diff --git "a/32358/metadata.json" "b/32358/metadata.json" new file mode 100644--- /dev/null +++ "b/32358/metadata.json" @@ -0,0 +1,16352 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32358", + "quality_score": 0.9355, + "per_segment_quality_scores": [ + { + "start": 77.1, + "end": 78.1, + "probability": 0.1783 + }, + { + "start": 79.18, + "end": 82.64, + "probability": 0.8398 + }, + { + "start": 83.18, + "end": 87.86, + "probability": 0.9807 + }, + { + "start": 88.08, + "end": 92.84, + "probability": 0.946 + }, + { + "start": 93.76, + "end": 96.14, + "probability": 0.9037 + }, + { + "start": 96.9, + "end": 99.28, + "probability": 0.7906 + }, + { + "start": 101.7, + "end": 103.28, + "probability": 0.9583 + }, + { + "start": 103.38, + "end": 105.0, + "probability": 0.84 + }, + { + "start": 105.36, + "end": 106.9, + "probability": 0.8871 + }, + { + "start": 107.36, + "end": 107.38, + "probability": 0.0523 + }, + { + "start": 125.46, + "end": 128.88, + "probability": 0.2335 + }, + { + "start": 128.88, + "end": 130.66, + "probability": 0.0468 + }, + { + "start": 132.91, + "end": 133.12, + "probability": 0.0033 + }, + { + "start": 133.78, + "end": 135.18, + "probability": 0.3887 + }, + { + "start": 135.84, + "end": 141.36, + "probability": 0.0689 + }, + { + "start": 142.54, + "end": 146.54, + "probability": 0.1437 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.0, + "probability": 0.0 + }, + { + "start": 247.0, + "end": 247.28, + "probability": 0.7189 + }, + { + "start": 247.94, + "end": 249.24, + "probability": 0.7461 + }, + { + "start": 249.34, + "end": 250.34, + "probability": 0.8739 + }, + { + "start": 251.92, + "end": 254.38, + "probability": 0.7914 + }, + { + "start": 254.5, + "end": 256.72, + "probability": 0.9593 + }, + { + "start": 257.9, + "end": 261.7, + "probability": 0.9099 + }, + { + "start": 262.24, + "end": 267.6, + "probability": 0.9969 + }, + { + "start": 268.3, + "end": 270.84, + "probability": 0.9802 + }, + { + "start": 271.58, + "end": 274.28, + "probability": 0.9668 + }, + { + "start": 275.68, + "end": 279.2, + "probability": 0.9487 + }, + { + "start": 279.2, + "end": 281.64, + "probability": 0.9991 + }, + { + "start": 282.98, + "end": 284.35, + "probability": 0.9823 + }, + { + "start": 284.52, + "end": 286.14, + "probability": 0.8984 + }, + { + "start": 286.76, + "end": 288.14, + "probability": 0.9973 + }, + { + "start": 288.9, + "end": 291.78, + "probability": 0.8998 + }, + { + "start": 293.18, + "end": 296.26, + "probability": 0.9977 + }, + { + "start": 297.98, + "end": 299.24, + "probability": 0.7584 + }, + { + "start": 299.46, + "end": 299.66, + "probability": 0.7838 + }, + { + "start": 299.8, + "end": 301.01, + "probability": 0.9663 + }, + { + "start": 301.16, + "end": 301.8, + "probability": 0.6475 + }, + { + "start": 302.48, + "end": 303.28, + "probability": 0.7416 + }, + { + "start": 303.32, + "end": 305.74, + "probability": 0.9697 + }, + { + "start": 307.58, + "end": 307.84, + "probability": 0.7057 + }, + { + "start": 307.96, + "end": 308.58, + "probability": 0.171 + }, + { + "start": 308.58, + "end": 310.06, + "probability": 0.5122 + }, + { + "start": 311.68, + "end": 313.76, + "probability": 0.6864 + }, + { + "start": 314.32, + "end": 315.1, + "probability": 0.6395 + }, + { + "start": 315.22, + "end": 319.94, + "probability": 0.9803 + }, + { + "start": 320.2, + "end": 320.34, + "probability": 0.1816 + }, + { + "start": 320.34, + "end": 321.32, + "probability": 0.9861 + }, + { + "start": 321.42, + "end": 323.22, + "probability": 0.7498 + }, + { + "start": 323.28, + "end": 324.04, + "probability": 0.6046 + }, + { + "start": 324.08, + "end": 324.72, + "probability": 0.9917 + }, + { + "start": 326.32, + "end": 328.28, + "probability": 0.7804 + }, + { + "start": 328.8, + "end": 330.92, + "probability": 0.9274 + }, + { + "start": 331.8, + "end": 332.96, + "probability": 0.9415 + }, + { + "start": 333.08, + "end": 333.54, + "probability": 0.9056 + }, + { + "start": 333.64, + "end": 333.9, + "probability": 0.3097 + }, + { + "start": 334.04, + "end": 334.44, + "probability": 0.4326 + }, + { + "start": 334.46, + "end": 335.58, + "probability": 0.9299 + }, + { + "start": 341.6, + "end": 344.48, + "probability": 0.6143 + }, + { + "start": 345.44, + "end": 345.46, + "probability": 0.1384 + }, + { + "start": 345.46, + "end": 348.5, + "probability": 0.976 + }, + { + "start": 349.42, + "end": 351.62, + "probability": 0.9846 + }, + { + "start": 352.38, + "end": 355.18, + "probability": 0.8514 + }, + { + "start": 355.18, + "end": 357.96, + "probability": 0.9879 + }, + { + "start": 358.36, + "end": 361.2, + "probability": 0.9939 + }, + { + "start": 361.9, + "end": 362.6, + "probability": 0.8313 + }, + { + "start": 362.82, + "end": 364.9, + "probability": 0.9689 + }, + { + "start": 365.32, + "end": 368.98, + "probability": 0.9631 + }, + { + "start": 368.98, + "end": 372.18, + "probability": 0.9985 + }, + { + "start": 372.78, + "end": 377.4, + "probability": 0.9856 + }, + { + "start": 377.96, + "end": 378.44, + "probability": 0.4399 + }, + { + "start": 378.98, + "end": 381.26, + "probability": 0.8031 + }, + { + "start": 381.5, + "end": 384.92, + "probability": 0.9071 + }, + { + "start": 385.5, + "end": 387.68, + "probability": 0.9841 + }, + { + "start": 388.44, + "end": 389.08, + "probability": 0.6587 + }, + { + "start": 389.12, + "end": 390.06, + "probability": 0.9857 + }, + { + "start": 390.18, + "end": 391.75, + "probability": 0.8881 + }, + { + "start": 392.16, + "end": 394.64, + "probability": 0.932 + }, + { + "start": 394.8, + "end": 396.31, + "probability": 0.6094 + }, + { + "start": 397.08, + "end": 397.68, + "probability": 0.7303 + }, + { + "start": 397.9, + "end": 398.94, + "probability": 0.9634 + }, + { + "start": 399.06, + "end": 401.9, + "probability": 0.7467 + }, + { + "start": 402.1, + "end": 407.52, + "probability": 0.8617 + }, + { + "start": 408.28, + "end": 412.2, + "probability": 0.9838 + }, + { + "start": 412.78, + "end": 416.74, + "probability": 0.9972 + }, + { + "start": 416.74, + "end": 421.06, + "probability": 0.9875 + }, + { + "start": 421.88, + "end": 422.7, + "probability": 0.8326 + }, + { + "start": 423.12, + "end": 423.52, + "probability": 0.7596 + }, + { + "start": 423.86, + "end": 425.1, + "probability": 0.8652 + }, + { + "start": 425.88, + "end": 426.3, + "probability": 0.6557 + }, + { + "start": 426.38, + "end": 427.22, + "probability": 0.9434 + }, + { + "start": 427.26, + "end": 431.34, + "probability": 0.9723 + }, + { + "start": 431.44, + "end": 435.36, + "probability": 0.8679 + }, + { + "start": 435.98, + "end": 436.98, + "probability": 0.8012 + }, + { + "start": 438.44, + "end": 441.32, + "probability": 0.4946 + }, + { + "start": 445.09, + "end": 449.88, + "probability": 0.9377 + }, + { + "start": 450.9, + "end": 451.64, + "probability": 0.7306 + }, + { + "start": 451.88, + "end": 451.96, + "probability": 0.2052 + }, + { + "start": 452.1, + "end": 456.1, + "probability": 0.6567 + }, + { + "start": 456.72, + "end": 459.6, + "probability": 0.9863 + }, + { + "start": 460.2, + "end": 461.24, + "probability": 0.7639 + }, + { + "start": 462.26, + "end": 466.54, + "probability": 0.7291 + }, + { + "start": 466.54, + "end": 468.96, + "probability": 0.8189 + }, + { + "start": 469.02, + "end": 469.88, + "probability": 0.9639 + }, + { + "start": 470.96, + "end": 474.4, + "probability": 0.6935 + }, + { + "start": 475.12, + "end": 478.66, + "probability": 0.9967 + }, + { + "start": 479.18, + "end": 480.72, + "probability": 0.8514 + }, + { + "start": 481.48, + "end": 483.08, + "probability": 0.9761 + }, + { + "start": 483.7, + "end": 484.14, + "probability": 0.8354 + }, + { + "start": 485.38, + "end": 486.74, + "probability": 0.6251 + }, + { + "start": 487.54, + "end": 493.66, + "probability": 0.9783 + }, + { + "start": 493.76, + "end": 498.1, + "probability": 0.9966 + }, + { + "start": 498.6, + "end": 502.28, + "probability": 0.8996 + }, + { + "start": 502.64, + "end": 506.06, + "probability": 0.9958 + }, + { + "start": 506.36, + "end": 507.94, + "probability": 0.9976 + }, + { + "start": 508.98, + "end": 509.74, + "probability": 0.7819 + }, + { + "start": 509.94, + "end": 512.36, + "probability": 0.5708 + }, + { + "start": 512.42, + "end": 514.2, + "probability": 0.8535 + }, + { + "start": 514.92, + "end": 518.12, + "probability": 0.996 + }, + { + "start": 518.34, + "end": 522.96, + "probability": 0.9941 + }, + { + "start": 523.36, + "end": 524.22, + "probability": 0.6877 + }, + { + "start": 524.62, + "end": 527.44, + "probability": 0.9788 + }, + { + "start": 528.14, + "end": 530.02, + "probability": 0.9941 + }, + { + "start": 530.46, + "end": 532.84, + "probability": 0.7802 + }, + { + "start": 533.44, + "end": 536.0, + "probability": 0.9629 + }, + { + "start": 536.78, + "end": 540.58, + "probability": 0.9749 + }, + { + "start": 540.58, + "end": 544.7, + "probability": 0.9627 + }, + { + "start": 545.62, + "end": 545.92, + "probability": 0.6515 + }, + { + "start": 546.92, + "end": 548.48, + "probability": 0.9331 + }, + { + "start": 548.72, + "end": 551.76, + "probability": 0.771 + }, + { + "start": 552.3, + "end": 554.46, + "probability": 0.901 + }, + { + "start": 558.82, + "end": 560.38, + "probability": 0.6458 + }, + { + "start": 561.4, + "end": 564.76, + "probability": 0.9871 + }, + { + "start": 565.66, + "end": 566.64, + "probability": 0.9629 + }, + { + "start": 568.06, + "end": 569.02, + "probability": 0.8801 + }, + { + "start": 570.1, + "end": 571.32, + "probability": 0.9641 + }, + { + "start": 573.56, + "end": 576.08, + "probability": 0.9893 + }, + { + "start": 577.5, + "end": 582.16, + "probability": 0.83 + }, + { + "start": 582.76, + "end": 584.64, + "probability": 0.6856 + }, + { + "start": 586.06, + "end": 588.1, + "probability": 0.7207 + }, + { + "start": 589.54, + "end": 590.34, + "probability": 0.7031 + }, + { + "start": 590.38, + "end": 591.44, + "probability": 0.8917 + }, + { + "start": 591.84, + "end": 594.3, + "probability": 0.8661 + }, + { + "start": 595.04, + "end": 597.56, + "probability": 0.0782 + }, + { + "start": 598.8, + "end": 599.66, + "probability": 0.4245 + }, + { + "start": 601.96, + "end": 603.6, + "probability": 0.9575 + }, + { + "start": 604.92, + "end": 605.3, + "probability": 0.7377 + }, + { + "start": 606.18, + "end": 608.26, + "probability": 0.9969 + }, + { + "start": 609.34, + "end": 615.92, + "probability": 0.92 + }, + { + "start": 616.5, + "end": 618.0, + "probability": 0.5038 + }, + { + "start": 619.2, + "end": 623.7, + "probability": 0.8703 + }, + { + "start": 623.9, + "end": 624.76, + "probability": 0.831 + }, + { + "start": 624.88, + "end": 626.49, + "probability": 0.9775 + }, + { + "start": 627.16, + "end": 629.54, + "probability": 0.8699 + }, + { + "start": 629.96, + "end": 630.62, + "probability": 0.9042 + }, + { + "start": 630.68, + "end": 632.22, + "probability": 0.9863 + }, + { + "start": 632.64, + "end": 633.18, + "probability": 0.7695 + }, + { + "start": 633.6, + "end": 633.99, + "probability": 0.7752 + }, + { + "start": 634.68, + "end": 635.44, + "probability": 0.7302 + }, + { + "start": 636.44, + "end": 637.46, + "probability": 0.7419 + }, + { + "start": 638.66, + "end": 640.82, + "probability": 0.8987 + }, + { + "start": 641.36, + "end": 642.74, + "probability": 0.99 + }, + { + "start": 643.24, + "end": 644.26, + "probability": 0.9614 + }, + { + "start": 644.56, + "end": 645.79, + "probability": 0.9923 + }, + { + "start": 646.28, + "end": 646.58, + "probability": 0.6864 + }, + { + "start": 646.68, + "end": 647.06, + "probability": 0.8297 + }, + { + "start": 647.16, + "end": 648.74, + "probability": 0.1182 + }, + { + "start": 648.86, + "end": 650.48, + "probability": 0.8917 + }, + { + "start": 650.76, + "end": 651.24, + "probability": 0.7558 + }, + { + "start": 652.04, + "end": 653.6, + "probability": 0.7693 + }, + { + "start": 653.72, + "end": 655.92, + "probability": 0.7154 + }, + { + "start": 655.94, + "end": 657.7, + "probability": 0.9042 + }, + { + "start": 661.18, + "end": 662.72, + "probability": 0.693 + }, + { + "start": 664.76, + "end": 672.06, + "probability": 0.8339 + }, + { + "start": 672.06, + "end": 678.82, + "probability": 0.9724 + }, + { + "start": 680.88, + "end": 686.08, + "probability": 0.9972 + }, + { + "start": 687.38, + "end": 688.26, + "probability": 0.7628 + }, + { + "start": 689.22, + "end": 690.9, + "probability": 0.7594 + }, + { + "start": 692.16, + "end": 694.26, + "probability": 0.4276 + }, + { + "start": 695.84, + "end": 696.98, + "probability": 0.7206 + }, + { + "start": 697.28, + "end": 700.9, + "probability": 0.9956 + }, + { + "start": 702.12, + "end": 706.88, + "probability": 0.9789 + }, + { + "start": 707.62, + "end": 709.94, + "probability": 0.9994 + }, + { + "start": 711.76, + "end": 718.3, + "probability": 0.8932 + }, + { + "start": 720.08, + "end": 721.48, + "probability": 0.8966 + }, + { + "start": 722.18, + "end": 723.0, + "probability": 0.9202 + }, + { + "start": 723.86, + "end": 728.26, + "probability": 0.9813 + }, + { + "start": 728.26, + "end": 733.5, + "probability": 0.9833 + }, + { + "start": 734.18, + "end": 740.12, + "probability": 0.9746 + }, + { + "start": 740.16, + "end": 742.24, + "probability": 0.9378 + }, + { + "start": 742.98, + "end": 743.7, + "probability": 0.7662 + }, + { + "start": 744.44, + "end": 751.88, + "probability": 0.9269 + }, + { + "start": 752.86, + "end": 753.36, + "probability": 0.7741 + }, + { + "start": 754.0, + "end": 755.98, + "probability": 0.9758 + }, + { + "start": 757.0, + "end": 760.46, + "probability": 0.9929 + }, + { + "start": 760.96, + "end": 762.29, + "probability": 0.9612 + }, + { + "start": 763.86, + "end": 766.06, + "probability": 0.4968 + }, + { + "start": 768.42, + "end": 769.1, + "probability": 0.2259 + }, + { + "start": 769.48, + "end": 776.9, + "probability": 0.7668 + }, + { + "start": 777.32, + "end": 778.42, + "probability": 0.6725 + }, + { + "start": 778.98, + "end": 782.18, + "probability": 0.883 + }, + { + "start": 782.92, + "end": 785.02, + "probability": 0.4134 + }, + { + "start": 785.5, + "end": 786.54, + "probability": 0.9007 + }, + { + "start": 786.92, + "end": 787.48, + "probability": 0.7437 + }, + { + "start": 788.56, + "end": 788.56, + "probability": 0.2381 + }, + { + "start": 788.56, + "end": 789.76, + "probability": 0.4677 + }, + { + "start": 789.88, + "end": 792.48, + "probability": 0.692 + }, + { + "start": 792.56, + "end": 794.36, + "probability": 0.9679 + }, + { + "start": 794.42, + "end": 795.36, + "probability": 0.4661 + }, + { + "start": 795.98, + "end": 796.14, + "probability": 0.5364 + }, + { + "start": 796.14, + "end": 796.7, + "probability": 0.7141 + }, + { + "start": 796.72, + "end": 798.93, + "probability": 0.5276 + }, + { + "start": 799.42, + "end": 800.68, + "probability": 0.7475 + }, + { + "start": 800.8, + "end": 802.02, + "probability": 0.947 + }, + { + "start": 802.78, + "end": 803.26, + "probability": 0.6924 + }, + { + "start": 803.36, + "end": 804.52, + "probability": 0.6108 + }, + { + "start": 804.8, + "end": 807.06, + "probability": 0.8907 + }, + { + "start": 807.06, + "end": 809.9, + "probability": 0.9468 + }, + { + "start": 811.12, + "end": 811.62, + "probability": 0.6101 + }, + { + "start": 811.74, + "end": 812.86, + "probability": 0.4204 + }, + { + "start": 813.24, + "end": 817.78, + "probability": 0.9793 + }, + { + "start": 818.78, + "end": 822.14, + "probability": 0.9399 + }, + { + "start": 822.66, + "end": 824.59, + "probability": 0.8467 + }, + { + "start": 825.02, + "end": 830.92, + "probability": 0.9272 + }, + { + "start": 830.92, + "end": 835.02, + "probability": 0.9436 + }, + { + "start": 835.96, + "end": 836.5, + "probability": 0.8546 + }, + { + "start": 836.68, + "end": 837.92, + "probability": 0.4944 + }, + { + "start": 838.34, + "end": 843.34, + "probability": 0.9744 + }, + { + "start": 844.32, + "end": 847.88, + "probability": 0.9788 + }, + { + "start": 848.54, + "end": 850.14, + "probability": 0.948 + }, + { + "start": 850.48, + "end": 851.34, + "probability": 0.941 + }, + { + "start": 851.78, + "end": 854.76, + "probability": 0.9629 + }, + { + "start": 855.86, + "end": 856.36, + "probability": 0.9303 + }, + { + "start": 856.48, + "end": 857.8, + "probability": 0.5281 + }, + { + "start": 858.0, + "end": 861.5, + "probability": 0.9841 + }, + { + "start": 861.92, + "end": 863.12, + "probability": 0.7769 + }, + { + "start": 864.38, + "end": 866.24, + "probability": 0.9958 + }, + { + "start": 867.0, + "end": 867.58, + "probability": 0.7066 + }, + { + "start": 867.64, + "end": 868.96, + "probability": 0.7971 + }, + { + "start": 868.96, + "end": 871.42, + "probability": 0.9636 + }, + { + "start": 871.8, + "end": 874.04, + "probability": 0.9976 + }, + { + "start": 874.88, + "end": 878.38, + "probability": 0.9228 + }, + { + "start": 878.38, + "end": 882.8, + "probability": 0.9424 + }, + { + "start": 883.1, + "end": 884.94, + "probability": 0.8225 + }, + { + "start": 885.36, + "end": 885.58, + "probability": 0.6946 + }, + { + "start": 886.34, + "end": 888.22, + "probability": 0.8211 + }, + { + "start": 888.32, + "end": 889.78, + "probability": 0.8528 + }, + { + "start": 889.88, + "end": 890.38, + "probability": 0.489 + }, + { + "start": 890.4, + "end": 892.08, + "probability": 0.9269 + }, + { + "start": 901.06, + "end": 903.04, + "probability": 0.6231 + }, + { + "start": 904.04, + "end": 908.66, + "probability": 0.9417 + }, + { + "start": 909.32, + "end": 912.43, + "probability": 0.8056 + }, + { + "start": 913.02, + "end": 914.14, + "probability": 0.9304 + }, + { + "start": 914.86, + "end": 917.6, + "probability": 0.8439 + }, + { + "start": 918.2, + "end": 921.4, + "probability": 0.5791 + }, + { + "start": 921.54, + "end": 923.4, + "probability": 0.7971 + }, + { + "start": 923.56, + "end": 929.14, + "probability": 0.899 + }, + { + "start": 929.46, + "end": 929.78, + "probability": 0.7436 + }, + { + "start": 929.88, + "end": 933.84, + "probability": 0.978 + }, + { + "start": 934.72, + "end": 935.48, + "probability": 0.9983 + }, + { + "start": 936.08, + "end": 939.9, + "probability": 0.9996 + }, + { + "start": 939.9, + "end": 942.56, + "probability": 0.993 + }, + { + "start": 942.72, + "end": 943.38, + "probability": 0.717 + }, + { + "start": 943.86, + "end": 944.86, + "probability": 0.8845 + }, + { + "start": 945.18, + "end": 946.66, + "probability": 0.979 + }, + { + "start": 947.06, + "end": 952.74, + "probability": 0.9971 + }, + { + "start": 952.86, + "end": 953.46, + "probability": 0.5584 + }, + { + "start": 953.58, + "end": 954.72, + "probability": 0.8398 + }, + { + "start": 955.48, + "end": 956.44, + "probability": 0.9386 + }, + { + "start": 957.16, + "end": 958.84, + "probability": 0.9711 + }, + { + "start": 959.08, + "end": 961.66, + "probability": 0.9683 + }, + { + "start": 962.1, + "end": 964.3, + "probability": 0.7321 + }, + { + "start": 964.34, + "end": 969.68, + "probability": 0.9954 + }, + { + "start": 970.26, + "end": 971.16, + "probability": 0.7107 + }, + { + "start": 971.2, + "end": 971.8, + "probability": 0.8713 + }, + { + "start": 971.92, + "end": 973.78, + "probability": 0.6943 + }, + { + "start": 973.98, + "end": 974.46, + "probability": 0.5622 + }, + { + "start": 974.58, + "end": 975.14, + "probability": 0.7065 + }, + { + "start": 975.58, + "end": 976.72, + "probability": 0.9822 + }, + { + "start": 977.26, + "end": 977.63, + "probability": 0.8506 + }, + { + "start": 978.4, + "end": 980.42, + "probability": 0.9253 + }, + { + "start": 980.82, + "end": 984.2, + "probability": 0.9833 + }, + { + "start": 984.48, + "end": 988.58, + "probability": 0.993 + }, + { + "start": 988.76, + "end": 992.78, + "probability": 0.8137 + }, + { + "start": 992.78, + "end": 993.68, + "probability": 0.8652 + }, + { + "start": 994.0, + "end": 995.76, + "probability": 0.9698 + }, + { + "start": 996.0, + "end": 996.24, + "probability": 0.8041 + }, + { + "start": 997.12, + "end": 998.98, + "probability": 0.7397 + }, + { + "start": 999.08, + "end": 1001.02, + "probability": 0.9634 + }, + { + "start": 1001.48, + "end": 1001.94, + "probability": 0.5209 + }, + { + "start": 1002.04, + "end": 1003.44, + "probability": 0.825 + }, + { + "start": 1009.6, + "end": 1013.56, + "probability": 0.8704 + }, + { + "start": 1013.96, + "end": 1015.18, + "probability": 0.7862 + }, + { + "start": 1015.34, + "end": 1016.82, + "probability": 0.8366 + }, + { + "start": 1016.94, + "end": 1017.98, + "probability": 0.8806 + }, + { + "start": 1018.06, + "end": 1019.0, + "probability": 0.8753 + }, + { + "start": 1019.66, + "end": 1020.09, + "probability": 0.5376 + }, + { + "start": 1020.1, + "end": 1021.98, + "probability": 0.7858 + }, + { + "start": 1022.9, + "end": 1026.42, + "probability": 0.5066 + }, + { + "start": 1028.3, + "end": 1032.3, + "probability": 0.8287 + }, + { + "start": 1032.34, + "end": 1037.86, + "probability": 0.915 + }, + { + "start": 1038.5, + "end": 1039.62, + "probability": 0.8718 + }, + { + "start": 1040.82, + "end": 1044.54, + "probability": 0.7999 + }, + { + "start": 1047.12, + "end": 1051.3, + "probability": 0.8994 + }, + { + "start": 1051.68, + "end": 1054.16, + "probability": 0.98 + }, + { + "start": 1055.32, + "end": 1056.14, + "probability": 0.6182 + }, + { + "start": 1056.84, + "end": 1061.12, + "probability": 0.9907 + }, + { + "start": 1061.74, + "end": 1062.14, + "probability": 0.8326 + }, + { + "start": 1062.28, + "end": 1062.88, + "probability": 0.7793 + }, + { + "start": 1062.94, + "end": 1065.78, + "probability": 0.9271 + }, + { + "start": 1065.86, + "end": 1066.26, + "probability": 0.8571 + }, + { + "start": 1066.32, + "end": 1066.92, + "probability": 0.9451 + }, + { + "start": 1067.38, + "end": 1071.72, + "probability": 0.7091 + }, + { + "start": 1072.5, + "end": 1073.62, + "probability": 0.8378 + }, + { + "start": 1073.74, + "end": 1074.3, + "probability": 0.4672 + }, + { + "start": 1074.4, + "end": 1076.06, + "probability": 0.9973 + }, + { + "start": 1076.14, + "end": 1078.26, + "probability": 0.9979 + }, + { + "start": 1078.58, + "end": 1080.34, + "probability": 0.9854 + }, + { + "start": 1080.46, + "end": 1081.34, + "probability": 0.523 + }, + { + "start": 1082.14, + "end": 1084.7, + "probability": 0.9328 + }, + { + "start": 1085.06, + "end": 1087.56, + "probability": 0.9562 + }, + { + "start": 1087.56, + "end": 1090.7, + "probability": 0.9436 + }, + { + "start": 1090.82, + "end": 1091.02, + "probability": 0.4042 + }, + { + "start": 1092.46, + "end": 1093.98, + "probability": 0.9932 + }, + { + "start": 1094.9, + "end": 1098.92, + "probability": 0.9912 + }, + { + "start": 1098.98, + "end": 1100.5, + "probability": 0.9044 + }, + { + "start": 1100.58, + "end": 1103.0, + "probability": 0.9127 + }, + { + "start": 1103.12, + "end": 1105.5, + "probability": 0.9878 + }, + { + "start": 1105.56, + "end": 1108.98, + "probability": 0.9967 + }, + { + "start": 1109.96, + "end": 1113.64, + "probability": 0.9639 + }, + { + "start": 1114.62, + "end": 1115.32, + "probability": 0.9578 + }, + { + "start": 1116.08, + "end": 1118.18, + "probability": 0.8891 + }, + { + "start": 1118.88, + "end": 1123.36, + "probability": 0.9625 + }, + { + "start": 1123.5, + "end": 1124.5, + "probability": 0.9039 + }, + { + "start": 1124.6, + "end": 1127.52, + "probability": 0.8853 + }, + { + "start": 1128.22, + "end": 1128.42, + "probability": 0.7368 + }, + { + "start": 1129.18, + "end": 1130.32, + "probability": 0.761 + }, + { + "start": 1130.86, + "end": 1132.42, + "probability": 0.7123 + }, + { + "start": 1132.82, + "end": 1133.5, + "probability": 0.4842 + }, + { + "start": 1133.52, + "end": 1134.74, + "probability": 0.9796 + }, + { + "start": 1142.72, + "end": 1144.66, + "probability": 0.8412 + }, + { + "start": 1145.64, + "end": 1148.18, + "probability": 0.9325 + }, + { + "start": 1149.04, + "end": 1151.76, + "probability": 0.8677 + }, + { + "start": 1152.14, + "end": 1153.28, + "probability": 0.7451 + }, + { + "start": 1153.7, + "end": 1155.94, + "probability": 0.9719 + }, + { + "start": 1156.62, + "end": 1157.74, + "probability": 0.8695 + }, + { + "start": 1158.44, + "end": 1160.46, + "probability": 0.9568 + }, + { + "start": 1160.92, + "end": 1162.1, + "probability": 0.9612 + }, + { + "start": 1162.24, + "end": 1162.7, + "probability": 0.857 + }, + { + "start": 1162.84, + "end": 1163.14, + "probability": 0.9921 + }, + { + "start": 1164.28, + "end": 1164.4, + "probability": 0.6995 + }, + { + "start": 1164.52, + "end": 1164.92, + "probability": 0.8471 + }, + { + "start": 1164.98, + "end": 1171.36, + "probability": 0.837 + }, + { + "start": 1171.96, + "end": 1176.46, + "probability": 0.98 + }, + { + "start": 1176.8, + "end": 1179.54, + "probability": 0.898 + }, + { + "start": 1180.18, + "end": 1183.96, + "probability": 0.8945 + }, + { + "start": 1184.54, + "end": 1187.64, + "probability": 0.9498 + }, + { + "start": 1188.22, + "end": 1193.82, + "probability": 0.9406 + }, + { + "start": 1194.02, + "end": 1197.96, + "probability": 0.6658 + }, + { + "start": 1198.58, + "end": 1201.3, + "probability": 0.9866 + }, + { + "start": 1201.8, + "end": 1201.98, + "probability": 0.6578 + }, + { + "start": 1202.6, + "end": 1204.44, + "probability": 0.5179 + }, + { + "start": 1204.6, + "end": 1206.09, + "probability": 0.8839 + }, + { + "start": 1206.5, + "end": 1207.3, + "probability": 0.5991 + }, + { + "start": 1207.62, + "end": 1208.96, + "probability": 0.7109 + }, + { + "start": 1225.76, + "end": 1227.1, + "probability": 0.6932 + }, + { + "start": 1227.56, + "end": 1228.46, + "probability": 0.8074 + }, + { + "start": 1228.78, + "end": 1229.6, + "probability": 0.7909 + }, + { + "start": 1229.72, + "end": 1230.62, + "probability": 0.7632 + }, + { + "start": 1231.64, + "end": 1238.38, + "probability": 0.9167 + }, + { + "start": 1239.1, + "end": 1239.56, + "probability": 0.6776 + }, + { + "start": 1239.72, + "end": 1241.98, + "probability": 0.9686 + }, + { + "start": 1242.04, + "end": 1246.2, + "probability": 0.9416 + }, + { + "start": 1248.48, + "end": 1253.8, + "probability": 0.6998 + }, + { + "start": 1254.16, + "end": 1256.2, + "probability": 0.7507 + }, + { + "start": 1256.92, + "end": 1262.1, + "probability": 0.9783 + }, + { + "start": 1262.66, + "end": 1264.84, + "probability": 0.9727 + }, + { + "start": 1265.54, + "end": 1269.26, + "probability": 0.9654 + }, + { + "start": 1269.44, + "end": 1271.46, + "probability": 0.9497 + }, + { + "start": 1272.24, + "end": 1275.92, + "probability": 0.9517 + }, + { + "start": 1276.76, + "end": 1278.04, + "probability": 0.8907 + }, + { + "start": 1279.7, + "end": 1280.38, + "probability": 0.9684 + }, + { + "start": 1281.5, + "end": 1283.83, + "probability": 0.7156 + }, + { + "start": 1286.08, + "end": 1290.1, + "probability": 0.9946 + }, + { + "start": 1291.1, + "end": 1293.78, + "probability": 0.8265 + }, + { + "start": 1294.56, + "end": 1296.22, + "probability": 0.9627 + }, + { + "start": 1297.56, + "end": 1298.1, + "probability": 0.7185 + }, + { + "start": 1298.72, + "end": 1299.12, + "probability": 0.9053 + }, + { + "start": 1299.54, + "end": 1300.09, + "probability": 0.4572 + }, + { + "start": 1301.54, + "end": 1302.94, + "probability": 0.9991 + }, + { + "start": 1303.72, + "end": 1304.8, + "probability": 0.6266 + }, + { + "start": 1305.4, + "end": 1307.14, + "probability": 0.9653 + }, + { + "start": 1307.68, + "end": 1308.58, + "probability": 0.5709 + }, + { + "start": 1309.32, + "end": 1316.36, + "probability": 0.9801 + }, + { + "start": 1316.88, + "end": 1319.34, + "probability": 0.9802 + }, + { + "start": 1320.06, + "end": 1320.4, + "probability": 0.8149 + }, + { + "start": 1320.86, + "end": 1322.8, + "probability": 0.8398 + }, + { + "start": 1322.92, + "end": 1324.48, + "probability": 0.5634 + }, + { + "start": 1324.52, + "end": 1325.06, + "probability": 0.6928 + }, + { + "start": 1325.14, + "end": 1326.34, + "probability": 0.7258 + }, + { + "start": 1334.28, + "end": 1335.04, + "probability": 0.6103 + }, + { + "start": 1335.3, + "end": 1336.28, + "probability": 0.7969 + }, + { + "start": 1336.42, + "end": 1339.86, + "probability": 0.9102 + }, + { + "start": 1340.56, + "end": 1343.26, + "probability": 0.9574 + }, + { + "start": 1344.06, + "end": 1346.22, + "probability": 0.8088 + }, + { + "start": 1347.14, + "end": 1348.06, + "probability": 0.9397 + }, + { + "start": 1348.7, + "end": 1349.06, + "probability": 0.5 + }, + { + "start": 1349.28, + "end": 1351.77, + "probability": 0.7478 + }, + { + "start": 1353.8, + "end": 1354.36, + "probability": 0.7636 + }, + { + "start": 1354.92, + "end": 1356.92, + "probability": 0.9953 + }, + { + "start": 1357.64, + "end": 1363.16, + "probability": 0.9503 + }, + { + "start": 1364.38, + "end": 1365.86, + "probability": 0.9806 + }, + { + "start": 1366.82, + "end": 1369.18, + "probability": 0.9434 + }, + { + "start": 1370.32, + "end": 1371.54, + "probability": 0.8099 + }, + { + "start": 1372.76, + "end": 1379.02, + "probability": 0.9906 + }, + { + "start": 1379.26, + "end": 1380.86, + "probability": 0.7432 + }, + { + "start": 1381.3, + "end": 1383.78, + "probability": 0.9924 + }, + { + "start": 1384.86, + "end": 1386.94, + "probability": 0.9714 + }, + { + "start": 1387.56, + "end": 1388.52, + "probability": 0.9497 + }, + { + "start": 1388.6, + "end": 1389.78, + "probability": 0.9352 + }, + { + "start": 1389.9, + "end": 1394.32, + "probability": 0.922 + }, + { + "start": 1395.88, + "end": 1400.26, + "probability": 0.9929 + }, + { + "start": 1400.86, + "end": 1405.02, + "probability": 0.9991 + }, + { + "start": 1406.02, + "end": 1407.18, + "probability": 0.7534 + }, + { + "start": 1407.96, + "end": 1410.76, + "probability": 0.9948 + }, + { + "start": 1410.76, + "end": 1415.5, + "probability": 0.9989 + }, + { + "start": 1416.16, + "end": 1419.8, + "probability": 0.9359 + }, + { + "start": 1420.96, + "end": 1422.64, + "probability": 0.9587 + }, + { + "start": 1422.98, + "end": 1426.04, + "probability": 0.9067 + }, + { + "start": 1426.44, + "end": 1433.18, + "probability": 0.8589 + }, + { + "start": 1434.04, + "end": 1435.56, + "probability": 0.3397 + }, + { + "start": 1436.4, + "end": 1438.46, + "probability": 0.9482 + }, + { + "start": 1438.68, + "end": 1438.86, + "probability": 0.6799 + }, + { + "start": 1439.62, + "end": 1441.58, + "probability": 0.5351 + }, + { + "start": 1442.26, + "end": 1443.96, + "probability": 0.7691 + }, + { + "start": 1444.1, + "end": 1444.2, + "probability": 0.415 + }, + { + "start": 1444.6, + "end": 1446.18, + "probability": 0.9279 + }, + { + "start": 1448.14, + "end": 1450.42, + "probability": 0.8934 + }, + { + "start": 1451.38, + "end": 1453.2, + "probability": 0.7624 + }, + { + "start": 1454.1, + "end": 1455.64, + "probability": 0.9796 + }, + { + "start": 1456.2, + "end": 1459.7, + "probability": 0.9839 + }, + { + "start": 1459.74, + "end": 1462.28, + "probability": 0.984 + }, + { + "start": 1462.96, + "end": 1465.72, + "probability": 0.8625 + }, + { + "start": 1466.48, + "end": 1469.8, + "probability": 0.5878 + }, + { + "start": 1471.34, + "end": 1473.58, + "probability": 0.8687 + }, + { + "start": 1474.68, + "end": 1477.0, + "probability": 0.5503 + }, + { + "start": 1477.7, + "end": 1483.92, + "probability": 0.9146 + }, + { + "start": 1483.98, + "end": 1485.74, + "probability": 0.9106 + }, + { + "start": 1486.24, + "end": 1486.9, + "probability": 0.5867 + }, + { + "start": 1486.92, + "end": 1491.54, + "probability": 0.8867 + }, + { + "start": 1492.56, + "end": 1500.96, + "probability": 0.68 + }, + { + "start": 1501.24, + "end": 1503.06, + "probability": 0.9141 + }, + { + "start": 1503.56, + "end": 1505.84, + "probability": 0.6671 + }, + { + "start": 1506.58, + "end": 1511.38, + "probability": 0.8457 + }, + { + "start": 1511.54, + "end": 1518.34, + "probability": 0.9924 + }, + { + "start": 1519.26, + "end": 1520.62, + "probability": 0.24 + }, + { + "start": 1520.8, + "end": 1525.5, + "probability": 0.8232 + }, + { + "start": 1525.5, + "end": 1531.44, + "probability": 0.9854 + }, + { + "start": 1531.72, + "end": 1535.22, + "probability": 0.9914 + }, + { + "start": 1535.22, + "end": 1538.43, + "probability": 0.9459 + }, + { + "start": 1539.0, + "end": 1540.42, + "probability": 0.3408 + }, + { + "start": 1540.48, + "end": 1544.98, + "probability": 0.6327 + }, + { + "start": 1545.0, + "end": 1545.64, + "probability": 0.828 + }, + { + "start": 1546.64, + "end": 1547.16, + "probability": 0.7523 + }, + { + "start": 1547.26, + "end": 1550.9, + "probability": 0.9089 + }, + { + "start": 1550.96, + "end": 1555.46, + "probability": 0.7585 + }, + { + "start": 1555.52, + "end": 1561.46, + "probability": 0.7717 + }, + { + "start": 1562.4, + "end": 1563.56, + "probability": 0.5613 + }, + { + "start": 1563.76, + "end": 1565.08, + "probability": 0.7064 + }, + { + "start": 1565.2, + "end": 1568.82, + "probability": 0.8278 + }, + { + "start": 1568.86, + "end": 1570.44, + "probability": 0.9337 + }, + { + "start": 1571.24, + "end": 1576.46, + "probability": 0.9444 + }, + { + "start": 1576.58, + "end": 1580.0, + "probability": 0.9587 + }, + { + "start": 1580.02, + "end": 1584.62, + "probability": 0.9924 + }, + { + "start": 1585.42, + "end": 1585.66, + "probability": 0.7256 + }, + { + "start": 1585.94, + "end": 1588.2, + "probability": 0.6783 + }, + { + "start": 1588.74, + "end": 1590.48, + "probability": 0.5916 + }, + { + "start": 1592.34, + "end": 1596.34, + "probability": 0.8452 + }, + { + "start": 1596.48, + "end": 1597.16, + "probability": 0.4405 + }, + { + "start": 1597.18, + "end": 1598.8, + "probability": 0.6624 + }, + { + "start": 1599.38, + "end": 1602.18, + "probability": 0.9867 + }, + { + "start": 1603.76, + "end": 1604.7, + "probability": 0.6987 + }, + { + "start": 1604.98, + "end": 1606.18, + "probability": 0.7234 + }, + { + "start": 1606.32, + "end": 1612.08, + "probability": 0.9735 + }, + { + "start": 1612.16, + "end": 1612.8, + "probability": 0.5946 + }, + { + "start": 1613.6, + "end": 1616.48, + "probability": 0.9111 + }, + { + "start": 1617.02, + "end": 1618.37, + "probability": 0.9727 + }, + { + "start": 1618.84, + "end": 1620.78, + "probability": 0.8641 + }, + { + "start": 1621.38, + "end": 1627.48, + "probability": 0.9933 + }, + { + "start": 1627.58, + "end": 1629.22, + "probability": 0.922 + }, + { + "start": 1629.32, + "end": 1630.62, + "probability": 0.9208 + }, + { + "start": 1630.68, + "end": 1633.74, + "probability": 0.9818 + }, + { + "start": 1634.32, + "end": 1635.46, + "probability": 0.726 + }, + { + "start": 1635.64, + "end": 1637.6, + "probability": 0.9608 + }, + { + "start": 1638.02, + "end": 1642.1, + "probability": 0.9767 + }, + { + "start": 1642.74, + "end": 1644.3, + "probability": 0.9898 + }, + { + "start": 1645.14, + "end": 1645.46, + "probability": 0.5425 + }, + { + "start": 1647.2, + "end": 1648.9, + "probability": 0.9697 + }, + { + "start": 1649.12, + "end": 1651.6, + "probability": 0.8153 + }, + { + "start": 1658.26, + "end": 1661.44, + "probability": 0.83 + }, + { + "start": 1662.94, + "end": 1667.06, + "probability": 0.9572 + }, + { + "start": 1667.44, + "end": 1668.66, + "probability": 0.6796 + }, + { + "start": 1669.2, + "end": 1670.96, + "probability": 0.7176 + }, + { + "start": 1671.7, + "end": 1680.22, + "probability": 0.9882 + }, + { + "start": 1680.9, + "end": 1686.82, + "probability": 0.9736 + }, + { + "start": 1687.02, + "end": 1688.12, + "probability": 0.3501 + }, + { + "start": 1688.88, + "end": 1693.98, + "probability": 0.984 + }, + { + "start": 1694.74, + "end": 1696.74, + "probability": 0.9119 + }, + { + "start": 1697.42, + "end": 1700.46, + "probability": 0.9946 + }, + { + "start": 1701.32, + "end": 1702.86, + "probability": 0.3068 + }, + { + "start": 1703.5, + "end": 1704.12, + "probability": 0.9479 + }, + { + "start": 1705.0, + "end": 1709.28, + "probability": 0.9756 + }, + { + "start": 1710.42, + "end": 1712.8, + "probability": 0.6924 + }, + { + "start": 1713.8, + "end": 1719.96, + "probability": 0.8152 + }, + { + "start": 1721.1, + "end": 1724.4, + "probability": 0.9846 + }, + { + "start": 1724.4, + "end": 1726.5, + "probability": 0.9708 + }, + { + "start": 1727.28, + "end": 1727.89, + "probability": 0.96 + }, + { + "start": 1729.06, + "end": 1730.74, + "probability": 0.937 + }, + { + "start": 1731.46, + "end": 1734.12, + "probability": 0.95 + }, + { + "start": 1737.56, + "end": 1739.84, + "probability": 0.508 + }, + { + "start": 1740.74, + "end": 1743.06, + "probability": 0.9028 + }, + { + "start": 1743.84, + "end": 1748.58, + "probability": 0.9917 + }, + { + "start": 1748.82, + "end": 1754.72, + "probability": 0.8666 + }, + { + "start": 1754.8, + "end": 1756.2, + "probability": 0.9323 + }, + { + "start": 1757.14, + "end": 1761.24, + "probability": 0.8549 + }, + { + "start": 1761.38, + "end": 1763.62, + "probability": 0.7143 + }, + { + "start": 1787.24, + "end": 1789.28, + "probability": 0.687 + }, + { + "start": 1789.48, + "end": 1791.46, + "probability": 0.5763 + }, + { + "start": 1792.32, + "end": 1793.02, + "probability": 0.8376 + }, + { + "start": 1797.44, + "end": 1799.0, + "probability": 0.5808 + }, + { + "start": 1800.42, + "end": 1801.24, + "probability": 0.8477 + }, + { + "start": 1802.44, + "end": 1804.96, + "probability": 0.8824 + }, + { + "start": 1805.86, + "end": 1810.24, + "probability": 0.9437 + }, + { + "start": 1810.84, + "end": 1812.42, + "probability": 0.7651 + }, + { + "start": 1813.02, + "end": 1815.64, + "probability": 0.5787 + }, + { + "start": 1815.7, + "end": 1816.62, + "probability": 0.8557 + }, + { + "start": 1817.54, + "end": 1818.64, + "probability": 0.8055 + }, + { + "start": 1819.44, + "end": 1821.06, + "probability": 0.6992 + }, + { + "start": 1821.78, + "end": 1826.66, + "probability": 0.9058 + }, + { + "start": 1827.58, + "end": 1828.36, + "probability": 0.882 + }, + { + "start": 1829.04, + "end": 1831.9, + "probability": 0.9177 + }, + { + "start": 1832.08, + "end": 1833.6, + "probability": 0.857 + }, + { + "start": 1834.16, + "end": 1835.64, + "probability": 0.9939 + }, + { + "start": 1835.98, + "end": 1837.12, + "probability": 0.4796 + }, + { + "start": 1837.32, + "end": 1839.14, + "probability": 0.9463 + }, + { + "start": 1839.72, + "end": 1844.66, + "probability": 0.8953 + }, + { + "start": 1845.96, + "end": 1848.76, + "probability": 0.9316 + }, + { + "start": 1848.76, + "end": 1851.28, + "probability": 0.9987 + }, + { + "start": 1851.76, + "end": 1855.92, + "probability": 0.9497 + }, + { + "start": 1856.78, + "end": 1857.34, + "probability": 0.9653 + }, + { + "start": 1858.4, + "end": 1859.34, + "probability": 0.9297 + }, + { + "start": 1859.74, + "end": 1861.84, + "probability": 0.9277 + }, + { + "start": 1862.38, + "end": 1864.34, + "probability": 0.9225 + }, + { + "start": 1864.46, + "end": 1866.12, + "probability": 0.9377 + }, + { + "start": 1866.26, + "end": 1869.7, + "probability": 0.9622 + }, + { + "start": 1869.78, + "end": 1871.96, + "probability": 0.825 + }, + { + "start": 1872.56, + "end": 1873.46, + "probability": 0.8926 + }, + { + "start": 1874.04, + "end": 1875.54, + "probability": 0.9927 + }, + { + "start": 1877.04, + "end": 1878.02, + "probability": 0.7947 + }, + { + "start": 1878.14, + "end": 1880.44, + "probability": 0.9501 + }, + { + "start": 1880.44, + "end": 1882.68, + "probability": 0.9943 + }, + { + "start": 1882.84, + "end": 1884.5, + "probability": 0.982 + }, + { + "start": 1884.56, + "end": 1885.84, + "probability": 0.6839 + }, + { + "start": 1886.88, + "end": 1891.68, + "probability": 0.996 + }, + { + "start": 1892.9, + "end": 1896.64, + "probability": 0.8632 + }, + { + "start": 1898.32, + "end": 1900.14, + "probability": 0.7074 + }, + { + "start": 1900.8, + "end": 1901.46, + "probability": 0.7637 + }, + { + "start": 1902.04, + "end": 1908.22, + "probability": 0.9755 + }, + { + "start": 1908.8, + "end": 1911.6, + "probability": 0.637 + }, + { + "start": 1912.48, + "end": 1913.62, + "probability": 0.989 + }, + { + "start": 1914.56, + "end": 1915.4, + "probability": 0.6525 + }, + { + "start": 1915.46, + "end": 1916.72, + "probability": 0.8936 + }, + { + "start": 1917.16, + "end": 1918.94, + "probability": 0.8957 + }, + { + "start": 1920.46, + "end": 1926.64, + "probability": 0.9139 + }, + { + "start": 1926.92, + "end": 1927.18, + "probability": 0.8128 + }, + { + "start": 1927.54, + "end": 1930.18, + "probability": 0.7944 + }, + { + "start": 1930.56, + "end": 1934.67, + "probability": 0.8171 + }, + { + "start": 1934.94, + "end": 1935.7, + "probability": 0.5756 + }, + { + "start": 1936.1, + "end": 1938.9, + "probability": 0.9915 + }, + { + "start": 1939.04, + "end": 1939.66, + "probability": 0.5724 + }, + { + "start": 1940.02, + "end": 1940.44, + "probability": 0.9343 + }, + { + "start": 1940.88, + "end": 1944.2, + "probability": 0.9972 + }, + { + "start": 1944.22, + "end": 1947.4, + "probability": 0.9964 + }, + { + "start": 1949.02, + "end": 1952.1, + "probability": 0.9421 + }, + { + "start": 1952.68, + "end": 1954.96, + "probability": 0.9966 + }, + { + "start": 1955.42, + "end": 1958.02, + "probability": 0.9088 + }, + { + "start": 1959.68, + "end": 1966.06, + "probability": 0.9563 + }, + { + "start": 1966.8, + "end": 1968.4, + "probability": 0.7166 + }, + { + "start": 1968.54, + "end": 1970.78, + "probability": 0.9397 + }, + { + "start": 1971.04, + "end": 1972.7, + "probability": 0.6105 + }, + { + "start": 1973.48, + "end": 1979.08, + "probability": 0.999 + }, + { + "start": 1979.08, + "end": 1986.18, + "probability": 0.9995 + }, + { + "start": 1986.8, + "end": 1987.84, + "probability": 0.945 + }, + { + "start": 1988.56, + "end": 1992.46, + "probability": 0.9934 + }, + { + "start": 1992.46, + "end": 1997.12, + "probability": 0.9846 + }, + { + "start": 1997.74, + "end": 1998.24, + "probability": 0.7989 + }, + { + "start": 1998.9, + "end": 2002.4, + "probability": 0.995 + }, + { + "start": 2002.4, + "end": 2006.1, + "probability": 0.9691 + }, + { + "start": 2006.84, + "end": 2007.28, + "probability": 0.7694 + }, + { + "start": 2007.82, + "end": 2013.36, + "probability": 0.91 + }, + { + "start": 2014.34, + "end": 2017.76, + "probability": 0.9749 + }, + { + "start": 2020.7, + "end": 2022.8, + "probability": 0.7375 + }, + { + "start": 2022.86, + "end": 2023.68, + "probability": 0.7002 + }, + { + "start": 2028.06, + "end": 2028.62, + "probability": 0.5483 + }, + { + "start": 2029.82, + "end": 2030.6, + "probability": 0.745 + }, + { + "start": 2031.68, + "end": 2034.22, + "probability": 0.9055 + }, + { + "start": 2035.2, + "end": 2038.76, + "probability": 0.9701 + }, + { + "start": 2038.86, + "end": 2041.16, + "probability": 0.8854 + }, + { + "start": 2042.64, + "end": 2044.96, + "probability": 0.9952 + }, + { + "start": 2045.66, + "end": 2049.18, + "probability": 0.9695 + }, + { + "start": 2049.8, + "end": 2050.44, + "probability": 0.7327 + }, + { + "start": 2050.56, + "end": 2051.16, + "probability": 0.5241 + }, + { + "start": 2051.32, + "end": 2052.52, + "probability": 0.8539 + }, + { + "start": 2053.02, + "end": 2055.03, + "probability": 0.9632 + }, + { + "start": 2055.92, + "end": 2057.32, + "probability": 0.959 + }, + { + "start": 2057.78, + "end": 2058.7, + "probability": 0.8762 + }, + { + "start": 2059.32, + "end": 2060.66, + "probability": 0.8247 + }, + { + "start": 2061.42, + "end": 2063.84, + "probability": 0.8309 + }, + { + "start": 2064.3, + "end": 2066.4, + "probability": 0.9624 + }, + { + "start": 2066.64, + "end": 2067.46, + "probability": 0.9698 + }, + { + "start": 2068.1, + "end": 2070.18, + "probability": 0.9782 + }, + { + "start": 2070.3, + "end": 2071.4, + "probability": 0.9858 + }, + { + "start": 2071.72, + "end": 2076.14, + "probability": 0.9634 + }, + { + "start": 2076.14, + "end": 2079.72, + "probability": 0.9839 + }, + { + "start": 2079.8, + "end": 2080.92, + "probability": 0.9761 + }, + { + "start": 2081.6, + "end": 2081.64, + "probability": 0.1507 + }, + { + "start": 2081.64, + "end": 2082.3, + "probability": 0.9 + }, + { + "start": 2082.42, + "end": 2082.92, + "probability": 0.9217 + }, + { + "start": 2083.12, + "end": 2085.62, + "probability": 0.9004 + }, + { + "start": 2085.7, + "end": 2087.0, + "probability": 0.987 + }, + { + "start": 2087.7, + "end": 2089.36, + "probability": 0.9814 + }, + { + "start": 2089.4, + "end": 2090.02, + "probability": 0.7966 + }, + { + "start": 2090.06, + "end": 2090.9, + "probability": 0.9862 + }, + { + "start": 2091.0, + "end": 2091.48, + "probability": 0.9359 + }, + { + "start": 2092.34, + "end": 2093.44, + "probability": 0.9839 + }, + { + "start": 2094.8, + "end": 2095.02, + "probability": 0.5078 + }, + { + "start": 2095.56, + "end": 2099.44, + "probability": 0.9657 + }, + { + "start": 2100.26, + "end": 2104.44, + "probability": 0.9905 + }, + { + "start": 2104.52, + "end": 2105.4, + "probability": 0.6533 + }, + { + "start": 2105.72, + "end": 2107.04, + "probability": 0.9962 + }, + { + "start": 2107.48, + "end": 2107.64, + "probability": 0.79 + }, + { + "start": 2108.88, + "end": 2110.2, + "probability": 0.8367 + }, + { + "start": 2110.34, + "end": 2111.8, + "probability": 0.8992 + }, + { + "start": 2111.96, + "end": 2114.32, + "probability": 0.9816 + }, + { + "start": 2116.68, + "end": 2117.1, + "probability": 0.0534 + }, + { + "start": 2117.1, + "end": 2119.24, + "probability": 0.5789 + }, + { + "start": 2119.4, + "end": 2122.52, + "probability": 0.96 + }, + { + "start": 2122.82, + "end": 2126.46, + "probability": 0.6853 + }, + { + "start": 2126.78, + "end": 2128.32, + "probability": 0.5077 + }, + { + "start": 2130.78, + "end": 2132.46, + "probability": 0.0799 + }, + { + "start": 2132.46, + "end": 2132.96, + "probability": 0.6216 + }, + { + "start": 2133.57, + "end": 2134.83, + "probability": 0.1669 + }, + { + "start": 2136.34, + "end": 2139.68, + "probability": 0.9463 + }, + { + "start": 2139.84, + "end": 2144.34, + "probability": 0.6728 + }, + { + "start": 2144.34, + "end": 2146.22, + "probability": 0.7536 + }, + { + "start": 2146.3, + "end": 2146.8, + "probability": 0.86 + }, + { + "start": 2146.92, + "end": 2148.74, + "probability": 0.4848 + }, + { + "start": 2148.84, + "end": 2151.28, + "probability": 0.5013 + }, + { + "start": 2151.32, + "end": 2151.84, + "probability": 0.6869 + }, + { + "start": 2164.55, + "end": 2166.84, + "probability": 0.1738 + }, + { + "start": 2166.84, + "end": 2166.88, + "probability": 0.1158 + }, + { + "start": 2166.88, + "end": 2167.26, + "probability": 0.0811 + }, + { + "start": 2167.26, + "end": 2170.34, + "probability": 0.649 + }, + { + "start": 2170.56, + "end": 2170.84, + "probability": 0.0019 + }, + { + "start": 2170.92, + "end": 2171.44, + "probability": 0.8146 + }, + { + "start": 2172.0, + "end": 2175.08, + "probability": 0.9378 + }, + { + "start": 2175.4, + "end": 2178.96, + "probability": 0.9946 + }, + { + "start": 2179.56, + "end": 2182.16, + "probability": 0.9443 + }, + { + "start": 2182.24, + "end": 2185.64, + "probability": 0.9896 + }, + { + "start": 2186.42, + "end": 2189.92, + "probability": 0.9551 + }, + { + "start": 2191.3, + "end": 2192.74, + "probability": 0.6962 + }, + { + "start": 2192.82, + "end": 2194.08, + "probability": 0.4809 + }, + { + "start": 2194.14, + "end": 2195.42, + "probability": 0.8617 + }, + { + "start": 2195.74, + "end": 2197.93, + "probability": 0.9165 + }, + { + "start": 2198.78, + "end": 2199.94, + "probability": 0.7948 + }, + { + "start": 2202.88, + "end": 2205.32, + "probability": 0.8602 + }, + { + "start": 2206.18, + "end": 2210.26, + "probability": 0.8243 + }, + { + "start": 2210.26, + "end": 2210.92, + "probability": 0.5267 + }, + { + "start": 2211.42, + "end": 2213.04, + "probability": 0.7954 + }, + { + "start": 2214.14, + "end": 2216.36, + "probability": 0.9241 + }, + { + "start": 2216.36, + "end": 2220.24, + "probability": 0.9709 + }, + { + "start": 2220.36, + "end": 2221.5, + "probability": 0.9031 + }, + { + "start": 2221.68, + "end": 2224.96, + "probability": 0.9935 + }, + { + "start": 2224.96, + "end": 2229.08, + "probability": 0.9778 + }, + { + "start": 2229.84, + "end": 2235.0, + "probability": 0.9806 + }, + { + "start": 2235.0, + "end": 2239.46, + "probability": 0.9993 + }, + { + "start": 2240.26, + "end": 2240.96, + "probability": 0.5806 + }, + { + "start": 2241.14, + "end": 2244.92, + "probability": 0.8304 + }, + { + "start": 2245.06, + "end": 2245.87, + "probability": 0.9213 + }, + { + "start": 2246.86, + "end": 2249.48, + "probability": 0.9974 + }, + { + "start": 2250.0, + "end": 2252.8, + "probability": 0.9916 + }, + { + "start": 2253.6, + "end": 2256.04, + "probability": 0.8439 + }, + { + "start": 2256.18, + "end": 2261.2, + "probability": 0.9938 + }, + { + "start": 2261.92, + "end": 2262.78, + "probability": 0.9099 + }, + { + "start": 2263.28, + "end": 2266.68, + "probability": 0.9871 + }, + { + "start": 2266.68, + "end": 2269.54, + "probability": 0.9542 + }, + { + "start": 2270.62, + "end": 2272.32, + "probability": 0.8098 + }, + { + "start": 2272.44, + "end": 2273.12, + "probability": 0.7193 + }, + { + "start": 2273.94, + "end": 2275.3, + "probability": 0.7345 + }, + { + "start": 2275.76, + "end": 2276.26, + "probability": 0.6086 + }, + { + "start": 2276.4, + "end": 2277.26, + "probability": 0.7822 + }, + { + "start": 2277.74, + "end": 2279.86, + "probability": 0.9094 + }, + { + "start": 2280.42, + "end": 2283.58, + "probability": 0.5323 + }, + { + "start": 2283.66, + "end": 2284.56, + "probability": 0.8978 + }, + { + "start": 2286.04, + "end": 2290.58, + "probability": 0.7488 + }, + { + "start": 2291.42, + "end": 2293.32, + "probability": 0.9604 + }, + { + "start": 2293.84, + "end": 2294.76, + "probability": 0.8452 + }, + { + "start": 2294.88, + "end": 2299.2, + "probability": 0.9512 + }, + { + "start": 2299.4, + "end": 2300.0, + "probability": 0.7382 + }, + { + "start": 2300.08, + "end": 2300.72, + "probability": 0.7638 + }, + { + "start": 2300.82, + "end": 2301.52, + "probability": 0.6817 + }, + { + "start": 2302.2, + "end": 2308.14, + "probability": 0.9857 + }, + { + "start": 2308.4, + "end": 2312.08, + "probability": 0.8993 + }, + { + "start": 2312.22, + "end": 2314.6, + "probability": 0.7533 + }, + { + "start": 2315.66, + "end": 2316.12, + "probability": 0.6665 + }, + { + "start": 2317.14, + "end": 2320.76, + "probability": 0.5364 + }, + { + "start": 2321.34, + "end": 2323.36, + "probability": 0.9482 + }, + { + "start": 2324.0, + "end": 2328.28, + "probability": 0.9839 + }, + { + "start": 2328.42, + "end": 2332.26, + "probability": 0.9734 + }, + { + "start": 2332.26, + "end": 2337.54, + "probability": 0.9805 + }, + { + "start": 2337.58, + "end": 2339.36, + "probability": 0.9871 + }, + { + "start": 2340.18, + "end": 2341.5, + "probability": 0.9272 + }, + { + "start": 2341.62, + "end": 2343.02, + "probability": 0.7102 + }, + { + "start": 2345.36, + "end": 2345.36, + "probability": 0.2483 + }, + { + "start": 2345.36, + "end": 2347.22, + "probability": 0.4434 + }, + { + "start": 2347.8, + "end": 2350.74, + "probability": 0.9123 + }, + { + "start": 2350.9, + "end": 2355.42, + "probability": 0.8209 + }, + { + "start": 2355.5, + "end": 2357.84, + "probability": 0.8835 + }, + { + "start": 2358.94, + "end": 2359.48, + "probability": 0.3665 + }, + { + "start": 2359.68, + "end": 2360.38, + "probability": 0.3322 + }, + { + "start": 2360.4, + "end": 2363.92, + "probability": 0.872 + }, + { + "start": 2365.04, + "end": 2370.28, + "probability": 0.9877 + }, + { + "start": 2370.86, + "end": 2375.64, + "probability": 0.9659 + }, + { + "start": 2376.18, + "end": 2377.64, + "probability": 0.9385 + }, + { + "start": 2378.46, + "end": 2379.98, + "probability": 0.9748 + }, + { + "start": 2380.42, + "end": 2384.8, + "probability": 0.9385 + }, + { + "start": 2385.1, + "end": 2385.54, + "probability": 0.9134 + }, + { + "start": 2385.82, + "end": 2386.34, + "probability": 0.8842 + }, + { + "start": 2387.08, + "end": 2389.14, + "probability": 0.9456 + }, + { + "start": 2389.42, + "end": 2392.48, + "probability": 0.9907 + }, + { + "start": 2394.18, + "end": 2396.56, + "probability": 0.9592 + }, + { + "start": 2398.66, + "end": 2399.6, + "probability": 0.5583 + }, + { + "start": 2399.72, + "end": 2403.52, + "probability": 0.9913 + }, + { + "start": 2403.62, + "end": 2404.98, + "probability": 0.4885 + }, + { + "start": 2405.04, + "end": 2409.56, + "probability": 0.9822 + }, + { + "start": 2409.66, + "end": 2413.82, + "probability": 0.9941 + }, + { + "start": 2414.6, + "end": 2415.26, + "probability": 0.4574 + }, + { + "start": 2415.88, + "end": 2418.28, + "probability": 0.6382 + }, + { + "start": 2419.08, + "end": 2421.12, + "probability": 0.9392 + }, + { + "start": 2422.56, + "end": 2423.72, + "probability": 0.9317 + }, + { + "start": 2423.9, + "end": 2426.24, + "probability": 0.9599 + }, + { + "start": 2426.64, + "end": 2428.08, + "probability": 0.8621 + }, + { + "start": 2428.8, + "end": 2429.64, + "probability": 0.9167 + }, + { + "start": 2430.76, + "end": 2432.56, + "probability": 0.9559 + }, + { + "start": 2433.42, + "end": 2434.04, + "probability": 0.9602 + }, + { + "start": 2434.22, + "end": 2434.84, + "probability": 0.9812 + }, + { + "start": 2435.1, + "end": 2439.18, + "probability": 0.9618 + }, + { + "start": 2439.92, + "end": 2441.68, + "probability": 0.9903 + }, + { + "start": 2441.84, + "end": 2444.38, + "probability": 0.9616 + }, + { + "start": 2445.84, + "end": 2447.4, + "probability": 0.2637 + }, + { + "start": 2447.48, + "end": 2450.44, + "probability": 0.7843 + }, + { + "start": 2450.54, + "end": 2453.5, + "probability": 0.8805 + }, + { + "start": 2459.3, + "end": 2463.4, + "probability": 0.5849 + }, + { + "start": 2463.92, + "end": 2467.9, + "probability": 0.9902 + }, + { + "start": 2467.9, + "end": 2472.56, + "probability": 0.967 + }, + { + "start": 2472.98, + "end": 2473.22, + "probability": 0.4557 + }, + { + "start": 2473.94, + "end": 2475.66, + "probability": 0.7652 + }, + { + "start": 2475.76, + "end": 2476.54, + "probability": 0.619 + }, + { + "start": 2477.22, + "end": 2479.72, + "probability": 0.7568 + }, + { + "start": 2480.28, + "end": 2481.18, + "probability": 0.6223 + }, + { + "start": 2482.02, + "end": 2482.94, + "probability": 0.9467 + }, + { + "start": 2483.68, + "end": 2485.26, + "probability": 0.9697 + }, + { + "start": 2487.22, + "end": 2491.44, + "probability": 0.7824 + }, + { + "start": 2492.02, + "end": 2498.3, + "probability": 0.6625 + }, + { + "start": 2499.12, + "end": 2501.24, + "probability": 0.9884 + }, + { + "start": 2501.24, + "end": 2505.16, + "probability": 0.9617 + }, + { + "start": 2505.46, + "end": 2505.7, + "probability": 0.3513 + }, + { + "start": 2505.84, + "end": 2505.84, + "probability": 0.819 + }, + { + "start": 2505.84, + "end": 2508.98, + "probability": 0.8248 + }, + { + "start": 2509.6, + "end": 2514.45, + "probability": 0.96 + }, + { + "start": 2514.78, + "end": 2520.14, + "probability": 0.9746 + }, + { + "start": 2521.04, + "end": 2522.82, + "probability": 0.8999 + }, + { + "start": 2524.62, + "end": 2526.74, + "probability": 0.9722 + }, + { + "start": 2526.74, + "end": 2530.26, + "probability": 0.9952 + }, + { + "start": 2530.78, + "end": 2532.38, + "probability": 0.892 + }, + { + "start": 2532.54, + "end": 2535.32, + "probability": 0.8294 + }, + { + "start": 2535.94, + "end": 2537.58, + "probability": 0.7969 + }, + { + "start": 2537.62, + "end": 2538.38, + "probability": 0.7793 + }, + { + "start": 2538.54, + "end": 2541.72, + "probability": 0.9942 + }, + { + "start": 2542.78, + "end": 2546.76, + "probability": 0.9097 + }, + { + "start": 2547.14, + "end": 2548.18, + "probability": 0.6709 + }, + { + "start": 2549.02, + "end": 2552.22, + "probability": 0.8942 + }, + { + "start": 2552.52, + "end": 2556.32, + "probability": 0.9926 + }, + { + "start": 2557.3, + "end": 2561.8, + "probability": 0.9933 + }, + { + "start": 2562.34, + "end": 2566.72, + "probability": 0.9891 + }, + { + "start": 2567.62, + "end": 2568.04, + "probability": 0.4387 + }, + { + "start": 2568.14, + "end": 2572.72, + "probability": 0.9808 + }, + { + "start": 2573.6, + "end": 2574.3, + "probability": 0.8521 + }, + { + "start": 2575.0, + "end": 2580.7, + "probability": 0.9655 + }, + { + "start": 2581.5, + "end": 2583.64, + "probability": 0.6457 + }, + { + "start": 2584.42, + "end": 2590.12, + "probability": 0.9899 + }, + { + "start": 2590.8, + "end": 2593.1, + "probability": 0.7291 + }, + { + "start": 2593.92, + "end": 2599.56, + "probability": 0.9717 + }, + { + "start": 2600.32, + "end": 2605.46, + "probability": 0.9688 + }, + { + "start": 2606.18, + "end": 2606.6, + "probability": 0.994 + }, + { + "start": 2607.9, + "end": 2610.86, + "probability": 0.9831 + }, + { + "start": 2611.68, + "end": 2615.96, + "probability": 0.9951 + }, + { + "start": 2617.02, + "end": 2619.38, + "probability": 0.9551 + }, + { + "start": 2620.32, + "end": 2621.9, + "probability": 0.9289 + }, + { + "start": 2622.5, + "end": 2624.78, + "probability": 0.998 + }, + { + "start": 2624.92, + "end": 2627.12, + "probability": 0.8809 + }, + { + "start": 2627.56, + "end": 2628.38, + "probability": 0.9045 + }, + { + "start": 2628.48, + "end": 2629.2, + "probability": 0.8805 + }, + { + "start": 2631.02, + "end": 2635.72, + "probability": 0.9582 + }, + { + "start": 2635.72, + "end": 2639.88, + "probability": 0.9559 + }, + { + "start": 2640.64, + "end": 2646.48, + "probability": 0.9624 + }, + { + "start": 2647.94, + "end": 2649.96, + "probability": 0.705 + }, + { + "start": 2649.98, + "end": 2650.56, + "probability": 0.6177 + }, + { + "start": 2659.46, + "end": 2662.04, + "probability": 0.5683 + }, + { + "start": 2664.16, + "end": 2665.96, + "probability": 0.6845 + }, + { + "start": 2666.88, + "end": 2667.28, + "probability": 0.9513 + }, + { + "start": 2667.4, + "end": 2668.18, + "probability": 0.3838 + }, + { + "start": 2668.68, + "end": 2670.18, + "probability": 0.7053 + }, + { + "start": 2670.26, + "end": 2670.9, + "probability": 0.915 + }, + { + "start": 2671.28, + "end": 2673.78, + "probability": 0.9663 + }, + { + "start": 2673.8, + "end": 2674.5, + "probability": 0.9578 + }, + { + "start": 2675.24, + "end": 2677.42, + "probability": 0.7853 + }, + { + "start": 2677.76, + "end": 2678.56, + "probability": 0.929 + }, + { + "start": 2678.62, + "end": 2681.34, + "probability": 0.786 + }, + { + "start": 2681.86, + "end": 2682.88, + "probability": 0.9727 + }, + { + "start": 2683.26, + "end": 2685.76, + "probability": 0.9185 + }, + { + "start": 2686.14, + "end": 2686.96, + "probability": 0.9649 + }, + { + "start": 2687.06, + "end": 2688.22, + "probability": 0.8696 + }, + { + "start": 2688.26, + "end": 2690.0, + "probability": 0.9345 + }, + { + "start": 2690.48, + "end": 2691.38, + "probability": 0.9932 + }, + { + "start": 2691.48, + "end": 2692.0, + "probability": 0.7255 + }, + { + "start": 2692.02, + "end": 2693.18, + "probability": 0.5667 + }, + { + "start": 2693.72, + "end": 2693.72, + "probability": 0.0486 + }, + { + "start": 2693.72, + "end": 2694.7, + "probability": 0.2289 + }, + { + "start": 2694.96, + "end": 2697.5, + "probability": 0.9915 + }, + { + "start": 2697.88, + "end": 2698.6, + "probability": 0.9495 + }, + { + "start": 2699.4, + "end": 2699.76, + "probability": 0.5169 + }, + { + "start": 2699.88, + "end": 2702.14, + "probability": 0.9818 + }, + { + "start": 2702.24, + "end": 2703.2, + "probability": 0.9163 + }, + { + "start": 2703.44, + "end": 2704.86, + "probability": 0.9784 + }, + { + "start": 2704.9, + "end": 2705.54, + "probability": 0.4265 + }, + { + "start": 2706.02, + "end": 2706.74, + "probability": 0.7154 + }, + { + "start": 2706.76, + "end": 2707.44, + "probability": 0.4393 + }, + { + "start": 2707.46, + "end": 2709.94, + "probability": 0.8958 + }, + { + "start": 2710.58, + "end": 2710.84, + "probability": 0.0424 + }, + { + "start": 2712.62, + "end": 2713.76, + "probability": 0.8122 + }, + { + "start": 2713.9, + "end": 2717.2, + "probability": 0.9966 + }, + { + "start": 2717.32, + "end": 2718.2, + "probability": 0.7764 + }, + { + "start": 2718.26, + "end": 2718.64, + "probability": 0.3592 + }, + { + "start": 2718.68, + "end": 2719.14, + "probability": 0.7917 + }, + { + "start": 2719.3, + "end": 2720.48, + "probability": 0.9264 + }, + { + "start": 2720.86, + "end": 2722.46, + "probability": 0.5604 + }, + { + "start": 2722.46, + "end": 2725.44, + "probability": 0.8114 + }, + { + "start": 2725.58, + "end": 2727.53, + "probability": 0.998 + }, + { + "start": 2728.38, + "end": 2730.1, + "probability": 0.9375 + }, + { + "start": 2730.1, + "end": 2733.3, + "probability": 0.9886 + }, + { + "start": 2733.64, + "end": 2735.82, + "probability": 0.9945 + }, + { + "start": 2735.82, + "end": 2737.84, + "probability": 0.9349 + }, + { + "start": 2738.6, + "end": 2739.56, + "probability": 0.4264 + }, + { + "start": 2739.64, + "end": 2740.42, + "probability": 0.785 + }, + { + "start": 2740.96, + "end": 2744.16, + "probability": 0.9868 + }, + { + "start": 2745.14, + "end": 2745.74, + "probability": 0.8665 + }, + { + "start": 2746.08, + "end": 2747.88, + "probability": 0.8842 + }, + { + "start": 2748.04, + "end": 2750.28, + "probability": 0.9194 + }, + { + "start": 2750.28, + "end": 2753.2, + "probability": 0.9695 + }, + { + "start": 2753.34, + "end": 2754.24, + "probability": 0.5249 + }, + { + "start": 2755.0, + "end": 2757.08, + "probability": 0.915 + }, + { + "start": 2757.38, + "end": 2760.3, + "probability": 0.9692 + }, + { + "start": 2760.64, + "end": 2761.34, + "probability": 0.6036 + }, + { + "start": 2761.72, + "end": 2763.14, + "probability": 0.7535 + }, + { + "start": 2763.2, + "end": 2765.7, + "probability": 0.9399 + }, + { + "start": 2766.84, + "end": 2767.06, + "probability": 0.0163 + }, + { + "start": 2767.06, + "end": 2768.46, + "probability": 0.4783 + }, + { + "start": 2769.26, + "end": 2770.68, + "probability": 0.6353 + }, + { + "start": 2770.7, + "end": 2774.16, + "probability": 0.8485 + }, + { + "start": 2774.62, + "end": 2779.24, + "probability": 0.8705 + }, + { + "start": 2779.9, + "end": 2781.1, + "probability": 0.821 + }, + { + "start": 2781.24, + "end": 2787.08, + "probability": 0.9716 + }, + { + "start": 2787.16, + "end": 2787.94, + "probability": 0.7344 + }, + { + "start": 2788.38, + "end": 2788.91, + "probability": 0.4717 + }, + { + "start": 2789.94, + "end": 2792.12, + "probability": 0.8517 + }, + { + "start": 2792.88, + "end": 2795.52, + "probability": 0.8854 + }, + { + "start": 2796.0, + "end": 2800.52, + "probability": 0.9938 + }, + { + "start": 2801.12, + "end": 2802.06, + "probability": 0.8936 + }, + { + "start": 2802.76, + "end": 2806.46, + "probability": 0.6641 + }, + { + "start": 2807.08, + "end": 2809.66, + "probability": 0.9843 + }, + { + "start": 2810.16, + "end": 2815.4, + "probability": 0.9727 + }, + { + "start": 2816.26, + "end": 2818.16, + "probability": 0.5269 + }, + { + "start": 2818.62, + "end": 2819.52, + "probability": 0.2705 + }, + { + "start": 2819.66, + "end": 2821.1, + "probability": 0.7365 + }, + { + "start": 2821.4, + "end": 2822.8, + "probability": 0.9654 + }, + { + "start": 2822.94, + "end": 2824.02, + "probability": 0.9768 + }, + { + "start": 2826.01, + "end": 2827.76, + "probability": 0.5265 + }, + { + "start": 2828.04, + "end": 2832.44, + "probability": 0.802 + }, + { + "start": 2833.0, + "end": 2836.16, + "probability": 0.8224 + }, + { + "start": 2836.58, + "end": 2838.68, + "probability": 0.7668 + }, + { + "start": 2838.98, + "end": 2840.74, + "probability": 0.768 + }, + { + "start": 2841.22, + "end": 2845.66, + "probability": 0.8456 + }, + { + "start": 2846.18, + "end": 2850.12, + "probability": 0.8997 + }, + { + "start": 2850.64, + "end": 2853.34, + "probability": 0.8289 + }, + { + "start": 2854.02, + "end": 2859.62, + "probability": 0.9733 + }, + { + "start": 2860.32, + "end": 2864.28, + "probability": 0.9974 + }, + { + "start": 2864.62, + "end": 2868.02, + "probability": 0.9772 + }, + { + "start": 2868.4, + "end": 2870.4, + "probability": 0.8955 + }, + { + "start": 2870.46, + "end": 2872.28, + "probability": 0.933 + }, + { + "start": 2872.92, + "end": 2877.2, + "probability": 0.9688 + }, + { + "start": 2877.88, + "end": 2880.22, + "probability": 0.6773 + }, + { + "start": 2880.66, + "end": 2882.9, + "probability": 0.9912 + }, + { + "start": 2883.22, + "end": 2886.2, + "probability": 0.9888 + }, + { + "start": 2886.2, + "end": 2891.64, + "probability": 0.994 + }, + { + "start": 2892.08, + "end": 2892.79, + "probability": 0.9668 + }, + { + "start": 2893.56, + "end": 2898.36, + "probability": 0.8482 + }, + { + "start": 2898.7, + "end": 2904.2, + "probability": 0.8625 + }, + { + "start": 2904.68, + "end": 2907.88, + "probability": 0.9953 + }, + { + "start": 2907.88, + "end": 2911.16, + "probability": 0.9899 + }, + { + "start": 2911.46, + "end": 2916.36, + "probability": 0.9683 + }, + { + "start": 2916.36, + "end": 2920.06, + "probability": 0.988 + }, + { + "start": 2920.36, + "end": 2921.56, + "probability": 0.9135 + }, + { + "start": 2921.66, + "end": 2921.9, + "probability": 0.9206 + }, + { + "start": 2922.68, + "end": 2925.04, + "probability": 0.5352 + }, + { + "start": 2925.1, + "end": 2926.14, + "probability": 0.7572 + }, + { + "start": 2926.26, + "end": 2929.36, + "probability": 0.9432 + }, + { + "start": 2929.46, + "end": 2931.06, + "probability": 0.9411 + }, + { + "start": 2931.32, + "end": 2934.42, + "probability": 0.4415 + }, + { + "start": 2934.42, + "end": 2936.82, + "probability": 0.7296 + }, + { + "start": 2937.26, + "end": 2939.68, + "probability": 0.833 + }, + { + "start": 2939.72, + "end": 2942.22, + "probability": 0.6598 + }, + { + "start": 2942.8, + "end": 2943.76, + "probability": 0.4973 + }, + { + "start": 2943.9, + "end": 2946.06, + "probability": 0.9446 + }, + { + "start": 2946.84, + "end": 2951.84, + "probability": 0.9169 + }, + { + "start": 2952.62, + "end": 2958.0, + "probability": 0.9397 + }, + { + "start": 2958.96, + "end": 2961.58, + "probability": 0.9955 + }, + { + "start": 2962.28, + "end": 2965.58, + "probability": 0.9738 + }, + { + "start": 2965.58, + "end": 2968.9, + "probability": 0.9905 + }, + { + "start": 2969.36, + "end": 2969.94, + "probability": 0.7236 + }, + { + "start": 2970.6, + "end": 2973.52, + "probability": 0.9949 + }, + { + "start": 2973.92, + "end": 2977.0, + "probability": 0.9954 + }, + { + "start": 2977.46, + "end": 2982.96, + "probability": 0.9912 + }, + { + "start": 2984.14, + "end": 2985.53, + "probability": 0.9392 + }, + { + "start": 2985.64, + "end": 2988.54, + "probability": 0.9857 + }, + { + "start": 2988.88, + "end": 2990.64, + "probability": 0.9882 + }, + { + "start": 2991.42, + "end": 2993.52, + "probability": 0.4695 + }, + { + "start": 2994.0, + "end": 2995.22, + "probability": 0.966 + }, + { + "start": 2995.64, + "end": 2998.82, + "probability": 0.9846 + }, + { + "start": 2999.18, + "end": 3000.1, + "probability": 0.9441 + }, + { + "start": 3001.3, + "end": 3001.64, + "probability": 0.9591 + }, + { + "start": 3002.7, + "end": 3004.14, + "probability": 0.7703 + }, + { + "start": 3005.5, + "end": 3010.14, + "probability": 0.9409 + }, + { + "start": 3010.4, + "end": 3011.78, + "probability": 0.5753 + }, + { + "start": 3012.42, + "end": 3015.56, + "probability": 0.9813 + }, + { + "start": 3016.08, + "end": 3020.88, + "probability": 0.8303 + }, + { + "start": 3021.48, + "end": 3024.04, + "probability": 0.4498 + }, + { + "start": 3026.34, + "end": 3027.86, + "probability": 0.5391 + }, + { + "start": 3028.38, + "end": 3028.52, + "probability": 0.4436 + }, + { + "start": 3029.92, + "end": 3030.66, + "probability": 0.4062 + }, + { + "start": 3030.66, + "end": 3031.4, + "probability": 0.0572 + }, + { + "start": 3032.64, + "end": 3032.9, + "probability": 0.0554 + }, + { + "start": 3032.9, + "end": 3034.52, + "probability": 0.9542 + }, + { + "start": 3035.18, + "end": 3035.2, + "probability": 0.4897 + }, + { + "start": 3035.2, + "end": 3038.82, + "probability": 0.9746 + }, + { + "start": 3038.88, + "end": 3040.44, + "probability": 0.9944 + }, + { + "start": 3041.34, + "end": 3047.28, + "probability": 0.9749 + }, + { + "start": 3048.32, + "end": 3048.46, + "probability": 0.5211 + }, + { + "start": 3049.2, + "end": 3050.88, + "probability": 0.7032 + }, + { + "start": 3052.6, + "end": 3059.04, + "probability": 0.9954 + }, + { + "start": 3059.04, + "end": 3065.22, + "probability": 0.9832 + }, + { + "start": 3067.56, + "end": 3069.48, + "probability": 0.7471 + }, + { + "start": 3070.28, + "end": 3074.18, + "probability": 0.9674 + }, + { + "start": 3075.08, + "end": 3077.96, + "probability": 0.7751 + }, + { + "start": 3078.9, + "end": 3080.1, + "probability": 0.9597 + }, + { + "start": 3081.5, + "end": 3087.4, + "probability": 0.9812 + }, + { + "start": 3088.46, + "end": 3090.9, + "probability": 0.9139 + }, + { + "start": 3091.34, + "end": 3095.42, + "probability": 0.8343 + }, + { + "start": 3095.56, + "end": 3097.08, + "probability": 0.9709 + }, + { + "start": 3097.88, + "end": 3103.22, + "probability": 0.9875 + }, + { + "start": 3103.54, + "end": 3105.62, + "probability": 0.9994 + }, + { + "start": 3106.2, + "end": 3110.3, + "probability": 0.9754 + }, + { + "start": 3110.3, + "end": 3114.06, + "probability": 0.9982 + }, + { + "start": 3114.92, + "end": 3115.86, + "probability": 0.8017 + }, + { + "start": 3116.06, + "end": 3117.56, + "probability": 0.9253 + }, + { + "start": 3117.64, + "end": 3118.58, + "probability": 0.9909 + }, + { + "start": 3118.64, + "end": 3119.74, + "probability": 0.9634 + }, + { + "start": 3119.84, + "end": 3126.58, + "probability": 0.967 + }, + { + "start": 3126.74, + "end": 3128.6, + "probability": 0.9897 + }, + { + "start": 3129.1, + "end": 3130.86, + "probability": 0.7712 + }, + { + "start": 3131.56, + "end": 3132.7, + "probability": 0.6823 + }, + { + "start": 3133.6, + "end": 3137.2, + "probability": 0.9163 + }, + { + "start": 3137.48, + "end": 3139.56, + "probability": 0.7418 + }, + { + "start": 3139.94, + "end": 3140.88, + "probability": 0.8737 + }, + { + "start": 3141.38, + "end": 3142.52, + "probability": 0.5326 + }, + { + "start": 3142.9, + "end": 3146.0, + "probability": 0.8624 + }, + { + "start": 3146.0, + "end": 3147.8, + "probability": 0.6758 + }, + { + "start": 3148.88, + "end": 3150.14, + "probability": 0.7456 + }, + { + "start": 3151.04, + "end": 3152.22, + "probability": 0.8042 + }, + { + "start": 3153.26, + "end": 3154.1, + "probability": 0.9324 + }, + { + "start": 3156.48, + "end": 3158.78, + "probability": 0.9771 + }, + { + "start": 3159.94, + "end": 3167.2, + "probability": 0.9807 + }, + { + "start": 3168.5, + "end": 3172.98, + "probability": 0.9917 + }, + { + "start": 3174.46, + "end": 3179.48, + "probability": 0.7912 + }, + { + "start": 3181.1, + "end": 3183.98, + "probability": 0.7488 + }, + { + "start": 3184.32, + "end": 3188.52, + "probability": 0.9793 + }, + { + "start": 3199.44, + "end": 3202.16, + "probability": 0.5069 + }, + { + "start": 3202.32, + "end": 3202.32, + "probability": 0.6288 + }, + { + "start": 3202.32, + "end": 3206.02, + "probability": 0.9512 + }, + { + "start": 3206.02, + "end": 3209.66, + "probability": 0.9628 + }, + { + "start": 3210.82, + "end": 3213.9, + "probability": 0.9093 + }, + { + "start": 3214.52, + "end": 3218.0, + "probability": 0.9525 + }, + { + "start": 3219.24, + "end": 3219.8, + "probability": 0.5544 + }, + { + "start": 3220.76, + "end": 3226.52, + "probability": 0.9626 + }, + { + "start": 3226.84, + "end": 3227.74, + "probability": 0.8706 + }, + { + "start": 3228.34, + "end": 3228.78, + "probability": 0.9301 + }, + { + "start": 3229.56, + "end": 3230.04, + "probability": 0.8169 + }, + { + "start": 3231.12, + "end": 3232.6, + "probability": 0.7327 + }, + { + "start": 3232.64, + "end": 3233.3, + "probability": 0.6571 + }, + { + "start": 3234.68, + "end": 3236.96, + "probability": 0.6495 + }, + { + "start": 3239.04, + "end": 3243.94, + "probability": 0.9976 + }, + { + "start": 3244.56, + "end": 3245.92, + "probability": 0.9067 + }, + { + "start": 3246.2, + "end": 3247.6, + "probability": 0.8854 + }, + { + "start": 3247.94, + "end": 3249.34, + "probability": 0.6769 + }, + { + "start": 3251.16, + "end": 3251.64, + "probability": 0.7029 + }, + { + "start": 3252.42, + "end": 3253.32, + "probability": 0.6603 + }, + { + "start": 3253.84, + "end": 3254.32, + "probability": 0.8551 + }, + { + "start": 3255.22, + "end": 3257.26, + "probability": 0.6953 + }, + { + "start": 3257.64, + "end": 3261.2, + "probability": 0.9618 + }, + { + "start": 3261.94, + "end": 3268.76, + "probability": 0.9747 + }, + { + "start": 3269.82, + "end": 3271.22, + "probability": 0.8856 + }, + { + "start": 3271.52, + "end": 3274.3, + "probability": 0.9977 + }, + { + "start": 3275.88, + "end": 3279.22, + "probability": 0.9949 + }, + { + "start": 3279.86, + "end": 3285.4, + "probability": 0.9971 + }, + { + "start": 3286.16, + "end": 3287.24, + "probability": 0.9882 + }, + { + "start": 3287.8, + "end": 3291.2, + "probability": 0.9985 + }, + { + "start": 3292.34, + "end": 3296.42, + "probability": 0.9895 + }, + { + "start": 3296.96, + "end": 3298.12, + "probability": 0.9597 + }, + { + "start": 3298.3, + "end": 3300.0, + "probability": 0.9963 + }, + { + "start": 3301.02, + "end": 3303.24, + "probability": 0.96 + }, + { + "start": 3304.12, + "end": 3306.44, + "probability": 0.9832 + }, + { + "start": 3306.88, + "end": 3308.0, + "probability": 0.8561 + }, + { + "start": 3308.44, + "end": 3310.08, + "probability": 0.9625 + }, + { + "start": 3310.48, + "end": 3313.44, + "probability": 0.9403 + }, + { + "start": 3314.86, + "end": 3319.84, + "probability": 0.9198 + }, + { + "start": 3320.7, + "end": 3324.22, + "probability": 0.9517 + }, + { + "start": 3326.06, + "end": 3330.02, + "probability": 0.9953 + }, + { + "start": 3331.2, + "end": 3335.46, + "probability": 0.9858 + }, + { + "start": 3335.46, + "end": 3338.36, + "probability": 0.9779 + }, + { + "start": 3338.94, + "end": 3341.18, + "probability": 0.9947 + }, + { + "start": 3342.6, + "end": 3343.68, + "probability": 0.4258 + }, + { + "start": 3344.94, + "end": 3346.94, + "probability": 0.9873 + }, + { + "start": 3347.96, + "end": 3348.36, + "probability": 0.9148 + }, + { + "start": 3349.24, + "end": 3351.88, + "probability": 0.6382 + }, + { + "start": 3351.96, + "end": 3353.12, + "probability": 0.9812 + }, + { + "start": 3353.58, + "end": 3356.68, + "probability": 0.9813 + }, + { + "start": 3357.68, + "end": 3361.66, + "probability": 0.9808 + }, + { + "start": 3363.46, + "end": 3367.0, + "probability": 0.9963 + }, + { + "start": 3368.3, + "end": 3370.52, + "probability": 0.9469 + }, + { + "start": 3371.7, + "end": 3375.0, + "probability": 0.9868 + }, + { + "start": 3375.94, + "end": 3381.4, + "probability": 0.9524 + }, + { + "start": 3382.16, + "end": 3383.06, + "probability": 0.6354 + }, + { + "start": 3383.38, + "end": 3388.98, + "probability": 0.9548 + }, + { + "start": 3390.08, + "end": 3390.52, + "probability": 0.5105 + }, + { + "start": 3390.58, + "end": 3395.84, + "probability": 0.8948 + }, + { + "start": 3395.84, + "end": 3400.4, + "probability": 0.989 + }, + { + "start": 3401.0, + "end": 3401.66, + "probability": 0.6831 + }, + { + "start": 3402.14, + "end": 3403.4, + "probability": 0.4886 + }, + { + "start": 3403.68, + "end": 3404.82, + "probability": 0.721 + }, + { + "start": 3404.98, + "end": 3406.94, + "probability": 0.784 + }, + { + "start": 3407.86, + "end": 3412.2, + "probability": 0.8691 + }, + { + "start": 3412.2, + "end": 3416.36, + "probability": 0.9867 + }, + { + "start": 3417.42, + "end": 3418.32, + "probability": 0.8964 + }, + { + "start": 3419.1, + "end": 3421.34, + "probability": 0.9276 + }, + { + "start": 3421.92, + "end": 3424.36, + "probability": 0.9973 + }, + { + "start": 3425.1, + "end": 3433.52, + "probability": 0.9988 + }, + { + "start": 3433.98, + "end": 3434.5, + "probability": 0.795 + }, + { + "start": 3435.1, + "end": 3438.04, + "probability": 0.9697 + }, + { + "start": 3439.12, + "end": 3439.56, + "probability": 0.8569 + }, + { + "start": 3440.16, + "end": 3440.76, + "probability": 0.9511 + }, + { + "start": 3441.34, + "end": 3447.76, + "probability": 0.9863 + }, + { + "start": 3448.44, + "end": 3450.34, + "probability": 0.9528 + }, + { + "start": 3451.42, + "end": 3454.12, + "probability": 0.9932 + }, + { + "start": 3454.34, + "end": 3455.76, + "probability": 0.9366 + }, + { + "start": 3456.26, + "end": 3461.2, + "probability": 0.9888 + }, + { + "start": 3461.4, + "end": 3462.26, + "probability": 0.9324 + }, + { + "start": 3462.7, + "end": 3470.26, + "probability": 0.9967 + }, + { + "start": 3471.72, + "end": 3474.8, + "probability": 0.562 + }, + { + "start": 3475.0, + "end": 3475.02, + "probability": 0.772 + }, + { + "start": 3475.02, + "end": 3480.42, + "probability": 0.933 + }, + { + "start": 3481.12, + "end": 3483.54, + "probability": 0.7661 + }, + { + "start": 3484.08, + "end": 3488.58, + "probability": 0.9922 + }, + { + "start": 3489.62, + "end": 3490.2, + "probability": 0.9136 + }, + { + "start": 3491.02, + "end": 3492.3, + "probability": 0.9487 + }, + { + "start": 3493.0, + "end": 3498.32, + "probability": 0.9895 + }, + { + "start": 3498.46, + "end": 3500.44, + "probability": 0.7626 + }, + { + "start": 3500.98, + "end": 3502.2, + "probability": 0.7553 + }, + { + "start": 3503.02, + "end": 3504.68, + "probability": 0.7484 + }, + { + "start": 3505.24, + "end": 3509.74, + "probability": 0.8868 + }, + { + "start": 3510.28, + "end": 3514.82, + "probability": 0.9702 + }, + { + "start": 3515.5, + "end": 3519.88, + "probability": 0.9872 + }, + { + "start": 3520.48, + "end": 3521.76, + "probability": 0.9971 + }, + { + "start": 3522.46, + "end": 3524.36, + "probability": 0.96 + }, + { + "start": 3524.94, + "end": 3528.34, + "probability": 0.9944 + }, + { + "start": 3528.92, + "end": 3530.88, + "probability": 0.9183 + }, + { + "start": 3531.34, + "end": 3532.1, + "probability": 0.684 + }, + { + "start": 3532.32, + "end": 3534.72, + "probability": 0.9729 + }, + { + "start": 3535.18, + "end": 3537.02, + "probability": 0.9539 + }, + { + "start": 3537.6, + "end": 3540.46, + "probability": 0.9714 + }, + { + "start": 3542.58, + "end": 3544.64, + "probability": 0.9835 + }, + { + "start": 3544.64, + "end": 3549.56, + "probability": 0.8519 + }, + { + "start": 3550.46, + "end": 3552.98, + "probability": 0.9856 + }, + { + "start": 3553.62, + "end": 3555.16, + "probability": 0.9806 + }, + { + "start": 3555.84, + "end": 3560.58, + "probability": 0.8571 + }, + { + "start": 3561.72, + "end": 3562.96, + "probability": 0.9963 + }, + { + "start": 3563.62, + "end": 3567.2, + "probability": 0.9846 + }, + { + "start": 3567.2, + "end": 3569.84, + "probability": 0.8407 + }, + { + "start": 3570.54, + "end": 3572.12, + "probability": 0.805 + }, + { + "start": 3573.08, + "end": 3576.5, + "probability": 0.9895 + }, + { + "start": 3577.68, + "end": 3582.06, + "probability": 0.9884 + }, + { + "start": 3582.06, + "end": 3587.4, + "probability": 0.9783 + }, + { + "start": 3588.28, + "end": 3588.58, + "probability": 0.7547 + }, + { + "start": 3589.36, + "end": 3589.88, + "probability": 0.5792 + }, + { + "start": 3590.5, + "end": 3593.04, + "probability": 0.9696 + }, + { + "start": 3594.0, + "end": 3594.48, + "probability": 0.5912 + }, + { + "start": 3594.52, + "end": 3598.7, + "probability": 0.9548 + }, + { + "start": 3598.7, + "end": 3604.3, + "probability": 0.9824 + }, + { + "start": 3604.98, + "end": 3608.64, + "probability": 0.9521 + }, + { + "start": 3610.44, + "end": 3611.88, + "probability": 0.8244 + }, + { + "start": 3612.52, + "end": 3614.62, + "probability": 0.607 + }, + { + "start": 3616.6, + "end": 3620.0, + "probability": 0.9668 + }, + { + "start": 3620.74, + "end": 3622.0, + "probability": 0.9501 + }, + { + "start": 3623.2, + "end": 3623.86, + "probability": 0.832 + }, + { + "start": 3624.56, + "end": 3626.6, + "probability": 0.9573 + }, + { + "start": 3628.16, + "end": 3628.9, + "probability": 0.5259 + }, + { + "start": 3629.0, + "end": 3632.08, + "probability": 0.7517 + }, + { + "start": 3638.2, + "end": 3640.9, + "probability": 0.5968 + }, + { + "start": 3640.96, + "end": 3641.5, + "probability": 0.7296 + }, + { + "start": 3641.52, + "end": 3646.68, + "probability": 0.9272 + }, + { + "start": 3647.72, + "end": 3650.1, + "probability": 0.8381 + }, + { + "start": 3650.28, + "end": 3655.24, + "probability": 0.985 + }, + { + "start": 3656.0, + "end": 3656.34, + "probability": 0.7027 + }, + { + "start": 3657.26, + "end": 3659.9, + "probability": 0.8483 + }, + { + "start": 3660.88, + "end": 3664.89, + "probability": 0.9515 + }, + { + "start": 3665.84, + "end": 3670.86, + "probability": 0.8696 + }, + { + "start": 3671.46, + "end": 3674.3, + "probability": 0.8167 + }, + { + "start": 3674.76, + "end": 3680.0, + "probability": 0.9766 + }, + { + "start": 3681.89, + "end": 3683.08, + "probability": 0.95 + }, + { + "start": 3683.1, + "end": 3683.62, + "probability": 0.7598 + }, + { + "start": 3684.04, + "end": 3686.96, + "probability": 0.9964 + }, + { + "start": 3687.1, + "end": 3688.4, + "probability": 0.9089 + }, + { + "start": 3689.02, + "end": 3694.04, + "probability": 0.9781 + }, + { + "start": 3694.78, + "end": 3697.28, + "probability": 0.9803 + }, + { + "start": 3697.28, + "end": 3700.24, + "probability": 0.9971 + }, + { + "start": 3700.66, + "end": 3701.28, + "probability": 0.8407 + }, + { + "start": 3702.06, + "end": 3703.1, + "probability": 0.854 + }, + { + "start": 3704.24, + "end": 3705.38, + "probability": 0.9802 + }, + { + "start": 3705.5, + "end": 3707.54, + "probability": 0.7557 + }, + { + "start": 3707.64, + "end": 3708.58, + "probability": 0.9573 + }, + { + "start": 3709.22, + "end": 3711.62, + "probability": 0.4947 + }, + { + "start": 3712.76, + "end": 3715.78, + "probability": 0.7399 + }, + { + "start": 3715.8, + "end": 3720.34, + "probability": 0.9674 + }, + { + "start": 3720.72, + "end": 3722.36, + "probability": 0.8748 + }, + { + "start": 3724.04, + "end": 3727.54, + "probability": 0.9525 + }, + { + "start": 3727.54, + "end": 3731.22, + "probability": 0.9981 + }, + { + "start": 3731.82, + "end": 3734.22, + "probability": 0.8246 + }, + { + "start": 3736.48, + "end": 3738.06, + "probability": 0.9635 + }, + { + "start": 3738.12, + "end": 3742.04, + "probability": 0.7657 + }, + { + "start": 3742.62, + "end": 3745.16, + "probability": 0.9255 + }, + { + "start": 3745.7, + "end": 3748.14, + "probability": 0.9456 + }, + { + "start": 3748.72, + "end": 3749.92, + "probability": 0.9368 + }, + { + "start": 3750.38, + "end": 3752.74, + "probability": 0.973 + }, + { + "start": 3752.82, + "end": 3753.9, + "probability": 0.8796 + }, + { + "start": 3753.98, + "end": 3755.82, + "probability": 0.9518 + }, + { + "start": 3755.82, + "end": 3759.14, + "probability": 0.9482 + }, + { + "start": 3759.56, + "end": 3761.28, + "probability": 0.6649 + }, + { + "start": 3761.48, + "end": 3764.28, + "probability": 0.9939 + }, + { + "start": 3764.56, + "end": 3764.84, + "probability": 0.8803 + }, + { + "start": 3765.64, + "end": 3766.96, + "probability": 0.6121 + }, + { + "start": 3767.02, + "end": 3767.64, + "probability": 0.4162 + }, + { + "start": 3768.21, + "end": 3772.8, + "probability": 0.9868 + }, + { + "start": 3773.48, + "end": 3776.44, + "probability": 0.9937 + }, + { + "start": 3777.32, + "end": 3782.0, + "probability": 0.9909 + }, + { + "start": 3782.0, + "end": 3785.72, + "probability": 0.9425 + }, + { + "start": 3786.36, + "end": 3787.94, + "probability": 0.9751 + }, + { + "start": 3788.96, + "end": 3795.34, + "probability": 0.9922 + }, + { + "start": 3795.58, + "end": 3799.74, + "probability": 0.7944 + }, + { + "start": 3800.06, + "end": 3801.84, + "probability": 0.9302 + }, + { + "start": 3802.36, + "end": 3805.64, + "probability": 0.7368 + }, + { + "start": 3808.02, + "end": 3810.28, + "probability": 0.7484 + }, + { + "start": 3811.68, + "end": 3816.78, + "probability": 0.9895 + }, + { + "start": 3816.82, + "end": 3820.12, + "probability": 0.8021 + }, + { + "start": 3820.22, + "end": 3821.28, + "probability": 0.9197 + }, + { + "start": 3821.8, + "end": 3822.84, + "probability": 0.7667 + }, + { + "start": 3822.94, + "end": 3825.06, + "probability": 0.6307 + }, + { + "start": 3825.46, + "end": 3827.04, + "probability": 0.8626 + }, + { + "start": 3827.58, + "end": 3829.52, + "probability": 0.9167 + }, + { + "start": 3830.4, + "end": 3833.96, + "probability": 0.9946 + }, + { + "start": 3834.24, + "end": 3838.88, + "probability": 0.8556 + }, + { + "start": 3839.68, + "end": 3841.34, + "probability": 0.4858 + }, + { + "start": 3841.46, + "end": 3844.3, + "probability": 0.8826 + }, + { + "start": 3845.28, + "end": 3848.96, + "probability": 0.9836 + }, + { + "start": 3849.72, + "end": 3855.94, + "probability": 0.9623 + }, + { + "start": 3856.8, + "end": 3859.68, + "probability": 0.9836 + }, + { + "start": 3860.46, + "end": 3864.26, + "probability": 0.9915 + }, + { + "start": 3864.62, + "end": 3868.14, + "probability": 0.9956 + }, + { + "start": 3869.72, + "end": 3872.5, + "probability": 0.8629 + }, + { + "start": 3873.12, + "end": 3874.16, + "probability": 0.8184 + }, + { + "start": 3875.57, + "end": 3879.52, + "probability": 0.7622 + }, + { + "start": 3879.62, + "end": 3881.52, + "probability": 0.4543 + }, + { + "start": 3881.58, + "end": 3882.17, + "probability": 0.5972 + }, + { + "start": 3882.6, + "end": 3883.66, + "probability": 0.6973 + }, + { + "start": 3884.28, + "end": 3885.86, + "probability": 0.9203 + }, + { + "start": 3885.94, + "end": 3886.12, + "probability": 0.6641 + }, + { + "start": 3886.48, + "end": 3887.64, + "probability": 0.9657 + }, + { + "start": 3889.08, + "end": 3890.32, + "probability": 0.7985 + }, + { + "start": 3891.8, + "end": 3893.3, + "probability": 0.8933 + }, + { + "start": 3894.2, + "end": 3895.62, + "probability": 0.9556 + }, + { + "start": 3896.56, + "end": 3897.26, + "probability": 0.4589 + }, + { + "start": 3897.3, + "end": 3898.4, + "probability": 0.7076 + }, + { + "start": 3898.54, + "end": 3900.86, + "probability": 0.9419 + }, + { + "start": 3900.88, + "end": 3902.0, + "probability": 0.9956 + }, + { + "start": 3902.84, + "end": 3903.32, + "probability": 0.864 + }, + { + "start": 3903.38, + "end": 3904.72, + "probability": 0.98 + }, + { + "start": 3905.1, + "end": 3907.8, + "probability": 0.9761 + }, + { + "start": 3908.76, + "end": 3909.38, + "probability": 0.9231 + }, + { + "start": 3909.56, + "end": 3909.9, + "probability": 0.4795 + }, + { + "start": 3910.4, + "end": 3911.4, + "probability": 0.562 + }, + { + "start": 3911.84, + "end": 3913.86, + "probability": 0.7657 + }, + { + "start": 3914.5, + "end": 3915.36, + "probability": 0.9688 + }, + { + "start": 3916.32, + "end": 3918.6, + "probability": 0.9883 + }, + { + "start": 3919.16, + "end": 3920.52, + "probability": 0.7996 + }, + { + "start": 3920.88, + "end": 3923.92, + "probability": 0.9902 + }, + { + "start": 3924.02, + "end": 3924.84, + "probability": 0.4833 + }, + { + "start": 3925.64, + "end": 3930.26, + "probability": 0.984 + }, + { + "start": 3930.26, + "end": 3933.96, + "probability": 0.9707 + }, + { + "start": 3934.08, + "end": 3935.72, + "probability": 0.7486 + }, + { + "start": 3936.9, + "end": 3938.86, + "probability": 0.8813 + }, + { + "start": 3939.48, + "end": 3941.94, + "probability": 0.9859 + }, + { + "start": 3942.36, + "end": 3944.54, + "probability": 0.9824 + }, + { + "start": 3944.9, + "end": 3945.58, + "probability": 0.5028 + }, + { + "start": 3945.7, + "end": 3948.04, + "probability": 0.9548 + }, + { + "start": 3948.42, + "end": 3952.88, + "probability": 0.9863 + }, + { + "start": 3953.34, + "end": 3955.5, + "probability": 0.9974 + }, + { + "start": 3955.86, + "end": 3959.44, + "probability": 0.9302 + }, + { + "start": 3960.12, + "end": 3962.44, + "probability": 0.9823 + }, + { + "start": 3963.12, + "end": 3964.54, + "probability": 0.9868 + }, + { + "start": 3965.1, + "end": 3967.5, + "probability": 0.9913 + }, + { + "start": 3970.0, + "end": 3971.27, + "probability": 0.6657 + }, + { + "start": 3971.42, + "end": 3974.36, + "probability": 0.9209 + }, + { + "start": 3975.14, + "end": 3976.12, + "probability": 0.9307 + }, + { + "start": 3985.32, + "end": 3986.34, + "probability": 0.7416 + }, + { + "start": 3987.92, + "end": 3996.48, + "probability": 0.9629 + }, + { + "start": 3996.72, + "end": 3998.48, + "probability": 0.9596 + }, + { + "start": 3998.68, + "end": 4004.88, + "probability": 0.8666 + }, + { + "start": 4005.76, + "end": 4007.62, + "probability": 0.8647 + }, + { + "start": 4007.84, + "end": 4008.6, + "probability": 0.7536 + }, + { + "start": 4008.8, + "end": 4009.42, + "probability": 0.5958 + }, + { + "start": 4009.48, + "end": 4011.56, + "probability": 0.6356 + }, + { + "start": 4011.64, + "end": 4012.7, + "probability": 0.5412 + }, + { + "start": 4012.82, + "end": 4014.48, + "probability": 0.9045 + }, + { + "start": 4014.48, + "end": 4015.74, + "probability": 0.9054 + }, + { + "start": 4016.04, + "end": 4017.16, + "probability": 0.9413 + }, + { + "start": 4017.5, + "end": 4020.61, + "probability": 0.8879 + }, + { + "start": 4021.2, + "end": 4022.38, + "probability": 0.6566 + }, + { + "start": 4022.62, + "end": 4022.64, + "probability": 0.395 + }, + { + "start": 4022.76, + "end": 4023.78, + "probability": 0.7395 + }, + { + "start": 4024.92, + "end": 4028.44, + "probability": 0.9524 + }, + { + "start": 4028.82, + "end": 4031.54, + "probability": 0.9758 + }, + { + "start": 4031.82, + "end": 4033.92, + "probability": 0.9988 + }, + { + "start": 4034.62, + "end": 4036.78, + "probability": 0.9954 + }, + { + "start": 4037.72, + "end": 4039.78, + "probability": 0.9939 + }, + { + "start": 4040.72, + "end": 4042.3, + "probability": 0.8226 + }, + { + "start": 4042.46, + "end": 4042.52, + "probability": 0.3685 + }, + { + "start": 4042.72, + "end": 4043.02, + "probability": 0.8477 + }, + { + "start": 4043.12, + "end": 4046.5, + "probability": 0.9668 + }, + { + "start": 4046.86, + "end": 4050.28, + "probability": 0.9463 + }, + { + "start": 4052.4, + "end": 4053.14, + "probability": 0.7405 + }, + { + "start": 4053.24, + "end": 4055.92, + "probability": 0.7621 + }, + { + "start": 4055.92, + "end": 4058.26, + "probability": 0.9948 + }, + { + "start": 4058.38, + "end": 4062.86, + "probability": 0.9857 + }, + { + "start": 4064.3, + "end": 4069.86, + "probability": 0.989 + }, + { + "start": 4069.86, + "end": 4073.86, + "probability": 0.9201 + }, + { + "start": 4074.02, + "end": 4075.98, + "probability": 0.9941 + }, + { + "start": 4076.8, + "end": 4077.36, + "probability": 0.8342 + }, + { + "start": 4077.92, + "end": 4082.44, + "probability": 0.8755 + }, + { + "start": 4082.44, + "end": 4083.74, + "probability": 0.7428 + }, + { + "start": 4088.34, + "end": 4090.32, + "probability": 0.9301 + }, + { + "start": 4091.32, + "end": 4093.96, + "probability": 0.873 + }, + { + "start": 4094.54, + "end": 4097.94, + "probability": 0.9847 + }, + { + "start": 4098.88, + "end": 4102.32, + "probability": 0.9784 + }, + { + "start": 4103.48, + "end": 4104.78, + "probability": 0.9245 + }, + { + "start": 4106.16, + "end": 4106.26, + "probability": 0.2767 + }, + { + "start": 4106.42, + "end": 4109.18, + "probability": 0.8549 + }, + { + "start": 4109.3, + "end": 4112.3, + "probability": 0.8903 + }, + { + "start": 4112.88, + "end": 4116.22, + "probability": 0.9482 + }, + { + "start": 4118.72, + "end": 4121.94, + "probability": 0.3459 + }, + { + "start": 4122.12, + "end": 4123.12, + "probability": 0.4922 + }, + { + "start": 4123.16, + "end": 4124.26, + "probability": 0.5436 + }, + { + "start": 4124.84, + "end": 4126.64, + "probability": 0.6622 + }, + { + "start": 4128.96, + "end": 4132.84, + "probability": 0.9966 + }, + { + "start": 4133.8, + "end": 4135.92, + "probability": 0.8553 + }, + { + "start": 4137.04, + "end": 4139.04, + "probability": 0.8762 + }, + { + "start": 4139.58, + "end": 4142.0, + "probability": 0.9403 + }, + { + "start": 4142.0, + "end": 4146.3, + "probability": 0.9143 + }, + { + "start": 4146.46, + "end": 4147.38, + "probability": 0.969 + }, + { + "start": 4148.72, + "end": 4152.92, + "probability": 0.9766 + }, + { + "start": 4153.92, + "end": 4156.44, + "probability": 0.9411 + }, + { + "start": 4156.44, + "end": 4159.24, + "probability": 0.9974 + }, + { + "start": 4160.54, + "end": 4166.82, + "probability": 0.9832 + }, + { + "start": 4168.52, + "end": 4171.86, + "probability": 0.6521 + }, + { + "start": 4171.86, + "end": 4174.8, + "probability": 0.8252 + }, + { + "start": 4177.7, + "end": 4181.52, + "probability": 0.9788 + }, + { + "start": 4181.52, + "end": 4185.9, + "probability": 0.9649 + }, + { + "start": 4187.08, + "end": 4188.34, + "probability": 0.6048 + }, + { + "start": 4190.78, + "end": 4192.74, + "probability": 0.9713 + }, + { + "start": 4192.94, + "end": 4195.22, + "probability": 0.9751 + }, + { + "start": 4196.2, + "end": 4198.81, + "probability": 0.9654 + }, + { + "start": 4199.66, + "end": 4205.12, + "probability": 0.8848 + }, + { + "start": 4205.78, + "end": 4208.72, + "probability": 0.8627 + }, + { + "start": 4208.78, + "end": 4211.3, + "probability": 0.9661 + }, + { + "start": 4211.72, + "end": 4216.2, + "probability": 0.9746 + }, + { + "start": 4217.18, + "end": 4219.2, + "probability": 0.9662 + }, + { + "start": 4219.9, + "end": 4225.92, + "probability": 0.9967 + }, + { + "start": 4227.9, + "end": 4229.76, + "probability": 0.8853 + }, + { + "start": 4230.44, + "end": 4232.9, + "probability": 0.997 + }, + { + "start": 4233.92, + "end": 4235.74, + "probability": 0.9971 + }, + { + "start": 4236.86, + "end": 4240.18, + "probability": 0.9967 + }, + { + "start": 4240.18, + "end": 4244.28, + "probability": 0.9854 + }, + { + "start": 4247.7, + "end": 4249.31, + "probability": 0.5999 + }, + { + "start": 4250.68, + "end": 4252.92, + "probability": 0.9839 + }, + { + "start": 4253.08, + "end": 4255.54, + "probability": 0.9785 + }, + { + "start": 4256.28, + "end": 4257.22, + "probability": 0.9115 + }, + { + "start": 4257.88, + "end": 4260.69, + "probability": 0.9443 + }, + { + "start": 4261.02, + "end": 4265.53, + "probability": 0.8967 + }, + { + "start": 4265.74, + "end": 4270.16, + "probability": 0.8009 + }, + { + "start": 4270.74, + "end": 4272.12, + "probability": 0.8662 + }, + { + "start": 4272.22, + "end": 4276.64, + "probability": 0.9956 + }, + { + "start": 4276.7, + "end": 4277.04, + "probability": 0.7292 + }, + { + "start": 4277.6, + "end": 4278.68, + "probability": 0.9807 + }, + { + "start": 4278.74, + "end": 4281.84, + "probability": 0.9961 + }, + { + "start": 4282.5, + "end": 4282.82, + "probability": 0.8762 + }, + { + "start": 4291.14, + "end": 4294.06, + "probability": 0.6835 + }, + { + "start": 4296.38, + "end": 4303.3, + "probability": 0.8157 + }, + { + "start": 4304.88, + "end": 4306.46, + "probability": 0.4913 + }, + { + "start": 4306.6, + "end": 4307.16, + "probability": 0.6538 + }, + { + "start": 4307.2, + "end": 4309.18, + "probability": 0.728 + }, + { + "start": 4309.44, + "end": 4312.24, + "probability": 0.9967 + }, + { + "start": 4313.2, + "end": 4314.23, + "probability": 0.9192 + }, + { + "start": 4315.96, + "end": 4317.76, + "probability": 0.6526 + }, + { + "start": 4319.0, + "end": 4321.22, + "probability": 0.9933 + }, + { + "start": 4321.34, + "end": 4323.2, + "probability": 0.9983 + }, + { + "start": 4324.28, + "end": 4327.7, + "probability": 0.9042 + }, + { + "start": 4328.58, + "end": 4330.9, + "probability": 0.9827 + }, + { + "start": 4331.12, + "end": 4332.76, + "probability": 0.9912 + }, + { + "start": 4332.82, + "end": 4337.54, + "probability": 0.9038 + }, + { + "start": 4337.78, + "end": 4338.26, + "probability": 0.8285 + }, + { + "start": 4338.64, + "end": 4339.74, + "probability": 0.8428 + }, + { + "start": 4339.84, + "end": 4340.38, + "probability": 0.6188 + }, + { + "start": 4340.62, + "end": 4340.9, + "probability": 0.5046 + }, + { + "start": 4340.96, + "end": 4341.72, + "probability": 0.3548 + }, + { + "start": 4341.8, + "end": 4342.43, + "probability": 0.5336 + }, + { + "start": 4343.48, + "end": 4344.05, + "probability": 0.2826 + }, + { + "start": 4344.62, + "end": 4344.74, + "probability": 0.0969 + }, + { + "start": 4344.74, + "end": 4345.72, + "probability": 0.4561 + }, + { + "start": 4345.76, + "end": 4346.66, + "probability": 0.9364 + }, + { + "start": 4347.82, + "end": 4349.96, + "probability": 0.9668 + }, + { + "start": 4350.02, + "end": 4352.26, + "probability": 0.9027 + }, + { + "start": 4352.34, + "end": 4352.72, + "probability": 0.6519 + }, + { + "start": 4353.18, + "end": 4357.84, + "probability": 0.7121 + }, + { + "start": 4358.64, + "end": 4362.02, + "probability": 0.6665 + }, + { + "start": 4362.04, + "end": 4365.18, + "probability": 0.7287 + }, + { + "start": 4366.08, + "end": 4368.6, + "probability": 0.9103 + }, + { + "start": 4369.14, + "end": 4369.52, + "probability": 0.7337 + }, + { + "start": 4369.6, + "end": 4372.71, + "probability": 0.9897 + }, + { + "start": 4373.48, + "end": 4375.98, + "probability": 0.7988 + }, + { + "start": 4376.56, + "end": 4379.42, + "probability": 0.9667 + }, + { + "start": 4380.28, + "end": 4386.66, + "probability": 0.999 + }, + { + "start": 4387.2, + "end": 4390.66, + "probability": 0.9971 + }, + { + "start": 4391.02, + "end": 4392.02, + "probability": 0.9672 + }, + { + "start": 4393.34, + "end": 4394.38, + "probability": 0.7349 + }, + { + "start": 4394.68, + "end": 4395.5, + "probability": 0.58 + }, + { + "start": 4395.8, + "end": 4399.48, + "probability": 0.9695 + }, + { + "start": 4400.02, + "end": 4403.62, + "probability": 0.9971 + }, + { + "start": 4404.18, + "end": 4406.66, + "probability": 0.8615 + }, + { + "start": 4407.76, + "end": 4413.76, + "probability": 0.7461 + }, + { + "start": 4414.62, + "end": 4420.26, + "probability": 0.9667 + }, + { + "start": 4420.9, + "end": 4422.04, + "probability": 0.2813 + }, + { + "start": 4422.04, + "end": 4424.54, + "probability": 0.9946 + }, + { + "start": 4425.2, + "end": 4425.3, + "probability": 0.3476 + }, + { + "start": 4425.4, + "end": 4427.6, + "probability": 0.7808 + }, + { + "start": 4428.14, + "end": 4429.76, + "probability": 0.9834 + }, + { + "start": 4431.64, + "end": 4431.86, + "probability": 0.0542 + }, + { + "start": 4431.86, + "end": 4431.9, + "probability": 0.1647 + }, + { + "start": 4432.08, + "end": 4435.24, + "probability": 0.7576 + }, + { + "start": 4435.72, + "end": 4440.12, + "probability": 0.9935 + }, + { + "start": 4440.72, + "end": 4443.98, + "probability": 0.9958 + }, + { + "start": 4445.12, + "end": 4446.64, + "probability": 0.9866 + }, + { + "start": 4447.2, + "end": 4447.94, + "probability": 0.8437 + }, + { + "start": 4448.64, + "end": 4449.84, + "probability": 0.8439 + }, + { + "start": 4450.92, + "end": 4455.66, + "probability": 0.9955 + }, + { + "start": 4456.28, + "end": 4458.1, + "probability": 0.9714 + }, + { + "start": 4458.94, + "end": 4461.0, + "probability": 0.6193 + }, + { + "start": 4461.74, + "end": 4462.74, + "probability": 0.9849 + }, + { + "start": 4462.84, + "end": 4464.74, + "probability": 0.9966 + }, + { + "start": 4465.1, + "end": 4465.8, + "probability": 0.9544 + }, + { + "start": 4465.94, + "end": 4466.64, + "probability": 0.724 + }, + { + "start": 4467.06, + "end": 4467.44, + "probability": 0.4831 + }, + { + "start": 4467.5, + "end": 4468.18, + "probability": 0.9168 + }, + { + "start": 4468.62, + "end": 4471.24, + "probability": 0.7394 + }, + { + "start": 4471.86, + "end": 4472.7, + "probability": 0.8204 + }, + { + "start": 4472.88, + "end": 4476.96, + "probability": 0.926 + }, + { + "start": 4477.06, + "end": 4478.32, + "probability": 0.8093 + }, + { + "start": 4478.34, + "end": 4479.04, + "probability": 0.8674 + }, + { + "start": 4479.22, + "end": 4481.0, + "probability": 0.9902 + }, + { + "start": 4481.42, + "end": 4484.66, + "probability": 0.9801 + }, + { + "start": 4485.08, + "end": 4490.3, + "probability": 0.9595 + }, + { + "start": 4490.74, + "end": 4494.78, + "probability": 0.9929 + }, + { + "start": 4495.58, + "end": 4496.68, + "probability": 0.966 + }, + { + "start": 4497.88, + "end": 4502.7, + "probability": 0.9566 + }, + { + "start": 4504.74, + "end": 4509.5, + "probability": 0.9873 + }, + { + "start": 4511.06, + "end": 4516.44, + "probability": 0.9988 + }, + { + "start": 4517.04, + "end": 4520.56, + "probability": 0.9309 + }, + { + "start": 4521.24, + "end": 4524.2, + "probability": 0.9368 + }, + { + "start": 4524.68, + "end": 4526.84, + "probability": 0.9971 + }, + { + "start": 4527.6, + "end": 4531.46, + "probability": 0.9961 + }, + { + "start": 4531.72, + "end": 4534.34, + "probability": 0.9561 + }, + { + "start": 4534.88, + "end": 4537.16, + "probability": 0.7326 + }, + { + "start": 4537.82, + "end": 4538.46, + "probability": 0.8983 + }, + { + "start": 4539.39, + "end": 4542.22, + "probability": 0.9973 + }, + { + "start": 4542.22, + "end": 4546.48, + "probability": 0.9946 + }, + { + "start": 4546.98, + "end": 4549.54, + "probability": 0.9244 + }, + { + "start": 4550.08, + "end": 4556.9, + "probability": 0.9985 + }, + { + "start": 4557.76, + "end": 4559.56, + "probability": 0.9941 + }, + { + "start": 4560.22, + "end": 4562.32, + "probability": 0.9934 + }, + { + "start": 4562.76, + "end": 4563.4, + "probability": 0.4988 + }, + { + "start": 4563.62, + "end": 4564.02, + "probability": 0.9677 + }, + { + "start": 4564.32, + "end": 4565.12, + "probability": 0.86 + }, + { + "start": 4565.76, + "end": 4567.4, + "probability": 0.7486 + }, + { + "start": 4567.76, + "end": 4568.39, + "probability": 0.974 + }, + { + "start": 4569.06, + "end": 4570.84, + "probability": 0.9071 + }, + { + "start": 4571.0, + "end": 4571.62, + "probability": 0.3264 + }, + { + "start": 4571.7, + "end": 4572.12, + "probability": 0.8123 + }, + { + "start": 4572.26, + "end": 4573.64, + "probability": 0.9328 + }, + { + "start": 4574.08, + "end": 4576.14, + "probability": 0.9915 + }, + { + "start": 4576.66, + "end": 4579.46, + "probability": 0.992 + }, + { + "start": 4581.48, + "end": 4582.73, + "probability": 0.4919 + }, + { + "start": 4583.2, + "end": 4586.98, + "probability": 0.8962 + }, + { + "start": 4587.12, + "end": 4588.44, + "probability": 0.9076 + }, + { + "start": 4589.54, + "end": 4590.12, + "probability": 0.8382 + }, + { + "start": 4598.64, + "end": 4599.62, + "probability": 0.7877 + }, + { + "start": 4600.22, + "end": 4602.58, + "probability": 0.6628 + }, + { + "start": 4603.54, + "end": 4608.92, + "probability": 0.9863 + }, + { + "start": 4608.92, + "end": 4614.46, + "probability": 0.9906 + }, + { + "start": 4615.24, + "end": 4617.76, + "probability": 0.8059 + }, + { + "start": 4619.8, + "end": 4621.56, + "probability": 0.9424 + }, + { + "start": 4622.74, + "end": 4625.5, + "probability": 0.7426 + }, + { + "start": 4625.62, + "end": 4628.1, + "probability": 0.6642 + }, + { + "start": 4628.82, + "end": 4631.04, + "probability": 0.9565 + }, + { + "start": 4631.7, + "end": 4634.5, + "probability": 0.9176 + }, + { + "start": 4635.42, + "end": 4635.88, + "probability": 0.5867 + }, + { + "start": 4635.98, + "end": 4642.62, + "probability": 0.9784 + }, + { + "start": 4643.36, + "end": 4646.92, + "probability": 0.9648 + }, + { + "start": 4647.32, + "end": 4653.74, + "probability": 0.6649 + }, + { + "start": 4653.74, + "end": 4660.7, + "probability": 0.9803 + }, + { + "start": 4660.76, + "end": 4663.64, + "probability": 0.9745 + }, + { + "start": 4665.34, + "end": 4668.0, + "probability": 0.8193 + }, + { + "start": 4668.76, + "end": 4671.82, + "probability": 0.724 + }, + { + "start": 4673.74, + "end": 4676.46, + "probability": 0.9384 + }, + { + "start": 4676.5, + "end": 4676.72, + "probability": 0.8925 + }, + { + "start": 4676.88, + "end": 4677.44, + "probability": 0.9336 + }, + { + "start": 4678.18, + "end": 4678.8, + "probability": 0.2672 + }, + { + "start": 4678.9, + "end": 4682.48, + "probability": 0.9471 + }, + { + "start": 4683.2, + "end": 4685.14, + "probability": 0.9929 + }, + { + "start": 4685.3, + "end": 4685.68, + "probability": 0.7978 + }, + { + "start": 4685.78, + "end": 4693.64, + "probability": 0.9769 + }, + { + "start": 4694.24, + "end": 4694.34, + "probability": 0.4356 + }, + { + "start": 4694.42, + "end": 4694.72, + "probability": 0.8095 + }, + { + "start": 4694.9, + "end": 4700.08, + "probability": 0.965 + }, + { + "start": 4700.26, + "end": 4702.22, + "probability": 0.6813 + }, + { + "start": 4703.26, + "end": 4707.14, + "probability": 0.7536 + }, + { + "start": 4707.94, + "end": 4708.52, + "probability": 0.4432 + }, + { + "start": 4709.92, + "end": 4711.78, + "probability": 0.684 + }, + { + "start": 4713.55, + "end": 4722.6, + "probability": 0.9761 + }, + { + "start": 4723.42, + "end": 4725.28, + "probability": 0.7466 + }, + { + "start": 4725.4, + "end": 4730.62, + "probability": 0.9739 + }, + { + "start": 4731.18, + "end": 4731.66, + "probability": 0.5572 + }, + { + "start": 4731.7, + "end": 4732.04, + "probability": 0.8975 + }, + { + "start": 4732.16, + "end": 4733.92, + "probability": 0.9155 + }, + { + "start": 4734.12, + "end": 4737.86, + "probability": 0.8654 + }, + { + "start": 4738.28, + "end": 4741.52, + "probability": 0.8619 + }, + { + "start": 4742.16, + "end": 4744.48, + "probability": 0.8281 + }, + { + "start": 4744.52, + "end": 4744.78, + "probability": 0.5274 + }, + { + "start": 4744.94, + "end": 4746.14, + "probability": 0.6438 + }, + { + "start": 4746.32, + "end": 4746.9, + "probability": 0.5478 + }, + { + "start": 4748.08, + "end": 4750.23, + "probability": 0.5987 + }, + { + "start": 4751.18, + "end": 4755.1, + "probability": 0.8412 + }, + { + "start": 4755.76, + "end": 4757.02, + "probability": 0.7904 + }, + { + "start": 4757.74, + "end": 4760.08, + "probability": 0.9828 + }, + { + "start": 4761.01, + "end": 4766.14, + "probability": 0.9934 + }, + { + "start": 4766.4, + "end": 4769.83, + "probability": 0.9805 + }, + { + "start": 4770.68, + "end": 4771.4, + "probability": 0.9043 + }, + { + "start": 4771.64, + "end": 4772.5, + "probability": 0.9717 + }, + { + "start": 4772.6, + "end": 4773.36, + "probability": 0.7885 + }, + { + "start": 4773.48, + "end": 4774.14, + "probability": 0.6874 + }, + { + "start": 4774.7, + "end": 4775.26, + "probability": 0.6686 + }, + { + "start": 4775.36, + "end": 4778.6, + "probability": 0.9798 + }, + { + "start": 4778.68, + "end": 4779.26, + "probability": 0.9385 + }, + { + "start": 4779.36, + "end": 4780.24, + "probability": 0.9447 + }, + { + "start": 4780.36, + "end": 4781.2, + "probability": 0.7859 + }, + { + "start": 4781.82, + "end": 4782.34, + "probability": 0.8534 + }, + { + "start": 4782.9, + "end": 4784.58, + "probability": 0.9748 + }, + { + "start": 4784.8, + "end": 4785.92, + "probability": 0.9918 + }, + { + "start": 4786.28, + "end": 4787.5, + "probability": 0.985 + }, + { + "start": 4787.6, + "end": 4787.95, + "probability": 0.9705 + }, + { + "start": 4788.44, + "end": 4789.68, + "probability": 0.9325 + }, + { + "start": 4789.74, + "end": 4794.88, + "probability": 0.9566 + }, + { + "start": 4795.54, + "end": 4798.14, + "probability": 0.6884 + }, + { + "start": 4798.3, + "end": 4802.22, + "probability": 0.9898 + }, + { + "start": 4802.58, + "end": 4806.86, + "probability": 0.9922 + }, + { + "start": 4807.26, + "end": 4808.96, + "probability": 0.9854 + }, + { + "start": 4809.62, + "end": 4816.0, + "probability": 0.9575 + }, + { + "start": 4816.32, + "end": 4819.24, + "probability": 0.8634 + }, + { + "start": 4819.78, + "end": 4821.86, + "probability": 0.9473 + }, + { + "start": 4822.5, + "end": 4824.08, + "probability": 0.8435 + }, + { + "start": 4824.14, + "end": 4824.38, + "probability": 0.642 + }, + { + "start": 4824.6, + "end": 4826.76, + "probability": 0.5504 + }, + { + "start": 4827.28, + "end": 4830.88, + "probability": 0.9941 + }, + { + "start": 4830.98, + "end": 4837.56, + "probability": 0.9751 + }, + { + "start": 4837.56, + "end": 4843.88, + "probability": 0.9971 + }, + { + "start": 4844.62, + "end": 4848.66, + "probability": 0.9116 + }, + { + "start": 4849.54, + "end": 4850.82, + "probability": 0.8429 + }, + { + "start": 4851.68, + "end": 4853.74, + "probability": 0.9885 + }, + { + "start": 4854.64, + "end": 4858.18, + "probability": 0.9923 + }, + { + "start": 4858.18, + "end": 4860.68, + "probability": 0.9695 + }, + { + "start": 4861.46, + "end": 4866.64, + "probability": 0.7788 + }, + { + "start": 4866.76, + "end": 4870.46, + "probability": 0.9803 + }, + { + "start": 4871.12, + "end": 4872.64, + "probability": 0.696 + }, + { + "start": 4873.22, + "end": 4874.18, + "probability": 0.378 + }, + { + "start": 4875.34, + "end": 4877.18, + "probability": 0.9463 + }, + { + "start": 4877.4, + "end": 4878.84, + "probability": 0.932 + }, + { + "start": 4879.32, + "end": 4885.01, + "probability": 0.9758 + }, + { + "start": 4885.58, + "end": 4888.58, + "probability": 0.9408 + }, + { + "start": 4889.26, + "end": 4895.64, + "probability": 0.9902 + }, + { + "start": 4896.2, + "end": 4899.16, + "probability": 0.929 + }, + { + "start": 4899.76, + "end": 4903.9, + "probability": 0.8941 + }, + { + "start": 4905.14, + "end": 4906.02, + "probability": 0.6588 + }, + { + "start": 4906.64, + "end": 4911.54, + "probability": 0.9939 + }, + { + "start": 4911.54, + "end": 4916.5, + "probability": 0.9953 + }, + { + "start": 4917.1, + "end": 4920.08, + "probability": 0.9934 + }, + { + "start": 4920.38, + "end": 4921.42, + "probability": 0.7571 + }, + { + "start": 4921.68, + "end": 4923.28, + "probability": 0.8723 + }, + { + "start": 4923.58, + "end": 4924.14, + "probability": 0.2982 + }, + { + "start": 4924.84, + "end": 4930.86, + "probability": 0.939 + }, + { + "start": 4931.44, + "end": 4932.25, + "probability": 0.7114 + }, + { + "start": 4933.08, + "end": 4935.36, + "probability": 0.9065 + }, + { + "start": 4935.78, + "end": 4940.34, + "probability": 0.9788 + }, + { + "start": 4940.74, + "end": 4944.12, + "probability": 0.8308 + }, + { + "start": 4944.78, + "end": 4951.58, + "probability": 0.9961 + }, + { + "start": 4952.1, + "end": 4956.4, + "probability": 0.9711 + }, + { + "start": 4956.82, + "end": 4957.26, + "probability": 0.6375 + }, + { + "start": 4957.4, + "end": 4961.56, + "probability": 0.9709 + }, + { + "start": 4962.06, + "end": 4966.0, + "probability": 0.9205 + }, + { + "start": 4966.0, + "end": 4969.88, + "probability": 0.9551 + }, + { + "start": 4970.02, + "end": 4972.66, + "probability": 0.9705 + }, + { + "start": 4972.82, + "end": 4976.58, + "probability": 0.7596 + }, + { + "start": 4977.22, + "end": 4980.84, + "probability": 0.9862 + }, + { + "start": 4980.84, + "end": 4984.54, + "probability": 0.866 + }, + { + "start": 4984.62, + "end": 4990.72, + "probability": 0.9793 + }, + { + "start": 4991.76, + "end": 4993.34, + "probability": 0.73 + }, + { + "start": 4993.5, + "end": 4995.52, + "probability": 0.98 + }, + { + "start": 4995.52, + "end": 4999.5, + "probability": 0.7581 + }, + { + "start": 4999.5, + "end": 5002.25, + "probability": 0.9941 + }, + { + "start": 5002.96, + "end": 5003.1, + "probability": 0.3581 + }, + { + "start": 5003.4, + "end": 5004.52, + "probability": 0.7182 + }, + { + "start": 5004.9, + "end": 5005.28, + "probability": 0.6809 + }, + { + "start": 5006.32, + "end": 5008.1, + "probability": 0.9937 + }, + { + "start": 5008.64, + "end": 5012.09, + "probability": 0.9921 + }, + { + "start": 5012.64, + "end": 5014.36, + "probability": 0.7284 + }, + { + "start": 5014.9, + "end": 5015.48, + "probability": 0.6477 + }, + { + "start": 5016.32, + "end": 5019.56, + "probability": 0.9836 + }, + { + "start": 5019.56, + "end": 5021.86, + "probability": 0.9915 + }, + { + "start": 5021.92, + "end": 5024.6, + "probability": 0.3848 + }, + { + "start": 5025.62, + "end": 5027.28, + "probability": 0.1918 + }, + { + "start": 5027.4, + "end": 5030.98, + "probability": 0.8587 + }, + { + "start": 5030.98, + "end": 5030.98, + "probability": 0.5622 + }, + { + "start": 5030.98, + "end": 5031.26, + "probability": 0.4157 + }, + { + "start": 5031.92, + "end": 5036.92, + "probability": 0.9938 + }, + { + "start": 5037.64, + "end": 5040.38, + "probability": 0.9944 + }, + { + "start": 5040.98, + "end": 5041.88, + "probability": 0.9619 + }, + { + "start": 5042.72, + "end": 5044.08, + "probability": 0.7764 + }, + { + "start": 5044.76, + "end": 5045.6, + "probability": 0.8948 + }, + { + "start": 5047.02, + "end": 5052.48, + "probability": 0.9694 + }, + { + "start": 5053.56, + "end": 5053.56, + "probability": 0.0424 + }, + { + "start": 5053.56, + "end": 5054.84, + "probability": 0.1642 + }, + { + "start": 5055.3, + "end": 5058.1, + "probability": 0.9754 + }, + { + "start": 5059.1, + "end": 5065.24, + "probability": 0.97 + }, + { + "start": 5066.3, + "end": 5071.72, + "probability": 0.8904 + }, + { + "start": 5071.72, + "end": 5077.0, + "probability": 0.9807 + }, + { + "start": 5077.22, + "end": 5078.88, + "probability": 0.875 + }, + { + "start": 5079.2, + "end": 5081.74, + "probability": 0.9348 + }, + { + "start": 5082.32, + "end": 5086.22, + "probability": 0.8494 + }, + { + "start": 5086.54, + "end": 5090.02, + "probability": 0.9862 + }, + { + "start": 5090.62, + "end": 5092.52, + "probability": 0.7795 + }, + { + "start": 5093.46, + "end": 5098.54, + "probability": 0.9884 + }, + { + "start": 5098.72, + "end": 5102.4, + "probability": 0.936 + }, + { + "start": 5102.8, + "end": 5106.74, + "probability": 0.9791 + }, + { + "start": 5107.36, + "end": 5110.12, + "probability": 0.9397 + }, + { + "start": 5110.86, + "end": 5112.74, + "probability": 0.9852 + }, + { + "start": 5113.98, + "end": 5119.1, + "probability": 0.988 + }, + { + "start": 5119.26, + "end": 5119.7, + "probability": 0.4681 + }, + { + "start": 5119.78, + "end": 5120.86, + "probability": 0.4669 + }, + { + "start": 5121.46, + "end": 5122.7, + "probability": 0.6145 + }, + { + "start": 5123.82, + "end": 5126.72, + "probability": 0.9917 + }, + { + "start": 5127.06, + "end": 5129.12, + "probability": 0.9979 + }, + { + "start": 5130.26, + "end": 5132.4, + "probability": 0.9956 + }, + { + "start": 5132.96, + "end": 5134.32, + "probability": 0.8925 + }, + { + "start": 5134.96, + "end": 5141.32, + "probability": 0.9965 + }, + { + "start": 5142.18, + "end": 5145.02, + "probability": 0.9994 + }, + { + "start": 5145.02, + "end": 5150.16, + "probability": 0.9969 + }, + { + "start": 5151.42, + "end": 5156.54, + "probability": 0.9949 + }, + { + "start": 5157.18, + "end": 5159.12, + "probability": 0.9116 + }, + { + "start": 5159.72, + "end": 5161.12, + "probability": 0.8415 + }, + { + "start": 5161.64, + "end": 5163.88, + "probability": 0.9974 + }, + { + "start": 5164.94, + "end": 5169.48, + "probability": 0.9971 + }, + { + "start": 5170.06, + "end": 5173.44, + "probability": 0.995 + }, + { + "start": 5174.14, + "end": 5178.78, + "probability": 0.9849 + }, + { + "start": 5179.34, + "end": 5182.04, + "probability": 0.996 + }, + { + "start": 5183.22, + "end": 5186.7, + "probability": 0.9867 + }, + { + "start": 5187.24, + "end": 5195.28, + "probability": 0.9915 + }, + { + "start": 5196.0, + "end": 5198.1, + "probability": 0.7783 + }, + { + "start": 5198.66, + "end": 5201.3, + "probability": 0.9202 + }, + { + "start": 5202.32, + "end": 5203.92, + "probability": 0.4217 + }, + { + "start": 5204.5, + "end": 5205.04, + "probability": 0.5035 + }, + { + "start": 5206.6, + "end": 5210.62, + "probability": 0.9086 + }, + { + "start": 5210.62, + "end": 5214.74, + "probability": 0.9944 + }, + { + "start": 5215.56, + "end": 5219.39, + "probability": 0.994 + }, + { + "start": 5219.64, + "end": 5223.62, + "probability": 0.9489 + }, + { + "start": 5224.2, + "end": 5225.62, + "probability": 0.9751 + }, + { + "start": 5226.54, + "end": 5231.16, + "probability": 0.9973 + }, + { + "start": 5231.7, + "end": 5234.72, + "probability": 0.9893 + }, + { + "start": 5235.16, + "end": 5235.44, + "probability": 0.7818 + }, + { + "start": 5236.02, + "end": 5238.4, + "probability": 0.9992 + }, + { + "start": 5238.4, + "end": 5242.48, + "probability": 0.9965 + }, + { + "start": 5243.32, + "end": 5246.08, + "probability": 0.9932 + }, + { + "start": 5246.6, + "end": 5251.68, + "probability": 0.9925 + }, + { + "start": 5252.28, + "end": 5256.28, + "probability": 0.9802 + }, + { + "start": 5256.5, + "end": 5261.26, + "probability": 0.9746 + }, + { + "start": 5262.06, + "end": 5265.48, + "probability": 0.8642 + }, + { + "start": 5266.28, + "end": 5270.4, + "probability": 0.9737 + }, + { + "start": 5272.06, + "end": 5274.78, + "probability": 0.848 + }, + { + "start": 5275.3, + "end": 5275.88, + "probability": 0.3339 + }, + { + "start": 5283.94, + "end": 5283.94, + "probability": 0.2683 + }, + { + "start": 5283.94, + "end": 5284.62, + "probability": 0.4535 + }, + { + "start": 5284.64, + "end": 5285.42, + "probability": 0.7973 + }, + { + "start": 5285.56, + "end": 5288.98, + "probability": 0.8832 + }, + { + "start": 5289.74, + "end": 5292.16, + "probability": 0.9316 + }, + { + "start": 5292.46, + "end": 5295.5, + "probability": 0.9823 + }, + { + "start": 5295.76, + "end": 5297.3, + "probability": 0.7598 + }, + { + "start": 5297.74, + "end": 5300.26, + "probability": 0.9907 + }, + { + "start": 5301.08, + "end": 5309.06, + "probability": 0.9587 + }, + { + "start": 5309.14, + "end": 5310.0, + "probability": 0.7882 + }, + { + "start": 5311.36, + "end": 5316.12, + "probability": 0.8663 + }, + { + "start": 5316.12, + "end": 5322.6, + "probability": 0.6682 + }, + { + "start": 5323.44, + "end": 5327.68, + "probability": 0.5978 + }, + { + "start": 5327.68, + "end": 5330.6, + "probability": 0.632 + }, + { + "start": 5330.64, + "end": 5334.96, + "probability": 0.9814 + }, + { + "start": 5335.58, + "end": 5335.78, + "probability": 0.3857 + }, + { + "start": 5335.8, + "end": 5339.22, + "probability": 0.9534 + }, + { + "start": 5339.36, + "end": 5342.46, + "probability": 0.8044 + }, + { + "start": 5342.56, + "end": 5346.06, + "probability": 0.7227 + }, + { + "start": 5347.02, + "end": 5350.9, + "probability": 0.9878 + }, + { + "start": 5351.88, + "end": 5357.0, + "probability": 0.8423 + }, + { + "start": 5357.66, + "end": 5363.8, + "probability": 0.9589 + }, + { + "start": 5363.86, + "end": 5365.0, + "probability": 0.8634 + }, + { + "start": 5366.24, + "end": 5369.28, + "probability": 0.7574 + }, + { + "start": 5369.96, + "end": 5370.9, + "probability": 0.9168 + }, + { + "start": 5371.52, + "end": 5372.99, + "probability": 0.8424 + }, + { + "start": 5374.38, + "end": 5374.58, + "probability": 0.2864 + }, + { + "start": 5374.58, + "end": 5375.88, + "probability": 0.6738 + }, + { + "start": 5376.86, + "end": 5378.46, + "probability": 0.9283 + }, + { + "start": 5380.02, + "end": 5380.71, + "probability": 0.9102 + }, + { + "start": 5386.9, + "end": 5387.2, + "probability": 0.5149 + }, + { + "start": 5387.9, + "end": 5390.1, + "probability": 0.7691 + }, + { + "start": 5390.22, + "end": 5391.02, + "probability": 0.4755 + }, + { + "start": 5391.02, + "end": 5392.02, + "probability": 0.8815 + }, + { + "start": 5392.52, + "end": 5395.38, + "probability": 0.9857 + }, + { + "start": 5395.38, + "end": 5400.14, + "probability": 0.9702 + }, + { + "start": 5400.82, + "end": 5401.51, + "probability": 0.7964 + }, + { + "start": 5402.58, + "end": 5403.18, + "probability": 0.955 + }, + { + "start": 5404.28, + "end": 5404.56, + "probability": 0.7974 + }, + { + "start": 5405.18, + "end": 5405.92, + "probability": 0.7792 + }, + { + "start": 5405.96, + "end": 5407.49, + "probability": 0.5468 + }, + { + "start": 5407.9, + "end": 5409.5, + "probability": 0.5693 + }, + { + "start": 5409.58, + "end": 5409.98, + "probability": 0.1306 + }, + { + "start": 5409.98, + "end": 5410.26, + "probability": 0.0287 + }, + { + "start": 5411.1, + "end": 5411.5, + "probability": 0.149 + }, + { + "start": 5411.78, + "end": 5411.82, + "probability": 0.0934 + }, + { + "start": 5411.82, + "end": 5412.84, + "probability": 0.9266 + }, + { + "start": 5413.28, + "end": 5416.34, + "probability": 0.95 + }, + { + "start": 5417.18, + "end": 5419.2, + "probability": 0.8244 + }, + { + "start": 5419.9, + "end": 5420.87, + "probability": 0.7031 + }, + { + "start": 5421.62, + "end": 5422.9, + "probability": 0.7457 + }, + { + "start": 5424.18, + "end": 5427.1, + "probability": 0.6785 + }, + { + "start": 5427.54, + "end": 5428.33, + "probability": 0.7526 + }, + { + "start": 5428.82, + "end": 5434.48, + "probability": 0.9685 + }, + { + "start": 5434.98, + "end": 5436.74, + "probability": 0.9019 + }, + { + "start": 5437.26, + "end": 5439.18, + "probability": 0.9769 + }, + { + "start": 5439.18, + "end": 5439.44, + "probability": 0.8019 + }, + { + "start": 5440.16, + "end": 5440.88, + "probability": 0.5649 + }, + { + "start": 5440.9, + "end": 5446.02, + "probability": 0.8281 + }, + { + "start": 5446.22, + "end": 5447.12, + "probability": 0.9491 + }, + { + "start": 5447.5, + "end": 5451.26, + "probability": 0.9496 + }, + { + "start": 5452.0, + "end": 5453.64, + "probability": 0.9909 + }, + { + "start": 5453.74, + "end": 5454.18, + "probability": 0.4481 + }, + { + "start": 5454.22, + "end": 5454.96, + "probability": 0.9154 + }, + { + "start": 5455.04, + "end": 5457.12, + "probability": 0.9969 + }, + { + "start": 5457.14, + "end": 5460.7, + "probability": 0.9641 + }, + { + "start": 5461.34, + "end": 5461.66, + "probability": 0.0198 + }, + { + "start": 5463.02, + "end": 5464.24, + "probability": 0.9391 + }, + { + "start": 5465.08, + "end": 5465.66, + "probability": 0.127 + }, + { + "start": 5465.66, + "end": 5466.44, + "probability": 0.2483 + }, + { + "start": 5467.18, + "end": 5467.18, + "probability": 0.0135 + }, + { + "start": 5467.18, + "end": 5467.18, + "probability": 0.0372 + }, + { + "start": 5467.18, + "end": 5471.42, + "probability": 0.5674 + }, + { + "start": 5472.14, + "end": 5472.46, + "probability": 0.7681 + }, + { + "start": 5473.32, + "end": 5475.09, + "probability": 0.6162 + }, + { + "start": 5475.44, + "end": 5475.64, + "probability": 0.4088 + }, + { + "start": 5475.68, + "end": 5476.42, + "probability": 0.6892 + }, + { + "start": 5476.52, + "end": 5478.31, + "probability": 0.9678 + }, + { + "start": 5478.58, + "end": 5479.38, + "probability": 0.679 + }, + { + "start": 5479.44, + "end": 5479.96, + "probability": 0.5908 + }, + { + "start": 5481.12, + "end": 5481.56, + "probability": 0.8493 + }, + { + "start": 5481.56, + "end": 5481.56, + "probability": 0.2789 + }, + { + "start": 5481.56, + "end": 5481.7, + "probability": 0.7298 + }, + { + "start": 5482.26, + "end": 5482.66, + "probability": 0.7534 + }, + { + "start": 5482.76, + "end": 5483.52, + "probability": 0.9866 + }, + { + "start": 5483.58, + "end": 5486.4, + "probability": 0.9705 + }, + { + "start": 5486.44, + "end": 5489.58, + "probability": 0.9363 + }, + { + "start": 5490.24, + "end": 5490.62, + "probability": 0.0424 + }, + { + "start": 5490.62, + "end": 5490.78, + "probability": 0.3648 + }, + { + "start": 5490.82, + "end": 5491.8, + "probability": 0.8472 + }, + { + "start": 5491.96, + "end": 5493.48, + "probability": 0.8718 + }, + { + "start": 5494.12, + "end": 5497.61, + "probability": 0.9263 + }, + { + "start": 5498.64, + "end": 5503.7, + "probability": 0.9912 + }, + { + "start": 5505.08, + "end": 5505.14, + "probability": 0.2673 + }, + { + "start": 5505.34, + "end": 5506.28, + "probability": 0.7978 + }, + { + "start": 5506.36, + "end": 5507.88, + "probability": 0.9531 + }, + { + "start": 5508.08, + "end": 5509.76, + "probability": 0.9302 + }, + { + "start": 5509.9, + "end": 5510.66, + "probability": 0.2969 + }, + { + "start": 5510.92, + "end": 5514.64, + "probability": 0.9562 + }, + { + "start": 5514.64, + "end": 5517.06, + "probability": 0.7487 + }, + { + "start": 5517.06, + "end": 5517.78, + "probability": 0.5369 + }, + { + "start": 5517.82, + "end": 5518.94, + "probability": 0.5803 + }, + { + "start": 5519.9, + "end": 5524.46, + "probability": 0.9434 + }, + { + "start": 5524.82, + "end": 5528.64, + "probability": 0.9885 + }, + { + "start": 5529.18, + "end": 5530.48, + "probability": 0.9657 + }, + { + "start": 5531.0, + "end": 5534.59, + "probability": 0.8711 + }, + { + "start": 5535.56, + "end": 5538.98, + "probability": 0.9785 + }, + { + "start": 5539.74, + "end": 5540.4, + "probability": 0.4937 + }, + { + "start": 5540.52, + "end": 5543.8, + "probability": 0.9932 + }, + { + "start": 5544.38, + "end": 5547.08, + "probability": 0.7143 + }, + { + "start": 5547.18, + "end": 5547.9, + "probability": 0.8256 + }, + { + "start": 5548.1, + "end": 5550.72, + "probability": 0.6219 + }, + { + "start": 5551.28, + "end": 5553.42, + "probability": 0.8837 + }, + { + "start": 5553.48, + "end": 5555.0, + "probability": 0.9702 + }, + { + "start": 5555.38, + "end": 5557.14, + "probability": 0.9558 + }, + { + "start": 5557.18, + "end": 5558.7, + "probability": 0.8697 + }, + { + "start": 5558.7, + "end": 5559.88, + "probability": 0.9869 + }, + { + "start": 5562.16, + "end": 5562.58, + "probability": 0.1048 + }, + { + "start": 5562.58, + "end": 5563.8, + "probability": 0.7445 + }, + { + "start": 5564.72, + "end": 5567.96, + "probability": 0.9678 + }, + { + "start": 5568.94, + "end": 5570.2, + "probability": 0.849 + }, + { + "start": 5570.5, + "end": 5574.98, + "probability": 0.8407 + }, + { + "start": 5575.54, + "end": 5578.12, + "probability": 0.996 + }, + { + "start": 5578.78, + "end": 5580.06, + "probability": 0.9445 + }, + { + "start": 5580.36, + "end": 5582.46, + "probability": 0.9735 + }, + { + "start": 5582.5, + "end": 5586.06, + "probability": 0.9805 + }, + { + "start": 5586.12, + "end": 5591.3, + "probability": 0.9856 + }, + { + "start": 5591.84, + "end": 5593.28, + "probability": 0.9976 + }, + { + "start": 5594.06, + "end": 5596.44, + "probability": 0.8945 + }, + { + "start": 5597.24, + "end": 5601.12, + "probability": 0.9915 + }, + { + "start": 5601.12, + "end": 5606.18, + "probability": 0.9315 + }, + { + "start": 5607.16, + "end": 5609.8, + "probability": 0.7916 + }, + { + "start": 5610.02, + "end": 5610.64, + "probability": 0.7839 + }, + { + "start": 5610.78, + "end": 5611.75, + "probability": 0.9499 + }, + { + "start": 5612.4, + "end": 5614.26, + "probability": 0.7269 + }, + { + "start": 5614.76, + "end": 5615.2, + "probability": 0.4982 + }, + { + "start": 5615.4, + "end": 5618.8, + "probability": 0.9778 + }, + { + "start": 5619.42, + "end": 5620.38, + "probability": 0.866 + }, + { + "start": 5620.46, + "end": 5622.72, + "probability": 0.9841 + }, + { + "start": 5622.86, + "end": 5625.38, + "probability": 0.9961 + }, + { + "start": 5626.36, + "end": 5629.5, + "probability": 0.7851 + }, + { + "start": 5630.86, + "end": 5632.92, + "probability": 0.2488 + }, + { + "start": 5632.92, + "end": 5634.66, + "probability": 0.6816 + }, + { + "start": 5635.1, + "end": 5639.46, + "probability": 0.9762 + }, + { + "start": 5639.6, + "end": 5641.32, + "probability": 0.8156 + }, + { + "start": 5641.74, + "end": 5643.6, + "probability": 0.9923 + }, + { + "start": 5643.6, + "end": 5647.09, + "probability": 0.9842 + }, + { + "start": 5647.98, + "end": 5649.58, + "probability": 0.0612 + }, + { + "start": 5650.16, + "end": 5652.36, + "probability": 0.978 + }, + { + "start": 5653.36, + "end": 5655.82, + "probability": 0.0071 + }, + { + "start": 5663.76, + "end": 5665.52, + "probability": 0.537 + }, + { + "start": 5665.88, + "end": 5669.96, + "probability": 0.0635 + }, + { + "start": 5669.96, + "end": 5675.12, + "probability": 0.0408 + }, + { + "start": 5675.16, + "end": 5679.02, + "probability": 0.0312 + }, + { + "start": 5680.59, + "end": 5682.02, + "probability": 0.0726 + }, + { + "start": 5682.92, + "end": 5683.12, + "probability": 0.0302 + }, + { + "start": 5683.12, + "end": 5683.12, + "probability": 0.0421 + }, + { + "start": 5683.12, + "end": 5683.12, + "probability": 0.3434 + }, + { + "start": 5683.12, + "end": 5684.83, + "probability": 0.2773 + }, + { + "start": 5699.64, + "end": 5700.18, + "probability": 0.2735 + }, + { + "start": 5700.24, + "end": 5701.22, + "probability": 0.5808 + }, + { + "start": 5701.54, + "end": 5701.56, + "probability": 0.7604 + }, + { + "start": 5701.56, + "end": 5704.76, + "probability": 0.8888 + }, + { + "start": 5704.76, + "end": 5708.4, + "probability": 0.964 + }, + { + "start": 5708.76, + "end": 5709.44, + "probability": 0.972 + }, + { + "start": 5709.54, + "end": 5710.3, + "probability": 0.9712 + }, + { + "start": 5710.4, + "end": 5711.04, + "probability": 0.884 + }, + { + "start": 5711.64, + "end": 5717.48, + "probability": 0.9797 + }, + { + "start": 5717.56, + "end": 5717.92, + "probability": 0.903 + }, + { + "start": 5719.4, + "end": 5723.0, + "probability": 0.8529 + }, + { + "start": 5724.19, + "end": 5727.24, + "probability": 0.656 + }, + { + "start": 5727.88, + "end": 5731.2, + "probability": 0.9011 + }, + { + "start": 5731.54, + "end": 5733.44, + "probability": 0.6641 + }, + { + "start": 5733.98, + "end": 5738.12, + "probability": 0.9306 + }, + { + "start": 5738.22, + "end": 5739.4, + "probability": 0.954 + }, + { + "start": 5739.86, + "end": 5740.92, + "probability": 0.9745 + }, + { + "start": 5740.98, + "end": 5742.86, + "probability": 0.9317 + }, + { + "start": 5743.22, + "end": 5744.12, + "probability": 0.904 + }, + { + "start": 5744.44, + "end": 5745.88, + "probability": 0.9863 + }, + { + "start": 5746.26, + "end": 5748.45, + "probability": 0.9961 + }, + { + "start": 5748.74, + "end": 5750.54, + "probability": 0.8284 + }, + { + "start": 5751.69, + "end": 5753.78, + "probability": 0.8611 + }, + { + "start": 5754.7, + "end": 5756.58, + "probability": 0.7717 + }, + { + "start": 5756.96, + "end": 5758.79, + "probability": 0.9828 + }, + { + "start": 5759.22, + "end": 5761.86, + "probability": 0.8058 + }, + { + "start": 5761.9, + "end": 5762.78, + "probability": 0.8328 + }, + { + "start": 5763.94, + "end": 5765.22, + "probability": 0.7776 + }, + { + "start": 5765.96, + "end": 5767.16, + "probability": 0.2924 + }, + { + "start": 5767.28, + "end": 5769.8, + "probability": 0.8037 + }, + { + "start": 5770.5, + "end": 5771.16, + "probability": 0.8716 + }, + { + "start": 5772.72, + "end": 5776.18, + "probability": 0.8239 + }, + { + "start": 5776.24, + "end": 5779.14, + "probability": 0.9946 + }, + { + "start": 5779.34, + "end": 5781.64, + "probability": 0.9949 + }, + { + "start": 5781.64, + "end": 5784.38, + "probability": 0.9837 + }, + { + "start": 5784.6, + "end": 5786.54, + "probability": 0.843 + }, + { + "start": 5787.44, + "end": 5788.22, + "probability": 0.7036 + }, + { + "start": 5788.98, + "end": 5790.8, + "probability": 0.8002 + }, + { + "start": 5791.56, + "end": 5792.54, + "probability": 0.8792 + }, + { + "start": 5793.46, + "end": 5795.64, + "probability": 0.7005 + }, + { + "start": 5796.2, + "end": 5799.24, + "probability": 0.9146 + }, + { + "start": 5799.62, + "end": 5800.8, + "probability": 0.9946 + }, + { + "start": 5801.32, + "end": 5808.02, + "probability": 0.9758 + }, + { + "start": 5808.68, + "end": 5811.14, + "probability": 0.8914 + }, + { + "start": 5811.78, + "end": 5813.4, + "probability": 0.6111 + }, + { + "start": 5814.1, + "end": 5817.1, + "probability": 0.9774 + }, + { + "start": 5817.1, + "end": 5821.74, + "probability": 0.856 + }, + { + "start": 5821.9, + "end": 5825.68, + "probability": 0.9788 + }, + { + "start": 5826.38, + "end": 5827.4, + "probability": 0.8419 + }, + { + "start": 5827.82, + "end": 5829.48, + "probability": 0.9884 + }, + { + "start": 5829.64, + "end": 5830.91, + "probability": 0.718 + }, + { + "start": 5831.62, + "end": 5833.8, + "probability": 0.9534 + }, + { + "start": 5834.36, + "end": 5834.78, + "probability": 0.7752 + }, + { + "start": 5834.86, + "end": 5837.45, + "probability": 0.9893 + }, + { + "start": 5838.02, + "end": 5839.08, + "probability": 0.7186 + }, + { + "start": 5840.1, + "end": 5841.88, + "probability": 0.9941 + }, + { + "start": 5842.64, + "end": 5844.9, + "probability": 0.8511 + }, + { + "start": 5845.5, + "end": 5850.6, + "probability": 0.9801 + }, + { + "start": 5851.08, + "end": 5852.99, + "probability": 0.9978 + }, + { + "start": 5853.72, + "end": 5855.4, + "probability": 0.9545 + }, + { + "start": 5856.08, + "end": 5857.5, + "probability": 0.5045 + }, + { + "start": 5857.62, + "end": 5858.83, + "probability": 0.5106 + }, + { + "start": 5859.4, + "end": 5861.6, + "probability": 0.8359 + }, + { + "start": 5862.3, + "end": 5865.84, + "probability": 0.9991 + }, + { + "start": 5866.26, + "end": 5869.64, + "probability": 0.9948 + }, + { + "start": 5869.64, + "end": 5874.66, + "probability": 0.9863 + }, + { + "start": 5875.24, + "end": 5876.88, + "probability": 0.7873 + }, + { + "start": 5878.44, + "end": 5882.24, + "probability": 0.7476 + }, + { + "start": 5882.24, + "end": 5885.54, + "probability": 0.8383 + }, + { + "start": 5886.3, + "end": 5889.72, + "probability": 0.9893 + }, + { + "start": 5889.84, + "end": 5893.02, + "probability": 0.9694 + }, + { + "start": 5893.02, + "end": 5899.18, + "probability": 0.897 + }, + { + "start": 5899.6, + "end": 5903.28, + "probability": 0.9836 + }, + { + "start": 5903.96, + "end": 5906.8, + "probability": 0.9053 + }, + { + "start": 5907.34, + "end": 5911.44, + "probability": 0.9703 + }, + { + "start": 5912.22, + "end": 5915.2, + "probability": 0.9451 + }, + { + "start": 5915.96, + "end": 5919.22, + "probability": 0.9824 + }, + { + "start": 5920.12, + "end": 5921.52, + "probability": 0.9617 + }, + { + "start": 5922.04, + "end": 5926.16, + "probability": 0.984 + }, + { + "start": 5926.7, + "end": 5931.82, + "probability": 0.9867 + }, + { + "start": 5931.88, + "end": 5935.88, + "probability": 0.9854 + }, + { + "start": 5935.96, + "end": 5937.78, + "probability": 0.8998 + }, + { + "start": 5938.22, + "end": 5940.1, + "probability": 0.8271 + }, + { + "start": 5940.76, + "end": 5942.6, + "probability": 0.9974 + }, + { + "start": 5943.54, + "end": 5949.76, + "probability": 0.9928 + }, + { + "start": 5950.62, + "end": 5955.66, + "probability": 0.9929 + }, + { + "start": 5956.44, + "end": 5958.08, + "probability": 0.9597 + }, + { + "start": 5958.32, + "end": 5959.9, + "probability": 0.8349 + }, + { + "start": 5959.92, + "end": 5962.76, + "probability": 0.8806 + }, + { + "start": 5963.36, + "end": 5967.34, + "probability": 0.9769 + }, + { + "start": 5968.92, + "end": 5971.02, + "probability": 0.9854 + }, + { + "start": 5971.02, + "end": 5972.52, + "probability": 0.6054 + }, + { + "start": 5973.5, + "end": 5974.2, + "probability": 0.9099 + }, + { + "start": 5975.34, + "end": 5979.78, + "probability": 0.8334 + }, + { + "start": 5980.46, + "end": 5981.1, + "probability": 0.6515 + }, + { + "start": 5981.72, + "end": 5983.28, + "probability": 0.8188 + }, + { + "start": 5984.62, + "end": 5987.9, + "probability": 0.993 + }, + { + "start": 5987.9, + "end": 5992.36, + "probability": 0.9915 + }, + { + "start": 5992.52, + "end": 5993.66, + "probability": 0.6885 + }, + { + "start": 5994.36, + "end": 5997.08, + "probability": 0.8135 + }, + { + "start": 5998.28, + "end": 5999.58, + "probability": 0.704 + }, + { + "start": 6000.4, + "end": 6002.36, + "probability": 0.9925 + }, + { + "start": 6002.36, + "end": 6004.84, + "probability": 0.9954 + }, + { + "start": 6005.36, + "end": 6007.44, + "probability": 0.9694 + }, + { + "start": 6007.86, + "end": 6013.16, + "probability": 0.9946 + }, + { + "start": 6013.88, + "end": 6015.8, + "probability": 0.9463 + }, + { + "start": 6016.32, + "end": 6017.98, + "probability": 0.6108 + }, + { + "start": 6018.06, + "end": 6018.82, + "probability": 0.8979 + }, + { + "start": 6018.94, + "end": 6021.44, + "probability": 0.8555 + }, + { + "start": 6022.08, + "end": 6027.16, + "probability": 0.8921 + }, + { + "start": 6027.16, + "end": 6032.94, + "probability": 0.9538 + }, + { + "start": 6033.2, + "end": 6035.16, + "probability": 0.1712 + }, + { + "start": 6035.2, + "end": 6035.5, + "probability": 0.8351 + }, + { + "start": 6035.58, + "end": 6037.56, + "probability": 0.8467 + }, + { + "start": 6038.04, + "end": 6041.4, + "probability": 0.9614 + }, + { + "start": 6042.0, + "end": 6044.38, + "probability": 0.9751 + }, + { + "start": 6044.54, + "end": 6046.9, + "probability": 0.9146 + }, + { + "start": 6047.54, + "end": 6049.4, + "probability": 0.9762 + }, + { + "start": 6049.46, + "end": 6053.5, + "probability": 0.9983 + }, + { + "start": 6054.2, + "end": 6056.16, + "probability": 0.5293 + }, + { + "start": 6056.34, + "end": 6057.26, + "probability": 0.8883 + }, + { + "start": 6057.76, + "end": 6059.76, + "probability": 0.6257 + }, + { + "start": 6060.28, + "end": 6060.82, + "probability": 0.5467 + }, + { + "start": 6062.4, + "end": 6065.42, + "probability": 0.9586 + }, + { + "start": 6065.52, + "end": 6070.54, + "probability": 0.9838 + }, + { + "start": 6070.7, + "end": 6071.34, + "probability": 0.9755 + }, + { + "start": 6071.76, + "end": 6073.86, + "probability": 0.9578 + }, + { + "start": 6074.32, + "end": 6078.6, + "probability": 0.8403 + }, + { + "start": 6078.68, + "end": 6080.3, + "probability": 0.532 + }, + { + "start": 6080.4, + "end": 6081.62, + "probability": 0.9985 + }, + { + "start": 6081.74, + "end": 6082.9, + "probability": 0.9084 + }, + { + "start": 6083.34, + "end": 6084.14, + "probability": 0.8491 + }, + { + "start": 6085.28, + "end": 6088.82, + "probability": 0.9917 + }, + { + "start": 6088.9, + "end": 6089.98, + "probability": 0.4899 + }, + { + "start": 6090.84, + "end": 6093.96, + "probability": 0.9987 + }, + { + "start": 6094.54, + "end": 6095.68, + "probability": 0.7513 + }, + { + "start": 6096.64, + "end": 6097.92, + "probability": 0.5 + }, + { + "start": 6098.64, + "end": 6105.6, + "probability": 0.7477 + }, + { + "start": 6105.6, + "end": 6113.74, + "probability": 0.8466 + }, + { + "start": 6114.16, + "end": 6115.25, + "probability": 0.7103 + }, + { + "start": 6115.78, + "end": 6117.53, + "probability": 0.8315 + }, + { + "start": 6118.6, + "end": 6119.16, + "probability": 0.5601 + }, + { + "start": 6119.26, + "end": 6120.48, + "probability": 0.9418 + }, + { + "start": 6121.06, + "end": 6122.6, + "probability": 0.9723 + }, + { + "start": 6122.76, + "end": 6126.58, + "probability": 0.7242 + }, + { + "start": 6126.96, + "end": 6131.12, + "probability": 0.9243 + }, + { + "start": 6132.04, + "end": 6133.4, + "probability": 0.6938 + }, + { + "start": 6134.72, + "end": 6138.68, + "probability": 0.9395 + }, + { + "start": 6138.9, + "end": 6142.59, + "probability": 0.9917 + }, + { + "start": 6143.76, + "end": 6145.82, + "probability": 0.7619 + }, + { + "start": 6146.6, + "end": 6148.06, + "probability": 0.7068 + }, + { + "start": 6148.2, + "end": 6150.43, + "probability": 0.8628 + }, + { + "start": 6150.72, + "end": 6151.98, + "probability": 0.7534 + }, + { + "start": 6152.04, + "end": 6158.54, + "probability": 0.939 + }, + { + "start": 6159.1, + "end": 6161.37, + "probability": 0.9616 + }, + { + "start": 6162.68, + "end": 6163.04, + "probability": 0.4222 + }, + { + "start": 6163.14, + "end": 6165.14, + "probability": 0.9681 + }, + { + "start": 6166.52, + "end": 6172.36, + "probability": 0.8826 + }, + { + "start": 6172.82, + "end": 6175.26, + "probability": 0.9397 + }, + { + "start": 6175.34, + "end": 6176.0, + "probability": 0.6617 + }, + { + "start": 6176.04, + "end": 6179.14, + "probability": 0.9468 + }, + { + "start": 6179.2, + "end": 6181.62, + "probability": 0.099 + }, + { + "start": 6182.58, + "end": 6186.28, + "probability": 0.9697 + }, + { + "start": 6186.5, + "end": 6187.28, + "probability": 0.3781 + }, + { + "start": 6187.4, + "end": 6188.72, + "probability": 0.9124 + }, + { + "start": 6189.12, + "end": 6189.66, + "probability": 0.7399 + }, + { + "start": 6190.36, + "end": 6197.06, + "probability": 0.5127 + }, + { + "start": 6197.66, + "end": 6199.96, + "probability": 0.9893 + }, + { + "start": 6200.96, + "end": 6204.76, + "probability": 0.9779 + }, + { + "start": 6204.76, + "end": 6209.14, + "probability": 0.9558 + }, + { + "start": 6210.5, + "end": 6212.74, + "probability": 0.9864 + }, + { + "start": 6213.28, + "end": 6213.46, + "probability": 0.2772 + }, + { + "start": 6213.46, + "end": 6213.81, + "probability": 0.6782 + }, + { + "start": 6214.1, + "end": 6214.2, + "probability": 0.4983 + }, + { + "start": 6214.46, + "end": 6216.84, + "probability": 0.6654 + }, + { + "start": 6216.98, + "end": 6218.44, + "probability": 0.5344 + }, + { + "start": 6219.16, + "end": 6220.53, + "probability": 0.7769 + }, + { + "start": 6221.34, + "end": 6223.14, + "probability": 0.7709 + }, + { + "start": 6223.14, + "end": 6226.5, + "probability": 0.9554 + }, + { + "start": 6226.92, + "end": 6228.18, + "probability": 0.7035 + }, + { + "start": 6228.24, + "end": 6230.32, + "probability": 0.9868 + }, + { + "start": 6230.8, + "end": 6231.99, + "probability": 0.9492 + }, + { + "start": 6232.58, + "end": 6233.04, + "probability": 0.8933 + }, + { + "start": 6233.1, + "end": 6236.93, + "probability": 0.7645 + }, + { + "start": 6237.0, + "end": 6240.2, + "probability": 0.9618 + }, + { + "start": 6241.86, + "end": 6244.44, + "probability": 0.7263 + }, + { + "start": 6245.2, + "end": 6246.34, + "probability": 0.7918 + }, + { + "start": 6246.92, + "end": 6249.8, + "probability": 0.8721 + }, + { + "start": 6250.34, + "end": 6252.34, + "probability": 0.9494 + }, + { + "start": 6254.37, + "end": 6255.76, + "probability": 0.9192 + }, + { + "start": 6255.86, + "end": 6256.92, + "probability": 0.7359 + }, + { + "start": 6256.92, + "end": 6258.14, + "probability": 0.5786 + }, + { + "start": 6258.52, + "end": 6260.38, + "probability": 0.8564 + }, + { + "start": 6260.42, + "end": 6262.28, + "probability": 0.8011 + }, + { + "start": 6262.38, + "end": 6263.6, + "probability": 0.675 + }, + { + "start": 6263.74, + "end": 6264.9, + "probability": 0.9048 + }, + { + "start": 6266.68, + "end": 6266.92, + "probability": 0.2073 + }, + { + "start": 6267.22, + "end": 6268.5, + "probability": 0.945 + }, + { + "start": 6268.64, + "end": 6271.72, + "probability": 0.9217 + }, + { + "start": 6271.8, + "end": 6272.5, + "probability": 0.7794 + }, + { + "start": 6273.02, + "end": 6274.05, + "probability": 0.9683 + }, + { + "start": 6274.84, + "end": 6277.64, + "probability": 0.8643 + }, + { + "start": 6278.7, + "end": 6283.46, + "probability": 0.7488 + }, + { + "start": 6284.18, + "end": 6286.76, + "probability": 0.6038 + }, + { + "start": 6286.84, + "end": 6288.3, + "probability": 0.6561 + }, + { + "start": 6288.58, + "end": 6289.88, + "probability": 0.9257 + }, + { + "start": 6290.36, + "end": 6290.86, + "probability": 0.5874 + }, + { + "start": 6290.96, + "end": 6292.78, + "probability": 0.9197 + }, + { + "start": 6292.94, + "end": 6296.98, + "probability": 0.963 + }, + { + "start": 6297.54, + "end": 6300.78, + "probability": 0.8705 + }, + { + "start": 6300.88, + "end": 6304.88, + "probability": 0.9677 + }, + { + "start": 6305.42, + "end": 6307.13, + "probability": 0.8996 + }, + { + "start": 6307.66, + "end": 6311.4, + "probability": 0.6099 + }, + { + "start": 6311.48, + "end": 6312.26, + "probability": 0.7525 + }, + { + "start": 6313.18, + "end": 6315.86, + "probability": 0.9839 + }, + { + "start": 6316.66, + "end": 6318.28, + "probability": 0.8201 + }, + { + "start": 6318.36, + "end": 6319.54, + "probability": 0.506 + }, + { + "start": 6319.72, + "end": 6321.04, + "probability": 0.3552 + }, + { + "start": 6321.66, + "end": 6325.48, + "probability": 0.9088 + }, + { + "start": 6326.1, + "end": 6331.13, + "probability": 0.9768 + }, + { + "start": 6332.34, + "end": 6332.9, + "probability": 0.7407 + }, + { + "start": 6333.68, + "end": 6340.06, + "probability": 0.8876 + }, + { + "start": 6341.3, + "end": 6341.48, + "probability": 0.0734 + }, + { + "start": 6341.48, + "end": 6345.27, + "probability": 0.9455 + }, + { + "start": 6345.6, + "end": 6353.1, + "probability": 0.9712 + }, + { + "start": 6353.78, + "end": 6360.82, + "probability": 0.9401 + }, + { + "start": 6361.74, + "end": 6364.34, + "probability": 0.9937 + }, + { + "start": 6365.18, + "end": 6366.32, + "probability": 0.8691 + }, + { + "start": 6366.38, + "end": 6368.84, + "probability": 0.6905 + }, + { + "start": 6368.92, + "end": 6369.28, + "probability": 0.5925 + }, + { + "start": 6369.34, + "end": 6372.28, + "probability": 0.5271 + }, + { + "start": 6372.36, + "end": 6374.48, + "probability": 0.5459 + }, + { + "start": 6375.78, + "end": 6376.52, + "probability": 0.07 + }, + { + "start": 6377.02, + "end": 6380.1, + "probability": 0.5508 + }, + { + "start": 6380.1, + "end": 6382.9, + "probability": 0.0134 + }, + { + "start": 6383.18, + "end": 6387.7, + "probability": 0.6624 + }, + { + "start": 6388.26, + "end": 6389.17, + "probability": 0.4287 + }, + { + "start": 6390.12, + "end": 6390.44, + "probability": 0.1746 + }, + { + "start": 6390.54, + "end": 6391.68, + "probability": 0.5933 + }, + { + "start": 6391.8, + "end": 6393.5, + "probability": 0.8593 + }, + { + "start": 6393.52, + "end": 6394.78, + "probability": 0.8712 + }, + { + "start": 6394.88, + "end": 6395.88, + "probability": 0.9717 + }, + { + "start": 6395.96, + "end": 6397.06, + "probability": 0.9427 + }, + { + "start": 6397.56, + "end": 6398.86, + "probability": 0.4971 + }, + { + "start": 6399.4, + "end": 6401.8, + "probability": 0.8973 + }, + { + "start": 6402.3, + "end": 6404.18, + "probability": 0.6317 + }, + { + "start": 6404.38, + "end": 6406.84, + "probability": 0.9893 + }, + { + "start": 6407.76, + "end": 6409.64, + "probability": 0.6858 + }, + { + "start": 6409.64, + "end": 6410.04, + "probability": 0.5062 + }, + { + "start": 6410.55, + "end": 6415.78, + "probability": 0.9707 + }, + { + "start": 6416.34, + "end": 6418.66, + "probability": 0.53 + }, + { + "start": 6419.68, + "end": 6420.58, + "probability": 0.8513 + }, + { + "start": 6420.66, + "end": 6422.92, + "probability": 0.9888 + }, + { + "start": 6423.22, + "end": 6430.02, + "probability": 0.9725 + }, + { + "start": 6431.3, + "end": 6433.18, + "probability": 0.9814 + }, + { + "start": 6433.6, + "end": 6437.38, + "probability": 0.9148 + }, + { + "start": 6438.04, + "end": 6442.96, + "probability": 0.7054 + }, + { + "start": 6443.52, + "end": 6447.84, + "probability": 0.9256 + }, + { + "start": 6447.9, + "end": 6450.68, + "probability": 0.7714 + }, + { + "start": 6450.78, + "end": 6454.36, + "probability": 0.9623 + }, + { + "start": 6454.58, + "end": 6455.61, + "probability": 0.6097 + }, + { + "start": 6456.3, + "end": 6457.58, + "probability": 0.9504 + }, + { + "start": 6457.58, + "end": 6458.78, + "probability": 0.4892 + }, + { + "start": 6458.94, + "end": 6463.94, + "probability": 0.9304 + }, + { + "start": 6465.4, + "end": 6466.86, + "probability": 0.9912 + }, + { + "start": 6466.92, + "end": 6468.3, + "probability": 0.4711 + }, + { + "start": 6468.86, + "end": 6470.98, + "probability": 0.9327 + }, + { + "start": 6471.06, + "end": 6472.3, + "probability": 0.9828 + }, + { + "start": 6473.3, + "end": 6474.8, + "probability": 0.4872 + }, + { + "start": 6475.02, + "end": 6475.36, + "probability": 0.4314 + }, + { + "start": 6475.5, + "end": 6476.44, + "probability": 0.7485 + }, + { + "start": 6476.68, + "end": 6479.22, + "probability": 0.9546 + }, + { + "start": 6479.38, + "end": 6481.1, + "probability": 0.9334 + }, + { + "start": 6481.5, + "end": 6484.3, + "probability": 0.666 + }, + { + "start": 6484.98, + "end": 6486.1, + "probability": 0.7177 + }, + { + "start": 6486.18, + "end": 6487.7, + "probability": 0.9852 + }, + { + "start": 6487.74, + "end": 6489.03, + "probability": 0.8826 + }, + { + "start": 6489.58, + "end": 6493.7, + "probability": 0.998 + }, + { + "start": 6494.22, + "end": 6496.2, + "probability": 0.8005 + }, + { + "start": 6496.6, + "end": 6498.1, + "probability": 0.5716 + }, + { + "start": 6498.74, + "end": 6500.34, + "probability": 0.9915 + }, + { + "start": 6500.98, + "end": 6503.18, + "probability": 0.8706 + }, + { + "start": 6503.72, + "end": 6504.44, + "probability": 0.6423 + }, + { + "start": 6505.06, + "end": 6506.0, + "probability": 0.6832 + }, + { + "start": 6506.7, + "end": 6508.2, + "probability": 0.8703 + }, + { + "start": 6508.5, + "end": 6508.8, + "probability": 0.9067 + }, + { + "start": 6509.42, + "end": 6511.12, + "probability": 0.8693 + }, + { + "start": 6511.22, + "end": 6511.78, + "probability": 0.4548 + }, + { + "start": 6511.94, + "end": 6515.58, + "probability": 0.9749 + }, + { + "start": 6516.68, + "end": 6517.34, + "probability": 0.6773 + }, + { + "start": 6518.08, + "end": 6519.74, + "probability": 0.5861 + }, + { + "start": 6520.18, + "end": 6522.42, + "probability": 0.9478 + }, + { + "start": 6522.42, + "end": 6523.88, + "probability": 0.9518 + }, + { + "start": 6523.94, + "end": 6524.4, + "probability": 0.6341 + }, + { + "start": 6524.96, + "end": 6529.24, + "probability": 0.9976 + }, + { + "start": 6530.16, + "end": 6532.08, + "probability": 0.8534 + }, + { + "start": 6532.5, + "end": 6534.8, + "probability": 0.4162 + }, + { + "start": 6534.8, + "end": 6535.29, + "probability": 0.8711 + }, + { + "start": 6537.6, + "end": 6542.2, + "probability": 0.8723 + }, + { + "start": 6543.38, + "end": 6546.14, + "probability": 0.9481 + }, + { + "start": 6546.22, + "end": 6547.2, + "probability": 0.4835 + }, + { + "start": 6547.48, + "end": 6548.14, + "probability": 0.6556 + }, + { + "start": 6548.22, + "end": 6549.94, + "probability": 0.6008 + }, + { + "start": 6550.6, + "end": 6552.34, + "probability": 0.9803 + }, + { + "start": 6553.14, + "end": 6553.68, + "probability": 0.9095 + }, + { + "start": 6553.8, + "end": 6559.94, + "probability": 0.9447 + }, + { + "start": 6560.82, + "end": 6562.5, + "probability": 0.847 + }, + { + "start": 6562.66, + "end": 6563.4, + "probability": 0.6565 + }, + { + "start": 6563.4, + "end": 6567.16, + "probability": 0.9757 + }, + { + "start": 6567.7, + "end": 6572.35, + "probability": 0.9265 + }, + { + "start": 6573.52, + "end": 6574.5, + "probability": 0.3794 + }, + { + "start": 6575.82, + "end": 6577.32, + "probability": 0.9453 + }, + { + "start": 6577.94, + "end": 6579.56, + "probability": 0.7103 + }, + { + "start": 6579.86, + "end": 6583.86, + "probability": 0.8979 + }, + { + "start": 6584.0, + "end": 6586.06, + "probability": 0.7912 + }, + { + "start": 6587.08, + "end": 6593.1, + "probability": 0.9642 + }, + { + "start": 6594.0, + "end": 6598.36, + "probability": 0.939 + }, + { + "start": 6599.2, + "end": 6601.16, + "probability": 0.8234 + }, + { + "start": 6603.5, + "end": 6608.94, + "probability": 0.9553 + }, + { + "start": 6609.62, + "end": 6612.88, + "probability": 0.9956 + }, + { + "start": 6615.42, + "end": 6617.32, + "probability": 0.9951 + }, + { + "start": 6617.86, + "end": 6620.04, + "probability": 0.9969 + }, + { + "start": 6620.54, + "end": 6621.06, + "probability": 0.7851 + }, + { + "start": 6621.12, + "end": 6625.46, + "probability": 0.8579 + }, + { + "start": 6626.3, + "end": 6626.95, + "probability": 0.7297 + }, + { + "start": 6628.16, + "end": 6629.72, + "probability": 0.9736 + }, + { + "start": 6632.62, + "end": 6635.82, + "probability": 0.8706 + }, + { + "start": 6636.58, + "end": 6641.86, + "probability": 0.9996 + }, + { + "start": 6642.02, + "end": 6643.06, + "probability": 0.917 + }, + { + "start": 6643.78, + "end": 6644.86, + "probability": 0.8538 + }, + { + "start": 6647.66, + "end": 6649.88, + "probability": 0.7277 + }, + { + "start": 6651.78, + "end": 6654.6, + "probability": 0.8916 + }, + { + "start": 6654.6, + "end": 6657.68, + "probability": 0.8902 + }, + { + "start": 6659.12, + "end": 6663.16, + "probability": 0.9639 + }, + { + "start": 6663.72, + "end": 6669.7, + "probability": 0.7483 + }, + { + "start": 6670.4, + "end": 6675.6, + "probability": 0.6254 + }, + { + "start": 6676.36, + "end": 6680.14, + "probability": 0.7966 + }, + { + "start": 6681.32, + "end": 6684.24, + "probability": 0.9508 + }, + { + "start": 6685.0, + "end": 6692.62, + "probability": 0.7667 + }, + { + "start": 6692.92, + "end": 6694.64, + "probability": 0.7191 + }, + { + "start": 6694.76, + "end": 6701.18, + "probability": 0.9783 + }, + { + "start": 6702.0, + "end": 6703.74, + "probability": 0.9987 + }, + { + "start": 6704.8, + "end": 6710.14, + "probability": 0.6912 + }, + { + "start": 6710.52, + "end": 6715.58, + "probability": 0.8006 + }, + { + "start": 6715.62, + "end": 6718.14, + "probability": 0.6995 + }, + { + "start": 6718.5, + "end": 6722.6, + "probability": 0.8663 + }, + { + "start": 6723.36, + "end": 6724.36, + "probability": 0.6115 + }, + { + "start": 6724.52, + "end": 6727.55, + "probability": 0.8394 + }, + { + "start": 6728.42, + "end": 6728.72, + "probability": 0.883 + }, + { + "start": 6729.22, + "end": 6730.06, + "probability": 0.9607 + }, + { + "start": 6730.66, + "end": 6734.3, + "probability": 0.9839 + }, + { + "start": 6735.0, + "end": 6736.94, + "probability": 0.9954 + }, + { + "start": 6737.62, + "end": 6740.36, + "probability": 0.9734 + }, + { + "start": 6740.78, + "end": 6747.64, + "probability": 0.9664 + }, + { + "start": 6749.26, + "end": 6750.66, + "probability": 0.6755 + }, + { + "start": 6751.02, + "end": 6755.24, + "probability": 0.9818 + }, + { + "start": 6756.0, + "end": 6761.44, + "probability": 0.9068 + }, + { + "start": 6762.16, + "end": 6767.32, + "probability": 0.772 + }, + { + "start": 6767.46, + "end": 6768.92, + "probability": 0.9505 + }, + { + "start": 6769.44, + "end": 6770.3, + "probability": 0.8431 + }, + { + "start": 6771.36, + "end": 6777.14, + "probability": 0.984 + }, + { + "start": 6777.7, + "end": 6785.62, + "probability": 0.8311 + }, + { + "start": 6787.88, + "end": 6790.68, + "probability": 0.9318 + }, + { + "start": 6792.92, + "end": 6794.16, + "probability": 0.5486 + }, + { + "start": 6795.08, + "end": 6798.18, + "probability": 0.864 + }, + { + "start": 6798.74, + "end": 6802.0, + "probability": 0.851 + }, + { + "start": 6803.38, + "end": 6806.96, + "probability": 0.9417 + }, + { + "start": 6807.54, + "end": 6809.56, + "probability": 0.6647 + }, + { + "start": 6809.86, + "end": 6810.72, + "probability": 0.3223 + }, + { + "start": 6810.86, + "end": 6816.96, + "probability": 0.6786 + }, + { + "start": 6817.48, + "end": 6821.92, + "probability": 0.9762 + }, + { + "start": 6822.24, + "end": 6822.82, + "probability": 0.4365 + }, + { + "start": 6823.02, + "end": 6824.1, + "probability": 0.9462 + }, + { + "start": 6824.78, + "end": 6831.68, + "probability": 0.9868 + }, + { + "start": 6831.8, + "end": 6834.06, + "probability": 0.8997 + }, + { + "start": 6834.52, + "end": 6835.84, + "probability": 0.8798 + }, + { + "start": 6836.3, + "end": 6841.32, + "probability": 0.4617 + }, + { + "start": 6842.1, + "end": 6843.34, + "probability": 0.5897 + }, + { + "start": 6843.34, + "end": 6848.1, + "probability": 0.9589 + }, + { + "start": 6848.18, + "end": 6852.66, + "probability": 0.9768 + }, + { + "start": 6853.32, + "end": 6859.06, + "probability": 0.9724 + }, + { + "start": 6859.46, + "end": 6860.41, + "probability": 0.5912 + }, + { + "start": 6860.82, + "end": 6863.64, + "probability": 0.9753 + }, + { + "start": 6864.5, + "end": 6868.34, + "probability": 0.6667 + }, + { + "start": 6868.34, + "end": 6869.85, + "probability": 0.471 + }, + { + "start": 6870.94, + "end": 6872.8, + "probability": 0.7534 + }, + { + "start": 6876.7, + "end": 6877.62, + "probability": 0.3691 + }, + { + "start": 6886.45, + "end": 6887.82, + "probability": 0.7369 + }, + { + "start": 6888.26, + "end": 6888.92, + "probability": 0.7608 + }, + { + "start": 6889.78, + "end": 6892.2, + "probability": 0.8455 + }, + { + "start": 6892.82, + "end": 6894.8, + "probability": 0.7915 + }, + { + "start": 6895.8, + "end": 6897.26, + "probability": 0.8201 + }, + { + "start": 6897.6, + "end": 6898.42, + "probability": 0.7249 + }, + { + "start": 6898.6, + "end": 6900.22, + "probability": 0.865 + }, + { + "start": 6900.56, + "end": 6902.86, + "probability": 0.9871 + }, + { + "start": 6903.64, + "end": 6908.76, + "probability": 0.8644 + }, + { + "start": 6909.24, + "end": 6912.34, + "probability": 0.9752 + }, + { + "start": 6912.82, + "end": 6917.34, + "probability": 0.9644 + }, + { + "start": 6917.44, + "end": 6918.08, + "probability": 0.6991 + }, + { + "start": 6918.14, + "end": 6918.96, + "probability": 0.6122 + }, + { + "start": 6919.3, + "end": 6920.22, + "probability": 0.747 + }, + { + "start": 6920.92, + "end": 6922.18, + "probability": 0.7624 + }, + { + "start": 6922.24, + "end": 6923.52, + "probability": 0.9582 + }, + { + "start": 6924.02, + "end": 6926.84, + "probability": 0.7506 + }, + { + "start": 6926.96, + "end": 6927.26, + "probability": 0.931 + }, + { + "start": 6927.44, + "end": 6929.2, + "probability": 0.9264 + }, + { + "start": 6930.34, + "end": 6933.73, + "probability": 0.9112 + }, + { + "start": 6935.26, + "end": 6936.02, + "probability": 0.2411 + }, + { + "start": 6936.58, + "end": 6938.16, + "probability": 0.8756 + }, + { + "start": 6938.28, + "end": 6941.24, + "probability": 0.5813 + }, + { + "start": 6942.21, + "end": 6947.72, + "probability": 0.664 + }, + { + "start": 6947.72, + "end": 6951.88, + "probability": 0.6781 + }, + { + "start": 6952.3, + "end": 6952.88, + "probability": 0.6625 + }, + { + "start": 6953.18, + "end": 6957.01, + "probability": 0.9839 + }, + { + "start": 6957.82, + "end": 6958.46, + "probability": 0.7832 + }, + { + "start": 6958.64, + "end": 6959.46, + "probability": 0.9883 + }, + { + "start": 6960.18, + "end": 6963.22, + "probability": 0.9817 + }, + { + "start": 6963.22, + "end": 6968.1, + "probability": 0.9957 + }, + { + "start": 6968.64, + "end": 6971.7, + "probability": 0.9595 + }, + { + "start": 6972.38, + "end": 6973.54, + "probability": 0.7902 + }, + { + "start": 6973.7, + "end": 6974.4, + "probability": 0.598 + }, + { + "start": 6974.86, + "end": 6978.88, + "probability": 0.4417 + }, + { + "start": 6979.12, + "end": 6980.8, + "probability": 0.786 + }, + { + "start": 6981.32, + "end": 6983.08, + "probability": 0.8365 + }, + { + "start": 6983.7, + "end": 6986.18, + "probability": 0.9338 + }, + { + "start": 6986.26, + "end": 6987.64, + "probability": 0.8564 + }, + { + "start": 6988.02, + "end": 6993.76, + "probability": 0.9573 + }, + { + "start": 6993.76, + "end": 6999.64, + "probability": 0.9868 + }, + { + "start": 7000.8, + "end": 7008.92, + "probability": 0.6683 + }, + { + "start": 7009.1, + "end": 7013.72, + "probability": 0.8386 + }, + { + "start": 7014.3, + "end": 7016.4, + "probability": 0.9946 + }, + { + "start": 7017.14, + "end": 7019.32, + "probability": 0.9893 + }, + { + "start": 7019.86, + "end": 7022.82, + "probability": 0.9362 + }, + { + "start": 7022.9, + "end": 7024.3, + "probability": 0.4748 + }, + { + "start": 7024.66, + "end": 7026.38, + "probability": 0.7737 + }, + { + "start": 7027.34, + "end": 7033.12, + "probability": 0.7337 + }, + { + "start": 7033.76, + "end": 7038.76, + "probability": 0.7558 + }, + { + "start": 7039.98, + "end": 7044.96, + "probability": 0.9958 + }, + { + "start": 7046.2, + "end": 7049.16, + "probability": 0.8237 + }, + { + "start": 7049.9, + "end": 7050.92, + "probability": 0.922 + }, + { + "start": 7051.7, + "end": 7053.7, + "probability": 0.8486 + }, + { + "start": 7054.34, + "end": 7057.46, + "probability": 0.9825 + }, + { + "start": 7058.14, + "end": 7059.61, + "probability": 0.9906 + }, + { + "start": 7060.48, + "end": 7065.44, + "probability": 0.9811 + }, + { + "start": 7066.42, + "end": 7067.18, + "probability": 0.0115 + }, + { + "start": 7067.18, + "end": 7068.24, + "probability": 0.1111 + }, + { + "start": 7069.02, + "end": 7074.0, + "probability": 0.6692 + }, + { + "start": 7074.46, + "end": 7079.4, + "probability": 0.7452 + }, + { + "start": 7080.02, + "end": 7089.02, + "probability": 0.7061 + }, + { + "start": 7089.38, + "end": 7093.06, + "probability": 0.8252 + }, + { + "start": 7094.32, + "end": 7097.34, + "probability": 0.9878 + }, + { + "start": 7098.48, + "end": 7102.5, + "probability": 0.9756 + }, + { + "start": 7102.5, + "end": 7105.08, + "probability": 0.9775 + }, + { + "start": 7106.09, + "end": 7108.1, + "probability": 0.9897 + }, + { + "start": 7108.6, + "end": 7114.46, + "probability": 0.9937 + }, + { + "start": 7114.46, + "end": 7120.16, + "probability": 0.755 + }, + { + "start": 7120.66, + "end": 7123.28, + "probability": 0.9929 + }, + { + "start": 7123.4, + "end": 7127.28, + "probability": 0.9481 + }, + { + "start": 7128.62, + "end": 7131.76, + "probability": 0.6795 + }, + { + "start": 7132.18, + "end": 7132.68, + "probability": 0.8455 + }, + { + "start": 7132.82, + "end": 7133.34, + "probability": 0.7366 + }, + { + "start": 7133.4, + "end": 7136.76, + "probability": 0.996 + }, + { + "start": 7138.63, + "end": 7140.02, + "probability": 0.1081 + }, + { + "start": 7140.02, + "end": 7143.74, + "probability": 0.9509 + }, + { + "start": 7144.3, + "end": 7146.36, + "probability": 0.9852 + }, + { + "start": 7146.82, + "end": 7148.46, + "probability": 0.9651 + }, + { + "start": 7149.18, + "end": 7153.9, + "probability": 0.9971 + }, + { + "start": 7154.54, + "end": 7157.78, + "probability": 0.9812 + }, + { + "start": 7158.24, + "end": 7163.68, + "probability": 0.9749 + }, + { + "start": 7164.08, + "end": 7167.04, + "probability": 0.9989 + }, + { + "start": 7167.04, + "end": 7171.0, + "probability": 0.9935 + }, + { + "start": 7171.46, + "end": 7172.79, + "probability": 0.9434 + }, + { + "start": 7173.38, + "end": 7176.16, + "probability": 0.9675 + }, + { + "start": 7176.5, + "end": 7181.38, + "probability": 0.9932 + }, + { + "start": 7181.9, + "end": 7187.02, + "probability": 0.9961 + }, + { + "start": 7187.54, + "end": 7190.38, + "probability": 0.8787 + }, + { + "start": 7190.5, + "end": 7194.98, + "probability": 0.9966 + }, + { + "start": 7195.4, + "end": 7197.02, + "probability": 0.9922 + }, + { + "start": 7197.56, + "end": 7199.7, + "probability": 0.9146 + }, + { + "start": 7200.49, + "end": 7203.88, + "probability": 0.9967 + }, + { + "start": 7205.76, + "end": 7208.64, + "probability": 0.3832 + }, + { + "start": 7209.28, + "end": 7210.18, + "probability": 0.9543 + }, + { + "start": 7210.66, + "end": 7212.84, + "probability": 0.8907 + }, + { + "start": 7213.34, + "end": 7215.36, + "probability": 0.991 + }, + { + "start": 7215.94, + "end": 7221.34, + "probability": 0.9651 + }, + { + "start": 7222.02, + "end": 7226.4, + "probability": 0.9771 + }, + { + "start": 7226.4, + "end": 7230.28, + "probability": 0.9447 + }, + { + "start": 7231.2, + "end": 7233.86, + "probability": 0.8778 + }, + { + "start": 7234.0, + "end": 7234.48, + "probability": 0.7497 + }, + { + "start": 7234.86, + "end": 7238.16, + "probability": 0.6421 + }, + { + "start": 7238.36, + "end": 7241.7, + "probability": 0.7059 + }, + { + "start": 7243.44, + "end": 7245.54, + "probability": 0.9753 + }, + { + "start": 7256.2, + "end": 7256.84, + "probability": 0.3075 + }, + { + "start": 7256.84, + "end": 7257.92, + "probability": 0.5226 + }, + { + "start": 7258.58, + "end": 7262.3, + "probability": 0.9338 + }, + { + "start": 7263.08, + "end": 7264.14, + "probability": 0.9513 + }, + { + "start": 7265.24, + "end": 7271.52, + "probability": 0.9943 + }, + { + "start": 7271.52, + "end": 7276.52, + "probability": 0.9126 + }, + { + "start": 7277.7, + "end": 7281.1, + "probability": 0.9496 + }, + { + "start": 7283.4, + "end": 7288.42, + "probability": 0.9523 + }, + { + "start": 7288.98, + "end": 7295.18, + "probability": 0.9761 + }, + { + "start": 7296.06, + "end": 7301.12, + "probability": 0.944 + }, + { + "start": 7302.02, + "end": 7309.02, + "probability": 0.5942 + }, + { + "start": 7309.62, + "end": 7312.52, + "probability": 0.981 + }, + { + "start": 7314.42, + "end": 7317.8, + "probability": 0.9169 + }, + { + "start": 7318.82, + "end": 7323.1, + "probability": 0.8964 + }, + { + "start": 7323.82, + "end": 7324.32, + "probability": 0.7782 + }, + { + "start": 7325.02, + "end": 7330.04, + "probability": 0.9763 + }, + { + "start": 7331.1, + "end": 7331.34, + "probability": 0.0005 + }, + { + "start": 7331.34, + "end": 7335.14, + "probability": 0.4907 + }, + { + "start": 7336.22, + "end": 7338.62, + "probability": 0.8116 + }, + { + "start": 7338.9, + "end": 7344.48, + "probability": 0.4979 + }, + { + "start": 7344.48, + "end": 7350.36, + "probability": 0.3334 + }, + { + "start": 7350.9, + "end": 7352.74, + "probability": 0.7528 + }, + { + "start": 7353.22, + "end": 7357.54, + "probability": 0.9953 + }, + { + "start": 7358.04, + "end": 7364.1, + "probability": 0.6992 + }, + { + "start": 7364.62, + "end": 7366.72, + "probability": 0.9691 + }, + { + "start": 7367.64, + "end": 7368.06, + "probability": 0.3027 + }, + { + "start": 7368.12, + "end": 7374.3, + "probability": 0.9962 + }, + { + "start": 7375.04, + "end": 7377.96, + "probability": 0.9916 + }, + { + "start": 7378.1, + "end": 7380.5, + "probability": 0.9547 + }, + { + "start": 7381.26, + "end": 7382.72, + "probability": 0.8974 + }, + { + "start": 7383.66, + "end": 7384.7, + "probability": 0.366 + }, + { + "start": 7385.38, + "end": 7387.3, + "probability": 0.9382 + }, + { + "start": 7388.4, + "end": 7392.8, + "probability": 0.6559 + }, + { + "start": 7393.46, + "end": 7398.64, + "probability": 0.9777 + }, + { + "start": 7399.82, + "end": 7404.4, + "probability": 0.9673 + }, + { + "start": 7404.9, + "end": 7406.92, + "probability": 0.9941 + }, + { + "start": 7406.92, + "end": 7410.08, + "probability": 0.6694 + }, + { + "start": 7410.88, + "end": 7414.32, + "probability": 0.836 + }, + { + "start": 7415.06, + "end": 7416.26, + "probability": 0.8733 + }, + { + "start": 7417.38, + "end": 7420.72, + "probability": 0.9936 + }, + { + "start": 7422.62, + "end": 7426.44, + "probability": 0.9861 + }, + { + "start": 7426.56, + "end": 7427.38, + "probability": 0.8801 + }, + { + "start": 7427.92, + "end": 7431.92, + "probability": 0.7627 + }, + { + "start": 7432.54, + "end": 7435.8, + "probability": 0.9993 + }, + { + "start": 7436.92, + "end": 7444.96, + "probability": 0.9906 + }, + { + "start": 7445.52, + "end": 7449.86, + "probability": 0.982 + }, + { + "start": 7450.44, + "end": 7452.54, + "probability": 0.8782 + }, + { + "start": 7453.34, + "end": 7457.16, + "probability": 0.8221 + }, + { + "start": 7458.42, + "end": 7462.32, + "probability": 0.9685 + }, + { + "start": 7463.02, + "end": 7466.32, + "probability": 0.8645 + }, + { + "start": 7466.82, + "end": 7468.38, + "probability": 0.9445 + }, + { + "start": 7470.02, + "end": 7470.7, + "probability": 0.4861 + }, + { + "start": 7471.08, + "end": 7471.86, + "probability": 0.7692 + }, + { + "start": 7472.32, + "end": 7472.82, + "probability": 0.6696 + }, + { + "start": 7473.42, + "end": 7473.64, + "probability": 0.5163 + }, + { + "start": 7474.46, + "end": 7477.04, + "probability": 0.6015 + }, + { + "start": 7477.72, + "end": 7478.48, + "probability": 0.9138 + }, + { + "start": 7479.54, + "end": 7482.14, + "probability": 0.9967 + }, + { + "start": 7482.14, + "end": 7486.58, + "probability": 0.939 + }, + { + "start": 7487.36, + "end": 7491.96, + "probability": 0.9756 + }, + { + "start": 7492.5, + "end": 7497.16, + "probability": 0.9166 + }, + { + "start": 7497.7, + "end": 7498.18, + "probability": 0.5364 + }, + { + "start": 7498.4, + "end": 7500.3, + "probability": 0.6634 + }, + { + "start": 7500.46, + "end": 7504.16, + "probability": 0.9404 + }, + { + "start": 7505.26, + "end": 7508.94, + "probability": 0.9862 + }, + { + "start": 7510.1, + "end": 7513.54, + "probability": 0.9955 + }, + { + "start": 7513.54, + "end": 7517.92, + "probability": 0.9724 + }, + { + "start": 7519.2, + "end": 7523.04, + "probability": 0.973 + }, + { + "start": 7523.86, + "end": 7526.86, + "probability": 0.9769 + }, + { + "start": 7528.12, + "end": 7535.4, + "probability": 0.9252 + }, + { + "start": 7536.72, + "end": 7544.98, + "probability": 0.9626 + }, + { + "start": 7546.1, + "end": 7550.74, + "probability": 0.9536 + }, + { + "start": 7551.52, + "end": 7555.02, + "probability": 0.6295 + }, + { + "start": 7555.54, + "end": 7557.6, + "probability": 0.9948 + }, + { + "start": 7558.28, + "end": 7559.48, + "probability": 0.9925 + }, + { + "start": 7560.5, + "end": 7565.32, + "probability": 0.9675 + }, + { + "start": 7566.2, + "end": 7570.6, + "probability": 0.9974 + }, + { + "start": 7571.22, + "end": 7573.34, + "probability": 0.9073 + }, + { + "start": 7574.0, + "end": 7576.12, + "probability": 0.9715 + }, + { + "start": 7576.92, + "end": 7582.22, + "probability": 0.9917 + }, + { + "start": 7583.08, + "end": 7584.68, + "probability": 0.9892 + }, + { + "start": 7585.88, + "end": 7589.04, + "probability": 0.9967 + }, + { + "start": 7589.46, + "end": 7592.68, + "probability": 0.9756 + }, + { + "start": 7592.8, + "end": 7595.08, + "probability": 0.7581 + }, + { + "start": 7595.92, + "end": 7598.42, + "probability": 0.9036 + }, + { + "start": 7599.82, + "end": 7601.82, + "probability": 0.8852 + }, + { + "start": 7602.7, + "end": 7606.52, + "probability": 0.9543 + }, + { + "start": 7607.16, + "end": 7610.2, + "probability": 0.8886 + }, + { + "start": 7610.96, + "end": 7617.86, + "probability": 0.9618 + }, + { + "start": 7619.08, + "end": 7621.7, + "probability": 0.9601 + }, + { + "start": 7622.32, + "end": 7628.6, + "probability": 0.9849 + }, + { + "start": 7630.32, + "end": 7633.2, + "probability": 0.7582 + }, + { + "start": 7633.2, + "end": 7636.16, + "probability": 0.7293 + }, + { + "start": 7636.82, + "end": 7642.12, + "probability": 0.9686 + }, + { + "start": 7642.64, + "end": 7646.16, + "probability": 0.9588 + }, + { + "start": 7647.82, + "end": 7651.76, + "probability": 0.9971 + }, + { + "start": 7651.76, + "end": 7657.02, + "probability": 0.9636 + }, + { + "start": 7657.66, + "end": 7660.86, + "probability": 0.9869 + }, + { + "start": 7661.6, + "end": 7662.12, + "probability": 0.7481 + }, + { + "start": 7662.86, + "end": 7666.16, + "probability": 0.9922 + }, + { + "start": 7666.16, + "end": 7669.02, + "probability": 0.9967 + }, + { + "start": 7669.92, + "end": 7674.32, + "probability": 0.9953 + }, + { + "start": 7675.28, + "end": 7676.16, + "probability": 0.8182 + }, + { + "start": 7676.7, + "end": 7678.48, + "probability": 0.9414 + }, + { + "start": 7679.18, + "end": 7683.34, + "probability": 0.8651 + }, + { + "start": 7684.02, + "end": 7688.74, + "probability": 0.9847 + }, + { + "start": 7690.6, + "end": 7692.2, + "probability": 0.7951 + }, + { + "start": 7693.32, + "end": 7693.98, + "probability": 0.6904 + }, + { + "start": 7698.89, + "end": 7703.03, + "probability": 0.8501 + }, + { + "start": 7703.46, + "end": 7708.16, + "probability": 0.5705 + }, + { + "start": 7708.4, + "end": 7710.26, + "probability": 0.3247 + }, + { + "start": 7710.64, + "end": 7711.32, + "probability": 0.6705 + }, + { + "start": 7711.68, + "end": 7713.9, + "probability": 0.8511 + }, + { + "start": 7714.58, + "end": 7717.4, + "probability": 0.7935 + }, + { + "start": 7718.64, + "end": 7721.88, + "probability": 0.901 + }, + { + "start": 7722.9, + "end": 7723.98, + "probability": 0.8253 + }, + { + "start": 7724.8, + "end": 7725.4, + "probability": 0.9052 + }, + { + "start": 7726.54, + "end": 7726.86, + "probability": 0.2893 + }, + { + "start": 7726.86, + "end": 7727.0, + "probability": 0.4166 + }, + { + "start": 7727.62, + "end": 7728.7, + "probability": 0.7977 + }, + { + "start": 7729.72, + "end": 7730.26, + "probability": 0.8868 + }, + { + "start": 7740.1, + "end": 7740.78, + "probability": 0.161 + }, + { + "start": 7740.78, + "end": 7740.78, + "probability": 0.191 + }, + { + "start": 7740.78, + "end": 7742.69, + "probability": 0.4521 + }, + { + "start": 7742.98, + "end": 7743.34, + "probability": 0.5659 + }, + { + "start": 7743.42, + "end": 7743.9, + "probability": 0.4024 + }, + { + "start": 7743.9, + "end": 7748.32, + "probability": 0.9616 + }, + { + "start": 7748.64, + "end": 7748.84, + "probability": 0.4864 + }, + { + "start": 7750.86, + "end": 7753.78, + "probability": 0.7369 + }, + { + "start": 7758.0, + "end": 7760.9, + "probability": 0.4217 + }, + { + "start": 7761.02, + "end": 7763.32, + "probability": 0.8723 + }, + { + "start": 7764.6, + "end": 7765.4, + "probability": 0.7106 + }, + { + "start": 7765.58, + "end": 7766.16, + "probability": 0.6353 + }, + { + "start": 7766.18, + "end": 7767.42, + "probability": 0.5147 + }, + { + "start": 7767.72, + "end": 7768.6, + "probability": 0.4887 + }, + { + "start": 7770.42, + "end": 7770.94, + "probability": 0.5595 + }, + { + "start": 7771.1, + "end": 7771.52, + "probability": 0.4897 + }, + { + "start": 7772.26, + "end": 7775.96, + "probability": 0.9761 + }, + { + "start": 7776.72, + "end": 7778.24, + "probability": 0.92 + }, + { + "start": 7779.72, + "end": 7783.33, + "probability": 0.1153 + }, + { + "start": 7786.1, + "end": 7786.1, + "probability": 0.0331 + }, + { + "start": 7786.1, + "end": 7786.1, + "probability": 0.063 + }, + { + "start": 7786.1, + "end": 7786.1, + "probability": 0.0873 + }, + { + "start": 7786.1, + "end": 7786.1, + "probability": 0.1922 + }, + { + "start": 7786.1, + "end": 7790.36, + "probability": 0.8559 + }, + { + "start": 7791.74, + "end": 7793.34, + "probability": 0.3074 + }, + { + "start": 7793.34, + "end": 7798.3, + "probability": 0.9989 + }, + { + "start": 7798.82, + "end": 7802.9, + "probability": 0.9987 + }, + { + "start": 7804.02, + "end": 7805.04, + "probability": 0.4547 + }, + { + "start": 7805.16, + "end": 7807.8, + "probability": 0.9805 + }, + { + "start": 7808.1, + "end": 7810.56, + "probability": 0.9769 + }, + { + "start": 7811.12, + "end": 7812.28, + "probability": 0.9673 + }, + { + "start": 7812.82, + "end": 7813.46, + "probability": 0.919 + }, + { + "start": 7814.44, + "end": 7815.26, + "probability": 0.6989 + }, + { + "start": 7815.5, + "end": 7819.94, + "probability": 0.9763 + }, + { + "start": 7820.5, + "end": 7822.34, + "probability": 0.9955 + }, + { + "start": 7822.34, + "end": 7826.06, + "probability": 0.9992 + }, + { + "start": 7826.58, + "end": 7830.28, + "probability": 0.8662 + }, + { + "start": 7830.96, + "end": 7833.72, + "probability": 0.9711 + }, + { + "start": 7833.74, + "end": 7836.28, + "probability": 0.9771 + }, + { + "start": 7836.9, + "end": 7839.99, + "probability": 0.9915 + }, + { + "start": 7841.26, + "end": 7845.61, + "probability": 0.9951 + }, + { + "start": 7846.68, + "end": 7850.86, + "probability": 0.9753 + }, + { + "start": 7850.9, + "end": 7854.4, + "probability": 0.9907 + }, + { + "start": 7854.96, + "end": 7858.56, + "probability": 0.9312 + }, + { + "start": 7858.56, + "end": 7862.0, + "probability": 0.9968 + }, + { + "start": 7862.58, + "end": 7865.94, + "probability": 0.7883 + }, + { + "start": 7866.56, + "end": 7869.06, + "probability": 0.9852 + }, + { + "start": 7869.66, + "end": 7872.72, + "probability": 0.8581 + }, + { + "start": 7872.72, + "end": 7875.7, + "probability": 0.9851 + }, + { + "start": 7876.08, + "end": 7879.12, + "probability": 0.9885 + }, + { + "start": 7879.72, + "end": 7881.24, + "probability": 0.9959 + }, + { + "start": 7881.88, + "end": 7884.42, + "probability": 0.9944 + }, + { + "start": 7884.66, + "end": 7887.04, + "probability": 0.9909 + }, + { + "start": 7888.26, + "end": 7892.32, + "probability": 0.9983 + }, + { + "start": 7892.78, + "end": 7896.78, + "probability": 0.9526 + }, + { + "start": 7897.28, + "end": 7899.26, + "probability": 0.9966 + }, + { + "start": 7899.28, + "end": 7899.88, + "probability": 0.9459 + }, + { + "start": 7900.72, + "end": 7904.46, + "probability": 0.862 + }, + { + "start": 7905.28, + "end": 7907.66, + "probability": 0.9302 + }, + { + "start": 7907.76, + "end": 7911.08, + "probability": 0.9847 + }, + { + "start": 7911.68, + "end": 7914.36, + "probability": 0.8996 + }, + { + "start": 7914.88, + "end": 7917.66, + "probability": 0.9971 + }, + { + "start": 7918.6, + "end": 7921.44, + "probability": 0.9053 + }, + { + "start": 7921.44, + "end": 7926.08, + "probability": 0.9993 + }, + { + "start": 7926.78, + "end": 7927.78, + "probability": 0.7556 + }, + { + "start": 7928.26, + "end": 7931.92, + "probability": 0.9884 + }, + { + "start": 7932.14, + "end": 7934.02, + "probability": 0.9891 + }, + { + "start": 7934.5, + "end": 7937.04, + "probability": 0.9893 + }, + { + "start": 7937.56, + "end": 7939.98, + "probability": 0.9784 + }, + { + "start": 7940.54, + "end": 7947.4, + "probability": 0.9529 + }, + { + "start": 7948.1, + "end": 7950.62, + "probability": 0.7213 + }, + { + "start": 7951.16, + "end": 7952.52, + "probability": 0.8548 + }, + { + "start": 7953.0, + "end": 7953.42, + "probability": 0.525 + }, + { + "start": 7954.04, + "end": 7955.38, + "probability": 0.9052 + }, + { + "start": 7956.12, + "end": 7957.82, + "probability": 0.8001 + }, + { + "start": 7958.44, + "end": 7959.88, + "probability": 0.7687 + }, + { + "start": 7960.02, + "end": 7964.66, + "probability": 0.8831 + }, + { + "start": 7965.77, + "end": 7967.1, + "probability": 0.8297 + }, + { + "start": 7967.88, + "end": 7971.46, + "probability": 0.8125 + }, + { + "start": 7974.6, + "end": 7978.56, + "probability": 0.9863 + }, + { + "start": 7978.82, + "end": 7981.1, + "probability": 0.9184 + }, + { + "start": 7982.52, + "end": 7985.86, + "probability": 0.9541 + }, + { + "start": 7986.48, + "end": 7988.88, + "probability": 0.7727 + }, + { + "start": 7989.96, + "end": 7993.1, + "probability": 0.9702 + }, + { + "start": 7993.72, + "end": 7997.78, + "probability": 0.9165 + }, + { + "start": 7998.4, + "end": 7999.48, + "probability": 0.79 + }, + { + "start": 8000.22, + "end": 8003.83, + "probability": 0.8899 + }, + { + "start": 8003.84, + "end": 8006.46, + "probability": 0.9873 + }, + { + "start": 8008.3, + "end": 8012.0, + "probability": 0.9946 + }, + { + "start": 8012.0, + "end": 8017.82, + "probability": 0.9956 + }, + { + "start": 8017.82, + "end": 8022.66, + "probability": 0.9748 + }, + { + "start": 8023.26, + "end": 8027.86, + "probability": 0.9514 + }, + { + "start": 8029.46, + "end": 8030.6, + "probability": 0.624 + }, + { + "start": 8031.24, + "end": 8034.56, + "probability": 0.8318 + }, + { + "start": 8035.22, + "end": 8037.26, + "probability": 0.8745 + }, + { + "start": 8037.78, + "end": 8039.18, + "probability": 0.8762 + }, + { + "start": 8040.48, + "end": 8044.86, + "probability": 0.9543 + }, + { + "start": 8045.66, + "end": 8050.06, + "probability": 0.9966 + }, + { + "start": 8050.8, + "end": 8053.04, + "probability": 0.9571 + }, + { + "start": 8053.58, + "end": 8054.78, + "probability": 0.9649 + }, + { + "start": 8055.66, + "end": 8059.04, + "probability": 0.9957 + }, + { + "start": 8060.0, + "end": 8063.46, + "probability": 0.8575 + }, + { + "start": 8064.12, + "end": 8065.17, + "probability": 0.9844 + }, + { + "start": 8065.9, + "end": 8066.52, + "probability": 0.9512 + }, + { + "start": 8066.74, + "end": 8068.24, + "probability": 0.8922 + }, + { + "start": 8068.66, + "end": 8069.9, + "probability": 0.9899 + }, + { + "start": 8070.62, + "end": 8071.68, + "probability": 0.9946 + }, + { + "start": 8071.86, + "end": 8072.76, + "probability": 0.9741 + }, + { + "start": 8073.3, + "end": 8074.2, + "probability": 0.9907 + }, + { + "start": 8075.18, + "end": 8076.92, + "probability": 0.9897 + }, + { + "start": 8077.46, + "end": 8079.16, + "probability": 0.9813 + }, + { + "start": 8079.62, + "end": 8080.4, + "probability": 0.9392 + }, + { + "start": 8081.22, + "end": 8085.04, + "probability": 0.9246 + }, + { + "start": 8086.02, + "end": 8087.98, + "probability": 0.9906 + }, + { + "start": 8089.1, + "end": 8092.48, + "probability": 0.9647 + }, + { + "start": 8093.1, + "end": 8094.6, + "probability": 0.8622 + }, + { + "start": 8096.2, + "end": 8100.54, + "probability": 0.9966 + }, + { + "start": 8101.04, + "end": 8102.66, + "probability": 0.5576 + }, + { + "start": 8103.36, + "end": 8106.9, + "probability": 0.9877 + }, + { + "start": 8107.42, + "end": 8108.64, + "probability": 0.69 + }, + { + "start": 8109.22, + "end": 8111.62, + "probability": 0.9969 + }, + { + "start": 8112.58, + "end": 8116.06, + "probability": 0.9966 + }, + { + "start": 8116.84, + "end": 8118.84, + "probability": 0.9888 + }, + { + "start": 8120.02, + "end": 8122.52, + "probability": 0.8123 + }, + { + "start": 8123.56, + "end": 8124.68, + "probability": 0.9209 + }, + { + "start": 8125.8, + "end": 8130.88, + "probability": 0.9607 + }, + { + "start": 8131.44, + "end": 8133.29, + "probability": 0.761 + }, + { + "start": 8134.94, + "end": 8135.78, + "probability": 0.5361 + }, + { + "start": 8136.48, + "end": 8139.7, + "probability": 0.9989 + }, + { + "start": 8140.82, + "end": 8143.4, + "probability": 0.8484 + }, + { + "start": 8143.48, + "end": 8144.76, + "probability": 0.7853 + }, + { + "start": 8145.16, + "end": 8150.3, + "probability": 0.9909 + }, + { + "start": 8151.3, + "end": 8152.5, + "probability": 0.9921 + }, + { + "start": 8153.78, + "end": 8159.68, + "probability": 0.9978 + }, + { + "start": 8159.68, + "end": 8165.52, + "probability": 0.995 + }, + { + "start": 8166.22, + "end": 8169.56, + "probability": 0.948 + }, + { + "start": 8170.34, + "end": 8171.86, + "probability": 0.9836 + }, + { + "start": 8172.46, + "end": 8173.26, + "probability": 0.5424 + }, + { + "start": 8173.72, + "end": 8177.34, + "probability": 0.948 + }, + { + "start": 8177.98, + "end": 8180.7, + "probability": 0.9929 + }, + { + "start": 8180.7, + "end": 8184.12, + "probability": 0.9984 + }, + { + "start": 8184.58, + "end": 8189.08, + "probability": 0.9963 + }, + { + "start": 8190.08, + "end": 8194.14, + "probability": 0.8719 + }, + { + "start": 8194.94, + "end": 8196.32, + "probability": 0.9601 + }, + { + "start": 8196.9, + "end": 8200.52, + "probability": 0.9636 + }, + { + "start": 8201.9, + "end": 8203.68, + "probability": 0.8635 + }, + { + "start": 8204.44, + "end": 8207.24, + "probability": 0.9965 + }, + { + "start": 8207.76, + "end": 8208.34, + "probability": 0.8263 + }, + { + "start": 8209.32, + "end": 8211.72, + "probability": 0.9656 + }, + { + "start": 8212.28, + "end": 8216.68, + "probability": 0.928 + }, + { + "start": 8217.6, + "end": 8221.02, + "probability": 0.7536 + }, + { + "start": 8221.38, + "end": 8221.44, + "probability": 0.2578 + }, + { + "start": 8221.46, + "end": 8224.52, + "probability": 0.8705 + }, + { + "start": 8225.52, + "end": 8226.84, + "probability": 0.9356 + }, + { + "start": 8228.2, + "end": 8232.26, + "probability": 0.9465 + }, + { + "start": 8233.24, + "end": 8236.62, + "probability": 0.8002 + }, + { + "start": 8237.42, + "end": 8241.08, + "probability": 0.9647 + }, + { + "start": 8241.62, + "end": 8243.64, + "probability": 0.771 + }, + { + "start": 8246.88, + "end": 8251.8, + "probability": 0.9697 + }, + { + "start": 8252.92, + "end": 8256.3, + "probability": 0.9882 + }, + { + "start": 8257.68, + "end": 8259.94, + "probability": 0.9417 + }, + { + "start": 8260.62, + "end": 8263.14, + "probability": 0.9558 + }, + { + "start": 8263.56, + "end": 8267.6, + "probability": 0.9961 + }, + { + "start": 8267.66, + "end": 8270.98, + "probability": 0.999 + }, + { + "start": 8272.1, + "end": 8275.76, + "probability": 0.9943 + }, + { + "start": 8276.1, + "end": 8276.76, + "probability": 0.4292 + }, + { + "start": 8276.88, + "end": 8277.82, + "probability": 0.8477 + }, + { + "start": 8278.2, + "end": 8281.82, + "probability": 0.9611 + }, + { + "start": 8282.22, + "end": 8285.9, + "probability": 0.9924 + }, + { + "start": 8285.9, + "end": 8289.42, + "probability": 0.8639 + }, + { + "start": 8290.0, + "end": 8293.32, + "probability": 0.9233 + }, + { + "start": 8293.82, + "end": 8296.76, + "probability": 0.9953 + }, + { + "start": 8296.88, + "end": 8297.64, + "probability": 0.9708 + }, + { + "start": 8298.08, + "end": 8299.86, + "probability": 0.9634 + }, + { + "start": 8301.34, + "end": 8302.36, + "probability": 0.9065 + }, + { + "start": 8302.78, + "end": 8305.7, + "probability": 0.9957 + }, + { + "start": 8306.3, + "end": 8310.22, + "probability": 0.9514 + }, + { + "start": 8311.58, + "end": 8316.68, + "probability": 0.9811 + }, + { + "start": 8317.26, + "end": 8321.38, + "probability": 0.9974 + }, + { + "start": 8321.38, + "end": 8326.54, + "probability": 0.9761 + }, + { + "start": 8327.04, + "end": 8330.78, + "probability": 0.95 + }, + { + "start": 8332.12, + "end": 8335.98, + "probability": 0.9462 + }, + { + "start": 8336.92, + "end": 8338.04, + "probability": 0.6856 + }, + { + "start": 8339.18, + "end": 8342.28, + "probability": 0.8655 + }, + { + "start": 8343.54, + "end": 8345.02, + "probability": 0.7084 + }, + { + "start": 8345.56, + "end": 8350.28, + "probability": 0.9917 + }, + { + "start": 8351.54, + "end": 8358.33, + "probability": 0.7948 + }, + { + "start": 8360.6, + "end": 8365.82, + "probability": 0.8134 + }, + { + "start": 8366.04, + "end": 8366.5, + "probability": 0.6882 + }, + { + "start": 8366.52, + "end": 8367.14, + "probability": 0.4105 + }, + { + "start": 8368.52, + "end": 8370.56, + "probability": 0.757 + }, + { + "start": 8371.06, + "end": 8374.74, + "probability": 0.9659 + }, + { + "start": 8375.34, + "end": 8376.5, + "probability": 0.9951 + }, + { + "start": 8377.1, + "end": 8378.38, + "probability": 0.9622 + }, + { + "start": 8378.84, + "end": 8383.2, + "probability": 0.9909 + }, + { + "start": 8383.9, + "end": 8386.7, + "probability": 0.9889 + }, + { + "start": 8387.1, + "end": 8393.58, + "probability": 0.9852 + }, + { + "start": 8393.58, + "end": 8399.4, + "probability": 0.9973 + }, + { + "start": 8400.14, + "end": 8401.74, + "probability": 0.8818 + }, + { + "start": 8402.5, + "end": 8406.38, + "probability": 0.9622 + }, + { + "start": 8406.9, + "end": 8409.08, + "probability": 0.9946 + }, + { + "start": 8409.56, + "end": 8415.5, + "probability": 0.9982 + }, + { + "start": 8416.26, + "end": 8418.96, + "probability": 0.9881 + }, + { + "start": 8419.98, + "end": 8422.94, + "probability": 0.9951 + }, + { + "start": 8423.5, + "end": 8425.62, + "probability": 0.9979 + }, + { + "start": 8426.54, + "end": 8431.34, + "probability": 0.9983 + }, + { + "start": 8431.76, + "end": 8434.26, + "probability": 0.9973 + }, + { + "start": 8434.84, + "end": 8438.2, + "probability": 0.9888 + }, + { + "start": 8439.2, + "end": 8442.72, + "probability": 0.985 + }, + { + "start": 8443.42, + "end": 8447.08, + "probability": 0.905 + }, + { + "start": 8447.52, + "end": 8451.2, + "probability": 0.9929 + }, + { + "start": 8451.2, + "end": 8455.14, + "probability": 0.9111 + }, + { + "start": 8455.88, + "end": 8459.18, + "probability": 0.9969 + }, + { + "start": 8459.88, + "end": 8463.0, + "probability": 0.9926 + }, + { + "start": 8463.68, + "end": 8467.76, + "probability": 0.967 + }, + { + "start": 8468.5, + "end": 8470.18, + "probability": 0.9818 + }, + { + "start": 8470.6, + "end": 8475.16, + "probability": 0.9863 + }, + { + "start": 8475.16, + "end": 8479.42, + "probability": 0.9984 + }, + { + "start": 8484.59, + "end": 8490.68, + "probability": 0.9973 + }, + { + "start": 8490.68, + "end": 8495.76, + "probability": 0.9937 + }, + { + "start": 8496.68, + "end": 8499.84, + "probability": 0.9962 + }, + { + "start": 8500.22, + "end": 8503.84, + "probability": 0.8776 + }, + { + "start": 8504.68, + "end": 8507.64, + "probability": 0.9639 + }, + { + "start": 8508.42, + "end": 8514.28, + "probability": 0.7991 + }, + { + "start": 8514.36, + "end": 8516.78, + "probability": 0.9888 + }, + { + "start": 8517.14, + "end": 8520.76, + "probability": 0.873 + }, + { + "start": 8520.86, + "end": 8523.28, + "probability": 0.9602 + }, + { + "start": 8523.76, + "end": 8524.82, + "probability": 0.6582 + }, + { + "start": 8525.48, + "end": 8528.84, + "probability": 0.829 + }, + { + "start": 8528.84, + "end": 8531.46, + "probability": 0.9963 + }, + { + "start": 8531.88, + "end": 8535.82, + "probability": 0.7695 + }, + { + "start": 8536.44, + "end": 8543.54, + "probability": 0.9971 + }, + { + "start": 8544.0, + "end": 8545.28, + "probability": 0.9351 + }, + { + "start": 8545.82, + "end": 8549.04, + "probability": 0.9358 + }, + { + "start": 8549.04, + "end": 8553.18, + "probability": 0.7573 + }, + { + "start": 8553.86, + "end": 8558.26, + "probability": 0.7364 + }, + { + "start": 8558.82, + "end": 8562.36, + "probability": 0.7421 + }, + { + "start": 8563.08, + "end": 8568.28, + "probability": 0.99 + }, + { + "start": 8568.74, + "end": 8572.5, + "probability": 0.9754 + }, + { + "start": 8573.32, + "end": 8577.54, + "probability": 0.9346 + }, + { + "start": 8578.0, + "end": 8579.42, + "probability": 0.9842 + }, + { + "start": 8580.04, + "end": 8582.16, + "probability": 0.8292 + }, + { + "start": 8582.9, + "end": 8584.88, + "probability": 0.337 + }, + { + "start": 8584.88, + "end": 8585.51, + "probability": 0.7677 + }, + { + "start": 8586.1, + "end": 8588.0, + "probability": 0.6944 + }, + { + "start": 8588.14, + "end": 8590.06, + "probability": 0.9026 + }, + { + "start": 8591.44, + "end": 8593.78, + "probability": 0.5754 + }, + { + "start": 8594.54, + "end": 8596.94, + "probability": 0.9846 + }, + { + "start": 8597.52, + "end": 8598.26, + "probability": 0.9971 + }, + { + "start": 8598.92, + "end": 8601.04, + "probability": 0.8586 + }, + { + "start": 8601.5, + "end": 8609.46, + "probability": 0.9814 + }, + { + "start": 8610.76, + "end": 8615.22, + "probability": 0.8677 + }, + { + "start": 8615.32, + "end": 8617.56, + "probability": 0.9966 + }, + { + "start": 8618.08, + "end": 8618.89, + "probability": 0.9956 + }, + { + "start": 8620.28, + "end": 8623.96, + "probability": 0.7497 + }, + { + "start": 8624.3, + "end": 8625.62, + "probability": 0.6346 + }, + { + "start": 8626.14, + "end": 8627.82, + "probability": 0.9539 + }, + { + "start": 8628.66, + "end": 8631.9, + "probability": 0.9674 + }, + { + "start": 8632.42, + "end": 8635.78, + "probability": 0.9797 + }, + { + "start": 8637.3, + "end": 8641.88, + "probability": 0.9104 + }, + { + "start": 8641.99, + "end": 8645.4, + "probability": 0.9734 + }, + { + "start": 8646.7, + "end": 8650.12, + "probability": 0.9957 + }, + { + "start": 8651.44, + "end": 8652.68, + "probability": 0.8568 + }, + { + "start": 8653.16, + "end": 8654.63, + "probability": 0.9938 + }, + { + "start": 8655.1, + "end": 8661.02, + "probability": 0.9612 + }, + { + "start": 8661.28, + "end": 8661.76, + "probability": 0.7326 + }, + { + "start": 8662.12, + "end": 8664.38, + "probability": 0.7295 + }, + { + "start": 8664.6, + "end": 8666.8, + "probability": 0.6719 + }, + { + "start": 8667.44, + "end": 8668.0, + "probability": 0.7678 + }, + { + "start": 8668.14, + "end": 8670.48, + "probability": 0.6354 + }, + { + "start": 8670.48, + "end": 8673.82, + "probability": 0.9595 + }, + { + "start": 8674.84, + "end": 8675.78, + "probability": 0.7812 + }, + { + "start": 8675.86, + "end": 8678.26, + "probability": 0.8653 + }, + { + "start": 8678.72, + "end": 8680.64, + "probability": 0.8131 + }, + { + "start": 8681.02, + "end": 8684.28, + "probability": 0.9136 + }, + { + "start": 8684.5, + "end": 8689.44, + "probability": 0.8983 + }, + { + "start": 8689.44, + "end": 8695.94, + "probability": 0.9951 + }, + { + "start": 8696.14, + "end": 8702.08, + "probability": 0.9969 + }, + { + "start": 8702.28, + "end": 8702.76, + "probability": 0.8405 + }, + { + "start": 8703.16, + "end": 8703.44, + "probability": 0.6843 + }, + { + "start": 8704.38, + "end": 8706.51, + "probability": 0.7712 + }, + { + "start": 8707.42, + "end": 8712.86, + "probability": 0.988 + }, + { + "start": 8713.04, + "end": 8713.72, + "probability": 0.7029 + }, + { + "start": 8714.02, + "end": 8717.42, + "probability": 0.6044 + }, + { + "start": 8718.86, + "end": 8720.96, + "probability": 0.561 + }, + { + "start": 8721.16, + "end": 8725.02, + "probability": 0.9719 + }, + { + "start": 8726.04, + "end": 8731.2, + "probability": 0.8291 + }, + { + "start": 8733.26, + "end": 8741.92, + "probability": 0.9304 + }, + { + "start": 8742.52, + "end": 8744.34, + "probability": 0.9836 + }, + { + "start": 8744.58, + "end": 8749.74, + "probability": 0.9937 + }, + { + "start": 8750.5, + "end": 8753.64, + "probability": 0.957 + }, + { + "start": 8753.64, + "end": 8755.88, + "probability": 0.8056 + }, + { + "start": 8756.4, + "end": 8760.16, + "probability": 0.9903 + }, + { + "start": 8760.8, + "end": 8767.68, + "probability": 0.9759 + }, + { + "start": 8768.3, + "end": 8773.72, + "probability": 0.9719 + }, + { + "start": 8773.9, + "end": 8774.28, + "probability": 0.8543 + }, + { + "start": 8774.82, + "end": 8778.8, + "probability": 0.9797 + }, + { + "start": 8779.72, + "end": 8780.72, + "probability": 0.5004 + }, + { + "start": 8784.05, + "end": 8788.46, + "probability": 0.98 + }, + { + "start": 8788.98, + "end": 8792.44, + "probability": 0.9969 + }, + { + "start": 8793.26, + "end": 8797.36, + "probability": 0.993 + }, + { + "start": 8798.08, + "end": 8804.58, + "probability": 0.9974 + }, + { + "start": 8805.84, + "end": 8806.62, + "probability": 0.8213 + }, + { + "start": 8808.86, + "end": 8813.32, + "probability": 0.6814 + }, + { + "start": 8814.2, + "end": 8817.8, + "probability": 0.4431 + }, + { + "start": 8817.96, + "end": 8818.86, + "probability": 0.84 + }, + { + "start": 8819.34, + "end": 8819.9, + "probability": 0.8697 + }, + { + "start": 8819.94, + "end": 8821.33, + "probability": 0.8718 + }, + { + "start": 8823.22, + "end": 8825.06, + "probability": 0.9701 + }, + { + "start": 8826.64, + "end": 8829.42, + "probability": 0.9749 + }, + { + "start": 8829.42, + "end": 8832.08, + "probability": 0.477 + }, + { + "start": 8833.53, + "end": 8836.92, + "probability": 0.9657 + }, + { + "start": 8837.54, + "end": 8843.1, + "probability": 0.8858 + }, + { + "start": 8844.36, + "end": 8846.82, + "probability": 0.8346 + }, + { + "start": 8846.92, + "end": 8849.38, + "probability": 0.6605 + }, + { + "start": 8849.4, + "end": 8851.94, + "probability": 0.9087 + }, + { + "start": 8853.28, + "end": 8854.67, + "probability": 0.9717 + }, + { + "start": 8856.1, + "end": 8861.26, + "probability": 0.9069 + }, + { + "start": 8862.3, + "end": 8863.76, + "probability": 0.9912 + }, + { + "start": 8863.96, + "end": 8866.88, + "probability": 0.9575 + }, + { + "start": 8867.84, + "end": 8868.48, + "probability": 0.8539 + }, + { + "start": 8868.64, + "end": 8869.7, + "probability": 0.6256 + }, + { + "start": 8869.82, + "end": 8871.96, + "probability": 0.9744 + }, + { + "start": 8873.94, + "end": 8875.48, + "probability": 0.6356 + }, + { + "start": 8875.68, + "end": 8879.42, + "probability": 0.549 + }, + { + "start": 8880.05, + "end": 8885.66, + "probability": 0.8724 + }, + { + "start": 8886.34, + "end": 8889.58, + "probability": 0.8257 + }, + { + "start": 8890.52, + "end": 8891.68, + "probability": 0.7388 + }, + { + "start": 8892.36, + "end": 8898.12, + "probability": 0.9718 + }, + { + "start": 8898.26, + "end": 8902.84, + "probability": 0.9782 + }, + { + "start": 8902.84, + "end": 8904.64, + "probability": 0.9395 + }, + { + "start": 8906.16, + "end": 8909.72, + "probability": 0.9945 + }, + { + "start": 8909.86, + "end": 8917.9, + "probability": 0.5947 + }, + { + "start": 8918.72, + "end": 8920.56, + "probability": 0.9136 + }, + { + "start": 8921.48, + "end": 8926.5, + "probability": 0.6179 + }, + { + "start": 8927.34, + "end": 8933.1, + "probability": 0.9624 + }, + { + "start": 8933.28, + "end": 8936.62, + "probability": 0.3347 + }, + { + "start": 8936.88, + "end": 8939.42, + "probability": 0.5109 + }, + { + "start": 8939.94, + "end": 8947.18, + "probability": 0.8481 + }, + { + "start": 8947.24, + "end": 8948.28, + "probability": 0.9672 + }, + { + "start": 8948.48, + "end": 8949.66, + "probability": 0.8449 + }, + { + "start": 8950.22, + "end": 8959.34, + "probability": 0.6662 + }, + { + "start": 8959.66, + "end": 8961.1, + "probability": 0.222 + }, + { + "start": 8961.12, + "end": 8963.08, + "probability": 0.2439 + }, + { + "start": 8963.24, + "end": 8963.84, + "probability": 0.4082 + }, + { + "start": 8963.84, + "end": 8966.28, + "probability": 0.4007 + }, + { + "start": 8966.54, + "end": 8969.06, + "probability": 0.5007 + }, + { + "start": 8969.9, + "end": 8974.56, + "probability": 0.627 + }, + { + "start": 8975.4, + "end": 8976.34, + "probability": 0.9682 + }, + { + "start": 8976.38, + "end": 8982.14, + "probability": 0.7995 + }, + { + "start": 8982.8, + "end": 8984.4, + "probability": 0.6213 + }, + { + "start": 8984.96, + "end": 8986.9, + "probability": 0.9056 + }, + { + "start": 8986.98, + "end": 8991.58, + "probability": 0.9839 + }, + { + "start": 8992.32, + "end": 8994.68, + "probability": 0.8567 + }, + { + "start": 8995.3, + "end": 8998.5, + "probability": 0.4613 + }, + { + "start": 8999.52, + "end": 9003.92, + "probability": 0.999 + }, + { + "start": 9004.38, + "end": 9007.76, + "probability": 0.8609 + }, + { + "start": 9010.22, + "end": 9010.32, + "probability": 0.7636 + }, + { + "start": 9010.9, + "end": 9012.42, + "probability": 0.4219 + }, + { + "start": 9012.52, + "end": 9015.38, + "probability": 0.9277 + }, + { + "start": 9016.3, + "end": 9017.02, + "probability": 0.61 + }, + { + "start": 9017.38, + "end": 9017.7, + "probability": 0.4571 + }, + { + "start": 9018.66, + "end": 9021.46, + "probability": 0.9785 + }, + { + "start": 9021.54, + "end": 9024.26, + "probability": 0.9877 + }, + { + "start": 9024.88, + "end": 9025.98, + "probability": 0.983 + }, + { + "start": 9026.1, + "end": 9027.4, + "probability": 0.9879 + }, + { + "start": 9029.28, + "end": 9031.6, + "probability": 0.8933 + }, + { + "start": 9035.38, + "end": 9038.6, + "probability": 0.995 + }, + { + "start": 9038.82, + "end": 9041.58, + "probability": 0.994 + }, + { + "start": 9043.4, + "end": 9046.56, + "probability": 0.7506 + }, + { + "start": 9047.22, + "end": 9048.18, + "probability": 0.9968 + }, + { + "start": 9048.8, + "end": 9053.66, + "probability": 0.9921 + }, + { + "start": 9055.84, + "end": 9060.7, + "probability": 0.9742 + }, + { + "start": 9061.82, + "end": 9063.48, + "probability": 0.9404 + }, + { + "start": 9064.9, + "end": 9068.4, + "probability": 0.9902 + }, + { + "start": 9069.34, + "end": 9072.44, + "probability": 0.9007 + }, + { + "start": 9072.72, + "end": 9077.74, + "probability": 0.9925 + }, + { + "start": 9078.82, + "end": 9080.48, + "probability": 0.0453 + }, + { + "start": 9082.24, + "end": 9085.8, + "probability": 0.9978 + }, + { + "start": 9085.88, + "end": 9087.8, + "probability": 0.7672 + }, + { + "start": 9088.42, + "end": 9090.14, + "probability": 0.8792 + }, + { + "start": 9092.68, + "end": 9094.06, + "probability": 0.9124 + }, + { + "start": 9095.22, + "end": 9096.74, + "probability": 0.0952 + }, + { + "start": 9098.14, + "end": 9098.92, + "probability": 0.1032 + }, + { + "start": 9100.94, + "end": 9101.08, + "probability": 0.0098 + }, + { + "start": 9101.08, + "end": 9103.28, + "probability": 0.0575 + }, + { + "start": 9108.28, + "end": 9109.36, + "probability": 0.145 + }, + { + "start": 9114.04, + "end": 9118.0, + "probability": 0.0356 + }, + { + "start": 9121.08, + "end": 9121.32, + "probability": 0.3167 + }, + { + "start": 9122.32, + "end": 9122.68, + "probability": 0.4318 + }, + { + "start": 9123.94, + "end": 9124.92, + "probability": 0.245 + }, + { + "start": 9125.74, + "end": 9132.2, + "probability": 0.187 + }, + { + "start": 9132.92, + "end": 9133.88, + "probability": 0.3351 + }, + { + "start": 9134.42, + "end": 9136.4, + "probability": 0.3144 + }, + { + "start": 9138.16, + "end": 9141.02, + "probability": 0.4461 + }, + { + "start": 9141.96, + "end": 9142.38, + "probability": 0.2663 + }, + { + "start": 9142.9, + "end": 9142.9, + "probability": 0.5116 + }, + { + "start": 9143.48, + "end": 9148.88, + "probability": 0.998 + }, + { + "start": 9149.7, + "end": 9150.96, + "probability": 0.9993 + }, + { + "start": 9151.72, + "end": 9156.36, + "probability": 0.9933 + }, + { + "start": 9157.36, + "end": 9158.0, + "probability": 0.9519 + }, + { + "start": 9159.98, + "end": 9160.56, + "probability": 0.4828 + }, + { + "start": 9161.84, + "end": 9162.94, + "probability": 0.4367 + }, + { + "start": 9164.6, + "end": 9164.94, + "probability": 0.5186 + }, + { + "start": 9165.08, + "end": 9166.96, + "probability": 0.6784 + }, + { + "start": 9167.16, + "end": 9168.98, + "probability": 0.8654 + }, + { + "start": 9169.78, + "end": 9172.9, + "probability": 0.0389 + }, + { + "start": 9173.96, + "end": 9176.66, + "probability": 0.2746 + }, + { + "start": 9176.68, + "end": 9182.79, + "probability": 0.9906 + }, + { + "start": 9185.52, + "end": 9186.08, + "probability": 0.5169 + }, + { + "start": 9186.7, + "end": 9187.1, + "probability": 0.7001 + }, + { + "start": 9189.02, + "end": 9192.2, + "probability": 0.9042 + }, + { + "start": 9193.34, + "end": 9193.64, + "probability": 0.466 + }, + { + "start": 9193.78, + "end": 9198.46, + "probability": 0.9912 + }, + { + "start": 9199.76, + "end": 9206.4, + "probability": 0.9859 + }, + { + "start": 9208.54, + "end": 9210.32, + "probability": 0.5187 + }, + { + "start": 9211.18, + "end": 9212.8, + "probability": 0.9766 + }, + { + "start": 9213.36, + "end": 9217.24, + "probability": 0.8649 + }, + { + "start": 9218.02, + "end": 9219.68, + "probability": 0.9818 + }, + { + "start": 9221.24, + "end": 9225.14, + "probability": 0.8071 + }, + { + "start": 9225.86, + "end": 9229.03, + "probability": 0.9309 + }, + { + "start": 9229.8, + "end": 9231.76, + "probability": 0.977 + }, + { + "start": 9232.3, + "end": 9233.08, + "probability": 0.9051 + }, + { + "start": 9233.72, + "end": 9234.86, + "probability": 0.9943 + }, + { + "start": 9236.1, + "end": 9238.62, + "probability": 0.7977 + }, + { + "start": 9238.94, + "end": 9242.0, + "probability": 0.9562 + }, + { + "start": 9242.14, + "end": 9246.36, + "probability": 0.9949 + }, + { + "start": 9246.82, + "end": 9249.64, + "probability": 0.8583 + }, + { + "start": 9250.14, + "end": 9256.36, + "probability": 0.9852 + }, + { + "start": 9258.8, + "end": 9261.24, + "probability": 0.9377 + }, + { + "start": 9263.54, + "end": 9267.18, + "probability": 0.8949 + }, + { + "start": 9268.26, + "end": 9273.56, + "probability": 0.8555 + }, + { + "start": 9274.26, + "end": 9274.44, + "probability": 0.0914 + }, + { + "start": 9274.64, + "end": 9278.08, + "probability": 0.8671 + }, + { + "start": 9278.64, + "end": 9283.04, + "probability": 0.9722 + }, + { + "start": 9283.38, + "end": 9284.2, + "probability": 0.7578 + }, + { + "start": 9284.98, + "end": 9286.86, + "probability": 0.8779 + }, + { + "start": 9291.5, + "end": 9293.92, + "probability": 0.4042 + }, + { + "start": 9293.92, + "end": 9301.76, + "probability": 0.9498 + }, + { + "start": 9301.9, + "end": 9303.22, + "probability": 0.7386 + }, + { + "start": 9303.96, + "end": 9306.88, + "probability": 0.8132 + }, + { + "start": 9308.54, + "end": 9311.24, + "probability": 0.8733 + }, + { + "start": 9311.86, + "end": 9318.12, + "probability": 0.9492 + }, + { + "start": 9320.94, + "end": 9323.92, + "probability": 0.9396 + }, + { + "start": 9323.92, + "end": 9328.54, + "probability": 0.9329 + }, + { + "start": 9329.24, + "end": 9330.76, + "probability": 0.6753 + }, + { + "start": 9334.44, + "end": 9334.88, + "probability": 0.7424 + }, + { + "start": 9335.52, + "end": 9336.28, + "probability": 0.8101 + }, + { + "start": 9336.78, + "end": 9342.9, + "probability": 0.9722 + }, + { + "start": 9343.9, + "end": 9344.86, + "probability": 0.957 + }, + { + "start": 9348.14, + "end": 9349.34, + "probability": 0.6562 + }, + { + "start": 9349.68, + "end": 9355.54, + "probability": 0.9263 + }, + { + "start": 9358.46, + "end": 9363.3, + "probability": 0.9581 + }, + { + "start": 9363.4, + "end": 9365.46, + "probability": 0.9168 + }, + { + "start": 9367.08, + "end": 9369.78, + "probability": 0.7398 + }, + { + "start": 9372.3, + "end": 9372.5, + "probability": 0.5163 + }, + { + "start": 9372.5, + "end": 9372.96, + "probability": 0.3996 + }, + { + "start": 9373.84, + "end": 9375.24, + "probability": 0.7395 + }, + { + "start": 9376.28, + "end": 9379.94, + "probability": 0.8756 + }, + { + "start": 9381.26, + "end": 9382.36, + "probability": 0.9776 + }, + { + "start": 9385.24, + "end": 9389.18, + "probability": 0.7197 + }, + { + "start": 9390.31, + "end": 9392.96, + "probability": 0.8579 + }, + { + "start": 9393.82, + "end": 9394.42, + "probability": 0.6677 + }, + { + "start": 9394.86, + "end": 9397.56, + "probability": 0.9707 + }, + { + "start": 9397.56, + "end": 9401.54, + "probability": 0.9199 + }, + { + "start": 9402.14, + "end": 9404.82, + "probability": 0.9116 + }, + { + "start": 9405.2, + "end": 9406.06, + "probability": 0.9258 + }, + { + "start": 9406.38, + "end": 9410.32, + "probability": 0.9902 + }, + { + "start": 9410.6, + "end": 9411.86, + "probability": 0.9041 + }, + { + "start": 9412.54, + "end": 9413.58, + "probability": 0.9876 + }, + { + "start": 9414.74, + "end": 9417.96, + "probability": 0.8317 + }, + { + "start": 9418.1, + "end": 9419.78, + "probability": 0.9668 + }, + { + "start": 9420.52, + "end": 9424.66, + "probability": 0.9741 + }, + { + "start": 9425.0, + "end": 9430.32, + "probability": 0.9958 + }, + { + "start": 9430.48, + "end": 9433.36, + "probability": 0.7188 + }, + { + "start": 9433.36, + "end": 9437.28, + "probability": 0.9409 + }, + { + "start": 9438.7, + "end": 9441.94, + "probability": 0.999 + }, + { + "start": 9442.72, + "end": 9443.62, + "probability": 0.9452 + }, + { + "start": 9444.26, + "end": 9451.4, + "probability": 0.994 + }, + { + "start": 9451.44, + "end": 9454.74, + "probability": 0.8563 + }, + { + "start": 9455.36, + "end": 9456.4, + "probability": 0.9141 + }, + { + "start": 9456.86, + "end": 9459.68, + "probability": 0.9374 + }, + { + "start": 9460.36, + "end": 9460.62, + "probability": 0.6897 + }, + { + "start": 9461.34, + "end": 9463.0, + "probability": 0.7132 + }, + { + "start": 9463.34, + "end": 9467.15, + "probability": 0.719 + }, + { + "start": 9469.1, + "end": 9474.74, + "probability": 0.9764 + }, + { + "start": 9475.3, + "end": 9477.11, + "probability": 0.9594 + }, + { + "start": 9481.74, + "end": 9484.2, + "probability": 0.6603 + }, + { + "start": 9485.04, + "end": 9488.38, + "probability": 0.9688 + }, + { + "start": 9489.54, + "end": 9494.1, + "probability": 0.8259 + }, + { + "start": 9495.2, + "end": 9496.36, + "probability": 0.3957 + }, + { + "start": 9496.38, + "end": 9499.5, + "probability": 0.7925 + }, + { + "start": 9499.54, + "end": 9502.02, + "probability": 0.9949 + }, + { + "start": 9502.72, + "end": 9508.26, + "probability": 0.9839 + }, + { + "start": 9508.26, + "end": 9512.22, + "probability": 0.9995 + }, + { + "start": 9512.3, + "end": 9513.31, + "probability": 0.9951 + }, + { + "start": 9513.94, + "end": 9517.78, + "probability": 0.9931 + }, + { + "start": 9518.4, + "end": 9519.44, + "probability": 0.6646 + }, + { + "start": 9519.52, + "end": 9522.42, + "probability": 0.9683 + }, + { + "start": 9522.52, + "end": 9523.34, + "probability": 0.7315 + }, + { + "start": 9523.84, + "end": 9525.32, + "probability": 0.9678 + }, + { + "start": 9525.52, + "end": 9531.68, + "probability": 0.9929 + }, + { + "start": 9532.22, + "end": 9535.34, + "probability": 0.9996 + }, + { + "start": 9535.48, + "end": 9538.88, + "probability": 0.9993 + }, + { + "start": 9540.58, + "end": 9543.7, + "probability": 0.6742 + }, + { + "start": 9544.26, + "end": 9545.64, + "probability": 0.7061 + }, + { + "start": 9546.4, + "end": 9549.56, + "probability": 0.9868 + }, + { + "start": 9550.48, + "end": 9553.32, + "probability": 0.9917 + }, + { + "start": 9554.1, + "end": 9555.28, + "probability": 0.837 + }, + { + "start": 9555.94, + "end": 9560.74, + "probability": 0.999 + }, + { + "start": 9561.48, + "end": 9567.68, + "probability": 0.9989 + }, + { + "start": 9568.28, + "end": 9571.0, + "probability": 0.9982 + }, + { + "start": 9571.78, + "end": 9573.18, + "probability": 0.9672 + }, + { + "start": 9574.18, + "end": 9575.64, + "probability": 0.9885 + }, + { + "start": 9576.16, + "end": 9577.03, + "probability": 0.9005 + }, + { + "start": 9577.62, + "end": 9578.07, + "probability": 0.9921 + }, + { + "start": 9578.6, + "end": 9579.6, + "probability": 0.9909 + }, + { + "start": 9579.98, + "end": 9580.92, + "probability": 0.9814 + }, + { + "start": 9580.94, + "end": 9582.76, + "probability": 0.9351 + }, + { + "start": 9584.46, + "end": 9592.46, + "probability": 0.9978 + }, + { + "start": 9593.02, + "end": 9598.0, + "probability": 0.9854 + }, + { + "start": 9598.74, + "end": 9602.58, + "probability": 0.9883 + }, + { + "start": 9604.02, + "end": 9606.6, + "probability": 0.9909 + }, + { + "start": 9607.28, + "end": 9613.04, + "probability": 0.9907 + }, + { + "start": 9613.56, + "end": 9617.62, + "probability": 0.994 + }, + { + "start": 9618.78, + "end": 9619.12, + "probability": 0.8136 + }, + { + "start": 9619.68, + "end": 9621.52, + "probability": 0.9638 + }, + { + "start": 9622.64, + "end": 9623.22, + "probability": 0.5727 + }, + { + "start": 9623.32, + "end": 9626.64, + "probability": 0.9579 + }, + { + "start": 9626.9, + "end": 9630.81, + "probability": 0.6182 + }, + { + "start": 9631.3, + "end": 9635.0, + "probability": 0.8094 + }, + { + "start": 9636.32, + "end": 9641.06, + "probability": 0.979 + }, + { + "start": 9641.28, + "end": 9641.58, + "probability": 0.087 + }, + { + "start": 9642.24, + "end": 9644.36, + "probability": 0.8096 + }, + { + "start": 9644.56, + "end": 9648.78, + "probability": 0.9923 + }, + { + "start": 9649.28, + "end": 9650.24, + "probability": 0.9429 + }, + { + "start": 9653.48, + "end": 9658.88, + "probability": 0.6742 + }, + { + "start": 9659.02, + "end": 9663.85, + "probability": 0.9956 + }, + { + "start": 9664.98, + "end": 9666.4, + "probability": 0.9294 + }, + { + "start": 9667.0, + "end": 9672.78, + "probability": 0.9992 + }, + { + "start": 9673.12, + "end": 9674.02, + "probability": 0.7229 + }, + { + "start": 9674.44, + "end": 9675.8, + "probability": 0.772 + }, + { + "start": 9675.88, + "end": 9677.56, + "probability": 0.6016 + }, + { + "start": 9678.1, + "end": 9679.85, + "probability": 0.9964 + }, + { + "start": 9680.56, + "end": 9683.38, + "probability": 0.8666 + }, + { + "start": 9683.94, + "end": 9685.68, + "probability": 0.9899 + }, + { + "start": 9686.56, + "end": 9688.17, + "probability": 0.9346 + }, + { + "start": 9689.1, + "end": 9689.22, + "probability": 0.4418 + }, + { + "start": 9689.76, + "end": 9690.7, + "probability": 0.7967 + }, + { + "start": 9692.26, + "end": 9695.0, + "probability": 0.9725 + }, + { + "start": 9695.98, + "end": 9698.1, + "probability": 0.9951 + }, + { + "start": 9698.74, + "end": 9705.02, + "probability": 0.9793 + }, + { + "start": 9705.54, + "end": 9709.4, + "probability": 0.9866 + }, + { + "start": 9709.4, + "end": 9714.12, + "probability": 0.998 + }, + { + "start": 9715.4, + "end": 9719.36, + "probability": 0.9675 + }, + { + "start": 9719.36, + "end": 9726.44, + "probability": 0.9985 + }, + { + "start": 9727.18, + "end": 9730.32, + "probability": 0.8318 + }, + { + "start": 9730.32, + "end": 9731.0, + "probability": 0.5702 + }, + { + "start": 9731.4, + "end": 9732.76, + "probability": 0.8646 + }, + { + "start": 9733.42, + "end": 9734.86, + "probability": 0.9741 + }, + { + "start": 9735.04, + "end": 9736.2, + "probability": 0.9502 + }, + { + "start": 9736.64, + "end": 9738.42, + "probability": 0.988 + }, + { + "start": 9738.42, + "end": 9738.85, + "probability": 0.6218 + }, + { + "start": 9739.76, + "end": 9745.78, + "probability": 0.9785 + }, + { + "start": 9746.28, + "end": 9747.32, + "probability": 0.6441 + }, + { + "start": 9748.2, + "end": 9750.42, + "probability": 0.877 + }, + { + "start": 9751.5, + "end": 9754.19, + "probability": 0.9971 + }, + { + "start": 9754.78, + "end": 9758.68, + "probability": 0.9978 + }, + { + "start": 9759.14, + "end": 9762.78, + "probability": 0.8128 + }, + { + "start": 9763.3, + "end": 9766.56, + "probability": 0.9954 + }, + { + "start": 9767.14, + "end": 9769.86, + "probability": 0.9959 + }, + { + "start": 9770.3, + "end": 9771.22, + "probability": 0.8617 + }, + { + "start": 9772.24, + "end": 9776.72, + "probability": 0.9902 + }, + { + "start": 9776.72, + "end": 9780.2, + "probability": 0.9932 + }, + { + "start": 9780.74, + "end": 9784.66, + "probability": 0.9906 + }, + { + "start": 9784.66, + "end": 9789.02, + "probability": 0.9955 + }, + { + "start": 9789.6, + "end": 9795.32, + "probability": 0.9885 + }, + { + "start": 9796.04, + "end": 9801.6, + "probability": 0.9822 + }, + { + "start": 9802.62, + "end": 9806.14, + "probability": 0.9917 + }, + { + "start": 9806.14, + "end": 9809.46, + "probability": 0.9974 + }, + { + "start": 9810.04, + "end": 9811.02, + "probability": 0.8314 + }, + { + "start": 9811.4, + "end": 9813.84, + "probability": 0.9908 + }, + { + "start": 9814.88, + "end": 9818.64, + "probability": 0.9478 + }, + { + "start": 9819.16, + "end": 9823.04, + "probability": 0.6966 + }, + { + "start": 9823.44, + "end": 9826.38, + "probability": 0.7216 + }, + { + "start": 9826.96, + "end": 9828.38, + "probability": 0.774 + }, + { + "start": 9828.76, + "end": 9829.12, + "probability": 0.4937 + }, + { + "start": 9829.26, + "end": 9831.38, + "probability": 0.9902 + }, + { + "start": 9831.86, + "end": 9833.39, + "probability": 0.8233 + }, + { + "start": 9834.52, + "end": 9834.96, + "probability": 0.4909 + }, + { + "start": 9834.96, + "end": 9837.18, + "probability": 0.967 + }, + { + "start": 9837.22, + "end": 9837.9, + "probability": 0.7784 + }, + { + "start": 9838.26, + "end": 9843.4, + "probability": 0.9866 + }, + { + "start": 9843.68, + "end": 9846.38, + "probability": 0.9907 + }, + { + "start": 9846.82, + "end": 9848.07, + "probability": 0.9443 + }, + { + "start": 9848.54, + "end": 9849.23, + "probability": 0.9858 + }, + { + "start": 9850.02, + "end": 9852.6, + "probability": 0.979 + }, + { + "start": 9853.35, + "end": 9857.56, + "probability": 0.9942 + }, + { + "start": 9858.84, + "end": 9861.52, + "probability": 0.9883 + }, + { + "start": 9861.52, + "end": 9864.96, + "probability": 0.5635 + }, + { + "start": 9865.1, + "end": 9870.5, + "probability": 0.8159 + }, + { + "start": 9871.0, + "end": 9873.98, + "probability": 0.533 + }, + { + "start": 9874.64, + "end": 9876.82, + "probability": 0.5406 + }, + { + "start": 9877.36, + "end": 9882.58, + "probability": 0.9784 + }, + { + "start": 9882.66, + "end": 9883.42, + "probability": 0.3704 + }, + { + "start": 9884.07, + "end": 9886.06, + "probability": 0.8593 + }, + { + "start": 9886.5, + "end": 9887.06, + "probability": 0.9179 + }, + { + "start": 9887.18, + "end": 9891.76, + "probability": 0.9361 + }, + { + "start": 9891.76, + "end": 9896.28, + "probability": 0.9241 + }, + { + "start": 9897.48, + "end": 9899.34, + "probability": 0.9901 + }, + { + "start": 9899.48, + "end": 9900.74, + "probability": 0.9678 + }, + { + "start": 9901.24, + "end": 9904.14, + "probability": 0.9827 + }, + { + "start": 9904.72, + "end": 9907.16, + "probability": 0.965 + }, + { + "start": 9907.72, + "end": 9909.66, + "probability": 0.9653 + }, + { + "start": 9909.9, + "end": 9910.98, + "probability": 0.9431 + }, + { + "start": 9911.36, + "end": 9915.8, + "probability": 0.9694 + }, + { + "start": 9915.8, + "end": 9920.48, + "probability": 0.9396 + }, + { + "start": 9921.0, + "end": 9922.42, + "probability": 0.7817 + }, + { + "start": 9923.1, + "end": 9926.28, + "probability": 0.9689 + }, + { + "start": 9926.84, + "end": 9930.76, + "probability": 0.8761 + }, + { + "start": 9931.26, + "end": 9931.44, + "probability": 0.7688 + }, + { + "start": 9931.58, + "end": 9931.58, + "probability": 0.0002 + }, + { + "start": 9936.86, + "end": 9937.2, + "probability": 0.0801 + }, + { + "start": 9937.2, + "end": 9937.2, + "probability": 0.0631 + }, + { + "start": 9937.2, + "end": 9939.2, + "probability": 0.6684 + }, + { + "start": 9939.92, + "end": 9940.74, + "probability": 0.6016 + }, + { + "start": 9940.8, + "end": 9942.8, + "probability": 0.7408 + }, + { + "start": 9943.38, + "end": 9945.09, + "probability": 0.8804 + }, + { + "start": 9946.52, + "end": 9947.72, + "probability": 0.8031 + }, + { + "start": 9948.26, + "end": 9949.96, + "probability": 0.7946 + }, + { + "start": 9950.74, + "end": 9952.34, + "probability": 0.6507 + }, + { + "start": 9952.48, + "end": 9954.1, + "probability": 0.6881 + }, + { + "start": 9954.78, + "end": 9957.52, + "probability": 0.644 + }, + { + "start": 9959.08, + "end": 9962.06, + "probability": 0.8619 + }, + { + "start": 9962.72, + "end": 9966.64, + "probability": 0.998 + }, + { + "start": 9966.72, + "end": 9970.94, + "probability": 0.9976 + }, + { + "start": 9971.7, + "end": 9974.3, + "probability": 0.8572 + }, + { + "start": 9974.84, + "end": 9975.78, + "probability": 0.7782 + }, + { + "start": 9976.66, + "end": 9980.0, + "probability": 0.9797 + }, + { + "start": 9981.02, + "end": 9981.82, + "probability": 0.3437 + }, + { + "start": 9982.42, + "end": 9983.96, + "probability": 0.9146 + }, + { + "start": 9984.66, + "end": 9988.04, + "probability": 0.9249 + }, + { + "start": 9989.0, + "end": 9991.32, + "probability": 0.9377 + }, + { + "start": 9991.94, + "end": 9994.12, + "probability": 0.5238 + }, + { + "start": 9994.76, + "end": 9996.32, + "probability": 0.3516 + }, + { + "start": 9997.3, + "end": 10000.46, + "probability": 0.9335 + }, + { + "start": 10001.08, + "end": 10003.36, + "probability": 0.7676 + }, + { + "start": 10003.92, + "end": 10008.52, + "probability": 0.9792 + }, + { + "start": 10009.02, + "end": 10011.44, + "probability": 0.8221 + }, + { + "start": 10012.16, + "end": 10016.46, + "probability": 0.962 + }, + { + "start": 10016.98, + "end": 10021.32, + "probability": 0.7635 + }, + { + "start": 10022.26, + "end": 10024.2, + "probability": 0.9663 + }, + { + "start": 10024.86, + "end": 10025.5, + "probability": 0.7587 + }, + { + "start": 10025.6, + "end": 10026.16, + "probability": 0.8231 + }, + { + "start": 10026.24, + "end": 10026.9, + "probability": 0.8764 + }, + { + "start": 10027.32, + "end": 10028.42, + "probability": 0.9585 + }, + { + "start": 10028.98, + "end": 10031.04, + "probability": 0.9449 + }, + { + "start": 10031.8, + "end": 10032.9, + "probability": 0.7107 + }, + { + "start": 10033.06, + "end": 10035.9, + "probability": 0.9713 + }, + { + "start": 10036.72, + "end": 10037.66, + "probability": 0.7595 + }, + { + "start": 10038.66, + "end": 10040.61, + "probability": 0.618 + }, + { + "start": 10041.34, + "end": 10043.86, + "probability": 0.9412 + }, + { + "start": 10045.12, + "end": 10049.0, + "probability": 0.9326 + }, + { + "start": 10049.2, + "end": 10051.0, + "probability": 0.7636 + }, + { + "start": 10051.48, + "end": 10052.04, + "probability": 0.752 + }, + { + "start": 10054.14, + "end": 10055.53, + "probability": 0.9675 + }, + { + "start": 10057.2, + "end": 10058.2, + "probability": 0.6543 + }, + { + "start": 10063.84, + "end": 10064.82, + "probability": 0.6216 + }, + { + "start": 10067.06, + "end": 10069.26, + "probability": 0.8785 + }, + { + "start": 10069.88, + "end": 10071.5, + "probability": 0.8737 + }, + { + "start": 10072.14, + "end": 10073.96, + "probability": 0.9664 + }, + { + "start": 10074.68, + "end": 10076.5, + "probability": 0.988 + }, + { + "start": 10077.02, + "end": 10081.74, + "probability": 0.9709 + }, + { + "start": 10082.36, + "end": 10086.5, + "probability": 0.728 + }, + { + "start": 10087.2, + "end": 10089.04, + "probability": 0.9506 + }, + { + "start": 10089.36, + "end": 10090.48, + "probability": 0.5111 + }, + { + "start": 10091.22, + "end": 10093.32, + "probability": 0.8652 + }, + { + "start": 10094.18, + "end": 10095.78, + "probability": 0.8271 + }, + { + "start": 10097.34, + "end": 10098.12, + "probability": 0.1314 + }, + { + "start": 10098.12, + "end": 10103.06, + "probability": 0.9412 + }, + { + "start": 10103.86, + "end": 10107.98, + "probability": 0.9709 + }, + { + "start": 10108.68, + "end": 10110.98, + "probability": 0.8841 + }, + { + "start": 10112.02, + "end": 10115.04, + "probability": 0.9787 + }, + { + "start": 10115.71, + "end": 10119.94, + "probability": 0.9629 + }, + { + "start": 10121.36, + "end": 10122.5, + "probability": 0.7288 + }, + { + "start": 10122.6, + "end": 10125.78, + "probability": 0.9724 + }, + { + "start": 10126.7, + "end": 10130.26, + "probability": 0.9956 + }, + { + "start": 10130.48, + "end": 10135.54, + "probability": 0.8891 + }, + { + "start": 10136.46, + "end": 10139.64, + "probability": 0.6341 + }, + { + "start": 10140.2, + "end": 10145.42, + "probability": 0.8977 + }, + { + "start": 10146.34, + "end": 10147.0, + "probability": 0.7296 + }, + { + "start": 10148.52, + "end": 10151.34, + "probability": 0.3654 + }, + { + "start": 10152.6, + "end": 10157.1, + "probability": 0.9771 + }, + { + "start": 10158.3, + "end": 10162.0, + "probability": 0.977 + }, + { + "start": 10162.0, + "end": 10166.2, + "probability": 0.9824 + }, + { + "start": 10167.38, + "end": 10171.54, + "probability": 0.985 + }, + { + "start": 10171.54, + "end": 10174.9, + "probability": 0.9434 + }, + { + "start": 10175.9, + "end": 10179.38, + "probability": 0.9181 + }, + { + "start": 10179.7, + "end": 10181.16, + "probability": 0.9519 + }, + { + "start": 10181.88, + "end": 10184.6, + "probability": 0.9911 + }, + { + "start": 10185.18, + "end": 10187.5, + "probability": 0.9878 + }, + { + "start": 10188.24, + "end": 10190.74, + "probability": 0.9866 + }, + { + "start": 10191.44, + "end": 10194.16, + "probability": 0.9473 + }, + { + "start": 10194.8, + "end": 10197.28, + "probability": 0.9484 + }, + { + "start": 10198.5, + "end": 10201.74, + "probability": 0.8873 + }, + { + "start": 10202.44, + "end": 10205.82, + "probability": 0.9894 + }, + { + "start": 10206.54, + "end": 10210.05, + "probability": 0.9963 + }, + { + "start": 10211.74, + "end": 10213.98, + "probability": 0.8506 + }, + { + "start": 10215.64, + "end": 10216.88, + "probability": 0.7895 + }, + { + "start": 10217.48, + "end": 10217.8, + "probability": 0.8237 + }, + { + "start": 10219.08, + "end": 10223.7, + "probability": 0.9819 + }, + { + "start": 10224.54, + "end": 10228.8, + "probability": 0.9702 + }, + { + "start": 10229.66, + "end": 10236.48, + "probability": 0.9938 + }, + { + "start": 10237.28, + "end": 10240.44, + "probability": 0.9967 + }, + { + "start": 10241.88, + "end": 10245.78, + "probability": 0.9815 + }, + { + "start": 10245.78, + "end": 10249.08, + "probability": 0.999 + }, + { + "start": 10249.32, + "end": 10250.54, + "probability": 0.8522 + }, + { + "start": 10251.4, + "end": 10253.04, + "probability": 0.8301 + }, + { + "start": 10254.82, + "end": 10256.28, + "probability": 0.9104 + }, + { + "start": 10257.34, + "end": 10259.26, + "probability": 0.8555 + }, + { + "start": 10260.02, + "end": 10264.5, + "probability": 0.9942 + }, + { + "start": 10264.5, + "end": 10268.76, + "probability": 0.9945 + }, + { + "start": 10269.6, + "end": 10272.16, + "probability": 0.9653 + }, + { + "start": 10273.08, + "end": 10274.48, + "probability": 0.8948 + }, + { + "start": 10275.96, + "end": 10278.34, + "probability": 0.7799 + }, + { + "start": 10278.38, + "end": 10281.0, + "probability": 0.9564 + }, + { + "start": 10281.92, + "end": 10282.74, + "probability": 0.7909 + }, + { + "start": 10283.0, + "end": 10284.16, + "probability": 0.9536 + }, + { + "start": 10284.24, + "end": 10287.88, + "probability": 0.9711 + }, + { + "start": 10288.82, + "end": 10293.24, + "probability": 0.9797 + }, + { + "start": 10294.32, + "end": 10298.58, + "probability": 0.9891 + }, + { + "start": 10298.58, + "end": 10303.8, + "probability": 0.9968 + }, + { + "start": 10304.42, + "end": 10306.96, + "probability": 0.9992 + }, + { + "start": 10308.34, + "end": 10309.4, + "probability": 0.6914 + }, + { + "start": 10310.26, + "end": 10312.72, + "probability": 0.9886 + }, + { + "start": 10313.34, + "end": 10314.02, + "probability": 0.9766 + }, + { + "start": 10314.72, + "end": 10319.34, + "probability": 0.9974 + }, + { + "start": 10319.34, + "end": 10322.6, + "probability": 0.9698 + }, + { + "start": 10323.2, + "end": 10324.48, + "probability": 0.8675 + }, + { + "start": 10325.16, + "end": 10325.52, + "probability": 0.7956 + }, + { + "start": 10326.42, + "end": 10331.68, + "probability": 0.9857 + }, + { + "start": 10332.38, + "end": 10335.22, + "probability": 0.9983 + }, + { + "start": 10336.66, + "end": 10341.94, + "probability": 0.9935 + }, + { + "start": 10342.58, + "end": 10343.34, + "probability": 0.8197 + }, + { + "start": 10344.68, + "end": 10350.1, + "probability": 0.9924 + }, + { + "start": 10351.62, + "end": 10356.64, + "probability": 0.978 + }, + { + "start": 10357.94, + "end": 10358.58, + "probability": 0.7325 + }, + { + "start": 10359.28, + "end": 10364.5, + "probability": 0.9892 + }, + { + "start": 10365.3, + "end": 10371.5, + "probability": 0.9568 + }, + { + "start": 10372.56, + "end": 10374.76, + "probability": 0.9287 + }, + { + "start": 10375.82, + "end": 10378.32, + "probability": 0.9832 + }, + { + "start": 10378.32, + "end": 10381.72, + "probability": 0.9879 + }, + { + "start": 10383.0, + "end": 10385.72, + "probability": 0.8882 + }, + { + "start": 10386.42, + "end": 10392.24, + "probability": 0.8297 + }, + { + "start": 10393.1, + "end": 10393.28, + "probability": 0.049 + }, + { + "start": 10393.28, + "end": 10398.74, + "probability": 0.8993 + }, + { + "start": 10399.6, + "end": 10401.82, + "probability": 0.7616 + }, + { + "start": 10403.04, + "end": 10408.24, + "probability": 0.9958 + }, + { + "start": 10409.12, + "end": 10414.24, + "probability": 0.972 + }, + { + "start": 10415.02, + "end": 10421.74, + "probability": 0.9791 + }, + { + "start": 10422.38, + "end": 10426.54, + "probability": 0.9956 + }, + { + "start": 10427.84, + "end": 10429.4, + "probability": 0.7003 + }, + { + "start": 10430.18, + "end": 10432.34, + "probability": 0.936 + }, + { + "start": 10433.16, + "end": 10443.68, + "probability": 0.9487 + }, + { + "start": 10444.12, + "end": 10444.86, + "probability": 0.804 + }, + { + "start": 10445.64, + "end": 10447.02, + "probability": 0.9917 + }, + { + "start": 10448.02, + "end": 10450.14, + "probability": 0.797 + }, + { + "start": 10450.24, + "end": 10452.28, + "probability": 0.8945 + }, + { + "start": 10452.92, + "end": 10454.84, + "probability": 0.9934 + }, + { + "start": 10455.82, + "end": 10460.14, + "probability": 0.995 + }, + { + "start": 10461.76, + "end": 10462.52, + "probability": 0.8635 + }, + { + "start": 10463.08, + "end": 10463.98, + "probability": 0.8927 + }, + { + "start": 10464.58, + "end": 10467.44, + "probability": 0.5148 + }, + { + "start": 10467.96, + "end": 10469.66, + "probability": 0.9881 + }, + { + "start": 10471.22, + "end": 10474.16, + "probability": 0.992 + }, + { + "start": 10474.7, + "end": 10478.7, + "probability": 0.9929 + }, + { + "start": 10478.7, + "end": 10483.4, + "probability": 0.9979 + }, + { + "start": 10484.34, + "end": 10485.6, + "probability": 0.547 + }, + { + "start": 10486.26, + "end": 10489.92, + "probability": 0.901 + }, + { + "start": 10490.88, + "end": 10492.5, + "probability": 0.9956 + }, + { + "start": 10492.66, + "end": 10495.82, + "probability": 0.953 + }, + { + "start": 10496.1, + "end": 10497.58, + "probability": 0.8123 + }, + { + "start": 10497.8, + "end": 10498.84, + "probability": 0.9266 + }, + { + "start": 10499.52, + "end": 10501.4, + "probability": 0.7848 + }, + { + "start": 10501.48, + "end": 10502.18, + "probability": 0.3848 + }, + { + "start": 10502.32, + "end": 10502.8, + "probability": 0.9198 + }, + { + "start": 10502.86, + "end": 10504.44, + "probability": 0.941 + }, + { + "start": 10504.78, + "end": 10505.12, + "probability": 0.6997 + }, + { + "start": 10505.8, + "end": 10505.94, + "probability": 0.8099 + }, + { + "start": 10505.96, + "end": 10506.08, + "probability": 0.717 + }, + { + "start": 10506.62, + "end": 10508.76, + "probability": 0.7495 + }, + { + "start": 10508.82, + "end": 10508.92, + "probability": 0.4299 + }, + { + "start": 10509.2, + "end": 10512.12, + "probability": 0.9361 + }, + { + "start": 10513.02, + "end": 10513.75, + "probability": 0.5276 + }, + { + "start": 10516.46, + "end": 10519.06, + "probability": 0.9297 + }, + { + "start": 10519.16, + "end": 10520.94, + "probability": 0.99 + }, + { + "start": 10520.98, + "end": 10521.68, + "probability": 0.7343 + }, + { + "start": 10521.96, + "end": 10522.9, + "probability": 0.9859 + }, + { + "start": 10526.64, + "end": 10528.6, + "probability": 0.9922 + }, + { + "start": 10530.12, + "end": 10532.46, + "probability": 0.8196 + }, + { + "start": 10546.76, + "end": 10546.76, + "probability": 0.2283 + }, + { + "start": 10546.76, + "end": 10546.76, + "probability": 0.1394 + }, + { + "start": 10546.76, + "end": 10549.04, + "probability": 0.4012 + }, + { + "start": 10549.16, + "end": 10552.58, + "probability": 0.986 + }, + { + "start": 10553.7, + "end": 10556.54, + "probability": 0.8718 + }, + { + "start": 10556.76, + "end": 10558.55, + "probability": 0.9498 + }, + { + "start": 10559.22, + "end": 10559.88, + "probability": 0.8994 + }, + { + "start": 10559.96, + "end": 10560.74, + "probability": 0.8793 + }, + { + "start": 10560.94, + "end": 10562.2, + "probability": 0.8374 + }, + { + "start": 10562.94, + "end": 10564.18, + "probability": 0.7229 + }, + { + "start": 10564.98, + "end": 10565.72, + "probability": 0.5097 + }, + { + "start": 10565.8, + "end": 10567.2, + "probability": 0.9338 + }, + { + "start": 10567.26, + "end": 10567.76, + "probability": 0.4698 + }, + { + "start": 10567.76, + "end": 10568.94, + "probability": 0.3475 + }, + { + "start": 10568.98, + "end": 10570.56, + "probability": 0.598 + }, + { + "start": 10571.18, + "end": 10574.96, + "probability": 0.7791 + }, + { + "start": 10576.0, + "end": 10576.8, + "probability": 0.2021 + } + ], + "segments_count": 3267, + "words_count": 17548, + "avg_words_per_segment": 5.3713, + "avg_segment_duration": 2.4912, + "avg_words_per_minute": 99.4315, + "plenum_id": "32358", + "duration": 10589.0, + "title": null, + "plenum_date": "2013-11-19" +} \ No newline at end of file