diff --git "a/38912/metadata.json" "b/38912/metadata.json" new file mode 100644--- /dev/null +++ "b/38912/metadata.json" @@ -0,0 +1,9327 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38912", + "quality_score": 0.834, + "per_segment_quality_scores": [ + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.59, + "end": 87.9, + "probability": 0.9278 + }, + { + "start": 88.6, + "end": 91.28, + "probability": 0.6771 + }, + { + "start": 91.86, + "end": 92.72, + "probability": 0.8441 + }, + { + "start": 94.24, + "end": 96.56, + "probability": 0.9668 + }, + { + "start": 96.96, + "end": 98.64, + "probability": 0.9361 + }, + { + "start": 99.08, + "end": 105.26, + "probability": 0.9869 + }, + { + "start": 106.4, + "end": 114.58, + "probability": 0.9263 + }, + { + "start": 114.92, + "end": 115.74, + "probability": 0.666 + }, + { + "start": 115.94, + "end": 118.22, + "probability": 0.9919 + }, + { + "start": 118.78, + "end": 121.34, + "probability": 0.9065 + }, + { + "start": 122.02, + "end": 125.38, + "probability": 0.969 + }, + { + "start": 125.74, + "end": 128.02, + "probability": 0.8601 + }, + { + "start": 129.26, + "end": 135.06, + "probability": 0.9528 + }, + { + "start": 135.54, + "end": 136.88, + "probability": 0.6849 + }, + { + "start": 137.3, + "end": 138.9, + "probability": 0.9635 + }, + { + "start": 139.7, + "end": 140.26, + "probability": 0.0902 + }, + { + "start": 142.04, + "end": 143.18, + "probability": 0.992 + }, + { + "start": 143.88, + "end": 144.98, + "probability": 0.9298 + }, + { + "start": 146.92, + "end": 148.58, + "probability": 0.982 + }, + { + "start": 149.34, + "end": 156.36, + "probability": 0.9684 + }, + { + "start": 156.36, + "end": 159.58, + "probability": 0.9983 + }, + { + "start": 160.4, + "end": 163.18, + "probability": 0.9786 + }, + { + "start": 165.14, + "end": 166.8, + "probability": 0.9018 + }, + { + "start": 169.16, + "end": 171.66, + "probability": 0.932 + }, + { + "start": 171.78, + "end": 172.9, + "probability": 0.7511 + }, + { + "start": 174.88, + "end": 176.3, + "probability": 0.9343 + }, + { + "start": 176.36, + "end": 178.04, + "probability": 0.867 + }, + { + "start": 178.46, + "end": 180.06, + "probability": 0.8846 + }, + { + "start": 180.26, + "end": 181.46, + "probability": 0.8695 + }, + { + "start": 182.1, + "end": 185.2, + "probability": 0.5167 + }, + { + "start": 185.7, + "end": 187.08, + "probability": 0.678 + }, + { + "start": 187.28, + "end": 188.34, + "probability": 0.9845 + }, + { + "start": 188.44, + "end": 189.04, + "probability": 0.9609 + }, + { + "start": 189.64, + "end": 190.48, + "probability": 0.7883 + }, + { + "start": 190.52, + "end": 193.98, + "probability": 0.8427 + }, + { + "start": 194.94, + "end": 197.44, + "probability": 0.8319 + }, + { + "start": 198.0, + "end": 201.36, + "probability": 0.7163 + }, + { + "start": 202.3, + "end": 206.66, + "probability": 0.8256 + }, + { + "start": 206.86, + "end": 208.14, + "probability": 0.8648 + }, + { + "start": 208.8, + "end": 213.22, + "probability": 0.987 + }, + { + "start": 213.36, + "end": 217.32, + "probability": 0.9369 + }, + { + "start": 217.92, + "end": 220.68, + "probability": 0.7228 + }, + { + "start": 220.82, + "end": 224.84, + "probability": 0.7127 + }, + { + "start": 226.24, + "end": 230.1, + "probability": 0.7398 + }, + { + "start": 230.26, + "end": 231.42, + "probability": 0.7398 + }, + { + "start": 231.7, + "end": 233.96, + "probability": 0.9223 + }, + { + "start": 234.56, + "end": 237.32, + "probability": 0.665 + }, + { + "start": 237.86, + "end": 243.36, + "probability": 0.9556 + }, + { + "start": 243.52, + "end": 244.96, + "probability": 0.6581 + }, + { + "start": 245.38, + "end": 248.36, + "probability": 0.9882 + }, + { + "start": 249.14, + "end": 252.0, + "probability": 0.7043 + }, + { + "start": 252.52, + "end": 252.7, + "probability": 0.1238 + }, + { + "start": 253.24, + "end": 255.94, + "probability": 0.9284 + }, + { + "start": 256.46, + "end": 257.84, + "probability": 0.6522 + }, + { + "start": 258.24, + "end": 260.9, + "probability": 0.9927 + }, + { + "start": 261.56, + "end": 262.34, + "probability": 0.7374 + }, + { + "start": 262.88, + "end": 265.9, + "probability": 0.729 + }, + { + "start": 267.82, + "end": 268.66, + "probability": 0.7379 + }, + { + "start": 268.66, + "end": 269.78, + "probability": 0.3592 + }, + { + "start": 270.68, + "end": 272.82, + "probability": 0.6733 + }, + { + "start": 272.98, + "end": 274.84, + "probability": 0.565 + }, + { + "start": 274.96, + "end": 276.54, + "probability": 0.6512 + }, + { + "start": 279.88, + "end": 280.3, + "probability": 0.7949 + }, + { + "start": 283.54, + "end": 287.22, + "probability": 0.032 + }, + { + "start": 288.6, + "end": 291.88, + "probability": 0.2505 + }, + { + "start": 292.58, + "end": 294.63, + "probability": 0.0196 + }, + { + "start": 299.74, + "end": 301.7, + "probability": 0.0376 + }, + { + "start": 301.7, + "end": 302.3, + "probability": 0.021 + }, + { + "start": 302.62, + "end": 304.44, + "probability": 0.1647 + }, + { + "start": 305.46, + "end": 309.24, + "probability": 0.0219 + }, + { + "start": 315.38, + "end": 315.76, + "probability": 0.2538 + }, + { + "start": 318.42, + "end": 321.22, + "probability": 0.0309 + }, + { + "start": 323.31, + "end": 323.66, + "probability": 0.0558 + }, + { + "start": 323.66, + "end": 323.66, + "probability": 0.051 + }, + { + "start": 323.66, + "end": 323.72, + "probability": 0.0888 + }, + { + "start": 325.5, + "end": 331.1, + "probability": 0.0152 + }, + { + "start": 333.8, + "end": 334.42, + "probability": 0.0056 + }, + { + "start": 342.48, + "end": 345.82, + "probability": 0.0272 + }, + { + "start": 345.82, + "end": 346.04, + "probability": 0.0395 + }, + { + "start": 346.04, + "end": 346.18, + "probability": 0.0322 + }, + { + "start": 346.18, + "end": 346.18, + "probability": 0.0516 + }, + { + "start": 346.18, + "end": 347.18, + "probability": 0.0906 + }, + { + "start": 347.9, + "end": 349.98, + "probability": 0.0115 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.0, + "end": 359.0, + "probability": 0.0 + }, + { + "start": 359.82, + "end": 362.5, + "probability": 0.0427 + }, + { + "start": 362.66, + "end": 367.58, + "probability": 0.0717 + }, + { + "start": 368.65, + "end": 370.86, + "probability": 0.0947 + }, + { + "start": 372.04, + "end": 372.32, + "probability": 0.1619 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.22, + "end": 512.22, + "probability": 0.0852 + }, + { + "start": 512.22, + "end": 516.3, + "probability": 0.6086 + }, + { + "start": 516.46, + "end": 518.16, + "probability": 0.6843 + }, + { + "start": 518.6, + "end": 523.52, + "probability": 0.9458 + }, + { + "start": 524.8, + "end": 525.37, + "probability": 0.9502 + }, + { + "start": 525.68, + "end": 526.61, + "probability": 0.9111 + }, + { + "start": 526.78, + "end": 531.96, + "probability": 0.9874 + }, + { + "start": 532.74, + "end": 537.74, + "probability": 0.9448 + }, + { + "start": 537.9, + "end": 542.72, + "probability": 0.998 + }, + { + "start": 543.46, + "end": 546.92, + "probability": 0.9938 + }, + { + "start": 546.92, + "end": 549.7, + "probability": 0.999 + }, + { + "start": 550.16, + "end": 551.82, + "probability": 0.98 + }, + { + "start": 552.88, + "end": 555.38, + "probability": 0.3786 + }, + { + "start": 555.88, + "end": 560.8, + "probability": 0.9849 + }, + { + "start": 561.56, + "end": 566.4, + "probability": 0.9951 + }, + { + "start": 566.56, + "end": 567.02, + "probability": 0.8476 + }, + { + "start": 568.4, + "end": 571.76, + "probability": 0.9766 + }, + { + "start": 571.76, + "end": 576.58, + "probability": 0.9419 + }, + { + "start": 577.67, + "end": 581.46, + "probability": 0.9157 + }, + { + "start": 581.92, + "end": 585.44, + "probability": 0.9601 + }, + { + "start": 586.16, + "end": 588.7, + "probability": 0.9014 + }, + { + "start": 588.92, + "end": 593.44, + "probability": 0.8255 + }, + { + "start": 593.86, + "end": 598.08, + "probability": 0.9944 + }, + { + "start": 598.3, + "end": 601.06, + "probability": 0.9787 + }, + { + "start": 601.58, + "end": 603.22, + "probability": 0.705 + }, + { + "start": 603.26, + "end": 607.64, + "probability": 0.9877 + }, + { + "start": 608.06, + "end": 611.62, + "probability": 0.933 + }, + { + "start": 611.78, + "end": 615.9, + "probability": 0.9242 + }, + { + "start": 616.4, + "end": 619.7, + "probability": 0.7418 + }, + { + "start": 620.42, + "end": 620.7, + "probability": 0.6804 + }, + { + "start": 621.28, + "end": 624.92, + "probability": 0.5887 + }, + { + "start": 625.04, + "end": 625.86, + "probability": 0.8768 + }, + { + "start": 625.92, + "end": 626.28, + "probability": 0.9138 + }, + { + "start": 626.46, + "end": 630.32, + "probability": 0.9448 + }, + { + "start": 630.44, + "end": 633.82, + "probability": 0.4972 + }, + { + "start": 633.96, + "end": 638.04, + "probability": 0.9438 + }, + { + "start": 639.02, + "end": 639.94, + "probability": 0.6702 + }, + { + "start": 640.06, + "end": 640.9, + "probability": 0.7051 + }, + { + "start": 640.96, + "end": 642.42, + "probability": 0.5715 + }, + { + "start": 642.84, + "end": 643.18, + "probability": 0.004 + }, + { + "start": 644.1, + "end": 645.74, + "probability": 0.0 + }, + { + "start": 657.52, + "end": 657.62, + "probability": 0.0705 + }, + { + "start": 657.62, + "end": 662.24, + "probability": 0.637 + }, + { + "start": 662.44, + "end": 665.94, + "probability": 0.8898 + }, + { + "start": 666.42, + "end": 669.1, + "probability": 0.9863 + }, + { + "start": 670.06, + "end": 670.16, + "probability": 0.4951 + }, + { + "start": 670.68, + "end": 670.86, + "probability": 0.2425 + }, + { + "start": 670.86, + "end": 671.42, + "probability": 0.3 + }, + { + "start": 671.42, + "end": 672.14, + "probability": 0.6522 + }, + { + "start": 674.02, + "end": 674.24, + "probability": 0.3765 + }, + { + "start": 686.68, + "end": 686.68, + "probability": 0.0217 + }, + { + "start": 686.68, + "end": 686.68, + "probability": 0.038 + }, + { + "start": 686.68, + "end": 686.68, + "probability": 0.1203 + }, + { + "start": 686.68, + "end": 692.72, + "probability": 0.6672 + }, + { + "start": 692.94, + "end": 698.46, + "probability": 0.9183 + }, + { + "start": 701.14, + "end": 703.72, + "probability": 0.9692 + }, + { + "start": 703.72, + "end": 706.12, + "probability": 0.7901 + }, + { + "start": 706.28, + "end": 710.08, + "probability": 0.9915 + }, + { + "start": 711.66, + "end": 713.86, + "probability": 0.138 + }, + { + "start": 714.12, + "end": 716.26, + "probability": 0.9414 + }, + { + "start": 717.24, + "end": 718.08, + "probability": 0.6068 + }, + { + "start": 720.74, + "end": 722.64, + "probability": 0.7378 + }, + { + "start": 723.56, + "end": 726.16, + "probability": 0.9331 + }, + { + "start": 726.9, + "end": 729.49, + "probability": 0.9954 + }, + { + "start": 731.08, + "end": 733.24, + "probability": 0.9344 + }, + { + "start": 733.24, + "end": 738.04, + "probability": 0.7536 + }, + { + "start": 738.5, + "end": 743.0, + "probability": 0.9703 + }, + { + "start": 743.82, + "end": 746.2, + "probability": 0.9254 + }, + { + "start": 746.74, + "end": 752.5, + "probability": 0.9905 + }, + { + "start": 753.52, + "end": 755.94, + "probability": 0.9927 + }, + { + "start": 756.66, + "end": 766.83, + "probability": 0.9839 + }, + { + "start": 767.09, + "end": 771.97, + "probability": 0.9902 + }, + { + "start": 772.39, + "end": 773.88, + "probability": 0.9404 + }, + { + "start": 774.63, + "end": 778.19, + "probability": 0.9688 + }, + { + "start": 778.19, + "end": 780.97, + "probability": 0.8026 + }, + { + "start": 781.29, + "end": 782.35, + "probability": 0.6463 + }, + { + "start": 782.57, + "end": 785.66, + "probability": 0.5753 + }, + { + "start": 786.91, + "end": 787.71, + "probability": 0.8328 + }, + { + "start": 788.85, + "end": 791.45, + "probability": 0.9894 + }, + { + "start": 792.74, + "end": 799.11, + "probability": 0.4329 + }, + { + "start": 799.15, + "end": 800.17, + "probability": 0.6908 + }, + { + "start": 800.93, + "end": 801.55, + "probability": 0.5917 + }, + { + "start": 801.59, + "end": 802.13, + "probability": 0.5223 + }, + { + "start": 802.19, + "end": 802.91, + "probability": 0.7191 + }, + { + "start": 804.43, + "end": 804.89, + "probability": 0.0025 + }, + { + "start": 816.83, + "end": 816.93, + "probability": 0.0126 + }, + { + "start": 816.93, + "end": 820.27, + "probability": 0.4954 + }, + { + "start": 820.49, + "end": 823.17, + "probability": 0.8079 + }, + { + "start": 823.77, + "end": 825.91, + "probability": 0.8982 + }, + { + "start": 826.17, + "end": 826.77, + "probability": 0.6236 + }, + { + "start": 826.85, + "end": 827.55, + "probability": 0.73 + }, + { + "start": 827.61, + "end": 828.35, + "probability": 0.7343 + }, + { + "start": 837.61, + "end": 842.19, + "probability": 0.3398 + }, + { + "start": 844.07, + "end": 844.51, + "probability": 0.0648 + }, + { + "start": 845.13, + "end": 846.81, + "probability": 0.1684 + }, + { + "start": 855.87, + "end": 858.91, + "probability": 0.5696 + }, + { + "start": 858.91, + "end": 862.93, + "probability": 0.7934 + }, + { + "start": 866.25, + "end": 868.47, + "probability": 0.0468 + }, + { + "start": 870.9, + "end": 872.95, + "probability": 0.0781 + }, + { + "start": 873.17, + "end": 875.69, + "probability": 0.1832 + }, + { + "start": 876.59, + "end": 876.59, + "probability": 0.0372 + }, + { + "start": 876.59, + "end": 880.74, + "probability": 0.2743 + }, + { + "start": 880.91, + "end": 883.47, + "probability": 0.1569 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.0, + "end": 899.0, + "probability": 0.0 + }, + { + "start": 899.5, + "end": 902.72, + "probability": 0.9776 + }, + { + "start": 903.56, + "end": 908.9, + "probability": 0.8018 + }, + { + "start": 909.7, + "end": 917.74, + "probability": 0.9846 + }, + { + "start": 918.34, + "end": 920.9, + "probability": 0.9932 + }, + { + "start": 921.7, + "end": 921.92, + "probability": 0.4133 + }, + { + "start": 922.08, + "end": 923.96, + "probability": 0.6606 + }, + { + "start": 924.04, + "end": 924.46, + "probability": 0.935 + }, + { + "start": 924.54, + "end": 930.56, + "probability": 0.7348 + }, + { + "start": 930.56, + "end": 936.8, + "probability": 0.9823 + }, + { + "start": 937.18, + "end": 938.99, + "probability": 0.6762 + }, + { + "start": 939.46, + "end": 941.12, + "probability": 0.5898 + }, + { + "start": 941.5, + "end": 946.94, + "probability": 0.967 + }, + { + "start": 948.04, + "end": 948.92, + "probability": 0.4116 + }, + { + "start": 950.54, + "end": 951.58, + "probability": 0.7085 + }, + { + "start": 951.82, + "end": 954.8, + "probability": 0.8907 + }, + { + "start": 956.26, + "end": 958.57, + "probability": 0.9741 + }, + { + "start": 958.78, + "end": 959.86, + "probability": 0.7115 + }, + { + "start": 960.32, + "end": 964.44, + "probability": 0.8148 + }, + { + "start": 964.56, + "end": 966.72, + "probability": 0.0545 + }, + { + "start": 967.04, + "end": 969.14, + "probability": 0.4527 + }, + { + "start": 969.24, + "end": 970.36, + "probability": 0.61 + }, + { + "start": 970.46, + "end": 970.5, + "probability": 0.4122 + }, + { + "start": 983.26, + "end": 984.5, + "probability": 0.4457 + }, + { + "start": 986.22, + "end": 986.24, + "probability": 0.0325 + }, + { + "start": 986.24, + "end": 988.81, + "probability": 0.7061 + }, + { + "start": 989.4, + "end": 990.01, + "probability": 0.7327 + }, + { + "start": 990.56, + "end": 991.34, + "probability": 0.6638 + }, + { + "start": 992.06, + "end": 994.18, + "probability": 0.7302 + }, + { + "start": 994.42, + "end": 996.88, + "probability": 0.9105 + }, + { + "start": 997.18, + "end": 997.62, + "probability": 0.6311 + }, + { + "start": 997.76, + "end": 998.26, + "probability": 0.6749 + }, + { + "start": 998.32, + "end": 998.92, + "probability": 0.7105 + }, + { + "start": 1003.68, + "end": 1007.24, + "probability": 0.8369 + }, + { + "start": 1007.62, + "end": 1009.98, + "probability": 0.1573 + }, + { + "start": 1009.98, + "end": 1009.98, + "probability": 0.0694 + }, + { + "start": 1009.98, + "end": 1009.98, + "probability": 0.0215 + }, + { + "start": 1009.98, + "end": 1009.98, + "probability": 0.2412 + }, + { + "start": 1009.98, + "end": 1011.0, + "probability": 0.197 + }, + { + "start": 1011.0, + "end": 1011.86, + "probability": 0.4809 + }, + { + "start": 1013.42, + "end": 1016.54, + "probability": 0.7529 + }, + { + "start": 1016.76, + "end": 1019.32, + "probability": 0.9462 + }, + { + "start": 1021.54, + "end": 1025.84, + "probability": 0.7853 + }, + { + "start": 1026.72, + "end": 1029.16, + "probability": 0.4077 + }, + { + "start": 1029.16, + "end": 1034.62, + "probability": 0.9427 + }, + { + "start": 1035.22, + "end": 1038.78, + "probability": 0.651 + }, + { + "start": 1041.42, + "end": 1043.24, + "probability": 0.5677 + }, + { + "start": 1043.94, + "end": 1047.64, + "probability": 0.9435 + }, + { + "start": 1051.96, + "end": 1055.04, + "probability": 0.9938 + }, + { + "start": 1055.14, + "end": 1059.0, + "probability": 0.8955 + }, + { + "start": 1060.44, + "end": 1061.0, + "probability": 0.5806 + }, + { + "start": 1061.42, + "end": 1062.56, + "probability": 0.9707 + }, + { + "start": 1063.1, + "end": 1065.16, + "probability": 0.5865 + }, + { + "start": 1065.16, + "end": 1067.68, + "probability": 0.5135 + }, + { + "start": 1068.0, + "end": 1068.24, + "probability": 0.2803 + }, + { + "start": 1069.04, + "end": 1069.61, + "probability": 0.0149 + }, + { + "start": 1070.82, + "end": 1072.3, + "probability": 0.5039 + }, + { + "start": 1072.5, + "end": 1078.86, + "probability": 0.8477 + }, + { + "start": 1079.1, + "end": 1079.76, + "probability": 0.7051 + }, + { + "start": 1080.48, + "end": 1083.28, + "probability": 0.9757 + }, + { + "start": 1083.7, + "end": 1084.26, + "probability": 0.915 + }, + { + "start": 1084.7, + "end": 1084.98, + "probability": 0.9626 + }, + { + "start": 1086.14, + "end": 1088.9, + "probability": 0.9869 + }, + { + "start": 1089.54, + "end": 1091.94, + "probability": 0.9564 + }, + { + "start": 1092.56, + "end": 1095.0, + "probability": 0.8725 + }, + { + "start": 1095.06, + "end": 1098.36, + "probability": 0.9766 + }, + { + "start": 1098.88, + "end": 1099.72, + "probability": 0.5001 + }, + { + "start": 1100.49, + "end": 1104.12, + "probability": 0.9732 + }, + { + "start": 1104.68, + "end": 1106.98, + "probability": 0.9929 + }, + { + "start": 1108.08, + "end": 1109.68, + "probability": 0.9513 + }, + { + "start": 1110.44, + "end": 1112.12, + "probability": 0.4985 + }, + { + "start": 1112.18, + "end": 1118.12, + "probability": 0.9326 + }, + { + "start": 1119.64, + "end": 1126.02, + "probability": 0.9868 + }, + { + "start": 1126.52, + "end": 1129.58, + "probability": 0.9912 + }, + { + "start": 1130.5, + "end": 1131.02, + "probability": 0.8308 + }, + { + "start": 1131.06, + "end": 1134.06, + "probability": 0.9819 + }, + { + "start": 1134.86, + "end": 1137.54, + "probability": 0.9559 + }, + { + "start": 1138.14, + "end": 1144.02, + "probability": 0.741 + }, + { + "start": 1145.22, + "end": 1148.94, + "probability": 0.9949 + }, + { + "start": 1149.34, + "end": 1154.2, + "probability": 0.9755 + }, + { + "start": 1154.82, + "end": 1158.05, + "probability": 0.9136 + }, + { + "start": 1159.84, + "end": 1160.58, + "probability": 0.9111 + }, + { + "start": 1160.76, + "end": 1162.44, + "probability": 0.9019 + }, + { + "start": 1162.88, + "end": 1167.36, + "probability": 0.7949 + }, + { + "start": 1167.96, + "end": 1168.22, + "probability": 0.7191 + }, + { + "start": 1169.44, + "end": 1171.38, + "probability": 0.7787 + }, + { + "start": 1171.48, + "end": 1172.36, + "probability": 0.8833 + }, + { + "start": 1172.52, + "end": 1173.82, + "probability": 0.8228 + }, + { + "start": 1173.9, + "end": 1174.74, + "probability": 0.5715 + }, + { + "start": 1174.92, + "end": 1176.18, + "probability": 0.9553 + }, + { + "start": 1177.14, + "end": 1181.26, + "probability": 0.7925 + }, + { + "start": 1181.78, + "end": 1184.73, + "probability": 0.7194 + }, + { + "start": 1184.98, + "end": 1187.58, + "probability": 0.9175 + }, + { + "start": 1204.52, + "end": 1205.22, + "probability": 0.5686 + }, + { + "start": 1206.4, + "end": 1208.34, + "probability": 0.8516 + }, + { + "start": 1209.62, + "end": 1211.3, + "probability": 0.7577 + }, + { + "start": 1211.94, + "end": 1214.54, + "probability": 0.9843 + }, + { + "start": 1215.74, + "end": 1222.97, + "probability": 0.9427 + }, + { + "start": 1224.0, + "end": 1225.56, + "probability": 0.0268 + }, + { + "start": 1227.42, + "end": 1231.98, + "probability": 0.9847 + }, + { + "start": 1233.5, + "end": 1234.68, + "probability": 0.7469 + }, + { + "start": 1234.82, + "end": 1238.34, + "probability": 0.9956 + }, + { + "start": 1239.3, + "end": 1242.64, + "probability": 0.9303 + }, + { + "start": 1243.72, + "end": 1248.44, + "probability": 0.9983 + }, + { + "start": 1248.5, + "end": 1249.5, + "probability": 0.749 + }, + { + "start": 1250.4, + "end": 1253.06, + "probability": 0.9263 + }, + { + "start": 1253.12, + "end": 1254.18, + "probability": 0.9384 + }, + { + "start": 1254.76, + "end": 1256.56, + "probability": 0.8451 + }, + { + "start": 1257.84, + "end": 1263.46, + "probability": 0.7143 + }, + { + "start": 1264.54, + "end": 1268.68, + "probability": 0.9556 + }, + { + "start": 1269.74, + "end": 1274.3, + "probability": 0.9606 + }, + { + "start": 1274.4, + "end": 1275.04, + "probability": 0.7372 + }, + { + "start": 1275.24, + "end": 1276.66, + "probability": 0.8055 + }, + { + "start": 1278.08, + "end": 1281.14, + "probability": 0.6513 + }, + { + "start": 1281.18, + "end": 1281.88, + "probability": 0.8591 + }, + { + "start": 1282.02, + "end": 1283.08, + "probability": 0.8804 + }, + { + "start": 1283.1, + "end": 1284.04, + "probability": 0.9603 + }, + { + "start": 1284.64, + "end": 1286.46, + "probability": 0.9701 + }, + { + "start": 1286.5, + "end": 1287.2, + "probability": 0.7284 + }, + { + "start": 1287.28, + "end": 1288.92, + "probability": 0.7933 + }, + { + "start": 1288.96, + "end": 1290.46, + "probability": 0.886 + }, + { + "start": 1290.64, + "end": 1296.04, + "probability": 0.98 + }, + { + "start": 1297.38, + "end": 1300.12, + "probability": 0.9781 + }, + { + "start": 1300.12, + "end": 1304.37, + "probability": 0.9958 + }, + { + "start": 1305.32, + "end": 1308.48, + "probability": 0.9123 + }, + { + "start": 1309.4, + "end": 1313.24, + "probability": 0.9463 + }, + { + "start": 1313.86, + "end": 1319.02, + "probability": 0.9971 + }, + { + "start": 1320.0, + "end": 1323.92, + "probability": 0.9879 + }, + { + "start": 1324.08, + "end": 1325.18, + "probability": 0.9082 + }, + { + "start": 1325.2, + "end": 1326.64, + "probability": 0.952 + }, + { + "start": 1327.66, + "end": 1330.52, + "probability": 0.9711 + }, + { + "start": 1331.04, + "end": 1332.02, + "probability": 0.924 + }, + { + "start": 1332.6, + "end": 1334.6, + "probability": 0.9102 + }, + { + "start": 1334.74, + "end": 1336.26, + "probability": 0.9641 + }, + { + "start": 1336.66, + "end": 1337.77, + "probability": 0.8062 + }, + { + "start": 1338.4, + "end": 1339.52, + "probability": 0.9561 + }, + { + "start": 1340.34, + "end": 1343.12, + "probability": 0.737 + }, + { + "start": 1344.46, + "end": 1345.59, + "probability": 0.7638 + }, + { + "start": 1346.08, + "end": 1346.58, + "probability": 0.8904 + }, + { + "start": 1346.76, + "end": 1349.02, + "probability": 0.9221 + }, + { + "start": 1349.2, + "end": 1349.84, + "probability": 0.8882 + }, + { + "start": 1349.96, + "end": 1351.04, + "probability": 0.9362 + }, + { + "start": 1351.88, + "end": 1359.44, + "probability": 0.9873 + }, + { + "start": 1360.02, + "end": 1362.02, + "probability": 0.9736 + }, + { + "start": 1362.8, + "end": 1367.36, + "probability": 0.9873 + }, + { + "start": 1367.84, + "end": 1370.66, + "probability": 0.9967 + }, + { + "start": 1370.74, + "end": 1371.74, + "probability": 0.9377 + }, + { + "start": 1372.36, + "end": 1381.94, + "probability": 0.9896 + }, + { + "start": 1383.22, + "end": 1384.5, + "probability": 0.8378 + }, + { + "start": 1385.06, + "end": 1387.12, + "probability": 0.6669 + }, + { + "start": 1387.28, + "end": 1387.92, + "probability": 0.9284 + }, + { + "start": 1388.1, + "end": 1388.97, + "probability": 0.9752 + }, + { + "start": 1389.6, + "end": 1390.69, + "probability": 0.9849 + }, + { + "start": 1391.54, + "end": 1395.0, + "probability": 0.9727 + }, + { + "start": 1395.12, + "end": 1395.58, + "probability": 0.8925 + }, + { + "start": 1396.54, + "end": 1398.26, + "probability": 0.7977 + }, + { + "start": 1398.46, + "end": 1400.64, + "probability": 0.8516 + }, + { + "start": 1400.68, + "end": 1405.88, + "probability": 0.9265 + }, + { + "start": 1406.58, + "end": 1409.52, + "probability": 0.9141 + }, + { + "start": 1409.52, + "end": 1412.96, + "probability": 0.6221 + }, + { + "start": 1413.04, + "end": 1415.42, + "probability": 0.188 + }, + { + "start": 1416.22, + "end": 1418.46, + "probability": 0.9629 + }, + { + "start": 1419.54, + "end": 1421.16, + "probability": 0.7146 + }, + { + "start": 1421.26, + "end": 1421.86, + "probability": 0.5699 + }, + { + "start": 1421.98, + "end": 1422.54, + "probability": 0.6979 + }, + { + "start": 1423.02, + "end": 1423.28, + "probability": 0.7062 + }, + { + "start": 1433.3, + "end": 1433.3, + "probability": 0.0836 + }, + { + "start": 1433.3, + "end": 1433.3, + "probability": 0.0382 + }, + { + "start": 1433.3, + "end": 1433.3, + "probability": 0.051 + }, + { + "start": 1433.3, + "end": 1433.3, + "probability": 0.1506 + }, + { + "start": 1433.3, + "end": 1433.3, + "probability": 0.1186 + }, + { + "start": 1433.3, + "end": 1433.48, + "probability": 0.0688 + }, + { + "start": 1446.46, + "end": 1452.4, + "probability": 0.41 + }, + { + "start": 1455.66, + "end": 1457.9, + "probability": 0.8055 + }, + { + "start": 1458.02, + "end": 1459.41, + "probability": 0.725 + }, + { + "start": 1460.38, + "end": 1463.24, + "probability": 0.9639 + }, + { + "start": 1464.64, + "end": 1465.0, + "probability": 0.0007 + }, + { + "start": 1465.52, + "end": 1468.84, + "probability": 0.9613 + }, + { + "start": 1476.44, + "end": 1477.18, + "probability": 0.8473 + }, + { + "start": 1477.26, + "end": 1480.0, + "probability": 0.9712 + }, + { + "start": 1481.18, + "end": 1488.14, + "probability": 0.9856 + }, + { + "start": 1488.28, + "end": 1488.84, + "probability": 0.9392 + }, + { + "start": 1488.96, + "end": 1490.12, + "probability": 0.9402 + }, + { + "start": 1490.16, + "end": 1493.14, + "probability": 0.9816 + }, + { + "start": 1494.0, + "end": 1496.76, + "probability": 0.5425 + }, + { + "start": 1497.54, + "end": 1497.84, + "probability": 0.4471 + }, + { + "start": 1497.96, + "end": 1498.4, + "probability": 0.652 + }, + { + "start": 1498.86, + "end": 1502.04, + "probability": 0.983 + }, + { + "start": 1502.04, + "end": 1505.56, + "probability": 0.9995 + }, + { + "start": 1506.72, + "end": 1510.16, + "probability": 0.8751 + }, + { + "start": 1510.72, + "end": 1514.58, + "probability": 0.9556 + }, + { + "start": 1515.42, + "end": 1516.65, + "probability": 0.9863 + }, + { + "start": 1516.76, + "end": 1519.4, + "probability": 0.9995 + }, + { + "start": 1520.68, + "end": 1523.0, + "probability": 0.6216 + }, + { + "start": 1524.14, + "end": 1525.44, + "probability": 0.53 + }, + { + "start": 1525.5, + "end": 1526.27, + "probability": 0.9214 + }, + { + "start": 1526.46, + "end": 1529.26, + "probability": 0.7796 + }, + { + "start": 1529.36, + "end": 1531.22, + "probability": 0.7406 + }, + { + "start": 1531.74, + "end": 1533.62, + "probability": 0.9707 + }, + { + "start": 1533.68, + "end": 1534.92, + "probability": 0.7449 + }, + { + "start": 1535.4, + "end": 1538.66, + "probability": 0.7324 + }, + { + "start": 1539.38, + "end": 1540.58, + "probability": 0.7477 + }, + { + "start": 1540.64, + "end": 1541.62, + "probability": 0.8082 + }, + { + "start": 1541.68, + "end": 1543.84, + "probability": 0.8124 + }, + { + "start": 1544.5, + "end": 1546.5, + "probability": 0.9267 + }, + { + "start": 1547.32, + "end": 1549.26, + "probability": 0.7498 + }, + { + "start": 1550.54, + "end": 1551.44, + "probability": 0.6368 + }, + { + "start": 1553.73, + "end": 1557.04, + "probability": 0.7258 + }, + { + "start": 1557.54, + "end": 1562.22, + "probability": 0.9865 + }, + { + "start": 1562.36, + "end": 1562.94, + "probability": 0.5795 + }, + { + "start": 1563.68, + "end": 1566.43, + "probability": 0.6447 + }, + { + "start": 1567.24, + "end": 1570.24, + "probability": 0.9926 + }, + { + "start": 1571.08, + "end": 1573.38, + "probability": 0.9948 + }, + { + "start": 1575.14, + "end": 1577.49, + "probability": 0.0984 + }, + { + "start": 1578.84, + "end": 1580.24, + "probability": 0.8499 + }, + { + "start": 1580.64, + "end": 1585.08, + "probability": 0.963 + }, + { + "start": 1585.76, + "end": 1586.3, + "probability": 0.6449 + }, + { + "start": 1586.34, + "end": 1587.06, + "probability": 0.8388 + }, + { + "start": 1587.22, + "end": 1589.86, + "probability": 0.95 + }, + { + "start": 1589.98, + "end": 1592.19, + "probability": 0.989 + }, + { + "start": 1593.04, + "end": 1598.22, + "probability": 0.8562 + }, + { + "start": 1598.9, + "end": 1601.36, + "probability": 0.8234 + }, + { + "start": 1602.76, + "end": 1603.9, + "probability": 0.9673 + }, + { + "start": 1604.46, + "end": 1605.64, + "probability": 0.9105 + }, + { + "start": 1606.44, + "end": 1609.02, + "probability": 0.927 + }, + { + "start": 1609.84, + "end": 1613.12, + "probability": 0.8049 + }, + { + "start": 1613.6, + "end": 1615.85, + "probability": 0.8863 + }, + { + "start": 1616.22, + "end": 1620.82, + "probability": 0.9717 + }, + { + "start": 1620.88, + "end": 1622.58, + "probability": 0.9173 + }, + { + "start": 1622.6, + "end": 1623.98, + "probability": 0.875 + }, + { + "start": 1624.02, + "end": 1625.86, + "probability": 0.9852 + }, + { + "start": 1626.0, + "end": 1627.72, + "probability": 0.9893 + }, + { + "start": 1627.72, + "end": 1629.22, + "probability": 0.6381 + }, + { + "start": 1629.3, + "end": 1631.76, + "probability": 0.7309 + }, + { + "start": 1633.04, + "end": 1634.43, + "probability": 0.7298 + }, + { + "start": 1635.9, + "end": 1638.74, + "probability": 0.8774 + }, + { + "start": 1639.5, + "end": 1644.62, + "probability": 0.9902 + }, + { + "start": 1645.3, + "end": 1645.96, + "probability": 0.0068 + }, + { + "start": 1646.72, + "end": 1650.14, + "probability": 0.8657 + }, + { + "start": 1650.82, + "end": 1652.76, + "probability": 0.8854 + }, + { + "start": 1652.84, + "end": 1654.86, + "probability": 0.5193 + }, + { + "start": 1655.06, + "end": 1658.62, + "probability": 0.9963 + }, + { + "start": 1658.62, + "end": 1662.28, + "probability": 0.9525 + }, + { + "start": 1662.8, + "end": 1666.3, + "probability": 0.96 + }, + { + "start": 1666.76, + "end": 1669.68, + "probability": 0.978 + }, + { + "start": 1669.96, + "end": 1675.48, + "probability": 0.9745 + }, + { + "start": 1675.92, + "end": 1676.54, + "probability": 0.4988 + }, + { + "start": 1676.68, + "end": 1679.62, + "probability": 0.9571 + }, + { + "start": 1679.62, + "end": 1683.84, + "probability": 0.9743 + }, + { + "start": 1684.34, + "end": 1686.9, + "probability": 0.9647 + }, + { + "start": 1687.16, + "end": 1688.3, + "probability": 0.9335 + }, + { + "start": 1688.4, + "end": 1689.82, + "probability": 0.7841 + }, + { + "start": 1690.52, + "end": 1695.6, + "probability": 0.9656 + }, + { + "start": 1695.88, + "end": 1697.58, + "probability": 0.6272 + }, + { + "start": 1697.58, + "end": 1700.94, + "probability": 0.9359 + }, + { + "start": 1701.46, + "end": 1705.02, + "probability": 0.8285 + }, + { + "start": 1705.02, + "end": 1708.04, + "probability": 0.9881 + }, + { + "start": 1708.1, + "end": 1710.04, + "probability": 0.9373 + }, + { + "start": 1710.04, + "end": 1714.28, + "probability": 0.9421 + }, + { + "start": 1714.82, + "end": 1716.56, + "probability": 0.5584 + }, + { + "start": 1717.22, + "end": 1721.82, + "probability": 0.534 + }, + { + "start": 1721.86, + "end": 1724.82, + "probability": 0.8224 + }, + { + "start": 1725.06, + "end": 1725.64, + "probability": 0.6299 + }, + { + "start": 1726.12, + "end": 1728.2, + "probability": 0.8262 + }, + { + "start": 1728.28, + "end": 1734.32, + "probability": 0.9547 + }, + { + "start": 1734.6, + "end": 1737.0, + "probability": 0.0855 + }, + { + "start": 1737.42, + "end": 1738.82, + "probability": 0.9502 + }, + { + "start": 1739.0, + "end": 1740.06, + "probability": 0.6239 + }, + { + "start": 1740.22, + "end": 1741.42, + "probability": 0.7041 + }, + { + "start": 1741.64, + "end": 1744.48, + "probability": 0.6255 + }, + { + "start": 1744.56, + "end": 1745.16, + "probability": 0.6908 + }, + { + "start": 1745.84, + "end": 1746.52, + "probability": 0.8631 + }, + { + "start": 1750.5, + "end": 1751.48, + "probability": 0.0005 + }, + { + "start": 1754.18, + "end": 1755.46, + "probability": 0.0828 + }, + { + "start": 1758.09, + "end": 1760.1, + "probability": 0.7467 + }, + { + "start": 1760.22, + "end": 1763.1, + "probability": 0.82 + }, + { + "start": 1763.58, + "end": 1766.82, + "probability": 0.2347 + }, + { + "start": 1766.82, + "end": 1770.52, + "probability": 0.9572 + }, + { + "start": 1770.76, + "end": 1772.74, + "probability": 0.779 + }, + { + "start": 1774.0, + "end": 1774.64, + "probability": 0.609 + }, + { + "start": 1774.76, + "end": 1775.5, + "probability": 0.6938 + }, + { + "start": 1775.76, + "end": 1776.54, + "probability": 0.7414 + }, + { + "start": 1778.16, + "end": 1779.2, + "probability": 0.0045 + }, + { + "start": 1781.13, + "end": 1781.2, + "probability": 0.0164 + }, + { + "start": 1781.84, + "end": 1782.32, + "probability": 0.0045 + }, + { + "start": 1793.88, + "end": 1795.74, + "probability": 0.0177 + }, + { + "start": 1795.86, + "end": 1800.96, + "probability": 0.7363 + }, + { + "start": 1801.56, + "end": 1805.14, + "probability": 0.9725 + }, + { + "start": 1805.62, + "end": 1807.06, + "probability": 0.9105 + }, + { + "start": 1807.42, + "end": 1808.58, + "probability": 0.7131 + }, + { + "start": 1809.2, + "end": 1811.02, + "probability": 0.8514 + }, + { + "start": 1811.1, + "end": 1811.44, + "probability": 0.8047 + }, + { + "start": 1819.0, + "end": 1821.56, + "probability": 0.4554 + }, + { + "start": 1825.04, + "end": 1825.46, + "probability": 0.3624 + }, + { + "start": 1825.94, + "end": 1829.34, + "probability": 0.7824 + }, + { + "start": 1829.5, + "end": 1829.94, + "probability": 0.622 + }, + { + "start": 1830.12, + "end": 1831.24, + "probability": 0.8662 + }, + { + "start": 1831.56, + "end": 1832.78, + "probability": 0.8545 + }, + { + "start": 1834.34, + "end": 1836.3, + "probability": 0.9421 + }, + { + "start": 1836.66, + "end": 1839.52, + "probability": 0.9878 + }, + { + "start": 1840.62, + "end": 1841.08, + "probability": 0.6257 + }, + { + "start": 1841.4, + "end": 1847.18, + "probability": 0.9984 + }, + { + "start": 1848.22, + "end": 1853.78, + "probability": 0.9894 + }, + { + "start": 1855.08, + "end": 1859.72, + "probability": 0.9883 + }, + { + "start": 1861.47, + "end": 1864.38, + "probability": 0.8332 + }, + { + "start": 1865.22, + "end": 1865.66, + "probability": 0.8828 + }, + { + "start": 1866.42, + "end": 1868.06, + "probability": 0.871 + }, + { + "start": 1868.74, + "end": 1869.54, + "probability": 0.7481 + }, + { + "start": 1870.54, + "end": 1873.02, + "probability": 0.9833 + }, + { + "start": 1873.72, + "end": 1875.38, + "probability": 0.5588 + }, + { + "start": 1875.46, + "end": 1876.92, + "probability": 0.6296 + }, + { + "start": 1877.02, + "end": 1878.04, + "probability": 0.4927 + }, + { + "start": 1878.08, + "end": 1879.18, + "probability": 0.9075 + }, + { + "start": 1879.22, + "end": 1879.84, + "probability": 0.8159 + }, + { + "start": 1879.9, + "end": 1880.66, + "probability": 0.9604 + }, + { + "start": 1880.72, + "end": 1881.6, + "probability": 0.873 + }, + { + "start": 1882.38, + "end": 1884.2, + "probability": 0.9135 + }, + { + "start": 1884.42, + "end": 1889.14, + "probability": 0.4911 + }, + { + "start": 1889.18, + "end": 1890.77, + "probability": 0.8377 + }, + { + "start": 1892.52, + "end": 1896.56, + "probability": 0.8492 + }, + { + "start": 1896.88, + "end": 1899.44, + "probability": 0.9845 + }, + { + "start": 1899.44, + "end": 1902.3, + "probability": 0.9119 + }, + { + "start": 1903.42, + "end": 1907.16, + "probability": 0.9331 + }, + { + "start": 1907.48, + "end": 1912.98, + "probability": 0.9277 + }, + { + "start": 1913.46, + "end": 1914.92, + "probability": 0.8312 + }, + { + "start": 1916.59, + "end": 1920.62, + "probability": 0.9897 + }, + { + "start": 1920.8, + "end": 1925.24, + "probability": 0.9358 + }, + { + "start": 1925.26, + "end": 1928.54, + "probability": 0.998 + }, + { + "start": 1928.62, + "end": 1929.36, + "probability": 0.9799 + }, + { + "start": 1929.4, + "end": 1929.58, + "probability": 0.7668 + }, + { + "start": 1931.06, + "end": 1933.14, + "probability": 0.9048 + }, + { + "start": 1934.78, + "end": 1935.16, + "probability": 0.4436 + }, + { + "start": 1935.32, + "end": 1938.44, + "probability": 0.7298 + }, + { + "start": 1939.42, + "end": 1942.78, + "probability": 0.6244 + }, + { + "start": 1942.86, + "end": 1944.6, + "probability": 0.1165 + }, + { + "start": 1944.82, + "end": 1946.04, + "probability": 0.9455 + }, + { + "start": 1946.58, + "end": 1950.66, + "probability": 0.9929 + }, + { + "start": 1965.32, + "end": 1966.34, + "probability": 0.7492 + }, + { + "start": 1966.5, + "end": 1966.96, + "probability": 0.6553 + }, + { + "start": 1967.06, + "end": 1968.22, + "probability": 0.9237 + }, + { + "start": 1968.66, + "end": 1975.94, + "probability": 0.9842 + }, + { + "start": 1976.14, + "end": 1980.98, + "probability": 0.9918 + }, + { + "start": 1980.98, + "end": 1984.32, + "probability": 0.9966 + }, + { + "start": 1985.36, + "end": 1986.82, + "probability": 0.7462 + }, + { + "start": 1987.06, + "end": 1989.82, + "probability": 0.9933 + }, + { + "start": 1989.82, + "end": 1992.52, + "probability": 0.9934 + }, + { + "start": 1992.58, + "end": 1995.16, + "probability": 0.6365 + }, + { + "start": 1995.9, + "end": 1997.36, + "probability": 0.1761 + }, + { + "start": 1998.28, + "end": 2000.54, + "probability": 0.8262 + }, + { + "start": 2000.76, + "end": 2003.9, + "probability": 0.9634 + }, + { + "start": 2003.9, + "end": 2007.38, + "probability": 0.9875 + }, + { + "start": 2007.86, + "end": 2010.48, + "probability": 0.9048 + }, + { + "start": 2010.54, + "end": 2012.82, + "probability": 0.9749 + }, + { + "start": 2013.5, + "end": 2017.24, + "probability": 0.9849 + }, + { + "start": 2018.86, + "end": 2021.82, + "probability": 0.9951 + }, + { + "start": 2021.82, + "end": 2024.32, + "probability": 0.959 + }, + { + "start": 2025.18, + "end": 2027.38, + "probability": 0.9973 + }, + { + "start": 2027.38, + "end": 2030.98, + "probability": 0.989 + }, + { + "start": 2031.72, + "end": 2033.58, + "probability": 0.6919 + }, + { + "start": 2033.99, + "end": 2035.0, + "probability": 0.8015 + }, + { + "start": 2036.46, + "end": 2039.26, + "probability": 0.9281 + }, + { + "start": 2039.26, + "end": 2041.94, + "probability": 0.9917 + }, + { + "start": 2042.0, + "end": 2045.58, + "probability": 0.9587 + }, + { + "start": 2046.22, + "end": 2046.22, + "probability": 0.5241 + }, + { + "start": 2046.22, + "end": 2047.14, + "probability": 0.3702 + }, + { + "start": 2047.14, + "end": 2047.56, + "probability": 0.741 + }, + { + "start": 2047.66, + "end": 2048.7, + "probability": 0.8682 + }, + { + "start": 2048.82, + "end": 2051.14, + "probability": 0.9757 + }, + { + "start": 2051.92, + "end": 2055.82, + "probability": 0.9743 + }, + { + "start": 2055.82, + "end": 2056.4, + "probability": 0.8515 + }, + { + "start": 2056.48, + "end": 2057.34, + "probability": 0.9034 + }, + { + "start": 2057.96, + "end": 2058.86, + "probability": 0.741 + }, + { + "start": 2059.4, + "end": 2060.04, + "probability": 0.5367 + }, + { + "start": 2060.14, + "end": 2064.1, + "probability": 0.9934 + }, + { + "start": 2065.0, + "end": 2068.02, + "probability": 0.7744 + }, + { + "start": 2068.02, + "end": 2070.62, + "probability": 0.9064 + }, + { + "start": 2070.8, + "end": 2072.42, + "probability": 0.9623 + }, + { + "start": 2072.52, + "end": 2074.6, + "probability": 0.9819 + }, + { + "start": 2076.1, + "end": 2079.84, + "probability": 0.9769 + }, + { + "start": 2080.54, + "end": 2080.98, + "probability": 0.9456 + }, + { + "start": 2081.06, + "end": 2084.6, + "probability": 0.9348 + }, + { + "start": 2084.96, + "end": 2087.94, + "probability": 0.9932 + }, + { + "start": 2088.22, + "end": 2088.76, + "probability": 0.4777 + }, + { + "start": 2089.32, + "end": 2089.88, + "probability": 0.9107 + }, + { + "start": 2090.7, + "end": 2092.0, + "probability": 0.4509 + }, + { + "start": 2092.32, + "end": 2093.16, + "probability": 0.64 + }, + { + "start": 2093.22, + "end": 2097.7, + "probability": 0.991 + }, + { + "start": 2097.8, + "end": 2100.9, + "probability": 0.9969 + }, + { + "start": 2101.72, + "end": 2105.0, + "probability": 0.6065 + }, + { + "start": 2105.08, + "end": 2110.66, + "probability": 0.9927 + }, + { + "start": 2110.66, + "end": 2117.22, + "probability": 0.8928 + }, + { + "start": 2118.66, + "end": 2120.06, + "probability": 0.4742 + }, + { + "start": 2120.14, + "end": 2120.88, + "probability": 0.8337 + }, + { + "start": 2121.02, + "end": 2124.6, + "probability": 0.9897 + }, + { + "start": 2124.7, + "end": 2129.78, + "probability": 0.8619 + }, + { + "start": 2129.78, + "end": 2132.92, + "probability": 0.9888 + }, + { + "start": 2133.02, + "end": 2135.22, + "probability": 0.8369 + }, + { + "start": 2136.07, + "end": 2142.02, + "probability": 0.8535 + }, + { + "start": 2142.2, + "end": 2142.56, + "probability": 0.8109 + }, + { + "start": 2143.36, + "end": 2143.94, + "probability": 0.8232 + }, + { + "start": 2144.78, + "end": 2148.04, + "probability": 0.9518 + }, + { + "start": 2148.12, + "end": 2149.6, + "probability": 0.877 + }, + { + "start": 2149.62, + "end": 2153.3, + "probability": 0.9744 + }, + { + "start": 2153.3, + "end": 2155.7, + "probability": 0.9993 + }, + { + "start": 2156.62, + "end": 2157.9, + "probability": 0.7786 + }, + { + "start": 2158.1, + "end": 2160.96, + "probability": 0.732 + }, + { + "start": 2161.02, + "end": 2162.26, + "probability": 0.8905 + }, + { + "start": 2163.08, + "end": 2165.56, + "probability": 0.9886 + }, + { + "start": 2166.16, + "end": 2170.78, + "probability": 0.9489 + }, + { + "start": 2171.18, + "end": 2173.32, + "probability": 0.9018 + }, + { + "start": 2173.38, + "end": 2176.5, + "probability": 0.7537 + }, + { + "start": 2177.44, + "end": 2182.02, + "probability": 0.9228 + }, + { + "start": 2182.06, + "end": 2182.7, + "probability": 0.783 + }, + { + "start": 2182.72, + "end": 2183.46, + "probability": 0.7439 + }, + { + "start": 2183.56, + "end": 2184.92, + "probability": 0.7398 + }, + { + "start": 2185.18, + "end": 2185.38, + "probability": 0.8076 + }, + { + "start": 2186.9, + "end": 2191.3, + "probability": 0.8506 + }, + { + "start": 2192.62, + "end": 2194.68, + "probability": 0.4788 + }, + { + "start": 2195.26, + "end": 2197.14, + "probability": 0.9913 + }, + { + "start": 2197.44, + "end": 2199.94, + "probability": 0.4812 + }, + { + "start": 2200.0, + "end": 2201.68, + "probability": 0.1504 + }, + { + "start": 2202.22, + "end": 2204.36, + "probability": 0.9324 + }, + { + "start": 2206.18, + "end": 2206.92, + "probability": 0.5663 + }, + { + "start": 2207.0, + "end": 2207.54, + "probability": 0.6259 + }, + { + "start": 2207.62, + "end": 2208.3, + "probability": 0.8206 + }, + { + "start": 2210.16, + "end": 2210.98, + "probability": 0.0082 + }, + { + "start": 2217.68, + "end": 2218.46, + "probability": 0.0661 + }, + { + "start": 2223.1, + "end": 2223.48, + "probability": 0.7294 + }, + { + "start": 2223.54, + "end": 2225.34, + "probability": 0.6345 + }, + { + "start": 2225.46, + "end": 2226.06, + "probability": 0.711 + }, + { + "start": 2226.14, + "end": 2226.92, + "probability": 0.6789 + }, + { + "start": 2227.5, + "end": 2229.96, + "probability": 0.9379 + }, + { + "start": 2230.08, + "end": 2232.2, + "probability": 0.9892 + }, + { + "start": 2232.42, + "end": 2234.06, + "probability": 0.8586 + }, + { + "start": 2234.74, + "end": 2235.46, + "probability": 0.342 + }, + { + "start": 2250.28, + "end": 2250.38, + "probability": 0.0714 + }, + { + "start": 2250.38, + "end": 2250.84, + "probability": 0.3013 + }, + { + "start": 2252.18, + "end": 2254.3, + "probability": 0.0712 + }, + { + "start": 2255.48, + "end": 2255.64, + "probability": 0.0147 + }, + { + "start": 2255.64, + "end": 2255.64, + "probability": 0.1012 + }, + { + "start": 2255.64, + "end": 2258.68, + "probability": 0.4591 + }, + { + "start": 2260.18, + "end": 2261.4, + "probability": 0.7171 + }, + { + "start": 2262.52, + "end": 2265.22, + "probability": 0.7285 + }, + { + "start": 2265.3, + "end": 2269.38, + "probability": 0.9603 + }, + { + "start": 2269.38, + "end": 2272.66, + "probability": 0.9968 + }, + { + "start": 2273.68, + "end": 2275.22, + "probability": 0.9919 + }, + { + "start": 2301.96, + "end": 2303.82, + "probability": 0.6192 + }, + { + "start": 2305.22, + "end": 2310.1, + "probability": 0.847 + }, + { + "start": 2310.16, + "end": 2315.04, + "probability": 0.8977 + }, + { + "start": 2316.18, + "end": 2317.18, + "probability": 0.7497 + }, + { + "start": 2317.42, + "end": 2321.28, + "probability": 0.9362 + }, + { + "start": 2321.28, + "end": 2325.96, + "probability": 0.9974 + }, + { + "start": 2326.9, + "end": 2330.34, + "probability": 0.9955 + }, + { + "start": 2330.34, + "end": 2333.92, + "probability": 0.9342 + }, + { + "start": 2334.0, + "end": 2337.5, + "probability": 0.98 + }, + { + "start": 2338.88, + "end": 2344.04, + "probability": 0.9923 + }, + { + "start": 2344.7, + "end": 2346.36, + "probability": 0.9954 + }, + { + "start": 2347.12, + "end": 2351.24, + "probability": 0.8726 + }, + { + "start": 2351.24, + "end": 2356.14, + "probability": 0.9949 + }, + { + "start": 2356.82, + "end": 2361.02, + "probability": 0.9975 + }, + { + "start": 2362.06, + "end": 2366.16, + "probability": 0.9984 + }, + { + "start": 2366.92, + "end": 2371.18, + "probability": 0.9175 + }, + { + "start": 2371.21, + "end": 2376.18, + "probability": 0.9985 + }, + { + "start": 2377.22, + "end": 2382.42, + "probability": 0.9925 + }, + { + "start": 2382.42, + "end": 2388.78, + "probability": 0.9988 + }, + { + "start": 2389.46, + "end": 2394.2, + "probability": 0.9856 + }, + { + "start": 2394.88, + "end": 2395.94, + "probability": 0.8502 + }, + { + "start": 2396.18, + "end": 2401.28, + "probability": 0.954 + }, + { + "start": 2401.86, + "end": 2406.02, + "probability": 0.9861 + }, + { + "start": 2406.02, + "end": 2409.2, + "probability": 0.9941 + }, + { + "start": 2409.92, + "end": 2413.46, + "probability": 0.9863 + }, + { + "start": 2413.46, + "end": 2418.84, + "probability": 0.9975 + }, + { + "start": 2419.38, + "end": 2422.62, + "probability": 0.9986 + }, + { + "start": 2423.28, + "end": 2428.62, + "probability": 0.7246 + }, + { + "start": 2429.66, + "end": 2435.42, + "probability": 0.901 + }, + { + "start": 2435.42, + "end": 2441.26, + "probability": 0.9941 + }, + { + "start": 2441.26, + "end": 2447.54, + "probability": 0.9888 + }, + { + "start": 2448.42, + "end": 2450.94, + "probability": 0.9747 + }, + { + "start": 2450.94, + "end": 2454.3, + "probability": 0.9759 + }, + { + "start": 2454.4, + "end": 2456.5, + "probability": 0.8586 + }, + { + "start": 2457.12, + "end": 2458.98, + "probability": 0.7208 + }, + { + "start": 2459.26, + "end": 2459.56, + "probability": 0.8694 + }, + { + "start": 2463.68, + "end": 2467.26, + "probability": 0.9596 + }, + { + "start": 2468.22, + "end": 2470.61, + "probability": 0.9046 + }, + { + "start": 2471.26, + "end": 2473.5, + "probability": 0.8994 + }, + { + "start": 2473.74, + "end": 2475.7, + "probability": 0.7673 + }, + { + "start": 2483.96, + "end": 2485.16, + "probability": 0.4816 + }, + { + "start": 2486.58, + "end": 2488.74, + "probability": 0.8739 + }, + { + "start": 2492.5, + "end": 2495.5, + "probability": 0.6764 + }, + { + "start": 2498.7, + "end": 2500.58, + "probability": 0.7726 + }, + { + "start": 2502.52, + "end": 2505.9, + "probability": 0.8535 + }, + { + "start": 2506.0, + "end": 2507.98, + "probability": 0.9859 + }, + { + "start": 2508.66, + "end": 2510.22, + "probability": 0.8699 + }, + { + "start": 2510.28, + "end": 2511.18, + "probability": 0.8446 + }, + { + "start": 2512.1, + "end": 2515.88, + "probability": 0.9864 + }, + { + "start": 2517.04, + "end": 2520.8, + "probability": 0.7131 + }, + { + "start": 2521.1, + "end": 2521.9, + "probability": 0.9087 + }, + { + "start": 2522.6, + "end": 2528.68, + "probability": 0.9748 + }, + { + "start": 2528.84, + "end": 2529.68, + "probability": 0.6852 + }, + { + "start": 2530.6, + "end": 2532.34, + "probability": 0.8942 + }, + { + "start": 2533.04, + "end": 2535.4, + "probability": 0.6632 + }, + { + "start": 2535.56, + "end": 2536.74, + "probability": 0.9629 + }, + { + "start": 2537.58, + "end": 2541.8, + "probability": 0.9874 + }, + { + "start": 2541.88, + "end": 2543.72, + "probability": 0.5629 + }, + { + "start": 2544.34, + "end": 2548.26, + "probability": 0.7121 + }, + { + "start": 2548.82, + "end": 2551.74, + "probability": 0.9953 + }, + { + "start": 2551.84, + "end": 2555.34, + "probability": 0.9946 + }, + { + "start": 2555.66, + "end": 2560.7, + "probability": 0.8799 + }, + { + "start": 2561.48, + "end": 2562.49, + "probability": 0.4548 + }, + { + "start": 2562.88, + "end": 2563.37, + "probability": 0.0884 + }, + { + "start": 2563.78, + "end": 2566.14, + "probability": 0.428 + }, + { + "start": 2566.88, + "end": 2573.18, + "probability": 0.6805 + }, + { + "start": 2573.72, + "end": 2574.02, + "probability": 0.0608 + }, + { + "start": 2574.02, + "end": 2575.06, + "probability": 0.876 + }, + { + "start": 2575.22, + "end": 2583.12, + "probability": 0.9156 + }, + { + "start": 2583.5, + "end": 2588.24, + "probability": 0.7977 + }, + { + "start": 2588.36, + "end": 2589.64, + "probability": 0.8823 + }, + { + "start": 2589.92, + "end": 2593.12, + "probability": 0.4994 + }, + { + "start": 2593.12, + "end": 2593.56, + "probability": 0.3044 + }, + { + "start": 2593.9, + "end": 2595.04, + "probability": 0.7628 + }, + { + "start": 2595.34, + "end": 2596.16, + "probability": 0.9585 + }, + { + "start": 2597.08, + "end": 2598.12, + "probability": 0.9345 + }, + { + "start": 2598.16, + "end": 2603.18, + "probability": 0.9865 + }, + { + "start": 2604.22, + "end": 2606.16, + "probability": 0.704 + }, + { + "start": 2606.72, + "end": 2609.22, + "probability": 0.7095 + }, + { + "start": 2609.26, + "end": 2615.44, + "probability": 0.9908 + }, + { + "start": 2615.66, + "end": 2618.41, + "probability": 0.9927 + }, + { + "start": 2618.88, + "end": 2621.54, + "probability": 0.994 + }, + { + "start": 2621.94, + "end": 2625.84, + "probability": 0.9941 + }, + { + "start": 2626.06, + "end": 2627.38, + "probability": 0.7866 + }, + { + "start": 2627.72, + "end": 2630.42, + "probability": 0.7549 + }, + { + "start": 2630.76, + "end": 2633.38, + "probability": 0.8364 + }, + { + "start": 2633.88, + "end": 2637.8, + "probability": 0.9041 + }, + { + "start": 2638.26, + "end": 2639.86, + "probability": 0.9375 + }, + { + "start": 2640.0, + "end": 2641.12, + "probability": 0.9704 + }, + { + "start": 2641.5, + "end": 2644.06, + "probability": 0.9005 + }, + { + "start": 2644.52, + "end": 2645.42, + "probability": 0.8719 + }, + { + "start": 2645.66, + "end": 2645.9, + "probability": 0.5046 + }, + { + "start": 2646.0, + "end": 2648.04, + "probability": 0.9358 + }, + { + "start": 2649.02, + "end": 2650.58, + "probability": 0.7339 + }, + { + "start": 2651.58, + "end": 2653.62, + "probability": 0.9941 + }, + { + "start": 2654.54, + "end": 2656.46, + "probability": 0.9945 + }, + { + "start": 2657.34, + "end": 2660.67, + "probability": 0.9721 + }, + { + "start": 2661.92, + "end": 2663.24, + "probability": 0.7017 + }, + { + "start": 2664.08, + "end": 2667.76, + "probability": 0.9271 + }, + { + "start": 2668.5, + "end": 2670.46, + "probability": 0.9691 + }, + { + "start": 2671.72, + "end": 2672.56, + "probability": 0.9701 + }, + { + "start": 2673.72, + "end": 2676.7, + "probability": 0.9899 + }, + { + "start": 2677.3, + "end": 2679.12, + "probability": 0.9961 + }, + { + "start": 2680.36, + "end": 2680.78, + "probability": 0.6286 + }, + { + "start": 2681.26, + "end": 2685.54, + "probability": 0.9763 + }, + { + "start": 2685.64, + "end": 2686.6, + "probability": 0.4185 + }, + { + "start": 2687.22, + "end": 2689.94, + "probability": 0.928 + }, + { + "start": 2690.62, + "end": 2692.74, + "probability": 0.9577 + }, + { + "start": 2692.82, + "end": 2694.78, + "probability": 0.8204 + }, + { + "start": 2695.4, + "end": 2696.36, + "probability": 0.8022 + }, + { + "start": 2696.42, + "end": 2697.84, + "probability": 0.896 + }, + { + "start": 2698.62, + "end": 2699.92, + "probability": 0.9434 + }, + { + "start": 2700.48, + "end": 2703.82, + "probability": 0.9494 + }, + { + "start": 2704.38, + "end": 2707.82, + "probability": 0.9686 + }, + { + "start": 2708.58, + "end": 2710.74, + "probability": 0.998 + }, + { + "start": 2710.98, + "end": 2716.4, + "probability": 0.9702 + }, + { + "start": 2716.86, + "end": 2720.56, + "probability": 0.8743 + }, + { + "start": 2721.0, + "end": 2721.62, + "probability": 0.8514 + }, + { + "start": 2721.8, + "end": 2722.46, + "probability": 0.449 + }, + { + "start": 2722.9, + "end": 2725.16, + "probability": 0.9925 + }, + { + "start": 2726.58, + "end": 2730.14, + "probability": 0.7408 + }, + { + "start": 2730.56, + "end": 2730.56, + "probability": 0.1774 + }, + { + "start": 2730.74, + "end": 2732.28, + "probability": 0.8035 + }, + { + "start": 2732.98, + "end": 2736.24, + "probability": 0.9785 + }, + { + "start": 2736.24, + "end": 2739.3, + "probability": 0.3285 + }, + { + "start": 2739.82, + "end": 2740.86, + "probability": 0.885 + }, + { + "start": 2741.46, + "end": 2745.8, + "probability": 0.9925 + }, + { + "start": 2746.28, + "end": 2746.66, + "probability": 0.4808 + }, + { + "start": 2746.82, + "end": 2747.66, + "probability": 0.9167 + }, + { + "start": 2748.42, + "end": 2752.72, + "probability": 0.9629 + }, + { + "start": 2753.0, + "end": 2753.74, + "probability": 0.492 + }, + { + "start": 2754.5, + "end": 2758.66, + "probability": 0.9591 + }, + { + "start": 2759.0, + "end": 2760.9, + "probability": 0.9266 + }, + { + "start": 2761.8, + "end": 2764.46, + "probability": 0.7359 + }, + { + "start": 2764.54, + "end": 2764.68, + "probability": 0.6652 + }, + { + "start": 2764.9, + "end": 2765.18, + "probability": 0.7081 + }, + { + "start": 2765.3, + "end": 2766.14, + "probability": 0.7276 + }, + { + "start": 2766.6, + "end": 2770.3, + "probability": 0.9632 + }, + { + "start": 2770.72, + "end": 2771.46, + "probability": 0.9707 + }, + { + "start": 2771.84, + "end": 2777.58, + "probability": 0.9863 + }, + { + "start": 2777.88, + "end": 2780.82, + "probability": 0.9856 + }, + { + "start": 2781.54, + "end": 2783.6, + "probability": 0.6612 + }, + { + "start": 2783.62, + "end": 2785.9, + "probability": 0.7686 + }, + { + "start": 2791.9, + "end": 2792.86, + "probability": 0.9821 + }, + { + "start": 2802.62, + "end": 2803.66, + "probability": 0.5093 + }, + { + "start": 2804.72, + "end": 2804.72, + "probability": 0.3585 + }, + { + "start": 2804.72, + "end": 2805.66, + "probability": 0.9263 + }, + { + "start": 2805.84, + "end": 2806.12, + "probability": 0.8397 + }, + { + "start": 2806.22, + "end": 2808.86, + "probability": 0.9897 + }, + { + "start": 2809.3, + "end": 2811.88, + "probability": 0.9379 + }, + { + "start": 2812.04, + "end": 2812.46, + "probability": 0.971 + }, + { + "start": 2813.38, + "end": 2814.88, + "probability": 0.9561 + }, + { + "start": 2815.38, + "end": 2819.86, + "probability": 0.9533 + }, + { + "start": 2819.94, + "end": 2820.52, + "probability": 0.6913 + }, + { + "start": 2822.08, + "end": 2822.8, + "probability": 0.9028 + }, + { + "start": 2823.02, + "end": 2823.38, + "probability": 0.875 + }, + { + "start": 2823.48, + "end": 2825.06, + "probability": 0.9793 + }, + { + "start": 2825.28, + "end": 2825.72, + "probability": 0.8603 + }, + { + "start": 2825.96, + "end": 2827.7, + "probability": 0.9926 + }, + { + "start": 2828.74, + "end": 2829.48, + "probability": 0.9462 + }, + { + "start": 2829.58, + "end": 2830.98, + "probability": 0.9425 + }, + { + "start": 2831.02, + "end": 2836.3, + "probability": 0.9956 + }, + { + "start": 2837.02, + "end": 2838.22, + "probability": 0.88 + }, + { + "start": 2838.54, + "end": 2841.1, + "probability": 0.9856 + }, + { + "start": 2841.84, + "end": 2844.5, + "probability": 0.9847 + }, + { + "start": 2845.26, + "end": 2846.38, + "probability": 0.9702 + }, + { + "start": 2846.52, + "end": 2847.52, + "probability": 0.6134 + }, + { + "start": 2847.74, + "end": 2848.38, + "probability": 0.823 + }, + { + "start": 2848.5, + "end": 2851.18, + "probability": 0.9741 + }, + { + "start": 2852.22, + "end": 2855.26, + "probability": 0.793 + }, + { + "start": 2856.0, + "end": 2860.7, + "probability": 0.998 + }, + { + "start": 2860.88, + "end": 2861.92, + "probability": 0.9596 + }, + { + "start": 2861.96, + "end": 2864.76, + "probability": 0.9513 + }, + { + "start": 2865.48, + "end": 2866.84, + "probability": 0.9751 + }, + { + "start": 2867.56, + "end": 2869.34, + "probability": 0.9922 + }, + { + "start": 2869.88, + "end": 2871.46, + "probability": 0.9567 + }, + { + "start": 2871.52, + "end": 2874.01, + "probability": 0.9873 + }, + { + "start": 2874.52, + "end": 2876.84, + "probability": 0.9601 + }, + { + "start": 2877.54, + "end": 2879.28, + "probability": 0.9091 + }, + { + "start": 2879.42, + "end": 2880.54, + "probability": 0.9314 + }, + { + "start": 2880.66, + "end": 2883.6, + "probability": 0.9177 + }, + { + "start": 2883.6, + "end": 2887.48, + "probability": 0.9688 + }, + { + "start": 2888.22, + "end": 2892.92, + "probability": 0.9991 + }, + { + "start": 2893.48, + "end": 2895.2, + "probability": 0.9822 + }, + { + "start": 2895.86, + "end": 2899.88, + "probability": 0.97 + }, + { + "start": 2900.5, + "end": 2902.25, + "probability": 0.9958 + }, + { + "start": 2902.78, + "end": 2905.64, + "probability": 0.9987 + }, + { + "start": 2906.22, + "end": 2907.86, + "probability": 0.9889 + }, + { + "start": 2908.02, + "end": 2911.68, + "probability": 0.9965 + }, + { + "start": 2912.18, + "end": 2913.08, + "probability": 0.8369 + }, + { + "start": 2913.1, + "end": 2913.56, + "probability": 0.7393 + }, + { + "start": 2913.68, + "end": 2914.64, + "probability": 0.9785 + }, + { + "start": 2915.54, + "end": 2917.01, + "probability": 0.9747 + }, + { + "start": 2917.34, + "end": 2919.82, + "probability": 0.9951 + }, + { + "start": 2920.34, + "end": 2921.96, + "probability": 0.7022 + }, + { + "start": 2922.44, + "end": 2927.4, + "probability": 0.9966 + }, + { + "start": 2928.06, + "end": 2931.86, + "probability": 0.9983 + }, + { + "start": 2932.6, + "end": 2933.14, + "probability": 0.6016 + }, + { + "start": 2933.84, + "end": 2935.34, + "probability": 0.9794 + }, + { + "start": 2936.46, + "end": 2939.53, + "probability": 0.9102 + }, + { + "start": 2940.26, + "end": 2941.76, + "probability": 0.9724 + }, + { + "start": 2942.5, + "end": 2944.0, + "probability": 0.9673 + }, + { + "start": 2944.84, + "end": 2945.64, + "probability": 0.9495 + }, + { + "start": 2946.36, + "end": 2951.02, + "probability": 0.9684 + }, + { + "start": 2952.3, + "end": 2953.32, + "probability": 0.8169 + }, + { + "start": 2953.32, + "end": 2956.72, + "probability": 0.9983 + }, + { + "start": 2956.86, + "end": 2957.6, + "probability": 0.9093 + }, + { + "start": 2958.26, + "end": 2960.94, + "probability": 0.8944 + }, + { + "start": 2961.76, + "end": 2961.88, + "probability": 0.3613 + }, + { + "start": 2962.08, + "end": 2962.12, + "probability": 0.8501 + }, + { + "start": 2962.12, + "end": 2962.8, + "probability": 0.6059 + }, + { + "start": 2962.82, + "end": 2968.68, + "probability": 0.9797 + }, + { + "start": 2969.26, + "end": 2973.08, + "probability": 0.9963 + }, + { + "start": 2973.08, + "end": 2976.0, + "probability": 0.9954 + }, + { + "start": 2976.6, + "end": 2977.22, + "probability": 0.8074 + }, + { + "start": 2977.36, + "end": 2978.3, + "probability": 0.9207 + }, + { + "start": 2978.42, + "end": 2980.0, + "probability": 0.9769 + }, + { + "start": 2980.74, + "end": 2983.46, + "probability": 0.9823 + }, + { + "start": 2983.8, + "end": 2984.78, + "probability": 0.8436 + }, + { + "start": 2984.78, + "end": 2985.7, + "probability": 0.9756 + }, + { + "start": 2985.76, + "end": 2987.82, + "probability": 0.9497 + }, + { + "start": 2988.3, + "end": 2991.34, + "probability": 0.9846 + }, + { + "start": 2991.64, + "end": 2992.56, + "probability": 0.9915 + }, + { + "start": 2993.84, + "end": 2995.06, + "probability": 0.8015 + }, + { + "start": 2995.58, + "end": 2998.42, + "probability": 0.9819 + }, + { + "start": 2999.06, + "end": 3000.68, + "probability": 0.7874 + }, + { + "start": 3001.34, + "end": 3002.76, + "probability": 0.9378 + }, + { + "start": 3007.06, + "end": 3007.5, + "probability": 0.4701 + }, + { + "start": 3007.88, + "end": 3010.22, + "probability": 0.8123 + }, + { + "start": 3011.44, + "end": 3012.43, + "probability": 0.9546 + }, + { + "start": 3013.18, + "end": 3014.26, + "probability": 0.8459 + }, + { + "start": 3014.4, + "end": 3015.08, + "probability": 0.9134 + }, + { + "start": 3015.22, + "end": 3016.86, + "probability": 0.8621 + }, + { + "start": 3016.86, + "end": 3018.68, + "probability": 0.7649 + }, + { + "start": 3019.64, + "end": 3020.32, + "probability": 0.7342 + }, + { + "start": 3020.42, + "end": 3026.86, + "probability": 0.9907 + }, + { + "start": 3027.64, + "end": 3030.88, + "probability": 0.9476 + }, + { + "start": 3032.14, + "end": 3033.04, + "probability": 0.9951 + }, + { + "start": 3033.94, + "end": 3036.56, + "probability": 0.9803 + }, + { + "start": 3037.48, + "end": 3037.96, + "probability": 0.8068 + }, + { + "start": 3038.06, + "end": 3038.9, + "probability": 0.6828 + }, + { + "start": 3039.14, + "end": 3040.06, + "probability": 0.6757 + }, + { + "start": 3041.74, + "end": 3042.47, + "probability": 0.8833 + }, + { + "start": 3043.0, + "end": 3045.07, + "probability": 0.9832 + }, + { + "start": 3045.66, + "end": 3046.3, + "probability": 0.6434 + }, + { + "start": 3046.5, + "end": 3046.54, + "probability": 0.4111 + }, + { + "start": 3046.58, + "end": 3047.48, + "probability": 0.7495 + }, + { + "start": 3048.02, + "end": 3053.68, + "probability": 0.8552 + }, + { + "start": 3054.8, + "end": 3056.16, + "probability": 0.8253 + }, + { + "start": 3056.76, + "end": 3058.32, + "probability": 0.9178 + }, + { + "start": 3060.28, + "end": 3062.96, + "probability": 0.8774 + }, + { + "start": 3063.82, + "end": 3067.56, + "probability": 0.9963 + }, + { + "start": 3068.24, + "end": 3072.7, + "probability": 0.7599 + }, + { + "start": 3072.76, + "end": 3076.12, + "probability": 0.9976 + }, + { + "start": 3076.54, + "end": 3079.62, + "probability": 0.9969 + }, + { + "start": 3082.14, + "end": 3084.76, + "probability": 0.9325 + }, + { + "start": 3085.22, + "end": 3086.8, + "probability": 0.9875 + }, + { + "start": 3087.54, + "end": 3092.5, + "probability": 0.9978 + }, + { + "start": 3092.5, + "end": 3095.12, + "probability": 0.998 + }, + { + "start": 3095.8, + "end": 3096.44, + "probability": 0.9692 + }, + { + "start": 3096.68, + "end": 3096.96, + "probability": 0.8783 + }, + { + "start": 3097.1, + "end": 3098.77, + "probability": 0.6711 + }, + { + "start": 3099.14, + "end": 3101.08, + "probability": 0.6504 + }, + { + "start": 3101.18, + "end": 3101.82, + "probability": 0.8804 + }, + { + "start": 3102.24, + "end": 3103.36, + "probability": 0.7225 + }, + { + "start": 3105.08, + "end": 3109.04, + "probability": 0.4767 + }, + { + "start": 3109.28, + "end": 3110.96, + "probability": 0.9948 + }, + { + "start": 3111.96, + "end": 3113.26, + "probability": 0.9013 + }, + { + "start": 3114.08, + "end": 3117.42, + "probability": 0.9732 + }, + { + "start": 3118.2, + "end": 3122.18, + "probability": 0.5821 + }, + { + "start": 3122.46, + "end": 3127.48, + "probability": 0.997 + }, + { + "start": 3128.48, + "end": 3129.7, + "probability": 0.7326 + }, + { + "start": 3131.36, + "end": 3133.56, + "probability": 0.6326 + }, + { + "start": 3135.32, + "end": 3136.8, + "probability": 0.9712 + }, + { + "start": 3137.36, + "end": 3138.06, + "probability": 0.9419 + }, + { + "start": 3138.16, + "end": 3138.56, + "probability": 0.9004 + }, + { + "start": 3138.68, + "end": 3139.66, + "probability": 0.8911 + }, + { + "start": 3139.76, + "end": 3140.44, + "probability": 0.8442 + }, + { + "start": 3140.58, + "end": 3141.5, + "probability": 0.8464 + }, + { + "start": 3141.82, + "end": 3143.12, + "probability": 0.9587 + }, + { + "start": 3143.38, + "end": 3145.16, + "probability": 0.8676 + }, + { + "start": 3146.96, + "end": 3148.74, + "probability": 0.9966 + }, + { + "start": 3149.12, + "end": 3150.44, + "probability": 0.9082 + }, + { + "start": 3150.52, + "end": 3151.26, + "probability": 0.4115 + }, + { + "start": 3151.3, + "end": 3152.36, + "probability": 0.6517 + }, + { + "start": 3155.02, + "end": 3158.5, + "probability": 0.9454 + }, + { + "start": 3158.82, + "end": 3159.72, + "probability": 0.9802 + }, + { + "start": 3160.84, + "end": 3163.64, + "probability": 0.8233 + }, + { + "start": 3164.24, + "end": 3166.44, + "probability": 0.9255 + }, + { + "start": 3166.52, + "end": 3167.98, + "probability": 0.8789 + }, + { + "start": 3168.28, + "end": 3168.89, + "probability": 0.767 + }, + { + "start": 3169.46, + "end": 3174.74, + "probability": 0.9858 + }, + { + "start": 3176.4, + "end": 3177.96, + "probability": 0.9598 + }, + { + "start": 3179.4, + "end": 3181.16, + "probability": 0.8522 + }, + { + "start": 3181.58, + "end": 3182.34, + "probability": 0.735 + }, + { + "start": 3183.42, + "end": 3187.24, + "probability": 0.9247 + }, + { + "start": 3187.32, + "end": 3190.58, + "probability": 0.9225 + }, + { + "start": 3190.96, + "end": 3193.32, + "probability": 0.9856 + }, + { + "start": 3193.78, + "end": 3194.94, + "probability": 0.8021 + }, + { + "start": 3195.22, + "end": 3195.7, + "probability": 0.503 + }, + { + "start": 3195.78, + "end": 3199.08, + "probability": 0.9506 + }, + { + "start": 3199.2, + "end": 3199.94, + "probability": 0.8015 + }, + { + "start": 3200.04, + "end": 3201.6, + "probability": 0.5893 + }, + { + "start": 3201.68, + "end": 3202.44, + "probability": 0.8423 + }, + { + "start": 3203.8, + "end": 3206.94, + "probability": 0.976 + }, + { + "start": 3206.94, + "end": 3210.4, + "probability": 0.9267 + }, + { + "start": 3211.64, + "end": 3213.52, + "probability": 0.9439 + }, + { + "start": 3213.9, + "end": 3217.12, + "probability": 0.7932 + }, + { + "start": 3217.36, + "end": 3218.3, + "probability": 0.9601 + }, + { + "start": 3218.38, + "end": 3219.58, + "probability": 0.9373 + }, + { + "start": 3220.04, + "end": 3221.58, + "probability": 0.9943 + }, + { + "start": 3221.76, + "end": 3222.86, + "probability": 0.9287 + }, + { + "start": 3223.24, + "end": 3224.96, + "probability": 0.9687 + }, + { + "start": 3225.72, + "end": 3226.4, + "probability": 0.9719 + }, + { + "start": 3227.96, + "end": 3229.54, + "probability": 0.9482 + }, + { + "start": 3230.76, + "end": 3231.24, + "probability": 0.2511 + }, + { + "start": 3231.5, + "end": 3231.62, + "probability": 0.6082 + }, + { + "start": 3231.74, + "end": 3232.26, + "probability": 0.9713 + }, + { + "start": 3232.38, + "end": 3232.72, + "probability": 0.4579 + }, + { + "start": 3232.82, + "end": 3235.14, + "probability": 0.7795 + }, + { + "start": 3235.26, + "end": 3235.38, + "probability": 0.1141 + }, + { + "start": 3235.52, + "end": 3236.82, + "probability": 0.7691 + }, + { + "start": 3236.96, + "end": 3237.82, + "probability": 0.8332 + }, + { + "start": 3237.88, + "end": 3237.97, + "probability": 0.0559 + }, + { + "start": 3238.16, + "end": 3240.22, + "probability": 0.0258 + }, + { + "start": 3240.66, + "end": 3241.74, + "probability": 0.9172 + }, + { + "start": 3242.3, + "end": 3248.98, + "probability": 0.9713 + }, + { + "start": 3249.66, + "end": 3250.26, + "probability": 0.5054 + }, + { + "start": 3251.2, + "end": 3251.36, + "probability": 0.1635 + }, + { + "start": 3251.36, + "end": 3251.68, + "probability": 0.5614 + }, + { + "start": 3251.72, + "end": 3252.4, + "probability": 0.897 + }, + { + "start": 3252.84, + "end": 3258.56, + "probability": 0.8499 + }, + { + "start": 3259.16, + "end": 3259.54, + "probability": 0.0636 + }, + { + "start": 3260.72, + "end": 3262.04, + "probability": 0.7288 + }, + { + "start": 3262.68, + "end": 3263.0, + "probability": 0.4458 + }, + { + "start": 3263.18, + "end": 3263.64, + "probability": 0.4381 + }, + { + "start": 3263.66, + "end": 3263.96, + "probability": 0.5834 + }, + { + "start": 3264.26, + "end": 3265.68, + "probability": 0.7389 + }, + { + "start": 3265.78, + "end": 3269.1, + "probability": 0.7229 + }, + { + "start": 3289.52, + "end": 3290.84, + "probability": 0.6155 + }, + { + "start": 3292.8, + "end": 3298.32, + "probability": 0.9707 + }, + { + "start": 3299.28, + "end": 3301.56, + "probability": 0.9945 + }, + { + "start": 3302.54, + "end": 3311.5, + "probability": 0.9385 + }, + { + "start": 3312.34, + "end": 3315.04, + "probability": 0.9747 + }, + { + "start": 3316.08, + "end": 3321.36, + "probability": 0.9197 + }, + { + "start": 3321.72, + "end": 3322.07, + "probability": 0.894 + }, + { + "start": 3323.38, + "end": 3325.14, + "probability": 0.6493 + }, + { + "start": 3326.04, + "end": 3331.84, + "probability": 0.8535 + }, + { + "start": 3333.7, + "end": 3334.1, + "probability": 0.6988 + }, + { + "start": 3335.24, + "end": 3338.18, + "probability": 0.96 + }, + { + "start": 3338.18, + "end": 3341.15, + "probability": 0.8929 + }, + { + "start": 3341.78, + "end": 3344.5, + "probability": 0.8447 + }, + { + "start": 3345.2, + "end": 3346.82, + "probability": 0.6951 + }, + { + "start": 3348.5, + "end": 3352.44, + "probability": 0.9609 + }, + { + "start": 3352.44, + "end": 3356.24, + "probability": 0.8939 + }, + { + "start": 3356.38, + "end": 3360.62, + "probability": 0.9146 + }, + { + "start": 3361.34, + "end": 3363.98, + "probability": 0.9839 + }, + { + "start": 3364.36, + "end": 3366.36, + "probability": 0.9428 + }, + { + "start": 3367.74, + "end": 3369.7, + "probability": 0.6689 + }, + { + "start": 3369.82, + "end": 3370.94, + "probability": 0.98 + }, + { + "start": 3371.0, + "end": 3372.56, + "probability": 0.941 + }, + { + "start": 3374.0, + "end": 3376.96, + "probability": 0.9841 + }, + { + "start": 3377.16, + "end": 3381.5, + "probability": 0.9669 + }, + { + "start": 3381.5, + "end": 3385.0, + "probability": 0.9996 + }, + { + "start": 3385.1, + "end": 3385.8, + "probability": 0.9366 + }, + { + "start": 3387.26, + "end": 3393.8, + "probability": 0.9727 + }, + { + "start": 3394.58, + "end": 3394.64, + "probability": 0.2181 + }, + { + "start": 3394.72, + "end": 3395.64, + "probability": 0.7354 + }, + { + "start": 3395.8, + "end": 3400.16, + "probability": 0.9415 + }, + { + "start": 3400.58, + "end": 3402.06, + "probability": 0.9147 + }, + { + "start": 3402.34, + "end": 3404.48, + "probability": 0.9726 + }, + { + "start": 3404.88, + "end": 3408.16, + "probability": 0.9807 + }, + { + "start": 3408.64, + "end": 3412.24, + "probability": 0.9901 + }, + { + "start": 3412.64, + "end": 3415.7, + "probability": 0.9623 + }, + { + "start": 3416.42, + "end": 3418.62, + "probability": 0.972 + }, + { + "start": 3419.22, + "end": 3423.06, + "probability": 0.9359 + }, + { + "start": 3423.6, + "end": 3425.06, + "probability": 0.9634 + }, + { + "start": 3425.22, + "end": 3427.56, + "probability": 0.9959 + }, + { + "start": 3427.86, + "end": 3428.8, + "probability": 0.5747 + }, + { + "start": 3429.34, + "end": 3432.62, + "probability": 0.9963 + }, + { + "start": 3432.62, + "end": 3435.24, + "probability": 0.9941 + }, + { + "start": 3436.06, + "end": 3437.04, + "probability": 0.9888 + }, + { + "start": 3437.68, + "end": 3439.5, + "probability": 0.9805 + }, + { + "start": 3439.66, + "end": 3440.12, + "probability": 0.8798 + }, + { + "start": 3440.24, + "end": 3440.76, + "probability": 0.4767 + }, + { + "start": 3441.18, + "end": 3441.98, + "probability": 0.8884 + }, + { + "start": 3442.16, + "end": 3443.66, + "probability": 0.917 + }, + { + "start": 3444.16, + "end": 3445.46, + "probability": 0.9898 + }, + { + "start": 3445.6, + "end": 3446.62, + "probability": 0.9692 + }, + { + "start": 3446.72, + "end": 3449.54, + "probability": 0.8023 + }, + { + "start": 3450.56, + "end": 3451.52, + "probability": 0.8484 + }, + { + "start": 3452.3, + "end": 3453.88, + "probability": 0.9175 + }, + { + "start": 3455.02, + "end": 3456.5, + "probability": 0.6609 + }, + { + "start": 3456.58, + "end": 3457.48, + "probability": 0.9078 + }, + { + "start": 3457.62, + "end": 3457.9, + "probability": 0.7735 + }, + { + "start": 3457.9, + "end": 3458.64, + "probability": 0.9107 + }, + { + "start": 3458.84, + "end": 3461.78, + "probability": 0.979 + }, + { + "start": 3462.44, + "end": 3464.18, + "probability": 0.8465 + }, + { + "start": 3464.76, + "end": 3468.08, + "probability": 0.9949 + }, + { + "start": 3468.08, + "end": 3471.64, + "probability": 0.984 + }, + { + "start": 3471.86, + "end": 3472.68, + "probability": 0.352 + }, + { + "start": 3472.8, + "end": 3475.1, + "probability": 0.9255 + }, + { + "start": 3475.22, + "end": 3478.62, + "probability": 0.9922 + }, + { + "start": 3478.98, + "end": 3481.84, + "probability": 0.7824 + }, + { + "start": 3481.84, + "end": 3486.6, + "probability": 0.9286 + }, + { + "start": 3486.98, + "end": 3488.56, + "probability": 0.9365 + }, + { + "start": 3488.92, + "end": 3489.98, + "probability": 0.9666 + }, + { + "start": 3490.06, + "end": 3491.4, + "probability": 0.674 + }, + { + "start": 3491.62, + "end": 3492.26, + "probability": 0.7785 + }, + { + "start": 3492.58, + "end": 3493.51, + "probability": 0.8155 + }, + { + "start": 3493.56, + "end": 3496.28, + "probability": 0.959 + }, + { + "start": 3496.62, + "end": 3496.8, + "probability": 0.5847 + }, + { + "start": 3497.04, + "end": 3498.56, + "probability": 0.8028 + }, + { + "start": 3500.36, + "end": 3502.58, + "probability": 0.3743 + }, + { + "start": 3503.05, + "end": 3503.28, + "probability": 0.1807 + }, + { + "start": 3503.28, + "end": 3503.98, + "probability": 0.4094 + }, + { + "start": 3504.74, + "end": 3507.98, + "probability": 0.9319 + }, + { + "start": 3508.38, + "end": 3510.96, + "probability": 0.959 + }, + { + "start": 3511.18, + "end": 3512.4, + "probability": 0.5292 + }, + { + "start": 3512.66, + "end": 3513.58, + "probability": 0.9237 + }, + { + "start": 3513.62, + "end": 3515.0, + "probability": 0.9753 + }, + { + "start": 3515.32, + "end": 3517.03, + "probability": 0.8679 + }, + { + "start": 3517.74, + "end": 3521.32, + "probability": 0.9829 + }, + { + "start": 3521.54, + "end": 3523.41, + "probability": 0.9263 + }, + { + "start": 3523.62, + "end": 3524.88, + "probability": 0.8222 + }, + { + "start": 3525.08, + "end": 3525.62, + "probability": 0.5986 + }, + { + "start": 3525.62, + "end": 3527.04, + "probability": 0.6894 + }, + { + "start": 3527.16, + "end": 3527.4, + "probability": 0.5599 + }, + { + "start": 3527.56, + "end": 3528.36, + "probability": 0.2979 + }, + { + "start": 3528.88, + "end": 3530.38, + "probability": 0.2168 + }, + { + "start": 3530.38, + "end": 3532.45, + "probability": 0.7655 + }, + { + "start": 3533.06, + "end": 3537.54, + "probability": 0.9368 + }, + { + "start": 3537.84, + "end": 3538.54, + "probability": 0.81 + }, + { + "start": 3539.18, + "end": 3540.44, + "probability": 0.8423 + }, + { + "start": 3540.48, + "end": 3541.32, + "probability": 0.6959 + }, + { + "start": 3541.38, + "end": 3543.34, + "probability": 0.7706 + }, + { + "start": 3543.42, + "end": 3545.39, + "probability": 0.8409 + }, + { + "start": 3545.9, + "end": 3546.54, + "probability": 0.1322 + }, + { + "start": 3547.82, + "end": 3548.08, + "probability": 0.0993 + }, + { + "start": 3548.08, + "end": 3549.46, + "probability": 0.1639 + }, + { + "start": 3549.46, + "end": 3551.88, + "probability": 0.72 + }, + { + "start": 3551.96, + "end": 3553.38, + "probability": 0.6891 + }, + { + "start": 3553.82, + "end": 3555.52, + "probability": 0.604 + }, + { + "start": 3555.68, + "end": 3557.5, + "probability": 0.0095 + }, + { + "start": 3557.5, + "end": 3558.2, + "probability": 0.2134 + }, + { + "start": 3558.34, + "end": 3558.7, + "probability": 0.2502 + }, + { + "start": 3558.94, + "end": 3559.8, + "probability": 0.305 + }, + { + "start": 3559.8, + "end": 3561.54, + "probability": 0.374 + }, + { + "start": 3561.68, + "end": 3563.76, + "probability": 0.9678 + }, + { + "start": 3564.1, + "end": 3567.66, + "probability": 0.6817 + }, + { + "start": 3567.66, + "end": 3571.4, + "probability": 0.7733 + }, + { + "start": 3571.4, + "end": 3575.34, + "probability": 0.951 + }, + { + "start": 3575.34, + "end": 3575.88, + "probability": 0.263 + }, + { + "start": 3576.32, + "end": 3576.32, + "probability": 0.1267 + }, + { + "start": 3576.32, + "end": 3578.48, + "probability": 0.611 + }, + { + "start": 3578.98, + "end": 3582.3, + "probability": 0.9617 + }, + { + "start": 3582.48, + "end": 3584.04, + "probability": 0.7664 + }, + { + "start": 3585.38, + "end": 3585.96, + "probability": 0.8142 + }, + { + "start": 3587.1, + "end": 3589.92, + "probability": 0.7943 + }, + { + "start": 3590.5, + "end": 3592.78, + "probability": 0.0878 + }, + { + "start": 3593.62, + "end": 3594.82, + "probability": 0.6633 + }, + { + "start": 3596.3, + "end": 3597.16, + "probability": 0.7366 + }, + { + "start": 3597.88, + "end": 3598.74, + "probability": 0.8341 + }, + { + "start": 3599.12, + "end": 3600.12, + "probability": 0.7816 + }, + { + "start": 3616.04, + "end": 3620.16, + "probability": 0.0549 + }, + { + "start": 3621.9, + "end": 3622.28, + "probability": 0.3682 + }, + { + "start": 3622.28, + "end": 3623.27, + "probability": 0.576 + }, + { + "start": 3624.62, + "end": 3628.45, + "probability": 0.9613 + }, + { + "start": 3629.58, + "end": 3631.06, + "probability": 0.8488 + }, + { + "start": 3631.18, + "end": 3635.44, + "probability": 0.9736 + }, + { + "start": 3637.0, + "end": 3641.22, + "probability": 0.7698 + }, + { + "start": 3641.9, + "end": 3644.14, + "probability": 0.7663 + }, + { + "start": 3644.6, + "end": 3646.46, + "probability": 0.0573 + }, + { + "start": 3646.76, + "end": 3647.66, + "probability": 0.7526 + }, + { + "start": 3648.38, + "end": 3651.2, + "probability": 0.9802 + }, + { + "start": 3651.2, + "end": 3653.6, + "probability": 0.9518 + }, + { + "start": 3653.64, + "end": 3654.5, + "probability": 0.8194 + }, + { + "start": 3669.24, + "end": 3670.04, + "probability": 0.6938 + }, + { + "start": 3670.12, + "end": 3670.12, + "probability": 0.3381 + }, + { + "start": 3670.14, + "end": 3670.6, + "probability": 0.8429 + }, + { + "start": 3670.72, + "end": 3671.59, + "probability": 0.9072 + }, + { + "start": 3672.12, + "end": 3678.1, + "probability": 0.9641 + }, + { + "start": 3678.1, + "end": 3681.94, + "probability": 0.7504 + }, + { + "start": 3682.02, + "end": 3684.02, + "probability": 0.1153 + }, + { + "start": 3685.0, + "end": 3686.36, + "probability": 0.9644 + }, + { + "start": 3686.62, + "end": 3689.28, + "probability": 0.9012 + }, + { + "start": 3689.28, + "end": 3691.86, + "probability": 0.844 + }, + { + "start": 3691.86, + "end": 3694.98, + "probability": 0.9894 + }, + { + "start": 3695.68, + "end": 3697.14, + "probability": 0.6642 + }, + { + "start": 3697.2, + "end": 3699.28, + "probability": 0.9736 + }, + { + "start": 3699.28, + "end": 3702.2, + "probability": 0.9916 + }, + { + "start": 3702.72, + "end": 3704.42, + "probability": 0.9256 + }, + { + "start": 3704.6, + "end": 3708.2, + "probability": 0.8929 + }, + { + "start": 3708.36, + "end": 3709.41, + "probability": 0.6907 + }, + { + "start": 3710.08, + "end": 3712.76, + "probability": 0.9591 + }, + { + "start": 3712.76, + "end": 3716.4, + "probability": 0.974 + }, + { + "start": 3717.16, + "end": 3720.24, + "probability": 0.7156 + }, + { + "start": 3720.38, + "end": 3722.18, + "probability": 0.9822 + }, + { + "start": 3722.62, + "end": 3724.54, + "probability": 0.9139 + }, + { + "start": 3724.62, + "end": 3727.12, + "probability": 0.9913 + }, + { + "start": 3727.24, + "end": 3729.3, + "probability": 0.7082 + }, + { + "start": 3729.54, + "end": 3733.18, + "probability": 0.9811 + }, + { + "start": 3733.84, + "end": 3737.2, + "probability": 0.9937 + }, + { + "start": 3737.24, + "end": 3740.68, + "probability": 0.8845 + }, + { + "start": 3741.7, + "end": 3743.42, + "probability": 0.7487 + }, + { + "start": 3743.5, + "end": 3746.19, + "probability": 0.9144 + }, + { + "start": 3746.2, + "end": 3748.64, + "probability": 0.9663 + }, + { + "start": 3749.06, + "end": 3749.16, + "probability": 0.548 + }, + { + "start": 3749.56, + "end": 3752.08, + "probability": 0.6052 + }, + { + "start": 3752.3, + "end": 3754.64, + "probability": 0.8989 + }, + { + "start": 3755.1, + "end": 3757.06, + "probability": 0.9519 + }, + { + "start": 3760.88, + "end": 3762.72, + "probability": 0.4221 + }, + { + "start": 3764.56, + "end": 3766.04, + "probability": 0.193 + }, + { + "start": 3766.58, + "end": 3770.5, + "probability": 0.9807 + }, + { + "start": 3771.5, + "end": 3775.0, + "probability": 0.9976 + }, + { + "start": 3775.08, + "end": 3775.16, + "probability": 0.7671 + }, + { + "start": 3775.28, + "end": 3776.32, + "probability": 0.7755 + }, + { + "start": 3776.56, + "end": 3778.7, + "probability": 0.9451 + }, + { + "start": 3779.66, + "end": 3780.8, + "probability": 0.6938 + }, + { + "start": 3781.88, + "end": 3783.2, + "probability": 0.7549 + }, + { + "start": 3784.18, + "end": 3786.39, + "probability": 0.6236 + }, + { + "start": 3787.24, + "end": 3788.86, + "probability": 0.894 + }, + { + "start": 3789.26, + "end": 3790.04, + "probability": 0.4119 + }, + { + "start": 3790.1, + "end": 3790.28, + "probability": 0.1707 + }, + { + "start": 3790.36, + "end": 3792.16, + "probability": 0.9533 + }, + { + "start": 3792.48, + "end": 3793.1, + "probability": 0.7759 + }, + { + "start": 3793.38, + "end": 3794.8, + "probability": 0.3906 + }, + { + "start": 3794.9, + "end": 3795.9, + "probability": 0.6398 + }, + { + "start": 3796.0, + "end": 3798.16, + "probability": 0.9793 + }, + { + "start": 3798.32, + "end": 3799.7, + "probability": 0.8539 + }, + { + "start": 3799.8, + "end": 3800.4, + "probability": 0.8342 + }, + { + "start": 3801.0, + "end": 3802.24, + "probability": 0.8926 + }, + { + "start": 3802.32, + "end": 3804.06, + "probability": 0.964 + }, + { + "start": 3804.58, + "end": 3808.92, + "probability": 0.9908 + }, + { + "start": 3809.42, + "end": 3810.82, + "probability": 0.9484 + }, + { + "start": 3811.94, + "end": 3814.3, + "probability": 0.9167 + }, + { + "start": 3814.74, + "end": 3818.64, + "probability": 0.9857 + }, + { + "start": 3819.2, + "end": 3820.46, + "probability": 0.9941 + }, + { + "start": 3820.6, + "end": 3821.22, + "probability": 0.7266 + }, + { + "start": 3821.4, + "end": 3822.1, + "probability": 0.637 + }, + { + "start": 3823.04, + "end": 3824.48, + "probability": 0.9026 + }, + { + "start": 3824.84, + "end": 3825.66, + "probability": 0.9872 + }, + { + "start": 3825.74, + "end": 3826.72, + "probability": 0.848 + }, + { + "start": 3826.8, + "end": 3829.8, + "probability": 0.8203 + }, + { + "start": 3830.64, + "end": 3834.18, + "probability": 0.991 + }, + { + "start": 3834.38, + "end": 3836.56, + "probability": 0.9868 + }, + { + "start": 3837.32, + "end": 3839.26, + "probability": 0.8433 + }, + { + "start": 3839.74, + "end": 3843.3, + "probability": 0.9925 + }, + { + "start": 3843.64, + "end": 3844.58, + "probability": 0.9516 + }, + { + "start": 3845.16, + "end": 3845.6, + "probability": 0.8667 + }, + { + "start": 3845.92, + "end": 3846.38, + "probability": 0.8629 + }, + { + "start": 3846.66, + "end": 3847.82, + "probability": 0.946 + }, + { + "start": 3847.98, + "end": 3850.36, + "probability": 0.8533 + }, + { + "start": 3850.44, + "end": 3851.02, + "probability": 0.4107 + }, + { + "start": 3851.4, + "end": 3852.96, + "probability": 0.5116 + }, + { + "start": 3853.04, + "end": 3853.74, + "probability": 0.9333 + }, + { + "start": 3853.8, + "end": 3854.98, + "probability": 0.9679 + }, + { + "start": 3855.0, + "end": 3855.88, + "probability": 0.824 + }, + { + "start": 3855.92, + "end": 3857.33, + "probability": 0.7319 + }, + { + "start": 3857.94, + "end": 3858.64, + "probability": 0.9779 + }, + { + "start": 3858.8, + "end": 3860.5, + "probability": 0.9806 + }, + { + "start": 3860.78, + "end": 3862.78, + "probability": 0.6553 + }, + { + "start": 3863.26, + "end": 3863.79, + "probability": 0.9197 + }, + { + "start": 3864.08, + "end": 3865.22, + "probability": 0.5983 + }, + { + "start": 3865.24, + "end": 3871.0, + "probability": 0.9808 + }, + { + "start": 3871.02, + "end": 3871.42, + "probability": 0.7177 + }, + { + "start": 3871.42, + "end": 3871.85, + "probability": 0.9339 + }, + { + "start": 3872.58, + "end": 3879.5, + "probability": 0.8701 + }, + { + "start": 3880.07, + "end": 3882.64, + "probability": 0.3965 + }, + { + "start": 3882.68, + "end": 3884.22, + "probability": 0.7545 + }, + { + "start": 3884.54, + "end": 3884.62, + "probability": 0.6141 + }, + { + "start": 3884.62, + "end": 3885.1, + "probability": 0.8193 + }, + { + "start": 3885.2, + "end": 3886.04, + "probability": 0.9395 + }, + { + "start": 3886.78, + "end": 3891.5, + "probability": 0.9769 + }, + { + "start": 3891.5, + "end": 3894.7, + "probability": 0.9676 + }, + { + "start": 3895.58, + "end": 3897.64, + "probability": 0.6308 + }, + { + "start": 3900.14, + "end": 3901.02, + "probability": 0.1797 + }, + { + "start": 3901.02, + "end": 3902.42, + "probability": 0.6453 + }, + { + "start": 3904.76, + "end": 3906.84, + "probability": 0.9851 + }, + { + "start": 3907.04, + "end": 3909.52, + "probability": 0.7061 + }, + { + "start": 3909.64, + "end": 3910.88, + "probability": 0.9987 + }, + { + "start": 3911.32, + "end": 3915.42, + "probability": 0.8417 + }, + { + "start": 3915.58, + "end": 3918.32, + "probability": 0.9694 + }, + { + "start": 3918.34, + "end": 3918.7, + "probability": 0.8335 + }, + { + "start": 3919.2, + "end": 3923.18, + "probability": 0.9394 + }, + { + "start": 3923.34, + "end": 3925.02, + "probability": 0.5455 + }, + { + "start": 3925.66, + "end": 3929.8, + "probability": 0.9916 + }, + { + "start": 3930.02, + "end": 3931.76, + "probability": 0.749 + }, + { + "start": 3932.04, + "end": 3934.18, + "probability": 0.9797 + }, + { + "start": 3935.0, + "end": 3935.94, + "probability": 0.592 + }, + { + "start": 3936.0, + "end": 3936.58, + "probability": 0.6503 + }, + { + "start": 3936.96, + "end": 3937.62, + "probability": 0.9116 + }, + { + "start": 3937.78, + "end": 3938.5, + "probability": 0.9331 + }, + { + "start": 3938.6, + "end": 3939.38, + "probability": 0.8716 + }, + { + "start": 3939.66, + "end": 3942.22, + "probability": 0.9937 + }, + { + "start": 3942.22, + "end": 3945.34, + "probability": 0.8857 + }, + { + "start": 3945.9, + "end": 3946.86, + "probability": 0.9663 + }, + { + "start": 3947.18, + "end": 3949.18, + "probability": 0.8665 + }, + { + "start": 3949.84, + "end": 3952.34, + "probability": 0.9793 + }, + { + "start": 3952.42, + "end": 3953.5, + "probability": 0.9753 + }, + { + "start": 3953.5, + "end": 3954.11, + "probability": 0.7624 + }, + { + "start": 3954.2, + "end": 3955.04, + "probability": 0.8636 + }, + { + "start": 3955.22, + "end": 3956.08, + "probability": 0.8653 + }, + { + "start": 3956.54, + "end": 3959.12, + "probability": 0.6736 + }, + { + "start": 3959.2, + "end": 3960.04, + "probability": 0.9667 + }, + { + "start": 3960.16, + "end": 3961.2, + "probability": 0.5767 + }, + { + "start": 3961.9, + "end": 3962.35, + "probability": 0.9329 + }, + { + "start": 3963.06, + "end": 3965.64, + "probability": 0.8643 + }, + { + "start": 3965.74, + "end": 3968.24, + "probability": 0.8077 + }, + { + "start": 3968.68, + "end": 3969.68, + "probability": 0.693 + }, + { + "start": 3969.76, + "end": 3970.38, + "probability": 0.8627 + }, + { + "start": 3971.32, + "end": 3972.06, + "probability": 0.598 + }, + { + "start": 3972.2, + "end": 3974.0, + "probability": 0.8368 + }, + { + "start": 3974.02, + "end": 3974.64, + "probability": 0.3816 + }, + { + "start": 3974.68, + "end": 3975.38, + "probability": 0.438 + }, + { + "start": 3975.9, + "end": 3977.5, + "probability": 0.6681 + }, + { + "start": 3978.1, + "end": 3979.2, + "probability": 0.9358 + }, + { + "start": 3979.72, + "end": 3981.02, + "probability": 0.7184 + }, + { + "start": 3981.62, + "end": 3982.94, + "probability": 0.7419 + }, + { + "start": 3983.02, + "end": 3984.84, + "probability": 0.5474 + }, + { + "start": 3984.9, + "end": 3988.38, + "probability": 0.8295 + }, + { + "start": 3988.82, + "end": 3989.44, + "probability": 0.7914 + }, + { + "start": 3989.46, + "end": 3991.42, + "probability": 0.9404 + }, + { + "start": 3992.72, + "end": 3993.98, + "probability": 0.7612 + }, + { + "start": 3994.74, + "end": 3996.32, + "probability": 0.8137 + }, + { + "start": 3996.48, + "end": 3998.76, + "probability": 0.7167 + }, + { + "start": 4001.8, + "end": 4003.66, + "probability": 0.8482 + }, + { + "start": 4020.44, + "end": 4022.42, + "probability": 0.7008 + }, + { + "start": 4023.66, + "end": 4029.04, + "probability": 0.9762 + }, + { + "start": 4029.84, + "end": 4035.72, + "probability": 0.9118 + }, + { + "start": 4035.92, + "end": 4036.66, + "probability": 0.8792 + }, + { + "start": 4037.56, + "end": 4045.4, + "probability": 0.9131 + }, + { + "start": 4046.4, + "end": 4047.84, + "probability": 0.9831 + }, + { + "start": 4049.16, + "end": 4058.38, + "probability": 0.9945 + }, + { + "start": 4059.1, + "end": 4062.46, + "probability": 0.8088 + }, + { + "start": 4063.14, + "end": 4066.22, + "probability": 0.7198 + }, + { + "start": 4067.12, + "end": 4069.22, + "probability": 0.8864 + }, + { + "start": 4070.18, + "end": 4074.4, + "probability": 0.9722 + }, + { + "start": 4075.12, + "end": 4076.88, + "probability": 0.9901 + }, + { + "start": 4077.58, + "end": 4081.54, + "probability": 0.9902 + }, + { + "start": 4082.54, + "end": 4090.22, + "probability": 0.8904 + }, + { + "start": 4091.14, + "end": 4096.88, + "probability": 0.9952 + }, + { + "start": 4096.88, + "end": 4100.9, + "probability": 0.9983 + }, + { + "start": 4101.5, + "end": 4102.28, + "probability": 0.4643 + }, + { + "start": 4102.38, + "end": 4105.54, + "probability": 0.8432 + }, + { + "start": 4106.24, + "end": 4108.54, + "probability": 0.8815 + }, + { + "start": 4109.2, + "end": 4110.48, + "probability": 0.944 + }, + { + "start": 4111.3, + "end": 4113.58, + "probability": 0.9801 + }, + { + "start": 4114.22, + "end": 4117.98, + "probability": 0.9504 + }, + { + "start": 4118.52, + "end": 4119.92, + "probability": 0.9733 + }, + { + "start": 4120.62, + "end": 4122.52, + "probability": 0.9948 + }, + { + "start": 4123.16, + "end": 4127.38, + "probability": 0.9712 + }, + { + "start": 4129.28, + "end": 4133.68, + "probability": 0.9799 + }, + { + "start": 4134.78, + "end": 4135.82, + "probability": 0.7759 + }, + { + "start": 4136.84, + "end": 4142.18, + "probability": 0.9924 + }, + { + "start": 4142.96, + "end": 4147.32, + "probability": 0.989 + }, + { + "start": 4148.22, + "end": 4151.84, + "probability": 0.625 + }, + { + "start": 4152.0, + "end": 4155.9, + "probability": 0.9886 + }, + { + "start": 4156.46, + "end": 4159.88, + "probability": 0.6074 + }, + { + "start": 4160.12, + "end": 4162.26, + "probability": 0.6931 + }, + { + "start": 4162.64, + "end": 4163.5, + "probability": 0.5729 + }, + { + "start": 4164.06, + "end": 4167.76, + "probability": 0.8599 + }, + { + "start": 4168.64, + "end": 4170.74, + "probability": 0.8704 + }, + { + "start": 4171.4, + "end": 4172.96, + "probability": 0.8258 + }, + { + "start": 4173.9, + "end": 4178.76, + "probability": 0.8413 + }, + { + "start": 4179.34, + "end": 4180.4, + "probability": 0.8788 + }, + { + "start": 4181.12, + "end": 4182.36, + "probability": 0.808 + }, + { + "start": 4183.38, + "end": 4186.76, + "probability": 0.8982 + }, + { + "start": 4187.78, + "end": 4190.36, + "probability": 0.6704 + }, + { + "start": 4191.3, + "end": 4194.08, + "probability": 0.9889 + }, + { + "start": 4195.4, + "end": 4197.48, + "probability": 0.9464 + }, + { + "start": 4198.42, + "end": 4203.12, + "probability": 0.966 + }, + { + "start": 4203.86, + "end": 4205.3, + "probability": 0.9223 + }, + { + "start": 4206.16, + "end": 4208.44, + "probability": 0.7688 + }, + { + "start": 4209.28, + "end": 4212.5, + "probability": 0.8477 + }, + { + "start": 4213.04, + "end": 4215.86, + "probability": 0.9522 + }, + { + "start": 4216.38, + "end": 4217.86, + "probability": 0.9651 + }, + { + "start": 4218.44, + "end": 4219.56, + "probability": 0.7964 + }, + { + "start": 4220.24, + "end": 4223.36, + "probability": 0.8952 + }, + { + "start": 4223.86, + "end": 4226.64, + "probability": 0.854 + }, + { + "start": 4227.08, + "end": 4228.94, + "probability": 0.6813 + }, + { + "start": 4229.6, + "end": 4234.58, + "probability": 0.6548 + }, + { + "start": 4235.18, + "end": 4243.06, + "probability": 0.9789 + }, + { + "start": 4243.28, + "end": 4246.5, + "probability": 0.7461 + }, + { + "start": 4247.12, + "end": 4249.34, + "probability": 0.5889 + }, + { + "start": 4249.9, + "end": 4251.32, + "probability": 0.883 + }, + { + "start": 4251.64, + "end": 4252.0, + "probability": 0.491 + }, + { + "start": 4252.1, + "end": 4252.86, + "probability": 0.6377 + }, + { + "start": 4253.0, + "end": 4258.7, + "probability": 0.9917 + }, + { + "start": 4259.26, + "end": 4262.04, + "probability": 0.9824 + }, + { + "start": 4262.64, + "end": 4262.82, + "probability": 0.4492 + }, + { + "start": 4262.9, + "end": 4263.7, + "probability": 0.6681 + }, + { + "start": 4264.08, + "end": 4267.28, + "probability": 0.998 + }, + { + "start": 4267.28, + "end": 4269.92, + "probability": 0.9976 + }, + { + "start": 4270.32, + "end": 4272.1, + "probability": 0.7373 + }, + { + "start": 4272.22, + "end": 4274.22, + "probability": 0.8615 + }, + { + "start": 4275.16, + "end": 4277.68, + "probability": 0.7979 + }, + { + "start": 4300.14, + "end": 4302.38, + "probability": 0.7002 + }, + { + "start": 4303.84, + "end": 4305.86, + "probability": 0.7345 + }, + { + "start": 4306.88, + "end": 4311.34, + "probability": 0.9954 + }, + { + "start": 4311.98, + "end": 4315.04, + "probability": 0.9948 + }, + { + "start": 4315.7, + "end": 4318.34, + "probability": 0.9788 + }, + { + "start": 4319.26, + "end": 4321.87, + "probability": 0.9873 + }, + { + "start": 4322.2, + "end": 4323.38, + "probability": 0.7191 + }, + { + "start": 4323.62, + "end": 4325.34, + "probability": 0.86 + }, + { + "start": 4325.48, + "end": 4326.2, + "probability": 0.7925 + }, + { + "start": 4326.4, + "end": 4326.96, + "probability": 0.5486 + }, + { + "start": 4327.96, + "end": 4331.58, + "probability": 0.8426 + }, + { + "start": 4331.62, + "end": 4332.96, + "probability": 0.8677 + }, + { + "start": 4333.36, + "end": 4334.22, + "probability": 0.714 + }, + { + "start": 4334.3, + "end": 4338.8, + "probability": 0.9131 + }, + { + "start": 4340.0, + "end": 4341.72, + "probability": 0.6037 + }, + { + "start": 4342.32, + "end": 4343.18, + "probability": 0.9176 + }, + { + "start": 4344.42, + "end": 4348.2, + "probability": 0.9841 + }, + { + "start": 4349.08, + "end": 4351.64, + "probability": 0.9921 + }, + { + "start": 4352.3, + "end": 4353.9, + "probability": 0.8488 + }, + { + "start": 4354.84, + "end": 4355.48, + "probability": 0.4573 + }, + { + "start": 4356.14, + "end": 4357.16, + "probability": 0.9554 + }, + { + "start": 4357.9, + "end": 4360.54, + "probability": 0.9932 + }, + { + "start": 4361.46, + "end": 4363.76, + "probability": 0.9862 + }, + { + "start": 4364.36, + "end": 4366.26, + "probability": 0.9851 + }, + { + "start": 4367.04, + "end": 4369.02, + "probability": 0.9844 + }, + { + "start": 4369.92, + "end": 4370.9, + "probability": 0.8373 + }, + { + "start": 4371.02, + "end": 4372.04, + "probability": 0.8185 + }, + { + "start": 4372.1, + "end": 4373.32, + "probability": 0.9314 + }, + { + "start": 4373.56, + "end": 4374.72, + "probability": 0.9199 + }, + { + "start": 4375.36, + "end": 4376.5, + "probability": 0.9747 + }, + { + "start": 4377.46, + "end": 4379.26, + "probability": 0.9951 + }, + { + "start": 4379.86, + "end": 4383.34, + "probability": 0.9937 + }, + { + "start": 4383.78, + "end": 4385.36, + "probability": 0.8676 + }, + { + "start": 4386.12, + "end": 4387.92, + "probability": 0.9918 + }, + { + "start": 4388.84, + "end": 4393.18, + "probability": 0.9713 + }, + { + "start": 4393.38, + "end": 4394.72, + "probability": 0.9946 + }, + { + "start": 4395.66, + "end": 4397.94, + "probability": 0.9944 + }, + { + "start": 4398.0, + "end": 4399.08, + "probability": 0.9679 + }, + { + "start": 4399.82, + "end": 4402.54, + "probability": 0.9905 + }, + { + "start": 4403.06, + "end": 4404.8, + "probability": 0.9059 + }, + { + "start": 4404.88, + "end": 4407.38, + "probability": 0.878 + }, + { + "start": 4408.2, + "end": 4410.44, + "probability": 0.9705 + }, + { + "start": 4411.28, + "end": 4415.04, + "probability": 0.9937 + }, + { + "start": 4415.68, + "end": 4417.1, + "probability": 0.8857 + }, + { + "start": 4418.06, + "end": 4421.14, + "probability": 0.9054 + }, + { + "start": 4421.68, + "end": 4422.64, + "probability": 0.9614 + }, + { + "start": 4423.3, + "end": 4425.64, + "probability": 0.9288 + }, + { + "start": 4426.22, + "end": 4428.24, + "probability": 0.9924 + }, + { + "start": 4428.76, + "end": 4429.6, + "probability": 0.894 + }, + { + "start": 4430.44, + "end": 4433.22, + "probability": 0.9718 + }, + { + "start": 4433.28, + "end": 4434.1, + "probability": 0.754 + }, + { + "start": 4435.24, + "end": 4436.68, + "probability": 0.78 + }, + { + "start": 4437.3, + "end": 4438.56, + "probability": 0.9757 + }, + { + "start": 4439.14, + "end": 4440.74, + "probability": 0.8345 + }, + { + "start": 4441.76, + "end": 4441.98, + "probability": 0.7678 + }, + { + "start": 4442.76, + "end": 4444.79, + "probability": 0.9902 + }, + { + "start": 4444.96, + "end": 4448.78, + "probability": 0.9664 + }, + { + "start": 4449.48, + "end": 4450.78, + "probability": 0.8419 + }, + { + "start": 4450.94, + "end": 4454.56, + "probability": 0.9854 + }, + { + "start": 4455.56, + "end": 4459.08, + "probability": 0.9972 + }, + { + "start": 4459.94, + "end": 4460.64, + "probability": 0.6673 + }, + { + "start": 4461.24, + "end": 4464.92, + "probability": 0.9795 + }, + { + "start": 4466.66, + "end": 4472.84, + "probability": 0.9405 + }, + { + "start": 4473.34, + "end": 4475.64, + "probability": 0.9023 + }, + { + "start": 4475.88, + "end": 4476.74, + "probability": 0.876 + }, + { + "start": 4478.0, + "end": 4479.72, + "probability": 0.989 + }, + { + "start": 4480.36, + "end": 4483.16, + "probability": 0.9645 + }, + { + "start": 4483.52, + "end": 4486.76, + "probability": 0.8538 + }, + { + "start": 4487.24, + "end": 4489.54, + "probability": 0.7441 + }, + { + "start": 4489.64, + "end": 4492.9, + "probability": 0.9847 + }, + { + "start": 4493.02, + "end": 4493.76, + "probability": 0.1539 + }, + { + "start": 4493.84, + "end": 4500.24, + "probability": 0.5813 + }, + { + "start": 4500.32, + "end": 4502.82, + "probability": 0.6486 + }, + { + "start": 4503.24, + "end": 4505.16, + "probability": 0.2622 + }, + { + "start": 4505.38, + "end": 4510.22, + "probability": 0.3261 + }, + { + "start": 4510.42, + "end": 4512.6, + "probability": 0.603 + }, + { + "start": 4513.2, + "end": 4516.58, + "probability": 0.372 + }, + { + "start": 4516.62, + "end": 4516.62, + "probability": 0.0216 + }, + { + "start": 4516.62, + "end": 4516.62, + "probability": 0.0916 + }, + { + "start": 4516.62, + "end": 4518.14, + "probability": 0.3984 + }, + { + "start": 4518.14, + "end": 4520.58, + "probability": 0.7412 + }, + { + "start": 4521.73, + "end": 4524.7, + "probability": 0.9928 + }, + { + "start": 4525.62, + "end": 4528.08, + "probability": 0.9932 + }, + { + "start": 4528.5, + "end": 4529.38, + "probability": 0.8942 + }, + { + "start": 4529.64, + "end": 4532.16, + "probability": 0.4133 + }, + { + "start": 4532.46, + "end": 4533.58, + "probability": 0.8291 + }, + { + "start": 4533.92, + "end": 4535.04, + "probability": 0.5958 + }, + { + "start": 4535.66, + "end": 4536.5, + "probability": 0.8105 + }, + { + "start": 4536.58, + "end": 4538.22, + "probability": 0.9075 + }, + { + "start": 4538.28, + "end": 4539.1, + "probability": 0.9144 + }, + { + "start": 4539.16, + "end": 4540.96, + "probability": 0.9849 + }, + { + "start": 4541.26, + "end": 4543.26, + "probability": 0.9421 + }, + { + "start": 4543.68, + "end": 4546.28, + "probability": 0.9877 + }, + { + "start": 4546.86, + "end": 4550.16, + "probability": 0.9937 + }, + { + "start": 4550.26, + "end": 4551.36, + "probability": 0.8736 + }, + { + "start": 4551.52, + "end": 4552.34, + "probability": 0.9408 + }, + { + "start": 4552.48, + "end": 4553.5, + "probability": 0.9533 + }, + { + "start": 4553.64, + "end": 4554.68, + "probability": 0.97 + }, + { + "start": 4554.8, + "end": 4556.7, + "probability": 0.8069 + }, + { + "start": 4556.82, + "end": 4558.12, + "probability": 0.9792 + }, + { + "start": 4558.22, + "end": 4560.7, + "probability": 0.9622 + }, + { + "start": 4560.86, + "end": 4562.74, + "probability": 0.7468 + }, + { + "start": 4563.06, + "end": 4564.78, + "probability": 0.6919 + }, + { + "start": 4564.84, + "end": 4567.0, + "probability": 0.7805 + }, + { + "start": 4567.18, + "end": 4567.9, + "probability": 0.5323 + }, + { + "start": 4586.2, + "end": 4587.48, + "probability": 0.5819 + }, + { + "start": 4588.24, + "end": 4594.06, + "probability": 0.9306 + }, + { + "start": 4595.28, + "end": 4600.28, + "probability": 0.9973 + }, + { + "start": 4601.78, + "end": 4606.6, + "probability": 0.821 + }, + { + "start": 4607.56, + "end": 4609.7, + "probability": 0.6345 + }, + { + "start": 4610.78, + "end": 4616.36, + "probability": 0.8084 + }, + { + "start": 4616.8, + "end": 4617.36, + "probability": 0.9893 + }, + { + "start": 4617.44, + "end": 4618.28, + "probability": 0.9798 + }, + { + "start": 4618.66, + "end": 4619.52, + "probability": 0.8063 + }, + { + "start": 4620.48, + "end": 4621.36, + "probability": 0.9507 + }, + { + "start": 4622.02, + "end": 4623.14, + "probability": 0.9585 + }, + { + "start": 4623.8, + "end": 4626.32, + "probability": 0.771 + }, + { + "start": 4626.98, + "end": 4629.5, + "probability": 0.8726 + }, + { + "start": 4630.38, + "end": 4634.54, + "probability": 0.8974 + }, + { + "start": 4635.32, + "end": 4638.06, + "probability": 0.9734 + }, + { + "start": 4638.98, + "end": 4641.36, + "probability": 0.9931 + }, + { + "start": 4642.12, + "end": 4644.26, + "probability": 0.9673 + }, + { + "start": 4644.96, + "end": 4649.42, + "probability": 0.9961 + }, + { + "start": 4649.98, + "end": 4654.68, + "probability": 0.7335 + }, + { + "start": 4655.22, + "end": 4657.14, + "probability": 0.9744 + }, + { + "start": 4657.92, + "end": 4659.24, + "probability": 0.847 + }, + { + "start": 4659.32, + "end": 4662.36, + "probability": 0.803 + }, + { + "start": 4663.14, + "end": 4664.68, + "probability": 0.5904 + }, + { + "start": 4664.74, + "end": 4665.58, + "probability": 0.3512 + }, + { + "start": 4665.74, + "end": 4667.3, + "probability": 0.8201 + }, + { + "start": 4668.4, + "end": 4669.96, + "probability": 0.592 + }, + { + "start": 4670.68, + "end": 4672.22, + "probability": 0.7251 + }, + { + "start": 4672.34, + "end": 4674.42, + "probability": 0.945 + }, + { + "start": 4674.86, + "end": 4675.74, + "probability": 0.9812 + }, + { + "start": 4676.46, + "end": 4679.32, + "probability": 0.9063 + }, + { + "start": 4679.44, + "end": 4682.75, + "probability": 0.7964 + }, + { + "start": 4683.84, + "end": 4688.66, + "probability": 0.994 + }, + { + "start": 4689.3, + "end": 4694.56, + "probability": 0.9967 + }, + { + "start": 4695.86, + "end": 4700.4, + "probability": 0.9653 + }, + { + "start": 4700.8, + "end": 4702.38, + "probability": 0.8669 + }, + { + "start": 4703.14, + "end": 4706.68, + "probability": 0.9433 + }, + { + "start": 4707.08, + "end": 4707.96, + "probability": 0.9516 + }, + { + "start": 4708.38, + "end": 4709.48, + "probability": 0.9707 + }, + { + "start": 4710.16, + "end": 4713.76, + "probability": 0.9937 + }, + { + "start": 4713.92, + "end": 4718.88, + "probability": 0.9175 + }, + { + "start": 4719.0, + "end": 4720.44, + "probability": 0.5589 + }, + { + "start": 4721.34, + "end": 4722.58, + "probability": 0.8682 + }, + { + "start": 4723.48, + "end": 4727.61, + "probability": 0.9932 + }, + { + "start": 4727.76, + "end": 4731.82, + "probability": 0.5717 + }, + { + "start": 4732.1, + "end": 4732.56, + "probability": 0.8126 + }, + { + "start": 4733.12, + "end": 4735.44, + "probability": 0.7769 + }, + { + "start": 4738.48, + "end": 4740.8, + "probability": 0.5331 + }, + { + "start": 4741.54, + "end": 4744.22, + "probability": 0.9684 + }, + { + "start": 4744.56, + "end": 4747.28, + "probability": 0.7178 + }, + { + "start": 4747.36, + "end": 4749.44, + "probability": 0.0466 + }, + { + "start": 4750.16, + "end": 4751.08, + "probability": 0.7954 + }, + { + "start": 4751.28, + "end": 4753.0, + "probability": 0.8587 + }, + { + "start": 4753.1, + "end": 4754.08, + "probability": 0.8025 + }, + { + "start": 4754.5, + "end": 4755.22, + "probability": 0.7295 + }, + { + "start": 4765.68, + "end": 4766.5, + "probability": 0.2866 + }, + { + "start": 4767.94, + "end": 4768.56, + "probability": 0.0894 + }, + { + "start": 4775.22, + "end": 4776.22, + "probability": 0.0295 + }, + { + "start": 4777.04, + "end": 4777.3, + "probability": 0.0494 + }, + { + "start": 4777.3, + "end": 4777.3, + "probability": 0.0647 + }, + { + "start": 4777.3, + "end": 4777.3, + "probability": 0.6165 + }, + { + "start": 4777.3, + "end": 4778.86, + "probability": 0.3053 + }, + { + "start": 4779.28, + "end": 4782.68, + "probability": 0.794 + }, + { + "start": 4782.92, + "end": 4787.14, + "probability": 0.9872 + }, + { + "start": 4787.3, + "end": 4788.94, + "probability": 0.9264 + }, + { + "start": 4791.02, + "end": 4793.66, + "probability": 0.7197 + }, + { + "start": 4794.44, + "end": 4796.0, + "probability": 0.7244 + }, + { + "start": 4796.58, + "end": 4800.68, + "probability": 0.6974 + }, + { + "start": 4801.28, + "end": 4804.82, + "probability": 0.8986 + }, + { + "start": 4805.4, + "end": 4808.88, + "probability": 0.8047 + }, + { + "start": 4809.88, + "end": 4811.82, + "probability": 0.8993 + }, + { + "start": 4812.38, + "end": 4814.92, + "probability": 0.6819 + }, + { + "start": 4815.7, + "end": 4817.72, + "probability": 0.654 + }, + { + "start": 4818.08, + "end": 4819.2, + "probability": 0.9978 + }, + { + "start": 4819.24, + "end": 4820.08, + "probability": 0.8444 + }, + { + "start": 4821.5, + "end": 4825.8, + "probability": 0.9199 + }, + { + "start": 4828.26, + "end": 4830.04, + "probability": 0.6943 + }, + { + "start": 4830.1, + "end": 4831.98, + "probability": 0.5628 + }, + { + "start": 4831.98, + "end": 4831.98, + "probability": 0.4906 + }, + { + "start": 4832.74, + "end": 4834.4, + "probability": 0.7116 + }, + { + "start": 4834.42, + "end": 4835.98, + "probability": 0.5957 + }, + { + "start": 4836.02, + "end": 4838.28, + "probability": 0.6675 + }, + { + "start": 4838.84, + "end": 4841.38, + "probability": 0.4494 + }, + { + "start": 4842.02, + "end": 4842.06, + "probability": 0.0045 + } + ], + "segments_count": 1862, + "words_count": 9081, + "avg_words_per_segment": 4.877, + "avg_segment_duration": 1.8261, + "avg_words_per_minute": 111.4555, + "plenum_id": "38912", + "duration": 4888.59, + "title": null, + "plenum_date": "2014-07-21" +} \ No newline at end of file