diff --git "a/23845/metadata.json" "b/23845/metadata.json" new file mode 100644--- /dev/null +++ "b/23845/metadata.json" @@ -0,0 +1,17602 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "23845", + "quality_score": 0.9272, + "per_segment_quality_scores": [ + { + "start": 56.6, + "end": 59.52, + "probability": 0.5469 + }, + { + "start": 59.78, + "end": 62.18, + "probability": 0.6184 + }, + { + "start": 62.8, + "end": 68.42, + "probability": 0.7164 + }, + { + "start": 68.96, + "end": 73.18, + "probability": 0.8338 + }, + { + "start": 73.72, + "end": 76.29, + "probability": 0.9165 + }, + { + "start": 77.3, + "end": 78.92, + "probability": 0.7719 + }, + { + "start": 79.86, + "end": 80.62, + "probability": 0.8519 + }, + { + "start": 80.76, + "end": 82.1, + "probability": 0.8742 + }, + { + "start": 82.16, + "end": 83.66, + "probability": 0.9706 + }, + { + "start": 83.84, + "end": 85.42, + "probability": 0.9667 + }, + { + "start": 85.98, + "end": 89.96, + "probability": 0.8448 + }, + { + "start": 90.06, + "end": 91.72, + "probability": 0.9347 + }, + { + "start": 91.92, + "end": 93.44, + "probability": 0.3513 + }, + { + "start": 94.14, + "end": 95.6, + "probability": 0.9077 + }, + { + "start": 96.28, + "end": 99.7, + "probability": 0.8433 + }, + { + "start": 100.06, + "end": 101.76, + "probability": 0.8871 + }, + { + "start": 102.12, + "end": 103.84, + "probability": 0.989 + }, + { + "start": 104.8, + "end": 105.62, + "probability": 0.785 + }, + { + "start": 105.7, + "end": 110.7, + "probability": 0.6654 + }, + { + "start": 110.9, + "end": 112.76, + "probability": 0.3716 + }, + { + "start": 113.32, + "end": 116.24, + "probability": 0.9893 + }, + { + "start": 116.88, + "end": 119.44, + "probability": 0.8706 + }, + { + "start": 120.54, + "end": 120.68, + "probability": 0.2357 + }, + { + "start": 121.18, + "end": 125.68, + "probability": 0.8413 + }, + { + "start": 125.8, + "end": 131.74, + "probability": 0.7515 + }, + { + "start": 131.8, + "end": 132.84, + "probability": 0.9307 + }, + { + "start": 133.28, + "end": 135.1, + "probability": 0.9962 + }, + { + "start": 135.64, + "end": 138.76, + "probability": 0.9252 + }, + { + "start": 139.22, + "end": 141.86, + "probability": 0.8281 + }, + { + "start": 141.98, + "end": 141.98, + "probability": 0.567 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 149.1, + "end": 150.96, + "probability": 0.6256 + }, + { + "start": 166.08, + "end": 166.68, + "probability": 0.668 + }, + { + "start": 167.42, + "end": 168.84, + "probability": 0.9956 + }, + { + "start": 173.16, + "end": 174.9, + "probability": 0.3102 + }, + { + "start": 176.54, + "end": 178.14, + "probability": 0.5997 + }, + { + "start": 178.46, + "end": 181.26, + "probability": 0.9897 + }, + { + "start": 182.76, + "end": 185.18, + "probability": 0.6966 + }, + { + "start": 185.84, + "end": 190.2, + "probability": 0.9002 + }, + { + "start": 191.46, + "end": 194.04, + "probability": 0.8044 + }, + { + "start": 194.74, + "end": 195.82, + "probability": 0.6708 + }, + { + "start": 197.16, + "end": 199.16, + "probability": 0.9454 + }, + { + "start": 199.64, + "end": 202.68, + "probability": 0.9922 + }, + { + "start": 204.98, + "end": 209.72, + "probability": 0.9775 + }, + { + "start": 210.42, + "end": 214.46, + "probability": 0.9919 + }, + { + "start": 215.68, + "end": 217.32, + "probability": 0.6713 + }, + { + "start": 218.24, + "end": 221.88, + "probability": 0.9761 + }, + { + "start": 222.44, + "end": 226.86, + "probability": 0.9881 + }, + { + "start": 227.82, + "end": 232.66, + "probability": 0.9688 + }, + { + "start": 233.36, + "end": 234.82, + "probability": 0.8363 + }, + { + "start": 235.8, + "end": 236.24, + "probability": 0.7804 + }, + { + "start": 236.9, + "end": 238.8, + "probability": 0.95 + }, + { + "start": 239.76, + "end": 242.02, + "probability": 0.8001 + }, + { + "start": 242.02, + "end": 243.16, + "probability": 0.4256 + }, + { + "start": 243.18, + "end": 245.02, + "probability": 0.9736 + }, + { + "start": 250.12, + "end": 251.22, + "probability": 0.6056 + }, + { + "start": 253.42, + "end": 254.34, + "probability": 0.814 + }, + { + "start": 255.98, + "end": 258.68, + "probability": 0.6422 + }, + { + "start": 259.22, + "end": 260.62, + "probability": 0.0527 + }, + { + "start": 260.7, + "end": 261.1, + "probability": 0.7993 + }, + { + "start": 261.4, + "end": 262.56, + "probability": 0.9601 + }, + { + "start": 263.8, + "end": 266.08, + "probability": 0.9945 + }, + { + "start": 266.12, + "end": 266.53, + "probability": 0.8271 + }, + { + "start": 266.88, + "end": 268.12, + "probability": 0.9336 + }, + { + "start": 268.68, + "end": 270.66, + "probability": 0.9061 + }, + { + "start": 270.68, + "end": 272.04, + "probability": 0.9885 + }, + { + "start": 272.74, + "end": 274.82, + "probability": 0.6443 + }, + { + "start": 275.86, + "end": 276.94, + "probability": 0.5178 + }, + { + "start": 279.62, + "end": 284.04, + "probability": 0.9927 + }, + { + "start": 285.28, + "end": 287.32, + "probability": 0.6971 + }, + { + "start": 289.58, + "end": 292.48, + "probability": 0.9456 + }, + { + "start": 293.36, + "end": 296.12, + "probability": 0.8329 + }, + { + "start": 296.72, + "end": 297.72, + "probability": 0.9258 + }, + { + "start": 298.78, + "end": 299.55, + "probability": 0.7744 + }, + { + "start": 300.74, + "end": 301.96, + "probability": 0.9712 + }, + { + "start": 302.36, + "end": 303.3, + "probability": 0.9766 + }, + { + "start": 304.26, + "end": 311.02, + "probability": 0.9557 + }, + { + "start": 312.06, + "end": 316.36, + "probability": 0.9833 + }, + { + "start": 317.96, + "end": 319.82, + "probability": 0.9953 + }, + { + "start": 320.52, + "end": 321.8, + "probability": 0.9878 + }, + { + "start": 322.66, + "end": 323.96, + "probability": 0.6432 + }, + { + "start": 324.84, + "end": 327.48, + "probability": 0.974 + }, + { + "start": 328.2, + "end": 329.38, + "probability": 0.8102 + }, + { + "start": 329.5, + "end": 331.24, + "probability": 0.8159 + }, + { + "start": 331.28, + "end": 332.72, + "probability": 0.9907 + }, + { + "start": 333.34, + "end": 335.22, + "probability": 0.808 + }, + { + "start": 335.48, + "end": 335.7, + "probability": 0.6503 + }, + { + "start": 336.42, + "end": 338.66, + "probability": 0.5753 + }, + { + "start": 338.72, + "end": 339.48, + "probability": 0.9659 + }, + { + "start": 340.04, + "end": 341.08, + "probability": 0.8857 + }, + { + "start": 341.74, + "end": 342.74, + "probability": 0.695 + }, + { + "start": 342.82, + "end": 343.94, + "probability": 0.9388 + }, + { + "start": 344.42, + "end": 345.7, + "probability": 0.9929 + }, + { + "start": 346.24, + "end": 348.04, + "probability": 0.8299 + }, + { + "start": 348.1, + "end": 348.4, + "probability": 0.3583 + }, + { + "start": 348.82, + "end": 350.48, + "probability": 0.9587 + }, + { + "start": 350.72, + "end": 353.78, + "probability": 0.8945 + }, + { + "start": 354.6, + "end": 354.86, + "probability": 0.2937 + }, + { + "start": 354.98, + "end": 356.52, + "probability": 0.4079 + }, + { + "start": 356.78, + "end": 358.68, + "probability": 0.5177 + }, + { + "start": 359.6, + "end": 360.06, + "probability": 0.3617 + }, + { + "start": 360.7, + "end": 361.16, + "probability": 0.4487 + }, + { + "start": 361.88, + "end": 363.18, + "probability": 0.7828 + }, + { + "start": 364.12, + "end": 367.36, + "probability": 0.9429 + }, + { + "start": 368.08, + "end": 369.6, + "probability": 0.6438 + }, + { + "start": 369.7, + "end": 372.06, + "probability": 0.8193 + }, + { + "start": 372.28, + "end": 372.96, + "probability": 0.7977 + }, + { + "start": 373.08, + "end": 373.74, + "probability": 0.894 + }, + { + "start": 373.84, + "end": 375.0, + "probability": 0.5726 + }, + { + "start": 375.1, + "end": 376.08, + "probability": 0.9922 + }, + { + "start": 376.18, + "end": 377.06, + "probability": 0.6742 + }, + { + "start": 377.8, + "end": 379.02, + "probability": 0.5339 + }, + { + "start": 379.28, + "end": 381.06, + "probability": 0.9116 + }, + { + "start": 381.28, + "end": 382.82, + "probability": 0.874 + }, + { + "start": 383.52, + "end": 384.67, + "probability": 0.8745 + }, + { + "start": 386.02, + "end": 388.76, + "probability": 0.9789 + }, + { + "start": 388.88, + "end": 390.74, + "probability": 0.8008 + }, + { + "start": 390.82, + "end": 391.36, + "probability": 0.851 + }, + { + "start": 391.46, + "end": 391.72, + "probability": 0.2407 + }, + { + "start": 392.42, + "end": 395.96, + "probability": 0.9564 + }, + { + "start": 396.5, + "end": 397.96, + "probability": 0.8989 + }, + { + "start": 398.74, + "end": 400.0, + "probability": 0.4958 + }, + { + "start": 400.0, + "end": 402.62, + "probability": 0.9697 + }, + { + "start": 402.7, + "end": 403.86, + "probability": 0.748 + }, + { + "start": 404.3, + "end": 407.2, + "probability": 0.6648 + }, + { + "start": 407.2, + "end": 410.14, + "probability": 0.9724 + }, + { + "start": 410.9, + "end": 413.68, + "probability": 0.7265 + }, + { + "start": 414.2, + "end": 415.64, + "probability": 0.897 + }, + { + "start": 416.22, + "end": 417.52, + "probability": 0.7608 + }, + { + "start": 417.6, + "end": 419.06, + "probability": 0.853 + }, + { + "start": 419.18, + "end": 420.46, + "probability": 0.9479 + }, + { + "start": 420.9, + "end": 422.76, + "probability": 0.9521 + }, + { + "start": 422.84, + "end": 424.08, + "probability": 0.892 + }, + { + "start": 424.16, + "end": 424.92, + "probability": 0.52 + }, + { + "start": 424.92, + "end": 425.34, + "probability": 0.532 + }, + { + "start": 425.4, + "end": 427.68, + "probability": 0.9215 + }, + { + "start": 429.48, + "end": 429.48, + "probability": 0.0284 + }, + { + "start": 429.48, + "end": 432.94, + "probability": 0.9243 + }, + { + "start": 434.32, + "end": 435.68, + "probability": 0.8065 + }, + { + "start": 435.92, + "end": 436.32, + "probability": 0.4038 + }, + { + "start": 436.5, + "end": 438.08, + "probability": 0.9944 + }, + { + "start": 438.28, + "end": 439.1, + "probability": 0.9861 + }, + { + "start": 439.3, + "end": 439.66, + "probability": 0.3974 + }, + { + "start": 441.23, + "end": 444.78, + "probability": 0.8764 + }, + { + "start": 444.88, + "end": 446.28, + "probability": 0.9848 + }, + { + "start": 446.38, + "end": 446.62, + "probability": 0.9744 + }, + { + "start": 446.66, + "end": 449.2, + "probability": 0.9137 + }, + { + "start": 449.46, + "end": 450.64, + "probability": 0.9961 + }, + { + "start": 450.68, + "end": 451.94, + "probability": 0.9531 + }, + { + "start": 452.38, + "end": 454.06, + "probability": 0.8889 + }, + { + "start": 454.16, + "end": 456.98, + "probability": 0.6692 + }, + { + "start": 457.44, + "end": 458.12, + "probability": 0.9238 + }, + { + "start": 458.22, + "end": 458.78, + "probability": 0.9661 + }, + { + "start": 458.8, + "end": 460.54, + "probability": 0.9294 + }, + { + "start": 460.62, + "end": 461.88, + "probability": 0.9158 + }, + { + "start": 462.32, + "end": 465.61, + "probability": 0.9933 + }, + { + "start": 465.8, + "end": 467.02, + "probability": 0.945 + }, + { + "start": 467.12, + "end": 467.48, + "probability": 0.8083 + }, + { + "start": 469.24, + "end": 471.12, + "probability": 0.9702 + }, + { + "start": 471.16, + "end": 473.24, + "probability": 0.981 + }, + { + "start": 473.28, + "end": 473.88, + "probability": 0.4497 + }, + { + "start": 473.94, + "end": 475.5, + "probability": 0.9716 + }, + { + "start": 485.52, + "end": 486.12, + "probability": 0.7152 + }, + { + "start": 486.22, + "end": 491.04, + "probability": 0.9723 + }, + { + "start": 491.8, + "end": 493.82, + "probability": 0.9595 + }, + { + "start": 494.0, + "end": 494.62, + "probability": 0.4989 + }, + { + "start": 494.8, + "end": 495.32, + "probability": 0.9655 + }, + { + "start": 495.38, + "end": 496.98, + "probability": 0.9811 + }, + { + "start": 497.52, + "end": 499.44, + "probability": 0.948 + }, + { + "start": 500.44, + "end": 500.66, + "probability": 0.3914 + }, + { + "start": 501.16, + "end": 502.68, + "probability": 0.931 + }, + { + "start": 502.96, + "end": 503.94, + "probability": 0.8678 + }, + { + "start": 504.06, + "end": 507.7, + "probability": 0.9497 + }, + { + "start": 508.82, + "end": 510.18, + "probability": 0.8629 + }, + { + "start": 510.58, + "end": 512.12, + "probability": 0.9744 + }, + { + "start": 512.54, + "end": 513.92, + "probability": 0.984 + }, + { + "start": 513.94, + "end": 515.82, + "probability": 0.9458 + }, + { + "start": 516.54, + "end": 520.5, + "probability": 0.6103 + }, + { + "start": 521.1, + "end": 523.06, + "probability": 0.7781 + }, + { + "start": 523.66, + "end": 525.2, + "probability": 0.8624 + }, + { + "start": 525.64, + "end": 527.14, + "probability": 0.748 + }, + { + "start": 527.64, + "end": 530.2, + "probability": 0.9834 + }, + { + "start": 530.3, + "end": 531.78, + "probability": 0.811 + }, + { + "start": 532.26, + "end": 533.3, + "probability": 0.7984 + }, + { + "start": 533.4, + "end": 534.16, + "probability": 0.8901 + }, + { + "start": 534.64, + "end": 535.62, + "probability": 0.8729 + }, + { + "start": 536.06, + "end": 538.16, + "probability": 0.9009 + }, + { + "start": 539.0, + "end": 540.32, + "probability": 0.9442 + }, + { + "start": 540.46, + "end": 543.72, + "probability": 0.876 + }, + { + "start": 544.26, + "end": 544.62, + "probability": 0.9661 + }, + { + "start": 544.62, + "end": 547.32, + "probability": 0.9954 + }, + { + "start": 548.02, + "end": 552.66, + "probability": 0.9798 + }, + { + "start": 553.06, + "end": 553.66, + "probability": 0.6176 + }, + { + "start": 554.32, + "end": 555.14, + "probability": 0.6587 + }, + { + "start": 555.56, + "end": 557.84, + "probability": 0.8686 + }, + { + "start": 558.48, + "end": 562.46, + "probability": 0.8765 + }, + { + "start": 562.88, + "end": 566.26, + "probability": 0.8453 + }, + { + "start": 566.74, + "end": 569.5, + "probability": 0.7882 + }, + { + "start": 569.92, + "end": 570.52, + "probability": 0.9321 + }, + { + "start": 571.1, + "end": 574.58, + "probability": 0.986 + }, + { + "start": 574.98, + "end": 577.22, + "probability": 0.9899 + }, + { + "start": 577.7, + "end": 578.28, + "probability": 0.7595 + }, + { + "start": 578.36, + "end": 581.16, + "probability": 0.8083 + }, + { + "start": 581.82, + "end": 585.08, + "probability": 0.9769 + }, + { + "start": 585.16, + "end": 585.9, + "probability": 0.73 + }, + { + "start": 586.18, + "end": 588.82, + "probability": 0.9497 + }, + { + "start": 588.94, + "end": 591.02, + "probability": 0.7408 + }, + { + "start": 591.38, + "end": 592.1, + "probability": 0.6471 + }, + { + "start": 592.64, + "end": 594.06, + "probability": 0.7872 + }, + { + "start": 597.02, + "end": 599.76, + "probability": 0.8166 + }, + { + "start": 600.8, + "end": 602.54, + "probability": 0.9974 + }, + { + "start": 603.38, + "end": 606.32, + "probability": 0.9972 + }, + { + "start": 607.06, + "end": 609.47, + "probability": 0.9952 + }, + { + "start": 610.6, + "end": 614.04, + "probability": 0.9926 + }, + { + "start": 615.44, + "end": 619.24, + "probability": 0.9822 + }, + { + "start": 620.52, + "end": 624.3, + "probability": 0.9427 + }, + { + "start": 624.8, + "end": 626.3, + "probability": 0.6641 + }, + { + "start": 626.54, + "end": 627.9, + "probability": 0.9279 + }, + { + "start": 629.38, + "end": 632.36, + "probability": 0.9708 + }, + { + "start": 633.78, + "end": 636.3, + "probability": 0.9975 + }, + { + "start": 637.0, + "end": 638.86, + "probability": 0.9541 + }, + { + "start": 639.46, + "end": 642.38, + "probability": 0.9162 + }, + { + "start": 643.12, + "end": 646.56, + "probability": 0.9419 + }, + { + "start": 646.74, + "end": 650.14, + "probability": 0.9751 + }, + { + "start": 651.1, + "end": 653.81, + "probability": 0.9873 + }, + { + "start": 654.84, + "end": 659.02, + "probability": 0.9985 + }, + { + "start": 659.14, + "end": 661.14, + "probability": 0.9963 + }, + { + "start": 662.5, + "end": 667.22, + "probability": 0.8594 + }, + { + "start": 668.06, + "end": 671.86, + "probability": 0.8489 + }, + { + "start": 672.1, + "end": 672.88, + "probability": 0.9857 + }, + { + "start": 673.72, + "end": 677.18, + "probability": 0.8423 + }, + { + "start": 677.42, + "end": 679.8, + "probability": 0.926 + }, + { + "start": 679.98, + "end": 680.82, + "probability": 0.4578 + }, + { + "start": 681.5, + "end": 683.26, + "probability": 0.9276 + }, + { + "start": 686.07, + "end": 688.06, + "probability": 0.6693 + }, + { + "start": 688.66, + "end": 690.39, + "probability": 0.9971 + }, + { + "start": 690.74, + "end": 691.6, + "probability": 0.7302 + }, + { + "start": 691.68, + "end": 692.28, + "probability": 0.534 + }, + { + "start": 692.36, + "end": 694.23, + "probability": 0.9307 + }, + { + "start": 694.48, + "end": 695.14, + "probability": 0.644 + }, + { + "start": 695.16, + "end": 696.5, + "probability": 0.9843 + }, + { + "start": 696.96, + "end": 698.38, + "probability": 0.4338 + }, + { + "start": 698.5, + "end": 699.62, + "probability": 0.951 + }, + { + "start": 699.66, + "end": 700.52, + "probability": 0.6246 + }, + { + "start": 700.78, + "end": 702.14, + "probability": 0.7723 + }, + { + "start": 702.4, + "end": 704.56, + "probability": 0.8726 + }, + { + "start": 704.72, + "end": 706.98, + "probability": 0.9674 + }, + { + "start": 707.0, + "end": 711.32, + "probability": 0.9547 + }, + { + "start": 711.32, + "end": 715.44, + "probability": 0.9943 + }, + { + "start": 716.94, + "end": 722.38, + "probability": 0.995 + }, + { + "start": 722.8, + "end": 725.52, + "probability": 0.9971 + }, + { + "start": 726.62, + "end": 728.86, + "probability": 0.801 + }, + { + "start": 731.42, + "end": 732.9, + "probability": 0.9034 + }, + { + "start": 733.0, + "end": 734.42, + "probability": 0.9948 + }, + { + "start": 734.7, + "end": 736.36, + "probability": 0.9934 + }, + { + "start": 737.14, + "end": 739.18, + "probability": 0.8961 + }, + { + "start": 739.88, + "end": 744.06, + "probability": 0.9873 + }, + { + "start": 744.32, + "end": 747.28, + "probability": 0.955 + }, + { + "start": 747.9, + "end": 754.06, + "probability": 0.983 + }, + { + "start": 754.68, + "end": 756.56, + "probability": 0.9509 + }, + { + "start": 756.66, + "end": 756.98, + "probability": 0.8673 + }, + { + "start": 757.4, + "end": 759.38, + "probability": 0.658 + }, + { + "start": 759.42, + "end": 760.74, + "probability": 0.7585 + }, + { + "start": 761.26, + "end": 762.26, + "probability": 0.6636 + }, + { + "start": 762.52, + "end": 766.74, + "probability": 0.4992 + }, + { + "start": 767.82, + "end": 770.16, + "probability": 0.7613 + }, + { + "start": 770.98, + "end": 773.04, + "probability": 0.9582 + }, + { + "start": 773.92, + "end": 774.64, + "probability": 0.8598 + }, + { + "start": 774.88, + "end": 777.72, + "probability": 0.9421 + }, + { + "start": 778.34, + "end": 781.92, + "probability": 0.9508 + }, + { + "start": 782.7, + "end": 783.92, + "probability": 0.8427 + }, + { + "start": 784.32, + "end": 785.3, + "probability": 0.808 + }, + { + "start": 785.54, + "end": 786.26, + "probability": 0.741 + }, + { + "start": 786.74, + "end": 787.44, + "probability": 0.9868 + }, + { + "start": 787.64, + "end": 789.98, + "probability": 0.6947 + }, + { + "start": 790.76, + "end": 792.58, + "probability": 0.975 + }, + { + "start": 792.72, + "end": 794.12, + "probability": 0.8195 + }, + { + "start": 794.96, + "end": 797.86, + "probability": 0.9867 + }, + { + "start": 798.12, + "end": 802.98, + "probability": 0.9538 + }, + { + "start": 803.86, + "end": 809.04, + "probability": 0.98 + }, + { + "start": 809.4, + "end": 811.42, + "probability": 0.9702 + }, + { + "start": 812.0, + "end": 816.76, + "probability": 0.9756 + }, + { + "start": 817.6, + "end": 818.92, + "probability": 0.8068 + }, + { + "start": 819.54, + "end": 822.84, + "probability": 0.9875 + }, + { + "start": 823.72, + "end": 828.0, + "probability": 0.9839 + }, + { + "start": 828.82, + "end": 833.6, + "probability": 0.9963 + }, + { + "start": 835.12, + "end": 837.38, + "probability": 0.7134 + }, + { + "start": 838.0, + "end": 840.4, + "probability": 0.9731 + }, + { + "start": 840.42, + "end": 843.58, + "probability": 0.9673 + }, + { + "start": 845.12, + "end": 845.94, + "probability": 0.6819 + }, + { + "start": 845.98, + "end": 851.26, + "probability": 0.9854 + }, + { + "start": 851.32, + "end": 853.97, + "probability": 0.6382 + }, + { + "start": 854.46, + "end": 859.64, + "probability": 0.9907 + }, + { + "start": 860.22, + "end": 860.94, + "probability": 0.9077 + }, + { + "start": 861.36, + "end": 862.62, + "probability": 0.8818 + }, + { + "start": 863.48, + "end": 864.96, + "probability": 0.9902 + }, + { + "start": 865.22, + "end": 865.84, + "probability": 0.5286 + }, + { + "start": 865.88, + "end": 867.7, + "probability": 0.8814 + }, + { + "start": 867.76, + "end": 869.12, + "probability": 0.985 + }, + { + "start": 869.54, + "end": 870.9, + "probability": 0.8702 + }, + { + "start": 870.92, + "end": 872.38, + "probability": 0.9788 + }, + { + "start": 872.7, + "end": 874.32, + "probability": 0.9635 + }, + { + "start": 874.68, + "end": 875.94, + "probability": 0.9299 + }, + { + "start": 876.42, + "end": 877.64, + "probability": 0.8438 + }, + { + "start": 877.76, + "end": 878.51, + "probability": 0.5286 + }, + { + "start": 878.7, + "end": 879.04, + "probability": 0.6993 + }, + { + "start": 879.18, + "end": 880.12, + "probability": 0.8226 + }, + { + "start": 880.52, + "end": 881.5, + "probability": 0.9804 + }, + { + "start": 881.8, + "end": 882.68, + "probability": 0.9884 + }, + { + "start": 882.9, + "end": 883.72, + "probability": 0.9951 + }, + { + "start": 883.78, + "end": 884.88, + "probability": 0.8832 + }, + { + "start": 885.34, + "end": 885.7, + "probability": 0.7318 + }, + { + "start": 885.78, + "end": 887.8, + "probability": 0.9082 + }, + { + "start": 887.98, + "end": 889.66, + "probability": 0.6229 + }, + { + "start": 890.12, + "end": 892.9, + "probability": 0.9513 + }, + { + "start": 893.08, + "end": 893.78, + "probability": 0.7563 + }, + { + "start": 894.32, + "end": 896.29, + "probability": 0.9558 + }, + { + "start": 896.88, + "end": 902.46, + "probability": 0.9856 + }, + { + "start": 902.92, + "end": 903.94, + "probability": 0.679 + }, + { + "start": 904.24, + "end": 904.86, + "probability": 0.9218 + }, + { + "start": 904.96, + "end": 908.0, + "probability": 0.9728 + }, + { + "start": 908.3, + "end": 909.81, + "probability": 0.9868 + }, + { + "start": 910.26, + "end": 913.26, + "probability": 0.9866 + }, + { + "start": 913.38, + "end": 913.96, + "probability": 0.9435 + }, + { + "start": 914.12, + "end": 914.42, + "probability": 0.7314 + }, + { + "start": 914.84, + "end": 915.48, + "probability": 0.7238 + }, + { + "start": 915.48, + "end": 917.58, + "probability": 0.8333 + }, + { + "start": 917.94, + "end": 919.6, + "probability": 0.9836 + }, + { + "start": 919.98, + "end": 920.86, + "probability": 0.6613 + }, + { + "start": 920.88, + "end": 923.88, + "probability": 0.9932 + }, + { + "start": 924.16, + "end": 925.12, + "probability": 0.56 + }, + { + "start": 925.54, + "end": 927.68, + "probability": 0.98 + }, + { + "start": 927.82, + "end": 931.8, + "probability": 0.977 + }, + { + "start": 931.84, + "end": 933.78, + "probability": 0.9375 + }, + { + "start": 933.82, + "end": 938.26, + "probability": 0.6538 + }, + { + "start": 938.32, + "end": 940.56, + "probability": 0.9248 + }, + { + "start": 941.08, + "end": 943.12, + "probability": 0.9867 + }, + { + "start": 943.68, + "end": 945.07, + "probability": 0.9757 + }, + { + "start": 945.38, + "end": 946.9, + "probability": 0.9287 + }, + { + "start": 947.12, + "end": 948.56, + "probability": 0.7446 + }, + { + "start": 948.98, + "end": 951.52, + "probability": 0.9544 + }, + { + "start": 951.84, + "end": 956.2, + "probability": 0.993 + }, + { + "start": 956.42, + "end": 958.88, + "probability": 0.9432 + }, + { + "start": 959.4, + "end": 960.98, + "probability": 0.7765 + }, + { + "start": 961.26, + "end": 961.42, + "probability": 0.6972 + }, + { + "start": 962.04, + "end": 964.32, + "probability": 0.9324 + }, + { + "start": 964.8, + "end": 966.6, + "probability": 0.9624 + }, + { + "start": 966.62, + "end": 969.52, + "probability": 0.9149 + }, + { + "start": 974.2, + "end": 974.98, + "probability": 0.7472 + }, + { + "start": 975.34, + "end": 976.59, + "probability": 0.6602 + }, + { + "start": 976.92, + "end": 982.24, + "probability": 0.9419 + }, + { + "start": 982.86, + "end": 984.76, + "probability": 0.5803 + }, + { + "start": 984.88, + "end": 988.34, + "probability": 0.9894 + }, + { + "start": 988.54, + "end": 989.5, + "probability": 0.7688 + }, + { + "start": 990.68, + "end": 996.44, + "probability": 0.9971 + }, + { + "start": 996.88, + "end": 1002.4, + "probability": 0.9906 + }, + { + "start": 1002.54, + "end": 1006.58, + "probability": 0.8893 + }, + { + "start": 1006.6, + "end": 1010.8, + "probability": 0.9813 + }, + { + "start": 1010.94, + "end": 1011.84, + "probability": 0.827 + }, + { + "start": 1011.94, + "end": 1013.94, + "probability": 0.8896 + }, + { + "start": 1014.0, + "end": 1014.72, + "probability": 0.8269 + }, + { + "start": 1014.84, + "end": 1019.88, + "probability": 0.9621 + }, + { + "start": 1020.02, + "end": 1021.52, + "probability": 0.8313 + }, + { + "start": 1021.88, + "end": 1026.58, + "probability": 0.8965 + }, + { + "start": 1027.02, + "end": 1030.72, + "probability": 0.9561 + }, + { + "start": 1030.74, + "end": 1035.18, + "probability": 0.9944 + }, + { + "start": 1035.24, + "end": 1037.94, + "probability": 0.9217 + }, + { + "start": 1038.38, + "end": 1040.38, + "probability": 0.9085 + }, + { + "start": 1040.52, + "end": 1044.66, + "probability": 0.9318 + }, + { + "start": 1044.76, + "end": 1048.36, + "probability": 0.9884 + }, + { + "start": 1048.46, + "end": 1050.1, + "probability": 0.9799 + }, + { + "start": 1052.06, + "end": 1053.18, + "probability": 0.7242 + }, + { + "start": 1053.32, + "end": 1053.84, + "probability": 0.5876 + }, + { + "start": 1053.94, + "end": 1055.88, + "probability": 0.8994 + }, + { + "start": 1056.16, + "end": 1059.22, + "probability": 0.9045 + }, + { + "start": 1059.54, + "end": 1064.32, + "probability": 0.9944 + }, + { + "start": 1065.2, + "end": 1067.12, + "probability": 0.7901 + }, + { + "start": 1067.34, + "end": 1069.04, + "probability": 0.7703 + }, + { + "start": 1069.1, + "end": 1069.86, + "probability": 0.4705 + }, + { + "start": 1070.4, + "end": 1072.4, + "probability": 0.9767 + }, + { + "start": 1073.44, + "end": 1074.78, + "probability": 0.6423 + }, + { + "start": 1076.16, + "end": 1083.2, + "probability": 0.9798 + }, + { + "start": 1083.26, + "end": 1091.24, + "probability": 0.8751 + }, + { + "start": 1091.82, + "end": 1093.82, + "probability": 0.9402 + }, + { + "start": 1094.68, + "end": 1099.0, + "probability": 0.9751 + }, + { + "start": 1100.42, + "end": 1104.1, + "probability": 0.9549 + }, + { + "start": 1104.88, + "end": 1107.06, + "probability": 0.9938 + }, + { + "start": 1107.7, + "end": 1113.38, + "probability": 0.9985 + }, + { + "start": 1115.61, + "end": 1119.57, + "probability": 0.996 + }, + { + "start": 1119.88, + "end": 1120.44, + "probability": 0.537 + }, + { + "start": 1121.06, + "end": 1122.06, + "probability": 0.8145 + }, + { + "start": 1122.66, + "end": 1124.8, + "probability": 0.8717 + }, + { + "start": 1125.36, + "end": 1126.78, + "probability": 0.931 + }, + { + "start": 1127.48, + "end": 1128.74, + "probability": 0.8887 + }, + { + "start": 1128.9, + "end": 1135.16, + "probability": 0.9658 + }, + { + "start": 1135.26, + "end": 1136.32, + "probability": 0.8286 + }, + { + "start": 1138.08, + "end": 1142.06, + "probability": 0.9966 + }, + { + "start": 1142.52, + "end": 1144.82, + "probability": 0.9542 + }, + { + "start": 1145.28, + "end": 1149.64, + "probability": 0.98 + }, + { + "start": 1149.8, + "end": 1150.1, + "probability": 0.7581 + }, + { + "start": 1150.88, + "end": 1152.74, + "probability": 0.959 + }, + { + "start": 1152.84, + "end": 1154.62, + "probability": 0.9688 + }, + { + "start": 1155.1, + "end": 1157.56, + "probability": 0.9013 + }, + { + "start": 1161.52, + "end": 1163.8, + "probability": 0.7712 + }, + { + "start": 1165.02, + "end": 1167.7, + "probability": 0.8722 + }, + { + "start": 1168.16, + "end": 1174.38, + "probability": 0.9531 + }, + { + "start": 1175.02, + "end": 1178.42, + "probability": 0.8646 + }, + { + "start": 1179.48, + "end": 1182.48, + "probability": 0.8223 + }, + { + "start": 1183.12, + "end": 1184.92, + "probability": 0.8136 + }, + { + "start": 1185.5, + "end": 1188.78, + "probability": 0.908 + }, + { + "start": 1189.56, + "end": 1191.82, + "probability": 0.992 + }, + { + "start": 1192.64, + "end": 1193.9, + "probability": 0.9785 + }, + { + "start": 1193.96, + "end": 1194.96, + "probability": 0.9903 + }, + { + "start": 1195.06, + "end": 1196.28, + "probability": 0.8288 + }, + { + "start": 1197.5, + "end": 1200.92, + "probability": 0.7616 + }, + { + "start": 1201.2, + "end": 1205.28, + "probability": 0.8095 + }, + { + "start": 1205.96, + "end": 1207.96, + "probability": 0.8965 + }, + { + "start": 1208.68, + "end": 1210.16, + "probability": 0.9417 + }, + { + "start": 1210.28, + "end": 1212.48, + "probability": 0.98 + }, + { + "start": 1213.22, + "end": 1213.9, + "probability": 0.5611 + }, + { + "start": 1214.5, + "end": 1219.32, + "probability": 0.998 + }, + { + "start": 1219.74, + "end": 1220.98, + "probability": 0.6973 + }, + { + "start": 1221.14, + "end": 1221.82, + "probability": 0.9039 + }, + { + "start": 1221.96, + "end": 1222.84, + "probability": 0.8821 + }, + { + "start": 1223.0, + "end": 1224.82, + "probability": 0.9622 + }, + { + "start": 1225.38, + "end": 1226.1, + "probability": 0.9762 + }, + { + "start": 1226.6, + "end": 1227.44, + "probability": 0.9694 + }, + { + "start": 1227.52, + "end": 1230.08, + "probability": 0.9775 + }, + { + "start": 1230.62, + "end": 1236.3, + "probability": 0.9526 + }, + { + "start": 1236.58, + "end": 1237.28, + "probability": 0.7508 + }, + { + "start": 1237.52, + "end": 1241.16, + "probability": 0.9785 + }, + { + "start": 1242.84, + "end": 1245.46, + "probability": 0.9829 + }, + { + "start": 1245.7, + "end": 1249.18, + "probability": 0.8017 + }, + { + "start": 1250.16, + "end": 1252.22, + "probability": 0.6217 + }, + { + "start": 1257.6, + "end": 1258.56, + "probability": 0.6526 + }, + { + "start": 1258.68, + "end": 1259.88, + "probability": 0.7391 + }, + { + "start": 1259.88, + "end": 1263.52, + "probability": 0.8794 + }, + { + "start": 1263.6, + "end": 1263.96, + "probability": 0.3753 + }, + { + "start": 1264.5, + "end": 1266.54, + "probability": 0.9678 + }, + { + "start": 1267.12, + "end": 1271.38, + "probability": 0.9134 + }, + { + "start": 1273.23, + "end": 1275.44, + "probability": 0.7112 + }, + { + "start": 1276.12, + "end": 1278.5, + "probability": 0.9934 + }, + { + "start": 1278.68, + "end": 1282.52, + "probability": 0.8999 + }, + { + "start": 1283.3, + "end": 1288.64, + "probability": 0.9866 + }, + { + "start": 1288.68, + "end": 1292.98, + "probability": 0.9932 + }, + { + "start": 1293.9, + "end": 1294.38, + "probability": 0.2983 + }, + { + "start": 1294.48, + "end": 1295.32, + "probability": 0.6094 + }, + { + "start": 1295.48, + "end": 1297.12, + "probability": 0.9437 + }, + { + "start": 1297.7, + "end": 1301.86, + "probability": 0.9326 + }, + { + "start": 1301.86, + "end": 1306.18, + "probability": 0.9296 + }, + { + "start": 1306.66, + "end": 1310.1, + "probability": 0.8784 + }, + { + "start": 1310.78, + "end": 1316.06, + "probability": 0.986 + }, + { + "start": 1316.4, + "end": 1316.6, + "probability": 0.7077 + }, + { + "start": 1317.28, + "end": 1319.74, + "probability": 0.8123 + }, + { + "start": 1320.46, + "end": 1321.94, + "probability": 0.8853 + }, + { + "start": 1323.76, + "end": 1325.46, + "probability": 0.5021 + }, + { + "start": 1326.5, + "end": 1328.16, + "probability": 0.8081 + }, + { + "start": 1329.22, + "end": 1331.96, + "probability": 0.7198 + }, + { + "start": 1333.56, + "end": 1337.42, + "probability": 0.7196 + }, + { + "start": 1338.16, + "end": 1344.82, + "probability": 0.9831 + }, + { + "start": 1345.64, + "end": 1351.24, + "probability": 0.9782 + }, + { + "start": 1351.24, + "end": 1356.1, + "probability": 0.9893 + }, + { + "start": 1356.62, + "end": 1359.32, + "probability": 0.8798 + }, + { + "start": 1359.78, + "end": 1362.98, + "probability": 0.7706 + }, + { + "start": 1363.58, + "end": 1365.4, + "probability": 0.8275 + }, + { + "start": 1365.44, + "end": 1369.5, + "probability": 0.6765 + }, + { + "start": 1369.94, + "end": 1374.18, + "probability": 0.8268 + }, + { + "start": 1374.26, + "end": 1374.64, + "probability": 0.8788 + }, + { + "start": 1375.34, + "end": 1379.34, + "probability": 0.915 + }, + { + "start": 1379.38, + "end": 1384.84, + "probability": 0.9651 + }, + { + "start": 1385.32, + "end": 1387.16, + "probability": 0.8218 + }, + { + "start": 1387.54, + "end": 1388.54, + "probability": 0.7094 + }, + { + "start": 1388.62, + "end": 1394.04, + "probability": 0.8282 + }, + { + "start": 1395.12, + "end": 1398.46, + "probability": 0.956 + }, + { + "start": 1399.22, + "end": 1403.78, + "probability": 0.9004 + }, + { + "start": 1404.4, + "end": 1406.08, + "probability": 0.9593 + }, + { + "start": 1406.8, + "end": 1408.5, + "probability": 0.9927 + }, + { + "start": 1409.26, + "end": 1411.9, + "probability": 0.9512 + }, + { + "start": 1412.74, + "end": 1414.2, + "probability": 0.9963 + }, + { + "start": 1414.6, + "end": 1416.91, + "probability": 0.7552 + }, + { + "start": 1417.5, + "end": 1423.26, + "probability": 0.9932 + }, + { + "start": 1423.86, + "end": 1434.0, + "probability": 0.987 + }, + { + "start": 1434.0, + "end": 1439.38, + "probability": 0.793 + }, + { + "start": 1440.08, + "end": 1443.34, + "probability": 0.574 + }, + { + "start": 1443.42, + "end": 1446.84, + "probability": 0.8877 + }, + { + "start": 1447.08, + "end": 1453.56, + "probability": 0.8981 + }, + { + "start": 1453.84, + "end": 1455.06, + "probability": 0.9377 + }, + { + "start": 1455.48, + "end": 1456.32, + "probability": 0.9115 + }, + { + "start": 1456.44, + "end": 1457.38, + "probability": 0.9757 + }, + { + "start": 1457.8, + "end": 1463.98, + "probability": 0.9895 + }, + { + "start": 1463.98, + "end": 1471.24, + "probability": 0.9962 + }, + { + "start": 1471.72, + "end": 1478.0, + "probability": 0.9935 + }, + { + "start": 1478.7, + "end": 1480.1, + "probability": 0.9868 + }, + { + "start": 1480.6, + "end": 1481.96, + "probability": 0.8727 + }, + { + "start": 1482.82, + "end": 1485.6, + "probability": 0.8965 + }, + { + "start": 1485.78, + "end": 1488.62, + "probability": 0.9221 + }, + { + "start": 1489.6, + "end": 1490.42, + "probability": 0.4464 + }, + { + "start": 1491.0, + "end": 1492.82, + "probability": 0.922 + }, + { + "start": 1494.18, + "end": 1494.98, + "probability": 0.8379 + }, + { + "start": 1495.22, + "end": 1495.74, + "probability": 0.4905 + }, + { + "start": 1495.8, + "end": 1499.22, + "probability": 0.9281 + }, + { + "start": 1499.42, + "end": 1500.34, + "probability": 0.5052 + }, + { + "start": 1500.46, + "end": 1502.84, + "probability": 0.7419 + }, + { + "start": 1503.02, + "end": 1505.72, + "probability": 0.9889 + }, + { + "start": 1506.44, + "end": 1509.59, + "probability": 0.9803 + }, + { + "start": 1511.8, + "end": 1516.34, + "probability": 0.7311 + }, + { + "start": 1517.12, + "end": 1518.64, + "probability": 0.9958 + }, + { + "start": 1518.7, + "end": 1519.62, + "probability": 0.942 + }, + { + "start": 1519.74, + "end": 1520.74, + "probability": 0.991 + }, + { + "start": 1521.14, + "end": 1522.78, + "probability": 0.8205 + }, + { + "start": 1523.46, + "end": 1529.42, + "probability": 0.9661 + }, + { + "start": 1529.6, + "end": 1530.38, + "probability": 0.332 + }, + { + "start": 1530.46, + "end": 1532.36, + "probability": 0.9512 + }, + { + "start": 1532.9, + "end": 1537.32, + "probability": 0.7466 + }, + { + "start": 1537.42, + "end": 1537.9, + "probability": 0.8303 + }, + { + "start": 1537.9, + "end": 1538.72, + "probability": 0.9652 + }, + { + "start": 1538.86, + "end": 1539.88, + "probability": 0.9092 + }, + { + "start": 1540.64, + "end": 1545.58, + "probability": 0.9702 + }, + { + "start": 1545.9, + "end": 1548.06, + "probability": 0.6018 + }, + { + "start": 1548.54, + "end": 1550.2, + "probability": 0.8682 + }, + { + "start": 1550.4, + "end": 1551.96, + "probability": 0.6287 + }, + { + "start": 1552.6, + "end": 1553.68, + "probability": 0.9373 + }, + { + "start": 1553.78, + "end": 1554.62, + "probability": 0.9771 + }, + { + "start": 1554.78, + "end": 1555.86, + "probability": 0.9854 + }, + { + "start": 1556.22, + "end": 1557.92, + "probability": 0.7071 + }, + { + "start": 1558.44, + "end": 1562.28, + "probability": 0.9111 + }, + { + "start": 1562.62, + "end": 1565.72, + "probability": 0.9448 + }, + { + "start": 1566.2, + "end": 1570.82, + "probability": 0.9878 + }, + { + "start": 1571.1, + "end": 1573.7, + "probability": 0.9662 + }, + { + "start": 1574.32, + "end": 1577.7, + "probability": 0.9575 + }, + { + "start": 1578.26, + "end": 1579.9, + "probability": 0.8277 + }, + { + "start": 1579.96, + "end": 1580.52, + "probability": 0.3851 + }, + { + "start": 1580.54, + "end": 1582.48, + "probability": 0.9122 + }, + { + "start": 1585.04, + "end": 1588.82, + "probability": 0.4748 + }, + { + "start": 1589.8, + "end": 1591.72, + "probability": 0.8049 + }, + { + "start": 1592.64, + "end": 1595.58, + "probability": 0.9059 + }, + { + "start": 1596.36, + "end": 1599.12, + "probability": 0.9482 + }, + { + "start": 1600.2, + "end": 1601.16, + "probability": 0.4675 + }, + { + "start": 1601.7, + "end": 1602.32, + "probability": 0.4131 + }, + { + "start": 1602.56, + "end": 1604.14, + "probability": 0.976 + }, + { + "start": 1604.22, + "end": 1606.8, + "probability": 0.8045 + }, + { + "start": 1606.94, + "end": 1609.32, + "probability": 0.9917 + }, + { + "start": 1609.42, + "end": 1612.94, + "probability": 0.9809 + }, + { + "start": 1613.56, + "end": 1613.66, + "probability": 0.5733 + }, + { + "start": 1613.66, + "end": 1615.34, + "probability": 0.9712 + }, + { + "start": 1615.62, + "end": 1616.49, + "probability": 0.6631 + }, + { + "start": 1616.74, + "end": 1617.98, + "probability": 0.9932 + }, + { + "start": 1619.12, + "end": 1619.96, + "probability": 0.8992 + }, + { + "start": 1620.1, + "end": 1620.86, + "probability": 0.7364 + }, + { + "start": 1620.92, + "end": 1623.04, + "probability": 0.8123 + }, + { + "start": 1623.14, + "end": 1627.92, + "probability": 0.9905 + }, + { + "start": 1628.3, + "end": 1629.2, + "probability": 0.7893 + }, + { + "start": 1629.66, + "end": 1632.96, + "probability": 0.9037 + }, + { + "start": 1632.96, + "end": 1635.8, + "probability": 0.9994 + }, + { + "start": 1636.16, + "end": 1638.38, + "probability": 0.9893 + }, + { + "start": 1638.94, + "end": 1642.02, + "probability": 0.8191 + }, + { + "start": 1642.6, + "end": 1644.26, + "probability": 0.9349 + }, + { + "start": 1645.42, + "end": 1648.83, + "probability": 0.9186 + }, + { + "start": 1649.68, + "end": 1651.32, + "probability": 0.9823 + }, + { + "start": 1651.84, + "end": 1654.12, + "probability": 0.8667 + }, + { + "start": 1654.62, + "end": 1658.7, + "probability": 0.9941 + }, + { + "start": 1659.48, + "end": 1661.82, + "probability": 0.9215 + }, + { + "start": 1662.78, + "end": 1665.32, + "probability": 0.9844 + }, + { + "start": 1665.98, + "end": 1666.22, + "probability": 0.6104 + }, + { + "start": 1666.38, + "end": 1667.3, + "probability": 0.7098 + }, + { + "start": 1667.42, + "end": 1670.64, + "probability": 0.9448 + }, + { + "start": 1671.18, + "end": 1672.46, + "probability": 0.8401 + }, + { + "start": 1673.52, + "end": 1677.76, + "probability": 0.8283 + }, + { + "start": 1678.7, + "end": 1681.02, + "probability": 0.9927 + }, + { + "start": 1681.14, + "end": 1684.64, + "probability": 0.9515 + }, + { + "start": 1684.64, + "end": 1687.38, + "probability": 0.9941 + }, + { + "start": 1688.1, + "end": 1690.88, + "probability": 0.9742 + }, + { + "start": 1691.56, + "end": 1693.3, + "probability": 0.7976 + }, + { + "start": 1693.46, + "end": 1694.3, + "probability": 0.9725 + }, + { + "start": 1694.94, + "end": 1695.86, + "probability": 0.676 + }, + { + "start": 1696.46, + "end": 1699.26, + "probability": 0.9674 + }, + { + "start": 1700.46, + "end": 1702.38, + "probability": 0.6747 + }, + { + "start": 1703.06, + "end": 1704.88, + "probability": 0.9996 + }, + { + "start": 1706.04, + "end": 1707.72, + "probability": 0.9934 + }, + { + "start": 1709.04, + "end": 1711.24, + "probability": 0.9985 + }, + { + "start": 1712.0, + "end": 1715.54, + "probability": 0.9302 + }, + { + "start": 1716.16, + "end": 1717.76, + "probability": 0.9277 + }, + { + "start": 1719.28, + "end": 1721.78, + "probability": 0.8672 + }, + { + "start": 1722.78, + "end": 1725.88, + "probability": 0.9016 + }, + { + "start": 1726.66, + "end": 1728.06, + "probability": 0.9326 + }, + { + "start": 1729.68, + "end": 1734.6, + "probability": 0.9995 + }, + { + "start": 1735.42, + "end": 1740.4, + "probability": 0.9783 + }, + { + "start": 1741.46, + "end": 1745.08, + "probability": 0.9966 + }, + { + "start": 1746.54, + "end": 1751.18, + "probability": 0.9976 + }, + { + "start": 1752.26, + "end": 1756.0, + "probability": 0.8044 + }, + { + "start": 1757.4, + "end": 1761.6, + "probability": 0.9643 + }, + { + "start": 1763.06, + "end": 1766.2, + "probability": 0.8379 + }, + { + "start": 1766.54, + "end": 1769.36, + "probability": 0.98 + }, + { + "start": 1769.84, + "end": 1772.7, + "probability": 0.9529 + }, + { + "start": 1773.32, + "end": 1775.16, + "probability": 0.9994 + }, + { + "start": 1775.8, + "end": 1779.68, + "probability": 0.8819 + }, + { + "start": 1779.92, + "end": 1780.24, + "probability": 0.8286 + }, + { + "start": 1781.28, + "end": 1783.28, + "probability": 0.8556 + }, + { + "start": 1783.4, + "end": 1787.02, + "probability": 0.9563 + }, + { + "start": 1787.14, + "end": 1789.86, + "probability": 0.9771 + }, + { + "start": 1789.94, + "end": 1790.6, + "probability": 0.4392 + }, + { + "start": 1790.64, + "end": 1791.96, + "probability": 0.9187 + }, + { + "start": 1793.22, + "end": 1793.84, + "probability": 0.5981 + }, + { + "start": 1793.94, + "end": 1795.62, + "probability": 0.5964 + }, + { + "start": 1795.66, + "end": 1797.06, + "probability": 0.6334 + }, + { + "start": 1797.12, + "end": 1797.74, + "probability": 0.9116 + }, + { + "start": 1798.22, + "end": 1799.16, + "probability": 0.5236 + }, + { + "start": 1799.16, + "end": 1799.26, + "probability": 0.4207 + }, + { + "start": 1800.82, + "end": 1802.26, + "probability": 0.7647 + }, + { + "start": 1803.46, + "end": 1804.58, + "probability": 0.9971 + }, + { + "start": 1805.8, + "end": 1806.8, + "probability": 0.9536 + }, + { + "start": 1808.04, + "end": 1809.1, + "probability": 0.8607 + }, + { + "start": 1809.92, + "end": 1810.7, + "probability": 0.6837 + }, + { + "start": 1810.8, + "end": 1811.87, + "probability": 0.9832 + }, + { + "start": 1812.32, + "end": 1813.4, + "probability": 0.9974 + }, + { + "start": 1814.8, + "end": 1816.6, + "probability": 0.9969 + }, + { + "start": 1817.58, + "end": 1819.58, + "probability": 0.9992 + }, + { + "start": 1820.42, + "end": 1824.22, + "probability": 0.9951 + }, + { + "start": 1824.76, + "end": 1827.44, + "probability": 0.7623 + }, + { + "start": 1827.94, + "end": 1829.98, + "probability": 0.8935 + }, + { + "start": 1830.54, + "end": 1831.27, + "probability": 0.9089 + }, + { + "start": 1831.44, + "end": 1837.08, + "probability": 0.9951 + }, + { + "start": 1837.08, + "end": 1840.84, + "probability": 0.9622 + }, + { + "start": 1842.12, + "end": 1842.84, + "probability": 0.5552 + }, + { + "start": 1843.86, + "end": 1846.4, + "probability": 0.7875 + }, + { + "start": 1847.38, + "end": 1849.88, + "probability": 0.8331 + }, + { + "start": 1850.72, + "end": 1851.7, + "probability": 0.9824 + }, + { + "start": 1852.54, + "end": 1856.2, + "probability": 0.8235 + }, + { + "start": 1856.42, + "end": 1858.28, + "probability": 0.5663 + }, + { + "start": 1858.92, + "end": 1860.68, + "probability": 0.8276 + }, + { + "start": 1861.36, + "end": 1863.4, + "probability": 0.7676 + }, + { + "start": 1864.16, + "end": 1866.14, + "probability": 0.9485 + }, + { + "start": 1866.82, + "end": 1868.04, + "probability": 0.8322 + }, + { + "start": 1868.78, + "end": 1870.86, + "probability": 0.9989 + }, + { + "start": 1871.62, + "end": 1873.12, + "probability": 0.9416 + }, + { + "start": 1874.04, + "end": 1876.26, + "probability": 0.6186 + }, + { + "start": 1876.88, + "end": 1880.26, + "probability": 0.8613 + }, + { + "start": 1880.26, + "end": 1880.86, + "probability": 0.3441 + }, + { + "start": 1881.1, + "end": 1882.24, + "probability": 0.9076 + }, + { + "start": 1882.52, + "end": 1884.61, + "probability": 0.6255 + }, + { + "start": 1885.46, + "end": 1887.5, + "probability": 0.8676 + }, + { + "start": 1888.22, + "end": 1890.34, + "probability": 0.9811 + }, + { + "start": 1890.78, + "end": 1893.68, + "probability": 0.9863 + }, + { + "start": 1893.68, + "end": 1898.7, + "probability": 0.7633 + }, + { + "start": 1899.28, + "end": 1900.02, + "probability": 0.671 + }, + { + "start": 1900.1, + "end": 1900.76, + "probability": 0.605 + }, + { + "start": 1900.9, + "end": 1904.42, + "probability": 0.7491 + }, + { + "start": 1904.84, + "end": 1906.2, + "probability": 0.7907 + }, + { + "start": 1906.44, + "end": 1908.82, + "probability": 0.6335 + }, + { + "start": 1909.14, + "end": 1909.56, + "probability": 0.7984 + }, + { + "start": 1910.24, + "end": 1910.82, + "probability": 0.7834 + }, + { + "start": 1911.38, + "end": 1912.54, + "probability": 0.9629 + }, + { + "start": 1912.82, + "end": 1916.46, + "probability": 0.9929 + }, + { + "start": 1916.54, + "end": 1918.54, + "probability": 0.9972 + }, + { + "start": 1918.94, + "end": 1920.08, + "probability": 0.9321 + }, + { + "start": 1920.32, + "end": 1922.12, + "probability": 0.6287 + }, + { + "start": 1923.42, + "end": 1924.54, + "probability": 0.8818 + }, + { + "start": 1924.96, + "end": 1926.92, + "probability": 0.3731 + }, + { + "start": 1927.02, + "end": 1927.34, + "probability": 0.4175 + }, + { + "start": 1927.38, + "end": 1929.62, + "probability": 0.8746 + }, + { + "start": 1929.64, + "end": 1930.24, + "probability": 0.3254 + }, + { + "start": 1930.24, + "end": 1930.5, + "probability": 0.8219 + }, + { + "start": 1930.58, + "end": 1931.18, + "probability": 0.8006 + }, + { + "start": 1931.32, + "end": 1932.3, + "probability": 0.8778 + }, + { + "start": 1932.32, + "end": 1933.92, + "probability": 0.9605 + }, + { + "start": 1934.32, + "end": 1935.12, + "probability": 0.8741 + }, + { + "start": 1935.26, + "end": 1936.38, + "probability": 0.9995 + }, + { + "start": 1936.96, + "end": 1938.38, + "probability": 0.9008 + }, + { + "start": 1938.58, + "end": 1939.56, + "probability": 0.8737 + }, + { + "start": 1939.74, + "end": 1941.28, + "probability": 0.8255 + }, + { + "start": 1941.34, + "end": 1943.46, + "probability": 0.95 + }, + { + "start": 1943.76, + "end": 1948.34, + "probability": 0.9812 + }, + { + "start": 1948.86, + "end": 1949.58, + "probability": 0.8461 + }, + { + "start": 1950.02, + "end": 1952.84, + "probability": 0.7156 + }, + { + "start": 1952.84, + "end": 1956.4, + "probability": 0.8755 + }, + { + "start": 1956.62, + "end": 1957.84, + "probability": 0.6701 + }, + { + "start": 1958.34, + "end": 1961.3, + "probability": 0.9258 + }, + { + "start": 1961.82, + "end": 1965.24, + "probability": 0.9948 + }, + { + "start": 1965.38, + "end": 1967.26, + "probability": 0.7768 + }, + { + "start": 1967.9, + "end": 1971.78, + "probability": 0.9944 + }, + { + "start": 1972.08, + "end": 1973.18, + "probability": 0.9852 + }, + { + "start": 1973.66, + "end": 1975.9, + "probability": 0.9945 + }, + { + "start": 1976.16, + "end": 1976.36, + "probability": 0.7645 + }, + { + "start": 1976.64, + "end": 1979.26, + "probability": 0.9429 + }, + { + "start": 1979.52, + "end": 1982.38, + "probability": 0.8992 + }, + { + "start": 1982.94, + "end": 1985.9, + "probability": 0.7549 + }, + { + "start": 1986.32, + "end": 1989.42, + "probability": 0.9786 + }, + { + "start": 1990.54, + "end": 1993.48, + "probability": 0.5542 + }, + { + "start": 1994.1, + "end": 1997.24, + "probability": 0.9873 + }, + { + "start": 1997.88, + "end": 2001.16, + "probability": 0.9854 + }, + { + "start": 2001.16, + "end": 2005.46, + "probability": 0.7501 + }, + { + "start": 2005.9, + "end": 2006.32, + "probability": 0.6449 + }, + { + "start": 2006.44, + "end": 2010.28, + "probability": 0.9915 + }, + { + "start": 2010.56, + "end": 2011.14, + "probability": 0.6196 + }, + { + "start": 2011.72, + "end": 2013.76, + "probability": 0.8419 + }, + { + "start": 2014.3, + "end": 2019.34, + "probability": 0.9653 + }, + { + "start": 2019.5, + "end": 2024.24, + "probability": 0.9965 + }, + { + "start": 2024.82, + "end": 2027.32, + "probability": 0.9944 + }, + { + "start": 2028.1, + "end": 2029.92, + "probability": 0.9018 + }, + { + "start": 2029.96, + "end": 2031.06, + "probability": 0.649 + }, + { + "start": 2031.16, + "end": 2033.73, + "probability": 0.9976 + }, + { + "start": 2034.3, + "end": 2035.46, + "probability": 0.8362 + }, + { + "start": 2036.02, + "end": 2037.67, + "probability": 0.9912 + }, + { + "start": 2037.88, + "end": 2040.94, + "probability": 0.7051 + }, + { + "start": 2041.04, + "end": 2044.7, + "probability": 0.8918 + }, + { + "start": 2045.42, + "end": 2046.6, + "probability": 0.9645 + }, + { + "start": 2046.78, + "end": 2049.98, + "probability": 0.9914 + }, + { + "start": 2050.2, + "end": 2050.88, + "probability": 0.959 + }, + { + "start": 2051.04, + "end": 2051.72, + "probability": 0.8735 + }, + { + "start": 2052.36, + "end": 2054.96, + "probability": 0.9897 + }, + { + "start": 2055.42, + "end": 2058.94, + "probability": 0.9224 + }, + { + "start": 2059.66, + "end": 2064.6, + "probability": 0.9978 + }, + { + "start": 2065.42, + "end": 2068.75, + "probability": 0.9795 + }, + { + "start": 2069.96, + "end": 2070.82, + "probability": 0.9392 + }, + { + "start": 2071.48, + "end": 2078.06, + "probability": 0.9906 + }, + { + "start": 2078.22, + "end": 2078.82, + "probability": 0.7643 + }, + { + "start": 2079.36, + "end": 2081.7, + "probability": 0.9894 + }, + { + "start": 2082.52, + "end": 2084.88, + "probability": 0.9285 + }, + { + "start": 2084.92, + "end": 2088.08, + "probability": 0.9268 + }, + { + "start": 2088.16, + "end": 2088.34, + "probability": 0.5459 + }, + { + "start": 2088.78, + "end": 2090.5, + "probability": 0.9966 + }, + { + "start": 2091.06, + "end": 2093.56, + "probability": 0.9976 + }, + { + "start": 2093.7, + "end": 2094.54, + "probability": 0.701 + }, + { + "start": 2094.86, + "end": 2097.34, + "probability": 0.9982 + }, + { + "start": 2097.66, + "end": 2098.33, + "probability": 0.6322 + }, + { + "start": 2098.92, + "end": 2099.78, + "probability": 0.8014 + }, + { + "start": 2099.96, + "end": 2103.58, + "probability": 0.9793 + }, + { + "start": 2103.84, + "end": 2108.1, + "probability": 0.9895 + }, + { + "start": 2108.1, + "end": 2113.56, + "probability": 0.9945 + }, + { + "start": 2113.68, + "end": 2113.98, + "probability": 0.7627 + }, + { + "start": 2114.02, + "end": 2115.88, + "probability": 0.8612 + }, + { + "start": 2116.02, + "end": 2117.06, + "probability": 0.9559 + }, + { + "start": 2117.78, + "end": 2121.38, + "probability": 0.9976 + }, + { + "start": 2122.24, + "end": 2124.92, + "probability": 0.9957 + }, + { + "start": 2126.34, + "end": 2130.54, + "probability": 0.5644 + }, + { + "start": 2131.66, + "end": 2132.3, + "probability": 0.5718 + }, + { + "start": 2132.3, + "end": 2132.74, + "probability": 0.403 + }, + { + "start": 2134.14, + "end": 2135.0, + "probability": 0.9826 + }, + { + "start": 2135.58, + "end": 2138.18, + "probability": 0.978 + }, + { + "start": 2139.18, + "end": 2140.8, + "probability": 0.9577 + }, + { + "start": 2141.86, + "end": 2145.1, + "probability": 0.9399 + }, + { + "start": 2145.84, + "end": 2149.12, + "probability": 0.9466 + }, + { + "start": 2149.92, + "end": 2150.8, + "probability": 0.9346 + }, + { + "start": 2153.72, + "end": 2153.88, + "probability": 0.033 + }, + { + "start": 2153.88, + "end": 2155.74, + "probability": 0.9022 + }, + { + "start": 2156.38, + "end": 2158.08, + "probability": 0.9971 + }, + { + "start": 2158.72, + "end": 2160.66, + "probability": 0.9622 + }, + { + "start": 2160.76, + "end": 2162.0, + "probability": 0.964 + }, + { + "start": 2162.58, + "end": 2163.32, + "probability": 0.9911 + }, + { + "start": 2164.5, + "end": 2166.0, + "probability": 0.8227 + }, + { + "start": 2166.1, + "end": 2167.42, + "probability": 0.9421 + }, + { + "start": 2170.48, + "end": 2173.2, + "probability": 0.7255 + }, + { + "start": 2174.06, + "end": 2174.82, + "probability": 0.9819 + }, + { + "start": 2176.62, + "end": 2181.12, + "probability": 0.9942 + }, + { + "start": 2183.6, + "end": 2185.2, + "probability": 0.5877 + }, + { + "start": 2185.76, + "end": 2188.18, + "probability": 0.9191 + }, + { + "start": 2189.0, + "end": 2190.56, + "probability": 0.9695 + }, + { + "start": 2191.2, + "end": 2194.86, + "probability": 0.9822 + }, + { + "start": 2199.36, + "end": 2204.02, + "probability": 0.7506 + }, + { + "start": 2205.14, + "end": 2207.64, + "probability": 0.9662 + }, + { + "start": 2208.66, + "end": 2210.1, + "probability": 0.9666 + }, + { + "start": 2211.12, + "end": 2211.6, + "probability": 0.9766 + }, + { + "start": 2212.18, + "end": 2217.84, + "probability": 0.9731 + }, + { + "start": 2218.54, + "end": 2224.54, + "probability": 0.992 + }, + { + "start": 2225.14, + "end": 2225.94, + "probability": 0.8017 + }, + { + "start": 2226.82, + "end": 2229.46, + "probability": 0.7595 + }, + { + "start": 2230.4, + "end": 2232.58, + "probability": 0.9726 + }, + { + "start": 2233.06, + "end": 2235.9, + "probability": 0.8538 + }, + { + "start": 2236.36, + "end": 2239.36, + "probability": 0.964 + }, + { + "start": 2239.74, + "end": 2240.08, + "probability": 0.4514 + }, + { + "start": 2240.16, + "end": 2241.56, + "probability": 0.8408 + }, + { + "start": 2241.58, + "end": 2243.18, + "probability": 0.8621 + }, + { + "start": 2243.8, + "end": 2247.84, + "probability": 0.9561 + }, + { + "start": 2248.4, + "end": 2254.26, + "probability": 0.9607 + }, + { + "start": 2254.42, + "end": 2255.04, + "probability": 0.9009 + }, + { + "start": 2255.34, + "end": 2263.58, + "probability": 0.8677 + }, + { + "start": 2263.68, + "end": 2264.4, + "probability": 0.7763 + }, + { + "start": 2264.46, + "end": 2266.38, + "probability": 0.9727 + }, + { + "start": 2266.46, + "end": 2268.12, + "probability": 0.8869 + }, + { + "start": 2268.62, + "end": 2271.96, + "probability": 0.9127 + }, + { + "start": 2272.12, + "end": 2272.48, + "probability": 0.928 + }, + { + "start": 2272.78, + "end": 2275.06, + "probability": 0.9042 + }, + { + "start": 2275.06, + "end": 2278.9, + "probability": 0.727 + }, + { + "start": 2279.06, + "end": 2283.16, + "probability": 0.9932 + }, + { + "start": 2283.66, + "end": 2285.0, + "probability": 0.8477 + }, + { + "start": 2285.04, + "end": 2287.12, + "probability": 0.9249 + }, + { + "start": 2288.1, + "end": 2289.24, + "probability": 0.9629 + }, + { + "start": 2289.92, + "end": 2292.8, + "probability": 0.9427 + }, + { + "start": 2293.32, + "end": 2295.64, + "probability": 0.918 + }, + { + "start": 2297.08, + "end": 2297.82, + "probability": 0.6993 + }, + { + "start": 2298.98, + "end": 2299.64, + "probability": 0.0022 + }, + { + "start": 2299.64, + "end": 2302.12, + "probability": 0.0783 + }, + { + "start": 2302.7, + "end": 2305.26, + "probability": 0.953 + }, + { + "start": 2305.32, + "end": 2306.76, + "probability": 0.615 + }, + { + "start": 2306.76, + "end": 2307.62, + "probability": 0.2223 + }, + { + "start": 2308.06, + "end": 2311.16, + "probability": 0.9811 + }, + { + "start": 2312.0, + "end": 2312.2, + "probability": 0.6121 + }, + { + "start": 2312.28, + "end": 2318.96, + "probability": 0.9226 + }, + { + "start": 2319.02, + "end": 2320.86, + "probability": 0.9618 + }, + { + "start": 2321.62, + "end": 2323.82, + "probability": 0.7971 + }, + { + "start": 2325.88, + "end": 2327.7, + "probability": 0.6159 + }, + { + "start": 2327.84, + "end": 2327.84, + "probability": 0.7644 + }, + { + "start": 2327.84, + "end": 2333.06, + "probability": 0.8589 + }, + { + "start": 2333.26, + "end": 2333.94, + "probability": 0.7398 + }, + { + "start": 2334.6, + "end": 2339.85, + "probability": 0.9517 + }, + { + "start": 2341.14, + "end": 2342.5, + "probability": 0.7102 + }, + { + "start": 2343.12, + "end": 2346.34, + "probability": 0.8347 + }, + { + "start": 2347.36, + "end": 2350.5, + "probability": 0.975 + }, + { + "start": 2351.36, + "end": 2352.34, + "probability": 0.9234 + }, + { + "start": 2353.24, + "end": 2353.82, + "probability": 0.7537 + }, + { + "start": 2353.9, + "end": 2356.7, + "probability": 0.8776 + }, + { + "start": 2356.96, + "end": 2361.5, + "probability": 0.8046 + }, + { + "start": 2361.5, + "end": 2365.58, + "probability": 0.8619 + }, + { + "start": 2365.72, + "end": 2366.18, + "probability": 0.7708 + }, + { + "start": 2366.84, + "end": 2369.42, + "probability": 0.9419 + }, + { + "start": 2370.0, + "end": 2373.28, + "probability": 0.9875 + }, + { + "start": 2373.28, + "end": 2376.56, + "probability": 0.9561 + }, + { + "start": 2377.12, + "end": 2379.42, + "probability": 0.9487 + }, + { + "start": 2379.52, + "end": 2379.72, + "probability": 0.8274 + }, + { + "start": 2379.96, + "end": 2381.7, + "probability": 0.9595 + }, + { + "start": 2382.26, + "end": 2385.3, + "probability": 0.6747 + }, + { + "start": 2385.88, + "end": 2389.02, + "probability": 0.6401 + }, + { + "start": 2390.8, + "end": 2393.42, + "probability": 0.9505 + }, + { + "start": 2393.5, + "end": 2394.8, + "probability": 0.7696 + }, + { + "start": 2395.46, + "end": 2397.28, + "probability": 0.7885 + }, + { + "start": 2397.5, + "end": 2400.04, + "probability": 0.808 + }, + { + "start": 2401.14, + "end": 2401.85, + "probability": 0.7017 + }, + { + "start": 2402.6, + "end": 2402.72, + "probability": 0.15 + }, + { + "start": 2403.74, + "end": 2404.4, + "probability": 0.9438 + }, + { + "start": 2405.6, + "end": 2407.2, + "probability": 0.9725 + }, + { + "start": 2407.3, + "end": 2409.48, + "probability": 0.6 + }, + { + "start": 2409.6, + "end": 2410.14, + "probability": 0.9473 + }, + { + "start": 2410.96, + "end": 2414.44, + "probability": 0.7914 + }, + { + "start": 2415.12, + "end": 2419.6, + "probability": 0.9734 + }, + { + "start": 2420.26, + "end": 2424.62, + "probability": 0.9254 + }, + { + "start": 2425.2, + "end": 2427.12, + "probability": 0.9367 + }, + { + "start": 2427.68, + "end": 2431.64, + "probability": 0.9681 + }, + { + "start": 2433.28, + "end": 2435.66, + "probability": 0.7822 + }, + { + "start": 2437.6, + "end": 2439.9, + "probability": 0.5461 + }, + { + "start": 2440.0, + "end": 2441.74, + "probability": 0.9946 + }, + { + "start": 2442.28, + "end": 2445.24, + "probability": 0.9103 + }, + { + "start": 2445.78, + "end": 2447.38, + "probability": 0.482 + }, + { + "start": 2447.78, + "end": 2452.42, + "probability": 0.9876 + }, + { + "start": 2452.92, + "end": 2457.62, + "probability": 0.9955 + }, + { + "start": 2457.62, + "end": 2461.84, + "probability": 0.9976 + }, + { + "start": 2462.64, + "end": 2465.02, + "probability": 0.6545 + }, + { + "start": 2465.18, + "end": 2467.7, + "probability": 0.7008 + }, + { + "start": 2468.24, + "end": 2471.8, + "probability": 0.8967 + }, + { + "start": 2472.6, + "end": 2472.74, + "probability": 0.2798 + }, + { + "start": 2472.78, + "end": 2474.4, + "probability": 0.8198 + }, + { + "start": 2475.48, + "end": 2476.68, + "probability": 0.9896 + }, + { + "start": 2477.26, + "end": 2483.48, + "probability": 0.9944 + }, + { + "start": 2484.44, + "end": 2488.6, + "probability": 0.9991 + }, + { + "start": 2488.6, + "end": 2491.54, + "probability": 0.9995 + }, + { + "start": 2492.44, + "end": 2498.62, + "probability": 0.968 + }, + { + "start": 2499.06, + "end": 2502.28, + "probability": 0.3446 + }, + { + "start": 2502.92, + "end": 2505.32, + "probability": 0.9893 + }, + { + "start": 2506.46, + "end": 2512.22, + "probability": 0.9686 + }, + { + "start": 2512.88, + "end": 2518.52, + "probability": 0.9759 + }, + { + "start": 2519.48, + "end": 2523.88, + "probability": 0.9819 + }, + { + "start": 2524.62, + "end": 2527.08, + "probability": 0.863 + }, + { + "start": 2527.86, + "end": 2530.6, + "probability": 0.914 + }, + { + "start": 2531.9, + "end": 2536.28, + "probability": 0.9726 + }, + { + "start": 2537.2, + "end": 2540.4, + "probability": 0.9897 + }, + { + "start": 2541.08, + "end": 2542.28, + "probability": 0.7799 + }, + { + "start": 2543.0, + "end": 2547.66, + "probability": 0.9738 + }, + { + "start": 2548.14, + "end": 2552.42, + "probability": 0.9902 + }, + { + "start": 2553.0, + "end": 2554.36, + "probability": 0.9469 + }, + { + "start": 2554.84, + "end": 2559.56, + "probability": 0.9917 + }, + { + "start": 2561.42, + "end": 2566.98, + "probability": 0.9466 + }, + { + "start": 2567.76, + "end": 2571.32, + "probability": 0.9685 + }, + { + "start": 2571.32, + "end": 2573.98, + "probability": 0.9978 + }, + { + "start": 2575.44, + "end": 2576.74, + "probability": 0.9613 + }, + { + "start": 2577.64, + "end": 2585.28, + "probability": 0.9824 + }, + { + "start": 2585.72, + "end": 2588.94, + "probability": 0.8321 + }, + { + "start": 2589.72, + "end": 2592.98, + "probability": 0.9814 + }, + { + "start": 2593.5, + "end": 2595.34, + "probability": 0.9908 + }, + { + "start": 2596.14, + "end": 2597.7, + "probability": 0.9324 + }, + { + "start": 2598.28, + "end": 2601.82, + "probability": 0.9557 + }, + { + "start": 2602.54, + "end": 2604.68, + "probability": 0.9561 + }, + { + "start": 2605.36, + "end": 2609.0, + "probability": 0.9928 + }, + { + "start": 2609.0, + "end": 2612.58, + "probability": 0.9985 + }, + { + "start": 2615.24, + "end": 2616.05, + "probability": 0.9102 + }, + { + "start": 2616.92, + "end": 2619.3, + "probability": 0.8817 + }, + { + "start": 2623.06, + "end": 2626.92, + "probability": 0.9924 + }, + { + "start": 2627.18, + "end": 2630.12, + "probability": 0.9985 + }, + { + "start": 2630.66, + "end": 2632.16, + "probability": 0.8848 + }, + { + "start": 2632.18, + "end": 2635.4, + "probability": 0.9868 + }, + { + "start": 2636.24, + "end": 2642.94, + "probability": 0.9345 + }, + { + "start": 2643.26, + "end": 2643.66, + "probability": 0.777 + }, + { + "start": 2644.02, + "end": 2645.74, + "probability": 0.5729 + }, + { + "start": 2646.08, + "end": 2649.66, + "probability": 0.6664 + }, + { + "start": 2650.56, + "end": 2652.52, + "probability": 0.9844 + }, + { + "start": 2652.68, + "end": 2655.06, + "probability": 0.634 + }, + { + "start": 2655.44, + "end": 2657.54, + "probability": 0.9594 + }, + { + "start": 2658.18, + "end": 2658.48, + "probability": 0.9395 + }, + { + "start": 2658.58, + "end": 2662.9, + "probability": 0.8956 + }, + { + "start": 2663.76, + "end": 2664.86, + "probability": 0.7192 + }, + { + "start": 2665.0, + "end": 2668.46, + "probability": 0.9918 + }, + { + "start": 2668.94, + "end": 2670.44, + "probability": 0.7731 + }, + { + "start": 2670.48, + "end": 2671.67, + "probability": 0.9845 + }, + { + "start": 2672.26, + "end": 2674.28, + "probability": 0.9463 + }, + { + "start": 2674.28, + "end": 2677.0, + "probability": 0.8107 + }, + { + "start": 2677.12, + "end": 2677.3, + "probability": 0.7551 + }, + { + "start": 2678.58, + "end": 2682.0, + "probability": 0.7125 + }, + { + "start": 2682.3, + "end": 2683.48, + "probability": 0.7468 + }, + { + "start": 2683.72, + "end": 2685.86, + "probability": 0.9711 + }, + { + "start": 2686.02, + "end": 2688.73, + "probability": 0.9962 + }, + { + "start": 2689.42, + "end": 2693.34, + "probability": 0.9779 + }, + { + "start": 2694.18, + "end": 2698.84, + "probability": 0.9669 + }, + { + "start": 2700.08, + "end": 2701.02, + "probability": 0.6307 + }, + { + "start": 2704.56, + "end": 2706.58, + "probability": 0.8225 + }, + { + "start": 2706.9, + "end": 2710.74, + "probability": 0.6118 + }, + { + "start": 2710.8, + "end": 2715.9, + "probability": 0.9916 + }, + { + "start": 2716.26, + "end": 2718.4, + "probability": 0.9243 + }, + { + "start": 2719.24, + "end": 2721.76, + "probability": 0.9123 + }, + { + "start": 2722.34, + "end": 2723.86, + "probability": 0.6615 + }, + { + "start": 2724.66, + "end": 2725.88, + "probability": 0.3179 + }, + { + "start": 2726.2, + "end": 2728.82, + "probability": 0.7652 + }, + { + "start": 2729.14, + "end": 2731.18, + "probability": 0.7089 + }, + { + "start": 2731.32, + "end": 2731.76, + "probability": 0.7204 + }, + { + "start": 2731.96, + "end": 2736.3, + "probability": 0.9953 + }, + { + "start": 2736.38, + "end": 2742.16, + "probability": 0.9945 + }, + { + "start": 2742.98, + "end": 2744.14, + "probability": 0.512 + }, + { + "start": 2744.3, + "end": 2745.22, + "probability": 0.9167 + }, + { + "start": 2745.28, + "end": 2746.74, + "probability": 0.7629 + }, + { + "start": 2747.1, + "end": 2749.72, + "probability": 0.9512 + }, + { + "start": 2750.08, + "end": 2754.6, + "probability": 0.9462 + }, + { + "start": 2754.72, + "end": 2758.7, + "probability": 0.8483 + }, + { + "start": 2765.58, + "end": 2768.48, + "probability": 0.6833 + }, + { + "start": 2769.8, + "end": 2771.34, + "probability": 0.7716 + }, + { + "start": 2771.74, + "end": 2772.86, + "probability": 0.7712 + }, + { + "start": 2773.78, + "end": 2777.76, + "probability": 0.9903 + }, + { + "start": 2778.76, + "end": 2782.24, + "probability": 0.9381 + }, + { + "start": 2783.36, + "end": 2785.24, + "probability": 0.7951 + }, + { + "start": 2786.12, + "end": 2789.76, + "probability": 0.9967 + }, + { + "start": 2790.42, + "end": 2791.56, + "probability": 0.7948 + }, + { + "start": 2793.24, + "end": 2794.02, + "probability": 0.6983 + }, + { + "start": 2794.12, + "end": 2796.52, + "probability": 0.9583 + }, + { + "start": 2796.7, + "end": 2799.26, + "probability": 0.9418 + }, + { + "start": 2799.82, + "end": 2808.22, + "probability": 0.7774 + }, + { + "start": 2808.32, + "end": 2808.76, + "probability": 0.7597 + }, + { + "start": 2809.46, + "end": 2810.55, + "probability": 0.77 + }, + { + "start": 2810.84, + "end": 2814.42, + "probability": 0.9785 + }, + { + "start": 2814.42, + "end": 2818.12, + "probability": 0.975 + }, + { + "start": 2818.24, + "end": 2826.58, + "probability": 0.9788 + }, + { + "start": 2827.84, + "end": 2831.02, + "probability": 0.9969 + }, + { + "start": 2831.56, + "end": 2836.38, + "probability": 0.9104 + }, + { + "start": 2836.64, + "end": 2839.44, + "probability": 0.9586 + }, + { + "start": 2840.12, + "end": 2844.2, + "probability": 0.986 + }, + { + "start": 2844.96, + "end": 2848.28, + "probability": 0.8369 + }, + { + "start": 2849.08, + "end": 2853.62, + "probability": 0.9573 + }, + { + "start": 2854.46, + "end": 2858.98, + "probability": 0.9967 + }, + { + "start": 2859.52, + "end": 2864.5, + "probability": 0.9919 + }, + { + "start": 2865.66, + "end": 2866.8, + "probability": 0.8765 + }, + { + "start": 2867.32, + "end": 2872.2, + "probability": 0.9966 + }, + { + "start": 2873.3, + "end": 2874.24, + "probability": 0.8829 + }, + { + "start": 2875.04, + "end": 2880.12, + "probability": 0.9519 + }, + { + "start": 2881.0, + "end": 2882.0, + "probability": 0.7559 + }, + { + "start": 2882.12, + "end": 2885.86, + "probability": 0.9961 + }, + { + "start": 2886.56, + "end": 2890.98, + "probability": 0.9118 + }, + { + "start": 2891.46, + "end": 2896.42, + "probability": 0.9905 + }, + { + "start": 2896.54, + "end": 2899.82, + "probability": 0.9785 + }, + { + "start": 2900.82, + "end": 2907.66, + "probability": 0.979 + }, + { + "start": 2908.46, + "end": 2912.94, + "probability": 0.9916 + }, + { + "start": 2913.44, + "end": 2917.14, + "probability": 0.9852 + }, + { + "start": 2917.14, + "end": 2920.02, + "probability": 0.9994 + }, + { + "start": 2920.96, + "end": 2924.23, + "probability": 0.9961 + }, + { + "start": 2925.82, + "end": 2930.32, + "probability": 0.7058 + }, + { + "start": 2930.66, + "end": 2934.28, + "probability": 0.9886 + }, + { + "start": 2935.76, + "end": 2941.8, + "probability": 0.9895 + }, + { + "start": 2942.66, + "end": 2947.34, + "probability": 0.9878 + }, + { + "start": 2948.3, + "end": 2950.08, + "probability": 0.9835 + }, + { + "start": 2951.08, + "end": 2954.86, + "probability": 0.9966 + }, + { + "start": 2954.86, + "end": 2958.56, + "probability": 0.9946 + }, + { + "start": 2959.18, + "end": 2959.26, + "probability": 0.3802 + }, + { + "start": 2959.38, + "end": 2959.72, + "probability": 0.8655 + }, + { + "start": 2959.82, + "end": 2964.24, + "probability": 0.9842 + }, + { + "start": 2964.6, + "end": 2967.2, + "probability": 0.9781 + }, + { + "start": 2970.42, + "end": 2972.36, + "probability": 0.4472 + }, + { + "start": 2972.52, + "end": 2974.26, + "probability": 0.6869 + }, + { + "start": 2975.28, + "end": 2976.66, + "probability": 0.5027 + }, + { + "start": 2976.74, + "end": 2976.74, + "probability": 0.8228 + }, + { + "start": 2976.74, + "end": 2977.36, + "probability": 0.8013 + }, + { + "start": 2977.54, + "end": 2982.12, + "probability": 0.9824 + }, + { + "start": 2982.92, + "end": 2986.04, + "probability": 0.901 + }, + { + "start": 2986.2, + "end": 2988.74, + "probability": 0.9746 + }, + { + "start": 2989.8, + "end": 2993.98, + "probability": 0.8101 + }, + { + "start": 2994.52, + "end": 2998.06, + "probability": 0.9934 + }, + { + "start": 2998.76, + "end": 3001.12, + "probability": 0.9927 + }, + { + "start": 3001.52, + "end": 3006.6, + "probability": 0.938 + }, + { + "start": 3006.6, + "end": 3009.16, + "probability": 0.9823 + }, + { + "start": 3009.8, + "end": 3010.96, + "probability": 0.6347 + }, + { + "start": 3011.92, + "end": 3012.44, + "probability": 0.4628 + }, + { + "start": 3012.56, + "end": 3013.42, + "probability": 0.8335 + }, + { + "start": 3013.46, + "end": 3016.47, + "probability": 0.9956 + }, + { + "start": 3017.26, + "end": 3018.06, + "probability": 0.9816 + }, + { + "start": 3018.24, + "end": 3022.18, + "probability": 0.9843 + }, + { + "start": 3022.62, + "end": 3024.66, + "probability": 0.9411 + }, + { + "start": 3025.1, + "end": 3027.6, + "probability": 0.8776 + }, + { + "start": 3028.16, + "end": 3031.78, + "probability": 0.9923 + }, + { + "start": 3031.92, + "end": 3034.1, + "probability": 0.8689 + }, + { + "start": 3034.1, + "end": 3037.46, + "probability": 0.9932 + }, + { + "start": 3038.26, + "end": 3039.46, + "probability": 0.7589 + }, + { + "start": 3039.58, + "end": 3043.42, + "probability": 0.9551 + }, + { + "start": 3043.52, + "end": 3045.6, + "probability": 0.8258 + }, + { + "start": 3045.72, + "end": 3046.7, + "probability": 0.8596 + }, + { + "start": 3047.18, + "end": 3048.82, + "probability": 0.9722 + }, + { + "start": 3048.98, + "end": 3049.64, + "probability": 0.7598 + }, + { + "start": 3049.68, + "end": 3055.6, + "probability": 0.9729 + }, + { + "start": 3056.08, + "end": 3058.79, + "probability": 0.9974 + }, + { + "start": 3058.96, + "end": 3060.92, + "probability": 0.9999 + }, + { + "start": 3061.5, + "end": 3062.36, + "probability": 0.5091 + }, + { + "start": 3062.44, + "end": 3063.6, + "probability": 0.8434 + }, + { + "start": 3064.02, + "end": 3065.66, + "probability": 0.9932 + }, + { + "start": 3066.14, + "end": 3068.6, + "probability": 0.9946 + }, + { + "start": 3069.26, + "end": 3073.9, + "probability": 0.7146 + }, + { + "start": 3074.12, + "end": 3077.76, + "probability": 0.7383 + }, + { + "start": 3078.56, + "end": 3084.62, + "probability": 0.9858 + }, + { + "start": 3084.94, + "end": 3087.12, + "probability": 0.6585 + }, + { + "start": 3087.4, + "end": 3095.72, + "probability": 0.994 + }, + { + "start": 3095.78, + "end": 3099.22, + "probability": 0.504 + }, + { + "start": 3099.36, + "end": 3105.56, + "probability": 0.9757 + }, + { + "start": 3105.76, + "end": 3108.42, + "probability": 0.9844 + }, + { + "start": 3109.56, + "end": 3110.9, + "probability": 0.9174 + }, + { + "start": 3111.1, + "end": 3111.34, + "probability": 0.5127 + }, + { + "start": 3111.7, + "end": 3117.0, + "probability": 0.9753 + }, + { + "start": 3117.0, + "end": 3117.66, + "probability": 0.8391 + }, + { + "start": 3118.24, + "end": 3119.63, + "probability": 0.941 + }, + { + "start": 3120.36, + "end": 3125.18, + "probability": 0.9963 + }, + { + "start": 3125.78, + "end": 3128.96, + "probability": 0.7134 + }, + { + "start": 3129.04, + "end": 3130.78, + "probability": 0.8998 + }, + { + "start": 3131.42, + "end": 3135.04, + "probability": 0.974 + }, + { + "start": 3137.86, + "end": 3138.36, + "probability": 0.7867 + }, + { + "start": 3139.6, + "end": 3144.18, + "probability": 0.9602 + }, + { + "start": 3145.78, + "end": 3149.5, + "probability": 0.781 + }, + { + "start": 3150.36, + "end": 3152.4, + "probability": 0.8337 + }, + { + "start": 3156.74, + "end": 3158.06, + "probability": 0.379 + }, + { + "start": 3158.12, + "end": 3158.12, + "probability": 0.5681 + }, + { + "start": 3158.12, + "end": 3158.84, + "probability": 0.4547 + }, + { + "start": 3159.3, + "end": 3161.7, + "probability": 0.8905 + }, + { + "start": 3161.7, + "end": 3165.76, + "probability": 0.9871 + }, + { + "start": 3166.4, + "end": 3168.96, + "probability": 0.9931 + }, + { + "start": 3169.86, + "end": 3172.72, + "probability": 0.9924 + }, + { + "start": 3172.9, + "end": 3173.84, + "probability": 0.7922 + }, + { + "start": 3174.0, + "end": 3175.54, + "probability": 0.9943 + }, + { + "start": 3176.1, + "end": 3182.58, + "probability": 0.9445 + }, + { + "start": 3182.64, + "end": 3183.0, + "probability": 0.9016 + }, + { + "start": 3183.04, + "end": 3187.24, + "probability": 0.9942 + }, + { + "start": 3188.36, + "end": 3193.66, + "probability": 0.6738 + }, + { + "start": 3193.66, + "end": 3200.1, + "probability": 0.8433 + }, + { + "start": 3201.14, + "end": 3204.74, + "probability": 0.9873 + }, + { + "start": 3205.46, + "end": 3207.2, + "probability": 0.9077 + }, + { + "start": 3207.24, + "end": 3212.3, + "probability": 0.9907 + }, + { + "start": 3212.82, + "end": 3215.96, + "probability": 0.9647 + }, + { + "start": 3217.2, + "end": 3218.88, + "probability": 0.9582 + }, + { + "start": 3220.02, + "end": 3224.64, + "probability": 0.7493 + }, + { + "start": 3225.4, + "end": 3227.8, + "probability": 0.6346 + }, + { + "start": 3228.5, + "end": 3231.08, + "probability": 0.8945 + }, + { + "start": 3232.46, + "end": 3236.78, + "probability": 0.6685 + }, + { + "start": 3237.74, + "end": 3238.68, + "probability": 0.9238 + }, + { + "start": 3239.8, + "end": 3242.08, + "probability": 0.829 + }, + { + "start": 3242.6, + "end": 3244.1, + "probability": 0.8645 + }, + { + "start": 3244.92, + "end": 3247.32, + "probability": 0.9362 + }, + { + "start": 3247.86, + "end": 3250.62, + "probability": 0.9312 + }, + { + "start": 3251.32, + "end": 3255.12, + "probability": 0.8301 + }, + { + "start": 3255.12, + "end": 3259.18, + "probability": 0.7799 + }, + { + "start": 3259.86, + "end": 3264.12, + "probability": 0.8051 + }, + { + "start": 3264.52, + "end": 3264.94, + "probability": 0.9096 + }, + { + "start": 3265.12, + "end": 3267.24, + "probability": 0.6661 + }, + { + "start": 3267.34, + "end": 3268.5, + "probability": 0.6256 + }, + { + "start": 3269.7, + "end": 3271.98, + "probability": 0.7146 + }, + { + "start": 3272.78, + "end": 3278.44, + "probability": 0.9673 + }, + { + "start": 3278.44, + "end": 3282.76, + "probability": 0.9822 + }, + { + "start": 3284.96, + "end": 3285.92, + "probability": 0.8074 + }, + { + "start": 3287.0, + "end": 3292.4, + "probability": 0.7475 + }, + { + "start": 3293.18, + "end": 3299.0, + "probability": 0.9934 + }, + { + "start": 3299.9, + "end": 3301.6, + "probability": 0.96 + }, + { + "start": 3302.46, + "end": 3306.92, + "probability": 0.8346 + }, + { + "start": 3307.46, + "end": 3308.78, + "probability": 0.538 + }, + { + "start": 3309.36, + "end": 3313.52, + "probability": 0.949 + }, + { + "start": 3313.7, + "end": 3319.28, + "probability": 0.9897 + }, + { + "start": 3319.28, + "end": 3325.26, + "probability": 0.9007 + }, + { + "start": 3326.08, + "end": 3328.72, + "probability": 0.9328 + }, + { + "start": 3329.34, + "end": 3332.04, + "probability": 0.877 + }, + { + "start": 3332.68, + "end": 3335.24, + "probability": 0.686 + }, + { + "start": 3335.38, + "end": 3336.5, + "probability": 0.9406 + }, + { + "start": 3337.78, + "end": 3340.64, + "probability": 0.9846 + }, + { + "start": 3341.06, + "end": 3344.64, + "probability": 0.9562 + }, + { + "start": 3345.3, + "end": 3349.26, + "probability": 0.9141 + }, + { + "start": 3350.14, + "end": 3353.76, + "probability": 0.9302 + }, + { + "start": 3356.14, + "end": 3357.12, + "probability": 0.6254 + }, + { + "start": 3358.16, + "end": 3360.84, + "probability": 0.9923 + }, + { + "start": 3361.7, + "end": 3363.62, + "probability": 0.8644 + }, + { + "start": 3364.74, + "end": 3371.74, + "probability": 0.9979 + }, + { + "start": 3372.52, + "end": 3375.24, + "probability": 0.9836 + }, + { + "start": 3376.5, + "end": 3377.74, + "probability": 0.8894 + }, + { + "start": 3379.18, + "end": 3385.06, + "probability": 0.9706 + }, + { + "start": 3385.08, + "end": 3391.7, + "probability": 0.9421 + }, + { + "start": 3392.52, + "end": 3397.48, + "probability": 0.9608 + }, + { + "start": 3397.96, + "end": 3401.5, + "probability": 0.9881 + }, + { + "start": 3402.52, + "end": 3407.3, + "probability": 0.9619 + }, + { + "start": 3408.32, + "end": 3412.08, + "probability": 0.8096 + }, + { + "start": 3413.64, + "end": 3415.64, + "probability": 0.7479 + }, + { + "start": 3416.74, + "end": 3421.96, + "probability": 0.9974 + }, + { + "start": 3422.38, + "end": 3425.9, + "probability": 0.9218 + }, + { + "start": 3426.58, + "end": 3429.64, + "probability": 0.9979 + }, + { + "start": 3429.98, + "end": 3432.36, + "probability": 0.8569 + }, + { + "start": 3432.9, + "end": 3438.26, + "probability": 0.9454 + }, + { + "start": 3439.38, + "end": 3441.54, + "probability": 0.7925 + }, + { + "start": 3441.64, + "end": 3443.5, + "probability": 0.9361 + }, + { + "start": 3443.68, + "end": 3445.56, + "probability": 0.9761 + }, + { + "start": 3446.08, + "end": 3450.5, + "probability": 0.9948 + }, + { + "start": 3450.5, + "end": 3456.46, + "probability": 0.9657 + }, + { + "start": 3456.92, + "end": 3460.1, + "probability": 0.9992 + }, + { + "start": 3461.3, + "end": 3462.61, + "probability": 0.7245 + }, + { + "start": 3463.12, + "end": 3463.71, + "probability": 0.9709 + }, + { + "start": 3464.24, + "end": 3465.22, + "probability": 0.9027 + }, + { + "start": 3465.54, + "end": 3467.6, + "probability": 0.9899 + }, + { + "start": 3467.84, + "end": 3471.46, + "probability": 0.9548 + }, + { + "start": 3471.64, + "end": 3472.64, + "probability": 0.9985 + }, + { + "start": 3473.46, + "end": 3477.46, + "probability": 0.9335 + }, + { + "start": 3477.6, + "end": 3481.92, + "probability": 0.7958 + }, + { + "start": 3482.78, + "end": 3487.16, + "probability": 0.9756 + }, + { + "start": 3487.88, + "end": 3488.38, + "probability": 0.6672 + }, + { + "start": 3488.46, + "end": 3494.24, + "probability": 0.9674 + }, + { + "start": 3495.0, + "end": 3497.14, + "probability": 0.6686 + }, + { + "start": 3498.08, + "end": 3502.88, + "probability": 0.998 + }, + { + "start": 3503.74, + "end": 3508.98, + "probability": 0.9449 + }, + { + "start": 3509.6, + "end": 3510.42, + "probability": 0.6822 + }, + { + "start": 3511.0, + "end": 3516.58, + "probability": 0.9854 + }, + { + "start": 3517.88, + "end": 3518.68, + "probability": 0.9082 + }, + { + "start": 3518.76, + "end": 3520.28, + "probability": 0.921 + }, + { + "start": 3520.7, + "end": 3526.8, + "probability": 0.39 + }, + { + "start": 3527.82, + "end": 3533.2, + "probability": 0.9743 + }, + { + "start": 3533.28, + "end": 3535.28, + "probability": 0.9626 + }, + { + "start": 3536.12, + "end": 3537.25, + "probability": 0.9341 + }, + { + "start": 3538.0, + "end": 3539.9, + "probability": 0.8564 + }, + { + "start": 3540.48, + "end": 3541.74, + "probability": 0.9441 + }, + { + "start": 3542.48, + "end": 3547.36, + "probability": 0.9871 + }, + { + "start": 3548.7, + "end": 3553.82, + "probability": 0.9805 + }, + { + "start": 3553.96, + "end": 3561.26, + "probability": 0.9921 + }, + { + "start": 3561.26, + "end": 3567.68, + "probability": 0.9943 + }, + { + "start": 3567.68, + "end": 3572.58, + "probability": 0.9995 + }, + { + "start": 3572.98, + "end": 3577.04, + "probability": 0.9473 + }, + { + "start": 3577.04, + "end": 3579.0, + "probability": 0.9907 + }, + { + "start": 3580.66, + "end": 3583.46, + "probability": 0.9909 + }, + { + "start": 3583.46, + "end": 3585.76, + "probability": 0.9871 + }, + { + "start": 3586.78, + "end": 3591.32, + "probability": 0.9891 + }, + { + "start": 3592.4, + "end": 3595.98, + "probability": 0.8886 + }, + { + "start": 3596.1, + "end": 3596.96, + "probability": 0.8093 + }, + { + "start": 3597.12, + "end": 3599.12, + "probability": 0.735 + }, + { + "start": 3599.94, + "end": 3605.14, + "probability": 0.9895 + }, + { + "start": 3605.98, + "end": 3613.66, + "probability": 0.9628 + }, + { + "start": 3614.04, + "end": 3615.82, + "probability": 0.9718 + }, + { + "start": 3616.32, + "end": 3617.76, + "probability": 0.2982 + }, + { + "start": 3618.96, + "end": 3622.62, + "probability": 0.9905 + }, + { + "start": 3622.62, + "end": 3626.9, + "probability": 0.9989 + }, + { + "start": 3627.02, + "end": 3629.74, + "probability": 0.9982 + }, + { + "start": 3630.2, + "end": 3632.44, + "probability": 0.9868 + }, + { + "start": 3632.96, + "end": 3634.18, + "probability": 0.698 + }, + { + "start": 3634.22, + "end": 3635.42, + "probability": 0.9858 + }, + { + "start": 3635.44, + "end": 3636.06, + "probability": 0.9521 + }, + { + "start": 3636.58, + "end": 3639.7, + "probability": 0.9747 + }, + { + "start": 3639.82, + "end": 3641.44, + "probability": 0.9417 + }, + { + "start": 3641.56, + "end": 3647.1, + "probability": 0.9596 + }, + { + "start": 3647.12, + "end": 3648.54, + "probability": 0.9856 + }, + { + "start": 3656.24, + "end": 3656.4, + "probability": 0.5675 + }, + { + "start": 3656.98, + "end": 3658.68, + "probability": 0.764 + }, + { + "start": 3660.92, + "end": 3661.53, + "probability": 0.9834 + }, + { + "start": 3662.14, + "end": 3662.82, + "probability": 0.5127 + }, + { + "start": 3662.82, + "end": 3663.62, + "probability": 0.2983 + }, + { + "start": 3663.62, + "end": 3667.82, + "probability": 0.9336 + }, + { + "start": 3668.85, + "end": 3672.96, + "probability": 0.9524 + }, + { + "start": 3673.1, + "end": 3674.34, + "probability": 0.8893 + }, + { + "start": 3674.54, + "end": 3675.98, + "probability": 0.5264 + }, + { + "start": 3676.04, + "end": 3676.78, + "probability": 0.958 + }, + { + "start": 3676.86, + "end": 3679.46, + "probability": 0.9326 + }, + { + "start": 3679.72, + "end": 3680.3, + "probability": 0.6943 + }, + { + "start": 3680.5, + "end": 3685.06, + "probability": 0.9117 + }, + { + "start": 3685.88, + "end": 3686.3, + "probability": 0.7512 + }, + { + "start": 3686.44, + "end": 3689.08, + "probability": 0.8051 + }, + { + "start": 3689.26, + "end": 3691.94, + "probability": 0.7803 + }, + { + "start": 3692.18, + "end": 3695.72, + "probability": 0.5515 + }, + { + "start": 3696.38, + "end": 3699.9, + "probability": 0.9272 + }, + { + "start": 3700.16, + "end": 3706.4, + "probability": 0.758 + }, + { + "start": 3707.92, + "end": 3712.56, + "probability": 0.9402 + }, + { + "start": 3712.56, + "end": 3716.2, + "probability": 0.9787 + }, + { + "start": 3716.68, + "end": 3718.84, + "probability": 0.998 + }, + { + "start": 3718.88, + "end": 3721.16, + "probability": 0.9737 + }, + { + "start": 3722.16, + "end": 3724.04, + "probability": 0.9643 + }, + { + "start": 3724.24, + "end": 3730.8, + "probability": 0.9914 + }, + { + "start": 3731.4, + "end": 3734.76, + "probability": 0.9818 + }, + { + "start": 3734.92, + "end": 3735.28, + "probability": 0.519 + }, + { + "start": 3735.4, + "end": 3740.38, + "probability": 0.9801 + }, + { + "start": 3740.38, + "end": 3743.4, + "probability": 0.9912 + }, + { + "start": 3743.94, + "end": 3744.14, + "probability": 0.6055 + }, + { + "start": 3744.52, + "end": 3748.6, + "probability": 0.9066 + }, + { + "start": 3748.84, + "end": 3752.12, + "probability": 0.8674 + }, + { + "start": 3752.82, + "end": 3756.63, + "probability": 0.9246 + }, + { + "start": 3757.92, + "end": 3758.78, + "probability": 0.5618 + }, + { + "start": 3758.8, + "end": 3761.78, + "probability": 0.909 + }, + { + "start": 3761.88, + "end": 3764.62, + "probability": 0.9937 + }, + { + "start": 3764.62, + "end": 3767.02, + "probability": 0.9995 + }, + { + "start": 3767.54, + "end": 3771.8, + "probability": 0.9741 + }, + { + "start": 3772.43, + "end": 3776.72, + "probability": 0.7479 + }, + { + "start": 3777.04, + "end": 3777.74, + "probability": 0.773 + }, + { + "start": 3777.92, + "end": 3778.04, + "probability": 0.1004 + }, + { + "start": 3778.14, + "end": 3778.62, + "probability": 0.4657 + }, + { + "start": 3778.62, + "end": 3780.28, + "probability": 0.9691 + }, + { + "start": 3780.38, + "end": 3784.78, + "probability": 0.8491 + }, + { + "start": 3784.8, + "end": 3786.92, + "probability": 0.6155 + }, + { + "start": 3787.16, + "end": 3792.48, + "probability": 0.9819 + }, + { + "start": 3792.82, + "end": 3795.26, + "probability": 0.9835 + }, + { + "start": 3796.26, + "end": 3799.02, + "probability": 0.983 + }, + { + "start": 3799.72, + "end": 3804.94, + "probability": 0.9895 + }, + { + "start": 3806.82, + "end": 3809.02, + "probability": 0.9634 + }, + { + "start": 3809.56, + "end": 3812.32, + "probability": 0.9888 + }, + { + "start": 3813.2, + "end": 3819.08, + "probability": 0.9473 + }, + { + "start": 3819.6, + "end": 3822.56, + "probability": 0.912 + }, + { + "start": 3823.08, + "end": 3828.28, + "probability": 0.9531 + }, + { + "start": 3828.64, + "end": 3831.82, + "probability": 0.9992 + }, + { + "start": 3832.28, + "end": 3834.1, + "probability": 0.7994 + }, + { + "start": 3834.18, + "end": 3835.32, + "probability": 0.9054 + }, + { + "start": 3835.4, + "end": 3835.84, + "probability": 0.9043 + }, + { + "start": 3836.36, + "end": 3843.6, + "probability": 0.9313 + }, + { + "start": 3844.76, + "end": 3846.62, + "probability": 0.9177 + }, + { + "start": 3847.28, + "end": 3849.2, + "probability": 0.5056 + }, + { + "start": 3850.48, + "end": 3854.84, + "probability": 0.9829 + }, + { + "start": 3856.04, + "end": 3856.9, + "probability": 0.8259 + }, + { + "start": 3857.7, + "end": 3862.94, + "probability": 0.9907 + }, + { + "start": 3863.54, + "end": 3865.56, + "probability": 0.5556 + }, + { + "start": 3867.1, + "end": 3870.46, + "probability": 0.9984 + }, + { + "start": 3871.44, + "end": 3874.82, + "probability": 0.9974 + }, + { + "start": 3875.36, + "end": 3876.62, + "probability": 0.9647 + }, + { + "start": 3877.9, + "end": 3879.0, + "probability": 0.6303 + }, + { + "start": 3879.14, + "end": 3882.84, + "probability": 0.9938 + }, + { + "start": 3882.94, + "end": 3888.8, + "probability": 0.9949 + }, + { + "start": 3889.46, + "end": 3892.04, + "probability": 0.7347 + }, + { + "start": 3892.16, + "end": 3899.14, + "probability": 0.974 + }, + { + "start": 3899.36, + "end": 3900.64, + "probability": 0.9808 + }, + { + "start": 3901.42, + "end": 3901.9, + "probability": 0.7968 + }, + { + "start": 3902.72, + "end": 3905.64, + "probability": 0.9697 + }, + { + "start": 3907.74, + "end": 3908.6, + "probability": 0.8866 + }, + { + "start": 3915.0, + "end": 3916.52, + "probability": 0.691 + }, + { + "start": 3917.94, + "end": 3920.0, + "probability": 0.7304 + }, + { + "start": 3922.2, + "end": 3928.6, + "probability": 0.7986 + }, + { + "start": 3929.26, + "end": 3931.82, + "probability": 0.9323 + }, + { + "start": 3932.48, + "end": 3935.64, + "probability": 0.7773 + }, + { + "start": 3936.3, + "end": 3940.7, + "probability": 0.9585 + }, + { + "start": 3940.74, + "end": 3942.35, + "probability": 0.988 + }, + { + "start": 3943.18, + "end": 3944.84, + "probability": 0.973 + }, + { + "start": 3946.08, + "end": 3946.72, + "probability": 0.6066 + }, + { + "start": 3947.38, + "end": 3947.84, + "probability": 0.1844 + }, + { + "start": 3947.96, + "end": 3949.96, + "probability": 0.9845 + }, + { + "start": 3951.4, + "end": 3951.62, + "probability": 0.4689 + }, + { + "start": 3951.76, + "end": 3955.82, + "probability": 0.9927 + }, + { + "start": 3957.38, + "end": 3962.3, + "probability": 0.9917 + }, + { + "start": 3962.3, + "end": 3964.66, + "probability": 0.9695 + }, + { + "start": 3964.82, + "end": 3968.32, + "probability": 0.7132 + }, + { + "start": 3968.78, + "end": 3969.02, + "probability": 0.7086 + }, + { + "start": 3970.1, + "end": 3970.88, + "probability": 0.667 + }, + { + "start": 3971.3, + "end": 3972.34, + "probability": 0.6761 + }, + { + "start": 3972.44, + "end": 3973.12, + "probability": 0.8409 + }, + { + "start": 3973.3, + "end": 3975.16, + "probability": 0.959 + }, + { + "start": 3975.22, + "end": 3978.1, + "probability": 0.9235 + }, + { + "start": 3978.2, + "end": 3979.74, + "probability": 0.972 + }, + { + "start": 3979.74, + "end": 3981.96, + "probability": 0.8862 + }, + { + "start": 3983.1, + "end": 3983.7, + "probability": 0.6306 + }, + { + "start": 3985.7, + "end": 3987.52, + "probability": 0.8944 + }, + { + "start": 3987.82, + "end": 3992.4, + "probability": 0.9292 + }, + { + "start": 3992.46, + "end": 3993.36, + "probability": 0.978 + }, + { + "start": 3993.44, + "end": 3996.26, + "probability": 0.9937 + }, + { + "start": 3997.14, + "end": 4001.06, + "probability": 0.9959 + }, + { + "start": 4001.68, + "end": 4004.96, + "probability": 0.8577 + }, + { + "start": 4005.88, + "end": 4011.82, + "probability": 0.9931 + }, + { + "start": 4011.82, + "end": 4017.66, + "probability": 0.9963 + }, + { + "start": 4017.7, + "end": 4018.88, + "probability": 0.6183 + }, + { + "start": 4019.54, + "end": 4023.32, + "probability": 0.9616 + }, + { + "start": 4023.32, + "end": 4027.46, + "probability": 0.9912 + }, + { + "start": 4028.82, + "end": 4035.36, + "probability": 0.993 + }, + { + "start": 4035.58, + "end": 4037.0, + "probability": 0.9867 + }, + { + "start": 4037.52, + "end": 4042.98, + "probability": 0.8669 + }, + { + "start": 4044.08, + "end": 4048.6, + "probability": 0.9702 + }, + { + "start": 4049.86, + "end": 4055.04, + "probability": 0.9917 + }, + { + "start": 4055.7, + "end": 4056.94, + "probability": 0.876 + }, + { + "start": 4057.54, + "end": 4059.86, + "probability": 0.8581 + }, + { + "start": 4061.32, + "end": 4064.66, + "probability": 0.9946 + }, + { + "start": 4065.68, + "end": 4065.96, + "probability": 0.6291 + }, + { + "start": 4066.14, + "end": 4070.78, + "probability": 0.9913 + }, + { + "start": 4071.76, + "end": 4076.48, + "probability": 0.983 + }, + { + "start": 4077.42, + "end": 4082.88, + "probability": 0.9852 + }, + { + "start": 4083.6, + "end": 4088.94, + "probability": 0.9893 + }, + { + "start": 4089.82, + "end": 4095.26, + "probability": 0.9673 + }, + { + "start": 4095.26, + "end": 4099.36, + "probability": 0.9986 + }, + { + "start": 4099.96, + "end": 4102.84, + "probability": 0.9645 + }, + { + "start": 4103.32, + "end": 4109.3, + "probability": 0.9844 + }, + { + "start": 4109.34, + "end": 4113.14, + "probability": 0.992 + }, + { + "start": 4114.8, + "end": 4119.92, + "probability": 0.9539 + }, + { + "start": 4120.0, + "end": 4125.16, + "probability": 0.9866 + }, + { + "start": 4125.56, + "end": 4126.41, + "probability": 0.884 + }, + { + "start": 4127.0, + "end": 4127.4, + "probability": 0.9927 + }, + { + "start": 4128.06, + "end": 4131.7, + "probability": 0.9937 + }, + { + "start": 4132.44, + "end": 4137.94, + "probability": 0.9933 + }, + { + "start": 4138.6, + "end": 4140.2, + "probability": 0.7614 + }, + { + "start": 4141.82, + "end": 4147.74, + "probability": 0.9875 + }, + { + "start": 4149.66, + "end": 4154.32, + "probability": 0.9919 + }, + { + "start": 4155.5, + "end": 4156.23, + "probability": 0.8741 + }, + { + "start": 4156.82, + "end": 4161.6, + "probability": 0.9399 + }, + { + "start": 4161.92, + "end": 4163.5, + "probability": 0.9401 + }, + { + "start": 4163.96, + "end": 4164.78, + "probability": 0.8745 + }, + { + "start": 4164.92, + "end": 4165.54, + "probability": 0.9493 + }, + { + "start": 4166.06, + "end": 4168.66, + "probability": 0.9693 + }, + { + "start": 4170.28, + "end": 4172.04, + "probability": 0.663 + }, + { + "start": 4172.08, + "end": 4173.46, + "probability": 0.8382 + }, + { + "start": 4179.08, + "end": 4180.22, + "probability": 0.804 + }, + { + "start": 4180.52, + "end": 4185.22, + "probability": 0.9585 + }, + { + "start": 4185.32, + "end": 4187.42, + "probability": 0.9969 + }, + { + "start": 4190.18, + "end": 4192.82, + "probability": 0.9525 + }, + { + "start": 4193.1, + "end": 4196.5, + "probability": 0.9552 + }, + { + "start": 4197.02, + "end": 4199.4, + "probability": 0.9534 + }, + { + "start": 4200.12, + "end": 4202.34, + "probability": 0.9961 + }, + { + "start": 4203.4, + "end": 4206.8, + "probability": 0.8306 + }, + { + "start": 4206.8, + "end": 4209.78, + "probability": 0.9592 + }, + { + "start": 4209.9, + "end": 4211.84, + "probability": 0.7912 + }, + { + "start": 4212.48, + "end": 4214.0, + "probability": 0.7671 + }, + { + "start": 4214.3, + "end": 4217.01, + "probability": 0.8665 + }, + { + "start": 4217.14, + "end": 4220.3, + "probability": 0.969 + }, + { + "start": 4221.22, + "end": 4227.48, + "probability": 0.9893 + }, + { + "start": 4227.66, + "end": 4228.68, + "probability": 0.9775 + }, + { + "start": 4229.22, + "end": 4229.5, + "probability": 0.6673 + }, + { + "start": 4229.58, + "end": 4230.82, + "probability": 0.9529 + }, + { + "start": 4230.9, + "end": 4232.58, + "probability": 0.9982 + }, + { + "start": 4233.44, + "end": 4239.88, + "probability": 0.9871 + }, + { + "start": 4239.88, + "end": 4244.76, + "probability": 0.9982 + }, + { + "start": 4245.34, + "end": 4246.72, + "probability": 0.9299 + }, + { + "start": 4247.86, + "end": 4249.1, + "probability": 0.8322 + }, + { + "start": 4249.18, + "end": 4250.42, + "probability": 0.9846 + }, + { + "start": 4251.8, + "end": 4256.3, + "probability": 0.8551 + }, + { + "start": 4256.72, + "end": 4263.34, + "probability": 0.9961 + }, + { + "start": 4263.86, + "end": 4269.34, + "probability": 0.9304 + }, + { + "start": 4270.46, + "end": 4271.2, + "probability": 0.8313 + }, + { + "start": 4271.32, + "end": 4275.36, + "probability": 0.9966 + }, + { + "start": 4275.36, + "end": 4281.14, + "probability": 0.9795 + }, + { + "start": 4281.24, + "end": 4282.16, + "probability": 0.6186 + }, + { + "start": 4282.9, + "end": 4284.52, + "probability": 0.8693 + }, + { + "start": 4285.04, + "end": 4287.3, + "probability": 0.9792 + }, + { + "start": 4288.32, + "end": 4290.72, + "probability": 0.5484 + }, + { + "start": 4295.38, + "end": 4300.02, + "probability": 0.483 + }, + { + "start": 4300.98, + "end": 4300.98, + "probability": 0.0022 + }, + { + "start": 4305.54, + "end": 4306.52, + "probability": 0.0332 + }, + { + "start": 4306.52, + "end": 4307.04, + "probability": 0.5553 + }, + { + "start": 4307.22, + "end": 4307.68, + "probability": 0.2221 + }, + { + "start": 4307.68, + "end": 4308.24, + "probability": 0.2071 + }, + { + "start": 4308.24, + "end": 4310.58, + "probability": 0.752 + }, + { + "start": 4310.66, + "end": 4311.86, + "probability": 0.7614 + }, + { + "start": 4311.94, + "end": 4313.44, + "probability": 0.8073 + }, + { + "start": 4313.64, + "end": 4315.16, + "probability": 0.9249 + }, + { + "start": 4316.08, + "end": 4319.76, + "probability": 0.9272 + }, + { + "start": 4319.96, + "end": 4321.92, + "probability": 0.5441 + }, + { + "start": 4321.92, + "end": 4323.22, + "probability": 0.4016 + }, + { + "start": 4326.8, + "end": 4329.06, + "probability": 0.3238 + }, + { + "start": 4330.2, + "end": 4331.98, + "probability": 0.9824 + }, + { + "start": 4333.4, + "end": 4337.24, + "probability": 0.7955 + }, + { + "start": 4340.65, + "end": 4342.78, + "probability": 0.4887 + }, + { + "start": 4344.09, + "end": 4344.96, + "probability": 0.6958 + }, + { + "start": 4346.08, + "end": 4352.18, + "probability": 0.6241 + }, + { + "start": 4355.1, + "end": 4355.86, + "probability": 0.1192 + }, + { + "start": 4356.32, + "end": 4357.42, + "probability": 0.6752 + }, + { + "start": 4362.49, + "end": 4366.9, + "probability": 0.9707 + }, + { + "start": 4368.08, + "end": 4369.22, + "probability": 0.9971 + }, + { + "start": 4369.76, + "end": 4372.12, + "probability": 0.6535 + }, + { + "start": 4373.38, + "end": 4375.5, + "probability": 0.772 + }, + { + "start": 4375.88, + "end": 4378.98, + "probability": 0.4027 + }, + { + "start": 4379.84, + "end": 4382.72, + "probability": 0.3481 + }, + { + "start": 4382.88, + "end": 4384.42, + "probability": 0.908 + }, + { + "start": 4384.48, + "end": 4385.48, + "probability": 0.9708 + }, + { + "start": 4385.6, + "end": 4387.28, + "probability": 0.8948 + }, + { + "start": 4388.68, + "end": 4390.22, + "probability": 0.7393 + }, + { + "start": 4391.24, + "end": 4396.58, + "probability": 0.8442 + }, + { + "start": 4397.46, + "end": 4398.7, + "probability": 0.2279 + }, + { + "start": 4398.82, + "end": 4404.76, + "probability": 0.9983 + }, + { + "start": 4406.54, + "end": 4412.24, + "probability": 0.9857 + }, + { + "start": 4412.6, + "end": 4414.38, + "probability": 0.9097 + }, + { + "start": 4414.88, + "end": 4417.32, + "probability": 0.927 + }, + { + "start": 4417.32, + "end": 4420.1, + "probability": 0.994 + }, + { + "start": 4421.58, + "end": 4423.22, + "probability": 0.7805 + }, + { + "start": 4423.28, + "end": 4430.64, + "probability": 0.6078 + }, + { + "start": 4430.98, + "end": 4434.54, + "probability": 0.6744 + }, + { + "start": 4435.06, + "end": 4437.58, + "probability": 0.8146 + }, + { + "start": 4438.5, + "end": 4439.36, + "probability": 0.6565 + }, + { + "start": 4439.64, + "end": 4443.0, + "probability": 0.584 + }, + { + "start": 4444.5, + "end": 4446.42, + "probability": 0.3956 + }, + { + "start": 4446.44, + "end": 4448.98, + "probability": 0.5854 + }, + { + "start": 4449.0, + "end": 4456.24, + "probability": 0.9515 + }, + { + "start": 4456.68, + "end": 4457.72, + "probability": 0.5775 + }, + { + "start": 4457.94, + "end": 4458.4, + "probability": 0.3616 + }, + { + "start": 4459.39, + "end": 4462.78, + "probability": 0.6862 + }, + { + "start": 4462.96, + "end": 4464.72, + "probability": 0.8647 + }, + { + "start": 4465.24, + "end": 4468.5, + "probability": 0.7603 + }, + { + "start": 4469.2, + "end": 4473.08, + "probability": 0.8167 + }, + { + "start": 4473.92, + "end": 4475.96, + "probability": 0.6805 + }, + { + "start": 4476.4, + "end": 4480.2, + "probability": 0.7182 + }, + { + "start": 4486.3, + "end": 4488.98, + "probability": 0.6911 + }, + { + "start": 4488.98, + "end": 4492.98, + "probability": 0.7857 + }, + { + "start": 4498.46, + "end": 4498.48, + "probability": 0.125 + }, + { + "start": 4498.48, + "end": 4498.48, + "probability": 0.2076 + }, + { + "start": 4498.48, + "end": 4498.52, + "probability": 0.1622 + }, + { + "start": 4498.52, + "end": 4498.52, + "probability": 0.0633 + }, + { + "start": 4516.62, + "end": 4519.6, + "probability": 0.9884 + }, + { + "start": 4523.08, + "end": 4524.32, + "probability": 0.3169 + }, + { + "start": 4524.36, + "end": 4526.6, + "probability": 0.4993 + }, + { + "start": 4528.24, + "end": 4534.02, + "probability": 0.6587 + }, + { + "start": 4534.7, + "end": 4535.32, + "probability": 0.0153 + }, + { + "start": 4535.44, + "end": 4540.1, + "probability": 0.8525 + }, + { + "start": 4540.12, + "end": 4540.66, + "probability": 0.5281 + }, + { + "start": 4540.78, + "end": 4542.68, + "probability": 0.9136 + }, + { + "start": 4543.82, + "end": 4545.56, + "probability": 0.5225 + }, + { + "start": 4546.36, + "end": 4548.14, + "probability": 0.772 + }, + { + "start": 4548.42, + "end": 4552.84, + "probability": 0.6695 + }, + { + "start": 4553.5, + "end": 4557.78, + "probability": 0.89 + }, + { + "start": 4559.02, + "end": 4561.82, + "probability": 0.8912 + }, + { + "start": 4561.82, + "end": 4565.22, + "probability": 0.9485 + }, + { + "start": 4565.36, + "end": 4566.88, + "probability": 0.7569 + }, + { + "start": 4568.24, + "end": 4573.0, + "probability": 0.9956 + }, + { + "start": 4574.02, + "end": 4577.9, + "probability": 0.9839 + }, + { + "start": 4578.6, + "end": 4582.28, + "probability": 0.9984 + }, + { + "start": 4587.06, + "end": 4591.16, + "probability": 0.8792 + }, + { + "start": 4591.16, + "end": 4594.36, + "probability": 0.9816 + }, + { + "start": 4595.94, + "end": 4596.76, + "probability": 0.5861 + }, + { + "start": 4596.94, + "end": 4603.64, + "probability": 0.9797 + }, + { + "start": 4603.7, + "end": 4604.7, + "probability": 0.6085 + }, + { + "start": 4605.24, + "end": 4607.92, + "probability": 0.9682 + }, + { + "start": 4608.74, + "end": 4611.5, + "probability": 0.9485 + }, + { + "start": 4612.26, + "end": 4617.8, + "probability": 0.9844 + }, + { + "start": 4618.68, + "end": 4621.12, + "probability": 0.9988 + }, + { + "start": 4622.92, + "end": 4624.38, + "probability": 0.8102 + }, + { + "start": 4625.26, + "end": 4626.66, + "probability": 0.9819 + }, + { + "start": 4627.0, + "end": 4628.26, + "probability": 0.9653 + }, + { + "start": 4628.38, + "end": 4630.94, + "probability": 0.9657 + }, + { + "start": 4631.54, + "end": 4636.82, + "probability": 0.9648 + }, + { + "start": 4637.66, + "end": 4640.28, + "probability": 0.9623 + }, + { + "start": 4641.86, + "end": 4646.04, + "probability": 0.9924 + }, + { + "start": 4646.04, + "end": 4651.84, + "probability": 0.9968 + }, + { + "start": 4651.84, + "end": 4652.46, + "probability": 0.5417 + }, + { + "start": 4653.28, + "end": 4653.64, + "probability": 0.4407 + }, + { + "start": 4653.7, + "end": 4657.02, + "probability": 0.991 + }, + { + "start": 4657.92, + "end": 4660.64, + "probability": 0.9922 + }, + { + "start": 4660.64, + "end": 4663.38, + "probability": 0.9731 + }, + { + "start": 4664.6, + "end": 4669.28, + "probability": 0.9759 + }, + { + "start": 4670.36, + "end": 4675.08, + "probability": 0.9746 + }, + { + "start": 4675.84, + "end": 4676.74, + "probability": 0.8375 + }, + { + "start": 4676.9, + "end": 4679.26, + "probability": 0.9331 + }, + { + "start": 4679.36, + "end": 4680.88, + "probability": 0.7634 + }, + { + "start": 4682.22, + "end": 4684.7, + "probability": 0.5748 + }, + { + "start": 4684.88, + "end": 4687.48, + "probability": 0.8667 + }, + { + "start": 4688.7, + "end": 4690.42, + "probability": 0.6281 + }, + { + "start": 4690.68, + "end": 4691.14, + "probability": 0.9172 + }, + { + "start": 4691.22, + "end": 4691.88, + "probability": 0.9419 + }, + { + "start": 4692.06, + "end": 4693.46, + "probability": 0.6838 + }, + { + "start": 4694.7, + "end": 4698.62, + "probability": 0.9743 + }, + { + "start": 4698.72, + "end": 4699.84, + "probability": 0.9102 + }, + { + "start": 4701.22, + "end": 4703.78, + "probability": 0.9313 + }, + { + "start": 4703.86, + "end": 4705.42, + "probability": 0.9623 + }, + { + "start": 4705.56, + "end": 4708.12, + "probability": 0.8042 + }, + { + "start": 4709.3, + "end": 4711.96, + "probability": 0.9929 + }, + { + "start": 4713.38, + "end": 4717.34, + "probability": 0.8989 + }, + { + "start": 4718.62, + "end": 4723.34, + "probability": 0.9673 + }, + { + "start": 4724.68, + "end": 4724.9, + "probability": 0.14 + }, + { + "start": 4725.08, + "end": 4725.66, + "probability": 0.8557 + }, + { + "start": 4725.76, + "end": 4731.84, + "probability": 0.9827 + }, + { + "start": 4732.92, + "end": 4734.8, + "probability": 0.9126 + }, + { + "start": 4735.82, + "end": 4739.26, + "probability": 0.9243 + }, + { + "start": 4740.0, + "end": 4744.04, + "probability": 0.9904 + }, + { + "start": 4745.02, + "end": 4748.58, + "probability": 0.8187 + }, + { + "start": 4749.5, + "end": 4752.6, + "probability": 0.9928 + }, + { + "start": 4754.34, + "end": 4757.82, + "probability": 0.8116 + }, + { + "start": 4757.82, + "end": 4759.3, + "probability": 0.9321 + }, + { + "start": 4759.34, + "end": 4760.68, + "probability": 0.9574 + }, + { + "start": 4762.26, + "end": 4763.06, + "probability": 0.9977 + }, + { + "start": 4765.16, + "end": 4766.72, + "probability": 0.6228 + }, + { + "start": 4766.86, + "end": 4767.84, + "probability": 0.7449 + }, + { + "start": 4767.88, + "end": 4772.9, + "probability": 0.9316 + }, + { + "start": 4773.12, + "end": 4774.74, + "probability": 0.8745 + }, + { + "start": 4774.86, + "end": 4776.28, + "probability": 0.9614 + }, + { + "start": 4776.4, + "end": 4777.98, + "probability": 0.77 + }, + { + "start": 4778.82, + "end": 4780.76, + "probability": 0.9723 + }, + { + "start": 4781.84, + "end": 4783.49, + "probability": 0.6387 + }, + { + "start": 4784.8, + "end": 4786.16, + "probability": 0.6161 + }, + { + "start": 4786.48, + "end": 4791.04, + "probability": 0.9022 + }, + { + "start": 4791.26, + "end": 4792.24, + "probability": 0.8361 + }, + { + "start": 4792.88, + "end": 4794.52, + "probability": 0.9819 + }, + { + "start": 4794.66, + "end": 4797.34, + "probability": 0.9961 + }, + { + "start": 4797.34, + "end": 4800.72, + "probability": 0.9918 + }, + { + "start": 4802.22, + "end": 4803.09, + "probability": 0.5827 + }, + { + "start": 4803.7, + "end": 4807.1, + "probability": 0.9666 + }, + { + "start": 4807.28, + "end": 4809.0, + "probability": 0.9568 + }, + { + "start": 4810.28, + "end": 4814.32, + "probability": 0.8239 + }, + { + "start": 4815.06, + "end": 4817.7, + "probability": 0.9711 + }, + { + "start": 4818.52, + "end": 4819.26, + "probability": 0.8905 + }, + { + "start": 4820.12, + "end": 4821.4, + "probability": 0.876 + }, + { + "start": 4822.06, + "end": 4823.1, + "probability": 0.7299 + }, + { + "start": 4823.68, + "end": 4825.34, + "probability": 0.9026 + }, + { + "start": 4826.16, + "end": 4827.96, + "probability": 0.9912 + }, + { + "start": 4828.76, + "end": 4829.36, + "probability": 0.887 + }, + { + "start": 4830.58, + "end": 4835.8, + "probability": 0.9934 + }, + { + "start": 4836.52, + "end": 4837.94, + "probability": 0.9912 + }, + { + "start": 4838.68, + "end": 4841.92, + "probability": 0.2477 + }, + { + "start": 4843.02, + "end": 4844.94, + "probability": 0.5908 + }, + { + "start": 4845.58, + "end": 4846.4, + "probability": 0.7024 + }, + { + "start": 4846.88, + "end": 4848.38, + "probability": 0.9817 + }, + { + "start": 4848.46, + "end": 4849.42, + "probability": 0.8264 + }, + { + "start": 4849.48, + "end": 4849.64, + "probability": 0.3957 + }, + { + "start": 4849.78, + "end": 4850.1, + "probability": 0.7468 + }, + { + "start": 4850.14, + "end": 4851.48, + "probability": 0.8908 + }, + { + "start": 4852.08, + "end": 4855.22, + "probability": 0.9091 + }, + { + "start": 4856.16, + "end": 4858.62, + "probability": 0.9075 + }, + { + "start": 4858.86, + "end": 4861.02, + "probability": 0.9966 + }, + { + "start": 4862.14, + "end": 4863.5, + "probability": 0.6146 + }, + { + "start": 4863.82, + "end": 4864.6, + "probability": 0.8408 + }, + { + "start": 4864.76, + "end": 4867.6, + "probability": 0.9731 + }, + { + "start": 4871.4, + "end": 4872.28, + "probability": 0.9183 + }, + { + "start": 4872.48, + "end": 4881.76, + "probability": 0.9792 + }, + { + "start": 4881.96, + "end": 4888.22, + "probability": 0.9785 + }, + { + "start": 4888.48, + "end": 4890.6, + "probability": 0.9465 + }, + { + "start": 4890.74, + "end": 4891.64, + "probability": 0.9329 + }, + { + "start": 4892.96, + "end": 4900.04, + "probability": 0.9549 + }, + { + "start": 4900.22, + "end": 4901.3, + "probability": 0.8603 + }, + { + "start": 4901.54, + "end": 4902.72, + "probability": 0.8905 + }, + { + "start": 4903.72, + "end": 4907.36, + "probability": 0.8024 + }, + { + "start": 4908.28, + "end": 4910.26, + "probability": 0.9675 + }, + { + "start": 4910.4, + "end": 4912.18, + "probability": 0.9366 + }, + { + "start": 4912.34, + "end": 4913.04, + "probability": 0.8398 + }, + { + "start": 4913.1, + "end": 4913.44, + "probability": 0.9656 + }, + { + "start": 4915.52, + "end": 4916.96, + "probability": 0.6503 + }, + { + "start": 4917.94, + "end": 4921.08, + "probability": 0.9937 + }, + { + "start": 4921.8, + "end": 4923.76, + "probability": 0.8765 + }, + { + "start": 4923.92, + "end": 4924.24, + "probability": 0.4188 + }, + { + "start": 4924.38, + "end": 4925.24, + "probability": 0.7393 + }, + { + "start": 4925.28, + "end": 4930.08, + "probability": 0.942 + }, + { + "start": 4931.26, + "end": 4934.44, + "probability": 0.9727 + }, + { + "start": 4936.68, + "end": 4936.9, + "probability": 0.4164 + }, + { + "start": 4938.98, + "end": 4940.46, + "probability": 0.5401 + }, + { + "start": 4940.62, + "end": 4943.88, + "probability": 0.6653 + }, + { + "start": 4944.98, + "end": 4945.58, + "probability": 0.7339 + }, + { + "start": 4947.32, + "end": 4949.9, + "probability": 0.9858 + }, + { + "start": 4951.46, + "end": 4954.12, + "probability": 0.8631 + }, + { + "start": 4955.72, + "end": 4957.52, + "probability": 0.9733 + }, + { + "start": 4958.04, + "end": 4958.6, + "probability": 0.4716 + }, + { + "start": 4959.14, + "end": 4959.96, + "probability": 0.7174 + }, + { + "start": 4960.98, + "end": 4963.24, + "probability": 0.9871 + }, + { + "start": 4964.06, + "end": 4964.76, + "probability": 0.8206 + }, + { + "start": 4965.78, + "end": 4974.86, + "probability": 0.9202 + }, + { + "start": 4977.22, + "end": 4978.12, + "probability": 0.743 + }, + { + "start": 4978.78, + "end": 4982.34, + "probability": 0.0706 + }, + { + "start": 4992.26, + "end": 4993.1, + "probability": 0.1025 + }, + { + "start": 4993.38, + "end": 4993.66, + "probability": 0.2522 + }, + { + "start": 4994.26, + "end": 4995.16, + "probability": 0.5624 + }, + { + "start": 4995.9, + "end": 4997.96, + "probability": 0.8298 + }, + { + "start": 4999.0, + "end": 5004.12, + "probability": 0.9761 + }, + { + "start": 5005.06, + "end": 5005.06, + "probability": 0.0994 + }, + { + "start": 5006.18, + "end": 5008.3, + "probability": 0.4011 + }, + { + "start": 5008.64, + "end": 5009.16, + "probability": 0.4203 + }, + { + "start": 5009.72, + "end": 5009.86, + "probability": 0.0149 + }, + { + "start": 5010.82, + "end": 5011.24, + "probability": 0.2182 + }, + { + "start": 5020.62, + "end": 5022.42, + "probability": 0.4239 + }, + { + "start": 5030.86, + "end": 5030.86, + "probability": 0.0705 + }, + { + "start": 5031.08, + "end": 5032.34, + "probability": 0.6739 + }, + { + "start": 5032.5, + "end": 5034.02, + "probability": 0.3817 + }, + { + "start": 5034.16, + "end": 5034.6, + "probability": 0.3566 + }, + { + "start": 5037.26, + "end": 5039.96, + "probability": 0.4638 + }, + { + "start": 5040.8, + "end": 5040.96, + "probability": 0.016 + }, + { + "start": 5040.96, + "end": 5040.96, + "probability": 0.0571 + }, + { + "start": 5040.96, + "end": 5040.96, + "probability": 0.1116 + }, + { + "start": 5041.3, + "end": 5042.66, + "probability": 0.3903 + }, + { + "start": 5043.54, + "end": 5046.08, + "probability": 0.5126 + }, + { + "start": 5046.84, + "end": 5049.34, + "probability": 0.909 + }, + { + "start": 5058.36, + "end": 5061.8, + "probability": 0.8371 + }, + { + "start": 5062.16, + "end": 5064.1, + "probability": 0.2035 + }, + { + "start": 5064.28, + "end": 5069.02, + "probability": 0.951 + }, + { + "start": 5069.74, + "end": 5070.34, + "probability": 0.7598 + }, + { + "start": 5074.38, + "end": 5080.0, + "probability": 0.8826 + }, + { + "start": 5081.02, + "end": 5081.4, + "probability": 0.6841 + }, + { + "start": 5081.4, + "end": 5083.25, + "probability": 0.8254 + }, + { + "start": 5083.84, + "end": 5085.46, + "probability": 0.78 + }, + { + "start": 5086.2, + "end": 5089.0, + "probability": 0.6671 + }, + { + "start": 5089.12, + "end": 5090.72, + "probability": 0.9833 + }, + { + "start": 5091.4, + "end": 5093.24, + "probability": 0.8025 + }, + { + "start": 5093.86, + "end": 5097.06, + "probability": 0.8858 + }, + { + "start": 5098.18, + "end": 5102.24, + "probability": 0.6904 + }, + { + "start": 5102.96, + "end": 5104.12, + "probability": 0.8499 + }, + { + "start": 5104.2, + "end": 5105.08, + "probability": 0.5505 + }, + { + "start": 5106.1, + "end": 5106.4, + "probability": 0.5303 + }, + { + "start": 5106.62, + "end": 5108.62, + "probability": 0.8528 + }, + { + "start": 5109.46, + "end": 5111.26, + "probability": 0.9083 + }, + { + "start": 5111.46, + "end": 5112.62, + "probability": 0.8748 + }, + { + "start": 5112.66, + "end": 5114.98, + "probability": 0.5247 + }, + { + "start": 5115.66, + "end": 5118.62, + "probability": 0.93 + }, + { + "start": 5120.58, + "end": 5122.58, + "probability": 0.8844 + }, + { + "start": 5123.14, + "end": 5124.92, + "probability": 0.4898 + }, + { + "start": 5125.72, + "end": 5126.46, + "probability": 0.7824 + }, + { + "start": 5127.9, + "end": 5130.32, + "probability": 0.8231 + }, + { + "start": 5131.44, + "end": 5133.68, + "probability": 0.8208 + }, + { + "start": 5134.46, + "end": 5135.98, + "probability": 0.9288 + }, + { + "start": 5136.52, + "end": 5138.2, + "probability": 0.9692 + }, + { + "start": 5138.58, + "end": 5140.52, + "probability": 0.9971 + }, + { + "start": 5141.36, + "end": 5141.82, + "probability": 0.2985 + }, + { + "start": 5142.52, + "end": 5146.32, + "probability": 0.5048 + }, + { + "start": 5146.78, + "end": 5147.94, + "probability": 0.7127 + }, + { + "start": 5148.0, + "end": 5148.68, + "probability": 0.6361 + }, + { + "start": 5150.3, + "end": 5154.14, + "probability": 0.8744 + }, + { + "start": 5157.62, + "end": 5159.56, + "probability": 0.9985 + }, + { + "start": 5160.2, + "end": 5161.96, + "probability": 0.4695 + }, + { + "start": 5162.12, + "end": 5164.68, + "probability": 0.8225 + }, + { + "start": 5165.42, + "end": 5169.3, + "probability": 0.8845 + }, + { + "start": 5170.14, + "end": 5171.6, + "probability": 0.6995 + }, + { + "start": 5171.68, + "end": 5173.74, + "probability": 0.7958 + }, + { + "start": 5173.84, + "end": 5174.38, + "probability": 0.463 + }, + { + "start": 5174.46, + "end": 5175.12, + "probability": 0.7586 + }, + { + "start": 5175.66, + "end": 5177.08, + "probability": 0.7321 + }, + { + "start": 5178.66, + "end": 5180.88, + "probability": 0.5995 + }, + { + "start": 5181.68, + "end": 5182.96, + "probability": 0.947 + }, + { + "start": 5185.82, + "end": 5189.32, + "probability": 0.6104 + }, + { + "start": 5190.48, + "end": 5191.84, + "probability": 0.7606 + }, + { + "start": 5193.58, + "end": 5196.18, + "probability": 0.9396 + }, + { + "start": 5196.34, + "end": 5198.66, + "probability": 0.9669 + }, + { + "start": 5199.62, + "end": 5200.6, + "probability": 0.96 + }, + { + "start": 5202.32, + "end": 5204.68, + "probability": 0.9306 + }, + { + "start": 5205.56, + "end": 5207.54, + "probability": 0.7222 + }, + { + "start": 5211.66, + "end": 5212.26, + "probability": 0.3046 + }, + { + "start": 5212.34, + "end": 5214.02, + "probability": 0.6986 + }, + { + "start": 5214.1, + "end": 5216.22, + "probability": 0.8276 + }, + { + "start": 5216.22, + "end": 5219.38, + "probability": 0.8878 + }, + { + "start": 5220.1, + "end": 5221.72, + "probability": 0.9006 + }, + { + "start": 5222.08, + "end": 5225.0, + "probability": 0.5472 + }, + { + "start": 5225.18, + "end": 5225.78, + "probability": 0.9432 + }, + { + "start": 5226.76, + "end": 5229.98, + "probability": 0.9935 + }, + { + "start": 5229.98, + "end": 5232.44, + "probability": 0.5329 + }, + { + "start": 5233.56, + "end": 5237.36, + "probability": 0.7638 + }, + { + "start": 5238.08, + "end": 5238.7, + "probability": 0.7766 + }, + { + "start": 5239.08, + "end": 5247.2, + "probability": 0.9391 + }, + { + "start": 5247.86, + "end": 5250.8, + "probability": 0.9977 + }, + { + "start": 5250.8, + "end": 5253.64, + "probability": 0.9938 + }, + { + "start": 5254.3, + "end": 5257.44, + "probability": 0.9951 + }, + { + "start": 5258.3, + "end": 5262.14, + "probability": 0.9653 + }, + { + "start": 5262.82, + "end": 5267.28, + "probability": 0.9971 + }, + { + "start": 5268.16, + "end": 5270.56, + "probability": 0.7505 + }, + { + "start": 5270.68, + "end": 5270.9, + "probability": 0.5039 + }, + { + "start": 5271.26, + "end": 5272.68, + "probability": 0.9577 + }, + { + "start": 5273.54, + "end": 5277.3, + "probability": 0.8737 + }, + { + "start": 5278.02, + "end": 5279.76, + "probability": 0.8018 + }, + { + "start": 5280.62, + "end": 5281.26, + "probability": 0.437 + }, + { + "start": 5281.3, + "end": 5284.88, + "probability": 0.9943 + }, + { + "start": 5285.04, + "end": 5286.38, + "probability": 0.942 + }, + { + "start": 5286.44, + "end": 5287.4, + "probability": 0.9075 + }, + { + "start": 5287.48, + "end": 5288.78, + "probability": 0.9677 + }, + { + "start": 5289.6, + "end": 5294.78, + "probability": 0.8656 + }, + { + "start": 5295.58, + "end": 5297.28, + "probability": 0.9389 + }, + { + "start": 5297.4, + "end": 5300.7, + "probability": 0.9902 + }, + { + "start": 5301.33, + "end": 5302.67, + "probability": 0.9937 + }, + { + "start": 5303.46, + "end": 5308.06, + "probability": 0.9452 + }, + { + "start": 5308.92, + "end": 5311.31, + "probability": 0.9929 + }, + { + "start": 5311.44, + "end": 5314.54, + "probability": 0.9665 + }, + { + "start": 5316.12, + "end": 5316.24, + "probability": 0.0658 + }, + { + "start": 5316.32, + "end": 5316.86, + "probability": 0.5038 + }, + { + "start": 5316.92, + "end": 5320.52, + "probability": 0.8691 + }, + { + "start": 5321.14, + "end": 5325.04, + "probability": 0.9984 + }, + { + "start": 5325.64, + "end": 5327.7, + "probability": 0.9928 + }, + { + "start": 5327.94, + "end": 5328.6, + "probability": 0.8585 + }, + { + "start": 5329.34, + "end": 5333.92, + "probability": 0.9643 + }, + { + "start": 5334.16, + "end": 5335.04, + "probability": 0.7085 + }, + { + "start": 5336.58, + "end": 5337.96, + "probability": 0.9764 + }, + { + "start": 5338.8, + "end": 5342.04, + "probability": 0.9331 + }, + { + "start": 5342.7, + "end": 5343.5, + "probability": 0.7461 + }, + { + "start": 5343.6, + "end": 5344.12, + "probability": 0.7515 + }, + { + "start": 5344.2, + "end": 5344.52, + "probability": 0.8527 + }, + { + "start": 5344.58, + "end": 5347.88, + "probability": 0.9934 + }, + { + "start": 5348.48, + "end": 5349.22, + "probability": 0.8746 + }, + { + "start": 5350.1, + "end": 5351.26, + "probability": 0.7004 + }, + { + "start": 5352.48, + "end": 5355.68, + "probability": 0.9214 + }, + { + "start": 5355.68, + "end": 5360.74, + "probability": 0.9585 + }, + { + "start": 5361.36, + "end": 5362.66, + "probability": 0.4866 + }, + { + "start": 5363.74, + "end": 5365.88, + "probability": 0.5448 + }, + { + "start": 5366.12, + "end": 5368.46, + "probability": 0.7597 + }, + { + "start": 5368.98, + "end": 5370.64, + "probability": 0.7975 + }, + { + "start": 5377.8, + "end": 5380.42, + "probability": 0.8324 + }, + { + "start": 5381.08, + "end": 5382.9, + "probability": 0.9823 + }, + { + "start": 5383.0, + "end": 5383.64, + "probability": 0.2561 + }, + { + "start": 5384.1, + "end": 5388.0, + "probability": 0.9924 + }, + { + "start": 5389.08, + "end": 5390.6, + "probability": 0.7618 + }, + { + "start": 5391.38, + "end": 5394.26, + "probability": 0.8028 + }, + { + "start": 5394.98, + "end": 5396.46, + "probability": 0.5196 + }, + { + "start": 5396.56, + "end": 5399.4, + "probability": 0.8179 + }, + { + "start": 5400.2, + "end": 5400.92, + "probability": 0.9771 + }, + { + "start": 5403.22, + "end": 5403.62, + "probability": 0.154 + }, + { + "start": 5422.12, + "end": 5422.9, + "probability": 0.9165 + }, + { + "start": 5423.52, + "end": 5426.44, + "probability": 0.7332 + }, + { + "start": 5427.38, + "end": 5428.74, + "probability": 0.9867 + }, + { + "start": 5429.82, + "end": 5430.56, + "probability": 0.9845 + }, + { + "start": 5431.73, + "end": 5436.14, + "probability": 0.9966 + }, + { + "start": 5436.14, + "end": 5440.1, + "probability": 0.9754 + }, + { + "start": 5441.24, + "end": 5443.78, + "probability": 0.998 + }, + { + "start": 5445.68, + "end": 5448.46, + "probability": 0.9971 + }, + { + "start": 5448.46, + "end": 5453.2, + "probability": 0.9938 + }, + { + "start": 5453.56, + "end": 5457.32, + "probability": 0.9656 + }, + { + "start": 5458.98, + "end": 5460.72, + "probability": 0.8009 + }, + { + "start": 5462.3, + "end": 5465.26, + "probability": 0.8995 + }, + { + "start": 5467.58, + "end": 5470.86, + "probability": 0.9937 + }, + { + "start": 5471.8, + "end": 5476.12, + "probability": 0.9423 + }, + { + "start": 5476.12, + "end": 5481.64, + "probability": 0.9901 + }, + { + "start": 5483.04, + "end": 5489.1, + "probability": 0.9704 + }, + { + "start": 5490.1, + "end": 5490.94, + "probability": 0.9087 + }, + { + "start": 5492.68, + "end": 5494.62, + "probability": 0.8901 + }, + { + "start": 5495.26, + "end": 5496.06, + "probability": 0.9958 + }, + { + "start": 5496.98, + "end": 5499.66, + "probability": 0.999 + }, + { + "start": 5500.76, + "end": 5502.0, + "probability": 0.9952 + }, + { + "start": 5502.88, + "end": 5504.0, + "probability": 0.9172 + }, + { + "start": 5504.96, + "end": 5506.22, + "probability": 0.9132 + }, + { + "start": 5507.38, + "end": 5509.78, + "probability": 0.9199 + }, + { + "start": 5511.3, + "end": 5515.22, + "probability": 0.0883 + }, + { + "start": 5515.82, + "end": 5516.44, + "probability": 0.7075 + }, + { + "start": 5516.56, + "end": 5518.02, + "probability": 0.7085 + }, + { + "start": 5518.12, + "end": 5519.03, + "probability": 0.8857 + }, + { + "start": 5519.22, + "end": 5522.42, + "probability": 0.974 + }, + { + "start": 5522.5, + "end": 5523.29, + "probability": 0.5186 + }, + { + "start": 5523.84, + "end": 5524.36, + "probability": 0.8002 + }, + { + "start": 5525.36, + "end": 5526.76, + "probability": 0.8198 + }, + { + "start": 5526.86, + "end": 5533.3, + "probability": 0.9645 + }, + { + "start": 5534.06, + "end": 5535.64, + "probability": 0.4863 + }, + { + "start": 5537.38, + "end": 5538.08, + "probability": 0.4315 + }, + { + "start": 5539.44, + "end": 5543.92, + "probability": 0.97 + }, + { + "start": 5544.44, + "end": 5545.62, + "probability": 0.9664 + }, + { + "start": 5546.74, + "end": 5549.86, + "probability": 0.8704 + }, + { + "start": 5551.04, + "end": 5556.4, + "probability": 0.9481 + }, + { + "start": 5558.48, + "end": 5563.98, + "probability": 0.9909 + }, + { + "start": 5564.72, + "end": 5565.32, + "probability": 0.837 + }, + { + "start": 5565.44, + "end": 5566.92, + "probability": 0.9842 + }, + { + "start": 5567.12, + "end": 5569.48, + "probability": 0.9917 + }, + { + "start": 5570.62, + "end": 5571.04, + "probability": 0.7545 + }, + { + "start": 5571.84, + "end": 5577.02, + "probability": 0.9752 + }, + { + "start": 5577.24, + "end": 5579.38, + "probability": 0.9025 + }, + { + "start": 5579.9, + "end": 5581.74, + "probability": 0.9985 + }, + { + "start": 5582.58, + "end": 5583.0, + "probability": 0.9352 + }, + { + "start": 5583.66, + "end": 5585.76, + "probability": 0.9984 + }, + { + "start": 5586.98, + "end": 5588.83, + "probability": 0.9988 + }, + { + "start": 5589.6, + "end": 5590.08, + "probability": 0.9688 + }, + { + "start": 5590.82, + "end": 5593.84, + "probability": 0.9997 + }, + { + "start": 5594.48, + "end": 5598.58, + "probability": 0.9463 + }, + { + "start": 5600.18, + "end": 5605.44, + "probability": 0.9867 + }, + { + "start": 5605.58, + "end": 5606.64, + "probability": 0.9456 + }, + { + "start": 5606.7, + "end": 5609.56, + "probability": 0.9956 + }, + { + "start": 5609.64, + "end": 5612.32, + "probability": 0.8744 + }, + { + "start": 5612.76, + "end": 5613.58, + "probability": 0.1797 + }, + { + "start": 5613.68, + "end": 5614.04, + "probability": 0.5885 + }, + { + "start": 5614.42, + "end": 5615.48, + "probability": 0.8173 + }, + { + "start": 5615.54, + "end": 5616.14, + "probability": 0.8624 + }, + { + "start": 5616.36, + "end": 5618.52, + "probability": 0.9626 + }, + { + "start": 5618.66, + "end": 5618.96, + "probability": 0.684 + }, + { + "start": 5619.06, + "end": 5620.42, + "probability": 0.6855 + }, + { + "start": 5620.8, + "end": 5622.14, + "probability": 0.9714 + }, + { + "start": 5622.4, + "end": 5622.94, + "probability": 0.6658 + }, + { + "start": 5623.78, + "end": 5625.02, + "probability": 0.3021 + }, + { + "start": 5625.02, + "end": 5627.06, + "probability": 0.8028 + }, + { + "start": 5627.12, + "end": 5628.44, + "probability": 0.7246 + }, + { + "start": 5628.78, + "end": 5629.1, + "probability": 0.752 + }, + { + "start": 5629.24, + "end": 5629.66, + "probability": 0.9156 + }, + { + "start": 5629.68, + "end": 5631.16, + "probability": 0.9258 + }, + { + "start": 5631.76, + "end": 5635.05, + "probability": 0.9896 + }, + { + "start": 5635.08, + "end": 5638.16, + "probability": 0.9838 + }, + { + "start": 5638.9, + "end": 5641.72, + "probability": 0.8807 + }, + { + "start": 5642.64, + "end": 5645.84, + "probability": 0.9126 + }, + { + "start": 5646.38, + "end": 5648.84, + "probability": 0.8546 + }, + { + "start": 5649.88, + "end": 5650.4, + "probability": 0.9547 + }, + { + "start": 5650.56, + "end": 5651.64, + "probability": 0.9801 + }, + { + "start": 5651.76, + "end": 5654.16, + "probability": 0.9595 + }, + { + "start": 5654.8, + "end": 5656.92, + "probability": 0.9851 + }, + { + "start": 5657.12, + "end": 5658.62, + "probability": 0.999 + }, + { + "start": 5659.64, + "end": 5661.78, + "probability": 0.7417 + }, + { + "start": 5662.16, + "end": 5665.12, + "probability": 0.9934 + }, + { + "start": 5666.36, + "end": 5671.1, + "probability": 0.993 + }, + { + "start": 5671.18, + "end": 5671.36, + "probability": 0.8823 + }, + { + "start": 5671.56, + "end": 5672.58, + "probability": 0.97 + }, + { + "start": 5673.14, + "end": 5673.62, + "probability": 0.9055 + }, + { + "start": 5673.7, + "end": 5674.34, + "probability": 0.8118 + }, + { + "start": 5674.38, + "end": 5677.04, + "probability": 0.8611 + }, + { + "start": 5677.16, + "end": 5678.26, + "probability": 0.9978 + }, + { + "start": 5679.72, + "end": 5681.46, + "probability": 0.9987 + }, + { + "start": 5682.12, + "end": 5684.54, + "probability": 0.9619 + }, + { + "start": 5685.76, + "end": 5686.1, + "probability": 0.9539 + }, + { + "start": 5686.52, + "end": 5687.66, + "probability": 0.988 + }, + { + "start": 5687.78, + "end": 5688.8, + "probability": 0.9277 + }, + { + "start": 5689.06, + "end": 5689.55, + "probability": 0.978 + }, + { + "start": 5689.62, + "end": 5691.74, + "probability": 0.957 + }, + { + "start": 5692.06, + "end": 5694.22, + "probability": 0.9969 + }, + { + "start": 5695.08, + "end": 5700.04, + "probability": 0.9732 + }, + { + "start": 5700.22, + "end": 5700.68, + "probability": 0.9623 + }, + { + "start": 5701.08, + "end": 5702.62, + "probability": 0.8706 + }, + { + "start": 5704.3, + "end": 5704.3, + "probability": 0.0006 + }, + { + "start": 5705.04, + "end": 5705.84, + "probability": 0.5118 + }, + { + "start": 5706.52, + "end": 5709.04, + "probability": 0.9281 + }, + { + "start": 5709.04, + "end": 5709.5, + "probability": 0.3454 + }, + { + "start": 5709.66, + "end": 5714.64, + "probability": 0.9576 + }, + { + "start": 5716.08, + "end": 5719.28, + "probability": 0.8018 + }, + { + "start": 5720.04, + "end": 5721.5, + "probability": 0.9989 + }, + { + "start": 5722.18, + "end": 5723.12, + "probability": 0.9053 + }, + { + "start": 5723.98, + "end": 5726.64, + "probability": 0.9989 + }, + { + "start": 5727.18, + "end": 5728.72, + "probability": 0.9915 + }, + { + "start": 5729.72, + "end": 5732.4, + "probability": 0.9992 + }, + { + "start": 5732.98, + "end": 5734.68, + "probability": 0.8267 + }, + { + "start": 5735.2, + "end": 5736.66, + "probability": 0.9033 + }, + { + "start": 5737.34, + "end": 5738.98, + "probability": 0.8519 + }, + { + "start": 5739.92, + "end": 5741.1, + "probability": 0.9212 + }, + { + "start": 5741.98, + "end": 5745.66, + "probability": 0.8695 + }, + { + "start": 5746.5, + "end": 5747.93, + "probability": 0.9875 + }, + { + "start": 5749.22, + "end": 5750.79, + "probability": 0.9872 + }, + { + "start": 5751.58, + "end": 5753.54, + "probability": 0.9509 + }, + { + "start": 5754.12, + "end": 5755.71, + "probability": 0.801 + }, + { + "start": 5756.56, + "end": 5756.6, + "probability": 0.2749 + }, + { + "start": 5756.76, + "end": 5757.74, + "probability": 0.8665 + }, + { + "start": 5757.74, + "end": 5761.84, + "probability": 0.8776 + }, + { + "start": 5762.14, + "end": 5764.16, + "probability": 0.8269 + }, + { + "start": 5764.76, + "end": 5766.32, + "probability": 0.9552 + }, + { + "start": 5767.26, + "end": 5771.82, + "probability": 0.9818 + }, + { + "start": 5772.62, + "end": 5774.14, + "probability": 0.9713 + }, + { + "start": 5774.5, + "end": 5774.7, + "probability": 0.7293 + }, + { + "start": 5774.94, + "end": 5777.68, + "probability": 0.7181 + }, + { + "start": 5778.24, + "end": 5780.78, + "probability": 0.9971 + }, + { + "start": 5780.78, + "end": 5783.76, + "probability": 0.9865 + }, + { + "start": 5784.76, + "end": 5785.38, + "probability": 0.599 + }, + { + "start": 5786.32, + "end": 5788.34, + "probability": 0.8955 + }, + { + "start": 5802.42, + "end": 5803.64, + "probability": 0.8716 + }, + { + "start": 5808.42, + "end": 5810.34, + "probability": 0.6323 + }, + { + "start": 5813.8, + "end": 5815.76, + "probability": 0.9538 + }, + { + "start": 5817.74, + "end": 5818.77, + "probability": 0.9889 + }, + { + "start": 5819.52, + "end": 5824.2, + "probability": 0.9737 + }, + { + "start": 5824.4, + "end": 5824.88, + "probability": 0.8005 + }, + { + "start": 5826.18, + "end": 5828.32, + "probability": 0.8931 + }, + { + "start": 5830.26, + "end": 5835.54, + "probability": 0.9529 + }, + { + "start": 5837.34, + "end": 5841.9, + "probability": 0.9936 + }, + { + "start": 5844.74, + "end": 5845.96, + "probability": 0.9063 + }, + { + "start": 5850.7, + "end": 5851.91, + "probability": 0.2134 + }, + { + "start": 5852.98, + "end": 5857.28, + "probability": 0.981 + }, + { + "start": 5857.96, + "end": 5860.42, + "probability": 0.9697 + }, + { + "start": 5861.74, + "end": 5863.72, + "probability": 0.9808 + }, + { + "start": 5864.52, + "end": 5865.76, + "probability": 0.7864 + }, + { + "start": 5866.92, + "end": 5869.08, + "probability": 0.7339 + }, + { + "start": 5873.02, + "end": 5876.78, + "probability": 0.9634 + }, + { + "start": 5878.48, + "end": 5879.74, + "probability": 0.9767 + }, + { + "start": 5881.24, + "end": 5884.72, + "probability": 0.8767 + }, + { + "start": 5886.08, + "end": 5887.72, + "probability": 0.7888 + }, + { + "start": 5889.0, + "end": 5890.9, + "probability": 0.8904 + }, + { + "start": 5892.12, + "end": 5892.68, + "probability": 0.8676 + }, + { + "start": 5893.42, + "end": 5894.4, + "probability": 0.9409 + }, + { + "start": 5896.94, + "end": 5898.54, + "probability": 0.9631 + }, + { + "start": 5900.1, + "end": 5901.16, + "probability": 0.7491 + }, + { + "start": 5902.76, + "end": 5907.54, + "probability": 0.8719 + }, + { + "start": 5908.18, + "end": 5908.84, + "probability": 0.9573 + }, + { + "start": 5910.12, + "end": 5913.08, + "probability": 0.9973 + }, + { + "start": 5914.98, + "end": 5916.02, + "probability": 0.8436 + }, + { + "start": 5917.06, + "end": 5917.52, + "probability": 0.0261 + }, + { + "start": 5918.36, + "end": 5919.1, + "probability": 0.1325 + }, + { + "start": 5920.38, + "end": 5922.46, + "probability": 0.8047 + }, + { + "start": 5923.14, + "end": 5925.16, + "probability": 0.1566 + }, + { + "start": 5925.3, + "end": 5925.38, + "probability": 0.5058 + }, + { + "start": 5925.66, + "end": 5928.7, + "probability": 0.9832 + }, + { + "start": 5928.84, + "end": 5929.98, + "probability": 0.8119 + }, + { + "start": 5930.14, + "end": 5930.5, + "probability": 0.9082 + }, + { + "start": 5931.02, + "end": 5932.84, + "probability": 0.9743 + }, + { + "start": 5933.14, + "end": 5934.76, + "probability": 0.9927 + }, + { + "start": 5935.72, + "end": 5935.74, + "probability": 0.0549 + }, + { + "start": 5935.74, + "end": 5935.74, + "probability": 0.121 + }, + { + "start": 5935.74, + "end": 5940.94, + "probability": 0.9627 + }, + { + "start": 5940.98, + "end": 5942.9, + "probability": 0.721 + }, + { + "start": 5944.6, + "end": 5946.78, + "probability": 0.6724 + }, + { + "start": 5946.78, + "end": 5950.8, + "probability": 0.9844 + }, + { + "start": 5951.3, + "end": 5951.36, + "probability": 0.2683 + }, + { + "start": 5951.36, + "end": 5954.06, + "probability": 0.9658 + }, + { + "start": 5954.44, + "end": 5954.74, + "probability": 0.4817 + }, + { + "start": 5955.04, + "end": 5955.2, + "probability": 0.2618 + }, + { + "start": 5955.58, + "end": 5958.84, + "probability": 0.9014 + }, + { + "start": 5959.62, + "end": 5961.34, + "probability": 0.7397 + }, + { + "start": 5961.66, + "end": 5966.92, + "probability": 0.7388 + }, + { + "start": 5969.4, + "end": 5970.32, + "probability": 0.8263 + }, + { + "start": 5973.94, + "end": 5978.92, + "probability": 0.9224 + }, + { + "start": 5979.74, + "end": 5983.12, + "probability": 0.7479 + }, + { + "start": 5983.82, + "end": 5988.34, + "probability": 0.7952 + }, + { + "start": 5989.5, + "end": 5992.58, + "probability": 0.9878 + }, + { + "start": 5992.7, + "end": 5993.88, + "probability": 0.9345 + }, + { + "start": 5994.0, + "end": 5994.68, + "probability": 0.983 + }, + { + "start": 5994.76, + "end": 5995.46, + "probability": 0.7952 + }, + { + "start": 5996.08, + "end": 5997.78, + "probability": 0.991 + }, + { + "start": 5998.96, + "end": 6001.16, + "probability": 0.8424 + }, + { + "start": 6001.98, + "end": 6003.8, + "probability": 0.6793 + }, + { + "start": 6004.14, + "end": 6005.66, + "probability": 0.8236 + }, + { + "start": 6006.88, + "end": 6007.14, + "probability": 0.9709 + }, + { + "start": 6009.08, + "end": 6012.62, + "probability": 0.9382 + }, + { + "start": 6013.72, + "end": 6015.68, + "probability": 0.2759 + }, + { + "start": 6018.36, + "end": 6023.46, + "probability": 0.9001 + }, + { + "start": 6026.44, + "end": 6027.48, + "probability": 0.3994 + }, + { + "start": 6028.06, + "end": 6030.04, + "probability": 0.7772 + }, + { + "start": 6031.22, + "end": 6033.86, + "probability": 0.5476 + }, + { + "start": 6034.72, + "end": 6036.5, + "probability": 0.9904 + }, + { + "start": 6038.08, + "end": 6040.07, + "probability": 0.9005 + }, + { + "start": 6040.96, + "end": 6042.36, + "probability": 0.6973 + }, + { + "start": 6042.88, + "end": 6044.1, + "probability": 0.726 + }, + { + "start": 6044.76, + "end": 6047.36, + "probability": 0.7544 + }, + { + "start": 6047.82, + "end": 6048.95, + "probability": 0.9059 + }, + { + "start": 6049.0, + "end": 6049.3, + "probability": 0.7653 + }, + { + "start": 6051.68, + "end": 6054.9, + "probability": 0.9049 + }, + { + "start": 6055.38, + "end": 6057.9, + "probability": 0.9924 + }, + { + "start": 6058.3, + "end": 6062.7, + "probability": 0.9966 + }, + { + "start": 6064.81, + "end": 6067.39, + "probability": 0.2059 + }, + { + "start": 6067.84, + "end": 6068.05, + "probability": 0.0163 + }, + { + "start": 6073.48, + "end": 6074.14, + "probability": 0.2256 + }, + { + "start": 6074.52, + "end": 6077.52, + "probability": 0.157 + }, + { + "start": 6081.1, + "end": 6082.12, + "probability": 0.0547 + }, + { + "start": 6082.76, + "end": 6083.75, + "probability": 0.2966 + }, + { + "start": 6084.62, + "end": 6090.24, + "probability": 0.0578 + }, + { + "start": 6099.91, + "end": 6102.54, + "probability": 0.0179 + }, + { + "start": 6103.21, + "end": 6103.96, + "probability": 0.119 + }, + { + "start": 6105.28, + "end": 6108.16, + "probability": 0.2656 + }, + { + "start": 6109.94, + "end": 6110.36, + "probability": 0.1639 + }, + { + "start": 6110.36, + "end": 6110.36, + "probability": 0.0181 + }, + { + "start": 6110.36, + "end": 6112.54, + "probability": 0.1261 + }, + { + "start": 6115.66, + "end": 6119.04, + "probability": 0.252 + }, + { + "start": 6119.3, + "end": 6119.72, + "probability": 0.0812 + }, + { + "start": 6120.54, + "end": 6120.68, + "probability": 0.0133 + }, + { + "start": 6121.8, + "end": 6122.74, + "probability": 0.1941 + }, + { + "start": 6122.74, + "end": 6123.14, + "probability": 0.1252 + }, + { + "start": 6130.48, + "end": 6131.12, + "probability": 0.0205 + }, + { + "start": 6131.12, + "end": 6132.0, + "probability": 0.1355 + }, + { + "start": 6133.61, + "end": 6133.98, + "probability": 0.0124 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6134.0, + "end": 6134.0, + "probability": 0.0 + }, + { + "start": 6136.96, + "end": 6138.24, + "probability": 0.224 + }, + { + "start": 6139.16, + "end": 6142.42, + "probability": 0.6206 + }, + { + "start": 6143.38, + "end": 6144.56, + "probability": 0.8513 + }, + { + "start": 6145.9, + "end": 6147.42, + "probability": 0.4909 + }, + { + "start": 6148.12, + "end": 6149.1, + "probability": 0.3349 + }, + { + "start": 6149.1, + "end": 6149.62, + "probability": 0.791 + }, + { + "start": 6150.31, + "end": 6152.26, + "probability": 0.7358 + }, + { + "start": 6156.48, + "end": 6157.64, + "probability": 0.3656 + }, + { + "start": 6158.48, + "end": 6161.07, + "probability": 0.4876 + }, + { + "start": 6161.58, + "end": 6163.04, + "probability": 0.1486 + }, + { + "start": 6163.04, + "end": 6164.66, + "probability": 0.3762 + }, + { + "start": 6165.1, + "end": 6167.2, + "probability": 0.9915 + }, + { + "start": 6167.74, + "end": 6169.88, + "probability": 0.0471 + }, + { + "start": 6171.92, + "end": 6174.0, + "probability": 0.381 + }, + { + "start": 6174.62, + "end": 6175.1, + "probability": 0.2005 + }, + { + "start": 6175.78, + "end": 6176.1, + "probability": 0.1082 + }, + { + "start": 6176.1, + "end": 6176.84, + "probability": 0.1953 + }, + { + "start": 6179.16, + "end": 6181.72, + "probability": 0.8977 + }, + { + "start": 6181.84, + "end": 6182.52, + "probability": 0.5029 + }, + { + "start": 6183.06, + "end": 6183.52, + "probability": 0.4085 + }, + { + "start": 6183.66, + "end": 6183.92, + "probability": 0.6613 + }, + { + "start": 6183.92, + "end": 6184.64, + "probability": 0.9646 + }, + { + "start": 6184.72, + "end": 6184.98, + "probability": 0.8686 + }, + { + "start": 6184.98, + "end": 6187.86, + "probability": 0.7433 + }, + { + "start": 6188.22, + "end": 6188.86, + "probability": 0.7238 + }, + { + "start": 6196.12, + "end": 6197.94, + "probability": 0.7857 + }, + { + "start": 6200.52, + "end": 6203.58, + "probability": 0.3552 + }, + { + "start": 6203.72, + "end": 6204.14, + "probability": 0.531 + }, + { + "start": 6204.28, + "end": 6206.59, + "probability": 0.0096 + }, + { + "start": 6208.72, + "end": 6210.1, + "probability": 0.8331 + }, + { + "start": 6210.24, + "end": 6211.22, + "probability": 0.6733 + }, + { + "start": 6211.44, + "end": 6211.94, + "probability": 0.8685 + }, + { + "start": 6212.38, + "end": 6212.56, + "probability": 0.0023 + }, + { + "start": 6216.18, + "end": 6218.16, + "probability": 0.0178 + }, + { + "start": 6223.14, + "end": 6223.48, + "probability": 0.0242 + }, + { + "start": 6223.86, + "end": 6224.54, + "probability": 0.0334 + }, + { + "start": 6224.54, + "end": 6224.54, + "probability": 0.0936 + }, + { + "start": 6224.54, + "end": 6224.54, + "probability": 0.1047 + }, + { + "start": 6224.54, + "end": 6225.98, + "probability": 0.2611 + }, + { + "start": 6226.86, + "end": 6228.0, + "probability": 0.4826 + }, + { + "start": 6228.34, + "end": 6229.64, + "probability": 0.4431 + }, + { + "start": 6231.0, + "end": 6234.19, + "probability": 0.7577 + }, + { + "start": 6234.59, + "end": 6235.96, + "probability": 0.3679 + }, + { + "start": 6236.2, + "end": 6239.42, + "probability": 0.58 + }, + { + "start": 6240.04, + "end": 6242.2, + "probability": 0.9851 + }, + { + "start": 6243.16, + "end": 6246.94, + "probability": 0.8694 + }, + { + "start": 6247.7, + "end": 6248.78, + "probability": 0.3681 + }, + { + "start": 6248.88, + "end": 6251.36, + "probability": 0.8668 + }, + { + "start": 6251.6, + "end": 6255.9, + "probability": 0.487 + }, + { + "start": 6255.98, + "end": 6256.32, + "probability": 0.4437 + }, + { + "start": 6256.38, + "end": 6256.98, + "probability": 0.8319 + }, + { + "start": 6266.66, + "end": 6266.66, + "probability": 0.6022 + }, + { + "start": 6266.66, + "end": 6267.22, + "probability": 0.4525 + }, + { + "start": 6267.82, + "end": 6270.9, + "probability": 0.6689 + }, + { + "start": 6271.4, + "end": 6275.46, + "probability": 0.6802 + }, + { + "start": 6275.56, + "end": 6276.8, + "probability": 0.726 + }, + { + "start": 6277.56, + "end": 6279.82, + "probability": 0.6981 + }, + { + "start": 6279.98, + "end": 6280.1, + "probability": 0.6799 + }, + { + "start": 6282.0, + "end": 6283.52, + "probability": 0.7977 + }, + { + "start": 6284.34, + "end": 6285.48, + "probability": 0.6588 + }, + { + "start": 6290.38, + "end": 6291.64, + "probability": 0.959 + }, + { + "start": 6292.78, + "end": 6294.72, + "probability": 0.9727 + }, + { + "start": 6297.56, + "end": 6299.48, + "probability": 0.5154 + }, + { + "start": 6299.74, + "end": 6300.96, + "probability": 0.6431 + }, + { + "start": 6301.1, + "end": 6303.45, + "probability": 0.4212 + }, + { + "start": 6306.08, + "end": 6308.04, + "probability": 0.9611 + }, + { + "start": 6309.2, + "end": 6309.88, + "probability": 0.8184 + }, + { + "start": 6309.92, + "end": 6311.18, + "probability": 0.4665 + }, + { + "start": 6311.18, + "end": 6315.3, + "probability": 0.1884 + }, + { + "start": 6316.04, + "end": 6316.38, + "probability": 0.2961 + }, + { + "start": 6316.38, + "end": 6317.42, + "probability": 0.079 + }, + { + "start": 6317.62, + "end": 6317.74, + "probability": 0.0353 + }, + { + "start": 6317.74, + "end": 6317.92, + "probability": 0.0839 + }, + { + "start": 6318.38, + "end": 6321.04, + "probability": 0.2929 + }, + { + "start": 6321.46, + "end": 6324.02, + "probability": 0.0907 + }, + { + "start": 6325.66, + "end": 6327.02, + "probability": 0.1967 + }, + { + "start": 6327.02, + "end": 6329.92, + "probability": 0.0679 + }, + { + "start": 6330.08, + "end": 6330.14, + "probability": 0.2222 + }, + { + "start": 6330.14, + "end": 6332.06, + "probability": 0.1024 + }, + { + "start": 6333.42, + "end": 6335.36, + "probability": 0.3719 + }, + { + "start": 6335.5, + "end": 6337.14, + "probability": 0.3589 + }, + { + "start": 6338.34, + "end": 6339.06, + "probability": 0.4458 + }, + { + "start": 6340.64, + "end": 6340.84, + "probability": 0.1334 + }, + { + "start": 6340.84, + "end": 6341.74, + "probability": 0.2762 + }, + { + "start": 6342.28, + "end": 6346.04, + "probability": 0.1325 + }, + { + "start": 6346.26, + "end": 6347.9, + "probability": 0.4429 + }, + { + "start": 6348.92, + "end": 6349.34, + "probability": 0.2887 + }, + { + "start": 6349.9, + "end": 6352.12, + "probability": 0.8638 + }, + { + "start": 6352.46, + "end": 6354.52, + "probability": 0.3132 + }, + { + "start": 6355.32, + "end": 6358.96, + "probability": 0.5649 + }, + { + "start": 6359.18, + "end": 6362.0, + "probability": 0.7529 + }, + { + "start": 6362.3, + "end": 6363.0, + "probability": 0.9067 + }, + { + "start": 6363.32, + "end": 6363.88, + "probability": 0.6593 + }, + { + "start": 6363.9, + "end": 6366.7, + "probability": 0.7805 + }, + { + "start": 6367.32, + "end": 6373.16, + "probability": 0.9895 + }, + { + "start": 6373.56, + "end": 6376.9, + "probability": 0.903 + }, + { + "start": 6377.36, + "end": 6383.78, + "probability": 0.9738 + }, + { + "start": 6384.54, + "end": 6385.8, + "probability": 0.7252 + }, + { + "start": 6386.14, + "end": 6387.34, + "probability": 0.9343 + }, + { + "start": 6387.64, + "end": 6390.7, + "probability": 0.958 + }, + { + "start": 6391.96, + "end": 6393.55, + "probability": 0.4279 + }, + { + "start": 6393.82, + "end": 6394.86, + "probability": 0.7394 + }, + { + "start": 6395.96, + "end": 6396.24, + "probability": 0.4611 + }, + { + "start": 6397.14, + "end": 6397.46, + "probability": 0.5656 + }, + { + "start": 6397.46, + "end": 6401.28, + "probability": 0.7997 + }, + { + "start": 6401.46, + "end": 6402.98, + "probability": 0.6874 + }, + { + "start": 6403.22, + "end": 6404.82, + "probability": 0.3503 + }, + { + "start": 6405.1, + "end": 6409.24, + "probability": 0.7868 + }, + { + "start": 6409.54, + "end": 6410.34, + "probability": 0.9097 + }, + { + "start": 6411.96, + "end": 6412.5, + "probability": 0.8937 + }, + { + "start": 6412.96, + "end": 6416.86, + "probability": 0.8848 + }, + { + "start": 6417.46, + "end": 6420.88, + "probability": 0.9258 + }, + { + "start": 6421.24, + "end": 6423.06, + "probability": 0.1964 + }, + { + "start": 6423.06, + "end": 6423.46, + "probability": 0.2111 + }, + { + "start": 6424.52, + "end": 6424.62, + "probability": 0.1524 + }, + { + "start": 6424.62, + "end": 6424.62, + "probability": 0.0245 + }, + { + "start": 6424.62, + "end": 6424.62, + "probability": 0.0917 + }, + { + "start": 6424.62, + "end": 6428.52, + "probability": 0.3625 + }, + { + "start": 6428.52, + "end": 6428.52, + "probability": 0.234 + }, + { + "start": 6428.54, + "end": 6435.72, + "probability": 0.7085 + }, + { + "start": 6435.96, + "end": 6438.24, + "probability": 0.9707 + }, + { + "start": 6438.4, + "end": 6438.74, + "probability": 0.1823 + }, + { + "start": 6438.84, + "end": 6439.12, + "probability": 0.1917 + }, + { + "start": 6439.12, + "end": 6443.1, + "probability": 0.8406 + }, + { + "start": 6443.14, + "end": 6443.82, + "probability": 0.3372 + }, + { + "start": 6443.82, + "end": 6444.36, + "probability": 0.7118 + }, + { + "start": 6444.86, + "end": 6451.22, + "probability": 0.9964 + }, + { + "start": 6451.32, + "end": 6458.72, + "probability": 0.957 + }, + { + "start": 6459.08, + "end": 6461.56, + "probability": 0.7803 + }, + { + "start": 6462.08, + "end": 6462.68, + "probability": 0.9625 + }, + { + "start": 6463.3, + "end": 6467.64, + "probability": 0.9937 + }, + { + "start": 6467.82, + "end": 6469.44, + "probability": 0.3844 + }, + { + "start": 6469.68, + "end": 6469.9, + "probability": 0.0552 + }, + { + "start": 6469.9, + "end": 6469.9, + "probability": 0.0901 + }, + { + "start": 6469.9, + "end": 6477.02, + "probability": 0.14 + }, + { + "start": 6477.02, + "end": 6477.02, + "probability": 0.075 + }, + { + "start": 6477.02, + "end": 6477.02, + "probability": 0.1121 + }, + { + "start": 6477.02, + "end": 6478.04, + "probability": 0.5929 + }, + { + "start": 6478.06, + "end": 6478.41, + "probability": 0.1965 + }, + { + "start": 6478.52, + "end": 6481.9, + "probability": 0.0868 + }, + { + "start": 6482.26, + "end": 6482.56, + "probability": 0.1388 + }, + { + "start": 6483.36, + "end": 6483.74, + "probability": 0.1159 + }, + { + "start": 6483.74, + "end": 6485.44, + "probability": 0.47 + }, + { + "start": 6485.48, + "end": 6485.62, + "probability": 0.0253 + }, + { + "start": 6485.62, + "end": 6487.25, + "probability": 0.5339 + }, + { + "start": 6487.7, + "end": 6487.74, + "probability": 0.4703 + }, + { + "start": 6487.74, + "end": 6494.66, + "probability": 0.8867 + }, + { + "start": 6495.54, + "end": 6497.56, + "probability": 0.6986 + }, + { + "start": 6497.68, + "end": 6498.84, + "probability": 0.8086 + }, + { + "start": 6498.92, + "end": 6499.18, + "probability": 0.0189 + }, + { + "start": 6499.52, + "end": 6500.2, + "probability": 0.1788 + }, + { + "start": 6500.32, + "end": 6501.14, + "probability": 0.1979 + }, + { + "start": 6501.14, + "end": 6502.06, + "probability": 0.3163 + }, + { + "start": 6502.16, + "end": 6503.51, + "probability": 0.7279 + }, + { + "start": 6503.72, + "end": 6506.98, + "probability": 0.2616 + }, + { + "start": 6509.44, + "end": 6509.72, + "probability": 0.1513 + }, + { + "start": 6509.72, + "end": 6509.72, + "probability": 0.274 + }, + { + "start": 6509.72, + "end": 6510.28, + "probability": 0.6653 + }, + { + "start": 6510.8, + "end": 6512.48, + "probability": 0.4312 + }, + { + "start": 6512.9, + "end": 6514.18, + "probability": 0.981 + }, + { + "start": 6514.2, + "end": 6515.18, + "probability": 0.762 + }, + { + "start": 6515.26, + "end": 6516.0, + "probability": 0.5802 + }, + { + "start": 6516.46, + "end": 6519.4, + "probability": 0.8987 + }, + { + "start": 6521.1, + "end": 6521.82, + "probability": 0.5783 + }, + { + "start": 6521.84, + "end": 6525.06, + "probability": 0.998 + }, + { + "start": 6525.06, + "end": 6530.48, + "probability": 0.9991 + }, + { + "start": 6531.1, + "end": 6533.46, + "probability": 0.9928 + }, + { + "start": 6534.26, + "end": 6536.62, + "probability": 0.9963 + }, + { + "start": 6536.88, + "end": 6538.06, + "probability": 0.9757 + }, + { + "start": 6539.0, + "end": 6543.18, + "probability": 0.7503 + }, + { + "start": 6543.82, + "end": 6547.26, + "probability": 0.8403 + }, + { + "start": 6547.26, + "end": 6553.26, + "probability": 0.9417 + }, + { + "start": 6553.28, + "end": 6557.26, + "probability": 0.9996 + }, + { + "start": 6557.94, + "end": 6563.86, + "probability": 0.9907 + }, + { + "start": 6564.32, + "end": 6565.0, + "probability": 0.7794 + }, + { + "start": 6565.52, + "end": 6566.26, + "probability": 0.6029 + }, + { + "start": 6566.5, + "end": 6566.86, + "probability": 0.813 + }, + { + "start": 6566.94, + "end": 6567.28, + "probability": 0.9929 + }, + { + "start": 6567.36, + "end": 6568.28, + "probability": 0.7777 + }, + { + "start": 6568.3, + "end": 6569.82, + "probability": 0.975 + }, + { + "start": 6570.46, + "end": 6571.28, + "probability": 0.7866 + }, + { + "start": 6571.36, + "end": 6573.76, + "probability": 0.9619 + }, + { + "start": 6574.18, + "end": 6577.26, + "probability": 0.8563 + }, + { + "start": 6577.86, + "end": 6581.92, + "probability": 0.9702 + }, + { + "start": 6582.44, + "end": 6583.18, + "probability": 0.4104 + }, + { + "start": 6583.18, + "end": 6583.68, + "probability": 0.562 + }, + { + "start": 6583.74, + "end": 6584.32, + "probability": 0.8905 + }, + { + "start": 6584.7, + "end": 6585.38, + "probability": 0.791 + }, + { + "start": 6586.04, + "end": 6590.62, + "probability": 0.7835 + }, + { + "start": 6590.74, + "end": 6594.34, + "probability": 0.9896 + }, + { + "start": 6594.56, + "end": 6595.62, + "probability": 0.0996 + }, + { + "start": 6595.78, + "end": 6595.96, + "probability": 0.2863 + }, + { + "start": 6595.96, + "end": 6597.22, + "probability": 0.7072 + }, + { + "start": 6597.26, + "end": 6597.72, + "probability": 0.289 + }, + { + "start": 6597.72, + "end": 6597.86, + "probability": 0.1086 + }, + { + "start": 6597.86, + "end": 6601.56, + "probability": 0.6529 + }, + { + "start": 6601.56, + "end": 6602.64, + "probability": 0.7518 + }, + { + "start": 6602.76, + "end": 6603.29, + "probability": 0.081 + }, + { + "start": 6603.92, + "end": 6604.88, + "probability": 0.3057 + }, + { + "start": 6605.5, + "end": 6605.7, + "probability": 0.0909 + }, + { + "start": 6605.76, + "end": 6607.78, + "probability": 0.8145 + }, + { + "start": 6607.82, + "end": 6612.6, + "probability": 0.992 + }, + { + "start": 6612.9, + "end": 6614.26, + "probability": 0.6892 + }, + { + "start": 6614.92, + "end": 6617.56, + "probability": 0.8619 + }, + { + "start": 6617.78, + "end": 6618.56, + "probability": 0.6087 + }, + { + "start": 6619.16, + "end": 6620.48, + "probability": 0.274 + }, + { + "start": 6621.42, + "end": 6622.66, + "probability": 0.923 + }, + { + "start": 6623.34, + "end": 6623.34, + "probability": 0.0676 + }, + { + "start": 6623.34, + "end": 6625.86, + "probability": 0.7495 + }, + { + "start": 6628.46, + "end": 6630.82, + "probability": 0.3724 + }, + { + "start": 6634.24, + "end": 6634.58, + "probability": 0.2811 + }, + { + "start": 6634.64, + "end": 6635.27, + "probability": 0.4641 + }, + { + "start": 6637.1, + "end": 6639.14, + "probability": 0.9118 + }, + { + "start": 6639.38, + "end": 6639.62, + "probability": 0.273 + }, + { + "start": 6639.76, + "end": 6642.04, + "probability": 0.8682 + }, + { + "start": 6643.88, + "end": 6646.18, + "probability": 0.1454 + }, + { + "start": 6652.66, + "end": 6654.44, + "probability": 0.7928 + }, + { + "start": 6656.16, + "end": 6656.86, + "probability": 0.168 + }, + { + "start": 6656.86, + "end": 6656.86, + "probability": 0.1534 + }, + { + "start": 6656.86, + "end": 6656.86, + "probability": 0.1701 + }, + { + "start": 6656.86, + "end": 6657.98, + "probability": 0.7469 + }, + { + "start": 6658.22, + "end": 6658.42, + "probability": 0.9221 + }, + { + "start": 6660.08, + "end": 6661.52, + "probability": 0.8145 + }, + { + "start": 6661.96, + "end": 6667.52, + "probability": 0.9941 + }, + { + "start": 6668.36, + "end": 6671.42, + "probability": 0.9902 + }, + { + "start": 6671.64, + "end": 6678.9, + "probability": 0.9935 + }, + { + "start": 6679.52, + "end": 6684.44, + "probability": 0.9995 + }, + { + "start": 6685.28, + "end": 6687.64, + "probability": 0.998 + }, + { + "start": 6688.68, + "end": 6690.1, + "probability": 0.9168 + }, + { + "start": 6690.58, + "end": 6694.22, + "probability": 0.9976 + }, + { + "start": 6695.34, + "end": 6698.94, + "probability": 0.9969 + }, + { + "start": 6700.12, + "end": 6701.7, + "probability": 0.9949 + }, + { + "start": 6702.1, + "end": 6702.96, + "probability": 0.9604 + }, + { + "start": 6703.1, + "end": 6708.1, + "probability": 0.9954 + }, + { + "start": 6708.1, + "end": 6712.38, + "probability": 0.9801 + }, + { + "start": 6713.18, + "end": 6713.96, + "probability": 0.6946 + }, + { + "start": 6715.56, + "end": 6721.38, + "probability": 0.9484 + }, + { + "start": 6722.6, + "end": 6724.96, + "probability": 0.8688 + }, + { + "start": 6725.84, + "end": 6729.18, + "probability": 0.9458 + }, + { + "start": 6729.84, + "end": 6732.76, + "probability": 0.9966 + }, + { + "start": 6733.5, + "end": 6737.7, + "probability": 0.9516 + }, + { + "start": 6737.7, + "end": 6742.04, + "probability": 0.9994 + }, + { + "start": 6743.2, + "end": 6743.66, + "probability": 0.5372 + }, + { + "start": 6743.74, + "end": 6744.12, + "probability": 0.8049 + }, + { + "start": 6744.18, + "end": 6745.56, + "probability": 0.9344 + }, + { + "start": 6745.74, + "end": 6749.8, + "probability": 0.9973 + }, + { + "start": 6750.92, + "end": 6751.86, + "probability": 0.9898 + }, + { + "start": 6753.42, + "end": 6755.62, + "probability": 0.9785 + }, + { + "start": 6756.42, + "end": 6757.32, + "probability": 0.7535 + }, + { + "start": 6758.94, + "end": 6759.88, + "probability": 0.9015 + }, + { + "start": 6760.02, + "end": 6760.76, + "probability": 0.9456 + }, + { + "start": 6760.9, + "end": 6762.84, + "probability": 0.9941 + }, + { + "start": 6764.06, + "end": 6767.64, + "probability": 0.9948 + }, + { + "start": 6768.16, + "end": 6771.6, + "probability": 0.7861 + }, + { + "start": 6772.88, + "end": 6777.36, + "probability": 0.9961 + }, + { + "start": 6778.58, + "end": 6780.52, + "probability": 0.9686 + }, + { + "start": 6781.8, + "end": 6784.24, + "probability": 0.9946 + }, + { + "start": 6785.02, + "end": 6790.18, + "probability": 0.9212 + }, + { + "start": 6790.72, + "end": 6792.62, + "probability": 0.9942 + }, + { + "start": 6793.1, + "end": 6794.8, + "probability": 0.9823 + }, + { + "start": 6796.6, + "end": 6797.54, + "probability": 0.888 + }, + { + "start": 6798.18, + "end": 6799.38, + "probability": 0.7881 + }, + { + "start": 6799.78, + "end": 6802.42, + "probability": 0.9782 + }, + { + "start": 6802.64, + "end": 6804.36, + "probability": 0.974 + }, + { + "start": 6805.02, + "end": 6806.82, + "probability": 0.9972 + }, + { + "start": 6809.48, + "end": 6811.76, + "probability": 0.9213 + }, + { + "start": 6812.62, + "end": 6814.34, + "probability": 0.9997 + }, + { + "start": 6815.36, + "end": 6816.36, + "probability": 0.9848 + }, + { + "start": 6817.16, + "end": 6817.58, + "probability": 0.6358 + }, + { + "start": 6817.66, + "end": 6818.88, + "probability": 0.9697 + }, + { + "start": 6819.02, + "end": 6821.18, + "probability": 0.9441 + }, + { + "start": 6821.28, + "end": 6822.22, + "probability": 0.8181 + }, + { + "start": 6823.5, + "end": 6827.76, + "probability": 0.9946 + }, + { + "start": 6829.24, + "end": 6832.08, + "probability": 0.9924 + }, + { + "start": 6832.1, + "end": 6832.74, + "probability": 0.8288 + }, + { + "start": 6833.22, + "end": 6834.68, + "probability": 0.7445 + }, + { + "start": 6835.24, + "end": 6837.68, + "probability": 0.9658 + }, + { + "start": 6838.52, + "end": 6840.42, + "probability": 0.8096 + }, + { + "start": 6841.24, + "end": 6842.92, + "probability": 0.7236 + }, + { + "start": 6843.6, + "end": 6846.58, + "probability": 0.9599 + }, + { + "start": 6847.68, + "end": 6853.44, + "probability": 0.9653 + }, + { + "start": 6854.42, + "end": 6856.64, + "probability": 0.9739 + }, + { + "start": 6856.98, + "end": 6859.6, + "probability": 0.9296 + }, + { + "start": 6861.0, + "end": 6864.62, + "probability": 0.9966 + }, + { + "start": 6864.62, + "end": 6868.94, + "probability": 0.9995 + }, + { + "start": 6869.18, + "end": 6874.08, + "probability": 0.9899 + }, + { + "start": 6875.04, + "end": 6876.22, + "probability": 0.7861 + }, + { + "start": 6876.64, + "end": 6878.9, + "probability": 0.9966 + }, + { + "start": 6879.9, + "end": 6882.73, + "probability": 0.9069 + }, + { + "start": 6884.14, + "end": 6888.6, + "probability": 0.9619 + }, + { + "start": 6888.6, + "end": 6891.34, + "probability": 0.994 + }, + { + "start": 6892.5, + "end": 6892.78, + "probability": 0.96 + }, + { + "start": 6893.7, + "end": 6896.32, + "probability": 0.8829 + }, + { + "start": 6897.16, + "end": 6898.36, + "probability": 0.818 + }, + { + "start": 6898.52, + "end": 6903.14, + "probability": 0.993 + }, + { + "start": 6903.32, + "end": 6904.5, + "probability": 0.9004 + }, + { + "start": 6905.8, + "end": 6909.58, + "probability": 0.9746 + }, + { + "start": 6909.68, + "end": 6911.14, + "probability": 0.8893 + }, + { + "start": 6912.16, + "end": 6914.84, + "probability": 0.9888 + }, + { + "start": 6915.44, + "end": 6920.18, + "probability": 0.9912 + }, + { + "start": 6920.84, + "end": 6922.0, + "probability": 0.968 + }, + { + "start": 6922.74, + "end": 6924.66, + "probability": 0.9957 + }, + { + "start": 6926.38, + "end": 6927.42, + "probability": 0.8506 + }, + { + "start": 6927.56, + "end": 6932.3, + "probability": 0.9962 + }, + { + "start": 6933.72, + "end": 6936.88, + "probability": 0.9993 + }, + { + "start": 6937.14, + "end": 6938.66, + "probability": 0.9853 + }, + { + "start": 6939.36, + "end": 6940.58, + "probability": 0.8302 + }, + { + "start": 6941.56, + "end": 6946.68, + "probability": 0.9806 + }, + { + "start": 6947.68, + "end": 6953.86, + "probability": 0.9943 + }, + { + "start": 6954.52, + "end": 6955.92, + "probability": 0.9951 + }, + { + "start": 6956.62, + "end": 6958.16, + "probability": 0.9922 + }, + { + "start": 6958.46, + "end": 6961.28, + "probability": 0.9856 + }, + { + "start": 6961.74, + "end": 6964.34, + "probability": 0.9941 + }, + { + "start": 6964.96, + "end": 6967.64, + "probability": 0.9973 + }, + { + "start": 6967.64, + "end": 6968.7, + "probability": 0.8785 + }, + { + "start": 6969.74, + "end": 6970.6, + "probability": 0.8821 + }, + { + "start": 6972.72, + "end": 6973.16, + "probability": 0.7767 + }, + { + "start": 6973.24, + "end": 6973.92, + "probability": 0.7696 + }, + { + "start": 6974.0, + "end": 6976.66, + "probability": 0.9948 + }, + { + "start": 6978.06, + "end": 6980.82, + "probability": 0.9906 + }, + { + "start": 6980.88, + "end": 6982.1, + "probability": 0.98 + }, + { + "start": 6984.02, + "end": 6988.04, + "probability": 0.9865 + }, + { + "start": 6988.3, + "end": 6989.44, + "probability": 0.7525 + }, + { + "start": 6989.56, + "end": 6992.06, + "probability": 0.9834 + }, + { + "start": 6993.0, + "end": 6994.72, + "probability": 0.9982 + }, + { + "start": 6994.88, + "end": 6996.3, + "probability": 0.9964 + }, + { + "start": 6996.9, + "end": 6999.5, + "probability": 0.9939 + }, + { + "start": 6999.64, + "end": 7002.22, + "probability": 0.9949 + }, + { + "start": 7002.96, + "end": 7004.88, + "probability": 0.9814 + }, + { + "start": 7006.3, + "end": 7007.4, + "probability": 0.8526 + }, + { + "start": 7007.88, + "end": 7008.1, + "probability": 0.9818 + }, + { + "start": 7008.2, + "end": 7008.94, + "probability": 0.7605 + }, + { + "start": 7008.98, + "end": 7009.32, + "probability": 0.9175 + }, + { + "start": 7009.4, + "end": 7009.66, + "probability": 0.6241 + }, + { + "start": 7010.06, + "end": 7011.4, + "probability": 0.9141 + }, + { + "start": 7011.76, + "end": 7013.26, + "probability": 0.7468 + }, + { + "start": 7013.94, + "end": 7014.86, + "probability": 0.7837 + }, + { + "start": 7016.06, + "end": 7016.78, + "probability": 0.9303 + }, + { + "start": 7018.08, + "end": 7018.64, + "probability": 0.7762 + }, + { + "start": 7018.72, + "end": 7020.2, + "probability": 0.887 + }, + { + "start": 7020.3, + "end": 7021.02, + "probability": 0.6741 + }, + { + "start": 7021.14, + "end": 7023.36, + "probability": 0.8664 + }, + { + "start": 7024.3, + "end": 7025.18, + "probability": 0.8876 + }, + { + "start": 7026.7, + "end": 7028.18, + "probability": 0.7379 + }, + { + "start": 7028.28, + "end": 7031.36, + "probability": 0.9829 + }, + { + "start": 7031.72, + "end": 7032.32, + "probability": 0.2911 + }, + { + "start": 7032.36, + "end": 7032.46, + "probability": 0.7787 + }, + { + "start": 7033.14, + "end": 7033.3, + "probability": 0.5529 + }, + { + "start": 7033.4, + "end": 7034.32, + "probability": 0.6634 + }, + { + "start": 7034.38, + "end": 7038.32, + "probability": 0.9745 + }, + { + "start": 7038.98, + "end": 7040.7, + "probability": 0.866 + }, + { + "start": 7041.04, + "end": 7042.66, + "probability": 0.8711 + }, + { + "start": 7043.3, + "end": 7044.94, + "probability": 0.9099 + }, + { + "start": 7045.2, + "end": 7046.42, + "probability": 0.9956 + }, + { + "start": 7048.22, + "end": 7051.28, + "probability": 0.9858 + }, + { + "start": 7052.18, + "end": 7056.98, + "probability": 0.9377 + }, + { + "start": 7057.58, + "end": 7058.76, + "probability": 0.9637 + }, + { + "start": 7059.04, + "end": 7059.47, + "probability": 0.8481 + }, + { + "start": 7059.72, + "end": 7060.94, + "probability": 0.9293 + }, + { + "start": 7061.52, + "end": 7062.44, + "probability": 0.6364 + }, + { + "start": 7062.6, + "end": 7063.68, + "probability": 0.6907 + }, + { + "start": 7064.14, + "end": 7068.06, + "probability": 0.9568 + }, + { + "start": 7068.4, + "end": 7072.42, + "probability": 0.9656 + }, + { + "start": 7073.22, + "end": 7074.4, + "probability": 0.8468 + }, + { + "start": 7074.88, + "end": 7075.76, + "probability": 0.7584 + }, + { + "start": 7076.04, + "end": 7079.1, + "probability": 0.998 + }, + { + "start": 7079.32, + "end": 7079.94, + "probability": 0.7421 + }, + { + "start": 7080.2, + "end": 7081.02, + "probability": 0.7091 + }, + { + "start": 7081.66, + "end": 7083.36, + "probability": 0.5748 + }, + { + "start": 7084.06, + "end": 7087.42, + "probability": 0.6578 + }, + { + "start": 7088.32, + "end": 7089.8, + "probability": 0.7781 + }, + { + "start": 7092.4, + "end": 7093.34, + "probability": 0.7769 + }, + { + "start": 7095.46, + "end": 7098.28, + "probability": 0.4924 + }, + { + "start": 7113.0, + "end": 7114.2, + "probability": 0.4566 + }, + { + "start": 7114.58, + "end": 7116.18, + "probability": 0.4972 + }, + { + "start": 7116.32, + "end": 7118.98, + "probability": 0.6694 + }, + { + "start": 7119.02, + "end": 7119.36, + "probability": 0.7106 + }, + { + "start": 7119.4, + "end": 7119.56, + "probability": 0.3716 + }, + { + "start": 7121.0, + "end": 7124.94, + "probability": 0.9958 + }, + { + "start": 7125.06, + "end": 7127.31, + "probability": 0.9602 + }, + { + "start": 7129.5, + "end": 7136.26, + "probability": 0.9951 + }, + { + "start": 7137.96, + "end": 7141.46, + "probability": 0.9968 + }, + { + "start": 7141.88, + "end": 7146.42, + "probability": 0.9912 + }, + { + "start": 7147.38, + "end": 7150.84, + "probability": 0.9989 + }, + { + "start": 7153.2, + "end": 7156.94, + "probability": 0.9022 + }, + { + "start": 7157.82, + "end": 7160.52, + "probability": 0.9883 + }, + { + "start": 7162.22, + "end": 7165.6, + "probability": 0.9648 + }, + { + "start": 7166.72, + "end": 7167.72, + "probability": 0.9925 + }, + { + "start": 7168.5, + "end": 7169.9, + "probability": 0.9541 + }, + { + "start": 7170.98, + "end": 7173.34, + "probability": 0.7389 + }, + { + "start": 7174.3, + "end": 7174.86, + "probability": 0.5476 + }, + { + "start": 7175.14, + "end": 7177.78, + "probability": 0.7727 + }, + { + "start": 7178.04, + "end": 7179.18, + "probability": 0.735 + }, + { + "start": 7179.32, + "end": 7182.22, + "probability": 0.8045 + }, + { + "start": 7183.14, + "end": 7186.4, + "probability": 0.8687 + }, + { + "start": 7186.74, + "end": 7191.26, + "probability": 0.968 + }, + { + "start": 7192.88, + "end": 7194.86, + "probability": 0.9971 + }, + { + "start": 7195.72, + "end": 7196.52, + "probability": 0.8405 + }, + { + "start": 7198.08, + "end": 7198.74, + "probability": 0.9519 + }, + { + "start": 7199.02, + "end": 7200.98, + "probability": 0.8058 + }, + { + "start": 7201.04, + "end": 7203.8, + "probability": 0.9885 + }, + { + "start": 7205.38, + "end": 7207.28, + "probability": 0.9766 + }, + { + "start": 7208.34, + "end": 7211.84, + "probability": 0.9512 + }, + { + "start": 7213.74, + "end": 7219.7, + "probability": 0.9956 + }, + { + "start": 7219.8, + "end": 7221.8, + "probability": 0.8557 + }, + { + "start": 7222.02, + "end": 7224.58, + "probability": 0.9725 + }, + { + "start": 7225.14, + "end": 7225.5, + "probability": 0.0573 + }, + { + "start": 7226.16, + "end": 7226.62, + "probability": 0.1234 + }, + { + "start": 7227.56, + "end": 7230.66, + "probability": 0.8586 + }, + { + "start": 7232.24, + "end": 7237.46, + "probability": 0.9582 + }, + { + "start": 7238.2, + "end": 7238.82, + "probability": 0.8704 + }, + { + "start": 7239.18, + "end": 7241.12, + "probability": 0.9067 + }, + { + "start": 7241.4, + "end": 7242.66, + "probability": 0.9484 + }, + { + "start": 7243.94, + "end": 7244.6, + "probability": 0.5531 + }, + { + "start": 7245.48, + "end": 7246.64, + "probability": 0.9917 + }, + { + "start": 7248.58, + "end": 7249.16, + "probability": 0.7757 + }, + { + "start": 7250.38, + "end": 7251.0, + "probability": 0.8794 + }, + { + "start": 7251.08, + "end": 7251.64, + "probability": 0.6389 + }, + { + "start": 7251.9, + "end": 7252.92, + "probability": 0.9688 + }, + { + "start": 7253.18, + "end": 7256.58, + "probability": 0.6945 + }, + { + "start": 7256.58, + "end": 7261.2, + "probability": 0.9933 + }, + { + "start": 7262.8, + "end": 7263.48, + "probability": 0.9751 + }, + { + "start": 7263.56, + "end": 7264.12, + "probability": 0.9164 + }, + { + "start": 7264.22, + "end": 7265.96, + "probability": 0.9756 + }, + { + "start": 7266.38, + "end": 7269.2, + "probability": 0.9856 + }, + { + "start": 7269.92, + "end": 7273.28, + "probability": 0.9818 + }, + { + "start": 7273.98, + "end": 7276.38, + "probability": 0.991 + }, + { + "start": 7277.8, + "end": 7280.32, + "probability": 0.9925 + }, + { + "start": 7282.0, + "end": 7284.56, + "probability": 0.8882 + }, + { + "start": 7285.38, + "end": 7286.0, + "probability": 0.9129 + }, + { + "start": 7287.2, + "end": 7291.36, + "probability": 0.9951 + }, + { + "start": 7291.36, + "end": 7295.72, + "probability": 0.8702 + }, + { + "start": 7296.8, + "end": 7300.38, + "probability": 0.9989 + }, + { + "start": 7301.24, + "end": 7303.42, + "probability": 0.7663 + }, + { + "start": 7303.82, + "end": 7304.17, + "probability": 0.959 + }, + { + "start": 7304.48, + "end": 7306.24, + "probability": 0.9941 + }, + { + "start": 7306.92, + "end": 7308.58, + "probability": 0.6478 + }, + { + "start": 7309.8, + "end": 7310.18, + "probability": 0.4849 + }, + { + "start": 7312.66, + "end": 7314.96, + "probability": 0.8387 + }, + { + "start": 7316.34, + "end": 7316.58, + "probability": 0.9304 + }, + { + "start": 7317.82, + "end": 7318.54, + "probability": 0.6402 + }, + { + "start": 7319.78, + "end": 7320.94, + "probability": 0.9413 + }, + { + "start": 7321.0, + "end": 7321.58, + "probability": 0.8854 + }, + { + "start": 7321.62, + "end": 7322.92, + "probability": 0.9978 + }, + { + "start": 7324.16, + "end": 7327.52, + "probability": 0.9767 + }, + { + "start": 7329.04, + "end": 7329.94, + "probability": 0.7359 + }, + { + "start": 7332.78, + "end": 7334.86, + "probability": 0.8674 + }, + { + "start": 7336.9, + "end": 7337.08, + "probability": 0.4497 + }, + { + "start": 7337.24, + "end": 7337.34, + "probability": 0.7331 + }, + { + "start": 7337.78, + "end": 7338.18, + "probability": 0.7909 + }, + { + "start": 7338.72, + "end": 7340.83, + "probability": 0.9863 + }, + { + "start": 7341.48, + "end": 7343.62, + "probability": 0.9667 + }, + { + "start": 7345.08, + "end": 7345.08, + "probability": 0.9155 + }, + { + "start": 7345.76, + "end": 7347.91, + "probability": 0.8678 + }, + { + "start": 7348.68, + "end": 7350.28, + "probability": 0.9829 + }, + { + "start": 7351.28, + "end": 7352.88, + "probability": 0.9956 + }, + { + "start": 7354.44, + "end": 7355.92, + "probability": 0.999 + }, + { + "start": 7356.04, + "end": 7359.76, + "probability": 0.9905 + }, + { + "start": 7361.0, + "end": 7361.72, + "probability": 0.8931 + }, + { + "start": 7362.3, + "end": 7363.64, + "probability": 0.9619 + }, + { + "start": 7364.18, + "end": 7366.38, + "probability": 0.9902 + }, + { + "start": 7367.84, + "end": 7369.16, + "probability": 0.9946 + }, + { + "start": 7370.22, + "end": 7373.28, + "probability": 0.6712 + }, + { + "start": 7373.5, + "end": 7375.1, + "probability": 0.9894 + }, + { + "start": 7375.52, + "end": 7376.5, + "probability": 0.9821 + }, + { + "start": 7377.5, + "end": 7383.06, + "probability": 0.9152 + }, + { + "start": 7383.82, + "end": 7387.96, + "probability": 0.5724 + }, + { + "start": 7388.34, + "end": 7389.03, + "probability": 0.8687 + }, + { + "start": 7390.2, + "end": 7390.94, + "probability": 0.9265 + }, + { + "start": 7391.7, + "end": 7395.9, + "probability": 0.9615 + }, + { + "start": 7396.5, + "end": 7397.9, + "probability": 0.8829 + }, + { + "start": 7398.48, + "end": 7401.82, + "probability": 0.9913 + }, + { + "start": 7402.28, + "end": 7403.48, + "probability": 0.3851 + }, + { + "start": 7404.76, + "end": 7406.72, + "probability": 0.6131 + }, + { + "start": 7408.5, + "end": 7409.32, + "probability": 0.9888 + }, + { + "start": 7410.48, + "end": 7413.02, + "probability": 0.9954 + }, + { + "start": 7413.8, + "end": 7417.26, + "probability": 0.8978 + }, + { + "start": 7417.98, + "end": 7418.9, + "probability": 0.9482 + }, + { + "start": 7420.0, + "end": 7421.1, + "probability": 0.9863 + }, + { + "start": 7421.5, + "end": 7424.48, + "probability": 0.9961 + }, + { + "start": 7424.56, + "end": 7425.62, + "probability": 0.7967 + }, + { + "start": 7426.1, + "end": 7430.62, + "probability": 0.9731 + }, + { + "start": 7432.96, + "end": 7435.04, + "probability": 0.929 + }, + { + "start": 7435.28, + "end": 7435.86, + "probability": 0.587 + }, + { + "start": 7436.08, + "end": 7438.1, + "probability": 0.7756 + }, + { + "start": 7438.28, + "end": 7439.24, + "probability": 0.9329 + }, + { + "start": 7439.3, + "end": 7441.34, + "probability": 0.8986 + }, + { + "start": 7443.16, + "end": 7446.84, + "probability": 0.9645 + }, + { + "start": 7448.02, + "end": 7450.6, + "probability": 0.9795 + }, + { + "start": 7452.96, + "end": 7454.46, + "probability": 0.5719 + }, + { + "start": 7454.62, + "end": 7456.42, + "probability": 0.6898 + }, + { + "start": 7457.84, + "end": 7458.66, + "probability": 0.9506 + }, + { + "start": 7458.76, + "end": 7459.18, + "probability": 0.6698 + }, + { + "start": 7459.2, + "end": 7461.58, + "probability": 0.7988 + }, + { + "start": 7461.7, + "end": 7466.58, + "probability": 0.991 + }, + { + "start": 7466.94, + "end": 7467.84, + "probability": 0.7996 + }, + { + "start": 7468.7, + "end": 7470.74, + "probability": 0.49 + }, + { + "start": 7471.18, + "end": 7472.42, + "probability": 0.9783 + }, + { + "start": 7473.48, + "end": 7478.48, + "probability": 0.9944 + }, + { + "start": 7479.4, + "end": 7481.72, + "probability": 0.8437 + }, + { + "start": 7482.7, + "end": 7484.84, + "probability": 0.5173 + }, + { + "start": 7484.86, + "end": 7485.28, + "probability": 0.6277 + }, + { + "start": 7485.64, + "end": 7486.2, + "probability": 0.5795 + }, + { + "start": 7486.24, + "end": 7487.6, + "probability": 0.9794 + }, + { + "start": 7488.54, + "end": 7489.02, + "probability": 0.8576 + }, + { + "start": 7489.2, + "end": 7492.66, + "probability": 0.9756 + }, + { + "start": 7493.46, + "end": 7494.7, + "probability": 0.9856 + }, + { + "start": 7495.28, + "end": 7498.02, + "probability": 0.9391 + }, + { + "start": 7498.8, + "end": 7501.82, + "probability": 0.5621 + }, + { + "start": 7502.42, + "end": 7503.34, + "probability": 0.6192 + }, + { + "start": 7504.2, + "end": 7506.12, + "probability": 0.7939 + }, + { + "start": 7507.36, + "end": 7509.74, + "probability": 0.937 + }, + { + "start": 7510.44, + "end": 7514.4, + "probability": 0.9805 + }, + { + "start": 7514.78, + "end": 7515.86, + "probability": 0.3908 + }, + { + "start": 7516.12, + "end": 7516.16, + "probability": 0.3404 + }, + { + "start": 7516.16, + "end": 7517.88, + "probability": 0.6431 + }, + { + "start": 7518.88, + "end": 7519.86, + "probability": 0.6838 + }, + { + "start": 7520.04, + "end": 7524.6, + "probability": 0.9598 + }, + { + "start": 7526.3, + "end": 7526.46, + "probability": 0.7222 + }, + { + "start": 7527.84, + "end": 7530.96, + "probability": 0.9772 + }, + { + "start": 7531.16, + "end": 7533.14, + "probability": 0.86 + }, + { + "start": 7533.38, + "end": 7533.58, + "probability": 0.1871 + }, + { + "start": 7534.18, + "end": 7534.54, + "probability": 0.2476 + }, + { + "start": 7535.28, + "end": 7537.94, + "probability": 0.5482 + }, + { + "start": 7538.56, + "end": 7539.52, + "probability": 0.9717 + }, + { + "start": 7539.58, + "end": 7541.02, + "probability": 0.9779 + }, + { + "start": 7542.1, + "end": 7543.8, + "probability": 0.8783 + }, + { + "start": 7546.06, + "end": 7546.94, + "probability": 0.9327 + }, + { + "start": 7548.28, + "end": 7550.12, + "probability": 0.9399 + }, + { + "start": 7551.04, + "end": 7552.7, + "probability": 0.5226 + }, + { + "start": 7554.52, + "end": 7557.48, + "probability": 0.8214 + }, + { + "start": 7557.7, + "end": 7559.06, + "probability": 0.6355 + }, + { + "start": 7559.22, + "end": 7561.62, + "probability": 0.5237 + }, + { + "start": 7562.68, + "end": 7563.26, + "probability": 0.9248 + }, + { + "start": 7563.54, + "end": 7566.26, + "probability": 0.8213 + }, + { + "start": 7567.28, + "end": 7568.26, + "probability": 0.8535 + }, + { + "start": 7568.4, + "end": 7569.16, + "probability": 0.4934 + }, + { + "start": 7569.38, + "end": 7571.4, + "probability": 0.398 + }, + { + "start": 7571.5, + "end": 7572.45, + "probability": 0.86 + }, + { + "start": 7573.54, + "end": 7575.32, + "probability": 0.9642 + }, + { + "start": 7575.34, + "end": 7575.41, + "probability": 0.5595 + }, + { + "start": 7575.66, + "end": 7576.52, + "probability": 0.675 + }, + { + "start": 7577.54, + "end": 7579.06, + "probability": 0.5081 + }, + { + "start": 7579.24, + "end": 7579.52, + "probability": 0.3611 + }, + { + "start": 7579.6, + "end": 7580.98, + "probability": 0.8607 + }, + { + "start": 7581.02, + "end": 7581.28, + "probability": 0.3199 + }, + { + "start": 7581.28, + "end": 7582.92, + "probability": 0.303 + }, + { + "start": 7582.96, + "end": 7585.08, + "probability": 0.6249 + }, + { + "start": 7585.48, + "end": 7585.48, + "probability": 0.6436 + }, + { + "start": 7585.48, + "end": 7585.8, + "probability": 0.8649 + }, + { + "start": 7588.68, + "end": 7588.78, + "probability": 0.3966 + }, + { + "start": 7588.78, + "end": 7588.78, + "probability": 0.1259 + }, + { + "start": 7588.78, + "end": 7589.06, + "probability": 0.2345 + }, + { + "start": 7589.16, + "end": 7590.94, + "probability": 0.7704 + }, + { + "start": 7591.38, + "end": 7592.52, + "probability": 0.717 + }, + { + "start": 7593.0, + "end": 7594.03, + "probability": 0.8544 + }, + { + "start": 7595.12, + "end": 7600.86, + "probability": 0.9401 + }, + { + "start": 7602.0, + "end": 7606.78, + "probability": 0.9373 + }, + { + "start": 7608.26, + "end": 7610.32, + "probability": 0.9775 + }, + { + "start": 7610.64, + "end": 7611.9, + "probability": 0.9921 + }, + { + "start": 7612.38, + "end": 7614.56, + "probability": 0.9987 + }, + { + "start": 7615.1, + "end": 7618.54, + "probability": 0.9226 + }, + { + "start": 7619.06, + "end": 7619.78, + "probability": 0.8325 + }, + { + "start": 7620.7, + "end": 7622.08, + "probability": 0.5468 + }, + { + "start": 7622.4, + "end": 7625.96, + "probability": 0.7934 + }, + { + "start": 7626.54, + "end": 7631.82, + "probability": 0.9939 + }, + { + "start": 7632.48, + "end": 7633.36, + "probability": 0.9774 + }, + { + "start": 7633.92, + "end": 7635.48, + "probability": 0.9336 + }, + { + "start": 7636.5, + "end": 7638.1, + "probability": 0.7815 + }, + { + "start": 7638.52, + "end": 7639.78, + "probability": 0.5424 + }, + { + "start": 7640.5, + "end": 7642.32, + "probability": 0.943 + }, + { + "start": 7642.52, + "end": 7646.22, + "probability": 0.9974 + }, + { + "start": 7646.74, + "end": 7651.02, + "probability": 0.9535 + }, + { + "start": 7651.02, + "end": 7654.38, + "probability": 0.954 + }, + { + "start": 7654.9, + "end": 7656.88, + "probability": 0.6671 + }, + { + "start": 7657.3, + "end": 7659.9, + "probability": 0.8944 + }, + { + "start": 7660.42, + "end": 7661.82, + "probability": 0.9667 + }, + { + "start": 7661.94, + "end": 7664.08, + "probability": 0.9221 + }, + { + "start": 7664.72, + "end": 7666.2, + "probability": 0.9834 + }, + { + "start": 7666.68, + "end": 7667.56, + "probability": 0.5181 + }, + { + "start": 7667.64, + "end": 7670.78, + "probability": 0.9604 + }, + { + "start": 7671.36, + "end": 7674.46, + "probability": 0.9214 + }, + { + "start": 7674.92, + "end": 7676.24, + "probability": 0.789 + }, + { + "start": 7676.66, + "end": 7680.98, + "probability": 0.9307 + }, + { + "start": 7681.4, + "end": 7683.52, + "probability": 0.9833 + }, + { + "start": 7684.08, + "end": 7684.1, + "probability": 0.1371 + }, + { + "start": 7684.26, + "end": 7686.42, + "probability": 0.9263 + }, + { + "start": 7686.46, + "end": 7688.66, + "probability": 0.8906 + }, + { + "start": 7689.16, + "end": 7691.28, + "probability": 0.6813 + }, + { + "start": 7691.42, + "end": 7692.5, + "probability": 0.9863 + }, + { + "start": 7692.84, + "end": 7696.78, + "probability": 0.9648 + }, + { + "start": 7697.32, + "end": 7697.96, + "probability": 0.9115 + }, + { + "start": 7698.14, + "end": 7699.0, + "probability": 0.8924 + }, + { + "start": 7699.48, + "end": 7702.74, + "probability": 0.9979 + }, + { + "start": 7703.34, + "end": 7707.94, + "probability": 0.9839 + }, + { + "start": 7708.0, + "end": 7709.12, + "probability": 0.8368 + }, + { + "start": 7709.2, + "end": 7709.88, + "probability": 0.8868 + }, + { + "start": 7709.96, + "end": 7710.54, + "probability": 0.9687 + }, + { + "start": 7711.04, + "end": 7712.62, + "probability": 0.9945 + }, + { + "start": 7713.08, + "end": 7715.84, + "probability": 0.9338 + }, + { + "start": 7715.92, + "end": 7716.98, + "probability": 0.9707 + }, + { + "start": 7717.7, + "end": 7725.28, + "probability": 0.8442 + }, + { + "start": 7725.94, + "end": 7727.28, + "probability": 0.9677 + }, + { + "start": 7727.94, + "end": 7729.94, + "probability": 0.926 + }, + { + "start": 7730.48, + "end": 7732.14, + "probability": 0.9073 + }, + { + "start": 7732.74, + "end": 7734.9, + "probability": 0.5112 + }, + { + "start": 7734.92, + "end": 7736.38, + "probability": 0.9431 + }, + { + "start": 7736.42, + "end": 7737.32, + "probability": 0.9751 + }, + { + "start": 7737.96, + "end": 7739.07, + "probability": 0.9089 + }, + { + "start": 7739.82, + "end": 7741.5, + "probability": 0.7799 + }, + { + "start": 7741.66, + "end": 7742.29, + "probability": 0.7097 + }, + { + "start": 7743.04, + "end": 7743.94, + "probability": 0.4123 + }, + { + "start": 7744.6, + "end": 7749.68, + "probability": 0.9204 + }, + { + "start": 7750.14, + "end": 7753.4, + "probability": 0.9769 + }, + { + "start": 7753.92, + "end": 7756.2, + "probability": 0.8298 + }, + { + "start": 7756.28, + "end": 7756.8, + "probability": 0.6843 + }, + { + "start": 7757.42, + "end": 7762.88, + "probability": 0.982 + }, + { + "start": 7763.32, + "end": 7765.38, + "probability": 0.9946 + }, + { + "start": 7765.54, + "end": 7766.1, + "probability": 0.7026 + }, + { + "start": 7766.7, + "end": 7768.64, + "probability": 0.9583 + }, + { + "start": 7769.56, + "end": 7772.76, + "probability": 0.9721 + }, + { + "start": 7772.88, + "end": 7774.74, + "probability": 0.9778 + }, + { + "start": 7775.36, + "end": 7776.94, + "probability": 0.8711 + }, + { + "start": 7777.08, + "end": 7779.94, + "probability": 0.967 + }, + { + "start": 7780.06, + "end": 7786.18, + "probability": 0.7484 + }, + { + "start": 7786.8, + "end": 7789.86, + "probability": 0.6975 + }, + { + "start": 7790.54, + "end": 7793.48, + "probability": 0.9364 + }, + { + "start": 7794.1, + "end": 7796.02, + "probability": 0.9956 + }, + { + "start": 7797.14, + "end": 7799.26, + "probability": 0.9988 + }, + { + "start": 7799.9, + "end": 7802.6, + "probability": 0.9975 + }, + { + "start": 7803.1, + "end": 7805.28, + "probability": 0.9702 + }, + { + "start": 7805.44, + "end": 7808.86, + "probability": 0.9681 + }, + { + "start": 7809.44, + "end": 7811.26, + "probability": 0.8135 + }, + { + "start": 7811.5, + "end": 7815.52, + "probability": 0.9606 + }, + { + "start": 7815.72, + "end": 7818.54, + "probability": 0.7596 + }, + { + "start": 7818.98, + "end": 7821.16, + "probability": 0.9308 + }, + { + "start": 7821.66, + "end": 7823.34, + "probability": 0.8444 + }, + { + "start": 7823.52, + "end": 7826.68, + "probability": 0.9917 + }, + { + "start": 7827.56, + "end": 7829.14, + "probability": 0.578 + }, + { + "start": 7829.52, + "end": 7830.0, + "probability": 0.9341 + }, + { + "start": 7830.08, + "end": 7831.38, + "probability": 0.9344 + }, + { + "start": 7831.8, + "end": 7834.02, + "probability": 0.8955 + }, + { + "start": 7834.42, + "end": 7838.16, + "probability": 0.8906 + }, + { + "start": 7838.36, + "end": 7840.3, + "probability": 0.996 + }, + { + "start": 7840.82, + "end": 7842.94, + "probability": 0.9634 + }, + { + "start": 7843.6, + "end": 7849.06, + "probability": 0.9904 + }, + { + "start": 7849.58, + "end": 7851.18, + "probability": 0.9749 + }, + { + "start": 7851.74, + "end": 7853.5, + "probability": 0.9849 + }, + { + "start": 7853.56, + "end": 7857.64, + "probability": 0.9839 + }, + { + "start": 7858.32, + "end": 7860.84, + "probability": 0.9512 + }, + { + "start": 7861.94, + "end": 7864.72, + "probability": 0.9604 + }, + { + "start": 7865.54, + "end": 7867.84, + "probability": 0.9964 + }, + { + "start": 7868.34, + "end": 7871.18, + "probability": 0.9952 + }, + { + "start": 7871.66, + "end": 7874.8, + "probability": 0.8017 + }, + { + "start": 7875.49, + "end": 7877.48, + "probability": 0.438 + }, + { + "start": 7877.74, + "end": 7877.84, + "probability": 0.0397 + }, + { + "start": 7877.86, + "end": 7881.74, + "probability": 0.8326 + }, + { + "start": 7881.74, + "end": 7885.56, + "probability": 0.9785 + }, + { + "start": 7887.22, + "end": 7889.16, + "probability": 0.7291 + }, + { + "start": 7889.94, + "end": 7896.8, + "probability": 0.9804 + }, + { + "start": 7897.36, + "end": 7900.7, + "probability": 0.9481 + }, + { + "start": 7901.52, + "end": 7903.02, + "probability": 0.8604 + }, + { + "start": 7903.2, + "end": 7903.66, + "probability": 0.4836 + }, + { + "start": 7903.94, + "end": 7904.82, + "probability": 0.7567 + }, + { + "start": 7905.08, + "end": 7906.48, + "probability": 0.9275 + }, + { + "start": 7906.96, + "end": 7908.7, + "probability": 0.9985 + }, + { + "start": 7909.4, + "end": 7911.36, + "probability": 0.8481 + }, + { + "start": 7911.44, + "end": 7913.32, + "probability": 0.735 + }, + { + "start": 7913.6, + "end": 7915.12, + "probability": 0.8574 + }, + { + "start": 7915.2, + "end": 7915.68, + "probability": 0.867 + }, + { + "start": 7916.38, + "end": 7918.82, + "probability": 0.7017 + }, + { + "start": 7919.56, + "end": 7924.18, + "probability": 0.8427 + }, + { + "start": 7931.28, + "end": 7931.58, + "probability": 0.3271 + }, + { + "start": 7941.52, + "end": 7941.74, + "probability": 0.2822 + }, + { + "start": 7941.74, + "end": 7941.84, + "probability": 0.5368 + }, + { + "start": 7943.82, + "end": 7944.38, + "probability": 0.7893 + }, + { + "start": 7947.14, + "end": 7949.16, + "probability": 0.8512 + }, + { + "start": 7950.26, + "end": 7951.01, + "probability": 0.8636 + }, + { + "start": 7952.92, + "end": 7954.02, + "probability": 0.5473 + }, + { + "start": 7954.62, + "end": 7955.34, + "probability": 0.8 + }, + { + "start": 7955.62, + "end": 7956.38, + "probability": 0.824 + }, + { + "start": 7956.84, + "end": 7957.16, + "probability": 0.51 + }, + { + "start": 7957.74, + "end": 7959.02, + "probability": 0.9448 + }, + { + "start": 7959.86, + "end": 7964.84, + "probability": 0.992 + }, + { + "start": 7966.9, + "end": 7967.92, + "probability": 0.9342 + }, + { + "start": 7969.46, + "end": 7972.42, + "probability": 0.9268 + }, + { + "start": 7973.0, + "end": 7973.84, + "probability": 0.9741 + }, + { + "start": 7975.84, + "end": 7977.46, + "probability": 0.867 + }, + { + "start": 7978.92, + "end": 7981.26, + "probability": 0.6673 + }, + { + "start": 7981.82, + "end": 7984.82, + "probability": 0.8779 + }, + { + "start": 7985.92, + "end": 7986.1, + "probability": 0.9749 + }, + { + "start": 7987.3, + "end": 7988.92, + "probability": 0.8728 + }, + { + "start": 7989.94, + "end": 7992.3, + "probability": 0.8879 + }, + { + "start": 7993.14, + "end": 7995.14, + "probability": 0.8505 + }, + { + "start": 7996.06, + "end": 8000.08, + "probability": 0.9658 + }, + { + "start": 8000.56, + "end": 8002.5, + "probability": 0.8253 + }, + { + "start": 8002.6, + "end": 8003.8, + "probability": 0.7259 + }, + { + "start": 8003.92, + "end": 8005.68, + "probability": 0.9295 + }, + { + "start": 8006.98, + "end": 8010.1, + "probability": 0.9959 + }, + { + "start": 8010.62, + "end": 8011.42, + "probability": 0.9435 + }, + { + "start": 8011.94, + "end": 8013.42, + "probability": 0.9653 + }, + { + "start": 8013.72, + "end": 8016.98, + "probability": 0.986 + }, + { + "start": 8017.92, + "end": 8019.76, + "probability": 0.796 + }, + { + "start": 8021.22, + "end": 8023.82, + "probability": 0.9893 + }, + { + "start": 8023.92, + "end": 8025.7, + "probability": 0.9884 + }, + { + "start": 8025.82, + "end": 8026.4, + "probability": 0.9648 + }, + { + "start": 8026.54, + "end": 8027.82, + "probability": 0.9917 + }, + { + "start": 8028.08, + "end": 8028.7, + "probability": 0.6842 + }, + { + "start": 8030.14, + "end": 8031.28, + "probability": 0.9851 + }, + { + "start": 8031.54, + "end": 8034.9, + "probability": 0.9909 + }, + { + "start": 8035.48, + "end": 8040.0, + "probability": 0.9966 + }, + { + "start": 8041.12, + "end": 8044.04, + "probability": 0.993 + }, + { + "start": 8044.72, + "end": 8045.6, + "probability": 0.9058 + }, + { + "start": 8047.2, + "end": 8050.8, + "probability": 0.9554 + }, + { + "start": 8052.96, + "end": 8054.32, + "probability": 0.9867 + }, + { + "start": 8055.94, + "end": 8056.66, + "probability": 0.9915 + }, + { + "start": 8058.1, + "end": 8058.8, + "probability": 0.8346 + }, + { + "start": 8058.94, + "end": 8064.03, + "probability": 0.9901 + }, + { + "start": 8065.7, + "end": 8067.56, + "probability": 0.9988 + }, + { + "start": 8069.32, + "end": 8072.06, + "probability": 0.9591 + }, + { + "start": 8072.16, + "end": 8073.02, + "probability": 0.9915 + }, + { + "start": 8073.6, + "end": 8073.96, + "probability": 0.8711 + }, + { + "start": 8076.18, + "end": 8079.66, + "probability": 0.8497 + }, + { + "start": 8080.46, + "end": 8082.08, + "probability": 0.4904 + }, + { + "start": 8082.22, + "end": 8083.04, + "probability": 0.9412 + }, + { + "start": 8083.16, + "end": 8084.28, + "probability": 0.9971 + }, + { + "start": 8084.34, + "end": 8084.96, + "probability": 0.8369 + }, + { + "start": 8086.84, + "end": 8088.12, + "probability": 0.9804 + }, + { + "start": 8090.26, + "end": 8092.08, + "probability": 0.9838 + }, + { + "start": 8094.24, + "end": 8097.04, + "probability": 0.9966 + }, + { + "start": 8097.7, + "end": 8101.42, + "probability": 0.9604 + }, + { + "start": 8102.32, + "end": 8103.12, + "probability": 0.9346 + }, + { + "start": 8105.06, + "end": 8108.44, + "probability": 0.9811 + }, + { + "start": 8110.26, + "end": 8114.02, + "probability": 0.9408 + }, + { + "start": 8115.66, + "end": 8121.06, + "probability": 0.9957 + }, + { + "start": 8121.58, + "end": 8124.7, + "probability": 0.9584 + }, + { + "start": 8126.26, + "end": 8126.54, + "probability": 0.8904 + }, + { + "start": 8127.26, + "end": 8128.94, + "probability": 0.9138 + }, + { + "start": 8130.84, + "end": 8132.3, + "probability": 0.9755 + }, + { + "start": 8132.52, + "end": 8136.18, + "probability": 0.9877 + }, + { + "start": 8137.08, + "end": 8138.66, + "probability": 0.984 + }, + { + "start": 8138.98, + "end": 8140.92, + "probability": 0.9985 + }, + { + "start": 8142.9, + "end": 8145.06, + "probability": 0.9185 + }, + { + "start": 8145.48, + "end": 8145.48, + "probability": 0.9351 + }, + { + "start": 8147.64, + "end": 8150.1, + "probability": 0.9945 + }, + { + "start": 8150.68, + "end": 8153.46, + "probability": 0.998 + }, + { + "start": 8155.54, + "end": 8160.86, + "probability": 0.7959 + }, + { + "start": 8162.5, + "end": 8165.06, + "probability": 0.8378 + }, + { + "start": 8165.28, + "end": 8165.74, + "probability": 0.7995 + }, + { + "start": 8167.98, + "end": 8170.94, + "probability": 0.958 + }, + { + "start": 8171.12, + "end": 8171.6, + "probability": 0.8482 + }, + { + "start": 8173.46, + "end": 8178.58, + "probability": 0.9815 + }, + { + "start": 8180.9, + "end": 8182.76, + "probability": 0.9935 + }, + { + "start": 8182.86, + "end": 8184.38, + "probability": 0.9776 + }, + { + "start": 8184.74, + "end": 8189.74, + "probability": 0.9773 + }, + { + "start": 8191.46, + "end": 8192.7, + "probability": 0.9626 + }, + { + "start": 8194.48, + "end": 8196.12, + "probability": 0.9441 + }, + { + "start": 8196.14, + "end": 8199.22, + "probability": 0.7709 + }, + { + "start": 8199.32, + "end": 8199.88, + "probability": 0.4779 + }, + { + "start": 8200.32, + "end": 8202.58, + "probability": 0.95 + }, + { + "start": 8203.52, + "end": 8206.12, + "probability": 0.9898 + }, + { + "start": 8207.82, + "end": 8210.86, + "probability": 0.9469 + }, + { + "start": 8211.68, + "end": 8212.0, + "probability": 0.9753 + }, + { + "start": 8212.68, + "end": 8213.64, + "probability": 0.6411 + }, + { + "start": 8214.26, + "end": 8216.9, + "probability": 0.9395 + }, + { + "start": 8218.98, + "end": 8221.02, + "probability": 0.7295 + }, + { + "start": 8222.36, + "end": 8223.84, + "probability": 0.7706 + }, + { + "start": 8224.1, + "end": 8229.4, + "probability": 0.811 + }, + { + "start": 8230.4, + "end": 8231.78, + "probability": 0.7963 + }, + { + "start": 8232.7, + "end": 8236.04, + "probability": 0.9413 + }, + { + "start": 8236.46, + "end": 8239.08, + "probability": 0.7407 + }, + { + "start": 8240.46, + "end": 8243.62, + "probability": 0.9549 + }, + { + "start": 8243.66, + "end": 8244.7, + "probability": 0.8631 + }, + { + "start": 8244.76, + "end": 8245.1, + "probability": 0.7505 + }, + { + "start": 8247.22, + "end": 8250.28, + "probability": 0.9343 + }, + { + "start": 8250.38, + "end": 8252.43, + "probability": 0.9935 + }, + { + "start": 8252.92, + "end": 8253.02, + "probability": 0.1643 + }, + { + "start": 8254.8, + "end": 8255.84, + "probability": 0.8377 + }, + { + "start": 8256.06, + "end": 8257.5, + "probability": 0.9788 + }, + { + "start": 8258.0, + "end": 8261.7, + "probability": 0.9628 + }, + { + "start": 8261.74, + "end": 8261.84, + "probability": 0.4636 + }, + { + "start": 8262.22, + "end": 8263.08, + "probability": 0.9663 + }, + { + "start": 8265.92, + "end": 8268.28, + "probability": 0.9863 + }, + { + "start": 8268.36, + "end": 8268.86, + "probability": 0.7244 + }, + { + "start": 8269.0, + "end": 8271.02, + "probability": 0.6983 + }, + { + "start": 8272.34, + "end": 8274.2, + "probability": 0.765 + }, + { + "start": 8274.34, + "end": 8274.46, + "probability": 0.7471 + }, + { + "start": 8276.62, + "end": 8277.48, + "probability": 0.9425 + }, + { + "start": 8278.84, + "end": 8283.38, + "probability": 0.9769 + }, + { + "start": 8283.52, + "end": 8285.28, + "probability": 0.915 + }, + { + "start": 8285.4, + "end": 8287.48, + "probability": 0.9781 + }, + { + "start": 8288.08, + "end": 8289.14, + "probability": 0.9514 + }, + { + "start": 8289.36, + "end": 8294.84, + "probability": 0.8671 + }, + { + "start": 8295.88, + "end": 8297.22, + "probability": 0.976 + }, + { + "start": 8297.5, + "end": 8298.53, + "probability": 0.9368 + }, + { + "start": 8299.62, + "end": 8300.74, + "probability": 0.9946 + }, + { + "start": 8300.88, + "end": 8303.04, + "probability": 0.0757 + }, + { + "start": 8303.04, + "end": 8303.44, + "probability": 0.0995 + }, + { + "start": 8303.54, + "end": 8305.48, + "probability": 0.8982 + }, + { + "start": 8306.12, + "end": 8307.0, + "probability": 0.9922 + }, + { + "start": 8308.28, + "end": 8308.66, + "probability": 0.6801 + }, + { + "start": 8309.92, + "end": 8314.5, + "probability": 0.9946 + }, + { + "start": 8315.96, + "end": 8316.66, + "probability": 0.7383 + }, + { + "start": 8316.88, + "end": 8317.98, + "probability": 0.9327 + }, + { + "start": 8318.14, + "end": 8320.82, + "probability": 0.9849 + }, + { + "start": 8321.54, + "end": 8325.16, + "probability": 0.8813 + }, + { + "start": 8326.6, + "end": 8327.6, + "probability": 0.4399 + }, + { + "start": 8327.82, + "end": 8328.66, + "probability": 0.689 + }, + { + "start": 8328.9, + "end": 8331.52, + "probability": 0.9385 + }, + { + "start": 8332.82, + "end": 8337.7, + "probability": 0.908 + }, + { + "start": 8339.1, + "end": 8339.2, + "probability": 0.275 + }, + { + "start": 8339.2, + "end": 8339.6, + "probability": 0.552 + }, + { + "start": 8340.68, + "end": 8342.78, + "probability": 0.7479 + }, + { + "start": 8343.96, + "end": 8348.29, + "probability": 0.4485 + }, + { + "start": 8348.52, + "end": 8348.8, + "probability": 0.2752 + }, + { + "start": 8348.84, + "end": 8350.36, + "probability": 0.9252 + }, + { + "start": 8352.42, + "end": 8353.76, + "probability": 0.9374 + }, + { + "start": 8354.52, + "end": 8360.5, + "probability": 0.9424 + }, + { + "start": 8360.64, + "end": 8362.22, + "probability": 0.9481 + }, + { + "start": 8364.18, + "end": 8366.1, + "probability": 0.965 + }, + { + "start": 8367.88, + "end": 8368.32, + "probability": 0.7298 + }, + { + "start": 8369.1, + "end": 8370.02, + "probability": 0.8972 + }, + { + "start": 8370.12, + "end": 8372.98, + "probability": 0.9417 + }, + { + "start": 8374.12, + "end": 8378.84, + "probability": 0.9757 + }, + { + "start": 8379.86, + "end": 8383.32, + "probability": 0.9846 + }, + { + "start": 8384.68, + "end": 8389.62, + "probability": 0.9436 + }, + { + "start": 8389.84, + "end": 8392.0, + "probability": 0.99 + }, + { + "start": 8393.38, + "end": 8397.94, + "probability": 0.9646 + }, + { + "start": 8399.9, + "end": 8401.68, + "probability": 0.8833 + }, + { + "start": 8402.3, + "end": 8405.5, + "probability": 0.9082 + }, + { + "start": 8406.24, + "end": 8411.46, + "probability": 0.7498 + }, + { + "start": 8412.96, + "end": 8416.82, + "probability": 0.9938 + }, + { + "start": 8417.5, + "end": 8421.06, + "probability": 0.9276 + }, + { + "start": 8421.06, + "end": 8424.76, + "probability": 0.8078 + }, + { + "start": 8424.8, + "end": 8426.16, + "probability": 0.9976 + }, + { + "start": 8427.06, + "end": 8428.56, + "probability": 0.9883 + }, + { + "start": 8428.68, + "end": 8429.2, + "probability": 0.8927 + }, + { + "start": 8429.92, + "end": 8432.36, + "probability": 0.9351 + }, + { + "start": 8432.56, + "end": 8435.28, + "probability": 0.996 + }, + { + "start": 8436.04, + "end": 8438.4, + "probability": 0.6772 + }, + { + "start": 8439.3, + "end": 8442.38, + "probability": 0.984 + }, + { + "start": 8443.92, + "end": 8447.72, + "probability": 0.9943 + }, + { + "start": 8449.42, + "end": 8451.86, + "probability": 0.8991 + }, + { + "start": 8452.92, + "end": 8454.68, + "probability": 0.8033 + }, + { + "start": 8454.96, + "end": 8455.5, + "probability": 0.3528 + }, + { + "start": 8455.66, + "end": 8456.4, + "probability": 0.9946 + }, + { + "start": 8457.5, + "end": 8462.88, + "probability": 0.9937 + }, + { + "start": 8464.32, + "end": 8465.66, + "probability": 0.8257 + }, + { + "start": 8465.82, + "end": 8467.62, + "probability": 0.9706 + }, + { + "start": 8468.92, + "end": 8473.62, + "probability": 0.7348 + }, + { + "start": 8474.56, + "end": 8477.44, + "probability": 0.997 + }, + { + "start": 8478.6, + "end": 8480.66, + "probability": 0.8958 + }, + { + "start": 8481.56, + "end": 8482.32, + "probability": 0.9829 + }, + { + "start": 8482.86, + "end": 8485.22, + "probability": 0.9614 + }, + { + "start": 8486.1, + "end": 8489.64, + "probability": 0.9881 + }, + { + "start": 8489.76, + "end": 8490.92, + "probability": 0.9655 + }, + { + "start": 8492.56, + "end": 8498.54, + "probability": 0.9536 + }, + { + "start": 8499.46, + "end": 8501.84, + "probability": 0.9366 + }, + { + "start": 8501.98, + "end": 8503.74, + "probability": 0.6284 + }, + { + "start": 8504.02, + "end": 8505.68, + "probability": 0.8474 + }, + { + "start": 8506.14, + "end": 8508.02, + "probability": 0.9836 + }, + { + "start": 8509.92, + "end": 8511.9, + "probability": 0.7783 + }, + { + "start": 8513.06, + "end": 8519.48, + "probability": 0.9763 + }, + { + "start": 8520.54, + "end": 8521.46, + "probability": 0.9454 + }, + { + "start": 8522.18, + "end": 8523.18, + "probability": 0.9761 + }, + { + "start": 8523.82, + "end": 8525.2, + "probability": 0.8166 + }, + { + "start": 8525.24, + "end": 8533.74, + "probability": 0.8441 + }, + { + "start": 8534.72, + "end": 8536.16, + "probability": 0.958 + }, + { + "start": 8537.52, + "end": 8542.36, + "probability": 0.9904 + }, + { + "start": 8543.08, + "end": 8543.74, + "probability": 0.776 + }, + { + "start": 8544.34, + "end": 8546.56, + "probability": 0.9927 + }, + { + "start": 8547.8, + "end": 8550.32, + "probability": 0.9434 + }, + { + "start": 8551.04, + "end": 8552.39, + "probability": 0.7006 + }, + { + "start": 8553.5, + "end": 8554.1, + "probability": 0.8843 + }, + { + "start": 8554.2, + "end": 8556.36, + "probability": 0.9141 + }, + { + "start": 8556.42, + "end": 8557.18, + "probability": 0.6749 + }, + { + "start": 8557.82, + "end": 8559.08, + "probability": 0.9692 + }, + { + "start": 8560.42, + "end": 8561.54, + "probability": 0.9808 + }, + { + "start": 8563.14, + "end": 8564.04, + "probability": 0.905 + }, + { + "start": 8564.32, + "end": 8567.78, + "probability": 0.9962 + }, + { + "start": 8569.48, + "end": 8570.12, + "probability": 0.6559 + }, + { + "start": 8570.24, + "end": 8572.0, + "probability": 0.9968 + }, + { + "start": 8572.08, + "end": 8572.94, + "probability": 0.8641 + }, + { + "start": 8573.74, + "end": 8576.68, + "probability": 0.9712 + }, + { + "start": 8578.62, + "end": 8581.66, + "probability": 0.8911 + }, + { + "start": 8581.98, + "end": 8582.24, + "probability": 0.7498 + }, + { + "start": 8583.64, + "end": 8584.48, + "probability": 0.9069 + }, + { + "start": 8585.4, + "end": 8587.6, + "probability": 0.9674 + }, + { + "start": 8587.6, + "end": 8588.16, + "probability": 0.9606 + }, + { + "start": 8588.24, + "end": 8588.54, + "probability": 0.921 + }, + { + "start": 8588.64, + "end": 8590.29, + "probability": 0.6477 + }, + { + "start": 8591.14, + "end": 8594.9, + "probability": 0.9657 + }, + { + "start": 8596.08, + "end": 8596.88, + "probability": 0.8841 + }, + { + "start": 8597.1, + "end": 8599.5, + "probability": 0.9927 + }, + { + "start": 8600.36, + "end": 8600.38, + "probability": 0.0329 + }, + { + "start": 8600.94, + "end": 8602.24, + "probability": 0.7229 + }, + { + "start": 8602.32, + "end": 8604.24, + "probability": 0.9982 + }, + { + "start": 8604.44, + "end": 8605.8, + "probability": 0.9381 + }, + { + "start": 8606.28, + "end": 8608.44, + "probability": 0.9866 + }, + { + "start": 8609.32, + "end": 8612.22, + "probability": 0.9561 + }, + { + "start": 8613.62, + "end": 8614.1, + "probability": 0.4099 + }, + { + "start": 8614.18, + "end": 8617.14, + "probability": 0.8373 + }, + { + "start": 8617.44, + "end": 8618.2, + "probability": 0.7751 + }, + { + "start": 8619.44, + "end": 8620.48, + "probability": 0.9532 + }, + { + "start": 8621.74, + "end": 8625.78, + "probability": 0.9003 + }, + { + "start": 8627.8, + "end": 8630.82, + "probability": 0.9438 + }, + { + "start": 8632.02, + "end": 8636.68, + "probability": 0.9642 + }, + { + "start": 8638.38, + "end": 8639.18, + "probability": 0.98 + }, + { + "start": 8639.82, + "end": 8642.38, + "probability": 0.9106 + }, + { + "start": 8643.72, + "end": 8645.28, + "probability": 0.99 + }, + { + "start": 8645.3, + "end": 8645.94, + "probability": 0.7352 + }, + { + "start": 8645.96, + "end": 8647.4, + "probability": 0.9126 + }, + { + "start": 8647.58, + "end": 8648.2, + "probability": 0.9625 + }, + { + "start": 8648.26, + "end": 8648.5, + "probability": 0.967 + }, + { + "start": 8650.28, + "end": 8654.44, + "probability": 0.7087 + }, + { + "start": 8654.94, + "end": 8655.98, + "probability": 0.9969 + }, + { + "start": 8657.26, + "end": 8658.52, + "probability": 0.9831 + }, + { + "start": 8659.36, + "end": 8662.7, + "probability": 0.7907 + }, + { + "start": 8662.92, + "end": 8666.36, + "probability": 0.9482 + }, + { + "start": 8667.86, + "end": 8669.24, + "probability": 0.8606 + }, + { + "start": 8670.16, + "end": 8670.92, + "probability": 0.8724 + }, + { + "start": 8671.04, + "end": 8671.9, + "probability": 0.9349 + }, + { + "start": 8672.0, + "end": 8672.76, + "probability": 0.8836 + }, + { + "start": 8673.04, + "end": 8673.7, + "probability": 0.6502 + }, + { + "start": 8674.66, + "end": 8680.8, + "probability": 0.9883 + }, + { + "start": 8682.22, + "end": 8683.56, + "probability": 0.7992 + }, + { + "start": 8684.2, + "end": 8685.16, + "probability": 0.773 + }, + { + "start": 8686.44, + "end": 8689.08, + "probability": 0.7402 + }, + { + "start": 8690.54, + "end": 8691.12, + "probability": 0.9716 + }, + { + "start": 8693.2, + "end": 8693.7, + "probability": 0.9087 + }, + { + "start": 8694.46, + "end": 8695.24, + "probability": 0.9194 + }, + { + "start": 8695.66, + "end": 8700.08, + "probability": 0.9763 + }, + { + "start": 8700.94, + "end": 8702.18, + "probability": 0.7632 + }, + { + "start": 8702.18, + "end": 8704.46, + "probability": 0.8786 + }, + { + "start": 8705.56, + "end": 8707.0, + "probability": 0.9743 + }, + { + "start": 8709.52, + "end": 8712.47, + "probability": 0.6858 + }, + { + "start": 8712.76, + "end": 8714.1, + "probability": 0.773 + }, + { + "start": 8715.66, + "end": 8720.1, + "probability": 0.9827 + }, + { + "start": 8720.8, + "end": 8722.54, + "probability": 0.9019 + }, + { + "start": 8723.56, + "end": 8728.58, + "probability": 0.8891 + }, + { + "start": 8728.64, + "end": 8729.02, + "probability": 0.4816 + }, + { + "start": 8729.02, + "end": 8730.9, + "probability": 0.6026 + }, + { + "start": 8730.9, + "end": 8735.42, + "probability": 0.9814 + }, + { + "start": 8736.52, + "end": 8739.26, + "probability": 0.9844 + }, + { + "start": 8740.22, + "end": 8742.4, + "probability": 0.9924 + }, + { + "start": 8743.84, + "end": 8745.64, + "probability": 0.9874 + }, + { + "start": 8745.7, + "end": 8746.9, + "probability": 0.9434 + }, + { + "start": 8747.06, + "end": 8747.54, + "probability": 0.7499 + }, + { + "start": 8748.68, + "end": 8750.46, + "probability": 0.9517 + }, + { + "start": 8750.5, + "end": 8751.2, + "probability": 0.7315 + }, + { + "start": 8751.3, + "end": 8754.76, + "probability": 0.9666 + }, + { + "start": 8756.46, + "end": 8757.26, + "probability": 0.7816 + }, + { + "start": 8758.84, + "end": 8760.16, + "probability": 0.9714 + }, + { + "start": 8761.8, + "end": 8763.88, + "probability": 0.9644 + }, + { + "start": 8764.06, + "end": 8764.64, + "probability": 0.6152 + }, + { + "start": 8764.74, + "end": 8765.8, + "probability": 0.5529 + }, + { + "start": 8766.24, + "end": 8766.58, + "probability": 0.6839 + }, + { + "start": 8766.76, + "end": 8767.76, + "probability": 0.6666 + }, + { + "start": 8769.12, + "end": 8770.8, + "probability": 0.9912 + }, + { + "start": 8770.86, + "end": 8772.68, + "probability": 0.9882 + }, + { + "start": 8773.5, + "end": 8777.2, + "probability": 0.9946 + }, + { + "start": 8777.2, + "end": 8780.6, + "probability": 0.8211 + }, + { + "start": 8781.48, + "end": 8781.98, + "probability": 0.9946 + }, + { + "start": 8783.72, + "end": 8787.22, + "probability": 0.9973 + }, + { + "start": 8787.74, + "end": 8790.82, + "probability": 0.9994 + }, + { + "start": 8790.82, + "end": 8793.22, + "probability": 0.9971 + }, + { + "start": 8793.7, + "end": 8795.42, + "probability": 0.9741 + }, + { + "start": 8796.02, + "end": 8797.98, + "probability": 0.6033 + }, + { + "start": 8798.96, + "end": 8800.12, + "probability": 0.9443 + }, + { + "start": 8800.24, + "end": 8800.62, + "probability": 0.9902 + }, + { + "start": 8800.7, + "end": 8801.14, + "probability": 0.7615 + }, + { + "start": 8803.34, + "end": 8805.44, + "probability": 0.9872 + }, + { + "start": 8805.56, + "end": 8808.32, + "probability": 0.959 + }, + { + "start": 8809.98, + "end": 8811.38, + "probability": 0.8682 + }, + { + "start": 8811.48, + "end": 8813.76, + "probability": 0.9874 + }, + { + "start": 8815.56, + "end": 8815.76, + "probability": 0.4089 + }, + { + "start": 8817.04, + "end": 8818.22, + "probability": 0.9126 + }, + { + "start": 8818.46, + "end": 8818.88, + "probability": 0.6282 + }, + { + "start": 8819.16, + "end": 8819.86, + "probability": 0.9868 + }, + { + "start": 8820.68, + "end": 8822.14, + "probability": 0.8552 + }, + { + "start": 8822.26, + "end": 8823.12, + "probability": 0.8339 + }, + { + "start": 8825.22, + "end": 8827.22, + "probability": 0.6628 + }, + { + "start": 8828.0, + "end": 8828.04, + "probability": 0.1998 + }, + { + "start": 8828.04, + "end": 8828.04, + "probability": 0.1506 + }, + { + "start": 8828.04, + "end": 8829.16, + "probability": 0.6222 + }, + { + "start": 8829.56, + "end": 8829.82, + "probability": 0.042 + }, + { + "start": 8831.18, + "end": 8831.18, + "probability": 0.0877 + }, + { + "start": 8831.18, + "end": 8833.0, + "probability": 0.6972 + }, + { + "start": 8833.16, + "end": 8834.14, + "probability": 0.8553 + }, + { + "start": 8834.22, + "end": 8836.04, + "probability": 0.3472 + }, + { + "start": 8837.46, + "end": 8838.84, + "probability": 0.4388 + }, + { + "start": 8839.66, + "end": 8843.66, + "probability": 0.663 + }, + { + "start": 8844.96, + "end": 8846.92, + "probability": 0.5972 + }, + { + "start": 8847.1, + "end": 8847.8, + "probability": 0.8785 + }, + { + "start": 8847.86, + "end": 8852.98, + "probability": 0.6644 + }, + { + "start": 8855.1, + "end": 8856.58, + "probability": 0.9757 + }, + { + "start": 8857.34, + "end": 8858.04, + "probability": 0.7599 + }, + { + "start": 8858.58, + "end": 8861.8, + "probability": 0.9189 + }, + { + "start": 8862.98, + "end": 8863.85, + "probability": 0.9912 + }, + { + "start": 8866.32, + "end": 8868.28, + "probability": 0.6165 + }, + { + "start": 8868.4, + "end": 8871.04, + "probability": 0.9829 + }, + { + "start": 8872.3, + "end": 8872.92, + "probability": 0.8696 + }, + { + "start": 8873.5, + "end": 8876.0, + "probability": 0.7487 + }, + { + "start": 8877.46, + "end": 8879.98, + "probability": 0.8884 + }, + { + "start": 8881.5, + "end": 8882.88, + "probability": 0.9334 + }, + { + "start": 8884.04, + "end": 8887.66, + "probability": 0.9087 + }, + { + "start": 8887.66, + "end": 8889.84, + "probability": 0.9242 + }, + { + "start": 8891.12, + "end": 8892.5, + "probability": 0.72 + }, + { + "start": 8892.64, + "end": 8893.08, + "probability": 0.7855 + }, + { + "start": 8893.22, + "end": 8895.6, + "probability": 0.5997 + }, + { + "start": 8896.14, + "end": 8897.24, + "probability": 0.2566 + }, + { + "start": 8897.24, + "end": 8898.7, + "probability": 0.5834 + }, + { + "start": 8898.78, + "end": 8899.54, + "probability": 0.8457 + }, + { + "start": 8900.08, + "end": 8902.8, + "probability": 0.9862 + }, + { + "start": 8903.36, + "end": 8906.72, + "probability": 0.9731 + }, + { + "start": 8908.04, + "end": 8911.18, + "probability": 0.868 + }, + { + "start": 8912.08, + "end": 8913.36, + "probability": 0.9371 + }, + { + "start": 8914.84, + "end": 8915.16, + "probability": 0.7998 + }, + { + "start": 8915.9, + "end": 8917.44, + "probability": 0.9879 + }, + { + "start": 8918.18, + "end": 8919.28, + "probability": 0.7878 + }, + { + "start": 8919.98, + "end": 8920.32, + "probability": 0.8021 + }, + { + "start": 8921.42, + "end": 8922.38, + "probability": 0.8125 + }, + { + "start": 8922.96, + "end": 8923.68, + "probability": 0.9302 + }, + { + "start": 8923.9, + "end": 8926.18, + "probability": 0.987 + }, + { + "start": 8927.14, + "end": 8928.74, + "probability": 0.8789 + }, + { + "start": 8929.94, + "end": 8933.76, + "probability": 0.9338 + }, + { + "start": 8934.88, + "end": 8935.7, + "probability": 0.9686 + }, + { + "start": 8936.8, + "end": 8937.77, + "probability": 0.834 + }, + { + "start": 8938.58, + "end": 8942.02, + "probability": 0.9434 + }, + { + "start": 8942.5, + "end": 8945.62, + "probability": 0.9224 + }, + { + "start": 8946.56, + "end": 8949.28, + "probability": 0.861 + }, + { + "start": 8949.44, + "end": 8951.58, + "probability": 0.6745 + }, + { + "start": 8951.74, + "end": 8952.0, + "probability": 0.9392 + }, + { + "start": 8953.22, + "end": 8956.74, + "probability": 0.9162 + }, + { + "start": 8957.44, + "end": 8960.18, + "probability": 0.9648 + }, + { + "start": 8960.72, + "end": 8961.7, + "probability": 0.9901 + }, + { + "start": 8962.4, + "end": 8963.9, + "probability": 0.9935 + }, + { + "start": 8964.02, + "end": 8965.84, + "probability": 0.6838 + }, + { + "start": 8965.94, + "end": 8968.0, + "probability": 0.5164 + }, + { + "start": 8968.86, + "end": 8971.08, + "probability": 0.7383 + }, + { + "start": 8972.04, + "end": 8973.78, + "probability": 0.9504 + }, + { + "start": 8974.48, + "end": 8978.5, + "probability": 0.9878 + }, + { + "start": 8979.18, + "end": 8981.86, + "probability": 0.8915 + }, + { + "start": 8982.38, + "end": 8982.98, + "probability": 0.7121 + }, + { + "start": 8983.8, + "end": 8987.88, + "probability": 0.9754 + }, + { + "start": 8988.58, + "end": 8990.44, + "probability": 0.9357 + }, + { + "start": 8990.58, + "end": 8991.74, + "probability": 0.6289 + }, + { + "start": 8992.4, + "end": 8994.48, + "probability": 0.9804 + }, + { + "start": 8995.66, + "end": 8996.98, + "probability": 0.8109 + }, + { + "start": 8997.78, + "end": 9001.26, + "probability": 0.9092 + }, + { + "start": 9002.44, + "end": 9004.6, + "probability": 0.9989 + }, + { + "start": 9004.6, + "end": 9007.14, + "probability": 0.9979 + }, + { + "start": 9008.28, + "end": 9009.36, + "probability": 0.8942 + }, + { + "start": 9010.24, + "end": 9012.66, + "probability": 0.7633 + }, + { + "start": 9013.34, + "end": 9014.16, + "probability": 0.6519 + }, + { + "start": 9015.66, + "end": 9016.86, + "probability": 0.7481 + }, + { + "start": 9017.84, + "end": 9020.0, + "probability": 0.7024 + }, + { + "start": 9020.08, + "end": 9023.38, + "probability": 0.9935 + }, + { + "start": 9024.46, + "end": 9026.36, + "probability": 0.5338 + }, + { + "start": 9029.74, + "end": 9033.14, + "probability": 0.9578 + }, + { + "start": 9034.58, + "end": 9036.3, + "probability": 0.8164 + }, + { + "start": 9036.44, + "end": 9041.44, + "probability": 0.96 + }, + { + "start": 9042.2, + "end": 9043.46, + "probability": 0.8395 + }, + { + "start": 9044.04, + "end": 9045.32, + "probability": 0.9354 + }, + { + "start": 9046.68, + "end": 9048.66, + "probability": 0.9258 + }, + { + "start": 9049.22, + "end": 9053.44, + "probability": 0.5986 + }, + { + "start": 9054.44, + "end": 9055.72, + "probability": 0.8157 + }, + { + "start": 9055.9, + "end": 9056.74, + "probability": 0.1419 + }, + { + "start": 9056.82, + "end": 9057.12, + "probability": 0.5397 + }, + { + "start": 9057.78, + "end": 9057.78, + "probability": 0.6805 + }, + { + "start": 9057.78, + "end": 9058.28, + "probability": 0.6435 + }, + { + "start": 9059.16, + "end": 9061.38, + "probability": 0.8106 + }, + { + "start": 9062.84, + "end": 9063.62, + "probability": 0.8859 + }, + { + "start": 9064.6, + "end": 9066.02, + "probability": 0.8846 + }, + { + "start": 9066.84, + "end": 9068.17, + "probability": 0.3654 + }, + { + "start": 9070.3, + "end": 9070.82, + "probability": 0.1676 + }, + { + "start": 9071.12, + "end": 9071.36, + "probability": 0.021 + }, + { + "start": 9072.02, + "end": 9073.3, + "probability": 0.2951 + }, + { + "start": 9073.9, + "end": 9074.51, + "probability": 0.0803 + }, + { + "start": 9076.74, + "end": 9078.0, + "probability": 0.37 + }, + { + "start": 9079.66, + "end": 9080.48, + "probability": 0.5933 + }, + { + "start": 9080.76, + "end": 9081.82, + "probability": 0.7259 + }, + { + "start": 9082.48, + "end": 9083.9, + "probability": 0.899 + }, + { + "start": 9085.0, + "end": 9085.64, + "probability": 0.1483 + }, + { + "start": 9086.44, + "end": 9088.88, + "probability": 0.8252 + }, + { + "start": 9090.28, + "end": 9092.6, + "probability": 0.3789 + }, + { + "start": 9092.6, + "end": 9094.12, + "probability": 0.3194 + }, + { + "start": 9095.38, + "end": 9095.6, + "probability": 0.5712 + }, + { + "start": 9095.6, + "end": 9097.48, + "probability": 0.8763 + }, + { + "start": 9104.67, + "end": 9107.66, + "probability": 0.7468 + }, + { + "start": 9108.1, + "end": 9109.06, + "probability": 0.8879 + }, + { + "start": 9119.6, + "end": 9119.6, + "probability": 0.0691 + }, + { + "start": 9119.6, + "end": 9119.9, + "probability": 0.0584 + }, + { + "start": 9119.9, + "end": 9119.98, + "probability": 0.4232 + }, + { + "start": 9132.98, + "end": 9133.84, + "probability": 0.1162 + }, + { + "start": 9134.98, + "end": 9138.44, + "probability": 0.9424 + }, + { + "start": 9138.98, + "end": 9139.46, + "probability": 0.7539 + }, + { + "start": 9141.2, + "end": 9142.76, + "probability": 0.7723 + }, + { + "start": 9142.94, + "end": 9144.22, + "probability": 0.7864 + }, + { + "start": 9144.28, + "end": 9148.7, + "probability": 0.8659 + }, + { + "start": 9150.08, + "end": 9151.96, + "probability": 0.5549 + }, + { + "start": 9152.36, + "end": 9157.16, + "probability": 0.3996 + }, + { + "start": 9158.44, + "end": 9159.12, + "probability": 0.8056 + }, + { + "start": 9165.5, + "end": 9167.66, + "probability": 0.5033 + }, + { + "start": 9168.4, + "end": 9170.54, + "probability": 0.8075 + }, + { + "start": 9171.16, + "end": 9171.68, + "probability": 0.9671 + }, + { + "start": 9172.76, + "end": 9184.22, + "probability": 0.8718 + }, + { + "start": 9184.34, + "end": 9192.02, + "probability": 0.8922 + }, + { + "start": 9193.26, + "end": 9197.1, + "probability": 0.9958 + }, + { + "start": 9198.74, + "end": 9204.5, + "probability": 0.8211 + }, + { + "start": 9205.34, + "end": 9206.66, + "probability": 0.8807 + }, + { + "start": 9207.58, + "end": 9214.18, + "probability": 0.9592 + }, + { + "start": 9215.2, + "end": 9219.04, + "probability": 0.9865 + }, + { + "start": 9220.6, + "end": 9224.26, + "probability": 0.946 + }, + { + "start": 9225.33, + "end": 9226.34, + "probability": 0.955 + }, + { + "start": 9227.64, + "end": 9228.37, + "probability": 0.7985 + }, + { + "start": 9229.94, + "end": 9236.26, + "probability": 0.9701 + }, + { + "start": 9237.92, + "end": 9241.16, + "probability": 0.9648 + }, + { + "start": 9242.66, + "end": 9244.1, + "probability": 0.988 + }, + { + "start": 9245.94, + "end": 9247.14, + "probability": 0.9539 + }, + { + "start": 9248.1, + "end": 9255.38, + "probability": 0.9862 + }, + { + "start": 9256.46, + "end": 9258.46, + "probability": 0.9977 + }, + { + "start": 9259.28, + "end": 9261.26, + "probability": 0.967 + }, + { + "start": 9262.42, + "end": 9264.98, + "probability": 0.8551 + }, + { + "start": 9265.7, + "end": 9266.84, + "probability": 0.9727 + }, + { + "start": 9267.8, + "end": 9271.72, + "probability": 0.9796 + }, + { + "start": 9272.4, + "end": 9274.52, + "probability": 0.9926 + }, + { + "start": 9275.38, + "end": 9277.06, + "probability": 0.9148 + }, + { + "start": 9278.26, + "end": 9279.2, + "probability": 0.8646 + }, + { + "start": 9279.54, + "end": 9280.7, + "probability": 0.9101 + }, + { + "start": 9281.06, + "end": 9284.42, + "probability": 0.5658 + }, + { + "start": 9285.42, + "end": 9292.58, + "probability": 0.9831 + }, + { + "start": 9293.12, + "end": 9294.0, + "probability": 0.9969 + }, + { + "start": 9294.82, + "end": 9295.94, + "probability": 0.8812 + }, + { + "start": 9297.06, + "end": 9297.88, + "probability": 0.8794 + }, + { + "start": 9299.1, + "end": 9299.82, + "probability": 0.4051 + }, + { + "start": 9299.86, + "end": 9300.54, + "probability": 0.872 + }, + { + "start": 9300.7, + "end": 9302.98, + "probability": 0.9821 + }, + { + "start": 9303.36, + "end": 9303.86, + "probability": 0.8929 + }, + { + "start": 9304.92, + "end": 9305.66, + "probability": 0.6661 + }, + { + "start": 9306.86, + "end": 9308.9, + "probability": 0.9966 + }, + { + "start": 9310.34, + "end": 9312.52, + "probability": 0.9804 + }, + { + "start": 9313.68, + "end": 9316.06, + "probability": 0.9985 + }, + { + "start": 9316.9, + "end": 9318.36, + "probability": 0.9968 + }, + { + "start": 9319.26, + "end": 9320.52, + "probability": 0.9834 + }, + { + "start": 9321.6, + "end": 9329.32, + "probability": 0.9585 + }, + { + "start": 9330.84, + "end": 9331.8, + "probability": 0.6576 + }, + { + "start": 9332.66, + "end": 9334.46, + "probability": 0.9961 + }, + { + "start": 9336.64, + "end": 9341.48, + "probability": 0.9891 + }, + { + "start": 9343.36, + "end": 9346.8, + "probability": 0.9656 + }, + { + "start": 9347.78, + "end": 9348.7, + "probability": 0.8511 + }, + { + "start": 9349.68, + "end": 9351.18, + "probability": 0.958 + }, + { + "start": 9352.62, + "end": 9355.56, + "probability": 0.9985 + }, + { + "start": 9357.86, + "end": 9359.4, + "probability": 0.9969 + }, + { + "start": 9360.68, + "end": 9361.52, + "probability": 0.9927 + }, + { + "start": 9362.68, + "end": 9365.08, + "probability": 0.996 + }, + { + "start": 9366.52, + "end": 9367.94, + "probability": 0.988 + }, + { + "start": 9368.78, + "end": 9373.78, + "probability": 0.8889 + }, + { + "start": 9374.4, + "end": 9376.5, + "probability": 0.9092 + }, + { + "start": 9377.42, + "end": 9378.18, + "probability": 0.9852 + }, + { + "start": 9379.26, + "end": 9380.68, + "probability": 0.8671 + }, + { + "start": 9382.14, + "end": 9385.02, + "probability": 0.9708 + }, + { + "start": 9386.46, + "end": 9392.16, + "probability": 0.9805 + }, + { + "start": 9393.78, + "end": 9397.7, + "probability": 0.99 + }, + { + "start": 9398.92, + "end": 9402.2, + "probability": 0.9982 + }, + { + "start": 9403.14, + "end": 9404.72, + "probability": 0.9806 + }, + { + "start": 9405.34, + "end": 9408.52, + "probability": 0.9949 + }, + { + "start": 9411.84, + "end": 9413.2, + "probability": 0.7181 + }, + { + "start": 9413.88, + "end": 9414.8, + "probability": 0.9188 + }, + { + "start": 9416.24, + "end": 9424.6, + "probability": 0.9895 + }, + { + "start": 9425.84, + "end": 9430.02, + "probability": 0.952 + }, + { + "start": 9431.14, + "end": 9437.02, + "probability": 0.9947 + }, + { + "start": 9437.8, + "end": 9439.02, + "probability": 0.9777 + }, + { + "start": 9439.48, + "end": 9441.54, + "probability": 0.9976 + }, + { + "start": 9442.62, + "end": 9442.94, + "probability": 0.8099 + }, + { + "start": 9443.1, + "end": 9446.17, + "probability": 0.9932 + }, + { + "start": 9447.34, + "end": 9450.06, + "probability": 0.992 + }, + { + "start": 9451.42, + "end": 9452.98, + "probability": 0.9533 + }, + { + "start": 9454.22, + "end": 9457.08, + "probability": 0.9816 + }, + { + "start": 9459.04, + "end": 9461.16, + "probability": 0.9945 + }, + { + "start": 9462.48, + "end": 9464.1, + "probability": 0.993 + }, + { + "start": 9464.32, + "end": 9468.82, + "probability": 0.978 + }, + { + "start": 9469.48, + "end": 9471.4, + "probability": 0.9948 + }, + { + "start": 9472.46, + "end": 9472.94, + "probability": 0.3657 + }, + { + "start": 9473.1, + "end": 9474.76, + "probability": 0.9884 + }, + { + "start": 9475.18, + "end": 9476.52, + "probability": 0.8817 + }, + { + "start": 9477.38, + "end": 9479.88, + "probability": 0.502 + }, + { + "start": 9480.54, + "end": 9483.14, + "probability": 0.975 + }, + { + "start": 9483.48, + "end": 9486.08, + "probability": 0.981 + }, + { + "start": 9486.9, + "end": 9489.28, + "probability": 0.981 + }, + { + "start": 9489.62, + "end": 9490.04, + "probability": 0.0265 + }, + { + "start": 9490.12, + "end": 9490.74, + "probability": 0.6174 + }, + { + "start": 9491.24, + "end": 9492.0, + "probability": 0.7682 + }, + { + "start": 9492.12, + "end": 9495.78, + "probability": 0.9225 + }, + { + "start": 9495.78, + "end": 9499.92, + "probability": 0.7576 + }, + { + "start": 9500.68, + "end": 9503.92, + "probability": 0.9859 + }, + { + "start": 9504.6, + "end": 9506.4, + "probability": 0.9736 + }, + { + "start": 9507.02, + "end": 9508.74, + "probability": 0.9969 + }, + { + "start": 9509.48, + "end": 9511.44, + "probability": 0.9453 + }, + { + "start": 9511.58, + "end": 9514.42, + "probability": 0.9995 + }, + { + "start": 9514.98, + "end": 9521.96, + "probability": 0.9851 + }, + { + "start": 9522.18, + "end": 9524.8, + "probability": 0.9844 + }, + { + "start": 9525.5, + "end": 9526.32, + "probability": 0.895 + }, + { + "start": 9526.92, + "end": 9529.16, + "probability": 0.9855 + }, + { + "start": 9531.08, + "end": 9531.58, + "probability": 0.8524 + }, + { + "start": 9532.6, + "end": 9537.46, + "probability": 0.9966 + }, + { + "start": 9538.66, + "end": 9542.28, + "probability": 0.8203 + }, + { + "start": 9543.08, + "end": 9544.34, + "probability": 0.785 + }, + { + "start": 9545.14, + "end": 9545.62, + "probability": 0.7441 + }, + { + "start": 9545.7, + "end": 9546.2, + "probability": 0.4773 + }, + { + "start": 9546.28, + "end": 9547.02, + "probability": 0.892 + }, + { + "start": 9547.12, + "end": 9548.7, + "probability": 0.4963 + }, + { + "start": 9549.88, + "end": 9552.2, + "probability": 0.9766 + }, + { + "start": 9554.04, + "end": 9556.16, + "probability": 0.9911 + }, + { + "start": 9556.96, + "end": 9557.64, + "probability": 0.8793 + }, + { + "start": 9558.24, + "end": 9559.14, + "probability": 0.9307 + }, + { + "start": 9560.02, + "end": 9561.24, + "probability": 0.9712 + }, + { + "start": 9562.34, + "end": 9564.2, + "probability": 0.842 + }, + { + "start": 9564.26, + "end": 9565.42, + "probability": 0.9642 + }, + { + "start": 9565.52, + "end": 9566.92, + "probability": 0.8381 + }, + { + "start": 9567.38, + "end": 9568.0, + "probability": 0.7089 + }, + { + "start": 9568.77, + "end": 9571.7, + "probability": 0.9393 + }, + { + "start": 9572.3, + "end": 9576.78, + "probability": 0.9884 + }, + { + "start": 9576.78, + "end": 9580.4, + "probability": 0.9999 + }, + { + "start": 9580.52, + "end": 9583.29, + "probability": 0.9796 + }, + { + "start": 9584.34, + "end": 9585.58, + "probability": 0.5764 + }, + { + "start": 9585.68, + "end": 9586.08, + "probability": 0.956 + }, + { + "start": 9586.16, + "end": 9592.5, + "probability": 0.8667 + }, + { + "start": 9593.38, + "end": 9595.72, + "probability": 0.9934 + }, + { + "start": 9597.12, + "end": 9598.24, + "probability": 0.958 + }, + { + "start": 9598.8, + "end": 9601.18, + "probability": 0.9899 + }, + { + "start": 9601.74, + "end": 9602.6, + "probability": 0.7195 + }, + { + "start": 9603.7, + "end": 9605.44, + "probability": 0.9419 + }, + { + "start": 9607.14, + "end": 9609.0, + "probability": 0.9628 + }, + { + "start": 9610.08, + "end": 9610.78, + "probability": 0.5721 + }, + { + "start": 9611.64, + "end": 9613.86, + "probability": 0.9515 + }, + { + "start": 9615.5, + "end": 9619.66, + "probability": 0.8736 + }, + { + "start": 9620.88, + "end": 9622.66, + "probability": 0.9746 + }, + { + "start": 9624.54, + "end": 9628.1, + "probability": 0.9915 + }, + { + "start": 9630.14, + "end": 9631.3, + "probability": 0.9087 + }, + { + "start": 9633.44, + "end": 9636.82, + "probability": 0.9356 + }, + { + "start": 9636.94, + "end": 9637.44, + "probability": 0.9668 + }, + { + "start": 9638.26, + "end": 9640.32, + "probability": 0.9639 + }, + { + "start": 9641.66, + "end": 9645.08, + "probability": 0.9629 + }, + { + "start": 9646.02, + "end": 9646.6, + "probability": 0.5003 + }, + { + "start": 9646.64, + "end": 9648.24, + "probability": 0.9654 + }, + { + "start": 9648.26, + "end": 9648.82, + "probability": 0.8597 + }, + { + "start": 9648.84, + "end": 9649.88, + "probability": 0.7458 + }, + { + "start": 9651.12, + "end": 9651.56, + "probability": 0.6925 + }, + { + "start": 9655.38, + "end": 9655.78, + "probability": 0.2991 + }, + { + "start": 9655.78, + "end": 9657.94, + "probability": 0.5854 + }, + { + "start": 9663.72, + "end": 9664.48, + "probability": 0.6145 + }, + { + "start": 9665.3, + "end": 9666.65, + "probability": 0.9104 + }, + { + "start": 9667.24, + "end": 9668.74, + "probability": 0.8893 + }, + { + "start": 9670.8, + "end": 9671.96, + "probability": 0.8036 + }, + { + "start": 9672.72, + "end": 9674.16, + "probability": 0.9145 + }, + { + "start": 9675.12, + "end": 9677.62, + "probability": 0.9709 + }, + { + "start": 9681.44, + "end": 9681.46, + "probability": 0.1556 + }, + { + "start": 9681.46, + "end": 9685.6, + "probability": 0.9643 + }, + { + "start": 9685.6, + "end": 9688.66, + "probability": 0.9798 + }, + { + "start": 9690.28, + "end": 9695.7, + "probability": 0.7675 + }, + { + "start": 9696.16, + "end": 9697.18, + "probability": 0.7927 + }, + { + "start": 9697.3, + "end": 9700.96, + "probability": 0.7335 + }, + { + "start": 9701.92, + "end": 9703.98, + "probability": 0.9793 + }, + { + "start": 9704.1, + "end": 9704.88, + "probability": 0.8145 + }, + { + "start": 9705.12, + "end": 9709.52, + "probability": 0.9907 + }, + { + "start": 9709.96, + "end": 9713.44, + "probability": 0.5324 + }, + { + "start": 9714.46, + "end": 9716.08, + "probability": 0.6976 + }, + { + "start": 9717.16, + "end": 9718.46, + "probability": 0.8263 + }, + { + "start": 9718.58, + "end": 9720.08, + "probability": 0.893 + }, + { + "start": 9720.12, + "end": 9723.14, + "probability": 0.9937 + }, + { + "start": 9723.28, + "end": 9724.6, + "probability": 0.5672 + }, + { + "start": 9725.8, + "end": 9730.2, + "probability": 0.981 + }, + { + "start": 9730.78, + "end": 9734.4, + "probability": 0.9596 + }, + { + "start": 9734.42, + "end": 9735.0, + "probability": 0.8232 + }, + { + "start": 9735.06, + "end": 9735.78, + "probability": 0.9008 + }, + { + "start": 9735.8, + "end": 9737.8, + "probability": 0.9464 + }, + { + "start": 9737.86, + "end": 9741.16, + "probability": 0.9932 + }, + { + "start": 9742.2, + "end": 9742.96, + "probability": 0.9882 + }, + { + "start": 9743.9, + "end": 9746.1, + "probability": 0.9496 + }, + { + "start": 9746.18, + "end": 9747.02, + "probability": 0.907 + }, + { + "start": 9747.08, + "end": 9748.36, + "probability": 0.562 + }, + { + "start": 9748.36, + "end": 9752.3, + "probability": 0.9559 + }, + { + "start": 9753.06, + "end": 9753.78, + "probability": 0.6893 + }, + { + "start": 9753.9, + "end": 9754.42, + "probability": 0.2651 + }, + { + "start": 9754.5, + "end": 9755.31, + "probability": 0.8876 + }, + { + "start": 9756.4, + "end": 9759.28, + "probability": 0.8343 + }, + { + "start": 9760.04, + "end": 9762.66, + "probability": 0.8895 + }, + { + "start": 9762.98, + "end": 9765.12, + "probability": 0.9333 + }, + { + "start": 9765.78, + "end": 9766.88, + "probability": 0.991 + }, + { + "start": 9768.36, + "end": 9770.48, + "probability": 0.8046 + }, + { + "start": 9770.9, + "end": 9772.31, + "probability": 0.9863 + }, + { + "start": 9773.0, + "end": 9773.74, + "probability": 0.7066 + }, + { + "start": 9773.86, + "end": 9774.24, + "probability": 0.9526 + }, + { + "start": 9774.4, + "end": 9775.56, + "probability": 0.9883 + }, + { + "start": 9776.1, + "end": 9778.94, + "probability": 0.9915 + }, + { + "start": 9779.02, + "end": 9781.26, + "probability": 0.9035 + }, + { + "start": 9781.9, + "end": 9783.66, + "probability": 0.2062 + }, + { + "start": 9783.66, + "end": 9784.38, + "probability": 0.1095 + }, + { + "start": 9785.16, + "end": 9788.12, + "probability": 0.8871 + }, + { + "start": 9789.5, + "end": 9792.62, + "probability": 0.9525 + }, + { + "start": 9793.7, + "end": 9795.56, + "probability": 0.8403 + }, + { + "start": 9796.38, + "end": 9799.08, + "probability": 0.9276 + }, + { + "start": 9799.96, + "end": 9802.68, + "probability": 0.9845 + }, + { + "start": 9803.38, + "end": 9807.42, + "probability": 0.967 + }, + { + "start": 9807.42, + "end": 9811.02, + "probability": 0.912 + }, + { + "start": 9811.08, + "end": 9813.04, + "probability": 0.9893 + }, + { + "start": 9813.7, + "end": 9816.28, + "probability": 0.906 + }, + { + "start": 9816.76, + "end": 9817.5, + "probability": 0.6501 + }, + { + "start": 9817.84, + "end": 9818.54, + "probability": 0.9138 + }, + { + "start": 9819.04, + "end": 9819.86, + "probability": 0.9719 + }, + { + "start": 9820.2, + "end": 9824.72, + "probability": 0.9644 + }, + { + "start": 9825.32, + "end": 9827.96, + "probability": 0.9968 + }, + { + "start": 9827.96, + "end": 9830.24, + "probability": 0.8303 + }, + { + "start": 9830.74, + "end": 9831.62, + "probability": 0.4743 + }, + { + "start": 9831.78, + "end": 9835.64, + "probability": 0.9533 + }, + { + "start": 9836.8, + "end": 9838.62, + "probability": 0.9875 + }, + { + "start": 9838.7, + "end": 9840.2, + "probability": 0.9924 + }, + { + "start": 9840.32, + "end": 9842.52, + "probability": 0.9509 + }, + { + "start": 9843.16, + "end": 9846.22, + "probability": 0.6938 + }, + { + "start": 9846.82, + "end": 9847.99, + "probability": 0.6494 + }, + { + "start": 9848.84, + "end": 9851.54, + "probability": 0.8845 + }, + { + "start": 9851.62, + "end": 9853.56, + "probability": 0.8975 + }, + { + "start": 9853.94, + "end": 9856.98, + "probability": 0.9899 + }, + { + "start": 9857.5, + "end": 9858.42, + "probability": 0.7 + }, + { + "start": 9858.52, + "end": 9859.64, + "probability": 0.8727 + }, + { + "start": 9860.0, + "end": 9862.36, + "probability": 0.8111 + }, + { + "start": 9862.52, + "end": 9863.36, + "probability": 0.8079 + }, + { + "start": 9863.7, + "end": 9865.26, + "probability": 0.884 + }, + { + "start": 9865.6, + "end": 9866.84, + "probability": 0.9359 + }, + { + "start": 9866.98, + "end": 9868.96, + "probability": 0.8255 + }, + { + "start": 9869.6, + "end": 9870.06, + "probability": 0.4894 + }, + { + "start": 9870.06, + "end": 9870.48, + "probability": 0.8111 + }, + { + "start": 9870.5, + "end": 9874.02, + "probability": 0.9771 + }, + { + "start": 9874.66, + "end": 9876.54, + "probability": 0.8765 + }, + { + "start": 9876.58, + "end": 9878.8, + "probability": 0.0541 + }, + { + "start": 9879.3, + "end": 9879.96, + "probability": 0.6859 + }, + { + "start": 9880.54, + "end": 9881.08, + "probability": 0.5671 + }, + { + "start": 9881.96, + "end": 9883.08, + "probability": 0.8552 + }, + { + "start": 9883.1, + "end": 9885.34, + "probability": 0.8342 + }, + { + "start": 9885.36, + "end": 9886.6, + "probability": 0.7934 + }, + { + "start": 9886.78, + "end": 9888.92, + "probability": 0.9673 + }, + { + "start": 9889.2, + "end": 9893.0, + "probability": 0.9185 + }, + { + "start": 9893.8, + "end": 9895.7, + "probability": 0.7805 + }, + { + "start": 9896.0, + "end": 9898.92, + "probability": 0.4385 + }, + { + "start": 9899.02, + "end": 9899.76, + "probability": 0.7544 + }, + { + "start": 9899.78, + "end": 9901.62, + "probability": 0.8834 + }, + { + "start": 9901.78, + "end": 9904.1, + "probability": 0.8794 + }, + { + "start": 9904.1, + "end": 9906.46, + "probability": 0.96 + }, + { + "start": 9906.54, + "end": 9907.12, + "probability": 0.6029 + }, + { + "start": 9907.16, + "end": 9909.74, + "probability": 0.8393 + }, + { + "start": 9909.8, + "end": 9911.36, + "probability": 0.9865 + }, + { + "start": 9911.74, + "end": 9914.06, + "probability": 0.9408 + }, + { + "start": 9914.6, + "end": 9917.18, + "probability": 0.6264 + }, + { + "start": 9917.18, + "end": 9918.04, + "probability": 0.9077 + }, + { + "start": 9918.28, + "end": 9918.98, + "probability": 0.9382 + }, + { + "start": 9919.12, + "end": 9919.12, + "probability": 0.2449 + }, + { + "start": 9919.12, + "end": 9920.7, + "probability": 0.7286 + }, + { + "start": 9921.7, + "end": 9922.72, + "probability": 0.6687 + }, + { + "start": 9922.74, + "end": 9924.22, + "probability": 0.8736 + }, + { + "start": 9924.68, + "end": 9926.26, + "probability": 0.926 + }, + { + "start": 9926.68, + "end": 9928.36, + "probability": 0.7473 + }, + { + "start": 9929.2, + "end": 9931.46, + "probability": 0.9392 + }, + { + "start": 9932.14, + "end": 9934.28, + "probability": 0.6661 + }, + { + "start": 9934.4, + "end": 9934.76, + "probability": 0.183 + }, + { + "start": 9934.78, + "end": 9936.02, + "probability": 0.6052 + }, + { + "start": 9936.16, + "end": 9936.74, + "probability": 0.8243 + }, + { + "start": 9937.1, + "end": 9937.56, + "probability": 0.1762 + }, + { + "start": 9937.56, + "end": 9937.96, + "probability": 0.4251 + }, + { + "start": 9938.02, + "end": 9938.7, + "probability": 0.8826 + }, + { + "start": 9939.78, + "end": 9941.04, + "probability": 0.8845 + }, + { + "start": 9941.2, + "end": 9943.63, + "probability": 0.5134 + }, + { + "start": 9944.69, + "end": 9947.18, + "probability": 0.9863 + }, + { + "start": 9947.66, + "end": 9947.76, + "probability": 0.0882 + }, + { + "start": 9947.8, + "end": 9948.74, + "probability": 0.5118 + }, + { + "start": 9948.92, + "end": 9952.64, + "probability": 0.8945 + }, + { + "start": 9953.62, + "end": 9955.26, + "probability": 0.9877 + }, + { + "start": 9955.38, + "end": 9956.7, + "probability": 0.8209 + }, + { + "start": 9956.78, + "end": 9957.16, + "probability": 0.5945 + }, + { + "start": 9957.6, + "end": 9958.6, + "probability": 0.8767 + }, + { + "start": 9961.12, + "end": 9961.46, + "probability": 0.0485 + }, + { + "start": 9961.46, + "end": 9961.46, + "probability": 0.4227 + }, + { + "start": 9961.46, + "end": 9962.28, + "probability": 0.4295 + }, + { + "start": 9963.64, + "end": 9966.34, + "probability": 0.7772 + }, + { + "start": 9968.3, + "end": 9972.06, + "probability": 0.9821 + }, + { + "start": 9972.06, + "end": 9975.76, + "probability": 0.871 + }, + { + "start": 9977.22, + "end": 9979.33, + "probability": 0.8847 + }, + { + "start": 9980.22, + "end": 9983.8, + "probability": 0.8669 + }, + { + "start": 9984.0, + "end": 9984.58, + "probability": 0.723 + }, + { + "start": 9985.62, + "end": 9990.36, + "probability": 0.9744 + }, + { + "start": 9990.52, + "end": 9993.56, + "probability": 0.9976 + }, + { + "start": 9993.66, + "end": 9998.7, + "probability": 0.9891 + }, + { + "start": 9998.76, + "end": 10001.7, + "probability": 0.8523 + }, + { + "start": 10003.14, + "end": 10003.46, + "probability": 0.8667 + }, + { + "start": 10003.54, + "end": 10007.04, + "probability": 0.9879 + }, + { + "start": 10007.22, + "end": 10009.38, + "probability": 0.8688 + }, + { + "start": 10010.16, + "end": 10013.66, + "probability": 0.9464 + }, + { + "start": 10014.08, + "end": 10014.99, + "probability": 0.2114 + }, + { + "start": 10015.64, + "end": 10019.98, + "probability": 0.7634 + }, + { + "start": 10020.24, + "end": 10020.96, + "probability": 0.0826 + }, + { + "start": 10021.04, + "end": 10021.74, + "probability": 0.4136 + }, + { + "start": 10021.9, + "end": 10025.38, + "probability": 0.7054 + }, + { + "start": 10025.74, + "end": 10029.66, + "probability": 0.5481 + }, + { + "start": 10030.42, + "end": 10032.12, + "probability": 0.99 + }, + { + "start": 10032.22, + "end": 10032.94, + "probability": 0.9855 + }, + { + "start": 10033.04, + "end": 10035.0, + "probability": 0.7119 + }, + { + "start": 10035.14, + "end": 10036.9, + "probability": 0.7358 + }, + { + "start": 10036.98, + "end": 10041.0, + "probability": 0.8152 + }, + { + "start": 10041.08, + "end": 10041.89, + "probability": 0.952 + }, + { + "start": 10042.06, + "end": 10044.7, + "probability": 0.9136 + }, + { + "start": 10044.78, + "end": 10046.3, + "probability": 0.8548 + }, + { + "start": 10046.48, + "end": 10048.3, + "probability": 0.9976 + }, + { + "start": 10049.22, + "end": 10051.9, + "probability": 0.9136 + }, + { + "start": 10052.0, + "end": 10055.22, + "probability": 0.9492 + }, + { + "start": 10055.76, + "end": 10056.98, + "probability": 0.8022 + }, + { + "start": 10057.18, + "end": 10057.58, + "probability": 0.5897 + }, + { + "start": 10057.94, + "end": 10058.56, + "probability": 0.3255 + }, + { + "start": 10058.56, + "end": 10060.64, + "probability": 0.7058 + }, + { + "start": 10060.92, + "end": 10062.04, + "probability": 0.9157 + }, + { + "start": 10062.84, + "end": 10066.12, + "probability": 0.9285 + }, + { + "start": 10066.62, + "end": 10069.88, + "probability": 0.9927 + }, + { + "start": 10070.44, + "end": 10071.98, + "probability": 0.9745 + }, + { + "start": 10072.7, + "end": 10077.32, + "probability": 0.8931 + }, + { + "start": 10077.5, + "end": 10077.98, + "probability": 0.3325 + }, + { + "start": 10078.14, + "end": 10078.24, + "probability": 0.7051 + }, + { + "start": 10078.5, + "end": 10079.78, + "probability": 0.8607 + }, + { + "start": 10080.68, + "end": 10088.46, + "probability": 0.9662 + }, + { + "start": 10088.86, + "end": 10091.44, + "probability": 0.9961 + }, + { + "start": 10092.04, + "end": 10094.46, + "probability": 0.7973 + }, + { + "start": 10094.52, + "end": 10095.32, + "probability": 0.8047 + }, + { + "start": 10096.06, + "end": 10100.6, + "probability": 0.9717 + }, + { + "start": 10101.0, + "end": 10105.46, + "probability": 0.7808 + }, + { + "start": 10105.8, + "end": 10109.2, + "probability": 0.8456 + }, + { + "start": 10109.66, + "end": 10110.68, + "probability": 0.7013 + }, + { + "start": 10110.68, + "end": 10111.36, + "probability": 0.3981 + }, + { + "start": 10111.4, + "end": 10112.36, + "probability": 0.9541 + }, + { + "start": 10112.48, + "end": 10112.96, + "probability": 0.7571 + }, + { + "start": 10113.38, + "end": 10117.28, + "probability": 0.944 + }, + { + "start": 10117.28, + "end": 10119.58, + "probability": 0.8085 + }, + { + "start": 10119.82, + "end": 10121.06, + "probability": 0.9963 + }, + { + "start": 10121.46, + "end": 10122.32, + "probability": 0.9282 + }, + { + "start": 10122.96, + "end": 10125.68, + "probability": 0.9941 + }, + { + "start": 10125.72, + "end": 10127.46, + "probability": 0.757 + }, + { + "start": 10127.7, + "end": 10129.74, + "probability": 0.9666 + }, + { + "start": 10130.06, + "end": 10130.24, + "probability": 0.7637 + }, + { + "start": 10131.24, + "end": 10132.2, + "probability": 0.6898 + }, + { + "start": 10132.84, + "end": 10134.48, + "probability": 0.9129 + }, + { + "start": 10135.06, + "end": 10135.58, + "probability": 0.8756 + }, + { + "start": 10135.64, + "end": 10138.62, + "probability": 0.2537 + }, + { + "start": 10138.62, + "end": 10140.46, + "probability": 0.9015 + }, + { + "start": 10141.52, + "end": 10142.4, + "probability": 0.1228 + }, + { + "start": 10143.64, + "end": 10143.82, + "probability": 0.1143 + }, + { + "start": 10143.82, + "end": 10148.86, + "probability": 0.9671 + }, + { + "start": 10149.8, + "end": 10153.86, + "probability": 0.955 + }, + { + "start": 10156.0, + "end": 10156.24, + "probability": 0.2588 + }, + { + "start": 10156.34, + "end": 10158.36, + "probability": 0.716 + }, + { + "start": 10159.74, + "end": 10160.64, + "probability": 0.8313 + }, + { + "start": 10161.72, + "end": 10162.56, + "probability": 0.7031 + }, + { + "start": 10162.68, + "end": 10164.74, + "probability": 0.9889 + }, + { + "start": 10165.3, + "end": 10168.56, + "probability": 0.9066 + }, + { + "start": 10169.16, + "end": 10169.8, + "probability": 0.2468 + }, + { + "start": 10169.94, + "end": 10171.15, + "probability": 0.6211 + }, + { + "start": 10172.5, + "end": 10173.88, + "probability": 0.8897 + }, + { + "start": 10174.88, + "end": 10178.37, + "probability": 0.8689 + }, + { + "start": 10178.46, + "end": 10179.14, + "probability": 0.5776 + }, + { + "start": 10179.68, + "end": 10180.72, + "probability": 0.5196 + }, + { + "start": 10181.82, + "end": 10183.4, + "probability": 0.9911 + }, + { + "start": 10183.54, + "end": 10184.22, + "probability": 0.5841 + }, + { + "start": 10184.22, + "end": 10184.62, + "probability": 0.8097 + }, + { + "start": 10184.68, + "end": 10186.02, + "probability": 0.916 + }, + { + "start": 10186.4, + "end": 10188.5, + "probability": 0.6535 + }, + { + "start": 10189.56, + "end": 10191.0, + "probability": 0.7668 + }, + { + "start": 10191.04, + "end": 10192.94, + "probability": 0.9963 + }, + { + "start": 10193.98, + "end": 10194.62, + "probability": 0.9729 + }, + { + "start": 10195.6, + "end": 10197.3, + "probability": 0.9031 + }, + { + "start": 10199.18, + "end": 10200.16, + "probability": 0.9885 + }, + { + "start": 10201.66, + "end": 10206.38, + "probability": 0.9766 + }, + { + "start": 10206.96, + "end": 10210.62, + "probability": 0.5194 + }, + { + "start": 10211.78, + "end": 10213.36, + "probability": 0.9605 + }, + { + "start": 10215.48, + "end": 10217.12, + "probability": 0.9346 + }, + { + "start": 10219.12, + "end": 10221.68, + "probability": 0.9337 + }, + { + "start": 10222.34, + "end": 10223.0, + "probability": 0.979 + }, + { + "start": 10224.12, + "end": 10228.38, + "probability": 0.9997 + }, + { + "start": 10229.48, + "end": 10233.62, + "probability": 0.9956 + }, + { + "start": 10233.74, + "end": 10234.94, + "probability": 0.9465 + }, + { + "start": 10235.54, + "end": 10243.18, + "probability": 0.9954 + }, + { + "start": 10243.64, + "end": 10247.22, + "probability": 0.9907 + }, + { + "start": 10248.1, + "end": 10248.96, + "probability": 0.5874 + }, + { + "start": 10249.96, + "end": 10252.28, + "probability": 0.9897 + }, + { + "start": 10253.36, + "end": 10254.13, + "probability": 0.9954 + }, + { + "start": 10255.04, + "end": 10255.95, + "probability": 0.6081 + }, + { + "start": 10256.88, + "end": 10258.64, + "probability": 0.8516 + }, + { + "start": 10259.58, + "end": 10260.9, + "probability": 0.8886 + }, + { + "start": 10261.5, + "end": 10263.44, + "probability": 0.8517 + }, + { + "start": 10264.04, + "end": 10266.4, + "probability": 0.9112 + }, + { + "start": 10268.08, + "end": 10270.48, + "probability": 0.9934 + }, + { + "start": 10271.44, + "end": 10273.58, + "probability": 0.9842 + }, + { + "start": 10274.6, + "end": 10277.42, + "probability": 0.9941 + }, + { + "start": 10278.0, + "end": 10280.1, + "probability": 0.7267 + }, + { + "start": 10280.66, + "end": 10284.88, + "probability": 0.9941 + }, + { + "start": 10285.62, + "end": 10290.02, + "probability": 0.8865 + }, + { + "start": 10291.2, + "end": 10294.3, + "probability": 0.9204 + }, + { + "start": 10294.3, + "end": 10294.68, + "probability": 0.6559 + }, + { + "start": 10294.68, + "end": 10295.88, + "probability": 0.7915 + }, + { + "start": 10295.96, + "end": 10296.84, + "probability": 0.9235 + }, + { + "start": 10297.36, + "end": 10302.14, + "probability": 0.9927 + }, + { + "start": 10302.92, + "end": 10305.18, + "probability": 0.7373 + }, + { + "start": 10305.23, + "end": 10308.26, + "probability": 0.8443 + }, + { + "start": 10309.02, + "end": 10310.16, + "probability": 0.8868 + }, + { + "start": 10310.7, + "end": 10311.42, + "probability": 0.8567 + }, + { + "start": 10312.42, + "end": 10313.34, + "probability": 0.894 + }, + { + "start": 10314.12, + "end": 10317.06, + "probability": 0.9918 + }, + { + "start": 10317.74, + "end": 10321.68, + "probability": 0.9922 + }, + { + "start": 10322.22, + "end": 10323.4, + "probability": 0.8082 + }, + { + "start": 10324.22, + "end": 10329.54, + "probability": 0.7907 + }, + { + "start": 10330.5, + "end": 10334.36, + "probability": 0.9839 + }, + { + "start": 10335.16, + "end": 10338.66, + "probability": 0.8387 + }, + { + "start": 10340.45, + "end": 10342.88, + "probability": 0.9329 + }, + { + "start": 10343.8, + "end": 10346.49, + "probability": 0.8568 + }, + { + "start": 10347.14, + "end": 10350.04, + "probability": 0.9709 + }, + { + "start": 10350.58, + "end": 10354.48, + "probability": 0.9929 + }, + { + "start": 10355.16, + "end": 10358.84, + "probability": 0.8972 + }, + { + "start": 10359.56, + "end": 10364.34, + "probability": 0.9919 + }, + { + "start": 10364.42, + "end": 10368.14, + "probability": 0.9663 + }, + { + "start": 10368.38, + "end": 10370.6, + "probability": 0.4054 + }, + { + "start": 10370.66, + "end": 10371.5, + "probability": 0.9673 + }, + { + "start": 10372.14, + "end": 10373.42, + "probability": 0.5196 + }, + { + "start": 10373.68, + "end": 10374.74, + "probability": 0.7868 + }, + { + "start": 10379.24, + "end": 10380.18, + "probability": 0.67 + }, + { + "start": 10384.78, + "end": 10385.28, + "probability": 0.3235 + }, + { + "start": 10387.26, + "end": 10387.36, + "probability": 0.482 + }, + { + "start": 10387.48, + "end": 10389.32, + "probability": 0.737 + }, + { + "start": 10389.45, + "end": 10389.52, + "probability": 0.3125 + }, + { + "start": 10389.52, + "end": 10390.26, + "probability": 0.1075 + }, + { + "start": 10391.32, + "end": 10394.08, + "probability": 0.4346 + }, + { + "start": 10394.28, + "end": 10394.34, + "probability": 0.4243 + }, + { + "start": 10394.34, + "end": 10395.06, + "probability": 0.2488 + }, + { + "start": 10395.8, + "end": 10397.6, + "probability": 0.1695 + }, + { + "start": 10404.96, + "end": 10405.52, + "probability": 0.2895 + }, + { + "start": 10412.38, + "end": 10414.62, + "probability": 0.5431 + }, + { + "start": 10414.88, + "end": 10416.82, + "probability": 0.2317 + }, + { + "start": 10421.16, + "end": 10425.16, + "probability": 0.6338 + }, + { + "start": 10425.16, + "end": 10425.16, + "probability": 0.0632 + }, + { + "start": 10426.0, + "end": 10426.0, + "probability": 0.1779 + }, + { + "start": 10426.52, + "end": 10428.58, + "probability": 0.0932 + }, + { + "start": 10429.58, + "end": 10432.36, + "probability": 0.1523 + }, + { + "start": 10433.82, + "end": 10437.74, + "probability": 0.1353 + }, + { + "start": 10437.94, + "end": 10438.5, + "probability": 0.0678 + }, + { + "start": 10438.76, + "end": 10439.9, + "probability": 0.0296 + }, + { + "start": 10441.74, + "end": 10442.48, + "probability": 0.0597 + }, + { + "start": 10443.16, + "end": 10443.88, + "probability": 0.1121 + }, + { + "start": 10446.14, + "end": 10446.88, + "probability": 0.0442 + }, + { + "start": 10455.22, + "end": 10456.16, + "probability": 0.0951 + }, + { + "start": 10456.16, + "end": 10456.84, + "probability": 0.1597 + }, + { + "start": 10458.66, + "end": 10458.8, + "probability": 0.1185 + }, + { + "start": 10459.78, + "end": 10462.9, + "probability": 0.4677 + }, + { + "start": 10464.36, + "end": 10464.9, + "probability": 0.2798 + }, + { + "start": 10465.66, + "end": 10471.32, + "probability": 0.0146 + }, + { + "start": 10471.94, + "end": 10472.04, + "probability": 0.0417 + }, + { + "start": 10472.04, + "end": 10475.2, + "probability": 0.0067 + }, + { + "start": 10475.2, + "end": 10475.7, + "probability": 0.1269 + }, + { + "start": 10475.7, + "end": 10479.49, + "probability": 0.0449 + }, + { + "start": 10481.0, + "end": 10481.38, + "probability": 0.0278 + }, + { + "start": 10481.86, + "end": 10481.9, + "probability": 0.2031 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + }, + { + "start": 10487.291, + "end": 10487.291, + "probability": 0.0 + } + ], + "segments_count": 3517, + "words_count": 17408, + "avg_words_per_segment": 4.9497, + "avg_segment_duration": 2.2143, + "avg_words_per_minute": 99.5948, + "plenum_id": "23845", + "duration": 10487.29, + "title": null, + "plenum_date": "2012-06-26" +} \ No newline at end of file