0.9893 + }, + { + "start": 8967.7, + "end": 8968.54, + "probability": 0.7515 + }, + { + "start": 8969.18, + "end": 8970.54, + "probability": 0.7325 + }, + { + "start": 8971.14, + "end": 8976.74, + "probability": 0.9396 + }, + { + "start": 8976.82, + "end": 8977.8, + "probability": 0.9328 + }, + { + "start": 8977.9, + "end": 8978.78, + "probability": 0.809 + }, + { + "start": 8979.4, + "end": 8981.8, + "probability": 0.9912 + }, + { + "start": 8982.44, + "end": 8983.22, + "probability": 0.8528 + }, + { + "start": 8983.3, + "end": 8986.24, + "probability": 0.9907 + }, + { + "start": 8986.66, + "end": 8987.1, + "probability": 0.4662 + }, + { + "start": 8987.3, + "end": 8987.82, + "probability": 0.98 + }, + { + "start": 8987.9, + "end": 8988.66, + "probability": 0.6967 + }, + { + "start": 8988.82, + "end": 8989.0, + "probability": 0.7192 + }, + { + "start": 8989.3, + "end": 8989.68, + "probability": 0.4977 + }, + { + "start": 8989.88, + "end": 8989.88, + "probability": 0.3812 + }, + { + "start": 8989.92, + "end": 8991.8, + "probability": 0.925 + }, + { + "start": 8992.44, + "end": 8994.2, + "probability": 0.9441 + }, + { + "start": 8994.78, + "end": 8998.92, + "probability": 0.9045 + }, + { + "start": 8999.6, + "end": 9002.92, + "probability": 0.953 + }, + { + "start": 9003.54, + "end": 9007.76, + "probability": 0.917 + }, + { + "start": 9008.48, + "end": 9008.58, + "probability": 0.7712 + }, + { + "start": 9008.92, + "end": 9014.2, + "probability": 0.9684 + }, + { + "start": 9014.62, + "end": 9015.68, + "probability": 0.5943 + }, + { + "start": 9016.36, + "end": 9017.9, + "probability": 0.7842 + }, + { + "start": 9018.38, + "end": 9020.86, + "probability": 0.999 + }, + { + "start": 9021.92, + "end": 9023.52, + "probability": 0.916 + }, + { + "start": 9025.14, + "end": 9027.64, + "probability": 0.6329 + }, + { + "start": 9027.84, + "end": 9029.8, + "probability": 0.9362 + }, + { + "start": 9030.28, + "end": 9031.7, + "probability": 0.6611 + }, + { + "start": 9032.6, + "end": 9033.46, + "probability": 0.8953 + }, + { + "start": 9033.8, + "end": 9035.48, + "probability": 0.9573 + }, + { + "start": 9035.6, + "end": 9037.66, + "probability": 0.96 + }, + { + "start": 9038.0, + "end": 9041.18, + "probability": 0.9119 + }, + { + "start": 9041.74, + "end": 9041.9, + "probability": 0.0366 + }, + { + "start": 9041.9, + "end": 9042.42, + "probability": 0.5238 + }, + { + "start": 9042.54, + "end": 9043.89, + "probability": 0.905 + }, + { + "start": 9044.32, + "end": 9045.68, + "probability": 0.0803 + }, + { + "start": 9045.76, + "end": 9046.9, + "probability": 0.62 + }, + { + "start": 9047.52, + "end": 9049.36, + "probability": 0.6439 + }, + { + "start": 9049.44, + "end": 9050.78, + "probability": 0.9305 + }, + { + "start": 9050.84, + "end": 9052.64, + "probability": 0.7825 + }, + { + "start": 9052.64, + "end": 9053.48, + "probability": 0.8213 + }, + { + "start": 9053.48, + "end": 9056.28, + "probability": 0.8383 + }, + { + "start": 9056.32, + "end": 9057.32, + "probability": 0.9182 + }, + { + "start": 9057.72, + "end": 9059.4, + "probability": 0.9138 + }, + { + "start": 9060.12, + "end": 9063.62, + "probability": 0.9839 + }, + { + "start": 9063.62, + "end": 9068.12, + "probability": 0.8809 + }, + { + "start": 9068.8, + "end": 9068.82, + "probability": 0.3199 + }, + { + "start": 9068.94, + "end": 9069.94, + "probability": 0.7408 + }, + { + "start": 9070.18, + "end": 9071.98, + "probability": 0.7629 + }, + { + "start": 9072.46, + "end": 9073.98, + "probability": 0.9492 + }, + { + "start": 9074.44, + "end": 9077.8, + "probability": 0.9814 + }, + { + "start": 9078.86, + "end": 9082.56, + "probability": 0.8403 + }, + { + "start": 9082.86, + "end": 9084.28, + "probability": 0.9909 + }, + { + "start": 9084.92, + "end": 9087.44, + "probability": 0.9506 + }, + { + "start": 9088.08, + "end": 9093.04, + "probability": 0.79 + }, + { + "start": 9093.56, + "end": 9094.62, + "probability": 0.6206 + }, + { + "start": 9095.0, + "end": 9096.78, + "probability": 0.9888 + }, + { + "start": 9096.82, + "end": 9100.12, + "probability": 0.9165 + }, + { + "start": 9100.8, + "end": 9101.47, + "probability": 0.8999 + }, + { + "start": 9103.3, + "end": 9105.34, + "probability": 0.8003 + }, + { + "start": 9107.68, + "end": 9110.44, + "probability": 0.9556 + }, + { + "start": 9113.24, + "end": 9114.4, + "probability": 0.0497 + }, + { + "start": 9114.74, + "end": 9115.4, + "probability": 0.7456 + }, + { + "start": 9115.52, + "end": 9115.72, + "probability": 0.5026 + }, + { + "start": 9116.24, + "end": 9118.68, + "probability": 0.0104 + }, + { + "start": 9119.42, + "end": 9122.48, + "probability": 0.2044 + }, + { + "start": 9124.76, + "end": 9128.1, + "probability": 0.4842 + }, + { + "start": 9128.62, + "end": 9132.8, + "probability": 0.7745 + }, + { + "start": 9133.36, + "end": 9135.64, + "probability": 0.9959 + }, + { + "start": 9135.82, + "end": 9136.78, + "probability": 0.6713 + }, + { + "start": 9136.88, + "end": 9138.44, + "probability": 0.7156 + }, + { + "start": 9139.14, + "end": 9140.39, + "probability": 0.988 + }, + { + "start": 9140.9, + "end": 9144.14, + "probability": 0.9072 + }, + { + "start": 9144.38, + "end": 9148.0, + "probability": 0.6618 + }, + { + "start": 9148.02, + "end": 9148.51, + "probability": 0.9468 + }, + { + "start": 9148.68, + "end": 9150.04, + "probability": 0.8514 + }, + { + "start": 9150.24, + "end": 9151.38, + "probability": 0.7513 + }, + { + "start": 9151.44, + "end": 9152.02, + "probability": 0.426 + }, + { + "start": 9152.02, + "end": 9152.36, + "probability": 0.28 + }, + { + "start": 9152.8, + "end": 9156.72, + "probability": 0.8723 + }, + { + "start": 9157.36, + "end": 9157.36, + "probability": 0.0212 + }, + { + "start": 9157.88, + "end": 9158.7, + "probability": 0.0404 + }, + { + "start": 9158.76, + "end": 9160.9, + "probability": 0.0927 + }, + { + "start": 9160.9, + "end": 9161.71, + "probability": 0.5696 + }, + { + "start": 9162.26, + "end": 9167.42, + "probability": 0.3776 + }, + { + "start": 9167.54, + "end": 9168.78, + "probability": 0.361 + }, + { + "start": 9169.04, + "end": 9172.23, + "probability": 0.897 + }, + { + "start": 9172.44, + "end": 9176.76, + "probability": 0.996 + }, + { + "start": 9177.26, + "end": 9186.02, + "probability": 0.9768 + }, + { + "start": 9186.7, + "end": 9187.9, + "probability": 0.6736 + }, + { + "start": 9190.22, + "end": 9191.94, + "probability": 0.522 + }, + { + "start": 9193.05, + "end": 9196.62, + "probability": 0.7632 + }, + { + "start": 9196.68, + "end": 9198.18, + "probability": 0.7063 + }, + { + "start": 9198.8, + "end": 9200.02, + "probability": 0.9326 + }, + { + "start": 9200.14, + "end": 9201.14, + "probability": 0.9889 + }, + { + "start": 9202.5, + "end": 9204.0, + "probability": 0.7856 + }, + { + "start": 9204.86, + "end": 9205.48, + "probability": 0.3586 + }, + { + "start": 9205.7, + "end": 9206.42, + "probability": 0.6068 + }, + { + "start": 9206.46, + "end": 9207.78, + "probability": 0.0562 + }, + { + "start": 9207.9, + "end": 9212.02, + "probability": 0.9844 + }, + { + "start": 9213.16, + "end": 9213.24, + "probability": 0.0004 + }, + { + "start": 9213.34, + "end": 9216.78, + "probability": 0.9014 + }, + { + "start": 9217.24, + "end": 9218.84, + "probability": 0.9844 + }, + { + "start": 9219.36, + "end": 9221.68, + "probability": 0.8679 + }, + { + "start": 9222.18, + "end": 9223.22, + "probability": 0.5847 + }, + { + "start": 9223.38, + "end": 9224.24, + "probability": 0.6184 + }, + { + "start": 9224.58, + "end": 9229.48, + "probability": 0.9922 + }, + { + "start": 9229.72, + "end": 9229.88, + "probability": 0.8782 + }, + { + "start": 9229.98, + "end": 9235.72, + "probability": 0.9658 + }, + { + "start": 9236.22, + "end": 9236.88, + "probability": 0.7846 + }, + { + "start": 9236.98, + "end": 9240.98, + "probability": 0.9559 + }, + { + "start": 9241.2, + "end": 9241.62, + "probability": 0.8987 + }, + { + "start": 9241.7, + "end": 9243.58, + "probability": 0.877 + }, + { + "start": 9244.22, + "end": 9246.9, + "probability": 0.9606 + }, + { + "start": 9247.42, + "end": 9250.22, + "probability": 0.8882 + }, + { + "start": 9250.78, + "end": 9255.0, + "probability": 0.9991 + }, + { + "start": 9255.64, + "end": 9258.92, + "probability": 0.9976 + }, + { + "start": 9259.78, + "end": 9260.44, + "probability": 0.5652 + }, + { + "start": 9261.58, + "end": 9263.12, + "probability": 0.9951 + }, + { + "start": 9263.64, + "end": 9266.02, + "probability": 0.9746 + }, + { + "start": 9266.8, + "end": 9269.5, + "probability": 0.9617 + }, + { + "start": 9270.4, + "end": 9270.66, + "probability": 0.6063 + }, + { + "start": 9271.04, + "end": 9271.32, + "probability": 0.9453 + }, + { + "start": 9271.46, + "end": 9272.74, + "probability": 0.854 + }, + { + "start": 9273.06, + "end": 9274.12, + "probability": 0.9634 + }, + { + "start": 9274.46, + "end": 9275.28, + "probability": 0.968 + }, + { + "start": 9276.36, + "end": 9276.82, + "probability": 0.0568 + }, + { + "start": 9276.82, + "end": 9277.36, + "probability": 0.3073 + }, + { + "start": 9279.68, + "end": 9281.46, + "probability": 0.4216 + }, + { + "start": 9282.18, + "end": 9283.38, + "probability": 0.8024 + }, + { + "start": 9283.6, + "end": 9284.24, + "probability": 0.8642 + }, + { + "start": 9284.62, + "end": 9285.44, + "probability": 0.9701 + }, + { + "start": 9286.44, + "end": 9287.67, + "probability": 0.9157 + }, + { + "start": 9288.42, + "end": 9290.44, + "probability": 0.957 + }, + { + "start": 9291.22, + "end": 9295.74, + "probability": 0.9513 + }, + { + "start": 9296.4, + "end": 9300.44, + "probability": 0.9565 + }, + { + "start": 9301.12, + "end": 9303.66, + "probability": 0.9925 + }, + { + "start": 9303.66, + "end": 9307.54, + "probability": 0.981 + }, + { + "start": 9307.72, + "end": 9308.54, + "probability": 0.619 + }, + { + "start": 9308.68, + "end": 9310.18, + "probability": 0.671 + }, + { + "start": 9310.24, + "end": 9312.02, + "probability": 0.9863 + }, + { + "start": 9313.68, + "end": 9316.22, + "probability": 0.9946 + }, + { + "start": 9316.84, + "end": 9320.92, + "probability": 0.9202 + }, + { + "start": 9321.54, + "end": 9321.68, + "probability": 0.6627 + }, + { + "start": 9321.8, + "end": 9322.26, + "probability": 0.7778 + }, + { + "start": 9322.92, + "end": 9323.5, + "probability": 0.7753 + }, + { + "start": 9323.9, + "end": 9325.02, + "probability": 0.9677 + }, + { + "start": 9325.32, + "end": 9326.1, + "probability": 0.6542 + }, + { + "start": 9326.22, + "end": 9328.68, + "probability": 0.96 + }, + { + "start": 9329.08, + "end": 9329.56, + "probability": 0.7543 + }, + { + "start": 9329.68, + "end": 9330.57, + "probability": 0.9182 + }, + { + "start": 9331.36, + "end": 9331.6, + "probability": 0.0892 + }, + { + "start": 9331.6, + "end": 9331.6, + "probability": 0.2725 + }, + { + "start": 9331.6, + "end": 9331.6, + "probability": 0.0881 + }, + { + "start": 9331.6, + "end": 9333.18, + "probability": 0.6092 + }, + { + "start": 9334.5, + "end": 9335.18, + "probability": 0.3783 + }, + { + "start": 9335.48, + "end": 9336.18, + "probability": 0.7073 + }, + { + "start": 9336.48, + "end": 9337.12, + "probability": 0.5022 + }, + { + "start": 9337.3, + "end": 9337.98, + "probability": 0.6578 + }, + { + "start": 9338.38, + "end": 9340.02, + "probability": 0.948 + }, + { + "start": 9340.5, + "end": 9342.92, + "probability": 0.9961 + }, + { + "start": 9343.14, + "end": 9344.76, + "probability": 0.9951 + }, + { + "start": 9345.16, + "end": 9346.36, + "probability": 0.9944 + }, + { + "start": 9346.42, + "end": 9347.56, + "probability": 0.9968 + }, + { + "start": 9347.6, + "end": 9348.08, + "probability": 0.7527 + }, + { + "start": 9348.42, + "end": 9348.99, + "probability": 0.9482 + }, + { + "start": 9349.56, + "end": 9350.14, + "probability": 0.9159 + }, + { + "start": 9350.48, + "end": 9352.3, + "probability": 0.8826 + }, + { + "start": 9352.84, + "end": 9353.62, + "probability": 0.9492 + }, + { + "start": 9353.68, + "end": 9354.82, + "probability": 0.9163 + }, + { + "start": 9355.28, + "end": 9358.96, + "probability": 0.9972 + }, + { + "start": 9359.32, + "end": 9360.84, + "probability": 0.9508 + }, + { + "start": 9361.36, + "end": 9362.82, + "probability": 0.9394 + }, + { + "start": 9363.82, + "end": 9365.98, + "probability": 0.9924 + }, + { + "start": 9367.14, + "end": 9367.68, + "probability": 0.8376 + }, + { + "start": 9368.32, + "end": 9371.08, + "probability": 0.9985 + }, + { + "start": 9372.0, + "end": 9374.4, + "probability": 0.6282 + }, + { + "start": 9374.96, + "end": 9375.76, + "probability": 0.8362 + }, + { + "start": 9376.48, + "end": 9378.48, + "probability": 0.8408 + }, + { + "start": 9379.22, + "end": 9381.26, + "probability": 0.8915 + }, + { + "start": 9382.3, + "end": 9384.36, + "probability": 0.9854 + }, + { + "start": 9385.42, + "end": 9386.0, + "probability": 0.7004 + }, + { + "start": 9386.6, + "end": 9387.38, + "probability": 0.9319 + }, + { + "start": 9388.48, + "end": 9390.04, + "probability": 0.791 + }, + { + "start": 9390.56, + "end": 9394.05, + "probability": 0.8639 + }, + { + "start": 9394.86, + "end": 9396.76, + "probability": 0.8071 + }, + { + "start": 9396.96, + "end": 9399.1, + "probability": 0.604 + }, + { + "start": 9400.22, + "end": 9401.58, + "probability": 0.6246 + }, + { + "start": 9402.2, + "end": 9404.52, + "probability": 0.7384 + }, + { + "start": 9405.1, + "end": 9406.6, + "probability": 0.9072 + }, + { + "start": 9407.92, + "end": 9410.58, + "probability": 0.2348 + }, + { + "start": 9412.6, + "end": 9412.82, + "probability": 0.4524 + }, + { + "start": 9413.2, + "end": 9414.8, + "probability": 0.6271 + }, + { + "start": 9415.12, + "end": 9416.4, + "probability": 0.8828 + }, + { + "start": 9416.54, + "end": 9418.33, + "probability": 0.968 + }, + { + "start": 9418.68, + "end": 9420.34, + "probability": 0.8895 + }, + { + "start": 9420.66, + "end": 9422.14, + "probability": 0.9714 + }, + { + "start": 9422.6, + "end": 9426.58, + "probability": 0.9626 + }, + { + "start": 9426.68, + "end": 9431.28, + "probability": 0.9937 + }, + { + "start": 9431.62, + "end": 9433.24, + "probability": 0.998 + }, + { + "start": 9433.48, + "end": 9434.9, + "probability": 0.7036 + }, + { + "start": 9435.18, + "end": 9436.0, + "probability": 0.5437 + }, + { + "start": 9436.18, + "end": 9438.68, + "probability": 0.9893 + }, + { + "start": 9439.1, + "end": 9440.22, + "probability": 0.9984 + }, + { + "start": 9440.32, + "end": 9441.46, + "probability": 0.9993 + }, + { + "start": 9441.96, + "end": 9443.06, + "probability": 0.9214 + }, + { + "start": 9443.2, + "end": 9448.34, + "probability": 0.9443 + }, + { + "start": 9448.7, + "end": 9451.34, + "probability": 0.9966 + }, + { + "start": 9451.82, + "end": 9452.3, + "probability": 0.6574 + }, + { + "start": 9452.84, + "end": 9453.48, + "probability": 0.6805 + }, + { + "start": 9453.92, + "end": 9457.64, + "probability": 0.9964 + }, + { + "start": 9458.12, + "end": 9459.26, + "probability": 0.9874 + }, + { + "start": 9459.66, + "end": 9460.14, + "probability": 0.9111 + }, + { + "start": 9460.7, + "end": 9461.6, + "probability": 0.9731 + }, + { + "start": 9461.94, + "end": 9462.46, + "probability": 0.9201 + }, + { + "start": 9462.68, + "end": 9463.84, + "probability": 0.9154 + }, + { + "start": 9464.36, + "end": 9464.98, + "probability": 0.873 + }, + { + "start": 9465.48, + "end": 9467.32, + "probability": 0.9976 + }, + { + "start": 9467.94, + "end": 9469.56, + "probability": 0.9197 + }, + { + "start": 9470.36, + "end": 9470.8, + "probability": 0.8664 + }, + { + "start": 9471.64, + "end": 9473.37, + "probability": 0.9722 + }, + { + "start": 9474.04, + "end": 9480.92, + "probability": 0.9957 + }, + { + "start": 9481.26, + "end": 9484.64, + "probability": 0.7314 + }, + { + "start": 9484.96, + "end": 9485.44, + "probability": 0.4302 + }, + { + "start": 9485.58, + "end": 9487.6, + "probability": 0.9875 + }, + { + "start": 9487.7, + "end": 9491.62, + "probability": 0.7958 + }, + { + "start": 9492.1, + "end": 9493.46, + "probability": 0.7702 + }, + { + "start": 9493.6, + "end": 9494.86, + "probability": 0.6453 + }, + { + "start": 9495.7, + "end": 9496.98, + "probability": 0.9913 + }, + { + "start": 9497.64, + "end": 9498.77, + "probability": 0.8926 + }, + { + "start": 9499.18, + "end": 9499.9, + "probability": 0.9101 + }, + { + "start": 9500.26, + "end": 9501.04, + "probability": 0.772 + }, + { + "start": 9501.06, + "end": 9501.46, + "probability": 0.8268 + }, + { + "start": 9501.82, + "end": 9502.9, + "probability": 0.9782 + }, + { + "start": 9503.28, + "end": 9504.88, + "probability": 0.9961 + }, + { + "start": 9505.84, + "end": 9509.32, + "probability": 0.9248 + }, + { + "start": 9509.32, + "end": 9512.24, + "probability": 0.9399 + }, + { + "start": 9512.54, + "end": 9513.41, + "probability": 0.6494 + }, + { + "start": 9514.0, + "end": 9514.76, + "probability": 0.8966 + }, + { + "start": 9514.82, + "end": 9515.74, + "probability": 0.8514 + }, + { + "start": 9516.16, + "end": 9518.44, + "probability": 0.9983 + }, + { + "start": 9518.86, + "end": 9522.54, + "probability": 0.9868 + }, + { + "start": 9522.54, + "end": 9526.92, + "probability": 0.9872 + }, + { + "start": 9527.6, + "end": 9529.72, + "probability": 0.9922 + }, + { + "start": 9529.86, + "end": 9530.62, + "probability": 0.9467 + }, + { + "start": 9530.68, + "end": 9531.48, + "probability": 0.7305 + }, + { + "start": 9532.36, + "end": 9533.64, + "probability": 0.6486 + }, + { + "start": 9534.4, + "end": 9535.38, + "probability": 0.9868 + }, + { + "start": 9536.32, + "end": 9537.36, + "probability": 0.5212 + }, + { + "start": 9538.08, + "end": 9539.0, + "probability": 0.8077 + }, + { + "start": 9539.46, + "end": 9540.26, + "probability": 0.719 + }, + { + "start": 9541.0, + "end": 9542.74, + "probability": 0.9294 + }, + { + "start": 9543.52, + "end": 9545.48, + "probability": 0.942 + }, + { + "start": 9545.62, + "end": 9548.12, + "probability": 0.9858 + }, + { + "start": 9548.42, + "end": 9550.24, + "probability": 0.9729 + }, + { + "start": 9550.52, + "end": 9553.12, + "probability": 0.8853 + }, + { + "start": 9553.68, + "end": 9557.26, + "probability": 0.9759 + }, + { + "start": 9557.5, + "end": 9558.72, + "probability": 0.561 + }, + { + "start": 9558.98, + "end": 9562.52, + "probability": 0.959 + }, + { + "start": 9562.52, + "end": 9565.86, + "probability": 0.9688 + }, + { + "start": 9566.18, + "end": 9566.58, + "probability": 0.7124 + }, + { + "start": 9567.1, + "end": 9569.18, + "probability": 0.9618 + }, + { + "start": 9569.86, + "end": 9572.24, + "probability": 0.8298 + }, + { + "start": 9573.1, + "end": 9577.16, + "probability": 0.3639 + }, + { + "start": 9577.72, + "end": 9580.06, + "probability": 0.8661 + }, + { + "start": 9581.64, + "end": 9582.02, + "probability": 0.244 + }, + { + "start": 9583.04, + "end": 9584.06, + "probability": 0.5856 + }, + { + "start": 9584.96, + "end": 9585.78, + "probability": 0.9495 + }, + { + "start": 9586.66, + "end": 9587.09, + "probability": 0.887 + }, + { + "start": 9593.24, + "end": 9593.92, + "probability": 0.845 + }, + { + "start": 9595.4, + "end": 9596.94, + "probability": 0.7618 + }, + { + "start": 9598.62, + "end": 9600.78, + "probability": 0.5439 + }, + { + "start": 9601.58, + "end": 9606.86, + "probability": 0.9819 + }, + { + "start": 9607.88, + "end": 9613.24, + "probability": 0.9719 + }, + { + "start": 9614.1, + "end": 9616.68, + "probability": 0.757 + }, + { + "start": 9623.76, + "end": 9623.76, + "probability": 0.3284 + }, + { + "start": 9623.76, + "end": 9624.6, + "probability": 0.4887 + }, + { + "start": 9624.84, + "end": 9625.7, + "probability": 0.6759 + }, + { + "start": 9625.92, + "end": 9629.02, + "probability": 0.9122 + }, + { + "start": 9629.12, + "end": 9632.72, + "probability": 0.9155 + }, + { + "start": 9633.24, + "end": 9637.42, + "probability": 0.9803 + }, + { + "start": 9638.16, + "end": 9639.5, + "probability": 0.9963 + }, + { + "start": 9640.46, + "end": 9641.34, + "probability": 0.9245 + }, + { + "start": 9642.34, + "end": 9644.42, + "probability": 0.7988 + }, + { + "start": 9645.1, + "end": 9648.7, + "probability": 0.9317 + }, + { + "start": 9649.3, + "end": 9650.76, + "probability": 0.9579 + }, + { + "start": 9650.98, + "end": 9656.42, + "probability": 0.971 + }, + { + "start": 9657.36, + "end": 9660.98, + "probability": 0.9505 + }, + { + "start": 9661.5, + "end": 9663.16, + "probability": 0.9854 + }, + { + "start": 9663.94, + "end": 9665.54, + "probability": 0.5743 + }, + { + "start": 9666.1, + "end": 9668.26, + "probability": 0.6866 + }, + { + "start": 9669.48, + "end": 9672.88, + "probability": 0.9663 + }, + { + "start": 9673.34, + "end": 9675.06, + "probability": 0.8399 + }, + { + "start": 9675.18, + "end": 9679.1, + "probability": 0.6891 + }, + { + "start": 9679.24, + "end": 9679.56, + "probability": 0.5017 + }, + { + "start": 9680.16, + "end": 9680.72, + "probability": 0.8408 + }, + { + "start": 9680.84, + "end": 9682.66, + "probability": 0.6995 + }, + { + "start": 9683.24, + "end": 9683.56, + "probability": 0.2036 + }, + { + "start": 9683.88, + "end": 9688.14, + "probability": 0.1816 + }, + { + "start": 9688.58, + "end": 9689.4, + "probability": 0.0486 + }, + { + "start": 9689.56, + "end": 9689.64, + "probability": 0.0523 + }, + { + "start": 9689.64, + "end": 9690.98, + "probability": 0.4474 + }, + { + "start": 9692.14, + "end": 9697.82, + "probability": 0.7155 + }, + { + "start": 9698.28, + "end": 9700.04, + "probability": 0.9937 + }, + { + "start": 9700.58, + "end": 9701.18, + "probability": 0.1124 + }, + { + "start": 9701.3, + "end": 9703.02, + "probability": 0.2751 + }, + { + "start": 9703.1, + "end": 9703.36, + "probability": 0.2925 + }, + { + "start": 9703.36, + "end": 9703.56, + "probability": 0.4086 + }, + { + "start": 9703.56, + "end": 9704.02, + "probability": 0.3408 + }, + { + "start": 9704.2, + "end": 9705.32, + "probability": 0.9513 + }, + { + "start": 9705.96, + "end": 9709.52, + "probability": 0.9216 + }, + { + "start": 9709.94, + "end": 9710.94, + "probability": 0.9332 + }, + { + "start": 9711.62, + "end": 9715.12, + "probability": 0.8648 + }, + { + "start": 9716.02, + "end": 9717.91, + "probability": 0.9678 + }, + { + "start": 9718.82, + "end": 9721.8, + "probability": 0.8649 + }, + { + "start": 9723.02, + "end": 9723.4, + "probability": 0.1357 + }, + { + "start": 9723.4, + "end": 9724.24, + "probability": 0.1441 + }, + { + "start": 9724.24, + "end": 9725.0, + "probability": 0.1941 + }, + { + "start": 9725.0, + "end": 9725.3, + "probability": 0.0103 + }, + { + "start": 9725.64, + "end": 9727.24, + "probability": 0.0988 + }, + { + "start": 9727.24, + "end": 9727.82, + "probability": 0.2084 + }, + { + "start": 9730.24, + "end": 9730.5, + "probability": 0.3305 + }, + { + "start": 9731.06, + "end": 9732.02, + "probability": 0.8785 + }, + { + "start": 9732.88, + "end": 9733.44, + "probability": 0.9181 + }, + { + "start": 9734.54, + "end": 9736.24, + "probability": 0.891 + }, + { + "start": 9736.9, + "end": 9738.64, + "probability": 0.3676 + }, + { + "start": 9740.12, + "end": 9741.56, + "probability": 0.3488 + }, + { + "start": 9741.76, + "end": 9742.9, + "probability": 0.8556 + }, + { + "start": 9743.5, + "end": 9745.12, + "probability": 0.9857 + }, + { + "start": 9745.24, + "end": 9746.2, + "probability": 0.5358 + }, + { + "start": 9747.34, + "end": 9750.68, + "probability": 0.5815 + }, + { + "start": 9751.68, + "end": 9754.3, + "probability": 0.6643 + }, + { + "start": 9754.32, + "end": 9756.58, + "probability": 0.2396 + }, + { + "start": 9756.6, + "end": 9756.6, + "probability": 0.3806 + }, + { + "start": 9756.6, + "end": 9756.6, + "probability": 0.3525 + }, + { + "start": 9756.6, + "end": 9756.6, + "probability": 0.67 + }, + { + "start": 9756.84, + "end": 9759.48, + "probability": 0.7861 + }, + { + "start": 9759.52, + "end": 9761.02, + "probability": 0.7797 + }, + { + "start": 9761.56, + "end": 9764.72, + "probability": 0.8257 + }, + { + "start": 9765.3, + "end": 9769.08, + "probability": 0.8729 + }, + { + "start": 9769.96, + "end": 9771.1, + "probability": 0.5823 + }, + { + "start": 9773.8, + "end": 9774.26, + "probability": 0.5621 + }, + { + "start": 9774.54, + "end": 9775.4, + "probability": 0.4973 + }, + { + "start": 9775.79, + "end": 9778.96, + "probability": 0.7488 + }, + { + "start": 9779.7, + "end": 9782.98, + "probability": 0.9392 + }, + { + "start": 9783.8, + "end": 9786.27, + "probability": 0.9948 + }, + { + "start": 9787.28, + "end": 9794.06, + "probability": 0.7595 + }, + { + "start": 9795.24, + "end": 9799.68, + "probability": 0.8823 + }, + { + "start": 9800.38, + "end": 9802.26, + "probability": 0.5599 + }, + { + "start": 9802.9, + "end": 9804.21, + "probability": 0.7189 + }, + { + "start": 9804.98, + "end": 9805.76, + "probability": 0.8534 + }, + { + "start": 9810.4, + "end": 9810.74, + "probability": 0.5812 + }, + { + "start": 9811.18, + "end": 9814.76, + "probability": 0.6967 + }, + { + "start": 9814.84, + "end": 9819.06, + "probability": 0.8743 + }, + { + "start": 9819.72, + "end": 9823.2, + "probability": 0.992 + }, + { + "start": 9824.62, + "end": 9826.12, + "probability": 0.9403 + }, + { + "start": 9826.64, + "end": 9828.62, + "probability": 0.7477 + }, + { + "start": 9829.48, + "end": 9833.86, + "probability": 0.7277 + }, + { + "start": 9834.28, + "end": 9836.38, + "probability": 0.7321 + }, + { + "start": 9836.42, + "end": 9842.12, + "probability": 0.9872 + }, + { + "start": 9843.98, + "end": 9846.08, + "probability": 0.9971 + }, + { + "start": 9847.94, + "end": 9851.55, + "probability": 0.9974 + }, + { + "start": 9852.92, + "end": 9855.62, + "probability": 0.9582 + }, + { + "start": 9856.34, + "end": 9859.08, + "probability": 0.9855 + }, + { + "start": 9859.56, + "end": 9861.94, + "probability": 0.7748 + }, + { + "start": 9862.24, + "end": 9864.76, + "probability": 0.9976 + }, + { + "start": 9864.9, + "end": 9866.4, + "probability": 0.9854 + }, + { + "start": 9866.94, + "end": 9873.24, + "probability": 0.9325 + }, + { + "start": 9873.36, + "end": 9874.35, + "probability": 0.8315 + }, + { + "start": 9875.14, + "end": 9877.3, + "probability": 0.8268 + }, + { + "start": 9877.98, + "end": 9884.7, + "probability": 0.9943 + }, + { + "start": 9888.2, + "end": 9890.1, + "probability": 0.7833 + }, + { + "start": 9891.54, + "end": 9894.08, + "probability": 0.8864 + }, + { + "start": 9894.96, + "end": 9897.96, + "probability": 0.6169 + }, + { + "start": 9898.68, + "end": 9900.8, + "probability": 0.9496 + }, + { + "start": 9901.62, + "end": 9903.66, + "probability": 0.7551 + }, + { + "start": 9904.08, + "end": 9906.3, + "probability": 0.9991 + }, + { + "start": 9906.82, + "end": 9908.78, + "probability": 0.8492 + }, + { + "start": 9908.98, + "end": 9912.5, + "probability": 0.9568 + }, + { + "start": 9913.38, + "end": 9918.08, + "probability": 0.9965 + }, + { + "start": 9918.08, + "end": 9924.08, + "probability": 0.9946 + }, + { + "start": 9924.6, + "end": 9930.16, + "probability": 0.9707 + }, + { + "start": 9930.74, + "end": 9931.32, + "probability": 0.8353 + }, + { + "start": 9932.3, + "end": 9932.78, + "probability": 0.9904 + }, + { + "start": 9935.28, + "end": 9937.56, + "probability": 0.937 + }, + { + "start": 9938.1, + "end": 9941.46, + "probability": 0.9517 + }, + { + "start": 9942.14, + "end": 9945.32, + "probability": 0.987 + }, + { + "start": 9946.06, + "end": 9949.42, + "probability": 0.9783 + }, + { + "start": 9950.0, + "end": 9951.86, + "probability": 0.9893 + }, + { + "start": 9952.9, + "end": 9958.32, + "probability": 0.8555 + }, + { + "start": 9959.14, + "end": 9959.44, + "probability": 0.6748 + }, + { + "start": 9960.84, + "end": 9963.18, + "probability": 0.5968 + }, + { + "start": 9964.52, + "end": 9967.76, + "probability": 0.4488 + }, + { + "start": 9969.5, + "end": 9974.08, + "probability": 0.9373 + }, + { + "start": 9974.08, + "end": 9977.98, + "probability": 0.9923 + }, + { + "start": 9978.72, + "end": 9979.22, + "probability": 0.435 + }, + { + "start": 9979.92, + "end": 9981.74, + "probability": 0.8624 + }, + { + "start": 9982.3, + "end": 9985.24, + "probability": 0.9906 + }, + { + "start": 9985.92, + "end": 9990.16, + "probability": 0.9741 + }, + { + "start": 9990.7, + "end": 9994.4, + "probability": 0.9947 + }, + { + "start": 9994.92, + "end": 9997.64, + "probability": 0.9951 + }, + { + "start": 9998.52, + "end": 9999.18, + "probability": 0.7226 + }, + { + "start": 9999.74, + "end": 10003.9, + "probability": 0.9963 + }, + { + "start": 10003.9, + "end": 10007.7, + "probability": 0.8398 + }, + { + "start": 10008.3, + "end": 10011.34, + "probability": 0.8043 + }, + { + "start": 10011.92, + "end": 10016.14, + "probability": 0.991 + }, + { + "start": 10016.66, + "end": 10018.28, + "probability": 0.9843 + }, + { + "start": 10019.8, + "end": 10020.7, + "probability": 0.9325 + }, + { + "start": 10021.92, + "end": 10023.38, + "probability": 0.9771 + }, + { + "start": 10024.22, + "end": 10025.36, + "probability": 0.9639 + }, + { + "start": 10025.92, + "end": 10027.24, + "probability": 0.9545 + }, + { + "start": 10027.82, + "end": 10030.58, + "probability": 0.9945 + }, + { + "start": 10031.12, + "end": 10034.2, + "probability": 0.7665 + }, + { + "start": 10034.2, + "end": 10037.86, + "probability": 0.9939 + }, + { + "start": 10038.52, + "end": 10041.4, + "probability": 0.9932 + }, + { + "start": 10041.4, + "end": 10044.32, + "probability": 0.9993 + }, + { + "start": 10045.0, + "end": 10046.06, + "probability": 0.5042 + }, + { + "start": 10046.22, + "end": 10050.32, + "probability": 0.8591 + }, + { + "start": 10050.76, + "end": 10054.0, + "probability": 0.9673 + }, + { + "start": 10054.74, + "end": 10060.08, + "probability": 0.9865 + }, + { + "start": 10060.08, + "end": 10066.16, + "probability": 0.9976 + }, + { + "start": 10066.84, + "end": 10067.82, + "probability": 0.9573 + }, + { + "start": 10068.74, + "end": 10072.18, + "probability": 0.9754 + }, + { + "start": 10072.18, + "end": 10076.1, + "probability": 0.9985 + }, + { + "start": 10076.18, + "end": 10080.88, + "probability": 0.9954 + }, + { + "start": 10080.96, + "end": 10085.7, + "probability": 0.9646 + }, + { + "start": 10086.78, + "end": 10089.62, + "probability": 0.9945 + }, + { + "start": 10090.4, + "end": 10094.56, + "probability": 0.9694 + }, + { + "start": 10094.56, + "end": 10099.42, + "probability": 0.998 + }, + { + "start": 10100.22, + "end": 10106.22, + "probability": 0.9727 + }, + { + "start": 10107.26, + "end": 10110.26, + "probability": 0.9578 + }, + { + "start": 10110.86, + "end": 10112.82, + "probability": 0.9775 + }, + { + "start": 10112.9, + "end": 10120.52, + "probability": 0.88 + }, + { + "start": 10121.32, + "end": 10126.94, + "probability": 0.986 + }, + { + "start": 10128.44, + "end": 10129.52, + "probability": 0.8081 + }, + { + "start": 10129.64, + "end": 10130.44, + "probability": 0.7149 + }, + { + "start": 10130.6, + "end": 10132.94, + "probability": 0.9951 + }, + { + "start": 10133.6, + "end": 10138.2, + "probability": 0.8806 + }, + { + "start": 10138.88, + "end": 10141.4, + "probability": 0.9829 + }, + { + "start": 10142.42, + "end": 10144.9, + "probability": 0.8924 + }, + { + "start": 10145.04, + "end": 10149.06, + "probability": 0.871 + }, + { + "start": 10149.18, + "end": 10154.52, + "probability": 0.976 + }, + { + "start": 10155.1, + "end": 10160.87, + "probability": 0.9819 + }, + { + "start": 10162.06, + "end": 10163.48, + "probability": 0.7951 + }, + { + "start": 10163.9, + "end": 10166.38, + "probability": 0.9193 + }, + { + "start": 10166.88, + "end": 10167.5, + "probability": 0.4234 + }, + { + "start": 10168.0, + "end": 10170.64, + "probability": 0.7432 + }, + { + "start": 10170.7, + "end": 10177.74, + "probability": 0.9809 + }, + { + "start": 10178.38, + "end": 10183.21, + "probability": 0.8936 + }, + { + "start": 10183.75, + "end": 10184.48, + "probability": 0.6825 + }, + { + "start": 10185.19, + "end": 10188.54, + "probability": 0.9137 + }, + { + "start": 10188.82, + "end": 10190.42, + "probability": 0.939 + }, + { + "start": 10191.12, + "end": 10194.08, + "probability": 0.7576 + }, + { + "start": 10194.22, + "end": 10196.06, + "probability": 0.6308 + }, + { + "start": 10196.66, + "end": 10197.76, + "probability": 0.7434 + }, + { + "start": 10197.98, + "end": 10203.72, + "probability": 0.8949 + }, + { + "start": 10204.46, + "end": 10206.0, + "probability": 0.8983 + }, + { + "start": 10206.52, + "end": 10208.55, + "probability": 0.9456 + }, + { + "start": 10209.42, + "end": 10213.14, + "probability": 0.9784 + }, + { + "start": 10214.14, + "end": 10214.78, + "probability": 0.9072 + }, + { + "start": 10217.78, + "end": 10219.66, + "probability": 0.9844 + }, + { + "start": 10220.54, + "end": 10221.78, + "probability": 0.5679 + }, + { + "start": 10221.9, + "end": 10222.39, + "probability": 0.8678 + }, + { + "start": 10222.76, + "end": 10223.98, + "probability": 0.6871 + }, + { + "start": 10228.22, + "end": 10228.62, + "probability": 0.6418 + }, + { + "start": 10229.26, + "end": 10229.36, + "probability": 0.651 + }, + { + "start": 10229.36, + "end": 10230.58, + "probability": 0.7893 + }, + { + "start": 10230.64, + "end": 10232.48, + "probability": 0.7407 + }, + { + "start": 10233.14, + "end": 10233.82, + "probability": 0.9271 + }, + { + "start": 10234.0, + "end": 10236.18, + "probability": 0.9626 + }, + { + "start": 10236.46, + "end": 10238.66, + "probability": 0.9559 + }, + { + "start": 10238.76, + "end": 10241.12, + "probability": 0.9675 + }, + { + "start": 10241.2, + "end": 10242.3, + "probability": 0.8238 + }, + { + "start": 10243.1, + "end": 10245.9, + "probability": 0.9976 + }, + { + "start": 10246.86, + "end": 10249.42, + "probability": 0.9779 + }, + { + "start": 10250.28, + "end": 10252.76, + "probability": 0.9761 + }, + { + "start": 10253.24, + "end": 10255.62, + "probability": 0.8963 + }, + { + "start": 10256.22, + "end": 10258.02, + "probability": 0.9121 + }, + { + "start": 10258.76, + "end": 10261.34, + "probability": 0.9932 + }, + { + "start": 10261.34, + "end": 10265.62, + "probability": 0.9931 + }, + { + "start": 10266.1, + "end": 10267.54, + "probability": 0.989 + }, + { + "start": 10268.7, + "end": 10271.16, + "probability": 0.98 + }, + { + "start": 10272.0, + "end": 10274.96, + "probability": 0.9648 + }, + { + "start": 10275.18, + "end": 10278.53, + "probability": 0.7168 + }, + { + "start": 10279.02, + "end": 10279.3, + "probability": 0.7537 + }, + { + "start": 10279.4, + "end": 10280.42, + "probability": 0.912 + }, + { + "start": 10281.14, + "end": 10283.26, + "probability": 0.939 + }, + { + "start": 10283.92, + "end": 10286.08, + "probability": 0.8793 + }, + { + "start": 10287.4, + "end": 10292.24, + "probability": 0.9784 + }, + { + "start": 10293.6, + "end": 10294.74, + "probability": 0.6705 + }, + { + "start": 10294.86, + "end": 10296.54, + "probability": 0.8612 + }, + { + "start": 10297.74, + "end": 10298.32, + "probability": 0.7427 + }, + { + "start": 10298.36, + "end": 10299.8, + "probability": 0.6641 + }, + { + "start": 10300.16, + "end": 10303.06, + "probability": 0.8239 + }, + { + "start": 10303.34, + "end": 10305.2, + "probability": 0.8595 + }, + { + "start": 10306.72, + "end": 10310.12, + "probability": 0.9556 + }, + { + "start": 10310.98, + "end": 10312.4, + "probability": 0.9481 + }, + { + "start": 10313.36, + "end": 10318.02, + "probability": 0.6885 + }, + { + "start": 10319.36, + "end": 10322.8, + "probability": 0.9969 + }, + { + "start": 10323.04, + "end": 10328.68, + "probability": 0.9845 + }, + { + "start": 10328.68, + "end": 10332.7, + "probability": 0.9602 + }, + { + "start": 10332.82, + "end": 10334.44, + "probability": 0.7396 + }, + { + "start": 10334.98, + "end": 10337.49, + "probability": 0.9963 + }, + { + "start": 10337.5, + "end": 10341.74, + "probability": 0.9682 + }, + { + "start": 10342.34, + "end": 10342.54, + "probability": 0.4922 + }, + { + "start": 10342.66, + "end": 10342.9, + "probability": 0.8337 + }, + { + "start": 10343.04, + "end": 10344.96, + "probability": 0.8936 + }, + { + "start": 10345.02, + "end": 10349.1, + "probability": 0.5447 + }, + { + "start": 10349.9, + "end": 10350.82, + "probability": 0.8626 + }, + { + "start": 10351.34, + "end": 10352.56, + "probability": 0.8472 + }, + { + "start": 10352.78, + "end": 10354.8, + "probability": 0.5634 + }, + { + "start": 10355.7, + "end": 10359.58, + "probability": 0.7095 + }, + { + "start": 10360.64, + "end": 10361.48, + "probability": 0.4263 + }, + { + "start": 10361.82, + "end": 10365.84, + "probability": 0.9456 + }, + { + "start": 10366.0, + "end": 10370.94, + "probability": 0.951 + }, + { + "start": 10371.6, + "end": 10372.35, + "probability": 0.9202 + }, + { + "start": 10372.8, + "end": 10376.54, + "probability": 0.9303 + }, + { + "start": 10377.16, + "end": 10378.14, + "probability": 0.9009 + }, + { + "start": 10378.6, + "end": 10380.38, + "probability": 0.8094 + }, + { + "start": 10381.72, + "end": 10384.42, + "probability": 0.2367 + }, + { + "start": 10385.04, + "end": 10389.24, + "probability": 0.9551 + }, + { + "start": 10389.98, + "end": 10390.34, + "probability": 0.6553 + }, + { + "start": 10391.02, + "end": 10393.24, + "probability": 0.9869 + }, + { + "start": 10393.34, + "end": 10394.7, + "probability": 0.9879 + }, + { + "start": 10395.28, + "end": 10397.06, + "probability": 0.9896 + }, + { + "start": 10397.58, + "end": 10399.4, + "probability": 0.7918 + }, + { + "start": 10400.16, + "end": 10404.26, + "probability": 0.8962 + }, + { + "start": 10404.32, + "end": 10406.0, + "probability": 0.848 + }, + { + "start": 10406.84, + "end": 10407.42, + "probability": 0.9883 + }, + { + "start": 10408.44, + "end": 10410.44, + "probability": 0.9741 + }, + { + "start": 10411.52, + "end": 10414.14, + "probability": 0.948 + }, + { + "start": 10414.5, + "end": 10416.32, + "probability": 0.6328 + }, + { + "start": 10416.82, + "end": 10420.36, + "probability": 0.7668 + }, + { + "start": 10420.98, + "end": 10424.24, + "probability": 0.7386 + }, + { + "start": 10424.8, + "end": 10428.08, + "probability": 0.9344 + }, + { + "start": 10428.22, + "end": 10429.26, + "probability": 0.672 + }, + { + "start": 10429.66, + "end": 10430.77, + "probability": 0.9595 + }, + { + "start": 10431.26, + "end": 10433.48, + "probability": 0.9708 + }, + { + "start": 10434.32, + "end": 10434.86, + "probability": 0.7749 + }, + { + "start": 10435.48, + "end": 10444.44, + "probability": 0.9886 + }, + { + "start": 10444.82, + "end": 10445.58, + "probability": 0.9805 + }, + { + "start": 10445.66, + "end": 10446.98, + "probability": 0.9829 + }, + { + "start": 10447.4, + "end": 10450.56, + "probability": 0.9908 + }, + { + "start": 10450.62, + "end": 10452.14, + "probability": 0.8279 + }, + { + "start": 10452.26, + "end": 10453.8, + "probability": 0.6734 + }, + { + "start": 10454.1, + "end": 10456.96, + "probability": 0.9564 + }, + { + "start": 10457.76, + "end": 10460.5, + "probability": 0.9953 + }, + { + "start": 10461.0, + "end": 10462.42, + "probability": 0.9786 + }, + { + "start": 10462.72, + "end": 10464.37, + "probability": 0.9316 + }, + { + "start": 10465.26, + "end": 10471.52, + "probability": 0.972 + }, + { + "start": 10471.8, + "end": 10474.02, + "probability": 0.9429 + }, + { + "start": 10474.34, + "end": 10474.9, + "probability": 0.9357 + }, + { + "start": 10475.38, + "end": 10477.86, + "probability": 0.978 + }, + { + "start": 10478.24, + "end": 10478.92, + "probability": 0.7177 + }, + { + "start": 10479.64, + "end": 10483.02, + "probability": 0.9451 + }, + { + "start": 10483.94, + "end": 10485.3, + "probability": 0.9416 + }, + { + "start": 10486.14, + "end": 10487.9, + "probability": 0.6525 + }, + { + "start": 10488.66, + "end": 10490.32, + "probability": 0.9056 + }, + { + "start": 10491.75, + "end": 10492.56, + "probability": 0.1078 + }, + { + "start": 10495.62, + "end": 10496.62, + "probability": 0.5424 + }, + { + "start": 10497.14, + "end": 10497.28, + "probability": 0.0326 + }, + { + "start": 10499.48, + "end": 10500.52, + "probability": 0.1838 + }, + { + "start": 10501.44, + "end": 10506.14, + "probability": 0.6379 + }, + { + "start": 10507.54, + "end": 10509.4, + "probability": 0.6704 + }, + { + "start": 10510.06, + "end": 10512.02, + "probability": 0.9517 + }, + { + "start": 10512.54, + "end": 10514.08, + "probability": 0.9043 + }, + { + "start": 10516.8, + "end": 10518.24, + "probability": 0.8113 + }, + { + "start": 10518.94, + "end": 10520.36, + "probability": 0.9062 + }, + { + "start": 10521.46, + "end": 10522.78, + "probability": 0.8474 + }, + { + "start": 10523.68, + "end": 10525.24, + "probability": 0.84 + }, + { + "start": 10526.22, + "end": 10527.8, + "probability": 0.9715 + }, + { + "start": 10528.74, + "end": 10530.38, + "probability": 0.9338 + }, + { + "start": 10531.64, + "end": 10532.04, + "probability": 0.9188 + }, + { + "start": 10532.6, + "end": 10533.34, + "probability": 0.6523 + }, + { + "start": 10534.18, + "end": 10535.8, + "probability": 0.8521 + }, + { + "start": 10537.62, + "end": 10539.76, + "probability": 0.8378 + }, + { + "start": 10540.52, + "end": 10542.12, + "probability": 0.9554 + }, + { + "start": 10543.24, + "end": 10543.58, + "probability": 0.9868 + }, + { + "start": 10544.28, + "end": 10544.92, + "probability": 0.7371 + }, + { + "start": 10545.6, + "end": 10546.86, + "probability": 0.8169 + }, + { + "start": 10547.82, + "end": 10549.06, + "probability": 0.9058 + }, + { + "start": 10550.14, + "end": 10551.02, + "probability": 0.8782 + }, + { + "start": 10553.22, + "end": 10554.7, + "probability": 0.7817 + }, + { + "start": 10556.08, + "end": 10557.76, + "probability": 0.9263 + }, + { + "start": 10559.2, + "end": 10560.42, + "probability": 0.9603 + }, + { + "start": 10561.22, + "end": 10562.86, + "probability": 0.9854 + }, + { + "start": 10563.56, + "end": 10564.88, + "probability": 0.9659 + }, + { + "start": 10565.7, + "end": 10567.04, + "probability": 0.8478 + }, + { + "start": 10571.82, + "end": 10574.04, + "probability": 0.6633 + }, + { + "start": 10576.69, + "end": 10578.09, + "probability": 0.5436 + }, + { + "start": 10579.54, + "end": 10579.88, + "probability": 0.9767 + }, + { + "start": 10582.58, + "end": 10585.74, + "probability": 0.615 + }, + { + "start": 10586.82, + "end": 10588.42, + "probability": 0.8388 + }, + { + "start": 10589.66, + "end": 10591.32, + "probability": 0.9413 + }, + { + "start": 10592.34, + "end": 10593.74, + "probability": 0.8982 + }, + { + "start": 10594.28, + "end": 10594.64, + "probability": 0.7394 + }, + { + "start": 10595.16, + "end": 10596.08, + "probability": 0.958 + }, + { + "start": 10596.68, + "end": 10597.9, + "probability": 0.8186 + }, + { + "start": 10598.84, + "end": 10600.48, + "probability": 0.9368 + }, + { + "start": 10601.22, + "end": 10602.62, + "probability": 0.5772 + }, + { + "start": 10603.44, + "end": 10603.74, + "probability": 0.8828 + }, + { + "start": 10604.5, + "end": 10605.22, + "probability": 0.7048 + }, + { + "start": 10605.98, + "end": 10606.76, + "probability": 0.9612 + }, + { + "start": 10607.74, + "end": 10608.52, + "probability": 0.928 + }, + { + "start": 10609.82, + "end": 10611.4, + "probability": 0.9198 + }, + { + "start": 10612.12, + "end": 10613.68, + "probability": 0.9847 + }, + { + "start": 10614.62, + "end": 10616.44, + "probability": 0.9938 + }, + { + "start": 10617.8, + "end": 10619.4, + "probability": 0.9678 + }, + { + "start": 10620.88, + "end": 10621.7, + "probability": 0.6501 + }, + { + "start": 10622.26, + "end": 10622.92, + "probability": 0.6244 + }, + { + "start": 10623.88, + "end": 10625.82, + "probability": 0.8073 + }, + { + "start": 10626.62, + "end": 10628.08, + "probability": 0.9196 + }, + { + "start": 10629.08, + "end": 10630.34, + "probability": 0.8771 + }, + { + "start": 10631.44, + "end": 10632.98, + "probability": 0.5511 + }, + { + "start": 10633.86, + "end": 10634.08, + "probability": 0.8511 + }, + { + "start": 10634.62, + "end": 10635.12, + "probability": 0.9807 + }, + { + "start": 10635.92, + "end": 10636.22, + "probability": 0.9888 + }, + { + "start": 10636.86, + "end": 10639.88, + "probability": 0.9411 + }, + { + "start": 10640.62, + "end": 10641.7, + "probability": 0.8285 + }, + { + "start": 10643.04, + "end": 10644.68, + "probability": 0.6737 + }, + { + "start": 10645.76, + "end": 10647.88, + "probability": 0.837 + }, + { + "start": 10648.84, + "end": 10650.38, + "probability": 0.8792 + }, + { + "start": 10651.12, + "end": 10652.58, + "probability": 0.9811 + }, + { + "start": 10654.1, + "end": 10655.98, + "probability": 0.9857 + }, + { + "start": 10656.96, + "end": 10657.3, + "probability": 0.9875 + }, + { + "start": 10657.98, + "end": 10658.84, + "probability": 0.9692 + }, + { + "start": 10660.46, + "end": 10662.2, + "probability": 0.9138 + }, + { + "start": 10663.36, + "end": 10665.08, + "probability": 0.9637 + }, + { + "start": 10666.18, + "end": 10668.06, + "probability": 0.7319 + }, + { + "start": 10668.98, + "end": 10669.3, + "probability": 0.907 + }, + { + "start": 10669.84, + "end": 10670.6, + "probability": 0.3874 + }, + { + "start": 10671.46, + "end": 10673.06, + "probability": 0.7263 + }, + { + "start": 10673.84, + "end": 10675.1, + "probability": 0.6325 + }, + { + "start": 10676.24, + "end": 10677.76, + "probability": 0.9725 + }, + { + "start": 10679.0, + "end": 10680.42, + "probability": 0.9921 + }, + { + "start": 10681.7, + "end": 10683.04, + "probability": 0.9904 + }, + { + "start": 10684.5, + "end": 10688.34, + "probability": 0.6413 + }, + { + "start": 10689.88, + "end": 10690.96, + "probability": 0.8619 + }, + { + "start": 10691.94, + "end": 10693.08, + "probability": 0.9442 + }, + { + "start": 10694.26, + "end": 10695.56, + "probability": 0.8586 + }, + { + "start": 10696.08, + "end": 10696.34, + "probability": 0.9446 + }, + { + "start": 10696.94, + "end": 10697.56, + "probability": 0.809 + }, + { + "start": 10698.48, + "end": 10700.18, + "probability": 0.8577 + }, + { + "start": 10701.08, + "end": 10702.34, + "probability": 0.9588 + }, + { + "start": 10703.56, + "end": 10703.82, + "probability": 0.6731 + }, + { + "start": 10705.38, + "end": 10706.1, + "probability": 0.7098 + }, + { + "start": 10707.44, + "end": 10708.94, + "probability": 0.8953 + }, + { + "start": 10709.8, + "end": 10711.2, + "probability": 0.9689 + }, + { + "start": 10711.98, + "end": 10713.44, + "probability": 0.6686 + }, + { + "start": 10714.16, + "end": 10715.82, + "probability": 0.8609 + }, + { + "start": 10718.36, + "end": 10720.56, + "probability": 0.9591 + }, + { + "start": 10721.86, + "end": 10723.34, + "probability": 0.9593 + }, + { + "start": 10724.48, + "end": 10724.8, + "probability": 0.9482 + }, + { + "start": 10725.56, + "end": 10726.24, + "probability": 0.861 + }, + { + "start": 10727.34, + "end": 10729.36, + "probability": 0.6366 + }, + { + "start": 10730.38, + "end": 10731.94, + "probability": 0.9246 + }, + { + "start": 10733.0, + "end": 10734.78, + "probability": 0.9725 + }, + { + "start": 10735.5, + "end": 10736.56, + "probability": 0.978 + }, + { + "start": 10737.62, + "end": 10739.28, + "probability": 0.8593 + }, + { + "start": 10740.14, + "end": 10741.6, + "probability": 0.9728 + }, + { + "start": 10744.82, + "end": 10745.22, + "probability": 0.7274 + }, + { + "start": 10745.74, + "end": 10746.22, + "probability": 0.6769 + }, + { + "start": 10747.54, + "end": 10748.76, + "probability": 0.7139 + }, + { + "start": 10749.72, + "end": 10751.16, + "probability": 0.9806 + }, + { + "start": 10751.92, + "end": 10753.12, + "probability": 0.9084 + }, + { + "start": 10754.52, + "end": 10755.94, + "probability": 0.854 + }, + { + "start": 10756.52, + "end": 10757.98, + "probability": 0.7826 + }, + { + "start": 10758.92, + "end": 10760.78, + "probability": 0.9532 + }, + { + "start": 10761.6, + "end": 10762.38, + "probability": 0.5648 + }, + { + "start": 10762.6, + "end": 10763.76, + "probability": 0.2792 + }, + { + "start": 10764.64, + "end": 10764.82, + "probability": 0.0195 + }, + { + "start": 10765.42, + "end": 10766.38, + "probability": 0.6434 + }, + { + "start": 10767.22, + "end": 10768.62, + "probability": 0.8638 + }, + { + "start": 10769.52, + "end": 10771.04, + "probability": 0.8313 + }, + { + "start": 10771.84, + "end": 10772.42, + "probability": 0.7938 + }, + { + "start": 10772.96, + "end": 10773.68, + "probability": 0.6458 + }, + { + "start": 10774.52, + "end": 10774.86, + "probability": 0.991 + }, + { + "start": 10775.38, + "end": 10776.06, + "probability": 0.8764 + }, + { + "start": 10776.68, + "end": 10777.72, + "probability": 0.9826 + }, + { + "start": 10778.38, + "end": 10780.12, + "probability": 0.6394 + }, + { + "start": 10781.28, + "end": 10782.68, + "probability": 0.8467 + }, + { + "start": 10783.78, + "end": 10784.38, + "probability": 0.988 + }, + { + "start": 10784.9, + "end": 10785.76, + "probability": 0.8629 + }, + { + "start": 10786.56, + "end": 10788.58, + "probability": 0.9466 + }, + { + "start": 10789.88, + "end": 10791.1, + "probability": 0.896 + }, + { + "start": 10792.7, + "end": 10794.14, + "probability": 0.9867 + }, + { + "start": 10795.68, + "end": 10797.16, + "probability": 0.9611 + }, + { + "start": 10799.32, + "end": 10799.68, + "probability": 0.9834 + }, + { + "start": 10800.34, + "end": 10801.08, + "probability": 0.8211 + }, + { + "start": 10802.74, + "end": 10803.96, + "probability": 0.8021 + }, + { + "start": 10804.62, + "end": 10805.7, + "probability": 0.719 + }, + { + "start": 10808.7, + "end": 10809.44, + "probability": 0.4817 + }, + { + "start": 10810.38, + "end": 10811.36, + "probability": 0.6952 + }, + { + "start": 10812.86, + "end": 10814.52, + "probability": 0.9644 + }, + { + "start": 10815.94, + "end": 10816.3, + "probability": 0.9553 + }, + { + "start": 10816.88, + "end": 10817.64, + "probability": 0.8476 + }, + { + "start": 10818.6, + "end": 10820.12, + "probability": 0.9481 + }, + { + "start": 10820.9, + "end": 10821.2, + "probability": 0.9219 + }, + { + "start": 10823.08, + "end": 10824.38, + "probability": 0.6217 + }, + { + "start": 10826.1, + "end": 10826.44, + "probability": 0.6274 + }, + { + "start": 10827.04, + "end": 10827.78, + "probability": 0.5582 + }, + { + "start": 10828.8, + "end": 10830.34, + "probability": 0.7281 + }, + { + "start": 10831.76, + "end": 10833.54, + "probability": 0.7212 + }, + { + "start": 10834.36, + "end": 10836.32, + "probability": 0.9494 + }, + { + "start": 10837.1, + "end": 10838.56, + "probability": 0.8985 + }, + { + "start": 10839.58, + "end": 10841.1, + "probability": 0.9414 + }, + { + "start": 10841.9, + "end": 10850.14, + "probability": 0.9581 + }, + { + "start": 10850.58, + "end": 10852.52, + "probability": 0.0135 + }, + { + "start": 10853.42, + "end": 10854.22, + "probability": 0.3706 + }, + { + "start": 10856.18, + "end": 10858.36, + "probability": 0.7924 + }, + { + "start": 10859.02, + "end": 10861.52, + "probability": 0.963 + }, + { + "start": 10862.3, + "end": 10862.92, + "probability": 0.9764 + }, + { + "start": 10865.98, + "end": 10866.66, + "probability": 0.6462 + }, + { + "start": 10868.0, + "end": 10868.66, + "probability": 0.8155 + }, + { + "start": 10869.3, + "end": 10870.08, + "probability": 0.7222 + }, + { + "start": 10871.54, + "end": 10872.86, + "probability": 0.9474 + }, + { + "start": 10875.54, + "end": 10875.88, + "probability": 0.794 + }, + { + "start": 10877.22, + "end": 10880.36, + "probability": 0.7413 + }, + { + "start": 10882.24, + "end": 10882.9, + "probability": 0.8084 + }, + { + "start": 10883.64, + "end": 10884.24, + "probability": 0.927 + }, + { + "start": 10885.74, + "end": 10887.4, + "probability": 0.9083 + }, + { + "start": 10889.02, + "end": 10890.08, + "probability": 0.9378 + }, + { + "start": 10891.06, + "end": 10893.12, + "probability": 0.5723 + }, + { + "start": 10894.42, + "end": 10896.38, + "probability": 0.8573 + }, + { + "start": 10896.98, + "end": 10898.82, + "probability": 0.943 + }, + { + "start": 10899.62, + "end": 10902.32, + "probability": 0.9332 + }, + { + "start": 10903.82, + "end": 10905.36, + "probability": 0.9275 + }, + { + "start": 10906.82, + "end": 10908.58, + "probability": 0.9923 + }, + { + "start": 10909.5, + "end": 10910.34, + "probability": 0.9975 + }, + { + "start": 10911.38, + "end": 10911.58, + "probability": 0.9634 + }, + { + "start": 10914.32, + "end": 10915.36, + "probability": 0.2293 + }, + { + "start": 10918.2, + "end": 10922.16, + "probability": 0.7524 + }, + { + "start": 10923.0, + "end": 10925.28, + "probability": 0.7731 + }, + { + "start": 10926.96, + "end": 10927.22, + "probability": 0.8508 + }, + { + "start": 10928.46, + "end": 10929.94, + "probability": 0.872 + }, + { + "start": 10931.48, + "end": 10932.16, + "probability": 0.9907 + }, + { + "start": 10932.84, + "end": 10933.66, + "probability": 0.872 + }, + { + "start": 10934.7, + "end": 10936.44, + "probability": 0.9243 + }, + { + "start": 10936.44, + "end": 10938.12, + "probability": 0.8123 + }, + { + "start": 10938.48, + "end": 10939.26, + "probability": 0.9786 + }, + { + "start": 10940.6, + "end": 10940.82, + "probability": 0.829 + }, + { + "start": 10942.02, + "end": 10942.86, + "probability": 0.7071 + }, + { + "start": 10944.26, + "end": 10944.82, + "probability": 0.5566 + }, + { + "start": 10946.18, + "end": 10947.72, + "probability": 0.8589 + }, + { + "start": 10949.56, + "end": 10954.32, + "probability": 0.0655 + }, + { + "start": 10954.34, + "end": 10955.14, + "probability": 0.0121 + }, + { + "start": 10961.74, + "end": 10962.6, + "probability": 0.6222 + }, + { + "start": 10964.14, + "end": 10965.8, + "probability": 0.8879 + }, + { + "start": 10966.98, + "end": 10971.56, + "probability": 0.7876 + }, + { + "start": 10974.62, + "end": 10975.34, + "probability": 0.7157 + }, + { + "start": 10977.36, + "end": 10980.08, + "probability": 0.7716 + }, + { + "start": 10980.86, + "end": 10982.66, + "probability": 0.7764 + }, + { + "start": 10983.66, + "end": 10984.56, + "probability": 0.7861 + }, + { + "start": 10985.2, + "end": 10986.1, + "probability": 0.8794 + }, + { + "start": 10986.7, + "end": 10987.38, + "probability": 0.9953 + }, + { + "start": 10987.98, + "end": 10988.86, + "probability": 0.5595 + }, + { + "start": 10989.56, + "end": 10990.26, + "probability": 0.8728 + }, + { + "start": 10990.8, + "end": 10991.66, + "probability": 0.8763 + }, + { + "start": 10992.24, + "end": 10995.62, + "probability": 0.7055 + }, + { + "start": 10996.58, + "end": 10997.74, + "probability": 0.5766 + }, + { + "start": 10999.1, + "end": 11001.08, + "probability": 0.7713 + }, + { + "start": 11001.62, + "end": 11002.72, + "probability": 0.8407 + }, + { + "start": 11003.7, + "end": 11004.12, + "probability": 0.4449 + }, + { + "start": 11006.88, + "end": 11007.32, + "probability": 0.6926 + }, + { + "start": 11008.28, + "end": 11008.92, + "probability": 0.0123 + }, + { + "start": 11009.96, + "end": 11011.86, + "probability": 0.842 + }, + { + "start": 11012.52, + "end": 11014.38, + "probability": 0.9076 + }, + { + "start": 11015.22, + "end": 11015.9, + "probability": 0.9823 + }, + { + "start": 11016.66, + "end": 11017.28, + "probability": 0.938 + }, + { + "start": 11017.7, + "end": 11019.4, + "probability": 0.9503 + }, + { + "start": 11019.64, + "end": 11021.66, + "probability": 0.9774 + }, + { + "start": 11021.68, + "end": 11024.0, + "probability": 0.9449 + }, + { + "start": 11024.14, + "end": 11025.48, + "probability": 0.529 + }, + { + "start": 11025.86, + "end": 11026.46, + "probability": 0.8866 + }, + { + "start": 11027.02, + "end": 11028.08, + "probability": 0.9022 + }, + { + "start": 11028.66, + "end": 11029.46, + "probability": 0.7515 + }, + { + "start": 11030.32, + "end": 11031.18, + "probability": 0.7098 + }, + { + "start": 11031.34, + "end": 11032.92, + "probability": 0.8774 + }, + { + "start": 11033.32, + "end": 11034.94, + "probability": 0.9082 + }, + { + "start": 11035.3, + "end": 11035.96, + "probability": 0.9834 + }, + { + "start": 11036.48, + "end": 11037.24, + "probability": 0.9649 + }, + { + "start": 11037.84, + "end": 11040.72, + "probability": 0.9276 + }, + { + "start": 11041.26, + "end": 11043.72, + "probability": 0.7682 + }, + { + "start": 11044.44, + "end": 11045.98, + "probability": 0.868 + }, + { + "start": 11046.5, + "end": 11048.26, + "probability": 0.9475 + }, + { + "start": 11049.0, + "end": 11050.74, + "probability": 0.9754 + }, + { + "start": 11051.34, + "end": 11053.3, + "probability": 0.9771 + }, + { + "start": 11053.48, + "end": 11055.1, + "probability": 0.9622 + }, + { + "start": 11055.12, + "end": 11056.94, + "probability": 0.9746 + }, + { + "start": 11059.76, + "end": 11060.6, + "probability": 0.4596 + }, + { + "start": 11060.6, + "end": 11061.3, + "probability": 0.5832 + }, + { + "start": 11062.22, + "end": 11063.62, + "probability": 0.6979 + }, + { + "start": 11065.18, + "end": 11065.58, + "probability": 0.8779 + }, + { + "start": 11066.78, + "end": 11067.4, + "probability": 0.6687 + }, + { + "start": 11068.24, + "end": 11069.94, + "probability": 0.8471 + }, + { + "start": 11072.58, + "end": 11072.94, + "probability": 0.9479 + }, + { + "start": 11075.46, + "end": 11078.12, + "probability": 0.5662 + }, + { + "start": 11080.72, + "end": 11082.84, + "probability": 0.8396 + }, + { + "start": 11083.44, + "end": 11084.12, + "probability": 0.712 + }, + { + "start": 11084.8, + "end": 11086.66, + "probability": 0.7543 + }, + { + "start": 11087.38, + "end": 11089.44, + "probability": 0.9272 + }, + { + "start": 11090.22, + "end": 11092.82, + "probability": 0.9557 + }, + { + "start": 11093.54, + "end": 11094.84, + "probability": 0.786 + }, + { + "start": 11095.74, + "end": 11095.98, + "probability": 0.524 + }, + { + "start": 11096.46, + "end": 11096.98, + "probability": 0.4966 + }, + { + "start": 11097.96, + "end": 11099.66, + "probability": 0.5427 + }, + { + "start": 11099.7, + "end": 11101.34, + "probability": 0.9072 + }, + { + "start": 11103.32, + "end": 11103.82, + "probability": 0.2521 + }, + { + "start": 11104.36, + "end": 11104.36, + "probability": 0.3608 + }, + { + "start": 11106.53, + "end": 11107.82, + "probability": 0.0147 + }, + { + "start": 11109.54, + "end": 11111.46, + "probability": 0.0735 + }, + { + "start": 11114.98, + "end": 11115.43, + "probability": 0.1306 + }, + { + "start": 11123.64, + "end": 11124.2, + "probability": 0.0972 + }, + { + "start": 11127.54, + "end": 11127.98, + "probability": 0.0167 + }, + { + "start": 11129.7, + "end": 11130.3, + "probability": 0.0523 + }, + { + "start": 11130.94, + "end": 11131.04, + "probability": 0.0866 + }, + { + "start": 11133.1, + "end": 11133.38, + "probability": 0.0571 + }, + { + "start": 11199.54, + "end": 11202.34, + "probability": 0.7861 + }, + { + "start": 11203.06, + "end": 11205.8, + "probability": 0.9977 + }, + { + "start": 11206.32, + "end": 11208.48, + "probability": 0.8395 + }, + { + "start": 11209.3, + "end": 11211.58, + "probability": 0.6238 + }, + { + "start": 11213.88, + "end": 11214.72, + "probability": 0.6116 + }, + { + "start": 11215.78, + "end": 11217.86, + "probability": 0.7515 + }, + { + "start": 11217.92, + "end": 11218.02, + "probability": 0.2059 + }, + { + "start": 11218.02, + "end": 11221.1, + "probability": 0.2829 + }, + { + "start": 11222.82, + "end": 11225.01, + "probability": 0.9527 + }, + { + "start": 11225.1, + "end": 11226.46, + "probability": 0.9049 + }, + { + "start": 11228.4, + "end": 11229.62, + "probability": 0.6982 + }, + { + "start": 11230.5, + "end": 11233.68, + "probability": 0.8069 + }, + { + "start": 11234.34, + "end": 11240.6, + "probability": 0.9886 + }, + { + "start": 11240.76, + "end": 11243.84, + "probability": 0.9409 + }, + { + "start": 11244.3, + "end": 11245.92, + "probability": 0.701 + }, + { + "start": 11248.6, + "end": 11252.54, + "probability": 0.8963 + }, + { + "start": 11253.12, + "end": 11254.62, + "probability": 0.6171 + }, + { + "start": 11254.88, + "end": 11254.88, + "probability": 0.5529 + }, + { + "start": 11254.88, + "end": 11259.21, + "probability": 0.8867 + }, + { + "start": 11260.08, + "end": 11260.34, + "probability": 0.8634 + }, + { + "start": 11260.48, + "end": 11260.93, + "probability": 0.7727 + }, + { + "start": 11261.2, + "end": 11264.84, + "probability": 0.863 + }, + { + "start": 11265.94, + "end": 11269.34, + "probability": 0.9933 + }, + { + "start": 11269.62, + "end": 11275.22, + "probability": 0.9549 + }, + { + "start": 11275.68, + "end": 11277.54, + "probability": 0.8604 + }, + { + "start": 11277.7, + "end": 11277.94, + "probability": 0.9308 + }, + { + "start": 11278.6, + "end": 11279.42, + "probability": 0.8196 + }, + { + "start": 11279.88, + "end": 11281.62, + "probability": 0.3378 + }, + { + "start": 11281.86, + "end": 11282.42, + "probability": 0.0564 + }, + { + "start": 11283.54, + "end": 11286.64, + "probability": 0.4116 + }, + { + "start": 11286.74, + "end": 11287.06, + "probability": 0.0721 + }, + { + "start": 11287.06, + "end": 11287.06, + "probability": 0.8929 + }, + { + "start": 11287.06, + "end": 11290.42, + "probability": 0.6899 + }, + { + "start": 11290.48, + "end": 11290.84, + "probability": 0.002 + }, + { + "start": 11290.84, + "end": 11291.28, + "probability": 0.4059 + }, + { + "start": 11291.88, + "end": 11294.14, + "probability": 0.4196 + }, + { + "start": 11294.22, + "end": 11296.46, + "probability": 0.9299 + }, + { + "start": 11296.9, + "end": 11299.62, + "probability": 0.9591 + }, + { + "start": 11299.94, + "end": 11300.66, + "probability": 0.9425 + }, + { + "start": 11301.72, + "end": 11303.22, + "probability": 0.9239 + }, + { + "start": 11303.74, + "end": 11304.44, + "probability": 0.3552 + }, + { + "start": 11304.44, + "end": 11305.12, + "probability": 0.4983 + }, + { + "start": 11305.12, + "end": 11305.96, + "probability": 0.593 + }, + { + "start": 11306.92, + "end": 11309.1, + "probability": 0.8628 + }, + { + "start": 11309.18, + "end": 11310.22, + "probability": 0.3351 + }, + { + "start": 11310.44, + "end": 11311.54, + "probability": 0.9009 + }, + { + "start": 11312.26, + "end": 11313.82, + "probability": 0.9957 + }, + { + "start": 11315.3, + "end": 11315.5, + "probability": 0.4773 + }, + { + "start": 11315.62, + "end": 11316.48, + "probability": 0.8187 + }, + { + "start": 11316.58, + "end": 11317.24, + "probability": 0.7829 + }, + { + "start": 11318.38, + "end": 11320.3, + "probability": 0.8538 + }, + { + "start": 11320.56, + "end": 11323.3, + "probability": 0.7853 + }, + { + "start": 11323.7, + "end": 11325.96, + "probability": 0.9743 + }, + { + "start": 11326.16, + "end": 11329.3, + "probability": 0.2602 + }, + { + "start": 11329.3, + "end": 11329.82, + "probability": 0.1556 + }, + { + "start": 11330.52, + "end": 11332.92, + "probability": 0.7509 + }, + { + "start": 11333.1, + "end": 11334.57, + "probability": 0.9675 + }, + { + "start": 11335.04, + "end": 11335.76, + "probability": 0.7826 + }, + { + "start": 11336.0, + "end": 11336.4, + "probability": 0.125 + }, + { + "start": 11337.68, + "end": 11337.96, + "probability": 0.0558 + }, + { + "start": 11337.96, + "end": 11338.48, + "probability": 0.2592 + }, + { + "start": 11338.64, + "end": 11341.3, + "probability": 0.885 + }, + { + "start": 11342.0, + "end": 11343.24, + "probability": 0.5368 + }, + { + "start": 11345.14, + "end": 11346.0, + "probability": 0.4469 + }, + { + "start": 11346.31, + "end": 11348.14, + "probability": 0.4415 + }, + { + "start": 11348.76, + "end": 11349.34, + "probability": 0.7218 + }, + { + "start": 11349.44, + "end": 11350.2, + "probability": 0.9442 + }, + { + "start": 11350.34, + "end": 11355.88, + "probability": 0.9747 + }, + { + "start": 11356.26, + "end": 11359.14, + "probability": 0.8171 + }, + { + "start": 11359.26, + "end": 11360.38, + "probability": 0.4882 + }, + { + "start": 11360.94, + "end": 11361.64, + "probability": 0.4805 + }, + { + "start": 11363.54, + "end": 11364.94, + "probability": 0.3862 + }, + { + "start": 11364.94, + "end": 11365.8, + "probability": 0.5756 + }, + { + "start": 11366.06, + "end": 11368.5, + "probability": 0.5751 + }, + { + "start": 11369.2, + "end": 11369.62, + "probability": 0.0697 + }, + { + "start": 11369.62, + "end": 11371.72, + "probability": 0.24 + }, + { + "start": 11371.82, + "end": 11373.64, + "probability": 0.4342 + }, + { + "start": 11373.66, + "end": 11373.96, + "probability": 0.239 + }, + { + "start": 11374.2, + "end": 11376.34, + "probability": 0.6642 + }, + { + "start": 11376.42, + "end": 11379.08, + "probability": 0.9143 + }, + { + "start": 11379.24, + "end": 11379.5, + "probability": 0.2101 + }, + { + "start": 11380.38, + "end": 11383.94, + "probability": 0.8438 + }, + { + "start": 11384.2, + "end": 11387.34, + "probability": 0.8893 + }, + { + "start": 11387.44, + "end": 11388.26, + "probability": 0.8855 + }, + { + "start": 11388.28, + "end": 11389.42, + "probability": 0.0141 + }, + { + "start": 11389.7, + "end": 11391.64, + "probability": 0.6534 + }, + { + "start": 11391.9, + "end": 11392.72, + "probability": 0.7125 + }, + { + "start": 11393.02, + "end": 11396.46, + "probability": 0.9525 + }, + { + "start": 11396.98, + "end": 11399.01, + "probability": 0.9668 + }, + { + "start": 11399.76, + "end": 11403.22, + "probability": 0.8525 + }, + { + "start": 11403.42, + "end": 11403.74, + "probability": 0.6747 + }, + { + "start": 11404.5, + "end": 11407.36, + "probability": 0.9664 + }, + { + "start": 11408.28, + "end": 11409.3, + "probability": 0.7629 + }, + { + "start": 11409.34, + "end": 11411.42, + "probability": 0.9083 + }, + { + "start": 11411.72, + "end": 11412.66, + "probability": 0.703 + }, + { + "start": 11413.24, + "end": 11415.38, + "probability": 0.9395 + }, + { + "start": 11416.0, + "end": 11416.56, + "probability": 0.3295 + }, + { + "start": 11417.28, + "end": 11419.56, + "probability": 0.7311 + }, + { + "start": 11420.24, + "end": 11421.24, + "probability": 0.9453 + }, + { + "start": 11421.34, + "end": 11423.04, + "probability": 0.9956 + }, + { + "start": 11423.48, + "end": 11425.84, + "probability": 0.9501 + }, + { + "start": 11426.3, + "end": 11428.33, + "probability": 0.9394 + }, + { + "start": 11428.7, + "end": 11429.68, + "probability": 0.4985 + }, + { + "start": 11429.7, + "end": 11433.3, + "probability": 0.491 + }, + { + "start": 11433.38, + "end": 11434.29, + "probability": 0.7136 + }, + { + "start": 11435.34, + "end": 11436.14, + "probability": 0.9614 + }, + { + "start": 11436.28, + "end": 11437.82, + "probability": 0.9954 + }, + { + "start": 11438.32, + "end": 11442.07, + "probability": 0.987 + }, + { + "start": 11442.5, + "end": 11447.24, + "probability": 0.9985 + }, + { + "start": 11447.36, + "end": 11448.1, + "probability": 0.5946 + }, + { + "start": 11448.82, + "end": 11448.92, + "probability": 0.6803 + }, + { + "start": 11450.26, + "end": 11454.32, + "probability": 0.998 + }, + { + "start": 11455.08, + "end": 11457.34, + "probability": 0.9889 + }, + { + "start": 11458.04, + "end": 11459.42, + "probability": 0.9863 + }, + { + "start": 11459.64, + "end": 11462.92, + "probability": 0.9972 + }, + { + "start": 11463.42, + "end": 11465.88, + "probability": 0.8876 + }, + { + "start": 11465.98, + "end": 11467.18, + "probability": 0.9956 + }, + { + "start": 11467.3, + "end": 11469.2, + "probability": 0.5053 + }, + { + "start": 11469.22, + "end": 11469.76, + "probability": 0.5369 + }, + { + "start": 11469.76, + "end": 11469.98, + "probability": 0.8074 + }, + { + "start": 11470.06, + "end": 11470.48, + "probability": 0.0722 + }, + { + "start": 11470.48, + "end": 11470.68, + "probability": 0.4899 + }, + { + "start": 11470.72, + "end": 11472.72, + "probability": 0.9901 + }, + { + "start": 11472.98, + "end": 11473.71, + "probability": 0.9951 + }, + { + "start": 11473.9, + "end": 11474.46, + "probability": 0.4884 + }, + { + "start": 11474.72, + "end": 11475.54, + "probability": 0.1336 + }, + { + "start": 11475.54, + "end": 11475.98, + "probability": 0.4626 + }, + { + "start": 11476.34, + "end": 11477.36, + "probability": 0.7596 + }, + { + "start": 11477.46, + "end": 11478.28, + "probability": 0.699 + }, + { + "start": 11478.36, + "end": 11480.48, + "probability": 0.7132 + }, + { + "start": 11480.54, + "end": 11483.88, + "probability": 0.604 + }, + { + "start": 11483.94, + "end": 11484.3, + "probability": 0.6516 + }, + { + "start": 11484.64, + "end": 11487.18, + "probability": 0.9451 + }, + { + "start": 11487.48, + "end": 11488.62, + "probability": 0.2665 + }, + { + "start": 11488.76, + "end": 11489.36, + "probability": 0.4818 + }, + { + "start": 11489.56, + "end": 11492.34, + "probability": 0.7335 + }, + { + "start": 11492.62, + "end": 11495.46, + "probability": 0.5978 + }, + { + "start": 11495.54, + "end": 11496.08, + "probability": 0.5739 + }, + { + "start": 11497.55, + "end": 11500.08, + "probability": 0.7419 + }, + { + "start": 11500.4, + "end": 11501.68, + "probability": 0.98 + }, + { + "start": 11502.36, + "end": 11503.04, + "probability": 0.6619 + }, + { + "start": 11503.12, + "end": 11503.72, + "probability": 0.9025 + }, + { + "start": 11503.8, + "end": 11504.88, + "probability": 0.7838 + }, + { + "start": 11504.92, + "end": 11507.5, + "probability": 0.9935 + }, + { + "start": 11507.82, + "end": 11511.32, + "probability": 0.9964 + }, + { + "start": 11511.62, + "end": 11512.78, + "probability": 0.8319 + }, + { + "start": 11513.04, + "end": 11514.8, + "probability": 0.9928 + }, + { + "start": 11515.2, + "end": 11518.16, + "probability": 0.9905 + }, + { + "start": 11518.46, + "end": 11519.86, + "probability": 0.985 + }, + { + "start": 11520.26, + "end": 11521.86, + "probability": 0.7193 + }, + { + "start": 11522.24, + "end": 11523.18, + "probability": 0.8737 + }, + { + "start": 11523.3, + "end": 11523.5, + "probability": 0.7264 + }, + { + "start": 11523.54, + "end": 11524.38, + "probability": 0.729 + }, + { + "start": 11524.62, + "end": 11526.32, + "probability": 0.9037 + }, + { + "start": 11526.64, + "end": 11526.88, + "probability": 0.7844 + }, + { + "start": 11527.26, + "end": 11527.7, + "probability": 0.8945 + }, + { + "start": 11532.72, + "end": 11534.04, + "probability": 0.6345 + }, + { + "start": 11534.24, + "end": 11535.58, + "probability": 0.9408 + }, + { + "start": 11536.74, + "end": 11539.36, + "probability": 0.9974 + }, + { + "start": 11539.58, + "end": 11540.22, + "probability": 0.9062 + }, + { + "start": 11540.4, + "end": 11540.66, + "probability": 0.7658 + }, + { + "start": 11540.8, + "end": 11541.34, + "probability": 0.7308 + }, + { + "start": 11541.72, + "end": 11543.7, + "probability": 0.9858 + }, + { + "start": 11544.12, + "end": 11545.8, + "probability": 0.9702 + }, + { + "start": 11545.92, + "end": 11547.14, + "probability": 0.9004 + }, + { + "start": 11547.2, + "end": 11549.14, + "probability": 0.7226 + }, + { + "start": 11549.7, + "end": 11549.78, + "probability": 0.0002 + }, + { + "start": 11549.78, + "end": 11551.78, + "probability": 0.7316 + }, + { + "start": 11552.48, + "end": 11555.04, + "probability": 0.278 + }, + { + "start": 11555.18, + "end": 11555.18, + "probability": 0.3513 + }, + { + "start": 11555.18, + "end": 11555.76, + "probability": 0.5906 + }, + { + "start": 11555.84, + "end": 11559.46, + "probability": 0.9309 + }, + { + "start": 11559.6, + "end": 11561.93, + "probability": 0.8818 + }, + { + "start": 11562.58, + "end": 11565.9, + "probability": 0.9889 + }, + { + "start": 11566.48, + "end": 11567.66, + "probability": 0.9515 + }, + { + "start": 11567.74, + "end": 11570.58, + "probability": 0.9676 + }, + { + "start": 11570.7, + "end": 11572.08, + "probability": 0.4884 + }, + { + "start": 11572.46, + "end": 11573.42, + "probability": 0.8297 + }, + { + "start": 11573.42, + "end": 11574.2, + "probability": 0.6602 + }, + { + "start": 11574.34, + "end": 11575.76, + "probability": 0.1553 + }, + { + "start": 11576.3, + "end": 11579.14, + "probability": 0.2576 + }, + { + "start": 11579.14, + "end": 11579.56, + "probability": 0.3707 + }, + { + "start": 11579.7, + "end": 11581.46, + "probability": 0.8071 + }, + { + "start": 11581.6, + "end": 11582.6, + "probability": 0.7349 + }, + { + "start": 11583.12, + "end": 11584.86, + "probability": 0.3109 + }, + { + "start": 11584.9, + "end": 11586.16, + "probability": 0.2511 + }, + { + "start": 11586.16, + "end": 11588.2, + "probability": 0.9454 + }, + { + "start": 11588.28, + "end": 11589.8, + "probability": 0.9977 + }, + { + "start": 11591.26, + "end": 11592.7, + "probability": 0.7286 + }, + { + "start": 11592.82, + "end": 11597.32, + "probability": 0.9851 + }, + { + "start": 11597.44, + "end": 11597.76, + "probability": 0.0687 + }, + { + "start": 11597.82, + "end": 11599.64, + "probability": 0.2249 + }, + { + "start": 11600.4, + "end": 11603.3, + "probability": 0.9281 + }, + { + "start": 11603.42, + "end": 11605.1, + "probability": 0.9834 + }, + { + "start": 11606.18, + "end": 11610.66, + "probability": 0.9692 + }, + { + "start": 11610.8, + "end": 11612.52, + "probability": 0.9768 + }, + { + "start": 11612.66, + "end": 11614.16, + "probability": 0.7804 + }, + { + "start": 11614.9, + "end": 11615.98, + "probability": 0.9875 + }, + { + "start": 11616.56, + "end": 11620.46, + "probability": 0.9942 + }, + { + "start": 11621.42, + "end": 11622.06, + "probability": 0.7689 + }, + { + "start": 11622.78, + "end": 11623.94, + "probability": 0.9518 + }, + { + "start": 11624.04, + "end": 11625.91, + "probability": 0.9873 + }, + { + "start": 11627.06, + "end": 11629.1, + "probability": 0.5776 + }, + { + "start": 11629.74, + "end": 11632.28, + "probability": 0.9399 + }, + { + "start": 11633.06, + "end": 11637.32, + "probability": 0.9855 + }, + { + "start": 11638.46, + "end": 11640.24, + "probability": 0.998 + }, + { + "start": 11640.44, + "end": 11642.68, + "probability": 0.9839 + }, + { + "start": 11642.82, + "end": 11644.62, + "probability": 0.9935 + }, + { + "start": 11645.02, + "end": 11646.94, + "probability": 0.9878 + }, + { + "start": 11647.1, + "end": 11647.48, + "probability": 0.7074 + }, + { + "start": 11647.58, + "end": 11648.4, + "probability": 0.9541 + }, + { + "start": 11648.48, + "end": 11648.8, + "probability": 0.9255 + }, + { + "start": 11648.88, + "end": 11651.32, + "probability": 0.9113 + }, + { + "start": 11652.74, + "end": 11654.82, + "probability": 0.6546 + }, + { + "start": 11657.34, + "end": 11659.92, + "probability": 0.8576 + }, + { + "start": 11660.02, + "end": 11660.8, + "probability": 0.7149 + }, + { + "start": 11660.9, + "end": 11662.2, + "probability": 0.5504 + }, + { + "start": 11662.5, + "end": 11664.34, + "probability": 0.9741 + }, + { + "start": 11665.8, + "end": 11668.16, + "probability": 0.9426 + }, + { + "start": 11674.56, + "end": 11675.52, + "probability": 0.6443 + }, + { + "start": 11676.22, + "end": 11677.04, + "probability": 0.8918 + }, + { + "start": 11677.88, + "end": 11679.24, + "probability": 0.8114 + }, + { + "start": 11681.12, + "end": 11687.46, + "probability": 0.9879 + }, + { + "start": 11688.02, + "end": 11693.26, + "probability": 0.9966 + }, + { + "start": 11695.04, + "end": 11696.86, + "probability": 0.9213 + }, + { + "start": 11698.18, + "end": 11701.66, + "probability": 0.9297 + }, + { + "start": 11703.92, + "end": 11706.26, + "probability": 0.7513 + }, + { + "start": 11707.54, + "end": 11715.26, + "probability": 0.9413 + }, + { + "start": 11716.08, + "end": 11716.66, + "probability": 0.7174 + }, + { + "start": 11717.7, + "end": 11722.8, + "probability": 0.7366 + }, + { + "start": 11723.4, + "end": 11724.94, + "probability": 0.9615 + }, + { + "start": 11725.52, + "end": 11727.26, + "probability": 0.992 + }, + { + "start": 11728.16, + "end": 11731.1, + "probability": 0.881 + }, + { + "start": 11731.92, + "end": 11734.92, + "probability": 0.6367 + }, + { + "start": 11735.8, + "end": 11736.82, + "probability": 0.8878 + }, + { + "start": 11737.52, + "end": 11746.8, + "probability": 0.9582 + }, + { + "start": 11746.94, + "end": 11747.78, + "probability": 0.6654 + }, + { + "start": 11748.76, + "end": 11750.24, + "probability": 0.9362 + }, + { + "start": 11750.88, + "end": 11752.56, + "probability": 0.9912 + }, + { + "start": 11753.5, + "end": 11758.86, + "probability": 0.8289 + }, + { + "start": 11759.58, + "end": 11760.04, + "probability": 0.9395 + }, + { + "start": 11761.66, + "end": 11762.8, + "probability": 0.9979 + }, + { + "start": 11763.36, + "end": 11769.6, + "probability": 0.993 + }, + { + "start": 11770.34, + "end": 11772.22, + "probability": 0.9957 + }, + { + "start": 11772.24, + "end": 11774.24, + "probability": 0.8986 + }, + { + "start": 11775.66, + "end": 11777.6, + "probability": 0.9332 + }, + { + "start": 11778.5, + "end": 11779.66, + "probability": 0.9424 + }, + { + "start": 11781.34, + "end": 11785.06, + "probability": 0.8511 + }, + { + "start": 11786.8, + "end": 11787.58, + "probability": 0.5015 + }, + { + "start": 11788.5, + "end": 11791.12, + "probability": 0.9984 + }, + { + "start": 11791.12, + "end": 11794.58, + "probability": 0.9932 + }, + { + "start": 11795.1, + "end": 11796.8, + "probability": 0.9451 + }, + { + "start": 11797.9, + "end": 11801.28, + "probability": 0.9291 + }, + { + "start": 11803.1, + "end": 11805.58, + "probability": 0.817 + }, + { + "start": 11806.32, + "end": 11806.9, + "probability": 0.8583 + }, + { + "start": 11808.4, + "end": 11810.81, + "probability": 0.9777 + }, + { + "start": 11813.04, + "end": 11817.78, + "probability": 0.9515 + }, + { + "start": 11818.3, + "end": 11820.07, + "probability": 0.9865 + }, + { + "start": 11823.52, + "end": 11832.8, + "probability": 0.701 + }, + { + "start": 11834.62, + "end": 11837.54, + "probability": 0.7922 + }, + { + "start": 11839.68, + "end": 11841.74, + "probability": 0.9503 + }, + { + "start": 11842.68, + "end": 11845.2, + "probability": 0.8716 + }, + { + "start": 11846.34, + "end": 11848.4, + "probability": 0.3256 + }, + { + "start": 11848.6, + "end": 11852.54, + "probability": 0.7288 + }, + { + "start": 11855.06, + "end": 11856.54, + "probability": 0.862 + }, + { + "start": 11857.08, + "end": 11862.5, + "probability": 0.9951 + }, + { + "start": 11864.66, + "end": 11869.4, + "probability": 0.9775 + }, + { + "start": 11870.72, + "end": 11874.4, + "probability": 0.9859 + }, + { + "start": 11875.58, + "end": 11876.02, + "probability": 0.7187 + }, + { + "start": 11876.14, + "end": 11877.9, + "probability": 0.9888 + }, + { + "start": 11877.98, + "end": 11878.96, + "probability": 0.9659 + }, + { + "start": 11879.9, + "end": 11882.14, + "probability": 0.9849 + }, + { + "start": 11882.82, + "end": 11883.66, + "probability": 0.9988 + }, + { + "start": 11884.8, + "end": 11887.48, + "probability": 0.9746 + }, + { + "start": 11889.46, + "end": 11890.39, + "probability": 0.9604 + }, + { + "start": 11890.58, + "end": 11890.7, + "probability": 0.918 + }, + { + "start": 11890.82, + "end": 11895.72, + "probability": 0.8439 + }, + { + "start": 11896.24, + "end": 11897.32, + "probability": 0.6824 + }, + { + "start": 11898.12, + "end": 11901.88, + "probability": 0.9573 + }, + { + "start": 11902.4, + "end": 11902.98, + "probability": 0.649 + }, + { + "start": 11903.06, + "end": 11904.44, + "probability": 0.9614 + }, + { + "start": 11904.6, + "end": 11905.6, + "probability": 0.7169 + }, + { + "start": 11908.25, + "end": 11911.49, + "probability": 0.586 + }, + { + "start": 11914.28, + "end": 11917.18, + "probability": 0.9907 + }, + { + "start": 11918.12, + "end": 11921.18, + "probability": 0.9437 + }, + { + "start": 11921.92, + "end": 11923.84, + "probability": 0.8287 + }, + { + "start": 11923.92, + "end": 11926.4, + "probability": 0.8796 + }, + { + "start": 11926.96, + "end": 11928.58, + "probability": 0.7109 + }, + { + "start": 11930.1, + "end": 11931.84, + "probability": 0.994 + }, + { + "start": 11932.36, + "end": 11934.54, + "probability": 0.8121 + }, + { + "start": 11935.1, + "end": 11935.82, + "probability": 0.9573 + }, + { + "start": 11937.26, + "end": 11940.44, + "probability": 0.829 + }, + { + "start": 11941.08, + "end": 11942.02, + "probability": 0.958 + }, + { + "start": 11942.06, + "end": 11942.54, + "probability": 0.931 + }, + { + "start": 11943.02, + "end": 11945.38, + "probability": 0.8491 + }, + { + "start": 11945.84, + "end": 11948.36, + "probability": 0.9857 + }, + { + "start": 11949.26, + "end": 11950.84, + "probability": 0.9707 + }, + { + "start": 11951.02, + "end": 11952.48, + "probability": 0.9374 + }, + { + "start": 11953.08, + "end": 11956.4, + "probability": 0.8965 + }, + { + "start": 11956.98, + "end": 11958.2, + "probability": 0.53 + }, + { + "start": 11958.34, + "end": 11960.0, + "probability": 0.5084 + }, + { + "start": 11960.94, + "end": 11962.2, + "probability": 0.9241 + }, + { + "start": 11962.8, + "end": 11965.0, + "probability": 0.9802 + }, + { + "start": 11965.58, + "end": 11966.94, + "probability": 0.963 + }, + { + "start": 11967.08, + "end": 11968.54, + "probability": 0.9718 + }, + { + "start": 11968.64, + "end": 11971.28, + "probability": 0.807 + }, + { + "start": 11971.62, + "end": 11976.5, + "probability": 0.9427 + }, + { + "start": 11977.08, + "end": 11978.14, + "probability": 0.9899 + }, + { + "start": 11978.78, + "end": 11979.48, + "probability": 0.7524 + }, + { + "start": 11980.14, + "end": 11981.88, + "probability": 0.8914 + }, + { + "start": 11982.24, + "end": 11983.28, + "probability": 0.9861 + }, + { + "start": 11988.54, + "end": 11990.8, + "probability": 0.6936 + }, + { + "start": 11991.82, + "end": 11992.54, + "probability": 0.2736 + }, + { + "start": 11992.68, + "end": 11994.2, + "probability": 0.8292 + }, + { + "start": 11994.28, + "end": 11995.38, + "probability": 0.9819 + }, + { + "start": 11996.3, + "end": 11997.36, + "probability": 0.6191 + }, + { + "start": 11998.16, + "end": 11998.89, + "probability": 0.9111 + }, + { + "start": 11999.16, + "end": 12000.18, + "probability": 0.8455 + }, + { + "start": 12000.28, + "end": 12004.4, + "probability": 0.9961 + }, + { + "start": 12004.96, + "end": 12006.76, + "probability": 0.9323 + }, + { + "start": 12007.58, + "end": 12008.8, + "probability": 0.8717 + }, + { + "start": 12009.56, + "end": 12011.26, + "probability": 0.8684 + }, + { + "start": 12012.02, + "end": 12012.44, + "probability": 0.8901 + }, + { + "start": 12013.16, + "end": 12014.56, + "probability": 0.9531 + }, + { + "start": 12014.68, + "end": 12017.18, + "probability": 0.9844 + }, + { + "start": 12017.18, + "end": 12021.12, + "probability": 0.9914 + }, + { + "start": 12021.3, + "end": 12021.76, + "probability": 0.7501 + }, + { + "start": 12021.92, + "end": 12022.4, + "probability": 0.4792 + }, + { + "start": 12022.52, + "end": 12023.0, + "probability": 0.3104 + }, + { + "start": 12023.46, + "end": 12024.82, + "probability": 0.9128 + }, + { + "start": 12025.76, + "end": 12026.44, + "probability": 0.9031 + }, + { + "start": 12027.36, + "end": 12029.38, + "probability": 0.7187 + }, + { + "start": 12029.54, + "end": 12030.78, + "probability": 0.7716 + }, + { + "start": 12031.62, + "end": 12036.28, + "probability": 0.9204 + }, + { + "start": 12036.9, + "end": 12040.54, + "probability": 0.9571 + }, + { + "start": 12041.36, + "end": 12043.3, + "probability": 0.9871 + }, + { + "start": 12043.52, + "end": 12043.92, + "probability": 0.7013 + }, + { + "start": 12044.36, + "end": 12045.46, + "probability": 0.8922 + }, + { + "start": 12045.58, + "end": 12046.46, + "probability": 0.6241 + }, + { + "start": 12046.58, + "end": 12046.68, + "probability": 0.7432 + }, + { + "start": 12047.48, + "end": 12047.98, + "probability": 0.9778 + }, + { + "start": 12048.34, + "end": 12049.4, + "probability": 0.9863 + }, + { + "start": 12049.74, + "end": 12050.84, + "probability": 0.9639 + }, + { + "start": 12051.22, + "end": 12052.93, + "probability": 0.9155 + }, + { + "start": 12053.14, + "end": 12060.06, + "probability": 0.9785 + }, + { + "start": 12061.14, + "end": 12062.98, + "probability": 0.9983 + }, + { + "start": 12063.86, + "end": 12066.96, + "probability": 0.9878 + }, + { + "start": 12067.72, + "end": 12070.5, + "probability": 0.901 + }, + { + "start": 12070.7, + "end": 12071.1, + "probability": 0.7508 + }, + { + "start": 12071.54, + "end": 12073.14, + "probability": 0.9585 + }, + { + "start": 12073.2, + "end": 12074.02, + "probability": 0.7373 + }, + { + "start": 12074.06, + "end": 12074.6, + "probability": 0.8062 + }, + { + "start": 12075.26, + "end": 12076.63, + "probability": 0.9072 + }, + { + "start": 12077.42, + "end": 12081.88, + "probability": 0.8145 + }, + { + "start": 12082.44, + "end": 12087.2, + "probability": 0.5581 + }, + { + "start": 12087.78, + "end": 12088.41, + "probability": 0.2625 + }, + { + "start": 12088.7, + "end": 12090.26, + "probability": 0.1115 + }, + { + "start": 12091.12, + "end": 12093.24, + "probability": 0.9644 + }, + { + "start": 12093.34, + "end": 12093.86, + "probability": 0.0834 + }, + { + "start": 12093.98, + "end": 12095.4, + "probability": 0.0966 + }, + { + "start": 12096.7, + "end": 12102.56, + "probability": 0.7084 + }, + { + "start": 12102.72, + "end": 12105.9, + "probability": 0.3516 + }, + { + "start": 12105.9, + "end": 12109.02, + "probability": 0.4917 + }, + { + "start": 12109.34, + "end": 12110.4, + "probability": 0.9967 + }, + { + "start": 12110.6, + "end": 12114.02, + "probability": 0.9989 + }, + { + "start": 12114.14, + "end": 12115.44, + "probability": 0.8516 + }, + { + "start": 12116.0, + "end": 12117.53, + "probability": 0.2253 + }, + { + "start": 12118.1, + "end": 12118.92, + "probability": 0.5516 + }, + { + "start": 12119.2, + "end": 12122.35, + "probability": 0.2978 + }, + { + "start": 12123.0, + "end": 12125.82, + "probability": 0.7134 + }, + { + "start": 12126.54, + "end": 12128.14, + "probability": 0.8623 + }, + { + "start": 12128.92, + "end": 12131.66, + "probability": 0.7062 + }, + { + "start": 12131.86, + "end": 12132.97, + "probability": 0.6859 + }, + { + "start": 12133.54, + "end": 12134.84, + "probability": 0.9062 + }, + { + "start": 12135.04, + "end": 12139.36, + "probability": 0.4425 + }, + { + "start": 12139.46, + "end": 12142.3, + "probability": 0.2209 + }, + { + "start": 12143.08, + "end": 12144.08, + "probability": 0.7856 + }, + { + "start": 12144.72, + "end": 12146.74, + "probability": 0.1718 + }, + { + "start": 12147.74, + "end": 12148.54, + "probability": 0.8298 + }, + { + "start": 12148.58, + "end": 12148.98, + "probability": 0.9535 + }, + { + "start": 12149.06, + "end": 12151.39, + "probability": 0.9956 + }, + { + "start": 12151.78, + "end": 12153.22, + "probability": 0.9253 + }, + { + "start": 12153.98, + "end": 12157.72, + "probability": 0.9673 + }, + { + "start": 12157.8, + "end": 12160.8, + "probability": 0.8018 + }, + { + "start": 12161.02, + "end": 12161.7, + "probability": 0.9338 + }, + { + "start": 12162.36, + "end": 12164.3, + "probability": 0.8538 + }, + { + "start": 12164.82, + "end": 12166.76, + "probability": 0.9634 + }, + { + "start": 12166.86, + "end": 12168.6, + "probability": 0.9951 + }, + { + "start": 12168.72, + "end": 12171.72, + "probability": 0.9622 + }, + { + "start": 12172.14, + "end": 12174.66, + "probability": 0.8265 + }, + { + "start": 12174.84, + "end": 12177.94, + "probability": 0.9112 + }, + { + "start": 12178.32, + "end": 12179.3, + "probability": 0.9848 + }, + { + "start": 12179.66, + "end": 12181.22, + "probability": 0.9889 + }, + { + "start": 12181.42, + "end": 12182.92, + "probability": 0.8892 + }, + { + "start": 12183.18, + "end": 12191.96, + "probability": 0.8492 + }, + { + "start": 12192.26, + "end": 12193.96, + "probability": 0.9922 + }, + { + "start": 12194.38, + "end": 12196.08, + "probability": 0.8838 + }, + { + "start": 12196.86, + "end": 12198.32, + "probability": 0.9976 + }, + { + "start": 12198.54, + "end": 12202.94, + "probability": 0.9954 + }, + { + "start": 12203.44, + "end": 12208.3, + "probability": 0.9756 + }, + { + "start": 12208.78, + "end": 12209.24, + "probability": 0.8328 + }, + { + "start": 12209.36, + "end": 12210.68, + "probability": 0.8318 + }, + { + "start": 12210.86, + "end": 12216.12, + "probability": 0.7217 + }, + { + "start": 12216.78, + "end": 12223.78, + "probability": 0.9662 + }, + { + "start": 12224.12, + "end": 12225.7, + "probability": 0.7782 + }, + { + "start": 12225.88, + "end": 12228.88, + "probability": 0.6903 + }, + { + "start": 12229.08, + "end": 12229.72, + "probability": 0.6223 + }, + { + "start": 12229.74, + "end": 12231.0, + "probability": 0.9332 + }, + { + "start": 12234.96, + "end": 12237.16, + "probability": 0.5744 + }, + { + "start": 12237.58, + "end": 12242.38, + "probability": 0.6382 + }, + { + "start": 12242.68, + "end": 12245.84, + "probability": 0.8848 + }, + { + "start": 12247.54, + "end": 12248.22, + "probability": 0.7506 + }, + { + "start": 12250.26, + "end": 12252.98, + "probability": 0.9183 + }, + { + "start": 12253.78, + "end": 12255.7, + "probability": 0.974 + }, + { + "start": 12261.28, + "end": 12262.34, + "probability": 0.4598 + }, + { + "start": 12262.51, + "end": 12265.96, + "probability": 0.9422 + }, + { + "start": 12266.06, + "end": 12266.46, + "probability": 0.3983 + }, + { + "start": 12266.62, + "end": 12268.47, + "probability": 0.6932 + }, + { + "start": 12284.68, + "end": 12286.22, + "probability": 0.7424 + }, + { + "start": 12287.38, + "end": 12288.98, + "probability": 0.7855 + }, + { + "start": 12290.44, + "end": 12293.1, + "probability": 0.6551 + }, + { + "start": 12294.22, + "end": 12296.72, + "probability": 0.9961 + }, + { + "start": 12297.08, + "end": 12298.14, + "probability": 0.8673 + }, + { + "start": 12298.3, + "end": 12301.16, + "probability": 0.666 + }, + { + "start": 12301.22, + "end": 12301.85, + "probability": 0.6522 + }, + { + "start": 12303.86, + "end": 12307.44, + "probability": 0.6712 + }, + { + "start": 12308.66, + "end": 12310.8, + "probability": 0.9596 + }, + { + "start": 12311.42, + "end": 12314.78, + "probability": 0.9539 + }, + { + "start": 12314.82, + "end": 12315.42, + "probability": 0.7219 + }, + { + "start": 12316.68, + "end": 12318.28, + "probability": 0.7075 + }, + { + "start": 12320.74, + "end": 12321.78, + "probability": 0.9544 + }, + { + "start": 12322.02, + "end": 12322.34, + "probability": 0.9377 + }, + { + "start": 12323.04, + "end": 12324.76, + "probability": 0.9673 + }, + { + "start": 12325.38, + "end": 12329.8, + "probability": 0.7336 + }, + { + "start": 12330.1, + "end": 12330.64, + "probability": 0.792 + }, + { + "start": 12330.92, + "end": 12335.4, + "probability": 0.9272 + }, + { + "start": 12336.28, + "end": 12343.46, + "probability": 0.7442 + }, + { + "start": 12343.94, + "end": 12345.22, + "probability": 0.5429 + }, + { + "start": 12346.44, + "end": 12348.3, + "probability": 0.8652 + }, + { + "start": 12348.42, + "end": 12349.64, + "probability": 0.8594 + }, + { + "start": 12350.6, + "end": 12352.26, + "probability": 0.9937 + }, + { + "start": 12353.76, + "end": 12358.74, + "probability": 0.6336 + }, + { + "start": 12360.28, + "end": 12367.34, + "probability": 0.4724 + }, + { + "start": 12368.02, + "end": 12368.8, + "probability": 0.7664 + }, + { + "start": 12369.5, + "end": 12369.64, + "probability": 0.2681 + }, + { + "start": 12370.64, + "end": 12374.16, + "probability": 0.8155 + }, + { + "start": 12374.16, + "end": 12380.08, + "probability": 0.9375 + }, + { + "start": 12380.08, + "end": 12384.92, + "probability": 0.9985 + }, + { + "start": 12385.76, + "end": 12387.32, + "probability": 0.9122 + }, + { + "start": 12388.8, + "end": 12390.78, + "probability": 0.8633 + }, + { + "start": 12391.36, + "end": 12393.74, + "probability": 0.6665 + }, + { + "start": 12395.18, + "end": 12395.7, + "probability": 0.7859 + }, + { + "start": 12396.74, + "end": 12397.12, + "probability": 0.8531 + }, + { + "start": 12398.54, + "end": 12400.78, + "probability": 0.0191 + }, + { + "start": 12401.44, + "end": 12403.9, + "probability": 0.4206 + }, + { + "start": 12404.5, + "end": 12404.98, + "probability": 0.0259 + }, + { + "start": 12404.98, + "end": 12405.06, + "probability": 0.4476 + }, + { + "start": 12405.06, + "end": 12405.06, + "probability": 0.6111 + }, + { + "start": 12405.06, + "end": 12405.06, + "probability": 0.127 + }, + { + "start": 12405.06, + "end": 12405.78, + "probability": 0.5341 + }, + { + "start": 12405.84, + "end": 12406.45, + "probability": 0.7202 + }, + { + "start": 12407.04, + "end": 12407.74, + "probability": 0.9407 + }, + { + "start": 12407.82, + "end": 12411.78, + "probability": 0.8271 + }, + { + "start": 12412.06, + "end": 12413.06, + "probability": 0.9714 + }, + { + "start": 12415.44, + "end": 12420.06, + "probability": 0.6896 + }, + { + "start": 12421.02, + "end": 12425.06, + "probability": 0.9969 + }, + { + "start": 12425.06, + "end": 12428.68, + "probability": 0.9871 + }, + { + "start": 12430.56, + "end": 12434.72, + "probability": 0.9651 + }, + { + "start": 12436.04, + "end": 12437.28, + "probability": 0.8561 + }, + { + "start": 12437.88, + "end": 12442.14, + "probability": 0.9367 + }, + { + "start": 12443.38, + "end": 12443.9, + "probability": 0.9078 + }, + { + "start": 12443.9, + "end": 12448.01, + "probability": 0.7633 + }, + { + "start": 12448.44, + "end": 12451.96, + "probability": 0.9657 + }, + { + "start": 12452.7, + "end": 12453.98, + "probability": 0.7474 + }, + { + "start": 12454.46, + "end": 12458.26, + "probability": 0.9117 + }, + { + "start": 12458.28, + "end": 12461.38, + "probability": 0.9661 + }, + { + "start": 12462.7, + "end": 12465.96, + "probability": 0.7911 + }, + { + "start": 12466.3, + "end": 12468.18, + "probability": 0.7513 + }, + { + "start": 12469.7, + "end": 12473.66, + "probability": 0.9785 + }, + { + "start": 12473.72, + "end": 12476.56, + "probability": 0.4764 + }, + { + "start": 12477.9, + "end": 12481.46, + "probability": 0.7465 + }, + { + "start": 12483.38, + "end": 12487.36, + "probability": 0.1329 + }, + { + "start": 12489.61, + "end": 12493.92, + "probability": 0.9625 + }, + { + "start": 12498.72, + "end": 12501.68, + "probability": 0.4797 + }, + { + "start": 12502.42, + "end": 12502.42, + "probability": 0.0031 + }, + { + "start": 12504.38, + "end": 12506.14, + "probability": 0.0665 + }, + { + "start": 12507.14, + "end": 12510.58, + "probability": 0.1058 + }, + { + "start": 12513.42, + "end": 12516.14, + "probability": 0.3817 + }, + { + "start": 12516.18, + "end": 12517.42, + "probability": 0.3398 + }, + { + "start": 12517.96, + "end": 12519.76, + "probability": 0.8754 + }, + { + "start": 12520.42, + "end": 12525.4, + "probability": 0.7041 + }, + { + "start": 12526.58, + "end": 12527.88, + "probability": 0.6566 + }, + { + "start": 12530.78, + "end": 12533.26, + "probability": 0.7237 + }, + { + "start": 12536.28, + "end": 12538.6, + "probability": 0.4831 + }, + { + "start": 12540.16, + "end": 12544.82, + "probability": 0.8308 + }, + { + "start": 12545.42, + "end": 12545.92, + "probability": 0.197 + }, + { + "start": 12547.0, + "end": 12547.84, + "probability": 0.6965 + }, + { + "start": 12548.9, + "end": 12551.32, + "probability": 0.5878 + }, + { + "start": 12553.64, + "end": 12554.16, + "probability": 0.8506 + }, + { + "start": 12554.8, + "end": 12555.94, + "probability": 0.8082 + }, + { + "start": 12557.7, + "end": 12558.81, + "probability": 0.6512 + }, + { + "start": 12559.64, + "end": 12560.51, + "probability": 0.3029 + }, + { + "start": 12560.74, + "end": 12561.88, + "probability": 0.5005 + }, + { + "start": 12562.82, + "end": 12566.64, + "probability": 0.5067 + }, + { + "start": 12567.28, + "end": 12569.02, + "probability": 0.6993 + }, + { + "start": 12569.7, + "end": 12571.27, + "probability": 0.6726 + }, + { + "start": 12571.66, + "end": 12572.5, + "probability": 0.7148 + }, + { + "start": 12572.66, + "end": 12573.88, + "probability": 0.4427 + }, + { + "start": 12573.92, + "end": 12574.54, + "probability": 0.5931 + }, + { + "start": 12574.66, + "end": 12575.3, + "probability": 0.4323 + }, + { + "start": 12575.82, + "end": 12576.58, + "probability": 0.8866 + }, + { + "start": 12577.16, + "end": 12580.74, + "probability": 0.0883 + }, + { + "start": 12580.74, + "end": 12581.3, + "probability": 0.4305 + }, + { + "start": 12582.02, + "end": 12583.2, + "probability": 0.58 + }, + { + "start": 12583.5, + "end": 12584.0, + "probability": 0.2613 + }, + { + "start": 12584.72, + "end": 12586.02, + "probability": 0.2478 + }, + { + "start": 12586.76, + "end": 12589.59, + "probability": 0.96 + }, + { + "start": 12592.74, + "end": 12593.8, + "probability": 0.1057 + }, + { + "start": 12595.38, + "end": 12597.7, + "probability": 0.8665 + }, + { + "start": 12600.96, + "end": 12602.36, + "probability": 0.7494 + }, + { + "start": 12602.7, + "end": 12607.84, + "probability": 0.7051 + }, + { + "start": 12607.84, + "end": 12611.24, + "probability": 0.3795 + }, + { + "start": 12611.44, + "end": 12611.62, + "probability": 0.0068 + }, + { + "start": 12611.62, + "end": 12612.66, + "probability": 0.4591 + }, + { + "start": 12614.06, + "end": 12615.24, + "probability": 0.4366 + }, + { + "start": 12615.44, + "end": 12615.7, + "probability": 0.401 + }, + { + "start": 12615.72, + "end": 12618.5, + "probability": 0.5448 + }, + { + "start": 12618.86, + "end": 12619.44, + "probability": 0.0509 + }, + { + "start": 12620.02, + "end": 12625.2, + "probability": 0.795 + }, + { + "start": 12626.34, + "end": 12628.7, + "probability": 0.6772 + }, + { + "start": 12628.7, + "end": 12628.7, + "probability": 0.6482 + }, + { + "start": 12628.78, + "end": 12630.68, + "probability": 0.9146 + }, + { + "start": 12631.38, + "end": 12632.3, + "probability": 0.1104 + }, + { + "start": 12632.94, + "end": 12633.82, + "probability": 0.266 + }, + { + "start": 12635.2, + "end": 12637.02, + "probability": 0.2446 + }, + { + "start": 12638.18, + "end": 12638.74, + "probability": 0.8909 + }, + { + "start": 12639.22, + "end": 12639.86, + "probability": 0.4048 + }, + { + "start": 12639.86, + "end": 12640.6, + "probability": 0.383 + }, + { + "start": 12640.7, + "end": 12641.54, + "probability": 0.904 + }, + { + "start": 12642.12, + "end": 12646.06, + "probability": 0.8131 + }, + { + "start": 12646.81, + "end": 12650.32, + "probability": 0.6264 + }, + { + "start": 12651.62, + "end": 12652.94, + "probability": 0.4063 + }, + { + "start": 12653.3, + "end": 12654.0, + "probability": 0.4069 + }, + { + "start": 12654.2, + "end": 12654.8, + "probability": 0.7212 + }, + { + "start": 12654.88, + "end": 12657.42, + "probability": 0.805 + }, + { + "start": 12660.96, + "end": 12666.06, + "probability": 0.8039 + }, + { + "start": 12666.84, + "end": 12670.88, + "probability": 0.7033 + }, + { + "start": 12671.76, + "end": 12673.54, + "probability": 0.7474 + }, + { + "start": 12674.1, + "end": 12674.82, + "probability": 0.9148 + }, + { + "start": 12675.68, + "end": 12677.12, + "probability": 0.9393 + }, + { + "start": 12677.18, + "end": 12678.04, + "probability": 0.8547 + }, + { + "start": 12678.24, + "end": 12678.76, + "probability": 0.8256 + }, + { + "start": 12679.32, + "end": 12679.66, + "probability": 0.6166 + }, + { + "start": 12679.74, + "end": 12683.78, + "probability": 0.8334 + }, + { + "start": 12683.98, + "end": 12684.86, + "probability": 0.7296 + }, + { + "start": 12685.06, + "end": 12685.98, + "probability": 0.5646 + }, + { + "start": 12686.12, + "end": 12687.92, + "probability": 0.9259 + }, + { + "start": 12688.72, + "end": 12692.16, + "probability": 0.9764 + }, + { + "start": 12692.32, + "end": 12693.12, + "probability": 0.7372 + }, + { + "start": 12693.18, + "end": 12694.34, + "probability": 0.4983 + }, + { + "start": 12695.1, + "end": 12697.94, + "probability": 0.7881 + }, + { + "start": 12698.4, + "end": 12699.66, + "probability": 0.7591 + }, + { + "start": 12700.78, + "end": 12701.6, + "probability": 0.7246 + }, + { + "start": 12718.44, + "end": 12719.08, + "probability": 0.0377 + }, + { + "start": 12719.08, + "end": 12719.08, + "probability": 0.0943 + }, + { + "start": 12719.08, + "end": 12719.08, + "probability": 0.0557 + }, + { + "start": 12719.08, + "end": 12719.08, + "probability": 0.1802 + }, + { + "start": 12719.08, + "end": 12720.08, + "probability": 0.295 + }, + { + "start": 12720.7, + "end": 12722.26, + "probability": 0.5497 + }, + { + "start": 12722.26, + "end": 12724.14, + "probability": 0.7006 + }, + { + "start": 12724.84, + "end": 12727.04, + "probability": 0.3615 + }, + { + "start": 12727.04, + "end": 12727.76, + "probability": 0.7796 + }, + { + "start": 12729.04, + "end": 12731.28, + "probability": 0.8779 + }, + { + "start": 12733.56, + "end": 12737.06, + "probability": 0.7881 + }, + { + "start": 12738.06, + "end": 12740.46, + "probability": 0.6579 + }, + { + "start": 12743.78, + "end": 12743.86, + "probability": 0.0621 + }, + { + "start": 12743.94, + "end": 12744.33, + "probability": 0.2911 + }, + { + "start": 12745.82, + "end": 12748.7, + "probability": 0.9761 + }, + { + "start": 12751.42, + "end": 12751.66, + "probability": 0.8805 + }, + { + "start": 12751.74, + "end": 12753.58, + "probability": 0.9856 + }, + { + "start": 12753.58, + "end": 12756.64, + "probability": 0.9358 + }, + { + "start": 12757.76, + "end": 12759.1, + "probability": 0.9515 + }, + { + "start": 12760.1, + "end": 12760.76, + "probability": 0.7522 + }, + { + "start": 12761.52, + "end": 12764.24, + "probability": 0.8656 + }, + { + "start": 12764.78, + "end": 12768.84, + "probability": 0.9954 + }, + { + "start": 12768.96, + "end": 12769.06, + "probability": 0.8395 + }, + { + "start": 12769.2, + "end": 12771.58, + "probability": 0.9761 + }, + { + "start": 12772.86, + "end": 12775.46, + "probability": 0.8324 + }, + { + "start": 12776.26, + "end": 12779.12, + "probability": 0.9906 + }, + { + "start": 12779.42, + "end": 12780.08, + "probability": 0.7415 + }, + { + "start": 12780.82, + "end": 12782.46, + "probability": 0.8973 + }, + { + "start": 12783.1, + "end": 12786.14, + "probability": 0.9961 + }, + { + "start": 12786.52, + "end": 12788.36, + "probability": 0.8652 + }, + { + "start": 12789.62, + "end": 12791.02, + "probability": 0.6099 + }, + { + "start": 12791.92, + "end": 12795.06, + "probability": 0.7111 + }, + { + "start": 12795.78, + "end": 12796.65, + "probability": 0.7303 + }, + { + "start": 12796.96, + "end": 12800.14, + "probability": 0.8435 + }, + { + "start": 12800.98, + "end": 12802.88, + "probability": 0.9805 + }, + { + "start": 12804.1, + "end": 12806.86, + "probability": 0.976 + }, + { + "start": 12808.02, + "end": 12809.48, + "probability": 0.9981 + }, + { + "start": 12810.56, + "end": 12811.8, + "probability": 0.9502 + }, + { + "start": 12812.9, + "end": 12814.04, + "probability": 0.8849 + }, + { + "start": 12814.76, + "end": 12815.68, + "probability": 0.6304 + }, + { + "start": 12816.38, + "end": 12817.45, + "probability": 0.9937 + }, + { + "start": 12817.74, + "end": 12819.76, + "probability": 0.8239 + }, + { + "start": 12821.12, + "end": 12823.08, + "probability": 0.9978 + }, + { + "start": 12823.32, + "end": 12825.48, + "probability": 0.9731 + }, + { + "start": 12827.06, + "end": 12827.9, + "probability": 0.9287 + }, + { + "start": 12828.08, + "end": 12828.76, + "probability": 0.8569 + }, + { + "start": 12828.84, + "end": 12831.46, + "probability": 0.9861 + }, + { + "start": 12831.54, + "end": 12833.2, + "probability": 0.6137 + }, + { + "start": 12833.5, + "end": 12834.7, + "probability": 0.143 + }, + { + "start": 12834.92, + "end": 12835.98, + "probability": 0.819 + }, + { + "start": 12837.22, + "end": 12838.68, + "probability": 0.9046 + }, + { + "start": 12839.18, + "end": 12839.56, + "probability": 0.5564 + }, + { + "start": 12839.68, + "end": 12840.96, + "probability": 0.7159 + }, + { + "start": 12841.54, + "end": 12843.4, + "probability": 0.864 + }, + { + "start": 12844.06, + "end": 12846.54, + "probability": 0.9253 + }, + { + "start": 12846.54, + "end": 12848.3, + "probability": 0.7489 + }, + { + "start": 12849.48, + "end": 12851.5, + "probability": 0.9696 + }, + { + "start": 12852.2, + "end": 12853.34, + "probability": 0.871 + }, + { + "start": 12854.3, + "end": 12857.22, + "probability": 0.9238 + }, + { + "start": 12857.26, + "end": 12857.92, + "probability": 0.8652 + }, + { + "start": 12858.16, + "end": 12858.48, + "probability": 0.6762 + }, + { + "start": 12859.2, + "end": 12860.9, + "probability": 0.9773 + }, + { + "start": 12861.02, + "end": 12862.44, + "probability": 0.9305 + }, + { + "start": 12863.16, + "end": 12866.08, + "probability": 0.8975 + }, + { + "start": 12866.94, + "end": 12869.36, + "probability": 0.9976 + }, + { + "start": 12870.3, + "end": 12873.76, + "probability": 0.9809 + }, + { + "start": 12874.46, + "end": 12875.04, + "probability": 0.3065 + }, + { + "start": 12875.92, + "end": 12876.58, + "probability": 0.7961 + }, + { + "start": 12877.08, + "end": 12877.6, + "probability": 0.6632 + }, + { + "start": 12877.68, + "end": 12878.98, + "probability": 0.6321 + }, + { + "start": 12878.98, + "end": 12880.24, + "probability": 0.7656 + }, + { + "start": 12885.29, + "end": 12890.76, + "probability": 0.1176 + }, + { + "start": 12890.76, + "end": 12890.76, + "probability": 0.0424 + }, + { + "start": 12890.76, + "end": 12890.76, + "probability": 0.0341 + }, + { + "start": 12890.76, + "end": 12890.76, + "probability": 0.1538 + }, + { + "start": 12890.76, + "end": 12890.76, + "probability": 0.4566 + }, + { + "start": 12890.76, + "end": 12891.44, + "probability": 0.3234 + }, + { + "start": 12892.12, + "end": 12895.04, + "probability": 0.7435 + }, + { + "start": 12895.84, + "end": 12898.14, + "probability": 0.7274 + }, + { + "start": 12898.5, + "end": 12899.98, + "probability": 0.7403 + }, + { + "start": 12900.76, + "end": 12903.18, + "probability": 0.853 + }, + { + "start": 12903.88, + "end": 12903.88, + "probability": 0.1802 + }, + { + "start": 12903.88, + "end": 12905.16, + "probability": 0.5157 + }, + { + "start": 12905.26, + "end": 12905.78, + "probability": 0.9236 + }, + { + "start": 12906.54, + "end": 12909.0, + "probability": 0.9937 + }, + { + "start": 12909.96, + "end": 12913.02, + "probability": 0.723 + }, + { + "start": 12913.46, + "end": 12917.16, + "probability": 0.9572 + }, + { + "start": 12917.24, + "end": 12917.7, + "probability": 0.6075 + }, + { + "start": 12917.7, + "end": 12919.32, + "probability": 0.7237 + }, + { + "start": 12919.94, + "end": 12921.08, + "probability": 0.6867 + }, + { + "start": 12921.16, + "end": 12923.3, + "probability": 0.9061 + }, + { + "start": 12923.4, + "end": 12923.67, + "probability": 0.0406 + }, + { + "start": 12924.4, + "end": 12926.2, + "probability": 0.681 + }, + { + "start": 12926.5, + "end": 12926.64, + "probability": 0.4262 + }, + { + "start": 12926.76, + "end": 12927.24, + "probability": 0.1206 + }, + { + "start": 12927.32, + "end": 12928.36, + "probability": 0.3508 + }, + { + "start": 12928.38, + "end": 12929.58, + "probability": 0.1408 + }, + { + "start": 12929.62, + "end": 12931.4, + "probability": 0.6984 + }, + { + "start": 12931.52, + "end": 12932.0, + "probability": 0.6658 + }, + { + "start": 12932.12, + "end": 12934.9, + "probability": 0.3476 + }, + { + "start": 12934.98, + "end": 12935.6, + "probability": 0.0595 + }, + { + "start": 12935.6, + "end": 12937.9, + "probability": 0.7187 + }, + { + "start": 12938.5, + "end": 12941.66, + "probability": 0.9187 + }, + { + "start": 12941.78, + "end": 12942.62, + "probability": 0.6061 + }, + { + "start": 12943.06, + "end": 12945.02, + "probability": 0.7107 + }, + { + "start": 12945.1, + "end": 12946.2, + "probability": 0.8151 + }, + { + "start": 12946.32, + "end": 12947.66, + "probability": 0.7579 + }, + { + "start": 12947.98, + "end": 12948.22, + "probability": 0.0613 + }, + { + "start": 12948.3, + "end": 12950.96, + "probability": 0.8834 + }, + { + "start": 12951.94, + "end": 12952.84, + "probability": 0.098 + }, + { + "start": 12952.84, + "end": 12954.9, + "probability": 0.7814 + }, + { + "start": 12955.14, + "end": 12957.26, + "probability": 0.6682 + }, + { + "start": 12957.56, + "end": 12958.06, + "probability": 0.4378 + }, + { + "start": 12958.3, + "end": 12959.0, + "probability": 0.1661 + }, + { + "start": 12959.28, + "end": 12959.86, + "probability": 0.189 + }, + { + "start": 12959.94, + "end": 12961.24, + "probability": 0.875 + }, + { + "start": 12961.4, + "end": 12962.02, + "probability": 0.7766 + }, + { + "start": 12962.12, + "end": 12963.11, + "probability": 0.7722 + }, + { + "start": 12963.52, + "end": 12964.74, + "probability": 0.1947 + }, + { + "start": 12964.92, + "end": 12967.3, + "probability": 0.618 + }, + { + "start": 12967.5, + "end": 12968.26, + "probability": 0.5516 + }, + { + "start": 12969.2, + "end": 12970.65, + "probability": 0.2803 + }, + { + "start": 12970.9, + "end": 12971.28, + "probability": 0.5483 + }, + { + "start": 12971.38, + "end": 12974.72, + "probability": 0.6045 + }, + { + "start": 12975.32, + "end": 12975.32, + "probability": 0.0697 + }, + { + "start": 12975.32, + "end": 12976.24, + "probability": 0.5516 + }, + { + "start": 12977.44, + "end": 12979.42, + "probability": 0.9872 + }, + { + "start": 12980.22, + "end": 12983.02, + "probability": 0.7492 + }, + { + "start": 12983.9, + "end": 12985.45, + "probability": 0.9693 + }, + { + "start": 12986.94, + "end": 12987.74, + "probability": 0.4957 + }, + { + "start": 12987.96, + "end": 12991.02, + "probability": 0.8629 + }, + { + "start": 12991.02, + "end": 12993.77, + "probability": 0.9792 + }, + { + "start": 12994.34, + "end": 12996.4, + "probability": 0.9944 + }, + { + "start": 12997.58, + "end": 13001.18, + "probability": 0.8175 + }, + { + "start": 13001.26, + "end": 13004.12, + "probability": 0.9515 + }, + { + "start": 13004.52, + "end": 13004.94, + "probability": 0.7342 + }, + { + "start": 13005.72, + "end": 13006.42, + "probability": 0.543 + }, + { + "start": 13006.9, + "end": 13008.84, + "probability": 0.9278 + }, + { + "start": 13009.02, + "end": 13012.14, + "probability": 0.8885 + }, + { + "start": 13012.94, + "end": 13013.76, + "probability": 0.0473 + }, + { + "start": 13013.76, + "end": 13016.22, + "probability": 0.8899 + }, + { + "start": 13016.74, + "end": 13018.17, + "probability": 0.9358 + }, + { + "start": 13018.46, + "end": 13023.68, + "probability": 0.9333 + }, + { + "start": 13024.6, + "end": 13028.22, + "probability": 0.942 + }, + { + "start": 13028.72, + "end": 13031.2, + "probability": 0.5838 + }, + { + "start": 13031.98, + "end": 13035.1, + "probability": 0.0817 + }, + { + "start": 13036.64, + "end": 13039.36, + "probability": 0.406 + }, + { + "start": 13039.66, + "end": 13039.96, + "probability": 0.3127 + }, + { + "start": 13040.24, + "end": 13041.06, + "probability": 0.4637 + }, + { + "start": 13041.22, + "end": 13041.48, + "probability": 0.2591 + }, + { + "start": 13043.17, + "end": 13045.78, + "probability": 0.1677 + }, + { + "start": 13046.6, + "end": 13047.06, + "probability": 0.6169 + }, + { + "start": 13047.22, + "end": 13048.42, + "probability": 0.8596 + }, + { + "start": 13048.58, + "end": 13049.0, + "probability": 0.6262 + }, + { + "start": 13049.26, + "end": 13049.77, + "probability": 0.7708 + }, + { + "start": 13050.82, + "end": 13053.19, + "probability": 0.869 + }, + { + "start": 13054.96, + "end": 13055.16, + "probability": 0.1566 + }, + { + "start": 13055.16, + "end": 13055.78, + "probability": 0.3057 + }, + { + "start": 13055.94, + "end": 13056.6, + "probability": 0.2943 + }, + { + "start": 13056.6, + "end": 13057.1, + "probability": 0.4028 + }, + { + "start": 13057.16, + "end": 13057.94, + "probability": 0.3906 + }, + { + "start": 13060.16, + "end": 13060.16, + "probability": 0.0231 + }, + { + "start": 13060.16, + "end": 13062.7, + "probability": 0.3627 + }, + { + "start": 13063.1, + "end": 13066.06, + "probability": 0.516 + }, + { + "start": 13066.1, + "end": 13066.34, + "probability": 0.3939 + }, + { + "start": 13066.46, + "end": 13067.36, + "probability": 0.6477 + }, + { + "start": 13067.48, + "end": 13069.0, + "probability": 0.728 + }, + { + "start": 13069.0, + "end": 13070.22, + "probability": 0.027 + }, + { + "start": 13071.72, + "end": 13073.78, + "probability": 0.0204 + }, + { + "start": 13073.78, + "end": 13074.18, + "probability": 0.0361 + }, + { + "start": 13074.18, + "end": 13075.48, + "probability": 0.2446 + }, + { + "start": 13075.68, + "end": 13076.86, + "probability": 0.1973 + }, + { + "start": 13077.12, + "end": 13077.76, + "probability": 0.342 + }, + { + "start": 13077.96, + "end": 13078.82, + "probability": 0.5361 + }, + { + "start": 13079.52, + "end": 13080.92, + "probability": 0.5031 + }, + { + "start": 13081.14, + "end": 13082.48, + "probability": 0.3446 + }, + { + "start": 13082.48, + "end": 13084.82, + "probability": 0.1065 + }, + { + "start": 13085.06, + "end": 13088.44, + "probability": 0.0921 + }, + { + "start": 13088.44, + "end": 13089.7, + "probability": 0.2829 + }, + { + "start": 13089.72, + "end": 13093.04, + "probability": 0.2463 + }, + { + "start": 13093.4, + "end": 13095.42, + "probability": 0.6611 + }, + { + "start": 13095.68, + "end": 13098.84, + "probability": 0.9287 + }, + { + "start": 13099.38, + "end": 13100.54, + "probability": 0.6028 + }, + { + "start": 13102.52, + "end": 13103.36, + "probability": 0.0494 + }, + { + "start": 13103.36, + "end": 13103.36, + "probability": 0.076 + }, + { + "start": 13103.36, + "end": 13103.56, + "probability": 0.0737 + }, + { + "start": 13103.86, + "end": 13103.88, + "probability": 0.2 + }, + { + "start": 13103.88, + "end": 13104.74, + "probability": 0.1441 + }, + { + "start": 13104.84, + "end": 13105.36, + "probability": 0.9585 + }, + { + "start": 13105.86, + "end": 13107.22, + "probability": 0.9059 + }, + { + "start": 13107.4, + "end": 13108.03, + "probability": 0.6581 + }, + { + "start": 13108.2, + "end": 13110.26, + "probability": 0.97 + }, + { + "start": 13111.7, + "end": 13113.2, + "probability": 0.1692 + }, + { + "start": 13113.2, + "end": 13113.2, + "probability": 0.0138 + }, + { + "start": 13113.2, + "end": 13115.43, + "probability": 0.4624 + }, + { + "start": 13116.92, + "end": 13120.5, + "probability": 0.8103 + }, + { + "start": 13121.46, + "end": 13122.2, + "probability": 0.8407 + }, + { + "start": 13123.44, + "end": 13127.38, + "probability": 0.7042 + }, + { + "start": 13127.38, + "end": 13127.38, + "probability": 0.0283 + }, + { + "start": 13127.38, + "end": 13127.38, + "probability": 0.3107 + }, + { + "start": 13127.38, + "end": 13129.14, + "probability": 0.816 + }, + { + "start": 13130.14, + "end": 13130.74, + "probability": 0.5374 + }, + { + "start": 13130.84, + "end": 13133.98, + "probability": 0.9944 + }, + { + "start": 13134.76, + "end": 13136.16, + "probability": 0.911 + }, + { + "start": 13136.22, + "end": 13137.37, + "probability": 0.9088 + }, + { + "start": 13138.08, + "end": 13140.3, + "probability": 0.698 + }, + { + "start": 13140.42, + "end": 13142.18, + "probability": 0.8259 + }, + { + "start": 13142.98, + "end": 13143.12, + "probability": 0.001 + }, + { + "start": 13143.12, + "end": 13144.7, + "probability": 0.9523 + }, + { + "start": 13144.8, + "end": 13145.78, + "probability": 0.9548 + }, + { + "start": 13145.78, + "end": 13147.3, + "probability": 0.812 + }, + { + "start": 13147.82, + "end": 13149.62, + "probability": 0.8052 + }, + { + "start": 13149.74, + "end": 13150.52, + "probability": 0.7129 + }, + { + "start": 13151.1, + "end": 13156.58, + "probability": 0.995 + }, + { + "start": 13157.34, + "end": 13158.72, + "probability": 0.9687 + }, + { + "start": 13159.06, + "end": 13159.3, + "probability": 0.5086 + }, + { + "start": 13159.48, + "end": 13159.64, + "probability": 0.882 + }, + { + "start": 13159.8, + "end": 13160.22, + "probability": 0.5245 + }, + { + "start": 13160.58, + "end": 13163.2, + "probability": 0.7961 + }, + { + "start": 13164.02, + "end": 13164.84, + "probability": 0.8757 + }, + { + "start": 13165.08, + "end": 13169.74, + "probability": 0.9367 + }, + { + "start": 13170.24, + "end": 13171.54, + "probability": 0.7324 + }, + { + "start": 13171.6, + "end": 13174.56, + "probability": 0.7949 + }, + { + "start": 13175.24, + "end": 13176.16, + "probability": 0.9606 + }, + { + "start": 13177.0, + "end": 13177.88, + "probability": 0.8145 + }, + { + "start": 13178.44, + "end": 13181.2, + "probability": 0.9911 + }, + { + "start": 13181.24, + "end": 13185.22, + "probability": 0.9119 + }, + { + "start": 13185.86, + "end": 13187.2, + "probability": 0.6635 + }, + { + "start": 13188.9, + "end": 13190.82, + "probability": 0.6208 + }, + { + "start": 13190.92, + "end": 13190.92, + "probability": 0.0126 + }, + { + "start": 13191.42, + "end": 13192.04, + "probability": 0.1616 + }, + { + "start": 13192.06, + "end": 13193.4, + "probability": 0.6676 + }, + { + "start": 13193.54, + "end": 13194.94, + "probability": 0.293 + }, + { + "start": 13195.38, + "end": 13196.28, + "probability": 0.5983 + }, + { + "start": 13196.44, + "end": 13196.78, + "probability": 0.404 + }, + { + "start": 13196.78, + "end": 13198.19, + "probability": 0.8936 + }, + { + "start": 13199.54, + "end": 13202.32, + "probability": 0.3599 + }, + { + "start": 13202.54, + "end": 13203.46, + "probability": 0.7224 + }, + { + "start": 13203.62, + "end": 13204.08, + "probability": 0.3712 + }, + { + "start": 13204.18, + "end": 13204.67, + "probability": 0.598 + }, + { + "start": 13205.28, + "end": 13206.67, + "probability": 0.8391 + }, + { + "start": 13207.4, + "end": 13208.24, + "probability": 0.7891 + }, + { + "start": 13208.34, + "end": 13209.96, + "probability": 0.967 + }, + { + "start": 13210.12, + "end": 13211.42, + "probability": 0.9887 + }, + { + "start": 13211.8, + "end": 13212.14, + "probability": 0.9368 + }, + { + "start": 13213.0, + "end": 13214.52, + "probability": 0.1149 + }, + { + "start": 13216.98, + "end": 13220.1, + "probability": 0.4865 + }, + { + "start": 13222.66, + "end": 13225.2, + "probability": 0.7262 + }, + { + "start": 13227.24, + "end": 13227.55, + "probability": 0.1011 + }, + { + "start": 13229.38, + "end": 13232.51, + "probability": 0.2112 + }, + { + "start": 13235.42, + "end": 13238.92, + "probability": 0.635 + }, + { + "start": 13238.94, + "end": 13239.96, + "probability": 0.6033 + }, + { + "start": 13240.0, + "end": 13248.44, + "probability": 0.9422 + }, + { + "start": 13248.94, + "end": 13251.0, + "probability": 0.246 + }, + { + "start": 13251.1, + "end": 13251.52, + "probability": 0.821 + }, + { + "start": 13251.66, + "end": 13252.24, + "probability": 0.7389 + }, + { + "start": 13254.18, + "end": 13256.04, + "probability": 0.986 + }, + { + "start": 13256.1, + "end": 13258.25, + "probability": 0.7956 + }, + { + "start": 13258.46, + "end": 13259.94, + "probability": 0.2407 + }, + { + "start": 13260.46, + "end": 13262.18, + "probability": 0.6553 + }, + { + "start": 13262.46, + "end": 13266.82, + "probability": 0.9938 + }, + { + "start": 13268.1, + "end": 13274.9, + "probability": 0.982 + }, + { + "start": 13274.9, + "end": 13280.36, + "probability": 0.9938 + }, + { + "start": 13280.86, + "end": 13282.32, + "probability": 0.6824 + }, + { + "start": 13282.84, + "end": 13290.48, + "probability": 0.9817 + }, + { + "start": 13292.06, + "end": 13295.84, + "probability": 0.9979 + }, + { + "start": 13295.84, + "end": 13299.96, + "probability": 0.9979 + }, + { + "start": 13300.86, + "end": 13301.72, + "probability": 0.6596 + }, + { + "start": 13302.84, + "end": 13305.42, + "probability": 0.9709 + }, + { + "start": 13305.6, + "end": 13309.42, + "probability": 0.9933 + }, + { + "start": 13309.42, + "end": 13315.18, + "probability": 0.9771 + }, + { + "start": 13315.74, + "end": 13317.7, + "probability": 0.7212 + }, + { + "start": 13319.88, + "end": 13322.18, + "probability": 0.9128 + }, + { + "start": 13322.72, + "end": 13328.78, + "probability": 0.9934 + }, + { + "start": 13329.02, + "end": 13330.1, + "probability": 0.8063 + }, + { + "start": 13330.46, + "end": 13335.24, + "probability": 0.9912 + }, + { + "start": 13335.7, + "end": 13340.7, + "probability": 0.9805 + }, + { + "start": 13340.7, + "end": 13342.88, + "probability": 0.9517 + }, + { + "start": 13343.76, + "end": 13346.02, + "probability": 0.9761 + }, + { + "start": 13347.4, + "end": 13348.22, + "probability": 0.9905 + }, + { + "start": 13348.78, + "end": 13350.02, + "probability": 0.5208 + }, + { + "start": 13350.7, + "end": 13352.98, + "probability": 0.9872 + }, + { + "start": 13354.48, + "end": 13357.2, + "probability": 0.9723 + }, + { + "start": 13357.92, + "end": 13362.04, + "probability": 0.9928 + }, + { + "start": 13363.06, + "end": 13368.84, + "probability": 0.984 + }, + { + "start": 13369.68, + "end": 13371.76, + "probability": 0.8705 + }, + { + "start": 13372.78, + "end": 13376.52, + "probability": 0.9858 + }, + { + "start": 13376.52, + "end": 13380.38, + "probability": 0.9529 + }, + { + "start": 13381.58, + "end": 13386.28, + "probability": 0.9688 + }, + { + "start": 13387.34, + "end": 13388.04, + "probability": 0.8922 + }, + { + "start": 13389.58, + "end": 13395.54, + "probability": 0.9988 + }, + { + "start": 13396.04, + "end": 13396.88, + "probability": 0.9845 + }, + { + "start": 13396.98, + "end": 13398.88, + "probability": 0.8545 + }, + { + "start": 13399.56, + "end": 13402.0, + "probability": 0.9776 + }, + { + "start": 13402.84, + "end": 13407.86, + "probability": 0.8979 + }, + { + "start": 13408.84, + "end": 13410.34, + "probability": 0.9225 + }, + { + "start": 13411.28, + "end": 13414.06, + "probability": 0.9971 + }, + { + "start": 13414.66, + "end": 13415.86, + "probability": 0.8356 + }, + { + "start": 13416.68, + "end": 13420.22, + "probability": 0.9695 + }, + { + "start": 13420.22, + "end": 13423.92, + "probability": 0.9941 + }, + { + "start": 13424.84, + "end": 13430.18, + "probability": 0.9073 + }, + { + "start": 13430.7, + "end": 13431.64, + "probability": 0.5104 + }, + { + "start": 13431.82, + "end": 13432.16, + "probability": 0.8763 + }, + { + "start": 13432.22, + "end": 13437.5, + "probability": 0.9337 + }, + { + "start": 13438.08, + "end": 13445.66, + "probability": 0.9816 + }, + { + "start": 13446.7, + "end": 13449.48, + "probability": 0.9377 + }, + { + "start": 13450.1, + "end": 13453.88, + "probability": 0.987 + }, + { + "start": 13454.86, + "end": 13455.32, + "probability": 0.7269 + }, + { + "start": 13455.44, + "end": 13455.9, + "probability": 0.6545 + }, + { + "start": 13456.0, + "end": 13458.78, + "probability": 0.8813 + }, + { + "start": 13459.66, + "end": 13463.56, + "probability": 0.937 + }, + { + "start": 13464.24, + "end": 13467.5, + "probability": 0.9891 + }, + { + "start": 13467.92, + "end": 13470.0, + "probability": 0.9731 + }, + { + "start": 13470.66, + "end": 13475.86, + "probability": 0.9955 + }, + { + "start": 13477.16, + "end": 13484.1, + "probability": 0.9861 + }, + { + "start": 13484.9, + "end": 13485.32, + "probability": 0.6008 + }, + { + "start": 13485.32, + "end": 13485.76, + "probability": 0.7529 + }, + { + "start": 13485.94, + "end": 13488.18, + "probability": 0.9583 + }, + { + "start": 13488.28, + "end": 13489.74, + "probability": 0.8222 + }, + { + "start": 13490.14, + "end": 13490.46, + "probability": 0.7133 + }, + { + "start": 13491.46, + "end": 13495.7, + "probability": 0.9588 + }, + { + "start": 13495.78, + "end": 13501.58, + "probability": 0.926 + }, + { + "start": 13501.64, + "end": 13502.8, + "probability": 0.7 + }, + { + "start": 13503.26, + "end": 13504.8, + "probability": 0.979 + }, + { + "start": 13505.52, + "end": 13508.14, + "probability": 0.0101 + }, + { + "start": 13510.42, + "end": 13511.84, + "probability": 0.0933 + }, + { + "start": 13511.84, + "end": 13516.9, + "probability": 0.1242 + }, + { + "start": 13517.44, + "end": 13522.04, + "probability": 0.3686 + }, + { + "start": 13522.28, + "end": 13523.42, + "probability": 0.3677 + }, + { + "start": 13525.16, + "end": 13526.24, + "probability": 0.2785 + }, + { + "start": 13526.76, + "end": 13529.6, + "probability": 0.5217 + }, + { + "start": 13530.04, + "end": 13531.1, + "probability": 0.1672 + }, + { + "start": 13531.56, + "end": 13534.6, + "probability": 0.3073 + }, + { + "start": 13534.72, + "end": 13537.54, + "probability": 0.8214 + }, + { + "start": 13537.76, + "end": 13541.46, + "probability": 0.24 + }, + { + "start": 13541.58, + "end": 13542.68, + "probability": 0.9966 + }, + { + "start": 13545.36, + "end": 13548.88, + "probability": 0.7852 + }, + { + "start": 13549.22, + "end": 13550.1, + "probability": 0.7406 + }, + { + "start": 13550.64, + "end": 13553.18, + "probability": 0.9619 + }, + { + "start": 13553.38, + "end": 13561.44, + "probability": 0.6325 + }, + { + "start": 13561.46, + "end": 13562.76, + "probability": 0.1198 + }, + { + "start": 13564.28, + "end": 13566.86, + "probability": 0.0902 + }, + { + "start": 13566.98, + "end": 13568.34, + "probability": 0.6603 + }, + { + "start": 13568.46, + "end": 13569.79, + "probability": 0.8789 + }, + { + "start": 13572.58, + "end": 13576.12, + "probability": 0.9011 + }, + { + "start": 13576.24, + "end": 13578.34, + "probability": 0.9961 + }, + { + "start": 13578.76, + "end": 13586.2, + "probability": 0.9629 + }, + { + "start": 13586.26, + "end": 13591.52, + "probability": 0.96 + }, + { + "start": 13591.52, + "end": 13597.86, + "probability": 0.9711 + }, + { + "start": 13598.38, + "end": 13601.58, + "probability": 0.9343 + }, + { + "start": 13602.1, + "end": 13606.74, + "probability": 0.8549 + }, + { + "start": 13614.22, + "end": 13616.0, + "probability": 0.6091 + }, + { + "start": 13616.7, + "end": 13618.28, + "probability": 0.4596 + }, + { + "start": 13618.66, + "end": 13619.44, + "probability": 0.2998 + }, + { + "start": 13624.48, + "end": 13631.9, + "probability": 0.9301 + }, + { + "start": 13632.52, + "end": 13636.24, + "probability": 0.9954 + }, + { + "start": 13636.24, + "end": 13639.8, + "probability": 0.8839 + }, + { + "start": 13640.78, + "end": 13645.88, + "probability": 0.9963 + }, + { + "start": 13645.88, + "end": 13650.3, + "probability": 0.9987 + }, + { + "start": 13650.92, + "end": 13653.62, + "probability": 0.6691 + }, + { + "start": 13654.44, + "end": 13659.64, + "probability": 0.9026 + }, + { + "start": 13659.64, + "end": 13663.16, + "probability": 0.9939 + }, + { + "start": 13664.38, + "end": 13665.76, + "probability": 0.1585 + }, + { + "start": 13666.34, + "end": 13666.78, + "probability": 0.0191 + }, + { + "start": 13666.78, + "end": 13667.66, + "probability": 0.1441 + }, + { + "start": 13667.82, + "end": 13674.04, + "probability": 0.9951 + }, + { + "start": 13674.68, + "end": 13677.04, + "probability": 0.7824 + }, + { + "start": 13677.6, + "end": 13682.72, + "probability": 0.9939 + }, + { + "start": 13683.32, + "end": 13687.24, + "probability": 0.9971 + }, + { + "start": 13688.14, + "end": 13690.48, + "probability": 0.9129 + }, + { + "start": 13691.16, + "end": 13694.3, + "probability": 0.664 + }, + { + "start": 13694.34, + "end": 13696.18, + "probability": 0.8387 + }, + { + "start": 13697.32, + "end": 13697.6, + "probability": 0.704 + }, + { + "start": 13697.82, + "end": 13698.34, + "probability": 0.3614 + }, + { + "start": 13698.48, + "end": 13699.76, + "probability": 0.6021 + }, + { + "start": 13700.4, + "end": 13704.64, + "probability": 0.6834 + }, + { + "start": 13704.66, + "end": 13706.12, + "probability": 0.6936 + }, + { + "start": 13707.22, + "end": 13709.3, + "probability": 0.6014 + }, + { + "start": 13709.74, + "end": 13711.56, + "probability": 0.0296 + }, + { + "start": 13719.68, + "end": 13720.34, + "probability": 0.0004 + }, + { + "start": 13722.06, + "end": 13724.92, + "probability": 0.2258 + }, + { + "start": 13724.92, + "end": 13725.66, + "probability": 0.1193 + }, + { + "start": 13725.66, + "end": 13726.9, + "probability": 0.3006 + }, + { + "start": 13727.58, + "end": 13729.16, + "probability": 0.3459 + }, + { + "start": 13729.28, + "end": 13731.59, + "probability": 0.8296 + }, + { + "start": 13733.62, + "end": 13737.71, + "probability": 0.79 + }, + { + "start": 13738.16, + "end": 13741.44, + "probability": 0.4359 + }, + { + "start": 13742.38, + "end": 13743.59, + "probability": 0.4454 + }, + { + "start": 13745.66, + "end": 13746.16, + "probability": 0.5652 + }, + { + "start": 13750.46, + "end": 13752.26, + "probability": 0.7482 + }, + { + "start": 13754.44, + "end": 13756.06, + "probability": 0.4045 + }, + { + "start": 13759.2, + "end": 13762.46, + "probability": 0.3712 + }, + { + "start": 13762.66, + "end": 13763.58, + "probability": 0.3327 + }, + { + "start": 13763.9, + "end": 13764.66, + "probability": 0.7341 + }, + { + "start": 13765.1, + "end": 13766.9, + "probability": 0.7751 + }, + { + "start": 13768.0, + "end": 13768.42, + "probability": 0.8969 + }, + { + "start": 13768.48, + "end": 13769.54, + "probability": 0.8188 + }, + { + "start": 13770.42, + "end": 13770.68, + "probability": 0.0232 + }, + { + "start": 13773.02, + "end": 13773.9, + "probability": 0.0859 + }, + { + "start": 13773.9, + "end": 13776.88, + "probability": 0.6663 + }, + { + "start": 13777.3, + "end": 13782.92, + "probability": 0.8136 + }, + { + "start": 13783.92, + "end": 13784.82, + "probability": 0.7067 + }, + { + "start": 13785.38, + "end": 13789.38, + "probability": 0.3287 + }, + { + "start": 13789.4, + "end": 13789.4, + "probability": 0.5302 + }, + { + "start": 13789.9, + "end": 13791.46, + "probability": 0.0389 + }, + { + "start": 13791.8, + "end": 13792.48, + "probability": 0.1771 + }, + { + "start": 13806.94, + "end": 13808.16, + "probability": 0.1546 + }, + { + "start": 13808.76, + "end": 13810.38, + "probability": 0.7503 + }, + { + "start": 13811.14, + "end": 13821.26, + "probability": 0.9545 + }, + { + "start": 13821.94, + "end": 13824.02, + "probability": 0.1239 + }, + { + "start": 13824.48, + "end": 13827.36, + "probability": 0.9258 + }, + { + "start": 13828.8, + "end": 13834.21, + "probability": 0.9377 + }, + { + "start": 13835.84, + "end": 13843.94, + "probability": 0.9546 + }, + { + "start": 13844.0, + "end": 13845.4, + "probability": 0.7733 + }, + { + "start": 13845.52, + "end": 13848.38, + "probability": 0.4028 + }, + { + "start": 13849.78, + "end": 13854.82, + "probability": 0.9685 + }, + { + "start": 13854.88, + "end": 13855.98, + "probability": 0.8146 + }, + { + "start": 13856.44, + "end": 13857.64, + "probability": 0.9401 + }, + { + "start": 13858.3, + "end": 13861.62, + "probability": 0.7482 + }, + { + "start": 13862.12, + "end": 13869.78, + "probability": 0.7957 + }, + { + "start": 13871.36, + "end": 13875.34, + "probability": 0.9489 + }, + { + "start": 13875.46, + "end": 13881.26, + "probability": 0.8904 + }, + { + "start": 13882.18, + "end": 13884.7, + "probability": 0.7735 + }, + { + "start": 13885.66, + "end": 13890.06, + "probability": 0.9532 + }, + { + "start": 13891.12, + "end": 13893.66, + "probability": 0.8907 + }, + { + "start": 13894.84, + "end": 13897.38, + "probability": 0.9237 + }, + { + "start": 13898.48, + "end": 13905.32, + "probability": 0.907 + }, + { + "start": 13906.02, + "end": 13907.68, + "probability": 0.9919 + }, + { + "start": 13908.68, + "end": 13911.56, + "probability": 0.9686 + }, + { + "start": 13912.2, + "end": 13919.12, + "probability": 0.9492 + }, + { + "start": 13919.46, + "end": 13922.2, + "probability": 0.8433 + }, + { + "start": 13922.74, + "end": 13926.02, + "probability": 0.9966 + }, + { + "start": 13926.58, + "end": 13929.6, + "probability": 0.9761 + }, + { + "start": 13929.86, + "end": 13932.8, + "probability": 0.2263 + }, + { + "start": 13937.11, + "end": 13938.6, + "probability": 0.3658 + }, + { + "start": 13939.22, + "end": 13940.34, + "probability": 0.2814 + }, + { + "start": 13940.54, + "end": 13941.4, + "probability": 0.2467 + }, + { + "start": 13941.72, + "end": 13946.64, + "probability": 0.7754 + }, + { + "start": 13946.98, + "end": 13950.72, + "probability": 0.7526 + }, + { + "start": 13951.62, + "end": 13958.64, + "probability": 0.9679 + }, + { + "start": 13958.8, + "end": 13959.24, + "probability": 0.7361 + }, + { + "start": 13962.02, + "end": 13966.04, + "probability": 0.7239 + }, + { + "start": 13966.14, + "end": 13968.58, + "probability": 0.6302 + }, + { + "start": 13969.96, + "end": 13971.38, + "probability": 0.5408 + }, + { + "start": 13971.4, + "end": 13971.78, + "probability": 0.5766 + }, + { + "start": 13971.84, + "end": 13972.52, + "probability": 0.6743 + }, + { + "start": 13981.8, + "end": 13983.25, + "probability": 0.7341 + }, + { + "start": 13984.09, + "end": 13988.68, + "probability": 0.3877 + }, + { + "start": 13988.74, + "end": 13990.98, + "probability": 0.7645 + }, + { + "start": 13991.14, + "end": 13991.74, + "probability": 0.9049 + }, + { + "start": 13993.34, + "end": 13994.73, + "probability": 0.9626 + }, + { + "start": 13995.12, + "end": 13995.66, + "probability": 0.6732 + }, + { + "start": 13995.88, + "end": 13998.3, + "probability": 0.7007 + }, + { + "start": 13999.42, + "end": 13999.9, + "probability": 0.8993 + }, + { + "start": 14000.0, + "end": 14002.57, + "probability": 0.6543 + }, + { + "start": 14002.76, + "end": 14005.28, + "probability": 0.6749 + }, + { + "start": 14005.48, + "end": 14005.68, + "probability": 0.7717 + }, + { + "start": 14007.52, + "end": 14009.22, + "probability": 0.5641 + }, + { + "start": 14009.76, + "end": 14009.94, + "probability": 0.6262 + }, + { + "start": 14010.04, + "end": 14011.96, + "probability": 0.95 + }, + { + "start": 14012.46, + "end": 14014.56, + "probability": 0.8862 + }, + { + "start": 14015.22, + "end": 14017.02, + "probability": 0.7067 + }, + { + "start": 14018.8, + "end": 14020.58, + "probability": 0.761 + }, + { + "start": 14021.48, + "end": 14022.96, + "probability": 0.8788 + }, + { + "start": 14023.92, + "end": 14025.92, + "probability": 0.9685 + }, + { + "start": 14027.0, + "end": 14028.82, + "probability": 0.9568 + }, + { + "start": 14030.22, + "end": 14031.64, + "probability": 0.9749 + }, + { + "start": 14031.74, + "end": 14031.78, + "probability": 0.8392 + }, + { + "start": 14031.94, + "end": 14032.99, + "probability": 0.9785 + }, + { + "start": 14033.74, + "end": 14035.34, + "probability": 0.9937 + }, + { + "start": 14035.92, + "end": 14036.58, + "probability": 0.6132 + }, + { + "start": 14037.22, + "end": 14039.74, + "probability": 0.9985 + }, + { + "start": 14040.68, + "end": 14044.68, + "probability": 0.8726 + }, + { + "start": 14045.34, + "end": 14045.94, + "probability": 0.2236 + }, + { + "start": 14046.04, + "end": 14046.12, + "probability": 0.5196 + }, + { + "start": 14046.22, + "end": 14046.98, + "probability": 0.8605 + }, + { + "start": 14047.06, + "end": 14048.32, + "probability": 0.9521 + }, + { + "start": 14051.22, + "end": 14055.5, + "probability": 0.9186 + }, + { + "start": 14056.38, + "end": 14057.54, + "probability": 0.9673 + }, + { + "start": 14058.36, + "end": 14059.2, + "probability": 0.8854 + }, + { + "start": 14059.94, + "end": 14063.7, + "probability": 0.6648 + }, + { + "start": 14064.4, + "end": 14067.7, + "probability": 0.9819 + }, + { + "start": 14068.64, + "end": 14071.08, + "probability": 0.9951 + }, + { + "start": 14071.56, + "end": 14071.98, + "probability": 0.862 + }, + { + "start": 14072.1, + "end": 14073.36, + "probability": 0.9556 + }, + { + "start": 14074.1, + "end": 14074.44, + "probability": 0.8557 + }, + { + "start": 14075.28, + "end": 14079.28, + "probability": 0.9868 + }, + { + "start": 14080.64, + "end": 14081.92, + "probability": 0.6693 + }, + { + "start": 14082.04, + "end": 14084.98, + "probability": 0.6725 + }, + { + "start": 14085.38, + "end": 14086.24, + "probability": 0.9707 + }, + { + "start": 14087.18, + "end": 14090.78, + "probability": 0.9941 + }, + { + "start": 14091.34, + "end": 14093.94, + "probability": 0.9375 + }, + { + "start": 14094.62, + "end": 14096.76, + "probability": 0.8179 + }, + { + "start": 14097.42, + "end": 14098.6, + "probability": 0.8627 + }, + { + "start": 14098.92, + "end": 14102.06, + "probability": 0.8589 + }, + { + "start": 14103.22, + "end": 14106.54, + "probability": 0.6657 + }, + { + "start": 14107.7, + "end": 14110.34, + "probability": 0.9824 + }, + { + "start": 14110.48, + "end": 14111.18, + "probability": 0.7908 + }, + { + "start": 14111.28, + "end": 14111.9, + "probability": 0.5824 + }, + { + "start": 14112.14, + "end": 14113.36, + "probability": 0.8478 + }, + { + "start": 14114.4, + "end": 14116.1, + "probability": 0.6423 + }, + { + "start": 14116.6, + "end": 14117.34, + "probability": 0.9272 + }, + { + "start": 14117.5, + "end": 14119.66, + "probability": 0.957 + }, + { + "start": 14119.7, + "end": 14120.06, + "probability": 0.9091 + }, + { + "start": 14120.5, + "end": 14121.26, + "probability": 0.9386 + }, + { + "start": 14121.5, + "end": 14124.86, + "probability": 0.7912 + }, + { + "start": 14125.44, + "end": 14127.44, + "probability": 0.8869 + }, + { + "start": 14127.78, + "end": 14129.5, + "probability": 0.9285 + }, + { + "start": 14130.32, + "end": 14132.62, + "probability": 0.9182 + }, + { + "start": 14133.18, + "end": 14136.62, + "probability": 0.793 + }, + { + "start": 14137.34, + "end": 14140.2, + "probability": 0.7551 + }, + { + "start": 14141.22, + "end": 14143.36, + "probability": 0.8636 + }, + { + "start": 14144.3, + "end": 14146.28, + "probability": 0.9733 + }, + { + "start": 14146.42, + "end": 14149.48, + "probability": 0.9858 + }, + { + "start": 14150.06, + "end": 14152.68, + "probability": 0.9025 + }, + { + "start": 14153.2, + "end": 14154.34, + "probability": 0.9569 + }, + { + "start": 14154.38, + "end": 14156.84, + "probability": 0.9843 + }, + { + "start": 14157.44, + "end": 14158.84, + "probability": 0.8272 + }, + { + "start": 14159.76, + "end": 14160.82, + "probability": 0.9613 + }, + { + "start": 14161.16, + "end": 14161.9, + "probability": 0.6684 + }, + { + "start": 14162.24, + "end": 14164.04, + "probability": 0.5955 + }, + { + "start": 14164.8, + "end": 14165.86, + "probability": 0.9144 + }, + { + "start": 14166.14, + "end": 14167.34, + "probability": 0.9201 + }, + { + "start": 14167.88, + "end": 14168.69, + "probability": 0.9912 + }, + { + "start": 14169.44, + "end": 14170.9, + "probability": 0.9267 + }, + { + "start": 14171.16, + "end": 14172.51, + "probability": 0.874 + }, + { + "start": 14172.74, + "end": 14176.42, + "probability": 0.8823 + }, + { + "start": 14177.06, + "end": 14177.76, + "probability": 0.5212 + }, + { + "start": 14178.82, + "end": 14180.0, + "probability": 0.9419 + }, + { + "start": 14180.5, + "end": 14181.96, + "probability": 0.9595 + }, + { + "start": 14182.4, + "end": 14184.1, + "probability": 0.876 + }, + { + "start": 14184.84, + "end": 14185.6, + "probability": 0.5369 + }, + { + "start": 14186.24, + "end": 14186.76, + "probability": 0.8523 + }, + { + "start": 14187.44, + "end": 14188.7, + "probability": 0.7722 + }, + { + "start": 14188.9, + "end": 14192.74, + "probability": 0.9475 + }, + { + "start": 14192.82, + "end": 14193.64, + "probability": 0.9961 + }, + { + "start": 14193.78, + "end": 14194.34, + "probability": 0.5957 + }, + { + "start": 14194.48, + "end": 14198.22, + "probability": 0.9531 + }, + { + "start": 14198.74, + "end": 14199.23, + "probability": 0.7224 + }, + { + "start": 14199.84, + "end": 14202.9, + "probability": 0.9289 + }, + { + "start": 14203.84, + "end": 14212.1, + "probability": 0.9461 + }, + { + "start": 14212.16, + "end": 14212.5, + "probability": 0.5912 + }, + { + "start": 14212.58, + "end": 14213.42, + "probability": 0.8838 + }, + { + "start": 14214.16, + "end": 14217.88, + "probability": 0.6732 + }, + { + "start": 14218.14, + "end": 14219.7, + "probability": 0.8914 + }, + { + "start": 14219.8, + "end": 14220.06, + "probability": 0.3459 + }, + { + "start": 14220.14, + "end": 14221.22, + "probability": 0.7517 + }, + { + "start": 14221.34, + "end": 14222.38, + "probability": 0.4695 + }, + { + "start": 14222.38, + "end": 14223.0, + "probability": 0.6066 + }, + { + "start": 14223.24, + "end": 14223.94, + "probability": 0.8813 + }, + { + "start": 14225.04, + "end": 14228.26, + "probability": 0.7261 + }, + { + "start": 14228.5, + "end": 14229.56, + "probability": 0.9937 + }, + { + "start": 14229.86, + "end": 14230.5, + "probability": 0.747 + }, + { + "start": 14230.66, + "end": 14231.02, + "probability": 0.5183 + }, + { + "start": 14231.14, + "end": 14231.24, + "probability": 0.3449 + }, + { + "start": 14232.22, + "end": 14232.82, + "probability": 0.7568 + }, + { + "start": 14233.24, + "end": 14233.63, + "probability": 0.9666 + }, + { + "start": 14234.04, + "end": 14237.8, + "probability": 0.7985 + }, + { + "start": 14238.8, + "end": 14240.42, + "probability": 0.9628 + }, + { + "start": 14241.66, + "end": 14244.5, + "probability": 0.9154 + }, + { + "start": 14244.5, + "end": 14248.06, + "probability": 0.9407 + }, + { + "start": 14248.62, + "end": 14249.0, + "probability": 0.7025 + }, + { + "start": 14249.06, + "end": 14249.48, + "probability": 0.6915 + }, + { + "start": 14249.56, + "end": 14249.8, + "probability": 0.8384 + }, + { + "start": 14250.28, + "end": 14251.92, + "probability": 0.9187 + }, + { + "start": 14252.3, + "end": 14254.5, + "probability": 0.7651 + }, + { + "start": 14254.78, + "end": 14255.72, + "probability": 0.6777 + }, + { + "start": 14255.74, + "end": 14256.56, + "probability": 0.7439 + }, + { + "start": 14256.78, + "end": 14258.24, + "probability": 0.701 + }, + { + "start": 14258.36, + "end": 14259.98, + "probability": 0.9478 + }, + { + "start": 14260.04, + "end": 14260.68, + "probability": 0.8852 + }, + { + "start": 14263.32, + "end": 14265.72, + "probability": 0.1979 + }, + { + "start": 14265.94, + "end": 14266.54, + "probability": 0.6889 + }, + { + "start": 14266.82, + "end": 14269.24, + "probability": 0.6203 + }, + { + "start": 14269.48, + "end": 14273.26, + "probability": 0.7282 + }, + { + "start": 14273.96, + "end": 14275.68, + "probability": 0.7533 + }, + { + "start": 14275.78, + "end": 14276.3, + "probability": 0.6682 + }, + { + "start": 14276.4, + "end": 14276.94, + "probability": 0.6143 + }, + { + "start": 14276.98, + "end": 14277.28, + "probability": 0.6465 + }, + { + "start": 14277.94, + "end": 14279.0, + "probability": 0.8342 + }, + { + "start": 14279.16, + "end": 14279.62, + "probability": 0.76 + }, + { + "start": 14279.66, + "end": 14283.04, + "probability": 0.7515 + }, + { + "start": 14283.28, + "end": 14283.95, + "probability": 0.9734 + }, + { + "start": 14284.44, + "end": 14286.31, + "probability": 0.0374 + }, + { + "start": 14286.78, + "end": 14288.14, + "probability": 0.2547 + }, + { + "start": 14288.26, + "end": 14292.22, + "probability": 0.7301 + }, + { + "start": 14292.96, + "end": 14293.6, + "probability": 0.0246 + }, + { + "start": 14293.6, + "end": 14293.66, + "probability": 0.0824 + }, + { + "start": 14293.66, + "end": 14294.12, + "probability": 0.4515 + }, + { + "start": 14294.66, + "end": 14295.18, + "probability": 0.8481 + }, + { + "start": 14295.32, + "end": 14296.3, + "probability": 0.3788 + }, + { + "start": 14296.3, + "end": 14296.51, + "probability": 0.6393 + }, + { + "start": 14296.86, + "end": 14298.62, + "probability": 0.553 + }, + { + "start": 14298.68, + "end": 14299.64, + "probability": 0.9491 + }, + { + "start": 14299.72, + "end": 14300.06, + "probability": 0.9712 + }, + { + "start": 14300.64, + "end": 14301.58, + "probability": 0.8635 + }, + { + "start": 14302.2, + "end": 14302.54, + "probability": 0.0001 + }, + { + "start": 14302.54, + "end": 14303.7, + "probability": 0.7117 + }, + { + "start": 14303.86, + "end": 14304.4, + "probability": 0.4893 + }, + { + "start": 14304.5, + "end": 14305.28, + "probability": 0.4169 + }, + { + "start": 14305.28, + "end": 14305.92, + "probability": 0.5451 + }, + { + "start": 14306.04, + "end": 14306.62, + "probability": 0.7971 + }, + { + "start": 14306.68, + "end": 14310.74, + "probability": 0.6899 + }, + { + "start": 14310.84, + "end": 14313.49, + "probability": 0.8145 + }, + { + "start": 14313.6, + "end": 14315.2, + "probability": 0.864 + }, + { + "start": 14315.92, + "end": 14316.7, + "probability": 0.8623 + }, + { + "start": 14316.7, + "end": 14318.28, + "probability": 0.5435 + }, + { + "start": 14318.38, + "end": 14319.2, + "probability": 0.653 + }, + { + "start": 14319.28, + "end": 14319.66, + "probability": 0.9388 + }, + { + "start": 14319.84, + "end": 14321.13, + "probability": 0.9597 + }, + { + "start": 14321.34, + "end": 14322.06, + "probability": 0.4954 + }, + { + "start": 14322.92, + "end": 14324.49, + "probability": 0.8735 + }, + { + "start": 14324.88, + "end": 14325.48, + "probability": 0.7631 + }, + { + "start": 14325.64, + "end": 14326.18, + "probability": 0.4453 + }, + { + "start": 14326.46, + "end": 14326.96, + "probability": 0.4845 + }, + { + "start": 14327.3, + "end": 14327.74, + "probability": 0.742 + }, + { + "start": 14327.82, + "end": 14329.38, + "probability": 0.02 + }, + { + "start": 14329.78, + "end": 14330.1, + "probability": 0.7339 + }, + { + "start": 14330.24, + "end": 14331.46, + "probability": 0.293 + }, + { + "start": 14331.46, + "end": 14333.72, + "probability": 0.605 + }, + { + "start": 14335.25, + "end": 14339.66, + "probability": 0.9736 + }, + { + "start": 14339.92, + "end": 14342.82, + "probability": 0.9736 + }, + { + "start": 14343.24, + "end": 14344.94, + "probability": 0.9922 + }, + { + "start": 14345.24, + "end": 14346.14, + "probability": 0.896 + }, + { + "start": 14346.2, + "end": 14346.66, + "probability": 0.6053 + }, + { + "start": 14346.76, + "end": 14348.66, + "probability": 0.9517 + }, + { + "start": 14349.0, + "end": 14352.74, + "probability": 0.9591 + }, + { + "start": 14352.8, + "end": 14354.7, + "probability": 0.4823 + }, + { + "start": 14355.08, + "end": 14355.94, + "probability": 0.3554 + }, + { + "start": 14355.94, + "end": 14356.96, + "probability": 0.0575 + }, + { + "start": 14357.1, + "end": 14358.04, + "probability": 0.5078 + }, + { + "start": 14358.08, + "end": 14360.12, + "probability": 0.8359 + }, + { + "start": 14360.46, + "end": 14361.08, + "probability": 0.9514 + }, + { + "start": 14361.22, + "end": 14361.96, + "probability": 0.9556 + }, + { + "start": 14362.06, + "end": 14362.68, + "probability": 0.889 + }, + { + "start": 14362.74, + "end": 14364.84, + "probability": 0.8566 + }, + { + "start": 14364.84, + "end": 14368.93, + "probability": 0.9953 + }, + { + "start": 14369.4, + "end": 14369.66, + "probability": 0.2649 + }, + { + "start": 14369.68, + "end": 14370.08, + "probability": 0.5461 + }, + { + "start": 14374.68, + "end": 14375.42, + "probability": 0.3504 + }, + { + "start": 14375.72, + "end": 14376.3, + "probability": 0.5786 + }, + { + "start": 14376.4, + "end": 14376.84, + "probability": 0.8318 + }, + { + "start": 14376.84, + "end": 14377.76, + "probability": 0.8673 + }, + { + "start": 14378.3, + "end": 14380.02, + "probability": 0.5822 + }, + { + "start": 14380.62, + "end": 14382.46, + "probability": 0.5254 + }, + { + "start": 14383.0, + "end": 14384.43, + "probability": 0.3355 + }, + { + "start": 14384.66, + "end": 14384.74, + "probability": 0.3249 + }, + { + "start": 14387.18, + "end": 14388.8, + "probability": 0.0346 + }, + { + "start": 14389.16, + "end": 14391.74, + "probability": 0.0162 + }, + { + "start": 14392.48, + "end": 14393.5, + "probability": 0.0562 + }, + { + "start": 14393.5, + "end": 14397.62, + "probability": 0.7291 + }, + { + "start": 14397.82, + "end": 14399.38, + "probability": 0.9479 + }, + { + "start": 14399.72, + "end": 14402.98, + "probability": 0.8584 + }, + { + "start": 14403.06, + "end": 14403.3, + "probability": 0.7676 + }, + { + "start": 14403.52, + "end": 14404.52, + "probability": 0.4428 + }, + { + "start": 14404.52, + "end": 14405.46, + "probability": 0.5005 + }, + { + "start": 14405.58, + "end": 14407.3, + "probability": 0.405 + }, + { + "start": 14407.78, + "end": 14410.3, + "probability": 0.918 + }, + { + "start": 14411.0, + "end": 14414.2, + "probability": 0.7799 + }, + { + "start": 14414.6, + "end": 14417.12, + "probability": 0.8604 + }, + { + "start": 14417.54, + "end": 14423.9, + "probability": 0.7053 + }, + { + "start": 14423.9, + "end": 14426.86, + "probability": 0.6606 + }, + { + "start": 14427.2, + "end": 14429.14, + "probability": 0.8705 + }, + { + "start": 14429.5, + "end": 14431.74, + "probability": 0.4068 + }, + { + "start": 14432.1, + "end": 14432.46, + "probability": 0.6736 + }, + { + "start": 14432.64, + "end": 14433.36, + "probability": 0.4915 + }, + { + "start": 14433.5, + "end": 14435.2, + "probability": 0.8864 + }, + { + "start": 14435.52, + "end": 14437.96, + "probability": 0.7781 + }, + { + "start": 14438.0, + "end": 14440.16, + "probability": 0.8014 + }, + { + "start": 14440.22, + "end": 14441.5, + "probability": 0.5239 + }, + { + "start": 14441.5, + "end": 14445.22, + "probability": 0.9017 + }, + { + "start": 14461.98, + "end": 14464.16, + "probability": 0.5527 + }, + { + "start": 14465.38, + "end": 14468.48, + "probability": 0.8812 + }, + { + "start": 14468.64, + "end": 14468.82, + "probability": 0.3685 + }, + { + "start": 14468.92, + "end": 14473.04, + "probability": 0.8663 + }, + { + "start": 14474.64, + "end": 14476.78, + "probability": 0.991 + }, + { + "start": 14477.76, + "end": 14478.28, + "probability": 0.9568 + }, + { + "start": 14479.4, + "end": 14480.64, + "probability": 0.854 + }, + { + "start": 14482.92, + "end": 14485.04, + "probability": 0.8847 + }, + { + "start": 14485.36, + "end": 14486.32, + "probability": 0.7413 + }, + { + "start": 14486.62, + "end": 14486.9, + "probability": 0.7692 + }, + { + "start": 14487.1, + "end": 14488.26, + "probability": 0.9206 + }, + { + "start": 14488.8, + "end": 14494.1, + "probability": 0.9598 + }, + { + "start": 14495.06, + "end": 14496.68, + "probability": 0.6201 + }, + { + "start": 14497.68, + "end": 14499.18, + "probability": 0.9827 + }, + { + "start": 14499.6, + "end": 14500.3, + "probability": 0.8418 + }, + { + "start": 14500.58, + "end": 14502.2, + "probability": 0.8146 + }, + { + "start": 14503.0, + "end": 14508.5, + "probability": 0.9917 + }, + { + "start": 14509.62, + "end": 14510.95, + "probability": 0.9703 + }, + { + "start": 14511.64, + "end": 14513.36, + "probability": 0.8917 + }, + { + "start": 14513.52, + "end": 14515.16, + "probability": 0.9942 + }, + { + "start": 14515.3, + "end": 14517.99, + "probability": 0.9013 + }, + { + "start": 14518.72, + "end": 14519.28, + "probability": 0.7491 + }, + { + "start": 14519.8, + "end": 14520.38, + "probability": 0.4348 + }, + { + "start": 14521.3, + "end": 14522.94, + "probability": 0.5719 + }, + { + "start": 14523.72, + "end": 14524.98, + "probability": 0.8251 + }, + { + "start": 14525.7, + "end": 14526.6, + "probability": 0.921 + }, + { + "start": 14527.42, + "end": 14529.28, + "probability": 0.9551 + }, + { + "start": 14529.52, + "end": 14531.74, + "probability": 0.9938 + }, + { + "start": 14532.7, + "end": 14534.58, + "probability": 0.9489 + }, + { + "start": 14534.98, + "end": 14536.02, + "probability": 0.8174 + }, + { + "start": 14537.58, + "end": 14542.88, + "probability": 0.9976 + }, + { + "start": 14544.24, + "end": 14547.92, + "probability": 0.9044 + }, + { + "start": 14547.98, + "end": 14548.9, + "probability": 0.8413 + }, + { + "start": 14549.12, + "end": 14549.92, + "probability": 0.6125 + }, + { + "start": 14550.62, + "end": 14551.18, + "probability": 0.5388 + }, + { + "start": 14554.05, + "end": 14554.34, + "probability": 0.0796 + }, + { + "start": 14554.34, + "end": 14554.34, + "probability": 0.1247 + }, + { + "start": 14554.34, + "end": 14556.39, + "probability": 0.9413 + }, + { + "start": 14557.2, + "end": 14559.48, + "probability": 0.9973 + }, + { + "start": 14560.0, + "end": 14560.68, + "probability": 0.7548 + }, + { + "start": 14561.38, + "end": 14565.12, + "probability": 0.9562 + }, + { + "start": 14565.6, + "end": 14568.34, + "probability": 0.8678 + }, + { + "start": 14568.42, + "end": 14569.4, + "probability": 0.9785 + }, + { + "start": 14570.86, + "end": 14573.84, + "probability": 0.8644 + }, + { + "start": 14574.54, + "end": 14580.94, + "probability": 0.9924 + }, + { + "start": 14581.4, + "end": 14582.0, + "probability": 0.359 + }, + { + "start": 14582.94, + "end": 14585.1, + "probability": 0.9919 + }, + { + "start": 14585.94, + "end": 14587.62, + "probability": 0.9771 + }, + { + "start": 14588.4, + "end": 14592.38, + "probability": 0.991 + }, + { + "start": 14592.98, + "end": 14594.54, + "probability": 0.7086 + }, + { + "start": 14595.32, + "end": 14599.54, + "probability": 0.988 + }, + { + "start": 14600.1, + "end": 14606.38, + "probability": 0.9748 + }, + { + "start": 14606.58, + "end": 14608.37, + "probability": 0.9967 + }, + { + "start": 14609.1, + "end": 14614.28, + "probability": 0.996 + }, + { + "start": 14614.42, + "end": 14614.66, + "probability": 0.5363 + }, + { + "start": 14614.72, + "end": 14615.19, + "probability": 0.4963 + }, + { + "start": 14616.42, + "end": 14620.68, + "probability": 0.9902 + }, + { + "start": 14621.32, + "end": 14623.32, + "probability": 0.9293 + }, + { + "start": 14623.9, + "end": 14625.88, + "probability": 0.7988 + }, + { + "start": 14626.7, + "end": 14629.02, + "probability": 0.9755 + }, + { + "start": 14630.36, + "end": 14633.38, + "probability": 0.7238 + }, + { + "start": 14633.92, + "end": 14635.52, + "probability": 0.9592 + }, + { + "start": 14635.62, + "end": 14636.82, + "probability": 0.9875 + }, + { + "start": 14638.3, + "end": 14640.02, + "probability": 0.9909 + }, + { + "start": 14640.96, + "end": 14644.68, + "probability": 0.9966 + }, + { + "start": 14645.08, + "end": 14648.14, + "probability": 0.0332 + }, + { + "start": 14648.14, + "end": 14649.98, + "probability": 0.7112 + }, + { + "start": 14651.06, + "end": 14652.78, + "probability": 0.0948 + }, + { + "start": 14652.82, + "end": 14653.44, + "probability": 0.4347 + }, + { + "start": 14653.44, + "end": 14654.54, + "probability": 0.6104 + }, + { + "start": 14655.12, + "end": 14655.44, + "probability": 0.4994 + }, + { + "start": 14655.58, + "end": 14660.76, + "probability": 0.8623 + }, + { + "start": 14662.58, + "end": 14663.18, + "probability": 0.6518 + }, + { + "start": 14663.18, + "end": 14663.7, + "probability": 0.0091 + }, + { + "start": 14664.38, + "end": 14665.32, + "probability": 0.8035 + }, + { + "start": 14665.42, + "end": 14666.3, + "probability": 0.9195 + }, + { + "start": 14666.34, + "end": 14667.22, + "probability": 0.6152 + }, + { + "start": 14668.0, + "end": 14670.24, + "probability": 0.9834 + }, + { + "start": 14671.0, + "end": 14676.96, + "probability": 0.998 + }, + { + "start": 14677.0, + "end": 14677.82, + "probability": 0.772 + }, + { + "start": 14677.96, + "end": 14681.28, + "probability": 0.9663 + }, + { + "start": 14681.38, + "end": 14681.78, + "probability": 0.9524 + }, + { + "start": 14682.24, + "end": 14684.04, + "probability": 0.8884 + }, + { + "start": 14684.56, + "end": 14685.24, + "probability": 0.9773 + }, + { + "start": 14685.64, + "end": 14687.68, + "probability": 0.9844 + }, + { + "start": 14688.2, + "end": 14691.46, + "probability": 0.8013 + }, + { + "start": 14692.52, + "end": 14694.0, + "probability": 0.06 + }, + { + "start": 14694.42, + "end": 14695.5, + "probability": 0.906 + }, + { + "start": 14695.56, + "end": 14696.04, + "probability": 0.7601 + }, + { + "start": 14696.96, + "end": 14699.34, + "probability": 0.989 + }, + { + "start": 14700.74, + "end": 14702.48, + "probability": 0.9917 + }, + { + "start": 14703.2, + "end": 14704.72, + "probability": 0.6704 + }, + { + "start": 14705.44, + "end": 14708.0, + "probability": 0.7874 + }, + { + "start": 14708.12, + "end": 14709.24, + "probability": 0.8657 + }, + { + "start": 14709.78, + "end": 14712.3, + "probability": 0.9484 + }, + { + "start": 14712.8, + "end": 14713.3, + "probability": 0.8752 + }, + { + "start": 14713.36, + "end": 14714.02, + "probability": 0.7875 + }, + { + "start": 14714.38, + "end": 14717.04, + "probability": 0.9949 + }, + { + "start": 14717.3, + "end": 14719.88, + "probability": 0.9587 + }, + { + "start": 14720.62, + "end": 14727.28, + "probability": 0.989 + }, + { + "start": 14728.28, + "end": 14728.98, + "probability": 0.8771 + }, + { + "start": 14729.54, + "end": 14732.16, + "probability": 0.9961 + }, + { + "start": 14732.8, + "end": 14738.3, + "probability": 0.9954 + }, + { + "start": 14739.26, + "end": 14742.32, + "probability": 0.997 + }, + { + "start": 14743.06, + "end": 14745.34, + "probability": 0.9244 + }, + { + "start": 14745.72, + "end": 14748.0, + "probability": 0.6573 + }, + { + "start": 14748.22, + "end": 14749.1, + "probability": 0.5863 + }, + { + "start": 14749.42, + "end": 14750.32, + "probability": 0.6729 + }, + { + "start": 14750.9, + "end": 14752.54, + "probability": 0.9786 + }, + { + "start": 14752.92, + "end": 14755.98, + "probability": 0.8818 + }, + { + "start": 14757.12, + "end": 14758.38, + "probability": 0.9124 + }, + { + "start": 14758.58, + "end": 14764.16, + "probability": 0.974 + }, + { + "start": 14764.42, + "end": 14765.22, + "probability": 0.8109 + }, + { + "start": 14765.4, + "end": 14766.9, + "probability": 0.9706 + }, + { + "start": 14767.4, + "end": 14769.05, + "probability": 0.7132 + }, + { + "start": 14769.96, + "end": 14773.93, + "probability": 0.8682 + }, + { + "start": 14775.1, + "end": 14775.2, + "probability": 0.1576 + }, + { + "start": 14775.88, + "end": 14777.04, + "probability": 0.7782 + }, + { + "start": 14777.42, + "end": 14778.5, + "probability": 0.7654 + }, + { + "start": 14778.96, + "end": 14781.38, + "probability": 0.9641 + }, + { + "start": 14781.46, + "end": 14782.78, + "probability": 0.856 + }, + { + "start": 14783.2, + "end": 14786.38, + "probability": 0.8996 + }, + { + "start": 14786.98, + "end": 14787.82, + "probability": 0.8276 + }, + { + "start": 14787.88, + "end": 14788.96, + "probability": 0.9751 + }, + { + "start": 14789.02, + "end": 14789.99, + "probability": 0.9834 + }, + { + "start": 14790.5, + "end": 14794.84, + "probability": 0.9198 + }, + { + "start": 14794.94, + "end": 14796.98, + "probability": 0.8959 + }, + { + "start": 14797.12, + "end": 14798.0, + "probability": 0.9775 + }, + { + "start": 14798.42, + "end": 14800.78, + "probability": 0.8108 + }, + { + "start": 14801.26, + "end": 14803.46, + "probability": 0.9653 + }, + { + "start": 14804.42, + "end": 14808.86, + "probability": 0.9968 + }, + { + "start": 14809.8, + "end": 14811.54, + "probability": 0.8782 + }, + { + "start": 14811.72, + "end": 14813.3, + "probability": 0.7811 + }, + { + "start": 14814.6, + "end": 14818.08, + "probability": 0.8153 + }, + { + "start": 14819.06, + "end": 14819.74, + "probability": 0.4763 + }, + { + "start": 14819.76, + "end": 14821.2, + "probability": 0.9124 + }, + { + "start": 14821.68, + "end": 14823.78, + "probability": 0.9896 + }, + { + "start": 14823.86, + "end": 14826.9, + "probability": 0.9902 + }, + { + "start": 14827.6, + "end": 14828.44, + "probability": 0.9009 + }, + { + "start": 14828.96, + "end": 14834.16, + "probability": 0.9747 + }, + { + "start": 14834.5, + "end": 14837.72, + "probability": 0.914 + }, + { + "start": 14837.96, + "end": 14839.34, + "probability": 0.8688 + }, + { + "start": 14839.92, + "end": 14841.48, + "probability": 0.8978 + }, + { + "start": 14841.74, + "end": 14843.44, + "probability": 0.9449 + }, + { + "start": 14843.54, + "end": 14846.42, + "probability": 0.8952 + }, + { + "start": 14846.86, + "end": 14848.38, + "probability": 0.9971 + }, + { + "start": 14848.44, + "end": 14850.38, + "probability": 0.9933 + }, + { + "start": 14851.3, + "end": 14856.58, + "probability": 0.9788 + }, + { + "start": 14857.38, + "end": 14858.54, + "probability": 0.5359 + }, + { + "start": 14859.14, + "end": 14859.76, + "probability": 0.8608 + }, + { + "start": 14860.28, + "end": 14861.94, + "probability": 0.8026 + }, + { + "start": 14862.06, + "end": 14863.36, + "probability": 0.5618 + }, + { + "start": 14863.92, + "end": 14866.1, + "probability": 0.9972 + }, + { + "start": 14866.68, + "end": 14869.66, + "probability": 0.9915 + }, + { + "start": 14870.5, + "end": 14872.14, + "probability": 0.9683 + }, + { + "start": 14872.66, + "end": 14875.3, + "probability": 0.8601 + }, + { + "start": 14875.76, + "end": 14876.2, + "probability": 0.1678 + }, + { + "start": 14876.28, + "end": 14877.34, + "probability": 0.65 + }, + { + "start": 14877.48, + "end": 14878.34, + "probability": 0.834 + }, + { + "start": 14878.48, + "end": 14878.9, + "probability": 0.7709 + }, + { + "start": 14879.36, + "end": 14880.36, + "probability": 0.1669 + }, + { + "start": 14880.46, + "end": 14881.12, + "probability": 0.028 + }, + { + "start": 14881.5, + "end": 14885.28, + "probability": 0.8984 + }, + { + "start": 14885.8, + "end": 14889.1, + "probability": 0.7717 + }, + { + "start": 14889.78, + "end": 14891.42, + "probability": 0.4394 + }, + { + "start": 14891.56, + "end": 14892.56, + "probability": 0.2626 + }, + { + "start": 14892.56, + "end": 14894.54, + "probability": 0.8755 + }, + { + "start": 14894.64, + "end": 14895.6, + "probability": 0.8645 + }, + { + "start": 14895.64, + "end": 14896.28, + "probability": 0.2985 + }, + { + "start": 14896.64, + "end": 14898.78, + "probability": 0.9246 + }, + { + "start": 14899.18, + "end": 14901.6, + "probability": 0.9972 + }, + { + "start": 14901.76, + "end": 14904.57, + "probability": 0.9411 + }, + { + "start": 14905.18, + "end": 14908.02, + "probability": 0.947 + }, + { + "start": 14908.02, + "end": 14909.48, + "probability": 0.9089 + }, + { + "start": 14909.68, + "end": 14910.88, + "probability": 0.7579 + }, + { + "start": 14911.34, + "end": 14912.88, + "probability": 0.491 + }, + { + "start": 14913.34, + "end": 14915.26, + "probability": 0.8827 + }, + { + "start": 14915.38, + "end": 14916.74, + "probability": 0.9875 + }, + { + "start": 14917.08, + "end": 14918.78, + "probability": 0.9325 + }, + { + "start": 14919.24, + "end": 14921.7, + "probability": 0.9635 + }, + { + "start": 14922.04, + "end": 14924.7, + "probability": 0.9978 + }, + { + "start": 14925.0, + "end": 14926.76, + "probability": 0.8827 + }, + { + "start": 14926.94, + "end": 14928.52, + "probability": 0.9891 + }, + { + "start": 14931.1, + "end": 14931.12, + "probability": 0.0024 + }, + { + "start": 14931.12, + "end": 14931.12, + "probability": 0.0772 + }, + { + "start": 14931.12, + "end": 14933.94, + "probability": 0.8821 + }, + { + "start": 14934.16, + "end": 14934.66, + "probability": 0.5595 + }, + { + "start": 14934.74, + "end": 14936.12, + "probability": 0.7042 + }, + { + "start": 14936.34, + "end": 14939.21, + "probability": 0.6353 + }, + { + "start": 14939.48, + "end": 14939.84, + "probability": 0.8708 + }, + { + "start": 14940.02, + "end": 14941.46, + "probability": 0.8828 + }, + { + "start": 14941.54, + "end": 14941.72, + "probability": 0.4211 + }, + { + "start": 14941.84, + "end": 14945.04, + "probability": 0.9846 + }, + { + "start": 14945.08, + "end": 14948.14, + "probability": 0.9685 + }, + { + "start": 14948.32, + "end": 14949.42, + "probability": 0.8317 + }, + { + "start": 14949.48, + "end": 14950.68, + "probability": 0.9796 + }, + { + "start": 14951.08, + "end": 14951.22, + "probability": 0.0157 + }, + { + "start": 14951.22, + "end": 14952.96, + "probability": 0.9527 + }, + { + "start": 14953.08, + "end": 14953.88, + "probability": 0.8202 + }, + { + "start": 14954.3, + "end": 14956.65, + "probability": 0.9985 + }, + { + "start": 14957.38, + "end": 14958.87, + "probability": 0.9971 + }, + { + "start": 14959.28, + "end": 14962.12, + "probability": 0.9977 + }, + { + "start": 14962.6, + "end": 14966.96, + "probability": 0.7573 + }, + { + "start": 14967.32, + "end": 14968.86, + "probability": 0.9228 + }, + { + "start": 14969.36, + "end": 14971.56, + "probability": 0.8773 + }, + { + "start": 14971.8, + "end": 14974.34, + "probability": 0.5081 + }, + { + "start": 14974.72, + "end": 14976.92, + "probability": 0.5638 + }, + { + "start": 14977.59, + "end": 14979.56, + "probability": 0.1358 + }, + { + "start": 14979.56, + "end": 14979.56, + "probability": 0.0759 + }, + { + "start": 14979.56, + "end": 14981.22, + "probability": 0.2802 + }, + { + "start": 14981.3, + "end": 14982.76, + "probability": 0.6847 + }, + { + "start": 14982.76, + "end": 14983.58, + "probability": 0.2555 + }, + { + "start": 14984.26, + "end": 14985.28, + "probability": 0.1136 + }, + { + "start": 14987.14, + "end": 14988.82, + "probability": 0.6953 + }, + { + "start": 14989.1, + "end": 14990.16, + "probability": 0.1404 + }, + { + "start": 14990.28, + "end": 14991.62, + "probability": 0.6812 + }, + { + "start": 14991.76, + "end": 14993.25, + "probability": 0.6321 + }, + { + "start": 14993.44, + "end": 14995.24, + "probability": 0.6418 + }, + { + "start": 14995.52, + "end": 14996.64, + "probability": 0.9235 + }, + { + "start": 14996.7, + "end": 15000.04, + "probability": 0.4833 + }, + { + "start": 15000.28, + "end": 15000.88, + "probability": 0.5376 + }, + { + "start": 15000.94, + "end": 15002.36, + "probability": 0.7634 + }, + { + "start": 15003.22, + "end": 15004.08, + "probability": 0.7038 + }, + { + "start": 15004.44, + "end": 15009.48, + "probability": 0.8312 + }, + { + "start": 15009.7, + "end": 15010.5, + "probability": 0.9139 + }, + { + "start": 15010.58, + "end": 15011.16, + "probability": 0.8857 + }, + { + "start": 15011.58, + "end": 15012.36, + "probability": 0.6653 + }, + { + "start": 15012.98, + "end": 15014.08, + "probability": 0.9402 + }, + { + "start": 15014.86, + "end": 15021.1, + "probability": 0.9971 + }, + { + "start": 15021.24, + "end": 15021.6, + "probability": 0.9771 + }, + { + "start": 15023.26, + "end": 15024.52, + "probability": 0.6411 + }, + { + "start": 15025.18, + "end": 15028.52, + "probability": 0.9702 + }, + { + "start": 15029.08, + "end": 15032.26, + "probability": 0.8287 + }, + { + "start": 15032.82, + "end": 15033.44, + "probability": 0.9646 + }, + { + "start": 15033.8, + "end": 15035.2, + "probability": 0.7251 + }, + { + "start": 15036.04, + "end": 15038.28, + "probability": 0.9775 + }, + { + "start": 15040.8, + "end": 15042.5, + "probability": 0.7729 + }, + { + "start": 15043.0, + "end": 15046.5, + "probability": 0.9657 + }, + { + "start": 15047.36, + "end": 15047.89, + "probability": 0.5496 + }, + { + "start": 15048.0, + "end": 15048.48, + "probability": 0.9387 + }, + { + "start": 15048.88, + "end": 15051.1, + "probability": 0.8623 + }, + { + "start": 15052.34, + "end": 15052.84, + "probability": 0.9176 + }, + { + "start": 15053.72, + "end": 15057.1, + "probability": 0.9925 + }, + { + "start": 15057.28, + "end": 15061.26, + "probability": 0.8757 + }, + { + "start": 15061.86, + "end": 15065.46, + "probability": 0.8854 + }, + { + "start": 15065.54, + "end": 15066.76, + "probability": 0.6589 + }, + { + "start": 15066.84, + "end": 15067.48, + "probability": 0.699 + }, + { + "start": 15068.0, + "end": 15071.62, + "probability": 0.8712 + }, + { + "start": 15072.38, + "end": 15073.66, + "probability": 0.9678 + }, + { + "start": 15074.28, + "end": 15075.28, + "probability": 0.4983 + }, + { + "start": 15075.72, + "end": 15076.66, + "probability": 0.9841 + }, + { + "start": 15076.78, + "end": 15080.36, + "probability": 0.9587 + }, + { + "start": 15080.4, + "end": 15081.8, + "probability": 0.5195 + }, + { + "start": 15082.12, + "end": 15083.02, + "probability": 0.6915 + }, + { + "start": 15083.56, + "end": 15086.14, + "probability": 0.7357 + }, + { + "start": 15086.58, + "end": 15088.2, + "probability": 0.9844 + }, + { + "start": 15088.3, + "end": 15089.38, + "probability": 0.8813 + }, + { + "start": 15089.96, + "end": 15093.02, + "probability": 0.9895 + }, + { + "start": 15093.22, + "end": 15094.16, + "probability": 0.9489 + }, + { + "start": 15094.62, + "end": 15096.46, + "probability": 0.9748 + }, + { + "start": 15096.66, + "end": 15098.88, + "probability": 0.8952 + }, + { + "start": 15098.98, + "end": 15099.84, + "probability": 0.9822 + }, + { + "start": 15100.02, + "end": 15100.68, + "probability": 0.817 + }, + { + "start": 15100.74, + "end": 15101.16, + "probability": 0.8917 + }, + { + "start": 15102.44, + "end": 15103.21, + "probability": 0.2054 + }, + { + "start": 15103.7, + "end": 15106.96, + "probability": 0.9111 + }, + { + "start": 15109.16, + "end": 15109.32, + "probability": 0.4133 + }, + { + "start": 15109.72, + "end": 15110.48, + "probability": 0.814 + }, + { + "start": 15111.08, + "end": 15112.14, + "probability": 0.8621 + }, + { + "start": 15112.8, + "end": 15113.3, + "probability": 0.8069 + }, + { + "start": 15117.04, + "end": 15118.14, + "probability": 0.697 + }, + { + "start": 15119.3, + "end": 15120.08, + "probability": 0.6569 + }, + { + "start": 15128.02, + "end": 15131.86, + "probability": 0.9576 + }, + { + "start": 15131.9, + "end": 15133.24, + "probability": 0.8326 + }, + { + "start": 15133.3, + "end": 15134.08, + "probability": 0.7805 + }, + { + "start": 15135.1, + "end": 15138.14, + "probability": 0.3033 + }, + { + "start": 15141.1, + "end": 15141.9, + "probability": 0.2651 + }, + { + "start": 15142.94, + "end": 15144.16, + "probability": 0.6487 + }, + { + "start": 15144.48, + "end": 15144.76, + "probability": 0.2926 + }, + { + "start": 15144.92, + "end": 15145.76, + "probability": 0.2517 + }, + { + "start": 15145.76, + "end": 15146.46, + "probability": 0.6741 + }, + { + "start": 15146.88, + "end": 15147.2, + "probability": 0.8224 + }, + { + "start": 15148.71, + "end": 15153.44, + "probability": 0.8922 + }, + { + "start": 15154.36, + "end": 15155.5, + "probability": 0.9303 + }, + { + "start": 15158.94, + "end": 15163.14, + "probability": 0.985 + }, + { + "start": 15163.7, + "end": 15171.46, + "probability": 0.9904 + }, + { + "start": 15173.24, + "end": 15174.24, + "probability": 0.6917 + }, + { + "start": 15174.6, + "end": 15175.28, + "probability": 0.8758 + }, + { + "start": 15175.36, + "end": 15176.95, + "probability": 0.741 + }, + { + "start": 15177.54, + "end": 15180.78, + "probability": 0.9314 + }, + { + "start": 15182.04, + "end": 15187.64, + "probability": 0.9858 + }, + { + "start": 15188.66, + "end": 15193.72, + "probability": 0.9907 + }, + { + "start": 15194.44, + "end": 15202.0, + "probability": 0.9883 + }, + { + "start": 15202.66, + "end": 15203.5, + "probability": 0.9956 + }, + { + "start": 15204.96, + "end": 15207.8, + "probability": 0.794 + }, + { + "start": 15209.62, + "end": 15214.36, + "probability": 0.9502 + }, + { + "start": 15215.34, + "end": 15217.2, + "probability": 0.9938 + }, + { + "start": 15217.98, + "end": 15219.94, + "probability": 0.98 + }, + { + "start": 15220.4, + "end": 15221.56, + "probability": 0.9973 + }, + { + "start": 15222.14, + "end": 15226.94, + "probability": 0.9984 + }, + { + "start": 15226.94, + "end": 15231.84, + "probability": 0.8633 + }, + { + "start": 15232.48, + "end": 15234.08, + "probability": 0.8179 + }, + { + "start": 15234.62, + "end": 15238.34, + "probability": 0.9581 + }, + { + "start": 15239.24, + "end": 15241.46, + "probability": 0.8978 + }, + { + "start": 15243.38, + "end": 15245.24, + "probability": 0.7348 + }, + { + "start": 15245.86, + "end": 15246.68, + "probability": 0.9546 + }, + { + "start": 15247.42, + "end": 15249.92, + "probability": 0.923 + }, + { + "start": 15251.58, + "end": 15251.6, + "probability": 0.0777 + }, + { + "start": 15252.58, + "end": 15258.38, + "probability": 0.9232 + }, + { + "start": 15258.9, + "end": 15262.72, + "probability": 0.9624 + }, + { + "start": 15263.6, + "end": 15264.32, + "probability": 0.6881 + }, + { + "start": 15265.28, + "end": 15266.58, + "probability": 0.9766 + }, + { + "start": 15267.42, + "end": 15267.92, + "probability": 0.7156 + }, + { + "start": 15268.9, + "end": 15272.15, + "probability": 0.9891 + }, + { + "start": 15272.94, + "end": 15276.56, + "probability": 0.9989 + }, + { + "start": 15277.4, + "end": 15280.08, + "probability": 0.9914 + }, + { + "start": 15280.56, + "end": 15284.53, + "probability": 0.9873 + }, + { + "start": 15286.06, + "end": 15290.1, + "probability": 0.9895 + }, + { + "start": 15290.2, + "end": 15291.5, + "probability": 0.9613 + }, + { + "start": 15291.84, + "end": 15292.94, + "probability": 0.8776 + }, + { + "start": 15293.02, + "end": 15295.3, + "probability": 0.9924 + }, + { + "start": 15296.04, + "end": 15296.66, + "probability": 0.8974 + }, + { + "start": 15297.26, + "end": 15299.52, + "probability": 0.8642 + }, + { + "start": 15299.76, + "end": 15303.44, + "probability": 0.9406 + }, + { + "start": 15303.54, + "end": 15304.54, + "probability": 0.8726 + }, + { + "start": 15305.28, + "end": 15308.92, + "probability": 0.9444 + }, + { + "start": 15310.74, + "end": 15311.02, + "probability": 0.5918 + }, + { + "start": 15311.46, + "end": 15311.74, + "probability": 0.571 + }, + { + "start": 15312.46, + "end": 15314.02, + "probability": 0.9705 + }, + { + "start": 15314.5, + "end": 15317.73, + "probability": 0.9678 + }, + { + "start": 15319.1, + "end": 15325.14, + "probability": 0.9993 + }, + { + "start": 15325.14, + "end": 15329.72, + "probability": 0.9822 + }, + { + "start": 15330.26, + "end": 15331.12, + "probability": 0.731 + }, + { + "start": 15332.14, + "end": 15338.2, + "probability": 0.9478 + }, + { + "start": 15338.92, + "end": 15340.14, + "probability": 0.9576 + }, + { + "start": 15341.86, + "end": 15342.86, + "probability": 0.9124 + }, + { + "start": 15343.72, + "end": 15344.54, + "probability": 0.9229 + }, + { + "start": 15346.62, + "end": 15351.38, + "probability": 0.9596 + }, + { + "start": 15351.8, + "end": 15352.39, + "probability": 0.0051 + }, + { + "start": 15352.96, + "end": 15357.3, + "probability": 0.9313 + }, + { + "start": 15357.9, + "end": 15361.74, + "probability": 0.9771 + }, + { + "start": 15362.16, + "end": 15364.78, + "probability": 0.9374 + }, + { + "start": 15365.38, + "end": 15366.24, + "probability": 0.7734 + }, + { + "start": 15367.68, + "end": 15367.7, + "probability": 0.0165 + }, + { + "start": 15367.7, + "end": 15369.6, + "probability": 0.9855 + }, + { + "start": 15369.88, + "end": 15372.98, + "probability": 0.9798 + }, + { + "start": 15373.52, + "end": 15377.3, + "probability": 0.8279 + }, + { + "start": 15377.6, + "end": 15379.9, + "probability": 0.9906 + }, + { + "start": 15381.6, + "end": 15385.58, + "probability": 0.9928 + }, + { + "start": 15387.1, + "end": 15387.64, + "probability": 0.7603 + }, + { + "start": 15388.42, + "end": 15391.62, + "probability": 0.96 + }, + { + "start": 15392.64, + "end": 15397.26, + "probability": 0.9914 + }, + { + "start": 15397.7, + "end": 15398.78, + "probability": 0.8712 + }, + { + "start": 15399.26, + "end": 15400.52, + "probability": 0.904 + }, + { + "start": 15400.88, + "end": 15402.08, + "probability": 0.9474 + }, + { + "start": 15402.42, + "end": 15403.8, + "probability": 0.9836 + }, + { + "start": 15404.2, + "end": 15408.0, + "probability": 0.967 + }, + { + "start": 15408.92, + "end": 15413.28, + "probability": 0.9504 + }, + { + "start": 15413.92, + "end": 15415.4, + "probability": 0.8666 + }, + { + "start": 15416.36, + "end": 15419.02, + "probability": 0.9891 + }, + { + "start": 15419.74, + "end": 15420.94, + "probability": 0.9849 + }, + { + "start": 15421.82, + "end": 15423.9, + "probability": 0.9585 + }, + { + "start": 15424.04, + "end": 15424.68, + "probability": 0.7403 + }, + { + "start": 15425.08, + "end": 15426.06, + "probability": 0.8271 + }, + { + "start": 15426.7, + "end": 15431.16, + "probability": 0.9559 + }, + { + "start": 15431.58, + "end": 15432.56, + "probability": 0.7668 + }, + { + "start": 15433.16, + "end": 15433.96, + "probability": 0.8387 + }, + { + "start": 15435.08, + "end": 15438.06, + "probability": 0.979 + }, + { + "start": 15438.56, + "end": 15443.26, + "probability": 0.9883 + }, + { + "start": 15443.72, + "end": 15448.6, + "probability": 0.981 + }, + { + "start": 15449.16, + "end": 15456.56, + "probability": 0.9937 + }, + { + "start": 15458.6, + "end": 15461.71, + "probability": 0.999 + }, + { + "start": 15462.1, + "end": 15462.22, + "probability": 0.2099 + }, + { + "start": 15462.66, + "end": 15463.56, + "probability": 0.0386 + }, + { + "start": 15463.64, + "end": 15464.52, + "probability": 0.2566 + }, + { + "start": 15464.64, + "end": 15467.84, + "probability": 0.6205 + }, + { + "start": 15467.94, + "end": 15469.03, + "probability": 0.9823 + }, + { + "start": 15470.92, + "end": 15474.38, + "probability": 0.9771 + }, + { + "start": 15475.78, + "end": 15480.82, + "probability": 0.9878 + }, + { + "start": 15481.5, + "end": 15482.98, + "probability": 0.9735 + }, + { + "start": 15483.72, + "end": 15488.7, + "probability": 0.9803 + }, + { + "start": 15488.7, + "end": 15492.15, + "probability": 0.9971 + }, + { + "start": 15493.16, + "end": 15497.28, + "probability": 0.9971 + }, + { + "start": 15498.02, + "end": 15502.04, + "probability": 0.9585 + }, + { + "start": 15502.04, + "end": 15506.2, + "probability": 0.9873 + }, + { + "start": 15507.04, + "end": 15512.92, + "probability": 0.9728 + }, + { + "start": 15512.92, + "end": 15517.52, + "probability": 0.9839 + }, + { + "start": 15518.3, + "end": 15521.88, + "probability": 0.9579 + }, + { + "start": 15522.44, + "end": 15526.06, + "probability": 0.997 + }, + { + "start": 15526.06, + "end": 15530.98, + "probability": 0.9989 + }, + { + "start": 15532.04, + "end": 15532.78, + "probability": 0.7824 + }, + { + "start": 15532.9, + "end": 15533.48, + "probability": 0.8939 + }, + { + "start": 15533.62, + "end": 15534.84, + "probability": 0.8125 + }, + { + "start": 15534.94, + "end": 15537.94, + "probability": 0.9736 + }, + { + "start": 15537.98, + "end": 15538.44, + "probability": 0.8035 + }, + { + "start": 15538.58, + "end": 15545.84, + "probability": 0.9941 + }, + { + "start": 15545.84, + "end": 15551.34, + "probability": 0.9702 + }, + { + "start": 15551.4, + "end": 15552.66, + "probability": 0.73 + }, + { + "start": 15552.78, + "end": 15557.1, + "probability": 0.9006 + }, + { + "start": 15557.54, + "end": 15558.62, + "probability": 0.9558 + }, + { + "start": 15567.96, + "end": 15568.08, + "probability": 0.1592 + }, + { + "start": 15568.08, + "end": 15568.08, + "probability": 0.1143 + }, + { + "start": 15568.08, + "end": 15568.1, + "probability": 0.1688 + }, + { + "start": 15568.1, + "end": 15568.18, + "probability": 0.0468 + }, + { + "start": 15568.18, + "end": 15568.18, + "probability": 0.0786 + }, + { + "start": 15581.74, + "end": 15586.0, + "probability": 0.7924 + }, + { + "start": 15586.18, + "end": 15587.14, + "probability": 0.7615 + }, + { + "start": 15587.9, + "end": 15588.52, + "probability": 0.7669 + }, + { + "start": 15588.62, + "end": 15590.24, + "probability": 0.8031 + }, + { + "start": 15590.32, + "end": 15591.24, + "probability": 0.8185 + }, + { + "start": 15591.72, + "end": 15593.32, + "probability": 0.8172 + }, + { + "start": 15593.44, + "end": 15594.5, + "probability": 0.9961 + }, + { + "start": 15595.48, + "end": 15597.5, + "probability": 0.9056 + }, + { + "start": 15598.06, + "end": 15601.0, + "probability": 0.9162 + }, + { + "start": 15601.34, + "end": 15603.81, + "probability": 0.9622 + }, + { + "start": 15604.2, + "end": 15605.58, + "probability": 0.9851 + }, + { + "start": 15605.74, + "end": 15607.4, + "probability": 0.989 + }, + { + "start": 15608.0, + "end": 15612.8, + "probability": 0.9813 + }, + { + "start": 15612.9, + "end": 15613.52, + "probability": 0.7793 + }, + { + "start": 15613.68, + "end": 15615.56, + "probability": 0.8885 + }, + { + "start": 15616.24, + "end": 15616.78, + "probability": 0.9011 + }, + { + "start": 15617.28, + "end": 15618.82, + "probability": 0.6317 + }, + { + "start": 15619.12, + "end": 15622.96, + "probability": 0.9182 + }, + { + "start": 15623.02, + "end": 15625.0, + "probability": 0.9961 + }, + { + "start": 15625.28, + "end": 15627.5, + "probability": 0.9863 + }, + { + "start": 15628.04, + "end": 15628.12, + "probability": 0.5122 + }, + { + "start": 15628.18, + "end": 15628.5, + "probability": 0.8644 + }, + { + "start": 15628.64, + "end": 15629.4, + "probability": 0.6623 + }, + { + "start": 15629.52, + "end": 15630.76, + "probability": 0.918 + }, + { + "start": 15630.98, + "end": 15631.46, + "probability": 0.7437 + }, + { + "start": 15631.48, + "end": 15631.7, + "probability": 0.7783 + }, + { + "start": 15631.7, + "end": 15634.04, + "probability": 0.7796 + }, + { + "start": 15634.1, + "end": 15637.26, + "probability": 0.9102 + }, + { + "start": 15637.72, + "end": 15639.04, + "probability": 0.6862 + }, + { + "start": 15639.18, + "end": 15639.62, + "probability": 0.7613 + }, + { + "start": 15639.62, + "end": 15639.76, + "probability": 0.0885 + }, + { + "start": 15640.52, + "end": 15641.56, + "probability": 0.3589 + }, + { + "start": 15641.82, + "end": 15642.12, + "probability": 0.4046 + }, + { + "start": 15642.12, + "end": 15643.74, + "probability": 0.5006 + }, + { + "start": 15643.78, + "end": 15645.84, + "probability": 0.6017 + }, + { + "start": 15646.08, + "end": 15646.1, + "probability": 0.2139 + }, + { + "start": 15646.1, + "end": 15646.1, + "probability": 0.4802 + }, + { + "start": 15646.1, + "end": 15646.1, + "probability": 0.0449 + }, + { + "start": 15646.1, + "end": 15646.48, + "probability": 0.6849 + }, + { + "start": 15646.5, + "end": 15647.48, + "probability": 0.7111 + }, + { + "start": 15647.72, + "end": 15648.66, + "probability": 0.6272 + }, + { + "start": 15649.0, + "end": 15653.06, + "probability": 0.538 + }, + { + "start": 15653.14, + "end": 15654.86, + "probability": 0.51 + }, + { + "start": 15654.9, + "end": 15655.2, + "probability": 0.6401 + }, + { + "start": 15655.28, + "end": 15658.42, + "probability": 0.1538 + }, + { + "start": 15658.56, + "end": 15659.3, + "probability": 0.0199 + }, + { + "start": 15659.3, + "end": 15661.39, + "probability": 0.5736 + }, + { + "start": 15667.12, + "end": 15669.16, + "probability": 0.0179 + }, + { + "start": 15669.18, + "end": 15669.32, + "probability": 0.0475 + }, + { + "start": 15669.34, + "end": 15669.96, + "probability": 0.1274 + }, + { + "start": 15669.96, + "end": 15670.08, + "probability": 0.0773 + }, + { + "start": 15670.28, + "end": 15673.22, + "probability": 0.0486 + }, + { + "start": 15673.22, + "end": 15673.22, + "probability": 0.2203 + }, + { + "start": 15673.22, + "end": 15673.52, + "probability": 0.1276 + }, + { + "start": 15676.24, + "end": 15676.24, + "probability": 0.0421 + }, + { + "start": 15676.24, + "end": 15676.24, + "probability": 0.0439 + }, + { + "start": 15676.24, + "end": 15676.24, + "probability": 0.1358 + }, + { + "start": 15676.24, + "end": 15677.0, + "probability": 0.0574 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.099 + }, + { + "start": 15677.0, + "end": 15678.28, + "probability": 0.8019 + }, + { + "start": 15678.36, + "end": 15679.82, + "probability": 0.9695 + }, + { + "start": 15680.28, + "end": 15681.42, + "probability": 0.7596 + }, + { + "start": 15681.96, + "end": 15681.98, + "probability": 0.1646 + }, + { + "start": 15681.98, + "end": 15683.04, + "probability": 0.623 + }, + { + "start": 15683.2, + "end": 15684.0, + "probability": 0.7035 + }, + { + "start": 15684.5, + "end": 15687.46, + "probability": 0.849 + }, + { + "start": 15687.68, + "end": 15689.2, + "probability": 0.9957 + }, + { + "start": 15689.82, + "end": 15690.74, + "probability": 0.7257 + }, + { + "start": 15690.76, + "end": 15691.34, + "probability": 0.6032 + }, + { + "start": 15691.72, + "end": 15692.9, + "probability": 0.7654 + }, + { + "start": 15693.24, + "end": 15695.22, + "probability": 0.9033 + }, + { + "start": 15695.3, + "end": 15695.66, + "probability": 0.4206 + }, + { + "start": 15695.74, + "end": 15695.94, + "probability": 0.4784 + }, + { + "start": 15696.02, + "end": 15696.62, + "probability": 0.963 + }, + { + "start": 15696.66, + "end": 15697.06, + "probability": 0.8647 + }, + { + "start": 15697.56, + "end": 15698.5, + "probability": 0.7595 + }, + { + "start": 15698.6, + "end": 15700.22, + "probability": 0.7764 + }, + { + "start": 15700.74, + "end": 15703.34, + "probability": 0.9504 + }, + { + "start": 15704.0, + "end": 15704.84, + "probability": 0.7752 + }, + { + "start": 15705.5, + "end": 15708.06, + "probability": 0.9628 + }, + { + "start": 15708.72, + "end": 15710.76, + "probability": 0.855 + }, + { + "start": 15711.38, + "end": 15713.18, + "probability": 0.5605 + }, + { + "start": 15713.64, + "end": 15713.94, + "probability": 0.1863 + }, + { + "start": 15713.98, + "end": 15716.12, + "probability": 0.7174 + }, + { + "start": 15716.18, + "end": 15717.48, + "probability": 0.8771 + }, + { + "start": 15717.82, + "end": 15719.58, + "probability": 0.9368 + }, + { + "start": 15720.34, + "end": 15723.84, + "probability": 0.981 + }, + { + "start": 15724.36, + "end": 15726.0, + "probability": 0.9654 + }, + { + "start": 15739.22, + "end": 15741.76, + "probability": 0.047 + }, + { + "start": 15741.76, + "end": 15743.22, + "probability": 0.0744 + }, + { + "start": 15743.86, + "end": 15744.34, + "probability": 0.1101 + }, + { + "start": 15744.44, + "end": 15744.5, + "probability": 0.0976 + }, + { + "start": 15744.5, + "end": 15744.52, + "probability": 0.0529 + }, + { + "start": 15744.52, + "end": 15744.52, + "probability": 0.087 + }, + { + "start": 15744.52, + "end": 15745.4, + "probability": 0.1369 + }, + { + "start": 15746.28, + "end": 15747.96, + "probability": 0.9726 + }, + { + "start": 15762.96, + "end": 15763.24, + "probability": 0.1166 + }, + { + "start": 15763.24, + "end": 15763.24, + "probability": 0.0529 + }, + { + "start": 15763.24, + "end": 15763.24, + "probability": 0.0237 + }, + { + "start": 15763.24, + "end": 15763.62, + "probability": 0.0412 + }, + { + "start": 15763.62, + "end": 15765.73, + "probability": 0.7425 + }, + { + "start": 15766.64, + "end": 15767.74, + "probability": 0.7723 + }, + { + "start": 15768.1, + "end": 15770.3, + "probability": 0.9775 + }, + { + "start": 15770.36, + "end": 15770.62, + "probability": 0.5492 + }, + { + "start": 15770.72, + "end": 15773.0, + "probability": 0.9817 + }, + { + "start": 15773.7, + "end": 15775.66, + "probability": 0.7492 + }, + { + "start": 15775.66, + "end": 15776.46, + "probability": 0.4731 + }, + { + "start": 15776.8, + "end": 15778.32, + "probability": 0.4125 + }, + { + "start": 15778.4, + "end": 15778.4, + "probability": 0.427 + }, + { + "start": 15778.44, + "end": 15780.08, + "probability": 0.5017 + }, + { + "start": 15780.4, + "end": 15781.28, + "probability": 0.7253 + }, + { + "start": 15781.52, + "end": 15782.98, + "probability": 0.2629 + }, + { + "start": 15782.98, + "end": 15784.58, + "probability": 0.6152 + }, + { + "start": 15784.58, + "end": 15784.66, + "probability": 0.3065 + }, + { + "start": 15784.68, + "end": 15786.9, + "probability": 0.908 + }, + { + "start": 15787.26, + "end": 15788.7, + "probability": 0.7567 + }, + { + "start": 15788.8, + "end": 15788.82, + "probability": 0.1477 + }, + { + "start": 15788.92, + "end": 15789.2, + "probability": 0.3738 + }, + { + "start": 15789.22, + "end": 15790.76, + "probability": 0.763 + }, + { + "start": 15790.98, + "end": 15790.98, + "probability": 0.4707 + }, + { + "start": 15791.02, + "end": 15792.74, + "probability": 0.9681 + }, + { + "start": 15793.1, + "end": 15793.6, + "probability": 0.7551 + }, + { + "start": 15793.6, + "end": 15794.82, + "probability": 0.6981 + }, + { + "start": 15796.22, + "end": 15796.66, + "probability": 0.8194 + }, + { + "start": 15797.3, + "end": 15798.58, + "probability": 0.9912 + }, + { + "start": 15799.32, + "end": 15800.94, + "probability": 0.839 + }, + { + "start": 15801.06, + "end": 15801.24, + "probability": 0.7052 + }, + { + "start": 15801.3, + "end": 15802.02, + "probability": 0.8926 + }, + { + "start": 15802.12, + "end": 15802.5, + "probability": 0.4677 + }, + { + "start": 15802.54, + "end": 15802.96, + "probability": 0.4579 + }, + { + "start": 15803.84, + "end": 15805.12, + "probability": 0.8077 + }, + { + "start": 15805.24, + "end": 15807.42, + "probability": 0.8212 + }, + { + "start": 15807.46, + "end": 15808.84, + "probability": 0.9475 + }, + { + "start": 15810.84, + "end": 15811.48, + "probability": 0.4647 + }, + { + "start": 15811.78, + "end": 15812.96, + "probability": 0.8741 + }, + { + "start": 15813.4, + "end": 15816.3, + "probability": 0.8911 + }, + { + "start": 15817.44, + "end": 15819.04, + "probability": 0.202 + }, + { + "start": 15822.94, + "end": 15823.5, + "probability": 0.0349 + }, + { + "start": 15824.64, + "end": 15825.08, + "probability": 0.0888 + }, + { + "start": 15825.08, + "end": 15825.28, + "probability": 0.0735 + }, + { + "start": 15825.68, + "end": 15826.08, + "probability": 0.0526 + }, + { + "start": 15826.44, + "end": 15827.28, + "probability": 0.0762 + }, + { + "start": 15830.16, + "end": 15833.46, + "probability": 0.6807 + }, + { + "start": 15834.02, + "end": 15835.06, + "probability": 0.5618 + }, + { + "start": 15835.98, + "end": 15838.24, + "probability": 0.1265 + }, + { + "start": 15840.42, + "end": 15842.72, + "probability": 0.8684 + }, + { + "start": 15843.14, + "end": 15845.12, + "probability": 0.6021 + }, + { + "start": 15845.5, + "end": 15851.32, + "probability": 0.8449 + }, + { + "start": 15851.36, + "end": 15851.85, + "probability": 0.4423 + }, + { + "start": 15852.38, + "end": 15853.64, + "probability": 0.3805 + }, + { + "start": 15854.28, + "end": 15854.4, + "probability": 0.1394 + }, + { + "start": 15854.4, + "end": 15855.88, + "probability": 0.5484 + }, + { + "start": 15860.76, + "end": 15862.92, + "probability": 0.6182 + }, + { + "start": 15863.32, + "end": 15863.62, + "probability": 0.6306 + }, + { + "start": 15863.7, + "end": 15864.92, + "probability": 0.5082 + }, + { + "start": 15868.36, + "end": 15869.98, + "probability": 0.7572 + }, + { + "start": 15870.1, + "end": 15873.5, + "probability": 0.9536 + }, + { + "start": 15873.54, + "end": 15875.07, + "probability": 0.9971 + }, + { + "start": 15875.18, + "end": 15875.48, + "probability": 0.8912 + }, + { + "start": 15875.9, + "end": 15876.38, + "probability": 0.5702 + }, + { + "start": 15876.56, + "end": 15879.72, + "probability": 0.8992 + }, + { + "start": 15880.46, + "end": 15885.04, + "probability": 0.812 + }, + { + "start": 15885.62, + "end": 15886.55, + "probability": 0.9932 + }, + { + "start": 15887.96, + "end": 15890.9, + "probability": 0.936 + }, + { + "start": 15891.52, + "end": 15895.16, + "probability": 0.9533 + }, + { + "start": 15895.7, + "end": 15896.9, + "probability": 0.8279 + }, + { + "start": 15896.94, + "end": 15898.12, + "probability": 0.9834 + }, + { + "start": 15898.5, + "end": 15899.21, + "probability": 0.4865 + }, + { + "start": 15899.32, + "end": 15903.96, + "probability": 0.9836 + }, + { + "start": 15904.66, + "end": 15905.62, + "probability": 0.9685 + }, + { + "start": 15906.76, + "end": 15907.46, + "probability": 0.989 + }, + { + "start": 15908.0, + "end": 15911.12, + "probability": 0.9852 + }, + { + "start": 15913.84, + "end": 15914.9, + "probability": 0.6109 + }, + { + "start": 15915.26, + "end": 15916.9, + "probability": 0.8176 + }, + { + "start": 15917.26, + "end": 15918.54, + "probability": 0.6804 + }, + { + "start": 15918.7, + "end": 15919.9, + "probability": 0.9924 + }, + { + "start": 15920.64, + "end": 15921.96, + "probability": 0.8165 + }, + { + "start": 15924.5, + "end": 15929.2, + "probability": 0.984 + }, + { + "start": 15929.76, + "end": 15932.26, + "probability": 0.9634 + }, + { + "start": 15932.84, + "end": 15936.36, + "probability": 0.9365 + }, + { + "start": 15936.92, + "end": 15937.96, + "probability": 0.998 + }, + { + "start": 15938.72, + "end": 15942.4, + "probability": 0.8325 + }, + { + "start": 15942.94, + "end": 15944.72, + "probability": 0.961 + }, + { + "start": 15946.28, + "end": 15947.94, + "probability": 0.993 + }, + { + "start": 15949.22, + "end": 15949.76, + "probability": 0.7812 + }, + { + "start": 15950.22, + "end": 15953.3, + "probability": 0.9575 + }, + { + "start": 15953.3, + "end": 15956.18, + "probability": 0.989 + }, + { + "start": 15956.4, + "end": 15960.16, + "probability": 0.9904 + }, + { + "start": 15960.84, + "end": 15962.46, + "probability": 0.9954 + }, + { + "start": 15963.24, + "end": 15966.72, + "probability": 0.9469 + }, + { + "start": 15966.72, + "end": 15971.16, + "probability": 0.9328 + }, + { + "start": 15971.92, + "end": 15973.08, + "probability": 0.7024 + }, + { + "start": 15973.1, + "end": 15975.94, + "probability": 0.9815 + }, + { + "start": 15975.94, + "end": 15976.8, + "probability": 0.9664 + }, + { + "start": 15976.96, + "end": 15980.18, + "probability": 0.9943 + }, + { + "start": 15980.34, + "end": 15982.66, + "probability": 0.9596 + }, + { + "start": 15982.68, + "end": 15982.9, + "probability": 0.7637 + }, + { + "start": 15983.16, + "end": 15985.6, + "probability": 0.8582 + }, + { + "start": 15985.84, + "end": 15988.38, + "probability": 0.9697 + }, + { + "start": 15988.42, + "end": 15989.38, + "probability": 0.9691 + }, + { + "start": 15990.02, + "end": 15993.5, + "probability": 0.921 + }, + { + "start": 15993.82, + "end": 15994.2, + "probability": 0.7499 + }, + { + "start": 15994.38, + "end": 15995.24, + "probability": 0.4569 + }, + { + "start": 15995.72, + "end": 15997.32, + "probability": 0.9176 + }, + { + "start": 15997.98, + "end": 15998.48, + "probability": 0.7261 + }, + { + "start": 15999.94, + "end": 16000.46, + "probability": 0.8518 + }, + { + "start": 16001.22, + "end": 16002.44, + "probability": 0.9709 + }, + { + "start": 16003.78, + "end": 16004.88, + "probability": 0.9936 + }, + { + "start": 16005.36, + "end": 16005.84, + "probability": 0.7083 + }, + { + "start": 16005.98, + "end": 16007.34, + "probability": 0.9897 + }, + { + "start": 16007.4, + "end": 16007.86, + "probability": 0.3985 + }, + { + "start": 16008.14, + "end": 16008.96, + "probability": 0.6884 + }, + { + "start": 16009.14, + "end": 16009.24, + "probability": 0.2982 + }, + { + "start": 16009.96, + "end": 16010.58, + "probability": 0.9905 + }, + { + "start": 16010.92, + "end": 16010.92, + "probability": 0.4247 + }, + { + "start": 16010.92, + "end": 16013.18, + "probability": 0.5001 + }, + { + "start": 16013.24, + "end": 16013.8, + "probability": 0.7533 + }, + { + "start": 16013.84, + "end": 16014.36, + "probability": 0.8884 + }, + { + "start": 16015.02, + "end": 16015.92, + "probability": 0.9076 + }, + { + "start": 16017.3, + "end": 16017.56, + "probability": 0.4913 + }, + { + "start": 16017.62, + "end": 16017.88, + "probability": 0.5163 + }, + { + "start": 16036.45, + "end": 16038.96, + "probability": 0.1174 + }, + { + "start": 16039.3, + "end": 16040.48, + "probability": 0.0625 + }, + { + "start": 16040.48, + "end": 16040.48, + "probability": 0.0403 + }, + { + "start": 16040.48, + "end": 16041.96, + "probability": 0.3016 + }, + { + "start": 16044.94, + "end": 16045.04, + "probability": 0.0579 + }, + { + "start": 16045.71, + "end": 16049.9, + "probability": 0.0611 + }, + { + "start": 16050.46, + "end": 16052.6, + "probability": 0.0867 + }, + { + "start": 16052.6, + "end": 16053.97, + "probability": 0.0544 + }, + { + "start": 16055.48, + "end": 16058.94, + "probability": 0.1281 + }, + { + "start": 16079.76, + "end": 16080.1, + "probability": 0.0005 + }, + { + "start": 16089.82, + "end": 16090.24, + "probability": 0.074 + }, + { + "start": 16090.38, + "end": 16092.88, + "probability": 0.0894 + }, + { + "start": 16092.88, + "end": 16093.79, + "probability": 0.075 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.0, + "end": 16104.0, + "probability": 0.0 + }, + { + "start": 16104.18, + "end": 16109.04, + "probability": 0.7331 + }, + { + "start": 16110.1, + "end": 16110.34, + "probability": 0.6113 + }, + { + "start": 16111.08, + "end": 16114.33, + "probability": 0.9531 + }, + { + "start": 16117.07, + "end": 16119.21, + "probability": 0.7289 + }, + { + "start": 16120.11, + "end": 16123.33, + "probability": 0.9889 + }, + { + "start": 16124.03, + "end": 16126.21, + "probability": 0.9492 + }, + { + "start": 16127.51, + "end": 16132.83, + "probability": 0.7987 + }, + { + "start": 16133.77, + "end": 16136.61, + "probability": 0.7528 + }, + { + "start": 16137.55, + "end": 16138.73, + "probability": 0.9277 + }, + { + "start": 16141.79, + "end": 16144.93, + "probability": 0.8035 + }, + { + "start": 16145.45, + "end": 16147.69, + "probability": 0.9637 + }, + { + "start": 16148.61, + "end": 16149.21, + "probability": 0.7766 + }, + { + "start": 16149.89, + "end": 16152.83, + "probability": 0.8073 + }, + { + "start": 16153.57, + "end": 16154.91, + "probability": 0.7993 + }, + { + "start": 16154.99, + "end": 16156.03, + "probability": 0.6989 + }, + { + "start": 16156.07, + "end": 16156.25, + "probability": 0.8672 + }, + { + "start": 16157.27, + "end": 16158.69, + "probability": 0.0742 + }, + { + "start": 16158.69, + "end": 16162.85, + "probability": 0.537 + }, + { + "start": 16163.01, + "end": 16164.27, + "probability": 0.0272 + }, + { + "start": 16165.03, + "end": 16166.43, + "probability": 0.1542 + }, + { + "start": 16167.89, + "end": 16168.21, + "probability": 0.2705 + }, + { + "start": 16186.39, + "end": 16187.87, + "probability": 0.0279 + }, + { + "start": 16187.87, + "end": 16191.29, + "probability": 0.0206 + }, + { + "start": 16208.01, + "end": 16238.35, + "probability": 0.1278 + }, + { + "start": 16238.45, + "end": 16238.85, + "probability": 0.0012 + }, + { + "start": 16247.28, + "end": 16247.94, + "probability": 0.0213 + }, + { + "start": 16247.94, + "end": 16247.94, + "probability": 0.1054 + }, + { + "start": 16247.94, + "end": 16250.18, + "probability": 0.5747 + }, + { + "start": 16250.28, + "end": 16251.72, + "probability": 0.8057 + }, + { + "start": 16252.32, + "end": 16253.24, + "probability": 0.7657 + }, + { + "start": 16255.84, + "end": 16257.32, + "probability": 0.9601 + }, + { + "start": 16258.24, + "end": 16261.38, + "probability": 0.3089 + }, + { + "start": 16261.56, + "end": 16263.36, + "probability": 0.603 + }, + { + "start": 16263.46, + "end": 16265.28, + "probability": 0.988 + }, + { + "start": 16266.36, + "end": 16267.56, + "probability": 0.1211 + }, + { + "start": 16267.66, + "end": 16269.5, + "probability": 0.1574 + }, + { + "start": 16269.78, + "end": 16271.1, + "probability": 0.2388 + }, + { + "start": 16271.92, + "end": 16275.72, + "probability": 0.9164 + }, + { + "start": 16276.52, + "end": 16280.58, + "probability": 0.9784 + }, + { + "start": 16281.28, + "end": 16282.76, + "probability": 0.9728 + }, + { + "start": 16282.96, + "end": 16283.44, + "probability": 0.4276 + }, + { + "start": 16284.5, + "end": 16285.8, + "probability": 0.6764 + }, + { + "start": 16287.42, + "end": 16289.52, + "probability": 0.9888 + }, + { + "start": 16290.32, + "end": 16291.22, + "probability": 0.8993 + }, + { + "start": 16292.26, + "end": 16294.78, + "probability": 0.9803 + }, + { + "start": 16295.22, + "end": 16297.74, + "probability": 0.9925 + }, + { + "start": 16298.38, + "end": 16299.48, + "probability": 0.8157 + }, + { + "start": 16300.0, + "end": 16301.54, + "probability": 0.8437 + }, + { + "start": 16301.92, + "end": 16303.94, + "probability": 0.8881 + }, + { + "start": 16304.36, + "end": 16306.25, + "probability": 0.8466 + }, + { + "start": 16306.86, + "end": 16307.18, + "probability": 0.0581 + }, + { + "start": 16307.18, + "end": 16309.11, + "probability": 0.407 + }, + { + "start": 16309.9, + "end": 16310.28, + "probability": 0.4244 + }, + { + "start": 16310.52, + "end": 16314.46, + "probability": 0.9964 + }, + { + "start": 16315.12, + "end": 16316.72, + "probability": 0.8867 + }, + { + "start": 16318.14, + "end": 16320.2, + "probability": 0.8176 + }, + { + "start": 16321.06, + "end": 16321.26, + "probability": 0.8535 + }, + { + "start": 16321.8, + "end": 16323.22, + "probability": 0.9973 + }, + { + "start": 16324.14, + "end": 16327.24, + "probability": 0.8608 + }, + { + "start": 16327.9, + "end": 16328.94, + "probability": 0.9261 + }, + { + "start": 16329.68, + "end": 16333.36, + "probability": 0.3847 + }, + { + "start": 16333.36, + "end": 16335.82, + "probability": 0.9932 + }, + { + "start": 16336.56, + "end": 16340.02, + "probability": 0.9769 + }, + { + "start": 16340.56, + "end": 16341.7, + "probability": 0.664 + }, + { + "start": 16342.0, + "end": 16342.4, + "probability": 0.7792 + }, + { + "start": 16342.44, + "end": 16345.65, + "probability": 0.9695 + }, + { + "start": 16346.12, + "end": 16346.8, + "probability": 0.9691 + }, + { + "start": 16346.9, + "end": 16347.78, + "probability": 0.7387 + }, + { + "start": 16348.22, + "end": 16351.0, + "probability": 0.997 + }, + { + "start": 16351.52, + "end": 16353.38, + "probability": 0.8589 + }, + { + "start": 16354.68, + "end": 16356.02, + "probability": 0.9619 + }, + { + "start": 16356.12, + "end": 16358.96, + "probability": 0.9088 + }, + { + "start": 16359.68, + "end": 16362.08, + "probability": 0.8733 + }, + { + "start": 16376.91, + "end": 16378.28, + "probability": 0.5977 + }, + { + "start": 16378.82, + "end": 16380.16, + "probability": 0.6796 + }, + { + "start": 16380.68, + "end": 16383.94, + "probability": 0.9922 + }, + { + "start": 16383.94, + "end": 16388.58, + "probability": 0.8945 + }, + { + "start": 16389.38, + "end": 16392.88, + "probability": 0.9974 + }, + { + "start": 16394.2, + "end": 16396.64, + "probability": 0.9971 + }, + { + "start": 16397.96, + "end": 16399.6, + "probability": 0.8865 + }, + { + "start": 16400.68, + "end": 16403.68, + "probability": 0.9807 + }, + { + "start": 16404.9, + "end": 16406.81, + "probability": 0.7686 + }, + { + "start": 16407.4, + "end": 16411.62, + "probability": 0.9789 + }, + { + "start": 16412.14, + "end": 16413.34, + "probability": 0.9644 + }, + { + "start": 16414.64, + "end": 16420.36, + "probability": 0.9977 + }, + { + "start": 16420.6, + "end": 16421.68, + "probability": 0.73 + }, + { + "start": 16422.32, + "end": 16426.96, + "probability": 0.9956 + }, + { + "start": 16428.84, + "end": 16429.48, + "probability": 0.993 + }, + { + "start": 16430.38, + "end": 16432.18, + "probability": 0.4241 + }, + { + "start": 16432.42, + "end": 16434.98, + "probability": 0.7158 + }, + { + "start": 16435.52, + "end": 16437.46, + "probability": 0.9764 + }, + { + "start": 16437.82, + "end": 16438.44, + "probability": 0.8955 + }, + { + "start": 16439.16, + "end": 16439.74, + "probability": 0.9672 + }, + { + "start": 16440.32, + "end": 16441.02, + "probability": 0.7928 + }, + { + "start": 16441.82, + "end": 16444.4, + "probability": 0.9277 + }, + { + "start": 16444.78, + "end": 16447.26, + "probability": 0.9186 + }, + { + "start": 16447.98, + "end": 16452.48, + "probability": 0.9894 + }, + { + "start": 16453.9, + "end": 16460.5, + "probability": 0.983 + }, + { + "start": 16460.78, + "end": 16462.46, + "probability": 0.5864 + }, + { + "start": 16462.9, + "end": 16463.58, + "probability": 0.8813 + }, + { + "start": 16464.4, + "end": 16466.02, + "probability": 0.9092 + }, + { + "start": 16466.92, + "end": 16468.84, + "probability": 0.9543 + }, + { + "start": 16469.34, + "end": 16474.22, + "probability": 0.9945 + }, + { + "start": 16474.7, + "end": 16480.48, + "probability": 0.989 + }, + { + "start": 16481.0, + "end": 16483.78, + "probability": 0.9147 + }, + { + "start": 16484.78, + "end": 16489.96, + "probability": 0.9949 + }, + { + "start": 16490.66, + "end": 16494.76, + "probability": 0.9905 + }, + { + "start": 16495.44, + "end": 16497.38, + "probability": 0.8036 + }, + { + "start": 16498.66, + "end": 16504.38, + "probability": 0.9881 + }, + { + "start": 16504.8, + "end": 16507.48, + "probability": 0.9939 + }, + { + "start": 16508.0, + "end": 16510.26, + "probability": 0.9059 + }, + { + "start": 16511.96, + "end": 16512.44, + "probability": 0.7873 + }, + { + "start": 16513.16, + "end": 16517.44, + "probability": 0.9912 + }, + { + "start": 16517.44, + "end": 16522.46, + "probability": 0.9839 + }, + { + "start": 16522.64, + "end": 16523.72, + "probability": 0.9739 + }, + { + "start": 16524.4, + "end": 16526.48, + "probability": 0.9915 + }, + { + "start": 16527.76, + "end": 16529.26, + "probability": 0.8573 + }, + { + "start": 16529.82, + "end": 16530.56, + "probability": 0.7685 + }, + { + "start": 16531.7, + "end": 16535.56, + "probability": 0.9733 + }, + { + "start": 16536.52, + "end": 16537.4, + "probability": 0.7836 + }, + { + "start": 16537.88, + "end": 16538.54, + "probability": 0.9587 + }, + { + "start": 16539.06, + "end": 16540.42, + "probability": 0.8344 + }, + { + "start": 16540.56, + "end": 16541.32, + "probability": 0.8702 + }, + { + "start": 16541.46, + "end": 16543.18, + "probability": 0.8095 + }, + { + "start": 16543.7, + "end": 16545.96, + "probability": 0.5886 + }, + { + "start": 16546.08, + "end": 16546.78, + "probability": 0.9709 + }, + { + "start": 16547.76, + "end": 16548.78, + "probability": 0.9949 + }, + { + "start": 16550.84, + "end": 16551.48, + "probability": 0.7011 + }, + { + "start": 16560.0, + "end": 16563.12, + "probability": 0.7186 + }, + { + "start": 16564.66, + "end": 16568.24, + "probability": 0.9849 + }, + { + "start": 16568.36, + "end": 16569.18, + "probability": 0.8204 + }, + { + "start": 16569.52, + "end": 16573.18, + "probability": 0.9694 + }, + { + "start": 16573.32, + "end": 16573.9, + "probability": 0.9869 + }, + { + "start": 16574.7, + "end": 16575.7, + "probability": 0.8433 + }, + { + "start": 16576.72, + "end": 16577.64, + "probability": 0.7272 + }, + { + "start": 16577.72, + "end": 16578.68, + "probability": 0.9137 + }, + { + "start": 16578.76, + "end": 16580.52, + "probability": 0.9858 + }, + { + "start": 16581.58, + "end": 16582.3, + "probability": 0.6629 + }, + { + "start": 16583.26, + "end": 16587.54, + "probability": 0.978 + }, + { + "start": 16587.6, + "end": 16591.2, + "probability": 0.2585 + }, + { + "start": 16591.76, + "end": 16594.82, + "probability": 0.9255 + }, + { + "start": 16596.24, + "end": 16601.74, + "probability": 0.98 + }, + { + "start": 16602.46, + "end": 16604.2, + "probability": 0.9938 + }, + { + "start": 16604.26, + "end": 16606.28, + "probability": 0.901 + }, + { + "start": 16606.32, + "end": 16607.51, + "probability": 0.9869 + }, + { + "start": 16608.66, + "end": 16612.24, + "probability": 0.9328 + }, + { + "start": 16612.48, + "end": 16615.08, + "probability": 0.8044 + }, + { + "start": 16615.46, + "end": 16616.7, + "probability": 0.9954 + }, + { + "start": 16617.9, + "end": 16621.34, + "probability": 0.9977 + }, + { + "start": 16621.46, + "end": 16624.07, + "probability": 0.9951 + }, + { + "start": 16625.92, + "end": 16631.58, + "probability": 0.9941 + }, + { + "start": 16633.52, + "end": 16635.54, + "probability": 0.9981 + }, + { + "start": 16636.28, + "end": 16639.91, + "probability": 0.9854 + }, + { + "start": 16640.6, + "end": 16645.32, + "probability": 0.9959 + }, + { + "start": 16646.64, + "end": 16650.02, + "probability": 0.9973 + }, + { + "start": 16650.02, + "end": 16652.88, + "probability": 0.9982 + }, + { + "start": 16653.72, + "end": 16655.68, + "probability": 0.9878 + }, + { + "start": 16655.86, + "end": 16657.5, + "probability": 0.8821 + }, + { + "start": 16658.02, + "end": 16660.32, + "probability": 0.9112 + }, + { + "start": 16660.86, + "end": 16664.32, + "probability": 0.9814 + }, + { + "start": 16664.82, + "end": 16670.88, + "probability": 0.9873 + }, + { + "start": 16671.8, + "end": 16673.2, + "probability": 0.9771 + }, + { + "start": 16673.5, + "end": 16674.94, + "probability": 0.9201 + }, + { + "start": 16675.82, + "end": 16677.48, + "probability": 0.9639 + }, + { + "start": 16677.66, + "end": 16678.84, + "probability": 0.9342 + }, + { + "start": 16679.44, + "end": 16681.52, + "probability": 0.9564 + }, + { + "start": 16682.04, + "end": 16683.54, + "probability": 0.9214 + }, + { + "start": 16684.22, + "end": 16684.24, + "probability": 0.0184 + }, + { + "start": 16684.24, + "end": 16687.5, + "probability": 0.9943 + }, + { + "start": 16688.04, + "end": 16693.74, + "probability": 0.9932 + }, + { + "start": 16694.96, + "end": 16695.7, + "probability": 0.7714 + }, + { + "start": 16695.9, + "end": 16698.0, + "probability": 0.6558 + }, + { + "start": 16698.26, + "end": 16700.98, + "probability": 0.9875 + }, + { + "start": 16702.1, + "end": 16703.74, + "probability": 0.9757 + }, + { + "start": 16703.76, + "end": 16704.9, + "probability": 0.972 + }, + { + "start": 16705.8, + "end": 16707.76, + "probability": 0.9835 + }, + { + "start": 16707.84, + "end": 16709.5, + "probability": 0.8667 + }, + { + "start": 16710.22, + "end": 16711.28, + "probability": 0.8392 + }, + { + "start": 16711.9, + "end": 16715.34, + "probability": 0.9914 + }, + { + "start": 16716.46, + "end": 16721.4, + "probability": 0.9973 + }, + { + "start": 16721.96, + "end": 16723.32, + "probability": 0.9788 + }, + { + "start": 16723.88, + "end": 16728.14, + "probability": 0.9953 + }, + { + "start": 16729.02, + "end": 16733.44, + "probability": 0.9877 + }, + { + "start": 16734.06, + "end": 16736.08, + "probability": 0.8936 + }, + { + "start": 16736.74, + "end": 16741.4, + "probability": 0.9951 + }, + { + "start": 16741.4, + "end": 16746.1, + "probability": 0.9796 + }, + { + "start": 16746.22, + "end": 16748.1, + "probability": 0.7431 + }, + { + "start": 16748.66, + "end": 16751.7, + "probability": 0.9902 + }, + { + "start": 16751.78, + "end": 16752.5, + "probability": 0.7429 + }, + { + "start": 16752.52, + "end": 16752.66, + "probability": 0.6356 + }, + { + "start": 16752.9, + "end": 16755.02, + "probability": 0.9575 + }, + { + "start": 16755.44, + "end": 16759.0, + "probability": 0.9794 + }, + { + "start": 16759.5, + "end": 16760.42, + "probability": 0.9756 + }, + { + "start": 16761.12, + "end": 16762.34, + "probability": 0.5889 + }, + { + "start": 16762.64, + "end": 16766.04, + "probability": 0.9731 + }, + { + "start": 16767.18, + "end": 16770.48, + "probability": 0.9896 + }, + { + "start": 16770.62, + "end": 16772.38, + "probability": 0.8159 + }, + { + "start": 16772.44, + "end": 16772.86, + "probability": 0.8059 + }, + { + "start": 16773.7, + "end": 16776.24, + "probability": 0.8005 + }, + { + "start": 16776.94, + "end": 16781.0, + "probability": 0.9805 + }, + { + "start": 16781.95, + "end": 16784.1, + "probability": 0.8534 + }, + { + "start": 16784.5, + "end": 16786.6, + "probability": 0.9915 + }, + { + "start": 16787.4, + "end": 16787.58, + "probability": 0.9292 + }, + { + "start": 16788.12, + "end": 16791.3, + "probability": 0.9911 + }, + { + "start": 16791.86, + "end": 16794.82, + "probability": 0.9628 + }, + { + "start": 16795.06, + "end": 16795.58, + "probability": 0.9177 + }, + { + "start": 16796.08, + "end": 16796.38, + "probability": 0.8017 + }, + { + "start": 16796.56, + "end": 16797.6, + "probability": 0.4292 + }, + { + "start": 16798.04, + "end": 16798.96, + "probability": 0.9211 + }, + { + "start": 16799.58, + "end": 16799.92, + "probability": 0.8055 + }, + { + "start": 16800.38, + "end": 16800.76, + "probability": 0.9211 + }, + { + "start": 16800.9, + "end": 16801.2, + "probability": 0.9229 + }, + { + "start": 16801.28, + "end": 16802.68, + "probability": 0.9548 + }, + { + "start": 16802.8, + "end": 16803.64, + "probability": 0.5676 + }, + { + "start": 16803.8, + "end": 16804.84, + "probability": 0.993 + }, + { + "start": 16825.08, + "end": 16826.38, + "probability": 0.3885 + }, + { + "start": 16828.1, + "end": 16833.02, + "probability": 0.9833 + }, + { + "start": 16833.92, + "end": 16839.88, + "probability": 0.9645 + }, + { + "start": 16840.68, + "end": 16844.7, + "probability": 0.9105 + }, + { + "start": 16845.0, + "end": 16847.82, + "probability": 0.9753 + }, + { + "start": 16848.64, + "end": 16857.2, + "probability": 0.9924 + }, + { + "start": 16858.1, + "end": 16864.32, + "probability": 0.9956 + }, + { + "start": 16864.32, + "end": 16869.64, + "probability": 0.9985 + }, + { + "start": 16870.3, + "end": 16874.62, + "probability": 0.9713 + }, + { + "start": 16875.26, + "end": 16876.78, + "probability": 0.765 + }, + { + "start": 16877.92, + "end": 16879.14, + "probability": 0.9584 + }, + { + "start": 16879.88, + "end": 16880.88, + "probability": 0.8344 + }, + { + "start": 16882.3, + "end": 16883.66, + "probability": 0.7835 + }, + { + "start": 16884.54, + "end": 16885.98, + "probability": 0.9871 + }, + { + "start": 16886.62, + "end": 16887.68, + "probability": 0.9011 + }, + { + "start": 16889.0, + "end": 16890.74, + "probability": 0.9424 + }, + { + "start": 16892.12, + "end": 16893.0, + "probability": 0.9782 + }, + { + "start": 16893.08, + "end": 16893.84, + "probability": 0.9004 + }, + { + "start": 16893.88, + "end": 16897.74, + "probability": 0.9828 + }, + { + "start": 16898.34, + "end": 16905.91, + "probability": 0.4255 + }, + { + "start": 16906.24, + "end": 16907.62, + "probability": 0.6491 + }, + { + "start": 16908.86, + "end": 16911.14, + "probability": 0.9455 + }, + { + "start": 16912.76, + "end": 16916.1, + "probability": 0.8017 + }, + { + "start": 16917.32, + "end": 16918.96, + "probability": 0.9468 + }, + { + "start": 16919.84, + "end": 16922.62, + "probability": 0.9598 + }, + { + "start": 16923.22, + "end": 16924.22, + "probability": 0.9591 + }, + { + "start": 16924.82, + "end": 16925.76, + "probability": 0.9093 + }, + { + "start": 16926.28, + "end": 16928.12, + "probability": 0.9498 + }, + { + "start": 16928.78, + "end": 16934.3, + "probability": 0.6224 + }, + { + "start": 16935.04, + "end": 16936.54, + "probability": 0.8673 + }, + { + "start": 16937.46, + "end": 16939.71, + "probability": 0.3938 + }, + { + "start": 16941.62, + "end": 16942.38, + "probability": 0.8613 + }, + { + "start": 16942.7, + "end": 16945.62, + "probability": 0.853 + }, + { + "start": 16946.64, + "end": 16949.34, + "probability": 0.7526 + }, + { + "start": 16955.14, + "end": 16958.16, + "probability": 0.8291 + }, + { + "start": 16959.02, + "end": 16962.4, + "probability": 0.6494 + }, + { + "start": 16964.1, + "end": 16967.42, + "probability": 0.9562 + }, + { + "start": 16968.04, + "end": 16971.86, + "probability": 0.9185 + }, + { + "start": 16972.46, + "end": 16976.22, + "probability": 0.9193 + }, + { + "start": 16977.36, + "end": 16978.41, + "probability": 0.9487 + }, + { + "start": 16979.9, + "end": 16985.46, + "probability": 0.9188 + }, + { + "start": 16986.2, + "end": 16988.84, + "probability": 0.7966 + }, + { + "start": 16989.36, + "end": 16991.62, + "probability": 0.9803 + }, + { + "start": 16992.1, + "end": 16995.62, + "probability": 0.9401 + }, + { + "start": 16996.26, + "end": 16999.56, + "probability": 0.992 + }, + { + "start": 17000.36, + "end": 17002.04, + "probability": 0.8641 + }, + { + "start": 17002.64, + "end": 17003.8, + "probability": 0.6909 + }, + { + "start": 17004.72, + "end": 17011.54, + "probability": 0.8547 + }, + { + "start": 17012.16, + "end": 17016.56, + "probability": 0.9843 + }, + { + "start": 17017.34, + "end": 17018.18, + "probability": 0.792 + }, + { + "start": 17019.16, + "end": 17022.2, + "probability": 0.9938 + }, + { + "start": 17022.72, + "end": 17025.98, + "probability": 0.9806 + }, + { + "start": 17026.42, + "end": 17030.14, + "probability": 0.9173 + }, + { + "start": 17030.88, + "end": 17033.62, + "probability": 0.9885 + }, + { + "start": 17034.22, + "end": 17036.5, + "probability": 0.9286 + }, + { + "start": 17037.18, + "end": 17039.28, + "probability": 0.8892 + }, + { + "start": 17040.48, + "end": 17045.44, + "probability": 0.9875 + }, + { + "start": 17046.2, + "end": 17049.48, + "probability": 0.9782 + }, + { + "start": 17050.0, + "end": 17051.35, + "probability": 0.9863 + }, + { + "start": 17051.96, + "end": 17056.1, + "probability": 0.9711 + }, + { + "start": 17056.8, + "end": 17061.0, + "probability": 0.971 + }, + { + "start": 17061.0, + "end": 17067.14, + "probability": 0.998 + }, + { + "start": 17068.12, + "end": 17069.24, + "probability": 0.6744 + }, + { + "start": 17069.9, + "end": 17074.12, + "probability": 0.9868 + }, + { + "start": 17074.82, + "end": 17076.84, + "probability": 0.9927 + }, + { + "start": 17077.6, + "end": 17078.9, + "probability": 0.9418 + }, + { + "start": 17079.58, + "end": 17080.98, + "probability": 0.8094 + }, + { + "start": 17081.84, + "end": 17082.64, + "probability": 0.7289 + }, + { + "start": 17083.16, + "end": 17084.64, + "probability": 0.9904 + }, + { + "start": 17085.62, + "end": 17087.14, + "probability": 0.9819 + }, + { + "start": 17087.68, + "end": 17091.48, + "probability": 0.8894 + }, + { + "start": 17091.48, + "end": 17094.6, + "probability": 0.9965 + }, + { + "start": 17094.72, + "end": 17097.1, + "probability": 0.8772 + }, + { + "start": 17097.76, + "end": 17103.52, + "probability": 0.9484 + }, + { + "start": 17103.52, + "end": 17110.3, + "probability": 0.9661 + }, + { + "start": 17111.3, + "end": 17114.8, + "probability": 0.9163 + }, + { + "start": 17115.78, + "end": 17118.44, + "probability": 0.7626 + }, + { + "start": 17120.18, + "end": 17122.24, + "probability": 0.7842 + }, + { + "start": 17122.82, + "end": 17125.18, + "probability": 0.8379 + }, + { + "start": 17125.32, + "end": 17128.48, + "probability": 0.9264 + }, + { + "start": 17128.58, + "end": 17131.58, + "probability": 0.9706 + }, + { + "start": 17132.18, + "end": 17133.33, + "probability": 0.8953 + }, + { + "start": 17134.48, + "end": 17135.46, + "probability": 0.8317 + }, + { + "start": 17136.0, + "end": 17138.12, + "probability": 0.9408 + }, + { + "start": 17139.16, + "end": 17140.12, + "probability": 0.6335 + }, + { + "start": 17140.68, + "end": 17147.77, + "probability": 0.9648 + }, + { + "start": 17148.8, + "end": 17150.02, + "probability": 0.6978 + }, + { + "start": 17150.7, + "end": 17152.34, + "probability": 0.9717 + }, + { + "start": 17153.0, + "end": 17155.32, + "probability": 0.896 + }, + { + "start": 17157.04, + "end": 17158.02, + "probability": 0.8401 + }, + { + "start": 17158.16, + "end": 17158.44, + "probability": 0.0814 + }, + { + "start": 17158.92, + "end": 17159.16, + "probability": 0.6806 + }, + { + "start": 17159.28, + "end": 17159.72, + "probability": 0.7606 + }, + { + "start": 17159.8, + "end": 17160.84, + "probability": 0.8911 + }, + { + "start": 17161.18, + "end": 17161.52, + "probability": 0.7438 + }, + { + "start": 17161.6, + "end": 17162.74, + "probability": 0.8355 + }, + { + "start": 17167.58, + "end": 17168.62, + "probability": 0.6616 + }, + { + "start": 17169.94, + "end": 17172.72, + "probability": 0.6877 + }, + { + "start": 17173.3, + "end": 17174.8, + "probability": 0.9077 + }, + { + "start": 17175.58, + "end": 17179.4, + "probability": 0.972 + }, + { + "start": 17180.36, + "end": 17181.96, + "probability": 0.7165 + }, + { + "start": 17182.12, + "end": 17189.72, + "probability": 0.8992 + }, + { + "start": 17190.9, + "end": 17196.84, + "probability": 0.9164 + }, + { + "start": 17196.92, + "end": 17197.62, + "probability": 0.8654 + }, + { + "start": 17198.58, + "end": 17199.3, + "probability": 0.9832 + }, + { + "start": 17199.42, + "end": 17201.24, + "probability": 0.9948 + }, + { + "start": 17201.32, + "end": 17202.52, + "probability": 0.9881 + }, + { + "start": 17203.02, + "end": 17204.28, + "probability": 0.9344 + }, + { + "start": 17204.62, + "end": 17206.54, + "probability": 0.915 + }, + { + "start": 17207.5, + "end": 17213.34, + "probability": 0.9863 + }, + { + "start": 17213.46, + "end": 17216.14, + "probability": 0.882 + }, + { + "start": 17216.66, + "end": 17223.4, + "probability": 0.9953 + }, + { + "start": 17224.02, + "end": 17226.18, + "probability": 0.5975 + }, + { + "start": 17226.72, + "end": 17233.56, + "probability": 0.908 + }, + { + "start": 17234.06, + "end": 17234.2, + "probability": 0.5865 + }, + { + "start": 17234.94, + "end": 17235.24, + "probability": 0.6697 + }, + { + "start": 17235.58, + "end": 17237.12, + "probability": 0.9858 + }, + { + "start": 17237.56, + "end": 17239.66, + "probability": 0.9492 + }, + { + "start": 17239.68, + "end": 17240.48, + "probability": 0.9338 + }, + { + "start": 17240.76, + "end": 17241.66, + "probability": 0.8418 + }, + { + "start": 17242.0, + "end": 17242.86, + "probability": 0.9599 + }, + { + "start": 17243.18, + "end": 17244.16, + "probability": 0.9465 + }, + { + "start": 17244.62, + "end": 17245.54, + "probability": 0.8096 + }, + { + "start": 17245.62, + "end": 17246.48, + "probability": 0.9863 + }, + { + "start": 17246.9, + "end": 17247.76, + "probability": 0.9778 + }, + { + "start": 17248.36, + "end": 17250.06, + "probability": 0.8804 + }, + { + "start": 17250.48, + "end": 17254.68, + "probability": 0.8349 + }, + { + "start": 17255.12, + "end": 17258.38, + "probability": 0.928 + }, + { + "start": 17258.78, + "end": 17259.42, + "probability": 0.4655 + }, + { + "start": 17259.74, + "end": 17260.54, + "probability": 0.2564 + }, + { + "start": 17260.54, + "end": 17262.44, + "probability": 0.5811 + }, + { + "start": 17262.44, + "end": 17262.44, + "probability": 0.1914 + }, + { + "start": 17262.44, + "end": 17262.44, + "probability": 0.5038 + }, + { + "start": 17262.44, + "end": 17263.28, + "probability": 0.6662 + }, + { + "start": 17263.86, + "end": 17264.54, + "probability": 0.9702 + }, + { + "start": 17265.56, + "end": 17266.84, + "probability": 0.904 + }, + { + "start": 17266.92, + "end": 17267.22, + "probability": 0.2622 + }, + { + "start": 17267.3, + "end": 17268.2, + "probability": 0.9146 + }, + { + "start": 17268.78, + "end": 17269.8, + "probability": 0.9516 + }, + { + "start": 17274.96, + "end": 17275.56, + "probability": 0.5672 + }, + { + "start": 17276.12, + "end": 17276.34, + "probability": 0.7066 + }, + { + "start": 17277.17, + "end": 17279.88, + "probability": 0.9905 + }, + { + "start": 17280.44, + "end": 17283.44, + "probability": 0.867 + }, + { + "start": 17283.96, + "end": 17286.36, + "probability": 0.9884 + }, + { + "start": 17287.28, + "end": 17291.06, + "probability": 0.9767 + }, + { + "start": 17291.5, + "end": 17293.98, + "probability": 0.9933 + }, + { + "start": 17294.36, + "end": 17300.14, + "probability": 0.9905 + }, + { + "start": 17300.14, + "end": 17303.5, + "probability": 0.9924 + }, + { + "start": 17303.94, + "end": 17304.04, + "probability": 0.4639 + }, + { + "start": 17304.32, + "end": 17306.13, + "probability": 0.5309 + }, + { + "start": 17306.7, + "end": 17309.52, + "probability": 0.9865 + }, + { + "start": 17309.94, + "end": 17312.7, + "probability": 0.9627 + }, + { + "start": 17312.7, + "end": 17315.22, + "probability": 0.9929 + }, + { + "start": 17315.48, + "end": 17318.73, + "probability": 0.974 + }, + { + "start": 17319.44, + "end": 17319.86, + "probability": 0.9126 + }, + { + "start": 17319.9, + "end": 17320.86, + "probability": 0.9409 + }, + { + "start": 17320.98, + "end": 17321.92, + "probability": 0.5613 + }, + { + "start": 17322.38, + "end": 17324.1, + "probability": 0.9105 + }, + { + "start": 17324.44, + "end": 17325.0, + "probability": 0.7137 + }, + { + "start": 17325.3, + "end": 17325.9, + "probability": 0.9179 + }, + { + "start": 17326.14, + "end": 17327.0, + "probability": 0.4641 + }, + { + "start": 17327.64, + "end": 17328.38, + "probability": 0.6903 + }, + { + "start": 17328.74, + "end": 17329.44, + "probability": 0.9865 + }, + { + "start": 17330.06, + "end": 17330.34, + "probability": 0.8809 + }, + { + "start": 17330.74, + "end": 17331.2, + "probability": 0.9653 + }, + { + "start": 17331.86, + "end": 17333.88, + "probability": 0.6894 + }, + { + "start": 17334.84, + "end": 17336.48, + "probability": 0.5522 + }, + { + "start": 17338.02, + "end": 17339.06, + "probability": 0.9712 + }, + { + "start": 17339.14, + "end": 17342.02, + "probability": 0.9922 + }, + { + "start": 17342.32, + "end": 17345.54, + "probability": 0.7023 + }, + { + "start": 17345.78, + "end": 17347.98, + "probability": 0.6964 + }, + { + "start": 17348.5, + "end": 17350.36, + "probability": 0.8283 + }, + { + "start": 17350.38, + "end": 17352.4, + "probability": 0.8527 + }, + { + "start": 17352.42, + "end": 17353.04, + "probability": 0.8021 + }, + { + "start": 17353.56, + "end": 17356.52, + "probability": 0.9548 + }, + { + "start": 17358.02, + "end": 17359.96, + "probability": 0.1014 + }, + { + "start": 17361.48, + "end": 17362.72, + "probability": 0.9969 + }, + { + "start": 17363.56, + "end": 17364.08, + "probability": 0.2418 + }, + { + "start": 17364.56, + "end": 17366.96, + "probability": 0.9907 + }, + { + "start": 17367.32, + "end": 17367.52, + "probability": 0.8079 + }, + { + "start": 17367.54, + "end": 17369.3, + "probability": 0.877 + }, + { + "start": 17369.38, + "end": 17370.08, + "probability": 0.8588 + }, + { + "start": 17370.42, + "end": 17370.58, + "probability": 0.3889 + }, + { + "start": 17370.6, + "end": 17371.62, + "probability": 0.9029 + }, + { + "start": 17372.06, + "end": 17374.36, + "probability": 0.3919 + }, + { + "start": 17374.64, + "end": 17374.94, + "probability": 0.849 + }, + { + "start": 17375.0, + "end": 17375.52, + "probability": 0.8465 + }, + { + "start": 17375.56, + "end": 17376.06, + "probability": 0.8406 + }, + { + "start": 17376.06, + "end": 17376.66, + "probability": 0.7759 + }, + { + "start": 17376.76, + "end": 17377.7, + "probability": 0.6387 + }, + { + "start": 17377.72, + "end": 17377.96, + "probability": 0.2749 + }, + { + "start": 17377.96, + "end": 17378.42, + "probability": 0.7028 + }, + { + "start": 17378.48, + "end": 17380.7, + "probability": 0.6461 + }, + { + "start": 17382.84, + "end": 17386.0, + "probability": 0.8857 + }, + { + "start": 17386.94, + "end": 17387.54, + "probability": 0.9263 + }, + { + "start": 17387.6, + "end": 17388.18, + "probability": 0.6299 + }, + { + "start": 17388.32, + "end": 17388.98, + "probability": 0.5753 + }, + { + "start": 17388.98, + "end": 17389.1, + "probability": 0.4984 + }, + { + "start": 17389.14, + "end": 17389.42, + "probability": 0.7327 + }, + { + "start": 17389.44, + "end": 17389.6, + "probability": 0.0729 + }, + { + "start": 17389.64, + "end": 17390.68, + "probability": 0.9062 + }, + { + "start": 17391.62, + "end": 17394.64, + "probability": 0.7702 + }, + { + "start": 17395.14, + "end": 17396.54, + "probability": 0.6735 + }, + { + "start": 17396.66, + "end": 17397.92, + "probability": 0.8788 + }, + { + "start": 17398.4, + "end": 17400.2, + "probability": 0.6577 + }, + { + "start": 17400.4, + "end": 17400.86, + "probability": 0.6749 + }, + { + "start": 17400.86, + "end": 17400.88, + "probability": 0.2939 + }, + { + "start": 17400.88, + "end": 17401.58, + "probability": 0.2874 + }, + { + "start": 17401.78, + "end": 17402.0, + "probability": 0.9277 + }, + { + "start": 17402.4, + "end": 17403.02, + "probability": 0.9333 + }, + { + "start": 17403.64, + "end": 17404.23, + "probability": 0.806 + }, + { + "start": 17404.34, + "end": 17405.28, + "probability": 0.7661 + }, + { + "start": 17405.34, + "end": 17407.28, + "probability": 0.9906 + }, + { + "start": 17407.48, + "end": 17409.77, + "probability": 0.1928 + }, + { + "start": 17412.8, + "end": 17414.9, + "probability": 0.674 + }, + { + "start": 17415.36, + "end": 17417.72, + "probability": 0.9541 + }, + { + "start": 17417.72, + "end": 17420.34, + "probability": 0.9466 + }, + { + "start": 17420.42, + "end": 17422.12, + "probability": 0.7194 + }, + { + "start": 17422.54, + "end": 17423.52, + "probability": 0.9548 + }, + { + "start": 17425.5, + "end": 17425.74, + "probability": 0.3706 + }, + { + "start": 17426.74, + "end": 17433.34, + "probability": 0.2903 + }, + { + "start": 17433.34, + "end": 17434.54, + "probability": 0.886 + }, + { + "start": 17434.54, + "end": 17435.56, + "probability": 0.4595 + }, + { + "start": 17435.58, + "end": 17436.38, + "probability": 0.2629 + }, + { + "start": 17436.4, + "end": 17437.68, + "probability": 0.9536 + }, + { + "start": 17438.18, + "end": 17440.78, + "probability": 0.6956 + }, + { + "start": 17440.82, + "end": 17441.46, + "probability": 0.1112 + }, + { + "start": 17442.08, + "end": 17442.78, + "probability": 0.1842 + }, + { + "start": 17445.12, + "end": 17448.34, + "probability": 0.6306 + }, + { + "start": 17448.52, + "end": 17449.08, + "probability": 0.6927 + }, + { + "start": 17449.18, + "end": 17449.68, + "probability": 0.8856 + }, + { + "start": 17449.9, + "end": 17450.58, + "probability": 0.4032 + }, + { + "start": 17450.72, + "end": 17451.46, + "probability": 0.4419 + }, + { + "start": 17451.5, + "end": 17452.64, + "probability": 0.5351 + }, + { + "start": 17452.64, + "end": 17455.34, + "probability": 0.5867 + }, + { + "start": 17455.6, + "end": 17456.16, + "probability": 0.7941 + }, + { + "start": 17456.24, + "end": 17460.92, + "probability": 0.9926 + }, + { + "start": 17461.36, + "end": 17463.72, + "probability": 0.9624 + }, + { + "start": 17464.28, + "end": 17464.54, + "probability": 0.6366 + }, + { + "start": 17465.04, + "end": 17467.0, + "probability": 0.8975 + }, + { + "start": 17467.0, + "end": 17467.64, + "probability": 0.8646 + }, + { + "start": 17468.14, + "end": 17469.5, + "probability": 0.9772 + }, + { + "start": 17469.54, + "end": 17470.42, + "probability": 0.9894 + }, + { + "start": 17470.96, + "end": 17471.8, + "probability": 0.9457 + }, + { + "start": 17490.3, + "end": 17490.3, + "probability": 0.2057 + }, + { + "start": 17490.3, + "end": 17491.38, + "probability": 0.3879 + }, + { + "start": 17491.38, + "end": 17494.12, + "probability": 0.932 + }, + { + "start": 17494.12, + "end": 17497.54, + "probability": 0.8458 + }, + { + "start": 17497.64, + "end": 17499.22, + "probability": 0.7298 + }, + { + "start": 17499.7, + "end": 17501.08, + "probability": 0.5808 + }, + { + "start": 17501.58, + "end": 17504.22, + "probability": 0.7704 + }, + { + "start": 17505.1, + "end": 17505.2, + "probability": 0.222 + }, + { + "start": 17505.2, + "end": 17506.06, + "probability": 0.7598 + }, + { + "start": 17506.54, + "end": 17507.1, + "probability": 0.873 + }, + { + "start": 17515.06, + "end": 17516.38, + "probability": 0.6148 + }, + { + "start": 17516.5, + "end": 17516.5, + "probability": 0.3967 + }, + { + "start": 17516.5, + "end": 17516.94, + "probability": 0.5741 + }, + { + "start": 17517.0, + "end": 17517.62, + "probability": 0.9292 + }, + { + "start": 17518.12, + "end": 17520.22, + "probability": 0.8772 + }, + { + "start": 17520.28, + "end": 17522.22, + "probability": 0.9978 + }, + { + "start": 17522.9, + "end": 17527.22, + "probability": 0.957 + }, + { + "start": 17527.9, + "end": 17529.0, + "probability": 0.8938 + }, + { + "start": 17529.2, + "end": 17533.12, + "probability": 0.8703 + }, + { + "start": 17533.64, + "end": 17535.16, + "probability": 0.9613 + }, + { + "start": 17535.72, + "end": 17537.42, + "probability": 0.7662 + }, + { + "start": 17538.92, + "end": 17541.92, + "probability": 0.9912 + }, + { + "start": 17541.92, + "end": 17544.7, + "probability": 0.9984 + }, + { + "start": 17545.12, + "end": 17546.36, + "probability": 0.262 + }, + { + "start": 17546.84, + "end": 17547.88, + "probability": 0.7905 + }, + { + "start": 17548.04, + "end": 17552.0, + "probability": 0.9858 + }, + { + "start": 17555.72, + "end": 17560.16, + "probability": 0.7781 + }, + { + "start": 17560.54, + "end": 17562.96, + "probability": 0.9611 + }, + { + "start": 17562.96, + "end": 17563.66, + "probability": 0.6159 + }, + { + "start": 17563.72, + "end": 17565.2, + "probability": 0.0524 + }, + { + "start": 17565.44, + "end": 17566.75, + "probability": 0.8363 + }, + { + "start": 17567.84, + "end": 17570.64, + "probability": 0.4312 + }, + { + "start": 17571.08, + "end": 17573.38, + "probability": 0.9949 + }, + { + "start": 17573.38, + "end": 17576.02, + "probability": 0.9985 + }, + { + "start": 17576.36, + "end": 17577.92, + "probability": 0.203 + }, + { + "start": 17578.34, + "end": 17580.4, + "probability": 0.7767 + }, + { + "start": 17580.4, + "end": 17583.38, + "probability": 0.646 + }, + { + "start": 17583.38, + "end": 17585.06, + "probability": 0.8812 + }, + { + "start": 17585.22, + "end": 17585.76, + "probability": 0.8811 + }, + { + "start": 17585.82, + "end": 17588.24, + "probability": 0.9553 + }, + { + "start": 17589.12, + "end": 17591.34, + "probability": 0.5787 + }, + { + "start": 17591.36, + "end": 17591.84, + "probability": 0.4456 + }, + { + "start": 17591.84, + "end": 17592.24, + "probability": 0.5601 + }, + { + "start": 17592.42, + "end": 17593.86, + "probability": 0.954 + }, + { + "start": 17593.86, + "end": 17594.16, + "probability": 0.3547 + }, + { + "start": 17595.58, + "end": 17599.02, + "probability": 0.8215 + }, + { + "start": 17599.6, + "end": 17601.5, + "probability": 0.094 + }, + { + "start": 17601.6, + "end": 17603.44, + "probability": 0.9821 + }, + { + "start": 17603.66, + "end": 17604.86, + "probability": 0.5047 + }, + { + "start": 17604.94, + "end": 17605.32, + "probability": 0.6238 + }, + { + "start": 17606.62, + "end": 17606.72, + "probability": 0.2051 + }, + { + "start": 17607.2, + "end": 17608.96, + "probability": 0.2789 + }, + { + "start": 17609.14, + "end": 17610.59, + "probability": 0.9891 + }, + { + "start": 17611.12, + "end": 17614.44, + "probability": 0.9422 + }, + { + "start": 17614.92, + "end": 17617.3, + "probability": 0.9884 + }, + { + "start": 17617.3, + "end": 17620.16, + "probability": 0.9941 + }, + { + "start": 17620.18, + "end": 17623.78, + "probability": 0.9933 + }, + { + "start": 17624.06, + "end": 17628.72, + "probability": 0.6491 + }, + { + "start": 17628.8, + "end": 17629.92, + "probability": 0.7807 + }, + { + "start": 17630.48, + "end": 17634.7, + "probability": 0.994 + }, + { + "start": 17634.82, + "end": 17636.74, + "probability": 0.9087 + }, + { + "start": 17636.98, + "end": 17639.28, + "probability": 0.5844 + }, + { + "start": 17639.34, + "end": 17640.98, + "probability": 0.0627 + }, + { + "start": 17641.1, + "end": 17643.08, + "probability": 0.3616 + }, + { + "start": 17643.6, + "end": 17648.36, + "probability": 0.9945 + }, + { + "start": 17648.48, + "end": 17651.0, + "probability": 0.9718 + }, + { + "start": 17651.26, + "end": 17651.7, + "probability": 0.7458 + }, + { + "start": 17652.02, + "end": 17652.1, + "probability": 0.0423 + }, + { + "start": 17652.1, + "end": 17654.44, + "probability": 0.554 + }, + { + "start": 17655.22, + "end": 17658.7, + "probability": 0.9716 + }, + { + "start": 17659.68, + "end": 17665.42, + "probability": 0.9186 + }, + { + "start": 17666.5, + "end": 17666.62, + "probability": 0.7346 + }, + { + "start": 17666.74, + "end": 17669.34, + "probability": 0.9963 + }, + { + "start": 17669.86, + "end": 17671.76, + "probability": 0.9974 + }, + { + "start": 17671.96, + "end": 17673.27, + "probability": 0.7405 + }, + { + "start": 17673.4, + "end": 17675.96, + "probability": 0.9675 + }, + { + "start": 17676.28, + "end": 17678.38, + "probability": 0.8994 + }, + { + "start": 17678.48, + "end": 17679.56, + "probability": 0.7361 + }, + { + "start": 17679.56, + "end": 17680.0, + "probability": 0.5334 + }, + { + "start": 17680.48, + "end": 17680.9, + "probability": 0.5838 + }, + { + "start": 17680.92, + "end": 17681.3, + "probability": 0.844 + }, + { + "start": 17705.32, + "end": 17706.24, + "probability": 0.4345 + }, + { + "start": 17717.08, + "end": 17718.82, + "probability": 0.0622 + }, + { + "start": 17720.94, + "end": 17721.97, + "probability": 0.0261 + }, + { + "start": 17723.2, + "end": 17723.82, + "probability": 0.0604 + }, + { + "start": 17724.54, + "end": 17725.32, + "probability": 0.0311 + }, + { + "start": 17726.18, + "end": 17727.6, + "probability": 0.1104 + }, + { + "start": 17728.54, + "end": 17729.64, + "probability": 0.2445 + }, + { + "start": 17730.36, + "end": 17731.98, + "probability": 0.0584 + }, + { + "start": 17732.14, + "end": 17733.06, + "probability": 0.1453 + }, + { + "start": 17734.72, + "end": 17739.56, + "probability": 0.1108 + }, + { + "start": 17739.62, + "end": 17743.08, + "probability": 0.0452 + }, + { + "start": 17751.04, + "end": 17753.36, + "probability": 0.0059 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.0, + "end": 17758.0, + "probability": 0.0 + }, + { + "start": 17758.46, + "end": 17761.82, + "probability": 0.8499 + }, + { + "start": 17761.92, + "end": 17762.78, + "probability": 0.9551 + }, + { + "start": 17763.64, + "end": 17765.32, + "probability": 0.9595 + }, + { + "start": 17765.58, + "end": 17768.2, + "probability": 0.9789 + }, + { + "start": 17768.66, + "end": 17769.76, + "probability": 0.9507 + }, + { + "start": 17770.16, + "end": 17772.96, + "probability": 0.8252 + }, + { + "start": 17773.48, + "end": 17778.1, + "probability": 0.9815 + }, + { + "start": 17779.12, + "end": 17779.58, + "probability": 0.6495 + }, + { + "start": 17780.26, + "end": 17781.74, + "probability": 0.8732 + }, + { + "start": 17782.3, + "end": 17782.88, + "probability": 0.7175 + }, + { + "start": 17783.4, + "end": 17784.78, + "probability": 0.7091 + }, + { + "start": 17785.54, + "end": 17789.36, + "probability": 0.953 + }, + { + "start": 17790.02, + "end": 17790.72, + "probability": 0.9463 + }, + { + "start": 17791.6, + "end": 17794.36, + "probability": 0.9499 + }, + { + "start": 17795.24, + "end": 17796.9, + "probability": 0.5508 + }, + { + "start": 17799.76, + "end": 17800.12, + "probability": 0.7275 + }, + { + "start": 17801.64, + "end": 17802.7, + "probability": 0.9956 + }, + { + "start": 17803.76, + "end": 17805.48, + "probability": 0.9807 + }, + { + "start": 17806.56, + "end": 17806.9, + "probability": 0.5377 + }, + { + "start": 17807.6, + "end": 17808.6, + "probability": 0.8632 + }, + { + "start": 17809.4, + "end": 17809.96, + "probability": 0.9852 + }, + { + "start": 17810.0, + "end": 17810.8, + "probability": 0.9835 + }, + { + "start": 17811.08, + "end": 17812.7, + "probability": 0.7339 + }, + { + "start": 17812.94, + "end": 17813.88, + "probability": 0.3654 + }, + { + "start": 17814.4, + "end": 17815.22, + "probability": 0.9182 + }, + { + "start": 17817.2, + "end": 17819.26, + "probability": 0.9881 + }, + { + "start": 17820.22, + "end": 17820.8, + "probability": 0.8649 + }, + { + "start": 17821.64, + "end": 17822.28, + "probability": 0.8539 + }, + { + "start": 17823.64, + "end": 17824.7, + "probability": 0.9946 + }, + { + "start": 17827.22, + "end": 17828.02, + "probability": 0.0706 + }, + { + "start": 17828.2, + "end": 17828.64, + "probability": 0.3449 + }, + { + "start": 17828.64, + "end": 17830.34, + "probability": 0.9703 + }, + { + "start": 17830.92, + "end": 17831.74, + "probability": 0.4172 + }, + { + "start": 17833.02, + "end": 17834.38, + "probability": 0.95 + }, + { + "start": 17834.48, + "end": 17835.14, + "probability": 0.765 + }, + { + "start": 17835.22, + "end": 17835.48, + "probability": 0.5544 + }, + { + "start": 17835.76, + "end": 17837.76, + "probability": 0.7334 + }, + { + "start": 17837.84, + "end": 17838.56, + "probability": 0.8599 + }, + { + "start": 17838.68, + "end": 17839.22, + "probability": 0.9438 + }, + { + "start": 17840.56, + "end": 17841.18, + "probability": 0.9778 + }, + { + "start": 17841.3, + "end": 17841.8, + "probability": 0.8725 + }, + { + "start": 17841.92, + "end": 17843.05, + "probability": 0.9919 + }, + { + "start": 17843.98, + "end": 17848.06, + "probability": 0.9934 + }, + { + "start": 17849.0, + "end": 17849.9, + "probability": 0.8516 + }, + { + "start": 17850.28, + "end": 17851.52, + "probability": 0.7749 + }, + { + "start": 17851.74, + "end": 17852.16, + "probability": 0.5813 + }, + { + "start": 17853.22, + "end": 17853.78, + "probability": 0.8333 + }, + { + "start": 17854.38, + "end": 17855.56, + "probability": 0.7507 + }, + { + "start": 17856.7, + "end": 17857.44, + "probability": 0.9529 + }, + { + "start": 17857.52, + "end": 17858.16, + "probability": 0.9197 + }, + { + "start": 17858.44, + "end": 17861.88, + "probability": 0.6793 + }, + { + "start": 17862.54, + "end": 17863.6, + "probability": 0.6145 + }, + { + "start": 17864.52, + "end": 17864.92, + "probability": 0.8141 + }, + { + "start": 17865.46, + "end": 17870.06, + "probability": 0.9841 + }, + { + "start": 17870.58, + "end": 17872.0, + "probability": 0.8964 + }, + { + "start": 17873.06, + "end": 17873.66, + "probability": 0.7659 + }, + { + "start": 17874.56, + "end": 17875.4, + "probability": 0.7523 + }, + { + "start": 17875.94, + "end": 17877.98, + "probability": 0.9733 + }, + { + "start": 17879.76, + "end": 17881.02, + "probability": 0.9377 + }, + { + "start": 17881.64, + "end": 17881.92, + "probability": 0.5652 + }, + { + "start": 17883.0, + "end": 17884.64, + "probability": 0.7555 + }, + { + "start": 17885.24, + "end": 17889.96, + "probability": 0.9792 + }, + { + "start": 17890.18, + "end": 17890.8, + "probability": 0.5645 + }, + { + "start": 17892.3, + "end": 17893.92, + "probability": 0.9501 + }, + { + "start": 17894.16, + "end": 17895.16, + "probability": 0.9743 + }, + { + "start": 17896.96, + "end": 17897.94, + "probability": 0.9511 + }, + { + "start": 17898.0, + "end": 17900.94, + "probability": 0.9086 + }, + { + "start": 17901.4, + "end": 17902.12, + "probability": 0.8906 + }, + { + "start": 17902.54, + "end": 17905.4, + "probability": 0.9319 + }, + { + "start": 17906.06, + "end": 17907.9, + "probability": 0.9907 + }, + { + "start": 17909.04, + "end": 17912.12, + "probability": 0.6548 + }, + { + "start": 17913.06, + "end": 17916.74, + "probability": 0.7964 + }, + { + "start": 17917.68, + "end": 17920.28, + "probability": 0.6982 + }, + { + "start": 17921.2, + "end": 17923.78, + "probability": 0.9465 + }, + { + "start": 17924.08, + "end": 17924.79, + "probability": 0.988 + }, + { + "start": 17925.36, + "end": 17927.4, + "probability": 0.939 + }, + { + "start": 17927.88, + "end": 17929.22, + "probability": 0.9885 + }, + { + "start": 17929.86, + "end": 17931.06, + "probability": 0.7997 + }, + { + "start": 17931.54, + "end": 17935.0, + "probability": 0.9562 + }, + { + "start": 17935.88, + "end": 17936.16, + "probability": 0.6851 + }, + { + "start": 17936.44, + "end": 17937.1, + "probability": 0.6508 + }, + { + "start": 17937.3, + "end": 17939.2, + "probability": 0.7137 + }, + { + "start": 17939.96, + "end": 17940.06, + "probability": 0.6631 + }, + { + "start": 17940.62, + "end": 17944.0, + "probability": 0.8918 + }, + { + "start": 17944.52, + "end": 17949.76, + "probability": 0.9705 + }, + { + "start": 17950.06, + "end": 17950.5, + "probability": 0.9161 + }, + { + "start": 17951.64, + "end": 17952.34, + "probability": 0.9515 + }, + { + "start": 17954.02, + "end": 17955.8, + "probability": 0.9956 + }, + { + "start": 17955.88, + "end": 17960.9, + "probability": 0.9978 + }, + { + "start": 17960.9, + "end": 17966.02, + "probability": 0.9828 + }, + { + "start": 17966.44, + "end": 17969.66, + "probability": 0.7663 + }, + { + "start": 17970.06, + "end": 17972.46, + "probability": 0.998 + }, + { + "start": 17972.76, + "end": 17972.86, + "probability": 0.2295 + }, + { + "start": 17972.86, + "end": 17975.55, + "probability": 0.9862 + }, + { + "start": 17975.9, + "end": 17979.22, + "probability": 0.8061 + }, + { + "start": 17979.66, + "end": 17979.94, + "probability": 0.6711 + }, + { + "start": 17980.86, + "end": 17980.9, + "probability": 0.2009 + }, + { + "start": 17980.9, + "end": 17981.56, + "probability": 0.981 + }, + { + "start": 17981.88, + "end": 17982.51, + "probability": 0.8062 + }, + { + "start": 17983.08, + "end": 17986.78, + "probability": 0.9407 + }, + { + "start": 17986.82, + "end": 17988.5, + "probability": 0.5557 + }, + { + "start": 17988.5, + "end": 17989.84, + "probability": 0.9206 + }, + { + "start": 17990.36, + "end": 17990.5, + "probability": 0.4501 + }, + { + "start": 17990.58, + "end": 17991.86, + "probability": 0.9956 + }, + { + "start": 17991.92, + "end": 17993.44, + "probability": 0.9274 + }, + { + "start": 17993.84, + "end": 17994.58, + "probability": 0.5635 + }, + { + "start": 17995.28, + "end": 17995.68, + "probability": 0.9388 + }, + { + "start": 17996.04, + "end": 17997.64, + "probability": 0.5078 + }, + { + "start": 17998.3, + "end": 18000.89, + "probability": 0.5916 + }, + { + "start": 18004.02, + "end": 18004.3, + "probability": 0.0594 + }, + { + "start": 18004.3, + "end": 18004.4, + "probability": 0.0554 + }, + { + "start": 18004.4, + "end": 18006.82, + "probability": 0.6778 + }, + { + "start": 18006.82, + "end": 18008.2, + "probability": 0.6753 + }, + { + "start": 18008.58, + "end": 18008.68, + "probability": 0.9553 + }, + { + "start": 18008.68, + "end": 18010.08, + "probability": 0.5985 + }, + { + "start": 18010.58, + "end": 18011.9, + "probability": 0.9542 + }, + { + "start": 18012.68, + "end": 18013.19, + "probability": 0.0407 + }, + { + "start": 18013.64, + "end": 18014.38, + "probability": 0.3706 + }, + { + "start": 18014.86, + "end": 18015.72, + "probability": 0.7724 + }, + { + "start": 18015.8, + "end": 18017.84, + "probability": 0.8875 + }, + { + "start": 18018.34, + "end": 18019.14, + "probability": 0.2333 + }, + { + "start": 18019.66, + "end": 18019.66, + "probability": 0.0072 + }, + { + "start": 18032.74, + "end": 18032.9, + "probability": 0.0469 + }, + { + "start": 18032.9, + "end": 18032.9, + "probability": 0.0436 + }, + { + "start": 18032.9, + "end": 18032.9, + "probability": 0.2626 + }, + { + "start": 18032.9, + "end": 18037.08, + "probability": 0.6821 + }, + { + "start": 18037.18, + "end": 18038.22, + "probability": 0.9241 + }, + { + "start": 18038.26, + "end": 18040.6, + "probability": 0.9656 + }, + { + "start": 18041.06, + "end": 18042.48, + "probability": 0.9641 + }, + { + "start": 18042.66, + "end": 18044.16, + "probability": 0.7902 + }, + { + "start": 18044.24, + "end": 18047.9, + "probability": 0.9597 + }, + { + "start": 18048.3, + "end": 18050.88, + "probability": 0.7533 + }, + { + "start": 18051.7, + "end": 18052.8, + "probability": 0.8557 + }, + { + "start": 18052.92, + "end": 18056.54, + "probability": 0.5547 + }, + { + "start": 18056.66, + "end": 18056.76, + "probability": 0.489 + }, + { + "start": 18056.76, + "end": 18060.27, + "probability": 0.9264 + }, + { + "start": 18061.46, + "end": 18064.58, + "probability": 0.9443 + }, + { + "start": 18065.32, + "end": 18068.18, + "probability": 0.6454 + }, + { + "start": 18068.94, + "end": 18071.72, + "probability": 0.7386 + }, + { + "start": 18072.3, + "end": 18077.38, + "probability": 0.9026 + }, + { + "start": 18077.62, + "end": 18079.1, + "probability": 0.796 + }, + { + "start": 18080.12, + "end": 18082.9, + "probability": 0.9659 + }, + { + "start": 18083.54, + "end": 18085.58, + "probability": 0.9472 + }, + { + "start": 18086.46, + "end": 18087.9, + "probability": 0.9468 + }, + { + "start": 18088.28, + "end": 18090.1, + "probability": 0.6664 + }, + { + "start": 18090.84, + "end": 18092.7, + "probability": 0.814 + }, + { + "start": 18092.86, + "end": 18095.34, + "probability": 0.9935 + }, + { + "start": 18095.76, + "end": 18099.04, + "probability": 0.7735 + }, + { + "start": 18099.48, + "end": 18101.36, + "probability": 0.9593 + }, + { + "start": 18101.42, + "end": 18103.7, + "probability": 0.9927 + }, + { + "start": 18104.24, + "end": 18106.3, + "probability": 0.9868 + }, + { + "start": 18106.7, + "end": 18107.12, + "probability": 0.5515 + }, + { + "start": 18107.2, + "end": 18109.42, + "probability": 0.7803 + }, + { + "start": 18109.78, + "end": 18115.08, + "probability": 0.8486 + }, + { + "start": 18115.68, + "end": 18116.7, + "probability": 0.5896 + }, + { + "start": 18116.86, + "end": 18121.58, + "probability": 0.9915 + }, + { + "start": 18121.64, + "end": 18122.3, + "probability": 0.9418 + }, + { + "start": 18123.14, + "end": 18125.28, + "probability": 0.671 + }, + { + "start": 18125.74, + "end": 18127.16, + "probability": 0.9771 + }, + { + "start": 18127.34, + "end": 18129.82, + "probability": 0.7629 + }, + { + "start": 18129.96, + "end": 18132.58, + "probability": 0.9048 + }, + { + "start": 18133.04, + "end": 18134.62, + "probability": 0.5823 + }, + { + "start": 18134.68, + "end": 18135.24, + "probability": 0.3087 + }, + { + "start": 18135.46, + "end": 18139.6, + "probability": 0.8835 + }, + { + "start": 18139.66, + "end": 18140.1, + "probability": 0.7957 + }, + { + "start": 18140.28, + "end": 18143.92, + "probability": 0.8652 + }, + { + "start": 18144.0, + "end": 18144.39, + "probability": 0.3558 + }, + { + "start": 18144.56, + "end": 18145.1, + "probability": 0.375 + }, + { + "start": 18145.22, + "end": 18146.62, + "probability": 0.8424 + }, + { + "start": 18147.06, + "end": 18149.52, + "probability": 0.7483 + }, + { + "start": 18149.6, + "end": 18153.9, + "probability": 0.6666 + }, + { + "start": 18154.38, + "end": 18155.42, + "probability": 0.3985 + }, + { + "start": 18155.98, + "end": 18158.84, + "probability": 0.7063 + }, + { + "start": 18158.95, + "end": 18160.13, + "probability": 0.9885 + }, + { + "start": 18160.68, + "end": 18163.25, + "probability": 0.8555 + }, + { + "start": 18163.64, + "end": 18166.46, + "probability": 0.9609 + }, + { + "start": 18167.8, + "end": 18168.26, + "probability": 0.5441 + }, + { + "start": 18168.8, + "end": 18170.4, + "probability": 0.3479 + }, + { + "start": 18170.8, + "end": 18174.86, + "probability": 0.9352 + }, + { + "start": 18174.96, + "end": 18175.71, + "probability": 0.9854 + }, + { + "start": 18176.54, + "end": 18177.22, + "probability": 0.8559 + }, + { + "start": 18177.3, + "end": 18178.36, + "probability": 0.9186 + }, + { + "start": 18179.42, + "end": 18182.12, + "probability": 0.9482 + }, + { + "start": 18182.16, + "end": 18184.5, + "probability": 0.7864 + }, + { + "start": 18185.34, + "end": 18187.32, + "probability": 0.9846 + }, + { + "start": 18188.66, + "end": 18191.06, + "probability": 0.8362 + }, + { + "start": 18191.08, + "end": 18194.0, + "probability": 0.9193 + }, + { + "start": 18194.28, + "end": 18195.5, + "probability": 0.8735 + }, + { + "start": 18196.04, + "end": 18198.1, + "probability": 0.9958 + }, + { + "start": 18198.48, + "end": 18199.64, + "probability": 0.5706 + }, + { + "start": 18199.72, + "end": 18199.86, + "probability": 0.4733 + }, + { + "start": 18200.0, + "end": 18203.2, + "probability": 0.9305 + }, + { + "start": 18203.24, + "end": 18203.7, + "probability": 0.8099 + }, + { + "start": 18203.9, + "end": 18206.6, + "probability": 0.9907 + }, + { + "start": 18206.64, + "end": 18209.12, + "probability": 0.9619 + }, + { + "start": 18209.2, + "end": 18209.98, + "probability": 0.9913 + }, + { + "start": 18210.16, + "end": 18211.4, + "probability": 0.7234 + }, + { + "start": 18211.54, + "end": 18215.88, + "probability": 0.9578 + }, + { + "start": 18215.98, + "end": 18218.24, + "probability": 0.9338 + }, + { + "start": 18218.5, + "end": 18219.2, + "probability": 0.897 + }, + { + "start": 18219.72, + "end": 18220.82, + "probability": 0.9416 + }, + { + "start": 18221.24, + "end": 18222.6, + "probability": 0.8857 + }, + { + "start": 18222.76, + "end": 18224.54, + "probability": 0.921 + }, + { + "start": 18224.94, + "end": 18227.8, + "probability": 0.5566 + }, + { + "start": 18229.26, + "end": 18231.64, + "probability": 0.8237 + }, + { + "start": 18232.0, + "end": 18232.94, + "probability": 0.8113 + }, + { + "start": 18233.1, + "end": 18235.86, + "probability": 0.9891 + }, + { + "start": 18236.06, + "end": 18237.24, + "probability": 0.772 + }, + { + "start": 18237.4, + "end": 18238.2, + "probability": 0.8766 + }, + { + "start": 18238.3, + "end": 18238.82, + "probability": 0.8445 + }, + { + "start": 18238.96, + "end": 18242.22, + "probability": 0.7546 + }, + { + "start": 18242.34, + "end": 18243.34, + "probability": 0.8225 + }, + { + "start": 18243.46, + "end": 18243.78, + "probability": 0.2551 + }, + { + "start": 18243.9, + "end": 18244.94, + "probability": 0.7681 + }, + { + "start": 18244.94, + "end": 18247.02, + "probability": 0.9816 + }, + { + "start": 18247.7, + "end": 18249.84, + "probability": 0.8842 + }, + { + "start": 18250.68, + "end": 18254.68, + "probability": 0.7316 + }, + { + "start": 18255.52, + "end": 18258.4, + "probability": 0.957 + }, + { + "start": 18258.54, + "end": 18259.44, + "probability": 0.6839 + }, + { + "start": 18259.6, + "end": 18261.26, + "probability": 0.939 + }, + { + "start": 18261.88, + "end": 18262.51, + "probability": 0.9088 + }, + { + "start": 18263.4, + "end": 18265.98, + "probability": 0.5614 + }, + { + "start": 18266.38, + "end": 18267.42, + "probability": 0.8894 + }, + { + "start": 18267.76, + "end": 18268.98, + "probability": 0.9956 + }, + { + "start": 18269.14, + "end": 18271.9, + "probability": 0.9612 + }, + { + "start": 18271.94, + "end": 18272.76, + "probability": 0.8934 + }, + { + "start": 18272.88, + "end": 18273.46, + "probability": 0.8944 + }, + { + "start": 18273.8, + "end": 18275.14, + "probability": 0.8243 + }, + { + "start": 18275.6, + "end": 18276.34, + "probability": 0.7636 + }, + { + "start": 18276.9, + "end": 18277.28, + "probability": 0.6497 + }, + { + "start": 18277.86, + "end": 18278.58, + "probability": 0.8782 + }, + { + "start": 18278.98, + "end": 18281.98, + "probability": 0.9631 + }, + { + "start": 18282.5, + "end": 18283.28, + "probability": 0.5287 + }, + { + "start": 18283.38, + "end": 18284.58, + "probability": 0.9949 + }, + { + "start": 18284.86, + "end": 18287.35, + "probability": 0.9961 + }, + { + "start": 18287.4, + "end": 18288.5, + "probability": 0.9883 + }, + { + "start": 18288.68, + "end": 18290.22, + "probability": 0.7314 + }, + { + "start": 18290.54, + "end": 18290.54, + "probability": 0.2721 + }, + { + "start": 18290.77, + "end": 18293.07, + "probability": 0.5605 + }, + { + "start": 18293.82, + "end": 18295.58, + "probability": 0.4592 + }, + { + "start": 18295.62, + "end": 18295.72, + "probability": 0.8646 + }, + { + "start": 18296.36, + "end": 18298.32, + "probability": 0.3459 + }, + { + "start": 18298.46, + "end": 18299.56, + "probability": 0.9535 + }, + { + "start": 18299.64, + "end": 18300.32, + "probability": 0.4792 + }, + { + "start": 18300.72, + "end": 18301.18, + "probability": 0.8329 + }, + { + "start": 18301.22, + "end": 18301.82, + "probability": 0.4952 + }, + { + "start": 18301.96, + "end": 18302.64, + "probability": 0.8659 + }, + { + "start": 18303.04, + "end": 18303.66, + "probability": 0.957 + }, + { + "start": 18303.82, + "end": 18304.5, + "probability": 0.8551 + }, + { + "start": 18304.7, + "end": 18305.89, + "probability": 0.4514 + }, + { + "start": 18306.52, + "end": 18307.46, + "probability": 0.6299 + }, + { + "start": 18307.6, + "end": 18311.2, + "probability": 0.9529 + }, + { + "start": 18311.24, + "end": 18311.77, + "probability": 0.6632 + }, + { + "start": 18312.32, + "end": 18313.8, + "probability": 0.7766 + }, + { + "start": 18314.16, + "end": 18316.92, + "probability": 0.9045 + }, + { + "start": 18317.76, + "end": 18320.16, + "probability": 0.8304 + }, + { + "start": 18320.2, + "end": 18322.66, + "probability": 0.7743 + }, + { + "start": 18322.74, + "end": 18323.52, + "probability": 0.8343 + }, + { + "start": 18323.54, + "end": 18324.48, + "probability": 0.8519 + }, + { + "start": 18324.6, + "end": 18325.84, + "probability": 0.5326 + }, + { + "start": 18325.96, + "end": 18326.48, + "probability": 0.6456 + }, + { + "start": 18326.78, + "end": 18329.78, + "probability": 0.986 + }, + { + "start": 18329.96, + "end": 18331.36, + "probability": 0.7653 + }, + { + "start": 18331.48, + "end": 18331.82, + "probability": 0.5511 + }, + { + "start": 18331.88, + "end": 18333.54, + "probability": 0.6821 + }, + { + "start": 18334.06, + "end": 18334.64, + "probability": 0.9346 + }, + { + "start": 18334.96, + "end": 18336.66, + "probability": 0.959 + }, + { + "start": 18336.66, + "end": 18336.82, + "probability": 0.153 + }, + { + "start": 18337.28, + "end": 18338.92, + "probability": 0.6679 + }, + { + "start": 18339.2, + "end": 18340.6, + "probability": 0.663 + }, + { + "start": 18340.6, + "end": 18342.22, + "probability": 0.6743 + }, + { + "start": 18342.88, + "end": 18345.3, + "probability": 0.8696 + }, + { + "start": 18345.38, + "end": 18345.66, + "probability": 0.9325 + }, + { + "start": 18346.34, + "end": 18347.32, + "probability": 0.9474 + }, + { + "start": 18347.32, + "end": 18349.2, + "probability": 0.9831 + }, + { + "start": 18349.28, + "end": 18350.24, + "probability": 0.9941 + }, + { + "start": 18351.0, + "end": 18353.22, + "probability": 0.8825 + }, + { + "start": 18353.76, + "end": 18355.34, + "probability": 0.8298 + }, + { + "start": 18355.98, + "end": 18356.74, + "probability": 0.6923 + }, + { + "start": 18356.86, + "end": 18360.82, + "probability": 0.9154 + }, + { + "start": 18361.14, + "end": 18364.4, + "probability": 0.8581 + }, + { + "start": 18364.4, + "end": 18367.38, + "probability": 0.9962 + }, + { + "start": 18367.48, + "end": 18368.98, + "probability": 0.9751 + }, + { + "start": 18369.06, + "end": 18371.12, + "probability": 0.6542 + }, + { + "start": 18371.84, + "end": 18372.5, + "probability": 0.9426 + }, + { + "start": 18373.5, + "end": 18375.3, + "probability": 0.6919 + }, + { + "start": 18375.44, + "end": 18376.04, + "probability": 0.6829 + }, + { + "start": 18376.3, + "end": 18377.0, + "probability": 0.9212 + }, + { + "start": 18377.24, + "end": 18377.84, + "probability": 0.8286 + }, + { + "start": 18378.24, + "end": 18379.54, + "probability": 0.7022 + }, + { + "start": 18379.66, + "end": 18381.4, + "probability": 0.9209 + }, + { + "start": 18381.48, + "end": 18382.4, + "probability": 0.894 + }, + { + "start": 18383.04, + "end": 18385.78, + "probability": 0.9708 + }, + { + "start": 18386.16, + "end": 18387.4, + "probability": 0.9563 + }, + { + "start": 18388.56, + "end": 18391.44, + "probability": 0.9634 + }, + { + "start": 18392.0, + "end": 18395.18, + "probability": 0.8547 + }, + { + "start": 18395.24, + "end": 18396.16, + "probability": 0.8268 + }, + { + "start": 18396.9, + "end": 18399.34, + "probability": 0.8549 + }, + { + "start": 18400.08, + "end": 18401.78, + "probability": 0.8785 + }, + { + "start": 18401.98, + "end": 18402.64, + "probability": 0.512 + }, + { + "start": 18402.76, + "end": 18404.3, + "probability": 0.6037 + }, + { + "start": 18404.82, + "end": 18405.72, + "probability": 0.5288 + }, + { + "start": 18405.8, + "end": 18406.52, + "probability": 0.8284 + }, + { + "start": 18406.62, + "end": 18407.92, + "probability": 0.9927 + }, + { + "start": 18408.4, + "end": 18410.5, + "probability": 0.753 + }, + { + "start": 18410.62, + "end": 18411.08, + "probability": 0.5569 + }, + { + "start": 18411.1, + "end": 18414.78, + "probability": 0.9038 + }, + { + "start": 18415.0, + "end": 18416.48, + "probability": 0.5715 + }, + { + "start": 18416.98, + "end": 18418.62, + "probability": 0.8281 + }, + { + "start": 18419.32, + "end": 18419.66, + "probability": 0.7693 + }, + { + "start": 18419.8, + "end": 18420.96, + "probability": 0.8403 + }, + { + "start": 18421.38, + "end": 18425.18, + "probability": 0.9437 + }, + { + "start": 18426.26, + "end": 18427.4, + "probability": 0.9912 + }, + { + "start": 18431.8, + "end": 18431.92, + "probability": 0.2784 + }, + { + "start": 18448.3, + "end": 18455.7, + "probability": 0.704 + }, + { + "start": 18456.8, + "end": 18460.08, + "probability": 0.6066 + }, + { + "start": 18461.52, + "end": 18465.16, + "probability": 0.9396 + }, + { + "start": 18466.92, + "end": 18467.6, + "probability": 0.4786 + }, + { + "start": 18468.24, + "end": 18469.2, + "probability": 0.7793 + }, + { + "start": 18469.86, + "end": 18472.02, + "probability": 0.991 + }, + { + "start": 18472.68, + "end": 18476.16, + "probability": 0.9928 + }, + { + "start": 18476.72, + "end": 18478.88, + "probability": 0.9989 + }, + { + "start": 18479.88, + "end": 18481.48, + "probability": 0.999 + }, + { + "start": 18482.02, + "end": 18485.24, + "probability": 0.9969 + }, + { + "start": 18485.78, + "end": 18489.2, + "probability": 0.9945 + }, + { + "start": 18489.8, + "end": 18492.46, + "probability": 0.9956 + }, + { + "start": 18493.42, + "end": 18494.62, + "probability": 0.5619 + }, + { + "start": 18495.1, + "end": 18495.6, + "probability": 0.7769 + }, + { + "start": 18495.6, + "end": 18498.74, + "probability": 0.7478 + }, + { + "start": 18498.86, + "end": 18500.24, + "probability": 0.5046 + }, + { + "start": 18500.74, + "end": 18503.48, + "probability": 0.8049 + }, + { + "start": 18503.86, + "end": 18506.06, + "probability": 0.9382 + }, + { + "start": 18506.28, + "end": 18507.8, + "probability": 0.9268 + }, + { + "start": 18508.5, + "end": 18509.58, + "probability": 0.8161 + }, + { + "start": 18509.72, + "end": 18509.96, + "probability": 0.3773 + }, + { + "start": 18509.98, + "end": 18510.26, + "probability": 0.4207 + }, + { + "start": 18510.32, + "end": 18510.44, + "probability": 0.7874 + }, + { + "start": 18510.52, + "end": 18510.76, + "probability": 0.912 + }, + { + "start": 18510.86, + "end": 18511.04, + "probability": 0.5891 + }, + { + "start": 18511.12, + "end": 18512.14, + "probability": 0.9183 + }, + { + "start": 18512.46, + "end": 18515.3, + "probability": 0.8968 + }, + { + "start": 18515.76, + "end": 18516.84, + "probability": 0.4698 + }, + { + "start": 18516.86, + "end": 18516.92, + "probability": 0.5947 + }, + { + "start": 18517.72, + "end": 18518.22, + "probability": 0.4206 + }, + { + "start": 18518.22, + "end": 18518.98, + "probability": 0.271 + }, + { + "start": 18518.98, + "end": 18519.34, + "probability": 0.8304 + }, + { + "start": 18519.38, + "end": 18519.6, + "probability": 0.7983 + }, + { + "start": 18519.84, + "end": 18520.06, + "probability": 0.4142 + }, + { + "start": 18520.08, + "end": 18520.86, + "probability": 0.8501 + }, + { + "start": 18520.92, + "end": 18523.76, + "probability": 0.8534 + }, + { + "start": 18530.86, + "end": 18531.06, + "probability": 0.6613 + }, + { + "start": 18532.76, + "end": 18533.64, + "probability": 0.4884 + }, + { + "start": 18533.64, + "end": 18533.64, + "probability": 0.1853 + }, + { + "start": 18533.64, + "end": 18533.64, + "probability": 0.3822 + }, + { + "start": 18533.64, + "end": 18533.64, + "probability": 0.3457 + }, + { + "start": 18533.64, + "end": 18533.74, + "probability": 0.4923 + }, + { + "start": 18534.5, + "end": 18535.62, + "probability": 0.8611 + }, + { + "start": 18535.76, + "end": 18537.56, + "probability": 0.9482 + }, + { + "start": 18538.48, + "end": 18541.48, + "probability": 0.7383 + }, + { + "start": 18542.8, + "end": 18545.36, + "probability": 0.5247 + }, + { + "start": 18545.68, + "end": 18547.66, + "probability": 0.6348 + }, + { + "start": 18548.06, + "end": 18548.34, + "probability": 0.8905 + }, + { + "start": 18548.88, + "end": 18551.52, + "probability": 0.9585 + }, + { + "start": 18552.24, + "end": 18553.1, + "probability": 0.9648 + }, + { + "start": 18554.44, + "end": 18556.92, + "probability": 0.375 + }, + { + "start": 18556.92, + "end": 18559.92, + "probability": 0.9888 + }, + { + "start": 18561.22, + "end": 18564.04, + "probability": 0.9964 + }, + { + "start": 18564.78, + "end": 18566.76, + "probability": 0.986 + }, + { + "start": 18567.7, + "end": 18569.48, + "probability": 0.998 + }, + { + "start": 18569.6, + "end": 18571.14, + "probability": 0.6157 + }, + { + "start": 18571.66, + "end": 18572.86, + "probability": 0.8955 + }, + { + "start": 18572.98, + "end": 18574.3, + "probability": 0.9886 + }, + { + "start": 18574.88, + "end": 18579.28, + "probability": 0.9818 + }, + { + "start": 18579.32, + "end": 18580.18, + "probability": 0.8716 + }, + { + "start": 18580.24, + "end": 18580.62, + "probability": 0.7679 + }, + { + "start": 18581.18, + "end": 18581.72, + "probability": 0.6165 + }, + { + "start": 18582.24, + "end": 18584.8, + "probability": 0.9931 + }, + { + "start": 18585.42, + "end": 18589.14, + "probability": 0.9946 + }, + { + "start": 18589.78, + "end": 18594.64, + "probability": 0.9627 + }, + { + "start": 18594.64, + "end": 18598.46, + "probability": 0.9899 + }, + { + "start": 18598.56, + "end": 18599.5, + "probability": 0.4873 + }, + { + "start": 18599.58, + "end": 18599.88, + "probability": 0.9367 + }, + { + "start": 18600.96, + "end": 18602.94, + "probability": 0.6726 + }, + { + "start": 18603.46, + "end": 18605.08, + "probability": 0.9846 + }, + { + "start": 18605.28, + "end": 18606.06, + "probability": 0.9894 + }, + { + "start": 18606.96, + "end": 18607.18, + "probability": 0.655 + }, + { + "start": 18608.24, + "end": 18610.24, + "probability": 0.4172 + }, + { + "start": 18610.46, + "end": 18611.74, + "probability": 0.9678 + }, + { + "start": 18611.88, + "end": 18613.78, + "probability": 0.7788 + }, + { + "start": 18614.22, + "end": 18616.04, + "probability": 0.9751 + }, + { + "start": 18616.14, + "end": 18617.04, + "probability": 0.5383 + }, + { + "start": 18617.64, + "end": 18618.98, + "probability": 0.9722 + }, + { + "start": 18619.12, + "end": 18621.22, + "probability": 0.9541 + }, + { + "start": 18621.3, + "end": 18622.46, + "probability": 0.9734 + }, + { + "start": 18622.5, + "end": 18623.14, + "probability": 0.7259 + }, + { + "start": 18623.18, + "end": 18623.92, + "probability": 0.8663 + }, + { + "start": 18624.08, + "end": 18625.16, + "probability": 0.8844 + }, + { + "start": 18625.36, + "end": 18629.9, + "probability": 0.9947 + }, + { + "start": 18630.48, + "end": 18631.32, + "probability": 0.9878 + }, + { + "start": 18631.6, + "end": 18632.84, + "probability": 0.9766 + }, + { + "start": 18632.86, + "end": 18633.78, + "probability": 0.7696 + }, + { + "start": 18634.72, + "end": 18635.04, + "probability": 0.2156 + }, + { + "start": 18635.08, + "end": 18636.54, + "probability": 0.8248 + }, + { + "start": 18637.36, + "end": 18640.32, + "probability": 0.9122 + }, + { + "start": 18640.72, + "end": 18642.23, + "probability": 0.7903 + }, + { + "start": 18643.22, + "end": 18643.22, + "probability": 0.8091 + }, + { + "start": 18643.54, + "end": 18643.54, + "probability": 0.0263 + }, + { + "start": 18643.54, + "end": 18643.54, + "probability": 0.1625 + }, + { + "start": 18643.54, + "end": 18643.82, + "probability": 0.1585 + }, + { + "start": 18643.82, + "end": 18645.22, + "probability": 0.6762 + }, + { + "start": 18645.58, + "end": 18648.52, + "probability": 0.9535 + }, + { + "start": 18648.58, + "end": 18650.06, + "probability": 0.6799 + }, + { + "start": 18650.16, + "end": 18653.98, + "probability": 0.9229 + }, + { + "start": 18654.35, + "end": 18659.54, + "probability": 0.9697 + }, + { + "start": 18659.56, + "end": 18660.0, + "probability": 0.5741 + }, + { + "start": 18660.22, + "end": 18660.64, + "probability": 0.9597 + }, + { + "start": 18661.2, + "end": 18662.18, + "probability": 0.7767 + }, + { + "start": 18662.86, + "end": 18664.54, + "probability": 0.4457 + }, + { + "start": 18665.32, + "end": 18666.8, + "probability": 0.2519 + }, + { + "start": 18669.26, + "end": 18671.68, + "probability": 0.7361 + }, + { + "start": 18672.56, + "end": 18676.78, + "probability": 0.8633 + }, + { + "start": 18677.52, + "end": 18678.18, + "probability": 0.9456 + }, + { + "start": 18678.96, + "end": 18679.66, + "probability": 0.7695 + }, + { + "start": 18680.22, + "end": 18681.54, + "probability": 0.7192 + }, + { + "start": 18681.78, + "end": 18683.86, + "probability": 0.964 + }, + { + "start": 18684.2, + "end": 18685.12, + "probability": 0.9395 + }, + { + "start": 18685.78, + "end": 18688.06, + "probability": 0.9911 + }, + { + "start": 18688.16, + "end": 18692.38, + "probability": 0.9918 + }, + { + "start": 18692.7, + "end": 18695.52, + "probability": 0.9797 + }, + { + "start": 18696.18, + "end": 18699.02, + "probability": 0.9572 + }, + { + "start": 18699.32, + "end": 18701.18, + "probability": 0.7997 + }, + { + "start": 18701.36, + "end": 18701.76, + "probability": 0.6488 + }, + { + "start": 18701.94, + "end": 18707.52, + "probability": 0.7113 + }, + { + "start": 18707.98, + "end": 18708.62, + "probability": 0.6655 + }, + { + "start": 18708.62, + "end": 18713.82, + "probability": 0.9791 + }, + { + "start": 18713.92, + "end": 18716.82, + "probability": 0.9315 + }, + { + "start": 18717.44, + "end": 18719.68, + "probability": 0.6367 + }, + { + "start": 18719.76, + "end": 18722.58, + "probability": 0.8838 + }, + { + "start": 18724.5, + "end": 18725.0, + "probability": 0.6357 + }, + { + "start": 18725.04, + "end": 18726.14, + "probability": 0.624 + }, + { + "start": 18726.18, + "end": 18727.38, + "probability": 0.6537 + }, + { + "start": 18727.48, + "end": 18728.96, + "probability": 0.7501 + }, + { + "start": 18728.96, + "end": 18731.72, + "probability": 0.9905 + }, + { + "start": 18732.06, + "end": 18732.64, + "probability": 0.9199 + }, + { + "start": 18733.52, + "end": 18734.62, + "probability": 0.9678 + }, + { + "start": 18736.14, + "end": 18736.14, + "probability": 0.3344 + }, + { + "start": 18736.14, + "end": 18736.14, + "probability": 0.2387 + }, + { + "start": 18736.14, + "end": 18736.56, + "probability": 0.2777 + }, + { + "start": 18736.76, + "end": 18741.12, + "probability": 0.6838 + }, + { + "start": 18741.26, + "end": 18742.34, + "probability": 0.9441 + }, + { + "start": 18744.2, + "end": 18747.48, + "probability": 0.3642 + }, + { + "start": 18751.06, + "end": 18751.55, + "probability": 0.2657 + }, + { + "start": 18757.98, + "end": 18760.32, + "probability": 0.4559 + }, + { + "start": 18760.74, + "end": 18764.6, + "probability": 0.8552 + }, + { + "start": 18765.18, + "end": 18769.39, + "probability": 0.3145 + }, + { + "start": 18770.68, + "end": 18770.74, + "probability": 0.0397 + }, + { + "start": 18770.74, + "end": 18770.74, + "probability": 0.3319 + }, + { + "start": 18770.74, + "end": 18770.74, + "probability": 0.5178 + }, + { + "start": 18770.74, + "end": 18770.74, + "probability": 0.4619 + }, + { + "start": 18770.74, + "end": 18770.74, + "probability": 0.0354 + }, + { + "start": 18770.74, + "end": 18771.12, + "probability": 0.2788 + }, + { + "start": 18771.14, + "end": 18772.28, + "probability": 0.7517 + }, + { + "start": 18772.36, + "end": 18773.22, + "probability": 0.4173 + }, + { + "start": 18773.3, + "end": 18773.6, + "probability": 0.6421 + }, + { + "start": 18775.16, + "end": 18775.34, + "probability": 0.5141 + }, + { + "start": 18775.34, + "end": 18776.96, + "probability": 0.4982 + }, + { + "start": 18778.0, + "end": 18779.4, + "probability": 0.8923 + }, + { + "start": 18780.38, + "end": 18782.36, + "probability": 0.782 + }, + { + "start": 18783.38, + "end": 18783.92, + "probability": 0.9393 + }, + { + "start": 18808.28, + "end": 18810.34, + "probability": 0.7357 + }, + { + "start": 18814.98, + "end": 18816.44, + "probability": 0.7968 + }, + { + "start": 18817.52, + "end": 18818.58, + "probability": 0.8136 + }, + { + "start": 18820.3, + "end": 18821.14, + "probability": 0.9772 + }, + { + "start": 18821.96, + "end": 18826.56, + "probability": 0.9931 + }, + { + "start": 18827.66, + "end": 18831.62, + "probability": 0.993 + }, + { + "start": 18831.9, + "end": 18836.96, + "probability": 0.9858 + }, + { + "start": 18837.92, + "end": 18838.94, + "probability": 0.9072 + }, + { + "start": 18839.1, + "end": 18840.37, + "probability": 0.9441 + }, + { + "start": 18840.5, + "end": 18842.1, + "probability": 0.7947 + }, + { + "start": 18843.12, + "end": 18844.2, + "probability": 0.9988 + }, + { + "start": 18845.44, + "end": 18847.88, + "probability": 0.8987 + }, + { + "start": 18847.98, + "end": 18849.76, + "probability": 0.5643 + }, + { + "start": 18849.82, + "end": 18850.76, + "probability": 0.8535 + }, + { + "start": 18850.88, + "end": 18851.56, + "probability": 0.9973 + }, + { + "start": 18852.5, + "end": 18854.52, + "probability": 0.9903 + }, + { + "start": 18855.38, + "end": 18860.72, + "probability": 0.8057 + }, + { + "start": 18862.54, + "end": 18863.48, + "probability": 0.999 + }, + { + "start": 18864.02, + "end": 18867.53, + "probability": 0.9998 + }, + { + "start": 18868.62, + "end": 18872.88, + "probability": 0.9875 + }, + { + "start": 18874.62, + "end": 18876.04, + "probability": 0.7955 + }, + { + "start": 18876.32, + "end": 18878.1, + "probability": 0.9916 + }, + { + "start": 18878.28, + "end": 18878.84, + "probability": 0.7204 + }, + { + "start": 18878.94, + "end": 18879.78, + "probability": 0.8655 + }, + { + "start": 18880.32, + "end": 18880.98, + "probability": 0.9423 + }, + { + "start": 18881.48, + "end": 18881.82, + "probability": 0.6376 + }, + { + "start": 18882.26, + "end": 18882.72, + "probability": 0.5391 + }, + { + "start": 18882.78, + "end": 18889.36, + "probability": 0.9142 + }, + { + "start": 18890.0, + "end": 18892.46, + "probability": 0.7999 + }, + { + "start": 18893.38, + "end": 18895.1, + "probability": 0.9844 + }, + { + "start": 18896.24, + "end": 18897.56, + "probability": 0.6449 + }, + { + "start": 18899.86, + "end": 18900.12, + "probability": 0.162 + }, + { + "start": 18900.12, + "end": 18900.22, + "probability": 0.4643 + }, + { + "start": 18901.16, + "end": 18902.42, + "probability": 0.5199 + }, + { + "start": 18903.38, + "end": 18904.42, + "probability": 0.0609 + }, + { + "start": 18905.54, + "end": 18906.26, + "probability": 0.3174 + }, + { + "start": 18906.72, + "end": 18908.2, + "probability": 0.5166 + }, + { + "start": 18908.58, + "end": 18909.7, + "probability": 0.3203 + }, + { + "start": 18909.94, + "end": 18912.04, + "probability": 0.2372 + }, + { + "start": 18912.9, + "end": 18914.4, + "probability": 0.6555 + }, + { + "start": 18914.84, + "end": 18916.6, + "probability": 0.4784 + }, + { + "start": 18916.74, + "end": 18918.78, + "probability": 0.5235 + }, + { + "start": 18919.64, + "end": 18919.88, + "probability": 0.3305 + }, + { + "start": 18920.72, + "end": 18922.16, + "probability": 0.1016 + }, + { + "start": 18922.16, + "end": 18923.35, + "probability": 0.2703 + }, + { + "start": 18926.36, + "end": 18928.0, + "probability": 0.9233 + }, + { + "start": 18928.12, + "end": 18928.56, + "probability": 0.3366 + }, + { + "start": 18929.32, + "end": 18930.14, + "probability": 0.3681 + }, + { + "start": 18930.42, + "end": 18930.94, + "probability": 0.8331 + }, + { + "start": 18931.5, + "end": 18932.96, + "probability": 0.736 + }, + { + "start": 18933.08, + "end": 18934.06, + "probability": 0.8718 + }, + { + "start": 18934.2, + "end": 18936.62, + "probability": 0.8896 + }, + { + "start": 18936.62, + "end": 18941.48, + "probability": 0.9397 + }, + { + "start": 18941.48, + "end": 18945.24, + "probability": 0.998 + }, + { + "start": 18945.64, + "end": 18946.38, + "probability": 0.4383 + }, + { + "start": 18946.58, + "end": 18948.92, + "probability": 0.8899 + }, + { + "start": 18950.9, + "end": 18951.32, + "probability": 0.9905 + }, + { + "start": 18951.92, + "end": 18955.88, + "probability": 0.9713 + }, + { + "start": 18956.62, + "end": 18959.5, + "probability": 0.9869 + }, + { + "start": 18959.66, + "end": 18960.58, + "probability": 0.7274 + }, + { + "start": 18960.64, + "end": 18961.14, + "probability": 0.7205 + }, + { + "start": 18961.66, + "end": 18964.42, + "probability": 0.4854 + }, + { + "start": 18965.2, + "end": 18968.0, + "probability": 0.984 + }, + { + "start": 18968.42, + "end": 18969.2, + "probability": 0.8745 + }, + { + "start": 18969.42, + "end": 18969.84, + "probability": 0.5756 + }, + { + "start": 18970.36, + "end": 18971.2, + "probability": 0.7222 + }, + { + "start": 18971.74, + "end": 18977.56, + "probability": 0.9722 + }, + { + "start": 18978.16, + "end": 18982.48, + "probability": 0.8203 + }, + { + "start": 18983.18, + "end": 18984.96, + "probability": 0.7969 + }, + { + "start": 18985.97, + "end": 18987.84, + "probability": 0.9836 + }, + { + "start": 18988.2, + "end": 18989.46, + "probability": 0.7547 + }, + { + "start": 18989.89, + "end": 18991.5, + "probability": 0.9709 + }, + { + "start": 18991.58, + "end": 18992.2, + "probability": 0.6097 + }, + { + "start": 18992.32, + "end": 18995.56, + "probability": 0.9268 + }, + { + "start": 18996.4, + "end": 19001.98, + "probability": 0.9934 + }, + { + "start": 19002.1, + "end": 19003.62, + "probability": 0.9331 + }, + { + "start": 19004.0, + "end": 19006.4, + "probability": 0.8137 + }, + { + "start": 19006.52, + "end": 19007.14, + "probability": 0.9056 + }, + { + "start": 19007.56, + "end": 19008.61, + "probability": 0.8114 + }, + { + "start": 19009.32, + "end": 19010.84, + "probability": 0.9839 + }, + { + "start": 19011.0, + "end": 19011.46, + "probability": 0.7951 + }, + { + "start": 19011.98, + "end": 19012.76, + "probability": 0.9641 + }, + { + "start": 19013.62, + "end": 19014.1, + "probability": 0.7049 + }, + { + "start": 19014.36, + "end": 19015.0, + "probability": 0.6455 + }, + { + "start": 19015.08, + "end": 19015.32, + "probability": 0.7667 + }, + { + "start": 19015.36, + "end": 19015.6, + "probability": 0.811 + }, + { + "start": 19015.62, + "end": 19016.06, + "probability": 0.673 + }, + { + "start": 19016.14, + "end": 19016.54, + "probability": 0.8953 + }, + { + "start": 19016.62, + "end": 19017.48, + "probability": 0.8987 + }, + { + "start": 19034.3, + "end": 19035.02, + "probability": 0.5363 + }, + { + "start": 19036.56, + "end": 19038.68, + "probability": 0.7472 + }, + { + "start": 19039.54, + "end": 19043.72, + "probability": 0.9959 + }, + { + "start": 19045.8, + "end": 19050.24, + "probability": 0.8501 + }, + { + "start": 19050.9, + "end": 19051.82, + "probability": 0.9869 + }, + { + "start": 19052.76, + "end": 19054.94, + "probability": 0.9751 + }, + { + "start": 19055.38, + "end": 19057.38, + "probability": 0.9457 + }, + { + "start": 19058.08, + "end": 19059.0, + "probability": 0.7292 + }, + { + "start": 19059.16, + "end": 19064.65, + "probability": 0.9549 + }, + { + "start": 19066.66, + "end": 19067.57, + "probability": 0.0435 + }, + { + "start": 19068.24, + "end": 19073.96, + "probability": 0.9927 + }, + { + "start": 19074.28, + "end": 19076.26, + "probability": 0.752 + }, + { + "start": 19077.8, + "end": 19080.57, + "probability": 0.7676 + }, + { + "start": 19082.94, + "end": 19085.08, + "probability": 0.8271 + }, + { + "start": 19085.4, + "end": 19087.68, + "probability": 0.9538 + }, + { + "start": 19088.42, + "end": 19092.42, + "probability": 0.8301 + }, + { + "start": 19093.44, + "end": 19094.1, + "probability": 0.8883 + }, + { + "start": 19095.0, + "end": 19099.2, + "probability": 0.9949 + }, + { + "start": 19099.34, + "end": 19101.24, + "probability": 0.937 + }, + { + "start": 19103.34, + "end": 19107.36, + "probability": 0.9921 + }, + { + "start": 19107.76, + "end": 19109.02, + "probability": 0.7791 + }, + { + "start": 19109.18, + "end": 19110.86, + "probability": 0.926 + }, + { + "start": 19112.02, + "end": 19115.46, + "probability": 0.9294 + }, + { + "start": 19115.68, + "end": 19117.22, + "probability": 0.9768 + }, + { + "start": 19117.86, + "end": 19120.34, + "probability": 0.9812 + }, + { + "start": 19120.96, + "end": 19123.36, + "probability": 0.9792 + }, + { + "start": 19123.92, + "end": 19125.56, + "probability": 0.1754 + }, + { + "start": 19125.86, + "end": 19130.04, + "probability": 0.7297 + }, + { + "start": 19130.86, + "end": 19132.1, + "probability": 0.7729 + }, + { + "start": 19133.32, + "end": 19133.86, + "probability": 0.3644 + }, + { + "start": 19134.4, + "end": 19135.42, + "probability": 0.8804 + }, + { + "start": 19135.96, + "end": 19138.7, + "probability": 0.941 + }, + { + "start": 19139.74, + "end": 19142.54, + "probability": 0.9712 + }, + { + "start": 19143.24, + "end": 19144.9, + "probability": 0.8934 + }, + { + "start": 19145.22, + "end": 19146.14, + "probability": 0.75 + }, + { + "start": 19146.54, + "end": 19148.28, + "probability": 0.772 + }, + { + "start": 19148.42, + "end": 19151.56, + "probability": 0.9834 + }, + { + "start": 19152.76, + "end": 19154.44, + "probability": 0.8342 + }, + { + "start": 19154.92, + "end": 19159.54, + "probability": 0.9935 + }, + { + "start": 19159.94, + "end": 19162.46, + "probability": 0.9878 + }, + { + "start": 19163.04, + "end": 19163.96, + "probability": 0.943 + }, + { + "start": 19164.44, + "end": 19164.86, + "probability": 0.4894 + }, + { + "start": 19165.68, + "end": 19168.34, + "probability": 0.9789 + }, + { + "start": 19169.02, + "end": 19170.62, + "probability": 0.9234 + }, + { + "start": 19172.68, + "end": 19176.66, + "probability": 0.9106 + }, + { + "start": 19177.44, + "end": 19178.96, + "probability": 0.9842 + }, + { + "start": 19180.08, + "end": 19181.24, + "probability": 0.931 + }, + { + "start": 19181.28, + "end": 19183.96, + "probability": 0.9457 + }, + { + "start": 19184.38, + "end": 19189.22, + "probability": 0.9646 + }, + { + "start": 19189.66, + "end": 19190.52, + "probability": 0.6482 + }, + { + "start": 19190.82, + "end": 19194.22, + "probability": 0.9936 + }, + { + "start": 19194.68, + "end": 19196.7, + "probability": 0.9971 + }, + { + "start": 19198.44, + "end": 19199.48, + "probability": 0.8602 + }, + { + "start": 19199.6, + "end": 19202.78, + "probability": 0.9875 + }, + { + "start": 19203.3, + "end": 19207.42, + "probability": 0.9863 + }, + { + "start": 19207.98, + "end": 19212.1, + "probability": 0.9291 + }, + { + "start": 19212.22, + "end": 19212.71, + "probability": 0.7501 + }, + { + "start": 19213.22, + "end": 19218.24, + "probability": 0.9937 + }, + { + "start": 19218.24, + "end": 19222.08, + "probability": 0.9833 + }, + { + "start": 19222.42, + "end": 19223.32, + "probability": 0.9193 + }, + { + "start": 19224.32, + "end": 19226.32, + "probability": 0.9949 + }, + { + "start": 19227.16, + "end": 19230.64, + "probability": 0.9804 + }, + { + "start": 19231.06, + "end": 19232.84, + "probability": 0.96 + }, + { + "start": 19232.92, + "end": 19233.14, + "probability": 0.713 + }, + { + "start": 19233.24, + "end": 19237.74, + "probability": 0.9839 + }, + { + "start": 19237.74, + "end": 19242.32, + "probability": 0.6724 + }, + { + "start": 19242.88, + "end": 19243.14, + "probability": 0.7482 + }, + { + "start": 19243.36, + "end": 19244.26, + "probability": 0.915 + }, + { + "start": 19244.34, + "end": 19247.14, + "probability": 0.9512 + }, + { + "start": 19247.2, + "end": 19248.66, + "probability": 0.9895 + }, + { + "start": 19248.68, + "end": 19253.28, + "probability": 0.9585 + }, + { + "start": 19253.86, + "end": 19257.3, + "probability": 0.677 + }, + { + "start": 19258.62, + "end": 19261.08, + "probability": 0.8289 + }, + { + "start": 19261.68, + "end": 19265.74, + "probability": 0.9862 + }, + { + "start": 19266.8, + "end": 19268.1, + "probability": 0.8663 + }, + { + "start": 19269.7, + "end": 19274.98, + "probability": 0.9935 + }, + { + "start": 19275.56, + "end": 19276.85, + "probability": 0.7347 + }, + { + "start": 19277.5, + "end": 19280.32, + "probability": 0.9192 + }, + { + "start": 19280.4, + "end": 19285.24, + "probability": 0.9883 + }, + { + "start": 19286.58, + "end": 19288.72, + "probability": 0.9473 + }, + { + "start": 19289.46, + "end": 19292.48, + "probability": 0.9734 + }, + { + "start": 19293.18, + "end": 19296.1, + "probability": 0.9103 + }, + { + "start": 19296.78, + "end": 19298.72, + "probability": 0.9958 + }, + { + "start": 19300.48, + "end": 19301.48, + "probability": 0.9774 + }, + { + "start": 19301.76, + "end": 19302.18, + "probability": 0.7843 + }, + { + "start": 19302.44, + "end": 19306.02, + "probability": 0.9757 + }, + { + "start": 19306.54, + "end": 19307.96, + "probability": 0.8109 + }, + { + "start": 19308.64, + "end": 19310.5, + "probability": 0.9805 + }, + { + "start": 19310.98, + "end": 19313.1, + "probability": 0.9769 + }, + { + "start": 19313.86, + "end": 19319.8, + "probability": 0.9195 + }, + { + "start": 19319.84, + "end": 19323.94, + "probability": 0.9869 + }, + { + "start": 19324.34, + "end": 19328.16, + "probability": 0.994 + }, + { + "start": 19328.9, + "end": 19331.28, + "probability": 0.876 + }, + { + "start": 19332.02, + "end": 19335.94, + "probability": 0.9901 + }, + { + "start": 19335.98, + "end": 19337.82, + "probability": 0.9591 + }, + { + "start": 19339.36, + "end": 19344.2, + "probability": 0.9962 + }, + { + "start": 19344.2, + "end": 19348.98, + "probability": 0.9943 + }, + { + "start": 19349.64, + "end": 19350.92, + "probability": 0.8134 + }, + { + "start": 19351.1, + "end": 19351.44, + "probability": 0.754 + }, + { + "start": 19351.52, + "end": 19352.52, + "probability": 0.9497 + }, + { + "start": 19352.68, + "end": 19355.26, + "probability": 0.9751 + }, + { + "start": 19355.66, + "end": 19356.74, + "probability": 0.0792 + }, + { + "start": 19359.22, + "end": 19362.28, + "probability": 0.7931 + }, + { + "start": 19363.74, + "end": 19365.52, + "probability": 0.2102 + }, + { + "start": 19365.64, + "end": 19366.7, + "probability": 0.7008 + }, + { + "start": 19366.9, + "end": 19368.63, + "probability": 0.6038 + }, + { + "start": 19369.0, + "end": 19369.58, + "probability": 0.215 + }, + { + "start": 19369.7, + "end": 19369.9, + "probability": 0.2318 + }, + { + "start": 19369.9, + "end": 19371.12, + "probability": 0.9557 + }, + { + "start": 19371.2, + "end": 19371.58, + "probability": 0.8685 + }, + { + "start": 19371.62, + "end": 19375.54, + "probability": 0.9651 + }, + { + "start": 19375.6, + "end": 19378.28, + "probability": 0.9993 + }, + { + "start": 19378.46, + "end": 19379.8, + "probability": 0.4182 + }, + { + "start": 19380.34, + "end": 19386.04, + "probability": 0.9852 + }, + { + "start": 19386.08, + "end": 19388.06, + "probability": 0.6802 + }, + { + "start": 19388.18, + "end": 19389.24, + "probability": 0.9843 + }, + { + "start": 19389.4, + "end": 19389.86, + "probability": 0.7351 + }, + { + "start": 19389.86, + "end": 19390.46, + "probability": 0.7179 + }, + { + "start": 19390.82, + "end": 19393.34, + "probability": 0.9646 + }, + { + "start": 19393.62, + "end": 19396.04, + "probability": 0.9808 + }, + { + "start": 19396.08, + "end": 19396.72, + "probability": 0.9852 + }, + { + "start": 19396.86, + "end": 19399.96, + "probability": 0.9583 + }, + { + "start": 19400.2, + "end": 19402.08, + "probability": 0.977 + }, + { + "start": 19402.42, + "end": 19402.96, + "probability": 0.8543 + }, + { + "start": 19403.06, + "end": 19404.38, + "probability": 0.6761 + }, + { + "start": 19404.78, + "end": 19404.96, + "probability": 0.6929 + }, + { + "start": 19405.04, + "end": 19406.7, + "probability": 0.9915 + }, + { + "start": 19406.76, + "end": 19407.3, + "probability": 0.8859 + }, + { + "start": 19407.46, + "end": 19407.86, + "probability": 0.8977 + }, + { + "start": 19407.96, + "end": 19412.58, + "probability": 0.9893 + }, + { + "start": 19412.72, + "end": 19414.38, + "probability": 0.8562 + }, + { + "start": 19414.82, + "end": 19415.74, + "probability": 0.8825 + }, + { + "start": 19415.8, + "end": 19419.14, + "probability": 0.9619 + }, + { + "start": 19419.5, + "end": 19420.08, + "probability": 0.7982 + }, + { + "start": 19420.08, + "end": 19420.56, + "probability": 0.8608 + }, + { + "start": 19420.82, + "end": 19421.4, + "probability": 0.9851 + }, + { + "start": 19421.66, + "end": 19421.86, + "probability": 0.8698 + }, + { + "start": 19422.26, + "end": 19423.1, + "probability": 0.844 + }, + { + "start": 19423.3, + "end": 19424.8, + "probability": 0.9176 + }, + { + "start": 19426.0, + "end": 19426.66, + "probability": 0.446 + }, + { + "start": 19427.08, + "end": 19428.86, + "probability": 0.9125 + }, + { + "start": 19430.24, + "end": 19431.58, + "probability": 0.9583 + }, + { + "start": 19452.38, + "end": 19453.1, + "probability": 0.7309 + }, + { + "start": 19453.2, + "end": 19454.44, + "probability": 0.8556 + }, + { + "start": 19454.46, + "end": 19454.98, + "probability": 0.8812 + }, + { + "start": 19455.14, + "end": 19460.16, + "probability": 0.9246 + }, + { + "start": 19461.24, + "end": 19464.7, + "probability": 0.9885 + }, + { + "start": 19465.02, + "end": 19469.66, + "probability": 0.981 + }, + { + "start": 19469.72, + "end": 19471.76, + "probability": 0.9932 + }, + { + "start": 19471.88, + "end": 19473.02, + "probability": 0.5815 + }, + { + "start": 19473.58, + "end": 19474.88, + "probability": 0.9559 + }, + { + "start": 19475.08, + "end": 19476.96, + "probability": 0.9873 + }, + { + "start": 19477.04, + "end": 19479.26, + "probability": 0.8465 + }, + { + "start": 19479.86, + "end": 19486.84, + "probability": 0.8605 + }, + { + "start": 19487.24, + "end": 19489.26, + "probability": 0.9604 + }, + { + "start": 19489.36, + "end": 19491.74, + "probability": 0.9896 + }, + { + "start": 19491.84, + "end": 19493.38, + "probability": 0.9977 + }, + { + "start": 19493.96, + "end": 19496.28, + "probability": 0.9937 + }, + { + "start": 19496.54, + "end": 19496.7, + "probability": 0.8068 + }, + { + "start": 19496.8, + "end": 19497.44, + "probability": 0.9204 + }, + { + "start": 19497.82, + "end": 19498.64, + "probability": 0.8227 + }, + { + "start": 19498.9, + "end": 19499.6, + "probability": 0.5893 + }, + { + "start": 19500.22, + "end": 19500.92, + "probability": 0.2739 + }, + { + "start": 19501.3, + "end": 19502.48, + "probability": 0.7663 + }, + { + "start": 19502.8, + "end": 19504.34, + "probability": 0.876 + }, + { + "start": 19504.64, + "end": 19505.68, + "probability": 0.9781 + }, + { + "start": 19506.26, + "end": 19508.9, + "probability": 0.9572 + }, + { + "start": 19509.52, + "end": 19510.7, + "probability": 0.8877 + }, + { + "start": 19510.94, + "end": 19512.8, + "probability": 0.7985 + }, + { + "start": 19513.58, + "end": 19514.44, + "probability": 0.4661 + }, + { + "start": 19515.08, + "end": 19517.38, + "probability": 0.9668 + }, + { + "start": 19519.41, + "end": 19520.0, + "probability": 0.9842 + }, + { + "start": 19521.42, + "end": 19525.52, + "probability": 0.9858 + }, + { + "start": 19526.02, + "end": 19526.7, + "probability": 0.6588 + }, + { + "start": 19527.42, + "end": 19528.76, + "probability": 0.9653 + }, + { + "start": 19529.98, + "end": 19530.8, + "probability": 0.6121 + }, + { + "start": 19531.2, + "end": 19532.04, + "probability": 0.8781 + }, + { + "start": 19532.91, + "end": 19534.88, + "probability": 0.9504 + }, + { + "start": 19534.94, + "end": 19535.94, + "probability": 0.9822 + }, + { + "start": 19536.1, + "end": 19536.84, + "probability": 0.9785 + }, + { + "start": 19536.96, + "end": 19540.1, + "probability": 0.9748 + }, + { + "start": 19540.42, + "end": 19541.84, + "probability": 0.9657 + }, + { + "start": 19542.3, + "end": 19544.42, + "probability": 0.999 + }, + { + "start": 19544.86, + "end": 19547.12, + "probability": 0.9897 + }, + { + "start": 19547.12, + "end": 19550.92, + "probability": 0.8185 + }, + { + "start": 19551.56, + "end": 19553.13, + "probability": 0.5354 + }, + { + "start": 19554.32, + "end": 19554.32, + "probability": 0.2215 + }, + { + "start": 19554.32, + "end": 19554.32, + "probability": 0.4215 + }, + { + "start": 19554.46, + "end": 19555.78, + "probability": 0.9536 + }, + { + "start": 19556.72, + "end": 19560.6, + "probability": 0.7603 + }, + { + "start": 19561.1, + "end": 19563.58, + "probability": 0.6885 + }, + { + "start": 19564.08, + "end": 19565.12, + "probability": 0.9712 + }, + { + "start": 19565.18, + "end": 19565.7, + "probability": 0.9912 + }, + { + "start": 19566.52, + "end": 19568.86, + "probability": 0.7835 + }, + { + "start": 19569.08, + "end": 19570.04, + "probability": 0.7236 + }, + { + "start": 19570.12, + "end": 19571.22, + "probability": 0.4771 + }, + { + "start": 19571.36, + "end": 19572.58, + "probability": 0.9614 + }, + { + "start": 19573.79, + "end": 19577.18, + "probability": 0.9522 + }, + { + "start": 19577.72, + "end": 19578.94, + "probability": 0.9919 + }, + { + "start": 19579.82, + "end": 19581.1, + "probability": 0.9331 + }, + { + "start": 19581.12, + "end": 19581.48, + "probability": 0.7486 + }, + { + "start": 19581.52, + "end": 19583.1, + "probability": 0.8511 + }, + { + "start": 19583.56, + "end": 19584.12, + "probability": 0.8141 + }, + { + "start": 19584.5, + "end": 19586.08, + "probability": 0.9111 + }, + { + "start": 19586.5, + "end": 19588.3, + "probability": 0.7424 + }, + { + "start": 19588.62, + "end": 19589.56, + "probability": 0.9937 + }, + { + "start": 19589.8, + "end": 19592.82, + "probability": 0.9735 + }, + { + "start": 19593.24, + "end": 19596.4, + "probability": 0.6975 + }, + { + "start": 19596.86, + "end": 19598.18, + "probability": 0.8918 + }, + { + "start": 19598.66, + "end": 19601.16, + "probability": 0.9125 + }, + { + "start": 19601.22, + "end": 19601.56, + "probability": 0.721 + }, + { + "start": 19601.64, + "end": 19602.22, + "probability": 0.7979 + }, + { + "start": 19602.6, + "end": 19603.56, + "probability": 0.7866 + }, + { + "start": 19603.8, + "end": 19608.24, + "probability": 0.979 + }, + { + "start": 19608.66, + "end": 19611.52, + "probability": 0.9343 + }, + { + "start": 19612.04, + "end": 19613.6, + "probability": 0.8698 + }, + { + "start": 19614.3, + "end": 19617.1, + "probability": 0.9474 + }, + { + "start": 19617.38, + "end": 19618.34, + "probability": 0.8759 + }, + { + "start": 19618.78, + "end": 19619.52, + "probability": 0.7638 + }, + { + "start": 19619.96, + "end": 19622.72, + "probability": 0.8482 + }, + { + "start": 19623.02, + "end": 19624.8, + "probability": 0.7572 + }, + { + "start": 19625.16, + "end": 19627.54, + "probability": 0.9977 + }, + { + "start": 19627.92, + "end": 19628.9, + "probability": 0.808 + }, + { + "start": 19628.96, + "end": 19632.3, + "probability": 0.9974 + }, + { + "start": 19632.76, + "end": 19635.78, + "probability": 0.9977 + }, + { + "start": 19636.42, + "end": 19636.88, + "probability": 0.655 + }, + { + "start": 19637.14, + "end": 19638.0, + "probability": 0.2815 + }, + { + "start": 19638.0, + "end": 19640.02, + "probability": 0.9435 + }, + { + "start": 19640.38, + "end": 19641.6, + "probability": 0.9795 + }, + { + "start": 19641.94, + "end": 19644.0, + "probability": 0.9868 + }, + { + "start": 19644.36, + "end": 19646.52, + "probability": 0.9008 + }, + { + "start": 19647.0, + "end": 19649.08, + "probability": 0.9763 + }, + { + "start": 19649.8, + "end": 19652.22, + "probability": 0.7277 + }, + { + "start": 19653.02, + "end": 19653.93, + "probability": 0.9456 + }, + { + "start": 19654.16, + "end": 19657.88, + "probability": 0.9844 + }, + { + "start": 19658.04, + "end": 19658.32, + "probability": 0.5728 + }, + { + "start": 19658.4, + "end": 19659.6, + "probability": 0.7888 + }, + { + "start": 19659.72, + "end": 19661.68, + "probability": 0.5907 + }, + { + "start": 19662.04, + "end": 19663.46, + "probability": 0.9836 + }, + { + "start": 19663.98, + "end": 19666.48, + "probability": 0.9761 + }, + { + "start": 19666.76, + "end": 19667.28, + "probability": 0.9862 + }, + { + "start": 19667.7, + "end": 19668.66, + "probability": 0.7446 + }, + { + "start": 19668.7, + "end": 19672.3, + "probability": 0.9189 + }, + { + "start": 19672.4, + "end": 19673.86, + "probability": 0.98 + }, + { + "start": 19675.2, + "end": 19675.99, + "probability": 0.8901 + }, + { + "start": 19677.76, + "end": 19678.4, + "probability": 0.6025 + }, + { + "start": 19678.4, + "end": 19680.09, + "probability": 0.9113 + }, + { + "start": 19682.9, + "end": 19684.42, + "probability": 0.1033 + }, + { + "start": 19685.22, + "end": 19686.72, + "probability": 0.5541 + }, + { + "start": 19689.2, + "end": 19690.94, + "probability": 0.4367 + }, + { + "start": 19691.96, + "end": 19694.1, + "probability": 0.9194 + }, + { + "start": 19694.88, + "end": 19695.62, + "probability": 0.8565 + }, + { + "start": 19696.14, + "end": 19698.74, + "probability": 0.535 + }, + { + "start": 19698.88, + "end": 19700.38, + "probability": 0.8249 + }, + { + "start": 19701.28, + "end": 19706.5, + "probability": 0.8446 + }, + { + "start": 19706.72, + "end": 19708.72, + "probability": 0.8637 + }, + { + "start": 19710.18, + "end": 19713.86, + "probability": 0.868 + }, + { + "start": 19714.48, + "end": 19719.0, + "probability": 0.8702 + }, + { + "start": 19719.6, + "end": 19723.14, + "probability": 0.9756 + }, + { + "start": 19723.4, + "end": 19726.96, + "probability": 0.8569 + }, + { + "start": 19727.6, + "end": 19730.94, + "probability": 0.8122 + }, + { + "start": 19731.0, + "end": 19733.1, + "probability": 0.7197 + }, + { + "start": 19733.64, + "end": 19737.08, + "probability": 0.7528 + }, + { + "start": 19737.9, + "end": 19739.08, + "probability": 0.4735 + }, + { + "start": 19739.16, + "end": 19744.0, + "probability": 0.8914 + }, + { + "start": 19744.42, + "end": 19747.42, + "probability": 0.8066 + }, + { + "start": 19747.42, + "end": 19752.44, + "probability": 0.9512 + }, + { + "start": 19752.46, + "end": 19754.98, + "probability": 0.5585 + }, + { + "start": 19755.08, + "end": 19756.38, + "probability": 0.7771 + }, + { + "start": 19756.48, + "end": 19761.34, + "probability": 0.3241 + }, + { + "start": 19762.12, + "end": 19762.46, + "probability": 0.2406 + }, + { + "start": 19763.14, + "end": 19767.8, + "probability": 0.7766 + }, + { + "start": 19767.99, + "end": 19769.26, + "probability": 0.4126 + }, + { + "start": 19769.42, + "end": 19770.9, + "probability": 0.9851 + }, + { + "start": 19771.26, + "end": 19772.04, + "probability": 0.8497 + }, + { + "start": 19772.12, + "end": 19773.46, + "probability": 0.9347 + }, + { + "start": 19773.48, + "end": 19779.62, + "probability": 0.8216 + }, + { + "start": 19780.2, + "end": 19783.68, + "probability": 0.9653 + }, + { + "start": 19784.96, + "end": 19786.22, + "probability": 0.9167 + }, + { + "start": 19786.6, + "end": 19789.54, + "probability": 0.8576 + }, + { + "start": 19790.16, + "end": 19791.36, + "probability": 0.873 + }, + { + "start": 19792.04, + "end": 19794.1, + "probability": 0.8639 + }, + { + "start": 19794.72, + "end": 19799.5, + "probability": 0.7477 + }, + { + "start": 19800.14, + "end": 19806.16, + "probability": 0.9535 + }, + { + "start": 19806.78, + "end": 19809.37, + "probability": 0.9722 + }, + { + "start": 19810.46, + "end": 19816.08, + "probability": 0.8894 + }, + { + "start": 19816.08, + "end": 19820.58, + "probability": 0.9943 + }, + { + "start": 19821.26, + "end": 19822.82, + "probability": 0.8482 + }, + { + "start": 19823.78, + "end": 19825.24, + "probability": 0.8029 + }, + { + "start": 19825.9, + "end": 19829.5, + "probability": 0.9411 + }, + { + "start": 19830.1, + "end": 19834.88, + "probability": 0.9933 + }, + { + "start": 19835.42, + "end": 19837.16, + "probability": 0.6536 + }, + { + "start": 19837.72, + "end": 19843.0, + "probability": 0.9933 + }, + { + "start": 19843.54, + "end": 19848.04, + "probability": 0.9458 + }, + { + "start": 19848.72, + "end": 19850.94, + "probability": 0.9495 + }, + { + "start": 19851.4, + "end": 19851.58, + "probability": 0.947 + }, + { + "start": 19852.14, + "end": 19859.18, + "probability": 0.9766 + }, + { + "start": 19861.98, + "end": 19862.98, + "probability": 0.8044 + }, + { + "start": 19863.6, + "end": 19865.02, + "probability": 0.9563 + }, + { + "start": 19865.78, + "end": 19869.48, + "probability": 0.9966 + }, + { + "start": 19870.14, + "end": 19873.56, + "probability": 0.957 + }, + { + "start": 19873.56, + "end": 19877.54, + "probability": 0.997 + }, + { + "start": 19878.74, + "end": 19883.11, + "probability": 0.9754 + }, + { + "start": 19884.7, + "end": 19885.58, + "probability": 0.7138 + }, + { + "start": 19885.7, + "end": 19886.78, + "probability": 0.9219 + }, + { + "start": 19886.86, + "end": 19888.64, + "probability": 0.9689 + }, + { + "start": 19889.34, + "end": 19891.8, + "probability": 0.9478 + }, + { + "start": 19892.34, + "end": 19894.34, + "probability": 0.9976 + }, + { + "start": 19894.88, + "end": 19897.86, + "probability": 0.9984 + }, + { + "start": 19900.98, + "end": 19905.9, + "probability": 0.9321 + }, + { + "start": 19906.46, + "end": 19907.22, + "probability": 0.333 + }, + { + "start": 19908.38, + "end": 19909.82, + "probability": 0.9819 + }, + { + "start": 19909.88, + "end": 19911.02, + "probability": 0.946 + }, + { + "start": 19911.06, + "end": 19916.68, + "probability": 0.8571 + }, + { + "start": 19917.36, + "end": 19919.46, + "probability": 0.8729 + }, + { + "start": 19920.04, + "end": 19922.84, + "probability": 0.9482 + }, + { + "start": 19923.58, + "end": 19925.4, + "probability": 0.9207 + }, + { + "start": 19926.16, + "end": 19926.48, + "probability": 0.8359 + }, + { + "start": 19926.52, + "end": 19930.34, + "probability": 0.9207 + }, + { + "start": 19930.84, + "end": 19935.18, + "probability": 0.9648 + }, + { + "start": 19936.12, + "end": 19936.66, + "probability": 0.5956 + }, + { + "start": 19937.62, + "end": 19941.92, + "probability": 0.7646 + }, + { + "start": 19942.18, + "end": 19943.16, + "probability": 0.6119 + }, + { + "start": 19944.08, + "end": 19944.18, + "probability": 0.1735 + }, + { + "start": 19944.34, + "end": 19945.52, + "probability": 0.9689 + }, + { + "start": 19945.9, + "end": 19947.39, + "probability": 0.7473 + }, + { + "start": 19947.54, + "end": 19948.16, + "probability": 0.4562 + }, + { + "start": 19948.92, + "end": 19951.9, + "probability": 0.7804 + }, + { + "start": 19952.06, + "end": 19953.94, + "probability": 0.4949 + }, + { + "start": 19954.36, + "end": 19955.64, + "probability": 0.3799 + }, + { + "start": 19955.7, + "end": 19956.68, + "probability": 0.7439 + }, + { + "start": 19958.96, + "end": 19961.18, + "probability": 0.7402 + }, + { + "start": 19961.2, + "end": 19961.58, + "probability": 0.5957 + }, + { + "start": 19961.76, + "end": 19963.16, + "probability": 0.7005 + }, + { + "start": 19963.82, + "end": 19964.58, + "probability": 0.444 + }, + { + "start": 19966.32, + "end": 19968.87, + "probability": 0.4351 + }, + { + "start": 19969.14, + "end": 19970.18, + "probability": 0.9487 + }, + { + "start": 19971.06, + "end": 19973.5, + "probability": 0.557 + }, + { + "start": 19974.96, + "end": 19976.42, + "probability": 0.8118 + }, + { + "start": 19976.7, + "end": 19977.7, + "probability": 0.2531 + }, + { + "start": 19978.24, + "end": 19982.07, + "probability": 0.5127 + }, + { + "start": 19988.26, + "end": 19989.2, + "probability": 0.3528 + }, + { + "start": 19989.96, + "end": 19990.58, + "probability": 0.6883 + }, + { + "start": 19990.76, + "end": 19991.2, + "probability": 0.6478 + }, + { + "start": 19991.36, + "end": 19993.38, + "probability": 0.9574 + }, + { + "start": 19993.52, + "end": 19994.44, + "probability": 0.5301 + }, + { + "start": 19995.26, + "end": 19997.68, + "probability": 0.9871 + }, + { + "start": 19998.96, + "end": 20000.0, + "probability": 0.81 + }, + { + "start": 20000.06, + "end": 20002.92, + "probability": 0.9545 + }, + { + "start": 20003.66, + "end": 20005.82, + "probability": 0.9949 + }, + { + "start": 20005.86, + "end": 20006.63, + "probability": 0.9848 + }, + { + "start": 20007.18, + "end": 20008.28, + "probability": 0.9392 + }, + { + "start": 20008.88, + "end": 20009.77, + "probability": 0.783 + }, + { + "start": 20010.28, + "end": 20013.52, + "probability": 0.9464 + }, + { + "start": 20013.94, + "end": 20016.34, + "probability": 0.9359 + }, + { + "start": 20017.34, + "end": 20018.72, + "probability": 0.9191 + }, + { + "start": 20019.3, + "end": 20023.1, + "probability": 0.8865 + }, + { + "start": 20023.48, + "end": 20026.8, + "probability": 0.9814 + }, + { + "start": 20027.36, + "end": 20030.32, + "probability": 0.9731 + }, + { + "start": 20030.98, + "end": 20033.62, + "probability": 0.9512 + }, + { + "start": 20033.72, + "end": 20039.24, + "probability": 0.9849 + }, + { + "start": 20039.56, + "end": 20040.7, + "probability": 0.7935 + }, + { + "start": 20040.82, + "end": 20041.18, + "probability": 0.7186 + }, + { + "start": 20041.36, + "end": 20042.48, + "probability": 0.6162 + }, + { + "start": 20042.6, + "end": 20042.96, + "probability": 0.2793 + }, + { + "start": 20043.08, + "end": 20043.96, + "probability": 0.8364 + }, + { + "start": 20044.6, + "end": 20046.08, + "probability": 0.9375 + }, + { + "start": 20046.58, + "end": 20046.8, + "probability": 0.7979 + }, + { + "start": 20047.6, + "end": 20048.56, + "probability": 0.9054 + }, + { + "start": 20048.72, + "end": 20052.78, + "probability": 0.9944 + }, + { + "start": 20052.8, + "end": 20054.48, + "probability": 0.8119 + }, + { + "start": 20054.56, + "end": 20059.66, + "probability": 0.7661 + }, + { + "start": 20060.12, + "end": 20060.56, + "probability": 0.7663 + }, + { + "start": 20060.64, + "end": 20061.26, + "probability": 0.7548 + }, + { + "start": 20061.64, + "end": 20062.04, + "probability": 0.785 + }, + { + "start": 20062.24, + "end": 20062.72, + "probability": 0.6706 + }, + { + "start": 20062.84, + "end": 20063.08, + "probability": 0.7314 + }, + { + "start": 20063.8, + "end": 20067.06, + "probability": 0.7378 + }, + { + "start": 20068.06, + "end": 20073.58, + "probability": 0.4242 + }, + { + "start": 20079.6, + "end": 20079.6, + "probability": 0.031 + }, + { + "start": 20079.6, + "end": 20081.38, + "probability": 0.7006 + }, + { + "start": 20081.88, + "end": 20086.4, + "probability": 0.5062 + }, + { + "start": 20087.36, + "end": 20090.14, + "probability": 0.9432 + }, + { + "start": 20090.36, + "end": 20091.2, + "probability": 0.7799 + }, + { + "start": 20091.28, + "end": 20092.18, + "probability": 0.3848 + }, + { + "start": 20092.18, + "end": 20097.08, + "probability": 0.5422 + }, + { + "start": 20097.74, + "end": 20097.96, + "probability": 0.0002 + }, + { + "start": 20098.54, + "end": 20098.68, + "probability": 0.0203 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.2615 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.3846 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.2595 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.4297 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.488 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.5101 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.2034 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.0389 + }, + { + "start": 20098.68, + "end": 20098.68, + "probability": 0.169 + }, + { + "start": 20098.68, + "end": 20099.36, + "probability": 0.511 + }, + { + "start": 20099.36, + "end": 20100.82, + "probability": 0.4728 + }, + { + "start": 20101.08, + "end": 20101.92, + "probability": 0.4392 + }, + { + "start": 20104.36, + "end": 20105.82, + "probability": 0.7019 + }, + { + "start": 20106.5, + "end": 20108.5, + "probability": 0.6884 + }, + { + "start": 20108.76, + "end": 20109.92, + "probability": 0.9702 + }, + { + "start": 20112.37, + "end": 20115.1, + "probability": 0.8989 + }, + { + "start": 20115.46, + "end": 20115.68, + "probability": 0.8875 + }, + { + "start": 20117.86, + "end": 20119.44, + "probability": 0.8556 + }, + { + "start": 20119.46, + "end": 20120.4, + "probability": 0.6077 + }, + { + "start": 20120.84, + "end": 20121.28, + "probability": 0.9556 + }, + { + "start": 20121.56, + "end": 20124.24, + "probability": 0.7703 + }, + { + "start": 20125.44, + "end": 20128.72, + "probability": 0.9393 + }, + { + "start": 20129.68, + "end": 20131.86, + "probability": 0.9727 + }, + { + "start": 20132.5, + "end": 20135.62, + "probability": 0.9814 + }, + { + "start": 20136.92, + "end": 20137.41, + "probability": 0.645 + }, + { + "start": 20138.42, + "end": 20141.1, + "probability": 0.9863 + }, + { + "start": 20141.64, + "end": 20147.68, + "probability": 0.9812 + }, + { + "start": 20148.56, + "end": 20150.36, + "probability": 0.9803 + }, + { + "start": 20151.44, + "end": 20153.46, + "probability": 0.9423 + }, + { + "start": 20154.3, + "end": 20154.8, + "probability": 0.5493 + }, + { + "start": 20155.48, + "end": 20158.62, + "probability": 0.7887 + }, + { + "start": 20159.6, + "end": 20163.88, + "probability": 0.7887 + }, + { + "start": 20165.14, + "end": 20168.34, + "probability": 0.9059 + }, + { + "start": 20169.16, + "end": 20174.96, + "probability": 0.9918 + }, + { + "start": 20175.7, + "end": 20176.34, + "probability": 0.6691 + }, + { + "start": 20177.5, + "end": 20178.52, + "probability": 0.5286 + }, + { + "start": 20179.58, + "end": 20181.02, + "probability": 0.8241 + }, + { + "start": 20181.74, + "end": 20183.72, + "probability": 0.9688 + }, + { + "start": 20184.24, + "end": 20186.7, + "probability": 0.9585 + }, + { + "start": 20187.32, + "end": 20190.2, + "probability": 0.9944 + }, + { + "start": 20190.96, + "end": 20193.28, + "probability": 0.6558 + }, + { + "start": 20194.02, + "end": 20197.0, + "probability": 0.7779 + }, + { + "start": 20197.72, + "end": 20198.56, + "probability": 0.6994 + }, + { + "start": 20200.0, + "end": 20201.36, + "probability": 0.7134 + }, + { + "start": 20202.02, + "end": 20203.48, + "probability": 0.9485 + }, + { + "start": 20204.08, + "end": 20206.34, + "probability": 0.8517 + }, + { + "start": 20207.24, + "end": 20208.06, + "probability": 0.9103 + }, + { + "start": 20208.86, + "end": 20210.14, + "probability": 0.8041 + }, + { + "start": 20210.7, + "end": 20212.2, + "probability": 0.7415 + }, + { + "start": 20212.3, + "end": 20216.44, + "probability": 0.978 + }, + { + "start": 20217.78, + "end": 20218.02, + "probability": 0.9059 + }, + { + "start": 20219.18, + "end": 20220.04, + "probability": 0.8992 + }, + { + "start": 20220.68, + "end": 20224.44, + "probability": 0.9912 + }, + { + "start": 20224.48, + "end": 20224.92, + "probability": 0.7417 + }, + { + "start": 20224.98, + "end": 20225.36, + "probability": 0.5945 + }, + { + "start": 20225.54, + "end": 20230.9, + "probability": 0.8452 + }, + { + "start": 20231.76, + "end": 20235.18, + "probability": 0.9044 + }, + { + "start": 20235.3, + "end": 20238.88, + "probability": 0.7207 + }, + { + "start": 20240.2, + "end": 20242.74, + "probability": 0.6745 + }, + { + "start": 20243.54, + "end": 20245.92, + "probability": 0.9625 + }, + { + "start": 20246.48, + "end": 20251.36, + "probability": 0.9808 + }, + { + "start": 20252.78, + "end": 20255.3, + "probability": 0.2426 + }, + { + "start": 20255.34, + "end": 20255.68, + "probability": 0.7066 + }, + { + "start": 20255.84, + "end": 20258.44, + "probability": 0.9429 + }, + { + "start": 20258.56, + "end": 20259.04, + "probability": 0.7629 + }, + { + "start": 20260.24, + "end": 20261.02, + "probability": 0.979 + }, + { + "start": 20261.48, + "end": 20264.54, + "probability": 0.9738 + }, + { + "start": 20264.76, + "end": 20264.83, + "probability": 0.0329 + }, + { + "start": 20265.38, + "end": 20267.04, + "probability": 0.9288 + }, + { + "start": 20267.58, + "end": 20269.48, + "probability": 0.9449 + }, + { + "start": 20270.72, + "end": 20271.5, + "probability": 0.8639 + }, + { + "start": 20271.74, + "end": 20273.22, + "probability": 0.8928 + }, + { + "start": 20273.68, + "end": 20274.62, + "probability": 0.6747 + }, + { + "start": 20275.06, + "end": 20276.92, + "probability": 0.8926 + }, + { + "start": 20277.36, + "end": 20279.02, + "probability": 0.9752 + }, + { + "start": 20279.34, + "end": 20280.12, + "probability": 0.8366 + }, + { + "start": 20280.22, + "end": 20282.94, + "probability": 0.9976 + }, + { + "start": 20283.84, + "end": 20285.56, + "probability": 0.6294 + }, + { + "start": 20285.76, + "end": 20288.1, + "probability": 0.981 + }, + { + "start": 20288.74, + "end": 20292.34, + "probability": 0.8568 + }, + { + "start": 20292.68, + "end": 20292.82, + "probability": 0.6297 + }, + { + "start": 20294.08, + "end": 20296.04, + "probability": 0.7474 + }, + { + "start": 20296.8, + "end": 20298.34, + "probability": 0.8721 + }, + { + "start": 20298.38, + "end": 20303.0, + "probability": 0.8525 + }, + { + "start": 20303.7, + "end": 20307.3, + "probability": 0.776 + }, + { + "start": 20307.42, + "end": 20309.78, + "probability": 0.8227 + }, + { + "start": 20309.94, + "end": 20312.86, + "probability": 0.6659 + }, + { + "start": 20312.92, + "end": 20315.7, + "probability": 0.9052 + }, + { + "start": 20315.78, + "end": 20322.94, + "probability": 0.9944 + }, + { + "start": 20323.04, + "end": 20323.52, + "probability": 0.9417 + }, + { + "start": 20324.12, + "end": 20325.58, + "probability": 0.7421 + }, + { + "start": 20325.7, + "end": 20327.16, + "probability": 0.8331 + }, + { + "start": 20328.2, + "end": 20330.32, + "probability": 0.885 + }, + { + "start": 20331.04, + "end": 20331.7, + "probability": 0.9814 + }, + { + "start": 20331.76, + "end": 20333.7, + "probability": 0.8495 + }, + { + "start": 20333.92, + "end": 20334.58, + "probability": 0.5069 + }, + { + "start": 20335.06, + "end": 20340.46, + "probability": 0.8579 + }, + { + "start": 20340.68, + "end": 20341.36, + "probability": 0.821 + }, + { + "start": 20341.5, + "end": 20341.8, + "probability": 0.6097 + }, + { + "start": 20342.34, + "end": 20343.4, + "probability": 0.9391 + }, + { + "start": 20343.56, + "end": 20347.38, + "probability": 0.9839 + }, + { + "start": 20348.14, + "end": 20350.3, + "probability": 0.9213 + }, + { + "start": 20350.92, + "end": 20352.52, + "probability": 0.8513 + }, + { + "start": 20353.08, + "end": 20353.96, + "probability": 0.8261 + }, + { + "start": 20354.4, + "end": 20355.18, + "probability": 0.6387 + }, + { + "start": 20355.52, + "end": 20356.96, + "probability": 0.9109 + }, + { + "start": 20357.44, + "end": 20358.36, + "probability": 0.8752 + }, + { + "start": 20358.5, + "end": 20358.94, + "probability": 0.6237 + }, + { + "start": 20359.06, + "end": 20359.54, + "probability": 0.7947 + }, + { + "start": 20359.62, + "end": 20360.66, + "probability": 0.9742 + }, + { + "start": 20360.66, + "end": 20362.16, + "probability": 0.7322 + }, + { + "start": 20363.82, + "end": 20368.44, + "probability": 0.9283 + }, + { + "start": 20368.48, + "end": 20369.28, + "probability": 0.8588 + }, + { + "start": 20369.56, + "end": 20370.7, + "probability": 0.9333 + }, + { + "start": 20370.8, + "end": 20371.08, + "probability": 0.8942 + }, + { + "start": 20371.12, + "end": 20371.52, + "probability": 0.9015 + }, + { + "start": 20371.66, + "end": 20372.32, + "probability": 0.9212 + }, + { + "start": 20373.02, + "end": 20374.5, + "probability": 0.9963 + }, + { + "start": 20374.86, + "end": 20375.26, + "probability": 0.5934 + }, + { + "start": 20375.28, + "end": 20376.7, + "probability": 0.6736 + }, + { + "start": 20376.88, + "end": 20376.88, + "probability": 0.8743 + }, + { + "start": 20376.88, + "end": 20377.92, + "probability": 0.7056 + }, + { + "start": 20378.14, + "end": 20379.76, + "probability": 0.8989 + }, + { + "start": 20379.82, + "end": 20380.9, + "probability": 0.6646 + }, + { + "start": 20381.98, + "end": 20383.18, + "probability": 0.9596 + }, + { + "start": 20383.42, + "end": 20384.28, + "probability": 0.9085 + }, + { + "start": 20384.4, + "end": 20386.4, + "probability": 0.9785 + }, + { + "start": 20386.6, + "end": 20387.6, + "probability": 0.95 + }, + { + "start": 20387.84, + "end": 20391.4, + "probability": 0.9927 + }, + { + "start": 20392.2, + "end": 20396.68, + "probability": 0.989 + }, + { + "start": 20397.3, + "end": 20399.98, + "probability": 0.9795 + }, + { + "start": 20399.98, + "end": 20403.54, + "probability": 0.9987 + }, + { + "start": 20403.94, + "end": 20405.1, + "probability": 0.9067 + }, + { + "start": 20405.74, + "end": 20407.94, + "probability": 0.9961 + }, + { + "start": 20408.58, + "end": 20410.74, + "probability": 0.9976 + }, + { + "start": 20411.64, + "end": 20412.86, + "probability": 0.9592 + }, + { + "start": 20413.0, + "end": 20413.66, + "probability": 0.7461 + }, + { + "start": 20413.76, + "end": 20416.46, + "probability": 0.8892 + }, + { + "start": 20417.26, + "end": 20419.78, + "probability": 0.9019 + }, + { + "start": 20420.42, + "end": 20422.38, + "probability": 0.7171 + }, + { + "start": 20422.92, + "end": 20423.34, + "probability": 0.9756 + }, + { + "start": 20423.36, + "end": 20423.9, + "probability": 0.7254 + }, + { + "start": 20424.02, + "end": 20429.52, + "probability": 0.9922 + }, + { + "start": 20430.54, + "end": 20433.32, + "probability": 0.7587 + }, + { + "start": 20434.76, + "end": 20434.88, + "probability": 0.1048 + }, + { + "start": 20436.56, + "end": 20437.98, + "probability": 0.8819 + }, + { + "start": 20438.53, + "end": 20440.22, + "probability": 0.3852 + }, + { + "start": 20440.22, + "end": 20441.13, + "probability": 0.1705 + }, + { + "start": 20441.44, + "end": 20444.52, + "probability": 0.8863 + }, + { + "start": 20445.02, + "end": 20445.66, + "probability": 0.7347 + }, + { + "start": 20445.8, + "end": 20446.34, + "probability": 0.7545 + }, + { + "start": 20446.4, + "end": 20447.94, + "probability": 0.9792 + }, + { + "start": 20448.1, + "end": 20448.82, + "probability": 0.9408 + }, + { + "start": 20449.48, + "end": 20450.98, + "probability": 0.672 + }, + { + "start": 20451.3, + "end": 20451.84, + "probability": 0.6049 + }, + { + "start": 20451.9, + "end": 20453.96, + "probability": 0.993 + }, + { + "start": 20454.64, + "end": 20457.38, + "probability": 0.927 + }, + { + "start": 20457.84, + "end": 20458.54, + "probability": 0.7026 + }, + { + "start": 20458.8, + "end": 20460.94, + "probability": 0.9792 + }, + { + "start": 20461.7, + "end": 20461.7, + "probability": 0.7589 + }, + { + "start": 20461.82, + "end": 20464.38, + "probability": 0.9971 + }, + { + "start": 20465.76, + "end": 20468.3, + "probability": 0.9978 + }, + { + "start": 20468.3, + "end": 20471.42, + "probability": 0.978 + }, + { + "start": 20472.1, + "end": 20473.96, + "probability": 0.9963 + }, + { + "start": 20474.22, + "end": 20475.92, + "probability": 0.9967 + }, + { + "start": 20476.26, + "end": 20476.76, + "probability": 0.8863 + }, + { + "start": 20477.38, + "end": 20478.28, + "probability": 0.6657 + }, + { + "start": 20478.88, + "end": 20479.48, + "probability": 0.6277 + }, + { + "start": 20480.02, + "end": 20480.22, + "probability": 0.9554 + }, + { + "start": 20481.54, + "end": 20483.64, + "probability": 0.978 + }, + { + "start": 20484.08, + "end": 20485.12, + "probability": 0.9736 + }, + { + "start": 20485.22, + "end": 20492.32, + "probability": 0.925 + }, + { + "start": 20493.48, + "end": 20494.62, + "probability": 0.9072 + }, + { + "start": 20495.24, + "end": 20496.1, + "probability": 0.9736 + }, + { + "start": 20496.3, + "end": 20497.38, + "probability": 0.9407 + }, + { + "start": 20497.52, + "end": 20499.12, + "probability": 0.9269 + }, + { + "start": 20499.82, + "end": 20501.12, + "probability": 0.9872 + }, + { + "start": 20502.54, + "end": 20506.94, + "probability": 0.9796 + }, + { + "start": 20507.42, + "end": 20509.27, + "probability": 0.9922 + }, + { + "start": 20509.68, + "end": 20510.89, + "probability": 0.9976 + }, + { + "start": 20511.24, + "end": 20512.62, + "probability": 0.9434 + }, + { + "start": 20512.74, + "end": 20516.62, + "probability": 0.9862 + }, + { + "start": 20517.18, + "end": 20521.84, + "probability": 0.998 + }, + { + "start": 20522.54, + "end": 20525.68, + "probability": 0.6838 + }, + { + "start": 20526.14, + "end": 20528.42, + "probability": 0.9595 + }, + { + "start": 20528.8, + "end": 20530.62, + "probability": 0.9872 + }, + { + "start": 20531.02, + "end": 20535.48, + "probability": 0.9888 + }, + { + "start": 20536.4, + "end": 20537.48, + "probability": 0.6577 + }, + { + "start": 20538.26, + "end": 20540.06, + "probability": 0.9893 + }, + { + "start": 20540.14, + "end": 20541.1, + "probability": 0.7996 + }, + { + "start": 20541.98, + "end": 20543.34, + "probability": 0.9697 + }, + { + "start": 20543.86, + "end": 20544.56, + "probability": 0.7481 + }, + { + "start": 20545.16, + "end": 20547.94, + "probability": 0.5959 + }, + { + "start": 20548.08, + "end": 20548.76, + "probability": 0.7653 + }, + { + "start": 20549.56, + "end": 20551.52, + "probability": 0.507 + }, + { + "start": 20552.46, + "end": 20554.32, + "probability": 0.9231 + }, + { + "start": 20555.44, + "end": 20556.1, + "probability": 0.9844 + }, + { + "start": 20556.38, + "end": 20559.58, + "probability": 0.8716 + }, + { + "start": 20559.88, + "end": 20560.14, + "probability": 0.8326 + }, + { + "start": 20568.36, + "end": 20569.1, + "probability": 0.4127 + }, + { + "start": 20570.28, + "end": 20574.38, + "probability": 0.4726 + }, + { + "start": 20574.38, + "end": 20574.9, + "probability": 0.7073 + }, + { + "start": 20575.74, + "end": 20576.98, + "probability": 0.8771 + }, + { + "start": 20577.42, + "end": 20579.5, + "probability": 0.2277 + }, + { + "start": 20579.5, + "end": 20582.1, + "probability": 0.5241 + }, + { + "start": 20582.36, + "end": 20583.4, + "probability": 0.5141 + }, + { + "start": 20585.24, + "end": 20588.14, + "probability": 0.7731 + }, + { + "start": 20588.62, + "end": 20592.28, + "probability": 0.9764 + }, + { + "start": 20592.52, + "end": 20595.54, + "probability": 0.8185 + }, + { + "start": 20595.6, + "end": 20599.08, + "probability": 0.9945 + }, + { + "start": 20600.66, + "end": 20602.1, + "probability": 0.3657 + }, + { + "start": 20602.8, + "end": 20603.66, + "probability": 0.6227 + }, + { + "start": 20603.78, + "end": 20607.66, + "probability": 0.8737 + }, + { + "start": 20607.8, + "end": 20608.52, + "probability": 0.8629 + }, + { + "start": 20608.88, + "end": 20609.64, + "probability": 0.7402 + }, + { + "start": 20609.72, + "end": 20610.06, + "probability": 0.5448 + }, + { + "start": 20610.18, + "end": 20610.36, + "probability": 0.8698 + }, + { + "start": 20612.07, + "end": 20612.54, + "probability": 0.1732 + }, + { + "start": 20613.44, + "end": 20614.62, + "probability": 0.5323 + }, + { + "start": 20615.02, + "end": 20615.76, + "probability": 0.5631 + }, + { + "start": 20616.48, + "end": 20620.4, + "probability": 0.9637 + }, + { + "start": 20621.08, + "end": 20622.32, + "probability": 0.777 + }, + { + "start": 20622.9, + "end": 20623.34, + "probability": 0.8042 + }, + { + "start": 20624.02, + "end": 20624.38, + "probability": 0.5583 + }, + { + "start": 20624.7, + "end": 20625.38, + "probability": 0.5085 + }, + { + "start": 20625.38, + "end": 20626.98, + "probability": 0.6431 + }, + { + "start": 20627.38, + "end": 20632.44, + "probability": 0.9831 + }, + { + "start": 20632.98, + "end": 20634.2, + "probability": 0.3684 + }, + { + "start": 20634.8, + "end": 20635.18, + "probability": 0.6329 + }, + { + "start": 20636.22, + "end": 20638.12, + "probability": 0.8354 + }, + { + "start": 20639.1, + "end": 20639.8, + "probability": 0.6764 + }, + { + "start": 20640.58, + "end": 20641.6, + "probability": 0.9832 + }, + { + "start": 20641.94, + "end": 20643.74, + "probability": 0.9108 + }, + { + "start": 20644.56, + "end": 20647.84, + "probability": 0.8684 + }, + { + "start": 20648.9, + "end": 20649.7, + "probability": 0.5874 + }, + { + "start": 20650.08, + "end": 20652.12, + "probability": 0.9327 + }, + { + "start": 20652.86, + "end": 20653.72, + "probability": 0.8604 + }, + { + "start": 20654.36, + "end": 20656.04, + "probability": 0.8899 + }, + { + "start": 20656.9, + "end": 20657.88, + "probability": 0.8564 + }, + { + "start": 20658.42, + "end": 20659.68, + "probability": 0.8291 + }, + { + "start": 20660.22, + "end": 20663.62, + "probability": 0.9692 + }, + { + "start": 20664.06, + "end": 20665.22, + "probability": 0.6757 + }, + { + "start": 20665.68, + "end": 20666.88, + "probability": 0.8088 + }, + { + "start": 20667.64, + "end": 20668.86, + "probability": 0.9971 + }, + { + "start": 20669.42, + "end": 20674.48, + "probability": 0.99 + }, + { + "start": 20674.78, + "end": 20679.88, + "probability": 0.9671 + }, + { + "start": 20680.46, + "end": 20682.32, + "probability": 0.8403 + }, + { + "start": 20682.62, + "end": 20683.88, + "probability": 0.8297 + }, + { + "start": 20684.28, + "end": 20684.8, + "probability": 0.855 + }, + { + "start": 20684.98, + "end": 20685.14, + "probability": 0.7824 + }, + { + "start": 20685.56, + "end": 20686.76, + "probability": 0.6512 + }, + { + "start": 20687.36, + "end": 20689.3, + "probability": 0.856 + }, + { + "start": 20689.34, + "end": 20689.68, + "probability": 0.7314 + }, + { + "start": 20690.26, + "end": 20692.06, + "probability": 0.9315 + }, + { + "start": 20693.86, + "end": 20694.82, + "probability": 0.5293 + }, + { + "start": 20694.98, + "end": 20697.3, + "probability": 0.9527 + }, + { + "start": 20697.3, + "end": 20698.04, + "probability": 0.7969 + }, + { + "start": 20699.22, + "end": 20700.92, + "probability": 0.728 + }, + { + "start": 20701.0, + "end": 20701.92, + "probability": 0.5729 + }, + { + "start": 20702.98, + "end": 20706.76, + "probability": 0.9042 + }, + { + "start": 20707.36, + "end": 20707.72, + "probability": 0.8965 + }, + { + "start": 20709.42, + "end": 20710.1, + "probability": 0.5089 + }, + { + "start": 20711.16, + "end": 20711.5, + "probability": 0.8129 + }, + { + "start": 20711.86, + "end": 20712.92, + "probability": 0.9789 + }, + { + "start": 20713.82, + "end": 20716.7, + "probability": 0.8754 + }, + { + "start": 20717.48, + "end": 20721.74, + "probability": 0.6169 + }, + { + "start": 20721.86, + "end": 20723.16, + "probability": 0.7181 + }, + { + "start": 20723.98, + "end": 20727.2, + "probability": 0.9256 + }, + { + "start": 20728.66, + "end": 20730.0, + "probability": 0.9917 + }, + { + "start": 20731.18, + "end": 20733.02, + "probability": 0.53 + }, + { + "start": 20735.7, + "end": 20737.9, + "probability": 0.9723 + }, + { + "start": 20739.36, + "end": 20741.14, + "probability": 0.6488 + }, + { + "start": 20741.14, + "end": 20742.08, + "probability": 0.7308 + }, + { + "start": 20743.22, + "end": 20746.14, + "probability": 0.973 + }, + { + "start": 20746.92, + "end": 20748.9, + "probability": 0.9572 + }, + { + "start": 20750.58, + "end": 20751.66, + "probability": 0.9268 + }, + { + "start": 20752.78, + "end": 20755.6, + "probability": 0.6779 + }, + { + "start": 20757.24, + "end": 20759.54, + "probability": 0.6878 + }, + { + "start": 20761.7, + "end": 20762.42, + "probability": 0.8125 + }, + { + "start": 20763.06, + "end": 20763.74, + "probability": 0.42 + }, + { + "start": 20764.04, + "end": 20765.36, + "probability": 0.9332 + }, + { + "start": 20765.46, + "end": 20767.84, + "probability": 0.9028 + }, + { + "start": 20769.54, + "end": 20772.24, + "probability": 0.0779 + }, + { + "start": 20772.24, + "end": 20773.24, + "probability": 0.3626 + }, + { + "start": 20774.1, + "end": 20778.24, + "probability": 0.8312 + }, + { + "start": 20779.7, + "end": 20782.62, + "probability": 0.9961 + }, + { + "start": 20784.26, + "end": 20785.04, + "probability": 0.7001 + }, + { + "start": 20785.28, + "end": 20788.58, + "probability": 0.877 + }, + { + "start": 20789.08, + "end": 20790.32, + "probability": 0.843 + }, + { + "start": 20790.96, + "end": 20792.98, + "probability": 0.8982 + }, + { + "start": 20795.64, + "end": 20796.5, + "probability": 0.5889 + }, + { + "start": 20796.56, + "end": 20799.46, + "probability": 0.9536 + }, + { + "start": 20799.5, + "end": 20802.2, + "probability": 0.9554 + }, + { + "start": 20803.54, + "end": 20806.17, + "probability": 0.8189 + }, + { + "start": 20806.54, + "end": 20807.3, + "probability": 0.9097 + }, + { + "start": 20808.14, + "end": 20811.6, + "probability": 0.7773 + }, + { + "start": 20814.28, + "end": 20819.74, + "probability": 0.9443 + }, + { + "start": 20824.4, + "end": 20828.92, + "probability": 0.9931 + }, + { + "start": 20828.98, + "end": 20830.02, + "probability": 0.9554 + }, + { + "start": 20830.16, + "end": 20831.18, + "probability": 0.7181 + }, + { + "start": 20832.44, + "end": 20834.0, + "probability": 0.9774 + }, + { + "start": 20835.1, + "end": 20836.64, + "probability": 0.8552 + }, + { + "start": 20837.48, + "end": 20841.22, + "probability": 0.9673 + }, + { + "start": 20842.88, + "end": 20844.34, + "probability": 0.943 + }, + { + "start": 20844.58, + "end": 20845.4, + "probability": 0.694 + }, + { + "start": 20845.48, + "end": 20846.2, + "probability": 0.7095 + }, + { + "start": 20846.8, + "end": 20847.04, + "probability": 0.5105 + }, + { + "start": 20847.06, + "end": 20847.2, + "probability": 0.2028 + }, + { + "start": 20847.2, + "end": 20850.48, + "probability": 0.8187 + }, + { + "start": 20850.7, + "end": 20850.94, + "probability": 0.4408 + }, + { + "start": 20851.04, + "end": 20851.52, + "probability": 0.7663 + }, + { + "start": 20852.88, + "end": 20858.81, + "probability": 0.8558 + }, + { + "start": 20860.98, + "end": 20863.02, + "probability": 0.9641 + }, + { + "start": 20863.26, + "end": 20863.92, + "probability": 0.6782 + }, + { + "start": 20864.4, + "end": 20865.42, + "probability": 0.647 + }, + { + "start": 20866.48, + "end": 20868.14, + "probability": 0.672 + }, + { + "start": 20868.92, + "end": 20872.04, + "probability": 0.8301 + }, + { + "start": 20872.58, + "end": 20877.44, + "probability": 0.8354 + }, + { + "start": 20877.96, + "end": 20882.48, + "probability": 0.8408 + }, + { + "start": 20883.26, + "end": 20885.24, + "probability": 0.9069 + }, + { + "start": 20886.36, + "end": 20888.66, + "probability": 0.9744 + }, + { + "start": 20889.58, + "end": 20890.52, + "probability": 0.8368 + }, + { + "start": 20890.62, + "end": 20893.78, + "probability": 0.9873 + }, + { + "start": 20894.26, + "end": 20895.8, + "probability": 0.9604 + }, + { + "start": 20895.86, + "end": 20896.78, + "probability": 0.7057 + }, + { + "start": 20897.34, + "end": 20899.7, + "probability": 0.946 + }, + { + "start": 20900.28, + "end": 20901.34, + "probability": 0.9771 + }, + { + "start": 20903.5, + "end": 20904.58, + "probability": 0.9472 + }, + { + "start": 20905.48, + "end": 20906.2, + "probability": 0.8528 + }, + { + "start": 20906.34, + "end": 20907.27, + "probability": 0.9519 + }, + { + "start": 20907.42, + "end": 20908.78, + "probability": 0.7279 + }, + { + "start": 20908.88, + "end": 20909.48, + "probability": 0.9072 + }, + { + "start": 20910.99, + "end": 20914.28, + "probability": 0.7941 + }, + { + "start": 20915.82, + "end": 20916.24, + "probability": 0.9731 + }, + { + "start": 20916.98, + "end": 20921.2, + "probability": 0.9421 + }, + { + "start": 20921.58, + "end": 20923.68, + "probability": 0.9945 + }, + { + "start": 20924.46, + "end": 20925.62, + "probability": 0.9844 + }, + { + "start": 20926.2, + "end": 20926.48, + "probability": 0.9491 + }, + { + "start": 20927.2, + "end": 20929.08, + "probability": 0.8992 + }, + { + "start": 20930.32, + "end": 20933.96, + "probability": 0.7477 + }, + { + "start": 20934.2, + "end": 20937.14, + "probability": 0.9909 + }, + { + "start": 20937.22, + "end": 20937.76, + "probability": 0.8347 + }, + { + "start": 20938.42, + "end": 20939.49, + "probability": 0.9609 + }, + { + "start": 20940.1, + "end": 20941.54, + "probability": 0.8418 + }, + { + "start": 20942.26, + "end": 20944.32, + "probability": 0.8115 + }, + { + "start": 20945.14, + "end": 20948.6, + "probability": 0.3581 + }, + { + "start": 20948.74, + "end": 20949.12, + "probability": 0.4042 + }, + { + "start": 20949.48, + "end": 20950.38, + "probability": 0.8054 + }, + { + "start": 20950.48, + "end": 20951.38, + "probability": 0.9489 + }, + { + "start": 20952.16, + "end": 20954.34, + "probability": 0.8627 + }, + { + "start": 20954.84, + "end": 20955.54, + "probability": 0.958 + }, + { + "start": 20956.1, + "end": 20958.6, + "probability": 0.9363 + }, + { + "start": 20959.44, + "end": 20962.6, + "probability": 0.8452 + }, + { + "start": 20962.72, + "end": 20965.26, + "probability": 0.9516 + }, + { + "start": 20965.86, + "end": 20966.64, + "probability": 0.8856 + }, + { + "start": 20967.18, + "end": 20970.84, + "probability": 0.8291 + }, + { + "start": 20971.74, + "end": 20973.72, + "probability": 0.9752 + }, + { + "start": 20974.04, + "end": 20975.46, + "probability": 0.8084 + }, + { + "start": 20975.58, + "end": 20976.58, + "probability": 0.6557 + }, + { + "start": 20978.88, + "end": 20979.94, + "probability": 0.9783 + }, + { + "start": 20980.46, + "end": 20982.78, + "probability": 0.9927 + }, + { + "start": 20984.26, + "end": 20985.42, + "probability": 0.7284 + }, + { + "start": 20988.76, + "end": 20990.1, + "probability": 0.6375 + }, + { + "start": 20991.76, + "end": 20992.79, + "probability": 0.7349 + }, + { + "start": 20993.8, + "end": 20994.74, + "probability": 0.9295 + }, + { + "start": 20995.42, + "end": 20997.76, + "probability": 0.8933 + }, + { + "start": 20997.84, + "end": 21002.94, + "probability": 0.9357 + }, + { + "start": 21003.62, + "end": 21004.58, + "probability": 0.998 + }, + { + "start": 21005.68, + "end": 21008.3, + "probability": 0.8816 + }, + { + "start": 21009.48, + "end": 21012.88, + "probability": 0.7296 + }, + { + "start": 21014.34, + "end": 21019.3, + "probability": 0.7819 + }, + { + "start": 21019.68, + "end": 21020.5, + "probability": 0.7412 + }, + { + "start": 21020.62, + "end": 21020.88, + "probability": 0.5488 + }, + { + "start": 21020.9, + "end": 21021.26, + "probability": 0.7537 + }, + { + "start": 21021.88, + "end": 21023.72, + "probability": 0.8041 + }, + { + "start": 21024.34, + "end": 21027.06, + "probability": 0.8319 + }, + { + "start": 21027.7, + "end": 21031.1, + "probability": 0.9768 + }, + { + "start": 21031.46, + "end": 21035.48, + "probability": 0.9648 + }, + { + "start": 21037.55, + "end": 21039.62, + "probability": 0.9845 + }, + { + "start": 21040.04, + "end": 21042.78, + "probability": 0.7933 + }, + { + "start": 21043.44, + "end": 21045.58, + "probability": 0.7191 + }, + { + "start": 21046.41, + "end": 21048.88, + "probability": 0.4573 + }, + { + "start": 21049.14, + "end": 21050.86, + "probability": 0.5853 + }, + { + "start": 21052.02, + "end": 21053.7, + "probability": 0.2711 + }, + { + "start": 21053.84, + "end": 21054.78, + "probability": 0.6612 + }, + { + "start": 21054.78, + "end": 21059.92, + "probability": 0.8923 + }, + { + "start": 21060.8, + "end": 21061.36, + "probability": 0.4936 + }, + { + "start": 21061.44, + "end": 21064.2, + "probability": 0.9458 + }, + { + "start": 21064.66, + "end": 21066.6, + "probability": 0.9211 + }, + { + "start": 21067.4, + "end": 21069.16, + "probability": 0.943 + }, + { + "start": 21069.68, + "end": 21074.82, + "probability": 0.9844 + }, + { + "start": 21075.92, + "end": 21079.3, + "probability": 0.6202 + }, + { + "start": 21079.3, + "end": 21081.8, + "probability": 0.4899 + }, + { + "start": 21082.24, + "end": 21084.7, + "probability": 0.9609 + }, + { + "start": 21085.5, + "end": 21087.48, + "probability": 0.875 + }, + { + "start": 21087.98, + "end": 21088.82, + "probability": 0.6506 + }, + { + "start": 21089.92, + "end": 21092.28, + "probability": 0.9567 + }, + { + "start": 21092.38, + "end": 21093.51, + "probability": 0.9956 + }, + { + "start": 21094.16, + "end": 21098.08, + "probability": 0.6702 + }, + { + "start": 21098.12, + "end": 21099.36, + "probability": 0.8551 + }, + { + "start": 21100.4, + "end": 21100.84, + "probability": 0.7605 + }, + { + "start": 21101.28, + "end": 21102.11, + "probability": 0.8813 + }, + { + "start": 21103.84, + "end": 21105.88, + "probability": 0.8452 + }, + { + "start": 21106.44, + "end": 21109.4, + "probability": 0.8 + }, + { + "start": 21110.7, + "end": 21112.34, + "probability": 0.8107 + }, + { + "start": 21115.06, + "end": 21116.34, + "probability": 0.5384 + }, + { + "start": 21117.3, + "end": 21118.68, + "probability": 0.7263 + }, + { + "start": 21118.88, + "end": 21119.54, + "probability": 0.7903 + }, + { + "start": 21120.04, + "end": 21121.06, + "probability": 0.7944 + }, + { + "start": 21121.62, + "end": 21122.32, + "probability": 0.9831 + }, + { + "start": 21122.88, + "end": 21127.3, + "probability": 0.8126 + }, + { + "start": 21128.68, + "end": 21130.12, + "probability": 0.9899 + }, + { + "start": 21130.84, + "end": 21134.58, + "probability": 0.9596 + }, + { + "start": 21135.06, + "end": 21136.26, + "probability": 0.8334 + }, + { + "start": 21136.82, + "end": 21140.76, + "probability": 0.9782 + }, + { + "start": 21141.03, + "end": 21149.04, + "probability": 0.9773 + }, + { + "start": 21149.4, + "end": 21152.12, + "probability": 0.9078 + }, + { + "start": 21153.5, + "end": 21155.12, + "probability": 0.9889 + }, + { + "start": 21156.06, + "end": 21159.78, + "probability": 0.9673 + }, + { + "start": 21159.78, + "end": 21163.3, + "probability": 0.9988 + }, + { + "start": 21163.36, + "end": 21163.8, + "probability": 0.9389 + }, + { + "start": 21164.06, + "end": 21164.4, + "probability": 0.647 + }, + { + "start": 21165.18, + "end": 21165.64, + "probability": 0.4414 + }, + { + "start": 21166.24, + "end": 21166.64, + "probability": 0.3662 + }, + { + "start": 21167.29, + "end": 21169.77, + "probability": 0.8501 + }, + { + "start": 21170.4, + "end": 21171.37, + "probability": 0.678 + }, + { + "start": 21172.98, + "end": 21177.82, + "probability": 0.9486 + }, + { + "start": 21177.96, + "end": 21181.79, + "probability": 0.9067 + }, + { + "start": 21182.72, + "end": 21183.38, + "probability": 0.6363 + }, + { + "start": 21183.46, + "end": 21183.66, + "probability": 0.805 + }, + { + "start": 21183.9, + "end": 21188.56, + "probability": 0.8426 + }, + { + "start": 21188.9, + "end": 21189.62, + "probability": 0.864 + }, + { + "start": 21189.72, + "end": 21190.22, + "probability": 0.879 + }, + { + "start": 21190.82, + "end": 21191.78, + "probability": 0.5804 + }, + { + "start": 21192.72, + "end": 21197.08, + "probability": 0.9917 + }, + { + "start": 21197.8, + "end": 21200.26, + "probability": 0.4992 + }, + { + "start": 21200.94, + "end": 21204.94, + "probability": 0.7262 + }, + { + "start": 21205.34, + "end": 21207.6, + "probability": 0.988 + }, + { + "start": 21207.74, + "end": 21208.54, + "probability": 0.7858 + }, + { + "start": 21208.96, + "end": 21211.06, + "probability": 0.9141 + }, + { + "start": 21211.56, + "end": 21212.56, + "probability": 0.872 + }, + { + "start": 21213.08, + "end": 21214.2, + "probability": 0.641 + }, + { + "start": 21214.44, + "end": 21215.04, + "probability": 0.4783 + }, + { + "start": 21215.84, + "end": 21216.76, + "probability": 0.743 + }, + { + "start": 21217.64, + "end": 21218.64, + "probability": 0.9688 + }, + { + "start": 21219.62, + "end": 21221.64, + "probability": 0.8623 + }, + { + "start": 21222.54, + "end": 21222.56, + "probability": 0.9048 + }, + { + "start": 21223.36, + "end": 21226.4, + "probability": 0.8688 + }, + { + "start": 21228.02, + "end": 21233.54, + "probability": 0.654 + }, + { + "start": 21233.54, + "end": 21238.0, + "probability": 0.9831 + }, + { + "start": 21238.64, + "end": 21241.26, + "probability": 0.7071 + }, + { + "start": 21242.38, + "end": 21243.3, + "probability": 0.8069 + }, + { + "start": 21251.8, + "end": 21252.36, + "probability": 0.5748 + }, + { + "start": 21253.06, + "end": 21254.6, + "probability": 0.8388 + }, + { + "start": 21256.02, + "end": 21258.36, + "probability": 0.8856 + }, + { + "start": 21258.96, + "end": 21260.74, + "probability": 0.998 + }, + { + "start": 21261.42, + "end": 21265.08, + "probability": 0.9961 + }, + { + "start": 21265.68, + "end": 21268.84, + "probability": 0.9692 + }, + { + "start": 21268.9, + "end": 21269.86, + "probability": 0.9605 + }, + { + "start": 21270.62, + "end": 21271.52, + "probability": 0.7001 + }, + { + "start": 21271.7, + "end": 21273.36, + "probability": 0.6667 + }, + { + "start": 21273.94, + "end": 21279.04, + "probability": 0.9731 + }, + { + "start": 21279.08, + "end": 21282.6, + "probability": 0.9797 + }, + { + "start": 21283.72, + "end": 21287.32, + "probability": 0.9702 + }, + { + "start": 21287.84, + "end": 21288.82, + "probability": 0.9678 + }, + { + "start": 21289.36, + "end": 21290.31, + "probability": 0.9135 + }, + { + "start": 21291.08, + "end": 21292.64, + "probability": 0.8351 + }, + { + "start": 21292.7, + "end": 21296.26, + "probability": 0.9673 + }, + { + "start": 21296.94, + "end": 21299.7, + "probability": 0.9906 + }, + { + "start": 21299.78, + "end": 21301.0, + "probability": 0.8306 + }, + { + "start": 21301.66, + "end": 21302.62, + "probability": 0.8093 + }, + { + "start": 21302.74, + "end": 21303.4, + "probability": 0.6812 + }, + { + "start": 21303.86, + "end": 21306.84, + "probability": 0.9979 + }, + { + "start": 21307.94, + "end": 21310.92, + "probability": 0.9893 + }, + { + "start": 21311.24, + "end": 21312.12, + "probability": 0.962 + }, + { + "start": 21312.8, + "end": 21314.02, + "probability": 0.9487 + }, + { + "start": 21314.6, + "end": 21316.54, + "probability": 0.7864 + }, + { + "start": 21317.02, + "end": 21318.96, + "probability": 0.9466 + }, + { + "start": 21318.96, + "end": 21322.02, + "probability": 0.9814 + }, + { + "start": 21322.76, + "end": 21324.46, + "probability": 0.9604 + }, + { + "start": 21324.88, + "end": 21326.68, + "probability": 0.9956 + }, + { + "start": 21327.02, + "end": 21328.56, + "probability": 0.8827 + }, + { + "start": 21328.66, + "end": 21330.68, + "probability": 0.9669 + }, + { + "start": 21331.64, + "end": 21337.2, + "probability": 0.9757 + }, + { + "start": 21337.2, + "end": 21342.44, + "probability": 0.9946 + }, + { + "start": 21342.62, + "end": 21347.36, + "probability": 0.853 + }, + { + "start": 21347.42, + "end": 21348.36, + "probability": 0.7861 + }, + { + "start": 21348.92, + "end": 21351.84, + "probability": 0.6792 + }, + { + "start": 21353.56, + "end": 21358.24, + "probability": 0.9941 + }, + { + "start": 21358.8, + "end": 21361.92, + "probability": 0.9911 + }, + { + "start": 21362.66, + "end": 21365.08, + "probability": 0.9221 + }, + { + "start": 21365.6, + "end": 21369.58, + "probability": 0.9734 + }, + { + "start": 21369.98, + "end": 21372.04, + "probability": 0.9882 + }, + { + "start": 21372.72, + "end": 21377.54, + "probability": 0.9212 + }, + { + "start": 21377.54, + "end": 21382.14, + "probability": 0.9917 + }, + { + "start": 21382.88, + "end": 21384.4, + "probability": 0.6859 + }, + { + "start": 21384.98, + "end": 21387.84, + "probability": 0.9976 + }, + { + "start": 21389.62, + "end": 21393.68, + "probability": 0.9339 + }, + { + "start": 21393.68, + "end": 21396.86, + "probability": 0.9792 + }, + { + "start": 21397.42, + "end": 21401.38, + "probability": 0.9811 + }, + { + "start": 21401.8, + "end": 21402.86, + "probability": 0.7992 + }, + { + "start": 21402.88, + "end": 21403.98, + "probability": 0.9319 + }, + { + "start": 21404.66, + "end": 21406.78, + "probability": 0.9927 + }, + { + "start": 21407.4, + "end": 21409.7, + "probability": 0.876 + }, + { + "start": 21410.4, + "end": 21414.48, + "probability": 0.8603 + }, + { + "start": 21415.18, + "end": 21416.82, + "probability": 0.9592 + }, + { + "start": 21417.04, + "end": 21420.04, + "probability": 0.994 + }, + { + "start": 21422.17, + "end": 21425.95, + "probability": 0.9932 + }, + { + "start": 21426.74, + "end": 21428.98, + "probability": 0.48 + }, + { + "start": 21429.74, + "end": 21431.82, + "probability": 0.4636 + }, + { + "start": 21431.92, + "end": 21433.7, + "probability": 0.8446 + }, + { + "start": 21433.74, + "end": 21434.82, + "probability": 0.7969 + }, + { + "start": 21435.22, + "end": 21438.72, + "probability": 0.2673 + }, + { + "start": 21438.72, + "end": 21440.2, + "probability": 0.7229 + }, + { + "start": 21440.86, + "end": 21444.1, + "probability": 0.683 + }, + { + "start": 21444.26, + "end": 21445.44, + "probability": 0.8925 + }, + { + "start": 21445.94, + "end": 21447.06, + "probability": 0.8947 + }, + { + "start": 21447.14, + "end": 21447.98, + "probability": 0.7619 + }, + { + "start": 21448.34, + "end": 21449.52, + "probability": 0.9007 + }, + { + "start": 21450.72, + "end": 21453.82, + "probability": 0.8317 + }, + { + "start": 21454.58, + "end": 21457.38, + "probability": 0.8745 + }, + { + "start": 21458.04, + "end": 21458.4, + "probability": 0.3674 + }, + { + "start": 21458.52, + "end": 21459.22, + "probability": 0.8575 + }, + { + "start": 21459.6, + "end": 21461.08, + "probability": 0.9825 + }, + { + "start": 21461.52, + "end": 21463.72, + "probability": 0.8852 + }, + { + "start": 21463.92, + "end": 21466.0, + "probability": 0.9462 + }, + { + "start": 21466.42, + "end": 21468.66, + "probability": 0.9648 + }, + { + "start": 21469.42, + "end": 21473.98, + "probability": 0.9702 + }, + { + "start": 21474.06, + "end": 21474.24, + "probability": 0.8543 + }, + { + "start": 21474.28, + "end": 21474.98, + "probability": 0.964 + }, + { + "start": 21475.4, + "end": 21476.03, + "probability": 0.7921 + }, + { + "start": 21476.14, + "end": 21476.62, + "probability": 0.7709 + }, + { + "start": 21476.7, + "end": 21477.24, + "probability": 0.8647 + }, + { + "start": 21477.94, + "end": 21479.94, + "probability": 0.7461 + }, + { + "start": 21480.12, + "end": 21484.32, + "probability": 0.8447 + }, + { + "start": 21484.32, + "end": 21490.18, + "probability": 0.9277 + }, + { + "start": 21490.5, + "end": 21495.44, + "probability": 0.8002 + }, + { + "start": 21495.46, + "end": 21496.06, + "probability": 0.3396 + }, + { + "start": 21496.06, + "end": 21497.9, + "probability": 0.6537 + }, + { + "start": 21499.26, + "end": 21501.74, + "probability": 0.4756 + }, + { + "start": 21502.38, + "end": 21505.02, + "probability": 0.5329 + }, + { + "start": 21505.66, + "end": 21508.94, + "probability": 0.8229 + }, + { + "start": 21509.38, + "end": 21512.78, + "probability": 0.9821 + }, + { + "start": 21512.86, + "end": 21513.62, + "probability": 0.7847 + }, + { + "start": 21514.14, + "end": 21517.86, + "probability": 0.8996 + }, + { + "start": 21518.34, + "end": 21523.3, + "probability": 0.9554 + }, + { + "start": 21523.62, + "end": 21525.52, + "probability": 0.999 + }, + { + "start": 21525.84, + "end": 21529.86, + "probability": 0.9132 + }, + { + "start": 21529.96, + "end": 21531.08, + "probability": 0.9446 + }, + { + "start": 21531.32, + "end": 21533.2, + "probability": 0.8562 + }, + { + "start": 21533.42, + "end": 21534.16, + "probability": 0.5555 + }, + { + "start": 21534.2, + "end": 21535.28, + "probability": 0.9053 + }, + { + "start": 21535.3, + "end": 21537.18, + "probability": 0.6515 + }, + { + "start": 21537.18, + "end": 21537.84, + "probability": 0.4531 + }, + { + "start": 21538.12, + "end": 21540.52, + "probability": 0.5166 + }, + { + "start": 21540.64, + "end": 21542.64, + "probability": 0.6624 + }, + { + "start": 21542.76, + "end": 21542.94, + "probability": 0.009 + }, + { + "start": 21542.94, + "end": 21543.16, + "probability": 0.4816 + }, + { + "start": 21544.12, + "end": 21545.2, + "probability": 0.6207 + }, + { + "start": 21547.78, + "end": 21550.68, + "probability": 0.6007 + }, + { + "start": 21551.72, + "end": 21552.88, + "probability": 0.8455 + }, + { + "start": 21571.18, + "end": 21574.92, + "probability": 0.7712 + }, + { + "start": 21576.1, + "end": 21579.66, + "probability": 0.893 + }, + { + "start": 21581.06, + "end": 21582.98, + "probability": 0.7458 + }, + { + "start": 21584.16, + "end": 21586.56, + "probability": 0.1866 + }, + { + "start": 21586.66, + "end": 21588.48, + "probability": 0.8201 + }, + { + "start": 21589.0, + "end": 21591.77, + "probability": 0.807 + }, + { + "start": 21592.62, + "end": 21594.76, + "probability": 0.9877 + }, + { + "start": 21595.58, + "end": 21598.46, + "probability": 0.8131 + }, + { + "start": 21599.22, + "end": 21601.46, + "probability": 0.9731 + }, + { + "start": 21602.22, + "end": 21605.84, + "probability": 0.9769 + }, + { + "start": 21606.64, + "end": 21607.3, + "probability": 0.6984 + }, + { + "start": 21608.98, + "end": 21612.01, + "probability": 0.99 + }, + { + "start": 21613.62, + "end": 21618.74, + "probability": 0.967 + }, + { + "start": 21619.89, + "end": 21622.6, + "probability": 0.872 + }, + { + "start": 21623.28, + "end": 21624.66, + "probability": 0.8134 + }, + { + "start": 21626.16, + "end": 21628.32, + "probability": 0.8331 + }, + { + "start": 21628.86, + "end": 21631.12, + "probability": 0.9705 + }, + { + "start": 21631.78, + "end": 21633.7, + "probability": 0.9962 + }, + { + "start": 21633.88, + "end": 21635.09, + "probability": 0.9878 + }, + { + "start": 21636.12, + "end": 21637.02, + "probability": 0.8518 + }, + { + "start": 21637.74, + "end": 21638.56, + "probability": 0.969 + }, + { + "start": 21639.18, + "end": 21640.3, + "probability": 0.7247 + }, + { + "start": 21640.64, + "end": 21645.64, + "probability": 0.9963 + }, + { + "start": 21646.28, + "end": 21650.73, + "probability": 0.884 + }, + { + "start": 21651.94, + "end": 21660.86, + "probability": 0.9907 + }, + { + "start": 21661.94, + "end": 21665.0, + "probability": 0.9043 + }, + { + "start": 21665.26, + "end": 21666.88, + "probability": 0.9716 + }, + { + "start": 21667.72, + "end": 21670.56, + "probability": 0.9917 + }, + { + "start": 21671.12, + "end": 21672.92, + "probability": 0.9556 + }, + { + "start": 21673.22, + "end": 21673.96, + "probability": 0.5804 + }, + { + "start": 21674.06, + "end": 21675.16, + "probability": 0.8219 + }, + { + "start": 21676.3, + "end": 21679.9, + "probability": 0.9686 + }, + { + "start": 21681.1, + "end": 21684.01, + "probability": 0.9995 + }, + { + "start": 21685.02, + "end": 21687.98, + "probability": 0.983 + }, + { + "start": 21688.72, + "end": 21695.9, + "probability": 0.9768 + }, + { + "start": 21696.36, + "end": 21697.42, + "probability": 0.9929 + }, + { + "start": 21698.78, + "end": 21698.88, + "probability": 0.7655 + }, + { + "start": 21701.84, + "end": 21703.1, + "probability": 0.8542 + }, + { + "start": 21703.28, + "end": 21704.21, + "probability": 0.6 + }, + { + "start": 21704.34, + "end": 21706.1, + "probability": 0.821 + }, + { + "start": 21706.2, + "end": 21706.64, + "probability": 0.9471 + }, + { + "start": 21707.32, + "end": 21709.36, + "probability": 0.9639 + }, + { + "start": 21710.24, + "end": 21714.0, + "probability": 0.9764 + }, + { + "start": 21714.32, + "end": 21717.94, + "probability": 0.9581 + }, + { + "start": 21718.92, + "end": 21720.28, + "probability": 0.6127 + }, + { + "start": 21721.3, + "end": 21723.16, + "probability": 0.4972 + }, + { + "start": 21723.96, + "end": 21724.48, + "probability": 0.5871 + }, + { + "start": 21724.58, + "end": 21729.5, + "probability": 0.9577 + }, + { + "start": 21730.42, + "end": 21732.24, + "probability": 0.8042 + }, + { + "start": 21733.54, + "end": 21734.85, + "probability": 0.4135 + }, + { + "start": 21735.0, + "end": 21736.06, + "probability": 0.2702 + }, + { + "start": 21737.36, + "end": 21739.7, + "probability": 0.8568 + }, + { + "start": 21741.24, + "end": 21747.3, + "probability": 0.7832 + }, + { + "start": 21748.76, + "end": 21752.08, + "probability": 0.6793 + }, + { + "start": 21752.64, + "end": 21759.38, + "probability": 0.9074 + }, + { + "start": 21759.58, + "end": 21759.78, + "probability": 0.743 + }, + { + "start": 21760.46, + "end": 21761.64, + "probability": 0.6611 + }, + { + "start": 21762.88, + "end": 21766.82, + "probability": 0.7121 + }, + { + "start": 21767.52, + "end": 21768.7, + "probability": 0.8564 + }, + { + "start": 21768.74, + "end": 21769.81, + "probability": 0.8428 + }, + { + "start": 21769.98, + "end": 21770.56, + "probability": 0.905 + }, + { + "start": 21771.4, + "end": 21773.52, + "probability": 0.8498 + }, + { + "start": 21773.82, + "end": 21775.24, + "probability": 0.925 + }, + { + "start": 21776.14, + "end": 21777.56, + "probability": 0.9345 + }, + { + "start": 21778.48, + "end": 21780.86, + "probability": 0.9566 + }, + { + "start": 21781.6, + "end": 21784.6, + "probability": 0.9982 + }, + { + "start": 21785.38, + "end": 21790.98, + "probability": 0.9778 + }, + { + "start": 21791.14, + "end": 21794.4, + "probability": 0.981 + }, + { + "start": 21795.1, + "end": 21798.42, + "probability": 0.9076 + }, + { + "start": 21799.02, + "end": 21801.36, + "probability": 0.7759 + }, + { + "start": 21802.04, + "end": 21803.98, + "probability": 0.9945 + }, + { + "start": 21807.04, + "end": 21809.94, + "probability": 0.957 + }, + { + "start": 21810.92, + "end": 21813.5, + "probability": 0.9956 + }, + { + "start": 21814.2, + "end": 21820.2, + "probability": 0.9673 + }, + { + "start": 21820.72, + "end": 21822.28, + "probability": 0.9372 + }, + { + "start": 21823.98, + "end": 21824.78, + "probability": 0.7368 + }, + { + "start": 21825.04, + "end": 21825.52, + "probability": 0.9357 + }, + { + "start": 21825.72, + "end": 21829.0, + "probability": 0.9743 + }, + { + "start": 21829.48, + "end": 21830.46, + "probability": 0.5872 + }, + { + "start": 21831.2, + "end": 21833.48, + "probability": 0.9901 + }, + { + "start": 21834.56, + "end": 21836.82, + "probability": 0.9811 + }, + { + "start": 21837.64, + "end": 21840.78, + "probability": 0.9376 + }, + { + "start": 21841.38, + "end": 21843.2, + "probability": 0.8792 + }, + { + "start": 21843.46, + "end": 21847.02, + "probability": 0.9402 + }, + { + "start": 21847.04, + "end": 21847.32, + "probability": 0.5703 + }, + { + "start": 21848.56, + "end": 21849.78, + "probability": 0.7543 + }, + { + "start": 21850.48, + "end": 21851.22, + "probability": 0.9401 + }, + { + "start": 21851.92, + "end": 21852.58, + "probability": 0.7812 + }, + { + "start": 21853.26, + "end": 21855.84, + "probability": 0.9626 + }, + { + "start": 21857.38, + "end": 21859.94, + "probability": 0.9364 + }, + { + "start": 21860.54, + "end": 21864.96, + "probability": 0.9813 + }, + { + "start": 21867.28, + "end": 21870.42, + "probability": 0.7147 + }, + { + "start": 21871.38, + "end": 21871.92, + "probability": 0.926 + }, + { + "start": 21872.5, + "end": 21874.22, + "probability": 0.9946 + }, + { + "start": 21875.04, + "end": 21877.16, + "probability": 0.9515 + }, + { + "start": 21877.68, + "end": 21878.56, + "probability": 0.8696 + }, + { + "start": 21879.46, + "end": 21880.82, + "probability": 0.9963 + }, + { + "start": 21881.76, + "end": 21884.46, + "probability": 0.9515 + }, + { + "start": 21885.1, + "end": 21889.36, + "probability": 0.9805 + }, + { + "start": 21890.62, + "end": 21896.0, + "probability": 0.9884 + }, + { + "start": 21896.94, + "end": 21899.06, + "probability": 0.9521 + }, + { + "start": 21900.1, + "end": 21906.36, + "probability": 0.9683 + }, + { + "start": 21906.52, + "end": 21909.98, + "probability": 0.8268 + }, + { + "start": 21910.56, + "end": 21914.22, + "probability": 0.9828 + }, + { + "start": 21915.5, + "end": 21916.28, + "probability": 0.8527 + }, + { + "start": 21917.44, + "end": 21920.82, + "probability": 0.9841 + }, + { + "start": 21920.82, + "end": 21925.06, + "probability": 0.9861 + }, + { + "start": 21926.22, + "end": 21928.58, + "probability": 0.6152 + }, + { + "start": 21929.4, + "end": 21931.14, + "probability": 0.9227 + }, + { + "start": 21931.34, + "end": 21933.97, + "probability": 0.9507 + }, + { + "start": 21935.66, + "end": 21937.34, + "probability": 0.8965 + }, + { + "start": 21938.12, + "end": 21940.16, + "probability": 0.943 + }, + { + "start": 21940.82, + "end": 21943.56, + "probability": 0.9889 + }, + { + "start": 21944.66, + "end": 21948.06, + "probability": 0.9953 + }, + { + "start": 21948.58, + "end": 21949.48, + "probability": 0.837 + }, + { + "start": 21950.0, + "end": 21952.08, + "probability": 0.6696 + }, + { + "start": 21952.74, + "end": 21954.1, + "probability": 0.9086 + }, + { + "start": 21954.66, + "end": 21959.24, + "probability": 0.9336 + }, + { + "start": 21960.14, + "end": 21963.6, + "probability": 0.9434 + }, + { + "start": 21963.6, + "end": 21965.94, + "probability": 0.9877 + }, + { + "start": 21966.42, + "end": 21968.38, + "probability": 0.9979 + }, + { + "start": 21969.5, + "end": 21977.1, + "probability": 0.9647 + }, + { + "start": 21977.32, + "end": 21978.26, + "probability": 0.7794 + }, + { + "start": 21979.44, + "end": 21981.02, + "probability": 0.5477 + }, + { + "start": 21981.56, + "end": 21983.46, + "probability": 0.8073 + }, + { + "start": 21984.02, + "end": 21990.4, + "probability": 0.9317 + }, + { + "start": 21991.24, + "end": 21992.52, + "probability": 0.7611 + }, + { + "start": 21992.96, + "end": 21993.8, + "probability": 0.4013 + }, + { + "start": 21994.28, + "end": 21996.17, + "probability": 0.513 + }, + { + "start": 21996.8, + "end": 21999.14, + "probability": 0.4351 + }, + { + "start": 22001.1, + "end": 22003.54, + "probability": 0.5079 + }, + { + "start": 22004.45, + "end": 22006.1, + "probability": 0.5903 + }, + { + "start": 22006.56, + "end": 22006.78, + "probability": 0.8027 + }, + { + "start": 22008.48, + "end": 22010.38, + "probability": 0.945 + }, + { + "start": 22011.08, + "end": 22013.34, + "probability": 0.6908 + }, + { + "start": 22013.48, + "end": 22015.24, + "probability": 0.9932 + }, + { + "start": 22016.18, + "end": 22018.26, + "probability": 0.8513 + }, + { + "start": 22038.1, + "end": 22038.1, + "probability": 0.3315 + }, + { + "start": 22038.1, + "end": 22040.46, + "probability": 0.5432 + }, + { + "start": 22041.02, + "end": 22043.7, + "probability": 0.9192 + }, + { + "start": 22044.22, + "end": 22048.46, + "probability": 0.9695 + }, + { + "start": 22048.98, + "end": 22049.28, + "probability": 0.3793 + }, + { + "start": 22049.42, + "end": 22052.7, + "probability": 0.6245 + }, + { + "start": 22053.76, + "end": 22056.54, + "probability": 0.8352 + }, + { + "start": 22057.14, + "end": 22058.98, + "probability": 0.7266 + }, + { + "start": 22059.66, + "end": 22060.27, + "probability": 0.3419 + }, + { + "start": 22061.14, + "end": 22061.84, + "probability": 0.9014 + }, + { + "start": 22063.38, + "end": 22064.42, + "probability": 0.6413 + }, + { + "start": 22065.08, + "end": 22067.42, + "probability": 0.7243 + }, + { + "start": 22068.0, + "end": 22068.74, + "probability": 0.7412 + }, + { + "start": 22069.92, + "end": 22071.48, + "probability": 0.8711 + }, + { + "start": 22073.32, + "end": 22074.74, + "probability": 0.4742 + }, + { + "start": 22075.1, + "end": 22076.3, + "probability": 0.71 + }, + { + "start": 22077.65, + "end": 22081.1, + "probability": 0.8028 + }, + { + "start": 22081.66, + "end": 22083.32, + "probability": 0.6923 + }, + { + "start": 22083.4, + "end": 22083.82, + "probability": 0.9062 + }, + { + "start": 22087.32, + "end": 22088.24, + "probability": 0.9823 + }, + { + "start": 22089.86, + "end": 22091.28, + "probability": 0.2617 + }, + { + "start": 22103.46, + "end": 22105.36, + "probability": 0.5737 + }, + { + "start": 22106.77, + "end": 22111.38, + "probability": 0.9756 + }, + { + "start": 22112.0, + "end": 22116.16, + "probability": 0.8285 + }, + { + "start": 22116.92, + "end": 22118.86, + "probability": 0.738 + }, + { + "start": 22120.32, + "end": 22123.28, + "probability": 0.7133 + }, + { + "start": 22124.74, + "end": 22125.62, + "probability": 0.7388 + }, + { + "start": 22127.0, + "end": 22132.42, + "probability": 0.9346 + }, + { + "start": 22133.32, + "end": 22134.78, + "probability": 0.9982 + }, + { + "start": 22135.42, + "end": 22136.0, + "probability": 0.8808 + }, + { + "start": 22136.82, + "end": 22138.88, + "probability": 0.9985 + }, + { + "start": 22139.9, + "end": 22143.46, + "probability": 0.9922 + }, + { + "start": 22146.9, + "end": 22148.16, + "probability": 0.6133 + }, + { + "start": 22149.85, + "end": 22150.64, + "probability": 0.7701 + }, + { + "start": 22151.6, + "end": 22152.2, + "probability": 0.8635 + }, + { + "start": 22153.46, + "end": 22155.56, + "probability": 0.9846 + }, + { + "start": 22156.48, + "end": 22156.92, + "probability": 0.4272 + }, + { + "start": 22158.0, + "end": 22161.84, + "probability": 0.9851 + }, + { + "start": 22162.98, + "end": 22163.12, + "probability": 0.7544 + }, + { + "start": 22164.22, + "end": 22166.18, + "probability": 0.985 + }, + { + "start": 22167.1, + "end": 22168.8, + "probability": 0.9979 + }, + { + "start": 22170.0, + "end": 22170.88, + "probability": 0.8608 + }, + { + "start": 22172.16, + "end": 22176.06, + "probability": 0.9519 + }, + { + "start": 22176.78, + "end": 22177.6, + "probability": 0.9853 + }, + { + "start": 22178.38, + "end": 22180.08, + "probability": 0.9904 + }, + { + "start": 22182.2, + "end": 22185.41, + "probability": 0.9791 + }, + { + "start": 22187.22, + "end": 22188.98, + "probability": 0.9876 + }, + { + "start": 22189.84, + "end": 22191.08, + "probability": 0.7966 + }, + { + "start": 22192.66, + "end": 22195.75, + "probability": 0.9939 + }, + { + "start": 22196.88, + "end": 22197.52, + "probability": 0.3522 + }, + { + "start": 22198.04, + "end": 22198.48, + "probability": 0.7241 + }, + { + "start": 22200.52, + "end": 22202.28, + "probability": 0.9921 + }, + { + "start": 22203.28, + "end": 22205.94, + "probability": 0.9478 + }, + { + "start": 22207.36, + "end": 22208.48, + "probability": 0.9971 + }, + { + "start": 22209.24, + "end": 22211.58, + "probability": 0.9946 + }, + { + "start": 22211.58, + "end": 22215.62, + "probability": 0.9486 + }, + { + "start": 22216.98, + "end": 22217.3, + "probability": 0.3718 + }, + { + "start": 22217.7, + "end": 22219.54, + "probability": 0.5777 + }, + { + "start": 22219.7, + "end": 22222.42, + "probability": 0.8476 + }, + { + "start": 22222.46, + "end": 22222.8, + "probability": 0.4763 + }, + { + "start": 22222.86, + "end": 22223.1, + "probability": 0.5205 + }, + { + "start": 22223.14, + "end": 22226.12, + "probability": 0.9749 + }, + { + "start": 22227.14, + "end": 22231.72, + "probability": 0.8755 + }, + { + "start": 22232.2, + "end": 22236.66, + "probability": 0.9825 + }, + { + "start": 22238.06, + "end": 22243.44, + "probability": 0.9967 + }, + { + "start": 22243.62, + "end": 22246.8, + "probability": 0.9955 + }, + { + "start": 22246.84, + "end": 22249.78, + "probability": 0.9934 + }, + { + "start": 22250.78, + "end": 22254.12, + "probability": 0.9216 + }, + { + "start": 22255.6, + "end": 22257.02, + "probability": 0.7561 + }, + { + "start": 22257.76, + "end": 22259.58, + "probability": 0.9684 + }, + { + "start": 22260.26, + "end": 22264.22, + "probability": 0.9189 + }, + { + "start": 22264.82, + "end": 22266.9, + "probability": 0.9882 + }, + { + "start": 22268.26, + "end": 22271.44, + "probability": 0.9069 + }, + { + "start": 22272.04, + "end": 22272.7, + "probability": 0.4879 + }, + { + "start": 22273.8, + "end": 22275.1, + "probability": 0.8288 + }, + { + "start": 22275.62, + "end": 22278.88, + "probability": 0.9589 + }, + { + "start": 22278.88, + "end": 22283.62, + "probability": 0.8602 + }, + { + "start": 22284.54, + "end": 22287.1, + "probability": 0.9087 + }, + { + "start": 22287.66, + "end": 22288.58, + "probability": 0.8198 + }, + { + "start": 22289.34, + "end": 22291.72, + "probability": 0.9155 + }, + { + "start": 22292.8, + "end": 22294.9, + "probability": 0.8597 + }, + { + "start": 22296.26, + "end": 22298.82, + "probability": 0.9346 + }, + { + "start": 22299.7, + "end": 22303.76, + "probability": 0.9575 + }, + { + "start": 22304.5, + "end": 22306.54, + "probability": 0.9089 + }, + { + "start": 22307.44, + "end": 22308.15, + "probability": 0.8281 + }, + { + "start": 22309.14, + "end": 22310.12, + "probability": 0.9724 + }, + { + "start": 22311.46, + "end": 22312.6, + "probability": 0.515 + }, + { + "start": 22314.06, + "end": 22314.55, + "probability": 0.9514 + }, + { + "start": 22316.22, + "end": 22321.36, + "probability": 0.9556 + }, + { + "start": 22321.46, + "end": 22321.68, + "probability": 0.7129 + }, + { + "start": 22321.88, + "end": 22324.76, + "probability": 0.9863 + }, + { + "start": 22325.62, + "end": 22328.44, + "probability": 0.9907 + }, + { + "start": 22329.92, + "end": 22333.68, + "probability": 0.4894 + }, + { + "start": 22334.42, + "end": 22337.9, + "probability": 0.8218 + }, + { + "start": 22339.28, + "end": 22341.26, + "probability": 0.8363 + }, + { + "start": 22341.36, + "end": 22347.04, + "probability": 0.934 + }, + { + "start": 22347.12, + "end": 22350.12, + "probability": 0.9983 + }, + { + "start": 22350.56, + "end": 22351.16, + "probability": 0.4741 + }, + { + "start": 22351.6, + "end": 22352.88, + "probability": 0.5457 + }, + { + "start": 22353.28, + "end": 22354.4, + "probability": 0.9413 + }, + { + "start": 22354.6, + "end": 22354.98, + "probability": 0.7607 + }, + { + "start": 22354.98, + "end": 22355.66, + "probability": 0.9934 + }, + { + "start": 22356.82, + "end": 22358.24, + "probability": 0.6636 + }, + { + "start": 22359.36, + "end": 22360.6, + "probability": 0.6952 + }, + { + "start": 22361.68, + "end": 22366.74, + "probability": 0.9136 + }, + { + "start": 22367.62, + "end": 22370.84, + "probability": 0.9153 + }, + { + "start": 22371.48, + "end": 22373.1, + "probability": 0.9633 + }, + { + "start": 22373.72, + "end": 22374.04, + "probability": 0.6119 + }, + { + "start": 22374.6, + "end": 22379.1, + "probability": 0.9407 + }, + { + "start": 22379.34, + "end": 22382.56, + "probability": 0.2544 + }, + { + "start": 22382.56, + "end": 22382.77, + "probability": 0.09 + }, + { + "start": 22383.52, + "end": 22384.22, + "probability": 0.5424 + }, + { + "start": 22384.26, + "end": 22384.96, + "probability": 0.9025 + }, + { + "start": 22385.66, + "end": 22387.44, + "probability": 0.9412 + }, + { + "start": 22388.7, + "end": 22389.52, + "probability": 0.9009 + }, + { + "start": 22390.78, + "end": 22393.46, + "probability": 0.7529 + }, + { + "start": 22394.38, + "end": 22395.94, + "probability": 0.6398 + }, + { + "start": 22397.18, + "end": 22397.86, + "probability": 0.9103 + }, + { + "start": 22398.74, + "end": 22400.04, + "probability": 0.987 + }, + { + "start": 22400.66, + "end": 22402.44, + "probability": 0.6621 + }, + { + "start": 22403.26, + "end": 22403.98, + "probability": 0.7817 + }, + { + "start": 22404.2, + "end": 22404.58, + "probability": 0.6085 + }, + { + "start": 22404.76, + "end": 22406.58, + "probability": 0.905 + }, + { + "start": 22406.9, + "end": 22407.58, + "probability": 0.7927 + }, + { + "start": 22408.32, + "end": 22412.14, + "probability": 0.9956 + }, + { + "start": 22412.84, + "end": 22416.44, + "probability": 0.8565 + }, + { + "start": 22417.6, + "end": 22417.95, + "probability": 0.8154 + }, + { + "start": 22418.26, + "end": 22419.64, + "probability": 0.821 + }, + { + "start": 22419.82, + "end": 22421.74, + "probability": 0.86 + }, + { + "start": 22422.0, + "end": 22422.58, + "probability": 0.8917 + }, + { + "start": 22423.12, + "end": 22424.68, + "probability": 0.9884 + }, + { + "start": 22425.18, + "end": 22428.76, + "probability": 0.8132 + }, + { + "start": 22429.02, + "end": 22430.68, + "probability": 0.9932 + }, + { + "start": 22431.72, + "end": 22434.84, + "probability": 0.8983 + }, + { + "start": 22434.88, + "end": 22435.38, + "probability": 0.7686 + }, + { + "start": 22435.86, + "end": 22436.29, + "probability": 0.7139 + }, + { + "start": 22437.2, + "end": 22439.4, + "probability": 0.9611 + }, + { + "start": 22440.02, + "end": 22444.02, + "probability": 0.969 + }, + { + "start": 22444.48, + "end": 22445.02, + "probability": 0.7914 + }, + { + "start": 22445.22, + "end": 22447.21, + "probability": 0.9897 + }, + { + "start": 22447.36, + "end": 22449.7, + "probability": 0.9922 + }, + { + "start": 22450.34, + "end": 22452.3, + "probability": 0.9637 + }, + { + "start": 22452.96, + "end": 22456.46, + "probability": 0.9857 + }, + { + "start": 22456.86, + "end": 22459.26, + "probability": 0.9972 + }, + { + "start": 22459.78, + "end": 22460.22, + "probability": 0.9834 + }, + { + "start": 22460.58, + "end": 22461.22, + "probability": 0.8899 + }, + { + "start": 22461.32, + "end": 22467.52, + "probability": 0.8655 + }, + { + "start": 22467.82, + "end": 22467.98, + "probability": 0.3056 + }, + { + "start": 22468.1, + "end": 22468.44, + "probability": 0.6655 + }, + { + "start": 22468.58, + "end": 22470.68, + "probability": 0.9792 + }, + { + "start": 22471.22, + "end": 22471.82, + "probability": 0.9111 + }, + { + "start": 22472.3, + "end": 22477.02, + "probability": 0.9929 + }, + { + "start": 22477.54, + "end": 22477.78, + "probability": 0.7218 + }, + { + "start": 22479.34, + "end": 22479.34, + "probability": 0.5288 + }, + { + "start": 22479.34, + "end": 22480.84, + "probability": 0.6896 + }, + { + "start": 22481.82, + "end": 22482.22, + "probability": 0.7325 + }, + { + "start": 22482.88, + "end": 22483.72, + "probability": 0.5594 + }, + { + "start": 22484.82, + "end": 22486.91, + "probability": 0.911 + }, + { + "start": 22488.6, + "end": 22489.38, + "probability": 0.8541 + }, + { + "start": 22506.32, + "end": 22507.3, + "probability": 0.5792 + }, + { + "start": 22511.2, + "end": 22512.44, + "probability": 0.8887 + }, + { + "start": 22512.58, + "end": 22514.44, + "probability": 0.7147 + }, + { + "start": 22514.74, + "end": 22515.84, + "probability": 0.5346 + }, + { + "start": 22517.96, + "end": 22520.24, + "probability": 0.7944 + }, + { + "start": 22521.92, + "end": 22524.09, + "probability": 0.8068 + }, + { + "start": 22525.6, + "end": 22529.88, + "probability": 0.9614 + }, + { + "start": 22529.88, + "end": 22535.72, + "probability": 0.8589 + }, + { + "start": 22537.28, + "end": 22542.5, + "probability": 0.9667 + }, + { + "start": 22543.16, + "end": 22544.84, + "probability": 0.8856 + }, + { + "start": 22546.08, + "end": 22550.5, + "probability": 0.8255 + }, + { + "start": 22552.72, + "end": 22554.82, + "probability": 0.7351 + }, + { + "start": 22557.26, + "end": 22557.5, + "probability": 0.4695 + }, + { + "start": 22557.66, + "end": 22562.44, + "probability": 0.8291 + }, + { + "start": 22563.38, + "end": 22565.82, + "probability": 0.9599 + }, + { + "start": 22567.6, + "end": 22574.12, + "probability": 0.9352 + }, + { + "start": 22574.84, + "end": 22575.46, + "probability": 0.576 + }, + { + "start": 22575.62, + "end": 22580.5, + "probability": 0.9902 + }, + { + "start": 22580.5, + "end": 22583.72, + "probability": 0.9857 + }, + { + "start": 22585.4, + "end": 22588.88, + "probability": 0.9882 + }, + { + "start": 22589.86, + "end": 22592.92, + "probability": 0.9799 + }, + { + "start": 22594.56, + "end": 22598.86, + "probability": 0.8771 + }, + { + "start": 22599.72, + "end": 22602.71, + "probability": 0.804 + }, + { + "start": 22604.6, + "end": 22609.5, + "probability": 0.9347 + }, + { + "start": 22610.86, + "end": 22613.52, + "probability": 0.8186 + }, + { + "start": 22615.12, + "end": 22618.5, + "probability": 0.7461 + }, + { + "start": 22619.44, + "end": 22622.86, + "probability": 0.986 + }, + { + "start": 22624.82, + "end": 22626.62, + "probability": 0.6373 + }, + { + "start": 22630.36, + "end": 22631.38, + "probability": 0.9741 + }, + { + "start": 22632.12, + "end": 22633.46, + "probability": 0.7905 + }, + { + "start": 22633.88, + "end": 22637.05, + "probability": 0.9814 + }, + { + "start": 22638.02, + "end": 22638.42, + "probability": 0.9388 + }, + { + "start": 22638.58, + "end": 22642.56, + "probability": 0.9625 + }, + { + "start": 22643.94, + "end": 22646.3, + "probability": 0.5742 + }, + { + "start": 22646.86, + "end": 22649.96, + "probability": 0.9909 + }, + { + "start": 22650.76, + "end": 22651.68, + "probability": 0.8752 + }, + { + "start": 22653.9, + "end": 22658.92, + "probability": 0.9497 + }, + { + "start": 22659.86, + "end": 22662.18, + "probability": 0.9937 + }, + { + "start": 22662.18, + "end": 22668.72, + "probability": 0.9801 + }, + { + "start": 22670.16, + "end": 22672.14, + "probability": 0.976 + }, + { + "start": 22675.34, + "end": 22677.64, + "probability": 0.917 + }, + { + "start": 22678.3, + "end": 22681.52, + "probability": 0.7919 + }, + { + "start": 22684.12, + "end": 22687.48, + "probability": 0.9946 + }, + { + "start": 22688.62, + "end": 22689.42, + "probability": 0.7743 + }, + { + "start": 22690.42, + "end": 22695.44, + "probability": 0.9504 + }, + { + "start": 22696.74, + "end": 22698.3, + "probability": 0.9753 + }, + { + "start": 22699.1, + "end": 22701.34, + "probability": 0.9854 + }, + { + "start": 22703.22, + "end": 22705.28, + "probability": 0.5951 + }, + { + "start": 22706.72, + "end": 22710.44, + "probability": 0.8365 + }, + { + "start": 22711.46, + "end": 22713.22, + "probability": 0.5456 + }, + { + "start": 22713.4, + "end": 22714.18, + "probability": 0.4024 + }, + { + "start": 22714.42, + "end": 22714.96, + "probability": 0.4577 + }, + { + "start": 22715.16, + "end": 22715.66, + "probability": 0.6141 + }, + { + "start": 22716.8, + "end": 22718.84, + "probability": 0.9671 + }, + { + "start": 22720.64, + "end": 22721.68, + "probability": 0.5447 + }, + { + "start": 22721.98, + "end": 22724.2, + "probability": 0.9199 + }, + { + "start": 22724.82, + "end": 22726.18, + "probability": 0.9186 + }, + { + "start": 22727.48, + "end": 22734.06, + "probability": 0.7953 + }, + { + "start": 22735.58, + "end": 22742.84, + "probability": 0.9399 + }, + { + "start": 22743.54, + "end": 22746.08, + "probability": 0.7204 + }, + { + "start": 22746.62, + "end": 22747.98, + "probability": 0.6531 + }, + { + "start": 22748.96, + "end": 22750.33, + "probability": 0.6064 + }, + { + "start": 22751.32, + "end": 22754.1, + "probability": 0.9607 + }, + { + "start": 22755.82, + "end": 22758.26, + "probability": 0.5337 + }, + { + "start": 22760.38, + "end": 22763.88, + "probability": 0.7472 + }, + { + "start": 22765.2, + "end": 22768.02, + "probability": 0.9106 + }, + { + "start": 22769.2, + "end": 22769.5, + "probability": 0.8476 + }, + { + "start": 22770.18, + "end": 22772.48, + "probability": 0.8485 + }, + { + "start": 22773.16, + "end": 22775.66, + "probability": 0.9894 + }, + { + "start": 22776.38, + "end": 22776.84, + "probability": 0.8394 + }, + { + "start": 22778.72, + "end": 22781.32, + "probability": 0.7027 + }, + { + "start": 22781.86, + "end": 22783.46, + "probability": 0.8788 + }, + { + "start": 22785.28, + "end": 22785.6, + "probability": 0.4639 + }, + { + "start": 22786.62, + "end": 22787.32, + "probability": 0.6016 + }, + { + "start": 22787.96, + "end": 22789.42, + "probability": 0.487 + }, + { + "start": 22789.66, + "end": 22789.66, + "probability": 0.2408 + }, + { + "start": 22789.71, + "end": 22793.64, + "probability": 0.9308 + }, + { + "start": 22794.26, + "end": 22794.94, + "probability": 0.7143 + }, + { + "start": 22795.9, + "end": 22798.62, + "probability": 0.6982 + }, + { + "start": 22798.64, + "end": 22798.9, + "probability": 0.4678 + }, + { + "start": 22799.18, + "end": 22799.58, + "probability": 0.4957 + }, + { + "start": 22799.66, + "end": 22799.96, + "probability": 0.6369 + }, + { + "start": 22802.28, + "end": 22803.48, + "probability": 0.6653 + }, + { + "start": 22804.06, + "end": 22805.8, + "probability": 0.9995 + }, + { + "start": 22805.92, + "end": 22807.18, + "probability": 0.915 + }, + { + "start": 22807.34, + "end": 22808.42, + "probability": 0.9697 + }, + { + "start": 22808.44, + "end": 22812.8, + "probability": 0.97 + }, + { + "start": 22813.06, + "end": 22819.64, + "probability": 0.9642 + }, + { + "start": 22820.6, + "end": 22826.06, + "probability": 0.9281 + }, + { + "start": 22826.5, + "end": 22827.7, + "probability": 0.8787 + }, + { + "start": 22828.7, + "end": 22830.4, + "probability": 0.7673 + }, + { + "start": 22830.46, + "end": 22831.78, + "probability": 0.9866 + }, + { + "start": 22832.0, + "end": 22833.58, + "probability": 0.9406 + }, + { + "start": 22834.14, + "end": 22835.46, + "probability": 0.9863 + }, + { + "start": 22835.58, + "end": 22835.97, + "probability": 0.98 + }, + { + "start": 22836.16, + "end": 22837.82, + "probability": 0.9912 + }, + { + "start": 22838.1, + "end": 22838.8, + "probability": 0.8667 + }, + { + "start": 22839.12, + "end": 22840.86, + "probability": 0.9714 + }, + { + "start": 22841.24, + "end": 22845.18, + "probability": 0.9709 + }, + { + "start": 22845.32, + "end": 22847.74, + "probability": 0.97 + }, + { + "start": 22848.48, + "end": 22851.44, + "probability": 0.994 + }, + { + "start": 22852.0, + "end": 22854.44, + "probability": 0.8993 + }, + { + "start": 22854.74, + "end": 22857.02, + "probability": 0.9346 + }, + { + "start": 22857.9, + "end": 22860.04, + "probability": 0.933 + }, + { + "start": 22860.4, + "end": 22864.8, + "probability": 0.9965 + }, + { + "start": 22865.4, + "end": 22869.64, + "probability": 0.991 + }, + { + "start": 22870.04, + "end": 22871.98, + "probability": 0.9938 + }, + { + "start": 22872.12, + "end": 22875.7, + "probability": 0.9878 + }, + { + "start": 22875.94, + "end": 22877.26, + "probability": 0.9976 + }, + { + "start": 22877.88, + "end": 22880.46, + "probability": 0.9691 + }, + { + "start": 22880.46, + "end": 22883.46, + "probability": 0.9924 + }, + { + "start": 22883.78, + "end": 22884.37, + "probability": 0.8634 + }, + { + "start": 22886.45, + "end": 22889.62, + "probability": 0.9927 + }, + { + "start": 22889.78, + "end": 22892.84, + "probability": 0.9992 + }, + { + "start": 22894.61, + "end": 22897.9, + "probability": 0.9741 + }, + { + "start": 22898.08, + "end": 22901.14, + "probability": 0.997 + }, + { + "start": 22901.76, + "end": 22906.34, + "probability": 0.9969 + }, + { + "start": 22906.98, + "end": 22909.24, + "probability": 0.9894 + }, + { + "start": 22909.78, + "end": 22913.6, + "probability": 0.9992 + }, + { + "start": 22913.84, + "end": 22919.52, + "probability": 0.9941 + }, + { + "start": 22919.88, + "end": 22922.18, + "probability": 0.9974 + }, + { + "start": 22922.8, + "end": 22926.46, + "probability": 0.9064 + }, + { + "start": 22927.92, + "end": 22928.72, + "probability": 0.7852 + }, + { + "start": 22928.86, + "end": 22930.54, + "probability": 0.6598 + }, + { + "start": 22931.94, + "end": 22936.6, + "probability": 0.9973 + }, + { + "start": 22937.28, + "end": 22941.58, + "probability": 0.9961 + }, + { + "start": 22941.74, + "end": 22943.84, + "probability": 0.9858 + }, + { + "start": 22944.4, + "end": 22946.32, + "probability": 0.9922 + }, + { + "start": 22947.32, + "end": 22949.4, + "probability": 0.9757 + }, + { + "start": 22950.3, + "end": 22952.52, + "probability": 0.9976 + }, + { + "start": 22953.32, + "end": 22956.66, + "probability": 0.9867 + }, + { + "start": 22957.18, + "end": 22960.84, + "probability": 0.979 + }, + { + "start": 22960.98, + "end": 22961.84, + "probability": 0.9976 + }, + { + "start": 22962.58, + "end": 22963.28, + "probability": 0.7719 + }, + { + "start": 22964.26, + "end": 22966.05, + "probability": 0.7659 + }, + { + "start": 22966.18, + "end": 22968.26, + "probability": 0.2448 + }, + { + "start": 22968.44, + "end": 22968.9, + "probability": 0.4617 + }, + { + "start": 22969.14, + "end": 22969.58, + "probability": 0.8989 + }, + { + "start": 22970.48, + "end": 22971.78, + "probability": 0.8083 + }, + { + "start": 22971.9, + "end": 22974.56, + "probability": 0.9871 + }, + { + "start": 22975.58, + "end": 22975.68, + "probability": 0.0407 + }, + { + "start": 22976.62, + "end": 22976.72, + "probability": 0.5609 + }, + { + "start": 22976.72, + "end": 22977.28, + "probability": 0.7374 + }, + { + "start": 22978.02, + "end": 22979.94, + "probability": 0.9398 + }, + { + "start": 22980.12, + "end": 22981.96, + "probability": 0.619 + }, + { + "start": 22982.0, + "end": 22982.6, + "probability": 0.8254 + }, + { + "start": 22983.74, + "end": 22985.46, + "probability": 0.8731 + }, + { + "start": 22986.92, + "end": 22987.9, + "probability": 0.5431 + }, + { + "start": 22987.92, + "end": 22988.56, + "probability": 0.7999 + }, + { + "start": 22989.46, + "end": 22991.14, + "probability": 0.8531 + }, + { + "start": 23011.52, + "end": 23011.52, + "probability": 0.6942 + }, + { + "start": 23011.52, + "end": 23011.52, + "probability": 0.342 + }, + { + "start": 23011.52, + "end": 23011.52, + "probability": 0.0967 + }, + { + "start": 23011.52, + "end": 23012.26, + "probability": 0.5537 + }, + { + "start": 23015.06, + "end": 23016.14, + "probability": 0.7318 + }, + { + "start": 23018.34, + "end": 23019.92, + "probability": 0.9521 + }, + { + "start": 23021.22, + "end": 23023.84, + "probability": 0.5577 + }, + { + "start": 23025.08, + "end": 23026.57, + "probability": 0.5868 + }, + { + "start": 23027.6, + "end": 23029.98, + "probability": 0.8726 + }, + { + "start": 23030.5, + "end": 23031.74, + "probability": 0.9857 + }, + { + "start": 23032.82, + "end": 23034.66, + "probability": 0.1856 + }, + { + "start": 23034.76, + "end": 23035.62, + "probability": 0.7086 + }, + { + "start": 23036.8, + "end": 23037.76, + "probability": 0.7595 + }, + { + "start": 23038.02, + "end": 23038.88, + "probability": 0.7148 + }, + { + "start": 23040.04, + "end": 23046.48, + "probability": 0.784 + }, + { + "start": 23047.32, + "end": 23048.98, + "probability": 0.9977 + }, + { + "start": 23049.94, + "end": 23054.26, + "probability": 0.9888 + }, + { + "start": 23054.54, + "end": 23057.56, + "probability": 0.9979 + }, + { + "start": 23057.98, + "end": 23061.84, + "probability": 0.9901 + }, + { + "start": 23062.46, + "end": 23063.18, + "probability": 0.9971 + }, + { + "start": 23064.22, + "end": 23066.7, + "probability": 0.9988 + }, + { + "start": 23067.6, + "end": 23070.4, + "probability": 0.9985 + }, + { + "start": 23071.14, + "end": 23075.72, + "probability": 0.985 + }, + { + "start": 23076.82, + "end": 23078.66, + "probability": 0.7322 + }, + { + "start": 23079.56, + "end": 23082.12, + "probability": 0.9858 + }, + { + "start": 23082.3, + "end": 23085.9, + "probability": 0.9765 + }, + { + "start": 23087.04, + "end": 23089.76, + "probability": 0.9479 + }, + { + "start": 23090.24, + "end": 23093.78, + "probability": 0.9851 + }, + { + "start": 23094.34, + "end": 23095.24, + "probability": 0.8965 + }, + { + "start": 23095.98, + "end": 23097.14, + "probability": 0.7051 + }, + { + "start": 23097.78, + "end": 23098.44, + "probability": 0.528 + }, + { + "start": 23098.52, + "end": 23100.54, + "probability": 0.9377 + }, + { + "start": 23100.6, + "end": 23106.56, + "probability": 0.9862 + }, + { + "start": 23107.18, + "end": 23108.98, + "probability": 0.9893 + }, + { + "start": 23109.3, + "end": 23114.1, + "probability": 0.9951 + }, + { + "start": 23114.26, + "end": 23115.16, + "probability": 0.9023 + }, + { + "start": 23115.74, + "end": 23118.14, + "probability": 0.9928 + }, + { + "start": 23120.46, + "end": 23122.42, + "probability": 0.9108 + }, + { + "start": 23122.98, + "end": 23124.88, + "probability": 0.7977 + }, + { + "start": 23125.68, + "end": 23129.86, + "probability": 0.827 + }, + { + "start": 23130.64, + "end": 23130.88, + "probability": 0.8289 + }, + { + "start": 23131.42, + "end": 23134.12, + "probability": 0.9394 + }, + { + "start": 23135.08, + "end": 23136.48, + "probability": 0.9732 + }, + { + "start": 23136.92, + "end": 23139.34, + "probability": 0.9634 + }, + { + "start": 23139.46, + "end": 23143.06, + "probability": 0.9966 + }, + { + "start": 23143.16, + "end": 23145.1, + "probability": 0.9948 + }, + { + "start": 23145.24, + "end": 23146.08, + "probability": 0.7806 + }, + { + "start": 23147.28, + "end": 23150.32, + "probability": 0.997 + }, + { + "start": 23151.14, + "end": 23154.9, + "probability": 0.9871 + }, + { + "start": 23155.44, + "end": 23158.22, + "probability": 0.9908 + }, + { + "start": 23158.32, + "end": 23162.36, + "probability": 0.9919 + }, + { + "start": 23162.9, + "end": 23163.2, + "probability": 0.9158 + }, + { + "start": 23164.38, + "end": 23166.9, + "probability": 0.5907 + }, + { + "start": 23167.34, + "end": 23168.8, + "probability": 0.8839 + }, + { + "start": 23169.4, + "end": 23170.38, + "probability": 0.9987 + }, + { + "start": 23170.98, + "end": 23175.65, + "probability": 0.9849 + }, + { + "start": 23176.16, + "end": 23179.28, + "probability": 0.8028 + }, + { + "start": 23179.58, + "end": 23180.12, + "probability": 0.4687 + }, + { + "start": 23180.3, + "end": 23180.82, + "probability": 0.9919 + }, + { + "start": 23181.64, + "end": 23182.78, + "probability": 0.9817 + }, + { + "start": 23183.5, + "end": 23187.58, + "probability": 0.7423 + }, + { + "start": 23189.2, + "end": 23191.24, + "probability": 0.9238 + }, + { + "start": 23191.32, + "end": 23192.64, + "probability": 0.8822 + }, + { + "start": 23193.32, + "end": 23196.34, + "probability": 0.9229 + }, + { + "start": 23197.42, + "end": 23201.46, + "probability": 0.9761 + }, + { + "start": 23201.58, + "end": 23202.12, + "probability": 0.9976 + }, + { + "start": 23204.06, + "end": 23204.74, + "probability": 0.6683 + }, + { + "start": 23211.48, + "end": 23213.12, + "probability": 0.9188 + }, + { + "start": 23213.5, + "end": 23216.38, + "probability": 0.9873 + }, + { + "start": 23216.82, + "end": 23217.88, + "probability": 0.9889 + }, + { + "start": 23218.94, + "end": 23220.8, + "probability": 0.9229 + }, + { + "start": 23222.54, + "end": 23224.74, + "probability": 0.9908 + }, + { + "start": 23225.52, + "end": 23227.7, + "probability": 0.9984 + }, + { + "start": 23228.3, + "end": 23228.66, + "probability": 0.8777 + }, + { + "start": 23228.76, + "end": 23231.14, + "probability": 0.9498 + }, + { + "start": 23231.48, + "end": 23234.18, + "probability": 0.9862 + }, + { + "start": 23234.74, + "end": 23236.96, + "probability": 0.7391 + }, + { + "start": 23237.1, + "end": 23238.58, + "probability": 0.9139 + }, + { + "start": 23239.0, + "end": 23241.62, + "probability": 0.9423 + }, + { + "start": 23241.62, + "end": 23244.62, + "probability": 0.9954 + }, + { + "start": 23246.0, + "end": 23249.34, + "probability": 0.9775 + }, + { + "start": 23250.12, + "end": 23251.88, + "probability": 0.9904 + }, + { + "start": 23252.48, + "end": 23256.16, + "probability": 0.74 + }, + { + "start": 23256.72, + "end": 23257.83, + "probability": 0.9709 + }, + { + "start": 23258.24, + "end": 23260.94, + "probability": 0.825 + }, + { + "start": 23261.44, + "end": 23262.54, + "probability": 0.8055 + }, + { + "start": 23262.66, + "end": 23264.92, + "probability": 0.9983 + }, + { + "start": 23265.98, + "end": 23269.88, + "probability": 0.9583 + }, + { + "start": 23270.06, + "end": 23272.26, + "probability": 0.9974 + }, + { + "start": 23272.92, + "end": 23276.54, + "probability": 0.8695 + }, + { + "start": 23276.66, + "end": 23277.88, + "probability": 0.9317 + }, + { + "start": 23278.36, + "end": 23279.11, + "probability": 0.8127 + }, + { + "start": 23280.0, + "end": 23281.54, + "probability": 0.998 + }, + { + "start": 23282.14, + "end": 23285.74, + "probability": 0.9866 + }, + { + "start": 23286.9, + "end": 23288.8, + "probability": 0.9917 + }, + { + "start": 23288.9, + "end": 23289.41, + "probability": 0.6764 + }, + { + "start": 23289.58, + "end": 23291.92, + "probability": 0.9985 + }, + { + "start": 23292.72, + "end": 23295.44, + "probability": 0.9955 + }, + { + "start": 23296.74, + "end": 23299.43, + "probability": 0.9978 + }, + { + "start": 23299.98, + "end": 23301.66, + "probability": 0.7503 + }, + { + "start": 23303.1, + "end": 23306.26, + "probability": 0.9939 + }, + { + "start": 23307.04, + "end": 23310.28, + "probability": 0.9826 + }, + { + "start": 23311.56, + "end": 23314.54, + "probability": 0.9842 + }, + { + "start": 23315.44, + "end": 23316.26, + "probability": 0.441 + }, + { + "start": 23316.48, + "end": 23317.4, + "probability": 0.9339 + }, + { + "start": 23317.6, + "end": 23321.02, + "probability": 0.9894 + }, + { + "start": 23321.54, + "end": 23324.12, + "probability": 0.9142 + }, + { + "start": 23325.54, + "end": 23330.0, + "probability": 0.986 + }, + { + "start": 23330.16, + "end": 23335.94, + "probability": 0.9986 + }, + { + "start": 23336.84, + "end": 23338.58, + "probability": 0.9989 + }, + { + "start": 23338.9, + "end": 23339.97, + "probability": 0.8258 + }, + { + "start": 23340.08, + "end": 23340.28, + "probability": 0.8941 + }, + { + "start": 23340.8, + "end": 23343.54, + "probability": 0.959 + }, + { + "start": 23345.58, + "end": 23349.66, + "probability": 0.9854 + }, + { + "start": 23350.84, + "end": 23353.76, + "probability": 0.9941 + }, + { + "start": 23354.4, + "end": 23357.36, + "probability": 0.9902 + }, + { + "start": 23358.44, + "end": 23360.36, + "probability": 0.9922 + }, + { + "start": 23360.46, + "end": 23362.89, + "probability": 0.9803 + }, + { + "start": 23364.18, + "end": 23364.88, + "probability": 0.9414 + }, + { + "start": 23366.2, + "end": 23369.96, + "probability": 0.9316 + }, + { + "start": 23370.54, + "end": 23371.78, + "probability": 0.9624 + }, + { + "start": 23372.28, + "end": 23372.4, + "probability": 0.7861 + }, + { + "start": 23372.58, + "end": 23373.56, + "probability": 0.983 + }, + { + "start": 23373.72, + "end": 23375.38, + "probability": 0.9973 + }, + { + "start": 23375.68, + "end": 23379.36, + "probability": 0.9568 + }, + { + "start": 23380.22, + "end": 23385.38, + "probability": 0.9979 + }, + { + "start": 23385.92, + "end": 23387.08, + "probability": 0.9998 + }, + { + "start": 23387.6, + "end": 23389.2, + "probability": 0.9922 + }, + { + "start": 23391.36, + "end": 23394.88, + "probability": 0.9937 + }, + { + "start": 23395.14, + "end": 23397.34, + "probability": 0.9963 + }, + { + "start": 23397.56, + "end": 23398.78, + "probability": 0.9932 + }, + { + "start": 23399.42, + "end": 23404.14, + "probability": 0.9852 + }, + { + "start": 23405.04, + "end": 23405.24, + "probability": 0.6402 + }, + { + "start": 23405.34, + "end": 23411.11, + "probability": 0.9839 + }, + { + "start": 23411.96, + "end": 23413.2, + "probability": 0.9416 + }, + { + "start": 23413.94, + "end": 23415.64, + "probability": 0.8367 + }, + { + "start": 23416.38, + "end": 23418.84, + "probability": 0.8646 + }, + { + "start": 23419.44, + "end": 23422.48, + "probability": 0.9686 + }, + { + "start": 23422.54, + "end": 23426.96, + "probability": 0.9864 + }, + { + "start": 23427.46, + "end": 23428.08, + "probability": 0.3884 + }, + { + "start": 23428.56, + "end": 23433.52, + "probability": 0.9961 + }, + { + "start": 23434.04, + "end": 23436.3, + "probability": 0.9511 + }, + { + "start": 23437.42, + "end": 23441.54, + "probability": 0.9589 + }, + { + "start": 23442.08, + "end": 23443.68, + "probability": 0.9978 + }, + { + "start": 23444.4, + "end": 23445.4, + "probability": 0.979 + }, + { + "start": 23445.5, + "end": 23448.9, + "probability": 0.6908 + }, + { + "start": 23449.18, + "end": 23453.06, + "probability": 0.9802 + }, + { + "start": 23453.92, + "end": 23458.08, + "probability": 0.9971 + }, + { + "start": 23458.9, + "end": 23464.62, + "probability": 0.9263 + }, + { + "start": 23464.88, + "end": 23466.24, + "probability": 0.9313 + }, + { + "start": 23466.96, + "end": 23470.82, + "probability": 0.7991 + }, + { + "start": 23471.58, + "end": 23473.98, + "probability": 0.9862 + }, + { + "start": 23474.14, + "end": 23476.1, + "probability": 0.9872 + }, + { + "start": 23477.54, + "end": 23479.92, + "probability": 0.9778 + }, + { + "start": 23481.32, + "end": 23485.3, + "probability": 0.998 + }, + { + "start": 23485.9, + "end": 23488.38, + "probability": 0.9818 + }, + { + "start": 23489.22, + "end": 23491.0, + "probability": 0.9925 + }, + { + "start": 23491.56, + "end": 23493.82, + "probability": 0.9574 + }, + { + "start": 23494.86, + "end": 23497.58, + "probability": 0.9134 + }, + { + "start": 23498.48, + "end": 23499.6, + "probability": 0.8335 + }, + { + "start": 23499.72, + "end": 23500.76, + "probability": 0.4717 + }, + { + "start": 23501.26, + "end": 23504.2, + "probability": 0.9973 + }, + { + "start": 23505.8, + "end": 23510.86, + "probability": 0.967 + }, + { + "start": 23511.4, + "end": 23512.1, + "probability": 0.9921 + }, + { + "start": 23512.96, + "end": 23516.74, + "probability": 0.7827 + }, + { + "start": 23517.52, + "end": 23519.64, + "probability": 0.8098 + }, + { + "start": 23520.0, + "end": 23520.86, + "probability": 0.8752 + }, + { + "start": 23520.92, + "end": 23524.5, + "probability": 0.9785 + }, + { + "start": 23525.32, + "end": 23526.78, + "probability": 0.89 + }, + { + "start": 23527.84, + "end": 23530.38, + "probability": 0.8276 + }, + { + "start": 23533.26, + "end": 23536.66, + "probability": 0.8893 + }, + { + "start": 23536.68, + "end": 23537.18, + "probability": 0.2114 + }, + { + "start": 23537.44, + "end": 23537.88, + "probability": 0.9288 + }, + { + "start": 23538.7, + "end": 23541.36, + "probability": 0.6642 + }, + { + "start": 23541.98, + "end": 23541.98, + "probability": 0.4767 + }, + { + "start": 23543.28, + "end": 23546.5, + "probability": 0.8724 + }, + { + "start": 23549.26, + "end": 23552.28, + "probability": 0.952 + }, + { + "start": 23555.92, + "end": 23556.92, + "probability": 0.7894 + }, + { + "start": 23557.1, + "end": 23559.3, + "probability": 0.5249 + }, + { + "start": 23559.54, + "end": 23560.22, + "probability": 0.858 + }, + { + "start": 23561.2, + "end": 23564.54, + "probability": 0.8364 + }, + { + "start": 23565.58, + "end": 23567.64, + "probability": 0.998 + }, + { + "start": 23568.56, + "end": 23569.94, + "probability": 0.895 + }, + { + "start": 23570.24, + "end": 23576.72, + "probability": 0.7435 + }, + { + "start": 23576.88, + "end": 23577.51, + "probability": 0.9146 + }, + { + "start": 23577.86, + "end": 23579.48, + "probability": 0.2911 + }, + { + "start": 23583.68, + "end": 23584.58, + "probability": 0.1377 + }, + { + "start": 23585.55, + "end": 23589.9, + "probability": 0.9961 + }, + { + "start": 23590.12, + "end": 23590.4, + "probability": 0.8611 + }, + { + "start": 23591.52, + "end": 23592.4, + "probability": 0.9318 + }, + { + "start": 23592.42, + "end": 23592.98, + "probability": 0.375 + }, + { + "start": 23594.9, + "end": 23595.76, + "probability": 0.2951 + }, + { + "start": 23596.38, + "end": 23601.36, + "probability": 0.8811 + }, + { + "start": 23602.64, + "end": 23603.89, + "probability": 0.9619 + }, + { + "start": 23604.34, + "end": 23605.58, + "probability": 0.9679 + }, + { + "start": 23606.22, + "end": 23606.34, + "probability": 0.146 + }, + { + "start": 23606.66, + "end": 23611.34, + "probability": 0.8697 + }, + { + "start": 23613.18, + "end": 23618.22, + "probability": 0.9417 + }, + { + "start": 23618.42, + "end": 23619.72, + "probability": 0.9243 + }, + { + "start": 23620.44, + "end": 23623.3, + "probability": 0.9579 + }, + { + "start": 23625.3, + "end": 23629.4, + "probability": 0.9959 + }, + { + "start": 23630.56, + "end": 23631.32, + "probability": 0.9161 + }, + { + "start": 23631.54, + "end": 23633.02, + "probability": 0.9656 + }, + { + "start": 23633.14, + "end": 23636.4, + "probability": 0.981 + }, + { + "start": 23639.06, + "end": 23643.46, + "probability": 0.9983 + }, + { + "start": 23643.46, + "end": 23648.26, + "probability": 0.9986 + }, + { + "start": 23649.24, + "end": 23653.0, + "probability": 0.8993 + }, + { + "start": 23654.48, + "end": 23657.54, + "probability": 0.7121 + }, + { + "start": 23658.78, + "end": 23663.08, + "probability": 0.9839 + }, + { + "start": 23663.14, + "end": 23667.44, + "probability": 0.9972 + }, + { + "start": 23669.0, + "end": 23670.38, + "probability": 0.8609 + }, + { + "start": 23670.56, + "end": 23672.98, + "probability": 0.9928 + }, + { + "start": 23674.9, + "end": 23676.38, + "probability": 0.7209 + }, + { + "start": 23676.44, + "end": 23677.22, + "probability": 0.7477 + }, + { + "start": 23677.68, + "end": 23682.12, + "probability": 0.6812 + }, + { + "start": 23684.78, + "end": 23685.88, + "probability": 0.7327 + }, + { + "start": 23686.54, + "end": 23689.02, + "probability": 0.6763 + }, + { + "start": 23689.9, + "end": 23693.08, + "probability": 0.8969 + }, + { + "start": 23694.44, + "end": 23694.88, + "probability": 0.2469 + }, + { + "start": 23695.06, + "end": 23697.06, + "probability": 0.679 + }, + { + "start": 23697.2, + "end": 23700.22, + "probability": 0.8435 + }, + { + "start": 23700.84, + "end": 23703.27, + "probability": 0.8534 + }, + { + "start": 23704.8, + "end": 23709.89, + "probability": 0.927 + }, + { + "start": 23711.22, + "end": 23714.68, + "probability": 0.7968 + }, + { + "start": 23714.68, + "end": 23721.38, + "probability": 0.8759 + }, + { + "start": 23722.76, + "end": 23726.14, + "probability": 0.7632 + }, + { + "start": 23726.74, + "end": 23729.14, + "probability": 0.9775 + }, + { + "start": 23730.9, + "end": 23734.98, + "probability": 0.5802 + }, + { + "start": 23736.78, + "end": 23740.44, + "probability": 0.8892 + }, + { + "start": 23741.46, + "end": 23746.46, + "probability": 0.9919 + }, + { + "start": 23749.84, + "end": 23753.0, + "probability": 0.7843 + }, + { + "start": 23754.58, + "end": 23759.7, + "probability": 0.8773 + }, + { + "start": 23761.14, + "end": 23764.16, + "probability": 0.7812 + }, + { + "start": 23765.2, + "end": 23767.58, + "probability": 0.9222 + }, + { + "start": 23768.96, + "end": 23772.33, + "probability": 0.9519 + }, + { + "start": 23775.28, + "end": 23776.92, + "probability": 0.9379 + }, + { + "start": 23777.88, + "end": 23780.06, + "probability": 0.8503 + }, + { + "start": 23780.26, + "end": 23781.0, + "probability": 0.9788 + }, + { + "start": 23782.6, + "end": 23785.66, + "probability": 0.9954 + }, + { + "start": 23789.14, + "end": 23791.42, + "probability": 0.9834 + }, + { + "start": 23792.92, + "end": 23795.04, + "probability": 0.8327 + }, + { + "start": 23795.18, + "end": 23799.42, + "probability": 0.8674 + }, + { + "start": 23800.24, + "end": 23801.48, + "probability": 0.7214 + }, + { + "start": 23802.98, + "end": 23807.74, + "probability": 0.8161 + }, + { + "start": 23807.88, + "end": 23808.74, + "probability": 0.9248 + }, + { + "start": 23812.66, + "end": 23813.42, + "probability": 0.6446 + }, + { + "start": 23813.5, + "end": 23817.76, + "probability": 0.9645 + }, + { + "start": 23818.08, + "end": 23824.18, + "probability": 0.9894 + }, + { + "start": 23825.38, + "end": 23827.86, + "probability": 0.8591 + }, + { + "start": 23828.7, + "end": 23833.92, + "probability": 0.993 + }, + { + "start": 23834.64, + "end": 23840.36, + "probability": 0.57 + }, + { + "start": 23841.24, + "end": 23842.82, + "probability": 0.9065 + }, + { + "start": 23843.46, + "end": 23845.9, + "probability": 0.9131 + }, + { + "start": 23847.36, + "end": 23852.62, + "probability": 0.7998 + }, + { + "start": 23852.8, + "end": 23855.96, + "probability": 0.8051 + }, + { + "start": 23856.78, + "end": 23860.16, + "probability": 0.9899 + }, + { + "start": 23861.12, + "end": 23869.18, + "probability": 0.8853 + }, + { + "start": 23869.4, + "end": 23871.13, + "probability": 0.9561 + }, + { + "start": 23872.4, + "end": 23873.76, + "probability": 0.8662 + }, + { + "start": 23874.42, + "end": 23879.28, + "probability": 0.8763 + }, + { + "start": 23879.28, + "end": 23883.86, + "probability": 0.9235 + }, + { + "start": 23884.08, + "end": 23884.85, + "probability": 0.5684 + }, + { + "start": 23885.26, + "end": 23886.2, + "probability": 0.8277 + }, + { + "start": 23887.96, + "end": 23891.66, + "probability": 0.9633 + }, + { + "start": 23892.98, + "end": 23896.62, + "probability": 0.9072 + }, + { + "start": 23897.56, + "end": 23899.34, + "probability": 0.9532 + }, + { + "start": 23900.54, + "end": 23903.6, + "probability": 0.8399 + }, + { + "start": 23905.3, + "end": 23905.82, + "probability": 0.3673 + }, + { + "start": 23905.96, + "end": 23909.88, + "probability": 0.822 + }, + { + "start": 23909.88, + "end": 23914.68, + "probability": 0.8149 + }, + { + "start": 23915.5, + "end": 23916.68, + "probability": 0.6312 + }, + { + "start": 23917.3, + "end": 23918.1, + "probability": 0.6243 + }, + { + "start": 23920.36, + "end": 23925.24, + "probability": 0.8018 + }, + { + "start": 23927.98, + "end": 23930.98, + "probability": 0.9044 + }, + { + "start": 23932.1, + "end": 23937.2, + "probability": 0.8611 + }, + { + "start": 23938.7, + "end": 23939.6, + "probability": 0.5407 + }, + { + "start": 23940.36, + "end": 23942.28, + "probability": 0.9742 + }, + { + "start": 23944.04, + "end": 23944.5, + "probability": 0.3966 + }, + { + "start": 23944.68, + "end": 23948.0, + "probability": 0.9878 + }, + { + "start": 23950.54, + "end": 23951.54, + "probability": 0.9221 + }, + { + "start": 23951.58, + "end": 23954.96, + "probability": 0.8771 + }, + { + "start": 23956.7, + "end": 23957.08, + "probability": 0.5467 + }, + { + "start": 23957.22, + "end": 23961.0, + "probability": 0.922 + }, + { + "start": 23961.32, + "end": 23963.16, + "probability": 0.8997 + }, + { + "start": 23964.92, + "end": 23968.1, + "probability": 0.9296 + }, + { + "start": 23972.96, + "end": 23976.74, + "probability": 0.9382 + }, + { + "start": 23978.1, + "end": 23982.52, + "probability": 0.7482 + }, + { + "start": 23983.16, + "end": 23986.84, + "probability": 0.7927 + }, + { + "start": 23987.38, + "end": 23988.21, + "probability": 0.9826 + }, + { + "start": 23989.04, + "end": 23992.02, + "probability": 0.9587 + }, + { + "start": 23993.16, + "end": 23994.74, + "probability": 0.8308 + }, + { + "start": 23995.42, + "end": 23998.04, + "probability": 0.796 + }, + { + "start": 24002.72, + "end": 24006.62, + "probability": 0.9911 + }, + { + "start": 24007.54, + "end": 24014.42, + "probability": 0.9909 + }, + { + "start": 24014.5, + "end": 24015.8, + "probability": 0.9679 + }, + { + "start": 24016.66, + "end": 24017.42, + "probability": 0.9812 + }, + { + "start": 24019.0, + "end": 24021.8, + "probability": 0.9978 + }, + { + "start": 24021.8, + "end": 24024.92, + "probability": 0.9886 + }, + { + "start": 24025.86, + "end": 24027.1, + "probability": 0.6299 + }, + { + "start": 24028.48, + "end": 24030.94, + "probability": 0.9609 + }, + { + "start": 24031.98, + "end": 24036.48, + "probability": 0.9883 + }, + { + "start": 24037.32, + "end": 24039.32, + "probability": 0.999 + }, + { + "start": 24039.94, + "end": 24041.62, + "probability": 0.9988 + }, + { + "start": 24043.26, + "end": 24043.98, + "probability": 0.5953 + }, + { + "start": 24044.4, + "end": 24044.58, + "probability": 0.6929 + }, + { + "start": 24046.38, + "end": 24047.24, + "probability": 0.7109 + }, + { + "start": 24047.34, + "end": 24047.85, + "probability": 0.9885 + }, + { + "start": 24048.56, + "end": 24051.3, + "probability": 0.9012 + }, + { + "start": 24051.4, + "end": 24051.64, + "probability": 0.4158 + }, + { + "start": 24052.22, + "end": 24054.34, + "probability": 0.5581 + }, + { + "start": 24054.78, + "end": 24055.88, + "probability": 0.5129 + }, + { + "start": 24057.44, + "end": 24059.66, + "probability": 0.9974 + }, + { + "start": 24060.34, + "end": 24064.38, + "probability": 0.9305 + }, + { + "start": 24065.2, + "end": 24067.06, + "probability": 0.9268 + }, + { + "start": 24086.62, + "end": 24089.86, + "probability": 0.6313 + }, + { + "start": 24096.12, + "end": 24099.8, + "probability": 0.3414 + }, + { + "start": 24101.62, + "end": 24104.48, + "probability": 0.0804 + }, + { + "start": 24107.86, + "end": 24110.32, + "probability": 0.5348 + }, + { + "start": 24110.46, + "end": 24111.92, + "probability": 0.7051 + }, + { + "start": 24112.7, + "end": 24115.46, + "probability": 0.6497 + }, + { + "start": 24116.04, + "end": 24120.58, + "probability": 0.8162 + }, + { + "start": 24121.64, + "end": 24124.62, + "probability": 0.4532 + } + ], + "segments_count": 8734, + "words_count": 42138, + "avg_words_per_segment": 4.8246, + "avg_segment_duration": 2.012, + "avg_words_per_minute": 102.7808, + "plenum_id": "19754", + "duration": 24598.75, + "title": null, + "plenum_date": "2012-02-29" +} \ No newline at end of file