diff --git "a/37345/metadata.json" "b/37345/metadata.json" new file mode 100644--- /dev/null +++ "b/37345/metadata.json" @@ -0,0 +1,40857 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "37345", + "quality_score": 0.8417, + "per_segment_quality_scores": [ + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 171.94, + "end": 174.56, + "probability": 0.0468 + }, + { + "start": 174.56, + "end": 174.78, + "probability": 0.0482 + }, + { + "start": 197.82, + "end": 199.7, + "probability": 0.2246 + }, + { + "start": 202.86, + "end": 202.98, + "probability": 0.1682 + }, + { + "start": 211.8, + "end": 215.8, + "probability": 0.2129 + }, + { + "start": 220.02, + "end": 225.48, + "probability": 0.465 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.0, + "end": 296.0, + "probability": 0.0 + }, + { + "start": 296.1, + "end": 296.1, + "probability": 0.0214 + }, + { + "start": 296.1, + "end": 296.54, + "probability": 0.0111 + }, + { + "start": 296.54, + "end": 297.06, + "probability": 0.1559 + }, + { + "start": 297.1, + "end": 298.52, + "probability": 0.3902 + }, + { + "start": 298.52, + "end": 300.64, + "probability": 0.4898 + }, + { + "start": 301.08, + "end": 302.02, + "probability": 0.8985 + }, + { + "start": 302.14, + "end": 303.14, + "probability": 0.7485 + }, + { + "start": 303.54, + "end": 304.48, + "probability": 0.8866 + }, + { + "start": 304.52, + "end": 305.24, + "probability": 0.8852 + }, + { + "start": 305.9, + "end": 307.32, + "probability": 0.6825 + }, + { + "start": 307.52, + "end": 308.52, + "probability": 0.9882 + }, + { + "start": 308.66, + "end": 309.3, + "probability": 0.8541 + }, + { + "start": 309.38, + "end": 310.0, + "probability": 0.7869 + }, + { + "start": 310.06, + "end": 310.4, + "probability": 0.2988 + }, + { + "start": 310.9, + "end": 311.36, + "probability": 0.7691 + }, + { + "start": 311.7, + "end": 314.28, + "probability": 0.9454 + }, + { + "start": 314.94, + "end": 316.46, + "probability": 0.9282 + }, + { + "start": 317.1, + "end": 317.5, + "probability": 0.4932 + }, + { + "start": 318.04, + "end": 331.74, + "probability": 0.0039 + }, + { + "start": 337.12, + "end": 341.12, + "probability": 0.1133 + }, + { + "start": 349.52, + "end": 349.84, + "probability": 0.0175 + }, + { + "start": 382.46, + "end": 383.86, + "probability": 0.1563 + }, + { + "start": 383.86, + "end": 388.12, + "probability": 0.0751 + }, + { + "start": 389.04, + "end": 391.51, + "probability": 0.0277 + }, + { + "start": 392.24, + "end": 395.66, + "probability": 0.0223 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 420.0, + "end": 420.0, + "probability": 0.0 + }, + { + "start": 421.26, + "end": 424.26, + "probability": 0.458 + }, + { + "start": 424.8, + "end": 430.52, + "probability": 0.9941 + }, + { + "start": 431.12, + "end": 432.14, + "probability": 0.9304 + }, + { + "start": 432.3, + "end": 434.86, + "probability": 0.9883 + }, + { + "start": 435.0, + "end": 438.18, + "probability": 0.9598 + }, + { + "start": 439.06, + "end": 441.6, + "probability": 0.8325 + }, + { + "start": 441.76, + "end": 442.93, + "probability": 0.7085 + }, + { + "start": 448.02, + "end": 448.48, + "probability": 0.6912 + }, + { + "start": 448.48, + "end": 449.52, + "probability": 0.7417 + }, + { + "start": 450.32, + "end": 455.04, + "probability": 0.9927 + }, + { + "start": 455.6, + "end": 458.43, + "probability": 0.9956 + }, + { + "start": 459.56, + "end": 461.26, + "probability": 0.8694 + }, + { + "start": 462.56, + "end": 464.02, + "probability": 0.998 + }, + { + "start": 464.56, + "end": 467.42, + "probability": 0.8933 + }, + { + "start": 468.18, + "end": 471.68, + "probability": 0.9978 + }, + { + "start": 472.46, + "end": 473.64, + "probability": 0.9939 + }, + { + "start": 473.76, + "end": 475.92, + "probability": 0.9979 + }, + { + "start": 476.54, + "end": 480.54, + "probability": 0.9945 + }, + { + "start": 480.54, + "end": 483.92, + "probability": 0.9771 + }, + { + "start": 484.8, + "end": 486.32, + "probability": 0.8008 + }, + { + "start": 486.42, + "end": 487.62, + "probability": 0.7758 + }, + { + "start": 487.66, + "end": 488.3, + "probability": 0.8732 + }, + { + "start": 488.38, + "end": 488.79, + "probability": 0.8384 + }, + { + "start": 489.14, + "end": 490.36, + "probability": 0.7931 + }, + { + "start": 491.1, + "end": 496.17, + "probability": 0.9924 + }, + { + "start": 496.38, + "end": 500.2, + "probability": 0.9979 + }, + { + "start": 500.76, + "end": 501.92, + "probability": 0.9576 + }, + { + "start": 502.68, + "end": 504.18, + "probability": 0.7396 + }, + { + "start": 507.14, + "end": 508.64, + "probability": 0.7274 + }, + { + "start": 509.14, + "end": 509.96, + "probability": 0.8391 + }, + { + "start": 510.14, + "end": 512.42, + "probability": 0.9474 + }, + { + "start": 513.5, + "end": 515.1, + "probability": 0.9409 + }, + { + "start": 515.18, + "end": 518.14, + "probability": 0.9539 + }, + { + "start": 518.4, + "end": 522.62, + "probability": 0.5705 + }, + { + "start": 524.7, + "end": 527.22, + "probability": 0.809 + }, + { + "start": 527.84, + "end": 528.16, + "probability": 0.4242 + }, + { + "start": 528.18, + "end": 529.18, + "probability": 0.7418 + }, + { + "start": 529.4, + "end": 531.74, + "probability": 0.8365 + }, + { + "start": 531.94, + "end": 533.76, + "probability": 0.9851 + }, + { + "start": 535.98, + "end": 539.27, + "probability": 0.9817 + }, + { + "start": 539.76, + "end": 542.06, + "probability": 0.8971 + }, + { + "start": 543.74, + "end": 545.46, + "probability": 0.9009 + }, + { + "start": 545.56, + "end": 545.94, + "probability": 0.5336 + }, + { + "start": 546.26, + "end": 546.81, + "probability": 0.9862 + }, + { + "start": 548.62, + "end": 549.68, + "probability": 0.325 + }, + { + "start": 549.68, + "end": 552.44, + "probability": 0.7523 + }, + { + "start": 552.9, + "end": 555.2, + "probability": 0.9279 + }, + { + "start": 555.34, + "end": 555.74, + "probability": 0.4419 + }, + { + "start": 557.38, + "end": 561.4, + "probability": 0.4922 + }, + { + "start": 561.82, + "end": 565.08, + "probability": 0.8168 + }, + { + "start": 565.16, + "end": 567.22, + "probability": 0.9944 + }, + { + "start": 567.22, + "end": 570.18, + "probability": 0.9623 + }, + { + "start": 570.84, + "end": 571.68, + "probability": 0.4286 + }, + { + "start": 571.74, + "end": 574.88, + "probability": 0.7533 + }, + { + "start": 574.88, + "end": 578.42, + "probability": 0.8531 + }, + { + "start": 579.12, + "end": 580.24, + "probability": 0.6191 + }, + { + "start": 580.38, + "end": 583.58, + "probability": 0.9063 + }, + { + "start": 584.36, + "end": 585.86, + "probability": 0.4913 + }, + { + "start": 587.37, + "end": 589.56, + "probability": 0.5047 + }, + { + "start": 590.06, + "end": 591.18, + "probability": 0.8405 + }, + { + "start": 591.9, + "end": 593.38, + "probability": 0.6733 + }, + { + "start": 593.56, + "end": 594.0, + "probability": 0.7989 + }, + { + "start": 595.93, + "end": 597.53, + "probability": 0.2608 + }, + { + "start": 598.36, + "end": 598.96, + "probability": 0.8018 + }, + { + "start": 599.04, + "end": 600.2, + "probability": 0.7121 + }, + { + "start": 600.42, + "end": 603.94, + "probability": 0.9139 + }, + { + "start": 604.68, + "end": 607.38, + "probability": 0.86 + }, + { + "start": 607.82, + "end": 609.84, + "probability": 0.9 + }, + { + "start": 610.1, + "end": 612.64, + "probability": 0.7574 + }, + { + "start": 613.4, + "end": 616.56, + "probability": 0.941 + }, + { + "start": 617.46, + "end": 618.62, + "probability": 0.8991 + }, + { + "start": 618.9, + "end": 619.92, + "probability": 0.9747 + }, + { + "start": 620.02, + "end": 622.24, + "probability": 0.9841 + }, + { + "start": 623.16, + "end": 625.86, + "probability": 0.9963 + }, + { + "start": 625.86, + "end": 628.74, + "probability": 0.9999 + }, + { + "start": 629.88, + "end": 632.72, + "probability": 0.9967 + }, + { + "start": 633.28, + "end": 634.66, + "probability": 0.991 + }, + { + "start": 634.94, + "end": 635.73, + "probability": 0.7374 + }, + { + "start": 636.34, + "end": 640.02, + "probability": 0.9912 + }, + { + "start": 640.88, + "end": 643.12, + "probability": 0.8918 + }, + { + "start": 643.16, + "end": 644.3, + "probability": 0.6831 + }, + { + "start": 644.8, + "end": 648.58, + "probability": 0.964 + }, + { + "start": 648.68, + "end": 650.22, + "probability": 0.4714 + }, + { + "start": 651.22, + "end": 655.46, + "probability": 0.9405 + }, + { + "start": 655.46, + "end": 660.0, + "probability": 0.9993 + }, + { + "start": 660.0, + "end": 662.9, + "probability": 0.9946 + }, + { + "start": 663.44, + "end": 666.16, + "probability": 0.7179 + }, + { + "start": 666.16, + "end": 666.36, + "probability": 0.5805 + }, + { + "start": 666.46, + "end": 668.52, + "probability": 0.8355 + }, + { + "start": 668.64, + "end": 672.7, + "probability": 0.9908 + }, + { + "start": 673.3, + "end": 676.63, + "probability": 0.9861 + }, + { + "start": 677.2, + "end": 679.94, + "probability": 0.9519 + }, + { + "start": 680.02, + "end": 682.72, + "probability": 0.8368 + }, + { + "start": 682.72, + "end": 685.96, + "probability": 0.9845 + }, + { + "start": 686.58, + "end": 690.35, + "probability": 0.8843 + }, + { + "start": 691.22, + "end": 691.44, + "probability": 0.8459 + }, + { + "start": 693.0, + "end": 694.92, + "probability": 0.9146 + }, + { + "start": 698.02, + "end": 698.94, + "probability": 0.8802 + }, + { + "start": 699.08, + "end": 699.84, + "probability": 0.9532 + }, + { + "start": 699.94, + "end": 700.64, + "probability": 0.4875 + }, + { + "start": 700.88, + "end": 703.86, + "probability": 0.9321 + }, + { + "start": 703.92, + "end": 706.38, + "probability": 0.4717 + }, + { + "start": 707.22, + "end": 711.2, + "probability": 0.8552 + }, + { + "start": 711.84, + "end": 713.74, + "probability": 0.9285 + }, + { + "start": 714.44, + "end": 716.02, + "probability": 0.2012 + }, + { + "start": 716.16, + "end": 716.44, + "probability": 0.4318 + }, + { + "start": 716.54, + "end": 720.36, + "probability": 0.8442 + }, + { + "start": 721.56, + "end": 722.18, + "probability": 0.739 + }, + { + "start": 722.66, + "end": 723.44, + "probability": 0.8519 + }, + { + "start": 723.54, + "end": 724.3, + "probability": 0.8961 + }, + { + "start": 724.4, + "end": 724.9, + "probability": 0.374 + }, + { + "start": 724.9, + "end": 732.48, + "probability": 0.6221 + }, + { + "start": 733.08, + "end": 734.84, + "probability": 0.7599 + }, + { + "start": 735.0, + "end": 735.74, + "probability": 0.5167 + }, + { + "start": 736.24, + "end": 741.4, + "probability": 0.9447 + }, + { + "start": 741.72, + "end": 745.12, + "probability": 0.992 + }, + { + "start": 745.56, + "end": 747.3, + "probability": 0.9529 + }, + { + "start": 747.46, + "end": 748.78, + "probability": 0.8216 + }, + { + "start": 749.48, + "end": 754.52, + "probability": 0.9461 + }, + { + "start": 755.22, + "end": 761.02, + "probability": 0.9648 + }, + { + "start": 761.68, + "end": 763.68, + "probability": 0.9817 + }, + { + "start": 764.56, + "end": 767.94, + "probability": 0.9507 + }, + { + "start": 768.62, + "end": 770.46, + "probability": 0.8901 + }, + { + "start": 770.78, + "end": 772.4, + "probability": 0.5956 + }, + { + "start": 772.52, + "end": 773.48, + "probability": 0.804 + }, + { + "start": 773.8, + "end": 776.52, + "probability": 0.916 + }, + { + "start": 776.82, + "end": 777.68, + "probability": 0.9426 + }, + { + "start": 778.24, + "end": 780.44, + "probability": 0.9816 + }, + { + "start": 780.56, + "end": 781.22, + "probability": 0.6351 + }, + { + "start": 781.78, + "end": 786.66, + "probability": 0.9692 + }, + { + "start": 787.5, + "end": 790.56, + "probability": 0.9908 + }, + { + "start": 790.94, + "end": 792.86, + "probability": 0.7652 + }, + { + "start": 792.98, + "end": 793.56, + "probability": 0.8809 + }, + { + "start": 793.88, + "end": 794.32, + "probability": 0.9593 + }, + { + "start": 794.58, + "end": 797.28, + "probability": 0.9467 + }, + { + "start": 797.62, + "end": 797.96, + "probability": 0.7594 + }, + { + "start": 798.84, + "end": 801.4, + "probability": 0.7315 + }, + { + "start": 801.56, + "end": 804.2, + "probability": 0.86 + }, + { + "start": 804.64, + "end": 808.9, + "probability": 0.9113 + }, + { + "start": 808.94, + "end": 811.08, + "probability": 0.9604 + }, + { + "start": 811.16, + "end": 812.1, + "probability": 0.8422 + }, + { + "start": 816.3, + "end": 824.06, + "probability": 0.8735 + }, + { + "start": 825.88, + "end": 828.98, + "probability": 0.8066 + }, + { + "start": 830.74, + "end": 832.46, + "probability": 0.9563 + }, + { + "start": 836.8, + "end": 836.8, + "probability": 0.3554 + }, + { + "start": 836.8, + "end": 837.16, + "probability": 0.6541 + }, + { + "start": 837.4, + "end": 838.56, + "probability": 0.8115 + }, + { + "start": 839.08, + "end": 839.94, + "probability": 0.8481 + }, + { + "start": 841.06, + "end": 845.6, + "probability": 0.9569 + }, + { + "start": 845.74, + "end": 846.58, + "probability": 0.794 + }, + { + "start": 847.22, + "end": 850.46, + "probability": 0.918 + }, + { + "start": 851.08, + "end": 852.49, + "probability": 0.7202 + }, + { + "start": 854.28, + "end": 854.7, + "probability": 0.3055 + }, + { + "start": 854.74, + "end": 855.56, + "probability": 0.8207 + }, + { + "start": 856.16, + "end": 857.04, + "probability": 0.86 + }, + { + "start": 857.2, + "end": 858.64, + "probability": 0.7988 + }, + { + "start": 858.9, + "end": 859.82, + "probability": 0.5247 + }, + { + "start": 861.18, + "end": 864.32, + "probability": 0.9653 + }, + { + "start": 865.34, + "end": 867.18, + "probability": 0.8151 + }, + { + "start": 868.36, + "end": 872.06, + "probability": 0.8132 + }, + { + "start": 872.84, + "end": 874.86, + "probability": 0.9954 + }, + { + "start": 876.1, + "end": 879.36, + "probability": 0.7032 + }, + { + "start": 880.16, + "end": 881.92, + "probability": 0.9497 + }, + { + "start": 882.92, + "end": 885.74, + "probability": 0.891 + }, + { + "start": 886.78, + "end": 889.2, + "probability": 0.9405 + }, + { + "start": 890.22, + "end": 893.48, + "probability": 0.9383 + }, + { + "start": 894.2, + "end": 895.7, + "probability": 0.9846 + }, + { + "start": 896.34, + "end": 897.94, + "probability": 0.6672 + }, + { + "start": 897.98, + "end": 901.46, + "probability": 0.8753 + }, + { + "start": 902.22, + "end": 904.02, + "probability": 0.9655 + }, + { + "start": 907.24, + "end": 909.28, + "probability": 0.9838 + }, + { + "start": 909.36, + "end": 909.66, + "probability": 0.6174 + }, + { + "start": 918.62, + "end": 918.98, + "probability": 0.2663 + }, + { + "start": 918.98, + "end": 920.08, + "probability": 0.6146 + }, + { + "start": 920.96, + "end": 922.82, + "probability": 0.8702 + }, + { + "start": 923.04, + "end": 925.62, + "probability": 0.9137 + }, + { + "start": 926.26, + "end": 928.16, + "probability": 0.8218 + }, + { + "start": 928.3, + "end": 930.84, + "probability": 0.9912 + }, + { + "start": 930.92, + "end": 933.64, + "probability": 0.9116 + }, + { + "start": 934.28, + "end": 935.3, + "probability": 0.8431 + }, + { + "start": 935.78, + "end": 935.98, + "probability": 0.8 + }, + { + "start": 936.04, + "end": 937.78, + "probability": 0.9633 + }, + { + "start": 937.9, + "end": 938.68, + "probability": 0.9449 + }, + { + "start": 938.72, + "end": 941.5, + "probability": 0.8093 + }, + { + "start": 942.02, + "end": 942.44, + "probability": 0.4784 + }, + { + "start": 942.86, + "end": 945.92, + "probability": 0.9834 + }, + { + "start": 945.92, + "end": 948.6, + "probability": 0.8916 + }, + { + "start": 948.94, + "end": 951.42, + "probability": 0.9963 + }, + { + "start": 951.74, + "end": 954.9, + "probability": 0.9871 + }, + { + "start": 955.08, + "end": 955.7, + "probability": 0.7458 + }, + { + "start": 955.7, + "end": 955.74, + "probability": 0.3625 + }, + { + "start": 955.74, + "end": 956.22, + "probability": 0.9538 + }, + { + "start": 961.2, + "end": 962.74, + "probability": 0.8352 + }, + { + "start": 962.76, + "end": 966.14, + "probability": 0.812 + }, + { + "start": 966.24, + "end": 967.06, + "probability": 0.5005 + }, + { + "start": 967.16, + "end": 967.94, + "probability": 0.832 + }, + { + "start": 968.14, + "end": 968.7, + "probability": 0.5271 + }, + { + "start": 968.9, + "end": 970.52, + "probability": 0.6761 + }, + { + "start": 970.84, + "end": 974.58, + "probability": 0.973 + }, + { + "start": 974.86, + "end": 978.24, + "probability": 0.9924 + }, + { + "start": 978.34, + "end": 979.54, + "probability": 0.9358 + }, + { + "start": 979.68, + "end": 979.96, + "probability": 0.455 + }, + { + "start": 980.0, + "end": 980.64, + "probability": 0.6581 + }, + { + "start": 981.56, + "end": 984.7, + "probability": 0.8286 + }, + { + "start": 984.98, + "end": 986.64, + "probability": 0.5477 + }, + { + "start": 989.88, + "end": 991.32, + "probability": 0.803 + }, + { + "start": 991.64, + "end": 992.9, + "probability": 0.7996 + }, + { + "start": 993.04, + "end": 995.36, + "probability": 0.9582 + }, + { + "start": 996.08, + "end": 997.64, + "probability": 0.8172 + }, + { + "start": 998.68, + "end": 1003.92, + "probability": 0.7907 + }, + { + "start": 1004.34, + "end": 1005.96, + "probability": 0.6645 + }, + { + "start": 1006.62, + "end": 1009.42, + "probability": 0.6332 + }, + { + "start": 1010.38, + "end": 1010.52, + "probability": 0.0347 + }, + { + "start": 1010.52, + "end": 1010.96, + "probability": 0.0204 + }, + { + "start": 1011.5, + "end": 1014.54, + "probability": 0.8094 + }, + { + "start": 1015.32, + "end": 1016.4, + "probability": 0.5801 + }, + { + "start": 1016.96, + "end": 1020.84, + "probability": 0.0705 + }, + { + "start": 1020.84, + "end": 1020.84, + "probability": 0.0597 + }, + { + "start": 1020.84, + "end": 1020.84, + "probability": 0.1817 + }, + { + "start": 1020.84, + "end": 1025.42, + "probability": 0.8156 + }, + { + "start": 1025.46, + "end": 1027.14, + "probability": 0.5412 + }, + { + "start": 1028.28, + "end": 1030.52, + "probability": 0.5009 + }, + { + "start": 1033.62, + "end": 1034.28, + "probability": 0.1057 + }, + { + "start": 1034.28, + "end": 1034.72, + "probability": 0.1017 + }, + { + "start": 1034.96, + "end": 1037.26, + "probability": 0.7999 + }, + { + "start": 1037.94, + "end": 1040.38, + "probability": 0.9943 + }, + { + "start": 1045.6, + "end": 1045.6, + "probability": 0.5898 + }, + { + "start": 1045.6, + "end": 1047.44, + "probability": 0.7933 + }, + { + "start": 1047.48, + "end": 1050.64, + "probability": 0.3865 + }, + { + "start": 1050.96, + "end": 1055.46, + "probability": 0.9711 + }, + { + "start": 1056.4, + "end": 1058.0, + "probability": 0.6774 + }, + { + "start": 1058.1, + "end": 1058.44, + "probability": 0.8356 + }, + { + "start": 1059.0, + "end": 1059.92, + "probability": 0.527 + }, + { + "start": 1060.02, + "end": 1060.6, + "probability": 0.6928 + }, + { + "start": 1061.92, + "end": 1065.14, + "probability": 0.9773 + }, + { + "start": 1066.2, + "end": 1068.14, + "probability": 0.9807 + }, + { + "start": 1068.68, + "end": 1071.06, + "probability": 0.9926 + }, + { + "start": 1073.78, + "end": 1077.5, + "probability": 0.9761 + }, + { + "start": 1078.32, + "end": 1082.02, + "probability": 0.9613 + }, + { + "start": 1082.04, + "end": 1085.0, + "probability": 0.9128 + }, + { + "start": 1085.72, + "end": 1087.02, + "probability": 0.6768 + }, + { + "start": 1087.1, + "end": 1089.22, + "probability": 0.7077 + }, + { + "start": 1089.28, + "end": 1091.5, + "probability": 0.1597 + }, + { + "start": 1091.5, + "end": 1091.5, + "probability": 0.0741 + }, + { + "start": 1091.5, + "end": 1095.94, + "probability": 0.9517 + }, + { + "start": 1096.76, + "end": 1097.62, + "probability": 0.8158 + }, + { + "start": 1098.9, + "end": 1101.12, + "probability": 0.8818 + }, + { + "start": 1102.2, + "end": 1105.96, + "probability": 0.9297 + }, + { + "start": 1106.72, + "end": 1109.72, + "probability": 0.97 + }, + { + "start": 1110.82, + "end": 1115.99, + "probability": 0.9897 + }, + { + "start": 1116.2, + "end": 1120.88, + "probability": 0.914 + }, + { + "start": 1123.0, + "end": 1125.62, + "probability": 0.7966 + }, + { + "start": 1131.24, + "end": 1132.48, + "probability": 0.6708 + }, + { + "start": 1132.56, + "end": 1133.12, + "probability": 0.8529 + }, + { + "start": 1133.3, + "end": 1135.14, + "probability": 0.9392 + }, + { + "start": 1135.6, + "end": 1139.72, + "probability": 0.9958 + }, + { + "start": 1140.6, + "end": 1142.8, + "probability": 0.6896 + }, + { + "start": 1142.88, + "end": 1144.34, + "probability": 0.8932 + }, + { + "start": 1144.92, + "end": 1146.86, + "probability": 0.9697 + }, + { + "start": 1148.32, + "end": 1151.76, + "probability": 0.9441 + }, + { + "start": 1151.94, + "end": 1152.66, + "probability": 0.8114 + }, + { + "start": 1153.58, + "end": 1156.02, + "probability": 0.9895 + }, + { + "start": 1156.92, + "end": 1159.3, + "probability": 0.9985 + }, + { + "start": 1159.3, + "end": 1163.78, + "probability": 0.9731 + }, + { + "start": 1164.74, + "end": 1167.05, + "probability": 0.7749 + }, + { + "start": 1168.04, + "end": 1171.02, + "probability": 0.9908 + }, + { + "start": 1171.92, + "end": 1175.44, + "probability": 0.9912 + }, + { + "start": 1176.32, + "end": 1183.72, + "probability": 0.9901 + }, + { + "start": 1183.8, + "end": 1185.1, + "probability": 0.9772 + }, + { + "start": 1186.54, + "end": 1188.94, + "probability": 0.9805 + }, + { + "start": 1189.76, + "end": 1191.92, + "probability": 0.9059 + }, + { + "start": 1192.0, + "end": 1195.46, + "probability": 0.9733 + }, + { + "start": 1195.79, + "end": 1198.18, + "probability": 0.7013 + }, + { + "start": 1198.38, + "end": 1199.78, + "probability": 0.5715 + }, + { + "start": 1200.64, + "end": 1201.84, + "probability": 0.4773 + }, + { + "start": 1202.76, + "end": 1203.93, + "probability": 0.5109 + }, + { + "start": 1204.8, + "end": 1206.96, + "probability": 0.9908 + }, + { + "start": 1207.68, + "end": 1210.22, + "probability": 0.9971 + }, + { + "start": 1210.46, + "end": 1213.76, + "probability": 0.6899 + }, + { + "start": 1213.82, + "end": 1218.12, + "probability": 0.9932 + }, + { + "start": 1218.92, + "end": 1220.72, + "probability": 0.9435 + }, + { + "start": 1220.82, + "end": 1223.44, + "probability": 0.7518 + }, + { + "start": 1224.08, + "end": 1227.02, + "probability": 0.9485 + }, + { + "start": 1227.86, + "end": 1229.76, + "probability": 0.6248 + }, + { + "start": 1230.68, + "end": 1232.2, + "probability": 0.8438 + }, + { + "start": 1232.62, + "end": 1233.66, + "probability": 0.7738 + }, + { + "start": 1233.7, + "end": 1235.08, + "probability": 0.9701 + }, + { + "start": 1236.0, + "end": 1238.61, + "probability": 0.9404 + }, + { + "start": 1239.68, + "end": 1243.84, + "probability": 0.8549 + }, + { + "start": 1243.96, + "end": 1248.0, + "probability": 0.9855 + }, + { + "start": 1249.4, + "end": 1251.68, + "probability": 0.9678 + }, + { + "start": 1252.68, + "end": 1253.43, + "probability": 0.6627 + }, + { + "start": 1253.66, + "end": 1254.9, + "probability": 0.6411 + }, + { + "start": 1254.96, + "end": 1255.74, + "probability": 0.8111 + }, + { + "start": 1256.58, + "end": 1260.18, + "probability": 0.7093 + }, + { + "start": 1260.74, + "end": 1262.92, + "probability": 0.9941 + }, + { + "start": 1263.76, + "end": 1266.82, + "probability": 0.9473 + }, + { + "start": 1268.04, + "end": 1272.56, + "probability": 0.7869 + }, + { + "start": 1273.06, + "end": 1275.62, + "probability": 0.9552 + }, + { + "start": 1276.48, + "end": 1276.72, + "probability": 0.1006 + }, + { + "start": 1276.86, + "end": 1279.26, + "probability": 0.9174 + }, + { + "start": 1280.02, + "end": 1281.44, + "probability": 0.9884 + }, + { + "start": 1281.5, + "end": 1281.88, + "probability": 0.7344 + }, + { + "start": 1281.92, + "end": 1283.48, + "probability": 0.9939 + }, + { + "start": 1284.28, + "end": 1285.7, + "probability": 0.1717 + }, + { + "start": 1285.78, + "end": 1287.4, + "probability": 0.3681 + }, + { + "start": 1287.62, + "end": 1289.74, + "probability": 0.9375 + }, + { + "start": 1290.54, + "end": 1292.52, + "probability": 0.481 + }, + { + "start": 1293.26, + "end": 1294.28, + "probability": 0.8372 + }, + { + "start": 1294.34, + "end": 1295.02, + "probability": 0.8627 + }, + { + "start": 1297.0, + "end": 1303.44, + "probability": 0.9917 + }, + { + "start": 1304.52, + "end": 1306.84, + "probability": 0.9941 + }, + { + "start": 1307.84, + "end": 1309.28, + "probability": 0.6257 + }, + { + "start": 1310.0, + "end": 1311.2, + "probability": 0.8519 + }, + { + "start": 1313.02, + "end": 1315.16, + "probability": 0.9733 + }, + { + "start": 1316.04, + "end": 1317.88, + "probability": 0.9019 + }, + { + "start": 1318.6, + "end": 1320.08, + "probability": 0.9688 + }, + { + "start": 1320.24, + "end": 1321.42, + "probability": 0.9547 + }, + { + "start": 1322.18, + "end": 1324.3, + "probability": 0.9906 + }, + { + "start": 1324.4, + "end": 1327.0, + "probability": 0.904 + }, + { + "start": 1327.36, + "end": 1329.0, + "probability": 0.9089 + }, + { + "start": 1329.12, + "end": 1331.1, + "probability": 0.9252 + }, + { + "start": 1331.92, + "end": 1333.64, + "probability": 0.9711 + }, + { + "start": 1334.2, + "end": 1335.28, + "probability": 0.9841 + }, + { + "start": 1335.38, + "end": 1342.22, + "probability": 0.9635 + }, + { + "start": 1342.22, + "end": 1348.06, + "probability": 0.9263 + }, + { + "start": 1349.34, + "end": 1350.56, + "probability": 0.7817 + }, + { + "start": 1350.76, + "end": 1351.58, + "probability": 0.7827 + }, + { + "start": 1351.7, + "end": 1356.78, + "probability": 0.9482 + }, + { + "start": 1357.0, + "end": 1362.9, + "probability": 0.8647 + }, + { + "start": 1363.02, + "end": 1363.74, + "probability": 0.8321 + }, + { + "start": 1364.56, + "end": 1366.46, + "probability": 0.9001 + }, + { + "start": 1367.1, + "end": 1370.66, + "probability": 0.9958 + }, + { + "start": 1370.8, + "end": 1371.36, + "probability": 0.8883 + }, + { + "start": 1371.48, + "end": 1373.28, + "probability": 0.9769 + }, + { + "start": 1374.38, + "end": 1375.46, + "probability": 0.6079 + }, + { + "start": 1375.88, + "end": 1377.86, + "probability": 0.415 + }, + { + "start": 1377.98, + "end": 1381.82, + "probability": 0.9453 + }, + { + "start": 1381.88, + "end": 1386.4, + "probability": 0.9206 + }, + { + "start": 1387.64, + "end": 1388.38, + "probability": 0.2668 + }, + { + "start": 1388.52, + "end": 1388.72, + "probability": 0.4686 + }, + { + "start": 1388.82, + "end": 1392.74, + "probability": 0.9283 + }, + { + "start": 1392.9, + "end": 1394.6, + "probability": 0.7262 + }, + { + "start": 1394.68, + "end": 1395.76, + "probability": 0.9584 + }, + { + "start": 1395.84, + "end": 1396.35, + "probability": 0.5026 + }, + { + "start": 1396.7, + "end": 1402.18, + "probability": 0.8438 + }, + { + "start": 1402.28, + "end": 1404.32, + "probability": 0.9885 + }, + { + "start": 1404.98, + "end": 1406.72, + "probability": 0.974 + }, + { + "start": 1407.16, + "end": 1407.6, + "probability": 0.8223 + }, + { + "start": 1408.08, + "end": 1412.56, + "probability": 0.9412 + }, + { + "start": 1412.76, + "end": 1416.58, + "probability": 0.9247 + }, + { + "start": 1416.82, + "end": 1417.98, + "probability": 0.2154 + }, + { + "start": 1418.38, + "end": 1419.26, + "probability": 0.5099 + }, + { + "start": 1419.3, + "end": 1421.08, + "probability": 0.9506 + }, + { + "start": 1421.2, + "end": 1422.67, + "probability": 0.8578 + }, + { + "start": 1423.82, + "end": 1426.42, + "probability": 0.8778 + }, + { + "start": 1426.52, + "end": 1428.1, + "probability": 0.918 + }, + { + "start": 1428.86, + "end": 1431.48, + "probability": 0.9858 + }, + { + "start": 1431.48, + "end": 1434.5, + "probability": 0.8497 + }, + { + "start": 1435.26, + "end": 1440.98, + "probability": 0.8813 + }, + { + "start": 1441.5, + "end": 1444.38, + "probability": 0.996 + }, + { + "start": 1444.9, + "end": 1449.96, + "probability": 0.9096 + }, + { + "start": 1450.46, + "end": 1452.44, + "probability": 0.1814 + }, + { + "start": 1453.32, + "end": 1454.86, + "probability": 0.967 + }, + { + "start": 1455.0, + "end": 1456.36, + "probability": 0.5123 + }, + { + "start": 1457.04, + "end": 1461.52, + "probability": 0.7955 + }, + { + "start": 1461.64, + "end": 1462.36, + "probability": 0.9121 + }, + { + "start": 1470.06, + "end": 1471.24, + "probability": 0.589 + }, + { + "start": 1471.34, + "end": 1473.16, + "probability": 0.7764 + }, + { + "start": 1473.24, + "end": 1475.26, + "probability": 0.7443 + }, + { + "start": 1475.67, + "end": 1477.36, + "probability": 0.4926 + }, + { + "start": 1477.4, + "end": 1477.66, + "probability": 0.8094 + }, + { + "start": 1478.26, + "end": 1485.03, + "probability": 0.9653 + }, + { + "start": 1486.64, + "end": 1488.08, + "probability": 0.7577 + }, + { + "start": 1488.08, + "end": 1493.3, + "probability": 0.6893 + }, + { + "start": 1493.76, + "end": 1494.34, + "probability": 0.6015 + }, + { + "start": 1494.64, + "end": 1497.66, + "probability": 0.8555 + }, + { + "start": 1497.76, + "end": 1498.22, + "probability": 0.7408 + }, + { + "start": 1498.24, + "end": 1499.54, + "probability": 0.8668 + }, + { + "start": 1499.72, + "end": 1505.46, + "probability": 0.9595 + }, + { + "start": 1505.56, + "end": 1509.14, + "probability": 0.8379 + }, + { + "start": 1509.54, + "end": 1511.36, + "probability": 0.9077 + }, + { + "start": 1511.48, + "end": 1512.58, + "probability": 0.7195 + }, + { + "start": 1512.68, + "end": 1516.84, + "probability": 0.9147 + }, + { + "start": 1517.54, + "end": 1518.76, + "probability": 0.9192 + }, + { + "start": 1518.9, + "end": 1525.36, + "probability": 0.8455 + }, + { + "start": 1525.8, + "end": 1528.98, + "probability": 0.8745 + }, + { + "start": 1528.98, + "end": 1528.98, + "probability": 0.3025 + }, + { + "start": 1528.98, + "end": 1529.58, + "probability": 0.0489 + }, + { + "start": 1529.58, + "end": 1532.74, + "probability": 0.5772 + }, + { + "start": 1533.5, + "end": 1536.4, + "probability": 0.9827 + }, + { + "start": 1537.42, + "end": 1541.22, + "probability": 0.5605 + }, + { + "start": 1542.16, + "end": 1545.0, + "probability": 0.8135 + }, + { + "start": 1545.74, + "end": 1545.92, + "probability": 0.3334 + }, + { + "start": 1545.92, + "end": 1547.06, + "probability": 0.6629 + }, + { + "start": 1547.18, + "end": 1549.32, + "probability": 0.9443 + }, + { + "start": 1549.44, + "end": 1550.44, + "probability": 0.9049 + }, + { + "start": 1550.5, + "end": 1552.14, + "probability": 0.9515 + }, + { + "start": 1557.8, + "end": 1557.94, + "probability": 0.1258 + }, + { + "start": 1557.94, + "end": 1558.66, + "probability": 0.3545 + }, + { + "start": 1558.7, + "end": 1561.6, + "probability": 0.853 + }, + { + "start": 1562.36, + "end": 1564.52, + "probability": 0.8073 + }, + { + "start": 1565.16, + "end": 1566.28, + "probability": 0.9644 + }, + { + "start": 1566.42, + "end": 1567.7, + "probability": 0.9297 + }, + { + "start": 1567.94, + "end": 1569.72, + "probability": 0.9315 + }, + { + "start": 1570.26, + "end": 1571.84, + "probability": 0.9261 + }, + { + "start": 1571.96, + "end": 1574.04, + "probability": 0.8162 + }, + { + "start": 1574.24, + "end": 1575.14, + "probability": 0.9371 + }, + { + "start": 1575.22, + "end": 1576.18, + "probability": 0.9353 + }, + { + "start": 1576.28, + "end": 1577.12, + "probability": 0.9859 + }, + { + "start": 1577.3, + "end": 1578.36, + "probability": 0.8819 + }, + { + "start": 1579.34, + "end": 1580.94, + "probability": 0.981 + }, + { + "start": 1581.12, + "end": 1583.88, + "probability": 0.8349 + }, + { + "start": 1584.58, + "end": 1588.68, + "probability": 0.9886 + }, + { + "start": 1589.46, + "end": 1595.06, + "probability": 0.8724 + }, + { + "start": 1595.9, + "end": 1597.4, + "probability": 0.6633 + }, + { + "start": 1597.46, + "end": 1601.3, + "probability": 0.903 + }, + { + "start": 1601.78, + "end": 1605.94, + "probability": 0.7495 + }, + { + "start": 1606.74, + "end": 1612.96, + "probability": 0.9647 + }, + { + "start": 1612.96, + "end": 1617.4, + "probability": 0.921 + }, + { + "start": 1617.62, + "end": 1621.38, + "probability": 0.9893 + }, + { + "start": 1621.44, + "end": 1626.4, + "probability": 0.9648 + }, + { + "start": 1626.6, + "end": 1628.16, + "probability": 0.9564 + }, + { + "start": 1628.3, + "end": 1628.68, + "probability": 0.7695 + }, + { + "start": 1629.4, + "end": 1631.32, + "probability": 0.6766 + }, + { + "start": 1631.92, + "end": 1632.62, + "probability": 0.6553 + }, + { + "start": 1632.76, + "end": 1635.6, + "probability": 0.8832 + }, + { + "start": 1635.94, + "end": 1637.24, + "probability": 0.979 + }, + { + "start": 1638.24, + "end": 1639.32, + "probability": 0.7018 + }, + { + "start": 1640.12, + "end": 1642.82, + "probability": 0.9937 + }, + { + "start": 1643.14, + "end": 1648.12, + "probability": 0.7947 + }, + { + "start": 1648.16, + "end": 1649.84, + "probability": 0.1402 + }, + { + "start": 1650.44, + "end": 1652.72, + "probability": 0.6934 + }, + { + "start": 1653.58, + "end": 1654.38, + "probability": 0.66 + }, + { + "start": 1654.58, + "end": 1655.22, + "probability": 0.7053 + }, + { + "start": 1655.46, + "end": 1656.0, + "probability": 0.668 + }, + { + "start": 1671.4, + "end": 1676.5, + "probability": 0.1595 + }, + { + "start": 1676.5, + "end": 1679.38, + "probability": 0.0905 + }, + { + "start": 1683.72, + "end": 1686.1, + "probability": 0.0617 + }, + { + "start": 1698.04, + "end": 1698.9, + "probability": 0.1104 + }, + { + "start": 1699.04, + "end": 1700.88, + "probability": 0.0783 + }, + { + "start": 1703.52, + "end": 1705.3, + "probability": 0.2458 + }, + { + "start": 1706.58, + "end": 1711.26, + "probability": 0.043 + }, + { + "start": 1711.4, + "end": 1715.24, + "probability": 0.0271 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.0, + "end": 1754.0, + "probability": 0.0 + }, + { + "start": 1754.2, + "end": 1757.76, + "probability": 0.2329 + }, + { + "start": 1757.9, + "end": 1761.24, + "probability": 0.5097 + }, + { + "start": 1772.3, + "end": 1778.3, + "probability": 0.0503 + }, + { + "start": 1778.3, + "end": 1785.34, + "probability": 0.0298 + }, + { + "start": 1785.34, + "end": 1785.62, + "probability": 0.0571 + }, + { + "start": 1786.08, + "end": 1788.54, + "probability": 0.2576 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.0, + "end": 1878.0, + "probability": 0.0 + }, + { + "start": 1878.1, + "end": 1879.4, + "probability": 0.0051 + }, + { + "start": 1881.52, + "end": 1883.5, + "probability": 0.011 + }, + { + "start": 1883.6, + "end": 1886.52, + "probability": 0.0892 + }, + { + "start": 1886.52, + "end": 1888.18, + "probability": 0.1154 + }, + { + "start": 1888.66, + "end": 1890.28, + "probability": 0.0585 + }, + { + "start": 1891.58, + "end": 1900.78, + "probability": 0.0434 + }, + { + "start": 1900.78, + "end": 1903.88, + "probability": 0.1097 + }, + { + "start": 1905.8, + "end": 1910.36, + "probability": 0.0362 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2016.0, + "end": 2016.0, + "probability": 0.0 + }, + { + "start": 2034.76, + "end": 2035.74, + "probability": 0.7387 + }, + { + "start": 2036.34, + "end": 2037.4, + "probability": 0.1022 + }, + { + "start": 2037.4, + "end": 2039.92, + "probability": 0.4233 + }, + { + "start": 2039.92, + "end": 2040.22, + "probability": 0.3318 + }, + { + "start": 2044.4, + "end": 2046.58, + "probability": 0.0441 + }, + { + "start": 2046.58, + "end": 2051.62, + "probability": 0.1768 + }, + { + "start": 2052.16, + "end": 2052.76, + "probability": 0.1631 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.0, + "end": 2139.0, + "probability": 0.0 + }, + { + "start": 2139.14, + "end": 2139.64, + "probability": 0.1074 + }, + { + "start": 2140.52, + "end": 2145.08, + "probability": 0.9849 + }, + { + "start": 2145.16, + "end": 2148.54, + "probability": 0.9492 + }, + { + "start": 2149.64, + "end": 2152.6, + "probability": 0.9625 + }, + { + "start": 2153.22, + "end": 2156.09, + "probability": 0.991 + }, + { + "start": 2156.22, + "end": 2157.4, + "probability": 0.8389 + }, + { + "start": 2158.28, + "end": 2159.19, + "probability": 0.943 + }, + { + "start": 2159.76, + "end": 2160.76, + "probability": 0.9372 + }, + { + "start": 2161.32, + "end": 2162.26, + "probability": 0.7372 + }, + { + "start": 2162.96, + "end": 2165.24, + "probability": 0.9825 + }, + { + "start": 2165.36, + "end": 2171.6, + "probability": 0.981 + }, + { + "start": 2173.28, + "end": 2178.68, + "probability": 0.9858 + }, + { + "start": 2179.74, + "end": 2180.7, + "probability": 0.7386 + }, + { + "start": 2181.98, + "end": 2183.48, + "probability": 0.8894 + }, + { + "start": 2184.9, + "end": 2187.12, + "probability": 0.8916 + }, + { + "start": 2187.62, + "end": 2193.6, + "probability": 0.9644 + }, + { + "start": 2194.62, + "end": 2196.52, + "probability": 0.9678 + }, + { + "start": 2197.3, + "end": 2198.7, + "probability": 0.8561 + }, + { + "start": 2199.42, + "end": 2208.04, + "probability": 0.9531 + }, + { + "start": 2208.04, + "end": 2213.42, + "probability": 0.9973 + }, + { + "start": 2214.76, + "end": 2217.58, + "probability": 0.9602 + }, + { + "start": 2218.1, + "end": 2220.48, + "probability": 0.9825 + }, + { + "start": 2221.1, + "end": 2225.22, + "probability": 0.9848 + }, + { + "start": 2225.7, + "end": 2231.92, + "probability": 0.917 + }, + { + "start": 2233.74, + "end": 2240.82, + "probability": 0.9939 + }, + { + "start": 2241.5, + "end": 2245.26, + "probability": 0.863 + }, + { + "start": 2245.88, + "end": 2250.56, + "probability": 0.9743 + }, + { + "start": 2250.56, + "end": 2256.84, + "probability": 0.9623 + }, + { + "start": 2258.52, + "end": 2262.65, + "probability": 0.9933 + }, + { + "start": 2263.34, + "end": 2267.36, + "probability": 0.9817 + }, + { + "start": 2268.08, + "end": 2273.56, + "probability": 0.9911 + }, + { + "start": 2274.62, + "end": 2278.68, + "probability": 0.9943 + }, + { + "start": 2280.88, + "end": 2285.32, + "probability": 0.9993 + }, + { + "start": 2285.68, + "end": 2292.84, + "probability": 0.9855 + }, + { + "start": 2294.02, + "end": 2297.98, + "probability": 0.9868 + }, + { + "start": 2299.52, + "end": 2300.96, + "probability": 0.7674 + }, + { + "start": 2301.08, + "end": 2303.38, + "probability": 0.7469 + }, + { + "start": 2303.84, + "end": 2308.52, + "probability": 0.9578 + }, + { + "start": 2309.46, + "end": 2312.04, + "probability": 0.9966 + }, + { + "start": 2312.04, + "end": 2315.74, + "probability": 0.9946 + }, + { + "start": 2316.38, + "end": 2321.38, + "probability": 0.963 + }, + { + "start": 2321.38, + "end": 2326.62, + "probability": 0.9949 + }, + { + "start": 2327.04, + "end": 2329.8, + "probability": 0.9917 + }, + { + "start": 2330.62, + "end": 2333.37, + "probability": 0.9964 + }, + { + "start": 2335.18, + "end": 2336.58, + "probability": 0.4653 + }, + { + "start": 2337.12, + "end": 2338.52, + "probability": 0.9707 + }, + { + "start": 2339.26, + "end": 2339.8, + "probability": 0.9785 + }, + { + "start": 2341.3, + "end": 2346.88, + "probability": 0.9889 + }, + { + "start": 2347.82, + "end": 2351.64, + "probability": 0.9905 + }, + { + "start": 2352.92, + "end": 2356.0, + "probability": 0.9943 + }, + { + "start": 2356.96, + "end": 2358.8, + "probability": 0.9373 + }, + { + "start": 2359.88, + "end": 2367.02, + "probability": 0.984 + }, + { + "start": 2367.44, + "end": 2371.24, + "probability": 0.9949 + }, + { + "start": 2372.6, + "end": 2376.58, + "probability": 0.9423 + }, + { + "start": 2377.12, + "end": 2382.6, + "probability": 0.9591 + }, + { + "start": 2383.34, + "end": 2387.69, + "probability": 0.9613 + }, + { + "start": 2388.92, + "end": 2390.46, + "probability": 0.7027 + }, + { + "start": 2391.02, + "end": 2398.44, + "probability": 0.9861 + }, + { + "start": 2399.28, + "end": 2401.92, + "probability": 0.9972 + }, + { + "start": 2401.92, + "end": 2405.22, + "probability": 0.9862 + }, + { + "start": 2406.54, + "end": 2406.98, + "probability": 0.7086 + }, + { + "start": 2407.52, + "end": 2412.82, + "probability": 0.9982 + }, + { + "start": 2413.56, + "end": 2416.82, + "probability": 0.9948 + }, + { + "start": 2417.66, + "end": 2421.22, + "probability": 0.9795 + }, + { + "start": 2421.22, + "end": 2424.66, + "probability": 0.9222 + }, + { + "start": 2425.44, + "end": 2430.26, + "probability": 0.9315 + }, + { + "start": 2431.58, + "end": 2434.52, + "probability": 0.9952 + }, + { + "start": 2435.42, + "end": 2440.22, + "probability": 0.9735 + }, + { + "start": 2440.38, + "end": 2441.76, + "probability": 0.7042 + }, + { + "start": 2441.86, + "end": 2442.9, + "probability": 0.9019 + }, + { + "start": 2443.36, + "end": 2446.7, + "probability": 0.6837 + }, + { + "start": 2446.84, + "end": 2447.48, + "probability": 0.7869 + }, + { + "start": 2448.18, + "end": 2449.98, + "probability": 0.9116 + }, + { + "start": 2450.1, + "end": 2456.4, + "probability": 0.9865 + }, + { + "start": 2470.96, + "end": 2471.7, + "probability": 0.6282 + }, + { + "start": 2474.46, + "end": 2476.54, + "probability": 0.7912 + }, + { + "start": 2477.28, + "end": 2480.58, + "probability": 0.9448 + }, + { + "start": 2481.5, + "end": 2484.34, + "probability": 0.8603 + }, + { + "start": 2484.76, + "end": 2487.58, + "probability": 0.9533 + }, + { + "start": 2488.64, + "end": 2492.36, + "probability": 0.9963 + }, + { + "start": 2492.36, + "end": 2495.9, + "probability": 0.8033 + }, + { + "start": 2496.4, + "end": 2499.48, + "probability": 0.8917 + }, + { + "start": 2499.84, + "end": 2501.06, + "probability": 0.7534 + }, + { + "start": 2501.36, + "end": 2501.6, + "probability": 0.6765 + }, + { + "start": 2501.62, + "end": 2502.0, + "probability": 0.7219 + }, + { + "start": 2502.38, + "end": 2504.62, + "probability": 0.9824 + }, + { + "start": 2504.98, + "end": 2505.6, + "probability": 0.4049 + }, + { + "start": 2505.76, + "end": 2507.72, + "probability": 0.8704 + }, + { + "start": 2507.8, + "end": 2509.96, + "probability": 0.5946 + }, + { + "start": 2510.58, + "end": 2511.48, + "probability": 0.8905 + }, + { + "start": 2511.96, + "end": 2516.08, + "probability": 0.9878 + }, + { + "start": 2516.2, + "end": 2517.35, + "probability": 0.9824 + }, + { + "start": 2517.88, + "end": 2519.32, + "probability": 0.9561 + }, + { + "start": 2519.62, + "end": 2521.9, + "probability": 0.9862 + }, + { + "start": 2522.7, + "end": 2524.96, + "probability": 0.9932 + }, + { + "start": 2525.06, + "end": 2530.64, + "probability": 0.999 + }, + { + "start": 2531.04, + "end": 2538.38, + "probability": 0.9784 + }, + { + "start": 2538.96, + "end": 2542.94, + "probability": 0.7545 + }, + { + "start": 2542.94, + "end": 2543.78, + "probability": 0.4235 + }, + { + "start": 2543.78, + "end": 2548.12, + "probability": 0.9413 + }, + { + "start": 2548.58, + "end": 2553.5, + "probability": 0.9944 + }, + { + "start": 2554.46, + "end": 2559.7, + "probability": 0.991 + }, + { + "start": 2559.7, + "end": 2565.24, + "probability": 0.9971 + }, + { + "start": 2565.84, + "end": 2566.46, + "probability": 0.4447 + }, + { + "start": 2566.56, + "end": 2567.54, + "probability": 0.9714 + }, + { + "start": 2567.62, + "end": 2568.88, + "probability": 0.9553 + }, + { + "start": 2569.32, + "end": 2572.36, + "probability": 0.9747 + }, + { + "start": 2572.5, + "end": 2574.48, + "probability": 0.9635 + }, + { + "start": 2574.68, + "end": 2576.9, + "probability": 0.9667 + }, + { + "start": 2577.48, + "end": 2583.62, + "probability": 0.9988 + }, + { + "start": 2584.16, + "end": 2588.1, + "probability": 0.9922 + }, + { + "start": 2590.44, + "end": 2592.72, + "probability": 0.7425 + }, + { + "start": 2592.82, + "end": 2594.24, + "probability": 0.9828 + }, + { + "start": 2596.9, + "end": 2598.08, + "probability": 0.488 + }, + { + "start": 2598.08, + "end": 2598.08, + "probability": 0.0644 + }, + { + "start": 2598.08, + "end": 2601.34, + "probability": 0.873 + }, + { + "start": 2601.38, + "end": 2602.06, + "probability": 0.7035 + }, + { + "start": 2605.78, + "end": 2611.44, + "probability": 0.8813 + }, + { + "start": 2611.72, + "end": 2611.72, + "probability": 0.4699 + }, + { + "start": 2611.72, + "end": 2613.41, + "probability": 0.7002 + }, + { + "start": 2613.62, + "end": 2615.2, + "probability": 0.9749 + }, + { + "start": 2616.32, + "end": 2619.08, + "probability": 0.9967 + }, + { + "start": 2621.68, + "end": 2625.62, + "probability": 0.9935 + }, + { + "start": 2625.84, + "end": 2626.58, + "probability": 0.8016 + }, + { + "start": 2626.64, + "end": 2630.68, + "probability": 0.8006 + }, + { + "start": 2631.38, + "end": 2631.92, + "probability": 0.5403 + }, + { + "start": 2633.28, + "end": 2635.28, + "probability": 0.9663 + }, + { + "start": 2636.46, + "end": 2641.52, + "probability": 0.9875 + }, + { + "start": 2642.64, + "end": 2648.88, + "probability": 0.9551 + }, + { + "start": 2649.32, + "end": 2650.02, + "probability": 0.7447 + }, + { + "start": 2650.66, + "end": 2651.94, + "probability": 0.9024 + }, + { + "start": 2652.17, + "end": 2654.56, + "probability": 0.9375 + }, + { + "start": 2654.98, + "end": 2658.2, + "probability": 0.9247 + }, + { + "start": 2659.04, + "end": 2661.28, + "probability": 0.9772 + }, + { + "start": 2661.74, + "end": 2662.74, + "probability": 0.9707 + }, + { + "start": 2663.08, + "end": 2664.0, + "probability": 0.9814 + }, + { + "start": 2664.2, + "end": 2665.28, + "probability": 0.7952 + }, + { + "start": 2665.36, + "end": 2672.38, + "probability": 0.9788 + }, + { + "start": 2672.52, + "end": 2672.92, + "probability": 0.3768 + }, + { + "start": 2674.46, + "end": 2675.88, + "probability": 0.7487 + }, + { + "start": 2676.52, + "end": 2678.08, + "probability": 0.9008 + }, + { + "start": 2679.42, + "end": 2681.92, + "probability": 0.9963 + }, + { + "start": 2682.7, + "end": 2684.06, + "probability": 0.9642 + }, + { + "start": 2685.32, + "end": 2687.64, + "probability": 0.8077 + }, + { + "start": 2687.9, + "end": 2690.56, + "probability": 0.9985 + }, + { + "start": 2693.94, + "end": 2695.56, + "probability": 0.5217 + }, + { + "start": 2695.7, + "end": 2697.49, + "probability": 0.825 + }, + { + "start": 2698.24, + "end": 2703.28, + "probability": 0.8916 + }, + { + "start": 2704.36, + "end": 2706.36, + "probability": 0.9771 + }, + { + "start": 2706.62, + "end": 2708.34, + "probability": 0.8973 + }, + { + "start": 2708.86, + "end": 2711.46, + "probability": 0.9862 + }, + { + "start": 2712.0, + "end": 2714.92, + "probability": 0.8052 + }, + { + "start": 2715.24, + "end": 2717.26, + "probability": 0.9973 + }, + { + "start": 2717.8, + "end": 2718.32, + "probability": 0.8312 + }, + { + "start": 2718.88, + "end": 2719.98, + "probability": 0.7581 + }, + { + "start": 2721.12, + "end": 2725.16, + "probability": 0.7803 + }, + { + "start": 2725.54, + "end": 2726.2, + "probability": 0.9522 + }, + { + "start": 2726.72, + "end": 2727.66, + "probability": 0.5242 + }, + { + "start": 2727.92, + "end": 2731.02, + "probability": 0.9909 + }, + { + "start": 2731.34, + "end": 2733.98, + "probability": 0.877 + }, + { + "start": 2734.42, + "end": 2735.74, + "probability": 0.9846 + }, + { + "start": 2736.12, + "end": 2737.61, + "probability": 0.9233 + }, + { + "start": 2738.14, + "end": 2738.68, + "probability": 0.8392 + }, + { + "start": 2738.74, + "end": 2741.74, + "probability": 0.8551 + }, + { + "start": 2742.4, + "end": 2745.02, + "probability": 0.8885 + }, + { + "start": 2745.06, + "end": 2746.28, + "probability": 0.9966 + }, + { + "start": 2746.74, + "end": 2747.14, + "probability": 0.7899 + }, + { + "start": 2748.16, + "end": 2751.13, + "probability": 0.9875 + }, + { + "start": 2751.94, + "end": 2753.1, + "probability": 0.7435 + }, + { + "start": 2754.4, + "end": 2758.34, + "probability": 0.7482 + }, + { + "start": 2758.36, + "end": 2759.88, + "probability": 0.876 + }, + { + "start": 2761.0, + "end": 2762.38, + "probability": 0.662 + }, + { + "start": 2762.44, + "end": 2763.52, + "probability": 0.5753 + }, + { + "start": 2763.62, + "end": 2765.14, + "probability": 0.6342 + }, + { + "start": 2765.16, + "end": 2768.0, + "probability": 0.6449 + }, + { + "start": 2768.86, + "end": 2769.22, + "probability": 0.9158 + }, + { + "start": 2770.02, + "end": 2772.36, + "probability": 0.968 + }, + { + "start": 2787.16, + "end": 2787.92, + "probability": 0.5569 + }, + { + "start": 2788.1, + "end": 2792.56, + "probability": 0.4658 + }, + { + "start": 2792.78, + "end": 2793.97, + "probability": 0.8633 + }, + { + "start": 2794.0, + "end": 2796.62, + "probability": 0.4267 + }, + { + "start": 2796.62, + "end": 2796.9, + "probability": 0.0444 + }, + { + "start": 2797.52, + "end": 2797.62, + "probability": 0.5082 + }, + { + "start": 2797.62, + "end": 2798.45, + "probability": 0.9048 + }, + { + "start": 2799.56, + "end": 2803.7, + "probability": 0.9959 + }, + { + "start": 2803.7, + "end": 2808.46, + "probability": 0.9697 + }, + { + "start": 2808.58, + "end": 2811.5, + "probability": 0.9947 + }, + { + "start": 2812.6, + "end": 2814.44, + "probability": 0.363 + }, + { + "start": 2815.04, + "end": 2818.66, + "probability": 0.9951 + }, + { + "start": 2819.28, + "end": 2820.28, + "probability": 0.3824 + }, + { + "start": 2820.54, + "end": 2823.7, + "probability": 0.9558 + }, + { + "start": 2824.0, + "end": 2828.14, + "probability": 0.9547 + }, + { + "start": 2828.62, + "end": 2831.64, + "probability": 0.9937 + }, + { + "start": 2831.78, + "end": 2834.68, + "probability": 0.9992 + }, + { + "start": 2834.78, + "end": 2835.34, + "probability": 0.8721 + }, + { + "start": 2836.26, + "end": 2836.98, + "probability": 0.3715 + }, + { + "start": 2838.84, + "end": 2841.36, + "probability": 0.9946 + }, + { + "start": 2841.4, + "end": 2844.1, + "probability": 0.9416 + }, + { + "start": 2844.67, + "end": 2848.7, + "probability": 0.9232 + }, + { + "start": 2849.68, + "end": 2852.88, + "probability": 0.9157 + }, + { + "start": 2853.08, + "end": 2855.46, + "probability": 0.9197 + }, + { + "start": 2855.56, + "end": 2858.58, + "probability": 0.9697 + }, + { + "start": 2859.5, + "end": 2861.06, + "probability": 0.8584 + }, + { + "start": 2861.16, + "end": 2863.84, + "probability": 0.9641 + }, + { + "start": 2863.92, + "end": 2865.36, + "probability": 0.8927 + }, + { + "start": 2865.86, + "end": 2868.82, + "probability": 0.9845 + }, + { + "start": 2869.36, + "end": 2869.78, + "probability": 0.9375 + }, + { + "start": 2870.54, + "end": 2871.58, + "probability": 0.9028 + }, + { + "start": 2871.68, + "end": 2876.0, + "probability": 0.6652 + }, + { + "start": 2876.0, + "end": 2881.34, + "probability": 0.7955 + }, + { + "start": 2882.24, + "end": 2883.2, + "probability": 0.0093 + }, + { + "start": 2883.2, + "end": 2885.5, + "probability": 0.9595 + }, + { + "start": 2887.02, + "end": 2888.98, + "probability": 0.236 + }, + { + "start": 2889.1, + "end": 2889.52, + "probability": 0.019 + }, + { + "start": 2889.52, + "end": 2890.64, + "probability": 0.0204 + }, + { + "start": 2890.64, + "end": 2894.74, + "probability": 0.6205 + }, + { + "start": 2895.48, + "end": 2896.9, + "probability": 0.8908 + }, + { + "start": 2897.08, + "end": 2899.44, + "probability": 0.8111 + }, + { + "start": 2899.58, + "end": 2901.12, + "probability": 0.6441 + }, + { + "start": 2901.3, + "end": 2903.18, + "probability": 0.9035 + }, + { + "start": 2903.28, + "end": 2903.76, + "probability": 0.7591 + }, + { + "start": 2903.84, + "end": 2905.0, + "probability": 0.9875 + }, + { + "start": 2905.22, + "end": 2908.8, + "probability": 0.8405 + }, + { + "start": 2909.18, + "end": 2911.84, + "probability": 0.9222 + }, + { + "start": 2911.88, + "end": 2914.6, + "probability": 0.9954 + }, + { + "start": 2914.92, + "end": 2918.14, + "probability": 0.973 + }, + { + "start": 2918.66, + "end": 2919.14, + "probability": 0.7402 + }, + { + "start": 2919.58, + "end": 2922.08, + "probability": 0.8981 + }, + { + "start": 2922.18, + "end": 2925.12, + "probability": 0.6502 + }, + { + "start": 2926.14, + "end": 2929.34, + "probability": 0.929 + }, + { + "start": 2929.56, + "end": 2933.32, + "probability": 0.982 + }, + { + "start": 2933.64, + "end": 2935.52, + "probability": 0.1015 + }, + { + "start": 2936.1, + "end": 2939.06, + "probability": 0.9626 + }, + { + "start": 2939.1, + "end": 2940.1, + "probability": 0.5158 + }, + { + "start": 2940.52, + "end": 2941.14, + "probability": 0.5061 + }, + { + "start": 2941.28, + "end": 2941.92, + "probability": 0.5944 + }, + { + "start": 2942.12, + "end": 2942.86, + "probability": 0.7254 + }, + { + "start": 2943.94, + "end": 2953.72, + "probability": 0.0514 + }, + { + "start": 2954.58, + "end": 2955.35, + "probability": 0.0521 + }, + { + "start": 2961.64, + "end": 2961.86, + "probability": 0.1271 + }, + { + "start": 2961.86, + "end": 2961.86, + "probability": 0.0372 + }, + { + "start": 2961.86, + "end": 2961.86, + "probability": 0.1736 + }, + { + "start": 2961.86, + "end": 2961.86, + "probability": 0.465 + }, + { + "start": 2961.86, + "end": 2965.94, + "probability": 0.6905 + }, + { + "start": 2966.42, + "end": 2971.12, + "probability": 0.9614 + }, + { + "start": 2971.26, + "end": 2975.28, + "probability": 0.9411 + }, + { + "start": 2977.28, + "end": 2981.64, + "probability": 0.953 + }, + { + "start": 2982.08, + "end": 2985.84, + "probability": 0.832 + }, + { + "start": 2985.94, + "end": 2987.94, + "probability": 0.2205 + }, + { + "start": 2988.96, + "end": 2993.34, + "probability": 0.9191 + }, + { + "start": 2994.38, + "end": 2998.49, + "probability": 0.9897 + }, + { + "start": 2999.7, + "end": 3003.82, + "probability": 0.8932 + }, + { + "start": 3004.0, + "end": 3005.3, + "probability": 0.7936 + }, + { + "start": 3010.52, + "end": 3010.54, + "probability": 0.285 + }, + { + "start": 3016.78, + "end": 3019.56, + "probability": 0.5754 + }, + { + "start": 3020.34, + "end": 3021.92, + "probability": 0.7582 + }, + { + "start": 3022.62, + "end": 3025.14, + "probability": 0.9502 + }, + { + "start": 3026.3, + "end": 3026.4, + "probability": 0.0115 + }, + { + "start": 3027.08, + "end": 3030.54, + "probability": 0.8905 + }, + { + "start": 3031.94, + "end": 3037.5, + "probability": 0.9612 + }, + { + "start": 3037.96, + "end": 3040.74, + "probability": 0.9473 + }, + { + "start": 3041.08, + "end": 3042.48, + "probability": 0.8857 + }, + { + "start": 3043.18, + "end": 3045.32, + "probability": 0.7112 + }, + { + "start": 3045.96, + "end": 3048.12, + "probability": 0.9888 + }, + { + "start": 3048.94, + "end": 3052.56, + "probability": 0.9562 + }, + { + "start": 3052.56, + "end": 3054.36, + "probability": 0.981 + }, + { + "start": 3055.64, + "end": 3057.5, + "probability": 0.9932 + }, + { + "start": 3058.08, + "end": 3063.16, + "probability": 0.6564 + }, + { + "start": 3063.68, + "end": 3065.24, + "probability": 0.9861 + }, + { + "start": 3065.44, + "end": 3068.6, + "probability": 0.9639 + }, + { + "start": 3069.14, + "end": 3071.62, + "probability": 0.6912 + }, + { + "start": 3071.78, + "end": 3077.16, + "probability": 0.9844 + }, + { + "start": 3077.8, + "end": 3078.82, + "probability": 0.8107 + }, + { + "start": 3078.9, + "end": 3080.94, + "probability": 0.8302 + }, + { + "start": 3081.38, + "end": 3084.24, + "probability": 0.9907 + }, + { + "start": 3084.34, + "end": 3086.18, + "probability": 0.9938 + }, + { + "start": 3086.18, + "end": 3089.28, + "probability": 0.797 + }, + { + "start": 3090.2, + "end": 3092.68, + "probability": 0.967 + }, + { + "start": 3093.86, + "end": 3094.8, + "probability": 0.8232 + }, + { + "start": 3094.9, + "end": 3097.8, + "probability": 0.9102 + }, + { + "start": 3098.34, + "end": 3101.56, + "probability": 0.9934 + }, + { + "start": 3101.56, + "end": 3105.56, + "probability": 0.9074 + }, + { + "start": 3106.84, + "end": 3110.82, + "probability": 0.7819 + }, + { + "start": 3111.46, + "end": 3114.3, + "probability": 0.9893 + }, + { + "start": 3114.3, + "end": 3117.22, + "probability": 0.9975 + }, + { + "start": 3117.98, + "end": 3121.1, + "probability": 0.7955 + }, + { + "start": 3122.44, + "end": 3124.46, + "probability": 0.8963 + }, + { + "start": 3124.54, + "end": 3126.9, + "probability": 0.9976 + }, + { + "start": 3127.96, + "end": 3128.56, + "probability": 0.6051 + }, + { + "start": 3128.76, + "end": 3129.7, + "probability": 0.9273 + }, + { + "start": 3129.78, + "end": 3131.07, + "probability": 0.9707 + }, + { + "start": 3131.56, + "end": 3135.16, + "probability": 0.9026 + }, + { + "start": 3135.24, + "end": 3138.76, + "probability": 0.998 + }, + { + "start": 3139.26, + "end": 3143.2, + "probability": 0.8294 + }, + { + "start": 3143.2, + "end": 3146.92, + "probability": 0.9914 + }, + { + "start": 3147.46, + "end": 3150.18, + "probability": 0.9966 + }, + { + "start": 3150.66, + "end": 3150.9, + "probability": 0.6891 + }, + { + "start": 3151.84, + "end": 3154.26, + "probability": 0.8051 + }, + { + "start": 3154.4, + "end": 3157.76, + "probability": 0.9852 + }, + { + "start": 3157.76, + "end": 3160.5, + "probability": 0.9297 + }, + { + "start": 3173.5, + "end": 3175.9, + "probability": 0.7921 + }, + { + "start": 3177.24, + "end": 3180.0, + "probability": 0.6909 + }, + { + "start": 3180.74, + "end": 3182.45, + "probability": 0.8818 + }, + { + "start": 3183.3, + "end": 3186.42, + "probability": 0.9943 + }, + { + "start": 3187.36, + "end": 3189.94, + "probability": 0.9915 + }, + { + "start": 3191.12, + "end": 3194.26, + "probability": 0.9385 + }, + { + "start": 3194.82, + "end": 3196.54, + "probability": 0.7416 + }, + { + "start": 3197.08, + "end": 3199.04, + "probability": 0.958 + }, + { + "start": 3199.46, + "end": 3204.84, + "probability": 0.9645 + }, + { + "start": 3205.64, + "end": 3207.1, + "probability": 0.9358 + }, + { + "start": 3208.28, + "end": 3213.14, + "probability": 0.9901 + }, + { + "start": 3213.14, + "end": 3218.72, + "probability": 0.9989 + }, + { + "start": 3219.64, + "end": 3220.4, + "probability": 0.8757 + }, + { + "start": 3221.4, + "end": 3224.56, + "probability": 0.9906 + }, + { + "start": 3224.56, + "end": 3228.52, + "probability": 0.9946 + }, + { + "start": 3228.92, + "end": 3230.94, + "probability": 0.8499 + }, + { + "start": 3231.98, + "end": 3236.9, + "probability": 0.8609 + }, + { + "start": 3238.18, + "end": 3242.66, + "probability": 0.9264 + }, + { + "start": 3243.32, + "end": 3246.76, + "probability": 0.9454 + }, + { + "start": 3246.76, + "end": 3250.58, + "probability": 0.9937 + }, + { + "start": 3251.44, + "end": 3255.5, + "probability": 0.7197 + }, + { + "start": 3256.06, + "end": 3261.28, + "probability": 0.98 + }, + { + "start": 3262.28, + "end": 3263.74, + "probability": 0.8998 + }, + { + "start": 3264.52, + "end": 3267.54, + "probability": 0.9872 + }, + { + "start": 3267.54, + "end": 3270.7, + "probability": 0.8347 + }, + { + "start": 3271.34, + "end": 3276.76, + "probability": 0.9812 + }, + { + "start": 3277.32, + "end": 3280.16, + "probability": 0.9983 + }, + { + "start": 3280.74, + "end": 3284.62, + "probability": 0.9981 + }, + { + "start": 3285.38, + "end": 3288.2, + "probability": 0.8248 + }, + { + "start": 3289.0, + "end": 3289.82, + "probability": 0.8459 + }, + { + "start": 3290.46, + "end": 3294.26, + "probability": 0.9812 + }, + { + "start": 3294.26, + "end": 3297.92, + "probability": 0.9626 + }, + { + "start": 3298.06, + "end": 3302.32, + "probability": 0.9854 + }, + { + "start": 3303.54, + "end": 3308.56, + "probability": 0.9829 + }, + { + "start": 3309.1, + "end": 3311.66, + "probability": 0.8856 + }, + { + "start": 3312.24, + "end": 3317.34, + "probability": 0.9977 + }, + { + "start": 3317.34, + "end": 3321.82, + "probability": 0.9963 + }, + { + "start": 3322.72, + "end": 3324.18, + "probability": 0.9962 + }, + { + "start": 3324.84, + "end": 3329.54, + "probability": 0.9939 + }, + { + "start": 3330.22, + "end": 3334.46, + "probability": 0.9271 + }, + { + "start": 3335.4, + "end": 3337.24, + "probability": 0.884 + }, + { + "start": 3337.8, + "end": 3339.12, + "probability": 0.9609 + }, + { + "start": 3339.86, + "end": 3340.28, + "probability": 0.3794 + }, + { + "start": 3340.3, + "end": 3343.8, + "probability": 0.779 + }, + { + "start": 3343.9, + "end": 3345.08, + "probability": 0.7272 + }, + { + "start": 3345.58, + "end": 3348.06, + "probability": 0.9873 + }, + { + "start": 3348.9, + "end": 3352.38, + "probability": 0.9877 + }, + { + "start": 3352.4, + "end": 3353.38, + "probability": 0.8868 + }, + { + "start": 3354.02, + "end": 3357.46, + "probability": 0.9771 + }, + { + "start": 3358.08, + "end": 3363.48, + "probability": 0.9373 + }, + { + "start": 3364.08, + "end": 3365.4, + "probability": 0.7638 + }, + { + "start": 3365.98, + "end": 3367.8, + "probability": 0.9976 + }, + { + "start": 3368.1, + "end": 3372.12, + "probability": 0.9933 + }, + { + "start": 3372.56, + "end": 3374.54, + "probability": 0.9749 + }, + { + "start": 3374.98, + "end": 3376.98, + "probability": 0.8254 + }, + { + "start": 3378.46, + "end": 3379.94, + "probability": 0.0733 + }, + { + "start": 3381.44, + "end": 3381.44, + "probability": 0.1835 + }, + { + "start": 3381.44, + "end": 3383.3, + "probability": 0.0652 + }, + { + "start": 3383.64, + "end": 3384.2, + "probability": 0.5756 + }, + { + "start": 3384.3, + "end": 3386.84, + "probability": 0.5996 + }, + { + "start": 3386.96, + "end": 3387.02, + "probability": 0.7578 + }, + { + "start": 3387.02, + "end": 3387.64, + "probability": 0.0298 + }, + { + "start": 3387.94, + "end": 3388.82, + "probability": 0.6262 + }, + { + "start": 3389.3, + "end": 3390.7, + "probability": 0.073 + }, + { + "start": 3391.44, + "end": 3392.54, + "probability": 0.1407 + }, + { + "start": 3393.38, + "end": 3395.48, + "probability": 0.155 + }, + { + "start": 3395.54, + "end": 3396.64, + "probability": 0.4626 + }, + { + "start": 3397.38, + "end": 3399.06, + "probability": 0.6944 + }, + { + "start": 3399.92, + "end": 3403.52, + "probability": 0.0471 + }, + { + "start": 3405.12, + "end": 3405.42, + "probability": 0.032 + }, + { + "start": 3405.42, + "end": 3405.42, + "probability": 0.0571 + }, + { + "start": 3405.42, + "end": 3405.42, + "probability": 0.0428 + }, + { + "start": 3405.42, + "end": 3405.42, + "probability": 0.076 + }, + { + "start": 3405.42, + "end": 3406.94, + "probability": 0.463 + }, + { + "start": 3408.26, + "end": 3409.56, + "probability": 0.8394 + }, + { + "start": 3409.8, + "end": 3411.78, + "probability": 0.7393 + }, + { + "start": 3413.16, + "end": 3417.27, + "probability": 0.8057 + }, + { + "start": 3418.02, + "end": 3421.8, + "probability": 0.9725 + }, + { + "start": 3422.48, + "end": 3422.64, + "probability": 0.0016 + }, + { + "start": 3437.12, + "end": 3440.62, + "probability": 0.0568 + }, + { + "start": 3440.62, + "end": 3444.3, + "probability": 0.0256 + }, + { + "start": 3444.3, + "end": 3445.3, + "probability": 0.0847 + }, + { + "start": 3445.74, + "end": 3449.44, + "probability": 0.3689 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3566.0, + "probability": 0.0 + }, + { + "start": 3566.0, + "end": 3568.15, + "probability": 0.1515 + }, + { + "start": 3569.6, + "end": 3570.04, + "probability": 0.0524 + }, + { + "start": 3570.24, + "end": 3570.62, + "probability": 0.423 + }, + { + "start": 3570.62, + "end": 3570.62, + "probability": 0.0913 + }, + { + "start": 3570.78, + "end": 3571.54, + "probability": 0.0715 + }, + { + "start": 3575.64, + "end": 3579.04, + "probability": 0.1466 + }, + { + "start": 3588.86, + "end": 3589.48, + "probability": 0.0677 + }, + { + "start": 3589.68, + "end": 3592.36, + "probability": 0.5083 + }, + { + "start": 3594.56, + "end": 3595.8, + "probability": 0.0734 + }, + { + "start": 3596.0, + "end": 3598.78, + "probability": 0.27 + }, + { + "start": 3602.34, + "end": 3604.0, + "probability": 0.0834 + }, + { + "start": 3604.78, + "end": 3608.1, + "probability": 0.1958 + }, + { + "start": 3608.1, + "end": 3608.62, + "probability": 0.0221 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3688.0, + "end": 3688.0, + "probability": 0.0 + }, + { + "start": 3691.74, + "end": 3693.1, + "probability": 0.185 + }, + { + "start": 3693.1, + "end": 3693.1, + "probability": 0.0265 + }, + { + "start": 3693.1, + "end": 3693.1, + "probability": 0.0391 + }, + { + "start": 3693.1, + "end": 3693.1, + "probability": 0.1478 + }, + { + "start": 3693.1, + "end": 3693.1, + "probability": 0.1404 + }, + { + "start": 3693.1, + "end": 3694.39, + "probability": 0.9487 + }, + { + "start": 3695.4, + "end": 3699.54, + "probability": 0.799 + }, + { + "start": 3700.22, + "end": 3703.4, + "probability": 0.9961 + }, + { + "start": 3703.4, + "end": 3709.1, + "probability": 0.9888 + }, + { + "start": 3709.7, + "end": 3710.86, + "probability": 0.9245 + }, + { + "start": 3711.1, + "end": 3712.18, + "probability": 0.9035 + }, + { + "start": 3712.38, + "end": 3714.62, + "probability": 0.9976 + }, + { + "start": 3715.18, + "end": 3718.08, + "probability": 0.856 + }, + { + "start": 3718.3, + "end": 3720.65, + "probability": 0.9499 + }, + { + "start": 3721.22, + "end": 3722.26, + "probability": 0.8031 + }, + { + "start": 3722.52, + "end": 3728.48, + "probability": 0.9678 + }, + { + "start": 3728.56, + "end": 3729.74, + "probability": 0.897 + }, + { + "start": 3730.08, + "end": 3731.12, + "probability": 0.855 + }, + { + "start": 3731.2, + "end": 3731.78, + "probability": 0.936 + }, + { + "start": 3731.82, + "end": 3732.46, + "probability": 0.9799 + }, + { + "start": 3732.5, + "end": 3734.64, + "probability": 0.8988 + }, + { + "start": 3735.78, + "end": 3738.28, + "probability": 0.8496 + }, + { + "start": 3738.38, + "end": 3740.28, + "probability": 0.6624 + }, + { + "start": 3740.74, + "end": 3742.24, + "probability": 0.9388 + }, + { + "start": 3742.28, + "end": 3745.16, + "probability": 0.9541 + }, + { + "start": 3745.16, + "end": 3747.92, + "probability": 0.9921 + }, + { + "start": 3748.04, + "end": 3750.56, + "probability": 0.7276 + }, + { + "start": 3750.7, + "end": 3751.7, + "probability": 0.084 + }, + { + "start": 3751.9, + "end": 3751.9, + "probability": 0.2259 + }, + { + "start": 3751.9, + "end": 3753.48, + "probability": 0.9604 + }, + { + "start": 3753.68, + "end": 3753.68, + "probability": 0.4514 + }, + { + "start": 3753.82, + "end": 3754.86, + "probability": 0.5906 + }, + { + "start": 3754.96, + "end": 3757.22, + "probability": 0.9889 + }, + { + "start": 3757.26, + "end": 3758.6, + "probability": 0.9778 + }, + { + "start": 3758.74, + "end": 3760.4, + "probability": 0.9783 + }, + { + "start": 3760.74, + "end": 3763.42, + "probability": 0.9321 + }, + { + "start": 3763.68, + "end": 3764.69, + "probability": 0.9546 + }, + { + "start": 3764.88, + "end": 3767.72, + "probability": 0.9387 + }, + { + "start": 3768.1, + "end": 3772.28, + "probability": 0.941 + }, + { + "start": 3772.28, + "end": 3775.96, + "probability": 0.9981 + }, + { + "start": 3776.1, + "end": 3778.66, + "probability": 0.8067 + }, + { + "start": 3778.68, + "end": 3781.98, + "probability": 0.9622 + }, + { + "start": 3782.18, + "end": 3783.4, + "probability": 0.6516 + }, + { + "start": 3783.7, + "end": 3784.94, + "probability": 0.8686 + }, + { + "start": 3785.0, + "end": 3788.3, + "probability": 0.9824 + }, + { + "start": 3788.94, + "end": 3792.72, + "probability": 0.9731 + }, + { + "start": 3792.74, + "end": 3795.82, + "probability": 0.9606 + }, + { + "start": 3796.3, + "end": 3797.64, + "probability": 0.7962 + }, + { + "start": 3797.88, + "end": 3801.76, + "probability": 0.9915 + }, + { + "start": 3801.96, + "end": 3803.56, + "probability": 0.6462 + }, + { + "start": 3803.62, + "end": 3804.5, + "probability": 0.3989 + }, + { + "start": 3804.62, + "end": 3805.86, + "probability": 0.9601 + }, + { + "start": 3806.1, + "end": 3808.32, + "probability": 0.9275 + }, + { + "start": 3808.32, + "end": 3810.86, + "probability": 0.7125 + }, + { + "start": 3811.36, + "end": 3814.12, + "probability": 0.994 + }, + { + "start": 3814.12, + "end": 3817.5, + "probability": 0.999 + }, + { + "start": 3818.32, + "end": 3818.96, + "probability": 0.7141 + }, + { + "start": 3819.06, + "end": 3819.94, + "probability": 0.1852 + }, + { + "start": 3820.2, + "end": 3821.38, + "probability": 0.6991 + }, + { + "start": 3821.42, + "end": 3823.06, + "probability": 0.8633 + }, + { + "start": 3823.58, + "end": 3824.82, + "probability": 0.9222 + }, + { + "start": 3825.08, + "end": 3826.44, + "probability": 0.9124 + }, + { + "start": 3826.6, + "end": 3828.02, + "probability": 0.9421 + }, + { + "start": 3828.16, + "end": 3829.28, + "probability": 0.9405 + }, + { + "start": 3829.46, + "end": 3829.9, + "probability": 0.6575 + }, + { + "start": 3829.96, + "end": 3830.92, + "probability": 0.8989 + }, + { + "start": 3831.08, + "end": 3832.22, + "probability": 0.9869 + }, + { + "start": 3832.38, + "end": 3834.52, + "probability": 0.9708 + }, + { + "start": 3834.68, + "end": 3837.94, + "probability": 0.9971 + }, + { + "start": 3838.02, + "end": 3843.52, + "probability": 0.9658 + }, + { + "start": 3843.66, + "end": 3845.0, + "probability": 0.7514 + }, + { + "start": 3845.32, + "end": 3845.9, + "probability": 0.6683 + }, + { + "start": 3845.94, + "end": 3847.62, + "probability": 0.9027 + }, + { + "start": 3847.74, + "end": 3848.78, + "probability": 0.7461 + }, + { + "start": 3849.16, + "end": 3850.7, + "probability": 0.9939 + }, + { + "start": 3850.82, + "end": 3851.18, + "probability": 0.4617 + }, + { + "start": 3851.24, + "end": 3855.18, + "probability": 0.9549 + }, + { + "start": 3855.3, + "end": 3857.22, + "probability": 0.9113 + }, + { + "start": 3857.78, + "end": 3858.62, + "probability": 0.9487 + }, + { + "start": 3858.68, + "end": 3858.86, + "probability": 0.7222 + }, + { + "start": 3859.24, + "end": 3861.0, + "probability": 0.4794 + }, + { + "start": 3861.4, + "end": 3863.82, + "probability": 0.8551 + }, + { + "start": 3863.88, + "end": 3865.52, + "probability": 0.9903 + }, + { + "start": 3866.04, + "end": 3866.88, + "probability": 0.4839 + }, + { + "start": 3867.02, + "end": 3869.28, + "probability": 0.7083 + }, + { + "start": 3869.74, + "end": 3871.38, + "probability": 0.9943 + }, + { + "start": 3871.54, + "end": 3874.75, + "probability": 0.9932 + }, + { + "start": 3875.25, + "end": 3876.27, + "probability": 0.8679 + }, + { + "start": 3876.29, + "end": 3877.11, + "probability": 0.6961 + }, + { + "start": 3877.27, + "end": 3877.71, + "probability": 0.6776 + }, + { + "start": 3877.77, + "end": 3881.67, + "probability": 0.6839 + }, + { + "start": 3881.73, + "end": 3883.31, + "probability": 0.6804 + }, + { + "start": 3883.35, + "end": 3884.03, + "probability": 0.8217 + }, + { + "start": 3884.49, + "end": 3886.59, + "probability": 0.6577 + }, + { + "start": 3886.69, + "end": 3888.47, + "probability": 0.9053 + }, + { + "start": 3888.53, + "end": 3891.15, + "probability": 0.8945 + }, + { + "start": 3891.61, + "end": 3892.05, + "probability": 0.4693 + }, + { + "start": 3892.11, + "end": 3893.37, + "probability": 0.7253 + }, + { + "start": 3893.49, + "end": 3894.0, + "probability": 0.5144 + }, + { + "start": 3894.55, + "end": 3897.35, + "probability": 0.6618 + }, + { + "start": 3897.59, + "end": 3899.52, + "probability": 0.848 + }, + { + "start": 3899.69, + "end": 3902.53, + "probability": 0.9538 + }, + { + "start": 3902.87, + "end": 3905.73, + "probability": 0.818 + }, + { + "start": 3905.85, + "end": 3906.39, + "probability": 0.858 + }, + { + "start": 3906.93, + "end": 3909.49, + "probability": 0.7169 + }, + { + "start": 3909.49, + "end": 3909.61, + "probability": 0.1654 + }, + { + "start": 3909.71, + "end": 3910.01, + "probability": 0.819 + }, + { + "start": 3910.09, + "end": 3913.83, + "probability": 0.8577 + }, + { + "start": 3915.23, + "end": 3919.34, + "probability": 0.7579 + }, + { + "start": 3920.37, + "end": 3921.53, + "probability": 0.4319 + }, + { + "start": 3921.77, + "end": 3924.11, + "probability": 0.8992 + }, + { + "start": 3924.31, + "end": 3925.07, + "probability": 0.6562 + }, + { + "start": 3925.09, + "end": 3925.83, + "probability": 0.2826 + }, + { + "start": 3926.15, + "end": 3926.79, + "probability": 0.5687 + }, + { + "start": 3927.11, + "end": 3927.65, + "probability": 0.6433 + }, + { + "start": 3929.09, + "end": 3931.97, + "probability": 0.1085 + }, + { + "start": 3943.59, + "end": 3947.67, + "probability": 0.0185 + }, + { + "start": 3947.67, + "end": 3955.66, + "probability": 0.0337 + }, + { + "start": 3956.59, + "end": 3957.19, + "probability": 0.0286 + }, + { + "start": 3960.09, + "end": 3961.87, + "probability": 0.09 + }, + { + "start": 3962.77, + "end": 3964.75, + "probability": 0.1135 + }, + { + "start": 3965.77, + "end": 3967.35, + "probability": 0.0257 + }, + { + "start": 3967.35, + "end": 3971.68, + "probability": 0.1152 + }, + { + "start": 3973.62, + "end": 3978.09, + "probability": 0.0951 + }, + { + "start": 3978.11, + "end": 3978.13, + "probability": 0.0426 + }, + { + "start": 3978.61, + "end": 3979.95, + "probability": 0.1147 + }, + { + "start": 3980.73, + "end": 3980.99, + "probability": 0.0831 + }, + { + "start": 3981.61, + "end": 3982.35, + "probability": 0.0586 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4012.0, + "end": 4012.0, + "probability": 0.0 + }, + { + "start": 4014.22, + "end": 4017.46, + "probability": 0.0368 + }, + { + "start": 4020.28, + "end": 4021.68, + "probability": 0.2484 + }, + { + "start": 4022.24, + "end": 4024.3, + "probability": 0.0215 + }, + { + "start": 4024.3, + "end": 4024.3, + "probability": 0.0842 + }, + { + "start": 4024.3, + "end": 4024.82, + "probability": 0.2383 + }, + { + "start": 4025.64, + "end": 4031.2, + "probability": 0.1962 + }, + { + "start": 4031.28, + "end": 4033.28, + "probability": 0.1648 + }, + { + "start": 4033.28, + "end": 4033.28, + "probability": 0.0806 + }, + { + "start": 4033.28, + "end": 4033.78, + "probability": 0.2239 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.0, + "end": 4136.0, + "probability": 0.0 + }, + { + "start": 4136.22, + "end": 4136.42, + "probability": 0.0484 + }, + { + "start": 4136.42, + "end": 4138.67, + "probability": 0.8265 + }, + { + "start": 4139.02, + "end": 4142.7, + "probability": 0.933 + }, + { + "start": 4143.58, + "end": 4144.35, + "probability": 0.9219 + }, + { + "start": 4145.44, + "end": 4147.66, + "probability": 0.8678 + }, + { + "start": 4148.42, + "end": 4152.97, + "probability": 0.6327 + }, + { + "start": 4154.1, + "end": 4158.44, + "probability": 0.9948 + }, + { + "start": 4159.0, + "end": 4160.66, + "probability": 0.8823 + }, + { + "start": 4160.8, + "end": 4162.42, + "probability": 0.747 + }, + { + "start": 4163.24, + "end": 4166.9, + "probability": 0.9511 + }, + { + "start": 4167.02, + "end": 4171.68, + "probability": 0.9067 + }, + { + "start": 4174.04, + "end": 4177.6, + "probability": 0.8467 + }, + { + "start": 4181.82, + "end": 4182.88, + "probability": 0.8965 + }, + { + "start": 4182.88, + "end": 4183.94, + "probability": 0.914 + }, + { + "start": 4185.02, + "end": 4188.56, + "probability": 0.6519 + }, + { + "start": 4189.88, + "end": 4201.44, + "probability": 0.8885 + }, + { + "start": 4201.9, + "end": 4204.7, + "probability": 0.567 + }, + { + "start": 4206.46, + "end": 4212.86, + "probability": 0.9624 + }, + { + "start": 4212.96, + "end": 4214.4, + "probability": 0.9717 + }, + { + "start": 4215.66, + "end": 4216.84, + "probability": 0.5496 + }, + { + "start": 4217.54, + "end": 4218.36, + "probability": 0.854 + }, + { + "start": 4218.4, + "end": 4219.82, + "probability": 0.8754 + }, + { + "start": 4219.88, + "end": 4220.86, + "probability": 0.2336 + }, + { + "start": 4220.98, + "end": 4222.58, + "probability": 0.9432 + }, + { + "start": 4222.66, + "end": 4226.06, + "probability": 0.8972 + }, + { + "start": 4227.1, + "end": 4228.26, + "probability": 0.703 + }, + { + "start": 4229.08, + "end": 4230.16, + "probability": 0.449 + }, + { + "start": 4232.54, + "end": 4238.16, + "probability": 0.9129 + }, + { + "start": 4238.92, + "end": 4240.52, + "probability": 0.8369 + }, + { + "start": 4241.96, + "end": 4248.1, + "probability": 0.8835 + }, + { + "start": 4248.26, + "end": 4248.8, + "probability": 0.9437 + }, + { + "start": 4248.98, + "end": 4249.74, + "probability": 0.5868 + }, + { + "start": 4251.88, + "end": 4255.88, + "probability": 0.9874 + }, + { + "start": 4257.66, + "end": 4262.9, + "probability": 0.9919 + }, + { + "start": 4263.54, + "end": 4267.06, + "probability": 0.5825 + }, + { + "start": 4268.02, + "end": 4273.5, + "probability": 0.9756 + }, + { + "start": 4275.8, + "end": 4282.58, + "probability": 0.8233 + }, + { + "start": 4283.14, + "end": 4284.45, + "probability": 0.7904 + }, + { + "start": 4284.86, + "end": 4289.3, + "probability": 0.8959 + }, + { + "start": 4289.3, + "end": 4294.64, + "probability": 0.8848 + }, + { + "start": 4295.54, + "end": 4298.4, + "probability": 0.7885 + }, + { + "start": 4299.7, + "end": 4300.12, + "probability": 0.9188 + }, + { + "start": 4301.24, + "end": 4301.78, + "probability": 0.8838 + }, + { + "start": 4302.64, + "end": 4303.27, + "probability": 0.7769 + }, + { + "start": 4305.94, + "end": 4307.94, + "probability": 0.9057 + }, + { + "start": 4308.92, + "end": 4309.9, + "probability": 0.3804 + }, + { + "start": 4311.76, + "end": 4313.26, + "probability": 0.9517 + }, + { + "start": 4314.16, + "end": 4318.15, + "probability": 0.7856 + }, + { + "start": 4318.54, + "end": 4320.32, + "probability": 0.986 + }, + { + "start": 4320.36, + "end": 4324.06, + "probability": 0.808 + }, + { + "start": 4325.72, + "end": 4331.94, + "probability": 0.9483 + }, + { + "start": 4333.7, + "end": 4338.24, + "probability": 0.9895 + }, + { + "start": 4340.08, + "end": 4341.88, + "probability": 0.6981 + }, + { + "start": 4342.1, + "end": 4346.06, + "probability": 0.9431 + }, + { + "start": 4346.06, + "end": 4350.76, + "probability": 0.9764 + }, + { + "start": 4352.38, + "end": 4355.18, + "probability": 0.6108 + }, + { + "start": 4355.7, + "end": 4359.08, + "probability": 0.9502 + }, + { + "start": 4361.26, + "end": 4363.26, + "probability": 0.7071 + }, + { + "start": 4363.82, + "end": 4366.38, + "probability": 0.8612 + }, + { + "start": 4366.8, + "end": 4367.12, + "probability": 0.8102 + }, + { + "start": 4367.2, + "end": 4368.43, + "probability": 0.9707 + }, + { + "start": 4369.18, + "end": 4371.44, + "probability": 0.9875 + }, + { + "start": 4371.58, + "end": 4374.98, + "probability": 0.7928 + }, + { + "start": 4375.32, + "end": 4376.6, + "probability": 0.4504 + }, + { + "start": 4376.88, + "end": 4379.42, + "probability": 0.884 + }, + { + "start": 4379.66, + "end": 4380.83, + "probability": 0.5252 + }, + { + "start": 4381.24, + "end": 4382.42, + "probability": 0.6156 + }, + { + "start": 4396.94, + "end": 4398.2, + "probability": 0.2033 + }, + { + "start": 4398.82, + "end": 4405.42, + "probability": 0.0748 + }, + { + "start": 4406.78, + "end": 4406.88, + "probability": 0.0791 + }, + { + "start": 4406.88, + "end": 4406.88, + "probability": 0.0288 + }, + { + "start": 4406.88, + "end": 4408.36, + "probability": 0.2016 + }, + { + "start": 4408.5, + "end": 4411.08, + "probability": 0.5184 + }, + { + "start": 4412.92, + "end": 4412.92, + "probability": 0.0002 + }, + { + "start": 4415.2, + "end": 4419.28, + "probability": 0.0682 + }, + { + "start": 4420.24, + "end": 4425.92, + "probability": 0.0911 + }, + { + "start": 4425.98, + "end": 4427.16, + "probability": 0.1219 + }, + { + "start": 4427.16, + "end": 4428.24, + "probability": 0.0314 + }, + { + "start": 4429.46, + "end": 4429.46, + "probability": 0.104 + }, + { + "start": 4429.46, + "end": 4429.46, + "probability": 0.3868 + }, + { + "start": 4429.46, + "end": 4429.46, + "probability": 0.0435 + }, + { + "start": 4429.46, + "end": 4429.46, + "probability": 0.0564 + }, + { + "start": 4429.46, + "end": 4430.68, + "probability": 0.2183 + }, + { + "start": 4430.68, + "end": 4432.34, + "probability": 0.7358 + }, + { + "start": 4433.44, + "end": 4433.72, + "probability": 0.5734 + }, + { + "start": 4433.8, + "end": 4438.12, + "probability": 0.7734 + }, + { + "start": 4438.26, + "end": 4439.5, + "probability": 0.8025 + }, + { + "start": 4439.58, + "end": 4444.88, + "probability": 0.8968 + }, + { + "start": 4444.92, + "end": 4446.22, + "probability": 0.4542 + }, + { + "start": 4447.04, + "end": 4449.9, + "probability": 0.9219 + }, + { + "start": 4450.4, + "end": 4453.42, + "probability": 0.6495 + }, + { + "start": 4454.02, + "end": 4455.36, + "probability": 0.7839 + }, + { + "start": 4456.56, + "end": 4457.08, + "probability": 0.6176 + }, + { + "start": 4457.2, + "end": 4458.18, + "probability": 0.4527 + }, + { + "start": 4458.82, + "end": 4460.6, + "probability": 0.8626 + }, + { + "start": 4461.54, + "end": 4462.6, + "probability": 0.5071 + }, + { + "start": 4462.66, + "end": 4463.18, + "probability": 0.7341 + }, + { + "start": 4463.26, + "end": 4464.12, + "probability": 0.5393 + }, + { + "start": 4464.14, + "end": 4472.06, + "probability": 0.9754 + }, + { + "start": 4472.06, + "end": 4476.3, + "probability": 0.7993 + }, + { + "start": 4477.24, + "end": 4478.16, + "probability": 0.4179 + }, + { + "start": 4478.24, + "end": 4482.76, + "probability": 0.9542 + }, + { + "start": 4483.14, + "end": 4483.86, + "probability": 0.815 + }, + { + "start": 4483.96, + "end": 4486.88, + "probability": 0.9733 + }, + { + "start": 4487.58, + "end": 4488.87, + "probability": 0.5787 + }, + { + "start": 4489.32, + "end": 4495.18, + "probability": 0.9446 + }, + { + "start": 4495.44, + "end": 4495.89, + "probability": 0.3655 + }, + { + "start": 4496.84, + "end": 4497.84, + "probability": 0.9531 + }, + { + "start": 4498.88, + "end": 4499.74, + "probability": 0.6822 + }, + { + "start": 4500.14, + "end": 4506.34, + "probability": 0.9894 + }, + { + "start": 4506.76, + "end": 4510.28, + "probability": 0.6523 + }, + { + "start": 4510.94, + "end": 4512.98, + "probability": 0.9915 + }, + { + "start": 4513.58, + "end": 4516.57, + "probability": 0.867 + }, + { + "start": 4517.22, + "end": 4518.86, + "probability": 0.4301 + }, + { + "start": 4518.96, + "end": 4521.8, + "probability": 0.8399 + }, + { + "start": 4522.14, + "end": 4524.13, + "probability": 0.8699 + }, + { + "start": 4524.24, + "end": 4525.0, + "probability": 0.6306 + }, + { + "start": 4525.18, + "end": 4525.52, + "probability": 0.7427 + }, + { + "start": 4525.66, + "end": 4527.3, + "probability": 0.4855 + }, + { + "start": 4527.42, + "end": 4528.49, + "probability": 0.6732 + }, + { + "start": 4529.74, + "end": 4535.04, + "probability": 0.9897 + }, + { + "start": 4535.52, + "end": 4536.15, + "probability": 0.9709 + }, + { + "start": 4536.76, + "end": 4542.58, + "probability": 0.8606 + }, + { + "start": 4544.0, + "end": 4546.96, + "probability": 0.7703 + }, + { + "start": 4547.46, + "end": 4548.84, + "probability": 0.8364 + }, + { + "start": 4549.46, + "end": 4553.14, + "probability": 0.7281 + }, + { + "start": 4553.14, + "end": 4557.94, + "probability": 0.9464 + }, + { + "start": 4558.1, + "end": 4563.9, + "probability": 0.8659 + }, + { + "start": 4564.66, + "end": 4567.94, + "probability": 0.7987 + }, + { + "start": 4568.38, + "end": 4571.3, + "probability": 0.9861 + }, + { + "start": 4571.48, + "end": 4571.74, + "probability": 0.7411 + }, + { + "start": 4572.22, + "end": 4574.64, + "probability": 0.6111 + }, + { + "start": 4574.64, + "end": 4579.32, + "probability": 0.8516 + }, + { + "start": 4597.76, + "end": 4600.2, + "probability": 0.6885 + }, + { + "start": 4601.4, + "end": 4605.46, + "probability": 0.9689 + }, + { + "start": 4606.56, + "end": 4608.72, + "probability": 0.7155 + }, + { + "start": 4609.68, + "end": 4613.46, + "probability": 0.9927 + }, + { + "start": 4613.74, + "end": 4617.44, + "probability": 0.9178 + }, + { + "start": 4618.28, + "end": 4619.66, + "probability": 0.9902 + }, + { + "start": 4619.66, + "end": 4622.14, + "probability": 0.9939 + }, + { + "start": 4624.58, + "end": 4626.08, + "probability": 0.9752 + }, + { + "start": 4626.86, + "end": 4628.46, + "probability": 0.7666 + }, + { + "start": 4630.44, + "end": 4632.22, + "probability": 0.7954 + }, + { + "start": 4634.1, + "end": 4638.52, + "probability": 0.9758 + }, + { + "start": 4638.72, + "end": 4638.84, + "probability": 0.184 + }, + { + "start": 4640.46, + "end": 4644.62, + "probability": 0.8013 + }, + { + "start": 4644.62, + "end": 4645.44, + "probability": 0.3799 + }, + { + "start": 4646.38, + "end": 4647.88, + "probability": 0.72 + }, + { + "start": 4648.37, + "end": 4652.08, + "probability": 0.9343 + }, + { + "start": 4653.66, + "end": 4655.76, + "probability": 0.7316 + }, + { + "start": 4656.14, + "end": 4659.76, + "probability": 0.9808 + }, + { + "start": 4660.52, + "end": 4661.84, + "probability": 0.3236 + }, + { + "start": 4661.94, + "end": 4663.7, + "probability": 0.9889 + }, + { + "start": 4663.8, + "end": 4665.5, + "probability": 0.9305 + }, + { + "start": 4665.72, + "end": 4667.58, + "probability": 0.9419 + }, + { + "start": 4667.84, + "end": 4669.0, + "probability": 0.0136 + }, + { + "start": 4669.64, + "end": 4669.78, + "probability": 0.0083 + }, + { + "start": 4669.84, + "end": 4669.84, + "probability": 0.0486 + }, + { + "start": 4669.94, + "end": 4674.25, + "probability": 0.9831 + }, + { + "start": 4674.36, + "end": 4675.72, + "probability": 0.8649 + }, + { + "start": 4675.72, + "end": 4676.32, + "probability": 0.2639 + }, + { + "start": 4676.32, + "end": 4679.0, + "probability": 0.6575 + }, + { + "start": 4679.56, + "end": 4681.75, + "probability": 0.9248 + }, + { + "start": 4681.94, + "end": 4684.08, + "probability": 0.7332 + }, + { + "start": 4684.08, + "end": 4690.94, + "probability": 0.8064 + }, + { + "start": 4690.98, + "end": 4691.7, + "probability": 0.6287 + }, + { + "start": 4691.7, + "end": 4692.9, + "probability": 0.6159 + }, + { + "start": 4693.0, + "end": 4698.54, + "probability": 0.9963 + }, + { + "start": 4699.12, + "end": 4700.66, + "probability": 0.9432 + }, + { + "start": 4700.98, + "end": 4703.46, + "probability": 0.8437 + }, + { + "start": 4703.54, + "end": 4708.68, + "probability": 0.9977 + }, + { + "start": 4708.78, + "end": 4711.26, + "probability": 0.71 + }, + { + "start": 4711.48, + "end": 4712.74, + "probability": 0.4324 + }, + { + "start": 4712.74, + "end": 4714.92, + "probability": 0.6253 + }, + { + "start": 4715.24, + "end": 4717.58, + "probability": 0.944 + }, + { + "start": 4718.12, + "end": 4720.32, + "probability": 0.8163 + }, + { + "start": 4721.2, + "end": 4724.16, + "probability": 0.8009 + }, + { + "start": 4724.88, + "end": 4725.22, + "probability": 0.0184 + }, + { + "start": 4725.22, + "end": 4727.18, + "probability": 0.8615 + }, + { + "start": 4727.2, + "end": 4728.54, + "probability": 0.9248 + }, + { + "start": 4729.08, + "end": 4731.73, + "probability": 0.7331 + }, + { + "start": 4732.86, + "end": 4732.86, + "probability": 0.0771 + }, + { + "start": 4732.86, + "end": 4735.11, + "probability": 0.9619 + }, + { + "start": 4735.2, + "end": 4736.82, + "probability": 0.9509 + }, + { + "start": 4737.1, + "end": 4740.1, + "probability": 0.967 + }, + { + "start": 4741.24, + "end": 4741.84, + "probability": 0.3801 + }, + { + "start": 4741.96, + "end": 4744.26, + "probability": 0.5959 + }, + { + "start": 4747.38, + "end": 4750.06, + "probability": 0.8549 + }, + { + "start": 4751.58, + "end": 4754.36, + "probability": 0.8145 + }, + { + "start": 4755.24, + "end": 4757.72, + "probability": 0.9825 + }, + { + "start": 4757.82, + "end": 4761.03, + "probability": 0.9801 + }, + { + "start": 4761.32, + "end": 4763.44, + "probability": 0.9615 + }, + { + "start": 4763.58, + "end": 4763.58, + "probability": 0.0476 + }, + { + "start": 4763.58, + "end": 4763.58, + "probability": 0.4866 + }, + { + "start": 4763.58, + "end": 4764.82, + "probability": 0.591 + }, + { + "start": 4765.0, + "end": 4766.22, + "probability": 0.9985 + }, + { + "start": 4767.86, + "end": 4774.44, + "probability": 0.9894 + }, + { + "start": 4774.46, + "end": 4775.1, + "probability": 0.0619 + }, + { + "start": 4775.18, + "end": 4775.44, + "probability": 0.104 + }, + { + "start": 4775.44, + "end": 4778.44, + "probability": 0.9941 + }, + { + "start": 4778.96, + "end": 4784.64, + "probability": 0.994 + }, + { + "start": 4784.78, + "end": 4789.62, + "probability": 0.9232 + }, + { + "start": 4790.16, + "end": 4792.18, + "probability": 0.8807 + }, + { + "start": 4792.28, + "end": 4794.14, + "probability": 0.8441 + }, + { + "start": 4794.44, + "end": 4797.6, + "probability": 0.9988 + }, + { + "start": 4800.28, + "end": 4800.52, + "probability": 0.0283 + }, + { + "start": 4800.52, + "end": 4800.72, + "probability": 0.2436 + }, + { + "start": 4800.72, + "end": 4800.96, + "probability": 0.2921 + }, + { + "start": 4801.22, + "end": 4803.76, + "probability": 0.6359 + }, + { + "start": 4803.94, + "end": 4804.29, + "probability": 0.3496 + }, + { + "start": 4804.8, + "end": 4808.1, + "probability": 0.8162 + }, + { + "start": 4808.24, + "end": 4811.17, + "probability": 0.3838 + }, + { + "start": 4811.6, + "end": 4812.12, + "probability": 0.9399 + }, + { + "start": 4812.94, + "end": 4813.98, + "probability": 0.0168 + }, + { + "start": 4816.44, + "end": 4818.46, + "probability": 0.5126 + }, + { + "start": 4818.52, + "end": 4819.92, + "probability": 0.5889 + }, + { + "start": 4820.04, + "end": 4822.22, + "probability": 0.9797 + }, + { + "start": 4822.32, + "end": 4823.88, + "probability": 0.4839 + }, + { + "start": 4824.18, + "end": 4824.18, + "probability": 0.7951 + }, + { + "start": 4824.18, + "end": 4831.96, + "probability": 0.9524 + }, + { + "start": 4833.54, + "end": 4836.26, + "probability": 0.965 + }, + { + "start": 4836.26, + "end": 4840.06, + "probability": 0.9966 + }, + { + "start": 4840.12, + "end": 4846.52, + "probability": 0.9968 + }, + { + "start": 4847.04, + "end": 4849.46, + "probability": 0.9927 + }, + { + "start": 4850.04, + "end": 4851.19, + "probability": 0.6633 + }, + { + "start": 4852.56, + "end": 4858.02, + "probability": 0.9854 + }, + { + "start": 4858.96, + "end": 4863.99, + "probability": 0.9954 + }, + { + "start": 4864.72, + "end": 4868.12, + "probability": 0.8617 + }, + { + "start": 4868.56, + "end": 4872.0, + "probability": 0.9854 + }, + { + "start": 4872.48, + "end": 4873.34, + "probability": 0.8186 + }, + { + "start": 4874.1, + "end": 4874.1, + "probability": 0.001 + }, + { + "start": 4874.1, + "end": 4876.26, + "probability": 0.95 + }, + { + "start": 4876.76, + "end": 4882.36, + "probability": 0.9447 + }, + { + "start": 4882.86, + "end": 4885.24, + "probability": 0.9076 + }, + { + "start": 4885.32, + "end": 4886.46, + "probability": 0.7103 + }, + { + "start": 4886.46, + "end": 4889.32, + "probability": 0.3612 + }, + { + "start": 4889.78, + "end": 4891.88, + "probability": 0.9769 + }, + { + "start": 4893.18, + "end": 4896.17, + "probability": 0.8899 + }, + { + "start": 4896.5, + "end": 4897.6, + "probability": 0.999 + }, + { + "start": 4898.48, + "end": 4900.64, + "probability": 0.5864 + }, + { + "start": 4901.54, + "end": 4903.82, + "probability": 0.8465 + }, + { + "start": 4904.3, + "end": 4908.1, + "probability": 0.7861 + }, + { + "start": 4908.54, + "end": 4908.54, + "probability": 0.5363 + }, + { + "start": 4908.92, + "end": 4914.1, + "probability": 0.939 + }, + { + "start": 4915.0, + "end": 4919.82, + "probability": 0.7865 + }, + { + "start": 4920.46, + "end": 4921.5, + "probability": 0.9094 + }, + { + "start": 4921.64, + "end": 4923.46, + "probability": 0.8405 + }, + { + "start": 4923.58, + "end": 4930.78, + "probability": 0.9656 + }, + { + "start": 4930.92, + "end": 4930.92, + "probability": 0.1507 + }, + { + "start": 4930.92, + "end": 4932.96, + "probability": 0.4801 + }, + { + "start": 4933.32, + "end": 4933.78, + "probability": 0.3178 + }, + { + "start": 4933.8, + "end": 4935.84, + "probability": 0.6532 + }, + { + "start": 4936.08, + "end": 4938.74, + "probability": 0.7476 + }, + { + "start": 4939.24, + "end": 4941.62, + "probability": 0.8642 + }, + { + "start": 4942.92, + "end": 4949.02, + "probability": 0.9865 + }, + { + "start": 4949.98, + "end": 4952.42, + "probability": 0.9746 + }, + { + "start": 4953.36, + "end": 4957.62, + "probability": 0.9921 + }, + { + "start": 4957.62, + "end": 4963.7, + "probability": 0.9554 + }, + { + "start": 4965.68, + "end": 4966.18, + "probability": 0.3957 + }, + { + "start": 4967.78, + "end": 4974.0, + "probability": 0.7989 + }, + { + "start": 4974.74, + "end": 4978.88, + "probability": 0.9871 + }, + { + "start": 4978.88, + "end": 4983.04, + "probability": 0.9762 + }, + { + "start": 4983.14, + "end": 4984.76, + "probability": 0.8712 + }, + { + "start": 4986.22, + "end": 4990.38, + "probability": 0.9963 + }, + { + "start": 4990.38, + "end": 4996.06, + "probability": 0.999 + }, + { + "start": 4996.06, + "end": 5000.92, + "probability": 0.9913 + }, + { + "start": 5002.54, + "end": 5007.0, + "probability": 0.9587 + }, + { + "start": 5007.0, + "end": 5011.32, + "probability": 0.9976 + }, + { + "start": 5012.08, + "end": 5012.68, + "probability": 0.5307 + }, + { + "start": 5012.98, + "end": 5015.5, + "probability": 0.7404 + }, + { + "start": 5015.68, + "end": 5018.02, + "probability": 0.7111 + }, + { + "start": 5018.68, + "end": 5021.88, + "probability": 0.9265 + }, + { + "start": 5022.62, + "end": 5023.44, + "probability": 0.9933 + }, + { + "start": 5025.4, + "end": 5027.92, + "probability": 0.9575 + }, + { + "start": 5028.82, + "end": 5032.64, + "probability": 0.991 + }, + { + "start": 5033.46, + "end": 5040.06, + "probability": 0.9935 + }, + { + "start": 5040.18, + "end": 5043.2, + "probability": 0.9976 + }, + { + "start": 5043.28, + "end": 5045.66, + "probability": 0.8334 + }, + { + "start": 5045.85, + "end": 5046.1, + "probability": 0.425 + }, + { + "start": 5046.24, + "end": 5046.82, + "probability": 0.8656 + }, + { + "start": 5046.86, + "end": 5048.72, + "probability": 0.7986 + }, + { + "start": 5049.2, + "end": 5053.14, + "probability": 0.9871 + }, + { + "start": 5053.22, + "end": 5054.52, + "probability": 0.6995 + }, + { + "start": 5055.08, + "end": 5056.8, + "probability": 0.895 + }, + { + "start": 5057.06, + "end": 5059.8, + "probability": 0.9762 + }, + { + "start": 5060.14, + "end": 5061.14, + "probability": 0.1505 + }, + { + "start": 5061.14, + "end": 5063.38, + "probability": 0.7806 + }, + { + "start": 5063.54, + "end": 5064.46, + "probability": 0.7897 + }, + { + "start": 5064.6, + "end": 5067.2, + "probability": 0.7912 + }, + { + "start": 5067.88, + "end": 5070.68, + "probability": 0.9479 + }, + { + "start": 5070.76, + "end": 5072.54, + "probability": 0.9153 + }, + { + "start": 5073.2, + "end": 5076.46, + "probability": 0.9565 + }, + { + "start": 5076.54, + "end": 5078.8, + "probability": 0.4462 + }, + { + "start": 5078.82, + "end": 5079.32, + "probability": 0.7029 + }, + { + "start": 5079.42, + "end": 5080.42, + "probability": 0.8022 + }, + { + "start": 5080.44, + "end": 5081.16, + "probability": 0.6946 + }, + { + "start": 5081.54, + "end": 5082.38, + "probability": 0.7428 + }, + { + "start": 5096.14, + "end": 5101.44, + "probability": 0.0896 + }, + { + "start": 5103.04, + "end": 5104.86, + "probability": 0.0059 + }, + { + "start": 5104.86, + "end": 5108.06, + "probability": 0.0483 + }, + { + "start": 5115.62, + "end": 5116.82, + "probability": 0.0653 + }, + { + "start": 5120.38, + "end": 5122.58, + "probability": 0.0698 + }, + { + "start": 5126.22, + "end": 5130.12, + "probability": 0.5157 + }, + { + "start": 5132.54, + "end": 5132.76, + "probability": 0.0 + }, + { + "start": 5137.11, + "end": 5138.16, + "probability": 0.0734 + }, + { + "start": 5138.16, + "end": 5138.51, + "probability": 0.0124 + }, + { + "start": 5141.02, + "end": 5143.34, + "probability": 0.0342 + }, + { + "start": 5143.34, + "end": 5147.2, + "probability": 0.0352 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.0, + "end": 5166.0, + "probability": 0.0 + }, + { + "start": 5166.88, + "end": 5169.36, + "probability": 0.9696 + }, + { + "start": 5170.96, + "end": 5172.36, + "probability": 0.9338 + }, + { + "start": 5172.56, + "end": 5175.83, + "probability": 0.8486 + }, + { + "start": 5176.14, + "end": 5183.84, + "probability": 0.8364 + }, + { + "start": 5183.84, + "end": 5191.8, + "probability": 0.9946 + }, + { + "start": 5194.8, + "end": 5200.66, + "probability": 0.9857 + }, + { + "start": 5200.66, + "end": 5206.9, + "probability": 0.9852 + }, + { + "start": 5208.34, + "end": 5212.88, + "probability": 0.9644 + }, + { + "start": 5213.76, + "end": 5218.04, + "probability": 0.9302 + }, + { + "start": 5220.04, + "end": 5222.08, + "probability": 0.8284 + }, + { + "start": 5222.56, + "end": 5224.68, + "probability": 0.9709 + }, + { + "start": 5225.12, + "end": 5228.92, + "probability": 0.9468 + }, + { + "start": 5229.6, + "end": 5237.14, + "probability": 0.9924 + }, + { + "start": 5237.94, + "end": 5238.54, + "probability": 0.7901 + }, + { + "start": 5238.74, + "end": 5241.38, + "probability": 0.7598 + }, + { + "start": 5241.86, + "end": 5244.84, + "probability": 0.9709 + }, + { + "start": 5245.0, + "end": 5246.06, + "probability": 0.9579 + }, + { + "start": 5250.6, + "end": 5254.1, + "probability": 0.7306 + }, + { + "start": 5255.24, + "end": 5259.32, + "probability": 0.994 + }, + { + "start": 5259.32, + "end": 5263.7, + "probability": 0.9784 + }, + { + "start": 5264.62, + "end": 5267.94, + "probability": 0.9642 + }, + { + "start": 5267.94, + "end": 5271.98, + "probability": 0.9978 + }, + { + "start": 5272.62, + "end": 5275.94, + "probability": 0.9982 + }, + { + "start": 5275.94, + "end": 5280.88, + "probability": 0.6928 + }, + { + "start": 5281.46, + "end": 5285.3, + "probability": 0.9885 + }, + { + "start": 5285.74, + "end": 5287.2, + "probability": 0.6883 + }, + { + "start": 5287.28, + "end": 5287.86, + "probability": 0.8239 + }, + { + "start": 5288.4, + "end": 5290.08, + "probability": 0.9162 + }, + { + "start": 5291.18, + "end": 5294.58, + "probability": 0.9742 + }, + { + "start": 5295.34, + "end": 5298.26, + "probability": 0.9531 + }, + { + "start": 5299.3, + "end": 5303.62, + "probability": 0.9608 + }, + { + "start": 5303.92, + "end": 5304.48, + "probability": 0.4201 + }, + { + "start": 5305.22, + "end": 5308.1, + "probability": 0.9614 + }, + { + "start": 5308.6, + "end": 5311.08, + "probability": 0.9833 + }, + { + "start": 5311.26, + "end": 5311.48, + "probability": 0.2613 + }, + { + "start": 5312.14, + "end": 5315.54, + "probability": 0.9974 + }, + { + "start": 5315.62, + "end": 5320.06, + "probability": 0.9753 + }, + { + "start": 5320.48, + "end": 5323.94, + "probability": 0.8262 + }, + { + "start": 5325.06, + "end": 5326.26, + "probability": 0.8388 + }, + { + "start": 5326.4, + "end": 5327.3, + "probability": 0.9647 + }, + { + "start": 5327.36, + "end": 5328.02, + "probability": 0.9819 + }, + { + "start": 5328.1, + "end": 5329.08, + "probability": 0.9938 + }, + { + "start": 5329.16, + "end": 5330.12, + "probability": 0.8855 + }, + { + "start": 5330.64, + "end": 5333.66, + "probability": 0.6936 + }, + { + "start": 5334.5, + "end": 5339.36, + "probability": 0.9779 + }, + { + "start": 5339.36, + "end": 5344.34, + "probability": 0.9661 + }, + { + "start": 5344.76, + "end": 5345.02, + "probability": 0.7246 + }, + { + "start": 5345.98, + "end": 5349.44, + "probability": 0.9966 + }, + { + "start": 5349.44, + "end": 5352.86, + "probability": 0.9761 + }, + { + "start": 5352.92, + "end": 5353.92, + "probability": 0.8807 + }, + { + "start": 5354.08, + "end": 5354.58, + "probability": 0.9567 + }, + { + "start": 5354.66, + "end": 5355.82, + "probability": 0.8918 + }, + { + "start": 5356.96, + "end": 5363.5, + "probability": 0.9784 + }, + { + "start": 5363.84, + "end": 5364.82, + "probability": 0.8837 + }, + { + "start": 5365.34, + "end": 5366.02, + "probability": 0.975 + }, + { + "start": 5366.18, + "end": 5371.9, + "probability": 0.9707 + }, + { + "start": 5372.5, + "end": 5378.62, + "probability": 0.9699 + }, + { + "start": 5378.74, + "end": 5380.2, + "probability": 0.9183 + }, + { + "start": 5381.16, + "end": 5384.02, + "probability": 0.7842 + }, + { + "start": 5384.16, + "end": 5390.3, + "probability": 0.9841 + }, + { + "start": 5390.3, + "end": 5391.36, + "probability": 0.6446 + }, + { + "start": 5391.54, + "end": 5392.04, + "probability": 0.6961 + }, + { + "start": 5392.42, + "end": 5395.68, + "probability": 0.9746 + }, + { + "start": 5395.74, + "end": 5396.64, + "probability": 0.575 + }, + { + "start": 5396.8, + "end": 5400.76, + "probability": 0.9753 + }, + { + "start": 5401.46, + "end": 5404.78, + "probability": 0.8324 + }, + { + "start": 5412.28, + "end": 5415.04, + "probability": 0.363 + }, + { + "start": 5415.04, + "end": 5415.4, + "probability": 0.3715 + }, + { + "start": 5415.4, + "end": 5415.82, + "probability": 0.6745 + }, + { + "start": 5415.92, + "end": 5418.92, + "probability": 0.9181 + }, + { + "start": 5419.14, + "end": 5423.44, + "probability": 0.9565 + }, + { + "start": 5423.6, + "end": 5425.18, + "probability": 0.9574 + }, + { + "start": 5425.52, + "end": 5430.46, + "probability": 0.9883 + }, + { + "start": 5430.58, + "end": 5433.02, + "probability": 0.994 + }, + { + "start": 5433.04, + "end": 5433.92, + "probability": 0.6437 + }, + { + "start": 5434.5, + "end": 5435.86, + "probability": 0.5324 + }, + { + "start": 5435.96, + "end": 5438.28, + "probability": 0.9648 + }, + { + "start": 5438.44, + "end": 5440.68, + "probability": 0.9122 + }, + { + "start": 5440.88, + "end": 5441.96, + "probability": 0.7963 + }, + { + "start": 5441.98, + "end": 5443.46, + "probability": 0.5644 + }, + { + "start": 5443.62, + "end": 5444.04, + "probability": 0.3666 + }, + { + "start": 5444.06, + "end": 5445.3, + "probability": 0.9157 + }, + { + "start": 5445.36, + "end": 5447.98, + "probability": 0.8556 + }, + { + "start": 5449.12, + "end": 5450.04, + "probability": 0.2121 + }, + { + "start": 5450.1, + "end": 5450.24, + "probability": 0.27 + }, + { + "start": 5450.32, + "end": 5450.78, + "probability": 0.6412 + }, + { + "start": 5450.86, + "end": 5452.06, + "probability": 0.9905 + }, + { + "start": 5453.0, + "end": 5456.58, + "probability": 0.4694 + }, + { + "start": 5456.58, + "end": 5456.66, + "probability": 0.4917 + }, + { + "start": 5456.76, + "end": 5457.94, + "probability": 0.9758 + }, + { + "start": 5458.02, + "end": 5459.1, + "probability": 0.7195 + }, + { + "start": 5459.18, + "end": 5459.98, + "probability": 0.6278 + }, + { + "start": 5460.37, + "end": 5467.32, + "probability": 0.9618 + }, + { + "start": 5467.46, + "end": 5470.34, + "probability": 0.9434 + }, + { + "start": 5470.96, + "end": 5471.62, + "probability": 0.8996 + }, + { + "start": 5472.1, + "end": 5473.68, + "probability": 0.763 + }, + { + "start": 5473.74, + "end": 5476.9, + "probability": 0.8887 + }, + { + "start": 5477.3, + "end": 5479.0, + "probability": 0.9963 + }, + { + "start": 5479.28, + "end": 5483.06, + "probability": 0.8486 + }, + { + "start": 5483.1, + "end": 5483.28, + "probability": 0.6308 + }, + { + "start": 5483.32, + "end": 5483.62, + "probability": 0.6241 + }, + { + "start": 5483.7, + "end": 5484.96, + "probability": 0.6855 + }, + { + "start": 5485.26, + "end": 5488.0, + "probability": 0.9317 + }, + { + "start": 5488.94, + "end": 5491.18, + "probability": 0.4406 + }, + { + "start": 5491.34, + "end": 5491.58, + "probability": 0.6868 + }, + { + "start": 5491.6, + "end": 5491.72, + "probability": 0.6451 + }, + { + "start": 5491.72, + "end": 5495.68, + "probability": 0.8239 + }, + { + "start": 5496.14, + "end": 5496.78, + "probability": 0.2947 + }, + { + "start": 5496.88, + "end": 5498.34, + "probability": 0.9407 + }, + { + "start": 5498.42, + "end": 5498.44, + "probability": 0.2027 + }, + { + "start": 5498.44, + "end": 5499.46, + "probability": 0.4368 + }, + { + "start": 5499.68, + "end": 5500.88, + "probability": 0.6755 + }, + { + "start": 5500.9, + "end": 5501.54, + "probability": 0.8984 + }, + { + "start": 5502.12, + "end": 5503.78, + "probability": 0.822 + }, + { + "start": 5503.8, + "end": 5504.4, + "probability": 0.9048 + }, + { + "start": 5505.32, + "end": 5508.98, + "probability": 0.8388 + }, + { + "start": 5509.06, + "end": 5509.64, + "probability": 0.663 + }, + { + "start": 5509.66, + "end": 5512.29, + "probability": 0.963 + }, + { + "start": 5512.4, + "end": 5514.2, + "probability": 0.8474 + }, + { + "start": 5514.76, + "end": 5516.61, + "probability": 0.9683 + }, + { + "start": 5516.72, + "end": 5520.62, + "probability": 0.9721 + }, + { + "start": 5520.68, + "end": 5521.64, + "probability": 0.8174 + }, + { + "start": 5522.02, + "end": 5523.86, + "probability": 0.8657 + }, + { + "start": 5523.92, + "end": 5529.42, + "probability": 0.9908 + }, + { + "start": 5529.86, + "end": 5531.68, + "probability": 0.9961 + }, + { + "start": 5531.86, + "end": 5534.96, + "probability": 0.8727 + }, + { + "start": 5534.96, + "end": 5535.78, + "probability": 0.6251 + }, + { + "start": 5536.26, + "end": 5538.1, + "probability": 0.9915 + }, + { + "start": 5538.58, + "end": 5541.24, + "probability": 0.969 + }, + { + "start": 5541.7, + "end": 5542.54, + "probability": 0.8622 + }, + { + "start": 5542.64, + "end": 5543.75, + "probability": 0.9849 + }, + { + "start": 5544.36, + "end": 5546.84, + "probability": 0.9596 + }, + { + "start": 5547.16, + "end": 5548.6, + "probability": 0.8584 + }, + { + "start": 5548.74, + "end": 5552.55, + "probability": 0.9696 + }, + { + "start": 5553.1, + "end": 5554.76, + "probability": 0.9983 + }, + { + "start": 5555.54, + "end": 5556.24, + "probability": 0.6202 + }, + { + "start": 5556.34, + "end": 5558.14, + "probability": 0.9988 + }, + { + "start": 5558.14, + "end": 5561.16, + "probability": 0.9956 + }, + { + "start": 5561.54, + "end": 5564.44, + "probability": 0.5954 + }, + { + "start": 5564.6, + "end": 5565.96, + "probability": 0.903 + }, + { + "start": 5566.14, + "end": 5570.98, + "probability": 0.9252 + }, + { + "start": 5571.28, + "end": 5572.62, + "probability": 0.7588 + }, + { + "start": 5573.06, + "end": 5574.8, + "probability": 0.9326 + }, + { + "start": 5574.96, + "end": 5575.54, + "probability": 0.7459 + }, + { + "start": 5575.68, + "end": 5578.34, + "probability": 0.9692 + }, + { + "start": 5578.82, + "end": 5582.68, + "probability": 0.8535 + }, + { + "start": 5582.86, + "end": 5584.2, + "probability": 0.9573 + }, + { + "start": 5584.34, + "end": 5586.31, + "probability": 0.9863 + }, + { + "start": 5586.9, + "end": 5589.38, + "probability": 0.9516 + }, + { + "start": 5589.98, + "end": 5593.72, + "probability": 0.7498 + }, + { + "start": 5594.06, + "end": 5594.92, + "probability": 0.7816 + }, + { + "start": 5595.22, + "end": 5596.06, + "probability": 0.9005 + }, + { + "start": 5596.5, + "end": 5599.76, + "probability": 0.9868 + }, + { + "start": 5599.86, + "end": 5604.21, + "probability": 0.9262 + }, + { + "start": 5605.78, + "end": 5609.08, + "probability": 0.9626 + }, + { + "start": 5609.42, + "end": 5609.42, + "probability": 0.1414 + }, + { + "start": 5609.42, + "end": 5609.9, + "probability": 0.6543 + }, + { + "start": 5610.14, + "end": 5616.06, + "probability": 0.9541 + }, + { + "start": 5616.2, + "end": 5620.54, + "probability": 0.9093 + }, + { + "start": 5620.54, + "end": 5624.08, + "probability": 0.9805 + }, + { + "start": 5624.32, + "end": 5625.68, + "probability": 0.4469 + }, + { + "start": 5626.66, + "end": 5630.62, + "probability": 0.9663 + }, + { + "start": 5630.72, + "end": 5632.36, + "probability": 0.5737 + }, + { + "start": 5632.36, + "end": 5633.0, + "probability": 0.7423 + }, + { + "start": 5633.32, + "end": 5634.28, + "probability": 0.5469 + }, + { + "start": 5655.6, + "end": 5659.44, + "probability": 0.1374 + }, + { + "start": 5659.44, + "end": 5661.06, + "probability": 0.0364 + }, + { + "start": 5661.06, + "end": 5662.12, + "probability": 0.0295 + }, + { + "start": 5668.76, + "end": 5669.04, + "probability": 0.0008 + }, + { + "start": 5669.1, + "end": 5672.78, + "probability": 0.3297 + }, + { + "start": 5673.28, + "end": 5675.24, + "probability": 0.1361 + }, + { + "start": 5675.68, + "end": 5677.16, + "probability": 0.1181 + }, + { + "start": 5678.48, + "end": 5682.22, + "probability": 0.0427 + }, + { + "start": 5706.72, + "end": 5708.9, + "probability": 0.0333 + }, + { + "start": 5710.49, + "end": 5712.44, + "probability": 0.0629 + }, + { + "start": 5713.18, + "end": 5714.88, + "probability": 0.1112 + }, + { + "start": 5714.88, + "end": 5714.92, + "probability": 0.0754 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.0, + "end": 5715.0, + "probability": 0.0 + }, + { + "start": 5715.26, + "end": 5718.68, + "probability": 0.1833 + }, + { + "start": 5718.76, + "end": 5720.95, + "probability": 0.9958 + }, + { + "start": 5721.8, + "end": 5723.64, + "probability": 0.8144 + }, + { + "start": 5724.64, + "end": 5728.32, + "probability": 0.9754 + }, + { + "start": 5729.04, + "end": 5730.34, + "probability": 0.9918 + }, + { + "start": 5732.1, + "end": 5732.92, + "probability": 0.6879 + }, + { + "start": 5733.44, + "end": 5734.46, + "probability": 0.8818 + }, + { + "start": 5735.95, + "end": 5738.28, + "probability": 0.9675 + }, + { + "start": 5738.98, + "end": 5740.54, + "probability": 0.994 + }, + { + "start": 5741.62, + "end": 5745.78, + "probability": 0.9158 + }, + { + "start": 5745.82, + "end": 5749.88, + "probability": 0.979 + }, + { + "start": 5749.9, + "end": 5758.96, + "probability": 0.9846 + }, + { + "start": 5759.58, + "end": 5762.98, + "probability": 0.9346 + }, + { + "start": 5763.28, + "end": 5770.64, + "probability": 0.9981 + }, + { + "start": 5771.04, + "end": 5773.38, + "probability": 0.9666 + }, + { + "start": 5774.16, + "end": 5778.5, + "probability": 0.7517 + }, + { + "start": 5779.6, + "end": 5788.06, + "probability": 0.9883 + }, + { + "start": 5788.42, + "end": 5796.02, + "probability": 0.9942 + }, + { + "start": 5797.04, + "end": 5798.82, + "probability": 0.9874 + }, + { + "start": 5799.74, + "end": 5801.38, + "probability": 0.9686 + }, + { + "start": 5801.9, + "end": 5806.0, + "probability": 0.9783 + }, + { + "start": 5806.08, + "end": 5806.48, + "probability": 0.8346 + }, + { + "start": 5806.52, + "end": 5807.18, + "probability": 0.6266 + }, + { + "start": 5807.38, + "end": 5808.14, + "probability": 0.5953 + }, + { + "start": 5809.04, + "end": 5810.22, + "probability": 0.9985 + }, + { + "start": 5810.96, + "end": 5812.22, + "probability": 0.9891 + }, + { + "start": 5812.64, + "end": 5817.12, + "probability": 0.9917 + }, + { + "start": 5817.72, + "end": 5820.06, + "probability": 0.9299 + }, + { + "start": 5820.44, + "end": 5823.66, + "probability": 0.9945 + }, + { + "start": 5823.78, + "end": 5826.34, + "probability": 0.8428 + }, + { + "start": 5827.0, + "end": 5828.46, + "probability": 0.7272 + }, + { + "start": 5828.64, + "end": 5829.08, + "probability": 0.0599 + }, + { + "start": 5829.08, + "end": 5831.3, + "probability": 0.6734 + }, + { + "start": 5832.18, + "end": 5833.1, + "probability": 0.6546 + }, + { + "start": 5833.82, + "end": 5833.84, + "probability": 0.4293 + }, + { + "start": 5833.98, + "end": 5840.26, + "probability": 0.9888 + }, + { + "start": 5841.14, + "end": 5841.48, + "probability": 0.3589 + }, + { + "start": 5841.48, + "end": 5844.36, + "probability": 0.9862 + }, + { + "start": 5844.48, + "end": 5848.2, + "probability": 0.7418 + }, + { + "start": 5848.92, + "end": 5851.44, + "probability": 0.8177 + }, + { + "start": 5852.52, + "end": 5857.78, + "probability": 0.9803 + }, + { + "start": 5858.04, + "end": 5861.56, + "probability": 0.9986 + }, + { + "start": 5862.36, + "end": 5865.15, + "probability": 0.8517 + }, + { + "start": 5865.86, + "end": 5868.14, + "probability": 0.9263 + }, + { + "start": 5868.3, + "end": 5868.74, + "probability": 0.8619 + }, + { + "start": 5870.02, + "end": 5871.04, + "probability": 0.9414 + }, + { + "start": 5871.04, + "end": 5875.36, + "probability": 0.9961 + }, + { + "start": 5875.68, + "end": 5876.24, + "probability": 0.6622 + }, + { + "start": 5876.34, + "end": 5876.7, + "probability": 0.7649 + }, + { + "start": 5877.56, + "end": 5879.02, + "probability": 0.9327 + }, + { + "start": 5879.8, + "end": 5880.16, + "probability": 0.462 + }, + { + "start": 5881.38, + "end": 5884.8, + "probability": 0.9757 + }, + { + "start": 5884.88, + "end": 5885.7, + "probability": 0.9863 + }, + { + "start": 5885.8, + "end": 5887.34, + "probability": 0.9954 + }, + { + "start": 5887.34, + "end": 5891.82, + "probability": 0.9745 + }, + { + "start": 5893.06, + "end": 5896.18, + "probability": 0.9662 + }, + { + "start": 5898.08, + "end": 5905.72, + "probability": 0.8903 + }, + { + "start": 5907.6, + "end": 5914.04, + "probability": 0.8659 + }, + { + "start": 5914.1, + "end": 5915.32, + "probability": 0.9761 + }, + { + "start": 5916.7, + "end": 5920.8, + "probability": 0.7138 + }, + { + "start": 5922.86, + "end": 5925.48, + "probability": 0.9116 + }, + { + "start": 5926.98, + "end": 5933.0, + "probability": 0.9821 + }, + { + "start": 5934.0, + "end": 5937.94, + "probability": 0.9672 + }, + { + "start": 5938.62, + "end": 5939.92, + "probability": 0.7426 + }, + { + "start": 5940.14, + "end": 5942.38, + "probability": 0.9287 + }, + { + "start": 5944.74, + "end": 5945.16, + "probability": 0.7939 + }, + { + "start": 5946.38, + "end": 5948.44, + "probability": 0.8932 + }, + { + "start": 5949.34, + "end": 5950.82, + "probability": 0.9501 + }, + { + "start": 5954.12, + "end": 5954.8, + "probability": 0.5283 + }, + { + "start": 5955.2, + "end": 5956.06, + "probability": 0.8479 + }, + { + "start": 5956.14, + "end": 5957.88, + "probability": 0.9296 + }, + { + "start": 5958.78, + "end": 5959.9, + "probability": 0.9666 + }, + { + "start": 5960.38, + "end": 5965.92, + "probability": 0.9743 + }, + { + "start": 5966.74, + "end": 5969.9, + "probability": 0.9048 + }, + { + "start": 5970.58, + "end": 5973.52, + "probability": 0.7019 + }, + { + "start": 5974.86, + "end": 5979.64, + "probability": 0.9072 + }, + { + "start": 5980.22, + "end": 5980.9, + "probability": 0.6157 + }, + { + "start": 5981.78, + "end": 5981.78, + "probability": 0.0206 + }, + { + "start": 5981.78, + "end": 5985.02, + "probability": 0.7872 + }, + { + "start": 5986.2, + "end": 5988.52, + "probability": 0.933 + }, + { + "start": 5989.98, + "end": 5992.04, + "probability": 0.9849 + }, + { + "start": 6005.22, + "end": 6009.12, + "probability": 0.4779 + }, + { + "start": 6009.83, + "end": 6010.18, + "probability": 0.0375 + }, + { + "start": 6010.2, + "end": 6010.48, + "probability": 0.015 + }, + { + "start": 6010.48, + "end": 6012.88, + "probability": 0.0062 + }, + { + "start": 6013.32, + "end": 6016.72, + "probability": 0.3233 + }, + { + "start": 6018.85, + "end": 6021.54, + "probability": 0.0158 + }, + { + "start": 6022.78, + "end": 6023.8, + "probability": 0.2634 + }, + { + "start": 6024.61, + "end": 6027.86, + "probability": 0.0034 + }, + { + "start": 6029.68, + "end": 6031.08, + "probability": 0.0021 + }, + { + "start": 6031.86, + "end": 6032.48, + "probability": 0.0144 + }, + { + "start": 6032.48, + "end": 6032.7, + "probability": 0.0335 + }, + { + "start": 6033.69, + "end": 6037.58, + "probability": 0.1239 + }, + { + "start": 6039.18, + "end": 6039.5, + "probability": 0.2098 + }, + { + "start": 6039.5, + "end": 6039.5, + "probability": 0.0919 + }, + { + "start": 6039.5, + "end": 6039.5, + "probability": 0.1601 + }, + { + "start": 6039.5, + "end": 6039.5, + "probability": 0.053 + }, + { + "start": 6039.5, + "end": 6040.24, + "probability": 0.506 + }, + { + "start": 6042.2, + "end": 6045.96, + "probability": 0.7503 + }, + { + "start": 6047.26, + "end": 6048.08, + "probability": 0.6437 + }, + { + "start": 6050.44, + "end": 6052.0, + "probability": 0.5948 + }, + { + "start": 6052.54, + "end": 6052.58, + "probability": 0.241 + }, + { + "start": 6052.58, + "end": 6053.46, + "probability": 0.3951 + }, + { + "start": 6053.46, + "end": 6055.91, + "probability": 0.9283 + }, + { + "start": 6057.0, + "end": 6057.34, + "probability": 0.5334 + }, + { + "start": 6057.42, + "end": 6058.28, + "probability": 0.7515 + }, + { + "start": 6059.28, + "end": 6060.26, + "probability": 0.932 + }, + { + "start": 6060.34, + "end": 6061.74, + "probability": 0.9288 + }, + { + "start": 6062.44, + "end": 6063.07, + "probability": 0.887 + }, + { + "start": 6066.26, + "end": 6068.34, + "probability": 0.5023 + }, + { + "start": 6070.7, + "end": 6073.16, + "probability": 0.7722 + }, + { + "start": 6074.46, + "end": 6075.3, + "probability": 0.8682 + }, + { + "start": 6075.34, + "end": 6077.2, + "probability": 0.7995 + }, + { + "start": 6077.56, + "end": 6078.74, + "probability": 0.4585 + }, + { + "start": 6078.92, + "end": 6079.58, + "probability": 0.2754 + }, + { + "start": 6079.58, + "end": 6080.6, + "probability": 0.8075 + }, + { + "start": 6081.26, + "end": 6081.98, + "probability": 0.6364 + }, + { + "start": 6082.64, + "end": 6088.56, + "probability": 0.5701 + }, + { + "start": 6090.48, + "end": 6091.38, + "probability": 0.0009 + }, + { + "start": 6092.46, + "end": 6093.06, + "probability": 0.1569 + }, + { + "start": 6093.34, + "end": 6093.34, + "probability": 0.4453 + }, + { + "start": 6093.34, + "end": 6093.34, + "probability": 0.1348 + }, + { + "start": 6093.34, + "end": 6095.88, + "probability": 0.4747 + }, + { + "start": 6095.94, + "end": 6102.52, + "probability": 0.1472 + }, + { + "start": 6103.48, + "end": 6103.56, + "probability": 0.0936 + }, + { + "start": 6103.56, + "end": 6103.56, + "probability": 0.3418 + }, + { + "start": 6103.56, + "end": 6104.06, + "probability": 0.4383 + }, + { + "start": 6104.48, + "end": 6105.41, + "probability": 0.6453 + }, + { + "start": 6106.16, + "end": 6106.86, + "probability": 0.9139 + }, + { + "start": 6106.86, + "end": 6109.72, + "probability": 0.4303 + }, + { + "start": 6110.12, + "end": 6111.36, + "probability": 0.5856 + }, + { + "start": 6111.65, + "end": 6113.1, + "probability": 0.4792 + }, + { + "start": 6113.22, + "end": 6115.54, + "probability": 0.9062 + }, + { + "start": 6115.66, + "end": 6115.7, + "probability": 0.0177 + }, + { + "start": 6115.86, + "end": 6115.86, + "probability": 0.0741 + }, + { + "start": 6115.86, + "end": 6116.14, + "probability": 0.4366 + }, + { + "start": 6116.92, + "end": 6117.9, + "probability": 0.3071 + }, + { + "start": 6117.94, + "end": 6119.67, + "probability": 0.9546 + }, + { + "start": 6120.6, + "end": 6122.42, + "probability": 0.783 + }, + { + "start": 6122.5, + "end": 6123.32, + "probability": 0.7983 + }, + { + "start": 6123.4, + "end": 6124.3, + "probability": 0.8551 + }, + { + "start": 6124.72, + "end": 6126.46, + "probability": 0.9138 + }, + { + "start": 6126.46, + "end": 6128.06, + "probability": 0.5705 + }, + { + "start": 6128.28, + "end": 6130.32, + "probability": 0.9665 + }, + { + "start": 6130.44, + "end": 6131.88, + "probability": 0.8964 + }, + { + "start": 6132.08, + "end": 6134.14, + "probability": 0.9189 + }, + { + "start": 6134.22, + "end": 6136.06, + "probability": 0.9603 + }, + { + "start": 6136.56, + "end": 6137.44, + "probability": 0.5318 + }, + { + "start": 6137.72, + "end": 6138.6, + "probability": 0.9596 + }, + { + "start": 6139.64, + "end": 6141.48, + "probability": 0.8394 + }, + { + "start": 6141.84, + "end": 6143.46, + "probability": 0.9005 + }, + { + "start": 6144.56, + "end": 6146.0, + "probability": 0.9728 + }, + { + "start": 6146.34, + "end": 6148.42, + "probability": 0.7844 + }, + { + "start": 6148.56, + "end": 6150.66, + "probability": 0.9294 + }, + { + "start": 6151.24, + "end": 6152.98, + "probability": 0.682 + }, + { + "start": 6153.46, + "end": 6155.24, + "probability": 0.9539 + }, + { + "start": 6155.36, + "end": 6157.0, + "probability": 0.7935 + }, + { + "start": 6157.74, + "end": 6159.34, + "probability": 0.9846 + }, + { + "start": 6160.26, + "end": 6162.77, + "probability": 0.9253 + }, + { + "start": 6163.42, + "end": 6166.18, + "probability": 0.9863 + }, + { + "start": 6166.28, + "end": 6167.0, + "probability": 0.5828 + }, + { + "start": 6167.06, + "end": 6168.17, + "probability": 0.7255 + }, + { + "start": 6169.04, + "end": 6175.06, + "probability": 0.9705 + }, + { + "start": 6176.4, + "end": 6179.92, + "probability": 0.7352 + }, + { + "start": 6180.68, + "end": 6181.6, + "probability": 0.6099 + }, + { + "start": 6181.82, + "end": 6183.56, + "probability": 0.8661 + }, + { + "start": 6183.86, + "end": 6187.8, + "probability": 0.9562 + }, + { + "start": 6188.34, + "end": 6190.26, + "probability": 0.8983 + }, + { + "start": 6191.12, + "end": 6192.49, + "probability": 0.9727 + }, + { + "start": 6193.14, + "end": 6197.9, + "probability": 0.9854 + }, + { + "start": 6198.28, + "end": 6201.56, + "probability": 0.8146 + }, + { + "start": 6202.7, + "end": 6203.56, + "probability": 0.4247 + }, + { + "start": 6204.54, + "end": 6206.68, + "probability": 0.8101 + }, + { + "start": 6207.34, + "end": 6209.44, + "probability": 0.8588 + }, + { + "start": 6209.7, + "end": 6210.58, + "probability": 0.9187 + }, + { + "start": 6212.3, + "end": 6212.74, + "probability": 0.7511 + }, + { + "start": 6212.88, + "end": 6215.6, + "probability": 0.9509 + }, + { + "start": 6215.68, + "end": 6216.92, + "probability": 0.9984 + }, + { + "start": 6217.66, + "end": 6219.14, + "probability": 0.9552 + }, + { + "start": 6219.14, + "end": 6224.7, + "probability": 0.9663 + }, + { + "start": 6224.92, + "end": 6225.78, + "probability": 0.5753 + }, + { + "start": 6226.48, + "end": 6229.94, + "probability": 0.9044 + }, + { + "start": 6230.12, + "end": 6231.74, + "probability": 0.8521 + }, + { + "start": 6232.18, + "end": 6233.62, + "probability": 0.7502 + }, + { + "start": 6233.72, + "end": 6235.12, + "probability": 0.9862 + }, + { + "start": 6235.7, + "end": 6238.24, + "probability": 0.9023 + }, + { + "start": 6238.32, + "end": 6238.88, + "probability": 0.8388 + }, + { + "start": 6239.94, + "end": 6243.14, + "probability": 0.9878 + }, + { + "start": 6244.14, + "end": 6248.52, + "probability": 0.988 + }, + { + "start": 6249.62, + "end": 6251.8, + "probability": 0.9932 + }, + { + "start": 6251.94, + "end": 6255.13, + "probability": 0.9756 + }, + { + "start": 6255.38, + "end": 6261.16, + "probability": 0.9948 + }, + { + "start": 6262.58, + "end": 6266.08, + "probability": 0.8802 + }, + { + "start": 6266.56, + "end": 6268.0, + "probability": 0.889 + }, + { + "start": 6269.1, + "end": 6271.7, + "probability": 0.9101 + }, + { + "start": 6271.7, + "end": 6275.62, + "probability": 0.9335 + }, + { + "start": 6276.02, + "end": 6281.36, + "probability": 0.9551 + }, + { + "start": 6281.56, + "end": 6282.04, + "probability": 0.477 + }, + { + "start": 6282.46, + "end": 6285.92, + "probability": 0.7847 + }, + { + "start": 6286.7, + "end": 6287.34, + "probability": 0.388 + }, + { + "start": 6287.92, + "end": 6289.38, + "probability": 0.8549 + }, + { + "start": 6290.12, + "end": 6292.34, + "probability": 0.7777 + }, + { + "start": 6293.16, + "end": 6293.78, + "probability": 0.9185 + }, + { + "start": 6293.82, + "end": 6298.52, + "probability": 0.9912 + }, + { + "start": 6298.66, + "end": 6299.78, + "probability": 0.9234 + }, + { + "start": 6300.58, + "end": 6303.68, + "probability": 0.9419 + }, + { + "start": 6303.82, + "end": 6306.87, + "probability": 0.7491 + }, + { + "start": 6307.52, + "end": 6310.72, + "probability": 0.4783 + }, + { + "start": 6310.76, + "end": 6313.24, + "probability": 0.8514 + }, + { + "start": 6313.32, + "end": 6314.97, + "probability": 0.9146 + }, + { + "start": 6316.1, + "end": 6324.5, + "probability": 0.9199 + }, + { + "start": 6325.18, + "end": 6327.12, + "probability": 0.9971 + }, + { + "start": 6327.66, + "end": 6331.5, + "probability": 0.9901 + }, + { + "start": 6331.5, + "end": 6335.66, + "probability": 0.9878 + }, + { + "start": 6336.78, + "end": 6341.16, + "probability": 0.9624 + }, + { + "start": 6341.24, + "end": 6346.52, + "probability": 0.9808 + }, + { + "start": 6346.52, + "end": 6346.52, + "probability": 0.5927 + }, + { + "start": 6346.84, + "end": 6348.04, + "probability": 0.8147 + }, + { + "start": 6348.06, + "end": 6350.84, + "probability": 0.8582 + }, + { + "start": 6350.84, + "end": 6352.92, + "probability": 0.9805 + }, + { + "start": 6353.5, + "end": 6354.84, + "probability": 0.9822 + }, + { + "start": 6355.0, + "end": 6360.7, + "probability": 0.9451 + }, + { + "start": 6360.88, + "end": 6361.68, + "probability": 0.6911 + }, + { + "start": 6361.74, + "end": 6361.82, + "probability": 0.4542 + }, + { + "start": 6362.08, + "end": 6363.9, + "probability": 0.5539 + }, + { + "start": 6364.12, + "end": 6369.16, + "probability": 0.743 + }, + { + "start": 6369.68, + "end": 6370.06, + "probability": 0.3949 + }, + { + "start": 6385.52, + "end": 6386.54, + "probability": 0.6464 + }, + { + "start": 6387.36, + "end": 6388.48, + "probability": 0.4819 + }, + { + "start": 6390.32, + "end": 6392.78, + "probability": 0.7636 + }, + { + "start": 6394.3, + "end": 6395.38, + "probability": 0.9609 + }, + { + "start": 6395.74, + "end": 6397.76, + "probability": 0.8408 + }, + { + "start": 6397.86, + "end": 6399.3, + "probability": 0.5845 + }, + { + "start": 6400.74, + "end": 6403.2, + "probability": 0.8023 + }, + { + "start": 6403.78, + "end": 6406.7, + "probability": 0.9351 + }, + { + "start": 6408.76, + "end": 6409.16, + "probability": 0.589 + }, + { + "start": 6409.28, + "end": 6415.1, + "probability": 0.9668 + }, + { + "start": 6415.18, + "end": 6416.16, + "probability": 0.9038 + }, + { + "start": 6416.54, + "end": 6417.44, + "probability": 0.8583 + }, + { + "start": 6418.1, + "end": 6423.36, + "probability": 0.9731 + }, + { + "start": 6425.62, + "end": 6426.7, + "probability": 0.3709 + }, + { + "start": 6427.42, + "end": 6432.32, + "probability": 0.9261 + }, + { + "start": 6434.1, + "end": 6435.6, + "probability": 0.38 + }, + { + "start": 6437.4, + "end": 6438.58, + "probability": 0.9058 + }, + { + "start": 6439.48, + "end": 6440.18, + "probability": 0.8494 + }, + { + "start": 6440.52, + "end": 6448.34, + "probability": 0.9915 + }, + { + "start": 6449.76, + "end": 6450.86, + "probability": 0.9705 + }, + { + "start": 6451.36, + "end": 6455.86, + "probability": 0.972 + }, + { + "start": 6455.96, + "end": 6461.04, + "probability": 0.915 + }, + { + "start": 6461.62, + "end": 6467.82, + "probability": 0.9958 + }, + { + "start": 6469.36, + "end": 6470.6, + "probability": 0.9702 + }, + { + "start": 6471.24, + "end": 6475.86, + "probability": 0.9197 + }, + { + "start": 6476.52, + "end": 6479.24, + "probability": 0.7822 + }, + { + "start": 6479.36, + "end": 6480.38, + "probability": 0.7319 + }, + { + "start": 6480.84, + "end": 6482.08, + "probability": 0.9418 + }, + { + "start": 6482.6, + "end": 6486.28, + "probability": 0.8558 + }, + { + "start": 6486.86, + "end": 6489.74, + "probability": 0.9327 + }, + { + "start": 6490.28, + "end": 6492.77, + "probability": 0.9661 + }, + { + "start": 6493.04, + "end": 6493.94, + "probability": 0.8711 + }, + { + "start": 6494.12, + "end": 6498.06, + "probability": 0.9302 + }, + { + "start": 6498.18, + "end": 6499.62, + "probability": 0.8349 + }, + { + "start": 6499.96, + "end": 6500.38, + "probability": 0.5264 + }, + { + "start": 6500.38, + "end": 6502.02, + "probability": 0.666 + }, + { + "start": 6502.04, + "end": 6502.64, + "probability": 0.6469 + }, + { + "start": 6504.0, + "end": 6506.38, + "probability": 0.3407 + }, + { + "start": 6506.64, + "end": 6508.8, + "probability": 0.6182 + }, + { + "start": 6509.04, + "end": 6509.56, + "probability": 0.71 + }, + { + "start": 6509.68, + "end": 6513.18, + "probability": 0.8467 + }, + { + "start": 6513.5, + "end": 6514.16, + "probability": 0.7581 + }, + { + "start": 6514.46, + "end": 6514.96, + "probability": 0.1443 + }, + { + "start": 6515.62, + "end": 6519.26, + "probability": 0.5541 + }, + { + "start": 6519.64, + "end": 6521.52, + "probability": 0.6888 + }, + { + "start": 6521.92, + "end": 6526.55, + "probability": 0.9655 + }, + { + "start": 6526.58, + "end": 6529.34, + "probability": 0.895 + }, + { + "start": 6530.72, + "end": 6534.24, + "probability": 0.8716 + }, + { + "start": 6534.86, + "end": 6537.54, + "probability": 0.4431 + }, + { + "start": 6537.74, + "end": 6539.52, + "probability": 0.8234 + }, + { + "start": 6539.54, + "end": 6540.28, + "probability": 0.981 + }, + { + "start": 6540.58, + "end": 6543.96, + "probability": 0.9653 + }, + { + "start": 6545.0, + "end": 6545.72, + "probability": 0.0045 + }, + { + "start": 6546.55, + "end": 6549.27, + "probability": 0.9183 + }, + { + "start": 6550.69, + "end": 6553.58, + "probability": 0.7351 + }, + { + "start": 6553.98, + "end": 6555.94, + "probability": 0.626 + }, + { + "start": 6556.06, + "end": 6561.3, + "probability": 0.9137 + }, + { + "start": 6561.84, + "end": 6563.44, + "probability": 0.6702 + }, + { + "start": 6564.1, + "end": 6567.68, + "probability": 0.7796 + }, + { + "start": 6567.9, + "end": 6570.7, + "probability": 0.9603 + }, + { + "start": 6571.08, + "end": 6572.64, + "probability": 0.9668 + }, + { + "start": 6572.96, + "end": 6574.92, + "probability": 0.9708 + }, + { + "start": 6575.2, + "end": 6578.4, + "probability": 0.9829 + }, + { + "start": 6578.7, + "end": 6580.01, + "probability": 0.9304 + }, + { + "start": 6580.36, + "end": 6581.13, + "probability": 0.9274 + }, + { + "start": 6581.8, + "end": 6584.76, + "probability": 0.8914 + }, + { + "start": 6585.64, + "end": 6587.4, + "probability": 0.9297 + }, + { + "start": 6587.5, + "end": 6588.3, + "probability": 0.3931 + }, + { + "start": 6588.42, + "end": 6589.02, + "probability": 0.5963 + }, + { + "start": 6589.34, + "end": 6590.62, + "probability": 0.9421 + }, + { + "start": 6591.04, + "end": 6591.34, + "probability": 0.1383 + }, + { + "start": 6591.74, + "end": 6596.12, + "probability": 0.5243 + }, + { + "start": 6597.85, + "end": 6600.18, + "probability": 0.7715 + }, + { + "start": 6600.26, + "end": 6600.66, + "probability": 0.5029 + }, + { + "start": 6601.02, + "end": 6609.36, + "probability": 0.7922 + }, + { + "start": 6610.06, + "end": 6613.36, + "probability": 0.9866 + }, + { + "start": 6613.46, + "end": 6616.58, + "probability": 0.992 + }, + { + "start": 6616.88, + "end": 6619.56, + "probability": 0.7562 + }, + { + "start": 6619.9, + "end": 6624.14, + "probability": 0.7013 + }, + { + "start": 6624.34, + "end": 6626.22, + "probability": 0.9671 + }, + { + "start": 6626.52, + "end": 6628.18, + "probability": 0.9532 + }, + { + "start": 6628.7, + "end": 6629.8, + "probability": 0.9738 + }, + { + "start": 6629.92, + "end": 6632.66, + "probability": 0.9822 + }, + { + "start": 6632.86, + "end": 6634.23, + "probability": 0.8975 + }, + { + "start": 6634.56, + "end": 6635.89, + "probability": 0.9385 + }, + { + "start": 6636.74, + "end": 6638.9, + "probability": 0.8423 + }, + { + "start": 6639.24, + "end": 6642.78, + "probability": 0.9727 + }, + { + "start": 6643.44, + "end": 6648.2, + "probability": 0.9754 + }, + { + "start": 6648.58, + "end": 6651.16, + "probability": 0.8271 + }, + { + "start": 6651.56, + "end": 6657.06, + "probability": 0.9901 + }, + { + "start": 6657.9, + "end": 6661.2, + "probability": 0.6219 + }, + { + "start": 6662.04, + "end": 6665.02, + "probability": 0.7922 + }, + { + "start": 6666.76, + "end": 6670.48, + "probability": 0.9503 + }, + { + "start": 6681.52, + "end": 6682.86, + "probability": 0.8404 + }, + { + "start": 6684.0, + "end": 6686.08, + "probability": 0.7616 + }, + { + "start": 6687.14, + "end": 6688.8, + "probability": 0.9963 + }, + { + "start": 6689.2, + "end": 6689.68, + "probability": 0.8599 + }, + { + "start": 6689.74, + "end": 6690.34, + "probability": 0.8753 + }, + { + "start": 6690.44, + "end": 6691.78, + "probability": 0.9795 + }, + { + "start": 6692.9, + "end": 6694.97, + "probability": 0.9576 + }, + { + "start": 6695.84, + "end": 6697.28, + "probability": 0.6946 + }, + { + "start": 6698.18, + "end": 6699.86, + "probability": 0.9584 + }, + { + "start": 6700.34, + "end": 6700.94, + "probability": 0.7552 + }, + { + "start": 6701.32, + "end": 6704.44, + "probability": 0.8637 + }, + { + "start": 6705.2, + "end": 6708.7, + "probability": 0.932 + }, + { + "start": 6709.66, + "end": 6710.58, + "probability": 0.9761 + }, + { + "start": 6710.9, + "end": 6712.2, + "probability": 0.8929 + }, + { + "start": 6712.92, + "end": 6714.2, + "probability": 0.5737 + }, + { + "start": 6715.02, + "end": 6716.34, + "probability": 0.6698 + }, + { + "start": 6716.98, + "end": 6719.74, + "probability": 0.9771 + }, + { + "start": 6720.24, + "end": 6721.66, + "probability": 0.7346 + }, + { + "start": 6721.84, + "end": 6723.36, + "probability": 0.6462 + }, + { + "start": 6723.74, + "end": 6723.74, + "probability": 0.0131 + }, + { + "start": 6723.74, + "end": 6724.62, + "probability": 0.7254 + }, + { + "start": 6724.62, + "end": 6726.04, + "probability": 0.6335 + }, + { + "start": 6726.2, + "end": 6726.58, + "probability": 0.6463 + }, + { + "start": 6726.64, + "end": 6728.26, + "probability": 0.3716 + }, + { + "start": 6728.46, + "end": 6730.24, + "probability": 0.9398 + }, + { + "start": 6731.22, + "end": 6733.18, + "probability": 0.9786 + }, + { + "start": 6733.28, + "end": 6734.64, + "probability": 0.9248 + }, + { + "start": 6735.18, + "end": 6736.86, + "probability": 0.9803 + }, + { + "start": 6737.0, + "end": 6738.38, + "probability": 0.9752 + }, + { + "start": 6738.4, + "end": 6739.88, + "probability": 0.8661 + }, + { + "start": 6739.96, + "end": 6742.78, + "probability": 0.7519 + }, + { + "start": 6743.66, + "end": 6746.62, + "probability": 0.9954 + }, + { + "start": 6747.58, + "end": 6749.12, + "probability": 0.9919 + }, + { + "start": 6749.24, + "end": 6750.54, + "probability": 0.9721 + }, + { + "start": 6751.28, + "end": 6751.78, + "probability": 0.9375 + }, + { + "start": 6751.82, + "end": 6752.56, + "probability": 0.9532 + }, + { + "start": 6752.64, + "end": 6755.42, + "probability": 0.9937 + }, + { + "start": 6756.04, + "end": 6759.06, + "probability": 0.7238 + }, + { + "start": 6759.56, + "end": 6760.36, + "probability": 0.6971 + }, + { + "start": 6760.44, + "end": 6762.34, + "probability": 0.9061 + }, + { + "start": 6762.46, + "end": 6763.6, + "probability": 0.5221 + }, + { + "start": 6764.32, + "end": 6766.02, + "probability": 0.8569 + }, + { + "start": 6767.76, + "end": 6769.66, + "probability": 0.0966 + }, + { + "start": 6769.66, + "end": 6770.4, + "probability": 0.0405 + }, + { + "start": 6770.52, + "end": 6771.33, + "probability": 0.6454 + }, + { + "start": 6771.8, + "end": 6775.24, + "probability": 0.4582 + }, + { + "start": 6775.24, + "end": 6776.38, + "probability": 0.292 + }, + { + "start": 6776.54, + "end": 6779.12, + "probability": 0.863 + }, + { + "start": 6779.6, + "end": 6781.38, + "probability": 0.9458 + }, + { + "start": 6781.58, + "end": 6785.26, + "probability": 0.9883 + }, + { + "start": 6785.9, + "end": 6787.18, + "probability": 0.7358 + }, + { + "start": 6787.3, + "end": 6789.98, + "probability": 0.9689 + }, + { + "start": 6790.04, + "end": 6791.14, + "probability": 0.973 + }, + { + "start": 6791.22, + "end": 6791.98, + "probability": 0.9712 + }, + { + "start": 6793.18, + "end": 6794.06, + "probability": 0.9351 + }, + { + "start": 6794.12, + "end": 6794.64, + "probability": 0.7911 + }, + { + "start": 6794.68, + "end": 6796.34, + "probability": 0.9019 + }, + { + "start": 6796.48, + "end": 6797.42, + "probability": 0.9949 + }, + { + "start": 6797.52, + "end": 6798.02, + "probability": 0.544 + }, + { + "start": 6798.48, + "end": 6800.9, + "probability": 0.9667 + }, + { + "start": 6801.28, + "end": 6806.86, + "probability": 0.7137 + }, + { + "start": 6807.16, + "end": 6808.3, + "probability": 0.8311 + }, + { + "start": 6808.66, + "end": 6811.76, + "probability": 0.9679 + }, + { + "start": 6812.1, + "end": 6812.3, + "probability": 0.2808 + }, + { + "start": 6812.78, + "end": 6817.86, + "probability": 0.9958 + }, + { + "start": 6817.86, + "end": 6823.6, + "probability": 0.9788 + }, + { + "start": 6823.62, + "end": 6824.86, + "probability": 0.8535 + }, + { + "start": 6825.66, + "end": 6826.24, + "probability": 0.5889 + }, + { + "start": 6826.66, + "end": 6828.32, + "probability": 0.9386 + }, + { + "start": 6828.7, + "end": 6832.54, + "probability": 0.9952 + }, + { + "start": 6833.38, + "end": 6833.52, + "probability": 0.1786 + }, + { + "start": 6833.56, + "end": 6836.3, + "probability": 0.9022 + }, + { + "start": 6836.42, + "end": 6837.97, + "probability": 0.7941 + }, + { + "start": 6838.36, + "end": 6839.58, + "probability": 0.8994 + }, + { + "start": 6839.98, + "end": 6841.52, + "probability": 0.8809 + }, + { + "start": 6841.6, + "end": 6842.42, + "probability": 0.7495 + }, + { + "start": 6842.52, + "end": 6843.4, + "probability": 0.8853 + }, + { + "start": 6843.98, + "end": 6846.04, + "probability": 0.6277 + }, + { + "start": 6846.9, + "end": 6851.38, + "probability": 0.8984 + }, + { + "start": 6852.04, + "end": 6853.2, + "probability": 0.6743 + }, + { + "start": 6853.86, + "end": 6855.06, + "probability": 0.9883 + }, + { + "start": 6855.12, + "end": 6855.65, + "probability": 0.9725 + }, + { + "start": 6856.8, + "end": 6860.3, + "probability": 0.9702 + }, + { + "start": 6861.34, + "end": 6862.3, + "probability": 0.6562 + }, + { + "start": 6863.8, + "end": 6866.06, + "probability": 0.8284 + }, + { + "start": 6866.18, + "end": 6866.74, + "probability": 0.9084 + }, + { + "start": 6867.44, + "end": 6868.58, + "probability": 0.9428 + }, + { + "start": 6869.24, + "end": 6874.24, + "probability": 0.9636 + }, + { + "start": 6874.72, + "end": 6876.5, + "probability": 0.99 + }, + { + "start": 6877.56, + "end": 6879.42, + "probability": 0.9907 + }, + { + "start": 6880.04, + "end": 6883.3, + "probability": 0.9973 + }, + { + "start": 6883.66, + "end": 6884.28, + "probability": 0.9149 + }, + { + "start": 6885.26, + "end": 6887.04, + "probability": 0.916 + }, + { + "start": 6888.42, + "end": 6893.66, + "probability": 0.9607 + }, + { + "start": 6893.74, + "end": 6894.58, + "probability": 0.8685 + }, + { + "start": 6895.3, + "end": 6897.6, + "probability": 0.9745 + }, + { + "start": 6898.04, + "end": 6900.1, + "probability": 0.9877 + }, + { + "start": 6900.64, + "end": 6902.56, + "probability": 0.9961 + }, + { + "start": 6903.12, + "end": 6907.54, + "probability": 0.9954 + }, + { + "start": 6907.54, + "end": 6910.68, + "probability": 0.9927 + }, + { + "start": 6911.16, + "end": 6916.1, + "probability": 0.9898 + }, + { + "start": 6916.1, + "end": 6921.28, + "probability": 0.9851 + }, + { + "start": 6921.36, + "end": 6921.86, + "probability": 0.7655 + }, + { + "start": 6922.16, + "end": 6922.72, + "probability": 0.4651 + }, + { + "start": 6923.71, + "end": 6926.06, + "probability": 0.6878 + }, + { + "start": 6926.2, + "end": 6929.42, + "probability": 0.9602 + }, + { + "start": 6930.1, + "end": 6932.21, + "probability": 0.6025 + }, + { + "start": 6933.06, + "end": 6936.52, + "probability": 0.7893 + }, + { + "start": 6936.68, + "end": 6937.94, + "probability": 0.7914 + }, + { + "start": 6938.52, + "end": 6941.12, + "probability": 0.0926 + }, + { + "start": 6942.02, + "end": 6944.16, + "probability": 0.7586 + }, + { + "start": 6945.82, + "end": 6950.46, + "probability": 0.0187 + }, + { + "start": 6950.56, + "end": 6950.86, + "probability": 0.0268 + }, + { + "start": 6952.33, + "end": 6953.2, + "probability": 0.039 + }, + { + "start": 6954.26, + "end": 6955.12, + "probability": 0.0956 + }, + { + "start": 6963.92, + "end": 6969.18, + "probability": 0.8201 + }, + { + "start": 6969.64, + "end": 6972.06, + "probability": 0.9175 + }, + { + "start": 6973.22, + "end": 6974.0, + "probability": 0.9795 + }, + { + "start": 6974.04, + "end": 6979.64, + "probability": 0.9417 + }, + { + "start": 6983.58, + "end": 6986.9, + "probability": 0.8481 + }, + { + "start": 6987.8, + "end": 6991.46, + "probability": 0.9537 + }, + { + "start": 6995.94, + "end": 6998.88, + "probability": 0.9705 + }, + { + "start": 7003.04, + "end": 7006.26, + "probability": 0.9251 + }, + { + "start": 7007.52, + "end": 7011.86, + "probability": 0.7453 + }, + { + "start": 7020.18, + "end": 7024.16, + "probability": 0.979 + }, + { + "start": 7025.38, + "end": 7027.64, + "probability": 0.8629 + }, + { + "start": 7028.74, + "end": 7031.78, + "probability": 0.8247 + }, + { + "start": 7032.44, + "end": 7034.68, + "probability": 0.9578 + }, + { + "start": 7034.74, + "end": 7036.3, + "probability": 0.9703 + }, + { + "start": 7037.16, + "end": 7040.42, + "probability": 0.9963 + }, + { + "start": 7041.1, + "end": 7041.32, + "probability": 0.3773 + }, + { + "start": 7041.32, + "end": 7043.04, + "probability": 0.7969 + }, + { + "start": 7043.5, + "end": 7045.06, + "probability": 0.9473 + }, + { + "start": 7045.42, + "end": 7047.14, + "probability": 0.9276 + }, + { + "start": 7048.16, + "end": 7051.9, + "probability": 0.9791 + }, + { + "start": 7052.48, + "end": 7053.44, + "probability": 0.7386 + }, + { + "start": 7053.66, + "end": 7054.14, + "probability": 0.9807 + }, + { + "start": 7054.18, + "end": 7056.86, + "probability": 0.7804 + }, + { + "start": 7057.5, + "end": 7058.34, + "probability": 0.8419 + }, + { + "start": 7060.56, + "end": 7061.94, + "probability": 0.7709 + }, + { + "start": 7062.44, + "end": 7068.79, + "probability": 0.7905 + }, + { + "start": 7070.6, + "end": 7071.92, + "probability": 0.8479 + }, + { + "start": 7072.16, + "end": 7077.16, + "probability": 0.9869 + }, + { + "start": 7077.7, + "end": 7085.44, + "probability": 0.815 + }, + { + "start": 7086.78, + "end": 7087.9, + "probability": 0.8769 + }, + { + "start": 7088.5, + "end": 7092.88, + "probability": 0.9845 + }, + { + "start": 7093.96, + "end": 7099.06, + "probability": 0.9906 + }, + { + "start": 7100.7, + "end": 7103.14, + "probability": 0.9553 + }, + { + "start": 7103.34, + "end": 7109.34, + "probability": 0.9938 + }, + { + "start": 7109.9, + "end": 7112.06, + "probability": 0.9985 + }, + { + "start": 7113.06, + "end": 7114.46, + "probability": 0.8629 + }, + { + "start": 7114.86, + "end": 7116.24, + "probability": 0.917 + }, + { + "start": 7116.7, + "end": 7120.6, + "probability": 0.97 + }, + { + "start": 7121.6, + "end": 7124.16, + "probability": 0.8286 + }, + { + "start": 7124.52, + "end": 7125.88, + "probability": 0.8901 + }, + { + "start": 7126.16, + "end": 7126.66, + "probability": 0.9809 + }, + { + "start": 7127.52, + "end": 7129.74, + "probability": 0.9667 + }, + { + "start": 7131.14, + "end": 7136.04, + "probability": 0.628 + }, + { + "start": 7136.46, + "end": 7138.3, + "probability": 0.9738 + }, + { + "start": 7139.48, + "end": 7141.68, + "probability": 0.9724 + }, + { + "start": 7143.06, + "end": 7144.72, + "probability": 0.6783 + }, + { + "start": 7145.3, + "end": 7146.38, + "probability": 0.9604 + }, + { + "start": 7148.0, + "end": 7151.56, + "probability": 0.9966 + }, + { + "start": 7151.88, + "end": 7154.8, + "probability": 0.9838 + }, + { + "start": 7155.92, + "end": 7163.4, + "probability": 0.9529 + }, + { + "start": 7164.48, + "end": 7169.96, + "probability": 0.9692 + }, + { + "start": 7171.08, + "end": 7173.58, + "probability": 0.9292 + }, + { + "start": 7174.18, + "end": 7178.76, + "probability": 0.9786 + }, + { + "start": 7179.48, + "end": 7181.48, + "probability": 0.9263 + }, + { + "start": 7182.52, + "end": 7186.76, + "probability": 0.9933 + }, + { + "start": 7186.82, + "end": 7190.28, + "probability": 0.988 + }, + { + "start": 7191.62, + "end": 7194.98, + "probability": 0.994 + }, + { + "start": 7195.58, + "end": 7198.52, + "probability": 0.9984 + }, + { + "start": 7200.04, + "end": 7205.1, + "probability": 0.8803 + }, + { + "start": 7206.46, + "end": 7207.52, + "probability": 0.9297 + }, + { + "start": 7208.28, + "end": 7208.94, + "probability": 0.5735 + }, + { + "start": 7210.24, + "end": 7211.6, + "probability": 0.6988 + }, + { + "start": 7212.32, + "end": 7216.9, + "probability": 0.9176 + }, + { + "start": 7217.66, + "end": 7218.9, + "probability": 0.945 + }, + { + "start": 7219.56, + "end": 7221.64, + "probability": 0.9334 + }, + { + "start": 7223.06, + "end": 7224.46, + "probability": 0.9578 + }, + { + "start": 7225.16, + "end": 7226.6, + "probability": 0.9447 + }, + { + "start": 7227.22, + "end": 7228.46, + "probability": 0.9783 + }, + { + "start": 7230.06, + "end": 7231.98, + "probability": 0.962 + }, + { + "start": 7232.58, + "end": 7236.92, + "probability": 0.8613 + }, + { + "start": 7238.12, + "end": 7241.4, + "probability": 0.941 + }, + { + "start": 7242.26, + "end": 7244.68, + "probability": 0.8094 + }, + { + "start": 7245.36, + "end": 7246.64, + "probability": 0.9567 + }, + { + "start": 7247.98, + "end": 7250.58, + "probability": 0.8562 + }, + { + "start": 7251.36, + "end": 7253.46, + "probability": 0.9167 + }, + { + "start": 7254.06, + "end": 7256.44, + "probability": 0.8765 + }, + { + "start": 7257.08, + "end": 7260.3, + "probability": 0.9022 + }, + { + "start": 7261.0, + "end": 7264.12, + "probability": 0.9954 + }, + { + "start": 7264.86, + "end": 7266.34, + "probability": 0.8942 + }, + { + "start": 7267.46, + "end": 7270.7, + "probability": 0.8449 + }, + { + "start": 7271.56, + "end": 7276.44, + "probability": 0.9643 + }, + { + "start": 7277.34, + "end": 7278.12, + "probability": 0.92 + }, + { + "start": 7279.98, + "end": 7282.14, + "probability": 0.9099 + }, + { + "start": 7282.68, + "end": 7286.24, + "probability": 0.9904 + }, + { + "start": 7286.58, + "end": 7289.1, + "probability": 0.9569 + }, + { + "start": 7289.8, + "end": 7293.34, + "probability": 0.8035 + }, + { + "start": 7293.88, + "end": 7295.82, + "probability": 0.9845 + }, + { + "start": 7296.08, + "end": 7298.54, + "probability": 0.9609 + }, + { + "start": 7300.24, + "end": 7306.16, + "probability": 0.9758 + }, + { + "start": 7306.84, + "end": 7308.82, + "probability": 0.94 + }, + { + "start": 7309.58, + "end": 7312.4, + "probability": 0.9972 + }, + { + "start": 7313.04, + "end": 7313.96, + "probability": 0.89 + }, + { + "start": 7315.22, + "end": 7318.22, + "probability": 0.9797 + }, + { + "start": 7318.8, + "end": 7322.26, + "probability": 0.982 + }, + { + "start": 7322.94, + "end": 7327.18, + "probability": 0.9713 + }, + { + "start": 7327.66, + "end": 7331.22, + "probability": 0.9873 + }, + { + "start": 7332.28, + "end": 7336.6, + "probability": 0.998 + }, + { + "start": 7337.22, + "end": 7338.06, + "probability": 0.827 + }, + { + "start": 7338.28, + "end": 7338.64, + "probability": 0.9606 + }, + { + "start": 7338.94, + "end": 7344.02, + "probability": 0.9804 + }, + { + "start": 7345.24, + "end": 7350.18, + "probability": 0.852 + }, + { + "start": 7350.18, + "end": 7354.78, + "probability": 0.8953 + }, + { + "start": 7355.46, + "end": 7360.34, + "probability": 0.9915 + }, + { + "start": 7361.44, + "end": 7363.94, + "probability": 0.9623 + }, + { + "start": 7364.38, + "end": 7365.1, + "probability": 0.717 + }, + { + "start": 7365.32, + "end": 7366.28, + "probability": 0.9873 + }, + { + "start": 7366.8, + "end": 7367.86, + "probability": 0.9806 + }, + { + "start": 7368.3, + "end": 7368.58, + "probability": 0.9636 + }, + { + "start": 7370.04, + "end": 7371.52, + "probability": 0.9155 + }, + { + "start": 7372.52, + "end": 7374.82, + "probability": 0.9665 + }, + { + "start": 7376.22, + "end": 7379.92, + "probability": 0.9541 + }, + { + "start": 7380.5, + "end": 7385.72, + "probability": 0.9888 + }, + { + "start": 7385.72, + "end": 7390.82, + "probability": 0.9973 + }, + { + "start": 7392.12, + "end": 7396.34, + "probability": 0.9811 + }, + { + "start": 7396.34, + "end": 7400.92, + "probability": 0.9985 + }, + { + "start": 7401.5, + "end": 7402.84, + "probability": 0.9051 + }, + { + "start": 7403.94, + "end": 7407.64, + "probability": 0.831 + }, + { + "start": 7408.2, + "end": 7412.0, + "probability": 0.6038 + }, + { + "start": 7412.72, + "end": 7416.88, + "probability": 0.994 + }, + { + "start": 7417.98, + "end": 7420.4, + "probability": 0.9962 + }, + { + "start": 7420.44, + "end": 7421.94, + "probability": 0.9808 + }, + { + "start": 7422.08, + "end": 7422.88, + "probability": 0.6095 + }, + { + "start": 7423.96, + "end": 7426.12, + "probability": 0.9196 + }, + { + "start": 7426.2, + "end": 7427.34, + "probability": 0.9811 + }, + { + "start": 7451.02, + "end": 7453.0, + "probability": 0.7226 + }, + { + "start": 7454.3, + "end": 7455.08, + "probability": 0.7381 + }, + { + "start": 7457.08, + "end": 7459.26, + "probability": 0.7592 + }, + { + "start": 7461.08, + "end": 7465.84, + "probability": 0.9009 + }, + { + "start": 7467.08, + "end": 7469.54, + "probability": 0.9084 + }, + { + "start": 7471.54, + "end": 7476.34, + "probability": 0.9712 + }, + { + "start": 7478.54, + "end": 7482.38, + "probability": 0.9942 + }, + { + "start": 7484.02, + "end": 7485.24, + "probability": 0.9138 + }, + { + "start": 7486.66, + "end": 7488.62, + "probability": 0.9728 + }, + { + "start": 7492.13, + "end": 7502.4, + "probability": 0.9839 + }, + { + "start": 7504.58, + "end": 7507.06, + "probability": 0.9277 + }, + { + "start": 7509.54, + "end": 7510.56, + "probability": 0.8658 + }, + { + "start": 7512.0, + "end": 7514.34, + "probability": 0.978 + }, + { + "start": 7516.56, + "end": 7519.32, + "probability": 0.7452 + }, + { + "start": 7519.98, + "end": 7520.66, + "probability": 0.7648 + }, + { + "start": 7522.7, + "end": 7524.08, + "probability": 0.9097 + }, + { + "start": 7524.98, + "end": 7525.14, + "probability": 0.1222 + }, + { + "start": 7525.14, + "end": 7526.6, + "probability": 0.65 + }, + { + "start": 7530.42, + "end": 7535.22, + "probability": 0.9678 + }, + { + "start": 7535.32, + "end": 7536.17, + "probability": 0.9523 + }, + { + "start": 7536.28, + "end": 7537.28, + "probability": 0.8894 + }, + { + "start": 7538.68, + "end": 7540.14, + "probability": 0.922 + }, + { + "start": 7541.52, + "end": 7542.76, + "probability": 0.8351 + }, + { + "start": 7545.12, + "end": 7546.02, + "probability": 0.9463 + }, + { + "start": 7548.12, + "end": 7549.9, + "probability": 0.7997 + }, + { + "start": 7552.02, + "end": 7553.32, + "probability": 0.8134 + }, + { + "start": 7554.34, + "end": 7555.66, + "probability": 0.5138 + }, + { + "start": 7558.12, + "end": 7563.54, + "probability": 0.9278 + }, + { + "start": 7565.82, + "end": 7566.88, + "probability": 0.6134 + }, + { + "start": 7568.88, + "end": 7569.56, + "probability": 0.8274 + }, + { + "start": 7570.9, + "end": 7572.08, + "probability": 0.7822 + }, + { + "start": 7572.26, + "end": 7575.44, + "probability": 0.9894 + }, + { + "start": 7576.7, + "end": 7578.12, + "probability": 0.6712 + }, + { + "start": 7578.34, + "end": 7580.07, + "probability": 0.7109 + }, + { + "start": 7580.62, + "end": 7581.96, + "probability": 0.8309 + }, + { + "start": 7584.14, + "end": 7585.16, + "probability": 0.8168 + }, + { + "start": 7585.8, + "end": 7587.34, + "probability": 0.9832 + }, + { + "start": 7588.44, + "end": 7592.76, + "probability": 0.9404 + }, + { + "start": 7593.84, + "end": 7596.2, + "probability": 0.9907 + }, + { + "start": 7596.46, + "end": 7599.46, + "probability": 0.9193 + }, + { + "start": 7600.7, + "end": 7605.14, + "probability": 0.8676 + }, + { + "start": 7605.24, + "end": 7606.24, + "probability": 0.8014 + }, + { + "start": 7606.8, + "end": 7611.5, + "probability": 0.9662 + }, + { + "start": 7613.6, + "end": 7617.2, + "probability": 0.9794 + }, + { + "start": 7617.42, + "end": 7620.28, + "probability": 0.9854 + }, + { + "start": 7621.1, + "end": 7622.18, + "probability": 0.7277 + }, + { + "start": 7622.28, + "end": 7629.5, + "probability": 0.9098 + }, + { + "start": 7629.5, + "end": 7632.34, + "probability": 0.9962 + }, + { + "start": 7632.74, + "end": 7634.66, + "probability": 0.9113 + }, + { + "start": 7634.94, + "end": 7635.44, + "probability": 0.9369 + }, + { + "start": 7635.56, + "end": 7639.02, + "probability": 0.9165 + }, + { + "start": 7640.86, + "end": 7642.3, + "probability": 0.3954 + }, + { + "start": 7645.72, + "end": 7647.03, + "probability": 0.9836 + }, + { + "start": 7648.08, + "end": 7649.56, + "probability": 0.966 + }, + { + "start": 7649.72, + "end": 7653.32, + "probability": 0.9895 + }, + { + "start": 7653.98, + "end": 7655.42, + "probability": 0.9675 + }, + { + "start": 7656.86, + "end": 7657.62, + "probability": 0.6505 + }, + { + "start": 7659.4, + "end": 7660.62, + "probability": 0.7631 + }, + { + "start": 7662.28, + "end": 7663.5, + "probability": 0.4823 + }, + { + "start": 7663.5, + "end": 7664.04, + "probability": 0.3812 + }, + { + "start": 7664.22, + "end": 7666.12, + "probability": 0.7357 + }, + { + "start": 7666.48, + "end": 7667.84, + "probability": 0.8203 + }, + { + "start": 7669.96, + "end": 7672.02, + "probability": 0.8748 + }, + { + "start": 7672.78, + "end": 7674.02, + "probability": 0.8175 + }, + { + "start": 7674.74, + "end": 7679.92, + "probability": 0.9261 + }, + { + "start": 7680.62, + "end": 7682.46, + "probability": 0.9127 + }, + { + "start": 7684.04, + "end": 7687.96, + "probability": 0.987 + }, + { + "start": 7689.5, + "end": 7691.8, + "probability": 0.9177 + }, + { + "start": 7692.84, + "end": 7694.86, + "probability": 0.9879 + }, + { + "start": 7696.08, + "end": 7697.88, + "probability": 0.9921 + }, + { + "start": 7699.06, + "end": 7703.54, + "probability": 0.9826 + }, + { + "start": 7704.44, + "end": 7712.82, + "probability": 0.9481 + }, + { + "start": 7713.94, + "end": 7715.32, + "probability": 0.894 + }, + { + "start": 7716.1, + "end": 7717.24, + "probability": 0.7654 + }, + { + "start": 7718.04, + "end": 7718.96, + "probability": 0.9672 + }, + { + "start": 7720.42, + "end": 7724.02, + "probability": 0.9652 + }, + { + "start": 7724.12, + "end": 7726.58, + "probability": 0.9975 + }, + { + "start": 7726.6, + "end": 7728.1, + "probability": 0.7633 + }, + { + "start": 7728.18, + "end": 7728.78, + "probability": 0.7325 + }, + { + "start": 7742.38, + "end": 7745.04, + "probability": 0.7419 + }, + { + "start": 7745.82, + "end": 7748.6, + "probability": 0.9785 + }, + { + "start": 7749.5, + "end": 7751.58, + "probability": 0.9878 + }, + { + "start": 7752.38, + "end": 7754.28, + "probability": 0.9849 + }, + { + "start": 7755.32, + "end": 7758.12, + "probability": 0.9578 + }, + { + "start": 7758.84, + "end": 7761.38, + "probability": 0.9063 + }, + { + "start": 7762.38, + "end": 7764.72, + "probability": 0.9829 + }, + { + "start": 7764.8, + "end": 7766.41, + "probability": 0.9911 + }, + { + "start": 7767.02, + "end": 7769.38, + "probability": 0.9924 + }, + { + "start": 7770.24, + "end": 7773.73, + "probability": 0.9901 + }, + { + "start": 7774.72, + "end": 7777.26, + "probability": 0.8812 + }, + { + "start": 7779.0, + "end": 7783.52, + "probability": 0.9674 + }, + { + "start": 7784.18, + "end": 7786.66, + "probability": 0.9718 + }, + { + "start": 7787.48, + "end": 7788.32, + "probability": 0.4024 + }, + { + "start": 7788.96, + "end": 7790.58, + "probability": 0.9863 + }, + { + "start": 7791.12, + "end": 7793.2, + "probability": 0.9471 + }, + { + "start": 7794.44, + "end": 7796.16, + "probability": 0.9946 + }, + { + "start": 7796.56, + "end": 7797.58, + "probability": 0.9815 + }, + { + "start": 7797.74, + "end": 7798.58, + "probability": 0.9639 + }, + { + "start": 7799.1, + "end": 7800.2, + "probability": 0.8939 + }, + { + "start": 7800.72, + "end": 7803.98, + "probability": 0.9852 + }, + { + "start": 7805.1, + "end": 7808.34, + "probability": 0.7513 + }, + { + "start": 7809.02, + "end": 7814.2, + "probability": 0.9941 + }, + { + "start": 7815.02, + "end": 7817.96, + "probability": 0.938 + }, + { + "start": 7818.66, + "end": 7821.22, + "probability": 0.9953 + }, + { + "start": 7821.22, + "end": 7824.58, + "probability": 0.9854 + }, + { + "start": 7825.3, + "end": 7826.4, + "probability": 0.8347 + }, + { + "start": 7826.6, + "end": 7829.68, + "probability": 0.6091 + }, + { + "start": 7829.78, + "end": 7832.32, + "probability": 0.9689 + }, + { + "start": 7833.24, + "end": 7833.76, + "probability": 0.7261 + }, + { + "start": 7834.42, + "end": 7836.74, + "probability": 0.9838 + }, + { + "start": 7837.54, + "end": 7839.3, + "probability": 0.9927 + }, + { + "start": 7841.4, + "end": 7845.06, + "probability": 0.9915 + }, + { + "start": 7846.18, + "end": 7850.44, + "probability": 0.906 + }, + { + "start": 7850.96, + "end": 7853.56, + "probability": 0.9904 + }, + { + "start": 7853.92, + "end": 7857.24, + "probability": 0.9974 + }, + { + "start": 7858.08, + "end": 7862.42, + "probability": 0.9919 + }, + { + "start": 7863.0, + "end": 7865.02, + "probability": 0.9456 + }, + { + "start": 7865.5, + "end": 7867.0, + "probability": 0.8877 + }, + { + "start": 7867.34, + "end": 7872.42, + "probability": 0.8737 + }, + { + "start": 7873.06, + "end": 7876.8, + "probability": 0.9843 + }, + { + "start": 7876.8, + "end": 7881.04, + "probability": 0.9896 + }, + { + "start": 7881.24, + "end": 7882.26, + "probability": 0.7582 + }, + { + "start": 7883.88, + "end": 7890.4, + "probability": 0.9155 + }, + { + "start": 7891.32, + "end": 7895.74, + "probability": 0.9812 + }, + { + "start": 7896.42, + "end": 7898.86, + "probability": 0.8981 + }, + { + "start": 7900.86, + "end": 7902.56, + "probability": 0.8804 + }, + { + "start": 7902.62, + "end": 7903.72, + "probability": 0.9053 + }, + { + "start": 7903.78, + "end": 7904.84, + "probability": 0.849 + }, + { + "start": 7905.22, + "end": 7906.84, + "probability": 0.8494 + }, + { + "start": 7907.48, + "end": 7909.52, + "probability": 0.989 + }, + { + "start": 7909.84, + "end": 7914.14, + "probability": 0.9978 + }, + { + "start": 7914.82, + "end": 7915.48, + "probability": 0.9743 + }, + { + "start": 7915.58, + "end": 7916.1, + "probability": 0.7891 + }, + { + "start": 7916.18, + "end": 7917.0, + "probability": 0.907 + }, + { + "start": 7917.06, + "end": 7918.16, + "probability": 0.803 + }, + { + "start": 7918.66, + "end": 7919.92, + "probability": 0.9426 + }, + { + "start": 7920.68, + "end": 7924.14, + "probability": 0.9916 + }, + { + "start": 7924.7, + "end": 7927.38, + "probability": 0.9829 + }, + { + "start": 7928.26, + "end": 7930.78, + "probability": 0.9258 + }, + { + "start": 7931.46, + "end": 7934.58, + "probability": 0.9961 + }, + { + "start": 7934.58, + "end": 7937.96, + "probability": 0.9822 + }, + { + "start": 7939.16, + "end": 7944.92, + "probability": 0.998 + }, + { + "start": 7945.6, + "end": 7948.74, + "probability": 0.9464 + }, + { + "start": 7949.58, + "end": 7951.12, + "probability": 0.998 + }, + { + "start": 7951.78, + "end": 7954.82, + "probability": 0.8632 + }, + { + "start": 7954.96, + "end": 7957.9, + "probability": 0.9827 + }, + { + "start": 7957.9, + "end": 7961.14, + "probability": 0.9454 + }, + { + "start": 7961.5, + "end": 7963.74, + "probability": 0.7567 + }, + { + "start": 7965.52, + "end": 7966.68, + "probability": 0.6254 + }, + { + "start": 7967.58, + "end": 7969.58, + "probability": 0.9902 + }, + { + "start": 7969.98, + "end": 7972.08, + "probability": 0.8486 + }, + { + "start": 7973.2, + "end": 7977.66, + "probability": 0.9932 + }, + { + "start": 7977.66, + "end": 7982.16, + "probability": 0.9419 + }, + { + "start": 7983.14, + "end": 7986.54, + "probability": 0.9984 + }, + { + "start": 7987.14, + "end": 7989.64, + "probability": 0.9806 + }, + { + "start": 7990.16, + "end": 7992.04, + "probability": 0.9982 + }, + { + "start": 7992.2, + "end": 7993.46, + "probability": 0.9046 + }, + { + "start": 7993.52, + "end": 7994.46, + "probability": 0.8934 + }, + { + "start": 7994.92, + "end": 7995.7, + "probability": 0.924 + }, + { + "start": 7996.06, + "end": 7996.62, + "probability": 0.7546 + }, + { + "start": 7997.4, + "end": 8001.1, + "probability": 0.9705 + }, + { + "start": 8002.02, + "end": 8003.94, + "probability": 0.8323 + }, + { + "start": 8004.62, + "end": 8007.64, + "probability": 0.9509 + }, + { + "start": 8008.38, + "end": 8011.18, + "probability": 0.9919 + }, + { + "start": 8011.88, + "end": 8013.4, + "probability": 0.8572 + }, + { + "start": 8013.98, + "end": 8016.98, + "probability": 0.9966 + }, + { + "start": 8017.86, + "end": 8020.54, + "probability": 0.9714 + }, + { + "start": 8021.16, + "end": 8023.32, + "probability": 0.9583 + }, + { + "start": 8024.84, + "end": 8027.76, + "probability": 0.998 + }, + { + "start": 8028.32, + "end": 8028.8, + "probability": 0.7505 + }, + { + "start": 8029.88, + "end": 8034.36, + "probability": 0.9115 + }, + { + "start": 8035.06, + "end": 8036.08, + "probability": 0.8593 + }, + { + "start": 8036.88, + "end": 8038.34, + "probability": 0.9765 + }, + { + "start": 8039.88, + "end": 8042.56, + "probability": 0.9864 + }, + { + "start": 8042.96, + "end": 8044.88, + "probability": 0.8865 + }, + { + "start": 8045.32, + "end": 8048.18, + "probability": 0.8911 + }, + { + "start": 8048.32, + "end": 8052.28, + "probability": 0.9844 + }, + { + "start": 8053.28, + "end": 8056.12, + "probability": 0.9294 + }, + { + "start": 8056.62, + "end": 8058.42, + "probability": 0.7019 + }, + { + "start": 8059.12, + "end": 8061.6, + "probability": 0.9878 + }, + { + "start": 8061.68, + "end": 8063.42, + "probability": 0.7932 + }, + { + "start": 8063.48, + "end": 8064.76, + "probability": 0.9476 + }, + { + "start": 8065.48, + "end": 8066.74, + "probability": 0.923 + }, + { + "start": 8067.22, + "end": 8067.75, + "probability": 0.8696 + }, + { + "start": 8068.56, + "end": 8070.1, + "probability": 0.9032 + }, + { + "start": 8070.12, + "end": 8071.8, + "probability": 0.9451 + }, + { + "start": 8072.36, + "end": 8077.0, + "probability": 0.973 + }, + { + "start": 8077.52, + "end": 8078.94, + "probability": 0.9718 + }, + { + "start": 8079.3, + "end": 8080.53, + "probability": 0.9872 + }, + { + "start": 8081.0, + "end": 8085.48, + "probability": 0.9655 + }, + { + "start": 8086.74, + "end": 8089.74, + "probability": 0.9971 + }, + { + "start": 8090.56, + "end": 8093.2, + "probability": 0.9955 + }, + { + "start": 8093.98, + "end": 8097.48, + "probability": 0.9688 + }, + { + "start": 8098.98, + "end": 8100.64, + "probability": 0.9244 + }, + { + "start": 8102.08, + "end": 8105.14, + "probability": 0.9684 + }, + { + "start": 8105.92, + "end": 8107.64, + "probability": 0.9773 + }, + { + "start": 8107.94, + "end": 8109.2, + "probability": 0.8287 + }, + { + "start": 8110.34, + "end": 8114.82, + "probability": 0.9828 + }, + { + "start": 8114.84, + "end": 8116.22, + "probability": 0.9559 + }, + { + "start": 8117.06, + "end": 8118.52, + "probability": 0.9425 + }, + { + "start": 8119.3, + "end": 8120.24, + "probability": 0.9336 + }, + { + "start": 8120.36, + "end": 8121.56, + "probability": 0.9795 + }, + { + "start": 8121.64, + "end": 8122.7, + "probability": 0.7128 + }, + { + "start": 8123.3, + "end": 8124.6, + "probability": 0.9932 + }, + { + "start": 8125.44, + "end": 8126.76, + "probability": 0.9233 + }, + { + "start": 8127.7, + "end": 8131.3, + "probability": 0.9915 + }, + { + "start": 8131.3, + "end": 8133.94, + "probability": 0.9656 + }, + { + "start": 8134.7, + "end": 8136.48, + "probability": 0.8825 + }, + { + "start": 8137.02, + "end": 8140.3, + "probability": 0.9354 + }, + { + "start": 8141.02, + "end": 8142.92, + "probability": 0.911 + }, + { + "start": 8143.48, + "end": 8144.04, + "probability": 0.7041 + }, + { + "start": 8144.08, + "end": 8147.88, + "probability": 0.9795 + }, + { + "start": 8148.2, + "end": 8148.82, + "probability": 0.166 + }, + { + "start": 8149.08, + "end": 8154.48, + "probability": 0.9697 + }, + { + "start": 8154.68, + "end": 8155.34, + "probability": 0.8461 + }, + { + "start": 8156.3, + "end": 8157.76, + "probability": 0.9244 + }, + { + "start": 8158.8, + "end": 8162.98, + "probability": 0.7086 + }, + { + "start": 8163.56, + "end": 8164.48, + "probability": 0.7725 + }, + { + "start": 8165.14, + "end": 8167.78, + "probability": 0.8944 + }, + { + "start": 8168.8, + "end": 8172.62, + "probability": 0.963 + }, + { + "start": 8173.5, + "end": 8174.14, + "probability": 0.928 + }, + { + "start": 8174.66, + "end": 8177.26, + "probability": 0.8467 + }, + { + "start": 8178.06, + "end": 8180.0, + "probability": 0.6662 + }, + { + "start": 8181.3, + "end": 8184.54, + "probability": 0.9165 + }, + { + "start": 8185.04, + "end": 8187.24, + "probability": 0.7805 + }, + { + "start": 8187.46, + "end": 8189.4, + "probability": 0.5257 + }, + { + "start": 8189.76, + "end": 8193.3, + "probability": 0.9655 + }, + { + "start": 8193.98, + "end": 8196.9, + "probability": 0.9774 + }, + { + "start": 8197.5, + "end": 8198.22, + "probability": 0.697 + }, + { + "start": 8198.94, + "end": 8200.7, + "probability": 0.988 + }, + { + "start": 8201.72, + "end": 8203.2, + "probability": 0.8413 + }, + { + "start": 8203.92, + "end": 8206.24, + "probability": 0.9741 + }, + { + "start": 8207.06, + "end": 8208.2, + "probability": 0.9409 + }, + { + "start": 8209.0, + "end": 8211.18, + "probability": 0.9809 + }, + { + "start": 8211.9, + "end": 8214.28, + "probability": 0.9728 + }, + { + "start": 8215.18, + "end": 8216.2, + "probability": 0.5813 + }, + { + "start": 8216.34, + "end": 8217.12, + "probability": 0.9713 + }, + { + "start": 8217.28, + "end": 8220.82, + "probability": 0.9943 + }, + { + "start": 8221.48, + "end": 8225.44, + "probability": 0.992 + }, + { + "start": 8226.28, + "end": 8232.32, + "probability": 0.964 + }, + { + "start": 8232.52, + "end": 8236.1, + "probability": 0.987 + }, + { + "start": 8236.1, + "end": 8236.1, + "probability": 0.1349 + }, + { + "start": 8236.1, + "end": 8239.28, + "probability": 0.0047 + }, + { + "start": 8239.5, + "end": 8243.88, + "probability": 0.995 + }, + { + "start": 8243.88, + "end": 8249.5, + "probability": 0.9905 + }, + { + "start": 8250.32, + "end": 8255.64, + "probability": 0.9941 + }, + { + "start": 8256.1, + "end": 8258.48, + "probability": 0.984 + }, + { + "start": 8259.3, + "end": 8261.1, + "probability": 0.8367 + }, + { + "start": 8262.16, + "end": 8264.73, + "probability": 0.9976 + }, + { + "start": 8265.46, + "end": 8268.26, + "probability": 0.9521 + }, + { + "start": 8268.52, + "end": 8271.04, + "probability": 0.8838 + }, + { + "start": 8271.18, + "end": 8272.26, + "probability": 0.8363 + }, + { + "start": 8272.88, + "end": 8277.22, + "probability": 0.9795 + }, + { + "start": 8277.5, + "end": 8278.5, + "probability": 0.7948 + }, + { + "start": 8278.94, + "end": 8281.16, + "probability": 0.9373 + }, + { + "start": 8281.82, + "end": 8283.22, + "probability": 0.9738 + }, + { + "start": 8284.04, + "end": 8284.88, + "probability": 0.3881 + }, + { + "start": 8285.56, + "end": 8288.5, + "probability": 0.8924 + }, + { + "start": 8289.12, + "end": 8291.18, + "probability": 0.8547 + }, + { + "start": 8292.0, + "end": 8294.1, + "probability": 0.6347 + }, + { + "start": 8294.22, + "end": 8294.72, + "probability": 0.7983 + }, + { + "start": 8295.5, + "end": 8298.62, + "probability": 0.9678 + }, + { + "start": 8298.96, + "end": 8301.8, + "probability": 0.9907 + }, + { + "start": 8302.02, + "end": 8305.34, + "probability": 0.9369 + }, + { + "start": 8306.24, + "end": 8308.66, + "probability": 0.9665 + }, + { + "start": 8308.96, + "end": 8312.18, + "probability": 0.9247 + }, + { + "start": 8312.82, + "end": 8316.12, + "probability": 0.9814 + }, + { + "start": 8316.96, + "end": 8317.86, + "probability": 0.7953 + }, + { + "start": 8317.92, + "end": 8319.74, + "probability": 0.7321 + }, + { + "start": 8319.9, + "end": 8322.34, + "probability": 0.8735 + }, + { + "start": 8322.7, + "end": 8325.64, + "probability": 0.9549 + }, + { + "start": 8325.9, + "end": 8329.2, + "probability": 0.9432 + }, + { + "start": 8329.28, + "end": 8331.94, + "probability": 0.155 + }, + { + "start": 8332.62, + "end": 8336.32, + "probability": 0.9899 + }, + { + "start": 8337.04, + "end": 8340.1, + "probability": 0.8343 + }, + { + "start": 8353.36, + "end": 8357.52, + "probability": 0.6658 + }, + { + "start": 8358.2, + "end": 8363.24, + "probability": 0.9977 + }, + { + "start": 8364.1, + "end": 8369.04, + "probability": 0.9964 + }, + { + "start": 8369.44, + "end": 8373.0, + "probability": 0.9961 + }, + { + "start": 8373.74, + "end": 8373.9, + "probability": 0.4142 + }, + { + "start": 8373.96, + "end": 8376.48, + "probability": 0.9496 + }, + { + "start": 8376.8, + "end": 8378.82, + "probability": 0.9362 + }, + { + "start": 8379.26, + "end": 8384.2, + "probability": 0.9683 + }, + { + "start": 8384.66, + "end": 8385.56, + "probability": 0.9783 + }, + { + "start": 8385.86, + "end": 8388.4, + "probability": 0.8872 + }, + { + "start": 8388.44, + "end": 8391.32, + "probability": 0.8856 + }, + { + "start": 8392.02, + "end": 8395.48, + "probability": 0.8971 + }, + { + "start": 8395.98, + "end": 8403.9, + "probability": 0.9895 + }, + { + "start": 8404.94, + "end": 8408.5, + "probability": 0.9987 + }, + { + "start": 8408.5, + "end": 8413.66, + "probability": 0.9964 + }, + { + "start": 8414.32, + "end": 8420.0, + "probability": 0.9897 + }, + { + "start": 8420.42, + "end": 8421.42, + "probability": 0.7827 + }, + { + "start": 8421.68, + "end": 8422.0, + "probability": 0.839 + }, + { + "start": 8422.12, + "end": 8424.84, + "probability": 0.8418 + }, + { + "start": 8425.14, + "end": 8427.82, + "probability": 0.9976 + }, + { + "start": 8427.82, + "end": 8431.3, + "probability": 0.9994 + }, + { + "start": 8431.92, + "end": 8432.16, + "probability": 0.7129 + }, + { + "start": 8432.2, + "end": 8439.72, + "probability": 0.9377 + }, + { + "start": 8439.88, + "end": 8443.12, + "probability": 0.9806 + }, + { + "start": 8443.88, + "end": 8448.62, + "probability": 0.9941 + }, + { + "start": 8449.16, + "end": 8452.38, + "probability": 0.6678 + }, + { + "start": 8452.58, + "end": 8454.12, + "probability": 0.9449 + }, + { + "start": 8454.2, + "end": 8455.18, + "probability": 0.8074 + }, + { + "start": 8455.32, + "end": 8457.37, + "probability": 0.8401 + }, + { + "start": 8457.58, + "end": 8460.7, + "probability": 0.9904 + }, + { + "start": 8460.9, + "end": 8462.44, + "probability": 0.9888 + }, + { + "start": 8462.64, + "end": 8463.16, + "probability": 0.4128 + }, + { + "start": 8463.3, + "end": 8465.0, + "probability": 0.9695 + }, + { + "start": 8465.36, + "end": 8469.22, + "probability": 0.974 + }, + { + "start": 8469.62, + "end": 8473.9, + "probability": 0.9746 + }, + { + "start": 8474.66, + "end": 8476.2, + "probability": 0.5778 + }, + { + "start": 8476.22, + "end": 8477.98, + "probability": 0.9868 + }, + { + "start": 8478.12, + "end": 8482.68, + "probability": 0.939 + }, + { + "start": 8483.24, + "end": 8487.28, + "probability": 0.9991 + }, + { + "start": 8487.78, + "end": 8489.32, + "probability": 0.7704 + }, + { + "start": 8489.68, + "end": 8490.44, + "probability": 0.9321 + }, + { + "start": 8490.7, + "end": 8494.78, + "probability": 0.9828 + }, + { + "start": 8494.8, + "end": 8495.44, + "probability": 0.4094 + }, + { + "start": 8495.52, + "end": 8496.26, + "probability": 0.612 + }, + { + "start": 8496.42, + "end": 8499.76, + "probability": 0.9905 + }, + { + "start": 8500.29, + "end": 8502.37, + "probability": 0.7868 + }, + { + "start": 8502.9, + "end": 8506.54, + "probability": 0.9893 + }, + { + "start": 8506.54, + "end": 8510.0, + "probability": 0.9935 + }, + { + "start": 8510.44, + "end": 8512.06, + "probability": 0.9839 + }, + { + "start": 8512.38, + "end": 8515.44, + "probability": 0.9414 + }, + { + "start": 8515.78, + "end": 8517.32, + "probability": 0.9008 + }, + { + "start": 8517.64, + "end": 8518.9, + "probability": 0.8475 + }, + { + "start": 8520.26, + "end": 8521.02, + "probability": 0.6284 + }, + { + "start": 8521.08, + "end": 8521.54, + "probability": 0.7342 + }, + { + "start": 8521.58, + "end": 8522.76, + "probability": 0.9271 + }, + { + "start": 8522.92, + "end": 8524.88, + "probability": 0.9594 + }, + { + "start": 8524.88, + "end": 8526.46, + "probability": 0.8608 + }, + { + "start": 8526.9, + "end": 8528.8, + "probability": 0.9586 + }, + { + "start": 8529.24, + "end": 8534.68, + "probability": 0.9829 + }, + { + "start": 8534.98, + "end": 8536.72, + "probability": 0.3947 + }, + { + "start": 8536.92, + "end": 8537.76, + "probability": 0.9106 + }, + { + "start": 8538.08, + "end": 8538.89, + "probability": 0.5844 + }, + { + "start": 8539.54, + "end": 8542.59, + "probability": 0.9905 + }, + { + "start": 8542.9, + "end": 8544.02, + "probability": 0.7101 + }, + { + "start": 8544.38, + "end": 8545.8, + "probability": 0.9948 + }, + { + "start": 8545.86, + "end": 8548.76, + "probability": 0.8944 + }, + { + "start": 8549.02, + "end": 8550.0, + "probability": 0.765 + }, + { + "start": 8550.44, + "end": 8557.52, + "probability": 0.9846 + }, + { + "start": 8557.58, + "end": 8561.84, + "probability": 0.9989 + }, + { + "start": 8562.16, + "end": 8565.7, + "probability": 0.9888 + }, + { + "start": 8566.42, + "end": 8568.32, + "probability": 0.9779 + }, + { + "start": 8568.32, + "end": 8572.08, + "probability": 0.9858 + }, + { + "start": 8572.18, + "end": 8575.06, + "probability": 0.713 + }, + { + "start": 8575.28, + "end": 8575.48, + "probability": 0.6399 + }, + { + "start": 8575.94, + "end": 8577.3, + "probability": 0.8438 + }, + { + "start": 8577.74, + "end": 8580.08, + "probability": 0.9673 + }, + { + "start": 8580.14, + "end": 8584.76, + "probability": 0.9858 + }, + { + "start": 8585.44, + "end": 8586.8, + "probability": 0.8359 + }, + { + "start": 8588.42, + "end": 8591.3, + "probability": 0.971 + }, + { + "start": 8591.36, + "end": 8592.32, + "probability": 0.4047 + }, + { + "start": 8592.42, + "end": 8595.46, + "probability": 0.9107 + }, + { + "start": 8596.28, + "end": 8597.24, + "probability": 0.9372 + }, + { + "start": 8597.24, + "end": 8600.14, + "probability": 0.9958 + }, + { + "start": 8600.64, + "end": 8605.24, + "probability": 0.998 + }, + { + "start": 8605.88, + "end": 8611.58, + "probability": 0.9805 + }, + { + "start": 8611.62, + "end": 8612.86, + "probability": 0.9595 + }, + { + "start": 8613.0, + "end": 8613.4, + "probability": 0.4924 + }, + { + "start": 8613.5, + "end": 8617.3, + "probability": 0.9727 + }, + { + "start": 8617.48, + "end": 8617.96, + "probability": 0.5851 + }, + { + "start": 8618.02, + "end": 8620.7, + "probability": 0.7206 + }, + { + "start": 8621.2, + "end": 8626.66, + "probability": 0.9966 + }, + { + "start": 8627.1, + "end": 8627.9, + "probability": 0.6738 + }, + { + "start": 8628.02, + "end": 8632.26, + "probability": 0.9506 + }, + { + "start": 8633.06, + "end": 8637.04, + "probability": 0.9764 + }, + { + "start": 8637.04, + "end": 8640.52, + "probability": 0.9872 + }, + { + "start": 8640.94, + "end": 8642.47, + "probability": 0.9902 + }, + { + "start": 8642.84, + "end": 8643.4, + "probability": 0.7603 + }, + { + "start": 8643.82, + "end": 8644.56, + "probability": 0.9194 + }, + { + "start": 8645.0, + "end": 8647.06, + "probability": 0.9504 + }, + { + "start": 8647.3, + "end": 8648.46, + "probability": 0.8364 + }, + { + "start": 8648.56, + "end": 8651.26, + "probability": 0.9827 + }, + { + "start": 8651.4, + "end": 8652.4, + "probability": 0.7978 + }, + { + "start": 8653.54, + "end": 8654.45, + "probability": 0.8142 + }, + { + "start": 8654.64, + "end": 8655.46, + "probability": 0.5974 + }, + { + "start": 8655.68, + "end": 8657.08, + "probability": 0.8241 + }, + { + "start": 8657.58, + "end": 8660.96, + "probability": 0.9654 + }, + { + "start": 8661.52, + "end": 8665.6, + "probability": 0.9904 + }, + { + "start": 8666.06, + "end": 8672.66, + "probability": 0.9983 + }, + { + "start": 8673.1, + "end": 8675.92, + "probability": 0.6811 + }, + { + "start": 8676.24, + "end": 8677.3, + "probability": 0.7516 + }, + { + "start": 8677.36, + "end": 8677.74, + "probability": 0.6033 + }, + { + "start": 8677.8, + "end": 8679.3, + "probability": 0.977 + }, + { + "start": 8681.02, + "end": 8685.1, + "probability": 0.9295 + }, + { + "start": 8685.2, + "end": 8686.22, + "probability": 0.8602 + }, + { + "start": 8686.26, + "end": 8689.12, + "probability": 0.9983 + }, + { + "start": 8689.22, + "end": 8689.68, + "probability": 0.5117 + }, + { + "start": 8689.94, + "end": 8690.26, + "probability": 0.2888 + }, + { + "start": 8691.1, + "end": 8694.78, + "probability": 0.955 + }, + { + "start": 8694.94, + "end": 8697.94, + "probability": 0.9952 + }, + { + "start": 8697.94, + "end": 8701.6, + "probability": 0.9988 + }, + { + "start": 8702.36, + "end": 8703.82, + "probability": 0.9889 + }, + { + "start": 8703.9, + "end": 8704.42, + "probability": 0.816 + }, + { + "start": 8704.74, + "end": 8706.5, + "probability": 0.5562 + }, + { + "start": 8707.04, + "end": 8707.98, + "probability": 0.5081 + }, + { + "start": 8708.6, + "end": 8713.38, + "probability": 0.9766 + }, + { + "start": 8713.38, + "end": 8718.45, + "probability": 0.9977 + }, + { + "start": 8719.14, + "end": 8723.7, + "probability": 0.9926 + }, + { + "start": 8723.7, + "end": 8731.0, + "probability": 0.9894 + }, + { + "start": 8731.0, + "end": 8736.46, + "probability": 0.9958 + }, + { + "start": 8738.1, + "end": 8741.54, + "probability": 0.922 + }, + { + "start": 8742.32, + "end": 8748.54, + "probability": 0.9973 + }, + { + "start": 8749.54, + "end": 8753.86, + "probability": 0.996 + }, + { + "start": 8754.24, + "end": 8756.54, + "probability": 0.9937 + }, + { + "start": 8756.84, + "end": 8759.72, + "probability": 0.9937 + }, + { + "start": 8759.72, + "end": 8762.99, + "probability": 0.9668 + }, + { + "start": 8763.46, + "end": 8764.5, + "probability": 0.7584 + }, + { + "start": 8764.72, + "end": 8766.1, + "probability": 0.7759 + }, + { + "start": 8766.42, + "end": 8767.12, + "probability": 0.8372 + }, + { + "start": 8767.5, + "end": 8769.52, + "probability": 0.9757 + }, + { + "start": 8769.74, + "end": 8769.94, + "probability": 0.9396 + }, + { + "start": 8770.02, + "end": 8774.38, + "probability": 0.9847 + }, + { + "start": 8774.64, + "end": 8775.48, + "probability": 0.8702 + }, + { + "start": 8775.7, + "end": 8776.88, + "probability": 0.9822 + }, + { + "start": 8776.88, + "end": 8777.16, + "probability": 0.8252 + }, + { + "start": 8777.66, + "end": 8779.26, + "probability": 0.8835 + }, + { + "start": 8779.42, + "end": 8781.54, + "probability": 0.8441 + }, + { + "start": 8782.12, + "end": 8785.24, + "probability": 0.9937 + }, + { + "start": 8785.24, + "end": 8789.1, + "probability": 0.9993 + }, + { + "start": 8789.56, + "end": 8792.62, + "probability": 0.9904 + }, + { + "start": 8792.96, + "end": 8794.72, + "probability": 0.6679 + }, + { + "start": 8795.48, + "end": 8797.24, + "probability": 0.9636 + }, + { + "start": 8797.32, + "end": 8798.28, + "probability": 0.7677 + }, + { + "start": 8798.42, + "end": 8799.34, + "probability": 0.9072 + }, + { + "start": 8799.58, + "end": 8800.28, + "probability": 0.8823 + }, + { + "start": 8800.32, + "end": 8801.62, + "probability": 0.9338 + }, + { + "start": 8801.68, + "end": 8802.5, + "probability": 0.9746 + }, + { + "start": 8802.6, + "end": 8803.64, + "probability": 0.841 + }, + { + "start": 8803.76, + "end": 8805.34, + "probability": 0.8506 + }, + { + "start": 8805.52, + "end": 8808.02, + "probability": 0.9971 + }, + { + "start": 8808.4, + "end": 8809.6, + "probability": 0.9438 + }, + { + "start": 8810.1, + "end": 8813.52, + "probability": 0.9285 + }, + { + "start": 8813.76, + "end": 8815.14, + "probability": 0.9414 + }, + { + "start": 8815.44, + "end": 8821.42, + "probability": 0.9776 + }, + { + "start": 8821.64, + "end": 8821.86, + "probability": 0.5438 + }, + { + "start": 8822.84, + "end": 8825.14, + "probability": 0.9367 + }, + { + "start": 8825.52, + "end": 8828.0, + "probability": 0.9315 + }, + { + "start": 8843.78, + "end": 8844.42, + "probability": 0.6391 + }, + { + "start": 8844.5, + "end": 8845.58, + "probability": 0.9095 + }, + { + "start": 8845.94, + "end": 8847.72, + "probability": 0.9388 + }, + { + "start": 8848.72, + "end": 8852.5, + "probability": 0.9568 + }, + { + "start": 8854.28, + "end": 8857.72, + "probability": 0.9457 + }, + { + "start": 8857.88, + "end": 8860.32, + "probability": 0.9966 + }, + { + "start": 8861.14, + "end": 8862.46, + "probability": 0.7298 + }, + { + "start": 8862.5, + "end": 8865.94, + "probability": 0.9451 + }, + { + "start": 8866.0, + "end": 8867.86, + "probability": 0.8588 + }, + { + "start": 8868.34, + "end": 8871.02, + "probability": 0.9889 + }, + { + "start": 8871.52, + "end": 8872.24, + "probability": 0.9688 + }, + { + "start": 8872.62, + "end": 8877.68, + "probability": 0.9419 + }, + { + "start": 8877.7, + "end": 8878.18, + "probability": 0.5138 + }, + { + "start": 8878.36, + "end": 8879.53, + "probability": 0.9611 + }, + { + "start": 8880.26, + "end": 8882.64, + "probability": 0.8727 + }, + { + "start": 8882.82, + "end": 8883.3, + "probability": 0.5605 + }, + { + "start": 8884.16, + "end": 8885.0, + "probability": 0.7253 + }, + { + "start": 8885.18, + "end": 8886.16, + "probability": 0.6624 + }, + { + "start": 8886.44, + "end": 8887.48, + "probability": 0.8727 + }, + { + "start": 8887.94, + "end": 8892.68, + "probability": 0.9873 + }, + { + "start": 8892.74, + "end": 8894.46, + "probability": 0.7561 + }, + { + "start": 8894.86, + "end": 8897.64, + "probability": 0.9847 + }, + { + "start": 8898.34, + "end": 8899.7, + "probability": 0.9235 + }, + { + "start": 8900.34, + "end": 8903.94, + "probability": 0.9805 + }, + { + "start": 8904.44, + "end": 8908.56, + "probability": 0.9959 + }, + { + "start": 8909.02, + "end": 8910.88, + "probability": 0.9699 + }, + { + "start": 8911.66, + "end": 8914.04, + "probability": 0.9575 + }, + { + "start": 8914.18, + "end": 8914.9, + "probability": 0.6569 + }, + { + "start": 8915.06, + "end": 8918.96, + "probability": 0.9925 + }, + { + "start": 8919.04, + "end": 8919.26, + "probability": 0.8888 + }, + { + "start": 8921.4, + "end": 8921.66, + "probability": 0.0856 + }, + { + "start": 8921.66, + "end": 8923.34, + "probability": 0.5186 + }, + { + "start": 8923.7, + "end": 8926.0, + "probability": 0.8618 + }, + { + "start": 8926.52, + "end": 8928.12, + "probability": 0.8867 + }, + { + "start": 8928.2, + "end": 8928.9, + "probability": 0.7924 + }, + { + "start": 8928.94, + "end": 8931.16, + "probability": 0.9605 + }, + { + "start": 8932.08, + "end": 8937.1, + "probability": 0.9546 + }, + { + "start": 8937.58, + "end": 8939.28, + "probability": 0.3444 + }, + { + "start": 8939.34, + "end": 8940.32, + "probability": 0.4785 + }, + { + "start": 8940.78, + "end": 8944.72, + "probability": 0.8749 + }, + { + "start": 8944.84, + "end": 8945.52, + "probability": 0.6115 + }, + { + "start": 8945.66, + "end": 8947.0, + "probability": 0.5295 + }, + { + "start": 8947.56, + "end": 8948.96, + "probability": 0.3555 + }, + { + "start": 8955.8, + "end": 8956.32, + "probability": 0.5344 + }, + { + "start": 8963.78, + "end": 8964.4, + "probability": 0.0126 + }, + { + "start": 8964.4, + "end": 8964.4, + "probability": 0.0212 + }, + { + "start": 8964.4, + "end": 8964.46, + "probability": 0.0608 + }, + { + "start": 8964.46, + "end": 8964.46, + "probability": 0.1147 + }, + { + "start": 8964.46, + "end": 8967.06, + "probability": 0.2054 + }, + { + "start": 8967.84, + "end": 8970.86, + "probability": 0.5168 + }, + { + "start": 8971.06, + "end": 8973.36, + "probability": 0.6222 + }, + { + "start": 8974.82, + "end": 8976.38, + "probability": 0.5993 + }, + { + "start": 8977.64, + "end": 8981.54, + "probability": 0.8483 + }, + { + "start": 8983.16, + "end": 8983.4, + "probability": 0.0004 + }, + { + "start": 8984.36, + "end": 8984.76, + "probability": 0.1935 + }, + { + "start": 8984.76, + "end": 8987.42, + "probability": 0.1952 + }, + { + "start": 8988.18, + "end": 8990.1, + "probability": 0.9729 + }, + { + "start": 8992.28, + "end": 8992.84, + "probability": 0.4882 + }, + { + "start": 8992.92, + "end": 8994.38, + "probability": 0.4283 + }, + { + "start": 8995.88, + "end": 8996.0, + "probability": 0.2215 + }, + { + "start": 8996.0, + "end": 8997.66, + "probability": 0.9705 + }, + { + "start": 8997.84, + "end": 8999.18, + "probability": 0.6343 + }, + { + "start": 9000.4, + "end": 9002.36, + "probability": 0.9282 + }, + { + "start": 9002.46, + "end": 9005.34, + "probability": 0.5337 + }, + { + "start": 9005.62, + "end": 9011.77, + "probability": 0.9849 + }, + { + "start": 9021.64, + "end": 9025.68, + "probability": 0.4972 + }, + { + "start": 9026.68, + "end": 9029.24, + "probability": 0.7476 + }, + { + "start": 9030.12, + "end": 9031.56, + "probability": 0.9983 + }, + { + "start": 9032.24, + "end": 9037.64, + "probability": 0.994 + }, + { + "start": 9038.26, + "end": 9039.3, + "probability": 0.9546 + }, + { + "start": 9040.16, + "end": 9046.22, + "probability": 0.9932 + }, + { + "start": 9047.04, + "end": 9052.58, + "probability": 0.9985 + }, + { + "start": 9053.36, + "end": 9057.88, + "probability": 0.9947 + }, + { + "start": 9058.28, + "end": 9060.42, + "probability": 0.9854 + }, + { + "start": 9060.66, + "end": 9065.14, + "probability": 0.9378 + }, + { + "start": 9065.14, + "end": 9065.4, + "probability": 0.0387 + }, + { + "start": 9066.28, + "end": 9071.46, + "probability": 0.9447 + }, + { + "start": 9072.28, + "end": 9074.58, + "probability": 0.9603 + }, + { + "start": 9075.02, + "end": 9077.84, + "probability": 0.9505 + }, + { + "start": 9078.24, + "end": 9079.9, + "probability": 0.939 + }, + { + "start": 9080.3, + "end": 9081.6, + "probability": 0.8282 + }, + { + "start": 9082.12, + "end": 9088.26, + "probability": 0.9495 + }, + { + "start": 9088.9, + "end": 9089.3, + "probability": 0.7602 + }, + { + "start": 9090.18, + "end": 9095.56, + "probability": 0.9355 + }, + { + "start": 9095.9, + "end": 9097.76, + "probability": 0.9923 + }, + { + "start": 9098.06, + "end": 9099.28, + "probability": 0.8123 + }, + { + "start": 9099.4, + "end": 9100.42, + "probability": 0.6934 + }, + { + "start": 9100.72, + "end": 9102.04, + "probability": 0.9807 + }, + { + "start": 9102.28, + "end": 9105.3, + "probability": 0.9966 + }, + { + "start": 9105.72, + "end": 9112.02, + "probability": 0.9948 + }, + { + "start": 9112.22, + "end": 9113.98, + "probability": 0.9846 + }, + { + "start": 9114.24, + "end": 9116.42, + "probability": 0.9346 + }, + { + "start": 9116.84, + "end": 9117.58, + "probability": 0.9132 + }, + { + "start": 9118.12, + "end": 9122.64, + "probability": 0.9573 + }, + { + "start": 9123.24, + "end": 9130.6, + "probability": 0.9341 + }, + { + "start": 9130.94, + "end": 9133.74, + "probability": 0.9709 + }, + { + "start": 9134.04, + "end": 9134.98, + "probability": 0.9026 + }, + { + "start": 9135.62, + "end": 9137.16, + "probability": 0.5379 + }, + { + "start": 9137.28, + "end": 9140.32, + "probability": 0.9964 + }, + { + "start": 9140.32, + "end": 9145.22, + "probability": 0.9717 + }, + { + "start": 9145.62, + "end": 9148.64, + "probability": 0.979 + }, + { + "start": 9149.0, + "end": 9149.72, + "probability": 0.771 + }, + { + "start": 9150.1, + "end": 9151.86, + "probability": 0.8483 + }, + { + "start": 9152.74, + "end": 9158.88, + "probability": 0.9719 + }, + { + "start": 9158.88, + "end": 9163.52, + "probability": 0.9961 + }, + { + "start": 9163.7, + "end": 9165.04, + "probability": 0.9591 + }, + { + "start": 9165.3, + "end": 9166.16, + "probability": 0.9434 + }, + { + "start": 9166.42, + "end": 9167.28, + "probability": 0.9826 + }, + { + "start": 9167.44, + "end": 9168.12, + "probability": 0.9812 + }, + { + "start": 9168.42, + "end": 9169.58, + "probability": 0.7894 + }, + { + "start": 9169.84, + "end": 9171.92, + "probability": 0.9385 + }, + { + "start": 9173.12, + "end": 9173.8, + "probability": 0.9709 + }, + { + "start": 9174.14, + "end": 9175.4, + "probability": 0.762 + }, + { + "start": 9175.48, + "end": 9178.74, + "probability": 0.9769 + }, + { + "start": 9179.32, + "end": 9179.54, + "probability": 0.4199 + }, + { + "start": 9180.22, + "end": 9182.8, + "probability": 0.9958 + }, + { + "start": 9183.22, + "end": 9188.02, + "probability": 0.9418 + }, + { + "start": 9188.44, + "end": 9193.34, + "probability": 0.9973 + }, + { + "start": 9193.76, + "end": 9195.02, + "probability": 0.8118 + }, + { + "start": 9195.16, + "end": 9196.42, + "probability": 0.9781 + }, + { + "start": 9196.54, + "end": 9197.54, + "probability": 0.9795 + }, + { + "start": 9197.66, + "end": 9199.06, + "probability": 0.9919 + }, + { + "start": 9199.5, + "end": 9203.5, + "probability": 0.9968 + }, + { + "start": 9203.96, + "end": 9207.88, + "probability": 0.9688 + }, + { + "start": 9208.34, + "end": 9211.5, + "probability": 0.9853 + }, + { + "start": 9211.5, + "end": 9214.46, + "probability": 0.7907 + }, + { + "start": 9214.86, + "end": 9218.94, + "probability": 0.9915 + }, + { + "start": 9219.32, + "end": 9223.96, + "probability": 0.4586 + }, + { + "start": 9224.12, + "end": 9226.62, + "probability": 0.9805 + }, + { + "start": 9227.18, + "end": 9230.62, + "probability": 0.9289 + }, + { + "start": 9230.62, + "end": 9235.76, + "probability": 0.9336 + }, + { + "start": 9235.92, + "end": 9239.8, + "probability": 0.9855 + }, + { + "start": 9239.86, + "end": 9242.44, + "probability": 0.9753 + }, + { + "start": 9242.78, + "end": 9243.64, + "probability": 0.9272 + }, + { + "start": 9243.94, + "end": 9244.86, + "probability": 0.8939 + }, + { + "start": 9245.3, + "end": 9249.14, + "probability": 0.9823 + }, + { + "start": 9249.46, + "end": 9249.88, + "probability": 0.8564 + }, + { + "start": 9250.44, + "end": 9251.68, + "probability": 0.9756 + }, + { + "start": 9252.62, + "end": 9255.06, + "probability": 0.7434 + }, + { + "start": 9255.62, + "end": 9256.96, + "probability": 0.8789 + }, + { + "start": 9257.62, + "end": 9259.1, + "probability": 0.6884 + }, + { + "start": 9259.78, + "end": 9260.47, + "probability": 0.914 + }, + { + "start": 9262.06, + "end": 9263.0, + "probability": 0.8976 + }, + { + "start": 9263.3, + "end": 9264.28, + "probability": 0.8801 + }, + { + "start": 9264.58, + "end": 9266.44, + "probability": 0.9436 + }, + { + "start": 9266.64, + "end": 9267.62, + "probability": 0.9333 + }, + { + "start": 9268.14, + "end": 9272.04, + "probability": 0.9793 + }, + { + "start": 9272.16, + "end": 9272.64, + "probability": 0.7475 + }, + { + "start": 9273.16, + "end": 9275.62, + "probability": 0.9512 + }, + { + "start": 9276.86, + "end": 9279.86, + "probability": 0.9243 + }, + { + "start": 9280.54, + "end": 9281.14, + "probability": 0.6783 + }, + { + "start": 9281.72, + "end": 9283.72, + "probability": 0.9874 + }, + { + "start": 9301.26, + "end": 9303.02, + "probability": 0.8003 + }, + { + "start": 9305.84, + "end": 9306.52, + "probability": 0.5514 + }, + { + "start": 9306.58, + "end": 9307.36, + "probability": 0.4147 + }, + { + "start": 9308.56, + "end": 9310.5, + "probability": 0.7108 + }, + { + "start": 9313.56, + "end": 9317.24, + "probability": 0.9644 + }, + { + "start": 9317.3, + "end": 9321.6, + "probability": 0.8116 + }, + { + "start": 9322.12, + "end": 9324.18, + "probability": 0.7927 + }, + { + "start": 9327.22, + "end": 9328.02, + "probability": 0.876 + }, + { + "start": 9329.28, + "end": 9329.63, + "probability": 0.522 + }, + { + "start": 9330.12, + "end": 9331.42, + "probability": 0.813 + }, + { + "start": 9331.52, + "end": 9333.7, + "probability": 0.9427 + }, + { + "start": 9333.82, + "end": 9334.28, + "probability": 0.6457 + }, + { + "start": 9334.42, + "end": 9335.22, + "probability": 0.902 + }, + { + "start": 9335.4, + "end": 9338.18, + "probability": 0.7867 + }, + { + "start": 9338.7, + "end": 9339.96, + "probability": 0.8042 + }, + { + "start": 9340.62, + "end": 9347.46, + "probability": 0.8637 + }, + { + "start": 9347.86, + "end": 9349.22, + "probability": 0.9583 + }, + { + "start": 9350.12, + "end": 9353.92, + "probability": 0.9898 + }, + { + "start": 9355.26, + "end": 9356.44, + "probability": 0.5565 + }, + { + "start": 9357.38, + "end": 9358.4, + "probability": 0.894 + }, + { + "start": 9360.12, + "end": 9360.76, + "probability": 0.4848 + }, + { + "start": 9361.8, + "end": 9365.46, + "probability": 0.7876 + }, + { + "start": 9366.0, + "end": 9367.24, + "probability": 0.2394 + }, + { + "start": 9367.36, + "end": 9370.46, + "probability": 0.8543 + }, + { + "start": 9370.96, + "end": 9373.01, + "probability": 0.6683 + }, + { + "start": 9373.38, + "end": 9374.28, + "probability": 0.7793 + }, + { + "start": 9374.96, + "end": 9376.18, + "probability": 0.7738 + }, + { + "start": 9376.24, + "end": 9378.23, + "probability": 0.7685 + }, + { + "start": 9378.4, + "end": 9379.84, + "probability": 0.8041 + }, + { + "start": 9380.32, + "end": 9381.81, + "probability": 0.8076 + }, + { + "start": 9381.94, + "end": 9384.28, + "probability": 0.7217 + }, + { + "start": 9384.32, + "end": 9385.08, + "probability": 0.8776 + }, + { + "start": 9385.18, + "end": 9386.24, + "probability": 0.9655 + }, + { + "start": 9386.54, + "end": 9391.88, + "probability": 0.8556 + }, + { + "start": 9392.36, + "end": 9393.0, + "probability": 0.7498 + }, + { + "start": 9393.2, + "end": 9393.92, + "probability": 0.9278 + }, + { + "start": 9394.28, + "end": 9396.72, + "probability": 0.9897 + }, + { + "start": 9396.78, + "end": 9397.24, + "probability": 0.9042 + }, + { + "start": 9397.28, + "end": 9397.86, + "probability": 0.931 + }, + { + "start": 9398.18, + "end": 9399.22, + "probability": 0.9805 + }, + { + "start": 9399.32, + "end": 9400.68, + "probability": 0.9401 + }, + { + "start": 9401.06, + "end": 9402.54, + "probability": 0.859 + }, + { + "start": 9403.36, + "end": 9403.85, + "probability": 0.9229 + }, + { + "start": 9404.44, + "end": 9406.52, + "probability": 0.9195 + }, + { + "start": 9406.72, + "end": 9410.66, + "probability": 0.9883 + }, + { + "start": 9410.66, + "end": 9413.18, + "probability": 0.7625 + }, + { + "start": 9414.0, + "end": 9417.8, + "probability": 0.7882 + }, + { + "start": 9417.94, + "end": 9418.34, + "probability": 0.6848 + }, + { + "start": 9418.84, + "end": 9420.32, + "probability": 0.4922 + }, + { + "start": 9420.66, + "end": 9423.38, + "probability": 0.8818 + }, + { + "start": 9423.38, + "end": 9427.9, + "probability": 0.9895 + }, + { + "start": 9427.98, + "end": 9428.76, + "probability": 0.8365 + }, + { + "start": 9428.88, + "end": 9429.94, + "probability": 0.996 + }, + { + "start": 9430.48, + "end": 9431.18, + "probability": 0.6503 + }, + { + "start": 9431.46, + "end": 9434.62, + "probability": 0.7835 + }, + { + "start": 9434.62, + "end": 9436.0, + "probability": 0.978 + }, + { + "start": 9436.34, + "end": 9437.8, + "probability": 0.7686 + }, + { + "start": 9437.96, + "end": 9438.16, + "probability": 0.2367 + }, + { + "start": 9438.22, + "end": 9442.24, + "probability": 0.8438 + }, + { + "start": 9442.56, + "end": 9443.74, + "probability": 0.6743 + }, + { + "start": 9443.84, + "end": 9445.22, + "probability": 0.9775 + }, + { + "start": 9445.6, + "end": 9447.76, + "probability": 0.9958 + }, + { + "start": 9447.9, + "end": 9452.5, + "probability": 0.9277 + }, + { + "start": 9452.5, + "end": 9455.29, + "probability": 0.9881 + }, + { + "start": 9455.86, + "end": 9458.1, + "probability": 0.9724 + }, + { + "start": 9458.24, + "end": 9461.74, + "probability": 0.8608 + }, + { + "start": 9461.78, + "end": 9462.22, + "probability": 0.6393 + }, + { + "start": 9462.3, + "end": 9462.84, + "probability": 0.8237 + }, + { + "start": 9462.88, + "end": 9468.74, + "probability": 0.9363 + }, + { + "start": 9468.82, + "end": 9469.69, + "probability": 0.9562 + }, + { + "start": 9471.36, + "end": 9474.44, + "probability": 0.9455 + }, + { + "start": 9474.5, + "end": 9475.1, + "probability": 0.7071 + }, + { + "start": 9475.18, + "end": 9475.68, + "probability": 0.7756 + }, + { + "start": 9475.74, + "end": 9476.6, + "probability": 0.9075 + }, + { + "start": 9477.38, + "end": 9479.06, + "probability": 0.9479 + }, + { + "start": 9479.2, + "end": 9482.78, + "probability": 0.965 + }, + { + "start": 9483.24, + "end": 9485.68, + "probability": 0.9309 + }, + { + "start": 9485.94, + "end": 9486.85, + "probability": 0.2183 + }, + { + "start": 9488.68, + "end": 9489.0, + "probability": 0.0497 + }, + { + "start": 9489.52, + "end": 9489.59, + "probability": 0.3515 + }, + { + "start": 9489.94, + "end": 9490.54, + "probability": 0.2864 + }, + { + "start": 9490.6, + "end": 9493.2, + "probability": 0.4728 + }, + { + "start": 9493.2, + "end": 9493.32, + "probability": 0.8232 + }, + { + "start": 9493.4, + "end": 9494.52, + "probability": 0.6317 + }, + { + "start": 9494.66, + "end": 9495.45, + "probability": 0.022 + }, + { + "start": 9495.6, + "end": 9496.68, + "probability": 0.4641 + }, + { + "start": 9496.78, + "end": 9497.2, + "probability": 0.3581 + }, + { + "start": 9497.2, + "end": 9497.4, + "probability": 0.1463 + }, + { + "start": 9497.4, + "end": 9498.32, + "probability": 0.6094 + }, + { + "start": 9498.72, + "end": 9499.18, + "probability": 0.1879 + }, + { + "start": 9500.3, + "end": 9502.94, + "probability": 0.0537 + }, + { + "start": 9503.82, + "end": 9505.32, + "probability": 0.4279 + }, + { + "start": 9505.52, + "end": 9508.66, + "probability": 0.0878 + }, + { + "start": 9513.22, + "end": 9514.44, + "probability": 0.2663 + }, + { + "start": 9515.34, + "end": 9515.92, + "probability": 0.0755 + }, + { + "start": 9520.96, + "end": 9521.6, + "probability": 0.0063 + }, + { + "start": 9528.26, + "end": 9533.08, + "probability": 0.2509 + }, + { + "start": 9535.38, + "end": 9535.9, + "probability": 0.0787 + }, + { + "start": 9535.9, + "end": 9538.44, + "probability": 0.0468 + }, + { + "start": 9538.74, + "end": 9542.14, + "probability": 0.1291 + }, + { + "start": 9542.26, + "end": 9547.02, + "probability": 0.042 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9581.0, + "end": 9581.0, + "probability": 0.0 + }, + { + "start": 9601.5, + "end": 9602.5, + "probability": 0.3125 + }, + { + "start": 9604.32, + "end": 9604.68, + "probability": 0.1011 + }, + { + "start": 9604.68, + "end": 9605.59, + "probability": 0.0163 + }, + { + "start": 9608.68, + "end": 9609.84, + "probability": 0.0685 + }, + { + "start": 9610.84, + "end": 9611.96, + "probability": 0.057 + }, + { + "start": 9612.34, + "end": 9613.82, + "probability": 0.1464 + }, + { + "start": 9613.82, + "end": 9615.12, + "probability": 0.0309 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.0, + "end": 9701.0, + "probability": 0.0 + }, + { + "start": 9701.2, + "end": 9703.52, + "probability": 0.9971 + }, + { + "start": 9705.36, + "end": 9711.9, + "probability": 0.9458 + }, + { + "start": 9712.78, + "end": 9716.3, + "probability": 0.9504 + }, + { + "start": 9717.06, + "end": 9719.06, + "probability": 0.9321 + }, + { + "start": 9719.06, + "end": 9722.26, + "probability": 0.9943 + }, + { + "start": 9722.78, + "end": 9727.36, + "probability": 0.9932 + }, + { + "start": 9728.38, + "end": 9729.98, + "probability": 0.7908 + }, + { + "start": 9730.18, + "end": 9732.48, + "probability": 0.9941 + }, + { + "start": 9732.48, + "end": 9733.04, + "probability": 0.398 + }, + { + "start": 9733.14, + "end": 9735.84, + "probability": 0.9814 + }, + { + "start": 9738.6, + "end": 9742.38, + "probability": 0.9419 + }, + { + "start": 9743.06, + "end": 9748.65, + "probability": 0.9735 + }, + { + "start": 9748.82, + "end": 9752.44, + "probability": 0.995 + }, + { + "start": 9752.52, + "end": 9755.08, + "probability": 0.7619 + }, + { + "start": 9758.08, + "end": 9762.7, + "probability": 0.9061 + }, + { + "start": 9762.88, + "end": 9763.78, + "probability": 0.6979 + }, + { + "start": 9764.2, + "end": 9768.84, + "probability": 0.7915 + }, + { + "start": 9769.04, + "end": 9771.36, + "probability": 0.9236 + }, + { + "start": 9772.38, + "end": 9775.12, + "probability": 0.9925 + }, + { + "start": 9776.84, + "end": 9779.76, + "probability": 0.9937 + }, + { + "start": 9779.76, + "end": 9783.0, + "probability": 0.9877 + }, + { + "start": 9783.22, + "end": 9785.4, + "probability": 0.9775 + }, + { + "start": 9786.26, + "end": 9787.92, + "probability": 0.9984 + }, + { + "start": 9787.98, + "end": 9789.62, + "probability": 0.8692 + }, + { + "start": 9790.34, + "end": 9792.64, + "probability": 0.8989 + }, + { + "start": 9792.76, + "end": 9792.98, + "probability": 0.6941 + }, + { + "start": 9793.15, + "end": 9793.62, + "probability": 0.2059 + }, + { + "start": 9794.12, + "end": 9794.2, + "probability": 0.5627 + }, + { + "start": 9794.3, + "end": 9799.2, + "probability": 0.887 + }, + { + "start": 9799.68, + "end": 9802.32, + "probability": 0.6038 + }, + { + "start": 9802.38, + "end": 9804.96, + "probability": 0.8617 + }, + { + "start": 9804.96, + "end": 9808.76, + "probability": 0.9959 + }, + { + "start": 9809.24, + "end": 9810.41, + "probability": 0.9785 + }, + { + "start": 9810.84, + "end": 9812.3, + "probability": 0.9629 + }, + { + "start": 9812.54, + "end": 9818.9, + "probability": 0.9919 + }, + { + "start": 9819.08, + "end": 9820.88, + "probability": 0.6458 + }, + { + "start": 9821.16, + "end": 9822.74, + "probability": 0.6685 + }, + { + "start": 9822.86, + "end": 9825.78, + "probability": 0.7971 + }, + { + "start": 9826.6, + "end": 9831.02, + "probability": 0.9456 + }, + { + "start": 9831.58, + "end": 9833.75, + "probability": 0.9649 + }, + { + "start": 9834.04, + "end": 9834.4, + "probability": 0.1681 + }, + { + "start": 9834.8, + "end": 9835.62, + "probability": 0.8506 + }, + { + "start": 9835.8, + "end": 9836.82, + "probability": 0.6273 + }, + { + "start": 9837.28, + "end": 9837.91, + "probability": 0.0846 + }, + { + "start": 9837.94, + "end": 9838.0, + "probability": 0.56 + }, + { + "start": 9838.0, + "end": 9838.5, + "probability": 0.1052 + }, + { + "start": 9838.5, + "end": 9838.85, + "probability": 0.268 + }, + { + "start": 9840.14, + "end": 9840.6, + "probability": 0.6602 + }, + { + "start": 9840.72, + "end": 9844.5, + "probability": 0.9691 + }, + { + "start": 9844.54, + "end": 9845.76, + "probability": 0.7314 + }, + { + "start": 9846.44, + "end": 9849.58, + "probability": 0.9724 + }, + { + "start": 9850.2, + "end": 9851.66, + "probability": 0.6147 + }, + { + "start": 9851.7, + "end": 9853.38, + "probability": 0.7571 + }, + { + "start": 9853.86, + "end": 9855.58, + "probability": 0.7215 + }, + { + "start": 9855.78, + "end": 9856.62, + "probability": 0.9637 + }, + { + "start": 9856.7, + "end": 9856.98, + "probability": 0.3405 + }, + { + "start": 9857.08, + "end": 9858.62, + "probability": 0.814 + }, + { + "start": 9858.98, + "end": 9860.3, + "probability": 0.7437 + }, + { + "start": 9860.42, + "end": 9861.02, + "probability": 0.5929 + }, + { + "start": 9861.14, + "end": 9861.68, + "probability": 0.9496 + }, + { + "start": 9862.57, + "end": 9864.46, + "probability": 0.9963 + }, + { + "start": 9865.3, + "end": 9867.58, + "probability": 0.9676 + }, + { + "start": 9868.02, + "end": 9869.56, + "probability": 0.7903 + }, + { + "start": 9870.68, + "end": 9872.12, + "probability": 0.7566 + }, + { + "start": 9872.14, + "end": 9872.86, + "probability": 0.6127 + }, + { + "start": 9873.14, + "end": 9873.62, + "probability": 0.0232 + }, + { + "start": 9873.72, + "end": 9875.84, + "probability": 0.786 + }, + { + "start": 9876.22, + "end": 9878.2, + "probability": 0.9598 + }, + { + "start": 9878.26, + "end": 9878.38, + "probability": 0.8916 + }, + { + "start": 9878.46, + "end": 9878.88, + "probability": 0.8328 + }, + { + "start": 9879.0, + "end": 9880.58, + "probability": 0.6257 + }, + { + "start": 9880.78, + "end": 9881.86, + "probability": 0.7007 + }, + { + "start": 9881.86, + "end": 9882.82, + "probability": 0.8218 + }, + { + "start": 9882.96, + "end": 9883.06, + "probability": 0.2734 + }, + { + "start": 9883.36, + "end": 9883.6, + "probability": 0.8761 + }, + { + "start": 9883.66, + "end": 9887.35, + "probability": 0.9644 + }, + { + "start": 9887.7, + "end": 9888.3, + "probability": 0.5347 + }, + { + "start": 9888.3, + "end": 9889.64, + "probability": 0.9383 + }, + { + "start": 9890.0, + "end": 9891.56, + "probability": 0.9124 + }, + { + "start": 9892.0, + "end": 9893.22, + "probability": 0.9824 + }, + { + "start": 9893.72, + "end": 9897.54, + "probability": 0.8252 + }, + { + "start": 9897.72, + "end": 9898.74, + "probability": 0.8858 + }, + { + "start": 9898.82, + "end": 9902.2, + "probability": 0.9707 + }, + { + "start": 9903.34, + "end": 9907.3, + "probability": 0.8929 + }, + { + "start": 9907.3, + "end": 9909.44, + "probability": 0.9936 + }, + { + "start": 9909.64, + "end": 9912.08, + "probability": 0.859 + }, + { + "start": 9912.9, + "end": 9917.66, + "probability": 0.6869 + }, + { + "start": 9917.8, + "end": 9918.64, + "probability": 0.9186 + }, + { + "start": 9918.76, + "end": 9924.38, + "probability": 0.9928 + }, + { + "start": 9924.96, + "end": 9927.04, + "probability": 0.7825 + }, + { + "start": 9927.78, + "end": 9933.1, + "probability": 0.9946 + }, + { + "start": 9933.44, + "end": 9935.72, + "probability": 0.9687 + }, + { + "start": 9936.04, + "end": 9937.56, + "probability": 0.9927 + }, + { + "start": 9937.62, + "end": 9938.9, + "probability": 0.8964 + }, + { + "start": 9939.08, + "end": 9940.7, + "probability": 0.9554 + }, + { + "start": 9940.86, + "end": 9943.62, + "probability": 0.9839 + }, + { + "start": 9944.26, + "end": 9946.5, + "probability": 0.7788 + }, + { + "start": 9946.6, + "end": 9947.37, + "probability": 0.6998 + }, + { + "start": 9949.64, + "end": 9951.56, + "probability": 0.8993 + }, + { + "start": 9951.64, + "end": 9953.54, + "probability": 0.6743 + }, + { + "start": 9953.54, + "end": 9953.9, + "probability": 0.3291 + }, + { + "start": 9954.46, + "end": 9954.5, + "probability": 0.7659 + }, + { + "start": 9954.8, + "end": 9957.22, + "probability": 0.9702 + }, + { + "start": 9957.26, + "end": 9960.14, + "probability": 0.9921 + }, + { + "start": 9960.14, + "end": 9963.82, + "probability": 0.8664 + }, + { + "start": 9964.06, + "end": 9965.92, + "probability": 0.9876 + }, + { + "start": 9966.32, + "end": 9967.52, + "probability": 0.7434 + }, + { + "start": 9967.92, + "end": 9969.94, + "probability": 0.7769 + }, + { + "start": 9969.94, + "end": 9972.02, + "probability": 0.9739 + }, + { + "start": 9972.26, + "end": 9975.76, + "probability": 0.986 + }, + { + "start": 9976.06, + "end": 9976.4, + "probability": 0.4387 + }, + { + "start": 9976.6, + "end": 9977.64, + "probability": 0.7946 + }, + { + "start": 9978.08, + "end": 9978.08, + "probability": 0.1157 + }, + { + "start": 9978.08, + "end": 9980.2, + "probability": 0.8927 + }, + { + "start": 9980.24, + "end": 9980.86, + "probability": 0.803 + }, + { + "start": 9981.0, + "end": 9986.48, + "probability": 0.9304 + }, + { + "start": 9986.48, + "end": 9990.76, + "probability": 0.9732 + }, + { + "start": 9990.9, + "end": 9993.52, + "probability": 0.9557 + }, + { + "start": 9993.66, + "end": 9997.58, + "probability": 0.9858 + }, + { + "start": 9997.78, + "end": 9998.54, + "probability": 0.7981 + }, + { + "start": 9998.68, + "end": 10001.84, + "probability": 0.9728 + }, + { + "start": 10001.84, + "end": 10004.7, + "probability": 0.9496 + }, + { + "start": 10004.94, + "end": 10005.42, + "probability": 0.8843 + }, + { + "start": 10005.64, + "end": 10006.74, + "probability": 0.7638 + }, + { + "start": 10007.12, + "end": 10009.4, + "probability": 0.8512 + }, + { + "start": 10009.48, + "end": 10013.92, + "probability": 0.9539 + }, + { + "start": 10014.22, + "end": 10015.58, + "probability": 0.2824 + }, + { + "start": 10015.58, + "end": 10016.38, + "probability": 0.8289 + }, + { + "start": 10016.38, + "end": 10021.06, + "probability": 0.8827 + }, + { + "start": 10021.24, + "end": 10021.84, + "probability": 0.6007 + }, + { + "start": 10022.0, + "end": 10026.72, + "probability": 0.9672 + }, + { + "start": 10026.92, + "end": 10032.62, + "probability": 0.9921 + }, + { + "start": 10032.76, + "end": 10033.12, + "probability": 0.6729 + }, + { + "start": 10034.47, + "end": 10035.3, + "probability": 0.1644 + }, + { + "start": 10035.3, + "end": 10037.2, + "probability": 0.8319 + }, + { + "start": 10037.2, + "end": 10037.44, + "probability": 0.4147 + }, + { + "start": 10037.52, + "end": 10038.43, + "probability": 0.5106 + }, + { + "start": 10038.58, + "end": 10042.26, + "probability": 0.799 + }, + { + "start": 10042.32, + "end": 10043.16, + "probability": 0.7001 + }, + { + "start": 10043.2, + "end": 10043.76, + "probability": 0.7367 + }, + { + "start": 10043.8, + "end": 10044.9, + "probability": 0.7444 + }, + { + "start": 10045.16, + "end": 10047.94, + "probability": 0.9907 + }, + { + "start": 10049.12, + "end": 10053.4, + "probability": 0.9718 + }, + { + "start": 10053.44, + "end": 10053.66, + "probability": 0.8301 + }, + { + "start": 10053.74, + "end": 10055.7, + "probability": 0.7666 + }, + { + "start": 10056.14, + "end": 10056.92, + "probability": 0.9287 + }, + { + "start": 10057.02, + "end": 10061.58, + "probability": 0.9629 + }, + { + "start": 10062.18, + "end": 10063.66, + "probability": 0.906 + }, + { + "start": 10064.14, + "end": 10064.91, + "probability": 0.9554 + }, + { + "start": 10065.22, + "end": 10066.49, + "probability": 0.8176 + }, + { + "start": 10066.8, + "end": 10068.46, + "probability": 0.8779 + }, + { + "start": 10068.92, + "end": 10069.84, + "probability": 0.9189 + }, + { + "start": 10069.98, + "end": 10070.74, + "probability": 0.7866 + }, + { + "start": 10072.06, + "end": 10075.28, + "probability": 0.9297 + }, + { + "start": 10076.14, + "end": 10077.82, + "probability": 0.87 + }, + { + "start": 10078.64, + "end": 10080.9, + "probability": 0.9925 + }, + { + "start": 10081.88, + "end": 10084.9, + "probability": 0.9862 + }, + { + "start": 10085.0, + "end": 10086.26, + "probability": 0.8896 + }, + { + "start": 10086.6, + "end": 10087.87, + "probability": 0.9402 + }, + { + "start": 10088.54, + "end": 10089.48, + "probability": 0.7905 + }, + { + "start": 10089.68, + "end": 10092.14, + "probability": 0.3545 + }, + { + "start": 10092.14, + "end": 10092.62, + "probability": 0.6674 + }, + { + "start": 10093.4, + "end": 10093.76, + "probability": 0.6198 + }, + { + "start": 10093.92, + "end": 10095.08, + "probability": 0.7806 + }, + { + "start": 10095.16, + "end": 10095.68, + "probability": 0.6392 + }, + { + "start": 10096.56, + "end": 10099.64, + "probability": 0.9886 + }, + { + "start": 10100.4, + "end": 10100.76, + "probability": 0.9028 + }, + { + "start": 10101.02, + "end": 10102.98, + "probability": 0.7109 + }, + { + "start": 10103.18, + "end": 10104.08, + "probability": 0.829 + }, + { + "start": 10104.76, + "end": 10108.04, + "probability": 0.9976 + }, + { + "start": 10108.06, + "end": 10109.18, + "probability": 0.5129 + }, + { + "start": 10110.2, + "end": 10113.94, + "probability": 0.9966 + }, + { + "start": 10114.0, + "end": 10114.78, + "probability": 0.9498 + }, + { + "start": 10115.34, + "end": 10117.88, + "probability": 0.9963 + }, + { + "start": 10118.24, + "end": 10124.04, + "probability": 0.9525 + }, + { + "start": 10124.08, + "end": 10125.52, + "probability": 0.651 + }, + { + "start": 10125.52, + "end": 10128.12, + "probability": 0.8254 + }, + { + "start": 10128.24, + "end": 10129.08, + "probability": 0.6271 + }, + { + "start": 10129.74, + "end": 10129.92, + "probability": 0.1991 + }, + { + "start": 10129.92, + "end": 10132.54, + "probability": 0.4678 + }, + { + "start": 10132.54, + "end": 10132.86, + "probability": 0.4652 + }, + { + "start": 10132.86, + "end": 10132.86, + "probability": 0.3221 + }, + { + "start": 10132.86, + "end": 10133.72, + "probability": 0.7411 + }, + { + "start": 10133.74, + "end": 10134.69, + "probability": 0.2899 + }, + { + "start": 10135.72, + "end": 10139.76, + "probability": 0.946 + }, + { + "start": 10139.76, + "end": 10142.5, + "probability": 0.7838 + }, + { + "start": 10143.52, + "end": 10146.04, + "probability": 0.2248 + }, + { + "start": 10146.14, + "end": 10146.78, + "probability": 0.417 + }, + { + "start": 10146.84, + "end": 10147.78, + "probability": 0.6927 + }, + { + "start": 10162.9, + "end": 10162.9, + "probability": 0.2558 + }, + { + "start": 10162.9, + "end": 10164.56, + "probability": 0.3271 + }, + { + "start": 10164.72, + "end": 10168.92, + "probability": 0.6578 + }, + { + "start": 10169.96, + "end": 10173.14, + "probability": 0.6594 + }, + { + "start": 10173.34, + "end": 10175.52, + "probability": 0.7267 + }, + { + "start": 10177.14, + "end": 10180.44, + "probability": 0.0286 + }, + { + "start": 10180.46, + "end": 10180.46, + "probability": 0.2129 + }, + { + "start": 10180.46, + "end": 10182.3, + "probability": 0.3544 + }, + { + "start": 10182.4, + "end": 10182.4, + "probability": 0.3523 + }, + { + "start": 10182.4, + "end": 10182.4, + "probability": 0.3747 + }, + { + "start": 10182.4, + "end": 10182.4, + "probability": 0.1085 + }, + { + "start": 10184.1, + "end": 10192.66, + "probability": 0.2302 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10265.0, + "end": 10265.0, + "probability": 0.0 + }, + { + "start": 10276.7, + "end": 10278.82, + "probability": 0.0766 + }, + { + "start": 10278.82, + "end": 10283.26, + "probability": 0.2917 + }, + { + "start": 10283.26, + "end": 10283.8, + "probability": 0.1608 + }, + { + "start": 10284.36, + "end": 10286.52, + "probability": 0.0371 + }, + { + "start": 10286.52, + "end": 10288.05, + "probability": 0.2312 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.0, + "end": 10290.0, + "probability": 0.0 + }, + { + "start": 10290.76, + "end": 10290.76, + "probability": 0.0215 + }, + { + "start": 10290.76, + "end": 10293.58, + "probability": 0.9573 + }, + { + "start": 10293.98, + "end": 10296.54, + "probability": 0.9893 + }, + { + "start": 10296.66, + "end": 10297.49, + "probability": 0.8605 + }, + { + "start": 10298.2, + "end": 10300.52, + "probability": 0.9262 + }, + { + "start": 10300.94, + "end": 10304.8, + "probability": 0.998 + }, + { + "start": 10304.86, + "end": 10307.2, + "probability": 0.8269 + }, + { + "start": 10307.34, + "end": 10308.06, + "probability": 0.8501 + }, + { + "start": 10308.18, + "end": 10309.02, + "probability": 0.7556 + }, + { + "start": 10309.3, + "end": 10310.62, + "probability": 0.9728 + }, + { + "start": 10310.7, + "end": 10311.26, + "probability": 0.7382 + }, + { + "start": 10311.38, + "end": 10312.26, + "probability": 0.8689 + }, + { + "start": 10313.04, + "end": 10313.92, + "probability": 0.9496 + }, + { + "start": 10314.96, + "end": 10317.56, + "probability": 0.9576 + }, + { + "start": 10318.4, + "end": 10319.82, + "probability": 0.8173 + }, + { + "start": 10319.9, + "end": 10323.1, + "probability": 0.9938 + }, + { + "start": 10323.74, + "end": 10327.34, + "probability": 0.9938 + }, + { + "start": 10328.04, + "end": 10332.14, + "probability": 0.9331 + }, + { + "start": 10332.14, + "end": 10336.82, + "probability": 0.9974 + }, + { + "start": 10337.98, + "end": 10340.8, + "probability": 0.9989 + }, + { + "start": 10340.8, + "end": 10344.34, + "probability": 0.9983 + }, + { + "start": 10344.76, + "end": 10348.94, + "probability": 0.9984 + }, + { + "start": 10349.18, + "end": 10352.4, + "probability": 0.9959 + }, + { + "start": 10353.52, + "end": 10356.06, + "probability": 0.9952 + }, + { + "start": 10356.06, + "end": 10358.48, + "probability": 0.9966 + }, + { + "start": 10359.24, + "end": 10361.2, + "probability": 0.9963 + }, + { + "start": 10361.36, + "end": 10363.18, + "probability": 0.9157 + }, + { + "start": 10363.54, + "end": 10364.5, + "probability": 0.8204 + }, + { + "start": 10365.48, + "end": 10365.82, + "probability": 0.4406 + }, + { + "start": 10365.88, + "end": 10366.6, + "probability": 0.8868 + }, + { + "start": 10366.68, + "end": 10369.74, + "probability": 0.9897 + }, + { + "start": 10370.32, + "end": 10372.36, + "probability": 0.9802 + }, + { + "start": 10373.04, + "end": 10377.2, + "probability": 0.9944 + }, + { + "start": 10377.58, + "end": 10379.44, + "probability": 0.9946 + }, + { + "start": 10379.48, + "end": 10380.86, + "probability": 0.9855 + }, + { + "start": 10381.2, + "end": 10381.44, + "probability": 0.7989 + }, + { + "start": 10382.5, + "end": 10385.0, + "probability": 0.9697 + }, + { + "start": 10385.12, + "end": 10387.68, + "probability": 0.927 + }, + { + "start": 10387.78, + "end": 10388.46, + "probability": 0.3947 + }, + { + "start": 10388.52, + "end": 10389.78, + "probability": 0.9906 + }, + { + "start": 10400.68, + "end": 10403.24, + "probability": 0.9751 + }, + { + "start": 10405.58, + "end": 10405.84, + "probability": 0.2792 + }, + { + "start": 10405.88, + "end": 10408.06, + "probability": 0.5778 + }, + { + "start": 10409.6, + "end": 10412.49, + "probability": 0.9521 + }, + { + "start": 10415.86, + "end": 10419.7, + "probability": 0.7906 + }, + { + "start": 10420.7, + "end": 10423.08, + "probability": 0.9551 + }, + { + "start": 10423.58, + "end": 10424.84, + "probability": 0.9479 + }, + { + "start": 10426.04, + "end": 10430.3, + "probability": 0.8742 + }, + { + "start": 10431.12, + "end": 10432.78, + "probability": 0.9251 + }, + { + "start": 10432.96, + "end": 10437.16, + "probability": 0.9874 + }, + { + "start": 10437.28, + "end": 10438.56, + "probability": 0.8472 + }, + { + "start": 10439.52, + "end": 10443.62, + "probability": 0.974 + }, + { + "start": 10446.04, + "end": 10447.42, + "probability": 0.9604 + }, + { + "start": 10448.28, + "end": 10453.8, + "probability": 0.6864 + }, + { + "start": 10455.1, + "end": 10457.1, + "probability": 0.8334 + }, + { + "start": 10458.78, + "end": 10463.14, + "probability": 0.8779 + }, + { + "start": 10464.04, + "end": 10471.74, + "probability": 0.8812 + }, + { + "start": 10473.06, + "end": 10480.0, + "probability": 0.7388 + }, + { + "start": 10480.42, + "end": 10481.6, + "probability": 0.827 + }, + { + "start": 10482.34, + "end": 10484.36, + "probability": 0.6259 + }, + { + "start": 10484.46, + "end": 10487.34, + "probability": 0.8994 + }, + { + "start": 10489.59, + "end": 10493.26, + "probability": 0.9546 + }, + { + "start": 10493.34, + "end": 10499.12, + "probability": 0.9346 + }, + { + "start": 10499.58, + "end": 10503.94, + "probability": 0.9396 + }, + { + "start": 10504.62, + "end": 10505.76, + "probability": 0.8747 + }, + { + "start": 10506.47, + "end": 10510.9, + "probability": 0.9074 + }, + { + "start": 10511.08, + "end": 10511.8, + "probability": 0.9386 + }, + { + "start": 10511.9, + "end": 10512.74, + "probability": 0.9425 + }, + { + "start": 10512.88, + "end": 10513.54, + "probability": 0.8936 + }, + { + "start": 10513.62, + "end": 10514.28, + "probability": 0.5731 + }, + { + "start": 10514.42, + "end": 10516.72, + "probability": 0.6841 + }, + { + "start": 10516.96, + "end": 10519.08, + "probability": 0.8064 + }, + { + "start": 10520.12, + "end": 10521.36, + "probability": 0.9567 + }, + { + "start": 10522.56, + "end": 10527.66, + "probability": 0.9783 + }, + { + "start": 10529.0, + "end": 10533.73, + "probability": 0.849 + }, + { + "start": 10536.08, + "end": 10540.72, + "probability": 0.9737 + }, + { + "start": 10540.82, + "end": 10541.7, + "probability": 0.998 + }, + { + "start": 10543.8, + "end": 10546.68, + "probability": 0.9565 + }, + { + "start": 10547.38, + "end": 10550.0, + "probability": 0.9948 + }, + { + "start": 10550.86, + "end": 10553.54, + "probability": 0.9805 + }, + { + "start": 10554.64, + "end": 10559.78, + "probability": 0.9822 + }, + { + "start": 10559.94, + "end": 10561.0, + "probability": 0.7998 + }, + { + "start": 10562.3, + "end": 10564.18, + "probability": 0.9639 + }, + { + "start": 10564.28, + "end": 10567.12, + "probability": 0.9814 + }, + { + "start": 10567.9, + "end": 10568.52, + "probability": 0.4871 + }, + { + "start": 10568.6, + "end": 10570.46, + "probability": 0.9712 + }, + { + "start": 10570.88, + "end": 10571.18, + "probability": 0.9192 + }, + { + "start": 10571.88, + "end": 10576.51, + "probability": 0.9705 + }, + { + "start": 10576.98, + "end": 10578.3, + "probability": 0.7734 + }, + { + "start": 10578.38, + "end": 10579.06, + "probability": 0.7033 + }, + { + "start": 10579.64, + "end": 10581.16, + "probability": 0.8854 + }, + { + "start": 10581.26, + "end": 10584.42, + "probability": 0.9953 + }, + { + "start": 10584.5, + "end": 10585.78, + "probability": 0.9949 + }, + { + "start": 10586.28, + "end": 10587.78, + "probability": 0.564 + }, + { + "start": 10587.8, + "end": 10589.3, + "probability": 0.9972 + }, + { + "start": 10589.84, + "end": 10592.1, + "probability": 0.8493 + }, + { + "start": 10592.76, + "end": 10594.52, + "probability": 0.8826 + }, + { + "start": 10595.72, + "end": 10597.56, + "probability": 0.9055 + }, + { + "start": 10597.7, + "end": 10602.98, + "probability": 0.8317 + }, + { + "start": 10602.98, + "end": 10605.8, + "probability": 0.9894 + }, + { + "start": 10606.32, + "end": 10608.74, + "probability": 0.9677 + }, + { + "start": 10609.32, + "end": 10611.42, + "probability": 0.915 + }, + { + "start": 10612.26, + "end": 10618.7, + "probability": 0.9915 + }, + { + "start": 10618.82, + "end": 10620.36, + "probability": 0.7938 + }, + { + "start": 10621.14, + "end": 10624.92, + "probability": 0.8206 + }, + { + "start": 10624.96, + "end": 10627.02, + "probability": 0.9736 + }, + { + "start": 10627.46, + "end": 10628.5, + "probability": 0.7179 + }, + { + "start": 10629.48, + "end": 10632.68, + "probability": 0.8316 + }, + { + "start": 10633.44, + "end": 10636.2, + "probability": 0.9046 + }, + { + "start": 10636.5, + "end": 10638.36, + "probability": 0.9396 + }, + { + "start": 10638.76, + "end": 10640.6, + "probability": 0.5875 + }, + { + "start": 10640.88, + "end": 10642.66, + "probability": 0.7284 + }, + { + "start": 10643.06, + "end": 10643.06, + "probability": 0.3199 + }, + { + "start": 10643.08, + "end": 10647.56, + "probability": 0.8467 + }, + { + "start": 10648.0, + "end": 10650.4, + "probability": 0.9675 + }, + { + "start": 10650.92, + "end": 10651.14, + "probability": 0.6216 + }, + { + "start": 10651.2, + "end": 10654.52, + "probability": 0.7194 + }, + { + "start": 10654.9, + "end": 10659.48, + "probability": 0.93 + }, + { + "start": 10660.36, + "end": 10664.22, + "probability": 0.9269 + }, + { + "start": 10675.0, + "end": 10676.72, + "probability": 0.6788 + }, + { + "start": 10681.98, + "end": 10683.2, + "probability": 0.7703 + }, + { + "start": 10683.76, + "end": 10684.5, + "probability": 0.8767 + }, + { + "start": 10686.08, + "end": 10687.06, + "probability": 0.8325 + }, + { + "start": 10689.16, + "end": 10691.44, + "probability": 0.8364 + }, + { + "start": 10692.26, + "end": 10699.3, + "probability": 0.9956 + }, + { + "start": 10699.96, + "end": 10705.8, + "probability": 0.9268 + }, + { + "start": 10706.18, + "end": 10706.86, + "probability": 0.7225 + }, + { + "start": 10708.06, + "end": 10713.32, + "probability": 0.9801 + }, + { + "start": 10713.94, + "end": 10716.7, + "probability": 0.9971 + }, + { + "start": 10717.32, + "end": 10721.44, + "probability": 0.9922 + }, + { + "start": 10723.62, + "end": 10732.12, + "probability": 0.9819 + }, + { + "start": 10735.36, + "end": 10739.2, + "probability": 0.7335 + }, + { + "start": 10741.1, + "end": 10743.06, + "probability": 0.9525 + }, + { + "start": 10743.8, + "end": 10744.42, + "probability": 0.8531 + }, + { + "start": 10745.86, + "end": 10748.9, + "probability": 0.8461 + }, + { + "start": 10749.96, + "end": 10750.62, + "probability": 0.7193 + }, + { + "start": 10751.5, + "end": 10753.5, + "probability": 0.8796 + }, + { + "start": 10754.56, + "end": 10761.16, + "probability": 0.9735 + }, + { + "start": 10762.06, + "end": 10764.12, + "probability": 0.9107 + }, + { + "start": 10765.18, + "end": 10767.02, + "probability": 0.6772 + }, + { + "start": 10768.04, + "end": 10769.86, + "probability": 0.9391 + }, + { + "start": 10770.92, + "end": 10775.3, + "probability": 0.7925 + }, + { + "start": 10775.3, + "end": 10777.1, + "probability": 0.8724 + }, + { + "start": 10777.56, + "end": 10781.2, + "probability": 0.952 + }, + { + "start": 10781.92, + "end": 10783.72, + "probability": 0.5682 + }, + { + "start": 10785.36, + "end": 10789.04, + "probability": 0.8517 + }, + { + "start": 10795.54, + "end": 10796.5, + "probability": 0.8058 + }, + { + "start": 10798.3, + "end": 10801.48, + "probability": 0.998 + }, + { + "start": 10801.48, + "end": 10808.28, + "probability": 0.9945 + }, + { + "start": 10809.44, + "end": 10810.6, + "probability": 0.5781 + }, + { + "start": 10811.7, + "end": 10813.74, + "probability": 0.9908 + }, + { + "start": 10814.84, + "end": 10820.12, + "probability": 0.9941 + }, + { + "start": 10825.66, + "end": 10830.94, + "probability": 0.9991 + }, + { + "start": 10832.34, + "end": 10835.02, + "probability": 0.814 + }, + { + "start": 10835.66, + "end": 10841.68, + "probability": 0.9773 + }, + { + "start": 10843.38, + "end": 10850.56, + "probability": 0.9992 + }, + { + "start": 10850.56, + "end": 10858.5, + "probability": 0.9999 + }, + { + "start": 10859.74, + "end": 10863.62, + "probability": 0.9899 + }, + { + "start": 10864.12, + "end": 10866.26, + "probability": 0.993 + }, + { + "start": 10872.26, + "end": 10873.18, + "probability": 0.453 + }, + { + "start": 10873.64, + "end": 10875.08, + "probability": 0.4648 + }, + { + "start": 10875.84, + "end": 10876.74, + "probability": 0.9236 + }, + { + "start": 10877.8, + "end": 10882.2, + "probability": 0.9487 + }, + { + "start": 10882.76, + "end": 10890.74, + "probability": 0.9681 + }, + { + "start": 10891.44, + "end": 10897.8, + "probability": 0.9882 + }, + { + "start": 10898.26, + "end": 10899.92, + "probability": 0.9568 + }, + { + "start": 10900.18, + "end": 10902.92, + "probability": 0.9864 + }, + { + "start": 10903.64, + "end": 10904.7, + "probability": 0.8426 + }, + { + "start": 10906.82, + "end": 10911.64, + "probability": 0.9955 + }, + { + "start": 10912.22, + "end": 10914.88, + "probability": 0.998 + }, + { + "start": 10915.06, + "end": 10919.4, + "probability": 0.8341 + }, + { + "start": 10920.18, + "end": 10923.98, + "probability": 0.9948 + }, + { + "start": 10924.18, + "end": 10924.62, + "probability": 0.9099 + }, + { + "start": 10925.0, + "end": 10927.0, + "probability": 0.9182 + }, + { + "start": 10927.64, + "end": 10930.9, + "probability": 0.7732 + }, + { + "start": 10930.98, + "end": 10931.5, + "probability": 0.3242 + }, + { + "start": 10931.54, + "end": 10933.28, + "probability": 0.9702 + }, + { + "start": 10934.06, + "end": 10935.45, + "probability": 0.9141 + }, + { + "start": 10936.98, + "end": 10939.32, + "probability": 0.981 + }, + { + "start": 10939.4, + "end": 10941.13, + "probability": 0.7239 + }, + { + "start": 10941.28, + "end": 10943.0, + "probability": 0.9144 + }, + { + "start": 10953.12, + "end": 10954.06, + "probability": 0.6829 + }, + { + "start": 10954.6, + "end": 10957.66, + "probability": 0.8305 + }, + { + "start": 10958.88, + "end": 10966.64, + "probability": 0.988 + }, + { + "start": 10966.64, + "end": 10973.02, + "probability": 0.9861 + }, + { + "start": 10974.0, + "end": 10980.0, + "probability": 0.6569 + }, + { + "start": 10980.88, + "end": 10985.18, + "probability": 0.4729 + }, + { + "start": 10985.82, + "end": 10989.02, + "probability": 0.8552 + }, + { + "start": 10989.68, + "end": 10990.66, + "probability": 0.6095 + }, + { + "start": 10991.86, + "end": 10997.42, + "probability": 0.9702 + }, + { + "start": 10997.88, + "end": 11001.86, + "probability": 0.8792 + }, + { + "start": 11001.86, + "end": 11005.78, + "probability": 0.9309 + }, + { + "start": 11006.14, + "end": 11007.18, + "probability": 0.7578 + }, + { + "start": 11008.33, + "end": 11012.54, + "probability": 0.9771 + }, + { + "start": 11014.54, + "end": 11018.1, + "probability": 0.9927 + }, + { + "start": 11018.74, + "end": 11020.12, + "probability": 0.8702 + }, + { + "start": 11020.8, + "end": 11025.48, + "probability": 0.9907 + }, + { + "start": 11026.32, + "end": 11030.31, + "probability": 0.9546 + }, + { + "start": 11031.7, + "end": 11031.9, + "probability": 0.4004 + }, + { + "start": 11031.9, + "end": 11034.94, + "probability": 0.9858 + }, + { + "start": 11035.6, + "end": 11036.0, + "probability": 0.9333 + }, + { + "start": 11036.52, + "end": 11041.16, + "probability": 0.9958 + }, + { + "start": 11041.82, + "end": 11043.12, + "probability": 0.5002 + }, + { + "start": 11043.14, + "end": 11044.32, + "probability": 0.6661 + }, + { + "start": 11044.36, + "end": 11048.12, + "probability": 0.9417 + }, + { + "start": 11048.46, + "end": 11052.8, + "probability": 0.9833 + }, + { + "start": 11053.36, + "end": 11055.24, + "probability": 0.8192 + }, + { + "start": 11056.5, + "end": 11057.62, + "probability": 0.9677 + }, + { + "start": 11057.8, + "end": 11061.06, + "probability": 0.9943 + }, + { + "start": 11061.06, + "end": 11064.6, + "probability": 0.9922 + }, + { + "start": 11065.3, + "end": 11068.1, + "probability": 0.7042 + }, + { + "start": 11068.54, + "end": 11069.74, + "probability": 0.8186 + }, + { + "start": 11070.26, + "end": 11074.84, + "probability": 0.9969 + }, + { + "start": 11074.88, + "end": 11075.66, + "probability": 0.7097 + }, + { + "start": 11076.1, + "end": 11077.5, + "probability": 0.9784 + }, + { + "start": 11077.76, + "end": 11083.64, + "probability": 0.9902 + }, + { + "start": 11084.32, + "end": 11088.74, + "probability": 0.9822 + }, + { + "start": 11089.12, + "end": 11090.28, + "probability": 0.973 + }, + { + "start": 11090.62, + "end": 11094.4, + "probability": 0.9343 + }, + { + "start": 11094.88, + "end": 11095.74, + "probability": 0.9761 + }, + { + "start": 11096.32, + "end": 11098.48, + "probability": 0.9812 + }, + { + "start": 11098.88, + "end": 11105.62, + "probability": 0.9891 + }, + { + "start": 11106.38, + "end": 11108.82, + "probability": 0.8687 + }, + { + "start": 11109.14, + "end": 11112.28, + "probability": 0.9748 + }, + { + "start": 11112.6, + "end": 11117.0, + "probability": 0.9621 + }, + { + "start": 11117.18, + "end": 11117.81, + "probability": 0.9595 + }, + { + "start": 11118.18, + "end": 11118.6, + "probability": 0.8923 + }, + { + "start": 11118.84, + "end": 11120.28, + "probability": 0.9836 + }, + { + "start": 11120.8, + "end": 11124.12, + "probability": 0.9928 + }, + { + "start": 11124.12, + "end": 11127.86, + "probability": 0.995 + }, + { + "start": 11128.38, + "end": 11131.98, + "probability": 0.9518 + }, + { + "start": 11132.64, + "end": 11137.14, + "probability": 0.9958 + }, + { + "start": 11137.14, + "end": 11141.68, + "probability": 0.9839 + }, + { + "start": 11142.02, + "end": 11143.42, + "probability": 0.3849 + }, + { + "start": 11144.98, + "end": 11148.92, + "probability": 0.6135 + }, + { + "start": 11149.1, + "end": 11151.66, + "probability": 0.7207 + }, + { + "start": 11152.24, + "end": 11153.64, + "probability": 0.9299 + }, + { + "start": 11157.26, + "end": 11158.14, + "probability": 0.5211 + }, + { + "start": 11158.78, + "end": 11158.82, + "probability": 0.0435 + }, + { + "start": 11158.82, + "end": 11159.82, + "probability": 0.549 + }, + { + "start": 11160.28, + "end": 11163.93, + "probability": 0.9917 + }, + { + "start": 11165.7, + "end": 11166.62, + "probability": 0.7512 + }, + { + "start": 11166.64, + "end": 11168.34, + "probability": 0.9609 + }, + { + "start": 11168.8, + "end": 11170.88, + "probability": 0.9475 + }, + { + "start": 11171.96, + "end": 11173.0, + "probability": 0.7591 + }, + { + "start": 11173.14, + "end": 11174.28, + "probability": 0.985 + }, + { + "start": 11174.64, + "end": 11180.18, + "probability": 0.9897 + }, + { + "start": 11180.58, + "end": 11185.02, + "probability": 0.9971 + }, + { + "start": 11186.12, + "end": 11192.78, + "probability": 0.9947 + }, + { + "start": 11193.16, + "end": 11196.0, + "probability": 0.9951 + }, + { + "start": 11196.56, + "end": 11199.34, + "probability": 0.9911 + }, + { + "start": 11199.78, + "end": 11202.04, + "probability": 0.9123 + }, + { + "start": 11202.76, + "end": 11204.28, + "probability": 0.9456 + }, + { + "start": 11204.6, + "end": 11209.56, + "probability": 0.9966 + }, + { + "start": 11209.56, + "end": 11217.28, + "probability": 0.994 + }, + { + "start": 11217.78, + "end": 11218.96, + "probability": 0.7626 + }, + { + "start": 11219.58, + "end": 11223.12, + "probability": 0.9939 + }, + { + "start": 11223.12, + "end": 11225.9, + "probability": 0.9905 + }, + { + "start": 11227.14, + "end": 11231.74, + "probability": 0.9953 + }, + { + "start": 11231.74, + "end": 11236.8, + "probability": 0.9714 + }, + { + "start": 11236.92, + "end": 11237.48, + "probability": 0.7786 + }, + { + "start": 11238.1, + "end": 11238.52, + "probability": 0.5527 + }, + { + "start": 11239.64, + "end": 11240.68, + "probability": 0.8083 + }, + { + "start": 11261.7, + "end": 11263.0, + "probability": 0.8121 + }, + { + "start": 11270.08, + "end": 11271.32, + "probability": 0.4051 + }, + { + "start": 11272.8, + "end": 11275.32, + "probability": 0.9445 + }, + { + "start": 11276.6, + "end": 11278.18, + "probability": 0.9663 + }, + { + "start": 11278.52, + "end": 11279.4, + "probability": 0.968 + }, + { + "start": 11279.8, + "end": 11280.24, + "probability": 0.4401 + }, + { + "start": 11281.88, + "end": 11283.5, + "probability": 0.9946 + }, + { + "start": 11283.64, + "end": 11285.72, + "probability": 0.9946 + }, + { + "start": 11285.9, + "end": 11286.51, + "probability": 0.981 + }, + { + "start": 11287.26, + "end": 11288.16, + "probability": 0.8639 + }, + { + "start": 11289.34, + "end": 11291.58, + "probability": 0.959 + }, + { + "start": 11292.18, + "end": 11294.9, + "probability": 0.7062 + }, + { + "start": 11295.72, + "end": 11298.14, + "probability": 0.813 + }, + { + "start": 11299.26, + "end": 11299.4, + "probability": 0.3882 + }, + { + "start": 11301.25, + "end": 11302.38, + "probability": 0.6053 + }, + { + "start": 11302.48, + "end": 11303.52, + "probability": 0.8614 + }, + { + "start": 11303.6, + "end": 11304.08, + "probability": 0.8755 + }, + { + "start": 11304.44, + "end": 11306.82, + "probability": 0.9795 + }, + { + "start": 11309.26, + "end": 11313.12, + "probability": 0.5469 + }, + { + "start": 11314.04, + "end": 11318.54, + "probability": 0.993 + }, + { + "start": 11318.82, + "end": 11319.64, + "probability": 0.8202 + }, + { + "start": 11319.96, + "end": 11320.54, + "probability": 0.6963 + }, + { + "start": 11320.54, + "end": 11321.72, + "probability": 0.7577 + }, + { + "start": 11321.76, + "end": 11323.54, + "probability": 0.8064 + }, + { + "start": 11324.2, + "end": 11324.98, + "probability": 0.9659 + }, + { + "start": 11326.44, + "end": 11327.24, + "probability": 0.9348 + }, + { + "start": 11328.18, + "end": 11331.3, + "probability": 0.9719 + }, + { + "start": 11331.42, + "end": 11331.96, + "probability": 0.4078 + }, + { + "start": 11333.24, + "end": 11333.76, + "probability": 0.9043 + }, + { + "start": 11333.92, + "end": 11335.14, + "probability": 0.8955 + }, + { + "start": 11335.22, + "end": 11336.38, + "probability": 0.8459 + }, + { + "start": 11337.5, + "end": 11337.96, + "probability": 0.5781 + }, + { + "start": 11338.78, + "end": 11340.62, + "probability": 0.6452 + }, + { + "start": 11341.34, + "end": 11343.44, + "probability": 0.9434 + }, + { + "start": 11343.86, + "end": 11343.86, + "probability": 0.0668 + }, + { + "start": 11343.86, + "end": 11344.02, + "probability": 0.3387 + }, + { + "start": 11344.12, + "end": 11344.72, + "probability": 0.6133 + }, + { + "start": 11345.7, + "end": 11346.66, + "probability": 0.819 + }, + { + "start": 11346.72, + "end": 11348.12, + "probability": 0.3981 + }, + { + "start": 11348.18, + "end": 11348.98, + "probability": 0.8248 + }, + { + "start": 11349.1, + "end": 11349.86, + "probability": 0.9635 + }, + { + "start": 11351.74, + "end": 11352.74, + "probability": 0.9987 + }, + { + "start": 11353.44, + "end": 11355.2, + "probability": 0.937 + }, + { + "start": 11355.34, + "end": 11356.46, + "probability": 0.7579 + }, + { + "start": 11356.6, + "end": 11357.14, + "probability": 0.76 + }, + { + "start": 11358.04, + "end": 11358.76, + "probability": 0.7415 + }, + { + "start": 11359.46, + "end": 11361.88, + "probability": 0.9991 + }, + { + "start": 11362.78, + "end": 11365.64, + "probability": 0.9954 + }, + { + "start": 11365.64, + "end": 11368.34, + "probability": 0.9878 + }, + { + "start": 11368.46, + "end": 11368.88, + "probability": 0.6559 + }, + { + "start": 11369.48, + "end": 11370.5, + "probability": 0.9294 + }, + { + "start": 11371.18, + "end": 11374.1, + "probability": 0.8831 + }, + { + "start": 11374.4, + "end": 11377.06, + "probability": 0.998 + }, + { + "start": 11378.14, + "end": 11379.44, + "probability": 0.7946 + }, + { + "start": 11380.2, + "end": 11380.86, + "probability": 0.9923 + }, + { + "start": 11382.44, + "end": 11384.9, + "probability": 0.9961 + }, + { + "start": 11385.28, + "end": 11389.96, + "probability": 0.9956 + }, + { + "start": 11389.96, + "end": 11395.36, + "probability": 0.9946 + }, + { + "start": 11395.58, + "end": 11396.7, + "probability": 0.4439 + }, + { + "start": 11397.22, + "end": 11399.0, + "probability": 0.9961 + }, + { + "start": 11399.52, + "end": 11401.8, + "probability": 0.9232 + }, + { + "start": 11401.96, + "end": 11406.26, + "probability": 0.9983 + }, + { + "start": 11406.72, + "end": 11407.68, + "probability": 0.8416 + }, + { + "start": 11409.92, + "end": 11410.12, + "probability": 0.1971 + }, + { + "start": 11410.32, + "end": 11411.34, + "probability": 0.7857 + }, + { + "start": 11411.6, + "end": 11414.16, + "probability": 0.7753 + }, + { + "start": 11416.04, + "end": 11420.38, + "probability": 0.6773 + }, + { + "start": 11421.04, + "end": 11421.78, + "probability": 0.839 + }, + { + "start": 11423.08, + "end": 11425.4, + "probability": 0.7369 + }, + { + "start": 11426.54, + "end": 11427.92, + "probability": 0.9614 + }, + { + "start": 11429.22, + "end": 11430.3, + "probability": 0.9878 + }, + { + "start": 11431.12, + "end": 11432.72, + "probability": 0.7374 + }, + { + "start": 11433.98, + "end": 11435.52, + "probability": 0.9463 + }, + { + "start": 11436.46, + "end": 11439.54, + "probability": 0.7863 + }, + { + "start": 11440.14, + "end": 11441.36, + "probability": 0.9806 + }, + { + "start": 11442.5, + "end": 11444.27, + "probability": 0.9757 + }, + { + "start": 11445.82, + "end": 11446.52, + "probability": 0.793 + }, + { + "start": 11447.42, + "end": 11449.5, + "probability": 0.021 + }, + { + "start": 11450.42, + "end": 11450.7, + "probability": 0.1049 + }, + { + "start": 11452.66, + "end": 11453.52, + "probability": 0.5049 + }, + { + "start": 11454.52, + "end": 11455.12, + "probability": 0.3007 + }, + { + "start": 11455.14, + "end": 11458.1, + "probability": 0.2241 + }, + { + "start": 11458.1, + "end": 11458.1, + "probability": 0.3226 + }, + { + "start": 11458.1, + "end": 11458.52, + "probability": 0.3999 + }, + { + "start": 11458.64, + "end": 11461.22, + "probability": 0.9685 + }, + { + "start": 11462.18, + "end": 11463.06, + "probability": 0.7805 + }, + { + "start": 11463.42, + "end": 11464.24, + "probability": 0.9728 + }, + { + "start": 11464.38, + "end": 11465.38, + "probability": 0.9655 + }, + { + "start": 11465.48, + "end": 11466.26, + "probability": 0.8836 + }, + { + "start": 11466.62, + "end": 11467.9, + "probability": 0.9564 + }, + { + "start": 11468.3, + "end": 11470.4, + "probability": 0.9011 + }, + { + "start": 11471.72, + "end": 11473.84, + "probability": 0.9863 + }, + { + "start": 11475.4, + "end": 11476.24, + "probability": 0.9702 + }, + { + "start": 11476.58, + "end": 11477.38, + "probability": 0.9854 + }, + { + "start": 11477.84, + "end": 11480.46, + "probability": 0.9748 + }, + { + "start": 11480.54, + "end": 11481.58, + "probability": 0.987 + }, + { + "start": 11481.68, + "end": 11482.06, + "probability": 0.6265 + }, + { + "start": 11482.38, + "end": 11488.3, + "probability": 0.9725 + }, + { + "start": 11489.06, + "end": 11493.62, + "probability": 0.998 + }, + { + "start": 11495.06, + "end": 11495.18, + "probability": 0.4742 + }, + { + "start": 11495.26, + "end": 11497.98, + "probability": 0.8763 + }, + { + "start": 11498.08, + "end": 11498.28, + "probability": 0.3617 + }, + { + "start": 11498.36, + "end": 11499.02, + "probability": 0.7785 + }, + { + "start": 11499.12, + "end": 11502.14, + "probability": 0.9824 + }, + { + "start": 11502.26, + "end": 11505.58, + "probability": 0.9041 + }, + { + "start": 11505.78, + "end": 11507.02, + "probability": 0.6895 + }, + { + "start": 11507.54, + "end": 11510.72, + "probability": 0.9448 + }, + { + "start": 11511.66, + "end": 11512.56, + "probability": 0.7971 + }, + { + "start": 11512.62, + "end": 11513.06, + "probability": 0.8683 + }, + { + "start": 11513.16, + "end": 11513.88, + "probability": 0.9873 + }, + { + "start": 11513.98, + "end": 11515.18, + "probability": 0.8713 + }, + { + "start": 11515.86, + "end": 11518.34, + "probability": 0.9841 + }, + { + "start": 11518.34, + "end": 11520.2, + "probability": 0.9648 + }, + { + "start": 11520.76, + "end": 11521.18, + "probability": 0.5854 + }, + { + "start": 11521.2, + "end": 11521.69, + "probability": 0.6073 + }, + { + "start": 11522.86, + "end": 11524.4, + "probability": 0.7499 + }, + { + "start": 11525.9, + "end": 11528.4, + "probability": 0.9066 + }, + { + "start": 11529.1, + "end": 11531.04, + "probability": 0.8838 + }, + { + "start": 11531.12, + "end": 11533.96, + "probability": 0.9888 + }, + { + "start": 11534.82, + "end": 11535.36, + "probability": 0.541 + }, + { + "start": 11536.0, + "end": 11537.42, + "probability": 0.9412 + }, + { + "start": 11538.18, + "end": 11540.5, + "probability": 0.9743 + }, + { + "start": 11541.94, + "end": 11545.08, + "probability": 0.9783 + }, + { + "start": 11545.78, + "end": 11548.28, + "probability": 0.5965 + }, + { + "start": 11548.98, + "end": 11549.6, + "probability": 0.693 + }, + { + "start": 11550.56, + "end": 11554.12, + "probability": 0.8713 + }, + { + "start": 11554.74, + "end": 11557.2, + "probability": 0.9822 + }, + { + "start": 11557.78, + "end": 11558.76, + "probability": 0.7181 + }, + { + "start": 11559.38, + "end": 11562.74, + "probability": 0.98 + }, + { + "start": 11562.84, + "end": 11567.74, + "probability": 0.9574 + }, + { + "start": 11568.86, + "end": 11570.78, + "probability": 0.9886 + }, + { + "start": 11570.96, + "end": 11571.83, + "probability": 0.9159 + }, + { + "start": 11572.26, + "end": 11575.4, + "probability": 0.8743 + }, + { + "start": 11575.42, + "end": 11575.6, + "probability": 0.5435 + }, + { + "start": 11575.82, + "end": 11578.26, + "probability": 0.7179 + }, + { + "start": 11578.6, + "end": 11580.2, + "probability": 0.8804 + }, + { + "start": 11580.64, + "end": 11582.96, + "probability": 0.9786 + }, + { + "start": 11583.72, + "end": 11586.06, + "probability": 0.9632 + }, + { + "start": 11587.68, + "end": 11589.12, + "probability": 0.9822 + }, + { + "start": 11589.54, + "end": 11590.4, + "probability": 0.5925 + }, + { + "start": 11590.98, + "end": 11592.0, + "probability": 0.8115 + }, + { + "start": 11592.38, + "end": 11593.04, + "probability": 0.8965 + }, + { + "start": 11593.1, + "end": 11593.46, + "probability": 0.9272 + }, + { + "start": 11594.16, + "end": 11594.72, + "probability": 0.8499 + }, + { + "start": 11597.42, + "end": 11598.64, + "probability": 0.9409 + }, + { + "start": 11600.3, + "end": 11601.08, + "probability": 0.8946 + }, + { + "start": 11602.4, + "end": 11603.5, + "probability": 0.9575 + }, + { + "start": 11606.2, + "end": 11606.84, + "probability": 0.3279 + }, + { + "start": 11611.02, + "end": 11611.58, + "probability": 0.1037 + }, + { + "start": 11615.58, + "end": 11618.4, + "probability": 0.2754 + }, + { + "start": 11627.37, + "end": 11630.2, + "probability": 0.5624 + }, + { + "start": 11631.76, + "end": 11633.0, + "probability": 0.921 + }, + { + "start": 11634.98, + "end": 11640.02, + "probability": 0.5834 + }, + { + "start": 11641.24, + "end": 11648.68, + "probability": 0.5029 + }, + { + "start": 11650.06, + "end": 11652.76, + "probability": 0.7462 + }, + { + "start": 11654.38, + "end": 11654.99, + "probability": 0.5973 + }, + { + "start": 11655.44, + "end": 11662.78, + "probability": 0.8711 + }, + { + "start": 11663.86, + "end": 11666.66, + "probability": 0.9761 + }, + { + "start": 11666.66, + "end": 11672.78, + "probability": 0.9415 + }, + { + "start": 11673.9, + "end": 11677.32, + "probability": 0.9875 + }, + { + "start": 11678.4, + "end": 11681.56, + "probability": 0.9727 + }, + { + "start": 11682.48, + "end": 11682.48, + "probability": 0.1688 + }, + { + "start": 11682.64, + "end": 11682.96, + "probability": 0.681 + }, + { + "start": 11683.06, + "end": 11686.93, + "probability": 0.8661 + }, + { + "start": 11688.46, + "end": 11689.04, + "probability": 0.8726 + }, + { + "start": 11689.14, + "end": 11692.3, + "probability": 0.7394 + }, + { + "start": 11692.44, + "end": 11692.98, + "probability": 0.3668 + }, + { + "start": 11693.18, + "end": 11696.32, + "probability": 0.895 + }, + { + "start": 11696.72, + "end": 11697.3, + "probability": 0.5911 + }, + { + "start": 11697.36, + "end": 11697.86, + "probability": 0.5548 + }, + { + "start": 11700.92, + "end": 11707.52, + "probability": 0.9862 + }, + { + "start": 11707.52, + "end": 11712.08, + "probability": 0.999 + }, + { + "start": 11712.94, + "end": 11714.76, + "probability": 0.9984 + }, + { + "start": 11714.9, + "end": 11717.5, + "probability": 0.998 + }, + { + "start": 11717.66, + "end": 11720.82, + "probability": 0.9806 + }, + { + "start": 11721.0, + "end": 11722.22, + "probability": 0.3467 + }, + { + "start": 11722.24, + "end": 11725.35, + "probability": 0.9354 + }, + { + "start": 11726.8, + "end": 11728.16, + "probability": 0.8974 + }, + { + "start": 11728.16, + "end": 11733.24, + "probability": 0.8429 + }, + { + "start": 11733.28, + "end": 11737.0, + "probability": 0.9878 + }, + { + "start": 11738.16, + "end": 11740.88, + "probability": 0.742 + }, + { + "start": 11742.14, + "end": 11744.64, + "probability": 0.9918 + }, + { + "start": 11744.9, + "end": 11748.58, + "probability": 0.9461 + }, + { + "start": 11748.8, + "end": 11754.48, + "probability": 0.996 + }, + { + "start": 11755.46, + "end": 11755.86, + "probability": 0.8043 + }, + { + "start": 11756.72, + "end": 11760.64, + "probability": 0.988 + }, + { + "start": 11760.86, + "end": 11761.48, + "probability": 0.3561 + }, + { + "start": 11761.58, + "end": 11762.14, + "probability": 0.5104 + }, + { + "start": 11762.34, + "end": 11763.0, + "probability": 0.9004 + }, + { + "start": 11764.54, + "end": 11765.14, + "probability": 0.9736 + }, + { + "start": 11767.26, + "end": 11772.02, + "probability": 0.9226 + }, + { + "start": 11772.26, + "end": 11772.72, + "probability": 0.5317 + }, + { + "start": 11772.8, + "end": 11778.56, + "probability": 0.7777 + }, + { + "start": 11778.68, + "end": 11779.42, + "probability": 0.9119 + }, + { + "start": 11779.9, + "end": 11783.34, + "probability": 0.9973 + }, + { + "start": 11784.78, + "end": 11787.58, + "probability": 0.9255 + }, + { + "start": 11788.16, + "end": 11790.02, + "probability": 0.7031 + }, + { + "start": 11792.18, + "end": 11793.0, + "probability": 0.9053 + }, + { + "start": 11794.52, + "end": 11796.04, + "probability": 0.9127 + }, + { + "start": 11796.14, + "end": 11797.3, + "probability": 0.9611 + }, + { + "start": 11797.44, + "end": 11799.46, + "probability": 0.5295 + }, + { + "start": 11799.76, + "end": 11801.58, + "probability": 0.9971 + }, + { + "start": 11802.2, + "end": 11804.5, + "probability": 0.9958 + }, + { + "start": 11805.72, + "end": 11806.56, + "probability": 0.7153 + }, + { + "start": 11806.8, + "end": 11809.36, + "probability": 0.9971 + }, + { + "start": 11809.8, + "end": 11810.52, + "probability": 0.7544 + }, + { + "start": 11810.6, + "end": 11815.72, + "probability": 0.9818 + }, + { + "start": 11816.28, + "end": 11817.36, + "probability": 0.9141 + }, + { + "start": 11817.72, + "end": 11822.16, + "probability": 0.9377 + }, + { + "start": 11822.54, + "end": 11823.24, + "probability": 0.9453 + }, + { + "start": 11823.44, + "end": 11826.62, + "probability": 0.9731 + }, + { + "start": 11829.1, + "end": 11833.06, + "probability": 0.9693 + }, + { + "start": 11833.78, + "end": 11835.34, + "probability": 0.8726 + }, + { + "start": 11836.3, + "end": 11836.98, + "probability": 0.9824 + }, + { + "start": 11837.14, + "end": 11837.78, + "probability": 0.9357 + }, + { + "start": 11837.88, + "end": 11838.52, + "probability": 0.9624 + }, + { + "start": 11838.58, + "end": 11839.12, + "probability": 0.819 + }, + { + "start": 11839.34, + "end": 11841.72, + "probability": 0.745 + }, + { + "start": 11841.8, + "end": 11844.26, + "probability": 0.7344 + }, + { + "start": 11845.06, + "end": 11848.38, + "probability": 0.8088 + }, + { + "start": 11848.38, + "end": 11853.0, + "probability": 0.8909 + }, + { + "start": 11853.36, + "end": 11856.06, + "probability": 0.9946 + }, + { + "start": 11856.86, + "end": 11857.3, + "probability": 0.8037 + }, + { + "start": 11857.42, + "end": 11860.86, + "probability": 0.9761 + }, + { + "start": 11861.44, + "end": 11861.62, + "probability": 0.0035 + }, + { + "start": 11861.62, + "end": 11864.7, + "probability": 0.8057 + }, + { + "start": 11865.18, + "end": 11870.5, + "probability": 0.9548 + }, + { + "start": 11870.5, + "end": 11873.62, + "probability": 0.9966 + }, + { + "start": 11873.96, + "end": 11875.24, + "probability": 0.8143 + }, + { + "start": 11875.3, + "end": 11875.44, + "probability": 0.6628 + }, + { + "start": 11875.58, + "end": 11880.58, + "probability": 0.9632 + }, + { + "start": 11880.58, + "end": 11884.86, + "probability": 0.9901 + }, + { + "start": 11884.98, + "end": 11885.18, + "probability": 0.7365 + }, + { + "start": 11885.46, + "end": 11885.92, + "probability": 0.8038 + }, + { + "start": 11887.7, + "end": 11890.18, + "probability": 0.4679 + }, + { + "start": 11891.0, + "end": 11893.28, + "probability": 0.0134 + }, + { + "start": 11893.28, + "end": 11893.38, + "probability": 0.2527 + }, + { + "start": 11893.38, + "end": 11894.32, + "probability": 0.0646 + }, + { + "start": 11894.52, + "end": 11895.85, + "probability": 0.0213 + }, + { + "start": 11896.32, + "end": 11899.63, + "probability": 0.1211 + }, + { + "start": 11899.96, + "end": 11905.7, + "probability": 0.3781 + }, + { + "start": 11906.54, + "end": 11906.98, + "probability": 0.2046 + }, + { + "start": 11907.12, + "end": 11908.14, + "probability": 0.3347 + }, + { + "start": 11908.42, + "end": 11912.22, + "probability": 0.8608 + }, + { + "start": 11913.92, + "end": 11922.16, + "probability": 0.9967 + }, + { + "start": 11924.14, + "end": 11928.8, + "probability": 0.9963 + }, + { + "start": 11929.2, + "end": 11931.18, + "probability": 0.9492 + }, + { + "start": 11931.8, + "end": 11932.96, + "probability": 0.858 + }, + { + "start": 11934.38, + "end": 11937.58, + "probability": 0.8872 + }, + { + "start": 11937.8, + "end": 11940.47, + "probability": 0.999 + }, + { + "start": 11941.82, + "end": 11943.4, + "probability": 0.9751 + }, + { + "start": 11944.36, + "end": 11949.26, + "probability": 0.9806 + }, + { + "start": 11949.6, + "end": 11950.44, + "probability": 0.5218 + }, + { + "start": 11951.02, + "end": 11952.26, + "probability": 0.998 + }, + { + "start": 11953.06, + "end": 11953.36, + "probability": 0.8984 + }, + { + "start": 11953.44, + "end": 11953.96, + "probability": 0.8635 + }, + { + "start": 11954.34, + "end": 11956.68, + "probability": 0.8071 + }, + { + "start": 11957.12, + "end": 11957.52, + "probability": 0.8909 + }, + { + "start": 11957.58, + "end": 11958.26, + "probability": 0.9541 + }, + { + "start": 11959.02, + "end": 11960.44, + "probability": 0.8722 + }, + { + "start": 11960.68, + "end": 11964.96, + "probability": 0.9679 + }, + { + "start": 11977.22, + "end": 11978.12, + "probability": 0.4905 + }, + { + "start": 11978.12, + "end": 11978.12, + "probability": 0.2763 + }, + { + "start": 11978.12, + "end": 11978.12, + "probability": 0.032 + }, + { + "start": 11978.12, + "end": 11978.12, + "probability": 0.0272 + }, + { + "start": 11978.12, + "end": 11979.3, + "probability": 0.1346 + }, + { + "start": 11979.4, + "end": 11983.3, + "probability": 0.9309 + }, + { + "start": 11984.64, + "end": 11985.84, + "probability": 0.7546 + }, + { + "start": 11985.98, + "end": 11986.96, + "probability": 0.9302 + }, + { + "start": 11987.06, + "end": 11987.24, + "probability": 0.4528 + }, + { + "start": 11987.88, + "end": 11988.44, + "probability": 0.3529 + }, + { + "start": 11989.24, + "end": 11990.98, + "probability": 0.9521 + }, + { + "start": 11991.08, + "end": 11992.46, + "probability": 0.9162 + }, + { + "start": 11995.26, + "end": 11996.22, + "probability": 0.875 + }, + { + "start": 11996.28, + "end": 12000.56, + "probability": 0.7374 + }, + { + "start": 12000.7, + "end": 12001.46, + "probability": 0.6656 + }, + { + "start": 12001.96, + "end": 12002.4, + "probability": 0.3855 + }, + { + "start": 12002.6, + "end": 12003.97, + "probability": 0.8447 + }, + { + "start": 12004.26, + "end": 12006.54, + "probability": 0.8945 + }, + { + "start": 12006.62, + "end": 12007.76, + "probability": 0.7613 + }, + { + "start": 12009.49, + "end": 12009.56, + "probability": 0.7448 + }, + { + "start": 12009.56, + "end": 12010.08, + "probability": 0.5753 + }, + { + "start": 12010.08, + "end": 12010.84, + "probability": 0.2693 + }, + { + "start": 12010.86, + "end": 12010.86, + "probability": 0.3386 + }, + { + "start": 12010.96, + "end": 12014.22, + "probability": 0.4063 + }, + { + "start": 12014.22, + "end": 12014.22, + "probability": 0.0153 + }, + { + "start": 12014.22, + "end": 12015.14, + "probability": 0.3785 + }, + { + "start": 12035.6, + "end": 12036.3, + "probability": 0.308 + }, + { + "start": 12036.3, + "end": 12037.81, + "probability": 0.5255 + }, + { + "start": 12038.96, + "end": 12040.2, + "probability": 0.9615 + }, + { + "start": 12041.18, + "end": 12042.08, + "probability": 0.7457 + }, + { + "start": 12045.04, + "end": 12045.94, + "probability": 0.5515 + }, + { + "start": 12047.9, + "end": 12050.22, + "probability": 0.9562 + }, + { + "start": 12053.22, + "end": 12054.56, + "probability": 0.513 + }, + { + "start": 12054.68, + "end": 12054.68, + "probability": 0.5661 + }, + { + "start": 12054.68, + "end": 12058.22, + "probability": 0.8165 + }, + { + "start": 12058.22, + "end": 12061.3, + "probability": 0.9613 + }, + { + "start": 12061.48, + "end": 12062.94, + "probability": 0.1118 + }, + { + "start": 12063.18, + "end": 12064.62, + "probability": 0.3822 + }, + { + "start": 12065.38, + "end": 12066.7, + "probability": 0.8461 + }, + { + "start": 12066.8, + "end": 12070.32, + "probability": 0.9697 + }, + { + "start": 12070.46, + "end": 12073.94, + "probability": 0.998 + }, + { + "start": 12073.94, + "end": 12074.3, + "probability": 0.7233 + }, + { + "start": 12074.7, + "end": 12075.1, + "probability": 0.6231 + }, + { + "start": 12075.84, + "end": 12077.04, + "probability": 0.7735 + }, + { + "start": 12078.16, + "end": 12081.16, + "probability": 0.9496 + }, + { + "start": 12082.08, + "end": 12085.26, + "probability": 0.0273 + }, + { + "start": 12105.91, + "end": 12106.02, + "probability": 0.2152 + }, + { + "start": 12106.02, + "end": 12106.32, + "probability": 0.0563 + }, + { + "start": 12106.34, + "end": 12106.92, + "probability": 0.3894 + }, + { + "start": 12106.96, + "end": 12107.34, + "probability": 0.9343 + }, + { + "start": 12113.2, + "end": 12116.7, + "probability": 0.7034 + }, + { + "start": 12117.92, + "end": 12121.62, + "probability": 0.9639 + }, + { + "start": 12123.62, + "end": 12126.24, + "probability": 0.8813 + }, + { + "start": 12127.3, + "end": 12131.08, + "probability": 0.979 + }, + { + "start": 12131.4, + "end": 12132.52, + "probability": 0.8514 + }, + { + "start": 12133.86, + "end": 12135.06, + "probability": 0.6533 + }, + { + "start": 12136.46, + "end": 12137.92, + "probability": 0.8681 + }, + { + "start": 12139.9, + "end": 12141.78, + "probability": 0.9175 + }, + { + "start": 12142.74, + "end": 12147.2, + "probability": 0.957 + }, + { + "start": 12148.42, + "end": 12149.24, + "probability": 0.9646 + }, + { + "start": 12150.2, + "end": 12153.2, + "probability": 0.9762 + }, + { + "start": 12155.68, + "end": 12160.9, + "probability": 0.9799 + }, + { + "start": 12162.3, + "end": 12167.38, + "probability": 0.9735 + }, + { + "start": 12168.14, + "end": 12168.44, + "probability": 0.8756 + }, + { + "start": 12169.08, + "end": 12169.54, + "probability": 0.9622 + }, + { + "start": 12170.26, + "end": 12173.24, + "probability": 0.6798 + }, + { + "start": 12173.96, + "end": 12176.34, + "probability": 0.9809 + }, + { + "start": 12178.2, + "end": 12179.08, + "probability": 0.9572 + }, + { + "start": 12180.02, + "end": 12180.52, + "probability": 0.9205 + }, + { + "start": 12181.32, + "end": 12184.28, + "probability": 0.9698 + }, + { + "start": 12185.28, + "end": 12186.02, + "probability": 0.9617 + }, + { + "start": 12187.96, + "end": 12188.96, + "probability": 0.9221 + }, + { + "start": 12189.64, + "end": 12190.02, + "probability": 0.8483 + }, + { + "start": 12190.76, + "end": 12193.86, + "probability": 0.9705 + }, + { + "start": 12194.52, + "end": 12194.9, + "probability": 0.9027 + }, + { + "start": 12195.8, + "end": 12196.82, + "probability": 0.9185 + }, + { + "start": 12197.8, + "end": 12198.4, + "probability": 0.9566 + }, + { + "start": 12200.4, + "end": 12204.9, + "probability": 0.9358 + }, + { + "start": 12206.46, + "end": 12210.36, + "probability": 0.8485 + }, + { + "start": 12211.16, + "end": 12213.0, + "probability": 0.682 + }, + { + "start": 12214.3, + "end": 12217.82, + "probability": 0.7426 + }, + { + "start": 12218.8, + "end": 12219.84, + "probability": 0.709 + }, + { + "start": 12221.28, + "end": 12222.54, + "probability": 0.7397 + }, + { + "start": 12223.5, + "end": 12228.48, + "probability": 0.9927 + }, + { + "start": 12228.48, + "end": 12232.88, + "probability": 0.9787 + }, + { + "start": 12233.96, + "end": 12234.68, + "probability": 0.6586 + }, + { + "start": 12235.64, + "end": 12236.54, + "probability": 0.9912 + }, + { + "start": 12237.18, + "end": 12240.7, + "probability": 0.9725 + }, + { + "start": 12241.92, + "end": 12243.82, + "probability": 0.9229 + }, + { + "start": 12245.99, + "end": 12246.24, + "probability": 0.1771 + }, + { + "start": 12246.24, + "end": 12247.08, + "probability": 0.7217 + }, + { + "start": 12247.5, + "end": 12247.5, + "probability": 0.3845 + }, + { + "start": 12247.5, + "end": 12248.84, + "probability": 0.5916 + }, + { + "start": 12248.9, + "end": 12250.78, + "probability": 0.5297 + }, + { + "start": 12250.94, + "end": 12251.22, + "probability": 0.3513 + }, + { + "start": 12251.34, + "end": 12251.38, + "probability": 0.366 + }, + { + "start": 12251.38, + "end": 12254.0, + "probability": 0.9391 + }, + { + "start": 12254.86, + "end": 12255.76, + "probability": 0.828 + }, + { + "start": 12256.46, + "end": 12257.9, + "probability": 0.6918 + }, + { + "start": 12259.26, + "end": 12260.42, + "probability": 0.9306 + }, + { + "start": 12261.12, + "end": 12262.6, + "probability": 0.8301 + }, + { + "start": 12263.3, + "end": 12264.04, + "probability": 0.9739 + }, + { + "start": 12264.64, + "end": 12265.54, + "probability": 0.9937 + }, + { + "start": 12266.12, + "end": 12269.04, + "probability": 0.8565 + }, + { + "start": 12269.04, + "end": 12273.26, + "probability": 0.9946 + }, + { + "start": 12274.44, + "end": 12275.18, + "probability": 0.9654 + }, + { + "start": 12277.38, + "end": 12280.93, + "probability": 0.8295 + }, + { + "start": 12281.28, + "end": 12282.4, + "probability": 0.7022 + }, + { + "start": 12282.48, + "end": 12282.98, + "probability": 0.9387 + }, + { + "start": 12283.44, + "end": 12288.22, + "probability": 0.9663 + }, + { + "start": 12288.84, + "end": 12290.06, + "probability": 0.9997 + }, + { + "start": 12290.76, + "end": 12294.6, + "probability": 0.9922 + }, + { + "start": 12295.82, + "end": 12297.28, + "probability": 0.9794 + }, + { + "start": 12297.92, + "end": 12300.2, + "probability": 0.986 + }, + { + "start": 12301.22, + "end": 12303.54, + "probability": 0.7831 + }, + { + "start": 12304.48, + "end": 12306.24, + "probability": 0.9534 + }, + { + "start": 12307.14, + "end": 12309.44, + "probability": 0.9971 + }, + { + "start": 12310.04, + "end": 12313.08, + "probability": 0.6803 + }, + { + "start": 12313.76, + "end": 12314.58, + "probability": 0.8158 + }, + { + "start": 12315.8, + "end": 12319.12, + "probability": 0.9976 + }, + { + "start": 12319.8, + "end": 12320.72, + "probability": 0.8112 + }, + { + "start": 12322.02, + "end": 12324.06, + "probability": 0.9834 + }, + { + "start": 12324.78, + "end": 12325.98, + "probability": 0.9977 + }, + { + "start": 12326.92, + "end": 12330.02, + "probability": 0.9979 + }, + { + "start": 12331.1, + "end": 12331.62, + "probability": 0.8583 + }, + { + "start": 12332.5, + "end": 12332.98, + "probability": 0.5543 + }, + { + "start": 12334.54, + "end": 12335.1, + "probability": 0.5694 + }, + { + "start": 12336.02, + "end": 12336.44, + "probability": 0.9627 + }, + { + "start": 12337.34, + "end": 12338.42, + "probability": 0.9954 + }, + { + "start": 12339.08, + "end": 12339.38, + "probability": 0.9565 + }, + { + "start": 12341.3, + "end": 12343.4, + "probability": 0.8823 + }, + { + "start": 12344.22, + "end": 12346.18, + "probability": 0.9716 + }, + { + "start": 12347.54, + "end": 12349.56, + "probability": 0.9261 + }, + { + "start": 12350.6, + "end": 12352.84, + "probability": 0.9805 + }, + { + "start": 12353.72, + "end": 12354.82, + "probability": 0.998 + }, + { + "start": 12355.54, + "end": 12358.3, + "probability": 0.9897 + }, + { + "start": 12359.8, + "end": 12363.02, + "probability": 0.8245 + }, + { + "start": 12363.06, + "end": 12364.28, + "probability": 0.9809 + }, + { + "start": 12365.6, + "end": 12366.52, + "probability": 0.5668 + }, + { + "start": 12367.4, + "end": 12369.4, + "probability": 0.9402 + }, + { + "start": 12370.1, + "end": 12375.18, + "probability": 0.9791 + }, + { + "start": 12375.72, + "end": 12378.06, + "probability": 0.9657 + }, + { + "start": 12379.46, + "end": 12380.18, + "probability": 0.9832 + }, + { + "start": 12380.88, + "end": 12383.0, + "probability": 0.6518 + }, + { + "start": 12383.62, + "end": 12385.34, + "probability": 0.9445 + }, + { + "start": 12385.92, + "end": 12387.44, + "probability": 0.6881 + }, + { + "start": 12389.12, + "end": 12390.07, + "probability": 0.9741 + }, + { + "start": 12391.24, + "end": 12392.34, + "probability": 0.9944 + }, + { + "start": 12392.9, + "end": 12394.66, + "probability": 0.9769 + }, + { + "start": 12395.28, + "end": 12401.86, + "probability": 0.9906 + }, + { + "start": 12402.22, + "end": 12402.42, + "probability": 0.6934 + }, + { + "start": 12403.12, + "end": 12403.74, + "probability": 0.7008 + }, + { + "start": 12405.26, + "end": 12406.6, + "probability": 0.844 + }, + { + "start": 12416.16, + "end": 12417.2, + "probability": 0.8161 + }, + { + "start": 12417.98, + "end": 12419.08, + "probability": 0.7995 + }, + { + "start": 12420.64, + "end": 12423.31, + "probability": 0.8972 + }, + { + "start": 12423.82, + "end": 12425.28, + "probability": 0.9541 + }, + { + "start": 12426.54, + "end": 12433.44, + "probability": 0.9805 + }, + { + "start": 12434.58, + "end": 12435.36, + "probability": 0.6367 + }, + { + "start": 12435.98, + "end": 12437.58, + "probability": 0.9912 + }, + { + "start": 12438.06, + "end": 12440.32, + "probability": 0.9292 + }, + { + "start": 12440.48, + "end": 12442.46, + "probability": 0.9805 + }, + { + "start": 12443.76, + "end": 12447.1, + "probability": 0.8938 + }, + { + "start": 12448.56, + "end": 12451.56, + "probability": 0.9866 + }, + { + "start": 12451.96, + "end": 12456.1, + "probability": 0.9947 + }, + { + "start": 12456.76, + "end": 12457.22, + "probability": 0.9001 + }, + { + "start": 12457.78, + "end": 12458.38, + "probability": 0.9246 + }, + { + "start": 12458.98, + "end": 12460.92, + "probability": 0.7697 + }, + { + "start": 12461.62, + "end": 12464.23, + "probability": 0.9902 + }, + { + "start": 12466.12, + "end": 12469.04, + "probability": 0.9985 + }, + { + "start": 12469.76, + "end": 12472.82, + "probability": 0.9863 + }, + { + "start": 12472.94, + "end": 12473.92, + "probability": 0.7907 + }, + { + "start": 12474.46, + "end": 12476.16, + "probability": 0.9907 + }, + { + "start": 12476.22, + "end": 12477.7, + "probability": 0.9822 + }, + { + "start": 12479.3, + "end": 12481.1, + "probability": 0.8508 + }, + { + "start": 12481.18, + "end": 12481.9, + "probability": 0.9259 + }, + { + "start": 12481.98, + "end": 12485.76, + "probability": 0.9663 + }, + { + "start": 12487.1, + "end": 12489.88, + "probability": 0.7926 + }, + { + "start": 12491.14, + "end": 12493.64, + "probability": 0.815 + }, + { + "start": 12494.4, + "end": 12502.64, + "probability": 0.7528 + }, + { + "start": 12503.14, + "end": 12504.78, + "probability": 0.9547 + }, + { + "start": 12505.58, + "end": 12507.22, + "probability": 0.989 + }, + { + "start": 12508.58, + "end": 12512.0, + "probability": 0.9912 + }, + { + "start": 12512.5, + "end": 12513.48, + "probability": 0.6681 + }, + { + "start": 12514.16, + "end": 12518.48, + "probability": 0.9901 + }, + { + "start": 12518.58, + "end": 12520.68, + "probability": 0.8833 + }, + { + "start": 12522.1, + "end": 12523.8, + "probability": 0.98 + }, + { + "start": 12524.34, + "end": 12524.78, + "probability": 0.8828 + }, + { + "start": 12524.84, + "end": 12526.0, + "probability": 0.7658 + }, + { + "start": 12526.34, + "end": 12528.26, + "probability": 0.991 + }, + { + "start": 12528.58, + "end": 12531.56, + "probability": 0.9978 + }, + { + "start": 12531.74, + "end": 12534.3, + "probability": 0.9995 + }, + { + "start": 12534.84, + "end": 12536.7, + "probability": 0.8899 + }, + { + "start": 12537.7, + "end": 12541.88, + "probability": 0.9531 + }, + { + "start": 12544.32, + "end": 12545.68, + "probability": 0.9683 + }, + { + "start": 12547.08, + "end": 12549.64, + "probability": 0.9763 + }, + { + "start": 12550.02, + "end": 12550.98, + "probability": 0.5799 + }, + { + "start": 12551.06, + "end": 12552.19, + "probability": 0.7448 + }, + { + "start": 12554.12, + "end": 12558.66, + "probability": 0.9612 + }, + { + "start": 12559.54, + "end": 12564.42, + "probability": 0.5627 + }, + { + "start": 12565.41, + "end": 12571.92, + "probability": 0.9364 + }, + { + "start": 12572.08, + "end": 12573.06, + "probability": 0.6068 + }, + { + "start": 12573.18, + "end": 12576.54, + "probability": 0.9468 + }, + { + "start": 12577.22, + "end": 12581.26, + "probability": 0.4355 + }, + { + "start": 12581.8, + "end": 12582.29, + "probability": 0.0334 + }, + { + "start": 12582.92, + "end": 12585.78, + "probability": 0.6018 + }, + { + "start": 12588.7, + "end": 12591.46, + "probability": 0.9372 + }, + { + "start": 12591.46, + "end": 12592.44, + "probability": 0.8313 + }, + { + "start": 12592.54, + "end": 12593.24, + "probability": 0.8656 + }, + { + "start": 12593.66, + "end": 12594.7, + "probability": 0.9666 + }, + { + "start": 12595.12, + "end": 12596.54, + "probability": 0.8276 + }, + { + "start": 12596.94, + "end": 12598.34, + "probability": 0.7485 + }, + { + "start": 12598.58, + "end": 12600.78, + "probability": 0.9809 + }, + { + "start": 12601.56, + "end": 12602.06, + "probability": 0.6358 + }, + { + "start": 12603.12, + "end": 12603.96, + "probability": 0.9564 + }, + { + "start": 12605.9, + "end": 12607.94, + "probability": 0.9735 + }, + { + "start": 12609.32, + "end": 12610.42, + "probability": 0.8616 + }, + { + "start": 12610.52, + "end": 12615.86, + "probability": 0.9217 + }, + { + "start": 12616.46, + "end": 12619.32, + "probability": 0.9738 + }, + { + "start": 12620.16, + "end": 12620.66, + "probability": 0.876 + }, + { + "start": 12621.36, + "end": 12623.19, + "probability": 0.9902 + }, + { + "start": 12623.3, + "end": 12624.35, + "probability": 0.5304 + }, + { + "start": 12625.26, + "end": 12626.2, + "probability": 0.7649 + }, + { + "start": 12626.92, + "end": 12628.22, + "probability": 0.9973 + }, + { + "start": 12629.16, + "end": 12631.51, + "probability": 0.9824 + }, + { + "start": 12632.28, + "end": 12636.46, + "probability": 0.9874 + }, + { + "start": 12637.38, + "end": 12640.7, + "probability": 0.9104 + }, + { + "start": 12641.82, + "end": 12642.82, + "probability": 0.7661 + }, + { + "start": 12643.18, + "end": 12644.8, + "probability": 0.4192 + }, + { + "start": 12645.24, + "end": 12647.42, + "probability": 0.9484 + }, + { + "start": 12647.52, + "end": 12652.32, + "probability": 0.9124 + }, + { + "start": 12654.58, + "end": 12657.08, + "probability": 0.949 + }, + { + "start": 12658.94, + "end": 12662.74, + "probability": 0.9539 + }, + { + "start": 12663.64, + "end": 12666.58, + "probability": 0.9414 + }, + { + "start": 12667.66, + "end": 12671.18, + "probability": 0.854 + }, + { + "start": 12671.72, + "end": 12672.76, + "probability": 0.7685 + }, + { + "start": 12673.08, + "end": 12674.28, + "probability": 0.9372 + }, + { + "start": 12676.56, + "end": 12683.84, + "probability": 0.9821 + }, + { + "start": 12683.98, + "end": 12685.96, + "probability": 0.8776 + }, + { + "start": 12686.1, + "end": 12686.9, + "probability": 0.6082 + }, + { + "start": 12687.18, + "end": 12688.18, + "probability": 0.8596 + }, + { + "start": 12688.64, + "end": 12689.48, + "probability": 0.9913 + }, + { + "start": 12690.58, + "end": 12690.78, + "probability": 0.9613 + }, + { + "start": 12692.88, + "end": 12698.14, + "probability": 0.9915 + }, + { + "start": 12700.44, + "end": 12701.38, + "probability": 0.8366 + }, + { + "start": 12701.42, + "end": 12703.1, + "probability": 0.9893 + }, + { + "start": 12703.64, + "end": 12704.78, + "probability": 0.9341 + }, + { + "start": 12705.56, + "end": 12706.32, + "probability": 0.6545 + }, + { + "start": 12706.92, + "end": 12709.98, + "probability": 0.9529 + }, + { + "start": 12710.5, + "end": 12712.5, + "probability": 0.9974 + }, + { + "start": 12712.5, + "end": 12715.1, + "probability": 0.9985 + }, + { + "start": 12715.2, + "end": 12718.9, + "probability": 0.8717 + }, + { + "start": 12719.24, + "end": 12720.52, + "probability": 0.7329 + }, + { + "start": 12720.98, + "end": 12723.72, + "probability": 0.9973 + }, + { + "start": 12724.32, + "end": 12726.54, + "probability": 0.7147 + }, + { + "start": 12727.28, + "end": 12732.22, + "probability": 0.9841 + }, + { + "start": 12732.78, + "end": 12734.13, + "probability": 0.9108 + }, + { + "start": 12735.1, + "end": 12740.46, + "probability": 0.9922 + }, + { + "start": 12740.46, + "end": 12743.72, + "probability": 0.9991 + }, + { + "start": 12744.48, + "end": 12745.92, + "probability": 0.9552 + }, + { + "start": 12746.22, + "end": 12747.18, + "probability": 0.7819 + }, + { + "start": 12773.14, + "end": 12773.62, + "probability": 0.4566 + }, + { + "start": 12773.62, + "end": 12773.62, + "probability": 0.1119 + }, + { + "start": 12784.88, + "end": 12785.08, + "probability": 0.1798 + }, + { + "start": 12785.08, + "end": 12786.28, + "probability": 0.5887 + }, + { + "start": 12789.06, + "end": 12790.38, + "probability": 0.9905 + }, + { + "start": 12792.72, + "end": 12795.46, + "probability": 0.974 + }, + { + "start": 12796.82, + "end": 12799.92, + "probability": 0.9959 + }, + { + "start": 12801.06, + "end": 12802.42, + "probability": 0.9987 + }, + { + "start": 12803.18, + "end": 12805.2, + "probability": 0.5518 + }, + { + "start": 12806.32, + "end": 12807.78, + "probability": 0.874 + }, + { + "start": 12808.66, + "end": 12813.42, + "probability": 0.9566 + }, + { + "start": 12814.76, + "end": 12817.62, + "probability": 0.9841 + }, + { + "start": 12817.74, + "end": 12822.12, + "probability": 0.9908 + }, + { + "start": 12822.8, + "end": 12824.28, + "probability": 0.8205 + }, + { + "start": 12826.14, + "end": 12827.56, + "probability": 0.9978 + }, + { + "start": 12828.94, + "end": 12829.4, + "probability": 0.9101 + }, + { + "start": 12829.92, + "end": 12830.78, + "probability": 0.7764 + }, + { + "start": 12831.74, + "end": 12833.94, + "probability": 0.9899 + }, + { + "start": 12835.02, + "end": 12835.7, + "probability": 0.9448 + }, + { + "start": 12836.48, + "end": 12837.08, + "probability": 0.8443 + }, + { + "start": 12838.96, + "end": 12840.16, + "probability": 0.9974 + }, + { + "start": 12841.02, + "end": 12843.7, + "probability": 0.9738 + }, + { + "start": 12845.08, + "end": 12845.6, + "probability": 0.3988 + }, + { + "start": 12846.16, + "end": 12847.56, + "probability": 0.9023 + }, + { + "start": 12847.7, + "end": 12849.68, + "probability": 0.687 + }, + { + "start": 12850.78, + "end": 12853.92, + "probability": 0.9829 + }, + { + "start": 12855.78, + "end": 12858.0, + "probability": 0.9637 + }, + { + "start": 12859.46, + "end": 12863.66, + "probability": 0.994 + }, + { + "start": 12864.5, + "end": 12866.22, + "probability": 0.9949 + }, + { + "start": 12867.3, + "end": 12868.78, + "probability": 0.9995 + }, + { + "start": 12869.8, + "end": 12870.72, + "probability": 0.968 + }, + { + "start": 12871.4, + "end": 12873.2, + "probability": 0.8732 + }, + { + "start": 12874.8, + "end": 12875.72, + "probability": 0.8429 + }, + { + "start": 12877.1, + "end": 12878.17, + "probability": 0.6179 + }, + { + "start": 12878.48, + "end": 12879.84, + "probability": 0.8906 + }, + { + "start": 12881.32, + "end": 12882.56, + "probability": 0.4974 + }, + { + "start": 12884.58, + "end": 12885.18, + "probability": 0.4502 + }, + { + "start": 12888.56, + "end": 12891.64, + "probability": 0.8933 + }, + { + "start": 12892.64, + "end": 12898.26, + "probability": 0.98 + }, + { + "start": 12898.26, + "end": 12902.72, + "probability": 0.7568 + }, + { + "start": 12903.94, + "end": 12906.2, + "probability": 0.9504 + }, + { + "start": 12908.18, + "end": 12909.62, + "probability": 0.8723 + }, + { + "start": 12909.72, + "end": 12912.24, + "probability": 0.8948 + }, + { + "start": 12914.52, + "end": 12919.84, + "probability": 0.9883 + }, + { + "start": 12920.38, + "end": 12922.12, + "probability": 0.9815 + }, + { + "start": 12923.08, + "end": 12925.1, + "probability": 0.8054 + }, + { + "start": 12925.94, + "end": 12928.24, + "probability": 0.8611 + }, + { + "start": 12928.24, + "end": 12932.86, + "probability": 0.9467 + }, + { + "start": 12933.7, + "end": 12935.5, + "probability": 0.9977 + }, + { + "start": 12936.1, + "end": 12939.18, + "probability": 0.9837 + }, + { + "start": 12940.6, + "end": 12942.4, + "probability": 0.979 + }, + { + "start": 12943.18, + "end": 12944.08, + "probability": 0.6758 + }, + { + "start": 12945.0, + "end": 12952.38, + "probability": 0.9797 + }, + { + "start": 12953.22, + "end": 12954.02, + "probability": 0.7456 + }, + { + "start": 12955.24, + "end": 12958.74, + "probability": 0.9829 + }, + { + "start": 12960.54, + "end": 12962.6, + "probability": 0.9636 + }, + { + "start": 12963.52, + "end": 12964.28, + "probability": 0.6221 + }, + { + "start": 12965.5, + "end": 12970.26, + "probability": 0.9746 + }, + { + "start": 12971.54, + "end": 12979.46, + "probability": 0.9583 + }, + { + "start": 12979.72, + "end": 12980.36, + "probability": 0.829 + }, + { + "start": 12983.42, + "end": 12983.88, + "probability": 0.8117 + }, + { + "start": 12987.5, + "end": 12991.08, + "probability": 0.8178 + }, + { + "start": 12992.36, + "end": 12994.76, + "probability": 0.923 + }, + { + "start": 12995.56, + "end": 12997.96, + "probability": 0.9848 + }, + { + "start": 12999.88, + "end": 13003.18, + "probability": 0.9506 + }, + { + "start": 13004.74, + "end": 13009.9, + "probability": 0.9915 + }, + { + "start": 13011.48, + "end": 13014.5, + "probability": 0.7231 + }, + { + "start": 13015.73, + "end": 13016.85, + "probability": 0.1048 + }, + { + "start": 13017.34, + "end": 13017.34, + "probability": 0.171 + }, + { + "start": 13017.42, + "end": 13017.42, + "probability": 0.0615 + }, + { + "start": 13017.42, + "end": 13022.32, + "probability": 0.3191 + }, + { + "start": 13022.5, + "end": 13024.24, + "probability": 0.7917 + }, + { + "start": 13024.46, + "end": 13030.14, + "probability": 0.9033 + }, + { + "start": 13031.46, + "end": 13032.4, + "probability": 0.8768 + }, + { + "start": 13033.68, + "end": 13036.42, + "probability": 0.9922 + }, + { + "start": 13037.36, + "end": 13039.7, + "probability": 0.9895 + }, + { + "start": 13040.06, + "end": 13041.02, + "probability": 0.2618 + }, + { + "start": 13041.08, + "end": 13046.24, + "probability": 0.9393 + }, + { + "start": 13046.84, + "end": 13048.11, + "probability": 0.7618 + }, + { + "start": 13049.28, + "end": 13052.82, + "probability": 0.7157 + }, + { + "start": 13053.18, + "end": 13054.38, + "probability": 0.9741 + }, + { + "start": 13055.32, + "end": 13057.77, + "probability": 0.9897 + }, + { + "start": 13058.06, + "end": 13062.1, + "probability": 0.9879 + }, + { + "start": 13062.12, + "end": 13064.6, + "probability": 0.8733 + }, + { + "start": 13064.6, + "end": 13065.2, + "probability": 0.0356 + }, + { + "start": 13065.34, + "end": 13071.16, + "probability": 0.8335 + }, + { + "start": 13071.16, + "end": 13071.44, + "probability": 0.599 + }, + { + "start": 13071.76, + "end": 13072.48, + "probability": 0.7788 + }, + { + "start": 13072.5, + "end": 13073.94, + "probability": 0.8229 + }, + { + "start": 13074.12, + "end": 13077.18, + "probability": 0.894 + }, + { + "start": 13083.22, + "end": 13084.16, + "probability": 0.6619 + }, + { + "start": 13084.2, + "end": 13084.72, + "probability": 0.7416 + }, + { + "start": 13084.78, + "end": 13086.5, + "probability": 0.5417 + }, + { + "start": 13086.5, + "end": 13086.74, + "probability": 0.9138 + }, + { + "start": 13091.9, + "end": 13094.64, + "probability": 0.7567 + }, + { + "start": 13095.46, + "end": 13097.36, + "probability": 0.9893 + }, + { + "start": 13097.96, + "end": 13098.56, + "probability": 0.8309 + }, + { + "start": 13099.04, + "end": 13103.3, + "probability": 0.9333 + }, + { + "start": 13103.36, + "end": 13105.78, + "probability": 0.8062 + }, + { + "start": 13106.54, + "end": 13108.96, + "probability": 0.8492 + }, + { + "start": 13109.4, + "end": 13113.1, + "probability": 0.9412 + }, + { + "start": 13113.78, + "end": 13115.16, + "probability": 0.951 + }, + { + "start": 13117.1, + "end": 13117.9, + "probability": 0.6818 + }, + { + "start": 13117.98, + "end": 13118.86, + "probability": 0.9476 + }, + { + "start": 13118.92, + "end": 13119.64, + "probability": 0.9402 + }, + { + "start": 13119.7, + "end": 13120.78, + "probability": 0.5443 + }, + { + "start": 13121.44, + "end": 13122.32, + "probability": 0.9881 + }, + { + "start": 13123.08, + "end": 13126.68, + "probability": 0.998 + }, + { + "start": 13127.68, + "end": 13131.34, + "probability": 0.9142 + }, + { + "start": 13131.86, + "end": 13135.16, + "probability": 0.8981 + }, + { + "start": 13135.26, + "end": 13135.86, + "probability": 0.7744 + }, + { + "start": 13136.84, + "end": 13138.28, + "probability": 0.9662 + }, + { + "start": 13138.98, + "end": 13140.56, + "probability": 0.99 + }, + { + "start": 13141.14, + "end": 13142.27, + "probability": 0.995 + }, + { + "start": 13143.14, + "end": 13144.4, + "probability": 0.9485 + }, + { + "start": 13144.94, + "end": 13147.68, + "probability": 0.985 + }, + { + "start": 13147.98, + "end": 13155.0, + "probability": 0.7386 + }, + { + "start": 13155.24, + "end": 13155.94, + "probability": 0.612 + }, + { + "start": 13157.0, + "end": 13157.76, + "probability": 0.4641 + }, + { + "start": 13157.9, + "end": 13161.08, + "probability": 0.9746 + }, + { + "start": 13161.08, + "end": 13164.62, + "probability": 0.2361 + }, + { + "start": 13164.98, + "end": 13164.98, + "probability": 0.1665 + }, + { + "start": 13164.98, + "end": 13165.62, + "probability": 0.3783 + }, + { + "start": 13165.84, + "end": 13167.28, + "probability": 0.3667 + }, + { + "start": 13167.52, + "end": 13168.36, + "probability": 0.8752 + }, + { + "start": 13169.04, + "end": 13171.46, + "probability": 0.9721 + }, + { + "start": 13171.98, + "end": 13176.98, + "probability": 0.9794 + }, + { + "start": 13177.58, + "end": 13179.22, + "probability": 0.9622 + }, + { + "start": 13179.48, + "end": 13181.64, + "probability": 0.9956 + }, + { + "start": 13182.1, + "end": 13183.08, + "probability": 0.6935 + }, + { + "start": 13183.42, + "end": 13184.66, + "probability": 0.9736 + }, + { + "start": 13185.66, + "end": 13191.04, + "probability": 0.9096 + }, + { + "start": 13191.76, + "end": 13194.68, + "probability": 0.9576 + }, + { + "start": 13194.76, + "end": 13196.72, + "probability": 0.9846 + }, + { + "start": 13197.7, + "end": 13200.7, + "probability": 0.9973 + }, + { + "start": 13201.24, + "end": 13202.92, + "probability": 0.9628 + }, + { + "start": 13203.28, + "end": 13205.14, + "probability": 0.9366 + }, + { + "start": 13205.96, + "end": 13208.54, + "probability": 0.9908 + }, + { + "start": 13208.54, + "end": 13212.3, + "probability": 0.9995 + }, + { + "start": 13212.48, + "end": 13213.26, + "probability": 0.8062 + }, + { + "start": 13214.12, + "end": 13218.02, + "probability": 0.9973 + }, + { + "start": 13218.46, + "end": 13221.04, + "probability": 0.9624 + }, + { + "start": 13223.26, + "end": 13229.04, + "probability": 0.9952 + }, + { + "start": 13230.82, + "end": 13232.5, + "probability": 0.8276 + }, + { + "start": 13232.52, + "end": 13235.34, + "probability": 0.6308 + }, + { + "start": 13235.58, + "end": 13236.64, + "probability": 0.4986 + }, + { + "start": 13238.18, + "end": 13238.9, + "probability": 0.844 + }, + { + "start": 13240.38, + "end": 13241.64, + "probability": 0.9351 + }, + { + "start": 13243.4, + "end": 13244.72, + "probability": 0.691 + }, + { + "start": 13244.74, + "end": 13244.76, + "probability": 0.085 + }, + { + "start": 13244.76, + "end": 13245.2, + "probability": 0.4127 + }, + { + "start": 13245.3, + "end": 13247.63, + "probability": 0.897 + }, + { + "start": 13248.36, + "end": 13250.14, + "probability": 0.8914 + }, + { + "start": 13251.0, + "end": 13252.1, + "probability": 0.3717 + }, + { + "start": 13252.14, + "end": 13252.14, + "probability": 0.2725 + }, + { + "start": 13252.14, + "end": 13252.58, + "probability": 0.7178 + }, + { + "start": 13252.7, + "end": 13253.8, + "probability": 0.5898 + }, + { + "start": 13253.8, + "end": 13254.3, + "probability": 0.6589 + }, + { + "start": 13254.38, + "end": 13258.5, + "probability": 0.518 + }, + { + "start": 13258.5, + "end": 13258.98, + "probability": 0.3005 + }, + { + "start": 13259.6, + "end": 13263.44, + "probability": 0.7703 + }, + { + "start": 13264.05, + "end": 13267.56, + "probability": 0.5329 + }, + { + "start": 13267.64, + "end": 13271.54, + "probability": 0.7878 + }, + { + "start": 13271.7, + "end": 13272.66, + "probability": 0.9564 + }, + { + "start": 13272.74, + "end": 13273.78, + "probability": 0.9791 + }, + { + "start": 13273.8, + "end": 13275.2, + "probability": 0.991 + }, + { + "start": 13277.74, + "end": 13279.22, + "probability": 0.5358 + }, + { + "start": 13279.66, + "end": 13280.86, + "probability": 0.8606 + }, + { + "start": 13282.74, + "end": 13285.3, + "probability": 0.0851 + }, + { + "start": 13285.32, + "end": 13289.28, + "probability": 0.9067 + }, + { + "start": 13289.4, + "end": 13290.42, + "probability": 0.3525 + }, + { + "start": 13290.42, + "end": 13295.08, + "probability": 0.8246 + }, + { + "start": 13295.84, + "end": 13297.12, + "probability": 0.9036 + }, + { + "start": 13297.58, + "end": 13297.84, + "probability": 0.4128 + }, + { + "start": 13297.98, + "end": 13298.26, + "probability": 0.0495 + }, + { + "start": 13298.26, + "end": 13300.96, + "probability": 0.6101 + }, + { + "start": 13300.96, + "end": 13303.38, + "probability": 0.5298 + }, + { + "start": 13303.44, + "end": 13303.5, + "probability": 0.3368 + }, + { + "start": 13304.52, + "end": 13308.14, + "probability": 0.8881 + }, + { + "start": 13311.24, + "end": 13311.98, + "probability": 0.3154 + }, + { + "start": 13312.1, + "end": 13315.98, + "probability": 0.7285 + }, + { + "start": 13316.0, + "end": 13316.24, + "probability": 0.907 + }, + { + "start": 13316.42, + "end": 13316.84, + "probability": 0.7599 + }, + { + "start": 13317.3, + "end": 13318.24, + "probability": 0.7417 + }, + { + "start": 13318.54, + "end": 13319.54, + "probability": 0.7163 + }, + { + "start": 13319.54, + "end": 13322.3, + "probability": 0.1729 + }, + { + "start": 13323.69, + "end": 13327.24, + "probability": 0.995 + }, + { + "start": 13327.24, + "end": 13329.44, + "probability": 0.9736 + }, + { + "start": 13329.76, + "end": 13330.2, + "probability": 0.381 + }, + { + "start": 13330.2, + "end": 13330.68, + "probability": 0.7204 + }, + { + "start": 13330.68, + "end": 13331.56, + "probability": 0.2937 + }, + { + "start": 13331.74, + "end": 13332.24, + "probability": 0.7488 + }, + { + "start": 13332.32, + "end": 13334.98, + "probability": 0.9976 + }, + { + "start": 13335.74, + "end": 13336.92, + "probability": 0.9064 + }, + { + "start": 13338.18, + "end": 13339.36, + "probability": 0.9103 + }, + { + "start": 13339.76, + "end": 13341.26, + "probability": 0.9357 + }, + { + "start": 13341.62, + "end": 13343.49, + "probability": 0.796 + }, + { + "start": 13344.24, + "end": 13347.08, + "probability": 0.9833 + }, + { + "start": 13347.5, + "end": 13349.72, + "probability": 0.9587 + }, + { + "start": 13349.96, + "end": 13351.36, + "probability": 0.9116 + }, + { + "start": 13351.36, + "end": 13352.46, + "probability": 0.9639 + }, + { + "start": 13352.98, + "end": 13356.34, + "probability": 0.9411 + }, + { + "start": 13360.62, + "end": 13361.64, + "probability": 0.6622 + }, + { + "start": 13362.28, + "end": 13365.64, + "probability": 0.9819 + }, + { + "start": 13366.18, + "end": 13369.0, + "probability": 0.9209 + }, + { + "start": 13371.96, + "end": 13374.6, + "probability": 0.9951 + }, + { + "start": 13374.76, + "end": 13376.89, + "probability": 0.9814 + }, + { + "start": 13377.16, + "end": 13378.72, + "probability": 0.9695 + }, + { + "start": 13379.2, + "end": 13380.88, + "probability": 0.9522 + }, + { + "start": 13381.2, + "end": 13386.52, + "probability": 0.9787 + }, + { + "start": 13386.62, + "end": 13391.02, + "probability": 0.8399 + }, + { + "start": 13391.67, + "end": 13392.22, + "probability": 0.0405 + }, + { + "start": 13392.22, + "end": 13392.22, + "probability": 0.3152 + }, + { + "start": 13392.22, + "end": 13396.3, + "probability": 0.9391 + }, + { + "start": 13396.74, + "end": 13398.46, + "probability": 0.8188 + }, + { + "start": 13398.84, + "end": 13403.16, + "probability": 0.9241 + }, + { + "start": 13403.96, + "end": 13406.22, + "probability": 0.8141 + }, + { + "start": 13407.0, + "end": 13409.3, + "probability": 0.9937 + }, + { + "start": 13409.98, + "end": 13410.98, + "probability": 0.9565 + }, + { + "start": 13411.32, + "end": 13412.54, + "probability": 0.9524 + }, + { + "start": 13413.02, + "end": 13415.08, + "probability": 0.9855 + }, + { + "start": 13415.58, + "end": 13421.24, + "probability": 0.9908 + }, + { + "start": 13421.28, + "end": 13421.76, + "probability": 0.8113 + }, + { + "start": 13422.64, + "end": 13428.44, + "probability": 0.9915 + }, + { + "start": 13428.64, + "end": 13429.3, + "probability": 0.2203 + }, + { + "start": 13429.36, + "end": 13431.7, + "probability": 0.2594 + }, + { + "start": 13431.7, + "end": 13437.66, + "probability": 0.9777 + }, + { + "start": 13440.32, + "end": 13443.08, + "probability": 0.5315 + }, + { + "start": 13443.98, + "end": 13446.8, + "probability": 0.8123 + }, + { + "start": 13447.98, + "end": 13450.56, + "probability": 0.9644 + }, + { + "start": 13451.16, + "end": 13454.06, + "probability": 0.9499 + }, + { + "start": 13454.6, + "end": 13455.28, + "probability": 0.9463 + }, + { + "start": 13455.42, + "end": 13456.3, + "probability": 0.9531 + }, + { + "start": 13456.6, + "end": 13460.1, + "probability": 0.9165 + }, + { + "start": 13460.84, + "end": 13462.74, + "probability": 0.8151 + }, + { + "start": 13462.74, + "end": 13463.18, + "probability": 0.1457 + }, + { + "start": 13463.2, + "end": 13465.14, + "probability": 0.6783 + }, + { + "start": 13465.14, + "end": 13466.31, + "probability": 0.8799 + }, + { + "start": 13466.48, + "end": 13468.54, + "probability": 0.7917 + }, + { + "start": 13468.6, + "end": 13470.94, + "probability": 0.926 + }, + { + "start": 13471.56, + "end": 13473.84, + "probability": 0.1583 + }, + { + "start": 13477.78, + "end": 13477.78, + "probability": 0.0223 + }, + { + "start": 13477.78, + "end": 13477.78, + "probability": 0.1428 + }, + { + "start": 13477.78, + "end": 13477.78, + "probability": 0.0343 + }, + { + "start": 13477.78, + "end": 13477.78, + "probability": 0.389 + }, + { + "start": 13477.78, + "end": 13480.82, + "probability": 0.4323 + }, + { + "start": 13481.16, + "end": 13482.46, + "probability": 0.9858 + }, + { + "start": 13482.96, + "end": 13484.08, + "probability": 0.938 + }, + { + "start": 13484.14, + "end": 13485.4, + "probability": 0.939 + }, + { + "start": 13485.4, + "end": 13488.22, + "probability": 0.8392 + }, + { + "start": 13489.06, + "end": 13490.74, + "probability": 0.5861 + }, + { + "start": 13491.6, + "end": 13492.84, + "probability": 0.7379 + }, + { + "start": 13493.54, + "end": 13495.94, + "probability": 0.9746 + }, + { + "start": 13496.66, + "end": 13499.38, + "probability": 0.9726 + }, + { + "start": 13500.42, + "end": 13501.82, + "probability": 0.9639 + }, + { + "start": 13502.58, + "end": 13505.7, + "probability": 0.994 + }, + { + "start": 13506.38, + "end": 13510.4, + "probability": 0.9319 + }, + { + "start": 13510.54, + "end": 13511.34, + "probability": 0.1859 + }, + { + "start": 13511.54, + "end": 13513.22, + "probability": 0.1021 + }, + { + "start": 13513.22, + "end": 13516.38, + "probability": 0.3404 + }, + { + "start": 13516.62, + "end": 13517.22, + "probability": 0.2871 + }, + { + "start": 13517.46, + "end": 13517.8, + "probability": 0.0922 + }, + { + "start": 13518.7, + "end": 13520.8, + "probability": 0.9577 + }, + { + "start": 13521.78, + "end": 13524.72, + "probability": 0.2045 + }, + { + "start": 13525.4, + "end": 13526.1, + "probability": 0.704 + }, + { + "start": 13526.94, + "end": 13529.06, + "probability": 0.6773 + }, + { + "start": 13529.06, + "end": 13529.88, + "probability": 0.002 + }, + { + "start": 13530.4, + "end": 13531.56, + "probability": 0.4735 + }, + { + "start": 13531.82, + "end": 13533.24, + "probability": 0.2901 + }, + { + "start": 13533.36, + "end": 13535.04, + "probability": 0.9344 + }, + { + "start": 13535.24, + "end": 13535.24, + "probability": 0.6972 + }, + { + "start": 13535.34, + "end": 13540.96, + "probability": 0.9993 + }, + { + "start": 13541.16, + "end": 13542.32, + "probability": 0.9204 + }, + { + "start": 13543.06, + "end": 13546.32, + "probability": 0.9878 + }, + { + "start": 13547.84, + "end": 13552.42, + "probability": 0.9976 + }, + { + "start": 13553.18, + "end": 13557.12, + "probability": 0.7214 + }, + { + "start": 13557.26, + "end": 13562.06, + "probability": 0.9917 + }, + { + "start": 13562.74, + "end": 13568.18, + "probability": 0.9813 + }, + { + "start": 13568.38, + "end": 13570.26, + "probability": 0.8912 + }, + { + "start": 13570.82, + "end": 13571.44, + "probability": 0.4038 + }, + { + "start": 13572.04, + "end": 13572.54, + "probability": 0.014 + }, + { + "start": 13572.7, + "end": 13574.8, + "probability": 0.1075 + }, + { + "start": 13576.58, + "end": 13576.58, + "probability": 0.54 + }, + { + "start": 13576.7, + "end": 13576.8, + "probability": 0.0521 + }, + { + "start": 13576.8, + "end": 13580.7, + "probability": 0.7665 + }, + { + "start": 13581.12, + "end": 13587.06, + "probability": 0.3128 + }, + { + "start": 13587.74, + "end": 13587.76, + "probability": 0.0839 + }, + { + "start": 13587.76, + "end": 13587.76, + "probability": 0.0195 + }, + { + "start": 13587.76, + "end": 13588.14, + "probability": 0.0857 + }, + { + "start": 13588.16, + "end": 13588.93, + "probability": 0.1059 + }, + { + "start": 13591.57, + "end": 13593.06, + "probability": 0.9648 + }, + { + "start": 13593.16, + "end": 13595.6, + "probability": 0.6973 + }, + { + "start": 13595.7, + "end": 13599.34, + "probability": 0.903 + }, + { + "start": 13599.96, + "end": 13603.76, + "probability": 0.9986 + }, + { + "start": 13603.76, + "end": 13608.28, + "probability": 0.9995 + }, + { + "start": 13609.0, + "end": 13610.12, + "probability": 0.8577 + }, + { + "start": 13610.9, + "end": 13611.32, + "probability": 0.4827 + }, + { + "start": 13611.48, + "end": 13615.7, + "probability": 0.9825 + }, + { + "start": 13616.32, + "end": 13617.94, + "probability": 0.9228 + }, + { + "start": 13618.36, + "end": 13618.94, + "probability": 0.8433 + }, + { + "start": 13619.76, + "end": 13619.9, + "probability": 0.4475 + }, + { + "start": 13619.9, + "end": 13619.9, + "probability": 0.0771 + }, + { + "start": 13619.9, + "end": 13622.76, + "probability": 0.9782 + }, + { + "start": 13622.88, + "end": 13626.02, + "probability": 0.3502 + }, + { + "start": 13626.16, + "end": 13629.38, + "probability": 0.7947 + }, + { + "start": 13629.58, + "end": 13630.28, + "probability": 0.9312 + }, + { + "start": 13630.4, + "end": 13630.72, + "probability": 0.9402 + }, + { + "start": 13633.84, + "end": 13636.3, + "probability": 0.7429 + }, + { + "start": 13637.8, + "end": 13639.72, + "probability": 0.73 + }, + { + "start": 13640.18, + "end": 13642.72, + "probability": 0.808 + }, + { + "start": 13642.82, + "end": 13644.36, + "probability": 0.9189 + }, + { + "start": 13644.64, + "end": 13645.84, + "probability": 0.469 + }, + { + "start": 13645.94, + "end": 13646.32, + "probability": 0.9598 + }, + { + "start": 13646.42, + "end": 13647.2, + "probability": 0.8445 + }, + { + "start": 13647.32, + "end": 13647.68, + "probability": 0.8337 + }, + { + "start": 13648.24, + "end": 13654.64, + "probability": 0.9214 + }, + { + "start": 13654.64, + "end": 13657.64, + "probability": 0.9244 + }, + { + "start": 13657.76, + "end": 13657.88, + "probability": 0.472 + }, + { + "start": 13657.96, + "end": 13659.58, + "probability": 0.8641 + }, + { + "start": 13659.62, + "end": 13660.18, + "probability": 0.9015 + }, + { + "start": 13660.22, + "end": 13662.44, + "probability": 0.9855 + }, + { + "start": 13662.76, + "end": 13668.18, + "probability": 0.9751 + }, + { + "start": 13668.38, + "end": 13673.76, + "probability": 0.9974 + }, + { + "start": 13673.76, + "end": 13677.58, + "probability": 0.999 + }, + { + "start": 13678.14, + "end": 13680.38, + "probability": 0.9941 + }, + { + "start": 13680.5, + "end": 13683.5, + "probability": 0.9882 + }, + { + "start": 13683.86, + "end": 13685.56, + "probability": 0.8501 + }, + { + "start": 13685.74, + "end": 13689.96, + "probability": 0.9815 + }, + { + "start": 13690.26, + "end": 13692.82, + "probability": 0.9841 + }, + { + "start": 13692.82, + "end": 13695.34, + "probability": 0.9919 + }, + { + "start": 13696.02, + "end": 13697.38, + "probability": 0.9895 + }, + { + "start": 13697.84, + "end": 13700.96, + "probability": 0.8746 + }, + { + "start": 13701.14, + "end": 13703.22, + "probability": 0.9919 + }, + { + "start": 13703.76, + "end": 13707.12, + "probability": 0.9851 + }, + { + "start": 13707.7, + "end": 13710.32, + "probability": 0.9753 + }, + { + "start": 13710.98, + "end": 13712.72, + "probability": 0.9946 + }, + { + "start": 13712.82, + "end": 13714.8, + "probability": 0.9628 + }, + { + "start": 13714.92, + "end": 13717.55, + "probability": 0.9992 + }, + { + "start": 13717.92, + "end": 13721.12, + "probability": 0.9907 + }, + { + "start": 13721.82, + "end": 13724.44, + "probability": 0.9818 + }, + { + "start": 13724.9, + "end": 13728.6, + "probability": 0.9912 + }, + { + "start": 13729.66, + "end": 13736.14, + "probability": 0.999 + }, + { + "start": 13736.14, + "end": 13741.92, + "probability": 0.9988 + }, + { + "start": 13742.24, + "end": 13742.5, + "probability": 0.6427 + }, + { + "start": 13743.96, + "end": 13745.22, + "probability": 0.7006 + }, + { + "start": 13768.08, + "end": 13768.08, + "probability": 0.3235 + }, + { + "start": 13768.08, + "end": 13769.02, + "probability": 0.4365 + }, + { + "start": 13770.9, + "end": 13772.42, + "probability": 0.5717 + }, + { + "start": 13772.56, + "end": 13775.02, + "probability": 0.7327 + }, + { + "start": 13775.18, + "end": 13776.92, + "probability": 0.7337 + }, + { + "start": 13782.44, + "end": 13785.3, + "probability": 0.7114 + }, + { + "start": 13786.54, + "end": 13788.3, + "probability": 0.9856 + }, + { + "start": 13788.48, + "end": 13790.42, + "probability": 0.9494 + }, + { + "start": 13797.76, + "end": 13798.46, + "probability": 0.3812 + }, + { + "start": 13799.18, + "end": 13800.42, + "probability": 0.6465 + }, + { + "start": 13802.58, + "end": 13806.66, + "probability": 0.9604 + }, + { + "start": 13806.9, + "end": 13808.52, + "probability": 0.9066 + }, + { + "start": 13811.9, + "end": 13817.86, + "probability": 0.5039 + }, + { + "start": 13818.1, + "end": 13821.02, + "probability": 0.89 + }, + { + "start": 13821.02, + "end": 13823.48, + "probability": 0.9561 + }, + { + "start": 13823.72, + "end": 13824.5, + "probability": 0.677 + }, + { + "start": 13824.96, + "end": 13825.88, + "probability": 0.5302 + }, + { + "start": 13825.98, + "end": 13826.4, + "probability": 0.3473 + }, + { + "start": 13826.51, + "end": 13828.02, + "probability": 0.8339 + }, + { + "start": 13828.18, + "end": 13831.98, + "probability": 0.8528 + }, + { + "start": 13832.04, + "end": 13833.1, + "probability": 0.5355 + }, + { + "start": 13834.53, + "end": 13837.6, + "probability": 0.7564 + }, + { + "start": 13838.34, + "end": 13840.32, + "probability": 0.9915 + }, + { + "start": 13841.04, + "end": 13845.0, + "probability": 0.8975 + }, + { + "start": 13845.0, + "end": 13848.66, + "probability": 0.9049 + }, + { + "start": 13849.42, + "end": 13851.52, + "probability": 0.9401 + }, + { + "start": 13853.06, + "end": 13855.16, + "probability": 0.9805 + }, + { + "start": 13855.16, + "end": 13857.68, + "probability": 0.9819 + }, + { + "start": 13857.76, + "end": 13858.48, + "probability": 0.3168 + }, + { + "start": 13859.02, + "end": 13859.72, + "probability": 0.5792 + }, + { + "start": 13859.82, + "end": 13862.62, + "probability": 0.8557 + }, + { + "start": 13862.62, + "end": 13864.74, + "probability": 0.9403 + }, + { + "start": 13865.22, + "end": 13866.88, + "probability": 0.1686 + }, + { + "start": 13867.36, + "end": 13870.08, + "probability": 0.2135 + }, + { + "start": 13870.08, + "end": 13873.56, + "probability": 0.754 + }, + { + "start": 13874.12, + "end": 13877.2, + "probability": 0.9934 + }, + { + "start": 13877.5, + "end": 13880.44, + "probability": 0.2531 + }, + { + "start": 13880.58, + "end": 13882.92, + "probability": 0.4839 + }, + { + "start": 13887.28, + "end": 13889.06, + "probability": 0.5129 + }, + { + "start": 13893.18, + "end": 13893.58, + "probability": 0.0555 + }, + { + "start": 13894.0, + "end": 13896.66, + "probability": 0.6499 + }, + { + "start": 13896.8, + "end": 13898.46, + "probability": 0.1315 + }, + { + "start": 13898.66, + "end": 13898.66, + "probability": 0.1867 + }, + { + "start": 13898.66, + "end": 13901.18, + "probability": 0.2867 + }, + { + "start": 13903.58, + "end": 13905.96, + "probability": 0.5415 + }, + { + "start": 13905.96, + "end": 13906.82, + "probability": 0.6393 + }, + { + "start": 13906.98, + "end": 13908.56, + "probability": 0.2436 + }, + { + "start": 13908.78, + "end": 13908.78, + "probability": 0.0851 + }, + { + "start": 13908.78, + "end": 13910.68, + "probability": 0.3677 + }, + { + "start": 13911.1, + "end": 13911.1, + "probability": 0.0585 + }, + { + "start": 13911.1, + "end": 13911.1, + "probability": 0.022 + }, + { + "start": 13911.1, + "end": 13911.1, + "probability": 0.1813 + }, + { + "start": 13911.1, + "end": 13913.36, + "probability": 0.2159 + }, + { + "start": 13914.9, + "end": 13915.0, + "probability": 0.0488 + }, + { + "start": 13915.0, + "end": 13915.71, + "probability": 0.0939 + }, + { + "start": 13915.94, + "end": 13919.52, + "probability": 0.1727 + }, + { + "start": 13919.52, + "end": 13923.44, + "probability": 0.9538 + }, + { + "start": 13923.98, + "end": 13925.94, + "probability": 0.9627 + }, + { + "start": 13926.02, + "end": 13926.64, + "probability": 0.9124 + }, + { + "start": 13926.72, + "end": 13927.44, + "probability": 0.9537 + }, + { + "start": 13927.52, + "end": 13928.18, + "probability": 0.9107 + }, + { + "start": 13928.28, + "end": 13929.16, + "probability": 0.6909 + }, + { + "start": 13929.66, + "end": 13932.34, + "probability": 0.9091 + }, + { + "start": 13933.04, + "end": 13936.22, + "probability": 0.9971 + }, + { + "start": 13936.34, + "end": 13938.92, + "probability": 0.8943 + }, + { + "start": 13939.14, + "end": 13939.56, + "probability": 0.0634 + }, + { + "start": 13940.68, + "end": 13940.92, + "probability": 0.0153 + }, + { + "start": 13940.92, + "end": 13940.92, + "probability": 0.2949 + }, + { + "start": 13940.92, + "end": 13943.12, + "probability": 0.6746 + }, + { + "start": 13947.54, + "end": 13951.12, + "probability": 0.559 + }, + { + "start": 13951.16, + "end": 13952.94, + "probability": 0.8457 + }, + { + "start": 13953.38, + "end": 13954.84, + "probability": 0.9238 + }, + { + "start": 13955.44, + "end": 13957.72, + "probability": 0.8217 + }, + { + "start": 13957.72, + "end": 13960.96, + "probability": 0.7655 + }, + { + "start": 13961.08, + "end": 13963.46, + "probability": 0.7612 + }, + { + "start": 13964.04, + "end": 13967.78, + "probability": 0.8323 + }, + { + "start": 13967.92, + "end": 13970.2, + "probability": 0.5733 + }, + { + "start": 13970.54, + "end": 13972.26, + "probability": 0.2272 + }, + { + "start": 13972.72, + "end": 13975.3, + "probability": 0.959 + }, + { + "start": 13975.78, + "end": 13977.34, + "probability": 0.4711 + }, + { + "start": 13978.4, + "end": 13979.92, + "probability": 0.9694 + }, + { + "start": 13980.04, + "end": 13981.08, + "probability": 0.7699 + }, + { + "start": 13981.28, + "end": 13981.82, + "probability": 0.7786 + }, + { + "start": 13982.64, + "end": 13984.4, + "probability": 0.7134 + }, + { + "start": 13985.08, + "end": 13986.96, + "probability": 0.5968 + }, + { + "start": 13987.1, + "end": 13989.38, + "probability": 0.9901 + }, + { + "start": 13989.52, + "end": 13991.2, + "probability": 0.8506 + }, + { + "start": 13991.26, + "end": 13993.28, + "probability": 0.7312 + }, + { + "start": 13993.66, + "end": 13996.32, + "probability": 0.9874 + }, + { + "start": 13996.44, + "end": 13998.36, + "probability": 0.4801 + }, + { + "start": 13999.78, + "end": 14000.64, + "probability": 0.8529 + }, + { + "start": 14000.74, + "end": 14003.96, + "probability": 0.9357 + }, + { + "start": 14003.96, + "end": 14006.8, + "probability": 0.6539 + }, + { + "start": 14006.94, + "end": 14010.24, + "probability": 0.8716 + }, + { + "start": 14010.92, + "end": 14013.84, + "probability": 0.2553 + }, + { + "start": 14014.42, + "end": 14016.18, + "probability": 0.9924 + }, + { + "start": 14016.38, + "end": 14018.12, + "probability": 0.8447 + }, + { + "start": 14018.26, + "end": 14021.38, + "probability": 0.793 + }, + { + "start": 14021.6, + "end": 14023.34, + "probability": 0.1708 + }, + { + "start": 14024.0, + "end": 14026.54, + "probability": 0.972 + }, + { + "start": 14027.26, + "end": 14029.54, + "probability": 0.5121 + }, + { + "start": 14029.74, + "end": 14031.42, + "probability": 0.8693 + }, + { + "start": 14031.44, + "end": 14032.72, + "probability": 0.6747 + }, + { + "start": 14033.24, + "end": 14033.69, + "probability": 0.917 + }, + { + "start": 14034.78, + "end": 14036.42, + "probability": 0.7546 + }, + { + "start": 14036.52, + "end": 14038.84, + "probability": 0.9888 + }, + { + "start": 14039.34, + "end": 14041.04, + "probability": 0.5543 + }, + { + "start": 14041.68, + "end": 14045.56, + "probability": 0.8438 + }, + { + "start": 14045.56, + "end": 14049.08, + "probability": 0.9749 + }, + { + "start": 14049.18, + "end": 14050.54, + "probability": 0.9881 + }, + { + "start": 14050.74, + "end": 14053.92, + "probability": 0.8167 + }, + { + "start": 14054.02, + "end": 14056.8, + "probability": 0.7711 + }, + { + "start": 14056.8, + "end": 14058.9, + "probability": 0.8129 + }, + { + "start": 14059.84, + "end": 14060.82, + "probability": 0.0852 + }, + { + "start": 14061.56, + "end": 14063.64, + "probability": 0.9605 + }, + { + "start": 14064.54, + "end": 14068.02, + "probability": 0.2872 + }, + { + "start": 14068.6, + "end": 14073.94, + "probability": 0.9911 + }, + { + "start": 14074.06, + "end": 14077.6, + "probability": 0.9771 + }, + { + "start": 14078.52, + "end": 14078.72, + "probability": 0.2423 + }, + { + "start": 14078.84, + "end": 14080.6, + "probability": 0.0893 + }, + { + "start": 14080.62, + "end": 14082.48, + "probability": 0.4169 + }, + { + "start": 14082.7, + "end": 14084.02, + "probability": 0.6977 + }, + { + "start": 14084.02, + "end": 14085.96, + "probability": 0.8816 + }, + { + "start": 14086.18, + "end": 14087.1, + "probability": 0.3381 + }, + { + "start": 14087.1, + "end": 14087.82, + "probability": 0.7888 + }, + { + "start": 14088.82, + "end": 14090.42, + "probability": 0.9031 + }, + { + "start": 14090.52, + "end": 14090.74, + "probability": 0.6475 + }, + { + "start": 14090.76, + "end": 14092.95, + "probability": 0.5122 + }, + { + "start": 14093.64, + "end": 14095.64, + "probability": 0.8482 + }, + { + "start": 14096.58, + "end": 14099.06, + "probability": 0.7 + }, + { + "start": 14099.26, + "end": 14100.84, + "probability": 0.9695 + }, + { + "start": 14100.84, + "end": 14102.78, + "probability": 0.9912 + }, + { + "start": 14102.92, + "end": 14106.54, + "probability": 0.9729 + }, + { + "start": 14106.7, + "end": 14108.12, + "probability": 0.1342 + }, + { + "start": 14108.34, + "end": 14109.88, + "probability": 0.2991 + }, + { + "start": 14110.08, + "end": 14111.68, + "probability": 0.9487 + }, + { + "start": 14112.12, + "end": 14114.1, + "probability": 0.966 + }, + { + "start": 14114.1, + "end": 14116.1, + "probability": 0.6412 + }, + { + "start": 14116.16, + "end": 14116.94, + "probability": 0.7007 + }, + { + "start": 14117.1, + "end": 14118.32, + "probability": 0.9492 + }, + { + "start": 14118.4, + "end": 14119.24, + "probability": 0.8812 + }, + { + "start": 14119.28, + "end": 14122.58, + "probability": 0.9207 + }, + { + "start": 14123.08, + "end": 14124.12, + "probability": 0.94 + }, + { + "start": 14124.18, + "end": 14125.3, + "probability": 0.8314 + }, + { + "start": 14125.32, + "end": 14126.32, + "probability": 0.8232 + }, + { + "start": 14126.46, + "end": 14127.44, + "probability": 0.9281 + }, + { + "start": 14127.52, + "end": 14128.5, + "probability": 0.9915 + }, + { + "start": 14128.6, + "end": 14130.36, + "probability": 0.9223 + }, + { + "start": 14131.1, + "end": 14135.7, + "probability": 0.9627 + }, + { + "start": 14138.84, + "end": 14142.3, + "probability": 0.9891 + }, + { + "start": 14142.4, + "end": 14144.8, + "probability": 0.9917 + }, + { + "start": 14145.04, + "end": 14147.06, + "probability": 0.8984 + }, + { + "start": 14147.14, + "end": 14148.66, + "probability": 0.1018 + }, + { + "start": 14148.9, + "end": 14151.18, + "probability": 0.9764 + }, + { + "start": 14151.78, + "end": 14153.52, + "probability": 0.637 + }, + { + "start": 14154.14, + "end": 14158.08, + "probability": 0.9863 + }, + { + "start": 14158.08, + "end": 14160.6, + "probability": 0.1117 + }, + { + "start": 14161.5, + "end": 14163.92, + "probability": 0.9746 + }, + { + "start": 14164.12, + "end": 14166.2, + "probability": 0.57 + }, + { + "start": 14167.42, + "end": 14173.0, + "probability": 0.9347 + }, + { + "start": 14173.96, + "end": 14176.84, + "probability": 0.4644 + }, + { + "start": 14176.98, + "end": 14180.56, + "probability": 0.9819 + }, + { + "start": 14180.56, + "end": 14184.96, + "probability": 0.9972 + }, + { + "start": 14185.04, + "end": 14186.84, + "probability": 0.6039 + }, + { + "start": 14187.02, + "end": 14188.84, + "probability": 0.088 + }, + { + "start": 14188.86, + "end": 14190.66, + "probability": 0.1701 + }, + { + "start": 14190.86, + "end": 14193.54, + "probability": 0.9286 + }, + { + "start": 14194.32, + "end": 14200.19, + "probability": 0.886 + }, + { + "start": 14200.62, + "end": 14203.08, + "probability": 0.7096 + }, + { + "start": 14203.12, + "end": 14204.99, + "probability": 0.9891 + }, + { + "start": 14206.06, + "end": 14206.54, + "probability": 0.16 + }, + { + "start": 14206.54, + "end": 14207.42, + "probability": 0.6763 + }, + { + "start": 14207.5, + "end": 14208.02, + "probability": 0.2344 + }, + { + "start": 14208.08, + "end": 14212.94, + "probability": 0.98 + }, + { + "start": 14213.04, + "end": 14213.28, + "probability": 0.2865 + }, + { + "start": 14213.42, + "end": 14214.91, + "probability": 0.9976 + }, + { + "start": 14215.18, + "end": 14216.42, + "probability": 0.982 + }, + { + "start": 14217.5, + "end": 14221.76, + "probability": 0.9694 + }, + { + "start": 14222.12, + "end": 14222.5, + "probability": 0.87 + }, + { + "start": 14223.99, + "end": 14225.71, + "probability": 0.9849 + }, + { + "start": 14228.15, + "end": 14231.34, + "probability": 0.7699 + }, + { + "start": 14231.56, + "end": 14232.0, + "probability": 0.3153 + }, + { + "start": 14232.08, + "end": 14232.92, + "probability": 0.7681 + }, + { + "start": 14233.06, + "end": 14234.14, + "probability": 0.8096 + }, + { + "start": 14234.32, + "end": 14235.28, + "probability": 0.9351 + }, + { + "start": 14236.88, + "end": 14239.46, + "probability": 0.718 + }, + { + "start": 14239.52, + "end": 14243.62, + "probability": 0.9815 + }, + { + "start": 14246.84, + "end": 14249.1, + "probability": 0.981 + }, + { + "start": 14249.22, + "end": 14250.78, + "probability": 0.3443 + }, + { + "start": 14250.92, + "end": 14253.02, + "probability": 0.2112 + }, + { + "start": 14253.2, + "end": 14253.28, + "probability": 0.0153 + }, + { + "start": 14253.28, + "end": 14254.86, + "probability": 0.4232 + }, + { + "start": 14256.02, + "end": 14258.18, + "probability": 0.7605 + }, + { + "start": 14258.36, + "end": 14259.42, + "probability": 0.1899 + }, + { + "start": 14259.62, + "end": 14261.72, + "probability": 0.7766 + }, + { + "start": 14262.55, + "end": 14264.82, + "probability": 0.6909 + }, + { + "start": 14265.38, + "end": 14266.14, + "probability": 0.7013 + }, + { + "start": 14266.22, + "end": 14268.86, + "probability": 0.8385 + }, + { + "start": 14269.0, + "end": 14271.94, + "probability": 0.9438 + }, + { + "start": 14272.36, + "end": 14273.76, + "probability": 0.9075 + }, + { + "start": 14273.84, + "end": 14274.68, + "probability": 0.9448 + }, + { + "start": 14274.74, + "end": 14276.26, + "probability": 0.7809 + }, + { + "start": 14276.36, + "end": 14276.92, + "probability": 0.8538 + }, + { + "start": 14277.26, + "end": 14277.9, + "probability": 0.899 + }, + { + "start": 14277.94, + "end": 14279.7, + "probability": 0.9146 + }, + { + "start": 14280.22, + "end": 14282.84, + "probability": 0.9409 + }, + { + "start": 14282.94, + "end": 14284.0, + "probability": 0.8875 + }, + { + "start": 14284.08, + "end": 14285.34, + "probability": 0.7614 + }, + { + "start": 14285.84, + "end": 14288.18, + "probability": 0.9411 + }, + { + "start": 14288.28, + "end": 14293.1, + "probability": 0.9972 + }, + { + "start": 14293.34, + "end": 14294.4, + "probability": 0.9534 + }, + { + "start": 14294.48, + "end": 14296.88, + "probability": 0.6313 + }, + { + "start": 14297.5, + "end": 14297.96, + "probability": 0.7326 + }, + { + "start": 14298.1, + "end": 14302.32, + "probability": 0.895 + }, + { + "start": 14304.08, + "end": 14305.08, + "probability": 0.6474 + }, + { + "start": 14307.88, + "end": 14307.88, + "probability": 0.1806 + }, + { + "start": 14324.28, + "end": 14325.56, + "probability": 0.1152 + }, + { + "start": 14325.56, + "end": 14327.82, + "probability": 0.4595 + }, + { + "start": 14327.86, + "end": 14328.54, + "probability": 0.82 + }, + { + "start": 14330.04, + "end": 14331.1, + "probability": 0.9517 + }, + { + "start": 14331.1, + "end": 14331.32, + "probability": 0.4609 + }, + { + "start": 14331.4, + "end": 14337.52, + "probability": 0.9287 + }, + { + "start": 14337.92, + "end": 14342.04, + "probability": 0.7639 + }, + { + "start": 14342.34, + "end": 14343.74, + "probability": 0.0517 + }, + { + "start": 14343.9, + "end": 14346.1, + "probability": 0.9924 + }, + { + "start": 14346.3, + "end": 14348.8, + "probability": 0.6849 + }, + { + "start": 14348.98, + "end": 14350.94, + "probability": 0.105 + }, + { + "start": 14351.28, + "end": 14354.56, + "probability": 0.7301 + }, + { + "start": 14354.96, + "end": 14358.42, + "probability": 0.955 + }, + { + "start": 14358.7, + "end": 14359.7, + "probability": 0.6309 + }, + { + "start": 14359.7, + "end": 14361.62, + "probability": 0.9919 + }, + { + "start": 14361.62, + "end": 14363.64, + "probability": 0.8586 + }, + { + "start": 14363.72, + "end": 14364.44, + "probability": 0.8259 + }, + { + "start": 14364.5, + "end": 14368.06, + "probability": 0.9924 + }, + { + "start": 14368.06, + "end": 14370.76, + "probability": 0.9848 + }, + { + "start": 14370.88, + "end": 14373.1, + "probability": 0.8006 + }, + { + "start": 14373.58, + "end": 14377.74, + "probability": 0.7606 + }, + { + "start": 14377.86, + "end": 14378.06, + "probability": 0.7178 + }, + { + "start": 14378.44, + "end": 14380.78, + "probability": 0.8203 + }, + { + "start": 14381.68, + "end": 14382.44, + "probability": 0.4891 + }, + { + "start": 14383.42, + "end": 14384.38, + "probability": 0.6099 + }, + { + "start": 14398.64, + "end": 14399.1, + "probability": 0.3872 + }, + { + "start": 14416.28, + "end": 14422.52, + "probability": 0.1674 + }, + { + "start": 14422.52, + "end": 14422.74, + "probability": 0.0373 + }, + { + "start": 14422.74, + "end": 14424.16, + "probability": 0.1978 + }, + { + "start": 14425.61, + "end": 14427.64, + "probability": 0.1476 + }, + { + "start": 14427.68, + "end": 14430.44, + "probability": 0.1242 + }, + { + "start": 14431.82, + "end": 14435.28, + "probability": 0.0586 + }, + { + "start": 14435.98, + "end": 14438.98, + "probability": 0.1317 + }, + { + "start": 14451.42, + "end": 14451.46, + "probability": 0.051 + }, + { + "start": 14451.46, + "end": 14451.46, + "probability": 0.1398 + }, + { + "start": 14451.46, + "end": 14451.52, + "probability": 0.1856 + }, + { + "start": 14451.52, + "end": 14451.52, + "probability": 0.0183 + }, + { + "start": 14460.6, + "end": 14463.24, + "probability": 0.192 + }, + { + "start": 14463.3, + "end": 14463.36, + "probability": 0.1988 + }, + { + "start": 14463.36, + "end": 14464.14, + "probability": 0.0741 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.0, + "end": 14490.0, + "probability": 0.0 + }, + { + "start": 14490.48, + "end": 14493.7, + "probability": 0.0283 + }, + { + "start": 14509.58, + "end": 14510.22, + "probability": 0.1583 + }, + { + "start": 14512.2, + "end": 14517.3, + "probability": 0.1672 + }, + { + "start": 14525.22, + "end": 14525.9, + "probability": 0.0962 + }, + { + "start": 14535.84, + "end": 14539.34, + "probability": 0.0161 + }, + { + "start": 14539.34, + "end": 14539.5, + "probability": 0.0471 + }, + { + "start": 14539.5, + "end": 14541.44, + "probability": 0.0312 + }, + { + "start": 14543.9, + "end": 14544.48, + "probability": 0.0268 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.0, + "end": 14612.0, + "probability": 0.0 + }, + { + "start": 14612.78, + "end": 14613.48, + "probability": 0.3314 + }, + { + "start": 14615.32, + "end": 14617.82, + "probability": 0.9352 + }, + { + "start": 14618.58, + "end": 14621.18, + "probability": 0.9968 + }, + { + "start": 14621.68, + "end": 14624.7, + "probability": 0.9314 + }, + { + "start": 14626.0, + "end": 14627.82, + "probability": 0.9468 + }, + { + "start": 14628.62, + "end": 14630.48, + "probability": 0.9784 + }, + { + "start": 14631.52, + "end": 14631.52, + "probability": 0.6466 + }, + { + "start": 14631.52, + "end": 14638.0, + "probability": 0.9569 + }, + { + "start": 14638.84, + "end": 14640.52, + "probability": 0.8274 + }, + { + "start": 14640.64, + "end": 14640.88, + "probability": 0.5954 + }, + { + "start": 14640.96, + "end": 14641.42, + "probability": 0.9164 + }, + { + "start": 14641.54, + "end": 14645.76, + "probability": 0.9585 + }, + { + "start": 14645.9, + "end": 14647.76, + "probability": 0.9487 + }, + { + "start": 14648.46, + "end": 14650.36, + "probability": 0.8788 + }, + { + "start": 14650.5, + "end": 14652.13, + "probability": 0.9181 + }, + { + "start": 14653.3, + "end": 14656.82, + "probability": 0.884 + }, + { + "start": 14657.76, + "end": 14662.28, + "probability": 0.9822 + }, + { + "start": 14663.0, + "end": 14666.02, + "probability": 0.6067 + }, + { + "start": 14666.98, + "end": 14669.26, + "probability": 0.9973 + }, + { + "start": 14670.42, + "end": 14671.4, + "probability": 0.8039 + }, + { + "start": 14671.94, + "end": 14672.1, + "probability": 0.4944 + }, + { + "start": 14672.2, + "end": 14672.96, + "probability": 0.7867 + }, + { + "start": 14673.2, + "end": 14676.98, + "probability": 0.9704 + }, + { + "start": 14678.54, + "end": 14685.26, + "probability": 0.996 + }, + { + "start": 14685.9, + "end": 14688.16, + "probability": 0.995 + }, + { + "start": 14688.76, + "end": 14692.4, + "probability": 0.9969 + }, + { + "start": 14693.1, + "end": 14694.82, + "probability": 0.952 + }, + { + "start": 14695.44, + "end": 14698.32, + "probability": 0.998 + }, + { + "start": 14698.6, + "end": 14699.6, + "probability": 0.7104 + }, + { + "start": 14699.78, + "end": 14700.96, + "probability": 0.9648 + }, + { + "start": 14701.72, + "end": 14703.06, + "probability": 0.9849 + }, + { + "start": 14703.88, + "end": 14709.66, + "probability": 0.9751 + }, + { + "start": 14709.76, + "end": 14710.24, + "probability": 0.5498 + }, + { + "start": 14711.22, + "end": 14711.22, + "probability": 0.364 + }, + { + "start": 14711.28, + "end": 14712.8, + "probability": 0.9132 + }, + { + "start": 14735.24, + "end": 14735.86, + "probability": 0.5807 + }, + { + "start": 14736.06, + "end": 14736.54, + "probability": 0.8891 + }, + { + "start": 14737.22, + "end": 14741.0, + "probability": 0.7375 + }, + { + "start": 14742.04, + "end": 14743.74, + "probability": 0.8733 + }, + { + "start": 14745.44, + "end": 14751.12, + "probability": 0.9833 + }, + { + "start": 14751.12, + "end": 14758.48, + "probability": 0.9529 + }, + { + "start": 14758.62, + "end": 14762.4, + "probability": 0.9845 + }, + { + "start": 14762.5, + "end": 14763.08, + "probability": 0.7292 + }, + { + "start": 14763.16, + "end": 14763.78, + "probability": 0.9544 + }, + { + "start": 14763.82, + "end": 14764.94, + "probability": 0.8259 + }, + { + "start": 14766.24, + "end": 14768.48, + "probability": 0.9306 + }, + { + "start": 14768.62, + "end": 14778.18, + "probability": 0.9909 + }, + { + "start": 14778.9, + "end": 14780.92, + "probability": 0.9457 + }, + { + "start": 14781.16, + "end": 14783.5, + "probability": 0.852 + }, + { + "start": 14783.98, + "end": 14788.36, + "probability": 0.8846 + }, + { + "start": 14788.86, + "end": 14790.66, + "probability": 0.9509 + }, + { + "start": 14790.8, + "end": 14792.46, + "probability": 0.7797 + }, + { + "start": 14792.88, + "end": 14793.78, + "probability": 0.8356 + }, + { + "start": 14793.96, + "end": 14796.48, + "probability": 0.9663 + }, + { + "start": 14797.8, + "end": 14801.92, + "probability": 0.993 + }, + { + "start": 14801.92, + "end": 14806.92, + "probability": 0.9979 + }, + { + "start": 14807.64, + "end": 14809.7, + "probability": 0.8761 + }, + { + "start": 14810.12, + "end": 14814.54, + "probability": 0.8749 + }, + { + "start": 14815.36, + "end": 14817.52, + "probability": 0.5865 + }, + { + "start": 14818.18, + "end": 14820.22, + "probability": 0.9894 + }, + { + "start": 14821.12, + "end": 14825.3, + "probability": 0.9712 + }, + { + "start": 14825.5, + "end": 14828.86, + "probability": 0.9556 + }, + { + "start": 14829.86, + "end": 14831.4, + "probability": 0.9524 + }, + { + "start": 14832.2, + "end": 14835.48, + "probability": 0.9941 + }, + { + "start": 14836.02, + "end": 14839.12, + "probability": 0.8914 + }, + { + "start": 14839.62, + "end": 14840.54, + "probability": 0.783 + }, + { + "start": 14840.86, + "end": 14841.92, + "probability": 0.8803 + }, + { + "start": 14842.38, + "end": 14842.82, + "probability": 0.9528 + }, + { + "start": 14844.12, + "end": 14847.8, + "probability": 0.97 + }, + { + "start": 14848.92, + "end": 14852.04, + "probability": 0.9966 + }, + { + "start": 14852.76, + "end": 14854.54, + "probability": 0.998 + }, + { + "start": 14855.06, + "end": 14859.66, + "probability": 0.9956 + }, + { + "start": 14860.32, + "end": 14864.24, + "probability": 0.9938 + }, + { + "start": 14864.94, + "end": 14866.44, + "probability": 0.9692 + }, + { + "start": 14867.02, + "end": 14867.72, + "probability": 0.9475 + }, + { + "start": 14868.44, + "end": 14873.24, + "probability": 0.9837 + }, + { + "start": 14874.04, + "end": 14880.4, + "probability": 0.9461 + }, + { + "start": 14880.96, + "end": 14884.92, + "probability": 0.9795 + }, + { + "start": 14886.2, + "end": 14890.14, + "probability": 0.9575 + }, + { + "start": 14890.9, + "end": 14895.3, + "probability": 0.98 + }, + { + "start": 14895.96, + "end": 14897.4, + "probability": 0.9634 + }, + { + "start": 14898.28, + "end": 14902.02, + "probability": 0.993 + }, + { + "start": 14902.08, + "end": 14903.52, + "probability": 0.6902 + }, + { + "start": 14904.12, + "end": 14907.34, + "probability": 0.9948 + }, + { + "start": 14908.12, + "end": 14909.12, + "probability": 0.9294 + }, + { + "start": 14909.28, + "end": 14912.82, + "probability": 0.9922 + }, + { + "start": 14913.38, + "end": 14915.24, + "probability": 0.9681 + }, + { + "start": 14915.4, + "end": 14915.92, + "probability": 0.5156 + }, + { + "start": 14915.96, + "end": 14916.48, + "probability": 0.7757 + }, + { + "start": 14916.88, + "end": 14922.76, + "probability": 0.7855 + }, + { + "start": 14923.02, + "end": 14924.6, + "probability": 0.3564 + }, + { + "start": 14925.26, + "end": 14927.38, + "probability": 0.9412 + }, + { + "start": 14927.94, + "end": 14928.54, + "probability": 0.9268 + }, + { + "start": 14929.86, + "end": 14933.86, + "probability": 0.985 + }, + { + "start": 14935.2, + "end": 14940.1, + "probability": 0.9344 + }, + { + "start": 14940.64, + "end": 14944.18, + "probability": 0.995 + }, + { + "start": 14944.18, + "end": 14947.4, + "probability": 0.9867 + }, + { + "start": 14947.92, + "end": 14951.12, + "probability": 0.9786 + }, + { + "start": 14951.86, + "end": 14954.4, + "probability": 0.9546 + }, + { + "start": 14954.96, + "end": 14955.3, + "probability": 0.6375 + }, + { + "start": 14955.44, + "end": 14956.2, + "probability": 0.7197 + }, + { + "start": 14956.34, + "end": 14960.48, + "probability": 0.9919 + }, + { + "start": 14960.56, + "end": 14961.76, + "probability": 0.6392 + }, + { + "start": 14962.64, + "end": 14964.86, + "probability": 0.9773 + }, + { + "start": 14965.88, + "end": 14968.86, + "probability": 0.9895 + }, + { + "start": 14969.88, + "end": 14974.26, + "probability": 0.998 + }, + { + "start": 14975.08, + "end": 14976.48, + "probability": 0.7731 + }, + { + "start": 14977.26, + "end": 14979.38, + "probability": 0.9727 + }, + { + "start": 14980.02, + "end": 14982.88, + "probability": 0.9931 + }, + { + "start": 14983.86, + "end": 14987.32, + "probability": 0.9764 + }, + { + "start": 14988.08, + "end": 14990.54, + "probability": 0.8535 + }, + { + "start": 14991.4, + "end": 14992.1, + "probability": 0.621 + }, + { + "start": 14992.42, + "end": 14993.84, + "probability": 0.9241 + }, + { + "start": 14995.04, + "end": 14996.12, + "probability": 0.8534 + }, + { + "start": 15001.1, + "end": 15002.12, + "probability": 0.168 + }, + { + "start": 15003.4, + "end": 15004.08, + "probability": 0.3656 + }, + { + "start": 15006.14, + "end": 15007.74, + "probability": 0.1718 + }, + { + "start": 15008.25, + "end": 15009.24, + "probability": 0.1789 + }, + { + "start": 15010.24, + "end": 15011.36, + "probability": 0.0457 + }, + { + "start": 15014.32, + "end": 15015.92, + "probability": 0.6029 + }, + { + "start": 15021.4, + "end": 15022.66, + "probability": 0.8545 + }, + { + "start": 15023.86, + "end": 15024.94, + "probability": 0.5412 + }, + { + "start": 15025.06, + "end": 15027.66, + "probability": 0.7777 + }, + { + "start": 15027.9, + "end": 15028.0, + "probability": 0.4028 + }, + { + "start": 15029.04, + "end": 15030.12, + "probability": 0.8655 + }, + { + "start": 15030.81, + "end": 15033.52, + "probability": 0.9182 + }, + { + "start": 15033.62, + "end": 15036.42, + "probability": 0.9668 + }, + { + "start": 15037.32, + "end": 15038.12, + "probability": 0.8548 + }, + { + "start": 15038.3, + "end": 15038.8, + "probability": 0.81 + }, + { + "start": 15038.9, + "end": 15039.92, + "probability": 0.9973 + }, + { + "start": 15040.02, + "end": 15043.62, + "probability": 0.9382 + }, + { + "start": 15043.7, + "end": 15044.72, + "probability": 0.8504 + }, + { + "start": 15045.36, + "end": 15045.94, + "probability": 0.7084 + }, + { + "start": 15046.1, + "end": 15046.72, + "probability": 0.5507 + }, + { + "start": 15046.94, + "end": 15049.96, + "probability": 0.9875 + }, + { + "start": 15050.06, + "end": 15051.12, + "probability": 0.6705 + }, + { + "start": 15051.24, + "end": 15053.03, + "probability": 0.5524 + }, + { + "start": 15053.74, + "end": 15055.62, + "probability": 0.8492 + }, + { + "start": 15057.15, + "end": 15060.5, + "probability": 0.9712 + }, + { + "start": 15060.58, + "end": 15061.3, + "probability": 0.9498 + }, + { + "start": 15061.56, + "end": 15064.1, + "probability": 0.9688 + }, + { + "start": 15064.18, + "end": 15064.88, + "probability": 0.9968 + }, + { + "start": 15064.96, + "end": 15068.96, + "probability": 0.979 + }, + { + "start": 15068.96, + "end": 15071.74, + "probability": 0.1337 + }, + { + "start": 15071.76, + "end": 15073.0, + "probability": 0.8434 + }, + { + "start": 15073.04, + "end": 15075.26, + "probability": 0.9652 + }, + { + "start": 15076.06, + "end": 15079.54, + "probability": 0.9895 + }, + { + "start": 15079.68, + "end": 15082.38, + "probability": 0.945 + }, + { + "start": 15083.04, + "end": 15087.6, + "probability": 0.9621 + }, + { + "start": 15087.7, + "end": 15088.8, + "probability": 0.9534 + }, + { + "start": 15089.22, + "end": 15090.34, + "probability": 0.9335 + }, + { + "start": 15090.38, + "end": 15092.79, + "probability": 0.9666 + }, + { + "start": 15093.34, + "end": 15096.08, + "probability": 0.9681 + }, + { + "start": 15096.08, + "end": 15098.02, + "probability": 0.2521 + }, + { + "start": 15098.42, + "end": 15098.68, + "probability": 0.398 + }, + { + "start": 15098.76, + "end": 15100.12, + "probability": 0.2879 + }, + { + "start": 15100.18, + "end": 15105.82, + "probability": 0.8646 + }, + { + "start": 15106.56, + "end": 15107.14, + "probability": 0.4127 + }, + { + "start": 15107.32, + "end": 15107.94, + "probability": 0.5519 + }, + { + "start": 15108.02, + "end": 15109.38, + "probability": 0.8957 + }, + { + "start": 15109.46, + "end": 15109.82, + "probability": 0.5966 + }, + { + "start": 15109.9, + "end": 15109.92, + "probability": 0.4683 + }, + { + "start": 15109.92, + "end": 15113.62, + "probability": 0.9235 + }, + { + "start": 15113.8, + "end": 15114.1, + "probability": 0.0211 + }, + { + "start": 15114.4, + "end": 15118.44, + "probability": 0.9525 + }, + { + "start": 15118.66, + "end": 15118.86, + "probability": 0.2162 + }, + { + "start": 15119.04, + "end": 15119.9, + "probability": 0.7776 + }, + { + "start": 15120.14, + "end": 15121.14, + "probability": 0.972 + }, + { + "start": 15121.6, + "end": 15122.88, + "probability": 0.8251 + }, + { + "start": 15123.94, + "end": 15124.32, + "probability": 0.6146 + }, + { + "start": 15124.48, + "end": 15126.1, + "probability": 0.9794 + }, + { + "start": 15126.1, + "end": 15128.6, + "probability": 0.9886 + }, + { + "start": 15128.68, + "end": 15133.62, + "probability": 0.9988 + }, + { + "start": 15133.96, + "end": 15136.98, + "probability": 0.9985 + }, + { + "start": 15137.54, + "end": 15137.75, + "probability": 0.021 + }, + { + "start": 15138.56, + "end": 15139.0, + "probability": 0.3905 + }, + { + "start": 15139.0, + "end": 15141.8, + "probability": 0.1564 + }, + { + "start": 15141.92, + "end": 15142.22, + "probability": 0.5549 + }, + { + "start": 15142.34, + "end": 15143.56, + "probability": 0.9197 + }, + { + "start": 15144.06, + "end": 15147.08, + "probability": 0.8746 + }, + { + "start": 15147.18, + "end": 15151.14, + "probability": 0.9594 + }, + { + "start": 15151.2, + "end": 15151.7, + "probability": 0.8549 + }, + { + "start": 15152.12, + "end": 15152.9, + "probability": 0.7975 + }, + { + "start": 15153.3, + "end": 15156.62, + "probability": 0.9802 + }, + { + "start": 15156.64, + "end": 15158.34, + "probability": 0.8815 + }, + { + "start": 15158.58, + "end": 15159.2, + "probability": 0.8143 + }, + { + "start": 15159.28, + "end": 15160.52, + "probability": 0.9603 + }, + { + "start": 15160.66, + "end": 15163.22, + "probability": 0.6726 + }, + { + "start": 15163.22, + "end": 15166.32, + "probability": 0.8707 + }, + { + "start": 15166.48, + "end": 15170.08, + "probability": 0.9884 + }, + { + "start": 15170.2, + "end": 15170.94, + "probability": 0.913 + }, + { + "start": 15171.44, + "end": 15172.56, + "probability": 0.8695 + }, + { + "start": 15173.1, + "end": 15174.4, + "probability": 0.8074 + }, + { + "start": 15174.76, + "end": 15175.02, + "probability": 0.8949 + }, + { + "start": 15175.08, + "end": 15176.24, + "probability": 0.9702 + }, + { + "start": 15176.32, + "end": 15177.92, + "probability": 0.7774 + }, + { + "start": 15178.14, + "end": 15179.28, + "probability": 0.9648 + }, + { + "start": 15179.66, + "end": 15182.02, + "probability": 0.918 + }, + { + "start": 15182.36, + "end": 15184.8, + "probability": 0.9524 + }, + { + "start": 15185.12, + "end": 15186.44, + "probability": 0.9905 + }, + { + "start": 15186.74, + "end": 15189.35, + "probability": 0.7323 + }, + { + "start": 15189.96, + "end": 15190.48, + "probability": 0.5667 + }, + { + "start": 15190.56, + "end": 15194.02, + "probability": 0.9921 + }, + { + "start": 15194.3, + "end": 15194.92, + "probability": 0.7876 + }, + { + "start": 15195.04, + "end": 15195.2, + "probability": 0.2549 + }, + { + "start": 15195.3, + "end": 15197.72, + "probability": 0.8118 + }, + { + "start": 15197.94, + "end": 15199.16, + "probability": 0.6389 + }, + { + "start": 15199.56, + "end": 15201.94, + "probability": 0.9771 + }, + { + "start": 15202.18, + "end": 15205.74, + "probability": 0.9494 + }, + { + "start": 15205.94, + "end": 15206.96, + "probability": 0.8589 + }, + { + "start": 15207.28, + "end": 15211.36, + "probability": 0.9878 + }, + { + "start": 15211.44, + "end": 15211.8, + "probability": 0.8255 + }, + { + "start": 15212.06, + "end": 15212.86, + "probability": 0.9719 + }, + { + "start": 15213.2, + "end": 15217.92, + "probability": 0.924 + }, + { + "start": 15218.06, + "end": 15218.1, + "probability": 0.0806 + }, + { + "start": 15218.12, + "end": 15219.47, + "probability": 0.9523 + }, + { + "start": 15219.7, + "end": 15220.68, + "probability": 0.9093 + }, + { + "start": 15221.3, + "end": 15222.74, + "probability": 0.7518 + }, + { + "start": 15223.12, + "end": 15223.96, + "probability": 0.7134 + }, + { + "start": 15224.04, + "end": 15224.88, + "probability": 0.8814 + }, + { + "start": 15224.96, + "end": 15225.68, + "probability": 0.8385 + }, + { + "start": 15225.74, + "end": 15226.92, + "probability": 0.8776 + }, + { + "start": 15227.38, + "end": 15230.74, + "probability": 0.96 + }, + { + "start": 15230.74, + "end": 15234.56, + "probability": 0.9782 + }, + { + "start": 15234.64, + "end": 15237.78, + "probability": 0.9946 + }, + { + "start": 15238.0, + "end": 15241.14, + "probability": 0.9945 + }, + { + "start": 15241.14, + "end": 15244.52, + "probability": 0.9993 + }, + { + "start": 15244.76, + "end": 15246.2, + "probability": 0.9206 + }, + { + "start": 15246.7, + "end": 15247.32, + "probability": 0.6189 + }, + { + "start": 15247.5, + "end": 15250.04, + "probability": 0.9261 + }, + { + "start": 15250.04, + "end": 15251.84, + "probability": 0.8203 + }, + { + "start": 15252.6, + "end": 15252.6, + "probability": 0.1539 + }, + { + "start": 15252.6, + "end": 15252.62, + "probability": 0.7972 + }, + { + "start": 15252.62, + "end": 15254.14, + "probability": 0.8196 + }, + { + "start": 15254.28, + "end": 15255.46, + "probability": 0.4884 + }, + { + "start": 15256.0, + "end": 15256.56, + "probability": 0.6222 + }, + { + "start": 15256.64, + "end": 15257.06, + "probability": 0.8555 + }, + { + "start": 15257.06, + "end": 15257.62, + "probability": 0.9253 + }, + { + "start": 15257.7, + "end": 15259.86, + "probability": 0.1255 + }, + { + "start": 15259.86, + "end": 15263.64, + "probability": 0.6181 + }, + { + "start": 15264.32, + "end": 15265.7, + "probability": 0.8896 + }, + { + "start": 15268.28, + "end": 15268.3, + "probability": 0.117 + }, + { + "start": 15268.3, + "end": 15272.54, + "probability": 0.7388 + }, + { + "start": 15272.58, + "end": 15274.48, + "probability": 0.6796 + }, + { + "start": 15274.7, + "end": 15275.02, + "probability": 0.8736 + }, + { + "start": 15276.44, + "end": 15276.74, + "probability": 0.0052 + }, + { + "start": 15295.08, + "end": 15295.9, + "probability": 0.2844 + }, + { + "start": 15296.34, + "end": 15298.64, + "probability": 0.8373 + }, + { + "start": 15301.58, + "end": 15305.3, + "probability": 0.8085 + }, + { + "start": 15306.12, + "end": 15306.91, + "probability": 0.7474 + }, + { + "start": 15308.28, + "end": 15311.11, + "probability": 0.9676 + }, + { + "start": 15312.08, + "end": 15313.92, + "probability": 0.9849 + }, + { + "start": 15314.96, + "end": 15320.28, + "probability": 0.9956 + }, + { + "start": 15322.62, + "end": 15325.48, + "probability": 0.9915 + }, + { + "start": 15329.6, + "end": 15330.86, + "probability": 0.9285 + }, + { + "start": 15331.66, + "end": 15332.94, + "probability": 0.9421 + }, + { + "start": 15333.9, + "end": 15338.35, + "probability": 0.8313 + }, + { + "start": 15341.78, + "end": 15345.52, + "probability": 0.7993 + }, + { + "start": 15346.3, + "end": 15348.6, + "probability": 0.8741 + }, + { + "start": 15349.32, + "end": 15350.9, + "probability": 0.9927 + }, + { + "start": 15353.38, + "end": 15354.86, + "probability": 0.5051 + }, + { + "start": 15355.28, + "end": 15361.16, + "probability": 0.8397 + }, + { + "start": 15363.32, + "end": 15365.44, + "probability": 0.9089 + }, + { + "start": 15367.5, + "end": 15368.38, + "probability": 0.9611 + }, + { + "start": 15369.9, + "end": 15373.04, + "probability": 0.9653 + }, + { + "start": 15374.24, + "end": 15377.67, + "probability": 0.846 + }, + { + "start": 15378.36, + "end": 15379.46, + "probability": 0.998 + }, + { + "start": 15381.28, + "end": 15382.46, + "probability": 0.8145 + }, + { + "start": 15382.58, + "end": 15388.32, + "probability": 0.9547 + }, + { + "start": 15388.32, + "end": 15394.32, + "probability": 0.9817 + }, + { + "start": 15394.52, + "end": 15397.22, + "probability": 0.9941 + }, + { + "start": 15398.32, + "end": 15401.16, + "probability": 0.9978 + }, + { + "start": 15402.86, + "end": 15405.12, + "probability": 0.8323 + }, + { + "start": 15405.9, + "end": 15408.62, + "probability": 0.9233 + }, + { + "start": 15408.84, + "end": 15412.44, + "probability": 0.9102 + }, + { + "start": 15412.5, + "end": 15413.12, + "probability": 0.6136 + }, + { + "start": 15413.74, + "end": 15417.08, + "probability": 0.9599 + }, + { + "start": 15418.18, + "end": 15421.04, + "probability": 0.9976 + }, + { + "start": 15421.14, + "end": 15423.2, + "probability": 0.9232 + }, + { + "start": 15423.96, + "end": 15426.86, + "probability": 0.9888 + }, + { + "start": 15427.86, + "end": 15428.96, + "probability": 0.9152 + }, + { + "start": 15429.06, + "end": 15430.62, + "probability": 0.9915 + }, + { + "start": 15431.04, + "end": 15433.02, + "probability": 0.0897 + }, + { + "start": 15433.02, + "end": 15433.78, + "probability": 0.4056 + }, + { + "start": 15434.74, + "end": 15437.68, + "probability": 0.8895 + }, + { + "start": 15438.44, + "end": 15442.74, + "probability": 0.9971 + }, + { + "start": 15443.8, + "end": 15446.94, + "probability": 0.5863 + }, + { + "start": 15448.48, + "end": 15452.36, + "probability": 0.991 + }, + { + "start": 15453.52, + "end": 15456.2, + "probability": 0.9619 + }, + { + "start": 15456.8, + "end": 15457.7, + "probability": 0.7493 + }, + { + "start": 15457.96, + "end": 15459.66, + "probability": 0.0042 + }, + { + "start": 15459.66, + "end": 15460.16, + "probability": 0.3033 + }, + { + "start": 15460.24, + "end": 15461.4, + "probability": 0.5693 + }, + { + "start": 15463.72, + "end": 15465.66, + "probability": 0.994 + }, + { + "start": 15466.66, + "end": 15467.42, + "probability": 0.8754 + }, + { + "start": 15468.24, + "end": 15469.48, + "probability": 0.7745 + }, + { + "start": 15470.08, + "end": 15470.78, + "probability": 0.392 + }, + { + "start": 15472.92, + "end": 15474.4, + "probability": 0.9696 + }, + { + "start": 15477.48, + "end": 15478.44, + "probability": 0.6863 + }, + { + "start": 15478.74, + "end": 15481.94, + "probability": 0.9178 + }, + { + "start": 15482.46, + "end": 15482.84, + "probability": 0.6101 + }, + { + "start": 15483.82, + "end": 15486.74, + "probability": 0.9569 + }, + { + "start": 15488.28, + "end": 15491.1, + "probability": 0.6961 + }, + { + "start": 15491.68, + "end": 15497.1, + "probability": 0.6091 + }, + { + "start": 15498.4, + "end": 15501.7, + "probability": 0.9976 + }, + { + "start": 15501.7, + "end": 15505.66, + "probability": 0.9982 + }, + { + "start": 15506.48, + "end": 15510.86, + "probability": 0.8983 + }, + { + "start": 15511.38, + "end": 15514.86, + "probability": 0.9952 + }, + { + "start": 15514.96, + "end": 15516.38, + "probability": 0.5934 + }, + { + "start": 15517.04, + "end": 15518.04, + "probability": 0.8232 + }, + { + "start": 15519.8, + "end": 15522.9, + "probability": 0.9556 + }, + { + "start": 15523.58, + "end": 15525.78, + "probability": 0.8423 + }, + { + "start": 15526.38, + "end": 15528.06, + "probability": 0.9807 + }, + { + "start": 15528.74, + "end": 15531.72, + "probability": 0.8694 + }, + { + "start": 15532.38, + "end": 15533.3, + "probability": 0.9237 + }, + { + "start": 15533.96, + "end": 15537.14, + "probability": 0.9922 + }, + { + "start": 15538.3, + "end": 15543.8, + "probability": 0.9928 + }, + { + "start": 15544.82, + "end": 15545.46, + "probability": 0.6031 + }, + { + "start": 15546.02, + "end": 15546.55, + "probability": 0.4524 + }, + { + "start": 15547.58, + "end": 15547.99, + "probability": 0.3265 + }, + { + "start": 15549.18, + "end": 15549.86, + "probability": 0.8501 + }, + { + "start": 15552.04, + "end": 15555.52, + "probability": 0.9609 + }, + { + "start": 15556.4, + "end": 15557.22, + "probability": 0.8804 + }, + { + "start": 15557.28, + "end": 15559.8, + "probability": 0.981 + }, + { + "start": 15559.86, + "end": 15563.76, + "probability": 0.993 + }, + { + "start": 15564.28, + "end": 15567.54, + "probability": 0.6964 + }, + { + "start": 15567.84, + "end": 15572.26, + "probability": 0.9746 + }, + { + "start": 15572.36, + "end": 15573.34, + "probability": 0.9379 + }, + { + "start": 15573.7, + "end": 15574.52, + "probability": 0.8262 + }, + { + "start": 15574.58, + "end": 15579.94, + "probability": 0.9368 + }, + { + "start": 15580.88, + "end": 15582.32, + "probability": 0.9569 + }, + { + "start": 15582.42, + "end": 15584.68, + "probability": 0.9545 + }, + { + "start": 15586.24, + "end": 15589.34, + "probability": 0.9376 + }, + { + "start": 15589.78, + "end": 15590.3, + "probability": 0.4909 + }, + { + "start": 15590.34, + "end": 15591.78, + "probability": 0.4025 + }, + { + "start": 15592.44, + "end": 15593.92, + "probability": 0.9821 + }, + { + "start": 15594.68, + "end": 15596.04, + "probability": 0.6908 + }, + { + "start": 15596.66, + "end": 15597.02, + "probability": 0.1829 + }, + { + "start": 15597.66, + "end": 15599.46, + "probability": 0.7911 + }, + { + "start": 15599.82, + "end": 15601.64, + "probability": 0.9055 + }, + { + "start": 15602.12, + "end": 15602.62, + "probability": 0.9686 + }, + { + "start": 15602.7, + "end": 15603.94, + "probability": 0.9685 + }, + { + "start": 15604.44, + "end": 15606.3, + "probability": 0.7183 + }, + { + "start": 15606.58, + "end": 15607.97, + "probability": 0.7871 + }, + { + "start": 15608.02, + "end": 15608.75, + "probability": 0.7345 + }, + { + "start": 15609.96, + "end": 15610.7, + "probability": 0.6975 + }, + { + "start": 15611.74, + "end": 15615.32, + "probability": 0.9139 + }, + { + "start": 15615.62, + "end": 15616.08, + "probability": 0.6028 + }, + { + "start": 15616.26, + "end": 15617.08, + "probability": 0.8776 + }, + { + "start": 15617.14, + "end": 15617.74, + "probability": 0.6555 + }, + { + "start": 15618.82, + "end": 15619.55, + "probability": 0.967 + }, + { + "start": 15620.5, + "end": 15621.36, + "probability": 0.6959 + }, + { + "start": 15622.1, + "end": 15623.1, + "probability": 0.808 + }, + { + "start": 15623.66, + "end": 15624.86, + "probability": 0.8727 + }, + { + "start": 15625.18, + "end": 15626.56, + "probability": 0.9348 + }, + { + "start": 15626.92, + "end": 15627.3, + "probability": 0.4542 + }, + { + "start": 15627.36, + "end": 15627.74, + "probability": 0.87 + }, + { + "start": 15627.86, + "end": 15630.84, + "probability": 0.7463 + }, + { + "start": 15631.46, + "end": 15633.7, + "probability": 0.9744 + }, + { + "start": 15634.0, + "end": 15634.54, + "probability": 0.4871 + }, + { + "start": 15634.9, + "end": 15639.4, + "probability": 0.9377 + }, + { + "start": 15639.48, + "end": 15641.44, + "probability": 0.9027 + }, + { + "start": 15641.54, + "end": 15642.24, + "probability": 0.7041 + }, + { + "start": 15642.64, + "end": 15643.06, + "probability": 0.8029 + }, + { + "start": 15643.14, + "end": 15643.6, + "probability": 0.6989 + }, + { + "start": 15643.92, + "end": 15648.72, + "probability": 0.9862 + }, + { + "start": 15648.72, + "end": 15651.7, + "probability": 0.9726 + }, + { + "start": 15651.72, + "end": 15655.58, + "probability": 0.9655 + }, + { + "start": 15655.7, + "end": 15657.74, + "probability": 0.5122 + }, + { + "start": 15658.8, + "end": 15659.66, + "probability": 0.488 + }, + { + "start": 15659.96, + "end": 15662.24, + "probability": 0.9219 + }, + { + "start": 15663.54, + "end": 15664.5, + "probability": 0.6124 + }, + { + "start": 15664.72, + "end": 15665.68, + "probability": 0.5666 + }, + { + "start": 15665.98, + "end": 15667.72, + "probability": 0.9046 + }, + { + "start": 15668.14, + "end": 15668.86, + "probability": 0.8217 + }, + { + "start": 15669.74, + "end": 15670.54, + "probability": 0.7135 + }, + { + "start": 15671.76, + "end": 15671.9, + "probability": 0.4334 + }, + { + "start": 15671.9, + "end": 15672.48, + "probability": 0.5796 + }, + { + "start": 15675.06, + "end": 15675.48, + "probability": 0.2374 + }, + { + "start": 15675.64, + "end": 15678.78, + "probability": 0.9858 + }, + { + "start": 15678.88, + "end": 15681.16, + "probability": 0.6841 + }, + { + "start": 15683.8, + "end": 15684.16, + "probability": 0.0177 + }, + { + "start": 15684.16, + "end": 15684.16, + "probability": 0.0142 + }, + { + "start": 15684.16, + "end": 15684.16, + "probability": 0.1727 + }, + { + "start": 15684.16, + "end": 15684.36, + "probability": 0.1735 + }, + { + "start": 15685.36, + "end": 15688.7, + "probability": 0.7663 + }, + { + "start": 15689.18, + "end": 15691.6, + "probability": 0.7257 + }, + { + "start": 15692.48, + "end": 15693.82, + "probability": 0.9027 + }, + { + "start": 15694.14, + "end": 15695.72, + "probability": 0.9954 + }, + { + "start": 15696.28, + "end": 15697.5, + "probability": 0.8401 + }, + { + "start": 15698.41, + "end": 15699.9, + "probability": 0.7275 + }, + { + "start": 15700.72, + "end": 15702.78, + "probability": 0.8517 + }, + { + "start": 15706.05, + "end": 15707.41, + "probability": 0.956 + }, + { + "start": 15708.12, + "end": 15708.19, + "probability": 0.2945 + }, + { + "start": 15708.76, + "end": 15709.8, + "probability": 0.5804 + }, + { + "start": 15710.72, + "end": 15711.08, + "probability": 0.8243 + }, + { + "start": 15712.56, + "end": 15713.52, + "probability": 0.9625 + }, + { + "start": 15714.42, + "end": 15717.02, + "probability": 0.8007 + }, + { + "start": 15718.08, + "end": 15722.04, + "probability": 0.9741 + }, + { + "start": 15722.66, + "end": 15723.7, + "probability": 0.6757 + }, + { + "start": 15723.7, + "end": 15725.9, + "probability": 0.9794 + }, + { + "start": 15726.26, + "end": 15726.74, + "probability": 0.6442 + }, + { + "start": 15726.86, + "end": 15727.9, + "probability": 0.9845 + }, + { + "start": 15728.24, + "end": 15731.0, + "probability": 0.8705 + }, + { + "start": 15731.1, + "end": 15731.64, + "probability": 0.9249 + }, + { + "start": 15732.0, + "end": 15733.7, + "probability": 0.897 + }, + { + "start": 15734.3, + "end": 15735.34, + "probability": 0.9576 + }, + { + "start": 15736.06, + "end": 15737.5, + "probability": 0.9422 + }, + { + "start": 15738.08, + "end": 15740.1, + "probability": 0.9897 + }, + { + "start": 15741.24, + "end": 15742.64, + "probability": 0.9607 + }, + { + "start": 15743.26, + "end": 15744.32, + "probability": 0.965 + }, + { + "start": 15744.7, + "end": 15750.96, + "probability": 0.9902 + }, + { + "start": 15751.54, + "end": 15753.46, + "probability": 0.7808 + }, + { + "start": 15753.52, + "end": 15754.28, + "probability": 0.9547 + }, + { + "start": 15754.98, + "end": 15757.36, + "probability": 0.9154 + }, + { + "start": 15757.8, + "end": 15760.56, + "probability": 0.9292 + }, + { + "start": 15760.62, + "end": 15764.24, + "probability": 0.9727 + }, + { + "start": 15764.68, + "end": 15767.9, + "probability": 0.9909 + }, + { + "start": 15768.12, + "end": 15769.76, + "probability": 0.8272 + }, + { + "start": 15770.22, + "end": 15771.44, + "probability": 0.9374 + }, + { + "start": 15772.64, + "end": 15773.16, + "probability": 0.729 + }, + { + "start": 15773.78, + "end": 15776.74, + "probability": 0.778 + }, + { + "start": 15777.36, + "end": 15780.98, + "probability": 0.9546 + }, + { + "start": 15781.14, + "end": 15782.52, + "probability": 0.9613 + }, + { + "start": 15782.92, + "end": 15784.4, + "probability": 0.9935 + }, + { + "start": 15784.5, + "end": 15785.38, + "probability": 0.8637 + }, + { + "start": 15785.9, + "end": 15786.68, + "probability": 0.9304 + }, + { + "start": 15786.76, + "end": 15787.24, + "probability": 0.9594 + }, + { + "start": 15787.66, + "end": 15788.16, + "probability": 0.9518 + }, + { + "start": 15788.96, + "end": 15790.2, + "probability": 0.8801 + }, + { + "start": 15791.12, + "end": 15793.16, + "probability": 0.9839 + }, + { + "start": 15793.44, + "end": 15794.08, + "probability": 0.9068 + }, + { + "start": 15794.64, + "end": 15796.1, + "probability": 0.9954 + }, + { + "start": 15796.1, + "end": 15799.8, + "probability": 0.9827 + }, + { + "start": 15800.02, + "end": 15801.16, + "probability": 0.9022 + }, + { + "start": 15801.6, + "end": 15802.46, + "probability": 0.8228 + }, + { + "start": 15803.6, + "end": 15810.4, + "probability": 0.9055 + }, + { + "start": 15811.24, + "end": 15812.34, + "probability": 0.7965 + }, + { + "start": 15813.1, + "end": 15813.4, + "probability": 0.6102 + }, + { + "start": 15813.7, + "end": 15814.66, + "probability": 0.9287 + }, + { + "start": 15814.78, + "end": 15816.08, + "probability": 0.736 + }, + { + "start": 15816.26, + "end": 15818.22, + "probability": 0.9688 + }, + { + "start": 15819.84, + "end": 15821.96, + "probability": 0.7647 + }, + { + "start": 15822.54, + "end": 15825.12, + "probability": 0.993 + }, + { + "start": 15826.36, + "end": 15830.28, + "probability": 0.4897 + }, + { + "start": 15830.66, + "end": 15832.64, + "probability": 0.6316 + }, + { + "start": 15832.64, + "end": 15832.76, + "probability": 0.2341 + }, + { + "start": 15832.76, + "end": 15832.76, + "probability": 0.0505 + }, + { + "start": 15832.76, + "end": 15832.76, + "probability": 0.9033 + }, + { + "start": 15832.76, + "end": 15833.72, + "probability": 0.6558 + }, + { + "start": 15833.72, + "end": 15835.56, + "probability": 0.8506 + }, + { + "start": 15835.76, + "end": 15836.62, + "probability": 0.8779 + }, + { + "start": 15836.68, + "end": 15836.98, + "probability": 0.4928 + }, + { + "start": 15837.28, + "end": 15838.02, + "probability": 0.7983 + }, + { + "start": 15838.04, + "end": 15842.64, + "probability": 0.9697 + }, + { + "start": 15843.12, + "end": 15843.68, + "probability": 0.7654 + }, + { + "start": 15844.16, + "end": 15846.16, + "probability": 0.9946 + }, + { + "start": 15846.56, + "end": 15850.38, + "probability": 0.9849 + }, + { + "start": 15850.5, + "end": 15851.86, + "probability": 0.9243 + }, + { + "start": 15854.62, + "end": 15854.72, + "probability": 0.1609 + }, + { + "start": 15854.72, + "end": 15857.24, + "probability": 0.804 + }, + { + "start": 15857.28, + "end": 15860.1, + "probability": 0.7886 + }, + { + "start": 15860.14, + "end": 15863.08, + "probability": 0.669 + }, + { + "start": 15864.02, + "end": 15867.22, + "probability": 0.7814 + }, + { + "start": 15867.84, + "end": 15870.24, + "probability": 0.7878 + }, + { + "start": 15871.0, + "end": 15876.3, + "probability": 0.9937 + }, + { + "start": 15877.1, + "end": 15879.18, + "probability": 0.9752 + }, + { + "start": 15879.7, + "end": 15883.92, + "probability": 0.9733 + }, + { + "start": 15884.0, + "end": 15885.1, + "probability": 0.8929 + }, + { + "start": 15885.42, + "end": 15888.04, + "probability": 0.987 + }, + { + "start": 15888.32, + "end": 15892.86, + "probability": 0.967 + }, + { + "start": 15892.86, + "end": 15896.5, + "probability": 0.9719 + }, + { + "start": 15896.92, + "end": 15898.2, + "probability": 0.8916 + }, + { + "start": 15898.34, + "end": 15898.96, + "probability": 0.8796 + }, + { + "start": 15899.28, + "end": 15900.24, + "probability": 0.9919 + }, + { + "start": 15901.14, + "end": 15903.34, + "probability": 0.9593 + }, + { + "start": 15904.02, + "end": 15905.38, + "probability": 0.9077 + }, + { + "start": 15905.74, + "end": 15909.44, + "probability": 0.9961 + }, + { + "start": 15910.0, + "end": 15911.3, + "probability": 0.9963 + }, + { + "start": 15911.94, + "end": 15913.5, + "probability": 0.667 + }, + { + "start": 15914.1, + "end": 15918.26, + "probability": 0.9876 + }, + { + "start": 15918.82, + "end": 15919.66, + "probability": 0.4126 + }, + { + "start": 15920.68, + "end": 15922.62, + "probability": 0.8987 + }, + { + "start": 15922.98, + "end": 15924.56, + "probability": 0.8206 + }, + { + "start": 15925.08, + "end": 15928.18, + "probability": 0.7748 + }, + { + "start": 15928.3, + "end": 15929.08, + "probability": 0.8762 + }, + { + "start": 15929.42, + "end": 15934.24, + "probability": 0.9743 + }, + { + "start": 15934.48, + "end": 15935.68, + "probability": 0.6437 + }, + { + "start": 15935.95, + "end": 15938.54, + "probability": 0.9586 + }, + { + "start": 15938.82, + "end": 15940.16, + "probability": 0.9566 + }, + { + "start": 15940.4, + "end": 15943.24, + "probability": 0.9922 + }, + { + "start": 15943.52, + "end": 15944.42, + "probability": 0.8843 + }, + { + "start": 15944.62, + "end": 15945.32, + "probability": 0.9232 + }, + { + "start": 15945.84, + "end": 15946.06, + "probability": 0.7535 + }, + { + "start": 15946.46, + "end": 15948.96, + "probability": 0.9363 + }, + { + "start": 15949.02, + "end": 15949.92, + "probability": 0.8469 + }, + { + "start": 15950.04, + "end": 15950.82, + "probability": 0.7941 + }, + { + "start": 15952.18, + "end": 15958.76, + "probability": 0.973 + }, + { + "start": 15959.3, + "end": 15960.64, + "probability": 0.8654 + }, + { + "start": 15960.74, + "end": 15961.72, + "probability": 0.4859 + }, + { + "start": 15961.92, + "end": 15962.27, + "probability": 0.4449 + }, + { + "start": 15962.52, + "end": 15962.52, + "probability": 0.1292 + }, + { + "start": 15963.28, + "end": 15966.46, + "probability": 0.664 + }, + { + "start": 15966.58, + "end": 15967.02, + "probability": 0.3224 + }, + { + "start": 15967.32, + "end": 15970.08, + "probability": 0.857 + }, + { + "start": 15970.78, + "end": 15971.86, + "probability": 0.7989 + }, + { + "start": 15971.88, + "end": 15973.22, + "probability": 0.5444 + }, + { + "start": 15973.24, + "end": 15974.66, + "probability": 0.7451 + }, + { + "start": 15976.12, + "end": 15979.76, + "probability": 0.5341 + }, + { + "start": 15983.24, + "end": 15983.9, + "probability": 0.0236 + }, + { + "start": 15983.9, + "end": 15983.9, + "probability": 0.1266 + }, + { + "start": 15983.9, + "end": 15983.9, + "probability": 0.0573 + }, + { + "start": 15983.9, + "end": 15983.9, + "probability": 0.3356 + }, + { + "start": 15983.9, + "end": 15983.9, + "probability": 0.0945 + }, + { + "start": 15983.9, + "end": 15987.02, + "probability": 0.4689 + }, + { + "start": 15987.02, + "end": 15988.06, + "probability": 0.3843 + }, + { + "start": 15988.44, + "end": 15988.44, + "probability": 0.1111 + }, + { + "start": 15988.51, + "end": 15992.34, + "probability": 0.9476 + }, + { + "start": 15992.54, + "end": 15993.88, + "probability": 0.982 + }, + { + "start": 15994.08, + "end": 15995.98, + "probability": 0.9706 + }, + { + "start": 15996.98, + "end": 15998.52, + "probability": 0.9918 + }, + { + "start": 15998.62, + "end": 16004.5, + "probability": 0.9189 + }, + { + "start": 16005.66, + "end": 16007.84, + "probability": 0.966 + }, + { + "start": 16007.92, + "end": 16009.8, + "probability": 0.998 + }, + { + "start": 16010.14, + "end": 16011.97, + "probability": 0.947 + }, + { + "start": 16014.4, + "end": 16017.82, + "probability": 0.9733 + }, + { + "start": 16018.9, + "end": 16022.32, + "probability": 0.9879 + }, + { + "start": 16023.56, + "end": 16026.22, + "probability": 0.9951 + }, + { + "start": 16027.0, + "end": 16029.94, + "probability": 0.998 + }, + { + "start": 16031.64, + "end": 16034.96, + "probability": 0.929 + }, + { + "start": 16035.06, + "end": 16036.92, + "probability": 0.999 + }, + { + "start": 16036.98, + "end": 16041.64, + "probability": 0.7094 + }, + { + "start": 16043.76, + "end": 16048.72, + "probability": 0.988 + }, + { + "start": 16050.12, + "end": 16053.68, + "probability": 0.9888 + }, + { + "start": 16054.7, + "end": 16056.64, + "probability": 0.985 + }, + { + "start": 16057.6, + "end": 16061.48, + "probability": 0.9927 + }, + { + "start": 16062.52, + "end": 16066.62, + "probability": 0.9952 + }, + { + "start": 16067.28, + "end": 16069.88, + "probability": 0.9146 + }, + { + "start": 16070.6, + "end": 16073.98, + "probability": 0.9958 + }, + { + "start": 16074.9, + "end": 16078.78, + "probability": 0.8909 + }, + { + "start": 16079.86, + "end": 16081.3, + "probability": 0.0456 + }, + { + "start": 16082.1, + "end": 16085.96, + "probability": 0.9874 + }, + { + "start": 16086.46, + "end": 16087.28, + "probability": 0.7799 + }, + { + "start": 16087.42, + "end": 16089.56, + "probability": 0.9625 + }, + { + "start": 16090.38, + "end": 16091.56, + "probability": 0.5632 + }, + { + "start": 16091.64, + "end": 16093.66, + "probability": 0.9976 + }, + { + "start": 16093.76, + "end": 16095.24, + "probability": 0.7081 + }, + { + "start": 16095.64, + "end": 16098.2, + "probability": 0.8164 + }, + { + "start": 16098.34, + "end": 16099.2, + "probability": 0.5635 + }, + { + "start": 16099.32, + "end": 16101.07, + "probability": 0.8406 + }, + { + "start": 16101.96, + "end": 16101.96, + "probability": 0.2126 + }, + { + "start": 16101.96, + "end": 16104.1, + "probability": 0.9185 + }, + { + "start": 16104.98, + "end": 16110.06, + "probability": 0.9993 + }, + { + "start": 16110.2, + "end": 16112.94, + "probability": 0.9663 + }, + { + "start": 16113.06, + "end": 16114.16, + "probability": 0.7974 + }, + { + "start": 16114.58, + "end": 16117.46, + "probability": 0.9747 + }, + { + "start": 16118.9, + "end": 16120.77, + "probability": 0.9503 + }, + { + "start": 16121.72, + "end": 16123.44, + "probability": 0.6924 + }, + { + "start": 16123.5, + "end": 16125.38, + "probability": 0.7552 + }, + { + "start": 16125.72, + "end": 16127.08, + "probability": 0.5123 + }, + { + "start": 16127.1, + "end": 16128.22, + "probability": 0.177 + }, + { + "start": 16128.22, + "end": 16128.24, + "probability": 0.6835 + }, + { + "start": 16128.24, + "end": 16128.92, + "probability": 0.8393 + }, + { + "start": 16128.94, + "end": 16129.56, + "probability": 0.7009 + }, + { + "start": 16129.96, + "end": 16131.7, + "probability": 0.9296 + }, + { + "start": 16131.86, + "end": 16136.7, + "probability": 0.9822 + }, + { + "start": 16137.48, + "end": 16140.8, + "probability": 0.9854 + }, + { + "start": 16141.96, + "end": 16142.78, + "probability": 0.7186 + }, + { + "start": 16144.92, + "end": 16147.0, + "probability": 0.7944 + }, + { + "start": 16150.08, + "end": 16151.34, + "probability": 0.0028 + }, + { + "start": 16152.08, + "end": 16152.6, + "probability": 0.6439 + }, + { + "start": 16153.12, + "end": 16154.72, + "probability": 0.8893 + }, + { + "start": 16156.98, + "end": 16157.58, + "probability": 0.4123 + }, + { + "start": 16157.78, + "end": 16159.4, + "probability": 0.514 + }, + { + "start": 16159.4, + "end": 16160.04, + "probability": 0.2082 + }, + { + "start": 16166.12, + "end": 16166.32, + "probability": 0.211 + }, + { + "start": 16166.32, + "end": 16167.34, + "probability": 0.1997 + }, + { + "start": 16167.94, + "end": 16169.92, + "probability": 0.6445 + }, + { + "start": 16170.98, + "end": 16173.04, + "probability": 0.4581 + }, + { + "start": 16178.04, + "end": 16178.1, + "probability": 0.0059 + }, + { + "start": 16178.1, + "end": 16179.42, + "probability": 0.749 + }, + { + "start": 16180.2, + "end": 16180.48, + "probability": 0.8718 + }, + { + "start": 16181.96, + "end": 16182.56, + "probability": 0.7109 + }, + { + "start": 16183.32, + "end": 16188.38, + "probability": 0.9252 + }, + { + "start": 16191.36, + "end": 16192.24, + "probability": 0.9251 + }, + { + "start": 16204.08, + "end": 16204.56, + "probability": 0.4789 + }, + { + "start": 16204.62, + "end": 16205.26, + "probability": 0.6557 + }, + { + "start": 16205.4, + "end": 16205.86, + "probability": 0.6366 + }, + { + "start": 16205.98, + "end": 16207.0, + "probability": 0.7847 + }, + { + "start": 16207.02, + "end": 16211.74, + "probability": 0.9605 + }, + { + "start": 16212.42, + "end": 16213.4, + "probability": 0.9538 + }, + { + "start": 16213.5, + "end": 16216.14, + "probability": 0.9387 + }, + { + "start": 16216.14, + "end": 16219.52, + "probability": 0.7995 + }, + { + "start": 16219.64, + "end": 16222.48, + "probability": 0.9618 + }, + { + "start": 16223.14, + "end": 16224.76, + "probability": 0.7025 + }, + { + "start": 16224.9, + "end": 16225.84, + "probability": 0.8929 + }, + { + "start": 16226.26, + "end": 16227.4, + "probability": 0.7543 + }, + { + "start": 16228.16, + "end": 16231.3, + "probability": 0.9908 + }, + { + "start": 16231.92, + "end": 16233.58, + "probability": 0.6694 + }, + { + "start": 16233.76, + "end": 16237.86, + "probability": 0.8625 + }, + { + "start": 16238.52, + "end": 16240.42, + "probability": 0.8241 + }, + { + "start": 16240.56, + "end": 16243.86, + "probability": 0.9053 + }, + { + "start": 16243.86, + "end": 16246.8, + "probability": 0.8512 + }, + { + "start": 16247.28, + "end": 16250.28, + "probability": 0.9683 + }, + { + "start": 16250.96, + "end": 16252.86, + "probability": 0.8737 + }, + { + "start": 16253.74, + "end": 16256.56, + "probability": 0.9732 + }, + { + "start": 16256.8, + "end": 16257.78, + "probability": 0.7582 + }, + { + "start": 16258.12, + "end": 16261.1, + "probability": 0.758 + }, + { + "start": 16271.56, + "end": 16272.8, + "probability": 0.1748 + }, + { + "start": 16272.8, + "end": 16272.84, + "probability": 0.2361 + }, + { + "start": 16272.84, + "end": 16272.86, + "probability": 0.1349 + }, + { + "start": 16272.86, + "end": 16272.86, + "probability": 0.0607 + }, + { + "start": 16273.1, + "end": 16273.8, + "probability": 0.427 + }, + { + "start": 16273.94, + "end": 16274.42, + "probability": 0.5798 + }, + { + "start": 16274.54, + "end": 16277.12, + "probability": 0.8746 + }, + { + "start": 16277.84, + "end": 16279.92, + "probability": 0.6343 + }, + { + "start": 16281.46, + "end": 16282.1, + "probability": 0.4442 + }, + { + "start": 16282.4, + "end": 16283.74, + "probability": 0.5347 + }, + { + "start": 16283.84, + "end": 16286.94, + "probability": 0.926 + }, + { + "start": 16288.14, + "end": 16291.78, + "probability": 0.9856 + }, + { + "start": 16291.94, + "end": 16294.48, + "probability": 0.9606 + }, + { + "start": 16294.81, + "end": 16298.54, + "probability": 0.549 + }, + { + "start": 16299.1, + "end": 16301.4, + "probability": 0.824 + }, + { + "start": 16301.48, + "end": 16303.74, + "probability": 0.6642 + }, + { + "start": 16303.82, + "end": 16306.34, + "probability": 0.9969 + }, + { + "start": 16307.16, + "end": 16309.96, + "probability": 0.9508 + }, + { + "start": 16309.96, + "end": 16310.6, + "probability": 0.7829 + }, + { + "start": 16310.66, + "end": 16312.02, + "probability": 0.9471 + }, + { + "start": 16312.08, + "end": 16313.1, + "probability": 0.7778 + }, + { + "start": 16313.7, + "end": 16314.84, + "probability": 0.9265 + }, + { + "start": 16315.44, + "end": 16317.18, + "probability": 0.9759 + }, + { + "start": 16317.46, + "end": 16321.22, + "probability": 0.6874 + }, + { + "start": 16321.62, + "end": 16322.54, + "probability": 0.6413 + }, + { + "start": 16322.72, + "end": 16323.78, + "probability": 0.9959 + }, + { + "start": 16324.74, + "end": 16326.02, + "probability": 0.6631 + }, + { + "start": 16326.1, + "end": 16326.34, + "probability": 0.8148 + }, + { + "start": 16326.92, + "end": 16327.5, + "probability": 0.6734 + }, + { + "start": 16327.6, + "end": 16329.16, + "probability": 0.7438 + }, + { + "start": 16334.06, + "end": 16336.24, + "probability": 0.3453 + }, + { + "start": 16336.66, + "end": 16336.86, + "probability": 0.1778 + }, + { + "start": 16336.86, + "end": 16338.24, + "probability": 0.123 + }, + { + "start": 16338.58, + "end": 16338.68, + "probability": 0.4665 + }, + { + "start": 16338.68, + "end": 16340.22, + "probability": 0.165 + }, + { + "start": 16348.38, + "end": 16350.32, + "probability": 0.0969 + }, + { + "start": 16350.42, + "end": 16353.2, + "probability": 0.114 + }, + { + "start": 16355.44, + "end": 16356.68, + "probability": 0.0562 + }, + { + "start": 16356.68, + "end": 16359.16, + "probability": 0.0468 + }, + { + "start": 16359.16, + "end": 16359.84, + "probability": 0.0409 + }, + { + "start": 16361.7, + "end": 16362.2, + "probability": 0.037 + }, + { + "start": 16362.2, + "end": 16362.42, + "probability": 0.0176 + }, + { + "start": 16363.88, + "end": 16366.74, + "probability": 0.0019 + }, + { + "start": 16367.5, + "end": 16369.74, + "probability": 0.0772 + }, + { + "start": 16373.38, + "end": 16374.88, + "probability": 0.1137 + }, + { + "start": 16374.88, + "end": 16375.36, + "probability": 0.1774 + }, + { + "start": 16375.36, + "end": 16376.44, + "probability": 0.0584 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16439.0, + "end": 16439.0, + "probability": 0.0 + }, + { + "start": 16451.22, + "end": 16453.4, + "probability": 0.0139 + }, + { + "start": 16454.14, + "end": 16455.22, + "probability": 0.0607 + }, + { + "start": 16456.06, + "end": 16456.5, + "probability": 0.0627 + }, + { + "start": 16456.5, + "end": 16459.1, + "probability": 0.1531 + }, + { + "start": 16460.78, + "end": 16460.8, + "probability": 0.0021 + }, + { + "start": 16465.38, + "end": 16467.9, + "probability": 0.0301 + }, + { + "start": 16468.66, + "end": 16468.88, + "probability": 0.0537 + }, + { + "start": 16468.88, + "end": 16469.53, + "probability": 0.0088 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.0, + "end": 16574.0, + "probability": 0.0 + }, + { + "start": 16574.1, + "end": 16574.26, + "probability": 0.4111 + }, + { + "start": 16574.9, + "end": 16575.9, + "probability": 0.7982 + }, + { + "start": 16576.04, + "end": 16577.44, + "probability": 0.97 + }, + { + "start": 16577.9, + "end": 16578.5, + "probability": 0.8285 + }, + { + "start": 16579.02, + "end": 16580.0, + "probability": 0.814 + }, + { + "start": 16580.62, + "end": 16581.97, + "probability": 0.9304 + }, + { + "start": 16582.84, + "end": 16584.1, + "probability": 0.9757 + }, + { + "start": 16584.82, + "end": 16586.42, + "probability": 0.9807 + }, + { + "start": 16586.48, + "end": 16588.0, + "probability": 0.9079 + }, + { + "start": 16588.86, + "end": 16590.92, + "probability": 0.9934 + }, + { + "start": 16591.66, + "end": 16594.4, + "probability": 0.5049 + }, + { + "start": 16594.86, + "end": 16595.5, + "probability": 0.8722 + }, + { + "start": 16596.16, + "end": 16596.92, + "probability": 0.8666 + }, + { + "start": 16597.5, + "end": 16598.78, + "probability": 0.9918 + }, + { + "start": 16599.46, + "end": 16600.48, + "probability": 0.6514 + }, + { + "start": 16601.02, + "end": 16601.54, + "probability": 0.6089 + }, + { + "start": 16602.3, + "end": 16603.0, + "probability": 0.8041 + }, + { + "start": 16603.1, + "end": 16603.54, + "probability": 0.7689 + }, + { + "start": 16604.02, + "end": 16606.1, + "probability": 0.9507 + }, + { + "start": 16606.76, + "end": 16608.64, + "probability": 0.8268 + }, + { + "start": 16608.98, + "end": 16610.08, + "probability": 0.9893 + }, + { + "start": 16610.36, + "end": 16611.52, + "probability": 0.9918 + }, + { + "start": 16611.74, + "end": 16615.2, + "probability": 0.9879 + }, + { + "start": 16615.98, + "end": 16618.16, + "probability": 0.7511 + }, + { + "start": 16619.04, + "end": 16620.42, + "probability": 0.9478 + }, + { + "start": 16620.5, + "end": 16621.76, + "probability": 0.6573 + }, + { + "start": 16624.84, + "end": 16627.46, + "probability": 0.9661 + }, + { + "start": 16627.94, + "end": 16629.3, + "probability": 0.9836 + }, + { + "start": 16630.16, + "end": 16630.92, + "probability": 0.6166 + }, + { + "start": 16631.96, + "end": 16633.82, + "probability": 0.6983 + }, + { + "start": 16634.46, + "end": 16636.92, + "probability": 0.9409 + }, + { + "start": 16637.64, + "end": 16641.46, + "probability": 0.9946 + }, + { + "start": 16642.64, + "end": 16644.44, + "probability": 0.8644 + }, + { + "start": 16645.02, + "end": 16647.2, + "probability": 0.9568 + }, + { + "start": 16648.12, + "end": 16654.62, + "probability": 0.8373 + }, + { + "start": 16654.86, + "end": 16656.08, + "probability": 0.8456 + }, + { + "start": 16657.28, + "end": 16657.76, + "probability": 0.8459 + }, + { + "start": 16658.92, + "end": 16659.65, + "probability": 0.8975 + }, + { + "start": 16662.0, + "end": 16665.68, + "probability": 0.6503 + }, + { + "start": 16668.16, + "end": 16669.19, + "probability": 0.4922 + }, + { + "start": 16673.02, + "end": 16676.0, + "probability": 0.874 + }, + { + "start": 16676.78, + "end": 16681.88, + "probability": 0.9914 + }, + { + "start": 16682.9, + "end": 16684.7, + "probability": 0.9537 + }, + { + "start": 16684.86, + "end": 16686.34, + "probability": 0.9349 + }, + { + "start": 16687.34, + "end": 16688.2, + "probability": 0.7613 + }, + { + "start": 16689.0, + "end": 16690.28, + "probability": 0.983 + }, + { + "start": 16690.44, + "end": 16691.05, + "probability": 0.9916 + }, + { + "start": 16691.22, + "end": 16691.82, + "probability": 0.8303 + }, + { + "start": 16692.22, + "end": 16693.32, + "probability": 0.9249 + }, + { + "start": 16694.06, + "end": 16695.1, + "probability": 0.9723 + }, + { + "start": 16696.3, + "end": 16697.8, + "probability": 0.9692 + }, + { + "start": 16698.98, + "end": 16703.08, + "probability": 0.9952 + }, + { + "start": 16704.0, + "end": 16705.68, + "probability": 0.6228 + }, + { + "start": 16706.5, + "end": 16708.8, + "probability": 0.7664 + }, + { + "start": 16709.62, + "end": 16712.4, + "probability": 0.973 + }, + { + "start": 16712.96, + "end": 16714.04, + "probability": 0.8722 + }, + { + "start": 16714.66, + "end": 16716.14, + "probability": 0.9493 + }, + { + "start": 16716.74, + "end": 16718.97, + "probability": 0.9425 + }, + { + "start": 16719.42, + "end": 16722.76, + "probability": 0.9835 + }, + { + "start": 16724.22, + "end": 16726.06, + "probability": 0.9741 + }, + { + "start": 16727.92, + "end": 16729.04, + "probability": 0.7866 + }, + { + "start": 16730.76, + "end": 16732.3, + "probability": 0.6992 + }, + { + "start": 16732.56, + "end": 16733.56, + "probability": 0.3779 + }, + { + "start": 16733.88, + "end": 16735.84, + "probability": 0.9335 + }, + { + "start": 16736.26, + "end": 16737.1, + "probability": 0.9945 + }, + { + "start": 16737.72, + "end": 16740.0, + "probability": 0.9035 + }, + { + "start": 16741.18, + "end": 16742.68, + "probability": 0.9964 + }, + { + "start": 16745.04, + "end": 16746.58, + "probability": 0.8626 + }, + { + "start": 16747.6, + "end": 16748.34, + "probability": 0.8533 + }, + { + "start": 16749.08, + "end": 16751.92, + "probability": 0.9871 + }, + { + "start": 16752.76, + "end": 16756.52, + "probability": 0.5818 + }, + { + "start": 16757.16, + "end": 16758.14, + "probability": 0.3399 + }, + { + "start": 16759.18, + "end": 16759.8, + "probability": 0.8806 + }, + { + "start": 16761.3, + "end": 16764.38, + "probability": 0.9001 + }, + { + "start": 16764.38, + "end": 16766.62, + "probability": 0.9917 + }, + { + "start": 16767.46, + "end": 16768.72, + "probability": 0.9165 + }, + { + "start": 16769.34, + "end": 16770.88, + "probability": 0.7783 + }, + { + "start": 16771.44, + "end": 16773.26, + "probability": 0.9868 + }, + { + "start": 16773.98, + "end": 16775.2, + "probability": 0.9919 + }, + { + "start": 16775.66, + "end": 16779.82, + "probability": 0.9886 + }, + { + "start": 16780.32, + "end": 16783.5, + "probability": 0.9412 + }, + { + "start": 16784.36, + "end": 16787.54, + "probability": 0.9888 + }, + { + "start": 16788.16, + "end": 16790.72, + "probability": 0.9946 + }, + { + "start": 16791.22, + "end": 16793.68, + "probability": 0.8996 + }, + { + "start": 16794.3, + "end": 16797.08, + "probability": 0.8583 + }, + { + "start": 16797.66, + "end": 16798.83, + "probability": 0.9653 + }, + { + "start": 16799.46, + "end": 16802.7, + "probability": 0.8675 + }, + { + "start": 16803.8, + "end": 16806.2, + "probability": 0.9647 + }, + { + "start": 16806.2, + "end": 16809.08, + "probability": 0.9824 + }, + { + "start": 16809.76, + "end": 16812.14, + "probability": 0.8779 + }, + { + "start": 16812.72, + "end": 16814.36, + "probability": 0.7174 + }, + { + "start": 16815.52, + "end": 16816.1, + "probability": 0.4664 + }, + { + "start": 16816.7, + "end": 16817.44, + "probability": 0.4318 + }, + { + "start": 16819.42, + "end": 16820.16, + "probability": 0.9683 + }, + { + "start": 16820.78, + "end": 16822.34, + "probability": 0.9091 + }, + { + "start": 16823.08, + "end": 16825.5, + "probability": 0.9351 + }, + { + "start": 16826.06, + "end": 16828.38, + "probability": 0.9258 + }, + { + "start": 16828.84, + "end": 16829.38, + "probability": 0.5213 + }, + { + "start": 16830.48, + "end": 16831.18, + "probability": 0.5771 + }, + { + "start": 16832.1, + "end": 16833.3, + "probability": 0.9901 + }, + { + "start": 16835.28, + "end": 16837.26, + "probability": 0.9902 + }, + { + "start": 16837.74, + "end": 16841.23, + "probability": 0.9918 + }, + { + "start": 16841.5, + "end": 16844.12, + "probability": 0.9883 + }, + { + "start": 16844.74, + "end": 16845.66, + "probability": 0.7548 + }, + { + "start": 16846.58, + "end": 16849.04, + "probability": 0.5596 + }, + { + "start": 16850.18, + "end": 16851.72, + "probability": 0.9561 + }, + { + "start": 16853.44, + "end": 16856.0, + "probability": 0.8197 + }, + { + "start": 16856.46, + "end": 16857.32, + "probability": 0.9647 + }, + { + "start": 16858.0, + "end": 16860.36, + "probability": 0.871 + }, + { + "start": 16861.2, + "end": 16862.74, + "probability": 0.939 + }, + { + "start": 16863.72, + "end": 16865.98, + "probability": 0.9829 + }, + { + "start": 16865.98, + "end": 16869.16, + "probability": 0.9954 + }, + { + "start": 16869.42, + "end": 16869.82, + "probability": 0.4462 + }, + { + "start": 16870.3, + "end": 16870.9, + "probability": 0.0759 + }, + { + "start": 16870.9, + "end": 16871.08, + "probability": 0.5708 + }, + { + "start": 16871.16, + "end": 16871.62, + "probability": 0.9192 + }, + { + "start": 16871.7, + "end": 16872.26, + "probability": 0.8122 + }, + { + "start": 16872.64, + "end": 16873.16, + "probability": 0.6787 + }, + { + "start": 16873.26, + "end": 16873.74, + "probability": 0.7407 + }, + { + "start": 16875.08, + "end": 16876.16, + "probability": 0.9747 + }, + { + "start": 16876.74, + "end": 16880.18, + "probability": 0.9576 + }, + { + "start": 16881.2, + "end": 16882.92, + "probability": 0.8556 + }, + { + "start": 16883.5, + "end": 16885.04, + "probability": 0.6616 + }, + { + "start": 16885.66, + "end": 16886.86, + "probability": 0.9873 + }, + { + "start": 16887.2, + "end": 16889.4, + "probability": 0.9611 + }, + { + "start": 16889.84, + "end": 16892.6, + "probability": 0.9746 + }, + { + "start": 16893.64, + "end": 16896.4, + "probability": 0.7563 + }, + { + "start": 16897.72, + "end": 16898.26, + "probability": 0.7533 + }, + { + "start": 16899.0, + "end": 16899.96, + "probability": 0.8217 + }, + { + "start": 16902.25, + "end": 16904.6, + "probability": 0.9385 + }, + { + "start": 16905.16, + "end": 16908.58, + "probability": 0.9803 + }, + { + "start": 16908.68, + "end": 16909.58, + "probability": 0.9189 + }, + { + "start": 16910.04, + "end": 16911.8, + "probability": 0.9906 + }, + { + "start": 16913.14, + "end": 16915.88, + "probability": 0.762 + }, + { + "start": 16916.6, + "end": 16917.88, + "probability": 0.8633 + }, + { + "start": 16918.44, + "end": 16919.08, + "probability": 0.6255 + }, + { + "start": 16919.18, + "end": 16920.2, + "probability": 0.929 + }, + { + "start": 16920.3, + "end": 16920.92, + "probability": 0.8184 + }, + { + "start": 16921.24, + "end": 16923.1, + "probability": 0.9326 + }, + { + "start": 16923.38, + "end": 16926.38, + "probability": 0.9976 + }, + { + "start": 16926.86, + "end": 16929.38, + "probability": 0.97 + }, + { + "start": 16929.5, + "end": 16929.8, + "probability": 0.8158 + }, + { + "start": 16930.28, + "end": 16930.86, + "probability": 0.9465 + }, + { + "start": 16931.12, + "end": 16932.2, + "probability": 0.9896 + }, + { + "start": 16932.62, + "end": 16933.54, + "probability": 0.9625 + }, + { + "start": 16934.3, + "end": 16935.85, + "probability": 0.8608 + }, + { + "start": 16936.26, + "end": 16937.68, + "probability": 0.989 + }, + { + "start": 16937.9, + "end": 16940.0, + "probability": 0.503 + }, + { + "start": 16940.0, + "end": 16940.28, + "probability": 0.0217 + }, + { + "start": 16940.36, + "end": 16941.26, + "probability": 0.8838 + }, + { + "start": 16941.76, + "end": 16944.4, + "probability": 0.958 + }, + { + "start": 16945.68, + "end": 16945.68, + "probability": 0.6461 + }, + { + "start": 16945.68, + "end": 16951.2, + "probability": 0.8335 + }, + { + "start": 16951.66, + "end": 16954.16, + "probability": 0.695 + }, + { + "start": 16954.98, + "end": 16956.48, + "probability": 0.9967 + }, + { + "start": 16957.2, + "end": 16959.32, + "probability": 0.9338 + }, + { + "start": 16959.4, + "end": 16961.04, + "probability": 0.6709 + }, + { + "start": 16961.48, + "end": 16962.48, + "probability": 0.9364 + }, + { + "start": 16962.74, + "end": 16967.26, + "probability": 0.8032 + }, + { + "start": 16967.36, + "end": 16968.38, + "probability": 0.5255 + }, + { + "start": 16968.82, + "end": 16970.36, + "probability": 0.9741 + }, + { + "start": 16970.48, + "end": 16970.84, + "probability": 0.7459 + }, + { + "start": 16971.94, + "end": 16973.96, + "probability": 0.8495 + }, + { + "start": 16974.72, + "end": 16976.18, + "probability": 0.9624 + }, + { + "start": 16976.24, + "end": 16977.53, + "probability": 0.9375 + }, + { + "start": 16977.8, + "end": 16980.96, + "probability": 0.9948 + }, + { + "start": 16981.62, + "end": 16982.2, + "probability": 0.5223 + }, + { + "start": 16982.32, + "end": 16983.2, + "probability": 0.6469 + }, + { + "start": 16983.64, + "end": 16984.48, + "probability": 0.7776 + }, + { + "start": 16985.14, + "end": 16986.62, + "probability": 0.9985 + }, + { + "start": 16987.54, + "end": 16989.14, + "probability": 0.8087 + }, + { + "start": 16990.02, + "end": 16990.52, + "probability": 0.7282 + }, + { + "start": 16991.16, + "end": 16992.68, + "probability": 0.9847 + }, + { + "start": 16993.82, + "end": 16998.28, + "probability": 0.9976 + }, + { + "start": 16998.78, + "end": 16999.64, + "probability": 0.9514 + }, + { + "start": 16999.98, + "end": 17000.74, + "probability": 0.9583 + }, + { + "start": 17000.88, + "end": 17002.0, + "probability": 0.8553 + }, + { + "start": 17002.34, + "end": 17003.56, + "probability": 0.8892 + }, + { + "start": 17004.08, + "end": 17004.72, + "probability": 0.841 + }, + { + "start": 17005.66, + "end": 17008.2, + "probability": 0.8421 + }, + { + "start": 17008.58, + "end": 17010.92, + "probability": 0.9874 + }, + { + "start": 17011.54, + "end": 17012.22, + "probability": 0.7764 + }, + { + "start": 17013.04, + "end": 17014.24, + "probability": 0.9717 + }, + { + "start": 17014.64, + "end": 17016.04, + "probability": 0.9892 + }, + { + "start": 17016.46, + "end": 17017.7, + "probability": 0.9832 + }, + { + "start": 17018.28, + "end": 17019.76, + "probability": 0.9905 + }, + { + "start": 17022.0, + "end": 17023.62, + "probability": 0.9619 + }, + { + "start": 17023.72, + "end": 17024.9, + "probability": 0.9453 + }, + { + "start": 17025.0, + "end": 17027.36, + "probability": 0.9906 + }, + { + "start": 17027.84, + "end": 17028.62, + "probability": 0.9099 + }, + { + "start": 17028.8, + "end": 17030.46, + "probability": 0.8893 + }, + { + "start": 17030.86, + "end": 17032.68, + "probability": 0.9448 + }, + { + "start": 17033.72, + "end": 17034.3, + "probability": 0.7406 + }, + { + "start": 17034.58, + "end": 17036.59, + "probability": 0.9927 + }, + { + "start": 17037.64, + "end": 17039.74, + "probability": 0.9844 + }, + { + "start": 17039.82, + "end": 17041.32, + "probability": 0.9563 + }, + { + "start": 17041.96, + "end": 17042.92, + "probability": 0.8755 + }, + { + "start": 17043.42, + "end": 17044.36, + "probability": 0.9571 + }, + { + "start": 17044.44, + "end": 17045.18, + "probability": 0.9821 + }, + { + "start": 17045.34, + "end": 17045.72, + "probability": 0.6427 + }, + { + "start": 17046.1, + "end": 17047.0, + "probability": 0.9589 + }, + { + "start": 17047.66, + "end": 17048.26, + "probability": 0.74 + }, + { + "start": 17048.84, + "end": 17050.28, + "probability": 0.744 + }, + { + "start": 17050.3, + "end": 17051.24, + "probability": 0.6044 + }, + { + "start": 17051.68, + "end": 17052.76, + "probability": 0.8558 + }, + { + "start": 17054.08, + "end": 17057.9, + "probability": 0.6739 + }, + { + "start": 17058.52, + "end": 17059.14, + "probability": 0.716 + }, + { + "start": 17059.4, + "end": 17063.66, + "probability": 0.9162 + }, + { + "start": 17064.04, + "end": 17066.68, + "probability": 0.6552 + }, + { + "start": 17066.68, + "end": 17068.75, + "probability": 0.6662 + }, + { + "start": 17069.44, + "end": 17071.3, + "probability": 0.9208 + }, + { + "start": 17071.84, + "end": 17074.62, + "probability": 0.8925 + }, + { + "start": 17075.3, + "end": 17078.54, + "probability": 0.6903 + }, + { + "start": 17078.76, + "end": 17078.96, + "probability": 0.8384 + }, + { + "start": 17080.36, + "end": 17080.84, + "probability": 0.6829 + }, + { + "start": 17081.72, + "end": 17085.5, + "probability": 0.864 + }, + { + "start": 17086.44, + "end": 17087.46, + "probability": 0.57 + }, + { + "start": 17103.14, + "end": 17105.48, + "probability": 0.6102 + }, + { + "start": 17107.4, + "end": 17110.2, + "probability": 0.9644 + }, + { + "start": 17111.32, + "end": 17114.48, + "probability": 0.9032 + }, + { + "start": 17115.78, + "end": 17118.46, + "probability": 0.9901 + }, + { + "start": 17119.36, + "end": 17122.94, + "probability": 0.9189 + }, + { + "start": 17123.88, + "end": 17125.4, + "probability": 0.9618 + }, + { + "start": 17126.42, + "end": 17129.66, + "probability": 0.9821 + }, + { + "start": 17130.32, + "end": 17131.48, + "probability": 0.901 + }, + { + "start": 17132.16, + "end": 17133.52, + "probability": 0.993 + }, + { + "start": 17135.26, + "end": 17136.76, + "probability": 0.9448 + }, + { + "start": 17137.36, + "end": 17139.48, + "probability": 0.8239 + }, + { + "start": 17140.06, + "end": 17141.1, + "probability": 0.8796 + }, + { + "start": 17142.32, + "end": 17146.16, + "probability": 0.9782 + }, + { + "start": 17147.18, + "end": 17150.52, + "probability": 0.7685 + }, + { + "start": 17151.48, + "end": 17153.48, + "probability": 0.9246 + }, + { + "start": 17154.32, + "end": 17155.72, + "probability": 0.6397 + }, + { + "start": 17155.74, + "end": 17158.94, + "probability": 0.8497 + }, + { + "start": 17159.9, + "end": 17164.12, + "probability": 0.9202 + }, + { + "start": 17165.14, + "end": 17165.6, + "probability": 0.8113 + }, + { + "start": 17166.6, + "end": 17167.64, + "probability": 0.8282 + }, + { + "start": 17168.38, + "end": 17170.92, + "probability": 0.8108 + }, + { + "start": 17171.98, + "end": 17175.92, + "probability": 0.8255 + }, + { + "start": 17176.98, + "end": 17179.68, + "probability": 0.8139 + }, + { + "start": 17180.28, + "end": 17183.8, + "probability": 0.7529 + }, + { + "start": 17184.6, + "end": 17187.52, + "probability": 0.7688 + }, + { + "start": 17188.4, + "end": 17194.22, + "probability": 0.9883 + }, + { + "start": 17195.26, + "end": 17196.36, + "probability": 0.8509 + }, + { + "start": 17197.04, + "end": 17198.72, + "probability": 0.7851 + }, + { + "start": 17199.42, + "end": 17200.84, + "probability": 0.811 + }, + { + "start": 17201.72, + "end": 17203.34, + "probability": 0.9351 + }, + { + "start": 17203.66, + "end": 17209.48, + "probability": 0.9709 + }, + { + "start": 17210.08, + "end": 17212.1, + "probability": 0.9586 + }, + { + "start": 17212.56, + "end": 17214.1, + "probability": 0.6856 + }, + { + "start": 17214.9, + "end": 17215.92, + "probability": 0.6346 + }, + { + "start": 17216.44, + "end": 17217.72, + "probability": 0.1278 + }, + { + "start": 17217.84, + "end": 17218.3, + "probability": 0.7815 + }, + { + "start": 17220.54, + "end": 17223.5, + "probability": 0.9624 + }, + { + "start": 17229.52, + "end": 17230.42, + "probability": 0.6616 + }, + { + "start": 17231.68, + "end": 17232.64, + "probability": 0.7818 + }, + { + "start": 17232.78, + "end": 17234.7, + "probability": 0.9351 + }, + { + "start": 17234.72, + "end": 17236.46, + "probability": 0.7806 + }, + { + "start": 17237.28, + "end": 17239.14, + "probability": 0.5614 + }, + { + "start": 17239.56, + "end": 17239.56, + "probability": 0.8545 + }, + { + "start": 17240.08, + "end": 17241.28, + "probability": 0.9623 + }, + { + "start": 17242.36, + "end": 17243.08, + "probability": 0.3517 + }, + { + "start": 17246.14, + "end": 17247.92, + "probability": 0.6628 + }, + { + "start": 17248.72, + "end": 17250.9, + "probability": 0.8314 + }, + { + "start": 17251.5, + "end": 17255.64, + "probability": 0.9374 + }, + { + "start": 17255.94, + "end": 17257.1, + "probability": 0.6888 + }, + { + "start": 17257.88, + "end": 17260.76, + "probability": 0.9053 + }, + { + "start": 17261.6, + "end": 17262.07, + "probability": 0.9991 + }, + { + "start": 17263.02, + "end": 17265.32, + "probability": 0.6292 + }, + { + "start": 17265.86, + "end": 17268.86, + "probability": 0.9657 + }, + { + "start": 17269.38, + "end": 17271.1, + "probability": 0.5671 + }, + { + "start": 17271.9, + "end": 17273.04, + "probability": 0.8203 + }, + { + "start": 17274.06, + "end": 17274.62, + "probability": 0.6198 + }, + { + "start": 17275.32, + "end": 17277.08, + "probability": 0.957 + }, + { + "start": 17277.28, + "end": 17278.2, + "probability": 0.9886 + }, + { + "start": 17278.3, + "end": 17278.98, + "probability": 0.8516 + }, + { + "start": 17279.12, + "end": 17280.18, + "probability": 0.8934 + }, + { + "start": 17280.84, + "end": 17281.46, + "probability": 0.9506 + }, + { + "start": 17282.5, + "end": 17285.5, + "probability": 0.9854 + }, + { + "start": 17285.72, + "end": 17287.89, + "probability": 0.9624 + }, + { + "start": 17288.16, + "end": 17291.8, + "probability": 0.9786 + }, + { + "start": 17292.26, + "end": 17292.72, + "probability": 0.3087 + }, + { + "start": 17292.74, + "end": 17294.1, + "probability": 0.9209 + }, + { + "start": 17294.28, + "end": 17294.95, + "probability": 0.9667 + }, + { + "start": 17295.54, + "end": 17301.3, + "probability": 0.9856 + }, + { + "start": 17302.2, + "end": 17302.7, + "probability": 0.665 + }, + { + "start": 17302.8, + "end": 17303.74, + "probability": 0.9155 + }, + { + "start": 17321.78, + "end": 17321.78, + "probability": 0.1454 + }, + { + "start": 17321.78, + "end": 17324.21, + "probability": 0.6134 + }, + { + "start": 17325.06, + "end": 17328.08, + "probability": 0.8075 + }, + { + "start": 17328.84, + "end": 17330.02, + "probability": 0.8196 + }, + { + "start": 17331.92, + "end": 17338.22, + "probability": 0.9848 + }, + { + "start": 17338.4, + "end": 17340.34, + "probability": 0.5464 + }, + { + "start": 17344.74, + "end": 17347.88, + "probability": 0.0099 + }, + { + "start": 17351.54, + "end": 17351.64, + "probability": 0.0202 + }, + { + "start": 17351.64, + "end": 17351.64, + "probability": 0.2723 + }, + { + "start": 17351.64, + "end": 17352.48, + "probability": 0.3919 + }, + { + "start": 17353.7, + "end": 17354.54, + "probability": 0.686 + }, + { + "start": 17355.92, + "end": 17356.82, + "probability": 0.7623 + }, + { + "start": 17358.5, + "end": 17359.36, + "probability": 0.8739 + }, + { + "start": 17359.92, + "end": 17363.16, + "probability": 0.8476 + }, + { + "start": 17364.5, + "end": 17367.7, + "probability": 0.9656 + }, + { + "start": 17369.12, + "end": 17371.84, + "probability": 0.9946 + }, + { + "start": 17372.02, + "end": 17373.74, + "probability": 0.8228 + }, + { + "start": 17373.76, + "end": 17374.28, + "probability": 0.7567 + }, + { + "start": 17376.28, + "end": 17380.7, + "probability": 0.8651 + }, + { + "start": 17382.28, + "end": 17383.62, + "probability": 0.7122 + }, + { + "start": 17384.6, + "end": 17385.36, + "probability": 0.6697 + }, + { + "start": 17386.44, + "end": 17387.5, + "probability": 0.6535 + }, + { + "start": 17389.66, + "end": 17393.17, + "probability": 0.8683 + }, + { + "start": 17394.66, + "end": 17397.02, + "probability": 0.8008 + }, + { + "start": 17397.62, + "end": 17398.39, + "probability": 0.5906 + }, + { + "start": 17403.3, + "end": 17408.98, + "probability": 0.9421 + }, + { + "start": 17410.88, + "end": 17415.34, + "probability": 0.7944 + }, + { + "start": 17416.76, + "end": 17418.4, + "probability": 0.5667 + }, + { + "start": 17419.96, + "end": 17425.48, + "probability": 0.6973 + }, + { + "start": 17426.4, + "end": 17426.66, + "probability": 0.7704 + }, + { + "start": 17428.3, + "end": 17433.38, + "probability": 0.8993 + }, + { + "start": 17435.78, + "end": 17437.44, + "probability": 0.6666 + }, + { + "start": 17439.12, + "end": 17441.62, + "probability": 0.92 + }, + { + "start": 17442.7, + "end": 17444.52, + "probability": 0.9692 + }, + { + "start": 17445.78, + "end": 17447.4, + "probability": 0.9266 + }, + { + "start": 17449.48, + "end": 17452.42, + "probability": 0.7804 + }, + { + "start": 17454.32, + "end": 17457.44, + "probability": 0.7128 + }, + { + "start": 17460.56, + "end": 17463.44, + "probability": 0.6547 + }, + { + "start": 17464.86, + "end": 17471.02, + "probability": 0.9748 + }, + { + "start": 17473.94, + "end": 17474.68, + "probability": 0.762 + }, + { + "start": 17476.66, + "end": 17482.38, + "probability": 0.7147 + }, + { + "start": 17485.7, + "end": 17489.9, + "probability": 0.9391 + }, + { + "start": 17491.82, + "end": 17493.54, + "probability": 0.9582 + }, + { + "start": 17494.82, + "end": 17499.68, + "probability": 0.8869 + }, + { + "start": 17500.74, + "end": 17504.52, + "probability": 0.9639 + }, + { + "start": 17506.0, + "end": 17507.02, + "probability": 0.9772 + }, + { + "start": 17509.34, + "end": 17510.68, + "probability": 0.9485 + }, + { + "start": 17511.66, + "end": 17513.58, + "probability": 0.8326 + }, + { + "start": 17514.44, + "end": 17514.54, + "probability": 0.0173 + }, + { + "start": 17515.06, + "end": 17515.74, + "probability": 0.048 + }, + { + "start": 17517.2, + "end": 17518.28, + "probability": 0.2952 + }, + { + "start": 17519.06, + "end": 17522.51, + "probability": 0.1421 + }, + { + "start": 17527.06, + "end": 17528.52, + "probability": 0.4006 + }, + { + "start": 17529.88, + "end": 17530.2, + "probability": 0.2945 + }, + { + "start": 17530.32, + "end": 17536.56, + "probability": 0.0332 + }, + { + "start": 17537.36, + "end": 17538.42, + "probability": 0.1099 + }, + { + "start": 17539.2, + "end": 17539.68, + "probability": 0.7128 + }, + { + "start": 17539.68, + "end": 17543.1, + "probability": 0.2898 + }, + { + "start": 17543.42, + "end": 17543.44, + "probability": 0.0292 + }, + { + "start": 17544.3, + "end": 17544.86, + "probability": 0.0763 + }, + { + "start": 17544.86, + "end": 17545.08, + "probability": 0.1473 + }, + { + "start": 17545.08, + "end": 17545.08, + "probability": 0.0226 + }, + { + "start": 17545.08, + "end": 17545.08, + "probability": 0.225 + }, + { + "start": 17545.14, + "end": 17545.84, + "probability": 0.131 + }, + { + "start": 17545.84, + "end": 17546.42, + "probability": 0.1379 + }, + { + "start": 17547.5, + "end": 17547.8, + "probability": 0.432 + }, + { + "start": 17548.08, + "end": 17551.6, + "probability": 0.413 + }, + { + "start": 17552.06, + "end": 17552.96, + "probability": 0.6213 + }, + { + "start": 17553.04, + "end": 17553.72, + "probability": 0.1963 + }, + { + "start": 17555.64, + "end": 17556.72, + "probability": 0.5885 + }, + { + "start": 17557.24, + "end": 17559.18, + "probability": 0.3268 + }, + { + "start": 17559.98, + "end": 17563.41, + "probability": 0.8757 + }, + { + "start": 17564.66, + "end": 17570.82, + "probability": 0.572 + }, + { + "start": 17571.96, + "end": 17576.52, + "probability": 0.9677 + }, + { + "start": 17579.0, + "end": 17579.92, + "probability": 0.537 + }, + { + "start": 17581.28, + "end": 17582.92, + "probability": 0.9606 + }, + { + "start": 17583.68, + "end": 17585.86, + "probability": 0.9414 + }, + { + "start": 17587.46, + "end": 17592.58, + "probability": 0.8791 + }, + { + "start": 17593.58, + "end": 17596.1, + "probability": 0.9412 + }, + { + "start": 17597.34, + "end": 17598.73, + "probability": 0.9036 + }, + { + "start": 17600.36, + "end": 17602.2, + "probability": 0.9501 + }, + { + "start": 17603.46, + "end": 17607.86, + "probability": 0.9607 + }, + { + "start": 17609.06, + "end": 17612.76, + "probability": 0.9548 + }, + { + "start": 17613.56, + "end": 17614.7, + "probability": 0.7136 + }, + { + "start": 17615.98, + "end": 17617.42, + "probability": 0.9561 + }, + { + "start": 17617.96, + "end": 17618.54, + "probability": 0.8964 + }, + { + "start": 17619.22, + "end": 17623.28, + "probability": 0.8834 + }, + { + "start": 17623.6, + "end": 17623.9, + "probability": 0.7333 + }, + { + "start": 17624.28, + "end": 17626.76, + "probability": 0.842 + }, + { + "start": 17629.04, + "end": 17631.44, + "probability": 0.5405 + }, + { + "start": 17631.6, + "end": 17634.82, + "probability": 0.7202 + }, + { + "start": 17635.26, + "end": 17638.2, + "probability": 0.7098 + }, + { + "start": 17638.74, + "end": 17641.26, + "probability": 0.7832 + }, + { + "start": 17642.04, + "end": 17643.08, + "probability": 0.3407 + }, + { + "start": 17644.02, + "end": 17645.46, + "probability": 0.7247 + }, + { + "start": 17646.28, + "end": 17647.04, + "probability": 0.2249 + }, + { + "start": 17648.48, + "end": 17650.02, + "probability": 0.4373 + }, + { + "start": 17650.38, + "end": 17652.1, + "probability": 0.6729 + }, + { + "start": 17652.6, + "end": 17655.32, + "probability": 0.2626 + }, + { + "start": 17655.32, + "end": 17655.62, + "probability": 0.1702 + }, + { + "start": 17655.72, + "end": 17656.62, + "probability": 0.0665 + }, + { + "start": 17656.9, + "end": 17658.02, + "probability": 0.174 + }, + { + "start": 17658.26, + "end": 17660.7, + "probability": 0.3613 + }, + { + "start": 17660.7, + "end": 17663.12, + "probability": 0.2502 + }, + { + "start": 17663.38, + "end": 17663.8, + "probability": 0.2318 + }, + { + "start": 17663.92, + "end": 17664.38, + "probability": 0.3976 + }, + { + "start": 17664.78, + "end": 17665.2, + "probability": 0.0535 + }, + { + "start": 17665.26, + "end": 17667.9, + "probability": 0.2512 + }, + { + "start": 17668.6, + "end": 17671.1, + "probability": 0.6101 + }, + { + "start": 17671.24, + "end": 17674.96, + "probability": 0.7548 + }, + { + "start": 17675.98, + "end": 17677.36, + "probability": 0.4699 + }, + { + "start": 17677.5, + "end": 17678.34, + "probability": 0.392 + }, + { + "start": 17678.44, + "end": 17679.42, + "probability": 0.5062 + }, + { + "start": 17679.54, + "end": 17681.1, + "probability": 0.8634 + }, + { + "start": 17681.86, + "end": 17683.32, + "probability": 0.2745 + }, + { + "start": 17683.32, + "end": 17683.39, + "probability": 0.3993 + }, + { + "start": 17684.72, + "end": 17685.9, + "probability": 0.2135 + }, + { + "start": 17686.16, + "end": 17688.42, + "probability": 0.467 + }, + { + "start": 17688.54, + "end": 17690.6, + "probability": 0.3075 + }, + { + "start": 17690.92, + "end": 17691.44, + "probability": 0.8647 + }, + { + "start": 17692.84, + "end": 17694.98, + "probability": 0.5562 + }, + { + "start": 17695.22, + "end": 17698.62, + "probability": 0.4947 + }, + { + "start": 17699.04, + "end": 17702.22, + "probability": 0.5501 + }, + { + "start": 17702.48, + "end": 17704.14, + "probability": 0.0875 + }, + { + "start": 17704.58, + "end": 17705.82, + "probability": 0.267 + }, + { + "start": 17706.04, + "end": 17706.46, + "probability": 0.7205 + }, + { + "start": 17708.66, + "end": 17708.66, + "probability": 0.3378 + }, + { + "start": 17708.66, + "end": 17710.32, + "probability": 0.5129 + }, + { + "start": 17711.68, + "end": 17715.68, + "probability": 0.871 + }, + { + "start": 17715.74, + "end": 17721.4, + "probability": 0.8771 + }, + { + "start": 17722.22, + "end": 17723.86, + "probability": 0.7977 + }, + { + "start": 17724.52, + "end": 17725.88, + "probability": 0.8801 + }, + { + "start": 17726.16, + "end": 17726.6, + "probability": 0.7114 + }, + { + "start": 17726.68, + "end": 17727.08, + "probability": 0.3962 + }, + { + "start": 17727.66, + "end": 17728.46, + "probability": 0.828 + }, + { + "start": 17729.1, + "end": 17729.64, + "probability": 0.706 + }, + { + "start": 17729.68, + "end": 17731.04, + "probability": 0.3832 + }, + { + "start": 17731.24, + "end": 17734.58, + "probability": 0.8805 + }, + { + "start": 17736.49, + "end": 17740.42, + "probability": 0.6635 + }, + { + "start": 17740.74, + "end": 17741.46, + "probability": 0.823 + }, + { + "start": 17742.3, + "end": 17744.04, + "probability": 0.904 + }, + { + "start": 17745.12, + "end": 17748.14, + "probability": 0.9836 + }, + { + "start": 17749.06, + "end": 17751.64, + "probability": 0.6413 + }, + { + "start": 17753.06, + "end": 17756.34, + "probability": 0.8896 + }, + { + "start": 17758.32, + "end": 17759.94, + "probability": 0.7116 + }, + { + "start": 17760.92, + "end": 17761.36, + "probability": 0.905 + }, + { + "start": 17762.32, + "end": 17764.58, + "probability": 0.9056 + }, + { + "start": 17765.02, + "end": 17766.62, + "probability": 0.8065 + }, + { + "start": 17767.9, + "end": 17768.4, + "probability": 0.0884 + }, + { + "start": 17771.16, + "end": 17773.12, + "probability": 0.3696 + }, + { + "start": 17774.73, + "end": 17776.13, + "probability": 0.9858 + }, + { + "start": 17778.58, + "end": 17780.4, + "probability": 0.0511 + }, + { + "start": 17780.4, + "end": 17783.26, + "probability": 0.2075 + }, + { + "start": 17783.84, + "end": 17789.3, + "probability": 0.5471 + }, + { + "start": 17790.36, + "end": 17792.2, + "probability": 0.9258 + }, + { + "start": 17792.44, + "end": 17793.72, + "probability": 0.8274 + }, + { + "start": 17794.16, + "end": 17800.88, + "probability": 0.8031 + }, + { + "start": 17801.08, + "end": 17801.74, + "probability": 0.6864 + }, + { + "start": 17802.28, + "end": 17803.04, + "probability": 0.7361 + }, + { + "start": 17803.44, + "end": 17806.84, + "probability": 0.9932 + }, + { + "start": 17807.66, + "end": 17808.66, + "probability": 0.4724 + }, + { + "start": 17809.2, + "end": 17811.06, + "probability": 0.822 + }, + { + "start": 17811.56, + "end": 17814.1, + "probability": 0.7499 + }, + { + "start": 17814.2, + "end": 17815.08, + "probability": 0.481 + }, + { + "start": 17815.26, + "end": 17820.02, + "probability": 0.9163 + }, + { + "start": 17820.02, + "end": 17825.06, + "probability": 0.9881 + }, + { + "start": 17825.94, + "end": 17831.32, + "probability": 0.9831 + }, + { + "start": 17831.32, + "end": 17836.06, + "probability": 0.9854 + }, + { + "start": 17836.8, + "end": 17837.42, + "probability": 0.8019 + }, + { + "start": 17838.12, + "end": 17841.72, + "probability": 0.795 + }, + { + "start": 17842.36, + "end": 17846.68, + "probability": 0.959 + }, + { + "start": 17847.36, + "end": 17848.36, + "probability": 0.1322 + }, + { + "start": 17849.26, + "end": 17850.86, + "probability": 0.843 + }, + { + "start": 17851.32, + "end": 17853.98, + "probability": 0.9458 + }, + { + "start": 17854.7, + "end": 17856.4, + "probability": 0.7602 + }, + { + "start": 17856.76, + "end": 17860.0, + "probability": 0.8974 + }, + { + "start": 17860.0, + "end": 17864.0, + "probability": 0.8343 + }, + { + "start": 17864.62, + "end": 17865.42, + "probability": 0.4209 + }, + { + "start": 17865.9, + "end": 17866.56, + "probability": 0.7471 + }, + { + "start": 17867.46, + "end": 17868.16, + "probability": 0.7375 + }, + { + "start": 17868.54, + "end": 17871.02, + "probability": 0.7961 + }, + { + "start": 17888.44, + "end": 17889.16, + "probability": 0.5384 + }, + { + "start": 17889.34, + "end": 17890.42, + "probability": 0.7129 + }, + { + "start": 17890.54, + "end": 17893.6, + "probability": 0.9301 + }, + { + "start": 17894.3, + "end": 17897.84, + "probability": 0.9187 + }, + { + "start": 17898.66, + "end": 17901.3, + "probability": 0.9718 + }, + { + "start": 17902.12, + "end": 17907.4, + "probability": 0.5829 + }, + { + "start": 17907.5, + "end": 17911.76, + "probability": 0.9481 + }, + { + "start": 17911.78, + "end": 17913.26, + "probability": 0.779 + }, + { + "start": 17913.36, + "end": 17916.38, + "probability": 0.9727 + }, + { + "start": 17916.82, + "end": 17919.38, + "probability": 0.8635 + }, + { + "start": 17919.42, + "end": 17920.15, + "probability": 0.8511 + }, + { + "start": 17920.28, + "end": 17921.62, + "probability": 0.8996 + }, + { + "start": 17921.98, + "end": 17923.4, + "probability": 0.9228 + }, + { + "start": 17923.78, + "end": 17925.32, + "probability": 0.8913 + }, + { + "start": 17926.2, + "end": 17926.88, + "probability": 0.1876 + }, + { + "start": 17926.88, + "end": 17927.78, + "probability": 0.6433 + }, + { + "start": 17928.08, + "end": 17932.16, + "probability": 0.6678 + }, + { + "start": 17932.76, + "end": 17936.02, + "probability": 0.3307 + }, + { + "start": 17936.22, + "end": 17936.98, + "probability": 0.1463 + }, + { + "start": 17937.63, + "end": 17939.12, + "probability": 0.3033 + }, + { + "start": 17939.32, + "end": 17942.66, + "probability": 0.839 + }, + { + "start": 17942.94, + "end": 17943.02, + "probability": 0.3225 + }, + { + "start": 17943.32, + "end": 17944.52, + "probability": 0.8578 + }, + { + "start": 17944.56, + "end": 17947.72, + "probability": 0.9522 + }, + { + "start": 17948.5, + "end": 17949.06, + "probability": 0.3802 + }, + { + "start": 17949.06, + "end": 17949.06, + "probability": 0.1957 + }, + { + "start": 17949.06, + "end": 17949.08, + "probability": 0.403 + }, + { + "start": 17949.12, + "end": 17949.89, + "probability": 0.6749 + }, + { + "start": 17950.32, + "end": 17950.7, + "probability": 0.9078 + }, + { + "start": 17950.84, + "end": 17953.08, + "probability": 0.756 + }, + { + "start": 17953.26, + "end": 17955.2, + "probability": 0.8513 + }, + { + "start": 17955.32, + "end": 17957.68, + "probability": 0.1332 + }, + { + "start": 17958.08, + "end": 17959.74, + "probability": 0.6868 + }, + { + "start": 17959.74, + "end": 17962.44, + "probability": 0.1825 + }, + { + "start": 17965.56, + "end": 17965.92, + "probability": 0.5526 + }, + { + "start": 17965.92, + "end": 17967.3, + "probability": 0.8582 + }, + { + "start": 17967.58, + "end": 17970.34, + "probability": 0.9897 + }, + { + "start": 17970.56, + "end": 17974.4, + "probability": 0.558 + }, + { + "start": 17974.6, + "end": 17977.49, + "probability": 0.9932 + }, + { + "start": 17978.2, + "end": 17978.5, + "probability": 0.3371 + }, + { + "start": 17978.94, + "end": 17980.1, + "probability": 0.9955 + }, + { + "start": 17980.82, + "end": 17982.66, + "probability": 0.9581 + }, + { + "start": 17982.78, + "end": 17983.96, + "probability": 0.738 + }, + { + "start": 17985.5, + "end": 17985.62, + "probability": 0.0522 + }, + { + "start": 17985.62, + "end": 17986.04, + "probability": 0.1112 + }, + { + "start": 17986.04, + "end": 17986.04, + "probability": 0.3712 + }, + { + "start": 17986.2, + "end": 17986.3, + "probability": 0.5491 + }, + { + "start": 17986.68, + "end": 17986.98, + "probability": 0.71 + }, + { + "start": 17987.1, + "end": 17987.54, + "probability": 0.8275 + }, + { + "start": 17987.62, + "end": 17988.42, + "probability": 0.8043 + }, + { + "start": 17988.56, + "end": 17991.82, + "probability": 0.9708 + }, + { + "start": 17993.23, + "end": 17995.32, + "probability": 0.7321 + }, + { + "start": 17995.88, + "end": 17997.32, + "probability": 0.8885 + }, + { + "start": 17998.32, + "end": 18002.42, + "probability": 0.9588 + }, + { + "start": 18002.92, + "end": 18004.54, + "probability": 0.9268 + }, + { + "start": 18005.28, + "end": 18005.94, + "probability": 0.8609 + }, + { + "start": 18006.18, + "end": 18007.12, + "probability": 0.8763 + }, + { + "start": 18007.56, + "end": 18010.36, + "probability": 0.9938 + }, + { + "start": 18012.52, + "end": 18014.92, + "probability": 0.9983 + }, + { + "start": 18015.0, + "end": 18017.9, + "probability": 0.9912 + }, + { + "start": 18018.68, + "end": 18022.7, + "probability": 0.9847 + }, + { + "start": 18022.7, + "end": 18028.4, + "probability": 0.9862 + }, + { + "start": 18028.5, + "end": 18029.66, + "probability": 0.8835 + }, + { + "start": 18030.14, + "end": 18030.32, + "probability": 0.8894 + }, + { + "start": 18031.18, + "end": 18034.54, + "probability": 0.9507 + }, + { + "start": 18035.14, + "end": 18036.74, + "probability": 0.9865 + }, + { + "start": 18037.34, + "end": 18039.03, + "probability": 0.9961 + }, + { + "start": 18039.18, + "end": 18042.56, + "probability": 0.528 + }, + { + "start": 18043.04, + "end": 18044.08, + "probability": 0.7768 + }, + { + "start": 18044.58, + "end": 18045.26, + "probability": 0.5461 + }, + { + "start": 18045.62, + "end": 18046.14, + "probability": 0.7294 + }, + { + "start": 18046.74, + "end": 18050.46, + "probability": 0.8188 + }, + { + "start": 18052.35, + "end": 18053.94, + "probability": 0.3794 + }, + { + "start": 18054.04, + "end": 18054.9, + "probability": 0.0816 + }, + { + "start": 18056.34, + "end": 18056.94, + "probability": 0.8124 + }, + { + "start": 18056.94, + "end": 18056.98, + "probability": 0.9309 + }, + { + "start": 18056.98, + "end": 18057.37, + "probability": 0.3888 + }, + { + "start": 18057.5, + "end": 18057.58, + "probability": 0.0026 + }, + { + "start": 18057.58, + "end": 18058.4, + "probability": 0.9482 + }, + { + "start": 18058.42, + "end": 18059.04, + "probability": 0.7323 + }, + { + "start": 18059.24, + "end": 18062.86, + "probability": 0.7981 + }, + { + "start": 18063.72, + "end": 18068.92, + "probability": 0.6434 + }, + { + "start": 18069.02, + "end": 18069.9, + "probability": 0.6875 + }, + { + "start": 18070.02, + "end": 18070.08, + "probability": 0.0138 + }, + { + "start": 18070.08, + "end": 18071.14, + "probability": 0.5074 + }, + { + "start": 18071.18, + "end": 18072.58, + "probability": 0.5796 + }, + { + "start": 18072.68, + "end": 18072.8, + "probability": 0.3772 + }, + { + "start": 18072.88, + "end": 18073.28, + "probability": 0.2832 + }, + { + "start": 18073.68, + "end": 18074.54, + "probability": 0.8314 + }, + { + "start": 18074.54, + "end": 18075.44, + "probability": 0.0549 + }, + { + "start": 18076.1, + "end": 18078.38, + "probability": 0.2494 + }, + { + "start": 18078.88, + "end": 18080.58, + "probability": 0.0961 + }, + { + "start": 18080.58, + "end": 18080.58, + "probability": 0.0272 + }, + { + "start": 18080.58, + "end": 18080.58, + "probability": 0.2468 + }, + { + "start": 18080.74, + "end": 18080.82, + "probability": 0.262 + }, + { + "start": 18080.96, + "end": 18083.06, + "probability": 0.7675 + }, + { + "start": 18083.18, + "end": 18084.86, + "probability": 0.8923 + }, + { + "start": 18085.1, + "end": 18086.92, + "probability": 0.4675 + }, + { + "start": 18086.92, + "end": 18088.02, + "probability": 0.0506 + }, + { + "start": 18088.02, + "end": 18088.02, + "probability": 0.11 + }, + { + "start": 18088.02, + "end": 18088.02, + "probability": 0.6354 + }, + { + "start": 18088.02, + "end": 18089.22, + "probability": 0.6307 + }, + { + "start": 18089.36, + "end": 18089.86, + "probability": 0.131 + }, + { + "start": 18090.06, + "end": 18091.32, + "probability": 0.9144 + }, + { + "start": 18091.52, + "end": 18092.4, + "probability": 0.4717 + }, + { + "start": 18092.6, + "end": 18093.02, + "probability": 0.6349 + }, + { + "start": 18093.28, + "end": 18094.0, + "probability": 0.6302 + }, + { + "start": 18094.16, + "end": 18094.86, + "probability": 0.4804 + }, + { + "start": 18096.22, + "end": 18096.96, + "probability": 0.0844 + }, + { + "start": 18096.96, + "end": 18096.96, + "probability": 0.1974 + }, + { + "start": 18096.96, + "end": 18098.5, + "probability": 0.7078 + }, + { + "start": 18098.54, + "end": 18099.22, + "probability": 0.2522 + }, + { + "start": 18100.4, + "end": 18100.4, + "probability": 0.1591 + }, + { + "start": 18100.4, + "end": 18101.02, + "probability": 0.6716 + }, + { + "start": 18101.14, + "end": 18105.92, + "probability": 0.2276 + }, + { + "start": 18105.92, + "end": 18106.02, + "probability": 0.1328 + }, + { + "start": 18106.02, + "end": 18106.02, + "probability": 0.0147 + }, + { + "start": 18106.02, + "end": 18106.02, + "probability": 0.1597 + }, + { + "start": 18106.02, + "end": 18106.02, + "probability": 0.1205 + }, + { + "start": 18106.02, + "end": 18107.46, + "probability": 0.1945 + }, + { + "start": 18107.54, + "end": 18112.76, + "probability": 0.9056 + }, + { + "start": 18113.12, + "end": 18114.18, + "probability": 0.8989 + }, + { + "start": 18114.36, + "end": 18116.62, + "probability": 0.9837 + }, + { + "start": 18116.72, + "end": 18120.91, + "probability": 0.9852 + }, + { + "start": 18121.32, + "end": 18122.1, + "probability": 0.7719 + }, + { + "start": 18122.18, + "end": 18122.44, + "probability": 0.6496 + }, + { + "start": 18122.5, + "end": 18123.14, + "probability": 0.8745 + }, + { + "start": 18123.72, + "end": 18124.38, + "probability": 0.2019 + }, + { + "start": 18125.52, + "end": 18129.24, + "probability": 0.6689 + }, + { + "start": 18130.18, + "end": 18132.34, + "probability": 0.9908 + }, + { + "start": 18132.41, + "end": 18132.76, + "probability": 0.0132 + }, + { + "start": 18132.94, + "end": 18136.3, + "probability": 0.848 + }, + { + "start": 18136.4, + "end": 18137.3, + "probability": 0.3865 + }, + { + "start": 18137.3, + "end": 18141.16, + "probability": 0.0549 + }, + { + "start": 18141.48, + "end": 18142.1, + "probability": 0.0324 + }, + { + "start": 18145.24, + "end": 18145.68, + "probability": 0.2883 + }, + { + "start": 18145.68, + "end": 18145.68, + "probability": 0.3156 + }, + { + "start": 18145.68, + "end": 18145.68, + "probability": 0.2126 + }, + { + "start": 18145.68, + "end": 18145.68, + "probability": 0.0056 + }, + { + "start": 18145.68, + "end": 18145.82, + "probability": 0.0933 + }, + { + "start": 18146.7, + "end": 18147.74, + "probability": 0.3876 + }, + { + "start": 18148.54, + "end": 18148.54, + "probability": 0.0516 + }, + { + "start": 18148.54, + "end": 18148.68, + "probability": 0.6651 + }, + { + "start": 18148.76, + "end": 18150.43, + "probability": 0.8843 + }, + { + "start": 18151.42, + "end": 18154.74, + "probability": 0.8332 + }, + { + "start": 18154.98, + "end": 18155.22, + "probability": 0.0384 + }, + { + "start": 18155.22, + "end": 18156.88, + "probability": 0.7452 + }, + { + "start": 18157.08, + "end": 18157.26, + "probability": 0.1073 + }, + { + "start": 18157.34, + "end": 18158.04, + "probability": 0.4979 + }, + { + "start": 18158.2, + "end": 18159.39, + "probability": 0.9475 + }, + { + "start": 18160.22, + "end": 18160.8, + "probability": 0.791 + }, + { + "start": 18161.0, + "end": 18161.98, + "probability": 0.939 + }, + { + "start": 18162.28, + "end": 18168.19, + "probability": 0.9619 + }, + { + "start": 18168.96, + "end": 18169.02, + "probability": 0.1817 + }, + { + "start": 18169.1, + "end": 18169.18, + "probability": 0.1387 + }, + { + "start": 18169.24, + "end": 18169.32, + "probability": 0.8346 + }, + { + "start": 18169.36, + "end": 18170.24, + "probability": 0.9285 + }, + { + "start": 18170.26, + "end": 18171.92, + "probability": 0.6313 + }, + { + "start": 18172.14, + "end": 18172.96, + "probability": 0.9075 + }, + { + "start": 18173.12, + "end": 18173.9, + "probability": 0.8478 + }, + { + "start": 18174.14, + "end": 18175.56, + "probability": 0.9662 + }, + { + "start": 18176.02, + "end": 18177.8, + "probability": 0.9825 + }, + { + "start": 18178.02, + "end": 18180.12, + "probability": 0.9421 + }, + { + "start": 18181.18, + "end": 18181.52, + "probability": 0.0175 + }, + { + "start": 18181.76, + "end": 18181.83, + "probability": 0.0225 + }, + { + "start": 18183.52, + "end": 18185.64, + "probability": 0.0326 + }, + { + "start": 18186.16, + "end": 18186.61, + "probability": 0.0661 + }, + { + "start": 18186.84, + "end": 18187.02, + "probability": 0.0456 + }, + { + "start": 18187.02, + "end": 18187.02, + "probability": 0.5464 + }, + { + "start": 18187.02, + "end": 18187.02, + "probability": 0.4128 + }, + { + "start": 18187.02, + "end": 18187.02, + "probability": 0.3562 + }, + { + "start": 18187.02, + "end": 18187.52, + "probability": 0.2375 + }, + { + "start": 18187.78, + "end": 18191.8, + "probability": 0.8569 + }, + { + "start": 18192.34, + "end": 18196.72, + "probability": 0.9895 + }, + { + "start": 18197.36, + "end": 18197.36, + "probability": 0.0932 + }, + { + "start": 18197.36, + "end": 18199.02, + "probability": 0.896 + }, + { + "start": 18199.52, + "end": 18200.04, + "probability": 0.1491 + }, + { + "start": 18200.04, + "end": 18203.01, + "probability": 0.7007 + }, + { + "start": 18203.24, + "end": 18203.52, + "probability": 0.5288 + }, + { + "start": 18203.62, + "end": 18206.8, + "probability": 0.9022 + }, + { + "start": 18206.92, + "end": 18207.46, + "probability": 0.5573 + }, + { + "start": 18207.64, + "end": 18211.34, + "probability": 0.8827 + }, + { + "start": 18211.46, + "end": 18213.66, + "probability": 0.9878 + }, + { + "start": 18213.78, + "end": 18214.4, + "probability": 0.6135 + }, + { + "start": 18214.56, + "end": 18217.3, + "probability": 0.9473 + }, + { + "start": 18217.48, + "end": 18217.72, + "probability": 0.6796 + }, + { + "start": 18217.82, + "end": 18220.74, + "probability": 0.9716 + }, + { + "start": 18220.96, + "end": 18222.64, + "probability": 0.9849 + }, + { + "start": 18222.84, + "end": 18223.42, + "probability": 0.7767 + }, + { + "start": 18224.0, + "end": 18225.52, + "probability": 0.1742 + }, + { + "start": 18226.02, + "end": 18227.92, + "probability": 0.3334 + }, + { + "start": 18228.16, + "end": 18230.16, + "probability": 0.699 + }, + { + "start": 18230.16, + "end": 18231.04, + "probability": 0.0969 + }, + { + "start": 18231.14, + "end": 18232.28, + "probability": 0.5245 + }, + { + "start": 18232.38, + "end": 18233.26, + "probability": 0.7916 + }, + { + "start": 18233.88, + "end": 18234.62, + "probability": 0.7232 + }, + { + "start": 18234.62, + "end": 18234.64, + "probability": 0.6998 + }, + { + "start": 18234.64, + "end": 18235.56, + "probability": 0.0916 + }, + { + "start": 18235.96, + "end": 18237.41, + "probability": 0.9962 + }, + { + "start": 18237.8, + "end": 18239.6, + "probability": 0.9805 + }, + { + "start": 18240.07, + "end": 18240.76, + "probability": 0.0635 + }, + { + "start": 18240.8, + "end": 18242.0, + "probability": 0.9934 + }, + { + "start": 18242.44, + "end": 18242.88, + "probability": 0.1761 + }, + { + "start": 18242.96, + "end": 18244.79, + "probability": 0.7827 + }, + { + "start": 18245.02, + "end": 18245.04, + "probability": 0.2848 + }, + { + "start": 18245.18, + "end": 18247.74, + "probability": 0.9273 + }, + { + "start": 18247.84, + "end": 18248.54, + "probability": 0.9823 + }, + { + "start": 18248.68, + "end": 18248.72, + "probability": 0.5658 + }, + { + "start": 18249.34, + "end": 18250.52, + "probability": 0.1149 + }, + { + "start": 18250.52, + "end": 18252.22, + "probability": 0.6713 + }, + { + "start": 18252.22, + "end": 18253.56, + "probability": 0.3444 + }, + { + "start": 18253.56, + "end": 18254.88, + "probability": 0.5291 + }, + { + "start": 18255.04, + "end": 18256.14, + "probability": 0.9158 + }, + { + "start": 18256.4, + "end": 18257.82, + "probability": 0.977 + }, + { + "start": 18257.86, + "end": 18261.26, + "probability": 0.9807 + }, + { + "start": 18261.32, + "end": 18263.64, + "probability": 0.9659 + }, + { + "start": 18264.0, + "end": 18266.7, + "probability": 0.9905 + }, + { + "start": 18266.82, + "end": 18270.18, + "probability": 0.9927 + }, + { + "start": 18270.28, + "end": 18270.34, + "probability": 0.0125 + }, + { + "start": 18271.04, + "end": 18272.56, + "probability": 0.5466 + }, + { + "start": 18272.84, + "end": 18274.03, + "probability": 0.237 + }, + { + "start": 18274.12, + "end": 18276.9, + "probability": 0.7936 + }, + { + "start": 18276.9, + "end": 18277.5, + "probability": 0.1949 + }, + { + "start": 18277.56, + "end": 18279.9, + "probability": 0.7629 + }, + { + "start": 18280.06, + "end": 18280.62, + "probability": 0.7567 + }, + { + "start": 18280.62, + "end": 18280.82, + "probability": 0.5646 + }, + { + "start": 18280.9, + "end": 18282.04, + "probability": 0.7738 + }, + { + "start": 18282.5, + "end": 18282.88, + "probability": 0.4825 + }, + { + "start": 18282.92, + "end": 18283.7, + "probability": 0.7546 + }, + { + "start": 18284.18, + "end": 18284.9, + "probability": 0.8578 + }, + { + "start": 18285.16, + "end": 18286.12, + "probability": 0.476 + }, + { + "start": 18286.22, + "end": 18287.88, + "probability": 0.8589 + }, + { + "start": 18288.32, + "end": 18291.23, + "probability": 0.9846 + }, + { + "start": 18291.66, + "end": 18292.42, + "probability": 0.9345 + }, + { + "start": 18292.72, + "end": 18293.86, + "probability": 0.9379 + }, + { + "start": 18294.08, + "end": 18294.74, + "probability": 0.3847 + }, + { + "start": 18294.92, + "end": 18297.18, + "probability": 0.7614 + }, + { + "start": 18297.28, + "end": 18298.32, + "probability": 0.8408 + }, + { + "start": 18298.4, + "end": 18299.38, + "probability": 0.8003 + }, + { + "start": 18299.78, + "end": 18301.88, + "probability": 0.9884 + }, + { + "start": 18302.38, + "end": 18303.88, + "probability": 0.6562 + }, + { + "start": 18304.02, + "end": 18305.82, + "probability": 0.0999 + }, + { + "start": 18305.82, + "end": 18307.28, + "probability": 0.6155 + }, + { + "start": 18307.32, + "end": 18308.26, + "probability": 0.2164 + }, + { + "start": 18308.52, + "end": 18309.54, + "probability": 0.8773 + }, + { + "start": 18309.8, + "end": 18310.94, + "probability": 0.3154 + }, + { + "start": 18311.54, + "end": 18314.28, + "probability": 0.2507 + }, + { + "start": 18314.52, + "end": 18314.7, + "probability": 0.2094 + }, + { + "start": 18314.98, + "end": 18317.68, + "probability": 0.3096 + }, + { + "start": 18317.72, + "end": 18318.52, + "probability": 0.3928 + }, + { + "start": 18318.54, + "end": 18319.36, + "probability": 0.5075 + }, + { + "start": 18319.66, + "end": 18321.78, + "probability": 0.3244 + }, + { + "start": 18322.48, + "end": 18323.3, + "probability": 0.0573 + }, + { + "start": 18324.3, + "end": 18325.32, + "probability": 0.2437 + }, + { + "start": 18325.38, + "end": 18325.84, + "probability": 0.0399 + }, + { + "start": 18325.84, + "end": 18325.84, + "probability": 0.185 + }, + { + "start": 18325.84, + "end": 18326.26, + "probability": 0.0075 + }, + { + "start": 18326.26, + "end": 18326.26, + "probability": 0.0162 + }, + { + "start": 18326.36, + "end": 18328.52, + "probability": 0.5559 + }, + { + "start": 18329.4, + "end": 18329.68, + "probability": 0.0281 + }, + { + "start": 18329.68, + "end": 18329.68, + "probability": 0.0895 + }, + { + "start": 18329.68, + "end": 18331.26, + "probability": 0.9631 + }, + { + "start": 18331.44, + "end": 18333.2, + "probability": 0.3951 + }, + { + "start": 18333.26, + "end": 18333.6, + "probability": 0.2825 + }, + { + "start": 18333.66, + "end": 18335.04, + "probability": 0.4083 + }, + { + "start": 18335.08, + "end": 18337.4, + "probability": 0.05 + }, + { + "start": 18339.58, + "end": 18339.58, + "probability": 0.0495 + }, + { + "start": 18339.58, + "end": 18339.58, + "probability": 0.0488 + }, + { + "start": 18339.58, + "end": 18340.68, + "probability": 0.5271 + }, + { + "start": 18341.26, + "end": 18343.86, + "probability": 0.8222 + }, + { + "start": 18344.22, + "end": 18346.66, + "probability": 0.9927 + }, + { + "start": 18347.02, + "end": 18348.75, + "probability": 0.7467 + }, + { + "start": 18349.14, + "end": 18349.96, + "probability": 0.991 + }, + { + "start": 18350.1, + "end": 18351.62, + "probability": 0.8089 + }, + { + "start": 18351.96, + "end": 18355.56, + "probability": 0.9871 + }, + { + "start": 18356.04, + "end": 18356.14, + "probability": 0.3403 + }, + { + "start": 18356.18, + "end": 18356.9, + "probability": 0.6817 + }, + { + "start": 18357.32, + "end": 18357.76, + "probability": 0.1218 + }, + { + "start": 18357.76, + "end": 18359.08, + "probability": 0.547 + }, + { + "start": 18361.06, + "end": 18365.0, + "probability": 0.7255 + }, + { + "start": 18365.06, + "end": 18366.14, + "probability": 0.9932 + }, + { + "start": 18366.56, + "end": 18368.86, + "probability": 0.9411 + }, + { + "start": 18368.94, + "end": 18369.24, + "probability": 0.4427 + }, + { + "start": 18369.36, + "end": 18371.96, + "probability": 0.5592 + }, + { + "start": 18372.14, + "end": 18374.22, + "probability": 0.4124 + }, + { + "start": 18374.44, + "end": 18376.5, + "probability": 0.9768 + }, + { + "start": 18376.5, + "end": 18377.88, + "probability": 0.5335 + }, + { + "start": 18379.06, + "end": 18380.9, + "probability": 0.9724 + }, + { + "start": 18381.2, + "end": 18382.59, + "probability": 0.6382 + }, + { + "start": 18382.7, + "end": 18383.96, + "probability": 0.2876 + }, + { + "start": 18384.12, + "end": 18388.5, + "probability": 0.8398 + }, + { + "start": 18388.5, + "end": 18390.0, + "probability": 0.6074 + }, + { + "start": 18390.02, + "end": 18390.44, + "probability": 0.6085 + }, + { + "start": 18390.58, + "end": 18391.04, + "probability": 0.8237 + }, + { + "start": 18391.08, + "end": 18391.72, + "probability": 0.2011 + }, + { + "start": 18391.96, + "end": 18392.24, + "probability": 0.3221 + }, + { + "start": 18392.4, + "end": 18397.28, + "probability": 0.9917 + }, + { + "start": 18397.72, + "end": 18398.0, + "probability": 0.4445 + }, + { + "start": 18398.04, + "end": 18401.02, + "probability": 0.9485 + }, + { + "start": 18401.26, + "end": 18402.62, + "probability": 0.7262 + }, + { + "start": 18402.66, + "end": 18404.16, + "probability": 0.7805 + }, + { + "start": 18404.54, + "end": 18407.16, + "probability": 0.1798 + }, + { + "start": 18407.24, + "end": 18407.26, + "probability": 0.266 + }, + { + "start": 18407.26, + "end": 18407.62, + "probability": 0.2973 + }, + { + "start": 18407.64, + "end": 18407.88, + "probability": 0.3182 + }, + { + "start": 18407.9, + "end": 18408.72, + "probability": 0.6985 + }, + { + "start": 18408.76, + "end": 18409.62, + "probability": 0.7361 + }, + { + "start": 18409.78, + "end": 18411.58, + "probability": 0.8414 + }, + { + "start": 18412.42, + "end": 18417.76, + "probability": 0.9598 + }, + { + "start": 18418.22, + "end": 18420.52, + "probability": 0.9786 + }, + { + "start": 18420.8, + "end": 18422.24, + "probability": 0.9495 + }, + { + "start": 18422.5, + "end": 18423.26, + "probability": 0.7623 + }, + { + "start": 18423.58, + "end": 18425.0, + "probability": 0.9731 + }, + { + "start": 18425.52, + "end": 18426.3, + "probability": 0.9606 + }, + { + "start": 18426.7, + "end": 18429.48, + "probability": 0.6699 + }, + { + "start": 18429.48, + "end": 18433.18, + "probability": 0.7755 + }, + { + "start": 18433.24, + "end": 18437.26, + "probability": 0.746 + }, + { + "start": 18437.64, + "end": 18438.9, + "probability": 0.5792 + }, + { + "start": 18439.26, + "end": 18439.4, + "probability": 0.0335 + }, + { + "start": 18439.4, + "end": 18439.4, + "probability": 0.2869 + }, + { + "start": 18439.4, + "end": 18440.86, + "probability": 0.8185 + }, + { + "start": 18441.0, + "end": 18441.0, + "probability": 0.2228 + }, + { + "start": 18441.52, + "end": 18441.52, + "probability": 0.4465 + }, + { + "start": 18441.6, + "end": 18445.5, + "probability": 0.9271 + }, + { + "start": 18445.6, + "end": 18446.64, + "probability": 0.1192 + }, + { + "start": 18447.28, + "end": 18449.1, + "probability": 0.8551 + }, + { + "start": 18449.18, + "end": 18449.96, + "probability": 0.7991 + }, + { + "start": 18450.14, + "end": 18450.6, + "probability": 0.8406 + }, + { + "start": 18451.06, + "end": 18453.6, + "probability": 0.9595 + }, + { + "start": 18454.06, + "end": 18454.16, + "probability": 0.1436 + }, + { + "start": 18454.32, + "end": 18455.01, + "probability": 0.9831 + }, + { + "start": 18455.46, + "end": 18456.54, + "probability": 0.8452 + }, + { + "start": 18456.9, + "end": 18459.16, + "probability": 0.7254 + }, + { + "start": 18459.3, + "end": 18460.18, + "probability": 0.6151 + }, + { + "start": 18460.28, + "end": 18460.28, + "probability": 0.5552 + }, + { + "start": 18460.28, + "end": 18460.8, + "probability": 0.5686 + }, + { + "start": 18461.76, + "end": 18463.56, + "probability": 0.4455 + }, + { + "start": 18466.3, + "end": 18466.5, + "probability": 0.5362 + }, + { + "start": 18466.5, + "end": 18466.5, + "probability": 0.1638 + }, + { + "start": 18466.5, + "end": 18467.06, + "probability": 0.2302 + }, + { + "start": 18467.18, + "end": 18468.64, + "probability": 0.7816 + }, + { + "start": 18469.28, + "end": 18470.34, + "probability": 0.7764 + }, + { + "start": 18472.06, + "end": 18472.64, + "probability": 0.6393 + }, + { + "start": 18472.74, + "end": 18473.76, + "probability": 0.7974 + }, + { + "start": 18473.82, + "end": 18478.04, + "probability": 0.7171 + }, + { + "start": 18478.04, + "end": 18484.56, + "probability": 0.9922 + }, + { + "start": 18484.68, + "end": 18486.68, + "probability": 0.3639 + }, + { + "start": 18487.76, + "end": 18490.94, + "probability": 0.5954 + }, + { + "start": 18491.24, + "end": 18492.56, + "probability": 0.5624 + }, + { + "start": 18493.26, + "end": 18494.85, + "probability": 0.715 + }, + { + "start": 18495.6, + "end": 18497.7, + "probability": 0.9647 + }, + { + "start": 18498.22, + "end": 18500.26, + "probability": 0.8291 + }, + { + "start": 18501.85, + "end": 18505.36, + "probability": 0.5351 + }, + { + "start": 18505.52, + "end": 18505.62, + "probability": 0.791 + }, + { + "start": 18505.62, + "end": 18506.3, + "probability": 0.4932 + }, + { + "start": 18506.4, + "end": 18506.54, + "probability": 0.5262 + }, + { + "start": 18506.58, + "end": 18506.98, + "probability": 0.8215 + }, + { + "start": 18507.02, + "end": 18509.18, + "probability": 0.8665 + }, + { + "start": 18509.48, + "end": 18510.46, + "probability": 0.8379 + }, + { + "start": 18510.82, + "end": 18511.4, + "probability": 0.9047 + }, + { + "start": 18511.44, + "end": 18514.18, + "probability": 0.7794 + }, + { + "start": 18514.4, + "end": 18517.42, + "probability": 0.9614 + }, + { + "start": 18518.06, + "end": 18518.66, + "probability": 0.5776 + }, + { + "start": 18518.74, + "end": 18519.88, + "probability": 0.5094 + }, + { + "start": 18519.92, + "end": 18521.6, + "probability": 0.8714 + }, + { + "start": 18521.9, + "end": 18523.6, + "probability": 0.978 + }, + { + "start": 18524.1, + "end": 18525.44, + "probability": 0.938 + }, + { + "start": 18525.92, + "end": 18526.68, + "probability": 0.7798 + }, + { + "start": 18527.14, + "end": 18531.96, + "probability": 0.8385 + }, + { + "start": 18532.42, + "end": 18535.0, + "probability": 0.9874 + }, + { + "start": 18535.42, + "end": 18536.72, + "probability": 0.6581 + }, + { + "start": 18536.88, + "end": 18537.36, + "probability": 0.6127 + }, + { + "start": 18537.68, + "end": 18540.7, + "probability": 0.6794 + }, + { + "start": 18541.08, + "end": 18542.04, + "probability": 0.7817 + }, + { + "start": 18542.16, + "end": 18543.22, + "probability": 0.9434 + }, + { + "start": 18543.42, + "end": 18544.6, + "probability": 0.8556 + }, + { + "start": 18544.96, + "end": 18544.96, + "probability": 0.0038 + }, + { + "start": 18544.96, + "end": 18546.3, + "probability": 0.8042 + }, + { + "start": 18546.44, + "end": 18547.32, + "probability": 0.8132 + }, + { + "start": 18547.34, + "end": 18549.92, + "probability": 0.9766 + }, + { + "start": 18550.04, + "end": 18552.34, + "probability": 0.9728 + }, + { + "start": 18555.0, + "end": 18557.86, + "probability": 0.7342 + }, + { + "start": 18557.98, + "end": 18558.2, + "probability": 0.6853 + }, + { + "start": 18558.5, + "end": 18559.18, + "probability": 0.0971 + }, + { + "start": 18559.42, + "end": 18560.8, + "probability": 0.5092 + }, + { + "start": 18561.3, + "end": 18562.14, + "probability": 0.1002 + }, + { + "start": 18562.14, + "end": 18564.29, + "probability": 0.5148 + }, + { + "start": 18565.74, + "end": 18566.58, + "probability": 0.1787 + }, + { + "start": 18566.58, + "end": 18567.14, + "probability": 0.5119 + }, + { + "start": 18567.3, + "end": 18568.74, + "probability": 0.7301 + }, + { + "start": 18568.74, + "end": 18569.42, + "probability": 0.7142 + }, + { + "start": 18569.52, + "end": 18569.76, + "probability": 0.5328 + }, + { + "start": 18569.84, + "end": 18570.74, + "probability": 0.9221 + }, + { + "start": 18572.64, + "end": 18576.38, + "probability": 0.2891 + }, + { + "start": 18577.22, + "end": 18581.5, + "probability": 0.7402 + }, + { + "start": 18588.12, + "end": 18588.56, + "probability": 0.1514 + }, + { + "start": 18588.94, + "end": 18590.94, + "probability": 0.5208 + }, + { + "start": 18591.28, + "end": 18592.64, + "probability": 0.8874 + }, + { + "start": 18592.72, + "end": 18593.38, + "probability": 0.6547 + }, + { + "start": 18593.44, + "end": 18594.52, + "probability": 0.8418 + }, + { + "start": 18594.58, + "end": 18595.84, + "probability": 0.7592 + }, + { + "start": 18596.06, + "end": 18598.3, + "probability": 0.7905 + }, + { + "start": 18598.9, + "end": 18599.2, + "probability": 0.9536 + }, + { + "start": 18600.14, + "end": 18601.34, + "probability": 0.6945 + }, + { + "start": 18601.36, + "end": 18602.52, + "probability": 0.6192 + }, + { + "start": 18602.6, + "end": 18607.84, + "probability": 0.9858 + }, + { + "start": 18607.84, + "end": 18613.64, + "probability": 0.8982 + }, + { + "start": 18613.64, + "end": 18613.82, + "probability": 0.5894 + }, + { + "start": 18615.02, + "end": 18615.66, + "probability": 0.6544 + }, + { + "start": 18616.42, + "end": 18619.08, + "probability": 0.8301 + }, + { + "start": 18619.08, + "end": 18621.9, + "probability": 0.7517 + }, + { + "start": 18622.8, + "end": 18623.18, + "probability": 0.0019 + }, + { + "start": 18626.46, + "end": 18627.59, + "probability": 0.1379 + }, + { + "start": 18643.4, + "end": 18643.52, + "probability": 0.0087 + }, + { + "start": 18643.52, + "end": 18643.52, + "probability": 0.245 + }, + { + "start": 18643.62, + "end": 18643.62, + "probability": 0.025 + }, + { + "start": 18643.62, + "end": 18643.62, + "probability": 0.3493 + }, + { + "start": 18643.62, + "end": 18644.78, + "probability": 0.4548 + }, + { + "start": 18644.88, + "end": 18645.82, + "probability": 0.3495 + }, + { + "start": 18651.48, + "end": 18652.4, + "probability": 0.622 + }, + { + "start": 18653.54, + "end": 18654.46, + "probability": 0.7369 + }, + { + "start": 18656.61, + "end": 18659.17, + "probability": 0.9578 + }, + { + "start": 18660.02, + "end": 18660.86, + "probability": 0.8376 + }, + { + "start": 18661.92, + "end": 18663.11, + "probability": 0.9861 + }, + { + "start": 18664.82, + "end": 18665.64, + "probability": 0.9316 + }, + { + "start": 18667.3, + "end": 18671.3, + "probability": 0.9902 + }, + { + "start": 18671.66, + "end": 18672.48, + "probability": 0.664 + }, + { + "start": 18672.72, + "end": 18675.7, + "probability": 0.9563 + }, + { + "start": 18676.0, + "end": 18676.62, + "probability": 0.9683 + }, + { + "start": 18677.84, + "end": 18678.66, + "probability": 0.8262 + }, + { + "start": 18680.22, + "end": 18684.52, + "probability": 0.9952 + }, + { + "start": 18684.87, + "end": 18686.68, + "probability": 0.9333 + }, + { + "start": 18687.72, + "end": 18690.76, + "probability": 0.7516 + }, + { + "start": 18691.86, + "end": 18694.14, + "probability": 0.9831 + }, + { + "start": 18694.68, + "end": 18695.52, + "probability": 0.6358 + }, + { + "start": 18696.74, + "end": 18701.5, + "probability": 0.8374 + }, + { + "start": 18701.76, + "end": 18704.04, + "probability": 0.9414 + }, + { + "start": 18705.06, + "end": 18706.64, + "probability": 0.7907 + }, + { + "start": 18706.92, + "end": 18707.98, + "probability": 0.6162 + }, + { + "start": 18708.54, + "end": 18709.5, + "probability": 0.7502 + }, + { + "start": 18709.72, + "end": 18713.5, + "probability": 0.9476 + }, + { + "start": 18714.34, + "end": 18715.2, + "probability": 0.832 + }, + { + "start": 18715.94, + "end": 18717.88, + "probability": 0.9976 + }, + { + "start": 18718.0, + "end": 18720.24, + "probability": 0.3563 + }, + { + "start": 18721.04, + "end": 18721.24, + "probability": 0.1742 + }, + { + "start": 18722.94, + "end": 18725.44, + "probability": 0.7431 + }, + { + "start": 18726.08, + "end": 18728.88, + "probability": 0.9487 + }, + { + "start": 18728.96, + "end": 18729.7, + "probability": 0.9242 + }, + { + "start": 18729.86, + "end": 18731.0, + "probability": 0.4731 + }, + { + "start": 18731.98, + "end": 18736.38, + "probability": 0.8938 + }, + { + "start": 18736.74, + "end": 18738.1, + "probability": 0.9142 + }, + { + "start": 18739.28, + "end": 18739.76, + "probability": 0.5031 + }, + { + "start": 18739.84, + "end": 18743.34, + "probability": 0.9904 + }, + { + "start": 18743.44, + "end": 18744.32, + "probability": 0.8831 + }, + { + "start": 18744.6, + "end": 18745.38, + "probability": 0.594 + }, + { + "start": 18747.02, + "end": 18749.98, + "probability": 0.8525 + }, + { + "start": 18751.02, + "end": 18753.84, + "probability": 0.7776 + }, + { + "start": 18754.32, + "end": 18755.78, + "probability": 0.8169 + }, + { + "start": 18755.86, + "end": 18756.64, + "probability": 0.9736 + }, + { + "start": 18759.34, + "end": 18761.6, + "probability": 0.9038 + }, + { + "start": 18762.24, + "end": 18766.34, + "probability": 0.9124 + }, + { + "start": 18767.5, + "end": 18768.7, + "probability": 0.8878 + }, + { + "start": 18768.84, + "end": 18770.62, + "probability": 0.9468 + }, + { + "start": 18770.7, + "end": 18772.44, + "probability": 0.6886 + }, + { + "start": 18773.08, + "end": 18775.94, + "probability": 0.9839 + }, + { + "start": 18775.94, + "end": 18782.68, + "probability": 0.9348 + }, + { + "start": 18784.74, + "end": 18786.2, + "probability": 0.8069 + }, + { + "start": 18786.32, + "end": 18788.12, + "probability": 0.9656 + }, + { + "start": 18788.2, + "end": 18790.18, + "probability": 0.9154 + }, + { + "start": 18790.46, + "end": 18790.94, + "probability": 0.5214 + }, + { + "start": 18791.3, + "end": 18793.04, + "probability": 0.7871 + }, + { + "start": 18793.18, + "end": 18793.88, + "probability": 0.8363 + }, + { + "start": 18794.1, + "end": 18796.48, + "probability": 0.8774 + }, + { + "start": 18796.68, + "end": 18797.56, + "probability": 0.936 + }, + { + "start": 18799.02, + "end": 18802.12, + "probability": 0.8479 + }, + { + "start": 18802.2, + "end": 18803.78, + "probability": 0.6914 + }, + { + "start": 18804.46, + "end": 18810.46, + "probability": 0.9408 + }, + { + "start": 18811.14, + "end": 18815.98, + "probability": 0.9755 + }, + { + "start": 18816.86, + "end": 18819.74, + "probability": 0.9351 + }, + { + "start": 18819.88, + "end": 18820.23, + "probability": 0.7477 + }, + { + "start": 18820.34, + "end": 18821.98, + "probability": 0.2794 + }, + { + "start": 18824.44, + "end": 18824.54, + "probability": 0.0358 + }, + { + "start": 18824.54, + "end": 18824.56, + "probability": 0.0158 + }, + { + "start": 18824.56, + "end": 18824.56, + "probability": 0.0471 + }, + { + "start": 18824.56, + "end": 18824.56, + "probability": 0.0253 + }, + { + "start": 18824.56, + "end": 18825.78, + "probability": 0.1163 + }, + { + "start": 18826.12, + "end": 18828.02, + "probability": 0.5188 + }, + { + "start": 18828.08, + "end": 18828.48, + "probability": 0.7156 + }, + { + "start": 18829.04, + "end": 18829.63, + "probability": 0.8359 + }, + { + "start": 18831.94, + "end": 18832.72, + "probability": 0.9678 + }, + { + "start": 18832.82, + "end": 18834.14, + "probability": 0.8226 + }, + { + "start": 18834.16, + "end": 18835.08, + "probability": 0.9838 + }, + { + "start": 18835.7, + "end": 18836.62, + "probability": 0.93 + }, + { + "start": 18837.88, + "end": 18839.98, + "probability": 0.6799 + }, + { + "start": 18840.92, + "end": 18841.38, + "probability": 0.4431 + }, + { + "start": 18841.54, + "end": 18842.6, + "probability": 0.6982 + }, + { + "start": 18842.78, + "end": 18844.13, + "probability": 0.5395 + }, + { + "start": 18844.32, + "end": 18846.3, + "probability": 0.9964 + }, + { + "start": 18847.04, + "end": 18847.26, + "probability": 0.7556 + }, + { + "start": 18847.52, + "end": 18848.98, + "probability": 0.9508 + }, + { + "start": 18849.54, + "end": 18850.96, + "probability": 0.9437 + }, + { + "start": 18852.32, + "end": 18852.8, + "probability": 0.7064 + }, + { + "start": 18852.96, + "end": 18853.84, + "probability": 0.9788 + }, + { + "start": 18854.9, + "end": 18858.14, + "probability": 0.972 + }, + { + "start": 18858.78, + "end": 18859.36, + "probability": 0.5921 + }, + { + "start": 18859.56, + "end": 18860.98, + "probability": 0.8787 + }, + { + "start": 18861.4, + "end": 18863.7, + "probability": 0.6317 + }, + { + "start": 18864.7, + "end": 18868.28, + "probability": 0.8059 + }, + { + "start": 18868.42, + "end": 18870.92, + "probability": 0.7466 + }, + { + "start": 18871.68, + "end": 18872.79, + "probability": 0.7011 + }, + { + "start": 18873.76, + "end": 18875.2, + "probability": 0.4844 + }, + { + "start": 18876.02, + "end": 18877.68, + "probability": 0.5456 + }, + { + "start": 18878.2, + "end": 18878.64, + "probability": 0.3279 + }, + { + "start": 18878.68, + "end": 18879.2, + "probability": 0.6237 + }, + { + "start": 18879.42, + "end": 18879.8, + "probability": 0.7939 + }, + { + "start": 18879.92, + "end": 18881.46, + "probability": 0.9513 + }, + { + "start": 18882.02, + "end": 18883.48, + "probability": 0.9834 + }, + { + "start": 18886.24, + "end": 18887.56, + "probability": 0.9976 + }, + { + "start": 18889.86, + "end": 18890.78, + "probability": 0.5873 + }, + { + "start": 18891.52, + "end": 18892.48, + "probability": 0.015 + }, + { + "start": 18893.22, + "end": 18894.18, + "probability": 0.6569 + }, + { + "start": 18894.34, + "end": 18895.32, + "probability": 0.6009 + }, + { + "start": 18896.2, + "end": 18898.58, + "probability": 0.9705 + }, + { + "start": 18898.94, + "end": 18903.06, + "probability": 0.9583 + }, + { + "start": 18903.58, + "end": 18909.66, + "probability": 0.9419 + }, + { + "start": 18910.44, + "end": 18912.88, + "probability": 0.9947 + }, + { + "start": 18912.96, + "end": 18915.31, + "probability": 0.9715 + }, + { + "start": 18916.26, + "end": 18918.02, + "probability": 0.9225 + }, + { + "start": 18918.9, + "end": 18921.35, + "probability": 0.7963 + }, + { + "start": 18923.72, + "end": 18927.04, + "probability": 0.9334 + }, + { + "start": 18927.9, + "end": 18931.3, + "probability": 0.729 + }, + { + "start": 18932.6, + "end": 18934.44, + "probability": 0.644 + }, + { + "start": 18934.58, + "end": 18936.92, + "probability": 0.5061 + }, + { + "start": 18937.06, + "end": 18937.98, + "probability": 0.5966 + }, + { + "start": 18938.94, + "end": 18942.46, + "probability": 0.8544 + }, + { + "start": 18943.34, + "end": 18945.46, + "probability": 0.7634 + }, + { + "start": 18945.66, + "end": 18946.08, + "probability": 0.513 + }, + { + "start": 18946.22, + "end": 18947.94, + "probability": 0.9946 + }, + { + "start": 18948.62, + "end": 18954.42, + "probability": 0.9984 + }, + { + "start": 18955.52, + "end": 18962.52, + "probability": 0.9541 + }, + { + "start": 18963.06, + "end": 18963.3, + "probability": 0.5622 + }, + { + "start": 18963.42, + "end": 18963.98, + "probability": 0.5922 + }, + { + "start": 18964.02, + "end": 18967.54, + "probability": 0.9502 + }, + { + "start": 18968.02, + "end": 18969.2, + "probability": 0.9854 + }, + { + "start": 18970.1, + "end": 18972.42, + "probability": 0.994 + }, + { + "start": 18972.46, + "end": 18976.56, + "probability": 0.8309 + }, + { + "start": 18976.58, + "end": 18977.98, + "probability": 0.681 + }, + { + "start": 18978.04, + "end": 18979.8, + "probability": 0.821 + }, + { + "start": 18980.2, + "end": 18981.36, + "probability": 0.9888 + }, + { + "start": 18984.6, + "end": 18988.54, + "probability": 0.9839 + }, + { + "start": 18988.54, + "end": 18992.96, + "probability": 0.9943 + }, + { + "start": 18994.56, + "end": 18999.78, + "probability": 0.7 + }, + { + "start": 18999.78, + "end": 19003.74, + "probability": 0.7102 + }, + { + "start": 19005.52, + "end": 19007.46, + "probability": 0.9775 + }, + { + "start": 19007.68, + "end": 19007.78, + "probability": 0.6351 + }, + { + "start": 19007.96, + "end": 19009.3, + "probability": 0.7709 + }, + { + "start": 19009.7, + "end": 19013.7, + "probability": 0.9858 + }, + { + "start": 19013.7, + "end": 19018.74, + "probability": 0.934 + }, + { + "start": 19019.16, + "end": 19023.46, + "probability": 0.9927 + }, + { + "start": 19023.62, + "end": 19024.34, + "probability": 0.7954 + }, + { + "start": 19024.86, + "end": 19026.94, + "probability": 0.8189 + }, + { + "start": 19027.7, + "end": 19030.16, + "probability": 0.9797 + }, + { + "start": 19030.16, + "end": 19032.5, + "probability": 0.9951 + }, + { + "start": 19032.62, + "end": 19038.58, + "probability": 0.8622 + }, + { + "start": 19038.64, + "end": 19039.48, + "probability": 0.8055 + }, + { + "start": 19040.46, + "end": 19041.0, + "probability": 0.4922 + }, + { + "start": 19041.92, + "end": 19042.18, + "probability": 0.7388 + }, + { + "start": 19042.78, + "end": 19043.84, + "probability": 0.9971 + }, + { + "start": 19044.92, + "end": 19048.58, + "probability": 0.8116 + }, + { + "start": 19049.3, + "end": 19050.98, + "probability": 0.697 + }, + { + "start": 19055.4, + "end": 19057.8, + "probability": 0.9902 + }, + { + "start": 19057.8, + "end": 19059.82, + "probability": 0.9673 + }, + { + "start": 19059.9, + "end": 19061.14, + "probability": 0.7365 + }, + { + "start": 19061.76, + "end": 19064.02, + "probability": 0.6516 + }, + { + "start": 19064.2, + "end": 19065.5, + "probability": 0.927 + }, + { + "start": 19066.04, + "end": 19067.92, + "probability": 0.8814 + }, + { + "start": 19068.54, + "end": 19072.36, + "probability": 0.8464 + }, + { + "start": 19073.24, + "end": 19074.4, + "probability": 0.915 + }, + { + "start": 19075.1, + "end": 19077.1, + "probability": 0.8581 + }, + { + "start": 19078.74, + "end": 19081.46, + "probability": 0.9795 + }, + { + "start": 19082.0, + "end": 19083.58, + "probability": 0.7479 + }, + { + "start": 19084.62, + "end": 19086.58, + "probability": 0.6321 + }, + { + "start": 19087.04, + "end": 19090.78, + "probability": 0.7841 + }, + { + "start": 19090.78, + "end": 19093.82, + "probability": 0.9194 + }, + { + "start": 19095.24, + "end": 19097.54, + "probability": 0.763 + }, + { + "start": 19097.66, + "end": 19099.74, + "probability": 0.9812 + }, + { + "start": 19101.0, + "end": 19103.3, + "probability": 0.8686 + }, + { + "start": 19103.4, + "end": 19105.5, + "probability": 0.6746 + }, + { + "start": 19105.58, + "end": 19108.04, + "probability": 0.947 + }, + { + "start": 19108.72, + "end": 19110.25, + "probability": 0.933 + }, + { + "start": 19110.94, + "end": 19112.3, + "probability": 0.9902 + }, + { + "start": 19113.22, + "end": 19115.76, + "probability": 0.9993 + }, + { + "start": 19116.46, + "end": 19118.66, + "probability": 0.9991 + }, + { + "start": 19119.14, + "end": 19121.02, + "probability": 0.9965 + }, + { + "start": 19123.18, + "end": 19125.18, + "probability": 0.9671 + }, + { + "start": 19125.9, + "end": 19129.46, + "probability": 0.8289 + }, + { + "start": 19130.78, + "end": 19131.19, + "probability": 0.6982 + }, + { + "start": 19132.38, + "end": 19134.78, + "probability": 0.9217 + }, + { + "start": 19135.86, + "end": 19137.04, + "probability": 0.9749 + }, + { + "start": 19137.16, + "end": 19137.72, + "probability": 0.8975 + }, + { + "start": 19138.18, + "end": 19139.32, + "probability": 0.9559 + }, + { + "start": 19140.46, + "end": 19141.84, + "probability": 0.957 + }, + { + "start": 19142.4, + "end": 19144.66, + "probability": 0.9984 + }, + { + "start": 19144.66, + "end": 19147.16, + "probability": 0.9551 + }, + { + "start": 19148.28, + "end": 19151.44, + "probability": 0.9932 + }, + { + "start": 19151.44, + "end": 19154.8, + "probability": 0.6255 + }, + { + "start": 19155.3, + "end": 19156.18, + "probability": 0.5862 + }, + { + "start": 19157.54, + "end": 19161.24, + "probability": 0.6928 + }, + { + "start": 19161.94, + "end": 19165.13, + "probability": 0.9962 + }, + { + "start": 19166.52, + "end": 19168.02, + "probability": 0.934 + }, + { + "start": 19168.8, + "end": 19170.26, + "probability": 0.9846 + }, + { + "start": 19171.3, + "end": 19172.78, + "probability": 0.9933 + }, + { + "start": 19173.16, + "end": 19178.54, + "probability": 0.9777 + }, + { + "start": 19179.48, + "end": 19179.62, + "probability": 0.7086 + }, + { + "start": 19179.84, + "end": 19183.92, + "probability": 0.8841 + }, + { + "start": 19184.6, + "end": 19185.36, + "probability": 0.8243 + }, + { + "start": 19185.44, + "end": 19185.62, + "probability": 0.4197 + }, + { + "start": 19185.7, + "end": 19187.36, + "probability": 0.9494 + }, + { + "start": 19187.6, + "end": 19189.64, + "probability": 0.8634 + }, + { + "start": 19190.22, + "end": 19192.68, + "probability": 0.9887 + }, + { + "start": 19193.8, + "end": 19194.46, + "probability": 0.6599 + }, + { + "start": 19194.98, + "end": 19196.22, + "probability": 0.999 + }, + { + "start": 19197.46, + "end": 19197.9, + "probability": 0.9752 + }, + { + "start": 19198.02, + "end": 19201.98, + "probability": 0.8711 + }, + { + "start": 19202.04, + "end": 19204.16, + "probability": 0.9853 + }, + { + "start": 19204.18, + "end": 19206.62, + "probability": 0.8155 + }, + { + "start": 19206.7, + "end": 19209.04, + "probability": 0.9972 + }, + { + "start": 19210.2, + "end": 19212.44, + "probability": 0.9983 + }, + { + "start": 19213.3, + "end": 19218.82, + "probability": 0.7333 + }, + { + "start": 19218.88, + "end": 19220.18, + "probability": 0.9699 + }, + { + "start": 19222.3, + "end": 19223.04, + "probability": 0.9053 + }, + { + "start": 19223.8, + "end": 19226.46, + "probability": 0.6527 + }, + { + "start": 19226.72, + "end": 19228.36, + "probability": 0.9899 + }, + { + "start": 19228.46, + "end": 19231.3, + "probability": 0.986 + }, + { + "start": 19232.88, + "end": 19234.68, + "probability": 0.998 + }, + { + "start": 19234.88, + "end": 19237.18, + "probability": 0.9326 + }, + { + "start": 19238.84, + "end": 19240.74, + "probability": 0.9391 + }, + { + "start": 19241.98, + "end": 19243.26, + "probability": 0.5419 + }, + { + "start": 19244.72, + "end": 19245.36, + "probability": 0.7463 + }, + { + "start": 19246.5, + "end": 19247.25, + "probability": 0.4529 + }, + { + "start": 19247.54, + "end": 19248.38, + "probability": 0.6596 + }, + { + "start": 19248.48, + "end": 19249.02, + "probability": 0.7394 + }, + { + "start": 19249.1, + "end": 19251.2, + "probability": 0.9934 + }, + { + "start": 19251.66, + "end": 19257.18, + "probability": 0.9814 + }, + { + "start": 19257.8, + "end": 19260.08, + "probability": 0.9468 + }, + { + "start": 19260.56, + "end": 19262.56, + "probability": 0.9265 + }, + { + "start": 19263.12, + "end": 19264.24, + "probability": 0.9692 + }, + { + "start": 19264.4, + "end": 19265.9, + "probability": 0.9941 + }, + { + "start": 19266.94, + "end": 19267.88, + "probability": 0.7295 + }, + { + "start": 19269.12, + "end": 19269.87, + "probability": 0.6659 + }, + { + "start": 19271.12, + "end": 19274.84, + "probability": 0.9978 + }, + { + "start": 19274.94, + "end": 19276.84, + "probability": 0.9875 + }, + { + "start": 19277.54, + "end": 19279.12, + "probability": 0.7803 + }, + { + "start": 19279.2, + "end": 19282.64, + "probability": 0.8977 + }, + { + "start": 19283.3, + "end": 19284.44, + "probability": 0.9774 + }, + { + "start": 19285.56, + "end": 19288.4, + "probability": 0.9574 + }, + { + "start": 19289.42, + "end": 19290.54, + "probability": 0.8245 + }, + { + "start": 19290.82, + "end": 19292.64, + "probability": 0.8721 + }, + { + "start": 19292.68, + "end": 19294.65, + "probability": 0.7487 + }, + { + "start": 19296.36, + "end": 19298.04, + "probability": 0.9927 + }, + { + "start": 19298.06, + "end": 19301.78, + "probability": 0.8676 + }, + { + "start": 19302.52, + "end": 19305.5, + "probability": 0.9152 + }, + { + "start": 19305.56, + "end": 19307.62, + "probability": 0.8847 + }, + { + "start": 19308.48, + "end": 19310.42, + "probability": 0.937 + }, + { + "start": 19312.28, + "end": 19312.98, + "probability": 0.9988 + }, + { + "start": 19313.84, + "end": 19314.2, + "probability": 0.7456 + }, + { + "start": 19314.36, + "end": 19314.6, + "probability": 0.6012 + }, + { + "start": 19314.68, + "end": 19315.06, + "probability": 0.5716 + }, + { + "start": 19315.24, + "end": 19318.23, + "probability": 0.9447 + }, + { + "start": 19318.48, + "end": 19319.56, + "probability": 0.2716 + }, + { + "start": 19319.84, + "end": 19324.24, + "probability": 0.9612 + }, + { + "start": 19325.3, + "end": 19325.66, + "probability": 0.177 + }, + { + "start": 19325.66, + "end": 19325.66, + "probability": 0.052 + }, + { + "start": 19325.66, + "end": 19325.66, + "probability": 0.0484 + }, + { + "start": 19325.66, + "end": 19326.88, + "probability": 0.5273 + }, + { + "start": 19327.0, + "end": 19328.8, + "probability": 0.8537 + }, + { + "start": 19330.18, + "end": 19332.8, + "probability": 0.8075 + }, + { + "start": 19333.38, + "end": 19333.46, + "probability": 0.1475 + }, + { + "start": 19333.46, + "end": 19337.5, + "probability": 0.9678 + }, + { + "start": 19338.2, + "end": 19338.78, + "probability": 0.5971 + }, + { + "start": 19338.86, + "end": 19339.02, + "probability": 0.7931 + }, + { + "start": 19339.1, + "end": 19340.74, + "probability": 0.9058 + }, + { + "start": 19342.68, + "end": 19343.12, + "probability": 0.9406 + }, + { + "start": 19344.2, + "end": 19345.9, + "probability": 0.9453 + }, + { + "start": 19347.3, + "end": 19348.66, + "probability": 0.7863 + }, + { + "start": 19348.66, + "end": 19351.94, + "probability": 0.9678 + }, + { + "start": 19352.24, + "end": 19353.06, + "probability": 0.8794 + }, + { + "start": 19353.1, + "end": 19354.66, + "probability": 0.8725 + }, + { + "start": 19355.2, + "end": 19356.64, + "probability": 0.6654 + }, + { + "start": 19357.68, + "end": 19358.32, + "probability": 0.8743 + }, + { + "start": 19358.42, + "end": 19360.7, + "probability": 0.8682 + }, + { + "start": 19360.78, + "end": 19361.78, + "probability": 0.9474 + }, + { + "start": 19363.5, + "end": 19364.24, + "probability": 0.7812 + }, + { + "start": 19364.36, + "end": 19366.22, + "probability": 0.7218 + }, + { + "start": 19366.32, + "end": 19366.92, + "probability": 0.5815 + }, + { + "start": 19367.24, + "end": 19369.22, + "probability": 0.6433 + }, + { + "start": 19369.78, + "end": 19371.14, + "probability": 0.2804 + }, + { + "start": 19371.43, + "end": 19373.56, + "probability": 0.5196 + }, + { + "start": 19373.98, + "end": 19375.6, + "probability": 0.8334 + }, + { + "start": 19376.14, + "end": 19378.14, + "probability": 0.8526 + }, + { + "start": 19378.36, + "end": 19380.9, + "probability": 0.9329 + }, + { + "start": 19381.46, + "end": 19383.8, + "probability": 0.9619 + }, + { + "start": 19383.86, + "end": 19388.64, + "probability": 0.8083 + }, + { + "start": 19389.54, + "end": 19392.98, + "probability": 0.8428 + }, + { + "start": 19393.52, + "end": 19399.12, + "probability": 0.9238 + }, + { + "start": 19400.32, + "end": 19404.12, + "probability": 0.6081 + }, + { + "start": 19404.6, + "end": 19409.12, + "probability": 0.7837 + }, + { + "start": 19409.88, + "end": 19412.16, + "probability": 0.798 + }, + { + "start": 19412.32, + "end": 19414.18, + "probability": 0.7252 + }, + { + "start": 19414.44, + "end": 19417.36, + "probability": 0.7938 + }, + { + "start": 19417.7, + "end": 19420.5, + "probability": 0.9524 + }, + { + "start": 19420.5, + "end": 19423.6, + "probability": 0.9983 + }, + { + "start": 19423.92, + "end": 19427.24, + "probability": 0.8732 + }, + { + "start": 19427.86, + "end": 19429.85, + "probability": 0.9972 + }, + { + "start": 19430.22, + "end": 19435.28, + "probability": 0.8799 + }, + { + "start": 19435.36, + "end": 19437.38, + "probability": 0.6997 + }, + { + "start": 19437.94, + "end": 19439.06, + "probability": 0.873 + }, + { + "start": 19439.2, + "end": 19440.04, + "probability": 0.8335 + }, + { + "start": 19440.38, + "end": 19442.22, + "probability": 0.9293 + }, + { + "start": 19442.76, + "end": 19443.64, + "probability": 0.8185 + }, + { + "start": 19443.74, + "end": 19445.12, + "probability": 0.8585 + }, + { + "start": 19445.74, + "end": 19448.27, + "probability": 0.9302 + }, + { + "start": 19448.4, + "end": 19449.02, + "probability": 0.7068 + }, + { + "start": 19449.08, + "end": 19450.1, + "probability": 0.5639 + }, + { + "start": 19450.4, + "end": 19450.74, + "probability": 0.9684 + }, + { + "start": 19451.3, + "end": 19453.86, + "probability": 0.9635 + }, + { + "start": 19454.1, + "end": 19454.68, + "probability": 0.5731 + }, + { + "start": 19454.8, + "end": 19457.24, + "probability": 0.7982 + }, + { + "start": 19457.32, + "end": 19458.72, + "probability": 0.8753 + }, + { + "start": 19458.76, + "end": 19461.02, + "probability": 0.8139 + }, + { + "start": 19461.3, + "end": 19466.5, + "probability": 0.8205 + }, + { + "start": 19466.58, + "end": 19467.28, + "probability": 0.5985 + }, + { + "start": 19468.14, + "end": 19472.78, + "probability": 0.6703 + }, + { + "start": 19473.08, + "end": 19475.0, + "probability": 0.8411 + }, + { + "start": 19475.04, + "end": 19476.66, + "probability": 0.9552 + }, + { + "start": 19478.96, + "end": 19479.1, + "probability": 0.041 + }, + { + "start": 19479.1, + "end": 19479.22, + "probability": 0.283 + }, + { + "start": 19479.34, + "end": 19482.3, + "probability": 0.9487 + }, + { + "start": 19482.42, + "end": 19484.42, + "probability": 0.9312 + }, + { + "start": 19484.42, + "end": 19488.16, + "probability": 0.9364 + }, + { + "start": 19488.68, + "end": 19490.32, + "probability": 0.7026 + }, + { + "start": 19490.88, + "end": 19493.8, + "probability": 0.9661 + }, + { + "start": 19494.38, + "end": 19496.15, + "probability": 0.9982 + }, + { + "start": 19496.28, + "end": 19496.88, + "probability": 0.9446 + }, + { + "start": 19497.42, + "end": 19499.3, + "probability": 0.9197 + }, + { + "start": 19499.92, + "end": 19501.5, + "probability": 0.8353 + }, + { + "start": 19502.52, + "end": 19503.8, + "probability": 0.9915 + }, + { + "start": 19504.58, + "end": 19509.14, + "probability": 0.978 + }, + { + "start": 19509.14, + "end": 19514.38, + "probability": 0.9798 + }, + { + "start": 19514.42, + "end": 19514.62, + "probability": 0.3664 + }, + { + "start": 19514.68, + "end": 19517.76, + "probability": 0.9652 + }, + { + "start": 19517.84, + "end": 19518.76, + "probability": 0.9689 + }, + { + "start": 19519.22, + "end": 19520.12, + "probability": 0.2849 + }, + { + "start": 19520.16, + "end": 19521.28, + "probability": 0.6796 + }, + { + "start": 19521.36, + "end": 19524.4, + "probability": 0.9299 + }, + { + "start": 19524.86, + "end": 19526.4, + "probability": 0.8983 + }, + { + "start": 19526.48, + "end": 19527.58, + "probability": 0.9616 + }, + { + "start": 19527.62, + "end": 19528.0, + "probability": 0.3337 + }, + { + "start": 19528.16, + "end": 19530.42, + "probability": 0.8331 + }, + { + "start": 19531.26, + "end": 19534.04, + "probability": 0.9601 + }, + { + "start": 19534.1, + "end": 19536.44, + "probability": 0.9601 + }, + { + "start": 19536.52, + "end": 19536.68, + "probability": 0.7716 + }, + { + "start": 19537.04, + "end": 19538.63, + "probability": 0.7405 + }, + { + "start": 19540.06, + "end": 19542.96, + "probability": 0.6697 + }, + { + "start": 19543.8, + "end": 19546.78, + "probability": 0.8145 + }, + { + "start": 19557.82, + "end": 19558.08, + "probability": 0.7244 + }, + { + "start": 19559.9, + "end": 19560.88, + "probability": 0.6909 + }, + { + "start": 19562.06, + "end": 19563.14, + "probability": 0.91 + }, + { + "start": 19564.58, + "end": 19565.25, + "probability": 0.7568 + }, + { + "start": 19566.24, + "end": 19567.56, + "probability": 0.9624 + }, + { + "start": 19569.0, + "end": 19572.06, + "probability": 0.9518 + }, + { + "start": 19572.06, + "end": 19575.8, + "probability": 0.9846 + }, + { + "start": 19577.5, + "end": 19581.32, + "probability": 0.4277 + }, + { + "start": 19582.18, + "end": 19583.76, + "probability": 0.6982 + }, + { + "start": 19584.36, + "end": 19586.16, + "probability": 0.9854 + }, + { + "start": 19586.98, + "end": 19588.78, + "probability": 0.9972 + }, + { + "start": 19589.78, + "end": 19595.14, + "probability": 0.9297 + }, + { + "start": 19596.1, + "end": 19598.52, + "probability": 0.9962 + }, + { + "start": 19599.22, + "end": 19600.57, + "probability": 0.998 + }, + { + "start": 19601.74, + "end": 19602.62, + "probability": 0.7616 + }, + { + "start": 19603.28, + "end": 19605.64, + "probability": 0.8812 + }, + { + "start": 19606.38, + "end": 19608.66, + "probability": 0.9722 + }, + { + "start": 19609.7, + "end": 19614.3, + "probability": 0.915 + }, + { + "start": 19614.98, + "end": 19618.66, + "probability": 0.9933 + }, + { + "start": 19618.66, + "end": 19622.12, + "probability": 0.8834 + }, + { + "start": 19622.62, + "end": 19623.68, + "probability": 0.9339 + }, + { + "start": 19626.18, + "end": 19629.02, + "probability": 0.8902 + }, + { + "start": 19629.86, + "end": 19630.7, + "probability": 0.8624 + }, + { + "start": 19632.08, + "end": 19633.3, + "probability": 0.9789 + }, + { + "start": 19634.04, + "end": 19635.18, + "probability": 0.9853 + }, + { + "start": 19636.56, + "end": 19643.66, + "probability": 0.9985 + }, + { + "start": 19644.24, + "end": 19648.0, + "probability": 0.9056 + }, + { + "start": 19648.6, + "end": 19650.6, + "probability": 0.9905 + }, + { + "start": 19651.58, + "end": 19657.96, + "probability": 0.9763 + }, + { + "start": 19659.0, + "end": 19663.14, + "probability": 0.6784 + }, + { + "start": 19664.1, + "end": 19667.02, + "probability": 0.9858 + }, + { + "start": 19668.14, + "end": 19669.12, + "probability": 0.9949 + }, + { + "start": 19670.02, + "end": 19671.64, + "probability": 0.987 + }, + { + "start": 19672.62, + "end": 19673.08, + "probability": 0.3199 + }, + { + "start": 19674.02, + "end": 19674.98, + "probability": 0.8131 + }, + { + "start": 19675.28, + "end": 19675.36, + "probability": 0.0918 + }, + { + "start": 19675.58, + "end": 19677.18, + "probability": 0.018 + }, + { + "start": 19677.26, + "end": 19678.82, + "probability": 0.6723 + }, + { + "start": 19679.12, + "end": 19680.7, + "probability": 0.3207 + }, + { + "start": 19680.82, + "end": 19682.66, + "probability": 0.7608 + }, + { + "start": 19684.18, + "end": 19685.86, + "probability": 0.2104 + }, + { + "start": 19686.64, + "end": 19687.52, + "probability": 0.3312 + }, + { + "start": 19687.52, + "end": 19687.52, + "probability": 0.3319 + }, + { + "start": 19687.62, + "end": 19687.62, + "probability": 0.0557 + }, + { + "start": 19687.62, + "end": 19688.36, + "probability": 0.5768 + }, + { + "start": 19688.64, + "end": 19691.54, + "probability": 0.6982 + }, + { + "start": 19692.36, + "end": 19692.46, + "probability": 0.5786 + }, + { + "start": 19693.62, + "end": 19694.24, + "probability": 0.6135 + }, + { + "start": 19694.24, + "end": 19694.88, + "probability": 0.5364 + }, + { + "start": 19695.26, + "end": 19695.48, + "probability": 0.7807 + }, + { + "start": 19696.22, + "end": 19696.76, + "probability": 0.9314 + }, + { + "start": 19699.5, + "end": 19700.18, + "probability": 0.8363 + }, + { + "start": 19700.84, + "end": 19703.64, + "probability": 0.9577 + }, + { + "start": 19704.04, + "end": 19705.4, + "probability": 0.9263 + }, + { + "start": 19705.44, + "end": 19706.88, + "probability": 0.9673 + }, + { + "start": 19707.58, + "end": 19710.2, + "probability": 0.9821 + }, + { + "start": 19711.08, + "end": 19713.34, + "probability": 0.9924 + }, + { + "start": 19714.24, + "end": 19716.42, + "probability": 0.9973 + }, + { + "start": 19717.04, + "end": 19718.5, + "probability": 0.9427 + }, + { + "start": 19719.3, + "end": 19720.66, + "probability": 0.9786 + }, + { + "start": 19720.74, + "end": 19721.92, + "probability": 0.6651 + }, + { + "start": 19722.96, + "end": 19728.24, + "probability": 0.9858 + }, + { + "start": 19729.18, + "end": 19730.52, + "probability": 0.9744 + }, + { + "start": 19730.98, + "end": 19733.1, + "probability": 0.9732 + }, + { + "start": 19733.64, + "end": 19735.52, + "probability": 0.8903 + }, + { + "start": 19736.3, + "end": 19738.52, + "probability": 0.8901 + }, + { + "start": 19738.84, + "end": 19739.73, + "probability": 0.9907 + }, + { + "start": 19740.66, + "end": 19743.72, + "probability": 0.9241 + }, + { + "start": 19744.24, + "end": 19745.98, + "probability": 0.9932 + }, + { + "start": 19746.96, + "end": 19749.5, + "probability": 0.6267 + }, + { + "start": 19750.24, + "end": 19755.5, + "probability": 0.9769 + }, + { + "start": 19756.72, + "end": 19761.18, + "probability": 0.9688 + }, + { + "start": 19761.58, + "end": 19762.74, + "probability": 0.8545 + }, + { + "start": 19763.52, + "end": 19766.46, + "probability": 0.9303 + }, + { + "start": 19767.26, + "end": 19773.34, + "probability": 0.9948 + }, + { + "start": 19774.28, + "end": 19778.88, + "probability": 0.8082 + }, + { + "start": 19780.94, + "end": 19782.96, + "probability": 0.8652 + }, + { + "start": 19785.24, + "end": 19789.22, + "probability": 0.9833 + }, + { + "start": 19790.36, + "end": 19792.74, + "probability": 0.9869 + }, + { + "start": 19793.48, + "end": 19795.86, + "probability": 0.9609 + }, + { + "start": 19797.91, + "end": 19800.35, + "probability": 0.9728 + }, + { + "start": 19801.24, + "end": 19802.72, + "probability": 0.7116 + }, + { + "start": 19802.86, + "end": 19803.4, + "probability": 0.9608 + }, + { + "start": 19804.36, + "end": 19805.66, + "probability": 0.6923 + }, + { + "start": 19806.34, + "end": 19807.36, + "probability": 0.8359 + }, + { + "start": 19808.28, + "end": 19812.44, + "probability": 0.9861 + }, + { + "start": 19812.88, + "end": 19814.64, + "probability": 0.8846 + }, + { + "start": 19815.58, + "end": 19819.38, + "probability": 0.9767 + }, + { + "start": 19820.58, + "end": 19822.0, + "probability": 0.9429 + }, + { + "start": 19822.96, + "end": 19822.96, + "probability": 0.4879 + }, + { + "start": 19823.18, + "end": 19823.64, + "probability": 0.908 + }, + { + "start": 19823.8, + "end": 19824.54, + "probability": 0.821 + }, + { + "start": 19824.6, + "end": 19825.43, + "probability": 0.7393 + }, + { + "start": 19826.12, + "end": 19826.88, + "probability": 0.2087 + }, + { + "start": 19826.96, + "end": 19829.5, + "probability": 0.9647 + }, + { + "start": 19830.22, + "end": 19831.64, + "probability": 0.9056 + }, + { + "start": 19832.78, + "end": 19833.56, + "probability": 0.938 + }, + { + "start": 19834.4, + "end": 19836.92, + "probability": 0.6381 + }, + { + "start": 19837.7, + "end": 19842.46, + "probability": 0.8206 + }, + { + "start": 19843.02, + "end": 19846.56, + "probability": 0.9649 + }, + { + "start": 19846.56, + "end": 19849.08, + "probability": 0.9725 + }, + { + "start": 19849.9, + "end": 19851.58, + "probability": 0.9165 + }, + { + "start": 19851.6, + "end": 19852.7, + "probability": 0.9781 + }, + { + "start": 19852.72, + "end": 19855.68, + "probability": 0.9893 + }, + { + "start": 19856.3, + "end": 19860.3, + "probability": 0.386 + }, + { + "start": 19860.3, + "end": 19864.58, + "probability": 0.3282 + }, + { + "start": 19865.28, + "end": 19866.3, + "probability": 0.86 + }, + { + "start": 19867.18, + "end": 19867.3, + "probability": 0.6013 + }, + { + "start": 19867.34, + "end": 19868.54, + "probability": 0.9445 + }, + { + "start": 19868.64, + "end": 19873.3, + "probability": 0.9839 + }, + { + "start": 19873.78, + "end": 19875.87, + "probability": 0.834 + }, + { + "start": 19877.06, + "end": 19878.54, + "probability": 0.7506 + }, + { + "start": 19879.26, + "end": 19880.54, + "probability": 0.7829 + }, + { + "start": 19881.22, + "end": 19884.72, + "probability": 0.9033 + }, + { + "start": 19885.44, + "end": 19890.18, + "probability": 0.8461 + }, + { + "start": 19891.98, + "end": 19892.4, + "probability": 0.7604 + }, + { + "start": 19894.24, + "end": 19894.78, + "probability": 0.1179 + }, + { + "start": 19894.78, + "end": 19895.81, + "probability": 0.4023 + }, + { + "start": 19898.62, + "end": 19900.24, + "probability": 0.8406 + }, + { + "start": 19901.98, + "end": 19902.28, + "probability": 0.2952 + }, + { + "start": 19902.38, + "end": 19902.96, + "probability": 0.4383 + }, + { + "start": 19903.98, + "end": 19905.2, + "probability": 0.6898 + }, + { + "start": 19906.02, + "end": 19906.84, + "probability": 0.7982 + }, + { + "start": 19907.02, + "end": 19907.86, + "probability": 0.5118 + }, + { + "start": 19909.44, + "end": 19911.26, + "probability": 0.8936 + }, + { + "start": 19911.76, + "end": 19915.21, + "probability": 0.9897 + }, + { + "start": 19916.56, + "end": 19917.74, + "probability": 0.7173 + }, + { + "start": 19922.88, + "end": 19923.68, + "probability": 0.4477 + }, + { + "start": 19924.34, + "end": 19926.06, + "probability": 0.7733 + }, + { + "start": 19927.5, + "end": 19932.2, + "probability": 0.9182 + }, + { + "start": 19934.28, + "end": 19936.14, + "probability": 0.9666 + }, + { + "start": 19936.76, + "end": 19939.52, + "probability": 0.9924 + }, + { + "start": 19939.74, + "end": 19941.54, + "probability": 0.9839 + }, + { + "start": 19942.76, + "end": 19944.8, + "probability": 0.8921 + }, + { + "start": 19945.66, + "end": 19947.5, + "probability": 0.9272 + }, + { + "start": 19949.18, + "end": 19953.14, + "probability": 0.8103 + }, + { + "start": 19953.22, + "end": 19954.06, + "probability": 0.8262 + }, + { + "start": 19954.38, + "end": 19955.6, + "probability": 0.8359 + }, + { + "start": 19956.26, + "end": 19957.8, + "probability": 0.9603 + }, + { + "start": 19958.02, + "end": 19959.28, + "probability": 0.9507 + }, + { + "start": 19959.58, + "end": 19959.92, + "probability": 0.0661 + }, + { + "start": 19959.94, + "end": 19963.86, + "probability": 0.8879 + }, + { + "start": 19964.5, + "end": 19968.36, + "probability": 0.9946 + }, + { + "start": 19970.31, + "end": 19973.28, + "probability": 0.9806 + }, + { + "start": 19974.12, + "end": 19978.56, + "probability": 0.9647 + }, + { + "start": 19979.6, + "end": 19980.99, + "probability": 0.9581 + }, + { + "start": 19982.1, + "end": 19983.02, + "probability": 0.9181 + }, + { + "start": 19984.24, + "end": 19987.18, + "probability": 0.7872 + }, + { + "start": 19987.88, + "end": 19988.94, + "probability": 0.9312 + }, + { + "start": 19990.24, + "end": 19993.62, + "probability": 0.3899 + }, + { + "start": 19994.44, + "end": 19997.9, + "probability": 0.7488 + }, + { + "start": 19998.46, + "end": 20000.38, + "probability": 0.9946 + }, + { + "start": 20001.1, + "end": 20003.22, + "probability": 0.9344 + }, + { + "start": 20004.06, + "end": 20007.22, + "probability": 0.9301 + }, + { + "start": 20008.2, + "end": 20013.38, + "probability": 0.9576 + }, + { + "start": 20014.4, + "end": 20015.8, + "probability": 0.6702 + }, + { + "start": 20016.82, + "end": 20019.02, + "probability": 0.8628 + }, + { + "start": 20019.98, + "end": 20021.24, + "probability": 0.8077 + }, + { + "start": 20021.78, + "end": 20023.02, + "probability": 0.9797 + }, + { + "start": 20023.32, + "end": 20024.96, + "probability": 0.9938 + }, + { + "start": 20024.96, + "end": 20026.6, + "probability": 0.9619 + }, + { + "start": 20027.08, + "end": 20027.24, + "probability": 0.4679 + }, + { + "start": 20027.38, + "end": 20029.3, + "probability": 0.9247 + }, + { + "start": 20029.6, + "end": 20030.4, + "probability": 0.6818 + }, + { + "start": 20030.5, + "end": 20030.96, + "probability": 0.6954 + }, + { + "start": 20031.56, + "end": 20033.32, + "probability": 0.6953 + }, + { + "start": 20033.92, + "end": 20034.94, + "probability": 0.884 + }, + { + "start": 20036.0, + "end": 20037.22, + "probability": 0.9209 + }, + { + "start": 20038.36, + "end": 20040.46, + "probability": 0.8857 + }, + { + "start": 20041.1, + "end": 20043.74, + "probability": 0.699 + }, + { + "start": 20044.3, + "end": 20049.5, + "probability": 0.9902 + }, + { + "start": 20050.08, + "end": 20050.64, + "probability": 0.6216 + }, + { + "start": 20051.36, + "end": 20052.44, + "probability": 0.9811 + }, + { + "start": 20052.88, + "end": 20057.0, + "probability": 0.7987 + }, + { + "start": 20057.34, + "end": 20059.38, + "probability": 0.9489 + }, + { + "start": 20060.0, + "end": 20066.06, + "probability": 0.9426 + }, + { + "start": 20066.7, + "end": 20070.98, + "probability": 0.8975 + }, + { + "start": 20071.66, + "end": 20073.98, + "probability": 0.8347 + }, + { + "start": 20074.6, + "end": 20075.14, + "probability": 0.7253 + }, + { + "start": 20075.22, + "end": 20076.22, + "probability": 0.9766 + }, + { + "start": 20076.8, + "end": 20077.72, + "probability": 0.9543 + }, + { + "start": 20077.74, + "end": 20078.32, + "probability": 0.5212 + }, + { + "start": 20078.74, + "end": 20079.98, + "probability": 0.8945 + }, + { + "start": 20080.16, + "end": 20081.82, + "probability": 0.976 + }, + { + "start": 20082.96, + "end": 20086.58, + "probability": 0.9784 + }, + { + "start": 20087.4, + "end": 20088.08, + "probability": 0.6051 + }, + { + "start": 20088.2, + "end": 20088.72, + "probability": 0.7109 + }, + { + "start": 20088.86, + "end": 20093.2, + "probability": 0.9292 + }, + { + "start": 20093.74, + "end": 20095.54, + "probability": 0.9768 + }, + { + "start": 20095.64, + "end": 20096.32, + "probability": 0.835 + }, + { + "start": 20096.44, + "end": 20096.68, + "probability": 0.4593 + }, + { + "start": 20096.86, + "end": 20097.28, + "probability": 0.6912 + }, + { + "start": 20097.46, + "end": 20097.7, + "probability": 0.5341 + }, + { + "start": 20098.22, + "end": 20100.78, + "probability": 0.8765 + }, + { + "start": 20101.8, + "end": 20104.8, + "probability": 0.9015 + }, + { + "start": 20105.32, + "end": 20107.32, + "probability": 0.8658 + }, + { + "start": 20108.02, + "end": 20113.38, + "probability": 0.7753 + }, + { + "start": 20113.9, + "end": 20116.28, + "probability": 0.9746 + }, + { + "start": 20116.86, + "end": 20118.19, + "probability": 0.8177 + }, + { + "start": 20119.16, + "end": 20120.34, + "probability": 0.7006 + }, + { + "start": 20120.36, + "end": 20121.14, + "probability": 0.572 + }, + { + "start": 20121.92, + "end": 20123.5, + "probability": 0.4482 + }, + { + "start": 20123.7, + "end": 20125.68, + "probability": 0.7941 + }, + { + "start": 20125.86, + "end": 20126.04, + "probability": 0.8008 + }, + { + "start": 20126.74, + "end": 20128.38, + "probability": 0.6735 + }, + { + "start": 20128.44, + "end": 20129.45, + "probability": 0.7632 + }, + { + "start": 20130.4, + "end": 20131.78, + "probability": 0.7568 + }, + { + "start": 20132.84, + "end": 20134.08, + "probability": 0.9282 + }, + { + "start": 20135.32, + "end": 20135.72, + "probability": 0.6869 + }, + { + "start": 20136.54, + "end": 20138.43, + "probability": 0.8971 + }, + { + "start": 20139.26, + "end": 20141.44, + "probability": 0.7819 + }, + { + "start": 20142.18, + "end": 20143.92, + "probability": 0.7951 + }, + { + "start": 20144.26, + "end": 20147.0, + "probability": 0.9731 + }, + { + "start": 20148.6, + "end": 20149.48, + "probability": 0.8242 + }, + { + "start": 20149.56, + "end": 20150.62, + "probability": 0.8011 + }, + { + "start": 20150.7, + "end": 20151.86, + "probability": 0.9237 + }, + { + "start": 20152.16, + "end": 20153.28, + "probability": 0.6396 + }, + { + "start": 20153.96, + "end": 20155.12, + "probability": 0.99 + }, + { + "start": 20155.7, + "end": 20158.56, + "probability": 0.6273 + }, + { + "start": 20158.56, + "end": 20161.06, + "probability": 0.8208 + }, + { + "start": 20161.14, + "end": 20161.28, + "probability": 0.4631 + }, + { + "start": 20161.44, + "end": 20162.04, + "probability": 0.7238 + }, + { + "start": 20162.28, + "end": 20162.76, + "probability": 0.4101 + }, + { + "start": 20165.06, + "end": 20167.12, + "probability": 0.6704 + }, + { + "start": 20168.02, + "end": 20171.6, + "probability": 0.9551 + }, + { + "start": 20172.6, + "end": 20175.77, + "probability": 0.9833 + }, + { + "start": 20176.88, + "end": 20177.48, + "probability": 0.7133 + }, + { + "start": 20177.6, + "end": 20179.22, + "probability": 0.6923 + }, + { + "start": 20179.68, + "end": 20180.31, + "probability": 0.9618 + }, + { + "start": 20180.98, + "end": 20184.22, + "probability": 0.9812 + }, + { + "start": 20184.58, + "end": 20186.68, + "probability": 0.9252 + }, + { + "start": 20187.08, + "end": 20189.24, + "probability": 0.9805 + }, + { + "start": 20189.8, + "end": 20193.7, + "probability": 0.9705 + }, + { + "start": 20193.82, + "end": 20194.56, + "probability": 0.7844 + }, + { + "start": 20195.06, + "end": 20196.63, + "probability": 0.7189 + }, + { + "start": 20197.92, + "end": 20197.92, + "probability": 0.521 + }, + { + "start": 20198.5, + "end": 20204.18, + "probability": 0.9572 + }, + { + "start": 20205.28, + "end": 20206.54, + "probability": 0.835 + }, + { + "start": 20208.06, + "end": 20208.62, + "probability": 0.5305 + }, + { + "start": 20208.7, + "end": 20210.52, + "probability": 0.9204 + }, + { + "start": 20210.56, + "end": 20212.84, + "probability": 0.8666 + }, + { + "start": 20213.1, + "end": 20213.76, + "probability": 0.4832 + }, + { + "start": 20213.94, + "end": 20215.28, + "probability": 0.5722 + }, + { + "start": 20215.34, + "end": 20216.97, + "probability": 0.7853 + }, + { + "start": 20217.6, + "end": 20218.12, + "probability": 0.6044 + }, + { + "start": 20219.14, + "end": 20221.8, + "probability": 0.5763 + }, + { + "start": 20221.94, + "end": 20222.36, + "probability": 0.6952 + }, + { + "start": 20222.38, + "end": 20222.72, + "probability": 0.3795 + }, + { + "start": 20222.74, + "end": 20223.44, + "probability": 0.7805 + }, + { + "start": 20224.06, + "end": 20224.98, + "probability": 0.4854 + }, + { + "start": 20225.1, + "end": 20225.98, + "probability": 0.6163 + }, + { + "start": 20226.2, + "end": 20226.58, + "probability": 0.954 + }, + { + "start": 20244.24, + "end": 20244.26, + "probability": 0.244 + }, + { + "start": 20244.26, + "end": 20246.22, + "probability": 0.2891 + }, + { + "start": 20246.92, + "end": 20248.68, + "probability": 0.7296 + }, + { + "start": 20248.96, + "end": 20249.78, + "probability": 0.525 + }, + { + "start": 20251.18, + "end": 20253.21, + "probability": 0.5806 + }, + { + "start": 20253.92, + "end": 20255.54, + "probability": 0.728 + }, + { + "start": 20255.66, + "end": 20255.84, + "probability": 0.0268 + }, + { + "start": 20255.84, + "end": 20257.08, + "probability": 0.6995 + }, + { + "start": 20275.2, + "end": 20276.1, + "probability": 0.8379 + }, + { + "start": 20276.68, + "end": 20277.48, + "probability": 0.7523 + }, + { + "start": 20279.1, + "end": 20282.26, + "probability": 0.8649 + }, + { + "start": 20283.0, + "end": 20288.3, + "probability": 0.9903 + }, + { + "start": 20288.54, + "end": 20289.06, + "probability": 0.8274 + }, + { + "start": 20289.84, + "end": 20292.74, + "probability": 0.9881 + }, + { + "start": 20293.42, + "end": 20294.54, + "probability": 0.7983 + }, + { + "start": 20294.64, + "end": 20299.38, + "probability": 0.9905 + }, + { + "start": 20299.96, + "end": 20303.18, + "probability": 0.9753 + }, + { + "start": 20303.58, + "end": 20305.58, + "probability": 0.9941 + }, + { + "start": 20305.74, + "end": 20309.16, + "probability": 0.1753 + }, + { + "start": 20310.04, + "end": 20312.82, + "probability": 0.8621 + }, + { + "start": 20313.02, + "end": 20316.54, + "probability": 0.8967 + }, + { + "start": 20317.16, + "end": 20322.16, + "probability": 0.9608 + }, + { + "start": 20322.4, + "end": 20323.74, + "probability": 0.7764 + }, + { + "start": 20323.88, + "end": 20326.08, + "probability": 0.9575 + }, + { + "start": 20327.06, + "end": 20330.24, + "probability": 0.9482 + }, + { + "start": 20330.86, + "end": 20333.2, + "probability": 0.9821 + }, + { + "start": 20333.92, + "end": 20338.42, + "probability": 0.9604 + }, + { + "start": 20338.58, + "end": 20339.7, + "probability": 0.8102 + }, + { + "start": 20340.36, + "end": 20343.32, + "probability": 0.9443 + }, + { + "start": 20343.68, + "end": 20344.12, + "probability": 0.7854 + }, + { + "start": 20344.56, + "end": 20345.62, + "probability": 0.8284 + }, + { + "start": 20346.34, + "end": 20349.2, + "probability": 0.8335 + }, + { + "start": 20349.38, + "end": 20350.08, + "probability": 0.9009 + }, + { + "start": 20350.38, + "end": 20352.2, + "probability": 0.8175 + }, + { + "start": 20352.56, + "end": 20354.5, + "probability": 0.9479 + }, + { + "start": 20354.68, + "end": 20355.79, + "probability": 0.7233 + }, + { + "start": 20357.42, + "end": 20359.48, + "probability": 0.9268 + }, + { + "start": 20360.0, + "end": 20364.16, + "probability": 0.7819 + }, + { + "start": 20365.44, + "end": 20366.04, + "probability": 0.9255 + }, + { + "start": 20366.86, + "end": 20370.78, + "probability": 0.9148 + }, + { + "start": 20370.78, + "end": 20374.08, + "probability": 0.9546 + }, + { + "start": 20374.5, + "end": 20375.7, + "probability": 0.8093 + }, + { + "start": 20375.98, + "end": 20376.32, + "probability": 0.6735 + }, + { + "start": 20376.46, + "end": 20379.08, + "probability": 0.9762 + }, + { + "start": 20379.08, + "end": 20382.62, + "probability": 0.6839 + }, + { + "start": 20382.9, + "end": 20384.56, + "probability": 0.9137 + }, + { + "start": 20385.14, + "end": 20386.16, + "probability": 0.6694 + }, + { + "start": 20386.26, + "end": 20388.66, + "probability": 0.26 + }, + { + "start": 20388.66, + "end": 20390.22, + "probability": 0.5193 + }, + { + "start": 20390.64, + "end": 20393.14, + "probability": 0.5806 + }, + { + "start": 20393.84, + "end": 20398.9, + "probability": 0.9635 + }, + { + "start": 20399.44, + "end": 20404.0, + "probability": 0.8497 + }, + { + "start": 20404.0, + "end": 20408.76, + "probability": 0.6934 + }, + { + "start": 20409.78, + "end": 20412.2, + "probability": 0.8957 + }, + { + "start": 20412.42, + "end": 20413.32, + "probability": 0.5 + }, + { + "start": 20413.96, + "end": 20421.78, + "probability": 0.9379 + }, + { + "start": 20422.48, + "end": 20427.26, + "probability": 0.4434 + }, + { + "start": 20427.44, + "end": 20429.17, + "probability": 0.7538 + }, + { + "start": 20430.6, + "end": 20433.2, + "probability": 0.7864 + }, + { + "start": 20433.96, + "end": 20437.02, + "probability": 0.808 + }, + { + "start": 20438.66, + "end": 20442.5, + "probability": 0.7877 + }, + { + "start": 20442.56, + "end": 20443.28, + "probability": 0.6751 + }, + { + "start": 20443.62, + "end": 20444.74, + "probability": 0.5612 + }, + { + "start": 20445.18, + "end": 20446.82, + "probability": 0.9744 + }, + { + "start": 20446.94, + "end": 20448.62, + "probability": 0.9592 + }, + { + "start": 20449.06, + "end": 20449.83, + "probability": 0.9786 + }, + { + "start": 20450.26, + "end": 20451.07, + "probability": 0.9246 + }, + { + "start": 20452.26, + "end": 20459.36, + "probability": 0.9257 + }, + { + "start": 20460.16, + "end": 20464.46, + "probability": 0.5211 + }, + { + "start": 20465.28, + "end": 20467.68, + "probability": 0.9922 + }, + { + "start": 20468.28, + "end": 20469.28, + "probability": 0.2606 + }, + { + "start": 20469.58, + "end": 20472.0, + "probability": 0.9627 + }, + { + "start": 20472.76, + "end": 20475.04, + "probability": 0.8497 + }, + { + "start": 20475.4, + "end": 20477.64, + "probability": 0.9893 + }, + { + "start": 20478.14, + "end": 20480.68, + "probability": 0.9825 + }, + { + "start": 20481.22, + "end": 20481.87, + "probability": 0.3552 + }, + { + "start": 20482.84, + "end": 20486.22, + "probability": 0.9313 + }, + { + "start": 20486.28, + "end": 20488.26, + "probability": 0.7735 + }, + { + "start": 20488.4, + "end": 20489.56, + "probability": 0.7018 + }, + { + "start": 20489.86, + "end": 20493.62, + "probability": 0.9762 + }, + { + "start": 20493.62, + "end": 20499.44, + "probability": 0.9834 + }, + { + "start": 20499.72, + "end": 20503.58, + "probability": 0.733 + }, + { + "start": 20503.72, + "end": 20507.24, + "probability": 0.9951 + }, + { + "start": 20508.4, + "end": 20510.86, + "probability": 0.9564 + }, + { + "start": 20511.62, + "end": 20514.46, + "probability": 0.7194 + }, + { + "start": 20515.86, + "end": 20518.58, + "probability": 0.83 + }, + { + "start": 20518.74, + "end": 20520.14, + "probability": 0.7017 + }, + { + "start": 20520.22, + "end": 20522.2, + "probability": 0.9692 + }, + { + "start": 20522.96, + "end": 20523.7, + "probability": 0.4135 + }, + { + "start": 20524.34, + "end": 20524.94, + "probability": 0.4298 + }, + { + "start": 20525.0, + "end": 20526.42, + "probability": 0.9594 + }, + { + "start": 20526.98, + "end": 20535.2, + "probability": 0.9556 + }, + { + "start": 20535.66, + "end": 20536.9, + "probability": 0.8354 + }, + { + "start": 20537.06, + "end": 20538.0, + "probability": 0.7957 + }, + { + "start": 20538.0, + "end": 20542.4, + "probability": 0.6593 + }, + { + "start": 20543.3, + "end": 20546.62, + "probability": 0.7176 + }, + { + "start": 20548.04, + "end": 20555.44, + "probability": 0.9751 + }, + { + "start": 20555.58, + "end": 20558.0, + "probability": 0.7462 + }, + { + "start": 20559.3, + "end": 20562.16, + "probability": 0.8551 + }, + { + "start": 20562.98, + "end": 20567.36, + "probability": 0.931 + }, + { + "start": 20568.06, + "end": 20571.52, + "probability": 0.6725 + }, + { + "start": 20572.12, + "end": 20575.32, + "probability": 0.9514 + }, + { + "start": 20575.6, + "end": 20576.04, + "probability": 0.7847 + }, + { + "start": 20576.54, + "end": 20583.28, + "probability": 0.9014 + }, + { + "start": 20584.36, + "end": 20587.36, + "probability": 0.9863 + }, + { + "start": 20587.5, + "end": 20589.96, + "probability": 0.8267 + }, + { + "start": 20591.08, + "end": 20592.9, + "probability": 0.8616 + }, + { + "start": 20594.12, + "end": 20598.12, + "probability": 0.876 + }, + { + "start": 20598.52, + "end": 20600.5, + "probability": 0.8663 + }, + { + "start": 20600.71, + "end": 20604.28, + "probability": 0.9453 + }, + { + "start": 20605.24, + "end": 20608.3, + "probability": 0.8155 + }, + { + "start": 20609.24, + "end": 20612.9, + "probability": 0.9412 + }, + { + "start": 20614.49, + "end": 20619.28, + "probability": 0.8793 + }, + { + "start": 20620.34, + "end": 20623.06, + "probability": 0.9706 + }, + { + "start": 20626.84, + "end": 20629.56, + "probability": 0.5805 + }, + { + "start": 20630.92, + "end": 20633.06, + "probability": 0.8983 + }, + { + "start": 20635.94, + "end": 20637.72, + "probability": 0.803 + }, + { + "start": 20638.26, + "end": 20638.84, + "probability": 0.9843 + }, + { + "start": 20639.46, + "end": 20642.28, + "probability": 0.9956 + }, + { + "start": 20642.68, + "end": 20644.72, + "probability": 0.8899 + }, + { + "start": 20645.18, + "end": 20646.38, + "probability": 0.8963 + }, + { + "start": 20646.56, + "end": 20647.98, + "probability": 0.8981 + }, + { + "start": 20648.58, + "end": 20650.69, + "probability": 0.8729 + }, + { + "start": 20651.7, + "end": 20654.74, + "probability": 0.5865 + }, + { + "start": 20655.16, + "end": 20659.12, + "probability": 0.9446 + }, + { + "start": 20659.86, + "end": 20662.84, + "probability": 0.9922 + }, + { + "start": 20663.65, + "end": 20667.88, + "probability": 0.9849 + }, + { + "start": 20668.46, + "end": 20671.26, + "probability": 0.8262 + }, + { + "start": 20671.4, + "end": 20671.84, + "probability": 0.5789 + }, + { + "start": 20671.98, + "end": 20674.5, + "probability": 0.9657 + }, + { + "start": 20674.84, + "end": 20676.12, + "probability": 0.9672 + }, + { + "start": 20676.2, + "end": 20676.8, + "probability": 0.8917 + }, + { + "start": 20677.02, + "end": 20682.52, + "probability": 0.9607 + }, + { + "start": 20684.3, + "end": 20688.26, + "probability": 0.9248 + }, + { + "start": 20689.28, + "end": 20692.94, + "probability": 0.7829 + }, + { + "start": 20693.02, + "end": 20694.34, + "probability": 0.841 + }, + { + "start": 20695.04, + "end": 20698.14, + "probability": 0.9093 + }, + { + "start": 20698.52, + "end": 20704.22, + "probability": 0.8997 + }, + { + "start": 20704.82, + "end": 20705.9, + "probability": 0.932 + }, + { + "start": 20706.94, + "end": 20707.78, + "probability": 0.6677 + }, + { + "start": 20708.54, + "end": 20715.5, + "probability": 0.8867 + }, + { + "start": 20717.82, + "end": 20720.64, + "probability": 0.8615 + }, + { + "start": 20720.82, + "end": 20726.48, + "probability": 0.9585 + }, + { + "start": 20726.88, + "end": 20728.9, + "probability": 0.8383 + }, + { + "start": 20728.9, + "end": 20733.96, + "probability": 0.8541 + }, + { + "start": 20734.64, + "end": 20737.96, + "probability": 0.988 + }, + { + "start": 20738.7, + "end": 20741.2, + "probability": 0.9653 + }, + { + "start": 20741.72, + "end": 20744.38, + "probability": 0.7777 + }, + { + "start": 20744.96, + "end": 20751.72, + "probability": 0.9907 + }, + { + "start": 20752.9, + "end": 20756.32, + "probability": 0.9879 + }, + { + "start": 20756.64, + "end": 20758.5, + "probability": 0.9972 + }, + { + "start": 20759.26, + "end": 20759.52, + "probability": 0.7952 + }, + { + "start": 20760.36, + "end": 20762.58, + "probability": 0.9116 + }, + { + "start": 20763.46, + "end": 20764.14, + "probability": 0.9781 + }, + { + "start": 20765.52, + "end": 20766.02, + "probability": 0.8718 + }, + { + "start": 20767.76, + "end": 20770.4, + "probability": 0.9913 + }, + { + "start": 20770.4, + "end": 20774.48, + "probability": 0.9904 + }, + { + "start": 20775.0, + "end": 20777.24, + "probability": 0.876 + }, + { + "start": 20777.76, + "end": 20781.16, + "probability": 0.876 + }, + { + "start": 20781.9, + "end": 20783.2, + "probability": 0.8327 + }, + { + "start": 20783.54, + "end": 20789.16, + "probability": 0.9276 + }, + { + "start": 20789.96, + "end": 20790.24, + "probability": 0.8652 + }, + { + "start": 20790.86, + "end": 20795.24, + "probability": 0.5086 + }, + { + "start": 20796.38, + "end": 20798.66, + "probability": 0.8944 + }, + { + "start": 20799.22, + "end": 20801.98, + "probability": 0.9824 + }, + { + "start": 20802.38, + "end": 20803.26, + "probability": 0.9289 + }, + { + "start": 20804.5, + "end": 20805.2, + "probability": 0.0389 + }, + { + "start": 20805.2, + "end": 20806.74, + "probability": 0.8622 + }, + { + "start": 20806.8, + "end": 20807.76, + "probability": 0.47 + }, + { + "start": 20807.92, + "end": 20811.02, + "probability": 0.62 + }, + { + "start": 20811.44, + "end": 20814.4, + "probability": 0.9873 + }, + { + "start": 20814.78, + "end": 20818.58, + "probability": 0.9317 + }, + { + "start": 20818.88, + "end": 20823.1, + "probability": 0.8281 + }, + { + "start": 20823.14, + "end": 20826.4, + "probability": 0.8517 + }, + { + "start": 20827.26, + "end": 20829.01, + "probability": 0.5806 + }, + { + "start": 20829.36, + "end": 20831.04, + "probability": 0.7764 + }, + { + "start": 20831.42, + "end": 20833.14, + "probability": 0.9863 + }, + { + "start": 20833.24, + "end": 20834.4, + "probability": 0.9769 + }, + { + "start": 20835.02, + "end": 20838.22, + "probability": 0.6885 + }, + { + "start": 20839.02, + "end": 20840.12, + "probability": 0.7705 + }, + { + "start": 20840.94, + "end": 20843.94, + "probability": 0.8794 + }, + { + "start": 20844.48, + "end": 20847.92, + "probability": 0.9901 + }, + { + "start": 20848.68, + "end": 20851.4, + "probability": 0.8142 + }, + { + "start": 20852.6, + "end": 20856.22, + "probability": 0.9812 + }, + { + "start": 20856.92, + "end": 20858.24, + "probability": 0.9924 + }, + { + "start": 20858.52, + "end": 20859.92, + "probability": 0.9658 + }, + { + "start": 20860.02, + "end": 20860.81, + "probability": 0.4098 + }, + { + "start": 20862.03, + "end": 20866.38, + "probability": 0.8785 + }, + { + "start": 20866.78, + "end": 20871.98, + "probability": 0.9055 + }, + { + "start": 20872.62, + "end": 20880.46, + "probability": 0.6848 + }, + { + "start": 20880.68, + "end": 20881.22, + "probability": 0.4957 + }, + { + "start": 20881.38, + "end": 20884.72, + "probability": 0.7707 + }, + { + "start": 20884.72, + "end": 20888.82, + "probability": 0.9368 + }, + { + "start": 20889.0, + "end": 20891.16, + "probability": 0.9824 + }, + { + "start": 20892.28, + "end": 20893.86, + "probability": 0.8344 + }, + { + "start": 20894.76, + "end": 20897.12, + "probability": 0.6474 + }, + { + "start": 20897.78, + "end": 20901.48, + "probability": 0.8929 + }, + { + "start": 20901.48, + "end": 20904.7, + "probability": 0.7831 + }, + { + "start": 20904.86, + "end": 20906.9, + "probability": 0.8834 + }, + { + "start": 20907.38, + "end": 20908.16, + "probability": 0.7021 + }, + { + "start": 20910.02, + "end": 20910.23, + "probability": 0.1827 + }, + { + "start": 20910.9, + "end": 20911.0, + "probability": 0.4952 + }, + { + "start": 20911.26, + "end": 20913.24, + "probability": 0.7225 + }, + { + "start": 20913.36, + "end": 20914.7, + "probability": 0.9882 + }, + { + "start": 20915.14, + "end": 20916.3, + "probability": 0.9724 + }, + { + "start": 20916.56, + "end": 20918.74, + "probability": 0.9619 + }, + { + "start": 20919.06, + "end": 20923.28, + "probability": 0.9772 + }, + { + "start": 20923.48, + "end": 20926.6, + "probability": 0.6759 + }, + { + "start": 20927.6, + "end": 20929.48, + "probability": 0.797 + }, + { + "start": 20930.06, + "end": 20930.5, + "probability": 0.3977 + }, + { + "start": 20930.52, + "end": 20930.7, + "probability": 0.8804 + }, + { + "start": 20931.16, + "end": 20931.68, + "probability": 0.3741 + }, + { + "start": 20931.72, + "end": 20934.82, + "probability": 0.6413 + }, + { + "start": 20935.64, + "end": 20937.48, + "probability": 0.887 + }, + { + "start": 20949.2, + "end": 20951.72, + "probability": 0.7703 + }, + { + "start": 20952.92, + "end": 20954.16, + "probability": 0.9591 + }, + { + "start": 20955.2, + "end": 20956.11, + "probability": 0.9844 + }, + { + "start": 20958.52, + "end": 20962.06, + "probability": 0.6782 + }, + { + "start": 20962.48, + "end": 20964.86, + "probability": 0.5478 + }, + { + "start": 20966.19, + "end": 20967.54, + "probability": 0.0403 + }, + { + "start": 20967.72, + "end": 20967.72, + "probability": 0.023 + }, + { + "start": 20967.72, + "end": 20968.8, + "probability": 0.3565 + }, + { + "start": 20969.24, + "end": 20969.92, + "probability": 0.3186 + }, + { + "start": 20970.0, + "end": 20973.38, + "probability": 0.5268 + }, + { + "start": 20973.42, + "end": 20974.46, + "probability": 0.125 + }, + { + "start": 20974.54, + "end": 20976.85, + "probability": 0.4036 + }, + { + "start": 20978.3, + "end": 20978.48, + "probability": 0.1541 + }, + { + "start": 20979.02, + "end": 20979.74, + "probability": 0.0991 + }, + { + "start": 20980.12, + "end": 20980.12, + "probability": 0.2423 + }, + { + "start": 20980.12, + "end": 20980.72, + "probability": 0.004 + }, + { + "start": 20980.72, + "end": 20980.98, + "probability": 0.4484 + }, + { + "start": 20981.48, + "end": 20982.8, + "probability": 0.9106 + }, + { + "start": 20983.6, + "end": 20985.32, + "probability": 0.8564 + }, + { + "start": 20986.6, + "end": 20987.98, + "probability": 0.9727 + }, + { + "start": 20988.72, + "end": 20991.59, + "probability": 0.8529 + }, + { + "start": 20992.18, + "end": 20993.18, + "probability": 0.4706 + }, + { + "start": 20993.26, + "end": 20996.72, + "probability": 0.981 + }, + { + "start": 20996.8, + "end": 20998.88, + "probability": 0.999 + }, + { + "start": 20999.68, + "end": 21000.8, + "probability": 0.9218 + }, + { + "start": 21002.22, + "end": 21003.0, + "probability": 0.7721 + }, + { + "start": 21003.0, + "end": 21004.76, + "probability": 0.9007 + }, + { + "start": 21004.96, + "end": 21006.04, + "probability": 0.8135 + }, + { + "start": 21006.12, + "end": 21006.32, + "probability": 0.4898 + }, + { + "start": 21006.4, + "end": 21009.14, + "probability": 0.8449 + }, + { + "start": 21010.98, + "end": 21012.58, + "probability": 0.7447 + }, + { + "start": 21013.58, + "end": 21015.64, + "probability": 0.776 + }, + { + "start": 21017.24, + "end": 21020.1, + "probability": 0.8468 + }, + { + "start": 21020.94, + "end": 21025.0, + "probability": 0.8917 + }, + { + "start": 21026.6, + "end": 21028.19, + "probability": 0.759 + }, + { + "start": 21028.62, + "end": 21029.92, + "probability": 0.9827 + }, + { + "start": 21030.5, + "end": 21031.04, + "probability": 0.6599 + }, + { + "start": 21031.14, + "end": 21031.78, + "probability": 0.9223 + }, + { + "start": 21032.4, + "end": 21036.6, + "probability": 0.9873 + }, + { + "start": 21037.64, + "end": 21038.56, + "probability": 0.9666 + }, + { + "start": 21039.36, + "end": 21040.78, + "probability": 0.7512 + }, + { + "start": 21041.64, + "end": 21042.34, + "probability": 0.429 + }, + { + "start": 21043.0, + "end": 21045.02, + "probability": 0.8864 + }, + { + "start": 21045.96, + "end": 21047.64, + "probability": 0.8656 + }, + { + "start": 21048.36, + "end": 21051.54, + "probability": 0.9711 + }, + { + "start": 21051.76, + "end": 21054.28, + "probability": 0.6335 + }, + { + "start": 21055.38, + "end": 21055.92, + "probability": 0.0428 + }, + { + "start": 21056.56, + "end": 21058.42, + "probability": 0.9162 + }, + { + "start": 21059.96, + "end": 21061.14, + "probability": 0.9531 + }, + { + "start": 21061.92, + "end": 21063.96, + "probability": 0.9727 + }, + { + "start": 21064.7, + "end": 21067.4, + "probability": 0.9956 + }, + { + "start": 21068.28, + "end": 21072.82, + "probability": 0.9775 + }, + { + "start": 21073.8, + "end": 21074.56, + "probability": 0.7699 + }, + { + "start": 21075.48, + "end": 21078.72, + "probability": 0.8811 + }, + { + "start": 21079.5, + "end": 21081.08, + "probability": 0.9862 + }, + { + "start": 21081.24, + "end": 21082.2, + "probability": 0.6202 + }, + { + "start": 21084.58, + "end": 21086.74, + "probability": 0.9497 + }, + { + "start": 21087.46, + "end": 21088.58, + "probability": 0.1079 + }, + { + "start": 21088.62, + "end": 21091.24, + "probability": 0.9463 + }, + { + "start": 21091.82, + "end": 21093.73, + "probability": 0.998 + }, + { + "start": 21095.4, + "end": 21098.66, + "probability": 0.8249 + }, + { + "start": 21100.82, + "end": 21103.14, + "probability": 0.9536 + }, + { + "start": 21103.2, + "end": 21104.34, + "probability": 0.8407 + }, + { + "start": 21105.2, + "end": 21107.82, + "probability": 0.9827 + }, + { + "start": 21108.56, + "end": 21109.32, + "probability": 0.9524 + }, + { + "start": 21110.4, + "end": 21111.38, + "probability": 0.8537 + }, + { + "start": 21111.54, + "end": 21113.7, + "probability": 0.8622 + }, + { + "start": 21114.36, + "end": 21115.62, + "probability": 0.9588 + }, + { + "start": 21116.46, + "end": 21117.52, + "probability": 0.8706 + }, + { + "start": 21118.56, + "end": 21119.2, + "probability": 0.7226 + }, + { + "start": 21120.44, + "end": 21126.98, + "probability": 0.9855 + }, + { + "start": 21128.0, + "end": 21129.14, + "probability": 0.9429 + }, + { + "start": 21129.98, + "end": 21131.46, + "probability": 0.812 + }, + { + "start": 21131.74, + "end": 21133.1, + "probability": 0.7227 + }, + { + "start": 21133.34, + "end": 21137.48, + "probability": 0.7285 + }, + { + "start": 21138.4, + "end": 21139.62, + "probability": 0.9458 + }, + { + "start": 21140.7, + "end": 21142.86, + "probability": 0.8841 + }, + { + "start": 21144.2, + "end": 21147.22, + "probability": 0.5922 + }, + { + "start": 21147.94, + "end": 21148.48, + "probability": 0.744 + }, + { + "start": 21149.48, + "end": 21149.86, + "probability": 0.6061 + }, + { + "start": 21149.9, + "end": 21151.08, + "probability": 0.9715 + }, + { + "start": 21151.34, + "end": 21152.45, + "probability": 0.7651 + }, + { + "start": 21153.2, + "end": 21154.12, + "probability": 0.3429 + }, + { + "start": 21154.34, + "end": 21155.58, + "probability": 0.4616 + }, + { + "start": 21155.7, + "end": 21158.46, + "probability": 0.7914 + }, + { + "start": 21159.8, + "end": 21159.88, + "probability": 0.5005 + }, + { + "start": 21163.36, + "end": 21164.74, + "probability": 0.5437 + }, + { + "start": 21165.62, + "end": 21167.9, + "probability": 0.9204 + }, + { + "start": 21168.56, + "end": 21171.02, + "probability": 0.9878 + }, + { + "start": 21171.14, + "end": 21172.08, + "probability": 0.9929 + }, + { + "start": 21172.54, + "end": 21173.98, + "probability": 0.9523 + }, + { + "start": 21174.38, + "end": 21175.06, + "probability": 0.8136 + }, + { + "start": 21176.04, + "end": 21177.36, + "probability": 0.7238 + }, + { + "start": 21177.54, + "end": 21178.97, + "probability": 0.9835 + }, + { + "start": 21179.28, + "end": 21180.28, + "probability": 0.8833 + }, + { + "start": 21181.14, + "end": 21183.72, + "probability": 0.9432 + }, + { + "start": 21184.48, + "end": 21185.92, + "probability": 0.8115 + }, + { + "start": 21186.06, + "end": 21187.81, + "probability": 0.9748 + }, + { + "start": 21188.56, + "end": 21188.98, + "probability": 0.9281 + }, + { + "start": 21189.06, + "end": 21192.0, + "probability": 0.9547 + }, + { + "start": 21192.54, + "end": 21193.96, + "probability": 0.9471 + }, + { + "start": 21194.68, + "end": 21197.56, + "probability": 0.9628 + }, + { + "start": 21198.28, + "end": 21200.98, + "probability": 0.9724 + }, + { + "start": 21201.74, + "end": 21208.46, + "probability": 0.9839 + }, + { + "start": 21208.6, + "end": 21209.08, + "probability": 0.9921 + }, + { + "start": 21210.66, + "end": 21212.52, + "probability": 0.625 + }, + { + "start": 21213.7, + "end": 21214.16, + "probability": 0.4753 + }, + { + "start": 21214.22, + "end": 21215.3, + "probability": 0.9645 + }, + { + "start": 21215.38, + "end": 21216.64, + "probability": 0.9902 + }, + { + "start": 21217.06, + "end": 21219.28, + "probability": 0.9816 + }, + { + "start": 21219.96, + "end": 21220.8, + "probability": 0.9793 + }, + { + "start": 21220.96, + "end": 21222.16, + "probability": 0.8789 + }, + { + "start": 21223.24, + "end": 21227.4, + "probability": 0.8969 + }, + { + "start": 21228.38, + "end": 21229.74, + "probability": 0.61 + }, + { + "start": 21230.84, + "end": 21232.14, + "probability": 0.9556 + }, + { + "start": 21232.9, + "end": 21236.04, + "probability": 0.8327 + }, + { + "start": 21237.34, + "end": 21240.96, + "probability": 0.9173 + }, + { + "start": 21241.2, + "end": 21241.64, + "probability": 0.3197 + }, + { + "start": 21242.36, + "end": 21246.24, + "probability": 0.8119 + }, + { + "start": 21247.12, + "end": 21248.06, + "probability": 0.8147 + }, + { + "start": 21249.06, + "end": 21254.78, + "probability": 0.9793 + }, + { + "start": 21254.92, + "end": 21256.9, + "probability": 0.0265 + }, + { + "start": 21257.62, + "end": 21257.62, + "probability": 0.1506 + }, + { + "start": 21257.62, + "end": 21257.62, + "probability": 0.3046 + }, + { + "start": 21257.62, + "end": 21257.78, + "probability": 0.1104 + }, + { + "start": 21257.78, + "end": 21258.61, + "probability": 0.5614 + }, + { + "start": 21260.06, + "end": 21266.28, + "probability": 0.9509 + }, + { + "start": 21266.36, + "end": 21267.48, + "probability": 0.8927 + }, + { + "start": 21267.98, + "end": 21271.6, + "probability": 0.9868 + }, + { + "start": 21271.84, + "end": 21272.96, + "probability": 0.8712 + }, + { + "start": 21273.78, + "end": 21274.24, + "probability": 0.9556 + }, + { + "start": 21274.28, + "end": 21276.24, + "probability": 0.9744 + }, + { + "start": 21276.34, + "end": 21277.08, + "probability": 0.8923 + }, + { + "start": 21277.72, + "end": 21278.28, + "probability": 0.9614 + }, + { + "start": 21278.36, + "end": 21278.88, + "probability": 0.8817 + }, + { + "start": 21281.24, + "end": 21282.68, + "probability": 0.8046 + }, + { + "start": 21283.7, + "end": 21286.22, + "probability": 0.9922 + }, + { + "start": 21286.84, + "end": 21287.88, + "probability": 0.884 + }, + { + "start": 21288.72, + "end": 21291.58, + "probability": 0.7883 + }, + { + "start": 21292.98, + "end": 21295.04, + "probability": 0.9949 + }, + { + "start": 21296.24, + "end": 21296.58, + "probability": 0.2783 + }, + { + "start": 21296.58, + "end": 21299.18, + "probability": 0.9924 + }, + { + "start": 21299.82, + "end": 21300.22, + "probability": 0.4267 + }, + { + "start": 21301.68, + "end": 21303.56, + "probability": 0.6663 + }, + { + "start": 21303.62, + "end": 21304.94, + "probability": 0.9722 + }, + { + "start": 21305.96, + "end": 21307.88, + "probability": 0.8492 + }, + { + "start": 21308.7, + "end": 21309.74, + "probability": 0.0416 + }, + { + "start": 21310.68, + "end": 21311.36, + "probability": 0.2277 + }, + { + "start": 21311.5, + "end": 21311.64, + "probability": 0.2291 + }, + { + "start": 21311.7, + "end": 21312.92, + "probability": 0.761 + }, + { + "start": 21312.94, + "end": 21313.7, + "probability": 0.8857 + }, + { + "start": 21314.24, + "end": 21316.32, + "probability": 0.9366 + }, + { + "start": 21316.66, + "end": 21317.1, + "probability": 0.4158 + }, + { + "start": 21317.46, + "end": 21317.8, + "probability": 0.7307 + }, + { + "start": 21318.12, + "end": 21318.58, + "probability": 0.5285 + }, + { + "start": 21318.64, + "end": 21320.86, + "probability": 0.6191 + }, + { + "start": 21320.94, + "end": 21322.4, + "probability": 0.6329 + }, + { + "start": 21323.72, + "end": 21325.18, + "probability": 0.6294 + }, + { + "start": 21327.04, + "end": 21328.54, + "probability": 0.8838 + }, + { + "start": 21329.24, + "end": 21331.16, + "probability": 0.9982 + }, + { + "start": 21331.22, + "end": 21333.52, + "probability": 0.9845 + }, + { + "start": 21334.14, + "end": 21336.58, + "probability": 0.9255 + }, + { + "start": 21337.24, + "end": 21337.96, + "probability": 0.9299 + }, + { + "start": 21337.96, + "end": 21338.36, + "probability": 0.9058 + }, + { + "start": 21338.4, + "end": 21340.86, + "probability": 0.9857 + }, + { + "start": 21341.74, + "end": 21342.42, + "probability": 0.6492 + }, + { + "start": 21342.54, + "end": 21343.54, + "probability": 0.9286 + }, + { + "start": 21343.58, + "end": 21344.28, + "probability": 0.9504 + }, + { + "start": 21344.66, + "end": 21348.08, + "probability": 0.9728 + }, + { + "start": 21349.34, + "end": 21349.82, + "probability": 0.0388 + }, + { + "start": 21349.82, + "end": 21352.9, + "probability": 0.5171 + }, + { + "start": 21353.02, + "end": 21353.7, + "probability": 0.9732 + }, + { + "start": 21353.82, + "end": 21357.36, + "probability": 0.9739 + }, + { + "start": 21357.46, + "end": 21359.09, + "probability": 0.8308 + }, + { + "start": 21360.02, + "end": 21360.62, + "probability": 0.6833 + }, + { + "start": 21360.94, + "end": 21361.6, + "probability": 0.78 + }, + { + "start": 21361.72, + "end": 21362.22, + "probability": 0.744 + }, + { + "start": 21363.02, + "end": 21363.46, + "probability": 0.4973 + }, + { + "start": 21363.74, + "end": 21364.62, + "probability": 0.8492 + }, + { + "start": 21364.7, + "end": 21365.62, + "probability": 0.9084 + }, + { + "start": 21367.56, + "end": 21371.14, + "probability": 0.9868 + }, + { + "start": 21371.98, + "end": 21373.16, + "probability": 0.9937 + }, + { + "start": 21373.72, + "end": 21374.9, + "probability": 0.9789 + }, + { + "start": 21375.9, + "end": 21379.52, + "probability": 0.9988 + }, + { + "start": 21380.04, + "end": 21381.14, + "probability": 0.8211 + }, + { + "start": 21382.42, + "end": 21384.72, + "probability": 0.7433 + }, + { + "start": 21385.34, + "end": 21388.38, + "probability": 0.6254 + }, + { + "start": 21388.84, + "end": 21390.34, + "probability": 0.8149 + }, + { + "start": 21390.44, + "end": 21391.1, + "probability": 0.9792 + }, + { + "start": 21391.46, + "end": 21392.38, + "probability": 0.9361 + }, + { + "start": 21393.2, + "end": 21396.12, + "probability": 0.8781 + }, + { + "start": 21396.78, + "end": 21397.38, + "probability": 0.4079 + }, + { + "start": 21397.46, + "end": 21398.18, + "probability": 0.7455 + }, + { + "start": 21398.28, + "end": 21401.94, + "probability": 0.9316 + }, + { + "start": 21402.06, + "end": 21402.32, + "probability": 0.5001 + }, + { + "start": 21402.46, + "end": 21404.23, + "probability": 0.9876 + }, + { + "start": 21404.86, + "end": 21407.06, + "probability": 0.9744 + }, + { + "start": 21407.52, + "end": 21408.6, + "probability": 0.9697 + }, + { + "start": 21409.04, + "end": 21410.34, + "probability": 0.99 + }, + { + "start": 21411.02, + "end": 21416.62, + "probability": 0.9976 + }, + { + "start": 21416.62, + "end": 21418.98, + "probability": 0.9913 + }, + { + "start": 21419.92, + "end": 21422.3, + "probability": 0.9985 + }, + { + "start": 21423.02, + "end": 21424.5, + "probability": 0.9243 + }, + { + "start": 21424.5, + "end": 21426.46, + "probability": 0.4579 + }, + { + "start": 21426.54, + "end": 21429.0, + "probability": 0.5631 + }, + { + "start": 21429.2, + "end": 21433.66, + "probability": 0.4714 + }, + { + "start": 21436.68, + "end": 21436.86, + "probability": 0.048 + }, + { + "start": 21436.86, + "end": 21436.86, + "probability": 0.3306 + }, + { + "start": 21436.86, + "end": 21436.86, + "probability": 0.0178 + }, + { + "start": 21436.86, + "end": 21438.04, + "probability": 0.647 + }, + { + "start": 21438.38, + "end": 21438.76, + "probability": 0.4325 + }, + { + "start": 21438.76, + "end": 21439.32, + "probability": 0.792 + }, + { + "start": 21440.62, + "end": 21441.06, + "probability": 0.9181 + }, + { + "start": 21441.52, + "end": 21442.32, + "probability": 0.8699 + }, + { + "start": 21442.5, + "end": 21443.06, + "probability": 0.8669 + }, + { + "start": 21443.32, + "end": 21445.04, + "probability": 0.7603 + }, + { + "start": 21445.04, + "end": 21448.42, + "probability": 0.7322 + }, + { + "start": 21449.12, + "end": 21450.38, + "probability": 0.7729 + }, + { + "start": 21451.32, + "end": 21452.54, + "probability": 0.9756 + }, + { + "start": 21453.16, + "end": 21456.68, + "probability": 0.8257 + }, + { + "start": 21457.54, + "end": 21460.16, + "probability": 0.9116 + }, + { + "start": 21460.18, + "end": 21461.5, + "probability": 0.3823 + }, + { + "start": 21461.56, + "end": 21462.42, + "probability": 0.7779 + }, + { + "start": 21462.5, + "end": 21463.06, + "probability": 0.8146 + }, + { + "start": 21463.06, + "end": 21463.56, + "probability": 0.7688 + }, + { + "start": 21465.17, + "end": 21467.58, + "probability": 0.7167 + }, + { + "start": 21467.58, + "end": 21468.18, + "probability": 0.9359 + }, + { + "start": 21468.72, + "end": 21471.02, + "probability": 0.6658 + }, + { + "start": 21471.32, + "end": 21472.13, + "probability": 0.4176 + }, + { + "start": 21472.38, + "end": 21473.32, + "probability": 0.6763 + }, + { + "start": 21473.62, + "end": 21474.68, + "probability": 0.7686 + }, + { + "start": 21474.8, + "end": 21476.04, + "probability": 0.9014 + }, + { + "start": 21476.04, + "end": 21478.86, + "probability": 0.8027 + }, + { + "start": 21478.96, + "end": 21479.96, + "probability": 0.519 + }, + { + "start": 21480.4, + "end": 21483.2, + "probability": 0.5442 + }, + { + "start": 21483.3, + "end": 21484.08, + "probability": 0.8332 + }, + { + "start": 21484.22, + "end": 21484.82, + "probability": 0.283 + }, + { + "start": 21484.92, + "end": 21485.0, + "probability": 0.0762 + }, + { + "start": 21485.0, + "end": 21485.7, + "probability": 0.4117 + }, + { + "start": 21486.18, + "end": 21487.66, + "probability": 0.4303 + }, + { + "start": 21487.76, + "end": 21488.94, + "probability": 0.3931 + }, + { + "start": 21488.94, + "end": 21489.0, + "probability": 0.145 + }, + { + "start": 21489.08, + "end": 21489.66, + "probability": 0.4295 + }, + { + "start": 21489.66, + "end": 21491.16, + "probability": 0.345 + }, + { + "start": 21491.3, + "end": 21492.82, + "probability": 0.5576 + }, + { + "start": 21493.24, + "end": 21493.68, + "probability": 0.692 + }, + { + "start": 21494.18, + "end": 21496.06, + "probability": 0.7281 + }, + { + "start": 21496.5, + "end": 21501.96, + "probability": 0.7604 + }, + { + "start": 21502.32, + "end": 21503.52, + "probability": 0.1281 + }, + { + "start": 21504.28, + "end": 21508.02, + "probability": 0.326 + }, + { + "start": 21508.04, + "end": 21511.37, + "probability": 0.6971 + }, + { + "start": 21512.32, + "end": 21514.96, + "probability": 0.8792 + }, + { + "start": 21516.26, + "end": 21516.92, + "probability": 0.6852 + }, + { + "start": 21517.64, + "end": 21518.88, + "probability": 0.9513 + }, + { + "start": 21519.24, + "end": 21520.22, + "probability": 0.9229 + }, + { + "start": 21520.94, + "end": 21522.98, + "probability": 0.7441 + }, + { + "start": 21523.84, + "end": 21524.88, + "probability": 0.9579 + }, + { + "start": 21525.04, + "end": 21530.58, + "probability": 0.9867 + }, + { + "start": 21530.94, + "end": 21531.6, + "probability": 0.6266 + }, + { + "start": 21532.13, + "end": 21534.16, + "probability": 0.9131 + }, + { + "start": 21534.22, + "end": 21536.78, + "probability": 0.6567 + }, + { + "start": 21536.86, + "end": 21537.2, + "probability": 0.5519 + }, + { + "start": 21537.28, + "end": 21539.92, + "probability": 0.9633 + }, + { + "start": 21540.42, + "end": 21543.69, + "probability": 0.981 + }, + { + "start": 21544.2, + "end": 21544.84, + "probability": 0.6498 + }, + { + "start": 21544.92, + "end": 21545.48, + "probability": 0.0643 + }, + { + "start": 21546.07, + "end": 21547.0, + "probability": 0.3516 + }, + { + "start": 21547.0, + "end": 21547.84, + "probability": 0.9739 + }, + { + "start": 21548.5, + "end": 21551.32, + "probability": 0.9541 + }, + { + "start": 21551.36, + "end": 21554.24, + "probability": 0.9778 + }, + { + "start": 21554.24, + "end": 21557.2, + "probability": 0.9583 + }, + { + "start": 21558.02, + "end": 21560.24, + "probability": 0.7809 + }, + { + "start": 21560.9, + "end": 21563.66, + "probability": 0.8632 + }, + { + "start": 21564.28, + "end": 21566.34, + "probability": 0.9368 + }, + { + "start": 21566.74, + "end": 21566.92, + "probability": 0.3854 + }, + { + "start": 21567.46, + "end": 21569.96, + "probability": 0.8534 + }, + { + "start": 21570.4, + "end": 21572.14, + "probability": 0.6723 + }, + { + "start": 21572.14, + "end": 21573.22, + "probability": 0.7569 + }, + { + "start": 21573.26, + "end": 21575.42, + "probability": 0.6778 + }, + { + "start": 21576.56, + "end": 21577.54, + "probability": 0.6487 + }, + { + "start": 21578.5, + "end": 21583.62, + "probability": 0.6211 + }, + { + "start": 21584.5, + "end": 21587.92, + "probability": 0.8745 + }, + { + "start": 21589.0, + "end": 21590.08, + "probability": 0.6518 + }, + { + "start": 21592.76, + "end": 21595.74, + "probability": 0.9514 + }, + { + "start": 21596.32, + "end": 21596.98, + "probability": 0.8793 + }, + { + "start": 21597.82, + "end": 21599.38, + "probability": 0.9258 + }, + { + "start": 21600.56, + "end": 21602.72, + "probability": 0.0937 + }, + { + "start": 21602.84, + "end": 21603.57, + "probability": 0.5088 + }, + { + "start": 21604.2, + "end": 21608.2, + "probability": 0.8703 + }, + { + "start": 21608.5, + "end": 21610.03, + "probability": 0.5861 + }, + { + "start": 21610.32, + "end": 21610.75, + "probability": 0.2861 + }, + { + "start": 21610.96, + "end": 21611.66, + "probability": 0.9258 + }, + { + "start": 21612.08, + "end": 21612.79, + "probability": 0.9501 + }, + { + "start": 21613.1, + "end": 21614.23, + "probability": 0.9924 + }, + { + "start": 21614.36, + "end": 21615.32, + "probability": 0.9575 + }, + { + "start": 21616.04, + "end": 21616.7, + "probability": 0.5239 + }, + { + "start": 21616.88, + "end": 21618.0, + "probability": 0.692 + }, + { + "start": 21618.12, + "end": 21618.84, + "probability": 0.5433 + }, + { + "start": 21618.9, + "end": 21620.88, + "probability": 0.979 + }, + { + "start": 21621.02, + "end": 21621.72, + "probability": 0.8462 + }, + { + "start": 21621.86, + "end": 21625.2, + "probability": 0.6974 + }, + { + "start": 21625.2, + "end": 21626.39, + "probability": 0.9736 + }, + { + "start": 21627.18, + "end": 21627.8, + "probability": 0.7651 + }, + { + "start": 21627.94, + "end": 21628.84, + "probability": 0.7265 + }, + { + "start": 21629.3, + "end": 21629.72, + "probability": 0.7194 + }, + { + "start": 21629.78, + "end": 21631.18, + "probability": 0.9829 + }, + { + "start": 21631.84, + "end": 21633.46, + "probability": 0.8921 + }, + { + "start": 21633.94, + "end": 21634.54, + "probability": 0.681 + }, + { + "start": 21634.82, + "end": 21636.12, + "probability": 0.981 + }, + { + "start": 21637.5, + "end": 21640.3, + "probability": 0.9001 + }, + { + "start": 21640.88, + "end": 21643.38, + "probability": 0.9919 + }, + { + "start": 21643.38, + "end": 21644.14, + "probability": 0.8618 + }, + { + "start": 21644.22, + "end": 21645.78, + "probability": 0.8943 + }, + { + "start": 21646.08, + "end": 21646.82, + "probability": 0.7635 + }, + { + "start": 21646.9, + "end": 21648.68, + "probability": 0.7017 + }, + { + "start": 21649.24, + "end": 21650.02, + "probability": 0.5253 + }, + { + "start": 21650.14, + "end": 21651.08, + "probability": 0.9565 + }, + { + "start": 21651.18, + "end": 21651.54, + "probability": 0.8278 + }, + { + "start": 21651.66, + "end": 21652.12, + "probability": 0.6766 + }, + { + "start": 21652.24, + "end": 21652.88, + "probability": 0.7918 + }, + { + "start": 21653.68, + "end": 21654.92, + "probability": 0.9212 + }, + { + "start": 21655.74, + "end": 21656.68, + "probability": 0.9882 + }, + { + "start": 21656.8, + "end": 21662.92, + "probability": 0.6823 + }, + { + "start": 21663.06, + "end": 21663.52, + "probability": 0.6014 + }, + { + "start": 21664.76, + "end": 21667.75, + "probability": 0.9944 + }, + { + "start": 21668.04, + "end": 21668.22, + "probability": 0.8652 + }, + { + "start": 21669.0, + "end": 21670.48, + "probability": 0.9985 + }, + { + "start": 21671.02, + "end": 21671.6, + "probability": 0.9207 + }, + { + "start": 21672.22, + "end": 21674.98, + "probability": 0.5046 + }, + { + "start": 21675.4, + "end": 21676.14, + "probability": 0.6724 + }, + { + "start": 21676.8, + "end": 21679.02, + "probability": 0.9471 + }, + { + "start": 21679.16, + "end": 21680.06, + "probability": 0.6005 + }, + { + "start": 21680.76, + "end": 21681.56, + "probability": 0.8004 + }, + { + "start": 21682.24, + "end": 21683.92, + "probability": 0.8232 + }, + { + "start": 21684.51, + "end": 21689.72, + "probability": 0.7356 + }, + { + "start": 21690.36, + "end": 21692.04, + "probability": 0.8695 + }, + { + "start": 21692.56, + "end": 21693.92, + "probability": 0.8662 + }, + { + "start": 21694.82, + "end": 21699.32, + "probability": 0.7535 + }, + { + "start": 21699.74, + "end": 21702.34, + "probability": 0.9563 + }, + { + "start": 21703.06, + "end": 21705.22, + "probability": 0.9773 + }, + { + "start": 21705.22, + "end": 21709.42, + "probability": 0.9755 + }, + { + "start": 21709.44, + "end": 21711.54, + "probability": 0.9985 + }, + { + "start": 21712.2, + "end": 21713.72, + "probability": 0.8652 + }, + { + "start": 21714.44, + "end": 21716.6, + "probability": 0.6532 + }, + { + "start": 21717.28, + "end": 21717.36, + "probability": 0.0862 + }, + { + "start": 21717.4, + "end": 21717.88, + "probability": 0.5593 + }, + { + "start": 21717.98, + "end": 21719.68, + "probability": 0.7313 + }, + { + "start": 21719.7, + "end": 21720.8, + "probability": 0.6586 + }, + { + "start": 21721.34, + "end": 21723.9, + "probability": 0.9367 + }, + { + "start": 21724.66, + "end": 21729.7, + "probability": 0.3987 + }, + { + "start": 21730.08, + "end": 21730.52, + "probability": 0.4775 + }, + { + "start": 21730.58, + "end": 21732.12, + "probability": 0.2866 + }, + { + "start": 21732.12, + "end": 21732.12, + "probability": 0.22 + }, + { + "start": 21732.12, + "end": 21732.46, + "probability": 0.25 + }, + { + "start": 21732.54, + "end": 21732.76, + "probability": 0.3598 + }, + { + "start": 21732.76, + "end": 21734.0, + "probability": 0.5289 + }, + { + "start": 21734.84, + "end": 21736.8, + "probability": 0.7887 + }, + { + "start": 21737.92, + "end": 21740.38, + "probability": 0.9234 + }, + { + "start": 21740.88, + "end": 21742.86, + "probability": 0.9978 + }, + { + "start": 21743.48, + "end": 21744.74, + "probability": 0.8613 + }, + { + "start": 21745.58, + "end": 21747.92, + "probability": 0.9683 + }, + { + "start": 21748.72, + "end": 21751.64, + "probability": 0.9643 + }, + { + "start": 21752.14, + "end": 21755.0, + "probability": 0.9425 + }, + { + "start": 21755.66, + "end": 21756.76, + "probability": 0.6154 + }, + { + "start": 21757.48, + "end": 21757.8, + "probability": 0.6754 + }, + { + "start": 21757.92, + "end": 21759.43, + "probability": 0.9583 + }, + { + "start": 21760.36, + "end": 21762.14, + "probability": 0.7422 + }, + { + "start": 21762.2, + "end": 21762.76, + "probability": 0.4802 + }, + { + "start": 21762.92, + "end": 21766.02, + "probability": 0.9299 + }, + { + "start": 21766.58, + "end": 21766.9, + "probability": 0.7129 + }, + { + "start": 21767.26, + "end": 21768.56, + "probability": 0.6016 + }, + { + "start": 21768.7, + "end": 21770.81, + "probability": 0.6577 + }, + { + "start": 21772.9, + "end": 21780.18, + "probability": 0.679 + }, + { + "start": 21784.76, + "end": 21786.4, + "probability": 0.5361 + }, + { + "start": 21786.42, + "end": 21788.66, + "probability": 0.6808 + }, + { + "start": 21789.82, + "end": 21791.24, + "probability": 0.8943 + }, + { + "start": 21791.36, + "end": 21793.28, + "probability": 0.664 + }, + { + "start": 21793.38, + "end": 21794.46, + "probability": 0.5511 + }, + { + "start": 21794.64, + "end": 21794.98, + "probability": 0.5171 + }, + { + "start": 21795.02, + "end": 21795.34, + "probability": 0.5777 + }, + { + "start": 21795.38, + "end": 21795.76, + "probability": 0.8087 + }, + { + "start": 21816.64, + "end": 21816.64, + "probability": 0.3019 + }, + { + "start": 21816.64, + "end": 21816.64, + "probability": 0.0479 + }, + { + "start": 21816.64, + "end": 21818.42, + "probability": 0.4721 + }, + { + "start": 21819.72, + "end": 21821.54, + "probability": 0.8905 + }, + { + "start": 21822.0, + "end": 21822.4, + "probability": 0.4484 + }, + { + "start": 21822.52, + "end": 21826.04, + "probability": 0.8312 + }, + { + "start": 21826.04, + "end": 21830.64, + "probability": 0.8629 + }, + { + "start": 21830.98, + "end": 21834.54, + "probability": 0.353 + }, + { + "start": 21835.32, + "end": 21836.62, + "probability": 0.0979 + }, + { + "start": 21836.62, + "end": 21836.84, + "probability": 0.1268 + }, + { + "start": 21837.88, + "end": 21838.6, + "probability": 0.7281 + }, + { + "start": 21844.46, + "end": 21845.48, + "probability": 0.7238 + }, + { + "start": 21846.66, + "end": 21847.82, + "probability": 0.7781 + }, + { + "start": 21849.28, + "end": 21852.0, + "probability": 0.7681 + }, + { + "start": 21852.0, + "end": 21855.78, + "probability": 0.8546 + }, + { + "start": 21857.18, + "end": 21858.4, + "probability": 0.6526 + }, + { + "start": 21859.56, + "end": 21864.06, + "probability": 0.9397 + }, + { + "start": 21864.78, + "end": 21870.34, + "probability": 0.981 + }, + { + "start": 21870.72, + "end": 21874.94, + "probability": 0.2995 + }, + { + "start": 21879.04, + "end": 21879.68, + "probability": 0.0015 + }, + { + "start": 21880.32, + "end": 21880.95, + "probability": 0.9609 + }, + { + "start": 21881.38, + "end": 21886.34, + "probability": 0.958 + }, + { + "start": 21886.5, + "end": 21887.58, + "probability": 0.754 + }, + { + "start": 21894.1, + "end": 21900.94, + "probability": 0.9606 + }, + { + "start": 21901.72, + "end": 21904.02, + "probability": 0.6784 + }, + { + "start": 21904.84, + "end": 21905.68, + "probability": 0.6844 + }, + { + "start": 21906.46, + "end": 21907.42, + "probability": 0.871 + }, + { + "start": 21907.9, + "end": 21908.81, + "probability": 0.9557 + }, + { + "start": 21909.62, + "end": 21910.46, + "probability": 0.9052 + }, + { + "start": 21911.98, + "end": 21914.22, + "probability": 0.765 + }, + { + "start": 21914.56, + "end": 21918.84, + "probability": 0.7976 + }, + { + "start": 21919.86, + "end": 21922.02, + "probability": 0.9715 + }, + { + "start": 21922.02, + "end": 21924.98, + "probability": 0.9681 + }, + { + "start": 21925.14, + "end": 21926.16, + "probability": 0.5047 + }, + { + "start": 21926.46, + "end": 21928.54, + "probability": 0.5511 + }, + { + "start": 21929.76, + "end": 21932.6, + "probability": 0.7522 + }, + { + "start": 21933.5, + "end": 21936.66, + "probability": 0.8387 + }, + { + "start": 21936.72, + "end": 21937.9, + "probability": 0.988 + }, + { + "start": 21938.46, + "end": 21942.42, + "probability": 0.9046 + }, + { + "start": 21943.44, + "end": 21944.14, + "probability": 0.9219 + }, + { + "start": 21946.08, + "end": 21948.92, + "probability": 0.9699 + }, + { + "start": 21949.54, + "end": 21949.74, + "probability": 0.146 + }, + { + "start": 21949.8, + "end": 21951.06, + "probability": 0.7868 + }, + { + "start": 21952.06, + "end": 21952.4, + "probability": 0.4022 + }, + { + "start": 21952.44, + "end": 21955.34, + "probability": 0.9561 + }, + { + "start": 21956.74, + "end": 21960.0, + "probability": 0.8225 + }, + { + "start": 21960.54, + "end": 21962.02, + "probability": 0.5219 + }, + { + "start": 21962.3, + "end": 21967.14, + "probability": 0.9805 + }, + { + "start": 21967.6, + "end": 21972.87, + "probability": 0.9084 + }, + { + "start": 21973.46, + "end": 21976.04, + "probability": 0.7754 + }, + { + "start": 21978.66, + "end": 21982.54, + "probability": 0.9954 + }, + { + "start": 21983.42, + "end": 21986.06, + "probability": 0.8837 + }, + { + "start": 21986.14, + "end": 21989.08, + "probability": 0.8931 + }, + { + "start": 21989.42, + "end": 21990.24, + "probability": 0.8058 + }, + { + "start": 21990.78, + "end": 21991.5, + "probability": 0.9305 + }, + { + "start": 21991.66, + "end": 21995.82, + "probability": 0.9504 + }, + { + "start": 21995.88, + "end": 21998.22, + "probability": 0.8826 + }, + { + "start": 21999.6, + "end": 22001.98, + "probability": 0.8423 + }, + { + "start": 22002.82, + "end": 22004.5, + "probability": 0.9784 + }, + { + "start": 22005.68, + "end": 22008.48, + "probability": 0.9976 + }, + { + "start": 22009.22, + "end": 22010.24, + "probability": 0.8648 + }, + { + "start": 22011.06, + "end": 22012.65, + "probability": 0.5055 + }, + { + "start": 22013.4, + "end": 22017.52, + "probability": 0.9551 + }, + { + "start": 22018.38, + "end": 22019.22, + "probability": 0.8472 + }, + { + "start": 22019.86, + "end": 22025.66, + "probability": 0.8733 + }, + { + "start": 22026.12, + "end": 22027.0, + "probability": 0.8844 + }, + { + "start": 22027.82, + "end": 22028.92, + "probability": 0.9883 + }, + { + "start": 22030.04, + "end": 22032.04, + "probability": 0.9954 + }, + { + "start": 22032.62, + "end": 22036.14, + "probability": 0.7049 + }, + { + "start": 22036.92, + "end": 22038.78, + "probability": 0.8206 + }, + { + "start": 22039.54, + "end": 22040.54, + "probability": 0.8469 + }, + { + "start": 22041.58, + "end": 22043.2, + "probability": 0.9451 + }, + { + "start": 22043.62, + "end": 22046.08, + "probability": 0.9275 + }, + { + "start": 22046.9, + "end": 22048.6, + "probability": 0.9482 + }, + { + "start": 22049.44, + "end": 22049.98, + "probability": 0.8208 + }, + { + "start": 22050.68, + "end": 22051.52, + "probability": 0.9871 + }, + { + "start": 22052.12, + "end": 22053.01, + "probability": 0.6598 + }, + { + "start": 22054.26, + "end": 22055.6, + "probability": 0.7467 + }, + { + "start": 22056.3, + "end": 22056.72, + "probability": 0.6197 + }, + { + "start": 22057.84, + "end": 22058.82, + "probability": 0.7098 + }, + { + "start": 22060.08, + "end": 22063.9, + "probability": 0.976 + }, + { + "start": 22064.44, + "end": 22065.38, + "probability": 0.8982 + }, + { + "start": 22066.12, + "end": 22066.38, + "probability": 0.3518 + }, + { + "start": 22066.76, + "end": 22067.76, + "probability": 0.7072 + }, + { + "start": 22068.44, + "end": 22070.44, + "probability": 0.9511 + }, + { + "start": 22071.68, + "end": 22072.38, + "probability": 0.9136 + }, + { + "start": 22072.38, + "end": 22074.82, + "probability": 0.8801 + }, + { + "start": 22075.74, + "end": 22077.11, + "probability": 0.9604 + }, + { + "start": 22079.88, + "end": 22080.28, + "probability": 0.5752 + }, + { + "start": 22080.28, + "end": 22080.5, + "probability": 0.074 + }, + { + "start": 22082.02, + "end": 22084.34, + "probability": 0.991 + }, + { + "start": 22085.34, + "end": 22087.16, + "probability": 0.6864 + }, + { + "start": 22087.3, + "end": 22090.44, + "probability": 0.9692 + }, + { + "start": 22090.86, + "end": 22091.7, + "probability": 0.6637 + }, + { + "start": 22093.16, + "end": 22095.18, + "probability": 0.9961 + }, + { + "start": 22095.92, + "end": 22096.44, + "probability": 0.6389 + }, + { + "start": 22097.44, + "end": 22099.5, + "probability": 0.861 + }, + { + "start": 22100.88, + "end": 22103.58, + "probability": 0.8933 + }, + { + "start": 22104.02, + "end": 22105.8, + "probability": 0.9661 + }, + { + "start": 22106.62, + "end": 22109.26, + "probability": 0.9391 + }, + { + "start": 22109.88, + "end": 22110.12, + "probability": 0.4752 + }, + { + "start": 22111.2, + "end": 22113.8, + "probability": 0.8644 + }, + { + "start": 22116.0, + "end": 22117.08, + "probability": 0.8511 + }, + { + "start": 22117.6, + "end": 22118.84, + "probability": 0.9569 + }, + { + "start": 22121.62, + "end": 22126.36, + "probability": 0.8081 + }, + { + "start": 22127.88, + "end": 22127.88, + "probability": 0.644 + }, + { + "start": 22128.46, + "end": 22128.66, + "probability": 0.6354 + }, + { + "start": 22128.66, + "end": 22128.94, + "probability": 0.4427 + }, + { + "start": 22128.94, + "end": 22129.56, + "probability": 0.5288 + }, + { + "start": 22129.6, + "end": 22129.94, + "probability": 0.9144 + }, + { + "start": 22129.98, + "end": 22131.18, + "probability": 0.7262 + }, + { + "start": 22131.42, + "end": 22132.42, + "probability": 0.8098 + }, + { + "start": 22132.9, + "end": 22136.36, + "probability": 0.9591 + }, + { + "start": 22136.84, + "end": 22138.66, + "probability": 0.9218 + }, + { + "start": 22140.68, + "end": 22142.54, + "probability": 0.6227 + }, + { + "start": 22143.46, + "end": 22147.54, + "probability": 0.7156 + }, + { + "start": 22147.72, + "end": 22154.28, + "probability": 0.9282 + }, + { + "start": 22154.96, + "end": 22155.2, + "probability": 0.6089 + }, + { + "start": 22155.28, + "end": 22155.78, + "probability": 0.8042 + }, + { + "start": 22155.9, + "end": 22159.6, + "probability": 0.9683 + }, + { + "start": 22161.62, + "end": 22162.78, + "probability": 0.6841 + }, + { + "start": 22162.92, + "end": 22164.54, + "probability": 0.8346 + }, + { + "start": 22165.3, + "end": 22165.62, + "probability": 0.4926 + }, + { + "start": 22165.66, + "end": 22166.22, + "probability": 0.5808 + }, + { + "start": 22166.22, + "end": 22168.62, + "probability": 0.9437 + }, + { + "start": 22169.36, + "end": 22171.38, + "probability": 0.7847 + }, + { + "start": 22171.8, + "end": 22173.48, + "probability": 0.9713 + }, + { + "start": 22174.6, + "end": 22177.5, + "probability": 0.9126 + }, + { + "start": 22178.58, + "end": 22181.78, + "probability": 0.8445 + }, + { + "start": 22182.42, + "end": 22185.64, + "probability": 0.9978 + }, + { + "start": 22186.04, + "end": 22186.53, + "probability": 0.9985 + }, + { + "start": 22188.52, + "end": 22193.18, + "probability": 0.8294 + }, + { + "start": 22193.44, + "end": 22193.72, + "probability": 0.1159 + }, + { + "start": 22193.92, + "end": 22195.54, + "probability": 0.54 + }, + { + "start": 22195.7, + "end": 22200.18, + "probability": 0.8767 + }, + { + "start": 22201.0, + "end": 22201.92, + "probability": 0.4413 + }, + { + "start": 22202.82, + "end": 22204.64, + "probability": 0.508 + }, + { + "start": 22204.66, + "end": 22205.86, + "probability": 0.6777 + }, + { + "start": 22205.86, + "end": 22209.24, + "probability": 0.6257 + }, + { + "start": 22209.3, + "end": 22212.4, + "probability": 0.7285 + }, + { + "start": 22212.68, + "end": 22219.05, + "probability": 0.981 + }, + { + "start": 22219.32, + "end": 22220.06, + "probability": 0.6942 + }, + { + "start": 22220.58, + "end": 22222.06, + "probability": 0.503 + }, + { + "start": 22222.08, + "end": 22222.38, + "probability": 0.092 + }, + { + "start": 22222.48, + "end": 22223.28, + "probability": 0.9493 + }, + { + "start": 22223.32, + "end": 22223.96, + "probability": 0.7164 + }, + { + "start": 22224.12, + "end": 22225.98, + "probability": 0.9963 + }, + { + "start": 22226.94, + "end": 22227.74, + "probability": 0.7119 + }, + { + "start": 22227.81, + "end": 22229.46, + "probability": 0.4854 + }, + { + "start": 22229.46, + "end": 22229.96, + "probability": 0.8574 + }, + { + "start": 22230.28, + "end": 22231.18, + "probability": 0.6285 + }, + { + "start": 22231.6, + "end": 22233.68, + "probability": 0.6307 + }, + { + "start": 22234.3, + "end": 22237.98, + "probability": 0.958 + }, + { + "start": 22239.68, + "end": 22239.96, + "probability": 0.4352 + }, + { + "start": 22253.98, + "end": 22254.34, + "probability": 0.6785 + }, + { + "start": 22256.93, + "end": 22258.96, + "probability": 0.7934 + }, + { + "start": 22259.06, + "end": 22259.62, + "probability": 0.9549 + }, + { + "start": 22259.86, + "end": 22260.42, + "probability": 0.839 + }, + { + "start": 22260.8, + "end": 22263.56, + "probability": 0.9207 + }, + { + "start": 22264.62, + "end": 22266.08, + "probability": 0.9374 + }, + { + "start": 22266.08, + "end": 22266.96, + "probability": 0.6493 + }, + { + "start": 22268.3, + "end": 22268.98, + "probability": 0.4892 + }, + { + "start": 22271.06, + "end": 22277.44, + "probability": 0.7289 + }, + { + "start": 22277.54, + "end": 22279.6, + "probability": 0.174 + }, + { + "start": 22279.74, + "end": 22281.07, + "probability": 0.7809 + }, + { + "start": 22282.92, + "end": 22287.76, + "probability": 0.8693 + }, + { + "start": 22289.22, + "end": 22292.76, + "probability": 0.9723 + }, + { + "start": 22293.46, + "end": 22298.02, + "probability": 0.9982 + }, + { + "start": 22298.02, + "end": 22300.9, + "probability": 0.971 + }, + { + "start": 22302.16, + "end": 22305.0, + "probability": 0.9913 + }, + { + "start": 22305.86, + "end": 22308.06, + "probability": 0.9954 + }, + { + "start": 22308.06, + "end": 22311.64, + "probability": 0.9387 + }, + { + "start": 22311.72, + "end": 22314.63, + "probability": 0.9844 + }, + { + "start": 22318.32, + "end": 22319.44, + "probability": 0.5076 + }, + { + "start": 22319.52, + "end": 22321.01, + "probability": 0.9355 + }, + { + "start": 22321.62, + "end": 22323.55, + "probability": 0.5147 + }, + { + "start": 22324.12, + "end": 22324.64, + "probability": 0.8273 + }, + { + "start": 22324.76, + "end": 22324.86, + "probability": 0.7547 + }, + { + "start": 22325.8, + "end": 22325.84, + "probability": 0.0958 + }, + { + "start": 22325.84, + "end": 22331.02, + "probability": 0.7836 + }, + { + "start": 22331.82, + "end": 22339.54, + "probability": 0.9394 + }, + { + "start": 22340.48, + "end": 22345.94, + "probability": 0.7498 + }, + { + "start": 22347.0, + "end": 22349.66, + "probability": 0.95 + }, + { + "start": 22350.74, + "end": 22353.94, + "probability": 0.9283 + }, + { + "start": 22353.94, + "end": 22356.6, + "probability": 0.8636 + }, + { + "start": 22357.5, + "end": 22362.76, + "probability": 0.9881 + }, + { + "start": 22363.56, + "end": 22367.98, + "probability": 0.8458 + }, + { + "start": 22369.84, + "end": 22371.74, + "probability": 0.9745 + }, + { + "start": 22371.74, + "end": 22375.1, + "probability": 0.9805 + }, + { + "start": 22375.86, + "end": 22378.92, + "probability": 0.9377 + }, + { + "start": 22379.04, + "end": 22380.44, + "probability": 0.8796 + }, + { + "start": 22381.28, + "end": 22385.0, + "probability": 0.8403 + }, + { + "start": 22386.52, + "end": 22391.64, + "probability": 0.8492 + }, + { + "start": 22392.68, + "end": 22393.4, + "probability": 0.8107 + }, + { + "start": 22393.56, + "end": 22396.58, + "probability": 0.8784 + }, + { + "start": 22398.4, + "end": 22400.42, + "probability": 0.7597 + }, + { + "start": 22401.44, + "end": 22405.3, + "probability": 0.9441 + }, + { + "start": 22405.8, + "end": 22408.44, + "probability": 0.932 + }, + { + "start": 22408.44, + "end": 22412.08, + "probability": 0.91 + }, + { + "start": 22412.16, + "end": 22413.32, + "probability": 0.8843 + }, + { + "start": 22414.4, + "end": 22416.88, + "probability": 0.8462 + }, + { + "start": 22418.16, + "end": 22419.52, + "probability": 0.8811 + }, + { + "start": 22420.3, + "end": 22422.98, + "probability": 0.991 + }, + { + "start": 22423.22, + "end": 22427.82, + "probability": 0.9365 + }, + { + "start": 22428.98, + "end": 22430.58, + "probability": 0.7694 + }, + { + "start": 22431.26, + "end": 22436.2, + "probability": 0.9568 + }, + { + "start": 22437.2, + "end": 22439.96, + "probability": 0.8905 + }, + { + "start": 22441.64, + "end": 22444.88, + "probability": 0.8459 + }, + { + "start": 22446.32, + "end": 22449.34, + "probability": 0.9807 + }, + { + "start": 22450.06, + "end": 22451.12, + "probability": 0.9673 + }, + { + "start": 22451.26, + "end": 22454.42, + "probability": 0.9572 + }, + { + "start": 22454.5, + "end": 22457.54, + "probability": 0.9832 + }, + { + "start": 22457.62, + "end": 22458.74, + "probability": 0.9453 + }, + { + "start": 22459.72, + "end": 22462.72, + "probability": 0.9863 + }, + { + "start": 22463.44, + "end": 22465.38, + "probability": 0.9919 + }, + { + "start": 22465.38, + "end": 22468.56, + "probability": 0.7319 + }, + { + "start": 22469.84, + "end": 22472.28, + "probability": 0.8453 + }, + { + "start": 22472.8, + "end": 22474.34, + "probability": 0.9331 + }, + { + "start": 22474.94, + "end": 22476.3, + "probability": 0.7847 + }, + { + "start": 22477.76, + "end": 22478.22, + "probability": 0.9708 + }, + { + "start": 22479.06, + "end": 22480.5, + "probability": 0.7436 + }, + { + "start": 22481.36, + "end": 22482.66, + "probability": 0.3837 + }, + { + "start": 22482.68, + "end": 22483.14, + "probability": 0.1517 + }, + { + "start": 22483.3, + "end": 22484.4, + "probability": 0.6224 + }, + { + "start": 22484.58, + "end": 22486.16, + "probability": 0.7611 + }, + { + "start": 22486.58, + "end": 22487.04, + "probability": 0.6413 + }, + { + "start": 22487.28, + "end": 22488.86, + "probability": 0.6629 + }, + { + "start": 22488.94, + "end": 22489.74, + "probability": 0.5949 + }, + { + "start": 22489.86, + "end": 22491.18, + "probability": 0.7266 + }, + { + "start": 22491.7, + "end": 22492.24, + "probability": 0.5373 + }, + { + "start": 22492.3, + "end": 22492.92, + "probability": 0.5763 + }, + { + "start": 22494.38, + "end": 22495.02, + "probability": 0.7551 + }, + { + "start": 22496.24, + "end": 22498.56, + "probability": 0.896 + }, + { + "start": 22498.86, + "end": 22499.96, + "probability": 0.4643 + }, + { + "start": 22504.14, + "end": 22508.66, + "probability": 0.2751 + }, + { + "start": 22512.02, + "end": 22512.46, + "probability": 0.0519 + }, + { + "start": 22512.46, + "end": 22514.8, + "probability": 0.578 + }, + { + "start": 22515.04, + "end": 22517.22, + "probability": 0.4578 + }, + { + "start": 22518.02, + "end": 22519.54, + "probability": 0.6056 + }, + { + "start": 22519.68, + "end": 22522.08, + "probability": 0.6651 + }, + { + "start": 22522.86, + "end": 22523.91, + "probability": 0.0559 + }, + { + "start": 22525.14, + "end": 22528.54, + "probability": 0.51 + }, + { + "start": 22528.78, + "end": 22530.42, + "probability": 0.9485 + }, + { + "start": 22530.58, + "end": 22530.76, + "probability": 0.2202 + } + ], + "segments_count": 8168, + "words_count": 41096, + "avg_words_per_segment": 5.0313, + "avg_segment_duration": 1.9101, + "avg_words_per_minute": 109.4033, + "plenum_id": "37345", + "duration": 22538.26, + "title": null, + "plenum_date": "2014-05-28" +} \ No newline at end of file